hexsha
stringlengths
40
40
size
int64
4
1.02M
ext
stringclasses
8 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
4
209
max_stars_repo_name
stringlengths
5
121
max_stars_repo_head_hexsha
stringlengths
40
40
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
4
209
max_issues_repo_name
stringlengths
5
121
max_issues_repo_head_hexsha
stringlengths
40
40
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
4
209
max_forks_repo_name
stringlengths
5
121
max_forks_repo_head_hexsha
stringlengths
40
40
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
4
1.02M
avg_line_length
float64
1.07
66.1k
max_line_length
int64
4
266k
alphanum_fraction
float64
0.01
1
4414ffb6ed6ec95ee5ef9886e9cc643654473f99
45,372
py
Python
samt/samt.py
Killerhaschen/marvin-telegram-bot
c65e890a00450ed6ed4312d93e259db0c080ef6d
[ "MIT" ]
null
null
null
samt/samt.py
Killerhaschen/marvin-telegram-bot
c65e890a00450ed6ed4312d93e259db0c080ef6d
[ "MIT" ]
null
null
null
samt/samt.py
Killerhaschen/marvin-telegram-bot
c65e890a00450ed6ed4312d93e259db0c080ef6d
[ "MIT" ]
null
null
null
import asyncio import logging import math import platform import signal import sys import traceback import types from collections import deque from inspect import iscoroutinefunction, isgenerator, isasyncgen from os import path, system from typing import Dict, Callable, Tuple, Iterable, Union, Collection import aiotask_context as _context import collections import telepot import telepot.aio.delegate import toml from telepot.aio.loop import MessageLoop from telepot.exception import TelegramError from telepot.namedtuple import InlineKeyboardButton, InlineKeyboardMarkup, KeyboardButton, ReplyKeyboardMarkup, \ ReplyKeyboardRemove from samt.helper import * logger = logging.getLogger(__name__) def _load_configuration(filename: str) -> dict: """ Loads the main configuration file from disk :param filename: The name of the user configuration file :return: The configuration as a dictionary """ script_path = path.dirname(path.realpath(sys.argv[0])) return toml.load(f"{script_path}/config/{filename}.toml") def _config_value(*keys, default: Any = None) -> Any: """ Safely accesses any key in the configuration and returns a default value if it is not found :param keys: The keys to the config dictionary :param default: The value to return if nothing is found :return: Either the desired or the default value """ # Traverse through the dictionaries step = _config for key in keys: try: # Try to go one step deeper step = step[key] # A key error will abort the operation and return the default value except KeyError: return default return step class Bot: """ The main class of this framework """ _on_termination = lambda: None def __init__(self): """ Initialize the framework using the configuration file(s) """ # Read configuration global _config try: _config = _load_configuration("config") except FileNotFoundError: logger.critical("The configuration file could not be found. Please make sure there is a file called " + "config.toml in the directory config.") quit(-1) # Initialize logger self._configure_logger() # Read language files if _config_value('bot', 'language_feature', default=False): try: _Session.language = _load_configuration("lang") except FileNotFoundError: logger.critical("The language file could not be found. Please make sure there is a file called " + "lang.toml in the directory config or disable this feature.") quit(-1) signal.signal(signal.SIGINT, Bot.signal_handler) # Prepare empty stubs self._on_startup = None # Create access level dictionary self.access_checker = dict() # Config Answer class Answer._load_defaults() # Load database if _config_value('general', 'persistent_storage', default=False): name = _config_value('general', 'storage_file', default="db.json") args = _config_value('general', 'storage_args', default=" ").split(" ") _Session.database = self._initialize_persistent_storage(name, *args) else: _Session.database = None # Initialize bot self._create_bot() logger.info("Bot started") def listen(self) -> None: """ Activates the bot by running it in a never ending asynchronous loop """ # Creates an event loop global loop loop = asyncio.get_event_loop() # Changes its task factory to use the async context provided by aiotask_context loop.set_task_factory(_context.copying_task_factory) # Creates the forever running bot listening function as task loop.create_task(MessageLoop(self._bot).run_forever(timeout=None)) # Create the startup as a separated task loop.create_task(self.schedule_startup()) # Start the event loop to never end (of itself) loop.run_forever() def _create_bot(self) -> None: """ Creates the bot using the telepot API """ self._bot = telepot.aio.DelegatorBot(_config_value('bot', 'token'), [ telepot.aio.delegate.pave_event_space()( telepot.aio.delegate.per_chat_id(types=["private"]), telepot.aio.delegate.create_open, _Session, timeout=_config_value('bot', 'timeout', default=31536000)), ]) @staticmethod def _configure_logger() -> None: """ Configures the default python logging module """ # Deactivate loggers of imported modules log = logging.getLogger("parse") log.setLevel(logging.CRITICAL) # Convert the written level into the numeric one level = {"info": logging.INFO, "debug": logging.DEBUG, "warning": logging.WARNING, "error": logging.ERROR, "critical": logging.CRITICAL }.get(_config_value('general', 'logging', default="error").lower(), logging.WARNING) # Configure the logger logger.setLevel(level) shandler = logging.StreamHandler() fhandler = logging.FileHandler( f"{path.dirname(path.realpath(sys.argv[0]))}/{_config_value('general', 'logfile', default='Bot.log')}") formatter = logging.Formatter("[%(asctime)s] %(message)s", "%x %X") shandler.setFormatter(formatter) fhandler.setFormatter(formatter) logger.addHandler(shandler) logger.addHandler(fhandler) @staticmethod def _initialize_persistent_storage(*args): """ Creates the default database :param args: The file name to be used :return: The database connection """ return TinyDB(args[0]) @staticmethod def init_storage(func: Callable): """ Decorator to replace the default persistent storage :param func: The function which initializes the storage :return: The unchanged function """ Bot._initialize_persistent_storage = func return func @staticmethod def load_storage(func: Callable): """ Decorator to replace the default load method for the persistent storage :param func: The function which loads the user date :return: The unchanged function """ _Session.load_user_data = func @staticmethod def update_storage(func: Callable): """ Decorator to replace the default update method for the persistent storage :param func: The function which updates the user data :return: The unchanged function """ _Session.update_user_data = func @staticmethod def answer(message: str, mode: Mode = Mode.DEFAULT) -> Callable: """ The wrapper for the inner decorator :param message: The message to react upon :param mode: The mode by which to interpret the given string :return: The decorator itself """ def decorator(func: Callable) -> Callable: """ Adds the given method to the known routes :param func: The function to be called :return: The function unchanged """ # Add the function keyed by the given message if mode == Mode.REGEX: _Session.regex_routes[message] = func if mode == Mode.PARSE: _Session.parse_routes[message] = func else: _Session.simple_routes[message] = func return func # Return the decorator return decorator @staticmethod def default_answer(func: Callable) -> Callable: """ A decorator for the function to be called if no other handler matches :param func: The function to be registered :return: The unchanged function """ # Remember the function _Session.default_answer = func return func @staticmethod def default_sticker_answer(func: Callable) -> Callable: """ A decorator for the function to be called if no other handler matches :param func: The function to be registered :return: The unchanged function """ # Remember the function _Session.default_sticker_answer = func return func async def schedule_startup(self): """ If defined, executes the startup generator and processes the yielded answers """ class Dummy: pass dummy = Dummy() dummy.user_id = None dummy.bot = self._bot if self._on_startup is None: return gen = self._on_startup() if isinstance(gen, types.AsyncGeneratorType): async for answer in gen: # answer.language_feature = False await answer._send(dummy) def on_startup(self, func: types.CoroutineType): """ A decorator for a function to be awaited on the program's startup :param func: """ # Remember the function self._on_startup = func @classmethod def on_termination(cls, func): """ A decorator for a function to be called on the program's termination :param func: """ cls._on_termination = func @classmethod def on_message_overflow(cls, func): """ A decorator for a function to be called when a message exceeds the maximal length :param func: """ cls._on_message_overflow = func @staticmethod def _on_message_overflow(answer): """ :param answer: The answer which exceeded the maximal length :return: A tuple with a new message, media type, and media """ with open("Temp" + str(hash(answer)) + ".txt", "w") as f: f.write(answer.msg + "\n") # Schedule removal of the temp file after 5 seconds if platform.system() == "Windows": system('start /B cmd /C "sleep 5 && del Temp' + str(hash(answer)) + '.txt"') else: system('bash -c "sleep 5; rm Temp' + str(hash(answer)) + '.txt" &') return "", Media.DOCUMENT, "Temp" + str(hash(answer)) + ".txt" @staticmethod def signal_handler(sig, frame): """ A signal handler to catch a termination via CTR-C """ Bot._on_termination() logger.info("Bot shuts down") quit(0) @staticmethod def before_processing(func: Callable): """ A decorator for a function, which shall be called before each message procession :param func: """ Bot._before_function = func def check_access_level(self, level: str): """ The wrapper for the inner decorator :param level: The access level that is evaluated by the decorated function :return: The decorator """ def decorator(func: Callable): """ :param func: The function to be registered :return: The unchanged function """ self.access_checker[level] = func return func return decorator def access_level(self, *levels: str): """ The wrapper for the inner decorator :param levels: The access levels that grant permission for the decorated function. :return: The decorator """ def decorator(func: Callable): """ Wrapper for the decorating function :param func: The function to be protected :return: The decorated function """ async def inner(**kwargs): """ Checks all given access levels and calls the given function if one of them evaluated to true :return: The message handler's usual output or None """ # Iterate through all given levels for level in levels: if self.access_checker.get(level, lambda: False)(): # If one level evaluated to True, call the function as usual if iscoroutinefunction(func): return await func(**kwargs) else: return func(**kwargs) # If no level evaluated to True, return nothing return None return inner return decorator def ensure_parameter(self, name: str, phrase: str, choices: Collection[str] = None): """ The wrapper for the inner decorator :param name: The name of the parameter to provide :param phrase: The phrase to use when asking the user for the parameter :param choices: The choices to show the user as callback :return: The decorator """ def decorator(func: Callable): """ Wrapper for the decorating function :param func: The function to be protected :return: The decorated function """ async def inner(**kwargs): """ Checks if the requested parameter exists and aks the user to provide it, if it misses :return: The message handler's usual output """ # Check if the parameter exists if name not in kwargs: # If not, ask the user for it temp = (yield Answer(phrase, choices=choices)) kwargs[name] = temp # If one level evaluated to True, call the function as usual if iscoroutinefunction(func): yield await func(**kwargs) else: yield func(**kwargs) return inner return decorator @staticmethod def _before_function(): return True class Answer(object): """ An object to describe the message behavior """ media_commands = { 'sticker': Media.STICKER, 'voice': Media.VOICE, 'audio': Media.AUDIO, 'photo': Media.PHOTO, 'video': Media.VIDEO, 'document': Media.DOCUMENT, } def __init__(self, msg: str = None, *format_content: Any, choices: Collection = None, callback: Callable = None, keyboard: Collection = None, media_type: Media = None, media: str = None, caption: str = None, receiver: Union[str, int, User] = None, edit_id: int = None): """ Initializes the answer object :param msg: The message to be sent, this can be a language key or a command for a media type :param format_content: If the message is a language key, the format arguments might be supplied here :param choices: The choices to be presented the user as a query, either as Collection of strings, which will automatically be aligned or as a Collection of Collection of strings to control the alignment. This argument being not None is the indicator of being a query :param callback: The function to be called with the next incoming message by this user. The message will be propagated as parameter. :param keyboard: A keyboard to be sent, either as Collection of strings, which will automatically be aligned or as a Collection of Collection of strings to control the alignment. :param media_type: The media type of this answer. Can be used instead of the media commands. :param media: The path to the media to be sent. Can be used instead of the media commands. :param caption: The caption to be sent. Can be used instead of the media commands. :param receiver: The user ID or a user object of the user who should receiver this answer. Will default to the user who sent the triggering message. :param edit_id: The ID of the message whose text shall be updated. """ self._msg = msg self.receiver = receiver self.format_content = format_content self.choices = choices self.callback = callback self.keyboard = keyboard self.media_type: Media = media_type self.media = media self.caption = caption self.edit_id = edit_id async def _send(self, session) -> Dict: """ Sends this instance of answer to the user :param session: The user's instance of _Session :return : The send message as dictionary """ # Load the recipient's id if self.receiver is None: ID = session.user_id else: ID = self.receiver self.mark_as_answer = False if isinstance(ID, User): ID = ID.id sender = session.bot msg = self.msg kwargs = self._get_config() # Catch a to long message text if self.media_type == Media.TEXT and len(msg) > 4096: msg, self.media_type, self.media = Bot._on_message_overflow(self) # Check for a request for editing if self.edit_id is not None: return await sender.editMessageText((ID, self.edit_id), msg, **{key: kwargs[key] for key in kwargs if key in ("parse_mode", "disable_web_page_preview", "reply_markup")} ) # Call the correct method for sending the desired media type and filter the relevant kwargs if self.media_type == Media.TEXT: return await sender.sendMessage(ID, msg, **{key: kwargs[key] for key in kwargs if key in ("parse_mode", "disable_web_page_preview", "disable_notification", "reply_to_message_id", "reply_markup")}) elif self.media_type == Media.STICKER: return await sender.sendSticker(ID, self.media, **{key: kwargs[key] for key in kwargs if key in ('disable_notification', 'reply_to_message_id', 'reply_markup')}) elif self.media_type == Media.VOICE: return await sender.sendVoice(ID, open(self.media, "rb"), **{key: kwargs[key] for key in kwargs if key in ("caption", "parse_mode", "duration", "disable_notification", "reply_to_message_id", "reply_markup")}) elif self.media_type == Media.AUDIO: return await sender.sendAudio(ID, open(self.media, "rb"), **{key: kwargs[key] for key in kwargs if key in ("caption", "parse_mode", "duration", "performer", "title", "disable_notification", "reply_to_message_id", "reply_markup")}) elif self.media_type == Media.PHOTO: return await sender.sendPhoto(ID, open(self.media, "rb"), **{key: kwargs[key] for key in kwargs if key in ("caption", "parse_mode", "disable_notification", "reply_to_message_id", "reply_markup")}) elif self.media_type == Media.VIDEO: return await sender.sendVideo(ID, open(self.media, "rb"), **{key: kwargs[key] for key in kwargs if key in ("duration", "width", "height", "caption", "parse_mode", "supports_streaming", "disable_notification", "reply_to_message_id", "reply_markup")}) elif self.media_type == Media.DOCUMENT: return await sender.sendDocument(ID, open(self.media, "rb"), **{key: kwargs[key] for key in kwargs if key in ("caption", "parse_mode", "disable_notification", "reply_to_message_id", "reply_markup")}) def _apply_language(self) -> str: """ Uses the given key and formatting addition to answer the user the appropriate language :return The formatted text """ # The language code should be something like de, but could be also like de_DE or non-existent usr = _context.get('user') lang_code = usr.language_code.split('_')[0].lower() if usr is not None else "en" try: # Try to load the string with the given language code answer: str = _Session.language[lang_code][self._msg] except KeyError: # Try to load the answer string in the default segment try: answer: str = _Session.language['default'][self._msg] # Catch the key error which might be thrown except KeyError as e: # In strict mode, raise the error again, which will terminate the application if self.strict_mode: logger.critical('Language key "{}" not found!'.format(self._msg)) raise e # In non-strict mode just send the user the key as answer else: return self._msg # Apply formatting if self.format_content is not None and len(self.format_content) > 0: answer = answer.format(*self.format_content) # Write back return answer def is_query(self) -> bool: """ Determines if the answer contains/is a query :return: A boolean answering the call """ return self.choices is not None @property def msg(self) -> str: """ Returns either the message directly or the formatted one :return: The final message to be sent """ # Retrieve message if self.language_feature: msg = self._apply_language() else: msg = self._msg # If unset, determine media type if self.media_type is None: # Try to detect a relevant command command = "" if ":" in msg: command, payload = msg.split(":", 1) if command in ("sticker", "audio", "voice", "document", "photo", "video"): if ";" in payload: self.media, self.caption = payload.split(";", 1) else: self.media = payload msg = None self._msg = msg self.media_type = self.media_commands.get(command, Media.TEXT) return msg def _get_config(self) -> Dict[str, Any]: """ Gets the kwargs for the sending methods. :return: kwargs for the sending of the answer """ if self.choices is not None: # In the case of 1-dimensional array # align the options in pairs of 2 if isinstance(self.choices[0], (str, tuple)): self.choices = [[y for y in self.choices[x * 2:(x + 1) * 2]] for x in range(int(math.ceil(len(self.choices) / 2)))] # Prepare button array buttons = [] # Loop over all rows for row in self.choices: r = [] # Loop over each entry for text in row: # Append the text as a new button if isinstance(text, str): r.append(InlineKeyboardButton( text=text, callback_data=text)) else: r.append(InlineKeyboardButton( text=text[0], callback_data=text[1])) # Append the button row to the list buttons.append(r) # Assemble keyboard keyboard = InlineKeyboardMarkup(inline_keyboard=buttons) elif self.keyboard is not None: # For anything except a collection, any previous sent keyboard is deleted if not isinstance(self.keyboard, collections.Iterable): keyboard = ReplyKeyboardRemove() else: # In the case of 1-dimensional array # align the options in pairs of 2 if isinstance(self.keyboard[0], str): self.keyboard = [[y for y in self.keyboard[x * 2:(x + 1) * 2]] for x in range(int(math.ceil(len(self.keyboard) / 2)))] # Prepare button array buttons = [] # Loop over all rows for row in self.keyboard: r = [] # Loop over each entry for text in row: # Append the text as a new button r.append(KeyboardButton( text=text)) # Append the button row to the list buttons.append(r) # Assemble keyboard keyboard = ReplyKeyboardMarkup(keyboard=buttons, one_time_keyboard=True) else: keyboard = None return { 'parse_mode': self.markup, 'reply_to_message_id': _context.get('init_message').id if self.mark_as_answer and _context.get( 'message') is not None else None, 'disable_web_page_preview': self.disable_web_preview, 'disable_notification': self.disable_notification, 'reply_markup': keyboard, 'caption': self.caption } @classmethod def _load_defaults(cls) -> None: """ Load default values from config """ cls.mark_as_answer = _config_value('bot', 'mark_as_answer', default=False) cls.markup = _config_value('bot', 'markup', default=None) cls.language_feature = _config_value('bot', 'language_feature', default=False) cls.strict_mode = _config_value('bot', 'strict_mode', default=False) cls.disable_web_preview = _config_value('bot', 'disable_web_preview', default=False) cls.disable_notification = _config_value('bot', 'disable_notification', default=False) class _Session(telepot.aio.helper.UserHandler): """ The underlying framework telepot spawns an instance of this class for every conversation its encounters. It will be responsible for directing the bot's reactions """ # The routing dictionaries simple_routes: Dict[str, Callable] = dict() parse_routes: ParsingDict = ParsingDict() regex_routes: RegExDict = RegExDict() # Language files language = None def __init__(self, *args, **kwargs): """ Initialize the session, called by the underlying framework telepot :param args: Used by telepot :param kwargs: Used by telepot """ # Call superclasses superclass, allowing callback queries to be processed super(_Session, self).__init__(include_callback_query=True, *args, **kwargs) # Extract the user of the default arguments self.user = User(args[0][1]['from']) # Create dictionary to use as persistent storage # Load data from persistent storage if _Session.database is not None: self.storage = _Session.load_user_data(self.user_id) else: self.storage = dict() self.callback = None self.query_callback = {} self.query_id = None self.last_sent = None self.gen = None self.gen_is_async = None # Prepare dequeue to store sent messages' IDs _context.set("history", deque(maxlen=_config_value("bot", "max_history_entries", default=10))) logger.info( "User {} connected".format(self.user)) @staticmethod def load_user_data(user): """ :param user: :return: """ storage = _Session.database.search(Query().user == user) if len(storage) == 0: _Session.database.insert({"user": user, "storage": {}}) return dict() else: return storage[0]["storage"] @staticmethod def update_user_data(user, storage): """ :param user: :param storage: :return: """ _Session.database.update({"storage": storage}, Query().user == user) def is_allowed(self): """ Tests, if the current session's user is white listed :return: If the user is allowed """ ids = _config_value("general", "allowed_ids") # If no IDs are defined, the user is allowed if ids is None: return True else: return self.user_id in ids async def on_close(self, timeout: int) -> None: """ The function which will be called by telepot when the connection times out. Unused. :param timeout: The length of the exceeded timeout """ logger.info("User {} timed out".format(self.user)) pass async def on_callback_query(self, query: Dict) -> None: """ The function which will be called by telepot if the incoming message is a callback query """ # Acknowledge the received query # (The waiting circle in the user's application will disappear) await self.bot.answerCallbackQuery(query['id']) # Replace the query to prevent multiple activations if _config_value('query', 'replace_query', default=True): lastMessage: Answer = self.last_sent[0] choices = lastMessage.choices # Find the right replacement text # This is either directly the received answer or the first element of the choice tuple replacement = query['data'] if not isinstance(choices[0][0], tuple) or len(choices[0][0]) == 1 else next( ([x[0] for x in row if x[1] == query['data']] for row in choices), None)[0] # Edit the message await self.bot.editMessageText((self.user.id, query['message']['message_id']), # The message and chat ids are inquired in this way to prevent an error when # the user clicks on old queries text=("{}\n<b>{}</b>" if lastMessage.markup == "HTML" else "{}\n**{}**") .format(lastMessage.msg, replacement), parse_mode=lastMessage.markup) # Look for a matching callback and execute it answer = None func = self.query_callback.pop(query['message']['message_id'], None) if func is not None: if iscoroutinefunction(func): answer = await func(query['data']) else: answer = func(query['data']) elif self.gen is not None: await self.handle_generator(msg=query['data']) # Process answer if answer is not None: await self.prepare_answer(answer, log="") async def on_chat_message(self, msg: dict) -> None: """ The function which will be called by telepot :param msg: The received message as dictionary """ if not self.is_allowed(): return # Tests, if it is normal message or something special if 'text' in msg: await self.handle_text_message(msg) elif 'sticker' in msg: await self.handle_sticker(msg) async def handle_text_message(self, msg: dict) -> None: """ Processes a text message by routing it to the registered handlers and applying formatting :param msg: The received message as dictionary """ text = msg['text'] log = f'Message by {self.user}: "{text}"' # Prepare the context _context.set('user', self.user) _context.set('message', Message(msg)) _context.set('_<[storage]>_', self.storage) # If there is currently no generator ongoing, save this message additionally as init # This may be of use when inside a generator the starting message is needed if self.gen is None: _context.set("init_message", Message(msg)) # Calls the preprocessing function if not Bot._before_function(): return args: Tuple = () kwargs: Dict = {} if text == _config_value('bot', 'cancel_command', default="/cancel"): self.gen = None self.callback = None # If a generator is defined, handle it the message and return if it did not stop if self.gen is not None: # Call the generator and abort if he worked if await self.handle_generator(msg=text): return # If a callback is defined and the text does not match the defined cancel command, # the callback function is called if self.callback is not None: func = self.callback self.callback = None args = tuple(text) # Check, if the message is covered by one of the known simple routes elif text in _Session.simple_routes: func = _Session.simple_routes[text] # Check, if the message is covered by one of the known parse routes elif text in _Session.parse_routes: func, matching = _Session.parse_routes[text] kwargs = matching.named # Check, if the message is covered by one of the known regex routes elif text in _Session.regex_routes: func, matching = _Session.regex_routes[text] kwargs = matching.groupdict() # After everything else has not matched, call the default handler else: func = _Session.default_answer # Call the matching function to process the message and catch any exceptions try: # The user of the framework can choose freely between synchronous and asynchronous programming # So the program decides upon the signature how to call the function if iscoroutinefunction(func): answer = await func(*args, **kwargs) else: answer = func(*args, **kwargs) except Exception as e: # Depending of the exceptions type, the specific message is on a different index if isinstance(e, OSError): msg = e.args[1] else: msg = e.args[0] err = traceback.extract_tb(sys.exc_info()[2])[-1] err = "\n\tDuring the processing occured an error\n\t\tError message: {}\n\t\tFile: {}\n\t\tFunc: {}" \ "\n\t\tLiNo: {}\n\t\tLine: {}\n\tNothing was returned to the user" \ .format(msg, err.filename.split("/")[-1], err.name, err.lineno, err.line) logger.warning(log + err) # Send error message, if configured await self.handle_error() else: await self.prepare_answer(answer, log) async def prepare_answer(self, answer: Union[Answer, Iterable], log: str = "") -> None: """ Prepares the returned object to be processed later on :param answer: The answer to be given :param log: A logging string """ # Syncs persistent storage if _Session.database is not None: _Session.update_user_data(self.user_id, self.storage) try: # None as return will result in no answer being sent if answer is None: logger.info(log + "\n\tNo answer was given") return # Handle multiple strings or answers as return if isinstance(answer, (tuple, list)): if isinstance(answer[0], str): await self.handle_answer([Answer(str(answer[0]), *answer[1:])]) elif isinstance(answer[0], Answer): await self.handle_answer(answer) # Handle a generator elif isgenerator(answer) or isasyncgen(answer): self.gen = answer self.gen_is_async = isasyncgen(answer) await self.handle_generator(first_call=True) # Handle a single answer else: await self.handle_answer([answer]) except IndexError: err = '\n\tAn index error occured while preparing the answer.' \ '\n\tLikely the answer is ill-formatted:\n\t\t{}'.format(str(answer)) logger.warning(log + err) # Send error message, if configured await self.handle_error() return except FileNotFoundError as e: err = '\n\tThe request could not be fulfilled as the file "{}" could not be found'.format(e.filename) logger.warning(log + err) # Send error message, if configured await self.handle_error() return except TelegramError as e: reason = e.args[0] # Try to give a clearer error description if reason == "Bad Request: chat not found": reason = "The recipient has either not yet started communication with this bot or blocked it" err = '\n\tThe request could not be fulfilled as an API error occured:' \ '\n\t\t{}' \ '\n\tNothing was returned to the user'.format(reason) logger.warning(log + err) # Send error message, if configured await self.handle_error() return except Exception as e: # Depending of the exceptions type, the specific message is on a different index if isinstance(e, OSError): msg = e.args[1] else: msg = e.args[0] err = traceback.extract_tb(sys.exc_info()[2])[-1] err = "\n\tDuring the sending of the bot's answer occured an error\n\t\tError message: {}\n\t\tFile: {}" \ "\n\t\tFunc: {}\n\t\tLiNo: {}\n\t\tLine: {}\n\tNothing was returned to the user" \ "\n\tYou may report this bug as it either should not have occured " \ "or should have been properly caught" \ .format(msg, err.filename.split("/")[-1], err.name, err.lineno, err.line) logger.warning(log + err) # Send error message, if configured await self.handle_error() else: if log is not None and len(log) > 0: logger.info(log) async def handle_sticker(self, msg: Dict) -> None: """ Processes a sticker either by sending a default answer or extracting the corresponding emojis :param msg: The received message as dictionary """ if not self.is_allowed(): return # Extract the emojis associated with the sticker if _config_value('bot', 'extract_emojis', default=False): logger.debug("Sticker by {}, will be dismantled".format(self.user)) msg['text'] = msg['sticker']['emoji'] await self.handle_text_message(msg) # Or call the default handler answer = await self.default_sticker_answer() self.prepare_answer(answer) async def handle_error(self) -> None: """ Informs the connected user that an exception occured, if enabled """ if _config_value('bot', 'error_reply', default=None) is not None: await self.prepare_answer(Answer(_config_value('bot', 'error_reply'))) async def handle_answer(self, answers: Iterable[Answer]) -> None: """ Handle Answer objects :param answers: Answer objects to be sent """ # Iterate over answers for answer in answers: if not isinstance(answer, Answer): answer = Answer(str(answer)) sent = await answer._send(self) self.last_sent = answer, sent _context.get("history").appendleft(Message(sent)) if answer.callback is not None: if answer.is_query(): self.query_callback[sent['message_id']] = answer.callback else: self.callback = answer.callback async def handle_generator(self, msg=None, first_call=False): """ Performs one iteration on the generator :param msg: The message to be sent into the generator :param first_call: If this is the initial call to the generator """ # Wrap the whole process into a try to except the end of iteration exception try: # On first call, None has to be inserted if first_call: if self.gen_is_async: answer = await self.gen.asend(None) else: answer = self.gen.send(None) # On the following calls, the message is inserted else: if self.gen_is_async: answer = await self.gen.asend(msg) else: answer = self.gen.send(msg) await self.prepare_answer(answer) # Return if the iterator worked properly except (StopIteration, StopAsyncIteration): self.gen = None return False else: return True @staticmethod async def default_answer() -> Union[str, Answer, Iterable[str], None]: """ Sets the default answer function to do nothing if not overwritten """ @staticmethod async def default_sticker_answer() -> Union[str, Answer, Iterable[str], None]: """ Sets the default sticker answer function to do nothing if not overwritten """
37.466557
124
0.536719
b5112bb2de95eccd0d4cfce20903060b02b66346
1,485
py
Python
Bot/Utils/pomice/exceptions.py
SirEduRs/Aurora
80ac028134de93726d8a3eb8060e8a48e7009093
[ "MIT" ]
null
null
null
Bot/Utils/pomice/exceptions.py
SirEduRs/Aurora
80ac028134de93726d8a3eb8060e8a48e7009093
[ "MIT" ]
null
null
null
Bot/Utils/pomice/exceptions.py
SirEduRs/Aurora
80ac028134de93726d8a3eb8060e8a48e7009093
[ "MIT" ]
null
null
null
class PomiceException(Exception): """Base of all Pomice exceptions.""" class NodeException(Exception): """Base exception for nodes.""" class NodeCreationError(NodeException): """There was a problem while creating the node.""" class NodeConnectionFailure(NodeException): """There was a problem while connecting to the node.""" class NodeConnectionClosed(NodeException): """The node's connection is closed.""" pass class NodeNotAvailable(PomiceException): """The node is currently unavailable.""" pass class NoNodesAvailable(PomiceException): """There are no nodes currently available.""" pass class TrackInvalidPosition(PomiceException): """An invalid position was chosen for a track.""" pass class TrackLoadError(PomiceException): """There was an error while loading a track.""" pass class FilterInvalidArgument(PomiceException): """An invalid argument was passed to a filter.""" pass class SpotifyAlbumLoadFailed(PomiceException): """The pomice Spotify client was unable to load an album.""" pass class SpotifyTrackLoadFailed(PomiceException): """The pomice Spotify client was unable to load a track.""" pass class SpotifyPlaylistLoadFailed(PomiceException): """The pomice Spotify client was unable to load a playlist.""" pass class InvalidSpotifyClientAuthorization(PomiceException): """No Spotify client authorization was provided for track searching.""" pass
22.846154
75
0.726599
89a47ef8a2197b28ac2d3660aac1fc8b18407385
379
py
Python
test_subprocess.py
roopeshhv/JDOT
a680d6667a56f6344ee5f87810bcebba5324849d
[ "MIT" ]
null
null
null
test_subprocess.py
roopeshhv/JDOT
a680d6667a56f6344ee5f87810bcebba5324849d
[ "MIT" ]
null
null
null
test_subprocess.py
roopeshhv/JDOT
a680d6667a56f6344ee5f87810bcebba5324849d
[ "MIT" ]
null
null
null
import paramiko client = paramiko.SSHClient() client.set_missing_host_key_policy(paramiko.AutoAddPolicy()) client.connect('10.4.96.74', username='vivek', password='nutanix/4u') stdin, stdout, stderr = client.exec_command('cd /home/nutanix; wget http://10.4.8.60/acro_images/DISKs/cirros-0.3.4-x86_64-disk.img') #for line in stdout: # print line.strip('\n') client.close()
29.153846
133
0.744063
ca63eb2165f43946065de42c27e5f0a22ab9d4fe
2,540
py
Python
app/players/forms.py
rookiebulls/scala
504efd5187b8f15a54086590e3e5572d9eda8f16
[ "MIT" ]
null
null
null
app/players/forms.py
rookiebulls/scala
504efd5187b8f15a54086590e3e5572d9eda8f16
[ "MIT" ]
null
null
null
app/players/forms.py
rookiebulls/scala
504efd5187b8f15a54086590e3e5572d9eda8f16
[ "MIT" ]
null
null
null
from flask.ext.wtf import Form from wtforms import StringField, TextAreaField, SubmitField, PasswordField from wtforms.fields.html5 import DateField from wtforms.validators import Optional, Length, Required, URL, Email, Regexp, EqualTo from wtforms import ValidationError from ..models import User, ContentManager class ProfileForm(Form): email = StringField('Email', validators=[Required(), Length(1,64), Email()]) username = StringField('Username', validators=[Required(), Length(1, 64), \ Regexp('^[A-Za-z][A-Za-z0-9_.]*$', 0, 'Username must have only lettters, \ numbers or underscore')]) password = PasswordField('Password', validators=[Required(), \ EqualTo('password1', message='Password must match.')]) password1 = PasswordField('Confirm password', validators=[Required()]) submit = SubmitField('New') def validate_username(self, field): if User.query.filter_by(username=field.data).first(): raise ValidationError('Username has already existed.') class EditForm(Form): email = StringField('Email', validators=[Required(), Length(1,64), Email()]) username = StringField('Username', validators=[Required(), Length(1, 64), \ Regexp('^[A-Za-z][A-Za-z0-9_.]*$', 0, 'Username must have only lettters, \ numbers or underscore')]) password = PasswordField('Password', validators=[EqualTo('password1', message='Password must match.')]) password1 = PasswordField('Confirm password') submit = SubmitField('Edit') class ContentmanagerForm(Form): ip_address = StringField('ServerAddress', validators=[Required()]) username = StringField('LoginName', validators=[Required()]) password = PasswordField('LoginPassword', validators=[Required(), EqualTo('password1', message='Password must match.')]) password1 = PasswordField('Confirm password', validators=[Required()]) submit = SubmitField('New') def validate_ip_address(self, field): if ContentManager.query.filter_by(ip_address=field.data).first(): raise ValidationError('Content manager has already existed.') class CMEditForm(Form): ip_address = StringField('Email', validators=[Required()]) username = StringField('Username', validators=[Required()]) password = PasswordField('Password', validators=[EqualTo('password1', message='Password must match.')]) password1 = PasswordField('Confirm password') submit = SubmitField('Edit')
47.924528
124
0.68189
580925c386c5ab5f61dfbdac476ba09dd037ff47
2,616
py
Python
DataWranglingMongoDB/Lesson2/find_author_data.py
napjon/moocs_solution
5c96f43f6cb2ae643f482580446869953a99beb6
[ "MIT" ]
13
2016-04-29T07:21:44.000Z
2021-09-29T03:20:51.000Z
DataWranglingMongoDB/Lesson2/find_author_data.py
napjon/moocs_solution
5c96f43f6cb2ae643f482580446869953a99beb6
[ "MIT" ]
1
2017-02-07T07:37:20.000Z
2017-02-19T08:37:17.000Z
DataWranglingMongoDB/Lesson2/find_author_data.py
napjon/moocs_solution
5c96f43f6cb2ae643f482580446869953a99beb6
[ "MIT" ]
13
2016-01-25T03:23:57.000Z
2019-10-13T15:29:23.000Z
#!/usr/bin/env python # Your task here is to extract data from xml on authors of an article # and add it to a list, one item for an author. # See the provided data structure for the expected format. # The tags for first name, surname and email should map directly # to the dictionary keys import xml.etree.ElementTree as ET article_file = "exampleResearchArticle.xml" def get_root(fname): tree = ET.parse(fname) return tree.getroot() def get_authors(root): authors = [] for author in root.findall('./fm/bibl/aug/au'): data = { "fnm": None, "snm": None, "email": None } # YOUR CODE HERE for key in data: data[key] = author.find(key).text data['insr'] = [e.attrib['iid'] for e in author.findall('insr')] authors.append(data) return authors def test(): #withour insr solution = [{'fnm': 'Omer', 'snm': 'Mei-Dan', 'email': 'omer@extremegate.com'}, {'fnm': 'Mike', 'snm': 'Carmont', 'email': 'mcarmont@hotmail.com'}, {'fnm': 'Lior', 'snm': 'Laver', 'email': 'laver17@gmail.com'}, {'fnm': 'Meir', 'snm': 'Nyska', 'email': 'nyska@internet-zahav.net'}, {'fnm': 'Hagay', 'snm': 'Kammar', 'email': 'kammarh@gmail.com'}, {'fnm': 'Gideon', 'snm': 'Mann', 'email': 'gideon.mann.md@gmail.com'}, {'fnm': 'Barnaby', 'snm': 'Clarck', 'email': 'barns.nz@gmail.com'}, {'fnm': 'Eugene', 'snm': 'Kots', 'email': 'eukots@gmail.com'}] root = get_root(article_file) data = get_authors(root) assert data[0] == solution[0] assert data[1]["fnm"] == solution[1]["fnm"] #with insr solution = [{'insr': ['I1'], 'fnm': 'Omer', 'snm': 'Mei-Dan', 'email': 'omer@extremegate.com'}, {'insr': ['I2'], 'fnm': 'Mike', 'snm': 'Carmont', 'email': 'mcarmont@hotmail.com'}, {'insr': ['I3', 'I4'], 'fnm': 'Lior', 'snm': 'Laver', 'email': 'laver17@gmail.com'}, {'insr': ['I3'], 'fnm': 'Meir', 'snm': 'Nyska', 'email': 'nyska@internet-zahav.net'}, {'insr': ['I8'], 'fnm': 'Hagay', 'snm': 'Kammar', 'email': 'kammarh@gmail.com'}, {'insr': ['I3', 'I5'], 'fnm': 'Gideon', 'snm': 'Mann', 'email': 'gideon.mann.md@gmail.com'}, {'insr': ['I6'], 'fnm': 'Barnaby', 'snm': 'Clarck', 'email': 'barns.nz@gmail.com'}, {'insr': ['I7'], 'fnm': 'Eugene', 'snm': 'Kots', 'email': 'eukots@gmail.com'}] root = get_root(article_file) data = get_authors(root) assert data[0] == solution[0] assert data[1]["insr"] == solution[1]["insr"] test()
40.246154
551
0.546636
f02705ae1c9e695e5e33f7f5cddfb55e4ffa8e79
16,734
py
Python
idcmanager_sdk/api/idcrack/list_v2_pb2.py
easyopsapis/easyops-api-python
adf6e3bad33fa6266b5fa0a449dd4ac42f8447d0
[ "Apache-2.0" ]
5
2019-07-31T04:11:05.000Z
2021-01-07T03:23:20.000Z
idcmanager_sdk/api/idcrack/list_v2_pb2.py
easyopsapis/easyops-api-python
adf6e3bad33fa6266b5fa0a449dd4ac42f8447d0
[ "Apache-2.0" ]
null
null
null
idcmanager_sdk/api/idcrack/list_v2_pb2.py
easyopsapis/easyops-api-python
adf6e3bad33fa6266b5fa0a449dd4ac42f8447d0
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # Generated by the protocol buffer compiler. DO NOT EDIT! # source: list_v2.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() from idcmanager_sdk.model.idcmanager import idc_pb2 as idcmanager__sdk_dot_model_dot_idcmanager_dot_idc__pb2 from google.protobuf import struct_pb2 as google_dot_protobuf_dot_struct__pb2 DESCRIPTOR = _descriptor.FileDescriptor( name='list_v2.proto', package='idcrack', syntax='proto3', serialized_options=None, serialized_pb=_b('\n\rlist_v2.proto\x12\x07idcrack\x1a)idcmanager_sdk/model/idcmanager/idc.proto\x1a\x1cgoogle/protobuf/struct.proto\"*\n\x14ListIDCRackV2Request\x12\x12\n\nidcrackIds\x18\x01 \x01(\t\"\xe3\x03\n\x15ListIDCRackV2Response\x12\x0c\n\x04page\x18\x01 \x01(\x05\x12\x11\n\tpage_size\x18\x02 \x01(\x05\x12\r\n\x05total\x18\x03 \x01(\x05\x12\x31\n\x04list\x18\x04 \x03(\x0b\x32#.idcrack.ListIDCRackV2Response.List\x1a\xe6\x02\n\x04List\x12:\n\x06layout\x18\x01 \x03(\x0b\x32*.idcrack.ListIDCRackV2Response.List.Layout\x12\x1c\n\x03idc\x18\x02 \x01(\x0b\x32\x0f.idcmanager.IDC\x12\x12\n\ninstanceId\x18\x03 \x01(\t\x12\x0c\n\x04name\x18\x04 \x01(\t\x12\x0c\n\x04\x63ode\x18\x05 \x01(\t\x12\x0e\n\x06status\x18\x06 \x01(\t\x12\x0c\n\x04type\x18\x07 \x01(\t\x12\x0c\n\x04unum\x18\x08 \x01(\x05\x12\x10\n\x08\x66reeUnum\x18\t \x01(\x05\x12\r\n\x05\x63time\x18\n \x01(\t\x12\x0f\n\x07\x63reator\x18\x0b \x01(\t\x1av\n\x06Layout\x12\x12\n\ninstanceId\x18\x01 \x01(\t\x12\x0c\n\x04type\x18\x02 \x01(\t\x12\x0e\n\x06startU\x18\x03 \x01(\x05\x12\x11\n\toccupiedU\x18\x04 \x01(\x05\x12\'\n\x06\x64\x65vice\x18\x05 \x01(\x0b\x32\x17.google.protobuf.Struct\"~\n\x1cListIDCRackV2ResponseWrapper\x12\x0c\n\x04\x63ode\x18\x01 \x01(\x05\x12\x13\n\x0b\x63odeExplain\x18\x02 \x01(\t\x12\r\n\x05\x65rror\x18\x03 \x01(\t\x12,\n\x04\x64\x61ta\x18\x04 \x01(\x0b\x32\x1e.idcrack.ListIDCRackV2Responseb\x06proto3') , dependencies=[idcmanager__sdk_dot_model_dot_idcmanager_dot_idc__pb2.DESCRIPTOR,google_dot_protobuf_dot_struct__pb2.DESCRIPTOR,]) _LISTIDCRACKV2REQUEST = _descriptor.Descriptor( name='ListIDCRackV2Request', full_name='idcrack.ListIDCRackV2Request', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='idcrackIds', full_name='idcrack.ListIDCRackV2Request.idcrackIds', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=99, serialized_end=141, ) _LISTIDCRACKV2RESPONSE_LIST_LAYOUT = _descriptor.Descriptor( name='Layout', full_name='idcrack.ListIDCRackV2Response.List.Layout', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='instanceId', full_name='idcrack.ListIDCRackV2Response.List.Layout.instanceId', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='type', full_name='idcrack.ListIDCRackV2Response.List.Layout.type', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='startU', full_name='idcrack.ListIDCRackV2Response.List.Layout.startU', index=2, number=3, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='occupiedU', full_name='idcrack.ListIDCRackV2Response.List.Layout.occupiedU', index=3, number=4, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='device', full_name='idcrack.ListIDCRackV2Response.List.Layout.device', index=4, number=5, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=509, serialized_end=627, ) _LISTIDCRACKV2RESPONSE_LIST = _descriptor.Descriptor( name='List', full_name='idcrack.ListIDCRackV2Response.List', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='layout', full_name='idcrack.ListIDCRackV2Response.List.layout', index=0, number=1, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='idc', full_name='idcrack.ListIDCRackV2Response.List.idc', index=1, number=2, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='instanceId', full_name='idcrack.ListIDCRackV2Response.List.instanceId', index=2, number=3, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='name', full_name='idcrack.ListIDCRackV2Response.List.name', index=3, number=4, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='code', full_name='idcrack.ListIDCRackV2Response.List.code', index=4, number=5, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='status', full_name='idcrack.ListIDCRackV2Response.List.status', index=5, number=6, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='type', full_name='idcrack.ListIDCRackV2Response.List.type', index=6, number=7, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='unum', full_name='idcrack.ListIDCRackV2Response.List.unum', index=7, number=8, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='freeUnum', full_name='idcrack.ListIDCRackV2Response.List.freeUnum', index=8, number=9, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='ctime', full_name='idcrack.ListIDCRackV2Response.List.ctime', index=9, number=10, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='creator', full_name='idcrack.ListIDCRackV2Response.List.creator', index=10, number=11, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[_LISTIDCRACKV2RESPONSE_LIST_LAYOUT, ], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=269, serialized_end=627, ) _LISTIDCRACKV2RESPONSE = _descriptor.Descriptor( name='ListIDCRackV2Response', full_name='idcrack.ListIDCRackV2Response', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='page', full_name='idcrack.ListIDCRackV2Response.page', index=0, number=1, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='page_size', full_name='idcrack.ListIDCRackV2Response.page_size', index=1, number=2, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='total', full_name='idcrack.ListIDCRackV2Response.total', index=2, number=3, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='list', full_name='idcrack.ListIDCRackV2Response.list', index=3, number=4, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[_LISTIDCRACKV2RESPONSE_LIST, ], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=144, serialized_end=627, ) _LISTIDCRACKV2RESPONSEWRAPPER = _descriptor.Descriptor( name='ListIDCRackV2ResponseWrapper', full_name='idcrack.ListIDCRackV2ResponseWrapper', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='code', full_name='idcrack.ListIDCRackV2ResponseWrapper.code', index=0, number=1, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='codeExplain', full_name='idcrack.ListIDCRackV2ResponseWrapper.codeExplain', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='error', full_name='idcrack.ListIDCRackV2ResponseWrapper.error', index=2, number=3, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='data', full_name='idcrack.ListIDCRackV2ResponseWrapper.data', index=3, number=4, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=629, serialized_end=755, ) _LISTIDCRACKV2RESPONSE_LIST_LAYOUT.fields_by_name['device'].message_type = google_dot_protobuf_dot_struct__pb2._STRUCT _LISTIDCRACKV2RESPONSE_LIST_LAYOUT.containing_type = _LISTIDCRACKV2RESPONSE_LIST _LISTIDCRACKV2RESPONSE_LIST.fields_by_name['layout'].message_type = _LISTIDCRACKV2RESPONSE_LIST_LAYOUT _LISTIDCRACKV2RESPONSE_LIST.fields_by_name['idc'].message_type = idcmanager__sdk_dot_model_dot_idcmanager_dot_idc__pb2._IDC _LISTIDCRACKV2RESPONSE_LIST.containing_type = _LISTIDCRACKV2RESPONSE _LISTIDCRACKV2RESPONSE.fields_by_name['list'].message_type = _LISTIDCRACKV2RESPONSE_LIST _LISTIDCRACKV2RESPONSEWRAPPER.fields_by_name['data'].message_type = _LISTIDCRACKV2RESPONSE DESCRIPTOR.message_types_by_name['ListIDCRackV2Request'] = _LISTIDCRACKV2REQUEST DESCRIPTOR.message_types_by_name['ListIDCRackV2Response'] = _LISTIDCRACKV2RESPONSE DESCRIPTOR.message_types_by_name['ListIDCRackV2ResponseWrapper'] = _LISTIDCRACKV2RESPONSEWRAPPER _sym_db.RegisterFileDescriptor(DESCRIPTOR) ListIDCRackV2Request = _reflection.GeneratedProtocolMessageType('ListIDCRackV2Request', (_message.Message,), { 'DESCRIPTOR' : _LISTIDCRACKV2REQUEST, '__module__' : 'list_v2_pb2' # @@protoc_insertion_point(class_scope:idcrack.ListIDCRackV2Request) }) _sym_db.RegisterMessage(ListIDCRackV2Request) ListIDCRackV2Response = _reflection.GeneratedProtocolMessageType('ListIDCRackV2Response', (_message.Message,), { 'List' : _reflection.GeneratedProtocolMessageType('List', (_message.Message,), { 'Layout' : _reflection.GeneratedProtocolMessageType('Layout', (_message.Message,), { 'DESCRIPTOR' : _LISTIDCRACKV2RESPONSE_LIST_LAYOUT, '__module__' : 'list_v2_pb2' # @@protoc_insertion_point(class_scope:idcrack.ListIDCRackV2Response.List.Layout) }) , 'DESCRIPTOR' : _LISTIDCRACKV2RESPONSE_LIST, '__module__' : 'list_v2_pb2' # @@protoc_insertion_point(class_scope:idcrack.ListIDCRackV2Response.List) }) , 'DESCRIPTOR' : _LISTIDCRACKV2RESPONSE, '__module__' : 'list_v2_pb2' # @@protoc_insertion_point(class_scope:idcrack.ListIDCRackV2Response) }) _sym_db.RegisterMessage(ListIDCRackV2Response) _sym_db.RegisterMessage(ListIDCRackV2Response.List) _sym_db.RegisterMessage(ListIDCRackV2Response.List.Layout) ListIDCRackV2ResponseWrapper = _reflection.GeneratedProtocolMessageType('ListIDCRackV2ResponseWrapper', (_message.Message,), { 'DESCRIPTOR' : _LISTIDCRACKV2RESPONSEWRAPPER, '__module__' : 'list_v2_pb2' # @@protoc_insertion_point(class_scope:idcrack.ListIDCRackV2ResponseWrapper) }) _sym_db.RegisterMessage(ListIDCRackV2ResponseWrapper) # @@protoc_insertion_point(module_scope)
44.624
1,401
0.752002
17ee0033b4d5c79db1da60df3d70fbab11daa5aa
6,764
py
Python
kubernetes/client/models/v1beta1_replica_set_list.py
woqer/python
3a6fe8231cefe1fa39a0a69d4b2f33044ab32745
[ "Apache-2.0" ]
1
2019-07-12T05:38:06.000Z
2019-07-12T05:38:06.000Z
kubernetes/client/models/v1beta1_replica_set_list.py
woqer/python
3a6fe8231cefe1fa39a0a69d4b2f33044ab32745
[ "Apache-2.0" ]
null
null
null
kubernetes/client/models/v1beta1_replica_set_list.py
woqer/python
3a6fe8231cefe1fa39a0a69d4b2f33044ab32745
[ "Apache-2.0" ]
1
2021-05-18T12:25:56.000Z
2021-05-18T12:25:56.000Z
# coding: utf-8 """ Kubernetes No description provided (generated by Swagger Codegen https://github.com/swagger-api/swagger-codegen) OpenAPI spec version: v1.11.3 Generated by: https://github.com/swagger-api/swagger-codegen.git """ from pprint import pformat from six import iteritems import re class V1beta1ReplicaSetList(object): """ NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'api_version': 'str', 'items': 'list[V1beta1ReplicaSet]', 'kind': 'str', 'metadata': 'V1ListMeta' } attribute_map = { 'api_version': 'apiVersion', 'items': 'items', 'kind': 'kind', 'metadata': 'metadata' } def __init__(self, api_version=None, items=None, kind=None, metadata=None): """ V1beta1ReplicaSetList - a model defined in Swagger """ self._api_version = None self._items = None self._kind = None self._metadata = None self.discriminator = None if api_version is not None: self.api_version = api_version self.items = items if kind is not None: self.kind = kind if metadata is not None: self.metadata = metadata @property def api_version(self): """ Gets the api_version of this V1beta1ReplicaSetList. APIVersion defines the versioned schema of this representation of an object. Servers should convert recognized schemas to the latest internal value, and may reject unrecognized values. More info: https://git.k8s.io/community/contributors/devel/api-conventions.md#resources :return: The api_version of this V1beta1ReplicaSetList. :rtype: str """ return self._api_version @api_version.setter def api_version(self, api_version): """ Sets the api_version of this V1beta1ReplicaSetList. APIVersion defines the versioned schema of this representation of an object. Servers should convert recognized schemas to the latest internal value, and may reject unrecognized values. More info: https://git.k8s.io/community/contributors/devel/api-conventions.md#resources :param api_version: The api_version of this V1beta1ReplicaSetList. :type: str """ self._api_version = api_version @property def items(self): """ Gets the items of this V1beta1ReplicaSetList. List of ReplicaSets. More info: https://kubernetes.io/docs/concepts/workloads/controllers/replicationcontroller :return: The items of this V1beta1ReplicaSetList. :rtype: list[V1beta1ReplicaSet] """ return self._items @items.setter def items(self, items): """ Sets the items of this V1beta1ReplicaSetList. List of ReplicaSets. More info: https://kubernetes.io/docs/concepts/workloads/controllers/replicationcontroller :param items: The items of this V1beta1ReplicaSetList. :type: list[V1beta1ReplicaSet] """ if items is None: raise ValueError("Invalid value for `items`, must not be `None`") self._items = items @property def kind(self): """ Gets the kind of this V1beta1ReplicaSetList. Kind is a string value representing the REST resource this object represents. Servers may infer this from the endpoint the client submits requests to. Cannot be updated. In CamelCase. More info: https://git.k8s.io/community/contributors/devel/api-conventions.md#types-kinds :return: The kind of this V1beta1ReplicaSetList. :rtype: str """ return self._kind @kind.setter def kind(self, kind): """ Sets the kind of this V1beta1ReplicaSetList. Kind is a string value representing the REST resource this object represents. Servers may infer this from the endpoint the client submits requests to. Cannot be updated. In CamelCase. More info: https://git.k8s.io/community/contributors/devel/api-conventions.md#types-kinds :param kind: The kind of this V1beta1ReplicaSetList. :type: str """ self._kind = kind @property def metadata(self): """ Gets the metadata of this V1beta1ReplicaSetList. Standard list metadata. More info: https://git.k8s.io/community/contributors/devel/api-conventions.md#types-kinds :return: The metadata of this V1beta1ReplicaSetList. :rtype: V1ListMeta """ return self._metadata @metadata.setter def metadata(self, metadata): """ Sets the metadata of this V1beta1ReplicaSetList. Standard list metadata. More info: https://git.k8s.io/community/contributors/devel/api-conventions.md#types-kinds :param metadata: The metadata of this V1beta1ReplicaSetList. :type: V1ListMeta """ self._metadata = metadata def to_dict(self): """ Returns the model properties as a dict """ result = {} for attr, _ in iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """ Returns the string representation of the model """ return pformat(self.to_dict()) def __repr__(self): """ For `print` and `pprint` """ return self.to_str() def __eq__(self, other): """ Returns true if both objects are equal """ if not isinstance(other, V1beta1ReplicaSetList): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """ Returns true if both objects are not equal """ return not self == other
31.90566
281
0.616795
89084d000194aef0ba40dc77f22b5a290cfc8142
3,770
py
Python
sdk/python/pulumi_azure_nextgen/web/v20200601/list_web_app_function_keys.py
pulumi/pulumi-azure-nextgen
452736b0a1cf584c2d4c04666e017af6e9b2c15c
[ "Apache-2.0" ]
31
2020-09-21T09:41:01.000Z
2021-02-26T13:21:59.000Z
sdk/python/pulumi_azure_nextgen/web/v20200601/list_web_app_function_keys.py
pulumi/pulumi-azure-nextgen
452736b0a1cf584c2d4c04666e017af6e9b2c15c
[ "Apache-2.0" ]
231
2020-09-21T09:38:45.000Z
2021-03-01T11:16:03.000Z
sdk/python/pulumi_azure_nextgen/web/v20200601/list_web_app_function_keys.py
pulumi/pulumi-azure-nextgen
452736b0a1cf584c2d4c04666e017af6e9b2c15c
[ "Apache-2.0" ]
4
2020-09-29T14:14:59.000Z
2021-02-10T20:38:16.000Z
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi SDK Generator. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union from ... import _utilities, _tables __all__ = [ 'ListWebAppFunctionKeysResult', 'AwaitableListWebAppFunctionKeysResult', 'list_web_app_function_keys', ] @pulumi.output_type class ListWebAppFunctionKeysResult: """ String dictionary resource. """ def __init__(__self__, id=None, kind=None, name=None, properties=None, type=None): if id and not isinstance(id, str): raise TypeError("Expected argument 'id' to be a str") pulumi.set(__self__, "id", id) if kind and not isinstance(kind, str): raise TypeError("Expected argument 'kind' to be a str") pulumi.set(__self__, "kind", kind) if name and not isinstance(name, str): raise TypeError("Expected argument 'name' to be a str") pulumi.set(__self__, "name", name) if properties and not isinstance(properties, dict): raise TypeError("Expected argument 'properties' to be a dict") pulumi.set(__self__, "properties", properties) if type and not isinstance(type, str): raise TypeError("Expected argument 'type' to be a str") pulumi.set(__self__, "type", type) @property @pulumi.getter def id(self) -> str: """ Resource Id. """ return pulumi.get(self, "id") @property @pulumi.getter def kind(self) -> Optional[str]: """ Kind of resource. """ return pulumi.get(self, "kind") @property @pulumi.getter def name(self) -> str: """ Resource Name. """ return pulumi.get(self, "name") @property @pulumi.getter def properties(self) -> Mapping[str, str]: """ Settings. """ return pulumi.get(self, "properties") @property @pulumi.getter def type(self) -> str: """ Resource type. """ return pulumi.get(self, "type") class AwaitableListWebAppFunctionKeysResult(ListWebAppFunctionKeysResult): # pylint: disable=using-constant-test def __await__(self): if False: yield self return ListWebAppFunctionKeysResult( id=self.id, kind=self.kind, name=self.name, properties=self.properties, type=self.type) def list_web_app_function_keys(function_name: Optional[str] = None, name: Optional[str] = None, resource_group_name: Optional[str] = None, opts: Optional[pulumi.InvokeOptions] = None) -> AwaitableListWebAppFunctionKeysResult: """ String dictionary resource. :param str function_name: Function name. :param str name: Site name. :param str resource_group_name: Name of the resource group to which the resource belongs. """ __args__ = dict() __args__['functionName'] = function_name __args__['name'] = name __args__['resourceGroupName'] = resource_group_name if opts is None: opts = pulumi.InvokeOptions() if opts.version is None: opts.version = _utilities.get_version() __ret__ = pulumi.runtime.invoke('azure-nextgen:web/v20200601:listWebAppFunctionKeys', __args__, opts=opts, typ=ListWebAppFunctionKeysResult).value return AwaitableListWebAppFunctionKeysResult( id=__ret__.id, kind=__ret__.kind, name=__ret__.name, properties=__ret__.properties, type=__ret__.type)
31.157025
150
0.622281
80f892e1422771bb072594b8f7ee11549b23d08c
10,734
py
Python
qa/rpc-tests/maxuploadtarget.py
CryptoRane/Rane
135c52098deda505dc240f468e2b6b2a35622610
[ "MIT" ]
null
null
null
qa/rpc-tests/maxuploadtarget.py
CryptoRane/Rane
135c52098deda505dc240f468e2b6b2a35622610
[ "MIT" ]
null
null
null
qa/rpc-tests/maxuploadtarget.py
CryptoRane/Rane
135c52098deda505dc240f468e2b6b2a35622610
[ "MIT" ]
null
null
null
#!/usr/bin/env python2 # # Distributed under the MIT/X11 software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. # from test_framework.mininode import * from test_framework.test_framework import BitcoinTestFramework from test_framework.util import * import time ''' Test behavior of -maxuploadtarget. * Verify that getdata requests for old blocks (>1week) are dropped if uploadtarget has been reached. * Verify that getdata requests for recent blocks are respecteved even if uploadtarget has been reached. * Verify that the upload counters are reset after 24 hours. ''' # TestNode: bare-bones "peer". Used mostly as a conduit for a test to sending # p2p messages to a node, generating the messages in the main testing logic. class TestNode(NodeConnCB): def __init__(self): NodeConnCB.__init__(self) self.connection = None self.ping_counter = 1 self.last_pong = msg_pong() self.block_receive_map = {} def add_connection(self, conn): self.connection = conn self.peer_disconnected = False def on_inv(self, conn, message): pass # Track the last getdata message we receive (used in the test) def on_getdata(self, conn, message): self.last_getdata = message def on_block(self, conn, message): message.block.calc_sha256() try: self.block_receive_map[message.block.sha256] += 1 except KeyError as e: self.block_receive_map[message.block.sha256] = 1 # Spin until verack message is received from the node. # We use this to signal that our test can begin. This # is called from the testing thread, so it needs to acquire # the global lock. def wait_for_verack(self): def veracked(): return self.verack_received return wait_until(veracked, timeout=10) def wait_for_disconnect(self): def disconnected(): return self.peer_disconnected return wait_until(disconnected, timeout=10) # Wrapper for the NodeConn's send_message function def send_message(self, message): self.connection.send_message(message) def on_pong(self, conn, message): self.last_pong = message def on_close(self, conn): self.peer_disconnected = True # Sync up with the node after delivery of a block def sync_with_ping(self, timeout=30): def received_pong(): return (self.last_pong.nonce == self.ping_counter) self.connection.send_message(msg_ping(nonce=self.ping_counter)) success = wait_until(received_pong, timeout) self.ping_counter += 1 return success class MaxUploadTest(BitcoinTestFramework): def __init__(self): self.utxo = [] self.txouts = gen_return_txouts() def add_options(self, parser): parser.add_option("--testbinary", dest="testbinary", default=os.getenv("RAND", "raned"), help="raned binary to test") def setup_chain(self): initialize_chain_clean(self.options.tmpdir, 2) def setup_network(self): # Start a node with maxuploadtarget of 200 MB (/24h) self.nodes = [] self.nodes.append(start_node(0, self.options.tmpdir, ["-debug", "-maxuploadtarget=200", "-blockmaxsize=999000"])) def mine_full_block(self, node, address): # Want to create a full block # We'll generate a 66k transaction below, and 14 of them is close to the 1MB block limit for j in xrange(14): if len(self.utxo) < 14: self.utxo = node.listunspent() inputs=[] outputs = {} t = self.utxo.pop() inputs.append({ "txid" : t["txid"], "vout" : t["vout"]}) remchange = t["amount"] - Decimal("0.001000") outputs[address]=remchange # Create a basic transaction that will send change back to ourself after account for a fee # And then insert the 128 generated transaction outs in the middle rawtx[92] is where the # # of txouts is stored and is the only thing we overwrite from the original transaction rawtx = node.createrawtransaction(inputs, outputs) newtx = rawtx[0:92] newtx = newtx + self.txouts newtx = newtx + rawtx[94:] # Appears to be ever so slightly faster to sign with SIGHASH_NONE signresult = node.signrawtransaction(newtx,None,None,"NONE") txid = node.sendrawtransaction(signresult["hex"], True) # Mine a full sized block which will be these transactions we just created node.generate(1) def run_test(self): # Before we connect anything, we first set the time on the node # to be in the past, otherwise things break because the CNode # time counters can't be reset backward after initialization old_time = int(time.time() - 2*60*60*24*7) self.nodes[0].setmocktime(old_time) # Generate some old blocks self.nodes[0].generate(130) # test_nodes[0] will only request old blocks # test_nodes[1] will only request new blocks # test_nodes[2] will test resetting the counters test_nodes = [] connections = [] for i in xrange(3): test_nodes.append(TestNode()) connections.append(NodeConn('127.0.0.1', p2p_port(0), self.nodes[0], test_nodes[i])) test_nodes[i].add_connection(connections[i]) NetworkThread().start() # Start up network handling in another thread [x.wait_for_verack() for x in test_nodes] # Test logic begins here # Now mine a big block self.mine_full_block(self.nodes[0], self.nodes[0].getnewaddress()) # Store the hash; we'll request this later big_old_block = self.nodes[0].getbestblockhash() old_block_size = self.nodes[0].getblock(big_old_block, True)['size'] big_old_block = int(big_old_block, 16) # Advance to two days ago self.nodes[0].setmocktime(int(time.time()) - 2*60*60*24) # Mine one more block, so that the prior block looks old self.mine_full_block(self.nodes[0], self.nodes[0].getnewaddress()) # We'll be requesting this new block too big_new_block = self.nodes[0].getbestblockhash() new_block_size = self.nodes[0].getblock(big_new_block)['size'] big_new_block = int(big_new_block, 16) # test_nodes[0] will test what happens if we just keep requesting the # the same big old block too many times (expect: disconnect) getdata_request = msg_getdata() getdata_request.inv.append(CInv(2, big_old_block)) max_bytes_per_day = 200*1024*1024 daily_buffer = 144 * MAX_BLOCK_SIZE max_bytes_available = max_bytes_per_day - daily_buffer success_count = max_bytes_available // old_block_size # 144MB will be reserved for relaying new blocks, so expect this to # succeed for ~70 tries. for i in xrange(success_count): test_nodes[0].send_message(getdata_request) test_nodes[0].sync_with_ping() assert_equal(test_nodes[0].block_receive_map[big_old_block], i+1) assert_equal(len(self.nodes[0].getpeerinfo()), 3) # At most a couple more tries should succeed (depending on how long # the test has been running so far). for i in xrange(3): test_nodes[0].send_message(getdata_request) test_nodes[0].wait_for_disconnect() assert_equal(len(self.nodes[0].getpeerinfo()), 2) print "Peer 0 disconnected after downloading old block too many times" # Requesting the current block on test_nodes[1] should succeed indefinitely, # even when over the max upload target. # We'll try 200 times getdata_request.inv = [CInv(2, big_new_block)] for i in xrange(200): test_nodes[1].send_message(getdata_request) test_nodes[1].sync_with_ping() assert_equal(test_nodes[1].block_receive_map[big_new_block], i+1) print "Peer 1 able to repeatedly download new block" # But if test_nodes[1] tries for an old block, it gets disconnected too. getdata_request.inv = [CInv(2, big_old_block)] test_nodes[1].send_message(getdata_request) test_nodes[1].wait_for_disconnect() assert_equal(len(self.nodes[0].getpeerinfo()), 1) print "Peer 1 disconnected after trying to download old block" print "Advancing system time on node to clear counters..." # If we advance the time by 24 hours, then the counters should reset, # and test_nodes[2] should be able to retrieve the old block. self.nodes[0].setmocktime(int(time.time())) test_nodes[2].sync_with_ping() test_nodes[2].send_message(getdata_request) test_nodes[2].sync_with_ping() assert_equal(test_nodes[2].block_receive_map[big_old_block], 1) print "Peer 2 able to download old block" [c.disconnect_node() for c in connections] #stop and start node 0 with 1MB maxuploadtarget, whitelist 127.0.0.1 print "Restarting nodes with -whitelist=127.0.0.1" stop_node(self.nodes[0], 0) self.nodes[0] = start_node(0, self.options.tmpdir, ["-debug", "-whitelist=127.0.0.1", "-maxuploadtarget=1", "-blockmaxsize=999000"]) #recreate/reconnect 3 test nodes test_nodes = [] connections = [] for i in xrange(3): test_nodes.append(TestNode()) connections.append(NodeConn('127.0.0.1', p2p_port(0), self.nodes[0], test_nodes[i])) test_nodes[i].add_connection(connections[i]) NetworkThread().start() # Start up network handling in another thread [x.wait_for_verack() for x in test_nodes] #retrieve 20 blocks which should be enough to break the 1MB limit getdata_request.inv = [CInv(2, big_new_block)] for i in xrange(20): test_nodes[1].send_message(getdata_request) test_nodes[1].sync_with_ping() assert_equal(test_nodes[1].block_receive_map[big_new_block], i+1) getdata_request.inv = [CInv(2, big_old_block)] test_nodes[1].send_message(getdata_request) test_nodes[1].wait_for_disconnect() assert_equal(len(self.nodes[0].getpeerinfo()), 3) #node is still connected because of the whitelist print "Peer 1 still connected after trying to download old block (whitelisted)" [c.disconnect_node() for c in connections] if __name__ == '__main__': MaxUploadTest().main()
40.353383
140
0.654742
0980de09ddae7297291f685c234ffeb5c31fdc6a
6,630
py
Python
pro3/query_system/data.py
Jack-Lio/-Information-retrieval-2019
5c5eb675dbc6ff6977a759da07326b9629ff7f3f
[ "MIT" ]
null
null
null
pro3/query_system/data.py
Jack-Lio/-Information-retrieval-2019
5c5eb675dbc6ff6977a759da07326b9629ff7f3f
[ "MIT" ]
null
null
null
pro3/query_system/data.py
Jack-Lio/-Information-retrieval-2019
5c5eb675dbc6ff6977a759da07326b9629ff7f3f
[ "MIT" ]
null
null
null
############################## # get data from source files # filename:init.py # author: liwei # StuID: 1711350 # date: 2019.12.5 ############################## import os from shutil import copyfile from sys import exit import sys import numpy as np # 学院 xy_dict = { "南开大学商学院":"bs", "南开大学计算机学院":"cc", "南开大学经济学院":"ec", "南开大学历史学院":"ht", "南开大学法学院":"law", "南开大学文学院":"lt", "南开大学哲学院":"phi", } # 资源文档目录 file_path = '..\\docs' # 获取某一人员的快照文件路径,相对于查询是的路由地址而言 def get_html(xueyuan,name): if os.path.exists("/snapshots/%s/%s.html"%(xy_dict[xueyuan],name)): return "/snapshots/%s/%s.html"%(xy_dict[xueyuan],name) else: return "/snapshots/%s/%s.html"%(xy_dict[xueyuan],str(name).replace(" ","")) # 获取某一人员的内容文件路径 def get_content(xueyuan,name): if os.path.exists( "../docs/%s/%s.txt"%(xy_dict[xueyuan],name)): # 锚文本存储文件夹 return "../docs/%s/%s.txt"%(xy_dict[xueyuan],name) else: return "../docs/%s/%s.txt"%(xy_dict[xueyuan],str(name).replace(" ","")) # 获取某一人员的锚文本保存路径 def get_mtext(xueyuan,name): if os.path.exists("../docs/%s/m_text/%s_m.txt"%(xy_dict[xueyuan],name)): # 锚文本存储文件夹 return "../docs/%s/m_text/%s_m.txt"%(xy_dict[xueyuan],name) else: return "../docs/%s/m_text/%s_m.txt"%(xy_dict[xueyuan],str(name).replace(" ","")) # 获取某一人员的照片保存路径 def get_img(xueyuan,name): if os.path.exists("../docs/%s/imgs/%s.jpg"%(xy_dict[xueyuan],str(name).replace(" ",""))): # 锚文本存储文件夹 return "../docs/%s/imgs/%s.jpg" % (xy_dict[xueyuan], name) elif os.path.exists("../docs/%s/imgs/%s.png"%(xy_dict[xueyuan],str(name).replace(" ",""))): # 锚文本存储文件夹 return "../docs/%s/imgs/%s.png" % (xy_dict[xueyuan], name) elif os.path.exists("../docs/%s/imgs/%s.bmp"%(xy_dict[xueyuan],str(name).replace(" ",""))): # 锚文本存储文件夹 return "../docs/%s/imgs/%s.bmp" % (xy_dict[xueyuan], name) else: return "#" # 获取所有的教师信息的index.txt 文件内容 def get_teacher_info(): info = dict() # 遍历根目录对索引文本内容构建索引 for root, dirs, files in os.walk(file_path, topdown=True): for file in files: path_t = os.path.join(root, file) if path_t.split('\\')[-1] != 'index.txt': continue print("=======>" + path_t, file) f = open(path_t, 'r', encoding='UTF-8') for line in f: item_list = line.split(",") #print(item_list) #assert(item_list[0]+item_list[1] not in info.keys()) # 检验条件 if item_list[0] in [x.split('-')[0] for x in info.keys()]: print("$$$$"+item_list[0]+item_list[1]) # 存在同一个人,在不同的页面出现个人主页,且内容完全一样,只要链接不同,则视同为不同的人 # 也有不同学院同名的,如果是同学院的同名情况则目前无法解决 if item_list[0]+'-'+item_list[1] in info.keys(): print("####"+item_list[0]+item_list[1] ) pc = info[item_list[0]+'-'+item_list[1]]["pageRefer"] # 同样的连接有两条指向存在,说明指向其锚文本数量为2,可用于连接分析 info[item_list[0] + '-' + item_list[1]]["pageRefer"]=pc+1 continue info[item_list[0]+'-'+item_list[1]] = { # 建立字典项 "name":item_list[0], "url":item_list[1], "xueyuan":item_list[2], "parentUrl":item_list[3], "pageRefer":1, } return info # 转移图片 def move_img(): # 遍历根目录将所有的图片转移到查询flask系统的静态目录下 for root, dirs, files in os.walk(file_path, topdown=True): for file in files: path_t = os.path.join(root, file) if path_t.split('\\')[-2] != 'imgs': continue print("=======>" + path_t, file) source= path_t target = "./static/images/%s/%s"%(path_t.split('\\')[-3],path_t.split('\\')[-1]) if not os.path.exists("./static/images/%s"%(path_t.split('\\')[-3])): os.makedirs("./static/images/%s"%(path_t.split('\\')[-3])) # adding exception handling try: copyfile(source, target) except IOError as e: print("Unable to copy file. %s" % e) exit(1) except: print("Unexpected error:", sys.exc_info()) exit(1) # 根据爬取的静态网页链接分析获取pagerank的值,info为获取的所有教师数据,info字段如下 # "name": item_list[0], # "url": item_list[1], # "xueyuan": item_list[2], # "parentUrl": item_list[3], # "pageRefer": 1, def pagerank(info_t): info = dict(info_t) url_dict = dict() # 存储网页编号映射关系 url_pair = {} # 存储网页指向对 no = 0 # 形成所有网页的序号映射表 for key in info.keys(): if info[key]["url"] not in url_dict.keys(): url_dict[info[key]["url"]] = no no = no + 1 if info[key]["parentUrl"] not in url_dict.keys(): url_dict[info[key]["parentUrl"]] = no no = no + 1 if info[key]["parentUrl"] not in url_pair.keys(): url_pair[info[key]["parentUrl"]] = [info[key]["url"]] else: url_pair[info[key]["parentUrl"]].extend([info[key]["url"]]) # 形成随机游走过程概率矩阵 N = len(url_dict.keys()) # 矩阵规模 matrix = np.zeros((N,N)) # 声明矩阵 # 计算邻接矩阵 for parenturl in url_pair.keys(): for sonurl in url_pair[parenturl]: matrix[url_dict[parenturl]][url_dict[sonurl]] = 1 matrix[url_dict[sonurl]][url_dict[parenturl]] = 0 # 马尔科夫链 转移矩阵 for i in range(N): count = 0 for j in range(N): # 统计1 的数量 if matrix[i][j] ==1 : count=count +1 if count == 0 : # 一行中没有1 ,全部置位1/N for j in range(N): matrix[i][j] = 1.0/N else: for j in range(N): if matrix[i][j]==1: # 非全0 替换为1/count matrix[i][j]= 1.0/count alpha = 0.1 matrix1 = matrix*(1-alpha) matrix2 = matrix1+(alpha/N) # 设定初始的状态概率分布向量 start = np.zeros((N,N)) start[0][0] = 1 cur = next = np.dot(start,matrix2) times = 0 while(1): times =times+1 exit_flag = True next = np.dot(cur,matrix2) # 迭代 for i in range(N): if next[0][i] != cur[0][i] : exit_flag = False if(exit_flag): break cur = next scores = next[0] print("end") return url_dict,scores # 返回映射关系和page得分 print(pagerank(get_teacher_info())) # 拷贝图片 # move_img()
34.175258
121
0.511312
eb9ad40e2924b2837a946bfdd89aed738d293424
7,502
py
Python
spark/mod_decompress_audio.py
droyston/spectralize
572770e7358acc3ec433470659759c17453409f2
[ "MIT" ]
null
null
null
spark/mod_decompress_audio.py
droyston/spectralize
572770e7358acc3ec433470659759c17453409f2
[ "MIT" ]
null
null
null
spark/mod_decompress_audio.py
droyston/spectralize
572770e7358acc3ec433470659759c17453409f2
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Wed Jun 17 16:12:56 2020 @author: dylanroyston """ # import/configure packages import numpy as np import pandas as pd #import pyarrow as pa import librosa import librosa.display from pathlib import Path #import Ipython.display as ipd #import matplotlib.pyplot as plt from pyspark.sql import * import pyspark.sql.functions as f from pyspark import SparkConf, SparkContext, SQLContext import boto3 from tinytag import TinyTag as tt #from io import BytesIO import os import sys import time sys.path.insert(0, os.path.dirname(os.path.abspath(__file__)) + "/lib") #import config time_seq = [] ##### # create local Spark instance (for non-cluster dev) # sc = SparkContext('local') # spark = SparkSession (sc) # spark.conf.set("spark.sql.execution.arrow.enabled", "true") # define Spark config def spark_conf(): conf = SparkConf().setAppName("decompress_audio_files") sc = SparkContext(conf=conf) spark = SparkSession.builder.getOrCreate() return spark spark = spark_conf() spark.conf.set("spark.sql.execution.arrow.enabled", "true") ##### # Function to write spark-dataframe to PSQL def write_df_to_psql(df, tablename): psql_user = os.environ.get('PSQL_USR') psql_pwd = os.environ.get('PSQL_PWD') df.write.format('jdbc').options( url='jdbc:postgresql://10.0.0.6:5432/spectralize', dbtable=tablename, user=psql_user, password=psql_pwd).mode('append').save() #password=psql_pwd).save() # Function to write spark-dataframe to TimescaleDB def write_df_to_tsdb(df, tablename): psql_user = os.environ.get('PSQL_USR') psql_pwd = os.environ.get('PSQL_PWD') df.write.format('jdbc').options( url='jdbc:postgresql://10.0.0.11:5432/spectralize', dbtable=tablename, user=psql_user, #password=psql_pwd).mode('append').save() password=psql_pwd).save() ##### # function to read audio files from S3 bucket and extract tags def read_audio_files(): # basic initialization time_seq.append(['start-read-audio', time.time()]) # DataFrame schema File_Tags = Row("s3_key", "song_id", "album", "albumartist", "artist", "audio_offset", "bitrate", "channels", "comment", "composer", "disc", "disc_total", "duration", "filesize", "genre", "samplerate", "title", "track", "track_total", "year") spec_labels = [] for sn in range(0,128): spec_labels.append('spec' + str(sn+1)) spec_df_labels = ['song_id','timeseries'] + spec_labels Spec_Tags = Row(spec_df_labels) # configure S3 access s3_bucket = 'mdp-spectralize-pal' number_of_files = 0 s3 = boto3.resource('s3') bucket = s3.Bucket(s3_bucket) number_of_files=0 file_limit=5 #local_path = './local_file.' known_ext = [".mp3", ".wav", ".m4a"] #read each file from S3 bucket for obj in bucket.objects.all(): s3_key = obj.key # extract tags from mp3 files #if "mp3" in s3_key: if any(ext in s3_key for ext in known_ext): print(['***** ' + number_of_files + ' *****']) ext = s3_key[-4:] local_path = './localfile' + ext number_of_files+=1 bucket.download_file(s3_key, local_path) ##### tags tags = tt.get(local_path) # extract tags from tinytag object indiv_tags = (s3_key, number_of_files, tags.album, tags.albumartist, tags.artist, tags.audio_offset, tags.bitrate, tags.channels, tags.comment, tags.composer, tags.disc, tags.disc_total, tags.duration, tags.filesize, tags.genre, tags.samplerate, tags.title, tags.track, tags.track_total, tags.year) # convert tuple object to list indiv_tag_list = list(indiv_tags) indiv_tag_list = [str(i) for i in indiv_tag_list] tag_seq=[] tag_seq.append(indiv_tag_list) tags_pdf = pd.DataFrame(data=tag_seq) tag_df = spark.createDataFrame(tags_pdf, schema=File_Tags) ##### audio # load audio file with Librosa #y, sr = librosa.load(str(Path(local_path)), sr=None) y, sr = librosa.load(local_path, sr=None) # create indexing variables (song_id, timestamp) # song_id defined as "repeat(number_of_files)" song_num = pd.Series([number_of_files]) num_points = len(y) song_id = song_num.repeat(num_points) song_id = song_id.to_numpy() # timeseries defined as "1 : length(audio_data)" timeseries = np.arange(num_points) timeseries = timeseries.transpose() full_audio = {'song_id': song_id, 'timeseries': timeseries, 'intensity': y} # create combined dataframe audio_pdf = pd.DataFrame(data = full_audio) audio_df = spark.createDataFrame(audio_pdf) ##### spectral S = librosa.feature.melspectrogram(y, sr=sr, n_mels=128, fmax=10000) log_S = librosa.power_to_db(S, ref=np.max) log_S = log_S.transpose() # song_id defined as "repeat(number_of_files)" song_num = pd.Series([number_of_files]) num_points = len(S.transpose()) song_id = song_num.repeat(num_points) song_id = song_id.to_numpy() # timeseries defined as "1 : length(audio_data)" timeseries = np.arange(num_points) timeseries = timeseries.transpose() full_index = {'song_id': song_id, 'timeseries': timeseries} index_pdf = pd.DataFrame(full_index) spec_pdf = pd.DataFrame(data=log_S, columns=spec_labels) full_spec = pd.concat([index_pdf, spec_pdf], axis=1) spec_df = spark.createDataFrame(full_spec) ##### write dataframes to psql write_df_to_psql(tag_df, 'clean_metadata') write_df_to_tsdb(audio_df, 'clean_audio') write_df_to_psql(spec_df, 'clean_spec') # stop process when file_limit is crossed (small batches) if (number_of_files >= file_limit): break ##### time_seq.append(['end read-file', time.time()]) #df_tags = spark.createDataFrame(tag_seq, schema=File_Tags) #df_audio = spark.createDataFrame(audio_seq) #df_spec = spark.createDataFrame(audio_seq, schema=Spec_Tags) # Additional run to #df_audio_data = spark.createDataFrame(file_audio_data) #process_df(df_audio_data) ##### if __name__ == '__main__': time_seq.append(['start', time.time()]) read_audio_files()
30.620408
94
0.565049
1714ebc98310a294b05e0deb6af805f67d5e468c
223
py
Python
Semester 3/Code Optimization and Debugging-I/Python/Exp_03 - Lowercase to Uppercase.py
Killbot2614/Programming-Lab
ce9ccecf35deba4ee749026b4f5c3a9e6b0ac548
[ "MIT" ]
13
2021-10-16T05:17:51.000Z
2022-01-12T14:53:55.000Z
Semester 3/Code Optimization and Debugging-I/Python/Exp_03 - Lowercase to Uppercase.py
Killbot2614/Code-Optimization-and-Debugging-I
cb3bd0fc5bfb703b29b4a4b9a751f75792ac4a8a
[ "MIT" ]
null
null
null
Semester 3/Code Optimization and Debugging-I/Python/Exp_03 - Lowercase to Uppercase.py
Killbot2614/Code-Optimization-and-Debugging-I
cb3bd0fc5bfb703b29b4a4b9a751f75792ac4a8a
[ "MIT" ]
5
2021-09-24T17:28:08.000Z
2021-12-16T15:47:27.000Z
# Python Program to convert lowercase string to uppercase string # Get the input string # Convert lower case to upper case # Print the output print(input().upper()) # Input: sathyabama # Output: SATHYABAMA
18.583333
66
0.70852
bcc68e1ffe11f4ca3178e81ecccb6f5ccc81896e
11,692
py
Python
stochpy/__init__.py
bgoli/stochpy
ba06e5eaf1204dbc8ea39996ff8a08e9b0b5997d
[ "BSD-3-Clause" ]
35
2016-02-29T22:56:07.000Z
2022-03-06T17:21:29.000Z
stochpy/__init__.py
bgoli/stochpy
ba06e5eaf1204dbc8ea39996ff8a08e9b0b5997d
[ "BSD-3-Clause" ]
6
2016-10-13T12:43:54.000Z
2021-04-30T09:06:59.000Z
stochpy/__init__.py
bgoli/stochpy
ba06e5eaf1204dbc8ea39996ff8a08e9b0b5997d
[ "BSD-3-Clause" ]
13
2016-07-07T19:49:25.000Z
2021-05-14T20:24:17.000Z
#! /usr/bin/env python """ StochPy - Stochastic modeling in Python (http://stochpy.sourceforge.net) Copyright (C) 2010-2015 T.R Maarlveld, B.G. Olivier, F.J. Bruggeman all rights reserved. Timo R. Maarleveld (tmd200@users.sourceforge.net) Centrum Wiskunde & Informatica, Amsterdam, Netherlands VU University, Amsterdam, Netherlands Permission to use, modify, and distribute this software is given under the terms of the StochPy (BSD style) license. NO WARRANTY IS EXPRESSED OR IMPLIED. USE AT YOUR OWN RISK. """ from __future__ import division, print_function, absolute_import __doc__ = """ StochPy: Stochastic Modeling in Python ===================================== StochPy (Stochastic modeling in Python) is a flexible software tool for stochastic simulation in cell biology. It provides various stochastic simulation algorithms, SBML support, analyses of the probability distributions of molecule copy numbers and event waiting times, analyses of stochastic time series, and a range of additional statistical functions and plotting facilities for stochastic simulations. Options: -------- - Stochastic Simulations - Variety of stochastic simulation output analysis: --> Time Simulation --> Distribution --> Waiting times --> Propensities - Cell Division simulations - SBML and PSC MDL input format. StochPy can be used in an interactive Python shell: Usage ----- >>> import stochpy >>> utils = stochpy.Utils() >>> utils.doExample1() >>> utils.doExample2() >>> smod = stochpy.SSA() # stochastic simulation algorithm module >>> help(smod) >>> help(stochpy.SSA) # (some windows versions) >>> stochpy? >>> smod.DoStochSim() >>> smod.PlotSpeciesTimeSeries() >>> converter = stochpy.SBML2PSC() >>> converter?? >>> help(stochpy.SBML2PSC) """ from .core2.version import __version__ import os,shutil,sys try: import readline _IsReadline = True except: _IsReadline = False try: from numpy.distutils.core import setup, Extension _IsNumPy = True except Exception as ex: _IsNumPy = False print(ex) print("StochPy requires NumPy") print("See http://numpy.scipy.org/ for more information about NumPy") os.sys.exit(-1) try: import matplotlib _IsMPL = True except: _IsMPL = False print("Warning: The Matplotlib module is not available, so plotting is not possible") print("Info: See http://matplotlib.sourceforge.net/ for more information about Matplotlib.") _IsPlotting = False try: import matplotlib.pyplot as plt _IsPlotting = True except Exception as er: print(er) def InitiateModels(directory): """ Build several models written in PSC MDL and SBML Input: - *directory* (string) """ from .pscmodels import Burstmodel from .pscmodels import BirthDeath from .pscmodels import ImmigrationDeath from .pscmodels import DecayingDimerizing from .pscmodels import Autoreg from .pscmodels import CellDivision as celldivision from .pscmodels import GeneDuplication from .pscmodels import dsmts_001_01 from .pscmodels import dsmts_001_11 from .pscmodels import dsmts_001_19 from .pscmodels import dsmts_002_10 from .pscmodels import dsmts_003_03 from .pscmodels import dsmts_003_04 from .pscmodels import chain5 from .pscmodels import chain50 from .pscmodels import chain500 from .pscmodels import chain1500 from .pscmodels import Isomerization from .pscmodels import Polymerase from .pscmodels import TranscriptionIntermediate from .pscmodels import Schlogl from .pscmodels import SignalingTimeVaryingL from .pscmodels import Signaling3cCD models = {} models['Signaling3cCD.psc'] = Signaling3cCD.model models['SignalingTimeVaryingL.psc'] = SignalingTimeVaryingL.model models['Schlogl.psc'] = Schlogl.model models['Burstmodel.psc'] = Burstmodel.model models['ImmigrationDeath.psc'] = ImmigrationDeath.model models['BirthDeath.psc'] = BirthDeath.model models['DecayingDimerizing.psc'] = DecayingDimerizing.model models['Autoreg.psc'] = Autoreg.model models['Autoreg.xml'] = Autoreg.xml_model models['CellDivision.psc'] = celldivision.model models['GeneDuplication.psc'] = GeneDuplication.model models['Isomerization.psc'] = Isomerization.model models['Polymerase.psc'] = Polymerase.model models['TranscriptionIntermediate.psc'] = TranscriptionIntermediate.model models['dsmts-001-01.xml.psc'] = dsmts_001_01.model models['dsmts-001-01.xml'] = dsmts_001_01.xml_model models['dsmts-001-11.xml.psc'] = dsmts_001_11.model models['dsmts-001-11.xml'] = dsmts_001_11.xml_model models['dsmts-001-19.xml.psc'] = dsmts_001_19.model models['dsmts-001-19.xml'] = dsmts_001_19.xml_model models['dsmts-002-10.xml.psc'] = dsmts_002_10.model models['dsmts-002-10.xml'] = dsmts_002_10.xml_model models['dsmts-003-03.xml.psc'] = dsmts_003_03.model models['dsmts-003-03.xml'] = dsmts_003_03.xml_model models['dsmts-003-04.xml.psc'] = dsmts_003_04.model models['dsmts-003-04.xml'] = dsmts_003_04.xml_model models['chain5.psc'] = chain5.model models['chain50.psc'] = chain50.model models['chain500.psc'] = chain500.model models['chain1500.psc'] = chain1500.model model_names = list(models) dir_models = os.listdir(directory) for mod_name in model_names: if mod_name not in dir_models: print("Info: Model {0:s} copied to {1:s}".format(mod_name ,directory) ) file_out = open(os.path.join(directory,mod_name),'w') file_out.write(models[mod_name]) file_out.close() output_dir = None model_dir = None if os.sys.platform != 'win32': if not os.path.exists(os.path.join(os.path.expanduser('~'),'Stochpy')): os.makedirs(os.path.join(os.path.expanduser('~'),'Stochpy')) if not os.path.exists(os.path.join(os.path.expanduser('~'),'Stochpy', 'pscmodels')): os.makedirs(os.path.join(os.path.expanduser('~'),'Stochpy','pscmodels')) if not os.path.exists(os.path.join(os.path.expanduser('~'),'Stochpy', 'temp')): os.makedirs(os.path.join(os.path.expanduser('~'),'Stochpy','temp')) output_dir = os.path.join(os.path.expanduser('~'),'Stochpy') model_dir = os.path.join(os.path.expanduser('~'),'Stochpy','pscmodels') temp_dir = os.path.join(os.path.expanduser('~'),'Stochpy','temp') InitiateModels(model_dir) else: if not os.path.exists(os.path.join(os.getenv('HOMEDRIVE')+os.path.sep,'Stochpy')): os.makedirs(os.path.join(os.getenv('HOMEDRIVE')+os.path.sep,'Stochpy')) if not os.path.exists(os.path.join(os.getenv('HOMEDRIVE')+os.path.sep,'Stochpy','pscmodels')): os.makedirs(os.path.join(os.getenv('HOMEDRIVE')+os.path.sep,'Stochpy','pscmodels')) if not os.path.exists(os.path.join(os.getenv('HOMEDRIVE')+os.path.sep,'Stochpy','temp')): os.makedirs(os.path.join(os.getenv('HOMEDRIVE')+os.path.sep,'Stochpy','temp')) output_dir = os.path.join(os.getenv('HOMEDRIVE')+os.path.sep,'Stochpy',) model_dir = os.path.join(os.getenv('HOMEDRIVE')+os.path.sep,'Stochpy','pscmodels') temp_dir = os.path.join(os.getenv('HOMEDRIVE')+os.path.sep,'Stochpy','temp') InitiateModels(model_dir) from .modules.SBML2PSC import SBML2PSC from .modules.StochSim import SSA from .modules.StochPyUtils import Utils from .modules.StochPyCellDivision import CellDivision from .modules.StochPyDemo import Demo from .modules import Analysis as Analysis try: from .modules.NucleosomeTool import NucleosomeModelBuilder from .modules.NucleosomeTool import NucleosomeSimulator except Exception as er: pass # ignore def DeletePreviousOutput(path,type): """ Delete output of earlier simulations Input: - *path* (string) - *type* (string) """ for filename in os.listdir(path): if filename.endswith(type): filename_path = os.path.join(path,filename) os.remove(filename_path) def DeleteExistingData(path): """ Delete all existing StochKit simulation data Input: - *path* (string) """ if os.path.exists(path): for maps in os.listdir(path): dir2delete = os.path.join(path,maps) shutil.rmtree(dir2delete, ignore_errors=True) def SaveInteractiveSession(filename='interactiveSession.py',path=output_dir): """ Save the interactive session Input: - *filename*: [default = interactiveSession.py'] (string) - *path*: (string) """ if not _IsReadline: print("Error: install 'readline' first") elif _IsReadline: historyPath = os.path.join(path,filename) if not os.path.exists(path): os.makedirs(directory) readline.write_history_file(historyPath) file_in = open(historyPath,'r') history_list = file_in.readlines() n_import_statement = 0 for command in history_list: if 'import' in command and 'stochpy' in command: n_import_statement +=1 n=0 file_out = open(historyPath,'w') for command in history_list: if 'import' in command and 'stochpy' in command: n+=1 if n==n_import_statement: file_out.write(command) file_out.close() print("Info: Interactive session successfully saved at {0:s}".format(historyPath) ) print("Info: use 'ipython {0:s} to restart modeling with this interactive session".format(filename) ) DeletePreviousOutput(temp_dir,'.dat') DeletePreviousOutput(temp_dir,'.xml') DeletePreviousOutput(temp_dir,'.txt') DeletePreviousOutput(temp_dir,'temp_parse_module') DeleteExistingData(temp_dir) #readline.clear_history() print(""" ####################################################################### # # # Welcome to the interactive StochPy environment # # # ####################################################################### # StochPy: Stochastic modeling in Python # # http://stochpy.sourceforge.net # # Copyright(C) T.R Maarleveld, B.G. Olivier, F.J Bruggeman 2010-2015 # # DOI: 10.1371/journal.pone.0079345 # # Email: tmd200@users.sourceforge.net # # VU University, Amsterdam, Netherlands # # Centrum Wiskunde Informatica, Amsterdam, Netherlands # # StochPy is distributed under the BSD licence. # ####################################################################### """) print("Version {0:s}".format(__version__) ) print("Output Directory: {0:s}".format(output_dir) ) print("Model Directory: {0:s}".format(model_dir) ) #print("Warning: Figure freezing? Try a different matplotlib backend (stochpy.plt.switch_backend) and/or set IsInteractive to False (see user guide)")
40.178694
168
0.629234
e48d4cfd7b3e6484a3c31e160208e23335658a3a
2,619
py
Python
accuracy/visualization/plots_lib.py
phanhuy1502/FYP
600f694bc173547fba167e4885762d96e73f061e
[ "MIT" ]
null
null
null
accuracy/visualization/plots_lib.py
phanhuy1502/FYP
600f694bc173547fba167e4885762d96e73f061e
[ "MIT" ]
null
null
null
accuracy/visualization/plots_lib.py
phanhuy1502/FYP
600f694bc173547fba167e4885762d96e73f061e
[ "MIT" ]
null
null
null
import matplotlib.pyplot as plt import matplotlib.ticker as ticker def parallel_coordinates(data_sets, style=None): dims = len(data_sets[0]) x = range(dims) fig, axes = plt.subplots(1, dims-1, sharey=False) if style is None: style = ['r-']*len(data_sets) # Calculate the limits on the data min_max_range = list() for m in zip(*data_sets): mn = min(m) mx = max(m) if mn == mx: mn -= 0.5 mx = mn + 1. r = float(mx - mn) min_max_range.append((mn, mx, r)) # Normalize the data sets norm_data_sets = list() for ds in data_sets: nds = [(value - min_max_range[dimension][0]) / min_max_range[dimension][2] for dimension,value in enumerate(ds)] norm_data_sets.append(nds) data_sets = norm_data_sets # Plot the datasets on all the subplots for i, ax in enumerate(axes): for dsi, d in enumerate(data_sets): ax.plot(x, d, style[dsi]) ax.set_xlim([x[i], x[i+1]]) # Set the x axis ticks for dimension, (axx,xx) in enumerate(zip(axes, x[:-1])): axx.xaxis.set_major_locator(ticker.FixedLocator([xx])) ticks = len(axx.get_yticklabels()) labels = list() step = min_max_range[dimension][2] / (ticks - 1) mn = min_max_range[dimension][0] for i in xrange(ticks): v = mn + i*step labels.append('%4.2f' % v) axx.set_yticklabels(labels) # Move the final axis' ticks to the right-hand side axx = plt.twinx(axes[-1]) dimension += 1 axx.xaxis.set_major_locator(ticker.FixedLocator([x[-2], x[-1]])) ticks = len(axx.get_yticklabels()) step = min_max_range[dimension][2] / (ticks - 1) mn = min_max_range[dimension][0] labels = ['%4.2f' % (mn + i*step) for i in xrange(ticks)] axx.set_yticklabels(labels) # Stack the subplots plt.subplots_adjust(wspace=0) return plt if __name__ == '__main__': import random base = [0, 0, 5, 5, 0] scale = [1.5, 2., 1.0, 2., 2.] data = [[base[x] + random.uniform(0., 1.)*scale[x] for x in xrange(5)] for y in xrange(30)] colors = ['r','b','g','c','m','y','k','w'] * 30 base = [3, 6, 0, 1, 3] scale = [1.5, 2., 2.5, 2., 2.] data.extend([[base[x] + random.uniform(0., 1.)*scale[x] for x in xrange(5)] for y in xrange(30)]) colors.extend(['b'] * 30) print (len(data)) print (data[0]) data = [[1,3,4],[2,3,4],[0,3,5]] parallel_coordinates(data, style=colors).show()
30.103448
68
0.559374
bd481a202c10749e8890f8eece5014564f4d52e4
1,131
py
Python
localizacao/viewsets.py
WesGtoX/agro-digital
c4a453ae24e774cac48b032c921916820ff7b38f
[ "MIT" ]
null
null
null
localizacao/viewsets.py
WesGtoX/agro-digital
c4a453ae24e774cac48b032c921916820ff7b38f
[ "MIT" ]
null
null
null
localizacao/viewsets.py
WesGtoX/agro-digital
c4a453ae24e774cac48b032c921916820ff7b38f
[ "MIT" ]
null
null
null
from rest_framework import viewsets from slugify import slugify from .models import Regiao, Cidade from .serializers import RegiaoSerializer, CidadeSerializer class RegiaoViewSet(viewsets.ModelViewSet): queryset = Regiao.objects.all() serializer_class = RegiaoSerializer def perform_create(self, serializer): nome = serializer.validated_data.get('nome', '') estado = serializer.validated_data.get('estado', '') serializer.save(slug=slugify(f'{nome} {estado}')) def perform_update(self, serializer): nome = serializer.validated_data.get('nome', '') estado = serializer.validated_data.get('estado', '') serializer.save(slug=slugify(f'{nome} {estado}')) class CidadeViewSet(viewsets.ModelViewSet): queryset = Cidade.objects.all() serializer_class = CidadeSerializer def perform_create(self, serializer): nome = serializer.validated_data.get('nome', '') serializer.save(slug=slugify(nome)) def perform_update(self, serializer): nome = serializer.validated_data.get('nome', '') serializer.save(slug=slugify(nome))
32.314286
60
0.704686
568b531570d13c5ff92688a457d05097c6f68805
7,533
py
Python
mycroft/util/file_utils.py
OpenVoiceOS/ovos-core
662577740a6e8cb5bb92bec014a05be9a6870b05
[ "Apache-2.0" ]
4
2021-11-03T22:06:30.000Z
2021-11-19T08:03:58.000Z
mycroft/util/file_utils.py
OpenVoiceOS/ovos-core
662577740a6e8cb5bb92bec014a05be9a6870b05
[ "Apache-2.0" ]
62
2021-10-29T21:18:51.000Z
2022-03-30T07:08:29.000Z
mycroft/util/file_utils.py
OpenVoiceOS/ovos-core
662577740a6e8cb5bb92bec014a05be9a6870b05
[ "Apache-2.0" ]
null
null
null
# Copyright 2020 Mycroft AI Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """Mycroft file utils. This module contains functions handling mycroft resource files and things like accessing and curating mycroft's cache. """ import os import time from os.path import dirname from watchdog.observers import Observer from watchdog.events import FileSystemEventHandler from ovos_utils.file_utils import get_temp_path from ovos_utils.configuration import get_xdg_base, get_xdg_data_dirs, \ get_xdg_data_save_path, get_xdg_cache_save_path import mycroft.configuration from mycroft.util.log import LOG # do not delete these imports, here for backwards compat! from ovos_plugin_manager.utils.tts_cache import curate_cache, mb_to_bytes def resolve_resource_file(res_name): """Convert a resource into an absolute filename. Resource names are in the form: 'filename.ext' or 'path/filename.ext' The system wil look for $XDG_DATA_DIRS/mycroft/res_name first (defaults to ~/.local/share/mycroft/res_name), and if not found will look at /opt/mycroft/res_name, then finally it will look for res_name in the 'mycroft/res' folder of the source code package. Example: With mycroft running as the user 'bob', if you called ``resolve_resource_file('snd/beep.wav')`` it would return either: '$XDG_DATA_DIRS/mycroft/beep.wav', '/home/bob/.mycroft/snd/beep.wav' or '/opt/mycroft/snd/beep.wav' or '.../mycroft/res/snd/beep.wav' where the '...' is replaced by the path where the package has been installed. Args: res_name (str): a resource path/name Returns: (str) path to resource or None if no resource found """ config = mycroft.configuration.Configuration() # First look for fully qualified file (e.g. a user setting) if os.path.isfile(res_name): return res_name # Now look for XDG_DATA_DIRS for path in get_xdg_data_dirs(): filename = os.path.join(path, res_name) if os.path.isfile(filename): return filename # Now look in the old user location filename = os.path.join(os.path.expanduser('~'), f'.{get_xdg_base()}', res_name) if os.path.isfile(filename): return filename # Next look for /opt/mycroft/res/res_name data_dir = config.get('data_dir', get_xdg_data_save_path()) res_dir = os.path.join(data_dir, 'res') filename = os.path.expanduser(os.path.join(res_dir, res_name)) if os.path.isfile(filename): return filename # Finally look for it in the source package filename = os.path.join(os.path.dirname(__file__), '..', 'res', res_name) filename = os.path.abspath(os.path.normpath(filename)) if os.path.isfile(filename): return filename return None # Resource cannot be resolved def read_stripped_lines(filename): """Read a file and return a list of stripped lines. Args: filename (str): path to file to read. Returns: (list) list of lines stripped from leading and ending white chars. """ with open(filename, 'r') as f: for line in f: line = line.strip() if line: yield line def read_dict(filename, div='='): """Read file into dict. A file containing: foo = bar baz = bog results in a dict { 'foo': 'bar', 'baz': 'bog' } Args: filename (str): path to file div (str): deviders between dict keys and values Returns: (dict) generated dictionary """ d = {} with open(filename, 'r') as f: for line in f: key, val = line.split(div) d[key.strip()] = val.strip() return d def get_cache_directory(domain=None): """Get a directory for caching data. This directory can be used to hold temporary caches of data to speed up performance. This directory will likely be part of a small RAM disk and may be cleared at any time. So code that uses these cached files must be able to fallback and regenerate the file. Args: domain (str): The cache domain. Basically just a subdirectory. Returns: (str) a path to the directory where you can cache data """ config = mycroft.configuration.Configuration() directory = config.get("cache_path") or get_xdg_cache_save_path() return ensure_directory_exists(directory, domain) def ensure_directory_exists(directory, domain=None, permissions=0o777): """Create a directory and give access rights to all Args: directory (str): Root directory domain (str): Domain. Basically a subdirectory to prevent things like overlapping signal filenames. rights (int): Directory permissions (default is 0o777) Returns: (str) a path to the directory """ if domain: directory = os.path.join(directory, domain) # Expand and normalize the path directory = os.path.normpath(directory) directory = os.path.expanduser(directory) if not os.path.isdir(directory): try: save = os.umask(0) os.makedirs(directory, permissions) except OSError: LOG.warning("Failed to create: " + directory) finally: os.umask(save) return directory def create_file(filename): """Create the file filename and create any directories needed Args: filename: Path to the file to be created """ ensure_directory_exists(os.path.dirname(filename), permissions=0o775) with open(filename, 'w') as f: f.write('') os.chmod(filename, 0o777) class FileWatcher: def __init__(self, files, callback, recursive=False, ignore_creation=False): self.observer = Observer() self.handlers = [] for file_path in files: watch_dir = dirname(file_path) self.observer.schedule(FileEventHandler(file_path, callback, ignore_creation), watch_dir, recursive=recursive) self.observer.start() def shutdown(self): self.observer.unschedule_all() self.observer.stop() class FileEventHandler(FileSystemEventHandler): def __init__(self, file_path, callback, ignore_creation=False): super().__init__() self._callback = callback self._file_path = file_path self._debounce = 1 self._last_update = 0 if ignore_creation: self._events = ('modified') else: self._events = ('created', 'modified') def on_any_event(self, event): if event.is_directory: return elif event.event_type in self._events: if event.src_path == self._file_path: if time.time() - self._last_update >= self._debounce: self._callback(event.src_path) self._last_update = time.time()
31.128099
90
0.653259
a90ec2349a42388bec95da6af495c9a0c076b58e
11,251
py
Python
mayan/apps/linking/tests/test_api.py
eshbeata/open-paperless
6b9ed1f21908116ad2795b3785b2dbd66713d66e
[ "Apache-2.0" ]
2,743
2017-12-18T07:12:30.000Z
2022-03-27T17:21:25.000Z
mayan/apps/linking/tests/test_api.py
eshbeata/open-paperless
6b9ed1f21908116ad2795b3785b2dbd66713d66e
[ "Apache-2.0" ]
15
2017-12-18T14:58:07.000Z
2021-03-01T20:05:05.000Z
mayan/apps/linking/tests/test_api.py
eshbeata/open-paperless
6b9ed1f21908116ad2795b3785b2dbd66713d66e
[ "Apache-2.0" ]
257
2017-12-18T03:12:58.000Z
2022-03-25T08:59:10.000Z
from __future__ import unicode_literals from django.contrib.auth import get_user_model from django.test import override_settings from django.urls import reverse from documents.models import DocumentType from documents.tests.literals import ( TEST_DOCUMENT_TYPE_LABEL, TEST_SMALL_DOCUMENT_PATH ) from rest_api.tests import BaseAPITestCase from user_management.tests.literals import ( TEST_ADMIN_EMAIL, TEST_ADMIN_PASSWORD, TEST_ADMIN_USERNAME ) from ..models import SmartLink, SmartLinkCondition from .literals import ( TEST_SMART_LINK_CONDITION_FOREIGN_DOCUMENT_DATA, TEST_SMART_LINK_CONDITION_EXPRESSION, TEST_SMART_LINK_CONDITION_EXPRESSION_EDITED, TEST_SMART_LINK_CONDITION_OPERATOR, TEST_SMART_LINK_DYNAMIC_LABEL, TEST_SMART_LINK_LABEL_EDITED, TEST_SMART_LINK_LABEL ) @override_settings(OCR_AUTO_OCR=False) class SmartLinkAPITestCase(BaseAPITestCase): def setUp(self): super(SmartLinkAPITestCase, self).setUp() self.admin_user = get_user_model().objects.create_superuser( username=TEST_ADMIN_USERNAME, email=TEST_ADMIN_EMAIL, password=TEST_ADMIN_PASSWORD ) self.client.login( username=TEST_ADMIN_USERNAME, password=TEST_ADMIN_PASSWORD ) def tearDown(self): if hasattr(self, 'document_type'): self.document_type.delete() super(SmartLinkAPITestCase, self).tearDown() def _create_document_type(self): self.document_type = DocumentType.objects.create( label=TEST_DOCUMENT_TYPE_LABEL ) def _create_document(self): with open(TEST_SMALL_DOCUMENT_PATH) as file_object: self.document = self.document_type.new_document( file_object=file_object ) def _create_smart_link(self): return SmartLink.objects.create( label=TEST_SMART_LINK_LABEL, dynamic_label=TEST_SMART_LINK_DYNAMIC_LABEL ) def test_smart_link_create_view(self): response = self.client.post( reverse('rest_api:smartlink-list'), { 'label': TEST_SMART_LINK_LABEL } ) smart_link = SmartLink.objects.first() self.assertEqual(response.data['id'], smart_link.pk) self.assertEqual(response.data['label'], TEST_SMART_LINK_LABEL) self.assertEqual(SmartLink.objects.count(), 1) self.assertEqual(smart_link.label, TEST_SMART_LINK_LABEL) def test_smart_link_create_with_document_types_view(self): self._create_document_type() response = self.client.post( reverse('rest_api:smartlink-list'), data={ 'label': TEST_SMART_LINK_LABEL, 'document_types_pk_list': self.document_type.pk }, ) smart_link = SmartLink.objects.first() self.assertEqual(response.data['id'], smart_link.pk) self.assertEqual(response.data['label'], TEST_SMART_LINK_LABEL) self.assertEqual(SmartLink.objects.count(), 1) self.assertEqual(smart_link.label, TEST_SMART_LINK_LABEL) self.assertQuerysetEqual( smart_link.document_types.all(), (repr(self.document_type),) ) def test_smart_link_delete_view(self): smart_link = self._create_smart_link() self.client.delete( reverse('rest_api:smartlink-detail', args=(smart_link.pk,)) ) self.assertEqual(SmartLink.objects.count(), 0) def test_smart_link_detail_view(self): smart_link = self._create_smart_link() response = self.client.get( reverse('rest_api:smartlink-detail', args=(smart_link.pk,)) ) self.assertEqual( response.data['label'], TEST_SMART_LINK_LABEL ) def test_smart_link_patch_view(self): self._create_document_type() smart_link = self._create_smart_link() self.client.patch( reverse('rest_api:smartlink-detail', args=(smart_link.pk,)), data={ 'label': TEST_SMART_LINK_LABEL_EDITED, 'document_types_pk_list': self.document_type.pk } ) smart_link.refresh_from_db() self.assertEqual(smart_link.label, TEST_SMART_LINK_LABEL_EDITED) self.assertQuerysetEqual( smart_link.document_types.all(), (repr(self.document_type),) ) def test_smart_link_put_view(self): smart_link = self._create_smart_link() self.client.put( reverse('rest_api:smartlink-detail', args=(smart_link.pk,)), data={ 'label': TEST_SMART_LINK_LABEL_EDITED, } ) smart_link.refresh_from_db() self.assertEqual(smart_link.label, TEST_SMART_LINK_LABEL_EDITED) @override_settings(OCR_AUTO_OCR=False) class SmartLinkConditionAPITestCase(BaseAPITestCase): def setUp(self): super(SmartLinkConditionAPITestCase, self).setUp() self.admin_user = get_user_model().objects.create_superuser( username=TEST_ADMIN_USERNAME, email=TEST_ADMIN_EMAIL, password=TEST_ADMIN_PASSWORD ) self.client.login( username=TEST_ADMIN_USERNAME, password=TEST_ADMIN_PASSWORD ) def tearDown(self): if hasattr(self, 'document_type'): self.document_type.delete() super(SmartLinkConditionAPITestCase, self).tearDown() def _create_document_type(self): self.document_type = DocumentType.objects.create( label=TEST_DOCUMENT_TYPE_LABEL ) def _create_document(self): with open(TEST_SMALL_DOCUMENT_PATH) as file_object: self.document = self.document_type.new_document( file_object=file_object ) def _create_smart_link(self): self.smart_link = SmartLink.objects.create( label=TEST_SMART_LINK_LABEL, dynamic_label=TEST_SMART_LINK_DYNAMIC_LABEL ) self.smart_link.document_types.add(self.document_type) def _create_smart_link_condition(self): self.smart_link_condition = SmartLinkCondition.objects.create( smart_link=self.smart_link, foreign_document_data=TEST_SMART_LINK_CONDITION_FOREIGN_DOCUMENT_DATA, expression=TEST_SMART_LINK_CONDITION_EXPRESSION, operator=TEST_SMART_LINK_CONDITION_OPERATOR ) def test_resolved_smart_link_detail_view(self): self._create_document_type() self._create_smart_link() self._create_smart_link_condition() self._create_document() response = self.client.get( reverse( 'rest_api:resolvedsmartlink-detail', args=(self.document.pk, self.smart_link.pk) ) ) self.assertEqual( response.data['label'], TEST_SMART_LINK_LABEL ) def test_resolved_smart_link_list_view(self): self._create_document_type() self._create_smart_link() self._create_smart_link_condition() self._create_document() response = self.client.get( reverse( 'rest_api:resolvedsmartlink-list', args=(self.document.pk,) ) ) self.assertEqual( response.data['results'][0]['label'], TEST_SMART_LINK_LABEL ) def test_resolved_smart_link_document_list_view(self): self._create_document_type() self._create_smart_link() self._create_smart_link_condition() self._create_document() response = self.client.get( reverse( 'rest_api:resolvedsmartlinkdocument-list', args=(self.document.pk, self.smart_link.pk) ) ) self.assertEqual( response.data['results'][0]['label'], self.document.label ) def test_smart_link_condition_create_view(self): self._create_document_type() self._create_smart_link() response = self.client.post( reverse( 'rest_api:smartlinkcondition-list', args=(self.smart_link.pk,) ), { 'foreign_document_data': TEST_SMART_LINK_CONDITION_FOREIGN_DOCUMENT_DATA, 'expression': TEST_SMART_LINK_CONDITION_EXPRESSION, 'operator': TEST_SMART_LINK_CONDITION_OPERATOR } ) smart_link_condition = SmartLinkCondition.objects.first() self.assertEqual(response.data['id'], smart_link_condition.pk) self.assertEqual( response.data['operator'], TEST_SMART_LINK_CONDITION_OPERATOR ) self.assertEqual(SmartLinkCondition.objects.count(), 1) self.assertEqual( smart_link_condition.operator, TEST_SMART_LINK_CONDITION_OPERATOR ) def test_smart_link_condition_delete_view(self): self._create_document_type() self._create_smart_link() self._create_smart_link_condition() self.client.delete( reverse( 'rest_api:smartlinkcondition-detail', args=(self.smart_link.pk, self.smart_link_condition.pk) ) ) self.assertEqual(SmartLinkCondition.objects.count(), 0) def test_smart_link_condition_detail_view(self): self._create_document_type() self._create_smart_link() self._create_smart_link_condition() response = self.client.get( reverse( 'rest_api:smartlinkcondition-detail', args=(self.smart_link.pk, self.smart_link_condition.pk) ) ) self.assertEqual( response.data['operator'], TEST_SMART_LINK_CONDITION_OPERATOR ) def test_smart_link_condition_patch_view(self): self._create_document_type() self._create_smart_link() self._create_smart_link_condition() self.client.patch( reverse( 'rest_api:smartlinkcondition-detail', args=(self.smart_link.pk, self.smart_link_condition.pk) ), data={ 'expression': TEST_SMART_LINK_CONDITION_EXPRESSION_EDITED, } ) self.smart_link_condition.refresh_from_db() self.assertEqual( self.smart_link_condition.expression, TEST_SMART_LINK_CONDITION_EXPRESSION_EDITED ) def test_smart_link_condition_put_view(self): self._create_document_type() self._create_smart_link() self._create_smart_link_condition() self.client.put( reverse( 'rest_api:smartlinkcondition-detail', args=(self.smart_link.pk, self.smart_link_condition.pk) ), data={ 'expression': TEST_SMART_LINK_CONDITION_EXPRESSION_EDITED, 'foreign_document_data': TEST_SMART_LINK_CONDITION_FOREIGN_DOCUMENT_DATA, 'operator': TEST_SMART_LINK_CONDITION_OPERATOR, } ) self.smart_link_condition.refresh_from_db() self.assertEqual( self.smart_link_condition.expression, TEST_SMART_LINK_CONDITION_EXPRESSION_EDITED )
32.611594
89
0.652298
2a4f3d9a784546d79b9452955fdae4420925723c
47,860
py
Python
tests/gclient_scm_test.py
nbaiot/depot_tools
efce0d1b7657c440c90f0f4bce614b96672b9e0b
[ "BSD-3-Clause" ]
1
2021-09-10T06:10:02.000Z
2021-09-10T06:10:02.000Z
tests/gclient_scm_test.py
nbaiot/depot_tools
efce0d1b7657c440c90f0f4bce614b96672b9e0b
[ "BSD-3-Clause" ]
null
null
null
tests/gclient_scm_test.py
nbaiot/depot_tools
efce0d1b7657c440c90f0f4bce614b96672b9e0b
[ "BSD-3-Clause" ]
null
null
null
#!/usr/bin/env vpython3 # Copyright (c) 2012 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. """Unit tests for gclient_scm.py.""" # pylint: disable=E1103 from shutil import rmtree from subprocess import Popen, PIPE, STDOUT import json import logging import os import re import sys import tempfile import unittest if sys.version_info.major == 2: from cStringIO import StringIO else: from io import StringIO sys.path.insert(0, os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) from third_party import mock from testing_support import fake_repos from testing_support import test_case_utils import gclient_scm import git_cache import subprocess2 # Disable global git cache git_cache.Mirror.SetCachePath(None) # Shortcut since this function is used often join = gclient_scm.os.path.join TIMESTAMP_RE = re.compile('\[[0-9]{1,2}:[0-9]{2}:[0-9]{2}\] (.*)', re.DOTALL) def strip_timestamps(value): lines = value.splitlines(True) for i in range(len(lines)): m = TIMESTAMP_RE.match(lines[i]) if m: lines[i] = m.group(1) return ''.join(lines) class BasicTests(unittest.TestCase): @mock.patch('gclient_scm.scm.GIT.Capture') def testGetFirstRemoteUrl(self, mockCapture): REMOTE_STRINGS = [('remote.origin.url E:\\foo\\bar', 'E:\\foo\\bar'), ('remote.origin.url /b/foo/bar', '/b/foo/bar'), ('remote.origin.url https://foo/bar', 'https://foo/bar'), ('remote.origin.url E:\\Fo Bar\\bax', 'E:\\Fo Bar\\bax'), ('remote.origin.url git://what/"do', 'git://what/"do')] FAKE_PATH = '/fake/path' mockCapture.side_effect = [question for question, _ in REMOTE_STRINGS] for _, answer in REMOTE_STRINGS: self.assertEqual( gclient_scm.SCMWrapper._get_first_remote_url(FAKE_PATH), answer) expected_calls = [ mock.call(['config', '--local', '--get-regexp', r'remote.*.url'], cwd=FAKE_PATH) for _ in REMOTE_STRINGS ] self.assertEqual(mockCapture.mock_calls, expected_calls) class BaseGitWrapperTestCase(unittest.TestCase, test_case_utils.TestCaseUtils): """This class doesn't use pymox.""" class OptionsObject(object): def __init__(self, verbose=False, revision=None): self.auto_rebase = False self.verbose = verbose self.revision = revision self.deps_os = None self.force = False self.reset = False self.nohooks = False self.no_history = False self.upstream = False self.cache_dir = None self.merge = False self.jobs = 1 self.break_repo_locks = False self.delete_unversioned_trees = False self.patch_ref = None self.patch_repo = None self.rebase_patch_ref = True self.reset_patch_ref = True sample_git_import = """blob mark :1 data 6 Hello blob mark :2 data 4 Bye reset refs/heads/master commit refs/heads/master mark :3 author Bob <bob@example.com> 1253744361 -0700 committer Bob <bob@example.com> 1253744361 -0700 data 8 A and B M 100644 :1 a M 100644 :2 b blob mark :4 data 10 Hello You blob mark :5 data 8 Bye You commit refs/heads/origin mark :6 author Alice <alice@example.com> 1253744424 -0700 committer Alice <alice@example.com> 1253744424 -0700 data 13 Personalized from :3 M 100644 :4 a M 100644 :5 b blob mark :7 data 5 Mooh commit refs/heads/feature mark :8 author Bob <bob@example.com> 1390311986 -0000 committer Bob <bob@example.com> 1390311986 -0000 data 6 Add C from :3 M 100644 :7 c reset refs/heads/master from :3 """ def Options(self, *args, **kwargs): return self.OptionsObject(*args, **kwargs) def checkstdout(self, expected): value = sys.stdout.getvalue() sys.stdout.close() # pylint: disable=no-member self.assertEqual(expected, strip_timestamps(value)) @staticmethod def CreateGitRepo(git_import, path): """Do it for real.""" try: Popen(['git', 'init', '-q'], stdout=PIPE, stderr=STDOUT, cwd=path).communicate() except OSError: # git is not available, skip this test. return False Popen(['git', 'fast-import', '--quiet'], stdin=PIPE, stdout=PIPE, stderr=STDOUT, cwd=path).communicate(input=git_import.encode()) Popen(['git', 'checkout', '-q'], stdout=PIPE, stderr=STDOUT, cwd=path).communicate() Popen(['git', 'remote', 'add', '-f', 'origin', '.'], stdout=PIPE, stderr=STDOUT, cwd=path).communicate() Popen(['git', 'checkout', '-b', 'new', 'origin/master', '-q'], stdout=PIPE, stderr=STDOUT, cwd=path).communicate() Popen(['git', 'push', 'origin', 'origin/origin:origin/master', '-q'], stdout=PIPE, stderr=STDOUT, cwd=path).communicate() Popen(['git', 'config', '--unset', 'remote.origin.fetch'], stdout=PIPE, stderr=STDOUT, cwd=path).communicate() Popen(['git', 'config', 'user.email', 'someuser@chromium.org'], stdout=PIPE, stderr=STDOUT, cwd=path).communicate() Popen(['git', 'config', 'user.name', 'Some User'], stdout=PIPE, stderr=STDOUT, cwd=path).communicate() return True def _GetAskForDataCallback(self, expected_prompt, return_value): def AskForData(prompt, options): self.assertEqual(prompt, expected_prompt) return return_value return AskForData def setUp(self): unittest.TestCase.setUp(self) test_case_utils.TestCaseUtils.setUp(self) self.url = 'git://foo' # The .git suffix allows gclient_scm to recognize the dir as a git repo # when cloning it locally self.root_dir = tempfile.mkdtemp('.git') self.relpath = '.' self.base_path = join(self.root_dir, self.relpath) self.enabled = self.CreateGitRepo(self.sample_git_import, self.base_path) self._original_GitBinaryExists = gclient_scm.GitWrapper.BinaryExists mock.patch('gclient_scm.GitWrapper.BinaryExists', staticmethod(lambda : True)).start() mock.patch('sys.stdout', StringIO()).start() self.addCleanup(mock.patch.stopall) self.addCleanup(lambda: rmtree(self.root_dir)) class ManagedGitWrapperTestCase(BaseGitWrapperTestCase): def testRevertMissing(self): if not self.enabled: return options = self.Options() file_path = join(self.base_path, 'a') scm = gclient_scm.GitWrapper(self.url, self.root_dir, self.relpath) file_list = [] scm.update(options, None, file_list) gclient_scm.os.remove(file_path) file_list = [] scm.revert(options, self.args, file_list) self.assertEqual(file_list, [file_path]) file_list = [] scm.diff(options, self.args, file_list) self.assertEqual(file_list, []) sys.stdout.close() def testRevertNone(self): if not self.enabled: return options = self.Options() scm = gclient_scm.GitWrapper(self.url, self.root_dir, self.relpath) file_list = [] scm.update(options, None, file_list) file_list = [] scm.revert(options, self.args, file_list) self.assertEqual(file_list, []) self.assertEqual(scm.revinfo(options, self.args, None), 'a7142dc9f0009350b96a11f372b6ea658592aa95') sys.stdout.close() def testRevertModified(self): if not self.enabled: return options = self.Options() scm = gclient_scm.GitWrapper(self.url, self.root_dir, self.relpath) file_list = [] scm.update(options, None, file_list) file_path = join(self.base_path, 'a') with open(file_path, 'a') as f: f.writelines('touched\n') file_list = [] scm.revert(options, self.args, file_list) self.assertEqual(file_list, [file_path]) file_list = [] scm.diff(options, self.args, file_list) self.assertEqual(file_list, []) self.assertEqual(scm.revinfo(options, self.args, None), 'a7142dc9f0009350b96a11f372b6ea658592aa95') sys.stdout.close() def testRevertNew(self): if not self.enabled: return options = self.Options() scm = gclient_scm.GitWrapper(self.url, self.root_dir, self.relpath) file_list = [] scm.update(options, None, file_list) file_path = join(self.base_path, 'c') with open(file_path, 'w') as f: f.writelines('new\n') Popen(['git', 'add', 'c'], stdout=PIPE, stderr=STDOUT, cwd=self.base_path).communicate() file_list = [] scm.revert(options, self.args, file_list) self.assertEqual(file_list, [file_path]) file_list = [] scm.diff(options, self.args, file_list) self.assertEqual(file_list, []) self.assertEqual(scm.revinfo(options, self.args, None), 'a7142dc9f0009350b96a11f372b6ea658592aa95') sys.stdout.close() def testStatusNew(self): if not self.enabled: return options = self.Options() file_path = join(self.base_path, 'a') with open(file_path, 'a') as f: f.writelines('touched\n') scm = gclient_scm.GitWrapper(self.url, self.root_dir, self.relpath) file_list = [] scm.status(options, self.args, file_list) self.assertEqual(file_list, [file_path]) self.checkstdout( ('\n________ running \'git -c core.quotePath=false diff --name-status ' '069c602044c5388d2d15c3f875b057c852003458\' in \'%s\'\n\nM\ta\n') % join(self.root_dir, '.')) def testStatus2New(self): if not self.enabled: return options = self.Options() expected_file_list = [] for f in ['a', 'b']: file_path = join(self.base_path, f) with open(file_path, 'a') as f: f.writelines('touched\n') expected_file_list.extend([file_path]) scm = gclient_scm.GitWrapper(self.url, self.root_dir, self.relpath) file_list = [] scm.status(options, self.args, file_list) expected_file_list = [join(self.base_path, x) for x in ['a', 'b']] self.assertEqual(sorted(file_list), expected_file_list) self.checkstdout( ('\n________ running \'git -c core.quotePath=false diff --name-status ' '069c602044c5388d2d15c3f875b057c852003458\' in \'%s\'\n\nM\ta\nM\tb\n') % join(self.root_dir, '.')) def testUpdateUpdate(self): if not self.enabled: return options = self.Options() expected_file_list = [join(self.base_path, x) for x in ['a', 'b']] scm = gclient_scm.GitWrapper(self.url, self.root_dir, self.relpath) file_list = [] scm.update(options, (), file_list) self.assertEqual(file_list, expected_file_list) self.assertEqual(scm.revinfo(options, (), None), 'a7142dc9f0009350b96a11f372b6ea658592aa95') sys.stdout.close() def testUpdateMerge(self): if not self.enabled: return options = self.Options() options.merge = True scm = gclient_scm.GitWrapper(self.url, self.root_dir, self.relpath) scm._Run(['checkout', '-q', 'feature'], options) rev = scm.revinfo(options, (), None) file_list = [] scm.update(options, (), file_list) self.assertEqual(file_list, [join(self.base_path, x) for x in ['a', 'b', 'c']]) # The actual commit that is created is unstable, so we verify its tree and # parents instead. self.assertEqual(scm._Capture(['rev-parse', 'HEAD:']), 'd2e35c10ac24d6c621e14a1fcadceb533155627d') self.assertEqual(scm._Capture(['rev-parse', 'HEAD^1']), rev) self.assertEqual(scm._Capture(['rev-parse', 'HEAD^2']), scm._Capture(['rev-parse', 'origin/master'])) sys.stdout.close() def testUpdateRebase(self): if not self.enabled: return options = self.Options() scm = gclient_scm.GitWrapper(self.url, self.root_dir, self.relpath) scm._Run(['checkout', '-q', 'feature'], options) file_list = [] # Fake a 'y' key press. scm._AskForData = self._GetAskForDataCallback( 'Cannot fast-forward merge, attempt to rebase? ' '(y)es / (q)uit / (s)kip : ', 'y') scm.update(options, (), file_list) self.assertEqual(file_list, [join(self.base_path, x) for x in ['a', 'b', 'c']]) # The actual commit that is created is unstable, so we verify its tree and # parent instead. self.assertEqual(scm._Capture(['rev-parse', 'HEAD:']), 'd2e35c10ac24d6c621e14a1fcadceb533155627d') self.assertEqual(scm._Capture(['rev-parse', 'HEAD^']), scm._Capture(['rev-parse', 'origin/master'])) sys.stdout.close() def testUpdateReset(self): if not self.enabled: return options = self.Options() options.reset = True dir_path = join(self.base_path, 'c') os.mkdir(dir_path) with open(join(dir_path, 'nested'), 'w') as f: f.writelines('new\n') file_path = join(self.base_path, 'file') with open(file_path, 'w') as f: f.writelines('new\n') scm = gclient_scm.GitWrapper(self.url, self.root_dir, self.relpath) file_list = [] scm.update(options, (), file_list) self.assert_(gclient_scm.os.path.isdir(dir_path)) self.assert_(gclient_scm.os.path.isfile(file_path)) sys.stdout.close() def testUpdateResetUnsetsFetchConfig(self): if not self.enabled: return options = self.Options() options.reset = True scm = gclient_scm.GitWrapper(self.url, self.root_dir, self.relpath) scm._Run(['config', 'remote.origin.fetch', '+refs/heads/bad/ref:refs/remotes/origin/bad/ref'], options) file_list = [] scm.update(options, (), file_list) self.assertEqual(scm.revinfo(options, (), None), '069c602044c5388d2d15c3f875b057c852003458') sys.stdout.close() def testUpdateResetDeleteUnversionedTrees(self): if not self.enabled: return options = self.Options() options.reset = True options.delete_unversioned_trees = True dir_path = join(self.base_path, 'dir') os.mkdir(dir_path) with open(join(dir_path, 'nested'), 'w') as f: f.writelines('new\n') file_path = join(self.base_path, 'file') with open(file_path, 'w') as f: f.writelines('new\n') scm = gclient_scm.GitWrapper(self.url, self.root_dir, self.relpath) file_list = [] scm.update(options, (), file_list) self.assert_(not gclient_scm.os.path.isdir(dir_path)) self.assert_(gclient_scm.os.path.isfile(file_path)) sys.stdout.close() def testUpdateUnstagedConflict(self): if not self.enabled: return options = self.Options() scm = gclient_scm.GitWrapper(self.url, self.root_dir, self.relpath) file_path = join(self.base_path, 'b') with open(file_path, 'w') as f: f.writelines('conflict\n') try: scm.update(options, (), []) self.fail() except (gclient_scm.gclient_utils.Error, subprocess2.CalledProcessError): # The exact exception text varies across git versions so it's not worth # verifying it. It's fine as long as it throws. pass # Manually flush stdout since we can't verify it's content accurately across # git versions. sys.stdout.getvalue() sys.stdout.close() @unittest.skip('Skipping until crbug.com/670884 is resolved.') def testUpdateLocked(self): if not self.enabled: return options = self.Options() scm = gclient_scm.GitWrapper(self.url, self.root_dir, self.relpath) file_path = join(self.base_path, '.git', 'index.lock') with open(file_path, 'w'): pass with self.assertRaises(subprocess2.CalledProcessError): scm.update(options, (), []) sys.stdout.close() def testUpdateLockedBreak(self): if not self.enabled: return options = self.Options() options.break_repo_locks = True scm = gclient_scm.GitWrapper(self.url, self.root_dir, self.relpath) file_path = join(self.base_path, '.git', 'index.lock') with open(file_path, 'w'): pass scm.update(options, (), []) self.assertRegexpMatches(sys.stdout.getvalue(), "breaking lock.*\.git/index\.lock") self.assertFalse(os.path.exists(file_path)) sys.stdout.close() def testUpdateConflict(self): if not self.enabled: return options = self.Options() scm = gclient_scm.GitWrapper(self.url, self.root_dir, self.relpath) file_path = join(self.base_path, 'b') with open(file_path, 'w') as f: f.writelines('conflict\n') scm._Run(['commit', '-am', 'test'], options) scm._AskForData = self._GetAskForDataCallback( 'Cannot fast-forward merge, attempt to rebase? ' '(y)es / (q)uit / (s)kip : ', 'y') with self.assertRaises(gclient_scm.gclient_utils.Error) as e: scm.update(options, (), []) self.assertEqual( e.exception.args[0], 'Conflict while rebasing this branch.\n' 'Fix the conflict and run gclient again.\n' 'See \'man git-rebase\' for details.\n') with self.assertRaises(gclient_scm.gclient_utils.Error) as e: scm.update(options, (), []) self.assertEqual( e.exception.args[0], '\n____ . at refs/remotes/origin/master\n' '\tYou have unstaged changes.\n' '\tPlease commit, stash, or reset.\n') sys.stdout.close() def testRevinfo(self): if not self.enabled: return options = self.Options() scm = gclient_scm.GitWrapper(self.url, self.root_dir, self.relpath) rev_info = scm.revinfo(options, (), None) self.assertEqual(rev_info, '069c602044c5388d2d15c3f875b057c852003458') def testMirrorPushUrl(self): if not self.enabled: return fakes = fake_repos.FakeRepos() fakes.set_up_git() self.url = fakes.git_base + 'repo_1' self.root_dir = fakes.root_dir self.addCleanup(fake_repos.FakeRepos.tear_down_git, fakes) mirror = tempfile.mkdtemp() self.addCleanup(rmtree, mirror) # This should never happen, but if it does, it'd render the other assertions # in this test meaningless. self.assertFalse(self.url.startswith(mirror)) git_cache.Mirror.SetCachePath(mirror) self.addCleanup(git_cache.Mirror.SetCachePath, None) options = self.Options() scm = gclient_scm.GitWrapper(self.url, self.root_dir, self.relpath) self.assertIsNotNone(scm._GetMirror(self.url, options)) scm.update(options, (), []) fetch_url = scm._Capture(['remote', 'get-url', 'origin']) self.assertTrue( fetch_url.startswith(mirror), msg='\n'.join([ 'Repository fetch url should be in the git cache mirror directory.', ' fetch_url: %s' % fetch_url, ' mirror: %s' % mirror])) push_url = scm._Capture(['remote', 'get-url', '--push', 'origin']) self.assertEqual(push_url, self.url) sys.stdout.close() class ManagedGitWrapperTestCaseMock(unittest.TestCase): class OptionsObject(object): def __init__(self, verbose=False, revision=None, force=False): self.verbose = verbose self.revision = revision self.deps_os = None self.force = force self.reset = False self.nohooks = False self.break_repo_locks = False # TODO(maruel): Test --jobs > 1. self.jobs = 1 self.patch_ref = None self.patch_repo = None self.rebase_patch_ref = True def Options(self, *args, **kwargs): return self.OptionsObject(*args, **kwargs) def checkstdout(self, expected): value = sys.stdout.getvalue() sys.stdout.close() # pylint: disable=no-member self.assertEqual(expected, strip_timestamps(value)) def setUp(self): self.fake_hash_1 = 't0ta11yf4k3' self.fake_hash_2 = '3v3nf4k3r' self.url = 'git://foo' self.root_dir = '/tmp' if sys.platform != 'win32' else 't:\\tmp' self.relpath = 'fake' self.base_path = os.path.join(self.root_dir, self.relpath) self.backup_base_path = os.path.join(self.root_dir, 'old_%s.git' % self.relpath) mock.patch('gclient_scm.scm.GIT.ApplyEnvVars').start() mock.patch('gclient_scm.GitWrapper._CheckMinVersion').start() mock.patch('gclient_scm.GitWrapper._Fetch').start() mock.patch('gclient_scm.GitWrapper._DeleteOrMove').start() mock.patch('sys.stdout', StringIO()).start() self.addCleanup(mock.patch.stopall) @mock.patch('scm.GIT.IsValidRevision') @mock.patch('os.path.isdir', lambda _: True) def testGetUsableRevGit(self, mockIsValidRevision): # pylint: disable=no-member options = self.Options(verbose=True) mockIsValidRevision.side_effect = lambda cwd, rev: rev != '1' git_scm = gclient_scm.GitWrapper(self.url, self.root_dir, self.relpath) # A [fake] git sha1 with a git repo should work (this is in the case that # the LKGR gets flipped to git sha1's some day). self.assertEqual(git_scm.GetUsableRev(self.fake_hash_1, options), self.fake_hash_1) # An SVN rev with an existing purely git repo should raise an exception. self.assertRaises(gclient_scm.gclient_utils.Error, git_scm.GetUsableRev, '1', options) @mock.patch('gclient_scm.GitWrapper._Clone') @mock.patch('os.path.isdir') @mock.patch('os.path.exists') @mock.patch('subprocess2.check_output') def testUpdateNoDotGit( self, mockCheckOutput, mockExists, mockIsdir, mockClone): mockIsdir.side_effect = lambda path: path == self.base_path mockExists.side_effect = lambda path: path == self.base_path mockCheckOutput.return_value = b'' options = self.Options() scm = gclient_scm.GitWrapper( self.url, self.root_dir, self.relpath) scm.update(options, None, []) env = gclient_scm.scm.GIT.ApplyEnvVars({}) self.assertEqual( mockCheckOutput.mock_calls, [ mock.call( ['git', '-c', 'core.quotePath=false', 'ls-files'], cwd=self.base_path, env=env, stderr=-1), mock.call( ['git', 'rev-parse', '--verify', 'HEAD'], cwd=self.base_path, env=env, stderr=-1), ]) mockClone.assert_called_with( 'refs/remotes/origin/master', self.url, options) self.checkstdout('\n') @mock.patch('gclient_scm.GitWrapper._Clone') @mock.patch('os.path.isdir') @mock.patch('os.path.exists') @mock.patch('subprocess2.check_output') def testUpdateConflict( self, mockCheckOutput, mockExists, mockIsdir, mockClone): mockIsdir.side_effect = lambda path: path == self.base_path mockExists.side_effect = lambda path: path == self.base_path mockCheckOutput.return_value = b'' mockClone.side_effect = [ gclient_scm.subprocess2.CalledProcessError( None, None, None, None, None), None, ] options = self.Options() scm = gclient_scm.GitWrapper(self.url, self.root_dir, self.relpath) scm.update(options, None, []) env = gclient_scm.scm.GIT.ApplyEnvVars({}) self.assertEqual( mockCheckOutput.mock_calls, [ mock.call( ['git', '-c', 'core.quotePath=false', 'ls-files'], cwd=self.base_path, env=env, stderr=-1), mock.call( ['git', 'rev-parse', '--verify', 'HEAD'], cwd=self.base_path, env=env, stderr=-1), ]) mockClone.assert_called_with( 'refs/remotes/origin/master', self.url, options) self.checkstdout('\n') class UnmanagedGitWrapperTestCase(BaseGitWrapperTestCase): def checkInStdout(self, expected): value = sys.stdout.getvalue() sys.stdout.close() # pylint: disable=no-member self.assertIn(expected, value) def checkNotInStdout(self, expected): value = sys.stdout.getvalue() sys.stdout.close() # pylint: disable=no-member self.assertNotIn(expected, value) def getCurrentBranch(self): # Returns name of current branch or HEAD for detached HEAD branch = gclient_scm.scm.GIT.Capture(['rev-parse', '--abbrev-ref', 'HEAD'], cwd=self.base_path) if branch == 'HEAD': return None return branch def testUpdateClone(self): if not self.enabled: return options = self.Options() origin_root_dir = self.root_dir self.root_dir = tempfile.mkdtemp() self.relpath = '.' self.base_path = join(self.root_dir, self.relpath) scm = gclient_scm.GitWrapper(origin_root_dir, self.root_dir, self.relpath) expected_file_list = [join(self.base_path, "a"), join(self.base_path, "b")] file_list = [] options.revision = 'unmanaged' scm.update(options, (), file_list) self.assertEqual(file_list, expected_file_list) self.assertEqual(scm.revinfo(options, (), None), '069c602044c5388d2d15c3f875b057c852003458') # indicates detached HEAD self.assertEqual(self.getCurrentBranch(), None) self.checkInStdout( 'Checked out refs/remotes/origin/master to a detached HEAD') rmtree(origin_root_dir) def testUpdateCloneOnCommit(self): if not self.enabled: return options = self.Options() origin_root_dir = self.root_dir self.root_dir = tempfile.mkdtemp() self.relpath = '.' self.base_path = join(self.root_dir, self.relpath) url_with_commit_ref = origin_root_dir +\ '@a7142dc9f0009350b96a11f372b6ea658592aa95' scm = gclient_scm.GitWrapper(url_with_commit_ref, self.root_dir, self.relpath) expected_file_list = [join(self.base_path, "a"), join(self.base_path, "b")] file_list = [] options.revision = 'unmanaged' scm.update(options, (), file_list) self.assertEqual(file_list, expected_file_list) self.assertEqual(scm.revinfo(options, (), None), 'a7142dc9f0009350b96a11f372b6ea658592aa95') # indicates detached HEAD self.assertEqual(self.getCurrentBranch(), None) self.checkInStdout( 'Checked out a7142dc9f0009350b96a11f372b6ea658592aa95 to a detached HEAD') rmtree(origin_root_dir) def testUpdateCloneOnBranch(self): if not self.enabled: return options = self.Options() origin_root_dir = self.root_dir self.root_dir = tempfile.mkdtemp() self.relpath = '.' self.base_path = join(self.root_dir, self.relpath) url_with_branch_ref = origin_root_dir + '@feature' scm = gclient_scm.GitWrapper(url_with_branch_ref, self.root_dir, self.relpath) expected_file_list = [join(self.base_path, "a"), join(self.base_path, "b"), join(self.base_path, "c")] file_list = [] options.revision = 'unmanaged' scm.update(options, (), file_list) self.assertEqual(file_list, expected_file_list) self.assertEqual(scm.revinfo(options, (), None), '9a51244740b25fa2ded5252ca00a3178d3f665a9') # indicates detached HEAD self.assertEqual(self.getCurrentBranch(), None) self.checkInStdout( 'Checked out 9a51244740b25fa2ded5252ca00a3178d3f665a9 ' 'to a detached HEAD') rmtree(origin_root_dir) def testUpdateCloneOnFetchedRemoteBranch(self): if not self.enabled: return options = self.Options() origin_root_dir = self.root_dir self.root_dir = tempfile.mkdtemp() self.relpath = '.' self.base_path = join(self.root_dir, self.relpath) url_with_branch_ref = origin_root_dir + '@refs/remotes/origin/feature' scm = gclient_scm.GitWrapper(url_with_branch_ref, self.root_dir, self.relpath) expected_file_list = [join(self.base_path, "a"), join(self.base_path, "b"), join(self.base_path, "c")] file_list = [] options.revision = 'unmanaged' scm.update(options, (), file_list) self.assertEqual(file_list, expected_file_list) self.assertEqual(scm.revinfo(options, (), None), '9a51244740b25fa2ded5252ca00a3178d3f665a9') # indicates detached HEAD self.assertEqual(self.getCurrentBranch(), None) self.checkInStdout( 'Checked out refs/remotes/origin/feature to a detached HEAD') rmtree(origin_root_dir) def testUpdateCloneOnTrueRemoteBranch(self): if not self.enabled: return options = self.Options() origin_root_dir = self.root_dir self.root_dir = tempfile.mkdtemp() self.relpath = '.' self.base_path = join(self.root_dir, self.relpath) url_with_branch_ref = origin_root_dir + '@refs/heads/feature' scm = gclient_scm.GitWrapper(url_with_branch_ref, self.root_dir, self.relpath) expected_file_list = [join(self.base_path, "a"), join(self.base_path, "b"), join(self.base_path, "c")] file_list = [] options.revision = 'unmanaged' scm.update(options, (), file_list) self.assertEqual(file_list, expected_file_list) self.assertEqual(scm.revinfo(options, (), None), '9a51244740b25fa2ded5252ca00a3178d3f665a9') # @refs/heads/feature is AKA @refs/remotes/origin/feature in the clone, so # should be treated as such by gclient. # TODO(mmoss): Though really, we should only allow DEPS to specify branches # as they are known in the upstream repo, since the mapping into the local # repo can be modified by users (or we might even want to change the gclient # defaults at some point). But that will take more work to stop using # refs/remotes/ everywhere that we do (and to stop assuming a DEPS ref will # always resolve locally, like when passing them to show-ref or rev-list). self.assertEqual(self.getCurrentBranch(), None) self.checkInStdout( 'Checked out refs/remotes/origin/feature to a detached HEAD') rmtree(origin_root_dir) def testUpdateUpdate(self): if not self.enabled: return options = self.Options() expected_file_list = [] scm = gclient_scm.GitWrapper(self.url, self.root_dir, self.relpath) file_list = [] options.revision = 'unmanaged' scm.update(options, (), file_list) self.assertEqual(file_list, expected_file_list) self.assertEqual(scm.revinfo(options, (), None), '069c602044c5388d2d15c3f875b057c852003458') self.checkstdout('________ unmanaged solution; skipping .\n') class CipdWrapperTestCase(unittest.TestCase): def setUp(self): # Create this before setting up mocks. self._cipd_root_dir = tempfile.mkdtemp() self._workdir = tempfile.mkdtemp() self._cipd_instance_url = 'https://chrome-infra-packages.appspot.com' self._cipd_root = gclient_scm.CipdRoot( self._cipd_root_dir, self._cipd_instance_url) self._cipd_packages = [ self._cipd_root.add_package('f', 'foo_package', 'foo_version'), self._cipd_root.add_package('b', 'bar_package', 'bar_version'), self._cipd_root.add_package('b', 'baz_package', 'baz_version'), ] mock.patch('tempfile.mkdtemp', lambda: self._workdir).start() mock.patch('gclient_scm.CipdRoot.add_package').start() mock.patch('gclient_scm.CipdRoot.clobber').start() mock.patch('gclient_scm.CipdRoot.ensure').start() self.addCleanup(mock.patch.stopall) def tearDown(self): rmtree(self._cipd_root_dir) rmtree(self._workdir) def createScmWithPackageThatSatisfies(self, condition): return gclient_scm.CipdWrapper( url=self._cipd_instance_url, root_dir=self._cipd_root_dir, relpath='fake_relpath', root=self._cipd_root, package=self.getPackageThatSatisfies(condition)) def getPackageThatSatisfies(self, condition): for p in self._cipd_packages: if condition(p): return p self.fail('Unable to find a satisfactory package.') def testRevert(self): """Checks that revert does nothing.""" scm = self.createScmWithPackageThatSatisfies(lambda _: True) scm.revert(None, (), []) @mock.patch('gclient_scm.gclient_utils.CheckCallAndFilter') @mock.patch('gclient_scm.gclient_utils.rmtree') def testRevinfo(self, mockRmtree, mockCheckCallAndFilter): """Checks that revinfo uses the JSON from cipd describe.""" scm = self.createScmWithPackageThatSatisfies(lambda _: True) expected_revinfo = '0123456789abcdef0123456789abcdef01234567' json_contents = { 'result': { 'pin': { 'instance_id': expected_revinfo, } } } describe_json_path = join(self._workdir, 'describe.json') with open(describe_json_path, 'w') as describe_json: json.dump(json_contents, describe_json) revinfo = scm.revinfo(None, (), []) self.assertEqual(revinfo, expected_revinfo) mockRmtree.assert_called_with(self._workdir) mockCheckCallAndFilter.assert_called_with([ 'cipd', 'describe', 'foo_package', '-log-level', 'error', '-version', 'foo_version', '-json-output', describe_json_path, ]) def testUpdate(self): """Checks that update does nothing.""" scm = self.createScmWithPackageThatSatisfies(lambda _: True) scm.update(None, (), []) class GerritChangesFakeRepo(fake_repos.FakeReposBase): def populateGit(self): # Creates a tree that looks like this: # # 6 refs/changes/35/1235/1 # | # 5 refs/changes/34/1234/1 # | # 1--2--3--4 refs/heads/master # | | # | 11(5)--12 refs/heads/master-with-5 # | # 7--8--9 refs/heads/feature # | # 10 refs/changes/36/1236/1 # self._commit_git('repo_1', {'commit 1': 'touched'}) self._commit_git('repo_1', {'commit 2': 'touched'}) self._commit_git('repo_1', {'commit 3': 'touched'}) self._commit_git('repo_1', {'commit 4': 'touched'}) self._create_ref('repo_1', 'refs/heads/master', 4) # Create a change on top of commit 3 that consists of two commits. self._commit_git('repo_1', {'commit 5': 'touched', 'change': '1234'}, base=3) self._create_ref('repo_1', 'refs/changes/34/1234/1', 5) self._commit_git('repo_1', {'commit 6': 'touched', 'change': '1235'}) self._create_ref('repo_1', 'refs/changes/35/1235/1', 6) # Create a refs/heads/feature branch on top of commit 2, consisting of three # commits. self._commit_git('repo_1', {'commit 7': 'touched'}, base=2) self._commit_git('repo_1', {'commit 8': 'touched'}) self._commit_git('repo_1', {'commit 9': 'touched'}) self._create_ref('repo_1', 'refs/heads/feature', 9) # Create a change of top of commit 8. self._commit_git('repo_1', {'commit 10': 'touched', 'change': '1236'}, base=8) self._create_ref('repo_1', 'refs/changes/36/1236/1', 10) # Create a refs/heads/master-with-5 on top of commit 3 which is a branch # where refs/changes/34/1234/1 (commit 5) has already landed as commit 11. self._commit_git('repo_1', # This is really commit 11, but has the changes of commit 5 {'commit 5': 'touched', 'change': '1234'}, base=3) self._commit_git('repo_1', {'commit 12': 'touched'}) self._create_ref('repo_1', 'refs/heads/master-with-5', 12) class GerritChangesTest(fake_repos.FakeReposTestBase): FAKE_REPOS_CLASS = GerritChangesFakeRepo def setUp(self): super(GerritChangesTest, self).setUp() self.enabled = self.FAKE_REPOS.set_up_git() self.options = BaseGitWrapperTestCase.OptionsObject() self.url = self.git_base + 'repo_1' self.mirror = None def setUpMirror(self): self.mirror = tempfile.mkdtemp() git_cache.Mirror.SetCachePath(self.mirror) self.addCleanup(rmtree, self.mirror) self.addCleanup(git_cache.Mirror.SetCachePath, None) def assertCommits(self, commits): """Check that all, and only |commits| are present in the current checkout. """ for i in commits: name = os.path.join(self.root_dir, 'commit ' + str(i)) self.assertTrue(os.path.exists(name), 'Commit not found: %s' % name) all_commits = set(range(1, len(self.FAKE_REPOS.git_hashes['repo_1']))) for i in all_commits - set(commits): name = os.path.join(self.root_dir, 'commit ' + str(i)) self.assertFalse(os.path.exists(name), 'Unexpected commit: %s' % name) def testCanCloneGerritChange(self): scm = gclient_scm.GitWrapper(self.url, self.root_dir, '.') file_list = [] self.options.revision = 'refs/changes/35/1235/1' scm.update(self.options, None, file_list) self.assertEqual(self.githash('repo_1', 6), self.gitrevparse(self.root_dir)) def testCanSyncToGerritChange(self): scm = gclient_scm.GitWrapper(self.url, self.root_dir, '.') file_list = [] self.options.revision = self.githash('repo_1', 1) scm.update(self.options, None, file_list) self.assertEqual(self.githash('repo_1', 1), self.gitrevparse(self.root_dir)) self.options.revision = 'refs/changes/35/1235/1' scm.update(self.options, None, file_list) self.assertEqual(self.githash('repo_1', 6), self.gitrevparse(self.root_dir)) def testCanCloneGerritChangeMirror(self): self.setUpMirror() self.testCanCloneGerritChange() def testCanSyncToGerritChangeMirror(self): self.setUpMirror() self.testCanSyncToGerritChange() def testAppliesPatchOnTopOfMasterByDefault(self): """Test the default case, where we apply a patch on top of master.""" scm = gclient_scm.GitWrapper(self.url, self.root_dir, '.') file_list = [] # Make sure we don't specify a revision. self.options.revision = None scm.update(self.options, None, file_list) self.assertEqual(self.githash('repo_1', 4), self.gitrevparse(self.root_dir)) scm.apply_patch_ref( self.url, 'refs/changes/35/1235/1', 'refs/heads/master', self.options, file_list) self.assertCommits([1, 2, 3, 4, 5, 6]) self.assertEqual(self.githash('repo_1', 4), self.gitrevparse(self.root_dir)) def testCheckoutOlderThanPatchBase(self): """Test applying a patch on an old checkout. We first checkout commit 1, and try to patch refs/changes/35/1235/1, which contains commits 5 and 6, and is based on top of commit 3. The final result should contain commits 1, 5 and 6, but not commits 2 or 3. """ scm = gclient_scm.GitWrapper(self.url, self.root_dir, '.') file_list = [] # Sync to commit 1 self.options.revision = self.githash('repo_1', 1) scm.update(self.options, None, file_list) self.assertEqual(self.githash('repo_1', 1), self.gitrevparse(self.root_dir)) # Apply the change on top of that. scm.apply_patch_ref( self.url, 'refs/changes/35/1235/1', 'refs/heads/master', self.options, file_list) self.assertCommits([1, 5, 6]) self.assertEqual(self.githash('repo_1', 1), self.gitrevparse(self.root_dir)) def testCheckoutOriginFeature(self): """Tests that we can apply a patch on a branch other than master.""" scm = gclient_scm.GitWrapper(self.url, self.root_dir, '.') file_list = [] # Sync to remote's refs/heads/feature self.options.revision = 'refs/heads/feature' scm.update(self.options, None, file_list) self.assertEqual(self.githash('repo_1', 9), self.gitrevparse(self.root_dir)) # Apply the change on top of that. scm.apply_patch_ref( self.url, 'refs/changes/36/1236/1', 'refs/heads/feature', self.options, file_list) self.assertCommits([1, 2, 7, 8, 9, 10]) self.assertEqual(self.githash('repo_1', 9), self.gitrevparse(self.root_dir)) def testCheckoutOriginFeatureOnOldRevision(self): """Tests that we can apply a patch on an old checkout, on a branch other than master.""" scm = gclient_scm.GitWrapper(self.url, self.root_dir, '.') file_list = [] # Sync to remote's refs/heads/feature on an old revision self.options.revision = self.githash('repo_1', 7) scm.update(self.options, None, file_list) self.assertEqual(self.githash('repo_1', 7), self.gitrevparse(self.root_dir)) # Apply the change on top of that. scm.apply_patch_ref( self.url, 'refs/changes/36/1236/1', 'refs/heads/feature', self.options, file_list) # We shouldn't have rebased on top of 2 (which is the merge base between # remote's master branch and the change) but on top of 7 (which is the # merge base between remote's feature branch and the change). self.assertCommits([1, 2, 7, 10]) self.assertEqual(self.githash('repo_1', 7), self.gitrevparse(self.root_dir)) def testCheckoutOriginFeaturePatchBranch(self): scm = gclient_scm.GitWrapper(self.url, self.root_dir, '.') file_list = [] # Sync to the hash instead of remote's refs/heads/feature. self.options.revision = self.githash('repo_1', 9) scm.update(self.options, None, file_list) self.assertEqual(self.githash('repo_1', 9), self.gitrevparse(self.root_dir)) # Apply refs/changes/34/1234/1, created for remote's master branch on top of # remote's feature branch. scm.apply_patch_ref( self.url, 'refs/changes/35/1235/1', 'refs/heads/master', self.options, file_list) # Commits 5 and 6 are part of the patch, and commits 1, 2, 7, 8 and 9 are # part of remote's feature branch. self.assertCommits([1, 2, 5, 6, 7, 8, 9]) self.assertEqual(self.githash('repo_1', 9), self.gitrevparse(self.root_dir)) def testDoesntRebasePatchMaster(self): """Tests that we can apply a patch without rebasing it. """ scm = gclient_scm.GitWrapper(self.url, self.root_dir, '.') file_list = [] self.options.rebase_patch_ref = False scm.update(self.options, None, file_list) self.assertEqual(self.githash('repo_1', 4), self.gitrevparse(self.root_dir)) # Apply the change on top of that. scm.apply_patch_ref( self.url, 'refs/changes/35/1235/1', 'refs/heads/master', self.options, file_list) self.assertCommits([1, 2, 3, 5, 6]) self.assertEqual(self.githash('repo_1', 4), self.gitrevparse(self.root_dir)) def testDoesntRebasePatchOldCheckout(self): """Tests that we can apply a patch without rebasing it on an old checkout. """ scm = gclient_scm.GitWrapper(self.url, self.root_dir, '.') file_list = [] # Sync to commit 1 self.options.revision = self.githash('repo_1', 1) self.options.rebase_patch_ref = False scm.update(self.options, None, file_list) self.assertEqual(self.githash('repo_1', 1), self.gitrevparse(self.root_dir)) # Apply the change on top of that. scm.apply_patch_ref( self.url, 'refs/changes/35/1235/1', 'refs/heads/master', self.options, file_list) self.assertCommits([1, 2, 3, 5, 6]) self.assertEqual(self.githash('repo_1', 1), self.gitrevparse(self.root_dir)) def testDoesntSoftResetIfNotAskedTo(self): """Test that we can apply a patch without doing a soft reset.""" scm = gclient_scm.GitWrapper(self.url, self.root_dir, '.') file_list = [] self.options.reset_patch_ref = False scm.update(self.options, None, file_list) self.assertEqual(self.githash('repo_1', 4), self.gitrevparse(self.root_dir)) scm.apply_patch_ref( self.url, 'refs/changes/35/1235/1', 'refs/heads/master', self.options, file_list) self.assertCommits([1, 2, 3, 4, 5, 6]) # The commit hash after cherry-picking is not known, but it must be # different from what the repo was synced at before patching. self.assertNotEqual(self.githash('repo_1', 4), self.gitrevparse(self.root_dir)) def testRecoversAfterPatchFailure(self): scm = gclient_scm.GitWrapper(self.url, self.root_dir, '.') file_list = [] self.options.revision = 'refs/changes/34/1234/1' scm.update(self.options, None, file_list) self.assertEqual(self.githash('repo_1', 5), self.gitrevparse(self.root_dir)) # Checkout 'refs/changes/34/1234/1' modifies the 'change' file, so trying to # patch 'refs/changes/36/1236/1' creates a patch failure. with self.assertRaises(subprocess2.CalledProcessError) as cm: scm.apply_patch_ref( self.url, 'refs/changes/36/1236/1', 'refs/heads/master', self.options, file_list) self.assertEqual(cm.exception.cmd[:2], ['git', 'cherry-pick']) self.assertIn(b'error: could not apply', cm.exception.stderr) # Try to apply 'refs/changes/35/1235/1', which doesn't have a merge # conflict. scm.apply_patch_ref( self.url, 'refs/changes/35/1235/1', 'refs/heads/master', self.options, file_list) self.assertCommits([1, 2, 3, 5, 6]) self.assertEqual(self.githash('repo_1', 5), self.gitrevparse(self.root_dir)) def testIgnoresAlreadyMergedCommits(self): scm = gclient_scm.GitWrapper(self.url, self.root_dir, '.') file_list = [] self.options.revision = 'refs/heads/master-with-5' scm.update(self.options, None, file_list) self.assertEqual(self.githash('repo_1', 12), self.gitrevparse(self.root_dir)) # When we try 'refs/changes/35/1235/1' on top of 'refs/heads/feature', # 'refs/changes/34/1234/1' will be an empty commit, since the changes were # already present in the tree as commit 11. # Make sure we deal with this gracefully. scm.apply_patch_ref( self.url, 'refs/changes/35/1235/1', 'refs/heads/feature', self.options, file_list) self.assertCommits([1, 2, 3, 5, 6, 12]) self.assertEqual(self.githash('repo_1', 12), self.gitrevparse(self.root_dir)) def testRecoversFromExistingCherryPick(self): scm = gclient_scm.GitWrapper(self.url, self.root_dir, '.') file_list = [] self.options.revision = 'refs/changes/34/1234/1' scm.update(self.options, None, file_list) self.assertEqual(self.githash('repo_1', 5), self.gitrevparse(self.root_dir)) # Checkout 'refs/changes/34/1234/1' modifies the 'change' file, so trying to # cherry-pick 'refs/changes/36/1236/1' raises an error. scm._Run(['fetch', 'origin', 'refs/changes/36/1236/1'], self.options) with self.assertRaises(subprocess2.CalledProcessError) as cm: scm._Run(['cherry-pick', 'FETCH_HEAD'], self.options) self.assertEqual(cm.exception.cmd[:2], ['git', 'cherry-pick']) # Try to apply 'refs/changes/35/1235/1', which doesn't have a merge # conflict. scm.apply_patch_ref( self.url, 'refs/changes/35/1235/1', 'refs/heads/master', self.options, file_list) self.assertCommits([1, 2, 3, 5, 6]) self.assertEqual(self.githash('repo_1', 5), self.gitrevparse(self.root_dir)) if __name__ == '__main__': level = logging.DEBUG if '-v' in sys.argv else logging.FATAL logging.basicConfig( level=level, format='%(asctime).19s %(levelname)s %(filename)s:' '%(lineno)s %(message)s') unittest.main() # vim: ts=2:sw=2:tw=80:et:
35.610119
80
0.647367
6df241ee328db0bb0b89d2023ec69c8f60af9c79
1,480
py
Python
tacker/db/migration/alembic_migrations/versions/f5c1c3b0f6b4_set_default_value_for_deleted_at.py
takahashi-tsc/tacker
a0ae01a13dcc51bb374060adcbb4fd484ab37156
[ "Apache-2.0" ]
116
2015-10-18T02:57:08.000Z
2022-03-15T04:09:18.000Z
tacker/db/migration/alembic_migrations/versions/f5c1c3b0f6b4_set_default_value_for_deleted_at.py
takahashi-tsc/tacker
a0ae01a13dcc51bb374060adcbb4fd484ab37156
[ "Apache-2.0" ]
6
2016-11-07T22:15:54.000Z
2021-05-09T06:13:08.000Z
tacker/db/migration/alembic_migrations/versions/f5c1c3b0f6b4_set_default_value_for_deleted_at.py
takahashi-tsc/tacker
a0ae01a13dcc51bb374060adcbb4fd484ab37156
[ "Apache-2.0" ]
166
2015-10-20T15:31:52.000Z
2021-11-12T08:39:49.000Z
# Copyright 2017 OpenStack Foundation # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. # """set default value for deleted_at Revision ID: f5c1c3b0f6b4 Revises: 31acbaeb8299 Create Date: 2017-06-23 03:03:12.200270 """ # flake8: noqa: E402 # revision identifiers, used by Alembic. revision = 'f5c1c3b0f6b4' down_revision = '31acbaeb8299' from alembic import op from datetime import datetime def upgrade(active_plugins=None, options=None): op.execute(("UPDATE vnfd set deleted_at='%s'" " WHERE deleted_at is NULL") % datetime.min) op.execute(("UPDATE vnf set deleted_at='%s'" " WHERE deleted_at is NULL") % datetime.min) op.execute(("UPDATE vims set deleted_at='%s'" " WHERE deleted_at is NULL") % datetime.min) op.execute(("UPDATE ns set deleted_at='%s'" " WHERE deleted_at is NULL") % datetime.min) op.execute(("UPDATE nsd set deleted_at='%s'" " WHERE deleted_at is NULL") % datetime.min)
30.204082
78
0.70473
2ddb8fd7fcb206b0c97ffbe520801eb6898a69e3
3,401
py
Python
lib/fontv/settings.py
source-foundry/font-v
590c9f540cf73ffccc2a1907b186d16b296729e5
[ "MIT" ]
14
2017-09-15T23:29:03.000Z
2021-12-06T12:48:39.000Z
lib/fontv/settings.py
source-foundry/font-v
590c9f540cf73ffccc2a1907b186d16b296729e5
[ "MIT" ]
135
2017-09-05T13:33:29.000Z
2022-03-28T08:03:02.000Z
lib/fontv/settings.py
source-foundry/font-v
590c9f540cf73ffccc2a1907b186d16b296729e5
[ "MIT" ]
6
2018-10-23T14:49:17.000Z
2021-12-01T22:47:37.000Z
#!/usr/bin/env python # -*- coding: utf-8 -*- # ------------------------------------------------------------------------------ # Library Name # ------------------------------------------------------------------------------ lib_name = "font-v" # ------------------------------------------------------------------------------ # Version Number # ------------------------------------------------------------------------------ major_version = "1" minor_version = "0" patch_version = "5" # ------------------------------------------------------------------------------ # Help String # ------------------------------------------------------------------------------ HELP = """==================================================== font-v Copyright 2018 Christopher Simpkins MIT License Source: https://github.com/source-foundry/font-v ==================================================== font-v is a font version string reporting and modification tool for ttf and otf fonts. It is built with the libfv library and supports the OpenFV semantic font versioning specification. USAGE: Include a subcommand and desired options in your command line request: font-v [subcommand] (options) [font file path 1] ([font file path ...]) Subcommands and options: report - report OpenType name table ID 5 and head table fontRevision records --dev - include all name table ID 5 x platformID records in report write - write version number to head table fontRevision records and version string to name table ID 5 records. The following options can be used to modify the version string write: head fontRevision + name ID 5 option: --ver=[version #] - change version number to `version #` definition name ID 5 options: --dev - add development status metadata (mutually exclusive with --rel) --rel - add release status metadata (mutually exclusive with --dev) --sha1 - add git commit sha1 short hash state metadata NOTES: The write subcommand --dev and --rel flags are mutually exclusive. Include up to one of these options. For platforms that treat the period as a special shell character, an underscore or dash glyph can be used in place of a period to define the version number on the command line with the `--ver=[version #]` option. This means that 2.001 can be defined with any of the following: $ font-v write --ver=2.001 $ font-v write --ver=2_001 $ font-v write --ver=2-001 You can include version number, status, and state options in the same request to make all of these modifications simultaneously. The write subcommand modifies all nameID 5 records identified in the OpenType name table of the font (i.e. across all platformID). font-v and the underlying libfv library follow the OpenFV semantic font versioning specification. This specification can be viewed at https://github.com/openfv/openfv. """ # ------------------------------------------------------------------------------ # Version String # ------------------------------------------------------------------------------ VERSION = "font-v v" + major_version + "." + minor_version + "." + patch_version # ------------------------------------------------------------------------------ # Usage String # ------------------------------------------------------------------------------ USAGE = """ font-v [subcommand] (options) [font file path 1] ([font file path ...]) """
41.47561
277
0.534549
7a309190f32e5b8543148e0ca45aff47bb3af6a9
95
py
Python
orderadmin/apps.py
jackyicu/django-orderadmin
a634c9f447fb8e352077317d9d3f43e40488e47b
[ "BSD-3-Clause" ]
null
null
null
orderadmin/apps.py
jackyicu/django-orderadmin
a634c9f447fb8e352077317d9d3f43e40488e47b
[ "BSD-3-Clause" ]
null
null
null
orderadmin/apps.py
jackyicu/django-orderadmin
a634c9f447fb8e352077317d9d3f43e40488e47b
[ "BSD-3-Clause" ]
null
null
null
from django.apps import AppConfig class OrderadminConfig(AppConfig): name = 'orderadmin'
15.833333
34
0.768421
7ce8dc272c5411f42bdc279378fbb4917b4e00a3
1,256
py
Python
release/scripts/addons/add_camera_rigs/composition_guides_menu.py
vic3t3chn0/Bforartists
7c54a60dd7aa568e20ae7e3778dfef993b61b7b5
[ "Naumen", "Condor-1.1", "MS-PL" ]
1
2020-01-18T22:13:24.000Z
2020-01-18T22:13:24.000Z
release/scripts/addons/add_camera_rigs/composition_guides_menu.py
vic3t3chn0/Bforartists
7c54a60dd7aa568e20ae7e3778dfef993b61b7b5
[ "Naumen", "Condor-1.1", "MS-PL" ]
null
null
null
release/scripts/addons/add_camera_rigs/composition_guides_menu.py
vic3t3chn0/Bforartists
7c54a60dd7aa568e20ae7e3778dfef993b61b7b5
[ "Naumen", "Condor-1.1", "MS-PL" ]
null
null
null
import bpy from bpy.types import Menu class ADD_CAMERA_RIGS_MT_composition_guides_menu(Menu): bl_label = "Composition Guides" bl_idname = "ADD_CAMERA_RIGS_MT_composition_guides_menu" def draw(self, context): layout = self.layout activeCameraName = bpy.context.active_object.children[0].name cam = bpy.data.cameras[bpy.data.objects[activeCameraName].data.name] layout.prop(cam, "show_safe_areas") layout.row().separator() layout.prop(cam, "show_composition_center") layout.prop(cam, "show_composition_center_diagonal") layout.prop(cam, "show_composition_golden") layout.prop(cam, "show_composition_golden_tria_a") layout.prop(cam, "show_composition_golden_tria_b") layout.prop(cam, "show_composition_harmony_tri_a") layout.prop(cam, "show_composition_harmony_tri_b") layout.prop(cam, "show_composition_thirds") def draw_item(self, context): layout = self.layout layout.menu(CustomMenu.bl_idname) def register(): bpy.utils.register_class(ADD_CAMERA_RIGS_MT_composition_guides_menu) def unregister(): bpy.utils.unregister_class(ADD_CAMERA_RIGS_MT_composition_guides_menu) if __name__ == "__main__": register()
29.904762
76
0.730892
e85a44cf4455afb350e84052870e9a485db0fbee
3,350
py
Python
venv/lib/python3.8/site-packages/awscli/customizations/cloudformation/yamlhelper.py
sr9dc/DS_Systems_Project_2
0b348c1dd300756f732b4ce13e04239036dc601a
[ "MIT" ]
4
2022-01-07T13:37:33.000Z
2022-03-31T03:21:17.000Z
venv/lib/python3.8/site-packages/awscli/customizations/cloudformation/yamlhelper.py
sr9dc/DS_Systems_Project_2
0b348c1dd300756f732b4ce13e04239036dc601a
[ "MIT" ]
1
2022-01-27T04:21:58.000Z
2022-01-27T04:21:58.000Z
venv/lib/python3.8/site-packages/awscli/customizations/cloudformation/yamlhelper.py
sr9dc/DS_Systems_Project_2
0b348c1dd300756f732b4ce13e04239036dc601a
[ "MIT" ]
null
null
null
# Copyright 2012-2015 Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). You # may not use this file except in compliance with the License. A copy of # the License is located at # # http://aws.amazon.com/apache2.0/ # # or in the "license" file accompanying this file. This file is # distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF # ANY KIND, either express or implied. See the License for the specific # language governing permissions and limitations under the License. from botocore.compat import json from botocore.compat import OrderedDict import yaml from yaml.resolver import ScalarNode, SequenceNode from awscli.compat import six def intrinsics_multi_constructor(loader, tag_prefix, node): """ YAML constructor to parse CloudFormation intrinsics. This will return a dictionary with key being the instrinsic name """ # Get the actual tag name excluding the first exclamation tag = node.tag[1:] # Some intrinsic functions doesn't support prefix "Fn::" prefix = "Fn::" if tag in ["Ref", "Condition"]: prefix = "" cfntag = prefix + tag if tag == "GetAtt" and isinstance(node.value, six.string_types): # ShortHand notation for !GetAtt accepts Resource.Attribute format # while the standard notation is to use an array # [Resource, Attribute]. Convert shorthand to standard format value = node.value.split(".", 1) elif isinstance(node, ScalarNode): # Value of this node is scalar value = loader.construct_scalar(node) elif isinstance(node, SequenceNode): # Value of this node is an array (Ex: [1,2]) value = loader.construct_sequence(node) else: # Value of this node is an mapping (ex: {foo: bar}) value = loader.construct_mapping(node) return {cfntag: value} def _dict_representer(dumper, data): return dumper.represent_dict(data.items()) def yaml_dump(dict_to_dump): """ Dumps the dictionary as a YAML document :param dict_to_dump: :return: """ FlattenAliasDumper.add_representer(OrderedDict, _dict_representer) return yaml.dump( dict_to_dump, default_flow_style=False, Dumper=FlattenAliasDumper, ) def _dict_constructor(loader, node): # Necessary in order to make yaml merge tags work loader.flatten_mapping(node) return OrderedDict(loader.construct_pairs(node)) class SafeLoaderWrapper(yaml.SafeLoader): """Isolated safe loader to allow for customizations without global changes. """ pass def yaml_parse(yamlstr): """Parse a yaml string""" try: # PyYAML doesn't support json as well as it should, so if the input # is actually just json it is better to parse it with the standard # json parser. return json.loads(yamlstr, object_pairs_hook=OrderedDict) except ValueError: loader = SafeLoaderWrapper loader.add_constructor(yaml.resolver.BaseResolver.DEFAULT_MAPPING_TAG, _dict_constructor) loader.add_multi_constructor("!", intrinsics_multi_constructor) return yaml.load(yamlstr, loader) class FlattenAliasDumper(yaml.SafeDumper): def ignore_aliases(self, data): return True
31.308411
79
0.697015
3715cb36e6511a4f1793be1aad5112b33225ce16
4,888
py
Python
models/guided_pix2pix_model.py
MHC-F2V-Research/Image-Reconstruction-Ref2
0a124365fc14708bca092f68205987885c91212a
[ "BSD-3-Clause" ]
197
2019-10-24T19:51:17.000Z
2022-01-29T09:23:49.000Z
models/guided_pix2pix_model.py
andrewjong/Guided-pix2pix
0c6a7b5fde50ad7ea4fb20a6136fc6cb6c4e5542
[ "BSD-3-Clause" ]
10
2019-10-26T23:56:47.000Z
2021-09-03T13:06:53.000Z
models/guided_pix2pix_model.py
andrewjong/Guided-pix2pix
0c6a7b5fde50ad7ea4fb20a6136fc6cb6c4e5542
[ "BSD-3-Clause" ]
24
2019-10-25T06:36:30.000Z
2022-02-10T15:07:46.000Z
import torch from util.image_pool import ImagePool from .base_model import BaseModel from . import networks from util import util class GuidedPix2PixModel(BaseModel): def name(self): return 'GuidedPix2PixModel' def initialize(self, opt): BaseModel.initialize(self, opt) self.isTrain = opt.isTrain self.opt = opt # specify the training losses you want to print out. The program will call base_model.get_current_losses self.use_GAN = opt.use_GAN if self.use_GAN: self.loss_names = ['G_GAN', 'G_L1', 'D_real', 'D_fake'] else: self.loss_names = ['G_L1'] # specify the models you want to save to the disk. The program will call base_model.save_networks and base_model.load_networks if self.isTrain: if self.use_GAN: self.model_names = ['G', 'D'] else: self.model_names = ['G'] else: # during test time, only load Gs self.model_names = ['G'] # load/define networks self.netG = networks.define_G(input_nc=opt.input_nc, guide_nc=opt.guide_nc, output_nc=opt.output_nc, ngf=opt.ngf, netG=opt.netG, n_layers=opt.n_layers, norm=opt.norm, init_type=opt.init_type, init_gain=opt.init_gain, gpu_ids=self.gpu_ids) if self.isTrain & self.use_GAN: use_sigmoid = opt.no_lsgan self.netD = networks.define_D(input_nc=opt.input_nc + opt.guide_nc + opt.output_nc, ndf=opt.ndf, netD=opt.netD, n_layers_D=opt.n_layers_D, norm=opt.norm, use_sigmoid=use_sigmoid, init_type=opt.init_type, init_gain=opt.init_gain, gpu_ids=self.gpu_ids) if self.isTrain: self.fake_AB_pool = ImagePool(0) # define loss functions if self.use_GAN: self.criterionGAN = networks.GANLoss(use_lsgan=not opt.no_lsgan).to(self.device) self.criterionL1 = torch.nn.L1Loss() # initialize optimizers self.optimizers = [] self.optimizer_G = torch.optim.Adam(self.netG.parameters(), lr=opt.lr, betas=(opt.beta1, 0.999)) self.optimizers.append(self.optimizer_G) if self.use_GAN: self.optimizer_D = torch.optim.Adam(self.netD.parameters(), lr=opt.lr, betas=(opt.beta1, 0.999)) self.optimizers.append(self.optimizer_D) def set_input(self, input): self.real_A = input['A'].to(self.device) self.real_B = input['B'].to(self.device) self.guide = input['guide'].to(self.device) def forward(self): self.fake_B = self.netG(self.real_A, self.guide) def get_output(self): return self.fake_B def get_class(self): return self.class_B def get_current_data(self): return {'A':self.real_A, 'guide':self.guide, 'B':self.real_B, 'output':self.fake_B} def backward_D(self): # Fake # stop backprop to the generator by detaching fake_B fake_AB = self.fake_AB_pool.query(torch.cat((self.real_A, self.guide, self.fake_B), 1)) pred_fake = self.netD(fake_AB.detach()) self.loss_D_fake = self.criterionGAN(pred_fake, False) # Real real_AB = torch.cat((self.real_A, self.guide, self.real_B), 1) pred_real = self.netD(real_AB) self.loss_D_real = self.criterionGAN(pred_real, True) # Combined loss self.loss_D = (self.loss_D_fake + self.loss_D_real) * 0.5 self.loss_D.backward() def backward_G(self): if self.use_GAN: # First, G(A) should fake the discriminator fake_AB = torch.cat((self.real_A, self.guide, self.fake_B), 1) pred_fake = self.netD(fake_AB) self.loss_G_GAN = self.criterionGAN(pred_fake, True) # Second, G(A) = B self.loss_G_L1 = self.criterionL1(self.fake_B, self.real_B) * self.opt.lambda_L1 self.loss_G = self.loss_G_GAN + self.loss_G_L1 else: self.loss_G_L1 = self.criterionL1(self.fake_B, self.real_B) self.loss_G = self.loss_G_L1 self.loss_G.backward() def optimize_parameters(self): self.forward() if self.use_GAN: # update D self.set_requires_grad(self.netD, True) self.optimizer_D.zero_grad() self.backward_D() self.optimizer_D.step() # update G self.set_requires_grad(self.netD, False) self.optimizer_G.zero_grad() self.backward_G() self.optimizer_G.step() else: # update G self.optimizer_G.zero_grad() self.backward_G() self.optimizer_G.step()
38.793651
246
0.596768
0b8e0dda873a634c155a3abd50ce71b567367d29
4,633
py
Python
openpose/model/roi_heads/uv_head/inference.py
leehsiu/pyopenpose
c4feef04a9e563fb91e18f745bc187c6f2aeb72c
[ "MIT" ]
null
null
null
openpose/model/roi_heads/uv_head/inference.py
leehsiu/pyopenpose
c4feef04a9e563fb91e18f745bc187c6f2aeb72c
[ "MIT" ]
null
null
null
openpose/model/roi_heads/uv_head/inference.py
leehsiu/pyopenpose
c4feef04a9e563fb91e18f745bc187c6f2aeb72c
[ "MIT" ]
null
null
null
import torch from torch import nn class UVPostProcessor(nn.Module): def __init__(self, keypointer=None): super(UVPostProcessor, self).__init__() self.keypointer = keypointer def forward(self, x, boxes): mask_prob = x if self.keypointer: mask_prob = self.keypointer(x, boxes) assert len(boxes) == 1, "Only non-batched inference supported for now" results = [] bbox = BoxList(boxes[0].bbox, boxes[0].size, mode="xyxy") for field in boxes[0].fields(): bbox.add_field(field, boxes[0].get_field(field)) bbox.add_field("uv_index", mask_prob[0]) bbox.add_field("uv_I", mask_prob[1]) bbox.add_field("uv_U", mask_prob[2]) bbox.add_field("uv_V", mask_prob[3]) results.append(bbox) return results # TODO remove and use only the Keypointer import numpy as np import cv2 def heatmaps_to_uvs(maps, rois): """Extract predicted keypoint locations from heatmaps. Output has shape (#rois, 4, #keypoints) with the 4 rows corresponding to (x, y, logit, prob) for each keypoint. """ # This function converts a discrete image coordinate in a HEATMAP_SIZE x # HEATMAP_SIZE image to a continuous keypoint coordinate. We maintain # consistency with keypoints_to_heatmap_labels by using the conversion from # Heckbert 1990: c = d + 0.5, where d is a discrete coordinate and c is a # continuous coordinate. widths = rois[:, 2] - rois[:, 0] heights = rois[:, 3] - rois[:, 1] widths = np.maximum(widths, 1) heights = np.maximum(heights, 1) widths_ceil = np.ceil(widths) heights_ceil = np.ceil(heights) # NCHW to NHWC for use with OpenCV maps = np.transpose(maps, [0, 2, 3, 1]) min_size = 0 # cfg.KRCNN.INFERENCE_MIN_SIZE outputs = [] for i in range(rois.shape[0]): if min_size > 0: roi_map_width = int(np.maximum(widths_ceil[i], min_size)) roi_map_height = int(np.maximum(heights_ceil[i], min_size)) else: roi_map_width = widths_ceil[i] roi_map_height = heights_ceil[i] roi_map = cv2.resize( maps[i], (roi_map_width, roi_map_height), interpolation=cv2.INTER_CUBIC ) # Bring back to CHW roi_map = np.transpose(roi_map, [2, 0, 1]) outputs.append(roi_map) return outputs from openpose.structures.bounding_box import BoxList from openpose.structures.keypoint import PersonKeypoints class UVInferencer(object): """ Projects a set of masks in an image on the locations specified by the bounding boxes """ def __init__(self, padding=0): self.padding = padding def __call__(self, masks, boxes): # TODO do this properly if isinstance(boxes, BoxList): boxes = [boxes] assert len(boxes) == 1 #index, I, U, V result = [] uv_index_list = heatmaps_to_uvs( masks[0].detach().cpu().numpy(), boxes[0].bbox.detach().cpu().numpy() ) uv_index = [] for index_val in uv_index_list: index_val = np.argmax(index_val,axis=0) uv_index.append(index_val) uv_I_list = heatmaps_to_uvs( masks[1].detach().cpu().numpy(), boxes[0].bbox.detach().cpu().numpy() ) uv_I = [] for index_val,I_val in zip(uv_index,uv_I_list): I_val = np.argmax(I_val,axis=0) I_val[index_val==0] = 0 uv_I.append(I_val) #based on uv_index uv_U_list = heatmaps_to_uvs( masks[2].detach().cpu().numpy(), boxes[0].bbox.detach().cpu().numpy() ) uv_V_list = heatmaps_to_uvs( masks[3].detach().cpu().numpy(), boxes[0].bbox.detach().cpu().numpy() ) uv_U = [] uv_V = [] for I_val,U_val,V_val in zip(uv_I,uv_U_list,uv_V_list): uv_U_cond = np.zeros_like(I_val,dtype=np.float32) uv_V_cond = np.zeros_like(I_val,dtype=np.float32) for ipart in range(1,25): uv_U_cond[I_val==ipart] = U_val[ipart][I_val==ipart] uv_V_cond[I_val==ipart] = V_val[ipart][I_val==ipart] uv_U.append(uv_U_cond) uv_V.append(uv_V_cond) result.append(uv_index) result.append(uv_I) result.append(uv_U) result.append(uv_V) return result def make_roi_uv_post_processor(cfg): uvInferencer = UVInferencer() uv_post_processor = UVPostProcessor(uvInferencer) return uv_post_processor
31.951724
83
0.60695
4d9970b82413e179ad9199bda5f91245c1fd980c
8,879
py
Python
vatreturn.py
everknow/vatreturn
b35f8a5b5d1ab6993f8ed507b9bd55cf5675d8d1
[ "MIT" ]
null
null
null
vatreturn.py
everknow/vatreturn
b35f8a5b5d1ab6993f8ed507b9bd55cf5675d8d1
[ "MIT" ]
null
null
null
vatreturn.py
everknow/vatreturn
b35f8a5b5d1ab6993f8ed507b9bd55cf5675d8d1
[ "MIT" ]
null
null
null
from functools import wraps import json import os import requests import datetime from flask import Flask, redirect, url_for from flask import send_from_directory from flask import render_template, g from flask import request from flask import session from hmrc_provider import make_hmrc_blueprint, hmrc from urllib.parse import unquote, quote import pandas as pd import logging app = Flask(__name__, static_url_path='') app.secret_key = os.environ.get("FLASK_SECRET_KEY", "supersekrit") app.config["HMRC_OAUTH_CLIENT_ID"] = os.environ.get("HMRC_OAUTH_CLIENT_ID") app.config["HMRC_OAUTH_CLIENT_SECRET"] = os.environ.get("HMRC_OAUTH_CLIENT_SECRET") app.config["HMRC_API_HOST"] = os.environ.get("HMRC_API_HOST") hmrc_bp = make_hmrc_blueprint( api_host=app.config['HMRC_API_HOST'], scope='read:vat write:vat', client_id=app.config["HMRC_OAUTH_CLIENT_ID"], client_secret=app.config["HMRC_OAUTH_CLIENT_SECRET"], redirect_to="obligations" ) app.register_blueprint( hmrc_bp, url_prefix="/login",) def login_required(f): @wraps(f) def decorated_function(*args, **kwargs): if not hmrc.authorized: return redirect(url_for("hmrc.login")) else: if 'hmrc_vat_number' not in session: return redirect(url_for('get_vat_number', next=request.url)) return f(*args, **kwargs) return decorated_function @app.route("/privacy") def privacy(): return render_template('privacy.html') @app.route("/making_tax_digital") def making_tax_digital(): return render_template('making_tax_digital.html') @app.route("/tandc") def tandc(): return render_template('tandc.html') @app.route("/get_vat_number", methods=('GET', 'POST',)) def get_vat_number(): if request.method == 'GET': return render_template('get_vat_number.html') elif request.method == 'POST': session['hmrc_vat_number'] = request.form['hmrc_vat_number'] return redirect(request.args.get('next')) @app.route("/") def index(): return render_template('index.html') def get_fraud_headers(): # These should all be in the request, mostly because they've been # injected into any form as hidden fields by javascript headers = { 'Gov-Client-Connection-Method': 'WEB_APP_VIA_SERVER', 'Gov-Client-Timezone': request.cookies.get( 'user_timezone', None), 'Gov-Client-Window-Size': request.cookies.get( 'client_window', None), 'Gov-Client-Browser-JS-User-Agent': unquote( request.cookies.get( 'client_user_agent', None) ), 'Gov-Client-Browser-Plugins': ",".join(map(quote, unquote(request.cookies.get( 'client_browser_plugins', None)[:-1]).split(","))), 'Gov-Client-Browser-Do-Not-Track': request.cookies.get( 'client_do_not_track', None), 'Gov-Client-Screens': request.cookies.get( 'client_screens', None), 'Gov-Client-Local-IPs-Timestamp': request.cookies.get( 'client-local-timestamp', None), 'Gov-Client-Device-ID': os.environ.get("DEVICE_ID"), # was request.cookies.get('device_id', None), 'Gov-Vendor-Version': 'vatreturn-frontend=1.0&vatreturn-backend=1.0', 'Gov-Client-User-IDs': "vatreturn="+os.environ.get("USER_ID"), 'Gov-Client-Local-IPs': os.environ.get("LOCAL_IP"), 'Gov-Vendor-Product-Name': 'vatreturn', # 'Gov-Vendor-Public-Port': None, # 'Gov-Vendor-Public-IP': None, # hosted in Heroku, will change # 'Gov-Client-Public-IP': request.cookies.get( # 'public_ip', None), # 'Gov-Client-Public-IP-Timestamp': request.cookies.get( # 'client-local-timestamp', None), } return dict([(k, v) for k, v in headers.items() if v]) def do_action(action, endpoint, params={}, data={}): url = "/organisations/vat/{}/{}".format( session['hmrc_vat_number'], endpoint) if action == 'get': # logging.warn(url) response = hmrc.get(url, params=params, headers=get_fraud_headers()) elif action == 'post': response = hmrc.post(url, json=data, headers=get_fraud_headers()) if not response.ok: try: error = response.json() except json.decoder.JSONDecodeError: error = response.text return {'error': error} else: return response.json() @app.route("/obligations") @login_required def obligations(show_all=False): if show_all: today = datetime.date.today() from_date = today - datetime.timedelta(days=365*2) to_date = today params = { 'from': from_date.strftime("%Y-%m-%d"), 'to': to_date.strftime("%Y-%m-%d") } else: params = {'status': 'O'} # uncomment the following 3 lines to debug the fraud headers # logging.warn(json.dumps(get_fraud_headers(), indent = 4)) # r = hmrc.get('test/fraud-prevention-headers/validate', params={}, headers=get_fraud_headers()) # logging.warn(json.dumps(r.json(), indent = 4)) # uncomment the following 2 lines to retrieve a submitted return # returns = do_action('get', 'returns/18A1', {}) # logging.warn(json.dumps(returns, indent = 4)) obligations = do_action('get', 'obligations', params) logging.warn(json.dumps(obligations, indent = 4)) if 'error' in obligations: g.error = obligations['error'] else: g.obligations = obligations['obligations'] return render_template('obligations.html') def return_data(period_key, period_end, vat_csv): # logging.warn(vat_csv) df = pd.read_csv(vat_csv) assert list(df.columns) == ["VAT period", "Sales", "Purchases", "VAT rate"] period = df[df["VAT period"] == period_end] sales = float(period["Sales"].iloc[0]) purchases = float(period["Purchases"].iloc[0]) vat_rate = float(period["VAT rate"].iloc[0]) / 100 vat_sales = round(sales * vat_rate, 2) vat_reclaimed = round(purchases * vat_rate, 2) box_1 = vat_sales # box_1, vat due on sales box_2 = 0 # vat due on acquisitions box_3 = box_1 + box_2 # total vat due - calculated: Box1 + Box2 box_4 = vat_reclaimed # vat reclaimed for current period box_5 = abs(box_3 - box_4) # net vat due (amount to be paid). Calculated: take the figures from Box 3 and Box 4. Deduct the smaller figure from the larger one and use the difference box_6 = sales # total value sales ex vat box_7 = purchases # total value purchases ex vat box_8 = 0 # total value goods supplied ex vat box_9 = 0 # total acquisitions ex vat data = { "periodKey": period_key, "vatDueSales": box_1, "vatDueAcquisitions": box_2, "totalVatDue": box_3, "vatReclaimedCurrPeriod": box_4, "netVatDue": box_5, "totalValueSalesExVAT": box_6, "totalValuePurchasesExVAT": box_7, "totalValueGoodsSuppliedExVAT": box_8, "totalAcquisitionsExVAT": box_9, "finalised": True # declaration } return data @app.route("/<string:period_key>/preview") @login_required def preview_return(period_key): g.period_key = period_key g.vat_csv = request.args.get('vat_csv', '') g.period_end = request.args.get('period_end', '') if g.vat_csv: g.data = return_data(g.period_key, g.period_end, g.vat_csv) return render_template('preview_return.html') @app.route("/<string:period_key>/send", methods=('POST',)) @login_required def send_return(period_key): # logging.warn(period_key) confirmed = request.form.get('complete', None) vat_csv = request.form.get('vat_csv') g.period_end = request.form.get('period_end', '') if not confirmed: return redirect(url_for( "preview_return", period_key=period_key, period_end=g.period_end, confirmation_error=True)) else: g.data = return_data(period_key, g.period_end, vat_csv) g.response = do_action('post', 'returns', data=g.data) return render_template('send_return.html') @app.route("/logout") def logout(): del(session['hmrc_oauth_token']) del(session['hmrc_vat_number']) return redirect(url_for("index")) def create_test_user(): url = '/create-test-user/individuals' api_host=app.config['HMRC_API_HOST'] return requests.post( api_host + url, data={ "serviceNames": [ "national-insurance", "self-assessment", "mtd-income-tax", "customs-services", "mtd-vat" ] }) @app.route('/js/<path:path>') def send_js(path): return send_from_directory('js', path) @app.route('/img/<path:path>') def send_img(path): return send_from_directory('img', path)
34.15
186
0.644667
38506ad17eb28d55a72a0d603883e69598d033bb
3,244
py
Python
pytest_splunk_addon_ui_smartx/components/controls/oauth_select.py
artemrys/addon-factory-smartx-ui-test-library
a0ea68a2f90f5662eac383b74043f69e01830251
[ "Apache-2.0" ]
1
2021-03-29T07:03:15.000Z
2021-03-29T07:03:15.000Z
pytest_splunk_addon_ui_smartx/components/controls/oauth_select.py
artemrys/addon-factory-smartx-ui-test-library
a0ea68a2f90f5662eac383b74043f69e01830251
[ "Apache-2.0" ]
181
2020-12-15T19:31:07.000Z
2022-03-18T08:06:06.000Z
pytest_splunk_addon_ui_smartx/components/controls/oauth_select.py
splunk/addon-factory-smartx-ui-test-library
d1bb8d0ce728d53d3c15425c3b5a25e2e526d80e
[ "Apache-2.0" ]
2
2022-02-01T18:39:37.000Z
2022-03-27T16:51:40.000Z
# # Copyright 2021 Splunk Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import time from selenium.webdriver.common.by import By from selenium.webdriver.common.keys import Keys from ..base_component import Selector from .base_control import BaseControl class OAuthSelect(BaseControl): """ Entity-Component: OAuthSelect OAuthSelect Javascript framework: OAuthSelect A dropdown which can select only one value """ def __init__(self, browser, container, searchable=True): """ :param browser: The selenium webdriver :param container: The locator of the container where the control is located in. """ super().__init__(browser, container) self.elements.update( { "values": Selector(select=container.select + ' [data-test="option"]'), "dropdown": Selector(select=container.select + " .dropdownBox"), } ) def select(self, value): """ Selects the value within hte select dropdown :param value: the value to select :return: Bool if successful in selection, else raises an error """ self.dropdown.click() popoverid = "#" + self.dropdown.get_attribute("data-test-popover-id") self.elements.update( { "values": Selector( select=popoverid + ' [data-test="option"]:not([data-test-selected="true"]) [data-test="label"]' ) } ) for each in self.get_elements("values"): if each.text.strip().lower() == value.lower(): each.click() return True else: raise ValueError("{} not found in select list".format(value)) def get_value(self): """ Gets the selected value :return: Str The elected value within the dropdown, else returns blank """ try: element = self.get_element("dropdown") return element.get_attribute("data-test-value") except: return "" def list_of_values(self): """ Gets the list of value from the Single Select :returns: List of options from the single select """ selected_val = self.get_value() self.container.click() first_element = None list_of_values = [] popoverid = "#" + self.dropdown.get_attribute("data-test-popover-id") self.elements.update( {"values": Selector(select=popoverid + ' [data-test="option"]')} ) for each in self.get_elements("values"): list_of_values.append(each.text.strip()) return list_of_values
32.44
98
0.609125
9693add9535f0d8729ba6cd2d4781a323ba18de7
1,324
py
Python
web_dynamic/4-hbnb.py
JoseMarulanda/AirBnB_clone_v4
939bb49decc49194fcd91e585f03ca85a27d9a5e
[ "MIT" ]
null
null
null
web_dynamic/4-hbnb.py
JoseMarulanda/AirBnB_clone_v4
939bb49decc49194fcd91e585f03ca85a27d9a5e
[ "MIT" ]
null
null
null
web_dynamic/4-hbnb.py
JoseMarulanda/AirBnB_clone_v4
939bb49decc49194fcd91e585f03ca85a27d9a5e
[ "MIT" ]
null
null
null
#!/usr/bin/python3 """ Flask App that integrates with AirBnB static HTML Template """ from flask import Flask, render_template, url_for from models import storage import uuid # flask setup app = Flask(__name__) app.url_map.strict_slashes = False port = 5000 host = '0.0.0.0' # begin flask page rendering @app.teardown_appcontext def teardown_db(exception): """ after each request, this method calls .close() (i.e. .remove()) on the current SQLAlchemy Session """ storage.close() @app.route('/4-hbnb') def hbnb_filters(the_id=None): """ handles request to custom template with states, cities & amentities """ state_objs = storage.all('State').values() states = dict([state.name, state] for state in state_objs) amens = storage.all('Amenity').values() places = storage.all('Place').values() users = dict([user.id, "{} {}".format(user.first_name, user.last_name)] for user in storage.all('User').values()) return render_template('4-hbnb.html', cache_id=uuid.uuid4(), states=states, amens=amens, places=places, users=users) if __name__ == "__main__": """ MAIN Flask App""" app.run(host=host, port=port)
28.170213
75
0.608761
88f8ff30d10e8cb32963a1c312640f02dd4e0998
4,645
py
Python
perftest/spreadbenchmark.py
wendazhou/finufft
ba52c1d823186aac3ae33341921136b9ed3b6422
[ "Apache-2.0" ]
134
2018-08-23T02:05:01.000Z
2022-03-27T05:13:20.000Z
perftest/spreadbenchmark.py
wendazhou/finufft
ba52c1d823186aac3ae33341921136b9ed3b6422
[ "Apache-2.0" ]
157
2018-09-14T16:36:31.000Z
2022-03-31T23:42:44.000Z
perftest/spreadbenchmark.py
wendazhou/finufft
ba52c1d823186aac3ae33341921136b9ed3b6422
[ "Apache-2.0" ]
66
2018-09-25T15:50:59.000Z
2022-03-21T00:42:28.000Z
import commands import re import sys # Test set tests = [] #tests.append({"dim":1, "M":1e8, "N":1e8, "tol":1e-3}) #tests.append({"dim":1, "M":1e8, "N":1e8, "tol":1e-8}) #tests.append({"dim":1, "M":1e8, "N":1e8, "tol":1e-15}) #tests.append({"dim":3, "M":1e7, "N":1e7, "tol":1e-3}) #tests.append({"dim":3, "M":1e7, "N":1e7, "tol":1e-8}) tests.append({"dim":3, "M":1e5, "N":1e5, "tol":1e-15}) tests.append({"dim":3, "M":1e6, "N":1e6, "tol":1e-15}) tests.append({"dim":3, "M":1e7, "N":1e7, "tol":1e-15}) # Flags to send flags = "1" # Make flags (eg OMP=OFF) makeflags = "" # Command template cmdtemplate = "test/spreadtestnd %(dim)d %(M)g %(N)g %(tol)g " + flags # Regexps to use spreadre = re.compile(r'dir=1.*\n.*\s(?P<speed>\d+[\d\.e+-]*) pts/s.*\n.*rel err.*\s(?P<err>\d+[\d\.e+-]*)') interpre = re.compile(r'dir=2.*\n.*\s(?P<speed>\d+[\d\.e+-]*) pts/s.*\n.*rel err.*\s(?P<err>\d+[\d\.e+-]*)') commit_A = sys.argv[1] commit_B = sys.argv[2] print "* Comparing commits '%s' and '%s'" % (commit_A, commit_B) # Find out where we are, so we can come back gitout = commands.getoutput("git status -b --porcelain") pos = re.match("## (.+)\n", gitout).group(1) if re.match("HEAD ", pos): home = commands.getoutput("git rev-parse HEAD") print "* Seems we are currently in detached head, will return to commit %s" % home else: home = re.match("([^ \.]+)", pos).group(1) print "* Will return to branch %s" % home # Command runner def runCommand(cmd): print "> " + cmd status, output = commands.getstatusoutput(cmd) print output return output # Test runner def runTests(): print "Running tests..." results = [] for params in tests: cmd = cmdtemplate % params # Best of 3 interp_speed = 0 interp_err = 0 spread_speed = 0 spread_err = 0 for i in [1,2,3]: output = runCommand(cmd).rstrip() ms = spreadre.search(output) mi = interpre.search(output) interp_speed = max(interp_speed, mi.group("speed")) interp_err = max(interp_err, mi.group("err")) spread_speed = max(spread_speed, ms.group("speed")) spread_err = max(spread_err, ms.group("err")) results.append({"cmd":cmd, "interp_speed":interp_speed, "interp_err":interp_err, "spread_speed":spread_speed, "spread_err":spread_err }) return results # Code checkout machinery def checkoutandmake(commit): if commit == "local": # Do nothin, just make it pass else: # Stash current source tree and check out commit print "Stashing changes and checking out %s..." % commit runCommand("git stash save") runCommand("git checkout %s" % commit) print "Making..." print commands.getoutput("make clean test/spreadtestnd " + makeflags) def restore(commit, home): if commit == "local": # We just tested local, so do nothing pass else: # Return home and pop stash print "Checking out %s and popping stash..." % home runCommand("git checkout %s" % home) runCommand("git stash pop") # Run tests print "* Testing %s" % commit_A checkoutandmake(commit_A) res_A = runTests() restore(commit_A, home) print "* Testing %s" % commit_B checkoutandmake(commit_B) res_B = runTests() restore(commit_B, home) # Present results format = "%-15s | %-15s | %-15s | %-15s | %-15s " header = format % ("Commit", "Spread spd", "Interp spd", "Spread err", "Interp err") print "" print "Make flags: " + makeflags print "" for idx,params in enumerate(tests): print "=== Test: dim=%(dim)d, M=%(M)g, N=%(N)g, tol=%(tol)g" % params print header c = commit_A r = res_A[idx] print format % (c, r["spread_speed"]+" pts/s", r["interp_speed"]+" pts/s", r["spread_err"], r["interp_err"]) c = commit_B r = res_B[idx] print format % (c, r["spread_speed"]+" pts/s", r["interp_speed"]+" pts/s", r["spread_err"], r["interp_err"]) spread_speedup = float(res_B[idx]["spread_speed"]) / float(res_A[idx]["spread_speed"])*100 - 100 spread_sign = "+" if spread_speedup > 0 else "" spread_speedup = spread_sign + "%.1f" % spread_speedup + "%" interp_speedup = float(res_B[idx]["interp_speed"]) / float(res_A[idx]["interp_speed"])*100 - 100 interp_sign = "+" if interp_speedup > 0 else "" interp_speedup = interp_sign + "%.1f" % interp_speedup + "%" print format % ("", spread_speedup, interp_speedup, "", "") print ""
32.711268
112
0.585791
a1b29d57dea2aa751c8e40b41ba4f19f20fdc9ba
2,910
py
Python
tests/test_cases/test_cocotb/test_tests.py
lavanyajagan/cocotb
2f98612016e68510e264a2b4963303d3588d8404
[ "BSD-3-Clause" ]
350
2015-01-09T12:50:13.000Z
2019-07-12T09:08:17.000Z
tests/test_cases/test_cocotb/test_tests.py
lavanyajagan/cocotb
2f98612016e68510e264a2b4963303d3588d8404
[ "BSD-3-Clause" ]
710
2015-01-05T16:42:29.000Z
2019-07-16T13:40:00.000Z
tests/test_cases/test_cocotb/test_tests.py
lavanyajagan/cocotb
2f98612016e68510e264a2b4963303d3588d8404
[ "BSD-3-Clause" ]
182
2015-01-08T09:35:20.000Z
2019-07-12T18:41:37.000Z
# Copyright cocotb contributors # Licensed under the Revised BSD License, see LICENSE for details. # SPDX-License-Identifier: BSD-3-Clause """ Tests of cocotb.test functionality * expect_error * expect_fail * timeout """ from collections.abc import Coroutine from common import MyException import cocotb from cocotb.triggers import Timer @cocotb.test(expect_error=NameError) async def test_error(dut): """Error in the test""" await Timer(100, "ns") fail # noqa @cocotb.test() async def test_tests_are_tests(dut): """ Test that things annotated with cocotb.test are tests """ assert isinstance(test_tests_are_tests, cocotb.test) # just to be sure... @cocotb.test(expect_fail=True) async def test_async_test_can_fail(dut): assert False @cocotb.test() async def test_immediate_test(dut): """Test that tests can return immediately""" return @cocotb.test(expect_fail=True) async def test_assertion_is_failure(dut): assert False @cocotb.test(expect_error=MyException) async def test_expect_particular_exception(dut): raise MyException() @cocotb.test(expect_error=(MyException, ValueError)) async def test_expect_exception_list(dut): raise MyException() @cocotb.test( expect_error=cocotb.result.SimTimeoutError, timeout_time=1, timeout_unit="ns" ) async def test_timeout_testdec_fail(dut): await Timer(10, "ns") @cocotb.test(timeout_time=100, timeout_unit="ns") async def test_timeout_testdec_pass(dut): await Timer(10, "ns") @cocotb.test(timeout_time=10, timeout_unit="ns") async def test_timeout_testdec_simultaneous(dut): try: await cocotb.triggers.with_timeout( Timer(1, "ns"), timeout_time=1, timeout_unit="ns" ) except cocotb.result.SimTimeoutError: pass else: assert False, "Expected a Timeout" # Whether this test fails or passes depends on the behavior of the # scheduler, simulator, and the implementation of the timeout function. # CAUTION: THIS MAY CHANGE # these tests should run in definition order, not lexicographic order last_ordered_test = None @cocotb.test() async def test_ordering_3(dut): global last_ordered_test val, last_ordered_test = last_ordered_test, 3 assert val is None @cocotb.test() async def test_ordering_2(dut): global last_ordered_test val, last_ordered_test = last_ordered_test, 2 assert val == 3 @cocotb.test() async def test_ordering_1(dut): global last_ordered_test val, last_ordered_test = last_ordered_test, 1 assert val == 2 @cocotb.test() class TestClass(Coroutine): def __init__(self, dut): self._coro = self.run(dut) async def run(self, dut): pass def send(self, value): self._coro.send(value) def throw(self, exception): self._coro.throw(exception) def __await__(self): yield from self._coro.__await__()
22.55814
81
0.720619
842a4e72249c2995181f5213ca5590444b3b8fe0
845
py
Python
setup.py
jumbrich/pyanycsv
ebffa9ac066721d107557619833c138db5e61109
[ "MIT" ]
null
null
null
setup.py
jumbrich/pyanycsv
ebffa9ac066721d107557619833c138db5e61109
[ "MIT" ]
null
null
null
setup.py
jumbrich/pyanycsv
ebffa9ac066721d107557619833c138db5e61109
[ "MIT" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- """ Setup file for anycsv. This file was generated with PyScaffold 3.0.3. PyScaffold helps you to put up the scaffold of your new Python project. Learn more under: http://pyscaffold.org/ """ import sys from setuptools import setup # Add here console scripts and other entry points in ini-style format entry_points = """ [console_scripts] # script_name = anycsv.module:function # For example: # fibonacci = anycsv.skeleton:run anycsv= anycsv.cli:main """ def setup_package(): needs_sphinx = {'build_sphinx', 'upload_docs'}.intersection(sys.argv) sphinx = ['sphinx'] if needs_sphinx else [] setup(setup_requires=['pyscaffold>=3.0a0,<3.1a0'] + sphinx, entry_points=entry_points, use_pyscaffold=True) if __name__ == "__main__": setup_package()
24.852941
75
0.695858
a99b93611834a5f05fc6c2acbd2d80a30ae7e86e
5,104
py
Python
preprocessing.py
lgraesser/MCER
250aa6965064dbc73462eb5edb559bf9ce949b70
[ "Apache-2.0" ]
null
null
null
preprocessing.py
lgraesser/MCER
250aa6965064dbc73462eb5edb559bf9ce949b70
[ "Apache-2.0" ]
null
null
null
preprocessing.py
lgraesser/MCER
250aa6965064dbc73462eb5edb559bf9ce949b70
[ "Apache-2.0" ]
null
null
null
import logging import numpy as np import tensorflow as tf from sklearn.model_selection import train_test_split import preprocessing import utils logger = logging.getLogger('preprocessing') logger.setLevel(logging.INFO) def preprocess_images(img_name_vector, image_features_extract_model): '''Extracts and saves image features for each image in img_name_vector.''' # Get unique images encode_train = sorted(set(img_name_vector)) # Feel free to change batch_size according to your system configuration image_dataset = tf.data.Dataset.from_tensor_slices(encode_train) image_dataset = image_dataset.map( utils.load_image, num_parallel_calls=tf.data.experimental.AUTOTUNE).batch(16) logger.info('Extracting image features. This may take a while...') for i, (img, path) in enumerate(image_dataset): batch_features = image_features_extract_model(img) batch_features = tf.reshape(batch_features, (batch_features.shape[0], -1, batch_features.shape[3])) for bf, p in zip(batch_features, path): path_of_feature = p.numpy().decode("utf-8") np.save(path_of_feature, bf.numpy()) if i % 50 == 0: logger.info(f'Image feature extract, {i} batches done.') logger.info('Saved all the image features.') def preprocess_text(train_captions, vocab_size): '''UNKS, tokenizes, and pads captions in train_captions.''' logger.info(f'Vocab size: {vocab_size}') tokenizer = tf.keras.preprocessing.text.Tokenizer(num_words=vocab_size, oov_token="<unk>", filters='!"#$%&()*+.,-/:;=?@[\]^_`{|}~ ') tokenizer.fit_on_texts(train_captions) # TODO: check why this line appears twice train_seqs = tokenizer.texts_to_sequences(train_captions) tokenizer.word_index['<pad>'] = 0 tokenizer.index_word[0] = '<pad>' # Create the tokenized vectors train_seqs = tokenizer.texts_to_sequences(train_captions) # Pad each vector to the max_length of the captions # If you do not provide a max_length value, pad_sequences calculates it automatically caption_vector = tf.keras.preprocessing.sequence.pad_sequences(train_seqs, padding='post') return caption_vector, tokenizer, train_seqs # Find the maximum length of any caption in our dataset def calc_max_length(tensor): return max(len(t) for t in tensor) def create_dataset(image_name_vector, caption_vector, train_seqs, test_size=0.2, batch_size=64, buffer_size=1000): '''Creates the dataset. Returns it shuffled and batched.''' logger.info(f'Train-test split {1 - test_size}/{test_size}') logger.info(f'Batch size: {batch_size}') logger.info(f'Buffer size: {buffer_size}') # Calculates the max_length, which is used to store the attention weights max_length = calc_max_length(train_seqs) logger.info(f'Max sequence length: {max_length}') # Create training and validation sets using an 80-20 split img_name_train, img_name_val, cap_train, cap_val = train_test_split(image_name_vector, caption_vector, test_size=test_size, random_state=0) logger.info(f'Train images: {len(img_name_train)}, train captions: {len(cap_train)}, val images: { len(img_name_val)}, val captions: {len(cap_val)}') num_steps_train = len(img_name_train) // batch_size num_steps_val = len(img_name_val) // batch_size # Load the numpy files def map_func(img_name, cap): img_tensor = np.load(img_name.decode('utf-8')+'.npy') return img_tensor, cap # Create training dataset dataset_train = tf.data.Dataset.from_tensor_slices((img_name_train, cap_train)) # Use map to load the numpy files in parallel dataset_train = dataset_train.map(lambda item1, item2: tf.numpy_function( map_func, [item1, item2], [tf.float32, tf.int32]), num_parallel_calls=tf.data.experimental.AUTOTUNE) # Shuffle and batch dataset_train = dataset_train.shuffle(buffer_size).batch(batch_size) dataset_train = dataset_train.prefetch(buffer_size=tf.data.experimental.AUTOTUNE) # Create validation dataset dataset_val = tf.data.Dataset.from_tensor_slices((img_name_val, cap_val)) # Use map to load the numpy files in parallel dataset_val = dataset_val.map(lambda item1, item2: tf.numpy_function( map_func, [item1, item2], [tf.float32, tf.int32]), num_parallel_calls=tf.data.experimental.AUTOTUNE) # Shuffle and batch dataset_val = dataset_val.shuffle(buffer_size).batch(batch_size) dataset_val = dataset_val.prefetch(buffer_size=tf.data.experimental.AUTOTUNE) return (dataset_train, dataset_val, num_steps_train, num_steps_val)
42.533333
153
0.664185
ba2f42480f5e4ac767c95ec39ced0a6708cf0915
43,949
py
Python
InnerEye/ML/deep_learning_config.py
albernsurya/InnerEye-DeepLearning
62ed6aace84c451a20c4e546f88987454c1bf4bd
[ "MIT" ]
1
2021-07-03T14:05:17.000Z
2021-07-03T14:05:17.000Z
InnerEye/ML/deep_learning_config.py
albernsrya/InnerEye-DeepLearning
420fb1d452d7834d2c0a79c7bdc711ec16509680
[ "MIT" ]
null
null
null
InnerEye/ML/deep_learning_config.py
albernsrya/InnerEye-DeepLearning
420fb1d452d7834d2c0a79c7bdc711ec16509680
[ "MIT" ]
null
null
null
# ------------------------------------------------------------------------------------------ # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License (MIT). See LICENSE in the repo root for license information. # ------------------------------------------------------------------------------------------ from __future__ import annotations import logging from enum import Enum, unique from pathlib import Path from typing import Any, Dict, List, Optional import param from pandas import DataFrame from param import Parameterized from InnerEye.Azure.azure_util import DEFAULT_CROSS_VALIDATION_SPLIT_INDEX, RUN_CONTEXT, is_offline_run_context from InnerEye.Common import fixed_paths from InnerEye.Common.common_util import is_windows from InnerEye.Common.fixed_paths import DEFAULT_AML_UPLOAD_DIR, DEFAULT_LOGS_DIR_NAME from InnerEye.Common.generic_parsing import GenericConfig from InnerEye.Common.type_annotations import PathOrString, TupleFloat2 from InnerEye.ML.common import DATASET_CSV_FILE_NAME, ModelExecutionMode, create_unique_timestamp_id, \ get_best_checkpoint_path, get_recovery_checkpoint_path # A folder inside of the outputs folder that will contain all information for running the model in inference mode FINAL_MODEL_FOLDER = "final_model" FINAL_ENSEMBLE_MODEL_FOLDER = "final_ensemble_model" # The checkpoints must be stored inside of the final model folder, if we want to avoid copying # them before registration. CHECKPOINT_FOLDER = "checkpoints" VISUALIZATION_FOLDER = "visualizations" EXTRA_RUN_SUBFOLDER = "extra_run_id" ARGS_TXT = "args.txt" WEIGHTS_FILE = "weights.pth" @unique class LRWarmUpType(Enum): """ Supported LR warm up types for model training """ NoWarmUp = "NoWarmUp" Linear = "Linear" @unique class LRSchedulerType(Enum): """ Supported lr scheduler types for model training """ Exponential = "Exponential" Step = "Step" Polynomial = "Polynomial" Cosine = "Cosine" MultiStep = "MultiStep" @unique class OptimizerType(Enum): """ Supported optimizers for model training """ Adam = "Adam" AMSGrad = "AMSGrad" SGD = "SGD" RMSprop = "RMSprop" @unique class ModelCategory(Enum): """ Describes the different high-level model categories that the codebase supports. """ Segmentation = "Segmentation" # All models that perform segmentation: Classify each voxel in the input image. Classification = "Classification" # All models that perform classification Regression = "Regression" # All models that perform regression @property def is_scalar(self) -> bool: """ Return True if the current ModelCategory is either Classification or Regression """ return self in [ModelCategory.Classification, ModelCategory.Regression] @unique class MultiprocessingStartMethod(Enum): """ Different methods for starting data loader processes. """ fork = "fork" forkserver = "forkserver" spawn = "spawn" class TemperatureScalingConfig(Parameterized): """High level config to encapsulate temperature scaling parameters""" lr: float = param.Number(default=0.002, bounds=(0, None), doc="The learning rate to use for the optimizer used to learn the " "temperature scaling parameter") max_iter: int = param.Number(default=50, bounds=(1, None), doc="The maximum number of optimization iterations to use in order to " "learn the temperature scaling parameter") ece_num_bins: int = param.Number(default=15, bounds=(1, None), doc="Number of bins to use when computing the " "Expected Calibration Error") class DeepLearningFileSystemConfig(Parameterized): """High level config to abstract the file system related configs for deep learning models""" outputs_folder: Path = param.ClassSelector(class_=Path, default=Path(), instantiate=False, doc="The folder where all training and test outputs should go.") logs_folder: Path = param.ClassSelector(class_=Path, default=Path(), instantiate=False, doc="The folder for all log files and Tensorboard event files") project_root: Path = param.ClassSelector(class_=Path, default=Path(), instantiate=False, doc="The root folder for the codebase that triggers the training run.") run_folder: Path = param.ClassSelector(class_=Path, default=Path(), instantiate=False, doc="The folder that contains outputs and the logs subfolder.") @staticmethod def create(project_root: Path, is_offline_run: bool, model_name: str, output_to: Optional[str] = None) -> DeepLearningFileSystemConfig: """ Creates a new object that holds output folder configurations. When running inside of AzureML, the output folders will be directly under the project root. If not running inside AzureML, a folder with a timestamp will be created for all outputs and logs. :param project_root: The root folder that contains the code that submitted the present training run. When running inside the InnerEye repository, it is the git repo root. When consuming InnerEye as a package, this should be the root of the source code that calls the package. :param is_offline_run: If true, this is a run outside AzureML. If False, it is inside AzureML. :param model_name: The name of the model that is trained. This is used to generate a run-specific output folder. :param output_to: If provided, the output folders will be created as a subfolder of this argument. If not given, the output folders will be created inside of the project root. """ if not project_root.is_absolute(): raise ValueError(f"The project root is required to be an absolute path, but got {project_root}") if is_offline_run or output_to: if output_to: logging.info(f"All results will be written to the specified output folder {output_to}") root = Path(output_to).absolute() else: logging.info("All results will be written to a subfolder of the project root folder.") root = project_root.absolute() / DEFAULT_AML_UPLOAD_DIR timestamp = create_unique_timestamp_id() run_folder = root / f"{timestamp}_{model_name}" outputs_folder = run_folder logs_folder = run_folder / DEFAULT_LOGS_DIR_NAME else: logging.info("Running inside AzureML.") logging.info("All results will be written to a subfolder of the project root folder.") run_folder = project_root outputs_folder = project_root / DEFAULT_AML_UPLOAD_DIR logs_folder = project_root / DEFAULT_LOGS_DIR_NAME logging.info(f"Run outputs folder: {outputs_folder}") logging.info(f"Logs folder: {logs_folder}") return DeepLearningFileSystemConfig( outputs_folder=outputs_folder, logs_folder=logs_folder, project_root=project_root, run_folder=run_folder ) def add_subfolder(self, subfolder: str) -> DeepLearningFileSystemConfig: """ Creates a new output folder configuration, where both outputs and logs go into the given subfolder inside the present outputs folder. :param subfolder: The subfolder that should be created. :return: """ if self.run_folder: outputs_folder = self.run_folder / subfolder logs_folder = self.run_folder / subfolder / DEFAULT_LOGS_DIR_NAME outputs_folder.mkdir(parents=True, exist_ok=True) logs_folder.mkdir(parents=True, exist_ok=True) return DeepLearningFileSystemConfig( outputs_folder=outputs_folder, logs_folder=logs_folder, project_root=self.project_root ) raise ValueError("This method should only be called for runs outside AzureML, when the logs folder is " "inside the outputs folder.") class WorkflowParams(param.Parameterized): """ This class contains all parameters that affect how the whole training and testing workflow is executed. """ random_seed: int = param.Integer(42, doc="The seed to use for all random number generators.") number_of_cross_validation_splits: int = param.Integer(0, bounds=(0, None), doc="Number of cross validation splits for k-fold cross " "validation") cross_validation_split_index: int = param.Integer(DEFAULT_CROSS_VALIDATION_SPLIT_INDEX, bounds=(-1, None), doc="The index of the cross validation fold this model is " "associated with when performing k-fold cross validation") perform_training_set_inference: bool = \ param.Boolean(False, doc="If True, run full image inference on the training set at the end of training. If False and " "perform_validation_and_test_set_inference is True (default), only run inference on " "validation and test set. If both flags are False do not run inference.") perform_validation_and_test_set_inference: bool = \ param.Boolean(True, doc="If True (default), run full image inference on validation and test set after training.") weights_url: str = param.String(doc="If provided, a url from which weights will be downloaded and used for model " "initialization.") local_weights_path: Optional[Path] = param.ClassSelector(class_=Path, default=None, allow_None=True, doc="The path to the weights to use for model " "initialization, when training outside AzureML.") generate_report: bool = param.Boolean(default=True, doc="If True (default), write a modelling report in HTML format. If False," "do not write that report.") # The default multiprocessing start_method in both PyTorch and the Python standard library is "fork" for Linux and # "spawn" (the only available method) for Windows. There is some evidence that using "forkserver" on Linux # can reduce the chance of stuck jobs. multiprocessing_start_method: MultiprocessingStartMethod = \ param.ClassSelector(class_=MultiprocessingStartMethod, default=(MultiprocessingStartMethod.spawn if is_windows() else MultiprocessingStartMethod.fork), doc="Method to be used to start child processes in pytorch. Should be one of forkserver, " "fork or spawn. If not specified, fork is used on Linux and spawn on Windows. " "Set to forkserver as a possible remedy for stuck jobs.") monitoring_interval_seconds: int = param.Integer(0, doc="Seconds delay between logging GPU/CPU resource " "statistics. If 0 or less, do not log any resource " "statistics.") regression_test_folder: Optional[Path] = \ param.ClassSelector(class_=Path, default=None, allow_None=True, doc="A path to a folder that contains a set of files. At the end of training and " "model evaluation, all files given in that folder must be present in the job's output " "folder, and their contents must match exactly. When running in AzureML, you need to " "ensure that this folder is part of the snapshot that gets uploaded. The path should " "be relative to the repository root directory.") def validate(self) -> None: if self.weights_url and self.local_weights_path: raise ValueError("Cannot specify both local_weights_path and weights_url.") if self.number_of_cross_validation_splits == 1: raise ValueError("At least two splits required to perform cross validation, but got " f"{self.number_of_cross_validation_splits}. To train without cross validation, set " "number_of_cross_validation_splits=0.") if 0 < self.number_of_cross_validation_splits <= self.cross_validation_split_index: raise ValueError(f"Cross validation split index is out of bounds: {self.cross_validation_split_index}, " f"which is invalid for CV with {self.number_of_cross_validation_splits} splits.") elif self.number_of_cross_validation_splits == 0 and self.cross_validation_split_index != -1: raise ValueError(f"Cross validation split index must be -1 for a non cross validation run, " f"found number_of_cross_validation_splits = {self.number_of_cross_validation_splits} " f"and cross_validation_split_index={self.cross_validation_split_index}") @property def is_offline_run(self) -> bool: """ Returns True if the run is executing outside AzureML, or False if inside AzureML. """ return is_offline_run_context(RUN_CONTEXT) @property def perform_cross_validation(self) -> bool: """ True if cross validation will be be performed as part of the training procedure. :return: """ return self.number_of_cross_validation_splits > 1 def get_effective_random_seed(self) -> int: """ Returns the random seed set as part of this configuration. If the configuration corresponds to a cross validation split, then the cross validation fold index will be added to the set random seed in order to return the effective random seed. :return: """ seed = self.random_seed if self.perform_cross_validation: # offset the random seed based on the cross validation split index so each # fold has a different initial random state. seed += self.cross_validation_split_index return seed class DatasetParams(param.Parameterized): azure_dataset_id: str = param.String(doc="If provided, the ID of the dataset to use when running in AzureML. " "This dataset must exist as a folder of the same name in the 'datasets' " "container in the datasets storage account. This dataset will be mounted " "and made available at the 'local_dataset' path when running in AzureML.") local_dataset: Optional[Path] = \ param.ClassSelector(class_=Path, default=None, allow_None=True, doc="The path of the dataset to use, when training is running outside Azure.") extra_azure_dataset_ids: List[str] = \ param.List(default=[], allow_None=False, doc="This can be used to feed in additional datasets to your custom datamodules. These will be" "mounted and made available as a list of paths in 'extra_local_datasets' when running in AML.") extra_local_dataset_paths: List[Path] = param.List(class_=Path, default=[], allow_None=False, doc="This can be used to feed in additional datasets " "to your custom datamodules when running outside of Azure " "AML.") dataset_mountpoint: str = param.String(doc="The path at which the AzureML dataset should be made available via " "mounting or downloading. This only affects jobs running in AzureML." "If empty, use a random mount/download point.") extra_dataset_mountpoints: List[str] = \ param.List(default=[], allow_None=False, doc="The mounting points for the datasets given in extra_azure_dataset_ids, when running in " "AzureML. Use an empty string for all datasets where a randomly chosen mount/download point " "should be used.") def validate(self) -> None: if not self.azure_dataset_id and self.local_dataset is None: raise ValueError("Either of local_dataset or azure_dataset_id must be set.") if self.all_dataset_mountpoints() and len(self.all_azure_dataset_ids()) != len(self.all_dataset_mountpoints()): raise ValueError(f"Expected the number of azure datasets to equal the number of mountpoints, " f"got datasets [{','.join(self.all_azure_dataset_ids())}] " f"and mountpoints [{','.join(self.all_dataset_mountpoints())}]") def all_azure_dataset_ids(self) -> List[str]: """ Returns a list with all azure dataset IDs that are specified in self.azure_dataset_id and self.extra_azure_dataset_ids """ if not self.azure_dataset_id: return self.extra_azure_dataset_ids else: return [self.azure_dataset_id] + self.extra_azure_dataset_ids def all_dataset_mountpoints(self) -> List[str]: """ Returns a list with all dataset mount points that are specified in self.dataset_mountpoint and self.extra_dataset_mountpoints """ if not self.dataset_mountpoint: return self.extra_dataset_mountpoints else: return [self.dataset_mountpoint] + self.extra_dataset_mountpoints class OutputParams(param.Parameterized): output_to: str = param.String(default="", doc="If provided, the run outputs will be written to the given folder. If not " "provided, outputs will go into a subfolder of the project root folder.") file_system_config: DeepLearningFileSystemConfig = param.ClassSelector(default=DeepLearningFileSystemConfig(), class_=DeepLearningFileSystemConfig, instantiate=False, doc="File system related configs") _model_name: str = param.String("", doc="The human readable name of the model (for example, Liver). This is " "usually set from the class name.") @property def model_name(self) -> str: """ Gets the human readable name of the model (e.g., Liver). This is usually set from the class name. :return: A model name as a string. """ return self._model_name def set_output_to(self, output_to: PathOrString) -> None: """ Adjusts the file system settings in the present object such that all outputs are written to the given folder. :param output_to: The absolute path to a folder that should contain the outputs. """ if isinstance(output_to, Path): output_to = str(output_to) self.output_to = output_to self.create_filesystem() def create_filesystem(self, project_root: Path = fixed_paths.repository_root_directory()) -> None: """ Creates new file system settings (outputs folder, logs folder) based on the information stored in the present object. If any of the folders do not yet exist, they are created. :param project_root: The root folder for the codebase that triggers the training run. """ self.file_system_config = DeepLearningFileSystemConfig.create( project_root=project_root, model_name=self.model_name, is_offline_run=is_offline_run_context(RUN_CONTEXT), output_to=self.output_to ) @property def outputs_folder(self) -> Path: """Gets the full path in which the model outputs should be stored.""" return self.file_system_config.outputs_folder @property def logs_folder(self) -> Path: """Gets the full path in which the model logs should be stored.""" return self.file_system_config.logs_folder @property def checkpoint_folder(self) -> Path: """Gets the full path in which the model checkpoints should be stored during training.""" return self.outputs_folder / CHECKPOINT_FOLDER @property def visualization_folder(self) -> Path: """Gets the full path in which the visualizations notebooks should be saved during training.""" return self.outputs_folder / VISUALIZATION_FOLDER def get_path_to_checkpoint(self) -> Path: """ Returns the full path to a recovery checkpoint. """ return get_recovery_checkpoint_path(self.checkpoint_folder) def get_path_to_best_checkpoint(self) -> Path: """ Returns the full path to a checkpoint file that was found to be best during training, whatever criterion was applied there. """ return get_best_checkpoint_path(self.checkpoint_folder) class OptimizerParams(param.Parameterized): l_rate: float = param.Number(1e-4, doc="The initial learning rate", bounds=(0, None)) _min_l_rate: float = param.Number(0.0, doc="The minimum learning rate for the Polynomial and Cosine schedulers.", bounds=(0.0, None)) l_rate_scheduler: LRSchedulerType = param.ClassSelector(default=LRSchedulerType.Polynomial, class_=LRSchedulerType, instantiate=False, doc="Learning rate decay method (Cosine, Polynomial, " "Step, MultiStep or Exponential)") l_rate_exponential_gamma: float = param.Number(0.9, doc="Controls the rate of decay for the Exponential " "LR scheduler.") l_rate_step_gamma: float = param.Number(0.1, doc="Controls the rate of decay for the " "Step LR scheduler.") l_rate_step_step_size: int = param.Integer(50, bounds=(0, None), doc="The step size for Step LR scheduler") l_rate_multi_step_gamma: float = param.Number(0.1, doc="Controls the rate of decay for the " "MultiStep LR scheduler.") l_rate_multi_step_milestones: Optional[List[int]] = param.List(None, bounds=(1, None), allow_None=True, class_=int, doc="The milestones for MultiStep decay.") l_rate_polynomial_gamma: float = param.Number(1e-4, doc="Controls the rate of decay for the " "Polynomial LR scheduler.") l_rate_warmup: LRWarmUpType = param.ClassSelector(default=LRWarmUpType.NoWarmUp, class_=LRWarmUpType, instantiate=False, doc="The type of learning rate warm up to use. " "Can be NoWarmUp (default) or Linear.") l_rate_warmup_epochs: int = param.Integer(0, bounds=(0, None), doc="Number of warmup epochs (linear warmup) before the " "scheduler starts decaying the learning rate. " "For example, if you are using MultiStepLR with " "milestones [50, 100, 200] and warmup epochs = 100, warmup " "will last for 100 epochs and the first decay of LR " "will happen on epoch 150") optimizer_type: OptimizerType = param.ClassSelector(default=OptimizerType.Adam, class_=OptimizerType, instantiate=False, doc="The optimizer_type to use") opt_eps: float = param.Number(1e-4, doc="The epsilon parameter of RMSprop or Adam") rms_alpha: float = param.Number(0.9, doc="The alpha parameter of RMSprop") adam_betas: TupleFloat2 = param.NumericTuple((0.9, 0.999), length=2, doc="The betas parameter of Adam, default is (0.9, 0.999)") momentum: float = param.Number(0.6, doc="The momentum parameter of the optimizers") weight_decay: float = param.Number(1e-4, doc="The weight decay used to control L2 regularization") def validate(self) -> None: if len(self.adam_betas) < 2: raise ValueError( "The adam_betas parameter should be the coefficients used for computing running averages of " "gradient and its square") if self.l_rate_scheduler == LRSchedulerType.MultiStep: if not self.l_rate_multi_step_milestones: raise ValueError("Must specify l_rate_multi_step_milestones to use LR scheduler MultiStep") if sorted(set(self.l_rate_multi_step_milestones)) != self.l_rate_multi_step_milestones: raise ValueError("l_rate_multi_step_milestones must be a strictly increasing list") if self.l_rate_multi_step_milestones[0] <= 0: raise ValueError("l_rate_multi_step_milestones cannot be negative or 0.") @property def min_l_rate(self) -> float: return self._min_l_rate @min_l_rate.setter def min_l_rate(self, value: float) -> None: if value > self.l_rate: raise ValueError("l_rate must be >= min_l_rate, found: {}, {}".format(self.l_rate, value)) self._min_l_rate = value class TrainerParams(param.Parameterized): num_epochs: int = param.Integer(100, bounds=(1, None), doc="Number of epochs to train.") recovery_checkpoint_save_interval: int = param.Integer(10, bounds=(0, None), doc="Save epoch checkpoints when epoch number is a multiple " "of recovery_checkpoint_save_interval. The intended use " "is to allow restore training from failed runs.") recovery_checkpoints_save_last_k: int = param.Integer(default=1, bounds=(-1, None), doc="Number of recovery checkpoints to keep. Recovery " "checkpoints will be stored as recovery_epoch:{" "epoch}.ckpt. If set to -1 keep all recovery " "checkpoints.") detect_anomaly: bool = param.Boolean(False, doc="If true, test gradients for anomalies (NaN or Inf) during " "training.") use_mixed_precision: bool = param.Boolean(False, doc="If true, mixed precision training is activated during " "training.") max_num_gpus: int = param.Integer(default=-1, doc="The maximum number of GPUS to use. If set to a value < 0, use" "all available GPUs. In distributed training, this is the " "maximum number of GPUs per node.") pl_progress_bar_refresh_rate: Optional[int] = \ param.Integer(default=None, doc="PyTorch Lightning trainer flag 'progress_bar_refresh_rate': How often to refresh progress " "bar (in steps). Value 0 disables progress bar. Value None chooses automatically.") pl_num_sanity_val_steps: int = \ param.Integer(default=0, doc="PyTorch Lightning trainer flag 'num_sanity_val_steps': Number of validation " "steps to run before training, to identify possible problems") pl_deterministic: bool = \ param.Integer(default=True, doc="Controls the PyTorch Lightning trainer flags 'deterministic' and 'benchmark'. If " "'pl_deterministic' is True, results are perfectly reproducible. If False, they are not, but " "you may see training speed increases.") pl_find_unused_parameters: bool = \ param.Boolean(default=False, doc="Controls the PyTorch Lightning flag 'find_unused_parameters' for the DDP plugin. " "Setting it to True comes with a performance hit.") @property def use_gpu(self) -> bool: """ Returns True if a GPU is available, and the self.max_num_gpus flag allows it to be used. Returns False otherwise (i.e., if there is no GPU available, or self.max_num_gpus==0) """ if self.max_num_gpus == 0: return False from InnerEye.ML.utils.ml_util import is_gpu_available return is_gpu_available() @property def num_gpus_per_node(self) -> int: """ Computes the number of gpus to use for each node: either the number of gpus available on the device or restrict it to max_num_gpu, whichever is smaller. Returns 0 if running on a CPU device. """ import torch num_gpus = torch.cuda.device_count() if self.use_gpu else 0 logging.info(f"Number of available GPUs: {num_gpus}") if 0 <= self.max_num_gpus < num_gpus: num_gpus = self.max_num_gpus logging.info(f"Restricting the number of GPUs to {num_gpus}") elif self.max_num_gpus > num_gpus: logging.warning(f"You requested max_num_gpus {self.max_num_gpus} but there are only {num_gpus} available.") return num_gpus class DeepLearningConfig(WorkflowParams, DatasetParams, OutputParams, OptimizerParams, TrainerParams, GenericConfig): """ A class that holds all settings that are shared across segmentation models and regression/classification models. """ _model_category: ModelCategory = param.ClassSelector(class_=ModelCategory, doc="The high-level model category described by this config.") num_dataload_workers: int = param.Integer(2, bounds=(0, None), doc="The number of data loading workers (processes). When set to 0," "data loading is running in the same process (no process startup " "cost, hence good for use in unit testing. However, it " "does not give the same result as running with 1 worker process)") shuffle: bool = param.Boolean(True, doc="If true, the dataset will be shuffled randomly during training.") train_batch_size: int = param.Integer(4, bounds=(0, None), doc="The number of crops that make up one minibatch during training.") use_model_parallel: bool = param.Boolean(False, doc="If true, neural network model is partitioned across all " "available GPUs to fit in a large model. It shall not be used " "together with data parallel.") pin_memory: bool = param.Boolean(True, doc="Value of pin_memory argument to DataLoader") restrict_subjects: Optional[str] = \ param.String(doc="Use at most this number of subjects for train, val, or test set (must be > 0 or None). " "If None, do not modify the train, val, or test sets. If a string of the form 'i,j,k' where " "i, j and k are integers, modify just the corresponding sets (i for train, j for val, k for " "test). If any of i, j or j are missing or are negative, do not modify the corresponding " "set. Thus a value of 20,,5 means limit training set to 20, keep validation set as is, and " "limit test set to 5. If any of i,j,k is '+', discarded members of the other sets are added " "to that set.", allow_None=True) _dataset_data_frame: Optional[DataFrame] = \ param.DataFrame(default=None, doc="The dataframe that contains the dataset for the model. This is usually read from disk " "from dataset.csv") avoid_process_spawn_in_data_loaders: bool = \ param.Boolean(is_windows(), doc="If True, use a data loader logic that avoid spawning new processes at the " "start of each epoch. This speeds up training on both Windows and Linux, but" "on Linux, inference is currently disabled as the data loaders hang. " "If False, use the default data loader logic that starts new processes for " "each epoch.") max_batch_grad_cam: int = param.Integer(default=0, doc="Max number of validation batches for which " "to save gradCam images. By default " "visualizations are saved for all images " "in the validation set") label_smoothing_eps: float = param.Number(0.0, bounds=(0.0, 1.0), doc="Target smoothing value for label smoothing") log_to_parent_run: bool = param.Boolean(default=False, doc="If true, hyperdrive child runs will log their metrics" "to their parent run.") use_imbalanced_sampler_for_training: bool = param.Boolean(default=False, doc="If True, use an imbalanced sampler during training.") drop_last_batch_in_training: bool = param.Boolean(default=False, doc="If True, drop the last incomplete batch during" "training. If all batches are complete, no batch gets " "dropped. If False, keep all batches.") log_summaries_to_files: bool = param.Boolean( default=True, doc="If True, model summaries are logged to files in logs/model_summaries; " "if False, to stdout or driver log") mean_teacher_alpha: float = param.Number(bounds=(0, 1), allow_None=True, default=None, doc="If this value is set, the mean teacher model will be computed. " "Currently only supported for scalar models. In this case, we only " "report metrics and cross-validation results for " "the mean teacher model. Likewise the model used for inference " "is the mean teacher model. The student model is only used for " "training. Alpha is the momentum term for weight updates of the mean " "teacher model. After each training step the mean teacher model " "weights are updated using mean_teacher_" "weight = alpha * (mean_teacher_weight) " " + (1-alpha) * (current_student_weights). ") #: Name of the csv file providing information on the dataset to be used. dataset_csv: str = param.String( DATASET_CSV_FILE_NAME, doc="Name of the CSV file providing information on the dataset to be used. " "For segmentation models, this file must contain at least the fields: `subject`, `channel`, `filePath`.") def __init__(self, **params: Any) -> None: self._model_name = type(self).__name__ # This should be annotated as torch.utils.data.Dataset, but we don't want to import torch here. self._datasets_for_training: Optional[Dict[ModelExecutionMode, Any]] = None self._datasets_for_inference: Optional[Dict[ModelExecutionMode, Any]] = None self.recovery_start_epoch = 0 super().__init__(throw_if_unknown_param=True, **params) logging.info("Creating the default output folder structure.") self.create_filesystem(fixed_paths.repository_root_directory()) # Disable the PL progress bar because all InnerEye models have their own console output self.pl_progress_bar_refresh_rate = 0 self.extra_downloaded_run_id: Optional[Any] = None def validate(self) -> None: """ Validates the parameters stored in the present object. """ WorkflowParams.validate(self) OptimizerParams.validate(self) DatasetParams.validate(self) @property def model_category(self) -> ModelCategory: """ Gets the high-level model category that this configuration objects represents (segmentation or scalar output). """ return self._model_category @property def is_segmentation_model(self) -> bool: """ Returns True if the present model configuration belongs to the high-level category ModelCategory.Segmentation. """ return self.model_category == ModelCategory.Segmentation @property def is_scalar_model(self) -> bool: """ Returns True if the present model configuration belongs to the high-level category ModelCategory.Scalar i.e. for Classification or Regression models. """ return self.model_category.is_scalar @property def compute_grad_cam(self) -> bool: return self.max_batch_grad_cam > 0 @property def dataset_data_frame(self) -> Optional[DataFrame]: """ Gets the pandas data frame that the model uses. :return: """ return self._dataset_data_frame @dataset_data_frame.setter def dataset_data_frame(self, data_frame: Optional[DataFrame]) -> None: """ Sets the pandas data frame that the model uses. :param data_frame: The data frame to set. """ self._dataset_data_frame = data_frame def get_train_epochs(self) -> List[int]: """ Returns the epochs for which training will be performed. :return: """ return list(range(self.recovery_start_epoch + 1, self.num_epochs + 1)) def get_total_number_of_training_epochs(self) -> int: """ Returns the number of epochs for which a model will be trained. :return: """ return len(self.get_train_epochs()) def get_total_number_of_validation_epochs(self) -> int: """ Returns the number of epochs for which a model will be validated. :return: """ return self.get_total_number_of_training_epochs() @property def compute_mean_teacher_model(self) -> bool: """ Returns True if the mean teacher model should be computed. """ return self.mean_teacher_alpha is not None def __str__(self) -> str: """Returns a string describing the present object, as a list of key: value strings.""" arguments_str = "\nArguments:\n" # Avoid callable params, the bindings that are printed out can be humongous. # Avoid dataframes skip_params = {name for name, value in self.param.params().items() if isinstance(value, (param.Callable, param.DataFrame))} for key, value in self.param.get_param_values(): if key not in skip_params: arguments_str += f"\t{key:40}: {value}\n" return arguments_str def load_checkpoint_and_modify(self, path_to_checkpoint: Path) -> Dict[str, Any]: """ By default, uses torch.load to read and return the state dict from the checkpoint file, and does no modification of the checkpoint file. Overloading this function: When weights_url or local_weights_path is set, the file downloaded may not be in the exact format expected by the model's load_state_dict() - for example, pretrained Imagenet weights for networks may have mismatched layer names in different implementations. In such cases, you can overload this function to extract the state dict from the checkpoint. NOTE: The model checkpoint will be loaded using the torch function load_state_dict() with argument strict=False, so extra care needs to be taken to check that the state dict is valid. Check the logs for warnings related to missing and unexpected keys. See https://pytorch.org/tutorials/beginner/saving_loading_models.html#warmstarting-model-using-parameters -from-a-different-model for an explanation on why strict=False is useful when loading parameters from other models. :param path_to_checkpoint: Path to the checkpoint file. :return: Dictionary with model and optimizer state dicts. The dict should have at least the following keys: 1. Key ModelAndInfo.MODEL_STATE_DICT_KEY and value set to the model state dict. 2. Key ModelAndInfo.EPOCH_KEY and value set to the checkpoint epoch. Other (optional) entries corresponding to keys ModelAndInfo.OPTIMIZER_STATE_DICT_KEY and ModelAndInfo.MEAN_TEACHER_STATE_DICT_KEY are also supported. """ return load_checkpoint(path_to_checkpoint=path_to_checkpoint, use_gpu=self.use_gpu) def load_checkpoint(path_to_checkpoint: Path, use_gpu: bool = True) -> Dict[str, Any]: """ Loads a Torch checkpoint from the given file. If use_gpu==False, map all parameters to the GPU, otherwise left the device of all parameters unchanged. """ import torch map_location = None if use_gpu else 'cpu' checkpoint = torch.load(str(path_to_checkpoint), map_location=map_location) return checkpoint
57.374674
120
0.602266
2aef22d4627d38e20852c7d1e304430948bd3192
3,940
py
Python
tests/unit_tests/homeassistant/test_frunk_lock.py
ehendrix23/teslajsonpy
7e5a86acc053df4e990bfece4db37d2cbb6ac5e0
[ "Apache-2.0" ]
null
null
null
tests/unit_tests/homeassistant/test_frunk_lock.py
ehendrix23/teslajsonpy
7e5a86acc053df4e990bfece4db37d2cbb6ac5e0
[ "Apache-2.0" ]
null
null
null
tests/unit_tests/homeassistant/test_frunk_lock.py
ehendrix23/teslajsonpy
7e5a86acc053df4e990bfece4db37d2cbb6ac5e0
[ "Apache-2.0" ]
null
null
null
"""Test frunk lock.""" import pytest import time from teslajsonpy.controller import Controller from teslajsonpy.homeassistant.trunk import FrunkLock from tests.tesla_mock import TeslaMock, VIN, CAR_ID LAST_UPDATE_TIME = time.time() def test_has_battery(monkeypatch): """Test has_battery().""" _mock = TeslaMock(monkeypatch) _controller = Controller(None) _data = _mock.data_request_vehicle() _lock = FrunkLock(_data, _controller) assert not _lock.has_battery() def test_is_locked_on_init(monkeypatch): """Test is_locked() after initialization.""" _mock = TeslaMock(monkeypatch) _controller = Controller(None) _data = _mock.data_request_vehicle() _lock = FrunkLock(_data, _controller) assert _lock is not None assert not _lock.is_locked() @pytest.mark.asyncio async def test_is_locked_after_update(monkeypatch): """Test is_locked() after an update.""" _mock = TeslaMock(monkeypatch) _controller = Controller(None) _controller.set_id_vin(CAR_ID, VIN) _controller.set_last_update_time(vin=VIN, timestamp=LAST_UPDATE_TIME) _data = _mock.data_request_vehicle() _data["vehicle_state"]["ft"] = 0 _lock = FrunkLock(_data, _controller) _controller.set_state_params(vin=VIN, params=_data["vehicle_state"]) await _lock.async_update() assert _lock is not None assert _lock.is_locked() @pytest.mark.asyncio async def test_unlock(monkeypatch): """Test unlock().""" _mock = TeslaMock(monkeypatch) _controller = Controller(None) _controller.set_id_vin(CAR_ID, VIN) _controller.set_last_update_time(vin=VIN, timestamp=LAST_UPDATE_TIME) _data = _mock.data_request_vehicle() _data["vehicle_state"]["ft"] = 0 _lock = FrunkLock(_data, _controller) _controller.set_state_params(vin=VIN, params=_data["vehicle_state"]) await _lock.async_update() await _lock.unlock() assert _lock is not None assert not _lock.is_locked() @pytest.mark.asyncio async def test_unlock_already_unlocked(monkeypatch): """Test unlock() when already unlocked.""" _mock = TeslaMock(monkeypatch) _controller = Controller(None) _controller.set_id_vin(CAR_ID, VIN) _controller.set_last_update_time(vin=VIN, timestamp=LAST_UPDATE_TIME) _data = _mock.data_request_vehicle() _data["vehicle_state"]["ft"] = 123 _lock = FrunkLock(_data, _controller) _controller.set_state_params(vin=VIN, params=_data["vehicle_state"]) await _lock.async_update() await _lock.unlock() assert _lock is not None assert not _lock.is_locked() # Reset to default for next tests _data["vehicle_state"]["ft"] = 0 @pytest.mark.asyncio async def test_lock(monkeypatch): """Test lock().""" _mock = TeslaMock(monkeypatch) _controller = Controller(None) _controller.set_id_vin(CAR_ID, VIN) _controller.set_last_update_time(vin=VIN, timestamp=LAST_UPDATE_TIME) _data = _mock.data_request_vehicle() _data["vehicle_state"]["ft"] = 123 _lock = FrunkLock(_data, _controller) _controller.set_state_params(vin=VIN, params=_data["vehicle_state"]) await _lock.async_update() await _lock.lock() assert _lock is not None assert _lock.is_locked() # Reset to default for next tests _data["vehicle_state"]["ft"] = 0 @pytest.mark.asyncio async def test_lock_already_locked(monkeypatch): """Test lock() when already locked.""" _mock = TeslaMock(monkeypatch) _controller = Controller(None) _controller.set_id_vin(CAR_ID, VIN) _controller.set_last_update_time(vin=VIN, timestamp=LAST_UPDATE_TIME) _data = _mock.data_request_vehicle() _data["vehicle_state"]["ft"] = 0 _lock = FrunkLock(_data, _controller) _controller.set_state_params(vin=VIN, params=_data["vehicle_state"]) await _lock.async_update() await _lock.lock() assert _lock is not None assert _lock.is_locked()
25.921053
73
0.721574
761697770b7ee8d113906fc6bd9849589e1c7dc1
2,565
py
Python
docs/tools/purge_cache_for_changed_files.py
amosnothing/ClickHouse
cf49a839806290c41a3a1ccd5808687d7ccaca78
[ "Apache-2.0" ]
8
2019-06-04T02:50:13.000Z
2022-02-10T06:46:51.000Z
docs/tools/purge_cache_for_changed_files.py
amosnothing/ClickHouse
cf49a839806290c41a3a1ccd5808687d7ccaca78
[ "Apache-2.0" ]
16
2021-06-07T21:32:30.000Z
2022-03-31T21:08:29.000Z
docs/tools/purge_cache_for_changed_files.py
amosnothing/ClickHouse
cf49a839806290c41a3a1ccd5808687d7ccaca78
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python3 import subprocess import requests import os import time FNAME_START = "+++" CLOUDFLARE_URL = "https://api.cloudflare.com/client/v4/zones/4fc6fb1d46e87851605aa7fa69ca6fe0/purge_cache" # we have changes in revision and commit sha on all pages # so such changes have to be ignored MIN_CHANGED_WORDS = 4 def collect_changed_files(): proc = subprocess.Popen("git diff HEAD~1 --word-diff=porcelain | grep -e '^+[^+]\|^\-[^\-]\|^\+\+\+'", stdout=subprocess.PIPE, shell=True) changed_files = [] current_file_name = "" changed_words = [] while True: line = proc.stdout.readline().decode("utf-8").strip() if not line: break if FNAME_START in line: if changed_words: if len(changed_words) > MIN_CHANGED_WORDS: changed_files.append(current_file_name) changed_words = [] current_file_name = line[6:] else: changed_words.append(line) return changed_files def filter_and_transform_changed_files(changed_files, base_domain): result = [] for f in changed_files: if f.endswith(".html"): result.append(base_domain + f.replace("index.html", "")) return result def convert_to_dicts(changed_files, batch_size): result = [] current_batch = {"files": []} for f in changed_files: if len(current_batch["files"]) >= batch_size: result.append(current_batch) current_batch = {"files": []} current_batch["files"].append(f) if current_batch["files"]: result.append(current_batch) return result def post_data(prepared_batches, token): headers = {"Authorization": "Bearer {}".format(token)} for batch in prepared_batches: print("Pugring cache for", ", ".join(batch["files"])) response = requests.post(CLOUDFLARE_URL, json=batch, headers=headers) response.raise_for_status() time.sleep(3) if __name__ == "__main__": token = os.getenv("CLOUDFLARE_TOKEN") if not token: raise Exception("Env variable CLOUDFLARE_TOKEN is empty") base_domain = os.getenv("BASE_DOMAIN", "https://content.clickhouse.tech/") changed_files = collect_changed_files() print("Found", len(changed_files), "changed files") filtered_files = filter_and_transform_changed_files(changed_files, base_domain) print("Files rest after filtering", len(filtered_files)) prepared_batches = convert_to_dicts(filtered_files, 25) post_data(prepared_batches, token)
32.468354
142
0.661598
4a9c6ab04b03bb899829b621a6a70d8969931f8c
1,256
py
Python
website/instalacion.py
RHoK-Bilbao/desahucios
1815f7398fa7e7f2182d76bb2d3a0b13869bd8c7
[ "BSD-2-Clause" ]
null
null
null
website/instalacion.py
RHoK-Bilbao/desahucios
1815f7398fa7e7f2182d76bb2d3a0b13869bd8c7
[ "BSD-2-Clause" ]
null
null
null
website/instalacion.py
RHoK-Bilbao/desahucios
1815f7398fa7e7f2182d76bb2d3a0b13869bd8c7
[ "BSD-2-Clause" ]
null
null
null
import urllib2 import os import getpass import traceback import os import sys os.system("pip install -r requirements.txt") if os.path.exists("rhok_desahucios.sql"): rhok_db = open("rhok_desahucios.sql").read() else: rhok_db = urllib2.urlopen("http://dev.morelab.deusto.es/rhok_desahucios.sql").read() open("rhok_desahucios.sql",'w').write(rhok_db) user = "root" password = getpass.getpass("Dame password mysql") import pymysql as dbi print "Creating database..." try: connection = dbi.connect(user=user, passwd=password, host="127.0.0.1") cursor = connection.cursor() if sys.platform.startswith('linux'): cursor.execute("""CREATE DATABASE IF NOT EXISTS `rhok_desahucios` ; CREATE USER 'rhok'@'localhost' IDENTIFIED BY 'rhok'; GRANT ALL PRIVILEGES ON `rhok_desahucios`.* TO `rhok`@`localhost`;""") else: cursor.execute("""CREATE DATABASE IF NOT EXISTS `rhok_desahucios` ; CREATE USER 'rhok' IDENTIFIED BY 'rhok'; GRANT ALL PRIVILEGES ON `rhok_desahucios`.* TO `rhok`;""") connection.commit() cursor.close() connection.close() except: traceback.print_exc() print "done" print "Adding content..." os.system("mysql -urhok -p rhok_desahucios < rhok_desahucios.sql")
29.209302
88
0.696656
b50359b5096ab54e8f8825a460173cb40714e4d5
255
py
Python
scripts/extract_author.py
UO-CIS-322/grading
d008f861a332dd20270ef5dcb03fd730dc5cf2cc
[ "BSD-2-Clause" ]
1
2017-10-31T07:22:11.000Z
2017-10-31T07:22:11.000Z
scripts/extract_author.py
UO-CIS-322/grading
d008f861a332dd20270ef5dcb03fd730dc5cf2cc
[ "BSD-2-Clause" ]
1
2019-10-27T06:28:23.000Z
2019-10-27T06:28:23.000Z
scripts/extract_author.py
UO-CIS-322/grading
d008f861a332dd20270ef5dcb03fd730dc5cf2cc
[ "BSD-2-Clause" ]
2
2016-11-17T01:04:27.000Z
2017-10-09T17:04:24.000Z
""" Extract the 'author = ' line from a credentials file. File must have fixed name credentials.py, in this directory """ try: import credentials print(credentials.author) except Exception as err: print("***Unable to extract author line***")
25.5
59
0.709804
7c6990006ee919e5e48f99a4eb6018fe5e944e71
782
py
Python
NegNumsMatrix/NegNumsMatrix.py
javiaspiroz/ProgramacionConcurrenteDistribuida
3c998893b47fc739c7755ce510198b448bed88b5
[ "MIT" ]
null
null
null
NegNumsMatrix/NegNumsMatrix.py
javiaspiroz/ProgramacionConcurrenteDistribuida
3c998893b47fc739c7755ce510198b448bed88b5
[ "MIT" ]
null
null
null
NegNumsMatrix/NegNumsMatrix.py
javiaspiroz/ProgramacionConcurrenteDistribuida
3c998893b47fc739c7755ce510198b448bed88b5
[ "MIT" ]
null
null
null
def neg(a): acu=0 fila=0 colu=len(a)-1 while colu>=0 and fila<len(a): if a[fila][colu]<0: acu+=(colu+1) fila+=1 else: colu-=1 return acu print(neg( [[-8,-6,-4,0], [-3,-3,1,0], [-1,1,1,1], [1,2,4,9]])) #sol 6 print(neg( [[-12,-11,-10,-9,-8,-7,-6,-5,-4,-3,-2,-1,0],[-10,-9,-8,-7,-6,-5,-4,-3,-2,-1,0,1,2],[-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4], [-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6],[-4,-3,-2,-1,0,1,2,3,4,5,6,7,8],[-2,-1,0,1,2,3,4,5,6,7,8,9,10], [0,1,2,3,4,5,6,7,8,9,10,11,12],[2,3,4,5,6,7,8,9,10,11,12,13,14],[4,5,6,7,8,9,10,11,12,13,14,15,16], [6,7,8,9,10,11,12,13,14,15,16,17,18],[8,9,10,11,12,13,14,15,16,17,18,19,20],[10,11,12,13,14,15,16,17,18,19,20,21,22], [12,13,14,15,16,17,18,19,20,21,22,23,24]])) #sol 42
30.076923
119
0.466752
b207bf265aa7adbc3ceb590690b0777377bf4ac2
1,616
py
Python
software/raspberrypi/eyellowcam/lib/osutil.py
andidevel/eyellow
6d98917521943145aee30025d2b6a8314a154032
[ "MIT" ]
null
null
null
software/raspberrypi/eyellowcam/lib/osutil.py
andidevel/eyellow
6d98917521943145aee30025d2b6a8314a154032
[ "MIT" ]
null
null
null
software/raspberrypi/eyellowcam/lib/osutil.py
andidevel/eyellow
6d98917521943145aee30025d2b6a8314a154032
[ "MIT" ]
null
null
null
# MIT License # Copyright (c) 2021 Anderson R. Livramento # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. import os import pwd import subprocess def create_process(cmd, username=None): def demote(user_id, group_id): def result(): os.setgid(group_id) os.setuid(user_id) return result fn = None if username: user = pwd.getpwnam(username) fn = demote(user.pw_uid, user.pw_gid) return subprocess.Popen(cmd, stderr=subprocess.PIPE, stdout=subprocess.PIPE, preexec_fn=fn, shell=True) def shutdown(): create_process('shutdown -h now')
37.581395
107
0.741955
ae6c08670abe99491400e1062e7f3c4b184e927d
292
py
Python
Docs/Examples/talks/interpol_05.py
Vectro-Type-Foundry/robofab
cd65d78292d24358c98dce53d283314cdc85878e
[ "BSD-3-Clause" ]
61
2015-01-17T10:15:45.000Z
2018-12-02T13:53:02.000Z
Docs/Examples/talks/interpol_05.py
Vectro-Type-Foundry/robofab
cd65d78292d24358c98dce53d283314cdc85878e
[ "BSD-3-Clause" ]
37
2015-01-05T23:44:56.000Z
2018-03-16T19:05:28.000Z
Docs/Examples/talks/interpol_05.py
Vectro-Type-Foundry/robofab
cd65d78292d24358c98dce53d283314cdc85878e
[ "BSD-3-Clause" ]
25
2015-01-08T19:49:36.000Z
2018-10-29T00:36:46.000Z
# robothon06 # prepare glyph for interpolation # move startpoints # fix directions # fix contour order from robofab.world import CurrentFont f = CurrentFont() glyph = f["A"] glyph.autoContourOrder() glyph.correctDirection() for c in glyph.contours: c.autoStartSegment() glyph.update()
17.176471
37
0.760274
2d7ff60bf4f042b274ac417ac8ceec7c641ae99b
930
py
Python
Baisc_Calculator/Calculator.py
cy275/Statistics_Calculator
c98dec271df98465a87180a170a786bcf817800c
[ "MIT" ]
null
null
null
Baisc_Calculator/Calculator.py
cy275/Statistics_Calculator
c98dec271df98465a87180a170a786bcf817800c
[ "MIT" ]
null
null
null
Baisc_Calculator/Calculator.py
cy275/Statistics_Calculator
c98dec271df98465a87180a170a786bcf817800c
[ "MIT" ]
null
null
null
from Baisc_Calculator.Addition import addition from Baisc_Calculator.Subtraction import subtraction from Baisc_Calculator.Multiplication import multiplication from Baisc_Calculator.Division import division from Baisc_Calculator.Square import square from Baisc_Calculator.Square_Root import square_root class Calculator: result = 0 def __init__(self): pass def add(self, a, b): self.result = addition(a, b) return self.result def subtract(self, a, b): self.result = subtraction(a, b) return self.result def multiply(self, a, b): self.result = multiplication(a, b) return self.result def divide(self, a, b): self.result = division(a, b) return self.result def square(self, a): self.result = square(a) return self.result def sqrt(self, a): self.result = square_root(a) return self.result
24.473684
58
0.670968
f780b32d79288a2d4dd9a83e7905e7c6ab230390
315
py
Python
DeleteTriggerFunc/__init__.py
jplck/dnsresolver
c02ed41bc2089df1f3dc28ca8af44d704d13d8a5
[ "MIT" ]
null
null
null
DeleteTriggerFunc/__init__.py
jplck/dnsresolver
c02ed41bc2089df1f3dc28ca8af44d704d13d8a5
[ "MIT" ]
null
null
null
DeleteTriggerFunc/__init__.py
jplck/dnsresolver
c02ed41bc2089df1f3dc28ca8af44d704d13d8a5
[ "MIT" ]
null
null
null
import logging import azure.functions as func def main(req: func.HttpRequest) -> func.HttpResponse: return func.HttpResponse( "This HTTP triggered function executed successfully. Pass a name in the query string or in the request body for a personalized response.", status_code=200 )
26.25
146
0.72381
2eac9572643d1107b74ec3027c6ea5264f43b1c0
622
py
Python
apps/rent/migrations/0002_auto_20210221_0609.py
christianalcantara/book_backend
5c98aad01a1ea7d7985cafa14c6de7eb3d0b48af
[ "MIT" ]
1
2021-02-23T00:55:14.000Z
2021-02-23T00:55:14.000Z
apps/rent/migrations/0002_auto_20210221_0609.py
christianalcantara/book_backend
5c98aad01a1ea7d7985cafa14c6de7eb3d0b48af
[ "MIT" ]
1
2021-02-23T00:33:05.000Z
2021-02-23T00:33:05.000Z
apps/rent/migrations/0002_auto_20210221_0609.py
christianalcantara/book_backend
5c98aad01a1ea7d7985cafa14c6de7eb3d0b48af
[ "MIT" ]
null
null
null
# Generated by Django 3.1.2 on 2021-02-21 06:09 import django.db.models.deletion from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ("book", "0002_auto_20210219_2129"), ("rent", "0001_initial"), ] operations = [ migrations.AlterField( model_name="catalog", name="book", field=models.OneToOneField( on_delete=django.db.models.deletion.PROTECT, related_name="catalog", to="book.book", verbose_name="Book", ), ), ]
24.88
60
0.55627
dbad735ad6d5e59a683b52ee9bb8dfaa4c4ccc10
4,550
py
Python
tests/test_utils.py
ebelter/mgi
37ea9cbddb3d64d3f0b9db4357f76f80a16d52e5
[ "MIT" ]
null
null
null
tests/test_utils.py
ebelter/mgi
37ea9cbddb3d64d3f0b9db4357f76f80a16d52e5
[ "MIT" ]
null
null
null
tests/test_utils.py
ebelter/mgi
37ea9cbddb3d64d3f0b9db4357f76f80a16d52e5
[ "MIT" ]
null
null
null
import click, os, pathlib, tempfile, unittest from click.testing import CliRunner class UtilsCliTest(unittest.TestCase): def setUp(self): self.temp_d = tempfile.TemporaryDirectory() self.db_fn = os.path.join(self.temp_d.name, "test.db") self.db_url = "sqlite:///" + self.db_fn os.environ["SQLALCHEMY_DATABASE_URI"] = self.db_url def tearDown(self): self.temp_d.cleanup() def test_utils_cli(self): from mgi.cli import cli from mgi.utils import utils_cli, utils_db_cli, db_create_cmd runner = CliRunner() # cli utils result = runner.invoke(cli, ["utils"]) self.assertEqual(result.exit_code, 0) result = runner.invoke(cli, ["utils", "-h"]) self.assertEqual(result.exit_code, 0) result = runner.invoke(cli, ["utils", "--help"]) self.assertEqual(result.exit_code, 0) # utils_cli result = runner.invoke(utils_cli, []) self.assertEqual(result.exit_code, 0) result = runner.invoke(utils_cli, ["--help"]) self.assertEqual(result.exit_code, 0) # cli utils db result = runner.invoke(cli, ["utils", "db"]) self.assertEqual(result.exit_code, 0) result = runner.invoke(cli, ["utils", "db", "-h"]) self.assertEqual(result.exit_code, 0) result = runner.invoke(cli, ["utils", "db", "--help"]) self.assertEqual(result.exit_code, 0) # utils_cli db result = runner.invoke(utils_db_cli, []) self.assertEqual(result.exit_code, 0) result = runner.invoke(utils_db_cli, ["--help"]) self.assertEqual(result.exit_code, 0) # cli utils db create result = runner.invoke(cli, ["utils", "db", "create", "-h"]) self.assertEqual(result.exit_code, 0) result = runner.invoke(cli, ["utils", "db", "create", "--help"]) self.assertEqual(result.exit_code, 0) result = runner.invoke(cli, ["utils", "db", "create"]) self.assertEqual(result.exit_code, 2) # utils_db_cli create result = runner.invoke(utils_db_cli, ["create"]) self.assertEqual(result.exit_code, 2) result = runner.invoke(utils_db_cli, ["create", "--help"]) self.assertEqual(result.exit_code, 0) # db_create_cmd result = runner.invoke(db_create_cmd, []) self.assertEqual(result.exit_code, 2) result = runner.invoke(db_create_cmd, ["--help"]) self.assertEqual(result.exit_code, 0) def test_create_db(self): from mgi.utils import create_db create_db(self.db_url) self.assertTrue(os.path.exists(self.db_fn)) def test_db_create_cmd(self): from mgi.utils import db_create_cmd as cmd runner = CliRunner() # Fails - Existing DB pathlib.Path(self.db_fn).touch() with self.assertRaisesRegex(Exception, "exists"): result = runner.invoke(cmd, [self.db_url], catch_exceptions=False) self.assertEqual(result.exit_code, 1) os.remove(self.db_fn) # Success result = runner.invoke(cmd, [self.db_url], catch_exceptions=False) try: self.assertEqual(result.exit_code, 0) except: print(result.output) raise expected_output = f"Created DB with {self.db_url}\n" self.assertEqual(result.output, expected_output) self.assertTrue(os.path.exists(self.db_fn)) def test_db_set_cmd(self): from mgi.utils import db_set_cmd as cmd runner = CliRunner() result = runner.invoke(cmd, [], catch_exceptions=False) try: self.assertEqual(result.exit_code, 0) except: print(result.output) raise expected_output = f"export SQLALCHEMY_DATABASE_URI=sqlite:///tests/data/db\n" def test_db_show_cmd(self): from mgi.utils import db_show_cmd as cmd runner = CliRunner() result = runner.invoke(cmd, [], catch_exceptions=False) try: self.assertEqual(result.exit_code, 0) except: print(result.output) raise expected_output = f"{self.db_fn}\n" os.environ.pop result = runner.invoke(cmd, [], catch_exceptions=False) try: self.assertEqual(result.exit_code, 0) except: print(result.output) raise expected_output = f"None\n" # -- UtilsCliTest if __name__ == '__main__': unittest.main(verbosity=2)
34.469697
85
0.609231
dd8098259865b20af6c08f97a8722cbee8a9a197
3,553
py
Python
examples/simple-example.py
evanscottgray/pydegensac
0b146e5c002833116adb59e3f676c9d35542fef5
[ "MIT" ]
191
2020-04-24T15:17:36.000Z
2022-03-30T03:08:47.000Z
examples/simple-example.py
evanscottgray/pydegensac
0b146e5c002833116adb59e3f676c9d35542fef5
[ "MIT" ]
11
2020-06-20T12:49:01.000Z
2022-03-31T11:20:58.000Z
examples/simple-example.py
evanscottgray/pydegensac
0b146e5c002833116adb59e3f676c9d35542fef5
[ "MIT" ]
29
2020-04-25T06:12:06.000Z
2022-02-28T03:57:46.000Z
#!/usr/bin/env python # coding: utf-8 import numpy as np import matplotlib.pyplot as plt import cv2 import pydegensac from time import time from copy import deepcopy #Now helper function for running homography RANSAC def verify_cv2(kps1, kps2, tentatives, th = 4.0 , n_iter = 2000): src_pts = np.float32([ kps1[m.queryIdx].pt for m in tentatives ]).reshape(-1,2) dst_pts = np.float32([ kps2[m.trainIdx].pt for m in tentatives ]).reshape(-1,2) H, mask = cv2.findHomography(src_pts, dst_pts, cv2.RANSAC, th, 0.99, n_iter) print ('cv2 found {} inliers'.format(int(deepcopy(mask).astype(np.float32).sum()))) return H, mask def verify_pydegensac(kps1, kps2, tentatives, th = 4.0, n_iter = 2000): src_pts = np.float32([ kps1[m.queryIdx].pt for m in tentatives ]).reshape(-1,2) dst_pts = np.float32([ kps2[m.trainIdx].pt for m in tentatives ]).reshape(-1,2) H, mask = pydegensac.findHomography(src_pts, dst_pts, th, 0.99, n_iter) print ('pydegensac found {} inliers'.format(int(deepcopy(mask).astype(np.float32).sum()))) return H, mask def verify_cv2_fundam(kps1, kps2, tentatives, th = 1.0 , n_iter = 10000): src_pts = np.float32([ kps1[m.queryIdx].pt for m in tentatives ]).reshape(-1,2) dst_pts = np.float32([ kps2[m.trainIdx].pt for m in tentatives ]).reshape(-1,2) F, mask = cv2.findFundamentalMat(src_pts, dst_pts, cv2.RANSAC, th, 0.999, n_iter) print ('cv2 found {} inliers'.format(int(deepcopy(mask).astype(np.float32).sum()))) return F, mask def verify_pydegensac_fundam(kps1, kps2, tentatives, th = 1.0, n_iter = 10000): src_pts = np.float32([ kps1[m.queryIdx].pt for m in tentatives ]).reshape(-1,2) dst_pts = np.float32([ kps2[m.trainIdx].pt for m in tentatives ]).reshape(-1,2) F, mask = pydegensac.findFundamentalMatrix(src_pts, dst_pts, th, 0.999, n_iter, enable_degeneracy_check= True) print ('pydegensac found {} inliers'.format(int(deepcopy(mask).astype(np.float32).sum()))) return F, mask if __name__ == '__main__': img1 = cv2.cvtColor(cv2.imread('img/v_dogman/1.ppm'), cv2.COLOR_BGR2RGB) img2 = cv2.cvtColor(cv2.imread('img/v_dogman/6.ppm'), cv2.COLOR_BGR2RGB) # SIFT is not available by pip install, so lets use AKAZE features det = cv2.AKAZE_create(descriptor_type = 3, threshold=0.00001) kps1, descs1 = det.detectAndCompute(img1,None) kps2, descs2 = det.detectAndCompute(img2,None) bf = cv2.BFMatcher() matches = bf.knnMatch(descs1,descs2, k=2) matchesMask = [False for i in range(len(matches))] # SNN ratio test for i,(m,n) in enumerate(matches): if m.distance < 0.9*n.distance: matchesMask[i]=True tentatives = [m[0] for i, m in enumerate(matches) if matchesMask[i] ] th = 4.0 n_iter = 2000 t=time() print ("Running homography estimation") cv2_H, cv2_mask = verify_cv2(kps1,kps2,tentatives, th, n_iter ) print ("OpenCV runtime {0:.5f}".format(time()-t), ' sec') t=time() cmp_H, cmp_mask = verify_pydegensac(kps1,kps2,tentatives, th, n_iter) print ("pydegensac runtime {0:.5f}".format(time()-t), ' sec') print ("H = ", cmp_H) th = 0.5 n_iter = 50000 print ("Running fundamental matrix estimation") t=time() cv2_H, cv2_mask = verify_cv2_fundam(kps1,kps2,tentatives, th, n_iter ) print ("OpenCV runtime {0:.5f}".format(time()-t), ' sec') t=time() cmp_H, cmp_mask = verify_pydegensac_fundam(kps1,kps2,tentatives, th, n_iter) print ("pydegensac {0:.5f}".format(time()-t), ' sec') print ("F = ", cmp_H)
46.142857
114
0.676048
e3bc9640cd1fccd71ee97d439a8bb62f5191bdba
6,668
py
Python
nets/vgg.py
bubbliiiing/ssd-tf2
481fe21bc0c7db6c132235f2dd1daadc97bd9416
[ "MIT" ]
104
2020-07-13T02:35:55.000Z
2022-03-29T06:58:55.000Z
nets/vgg.py
wanghaowen1998/ssd-tf2
4f74d39ff63ee4a8b9b3ebff58c361c77fef8718
[ "MIT" ]
10
2020-07-14T05:51:00.000Z
2021-11-08T16:57:26.000Z
nets/vgg.py
wanghaowen1998/ssd-tf2
4f74d39ff63ee4a8b9b3ebff58c361c77fef8718
[ "MIT" ]
35
2020-08-07T03:07:07.000Z
2022-03-16T01:44:03.000Z
from tensorflow.keras.layers import Conv2D, MaxPooling2D, ZeroPadding2D def VGG16(input_tensor): #----------------------------主干特征提取网络开始---------------------------# # SSD结构,net字典 net = {} # Block 1 net['input'] = input_tensor # 300,300,3 -> 150,150,64 net['conv1_1'] = Conv2D(64, kernel_size=(3,3), activation='relu', padding='same', name='conv1_1')(net['input']) net['conv1_2'] = Conv2D(64, kernel_size=(3,3), activation='relu', padding='same', name='conv1_2')(net['conv1_1']) net['pool1'] = MaxPooling2D((2, 2), strides=(2, 2), padding='same', name='pool1')(net['conv1_2']) # Block 2 # 150,150,64 -> 75,75,128 net['conv2_1'] = Conv2D(128, kernel_size=(3,3), activation='relu', padding='same', name='conv2_1')(net['pool1']) net['conv2_2'] = Conv2D(128, kernel_size=(3,3), activation='relu', padding='same', name='conv2_2')(net['conv2_1']) net['pool2'] = MaxPooling2D((2, 2), strides=(2, 2), padding='same', name='pool2')(net['conv2_2']) # Block 3 # 75,75,128 -> 38,38,256 net['conv3_1'] = Conv2D(256, kernel_size=(3,3), activation='relu', padding='same', name='conv3_1')(net['pool2']) net['conv3_2'] = Conv2D(256, kernel_size=(3,3), activation='relu', padding='same', name='conv3_2')(net['conv3_1']) net['conv3_3'] = Conv2D(256, kernel_size=(3,3), activation='relu', padding='same', name='conv3_3')(net['conv3_2']) net['pool3'] = MaxPooling2D((2, 2), strides=(2, 2), padding='same', name='pool3')(net['conv3_3']) # Block 4 # 38,38,256 -> 19,19,512 net['conv4_1'] = Conv2D(512, kernel_size=(3,3), activation='relu', padding='same', name='conv4_1')(net['pool3']) net['conv4_2'] = Conv2D(512, kernel_size=(3,3), activation='relu', padding='same', name='conv4_2')(net['conv4_1']) net['conv4_3'] = Conv2D(512, kernel_size=(3,3), activation='relu', padding='same', name='conv4_3')(net['conv4_2']) net['pool4'] = MaxPooling2D((2, 2), strides=(2, 2), padding='same', name='pool4')(net['conv4_3']) # Block 5 # 19,19,512 -> 19,19,512 net['conv5_1'] = Conv2D(512, kernel_size=(3,3), activation='relu', padding='same', name='conv5_1')(net['pool4']) net['conv5_2'] = Conv2D(512, kernel_size=(3,3), activation='relu', padding='same', name='conv5_2')(net['conv5_1']) net['conv5_3'] = Conv2D(512, kernel_size=(3,3), activation='relu', padding='same', name='conv5_3')(net['conv5_2']) net['pool5'] = MaxPooling2D((3, 3), strides=(1, 1), padding='same', name='pool5')(net['conv5_3']) # FC6 # 19,19,512 -> 19,19,1024 net['fc6'] = Conv2D(1024, kernel_size=(3,3), dilation_rate=(6, 6), activation='relu', padding='same', name='fc6')(net['pool5']) # x = Dropout(0.5, name='drop6')(x) # FC7 # 19,19,1024 -> 19,19,1024 net['fc7'] = Conv2D(1024, kernel_size=(1,1), activation='relu', padding='same', name='fc7')(net['fc6']) # x = Dropout(0.5, name='drop7')(x) # Block 6 # 19,19,512 -> 10,10,512 net['conv6_1'] = Conv2D(256, kernel_size=(1,1), activation='relu', padding='same', name='conv6_1')(net['fc7']) net['conv6_2'] = ZeroPadding2D(padding=((1, 1), (1, 1)), name='conv6_padding')(net['conv6_1']) net['conv6_2'] = Conv2D(512, kernel_size=(3,3), strides=(2, 2), activation='relu', name='conv6_2')(net['conv6_2']) # Block 7 # 10,10,512 -> 5,5,256 net['conv7_1'] = Conv2D(128, kernel_size=(1,1), activation='relu', padding='same', name='conv7_1')(net['conv6_2']) net['conv7_2'] = ZeroPadding2D(padding=((1, 1), (1, 1)), name='conv7_padding')(net['conv7_1']) net['conv7_2'] = Conv2D(256, kernel_size=(3,3), strides=(2, 2), activation='relu', padding='valid', name='conv7_2')(net['conv7_2']) # Block 8 # 5,5,256 -> 3,3,256 net['conv8_1'] = Conv2D(128, kernel_size=(1,1), activation='relu', padding='same', name='conv8_1')(net['conv7_2']) net['conv8_2'] = Conv2D(256, kernel_size=(3,3), strides=(1, 1), activation='relu', padding='valid', name='conv8_2')(net['conv8_1']) # Block 9 # 3,3,256 -> 1,1,256 net['conv9_1'] = Conv2D(128, kernel_size=(1,1), activation='relu', padding='same', name='conv9_1')(net['conv8_2']) net['conv9_2'] = Conv2D(256, kernel_size=(3,3), strides=(1, 1), activation='relu', padding='valid', name='conv9_2')(net['conv9_1']) #----------------------------主干特征提取网络结束---------------------------# return net
50.900763
99
0.393071
4228ee40f5745ed4e826c27f405f28bb7111dddc
5,887
py
Python
src/oci/ai_vision/models/document_field.py
LaudateCorpus1/oci-python-sdk
b0d3ce629d5113df4d8b83b7a6502b2c5bfa3015
[ "Apache-2.0", "BSD-3-Clause" ]
null
null
null
src/oci/ai_vision/models/document_field.py
LaudateCorpus1/oci-python-sdk
b0d3ce629d5113df4d8b83b7a6502b2c5bfa3015
[ "Apache-2.0", "BSD-3-Clause" ]
null
null
null
src/oci/ai_vision/models/document_field.py
LaudateCorpus1/oci-python-sdk
b0d3ce629d5113df4d8b83b7a6502b2c5bfa3015
[ "Apache-2.0", "BSD-3-Clause" ]
null
null
null
# coding: utf-8 # Copyright (c) 2016, 2022, Oracle and/or its affiliates. All rights reserved. # This software is dual-licensed to you under the Universal Permissive License (UPL) 1.0 as shown at https://oss.oracle.com/licenses/upl or Apache License 2.0 as shown at http://www.apache.org/licenses/LICENSE-2.0. You may choose either license. from oci.util import formatted_flat_dict, NONE_SENTINEL, value_allowed_none_or_none_sentinel # noqa: F401 from oci.decorators import init_model_state_from_kwargs @init_model_state_from_kwargs class DocumentField(object): """ Form field. """ #: A constant which can be used with the field_type property of a DocumentField. #: This constant has a value of "LINE_ITEM_GROUP" FIELD_TYPE_LINE_ITEM_GROUP = "LINE_ITEM_GROUP" #: A constant which can be used with the field_type property of a DocumentField. #: This constant has a value of "LINE_ITEM" FIELD_TYPE_LINE_ITEM = "LINE_ITEM" #: A constant which can be used with the field_type property of a DocumentField. #: This constant has a value of "LINE_ITEM_FIELD" FIELD_TYPE_LINE_ITEM_FIELD = "LINE_ITEM_FIELD" #: A constant which can be used with the field_type property of a DocumentField. #: This constant has a value of "KEY_VALUE" FIELD_TYPE_KEY_VALUE = "KEY_VALUE" def __init__(self, **kwargs): """ Initializes a new DocumentField object with values from keyword arguments. The following keyword arguments are supported (corresponding to the getters/setters of this class): :param field_type: The value to assign to the field_type property of this DocumentField. Allowed values for this property are: "LINE_ITEM_GROUP", "LINE_ITEM", "LINE_ITEM_FIELD", "KEY_VALUE", 'UNKNOWN_ENUM_VALUE'. Any unrecognized values returned by a service will be mapped to 'UNKNOWN_ENUM_VALUE'. :type field_type: str :param field_label: The value to assign to the field_label property of this DocumentField. :type field_label: oci.ai_vision.models.FieldLabel :param field_name: The value to assign to the field_name property of this DocumentField. :type field_name: oci.ai_vision.models.FieldName :param field_value: The value to assign to the field_value property of this DocumentField. :type field_value: oci.ai_vision.models.FieldValue """ self.swagger_types = { 'field_type': 'str', 'field_label': 'FieldLabel', 'field_name': 'FieldName', 'field_value': 'FieldValue' } self.attribute_map = { 'field_type': 'fieldType', 'field_label': 'fieldLabel', 'field_name': 'fieldName', 'field_value': 'fieldValue' } self._field_type = None self._field_label = None self._field_name = None self._field_value = None @property def field_type(self): """ **[Required]** Gets the field_type of this DocumentField. Field type. Allowed values for this property are: "LINE_ITEM_GROUP", "LINE_ITEM", "LINE_ITEM_FIELD", "KEY_VALUE", 'UNKNOWN_ENUM_VALUE'. Any unrecognized values returned by a service will be mapped to 'UNKNOWN_ENUM_VALUE'. :return: The field_type of this DocumentField. :rtype: str """ return self._field_type @field_type.setter def field_type(self, field_type): """ Sets the field_type of this DocumentField. Field type. :param field_type: The field_type of this DocumentField. :type: str """ allowed_values = ["LINE_ITEM_GROUP", "LINE_ITEM", "LINE_ITEM_FIELD", "KEY_VALUE"] if not value_allowed_none_or_none_sentinel(field_type, allowed_values): field_type = 'UNKNOWN_ENUM_VALUE' self._field_type = field_type @property def field_label(self): """ Gets the field_label of this DocumentField. :return: The field_label of this DocumentField. :rtype: oci.ai_vision.models.FieldLabel """ return self._field_label @field_label.setter def field_label(self, field_label): """ Sets the field_label of this DocumentField. :param field_label: The field_label of this DocumentField. :type: oci.ai_vision.models.FieldLabel """ self._field_label = field_label @property def field_name(self): """ Gets the field_name of this DocumentField. :return: The field_name of this DocumentField. :rtype: oci.ai_vision.models.FieldName """ return self._field_name @field_name.setter def field_name(self, field_name): """ Sets the field_name of this DocumentField. :param field_name: The field_name of this DocumentField. :type: oci.ai_vision.models.FieldName """ self._field_name = field_name @property def field_value(self): """ **[Required]** Gets the field_value of this DocumentField. :return: The field_value of this DocumentField. :rtype: oci.ai_vision.models.FieldValue """ return self._field_value @field_value.setter def field_value(self, field_value): """ Sets the field_value of this DocumentField. :param field_value: The field_value of this DocumentField. :type: oci.ai_vision.models.FieldValue """ self._field_value = field_value def __repr__(self): return formatted_flat_dict(self) def __eq__(self, other): if other is None: return False return self.__dict__ == other.__dict__ def __ne__(self, other): return not self == other
33.448864
245
0.656871
185d4859f7d82f37c58b9a3bc895b576134a9846
11,299
py
Python
google/cloud/dialogflow/cx/v3beta1/dialogflow-cx-v3beta1-py/google/cloud/dialogflowcx_v3beta1/types/security_settings.py
googleapis/googleapis-gen
d84824c78563d59b0e58d5664bfaa430e9ad7e7a
[ "Apache-2.0" ]
7
2021-02-21T10:39:41.000Z
2021-12-07T07:31:28.000Z
google/cloud/dialogflow/cx/v3beta1/dialogflow-cx-v3beta1-py/google/cloud/dialogflowcx_v3beta1/types/security_settings.py
googleapis/googleapis-gen
d84824c78563d59b0e58d5664bfaa430e9ad7e7a
[ "Apache-2.0" ]
6
2021-02-02T23:46:11.000Z
2021-11-15T01:46:02.000Z
google/cloud/dialogflow/cx/v3beta1/dialogflow-cx-v3beta1-py/google/cloud/dialogflowcx_v3beta1/types/security_settings.py
googleapis/googleapis-gen
d84824c78563d59b0e58d5664bfaa430e9ad7e7a
[ "Apache-2.0" ]
4
2021-01-28T23:25:45.000Z
2021-08-30T01:55:16.000Z
# -*- coding: utf-8 -*- # Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import proto # type: ignore from google.protobuf import field_mask_pb2 # type: ignore __protobuf__ = proto.module( package='google.cloud.dialogflow.cx.v3beta1', manifest={ 'GetSecuritySettingsRequest', 'UpdateSecuritySettingsRequest', 'ListSecuritySettingsRequest', 'ListSecuritySettingsResponse', 'CreateSecuritySettingsRequest', 'DeleteSecuritySettingsRequest', 'SecuritySettings', }, ) class GetSecuritySettingsRequest(proto.Message): r"""The request message for [SecuritySettingsService.GetSecuritySettings][google.cloud.dialogflow.cx.v3beta1.SecuritySettingsService.GetSecuritySettings]. Attributes: name (str): Required. Resource name of the settings. Format: ``projects/<Project ID>/locations/<Location ID>/securitySettings/<security settings ID>``. """ name = proto.Field( proto.STRING, number=1, ) class UpdateSecuritySettingsRequest(proto.Message): r"""The request message for [SecuritySettingsService.UpdateSecuritySettings][google.cloud.dialogflow.cx.v3beta1.SecuritySettingsService.UpdateSecuritySettings]. Attributes: security_settings (google.cloud.dialogflowcx_v3beta1.types.SecuritySettings): Required. [SecuritySettings] object that contains values for each of the fields to update. update_mask (google.protobuf.field_mask_pb2.FieldMask): Required. The mask to control which fields get updated. If the mask is not present, all fields will be updated. """ security_settings = proto.Field( proto.MESSAGE, number=1, message='SecuritySettings', ) update_mask = proto.Field( proto.MESSAGE, number=2, message=field_mask_pb2.FieldMask, ) class ListSecuritySettingsRequest(proto.Message): r"""The request message for [SecuritySettings.ListSecuritySettings][]. Attributes: parent (str): Required. The location to list all security settings for. Format: ``projects/<Project ID>/locations/<Location ID>``. page_size (int): The maximum number of items to return in a single page. By default 20 and at most 100. page_token (str): The next_page_token value returned from a previous list request. """ parent = proto.Field( proto.STRING, number=1, ) page_size = proto.Field( proto.INT32, number=2, ) page_token = proto.Field( proto.STRING, number=3, ) class ListSecuritySettingsResponse(proto.Message): r"""The response message for [SecuritySettings.ListSecuritySettings][]. Attributes: security_settings (Sequence[google.cloud.dialogflowcx_v3beta1.types.SecuritySettings]): The list of security settings. next_page_token (str): Token to retrieve the next page of results, or empty if there are no more results in the list. """ @property def raw_page(self): return self security_settings = proto.RepeatedField( proto.MESSAGE, number=1, message='SecuritySettings', ) next_page_token = proto.Field( proto.STRING, number=2, ) class CreateSecuritySettingsRequest(proto.Message): r"""The request message for [SecuritySettings.CreateSecuritySettings][]. Attributes: parent (str): Required. The location to create an [SecuritySettings][google.cloud.dialogflow.cx.v3beta1.SecuritySettings] for. Format: ``projects/<Project ID>/locations/<Location ID>``. security_settings (google.cloud.dialogflowcx_v3beta1.types.SecuritySettings): Required. The security settings to create. """ parent = proto.Field( proto.STRING, number=1, ) security_settings = proto.Field( proto.MESSAGE, number=2, message='SecuritySettings', ) class DeleteSecuritySettingsRequest(proto.Message): r"""The request message for [SecuritySettings.DeleteSecuritySettings][]. Attributes: name (str): Required. The name of the [SecuritySettings][google.cloud.dialogflow.cx.v3beta1.SecuritySettings] to delete. Format: ``projects/<Project ID>/locations/<Location ID>/securitySettings/<Security Settings ID>``. """ name = proto.Field( proto.STRING, number=1, ) class SecuritySettings(proto.Message): r"""Represents the settings related to security issues, such as data redaction and data retention. It may take hours for updates on the settings to propagate to all the related components and take effect. Attributes: name (str): Resource name of the settings. Required for the [SecuritySettingsService.UpdateSecuritySettings][google.cloud.dialogflow.cx.v3beta1.SecuritySettingsService.UpdateSecuritySettings] method. [SecuritySettingsService.CreateSecuritySettings][google.cloud.dialogflow.cx.v3beta1.SecuritySettingsService.CreateSecuritySettings] populates the name automatically. Format: ``projects/<Project ID>/locations/<Location ID>/securitySettings/<Security Settings ID>``. display_name (str): Required. The human-readable name of the security settings, unique within the location. redaction_strategy (google.cloud.dialogflowcx_v3beta1.types.SecuritySettings.RedactionStrategy): Strategy that defines how we do redaction. redaction_scope (google.cloud.dialogflowcx_v3beta1.types.SecuritySettings.RedactionScope): Defines the data for which Dialogflow applies redaction. Dialogflow does not redact data that it does not have access to – for example, Cloud logging. inspect_template (str): `DLP <https://cloud.google.com/dlp/docs>`__ inspect template name. Use this template to define inspect base settings. If empty, we use the default DLP inspect config. The template name will have one of the following formats: ``projects/<Project ID>/locations/<Location ID>/inspectTemplates/<Template ID>`` OR ``organizations/<Organization ID>/locations/<Location ID>/inspectTemplates/<Template ID>`` Note: ``inspect_template`` must be located in the same region as the ``SecuritySettings``. deidentify_template (str): `DLP <https://cloud.google.com/dlp/docs>`__ deidentify template name. Use this template to define de-identification configuration for the content. If empty, Dialogflow replaces sensitive info with ``[redacted]`` text. The template name will have one of the following formats: ``projects/<Project ID>/locations/<Location ID>/deidentifyTemplates/<Template ID>`` OR ``organizations/<Organization ID>/locations/<Location ID>/deidentifyTemplates/<Template ID>`` Note: ``deidentify_template`` must be located in the same region as the ``SecuritySettings``. retention_window_days (int): Retains data in interaction logging for the specified number of days. This does not apply to Cloud logging, which is owned by the user - not Dialogflow. User must Set a value lower than Dialogflow's default 30d TTL. Setting a value higher than that has no effect. A missing value or setting to 0 also means we use Dialogflow's default TTL. Note: Interaction logging is a limited access feature. Talk to your Google representative to check availability for you. purge_data_types (Sequence[google.cloud.dialogflowcx_v3beta1.types.SecuritySettings.PurgeDataType]): List of types of data to remove when retention settings triggers purge. insights_export_settings (google.cloud.dialogflowcx_v3beta1.types.SecuritySettings.InsightsExportSettings): Controls conversation exporting settings to Insights after conversation is completed. If [retention_strategy][google.cloud.dialogflow.cx.v3beta1.SecuritySettings.retention_strategy] is set to REMOVE_AFTER_CONVERSATION, Insights export is disabled no matter what you configure here. """ class RedactionStrategy(proto.Enum): r"""Defines how we redact data.""" REDACTION_STRATEGY_UNSPECIFIED = 0 REDACT_WITH_SERVICE = 1 class RedactionScope(proto.Enum): r"""Defines what types of data to redact.""" REDACTION_SCOPE_UNSPECIFIED = 0 REDACT_DISK_STORAGE = 2 class PurgeDataType(proto.Enum): r"""Type of data we purge after retention settings triggers purge. """ PURGE_DATA_TYPE_UNSPECIFIED = 0 DIALOGFLOW_HISTORY = 1 class InsightsExportSettings(proto.Message): r"""Settings for exporting conversations to `Insights <https://cloud.google.com/dialogflow/priv/docs/insights>`__. Attributes: enable_insights_export (bool): If enabled, we will automatically exports conversations to Insights and Insights runs its analyzers. """ enable_insights_export = proto.Field( proto.BOOL, number=1, ) name = proto.Field( proto.STRING, number=1, ) display_name = proto.Field( proto.STRING, number=2, ) redaction_strategy = proto.Field( proto.ENUM, number=3, enum=RedactionStrategy, ) redaction_scope = proto.Field( proto.ENUM, number=4, enum=RedactionScope, ) inspect_template = proto.Field( proto.STRING, number=9, ) deidentify_template = proto.Field( proto.STRING, number=17, ) retention_window_days = proto.Field( proto.INT32, number=6, oneof='data_retention', ) purge_data_types = proto.RepeatedField( proto.ENUM, number=8, enum=PurgeDataType, ) insights_export_settings = proto.Field( proto.MESSAGE, number=13, message=InsightsExportSettings, ) __all__ = tuple(sorted(__protobuf__.manifest))
34.448171
143
0.652182
bd1993c8b031caede7d397417c7ec9bc644abefe
8,526
py
Python
rrd/model/portal/alarm.py
ning1875/falcon-dashboard
c04e625c49358a278d5f1663a8055627eeb56334
[ "Apache-2.0" ]
1
2020-07-09T00:40:42.000Z
2020-07-09T00:40:42.000Z
rrd/model/portal/alarm.py
ning1875/falcon-dashboard
c04e625c49358a278d5f1663a8055627eeb56334
[ "Apache-2.0" ]
null
null
null
rrd/model/portal/alarm.py
ning1875/falcon-dashboard
c04e625c49358a278d5f1663a8055627eeb56334
[ "Apache-2.0" ]
null
null
null
# -*- coding:utf-8 -*- # Copyright 2017 Xiaomi, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from .bean import Bean from rrd.store import alarm_db class Event(Bean): _db = alarm_db _tbl = 'events' _cols = 'id, event_caseId, step, cond, status, timestamp' def __init__(self, id, event_caseId, step, cond, status, timestamp): self.id = id self.event_caseId = event_caseId self.step = step self.cond = cond self.status = status self.timestamp = timestamp @classmethod def query(cls, page, limit, event_caseId): where = 'event_caseId = %s' params = [event_caseId] vs = cls.select_vs(where=where, params=params, page=page, limit=limit, order='timestamp desc') total = cls.total(where, params) return vs, total class EventCase(Bean): _db = alarm_db _tbl = 'event_cases' _cols = 'id, endpoint, metric, func, cond, note, max_step, current_step, priority, status, timestamp, update_at, closed_at, closed_note, user_modified, tpl_creator, expression_id, strategy_id, template_id, process_note, process_status' def __init__(self, id, endpoint, metric, func, cond, note, max_step, current_step, priority,\ status, timestamp, update_at, closed_at, closed_note, user_modified, tpl_creator, \ expression_id, strategy_id, template_id, process_note, process_status,grp_name=None): self.id = id self.endpoint = endpoint self.metric = metric self.func = func self.cond = cond self.note = note self.max_step = max_step self.current_step = current_step self.priority = priority self.status = status self.timestamp = timestamp self.update_at = update_at self.closed_at = closed_at self.closed_note = closed_note self.user_modified = user_modified self.tpl_creator = tpl_creator self.expression_id = expression_id self.strategy_id = strategy_id self.template_id = template_id self.process_note = process_note self.process_status = process_status self.grp_name = grp_name @classmethod def query(cls, page, limit, endpoint_query, metric_query, status): where = '1=1' params = [] if status == "PROBLEM" or status == "OK": where = 'status = %s' params = [status] if endpoint_query != "": where += ' and endpoint like %s' params.append('%' + endpoint_query + '%') if metric_query != "": where += ' and metric like %s' params.append('%' + metric_query + '%') vs = cls.select_vs(where=where, params=params, page=page, limit=limit, order='update_at desc') total = cls.total(where, params) return vs, total class EventNote(Bean): _db = alarm_db _tbl = 'event_note' _cols = 'id, event_caseId, note, case_id, status, timestamp, user_id' def __init__(self, id, event_caseId, note, case_id, status, timestamp, user_id): self.id = id self.event_caseId = event_caseId self.note = note self.case_id = case_id self.status = status self.timestamp = timestamp self.user_id = user_id #desc events; #+--------------+------------------+------+-----+-------------------+-----------------------------+ #| Field | Type | Null | Key | Default | Extra | #+--------------+------------------+------+-----+-------------------+-----------------------------+ #| id | mediumint(9) | NO | PRI | NULL | auto_increment | #| event_caseId | varchar(50) | YES | MUL | NULL | | #| step | int(10) unsigned | YES | | NULL | | #| cond | varchar(200) | NO | | NULL | | #| status | int(3) unsigned | YES | | 0 | | #| timestamp | timestamp | NO | | CURRENT_TIMESTAMP | on update CURRENT_TIMESTAMP | #+--------------+------------------+------+-----+-------------------+-----------------------------+ # #desc event_note; #+--------------+------------------+------+-----+-------------------+-----------------------------+ #| Field | Type | Null | Key | Default | Extra | #+--------------+------------------+------+-----+-------------------+-----------------------------+ #| id | mediumint(9) | NO | PRI | NULL | auto_increment | #| event_caseId | varchar(50) | YES | MUL | NULL | | #| note | varchar(300) | YES | | NULL | | #| case_id | varchar(20) | YES | | NULL | | #| status | varchar(15) | YES | | NULL | | #| timestamp | timestamp | NO | | CURRENT_TIMESTAMP | on update CURRENT_TIMESTAMP | #| user_id | int(10) unsigned | YES | MUL | NULL | | #+--------------+------------------+------+-----+-------------------+-----------------------------+ # #desc event_cases; #+----------------+------------------+------+-----+-------------------+-----------------------------+ #| Field | Type | Null | Key | Default | Extra | #+----------------+------------------+------+-----+-------------------+-----------------------------+ #| id | varchar(50) | NO | PRI | NULL | | #| endpoint | varchar(100) | NO | MUL | NULL | | #| metric | varchar(200) | NO | | NULL | | #| func | varchar(50) | YES | | NULL | | #| cond | varchar(200) | NO | | NULL | | #| note | varchar(500) | YES | | NULL | | #| max_step | int(10) unsigned | YES | | NULL | | #| current_step | int(10) unsigned | YES | | NULL | | #| priority | int(6) | NO | | NULL | | #| status | varchar(20) | NO | | NULL | | #| timestamp | timestamp | NO | | CURRENT_TIMESTAMP | on update CURRENT_TIMESTAMP | #| update_at | timestamp | YES | | NULL | | #| closed_at | timestamp | YES | | NULL | | #| closed_note | varchar(250) | YES | | NULL | | #| user_modified | int(10) unsigned | YES | | NULL | | #| tpl_creator | varchar(64) | YES | | NULL | | #| expression_id | int(10) unsigned | YES | | NULL | | #| strategy_id | int(10) unsigned | YES | | NULL | | #| template_id | int(10) unsigned | YES | | NULL | | #| process_note | mediumint(9) | YES | | NULL | | #| process_status | varchar(20) | YES | | unresolved | | #+----------------+------------------+------+-----+-------------------+-----------------------------+
52.956522
239
0.421065
af5f32fb2a5fdd84ae0fd4a61a802c4acf42dda1
393
py
Python
CtCI/Chapter2/8_Loop_Detection.py
wqw547243068/DS_Algorithm
6d4a9baeb3650a8f93308c7405c9483bac59e98b
[ "RSA-MD" ]
9
2020-07-02T06:06:17.000Z
2022-02-26T11:08:09.000Z
CtCI/Chapter2/8_Loop_Detection.py
wqw547243068/DS_Algorithm
6d4a9baeb3650a8f93308c7405c9483bac59e98b
[ "RSA-MD" ]
1
2021-11-04T17:26:36.000Z
2021-11-04T17:26:36.000Z
CtCI/Chapter2/8_Loop_Detection.py
wqw547243068/DS_Algorithm
6d4a9baeb3650a8f93308c7405c9483bac59e98b
[ "RSA-MD" ]
8
2021-01-31T10:31:12.000Z
2022-03-13T09:15:55.000Z
from LinkedList import LinkedList def loop_detection(ll): fast = slow = ll.head while fast and fast.next: fast = fast.next.next slow = slow.next if fast is slow: break if fast is None or fast.next is None: return None slow = ll.head while fast is not slow: fast = fast.next slow = slow.next return fast
17.863636
41
0.580153
ca5e88db15dc5296bdc875b02cd70547410060ea
497
py
Python
team/migrations/0009_auto_20161031_2306.py
18F/acquisitions.18f.gov
7ef7091fd65b4b6797ddeb1c1f56def29522c43b
[ "CC0-1.0" ]
3
2016-11-27T05:02:52.000Z
2017-01-31T17:36:36.000Z
team/migrations/0009_auto_20161031_2306.py
18F/acquisitions.18f.gov
7ef7091fd65b4b6797ddeb1c1f56def29522c43b
[ "CC0-1.0" ]
61
2016-11-05T00:27:34.000Z
2017-09-15T23:37:58.000Z
team/migrations/0009_auto_20161031_2306.py
18F/acquisitions.18f.gov
7ef7091fd65b4b6797ddeb1c1f56def29522c43b
[ "CC0-1.0" ]
2
2017-07-14T06:21:26.000Z
2021-02-14T11:53:05.000Z
# -*- coding: utf-8 -*- # Generated by Django 1.10.1 on 2016-10-31 23:06 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('team', '0008_auto_20161031_2304'), ] operations = [ migrations.AlterField( model_name='teammate', name='photo', field=models.ImageField(default='/team/photos/default.png', upload_to='/team/photos'), ), ]
23.666667
98
0.625755
108d42d7692c4bc0b91e0d263c5a7312b67143db
4,282
py
Python
src/sentry/models/processingissue.py
JannKleen/sentry
8b29c8234bb51a81d5cab821a1f2ed4ea8e8bd88
[ "BSD-3-Clause" ]
1
2019-02-27T15:13:06.000Z
2019-02-27T15:13:06.000Z
src/sentry/models/processingissue.py
rmax/sentry
8b29c8234bb51a81d5cab821a1f2ed4ea8e8bd88
[ "BSD-3-Clause" ]
null
null
null
src/sentry/models/processingissue.py
rmax/sentry
8b29c8234bb51a81d5cab821a1f2ed4ea8e8bd88
[ "BSD-3-Clause" ]
null
null
null
""" sentry.models.processingissue ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ :copyright: (c) 2010-2017 by the Sentry Team, see AUTHORS for more details. :license: BSD, see LICENSE for more details. """ from __future__ import absolute_import from hashlib import sha1 from django.db import models from django.db.models.aggregates import Count from django.utils import timezone from sentry.db.models import (BaseManager, Model, FlexibleForeignKey, GzippedDictField, sane_repr) def get_processing_issue_checksum(scope, object): h = sha1() h.update(scope.encode('utf-8') + '\x00') h.update(object.encode('utf-8') + '\x00') return h.hexdigest() class ProcessingIssueManager(BaseManager): def with_num_events(self): return self.annotate(num_events=Count('eventprocessingissue')) def resolve_processing_issue(self, project, scope, object, type=None): """Resolves the given processing issues. If not type is given all processing issues for scope and object are resolved regardless of the type. """ checksum = get_processing_issue_checksum(scope, object) q = ProcessingIssue.objects.filter( project=project, checksum=checksum, ) if type is not None: q = q.filter(type=type) q.delete() def resolve_all_processing_issue(self, project): """ Resolves all processing issues. """ q = ProcessingIssue.objects.filter( project=project, ) q.delete() def find_resolved(self, project_id, limit=100): """Returns a list of raw events that generally match the given processing issue and no longer have any issues remaining. Returns a list of raw events that are now resolved and a bool that indicates if there are more. """ from sentry.models import RawEvent rv = list( RawEvent.objects.filter(project_id=project_id) .annotate(eventissue_count=Count('eventprocessingissue')) .filter(eventissue_count=0)[:limit] ) if len(rv) > limit: rv = rv[:limit] has_more = True else: has_more = False rv = list(rv) RawEvent.objects.bind_nodes(rv, 'data') return rv, has_more def record_processing_issue(self, raw_event, scope, object, type, data=None): """Records a new processing issue for the given raw event.""" data = dict(data or {}) checksum = get_processing_issue_checksum(scope, object) data['_scope'] = scope data['_object'] = object issue, _ = ProcessingIssue.objects.get_or_create( project_id=raw_event.project_id, checksum=checksum, type=type, defaults=dict(data=data), ) ProcessingIssue.objects \ .filter(pk=issue.id) \ .update(datetime=timezone.now()) # In case the issue moved away from unresolved we want to make # sure it's back to unresolved EventProcessingIssue.objects.get_or_create( raw_event=raw_event, processing_issue=issue, ) class ProcessingIssue(Model): __core__ = False project = FlexibleForeignKey('sentry.Project', db_index=True) checksum = models.CharField(max_length=40, db_index=True) type = models.CharField(max_length=30) data = GzippedDictField() datetime = models.DateTimeField(default=timezone.now) objects = ProcessingIssueManager() class Meta: app_label = 'sentry' db_table = 'sentry_processingissue' unique_together = (('project', 'checksum', 'type'), ) __repr__ = sane_repr('project_id') @property def scope(self): return self.data['_scope'] @property def object(self): return self.data['_object'] class EventProcessingIssue(Model): __core__ = False raw_event = FlexibleForeignKey('sentry.RawEvent') processing_issue = FlexibleForeignKey('sentry.ProcessingIssue') class Meta: app_label = 'sentry' db_table = 'sentry_eventprocessingissue' unique_together = (('raw_event', 'processing_issue'), ) __repr__ = sane_repr('raw_event', 'processing_issue')
31.485294
98
0.641523
23df75319f96ca191ca3503110f5869fa23c9221
32,586
py
Python
src/soda/core.py
dillonhuff/soda-compiler
6112001377d11be395cb248f155180bc4fa0e432
[ "MIT" ]
15
2019-05-06T05:00:41.000Z
2021-01-10T06:11:16.000Z
src/soda/core.py
dillonhuff/soda-compiler
6112001377d11be395cb248f155180bc4fa0e432
[ "MIT" ]
2
2020-02-10T00:05:44.000Z
2020-05-01T17:43:42.000Z
src/soda/core.py
UCLA-VAST/soda-compiler
9ca1a9372147f37dc654339b391920ac33e91de5
[ "MIT" ]
5
2019-07-16T02:28:44.000Z
2020-04-27T15:30:17.000Z
import collections import copy import itertools import logging import operator import cached_property from haoda import ir from haoda import util from haoda.ir import arithmetic from soda import dataflow from soda import grammar from soda import util as soda_util from soda import visitor from soda import mutator _logger = logging.getLogger().getChild(__name__) class Tensor(): """A tensor that corresponse to an input, local, or output. This class is used in the high-level DAG for stencil dependency analysis. Each tensor either is an input tensor, or has at least 1 parent tensor, which will be used to generate this tensor. Meanwhile, each tensor either is an output tensor, or has at least 1 child tensor, which will be computed using this tensor. Attributes: haoda_type: str, type of the tensor element. parents: Dict from str of name of Tensor to Tensor. children: Dict from str of name of Tensor to Tensor. st_ref: Ref, name, index, and latency stored. offset: int, shift offset in terms of data elements lets: Lets of computation. expr: Expr of computation. ld_refs: Dict from str of name to dict of Ref loaded. ld_delays: Dict from str of name to extra delay of the input. Property: name: str, unique in each SODA program. st_offset: int, stencil offset in terms of data elements. st_idx, Tuple of int, the index referenced by its parent stage. ld_indices: Dict from str of name to dict of accessed indices of the input. ld_offsets: Dict from str of name to dict of offsets of the input. """ def __init__(self, stmt, tile_size): self.haoda_type = stmt.haoda_type self._tile_size = tile_size if isinstance(stmt, grammar.LocalStmtOrOutputStmt): self.st_ref = copy.copy(stmt.ref) self.st_ref.parent = self self.lets = stmt.let self.expr = stmt.expr elif isinstance(stmt, grammar.InputStmt): self._name = stmt.name self.st_ref = None self.lets = [] self.expr = None else: raise util.InternalError('cannot initialize a Tensor from %s' % type(stmt)) _logger.debug('tensor initialized from stmt `%s`', stmt) # pylint: disable=protected-access _logger.debug(' at tx position %d', stmt._tx_position) # these fields are to be set externally self.st_delay = 0 self.parents = collections.OrderedDict() self.children = collections.OrderedDict() self.ld_refs = collections.OrderedDict() self.ld_delays = collections.OrderedDict() @property def name(self): if self.st_ref is not None: return self.st_ref.name return self._name @property def st_idx(self): if self.st_ref is not None: return self.st_ref.idx return (0,)*len(self._tile_size) @property def st_offset(self): return soda_util.serialize(self.st_idx, self._tile_size) + self.st_delay @cached_property.cached_property def ld_indices(self): return collections.OrderedDict( (name, collections.OrderedDict((ref.idx, ref) for ref in refs)) for name, refs in self.ld_refs.items()) @cached_property.cached_property def ld_offsets(self): return collections.OrderedDict( (name, collections.OrderedDict( (soda_util.serialize(ref.idx, self._tile_size), ref) for ref in refs)) for name, refs in self.ld_refs.items()) @property def c_type(self): return util.get_c_type(self.haoda_type) def propagate_type(self): if self.expr is None: return var_types = {} # pylint: disable=access-member-before-definition for let in self.lets: var_types[let.name] = let.haoda_type def visit_haoda_type(obj, args): if obj.haoda_type is None: if isinstance(obj, ir.Var): obj.haoda_type = var_types[obj.name] return obj self.lets = tuple(_.visit(visit_haoda_type) for _ in self.lets) self.expr = self.expr.visit(visit_haoda_type) self.st_ref = self.st_ref.visit(visit_haoda_type) def mutate(self, callback, args=None): self.lets = tuple(_.visit(callback, args) for _ in self.lets) self.expr = self.expr.visit(callback, args) self.st_ref = self.st_ref.visit(callback, args) def visit_loads(self, callback, args=None): for let in self.lets: let.visit(callback, args) self.expr.visit(callback, args) def __str__(self): return '''Tensor {haoda_type}: {name} = {expr} store: {st_ref} with delay {st_delay} parents: {parents} children: {children}'''.format( name=self.name, haoda_type=self.haoda_type, expr=self.expr, parents=util.idx2str(self.parents), children=util.idx2str(self.children), st_ref=str(self.st_ref), st_delay=self.st_delay) def is_output(self): return len(self.children) == 0 def is_input(self): return len(self.parents) == 0 def is_producer(self): return not self.is_output() def is_consumer(self): return not self.is_input() class Stencil(): """ Attributes: iterate: int, number of iteration to implement. burst_width: int, width of bits for DRAM burst access. app_name: str, application's name. tile_size: List of int. unroll_factor: int. dim: int. param_stmts: List of ParamStmt. input_stmts: List of InputStmt. local_stmts: List of LocalStmt. output_stmts: List of OutputStmt. Cached properties: tensors: Dict from str of name to Tensor. input_names: Tuple of str, names of input tensors. param_names: Tuple of str, names of param tensors. local_names: Tuple of str, names of local tensors. output_names: Tuple of str, names of output tensors. """ def __init__(self, **kwargs): self.iterate = kwargs.pop('iterate') if self.iterate < 1: raise util.SemanticError('cannot iterate %d times' % self.iterate) # platform determined self.burst_width = kwargs.pop('burst_width') # application determined self.app_name = kwargs.pop('app_name') # parameters that can be explored self.tile_size = tuple(kwargs.pop('tile_size')) self.unroll_factor = kwargs.pop('unroll_factor') # stage-independent self.dim = kwargs.pop('dim') self.param_stmts = kwargs.pop('param_stmts') # stage-specific self.input_stmts = kwargs.pop('input_stmts') self.local_stmts = kwargs.pop('local_stmts') self.output_stmts = kwargs.pop('output_stmts') if 'dram_in' in kwargs: dram_in = kwargs.pop('dram_in') if dram_in is not None: if ':' in dram_in: input_stmt_map = {_.name : _ for _ in self.input_stmts} for dram_map in dram_in.split('^'): var_name, bank_list = dram_map.split(':') if var_name not in input_stmt_map: raise util.SemanticError('no input named `{}`'.format(var_name)) input_stmt_map[var_name].dram = tuple(map(int, bank_list.split('.'))) else: for input_stmt in self.input_stmts: input_stmt.dram = tuple(map(int, dram_in.split('.'))) if 'dram_out' in kwargs: dram_out = kwargs.pop('dram_out') if dram_out is not None: if ':' in dram_out: output_stmt_map = {_.name : _ for _ in self.output_stmts} for dram_map in dram_out.split(','): var_name, bank_list = dram_map.split(':') if var_name not in output_stmt_map: raise util.SemanticError('no output named `{}`'.format(var_name)) output_stmt_map[var_name].dram = tuple(map(int, bank_list.split('.'))) else: for output_stmt in self.output_stmts: output_stmt.dram = tuple(map(int, dram_out.split('.'))) if self.iterate > 1: if len(self.input_stmts) != len(self.output_stmts): raise util.SemanticError( 'number of input tensors must be the same as output if iterate > 1 ' 'times, currently there are %d input(s) but %d output(s)' % (len(self.input_stmts), len(self.output_stmts))) if self.input_types != self.output_types: raise util.SemanticError( 'input must have the same type(s) as output if iterate > 1 ' 'times, current input has type %s but output has type %s' % (util.lst2str(self.input_types), util.lst2str(self.output_types))) _logger.debug('pipeline %d iterations of [%s] -> [%s]' % (self.iterate, ', '.join('%s: %s' % (stmt.haoda_type, stmt.name) for stmt in self.input_stmts), ', '.join('%s: %s' % (stmt.haoda_type, stmt.name) for stmt in self.output_stmts))) for stmt in itertools.chain(self.local_stmts, self.output_stmts): _logger.debug('simplify %s', stmt.name) stmt.expr = arithmetic.simplify(stmt.expr) stmt.let = arithmetic.simplify(stmt.let) # soda frontend successfully parsed # triggers cached property # replicate tensors for iterative stencil # pylint: disable=pointless-statement self.tensors _logger.debug('producer tensors: [%s]', ', '.join(tensor.name for tensor in self.producer_tensors)) _logger.debug('consumer tensors: [%s]', ', '.join(tensor.name for tensor in self.consumer_tensors)) # TODO: build Ref table and Var table # generate reuse buffers and get haoda nodes # pylint: disable=pointless-statement self.dataflow_super_source _logger.debug('dataflow: %s', self.dataflow_super_source) _logger.debug('module table: %s', dict(self.module_table)) _logger.debug('module traits: %s', self.module_traits) @cached_property.cached_property def dataflow_super_source(self): return dataflow.create_dataflow_graph(self) @property def module_table(self): return self.dataflow_super_source.module_table @property def module_traits(self): return self.dataflow_super_source.module_traits @cached_property.cached_property def input_types(self): return tuple(tensor.haoda_type for tensor in self.input_stmts) @cached_property.cached_property def param_types(self): return tuple(tensor.haoda_type for tensor in self.param_stmts) @cached_property.cached_property def local_types(self): return tuple(tensor.haoda_type for tensor in self.local_stmts) @cached_property.cached_property def output_types(self): return tuple(tensor.haoda_type for tensor in self.output_stmts) @cached_property.cached_property def input_names(self): return tuple(stmt.name for stmt in self.input_stmts) @cached_property.cached_property def param_names(self): return tuple(stmt.name for stmt in self.param_stmts) @cached_property.cached_property def local_names(self): return tuple(stmt.name for stmt in self.local_stmts) @cached_property.cached_property def output_names(self): return tuple(stmt.name for stmt in self.output_stmts) @cached_property.cached_property def symbol_table(self): """Constructs a mapping from a tensor's name to its type. Returns: tensor_types: dict from name (str) to haoda_type (str). """ tensor_types = {} for name, haoda_type in zip(self.input_names, self.input_types): tensor_types[name] = haoda_type for name, haoda_type in zip(self.local_names, self.local_types): tensor_types[name] = haoda_type for name, haoda_type in zip(self.output_names, self.output_types): tensor_types[name] = haoda_type return tensor_types @cached_property.cached_property def tensors(self): """Constructs high-level DAG and creates the tensors. Returns: An collections.OrderedDict mapping a tensor's name to the tensor. """ # TODO: check for name conflicts tensor_map = collections.OrderedDict() for stmt in self.input_stmts: tensor = Tensor(stmt, self.tile_size) tensor_map[stmt.name] = tensor def name_in_iter(name, iteration): if name in self.input_names: if iteration > 0: return name+'_iter%d' % iteration return name if name in self.output_names: if iteration < self.iterate-1: return (self.input_names[self.output_names.index(name)]+ '_iter%d' % (iteration+1)) return name if name in self.local_names: if iteration > 0: return name+'_iter%d' % iteration return name if name in self.param_names: return name raise util.InternalError('unknown name: %s' % name) for iteration in range(self.iterate): _logger.debug('iterate %s', iteration) _logger.debug('map: %s', self.symbol_table) def mutate_name_callback(obj, mutated): if isinstance(obj, ir.Ref): obj.haoda_type = self.symbol_table[obj.name] # pylint: disable=cell-var-from-loop obj.name = name_in_iter(obj.name, iteration) return obj tensors = [] for stmt in itertools.chain(self.local_stmts, self.output_stmts): tensor = Tensor(stmt.visit(mutate_name_callback), self.tile_size) loads = visitor.get_load_tuple(tensor) norm_idx = tuple(min(load.idx[d] for load in loads if load.name not in self.param_names) for d in range(self.dim)) if any(norm_idx): _logger.debug('normalize index of %s: (%s)', tensor.name, ', '.join(map(str, norm_idx))) mutator.shift(tensor, norm_idx, excluded=self.param_names) tensor_map[tensor.name] = tensor tensors.append(tensor) for tensor in tensors: _logger.debug('%s', tensor) for tensor in tensors: tensor.propagate_type() loads = visitor.get_load_dict(tensor) for parent_name, ld_refs in loads.items(): ld_refs = sorted(ld_refs, key=lambda ref: soda_util.serialize( ref.idx, self.tile_size)) parent_tensor = tensor_map[parent_name] parent_tensor.children[tensor.name] = tensor tensor.parents[parent_name] = parent_tensor tensor.ld_refs[parent_name] = ld_refs # high-level DAG construction finished for tensor in tensor_map.values(): if tensor.name in self.input_names: _logger.debug('<input tensor>: %s', tensor) elif tensor.name in self.output_names: _logger.debug('<output tensor>: %s', tensor) else: _logger.debug('<local tensor>: %s', tensor) return tensor_map @cached_property.cached_property def chronological_tensors(self): """Computes the offsets of tensors. Returns: A list of Tensor, in chronological order. """ _logger.info('calculate tensor offsets') processing_queue = collections.deque(list(self.input_names)) processed_tensors = set(self.input_names) chronological_tensors = list(map(self.tensors.get, self.input_names)) for tensor in chronological_tensors: _logger.debug('tensor <%s> is at offset %d' % (tensor.name, tensor.st_offset)) _logger.debug('processing queue: %s', processing_queue) _logger.debug('processed_tensors: %s', processed_tensors) while processing_queue: tensor = self.tensors[processing_queue.popleft()] _logger.debug('inspecting tensor %s\'s children' % tensor.name) for child in tensor.children.values(): if ({x.name for x in child.parents.values()} <= processed_tensors and child.name not in processed_tensors): # good, all inputs are processed # can determine offset of current tensor _logger.debug( 'input%s for tensor <%s> (i.e. %s) %s processed', '' if len(child.parents) == 1 else 's', child.name, ', '.join([x.name for x in child.parents.values()]), 'is' if len(child.parents) == 1 else 'are') stage_offset = soda_util.serialize(child.st_idx, self.tile_size) # synchronization check def sync(tensor, offset): if tensor is None: return offset _logger.debug('index of tensor <%s>: %s', tensor.name, tensor.st_idx) stage_offset = soda_util.serialize(tensor.st_idx, self.tile_size) _logger.debug('offset of tensor <%s>: %d', tensor.name, stage_offset) loads = visitor.get_load_dict(tensor) for name in loads: loads[name] = tuple(ref.idx for ref in loads[name]) _logger.debug('loads: %s', ', '.join( '%s@%s' % (name, util.lst2str(map(util.idx2str, indices))) for name, indices in loads.items())) for n in loads: loads[n] = soda_util.serialize_iter(loads[n], self.tile_size) for l in loads.values(): l[0], l[-1] = (stage_offset - max(l), stage_offset - min(l)) del l[1:-1] if len(l) == 1: l.append(l[-1]) _logger.debug( 'load offset range in tensor %s: %s', tensor.name, '{%s}' % ( ', '.join('%s: [%d:%d]' % (n, *v) for n, v in loads.items()))) for parent in tensor.parents.values(): tensor_distance = next(reversed(tensor.ld_offsets[parent.name])) _logger.debug('tensor distance: %s', tensor_distance) _logger.debug( 'want to access tensor <%s> at offset [%d, %d] ' 'to generate tensor <%s> at offset %d', parent.name, offset+loads[parent.name][0], offset+loads[parent.name][-1], tensor.name, offset) tensor_offset = (parent.st_delay+tensor_distance-stage_offset) if offset < tensor_offset: _logger.debug( 'but tensor <%s> won\'t be available until offset %d', parent.name, tensor_offset) offset = tensor_offset _logger.debug('need to access tensor <%s> at offset [%d, %d] ' 'to generate tensor <%s> at offset %d', parent.name, offset+loads[parent.name][0], offset+loads[parent.name][-1], tensor.name, offset) return offset _logger.debug('intend to generate tensor <%s> at offset %d', child.name, child.st_delay) synced_offset = sync(child, child.st_delay) _logger.debug('synced offset: %s', synced_offset) child.st_delay = synced_offset _logger.debug('decide to generate tensor <%s> at offset %d', child.name, child.st_delay) # add delay for sibling in child.parents.values(): delay = child.st_delay - (sibling.st_delay + list(child.ld_offsets[sibling.name].keys())[-1] - stage_offset) if delay > 0: _logger.debug( 'tensor %s arrives at tensor <%s> at offset %d < %d; ' 'add %d delay', sibling.name, child.name, sibling.st_delay+next(reversed( child.ld_offsets[sibling.name]))-stage_offset, child.st_delay, delay) else: _logger.debug( 'tensor %s arrives at tensor <%s> at offset %d = %d; good', sibling.name, child.name, sibling.st_delay+next(reversed( child.ld_offsets[sibling.name]))-stage_offset, child.st_delay) child.ld_delays[sibling.name] = max(delay, 0) _logger.debug('set delay of |%s <- %s| to %d' % (child.name, sibling.name, child.ld_delays[sibling.name])) processing_queue.append(child.name) processed_tensors.add(child.name) chronological_tensors.append(child) else: for parent in tensor.parents.values(): if parent.name not in processed_tensors: _logger.debug('tensor %s requires tensor <%s> as an input', tensor.name, parent.name) _logger.debug('but tensor <%s> isn\'t processed yet', parent.name) _logger.debug('add %s to scheduling queue', parent.name) processing_queue.append(parent.name) _logger.debug('tensors in insertion order: [%s]', ', '.join(map(str, self.tensors))) _logger.debug('tensors in chronological order: [%s]', ', '.join(t.name for t in chronological_tensors)) for tensor in self.tensors.values(): for name, indices in tensor.ld_indices.items(): _logger.debug('stage index: %s@%s <- %s@%s', tensor.name, util.idx2str(tensor.st_idx), name, util.lst2str(util.idx2str(idx) for idx in indices)) for tensor in self.tensors.values(): if tensor.is_input(): continue _logger.debug('stage expr: %s = %s', tensor.st_ref, tensor.expr) for tensor in self.tensors.values(): for name, offsets in tensor.ld_offsets.items(): _logger.debug('stage offset: %s@%d <- %s@%s', tensor.name, soda_util.serialize(tensor.st_idx, self.tile_size), name, util.lst2str(offsets)) for tensor in self.tensors.values(): for name, delay in tensor.ld_delays.items(): _logger.debug('stage delay: %s <- %s delayed %d' % (tensor.name, name, delay)) return chronological_tensors @cached_property.cached_property def input_partition(self): pixel_width_i = sum(self.pixel_width_i) if self.burst_width/pixel_width_i*self.dram_bank/2 > self.unroll_factor/2: return int(self.burst_width/pixel_width_i*self.dram_bank/2) return int(self.unroll_factor/2) @cached_property.cached_property def output_partition(self): pixel_width_o = sum(self.pixel_width_o) if self.burst_width/pixel_width_o*self.dram_bank/2 > self.unroll_factor/2: return int(self.burst_width/pixel_width_o*self.dram_bank/2) return int(self.unroll_factor/2) @cached_property.cached_property def pixel_width_i(self): return list(map(util.get_width_in_bits, self.input_stmts)) @cached_property.cached_property def pixel_width_o(self): return list(map(util.get_width_in_bits, self.output_stmts)) @cached_property.cached_property def producer_tensors(self): return tuple(filter(Tensor.is_producer, self.tensors.values())) @cached_property.cached_property def consumer_tensors(self): return tuple(filter(Tensor.is_consumer, self.tensors.values())) # return [Tensor, ...] def _get_parent_tensors_for(self, node): return {x: self.tensors[x] for x in {x.name for x in node.get_loads() if x.name not in self.extra_params}} # return {name: [(idx, ...), ...]} def _get_window_for(self, node): loads = node.get_loads() # [Load, ...] load_names = {l.name for l in loads if l.name not in self.extra_params} windows = {name: sorted({l.idx for l in loads if l.name == name}, key=lambda x: soda_util.serialize(x, self.tile_size)) for name in load_names} _logger.debug('window for %s@(%s) is %s' % (node.name, ', '.join(map(str, node.expr[0].idx)), windows)) return windows # return [StageExpr, ...] def _get_expr_for(self, node): if isinstance(node, grammar.Output): return node.expr if isinstance(node, grammar.Local): return node.expr raise util.SemanticError('cannot get expression for %s' % str(type(node))) @cached_property.cached_property def reuse_buffers(self): """Constructs the reuse buffers. Returns: A dict mapping a tensor's name to its reuse buffers. """ unroll_factor = self.unroll_factor self._reuse_buffer_lengths = {} reuse_buffers = {} for tensor in self.producer_tensors: reuse_buffer = _get_reuse_buffer(self.tile_size, tensor, unroll_factor) reuse_buffer_length = {} reuse_buffers[tensor.name] = reuse_buffer self._reuse_buffer_lengths[tensor.name] = reuse_buffer_length first = [True]*unroll_factor for start, end in reuse_buffer[1:]: if first[start%unroll_factor]: first[start%unroll_factor] = False if start >= unroll_factor: reuse_buffer_length[end] = end//unroll_factor continue reuse_buffer_length[end] = (end-start)//unroll_factor return reuse_buffers @cached_property.cached_property def all_points(self): all_points = {} for tensor in self.producer_tensors: all_points[tensor.name] = _get_points(self.tile_size, tensor, self.unroll_factor) return all_points @cached_property.cached_property def next_fifo(self): """Constructs the next fifo offset mapping. Returns: A dict mapping a tensor's name and offset to the next offset. """ next_fifo = {} for name, reuse_buffer in self.reuse_buffers.items(): next_fifo[name] = {} for start, end in reuse_buffer[1:]: if start < end: next_fifo[name][start] = end _logger.debug('next_fifo: %s' % next_fifo) return next_fifo @cached_property.cached_property def reuse_buffer_lengths(self): """Constructs the reuse buffer lengths. Returns: A dict mapping a tensor's name to its reuse buffers' lengths. """ # pylint: disable=pointless-statement self.reuse_buffers return self._reuse_buffer_lengths def _get_reuse_chains(tile_size, tensor, unroll_factor): """Generates reuse chains for a Tensor. Generates reuse chains for a Tensor under the given tile size and unroll factor. Args: tile_size: An iterable representing the tile size in each dimension. tensor: A Tensor to which the reuse chains belongs. unroll_factor: An int representing the unroll factor. Returns: A list of tuples where each tuple represents a reuse chain and each element of the tuple represents the offset from the lastest input. """ _logger.debug('get reuse chains of tensor %s', tensor.name) def unroll_offsets(offsets, child): unrolled_offsets = set() for unroll_idx in range(unroll_factor): for offset in offsets: unrolled_offsets.add(max(offsets) + unroll_idx - offset + child.ld_delays[tensor.name]) return unrolled_offsets A_dag = set() for child in tensor.children.values(): A_dag |= unroll_offsets( soda_util.serialize_iter(child.ld_indices[tensor.name], tile_size), child) _logger.debug('A† of tensor %s: %s', tensor.name, A_dag) chains = [] for chain_idx in reversed(range(unroll_factor)): chains.append(tuple(sorted( offset for offset in A_dag if offset % unroll_factor == chain_idx))) _logger.debug('reuse chains: %s', chains) for idx, chain in enumerate(chains): _logger.debug('reuse chain %d of tensor %s: %s', idx, tensor.name, chain) return chains def _get_points(tile_size, tensor, unroll_factor): """Generates offset-to-point mapping for a Tensor. Generates a mapping which can be used to determine the accessed point index from the offset for a Tensor, under the given tile size and unroll factor. Args: tile_size: An iterable representing the tile size in each dimension. tensor: A Tensor to which the mapping belongs. unroll_factor: An int representing the unroll factor. Returns: A dict of name str to a dict of offset to a dict of unroll index to point index. """ all_points = {} # {name: {offset: {unroll_idx: point_idx}}} for child in tensor.children.values(): all_points[child.name] = {} offsets = child.ld_offsets[tensor.name] for unroll_idx in range(unroll_factor): for idx, offset in enumerate(offsets): all_points[child.name].setdefault( max(offsets) - offset + child.ld_delays[tensor.name] + unroll_idx, {})[unroll_factor-1-unroll_idx] = idx for child in tensor.children.values(): for offset, points in all_points[child.name].items(): for unroll_idx, point in points.items(): _logger.debug( '%s <- %s @ offset=%d <=> %s @ unroll_idx=%d', child.name, tensor.name, offset, util.idx2str(list(child.ld_indices[tensor.name].values())[point].idx), unroll_idx) return all_points def _get_reuse_buffer(tile_size, tensor, unroll_factor): """Generates reuse buffer for a Tensor. Generates a list representing the reuse buffer for a Tensor, under the given tile size and unroll factor. Args: tile_size: An iterable representing the tile size in each dimension. tensor: A Tensor to which the mapping belongs. unroll_factor: An int representing the unroll factor. Returns: A list whose first element is an int representing the length of the reuse buffer (capacity of data element), followed by unroll_factor number of (start, end) tuples, where start and end are the offsets from the lastest input of each piece of the reuse buffer. """ reuse_buffer = [None] # [length, (start, end), (start, end), ...] offsets = [] for chain in _get_reuse_chains(tile_size, tensor, unroll_factor): reuse_buffer.append((chain[0], chain[0])) offsets.append(chain[0]) for j in range(len(chain)-1): reuse_buffer.append((chain[j], chain[j+1])) offsets.append(chain[j+1]) reuse_buffer[0] = max(offsets)+1 _logger.debug('reuse chains of tensor %s: %s' % (tensor.name, reuse_buffer)) return reuse_buffer def get_indices_id(indices): return '_'.join(str(idx).replace('-', 'm') for idx in indices) def get_stencil_distance(stencil_window, tile_size): return (max(soda_util.serialize_iter(stencil_window, tile_size)) + soda_util.serialize(get_stencil_window_offset(stencil_window), tile_size)) def get_stencil_dim(points): dimension = len(next(iter(points))) return [max_index-min_index+1 for max_index, min_index in zip( [max([point[dim] for point in points]) for dim in range(dimension)], [min([point[dim] for point in points]) for dim in range(dimension)])] _overall_stencil_window_cache = {} def get_overall_stencil_window(input_tensor, output_tensor): if isinstance(input_tensor, collections.Iterable): all_points = tuple(sorted(set.union(*( set(get_overall_stencil_window(_, output_tensor)) for _ in input_tensor)))) _logger.debug( 'overall stencil window of %s (%s) <- {%s} is %s (%d points)', output_tensor.name, ', '.join(['0']*len(output_tensor.st_idx)), ', '.join(_.name for _ in input_tensor), all_points, len(all_points)) return all_points # normalize store index to 0 idx = (id(input_tensor), id(output_tensor)) if idx in _overall_stencil_window_cache: return _overall_stencil_window_cache[idx] _logger.debug('get overall stencil window of %s <- %s', output_tensor.name, input_tensor.name) all_points = set() for name, points in output_tensor.ld_indices.items(): _logger.debug('%s@%s <- %s', output_tensor.name, util.idx2str(output_tensor.st_idx), util.idx2str(points.values())) if name != input_tensor.name: recursive_points = get_overall_stencil_window( input_tensor, output_tensor.parents[name]) _logger.debug('recursive points: %s', util.idx2str(recursive_points)) all_points |= set.union(*[{ tuple(map(lambda a, b, c: a + b - c, _, point, output_tensor.st_idx)) for _ in recursive_points} for point in points]) else: all_points |= {tuple(map(operator.sub, point, output_tensor.st_idx)) for point in points} all_points = tuple(sorted(all_points)) _logger.debug('overall stencil window of %s (%s) <- %s is %s (%d points)', output_tensor.name, ', '.join(['0']*len(output_tensor.st_idx)), input_tensor.name, all_points, len(all_points)) _overall_stencil_window_cache[idx] = all_points return all_points def get_stencil_window_offset(stencil_window): # only works if window is normalized to store at 0 return tuple(-min(p[d] for p in stencil_window) for d in range(len(next(iter(stencil_window)))))
38.978469
80
0.647517
3c9c9a3ffa5829bc16a00a51fd7af33a19fbc267
3,639
py
Python
script_python/tsne.py
goldleaf3i/generativeCMLgraphs
143b7809ee9cf39a508bdbf5c91ed963b810b403
[ "MIT" ]
null
null
null
script_python/tsne.py
goldleaf3i/generativeCMLgraphs
143b7809ee9cf39a508bdbf5c91ed963b810b403
[ "MIT" ]
null
null
null
script_python/tsne.py
goldleaf3i/generativeCMLgraphs
143b7809ee9cf39a508bdbf5c91ed963b810b403
[ "MIT" ]
null
null
null
# # tsne.py # # Implementation of t-SNE in Python. The implementation was tested on Python 2.5.1, and it requires a working # installation of NumPy. The implementation comes with an example on the MNIST dataset. In order to plot the # results of this example, a working installation of matplotlib is required. # The example can be run by executing: ipython tsne.py -pylab # # # Created by Laurens van der Maaten on 20-12-08. # Copyright (c) 2008 Tilburg University. All rights reserved. import numpy as Math import pylab as Plot import matplotlib.cm as cm def tsne(P = Math.array([])): # Initialize variables # number of instances n = Math.size(P, 0); # initial momentum initial_momentum = 0.5; # value to which momentum is changed final_momentum = 0.8; # iteration at which momentum is changed mom_switch_iter = 250; # iteration at which lying about P-values is stopped stop_lying_iter = 100; # maximum number of iterations max_iter = 1000; # initial learning rate epsilon = 500; # minimum gain for delta-bar-delta min_gain = 0.01; # Make sure P-vals are set properly # set diagonal to zero Math.fill_diagonal(P, 0); # symmetrize P-values P = 0.5 * (P + P.T); # make sure P-values sum to one P = Math.maximum(P / Math.sum(P[:]), 1e-12); # constant in KL divergence const = Math.sum(P[:] * Math.log(P[:])); # lie about the P-vals to find better local minima P = P * 4; # Initialize the solution Y = 0.0001 * Math.random.randn(n, 2); iY = Math.zeros((n, 2)); gains = Math.ones((n, 2)); # Run iterations for iter in range(max_iter): # Compute pairwise affinities sum_Y = Math.sum(Math.square(Y), 1); num = 1 / (1 + Math.add(Math.add(-2 * Math.dot(Y, Y.T), sum_Y).T, sum_Y)); num[range(n), range(n)] = 0; Q = num / Math.sum(num); Q = Math.maximum(Q, 1e-12); # Compute gradient (faster implementation) L = (P - Q) * num; y_grads = Math.dot(4 * (Math.diag(Math.sum(L, 0)) - L), Y); # update the solution gains = (gains + 0.2) * ((y_grads > 0) != (iY > 0)) + (gains * 0.8) * ((y_grads > 0) == (iY > 0)); gains[gains < min_gain] = min_gain; iY = initial_momentum * iY - epsilon * (gains * y_grads); Y = Y + iY; Y = Y - Math.tile(Math.mean(Y, 0), (n, 1)); # update the momentum if necessary if iter == mom_switch_iter: initial_momentum = final_momentum if iter == stop_lying_iter: P = P / 4; # Compute current value of cost function if (iter + 1) % 10 == 0: C = const - Math.sum(P[:] * Math.log(Q[:])); print("Iteration ", (iter + 1), ": error is ", C); return Y; def plotting(): cluster_labels = set(labels); # iteratore di colori su un insieme grande quanto il numero di cluster colors = iter(cm.rainbow(Math.linspace(0, 1, len(cluster_labels)))) for c in cluster_labels: Xc = []; Yc = []; for i in range(len(Y)): if labels[i] == c: Xc.append(Y[i][0]); Yc.append(Y[i][1]); Plot.scatter(Xc[:], Yc[:], 30, color=next(colors), label=c); Plot.legend(scatterpoints=1, loc='lower left', fontsize=5); Plot.savefig("tsne_scatter_plot.png"); if __name__ == "__main__": print("tsne performs symmetric t-SNE on affinity matrix P"); P = Math.loadtxt("similarity_matrix.txt",delimiter=','); labels = Math.loadtxt("cluster_labels.txt",delimiter=','); Y = tsne(P); plotting();
34.009346
109
0.594394
0f5ec81bfd32c1e6a787200ebc093f38943d11bf
11,065
py
Python
FlaskApp/routes.py
mikkokallio/dbapp-code
2df452eaef5ea375569d0076129ab65e4ae067e9
[ "MIT" ]
null
null
null
FlaskApp/routes.py
mikkokallio/dbapp-code
2df452eaef5ea375569d0076129ab65e4ae067e9
[ "MIT" ]
null
null
null
FlaskApp/routes.py
mikkokallio/dbapp-code
2df452eaef5ea375569d0076129ab65e4ae067e9
[ "MIT" ]
null
null
null
import json import secrets from os import abort from os import getenv import requests from flask import redirect, render_template, request, session from werkzeug.security import check_password_hash, generate_password_hash from .app import app from . import actions @app.route("/") def index(): """Show user's profile unless user hasn't logged in.""" if "username" in session: return redirect("/profile") return render_template("index.html", mode="4") @app.route("/new_place") def new_place(): """Show street address selector view.""" return render_template("pick_place.html") @app.route("/search_places", methods=["POST"]) def search_places(): """Fetch addresses based on user input.""" if "username" not in session: return redirect("/") location = request.form["location"] key = getenv("MAPS_API_KEY") url = f"https://atlas.microsoft.com/search/address/json?&subscription-key={key}&api-version=1.0&language=en-US&query={location}" response = requests.get(url) places = json.loads(response.text)[ "results"] if response.status_code == 200 else None return render_template("pick_place.html", location=location, places=places) @app.route("/add_place", methods=["POST"]) def add_place(): """Open form for filling in information about a place.""" if "username" not in session: return redirect("/") address = request.form["address"] latitude = request.form["latitude"] longitude = request.form["longitude"] return render_template("edit_place.html", fields={ "address": address, "latitude": latitude, "longitude": longitude}) @app.route("/save_place", methods=["POST"]) def save_place(): """Save submitted place information.""" if "username" not in session: return redirect("/") if session["csrf_token"] != request.form["csrf_token"]: abort(403) fields = request.form messages = actions.validate_place(fields) if len(messages) > 0: return render_template("edit_place.html", messages=messages, fields=fields) messages = actions.save_place(fields) if len(messages) == 0: return redirect("/places") return render_template("edit_place.html", messages=messages, fields=fields) @app.route("/places") def list_places(): """Show a list of all places.""" if "username" not in session: return redirect("/") places = actions.get_places() return render_template("places.html", places=places, mode="2") @app.route("/login", methods=["POST"]) def login(): """Log user in using password and username from form.""" username = request.form["username"] password = request.form["password"] user = None try: user = actions.get_user_by_name(username) except AttributeError: return render_template("index.html", mode="4", messages=["A problem occurred while fetching user data."]) if not user: return render_template("index.html", mode="4", messages=["Username does not exist"]) hash_value = user.password if check_password_hash(hash_value, password): session["username"] = username session["role"] = user.role session["id"] = user.id session["csrf_token"] = secrets.token_hex(16) return redirect("/events") return render_template("index.html", mode="4", messages=["Wrong password"]) @app.route("/logout") def logout(): """Log user out by removing session data.""" del session["username"] del session["role"] del session["id"] del session["csrf_token"] return redirect("/") @app.route("/profile") def show_profile(): """Show information about user logged in.""" if "username" not in session: return redirect("/") user = actions.get_user_by_name(session["username"]) my_events = actions.get_organized_events_by_user_id(session["id"]) other_events = actions.get_registered_events_by_user_id(session["id"]) my_count = len(my_events) other_count = len(other_events) return render_template("profile.html", user=user, my_events=my_events, mode="1", other_events=other_events, my_count=my_count, other_count=other_count) @app.route("/new_user") def new_user(): """Show form for entering a new username and password.""" return render_template("new_user.html", fields=None, mode="4") @app.route("/edit_user") def edit_user(): """Show form for filling in other user information.""" if "username" not in session: return redirect("/") user = actions.get_user_by_name(session["username"]) return render_template("edit_user.html", user=user) @app.route("/add_user", methods=["POST"]) def add_user(): """Save submitted username and password.""" username = request.form["username"] password = request.form["password"] password2 = request.form["password2"] messages = [] messages.extend(actions.validate_username(username)) messages.extend(actions.validate_password(password)) if password != password2: messages.append("Passwords don't match") if len(messages) > 0: return render_template("new_user.html", messages=messages, fields=request.form, mode="4") hash_value = generate_password_hash(password) messages = actions.add_user(username, hash_value) if len(messages) == 0: session["username"] = username session["role"] = "user" session["id"] = actions.get_user_by_name(username).id session["csrf_token"] = secrets.token_hex(16) return render_template("edit_user.html", new_user=True, user=None, mode="4") return render_template("new_user.html", messages=messages, fields=request.form, mode="4") @app.route("/update_user", methods=["POST"]) def update_user(): """Save submitted user information.""" if "username" not in session: return redirect("/") if session["csrf_token"] != request.form["csrf_token"]: abort(403) date_of_birth = request.form["date_of_birth"] gender = request.form["gender"] description = request.form["description"] mode = request.form["mode"] messages = actions.validate_user(request.form) if len(messages) > 0: return render_template("edit_user.html", messages=messages, user=request.form, mode=mode) messages = actions.update_user( session["username"], date_of_birth, gender, description) if len(messages) > 0: return render_template("edit_user.html", messages=messages, user=request.form, mode=mode) return redirect("/profile") @app.route("/new_event") def new_event(): """Open form to create new event from scratch.""" if "username" not in session: return redirect("/") places = actions.get_places() return render_template("edit_event.html", fields=None, places=places, id="") @app.route("/edit_event", methods=["POST"]) def edit_event(): """Open event form for editing.""" if "username" not in session: return redirect("/") if not request.form["event_id"]: return redirect("/events") id = request.form["event_id"] event = actions.get_event_by_id(id) places = actions.get_places() if session["username"] != event.username: return redirect("/events") return render_template("edit_event.html", fields=event, places=places, id=id) @app.route("/delete_event", methods=["POST"]) def del_event(): """Delete event using id from currently viewed event.""" if "username" not in session: return redirect("/") if not request.form["event_id"]: return redirect("/events") id = request.form["event_id"] messages = actions.delete_event_by_id(id, session["id"]) events = actions.get_upcoming_events() past_events = actions.get_past_events() return render_template("events.html", count=len(events), events=events, past_events=past_events, events_view=True, messages=messages) @app.route("/add_event", methods=["POST"]) def update_event(): """Save event form fields.""" if "username" not in session: return redirect("/") if session["csrf_token"] != request.form["csrf_token"]: abort(403) fields = request.form places = actions.get_places() messages = actions.validate_event(fields) if len(messages) > 0: return render_template("edit_event.html", messages=messages, fields=fields, places=places, id=fields["event_id"]) messages = actions.upsert_event(session["id"], fields) if len(messages) > 0: return render_template("edit_event.html", messages=messages, fields=fields, places=places, id=fields["event_id"]) return redirect("/events") @app.route("/events") def list_events(): """Show a view with past and future events.""" if "username" not in session: return redirect("/") events = actions.get_upcoming_events() past_events = actions.get_past_events() return render_template("events.html", count=len(events), past_count=len(past_events), events=events, past_events=past_events, events_view=True, mode="3") @app.route("/event/<int:id>") def show_event(id): """Show more detailed information about one event.""" if "username" not in session: return redirect("/") event = actions.get_event_by_id(id) pos = f"[{event.location[1:-1]}]" comments = actions.get_comments_by_event_id(id) signups = actions.get_signups_by_event_id(id) going = len(signups) past = actions.is_past_event(event) if session["username"] == event.username: user_going = True else: user_going = actions.get_signup_by_id(id, session["id"]) return render_template("event.html", id=id, unit=event, comments=comments, signups=signups, pos=pos, going=going, user_going=user_going, past=past, key=getenv("MAPS_API_KEY")) @app.route("/write_comment", methods=["POST"]) def send_comment(): """Save a new comment.""" if "username" not in session: return redirect("/") if session["csrf_token"] != request.form["csrf_token"]: abort(403) event_id = request.form["event_id"] comment = request.form["comment"] if len(comment) > 0: actions.send_comment(event_id, session["id"], comment) return redirect(f"/event/{event_id}") @app.route("/signup", methods=["POST"]) def sign_up(): """Save registration to event or remove it.""" if "username" not in session: return redirect("/") if session["csrf_token"] != request.form["csrf_token"]: abort(403) event_id = request.form["event_id"] max_people = request.form["max_people"] signups = len(actions.get_signups_by_event_id(event_id)) actions.add_or_remove_signup(event_id, session["id"], max_people, signups) return redirect(f"/event/{event_id}")
34.256966
132
0.658653
6220e1dad304508f4bc3bde73f96e72d974db339
33,716
py
Python
src/sage/algebras/quantum_matrix_coordinate_algebra.py
bopopescu/sage
2d495be78e0bdc7a0a635454290b27bb4f5f70f0
[ "BSL-1.0" ]
3
2019-07-15T13:48:24.000Z
2019-11-08T12:31:43.000Z
src/sage/algebras/quantum_matrix_coordinate_algebra.py
bopopescu/sage
2d495be78e0bdc7a0a635454290b27bb4f5f70f0
[ "BSL-1.0" ]
2
2018-10-30T13:40:20.000Z
2020-07-23T12:13:30.000Z
src/sage/algebras/quantum_matrix_coordinate_algebra.py
bopopescu/sage
2d495be78e0bdc7a0a635454290b27bb4f5f70f0
[ "BSL-1.0" ]
1
2020-07-23T10:29:58.000Z
2020-07-23T10:29:58.000Z
r""" Quantum Matrix Coordinate Algebras AUTHORS: - Travis Scrimshaw (01-2016): initial version """ ############################################################################## # Copyright (C) 2016 Travis Scrimshaw <tscrimsh at umn.edu> # # Distributed under the terms of the GNU General Public License (GPL) # # The full text of the GPL is available at: # # http://www.gnu.org/licenses/ ############################################################################## from six.moves import range from sage.misc.cachefunc import cached_method from sage.misc.lazy_attribute import lazy_attribute from sage.sets.family import Family from sage.categories.algebras import Algebras from sage.categories.bialgebras import Bialgebras from sage.categories.hopf_algebras import HopfAlgebras from sage.combinat.free_module import CombinatorialFreeModule from sage.monoids.indexed_free_monoid import IndexedFreeAbelianMonoid from sage.rings.polynomial.laurent_polynomial_ring import LaurentPolynomialRing from sage.rings.all import ZZ class QuantumMatrixCoordinateAlgebra_abstract(CombinatorialFreeModule): """ Abstract base class for quantum coordinate algebras of a set of matrices. """ @staticmethod def __classcall__(cls, q=None, bar=None, R=None, **kwds): """ Normalize input to ensure a unique representation. EXAMPLES:: sage: R.<q> = LaurentPolynomialRing(ZZ) sage: O1 = algebras.QuantumMatrixCoordinate(4) sage: O2 = algebras.QuantumMatrixCoordinate(4, 4, q=q) sage: O3 = algebras.QuantumMatrixCoordinate(4, R=ZZ) sage: O4 = algebras.QuantumMatrixCoordinate(4, R=R, q=q) sage: O1 is O2 and O2 is O3 and O3 is O4 True sage: O5 = algebras.QuantumMatrixCoordinate(4, R=QQ) sage: O1 is O5 False """ if R is None: R = ZZ else: if q is not None: q = R(q) if q is None: q = LaurentPolynomialRing(R, 'q').gen() return super(QuantumMatrixCoordinateAlgebra_abstract, cls).__classcall__(cls, q=q, bar=bar, R=q.parent(), **kwds) def __init__(self, gp_indices, n, q, bar, R, category, indices_key=None): """ Initialize ``self``. TESTS:: sage: O = algebras.QuantumMatrixCoordinate(3, 2) sage: TestSuite(O).run() """ self._n = n self._q = q if bar is None: def bar(x): return x.subs(q=~self._q) self._bar = bar if indices_key is None: indices = IndexedFreeAbelianMonoid(gp_indices) else: indices = IndexedFreeAbelianMonoid(gp_indices, sorting_key=indices_key) CombinatorialFreeModule.__init__(self, R, indices, category=category) def _repr_term(self, m): r""" Return a string representation of the term indexed by ``m``. EXAMPLES:: sage: O = algebras.QuantumMatrixCoordinate(4) sage: I = O.indices() sage: x = I.an_element(); x F[(1, 1)]^2*F[(1, 2)]^2*F[(1, 3)]^3 sage: O._repr_term(x) 'x[1,1]^2*x[1,2]^2*x[1,3]^3' sage: O._repr_term(I.one()) '1' sage: O.q() * O.one() q """ S = m._sorted_items() if not S: return '1' def exp(e): return '^{}'.format(e) if e > 1 else '' return '*'.join(('x[{},{}]'.format(*k) if k != 'c' else 'c') + exp(e) for k, e in m._sorted_items()) def _latex_term(self, m): r""" Return a latex representation of the term indexed by ``m``. EXAMPLES:: sage: O = algebras.QuantumMatrixCoordinate(4) sage: I = O.indices() sage: x = I.an_element(); x F[(1, 1)]^2*F[(1, 2)]^2*F[(1, 3)]^3 sage: O._latex_term(x) 'x_{1,1}^{2} x_{1,2}^{2} x_{1,3}^{3}' sage: O._latex_term(I.one()) '1' sage: latex(O.q() * O.one()) q """ S = m._sorted_items() if not S: return '1' def exp(e): return '^{{{}}}'.format(e) if e > 1 else '' return ' '.join(('x_{{{},{}}}'.format(*k) if k != 'c' else 'c') + exp(e) for k, e in m._sorted_items()) def n(self): """ Return the value `n`. EXAMPLES:: sage: O = algebras.QuantumMatrixCoordinate(4) sage: O.n() 4 sage: O = algebras.QuantumMatrixCoordinate(4, 6) sage: O.n() 6 """ return self._n def q(self): """ Return the variable ``q``. EXAMPLES:: sage: O = algebras.QuantumMatrixCoordinate(4) sage: O.q() q sage: O.q().parent() Univariate Laurent Polynomial Ring in q over Integer Ring sage: O.q().parent() is O.base_ring() True """ return self._q @cached_method def one_basis(self): """ Return the basis element indexing `1`. EXAMPLES:: sage: O = algebras.QuantumMatrixCoordinate(4) sage: O.one_basis() 1 sage: O.one() 1 TESTS:: sage: O = algebras.QuantumMatrixCoordinate(4) sage: O.one_basis() == O.indices().one() True """ return self._indices.one() @cached_method def gens(self): r""" Return the generators of ``self`` as a tuple. EXAMPLES:: sage: O = algebras.QuantumMatrixCoordinate(3) sage: O.gens() (x[1,1], x[1,2], x[1,3], x[2,1], x[2,2], x[2,3], x[3,1], x[3,2], x[3,3]) """ return tuple(self.algebra_generators()) @cached_method def quantum_determinant(self): r""" Return the quantum determinant of ``self``. The quantum determinant is defined by .. MATH:: \det_q = \sum_{\sigma \in S_n} (-q)^{\ell(\sigma)} x_{1, \sigma(1)} x_{2, \sigma(2)} \cdots x_{n, \sigma(n)}. EXAMPLES:: sage: O = algebras.QuantumMatrixCoordinate(2) sage: O.quantum_determinant() x[1,1]*x[2,2] - q*x[1,2]*x[2,1] We verify that the quantum determinant is central:: sage: for n in range(2,5): ....: O = algebras.QuantumMatrixCoordinate(n) ....: qdet = O.quantum_determinant() ....: assert all(g * qdet == qdet * g for g in O.algebra_generators()) We also verify that it is group-like:: sage: for n in range(2,4): ....: O = algebras.QuantumMatrixCoordinate(n) ....: qdet = O.quantum_determinant() ....: assert qdet.coproduct() == tensor([qdet, qdet]) """ if hasattr(self, '_m') and self._m != self._n: raise ValueError("undefined for non-square quantum matrices") from sage.combinat.permutation import Permutations q = self._q return self.sum(self.term(self._indices({(i, p(i)): 1 for i in range(1, self._n + 1)}), (-q) ** p.length()) for p in Permutations(self._n)) def product_on_basis(self, a, b): """ Return the product of basis elements indexed by ``a`` and ``b``. EXAMPLES:: sage: O = algebras.QuantumMatrixCoordinate(4) sage: x = O.algebra_generators() sage: b = x[1,4] * x[2,1] * x[3,4] # indirect doctest sage: b * (b * b) == (b * b) * b True sage: p = prod(list(O.algebra_generators())[:10]) sage: p * (p * p) == (p * p) * p # long time True sage: x = O.an_element() sage: y = x^2 + x[4,4] * x[3,3] * x[1,2] sage: z = x[2,2] * x[1,4] * x[3,4] * x[1,1] sage: x * (y * z) == (x * y) * z True """ al = a._sorted_items() bl = b._sorted_items() # Check for multiplication by 1 if not al: return self.monomial(b) if not bl: return self.monomial(a) if al[-1][0] < bl[0][0]: # Already in order return self.monomial(a * b) G = self._indices.monoid_generators() one = self.base_ring().one() ret = self.zero() q = self._q qi = q ** -1 monomial = b coeff = one for pos in range(len(al) - 1, -1, -1): ax, ae = al[pos] for bx, be in bl: if ax[0] < bx[0]: # In order, so nothing more to do break elif ax[0] == bx[0]: if ax[1] > bx[1]: # x_{it} x_{ij} = q^{-1} x_{ij} x_{it} if t < j coeff *= qi ** (ae * be) else: # In order, so nothing more to do break elif ax[1] == bx[1]: # x_{sj} x_{ij} = q^{-1} x_{ij} x_{sj} if s > i coeff *= qi ** (ae * be) elif ax[1] > bx[1]: # By this point, we must have ax[0] > bx[0] # x_{st} x_{ij} = x_{ij} x_{st} + (q^-1 - q) x_{it} x_{sj} # if s > i, t > j # By Lemma 2.7 (with fixed typo) in H. Zhang and R.B. Zhang: # x_{st} x_{ij}^k = x_{ij}^k x_{st} # + (q^{1-2k} - q) x_{ij}^{k-1} x_{it} x_{sj} m1 = G[bx] ** be * G[ax] m2 = G[bx] ** (be - 1) * G[(bx[0], ax[1])] * G[(ax[0], bx[1])] ret = self._from_dict({m1: one, m2: (q ** (1 - 2 * be) - q)}) ml = monomial._sorted_items() index = ml.index((bx, be)) a_key = self._indices(dict(al[:pos])) bp_key = self._indices(dict(ml[:index])) * G[ax] ** (ae - 1) return (self.monomial(a_key) * self.monomial(bp_key) * ret * self.term(self._indices(dict(ml[index + 1:])), coeff)) # Otherwise ax[1] > bx[1], but for this case they commute: # x_{st} x_{ij} = x_{ij} x_{st} if s > i, t < j # So there is nothing to do to coeff monomial *= G[ax] ** ae return self.term(monomial, coeff) @cached_method def _bar_on_basis(self, x): """ Return the bar involution on the basis element indexed by ``x``. EXAMPLES:: sage: O = algebras.QuantumMatrixCoordinate(4) sage: O._bar_on_basis(O._indices.an_element()) (q^-16)*x[1,1]^2*x[1,2]^2*x[1,3]^3 """ ret = self.one() for k, e in reversed(x._sorted_items()): ret *= self.monomial(self._indices({k: e})) return ret def counit_on_basis(self, x): r""" Return the counit on the basis element indexed by ``x``. EXAMPLES:: sage: O = algebras.QuantumMatrixCoordinate(4) sage: G = O.algebra_generators() sage: I = [1,2,3,4] sage: matrix([[G[i,j].counit() for i in I] for j in I]) # indirect doctest [1 0 0 0] [0 1 0 0] [0 0 1 0] [0 0 0 1] """ if all(t == 'c' or t[0] == t[1] for t, e in x._sorted_items()): return self.base_ring().one() else: return self.base_ring().zero() class Element(CombinatorialFreeModule.Element): """ An element of a quantum matrix coordinate algebra. """ def bar(self): r""" Return the image of ``self`` under the bar involution. The bar involution is the `\QQ`-algebra anti-automorphism defined by `x_{ij} \mapsto x_{ji}` and `q \mapsto q^{-1}`. EXAMPLES:: sage: O = algebras.QuantumMatrixCoordinate(4) sage: x = O.an_element() sage: x.bar() 1 + 2*x[1,1] + (q^-16)*x[1,1]^2*x[1,2]^2*x[1,3]^3 + 3*x[1,2] sage: x = O.an_element() * O.algebra_generators()[2,4]; x x[1,1]^2*x[1,2]^2*x[1,3]^3*x[2,4] + 2*x[1,1]*x[2,4] + 3*x[1,2]*x[2,4] + x[2,4] sage: xb = x.bar(); xb (q^-16)*x[1,1]^2*x[1,2]^2*x[1,3]^3*x[2,4] + (q^-21-q^-15)*x[1,1]^2*x[1,2]^2*x[1,3]^2*x[1,4]*x[2,3] + (q^-22-q^-18)*x[1,1]^2*x[1,2]*x[1,3]^3*x[1,4]*x[2,2] + (q^-24-q^-20)*x[1,1]*x[1,2]^2*x[1,3]^3*x[1,4]*x[2,1] + 2*x[1,1]*x[2,4] + 3*x[1,2]*x[2,4] + (2*q^-1-2*q)*x[1,4]*x[2,1] + (3*q^-1-3*q)*x[1,4]*x[2,2] + x[2,4] sage: xb.bar() == x True """ P = self.parent() return P.sum(P._bar(c) * P._bar_on_basis(m) for m, c in self) class QuantumMatrixCoordinateAlgebra(QuantumMatrixCoordinateAlgebra_abstract): r""" A quantum matrix coordinate algebra. Let `R` be a commutative ring. The quantum matrix coordinate algebra of `M(m, n)` is the associative algebra over `R[q, q^{-1}]` generated by `x_{ij}`, for `i = 1, 2, \ldots, m`, `j = 1, 2, \ldots, n`, and subject to the following relations: .. MATH:: \begin{array}{ll} x_{it} x_{ij} = q^{-1} x_{ij} x_{it} & \text{if } j < t, \\ x_{sj} x_{ij} = q^{-1} x_{ij} x_{sj} & \text{if } i < s, \\ x_{st} x_{ij} = x_{ij} x_{st} & \text{if } i < s, j > t, \\ x_{st} x_{ij} = x_{ij} x_{st} + (q^{-1} - q) x_{it} x_{sj} & \text{if } i < s, j < t. \\ \end{array} The quantum matrix coordinate algebra is denoted by `\mathcal{O}_q(M(m, n))`. For `m = n`, it is also a bialgebra given by .. MATH:: \Delta(x_{ij}) = \sum_{k=1}^n x_{ik} \otimes x_{kj}, \varepsilon(x_{ij}) = \delta_{ij}. Moreover, there is a central group-like element called the *quantum determinant* that is defined by .. MATH:: \det_q = \sum_{\sigma \in S_n} (-q)^{\ell(\sigma)} x_{1,\sigma(1)} x_{2,\sigma(2)} \cdots x_{n,\sigma(n)}. The quantum matrix coordinate algebra also has natural inclusions when restricting to submatrices. That is, let `I \subseteq \{1, 2, \ldots, m\}` and `J \subseteq \{1, 2, \ldots, n\}`. Then the subalgebra generated by `\{ x_{ij} \mid i \in I, j \in J \}` is naturally isomorphic to `\mathcal{O}_q(M(|I|, |J|))`. .. NOTE:: The `q` considered here is `q^2` in some references, e.g., [ZZ2005]_. INPUT: - ``m`` -- the integer `m` - ``n`` -- the integer `n` - ``R`` -- (optional) the ring `R` if `q` is not specified (the default is `\ZZ`); otherwise the ring containing `q` - ``q`` -- (optional) the variable `q`; the default is `q \in R[q, q^{-1}]` - ``bar`` -- (optional) the involution on the base ring; the default is `q \mapsto q^{-1}` EXAMPLES: We construct `\mathcal{O}_q(M(2,3))` and the variables:: sage: O = algebras.QuantumMatrixCoordinate(2,3) sage: O.inject_variables() Defining x11, x12, x13, x21, x22, x23 We do some basic computations:: sage: x21 * x11 (q^-1)*x[1,1]*x[2,1] sage: x23 * x12 * x11 (q^-1)*x[1,1]*x[1,2]*x[2,3] + (q^-2-1)*x[1,1]*x[1,3]*x[2,2] + (q^-3-q^-1)*x[1,2]*x[1,3]*x[2,1] We construct the maximal quantum minors:: sage: q = O.q() sage: qm12 = x11*x22 - q*x12*x21 sage: qm13 = x11*x23 - q*x13*x21 sage: qm23 = x12*x23 - q*x13*x22 However, unlike for the quantum determinant, they are not central:: sage: all(qm12 * g == g * qm12 for g in O.algebra_generators()) False sage: all(qm13 * g == g * qm13 for g in O.algebra_generators()) False sage: all(qm23 * g == g * qm23 for g in O.algebra_generators()) False REFERENCES: - [FRT1990]_ - [ZZ2005]_ """ @staticmethod def __classcall_private__(cls, m, n=None, q=None, bar=None, R=None): r""" Normalize input to ensure a unique representation. EXAMPLES:: sage: R.<q> = LaurentPolynomialRing(ZZ) sage: O1 = algebras.QuantumMatrixCoordinate(4) sage: O2 = algebras.QuantumMatrixCoordinate(4, 4, q=q) sage: O3 = algebras.QuantumMatrixCoordinate(4, R=ZZ) sage: O4 = algebras.QuantumMatrixCoordinate(4, R=R, q=q) sage: O1 is O2 and O2 is O3 and O3 is O4 True sage: O5 = algebras.QuantumMatrixCoordinate(4, R=QQ) sage: O1 is O5 False """ if n is None: n = m return super(QuantumMatrixCoordinateAlgebra, cls).__classcall__(cls, m=m, n=n, q=q, bar=bar, R=R) def __init__(self, m, n, q, bar, R): """ Initialize ``self``. TESTS:: sage: O = algebras.QuantumMatrixCoordinate(4) sage: TestSuite(O).run() """ gp_indices = [(i, j) for i in range(1, m + 1) for j in range(1, n + 1)] if m == n: cat = Bialgebras(R.category()).WithBasis() else: cat = Algebras(R.category()).WithBasis() self._m = m QuantumMatrixCoordinateAlgebra_abstract.__init__(self, gp_indices, n, q, bar, R, cat) # Set the names names = ['x{}{}'.format(*k) for k in gp_indices] self._assign_names(names) def _repr_(self): r""" Return a string representation of ``self``. EXAMPLES:: sage: algebras.QuantumMatrixCoordinate(4) Quantized coordinate algebra of M(4, 4) with q=q over Univariate Laurent Polynomial Ring in q over Integer Ring sage: algebras.QuantumMatrixCoordinate(4, 2) Quantized coordinate algebra of M(4, 2) with q=q over Univariate Laurent Polynomial Ring in q over Integer Ring """ txt = "Quantized coordinate algebra of M({}, {}) with q={} over {}" return txt.format(self._m, self._n, self._q, self.base_ring()) def _latex_(self): r""" Return a latex representation of ``self``. EXAMPLES:: sage: O = algebras.QuantumMatrixCoordinate(4) sage: latex(O) \mathcal{O}_{q}(M(4, 4)) """ return "\\mathcal{O}_{%s}(M(%s, %s))" % (self._q, self._m, self._n) def m(self): """ Return the value `m`. EXAMPLES:: sage: O = algebras.QuantumMatrixCoordinate(4, 6) sage: O.m() 4 sage: O = algebras.QuantumMatrixCoordinate(4) sage: O.m() 4 """ return self._m @cached_method def algebra_generators(self): """ Return the algebra generators of ``self``. EXAMPLES:: sage: O = algebras.QuantumMatrixCoordinate(2) sage: O.algebra_generators() Finite family {(1, 1): x[1,1], (1, 2): x[1,2], (2, 1): x[2,1], (2, 2): x[2,2]} """ l = [(i, j) for i in range(1, self._m + 1) for j in range(1, self._n + 1)] G = self._indices.monoid_generators() one = self.base_ring().one() return Family(l, lambda x: self.element_class(self, {G[x]: one})) def coproduct_on_basis(self, x): r""" Return the coproduct on the basis element indexed by ``x``. EXAMPLES:: sage: O = algebras.QuantumMatrixCoordinate(4) sage: x24 = O.algebra_generators()[2,4] sage: O.coproduct_on_basis(x24.leading_support()) x[2,1] # x[1,4] + x[2,2] # x[2,4] + x[2,3] # x[3,4] + x[2,4] # x[4,4] TESTS: We check that it is an algebra morphism:: sage: O = algebras.QuantumMatrixCoordinate(3) sage: G = O.algebra_generators() sage: all(x.coproduct() * y.coproduct() == (x * y).coproduct() ....: for x in G for y in G) True """ if self._m != self._n: raise ValueError("undefined for non-square quantum matrices") T = self.tensor_square() I = self._indices.monoid_generators() return T.prod(T.sum_of_monomials((I[t[0], k], I[k, t[1]]) for k in range(1, self._n + 1)) ** e for t, e in x._sorted_items()) class QuantumGL(QuantumMatrixCoordinateAlgebra_abstract): r""" Quantum coordinate algebra of `GL(n)`. The quantum coordinate algebra of `GL(n)`, or quantum `GL(n)` for short and denoted by `\mathcal{O}_q(GL(n))`, is the quantum coordinate algebra of `M_R(n, n)` with the addition of the additional central group-like element `c` which satisfies `c d = d c = 1`, where `d` is the quantum determinant. Quantum `GL(n)` is a Hopf algebra where `\varepsilon(c) = 1` and the antipode `S` is given by the (quantum) matrix inverse. That is to say, we have `S(c) = c^-1 = d` and .. MATH:: S(x_{ij}) = c * (-q)^{i-j} * \tilde{t}_{ji}, where we have the quantum minor .. MATH:: \tilde{t}_{ij} = \sum_{\sigma} (-q)^{\ell(\sigma)} x_{1, \sigma(1)} \cdots x_{i-1, \sigma(i-1)} x_{i+1, \sigma(i+1)} \cdots x_{n, \sigma(n)} with the sum over permutations `\sigma \colon \{1, \ldots, i-1, i+1, \ldots n\} \to \{1, \ldots, j-1, j+1, \ldots, n\}`. .. SEEALSO:: :class:`QuantumMatrixCoordinateAlgebra` INPUT: - ``n`` -- the integer `n` - ``R`` -- (optional) the ring `R` if `q` is not specified (the default is `\ZZ`); otherwise the ring containing `q` - ``q`` -- (optional) the variable `q`; the default is `q \in R[q, q^{-1}]` - ``bar`` -- (optional) the involution on the base ring; the default is `q \mapsto q^{-1}` EXAMPLES: We construct `\mathcal{O}_q(GL(3))` and the variables:: sage: O = algebras.QuantumGL(3) sage: O.inject_variables() Defining x11, x12, x13, x21, x22, x23, x31, x32, x33, c We do some basic computations:: sage: x33 * x12 x[1,2]*x[3,3] + (q^-1-q)*x[1,3]*x[3,2] sage: x23 * x12 * x11 (q^-1)*x[1,1]*x[1,2]*x[2,3] + (q^-2-1)*x[1,1]*x[1,3]*x[2,2] + (q^-3-q^-1)*x[1,2]*x[1,3]*x[2,1] sage: c * O.quantum_determinant() 1 We verify the quantum determinant is in the center and is group-like:: sage: qdet = O.quantum_determinant() sage: all(qdet * g == g * qdet for g in O.algebra_generators()) True sage: qdet.coproduct() == tensor([qdet, qdet]) True We check that the inverse of the quantum determinant is also in the center and group-like:: sage: all(c * g == g * c for g in O.algebra_generators()) True sage: c.coproduct() == tensor([c, c]) True Moreover, the antipode interchanges the quantum determinant and its inverse:: sage: c.antipode() == qdet True sage: qdet.antipode() == c True REFERENCES: .. [DD91] \R. Dipper and S. Donkin. *Quantum* `GL_n`. Proc. London Math. Soc. (3) **63** (1991), no. 1, pp. 165-211. .. [Karimipour93] Vahid Karimipour. *Representations of the coordinate ring of* `GL_q(n)`. (1993). :arxiv:`hep-th/9306058`. """ @staticmethod def __classcall_private__(cls, n, q=None, bar=None, R=None): """ Normalize input to ensure a unique representation. EXAMPLES:: sage: R.<q> = LaurentPolynomialRing(ZZ) sage: O1 = algebras.QuantumGL(4) sage: O2 = algebras.QuantumGL(4, R=ZZ) sage: O3 = algebras.QuantumGL(4, R=R, q=q) sage: O1 is O2 and O2 is O3 True sage: O4 = algebras.QuantumGL(4, R=QQ) sage: O1 is O4 False """ return super(QuantumGL, cls).__classcall__(cls, n=n, q=q, bar=bar, R=R) def __init__(self, n, q, bar, R): """ Initialize ``self``. TESTS:: sage: O = algebras.QuantumGL(2) sage: elts = list(O.algebra_generators()) sage: elts += [O.quantum_determinant(), O.an_element()] sage: TestSuite(O).run(elements=elts) # long time """ # Set the names gp_indices = [(i, j) for i in range(1, n + 1) for j in range(1, n + 1)] gp_indices.append('c') cat = HopfAlgebras(R.category()).WithBasis() QuantumMatrixCoordinateAlgebra_abstract.__init__(self, gp_indices, n, q, bar, R, cat, indices_key=_generator_key) names = ['x{}{}'.format(*k) for k in gp_indices[:-1]] names.append('c') self._assign_names(names) def _repr_(self): r""" Return a string representation of ``self``. EXAMPLES:: sage: algebras.QuantumGL(4) Quantized coordinate algebra of GL(4) with q=q over Univariate Laurent Polynomial Ring in q over Integer Ring """ txt = "Quantized coordinate algebra of GL({}) with q={} over {}" return txt.format(self._n, self._q, self.base_ring()) def _latex_(self): r""" Return a latex representation of ``self``. EXAMPLES:: sage: O = algebras.QuantumGL(4) sage: latex(O) \mathcal{O}_{q}(GL(4)) """ return "\\mathcal{O}_{%s}(GL(%s))" % (self._q, self._n) @cached_method def algebra_generators(self): """ Return the algebra generators of ``self``. EXAMPLES:: sage: O = algebras.QuantumGL(2) sage: O.algebra_generators() Finite family {(1, 1): x[1,1], (1, 2): x[1,2], (2, 1): x[2,1], (2, 2): x[2,2], 'c': c} """ l = [(i, j) for i in range(1, self._n + 1) for j in range(1, self._n + 1)] l.append('c') G = self._indices.monoid_generators() one = self.base_ring().one() return Family(l, lambda x: self.element_class(self, {G[x]: one})) @lazy_attribute def _qdet_cancel_monomial(self): """ Return the trailing monomial of the quantum determinant. EXAMPLES:: sage: O = algebras.QuantumGL(2) sage: O._qdet_cancel_monomial F[(1, 1)]*F[(2, 2)] """ I = self._indices gens = I.monoid_generators() return I.prod(gens[i, i] for i in range(1, self._n + 1)) @lazy_attribute def _qdet_remaining(self): r""" Return the remaining terms when cancelling the leading term. Consider `d = m + L`, where `m` is the leading term of the quantum determinant `d`. Then we have `c d = cm + cL = 1`, which we rewrite as `cm = 1 - cL`. This lazy attribute is `1 - cL`. EXAMPLES:: sage: O = algebras.QuantumGL(2) sage: O._qdet_remaining 1 + q*c*x[1,2]*x[2,1] """ temp = self.monomial(self._qdet_cancel_monomial) - self.quantum_determinant() c = self._indices.monoid_generators()['c'] ret = {c * mon: coeff for mon, coeff in temp} return self._from_dict(ret, remove_zeros=False) + self.one() def product_on_basis(self, a, b): r""" Return the product of basis elements indexed by ``a`` and ``b``. EXAMPLES:: sage: O = algebras.QuantumGL(2) sage: I = O.indices().monoid_generators() sage: O.product_on_basis(I[1,1], I[2,2]) x[1,1]*x[2,2] sage: O.product_on_basis(I[2,2], I[1,1]) x[1,1]*x[2,2] + (q^-1-q)*x[1,2]*x[2,1] TESTS:: sage: x11,x12,x21,x22,c = O.algebra_generators() sage: x11 * x22 x[1,1]*x[2,2] sage: x22 * x12 (q^-1)*x[1,2]*x[2,2] sage: x22 * x11 x[1,1]*x[2,2] + (q^-1-q)*x[1,2]*x[2,1] sage: c * (x11 * O.quantum_determinant()) x[1,1] """ I = self._indices c_exp = 0 if 'c' in a._monomial: da = dict(a._monomial) # Make a copy c_exp += da.pop('c') a = I(da) if 'c' in b._monomial: db = dict(b._monomial) # Make a copy c_exp += db.pop('c') b = I(db) # a and b contain no powers of c p = super(QuantumGL, self).product_on_basis(a, b) if c_exp == 0: return p c = self._indices.monoid_generators()['c'] ret = {} other = self.zero() for mon, coeff in p: try: # Given that cz = R and we have a monomial ab, we need to # rewrite zx in terms of ab plus lower order terms L: # zx = X * ab + L # c * zx = R * x = c * X * ab + c * L # c * ab = (R * x - c * L) / X rem = self.monomial(mon // self._qdet_cancel_monomial) L = self.monomial(self._qdet_cancel_monomial) * rem co = L[mon] del L._monomial_coefficients[mon] temp = self.term(c ** (c_exp - 1), coeff) * self._qdet_remaining * rem if L != self.zero(): temp -= self.term(c ** c_exp, coeff) * L for k in temp._monomial_coefficients: temp._monomial_coefficients[k] //= co other += temp except ValueError: # We cannot cancel, so we just add on the correct power of c ret[c ** c_exp * mon] = coeff return self._from_dict(ret, remove_zeros=False) + other @cached_method def _antipode_on_generator(self, i, j): """ Return the antipode on the generator indexed by ``(i, j)``. EXAMPLES:: sage: O = algebras.QuantumGL(2) sage: [[O._antipode_on_generator(i, j) for i in [1,2]] for j in [1,2]] [[c*x[2,2], -q*c*x[2,1]], [-(q^-1)*c*x[1,2], c*x[1,1]]] """ from sage.combinat.permutation import Permutations q = self._q I = list(range(1, j)) + list(range(j + 1, self._n + 1)) def lift(p): return [val if val < i else val + 1 for val in p] gens = self.algebra_generators() t_tilde = self.sum((-q) ** p.length() * gens['c'] * self.prod(gens[I[k], val] for k, val in enumerate(lift(p))) for p in Permutations(self._n - 1)) return (-q) ** (i - j) * t_tilde def antipode_on_basis(self, x): r""" Return the antipode of the basis element indexed by ``x``. EXAMPLES:: sage: O = algebras.QuantumGL(3) sage: x = O.indices().monoid_generators() sage: O.antipode_on_basis(x[1,2]) -(q^-1)*c*x[1,2]*x[3,3] + c*x[1,3]*x[3,2] sage: O.antipode_on_basis(x[2,2]) c*x[1,1]*x[3,3] - q*c*x[1,3]*x[3,1] sage: O.antipode_on_basis(x['c']) == O.quantum_determinant() True """ ret = self.one() for k, e in reversed(x._sorted_items()): if k == 'c': ret *= self.quantum_determinant() ** e else: ret *= self._antipode_on_generator(*k) ** e return ret def coproduct_on_basis(self, x): r""" Return the coproduct on the basis element indexed by ``x``. EXAMPLES:: sage: O = algebras.QuantumGL(3) sage: x = O.indices().monoid_generators() sage: O.coproduct_on_basis(x[1,2]) x[1,1] # x[1,2] + x[1,2] # x[2,2] + x[1,3] # x[3,2] sage: O.coproduct_on_basis(x[2,2]) x[2,1] # x[1,2] + x[2,2] # x[2,2] + x[2,3] # x[3,2] sage: O.coproduct_on_basis(x['c']) c # c """ T = self.tensor_square() I = self._indices.monoid_generators() return T.prod(T.sum_of_monomials((I[t[0], k], I[k, t[1]]) for k in range(1, self._n + 1)) ** e if t != 'c' else T.monomial((I['c'], I['c'])) ** e for t, e in x._sorted_items()) def _generator_key(t): """ Helper function to make ``'c'`` less that all other indices for sorting the monomials in :class:`QuantumGL`. EXAMPLES:: sage: from sage.algebras.quantum_matrix_coordinate_algebra import _generator_key as k sage: k((1,2)) < k('c') False sage: k((1,2)) < k((1,3)) True sage: k((1,2)) < k((3,1)) True sage: k('c') < k((1,1)) True """ if isinstance(t, tuple): return t return ()
33.953676
98
0.495195
acf0996ff1266d915aeabb9ef3a8ff306d1e9121
43,346
py
Python
cookbook/lib/python3.7/site-packages/google/cloud/firestore_admin_v1/proto/operation_pb2.py
ethanga12/cookbooktbd
bc310546f4b05d29a24eff79242c252a086d7260
[ "Apache-2.0" ]
1
2021-01-15T18:00:01.000Z
2021-01-15T18:00:01.000Z
cookbook/lib/python3.7/site-packages/google/cloud/firestore_admin_v1/proto/operation_pb2.py
ethanga12/cookbooktbd
bc310546f4b05d29a24eff79242c252a086d7260
[ "Apache-2.0" ]
null
null
null
cookbook/lib/python3.7/site-packages/google/cloud/firestore_admin_v1/proto/operation_pb2.py
ethanga12/cookbooktbd
bc310546f4b05d29a24eff79242c252a086d7260
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # Generated by the protocol buffer compiler. DO NOT EDIT! # source: google/cloud/firestore_admin_v1/proto/operation.proto """Generated protocol buffer code.""" from google.protobuf.internal import enum_type_wrapper from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() from google.cloud.firestore_admin_v1.proto import ( index_pb2 as google_dot_cloud_dot_firestore__admin__v1_dot_proto_dot_index__pb2, ) from google.protobuf import timestamp_pb2 as google_dot_protobuf_dot_timestamp__pb2 from google.api import annotations_pb2 as google_dot_api_dot_annotations__pb2 DESCRIPTOR = _descriptor.FileDescriptor( name="google/cloud/firestore_admin_v1/proto/operation.proto", package="google.firestore.admin.v1", syntax="proto3", serialized_options=b"\n\035com.google.firestore.admin.v1B\016OperationProtoP\001Z>google.golang.org/genproto/googleapis/firestore/admin/v1;admin\242\002\004GCFS\252\002\037Google.Cloud.Firestore.Admin.V1\312\002\037Google\\Cloud\\Firestore\\Admin\\V1\352\002#Google::Cloud::Firestore::Admin::V1", create_key=_descriptor._internal_create_key, serialized_pb=b'\n5google/cloud/firestore_admin_v1/proto/operation.proto\x12\x19google.firestore.admin.v1\x1a\x31google/cloud/firestore_admin_v1/proto/index.proto\x1a\x1fgoogle/protobuf/timestamp.proto\x1a\x1cgoogle/api/annotations.proto"\xbd\x02\n\x16IndexOperationMetadata\x12.\n\nstart_time\x18\x01 \x01(\x0b\x32\x1a.google.protobuf.Timestamp\x12,\n\x08\x65nd_time\x18\x02 \x01(\x0b\x32\x1a.google.protobuf.Timestamp\x12\r\n\x05index\x18\x03 \x01(\t\x12\x38\n\x05state\x18\x04 \x01(\x0e\x32).google.firestore.admin.v1.OperationState\x12?\n\x12progress_documents\x18\x05 \x01(\x0b\x32#.google.firestore.admin.v1.Progress\x12;\n\x0eprogress_bytes\x18\x06 \x01(\x0b\x32#.google.firestore.admin.v1.Progress"\x88\x05\n\x16\x46ieldOperationMetadata\x12.\n\nstart_time\x18\x01 \x01(\x0b\x32\x1a.google.protobuf.Timestamp\x12,\n\x08\x65nd_time\x18\x02 \x01(\x0b\x32\x1a.google.protobuf.Timestamp\x12\r\n\x05\x66ield\x18\x03 \x01(\t\x12_\n\x13index_config_deltas\x18\x04 \x03(\x0b\x32\x42.google.firestore.admin.v1.FieldOperationMetadata.IndexConfigDelta\x12\x38\n\x05state\x18\x05 \x01(\x0e\x32).google.firestore.admin.v1.OperationState\x12?\n\x12progress_documents\x18\x06 \x01(\x0b\x32#.google.firestore.admin.v1.Progress\x12;\n\x0eprogress_bytes\x18\x07 \x01(\x0b\x32#.google.firestore.admin.v1.Progress\x1a\xe7\x01\n\x10IndexConfigDelta\x12\x62\n\x0b\x63hange_type\x18\x01 \x01(\x0e\x32M.google.firestore.admin.v1.FieldOperationMetadata.IndexConfigDelta.ChangeType\x12/\n\x05index\x18\x02 \x01(\x0b\x32 .google.firestore.admin.v1.Index">\n\nChangeType\x12\x1b\n\x17\x43HANGE_TYPE_UNSPECIFIED\x10\x00\x12\x07\n\x03\x41\x44\x44\x10\x01\x12\n\n\x06REMOVE\x10\x02"\xec\x02\n\x17\x45xportDocumentsMetadata\x12.\n\nstart_time\x18\x01 \x01(\x0b\x32\x1a.google.protobuf.Timestamp\x12,\n\x08\x65nd_time\x18\x02 \x01(\x0b\x32\x1a.google.protobuf.Timestamp\x12\x42\n\x0foperation_state\x18\x03 \x01(\x0e\x32).google.firestore.admin.v1.OperationState\x12?\n\x12progress_documents\x18\x04 \x01(\x0b\x32#.google.firestore.admin.v1.Progress\x12;\n\x0eprogress_bytes\x18\x05 \x01(\x0b\x32#.google.firestore.admin.v1.Progress\x12\x16\n\x0e\x63ollection_ids\x18\x06 \x03(\t\x12\x19\n\x11output_uri_prefix\x18\x07 \x01(\t"\xeb\x02\n\x17ImportDocumentsMetadata\x12.\n\nstart_time\x18\x01 \x01(\x0b\x32\x1a.google.protobuf.Timestamp\x12,\n\x08\x65nd_time\x18\x02 \x01(\x0b\x32\x1a.google.protobuf.Timestamp\x12\x42\n\x0foperation_state\x18\x03 \x01(\x0e\x32).google.firestore.admin.v1.OperationState\x12?\n\x12progress_documents\x18\x04 \x01(\x0b\x32#.google.firestore.admin.v1.Progress\x12;\n\x0eprogress_bytes\x18\x05 \x01(\x0b\x32#.google.firestore.admin.v1.Progress\x12\x16\n\x0e\x63ollection_ids\x18\x06 \x03(\t\x12\x18\n\x10input_uri_prefix\x18\x07 \x01(\t"4\n\x17\x45xportDocumentsResponse\x12\x19\n\x11output_uri_prefix\x18\x01 \x01(\t":\n\x08Progress\x12\x16\n\x0e\x65stimated_work\x18\x01 \x01(\x03\x12\x16\n\x0e\x63ompleted_work\x18\x02 \x01(\x03*\x9e\x01\n\x0eOperationState\x12\x1f\n\x1bOPERATION_STATE_UNSPECIFIED\x10\x00\x12\x10\n\x0cINITIALIZING\x10\x01\x12\x0e\n\nPROCESSING\x10\x02\x12\x0e\n\nCANCELLING\x10\x03\x12\x0e\n\nFINALIZING\x10\x04\x12\x0e\n\nSUCCESSFUL\x10\x05\x12\n\n\x06\x46\x41ILED\x10\x06\x12\r\n\tCANCELLED\x10\x07\x42\xe2\x01\n\x1d\x63om.google.firestore.admin.v1B\x0eOperationProtoP\x01Z>google.golang.org/genproto/googleapis/firestore/admin/v1;admin\xa2\x02\x04GCFS\xaa\x02\x1fGoogle.Cloud.Firestore.Admin.V1\xca\x02\x1fGoogle\\Cloud\\Firestore\\Admin\\V1\xea\x02#Google::Cloud::Firestore::Admin::V1b\x06proto3', dependencies=[ google_dot_cloud_dot_firestore__admin__v1_dot_proto_dot_index__pb2.DESCRIPTOR, google_dot_protobuf_dot_timestamp__pb2.DESCRIPTOR, google_dot_api_dot_annotations__pb2.DESCRIPTOR, ], ) _OPERATIONSTATE = _descriptor.EnumDescriptor( name="OperationState", full_name="google.firestore.admin.v1.OperationState", filename=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key, values=[ _descriptor.EnumValueDescriptor( name="OPERATION_STATE_UNSPECIFIED", index=0, number=0, serialized_options=None, type=None, create_key=_descriptor._internal_create_key, ), _descriptor.EnumValueDescriptor( name="INITIALIZING", index=1, number=1, serialized_options=None, type=None, create_key=_descriptor._internal_create_key, ), _descriptor.EnumValueDescriptor( name="PROCESSING", index=2, number=2, serialized_options=None, type=None, create_key=_descriptor._internal_create_key, ), _descriptor.EnumValueDescriptor( name="CANCELLING", index=3, number=3, serialized_options=None, type=None, create_key=_descriptor._internal_create_key, ), _descriptor.EnumValueDescriptor( name="FINALIZING", index=4, number=4, serialized_options=None, type=None, create_key=_descriptor._internal_create_key, ), _descriptor.EnumValueDescriptor( name="SUCCESSFUL", index=5, number=5, serialized_options=None, type=None, create_key=_descriptor._internal_create_key, ), _descriptor.EnumValueDescriptor( name="FAILED", index=6, number=6, serialized_options=None, type=None, create_key=_descriptor._internal_create_key, ), _descriptor.EnumValueDescriptor( name="CANCELLED", index=7, number=7, serialized_options=None, type=None, create_key=_descriptor._internal_create_key, ), ], containing_type=None, serialized_options=None, serialized_start=2017, serialized_end=2175, ) _sym_db.RegisterEnumDescriptor(_OPERATIONSTATE) OperationState = enum_type_wrapper.EnumTypeWrapper(_OPERATIONSTATE) OPERATION_STATE_UNSPECIFIED = 0 INITIALIZING = 1 PROCESSING = 2 CANCELLING = 3 FINALIZING = 4 SUCCESSFUL = 5 FAILED = 6 CANCELLED = 7 _FIELDOPERATIONMETADATA_INDEXCONFIGDELTA_CHANGETYPE = _descriptor.EnumDescriptor( name="ChangeType", full_name="google.firestore.admin.v1.FieldOperationMetadata.IndexConfigDelta.ChangeType", filename=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key, values=[ _descriptor.EnumValueDescriptor( name="CHANGE_TYPE_UNSPECIFIED", index=0, number=0, serialized_options=None, type=None, create_key=_descriptor._internal_create_key, ), _descriptor.EnumValueDescriptor( name="ADD", index=1, number=1, serialized_options=None, type=None, create_key=_descriptor._internal_create_key, ), _descriptor.EnumValueDescriptor( name="REMOVE", index=2, number=2, serialized_options=None, type=None, create_key=_descriptor._internal_create_key, ), ], containing_type=None, serialized_options=None, serialized_start=1105, serialized_end=1167, ) _sym_db.RegisterEnumDescriptor(_FIELDOPERATIONMETADATA_INDEXCONFIGDELTA_CHANGETYPE) _INDEXOPERATIONMETADATA = _descriptor.Descriptor( name="IndexOperationMetadata", full_name="google.firestore.admin.v1.IndexOperationMetadata", filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ _descriptor.FieldDescriptor( name="start_time", full_name="google.firestore.admin.v1.IndexOperationMetadata.start_time", index=0, number=1, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key, ), _descriptor.FieldDescriptor( name="end_time", full_name="google.firestore.admin.v1.IndexOperationMetadata.end_time", index=1, number=2, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key, ), _descriptor.FieldDescriptor( name="index", full_name="google.firestore.admin.v1.IndexOperationMetadata.index", index=2, number=3, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode("utf-8"), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key, ), _descriptor.FieldDescriptor( name="state", full_name="google.firestore.admin.v1.IndexOperationMetadata.state", index=3, number=4, type=14, cpp_type=8, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key, ), _descriptor.FieldDescriptor( name="progress_documents", full_name="google.firestore.admin.v1.IndexOperationMetadata.progress_documents", index=4, number=5, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key, ), _descriptor.FieldDescriptor( name="progress_bytes", full_name="google.firestore.admin.v1.IndexOperationMetadata.progress_bytes", index=5, number=6, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key, ), ], extensions=[], nested_types=[], enum_types=[], serialized_options=None, is_extendable=False, syntax="proto3", extension_ranges=[], oneofs=[], serialized_start=199, serialized_end=516, ) _FIELDOPERATIONMETADATA_INDEXCONFIGDELTA = _descriptor.Descriptor( name="IndexConfigDelta", full_name="google.firestore.admin.v1.FieldOperationMetadata.IndexConfigDelta", filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ _descriptor.FieldDescriptor( name="change_type", full_name="google.firestore.admin.v1.FieldOperationMetadata.IndexConfigDelta.change_type", index=0, number=1, type=14, cpp_type=8, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key, ), _descriptor.FieldDescriptor( name="index", full_name="google.firestore.admin.v1.FieldOperationMetadata.IndexConfigDelta.index", index=1, number=2, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key, ), ], extensions=[], nested_types=[], enum_types=[_FIELDOPERATIONMETADATA_INDEXCONFIGDELTA_CHANGETYPE,], serialized_options=None, is_extendable=False, syntax="proto3", extension_ranges=[], oneofs=[], serialized_start=936, serialized_end=1167, ) _FIELDOPERATIONMETADATA = _descriptor.Descriptor( name="FieldOperationMetadata", full_name="google.firestore.admin.v1.FieldOperationMetadata", filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ _descriptor.FieldDescriptor( name="start_time", full_name="google.firestore.admin.v1.FieldOperationMetadata.start_time", index=0, number=1, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key, ), _descriptor.FieldDescriptor( name="end_time", full_name="google.firestore.admin.v1.FieldOperationMetadata.end_time", index=1, number=2, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key, ), _descriptor.FieldDescriptor( name="field", full_name="google.firestore.admin.v1.FieldOperationMetadata.field", index=2, number=3, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode("utf-8"), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key, ), _descriptor.FieldDescriptor( name="index_config_deltas", full_name="google.firestore.admin.v1.FieldOperationMetadata.index_config_deltas", index=3, number=4, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key, ), _descriptor.FieldDescriptor( name="state", full_name="google.firestore.admin.v1.FieldOperationMetadata.state", index=4, number=5, type=14, cpp_type=8, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key, ), _descriptor.FieldDescriptor( name="progress_documents", full_name="google.firestore.admin.v1.FieldOperationMetadata.progress_documents", index=5, number=6, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key, ), _descriptor.FieldDescriptor( name="progress_bytes", full_name="google.firestore.admin.v1.FieldOperationMetadata.progress_bytes", index=6, number=7, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key, ), ], extensions=[], nested_types=[_FIELDOPERATIONMETADATA_INDEXCONFIGDELTA,], enum_types=[], serialized_options=None, is_extendable=False, syntax="proto3", extension_ranges=[], oneofs=[], serialized_start=519, serialized_end=1167, ) _EXPORTDOCUMENTSMETADATA = _descriptor.Descriptor( name="ExportDocumentsMetadata", full_name="google.firestore.admin.v1.ExportDocumentsMetadata", filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ _descriptor.FieldDescriptor( name="start_time", full_name="google.firestore.admin.v1.ExportDocumentsMetadata.start_time", index=0, number=1, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key, ), _descriptor.FieldDescriptor( name="end_time", full_name="google.firestore.admin.v1.ExportDocumentsMetadata.end_time", index=1, number=2, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key, ), _descriptor.FieldDescriptor( name="operation_state", full_name="google.firestore.admin.v1.ExportDocumentsMetadata.operation_state", index=2, number=3, type=14, cpp_type=8, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key, ), _descriptor.FieldDescriptor( name="progress_documents", full_name="google.firestore.admin.v1.ExportDocumentsMetadata.progress_documents", index=3, number=4, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key, ), _descriptor.FieldDescriptor( name="progress_bytes", full_name="google.firestore.admin.v1.ExportDocumentsMetadata.progress_bytes", index=4, number=5, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key, ), _descriptor.FieldDescriptor( name="collection_ids", full_name="google.firestore.admin.v1.ExportDocumentsMetadata.collection_ids", index=5, number=6, type=9, cpp_type=9, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key, ), _descriptor.FieldDescriptor( name="output_uri_prefix", full_name="google.firestore.admin.v1.ExportDocumentsMetadata.output_uri_prefix", index=6, number=7, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode("utf-8"), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key, ), ], extensions=[], nested_types=[], enum_types=[], serialized_options=None, is_extendable=False, syntax="proto3", extension_ranges=[], oneofs=[], serialized_start=1170, serialized_end=1534, ) _IMPORTDOCUMENTSMETADATA = _descriptor.Descriptor( name="ImportDocumentsMetadata", full_name="google.firestore.admin.v1.ImportDocumentsMetadata", filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ _descriptor.FieldDescriptor( name="start_time", full_name="google.firestore.admin.v1.ImportDocumentsMetadata.start_time", index=0, number=1, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key, ), _descriptor.FieldDescriptor( name="end_time", full_name="google.firestore.admin.v1.ImportDocumentsMetadata.end_time", index=1, number=2, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key, ), _descriptor.FieldDescriptor( name="operation_state", full_name="google.firestore.admin.v1.ImportDocumentsMetadata.operation_state", index=2, number=3, type=14, cpp_type=8, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key, ), _descriptor.FieldDescriptor( name="progress_documents", full_name="google.firestore.admin.v1.ImportDocumentsMetadata.progress_documents", index=3, number=4, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key, ), _descriptor.FieldDescriptor( name="progress_bytes", full_name="google.firestore.admin.v1.ImportDocumentsMetadata.progress_bytes", index=4, number=5, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key, ), _descriptor.FieldDescriptor( name="collection_ids", full_name="google.firestore.admin.v1.ImportDocumentsMetadata.collection_ids", index=5, number=6, type=9, cpp_type=9, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key, ), _descriptor.FieldDescriptor( name="input_uri_prefix", full_name="google.firestore.admin.v1.ImportDocumentsMetadata.input_uri_prefix", index=6, number=7, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode("utf-8"), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key, ), ], extensions=[], nested_types=[], enum_types=[], serialized_options=None, is_extendable=False, syntax="proto3", extension_ranges=[], oneofs=[], serialized_start=1537, serialized_end=1900, ) _EXPORTDOCUMENTSRESPONSE = _descriptor.Descriptor( name="ExportDocumentsResponse", full_name="google.firestore.admin.v1.ExportDocumentsResponse", filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ _descriptor.FieldDescriptor( name="output_uri_prefix", full_name="google.firestore.admin.v1.ExportDocumentsResponse.output_uri_prefix", index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode("utf-8"), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key, ), ], extensions=[], nested_types=[], enum_types=[], serialized_options=None, is_extendable=False, syntax="proto3", extension_ranges=[], oneofs=[], serialized_start=1902, serialized_end=1954, ) _PROGRESS = _descriptor.Descriptor( name="Progress", full_name="google.firestore.admin.v1.Progress", filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ _descriptor.FieldDescriptor( name="estimated_work", full_name="google.firestore.admin.v1.Progress.estimated_work", index=0, number=1, type=3, cpp_type=2, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key, ), _descriptor.FieldDescriptor( name="completed_work", full_name="google.firestore.admin.v1.Progress.completed_work", index=1, number=2, type=3, cpp_type=2, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key, ), ], extensions=[], nested_types=[], enum_types=[], serialized_options=None, is_extendable=False, syntax="proto3", extension_ranges=[], oneofs=[], serialized_start=1956, serialized_end=2014, ) _INDEXOPERATIONMETADATA.fields_by_name[ "start_time" ].message_type = google_dot_protobuf_dot_timestamp__pb2._TIMESTAMP _INDEXOPERATIONMETADATA.fields_by_name[ "end_time" ].message_type = google_dot_protobuf_dot_timestamp__pb2._TIMESTAMP _INDEXOPERATIONMETADATA.fields_by_name["state"].enum_type = _OPERATIONSTATE _INDEXOPERATIONMETADATA.fields_by_name["progress_documents"].message_type = _PROGRESS _INDEXOPERATIONMETADATA.fields_by_name["progress_bytes"].message_type = _PROGRESS _FIELDOPERATIONMETADATA_INDEXCONFIGDELTA.fields_by_name[ "change_type" ].enum_type = _FIELDOPERATIONMETADATA_INDEXCONFIGDELTA_CHANGETYPE _FIELDOPERATIONMETADATA_INDEXCONFIGDELTA.fields_by_name[ "index" ].message_type = ( google_dot_cloud_dot_firestore__admin__v1_dot_proto_dot_index__pb2._INDEX ) _FIELDOPERATIONMETADATA_INDEXCONFIGDELTA.containing_type = _FIELDOPERATIONMETADATA _FIELDOPERATIONMETADATA_INDEXCONFIGDELTA_CHANGETYPE.containing_type = ( _FIELDOPERATIONMETADATA_INDEXCONFIGDELTA ) _FIELDOPERATIONMETADATA.fields_by_name[ "start_time" ].message_type = google_dot_protobuf_dot_timestamp__pb2._TIMESTAMP _FIELDOPERATIONMETADATA.fields_by_name[ "end_time" ].message_type = google_dot_protobuf_dot_timestamp__pb2._TIMESTAMP _FIELDOPERATIONMETADATA.fields_by_name[ "index_config_deltas" ].message_type = _FIELDOPERATIONMETADATA_INDEXCONFIGDELTA _FIELDOPERATIONMETADATA.fields_by_name["state"].enum_type = _OPERATIONSTATE _FIELDOPERATIONMETADATA.fields_by_name["progress_documents"].message_type = _PROGRESS _FIELDOPERATIONMETADATA.fields_by_name["progress_bytes"].message_type = _PROGRESS _EXPORTDOCUMENTSMETADATA.fields_by_name[ "start_time" ].message_type = google_dot_protobuf_dot_timestamp__pb2._TIMESTAMP _EXPORTDOCUMENTSMETADATA.fields_by_name[ "end_time" ].message_type = google_dot_protobuf_dot_timestamp__pb2._TIMESTAMP _EXPORTDOCUMENTSMETADATA.fields_by_name["operation_state"].enum_type = _OPERATIONSTATE _EXPORTDOCUMENTSMETADATA.fields_by_name["progress_documents"].message_type = _PROGRESS _EXPORTDOCUMENTSMETADATA.fields_by_name["progress_bytes"].message_type = _PROGRESS _IMPORTDOCUMENTSMETADATA.fields_by_name[ "start_time" ].message_type = google_dot_protobuf_dot_timestamp__pb2._TIMESTAMP _IMPORTDOCUMENTSMETADATA.fields_by_name[ "end_time" ].message_type = google_dot_protobuf_dot_timestamp__pb2._TIMESTAMP _IMPORTDOCUMENTSMETADATA.fields_by_name["operation_state"].enum_type = _OPERATIONSTATE _IMPORTDOCUMENTSMETADATA.fields_by_name["progress_documents"].message_type = _PROGRESS _IMPORTDOCUMENTSMETADATA.fields_by_name["progress_bytes"].message_type = _PROGRESS DESCRIPTOR.message_types_by_name["IndexOperationMetadata"] = _INDEXOPERATIONMETADATA DESCRIPTOR.message_types_by_name["FieldOperationMetadata"] = _FIELDOPERATIONMETADATA DESCRIPTOR.message_types_by_name["ExportDocumentsMetadata"] = _EXPORTDOCUMENTSMETADATA DESCRIPTOR.message_types_by_name["ImportDocumentsMetadata"] = _IMPORTDOCUMENTSMETADATA DESCRIPTOR.message_types_by_name["ExportDocumentsResponse"] = _EXPORTDOCUMENTSRESPONSE DESCRIPTOR.message_types_by_name["Progress"] = _PROGRESS DESCRIPTOR.enum_types_by_name["OperationState"] = _OPERATIONSTATE _sym_db.RegisterFileDescriptor(DESCRIPTOR) IndexOperationMetadata = _reflection.GeneratedProtocolMessageType( "IndexOperationMetadata", (_message.Message,), { "DESCRIPTOR": _INDEXOPERATIONMETADATA, "__module__": "google.cloud.firestore_admin_v1.proto.operation_pb2", "__doc__": """Metadata for [google.longrunning.Operation][google.longrunning.Operation] results from [FirestoreAdmin.CreateIndex][google.firestore.admin.v1.FirestoreA dmin.CreateIndex]. Attributes: start_time: The time this operation started. end_time: The time this operation completed. Will be unset if operation still in progress. index: The index resource that this operation is acting on. For example: ``projects/{project_id}/databases/{database_id}/colle ctionGroups/{collection_id}/indexes/{index_id}`` state: The state of the operation. progress_documents: The progress, in documents, of this operation. progress_bytes: The progress, in bytes, of this operation. """, # @@protoc_insertion_point(class_scope:google.firestore.admin.v1.IndexOperationMetadata) }, ) _sym_db.RegisterMessage(IndexOperationMetadata) FieldOperationMetadata = _reflection.GeneratedProtocolMessageType( "FieldOperationMetadata", (_message.Message,), { "IndexConfigDelta": _reflection.GeneratedProtocolMessageType( "IndexConfigDelta", (_message.Message,), { "DESCRIPTOR": _FIELDOPERATIONMETADATA_INDEXCONFIGDELTA, "__module__": "google.cloud.firestore_admin_v1.proto.operation_pb2", "__doc__": """Information about an index configuration change. Attributes: change_type: Specifies how the index is changing. index: The index being changed. """, # @@protoc_insertion_point(class_scope:google.firestore.admin.v1.FieldOperationMetadata.IndexConfigDelta) }, ), "DESCRIPTOR": _FIELDOPERATIONMETADATA, "__module__": "google.cloud.firestore_admin_v1.proto.operation_pb2", "__doc__": """Metadata for [google.longrunning.Operation][google.longrunning.Operation] results from [FirestoreAdmin.UpdateField][google.firestore.admin.v1.FirestoreA dmin.UpdateField]. Attributes: start_time: The time this operation started. end_time: The time this operation completed. Will be unset if operation still in progress. field: The field resource that this operation is acting on. For example: ``projects/{project_id}/databases/{database_id}/colle ctionGroups/{collection_id}/fields/{field_path}`` index_config_deltas: A list of [IndexConfigDelta][google.firestore.admin.v1.FieldOp erationMetadata.IndexConfigDelta], which describe the intent of this operation. state: The state of the operation. progress_documents: The progress, in documents, of this operation. progress_bytes: The progress, in bytes, of this operation. """, # @@protoc_insertion_point(class_scope:google.firestore.admin.v1.FieldOperationMetadata) }, ) _sym_db.RegisterMessage(FieldOperationMetadata) _sym_db.RegisterMessage(FieldOperationMetadata.IndexConfigDelta) ExportDocumentsMetadata = _reflection.GeneratedProtocolMessageType( "ExportDocumentsMetadata", (_message.Message,), { "DESCRIPTOR": _EXPORTDOCUMENTSMETADATA, "__module__": "google.cloud.firestore_admin_v1.proto.operation_pb2", "__doc__": """Metadata for [google.longrunning.Operation][google.longrunning.Operation] results from [FirestoreAdmin.ExportDocuments][google.firestore.admin.v1.Firest oreAdmin.ExportDocuments]. Attributes: start_time: The time this operation started. end_time: The time this operation completed. Will be unset if operation still in progress. operation_state: The state of the export operation. progress_documents: The progress, in documents, of this operation. progress_bytes: The progress, in bytes, of this operation. collection_ids: Which collection ids are being exported. output_uri_prefix: Where the entities are being exported to. """, # @@protoc_insertion_point(class_scope:google.firestore.admin.v1.ExportDocumentsMetadata) }, ) _sym_db.RegisterMessage(ExportDocumentsMetadata) ImportDocumentsMetadata = _reflection.GeneratedProtocolMessageType( "ImportDocumentsMetadata", (_message.Message,), { "DESCRIPTOR": _IMPORTDOCUMENTSMETADATA, "__module__": "google.cloud.firestore_admin_v1.proto.operation_pb2", "__doc__": """Metadata for [google.longrunning.Operation][google.longrunning.Operation] results from [FirestoreAdmin.ImportDocuments][google.firestore.admin.v1.Firest oreAdmin.ImportDocuments]. Attributes: start_time: The time this operation started. end_time: The time this operation completed. Will be unset if operation still in progress. operation_state: The state of the import operation. progress_documents: The progress, in documents, of this operation. progress_bytes: The progress, in bytes, of this operation. collection_ids: Which collection ids are being imported. input_uri_prefix: The location of the documents being imported. """, # @@protoc_insertion_point(class_scope:google.firestore.admin.v1.ImportDocumentsMetadata) }, ) _sym_db.RegisterMessage(ImportDocumentsMetadata) ExportDocumentsResponse = _reflection.GeneratedProtocolMessageType( "ExportDocumentsResponse", (_message.Message,), { "DESCRIPTOR": _EXPORTDOCUMENTSRESPONSE, "__module__": "google.cloud.firestore_admin_v1.proto.operation_pb2", "__doc__": """Returned in the [google.longrunning.Operation][google.longrunning.Operation] response field. Attributes: output_uri_prefix: Location of the output files. This can be used to begin an import into Cloud Firestore (this project or another project) after the operation completes successfully. """, # @@protoc_insertion_point(class_scope:google.firestore.admin.v1.ExportDocumentsResponse) }, ) _sym_db.RegisterMessage(ExportDocumentsResponse) Progress = _reflection.GeneratedProtocolMessageType( "Progress", (_message.Message,), { "DESCRIPTOR": _PROGRESS, "__module__": "google.cloud.firestore_admin_v1.proto.operation_pb2", "__doc__": """Describes the progress of the operation. Unit of work is generic and must be interpreted based on where [Progress][google.firestore.admin.v1.Progress] is used. Attributes: estimated_work: The amount of work estimated. completed_work: The amount of work completed. """, # @@protoc_insertion_point(class_scope:google.firestore.admin.v1.Progress) }, ) _sym_db.RegisterMessage(Progress) DESCRIPTOR._options = None # @@protoc_insertion_point(module_scope)
36.548061
3,531
0.643289
e943b709981fb20d8be243b5853e805ef571940a
1,515
py
Python
vice/yields/ccsne/engines/tests/cutoff.py
rcooke-ast/VICE
762911eb4192c7206ce2ae36b645d120ed889cb7
[ "MIT" ]
22
2018-09-26T21:02:51.000Z
2022-03-24T18:07:03.000Z
vice/yields/ccsne/engines/tests/cutoff.py
rcooke-ast/VICE
762911eb4192c7206ce2ae36b645d120ed889cb7
[ "MIT" ]
2
2019-05-03T13:08:27.000Z
2021-02-17T20:11:37.000Z
vice/yields/ccsne/engines/tests/cutoff.py
rcooke-ast/VICE
762911eb4192c7206ce2ae36b645d120ed889cb7
[ "MIT" ]
3
2019-05-10T19:26:31.000Z
2021-11-10T08:13:42.000Z
r""" This file implements unit testing of the ``cutoff`` derived class. """ from __future__ import absolute_import from ..cutoff import cutoff from ..._yield_integrator import _MINIMUM_MASS_ from .....testing import moduletest from .....testing import unittest import random @moduletest def test(): r""" vice.yields.ccsne.engines.cutoff module test """ return ["vice.yields.ccsne.engines.cutoff", [ test_initialization(), test_call() ] ] @unittest def test_initialization(): r""" Performs a unit test on the ``cutoff`` constructor. """ def test(): try: test_ = cutoff() except: return False status = isinstance(test_, cutoff) status &= test_.masses == [] status &= test_.frequencies == [] return status return ["vice.yields.ccsne.engines.cutoff.__init__", test] @unittest def test_call(): r""" Performs a unit test on the __call__ function. """ def test(): try: test_ = cutoff() except: return None random.seed() status = True for i in range(100): new_threshold = _MINIMUM_MASS_ + (100 - _MINIMUM_MASS_) * random.random() try: test_.collapse_mass = new_threshold except: return None for j in range(10): test_mass = _MINIMUM_MASS_ + (100 - _MINIMUM_MASS_) * random.random() try: status &= test_(test_mass) == float( test_mass <= new_threshold) except: return False if not status: break if not status: break return status return ["vice.yields.ccsne.engines.cutoff.__call__", test]
19.934211
66
0.675248
6b679cb9db41d1a3c4e816f655519546e43de3dc
4,129
py
Python
environments/utils.py
bunthet01/robotics-rl-srl
21bed859ca821844b2e1a90f4786675c9e1dd151
[ "MIT" ]
5
2019-08-21T22:57:21.000Z
2021-01-01T21:15:26.000Z
environments/utils.py
bunthet01/robotics-rl-srl
21bed859ca821844b2e1a90f4786675c9e1dd151
[ "MIT" ]
null
null
null
environments/utils.py
bunthet01/robotics-rl-srl
21bed859ca821844b2e1a90f4786675c9e1dd151
[ "MIT" ]
null
null
null
# Modified version of https://github.com/ikostrikov/pytorch-a2c-ppo-acktr/envs.py import importlib import os from gym.envs.registration import registry, patch_deprecated_methods, load from stable_baselines import bench import numpy as np def dynamicEnvLoad(env_id): """ Get from Gym, the module where the environment is stored :param env_id: (str) :return: (module, str, str) module_env, class_name, env_module_path """ # Get from the env_id, the entry_point, and distinguish if it is a callable, or a string entry_point = registry.spec(env_id)._entry_point if callable(entry_point): class_name = entry_point.__name__ env_module_path = entry_point.__module__ else: class_name = entry_point.split(':')[1] env_module_path = entry_point.split(':')[0] # Lets try and dynamically load the module_env, in order to fetch the globals. # If it fails, it means that it was unable to load the path from the entry_point # should this occure, it will mean that some parameters will not be correctly saved. try: module_env = importlib.import_module(env_module_path) except ImportError: raise AssertionError("Error: could not import module {}, ".format(env_module_path) + "Halting execution. Are you sure this is a valid environement?") return module_env, class_name, env_module_path def makeEnv(env_id, seed, rank, log_dir, allow_early_resets=False, env_kwargs=None): """ Instantiate gym env :param env_id: (str) :param seed: (int) :param rank: (int) :param log_dir: (str) :param allow_early_resets: (bool) Allow reset before the enviroment is done :param env_kwargs: (dict) The extra arguments for the environment """ # define a place holder function to be returned to the caller. def _thunk(): local_env_kwargs = dict(env_kwargs) # copy this to avoid altering the others local_env_kwargs["env_rank"] = rank env = _make(env_id, env_kwargs=local_env_kwargs) env.seed(seed + rank) if log_dir is not None: env = bench.Monitor(env, os.path.join(log_dir, str(rank)), allow_early_resets=allow_early_resets) return env return _thunk def _make(id_, env_kwargs=None): """ Recreating the gym make function from gym/envs/registration.py as such as it can support extra arguments for the environment :param id_: (str) The environment ID :param env_kwargs: (dict) The extra arguments for the environment """ if env_kwargs is None: env_kwargs = {} # getting the spec from the ID we want spec = registry.spec(id_) # Keeping the checks and safe guards of the old code assert spec._entry_point is not None, 'Attempting to make deprecated env {}. ' \ '(HINT: is there a newer registered version of this env?)'.format(spec.id_) if callable(spec._entry_point): env = spec._entry_point(**env_kwargs) else: cls = load(spec._entry_point) # create the env, with the original kwargs, and the new ones overriding them if needed env = cls(**{**spec._kwargs, **env_kwargs}) # Make the enviroment aware of which spec it came from. env.unwrapped.spec = spec # Keeping the old patching system for _reset, _step and timestep limit if hasattr(env, "_reset") and hasattr(env, "_step") and not getattr(env, "_gym_disable_underscore_compat", False): patch_deprecated_methods(env) if (env.spec.timestep_limit is not None) and not spec.tags.get('vnc'): from gym.wrappers.time_limit import TimeLimit env = TimeLimit(env, max_episode_steps=env.spec.max_episode_steps, max_episode_seconds=env.spec.max_episode_seconds) return env def compareAction(x, y): """ :param x: :param y: :return: """ assert (len(x) == len(y)), "Both array must have the same length." shared_actions = [i for i in x if i in y] result = len(shared_actions)/len(x) return result
37.198198
118
0.673771
a1108f39ed20b25988ff4b5d459e225d06c4ada8
548
py
Python
deepstar/filesystem/frame_set_dir.py
zerofox-oss/deepstar
fe0fe12317975104fa6ff6c058d141f11e6e951d
[ "BSD-3-Clause-Clear" ]
44
2019-08-09T16:14:27.000Z
2022-02-10T06:54:35.000Z
deepstar/filesystem/frame_set_dir.py
zerofox-oss/deepstar
fe0fe12317975104fa6ff6c058d141f11e6e951d
[ "BSD-3-Clause-Clear" ]
2
2020-09-26T00:05:52.000Z
2021-03-22T13:27:36.000Z
deepstar/filesystem/frame_set_dir.py
zerofox-oss/deepstar
fe0fe12317975104fa6ff6c058d141f11e6e951d
[ "BSD-3-Clause-Clear" ]
14
2019-08-19T16:47:32.000Z
2022-03-04T03:57:27.000Z
import os from deepstar.filesystem.file_dir import FileDir class FrameSetDir: """ This class implements the FrameSetDir class. """ @classmethod def path(cls): """ This method returns the path to the frame set directory. :rtype: str """ return os.path.join(FileDir.path(), 'frame_sets') @classmethod def init(cls): """ This method initializes the frame set directory. :rtype: None """ os.makedirs(FrameSetDir.path(), exist_ok=True)
18.266667
64
0.593066
a6a24ec83324805a35beccda44bf6b2b4c8dae2f
11,223
py
Python
experiments/multi_task_preprocess.py
vishalbelsare/SocialMediaIE
4ecbb4c7082b06454c92e552e4ad3af14a4f38b2
[ "Apache-2.0" ]
14
2019-11-04T05:42:56.000Z
2021-10-05T08:21:53.000Z
experiments/multi_task_preprocess.py
vishalbelsare/SocialMediaIE
4ecbb4c7082b06454c92e552e4ad3af14a4f38b2
[ "Apache-2.0" ]
6
2021-09-08T02:20:11.000Z
2022-03-12T00:41:22.000Z
experiments/multi_task_preprocess.py
vishalbelsare/SocialMediaIE
4ecbb4c7082b06454c92e552e4ad3af14a4f38b2
[ "Apache-2.0" ]
2
2020-06-17T09:33:50.000Z
2021-02-26T00:38:01.000Z
# coding: utf-8 # In[1]: from glob import glob from collections import Counter import pandas as pd from IPython.display import display # In[2]: NER_FILES={ "Finin": { "train": "/datadrive/Datasets/lowlands-data/LREC2014/twitter_ner/data/finin.train.tsv", "test": "/datadrive/Datasets/lowlands-data/LREC2014/twitter_ner/data/finin.test.tsv.utf8", }, "Hege": { "test": "/datadrive/Datasets/lowlands-data/LREC2014/twitter_ner/data/hege.test.tsv", }, "Ritter": { "test": "/datadrive/Datasets/lowlands-data/LREC2014/twitter_ner/data/ritter.test.tsv", }, "WNUT_2016": { "train": "/datadrive/Codes/multi-task-nlp-keras/data/WNUT_NER/train.tsv", "test": "/datadrive/Codes/multi-task-nlp-keras/data/WNUT_NER/test.tsv", "dev": "/datadrive/Codes/multi-task-nlp-keras/data/WNUT_NER/dev.tsv", }, "WNUT_2017": { "train": "/datadrive/Codes/multi-task-nlp-keras/data/WNUT_2017/wnut17train.conll", "dev": "/datadrive/Codes/multi-task-nlp-keras/data/WNUT_2017/emerging.dev.conll", "test": "/datadrive/Codes/multi-task-nlp-keras/data/WNUT_2017/emerging.test.annotated", }, "MSM_2013": { "train": "/datadrive/Datasets/Twitter/MSM2013/data/msm2013-ce_challenge_gs/TweetsTrainingSetCH.tsv.conll", "test": "/datadrive/Datasets/Twitter/MSM2013/data/msm2013-ce_challenge_gs/goldStandard.tsv.conll", } } POS_FILES={ "Owoputi_2013": { "train": "/datadrive/Datasets/Twitter/TweeboParser/ark-tweet-nlp-0.3.2/data/twpos-data-v0.3/oct27.splits/oct27.train", "traindev": "/datadrive/Datasets/Twitter/TweeboParser/ark-tweet-nlp-0.3.2/data/twpos-data-v0.3/oct27.splits/oct27.traindev", "dev": "/datadrive/Datasets/Twitter/TweeboParser/ark-tweet-nlp-0.3.2/data/twpos-data-v0.3/oct27.splits/oct27.dev", "test": "/datadrive/Datasets/Twitter/TweeboParser/ark-tweet-nlp-0.3.2/data/twpos-data-v0.3/oct27.splits/oct27.test", "daily547": "/datadrive/Datasets/Twitter/TweeboParser/ark-tweet-nlp-0.3.2/data/twpos-data-v0.3/daily547.conll" }, "LexNorm_Li_2015": { "dev": "/datadrive/Datasets/Twitter/wnut-2017-pos-norm/data/test_L.gold" }, ## Next 3 use Universal POS mappings: "Foster_2011": { "test": "/datadrive/Datasets/lowlands-data/ACL2014/crowdsourced_POS/data/foster-twitter.test" }, "Ritter_2011": { "test": "/datadrive/Datasets/lowlands-data/ACL2014/crowdsourced_POS/data/ritter.test" }, "lowlands": { "test": "/datadrive/Datasets/lowlands-data/ACL2014/crowdsourced_POS/data/lowlands.test" }, "Gimple_2012": { "test": "/datadrive/Datasets/lowlands-data/ACL2014/crowdsourced_POS/data/gimpel.GOLD" }, "Bootstrap_2013": { # Full PTB tagset, plus four custom tags (USR, HT, RT, URL) "train": "/datadrive/Datasets/Twitter/twitter-pos-bootstrap/data/bootstrap.conll" } } SENTIMENT_FILES={ "SMILE": { "train": "/datadrive/Datasets/Twitter/SMILE/smile-annotations-final.csv", }, } SUPERSENSE_TAGGING_FILES={ "Ritter": { "train": "/datadrive/Datasets/Twitter/supersense-data-twitter/ritter-train.tsv", "dev": "/datadrive/Datasets/Twitter/supersense-data-twitter/ritter-dev.tsv", "test": "/datadrive/Datasets/Twitter/supersense-data-twitter/ritter-eval.tsv" }, "Johannsen_2014": { "test": "/datadrive/Datasets/Twitter/supersense-data-twitter/in-house-eval.tsv" } } FRAME_SEMANTICS_FILE={ "Sogaard_2015": { "gavin": "/datadrive/Datasets/lowlands-data/AAAI15/conll/all.gavin", "maria": "/datadrive/Datasets/lowlands-data/AAAI15/conll/all.maria", "sara": "/datadrive/Datasets/lowlands-data/AAAI15/conll/all.sara" } } DIMSUM_FILES = { # Following data is already part of dimsum #"Lowlands": { # "test": "/datadrive/Datasets/Twitter/dimsum-data/conversion/original/lowlands.UPOS2.tsv" #}, #"Ritter": { # "test": "/datadrive/Datasets/Twitter/dimsum-data/conversion/original/ritter.UPOS2.tsv" #}, #"Streusle": { # "test": "/datadrive/Datasets/Twitter/dimsum-data/conversion/original/streusle.upos.tags" #}, "DiMSUM_2016": { # Made in combination with ritter, streusle, lowlands # 55579 ewtb # 3062 lowlands # 15185 ritter "train": "/datadrive/Datasets/Twitter/dimsum-data/conll/dimsum16.train", # 3516 ted # 6357 trustpilot # 6627 tweebank "test": "/datadrive/Datasets/Twitter/dimsum-data/conll/dimsum16.test" } } PARSING_FILES={ "Kong_2014": { "train": "/datadrive/Datasets/Twitter/TweeboParser/Tweebank/Train_Test_Splited/train", "test": "/datadrive/Datasets/Twitter/TweeboParser/Tweebank/Train_Test_Splited/test", } } WEB_TREEBANK={ "DenoisedWebTreebank": { "dev": "/datadrive/Datasets/Twitter/DenoisedWebTreebank/data/DenoisedWebTreebank/dev.conll", "test": "/datadrive/Datasets/Twitter/DenoisedWebTreebank/data/DenoisedWebTreebank/test.conll" } } NORMALIZED={ "DenoisedWebTreebank": { "dev": "/datadrive/Datasets/Twitter/DenoisedWebTreebank/data/DenoisedWebTreebank/dev.normalized", "test": "/datadrive/Datasets/Twitter/DenoisedWebTreebank/data/DenoisedWebTreebank/test.normalized" } } PARAPHRASE_SEMANTIC_FILES={ "SemEval-2015 Task 1": { # Topic_Id | Topic_Name | Sent_1 | Sent_2 | Label | Sent_1_tag | Sent_2_tag | # Map labels as follows # paraphrases: (3, 2) (4, 1) (5, 0) # non-paraphrases: (1, 4) (0, 5) # debatable: (2, 3) which you may discard if training binary classifier "train": "/datadrive/Datasets/Twitter/SemEval-PIT2015-github/data/train.data", "dev": "/datadrive/Datasets/Twitter/SemEval-PIT2015-github/data/dev.data", "test": "/datadrive/Datasets/Twitter/SemEval-PIT2015-github/data/test.data" } } # In[3]: def read_conll_data(filename, ncols=2): with open(filename, encoding='utf-8') as fp: for seq in fp.read().split("\n\n"): seq_ = [] for line in seq.splitlines(): line = line.rstrip() if not line: continue values = line.split("\t") if len(values) < ncols: # Skip invalid lines continue seq_.append(values) if not seq_: seq_ = [] continue yield seq_ # In[4]: def get_ner_label(label, idx=1): if label.upper() == "O": return label if idx is None: return label return label.split('-', 1)[idx] def get_simple_label(label): if label: return label return "O" def get_file_stats( filename, label_processor=None, label_col_id=-1, skip_other=True, ncols=2 ): if label_processor is None: label_processor = lambda x: x total_seq = 0 total_tokens = 0 token_types = Counter() for i, seq in enumerate(read_conll_data(filename, ncols=ncols)): total_seq += 1 total_tokens += len(seq) try: for item in seq: label = label_processor(item[label_col_id]) if skip_other and label == "O": continue token_types.update([ label ]) except IndexError: print(i, seq) raise return total_seq, total_tokens, token_types # In[5]: def make_conll_dataset_tables(files, **kwargs): all_stats = [] for datakey in files: for datatype, filepath in files[datakey].items(): print("{}-{}: {}".format(datakey, datatype, filepath)) total_seq, total_tokens, token_types = get_file_stats(filepath, **kwargs) print(total_seq, total_tokens, token_types) all_stats.append((datakey, datatype, total_seq, total_tokens, token_types)) return all_stats def generate_tables(files, display_df=False, show_labels=True, **kwargs): all_stats = make_conll_dataset_tables(files, **kwargs) df = pd.DataFrame(all_stats, columns=[ "datakey", "datatype", "total_seq", "total_tokens", "labels"]) if show_labels: df = df.assign( all_labels=df["labels"].apply(lambda x: (", ".join(sorted(x.keys()))).upper()) ) df = df.assign( num_labels=df["labels"].apply(len), ).sort_values(["datakey", "datatype"]) if display_df: display(df) with pd.option_context("display.max_colwidth", -1): print(df.drop("labels", 1).set_index(["datakey", "datatype"]).to_latex()) display(df.drop("labels", 1).set_index(["datakey", "datatype"])) # In[6]: generate_tables(NER_FILES, display_df=True, label_processor=lambda x: get_ner_label(x, idx=1)) # ## POS datasets # In[7]: generate_tables(POS_FILES, display_df=False) # ## Supersense tagging # In[8]: generate_tables(SUPERSENSE_TAGGING_FILES, display_df=False) # In[9]: generate_tables(SUPERSENSE_TAGGING_FILES, label_processor=lambda x: get_ner_label(x, idx=1)) # ## DimSUM # # https://dimsum16.github.io/ # In[10]: generate_tables(DIMSUM_FILES, label_col_id=7, label_processor=get_simple_label, skip_other=True) # ## Frame Semantics # # # # ``` # @paper{AAAI159349, # author = {Anders Søgaard and Barbara Plank and Hector Alonso}, # title = {Using Frame Semantics for Knowledge Extraction from Twitter}, # conference = {AAAI Conference on Artificial Intelligence}, # year = {2015}, # keywords = {frame semantics; knowledge bases; twitter}, # abstract = {Knowledge bases have the potential to advance artificial intelligence, but often suffer from recall problems, i.e., lack of knowledge of new entities and relations. On the contrary, social media such as Twitter provide abundance of data, in a timely manner: information spreads at an incredible pace and is posted long before it makes it into more commonly used resources for knowledge extraction. In this paper we address the question whether we can exploit social media to extract new facts, which may at first seem like finding needles in haystacks. We collect tweets about 60 entities in Freebase and compare four methods to extract binary relation candidates, based on syntactic and semantic parsing and simple mechanism for factuality scoring. The extracted facts are manually evaluated in terms of their correctness and relevance for search. We show that moving from bottom-up syntactic or semantic dependency parsing formalisms to top-down frame-semantic processing improves the robustness of knowledge extraction, producing more intelligible fact candidates of better quality. In order to evaluate the quality of frame semantic parsing on Twitter intrinsically, we make a multiply frame-annotated dataset of tweets publicly available.}, # # url = {https://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9349} # } # # ``` # In[11]: generate_tables(FRAME_SEMANTICS_FILE, show_labels=False, label_col_id=3, label_processor=get_simple_label, skip_other=True) # In[ ]:
35.515823
1,260
0.661766
3d24205ad567517f51acf25ee15983d096432eb0
660
py
Python
neighbourhood/forms.py
amwaniki180/the_hood
12b7201101422d09fc166a964358778f76ed8f27
[ "MIT" ]
null
null
null
neighbourhood/forms.py
amwaniki180/the_hood
12b7201101422d09fc166a964358778f76ed8f27
[ "MIT" ]
5
2020-06-05T22:19:37.000Z
2021-09-08T01:13:25.000Z
neighbourhood/forms.py
amwaniki180/the_hood
12b7201101422d09fc166a964358778f76ed8f27
[ "MIT" ]
null
null
null
from django import forms from django.contrib.auth.models import User from django.core import validators from django.contrib.auth.forms import UserCreationForm,AuthenticationForm from .models import Profile,Business,Project,Post class ProfileForm(forms.ModelForm): class Meta: model = Profile exclude=['user'] class BusinessForm(forms.ModelForm): class Meta: model = Business exclude = ['owner'] class ProjectForm(forms.ModelForm): class Meta: model = Project exclude=['admin'] class PostForm(forms.ModelForm): class Meta: model = Post exclude=['poster']
23.571429
73
0.672727
85ae03ce6c642c4e5870a176c2b754f0f0d830b9
1,914
py
Python
app.py
oslokommune/okdata-permission-api
e12739794fb48437c1b39e1bffc9d632e76d2449
[ "MIT" ]
null
null
null
app.py
oslokommune/okdata-permission-api
e12739794fb48437c1b39e1bffc9d632e76d2449
[ "MIT" ]
1
2022-01-14T09:37:58.000Z
2022-01-14T09:37:58.000Z
app.py
oslokommune/okdata-permission-api
e12739794fb48437c1b39e1bffc9d632e76d2449
[ "MIT" ]
null
null
null
import os from fastapi import FastAPI, Request from fastapi.exceptions import RequestValidationError from fastapi.responses import JSONResponse from okdata.aws.logging import add_fastapi_logging from pydantic import ValidationError from resources import ( permissions, my_permissions, webhook_tokens, remove_team_permissions, ) from resources.errors import ErrorResponse root_path = os.environ.get("ROOT_PATH", "") app = FastAPI( title="Okdata Permission API", description="API for managing permissions to okdata resources such as datasets", version="0.1.0", root_path=root_path, ) add_fastapi_logging(app) app.include_router( permissions.router, prefix="/permissions", tags=["permissions"], ) app.include_router( my_permissions.router, prefix="/my_permissions", tags=["permissions"], ) # This endpoint is part of a workaround for a bug in keycloak: https://confluence.oslo.kommune.no/pages/viewpage.action?pageId=162566147 app.include_router( remove_team_permissions.router, prefix="/remove_team_permissions", tags=["remove_team_permissions"], ) app.include_router(webhook_tokens.router, prefix="/webhooks", tags=["webhooks"]) @app.exception_handler(ErrorResponse) def abort_exception_handler(request: Request, exc: ErrorResponse): return JSONResponse(status_code=exc.status_code, content={"message": exc.message}) @app.exception_handler(RequestValidationError) @app.exception_handler(ValidationError) def abort_validation_error(request: Request, exc): errors = exc.errors() # Exclude python-specific # e.g. 'ctx': {'enum_values': [<WebhookTokenOperation.READ: 'read'>, <WebhookTokenOperation.WRITE: 'write'>]} for error in errors: error.pop("ctx", None) error.pop("type", None) return JSONResponse( status_code=400, content={"message": "Bad Request", "errors": errors}, )
28.567164
136
0.741379
168090acf8c05bbf412a703c5d8e9636e45aec75
3,725
py
Python
posthog/request.py
mands/posthog-python
cc5649368f520a46fdd228d316a807f8efbb5855
[ "MIT" ]
12
2020-03-24T13:34:49.000Z
2022-02-27T00:51:14.000Z
posthog/request.py
mands/posthog-python
cc5649368f520a46fdd228d316a807f8efbb5855
[ "MIT" ]
28
2020-02-19T02:19:32.000Z
2022-02-28T09:15:38.000Z
posthog/request.py
mands/posthog-python
cc5649368f520a46fdd228d316a807f8efbb5855
[ "MIT" ]
9
2020-02-18T21:09:14.000Z
2022-03-19T17:31:05.000Z
import json import logging from datetime import date, datetime from gzip import GzipFile from io import BytesIO from typing import Any, Optional, Union import requests from dateutil.tz import tzutc from posthog.utils import remove_trailing_slash from posthog.version import VERSION _session = requests.sessions.Session() DEFAULT_HOST = "https://app.posthog.com" USER_AGENT = "posthog-python/" + VERSION def post( api_key: str, host: Optional[str] = None, path=None, gzip: bool = False, timeout: int = 15, **kwargs ) -> requests.Response: """Post the `kwargs` to the API""" log = logging.getLogger("posthog") body = kwargs body["sentAt"] = datetime.utcnow().replace(tzinfo=tzutc()).isoformat() url = remove_trailing_slash(host or DEFAULT_HOST) + path body["api_key"] = api_key data = json.dumps(body, cls=DatetimeSerializer) log.debug("making request: %s", data) headers = {"Content-Type": "application/json", "User-Agent": USER_AGENT} if gzip: headers["Content-Encoding"] = "gzip" buf = BytesIO() with GzipFile(fileobj=buf, mode="w") as gz: # 'data' was produced by json.dumps(), # whose default encoding is utf-8. gz.write(data.encode("utf-8")) data = buf.getvalue() res = _session.post(url, data=data, headers=headers, timeout=timeout) if res.status_code == 200: log.debug("data uploaded successfully") return res def _process_response( res: requests.Response, success_message: str, *, return_json: bool = True ) -> Union[requests.Response, Any]: log = logging.getLogger("posthog") if not res: raise APIError( "N/A", "Error when fetching PostHog API, please make sure you are using your public project token/key and not a private API key.", ) if res.status_code == 200: log.debug(success_message) return res.json() if return_json else res try: payload = res.json() log.debug("received response: %s", payload) raise APIError(res.status_code, payload["detail"]) except ValueError: raise APIError(res.status_code, res.text) def decide(api_key: str, host: Optional[str] = None, gzip: bool = False, timeout: int = 15, **kwargs) -> Any: """Post the `kwargs to the decide API endpoint""" res = post(api_key, host, "/decide/", gzip, timeout, **kwargs) return _process_response(res, success_message="Feature flags decided successfully") def batch_post( api_key: str, host: Optional[str] = None, gzip: bool = False, timeout: int = 15, **kwargs ) -> requests.Response: """Post the `kwargs` to the batch API endpoint for events""" res = post(api_key, host, "/batch/", gzip, timeout, **kwargs) return _process_response(res, success_message="data uploaded successfully", return_json=False) def get(api_key: str, url: str, host: Optional[str] = None, timeout: Optional[int] = None) -> requests.Response: url = remove_trailing_slash(host or DEFAULT_HOST) + url res = requests.get(url, headers={"Authorization": "Bearer %s" % api_key, "User-Agent": USER_AGENT}, timeout=timeout) return _process_response(res, success_message=f"GET {url} completed successfully") class APIError(Exception): def __init__(self, status: Union[int, str], message: str): self.message = message self.status = status def __str__(self): msg = "[PostHog] {0} ({1})" return msg.format(self.message, self.status) class DatetimeSerializer(json.JSONEncoder): def default(self, obj: Any): if isinstance(obj, (date, datetime)): return obj.isoformat() return json.JSONEncoder.default(self, obj)
35.47619
135
0.668993
014fda53fd58a4e17ea47c09e4ec99af575b23ea
657
py
Python
AthleticTeam/SponsorsApp/migrations/0001_initial.py
Temeteron/Athletic-Team
cd4407ac2a7dd543d1120f5a55908fbe2e49c263
[ "MIT" ]
1
2017-04-26T00:08:20.000Z
2017-04-26T00:08:20.000Z
AthleticTeam/SponsorsApp/migrations/0001_initial.py
Temeteron/Athletic-Team
cd4407ac2a7dd543d1120f5a55908fbe2e49c263
[ "MIT" ]
null
null
null
AthleticTeam/SponsorsApp/migrations/0001_initial.py
Temeteron/Athletic-Team
cd4407ac2a7dd543d1120f5a55908fbe2e49c263
[ "MIT" ]
2
2016-05-31T21:14:32.000Z
2021-09-14T18:59:15.000Z
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ] operations = [ migrations.CreateModel( name='Sponsor', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('image', models.ImageField(default='photos/index.png', upload_to='photos/', blank=True)), ('name', models.CharField(max_length=30, blank=True)), ('info', models.TextField(blank=True)), ], ), ]
28.565217
114
0.582953
efa6832d4f1506fa48f3ed4e34e71770cb91f6a5
4,087
py
Python
meerk40t/core/node/elem_ellipse.py
dpticar/meerk40t
63c4dea8cd1c71bbf8cdf4cb3090f106cdcf0e29
[ "MIT" ]
null
null
null
meerk40t/core/node/elem_ellipse.py
dpticar/meerk40t
63c4dea8cd1c71bbf8cdf4cb3090f106cdcf0e29
[ "MIT" ]
null
null
null
meerk40t/core/node/elem_ellipse.py
dpticar/meerk40t
63c4dea8cd1c71bbf8cdf4cb3090f106cdcf0e29
[ "MIT" ]
null
null
null
from copy import copy from meerk40t.core.node.node import Node from meerk40t.svgelements import Path class EllipseNode(Node): """ EllipseNode is the bootstrapped node type for the 'elem ellipse' type. """ def __init__( self, shape, matrix=None, fill=None, stroke=None, stroke_width=None, **kwargs ): super(EllipseNode, self).__init__(type="elem ellipse", **kwargs) self.shape = shape self.settings = kwargs if matrix is None: self.matrix = shape.transform else: self.matrix = matrix if fill is None: self.fill = shape.fill else: self.fill = fill if stroke is None: self.stroke = shape.stroke else: self.stroke = stroke if stroke_width is None: self.stroke_width = shape.stroke_width else: self.stroke_width = stroke_width self.lock = False def __repr__(self): return "%s('%s', %s, %s)" % ( self.__class__.__name__, self.type, str(self.shape), str(self._parent), ) def __copy__(self): return EllipseNode( shape=copy(self.shape), matrix=copy(self.matrix), fill=copy(self.fill), stroke=copy(self.stroke), stroke_width=copy(self.stroke_width), **self.settings, ) @property def bounds(self): if self._bounds_dirty: self.shape.transform = self.matrix self.shape.stroke_width = self.stroke_width self._bounds = self.shape.bbox(with_stroke=True) return self._bounds def preprocess(self, context, matrix, commands): self.matrix *= matrix self.shape.transform = self.matrix self.shape.stroke_width = self.stroke_width self._bounds_dirty = True def default_map(self, default_map=None): default_map = super(EllipseNode, self).default_map(default_map=default_map) default_map["element_type"] = "Ellipse" default_map.update(self.settings) default_map["stroke"] = self.stroke default_map["fill"] = self.fill default_map["stroke-width"] = self.stroke_width default_map["matrix"] = self.matrix return default_map def drop(self, drag_node): # Dragging element into element. if drag_node.type.startswith("elem"): self.insert_sibling(drag_node) return True return False def revalidate_points(self): bounds = self.bounds if bounds is None: return if len(self._points) < 9: self._points.extend([None] * (9 - len(self._points))) self._points[0] = [bounds[0], bounds[1], "bounds top_left"] self._points[1] = [bounds[2], bounds[1], "bounds top_right"] self._points[2] = [bounds[0], bounds[3], "bounds bottom_left"] self._points[3] = [bounds[2], bounds[3], "bounds bottom_right"] cx = (bounds[0] + bounds[2]) / 2 cy = (bounds[1] + bounds[3]) / 2 self._points[4] = [cx, cy, "bounds center_center"] self._points[5] = [cx, bounds[1], "bounds top_center"] self._points[6] = [cx, bounds[3], "bounds bottom_center"] self._points[7] = [bounds[0], cy, "bounds center_left"] self._points[8] = [bounds[2], cy, "bounds center_right"] obj = self.shape if hasattr(obj, "point"): if len(self._points) <= 11: self._points.extend([None] * (11 - len(self._points))) start = obj.point(0) end = obj.point(1) self._points[9] = [start[0], start[1], "endpoint"] self._points[10] = [end[0], end[1], "endpoint"] def update_point(self, index, point): return False def add_point(self, point, index=None): return False def as_path(self): self.shape.transform = self.matrix self.shape.stroke_width = self.stroke_width return abs(Path(self.shape))
33.77686
85
0.579398
20a0bd1433c87fa7fe99cdbf245447227f208157
3,091
py
Python
pkgs/statsmodels-0.6.1-np110py27_0/lib/python2.7/site-packages/statsmodels/emplike/elregress.py
wangyum/anaconda
6e5a0dbead3327661d73a61e85414cf92aa52be6
[ "Apache-2.0", "BSD-3-Clause" ]
1
2016-09-02T20:31:32.000Z
2016-09-02T20:31:32.000Z
pkgs/statsmodels-0.6.1-np110py27_0/lib/python2.7/site-packages/statsmodels/emplike/elregress.py
wangyum/anaconda
6e5a0dbead3327661d73a61e85414cf92aa52be6
[ "Apache-2.0", "BSD-3-Clause" ]
null
null
null
pkgs/statsmodels-0.6.1-np110py27_0/lib/python2.7/site-packages/statsmodels/emplike/elregress.py
wangyum/anaconda
6e5a0dbead3327661d73a61e85414cf92aa52be6
[ "Apache-2.0", "BSD-3-Clause" ]
1
2021-05-02T10:50:15.000Z
2021-05-02T10:50:15.000Z
""" Empirical Likelihood Linear Regression Inference The script contains the function that is optimized over nuisance parameters to conduct inference on linear regression parameters. It is called by eltest in OLSResults. General References ----------------- Owen, A.B.(2001). Empirical Likelihood. Chapman and Hall """ import numpy as np from statsmodels.emplike.descriptive import _OptFuncts class _ELRegOpts(_OptFuncts): """ A class that holds functions to be optimized over when conducting hypothesis tests and calculating confidence intervals. Parameters ---------- OLSResults : Results instance A fitted OLS result """ def __init__(self): pass def _opt_nuis_regress(self, nuisance_params, param_nums=None, endog=None, exog=None, nobs=None, nvar=None, params=None, b0_vals=None, stochastic_exog=None): """ A function that is optimized over nuisance parameters to conduct a hypothesis test for the parameters of interest Parameters ---------- nuisance_params: 1darray Parameters to be optimized over Returns ------- llr : float -2 x the log-likelihood of the nuisance parameters and the hypothesized value of the parameter(s) of interest. """ params[param_nums] = b0_vals nuis_param_index = np.int_(np.delete(np.arange(nvar), param_nums)) params[nuis_param_index] = nuisance_params new_params = params.reshape(nvar, 1) self.new_params = new_params est_vect = exog * \ (endog - np.squeeze(np.dot(exog, new_params))).reshape(nobs, 1) if not stochastic_exog: exog_means = np.mean(exog, axis=0)[1:] exog_mom2 = (np.sum(exog * exog, axis=0))[1:]\ / nobs mean_est_vect = exog[:, 1:] - exog_means mom2_est_vect = (exog * exog)[:, 1:] - exog_mom2 regressor_est_vect = np.concatenate((mean_est_vect, mom2_est_vect), axis=1) est_vect = np.concatenate((est_vect, regressor_est_vect), axis=1) wts = np.ones(nobs) * (1. / nobs) x0 = np.zeros(est_vect.shape[1]).reshape(-1, 1) try: eta_star = self._modif_newton(x0, est_vect, wts) denom = 1. + np.dot(eta_star, est_vect.T) self.new_weights = 1. / nobs * 1. / denom # the following commented out code is to verify weights # see open issue #1845 #self.new_weights /= self.new_weights.sum() #if not np.allclose(self.new_weights.sum(), 1., rtol=0, atol=1e-10): # raise RuntimeError('weights do not sum to 1') llr = np.sum(np.log(nobs * self.new_weights)) return -2 * llr except np.linalg.linalg.LinAlgError: return np.inf
33.597826
80
0.572307
fe4f9a07c11c716383e8794c8172848d872508fe
229
py
Python
laguinho/errors/handlers.py
MarioHdpz/laguinho-api
36ad947e1efe98b0842889d2baf947ed349234b4
[ "MIT" ]
27
2019-02-09T04:25:23.000Z
2020-05-22T18:34:06.000Z
laguinho/errors/handlers.py
MarioHdpz/laguinho-api
36ad947e1efe98b0842889d2baf947ed349234b4
[ "MIT" ]
51
2019-02-15T03:17:53.000Z
2021-05-10T23:44:40.000Z
laguinho/errors/handlers.py
RonnanSouza/laguinho-api
cef9ee0c4794597796607b47b72c8a4ae009ca0f
[ "MIT" ]
28
2019-02-15T03:16:03.000Z
2020-11-25T15:12:41.000Z
from flask import Blueprint, jsonify from marshmallow import ValidationError errors = Blueprint('errors', __name__) @errors.app_errorhandler(ValidationError) def handle_validation_error(e): return jsonify(e.messages), 422
22.9
41
0.80786
02f5bbc2822f7230aaddf25aaacbbef554b3e60a
9,955
py
Python
bco_api/api/migrations/0001_initial.py
syntheticgio/bco_api
b78c691f0508654aac66e6bfdde4fcd548a89ad1
[ "MIT" ]
null
null
null
bco_api/api/migrations/0001_initial.py
syntheticgio/bco_api
b78c691f0508654aac66e6bfdde4fcd548a89ad1
[ "MIT" ]
null
null
null
bco_api/api/migrations/0001_initial.py
syntheticgio/bco_api
b78c691f0508654aac66e6bfdde4fcd548a89ad1
[ "MIT" ]
null
null
null
# Generated by Django 3.2 on 2021-06-24 22:09 from django.db import migrations, models import django.db.models.deletion import django.utils.timezone class Migration(migrations.Migration): initial = True dependencies = [ ('auth', '0012_alter_user_first_name_max_length'), ] operations = [ migrations.CreateModel( name='bco_draft_meta', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('n_objects', models.IntegerField()), ], options={ 'abstract': False, }, ), migrations.CreateModel( name='bco_publish_meta', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('n_objects', models.IntegerField()), ], options={ 'abstract': False, }, ), migrations.CreateModel( name='galaxy_draft_meta', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('n_objects', models.IntegerField()), ], options={ 'abstract': False, }, ), migrations.CreateModel( name='galaxy_publish_meta', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('n_objects', models.IntegerField()), ], options={ 'abstract': False, }, ), migrations.CreateModel( name='glygen_draft_meta', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('n_objects', models.IntegerField()), ], options={ 'abstract': False, }, ), migrations.CreateModel( name='glygen_publish_meta', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('n_objects', models.IntegerField()), ], options={ 'abstract': False, }, ), migrations.CreateModel( name='new_users', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('email', models.EmailField(max_length=254)), ('temp_identifier', models.TextField(max_length=100)), ('token', models.TextField(blank=True, null=True)), ('hostname', models.TextField(blank=True, null=True)), ('created', models.DateTimeField(default=django.utils.timezone.now)), ], ), migrations.CreateModel( name='oncomx_draft_meta', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('n_objects', models.IntegerField()), ], options={ 'abstract': False, }, ), migrations.CreateModel( name='oncomx_publish_meta', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('n_objects', models.IntegerField()), ], options={ 'abstract': False, }, ), migrations.CreateModel( name='prefix_groups', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('prefix', models.CharField(max_length=5)), ('group_owner', models.CharField(max_length=1000)), ], ), migrations.CreateModel( name='px_groups', fields=[ ('prefix_groups_ptr', models.OneToOneField(auto_created=True, on_delete=django.db.models.deletion.CASCADE, parent_link=True, primary_key=True, serialize=False, to='api.prefix_groups')), ], bases=('api.prefix_groups',), ), migrations.CreateModel( name='oncomx_publish', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('object_id', models.TextField()), ('schema', models.TextField()), ('state', models.TextField()), ('contents', models.JSONField()), ('object_class', models.TextField(blank=True, null=True)), ('owner_group', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='auth.group')), ], options={ 'abstract': False, }, ), migrations.CreateModel( name='oncomx_draft', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('object_id', models.TextField()), ('schema', models.TextField()), ('state', models.TextField()), ('contents', models.JSONField()), ('object_class', models.TextField(blank=True, null=True)), ('owner_group', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='auth.group')), ], options={ 'abstract': False, }, ), migrations.CreateModel( name='glygen_publish', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('object_id', models.TextField()), ('schema', models.TextField()), ('state', models.TextField()), ('contents', models.JSONField()), ('object_class', models.TextField(blank=True, null=True)), ('owner_group', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='auth.group')), ], options={ 'abstract': False, }, ), migrations.CreateModel( name='glygen_draft', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('object_id', models.TextField()), ('schema', models.TextField()), ('state', models.TextField()), ('contents', models.JSONField()), ('object_class', models.TextField(blank=True, null=True)), ('owner_group', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='auth.group')), ], options={ 'abstract': False, }, ), migrations.CreateModel( name='galaxy_publish', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('object_id', models.TextField()), ('schema', models.TextField()), ('state', models.TextField()), ('contents', models.JSONField()), ('object_class', models.TextField(blank=True, null=True)), ('owner_group', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='auth.group')), ], options={ 'abstract': False, }, ), migrations.CreateModel( name='galaxy_draft', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('object_id', models.TextField()), ('schema', models.TextField()), ('state', models.TextField()), ('contents', models.JSONField()), ('object_class', models.TextField(blank=True, null=True)), ('owner_group', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='auth.group')), ], options={ 'abstract': False, }, ), migrations.CreateModel( name='bco_publish', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('object_id', models.TextField()), ('schema', models.TextField()), ('state', models.TextField()), ('contents', models.JSONField()), ('object_class', models.TextField(blank=True, null=True)), ('owner_group', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='auth.group')), ], options={ 'abstract': False, }, ), migrations.CreateModel( name='bco_draft', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('object_id', models.TextField()), ('schema', models.TextField()), ('state', models.TextField()), ('contents', models.JSONField()), ('object_class', models.TextField(blank=True, null=True)), ('owner_group', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='auth.group')), ], options={ 'abstract': False, }, ), ]
40.79918
201
0.512808
416aba56a0ee2a6393ae37234052d8c4c59651c9
10,581
py
Python
victoriaepi/seid.py
crissthiandi/Victoria
2d7e3621b472146a262745900ab143ba18ba0340
[ "BSD-3-Clause" ]
3
2021-01-14T15:58:28.000Z
2021-02-17T18:16:59.000Z
victoriaepi/seid.py
crissthiandi/Victoria
2d7e3621b472146a262745900ab143ba18ba0340
[ "BSD-3-Clause" ]
6
2021-02-11T18:38:03.000Z
2021-04-18T02:23:44.000Z
victoriaepi/seid.py
crissthiandi/Victoria
2d7e3621b472146a262745900ab143ba18ba0340
[ "BSD-3-Clause" ]
4
2020-12-09T19:06:38.000Z
2021-03-28T12:38:19.000Z
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Sat Oct 3 20:32:32 2020 @author: jac """ import sys import numpy as np import scipy.stats as ss from scipy import integrate import matplotlib.pyplot as plt from . import victoria def odeint( rhs, X0, t_quad, args): """ See https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.odeint.html Parameters ---------- rhs : callable(y, t, …) Computes the derivative of y at t. X0 : array Initial condition on y (can be a vector). t_quad : array A sequence of time points for which to solve for y. The initial value point should be the first element of this sequence. This sequence must be monotonically increasing or monotonically decreasing; repeated values are allowed. args : tuple Extra arguments to pass to function. Returns:: scipy.integrate.odeint( rhs, X0, t_quad, args) """ return integrate.odeint( rhs, X0, t_quad, args) #return rungekuttaodeint( rhs, X0, t_quad, h=1/15, args=args, Method=3)[0] def Model_SEID( m_list, e_list, prn=True): """ Define the graph matrix describing the model. .. literalinclude:: ../victoriaepi/seid.py :pyobject: Model_SEID :lines: 1,10- """ T = victoria.AuxMatrix(names="S E I D", prn=prn) T.BaseVar('S') T.Exit( 'S', 'E') T.Exit( 'E', 'I') T.Exit( 'I', 'D') T.NoExit('D') T.End() # Split in Erlang series of length m T.SplitErlang( e_list, m_list) return T class SEID(victoria.mcmc): """ ODE model of a SEID model, and parameter inference using Bayesian inference (MCMC with the twalk). Args: Region: Region N: population size data_fnam: Data file name, workdir/data/data_fnam Make sure to process data into a vertical text array out_fnam: MCMC output file name, without .txt, workdir/output/out_fnam + '.txt' init_index: day number from data start, where to start the plot init: date of init_index R_rates: Residence rates trim: how many data to trim """ def __init__( self, Region, N, data_fnam, out_fnam,\ init_index, init, R_rates, trim, workdir="./../"): super().__init__(Region=Region, N=N, data_fnam=data_fnam, out_fnam=out_fnam,\ init_index=init_index, init=init, trim=trim, workdir=workdir) self.Init_fm_matrix( m=self.data.shape[0], R_rates=R_rates) def Init_fm_matrix( self, m, R_rates): """ Init the forward map. Args: m (int): is the number of observed days, ie. sample size. R_rates (dict): dictionary of residence rates, `R_rates={ 'E' :[1/1.5, r'\sigma_1'], 'I^S':[1/2 , r'\sigma_2']}` """ self.num_pars = 2 # Number of parameters to be inferred: S(0) and contact rate self.R_rates = R_rates m_list=[self.R_rates[v][2] for v in self.R_rates.keys()] e_list=list(self.R_rates.keys()) # Define the graph matrix describing the model (see above) self.T = Model_SEID( m_list, e_list, prn=True) # The rhs will be ('@' matrix multiplication of arrays in Python 3): #Graph matrix State vars Erlang mask par (see below) #rhs(x)= M @ x * E @ par # qxq qx1 qxn nx1 # Before this, par is filled with non-linear terms etc. like the force of infection # n original number of state variables # q final number of state variables after Erlang series self.n = self.T.n self.q = self.T.q # Total number of state variables # Call the base class Init_fm_matrix # p=1 size of the return list for solve, daily deaths # quad_k=1 number of subdivions in day, no quadrature is needed super().Init_fm_matrix( m, num_state_vars=self.q, p=1, quad_k=1) self.result_D = np.zeros(self.nn-1) # To hold result of quadrature # ""S E I D"" self.par = np.zeros(self.n) # Par mask self.R_rates = R_rates # Known parameters, set residence rates: for v in R_rates.keys(): self.par[self.T.ConvertVar(v)] = R_rates[v][0] # The masks to select variables from list of state variables self.mask_S = self.T.SelectMask('S') """Masks to select variables from list of state variables.""" self.mask_E = self.T.SelectMask('E') """Masks to select variables from list of state variables.""" self.mask_I = self.T.SelectMask('I') """Masks to select variables from list of state variables.""" self.mask_D = self.T.SelectMask('D') """Masks to select variables from list of state variables.""" self.X0 = np.zeros((self.q,)) def GetMask( self, v, E_range='all', as_col_vec=False): """Returns a mask to select variable `v` from `grp_list`. E_range = [0] (default), first in the list, or original variable if no Erlang list. E_range = 'all' use the whole Erlang list for variable or provide E_range list manually. """ return self.T.SelectMask( v, E_range=E_range, as_col_vec=as_col_vec) def rhs( self, x, t, p): """ See :meth:`victoriaepi.seid.odeint` to check usage. .. literalinclude:: ../victoriaepi/seid.py :pyobject: SEID.rhs :lines: 1,9- """ beta = p[1] #I(0) is p[0] I = np.sum(x * self.mask_I) # total number of infectious #force of infection beta1*I^A/N + some factor of beta1*I^S/N foi = I/self.N * beta self.par[self.T.ConvertVar('S')] = foi return self.T.M @ (x * (self.T.par_mask @ self.par)) def solve_plain(self, p, quad=True): """ Solve the initial value problem. .. literalinclude:: ../victoriaepi/seid.py :pyobject: SEID.solve_plain :lines: 1,9- """ self.X0 *= 0 self.X0 += p[0]*self.mask_I #Initial infected self.X0 += (self.N-p[0])*self.mask_S #suceptible if quad: return odeint(self.rhs, self.X0, self.t_quad, args=(p,)) else: return odeint(self.rhs, self.X0, self.time, args=(p,)) def solve( self, p): """ Solve the initial value problem. Integral of incidence between observation times .. literalinclude:: ../victoriaepi/seid.py :pyobject: SEID.solve :lines: 1,10- """ # Use the solver: self.soln = self.solve_plain( p, quad=False ) return [np.diff(self.soln[::self.quad_k,:] @ self.mask_D)] # list of size self.p=1 def llikelihood( self, p): """ Log likelihood. .. literalinclude:: ../victoriaepi/seid.py :pyobject: SEID.llikelihood :lines: 1,9- """ #if support(p): # Not necessary, the twalk checks it already before acllin energy support(p): # negative binomial likelihood mu_D = self.solve(p)[0] mu_D +=3 # negative binomial likelihood for deaths omega = 2.0 theta = 0.5 #antonio 0.5 r = mu_D/(omega-1.0+theta*mu_D) q = 1.0/(omega+theta*mu_D) log_likelihood = np.sum(ss.nbinom.logpmf( self.data+3,r,q)) return log_likelihood def lprior( self, p): """ Log prior. .. literalinclude:: ../victoriaepi/seid.py :pyobject: SEID.lprior :lines: 1,9- """ # Log priors: log_prior = 0.0 # gamma prior distribution parameters for I(0) log_prior += ss.gamma.logpdf(p[0],1.0,scale=10.0) # log-normal prior distribution parameters for beta log_prior += np.sum(ss.lognorm.logpdf(p[1], 1.0, scale=1.0)) #scale=np.exp(0.0) return log_prior def support( self, p): """ Support. .. literalinclude:: ../victoriaepi/seid.py :pyobject: SEID.support :lines: 1,10- """ rt = True rt &= (0.0 < p[0] < 10.0**2) # beta in [0,20] rt &= all((0.0 < p[1]) * (p[3:] < 20.0)) return rt def sim_init(self): """Simulate initial values for mcmc. .. literalinclude:: ../victoriaepi/seid.py :pyobject: SEID.sim_init :lines: 1,8- """ p = np.zeros(self.num_pars) p[0] = np.random.uniform(low = 0.01, high = 10.0) p[1] = np.random.uniform(low = 0.01, high = 5.0) return p def PlotEvolution( self, pred, cumm=False, log=False, ax=None,\ csv_fnam=None, q=[ 10, 25, 50, 75, 90], blue=True, add_MRE=False,\ color='red', color_q='black', label='Mediana', right_axis=True, label_cases=True): """ Plot Evolution. Args: pred: number of days to predict ty: 0 = Infected,1 = deaths cumm: True if cumulative, default False log: True if y log scale, default False ax: axis where to print the plot (optional) csv_fnam: name of file to save the data for the plot (optional) """ if ax == None: fig = plt.figure(figsize=(12,10)) ax = fig.gca() else: fig = None data = self.data # Deaths REPORTED data_trimed = self.data_trimed title = 'Deaths' # cumulative or prevalanece, prepapr solns if cumm: prevalence = np.cumsum(data) # aggregate observed data self.future = prevalence[-1] + np.cumsum(data_trimed) solns = self.solns[0] ylabel = 'Accumulated cases' title = 'Accumulated ' + title else: prevalence = data # aggregate observed data self.future = data_trimed solns = np.diff( np.append( np.zeros((self.solns[0].shape[0],1)), self.solns[0], axis=1), axis=1) ylabel = 'Num. cases' title = 'Incidence of ' + title self.PlotEvolution_fm( solns=solns, prevalence=prevalence, pred=pred, ylabel=ylabel, log=log, ax=ax,\ csv_fnam=csv_fnam, q=q, blue=blue, add_MRE=add_MRE,\ color=color, color_q=color_q, label=label, right_axis=right_axis, label_cases=label_cases) ax.set_title(self.Region + '. ' + title)
32.161094
234
0.570551
2cab92f8a097d461bca7ff25be6e257b54228b80
12,306
py
Python
ghome/ghome.py
zendainc/ghome
1bcbc5bef01945fbcd37f568d5a23c2645bff909
[ "Apache-2.0" ]
null
null
null
ghome/ghome.py
zendainc/ghome
1bcbc5bef01945fbcd37f568d5a23c2645bff909
[ "Apache-2.0" ]
null
null
null
ghome/ghome.py
zendainc/ghome
1bcbc5bef01945fbcd37f568d5a23c2645bff909
[ "Apache-2.0" ]
null
null
null
__copyright__ = """ Copyright 2019 Samapriya Roy Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ __license__ = "Apache 2.0" #! /usr/bin/env python import argparse,os,sys,platform,requests,time,json import nmap import socket os.chdir(os.path.dirname(os.path.realpath(__file__))) from os.path import expanduser lpath=os.path.dirname(os.path.realpath(__file__)) sys.path.append(lpath) # Find google home devices def ghome(result): # Using sockets to get iprange s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) s.connect(("8.8.8.8", 80)) iprange = '.'.join(s.getsockname()[0].split('.')[0:3]) s.close() # Using nmap to get device list nm = nmap.PortScanner() scanner = nm.scan(iprange + '.*', '22-25') l = [] for stuff, value in scanner['scan'].items(): try: if str(value['addresses']['mac']).startswith('E4'): l.append(str(value['addresses']['ipv4'])) except Exception as e: pass if result is not None and result == 'verbose': for stuff in l: url = "http://"+str(stuff)+":8008/setup/eureka_info" querystring = {"{options}":"detail","{params}":"version,audio,name,build_info,detail,device_info,net,wifi,setup,settings,opt_in,opencast,multizone,proxy,night_mode_params,user_eq,room_equalizer","options":"detail"} payload = "{\r\n \"connect\": true\r\n}" headers = { 'Content-Type': "application/json", 'Cache-Control': "no-cache", } response = requests.request("GET", url, data=payload, headers=headers, params=querystring) resp=response.json() print('Device Name: '+str(resp['name'])) print('Device Locale: '+resp['locale']) print('Device build_version: '+str(resp['build_version'])) print('Device timezone: '+str(resp['timezone'])) print('Device model_name: '+str(resp['detail']['model_name'])) print('Device manufacturer: '+str(resp['detail']['manufacturer'])) print('Device cast_build_revision: '+str(resp['cast_build_revision'])) print('Device Mac address: '+str(resp['mac_address'])) print('Device IPv4 address: '+str(resp['ip_address'])) print('Wifi Name: '+str(resp['ssid'])) #print('Device uptime: '+str(resp['uptime'])) print('') else: for stuff in l: url = "http://"+str(stuff)+":8008/setup/eureka_info" querystring = {"{options}":"detail","{params}":"version,audio,name,build_info,detail,device_info,net,wifi,setup,settings,opt_in,opencast,multizone,proxy,night_mode_params,user_eq,room_equalizer","options":"detail"} payload = "{\r\n \"connect\": true\r\n}" headers = { 'Content-Type': "application/json", 'Cache-Control': "no-cache", } response = requests.request("GET", url, data=payload, headers=headers, params=querystring) resp=response.json() print('Device Name: '+str(resp['name'])+' : '+str(resp['ip_address'])) def ghome_from_parser(args): ghome(result=args.format) #Get all alarms set on the devices def alarm(ip): url = "http://"+str(ip)+":8008/setup/assistant/alarms" try: response = requests.request("GET", url).json() if len(response['alarm']) !=0: for items in response['alarm']: print('Alarm set for: '+str(time.strftime("%a, %d %b %Y %H:%M:%S %Z", time.localtime(float(items['fire_time']/1000))))) else: print('No alarms currently set') except Exception as e: print(e) def alarm_from_parser(args): alarm(ip=args.ip) #Get bluetooth status def bstat(ip): url = "http://"+str(ip)+":8008/setup/bluetooth/status" try: response = requests.request("GET", url).json() for key, value in response.items(): print(key, value) except Exception as e: print(e) def bstat_from_parser(args): bstat(ip=args.ip) #Get paired devices def bpair(ip): url = "http://"+str(ip)+":8008/setup/bluetooth/get_bonded" try: response = requests.request("GET", url).json() for item in response: print('Device Name: '+str(item['name'])) print('Item currently connected: '+str(item['connected'])) print('Last connected: '+str(time.strftime("%a, %d %b %Y %H:%M:%S %Z", time.localtime(float(item['last_connect_date']/1000))))) print('') except Exception as e: print(e) def bpair_from_parser(args): bpair(ip=args.ip) #Get paired devices def bscan(ip): scan_url = "http://"+str(ip)+":8008/setup/bluetooth/scan" result_url="http://"+str(ip)+":8008/setup/bluetooth/scan_results" payload='{"enable": true,"clear_results": false,"timeout": 60}' headers = {'Content-Type': "application/json"} try: response = requests.request("POST", scan_url, data=payload, headers=headers) if response.status_code==200: print('\n'+'Scan for Bluetooth devices succeeded') r = requests.request("GET", result_url).json() for items in r: if not len(items['name'])==0: print(str(items['name']+' with mac id: '+str(items['mac_address']))) else: print('Unknown device with mac id: '+str(items['mac_address'])) #print(response['name']) except Exception as e: print(e) def bscan_from_parser(args): bscan(ip=args.ip) # Bluetooth discovery enable or disable def bdisc(ip,action): if action=="enable": payload = '{"enable_discovery": true}' if action=="disable": payload = '{"enable_discovery": false}' url = "http://"+str(ip)+":8008/setup/bluetooth/discovery" headers = { 'Content-Type': "application/json", 'Cache-Control': "no-cache", } try: response = requests.request("POST", url, data=payload, headers=headers) if response.status_code==200: print("Bluetooth Discovery: "+str(action)+"d") else: print("Bluetooth Discovery: "+str(action)+"d failed with error: "+str(response.status_code)) except Exception as e: print(e) def bdisc_from_parser(args): bdisc(ip=args.ip,action=args.action) # Reboot device def reboot(ip): url = "http://"+str(ip)+":8008/setup/reboot" headers = { 'Content-Type': "application/json", 'Cache-Control': "no-cache", } payload={"params": "now"} try: response = requests.request("POST", url, data=payload, headers=headers) if response.status_code==200: print("Device Rebooting") else: print("Device reboot failed with error: "+str(response.status_code)) except Exception as e: print(e) def reboot_from_parser(args): reboot(ip=args.ip) # DND device def dnd(ip,action): url = "http://"+str(ip)+":8008/setup/assistant/notifications" headers = { 'Content-Type': "application/json", 'Cache-Control': "no-cache", } if action=="enable": payload='{"notifications_enabled": true}' if action=="disable": payload='{"notifications_enabled": false}' try: response = requests.request("POST", url, data=payload, headers=headers) if response.status_code==200: r=response.json() print("Notification status: "+str(action)+"d") else: print("DND action failed with action code : "+str(response.status_code)) except Exception as e: print(e) def dnd_from_parser(args): dnd(ip=args.ip,action=args.action) #Wifi scan def wscan(ip): scan_url = "http://"+str(ip)+":8008/setup/scan_wifi" result_url="http://"+str(ip)+":8008/setup/scan_results" headers = {'Content-Type': "application/json"} try: response = requests.request("POST", scan_url, headers=headers) if response.status_code==200: print('\n'+'Scan for Wifi succeeded') r = requests.request("GET", result_url).json() for items in r: print('Wifi Name or SSID: '+str(items['ssid'])) #print(response['name']) except Exception as e: print(e) def wscan_from_parser(args): wscan(ip=args.ip) spacing=" " def main(args=None): parser = argparse.ArgumentParser(description='Simple Google Home Mini Client') subparsers = parser.add_subparsers() parser_ghome = subparsers.add_parser('list', help='Lists all google home mini devices & IP address') optional_named = parser_ghome.add_argument_group('Optional named arguments') optional_named.add_argument('--format', help='User "verbose" to get details', default=None) parser_ghome.set_defaults(func=ghome_from_parser) parser_reboot = subparsers.add_parser('reboot', help='Reboot a google home mini using IP address') required_named = parser_reboot.add_argument_group('Required named arguments.') required_named.add_argument('--ip', help='Use "ip" for Google Home Mini device', default=None) parser_reboot.set_defaults(func=reboot_from_parser) parser_alarm = subparsers.add_parser('alarm', help='Print out the current alarms setup on your google home mini') required_named = parser_alarm.add_argument_group('Required named arguments.') required_named.add_argument('--ip', help='Use "ip" for Google Home Mini device', default=None) parser_alarm.set_defaults(func=alarm_from_parser) parser_dnd = subparsers.add_parser('dnd', help='Enable or disable <Do not Disturb mode> for a google home mini using IP address') required_named = parser_dnd.add_argument_group('Required named arguments.') required_named.add_argument('--ip', help='Use "ip" for Google Home Mini device', default=None) required_named.add_argument('--action', help='enable|disable do not disturb mode', default=None) parser_dnd.set_defaults(func=dnd_from_parser) parser_bstat = subparsers.add_parser('bstat', help='Print current bluetooth status for a google home mini using IP address') required_named = parser_bstat.add_argument_group('Required named arguments.') required_named.add_argument('--ip', help='Use "ip" for Google Home Mini device', default=None) parser_bstat.set_defaults(func=bstat_from_parser) parser_bscan = subparsers.add_parser('bscan', help='Scan for Bluetooth devices near a google home mini using IP address') required_named = parser_bscan.add_argument_group('Required named arguments.') required_named.add_argument('--ip', help='Use "ip" for Google Home Mini device', default=None) parser_bscan.set_defaults(func=bscan_from_parser) parser_bpair = subparsers.add_parser('bpair', help='Print current paired bluetooth devices for a google home mini using IP address') required_named = parser_bpair.add_argument_group('Required named arguments.') required_named.add_argument('--ip', help='Use "ip" for Google Home Mini device', default=None) parser_bpair.set_defaults(func=bpair_from_parser) parser_bdisc = subparsers.add_parser('bdisc', help='Enable or disable bluetooth discovery for a google home mini using IP address') required_named = parser_bdisc.add_argument_group('Required named arguments.') required_named.add_argument('--ip', help='Use "ip" for Google Home Mini device', default=None) required_named.add_argument('--action', help='enable|disable bluetooth discovery', default=None) parser_bdisc.set_defaults(func=bdisc_from_parser) parser_wscan = subparsers.add_parser('wscan', help='Scan for Wifi networks near a google home mini using IP address') required_named = parser_wscan.add_argument_group('Required named arguments.') required_named.add_argument('--ip', help='Use "ip" for Google Home Mini device', default=None) parser_wscan.set_defaults(func=wscan_from_parser) args = parser.parse_args() args.func(args) if __name__ == '__main__': main()
40.084691
226
0.667317
3f6753f78a1ed310e623aa22c2c082d93983f314
9,605
py
Python
chapter10/access_control.py
psxz/reinforcement-learning-an-introduction
cc839b647a3ae54f07b2cae17a602cd8d25436fe
[ "Apache-2.0" ]
12,197
2016-10-04T03:34:49.000Z
2022-03-31T12:55:36.000Z
chapter10/access_control.py
psxz/reinforcement-learning-an-introduction
cc839b647a3ae54f07b2cae17a602cd8d25436fe
[ "Apache-2.0" ]
150
2017-08-28T14:59:36.000Z
2022-03-11T23:21:35.000Z
chapter10/access_control.py
psxz/reinforcement-learning-an-introduction
cc839b647a3ae54f07b2cae17a602cd8d25436fe
[ "Apache-2.0" ]
4,738
2016-09-27T07:38:23.000Z
2022-03-31T10:09:14.000Z
####################################################################### # Copyright (C) # # 2016-2018 Shangtong Zhang(zhangshangtong.cpp@gmail.com) # # 2016 Kenta Shimada(hyperkentakun@gmail.com) # # Permission given to modify the code as long as you keep this # # declaration at the top # ####################################################################### import numpy as np import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt from tqdm import tqdm from mpl_toolkits.mplot3d.axes3d import Axes3D from math import floor import seaborn as sns ####################################################################### # Following are some utilities for tile coding from Rich. # To make each file self-contained, I copied them from # http://incompleteideas.net/tiles/tiles3.py-remove # with some naming convention changes # # Tile coding starts class IHT: "Structure to handle collisions" def __init__(self, size_val): self.size = size_val self.overfull_count = 0 self.dictionary = {} def count(self): return len(self.dictionary) def full(self): return len(self.dictionary) >= self.size def get_index(self, obj, read_only=False): d = self.dictionary if obj in d: return d[obj] elif read_only: return None size = self.size count = self.count() if count >= size: if self.overfull_count == 0: print('IHT full, starting to allow collisions') self.overfull_count += 1 return hash(obj) % self.size else: d[obj] = count return count def hash_coords(coordinates, m, read_only=False): if isinstance(m, IHT): return m.get_index(tuple(coordinates), read_only) if isinstance(m, int): return hash(tuple(coordinates)) % m if m is None: return coordinates def tiles(iht_or_size, num_tilings, floats, ints=None, read_only=False): """returns num-tilings tile indices corresponding to the floats and ints""" if ints is None: ints = [] qfloats = [floor(f * num_tilings) for f in floats] tiles = [] for tiling in range(num_tilings): tilingX2 = tiling * 2 coords = [tiling] b = tiling for q in qfloats: coords.append((q + b) // num_tilings) b += tilingX2 coords.extend(ints) tiles.append(hash_coords(coords, iht_or_size, read_only)) return tiles # Tile coding ends ####################################################################### # possible priorities PRIORITIES = np.arange(0, 4) # reward for each priority REWARDS = np.power(2, np.arange(0, 4)) # possible actions REJECT = 0 ACCEPT = 1 ACTIONS = [REJECT, ACCEPT] # total number of servers NUM_OF_SERVERS = 10 # at each time step, a busy server will be free w.p. 0.06 PROBABILITY_FREE = 0.06 # step size for learning state-action value ALPHA = 0.01 # step size for learning average reward BETA = 0.01 # probability for exploration EPSILON = 0.1 # a wrapper class for differential semi-gradient Sarsa state-action function class ValueFunction: # In this example I use the tiling software instead of implementing standard tiling by myself # One important thing is that tiling is only a map from (state, action) to a series of indices # It doesn't matter whether the indices have meaning, only if this map satisfy some property # View the following webpage for more information # http://incompleteideas.net/sutton/tiles/tiles3.html # @alpha: step size for learning state-action value # @beta: step size for learning average reward def __init__(self, num_of_tilings, alpha=ALPHA, beta=BETA): self.num_of_tilings = num_of_tilings self.max_size = 2048 self.hash_table = IHT(self.max_size) self.weights = np.zeros(self.max_size) # state features needs scaling to satisfy the tile software self.server_scale = self.num_of_tilings / float(NUM_OF_SERVERS) self.priority_scale = self.num_of_tilings / float(len(PRIORITIES) - 1) self.average_reward = 0.0 # divide step size equally to each tiling self.alpha = alpha / self.num_of_tilings self.beta = beta # get indices of active tiles for given state and action def get_active_tiles(self, free_servers, priority, action): active_tiles = tiles(self.hash_table, self.num_of_tilings, [self.server_scale * free_servers, self.priority_scale * priority], [action]) return active_tiles # estimate the value of given state and action without subtracting average def value(self, free_servers, priority, action): active_tiles = self.get_active_tiles(free_servers, priority, action) return np.sum(self.weights[active_tiles]) # estimate the value of given state without subtracting average def state_value(self, free_servers, priority): values = [self.value(free_servers, priority, action) for action in ACTIONS] # if no free server, can't accept if free_servers == 0: return values[REJECT] return np.max(values) # learn with given sequence def learn(self, free_servers, priority, action, new_free_servers, new_priority, new_action, reward): active_tiles = self.get_active_tiles(free_servers, priority, action) estimation = np.sum(self.weights[active_tiles]) delta = reward - self.average_reward + self.value(new_free_servers, new_priority, new_action) - estimation # update average reward self.average_reward += self.beta * delta delta *= self.alpha for active_tile in active_tiles: self.weights[active_tile] += delta # get action based on epsilon greedy policy and @valueFunction def get_action(free_servers, priority, value_function): # if no free server, can't accept if free_servers == 0: return REJECT if np.random.binomial(1, EPSILON) == 1: return np.random.choice(ACTIONS) values = [value_function.value(free_servers, priority, action) for action in ACTIONS] return np.random.choice([action_ for action_, value_ in enumerate(values) if value_ == np.max(values)]) # take an action def take_action(free_servers, priority, action): if free_servers > 0 and action == ACCEPT: free_servers -= 1 reward = REWARDS[priority] * action # some busy servers may become free busy_servers = NUM_OF_SERVERS - free_servers free_servers += np.random.binomial(busy_servers, PROBABILITY_FREE) return free_servers, np.random.choice(PRIORITIES), reward # differential semi-gradient Sarsa # @valueFunction: state value function to learn # @maxSteps: step limit in the continuing task def differential_semi_gradient_sarsa(value_function, max_steps): current_free_servers = NUM_OF_SERVERS current_priority = np.random.choice(PRIORITIES) current_action = get_action(current_free_servers, current_priority, value_function) # track the hit for each number of free servers freq = np.zeros(NUM_OF_SERVERS + 1) for _ in tqdm(range(max_steps)): freq[current_free_servers] += 1 new_free_servers, new_priority, reward = take_action(current_free_servers, current_priority, current_action) new_action = get_action(new_free_servers, new_priority, value_function) value_function.learn(current_free_servers, current_priority, current_action, new_free_servers, new_priority, new_action, reward) current_free_servers = new_free_servers current_priority = new_priority current_action = new_action print('Frequency of number of free servers:') print(freq / max_steps) # Figure 10.5, Differential semi-gradient Sarsa on the access-control queuing task def figure_10_5(): max_steps = int(1e6) # use tile coding with 8 tilings num_of_tilings = 8 value_function = ValueFunction(num_of_tilings) differential_semi_gradient_sarsa(value_function, max_steps) values = np.zeros((len(PRIORITIES), NUM_OF_SERVERS + 1)) for priority in PRIORITIES: for free_servers in range(NUM_OF_SERVERS + 1): values[priority, free_servers] = value_function.state_value(free_servers, priority) fig = plt.figure(figsize=(10, 20)) plt.subplot(2, 1, 1) for priority in PRIORITIES: plt.plot(range(NUM_OF_SERVERS + 1), values[priority, :], label='priority %d' % (REWARDS[priority])) plt.xlabel('Number of free servers') plt.ylabel('Differential value of best action') plt.legend() ax = fig.add_subplot(2, 1, 2) policy = np.zeros((len(PRIORITIES), NUM_OF_SERVERS + 1)) for priority in PRIORITIES: for free_servers in range(NUM_OF_SERVERS + 1): values = [value_function.value(free_servers, priority, action) for action in ACTIONS] if free_servers == 0: policy[priority, free_servers] = REJECT else: policy[priority, free_servers] = np.argmax(values) fig = sns.heatmap(policy, cmap="YlGnBu", ax=ax, xticklabels=range(NUM_OF_SERVERS + 1), yticklabels=PRIORITIES) fig.set_title('Policy (0 Reject, 1 Accept)') fig.set_xlabel('Number of free servers') fig.set_ylabel('Priority') plt.savefig('../images/figure_10_5.png') plt.close() if __name__ == '__main__': figure_10_5()
39.690083
116
0.659552
72e5f725cc940e887a073d2c2f51e2cd22b4863a
85
py
Python
carro/apps.py
JoseRazo/TiendaOnline
cd6d605d1ed4d8c3b03777f7b05cedaca8db4624
[ "Apache-2.0" ]
null
null
null
carro/apps.py
JoseRazo/TiendaOnline
cd6d605d1ed4d8c3b03777f7b05cedaca8db4624
[ "Apache-2.0" ]
null
null
null
carro/apps.py
JoseRazo/TiendaOnline
cd6d605d1ed4d8c3b03777f7b05cedaca8db4624
[ "Apache-2.0" ]
null
null
null
from django.apps import AppConfig class CarroConfig(AppConfig): name = 'carro'
14.166667
33
0.741176
2448fffe8929cf7ce6c111f4dd9e454dc4576d70
7,739
py
Python
tests/python/unittest/test_tir_transform_vectorize.py
shengxinhu/tvm
06c443e9959452c6da3a911fe0c11e08c5554477
[ "Zlib", "Unlicense", "Apache-2.0", "BSD-2-Clause", "MIT", "ECL-2.0", "BSD-3-Clause" ]
4,640
2017-08-17T19:22:15.000Z
2019-11-04T15:29:46.000Z
tests/python/unittest/test_tir_transform_vectorize.py
shengxinhu/tvm
06c443e9959452c6da3a911fe0c11e08c5554477
[ "Zlib", "Unlicense", "Apache-2.0", "BSD-2-Clause", "MIT", "ECL-2.0", "BSD-3-Clause" ]
2,863
2017-08-17T19:55:50.000Z
2019-11-04T17:18:41.000Z
tests/python/unittest/test_tir_transform_vectorize.py
shengxinhu/tvm
06c443e9959452c6da3a911fe0c11e08c5554477
[ "Zlib", "Unlicense", "Apache-2.0", "BSD-2-Clause", "MIT", "ECL-2.0", "BSD-3-Clause" ]
1,352
2017-08-17T19:30:38.000Z
2019-11-04T16:09:29.000Z
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import tvm from tvm import te def test_vectorize_loop(): dtype = "int64" n = te.var("n") ib = tvm.tir.ir_builder.create() A = ib.pointer("float32", name="A") with ib.for_range(0, n) as i: with ib.for_range(0, 4, kind="vectorize") as j: A[j] = tvm.tir.const(1, A.dtype) stmt = ib.get() assert isinstance(stmt.body, tvm.tir.For) mod = tvm.IRModule.from_expr(tvm.tir.PrimFunc([A, n], stmt)) stmt = tvm.tir.transform.VectorizeLoop()(mod)["main"].body assert isinstance(stmt, tvm.tir.For) assert not isinstance(stmt.body, tvm.tir.For) assert len(stmt.body.indices) == 1 assert isinstance(stmt.body.indices[0], tvm.tir.Ramp) assert isinstance(stmt.body.value, tvm.tir.Broadcast) def test_vectorize_vector(): dtype = "int64" n = te.var("n") ib = tvm.tir.ir_builder.create() A = ib.pointer("float32x4", name="A") with ib.for_range(0, n) as i: with ib.for_range(0, 4, kind="vectorize") as j: A[j] = tvm.tir.const(1, A.dtype) stmt = ib.get() assert isinstance(stmt.body, tvm.tir.For) mod = tvm.IRModule.from_expr(tvm.tir.PrimFunc([A, n], stmt)) stmt = tvm.tir.transform.VectorizeLoop()(mod)["main"].body assert isinstance(stmt, tvm.tir.For) assert not isinstance(stmt.body, tvm.tir.For) assert len(stmt.body.indices) == 1 assert isinstance(stmt.body.indices[0], tvm.tir.Ramp) assert isinstance(stmt.body.value, tvm.tir.Broadcast) def test_vectorize_with_if(): n = te.var("n") x = te.var("x") ib = tvm.tir.ir_builder.create() A = ib.pointer("float32", name="A") with ib.for_range(0, 4, kind="vectorize") as i: with ib.if_scope(x < n): A[i] = A[i] + 1 with ib.else_scope(): with ib.if_scope(i < n): A[i] = 2.0 stmt = ib.get() mod = tvm.IRModule.from_expr(tvm.tir.PrimFunc([A, n, x], stmt)) stmt = tvm.tir.transform.VectorizeLoop()(mod)["main"].body assert isinstance(stmt, tvm.tir.IfThenElse) assert len(stmt.then_case.indices) == 1 assert isinstance(stmt.then_case.indices[0], tvm.tir.Ramp) assert isinstance(stmt.then_case.value, tvm.tir.Add) assert stmt.then_case.value.dtype == "float32x4" assert isinstance(stmt.else_case, tvm.tir.For) def test_vectorize_with_if_cond_int64(): m = te.size_var("m", dtype="int64") A = te.placeholder((m,), name="A", dtype="float32") B = te.compute((m,), lambda i: te.if_then_else(i < 2, A[i], A[i] * 2), name="B") s = te.create_schedule(B.op) x, y = s[B].split(B.op.axis[0], factor=4) s[B].vectorize(y) f = tvm.build(s, [A, B], "llvm") def test_vectorize_let(): v = tvm.tir.Var("v", "float32") ib = tvm.tir.ir_builder.create() A = ib.pointer("float32", name="A") with ib.for_range(0, 4, kind="vectorize") as i: ib.emit(lambda body: tvm.tir.LetStmt(v, A[i] + 1, body)) A[i] = v + 2 mod = tvm.IRModule.from_expr(tvm.tir.PrimFunc([A], ib.get())) stmt = tvm.tir.transform.VectorizeLoop()(mod)["main"].body assert isinstance(stmt, tvm.tir.LetStmt) assert stmt.value.dtype == "float32x4" def test_vectorize_with_le_cond(): n = te.var("n") ib = tvm.tir.ir_builder.create() A = ib.pointer("float32", name="A") with ib.for_range(0, 4, kind="vectorize") as i: with ib.if_scope(i <= n): A[i] = A[i] + 1 stmt = ib.get() mod = tvm.IRModule.from_expr(tvm.tir.PrimFunc([A, n], stmt)) stmt = tvm.tir.transform.VectorizeLoop()(mod)["main"].body assert isinstance(stmt, tvm.tir.For) def test_vectorize_with_ge_cond(): n = te.var("n") ib = tvm.tir.ir_builder.create() A = ib.pointer("float32", name="A") with ib.for_range(0, 4, kind="vectorize") as i: with ib.if_scope(i >= n): A[i] = A[i] + 1 stmt = ib.get() mod = tvm.IRModule.from_expr(tvm.tir.PrimFunc([A, n], stmt)) stmt = tvm.tir.transform.VectorizeLoop()(mod)["main"].body assert isinstance(stmt, tvm.tir.For) def test_vectorize_if_then_else(): n = te.var("n") x = te.var("x") ib = tvm.tir.ir_builder.create() A = ib.pointer("float32", name="A") with ib.for_range(0, 4, kind="vectorize") as i: A[i] = tvm.tir.call_intrin("float32", "tir.if_then_else", i > 0, A[i] + 1, A[i]) stmt = ib.get() mod = tvm.IRModule.from_expr(tvm.tir.PrimFunc([A, n, x], stmt)) stmt = tvm.tir.transform.VectorizeLoop()(mod)["main"].body assert isinstance(stmt, tvm.tir.For) ib = tvm.tir.ir_builder.create() A = ib.pointer("float32", name="A") with ib.for_range(0, n) as k: with ib.for_range(0, 4, kind="vectorize") as i: A[k * 4 + i] = tvm.tir.call_intrin( "float32", "tir.if_then_else", k > 0, A[k * 4 + i], 0 ) stmt = ib.get() assert isinstance(stmt.body, tvm.tir.For) mod = tvm.IRModule.from_expr(tvm.tir.PrimFunc([A, n], stmt)) stmt = tvm.tir.transform.VectorizeLoop()(mod)["main"].body assert not isinstance(stmt.body, tvm.tir.For) assert isinstance(stmt.body.value.args[2], tvm.tir.Broadcast) def test_vectorize_while_fail(): """A while loop inside a vectorized loop should fail.""" n = 64 num_iter = 10 def test_ir(A, B, C): ib = tvm.tir.ir_builder.create() n = C.shape[0] A = ib.buffer_ptr(A) B = ib.buffer_ptr(B) C = ib.buffer_ptr(C) i = ib.allocate("int32", (1,), name="i", scope="local") i[0] = 0 with ib.for_range(0, n) as j: C[j] = 0.0 with ib.for_range(0, n, kind="vectorize") as j: with ib.while_loop(i[0] < num_iter): C[j] += A[j] + B[j] i[0] += 1 return ib.get() dtype = "float32" A = te.placeholder((n,), name="A", dtype=dtype) B = te.placeholder((n,), name="B", dtype=dtype) C = te.extern( (n,), [A, B], lambda ins, outs: test_ir(ins[0], ins[1], outs[0]), name="while_vectorize", dtype=dtype, ) s = te.create_schedule(C.op) try: tvm.lower(s, [A, B, C], "llvm") assert False except tvm.error.TVMError as e: error_msg = str(e).split("\n")[-1] expected = "A while loop inside a vectorized loop not supported" assert expected in error_msg def test_vectorize_dtype_mismatch(): n = tvm.tir.IntImm("int64", 4) A = te.compute((n,), lambda i: tvm.tir.IntImm("int64", 2**31 - 1) + i, name="A") s = te.create_schedule(A.op) s[A].vectorize(A.op.axis[0]) tvm.lower(s, [A], "llvm", simple_mode=True) if __name__ == "__main__": test_vectorize_vector() test_vectorize_with_if() test_vectorize_loop() test_vectorize_if_then_else() test_vectorize_with_le_cond() test_vectorize_with_ge_cond() test_vectorize_let() test_vectorize_while_fail() test_vectorize_dtype_mismatch()
32.380753
88
0.617522
a3c2072b136e546c58b20afcc9d304aa6dfbb734
4,695
py
Python
mac/google-cloud-sdk/lib/googlecloudsdk/api_lib/iamcredentials/util.py
bopopescu/cndw
ee432efef88a4351b355f3d6d5350defc7f4246b
[ "Apache-2.0" ]
null
null
null
mac/google-cloud-sdk/lib/googlecloudsdk/api_lib/iamcredentials/util.py
bopopescu/cndw
ee432efef88a4351b355f3d6d5350defc7f4246b
[ "Apache-2.0" ]
null
null
null
mac/google-cloud-sdk/lib/googlecloudsdk/api_lib/iamcredentials/util.py
bopopescu/cndw
ee432efef88a4351b355f3d6d5350defc7f4246b
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # # Copyright 2018 Google LLC. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Utilities for the iamcredentials API.""" from __future__ import absolute_import from __future__ import division from __future__ import unicode_literals import datetime from googlecloudsdk.api_lib.util import apis_internal from googlecloudsdk.core import resources from googlecloudsdk.core.credentials import http as http_creds from oauth2client import client def GenerateAccessToken(service_account_id, scopes): """Generates an access token for the given service account.""" service_account_ref = resources.REGISTRY.Parse( service_account_id, collection='iamcredentials.serviceAccounts', params={'projectsId': '-', 'serviceAccountsId': service_account_id}) # pylint: disable=protected-access http_client = http_creds.Http( response_encoding=http_creds.ENCODING, allow_account_impersonation=False, force_resource_quota=True) iam_client = apis_internal._GetClientInstance( 'iamcredentials', 'v1', http_client=http_client) response = iam_client.projects_serviceAccounts.GenerateAccessToken( iam_client.MESSAGES_MODULE .IamcredentialsProjectsServiceAccountsGenerateAccessTokenRequest( name=service_account_ref.RelativeName(), generateAccessTokenRequest=iam_client.MESSAGES_MODULE .GenerateAccessTokenRequest(scope=scopes) ) ) return response def GenerateIdToken(service_account_id, audience, include_email=False): """Generates an id token for the given service account.""" service_account_ref = resources.REGISTRY.Parse( service_account_id, collection='iamcredentials.serviceAccounts', params={'projectsId': '-', 'serviceAccountsId': service_account_id}) # pylint: disable=protected-access http_client = http_creds.Http( response_encoding=http_creds.ENCODING, allow_account_impersonation=False, force_resource_quota=True) iam_client = apis_internal._GetClientInstance( 'iamcredentials', 'v1', http_client=http_client) response = iam_client.projects_serviceAccounts.GenerateIdToken( iam_client.MESSAGES_MODULE .IamcredentialsProjectsServiceAccountsGenerateIdTokenRequest( name=service_account_ref.RelativeName(), generateIdTokenRequest=iam_client.MESSAGES_MODULE .GenerateIdTokenRequest(audience=audience, includeEmail=include_email) ) ) return response.token class ImpersonationAccessTokenProvider(object): """A token provider for service account elevation. This supports the interface required by the core/credentials module. """ def GetElevationAccessToken(self, service_account_id, scopes): response = GenerateAccessToken(service_account_id, scopes) return ImpersonationCredentials( service_account_id, response.accessToken, response.expireTime, scopes) def GetElevationIdToken(self, service_account_id, audience, include_email): return GenerateIdToken(service_account_id, audience, include_email) @classmethod def IsImpersonationCredential(cls, cred): return isinstance(cred, ImpersonationCredentials) class ImpersonationCredentials(client.OAuth2Credentials): """Implementation of a credential that refreshes using the iamcredentials API. """ _EXPIRY_FORMAT = '%Y-%m-%dT%H:%M:%SZ' def __init__(self, service_account_id, access_token, token_expiry, scopes): self._service_account_id = service_account_id token_expiry = self._ConvertExpiryTime(token_expiry) super(ImpersonationCredentials, self).__init__( access_token, None, None, None, token_expiry, None, None, scopes=scopes) def _refresh(self, http): # client.Oauth2Credentials converts scopes into a set, so we need to convert # back to a list before making the API request. response = GenerateAccessToken(self._service_account_id, list(self.scopes)) self.access_token = response.accessToken self.token_expiry = self._ConvertExpiryTime(response.expireTime) def _ConvertExpiryTime(self, value): return datetime.datetime.strptime(value, ImpersonationCredentials._EXPIRY_FORMAT)
40.128205
80
0.771885
ebea323c7105a51cc0c5c47dd68359cc4a063fda
7,090
py
Python
feature_extraction/generate_features_alexnet.py
cJarvers/algonauts2021
0c1d6b9c6cbff77ecb1365eaaef0956a4bab96aa
[ "MIT" ]
35
2021-05-01T02:58:03.000Z
2021-12-27T15:13:17.000Z
feature_extraction/generate_features_alexnet.py
cJarvers/algonauts2021
0c1d6b9c6cbff77ecb1365eaaef0956a4bab96aa
[ "MIT" ]
2
2021-06-05T17:34:29.000Z
2021-06-22T20:36:19.000Z
feature_extraction/generate_features_alexnet.py
Neural-Dynamics-of-Visual-Cognition-FUB/Algonauts2021_devkit
61c71a39f592861482ef4bfacf91faf981ea3ed3
[ "MIT" ]
21
2021-05-06T04:59:09.000Z
2021-10-12T21:52:09.000Z
### # This file will: # 1. Generate and save Alexnet features in a given folder # 2. preprocess Alexnet features using PCA and save them in another folder ### import glob from alexnet import * import numpy as np import urllib import torch import cv2 import argparse import time import random from tqdm import tqdm from torchvision import transforms as trn import os from PIL import Image from sklearn.preprocessing import StandardScaler from torch.autograd import Variable as V from sklearn.decomposition import PCA, IncrementalPCA from decord import VideoReader from decord import cpu seed = 42 # Torch RNG torch.manual_seed(seed) torch.cuda.manual_seed(seed) torch.cuda.manual_seed_all(seed) # Python RNG np.random.seed(seed) random.seed(seed) def load_alexnet(model_checkpoints): """This function initializes an Alexnet and load its weights from a pretrained model ---------- model_checkpoints : str model checkpoints location. Returns ------- model pytorch model of alexnet """ model = alexnet() model_file = model_checkpoints checkpoint = torch.load(model_file, map_location=lambda storage, loc: storage) model_dict =["conv1.0.weight", "conv1.0.bias", "conv2.0.weight", "conv2.0.bias", "conv3.0.weight", "conv3.0.bias", "conv4.0.weight", "conv4.0.bias", "conv5.0.weight", "conv5.0.bias", "fc6.1.weight", "fc6.1.bias", "fc7.1.weight", "fc7.1.bias", "fc8.1.weight", "fc8.1.bias"] state_dict={} i=0 for k,v in checkpoint.items(): state_dict[model_dict[i]] = v i+=1 model.load_state_dict(state_dict) if torch.cuda.is_available(): model.cuda() model.eval() return model def sample_video_from_mp4(file, num_frames=16): """This function takes a mp4 video file as input and returns a list of uniformly sampled frames (PIL Image). Parameters ---------- file : str path to mp4 video file num_frames : int how many frames to select using uniform frame sampling. Returns ------- images: list of PIL Images num_frames: int number of frames extracted """ images = list() vr = VideoReader(file, ctx=cpu(0)) total_frames = len(vr) indices = np.linspace(0,total_frames-1,num_frames,dtype=np.int) for seg_ind in indices: images.append(Image.fromarray(vr[seg_ind].asnumpy())) return images,num_frames def get_activations_and_save(model, video_list, activations_dir): """This function generates Alexnet features and save them in a specified directory. Parameters ---------- model : pytorch model : alexnet. video_list : list the list contains path to all videos. activations_dir : str save path for extracted features. """ resize_normalize = trn.Compose([ trn.Resize((224,224)), trn.ToTensor(), trn.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])]) for video_file in tqdm(video_list): vid,num_frames = sample_video_from_mp4(video_file) video_file_name = os.path.split(video_file)[-1].split(".")[0] activations = [] for frame,img in enumerate(vid): input_img = V(resize_normalize(img).unsqueeze(0)) if torch.cuda.is_available(): input_img=input_img.cuda() x = model.forward(input_img) for i,feat in enumerate(x): if frame==0: activations.append(feat.data.cpu().numpy().ravel()) else: activations[i] = activations[i] + feat.data.cpu().numpy().ravel() for layer in range(len(activations)): save_path = os.path.join(activations_dir, video_file_name+"_"+"layer" + "_" + str(layer+1) + ".npy") avg_layer_activation = activations[layer]/float(num_frames) np.save(save_path,avg_layer_activation) def do_PCA_and_save(activations_dir, save_dir): """This function preprocesses Neural Network features using PCA and save the results in a specified directory . Parameters ---------- activations_dir : str save path for extracted features. save_dir : str save path for extracted PCA features. """ layers = ['layer_1','layer_2','layer_3','layer_4','layer_5','layer_6','layer_7','layer_8'] n_components = 100 if not os.path.exists(save_dir): os.makedirs(save_dir) for layer in tqdm(layers): activations_file_list = glob.glob(activations_dir +'/*'+layer+'.npy') activations_file_list.sort() feature_dim = np.load(activations_file_list[0]) x = np.zeros((len(activations_file_list),feature_dim.shape[0])) for i,activation_file in enumerate(activations_file_list): temp = np.load(activation_file) x[i,:] = temp x_train = x[:1000,:] x_test = x[1000:,:] start_time = time.time() x_test = StandardScaler().fit_transform(x_test) x_train = StandardScaler().fit_transform(x_train) ipca = PCA(n_components=n_components,random_state=seed) ipca.fit(x_train) x_train = ipca.transform(x_train) x_test = ipca.transform(x_test) train_save_path = os.path.join(save_dir,"train_"+layer) test_save_path = os.path.join(save_dir,"test_"+layer) np.save(train_save_path,x_train) np.save(test_save_path,x_test) def main(): parser = argparse.ArgumentParser(description='Feature Extraction from Alexnet and preprocessing using PCA') parser.add_argument('-vdir','--video_data_dir', help='video data directory',default = './AlgonautsVideos268_All_30fpsmax/', type=str) parser.add_argument('-sdir','--save_dir', help='saves processed features',default = './alexnet', type=str) args = vars(parser.parse_args()) save_dir=args['save_dir'] if not os.path.exists(save_dir): os.makedirs(save_dir) video_dir = args['video_data_dir'] video_list = glob.glob(video_dir + '/*.mp4') video_list.sort() print('Total Number of Videos: ', len(video_list)) # load Alexnet # Download pretrained Alexnet from: # https://download.pytorch.org/models/alexnet-owt-4df8aa71.pth # and save in the current directory checkpoint_path = "./alexnet.pth" if not os.path.exists(checkpoint_path): url = "https://download.pytorch.org/models/alexnet-owt-4df8aa71.pth" urllib.request.urlretrieve(url, "./alexnet.pth") model = load_alexnet(checkpoint_path) # get and save activations activations_dir = os.path.join(save_dir) if not os.path.exists(activations_dir): os.makedirs(activations_dir) print("-------------Saving activations ----------------------------") get_activations_and_save(model, video_list, activations_dir) # preprocessing using PCA and save pca_dir = os.path.join(save_dir, 'pca_100') print("-------------performing PCA----------------------------") do_PCA_and_save(activations_dir, pca_dir) if __name__ == "__main__": main()
33.923445
276
0.654866
c78578445adb3b7fb810435dd468db9d06f1ef07
1,831
py
Python
knowledge_graph/knowledge_extraction/oie.py
ihaeyong/drama-graph
60c3c216cd74bb19efd6baf836f6c7c2b42b764f
[ "MIT" ]
3
2021-04-28T07:19:39.000Z
2022-03-07T09:34:19.000Z
knowledge_graph/knowledge_extraction/oie.py
ihaeyong/drama-graph
60c3c216cd74bb19efd6baf836f6c7c2b42b764f
[ "MIT" ]
18
2020-08-24T12:40:38.000Z
2022-03-12T00:47:14.000Z
knowledge_graph/knowledge_extraction/oie.py
ihaeyong/drama-graph
60c3c216cd74bb19efd6baf836f6c7c2b42b764f
[ "MIT" ]
1
2020-10-15T10:09:20.000Z
2020-10-15T10:09:20.000Z
from openie import StanfordOpenIE from stanfordcorenlp import StanfordCoreNLP import json def stanfordOIE(texts): with StanfordOpenIE() as client: result = [] for text in texts: result.append(client.annotate(text)) return result class oie: def __init__(self, config, input, nlp_parser): self.input = input self.config = config self.nlp_parser = nlp_parser self.output = self.run() def run(self): if self.nlp_parser == None: if self.config['mode'] == 'demo': return self.input self.nlp_parser = StanfordCoreNLP('data/stanford-corenlp-4.0.0') for ep in self.input: for scene in ep: for u in scene['scene']: for sent in u['sents']: if self.config['extraction']['oie'] == 'None': sent['triples'] = [] else: output = self.nlp_parser.annotate(sent['statement'], properties={ 'annotators': 'openie', 'outputFormat': 'json' }) output = json.loads(output) sent['triples'] = [] for s in output['sentences']: for result in s['openie']: del result['subjectSpan'] del result['relationSpan'] del result['objectSpan'] sent['triples'] += s['openie'] # sent['triples'] = client.annotate(sent['statement']) print('Stanford Open IE done..') return self.input
36.62
93
0.452758
84d4b7b1f64b985222dee881fbad049a10b1d4c8
20,596
py
Python
data/dataset_factory.py
burhanmudassar/pytorch-action-detection
16afb9312248d73c0e2be56ac733e0a33040307e
[ "MIT" ]
null
null
null
data/dataset_factory.py
burhanmudassar/pytorch-action-detection
16afb9312248d73c0e2be56ac733e0a33040307e
[ "MIT" ]
null
null
null
data/dataset_factory.py
burhanmudassar/pytorch-action-detection
16afb9312248d73c0e2be56ac733e0a33040307e
[ "MIT" ]
null
null
null
""" Dataset utilities - Dataset Class for dataloading """ import os import os.path import torch import torch.utils.data as data import cv2, pickle import numpy as np import random def readsplitfile(splitfile): with open(splitfile, 'r') as f: temptrainvideos = f.readlines() trainvideos = [] for vid in temptrainvideos: vid = vid.rstrip('\n') trainvideos.append(vid) return trainvideos class AnnotationTransform(object): """ Same as original Transforms a VOC annotation into a Tensor of bbox coords and label index Initilized with a dictionary lookup of classnames to indexes Arguments: class_to_ind (dict, optional): dictionary lookup of classnames -> indexes (default: alphabetic indexing of UCF24's 24 classes) keep_difficult (bool, optional): keep difficult instances or not (default: False) height (int): height width (int): width """ def __init__(self, CLASSES=None, class_to_ind=None, keep_difficult=False): # self.class_to_ind = class_to_ind or dict( # zip(CLASSES, range(len(CLASSES)))) # self.ind_to_class = dict(zip(range(len(CLASSES)),CLASSES)) pass def __call__(self, bboxs, labels, width, height): res = [] scale = np.asarray([[width, height, width, height]], dtype=np.float32) for t in range(len(labels)): bbox = bboxs[t,:] label = labels[t] '''pts = ['xmin', 'ymin', 'xmax', 'ymax']''' bndbox = [] bbox = np.maximum(0, bbox.astype(np.int32) - 1) bbox = np.minimum(scale, bbox) bbox = bbox.astype(np.float32) / scale bndbox.append(bbox) bndbox.append(label) res += [bndbox] # for i in range(4): # cur_pt = max(0,int(bbox[i]) - 1) # scale = width if i % 2 == 0 else height # cur_pt = min(scale, int(bbox[i])) # cur_pt = float(cur_pt) / scale # bndbox.append(cur_pt) # bndbox.append(label) # res += [bndbox] # [xmin, ymin, xmax, ymax, label_ind] # img_id = target.find('filename').text[:-4] return res # [[xmin, ymin, xmax, ymax, label_ind], ... ] def detection_collate_tubelet(batch): """Custom collate fn for dealing with batches of images that have a different number of associated object annotations (bounding boxes). Arguments: batch: (tuple) A tuple of tensor images and lists of annotations Return: A tuple containing: 1) (tensor) batch of images stacked on their 0 dim 2) (list of tensors) annotations for a given image are stacked on 0 dim """ targets = [] imgs = [] image_ids = [] for sample in batch: imgs.append(sample[0]) # targets.append([torch.FloatTensor(target_frame) for target_frame in sample[1]]) targets.append([torch.FloatTensor(t) for t in sample[1]]) image_ids.append(sample[2]) return torch.stack(imgs, 0), targets, image_ids class DatasetClass(): """ Abstract Class for Data Loading based on the Torch Dataset Class """ def __init__(self, name='UCF101', path='../data/ucf24/', split=1): self.name = name self.root = path self.split = split # Load annotations dictionary to memory self.load_annotations_to_memory() self.database = self.get_database() def get_database(self): raise NotImplementedError def readsplitfile(self): raise NotImplementedError def get_train_test_ratios(self): ratios = np.array([1] * len(self.CLASSES)) # TODO:use this to calculate train/test ratios return ratios def get_video_annotations(self, videoname): raise NotImplementedError def get_video_numf(self, videoname): raise NotImplementedError def get_video_act(self, videoname): raise NotImplementedError def get_video_tubes(self, videoname): annotations = self.get_video_annotations(videoname) actidx = self.get_video_act(videoname) numf = self.get_video_numf(videoname) num_tubes = len(annotations) tube_labels = np.zeros((numf ,num_tubes),dtype=np.int16) # check for each tube if present in tube_boxes = [[[] for _ in range(num_tubes)] for _ in range(numf)] for tubeid, tube in enumerate(annotations): # print('numf00', numf, tube['sf'], tube['ef']) for frame_id in range(tube.shape[0]): # start of the tube to end frame of the tube frame_num = int(tube[frame_id, 0] - 1) label = actidx # assert actidx == label, 'Tube label and video label should be same' box = tube[frame_id, 1:] # get the box as an array box = box.astype(np.float32) # Already in x1 y1 x2 y2 format try: tube_labels[frame_num, tubeid] = label+1 # change label in tube_labels matrix to 1 form 0 tube_boxes[frame_num][tubeid] = box # put the box in matrix of lists except IndexError: print('Out of bounds annotations') print('Video: {} Numf: {:d} and Tube Frame: {:d}'.format(videoname, numf, frame_num)) return tube_boxes, tube_labels def get_frame_path(self, videoname, frame_num): if self.input_type == 'rgb': return self.framepath_rgb(videoname, frame_num) elif self.input_type == 'brox': return self.framepath_brox(videoname, frame_num) elif self.input_type == 'fusion': image_name = [self.framepath_rgb(videoname, frame_num), self.framepath_brox(videoname, frame_num)] return image_name def framepath_rgb(self, vid_name, frame_ind): raise NotImplementedError def framepath_brox(self, vid_name, frame_ind): raise NotImplementedError def get_frame_annotations(self, videoname, frame_num): # Get frame annotations for 1-indexed frames? tube_boxes, tube_labels = self.get_video_tubes(videoname) return np.asarray(tube_boxes[frame_num]), np.asarray(tube_labels[frame_num]) def get_resolution(self, videoname): ''' return width x height ''' raise NotImplementedError def frame_format(self, v, i): raise NotImplementedError # Merge from ds_utils def vlist(self, split): if split=='train': return self.trainSet elif split=='val': return self.valSet else: return self.testSet def load_annotations_to_memory(self): raise NotImplementedError def gtTubes(self, vid_name): ''' :param vid_name: name of video :return: tubes corresponding to that video. Dict indexed by class label Each member contains multiple N x 5 arrays [frame index, boxes] box format <x1 y1 x2 y2> ''' return self.database['gttubes'][vid_name] # Merge from ds_utils def nframes(self, vid_name): return self.get_video_numf(vid_name) def tubes_unrolled(self, vid_name): gttubes=self.gtTubes(vid_name) allTubes = [] tube_ind = 0 for label, tubes in gttubes.items(): for tube in tubes: lentube = tube.shape[0] ind_tube = np.expand_dims(np.asarray([tube_ind] * lentube), 1) label_tube = np.expand_dims(np.asarray([label] * lentube), 1) final_tube = np.concatenate([ind_tube, label_tube, tube], axis=1) allTubes.append(final_tube) tube_ind += 1 return allTubes class Dataset_plus_Torch_Class(data.Dataset, DatasetClass): def __init__(self, name='UCF101', path='../data/ucf24/', split=1): DatasetClass.__init__(self, name=name, path=path, split=split) @staticmethod def fromtorch(cls, root, image_set, transform=None, target_transform=None, dataset_name='ucf24', input_type='rgb', full_test=False, num_K=1, split=1, interval=1): newcls = cls('', root, split) newcls.torchinit(root, image_set, transform, target_transform, dataset_name, input_type, full_test, num_K, split, interval) return newcls def torchinit(self, root, image_set, transform=None, target_transform=None, dataset_name='ucf24', input_type='rgb', full_test=False, num_K=1, split=1, interval=1): self.splitfile = root + 'splitfiles/trainlist{:02d}.txt'.format(split) self.input_type = input_type if input_type == 'fusion': self._imgpath = [os.path.join(root, i) for i in ['rgb-images', 'brox-images']] else: self._imgpath = os.path.join(root, self.input_type + '-images') self.root = root self.image_set = image_set self.transform = transform self.target_transform = target_transform self.name = dataset_name self._annopath = os.path.join(root, 'labels/', '%s.txt') self.ids = list() self.K = num_K self.split = split self.interval = interval annotationlist, video_list = self.make_lists(self, fulltest=full_test) self.video_list = video_list self.ids = annotationlist @staticmethod def make_lists(dataset, fulltest=False): trainvideos, valvideos, testvideos = dataset.readsplitfile() istrain = False if dataset.image_set == 'train': allvideos = trainvideos istrain = True elif dataset.image_set == 'val': allvideos = valvideos elif dataset.image_set == 'test': allvideos = testvideos else: print("Invalid Image Set") raise ValueError annotationlist = [] # with open(rootpath + '') action_counts = np.zeros(len(dataset.CLASSES), dtype=np.int32) ratios = dataset.get_train_test_ratios() # ratios = np.ones_like(ratios) #TODO:uncomment this line and line 155, 156 to compute new ratios might be useful for JHMDB21 video_list = [] for vid, videoname in enumerate(sorted(allvideos)): video_list.append(videoname) actidx = dataset.get_video_act(videoname) if actidx == 9999: print("Annotations are not present so skipping video {}", videoname) continue if istrain: step = ratios[actidx] else: step =1 numf = dataset.get_video_numf(videoname) lastf = numf - 1 # if videoname not in trainvideos: # istrain = False # step = max(1, ratios[actidx]) * 1.5 # Taken from AMTNET # if fulltest or self.image_set == 'val': # step = 1 # lastf = numf annotations = dataset.get_video_annotations(videoname) tube_boxes, tube_labels = dataset.get_video_tubes(videoname) possible_frame_nums = np.arange(0, numf - (dataset.K - 1), step) # [0, videolength-K] if numf - step - 1 not in possible_frame_nums and not istrain: possible_frame_nums = np.append(possible_frame_nums, numf - step - 1) # print('numf',numf,possible_frame_nums[-1]) for frame_num in possible_frame_nums: # loop from start to last possible frame which can make a legit sequence frame_num = np.int32(frame_num) # Only for fulltest mode we will fix interval to a single range if not fulltest: interval = np.random.randint(1, dataset.interval+1) else: interval = dataset.interval frame_range = dataset.get_frame_range(frame_num, interval) # Invalid frame range if frame_range[-1] >= numf: continue check_tubes = tube_labels[frame_range, :] if np.any(np.sum(check_tubes > 0, axis=0) > dataset.K - 1): # check if there aren't any semi overlapping tubes sample_boxes = [] sample_labels = [] tube_Ids = [] image_name = dataset.get_frame_path(videoname, frame_num + 1) if dataset.input_type == 'fusion': for img_ in image_name: assert os.path.isfile(img_), 'Image does not exist' + img_ else: assert os.path.isfile(image_name), 'Image does not exist' + image_name for tubeid, tube in enumerate(annotations): # if tube_labels[frame_num, tubeid] > 0: tubelet_box = np.asarray([tube_boxes[i][tubeid] for i in frame_range]) tubelet_label = np.asarray([tube_labels[i][tubeid] for i in frame_range]) tubelet_label = np.unique(tubelet_label) # assert len(tubelet_label) == 1, 'Label for a tube should not change' if len(tubelet_label) != 1: # Skip semi-overlapping tubes continue if tubelet_label == 0: # Skip negative detection continue sample_boxes.append(tubelet_box) sample_labels.append(tubelet_label) if istrain: # if it is training video annotationlist.append( [vid, frame_range, np.asarray(sample_labels) - 1, np.asarray(sample_boxes)]) for label in sample_labels: action_counts[label - 1] += 1 elif dataset.image_set == 'val': annotationlist.append( [vid, frame_range, np.asarray(sample_labels) - 1, np.asarray(sample_boxes)] ) for label in sample_labels: action_counts[label - 1] += 1 elif dataset.image_set == 'test': # if test video and has micro-tubes with GT annotationlist.append( [vid, frame_range, np.asarray(sample_labels) - 1, np.asarray(sample_boxes)]) for label in sample_labels: action_counts[label - 1] += 1 elif dataset.image_set == 'test' and not istrain: # if test video with no ground truth and fulltest is trues annotationlist.append([vid, frame_range, np.asarray([9999]), np.zeros((1, 1, 4))]) for actidx, act_count in enumerate( action_counts): # just to see the distribution of train and test sets print('{:05d} action {:02d} {:s}'.format(act_count, int(actidx), dataset.CLASSES[actidx])) # newratios = action_counts/1000 # print('new ratios', newratios) # print('older ratios', ratios) print(dataset.image_set, len(annotationlist)) return annotationlist, video_list def __getitem__(self, index): im, gt, img_index = self.pull_item(index) return im, gt, img_index def __len__(self): return len(self.ids) def get_frame_range(self, frame_num, interval=1): ''' :param frame_num: Return extent of tubelet based on frame_num (0-indexed) and K :return: ''' return list(range(frame_num, frame_num + self.K * interval, interval)) def pull_item(self, index): annot_info = self.ids[index] frame_range = annot_info[1] video_id = annot_info[0] videoname = self.video_list[video_id] step = 1 img_names = [] img_names += [self.get_frame_path(videoname, i+1) for i in frame_range] if self.input_type == 'fusion': img_names = [i for sublist in img_names for i in sublist] try: imgs = [cv2.imread(img_).astype(np.float32) for img_ in img_names] except AttributeError: pass height, width, channels = imgs[0].shape target_tubelet = self.target_transform(annot_info[3], annot_info[2], width, height) # Normalizes boxes + Clip boxes = np.asarray([t[0][:, :4] for t in target_tubelet]) labels = np.asarray([t[1] for t in target_tubelet]) imgs, boxes, labels = self.transform(imgs, boxes, labels) imgs = [torch.from_numpy(img[:, :, (2, 1, 0)]).permute(2, 0, 1) for img in imgs] targets = [boxes, labels] return torch.stack(imgs, 0), targets, index def pull_image_tubelet(self, index): annot_info = self.ids[index] frame_range= annot_info[1] video_id = annot_info[0] videoname = self.video_list[video_id] step = 1 img_names = [] img_names += [self.get_frame_path(videoname, i+1) for i in frame_range] # Flatten list if fusion mode if self.input_type == 'fusion': img_names = [i for sublist in img_names for i in sublist] imgs = [cv2.imread(img_).astype(np.float32) for img_ in img_names] return imgs import re def returnValSet(dataset, trainSet): # Some groups are divided into clips ... To ensure generalization, remove all clips of one group num_total_clips = len(trainSet) trainset_seq_list = sorted(trainSet) # Create groups - match till last number and then return chars preceding that videos_minus_clip = sorted(set([re.match('(.*?)[0-9]+$', seq).group(1) for seq in trainSet])) num_groups = len(videos_minus_clip) # In-place shuffling of groups valset_seq_list_minus_clip = [] trainset_seq_list_minus_clip = [] ratio=0.1 for cls_ in dataset.CLASSES: clsVid = [a for a in videos_minus_clip if a.startswith(cls_+'/')] random.Random(4).shuffle(clsVid) numvalVideos = max(int(len(clsVid)*(ratio)), 1) print(cls_, numvalVideos) valset_seq_list_minus_clip += clsVid[:numvalVideos] trainset_seq_list_minus_clip += clsVid[numvalVideos:] # random.Random(4).shuffle(trainset_seq_list_minus_clip) # ratio = 0.05 # Divide groups into train and val set # valset_seq_list_minus_clip = trainset_seq_list_minus_clip[int(num_groups*(1-ratio)):] # valset_seq_list_minus_clip = trainset_seq_list_minus_clip[::idx] # trainset_seq_list_minus_clip = trainset_seq_list_minus_clip[:int(num_groups * (1 - ratio))] # Get final list with all clips # trainset_seq_list = [] # valset_seq_list = [] trainset_seq_list = sorted([a for group in trainset_seq_list_minus_clip for a in trainSet if group in a]) valset_seq_list = sorted([a for group in valset_seq_list_minus_clip for a in trainSet if group in a]) # valset_seq_list = sorted([seq for seq in trainset_seq_list if in valset_seq_list_minus_clip]) # trainset_seq_list = sorted([seq for seq in trainset_seq_list if seq[:idx] not in valset_seq_list_minus_clip]) assert num_total_clips == len(trainset_seq_list) + len(valset_seq_list) assert len(set(trainset_seq_list).intersection(set(valset_seq_list))) == 0 return trainset_seq_list, valset_seq_list def CreateValLists(dataset): trainSet, valSet = returnValSet(dataset, dataset.trainSet) with open(dataset.root + 'splitfiles/90trainlist{:02d}.txt'.format(dataset.split), 'w') as f: [f.write(ts+'\n') for ts in trainSet] with open(dataset.root + 'splitfiles/90vallist{:02d}.txt'.format(dataset.split), 'w') as f: [f.write(vs+'\n') for vs in valSet] if __name__ == '__main__': # # d = UCF24_Dataset(path='./ucf24/',split=1) # set_ = 'train' # ssd_dim = 300 # means = (104, 117, 123) # stds = (0.225, 0.224, 0.229) # e = Dataset_plus_Torch_Class.fromtorch(MOVEDetection_Tubelet, './move/', set_, SSDAugmentation(ssd_dim, means, stds), # AnnotationTransform(), input_type='rgb', num_K=2, split=1) # e.gtTubes(e.video_list[0]) # pass # Done with 0.5 ratio CreateValLists(UCF24_Dataset('', path='data/ucf24/', split=1, idx=-4))
40.148148
133
0.597883
888ac6519b30b33c64840baa3577caca88e69b64
12,868
py
Python
google/cloud/texttospeech_v1/services/text_to_speech/transports/grpc_asyncio.py
LaudateCorpus1/python-texttospeech
bc5b73fbc62900f89a01486c6e8d42d459c34fd6
[ "Apache-2.0" ]
null
null
null
google/cloud/texttospeech_v1/services/text_to_speech/transports/grpc_asyncio.py
LaudateCorpus1/python-texttospeech
bc5b73fbc62900f89a01486c6e8d42d459c34fd6
[ "Apache-2.0" ]
null
null
null
google/cloud/texttospeech_v1/services/text_to_speech/transports/grpc_asyncio.py
LaudateCorpus1/python-texttospeech
bc5b73fbc62900f89a01486c6e8d42d459c34fd6
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import warnings from typing import Awaitable, Callable, Dict, Optional, Sequence, Tuple, Union from google.api_core import gapic_v1 from google.api_core import grpc_helpers_async from google.auth import credentials as ga_credentials # type: ignore from google.auth.transport.grpc import SslCredentials # type: ignore import grpc # type: ignore from grpc.experimental import aio # type: ignore from google.cloud.texttospeech_v1.types import cloud_tts from .base import TextToSpeechTransport, DEFAULT_CLIENT_INFO from .grpc import TextToSpeechGrpcTransport class TextToSpeechGrpcAsyncIOTransport(TextToSpeechTransport): """gRPC AsyncIO backend transport for TextToSpeech. Service that implements Google Cloud Text-to-Speech API. This class defines the same methods as the primary client, so the primary client can load the underlying transport implementation and call it. It sends protocol buffers over the wire using gRPC (which is built on top of HTTP/2); the ``grpcio`` package must be installed. """ _grpc_channel: aio.Channel _stubs: Dict[str, Callable] = {} @classmethod def create_channel( cls, host: str = "texttospeech.googleapis.com", credentials: ga_credentials.Credentials = None, credentials_file: Optional[str] = None, scopes: Optional[Sequence[str]] = None, quota_project_id: Optional[str] = None, **kwargs, ) -> aio.Channel: """Create and return a gRPC AsyncIO channel object. Args: host (Optional[str]): The host for the channel to use. credentials (Optional[~.Credentials]): The authorization credentials to attach to requests. These credentials identify this application to the service. If none are specified, the client will attempt to ascertain the credentials from the environment. credentials_file (Optional[str]): A file with credentials that can be loaded with :func:`google.auth.load_credentials_from_file`. This argument is ignored if ``channel`` is provided. scopes (Optional[Sequence[str]]): A optional list of scopes needed for this service. These are only used when credentials are not specified and are passed to :func:`google.auth.default`. quota_project_id (Optional[str]): An optional project to use for billing and quota. kwargs (Optional[dict]): Keyword arguments, which are passed to the channel creation. Returns: aio.Channel: A gRPC AsyncIO channel object. """ return grpc_helpers_async.create_channel( host, credentials=credentials, credentials_file=credentials_file, quota_project_id=quota_project_id, default_scopes=cls.AUTH_SCOPES, scopes=scopes, default_host=cls.DEFAULT_HOST, **kwargs, ) def __init__( self, *, host: str = "texttospeech.googleapis.com", credentials: ga_credentials.Credentials = None, credentials_file: Optional[str] = None, scopes: Optional[Sequence[str]] = None, channel: aio.Channel = None, api_mtls_endpoint: str = None, client_cert_source: Callable[[], Tuple[bytes, bytes]] = None, ssl_channel_credentials: grpc.ChannelCredentials = None, client_cert_source_for_mtls: Callable[[], Tuple[bytes, bytes]] = None, quota_project_id=None, client_info: gapic_v1.client_info.ClientInfo = DEFAULT_CLIENT_INFO, always_use_jwt_access: Optional[bool] = False, ) -> None: """Instantiate the transport. Args: host (Optional[str]): The hostname to connect to. credentials (Optional[google.auth.credentials.Credentials]): The authorization credentials to attach to requests. These credentials identify the application to the service; if none are specified, the client will attempt to ascertain the credentials from the environment. This argument is ignored if ``channel`` is provided. credentials_file (Optional[str]): A file with credentials that can be loaded with :func:`google.auth.load_credentials_from_file`. This argument is ignored if ``channel`` is provided. scopes (Optional[Sequence[str]]): A optional list of scopes needed for this service. These are only used when credentials are not specified and are passed to :func:`google.auth.default`. channel (Optional[aio.Channel]): A ``Channel`` instance through which to make calls. api_mtls_endpoint (Optional[str]): Deprecated. The mutual TLS endpoint. If provided, it overrides the ``host`` argument and tries to create a mutual TLS channel with client SSL credentials from ``client_cert_source`` or application default SSL credentials. client_cert_source (Optional[Callable[[], Tuple[bytes, bytes]]]): Deprecated. A callback to provide client SSL certificate bytes and private key bytes, both in PEM format. It is ignored if ``api_mtls_endpoint`` is None. ssl_channel_credentials (grpc.ChannelCredentials): SSL credentials for the grpc channel. It is ignored if ``channel`` is provided. client_cert_source_for_mtls (Optional[Callable[[], Tuple[bytes, bytes]]]): A callback to provide client certificate bytes and private key bytes, both in PEM format. It is used to configure a mutual TLS channel. It is ignored if ``channel`` or ``ssl_channel_credentials`` is provided. quota_project_id (Optional[str]): An optional project to use for billing and quota. client_info (google.api_core.gapic_v1.client_info.ClientInfo): The client info used to send a user-agent string along with API requests. If ``None``, then default info will be used. Generally, you only need to set this if you're developing your own client library. always_use_jwt_access (Optional[bool]): Whether self signed JWT should be used for service account credentials. Raises: google.auth.exceptions.MutualTlsChannelError: If mutual TLS transport creation failed for any reason. google.api_core.exceptions.DuplicateCredentialArgs: If both ``credentials`` and ``credentials_file`` are passed. """ self._grpc_channel = None self._ssl_channel_credentials = ssl_channel_credentials self._stubs: Dict[str, Callable] = {} if api_mtls_endpoint: warnings.warn("api_mtls_endpoint is deprecated", DeprecationWarning) if client_cert_source: warnings.warn("client_cert_source is deprecated", DeprecationWarning) if channel: # Ignore credentials if a channel was passed. credentials = False # If a channel was explicitly provided, set it. self._grpc_channel = channel self._ssl_channel_credentials = None else: if api_mtls_endpoint: host = api_mtls_endpoint # Create SSL credentials with client_cert_source or application # default SSL credentials. if client_cert_source: cert, key = client_cert_source() self._ssl_channel_credentials = grpc.ssl_channel_credentials( certificate_chain=cert, private_key=key ) else: self._ssl_channel_credentials = SslCredentials().ssl_credentials else: if client_cert_source_for_mtls and not ssl_channel_credentials: cert, key = client_cert_source_for_mtls() self._ssl_channel_credentials = grpc.ssl_channel_credentials( certificate_chain=cert, private_key=key ) # The base transport sets the host, credentials and scopes super().__init__( host=host, credentials=credentials, credentials_file=credentials_file, scopes=scopes, quota_project_id=quota_project_id, client_info=client_info, always_use_jwt_access=always_use_jwt_access, ) if not self._grpc_channel: self._grpc_channel = type(self).create_channel( self._host, credentials=self._credentials, credentials_file=credentials_file, scopes=self._scopes, ssl_credentials=self._ssl_channel_credentials, quota_project_id=quota_project_id, options=[ ("grpc.max_send_message_length", -1), ("grpc.max_receive_message_length", -1), ], ) # Wrap messages. This must be done after self._grpc_channel exists self._prep_wrapped_messages(client_info) @property def grpc_channel(self) -> aio.Channel: """Create the channel designed to connect to this service. This property caches on the instance; repeated calls return the same channel. """ # Return the channel from cache. return self._grpc_channel @property def list_voices( self, ) -> Callable[ [cloud_tts.ListVoicesRequest], Awaitable[cloud_tts.ListVoicesResponse] ]: r"""Return a callable for the list voices method over gRPC. Returns a list of Voice supported for synthesis. Returns: Callable[[~.ListVoicesRequest], Awaitable[~.ListVoicesResponse]]: A function that, when called, will call the underlying RPC on the server. """ # Generate a "stub function" on-the-fly which will actually make # the request. # gRPC handles serialization and deserialization, so we just need # to pass in the functions for each. if "list_voices" not in self._stubs: self._stubs["list_voices"] = self.grpc_channel.unary_unary( "/google.cloud.texttospeech.v1.TextToSpeech/ListVoices", request_serializer=cloud_tts.ListVoicesRequest.serialize, response_deserializer=cloud_tts.ListVoicesResponse.deserialize, ) return self._stubs["list_voices"] @property def synthesize_speech( self, ) -> Callable[ [cloud_tts.SynthesizeSpeechRequest], Awaitable[cloud_tts.SynthesizeSpeechResponse], ]: r"""Return a callable for the synthesize speech method over gRPC. Synthesizes speech synchronously: receive results after all text input has been processed. Returns: Callable[[~.SynthesizeSpeechRequest], Awaitable[~.SynthesizeSpeechResponse]]: A function that, when called, will call the underlying RPC on the server. """ # Generate a "stub function" on-the-fly which will actually make # the request. # gRPC handles serialization and deserialization, so we just need # to pass in the functions for each. if "synthesize_speech" not in self._stubs: self._stubs["synthesize_speech"] = self.grpc_channel.unary_unary( "/google.cloud.texttospeech.v1.TextToSpeech/SynthesizeSpeech", request_serializer=cloud_tts.SynthesizeSpeechRequest.serialize, response_deserializer=cloud_tts.SynthesizeSpeechResponse.deserialize, ) return self._stubs["synthesize_speech"] def close(self): return self.grpc_channel.close() __all__ = ("TextToSpeechGrpcAsyncIOTransport",)
43.918089
87
0.637784
f52a82fdee3a90e59eba0e27df83e041cf454e95
5,953
py
Python
api/tacticalrmm/core/models.py
jeffreyvh/tacticalrmm
dcfb1732954c2c165e82e6b24686e27f9f909eb3
[ "MIT" ]
null
null
null
api/tacticalrmm/core/models.py
jeffreyvh/tacticalrmm
dcfb1732954c2c165e82e6b24686e27f9f909eb3
[ "MIT" ]
null
null
null
api/tacticalrmm/core/models.py
jeffreyvh/tacticalrmm
dcfb1732954c2c165e82e6b24686e27f9f909eb3
[ "MIT" ]
null
null
null
from loguru import logger import pytz import os import time import smtplib from email.message import EmailMessage from django.db import models from django.core.exceptions import ValidationError from django.contrib.postgres.fields import ArrayField from django.conf import settings logger.configure(**settings.LOG_CONFIG) TZ_CHOICES = [(_, _) for _ in pytz.all_timezones] class CoreSettings(models.Model): email_alert_recipients = ArrayField( models.EmailField(null=True, blank=True), null=True, blank=True, default=list, ) smtp_from_email = models.CharField( max_length=255, null=True, blank=True, default="from@example.com" ) smtp_host = models.CharField( max_length=255, null=True, blank=True, default="smtp.gmail.com" ) smtp_host_user = models.CharField( max_length=255, null=True, blank=True, default="admin@example.com" ) smtp_host_password = models.CharField( max_length=255, null=True, blank=True, default="changeme" ) smtp_port = models.PositiveIntegerField(default=587, null=True, blank=True) smtp_requires_auth = models.BooleanField(default=True) default_time_zone = models.CharField( max_length=255, choices=TZ_CHOICES, default="America/Los_Angeles" ) mesh_token = models.CharField(max_length=255, null=True, blank=True, default="") mesh_username = models.CharField(max_length=255, null=True, blank=True, default="") mesh_site = models.CharField(max_length=255, null=True, blank=True, default="") def save(self, *args, **kwargs): if not self.pk and CoreSettings.objects.exists(): raise ValidationError("There can only be one CoreSettings instance") # Only runs on first create if not self.pk: mesh_settings = self.get_initial_mesh_settings() if "mesh_token" in mesh_settings: self.mesh_token = mesh_settings["mesh_token"] if "mesh_username" in mesh_settings: self.mesh_username = mesh_settings["mesh_username"] if "mesh_site" in mesh_settings: self.mesh_site = mesh_settings["mesh_site"] return super(CoreSettings, self).save(*args, **kwargs) def __str__(self): return "Global Site Settings" @property def email_is_configured(self): # smtp with username/password authentication if ( self.smtp_requires_auth and self.email_alert_recipients and self.smtp_from_email and self.smtp_host and self.smtp_host_user and self.smtp_host_password and self.smtp_port ): return True # smtp relay elif ( not self.smtp_requires_auth and self.email_alert_recipients and self.smtp_from_email and self.smtp_host and self.smtp_port ): return True else: return False def send_mail(self, subject, body, test=False): if not self.email_is_configured: if test: return "Missing required fields (need at least 1 recipient)" return False try: msg = EmailMessage() msg["Subject"] = subject msg["From"] = self.smtp_from_email msg["To"] = ", ".join(self.email_alert_recipients) msg.set_content(body) with smtplib.SMTP(self.smtp_host, self.smtp_port, timeout=20) as server: if self.smtp_requires_auth: server.ehlo() server.starttls() server.login(self.smtp_host_user, self.smtp_host_password) server.send_message(msg) server.quit() else: # smtp relay. no auth required server.send_message(msg) server.quit() except Exception as e: logger.error(f"Sending email failed with error: {e}") if test: return str(e) else: return True def get_initial_mesh_settings(self): mesh_settings = {} # Check for Mesh Username try: if settings.MESH_USERNAME: mesh_settings["mesh_username"] = settings.MESH_USERNAME else: raise AttributeError("MESH_USERNAME doesn't exist") except AttributeError: pass # Check for Mesh Site try: if settings.MESH_SITE: mesh_settings["mesh_site"] = settings.MESH_SITE else: raise AttributeError("MESH_SITE doesn't exist") except AttributeError: pass # Check for Mesh Token try: if settings.MESH_TOKEN_KEY: mesh_settings["mesh_token"] = settings.MESH_TOKEN_KEY else: raise AttributeError("MESH_TOKEN_KEY doesn't exist") except AttributeError: filepath = "/token/token.key" counter = 0 while counter < 12: try: with open(filepath, "r") as read_file: key = read_file.readlines() # Remove key file contents for security reasons with open(filepath, "w") as write_file: write_file.write("") # readlines() returns an array. Get first item mesh_settings["mesh_token"] = key[0].rstrip() break except IOError: pass counter = counter + 1 time.sleep(10) return mesh_settings
34.812865
88
0.567109
83caa36f3ea0a42adc64817465b46aaf8394d8b9
10,357
py
Python
openapi/preprocess_spec.py
spiffxp/gen
a867e601330b0b3dcfe37d37e74ddc00e1548636
[ "Apache-2.0" ]
null
null
null
openapi/preprocess_spec.py
spiffxp/gen
a867e601330b0b3dcfe37d37e74ddc00e1548636
[ "Apache-2.0" ]
null
null
null
openapi/preprocess_spec.py
spiffxp/gen
a867e601330b0b3dcfe37d37e74ddc00e1548636
[ "Apache-2.0" ]
null
null
null
# Copyright 2016 The Kubernetes Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import json import operator import os.path import sys from collections import OrderedDict import urllib3 # these four constants are shown as part of this example in []: # "[watch]Pod[List]" is the deprecated version of "[list]Pod?[watch]=True" WATCH_OP_PREFIX = "watch" WATCH_OP_SUFFIX = "List" LIST_OP_PREFIX = "list" WATCH_QUERY_PARAM_NAME = "watch" CUSTOM_OBJECTS_SPEC_PATH = os.path.join( os.path.dirname(__file__), 'custom_objects_spec.json') _ops = ['get', 'put', 'post', 'delete', 'options', 'head', 'patch'] class PreprocessingException(Exception): pass def _title(s): if len(s) == 0: return s return s[0].upper() + s[1:] def _to_camel_case(s): return ''.join(_title(y) for y in s.split("_")) def apply_func_to_spec_operations(spec, func, *params): """Apply func to each operation in the spec. :param spec: The OpenAPI spec to apply func to. :param func: the function to apply to the spec's operations. It should be a func(operation, parent) where operation will be each operation of the spec and parent would be the parent object of the given operation. If the return value of the func is True, then the operation will be deleted from the spec. """ for k, v in spec['paths'].items(): for op in _ops: if op not in v: continue if func(v[op], v, *params): del v[op] def _has_property(prop_list, property_name): for prop in prop_list: if prop["name"] == property_name: return True def remove_watch_operations(op, parent, operation_ids): op_id = op['operationId'] if not op_id.startswith(WATCH_OP_PREFIX): return list_id = (LIST_OP_PREFIX + op_id.replace(WATCH_OP_SUFFIX, "")[len(WATCH_OP_PREFIX):]) if list_id not in operation_ids: raise PreprocessingException("Cannot find %s" % list_id) list_op = operation_ids[list_id] params = [] if 'parameters' in list_op: params += list_op['parameters'] if 'parameters' in parent: params += parent['parameters'] if not _has_property(params, WATCH_QUERY_PARAM_NAME): raise PreprocessingException("%s has no watch query param" % list_id) return True def strip_tags_from_operation_id(operation, _): operation_id = operation['operationId'] if 'tags' in operation: for t in operation['tags']: operation_id = operation_id.replace(_to_camel_case(t), '') operation['operationId'] = operation_id def add_custom_objects_spec(spec): with open(CUSTOM_OBJECTS_SPEC_PATH, 'r') as custom_objects_spec_file: custom_objects_spec = json.loads(custom_objects_spec_file.read()) for path in custom_objects_spec.keys(): if path not in spec['paths'].keys(): spec['paths'][path] = custom_objects_spec[path] return spec def process_swagger(spec, client_language): spec = add_custom_objects_spec(spec) apply_func_to_spec_operations(spec, strip_tags_from_operation_id) operation_ids = {} apply_func_to_spec_operations(spec, lambda op, _: operator.setitem( operation_ids, op['operationId'], op)) try: apply_func_to_spec_operations( spec, remove_watch_operations, operation_ids) except PreprocessingException as e: print(e) remove_model_prefixes(spec) inline_primitive_models(spec, preserved_primitives_for_language(client_language)) return spec def preserved_primitives_for_language(client_language): if client_language == "java": return ["intstr.IntOrString", "resource.Quantity"] elif client_language == "csharp": return ["intstr.IntOrString", "resource.Quantity"] else: return [] def rename_model(spec, old_name, new_name): if new_name in spec['definitions']: raise PreprocessingException( "Cannot rename model %s. new name %s exists." % (old_name, new_name)) find_rename_ref_recursive(spec, "#/definitions/" + old_name, "#/definitions/" + new_name) spec['definitions'][new_name] = spec['definitions'][old_name] del spec['definitions'][old_name] def find_rename_ref_recursive(root, old, new): if isinstance(root, list): for r in root: find_rename_ref_recursive(r, old, new) if isinstance(root, dict): if "$ref" in root: if root["$ref"] == old: root["$ref"] = new for k, v in root.items(): find_rename_ref_recursive(v, old, new) def is_model_deprecated(m): """ Check if a mode is deprecated model redirection. A deprecated mode redirecation has only two members with a description starts with "Deprecated." string. """ if len(m) != 2: return False if "$ref" not in m or "description" not in m: return False return m["description"].startswith("Deprecated.") def remove_deprecated_models(spec): """ In kubernetes 1.8 some of the models are renamed. Our remove_model_prefixes still creates the same model names but there are some models added to reference old model names to new names. These models broke remove_model_prefixes and need to be removed. """ models = {} for k, v in spec['definitions'].items(): if is_model_deprecated(v): print("Removing deprecated model %s" % k) else: models[k] = v spec['definitions'] = models def remove_model_prefixes(spec): """Remove full package name from OpenAPI model names. Starting kubernetes 1.6, all models has full package name. This is verbose and inconvenient in python client. This function tries to remove parts of the package name but will make sure there is no conflicting model names. This will keep most of the model names generated by previous client but will change some of them. """ remove_deprecated_models(spec) models = {} for k, v in spec['definitions'].items(): if k.startswith("io.k8s"): models[k] = {"split_n": 2} conflict = True while conflict: for k, v in models.items(): splits = k.rsplit(".", v["split_n"]) v["removed_prefix"] = splits.pop(0) v["new_name"] = ".".join(splits) conflict = False for k, v in models.items(): for k2, v2 in models.items(): if k != k2 and v["new_name"] == v2["new_name"]: v["conflict"] = True v2["conflict"] = True conflict = True if conflict: for k, v in models.items(): if "conflict" in v: print("Resolving conflict for %s" % k) v["split_n"] += 1 del v["conflict"] for k, v in models.items(): if "new_name" not in v: raise PreprocessingException("Cannot rename model %s" % k) print("Removing prefix %s from %s...\n" % (v["removed_prefix"], k)) rename_model(spec, k, v["new_name"]) def find_replace_ref_recursive(root, ref_name, replace_map): if isinstance(root, list): for r in root: find_replace_ref_recursive(r, ref_name, replace_map) if isinstance(root, dict): if "$ref" in root: if root["$ref"] == ref_name: del root["$ref"] for k, v in replace_map.items(): if k in root: if k != "description": raise PreprocessingException( "Cannot inline model %s because of " "conflicting key %s." % (ref_name, k)) continue root[k] = v for k, v in root.items(): find_replace_ref_recursive(v, ref_name, replace_map) def inline_primitive_models(spec, excluded_primitives): to_remove_models = [] for k, v in spec['definitions'].items(): if k in excluded_primitives: continue if "properties" not in v: if k == "intstr.IntOrString": v["type"] = "object" if "type" not in v: v["type"] = "object" print("Making model `%s` inline as %s..." % (k, v["type"])) find_replace_ref_recursive(spec, "#/definitions/" + k, v) to_remove_models.append(k) for k in to_remove_models: del spec['definitions'][k] def write_json(filename, object): with open(filename, 'w') as out: json.dump(object, out, sort_keys=False, indent=2, separators=(',', ': '), ensure_ascii=True) def main(): if len(sys.argv) != 4: print("Usage:\n\n\tpython preprocess_spec.py client_language kubernetes_branch " \ "output_spec_path") return 1 client_language = sys.argv[1] spec_url = 'https://raw.githubusercontent.com/kubernetes/kubernetes/' \ '%s/api/openapi-spec/swagger.json' % sys.argv[2] output_path = sys.argv[3] pool = urllib3.PoolManager() with pool.request('GET', spec_url, preload_content=False) as response: if response.status != 200: print("Error downloading spec file. Reason: %s" % response.reason) return 1 in_spec = json.load(response, object_pairs_hook=OrderedDict) write_json(output_path + ".unprocessed", in_spec) out_spec = process_swagger(in_spec, client_language) write_json(output_path, out_spec) return 0 if __name__ == '__main__': sys.exit(main())
33.517799
100
0.622478
4247e4cb6b1ee6bf1c515f60fb97503dd6b3a7ee
879
py
Python
MyDailyNews/src/MyDailyNews/urls.py
Jackal007/MyDailyNews
964a55abf4b4d1ca7a228a641b9dbd7c6b44e192
[ "Unlicense" ]
2
2017-11-21T06:39:42.000Z
2020-05-05T08:40:07.000Z
MyDailyNews/src/MyDailyNews/urls.py
Jackal007/MyDailyNews
964a55abf4b4d1ca7a228a641b9dbd7c6b44e192
[ "Unlicense" ]
null
null
null
MyDailyNews/src/MyDailyNews/urls.py
Jackal007/MyDailyNews
964a55abf4b4d1ca7a228a641b9dbd7c6b44e192
[ "Unlicense" ]
null
null
null
"""MyDailyNews URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/2.0/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path from django.conf.urls import include, url urlpatterns = [ path('admin/', admin.site.urls), url(r'^dataGetter/', include(('dataGetter.urls', 'dataGetter'), 'dataGetter')), ]
36.625
83
0.709898
1929ecea8a05ecaabc8e5702556884cbbfcd8165
31,187
py
Python
sdk/compute/azure-mgmt-compute/azure/mgmt/compute/v2021_03_01/aio/operations/_virtual_machine_scale_set_vm_run_commands_operations.py
benbp/azure-sdk-for-python
2329ba03e48098dcdc581898f6434d7c2b13a7b9
[ "MIT" ]
null
null
null
sdk/compute/azure-mgmt-compute/azure/mgmt/compute/v2021_03_01/aio/operations/_virtual_machine_scale_set_vm_run_commands_operations.py
benbp/azure-sdk-for-python
2329ba03e48098dcdc581898f6434d7c2b13a7b9
[ "MIT" ]
null
null
null
sdk/compute/azure-mgmt-compute/azure/mgmt/compute/v2021_03_01/aio/operations/_virtual_machine_scale_set_vm_run_commands_operations.py
benbp/azure-sdk-for-python
2329ba03e48098dcdc581898f6434d7c2b13a7b9
[ "MIT" ]
null
null
null
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from typing import Any, AsyncIterable, Callable, Dict, Generic, Optional, TypeVar, Union import warnings from azure.core.async_paging import AsyncItemPaged, AsyncList from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error from azure.core.pipeline import PipelineResponse from azure.core.pipeline.transport import AsyncHttpResponse, HttpRequest from azure.core.polling import AsyncLROPoller, AsyncNoPolling, AsyncPollingMethod from azure.mgmt.core.exceptions import ARMErrorFormat from azure.mgmt.core.polling.async_arm_polling import AsyncARMPolling from ... import models as _models T = TypeVar('T') ClsType = Optional[Callable[[PipelineResponse[HttpRequest, AsyncHttpResponse], T, Dict[str, Any]], Any]] class VirtualMachineScaleSetVMRunCommandsOperations: """VirtualMachineScaleSetVMRunCommandsOperations async operations. You should not instantiate this class directly. Instead, you should create a Client instance that instantiates it for you and attaches it as an attribute. :ivar models: Alias to model classes used in this operation group. :type models: ~azure.mgmt.compute.v2021_03_01.models :param client: Client for service requests. :param config: Configuration of service client. :param serializer: An object model serializer. :param deserializer: An object model deserializer. """ models = _models def __init__(self, client, config, serializer, deserializer) -> None: self._client = client self._serialize = serializer self._deserialize = deserializer self._config = config async def _create_or_update_initial( self, resource_group_name: str, vm_scale_set_name: str, instance_id: str, run_command_name: str, run_command: "_models.VirtualMachineRunCommand", **kwargs ) -> "_models.VirtualMachineRunCommand": cls = kwargs.pop('cls', None) # type: ClsType["_models.VirtualMachineRunCommand"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-12-01" content_type = kwargs.pop("content_type", "application/json") accept = "application/json, text/json" # Construct URL url = self._create_or_update_initial.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'vmScaleSetName': self._serialize.url("vm_scale_set_name", vm_scale_set_name, 'str'), 'instanceId': self._serialize.url("instance_id", instance_id, 'str'), 'runCommandName': self._serialize.url("run_command_name", run_command_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') body_content_kwargs = {} # type: Dict[str, Any] body_content = self._serialize.body(run_command, 'VirtualMachineRunCommand') body_content_kwargs['content'] = body_content request = self._client.put(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 201]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) if response.status_code == 200: deserialized = self._deserialize('VirtualMachineRunCommand', pipeline_response) if response.status_code == 201: deserialized = self._deserialize('VirtualMachineRunCommand', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized _create_or_update_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Compute/virtualMachineScaleSets/{vmScaleSetName}/virtualMachines/{instanceId}/runCommands/{runCommandName}'} # type: ignore async def begin_create_or_update( self, resource_group_name: str, vm_scale_set_name: str, instance_id: str, run_command_name: str, run_command: "_models.VirtualMachineRunCommand", **kwargs ) -> AsyncLROPoller["_models.VirtualMachineRunCommand"]: """The operation to create or update the VMSS VM run command. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param vm_scale_set_name: The name of the VM scale set. :type vm_scale_set_name: str :param instance_id: The instance ID of the virtual machine. :type instance_id: str :param run_command_name: The name of the virtual machine run command. :type run_command_name: str :param run_command: Parameters supplied to the Create Virtual Machine RunCommand operation. :type run_command: ~azure.mgmt.compute.v2021_03_01.models.VirtualMachineRunCommand :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: True for ARMPolling, False for no polling, or a polling object for personal polling strategy :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of AsyncLROPoller that returns either VirtualMachineRunCommand or the result of cls(response) :rtype: ~azure.core.polling.AsyncLROPoller[~azure.mgmt.compute.v2021_03_01.models.VirtualMachineRunCommand] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, AsyncPollingMethod] cls = kwargs.pop('cls', None) # type: ClsType["_models.VirtualMachineRunCommand"] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = await self._create_or_update_initial( resource_group_name=resource_group_name, vm_scale_set_name=vm_scale_set_name, instance_id=instance_id, run_command_name=run_command_name, run_command=run_command, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): deserialized = self._deserialize('VirtualMachineRunCommand', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'vmScaleSetName': self._serialize.url("vm_scale_set_name", vm_scale_set_name, 'str'), 'instanceId': self._serialize.url("instance_id", instance_id, 'str'), 'runCommandName': self._serialize.url("run_command_name", run_command_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } if polling is True: polling_method = AsyncARMPolling(lro_delay, path_format_arguments=path_format_arguments, **kwargs) elif polling is False: polling_method = AsyncNoPolling() else: polling_method = polling if cont_token: return AsyncLROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return AsyncLROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_create_or_update.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Compute/virtualMachineScaleSets/{vmScaleSetName}/virtualMachines/{instanceId}/runCommands/{runCommandName}'} # type: ignore async def _update_initial( self, resource_group_name: str, vm_scale_set_name: str, instance_id: str, run_command_name: str, run_command: "_models.VirtualMachineRunCommandUpdate", **kwargs ) -> "_models.VirtualMachineRunCommand": cls = kwargs.pop('cls', None) # type: ClsType["_models.VirtualMachineRunCommand"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-12-01" content_type = kwargs.pop("content_type", "application/json") accept = "application/json, text/json" # Construct URL url = self._update_initial.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'vmScaleSetName': self._serialize.url("vm_scale_set_name", vm_scale_set_name, 'str'), 'instanceId': self._serialize.url("instance_id", instance_id, 'str'), 'runCommandName': self._serialize.url("run_command_name", run_command_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') body_content_kwargs = {} # type: Dict[str, Any] body_content = self._serialize.body(run_command, 'VirtualMachineRunCommandUpdate') body_content_kwargs['content'] = body_content request = self._client.patch(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = self._deserialize('VirtualMachineRunCommand', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized _update_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Compute/virtualMachineScaleSets/{vmScaleSetName}/virtualMachines/{instanceId}/runCommands/{runCommandName}'} # type: ignore async def begin_update( self, resource_group_name: str, vm_scale_set_name: str, instance_id: str, run_command_name: str, run_command: "_models.VirtualMachineRunCommandUpdate", **kwargs ) -> AsyncLROPoller["_models.VirtualMachineRunCommand"]: """The operation to update the VMSS VM run command. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param vm_scale_set_name: The name of the VM scale set. :type vm_scale_set_name: str :param instance_id: The instance ID of the virtual machine. :type instance_id: str :param run_command_name: The name of the virtual machine run command. :type run_command_name: str :param run_command: Parameters supplied to the Update Virtual Machine RunCommand operation. :type run_command: ~azure.mgmt.compute.v2021_03_01.models.VirtualMachineRunCommandUpdate :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: True for ARMPolling, False for no polling, or a polling object for personal polling strategy :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of AsyncLROPoller that returns either VirtualMachineRunCommand or the result of cls(response) :rtype: ~azure.core.polling.AsyncLROPoller[~azure.mgmt.compute.v2021_03_01.models.VirtualMachineRunCommand] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, AsyncPollingMethod] cls = kwargs.pop('cls', None) # type: ClsType["_models.VirtualMachineRunCommand"] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = await self._update_initial( resource_group_name=resource_group_name, vm_scale_set_name=vm_scale_set_name, instance_id=instance_id, run_command_name=run_command_name, run_command=run_command, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): deserialized = self._deserialize('VirtualMachineRunCommand', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'vmScaleSetName': self._serialize.url("vm_scale_set_name", vm_scale_set_name, 'str'), 'instanceId': self._serialize.url("instance_id", instance_id, 'str'), 'runCommandName': self._serialize.url("run_command_name", run_command_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } if polling is True: polling_method = AsyncARMPolling(lro_delay, path_format_arguments=path_format_arguments, **kwargs) elif polling is False: polling_method = AsyncNoPolling() else: polling_method = polling if cont_token: return AsyncLROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return AsyncLROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_update.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Compute/virtualMachineScaleSets/{vmScaleSetName}/virtualMachines/{instanceId}/runCommands/{runCommandName}'} # type: ignore async def _delete_initial( self, resource_group_name: str, vm_scale_set_name: str, instance_id: str, run_command_name: str, **kwargs ) -> None: cls = kwargs.pop('cls', None) # type: ClsType[None] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-12-01" accept = "application/json, text/json" # Construct URL url = self._delete_initial.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'vmScaleSetName': self._serialize.url("vm_scale_set_name", vm_scale_set_name, 'str'), 'instanceId': self._serialize.url("instance_id", instance_id, 'str'), 'runCommandName': self._serialize.url("run_command_name", run_command_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.delete(url, query_parameters, header_parameters) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 202, 204]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) if cls: return cls(pipeline_response, None, {}) _delete_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Compute/virtualMachineScaleSets/{vmScaleSetName}/virtualMachines/{instanceId}/runCommands/{runCommandName}'} # type: ignore async def begin_delete( self, resource_group_name: str, vm_scale_set_name: str, instance_id: str, run_command_name: str, **kwargs ) -> AsyncLROPoller[None]: """The operation to delete the VMSS VM run command. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param vm_scale_set_name: The name of the VM scale set. :type vm_scale_set_name: str :param instance_id: The instance ID of the virtual machine. :type instance_id: str :param run_command_name: The name of the virtual machine run command. :type run_command_name: str :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: True for ARMPolling, False for no polling, or a polling object for personal polling strategy :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of AsyncLROPoller that returns either None or the result of cls(response) :rtype: ~azure.core.polling.AsyncLROPoller[None] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, AsyncPollingMethod] cls = kwargs.pop('cls', None) # type: ClsType[None] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = await self._delete_initial( resource_group_name=resource_group_name, vm_scale_set_name=vm_scale_set_name, instance_id=instance_id, run_command_name=run_command_name, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): if cls: return cls(pipeline_response, None, {}) path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'vmScaleSetName': self._serialize.url("vm_scale_set_name", vm_scale_set_name, 'str'), 'instanceId': self._serialize.url("instance_id", instance_id, 'str'), 'runCommandName': self._serialize.url("run_command_name", run_command_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } if polling is True: polling_method = AsyncARMPolling(lro_delay, path_format_arguments=path_format_arguments, **kwargs) elif polling is False: polling_method = AsyncNoPolling() else: polling_method = polling if cont_token: return AsyncLROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return AsyncLROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_delete.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Compute/virtualMachineScaleSets/{vmScaleSetName}/virtualMachines/{instanceId}/runCommands/{runCommandName}'} # type: ignore async def get( self, resource_group_name: str, vm_scale_set_name: str, instance_id: str, run_command_name: str, expand: Optional[str] = None, **kwargs ) -> "_models.VirtualMachineRunCommand": """The operation to get the VMSS VM run command. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param vm_scale_set_name: The name of the VM scale set. :type vm_scale_set_name: str :param instance_id: The instance ID of the virtual machine. :type instance_id: str :param run_command_name: The name of the virtual machine run command. :type run_command_name: str :param expand: The expand expression to apply on the operation. :type expand: str :keyword callable cls: A custom type or function that will be passed the direct response :return: VirtualMachineRunCommand, or the result of cls(response) :rtype: ~azure.mgmt.compute.v2021_03_01.models.VirtualMachineRunCommand :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.VirtualMachineRunCommand"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-12-01" accept = "application/json, text/json" # Construct URL url = self.get.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'vmScaleSetName': self._serialize.url("vm_scale_set_name", vm_scale_set_name, 'str'), 'instanceId': self._serialize.url("instance_id", instance_id, 'str'), 'runCommandName': self._serialize.url("run_command_name", run_command_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] if expand is not None: query_parameters['$expand'] = self._serialize.query("expand", expand, 'str') query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.get(url, query_parameters, header_parameters) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = self._deserialize('VirtualMachineRunCommand', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized get.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Compute/virtualMachineScaleSets/{vmScaleSetName}/virtualMachines/{instanceId}/runCommands/{runCommandName}'} # type: ignore def list( self, resource_group_name: str, vm_scale_set_name: str, instance_id: str, expand: Optional[str] = None, **kwargs ) -> AsyncIterable["_models.VirtualMachineRunCommandsListResult"]: """The operation to get all run commands of an instance in Virtual Machine Scaleset. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param vm_scale_set_name: The name of the VM scale set. :type vm_scale_set_name: str :param instance_id: The instance ID of the virtual machine. :type instance_id: str :param expand: The expand expression to apply on the operation. :type expand: str :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either VirtualMachineRunCommandsListResult or the result of cls(response) :rtype: ~azure.core.async_paging.AsyncItemPaged[~azure.mgmt.compute.v2021_03_01.models.VirtualMachineRunCommandsListResult] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.VirtualMachineRunCommandsListResult"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-12-01" accept = "application/json, text/json" def prepare_request(next_link=None): # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') if not next_link: # Construct URL url = self.list.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'vmScaleSetName': self._serialize.url("vm_scale_set_name", vm_scale_set_name, 'str'), 'instanceId': self._serialize.url("instance_id", instance_id, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] if expand is not None: query_parameters['$expand'] = self._serialize.query("expand", expand, 'str') query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') request = self._client.get(url, query_parameters, header_parameters) else: url = next_link query_parameters = {} # type: Dict[str, Any] request = self._client.get(url, query_parameters, header_parameters) return request async def extract_data(pipeline_response): deserialized = self._deserialize('VirtualMachineRunCommandsListResult', pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return deserialized.next_link or None, AsyncList(list_of_elem) async def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) return pipeline_response return AsyncItemPaged( get_next, extract_data ) list.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Compute/virtualMachineScaleSets/{vmScaleSetName}/virtualMachines/{instanceId}/runCommands'} # type: ignore
51.891847
261
0.676147
db43e36e86ec171237b698bfd3f10aceb5859e31
1,243
py
Python
dictionaries/data_handler.py
mwhittemore2/vocab_manager
05d8ec2bac925a53e1882c645f5e086a540bfe6b
[ "MIT" ]
null
null
null
dictionaries/data_handler.py
mwhittemore2/vocab_manager
05d8ec2bac925a53e1882c645f5e086a540bfe6b
[ "MIT" ]
null
null
null
dictionaries/data_handler.py
mwhittemore2/vocab_manager
05d8ec2bac925a53e1882c645f5e086a540bfe6b
[ "MIT" ]
null
null
null
from abc import ABC, abstractmethod class DataHandler(ABC): """ Base class for transforming a dictionary entry to its final form. """ def __init__(self, next_handler): """ Initializes the dictionary entry transformer. Parameters ---------- next_handler : DataHandler The next transformer to try """ self.set_handler(next_handler) def get_handler(self): """ Fetches the next transformer if the current one is not relevant. Returns ------- DataHandler The next data transformer """ return self.next_handler @abstractmethod def process_entry(self, entry): """ Transforms the dictionary entry as specified by the derived class. Parameters ---------- entry : dict An entry for the foreign language dictionary """ pass def set_handler(self, next_handler): """ Saves the next transformer to try. Parameters ---------- next_handler : DataHandler The next data transformer to try """ self.next_handler = next_handler
23.45283
56
0.5535
8ed3e03ab27e865a4e8a6f076efc6d94b735c00e
362
py
Python
week_02/inclass/tests/q2_2.py
ds-connectors/EPS-88-FA20
2ef31ff28e8f26e50929b77b72ee035913b06e5f
[ "BSD-3-Clause" ]
1
2021-01-18T07:08:53.000Z
2021-01-18T07:08:53.000Z
week_02/inclass/tests/q2_2.py
ds-connectors/EPS-88-FA20
2ef31ff28e8f26e50929b77b72ee035913b06e5f
[ "BSD-3-Clause" ]
null
null
null
week_02/inclass/tests/q2_2.py
ds-connectors/EPS-88-FA20
2ef31ff28e8f26e50929b77b72ee035913b06e5f
[ "BSD-3-Clause" ]
2
2020-12-04T11:05:14.000Z
2021-01-12T10:01:26.000Z
test = { 'name': 'Question 2_2', 'points': 1, 'suites': [ { 'cases': [ { 'code': r""" >>> 2653.75<topo_sigma<2653.85 True """, 'hidden': False, 'locked': False } ], 'scored': True, 'setup': '', 'teardown': '', 'type': 'doctest' } ] }
15.73913
40
0.342541
64054d1b2fe525851da16ccd9f5f410afdfe767a
2,909
py
Python
dqn_zoo/shaping.py
seblee97/dqn_zoo
d5860441aa95e65db6c74c1be3ac8a4999e29ee2
[ "Apache-2.0" ]
null
null
null
dqn_zoo/shaping.py
seblee97/dqn_zoo
d5860441aa95e65db6c74c1be3ac8a4999e29ee2
[ "Apache-2.0" ]
null
null
null
dqn_zoo/shaping.py
seblee97/dqn_zoo
d5860441aa95e65db6c74c1be3ac8a4999e29ee2
[ "Apache-2.0" ]
1
2021-05-15T15:37:19.000Z
2021-05-15T15:37:19.000Z
import jax.numpy as jnp import jax class NoPenalty: """No penalty placeholder.""" def __call__(self, target_q_values, transitions, rng_key): return transitions.r_t class HardCodedPenalty: """Hard coded constant penalty, i.e. F(s, a, s') = k where k is constant. """ def __init__(self, penalty: float): self._penalty = penalty def __call__(self, target_q_values, transitions, rng_key): penalty_terms = self._penalty * jnp.ones_like(transitions.r_t) return transitions.r_t + penalty_terms class UncertaintyPenalty: """Adaptive penalty based on uncertainty in state-action values over ensemble.""" def __init__(self, multiplicative_factor: float): self._multiplicative_factor = multiplicative_factor def __call__(self, target_q_values, transitions, rng_key): state_action_values = target_q_values[jnp.arange(len(target_q_values)), :, transitions.a_tm1] penalty_terms = self._multiplicative_factor * jnp.std(state_action_values, axis=1) return transitions.r_t + penalty_terms class PolicyEntropyPenalty: """Adaptive penalty based on policy entropy of ensemble.""" def __init__(self, multiplicative_factor: float, num_actions: int): self._multiplicative_factor = multiplicative_factor LOG_EPSILON = 0.0001 def compute_entropy(max_indices): max_index_probabilities = jnp.bincount(max_indices, minlength=num_actions, length=num_actions) / len(max_indices) entropy = -jnp.sum((max_index_probabilities + LOG_EPSILON) * jnp.log(max_index_probabilities + LOG_EPSILON)) return entropy self._compute_entropy = jax.vmap(compute_entropy, in_axes=(0)) def __call__(self, target_q_values, transitions, rng_key): max_indices = jnp.argmax(target_q_values, axis=-1) penalty_terms = self._multiplicative_factor * self._compute_entropy(max_indices) return transitions.r_t + penalty_terms class MunchausenPenalty: """Adaptive penalty that adds scaled log policy to the reward. Based Munchausen RL: https://arxiv.org/pdf/2007.14430.pdf """ def __init__(self, multiplicative_factor: float, num_actions: int): self._multiplicative_factor = multiplicative_factor LOG_EPSILON = 0.0001 def compute_log_policy(max_indices): max_index_probabilities = jnp.bincount(max_indices, minlength=num_actions, length=num_actions) / len(max_indices) log_policy = jnp.log(max_index_probabilities + LOG_EPSILON) return log_policy self._compute_log_policy = jax.vmap(compute_log_policy, in_axes=(0)) def __call__(self, target_q_values, transitions, rng_key): max_indices = jnp.argmax(target_q_values, axis=-1) log_policy = self._compute_log_policy(max_indices) action_log_policy = log_policy[jnp.arange(len(log_policy)), transitions.a_tm1] penalty_terms = self._multiplicative_factor * action_log_policy return transitions.r_t + penalty_terms
35.91358
119
0.756961
b219cc3fdc6a333c40f422228f571517a448a233
3,557
py
Python
autogluon/utils/try_import.py
brc7/autogluon
423ea14694a4db849fb838903d28329888133ea2
[ "Apache-2.0" ]
1
2020-08-20T08:30:15.000Z
2020-08-20T08:30:15.000Z
autogluon/utils/try_import.py
brc7/autogluon
423ea14694a4db849fb838903d28329888133ea2
[ "Apache-2.0" ]
null
null
null
autogluon/utils/try_import.py
brc7/autogluon
423ea14694a4db849fb838903d28329888133ea2
[ "Apache-2.0" ]
null
null
null
__all__ = ['try_import_catboost', 'try_import_lightgbm', 'try_import_mxboard', 'try_import_mxnet', 'try_import_cv2', 'try_import_gluonnlp'] def try_import_catboost(): try: import catboost except ValueError as e: raise ImportError("Import catboost failed. Numpy version may be outdated, " "Please ensure numpy version >=1.16.0. If it is not, please try 'pip uninstall numpy; pip install numpy>=1.17.0' Detailed info: {}".format(str(e))) def try_import_catboostdev(): # TODO: remove once Catboost 0.24 is released. try: import catboost # Need to first import catboost before catboost_dev and not vice-versa import catboost_dev except (ValueError, ImportError) as e: raise ImportError("Import catboost_dev failed (needed for distillation with CatBoost models). " "Make sure you can import catboost and then run: 'pip install catboost-dev'." "Detailed info: {}".format(str(e))) def try_import_lightgbm(): try: import lightgbm except OSError as e: raise ImportError("Import lightgbm failed. If you are using Mac OSX, " "Please try 'brew install libomp'. Detailed info: {}".format(str(e))) def try_import_mxboard(): try: import mxboard except ImportError: raise ImportError( "Unable to import dependency mxboard. " "A quick tip is to install via `pip install mxboard`. ") def try_import_mxnet(): mx_version = '1.4.1' try: import mxnet as mx from distutils.version import LooseVersion if LooseVersion(mx.__version__) < LooseVersion(mx_version): msg = ( "Legacy mxnet-mkl=={} detected, some new modules may not work properly. " "mxnet-mkl>={} is required. You can use pip to upgrade mxnet " "`pip install mxnet-mkl --pre --upgrade` " "or `pip install mxnet-cu90mkl --pre --upgrade`").format(mx.__version__, mx_version) raise ImportError(msg) except ImportError: raise ImportError( "Unable to import dependency mxnet. " "A quick tip is to install via `pip install mxnet-mkl/mxnet-cu90mkl --pre`. ") def try_import_cv2(): try: import cv2 except ImportError: raise ImportError( "Unable to import dependency cv2. " "A quick tip is to install via `pip install opencv-python`. ") def try_import_gluonnlp(): try: import gluonnlp # TODO After 1.0 is supported, # we will remove the checking here and use gluonnlp.utils.check_version instead. from pkg_resources import parse_version # pylint: disable=import-outside-toplevel gluonnlp_version = parse_version(gluonnlp.__version__) assert gluonnlp_version >= parse_version('0.8.1') and\ gluonnlp_version <= parse_version('0.8.3'), \ 'Currently, we only support 0.8.1<=gluonnlp<=0.8.3' except ImportError: raise ImportError( "Unable to import dependency gluonnlp. The NLP model won't be available " "without installing gluonnlp. " "A quick tip is to install via `pip install gluonnlp==0.8.1`. ") return gluonnlp def try_import_faiss(): try: import faiss except ImportError: raise ImportError( "Unable to import dependency faiss" "A quick tip is to install via `pip install faiss-cpu`. ")
41.847059
173
0.630025
fe2f68f35f08c8e5921f906119928b989c0fe428
32,105
py
Python
models/vfs.py
wavemind/gcb17ml
350d0a82e5d97dd690b7c17e26f11b58d9c9e9ac
[ "Apache-2.0" ]
null
null
null
models/vfs.py
wavemind/gcb17ml
350d0a82e5d97dd690b7c17e26f11b58d9c9e9ac
[ "Apache-2.0" ]
null
null
null
models/vfs.py
wavemind/gcb17ml
350d0a82e5d97dd690b7c17e26f11b58d9c9e9ac
[ "Apache-2.0" ]
null
null
null
# Copyright 2012 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS-IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Virtual file system for managing files locally or in the cloud.""" __author__ = 'Pavel Simakov (psimakov@google.com)' import datetime import os import sys import threading import unittest from config import ConfigProperty from counters import PerfCounter from entities import BaseEntity import jinja2 from common import caching from common import jinja_utils from google.appengine.api import namespace_manager from google.appengine.ext import db # all caches must have limits MAX_GLOBAL_CACHE_SIZE_BYTES = 16 * 1024 * 1024 # max size of each item; no point in storing images for example MAX_GLOBAL_CACHE_ITEM_SIZE_BYTES = 256 * 1024 # The maximum size allowed in a file. The datastore limit of 1Mb with a fudge # factor shaved off. MAX_FILE_SIZE = 1024 * 1024 - 10 * 1024 # Global memcache controls. CAN_USE_VFS_IN_PROCESS_CACHE = ConfigProperty( 'gcb_can_use_vfs_in_process_cache', bool, ( 'Whether or not to cache content objects. For production this value ' 'should be on to enable maximum performance. For development this ' 'value should be off so you can see your changes to course content ' 'instantaneously.'), default_value=True) class AbstractFileSystem(object): """A generic file system interface that forwards to an implementation.""" def __init__(self, impl): self._impl = impl self._readonly = False @property def impl(self): return self._impl @classmethod def normpath(cls, path): """Make Windows and Linux filenames to have the same separator '/'.""" # Replace '\' into '/' and force Unicode. if not path: return path return u'' + path.replace('\\', '/') def begin_readonly(self): """Activates caching of resources and prevents mutations.""" self._assert_not_readonly() self._readonly = True def end_readonly(self): """Deactivates caching of resources and enables mutations.""" if not self._readonly: raise Exception('Not readonly.') self._readonly = False @property def is_readonly(self): return self._readonly def _assert_not_readonly(self): if self._readonly: raise Exception( 'Unable to execute requested operation while readonly.') def isfile(self, filename): """Checks if file exists, similar to os.path.isfile(...).""" return self._impl.isfile(filename) def open(self, filename): """Returns a stream with the file content, similar to open(...).""" return self._impl.get(filename) def get(self, filename): """Returns bytes with the file content, but no metadata.""" return self.open(filename).read() def put(self, filename, stream, **kwargs): """Replaces the contents of the file with the bytes in the stream.""" self._assert_not_readonly() self._impl.put(filename, stream, **kwargs) def delete(self, filename): """Deletes a file and metadata associated with it.""" self._assert_not_readonly() self._impl.delete(filename) def list(self, dir_name, include_inherited=False): """Lists all files in a directory.""" return self._impl.list(dir_name, include_inherited) def get_jinja_environ(self, dir_names, autoescape=True): """Configures jinja environment loaders for this file system.""" return self._impl.get_jinja_environ(dir_names, autoescape=autoescape) def is_read_write(self): return self._impl.is_read_write() def is_draft(self, stream): if not hasattr(stream, 'metadata'): return False if not stream.metadata: return False return stream.metadata.is_draft class LocalReadOnlyFileSystem(object): """A read-only file system serving only local files.""" def __init__(self, logical_home_folder=None, physical_home_folder=None): """Creates a new instance of the disk-backed read-only file system. Args: logical_home_folder: A logical home dir of all files (/a/b/c/...). physical_home_folder: A physical location on the file system (/x/y). Returns: A new instance of the object. """ self._logical_home_folder = AbstractFileSystem.normpath( logical_home_folder) self._physical_home_folder = AbstractFileSystem.normpath( physical_home_folder) def _logical_to_physical(self, filename): filename = AbstractFileSystem.normpath(filename) if not (self._logical_home_folder and self._physical_home_folder): return filename filename = os.path.join( self._physical_home_folder, os.path.relpath(filename, self._logical_home_folder)) return AbstractFileSystem.normpath(filename) def _physical_to_logical(self, filename): filename = AbstractFileSystem.normpath(filename) if not (self._logical_home_folder and self._physical_home_folder): return filename filename = os.path.join( self._logical_home_folder, os.path.relpath(filename, self._physical_home_folder)) return AbstractFileSystem.normpath(filename) def isfile(self, filename): return os.path.isfile(self._logical_to_physical(filename)) def get(self, filename): if not self.isfile(filename): return None return open(self._logical_to_physical(filename), 'rb') def put(self, unused_filename, unused_stream): raise Exception('Not implemented.') def delete(self, unused_filename): raise Exception('Not implemented.') # Need argument to be named exactly 'include_inherited' to match # keyword-parameter names from derived/related classes. # pylint: disable=unused-argument def list(self, root_dir, include_inherited=False): """Lists all files in a directory.""" files = [] for dirname, unused_dirnames, filenames in os.walk( self._logical_to_physical(root_dir)): for filename in filenames: files.append( self._physical_to_logical(os.path.join(dirname, filename))) return sorted(files) def get_jinja_environ(self, dir_names, autoescape=True): """Configure the environment for Jinja templates.""" physical_dir_names = [] for dir_name in dir_names: physical_dir_names.append(self._logical_to_physical(dir_name)) return jinja_utils.create_jinja_environment( loader=jinja2.FileSystemLoader(physical_dir_names), autoescape=autoescape) def is_read_write(self): return False class FileMetadataEntity(BaseEntity): """An entity to represent a file metadata; absolute file name is a key.""" # TODO(psimakov): do we need 'version' to support concurrent updates # TODO(psimakov): can we put 'data' here and still have fast isfile/list? created_on = db.DateTimeProperty(auto_now_add=True, indexed=False) updated_on = db.DateTimeProperty(indexed=True) # Draft file is just as any other file. It's up to the consumer of the file # to decide whether to treat draft differently (not to serve it to the # public, for example). This class does not care and just stores the bit. is_draft = db.BooleanProperty(indexed=False) size = db.IntegerProperty(indexed=False) class FileDataEntity(BaseEntity): """An entity to represent file content; absolute file name is a key.""" data = db.BlobProperty() class FileStreamWrapped(object): """A class that wraps a file stream, but adds extra attributes to it.""" def __init__(self, metadata, data): self._metadata = metadata self._data = data def read(self): """Emulates stream.read(). Returns all bytes and emulates EOF.""" data = self._data self._data = '' return data @property def metadata(self): return self._metadata class StringStream(object): """A wrapper to pose a string as a UTF-8 byte stream.""" def __init__(self, text): self._data = unicode.encode(text, 'utf-8') def read(self): """Emulates stream.read(). Returns all bytes and emulates EOF.""" data = self._data self._data = '' return data def string_to_stream(text): return StringStream(text) def stream_to_string(stream): return stream.read().decode('utf-8') class VirtualFileSystemTemplateLoader(jinja2.BaseLoader): """Loader of jinja2 templates from a virtual file system.""" def __init__(self, fs, logical_home_folder, dir_names): self._fs = fs self._logical_home_folder = AbstractFileSystem.normpath( logical_home_folder) self._dir_names = [] if dir_names: for dir_name in dir_names: self._dir_names.append(AbstractFileSystem.normpath(dir_name)) def get_source(self, unused_environment, template): for dir_name in self._dir_names: filename = AbstractFileSystem.normpath( os.path.join(dir_name, template)) stream = self._fs.open(filename) if stream: return stream.read().decode('utf-8'), filename, True raise jinja2.TemplateNotFound(template) def list_templates(self): all_templates = [] for dir_name in self._dir_names: all_templates += self._fs.list(dir_name) return all_templates class ProcessScopedVfsCache(caching.ProcessScopedSingleton): """This class holds in-process global cache of VFS objects.""" @classmethod def get_vfs_cache_len(cls): return len(ProcessScopedVfsCache.instance()._cache.items.keys()) @classmethod def get_vfs_cache_size(cls): return ProcessScopedVfsCache.instance()._cache.total_size def __init__(self): self._cache = caching.LRUCache( max_size_bytes=MAX_GLOBAL_CACHE_SIZE_BYTES, max_item_size_bytes=MAX_GLOBAL_CACHE_ITEM_SIZE_BYTES) self._cache.get_entry_size = self._get_entry_size def _get_entry_size(self, key, value): return sys.getsizeof(key) + value.getsizeof() if value else 0 @property def cache(self): return self._cache VFS_CACHE_LEN = PerfCounter( 'gcb-models-VfsCacheConnection-cache-len', 'A total number of items in vfs cache.') VFS_CACHE_SIZE_BYTES = PerfCounter( 'gcb-models-VfsCacheConnection-cache-bytes', 'A total size of items in vfs cache in bytes.') VFS_CACHE_LEN.poll_value = ProcessScopedVfsCache.get_vfs_cache_len VFS_CACHE_SIZE_BYTES.poll_value = ProcessScopedVfsCache.get_vfs_cache_size class CacheFileEntry(caching.AbstractCacheEntry): """Cache entry representing a file.""" def __init__(self, filename, metadata, body): self.filename = filename self.metadata = metadata self.body = body self.created_on = datetime.datetime.utcnow() def getsizeof(self): return ( sys.getsizeof(self.filename) + sys.getsizeof(self.metadata) + sys.getsizeof(self.body) + sys.getsizeof(self.created_on)) def is_up_to_date(self, key, update): metadata = update if not self.metadata and not metadata: return True if self.metadata and metadata: return ( metadata.updated_on == self.metadata.updated_on and metadata.is_draft == self.metadata.is_draft) return False def updated_on(self): return self.metadata.updated_on @classmethod def externalize(cls, key, entry): return FileStreamWrapped(entry.metadata, entry.body) @classmethod def internalize(cls, key, metadata, data): if metadata and data: return CacheFileEntry(key, metadata, data) return None class VfsCacheConnection(caching.AbstractCacheConnection): PERSISTENT_ENTITY = FileMetadataEntity CACHE_ENTRY = CacheFileEntry @classmethod def init_counters(cls): super(VfsCacheConnection, cls).init_counters() cls.CACHE_NO_METADATA = PerfCounter( 'gcb-models-VfsCacheConnection-cache-no-metadata', 'A number of times an object was requested, but was not found and ' 'had no metadata.') cls.CACHE_INHERITED = PerfCounter( 'gcb-models-VfsCacheConnection-cache-inherited', 'A number of times an object was obtained from the inherited vfs.') @classmethod def is_enabled(cls): return CAN_USE_VFS_IN_PROCESS_CACHE.value def __init__(self, namespace): super(VfsCacheConnection, self).__init__(namespace) self.cache = ProcessScopedVfsCache.instance().cache VfsCacheConnection.init_counters() class DatastoreBackedFileSystem(object): """A read-write file system backed by a datastore.""" @classmethod def make_key(cls, filename): return 'vfs:dsbfs:%s' % filename def __init__( self, ns, logical_home_folder, inherits_from=None, inheritable_folders=None): """Creates a new instance of the datastore-backed file system. Args: ns: A datastore namespace to use for storing all data and metadata. logical_home_folder: A logical home dir of all files (/a/b/c/...). inherits_from: A file system to use for the inheritance. inheritable_folders: A list of folders that support inheritance. Returns: A new instance of the object. Raises: Exception: if invalid inherits_from is given. """ if inherits_from and not isinstance( inherits_from, LocalReadOnlyFileSystem): raise Exception('Can only inherit from LocalReadOnlyFileSystem.') self._ns = ns self._logical_home_folder = AbstractFileSystem.normpath( logical_home_folder) self._inherits_from = inherits_from self._inheritable_folders = [] self._cache = threading.local() if inheritable_folders: for folder in inheritable_folders: self._inheritable_folders.append(AbstractFileSystem.normpath( folder)) def __getstate__(self): """Remove transient members that can't survive pickling.""" # TODO(psimakov): we need to properly pickle app_context so vfs is not # being serialized at all state = self.__dict__.copy() if '_cache' in state: del state['_cache'] return state def __setstate__(self, state_dict): """Set persistent members and re-initialize transient members.""" self.__dict__ = state_dict self._cache = threading.local() def __getattribute__(self, name): attr = object.__getattribute__(self, name) # Don't intercept access to private methods and attributes. if name.startswith('_'): return attr # Do intercept all methods. if hasattr(attr, '__call__'): def newfunc(*args, **kwargs): """Set proper namespace for each method call.""" old_namespace = namespace_manager.get_namespace() try: namespace_manager.set_namespace(self._ns) if not hasattr(self._cache, 'connection'): self._cache.connection = ( VfsCacheConnection.new_connection(self.ns)) return attr(*args, **kwargs) finally: namespace_manager.set_namespace(old_namespace) return newfunc # Don't intercept access to non-method attributes. return attr @property def ns(self): return self._ns @property def cache(self): return self._cache.connection def _logical_to_physical(self, filename): filename = AbstractFileSystem.normpath(filename) # For now we only support '/' as a physical folder name. if self._logical_home_folder == '/': return filename if not filename.startswith(self._logical_home_folder): raise Exception( 'Expected path \'%s\' to start with a prefix \'%s\'.' % ( filename, self._logical_home_folder)) rel_path = filename[len(self._logical_home_folder):] if not rel_path.startswith('/'): rel_path = '/%s' % rel_path return rel_path def physical_to_logical(self, filename): """Converts an internal filename to and external filename.""" # This class receives and stores absolute file names. The logical # filename is the external file name. The physical filename is an # internal filename. This function does the convertions. # Let's say you want to store a file named '/assets/img/foo.png'. # This would be a physical filename in the VFS. But the put() operation # expects an absolute filename from the root of the app installation, # i.e. something like '/dev/apps/coursebuilder/assets/img/foo.png', # which is called a logical filename. This is a legacy expectation from # the days the course was defined as files on the file system. # # This function will do the conversion you need. return self._physical_to_logical(filename) def _physical_to_logical(self, filename): filename = AbstractFileSystem.normpath(filename) # For now we only support '/' as a physical folder name. if filename and not filename.startswith('/'): filename = '/' + filename if self._logical_home_folder == '/': return filename return '%s%s' % (self._logical_home_folder, filename) def _can_inherit(self, filename): """Checks if a file can be inherited from a parent file system.""" for prefix in self._inheritable_folders: if filename.startswith(prefix): return True return False def get(self, afilename): return self.open(afilename) def open(self, afilename): """Gets a file from a datastore. Raw bytes stream, no encodings.""" filename = self._logical_to_physical(afilename) found, stream = self.cache.get(filename) if found and stream: return stream if not found: metadata = FileMetadataEntity.get_by_key_name(filename) if metadata: data = FileDataEntity.get_by_key_name(filename) if data: self.cache.put(filename, metadata, data.data) return FileStreamWrapped(metadata, data.data) # lets us cache the (None, None) so next time we asked for this key # we fall right into the inherited section without trying to load # the metadata/data from the datastore; if a new object with this # key is added in the datastore, we will see it in the update list VfsCacheConnection.CACHE_NO_METADATA.inc() self.cache.put(filename, None, None) result = None if self._inherits_from and self._can_inherit(filename): result = self._inherits_from.get(afilename) if result: VfsCacheConnection.CACHE_INHERITED.inc() return FileStreamWrapped(None, result.read()) VfsCacheConnection.CACHE_NOT_FOUND.inc() return None @db.transactional(xg=True) def put(self, filename, stream, is_draft=False, metadata_only=False): """Puts a file stream to a database. Raw bytes stream, no encodings.""" self.non_transactional_put( filename, stream, is_draft=is_draft, metadata_only=metadata_only) def non_transactional_put( self, filename, stream, is_draft=False, metadata_only=False): """Non-transactional put; use only when transactions are impossible.""" filename = self._logical_to_physical(filename) metadata = FileMetadataEntity.get_by_key_name(filename) if not metadata: metadata = FileMetadataEntity(key_name=filename) metadata.updated_on = datetime.datetime.utcnow() metadata.is_draft = is_draft if not metadata_only: # We operate with raw bytes. The consumer must deal with encoding. raw_bytes = stream.read() metadata.size = len(raw_bytes) data = FileDataEntity(key_name=filename) data.data = raw_bytes data.put() metadata.put() self.cache.delete(filename) def put_multi_async(self, filedata_list): """Initiate an async put of the given files. This method initiates an asynchronous put of a list of file data (presented as pairs of the form (filename, data_source)). It is not transactional, and does not block, and instead immediately returns a callback function. When this function is called it will block until the puts are confirmed to have completed. For maximum efficiency it's advisable to defer calling the callback until all other request handling has completed, but in any event, it MUST be called before the request handler can exit successfully. Args: filedata_list: list. A list of tuples. The first entry of each tuple is the file name, the second is a filelike object holding the file data. Returns: callable. Returns a wait-and-finalize function. This function must be called at some point before the request handler exists, in order to confirm that the puts have succeeded. """ filename_list = [] data_list = [] metadata_list = [] for filename, stream in filedata_list: filename = self._logical_to_physical(filename) filename_list.append(filename) metadata = FileMetadataEntity.get_by_key_name(filename) if not metadata: metadata = FileMetadataEntity(key_name=filename) metadata_list.append(metadata) metadata.updated_on = datetime.datetime.utcnow() # We operate with raw bytes. The consumer must deal with encoding. raw_bytes = stream.read() metadata.size = len(raw_bytes) data = FileDataEntity(key_name=filename) data_list.append(data) data.data = raw_bytes # we do call delete here; so this instance will not increment EVICT # counter value, but the DELETE value; other instance will not # record DELETE, but EVICT when they query for updates self.cache.delete(filename) data_future = db.put_async(data_list) metadata_future = db.put_async(metadata_list) def wait_and_finalize(): data_future.check_success() metadata_future.check_success() return wait_and_finalize @db.transactional(xg=True) def delete(self, filename): filename = self._logical_to_physical(filename) metadata = FileMetadataEntity.get_by_key_name(filename) if metadata: metadata.delete() data = FileDataEntity(key_name=filename) if data: data.delete() self.cache.delete(filename) def isfile(self, afilename): """Checks file existence by looking up the datastore row.""" filename = self._logical_to_physical(afilename) metadata = FileMetadataEntity.get_by_key_name(filename) if metadata: return True result = False if self._inherits_from and self._can_inherit(filename): result = self._inherits_from.isfile(afilename) return result def list(self, dir_name, include_inherited=False): """Lists all files in a directory by using datastore query. Args: dir_name: string. Directory to list contents of. include_inherited: boolean. If True, includes all inheritable files from the parent filesystem. Returns: List of string. Lexicographically-sorted unique filenames recursively found in dir_name. """ dir_name = self._logical_to_physical(dir_name) result = set() keys = FileMetadataEntity.all(keys_only=True) for key in keys.fetch(1000): filename = key.name() if filename.startswith(dir_name): result.add(self._physical_to_logical(filename)) if include_inherited and self._inherits_from: for inheritable_folder in self._inheritable_folders: logical_folder = self._physical_to_logical(inheritable_folder) result.update(set(self._inherits_from.list( logical_folder, include_inherited))) return sorted(list(result)) def get_jinja_environ(self, dir_names, autoescape=True): return jinja_utils.create_jinja_environment( loader=VirtualFileSystemTemplateLoader( self, self._logical_home_folder, dir_names), autoescape=autoescape) def is_read_write(self): return True class VfsTests(unittest.TestCase): def test_pickling(self): # pylint: disable=g-import-not-at-top import pickle pickle.dumps(caching.NoopCacheConnection()) pickle.dumps(caching.AbstractCacheConnection(None)) pickle.dumps(caching.AbstractCacheEntry()) pickle.dumps(CacheFileEntry('foo.bar', 'file metadata', 'file data')) pickle.dumps(DatastoreBackedFileSystem('/', 'ns_test')) with self.assertRaises(TypeError): pickle.dumps(VfsCacheConnection('ns_test')) def _setup_cache_with_one_entry(self, is_draft=True, updated_on=None): ProcessScopedVfsCache.clear_all() conn = VfsCacheConnection('ns_test') meta = FileMetadataEntity() meta.is_draft = is_draft meta.updated_on = updated_on conn.put('sample.txt', meta, 'file data') found, stream = conn.get('sample.txt') self.assertTrue(found) self.assertEquals(stream.metadata.is_draft, meta.is_draft) return conn def test_expire(self): conn = self._setup_cache_with_one_entry() entry = conn.cache.items.get(conn.make_key('ns_test', 'sample.txt')) self.assertTrue(entry) entry.created_on = datetime.datetime.utcnow() - datetime.timedelta( 0, CacheFileEntry.CACHE_ENTRY_TTL_SEC + 1) old_expire_count = VfsCacheConnection.CACHE_EXPIRE.value found, stream = conn.get('sample.txt') self.assertFalse(found) self.assertEquals(stream, None) self.assertEquals( VfsCacheConnection.CACHE_EXPIRE.value - old_expire_count, 1) def test_updates_with_no_changes_dont_evict(self): class _Key(object): def name(self): return 'sample.txt' def _key(): return _Key() for is_draft, updated_on in [ (True, None), (True, datetime.datetime.utcnow()), (False, None), (False, datetime.datetime.utcnow())]: conn = self._setup_cache_with_one_entry( is_draft=is_draft, updated_on=updated_on) _, stream = conn.get('sample.txt') meta = FileMetadataEntity() meta.key = _key meta.is_draft = stream.metadata.is_draft meta.updated_on = stream.metadata.updated_on updates = {'sample.txt': meta} old_expire_count = VfsCacheConnection.CACHE_EVICT.value conn.apply_updates(updates) found, _ = conn.get('sample.txt') self.assertTrue(found) self.assertEquals( VfsCacheConnection.CACHE_EVICT.value - old_expire_count, 0) def test_empty_updates_dont_evict(self): conn = self._setup_cache_with_one_entry() updates = {} old_expire_count = VfsCacheConnection.CACHE_EVICT.value conn.apply_updates(updates) found, _ = conn.get('sample.txt') self.assertTrue(found) self.assertEquals( VfsCacheConnection.CACHE_EVICT.value - old_expire_count, 0) def test_updates_with_changes_do_evict(self): class _Key(object): def name(self): return 'sample.txt' def _key(): return _Key() def set_is_draft(meta, value): meta.is_draft = value def set_updated_on(meta, value): meta.updated_on = value conn = self._setup_cache_with_one_entry() mutations = [ (lambda meta: set_is_draft(meta, False)), (lambda meta: set_updated_on(meta, datetime.datetime.utcnow()))] for mutation in mutations: meta = FileMetadataEntity() meta.key = _key mutation(meta) updates = {'sample.txt': meta} conn.apply_updates(updates) found, _ = conn.get('sample.txt') self.assertFalse(found) def test_apply_updates_expires_entries(self): conn = self._setup_cache_with_one_entry() entry = conn.cache.items.get(conn.make_key('ns_test', 'sample.txt')) self.assertTrue(entry) entry.created_on = datetime.datetime.utcnow() - datetime.timedelta( 0, CacheFileEntry.CACHE_ENTRY_TTL_SEC + 1) updates = {} conn.apply_updates(updates) old_expire_count = VfsCacheConnection.CACHE_EXPIRE.value found, stream = conn.get('sample.txt') self.assertFalse(found) self.assertEquals(stream, None) self.assertEquals( VfsCacheConnection.CACHE_EXPIRE.value - old_expire_count, 1) def test_no_metadata_and_no_data_is_evicted(self): ProcessScopedVfsCache.clear_all() conn = VfsCacheConnection('ns_test') conn.put('sample.txt', None, None) meta = FileMetadataEntity() meta.key = 'sample/txt' updates = {'sample.txt': meta} conn.apply_updates(updates) found, stream = conn.get('sample.txt') self.assertFalse(found) self.assertEquals(stream, None) def test_metadata_but_no_data_is_evicted(self): ProcessScopedVfsCache.clear_all() conn = VfsCacheConnection('ns_test') meta = FileMetadataEntity() meta.is_draft = True meta.updated_on = datetime.datetime.utcnow() conn.put('sample.txt', meta, None) meta = FileMetadataEntity() meta.key = 'sample/txt' updates = {'sample.txt': meta} conn.apply_updates(updates) found, stream = conn.get('sample.txt') self.assertFalse(found) self.assertEquals(stream, None) def run_all_unit_tests(): """Runs all unit tests in this module.""" suites_list = [] for test_class in [VfsTests]: suite = unittest.TestLoader().loadTestsFromTestCase(test_class) suites_list.append(suite) result = unittest.TextTestRunner().run(unittest.TestSuite(suites_list)) if not result.wasSuccessful() or result.errors: raise Exception(result) if __name__ == '__main__': run_all_unit_tests()
35.711902
80
0.649961
6c21201f6f54af348b14049cb98c51a22e812237
807
py
Python
dns_spoofer.py
menuscreen/PythonEthicalHacking
ebd132b9d6d1f75a1edf2365efbe12c161d0f152
[ "Apache-2.0" ]
null
null
null
dns_spoofer.py
menuscreen/PythonEthicalHacking
ebd132b9d6d1f75a1edf2365efbe12c161d0f152
[ "Apache-2.0" ]
null
null
null
dns_spoofer.py
menuscreen/PythonEthicalHacking
ebd132b9d6d1f75a1edf2365efbe12c161d0f152
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python3 # dns_spoofer.py # # import netfilterqueue import subprocess import scapy.all as scapy def process_packet(packet): scapy_packet = scapy.IP(packet.get_payload()) print(scapy_packet.show()) packet.accept() # packet.drop() # for testing on local machine subprocess.run("iptables -I OUTPUT -j NFQUEUE --queue-num 0", shell=True) subprocess.run("iptables -I INPUT -j NFQUEUE --queue-num 0", shell=True) print("[+] Creating Netfilter Queue in iptables.") print("[+] Running...") try: while True: queue = netfilterqueue.NetfilterQueue() queue.bind(0, process_packet) queue.run() except KeyboardInterrupt: print("\n[-] Ctrl+C -> Interrupt Detected.") subprocess.run("iptables --flush", shell=True) print("[-] Flushing iptables.")
24.454545
73
0.684015
7dc771acb3e632ff7319eaef53c2a725f4ad9dff
514
py
Python
tranasaction.py
mmalarz/python-blockchain
f1c378cfe8027f8f92f701dfb33f5a869a2b2768
[ "MIT" ]
null
null
null
tranasaction.py
mmalarz/python-blockchain
f1c378cfe8027f8f92f701dfb33f5a869a2b2768
[ "MIT" ]
null
null
null
tranasaction.py
mmalarz/python-blockchain
f1c378cfe8027f8f92f701dfb33f5a869a2b2768
[ "MIT" ]
null
null
null
import hashlib class Transaction: def __init__(self, from_address, to_address, amount, timestamp): self.from_address = from_address self.to_address = to_address self.amount = amount self.timestamp = timestamp def __repr__(self): return ( f'Transaction(' f'from_address={self.from_address}, ' f'timestamp={self.to_address}, ' f'transactions={self.amount}, ' f'previous_hash={self.timestamp})' )
25.7
68
0.597276
bc4c07ce62d1fe872901cd2878f627841ffaa976
2,158
py
Python
pglifecycle/validation.py
gmr/pglifecycle
d8d3641ba8044f191e0b49686f0d028dd889a089
[ "BSD-3-Clause" ]
3
2019-11-13T20:24:25.000Z
2021-12-06T13:21:10.000Z
pglifecycle/validation.py
gmr/pglifecycle
d8d3641ba8044f191e0b49686f0d028dd889a089
[ "BSD-3-Clause" ]
null
null
null
pglifecycle/validation.py
gmr/pglifecycle
d8d3641ba8044f191e0b49686f0d028dd889a089
[ "BSD-3-Clause" ]
null
null
null
""" Data validation using bundled JSON-Schema files """ import functools import logging import pathlib import jsonschema from jsonschema import exceptions import pkg_resources from pglifecycle import yaml LOGGER = logging.getLogger(__name__) def validate_object(obj_type: str, name: str, data: dict) -> bool: """Validate a data object using JSON-Schema""" schema = _load_schemata(obj_type.lower()) # import json # with open('{}.json'.format(obj_type), 'w') as handle: # json.dump(schema, handle, indent=2) try: jsonschema.validate(data, schema) except exceptions.ValidationError as error: LOGGER.critical('Validation error for %s %s: %s for %r: %s', obj_type, name, error.message, error.path[0] if error.path else error.absolute_schema_path[0], error.instance) return False return True @functools.lru_cache(maxsize=64) def _load_schemata(obj_type: str) -> dict: """Load the schemata from the package, returning merged results of other schema files if referenced in the file loaded. :raises: FileNotFoundError """ schema_path = pathlib.Path(pkg_resources.resource_filename( 'pglifecycle', 'schemata/{}.yml'.format(obj_type).replace(' ', '_'))) if not schema_path.exists(): raise FileNotFoundError( 'Schema file not found for object type {!r}'.format(obj_type)) return _preprocess(yaml.load(schema_path)) def _preprocess(schema: dict) -> dict: """Merge in other schemas within the package if the `$package_schema` key is found. """ schema_out = {} for key, value in [(k, v) for k, v in schema.items()]: if key == '$package_schema': schema_out.update(_load_schemata(value)) elif isinstance(value, dict): schema_out[key] = _preprocess(value) elif isinstance(value, list): schema_out[key] = [_preprocess(v) if isinstance(v, dict) else v for v in value] else: schema_out[key] = value return schema_out
30.394366
77
0.633457
a44427092bae88aa41b3b1d0684cfcf36835b3d2
1,636
py
Python
lite/demo/python/mobilenetv1_light_api.py
jameswu2014/Paddle-Lite
827e349ac8eb769a873fe9b3aa961af8b8b20a96
[ "Apache-2.0" ]
1
2020-03-09T03:51:31.000Z
2020-03-09T03:51:31.000Z
lite/demo/python/mobilenetv1_light_api.py
jameswu2014/Paddle-Lite
827e349ac8eb769a873fe9b3aa961af8b8b20a96
[ "Apache-2.0" ]
null
null
null
lite/demo/python/mobilenetv1_light_api.py
jameswu2014/Paddle-Lite
827e349ac8eb769a873fe9b3aa961af8b8b20a96
[ "Apache-2.0" ]
1
2020-02-13T10:45:37.000Z
2020-02-13T10:45:37.000Z
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ''' Paddle-Lite light python api demo ''' from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse import sys sys.path.append('../../python/lib') from lite_core import * # Command arguments parser = argparse.ArgumentParser() parser.add_argument( "--model_dir", default="", type=str, help="Non-combined Model dir path") def RunModel(args): # 1. Set config information config = MobileConfig() config.set_model_dir(args.model_dir) # 2. Create paddle predictor predictor = create_paddle_predictor(config) # 3. Set input data input_tensor = predictor.get_input(0) input_tensor.resize([1, 3, 224, 224]) input_tensor.set_float_data([1.] * 3 * 224 * 224) # 4. Run model predictor.run() # 5. Get output data output_tensor = predictor.get_output(0) print(output_tensor.shape()) print(output_tensor.float_data()[:10]) if __name__ == '__main__': args = parser.parse_args() RunModel(args)
28.701754
76
0.726161
3fb7697c2128b89068e6d696b7f2d6bf9be12fb0
5,164
py
Python
embedding/filter_columns.py
guenthermi/table-embeddings
3ce094483fc5057b18f898d450a7c376d49818fa
[ "MIT" ]
6
2021-03-17T09:53:10.000Z
2022-03-28T18:26:22.000Z
embedding/filter_columns.py
guenthermi/table-embeddings
3ce094483fc5057b18f898d450a7c376d49818fa
[ "MIT" ]
null
null
null
embedding/filter_columns.py
guenthermi/table-embeddings
3ce094483fc5057b18f898d450a7c376d49818fa
[ "MIT" ]
null
null
null
import re import gzip import ujson as json from datetime import datetime from whatthelang import WhatTheLang from argparse import ArgumentParser, FileType, ArgumentDefaultsHelpFormatter import utils class ColumnFilter: def __init__(self, config): self.config = config self.result_tables = list() self.lang_filter = self.config['lang_filter'] # minimal number of chars in a text value self.min_text_value_size = self.config['min_text_value_size'] # maximal number of chars in a text value self.max_text_value_size = self.config['max_text_value_size'] if type( self.config['max_text_value_size']) == int else float('inf') self.min_col_size = self.config['min_col_size'] self.re_filter = utils.RE_VALID_STRING self.wtl = WhatTheLang() return def filter_columns(self, table): if table['headerPosition'] == 'FIRST_COLUMN': table['relation'] = list(zip(*table['relation'])) columns = list() for col in table['relation']: col_size = 0 new_column = [] for elem in col: if (len(elem) < self.min_text_value_size) or (self.re_filter.fullmatch(elem) == None) or (len(elem) > self.max_text_value_size): new_column.append(None) else: new_column.append(self._regularize_numbers(self._regularize_special_signs(elem))) col_size += 1 if col_size >= self.min_col_size: columns.append(new_column) if len(columns) > 0: if self.lang_filter != 'none': text = ' '.join( [' '.join([c for c in col if c != None]) for col in columns]) lang = self.wtl.predict_lang(text) if lang != self.lang_filter: return None return { 'relation': columns, 'url': table['url'], 'title': table['title'] } return None def apply_filter(self): BATCH_SIZE = 100000 size = self.config['max_size'] if type( self.config['max_size']) == int else float('inf') file_paths = self.config['dump_paths'] count = 0 self.result_tables = list() self.init_output_file() for file_path in file_paths: f = gzip.open(file_path, 'rb') meta_data = f.readline().decode('utf-8') line = f.readline().decode('utf-8') while line: count += 1 if count % 10000 == 0: print('Processed', count, 'tables') if count > size: break data = json.loads(line) table = self.filter_columns(data) if table != None: self.result_tables.append(table) line = f.readline().decode('utf-8') if len(self.result_tables) > BATCH_SIZE: self.output_batch() f.close() self.output_batch() self.close_output_file() return def init_output_file(self): self.f_out = gzip.open(self.config['output_file'], 'w') meta_data = self.config meta_data['time_stamp'] = datetime.now().ctime() self.f_out.write((json.dumps(meta_data) + '\n').encode('utf-8')) def output_batch(self): for table in self.result_tables: self.f_out.write((json.dumps(table)+'\n').encode('utf-8')) self.result_tables = [] def close_output_file(self): self.f_out.close() def output_tables(self): # DEPRECATED f = gzip.open(self.config['output_file'], 'w') meta_data = self.config meta_data['time_stamp'] = datetime.now().ctime() f.write((json.dumps(meta_data) + '\n').encode('utf-8')) for table in self.result_tables: f.write((json.dumps(table)+'\n').encode('utf-8')) f.close() def _regularize_numbers(self, value): return utils.RE_REGULARIZE_NUMBERS.sub('@',value) def _regularize_special_signs(self, value): return utils.RE_REGULARIZE_SPECIAL_SIGNS.sub('*', value) def create_arg_parser(): parser = ArgumentParser("filter_columns", formatter_class=ArgumentDefaultsHelpFormatter, conflict_handler='resolve', description='Takes a dump of web tables and filter the columns of each table by filter criteria') parser.add_argument('-c', '--config', help="file with configuration of input, output destination, and filter criteria", required=True, nargs=1) return parser def main(): parser = create_arg_parser() args = parser.parse_args() # Parse config file f_config = open(args.config[0], 'r') config = json.load(f_config) print('Create column filter ...') filter = ColumnFilter(config) print('Apply column / row filter ...') filter.apply_filter() print('Done') if __name__ == "__main__": main()
35.129252
144
0.572037
755408848d7c9e768267f259f382c47fab1514df
863
py
Python
setup.py
bratao/tus-flask
3a4c8ed79ec8d5f063ab1fabb1a22e395592b26f
[ "MIT" ]
1
2019-04-10T02:38:00.000Z
2019-04-10T02:38:00.000Z
setup.py
bratao/tus-flask
3a4c8ed79ec8d5f063ab1fabb1a22e395592b26f
[ "MIT" ]
1
2018-10-16T13:28:16.000Z
2018-10-16T13:28:16.000Z
setup.py
bratao/tus-flask
3a4c8ed79ec8d5f063ab1fabb1a22e395592b26f
[ "MIT" ]
null
null
null
import os from setuptools import setup here = os.path.abspath(os.path.dirname(__file__)) with open(os.path.join(here, 'README.rst')) as f: long_description = f.read() setup( name='tus-flask', version='0.1.0', description='A flask filter for the TUS resumable upload protocol', long_description=long_description, url='bratao/tus-flask', author='bratao', author_email='bruno@potelo.com.br', keywords='tus flask filter', license='MIT', py_modules=['tusfilter'], install_requires=['WebOb'], classifiers=[ 'Development Status :: 3 - Alpha', 'Programming Language :: Python :: 3.6', 'Topic :: Internet :: WWW/HTTP', 'Topic :: Internet :: WWW/HTTP :: WSGI', 'Topic :: Internet :: WWW/HTTP :: WSGI :: Middleware', 'License :: OSI Approved :: MIT License', ], )
26.151515
71
0.621089
1f13827d26a9d1d8a5ea18927e42bbb93e1bb68c
4,010
py
Python
src/glum_benchmarks/benchmark_dense_sandwich.py
readthedocs-assistant/glum
d6c114df9b860cf73b201d846b7965cb15fc7720
[ "BSD-3-Clause" ]
68
2021-10-08T09:05:29.000Z
2022-03-28T14:40:58.000Z
src/glum_benchmarks/benchmark_dense_sandwich.py
readthedocs-assistant/glum
d6c114df9b860cf73b201d846b7965cb15fc7720
[ "BSD-3-Clause" ]
49
2021-10-08T01:44:18.000Z
2022-03-08T08:53:00.000Z
src/glum_benchmarks/benchmark_dense_sandwich.py
readthedocs-assistant/glum
d6c114df9b860cf73b201d846b7965cb15fc7720
[ "BSD-3-Clause" ]
11
2021-10-14T10:34:53.000Z
2022-03-09T11:38:29.000Z
import time from typing import Any, Callable, Dict, List, Tuple import numpy as np import pandas as pd from tabmat.ext.dense import dense_sandwich def _numpy_mklC(X, d): sqrtD = np.sqrt(d)[:, np.newaxis] x_d = X[0] * sqrtD return x_d.T @ x_d def _numpy_mklF(X, d): sqrtD = np.sqrt(d)[:, np.newaxis] x_d = X[1] * sqrtD return x_d.T @ x_d def _bench(f: Callable, iter: int) -> Tuple[List[float], Any]: ts = [] for _ in range(iter): start = time.time() out: Any = f() ts.append(time.time() - start) return ts, out def _dense_sandwichC(X, d): return dense_sandwich(X[0], d) def _dense_sandwichF(X, d): return dense_sandwich(X[1], d) def _mn_run(m, n, iter, dtype): precision = dtype().itemsize * 8 X = [np.random.rand(n, m).astype(dtype=dtype)] d = np.random.rand(n).astype(dtype=dtype) X.append(np.asfortranarray(X[0])) out: Dict[str, Any] = {"name": [], "runtime": []} to_run = [ "numpy_mklC", # "numpy_mklF", "_dense_sandwichC", "_dense_sandwichF", ] for name in to_run: ts, result = _bench(lambda: globals()[name](X, d), iter) if name == "numpy_mklC": true = result elif "numpy_mklC" in to_run: err = np.abs((true - result) / true) np.testing.assert_almost_equal(err, 0, 4 if precision == 32 else 7) runtime = np.min(ts) out["name"].append(name) out["runtime"].append(runtime) print(name, runtime) out_df = pd.DataFrame(out) out_df["m"] = m out_df["n"] = n out_df["precision"] = precision return out_df def main(): """Run some kind of benchmark.""" iter = 20 Rs = [] for m, n in [ (20, 1000000), # (50, 500000), # (150, 200000), # (300, 100000), # (2048, 2048), # (1500, 1500), (500, 500), ]: for dt in [np.float64]: Rs.append(_mn_run(m, n, iter, dt)) df = pd.concat(Rs) df.set_index(["m", "n", "name", "precision"], inplace=True) df.sort_index(inplace=True) print(df) def main2(): """Run some kind of benchmark.""" n = 500 m = 500 dtype = np.float64 X = np.asfortranarray(np.random.rand(n, m).astype(dtype=dtype)) d = np.random.rand(n).astype(dtype=dtype) t1d = [] pls = [] krs = [] ibs = [] results = [] # for thresh1d in [16, 32, 64, 128]: # for parlevel in [5, 7, 10, 13]: # for kratio in [1, 10, 20, 80]: for thresh1d in [32, 64]: for parlevel in [9]: for kratio in [8, 16]: for innerblock in [32, 64, 128, 256]: t1d.append(thresh1d) pls.append(parlevel) krs.append(kratio) ibs.append(innerblock) # results.append(np.min(bench(lambda: X.T @ X, 1)[0])) results.append( np.min( _bench( lambda: dense_sandwich( X, d, thresh1d, parlevel, kratio, innerblock ), 50, )[0] ) ) print(results[-1]) df = pd.DataFrame( dict(thresh1d=t1d, parlevel=pls, kratio=krs, innerblock=ibs, results=results) ) df.set_index(["thresh1d", "parlevel", "kratio", "innerblock"], inplace=True) df.sort_index(inplace=True) with pd.option_context("display.max_rows", None, "display.max_columns", None): print(df) # 841650213 L1-dcache-load-misses # 12.01% of all L1-dcache hits (71.87%) # 7006517280 L1-dcache-loads (71.53%) # 1016757397 L1-dcache-stores (69.82%) if __name__ == "__main__": main()
28.239437
88
0.500249
daa690fc5242a02a9f8cf1f2ec582199255817de
11,223
py
Python
oss_net/decoder.py
ChristophReich1996/OSS-Net
38ffae60286b53e72f2d17f510dbbfffb7036caa
[ "MIT" ]
17
2021-11-03T18:18:38.000Z
2022-03-20T12:35:56.000Z
oss_net/decoder.py
ChristophReich1996/OSS-Net
38ffae60286b53e72f2d17f510dbbfffb7036caa
[ "MIT" ]
null
null
null
oss_net/decoder.py
ChristophReich1996/OSS-Net
38ffae60286b53e72f2d17f510dbbfffb7036caa
[ "MIT" ]
1
2022-01-12T04:34:39.000Z
2022-01-12T04:34:39.000Z
from typing import Type, Tuple, Any import math import torch import torch.nn as nn from pade_activation_unit.utils import PAU class ResidualCBNDecoder(nn.Module): """ This class implements a residual and Conditional Batch Normalization (CBN) based occupancy decoder. """ def __init__(self, output_features: int = 1, latent_features: int = 320, features: Tuple[Tuple[int, int], ...] = ( (448, 256), (256, 256), (256, 256), (256, 256), (256, 256)), activation: Type[nn.Module] = nn.ReLU, dropout: float = 0.0, fourier_input_features: bool = True, patch_mapping: bool = True, large_patches: bool = True, patch_channels: int = 4, **kwargs: Any) -> None: """ Constructor method :param output_features: (int) Number of output features (binary classification = 1) :param latent_features: (int) Number of features in the encoder latent vector :param features: (Tuple[Tuple[int, int], ...]) Features (in and out) utilized in each block :param activation: (Type[nn.Module]) Type of activation function to be utilized :param dropout: (float) Dropout rate to be utilized :param fourier_input_features: (bool) If true random fourier input features are utilized :param patch_mapping: (bool) If true patch mapping and patches are utilized :param large_patches: (bool) If true additional channels are used in patch mapping for large patches :param kwargs: Key word arguments (not used) """ # Call super constructor super(ResidualCBNDecoder, self).__init__() # Save parameters self.fourier_input_features = fourier_input_features if self.fourier_input_features: self.register_buffer("b", torch.randn(1, 3, 16) * 4.) # Init residual blocks self.blocks = nn.ModuleList( [ResidualCBNFFNNBlock(in_features=feature[0], out_features=feature[1], latent_features=latent_features, activation=activation, dropout=dropout) for feature in features]) # Init patch mapping self.patch_mapping = PatchMapping(in_channels=patch_channels * 2 if large_patches else patch_channels, out_channels=1, activation=activation, dropout=dropout) if patch_mapping else None # Init final layer and activation self.final_mapping = nn.Sequential( nn.Linear(in_features=features[-1][-1], out_features=output_features, bias=False), nn.Softmax(dim=-1) if output_features > 1 else nn.Sigmoid() ) def forward(self, coordinates: torch.Tensor, patches: torch.Tensor, latent_vectors: torch.Tensor) -> torch.Tensor: """ Forward pass :param coordinates: (torch.Tensor) Input coordinates :param patches: (torch.Tensor) Patches :param latent_vectors: (torch.Tensor) Latent vectors :return: (torch.Tensor) Output tensor """ # Perform fourier feature mapping if utilized if self.fourier_input_features: coordinates = torch.cat([torch.cos(2 * math.pi * coordinates @ self.b), torch.sin(2 * math.pi * coordinates @ self.b), coordinates], dim=-1) # Construct input tensor if self.patch_mapping is not None: input = torch.cat([ coordinates, self.patch_mapping(patches).flatten(start_dim=2), latent_vectors[:, :1].repeat_interleave(repeats=coordinates.shape[0] // latent_vectors.shape[0], dim=0)], dim=-1) else: input = torch.cat([ coordinates, latent_vectors[:, :1].repeat_interleave(repeats=coordinates.shape[0] // latent_vectors.shape[0], dim=0)], dim=-1) # Forward pass residual CBN blocks if latent_vectors.shape[1] == 1: for index, block in enumerate(self.blocks): input = block(input, latent_vectors) else: for index, block in enumerate(self.blocks): input = block(input, latent_vectors[:, index + 1:index + 2]) # Forward pass final layer and activation output = self.final_mapping(input).squeeze(dim=1) return output class ResidualCBNFFNNBlock(nn.Module): """ This class implements a simple residual feed-forward neural network block with two linear layers and CBN. """ def __init__(self, in_features: int, out_features: int, latent_features: int, activation: Type[nn.Module] = PAU, dropout: float = 0.0) -> None: """ Constructor method :param in_features: (int) Number of input features :param out_features: (int) Number of output features :param latent_features: (int) Number of latent features :param activation: (Type[nn.Module]) Type of activation function to be utilized :param dropout: (float) Dropout rate to be utilized """ # Call super constructor super(ResidualCBNFFNNBlock, self).__init__() # Init linear layers self.linear_layer_1 = nn.Linear(in_features=in_features, out_features=out_features, bias=True) self.linear_layer_2 = nn.Linear(in_features=out_features, out_features=out_features, bias=True) # Init activations self.activation = activation() self.final_activation = activation() # Init dropout layer self.dropout = nn.Dropout(p=dropout, inplace=True) # Init residual mapping self.residual_mapping = nn.Linear(in_features=in_features, out_features=out_features, bias=True) if in_features != out_features else nn.Identity() # Init CNB self.cnb_1 = ConditionalBatchNorm1d(latent_features=latent_features, input_features=out_features) self.cnb_2 = ConditionalBatchNorm1d(latent_features=latent_features, input_features=out_features) def forward(self, input: torch.Tensor, latent_vector: torch.Tensor) -> torch.Tensor: """ Forward pass :param input: (torch.Tensor) Input tensor of the shape [batch size * coordinates, *, in features] :param latent_vector: (torch.Tensor) Encoded latent vector of the shape [batch size, latent features] :return: (torch.Tensor) Output tensor of the shape [batch size * coordinates, *, out features] """ # Forward pass first stage output = self.linear_layer_1(input) output = self.cnb_1(output, latent_vector) output = self.activation(output) output = self.dropout(output) # Forward pass second stage output = self.linear_layer_2(output) output = self.cnb_2(output, latent_vector) # Forward pass residual mapping and final activation output = output + self.residual_mapping(input) output = self.final_activation(output) return output class ConditionalBatchNorm1d(nn.Module): """ Implementation of a conditional batch normalization module using linear operation to predict gamma and beta """ def __init__(self, latent_features: int, input_features: int, normalization: Type[nn.Module] = nn.BatchNorm1d) -> None: """ Conditional batch normalization module including two 1D convolutions to predict gamma end beta :param latent_features: (int) Features of the latent vector :param input_features: (int) Features of the output vector to be normalized :param normalization: (Type[nn.Module]) Type of normalization to be utilized """ super(ConditionalBatchNorm1d, self).__init__() # Init operations self.linear_gamma = nn.Linear(in_features=latent_features, out_features=input_features, bias=True) self.linear_beta = nn.Linear(in_features=latent_features, out_features=input_features, bias=True) self.normalization = normalization(num_features=1, affine=False, track_running_stats=True, momentum=0.1) # Reset parameters of convolutions self.reset_parameters() def reset_parameters(self) -> None: """ Method resets the parameter of the convolution to predict gamma and beta """ nn.init.zeros_(self.linear_gamma.weight) nn.init.zeros_(self.linear_beta.weight) nn.init.ones_(self.linear_gamma.bias) nn.init.zeros_(self.linear_beta.bias) def forward(self, input: torch.Tensor, latent_vector: torch.Tensor) -> torch.Tensor: """ Forward pass :param input: (torch.Tensor) Input tensor to be normalized of shape (batch size * coordinates, 1, features) :param latent_vector: (torch.Tensor) Latent vector tensor of shape (batch_size, features) :return: (torch.Tensor) Normalized tensor """ # Perform linear layers to estimate gamma and beta gamma = self.linear_gamma(latent_vector) beta = self.linear_beta(latent_vector) # Perform normalization output_normalized = self.normalization(input) # Repeat gamma and beta to apply factors to every coordinate gamma = gamma.repeat_interleave(output_normalized.shape[0] // gamma.shape[0], dim=0) beta = beta.repeat_interleave(output_normalized.shape[0] // beta.shape[0], dim=0) # Add factors output = gamma * output_normalized + beta return output class PatchMapping(nn.Module): """ This class implements a patch mapping module. """ def __init__(self, in_channels: int, out_channels: int, activation: Type[nn.Module] = nn.PReLU, dropout: float = 0.) -> None: """ Constructor method :param in_channels: (int) Number of input channels :param out_channels: (int) Number of output channels :param activation: (Type[nn.Module]) Type of activation to be utilized """ # Call super constructor super(PatchMapping, self).__init__() # Init mapping self.mapping = nn.Sequential( nn.Conv3d(in_channels=in_channels, out_channels=max(in_channels // 2, 1), kernel_size=(7, 7, 7), stride=(1, 1, 1), padding=(3, 3, 3), bias=True), activation(), nn.Dropout(p=dropout, inplace=True), nn.Conv3d(in_channels=max(in_channels // 2, 1), out_channels=out_channels, kernel_size=(7, 7, 7), stride=(1, 1, 1), padding=(3, 3, 3), bias=True), activation() ) def forward(self, patches: torch.Tensor) -> torch.Tensor: """ Forward pass :param patches: (torch.Tensor) Input volume of 3d patches :return: (torch.Tensor) Output feature tensor """ output = self.mapping(patches) return output
47.757447
118
0.627372
7175be6a886ab36cc03e4d4b7cdeaefabc5dc93c
4,272
py
Python
otcextensions/sdk/auto_scaling/v1/group.py
kucerakk/python-otcextensions
d74d6aaa6dcf7c46d2c5fbe3676656baaf8e81d6
[ "Apache-2.0" ]
null
null
null
otcextensions/sdk/auto_scaling/v1/group.py
kucerakk/python-otcextensions
d74d6aaa6dcf7c46d2c5fbe3676656baaf8e81d6
[ "Apache-2.0" ]
null
null
null
otcextensions/sdk/auto_scaling/v1/group.py
kucerakk/python-otcextensions
d74d6aaa6dcf7c46d2c5fbe3676656baaf8e81d6
[ "Apache-2.0" ]
null
null
null
# Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from openstack import resource from otcextensions.sdk.auto_scaling.v1 import _base class Group(_base.Resource): resource_key = 'scaling_group' resources_key = 'scaling_groups' base_path = '/scaling_group' query_marker_key = 'start_number' # service = auto_scaling_service.AutoScalingService() # capabilities allow_create = True allow_list = True allow_fetch = True allow_delete = True allow_update = True _query_mapping = resource.QueryParameters( 'scaling_configuration_id', 'scaling_group_name', 'limit', scaling_group_name='scaling_group_name', # status='scaling_group_status', marker=query_marker_key, limit='limit' ) #: Properties #: AutoScaling group ID id = resource.Body('scaling_group_id', alternate_id=True) #: AutoScaling group name name = resource.Body('scaling_group_name') #: AutoScaling group status, #: valid valus includes: ``INSERVICE``, ``PAUSED``, ``ERROR`` status = resource.Body('scaling_group_status') #: AutoScaling group scaling status, *Type: bool* is_scaling = resource.Body('is_scaling', type=bool) #: AutoScaling group detail detail = resource.Body('detail') #: VPC id - (Router Id) network_id = resource.Body('vpc_id') #: network id list - (Subnet) subnetworks = resource.Body('networks', type=list) #: security group id list security_groups = resource.Body('security_groups', type=list) #: Auto Scaling Config ID reference, used for creating instance scaling_configuration_id = resource.Body('scaling_configuration_id') #: Auto Scaling Config name scaling_configuration_name = resource.Body('scaling_configuration_name') #: Current alive instance number current_instance_number = resource.Body('current_instance_number') #: Desire alive instance number desire_instance_number = resource.Body('desire_instance_number') #: min alive instance number min_instance_number = resource.Body('min_instance_number') #: max alive instance number max_instance_number = resource.Body('max_instance_number') #: CoolDown time, only work with `ALARM` policy. #: default is 900, valid range is 0-86400 cool_down_time = resource.Body('cool_down_time') #: load balancer listener id reference lb_listener_id = resource.Body('lb_listener_id') #: Health periodic audit method, Valid values includes: ``ELB_AUDIT``, #: ``NOVA_AUDIT``, ELB_AUDIT and lb_listener_id are used in pairs. health_periodic_audit_method = resource.Body( 'health_periodic_audit_method') #: Health periodic audit time, valid values includes: ``5``, ``15``, #: ``60``, ``180``, default is ``5`` minutes health_periodic_audit_time = resource.Body('health_periodic_audit_time') #: Instance terminate policy, valid values includes: #: ``OLD_CONFIG_OLD_INSTANCE`` (default), ``OLD_CONFIG_NEW_INSTANCE``, #: ``OLD_INSTANCE``, ``NEW_INSTANCE`` instance_terminate_policy = resource.Body('instance_terminate_policy') #: notification methods, ``EMAIL`` notifications = resource.Body('notifications') #: Should delete public ip when terminate instance, default ``false`` delete_publicip = resource.Body('delete_publicip', type=bool) #: availability zones availability_zones = resource.Body('available_zones') #: Create time of the group create_time = resource.Body('create_time') def resume(self, session): '''resume group''' body = {'action': 'resume'} self._action(session, body) def pause(self, session): '''pause group''' body = {'action': 'pause'} self._action(session, body)
41.475728
76
0.707397
0675dea855ba9d164604c77f69869ebcd9890e5b
1,066
py
Python
scripts/quantile_plot.py
always-newbie161/pyprobml
eb70c84f9618d68235ef9ba7da147c009b2e4a80
[ "MIT" ]
2
2021-04-10T18:12:19.000Z
2021-05-11T12:07:40.000Z
scripts/quantile_plot.py
always-newbie161/pyprobml
eb70c84f9618d68235ef9ba7da147c009b2e4a80
[ "MIT" ]
1
2021-04-22T15:46:27.000Z
2021-04-22T15:46:27.000Z
scripts/quantile_plot.py
always-newbie161/pyprobml
eb70c84f9618d68235ef9ba7da147c009b2e4a80
[ "MIT" ]
1
2021-06-21T01:18:07.000Z
2021-06-21T01:18:07.000Z
import numpy as np import matplotlib.pyplot as plt import pyprobml_utils as pml from scipy.stats import norm x = np.linspace(-3, 3, 100) y = norm.pdf(x) f = norm.cdf(x) plt.figure() plt.plot(x, f) plt.title('CDF') pml.save_fig('gaussianCDF.pdf') plt.show() plt.figure() plt.plot(x, y) pml.save_fig('gaussianPDF.pdf') plt.show() plt.figure() plt.plot(x, y) x_sep_left = norm.ppf(0.025) x_sep_right = norm.ppf(0.975) x_fill_left = np.linspace(-3, x_sep_left, 100) x_fill_right = np.linspace(x_sep_right, 3, 100) plt.fill_between(x_fill_left, norm.pdf(x_fill_left), color='b') plt.fill_between(x_fill_right, norm.pdf(x_fill_right), color='b') plt.annotate(r'$\alpha/2$', xy=(x_sep_left, norm.pdf(x_sep_left)), xytext=(-2.5, 0.1), arrowprops=dict(facecolor='k')) plt.annotate(r'$1-\alpha/2$', xy=(x_sep_right, norm.pdf(x_sep_right)), xytext=(2.5, 0.1), arrowprops=dict(facecolor='k')) plt.ylim([0, 0.5]) pml.save_fig('gaussianQuantile.pdf') plt.show()
24.227273
70
0.640713
7a9af24eb92488c2b38938c1e5e87418e94a4de3
1,161
py
Python
neutron/db/model_base.py
igor-toga/local-snat
7adfe5668d309ff56350acee0d0b986e670abe7c
[ "Apache-2.0" ]
1
2017-09-10T09:57:35.000Z
2017-09-10T09:57:35.000Z
neutron/db/model_base.py
igor-toga/local-snat
7adfe5668d309ff56350acee0d0b986e670abe7c
[ "Apache-2.0" ]
null
null
null
neutron/db/model_base.py
igor-toga/local-snat
7adfe5668d309ff56350acee0d0b986e670abe7c
[ "Apache-2.0" ]
1
2015-05-05T14:41:11.000Z
2015-05-05T14:41:11.000Z
# Copyright (c) 2012 OpenStack Foundation. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or # implied. # See the License for the specific language governing permissions and # limitations under the License. from neutron_lib.db import model_base as lib_mb import sqlalchemy as sa from neutron.common import _deprecate _deprecate._moved_global('HasTenant', new_module=lib_mb, new_name='HasProject') def get_unique_keys(model): try: constraints = model.__table__.constraints except AttributeError: constraints = [] return [[c.name for c in constraint.columns] for constraint in constraints if isinstance(constraint, sa.UniqueConstraint)] # This shim is used to deprecate the old contents. _deprecate._MovedGlobals(lib_mb)
32.25
79
0.749354
df62a0f4beec62059401f7a7108f8dc4fa8faee0
146
py
Python
tests/conftest.py
kennyworkman/colony-visual
d4eacb1e90d449e93a34a1ca2e7a1dce067d049e
[ "MIT", "Unlicense" ]
2
2019-09-04T07:36:56.000Z
2020-05-23T15:20:37.000Z
tests/conftest.py
kennyworkman/colony-visual
d4eacb1e90d449e93a34a1ca2e7a1dce067d049e
[ "MIT", "Unlicense" ]
null
null
null
tests/conftest.py
kennyworkman/colony-visual
d4eacb1e90d449e93a34a1ca2e7a1dce067d049e
[ "MIT", "Unlicense" ]
null
null
null
import pytest from cvisual.utils import get_bam_vcf_files @pytest.fixture def dummy_data(): return get_bam_vcf_files('./tests/dummy_data/')
18.25
51
0.787671