hexsha
stringlengths
40
40
size
int64
4
1.02M
ext
stringclasses
8 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
4
209
max_stars_repo_name
stringlengths
5
121
max_stars_repo_head_hexsha
stringlengths
40
40
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
4
209
max_issues_repo_name
stringlengths
5
121
max_issues_repo_head_hexsha
stringlengths
40
40
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
4
209
max_forks_repo_name
stringlengths
5
121
max_forks_repo_head_hexsha
stringlengths
40
40
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
4
1.02M
avg_line_length
float64
1.07
66.1k
max_line_length
int64
4
266k
alphanum_fraction
float64
0.01
1
61d7fa6f2eaaf84d4581ee8514d08b4d4a714e47
1,099
py
Python
text_to_speech/configs.py
PyText2Speech/PyText2Speech
485e30569c7c410527dfdec86ab5c391dfb04c96
[ "MIT" ]
6
2016-06-13T02:46:43.000Z
2017-02-02T17:18:39.000Z
text_to_speech/configs.py
PyText2Speech/PyText2Speech
485e30569c7c410527dfdec86ab5c391dfb04c96
[ "MIT" ]
11
2016-06-11T02:34:00.000Z
2016-06-11T11:56:26.000Z
text_to_speech/configs.py
PyText2Speech/PyText2Speech
485e30569c7c410527dfdec86ab5c391dfb04c96
[ "MIT" ]
7
2016-06-11T03:20:52.000Z
2017-02-02T09:20:09.000Z
# -*- encoding=utf8 -*- import json import os from pprint import pprint file = os.path.expanduser('~/pytext2speech.json') ck_key = ['BAIDU', 'ITRI', 'WATSON'] try: with open(file, 'r') as fp: server = json.load(fp) for k, v in server.items(): if k in ck_key: if v['name'] == '' or v['pwd'] == '': raise ValueError(str(k), u'JSON setting is empty,' \ 'name = ',str(v['name']), 'pwd = ',\ str(v['pwd'])) except Exception as e: server = { 'BAIDU': {'name': '','pwd': ''}, 'GOOGLE': {'name': '', 'pwd': ''}, 'ITRI': {'name': '', 'pwd': ''}, 'WATSON': {'name': '','pwd': ''} } with open(file, 'w') as fp: json.dump(server, fp) msg = "Not exist pytext2speech.json file at %s. " \ "Already create JSON file, please maintenance it." \ "message." % os.path.expanduser('~/') raise Exception(msg, e) except ValueError as e: raise Exception(e)
33.30303
72
0.458599
d4964c1a319455f31e124b7d2f6bcb10f620b306
1,286
py
Python
Tests.py
WeazelDev/ML_Project
8963f15712bd0aa4fbafa96e6dafd0a59d616a53
[ "MIT" ]
null
null
null
Tests.py
WeazelDev/ML_Project
8963f15712bd0aa4fbafa96e6dafd0a59d616a53
[ "MIT" ]
null
null
null
Tests.py
WeazelDev/ML_Project
8963f15712bd0aa4fbafa96e6dafd0a59d616a53
[ "MIT" ]
null
null
null
import csv import numpy as np import matplotlib.pyplot as plt anime_data = [] with open("Data/AnimeList.csv", "r", encoding="utf8") as csv_data: csv_reader = csv.reader(csv_data, delimiter=',') firstLine = True for row in csv_reader: if firstLine: firstLine = False else: anime_data.append(row) anime_meta = [[int(a[0]), float(a[15]), int(a[16]), int(a[19])] for a in anime_data] anime_members_ranked = sorted(anime_meta, key=lambda m: m[3], reverse=True) anime_scoredby_ranked = sorted(anime_meta, key=lambda m: m[2], reverse=True) scoredby = [m[2] for m in anime_meta] print(max(scoredby), min(scoredby), np.mean(np.array(scoredby)), np.median(np.array(scoredby))) # plt.subplot(1, 2, 1) # plt.plot([m[3] for m in anime_members_ranked]) # plt.ylabel('people watching') # plt.xlabel('ranked items') # plt.title("Pareto's curve of items watchings") # plt.grid(True) # plt.subplot(1, 2, 2) plt.plot([m[2] for m in anime_scoredby_ranked]) plt.ylabel('nratings') plt.xlabel('ranked items') plt.title("Pareto's curve of items ratings") plt.grid(True) plt.show() # plt.scatter([m[3] for m in anime_meta], [m[2] for m in anime_meta]) # plt.ylabel('ratings') # plt.xlabel('people watching') # plt.title('Items ratings vs. items watching') # plt.grid(True) # plt.show()
25.72
95
0.702955
6684a4321934ad8e78608fbb3cf81173e7091f03
3,872
py
Python
tests/smoke/test_international.py
mayank-sfdc/directory-tests
6e978bc1a27c19389e99e454143122aa27e47b85
[ "MIT" ]
4
2017-06-02T09:09:10.000Z
2018-01-25T19:06:12.000Z
tests/smoke/test_international.py
mayank-sfdc/directory-tests
6e978bc1a27c19389e99e454143122aa27e47b85
[ "MIT" ]
53
2016-10-27T22:31:03.000Z
2022-03-07T11:18:25.000Z
tests/smoke/test_international.py
mayank-sfdc/directory-tests
6e978bc1a27c19389e99e454143122aa27e47b85
[ "MIT" ]
3
2017-11-22T11:42:40.000Z
2022-02-21T01:20:04.000Z
# -*- coding: utf-8 -*- import pytest from rest_framework.status import HTTP_200_OK import allure from directory_tests_shared import URLs from tests.smoke.cms_api_helpers import get_and_assert pytestmark = [allure.suite("International site"), allure.feature("International site")] @pytest.mark.dev @pytest.mark.parametrize( "url", [ URLs.INTERNATIONAL_REGIONS_MIDLANDS.absolute, URLs.INTERNATIONAL_REGIONS_NORTH_ENGLAND.absolute, URLs.INTERNATIONAL_REGIONS_NORTHERN_IRELAND.absolute, URLs.INTERNATIONAL_REGIONS_SOUTH_ENGLAND.absolute, URLs.INTERNATIONAL_REGIONS_WALES.absolute, ], ) def test_region_pages(url, basic_auth): get_and_assert( url=url, status_code=HTTP_200_OK, auth=basic_auth, allow_redirects=True ) @pytest.mark.dev @pytest.mark.parametrize( "url", [ URLs.INTERNATIONAL_INDUSTRY_AEROSPACE.absolute, URLs.INTERNATIONAL_INDUSTRY_AUTOMOTIVE.absolute, URLs.INTERNATIONAL_INDUSTRY_CREATIVE_INDUSTRIES.absolute, URLs.INTERNATIONAL_INDUSTRY_EDUCATION.absolute, URLs.INTERNATIONAL_INDUSTRY_ENERGY.absolute, URLs.INTERNATIONAL_INDUSTRY_ENGINEERING_AND_MANUFACTURING.absolute, URLs.INTERNATIONAL_INDUSTRY_FINANCIAL_SERVICES.absolute, URLs.INTERNATIONAL_INDUSTRY_HEALTH_AND_LIFE_SCIENCES.absolute, URLs.INTERNATIONAL_INDUSTRY_LEGAL_SERVICES.absolute, URLs.INTERNATIONAL_INDUSTRY_REAL_ESTATE.absolute, URLs.INTERNATIONAL_INDUSTRY_SPACE.absolute, URLs.INTERNATIONAL_INDUSTRY_TECHNOLOGY.absolute, ], ) def test_industry_pages_dev(url, basic_auth): get_and_assert( url=url, status_code=HTTP_200_OK, auth=basic_auth, allow_redirects=True ) @pytest.mark.stage @pytest.mark.parametrize( "url", [ URLs.INTERNATIONAL_INDUSTRY_CREATIVE_INDUSTRIES.absolute, URLs.INTERNATIONAL_INDUSTRY_ENERGY.absolute, URLs.INTERNATIONAL_INDUSTRY_ENGINEERING_AND_MANUFACTURING.absolute, URLs.INTERNATIONAL_INDUSTRY_FINANCIAL_AND_PROFESSIONAL_SERVICES.absolute, URLs.INTERNATIONAL_INDUSTRY_FINANCIAL_SERVICES.absolute, URLs.INTERNATIONAL_INDUSTRY_HEALTH_AND_LIFE_SCIENCES.absolute, URLs.INTERNATIONAL_INDUSTRY_LEGAL_SERVICES.absolute, URLs.INTERNATIONAL_INDUSTRY_REAL_ESTATE.absolute, URLs.INTERNATIONAL_INDUSTRY_TECHNOLOGY.absolute, ], ) def test_industry_pages_stage(url, basic_auth): get_and_assert( url=url, status_code=HTTP_200_OK, auth=basic_auth, allow_redirects=True ) @pytest.mark.uat @pytest.mark.parametrize( "url", [ URLs.INTERNATIONAL_INDUSTRY_AEROSPACE.absolute, URLs.INTERNATIONAL_INDUSTRY_AGRICULTURAL_TECHNOLOGY.absolute, URLs.INTERNATIONAL_INDUSTRY_AUTOMOTIVE.absolute, URLs.INTERNATIONAL_INDUSTRY_CREATIVE_INDUSTRIES.absolute, URLs.INTERNATIONAL_INDUSTRY_CYBER_SECURITY.absolute, URLs.INTERNATIONAL_INDUSTRY_EDUCATION.absolute, URLs.INTERNATIONAL_INDUSTRY_ENGINEERING_AND_MANUFACTURING.absolute, URLs.INTERNATIONAL_INDUSTRY_FINANCIAL_SERVICES.absolute, URLs.INTERNATIONAL_INDUSTRY_FOOD_AND_DRINK.absolute, URLs.INTERNATIONAL_INDUSTRY_HEALTH_AND_LIFE_SCIENCES.absolute, URLs.INTERNATIONAL_INDUSTRY_LEGAL_SERVICES.absolute, URLs.INTERNATIONAL_INDUSTRY_MARITIME.absolute, URLs.INTERNATIONAL_INDUSTRY_NUCLEAR_ENERGY.absolute, URLs.INTERNATIONAL_INDUSTRY_OIL_AND_GAS.absolute, URLs.INTERNATIONAL_INDUSTRY_RETAIL.absolute, URLs.INTERNATIONAL_INDUSTRY_SPACE.absolute, URLs.INTERNATIONAL_INDUSTRY_SPORTS_ECONOMY.absolute, URLs.INTERNATIONAL_INDUSTRY_TECHNOLOGY.absolute, ], ) def test_industry_pages_uat(url, basic_auth): get_and_assert( url=url, status_code=HTTP_200_OK, auth=basic_auth, allow_redirects=True )
37.960784
87
0.775052
821eb222d15ef209f697df9d68f31ee999b55772
7,223
py
Python
projects/landmarks_regression/train.py
ricklentz/deep-object-reid
bf4d30d78e4a34847496d0efb50d98541f5274f9
[ "MIT" ]
null
null
null
projects/landmarks_regression/train.py
ricklentz/deep-object-reid
bf4d30d78e4a34847496d0efb50d98541f5274f9
[ "MIT" ]
null
null
null
projects/landmarks_regression/train.py
ricklentz/deep-object-reid
bf4d30d78e4a34847496d0efb50d98541f5274f9
[ "MIT" ]
null
null
null
""" Copyright (c) 2018-2021 Intel Corporation Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import argparse import datetime import os.path as osp import glog as log import numpy as np import torch import torch.backends.cudnn as cudnn import torch.optim as optim from datasets import NDG, CelebA, VGGFace2 from evaluate import evaluate from landnet import LandmarksNet from tensorboardX import SummaryWriter from torch.utils.data import DataLoader from torchvision.transforms import transforms from utils import landmarks_augmentation from utils.alignment_losses import AlignmentLoss from utils.utils import load_model_state, save_model_cpu def train(args): """Launches training of landmark regression model""" if args.dataset == 'vgg': drops_schedule = [1, 6, 9, 13] dataset = VGGFace2(args.train, args.t_list, args.t_land, landmarks_training=True) elif args.dataset == 'celeba': drops_schedule = [10, 20] dataset = CelebA(args.train, args.t_land) else: drops_schedule = [90, 140, 200] dataset = NDG(args.train, args.t_land) if dataset.have_landmarks: log.info('Use alignment for the train data') dataset.transform = transforms.Compose([landmarks_augmentation.Rescale((56, 56)), landmarks_augmentation.Blur(k=3, p=.2), landmarks_augmentation.HorizontalFlip(p=.5), landmarks_augmentation.RandomRotate(50), landmarks_augmentation.RandomScale(.8, .9, p=.4), landmarks_augmentation.RandomCrop(48), landmarks_augmentation.ToTensor(switch_rb=True)]) else: log.info('Error: training dataset has no landmarks data') exit() train_loader = DataLoader(dataset, batch_size=args.train_batch_size, num_workers=4, shuffle=True) writer = SummaryWriter('./logs_landm/{:%Y_%m_%d_%H_%M}_'.format(datetime.datetime.now()) + args.snap_prefix) model = LandmarksNet() set_dropout_fn = model.set_dropout_ratio if args.snap_to_resume is not None: log.info('Resuming snapshot ' + args.snap_to_resume + ' ...') model = load_model_state(model, args.snap_to_resume, args.device, eval_state=False) model = torch.nn.DataParallel(model, device_ids=[args.device]) else: model = torch.nn.DataParallel(model, device_ids=[args.device]) model.cuda() model.train() cudnn.enabled = True cudnn.benchmark = True log.info('Face landmarks model:') log.info(model) criterion = AlignmentLoss('wing') optimizer = optim.SGD(model.parameters(), lr=args.lr, momentum=args.momentum, weight_decay=args.weight_decay) scheduler = optim.lr_scheduler.MultiStepLR(optimizer, drops_schedule) log.info('Epoch length: %d' % len(train_loader)) for epoch_num in range(args.epoch_total_num): log.info('Epoch: %d' % epoch_num) if epoch_num > 5: set_dropout_fn(0.) for i, data in enumerate(train_loader, 0): iteration = epoch_num * len(train_loader) + i if iteration % args.val_step == 0 and iteration > 0: snapshot_name = osp.join(args.snap_folder, args.snap_prefix + '_{0}.pt'.format(iteration)) log.info('Saving Snapshot: ' + snapshot_name) save_model_cpu(model, optimizer, snapshot_name, epoch_num) model.eval() log.info('Evaluating Snapshot: ' + snapshot_name) avg_err, per_point_avg_err, failures_rate = evaluate(train_loader, model) weights = per_point_avg_err / np.sum(per_point_avg_err) criterion.set_weights(weights) log.info(str(weights)) log.info('Avg train error: {}'.format(avg_err)) log.info('Train failure rate: {}'.format(failures_rate)) writer.add_scalar('Quality/Avg_error', avg_err, iteration) writer.add_scalar('Quality/Failure_rate', failures_rate, iteration) writer.add_scalar('Epoch', epoch_num, iteration) model.train() data, gt_landmarks = data['img'].cuda(), data['landmarks'].cuda() predicted_landmarks = model(data) optimizer.zero_grad() loss = criterion(predicted_landmarks, gt_landmarks) loss.backward() optimizer.step() if i % 10 == 0: log.info('Iteration %d, Loss: %.4f' % (iteration, loss)) log.info('Learning rate: %f' % scheduler.get_lr()[0]) writer.add_scalar('Loss/train_loss', loss.item(), iteration) writer.add_scalar('Learning_rate', scheduler.get_lr()[0], iteration) scheduler.step() def main(): """Creates a command line parser""" parser = argparse.ArgumentParser(description='Training Landmarks detector in PyTorch') parser.add_argument('--train_data_root', dest='train', required=True, type=str, help='Path to train data.') parser.add_argument('--train_list', dest='t_list', required=False, type=str, help='Path to train data image list.') parser.add_argument('--train_landmarks', default='', dest='t_land', required=False, type=str, help='Path to landmarks for the train images.') parser.add_argument('--train_batch_size', type=int, default=170, help='Train batch size.') parser.add_argument('--epoch_total_num', type=int, default=30, help='Number of epochs to train.') parser.add_argument('--lr', type=float, default=0.4, help='Learning rate.') parser.add_argument('--momentum', type=float, default=0.9, help='Momentum.') parser.add_argument('--val_step', type=int, default=2000, help='Evaluate model each val_step during each epoch.') parser.add_argument('--weight_decay', type=float, default=0.0001, help='Weight decay.') parser.add_argument('--device', '-d', default=0, type=int) parser.add_argument('--snap_folder', type=str, default='./snapshots/', help='Folder to save snapshots.') parser.add_argument('--snap_prefix', type=str, default='LandmarksNet', help='Prefix for snapshots.') parser.add_argument('--snap_to_resume', type=str, default=None, help='Snapshot to resume.') parser.add_argument('--dataset', choices=['vgg', 'celeb', 'ngd'], type=str, default='vgg', help='Dataset.') arguments = parser.parse_args() with torch.cuda.device(arguments.device): train(arguments) if __name__ == '__main__': main()
47.20915
119
0.648484
4968b859fcea225ce0816f01e6bb9e22b11d9027
1,415
py
Python
utils/github_service.py
sujpac/github-read-service
b4d691df91482867d4921c0df033a61040273fef
[ "MIT" ]
null
null
null
utils/github_service.py
sujpac/github-read-service
b4d691df91482867d4921c0df033a61040273fef
[ "MIT" ]
null
null
null
utils/github_service.py
sujpac/github-read-service
b4d691df91482867d4921c0df033a61040273fef
[ "MIT" ]
null
null
null
import os, requests, logging from github import Github from . import constants logger = logging.getLogger(__name__) def is_github_available(): """Checks if the Github service is available""" response = proxy_request('zen') return response and response.status_code == 200 def get_org(org_name): """Gets org from Github""" token = os.getenv(constants.API_KEY_NAME, '...') ghub = Github(token) try: return ghub.get_organization(org_name) except BaseException as err: logger.error(f"Unexpected {err=}, {type(err)=}") return None def get_repos(org_name, org=None): """Gets all repos of a given org from Github""" if not org: org = get_org(org_name) if not org: return None try: repos = org.get_repos() except BaseException as err: logger.error(f"Unexpected {err=}, {type(err)=}") return None return [repo for repo in repos] def proxy_request(resource): """Proxies a GET request to the Github API""" token = os.getenv(constants.API_KEY_NAME, '...') query_url = f'https://api.github.com/{resource}' params = {"state": "open",} headers = {'Authorization': f'token {token}'} try: return requests.get(query_url, headers=headers, params=params) except BaseException as err: logger.error(f"Unexpected {err=}, {type(err)=}") return None
27.211538
70
0.640989
49cb8f34b2297b36dca9082d4db72f0858e6a0ce
652
py
Python
xendit/models/creditcard/charge/credit_card_charge_installment.py
adyaksaw/xendit-python
47b05f2a6582104a274dc12a172c6421de86febc
[ "MIT" ]
10
2020-10-31T23:34:34.000Z
2022-03-08T19:08:55.000Z
xendit/models/creditcard/charge/credit_card_charge_installment.py
adyaksaw/xendit-python
47b05f2a6582104a274dc12a172c6421de86febc
[ "MIT" ]
22
2020-07-30T14:25:07.000Z
2022-03-31T03:55:46.000Z
xendit/models/creditcard/charge/credit_card_charge_installment.py
adyaksaw/xendit-python
47b05f2a6582104a274dc12a172c6421de86febc
[ "MIT" ]
11
2020-07-28T08:09:40.000Z
2022-03-18T00:14:02.000Z
from xendit.models._base_model import BaseModel from xendit.models._base_query import BaseQuery class CreditCardChargeInstallment(BaseModel): """Installment class of Charge (API Reference: Credit Card) Optional Attributes: - count (int) - interval (str) """ # Optional count: int interval: str class Query(BaseQuery): """Installment class of Charge Query (API Reference: Credit Card) Used for create_authorization and create_charge Optional Attributes: - count (int) - interval (str) """ # Optional count: int interval: str
21.733333
73
0.631902
d36b6ce376e9883135c1c6733bc2690fa6c2e671
1,048
py
Python
bottom-up-attention/tools/read_tsv.py
daveredrum/meshed-memory-transformer
6dfbc2ba241b7c1c8deac6114d66542190a77619
[ "BSD-3-Clause" ]
1,311
2017-08-14T20:57:36.000Z
2022-03-31T03:54:41.000Z
bottom-up-attention/tools/read_tsv.py
daveredrum/meshed-memory-transformer
6dfbc2ba241b7c1c8deac6114d66542190a77619
[ "BSD-3-Clause" ]
109
2017-08-23T14:50:07.000Z
2022-02-28T17:14:56.000Z
bottom-up-attention/tools/read_tsv.py
daveredrum/meshed-memory-transformer
6dfbc2ba241b7c1c8deac6114d66542190a77619
[ "BSD-3-Clause" ]
391
2017-08-19T16:36:59.000Z
2022-03-24T08:37:37.000Z
#!/usr/bin/env python import base64 import numpy as np import csv import sys import zlib import time import mmap csv.field_size_limit(sys.maxsize) FIELDNAMES = ['image_id', 'image_w','image_h','num_boxes', 'boxes', 'features'] infile = '/data/coco/tsv/trainval/karpathy_val_resnet101_faster_rcnn_genome.tsv' if __name__ == '__main__': # Verify we can read a tsv in_data = {} with open(infile, "r+b") as tsv_in_file: reader = csv.DictReader(tsv_in_file, delimiter='\t', fieldnames = FIELDNAMES) for item in reader: item['image_id'] = int(item['image_id']) item['image_h'] = int(item['image_h']) item['image_w'] = int(item['image_w']) item['num_boxes'] = int(item['num_boxes']) for field in ['boxes', 'features']: item[field] = np.frombuffer(base64.decodestring(item[field]), dtype=np.float32).reshape((item['num_boxes'],-1)) in_data[item['image_id']] = item break print in_data
27.578947
85
0.612595
c535070baa0a55557480ac9f630260f31fe0cad1
11,262
py
Python
intersight/model/search_tag_item_list.py
CiscoDevNet/intersight-python
04b721f37c3044646a91c185c7259edfb991557a
[ "Apache-2.0" ]
5
2021-12-16T15:13:32.000Z
2022-03-29T16:09:54.000Z
intersight/model/search_tag_item_list.py
CiscoDevNet/intersight-python
04b721f37c3044646a91c185c7259edfb991557a
[ "Apache-2.0" ]
4
2022-01-25T19:05:51.000Z
2022-03-29T20:18:37.000Z
intersight/model/search_tag_item_list.py
CiscoDevNet/intersight-python
04b721f37c3044646a91c185c7259edfb991557a
[ "Apache-2.0" ]
2
2020-07-07T15:01:08.000Z
2022-01-31T04:27:35.000Z
""" Cisco Intersight Cisco Intersight is a management platform delivered as a service with embedded analytics for your Cisco and 3rd party IT infrastructure. This platform offers an intelligent level of management that enables IT organizations to analyze, simplify, and automate their environments in more advanced ways than the prior generations of tools. Cisco Intersight provides an integrated and intuitive management experience for resources in the traditional data center as well as at the edge. With flexible deployment options to address complex security needs, getting started with Intersight is quick and easy. Cisco Intersight has deep integration with Cisco UCS and HyperFlex systems allowing for remote deployment, configuration, and ongoing maintenance. The model-based deployment works for a single system in a remote location or hundreds of systems in a data center and enables rapid, standardized configuration and deployment. It also streamlines maintaining those systems whether you are working with small or very large configurations. The Intersight OpenAPI document defines the complete set of properties that are returned in the HTTP response. From that perspective, a client can expect that no additional properties are returned, unless these properties are explicitly defined in the OpenAPI document. However, when a client uses an older version of the Intersight OpenAPI document, the server may send additional properties because the software is more recent than the client. In that case, the client may receive properties that it does not know about. Some generated SDKs perform a strict validation of the HTTP response body against the OpenAPI document. # noqa: E501 The version of the OpenAPI document: 1.0.9-4950 Contact: intersight@cisco.com Generated by: https://openapi-generator.tech """ import re # noqa: F401 import sys # noqa: F401 from intersight.model_utils import ( # noqa: F401 ApiTypeError, ModelComposed, ModelNormal, ModelSimple, cached_property, change_keys_js_to_python, convert_js_args_to_python_args, date, datetime, file_type, none_type, validate_get_composed_info, ) def lazy_import(): from intersight.model.mo_base_response import MoBaseResponse from intersight.model.search_tag_item import SearchTagItem from intersight.model.search_tag_item_list_all_of import SearchTagItemListAllOf globals()['MoBaseResponse'] = MoBaseResponse globals()['SearchTagItem'] = SearchTagItem globals()['SearchTagItemListAllOf'] = SearchTagItemListAllOf class SearchTagItemList(ModelComposed): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. Attributes: allowed_values (dict): The key is the tuple path to the attribute and the for var_name this is (var_name,). The value is a dict with a capitalized key describing the allowed value and an allowed value. These dicts store the allowed enum values. attribute_map (dict): The key is attribute name and the value is json key in definition. discriminator_value_class_map (dict): A dict to go from the discriminator variable value to the discriminator class name. validations (dict): The key is the tuple path to the attribute and the for var_name this is (var_name,). The value is a dict that stores validations for max_length, min_length, max_items, min_items, exclusive_maximum, inclusive_maximum, exclusive_minimum, inclusive_minimum, and regex. additional_properties_type (tuple): A tuple of classes accepted as additional properties values. """ allowed_values = { } validations = { } @cached_property def additional_properties_type(): """ This must be a method because a model may have properties that are of type self, this must run after the class is loaded """ lazy_import() return (bool, date, datetime, dict, float, int, list, str, none_type,) # noqa: E501 _nullable = False @cached_property def openapi_types(): """ This must be a method because a model may have properties that are of type self, this must run after the class is loaded Returns openapi_types (dict): The key is attribute name and the value is attribute type. """ lazy_import() return { 'object_type': (str,), # noqa: E501 'count': (int,), # noqa: E501 'results': ([SearchTagItem], none_type,), # noqa: E501 } @cached_property def discriminator(): val = { } if not val: return None return {'object_type': val} attribute_map = { 'object_type': 'ObjectType', # noqa: E501 'count': 'Count', # noqa: E501 'results': 'Results', # noqa: E501 } required_properties = set([ '_data_store', '_check_type', '_spec_property_naming', '_path_to_item', '_configuration', '_visited_composed_classes', '_composed_instances', '_var_name_to_model_instances', '_additional_properties_model_instances', ]) @convert_js_args_to_python_args def __init__(self, object_type, *args, **kwargs): # noqa: E501 """SearchTagItemList - a model defined in OpenAPI Args: object_type (str): A discriminator value to disambiguate the schema of a HTTP GET response body. Keyword Args: _check_type (bool): if True, values for parameters in openapi_types will be type checked and a TypeError will be raised if the wrong type is input. Defaults to True _path_to_item (tuple/list): This is a list of keys or values to drill down to the model in received_data when deserializing a response _spec_property_naming (bool): True if the variable names in the input data are serialized names, as specified in the OpenAPI document. False if the variable names in the input data are pythonic names, e.g. snake case (default) _configuration (Configuration): the instance to use when deserializing a file_type parameter. If passed, type conversion is attempted If omitted no type conversion is done. _visited_composed_classes (tuple): This stores a tuple of classes that we have traveled through so that if we see that class again we will not use its discriminator again. When traveling through a discriminator, the composed schema that is is traveled through is added to this set. For example if Animal has a discriminator petType and we pass in "Dog", and the class Dog allOf includes Animal, we move through Animal once using the discriminator, and pick Dog. Then in Dog, we will make an instance of the Animal class but this time we won't travel through its discriminator because we passed in _visited_composed_classes = (Animal,) count (int): The total number of 'search.TagItem' resources matching the request, accross all pages. The 'Count' attribute is included when the HTTP GET request includes the '$inlinecount' parameter.. [optional] # noqa: E501 results ([SearchTagItem], none_type): The array of 'search.TagItem' resources matching the request.. [optional] # noqa: E501 """ _check_type = kwargs.pop('_check_type', True) _spec_property_naming = kwargs.pop('_spec_property_naming', False) _path_to_item = kwargs.pop('_path_to_item', ()) _configuration = kwargs.pop('_configuration', None) _visited_composed_classes = kwargs.pop('_visited_composed_classes', ()) if args: raise ApiTypeError( "Invalid positional arguments=%s passed to %s. Remove those invalid positional arguments." % ( args, self.__class__.__name__, ), path_to_item=_path_to_item, valid_classes=(self.__class__,), ) self._data_store = {} self._check_type = _check_type self._spec_property_naming = _spec_property_naming self._path_to_item = _path_to_item self._configuration = _configuration self._visited_composed_classes = _visited_composed_classes + (self.__class__,) constant_args = { '_check_type': _check_type, '_path_to_item': _path_to_item, '_spec_property_naming': _spec_property_naming, '_configuration': _configuration, '_visited_composed_classes': self._visited_composed_classes, } required_args = { 'object_type': object_type, } model_args = {} model_args.update(required_args) model_args.update(kwargs) composed_info = validate_get_composed_info( constant_args, model_args, self) self._composed_instances = composed_info[0] self._var_name_to_model_instances = composed_info[1] self._additional_properties_model_instances = composed_info[2] unused_args = composed_info[3] for var_name, var_value in required_args.items(): setattr(self, var_name, var_value) for var_name, var_value in kwargs.items(): if var_name in unused_args and \ self._configuration is not None and \ self._configuration.discard_unknown_keys and \ not self._additional_properties_model_instances: # discard variable. continue setattr(self, var_name, var_value) @cached_property def _composed_schemas(): # we need this here to make our import statements work # we must store _composed_schemas in here so the code is only run # when we invoke this method. If we kept this at the class # level we would get an error beause the class level # code would be run when this module is imported, and these composed # classes don't exist yet because their module has not finished # loading lazy_import() return { 'anyOf': [ ], 'allOf': [ MoBaseResponse, SearchTagItemListAllOf, ], 'oneOf': [ ], }
47.121339
1,678
0.635145
b42e24f358d688db7682fe6948643b220f0f2dbd
3,467
py
Python
Python/sir_example_main.py
Wasim5620/SIRmodel
bbca1431673dc5450f290db1235eb73e92e74979
[ "MIT" ]
26
2018-08-08T20:40:21.000Z
2022-01-13T19:46:40.000Z
Python/sir_example_main.py
Wasim5620/SIRmodel
bbca1431673dc5450f290db1235eb73e92e74979
[ "MIT" ]
24
2020-03-25T19:35:43.000Z
2022-02-10T11:46:50.000Z
Python/sir_example_main.py
Wasim5620/SIRmodel
bbca1431673dc5450f290db1235eb73e92e74979
[ "MIT" ]
9
2017-07-22T04:23:15.000Z
2021-03-19T09:42:35.000Z
# SIR model example for python 2.7 # Marisa Eisenberg (marisae@umich.edu) # Yu-Han Kao (kaoyh@umich.edu) -7-9-17 #### Import all the packages #### import scipy.optimize as optimize import numpy as np import matplotlib.pyplot as plt import scipy.stats as stats import sir_ode import sir_cost import minifim import proflike from scipy.integrate import odeint as ode #### Load Data #### times = [0, 7, 14, 21, 28, 35, 42, 49, 56, 63, 70, 77, 84, 91, 98] data = [97, 271, 860, 1995, 4419, 6549, 6321, 4763, 2571, 1385, 615, 302, 159, 72, 34] #shortened version for seeing how truncated data affects the estimation #times = times[0:7] #data = data[0:7] #### Set initial parameter values and initial states #### params = [0.4, 0.25, 80000.0]#make sure all the params and inition states are float paramnames = ['beta', 'gamma', 'k'] ini = sir_ode.x0fcn(params,data) print ini #### Simulate and plot the model #### res = ode(sir_ode.model, ini, times, args=(params,)) print res sim_measure = sir_ode.yfcn(res, params) print sim_measure plt.plot(times, sim_measure, 'b-', linewidth=3, label='Model simulation') plt.plot(times, data, 'k-o', linewidth=2, label='Data') plt.xlabel('Time') plt.ylabel('Individuals') plt.legend() plt.show() #### Parameter estimation #### optimizer = optimize.minimize(sir_cost.NLL, params, args=(data, times), method='Nelder-Mead') paramests = np.abs(optimizer.x) iniests = sir_ode.x0fcn(paramests, data) #### Re-simulate and plot the model with the final parameter estimates #### xest = ode(sir_ode.model, iniests, times, args=(paramests,)) est_measure = sir_ode.yfcn(xest, paramests) plt.plot(times, est_measure, 'b-', linewidth=3, label='Model simulation') plt.plot(times, data, 'k-o', linewidth=2, label='Data') plt.xlabel('Time') plt.ylabel('Individuals') plt.legend() plt.show() #### Calculate the simplified Fisher Information Matrix (FIM) #### FIM = minifim.minifisher(times, params, data, delta = 0.001) print np.linalg.matrix_rank(FIM) #calculate rank of FIM print FIM #### Generate profile likelihoods and confidence bounds #### threshold = stats.chi2.ppf(0.95,len(paramests))/2.0 + optimizer.fun perrange = 0.25 #percent range for profile to run across profiles={} for i in range(len(paramests)): profiles[paramnames[i]] = proflike.proflike(paramests, i, sir_cost.NLL, times, data, perrange=perrange) plt.figure() plt.scatter(paramests[i], optimizer.fun, marker='*',label='True value', color='k',s=150, facecolors='w', edgecolors='k') plt.plot(profiles[paramnames[i]]['profparam'], profiles[paramnames[i]]['fcnvals'], 'k-', linewidth=2, label='Profile likelihood') plt.axhline(y=threshold, ls='--',linewidth=1.0, label='Threshold', color='k') plt.xlabel(paramnames[i]) plt.ylabel('Negative log likelihood') plt.legend(scatterpoints = 1) paramnames_fit = [ n for n in paramnames if n not in [paramnames[i]]] paramests_fit = [v for v in paramests if v not in [paramests[i]]] print paramnames_fit print paramests_fit #plot parameter relationships #for j in range(profiles[paramnames[i]]['fitparam'].shape[1]): # plt.figure() # plt.plot(profiles[paramnames[i]]['profparam'],profiles[paramnames[i]]['fitparam'][:,j],'k-', linewidth=2, label=paramnames_fit[j]) # plt.scatter(paramests[i], paramests_fit[j], marker='*',label='True value', color='k',s=150, facecolors='w', edgecolors='k') # plt.xlabel(paramnames[i]) # plt.ylabel(paramnames_fit[j]) # plt.legend(scatterpoints = 1) print profiles plt.show()
36.114583
133
0.715027
84575c6d1af97c6e2bf0b21489a7343ce851c1fb
3,800
py
Python
scripts/brute_force.py
zhongguotu/ecs289c-precimonious
2c33f99eef616de9ffa5edc4c6e37ff09760ce6b
[ "BSD-3-Clause" ]
22
2015-08-13T12:57:50.000Z
2021-12-29T13:02:07.000Z
scripts/brute_force.py
huiguoo/precimonious
5bc4c7fb522859cddb58743c9a14fab69b3ed8f6
[ "BSD-3-Clause" ]
2
2018-05-19T15:09:24.000Z
2021-11-23T00:54:21.000Z
scripts/brute_force.py
huiguoo/precimonious
5bc4c7fb522859cddb58743c9a14fab69b3ed8f6
[ "BSD-3-Clause" ]
13
2015-10-16T11:06:37.000Z
2022-03-28T07:54:26.000Z
#!/usr/bin/env python import json import os import types import sys import transform import utilities def print_config(config, configFile): f = open(configFile, 'w+') f.write("{\n") changeList = config["config"] for change in changeList: f.write("\t\"" + change.keys()[0] + "\": {\n") changeValue = change.values()[0] for valueInfo in changeValue.keys(): f.write("\t\t\"" + valueInfo + "\": \"" + changeValue[valueInfo] + "\",\n") f.write("\t},\n") f.write("}\n") def print_diff(changeConfig, originalConfig, diffFile): f = open(diffFile, 'w+') originalList = originalConfig["config"] changeList = changeConfig["config"] count = 0 while count < len(originalList): change = changeList[count] origin = originalList[count] newType = change.values()[0]["type"] originType = origin.values()[0]["type"] if newType != originType: changeType = change.keys()[0] if changeType == "localVar": f.write("localVar: " + change.values()[0]["name"] + " " + originType + " -> " + newType) elif changeType == "op": f.write("op: " + change.values()[0]["id"] + originType + " -> " + newType) count += 1 def run_config(config, search, bitcodefile, originalConfig, limit): print_config(config, "config_temp.json") result = transform.transform(bitcodefile, "config_temp.json") if result == 1: print "check VALID_config_" + str(search) + ".json for a valid config file" print_config(config, "VALID_config_" + bitcodefile + "_" + str(search) + ".json") print_diff(config, originalConfig, "diff_" + str(search) + ".cov") utilities.log_config(config, "VALID", "log.bf", search) elif result == 0: print "\tINVALID CONFIG" print_config(config, "INVALID_config_" + bitcodefile + "_" + str(search) + ".json") utilities.log_config(config, "INVALID", "log.bf", search) elif result == -1: print "\tFAIL TYPE 1" print_config(config, "FAIL1_config_" + bitcodefile + "_" + str(search) + ".json") utilities.log_config(config, "FAIL1", "log.bf", search) elif result == -2: print "\tFAIL TYPE 2" print_config(config, "FAIL2_config_" + bitcodefile + "_" + str(search) + ".json") utilities.log_config(config, "FAIL2", "log.bf", search) elif result == -3: print "\tFAIL TYPE 3" print_config(config, "FAIL3_config_" + bitcodefile + "_" + str(search) + ".json") utilities.log_config(config, "FAIL3", "log.bf", search) search += 1 if search > limit and limit != -1: sys.exit(0) return search def search_config(changeList, changeTypeList, config, search, bitcodefile, originalConfig, limit): if len(changeList) == 1: for changeType in changeTypeList[0]: changeList[0]["type"] = changeType search = run_config(config, search, bitcodefile, originalConfig, limit) else: change = changeList.pop() changeTypes = changeTypeList.pop() for changeType in changeTypes: change["type"] = changeType search = search_config(changeList, changeTypeList, config, search, bitcodefile, originalConfig, limit) changeList.append(change) changeTypeList.append(changeTypes) return search def main(): bitcodefile = sys.argv[1] configSearch = sys.argv[2] original = sys.argv[3] limit = -1 if len(sys.argv) >= 5: limit = int(sys.argv[4]) # remove config file try: os.remove("log.bf") except OSError: pass config = json.loads(open(configSearch, 'r').read()) originalConfig = json.loads(open(original, 'r').read()) allChange = config["config"] allChangeList = [] allTypeList = [] for change in allChange: typeList = change.values()[0]["type"] if isinstance(typeList, list): allTypeList.append(typeList) allChangeList.append(change.values()[0]) print "Searching for valid config ..." search_config(allChangeList, allTypeList, config, 0, bitcodefile, originalConfig, limit) if __name__ == "__main__": main()
31.932773
105
0.682105
77fc4fe50b58ff1166eac74ef7167357d00deb48
203
py
Python
python/hail/typecheck2/__init__.py
maccum/hail
e9e8a40bb4f0c2337e5088c26186a4da4948bed2
[ "MIT" ]
1
2020-03-09T21:25:00.000Z
2020-03-09T21:25:00.000Z
python/hail/typecheck2/__init__.py
maccum/hail
e9e8a40bb4f0c2337e5088c26186a4da4948bed2
[ "MIT" ]
null
null
null
python/hail/typecheck2/__init__.py
maccum/hail
e9e8a40bb4f0c2337e5088c26186a4da4948bed2
[ "MIT" ]
null
null
null
from .check import typecheck, register_conversion __all__ = ['typecheck', 'register_conversion'] __doc__ = """ Heavily inspired by typeguard: https://github.com/agronholm/typeguard/ """
22.555556
49
0.704433
feb65d3c32f29b8eb5ba9868ac4744efa769cc8b
854
py
Python
paramak/parametric_shapes/extruded_straight_shape.py
moatazharb/paramak
785c3ed7304e22eac7d58bb1bdc6515fbd20b9a8
[ "MIT" ]
1
2021-12-14T15:53:46.000Z
2021-12-14T15:53:46.000Z
paramak/parametric_shapes/extruded_straight_shape.py
bam241/paramak
785c3ed7304e22eac7d58bb1bdc6515fbd20b9a8
[ "MIT" ]
null
null
null
paramak/parametric_shapes/extruded_straight_shape.py
bam241/paramak
785c3ed7304e22eac7d58bb1bdc6515fbd20b9a8
[ "MIT" ]
null
null
null
from typing import Optional from paramak import ExtrudeMixedShape class ExtrudeStraightShape(ExtrudeMixedShape): """Extrudes a 3d CadQuery solid from points connected with straight lines. Args: distance: the extrusion distance to use (cm units if used for neutronics) stp_filename: Defaults to "ExtrudeStraightShape.stp". stl_filename: Defaults to "ExtrudeStraightShape.stl". """ def __init__( self, distance: float, stp_filename: Optional[str] = "ExtrudeStraightShape.stp", stl_filename: Optional[str] = "ExtrudeStraightShape.stl", **kwargs ): super().__init__( distance=distance, stp_filename=stp_filename, stl_filename=stl_filename, connection_type="straight", **kwargs )
26.6875
78
0.638173
8cd7b7ec3fa6309048ff8a0ce11f1fa040e63778
68,062
py
Python
ims_legacy.py
katrinleinweber/miniBibServer
9750e1e0773c7d6e57c0f71c096967879dfa631d
[ "MIT" ]
null
null
null
ims_legacy.py
katrinleinweber/miniBibServer
9750e1e0773c7d6e57c0f71c096967879dfa631d
[ "MIT" ]
null
null
null
ims_legacy.py
katrinleinweber/miniBibServer
9750e1e0773c7d6e57c0f71c096967879dfa631d
[ "MIT" ]
1
2018-11-03T08:06:43.000Z
2018-11-03T08:06:43.000Z
import json import glob import time import datetime time_stamp = unicode( datetime.datetime.now().isoformat().split('.')[0], 'utf-8') import random import text_json from pprint import pprint ## set some global variables for convenience of use global_vars = {} global_vars['published_files_directory'] = './published_files/' # Save these here so we don't have to pass them around global_vars['link_ls'] = [{'anchor': u'Faculty Research Lecture Committee, University of California, Berkeley', 'category_ls': [u'committee'], 'href': u'http://academic-senate.berkeley.edu/committees/frl'}, {'anchor': u'Faculty Research Lecturer, University of California, Berkeley', 'category_ls': [u'lecture'], 'href': u'http://www.urel.berkeley.edu/faculty/history.html'}, {'anchor': u'The Royal Netherlands Academy of Arts and Sciences', 'category_ls': [u'academy'], 'href': u'http://en.wikipedia.org/wiki/Royal_Netherlands_Academy_of_Arts_and_Sciences'}, {'anchor': u'American Association for Advancement of Science', 'category_ls': [u'society'], 'href': u'http://www.aaas.org/'}, {'anchor': u'President, Institute of Mathematical Statistics', 'category_ls': [u'president_list'], 'href': u'http://imstat.org/officials/past_officials.html'}, {'anchor': u'Commander of the Order of the British Empire', 'category_ls': [], 'href': u'http://en.wikipedia.org/wiki/Order_of_the_British_Empire'}, {'anchor': u'Royal Danish Academy of Sciences and Letters', 'category_ls': [u'academy'], 'href': u'http://en.wikipedia.org/wiki/Royal_Danish_Academy_of_Sciences_and_Letters'}, {'anchor': u'Academy of the Social Sciences in Australia', 'category_ls': [u'academy'], 'href': u'http://en.wikipedia.org/wiki/Academy_of_the_Social_Sciences_in_Australia'}, {'anchor': u'American Mathematical Society, Fellows List', 'category_ls': [u'fellow_ls'], 'href': u'http://www.ams.org/profession/fellows-list'}, {'anchor': u'National Medal of Technology and Innovation', 'category_ls': [], 'href': u'http://en.wikipedia.org/wiki/National_Medal_of_Technology_and_Innovation'}, {'anchor': u'Norbert Wiener Prize in Applied Mathematics', 'category_ls': [u'prize'], 'href': u'http://en.wikipedia.org/wiki/Norbert_Wiener_Prize_in_Applied_Mathematics'}, {'anchor': u'Israel Academy of Sciences and Humanities', 'category_ls': [u'academy'], 'href': u'http://en.wikipedia.org/wiki/Israel_Academy_of_Sciences_and_Humanities'}, {'anchor': u'Norwegian Academy of Science and Letters', 'category_ls': [u'academy'], 'href': u'https://en.wikipedia.org/wiki/Norwegian_Academy_of_Science_and_Letters'}, {'anchor': u'The Institute of Statistical Mathematics', 'category_ls': [], 'href': u'http://www.ism.ac.jp/index_e.html'}, {'anchor': u'American Academy of Arts and Sciences', 'category_ls': [u'academy'], 'href': u'http://en.wikipedia.org/wiki/American_Academy_of_Arts_and_Sciences'}, {'anchor': u'American Mathematical Society, Fellow', 'category_ls': [u'fellow'], 'href': u'http://www.ams.org/profession/ams-fellows/ams-fellows'}, {'anchor': u'Institute of Mathematical Statistics', 'category_ls': [u'society'], 'href': u'http://imstat.org/'}, {'anchor': u'Officer of the Order of Australia', 'category_ls': [u'honor'], 'href': u'http://en.wikipedia.org/wiki/Order_of_Australia'}, {'anchor': u'Royal Spanish Academy of Sciences', 'category_ls': [u'academy'], 'href': u'http://en.wikipedia.org/wiki/Spanish_Royal_Academy_of_Sciences'}, {'anchor': u'Nobel Prize in Economic Sciences', 'category_ls': [u'prize'], 'href': u'http://www.nobelprize.org/nobel_prizes/economics/laureates/'}, {'anchor': u'Indian National Science Academy', 'category_ls': [u'academy'], 'href': u'http://en.wikipedia.org/wiki/Indian_National_Science_Academy'}, {'anchor': u'National Academy of Engineering', 'category_ls': [u'academy'], 'href': u'http://en.wikipedia.org/wiki/National_Academy_of_Engineering'}, {'anchor': u'The Royal Society of Literature', 'category_ls': [u'society'], 'href': u'https://en.wikipedia.org/wiki/Royal_Society_of_Literature'}, {'anchor': u'Third World Academy of Sciences', 'category_ls': [u'academy'], 'href': u'http://en.wikipedia.org/wiki/TWAS'}, {'anchor': u'Accademia Nazionale dei Lincei', 'category_ls': [u'academy'], 'href': u'http://en.wikipedia.org/wiki/Accademia_dei_Lincei'}, {'anchor': u'American Philosophical Society', 'category_ls': [u'society'], 'href': u'http://en.wikipedia.org/wiki/American_Philosophical_Society'}, {'anchor': u'Officer of the Order of Canada', 'category_ls': [u'honor'], 'href': u'https://en.wikipedia.org/wiki/Order_of_Canada'}, {'anchor': u'The Royal Society of Edinburgh', 'category_ls': [u'society'], 'href': u'http://en.wikipedia.org/wiki/Royal_Society_of_Edinburgh'}, {'anchor': u'American Mathematical Society', 'category_ls': [u'society'], 'href': u'http://www.ams.org/'}, {'anchor': u'Australian Academy of Science', 'category_ls': [u'academy'], 'href': u'http://en.wikipedia.org/wiki/Australian_Academy_of_Science'}, {'anchor': u'John von Neumann Theory Prize', 'category_ls': [u'prize'], 'href': u'http://en.wikipedia.org/wiki/John_von_Neumann_Theory_Prize'}, {'anchor': u'Presidential Medal of Freedom', 'category_ls': [u'award'], 'href': u'http://en.wikipedia.org/wiki/Presidential_Medal_of_Freedom'}, {'anchor': u'National Academy of Sciences', 'category_ls': [u'academy'], 'href': u'http://en.wikipedia.org/wiki/National_Academy_of_Sciences'}, {'anchor': u'The George B. Dantzig Prize', 'category_ls': [u'prize'], 'href': u'http://en.wikipedia.org/wiki/George_B._Dantzig_Prize#George_B._Dantzig_Prize'}, {'anchor': u'The Royal Society of Canada', 'category_ls': [u'society'], 'href': u'http://en.wikipedia.org/wiki/Royal_Society_of_Canada'}, {'anchor': u'Acad&eacute;mie des sciences', 'category_ls': [u'academy'], 'href': u'http://en.wikipedia.org/wiki/French_Academy_of_Sciences'}, {'anchor': u'Indian Academy of Sciences', 'category_ls': [u'academy'], 'href': u'http://en.wikipedia.org/wiki/Indian_Academy_of_Sciences'}, {'anchor': u'John von Neumann Lecturer', 'category_ls': [u'lecture'], 'href': u'http://www.siam.org/prizes/sponsored/vonneumann.php'}, {'anchor': u'National Medal of Science', 'category_ls': [u'award'], 'href': u'http://en.wikipedia.org/wiki/National_Medal_of_Science'}, {'anchor': u'Royal Statistical Society', 'category_ls': [u'society'], 'href': u'https://www.rss.org.uk/'}, {'anchor': u'Elizabeth L. Scott Award', 'category_ls': [u'award'], 'href': u'http://nisla05.niss.org/copss/PastAwardsScott.pdf'}, {'anchor': u'George W. Snedecor Award', 'category_ls': [u'award'], 'href': u'http://nisla05.niss.org/copss/PastAwardsSnedecor.pdf'}, {'anchor': u"COPSS Presidents' Award", 'category_ls': [u'award'], 'href': u'http://en.wikipedia.org/wiki/COPSS_Presidents%27_Award'}, {'anchor': u'Acad&eacute;mie des sciences', 'category_ls': [u'academy'], 'href': u'http://en.wikipedia.org/wiki/French_Academy_of_Sciences'}, {'anchor': u'Harry C. Carver Medal', 'category_ls': [u'award'], 'href': u'http://imstat.org/awards/awards_IMS_recipients.htm'}, {'anchor': u'Institute of Medicine', 'category_ls': [u'society'], 'href': u'https://en.wikipedia.org/wiki/Institute_of_Medicine'}, {'anchor': u'R. A. Fisher Lecturer', 'category_ls': [u'award'], 'href': u'http://nisla05.niss.org/copss/PastAwardsFisher.pdf'}, {'anchor': u'Samuel S. Wilks Award', 'category_ls': [u'award'], 'href': u'http://en.wikipedia.org/wiki/Wilks_Memorial_Award'}, {'anchor': u'Wolf Prize in Physics', 'category_ls': [u'prize'], 'href': u'http://en.wikipedia.org/wiki/Wolf_Prize_in_Physics'}, {'anchor': u'Rollo Davidson Prize', 'category_ls': [u'prize'], 'href': u'http://en.wikipedia.org/wiki/Rollo_Davidson_Prize'}, {'anchor': u'Guy Medal in Bronze', 'category_ls': [u'award'], 'href': u'http://en.wikipedia.org/wiki/Guy_Medal#Bronze_Medallists'}, {'anchor': u'Guy Medal in Silver', 'category_ls': [u'award'], 'href': u'http://en.wikipedia.org/wiki/Guy_Medal#Silver_Medallists'}, {'anchor': u'IMS Lecture Awards', 'category_ls': [u'award'], 'href': u'http://www.imstat.org/awards/lectures.htm'}, {'anchor': u'F. N. David Award', 'category_ls': [u'award'], 'href': u'http://nisla05.niss.org/copss/PastAwardsFNDavid.pdf'}, {'anchor': u'Guy Medal in Gold', 'category_ls': [u'award'], 'href': u'http://en.wikipedia.org/wiki/Guy_Medal#Gold_Medallists'}, {'anchor': u'The Royal Society', 'category_ls': [u'society'], 'href': u'http://en.wikipedia.org/wiki/Royal_Society'}, {'anchor': u'Lo&egrave;ve Prize', 'category_ls': [u'prize'], 'href': u'http://en.wikipedia.org/wiki/Lo%C3%A8ve_Prize'}, {'anchor': u'MacArthur Fellow', 'category_ls': [u'fellow'], 'href': u'http://en.wikipedia.org/wiki/MacArthur_Fellows_Program'}, {'anchor': u'Medal of Freedom', 'category_ls': [u'award'], 'href': u'http://en.wikipedia.org/wiki/Medal_of_Freedom'}, {'anchor': u'British Academy', 'category_ls': [u'academy'], 'href': u'http://en.wikipedia.org/wiki/British_Academy'}, {'anchor': u'Chauvenet Prize', 'category_ls': [u'prize'], 'href': u'http://en.wikipedia.org/wiki/Chauvenet_Prize'}, {'anchor': u'Medal for Merit', 'category_ls': [u'award'], 'href': u'http://en.wikipedia.org/wiki/Medal_for_Merit'}, {'anchor': u'Neyman Lecturer', 'category_ls': [u'lecture'], 'href': u'http://imstat.org/awards/lectures_winners.htm'}, {'anchor': u'Birkhoff Prize', 'category_ls': [u'prize'], 'href': u'http://en.wikipedia.org/wiki/George_David_Birkhoff_Prize'}, {'anchor': u'Rietz Lecturer', 'category_ls': [u'lecture'], 'href': u'http://www.imstat.org/awards/lectures_winners.htm#RietzLectures'}, {'anchor': u'IMS President', 'category_ls': [], 'href': u'http://en.wikipedia.org/wiki/List_of_presidents_of_the_Institute_of_Mathematical_Statistics'}, {'anchor': u'Wald Lecturer', 'category_ls': [u'lecture'], 'href': u'http://www.imstat.org/awards/lectures_winners.htm'}, {'anchor': u'Copley Medal', 'category_ls': [u'award'], 'href': u'http://en.wikipedia.org/wiki/Copley_Medal'}, {'anchor': u'Israel Prize', 'category_ls': [u'prize'], 'href': u'http://en.wikipedia.org/wiki/Israel_Prize'}, {'anchor': u'Steele Prize', 'category_ls': [u'prize'], 'href': u'http://en.wikipedia.org/wiki/Leroy_P._Steele_Prize'}, {'anchor': u'Kyoto Prize', 'category_ls': [u'prize'], 'href': u'http://en.wikipedia.org/wiki/Kyoto_Prize'}, {'anchor': u'Abel Prize', 'category_ls': [u'prize'], 'href': u'http://en.wikipedia.org/wiki/Abel_Prize'}, {'anchor': u'Doob Prize', 'category_ls': [u'prize'], 'href': u'http://www.ams.org/profession/prizes-awards/ams-prizes/doob-prize'}, {'anchor': u'IMS Fellow', 'category_ls': [u'fellow'], 'href': u'http://www.imstat.org/awards/honored_fellows.htm'}, {'anchor': u'Knighted', 'category_ls': [], 'href': u'http://en.wikipedia.org/wiki/Orders,_decorations,_and_medals_of_the_United_Kingdom'}] ### tool for breaking long lines nicely txt = ''' :citation For developing new statistical methods for diffusion and other stochastic processes, for identifying and opening new fields of applications of statistics including nonparametric inference and testing to the analysis and pricing of financial instruments, and for his conscientious professional service''' def break_lines(txt,nchars): words = txt.split() broken_lines = [] thisline = '' while 1: thisline += words[0] + ' ' if len(thisline) > nchars: thisline = ' '.join(thisline.split()[0:-1]) broken_lines += [ thisline ] thisline = words[0] + ' ' else: pass words = words[1:] if not words: broken_lines += [ thisline ] break return broken_lines def indent(txt): words = txt.split() if len(words) > 0: word = words[0] pre,post = txt.split(word,1) return pre else: return '' def normalize_indent(txt): if not indent(txt): return txt else: words = txt.split() return '\t' + ' '.join(txt.split()) def break_line_txt(txt,nchars): lines = break_lines(txt,nchars) if len(lines) == 0: return '' else: lines = [ indent(txt) + lines[0]] + [ '\t' + line for line in lines[1:]] lines = [ normalize_indent(line) for line in lines] return '\n'.join(lines) def break_txt(txt, nchars): p = '' for line in txt.split('\n'): if len(line) > nchars: if line.strip()[0] == ':': p += '\n' + break_line_txt(line,nchars) else: p += '\n' + normalize_indent(line) else: p += '\n' + normalize_indent(line) p += '\n' return p ### tools for handling years digits = '0123456789' def get_year2(line,digs): y12 = '' y34 = '' rest = '' yinsts = line.split(digs) if len(yinsts) > 0: for yinst in yinsts[1:]: try: y34 = yinst.split()[0] for x in (',.<)'): y34 = y34.split(x)[0] if len(y34) == 2 and y34[0] in digits and y34[1] in digits: return digs + y34 else: pass except: pass return '' def get_years2(line,digs): """ returns a list of 4 digit strings that are credibly years beginning with 2 digits digs """ y12 = '' y34 = '' rest = '' years = [] yinsts = line.split(digs) if len(yinsts) > 0: for yinst in yinsts[1:]: try: y34 = yinst.split()[0] for x in (',.<)'): y34 = y34.split(x)[0] if len(y34) == 2 and y34[0] in digits and y34[1] in digits: years += [digs + y34] except: pass return years def get_year_from_str(line): y = get_year2(line,'19') if not y: y = get_year2(line,'20') try: if int(y) > 2014: y = str(2014) except: y = '' return y def get_years_from_str(line): return get_years2(line,'19') + get_years2(line,'20') def get_year_from_record(r): """ make best effort to extract a year string from a record, returns '' if none found """ y = r.get('year','') if not y: y = get_year_from_str( r.get('howpublished','') ) if not y: ## this works for arxiv records #arxiv:published": "2005-03-03T08:34:51Z" y = r.get('arxiv:published','').split('-')[0] return y def get_year(x): if type(x) in [type(u'txt'),type('txt')]: return get_year_from_str(x) elif type(x) == type({}): return get_year_from_record(x) else: return '' def year_examples(): line = 'Electron. Trans. Numer. Anal. (ETNA) 36 (2009), 27-38. ps&nbsp' line2 = 'Electron. Trans. Numer. Anal. (ETNA) 36 (2009), 27-38. ps&nbsp 1984 1963)' line = '(<y>2006</y>). <rel>In </rel><inc>booktitle:encyclopedia-of-statistical-sciences</inc>' print get_year(line) #print get_years_from_str(line2) def year_cmp(a,b): try: return cmp( a.get('year','3000'),b.get('year','3000')) except: print 'year_cmp failed for ' print a print b return 0 month_ls = 'January February March April May June July August September October November December'.split() month = {} for i in range(12): month[ str( i + 1) ] = month_ls[i] for i in range(12): month[ '0' + str( i + 1) ] = month_ls[i] def parse_date(dt): d = {} ss = dt.split('-') if len(ss) == 0: pass if len(ss) >= 1: d['year'] = ss[0].strip() if len(ss) >= 2: d['month'] = month[ss[1]].strip() if len(ss) >= 3: day = ss[2].strip() if day and day[0] == '0': day = day[1] d['day'] = day.strip() return d def show_date(dt): d = parse_date(dt) if d.has_key('day'): return d['day'] + ' ' + d['month'] + ' ' + d['year'] elif d.has_key('month'): return d['month'] + ' ' + d['year'] elif d.has_key('year'): return d['year'] else: return '' bio_cat_plurals = ''' Biography Biographies Symposium Symposia Archive Archives Art_Exhibition Art_Exhibitions Collected_Works Collected_Works Selected_Works Selected_Works DVD DVDs Endowment Endowments Festschrift Festschriften Memoir Memoirs Oral_History Oral_History Death_Notice Death_Notices Obituary Obituaries In_Memoriam Memorials ''' bio_cat_plural = {} bio_cat_order = [] lines = bio_cat_plurals.split('\n') for line in lines: try: k,v = line.split() bio_cat_plural[k] = v bio_cat_order += [k] except: pass def make_tag_map(): tag_map_lines = ''' <author> <span class="bib-author"> <cit> <span class="bib-citation"> <au> <span class="bib-author"> <ed> <span class="bib-editor"> <year> <span class="bib-year"> <rel> <span class="bib-relation"> <y> <span class="bib-year"> <journal> <span class="bib-journal"> <j> <span class="bib-journal"> <title> <span class="bib-title"> <t> <span class="bib-title"> <bt> <span class="bib-title"> <booktitle> <span class="bib-booktitle"> <webcollection> <span class="bib-booktitle"> <v> <span class="bib-jvolume"> <vol> <span class="bib-jvolume"> <volume> <span class="bib-jvolume"> <howpublished> <span class="bib-howpublished"> <howpub> <span class="bib-howpublished"> <pages> <span class="bib-pages"> <pp> <span class="bib-pages"> <series> <span class="bib-series"> <publisher> <span class="bib-publisher"> <address> <span class="bib-address"> ''' tag_map = {} lines = tag_map_lines.split('\n') for line in lines: try: k,v = line.strip().split('>',1) k = k.strip() v = v.strip() tag_map[k+ '>'] = v tag_map['<' + short_tag[k[1:]] + '>'] = v except: pass for tag in tag_map.keys(): tag_map[tag.replace('<','</')] = '</span>' return tag_map tag_map = make_tag_map() def make_link_ls(): this_dir = './' link_ls = [] infile = open(this_dir + 'organizations.txt') inlines = infile.readlines() for line in inlines: line = unicode(line,'utf-8') try: k,v = line.split(None,1) if k[0:4] == 'http': link = {} link['href'] = k try: v = json.loads('"' + v + '"') except: pass link['anchor'] = ' '.join(v.split()) link_ls += [link] else: pass # print line except: pass # print line return link_ls def make_link_dict(): d = {} link_ls = make_link_ls() for link in link_ls: d[ link['anchor'] ] = link['href'] return d link_dict = make_link_dict() def randtag(): return str(random.randint(100,1000000) ) def lines2link_ls(lines): link_ls = [] for line in lines.split('\n'): line = line.strip() if not line[0:4] == 'http': pass ## print line else: words = line.split() link = {} link['href'] = words[0] anchor = ' '.join(words[1:]) if anchor: rel = words[1] else: rel = '' if rel in 'homepage pubspage bookspage profilepage'.split(): link['rel'] = rel link['anchor'] = ' '.join(words[2:]) elif anchor: link['anchor'] = anchor else: link['anchor'] = '' link_ls += [link] return link_ls def item_cmp(x,y): return - cmp( len(x['anchor']), len(y['anchor']) ) def links_txt2ls(links_txt): inlines = links_txt.split('\n') lines = [] dls = [] for line in inlines: words = line.split() if words: d = {} urls = [ w for w in words if w[0:4] == 'http'] if not len(urls) == 1: print 'Error with ', str(len(urls)) , 'urls in: ' ,line continue text_words = [ w for w in words if not w[0:4] == 'http'] text_words = [ w for w in text_words if not w[0] == '['] text_words = [ w for w in text_words if not w[-1] == ']'] key_words = [ w for w in words if w[0] == '[' and w[-1] == ']'] text = ' '.join(text_words) d['anchor'] = text d['href'] = urls[0] d['category_ls'] = [w[1:-1] for w in key_words] dls += [d] dls.sort(item_cmp) return dls def item2link(d): return '<a href="' + d['href'] + '">' + d['anchor'] + '</a>' def item2txt(d): return d['anchor'] + ' ' + ' '.join(d.get('category_ls',[])) + ' ' + d['href'] + '\n' def add_links(txt, link_ls): for ii in range( len(link_ls) ): item = link_ls[ii] txt = txt.replace( item['anchor'], 'XX' + str(ii) + 'XX' ) for ii in range( len(link_ls) ): item = link_ls[ii] txt = txt.replace('XX' + str(ii) + 'XX' , item2link(item)) return txt def list_links(txt, link_ls): out_txt = '::links\n' for ii in range( len(link_ls) ): item = link_ls[ii] txt = txt.replace( item['anchor'], 'XX' + str(ii) + 'XX' ) for ii in range( len(link_ls) ): item = link_ls[ii] if txt.find('XX' + str(ii) + 'XX') >= 0: out_txt += item2txt(item) return out_txt #links = links_txt2ls() #for link in links: # print json.dumps(link,indent=4) #print add_links(txt, links) #print list_links(txt, links) def read_ims_legacy(f='ims_legacy'): data = {} dls = [] infile = open(f + '.txt') instring = infile.read() ##instring = instring.replace(':description',' :citation') ## to be deprecated soon instring = unicode(instring,'utf-8') meta = {} metatxt = instring.split('::')[1] meta['record_txt'] = '::' + metatxt.strip() + '\n\n' meta['bibtype'],rest= metatxt.split(None,1) meta['id'],rest= rest.split(None,1) rest = '\n' + rest.strip() secs = rest.split('\n:')[1:] for sec in secs: k,v = sec.split(None,1) meta[k] = v data['metadata'] = meta for x in instring.split('::person')[1:]: x = x.split('\n::')[0] d = {} d['record_txt'] = '::person ' + x.strip() + '\n' lines = d['record_txt'].split('\n') lines = [line for line in lines if not line.find('Email') >= 0 ] pubrecord = '\n'.join(lines) + '\n' d['public_record_txt'] = break_txt(pubrecord,80) secs = x.split('\n:') toplines = secs[0].strip() d['id'], toplines = toplines.split(None,1) try: name,toplines = toplines.split('\n',1) except: name = toplines toplines = '' d['complete_name'] = name #d['link_lines'] = toplines d['link_ls'] = lines2link_ls(toplines) for sec in secs[1:]: words = sec.split() key = words[0] if len(words) > 1: val = sec.split(None,1)[1] ## keep newlines else: val = '' if d.has_key(key): d[key] += [val] else: d[key] = [val] d['Honor'] = [ read_honor(x) for x in d.get('Honor',[]) ] d['Degree'] = [ read_degree(x) for x in d.get('Degree',[]) ] d['Education'] = [ read_education(x) for x in d.get('Education',[]) ] d['Service'] = [ read_service(x) for x in d.get('Service',[]) ] d['Position'] = [ read_position(x) for x in d.get('Position',[]) ] d['Member'] = [ read_member(x) for x in d.get('Member',[]) ] d['Image'] = [ read_image(x) for x in d.get('Image',[]) ] d['Homepage'] = [ read_homepage(x) for x in d.get('Homepage',[]) ] for k in bio_cat_order: #d['Biography'] = [ read_bio(x) for x in d.get('Biography',[]) ] d[k] = [ read_bio(x) for x in d.get(k,[]) ] dls += [d] links_txt = instring.split('::links',1)[1].split('\n::')[0] data['link_ls'] = links_txt2ls(links_txt) data['records'] = dls books = instring.split('::book')[1:] book_dict = {} for b in books: b = 'book' + b d = read_book(b) del d['top_line'] book_dict[ d['id'] ] = d data['books'] = book_dict links_txt = instring.split('::links',1)[1].split('\n::')[0] data['link_ls'] = links_txt2ls(links_txt) return data def publish_ims_legacy(f='ims_legacy'): """ create public version of data by deletion of all email addresses """ out_dir = global_vars['published_files_directory'] data = {} dls = [] infile = open(f + '.txt') instring = infile.read() ##instring = instring.replace(':description',' :citation') ## to be deprecated soon instring = unicode(instring,'utf-8') instring = instring.replace('$time_stamp$', time_stamp) lines = instring.split('\n') lines = [line for line in lines if not line.find('Email') >= 0 ] txt = '\n'.join(lines) + '\n' out_fname = out_dir + 'imslegacy_data' #outfile = open('/accounts/projects/jpopen/apache/htdocs/tmp/imslegacy/imslegacy_data.txt','w') outfile = open(out_fname + '.txt','w') outfile.write(txt.encode('utf-8')) outfile.close() print ' wrote to ' + out_fname + '.txt' ##print ' published at http://bibserver.berkeley.edu/tmp/imslegacy/imslegacy_data.txt' #data = read_ims_legacy('/accounts/projects/jpopen/apache/htdocs/tmp/imslegacy/imslegacy_data') data = read_ims_legacy(out_fname) #outfile = open('/accounts/projects/jpopen/apache/htdocs/tmp/imslegacy/imslegacy_data.json','w') outfile = open(out_fname + '.json','w') outfile.write(json.dumps(data,indent=4).encode('utf-8')) outfile.close() print ' wrote to ' + out_fname + '.json' #print ' wrote to /accounts/projects/jpopen/apache/htdocs/tmp/imslegacy/imslegacy_data.json' #print ' published at http://bibserver.berkeley.edu/tmp/imslegacy/imslegacy_data.json' def write_ims_legacy(data,fname): meta = data['metadata'] p = '' p += '::' + meta['bibtype'] + ' ' + meta['id'] + '\n' p += ':title ' + meta['title'] + '\n' for k in meta.keys(): if not k in 'bibtype id title'.split(): if not k[-3:] == '_ls': meta[k] = [ meta[k]] for v in meta[k]: p += ':' + k + ' ' + meta[k] + '\n' p += '\n' for d in data['records']: p += person_record2txt(d) outfile = open(fname + '.txt','w') outfile.write(p.encode('utf-8')) outfile.close() def id2url(k,v): if k == 'zb-author-id': h = 'http://zbmath.org/authors/?q=ai:' + v elif k == 'mr-author-id': h = 'http://www.ams.org/mathscinet/search/author.html?mrauthid=' + v elif k == 'mg-author-id': h = 'http://genealogy.math.ndsu.nodak.edu/id.php?id=' + v elif k == 'mas-author-id': h = 'http://academic.research.microsoft.com/Author/' + v else: h = k + ':' + v return h def ids_dict(d): iii = {} print d for link in d['link_ls']: try: iii['zb-author-id'] = link['href'].split('http://zbmath.org/authors/?q=ai:',1)[1] continue except: pass try: iii['mr-author-id'] = link['href'].split('http://www.ams.org/mathscinet/search/author.html?mrauthid=',1)[1] continue except: pass try: iii['mg-author-id'] = link['href'].split('http://genealogy.math.ndsu.nodak.edu/id.php?id=',1)[1] continue except: pass return iii def make_xml_person(d): iii = ids_dict(d) d.update(iii) infile = open('template.xml') instring = infile.read() xml = unicode(instring,'utf-8') passd = {} passd['id'] = d['id'] for k in 'display_name complete_name last_name DOB DOD mr-author-id zb-author-id mg-author-id'.split(): v = d.get(k,'') if type(v) == type([]): try: passd[k] = v[0] except: passd[k] = '' else: passd[k] = v #for k in 'DOD DOB'.split(): # passd[k] = clean_date(passd[k]) name = passd.get('display_name', '').strip() if not name: name = passd.get('complete_name','') if not name: print 'missing name for ' print json.dumps(d,indent=4) passd['last_first_name'] = name try: passd['first_first_name'] = first_first(name) except: print 'Unable to make first_first for :' ,name passd['last_name'] = name.split(',')[0] passd['html'] = d['covertext_html'] for k in passd.keys(): xml = xml.replace('$' + k + '$',passd[k]) return xml def make_xml(dls): out_dir = global_vars['published_files_directory'] xml_wrapper = '''<?xml version="1.0" encoding="UTF-8"?> <ims-authors-data> <!-- Generated by BibServer System $time_stamp$ --> $xml_data$ </ims-authors-data> ''' xml = '' for d in dls: xml += make_xml_person(d) xml_wrapper = xml_wrapper.replace('$time_stamp$',time_stamp) xml_wrapper = xml_wrapper.replace('$xml_data$',xml) #outfile = open('/accounts/projects/jpopen//apache/htdocs/tmp/celebratio_ims_legacy.xml','w') #outfile = open('/accounts/projects/jpopen/apache/htdocs/tmp/imslegacy/celebratio.xml','w') outfname = out_dir + 'celebratio.xml' outfile = open(outfname, 'w') outfile.write(xml_wrapper.encode('utf-8')) outfile.close() print 'wrote to ' + outfname ###print 'wrote to http://bibserver.berkeley.edu/tmp/imslegacy/celebratio.xml' def display_function(display_style,r): if display_style == 'json_display': h = '<td><pre>' + json.dumps(r,indent=4) + '</pre></td>' elif display_style == 'one_line': h = '<td>' + r['complete_name'] + '</td><td>' h += make_dates_html(r) h += '</td>' elif display_style == 'images': h = '<td>' + r['complete_name'] + '</td><td>' h += top_links_html(r) h += make_images_html(r) elif display_style == 'html': h = '<td>' d = add_html(r) h += d['html'] h += '</td>' else: h = '<td> display style "' + display_style +'" not available for this source</td>' return h def display_data(passd): meta = passd q = passd['q'].strip() try: pageNumber=int(passd['pageNumber']) except: pageNumber =1 try: itemsPerPage=int(passd['itemsPerPage']) except: itemsPerPage=20 data = read_ims_legacy() records = data['records'] for w in q.split(): records = [ r for r in records if str(r).find(w) >= 0] ## should fold as much as possible of passd into meta meta.update( data['metadata'] ) ## so passd gets overwritten. Hopefully no issues there meta['pageNumber'] = pageNumber totalResults = len(records) meta['totalResults'] = totalResults format_options_txt = ''' two_lines Two Lines one_line One Line images Images json_display JSON Display html HTML ''' ''' json JSON Export ''' ## these are keys to the dictionary of display_functions returned by the display_function module format_ls = [] for line in format_options_txt.split('\n'): if line.strip(): k,v = line.split(None,1) format_ls += [ (k,v)] meta['formatOption_ls'] = format_ls meta['itemsPerPageOption_ls'] = '1 2 5 10 20 50 100 200 500 1000 2000'.split() if (pageNumber - 1) * itemsPerPage > meta['totalResults']: pageNumber = 1 startIndex = (pageNumber - 1)* itemsPerPage endIndex = startIndex + itemsPerPage data['records'] = records[startIndex:endIndex] ## or get this set of records by a source-specific function meta['pageNumber'] = pageNumber meta['itemsPerPage'] = itemsPerPage meta['totalPages'] = meta['totalResults']/ itemsPerPage if meta['totalResults'] % itemsPerPage >0: meta['totalPages'] += 1 data['metadata'] = meta return data table_template = ''' <!-- begin segm content --> <div> <!-- text content --> <div class="j"> <table> $table_rows$ </table> <!-- end text content --> </div> <!-- end segm content --> </div> <!-- end segm container --> <!-- end segm container ===================== --> ''' dl_template = ''' <!-- begin segm content --> <div> <!-- text content --> <div class="j"> <dl class="cvlike"> $rows$ </dl> <!-- end text content --> </div> <!-- end segm content --> </div> <!-- end segm container --> <!-- end segm container ===================== --> ''' #<dt>1930</dt> #<dd>Fusce dapibus, tellus ac cursus commodo, tortor mauris condimentum nibh, ut fermentum massa justo sit amet risus. Donec id elit non mi porta gravida at eget metus.</dd> #<dt>1930&ndash;1967</dt> #<dd>Praesent commodo cursus magna, vel scelerisque nisl consectetur et. Vivamus sagittis lacus vel augue laoreet rutrum faucibus dolor auctor. Maecenas sed diam eget risus varius blandit sit amet non > def make_honor_rows(honor): d = honor #print d link_honor = add_links(d['text'],global_vars['link_ls']) rows = '<dt>' + d['year'] + '</dt><dd>' + link_honor + '</dd>\n' if d.get('citation',''): rows += '<dt></dt><dd>&quot;' + d['citation'] + '.&quot;</dd>\n' return rows def make_row(d): text = d.get('text','') #print text text = add_links(text, global_vars['link_ls']) return '<dt>' + d.get('year','').decode("utf-8") + '</dt><dd>' + text + '</dd>\n' def make_images_html(d): name = d['complete_name'] html = '' if d.get('Image',[]): link = d.get('Image',[])[0] ## use only the first one href = link.get('href','') src = link.get('src','') if href and src: html += '<a href="' + href + '"> <img class="profilephoto" src="' + src + '" height="100px" alt="Profile - ' + name + '"></a>' return html return '' def make_biblio_rows(b): return '<dt></dt><dd>' + link2html(b)+ '</dd>\n' def make_bio_rows(b): #pprint(b) title = b.get('title','').strip() if title == 'Untitled': title = '' author = b.get('author','').strip() if author == 'Anonymous': author = '' howpub = b.get('howpublished','') year = b.get('year','') if year == 'year?': year = 'Undated' ref = '' if title: if not title[-1] in '?.!': title += '.' ref += '<t>' + title + '</t> ' if author: ref += '<au>' + author + '</au>. ' ref += howpub book_link_ls = [] books = global_vars['books'] # Books: now a list not a dictionary ''' for bkey in books.keys(): if ref.find(bkey) >= 0: ref = ref.replace(bkey,books[bkey]['ref']) book_link_ls = books[bkey].get('link_ls',[]) ''' for t in tag_map.keys(): ref = ref.replace(t,tag_map[t]) ref += ' ' for link in b.get('link_ls',[]) + book_link_ls: link = enhance_link(link) ref += link2html(link) return '<dt>' + year + '</dt><dd>' + ref + '</dd>\n' def honor_cmp(h,k): if h['text'] == k['text']: return cmp( h['year'], k['year'] ) else: return cmp( h['text'], k['text'] ) def link2html(link): href = link.get('href','').strip() if not href: return '' anchor = link['anchor'] link['title'] = link.get('title',link.get('href','')) link['target'] = link.get('target','_blank') return '<a class="bracketed" href="' + link['href'] + '" title="' + link['title'] + '" target="' + link['target'] + '">' + anchor + '</a>' def link_honor(h): link = {} href = h.get('href','') if href: link['href'] = href link['anchor'] = honor['text'] return link2html(link) else: return h['text'] #elif h['text'] in org_url.keys(): # link['href'] = org_url[h['text']] # link['anchor'] = h['text'] # return link2html(link) #else: # try: # pre,post = h['text'].split(',',1) # if pre in org_url.keys(): # link['href'] = org_url[pre] # link['anchor'] = pre # return link2html(link) + ',' + post # except: pass #return h['text'] def linkify(text): text1 = ' '.join(text.split()) if text1 in org_url.keys(): linkz = {} linkz['href'] = org_url[text1] linkz['anchor'] = text return link2html(linkz) else: return text def link_position(p): ll = linkify(p) if ll != p: return ll else: llinks = [ linkify(ph) for ph in p.split(',') ] return ', '.join(llinks) def read_section(section_txt): #1963 Ph.D. University of California, Berkeley # http://genealogy.math.ndsu.nodak.edu/id.php?id=34373 # :thesis_title On Optimal Stopping print section_txt['text'] txt = '\n'.join( [ line.strip() for line in section_txt.split('\n') ]) d = {} subsecs = txt.split('\n:') toplines = subsecs[0] try: top_line,toplines = toplines.split('\n',1) except: top_line = toplines toplines = '' d['top_line'] = top_line #d['link_lines'] = toplines d['link_ls'] = lines2link_ls(toplines) for subsec in subsecs[1:]: words = subsec.split() key = words[0] if len(words) > 1: val = subsec.split(None,1)[1] ## keep newlines else: val = '' d[key] = val.strip() ## last value rules, like BibTeX #if d.has_key(key): d[key] += [val] #else: d[key] = [val] return d def read_bibitem(section_txt): txt = '\n'.join( [ line.strip() for line in section_txt.split('\n') ]) d = {} subsecs = txt.split('\n:') toplines = subsecs[0] try: top_line,toplines = toplines.split('\n',1) except: top_line = toplines toplines = '' d['top_line'] = top_line d['bibtype'],d['id'] = d['top_line'].split() try: d['ref'],linklines = toplines.split('\n',1) d['link_ls'] = lines2link_ls(linklines) except: d['ref'] = toplines d['link_ls'] = [] for subsec in subsecs[1:]: words = subsec.split() key = words[0] if len(words) > 1: val = subsec.split(None,1)[1] ## keep newlines else: val = '' d[key] = val.strip() ## last value rules, like BibTeX #if d.has_key(key): d[key] += [val] #else: d[key] = [val] return d def read_book(section_txt): txt = '\n'.join( [ line.strip() for line in section_txt.split('\n') ]) d = {} subsecs = txt.split('\n:') toplines = subsecs[0] try: top_line,toplines = toplines.split('\n',1) except: top_line = toplines toplines = '' d['top_line'] = top_line d['bibtype'],d['id'] = d['top_line'].split() top_line_ls = toplines.split('\n') d['title'] = top_line_ls[0] d['creator'] = top_line_ls[1] ## au or editor. with (ed if editor) d['howpublished'] = top_line_ls[2] d['year'] = top_line_ls[3] linklines = '\n'.join(top_line_ls)[4:] d['link_ls'] = lines2link_ls(linklines) for subsec in subsecs[1:]: words = subsec.split() key = words[0] if len(words) > 1: val = subsec.split(None,1)[1] ## keep newlines else: val = '' d[key] = val.strip() ## last value rules, like BibTeX #if d.has_key(key): d[key] += [val] #else: d[key] = [val] d['ref'] = '<t>' + d['title'] + '</t>. ' if d.has_key('edition'): d['ref'] += '(' + d['edition'] + ' edition). ' d['ref'] += d['creator'] + '. ' d['ref'] += d['howpublished'] + '. ' return d def read_4line_bibitem(section_txt): txt = '\n'.join( [ line.strip() for line in section_txt.split('\n') ]) d = {} subsecs = txt.split('\n:') toplines = subsecs[0] try: top_line,toplines = toplines.split('\n',1) except: top_line = toplines toplines = '' d['top_line'] = top_line try: d['bibtype'],d['id'] = d['top_line'].split() except: print 'Error parsing: ' + d['top_line'] toplines = toplines.split('\n') d['title'] = toplines[0] try: d['author'] = toplines[1] d['howpublished'] = toplines[2] d['year'] = toplines[3] except: print 'Error parsing:' print toplines linklines = '\n'.join(toplines[3:]) d['link_ls'] = lines2link_ls(linklines) for subsec in subsecs[1:]: words = subsec.split() key = words[0] if len(words) > 1: val = subsec.split(None,1)[1] ## keep newlines else: val = '' d[key] = val.strip() ## last value rules, like BibTeX #if d.has_key(key): d[key] += [val] #else: d[key] = [val] return d def read_degree(degree_txt): #1963 Ph.D. University of California, Berkeley # http://genealogy.math.ndsu.nodak.edu/id.php?id=34373 # :thesis_title On Optimal Stopping d = read_section(degree_txt) d['category'] = 'degree' try: d['year'],rest = d['top_line'].split(None,1) except: d['year'] = d['top_line'] rest = '' try: d['type'],rest = rest.split(None,1) except: d['type'] = rest rest = '' d['school'] = rest del d['top_line'] return d def read_generic(txt): d = read_section(txt) try: d['year'],rest = d['top_line'].split(None,1) d['year'] = d['year'].replace('_',' ') except: d['year'] = '' rest = d['top_line'] d['text'] = rest del d['top_line'] return d def read_education(txt): d = read_generic(txt) d['category'] = 'education' return d def read_service(txt): d = read_generic(txt) d['category'] = 'service' return d def read_member(txt): d = read_section(txt) d['category'] = 'member' d['text'] = d['top_line'] del d['top_line'] return d def read_image(txt): d = read_section(txt) del d['link_ls'] ## all bare urls expected in the top_line d['category'] = 'image' words = d['top_line'].split() hrefs = [ w for w in words if w[0:4] == 'http'] textwords = [ w for w in words if not w[0:4] == 'http'] if hrefs: d['src'] = hrefs[0] if len(hrefs) == 1: ## href and src are identical d['href'] = hrefs[0] elif len(hrefs) > 1: d['href'] = hrefs[1] ## ignore if more than 2 urls d['text'] = ' '.join(textwords) del d['top_line'] return d def read_homepage(txt): d = read_section(txt) del d['link_ls'] ## all bare urls expected in the top_line d['category'] = 'homepage' d['rel'] = 'homepage' words = d['top_line'].split() hrefs = [ w for w in words if w[0:4] == 'http'] textwords = [ w for w in words if not w[0:4] == 'http'] if hrefs: if len(hrefs) >= 1: ## href d['href'] = hrefs[0] ## ignore if more than 2 urls d['anchor'] = ' '.join(textwords) del d['top_line'] #print json.dumps(d) return d def read_honor(txt): d = read_generic(txt) d['category'] = 'honor' return d def read_position(txt): d = read_generic(txt) d['category'] = 'position' return d def read_bio(txt): #d = read_bibitem(txt) d = read_4line_bibitem(txt) return d def enhance_link(link): rel = link.get('rel','') if link['href'].find('mathscinet') >= 0: link['anchor'] = 'MathSciNet' link['rel'] = 'biblio' link['status'] = 'top' elif link['href'].find('academic.research.microsoft.com') >= 0: if not link.get('anchor','').find('Microsoft Academic:') >= 0: link['anchor'] = 'Microsoft Academic: ' + link.get('anchor','') link['rel'] = 'biblio' elif link['href'].find('scholar.google') >= 0: link['anchor'] = 'Google Scholar' link['rel'] = 'biblio' link['status'] = 'top' elif link['href'].find('celebratio') >= 0: link['anchor'] = 'Celebratio' link['rel'] = 'biblio' link['status'] = 'top' elif link['href'].find('zbmath') >= 0: link['anchor'] = 'zbMATH' link['rel'] = 'biblio' link['status'] = 'top' elif rel.find('pubspage') >= 0: link['anchor'] = 'Publication List' link['rel'] = 'biblio' elif rel.find('homepage') >= 0: link['anchor'] = 'Homepage' link['rel'] = 'homepage' link['status'] = 'top' elif rel.find('bookspage') >= 0: link['anchor'] = 'Books List' link['rel'] = 'biblio' elif link['href'].find('genealogy.math') >= 0: link['anchor'] = 'Math. Genealogy' link['rel'] = 'educ' elif link['href'].find('wikipedia') >= 0: link['anchor'] = 'Wikipedia' link['rel'] = 'bio' link['status'] = 'top' else: link['rel'] = 'misc' anchor = link.get('anchor','').strip() if not anchor: link['anchor'] = link['href'].split('/')[2] return link #def read_bio(person): # bios = [] # for link in person.get('link_ls',[]): # rel = link.get('rel','') # if link['href'].find('wikipedia') >= 0: # link['anchor'] = 'Wikipedia' # bios += [link] # return bios def honors_html(person): honors = person['Honor'] #print honors h = '' if len(honors) == 1: heading = '<h4>Honor</h4>\n' else: heading = '<h4>Honors</h4>\n' rows = '' honors.sort(year_cmp) for h in honors: rows += make_honor_rows(h) return heading + dl_template.replace('$rows$',rows) def career_html(person): positions = person['Position'] if not positions: return '' heading = '<h4>Career</h4>\n' positions.sort(year_cmp) rows = '' for h in positions: rows += make_row(h) return heading + dl_template.replace('$rows$',rows) def service_html(person): positions = person['Service'] #print positions if not positions: return '' heading = '<h4>Professional Service</h4>\n' positions.sort(year_cmp) rows = '' for h in positions: #print h.get('text','') rows += make_row(h) return heading + dl_template.replace('$rows$',rows) def member_html(person): person.get('Member',[]) positions = person['Member'] if not positions: return '' heading = '<h4>Membership</h4>\n' rows = '' for h in positions: rows += make_row(h) return heading + dl_template.replace('$rows$',rows) def educ_html(person): educ = person.get('Education',[]) + person.get('Degree',[]) if not educ: return '' #educ.sort(year_cmp) h = '' heading = '<h4>Education</h4>\n' rows = '' for d in educ: if d['category'] == 'degree': # pprint (d) d['text'] = d.get('type','') + ', ' + d.get('school','') + ' ' ## could hyperlink here for link in d.get('link_ls',[]): link = enhance_link(link) d['text'] += "(" + link2html(link) + ")" rows += make_row(d) if d.get('thesis_title','').strip(): e = {} e['year'] = '' #e['text'] = '<em>Thesis: </em>' + e['text'] = '&quot;' + d['thesis_title'] + '&quot;' rows += make_row(e) else: rows += make_row(d) return heading + dl_template.replace('$rows$',rows) def biblio_html(person): heading = '<h4>Bibliography</h4>\n' rows = '' for b in person.get('link_ls',[]): bb = enhance_link(b) if bb.get('rel','') == 'biblio': rows += make_biblio_rows(bb) return heading + dl_template.replace('$rows$',rows) def source_data_html(person): templ = '''<h4 class="alt js-collapse js-collapseoff">Source Data</h4> <div class="collapsed-region"> <pre>$text$</pre> </div>''' h = templ.replace('$text$',person['public_record_txt']) return h def bio_html(person): p = '' for c in bio_cat_order[0:]: bios = person.get(c,[]) if not bios: continue elif len(bios) == 1: heading = '<h4>' + c.replace('_',' ') + '</h4>\n' elif len(bios) > 1: heading = '<h4>' + bio_cat_plural[c].replace('_',' ') + '</h4>\n' rows = '' bios.sort(year_cmp) for b in bios: ## Let's check what's going on with wilks__samuel_s where one of the bios comes back as None if b: # print "BIOROW:" # pprint (b) rows += make_bio_rows(b) p += heading + dl_template.replace('$rows$',rows) return p def make_mg_data(data): p = '' mg2ims = {} ims2mg = {} ims2mg_txt = {} urls = [] for d in data['records']: for link in d['link_ls']: if link['href'].find('genealogy') >= 0: mg2ims[ link['href'] ] = d['id'] urls += [link['href']] mgrecords = math_genealogy_api.get_items_by_id(urls) for i in range(len(urls))[0:]: u = urls[i] r = mgrecords[i] ims2mg[ mg2ims[u] ] = r items = [] for k in ims2mg.keys(): r = ims2mg[ k ] p = ':: ' + k + '\n' mgurl = ims2mg[k]['id'].replace('math_genealogy_author:','http://genealogy.math.ndsu.nodak.edu/id.php?id=') p += ':Degree ' + r.get('degree_year','?year?') + ' ' + r.get('degree_type','?type?') + ' ' + r.get('degree_school','?school?') + '\n\t' + mgurl + '\n' p += '\t:thesis_title ' + ' '.join( r.get('thesis_title', '').split() ) + '\n' ims2mg_txt[k] = p #items += [p] #items.sort() #p = '\n'.join(items) + '\n' #outfile = open('degree_data.txt','w') #outfile.write(p.encode('utf-8')) #outfile.close() return ims2mg,ims2mg_txt def year_test(txt): if len(txt) != 4: return False try: txt = str(int(txt)) if txt[0:2] in '18 19 20'.split(): return True else: return False except: return False def add_mg_data(): data = read_ims_legacy('ims_legacy_0') ims2mg,ims2mg_txt = make_mg_data(data) p = data['metadata']['record_txt'] p += '\n' for d in data['records']: r = d['record_txt'] r = r.replace(':Honor \n',':Honor ') ## to be deprecated soon r = r.replace(':Honor\n',':Honor ') ## to be deprecated soon r = r.replace(':Honor \n',':Honor ') ## to be deprecated soon p += r degree_text = ims2mg_txt.get(d['id'],'') try: degree_text = degree_text.split(':Degree',1)[1].strip() except: degree_text = '' words = degree_text.split() if words: y = words[0] if not year_test(y): if not y == '?year?': degree_text = '?year? ' + degree_text degree_text = ':Degree ' + degree_text p += degree_text p += '\n\n' p = p.encode('utf-8') outfile = open('xxims_legacy.txt','w') outfile.write(p) outfile.close() #print p def add_microsoft_data(): data = read_ims_legacy('ims_legacy_14') #import microsoft_academic_api #microsoft_data = microsoft_academic_api.read_dict() p = data['metadata']['record_txt'] for d in data['records']: addtxt = '' for link in d['link_ls']: if link['href'] in microsoft_data.keys(): md = microsoft_data[link['href']] src_url = md.get('microsoft_photo_url','') ph_url = md.get('photo_url','') home_url = md.get('homepage_url','') if home_url: addtxt += ':Homepage ' + home_url + '\n' if src_url: addtxt += ':Image ' + src_url + ' ' if ph_url: addtxt += ph_url + '\n' pre,post = d['record_txt'].split('\n:Honor',1) p += '\n' + pre + '\n' + addtxt + ':Honor' + post outfile = open('ims_legacy.txt','w') outfile.write(p.encode('utf-8')) outfile.close() def add_bio_data(): data = read_ims_legacy('ims_legacy_3') bios = open('items/biographies.txt') t = bios.read() misc = open('items/misc.txt') t += misc.read() obits = open('items/obituaries.txt') t += obits.read() #t = unicode(t,'utf-8') t = '\n' + t.strip() items = t.split('\n::')[1:] bios = {} for item in items[1:]: lines = item.split('\n') lines = [ json.loads('"' + line + '"') for line in lines ] lines = ['\t' + line for line in lines ] try: cat, ii = lines[-2].split() #bios[ii] = bios.get(ii,'') + ':Biography ' + '\n'.join(lines[0:-2]) + '\n' bios[ii] = bios.get(ii,'') + ':' + cat.split('_of')[0].replace('@','') + ' ' + '\n'.join(lines[0:-2]) + '\n' except: print lines #for ii in bios.keys(): # print bios[ii].encode('utf-8') p = data['metadata']['record_txt'] p += '\n' for d in data['records']: r = d['record_txt'] p += r bio_txt = bios.get(d['id'],'') p += bio_txt p += '\n\n' p = p.encode('utf-8') outfile = open('ims_legacy.txt','w') outfile.write(p) outfile.close() #print p def getf(d,k): dd = d.get(k,[]) if len(dd) > 0: return dd[0] else: return '' def make_basic_bio_html(d): html = '' # Let's store the IMS ids as *comments* in the HTML, since I don't think the end user really wants to see them if d.has_key('ims_id'): html += '\n<!--<p><b>IMS Id:</b>&thinsp;'+ d['ims_id'] + '&thinsp;</p>-->' if d.has_key('alt_ims_id'): html += '\n<!--<p><b>Alt. IMS Id:</b>&thinsp;'+ d['alt_ims_id'] + '&thinsp;</p>-->' if d.has_key('alt_name'): html += '\n<p><b>Also known as:</b>&thinsp;'+ d['alt_name'] + '&thinsp;</p>' if d.has_key('birth_place'): html += '\n<p><b>Place of birth:</b>&thinsp;'+ d['birth_place'] + '&thinsp;</p>' return html def make_dates_html(d): templ = '<p class="lifespan">DOB&thinsp;&ndash;&thinsp;DOD</p>' if d.has_key('DOB'): templ = templ.replace('DOB', show_date( d['DOB'] ) ) else: templ = templ.replace('DOB', '?' ) if d.has_key('DOD'): templ = templ.replace('DOD', show_date( d['DOD'] ) ) else: if d.has_key('DOB'): templ = templ.replace('DOD', '--' ) else: templ = templ.replace('DOD', '?' ) return templ def make_dates_plain_html(d): templ = 'DOB&nbsp;-&nbsp; DOD<br>' if d.has_key('DOB') and d.has_key('DOD'): for k in 'DOB DOD'.split(): templ = templ.replace(k, show_date( getf(d,k) ) ) return templ else: return '' def top_links_html(d): html = '' for link in d.get('link_ls',[]) + d.get('Homepage',[]): link = enhance_link(link) if link.get('status','') == 'top': html += link2html(link) + "<br>" return html # I've added a fallback mechanism in case, in case there is no comma. def first_first(name): # print "NAME: " + name ret = '' try: last,first = name.split(',',1) ret = first.strip() + ' ' + last.strip() except: ret = name return ret def add_html(d): # pprint (d) d['heading_html'] = unicode('<h2>' + first_first(d['complete_name']) + '</h2>','utf-8') d['basic_bio_html'] = make_basic_bio_html(d) d['photo_html'] = make_images_html(d) d['dates_html'] = make_dates_html(d) d['dates_plain_html'] = make_dates_plain_html(d) d['top_links_html'] = top_links_html(d) # print "Name: "+d['heading_html'] content = '' content += educ_html(d) content += career_html(d) content += honors_html(d) content += service_html(d) content += member_html(d) content += bio_html(d) # content += biblio_html(d) #content += source_data_html(d) d['body_html'] = content d['html'] = d['heading_html'] + d['photo_html'] + d['basic_bio_html'] + d['dates_html'] + d['top_links_html'] + d['body_html'] return d def make_all(): #infile = open('celebratio_cv.html') #infile = open('/accounts/projects/jpopen/apache/htdocs/tmp/imslegacy/celebratio_cv_template.html') out_dir = global_vars['published_files_directory'] infile = open('./celebratio_cv_template.html') html = infile.read() html = unicode(html,'utf-8') #Xh2topX Xh3topX XbodytitleX XtestdisplayX XasideX XcontentX data = text_json.read_latex("blackwell_new") #data = read_ims_legacy('ims_legacy') #print data['link_ls'] #print data['records'] print 'Read ' + str(len(data['records'])) + ' records from ims_legacy.txt' global_vars['link_ls'] = data['link_ls'] global_vars['books'] = data['books'] #print global_vars['link_ls'] #for d in data['records']: #print len(d) #SHOULD BE A DICT records = [ add_html(d) for d in data['records'] ] tot = len(records) print 'Making xml for ' + str(tot) + ' records' #make_xml(records) content = '' #finish = False for d in records: #content = '' name = d['complete_name'] content += d['html'] content += '<hr><br><br>' filename = name + '.html' f = open(filename, 'w') f.write(content.encode('utf-8')) f.close() print "made new file: " + filename html = html.replace('$covertext$',content) html = html.replace('$title$','IMS Scientific Legacy') #tmpfname = 'tmp/imslegacy/html/test_images.html' #tmpfname = 'tmp/imslegacy/celebratio.html' tmpfname = out_dir + 'celebratio_three.html' outfile = open(tmpfname , 'w') outfile.write(html.encode('utf-8')) outfile.close() #print 'wrote to http://bibserver.berkeley.edu/' + tmpfname print 'wrote ' + filename def enhance_bio(d): ref = d['ref'] ref = ref.replace('author>','au>') ref = ref.replace('year>','y>') ref = ref.replace('journal>','j>') ref = ref.replace('title>','t>') ref = ref.replace('bt>','t>') try: ayt, howpublished = ref.split('</t>',1) howpublished = ' '.join(howpublished.split()) if howpublished[0] == '.': howpublished = howpublished[1:].strip() d['howpublished'] = howpublished except: d['howpublished'] = ref try: title = ref.split('<t>',1)[1].split('</t>')[0].strip() except: title = '' if title: d['title'] = title else: d['title'] = 'Untitled' try: author = ref.split('<au>',1)[1].split('</au>')[0].strip() except: author = '' if author: d['author'] = author else: d['author'] = 'Anonymous' try: year = ref.split('<y>',1)[1].split('</y>')[0].strip() except: year = '' if not year: try: year = ref.split('(',1)[1].split(')')[0] except: year = '' if not year: year = get_year_from_str(ref) if year: d['year'] = year else: d['year'] = 'year?' return d def parse(text,category): #data = read_ims_legacy('ims_legacy_6') bios = text.split(':' + category) p = bios[0] for b in bios[1:]: try: b,rest = b.split('\n:',1) rest = '\n:' + rest except: rest = '' d = read_bibitem(b) d = enhance_bio(d) t = '' t += ':' + category + ' ' + d['top_line'] + '\n' t += '\t' + ' '.join(d.get('title','Untitled').split()) + '\n' t += '\t' + ' '.join(d.get('author','Anonymous').split()) + '\n' t += '\t' + ' '.join(d.get('howpublished','howpublished?').split()) + '\n' t += '\t' + ' '.join(d.get('year','year?').split()) + '\n' for link in d.get('link_ls',[]): t += '\t' + link['href'] + ' ' + link.get('anchor','') + '\n' t+= '\t:ref ' + d['ref'] + '\n' p += t p += rest return p def parse_all(): categories = ''' Biography Archive Art_Exhibition Collected_Works DVD Endowment Festschrift Memoir Oral_History Selected_Works Symposium Death_Notice In_Memoriam Obituary '''.split() infile = open('ims_legacy_7.txt') txt = infile.read() txt = unicode(txt, 'utf-8') for c in categories[0:]: txt = parse(txt,c) txt = txt.encode('utf-8') outfile = open('xxims_legacy.txt','w') outfile.write(txt) outfile.close() def missing_emails(): data = read_ims_legacy() for d in data['records'][0:]: if not d.get('Deceased',[]): if not d.get('Email',[]): print d['record_txt'].encode('utf-8') def make_one(filename): html = "" data = text_json.read_latex(filename) global_vars['books'] = data['books'] records = [ add_html(d) for d in data['records'] ] tot = len(records) # print 'Making xml for ' + str(tot) + ' records' for d in records: content = '' name = d['complete_name'] content += d['html'] content += '<hr><br><br>' html = content # print html return html if __name__ == '__main__': make_all() publish_ims_legacy() #missing_emails()
37.833241
325
0.511534
fce77e9fb7a177f20a71fb337c8eb9e006e192f9
60
py
Python
udemy/python-video-workbook/my_progress/060.py
djrgit/coursework
2a91da9b76cb1acbd12f3d8049f15d2e71f475a1
[ "MIT" ]
null
null
null
udemy/python-video-workbook/my_progress/060.py
djrgit/coursework
2a91da9b76cb1acbd12f3d8049f15d2e71f475a1
[ "MIT" ]
null
null
null
udemy/python-video-workbook/my_progress/060.py
djrgit/coursework
2a91da9b76cb1acbd12f3d8049f15d2e71f475a1
[ "MIT" ]
3
2018-08-13T23:14:22.000Z
2019-01-11T22:50:07.000Z
# Exercise 60 - Infinite Printer while True: print('Hello')
20
32
0.733333
f5e9588d5b8f7deb4bea91935ca7cd4a8a3a9b2a
19,929
py
Python
tests/Hydro/RayleighTaylor/RT-const-rho.py
as1m0n/spheral
4d72822f56aca76d70724c543d389d15ff6ca48e
[ "BSD-Source-Code", "BSD-3-Clause-LBNL", "FSFAP" ]
19
2020-10-21T01:49:17.000Z
2022-03-15T12:29:17.000Z
tests/Hydro/RayleighTaylor/RT-const-rho.py
markguozhiming/spheral
bbb982102e61edb8a1d00cf780bfa571835e1b61
[ "BSD-Source-Code", "BSD-3-Clause-LBNL", "FSFAP" ]
41
2020-09-28T23:14:27.000Z
2022-03-28T17:01:33.000Z
tests/Hydro/RayleighTaylor/RT-const-rho.py
markguozhiming/spheral
bbb982102e61edb8a1d00cf780bfa571835e1b61
[ "BSD-Source-Code", "BSD-3-Clause-LBNL", "FSFAP" ]
5
2020-11-03T16:14:26.000Z
2022-01-03T19:07:24.000Z
#ATS:test(SELF, "--CRKSPH=True --nx1=128 --nx2=128 --ny1=256 --ny2=512 --cfl=0.25 --Cl=1.0 --Cq=1.0 --clearDirectories=False --filter=0 --nPerh=1.51 --serialDump=True", label="RT CRK, nPerh=1.5", np=16) #ATS:test(SELF, "--CRKSPH=True --nx1=128 --nx2=128 --ny1=256 --ny2=512 --cfl=0.25 --Cl=1.0 --Cq=1.0 --clearDirectories=False --filter=0 --nPerh=2.01 --serialDump=True", label="RT CRK, nPerh=2.0", np=16) #ATS:test(SELF, "--CRKSPH=False --nx1=128 --nx2=128 --ny1=256 --ny2=512 --cfl=0.25 --Cl=1.0 --Cq=1.0 --clearDirectories=False --filter=0 --nPerh=1.51 --serialDump=True", label="RT Spheral, nPerh=1.5", np=16) #ATS:test(SELF, "--CRKSPH=False --nx1=128 --nx2=128 --ny1=256 --ny2=512 --cfl=0.25 --Cl=0.0 --Cq=0.0 --clearDirectories=False --filter=0 --nPerh=1.51 --serialDump=True", label="RT Spheral-NoQ, nPerh=1.5", np=16) #ATS:test(SELF, "--CRKSPH=False --nx1=128 --nx2=128 --ny1=256 --ny2=512 --cfl=0.25 --Cl=0.0 --Cq=0.0 --clearDirectories=False --filter=0 --nPerh=1.51 --serialDump=True --compatibleEnergy=False", label="RT TSPH-NoQ, nPerh=1.5", np=16) #------------------------------------------------------------------------------- # This is the basic Rayleigh-Taylor Problem #------------------------------------------------------------------------------- import shutil from math import * from Spheral2d import * from SpheralTestUtilities import * from SpheralGnuPlotUtilities import * from findLastRestart import * from GenerateNodeDistribution2d import * from CompositeNodeDistribution import * from CentroidalVoronoiRelaxation import * import mpi import DistributeNodes title("Rayleigh-Taylor test problem in 2D") class ExponentialDensity: def __init__(self, y1, rho0, alpha): self.y1 = y1 self.rho0 = rho0 self.alpha = alpha return def __call__(self, r): return self.rho0*exp(self.alpha*(r.y - self.y1)) #------------------------------------------------------------------------------- # Generic problem parameters #------------------------------------------------------------------------------- commandLine(nx1 = 50, ny1 = 100, nx2 = 50, ny2 = 200, reso = 1, # optional scale modifier for the resolution in all directions rho0 = 1.0, eps0 = 1.0, x0 = 0.0, x1 = 1.0, y0 = 0.0, y1 = 2.0, # position of the interface y2 = 6.0, P0 = 1.0, # pressure at top of simulation (y2) freq = 1.0, alpha = 0.01, # amplitude of displacement beta = 5.0, # speed at which displacement decays away from midline S = 2.0, # density jump at surface g0 = -2.0, # gravitational acceleration gamma = 5.0/3.0, mu = 1.0, nPerh = 1.51, SVPH = False, CRKSPH = False, ASPH = False, SPH = True, # This just chooses the H algorithm -- you can use this with CRKSPH for instance. filter = 0.0, # CRKSPH filtering Qconstructor = MonaghanGingoldViscosity, #Qconstructor = TensorMonaghanGingoldViscosity, linearConsistent = False, fcentroidal = 0.0, fcellPressure = 0.0, boolReduceViscosity = False, nh = 5.0, aMin = 0.1, aMax = 2.0, Qhmult = 1.0, Cl = 1.0, Cq = 1.0, linearInExpansion = False, Qlimiter = False, balsaraCorrection = False, epsilon2 = 1e-2, hmin = 0.0001, hmax = 0.5, hminratio = 0.1, cfl = 0.5, useVelocityMagnitudeForDt = False, XSPH = False, epsilonTensile = 0.0, nTensile = 8, IntegratorConstructor = CheapSynchronousRK2Integrator, goalTime = 5.0, steps = None, vizCycle = None, vizTime = 0.01, dt = 0.0001, dtMin = 1.0e-8, dtMax = 0.1, dtGrowth = 2.0, maxSteps = None, statsStep = 10, smoothIters = 0, HUpdate = IdealH, domainIndependent = False, rigorousBoundaries = False, dtverbose = False, densityUpdate = RigorousSumDensity, # VolumeScaledDensity, compatibleEnergy = True, # <--- Important! rigorousBoundaries does not work with the compatibleEnergy algorithm currently. gradhCorrection = False, useVoronoiOutput = False, clearDirectories = False, restoreCycle = None, restartStep = 100, redistributeStep = 500, checkRestart = False, dataDir = "dumps-Rayleigh-Taylor-2d-constRho", outputFile = "None", comparisonFile = "None", serialDump = False, #whether to dump a serial ascii file at the end for viz bArtificialConduction = False, arCondAlpha = 0.5, ) nx1 = nx1*reso nx2 = nx2*reso ny1 = ny1*reso ny2 = ny2*reso #------------------------------------------------------------------------------- # Computing and printing the growth rate #------------------------------------------------------------------------------- atwood = (S-1.0)/(S+1.0) zdot = sqrt(freq*atwood*abs(g0)) print "\n\n\nzdot = exp({0:3.3e}*t) <-<-<-<-<-<-<-<-<-<------\n\n\n".format(zdot) # Decide on our hydro algorithm. if SVPH: if ASPH: HydroConstructor = ASVPHFacetedHydro else: HydroConstructor = SVPHFacetedHydro elif CRKSPH: if ASPH: HydroConstructor = ACRKSPHHydro else: HydroConstructor = CRKSPHHydro else: if ASPH: HydroConstructor = ASPHHydro else: HydroConstructor = SPHHydro dataDir = os.path.join(dataDir, "S=%g" % (S), "CRKSPH=%s" % CRKSPH, str(HydroConstructor).split("'")[1].split(".")[-1], "densityUpdate=%s" % (densityUpdate), "XSPH=%s" % XSPH, "filter=%s" % filter, "%s-Cl=%g-Cq=%g" % (str(Qconstructor).split("'")[1].split(".")[-1], Cl, Cq), "%ix%i" % (nx1, ny1 + ny2), "nPerh=%g-Qhmult=%g" % (nPerh, Qhmult)) restartDir = os.path.join(dataDir, "restarts") vizDir = os.path.join(dataDir, "visit") restartBaseName = os.path.join(restartDir, "Rayleigh-Taylor-2d") vizBaseName = "Rayleigh-Taylor-2d" #------------------------------------------------------------------------------- # CRKSPH Switches to ensure consistency #------------------------------------------------------------------------------- if CRKSPH: Qconstructor = CRKSPHMonaghanGingoldViscosity #------------------------------------------------------------------------------- # Check if the necessary output directories exist. If not, create them. #------------------------------------------------------------------------------- import os, sys if mpi.rank == 0: if clearDirectories and os.path.exists(dataDir): shutil.rmtree(dataDir) if not os.path.exists(restartDir): os.makedirs(restartDir) if not os.path.exists(vizDir): os.makedirs(vizDir) mpi.barrier() #------------------------------------------------------------------------------- # If we're restarting, find the set of most recent restart files. #------------------------------------------------------------------------------- if restoreCycle is None: restoreCycle = findLastRestart(restartBaseName) #------------------------------------------------------------------------------- # Material properties. #------------------------------------------------------------------------------- eos = GammaLawGasMKS(gamma, mu) #------------------------------------------------------------------------------- # Interpolation kernels. #------------------------------------------------------------------------------- WT = TableKernel(BSplineKernel(), 1000) WTPi = TableKernel(BSplineKernel(), 1000, Qhmult) output("WT") output("WTPi") kernelExtent = WT.kernelExtent #------------------------------------------------------------------------------- # Make the NodeList. #------------------------------------------------------------------------------- nodes1 = makeFluidNodeList("High density gas", eos, hmin = hmin, hmax = hmax, hminratio = hminratio, nPerh = nPerh) nodes2 = makeFluidNodeList("Low density gas", eos, hmin = hmin, hmax = hmax, hminratio = hminratio, nPerh = nPerh) nodeSet = [nodes1, nodes2] for nodes in nodeSet: output("nodes.name") output("nodes.hmin") output("nodes.hmax") output("nodes.hminratio") output("nodes.nodesPerSmoothingScale") #------------------------------------------------------------------------------- # Set the node properties. #------------------------------------------------------------------------------- if restoreCycle is None: generator1 = GenerateNodeDistribution2d(nx1, ny1, rho = rho0/S, distributionType = "lattice", xmin = (x0,y0), xmax = (x1,y1), nNodePerh = nPerh, SPH = SPH) generator2 = GenerateNodeDistribution2d(nx2, ny2, rho = rho0, distributionType = "lattice", xmin = (x0,y1), xmax = (x1,y2), nNodePerh = nPerh, SPH = SPH) if mpi.procs > 1: from VoronoiDistributeNodes import distributeNodes2d else: from DistributeNodes import distributeNodes2d distributeNodes2d((nodes1, generator1), (nodes2, generator2)) # A helpful method for setting y displacement. def dy(ri): thpt = alpha*cos(2.0*pi*ri.x*freq) return thpt*exp(-beta*abs(ri.y-y1)) # Finish initial conditions. eps1 = nodes1.specificThermalEnergy() eps2 = nodes2.specificThermalEnergy() pos1 = nodes1.positions() pos2 = nodes2.positions() rho1 = rho0/S rho2 = rho0 P01 = P0 + g0*(y1-y2)*(rho2-rho1) P02 = P0 for i in xrange(nodes1.numInternalNodes): y = pos1[i].y eps1[i] = (P01+g0*rho1*(y-y2))/((gamma-1.0)*rho1) for i in xrange(nodes2.numInternalNodes): y = pos2[i].y eps2[i] = (P02+g0*rho2*(y-y2))/((gamma-1.0)*rho2) #nodes1.specificThermalEnergy(ScalarField("tmp", nodes1, eps0)) #nodes2.specificThermalEnergy(ScalarField("tmp", nodes2, eps0/S)) for nodes in (nodes1,nodes2): pos = nodes.positions() vel = nodes.velocity() for i in xrange(nodes.numInternalNodes): pos[i].y += dy(pos[i]) #------------------------------------------------------------------------------- # Construct a DataBase to hold our node list #------------------------------------------------------------------------------- db = DataBase() output("db") for nodes in nodeSet: db.appendNodeList(nodes) output("db.numNodeLists") output("db.numFluidNodeLists") #------------------------------------------------------------------------------- # Construct the artificial viscosity. #------------------------------------------------------------------------------- q = Qconstructor(Cl, Cq, linearInExpansion) q.epsilon2 = epsilon2 q.limiter = Qlimiter q.balsaraShearCorrection = balsaraCorrection output("q") output("q.Cl") output("q.Cq") output("q.epsilon2") output("q.limiter") output("q.balsaraShearCorrection") output("q.linearInExpansion") output("q.quadraticInExpansion") #------------------------------------------------------------------------------- # Construct the hydro physics object. #------------------------------------------------------------------------------- if SVPH: hydro = HydroConstructor(W = WT, Q = q, cfl = cfl, useVelocityMagnitudeForDt = useVelocityMagnitudeForDt, compatibleEnergyEvolution = compatibleEnergy, densityUpdate = densityUpdate, XSVPH = XSPH, linearConsistent = linearConsistent, generateVoid = False, HUpdate = HUpdate, fcentroidal = fcentroidal, fcellPressure = fcellPressure, xmin = Vector(-2.0, -2.0), xmax = Vector(3.0, 3.0)) # xmin = Vector(x0 - 0.5*(x2 - x0), y0 - 0.5*(y2 - y0)), # xmax = Vector(x2 + 0.5*(x2 - x0), y2 + 0.5*(y2 - y0))) elif CRKSPH: hydro = HydroConstructor(W = WT, WPi = WTPi, Q = q, filter = filter, cfl = cfl, useVelocityMagnitudeForDt = useVelocityMagnitudeForDt, compatibleEnergyEvolution = compatibleEnergy, XSPH = XSPH, densityUpdate = densityUpdate, HUpdate = HUpdate) else: hydro = HydroConstructor(W = WT, WPi = WTPi, Q = q, cfl = cfl, useVelocityMagnitudeForDt = useVelocityMagnitudeForDt, compatibleEnergyEvolution = compatibleEnergy, gradhCorrection = gradhCorrection, XSPH = XSPH, densityUpdate = densityUpdate, HUpdate = HUpdate, epsTensile = epsilonTensile, nTensile = nTensile) output("hydro") output("hydro.kernel()") output("hydro.PiKernel()") output("hydro.cfl") output("hydro.compatibleEnergyEvolution") output("hydro.densityUpdate") output("hydro.HEvolution") packages = [hydro] #------------------------------------------------------------------------------- # Construct the MMRV physics object. #------------------------------------------------------------------------------- if boolReduceViscosity: evolveReducingViscosityMultiplier = MorrisMonaghanReducingViscosity(q,nh,aMin,aMax) packages.append(evolveReducingViscosityMultiplier) #------------------------------------------------------------------------------- # Construct the Artificial Conduction physics object. #------------------------------------------------------------------------------- if bArtificialConduction: #q.reducingViscosityCorrection = True ArtyCond = ArtificialConduction(WT,arCondAlpha) packages.append(ArtyCond) #------------------------------------------------------------------------------- # Construct the gravitational acceleration object. #------------------------------------------------------------------------------- gravity1 = ConstantAcceleration2d(Vector2d(0.0, g0), nodes1) gravity2 = ConstantAcceleration2d(Vector2d(0.0, g0), nodes2) packages.append(gravity1) packages.append(gravity2) #------------------------------------------------------------------------------- # Create boundary conditions. #------------------------------------------------------------------------------- xp1 = Plane(Vector(x0, y0), Vector( 1.0, 0.0)) xp2 = Plane(Vector(x1, y0), Vector(-1.0, 0.0)) yp1 = Plane(Vector(x0, y0), Vector(0.0, 1.0)) yp2 = Plane(Vector(x0, y2), Vector(0.0, -1.0)) xbc = PeriodicBoundary(xp1, xp2) #ybc = PeriodicBoundary(yp1, yp2) ybc1 = ReflectingBoundary(yp1) ybc2 = ReflectingBoundary(yp2) bcSet = [xbc, ybc1, ybc2] #bcSet = [xbc,ybc1] for bc in bcSet: for p in packages: p.appendBoundary(bc) #------------------------------------------------------------------------------- # Construct a time integrator, and add the physics packages. #------------------------------------------------------------------------------- integrator = IntegratorConstructor(db) for p in packages: integrator.appendPhysicsPackage(p) integrator.lastDt = dt integrator.dtMin = dtMin integrator.dtMax = dtMax integrator.dtGrowth = dtGrowth integrator.domainDecompositionIndependent = domainIndependent integrator.verbose = dtverbose integrator.rigorousBoundaries = rigorousBoundaries output("integrator") output("integrator.havePhysicsPackage(hydro)") output("integrator.lastDt") output("integrator.dtMin") output("integrator.dtMax") output("integrator.dtGrowth") output("integrator.domainDecompositionIndependent") output("integrator.rigorousBoundaries") output("integrator.verbose") #------------------------------------------------------------------------------- # Make the problem controller. #------------------------------------------------------------------------------- if useVoronoiOutput: import SpheralVoronoiSiloDump vizMethod = SpheralVoronoiSiloDump.dumpPhysicsState else: import SpheralPointmeshSiloDump vizMethod = SpheralPointmeshSiloDump.dumpPhysicsState control = SpheralController(integrator, WT, initializeDerivatives = True, statsStep = statsStep, restartStep = restartStep, restartBaseName = restartBaseName, restoreCycle = restoreCycle, redistributeStep = redistributeStep, vizMethod = vizMethod, vizBaseName = vizBaseName, vizDir = vizDir, vizStep = vizCycle, vizTime = vizTime, SPH = SPH) output("control") #------------------------------------------------------------------------------- # Advance to the end time. #------------------------------------------------------------------------------- if not steps is None: control.step(steps) else: control.advance(goalTime, maxSteps) control.updateViz(control.totalSteps, integrator.currentTime, 0.0) control.dropRestartFile() if serialDump: procs = mpi.procs rank = mpi.rank serialData = [] i,j = 0,0 for i in xrange(procs): for nodeL in nodeSet: if rank == i: for j in xrange(nodeL.numInternalNodes): serialData.append([nodeL.positions()[j],3.0/(nodeL.Hfield()[j].Trace()),nodeL.mass()[j],nodeL.massDensity()[j],nodeL.specificThermalEnergy()[j]]) serialData = mpi.reduce(serialData,mpi.SUM) if rank == 0: f = open(dataDir + "/serialDump.ascii",'w') for i in xrange(len(serialData)): f.write("{0} {1} {2} {3} {4} {5} {6} {7}\n".format(i,serialData[i][0][0],serialData[i][0][1],0.0,serialData[i][1],serialData[i][2],serialData[i][3],serialData[i][4])) f.close()
39.778443
234
0.461639
4746981218592920a10201e52490c67bf9063e83
22,685
py
Python
Code/study_code.py
mit-ll/DephyBootInterface
0eb31d2c723f1567b63777163ad45c9b06fb5c43
[ "BSD-3-Clause" ]
null
null
null
Code/study_code.py
mit-ll/DephyBootInterface
0eb31d2c723f1567b63777163ad45c9b06fb5c43
[ "BSD-3-Clause" ]
null
null
null
Code/study_code.py
mit-ll/DephyBootInterface
0eb31d2c723f1567b63777163ad45c9b06fb5c43
[ "BSD-3-Clause" ]
null
null
null
# DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited. # # This material is based upon work supported by the Under Secretary of Defense for Research and Engineering under Air Force Contract No. FA8702-15-D-0001. Any opinions, findings, conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the Under Secretary of Defense for Research and Engineering. # # © 2020 Massachusetts Institute of Technology. # # The software/firmware is provided to you on an As-Is basis # # Delivered to the U.S. Government with Unlimited Rights, as defined in DFARS Part 252.227-7013 or 7014 (Feb 2014). Notwithstanding any copyright notice, U.S. Government rights in this work are defined by DFARS 252.227-7013 or DFARS 252.227-7014 as detailed above. Use of this work other than as specifically authorized by the U.S. Government may violate any copyrights that exist in this work. # # P. Stegall 2020 # !!! # Make sure to change the port to match what is in the tcp_server_gui.py or what is controlling the system. Also change the ip address to the computer that is handling the controls. # !!! import os, sys thisdir = os.path.dirname(os.path.abspath(__file__)) sys.path.append(thisdir) from pyFlexsea import * from pyFlexsea_def import * from fxUtil import * from exo_defs import * from sync_led_def import * import time from tcp_handler_def import * from study_one import * from study_zero import * HOST = <IP_ADDRESS_OF_THE_HOST> # example keep the quotes : '192.168.1.1' PORT = <PORT_THE_HOST_IS_LISTENING_TO> # example: 67876 STUDY_IDX = 0 TRIAL_IDX = 1 MSG_IDX = 2 USER_MASS_IDX = MSG_IDX + 1 PROGRAM_EXIT_MSG = 255 READY_FOR_TRIAL_MSG = 254 STOP_CURRENT_TRIAL_MSG = 254 CHECK_IN_MSG = 253 SYNC_FINISHED_END_MSG = 252 TRIAL_EXIT_MSG = 251 TRIAL_BEGIN_MSG = 250 SYNC_FINISHED_BEGINNING_MSG = 249 TREADMILL_STOP_MSG = 252 ZEROING_CURRENT = 1000 # mA def zero_boots (leftExo,rightExo) : # TODO: Change this so it is speed controlled till a current limit is hit. # the gains need to be defined before this is called leftExo.set_controller(CTRL_CURRENT) rightExo.set_controller(CTRL_CURRENT) leftExo.set_exo_current(ZEROING_CURRENT) rightExo.set_exo_current(ZEROING_CURRENT) time.sleep(1) # wait a second # not sure if this will update the original encoder offsets or if this is a new instance of the boots. leftExo.zero_encoders() rightExo.zero_encoders() print("zeroBoots : leftExo.ankle_ticks_offset = " + str(leftExo.ankle_ticks_offset) ) print("zeroBoots : rightExo.ankle_ticks_offset = " + str(rightExo.ankle_ticks_offset) ) leftExo.set_exo_current(0) rightExo.set_exo_current(0) leftExo.set_controller(CTRL_NONE) rightExo.set_controller(CTRL_NONE) def zero_boot (exo) : # the gains need to be defined before this is called exo.set_controller(CTRL_CURRENT) exo.set_exo_current(ZEROING_CURRENT) time.sleep(2) # wait a second # not sure if this will update the original encoder offsets or if this is a new instance of the boots. exo.zero_encoders() print("zeroBoots : exo.ankle_ticks_offset = " + str(exo.ankle_ticks_offset) ) exo.set_exo_current(0) exo.set_controller(CTRL_NONE) def startStopCapture(sync_light, leftExo, rightExo) : print('starting sync pattern') # low for 1 s capture both ends sync_light.set_state(0) leftExo.read_data() rightExo.read_data() time.sleep(sync_light.period) leftExo.read_data() rightExo.read_data() time.sleep(.001) # high for 2 s capture both ends sync_light.set_state(1) leftExo.read_data() rightExo.read_data() time.sleep(2 * sync_light.period) leftExo.read_data() rightExo.read_data() time.sleep(.001) # low for 1 s capture both ends sync_light.set_state(0) leftExo.read_data() rightExo.read_data() time.sleep(sync_light.period) leftExo.read_data() rightExo.read_data() def trial_simple_start (sync_light, leftExo, rightExo, com, study_num, trial_num): # restart trial timer # start new recording file leftExo.data_file = leftExo.log_init() rightExo.data_file = rightExo.log_init() startStopCapture(sync_light, leftExo, rightExo) com.send_recv(send_msg = [study_num, trial_num, SYNC_FINISHED_BEGINNING_MSG]) time.sleep(.010) # pause for a bit to let messages pass com.send_recv(send_msg = [study_num, trial_num, TRIAL_BEGIN_MSG]) com.send_msg = [study_num, trial_num, CHECK_IN_MSG] def trial_simple_end (sync_light, leftExo, rightExo, com, study_num, trial_num): com.send_recv(send_msg = [study_num, trial_num, TRIAL_EXIT_MSG]); com.send_msg = [study_num, trial_num, CHECK_IN_MSG] # wait for the treadmill to stop if program exit received go strait to exit while com.recv_msg[MSG_IDX] != TREADMILL_STOP_MSG and (com.recv_msg[MSG_IDX] != PROGRAM_EXIT_MSG): com.heartbeat() sync_light.check() startStopCapture(sync_light, leftExo, rightExo) com.send_recv(send_msg = [study_num, trial_num, SYNC_FINISHED_END_MSG]); sync_light.set_state(1) com.send_msg = [0, 0, READY_FOR_TRIAL_MSG]; # this just preps for the next def main(): # socket_host = socket.socket(socket.AF_INET, socket.SOCK_STREAM) # socket_send_msg = bytearray([0, 254]) # socket_recv_msg = None coms = TcpHandler(port = PORT, host = HOST) # coms.send_recv() sync_led = SyncLed(period = 2) scriptPath = os.path.dirname(os.path.abspath(__file__)) fpath = scriptPath + '/com.txt' ports, baudRate = loadPortsFromFile(fpath) print('Loaded ports: ' + str(ports)) print('Baud Rate: ' + str(baudRate)) # must turn on left boot then right boot. Otherwise this will break. # TODO: find a better solution for this but currently we don't have access to boot specific IDs. idx = 0 print('creating left boot') left_boot = ExoBoot (LEFT, ports[0], int(baudRate), idx,shouldExoLog = False, shouldLog = False, frequency = 1000) # recent change the first line is now the baud rate idx +=1 right_boot = ExoBoot (RIGHT, ports[1], int(baudRate), idx, shouldExoLog = False, shouldLog = False, frequency = 1000) if False : # ( (not left_boot.id) or (not right_boot.id) ): print("At least one boot is missing") else : # TODO: Add in gains for current and position left_boot.define_current_gains(100,32) right_boot.define_current_gains(100,32) left_boot.define_position_gains(10,0) right_boot.define_position_gains(10,0) zero_boots(left_boot, right_boot); left_boot.should_log = True right_boot.should_log = True #zero_boot(left_boot); #print("main : left_boot.ankle_ticks_offset = " + str(left_boot.ankle_ticks_offset ) ) left_boot.set_controller(CTRL_CURRENT) right_boot.set_controller(CTRL_CURRENT) # model = TorquePredictionModelTFLite(offline_testing=False) # torque_pred_pipeline = TorquePredictionPipeline(model) start_time = 0 #startStopCapture(sync_led, left_boot, right_boot) # left_boot.init_collins_profile(mass = 100, ramp_start_percent_gait = 0, onset_percent_gait = 27.1, peak_percent_gait = 52.4, stop_percent_gait = 62.7, onset_torque = 2, normalized_peak_torque = .25) # right_boot.init_collins_profile(mass = 100, ramp_start_percent_gait = 0, onset_percent_gait = 27.1, peak_percent_gait = 52.4, stop_percent_gait = 62.7, onset_torque = 2, normalized_peak_torque = .25) # left_boot.tactor_trigger_percent = 25 # right_boot.tactor_trigger_percent = 25 coms.send_recv(send_msg = [0, 0, READY_FOR_TRIAL_MSG]) sync_led.set_state(1) user_mass = 0 try: while coms.recv_msg[MSG_IDX] != PROGRAM_EXIT_MSG : # put main code loop here it will stop with a CTRL+c # while ((time.monotonic()-start_time) <= (1/left_boot.frequency)) : # if you run this loop faster than the dephy frequency the cue will fill up and it will take a long time shut down and to have the data come in. # a=0 # start_time = time.monotonic() coms.heartbeat() if coms.recv_msg[USER_MASS_IDX] != user_mass : user_mass = coms.recv_msg[USER_MASS_IDX] # Study 0 ------------------------------------------------------------------------------------ if coms.recv_msg[STUDY_IDX] == 0 : coms.send_msg[STUDY_IDX] = 0 if coms.recv_msg[TRIAL_IDX] == 0 and coms.recv_msg[MSG_IDX] == TRIAL_BEGIN_MSG: try : if user_mass != -1 : s0 = STUDY0( user_mass, left_boot, right_boot) # coms.send_msg[MSG_IDX] = TRIAL_EXIT_MSG coms.send_recv(send_msg = [0, 0, TRIAL_EXIT_MSG]); coms.send_msg = [0, 0, READY_FOR_TRIAL_MSG]; # this just preps for the next heartbeat time.sleep(3) # this is just to give me a chance to change values with packetsender else : print('Study 0 initialization called but user mass not set') except IndexError : print('Study 0 initialization index error') elif coms.recv_msg[TRIAL_IDX] == 1 and coms.recv_msg[MSG_IDX] == TRIAL_BEGIN_MSG: print('Trial 1') trial_simple_start (sync_led, left_boot, right_boot, coms, 0, 1) trial_running = s0.trial1(restart_trial = True) while ( trial_running and (coms.recv_msg[MSG_IDX] != STOP_CURRENT_TRIAL_MSG) and (coms.recv_msg[MSG_IDX] != PROGRAM_EXIT_MSG)) : #print('S0T1 : in Loop') time.sleep(1/(2*left_boot.frequency)) sync_led.check() coms.heartbeat() trial_running = s0.trial1() trial_simple_end (sync_led, left_boot, right_boot, coms, 0, 1) elif coms.recv_msg[TRIAL_IDX] == 2 and coms.recv_msg[MSG_IDX] == TRIAL_BEGIN_MSG: sync_led.set_state(not sync_led.get_state() ) # coms.send_msg[MSG_IDX] = 251 coms.send_recv(send_msg = [0, 0, TRIAL_EXIT_MSG]); coms.send_msg = [0, 0, READY_FOR_TRIAL_MSG]; # this just preps for the next heartbeat elif coms.recv_msg[TRIAL_IDX] == 3 and coms.recv_msg[MSG_IDX] == TRIAL_BEGIN_MSG: zero_boots(left_boot,right_boot) # coms.send_msg[MSG_IDX] = 251 coms.send_recv(send_msg = [0, 0, TRIAL_EXIT_MSG]); coms.send_msg = [0, 0, READY_FOR_TRIAL_MSG]; # this just preps for the next heartbeat elif coms.recv_msg[TRIAL_IDX] == 4 and coms.recv_msg[MSG_IDX] == TRIAL_BEGIN_MSG: zero_boot(left_boot) # coms.send_msg[MSG_IDX] = 251 coms.send_recv(send_msg = [0, 0, TRIAL_EXIT_MSG]); coms.send_msg = [0, 0, READY_FOR_TRIAL_MSG]; # this just preps for the next heartbeat elif coms.recv_msg[TRIAL_IDX] == 5 and coms.recv_msg[MSG_IDX] == TRIAL_BEGIN_MSG: zero_boot(right_boot) # coms.send_msg[MSG_IDX] = 251 coms.send_recv(send_msg = [0, 0, TRIAL_EXIT_MSG]); coms.send_msg = [0, 0, READY_FOR_TRIAL_MSG]; # this just preps for the next heartbeat elif coms.recv_msg[TRIAL_IDX] == 6 and coms.recv_msg[MSG_IDX] == TRIAL_BEGIN_MSG: left_boot.set_exo_current(0) right_boot.set_exo_current(0) left_boot.set_controller(CTRL_NONE) right_boot.set_controller(CTRL_NONE) # coms.send_msg[MSG_IDX] = 251 coms.send_recv(send_msg = [0, 0, TRIAL_EXIT_MSG]); coms.send_msg = [0, 0, READY_FOR_TRIAL_MSG]; # this just preps for the next heartbeat elif coms.recv_msg[TRIAL_IDX] == 7 and coms.recv_msg[MSG_IDX] == TRIAL_BEGIN_MSG: left_boot.set_exo_current(0) left_boot.set_controller(CTRL_NONE) # coms.send_msg[MSG_IDX] = 251 coms.send_recv(send_msg = [0, 0, TRIAL_EXIT_MSG]); coms.send_msg = [0, 0, READY_FOR_TRIAL_MSG]; # this just preps for the next heartbeat elif coms.recv_msg[TRIAL_IDX] == 8 and coms.recv_msg[MSG_IDX] == TRIAL_BEGIN_MSG: right_boot.set_exo_current(0) right_boot.set_controller(CTRL_NONE) # coms.send_msg[MSG_IDX] = 251 coms.send_recv(send_msg = [0, 0, TRIAL_EXIT_MSG]); coms.send_msg = [0, 0, READY_FOR_TRIAL_MSG]; # this just preps for the next heartbeat # Study 1 ------------------------------------------------------------------------------------ elif coms.recv_msg[STUDY_IDX] == 1 : coms.send_msg[STUDY_IDX] = 1 if coms.recv_msg[TRIAL_IDX] == 0 and coms.recv_msg[MSG_IDX] == TRIAL_BEGIN_MSG: try : if user_mass != -1 : s1 = STUDY1( user_mass, left_boot, right_boot) print('Study 1 initilized') # coms.send_msg[MSG_IDX] = 251 coms.send_recv(send_msg = [1, 0, TRIAL_EXIT_MSG]); coms.send_msg = [0, 0, READY_FOR_TRIAL_MSG]; # this just preps for the next heartbeat time.sleep(3) # this is just to give me a chance to change values with packetsender else : print('Study 1 initialization called but user mass not set') except IndexError : print('Study 1 initialization index error') elif coms.recv_msg[TRIAL_IDX] == 1 and coms.recv_msg[MSG_IDX] == TRIAL_BEGIN_MSG: # restart trial timer # start new recording file # left_boot.log_init() # right_boot.log_init() # startStopCapture(sync_led, left_boot, right_boot) # coms.send_recv(send_msg = [1,1, SYNC_FINISHED_BEGINNING_MSG]) # time.sleep(.010) # pause for a bit to let messages pass # coms.send_recv(send_msg = [1,1, TRIAL_BEGIN_MSG]) # coms.send_msg = [1, 1, CHECK_IN_MSG] print('Trial 1') trial_simple_start (sync_led, left_boot, right_boot, coms, 1, 1) trial_running = s1.trial1(restart_trial = True) while ( trial_running and (coms.recv_msg[MSG_IDX] != STOP_CURRENT_TRIAL_MSG) and (coms.recv_msg[MSG_IDX] != PROGRAM_EXIT_MSG)) : #print('S1T1 : in Loop') time.sleep(1/(2*left_boot.frequency)) sync_led.check() coms.heartbeat() trial_running = s1.trial1() trial_simple_end (sync_led, left_boot, right_boot, coms, 1, 1) # coms.send_recv(send_msg = [1, 1, TRIAL_EXIT_MSG]); # coms.send_msg = [1, 1, CHECK_IN_MSG] # # wait for the treadmill to stop if program exit received go strait to exit # while coms.recv_msg[TRIAL_IDX] != TREADMILL_STOP_MSG and (coms.recv_msg[TRIAL_IDX] != PROGRAM_EXIT_MSG): # coms.heartbeat() # startStopCapture(sync_led, left_boot, right_boot) # coms.send_recv(send_msg = [1, 1, SYNC_FINISHED_END_MSG]); # sync_led.set_state(1) # coms.send_msg = [0, 0, READY_FOR_TRIAL_MSG]; # this just preps for the next elif coms.recv_msg[TRIAL_IDX] == 2 and coms.recv_msg[MSG_IDX] == TRIAL_BEGIN_MSG: print('Trial 2') # restart trial timer # start new recording file # left_boot.data_file = left_boot.log_init() # right_boot.data_file = right_boot.log_init() # startStopCapture(sync_led, left_boot, right_boot) # coms.send_recv(send_msg = [1,2, SYNC_FINISHED_BEGINNING_MSG]) # time.sleep(.010) # pause for a bit to let messages pass # coms.send_recv(send_msg = [1,2, TRIAL_BEGIN_MSG]) # coms.send_msg = [1, 1, CHECK_IN_MSG] trial_simple_start (sync_led, left_boot, right_boot, coms, 1, 2) trial_running = s1.trial2(restart_trial = True) while ( trial_running and (coms.recv_msg[MSG_IDX] != STOP_CURRENT_TRIAL_MSG) and (coms.recv_msg[MSG_IDX] != PROGRAM_EXIT_MSG)) : #print('S1T2 : in Loop') time.sleep(1/(2*left_boot.frequency)) sync_led.check() coms.heartbeat() trial_running = s1.trial2() trial_simple_end (sync_led, left_boot, right_boot, coms, 1, 2) # coms.send_recv(send_msg = [1, 2, TRIAL_EXIT_MSG]); # coms.send_msg = [1, 1, CHECK_IN_MSG] # # wait for the treadmill to stop if program exit received go strait to exit # while coms.recv_msg[TRIAL_IDX] != TREADMILL_STOP_MSG and (coms.recv_msg[TRIAL_IDX] != PROGRAM_EXIT_MSG): # coms.heartbeat() # startStopCapture(sync_led, left_boot, right_boot) # coms.send_recv(send_msg = [1, 2, SYNC_FINISHED_END_MSG]); # sync_led.set_state(1) # coms.send_msg = [0, 0, READY_FOR_TRIAL_MSG]; # this just preps for the next elif coms.recv_msg[TRIAL_IDX] == 3 and coms.recv_msg[MSG_IDX] == TRIAL_BEGIN_MSG: print('Trial 3') # restart trial timer # start new recording file # left_boot.data_file = left_boot.log_init() # right_boot.data_file = right_boot.log_init() # startStopCapture(sync_led, left_boot, right_boot) # coms.send_recv(send_msg = [1,3, SYNC_FINISHED_BEGINNING_MSG]) # time.sleep(.010) # pause for a bit to let messages pass # coms.send_recv(send_msg = [1,3, TRIAL_BEGIN_MSG]) # coms.send_msg = [1, 1, CHECK_IN_MSG] trial_simple_start (sync_led, left_boot, right_boot, coms, 1, 3) trial_running = s1.trial3(restart_trial = True) while ( trial_running and (coms.recv_msg[MSG_IDX] != STOP_CURRENT_TRIAL_MSG) and (coms.recv_msg[MSG_IDX] != PROGRAM_EXIT_MSG)) : #print('S1T3 : in Loop') time.sleep(1/(2*left_boot.frequency)) sync_led.check() coms.heartbeat() trial_running = s1.trial3() trial_simple_end (sync_led, left_boot, right_boot, coms, 1, 3) # coms.send_recv(send_msg = [1, 3, TRIAL_EXIT_MSG]); # coms.send_msg = [1, 1, CHECK_IN_MSG] # # wait for the treadmill to stop if program exit received go strait to exit # while coms.recv_msg[TRIAL_IDX] != TREADMILL_STOP_MSG and (coms.recv_msg[TRIAL_IDX] != PROGRAM_EXIT_MSG): # coms.heartbeat() # startStopCapture(sync_led, left_boot, right_boot) # coms.send_recv(send_msg = [1, 3, SYNC_FINISHED_END_MSG]); # sync_led.set_state(1) # coms.send_msg = [0, 0, READY_FOR_TRIAL_MSG]; # this just preps for the next elif coms.recv_msg[TRIAL_IDX] == 4 and coms.recv_msg[MSG_IDX] == TRIAL_BEGIN_MSG: print('Trial 4') # restart trial timer # start new recording file # left_boot.data_file = left_boot.log_init() # right_boot.data_file = right_boot.log_init() # startStopCapture(sync_led, left_boot, right_boot) # coms.send_recv(send_msg = [1,2, SYNC_FINISHED_BEGINNING_MSG]) # time.sleep(.010) # pause for a bit to let messages pass # coms.send_recv(send_msg = [1,2, TRIAL_BEGIN_MSG]) # coms.send_msg = [1, 1, CHECK_IN_MSG] trial_simple_start (sync_led, left_boot, right_boot, coms, 1, 4) trial_running = s1.trial4(restart_trial = True) while ( trial_running and (coms.recv_msg[MSG_IDX] != STOP_CURRENT_TRIAL_MSG) and (coms.recv_msg[MSG_IDX] != PROGRAM_EXIT_MSG)) : #print('S1T2 : in Loop') time.sleep(1/(2*left_boot.frequency)) sync_led.check() coms.heartbeat() trial_running = s1.trial4() trial_simple_end (sync_led, left_boot, right_boot, coms, 1, 4) elif coms.recv_msg[TRIAL_IDX] == 5 and coms.recv_msg[MSG_IDX] == TRIAL_BEGIN_MSG: print('Trial 5') # restart trial timer # start new recording file # left_boot.data_file = left_boot.log_init() # right_boot.data_file = right_boot.log_init() # startStopCapture(sync_led, left_boot, right_boot) # coms.send_recv(send_msg = [1,2, SYNC_FINISHED_BEGINNING_MSG]) # time.sleep(.010) # pause for a bit to let messages pass # coms.send_recv(send_msg = [1,2, TRIAL_BEGIN_MSG]) # coms.send_msg = [1, 1, CHECK_IN_MSG] trial_simple_start (sync_led, left_boot, right_boot, coms, 1, 5) trial_running = s1.trial5(restart_trial = True) while ( trial_running and (coms.recv_msg[MSG_IDX] != STOP_CURRENT_TRIAL_MSG) and (coms.recv_msg[MSG_IDX] != PROGRAM_EXIT_MSG)) : #print('S1T2 : in Loop') time.sleep(1/(2*left_boot.frequency)) sync_led.check() coms.heartbeat() trial_running = s1.trial5() trial_simple_end (sync_led, left_boot, right_boot, coms, 1, 5) # Study 2 ------------------------------------------------------------------------------------ left_boot.set_exo_current(0) right_boot.set_exo_current(0) time.sleep(.03) left_boot.set_controller(CTRL_NONE) right_boot.set_controller(CTRL_NONE) time.sleep(1/(2*left_boot.frequency)) #print(str(left_boot.data_current[left_boot.idx_time]) + "\t" + str(time.monotonic() * 1000)) ################################################### # if len(left_boot.data_que) == 50 : # pred_torque_sequence = torque_pred_pipeline.run(left_boot.data_que, right_boot.data_que) # print("torque estimate : " + str(pred_torque_sequence[0])) #clearTerminal() #printData(left_boot.labels_current, left_boot.data_current) #printData(right_boot.labels_current, right_boot.data_current) # commanding 1 Nm = 1000 Nmm , set exo current takes mA and ankle_torque_to_current outputs A. # left_boot.set_exo_current(left_boot.ankle_torque_to_current(pred_torque_sequence[0]*50*1000)*1000) # pred torque is currently 0-1 shaping it to 50000 Nmm #right_boot.set_exo_current(right_boot.ankle_torque_to_current(1000)*1000) ################################################### # commanding 1 Nm = 1000 Nmm , set exo current takes mA and ankle_torque_to_current outputs A. # # left_boot.set_exo_current(left_boot.ankle_torque_to_current(0)*1000) # right_boot.set_exo_current(right_boot.ankle_torque_to_current(0)*1000) #left_boot.set_exo_current(2500*sync_led.state) #right_boot.set_exo_current(2500*sync_led.state) #left_boot.set_exo_current(2500) #right_boot.set_exo_current(2500) except KeyboardInterrupt: print("KeyboardInterrupt has been caught.") # except IndexError: # print('Index out of range') # sync_led.set_state(0) left_boot.set_exo_current(0) right_boot.set_exo_current(0) time.sleep(.03) left_boot.set_controller(CTRL_NONE) right_boot.set_controller(CTRL_NONE) # startStopCapture(sync_led, left_boot, right_boot) # sync_led.set_state(0) # left_boot.read_data() # right_boot.read_data() # time.sleep(1) # left_boot.read_data() # right_boot.read_data() # time.sleep(.001) # sync_led.set_state(1) # left_boot.read_data() # right_boot.read_data() # time.sleep(2) # left_boot.read_data() # right_boot.read_data() # time.sleep(.001) # sync_led.set_state(0) # left_boot.read_data() # right_boot.read_data() # time.sleep(1) # left_boot.read_data() # right_boot.read_data() del left_boot del right_boot cleanupPlanStack() main()
36.471061
394
0.681331
d4585d953560b9f9f303b889851ef25fefd0559b
7,137
py
Python
get_pulse.py
krahd/bw
9c7ff5ed2a16ff5e750ead5ee576c56420b41312
[ "Apache-2.0" ]
7
2018-10-12T15:12:50.000Z
2021-11-21T02:52:43.000Z
get_pulse.py
krahd/bw
9c7ff5ed2a16ff5e750ead5ee576c56420b41312
[ "Apache-2.0" ]
null
null
null
get_pulse.py
krahd/bw
9c7ff5ed2a16ff5e750ead5ee576c56420b41312
[ "Apache-2.0" ]
3
2019-06-17T02:31:12.000Z
2021-09-16T10:30:41.000Z
from lib.device import Camera from lib.processors_noopenmdao import findFaceGetPulse from lib.interface import plotXY, imshow, waitKey, destroyWindow from cv2 import moveWindow import argparse import numpy as np import datetime #TODO: work on serial port comms, if anyone asks for it #from serial import Serial import socket import sys class getPulseApp(object): """ Python application that finds a face in a webcam stream, then isolates the forehead. Then the average green-light intensity in the forehead region is gathered over time, and the detected person's pulse is estimated. """ def __init__(self, args): # Imaging device - must be a connected camera (not an ip camera or mjpeg # stream) serial = args.serial baud = args.baud self.send_serial = False self.send_udp = False if serial: self.send_serial = True if not baud: baud = 9600 else: baud = int(baud) self.serial = Serial(port=serial, baudrate=baud) udp = args.udp if udp: self.send_udp = True if ":" not in udp: ip = udp port = 5005 else: ip, port = udp.split(":") port = int(port) self.udp = (ip, port) self.sock = socket.socket(socket.AF_INET, # Internet socket.SOCK_DGRAM) # UDP self.cameras = [] self.selected_cam = 0 for i in range(3): camera = Camera(camera=i) # first camera by default if camera.valid or not len(self.cameras): self.cameras.append(camera) else: break self.w, self.h = 0, 0 self.pressed = 0 # Containerized analysis of recieved image frames (an openMDAO assembly) # is defined next. # This assembly is designed to handle all image & signal analysis, # such as face detection, forehead isolation, time series collection, # heart-beat detection, etc. # Basically, everything that isn't communication # to the camera device or part of the GUI self.processor = findFaceGetPulse() # Init parameters for the cardiac data plot self.bpm_plot = False self.plot_title = "Data display - raw signal (top) and PSD (bottom)" # Maps keystrokes to specified methods #(A GUI window must have focus for these to work) self.key_controls = {"s": self.toggle_search, "d": self.toggle_display_plot, "c": self.toggle_cam, "f": self.write_csv} def toggle_cam(self): if len(self.cameras) > 1: self.processor.find_faces = True self.bpm_plot = False destroyWindow(self.plot_title) self.selected_cam += 1 self.selected_cam = self.selected_cam % len(self.cameras) def write_csv(self): """ Writes current data to a csv file """ fn = "Webcam-pulse" + str(datetime.datetime.now()) fn = fn.replace(":", "_").replace(".", "_") data = np.vstack((self.processor.times, self.processor.samples)).T np.savetxt(fn + ".csv", data, delimiter=',') print("Writing csv") def toggle_search(self): """ Toggles a motion lock on the processor's face detection component. Locking the forehead location in place significantly improves data quality, once a forehead has been sucessfully isolated. """ #state = self.processor.find_faces.toggle() state = self.processor.find_faces_toggle() print("face detection lock =", not state) def toggle_display_plot(self): """ Toggles the data display. """ if self.bpm_plot: print("bpm plot disabled") self.bpm_plot = False destroyWindow(self.plot_title) else: print("bpm plot enabled") if self.processor.find_faces: self.toggle_search() self.bpm_plot = True self.make_bpm_plot() moveWindow(self.plot_title, self.w, 0) def make_bpm_plot(self): """ Creates and/or updates the data display """ plotXY([[self.processor.times, self.processor.samples], [self.processor.freqs, self.processor.fft]], labels=[False, True], showmax=[False, "bpm"], label_ndigits=[0, 0], showmax_digits=[0, 1], skip=[3, 3], name=self.plot_title, bg=self.processor.slices[0]) def key_handler(self): """ Handle keystrokes, as set at the bottom of __init__() A plotting or camera frame window must have focus for keypresses to be detected. """ self.pressed = waitKey(10) & 255 # wait for keypress for 10 ms if self.pressed == 27: # exit program on 'esc' print("Exiting") for cam in self.cameras: cam.cam.release() if self.send_serial: self.serial.close() sys.exit() for key in self.key_controls.keys(): if chr(self.pressed) == key: self.key_controls[key]() def main_loop(self): """ Single iteration of the application's main loop. """ # Get current image frame from the camera frame = self.cameras[self.selected_cam].get_frame() self.h, self.w, _c = frame.shape # display unaltered frame # imshow("Original",frame) # set current image frame to the processor's input self.processor.frame_in = frame # process the image frame to perform all needed analysis self.processor.run(self.selected_cam) # collect the output frame for display output_frame = self.processor.frame_out # show the processed/annotated output frame imshow("Processed", output_frame) # create and/or update the raw data display if needed if self.bpm_plot: self.make_bpm_plot() if self.send_serial: self.serial.write(str(self.processor.bpm) + "\r\n") if self.send_udp: self.sock.sendto(str(self.processor.bpm), self.udp) # handle any key presses self.key_handler() if __name__ == "__main__": parser = argparse.ArgumentParser(description='Webcam pulse detector.') parser.add_argument('--serial', default=None, help='serial port destination for bpm data') parser.add_argument('--baud', default=None, help='Baud rate for serial transmission') parser.add_argument('--udp', default=None, help='udp address:port destination for bpm data') args = parser.parse_args() App = getPulseApp(args) while True: App.main_loop()
33.507042
80
0.574611
4d785140e0a0f8e4931d932c0f24af1d1a159386
108
py
Python
goldclip/__init__.py
bakerwm/goldclip
a1ed8b63d51ed05f165a15cce66a6ace2c3976a9
[ "MIT" ]
null
null
null
goldclip/__init__.py
bakerwm/goldclip
a1ed8b63d51ed05f165a15cce66a6ace2c3976a9
[ "MIT" ]
null
null
null
goldclip/__init__.py
bakerwm/goldclip
a1ed8b63d51ed05f165a15cce66a6ace2c3976a9
[ "MIT" ]
null
null
null
from .helper import * from .goldcliplib import * from .bin import bed_annotation from .bin import bed_fixer
21.6
31
0.796296
fbbc3b1889c80353708758931bc1a4d0578347a4
578
py
Python
astr-119-hw-2/data_types.py
cnojiri/astr-119
e4fae90e75276c1800fda5bb559f988767c0d870
[ "MIT" ]
1
2021-12-07T07:41:33.000Z
2021-12-07T07:41:33.000Z
astr-119-hw-2/data_types.py
cnojiri/astr-119
e4fae90e75276c1800fda5bb559f988767c0d870
[ "MIT" ]
6
2021-09-29T22:13:31.000Z
2021-11-24T16:00:50.000Z
astr-119-hw-2/data_types.py
cnojiri/astr-119
e4fae90e75276c1800fda5bb559f988767c0d870
[ "MIT" ]
null
null
null
import numpy as np #import numpy library #integers i = 10 #integer print(type(i)) #print out the data tyoe of i a_i = np.zeros(i,dtype=int) #declare an array of ints print(type(a_i)) #will return ndarray print(type(a_i[0])) #will return int64 #floats x = 119.0 #floating point number print(type(x)) #print out the data type of x y = 1.19e2 #float 119 in scientific notation print(type(y)) #print out the data type of y z = np.zeros(i,dtype=float) #declare array of floats print(type(z)) #will return nd array print(type(z[0])) #will return float64
25.130435
53
0.693772
da8e0439feff3c29c1cceee30b5fb138e4cdfdec
105,902
py
Python
lib/sqlalchemy/orm/strategies.py
sdspikes/sqlalchemy
cf6f342150791ace82c6a099e8ea2923138bd61e
[ "MIT" ]
null
null
null
lib/sqlalchemy/orm/strategies.py
sdspikes/sqlalchemy
cf6f342150791ace82c6a099e8ea2923138bd61e
[ "MIT" ]
null
null
null
lib/sqlalchemy/orm/strategies.py
sdspikes/sqlalchemy
cf6f342150791ace82c6a099e8ea2923138bd61e
[ "MIT" ]
null
null
null
# orm/strategies.py # Copyright (C) 2005-2021 the SQLAlchemy authors and contributors # <see AUTHORS file> # # This module is part of SQLAlchemy and is released under # the MIT License: http://www.opensource.org/licenses/mit-license.php """sqlalchemy.orm.interfaces.LoaderStrategy implementations, and related MapperOptions.""" from __future__ import absolute_import import collections import itertools from . import attributes from . import exc as orm_exc from . import interfaces from . import loading from . import path_registry from . import properties from . import query from . import relationships from . import unitofwork from . import util as orm_util from .base import _DEFER_FOR_STATE from .base import _RAISE_FOR_STATE from .base import _SET_DEFERRED_EXPIRED from .context import _column_descriptions from .context import ORMCompileState from .context import QueryContext from .interfaces import LoaderStrategy from .interfaces import StrategizedProperty from .session import _state_session from .state import InstanceState from .util import _none_set from .util import aliased from .. import event from .. import exc as sa_exc from .. import inspect from .. import log from .. import sql from .. import util from ..sql import util as sql_util from ..sql import visitors from ..sql.selectable import LABEL_STYLE_TABLENAME_PLUS_COL def _register_attribute( prop, mapper, useobject, compare_function=None, typecallable=None, callable_=None, proxy_property=None, active_history=False, impl_class=None, **kw ): listen_hooks = [] uselist = useobject and prop.uselist if useobject and prop.single_parent: listen_hooks.append(single_parent_validator) if prop.key in prop.parent.validators: fn, opts = prop.parent.validators[prop.key] listen_hooks.append( lambda desc, prop: orm_util._validator_events( desc, prop.key, fn, **opts ) ) if useobject: listen_hooks.append(unitofwork.track_cascade_events) # need to assemble backref listeners # after the singleparentvalidator, mapper validator if useobject: backref = prop.back_populates if backref and prop._effective_sync_backref: listen_hooks.append( lambda desc, prop: attributes.backref_listeners( desc, backref, uselist ) ) # a single MapperProperty is shared down a class inheritance # hierarchy, so we set up attribute instrumentation and backref event # for each mapper down the hierarchy. # typically, "mapper" is the same as prop.parent, due to the way # the configure_mappers() process runs, however this is not strongly # enforced, and in the case of a second configure_mappers() run the # mapper here might not be prop.parent; also, a subclass mapper may # be called here before a superclass mapper. That is, can't depend # on mappers not already being set up so we have to check each one. for m in mapper.self_and_descendants: if prop is m._props.get( prop.key ) and not m.class_manager._attr_has_impl(prop.key): desc = attributes.register_attribute_impl( m.class_, prop.key, parent_token=prop, uselist=uselist, compare_function=compare_function, useobject=useobject, trackparent=useobject and ( prop.single_parent or prop.direction is interfaces.ONETOMANY ), typecallable=typecallable, callable_=callable_, active_history=active_history, impl_class=impl_class, send_modified_events=not useobject or not prop.viewonly, doc=prop.doc, **kw ) for hook in listen_hooks: hook(desc, prop) @properties.ColumnProperty.strategy_for(instrument=False, deferred=False) class UninstrumentedColumnLoader(LoaderStrategy): """Represent a non-instrumented MapperProperty. The polymorphic_on argument of mapper() often results in this, if the argument is against the with_polymorphic selectable. """ __slots__ = ("columns",) def __init__(self, parent, strategy_key): super(UninstrumentedColumnLoader, self).__init__(parent, strategy_key) self.columns = self.parent_property.columns def setup_query( self, compile_state, query_entity, path, loadopt, adapter, column_collection=None, **kwargs ): for c in self.columns: if adapter: c = adapter.columns[c] column_collection.append(c) def create_row_processor( self, context, query_entity, path, loadopt, mapper, result, adapter, populators, ): pass @log.class_logger @properties.ColumnProperty.strategy_for(instrument=True, deferred=False) class ColumnLoader(LoaderStrategy): """Provide loading behavior for a :class:`.ColumnProperty`.""" __slots__ = "columns", "is_composite" def __init__(self, parent, strategy_key): super(ColumnLoader, self).__init__(parent, strategy_key) self.columns = self.parent_property.columns self.is_composite = hasattr(self.parent_property, "composite_class") def setup_query( self, compile_state, query_entity, path, loadopt, adapter, column_collection, memoized_populators, check_for_adapt=False, **kwargs ): for c in self.columns: if adapter: if check_for_adapt: c = adapter.adapt_check_present(c) if c is None: return else: c = adapter.columns[c] column_collection.append(c) fetch = self.columns[0] if adapter: fetch = adapter.columns[fetch] memoized_populators[self.parent_property] = fetch def init_class_attribute(self, mapper): self.is_class_level = True coltype = self.columns[0].type # TODO: check all columns ? check for foreign key as well? active_history = ( self.parent_property.active_history or self.columns[0].primary_key or ( mapper.version_id_col is not None and mapper._columntoproperty.get(mapper.version_id_col, None) is self.parent_property ) ) _register_attribute( self.parent_property, mapper, useobject=False, compare_function=coltype.compare_values, active_history=active_history, ) def create_row_processor( self, context, query_entity, path, loadopt, mapper, result, adapter, populators, ): # look through list of columns represented here # to see which, if any, is present in the row. for col in self.columns: if adapter: col = adapter.columns[col] getter = result._getter(col, False) if getter: populators["quick"].append((self.key, getter)) break else: populators["expire"].append((self.key, True)) @log.class_logger @properties.ColumnProperty.strategy_for(query_expression=True) class ExpressionColumnLoader(ColumnLoader): def __init__(self, parent, strategy_key): super(ExpressionColumnLoader, self).__init__(parent, strategy_key) null = sql.null() self._have_default_expression = any( not c.compare(null) for c in self.parent_property.columns ) def setup_query( self, compile_state, query_entity, path, loadopt, adapter, column_collection, memoized_populators, **kwargs ): columns = None if loadopt and "expression" in loadopt.local_opts: columns = [loadopt.local_opts["expression"]] elif self._have_default_expression: columns = self.parent_property.columns if columns is None: return for c in columns: if adapter: c = adapter.columns[c] column_collection.append(c) fetch = columns[0] if adapter: fetch = adapter.columns[fetch] memoized_populators[self.parent_property] = fetch def create_row_processor( self, context, query_entity, path, loadopt, mapper, result, adapter, populators, ): # look through list of columns represented here # to see which, if any, is present in the row. if loadopt and "expression" in loadopt.local_opts: columns = [loadopt.local_opts["expression"]] for col in columns: if adapter: col = adapter.columns[col] getter = result._getter(col, False) if getter: populators["quick"].append((self.key, getter)) break else: populators["expire"].append((self.key, True)) def init_class_attribute(self, mapper): self.is_class_level = True _register_attribute( self.parent_property, mapper, useobject=False, compare_function=self.columns[0].type.compare_values, accepts_scalar_loader=False, ) @log.class_logger @properties.ColumnProperty.strategy_for(deferred=True, instrument=True) @properties.ColumnProperty.strategy_for( deferred=True, instrument=True, raiseload=True ) @properties.ColumnProperty.strategy_for(do_nothing=True) class DeferredColumnLoader(LoaderStrategy): """Provide loading behavior for a deferred :class:`.ColumnProperty`.""" __slots__ = "columns", "group", "raiseload" def __init__(self, parent, strategy_key): super(DeferredColumnLoader, self).__init__(parent, strategy_key) if hasattr(self.parent_property, "composite_class"): raise NotImplementedError( "Deferred loading for composite " "types not implemented yet" ) self.raiseload = self.strategy_opts.get("raiseload", False) self.columns = self.parent_property.columns self.group = self.parent_property.group def create_row_processor( self, context, query_entity, path, loadopt, mapper, result, adapter, populators, ): # for a DeferredColumnLoader, this method is only used during a # "row processor only" query; see test_deferred.py -> # tests with "rowproc_only" in their name. As of the 1.0 series, # loading._instance_processor doesn't use a "row processing" function # to populate columns, instead it uses data in the "populators" # dictionary. Normally, the DeferredColumnLoader.setup_query() # sets up that data in the "memoized_populators" dictionary # and "create_row_processor()" here is never invoked. if not self.is_class_level: if self.raiseload: set_deferred_for_local_state = ( self.parent_property._raise_column_loader ) else: set_deferred_for_local_state = ( self.parent_property._deferred_column_loader ) populators["new"].append((self.key, set_deferred_for_local_state)) else: populators["expire"].append((self.key, False)) def init_class_attribute(self, mapper): self.is_class_level = True _register_attribute( self.parent_property, mapper, useobject=False, compare_function=self.columns[0].type.compare_values, callable_=self._load_for_state, load_on_unexpire=False, ) def setup_query( self, compile_state, query_entity, path, loadopt, adapter, column_collection, memoized_populators, only_load_props=None, **kw ): if ( ( loadopt and "undefer_pks" in loadopt.local_opts and set(self.columns).intersection( self.parent._should_undefer_in_wildcard ) ) or ( loadopt and self.group and loadopt.local_opts.get( "undefer_group_%s" % self.group, False ) ) or (only_load_props and self.key in only_load_props) ): self.parent_property._get_strategy( (("deferred", False), ("instrument", True)) ).setup_query( compile_state, query_entity, path, loadopt, adapter, column_collection, memoized_populators, **kw ) elif self.is_class_level: memoized_populators[self.parent_property] = _SET_DEFERRED_EXPIRED elif not self.raiseload: memoized_populators[self.parent_property] = _DEFER_FOR_STATE else: memoized_populators[self.parent_property] = _RAISE_FOR_STATE def _load_for_state(self, state, passive): if not state.key: return attributes.ATTR_EMPTY if not passive & attributes.SQL_OK: return attributes.PASSIVE_NO_RESULT localparent = state.manager.mapper if self.group: toload = [ p.key for p in localparent.iterate_properties if isinstance(p, StrategizedProperty) and isinstance(p.strategy, DeferredColumnLoader) and p.group == self.group ] else: toload = [self.key] # narrow the keys down to just those which have no history group = [k for k in toload if k in state.unmodified] session = _state_session(state) if session is None: raise orm_exc.DetachedInstanceError( "Parent instance %s is not bound to a Session; " "deferred load operation of attribute '%s' cannot proceed" % (orm_util.state_str(state), self.key) ) if self.raiseload: self._invoke_raise_load(state, passive, "raise") if ( loading.load_on_ident( session, sql.select(localparent).set_label_style( LABEL_STYLE_TABLENAME_PLUS_COL ), state.key, only_load_props=group, refresh_state=state, ) is None ): raise orm_exc.ObjectDeletedError(state) return attributes.ATTR_WAS_SET def _invoke_raise_load(self, state, passive, lazy): raise sa_exc.InvalidRequestError( "'%s' is not available due to raiseload=True" % (self,) ) class LoadDeferredColumns(object): """serializable loader object used by DeferredColumnLoader""" def __init__(self, key, raiseload=False): self.key = key self.raiseload = raiseload def __call__(self, state, passive=attributes.PASSIVE_OFF): key = self.key localparent = state.manager.mapper prop = localparent._props[key] if self.raiseload: strategy_key = ( ("deferred", True), ("instrument", True), ("raiseload", True), ) else: strategy_key = (("deferred", True), ("instrument", True)) strategy = prop._get_strategy(strategy_key) return strategy._load_for_state(state, passive) class AbstractRelationshipLoader(LoaderStrategy): """LoaderStratgies which deal with related objects.""" __slots__ = "mapper", "target", "uselist", "entity" def __init__(self, parent, strategy_key): super(AbstractRelationshipLoader, self).__init__(parent, strategy_key) self.mapper = self.parent_property.mapper self.entity = self.parent_property.entity self.target = self.parent_property.target self.uselist = self.parent_property.uselist def _size_alert(self, lru_cache): util.warn("LRU cache size alert for loader strategy: %s" % self) @log.class_logger @relationships.RelationshipProperty.strategy_for(do_nothing=True) class DoNothingLoader(LoaderStrategy): """Relationship loader that makes no change to the object's state. Compared to NoLoader, this loader does not initialize the collection/attribute to empty/none; the usual default LazyLoader will take effect. """ @log.class_logger @relationships.RelationshipProperty.strategy_for(lazy="noload") @relationships.RelationshipProperty.strategy_for(lazy=None) class NoLoader(AbstractRelationshipLoader): """Provide loading behavior for a :class:`.RelationshipProperty` with "lazy=None". """ __slots__ = () def init_class_attribute(self, mapper): self.is_class_level = True _register_attribute( self.parent_property, mapper, useobject=True, typecallable=self.parent_property.collection_class, ) def create_row_processor( self, context, query_entity, path, loadopt, mapper, result, adapter, populators, ): def invoke_no_load(state, dict_, row): if self.uselist: attributes.init_state_collection(state, dict_, self.key) else: dict_[self.key] = None populators["new"].append((self.key, invoke_no_load)) @log.class_logger @relationships.RelationshipProperty.strategy_for(lazy=True) @relationships.RelationshipProperty.strategy_for(lazy="select") @relationships.RelationshipProperty.strategy_for(lazy="raise") @relationships.RelationshipProperty.strategy_for(lazy="raise_on_sql") @relationships.RelationshipProperty.strategy_for(lazy="baked_select") class LazyLoader(AbstractRelationshipLoader, util.MemoizedSlots): """Provide loading behavior for a :class:`.RelationshipProperty` with "lazy=True", that is loads when first accessed. """ __slots__ = ( "_lazywhere", "_rev_lazywhere", "_lazyload_reverse_option", "_order_by", "use_get", "is_aliased_class", "_bind_to_col", "_equated_columns", "_rev_bind_to_col", "_rev_equated_columns", "_simple_lazy_clause", "_raise_always", "_raise_on_sql", "_query_cache", ) def __init__(self, parent, strategy_key): super(LazyLoader, self).__init__(parent, strategy_key) self._raise_always = self.strategy_opts["lazy"] == "raise" self._raise_on_sql = self.strategy_opts["lazy"] == "raise_on_sql" self.is_aliased_class = inspect(self.entity).is_aliased_class join_condition = self.parent_property._join_condition ( self._lazywhere, self._bind_to_col, self._equated_columns, ) = join_condition.create_lazy_clause() ( self._rev_lazywhere, self._rev_bind_to_col, self._rev_equated_columns, ) = join_condition.create_lazy_clause(reverse_direction=True) if self.parent_property.order_by: self._order_by = [ sql_util._deep_annotate(elem, {"_orm_adapt": True}) for elem in util.to_list(self.parent_property.order_by) ] else: self._order_by = None self.logger.info("%s lazy loading clause %s", self, self._lazywhere) # determine if our "lazywhere" clause is the same as the mapper's # get() clause. then we can just use mapper.get() # # TODO: the "not self.uselist" can be taken out entirely; a m2o # load that populates for a list (very unusual, but is possible with # the API) can still set for "None" and the attribute system will # populate as an empty list. self.use_get = ( not self.is_aliased_class and not self.uselist and self.entity._get_clause[0].compare( self._lazywhere, use_proxies=True, compare_keys=False, equivalents=self.mapper._equivalent_columns, ) ) if self.use_get: for col in list(self._equated_columns): if col in self.mapper._equivalent_columns: for c in self.mapper._equivalent_columns[col]: self._equated_columns[c] = self._equated_columns[col] self.logger.info( "%s will use Session.get() to " "optimize instance loads", self ) def init_class_attribute(self, mapper): self.is_class_level = True active_history = ( self.parent_property.active_history or self.parent_property.direction is not interfaces.MANYTOONE or not self.use_get ) # MANYTOONE currently only needs the # "old" value for delete-orphan # cascades. the required _SingleParentValidator # will enable active_history # in that case. otherwise we don't need the # "old" value during backref operations. _register_attribute( self.parent_property, mapper, useobject=True, callable_=self._load_for_state, typecallable=self.parent_property.collection_class, active_history=active_history, ) def _memoized_attr__simple_lazy_clause(self): lazywhere = sql_util._deep_annotate( self._lazywhere, {"_orm_adapt": True} ) criterion, bind_to_col = (lazywhere, self._bind_to_col) params = [] def visit_bindparam(bindparam): bindparam.unique = False visitors.traverse(criterion, {}, {"bindparam": visit_bindparam}) def visit_bindparam(bindparam): if bindparam._identifying_key in bind_to_col: params.append( ( bindparam.key, bind_to_col[bindparam._identifying_key], None, ) ) elif bindparam.callable is None: params.append((bindparam.key, None, bindparam.value)) criterion = visitors.cloned_traverse( criterion, {}, {"bindparam": visit_bindparam} ) return criterion, params def _generate_lazy_clause(self, state, passive): criterion, param_keys = self._simple_lazy_clause if state is None: return sql_util.adapt_criterion_to_null( criterion, [key for key, ident, value in param_keys] ) mapper = self.parent_property.parent o = state.obj() # strong ref dict_ = attributes.instance_dict(o) if passive & attributes.INIT_OK: passive ^= attributes.INIT_OK params = {} for key, ident, value in param_keys: if ident is not None: if passive and passive & attributes.LOAD_AGAINST_COMMITTED: value = mapper._get_committed_state_attr_by_column( state, dict_, ident, passive ) else: value = mapper._get_state_attr_by_column( state, dict_, ident, passive ) params[key] = value return criterion, params def _invoke_raise_load(self, state, passive, lazy): raise sa_exc.InvalidRequestError( "'%s' is not available due to lazy='%s'" % (self, lazy) ) def _load_for_state(self, state, passive, loadopt=None, extra_criteria=()): if not state.key and ( ( not self.parent_property.load_on_pending and not state._load_pending ) or not state.session_id ): return attributes.ATTR_EMPTY pending = not state.key primary_key_identity = None use_get = self.use_get and (not loadopt or not loadopt._extra_criteria) if (not passive & attributes.SQL_OK and not use_get) or ( not passive & attributes.NON_PERSISTENT_OK and pending ): return attributes.PASSIVE_NO_RESULT if ( # we were given lazy="raise" self._raise_always # the no_raise history-related flag was not passed and not passive & attributes.NO_RAISE and ( # if we are use_get and related_object_ok is disabled, # which means we are at most looking in the identity map # for history purposes or otherwise returning # PASSIVE_NO_RESULT, don't raise. This is also a # history-related flag not use_get or passive & attributes.RELATED_OBJECT_OK ) ): self._invoke_raise_load(state, passive, "raise") session = _state_session(state) if not session: if passive & attributes.NO_RAISE: return attributes.PASSIVE_NO_RESULT raise orm_exc.DetachedInstanceError( "Parent instance %s is not bound to a Session; " "lazy load operation of attribute '%s' cannot proceed" % (orm_util.state_str(state), self.key) ) # if we have a simple primary key load, check the # identity map without generating a Query at all if use_get: primary_key_identity = self._get_ident_for_use_get( session, state, passive ) if attributes.PASSIVE_NO_RESULT in primary_key_identity: return attributes.PASSIVE_NO_RESULT elif attributes.NEVER_SET in primary_key_identity: return attributes.NEVER_SET if _none_set.issuperset(primary_key_identity): return None if self.key in state.dict: return attributes.ATTR_WAS_SET # look for this identity in the identity map. Delegate to the # Query class in use, as it may have special rules for how it # does this, including how it decides what the correct # identity_token would be for this identity. instance = session._identity_lookup( self.entity, primary_key_identity, passive=passive, lazy_loaded_from=state, ) if instance is not None: if instance is attributes.PASSIVE_CLASS_MISMATCH: return None else: return instance elif ( not passive & attributes.SQL_OK or not passive & attributes.RELATED_OBJECT_OK ): return attributes.PASSIVE_NO_RESULT return self._emit_lazyload( session, state, primary_key_identity, passive, loadopt, extra_criteria, ) def _get_ident_for_use_get(self, session, state, passive): instance_mapper = state.manager.mapper if passive & attributes.LOAD_AGAINST_COMMITTED: get_attr = instance_mapper._get_committed_state_attr_by_column else: get_attr = instance_mapper._get_state_attr_by_column dict_ = state.dict return [ get_attr(state, dict_, self._equated_columns[pk], passive=passive) for pk in self.mapper.primary_key ] def _memoized_attr__query_cache(self): # cache is per lazy loader; stores not only cached SQL but also # sqlalchemy.sql.lambdas.AnalyzedCode and # sqlalchemy.sql.lambdas.AnalyzedFunction objects which are generated # from the StatementLambda used. return util.LRUCache(30, size_alert=self._size_alert) @util.preload_module("sqlalchemy.orm.strategy_options") def _emit_lazyload( self, session, state, primary_key_identity, passive, loadopt, extra_criteria, ): strategy_options = util.preloaded.orm_strategy_options stmt = sql.lambda_stmt( lambda: sql.select(self.entity) .set_label_style(LABEL_STYLE_TABLENAME_PLUS_COL) ._set_compile_options(ORMCompileState.default_compile_options), global_track_bound_values=False, lambda_cache=self._query_cache, track_on=(self,), ) if not self.parent_property.bake_queries: stmt = stmt.spoil() load_options = QueryContext.default_load_options load_options += { "_invoke_all_eagers": False, "_lazy_loaded_from": state, } if self.parent_property.secondary is not None: stmt = stmt.add_criteria( lambda stmt: stmt.select_from( self.mapper, self.parent_property.secondary ), track_on=[self.parent_property], ) pending = not state.key # don't autoflush on pending if pending or passive & attributes.NO_AUTOFLUSH: stmt += lambda stmt: stmt.execution_options(autoflush=False) use_get = self.use_get if state.load_options or (loadopt and loadopt._extra_criteria): effective_path = state.load_path[self.parent_property] opts = list(state.load_options) if loadopt and loadopt._extra_criteria: use_get = False opts += ( orm_util.LoaderCriteriaOption(self.entity, extra_criteria), ) stmt += lambda stmt: stmt.options(*opts) else: # this path is used if there are not already any options # in the query, but an event may want to add them effective_path = state.mapper._path_registry[self.parent_property] stmt += lambda stmt: stmt._update_compile_options( {"_current_path": effective_path} ) if use_get: if self._raise_on_sql: self._invoke_raise_load(state, passive, "raise_on_sql") return loading.load_on_pk_identity( session, stmt, primary_key_identity, load_options=load_options, execution_options={"compiled_cache": self._query_cache}, ) if self._order_by: stmt = stmt.add_criteria( lambda stmt: stmt.order_by(*self._order_by), track_on=[self] ) def _lazyload_reverse(compile_context): for rev in self.parent_property._reverse_property: # reverse props that are MANYTOONE are loading *this* # object from get(), so don't need to eager out to those. if ( rev.direction is interfaces.MANYTOONE and rev._use_get and not isinstance(rev.strategy, LazyLoader) ): strategy_options.Load.for_existing_path( compile_context.compile_options._current_path[ rev.parent ] ).lazyload(rev).process_compile_state(compile_context) stmt = stmt.add_criteria( lambda stmt: stmt._add_context_option( _lazyload_reverse, self.parent_property ), track_on=[self], ) lazy_clause, params = self._generate_lazy_clause(state, passive) execution_options = { "_sa_orm_load_options": load_options, } if not self.parent_property.bake_queries: execution_options["compiled_cache"] = None if self.key in state.dict: return attributes.ATTR_WAS_SET if pending: if util.has_intersection(orm_util._none_set, params.values()): return None elif util.has_intersection(orm_util._never_set, params.values()): return None if self._raise_on_sql: self._invoke_raise_load(state, passive, "raise_on_sql") stmt = stmt.add_criteria( lambda stmt: stmt.where(lazy_clause), enable_tracking=False ) result = session.execute( stmt, params, execution_options=execution_options ) result = result.unique().scalars().all() if self.uselist: return result else: l = len(result) if l: if l > 1: util.warn( "Multiple rows returned with " "uselist=False for lazily-loaded attribute '%s' " % self.parent_property ) return result[0] else: return None def create_row_processor( self, context, query_entity, path, loadopt, mapper, result, adapter, populators, ): key = self.key if not self.is_class_level or (loadopt and loadopt._extra_criteria): # we are not the primary manager for this attribute # on this class - set up a # per-instance lazyloader, which will override the # class-level behavior. # this currently only happens when using a # "lazyload" option on a "no load" # attribute - "eager" attributes always have a # class-level lazyloader installed. set_lazy_callable = ( InstanceState._instance_level_callable_processor )( mapper.class_manager, LoadLazyAttribute( key, self, loadopt, loadopt._generate_extra_criteria(context) if loadopt._extra_criteria else None, ), key, ) populators["new"].append((self.key, set_lazy_callable)) elif context.populate_existing or mapper.always_refresh: def reset_for_lazy_callable(state, dict_, row): # we are the primary manager for this attribute on # this class - reset its # per-instance attribute state, so that the class-level # lazy loader is # executed when next referenced on this instance. # this is needed in # populate_existing() types of scenarios to reset # any existing state. state._reset(dict_, key) populators["new"].append((self.key, reset_for_lazy_callable)) class LoadLazyAttribute(object): """semi-serializable loader object used by LazyLoader Historically, this object would be carried along with instances that needed to run lazyloaders, so it had to be serializable to support cached instances. this is no longer a general requirement, and the case where this object is used is exactly the case where we can't really serialize easily, which is when extra criteria in the loader option is present. We can't reliably serialize that as it refers to mapped entities and AliasedClass objects that are local to the current process, which would need to be matched up on deserialize e.g. the sqlalchemy.ext.serializer approach. """ def __init__(self, key, initiating_strategy, loadopt, extra_criteria): self.key = key self.strategy_key = initiating_strategy.strategy_key self.loadopt = loadopt self.extra_criteria = extra_criteria def __getstate__(self): if self.extra_criteria is not None: util.warn( "Can't reliably serialize a lazyload() option that " "contains additional criteria; please use eager loading " "for this case" ) return { "key": self.key, "strategy_key": self.strategy_key, "loadopt": self.loadopt, "extra_criteria": (), } def __call__(self, state, passive=attributes.PASSIVE_OFF): key = self.key instance_mapper = state.manager.mapper prop = instance_mapper._props[key] strategy = prop._strategies[self.strategy_key] return strategy._load_for_state( state, passive, loadopt=self.loadopt, extra_criteria=self.extra_criteria, ) class PostLoader(AbstractRelationshipLoader): """A relationship loader that emits a second SELECT statement.""" def _check_recursive_postload(self, context, path, join_depth=None): effective_path = ( context.compile_state.current_path or orm_util.PathRegistry.root ) + path if loading.PostLoad.path_exists( context, effective_path, self.parent_property ): return True path_w_prop = path[self.parent_property] effective_path_w_prop = effective_path[self.parent_property] if not path_w_prop.contains(context.attributes, "loader"): if join_depth: if effective_path_w_prop.length / 2 > join_depth: return True elif effective_path_w_prop.contains_mapper(self.mapper): return True return False def _immediateload_create_row_processor( self, context, query_entity, path, loadopt, mapper, result, adapter, populators, ): return self.parent_property._get_strategy( (("lazy", "immediate"),) ).create_row_processor( context, query_entity, path, loadopt, mapper, result, adapter, populators, ) @relationships.RelationshipProperty.strategy_for(lazy="immediate") class ImmediateLoader(PostLoader): __slots__ = () def init_class_attribute(self, mapper): self.parent_property._get_strategy( (("lazy", "select"),) ).init_class_attribute(mapper) def create_row_processor( self, context, query_entity, path, loadopt, mapper, result, adapter, populators, ): def load_immediate(state, dict_, row): state.get_impl(self.key).get(state, dict_) if self._check_recursive_postload(context, path): return populators["delayed"].append((self.key, load_immediate)) @log.class_logger @relationships.RelationshipProperty.strategy_for(lazy="subquery") class SubqueryLoader(PostLoader): __slots__ = ("join_depth",) def __init__(self, parent, strategy_key): super(SubqueryLoader, self).__init__(parent, strategy_key) self.join_depth = self.parent_property.join_depth def init_class_attribute(self, mapper): self.parent_property._get_strategy( (("lazy", "select"),) ).init_class_attribute(mapper) def _get_leftmost(self, subq_path, current_compile_state, is_root): given_subq_path = subq_path subq_path = subq_path.path subq_mapper = orm_util._class_to_mapper(subq_path[0]) # determine attributes of the leftmost mapper if ( self.parent.isa(subq_mapper) and self.parent_property is subq_path[1] ): leftmost_mapper, leftmost_prop = self.parent, self.parent_property else: leftmost_mapper, leftmost_prop = subq_mapper, subq_path[1] if is_root: # the subq_path is also coming from cached state, so when we start # building up this path, it has to also be converted to be in terms # of the current state. this is for the specific case of the entity # is an AliasedClass against a subquery that's not otherwise going # to adapt new_subq_path = current_compile_state._entities[ 0 ].entity_zero._path_registry[leftmost_prop] additional = len(subq_path) - len(new_subq_path) if additional: new_subq_path += path_registry.PathRegistry.coerce( subq_path[-additional:] ) else: new_subq_path = given_subq_path leftmost_cols = leftmost_prop.local_columns leftmost_attr = [ getattr( new_subq_path.path[0].entity, leftmost_mapper._columntoproperty[c].key, ) for c in leftmost_cols ] return leftmost_mapper, leftmost_attr, leftmost_prop, new_subq_path def _generate_from_original_query( self, orig_compile_state, orig_query, leftmost_mapper, leftmost_attr, leftmost_relationship, orig_entity, ): # reformat the original query # to look only for significant columns q = orig_query._clone().correlate(None) # LEGACY: make a Query back from the select() !! # This suits at least two legacy cases: # 1. applications which expect before_compile() to be called # below when we run .subquery() on this query (Keystone) # 2. applications which are doing subqueryload with complex # from_self() queries, as query.subquery() / .statement # has to do the full compile context for multiply-nested # from_self() (Neutron) - see test_subqload_from_self # for demo. q2 = query.Query.__new__(query.Query) q2.__dict__.update(q.__dict__) q = q2 # set the query's "FROM" list explicitly to what the # FROM list would be in any case, as we will be limiting # the columns in the SELECT list which may no longer include # all entities mentioned in things like WHERE, JOIN, etc. if not q._from_obj: q._enable_assertions = False q.select_from.non_generative( q, *{ ent["entity"] for ent in _column_descriptions( orig_query, compile_state=orig_compile_state ) if ent["entity"] is not None } ) # select from the identity columns of the outer (specifically, these # are the 'local_cols' of the property). This will remove other # columns from the query that might suggest the right entity which is # why we do set select_from above. The attributes we have are # coerced and adapted using the original query's adapter, which is # needed only for the case of adapting a subclass column to # that of a polymorphic selectable, e.g. we have # Engineer.primary_language and the entity is Person. All other # adaptations, e.g. from_self, select_entity_from(), will occur # within the new query when it compiles, as the compile_state we are # using here is only a partial one. If the subqueryload is from a # with_polymorphic() or other aliased() object, left_attr will already # be the correct attributes so no adaptation is needed. target_cols = orig_compile_state._adapt_col_list( [ sql.coercions.expect(sql.roles.ColumnsClauseRole, o) for o in leftmost_attr ], orig_compile_state._get_current_adapter(), ) q._raw_columns = target_cols distinct_target_key = leftmost_relationship.distinct_target_key if distinct_target_key is True: q._distinct = True elif distinct_target_key is None: # if target_cols refer to a non-primary key or only # part of a composite primary key, set the q as distinct for t in set(c.table for c in target_cols): if not set(target_cols).issuperset(t.primary_key): q._distinct = True break # don't need ORDER BY if no limit/offset if not q._has_row_limiting_clause: q._order_by_clauses = () if q._distinct is True and q._order_by_clauses: # the logic to automatically add the order by columns to the query # when distinct is True is deprecated in the query to_add = sql_util.expand_column_list_from_order_by( target_cols, q._order_by_clauses ) if to_add: q._set_entities(target_cols + to_add) # the original query now becomes a subquery # which we'll join onto. # LEGACY: as "q" is a Query, the before_compile() event is invoked # here. embed_q = q.set_label_style(LABEL_STYLE_TABLENAME_PLUS_COL).subquery() left_alias = orm_util.AliasedClass( leftmost_mapper, embed_q, use_mapper_path=True ) return left_alias def _prep_for_joins(self, left_alias, subq_path): # figure out what's being joined. a.k.a. the fun part to_join = [] pairs = list(subq_path.pairs()) for i, (mapper, prop) in enumerate(pairs): if i > 0: # look at the previous mapper in the chain - # if it is as or more specific than this prop's # mapper, use that instead. # note we have an assumption here that # the non-first element is always going to be a mapper, # not an AliasedClass prev_mapper = pairs[i - 1][1].mapper to_append = prev_mapper if prev_mapper.isa(mapper) else mapper else: to_append = mapper to_join.append((to_append, prop.key)) # determine the immediate parent class we are joining from, # which needs to be aliased. if len(to_join) < 2: # in the case of a one level eager load, this is the # leftmost "left_alias". parent_alias = left_alias else: info = inspect(to_join[-1][0]) if info.is_aliased_class: parent_alias = info.entity else: # alias a plain mapper as we may be # joining multiple times parent_alias = orm_util.AliasedClass( info.entity, use_mapper_path=True ) local_cols = self.parent_property.local_columns local_attr = [ getattr(parent_alias, self.parent._columntoproperty[c].key) for c in local_cols ] return to_join, local_attr, parent_alias def _apply_joins( self, q, to_join, left_alias, parent_alias, effective_entity ): ltj = len(to_join) if ltj == 1: to_join = [ getattr(left_alias, to_join[0][1]).of_type(effective_entity) ] elif ltj == 2: to_join = [ getattr(left_alias, to_join[0][1]).of_type(parent_alias), getattr(parent_alias, to_join[-1][1]).of_type( effective_entity ), ] elif ltj > 2: middle = [ ( orm_util.AliasedClass(item[0]) if not inspect(item[0]).is_aliased_class else item[0].entity, item[1], ) for item in to_join[1:-1] ] inner = [] while middle: item = middle.pop(0) attr = getattr(item[0], item[1]) if middle: attr = attr.of_type(middle[0][0]) else: attr = attr.of_type(parent_alias) inner.append(attr) to_join = ( [getattr(left_alias, to_join[0][1]).of_type(inner[0].parent)] + inner + [ getattr(parent_alias, to_join[-1][1]).of_type( effective_entity ) ] ) for attr in to_join: q = q.join(attr) return q def _setup_options( self, context, q, subq_path, rewritten_path, orig_query, effective_entity, loadopt, ): opts = orig_query._with_options if loadopt and loadopt._extra_criteria: opts += ( orm_util.LoaderCriteriaOption( self.entity, loadopt._generate_extra_criteria(context), ), ) # propagate loader options etc. to the new query. # these will fire relative to subq_path. q = q._with_current_path(rewritten_path) q = q.options(*opts) return q def _setup_outermost_orderby(self, q): if self.parent_property.order_by: def _setup_outermost_orderby(compile_context): compile_context.eager_order_by += tuple( util.to_list(self.parent_property.order_by) ) q = q._add_context_option( _setup_outermost_orderby, self.parent_property ) return q class _SubqCollections(object): """Given a :class:`_query.Query` used to emit the "subquery load", provide a load interface that executes the query at the first moment a value is needed. """ __slots__ = ( "session", "execution_options", "load_options", "params", "subq", "_data", ) def __init__(self, context, subq): # avoid creating a cycle by storing context # even though that's preferable self.session = context.session self.execution_options = context.execution_options self.load_options = context.load_options self.params = context.params or {} self.subq = subq self._data = None def get(self, key, default): if self._data is None: self._load() return self._data.get(key, default) def _load(self): self._data = collections.defaultdict(list) q = self.subq assert q.session is None if "compiled_cache" in self.execution_options: q = q.execution_options( compiled_cache=self.execution_options["compiled_cache"] ) q = q.with_session(self.session) if self.load_options._populate_existing: q = q.populate_existing() # to work with baked query, the parameters may have been # updated since this query was created, so take these into account rows = list(q.params(self.params)) for k, v in itertools.groupby(rows, lambda x: x[1:]): self._data[k].extend(vv[0] for vv in v) def loader(self, state, dict_, row): if self._data is None: self._load() def _setup_query_from_rowproc( self, context, path, entity, loadopt, adapter, ): compile_state = context.compile_state if ( not compile_state.compile_options._enable_eagerloads or compile_state.compile_options._for_refresh_state ): return context.loaders_require_buffering = True path = path[self.parent_property] # build up a path indicating the path from the leftmost # entity to the thing we're subquery loading. with_poly_entity = path.get( compile_state.attributes, "path_with_polymorphic", None ) if with_poly_entity is not None: effective_entity = with_poly_entity else: effective_entity = self.entity subq_path, rewritten_path = context.query._execution_options.get( ("subquery_paths", None), (orm_util.PathRegistry.root, orm_util.PathRegistry.root), ) is_root = subq_path is orm_util.PathRegistry.root subq_path = subq_path + path rewritten_path = rewritten_path + path # if not via query option, check for # a cycle if not path.contains(compile_state.attributes, "loader"): if self.join_depth: if ( ( compile_state.current_path.length if compile_state.current_path else 0 ) + path.length ) / 2 > self.join_depth: return elif subq_path.contains_mapper(self.mapper): return # use the current query being invoked, not the compile state # one. this is so that we get the current parameters. however, # it means we can't use the existing compile state, we have to make # a new one. other approaches include possibly using the # compiled query but swapping the params, seems only marginally # less time spent but more complicated orig_query = context.query._execution_options.get( ("orig_query", SubqueryLoader), context.query ) # make a new compile_state for the query that's probably cached, but # we're sort of undoing a bit of that caching :( compile_state_cls = ORMCompileState._get_plugin_class_for_plugin( orig_query, "orm" ) if orig_query._is_lambda_element: if context.load_options._lazy_loaded_from is None: util.warn( 'subqueryloader for "%s" must invoke lambda callable ' "at %r in " "order to produce a new query, decreasing the efficiency " "of caching for this statement. Consider using " "selectinload() for more effective full-lambda caching" % (self, orig_query) ) orig_query = orig_query._resolved # this is the more "quick" version, however it's not clear how # much of this we need. in particular I can't get a test to # fail if the "set_base_alias" is missing and not sure why that is. orig_compile_state = compile_state_cls._create_entities_collection( orig_query, legacy=False ) ( leftmost_mapper, leftmost_attr, leftmost_relationship, rewritten_path, ) = self._get_leftmost(rewritten_path, orig_compile_state, is_root) # generate a new Query from the original, then # produce a subquery from it. left_alias = self._generate_from_original_query( orig_compile_state, orig_query, leftmost_mapper, leftmost_attr, leftmost_relationship, entity, ) # generate another Query that will join the # left alias to the target relationships. # basically doing a longhand # "from_self()". (from_self() itself not quite industrial # strength enough for all contingencies...but very close) q = query.Query(effective_entity) q._execution_options = q._execution_options.union( { ("orig_query", SubqueryLoader): orig_query, ("subquery_paths", None): (subq_path, rewritten_path), } ) q = q._set_enable_single_crit(False) to_join, local_attr, parent_alias = self._prep_for_joins( left_alias, subq_path ) q = q.add_columns(*local_attr) q = self._apply_joins( q, to_join, left_alias, parent_alias, effective_entity ) q = self._setup_options( context, q, subq_path, rewritten_path, orig_query, effective_entity, loadopt, ) q = self._setup_outermost_orderby(q) return q def create_row_processor( self, context, query_entity, path, loadopt, mapper, result, adapter, populators, ): if context.refresh_state: return self._immediateload_create_row_processor( context, query_entity, path, loadopt, mapper, result, adapter, populators, ) # the subqueryloader does a similar check in setup_query() unlike # the other post loaders, however we have this here for consistency elif self._check_recursive_postload(context, path, self.join_depth): return if not self.parent.class_manager[self.key].impl.supports_population: raise sa_exc.InvalidRequestError( "'%s' does not support object " "population - eager loading cannot be applied." % self ) # a little dance here as the "path" is still something that only # semi-tracks the exact series of things we are loading, still not # telling us about with_polymorphic() and stuff like that when it's at # the root.. the initial MapperEntity is more accurate for this case. if len(path) == 1: if not orm_util._entity_isa(query_entity.entity_zero, self.parent): return elif not orm_util._entity_isa(path[-1], self.parent): return subq = self._setup_query_from_rowproc( context, path, path[-1], loadopt, adapter, ) if subq is None: return assert subq.session is None path = path[self.parent_property] local_cols = self.parent_property.local_columns # cache the loaded collections in the context # so that inheriting mappers don't re-load when they # call upon create_row_processor again collections = path.get(context.attributes, "collections") if collections is None: collections = self._SubqCollections(context, subq) path.set(context.attributes, "collections", collections) if adapter: local_cols = [adapter.columns[c] for c in local_cols] if self.uselist: self._create_collection_loader( context, result, collections, local_cols, populators ) else: self._create_scalar_loader( context, result, collections, local_cols, populators ) def _create_collection_loader( self, context, result, collections, local_cols, populators ): tuple_getter = result._tuple_getter(local_cols) def load_collection_from_subq(state, dict_, row): collection = collections.get(tuple_getter(row), ()) state.get_impl(self.key).set_committed_value( state, dict_, collection ) def load_collection_from_subq_existing_row(state, dict_, row): if self.key not in dict_: load_collection_from_subq(state, dict_, row) populators["new"].append((self.key, load_collection_from_subq)) populators["existing"].append( (self.key, load_collection_from_subq_existing_row) ) if context.invoke_all_eagers: populators["eager"].append((self.key, collections.loader)) def _create_scalar_loader( self, context, result, collections, local_cols, populators ): tuple_getter = result._tuple_getter(local_cols) def load_scalar_from_subq(state, dict_, row): collection = collections.get(tuple_getter(row), (None,)) if len(collection) > 1: util.warn( "Multiple rows returned with " "uselist=False for eagerly-loaded attribute '%s' " % self ) scalar = collection[0] state.get_impl(self.key).set_committed_value(state, dict_, scalar) def load_scalar_from_subq_existing_row(state, dict_, row): if self.key not in dict_: load_scalar_from_subq(state, dict_, row) populators["new"].append((self.key, load_scalar_from_subq)) populators["existing"].append( (self.key, load_scalar_from_subq_existing_row) ) if context.invoke_all_eagers: populators["eager"].append((self.key, collections.loader)) @log.class_logger @relationships.RelationshipProperty.strategy_for(lazy="joined") @relationships.RelationshipProperty.strategy_for(lazy=False) class JoinedLoader(AbstractRelationshipLoader): """Provide loading behavior for a :class:`.RelationshipProperty` using joined eager loading. """ __slots__ = "join_depth", "_aliased_class_pool" def __init__(self, parent, strategy_key): super(JoinedLoader, self).__init__(parent, strategy_key) self.join_depth = self.parent_property.join_depth self._aliased_class_pool = [] def init_class_attribute(self, mapper): self.parent_property._get_strategy( (("lazy", "select"),) ).init_class_attribute(mapper) def setup_query( self, compile_state, query_entity, path, loadopt, adapter, column_collection=None, parentmapper=None, chained_from_outerjoin=False, **kwargs ): """Add a left outer join to the statement that's being constructed.""" if not compile_state.compile_options._enable_eagerloads: return elif self.uselist: compile_state.multi_row_eager_loaders = True path = path[self.parent_property] with_polymorphic = None user_defined_adapter = ( self._init_user_defined_eager_proc( loadopt, compile_state, compile_state.attributes ) if loadopt else False ) if user_defined_adapter is not False: ( clauses, adapter, add_to_collection, ) = self._setup_query_on_user_defined_adapter( compile_state, query_entity, path, adapter, user_defined_adapter, ) else: # if not via query option, check for # a cycle if not path.contains(compile_state.attributes, "loader"): if self.join_depth: if path.length / 2 > self.join_depth: return elif path.contains_mapper(self.mapper): return ( clauses, adapter, add_to_collection, chained_from_outerjoin, ) = self._generate_row_adapter( compile_state, query_entity, path, loadopt, adapter, column_collection, parentmapper, chained_from_outerjoin, ) with_poly_entity = path.get( compile_state.attributes, "path_with_polymorphic", None ) if with_poly_entity is not None: with_polymorphic = inspect( with_poly_entity ).with_polymorphic_mappers else: with_polymorphic = None path = path[self.entity] loading._setup_entity_query( compile_state, self.mapper, query_entity, path, clauses, add_to_collection, with_polymorphic=with_polymorphic, parentmapper=self.mapper, chained_from_outerjoin=chained_from_outerjoin, ) if with_poly_entity is not None and None in set( compile_state.secondary_columns ): raise sa_exc.InvalidRequestError( "Detected unaliased columns when generating joined " "load. Make sure to use aliased=True or flat=True " "when using joined loading with with_polymorphic()." ) def _init_user_defined_eager_proc( self, loadopt, compile_state, target_attributes ): # check if the opt applies at all if "eager_from_alias" not in loadopt.local_opts: # nope return False path = loadopt.path.parent # the option applies. check if the "user_defined_eager_row_processor" # has been built up. adapter = path.get( compile_state.attributes, "user_defined_eager_row_processor", False ) if adapter is not False: # just return it return adapter # otherwise figure it out. alias = loadopt.local_opts["eager_from_alias"] root_mapper, prop = path[-2:] if alias is not None: if isinstance(alias, str): alias = prop.target.alias(alias) adapter = sql_util.ColumnAdapter( alias, equivalents=prop.mapper._equivalent_columns ) else: if path.contains( compile_state.attributes, "path_with_polymorphic" ): with_poly_entity = path.get( compile_state.attributes, "path_with_polymorphic" ) adapter = orm_util.ORMAdapter( with_poly_entity, equivalents=prop.mapper._equivalent_columns, ) else: adapter = compile_state._polymorphic_adapters.get( prop.mapper, None ) path.set( target_attributes, "user_defined_eager_row_processor", adapter, ) return adapter def _setup_query_on_user_defined_adapter( self, context, entity, path, adapter, user_defined_adapter ): # apply some more wrapping to the "user defined adapter" # if we are setting up the query for SQL render. adapter = entity._get_entity_clauses(context) if adapter and user_defined_adapter: user_defined_adapter = user_defined_adapter.wrap(adapter) path.set( context.attributes, "user_defined_eager_row_processor", user_defined_adapter, ) elif adapter: user_defined_adapter = adapter path.set( context.attributes, "user_defined_eager_row_processor", user_defined_adapter, ) add_to_collection = context.primary_columns return user_defined_adapter, adapter, add_to_collection def _gen_pooled_aliased_class(self, context): # keep a local pool of AliasedClass objects that get re-used. # we need one unique AliasedClass per query per appearance of our # entity in the query. if inspect(self.entity).is_aliased_class: alt_selectable = inspect(self.entity).selectable else: alt_selectable = None key = ("joinedloader_ac", self) if key not in context.attributes: context.attributes[key] = idx = 0 else: context.attributes[key] = idx = context.attributes[key] + 1 if idx >= len(self._aliased_class_pool): to_adapt = orm_util.AliasedClass( self.mapper, alias=alt_selectable._anonymous_fromclause(flat=True) if alt_selectable is not None else None, flat=True, use_mapper_path=True, ) # load up the .columns collection on the Alias() before # the object becomes shared among threads. this prevents # races for column identities. inspect(to_adapt).selectable.c self._aliased_class_pool.append(to_adapt) return self._aliased_class_pool[idx] def _generate_row_adapter( self, compile_state, entity, path, loadopt, adapter, column_collection, parentmapper, chained_from_outerjoin, ): with_poly_entity = path.get( compile_state.attributes, "path_with_polymorphic", None ) if with_poly_entity: to_adapt = with_poly_entity else: to_adapt = self._gen_pooled_aliased_class(compile_state) clauses = inspect(to_adapt)._memo( ("joinedloader_ormadapter", self), orm_util.ORMAdapter, to_adapt, equivalents=self.mapper._equivalent_columns, adapt_required=True, allow_label_resolve=False, anonymize_labels=True, ) assert clauses.aliased_class is not None innerjoin = ( loadopt.local_opts.get("innerjoin", self.parent_property.innerjoin) if loadopt is not None else self.parent_property.innerjoin ) if not innerjoin: # if this is an outer join, all non-nested eager joins from # this path must also be outer joins chained_from_outerjoin = True compile_state.create_eager_joins.append( ( self._create_eager_join, entity, path, adapter, parentmapper, clauses, innerjoin, chained_from_outerjoin, loadopt._extra_criteria if loadopt else (), ) ) add_to_collection = compile_state.secondary_columns path.set(compile_state.attributes, "eager_row_processor", clauses) return clauses, adapter, add_to_collection, chained_from_outerjoin def _create_eager_join( self, compile_state, query_entity, path, adapter, parentmapper, clauses, innerjoin, chained_from_outerjoin, extra_criteria, ): if parentmapper is None: localparent = query_entity.mapper else: localparent = parentmapper # whether or not the Query will wrap the selectable in a subquery, # and then attach eager load joins to that (i.e., in the case of # LIMIT/OFFSET etc.) should_nest_selectable = ( compile_state.multi_row_eager_loaders and compile_state._should_nest_selectable ) query_entity_key = None if ( query_entity not in compile_state.eager_joins and not should_nest_selectable and compile_state.from_clauses ): indexes = sql_util.find_left_clause_that_matches_given( compile_state.from_clauses, query_entity.selectable ) if len(indexes) > 1: # for the eager load case, I can't reproduce this right # now. For query.join() I can. raise sa_exc.InvalidRequestError( "Can't identify which query entity in which to joined " "eager load from. Please use an exact match when " "specifying the join path." ) if indexes: clause = compile_state.from_clauses[indexes[0]] # join to an existing FROM clause on the query. # key it to its list index in the eager_joins dict. # Query._compile_context will adapt as needed and # append to the FROM clause of the select(). query_entity_key, default_towrap = indexes[0], clause if query_entity_key is None: query_entity_key, default_towrap = ( query_entity, query_entity.selectable, ) towrap = compile_state.eager_joins.setdefault( query_entity_key, default_towrap ) if adapter: if getattr(adapter, "aliased_class", None): # joining from an adapted entity. The adapted entity # might be a "with_polymorphic", so resolve that to our # specific mapper's entity before looking for our attribute # name on it. efm = inspect(adapter.aliased_class)._entity_for_mapper( localparent if localparent.isa(self.parent) else self.parent ) # look for our attribute on the adapted entity, else fall back # to our straight property onclause = getattr(efm.entity, self.key, self.parent_property) else: onclause = getattr( orm_util.AliasedClass( self.parent, adapter.selectable, use_mapper_path=True ), self.key, self.parent_property, ) else: onclause = self.parent_property assert clauses.aliased_class is not None attach_on_outside = ( not chained_from_outerjoin or not innerjoin or innerjoin == "unnested" or query_entity.entity_zero.represents_outer_join ) extra_join_criteria = extra_criteria additional_entity_criteria = compile_state.global_attributes.get( ("additional_entity_criteria", self.mapper), () ) if additional_entity_criteria: extra_join_criteria += tuple( ae._resolve_where_criteria(self.mapper) for ae in additional_entity_criteria if ae.propagate_to_loaders ) if attach_on_outside: # this is the "classic" eager join case. eagerjoin = orm_util._ORMJoin( towrap, clauses.aliased_class, onclause, isouter=not innerjoin or query_entity.entity_zero.represents_outer_join or (chained_from_outerjoin and isinstance(towrap, sql.Join)), _left_memo=self.parent, _right_memo=self.mapper, _extra_criteria=extra_join_criteria, ) else: # all other cases are innerjoin=='nested' approach eagerjoin = self._splice_nested_inner_join( path, towrap, clauses, onclause, extra_join_criteria ) compile_state.eager_joins[query_entity_key] = eagerjoin # send a hint to the Query as to where it may "splice" this join eagerjoin.stop_on = query_entity.selectable if not parentmapper: # for parentclause that is the non-eager end of the join, # ensure all the parent cols in the primaryjoin are actually # in the # columns clause (i.e. are not deferred), so that aliasing applied # by the Query propagates those columns outward. # This has the effect # of "undefering" those columns. for col in sql_util._find_columns( self.parent_property.primaryjoin ): if localparent.persist_selectable.c.contains_column(col): if adapter: col = adapter.columns[col] compile_state.primary_columns.append(col) if self.parent_property.order_by: compile_state.eager_order_by += tuple( (eagerjoin._target_adapter.copy_and_process)( util.to_list(self.parent_property.order_by) ) ) def _splice_nested_inner_join( self, path, join_obj, clauses, onclause, extra_criteria, splicing=False ): if splicing is False: # first call is always handed a join object # from the outside assert isinstance(join_obj, orm_util._ORMJoin) elif isinstance(join_obj, sql.selectable.FromGrouping): return self._splice_nested_inner_join( path, join_obj.element, clauses, onclause, extra_criteria, splicing, ) elif not isinstance(join_obj, orm_util._ORMJoin): if path[-2] is splicing: return orm_util._ORMJoin( join_obj, clauses.aliased_class, onclause, isouter=False, _left_memo=splicing, _right_memo=path[-1].mapper, _extra_criteria=extra_criteria, ) else: # only here if splicing == True return None target_join = self._splice_nested_inner_join( path, join_obj.right, clauses, onclause, extra_criteria, join_obj._right_memo, ) if target_join is None: right_splice = False target_join = self._splice_nested_inner_join( path, join_obj.left, clauses, onclause, extra_criteria, join_obj._left_memo, ) if target_join is None: # should only return None when recursively called, # e.g. splicing==True assert ( splicing is not False ), "assertion failed attempting to produce joined eager loads" return None else: right_splice = True if right_splice: # for a right splice, attempt to flatten out # a JOIN b JOIN c JOIN .. to avoid needless # parenthesis nesting if not join_obj.isouter and not target_join.isouter: eagerjoin = join_obj._splice_into_center(target_join) else: eagerjoin = orm_util._ORMJoin( join_obj.left, target_join, join_obj.onclause, isouter=join_obj.isouter, _left_memo=join_obj._left_memo, ) else: eagerjoin = orm_util._ORMJoin( target_join, join_obj.right, join_obj.onclause, isouter=join_obj.isouter, _right_memo=join_obj._right_memo, ) eagerjoin._target_adapter = target_join._target_adapter return eagerjoin def _create_eager_adapter(self, context, result, adapter, path, loadopt): compile_state = context.compile_state user_defined_adapter = ( self._init_user_defined_eager_proc( loadopt, compile_state, context.attributes ) if loadopt else False ) if user_defined_adapter is not False: decorator = user_defined_adapter # user defined eagerloads are part of the "primary" # portion of the load. # the adapters applied to the Query should be honored. if compile_state.compound_eager_adapter and decorator: decorator = decorator.wrap( compile_state.compound_eager_adapter ) elif compile_state.compound_eager_adapter: decorator = compile_state.compound_eager_adapter else: decorator = path.get( compile_state.attributes, "eager_row_processor" ) if decorator is None: return False if self.mapper._result_has_identity_key(result, decorator): return decorator else: # no identity key - don't return a row # processor, will cause a degrade to lazy return False def create_row_processor( self, context, query_entity, path, loadopt, mapper, result, adapter, populators, ): if not self.parent.class_manager[self.key].impl.supports_population: raise sa_exc.InvalidRequestError( "'%s' does not support object " "population - eager loading cannot be applied." % self ) if self.uselist: context.loaders_require_uniquing = True our_path = path[self.parent_property] eager_adapter = self._create_eager_adapter( context, result, adapter, our_path, loadopt ) if eager_adapter is not False: key = self.key _instance = loading._instance_processor( query_entity, self.mapper, context, result, our_path[self.entity], eager_adapter, ) if not self.uselist: self._create_scalar_loader(context, key, _instance, populators) else: self._create_collection_loader( context, key, _instance, populators ) else: self.parent_property._get_strategy( (("lazy", "select"),) ).create_row_processor( context, query_entity, path, loadopt, mapper, result, adapter, populators, ) def _create_collection_loader(self, context, key, _instance, populators): def load_collection_from_joined_new_row(state, dict_, row): # note this must unconditionally clear out any existing collection. # an existing collection would be present only in the case of # populate_existing(). collection = attributes.init_state_collection(state, dict_, key) result_list = util.UniqueAppender( collection, "append_without_event" ) context.attributes[(state, key)] = result_list inst = _instance(row) if inst is not None: result_list.append(inst) def load_collection_from_joined_existing_row(state, dict_, row): if (state, key) in context.attributes: result_list = context.attributes[(state, key)] else: # appender_key can be absent from context.attributes # with isnew=False when self-referential eager loading # is used; the same instance may be present in two # distinct sets of result columns collection = attributes.init_state_collection( state, dict_, key ) result_list = util.UniqueAppender( collection, "append_without_event" ) context.attributes[(state, key)] = result_list inst = _instance(row) if inst is not None: result_list.append(inst) def load_collection_from_joined_exec(state, dict_, row): _instance(row) populators["new"].append( (self.key, load_collection_from_joined_new_row) ) populators["existing"].append( (self.key, load_collection_from_joined_existing_row) ) if context.invoke_all_eagers: populators["eager"].append( (self.key, load_collection_from_joined_exec) ) def _create_scalar_loader(self, context, key, _instance, populators): def load_scalar_from_joined_new_row(state, dict_, row): # set a scalar object instance directly on the parent # object, bypassing InstrumentedAttribute event handlers. dict_[key] = _instance(row) def load_scalar_from_joined_existing_row(state, dict_, row): # call _instance on the row, even though the object has # been created, so that we further descend into properties existing = _instance(row) # conflicting value already loaded, this shouldn't happen if key in dict_: if existing is not dict_[key]: util.warn( "Multiple rows returned with " "uselist=False for eagerly-loaded attribute '%s' " % self ) else: # this case is when one row has multiple loads of the # same entity (e.g. via aliasing), one has an attribute # that the other doesn't. dict_[key] = existing def load_scalar_from_joined_exec(state, dict_, row): _instance(row) populators["new"].append((self.key, load_scalar_from_joined_new_row)) populators["existing"].append( (self.key, load_scalar_from_joined_existing_row) ) if context.invoke_all_eagers: populators["eager"].append( (self.key, load_scalar_from_joined_exec) ) @log.class_logger @relationships.RelationshipProperty.strategy_for(lazy="selectin") class SelectInLoader(PostLoader, util.MemoizedSlots): __slots__ = ( "join_depth", "omit_join", "_parent_alias", "_query_info", "_fallback_query_info", "_query_cache", ) query_info = collections.namedtuple( "queryinfo", [ "load_only_child", "load_with_join", "in_expr", "pk_cols", "zero_idx", "child_lookup_cols", ], ) _chunksize = 500 def __init__(self, parent, strategy_key): super(SelectInLoader, self).__init__(parent, strategy_key) self.join_depth = self.parent_property.join_depth is_m2o = self.parent_property.direction is interfaces.MANYTOONE if self.parent_property.omit_join is not None: self.omit_join = self.parent_property.omit_join else: lazyloader = self.parent_property._get_strategy( (("lazy", "select"),) ) if is_m2o: self.omit_join = lazyloader.use_get else: self.omit_join = self.parent._get_clause[0].compare( lazyloader._rev_lazywhere, use_proxies=True, compare_keys=False, equivalents=self.parent._equivalent_columns, ) if self.omit_join: if is_m2o: self._query_info = self._init_for_omit_join_m2o() self._fallback_query_info = self._init_for_join() else: self._query_info = self._init_for_omit_join() else: self._query_info = self._init_for_join() def _init_for_omit_join(self): pk_to_fk = dict( self.parent_property._join_condition.local_remote_pairs ) pk_to_fk.update( (equiv, pk_to_fk[k]) for k in list(pk_to_fk) for equiv in self.parent._equivalent_columns.get(k, ()) ) pk_cols = fk_cols = [ pk_to_fk[col] for col in self.parent.primary_key if col in pk_to_fk ] if len(fk_cols) > 1: in_expr = sql.tuple_(*fk_cols) zero_idx = False else: in_expr = fk_cols[0] zero_idx = True return self.query_info(False, False, in_expr, pk_cols, zero_idx, None) def _init_for_omit_join_m2o(self): pk_cols = self.mapper.primary_key if len(pk_cols) > 1: in_expr = sql.tuple_(*pk_cols) zero_idx = False else: in_expr = pk_cols[0] zero_idx = True lazyloader = self.parent_property._get_strategy((("lazy", "select"),)) lookup_cols = [lazyloader._equated_columns[pk] for pk in pk_cols] return self.query_info( True, False, in_expr, pk_cols, zero_idx, lookup_cols ) def _init_for_join(self): self._parent_alias = aliased(self.parent.class_) pa_insp = inspect(self._parent_alias) pk_cols = [ pa_insp._adapt_element(col) for col in self.parent.primary_key ] if len(pk_cols) > 1: in_expr = sql.tuple_(*pk_cols) zero_idx = False else: in_expr = pk_cols[0] zero_idx = True return self.query_info(False, True, in_expr, pk_cols, zero_idx, None) def init_class_attribute(self, mapper): self.parent_property._get_strategy( (("lazy", "select"),) ).init_class_attribute(mapper) def _memoized_attr__query_cache(self): return util.LRUCache(30, size_alert=self._size_alert) def create_row_processor( self, context, query_entity, path, loadopt, mapper, result, adapter, populators, ): if context.refresh_state: return self._immediateload_create_row_processor( context, query_entity, path, loadopt, mapper, result, adapter, populators, ) elif self._check_recursive_postload(context, path, self.join_depth): return if not self.parent.class_manager[self.key].impl.supports_population: raise sa_exc.InvalidRequestError( "'%s' does not support object " "population - eager loading cannot be applied." % self ) # a little dance here as the "path" is still something that only # semi-tracks the exact series of things we are loading, still not # telling us about with_polymorphic() and stuff like that when it's at # the root.. the initial MapperEntity is more accurate for this case. if len(path) == 1: if not orm_util._entity_isa(query_entity.entity_zero, self.parent): return elif not orm_util._entity_isa(path[-1], self.parent): return selectin_path = ( context.compile_state.current_path or orm_util.PathRegistry.root ) + path path_w_prop = path[self.parent_property] # build up a path indicating the path from the leftmost # entity to the thing we're subquery loading. with_poly_entity = path_w_prop.get( context.attributes, "path_with_polymorphic", None ) if with_poly_entity is not None: effective_entity = inspect(with_poly_entity) else: effective_entity = self.entity loading.PostLoad.callable_for_path( context, selectin_path, self.parent, self.parent_property, self._load_for_path, effective_entity, loadopt, ) def _load_for_path( self, context, path, states, load_only, effective_entity, loadopt ): if load_only and self.key not in load_only: return query_info = self._query_info if query_info.load_only_child: our_states = collections.defaultdict(list) none_states = [] mapper = self.parent for state, overwrite in states: state_dict = state.dict related_ident = tuple( mapper._get_state_attr_by_column( state, state_dict, lk, passive=attributes.PASSIVE_NO_FETCH, ) for lk in query_info.child_lookup_cols ) # if the loaded parent objects do not have the foreign key # to the related item loaded, then degrade into the joined # version of selectinload if attributes.PASSIVE_NO_RESULT in related_ident: query_info = self._fallback_query_info break # organize states into lists keyed to particular foreign # key values. if None not in related_ident: our_states[related_ident].append( (state, state_dict, overwrite) ) else: # For FK values that have None, add them to a # separate collection that will be populated separately none_states.append((state, state_dict, overwrite)) # note the above conditional may have changed query_info if not query_info.load_only_child: our_states = [ (state.key[1], state, state.dict, overwrite) for state, overwrite in states ] pk_cols = query_info.pk_cols in_expr = query_info.in_expr if not query_info.load_with_join: # in "omit join" mode, the primary key column and the # "in" expression are in terms of the related entity. So # if the related entity is polymorphic or otherwise aliased, # we need to adapt our "pk_cols" and "in_expr" to that # entity. in non-"omit join" mode, these are against the # parent entity and do not need adaption. if effective_entity.is_aliased_class: pk_cols = [ effective_entity._adapt_element(col) for col in pk_cols ] in_expr = effective_entity._adapt_element(in_expr) q = sql.lambda_stmt( lambda: sql.select( orm_util.Bundle("pk", *pk_cols), effective_entity ) .set_label_style(LABEL_STYLE_TABLENAME_PLUS_COL) ._set_compile_options(ORMCompileState.default_compile_options) ._set_propagate_attrs( { "compile_state_plugin": "orm", "plugin_subject": effective_entity, } ), lambda_cache=self._query_cache, global_track_bound_values=False, track_on=(self, effective_entity) + tuple(pk_cols), ) if not self.parent_property.bake_queries: q = q.spoil() if not query_info.load_with_join: # the Bundle we have in the "omit_join" case is against raw, non # annotated columns, so to ensure the Query knows its primary # entity, we add it explicitly. If we made the Bundle against # annotated columns, we hit a performance issue in this specific # case, which is detailed in issue #4347. q = q.add_criteria(lambda q: q.select_from(effective_entity)) else: # in the non-omit_join case, the Bundle is against the annotated/ # mapped column of the parent entity, but the #4347 issue does not # occur in this case. q = q.add_criteria( lambda q: q.select_from(self._parent_alias).join( getattr( self._parent_alias, self.parent_property.key ).of_type(effective_entity) ), track_on=[self], ) q = q.add_criteria( lambda q: q.filter(in_expr.in_(sql.bindparam("primary_keys"))) ) # a test which exercises what these comments talk about is # test_selectin_relations.py -> test_twolevel_selectin_w_polymorphic # # effective_entity above is given to us in terms of the cached # statement, namely this one: orig_query = context.compile_state.select_statement # the actual statement that was requested is this one: # context_query = context.query # # that's not the cached one, however. So while it is of the identical # structure, if it has entities like AliasedInsp, which we get from # aliased() or with_polymorphic(), the AliasedInsp will likely be a # different object identity each time, and will not match up # hashing-wise to the corresponding AliasedInsp that's in the # cached query, meaning it won't match on paths and loader lookups # and loaders like this one will be skipped if it is used in options. # # Now we want to transfer loader options from the parent query to the # "selectinload" query we're about to run. Which query do we transfer # the options from? We use the cached query, because the options in # that query will be in terms of the effective entity we were just # handed. # # But now the selectinload query we are running is *also* # cached. What if it's cached and running from some previous iteration # of that AliasedInsp? Well in that case it will also use the previous # iteration of the loader options. If the query expires and # gets generated again, it will be handed the current effective_entity # and the current _with_options, again in terms of whatever # compile_state.select_statement happens to be right now, so the # query will still be internally consistent and loader callables # will be correctly invoked. effective_path = path[self.parent_property] options = orig_query._with_options if loadopt and loadopt._extra_criteria: options += ( orm_util.LoaderCriteriaOption( effective_entity, loadopt._generate_extra_criteria(context), ), ) q = q.add_criteria( lambda q: q.options(*options)._update_compile_options( {"_current_path": effective_path} ) ) if context.populate_existing: q = q.add_criteria( lambda q: q.execution_options(populate_existing=True) ) if self.parent_property.order_by: if not query_info.load_with_join: eager_order_by = self.parent_property.order_by if effective_entity.is_aliased_class: eager_order_by = [ effective_entity._adapt_element(elem) for elem in eager_order_by ] q = q.add_criteria(lambda q: q.order_by(*eager_order_by)) else: def _setup_outermost_orderby(compile_context): compile_context.eager_order_by += tuple( util.to_list(self.parent_property.order_by) ) q = q.add_criteria( lambda q: q._add_context_option( _setup_outermost_orderby, self.parent_property ), track_on=[self], ) if query_info.load_only_child: self._load_via_child( our_states, none_states, query_info, q, context ) else: self._load_via_parent(our_states, query_info, q, context) def _load_via_child(self, our_states, none_states, query_info, q, context): uselist = self.uselist # this sort is really for the benefit of the unit tests our_keys = sorted(our_states) while our_keys: chunk = our_keys[0 : self._chunksize] our_keys = our_keys[self._chunksize :] data = { k: v for k, v in context.session.execute( q, params={ "primary_keys": [ key[0] if query_info.zero_idx else key for key in chunk ] }, ).unique() } for key in chunk: # for a real foreign key and no concurrent changes to the # DB while running this method, "key" is always present in # data. However, for primaryjoins without real foreign keys # a non-None primaryjoin condition may still refer to no # related object. related_obj = data.get(key, None) for state, dict_, overwrite in our_states[key]: if not overwrite and self.key in dict_: continue state.get_impl(self.key).set_committed_value( state, dict_, related_obj if not uselist else [related_obj], ) # populate none states with empty value / collection for state, dict_, overwrite in none_states: if not overwrite and self.key in dict_: continue # note it's OK if this is a uselist=True attribute, the empty # collection will be populated state.get_impl(self.key).set_committed_value(state, dict_, None) def _load_via_parent(self, our_states, query_info, q, context): uselist = self.uselist _empty_result = () if uselist else None while our_states: chunk = our_states[0 : self._chunksize] our_states = our_states[self._chunksize :] primary_keys = [ key[0] if query_info.zero_idx else key for key, state, state_dict, overwrite in chunk ] data = collections.defaultdict(list) for k, v in itertools.groupby( context.session.execute( q, params={"primary_keys": primary_keys} ).unique(), lambda x: x[0], ): data[k].extend(vv[1] for vv in v) for key, state, state_dict, overwrite in chunk: if not overwrite and self.key in state_dict: continue collection = data.get(key, _empty_result) if not uselist and collection: if len(collection) > 1: util.warn( "Multiple rows returned with " "uselist=False for eagerly-loaded " "attribute '%s' " % self ) state.get_impl(self.key).set_committed_value( state, state_dict, collection[0] ) else: # note that empty tuple set on uselist=False sets the # value to None state.get_impl(self.key).set_committed_value( state, state_dict, collection ) def single_parent_validator(desc, prop): def _do_check(state, value, oldvalue, initiator): if value is not None and initiator.key == prop.key: hasparent = initiator.hasparent(attributes.instance_state(value)) if hasparent and oldvalue is not value: raise sa_exc.InvalidRequestError( "Instance %s is already associated with an instance " "of %s via its %s attribute, and is only allowed a " "single parent." % (orm_util.instance_str(value), state.class_, prop), code="bbf1", ) return value def append(state, value, initiator): return _do_check(state, value, None, initiator) def set_(state, value, oldvalue, initiator): return _do_check(state, value, oldvalue, initiator) event.listen( desc, "append", append, raw=True, retval=True, active_history=True ) event.listen(desc, "set", set_, raw=True, retval=True, active_history=True)
34.250323
79
0.574182
4f933af75485425665901deb2a04eb76721d5702
1,602
py
Python
qtpyvcp/widgets/hal_widgets/hal_led.py
Lcvette/qtpyvcp
4143a4a4e1f557f7d0c8998c886b4a254f0be60b
[ "BSD-3-Clause-LBNL", "MIT" ]
71
2018-12-13T20:31:18.000Z
2022-03-26T08:44:22.000Z
qtpyvcp/widgets/hal_widgets/hal_led.py
Lcvette/qtpyvcp
4143a4a4e1f557f7d0c8998c886b4a254f0be60b
[ "BSD-3-Clause-LBNL", "MIT" ]
78
2019-01-10T18:16:33.000Z
2022-03-18T19:30:49.000Z
qtpyvcp/widgets/hal_widgets/hal_led.py
Lcvette/qtpyvcp
4143a4a4e1f557f7d0c8998c886b4a254f0be60b
[ "BSD-3-Clause-LBNL", "MIT" ]
38
2018-10-10T19:02:26.000Z
2022-01-30T04:38:14.000Z
from qtpyvcp import hal from qtpyvcp.widgets import HALWidget from qtpyvcp.widgets.base_widgets.led_widget import LEDWidget # Setup logging from qtpyvcp.utilities.logger import getLogger log = getLogger(__name__) class HalLedIndicator(LEDWidget, HALWidget): """HAL LED LED for indicated the state of `bit` HAL pins. .. table:: Generated HAL Pins ========================= ========= ========= HAL Pin Name Type Direction ========================= ========= ========= qtpyvcp.led.on bit in qtpyvcp.led.flash bit in qtpyvcp.led.flash-rate u32 out ========================= ========= ========= """ def __init__(self, parent=None): super(HalLedIndicator, self).__init__(parent) self._value_pin = None self._enabled_pin = None def initialize(self): comp = hal.getComponent() obj_name = self.getPinBaseName() # add led.on HAL pin self._on_pin = comp.addPin(obj_name + ".on", "bit", "in") # self._on_pin.value = self.isO() self._on_pin.valueChanged.connect(lambda state: self.setState(state)) # add led.flash HAL pin self._flash_pin = comp.addPin(obj_name + ".flash", "bit", "in") self._flash_pin.valueChanged.connect(lambda flash: self.setFlashing(flash)) # add led.flash-rate HAL pin self._flash_rate_pin = comp.addPin(obj_name + ".flash-rate", "u32", "in") self._flash_rate_pin.valueChanged.connect(lambda rate: self.setFlashRate(rate))
33.375
87
0.576155
aec7ad809a033c343809030391214458db5ccb19
2,205
py
Python
lg_common/scripts/readiness.py
FuriousJulius/lg_ros_nodes
15a84c5022ab2f5b038d11a5589cd4a34010b1d6
[ "Apache-2.0" ]
null
null
null
lg_common/scripts/readiness.py
FuriousJulius/lg_ros_nodes
15a84c5022ab2f5b038d11a5589cd4a34010b1d6
[ "Apache-2.0" ]
null
null
null
lg_common/scripts/readiness.py
FuriousJulius/lg_ros_nodes
15a84c5022ab2f5b038d11a5589cd4a34010b1d6
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python3 import rospy from lg_msg_defs.msg import AdhocBrowsers from lg_common import ReadinessNode from lg_common import ReadinessHandbrake from std_msgs.msg import String from lg_msg_defs.srv import NodeReady from lg_msg_defs.msg import Ready from lg_common.helpers import handle_initial_state from interactivespaces_msgs.msg import GenericMessage from lg_common.helpers import run_with_influx_exception_handler NODE_NAME = 'readiness_node' def main(): rospy.init_node(NODE_NAME) common_topic_name = '/browser_service/browsers' readiness_topic_name = '/director/ready' window_instances_topic_name = '/director/window/ready' readiness_timeout = rospy.get_param("/readiness/timeout", 10) readiness_publisher = rospy.Publisher(readiness_topic_name, Ready, queue_size=20) timeout_publisher = rospy.Publisher('/director/window/error', String, queue_size=10) readiness_node = ReadinessNode( readiness_publisher=readiness_publisher, timeout_publisher=timeout_publisher ) readiness_handbrake = ReadinessHandbrake( callback=readiness_node.try_to_become_ready, timeout=readiness_timeout, ) handle_initial_state(readiness_node.save_uscs_message) handle_initial_state(readiness_handbrake.handle_uscs_message) rospy.Subscriber('/director/scene', GenericMessage, readiness_node.save_uscs_message) rospy.Subscriber('/director/scene', GenericMessage, readiness_handbrake.handle_uscs_message) rospy.Subscriber(window_instances_topic_name, String, readiness_node.handle_readiness) rospy.Subscriber(common_topic_name, AdhocBrowsers, readiness_node.aggregate_browser_instances) rospy.Service('/readiness_node/ready', NodeReady, readiness_node.node_ready) rospy.spin() if __name__ == "__main__": run_with_influx_exception_handler(main, NODE_NAME)
31.5
80
0.679819
530399364dd0ca6ca50d55aff541a653b7db9186
434
py
Python
Library/lib/python3.9/site-packages/numpy/core/_operand_flag_tests.py
Jeverett3000/codeapp
fa1c6f91e7b22e22628773282a308bcd8db0920f
[ "MIT" ]
603
2020-12-23T13:49:32.000Z
2022-03-31T23:38:03.000Z
Library/lib/python3.9/site-packages/numpy/core/_operand_flag_tests.py
Jeverett3000/codeapp
fa1c6f91e7b22e22628773282a308bcd8db0920f
[ "MIT" ]
387
2020-12-15T14:54:04.000Z
2022-03-31T07:00:21.000Z
Library/lib/python3.9/site-packages/numpy/core/_operand_flag_tests.py
Jeverett3000/codeapp
fa1c6f91e7b22e22628773282a308bcd8db0920f
[ "MIT" ]
35
2021-03-26T03:12:04.000Z
2022-03-23T10:15:10.000Z
def __bootstrap__(): global __bootstrap__, __loader__, __file__ import sys, pkg_resources, importlib.util __file__ = pkg_resources.resource_filename(__name__, '_operand_flag_tests.cpython-39-darwin.so') __loader__ = None; del __bootstrap__, __loader__ spec = importlib.util.spec_from_file_location(__name__,__file__) mod = importlib.util.module_from_spec(spec) spec.loader.exec_module(mod) __bootstrap__()
43.4
100
0.781106
574589942adc23a25b55e7fec58e90053b9cab4d
1,516
py
Python
randomize_files.py
aidan-fitz/SolarTracer
31cc77ca974640be277d00c6ca23d82292f178c1
[ "Apache-2.0" ]
1
2021-11-08T14:37:10.000Z
2021-11-08T14:37:10.000Z
randomize_files.py
aidan-fitz/SolarTracer
31cc77ca974640be277d00c6ca23d82292f178c1
[ "Apache-2.0" ]
null
null
null
randomize_files.py
aidan-fitz/SolarTracer
31cc77ca974640be277d00c6ca23d82292f178c1
[ "Apache-2.0" ]
null
null
null
import argparse from itertools import product import os import shutil import numpy as np '''Randomly assign files to training, validation, or test subsets.''' rng = np.random.default_rng() def parse_args(): parser = argparse.ArgumentParser(description='Randomly assign files to training, validation, or test subsets') parser.add_argument('directory', metavar='path/to/directory', default='outputs/images') return parser.parse_args() def create_subsets(root_dir): for subset, cls in product({'train', 'val', 'eval'}, {'0', '1'}): dir = os.path.join(root_dir, subset, cls) print(f'Create directory {dir}') os.makedirs(dir, exist_ok=True, mode=0o775) def copy_to_random_subset(file, root_dir, cls): subset = rng.choice(['train', 'val', 'eval'], p=[0.7, 0.2, 0.1]) dest = os.path.join(root_dir, subset, cls) print(f'Copy file {file} to {dest} (subset {subset})') shutil.copy(file, dest) def randomize_class(root_dir, cls): path = os.path.join(root_dir, cls) with os.scandir(path) as it: for entry in it: if not entry.name.startswith('.') and entry.is_file(): copy_to_random_subset(entry.path, root_dir, cls) def main(): args = parse_args() root_dir = args.directory # Create train/val/test directory structure create_subsets(root_dir) # Iterate through positive and negative classes randomize_class(root_dir, '0') randomize_class(root_dir, '1') if __name__ == '__main__': main()
32.255319
114
0.677441
649bcccef7a0301a43da998abc8cf10d7c51d606
2,092
py
Python
azure/upload.py
tcsong456/news_category_classificaiton
8431d9d9f5aff207e918661b6e69342a54129be0
[ "MIT" ]
null
null
null
azure/upload.py
tcsong456/news_category_classificaiton
8431d9d9f5aff207e918661b6e69342a54129be0
[ "MIT" ]
null
null
null
azure/upload.py
tcsong456/news_category_classificaiton
8431d9d9f5aff207e918661b6e69342a54129be0
[ "MIT" ]
null
null
null
from azureml.core import Workspace from env_variables import ENV from azureml.core.authentication import ServicePrincipalAuthentication import json import pandas as pd from azure_utils import use_or_create_datastore import argparse def parserargs(): parser = argparse.ArgumentParser() arg = parser.add_argument arg('--corpus_train',type=str, help='the path to train corpus') arg('--corpus_eval',type=str, help='the path to eval corpus') arg('--vocab',type=str, help='the path to vocab.pkl') args = parser.parse_args() return args def dataframe(datapath:str,name:str): corpus = [] with open(datapath,'r') as f: for line in f: _line = line.split('\t') label,text = _line[0],' '.join(_line[1:]).strip() corpus.append([label,text]) corpus = pd.DataFrame(corpus,columns=['label','text']) corpus.to_csv(name,index=False) def main(): args = parserargs() env = ENV with open('config.json','r') as f: config = json.load(f) auth = ServicePrincipalAuthentication(tenant_id=config['tenant_id'], service_principal_id=config['service_principal_id'], service_principal_password=config['service_principal_password']) ws = Workspace.get(name=env.workspace, resource_group=env.resource_group, subscription_id=env.subscription_id, auth=auth) datastore = use_or_create_datastore(ws=ws, datastore_name=env.datastore_name, use_default=False) dataframe(args.corpus_train,'corpus_train.csv') dataframe(args.corpus_eval,'corpus_eval.csv') for input in ['corpus_train.csv','corpus_eval.csv',args.vocab]: datastore.upload_files([input], target_path='corpus', overwrite=True) if __name__ == '__main__': main() #%%
35.457627
106
0.590344
7b13d379f4e3d550845c60ab3fc0ea995ff638f7
14,005
py
Python
src/pathpicker/parse.py
houbie/PathPicker
48276541453803a47e85a30037df05f313ef37c7
[ "MIT" ]
5,167
2015-05-07T17:04:03.000Z
2022-03-24T18:09:58.000Z
src/pathpicker/parse.py
code-reaper08/PathPicker
86aff624299e96456c647b5f68dd813aa0caf2f8
[ "MIT" ]
319
2015-05-07T17:38:54.000Z
2022-03-21T10:50:15.000Z
src/pathpicker/parse.py
code-reaper08/PathPicker
86aff624299e96456c647b5f68dd813aa0caf2f8
[ "MIT" ]
374
2015-05-07T17:34:53.000Z
2022-03-21T08:42:51.000Z
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import os import re import subprocess from functools import partial from typing import Callable, List, Match, NamedTuple, NewType, Optional, Pattern, Tuple from pathpicker import logger from pathpicker.repos import REPOS MatchResult = NewType("MatchResult", Tuple[str, int, Match]) MASTER_REGEX = re.compile( r"(/?([a-z.A-Z0-9\-_]+/)+[@a-zA-Z0-9\-_+.]+\.[a-zA-Z0-9]{1,10})[:-]?(\d+)?" ) MASTER_REGEX_MORE_EXTENSIONS = re.compile( r"(/?([a-z.A-Z0-9\-_]+/)+[@a-zA-Z0-9\-_+.]+\.[a-zA-Z0-9-~]{1,30})[:-]?(\d+)?" ) HOMEDIR_REGEX = re.compile( r"(~/([a-z.A-Z0-9\-_]+/)+[@a-zA-Z0-9\-_+.]+\.[a-zA-Z0-9]{1,10})[:-]?(\d+)?" ) OTHER_BGS_RESULT_REGEX = re.compile( r"(/?([a-z.A-Z0-9\-_]+/)+[a-zA-Z0-9_.]{3,})[:-]?(\d+)" ) ENTIRE_TRIMMED_LINE_IF_NOT_WHITESPACE = re.compile(r"(\S.*\S|\S)") JUST_FILE_WITH_NUMBER = re.compile( r"([@%+a-z.A-Z0-9\-_]+\.[a-zA-Z]{1,10})[:-](\d+)(\s|$|:)+" ) JUST_FILE = re.compile(r"([@%+a-z.A-Z0-9\-_]+\.[a-zA-Z]{1,10})(\s|$|:)+") JUST_EMACS_TEMP_FILE = re.compile(r"([@%+a-z.A-Z0-9\-_]+\.[a-zA-Z]{1,10}~)(\s|$|:)+") JUST_VIM_TEMP_FILE = re.compile(r"(#[@%+a-z.A-Z0-9\-_]+\.[a-zA-Z]{1,10}#)(\s|$|:)+") # start with a normal char for ls -l JUST_FILE_WITH_SPACES = re.compile( r"([a-zA-Z][@+a-z. A-Z0-9\-_]+\.[a-zA-Z]{1,10})(\s|$|:)+" ) FILE_NO_PERIODS = re.compile( ( r"(" # Recognized files starting with a dot followed by at least 3 characters r"((/?([a-z.A-Z0-9\-_]+/))?\.[a-zA-Z0-9\-_]{3,}[a-zA-Z0-9\-_/]*)" # or r"|" # Recognize files containing at least one slash r"([a-z.A-Z0-9\-_/]+/[a-zA-Z0-9\-_]+)" # or r"|" # Recognize files starting with capital letter and ending in "file". # eg. Makefile r"([A-Z][a-zA-Z]{2,}file)" # end trying to capture r")" # Regardless of the above case, here's how the file name should terminate r"(\s|$|:)+" ) ) MASTER_REGEX_WITH_SPACES_AND_WEIRD_FILES = re.compile( ( # begin the capture r"(" # capture some pre-dir stuff like / and ./ r"(?:" r"\.?/" r")?" # thats optional # now we look at directories. The 'character class ' allowed before the '/' # is either a real character or a character and a space. This allows # multiple spaces in a directory as long as each space is followed by # a normal character, but it does not allow multiple continguous spaces # which would otherwise gobble up too much whitespace. # # Thus, these directories will match: # /something foo/ # / a b c d e/ # /normal/ # # but these will not: # /two spaces here/ # /ending in a space / r"(([a-z.A-Z0-9\-_]|\s[a-zA-Z0-9\-_])+/)+" # Recognized files starting with a dot followed by at least 3 characters r"((/?([a-z.A-Z0-9\-_]+/))?\.[a-zA-Z0-9\-_]{3,}[a-zA-Z0-9\-_/]*)" # or r"|" # Recognize files containing at least one slash r"([a-z.A-Z0-9\-_/]+/[a-zA-Z0-9\-_]+)" # or r"|" # Recognize files starting with capital letter and ending in "file". # eg. Makefile r"([A-Z][a-zA-Z]{2,}file)" r")" ) ) MASTER_REGEX_WITH_SPACES = re.compile( ( # begin the capture r"(" # capture some pre-dir stuff like / and ./ r"(?:" r"\.?/" r")?" # thats optional # now we look at directories. The 'character class ' allowed before the '/' # is either a real character or a character and a space. This allows # multiple spaces in a directory as long as each space is followed by # a normal character, but it does not allow multiple continguous spaces # which would otherwise gobble up too much whitespace. # # Thus, these directories will match: # /something foo/ # / a b c d e/ # /normal/ # # but these will not: # /two spaces here/ # /ending in a space / r"(([a-z.A-Z0-9\-_]|\s[a-zA-Z0-9\-_])+/)+" # we do similar for the filename part. the 'character class' is # char or char with space following, with some added tokens like @ # for retina files. r"([(),%@a-zA-Z0-9\-_+.]|\s[,()@%a-zA-Z0-9\-_+.])+" # extensions dont allow spaces r"\.[a-zA-Z0-9-]{1,30}" # end capture ")" # optionally capture the line number r"[:-]?(\d+)?" ) ) class RegexConfig(NamedTuple): name: str regex: Pattern preferred_regex: Optional[Pattern] = None num_index: int = 2 no_num: bool = False only_with_file_inspection: bool = False with_all_lines_matched: bool = False REGEX_WATERFALL: List[RegexConfig] = [ # Homedirs need a separate regex. RegexConfig("HOMEDIR_REGEX", HOMEDIR_REGEX), # The master regex matches tbgs results with # line numbers, so we prefer that and test it first. RegexConfig( "MASTER_REGEX", MASTER_REGEX, # one real quick check -- did we find a better match # earlier in the regex? preferred_regex=OTHER_BGS_RESULT_REGEX, ), # If something clearly looks like an *bgs result but # just has a weird filename (like all caps with no extension) # then we can match that as well. Note that we require # the line number match since otherwise this would be too lax # of a regex. RegexConfig("OTHER_BGS_RESULT_REGEX", OTHER_BGS_RESULT_REGEX), RegexConfig( "MASTER_REGEX_MORE_EXTENSIONS", MASTER_REGEX_MORE_EXTENSIONS, only_with_file_inspection=True, ), # We would overmatch on wayyyyy too many things if we # allowed spaces everywhere, but with filesystem validation # and the final fallback we can include them. RegexConfig( "MASTER_REGEX_WITH_SPACES", MASTER_REGEX_WITH_SPACES, num_index=4, only_with_file_inspection=True, ), RegexConfig( "MASTER_REGEX_WITH_SPACES_AND_WEIRD_FILES", MASTER_REGEX_WITH_SPACES_AND_WEIRD_FILES, num_index=4, only_with_file_inspection=True, ), # An Emacs and Vim backup/temporary/save file of the form: #example.txt# RegexConfig( "JUST_VIM_TEMP_FILE", JUST_VIM_TEMP_FILE, no_num=True, ), # An Emacs backup/temporary/save file with a tilde at the end: example.txt~ RegexConfig( "JUST_EMACS_TEMP_FILE", JUST_EMACS_TEMP_FILE, no_num=True, ), # File (without directory) and a number. Ex: # $ grep -n my_pattern A.txt B.txt # A.txt:100 my_pattern RegexConfig( "JUST_FILE_WITH_NUMBER", JUST_FILE_WITH_NUMBER, num_index=1, ), # Ok maybe its just a normal file (with a dot) # so lets test for that if the above fails RegexConfig( "JUST_FILE", JUST_FILE, no_num=True, ), # Ok if that's not there, try do to filesystem validation # for just files with spaces RegexConfig( "JUST_FILE_WITH_SPACES", JUST_FILE_WITH_SPACES, no_num=True, only_with_file_inspection=True, ), # Ok finally it might be a file with no periods. we test # this last since its more restrictive, because we don't # want to match things like cx('foo/root'). hence # we require some minimum number of slashes and minimum # file name length RegexConfig( "FILE_NO_PERIODS", FILE_NO_PERIODS, no_num=True, ), RegexConfig( "ENTIRE_TRIMMED_LINE_IF_NOT_WHITESPACE", ENTIRE_TRIMMED_LINE_IF_NOT_WHITESPACE, no_num=True, with_all_lines_matched=True, ), ] # Attempts to resolve the root directory of the # repository in which path resides (i.e. the current directory). # both git and hg have commands for this, so let's just use those. def get_repo_path() -> str: proc = subprocess.Popen( ["git rev-parse --show-toplevel"], stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True, universal_newlines=True, ) stdout, stderr = proc.communicate() # If there was no error return the output if not stderr: logger.add_event("using_git") return stdout proc = subprocess.Popen( ["hg root"], stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True, universal_newlines=True, ) stdout, stderr = proc.communicate() # If there was no error return the output if not stderr: logger.add_event("using_hg") return stdout # Not a git or hg repo, go with current dir as a default logger.add_event("used_outside_repo") return "./" PREPEND_PATH = f"{get_repo_path().strip()}/" # returns a filename and (optional) line number # if it matches def match_line( line: str, validate_file_exists: bool = False, all_input: bool = False ) -> Optional[MatchResult]: if not validate_file_exists: results = match_line_impl(line, with_all_lines_matched=all_input) return results[0] if results else None results = match_line_impl( line, with_file_inspection=True, with_all_lines_matched=all_input ) if not results: return None # ok now we are going to check if this result is an actual # file... for result in results: (file_path, _, _) = result if ( os.path.isfile(prepend_dir(file_path, with_file_inspection=True)) or file_path[0:4] == ".../" ): return result return None def match_line_impl( line: str, with_file_inspection: bool = False, with_all_lines_matched: bool = False ) -> List[MatchResult]: # ok new behavior -- we will actually collect **ALL** results # of the regexes since filesystem validation might filter some # of the earlier ones out (particularly those with hyphens) results = [] for regex_config in REGEX_WATERFALL: regex = regex_config.regex if regex_config.with_all_lines_matched != with_all_lines_matched: continue if regex_config.only_with_file_inspection and not with_file_inspection: continue matches = regex.search(line) if not matches: continue # mypy needs some help here to resolve types correctly unpack_matches_num_index_var: Callable = partial( unpack_matches, num_index=regex_config.num_index ) unpack_matches_no_num_var: Callable = unpack_matches_no_num unpack_func: Callable = ( unpack_matches_no_num_var if regex_config.no_num else unpack_matches_num_index_var ) if not regex_config.preferred_regex: results.append(unpack_func(matches)) continue # check the preferred_regex preferred_regex = regex_config.preferred_regex other_matches = preferred_regex.search(line) if not other_matches: results.append(unpack_func(matches)) continue if other_matches.start() < matches.start(): # we found a better result earlier, so return that results.append(unpack_func(other_matches)) continue results.append(unpack_func(matches)) # nothing matched at all return results def prepend_dir(file: str, with_file_inspection: bool = False) -> str: if not file or len(file) < 2: return file if file[0] == "/": return file if file[0:4] == ".../": # these are the gross git abbreviated paths, so # return early since we cant do anything here return file if file[0:2] == "~/": # need to absolute it return os.path.expanduser(file) # if it starts with relative dirs (grep), then that's the easiest # because abspath will resolve this if file[0:2] == "./" or file[0:3] == "../": return file # some peeps do forcedir and expand the path beforehand, # so lets check for that case here first = file.split(os.sep)[0] if first == "home" and not os.environ.get("FPP_DISABLE_PREPENDING_HOME_WITH_SLASH"): # already absolute, easy return "/" + file if first in REPOS + (os.environ.get("FPP_REPOS") or "").split(","): return os.path.expanduser("~/" + file) if "/" not in file: # assume current dir like ./ return "./" + file # git show and diff has a/stuff and b/stuff, so handle that. git # status never does this so we don't need to worry about relative dirs if file[0:2] == "a/" or file[0:2] == "b/": return PREPEND_PATH + file[2:] split_up = file.split("/") if split_up[0] == "www": return PREPEND_PATH + "/".join(split_up[1:]) if not with_file_inspection: # hope return PREPEND_PATH + "/".join(split_up) # Alright we need to handle the case where git status returns # relative paths where every other git command returns paths relative # to the top-level dir. so lets see if PREPEND_PATH is not a file whereas # relative is... top_level_path = PREPEND_PATH + "/".join(split_up) relative_path = "./" + "/".join(split_up) if not os.path.isfile(top_level_path) and os.path.isfile(relative_path): return relative_path return top_level_path def unpack_matches_no_num(matches: Match) -> MatchResult: return MatchResult((matches.groups()[0], 0, matches)) def unpack_matches(matches: Match, num_index: int) -> MatchResult: groups = matches.groups() file = groups[0] num = 0 if groups[num_index] is None else int(groups[num_index]) return MatchResult((file, num, matches))
33.424821
88
0.61221
1e3a6efb04637444a4c6d782531c857f7de386f8
2,102
py
Python
sdk/python/pulumi_mailgun/__init__.py
pulumi/pulumi-mailgun
a01d240c5ad79232e626d1ace13fd3c5dc9d3c6c
[ "ECL-2.0", "Apache-2.0" ]
1
2020-05-09T23:28:56.000Z
2020-05-09T23:28:56.000Z
sdk/python/pulumi_mailgun/__init__.py
pulumi/pulumi-mailgun
a01d240c5ad79232e626d1ace13fd3c5dc9d3c6c
[ "ECL-2.0", "Apache-2.0" ]
26
2020-01-26T12:17:45.000Z
2022-03-25T19:42:23.000Z
sdk/python/pulumi_mailgun/__init__.py
pulumi/pulumi-mailgun
a01d240c5ad79232e626d1ace13fd3c5dc9d3c6c
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi Terraform Bridge (tfgen) Tool. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** # Export this package's modules as members: from .domain import * from .domain_credential import * from .get_domain import * from .provider import * from .route import * from ._inputs import * from . import outputs # Make subpackages available: from . import ( config, ) def _register_module(): import pulumi from . import _utilities class Module(pulumi.runtime.ResourceModule): _version = _utilities.get_semver_version() def version(self): return Module._version def construct(self, name: str, typ: str, urn: str) -> pulumi.Resource: if typ == "mailgun:index/domain:Domain": return Domain(name, pulumi.ResourceOptions(urn=urn)) elif typ == "mailgun:index/domainCredential:DomainCredential": return DomainCredential(name, pulumi.ResourceOptions(urn=urn)) elif typ == "mailgun:index/route:Route": return Route(name, pulumi.ResourceOptions(urn=urn)) else: raise Exception(f"unknown resource type {typ}") _module_instance = Module() pulumi.runtime.register_resource_module("mailgun", "index/domain", _module_instance) pulumi.runtime.register_resource_module("mailgun", "index/domainCredential", _module_instance) pulumi.runtime.register_resource_module("mailgun", "index/route", _module_instance) class Package(pulumi.runtime.ResourcePackage): _version = _utilities.get_semver_version() def version(self): return Package._version def construct_provider(self, name: str, typ: str, urn: str) -> pulumi.ProviderResource: if typ != "pulumi:providers:mailgun": raise Exception(f"unknown provider type {typ}") return Provider(name, pulumi.ResourceOptions(urn=urn)) pulumi.runtime.register_resource_package("mailgun", Package()) _register_module()
33.903226
98
0.677926
4f36db592907f27a7d9732a18b2772d64858dff4
1,971
py
Python
measmisc/apps/apa.py
molkoback/measmisc
44a6e77a5146bd751ce0203f6805e423d3866c9d
[ "MIT" ]
null
null
null
measmisc/apps/apa.py
molkoback/measmisc
44a6e77a5146bd751ce0203f6805e423d3866c9d
[ "MIT" ]
null
null
null
measmisc/apps/apa.py
molkoback/measmisc
44a6e77a5146bd751ce0203f6805e423d3866c9d
[ "MIT" ]
null
null
null
from measmisc.app import App from measmisc.database import Database from measmisc.device import Device from measmisc.meas import DateTime, Measurement from measmisc.hw.i2c import create_i2c from measmisc.hw.fmamsdxx import FMAMSDXX from adafruit_tca9548a import TCA9548A import asyncio import logging import time class APADatabase(Database): def open(self): super().open() cmd = "CREATE DATABASE IF NOT EXISTS `{}`;".format(self.database) self.exec(cmd) cmd = ""\ "CREATE TABLE IF NOT EXISTS `{}`.`{}` ("\ "ID INT UNSIGNED NOT NULL AUTO_INCREMENT,"\ "DateTime DATETIME NOT NULL,"\ "Weight FLOAT NOT NULL,"\ "Temp FLOAT NOT NULL,"\ "PRIMARY KEY (ID),"\ "INDEX (DateTime)"\ ");".format(self.database, self.table) self.exec(cmd) class APAException(Exception): pass class APA(Device): def __init__(self, config): super().__init__() self.config = config self._tca = None async def init(self): cfg = self.config["i2c"] i2c = create_i2c(cfg["name"], **cfg["opts"]) self._tca = TCA9548A(i2c) return True async def read(self): F, T, n = 0, 0, 0 for chan in range(3): if not self._tca[chan].try_lock(): raise APAException("Channel locking failed") try: sensor = FMAMSDXX(self._tca[chan]) _, Fi, Ti = sensor.read() T += Ti F += Fi n += 1 except: pass self._tca[chan].unlock() return Measurement({ "DateTime": DateTime(), "Weight": F / n * 3 / 9.81 * 1000, "Temp": T / n }) class APAApp(App): def __init__(self): super().__init__(name="APA") def create_database(self): database = APADatabase(**self.config["sql"]) database.open() return database def create_device(self): device = APA(self.config) logging.info("I2C {}".format(self.config["i2c"]["name"])) return device def on_measure(self, meas): logging.info("[{}] {:.1f}g, {:.1f}°C".format(meas.data["DateTime"], meas.data["Weight"], meas.data["Temp"])) def main(): APAApp().start()
23.464286
110
0.658549
d1ff75f587709f027c2454f06e312a40b38a13b9
2,066
py
Python
antlir/signed_source.py
facebookincubator/fs_image
3515a24bb0e93176a5584bdc8839464fa28390d7
[ "MIT" ]
9
2019-12-02T20:17:35.000Z
2020-06-13T16:34:25.000Z
antlir/signed_source.py
facebookincubator/fs_image
3515a24bb0e93176a5584bdc8839464fa28390d7
[ "MIT" ]
19
2019-11-22T23:30:04.000Z
2020-07-16T18:05:48.000Z
antlir/signed_source.py
facebookincubator/fs_image
3515a24bb0e93176a5584bdc8839464fa28390d7
[ "MIT" ]
4
2019-12-04T19:03:28.000Z
2020-06-13T16:34:29.000Z
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import hashlib import re from .errors import UserError _N_HEADER = 2048 # NB: The current linter does whole-file replacements def signed_source_sigil() -> str: return "<<SignedSource::*O*zOeWoEQle#+L!plEphiEmie@IsG>>" # Value lint uses def sign_source(src: str) -> str: """ `signed_source_sigil()` must occur in the header of `src`. We'll replace the sigil with the MD5 of the contents of the source. Lint will error if the MD5 in the header does not match the contents. This is not a security measure. It is only intended to discourage people from manually fixing generated files, which is error-prone. """ sigil = signed_source_sigil() try: idx = src.index(sigil, 0, _N_HEADER) except ValueError: raise RuntimeError( f"First {_N_HEADER} bytes of `src` lack `signed_source_sigil()`: " + src[:_N_HEADER] ) md5hex = hashlib.md5(src.encode()).hexdigest() return src[:idx] + f"SignedSource<<{md5hex}>>" + src[idx + len(sigil) :] def assert_signed_source(signed_src: str, which: str) -> None: """ Raises `UserError` if `signed_src` does not have the right checksum. `which` must be a human-readable description of how to find the file being checked. """ m = re.search("SignedSource<<[a-f0-9]{32}>>", signed_src[:_N_HEADER]) if not m: raise UserError( f"Invalid signed source: {which}. The file's header lacks a " "SignedSource token, please revert it to trunk, and re-generate " "as described in the header." ) if signed_src != sign_source( signed_src[: m.start()] + signed_source_sigil() + signed_src[m.end() :] ): raise UserError( f"Invalid signed source: {which}. The file's header should " "explain how to re-generate it correctly." )
33.322581
80
0.649564
4939a86226e042c56477c745b5e8ab60167d622c
891
py
Python
1dbrownian/fts_test/run.py
muhammadhasyim/tps-torch
21201458d037649fa66794b993ccfba7d7414028
[ "BSD-3-Clause" ]
3
2021-05-05T12:09:45.000Z
2021-05-17T18:39:54.000Z
1dbrownian/fts_test/run.py
muhammadhasyim/tps-torch
21201458d037649fa66794b993ccfba7d7414028
[ "BSD-3-Clause" ]
null
null
null
1dbrownian/fts_test/run.py
muhammadhasyim/tps-torch
21201458d037649fa66794b993ccfba7d7414028
[ "BSD-3-Clause" ]
null
null
null
#Start up torch dist package import torch import torch.distributed as dist dist.init_process_group(backend='mpi') #Load classes for simulations and controls from brownian_fts import BrownianParticle, CustomFTSMethod import numpy as np #Starting and ending configuration. start = torch.tensor([[-1.0]]) end = torch.tensor([[1.0]]) def initializer(s): return (1-s)*start+s*end alphas = torch.linspace(0.0,1,dist.get_world_size()+2)[1:-1] bp_simulator = BrownianParticle(dt=2e-3,gamma=1.0, kT = 0.4, initial=initializer(alphas[dist.get_rank()]),prefix='test',save_config=True) fts_method = CustomFTSMethod(sampler=bp_simulator,initial_config=start,final_config=end,num_nodes=dist.get_world_size()+2,deltatau=0.01,kappa=0.01) import tqdm for i in tqdm.tqdm(range(40000)): #Run the simulation a single time-step fts_method.run(1) if i % 10 == 0: fts_method.dump(True)
34.269231
147
0.751964
2a24cf665a72fe6149b152d32340cdf46ff85ff6
9,634
py
Python
synthesis/enunu_ground_truth_duration.py
stakira/ENUNU
3ee981785507ca8a1612d7501b89c47c87c400c3
[ "MIT" ]
null
null
null
synthesis/enunu_ground_truth_duration.py
stakira/ENUNU
3ee981785507ca8a1612d7501b89c47c87c400c3
[ "MIT" ]
null
null
null
synthesis/enunu_ground_truth_duration.py
stakira/ENUNU
3ee981785507ca8a1612d7501b89c47c87c400c3
[ "MIT" ]
null
null
null
#! /usr/bin/env python3 # coding: utf-8 # Copyright (c) 2020 oatsu """ フルラベルと、タイミング補正済みモノラベルからWAVファイルを生成する。 モデルは…? """ import copy import shutil # from copy import deepcopy from datetime import datetime from os import chdir, makedirs, startfile from os.path import basename, dirname, exists, join, splitext from sys import argv import utaupy from omegaconf import DictConfig, OmegaConf from utaupy.utils import hts2json, ustobj2songobj try: from hts2wav import hts2wav except ModuleNotFoundError: print('----------------------------------------------------------') print('初回起動ですね。') print('PC環境に合わせてPyTorchを自動インストールします。') print('インストール完了までしばらくお待ちください。') print('----------------------------------------------------------') from install_torch import pip_install_torch pip_install_torch(join('.', 'python-3.8.10-embed-amd64', 'python.exe')) print('----------------------------------------------------------') print('インストール成功しました。歌声合成を始めます。') print('----------------------------------------------------------\n') from hts2wav import hts2wav # pylint: disable=ungrouped-imports def get_project_path(utauplugin: utaupy.utauplugin.UtauPlugin): """ キャッシュパスとプロジェクトパスを取得する。 """ setting = utauplugin.setting # ustのパス path_ust = setting.get('Project') # 音源フォルダ voice_dir = setting['VoiceDir'] # 音声キャッシュのフォルダ(LABとJSONを設置する) cache_dir = setting['CacheDir'] return path_ust, voice_dir, cache_dir def utauplugin2hts(path_plugin_in, path_table, path_full_out, path_mono_out=None, strict_sinsy_style=False): """ USTじゃなくてUTAUプラグイン用に最適化する。 ust2hts.py 中の ust2hts を改変して、 [#PREV] と [#NEXT] に対応させている。 """ # プラグイン用一時ファイルを読み取る plugin = utaupy.utauplugin.load(path_plugin_in) # 変換テーブルを読み取る table = utaupy.table.load(path_table, encoding='utf-8') # 2ノート以上選択されているかチェックする if len(plugin.notes) < 2: raise Exception('ENUNU requires at least 2 notes. / ENUNUを使うときは2ノート以上選択してください。') # 歌詞が無いか空白のノートを休符にする。 for note in plugin.notes: if note.lyric.strip('  ') == '': note.lyric = 'R' # [#PREV] や [#NEXT] が含まれているか判定 prev_exists = plugin.previous_note is not None next_exists = plugin.next_note is not None if prev_exists: plugin.notes.insert(0, plugin.previous_note) if next_exists: plugin.notes.append(plugin.next_note) # Ust → HTSFullLabel song = ustobj2songobj(plugin, table) full_label = utaupy.hts.HTSFullLabel() full_label.song = song full_label.fill_contexts_from_songobj() # [#PREV] と [#NEXT] を消す前の状態での休符周辺のコンテキストを調整する if prev_exists or next_exists: full_label = utaupy.hts.adjust_pau_contexts(full_label, strict=strict_sinsy_style) # [#PREV] のノート(の情報がある行)を削る if prev_exists: target_note = full_label[0].note while full_label[0].note is target_note: del full_label[0] # PREVを消しても前のノート分ずれているので、最初の音素開始時刻が0になるようにする。 # ずれを取得 offset = full_label[0].start # 全音素の開始と終了時刻をずらす for oneline in full_label: oneline.start -= offset oneline.end -= offset # [#NEXT] のノート(の情報がある行)を削る if next_exists: target_note = full_label[-1].note while full_label[-1].note is target_note: del full_label[-1] # ファイル出力 s = '\n'.join(list(map(str, full_label))) with open(path_full_out, mode='w', encoding='utf-8') as f: f.write(s) if path_mono_out is not None: full_label.as_mono().write(path_mono_out) def repair_too_short_phoneme(label, threshold=5) -> None: """ LABファイルの中の発声時刻が短すぎる音素(5ms未満の時とか)を修正する。 直前の音素の長さを削る。 一番最初の音素が短い場合のみ修正できない。 """ threshold_100ns = threshold * 10000 # 短い音素が一つもない場合はスルー if all(phoneme.duration >= threshold_100ns for phoneme in label): return None # 短い音素が連続しても不具合が起こらないように逆向きにループする if label[0].duration < threshold_100ns: raise ValueError(f'最初の音素が短いです。修正できません。: {label[0]}') for i, phoneme in enumerate(reversed(label)): # 発声時間が閾値より短い場合 if phoneme.duration < threshold_100ns: print('短い音素を修正します。:', phoneme) # 閾値との差分を計算する。この分だけずらす。 delta_t = threshold_100ns - phoneme.duration # 対象の音素の開始時刻をずらして、発生時間を伸ばす。 phoneme.start -= delta_t # 直前の音素の終了時刻もずらす。 # label[-(i + 1) - 1] label[-i - 2].end -= delta_t return None def generate_full_align_lab(path_mono_align_lab_in, path_full_score_lab_in, path_full_align_lab_out): """ タイミング補正済みのモノラベルと、 タイミング補正前のフルラベルから、 タイミング補正済みのフルラベルを作る。 """ mono_align_lab = utaupy.label.load(path_mono_align_lab_in) full_score_lab = utaupy.label.load(path_full_score_lab_in) mono_align_lab.is_valid(threshold=0) repair_too_short_phoneme(mono_align_lab) assert len(mono_align_lab) == len(full_score_lab) full_align_lab = utaupy.label.Label() # タイミング補正をフルラベルに適用したLabelオブジェクトを作る。 for mono_align_phoneme, full_score_phoneme in zip(mono_align_lab, full_score_lab): phoneme = utaupy.label.Phoneme() phoneme.start = mono_align_phoneme.start phoneme.end = mono_align_phoneme.end phoneme.symbol = full_score_phoneme.symbol full_align_lab.append(phoneme) # ファイル出力 full_align_lab.write(path_full_align_lab_out) def generate_mono_score_lab(path_full_score_lab_in, path_mono_align_lab_in, path_mono_score_lab_out): """ タイミング補正済みのモノラベルと、 タイミング補正前のフルラベルから、 タイミング補正済みのフルラベルを作る。 """ full_score_lab = utaupy.label.load(path_full_score_lab_in) mono_align_lab = utaupy.label.load(path_mono_align_lab_in) # mono_align_lab.is_valid(threshold=0) # repair_too_short_phoneme(mono_align_lab) assert len(mono_align_lab) == len(full_score_lab) mono_score_lab = copy.copy(full_score_lab) # タイミング補正をフルラベルに適用したLabelオブジェクトを作る。s mono_score_lab.contexts = mono_align_lab.contexts # ファイル出力 mono_score_lab.write(path_mono_score_lab_out) def get_original_songname(path) -> str: """ dirname/songname__datetime.ext から、songname部分を取り出す。 """ basename_without_ext = splitext(basename(path))[0] return basename_without_ext.split('__')[0] def main_as_plugin(path_plugin: str) -> str: """ UtauPluginオブジェクトから音声ファイルを作る """ print(f'{datetime.now()} : reading setting in ust') # UTAUの一時ファイルに書いてある設定を読み取る plugin = utaupy.utauplugin.load(path_plugin) _, voice_dir, _ = get_project_path(plugin) path_enuconfig = join(voice_dir, 'enuconfig.yaml') if not exists(path_enuconfig): raise Exception( '音源フォルダに enuconfig.yaml が見つかりません。' 'UTAU音源選択でENUNU用モデルを指定してください。' ) # NOTE: ここGTS追加機能 path_mono_align_lab = input('タイミング補正済みの LABファイル (timing) を指定してください。\n>>> ').strip('"') path_full_score_lab = input('タイミング補正前の LABファイル (full_score) を指定してください。\n>>> ').strip('"') print("") # カレントディレクトリを音源フォルダに変更する chdir(voice_dir) # configファイルを読み取る print(f'{datetime.now()} : reading enuconfig') config = DictConfig(OmegaConf.load(path_enuconfig)) # 入出力パスを設定する str_now = datetime.now().strftime('%Y%m%d%H%M%S') songname = f'{get_original_songname(path_mono_align_lab)}__{str_now}' out_dir = join(dirname(path_mono_align_lab), songname) # 出力フォルダがなければつくる makedirs(out_dir, exist_ok=True) # 各種出力ファイルのパスを設定 path_full_align_lab = join(out_dir, f'{songname}_full_align.lab') path_mono_score_lab = join(out_dir, f'{songname}_mono_score.lab') # path_ust_out = join(out_dir, f'{songname}.ust') path_score_json = join(out_dir, f'{songname}_full_score.json') path_align_json = join(out_dir, f'{songname}_full_align.json') path_wav = join(out_dir, f'{songname}.wav') # TODO: ここ英語にする # NOTE: ここGTD追加機能 # タイミング補正済みのフルラベルを生成 print(f'{datetime.now()} : タイミング補正済みの LABファイル (full_align) を生成します。') generate_full_align_lab(path_mono_align_lab, path_full_score_lab, path_full_align_lab) config.ground_truth_duration = True print(f'{datetime.now()} : converting LAB (full_score) to JSON') hts2json(path_full_score_lab, path_score_json) print(f'{datetime.now()} : converting LAB (full_align) to JSON') hts2json(path_full_align_lab, path_align_json) print(f'{datetime.now()} : converting LAB (full_align) to WAV') hts2wav(config, path_full_align_lab, path_wav) print(f'{datetime.now()} : generating WAV ({path_wav})') # おまけ機能 print(f'{datetime.now()} : full_score をコピーします。') shutil.copy2(path_full_score_lab, join(out_dir, f'{songname}_full_score.lab')) print(f'{datetime.now()} : mono_score を生成します。') generate_mono_score_lab(path_full_score_lab, path_mono_align_lab, path_mono_score_lab) # Windowsの時は音声を再生する。 startfile(path_wav) return path_wav def main(path: str): """ 入力ファイルによって処理を分岐する。 """ # logging.basicConfig(level=logging.INFO) if path.endswith('.tmp'): main_as_plugin(path) else: raise ValueError('Input file must be TMP(plugin).') if __name__ == '__main__': print('_____ξ ・ヮ・)ξ < ENUNU v0.2.5 ________') print('_____ξ ^ω^)ξ < Ground Truth Duration (20211022) ________') print(f'argv: {argv}') if len(argv) == 2: path_utauplugin = argv[1] elif len(argv) == 1: path_utauplugin = \ input('Input file path of TMP(plugin)\n>>> ').strip('"') main(path_utauplugin)
33.685315
93
0.664002
e6357570a4a90c70d546a765b70a1437c53a06c5
1,732
py
Python
src/utils.py
AUVSL/ROS-ANFIS-RL
d0df3d9a53f4cc2a49cadeac62be6879aaf699fd
[ "BSD-3-Clause" ]
1
2022-01-26T22:23:11.000Z
2022-01-26T22:23:11.000Z
src/utils.py
AUVSL/anfis_rl
d0df3d9a53f4cc2a49cadeac62be6879aaf699fd
[ "BSD-3-Clause" ]
null
null
null
src/utils.py
AUVSL/anfis_rl
d0df3d9a53f4cc2a49cadeac62be6879aaf699fd
[ "BSD-3-Clause" ]
null
null
null
import numpy as np from torch.utils.tensorboard.summary import hparams def angdiff(th1, th2): d = th1 - th2 d = np.mod(d + np.pi, 2 * np.pi) - np.pi return -d def wraptopi(x): pi = np.pi x = x - np.floor(x / (2 * pi)) * 2 * pi if x >= pi: return x - 2 * pi return x def add_hparams(summary, hparam_dict, metric_dict, hparam_domain_discrete=None, step=0): if type(hparam_dict) is not dict or type(metric_dict) is not dict: raise TypeError('hparam_dict and metric_dict should be dictionary.') exp, ssi, sei = hparams(hparam_dict, metric_dict, hparam_domain_discrete) summary.file_writer.add_summary(exp, global_step=step) summary.file_writer.add_summary(ssi, global_step=step) summary.file_writer.add_summary(sei, global_step=step) for k, v in metric_dict.items(): summary.add_scalar(k, v, global_step=step) def markdown_rule_table(anfis): vardefs = anfis.layer['fuzzify'].varmfs vardefs_names = list(vardefs.keys()) rules = anfis.layer['rules'].mamdani_ruleset var_index = rules['variable_rule_index'] mem_index = rules['membership_indices'] out_index = rules['outputs_membership'] out_name = anfis.layer['consequent'].mamdani_defs.names rules = ['| Rule ID | Membership 1 | Membership 2| Output |', '| --------| ------------ | ----------- | ------ | '] for i in range(len(var_index)): temp = [] for var, mem in zip(var_index[i], mem_index[i]): name = vardefs_names[var] temp.append(f"{name} is {list(vardefs[name].mfdefs.keys())[mem]}") rules.append(f'| {i} | {" | ".join(temp)}| {out_name[out_index[i][0]]} |') return '\n'.join(rules)
30.385965
88
0.62933
45862c5948c7305e821a30a40326b188dd9ade27
15,135
py
Python
experiment_scripts/exp4/baseDefsPsychoPy.py
mzettersten/word-choice
fee5cbed17ebdc4d988258e6384a59cc9ff6c8a7
[ "MIT" ]
null
null
null
experiment_scripts/exp4/baseDefsPsychoPy.py
mzettersten/word-choice
fee5cbed17ebdc4d988258e6384a59cc9ff6c8a7
[ "MIT" ]
null
null
null
experiment_scripts/exp4/baseDefsPsychoPy.py
mzettersten/word-choice
fee5cbed17ebdc4d988258e6384a59cc9ff6c8a7
[ "MIT" ]
null
null
null
#from pyglet.media import avbin import numpy from psychopy import prefs try: import winsound except ImportError: print "Warning: winsound not found; will try using pyo/pyaudio" try: import pyo print "Attempting to use pyo for sounds" prefs.general['audioLib'] = ['pyo'] except: print 'could not load pyo' from psychopy import sound,core, visual #if prefs.general['audioLib'][0] == 'pyo': # print 'initializing pyo to 48000' # sound.init(48000,buffer=128) # print 'Using %s(with %s) for sounds' %(sound.audioLib, sound.audioDriver) from psychopy import core,logging,event,visual,data,gui,misc import glob,os,random,sys,gc,time,hashlib,subprocess from math import * try: import pygame from pygame.locals import * except ImportError: print "Warning: pygame not found; will be using pyglet for stim presentation" #pygame.mixer.pre_init(44100,-16,1, 4096) # pre-initialize to reduce the delay try: from scipy import ndimage except ImportError: pass def killDropbox(): try: error = os.system('taskkill /f /im Dropbox.exe /t') if not error: print "Dropbox terminated" else: print "Dropbox not running, so can't terminate" except: pass def startDropbox(): #try: # os.spawnl(os.P_DETACH,'c:/Users/Gary/AppData/Roaming/Dropbox/bin/Dropbox.exe') #this works but only for execs try: subprocess.Popen('start /B %USERPROFILE%/desktop/dropboxShortcut.lnk',shell=True) #this works for links. nice! #subprocess.Popen('start /B c:/Users/Gary/Documents/dropboxShortcut.lnk',shell=True) #this works for links. nice! print "Dropbox restarted" except: print "Could not re-start dropbox" def getHash(files): if not isinstance(files,list): files = [files] hashes = [(fname, hashlib.md5(file(fname, 'r').read()).hexdigest()) for fname in files] return hashes def circularList(lst,seed): if not isinstance(lst,list): lst = range(lst) i = 0 random.seed(seed) random.shuffle(lst) while True: yield lst[i] if (i+1) % len(lst) ==0: random.shuffle(lst) i = (i + 1)%len(lst) def getRunTimeVars(varsToGet,order,expVersion): """Get run time variables, see http://www.psychopy.org/api/gui.html for explanation""" infoDlg = gui.DlgFromDict(dictionary=varsToGet, title=expVersion, fixed=[expVersion],order=order) order.append('dateStr') order.append('expVersion') varsToGet['dateStr']= data.getDateStr() varsToGet['expVersion']= expVersion if infoDlg.OK: return varsToGet else: print 'User Cancelled' def enterSubjInfo(expName,optionList): """ Brings up a GUI in which to enter all the subject info.""" def inputsOK(optionList,expInfo): for curOption in sorted(optionList.items()): if curOption[1]['options'] != 'any' and expInfo[curOption[1]['name']] not in curOption[1]['options']: return [False,"The option you entered for " + curOption[1]['name'] + " is not in the allowable list of options: " + str(curOption[1]['options'])] print "inputsOK passed" return [True,''] try: expInfo = misc.fromFile(expName+'_lastParams.pickle') except: expInfo={} #make the kind of dictionary that this gui can understand for curOption in sorted(optionList.items()): expInfo[curOption[1]['name']]=curOption[1]['default'] #load the tips tips={} for curOption in sorted(optionList.items()): tips[curOption[1]['name']]=curOption[1]['prompt'] expInfo['dateStr']= data.getDateStr() expInfo['expName']= expName dlg = gui.DlgFromDict(expInfo, title=expName, fixed=['dateStr','expName'],order=[optionName[1]['name'] for optionName in sorted(optionList.items())],tip=tips) if dlg.OK: misc.toFile(expName+'_lastParams.pickle', expInfo) [success,error] = inputsOK(optionList,expInfo) if success: return [True,expInfo] else: return [False,error] else: core.quit() def popupError(text): errorDlg = gui.Dlg(title="Error", pos=(200,400)) errorDlg.addText('Error: '+text, color='Red') errorDlg.show() def setupSubjectVariables(): parser = OptionParser() parser.add_option("-s", "--subject-id", dest="subjid", help="specify the subject id") (options, args) = parser.parse_args() self.subjID = options.subjid if not self.subjID: print "You must provide a Subject ID" parser.print_help() sys.exit() def writeHeader(curTrial,headerText,fileName='header'): try: if curTrial['trialNum']==1: if os.path.isfile(fileName+'.txt'): # file already exists print 'header file exists' return False else: headerFile = open(fileName+'.txt','w') writeToFile(headerFile,headerText) return True except: return False #def writeToFile(fileHandle,trial,sync=True): # """Writes a trial (array of lists) to a fileHandle""" # line = '\t'.join([str(i) for i in trial]) #TABify # line += '\n' #add a newline # fileHandle.write(line) # if sync: # fileHandle.flush() # os.fsync(fileHandle) def syncFile(fileHandle): """syncs file to prevent buffer loss""" fileHandle.flush() os.fsync(fileHandle) def getSubjVariables(allSubjVariables): def checkInput(value,options,type): """Checks input. Uses 'any' as an option to check for any <str> or <int>""" try: #if the user typed something and it's an instance of the correct type and it's in the options list... if value and isinstance(value,type) and ('any' in options or value.upper() in options ): return True return False except: print"Try again..." subjVariables = {} for curNum, varInfo in sorted(allSubjVariables.items()): curValue='' while not checkInput(curValue,varInfo['options'],varInfo['type']): curValue = raw_input(varInfo['prompt']) if not 'any' in varInfo['options']: curValue = str(curValue.upper()) subjVariables[varInfo['name']] = curValue return subjVariables def loadFiles(directory,extension,fileType,win='',whichFiles='*',stimList=[]): """ Load all the pics and sounds""" path = os.getcwd() #set path to current directory if isinstance(extension,list): fileList = [] for curExtension in extension: fileList.extend(glob.glob(os.path.join(path,directory,whichFiles+curExtension))) else: fileList = glob.glob(os.path.join(path,directory,whichFiles+extension)) fileMatrix = {} #initialize fileMatrix as a dict because it'll be accessed by picture names, cound names, whatver for num,curFile in enumerate(fileList): fullPath = curFile fullFileName = os.path.basename(fullPath) stimFile = os.path.splitext(fullFileName)[0] if fileType=="image": try: surface = pygame.image.load(fullPath) #gets height/width of the image stim = visual.ImageStim(win, image=fullPath,mask=None,interpolate=True) fileMatrix[stimFile] = ((stim,fullFileName,num,surface.get_width(),surface.get_height(),stimFile)) except: #no pygame, so don't store the image dims stim = visual.ImageStim(win, image=fullPath,mask=None,interpolate=True) fileMatrix[stimFile] = ((stim,fullFileName,num,'','',stimFile)) elif fileType=="sound": soundRef = sound.Sound(fullPath) fileMatrix[stimFile] = ((soundRef)) elif fileType=="winSound": soundRef = open(fullPath,"rb").read() fileMatrix[stimFile] = ((soundRef)) fileMatrix[stimFile+'-path'] = fullPath #this allows asynchronous playing in winSound. #check if stimList and set(fileMatrix.keys()).intersection(stimList) != set(stimList): popupError(str(set(stimList).difference(fileMatrix.keys())) + " does not exist in " + path+'\\'+directory) return fileMatrix def loadFilesOld(directory,extension,fileType,win='',whichFiles='*',stimList=[]): """ Load all the pics and sounds""" path = os.getcwd() #set path to current directory if type(extension).__name__=='list': fileList = [] for curExtension in extension: fileList.extend(glob.glob(os.path.join(path,directory,whichFiles+curExtension))) else: fileList = glob.glob(os.path.join(path,directory,whichFiles+extension)) fileMatrix = {} #initialize fileMatrix as a dict because it'll be accessed by picture names, cound names, whatver for i in range(len(fileList)): fullPath = fileList[i] fullFileName = os.path.basename(fullPath) stimFile = fullFileName[:len(fullFileName)-4] #chops off the extension if fileType=="image": try: surface = pygame.image.load(fullPath) #this is just to get heigh/width of the image #stim = visual.PatchStim(win, tex=fullPath) stim = visual.SimpleImageStim(win, image=fullPath) fileMatrix[stimFile] = ((stim,fullFileName,i,surface.get_width(),surface.get_height(),stimFile)) except: #no pygame, so don't store the image dims stim = visual.SimpleImageStim(win, image=fullPath) fileMatrix[stimFile] = ((stim,fullFileName,i,'','',stimFile)) elif fileType=="sound": soundRef = sound.Sound(fullPath) fileMatrix[stimFile] = ((soundRef)) elif fileType=="winSound": soundRef = highPitch = open(fullPath,"rb").read() fileMatrix[stimFile] = ((soundRef)) #check if stimList and set(fileMatrix.keys()).intersection(stimList) != set(stimList): #print stimList, fileMatrix.keys(),set(stimList).difference(fileMatrix.keys()) popupError(str(set(stimList).difference(fileMatrix.keys())) + " does not exist in " + path+'\\'+directory) return fileMatrix def sortDictValues(someDict,returnWhat='values'): keys = someDict.keys() keys.sort() if returnWhat=='values': return map(someDict.get, keys) else: return keys def createResp(allSubjVariables,subjVariables,fieldVars,**respVars): trial = [] #initalize array for curSubjVar, varInfo in sorted(allSubjVariables.items()): trial.append(subjVariables[varInfo['name']]) trial.append(subjVariables['expName']) trial.append(subjVariables['dateStr']) for curFieldVar in fieldVars: trial.append(curFieldVar) for curRespVar in sortDictValues(respVars): trial.append(str(curRespVar)) return trial def createRespNew(allSubjVariables,subjVariables,fieldVarNames,fieldVars,**respVars): """Creates a key and value list of all the variables passed in from various sources (runtime, trial params, dep. vars.""" def stripUnderscores(keyList): return [curKey.split('_')[1] for curKey in keyList] trial = [] #initalize array header=[] for curSubjVar, varInfo in sorted(allSubjVariables.items()): header.append(allSubjVariables[curSubjVar]['name']) trial.append(subjVariables[varInfo['name']]) for curFieldVar in fieldVars: trial.append(curFieldVar) for curRespVar in sortDictValues(respVars): trial.append(str(curRespVar)) header.extend(fieldVarNames) header.extend(stripUnderscores(sortDictValues(respVars,'keys'))) return [header,trial] def importTrials(fileName,method="sequential",seed=random.randint(1,100)): (stimList,fieldNames) = data.importConditions(fileName,returnFieldNames=True) trials = data.TrialHandler(stimList,1,method=method,seed=seed) #seed is ignored for sequential; used for 'random' return (trials,fieldNames) def initGamepad(): pygame.joystick.init() # init main joystick device system try: stick = pygame.joystick.Joystick(0) stick.init() # init instance return stick except pygame.error: raise SystemExit("---->No joystick/gamepad found. Make sure one is plugged in<--") def getKeyboardResponse(validResponses,duration=0): event.clearEvents() responded = False done = False rt = '*' responseTimer = core.Clock() while True: if not responded: responded = event.getKeys(keyList=validResponses, timeStamped=responseTimer) if duration>0: if responseTimer.getTime() > duration: break else: #end on response if responded: break if not responded: return ['*','*'] else: return responded[0] #only get the first resp def getKeyboardResponseEndResp(validResponses,duration=0,endOnResponse=True): event.clearEvents() responded = False done = False rt = '*' responseTimer = core.Clock() while True: if not responded: responded = event.getKeys(keyList=validResponses, timeStamped=responseTimer) if duration>0: if responseTimer.getTime() > duration or responded: break else: #end on response if responded: break if not responded: return ['*','*'] else: return responded[0] #only get the first resp def getMouseResponse(mouse,duration=0): event.clearEvents() responseTimer = core.Clock() numButtons=len(event.mouseButtons) response = [0]*numButtons timeElapsed = False mouse.clickReset() responseTimer.reset() rt = '*' while not any(response) and not timeElapsed: (response,rt) = mouse.getPressed(getTime=True) if duration>0 and responseTimer.getTime() > duration: timeElapsed=True if not any(response): #if there was no response (would only happen if duration is set) return ('*','*') else: nonZeroResponses = filter(lambda x: x>0,rt) firstResponseButtonIndex = rt.index(min(nonZeroResponses)) #only care about the first (earliest) click return (firstResponseButtonIndex,rt[firstResponseButtonIndex]) #TO DO: move stick to the last parameter so it's treated as optional - that way we can have a generic response function that either takes or doesn't take a joystick parameter as provided. def getGamepadResponse(stick,validResponses,duration=0): """joystick needs to be initialized (with initGamepad or manually). Only returns the first response. """ def getJoystickResponses(): #returns buttons. If none are pressed, checks the hat. for n in range(stick.get_numbuttons()): if stick.get_button(n) : # if this is down return n for n in range(stick.get_numhats()): return stick.get_hat(n) responded = False timeElapsed = False responseTimer = core.Clock() response="*" rt = '*' pygame.event.clear() #clear event cue responseTimer.reset() while not responded and not timeElapsed: for event in pygame.event.get(): # iterate over event stack if event.type==pygame.JOYBUTTONDOWN or event.type==pygame.JOYHATMOTION: response = getJoystickResponses() print 'responded',response if response in validResponses: rt = responseTimer.getTime() responded = True break if duration>0 and responseTimer.getTime() > duration: timeElapsed=True if not responded: return ['*','*'] else: return (response,rt) def euclidDistance(pointA,pointB): return sqrt((pointA[0]-pointB[0])**2 + (pointA[1]-pointB[1])**2) def pressedSomething(validKeys): for event in pygame.event.get(): if event.type in (QUIT,KEYDOWN,MOUSEBUTTONDOWN): if event.key in validKeys: return True def makeBorder(width=128, height=128, borderColor=-1, xborder=10,yborder=10): # creates a bitmap with a border borderColor=-1 array = numpy.zeros([height, width]) array[xborder:-xborder,yborder:-yborder] = 1 if xborder>0: array[:xborder,:] = array[-xborder:,:] = borderColor if yborder>0: array[:,:yborder] = array[:,-yborder:] = borderColor return array
34.164786
188
0.702346
67e557432809b8823f3f3c2366f1887d8a9b4e70
1,033
py
Python
example/cities/migrations/0002_auto_20160605_1602.py
HOYINWUN/django-map-widgets
2dd9bbd6833a781ea1683de9fa63d964c5936371
[ "MIT" ]
null
null
null
example/cities/migrations/0002_auto_20160605_1602.py
HOYINWUN/django-map-widgets
2dd9bbd6833a781ea1683de9fa63d964c5936371
[ "MIT" ]
null
null
null
example/cities/migrations/0002_auto_20160605_1602.py
HOYINWUN/django-map-widgets
2dd9bbd6833a781ea1683de9fa63d964c5936371
[ "MIT" ]
1
2019-08-05T14:15:55.000Z
2019-08-05T14:15:55.000Z
# -*- coding: utf-8 -*- # Generated by Django 1.9.2 on 2016-06-05 16:02 from __future__ import unicode_literals import django.contrib.gis.db.models.fields from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('cities', '0001_initial'), ] operations = [ migrations.AlterField( model_name='city', name='coordinates', field=django.contrib.gis.db.models.fields.PointField(help_text='To generate the map for your location', srid=4326), ), migrations.AlterField( model_name='district', name='city', field=models.OneToOneField(on_delete=django.db.models.deletion.CASCADE, to='cities.City'), ), migrations.AlterField( model_name='district', name='location', field=django.contrib.gis.db.models.fields.PointField(help_text='To generate the map for your location', srid=4326), ), ]
31.30303
127
0.635044
4fc9259c185b96bdffc93e801cdd268c303d5cd7
542
py
Python
django_example/metrics/middleware.py
ChielWH/prometheus_redis_client
90852fb0eaf3aee1937a74cad6181c304dc6999a
[ "Apache-2.0" ]
19
2019-04-02T11:46:45.000Z
2022-03-21T03:38:56.000Z
django_example/metrics/middleware.py
ChielWH/prometheus_redis_client
90852fb0eaf3aee1937a74cad6181c304dc6999a
[ "Apache-2.0" ]
12
2019-08-17T05:55:23.000Z
2022-02-10T07:37:38.000Z
django_example/metrics/middleware.py
ChielWH/prometheus_redis_client
90852fb0eaf3aee1937a74cad6181c304dc6999a
[ "Apache-2.0" ]
6
2019-11-20T15:12:38.000Z
2022-03-21T03:36:44.000Z
import time from metrics import general from django.urls import resolve class MetricsMiddleware(object): def __init__(self, get_response): self.get_response = get_response def __call__(self, request): viewname = resolve(request.path).view_name general.count_of_requests.labels(viewname=viewname).inc() start_time = time.time() try: return self.get_response(request) finally: general.request_latency.labels(viewname=viewname).observe(time.time() - start_time)
30.111111
95
0.693727
defc21381806d478c5e9876793c58f161febaf3f
7,767
py
Python
RealFunctions/MorphingFunctions.py
Prdcc/manim-Student-Shapers
a04072e67995838acb77c1c921db97ee050aa6e0
[ "MIT" ]
null
null
null
RealFunctions/MorphingFunctions.py
Prdcc/manim-Student-Shapers
a04072e67995838acb77c1c921db97ee050aa6e0
[ "MIT" ]
null
null
null
RealFunctions/MorphingFunctions.py
Prdcc/manim-Student-Shapers
a04072e67995838acb77c1c921db97ee050aa6e0
[ "MIT" ]
null
null
null
from manimlib.imports import * import numpy as np from numpy import sqrt def sin_graph(x): return np.sin(x) def parabola_graph(x): return x*x # circle shape should also be here def exponential_cos_graph(x): return np.cos(np.exp(-0.1 * x**2 + 2)) def cubed(x): return x**3 def quartic(x): return x**4 def one_over_x(x): return 1/x def positive_sigmoid(x): return 1/(1+np.exp(x)) - 0.5 def negative_sigmoid(x): return 1/(1+np.exp(-x)) - 0.5 def just_a_line(x): return 0.5*x def hidden_flat_line(x): return 0 def three(x): return 3 def two(x): return 2 def positive_circle(x): sqrt(1-x**2) def positive_circle(x): -sqrt(1-x**2) class PlotSinInv(GraphScene): CONFIG = { "x_min" : -1, "x_max" : 1, "y_min" : -1.5, "y_max" : 1.5, "graph_origin" : ORIGIN , "function_color" : BLUE , "axes_color" : GREEN, "center_point" : 0, "funcs" : [sin_graph,parabola_graph, exponential_cos_graph,just_a_line]#,cubed,quartic] } def construct(self): self.setup_axes(animate=True) func_graph=self.get_graph(self.sinInv,x_max=(-0.01)) func_graphR=self.get_graph(self.sinInv,x_min=(0.01),color=BLUE) self.play(ShowCreation(func_graph),ShowCreation(func_graphR),run_time=1.5) self.wait(4) def sinInv(self,x): return np.sin(1/x) class PlotFunctions(GraphScene): CONFIG = { "x_min" : -10, "x_max" : 10.3, "y_min" : -1.5, "y_max" : 1.5, "graph_origin" : ORIGIN , "function_color" : BLUE , "axes_color" : GREEN, "x_labeled_nums" :range(-10,12,2), "center_point" : 0, "funcs" : [sin_graph,parabola_graph, exponential_cos_graph,just_a_line]#,cubed,quartic] } def construct(self): self.setup_axes(animate=True) circle = Circle(color =BLUE) func_graphs = [self.get_graph(f,self.function_color) for f in self.funcs] func_graphs.insert(4,circle) #all_my_shapes = func_graphs #func_graphs = func_graphs.append(circle) graph_object = self.get_graph(sin_graph,self.function_color) #change this if you start with something else hidden_line = self.get_graph(hidden_flat_line,self.function_color) positive_sigmoid_graph = self.get_graph(positive_sigmoid,self.function_color) negative_sigmoid_graph = self.get_graph(negative_sigmoid,self.function_color) positive_one_over_x = self.get_graph(lambda x : 1/x, color = BLUE, x_min = 0.1, x_max = 10) negative_one_over_x = self.get_graph(lambda x : 1/x, color = BLUE, x_min = -10, x_max = -0.1) dt=0.2 self.play(ShowCreation(graph_object)) self.wait(dt) for i in range(1,len(func_graphs)):#this is a bit messed up, try to make graph_object a flat line first self.play(Transform(graph_object, func_graphs[i]),run_time = 1.5) self.wait(dt) self.play(ShowCreation(hidden_line),Transform(graph_object, positive_sigmoid_graph),Transform(hidden_line, negative_sigmoid_graph),run_time =1.5) self.wait(dt) self.play(Transform(graph_object,positive_one_over_x),Transform(hidden_line,negative_one_over_x)) self.play(FadeOut(hidden_line, run_time = 1)) #double sigmoid graph self.play(Transform(graph_object, func_graphs[0],runtime = 1.5)) #make the animation loopr self.wait(6) #tk you wanted to include the indicator function for the rationals class DoubleSigmoidNotFunction(GraphScene): CONFIG = { "x_min" : -10, "x_max" : 10.3, "y_min" : -5, "y_max" : 5, "graph_origin" : ORIGIN , "function_color" : BLUE , "axes_color" : GREEN, "center_point" : 0, } def construct(self): self.setup_axes(animate=False) positivePar = lambda x: sqrt(x+10) negativePar = lambda x: -sqrt(x+10) negative_sigmoid_graph = self.get_graph(negativePar,self.function_color) positive_sigmoid_graph = self.get_graph(positivePar,self.function_color) vert_line_pos = self.get_vertical_line_to_graph(2,positive_sigmoid_graph,color=YELLOW) vert_line_neg = self.get_vertical_line_to_graph(2,negative_sigmoid_graph,color=YELLOW) #if you want to make it nice, add a ball that'll go to the graph, will visualise the fuckedupedness of multifunctions self.play(ShowCreation(negative_sigmoid_graph),ShowCreation(positive_sigmoid_graph)) self.wait() self.play(ShowCreation(vert_line_pos)) self.play(ShowCreation(vert_line_neg)) self.wait(10) class EmptyFunctionNotFunction(GraphScene): CONFIG = { "x_min" : -10, "x_max" : 10.3, "y_min" : -1.5, "y_max" : 1.5, "graph_origin" : ORIGIN , "function_color" : BLUE , "axes_color" : GREEN, "center_point" : 0, } def construct(self): self.setup_axes(animate=False) hori_line_three = self.get_graph(lambda x : 0.5, color = BLUE, x_min = -10, x_max = 0) hori_line_two = self.get_graph(lambda x : 1, color = BLUE, x_min = 2, x_max = 10) vert_line_three = self.get_vertical_line_to_graph(-5,hori_line_three,color=YELLOW) vert_line_two = self.get_vertical_line_to_graph(4,hori_line_two,color=YELLOW)#if you want to make it nice, add a ball that'll go to the graph, will visualise the fuckedupedness of multifunctions vert_line_doesnt_work = self.get_vertical_line_to_graph(1,self.get_graph(lambda x: 2), color=YELLOW) question_marks = TexMobject("???") label_coord = self.coords_to_point(1,0) question_marks = question_marks.next_to(label_coord,RIGHT+ UP) self.play(ShowCreation(hori_line_three),ShowCreation(hori_line_two)) self.wait() self.play(ShowCreation(vert_line_three),ShowCreation(vert_line_two),ShowCreation(vert_line_doesnt_work),ShowCreation(question_marks),run_time=1) self.wait(10) #tk do the circle one and the rescreen showing all three graphs class CircleNotFunction(GraphScene): CONFIG = { "x_min" : -3.5, "x_max" : 3.5, "y_min" : -2.5, "y_max" : 2.5, "graph_origin" : ORIGIN , "function_color" : BLUE , "axes_color" : GREEN, "center_point" : 0, } def construct(self): self.setup_axes(animate=False) positive_circ_graph = self.get_graph(lambda x : sqrt(1-x**2), color = BLUE, x_min = -1, x_max = 1) negative_circ_graph = self.get_graph(lambda x : -sqrt(1-x**2), color = BLUE, x_min = -1, x_max = 1) vert_line_pos_circ = self.get_vertical_line_to_graph(1/sqrt(2),positive_circ_graph,color=YELLOW) vert_line_neg_circ = self.get_vertical_line_to_graph(1/sqrt(2),negative_circ_graph,color=YELLOW) #if you want to make it nice, add a ball that'll go to the graph, will visualise the fuckedupedness of multifunctions vert_line_doesnt_work_circ = self.get_vertical_line_to_graph(2,self.get_graph(lambda x: 2), color=YELLOW) question_marks = TexMobject("???") label_coord = self.coords_to_point(2,0) question_marks = question_marks.next_to(label_coord,RIGHT+ UP) self.play(ShowCreation(negative_circ_graph),ShowCreation(positive_circ_graph)) self.wait() self.play(ShowCreation(vert_line_pos_circ),ShowCreation(vert_line_neg_circ),ShowCreation(vert_line_doesnt_work_circ),ShowCreation(question_marks)) self.wait(10)
38.835
222
0.647869
a31e0ff75a1e85eebe0e7cf32a47a7659acaf671
984
py
Python
venv/lib/python3.6/site-packages/tests/test_level1/test_link.py
Guillaume-Fernandez/phishfinder
b459a30202fd5dfb1340b43c70363705de7cedd9
[ "MIT" ]
2
2019-09-26T17:46:18.000Z
2022-02-26T03:07:59.000Z
venv/lib/python3.6/site-packages/tests/test_level1/test_link.py
Guillaume-Fernandez/phishfinder
b459a30202fd5dfb1340b43c70363705de7cedd9
[ "MIT" ]
2
2018-08-19T17:12:26.000Z
2020-09-18T03:51:33.000Z
venv/lib/python3.6/site-packages/tests/test_level1/test_link.py
Guillaume-Fernandez/phishfinder
b459a30202fd5dfb1340b43c70363705de7cedd9
[ "MIT" ]
2
2020-09-14T06:19:39.000Z
2020-12-29T10:54:43.000Z
"""Test link selectors.""" from __future__ import unicode_literals from .. import util class TestLink(util.TestCase): """Test link selectors.""" MARKUP = """ <div> <p>Some text <span id="1" class="foo:bar:foobar"> in a paragraph</span>. <a id="2" class="bar" href="http://google.com">Link</a> <a id="3">Placeholder text.</a> </p> </div> """ def test_link(self): """Test link (all links are unvisited).""" self.assert_selector( self.MARKUP, ":link", ["2"], flags=util.HTML ) def test_tag_and_link(self): """Test link and tag (all links are unvisited).""" self.assert_selector( self.MARKUP, "a:link", [], flags=util.XML ) class TestLinkQuirks(TestLink): """Test link selectors with quirks.""" def setUp(self): """Setup.""" self.purge() self.quirks = True
20.93617
76
0.522358
0ecf14589f1fc9d295e3e9ee4c4fd707eb425b28
877
py
Python
Morse Potential/Morse_analatic.py
aniruddha-seal/Solving-1D-Schrodinger-Eqn
c3fece2f7c2b043551e23878655b0f9b8dd8b604
[ "MIT" ]
null
null
null
Morse Potential/Morse_analatic.py
aniruddha-seal/Solving-1D-Schrodinger-Eqn
c3fece2f7c2b043551e23878655b0f9b8dd8b604
[ "MIT" ]
null
null
null
Morse Potential/Morse_analatic.py
aniruddha-seal/Solving-1D-Schrodinger-Eqn
c3fece2f7c2b043551e23878655b0f9b8dd8b604
[ "MIT" ]
1
2022-02-19T06:05:00.000Z
2022-02-19T06:05:00.000Z
import numpy as np from matplotlib import rc import matplotlib.pyplot as plt from scipy.constants import h, c from morse import Morse, FAC rc('font', **{'family': 'serif', 'serif': ['Computer Modern'], 'size': 14}) rc('text', usetex=True) COLOUR1 = (0.6196, 0.0039, 0.2588, 1.0) # Atom masses and equilibrium bond length for (1H)(35Cl). mA, mB = 1., 35. X_re = 1.27455e-10 X_Te = 0 X_we, X_wexe = 2990.945, 52.818595 X = Morse(mA, mB, X_we, X_wexe, X_re, X_Te) X.make_rgrid() X.V = X.Vmorse(X.r) fig, ax = plt.subplots() X.plot_V(ax, color='k') X.draw_Elines(range(X.vmax), ax) X.draw_Elines(X.get_vmax(), ax, linestyles='--', linewidths=1) X.plot_psi([2, 14], ax, scaling=2, color=COLOUR1) X.label_levels([2, 14], ax) ax.set_xlabel(r'$r\;/\mathrm{\\A}$') ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) plt.savefig('morse-psi.png') plt.show()
25.057143
75
0.677309
0d778af5b017e62126dd2e444cb6fb2f540bdf2f
3,675
py
Python
wagtail/contrib/settings/registry.py
stevedya/wagtail
52e5abfe62547cdfd90ea7dfeb8bf5a52f16324c
[ "BSD-3-Clause" ]
null
null
null
wagtail/contrib/settings/registry.py
stevedya/wagtail
52e5abfe62547cdfd90ea7dfeb8bf5a52f16324c
[ "BSD-3-Clause" ]
null
null
null
wagtail/contrib/settings/registry.py
stevedya/wagtail
52e5abfe62547cdfd90ea7dfeb8bf5a52f16324c
[ "BSD-3-Clause" ]
null
null
null
from django.apps import apps from django.contrib.auth.models import Permission from django.urls import reverse from django.utils.text import capfirst from wagtail import hooks from wagtail.admin.admin_url_finder import ( ModelAdminURLFinder, register_admin_url_finder, ) from wagtail.admin.menu import MenuItem from wagtail.permission_policies import ModelPermissionPolicy from .permissions import user_can_edit_setting_type class SettingMenuItem(MenuItem): def __init__(self, model, icon="cog", classnames="", **kwargs): # Special-case FontAwesome icons to avoid the breaking changes for those customisations. if icon.startswith("fa-"): icon_name = "" icon_classes = "icon icon-" + icon if classnames: classnames += " " + icon_classes else: classnames = icon_classes else: icon_name = icon self.model = model super().__init__( label=capfirst(model._meta.verbose_name), url=reverse( "wagtailsettings:edit", args=[model._meta.app_label, model._meta.model_name], ), classnames=classnames, icon_name=icon_name, **kwargs, ) def is_shown(self, request): return user_can_edit_setting_type(request.user, self.model) class SettingsAdminURLFinder(ModelAdminURLFinder): def construct_edit_url(self, instance): return reverse( "wagtailsettings:edit", args=[ self.model._meta.app_label, self.model._meta.model_name, instance.site_id, ], ) class Registry(list): def register(self, model, **kwargs): """ Register a model as a setting, adding it to the wagtail admin menu """ # Don't bother registering this if it is already registered if model in self: return model self.append(model) # Register a new menu item in the settings menu @hooks.register("register_settings_menu_item") def menu_hook(): return SettingMenuItem(model, **kwargs) @hooks.register("register_permissions") def permissions_hook(): return Permission.objects.filter( content_type__app_label=model._meta.app_label, codename="change_{}".format(model._meta.model_name), ) # Register an admin URL finder permission_policy = ModelPermissionPolicy(model) finder_class = type( "_SettingsAdminURLFinder", (SettingsAdminURLFinder,), {"model": model, "permission_policy": permission_policy}, ) register_admin_url_finder(model, finder_class) return model def register_decorator(self, model=None, **kwargs): """ Register a model as a setting in the Wagtail admin """ if model is None: return lambda model: self.register(model, **kwargs) return self.register(model, **kwargs) def get_by_natural_key(self, app_label, model_name): """ Get a setting model using its app_label and model_name. If the app_label.model_name combination is not a valid model, or the model is not registered as a setting, returns None. """ try: Model = apps.get_model(app_label, model_name) except LookupError: return None if Model not in registry: return None return Model registry = Registry() register_setting = registry.register_decorator
30.882353
96
0.620408
8385c211f0e4ec450e2301d1cfccb27298411fd9
2,766
py
Python
predict.py
amezaa/ASLMobilenet
231e44907f5afe5a076543909ca094e834007d6a
[ "Apache-2.0" ]
null
null
null
predict.py
amezaa/ASLMobilenet
231e44907f5afe5a076543909ca094e834007d6a
[ "Apache-2.0" ]
null
null
null
predict.py
amezaa/ASLMobilenet
231e44907f5afe5a076543909ca094e834007d6a
[ "Apache-2.0" ]
null
null
null
import shutil import random import os import numpy as np import cv2 import argparse import sys import time from scripts.label_image import * from vid_frame import * from mode_accuracy import * def run(video_path, frame_dir): segment_vid(video_path, frame_dir) predicted_word = predict_on_vid(frame_dir, model_file, label_file, input_height, input_width, input_mean, input_std, input_layer, output_layer, graph, input_name, output_name, input_operation, output_operation, sample_size) return predicted_word if __name__ == "__main__": file_name = "" direct_name = "segmented_frames/" model_file = "tf_files/retrained_graph.pb" label_file = "tf_files/retrained_labels.txt" #Uncomment 'model_file' and 'label_file' below to switch to 64 word model: #model_file = "tf_files/retrained_graph2.pb" #label_file = "tf_files/retrained_labels2.txt" input_height = 224 input_width = 224 input_mean = 128 input_std = 128 input_layer = "input" output_layer = "final_result" input_name = "import/" + input_layer output_name = "import/" + output_layer graph = load_graph(model_file) input_operation = graph.get_operation_by_name(input_name); output_operation = graph.get_operation_by_name(output_name); sample_size = 20 # number of images to randomly sample from the processed video parser = argparse.ArgumentParser() parser.add_argument("--video", help="video to be processed") parser.add_argument("--directory", help="directory in which processed frames are saved") parser.add_argument("--graph", help="graph/model to be executed") parser.add_argument("--labels", help="name of file containing labels") parser.add_argument("--input_height", type=int, help="input height") parser.add_argument("--input_width", type=int, help="input width") parser.add_argument("--input_mean", type=int, help="input mean") parser.add_argument("--input_std", type=int, help="input std") parser.add_argument("--input_layer", help="name of input layer") parser.add_argument("--output_layer", help="name of output layer") args = parser.parse_args() if args.graph: model_file = args.graph if args.video: file_name = args.video if args.directory: direct_name = args.directory if args.labels: label_file = args.labels if args.input_height: input_height = args.input_height if args.input_width: input_width = args.input_width if args.input_mean: input_mean = args.input_mean if args.input_std: input_std = args.input_std if args.input_layer: input_layer = args.input_layer if args.output_layer: output_layer = args.output_layer predicted_word = run(file_name, direct_name) #remove segmented frames from directory in case you're #running multiple videos sequentially shutil.rmtree(direct_name) os.mkdir(direct_name)
29.115789
224
0.769342
cf4fc654465689cf15808e16aa64b5179e114f11
383
py
Python
pizza_home/migrations/0002_alter_pizza_image.py
jayaemekar/CalPizzaDeliverySystem
9e7f1f378b42b410d358c28359a9915e30bb270d
[ "MIT" ]
null
null
null
pizza_home/migrations/0002_alter_pizza_image.py
jayaemekar/CalPizzaDeliverySystem
9e7f1f378b42b410d358c28359a9915e30bb270d
[ "MIT" ]
null
null
null
pizza_home/migrations/0002_alter_pizza_image.py
jayaemekar/CalPizzaDeliverySystem
9e7f1f378b42b410d358c28359a9915e30bb270d
[ "MIT" ]
null
null
null
# Generated by Django 3.2.6 on 2021-12-12 21:52 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('pizza_home', '0001_initial'), ] operations = [ migrations.AlterField( model_name='pizza', name='image', field=models.ImageField(upload_to='uploads'), ), ]
20.157895
57
0.590078
5bcd974fc9b4c8306e01ca5f9a8c770aec90f9fb
3,282
py
Python
ophiuchus/experiments/lyapunovgrid.py
adrn/ophiuchus
fe7e937bf421d506ec252165f044d514f571667b
[ "MIT" ]
1
2015-09-25T10:12:52.000Z
2015-09-25T10:12:52.000Z
ophiuchus/experiments/lyapunovgrid.py
adrn/ophiuchus
fe7e937bf421d506ec252165f044d514f571667b
[ "MIT" ]
null
null
null
ophiuchus/experiments/lyapunovgrid.py
adrn/ophiuchus
fe7e937bf421d506ec252165f044d514f571667b
[ "MIT" ]
null
null
null
# coding: utf-8 """ Class for computing Lyapunov exponents for the orbit grid """ from __future__ import division, print_function __author__ = "adrn <adrn@astro.columbia.edu>" # Standard library import os # Third-party from astropy import log as logger import numpy as np import gala.integrate as gi import gala.dynamics as gd from gala.units import galactic # Project from ..mockstream import ophiuchus_stream from .core import GridExperiment from .. import potential as op __all__ = ['MockStreamGrid'] class LyapunovGrid(GridExperiment): # failure error codes error_codes = { 1: "Failed to compute lyapunov exponent", 2: "Unexpected failure." } required_kwargs = ['potential_name', 'nperiods', 'nsteps_per_period', 'noffset_orbits'] config_defaults = { 'noffset_orbits': 2, # Number of offset orbits to integrate and average. 'cache_filename': 'lyapunovgrid.npy' } cache_dtype = [ ('dt','f8'), ('mle_avg','f8'), ('mle_end','f8'), ('success','b1'), ('error_code','i8'), # if not successful, why did it fail? see above ] @property def grid(self): if not hasattr(self, '_grid'): path = os.path.abspath(os.path.join(self.cache_path, "..", "orbitfit", "w0.npy")) self._grid = np.load(path) return self._grid def run(self, index): # return dict result = dict() nsteps_per_period = self.config.nsteps_per_period nperiods = self.config.nperiods noffset = self.config.noffset_orbits # read potential, initial conditions potential = op.load_potential(self.config.potential_name) w0 = self.grid[index] # I guess this could be determined automatically...but whatever T = 200. # The orbits have periods ~200 Myr # timestep and number of steps dt = T / nsteps_per_period nsteps = int(nperiods * nsteps_per_period) # 16384 orbital periods try: lyap = gd.fast_lyapunov_max(np.ascontiguousarray(w0), potential, dt=dt, nsteps=nsteps, noffset_orbits=noffset, return_orbit=False) except RuntimeError: logger.warning("Failed to compute lyapunov exponent") result['mle_avg'] = np.nan result['mle_end'] = np.nan result['success'] = False result['error_code'] = 1 return result except KeyboardInterrupt: raise except BaseException as e: logger.warning("Unexpected failure: {}".format(str(e))) result['mle_avg'] = np.nan result['mle_end'] = np.nan result['success'] = False result['error_code'] = 2 return result # estimate the FTMLE lyap = np.mean(lyap, axis=1) ix = max(1,nsteps_per_period*nperiods//64) FTMLE = np.mean(lyap[-ix:]) result['dt'] = dt result['mle_avg'] = FTMLE.decompose(galactic).value result['mle_end'] = lyap[-1].decompose(galactic).value result['success'] = True result['error_code'] = 0 return result
30.110092
93
0.593845
02e46643fbf58bbdf05b84a61877495cc6cb9a39
1,873
py
Python
python/buffer_test.py
alphaliang/pcammls
0ae59a9b3e0d73ea85e6d03b43721f79239be089
[ "Unlicense" ]
6
2020-08-07T07:02:20.000Z
2021-03-15T10:38:22.000Z
python/buffer_test.py
alphaliang/pcammls
0ae59a9b3e0d73ea85e6d03b43721f79239be089
[ "Unlicense" ]
null
null
null
python/buffer_test.py
alphaliang/pcammls
0ae59a9b3e0d73ea85e6d03b43721f79239be089
[ "Unlicense" ]
2
2020-06-15T09:31:02.000Z
2021-05-06T05:31:00.000Z
import pcammls as sdk import numpy as np def test_array_equal(nparr, carr,sz): print('data is {}'.format(nparr)) res = [] arr = np.reshape(nparr,(sz)) for idx in range(sz): res.append(carr[idx]) for idx in range(sz): if res[idx]!=arr[idx]: print ('not equal at {}'.format(idx)) def test_numpy_2_c_buffer(): ''' convert numpy array to c array buffer ''' print('-'*10) print('test_numpy_2_c_buffer') #2d array test data = [list(range(10))]*2 arr = np.array(data,np.uint16) carr = sdk.uint16_t_ARRAY.from_nparray(arr) test_array_equal(arr,carr,20) #3d numpy array res=[] data = [[[1,2]]*5]*2 arr = np.array(data,np.uint8) carr = sdk.uint8_t_ARRAY.from_nparray(arr) test_array_equal(arr,carr,20) print('test done') def test_c_buffer_2_numpy(): ''' convert c array buffer to numpy array ''' print('-'*10) print('test_c_buffer_2_numpy') carr = sdk.uint8_t_ARRAY(20) for x in range(20): carr[x]=x nparr = carr.as_nparray2d(2,10) test_array_equal(nparr,carr,20) print('test done') def test_vect_3f(): print('-'*10) print('test_vect_3f') data = [] for k in range(10): data.append([k,k+1,k+2]) arr = np.array(data,np.float) carr = sdk.TY_VECT_3F_ARRAY.from_nparray(arr) arr_out = carr.as_nparray(10) for k in range(10): for s in range(3): if (arr[k][s]!=arr_out[k][s]) : print('{} not equal'.format(k)) for k in range(10): if (arr[k][0]!=carr[k].x) : kprint('{} not equal'.format(k)) if (arr[k][1]!=carr[k].y) : kprint('{} not equal'.format(k)) if (arr[k][2]!=carr[k].z) : kprint('{} not equal'.format(k)) print('test done') def main(): test_numpy_2_c_buffer() test_c_buffer_2_numpy() test_vect_3f() main()
26.380282
76
0.590497
2864200c86ca44cda955ea9233ec6ba3a00ccab2
6,073
py
Python
esphomeyaml/components/sensor/bme680.py
sherbang/esphomeyaml
eb7db04d08fd8c1e6fd81934c6ab89959b5678ed
[ "MIT" ]
2
2020-12-03T17:38:24.000Z
2021-03-10T04:11:44.000Z
esphomeyaml/components/sensor/bme680.py
dreed47/esphomeyaml
9890a51c5136c356c2cc7f14a3ab8fe547bbb72a
[ "MIT" ]
null
null
null
esphomeyaml/components/sensor/bme680.py
dreed47/esphomeyaml
9890a51c5136c356c2cc7f14a3ab8fe547bbb72a
[ "MIT" ]
null
null
null
import voluptuous as vol import esphomeyaml.config_validation as cv from esphomeyaml import core from esphomeyaml.components import sensor from esphomeyaml.const import CONF_ADDRESS, CONF_GAS_RESISTANCE, CONF_HUMIDITY, CONF_IIR_FILTER, \ CONF_MAKE_ID, CONF_NAME, CONF_OVERSAMPLING, CONF_PRESSURE, CONF_TEMPERATURE, \ CONF_UPDATE_INTERVAL, CONF_HEATER, CONF_DURATION from esphomeyaml.cpp_generator import variable, add from esphomeyaml.cpp_helpers import setup_component from esphomeyaml.cpp_types import Application, App DEPENDENCIES = ['i2c'] BME680Oversampling = sensor.sensor_ns.enum('BME680Oversampling') OVERSAMPLING_OPTIONS = { 'NONE': BME680Oversampling.BME680_OVERSAMPLING_NONE, '1X': BME680Oversampling.BME680_OVERSAMPLING_1X, '2X': BME680Oversampling.BME680_OVERSAMPLING_2X, '4X': BME680Oversampling.BME680_OVERSAMPLING_4X, '8X': BME680Oversampling.BME680_OVERSAMPLING_8X, '16X': BME680Oversampling.BME680_OVERSAMPLING_16X, } BME680IIRFilter = sensor.sensor_ns.enum('BME680IIRFilter') IIR_FILTER_OPTIONS = { 'OFF': BME680IIRFilter.BME680_IIR_FILTER_OFF, '1X': BME680IIRFilter.BME680_IIR_FILTER_1X, '3X': BME680IIRFilter.BME680_IIR_FILTER_3X, '7X': BME680IIRFilter.BME680_IIR_FILTER_7X, '15X': BME680IIRFilter.BME680_IIR_FILTER_15X, '31X': BME680IIRFilter.BME680_IIR_FILTER_31X, '63X': BME680IIRFilter.BME680_IIR_FILTER_63X, '127X': BME680IIRFilter.BME680_IIR_FILTER_127X, } BME680_OVERSAMPLING_SENSOR_SCHEMA = sensor.SENSOR_SCHEMA.extend({ vol.Optional(CONF_OVERSAMPLING): cv.one_of(*OVERSAMPLING_OPTIONS, upper=True), }) MakeBME680Sensor = Application.struct('MakeBME680Sensor') BME680TemperatureSensor = sensor.sensor_ns.class_('BME680TemperatureSensor', sensor.EmptyPollingParentSensor) BME680PressureSensor = sensor.sensor_ns.class_('BME680PressureSensor', sensor.EmptyPollingParentSensor) BME680HumiditySensor = sensor.sensor_ns.class_('BME680HumiditySensor', sensor.EmptyPollingParentSensor) BME680GasResistanceSensor = sensor.sensor_ns.class_('BME680GasResistanceSensor', sensor.EmptyPollingParentSensor) PLATFORM_SCHEMA = sensor.PLATFORM_SCHEMA.extend({ cv.GenerateID(CONF_MAKE_ID): cv.declare_variable_id(MakeBME680Sensor), vol.Optional(CONF_ADDRESS, default=0x76): cv.i2c_address, vol.Required(CONF_TEMPERATURE): cv.nameable(BME680_OVERSAMPLING_SENSOR_SCHEMA.extend({ cv.GenerateID(): cv.declare_variable_id(BME680TemperatureSensor), })), vol.Required(CONF_PRESSURE): cv.nameable(BME680_OVERSAMPLING_SENSOR_SCHEMA.extend({ cv.GenerateID(): cv.declare_variable_id(BME680PressureSensor), })), vol.Required(CONF_HUMIDITY): cv.nameable(BME680_OVERSAMPLING_SENSOR_SCHEMA.extend({ cv.GenerateID(): cv.declare_variable_id(BME680HumiditySensor), })), vol.Required(CONF_GAS_RESISTANCE): cv.nameable(sensor.SENSOR_SCHEMA.extend({ cv.GenerateID(): cv.declare_variable_id(BME680GasResistanceSensor), })), vol.Optional(CONF_IIR_FILTER): cv.one_of(*IIR_FILTER_OPTIONS, upper=True), vol.Optional(CONF_HEATER): vol.Any(None, vol.All(vol.Schema({ vol.Optional(CONF_TEMPERATURE, default=320): vol.All(vol.Coerce(int), vol.Range(200, 400)), vol.Optional(CONF_DURATION, default='150ms'): vol.All( cv.positive_time_period_milliseconds, vol.Range(max=core.TimePeriod(milliseconds=4032))) }, cv.has_at_least_one_key(CONF_TEMPERATURE, CONF_DURATION)))), vol.Optional(CONF_UPDATE_INTERVAL): cv.update_interval, }).extend(cv.COMPONENT_SCHEMA.schema) def to_code(config): rhs = App.make_bme680_sensor(config[CONF_TEMPERATURE][CONF_NAME], config[CONF_PRESSURE][CONF_NAME], config[CONF_HUMIDITY][CONF_NAME], config[CONF_GAS_RESISTANCE][CONF_NAME], config[CONF_ADDRESS], config.get(CONF_UPDATE_INTERVAL)) make = variable(config[CONF_MAKE_ID], rhs) bme680 = make.Pbme680 if CONF_OVERSAMPLING in config[CONF_TEMPERATURE]: constant = OVERSAMPLING_OPTIONS[config[CONF_TEMPERATURE][CONF_OVERSAMPLING]] add(bme680.set_temperature_oversampling(constant)) if CONF_OVERSAMPLING in config[CONF_PRESSURE]: constant = OVERSAMPLING_OPTIONS[config[CONF_PRESSURE][CONF_OVERSAMPLING]] add(bme680.set_pressure_oversampling(constant)) if CONF_OVERSAMPLING in config[CONF_HUMIDITY]: constant = OVERSAMPLING_OPTIONS[config[CONF_HUMIDITY][CONF_OVERSAMPLING]] add(bme680.set_humidity_oversampling(constant)) if CONF_IIR_FILTER in config: constant = IIR_FILTER_OPTIONS[config[CONF_IIR_FILTER]] add(bme680.set_iir_filter(constant)) if CONF_HEATER in config: conf = config[CONF_HEATER] if not conf: add(bme680.set_heater(0, 0)) else: add(bme680.set_heater(conf[CONF_TEMPERATURE], conf[CONF_DURATION])) sensor.setup_sensor(bme680.Pget_temperature_sensor(), make.Pmqtt_temperature, config[CONF_TEMPERATURE]) sensor.setup_sensor(bme680.Pget_pressure_sensor(), make.Pmqtt_pressure, config[CONF_PRESSURE]) sensor.setup_sensor(bme680.Pget_humidity_sensor(), make.Pmqtt_humidity, config[CONF_HUMIDITY]) sensor.setup_sensor(bme680.Pget_gas_resistance_sensor(), make.Pmqtt_gas_resistance, config[CONF_GAS_RESISTANCE]) setup_component(bme680, config) BUILD_FLAGS = '-DUSE_BME680' def to_hass_config(data, config): return [sensor.core_to_hass_config(data, config[CONF_TEMPERATURE]), sensor.core_to_hass_config(data, config[CONF_PRESSURE]), sensor.core_to_hass_config(data, config[CONF_HUMIDITY]), sensor.core_to_hass_config(data, config[CONF_GAS_RESISTANCE])]
49.373984
100
0.721719
8913fe66f74564fbe1b9e779e09c5ab9f43d023f
134
py
Python
newsfeedsystem/angular/urls.py
bakowroc/newsfeed-system
6a7363700416e331fcb51c1118a90c0b3d959673
[ "MIT" ]
null
null
null
newsfeedsystem/angular/urls.py
bakowroc/newsfeed-system
6a7363700416e331fcb51c1118a90c0b3d959673
[ "MIT" ]
null
null
null
newsfeedsystem/angular/urls.py
bakowroc/newsfeed-system
6a7363700416e331fcb51c1118a90c0b3d959673
[ "MIT" ]
null
null
null
from django.conf.urls import url from angular import views urlpatterns = [ url(r'^', views.HomePageView.as_view(), name ='/') ]
16.75
54
0.686567
49b5da7e3608c63d4fffbf06e8e92941c9f3d4cf
1,977
py
Python
Examples/python_server/openapi_server/com/h21lab/TS29510_Nnrf_NFDiscovery/handler/preferred_search.py
H21lab/5GC_build
bbc8bbd9158a2124ca486572906020a91789733e
[ "Apache-2.0" ]
12
2020-06-04T06:58:13.000Z
2021-12-15T14:26:56.000Z
Examples/python_server/openapi_server/com/h21lab/TS29510_Nnrf_NFDiscovery/handler/preferred_search.py
H21lab/5GC_build
bbc8bbd9158a2124ca486572906020a91789733e
[ "Apache-2.0" ]
3
2021-05-27T12:13:58.000Z
2021-12-15T05:45:44.000Z
Examples/python_server/openapi_server/com/h21lab/TS29510_Nnrf_NFDiscovery/handler/preferred_search.py
H21lab/5GC_build
bbc8bbd9158a2124ca486572906020a91789733e
[ "Apache-2.0" ]
null
null
null
# coding: utf-8 from __future__ import absolute_import from datetime import date, datetime # noqa: F401 from typing import List, Dict # noqa: F401 from openapi_server.com.h21lab.TS29510_Nnrf_NFDiscovery.handler.base_model_ import Model from openapi_server import util class PreferredSearch(Model): """NOTE: This class is auto generated by OpenAPI Generator (https://openapi-generator.tech). Do not edit the class manually. """ def __init__(self, preferred_tai_match_ind=False): # noqa: E501 """PreferredSearch - a model defined in OpenAPI :param preferred_tai_match_ind: The preferred_tai_match_ind of this PreferredSearch. # noqa: E501 :type preferred_tai_match_ind: bool """ self.openapi_types = { 'preferred_tai_match_ind': bool } self.attribute_map = { 'preferred_tai_match_ind': 'preferredTaiMatchInd' } self._preferred_tai_match_ind = preferred_tai_match_ind @classmethod def from_dict(cls, dikt) -> 'PreferredSearch': """Returns the dict as a model :param dikt: A dict. :type: dict :return: The PreferredSearch of this PreferredSearch. # noqa: E501 :rtype: PreferredSearch """ return util.deserialize_model(dikt, cls) @property def preferred_tai_match_ind(self): """Gets the preferred_tai_match_ind of this PreferredSearch. :return: The preferred_tai_match_ind of this PreferredSearch. :rtype: bool """ return self._preferred_tai_match_ind @preferred_tai_match_ind.setter def preferred_tai_match_ind(self, preferred_tai_match_ind): """Sets the preferred_tai_match_ind of this PreferredSearch. :param preferred_tai_match_ind: The preferred_tai_match_ind of this PreferredSearch. :type preferred_tai_match_ind: bool """ self._preferred_tai_match_ind = preferred_tai_match_ind
30.415385
106
0.693981
61ed8d811683ff309a84dfbadf848a4d35de9f64
5,289
py
Python
external/BB2SegNet/refinement_net/datasets/DAVIS/COCO_for_DAVIS.py
zhuhu00/MOTSFusion_modify
190224a7c3fbded69fedf9645a0ebbf08227fb6d
[ "MIT" ]
154
2019-07-25T02:27:39.000Z
2022-02-18T19:40:43.000Z
external/BB2SegNet/refinement_net/datasets/DAVIS/COCO_for_DAVIS.py
zhuhu00/MOTSFusion_modify
190224a7c3fbded69fedf9645a0ebbf08227fb6d
[ "MIT" ]
4
2019-11-12T00:38:54.000Z
2021-08-14T08:40:12.000Z
external/BB2SegNet/refinement_net/datasets/DAVIS/COCO_for_DAVIS.py
zhuhu00/MOTSFusion_modify
190224a7c3fbded69fedf9645a0ebbf08227fb6d
[ "MIT" ]
25
2019-09-17T08:49:57.000Z
2022-03-21T20:11:57.000Z
import tensorflow as tf from PIL import Image import numpy as np from random import shuffle from external.BB2SegNet.refinement_net.datasets.Loader import register_dataset from external.BB2SegNet.refinement_net.datasets.Mapillary.MapillaryLike_instance import MapillaryLikeInstanceDataset from external.BB2SegNet.refinement_net.datasets.util.Util import username DEFAULT_PATH = "/fastwork/" + username() + "/mywork/data/coco/train2014/" LIST_PATH_ROOT = "/home/luiten/vision/youtubevos/refinement_net/" NAME = "COCO_for_davis" @register_dataset(NAME) class DAVISLucidDataset(MapillaryLikeInstanceDataset): def __init__(self, config, subset): davis_sequence = config.string("model", '') # data_list_path = LIST_PATH_ROOT + davis_sequence + '/' self.data_dir = config.string('data_dir',DEFAULT_PATH) annotation_file = "/fastwork/" + username() + "/mywork/data/coco/annotations/instances_train2014.json" self.build_filename_to_coco_anns_dict(annotation_file) super().__init__(config, subset, NAME, self.data_dir, "", 100, cat_ids_to_use=None) # Two things: # # 1.) Load a dict to be used later # # 2.) Load in the annotations live as needed ################################################################################################### # # 1.) ################################################################################################### def read_inputfile_lists(self): imgs_ans = [] for f,anns in self.filename_to_coco_anns.items(): for id,ann in enumerate(anns): id_ = str(id) if ann['area'] < self.min_size: continue imgs_ans.append((f, id_)) shuffle(imgs_ans) imgs = [x[0] for x in imgs_ans] ans = [x[1] for x in imgs_ans] return imgs, ans def build_filename_to_coco_anns_dict(self, annotation_file): import pycocotools.coco as coco self.coco = coco.COCO(annotation_file) ann_ids = self.coco.getAnnIds([]) all_anns = self.coco.loadAnns(ann_ids) imgs = self.coco.loadImgs(self.coco.getImgIds()) self.filename_to_coco_anns = {self.data_dir + img['file_name']: [] for img in imgs} self.filename_to_img_ids = {self.data_dir + img['file_name']: img['id'] for img in imgs} # load all annotations for images for ann in all_anns: img_id = ann['image_id'] img = self.coco.loadImgs(img_id) file_name = self.data_dir + img[0]['file_name'] self.filename_to_coco_anns[file_name].append(ann) # Remove crowd anns self.filename_to_coco_anns = {f: [ann for ann in anns if not ann["iscrowd"]] for f, anns in self.filename_to_coco_anns.items()} # filter out images without annotations self.filename_to_coco_anns = {f: anns for f, anns in self.filename_to_coco_anns.items() if len(anns) > 0} ################################################################################################### # # 2.) ################################################################################################### def segmentation_to_mask(self,polys, height, width): import pycocotools.mask as cocomask polys = [p.flatten().tolist() for p in polys] rles = cocomask.frPyObjects(polys, height, width) rle = cocomask.merge(rles) return cocomask.decode(rle) def load_ann(img,img_filename,annotation_filename): img_filename = img_filename.decode('utf-8') anns_for_img = self.filename_to_coco_anns[img_filename.split("/")[-1]] ann_id = int(annotation_filename.decode('utf-8')) ann = anns_for_img[ann_id] img_h, img_w = img.shape[:-1] if ann['area'] > 1 and isinstance(ann['segmentation'], list): segs = ann['segmentation'] valid_segs = [np.asarray(p).reshape(-1, 2) for p in segs if len(p) >= 6] if len(valid_segs) < len(segs): print("Image {} has invalid polygons!".format(img_filename)) output_ann = np.asarray(self.segmentation_to_mask(valid_segs, img_h, img_w), dtype='uint8')[ ..., np.newaxis] # Should be 1s and 0s else: output_ann = np.zeros((img_h, img_w, 1), dtype="uint8") return output_ann def load_annotation(self, img, img_filename, annotation_filename): def load_ann(img, img_filename, annotation_filename): img_filename = img_filename.decode('utf-8') anns_for_img = self.filename_to_coco_anns[img_filename] ann_id = int(annotation_filename.decode('utf-8')) ann = anns_for_img[ann_id] img_h = img.shape[0] img_w = img.shape[1] if ann['area'] > 1 and isinstance(ann['segmentation'], list): segs = ann['segmentation'] valid_segs = [np.asarray(p).reshape(-1, 2) for p in segs if len(p) >= 6] if len(valid_segs) < len(segs): print("Image {} has invalid polygons!".format(img_filename)) output_ann = np.asarray(self.segmentation_to_mask(valid_segs, img_h, img_w), dtype='uint8')[..., np.newaxis] # Should be 1s and 0s else: output_ann = np.zeros((img_h, img_w, 1), dtype="uint8") return output_ann ann, = tf.py_func(load_ann, [img,img_filename,annotation_filename], [tf.uint8]) # print(ann) # ann = tf.Print(ann,[ann,]) # ann = ann[0] ann.set_shape(img.get_shape().as_list()[:-1] + [1]) ann = tf.cast(ann, tf.uint8) return ann
41.97619
139
0.630176
7f681f5ec7a5e274a77b938cce31fd3e025b8077
2,474
py
Python
test/test_api_fact_ref.py
abcdcamey/stock-data
bfdc67e60b7d4de59c66dbb52159574b4e0a5e51
[ "MIT" ]
1
2019-04-10T09:07:59.000Z
2019-04-10T09:07:59.000Z
test/test_api_fact_ref.py
abcdcamey/stock-data
bfdc67e60b7d4de59c66dbb52159574b4e0a5e51
[ "MIT" ]
2
2021-06-01T23:39:34.000Z
2021-12-13T19:58:31.000Z
test/test_api_fact_ref.py
abcdcamey/stock-data
bfdc67e60b7d4de59c66dbb52159574b4e0a5e51
[ "MIT" ]
null
null
null
from api.fact.Fact_Market_Ref_Data import Fact_Market_Ref_Data from api.common.Saver import Saver fmrd = Fact_Market_Ref_Data() #data = fmrd.get_fact_moneyflow_hsgt(_trade_date='20190508') #Saver.save_to_mysql(data,'fact_moneyflow_hsgt') #data = fmrd.get_fact_hsgt_top10(_trade_date='20190508') #Saver.save_to_mysql(data,'fact_hsgt_top10') #data = fmrd.get_fact_ggt_top10(_trade_date='20190508') #Saver.save_to_mysql(data, 'fact_ggt_top10') #data = fmrd.get_fact_margin(_trade_date='20190508') #Saver.save_to_mysql(data, 'fact_margin') #data = fmrd.get_fact_margin_detail(_trade_date='20190508') #Saver.save_to_mysql(data, 'fact_margin_detail') # 每次100条,每支股3年取一次 #data = fmrd.get_fact_top10_holders(_ts_code='000002.SZ',_start_date='20000101',_end_date='20041231') #Saver.save_to_mysql(data, 'fact_stock_top10_holders') # 每次100条,每支股3年取一次 #data = fmrd.get_fact_top10_floatholders(_ts_code='000002.SZ',_start_date='20000101',_end_date='20041231') #Saver.save_to_mysql(data, 'fact_stock_top10_floatholders') #data = fmrd.get_fact_stock_daily_top_list(_trade_date='20190508') #Saver.save_to_mysql(data, 'fact_stock_daily_top_list') #data = fmrd.get_fact_stock_daily_top_inst(_trade_date='20190508') #Saver.save_to_mysql(data, 'fact_stock_daily_top_inst') #data = fmrd.get_fact_stock_pledge_stat(_ts_code='000002.SZ') #Saver.save_to_mysql(data, 'fact_stock_pledge_stat') # 遍历股票 #data = fmrd.get_fact_stock_pledge_detail(_ts_code='000002.SZ') #Saver.save_to_mysql(data, 'fact_stock_pledge_detail') #data = fmrd.get_fact_stock_repurchase(_ann_date='20190508') #Saver.save_to_mysql(data, 'fact_stock_repurchase') #不用跑历史数据,每天更新即可 #data = fmrd.get_fact_stock_concept() #Saver.save_to_mysql(data, 'fact_stock_concept') #data = fmrd.get_fact_stock_concept_detail(_ts_code='600848.SH') #Saver.save_to_mysql(data, table_name='fact_stock_concept_detail',column_dict= {'id':'concept_code'}) #data = fmrd.get_fact_stock_share_float(_ann_date='20190508') #Saver.save_to_mysql(data, table_name='fact_stock_share_float') #data = fmrd.get_fact_stock_block_trade(_trade_date='20190510') #Saver.save_to_mysql(data, table_name='fact_stock_block_trade') # 目前只到2019年2月22号的数据 data = fmrd.get_fact_stock_stk_account(_date='20190222') Saver.save_to_mysql(data, table_name='fact_stock_stk_account') #用_ts_code跑历史数据,之后加_ann_date跑每天数据 #data = fmrd.get_fact_stock_stk_holdernumber(_ts_code='600848.SH',) #Saver.save_to_mysql(data, table_name='fact_stock_stk_holdernumber')
30.925
106
0.812854
71b9e29e1c8c138703b10a7068b9030a88e4bfd6
929
py
Python
question_bank/island-perimeter/island-perimeter.py
yatengLG/leetcode-python
5d48aecb578c86d69835368fad3d9cc21961c226
[ "Apache-2.0" ]
9
2020-08-12T10:01:00.000Z
2022-01-05T04:37:48.000Z
question_bank/island-perimeter/island-perimeter.py
yatengLG/leetcode-python
5d48aecb578c86d69835368fad3d9cc21961c226
[ "Apache-2.0" ]
1
2021-02-16T10:19:31.000Z
2021-02-16T10:19:31.000Z
question_bank/island-perimeter/island-perimeter.py
yatengLG/leetcode-python
5d48aecb578c86d69835368fad3d9cc21961c226
[ "Apache-2.0" ]
4
2020-08-12T10:13:31.000Z
2021-11-05T01:26:58.000Z
# -*- coding: utf-8 -*- # @Author : LG """ 执行用时:152 ms, 在所有 Python3 提交中击败了68.28% 的用户 内存消耗:13.7 MB, 在所有 Python3 提交中击败了58.86% 的用户 解题思路: 每存在一个相邻岛屿,则边各少一条。 具体实现见代码注释 """ class Solution: def islandPerimeter(self, grid: List[List[int]]) -> int: num = 0 # 记录岛屿数 neighbor = 0 # 记录相邻岛屿数 m, n = len(grid), len(grid[0]) # for i in range(m): for j in range(n): if grid[i][j] == 1: # 找到岛屿 num += 1 # 岛屿数+1 if 0 <= i-1 and grid[i-1][j] == 1: # 查看岛屿四周,找相邻岛屿 neighbor += 1 # 存在相邻岛屿,相邻岛屿数+1 if i+1 < m and grid[i+1][j] == 1: neighbor += 1 if 0 <= j-1 and grid[i][j-1] == 1: neighbor += 1 if j+1 < n and grid[i][j+1] == 1: neighbor += 1 return num*4-neighbor
32.034483
70
0.420883
45d1cb1f05cdf1d0521061a13431ed8a6facc4d0
3,027
py
Python
unit_tests/test_utils.py
oprinmarius/charm-cinder-ceph
0be26a2684737bb0683e00b282b26d9d5af279b4
[ "ECL-2.0", "Apache-2.0" ]
16
2016-04-17T04:00:44.000Z
2020-04-03T08:12:36.000Z
unit_tests/test_utils.py
oprinmarius/charm-cinder-ceph
0be26a2684737bb0683e00b282b26d9d5af279b4
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
unit_tests/test_utils.py
oprinmarius/charm-cinder-ceph
0be26a2684737bb0683e00b282b26d9d5af279b4
[ "ECL-2.0", "Apache-2.0" ]
8
2016-11-01T19:24:23.000Z
2020-11-02T17:36:14.000Z
# Copyright 2016 Canonical Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import unittest import os import yaml from unittest.mock import patch def load_config(): ''' Walk backwords from __file__ looking for config.yaml, load and return the 'options' section' ''' config = None f = __file__ while config is None: d = os.path.dirname(f) if os.path.isfile(os.path.join(d, 'config.yaml')): config = os.path.join(d, 'config.yaml') break f = d if not config: logging.error('Could not find config.yaml in any parent directory ' 'of %s. ' % __file__) raise Exception return yaml.safe_load(open(config).read())['options'] def get_default_config(): ''' Load default charm config from config.yaml return as a dict. If no default is set in config.yaml, its value is None. ''' default_config = {} config = load_config() for k, v in config.items(): if 'default' in v: default_config[k] = v['default'] else: default_config[k] = None return default_config class CharmTestCase(unittest.TestCase): def setUp(self, obj, patches): super(CharmTestCase, self).setUp() self.patches = patches self.obj = obj self.test_config = TestConfig() self.test_relation = TestRelation() self.patch_all() def patch(self, method): _m = patch.object(self.obj, method) mock = _m.start() self.addCleanup(_m.stop) return mock def patch_all(self): for method in self.patches: setattr(self, method, self.patch(method)) class TestConfig(object): def __init__(self): self.config = get_default_config() def get(self, attr): try: return self.config[attr] except KeyError: return None def get_all(self): return self.config def set(self, attr, value): if attr not in self.config: raise KeyError self.config[attr] = value class TestRelation(object): def __init__(self, relation_data={}): self.relation_data = relation_data def set(self, relation_data): self.relation_data = relation_data def get(self, attr=None, unit=None, rid=None): if attr is None: return self.relation_data elif attr in self.relation_data: return self.relation_data[attr] return None
26.321739
77
0.6333
48f39cfd43d1550a0a36789868a18828fae90df8
5,155
py
Python
bigml/api_handlers/batchtopicdistributionhandler.py
axellos162/python-4
569f6655871ea60b41e9442396433567b9daaea7
[ "Apache-2.0" ]
137
2015-01-12T06:04:10.000Z
2022-03-06T21:00:04.000Z
bigml/api_handlers/batchtopicdistributionhandler.py
axellos162/python-4
569f6655871ea60b41e9442396433567b9daaea7
[ "Apache-2.0" ]
78
2015-01-13T18:28:51.000Z
2022-03-04T19:18:28.000Z
bigml/api_handlers/batchtopicdistributionhandler.py
axellos162/python-4
569f6655871ea60b41e9442396433567b9daaea7
[ "Apache-2.0" ]
144
2015-01-16T06:13:33.000Z
2022-03-29T17:53:16.000Z
# -*- coding: utf-8 -*- # # Copyright 2016-2021 BigML # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """Base class for batch topic distributions' REST calls https://bigml.com/developers/batchtopicdistributions """ try: import simplejson as json except ImportError: import json from bigml.api_handlers.resourcehandler import ResourceHandlerMixin from bigml.api_handlers.resourcehandler import check_resource_type from bigml.constants import BATCH_TOPIC_DISTRIBUTION_PATH, TOPIC_MODEL_PATH class BatchTopicDistributionHandlerMixin(ResourceHandlerMixin): """This class is used by the BigML class as a mixin that provides the REST calls models. It should not be instantiated independently. """ def __init__(self): """Initializes the BatchTopidDistributionHandler. This class is intended to be used as a mixin on ResourceHandler, that inherits its attributes and basic method from BigMLConnection, and must not be instantiated independently. """ self.batch_topic_distribution_url = self.prediction_base_url + \ BATCH_TOPIC_DISTRIBUTION_PATH def create_batch_topic_distribution(self, topic_model, dataset, args=None, wait_time=3, retries=10): """Creates a new batch topic distribution. """ create_args = {} if args is not None: create_args.update(args) origin_resources_checked = self.check_origins( dataset, topic_model, create_args, model_types=[TOPIC_MODEL_PATH], wait_time=wait_time, retries=retries) if origin_resources_checked: body = json.dumps(create_args) return self._create(self.batch_topic_distribution_url, body) return def get_batch_topic_distribution(self, batch_topic_distribution, query_string=''): """Retrieves a batch topic distribution. The batch_topic_distribution parameter should be a string containing the batch_topic_distribution id or the dict returned by create_batch_topic_distribution. As batch_topic_distribution is an evolving object that is processed until it reaches the FINISHED or FAULTY state, the function will return a dict that encloses the batch_topic_distribution values and state info available at the time it is called. """ check_resource_type(batch_topic_distribution, BATCH_TOPIC_DISTRIBUTION_PATH, message="A batch topic distribution id is needed.") return self.get_resource(batch_topic_distribution, query_string=query_string) def download_batch_topic_distribution(self, batch_topic_distribution, filename=None, retries=10): """Retrieves the batch topic distribution file. Downloads topic distributions, that are stored in a remote CSV file. If a path is given in filename, the contents of the file are downloaded and saved locally. A file-like object is returned otherwise. """ check_resource_type(batch_topic_distribution, BATCH_TOPIC_DISTRIBUTION_PATH, message="A batch topic distribution id is needed.") return self._download_resource(batch_topic_distribution, filename, retries=retries) def list_batch_topic_distributions(self, query_string=''): """Lists all your batch topic distributions. """ return self._list(self.batch_topic_distribution_url, query_string) def update_batch_topic_distribution(self, batch_topic_distribution, changes): """Updates a batch topic distributions. """ check_resource_type(batch_topic_distribution, BATCH_TOPIC_DISTRIBUTION_PATH, message="A batch topic distribution id is needed.") return self.update_resource(batch_topic_distribution, changes) def delete_batch_topic_distribution(self, batch_topic_distribution): """Deletes a batch topic distribution. """ check_resource_type(batch_topic_distribution, BATCH_TOPIC_DISTRIBUTION_PATH, message="A batch topic distribution id is needed.") return self.delete_resource(batch_topic_distribution)
41.24
79
0.660524
ed9af062b4928f1243ded41c7a8e3d051dae8f7f
4,748
py
Python
lensesio/lenses.py
rsaggino/lenses-python
325c221a9e34fa24a949672459409186db682447
[ "Apache-2.0" ]
13
2018-04-23T11:58:01.000Z
2019-06-22T20:17:56.000Z
lensesio/lenses.py
rsaggino/lenses-python
325c221a9e34fa24a949672459409186db682447
[ "Apache-2.0" ]
10
2019-12-19T04:47:49.000Z
2022-03-24T10:12:42.000Z
lensesio/lenses.py
Landoop/lenses-python
645b44c333e119dcbcd29f2d0e07ffdd6f66dbc0
[ "Apache-2.0" ]
5
2020-02-17T12:08:20.000Z
2022-03-09T15:32:39.000Z
#!/usr/bin/env python3 from lensesio.pulsar.pulsar_client import SetupPulsar from lensesio.core.exception import lenses_exception from lensesio.registry.schemas import SchemaRegistry from lensesio.data.processors import DataProcessor from lensesio.data.connectors import DataConnector from lensesio.data.consumers import DataConsumers from threading import Thread, enumerate, RLock from lensesio.kafka.quotas import KafkaQuotas from lensesio.flows.flows import LensesFlows from lensesio.kafka.topics import KafkaTopic from lensesio.data.topology import Topology from lensesio.core.admin import AdminPanel from lensesio.core.basic_auth import Basic from lensesio.kafka.acls import KafkaACL from lensesio.data.policy import Policy from lensesio.data.sql import SQLExec from sys import modules as sys_mods from sys import exit import platform ThreadLock = RLock() active_threads = { 'sql': { "t": 0, }, 'subscribe': { "t": 0, }, 'pulsar_consumer': { "t": 0, }, 'pulsar_reader': { "t": 0, }, "thread_lock": ThreadLock } class main( Basic, KafkaTopic, SchemaRegistry, SQLExec, KafkaQuotas, Policy, DataProcessor, DataConnector, KafkaACL, LensesFlows, lenses_exception, DataConsumers, Topology, AdminPanel, SetupPulsar, ): def __init__( self, auth_type="basic", url=None, username=None, password=None, krb_service=None, service_account=None, verify_cert=True): if auth_type is None: return self.active_threads = active_threads try: if auth_type not in ['basic', 'service', 'krb5']: print(''' Parameters: Mandatory: auth_type=basic/krb5/service url=lenses endpoint Optional: username ( if auth_type is basic ) password ( if username was defined ) service_account ( if auth_type is basic ) krb_service ( if auth_type is krb5 and platform is either one of linux, darwin ) ''') exit(1) except NameError: print("Please provide auth_type [basic, krb5, service]") exit(1) self.auth_type = auth_type self.url = url if self.auth_type == 'basic': Basic.__init__(self, url=url, username=username, password=password, verify_cert=verify_cert) self.connect() if self.auth_type == 'service': Basic.__init__(self, url=url, service_account=service_account, verify_cert=verify_cert) self.serviceConnect() elif self.auth_type == 'krb5': if platform.system().lower() not in ['linux', 'linux2', 'darwin']: msg = "Error: gssapi kerberos integration is not supported for " print(msg + platform.system()) exit(1) try: from lensesio.core.krb_auth import krb5 self.krb5 = krb5 self.krb5.__init__(self, url=url, service=krb_service) self.krb5.KrbAuth(self) except NameError: print("Kerberos client lib is not installed") return None if self.ConnectionValidation() == 1: print("Could not login to lenses. Please check the auth options") exit(1) AdminPanel.__init__(self, verify_cert=verify_cert) Topology.__init__(self, verify_cert=verify_cert) KafkaTopic.__init__(self, verify_cert=verify_cert) SchemaRegistry.__init__(self, verify_cert=verify_cert) SQLExec.__init__(self, active_threads=active_threads, verify_cert=verify_cert) KafkaQuotas.__init__(self, verify_cert=verify_cert) Policy.__init__(self, verify_cert=verify_cert) DataProcessor.__init__(self, verify_cert=verify_cert) DataConnector.__init__(self, verify_cert=verify_cert) KafkaACL.__init__(self, verify_cert=verify_cert) DataConsumers.__init__(self, verify_cert=verify_cert) def InitPulsarClient(self, host, **kwargs): try: self.Pulsar = SetupPulsar.__init__(self, active_threads, host) except NameError: print("Pulsar client lib is not installed") return None
34.405797
104
0.587616
c03c8b8234653fda30c73d65e75cf62e121809ce
6,691
py
Python
apps/user/views.py
Devin6Tam/site_demo
c8766b574da0f0c8259995f56cc1a201fc2281be
[ "Apache-2.0" ]
null
null
null
apps/user/views.py
Devin6Tam/site_demo
c8766b574da0f0c8259995f56cc1a201fc2281be
[ "Apache-2.0" ]
10
2021-03-19T01:23:35.000Z
2022-03-12T00:21:44.000Z
apps/user/views.py
Devin6Tam/site_demo
c8766b574da0f0c8259995f56cc1a201fc2281be
[ "Apache-2.0" ]
null
null
null
from django.http import HttpResponse, Http404, HttpResponseRedirect from django.template import loader from django.shortcuts import render, redirect, reverse, get_object_or_404 from django.core.paginator import Paginator from django.views import generic import logging from django import forms from django.conf import settings from .models import User, ConfirmString from .forms import UserForm, RegisterForm import hashlib import datetime # Create your views here. logger = logging.getLogger(__name__) def hash_code(s, salt='site_demo'):# 加点盐 h = hashlib.sha256() s += salt h.update(s.encode()) # update方法只接收bytes类型 return h.hexdigest() def make_confirm_string(user): now = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S") code = hash_code(user.name, now) ConfirmString.objects.create(code=code, user=user,) return code def send_email(email, code): from django.core.mail import EmailMultiAlternatives subject = '来自www.mzbloc.com的注册确认邮件' text_content = '''感谢注册www.mzbloc.com,欢迎加入我们,让我们一起专注于Python、Django和机器学习技术的分享!\ 如果你看到这条消息,说明你的邮箱服务器不提供HTML链接功能,请联系管理员!''' html_content = ''' <p>感谢注册<a href="http://{}/user/confirm/?code={}" target=blank>www.mzbloc.com</a>,\ 这里是demo示例展示,专注于Python、Django和机器学习技术的分享!</p> <p>请点击站点链接完成注册确认!</p> <p>此链接有效期为{}天!</p> '''.format('127.0.0.1:8000', code, settings.CONFIRM_DAYS) msg = EmailMultiAlternatives(subject, text_content, settings.EMAIL_HOST_USER, [email]) msg.attach_alternative(html_content, "text/html") msg.send() def index(request): if not request.session.get('is_login', None): return redirect('user:login') return render(request, 'login/index.html') def login(request): if request.method == "POST": login_form = UserForm(request.POST) message = '请检查填写的内容!' if login_form.is_valid(): username = login_form.cleaned_data.get('username') password = login_form.cleaned_data.get('password') try: user = User.objects.get(name=username) except: message = '用户不存在!' return render(request, 'login/login.html', {'message': message}) if not user.has_confirmed: message = '该用户还未经过邮件确认!' return render(request, 'login/login.html', locals()) if user.password == hash_code(password): print(username, password) request.session['is_login'] = True request.session['user_id'] = user.id request.session['user_name'] = user.name return redirect('user:index') else: message = '密码不正确!' return render(request, 'login/login.html', locals()) else: return render(request, 'login/login.html', locals()) # return redirect('user:index') login_form = UserForm() return render(request, 'login/login.html', locals()) def login1(request): if request.method == "POST": username = request.POST.get('username') password = request.POST.get('password') print(username, password) message = '请检查填写的内容!' if username.strip() and password: # 用户名字符合法性验证 # 密码长度验证 # 更多的其它验证..... try: user = User.objects.get(name=username) except: message = '用户不存在!' return render(request, 'login/login.html', {'message': message}) if user.password == password: print(username, password) return redirect('user:index') else: message = '密码不正确!' return render(request, 'login/login.html', {'message': message}) else: return render(request, 'login/login.html', {'message': message}) # return redirect('user:index') return render(request, 'login/login.html') def register(request): if request.session.get('is_login', None): return redirect('user:index') if request.method == 'POST': register_form = RegisterForm(request.POST) message = "请检查填写的内容!" if register_form.is_valid(): username = register_form.cleaned_data.get('username') password1 = register_form.cleaned_data.get('password1') password2 = register_form.cleaned_data.get('password2') email = register_form.cleaned_data.get('email') sex = register_form.cleaned_data.get('sex') if password1 != password2: message = '两次输入的密码不同!' return render(request, 'login/register.html', locals()) else: same_name_user = User.objects.filter(name=username) if same_name_user: message = '用户名已经存在' return render(request, 'login/register.html', locals()) same_email_user = User.objects.filter(email=email) if same_email_user: message = '该邮箱已经被注册了!' return render(request, 'login/register.html', locals()) new_user = User() new_user.name = username new_user.password = hash_code(password1) new_user.email = email new_user.sex = sex new_user.save() code = make_confirm_string(new_user) send_email(email, code) message = '请前往邮箱进行确认!' return redirect('user:login') else: return render(request, 'login/register.html', locals()) register_form = RegisterForm() return render(request, 'login/register.html', locals()) def user_confirm(request): code = request.GET.get('code', None) message = '' try: confirm = ConfirmString.objects.get(code=code) except: message = '无效的确认请求!' return render(request, 'login/confirm.html', locals()) c_time = confirm.c_time now = datetime.datetime.now() if now > c_time + datetime.timedelta(settings.CONFIRM_DAYS): confirm.user.delete() message = '您的邮件已经过期!请重新注册!' return render(request, 'login/confirm.html', locals()) else: confirm.user.has_confirmed = True confirm.user.save() confirm.delete() message = '感谢确认,请使用账户登录!' return render(request, 'login/confirm.html', locals()) def logout(request): if request.session.get('is_login', None): request.session.flush() return redirect('user:login')
36.167568
102
0.595277
37db85fc237e532dfed465775bf343b661086046
468
py
Python
adv/irfan.py.r.lt.py
betairylia/dl
4eb06837b13decc569066a43b58e205f3b716ff8
[ "Apache-2.0" ]
null
null
null
adv/irfan.py.r.lt.py
betairylia/dl
4eb06837b13decc569066a43b58e205f3b716ff8
[ "Apache-2.0" ]
null
null
null
adv/irfan.py.r.lt.py
betairylia/dl
4eb06837b13decc569066a43b58e205f3b716ff8
[ "Apache-2.0" ]
null
null
null
import adv_test from adv import * def module(): return Irfan class Irfan(Adv): pass if __name__ == '__main__': conf = {} conf['acl'] = """ `rotation """ conf['rotation_init'] = """ c4fs c4fs c1 """ conf['rotation'] = """ S1 C4FS C4FS C1- S1 C2- S2 C4FS C5- S3 C3- S1 C4FS C5- S2 C1- S1 C4FS C4FS C1- S1 C4FS C4- S3 C3- S1 C1- S2 C4FS C5- """ adv_test.test(module(), conf, verbose=0, mass=0)
18.72
73
0.536325
e18f193bb093fe91cf4bd03537a64da4f46ae21c
1,581
py
Python
modules/audio_processing/test/py_quality_assessment/quality_assessment/evaluation.py
Aexyn/webrtc2
daea5bf2deb843567a792f22ea2047a037e09d78
[ "DOC", "BSD-3-Clause" ]
2
2018-01-16T13:29:45.000Z
2018-08-10T09:15:23.000Z
modules/audio_processing/test/py_quality_assessment/quality_assessment/evaluation.py
Aexyn/webrtc2
daea5bf2deb843567a792f22ea2047a037e09d78
[ "DOC", "BSD-3-Clause" ]
null
null
null
modules/audio_processing/test/py_quality_assessment/quality_assessment/evaluation.py
Aexyn/webrtc2
daea5bf2deb843567a792f22ea2047a037e09d78
[ "DOC", "BSD-3-Clause" ]
null
null
null
# Copyright (c) 2017 The WebRTC project authors. All Rights Reserved. # # Use of this source code is governed by a BSD-style license # that can be found in the LICENSE file in the root of the source # tree. An additional intellectual property rights grant can be found # in the file PATENTS. All contributing project authors may # be found in the AUTHORS file in the root of the source tree. """Evaluator of the APM module. """ import logging class ApmModuleEvaluator(object): """APM evaluator class. """ def __init__(self): pass @classmethod def Run(cls, evaluation_score_workers, apm_output_filepath, reference_input_filepath, output_path): """Runs the evaluation. Iterates over the given evaluation score workers. Args: evaluation_score_workers: list of EvaluationScore instances. apm_output_filepath: path to the audio track file with the APM output. reference_input_filepath: path to the reference audio track file. output_path: output path. Returns: A dict of evaluation score name and score pairs. """ # Init. scores = {} for evaluation_score_worker in evaluation_score_workers: logging.info(' computing <%s> score', evaluation_score_worker.NAME) evaluation_score_worker.SetReferenceSignalFilepath( reference_input_filepath) evaluation_score_worker.SetTestedSignalFilepath( apm_output_filepath) evaluation_score_worker.Run(output_path) scores[evaluation_score_worker.NAME] = evaluation_score_worker.score return scores
30.403846
76
0.73561
dc454d862b0a9b3d03b293696e6929f783b1a959
4,119
py
Python
education/urls.py
Amirsorouri00/neolej
8fa18f2c1a38b0a59ed7eeeed7ed37ef7b9dad97
[ "MIT" ]
null
null
null
education/urls.py
Amirsorouri00/neolej
8fa18f2c1a38b0a59ed7eeeed7ed37ef7b9dad97
[ "MIT" ]
null
null
null
education/urls.py
Amirsorouri00/neolej
8fa18f2c1a38b0a59ed7eeeed7ed37ef7b9dad97
[ "MIT" ]
null
null
null
from django.urls import include, path from django.conf.urls import url from django.views.decorators.csrf import csrf_exempt from education.views.rest.workshop import test1 as workshop_test1, test2 as workshop_test2, WorkshopAPI from education.views.rest.workshop_file import test2 as workshop_file_test2 from education.views.rest.discount import test2 as discount_file_test2, test1 as discount_file_test1 from education.views.rest.payment import test1 as invoice_test1, test2 as invoice_test2, WorkshopInvoiceApi, WorkshopPaymentApi from education.views.rest.discount import WorkshopDateDiscountAPI, WorkshopPersonalDiscountAPI, WorkshopRaceDiscountAPI from education.views.rest.buy_workshop import BuyAPI app_name = 'education' urlpatterns = [ # path('form/', include(([ # ], 'education'), namespace='form')), path('rest/', include(([ path('workshop/', include(([ path('test2/', workshop_test2, name='rest_workshop_test2'), path('test1/', workshop_test1, name='rest_workshop_test1'), path('<int:uuid>/', WorkshopAPI.as_view(), name='rest_workshop_put'), path('', WorkshopAPI.as_view(), name='rest_workshop'), path('buy/', include(([ path('', BuyAPI.as_view(), name='rest_workshop_buy_post'), path('<int:workshop_uuid>/<int:user_uuid>/', BuyAPI.as_view(), name='rest_workshop_buy_delete'), # path('test2/', discount_file_test2, name='rest_discount_test2'), # path('test1/', discount_file_test1, name='rest_discount_test1'), path('invoice/', include(([ path('', WorkshopInvoiceApi.as_view(), name='rest_workshop_invoice'), path('<int:uuid>/', WorkshopInvoiceApi.as_view(), name='rest_workshop_invoice_pud'), # path('test2/', discount_file_test2, name='rest_discount_test2'), # path('test1/', discount_file_test1, name='rest_discount_test1'), ], 'education'), namespace='rest_workshop_invoice')), path('payment/', include(([ path('', WorkshopPaymentApi.as_view(), name='rest_workshop_payment'), path('<int:uuid>/', WorkshopPaymentApi.as_view(), name='rest_workshop_payment_pud'), # path('test2/', discount_file_test2, name='rest_discount_test2'), # path('test1/', discount_file_test1, name='rest_discount_test1'), ], 'education'), namespace='rest_workshop_payment')), ], 'education'), namespace='rest_workshop_buy')), path('discount/', include(([ path('personal/', WorkshopPersonalDiscountAPI.as_view(), name='rest_workshop_personal_discount'), path('personal/<str:uuid>/', WorkshopPersonalDiscountAPI.as_view(), name='rest_workshop_personal_discount_pud'), path('date/', WorkshopDateDiscountAPI.as_view(), name='rest_workshop_date_discount'), path('date/<str:uuid>/', WorkshopDateDiscountAPI.as_view(), name='rest_workshop_date_discount_pud'), path('race/', WorkshopRaceDiscountAPI.as_view(), name='rest_workshop_race_discount'), path('race/<str:uuid>/', WorkshopRaceDiscountAPI.as_view(), name='rest_workshop_race_discount_pud'), # path('test2/', discount_file_test2, name='rest_discount_test2'), # path('test1/', discount_file_test1, name='rest_discount_test1'), ], 'education'), namespace='rest_workshop_discount')), ], 'education'), namespace='rest_workshops')), path('workshop_file/', include(([ path('test2/', workshop_file_test2, name='rest_workshop_file_test2'), ], 'education'), namespace='rest_workshop_files')), path('discount/', include(([ path('test2/', discount_file_test2, name='rest_discount_test2'), path('test1/', discount_file_test1, name='rest_discount_test1'), ], 'education'), namespace='rest_discount')), ], 'education'), namespace='rest')), ]
56.424658
128
0.648701
68e3d57fa5f425ddf4de5ca89deb24ea37bc3844
473
py
Python
web/servicecalls/staffservice_gets.py
vacoj/mbodjango
e9a6df563862c587e4cc2c2713ed7f8ea0a6e4e3
[ "MIT" ]
8
2015-10-27T12:38:54.000Z
2018-02-23T03:03:24.000Z
web/servicecalls/staffservice_gets.py
vacoj/mbodjango
e9a6df563862c587e4cc2c2713ed7f8ea0a6e4e3
[ "MIT" ]
3
2015-10-28T22:23:58.000Z
2016-01-13T04:05:04.000Z
web/servicecalls/staffservice_gets.py
vacoj/mbodjango
e9a6df563862c587e4cc2c2713ed7f8ea0a6e4e3
[ "MIT" ]
9
2015-09-28T17:32:17.000Z
2018-02-01T00:01:04.000Z
from helpers.mbosoap.StaffService import StaffServiceCalls def GetStaff(): stafflist = StaffServiceCalls().GetStaff(staffIds=None, staffUsername=None, staffPassword=None, siteIds=None, filters=None, sessionTypeId=None, startDateTime=None, locationId=None) return stafflist
31.533333
59
0.484144
3b8de7e8b81bdf78277eee8853733092adc13c35
4,525
py
Python
maskrcnn_benchmark/utils/comm.py
CityU-AIM-Group/NLTE
a111390bcc38bd0c759a3a9d971a7d9defce88fb
[ "MIT" ]
1
2022-03-30T14:04:55.000Z
2022-03-30T14:04:55.000Z
maskrcnn_benchmark/utils/comm.py
CityU-AIM-Group/NLTE
a111390bcc38bd0c759a3a9d971a7d9defce88fb
[ "MIT" ]
null
null
null
maskrcnn_benchmark/utils/comm.py
CityU-AIM-Group/NLTE
a111390bcc38bd0c759a3a9d971a7d9defce88fb
[ "MIT" ]
null
null
null
""" This file contains primitives for multi-gpu communication. This is useful when doing distributed training. """ import pickle import time import torch import torch.distributed as dist import operator from numbers import Number from collections import OrderedDict class ParamDict(OrderedDict): """A dictionary where the values are Tensors, meant to represent weights of a model. This subclass lets you perform arithmetic on weights directly.""" def __init__(self, *args, **kwargs): super().__init__(*args, *kwargs) def _prototype(self, other, op): if isinstance(other, Number): return ParamDict({k: op(v, other) for k, v in self.items()}) elif isinstance(other, dict): return ParamDict({k: op(self[k], other[k]) for k in self}) else: raise NotImplementedError def __add__(self, other): return self._prototype(other, operator.add) def __rmul__(self, other): return self._prototype(other, operator.mul) __mul__ = __rmul__ def __neg__(self): return ParamDict({k: -v for k, v in self.items()}) def __rsub__(self, other): # a- b := a + (-b) return self.__add__(other.__neg__()) __sub__ = __rsub__ def __truediv__(self, other): return self._prototype(other, operator.truediv) def get_world_size(): if not dist.is_available(): return 1 if not dist.is_initialized(): return 1 return dist.get_world_size() def get_rank(): if not dist.is_available(): return 0 if not dist.is_initialized(): return 0 return dist.get_rank() def is_main_process(): return get_rank() == 0 def synchronize(): """ Helper function to synchronize (barrier) among all processes when using distributed training """ if not dist.is_available(): return if not dist.is_initialized(): return world_size = dist.get_world_size() if world_size == 1: return dist.barrier() def all_gather(data): """ Run all_gather on arbitrary picklable data (not necessarily tensors) Args: data: any picklable object Returns: list[data]: list of data gathered from each rank """ world_size = get_world_size() if world_size == 1: return [data] # serialized to a Tensor buffer = pickle.dumps(data) storage = torch.ByteStorage.from_buffer(buffer) tensor = torch.ByteTensor(storage).to("cuda") # obtain Tensor size of each rank local_size = torch.IntTensor([tensor.numel()]).to("cuda") size_list = [torch.IntTensor([0]).to("cuda") for _ in range(world_size)] dist.all_gather(size_list, local_size) size_list = [int(size.item()) for size in size_list] max_size = max(size_list) # receiving Tensor from all ranks # we pad the tensor because torch all_gather does not support # gathering tensors of different shapes tensor_list = [] for _ in size_list: tensor_list.append(torch.ByteTensor(size=(max_size,)).to("cuda")) if local_size != max_size: padding = torch.ByteTensor(size=(max_size - local_size,)).to("cuda") tensor = torch.cat((tensor, padding), dim=0) dist.all_gather(tensor_list, tensor) data_list = [] for size, tensor in zip(size_list, tensor_list): buffer = tensor.cpu().numpy().tobytes()[:size] data_list.append(pickle.loads(buffer)) return data_list def reduce_dict(input_dict, average=True): """ Args: input_dict (dict): all the values will be reduced average (bool): whether to do average or sum Reduce the values in the dictionary from all processes so that process with rank 0 has the averaged results. Returns a dict with the same fields as input_dict, after reduction. """ world_size = get_world_size() if world_size < 2: return input_dict with torch.no_grad(): names = [] values = [] # sort the keys so that they are consistent across processes for k in sorted(input_dict.keys()): names.append(k) values.append(input_dict[k]) values = torch.stack(values, dim=0) dist.reduce(values, dst=0) if dist.get_rank() == 0 and average: # only main process gets accumulated, so only divide by # world_size in this case values /= world_size reduced_dict = {k: v for k, v in zip(names, values)} return reduced_dict
29.00641
84
0.647072
0e4a23289a950a7bc9fb07d096c19dd7ba8bb634
12,670
py
Python
portextract.py
byte-of-reyn/portextract
923b97d73b58f55467d8abe37f9ed00e603cbacf
[ "MIT" ]
null
null
null
portextract.py
byte-of-reyn/portextract
923b97d73b58f55467d8abe37f9ed00e603cbacf
[ "MIT" ]
null
null
null
portextract.py
byte-of-reyn/portextract
923b97d73b58f55467d8abe37f9ed00e603cbacf
[ "MIT" ]
null
null
null
""" Script used to extract L2 port configuration from provided Cisco configuration backup files """ #!/usr/bin/python import sys import os.path import re from xlsxwriter.workbook import Workbook VERSION = '0.02' #excel header list excel_head = [ 'port_desc', 'port_speed', 'port_duplex', 'port_status', 'port_mode', 'port_access_vlan', 'port_trunk_native_vlan', 'port_trunk_allow_vlan', 'port_stp_type', 'port_channel_group', 'port_mtu', 'port_bpduguard', 'port_portfast' ] #init excel strings, ready for entry def_port_vals = { excel_head[0] : 'n/a', excel_head[1] : 'n/a', excel_head[2] : 'n/a', excel_head[3] : 'n/a', excel_head[4] : 'n/a', excel_head[5] : 'n/a', excel_head[6] : 'n/a', excel_head[7] : 'n/a', excel_head[8] : 'n/a', excel_head[9] : 'n/a', excel_head[10] : '1500', excel_head[11] : 'n/a', excel_head[12] : 'n/a' } db_dev = {} #database for device interfaces, vlans, VRFs, etc. db_err = [] #contains a listing of runtime errors """ Checks for file validity on native OS """ def is_valid_file(file): valid = None if os.path.isfile(file): valid = True return valid """ Dumps config file into buffer line by line """ def buffer_file(files): buffer = {} for file in files["in_files"]: #file check if is_valid_file(file) is not None: print("Performing configuration extraction from file", file, "...") line_buffer = "" try: config_file = open(file, 'r') #extract config file content to buffer while True: line = config_file.readline() if len(line) == 0:#EOF break else: line_buffer += line buffer[file] = line_buffer config_file.close() except: print("File access error:", file) break else: print("Skipping file read for", file, ". Access error...") return buffer """ Searches array elements for string match Return Type: Tuple """ def array_string_search(str_var, arr_regex): #holds arr location of matched regex loc = 0# res = False if str_var: try: for regex in arr_regex: res = re.search((re.compile(regex)), str_var) if res: try: res = regex, res.group(2), loc except: res = regex, res.group(0), loc break loc = loc + 1 except: pass### FIX UP ERROR RETURN ### return res """ Interface extraction in preparation for parsing """ def interface_extract(file_buffer): #initial config file parse flag_int = False #denotes if currently in interface #holder for device interface details devices = {} #start/end int regex for search arr_regex = [ r'(^[Ii]nterface) (.*\d+)', r'(^[Ii]nterface) (.*\d+/*\d*/*\d*)', r'^[\s]+.*', r'^([Rr]outer) ((eigrp)*(bgp)*(ospf)*) \d+' ] #console status update print("Extracting configuration elements from provided configuration files...") #outer loop for each provided buffer/config file for filename, buffer in file_buffer.items(): #reset temporary variables interfaces = {} sub_cmd = [] curr_int = '' #Split solid config file based on newline returns lines = buffer.split('\n') #inner loop to parse buffer lines for line in lines: #search line for commands of interest str_match = array_string_search(line, arr_regex) #interface sub-command parse if flag_int: #current config line matches regex if str_match: #line beginning with 'interface' found if (str_match[2] == 0) or (str_match[2] == 1): sub_cmd = None curr_int = str_match[1].strip() interfaces[curr_int] = [] #sub cmd found under interface elif str_match[2] == 2: #sub-cmd found if sub_cmd: interfaces[curr_int].append(str_match[1]) else: interfaces[curr_int].append(str_match[1]) #router config found, drop out of loop elif str_match[2] == 4: flag_int = False else:#end of int found if sub_cmd: interfaces[curr_int] = sub_cmd flag_int = False #no regex match - end of interface configuration if not str_match: if sub_cmd: interfaces[curr_int].append(sub_cmd) sub_cmd = None flag_int = False #search for next interface else: if str_match: if str_match[0] == arr_regex[0]:#new interface found curr_int = str_match[1].strip() interfaces[curr_int] = [] flag_int = True #router config found, drop out of loop elif str_match[2] == 4:#line beginning with 'interface' found break #place interfaces into device dictionary devices[filename] = interfaces #return parsed interface buffer return devices """ Interface extraction in preparation for parsing. Searches through defined dictionary of regexp for excel column allocation Uses dic key as excel headers """ def interface_parse(devices): #init temp holders parsed_device = {} #initialize regex patterns arr_regex = [ r'(^\s+description )(.*)', r'(^\s+speed )(.*)', r'(^\s+duplex )(.*)', r'(^\s+)([no]*\s+shutdown)', r'(^\s+switchport mode )(.*)', r'(^\s+switchport access vlan )(.*)', r'(^\s+switchport trunk native vlan )(.*)', r'(^\s+switchport trunk allowed vlan )(\d+.*)', r'(^\s+spanning-tree port type )(.*)', r'(^\s+channel-group )(.*)', r'(^\s+mtu )(\d+)', r'(^\s+spanning-tree bpduguard)(enable)\s+', r'(^\s+spanning-tree )(portfast)\s+', ] #console status update print("Parsing extracted interface items...") #outside regex to match additional VLANs permitted over trunk trunk_allowed_add = r'(^\s+switchport trunk allowed vlan add )(\d+.*)' #outer loop to iterate through each device for key, port_arr in devices.items(): #temporary holder for stripped configuration elements interfaces = {} #inner loop to iterate through the device interface array for port in port_arr: #instantiate dictionary for this port interfaces[port] = {} for val in def_port_vals: interfaces[port][val] = "n/a" #check for valid commands and insert into port dictionary for item in port_arr[port]: cmd_match = array_string_search(item, arr_regex) #pass regex_arr to search function #standard switchport configuration item identified if cmd_match: interfaces[port][excel_head[cmd_match[2]]] = cmd_match[1] #check for 'switchport trunk allowed add' line item res = re.search((re.compile(trunk_allowed_add)), item) #append allowed VLANs onto previous cell string if res: vlan = interfaces[port][excel_head[7]] vlan = (vlan + "," + res.group(2)) interfaces[port][excel_head[7]] = vlan #add cleaned output to dictionary parsed_device[key] = interfaces #return parsed dictionary return parsed_device """ Check for minimum init args passed from cmd line """ def argument_check(): in_flag = False out_flag = False files = { "in_files" : [], "out_file" : [] } if len(sys.argv) > 2: for arg in sys.argv: #check for input start if arg == '-i': in_flag = True out_flag = False continue #set for output start if arg == '-o': out_flag = True in_flag = False continue #check input file validity if in_flag and arg != '-i': if os.path.exists(arg): files["in_files"].append(arg) else: print("Input file", arg, "does not exist. Skipping file...") continue if out_flag and arg != '-o': files["out_file"].append(arg) continue return files """ Output sorted port information to .xlsx file """ def xlsx_output(devices, out_file_name): try: #create the new file/worksheet workbook = Workbook(out_file_name, {'constant_memory':True}) #console status update print("Writing output to", out_file_name, "...") #outer loop to iterate through devices for device, interfaces in devices.items(): #init vars for temp location in worksheet xls_col = 0 xls_row = 0 #new worksheet per device config file worksheet = workbook.add_worksheet(device) #print("\n\n\nDEVICE:",device) #create headers in current worksheet worksheet.write_string(xls_row, xls_col, ("Interfaces")) for header in excel_head: xls_col = xls_col + 1 worksheet.write_string(xls_row, xls_col, (header.strip())) xls_row = 1 #inner loop to iterate through interfaces and their configuration elements #fill columns with port data for port, children in interfaces.items(): xls_col = 0 worksheet.write_string(xls_row, xls_col, (port.strip())) #print("PORT:",port.strip()) #insert string into current cell for header in excel_head: xls_col = xls_col + 1 worksheet.write_string(xls_row, xls_col, children[header]) #move to next row xls_row = xls_row + 1 #close the workbook workbook.close() #console status update print("Process complete!") except: print("Error: Workbook updates failed.") print("Check if your destination excel file is open at the moment...") sys.exit(1) #main function def main(): #verify provided arguments files = argument_check() if files: if len(files["in_files"]) < 0: print("Error: Input file/s not provided.") print("python portextract.py -i input -o output") sys.exit(1) if len(files["out_file"]) > 0: out_file_name = files["out_file"][0] else: print("Error: Output file not provided.") print("python portextract.py -i input -o output") sys.exit(1) else: print("python portextract.py -i input -o output") sys.exit(1) #buffer file to temp var file_buff = buffer_file(files) if file_buff: #interface extraction and parse for excel output db_dev["interfaces"] = interface_extract(file_buff) #sort interfaces for excel input db_dev["interfaces_xls"] = interface_parse(db_dev["interfaces"]) #output file to .xlsx xlsx_output(db_dev["interfaces_xls"], out_file_name) else: #empty file buffer print("Empty file buffer. Please check your provided configuration files...") sys.exit(1) #call main method if __name__ == '__main__': main()
32.570694
100
0.522889
a21715d49e787dac76567c089cfef33369227f86
10,333
py
Python
networks/utils.py
xupei0610/PFPN
7ad049f84d1cc03200bb6cea383d5c00721f9ac4
[ "MIT" ]
9
2020-12-07T02:32:18.000Z
2022-02-07T02:38:54.000Z
networks/utils.py
xupei0610/PFPN
7ad049f84d1cc03200bb6cea383d5c00721f9ac4
[ "MIT" ]
null
null
null
networks/utils.py
xupei0610/PFPN
7ad049f84d1cc03200bb6cea383d5c00721f9ac4
[ "MIT" ]
1
2022-01-01T01:45:01.000Z
2022-01-01T01:45:01.000Z
from .ops import * import numpy as np import tensorflow_probability as tfp def discount(val, factor, boostrap_val, normalize=False): result = [None]*len(val) v_ = boostrap_val for t in reversed(range(len(val))): v_ = val[t] + factor * v_ result[t] = v_ if normalize: result = np.subtract(result, np.mean(result)) result = np.divide(result, np.std(result)+1e-6) return list(result[::-1]) return result def build_conv_fc_net(trainable, last_layer, net_shape, weight_initializer, activator, last_activator, init_name_index=1): for i in range(len(net_shape)): if not hasattr(net_shape[i], "__len__") or len(net_shape[i]) == 1: index = 2 if last_layer.shape[1].value is None else 1 last_layer = fc_layer( "fc{}".format(i+init_name_index), last_layer, last_layer.shape[index:].num_elements(), net_shape[i], weight_initializer=weight_initializer, activator=last_activator if i+1 == len(net_shape) else activator, trainable=trainable ) else: assert(len(net_shape[i]) == 4) last_layer = conv_layer( "conv{}".format(i+init_name_index), last_layer, # in channel (NHWC), out channel last_layer.shape[-1], net_shape[i][0], # kernel size, stride size, padding type net_shape[i][1], net_shape[i][2], net_shape[i][3], weight_initializer=weight_initializer, activator=last_activator if i+1 == len(net_shape) else activator, trainable=trainable ) return last_layer def online_normalizer(trainable, shape, moving_average=False): mean = tf.get_variable("mean", shape=shape, dtype=tf.float32, trainable=False, initializer=tf.zeros_initializer()) std = tf.get_variable("std", shape=shape, dtype=tf.float32, trainable=False, initializer=tf.ones_initializer()) if not moving_average: count = tf.get_variable("counter", shape=(), dtype=tf.float32, trainable=False, initializer=tf.constant_initializer(1e-4)) if trainable: if moving_average: def update_op(X): decay = tf.constant(0.9999, dtype=tf.float32) s = tf.cast(tf.train.get_or_create_global_step(), dtype=tf.float32) decay = tf.minimum(decay, (1+s)/(10+s)) m, v = tf.nn.moments(X, axes=[0]) new_mean = decay*mean+(1-decay)*m new_std = tf.maximum(1e-6, decay*std+(1-decay)*tf.sqrt(v)) return [(mean, new_mean), (std, new_std)] else: def update_op(X): batch_mean, batch_var = tf.nn.moments(X, axes=[0]) batch_count = tf.cast(tf.shape(X)[0], count.dtype) delta = batch_mean - mean new_count = count + batch_count m_a = tf.math.square(std) * count m_b = batch_var * batch_count M2 = m_a + m_b + tf.math.square(delta) * count * batch_count / new_count new_std = tf.maximum(1e-6, tf.sqrt(M2 / new_count)) new_mean = mean + delta * batch_count / new_count return [(mean, new_mean), (std, new_std), (count, new_count)] return mean, std, update_op return mean, std, None class MixtureGaussianDistribution(object): def __init__(self, logits, loc, scale, normalize_output): self._identical = True if hasattr(logits, "__len__"): assert(len(logits) == len(loc) and len(loc) == len(scale)) self._identical = False self.logits, self.loc, self.scale = logits, loc, scale self.normalize_output = normalize_output cont_dist = tf.distributions.Normal if self._identical: self.dis_dist_ = tf.distributions.Categorical(logits=logits) self.dis_dist = tfp.distributions.RelaxedOneHotCategorical(1.0, logits=logits) self.dis_dist.probs = self.dis_dist.distribution.probs self.dis_dist.logits = self.dis_dist.distribution.logits self.sample_dist = cont_dist(loc, scale, allow_nan_stats=False) else: raise NotImplementedError def prob(self, value, name="prob"): with tf.name_scope(name): p = tf.exp(self.log_prob(value)) return p def log_prob(self, value, name="log_prob"): @tf.custom_gradient def foo(p): def grad(dy): # the movement of particles may cause target prob to be 0 (log prob to -inf) # for a proper choice of hyperparameters, this barely happens return tf.where(tf.logical_or(tf.is_nan(dy), tf.is_inf(dy)), tf.zeros_like(dy), dy ) return p, grad if self._identical: if self.normalize_output: if hasattr(value, "__len__"): value, value_before_tanh = value else: value_before_tanh = tf.math.atanh(value) else: value_before_tanh = value p = self.sample_dist.prob(tf.expand_dims(value_before_tanh, -1)) p = tf.reduce_sum(self.dis_dist.probs*p, axis=-1) p = foo(p) lp = tf.log(p) if self.normalize_output: lp -= 2*(np.log(2) - value_before_tanh - tf.nn.softplus(-2*value_before_tanh)) lp = tf.reduce_sum(lp, axis=-1) else: lp = [] for dis, cont, a in zip(self.dis_dist.policy, self.sample_dist, value): p = cont.prob(a) p = dis.probs*p p = tf.reduce_sum(p, axis=1) p = foo(p) lp.append(tf.log(p)) lp = tf.add_n(lp) return lp def entropy(self, name="entropy"): v = self.dis_dist.logits - tf.reduce_max(self.dis_dist.logits, axis=-1, keepdims=True) s0 = tf.exp(v) s1 = tf.reduce_sum(s0, axis=-1, keepdims=True) p = s0 / s1 return tf.reduce_sum(p * (tf.log(s1) - v), axis=-1) def sample(self, n): assert(n == 1) if self._identical: if self.normalize_output: # rsample d = self.dis_dist.sample(n) w = tf.reshape(d, [-1]+list(self.logits.shape[1:])) p = self.sample_dist.sample(tf.shape(w)[0]) self.dis_action = tf.argmax(w, axis=-1) m = tf.one_hot(self.dis_action, w.shape[-1], dtype=w.dtype) if self.normalize_output: tanh_p = tf.nn.tanh(p) @tf.custom_gradient def mask2(w, p): y = m*p tanh_t = tf.reduce_sum(m*tanh_p, axis=-1, keepdims=True) def grad(dy): gap = (tanh_p-tanh_t)/tf.maximum(1e-6, 1-tanh_t**2) return gap*dy, m*dy return y, grad s_ = mask2(w, p) s_ = tf.reduce_sum(s_, -1) s_ = tf.reshape(s_, [n, -1]+list(self.logits.shape[1:-1])) p = tanh_p @tf.custom_gradient def mask(w, p): y = m*p t = tf.reduce_sum(y, axis=-1, keepdims=True) def grad(dy): gap = p-t return gap*dy, m*dy return y, grad sample = mask(w, p) sample = tf.reduce_sum(sample, -1) sample = tf.reshape(sample, [n, -1]+list(self.logits.shape[1:-1])) else: d = self.dis_dist_.sample(n) self.dis_action = w = tf.reshape(d, [-1]+list(self.logits.shape[1:-1])) p = self.sample_dist.sample(tf.shape(w)[0]) mask = tf.one_hot(self.dis_action, self.logits.shape[-1], dtype=p.dtype) sample = tf.reduce_sum(mask*p, -1) sample = tf.reshape(sample, [n, -1]+list(self.logits.shape[1:-1])) return sample else: raise NotImplementedError if self.normalize_output: return sample, s_ else: return sample def mean(self): if not hasattr(self, "_determinstic_action"): if self._identical: if self.normalize_output: # rsample t = 1. w = tf.nn.softmax(self.logits / t) p = tf.expand_dims(self.sample_dist.mean(), 0) self.dis_action = tf.argmax(w, axis=-1) m = tf.one_hot(self.dis_action, w.shape[-1], dtype=w.dtype) if self.normalize_output: p = tf.nn.tanh(p) @tf.custom_gradient def mask(w, p): y = m*p t = tf.reduce_sum(y, axis=-1, keepdims=True) def grad(dy): gap = p-t return gap*dy, tf.reduce_sum(m*dy, 0, keepdims=True) return y, grad cont_action = tf.reduce_sum(mask(w, p), -1) else: dis_action = tf.argmax(self.logits, axis=-1) dis_action = tf.transpose(dis_action, [1, 0]) cont_action = tf.batch_gather(self.loc, dis_action) cont_action = tf.transpose(cont_action, [1, 0]) else: raise NotImplementedError dis_action = [tf.argmax(p.logits, axis=1) for p in self.policy] cont_action = [] for d, a in zip(self.sample_dist, dis_action): a = tf.gather(d.loc, a) cont_action.append(a) cont_action = tf.stack(cont_action, axis=1) self._determinstic_action = cont_action return self._determinstic_action
43.599156
94
0.517275
4c3c3864553c6b28605056cd44403b6b95d5533a
1,187
py
Python
generate_release_docs.py
madhuri7112/Singularity
11a533ecf2baaa1a4a74404b3de435e8d5b7d1a3
[ "Apache-2.0" ]
692
2015-01-02T02:30:23.000Z
2022-03-18T08:16:05.000Z
generate_release_docs.py
madhuri7112/Singularity
11a533ecf2baaa1a4a74404b3de435e8d5b7d1a3
[ "Apache-2.0" ]
1,399
2015-01-01T10:52:44.000Z
2022-03-17T18:27:23.000Z
generate_release_docs.py
mikebell90/Singularity
290d647ee3cd5ddfbf381d09d22fdce1896e3388
[ "Apache-2.0" ]
280
2015-01-02T02:30:33.000Z
2022-03-03T21:08:33.000Z
import argparse import requests def base_text(release): return """## Changes in `{0}` Check out the [{0} milestone](https://github.com/HubSpot/Singularity/issues?q=milestone%3A%{0}+is%3Aclosed) to see new features / bugfixes in detail. ### New Features ### Improvements ### Bug Fixes ### Documentation """.format(release) def main(args): pulls = [p for p in requests.get('https://api.github.com/repos/HubSpot/Singularity/pulls?state=closed&per_page=200&sort=updated&direction=desc').json() if 'milestone' in p and p['milestone'] and args.release.encode('utf-8') == p['milestone']['title']] print 'Found {0} pull requests'.format(len(pulls)) message = base_text(args.release) for p in pulls: message = message + '- [{0}]({1}) - {2}'.format(p['number'], p['html_url'], p['title']) + '\n' outfile = open('Docs/releases/{0}.md'.format(args.release), 'w') outfile.write(message) outfile.close() if __name__ == '__main__': parser = argparse.ArgumentParser(description='Generate release docs from milestone') parser.add_argument('-r', '--release', dest='release', help='release version') args = parser.parse_args() main(args)
32.081081
255
0.671441
b606e1d5ab0004be323e09e3605707561f1dc50e
16,535
py
Python
ForVictoria.py
njhovorka/mini-rpg
c3af63839925a873302b2fbe89b692c29f7fea8f
[ "MIT" ]
null
null
null
ForVictoria.py
njhovorka/mini-rpg
c3af63839925a873302b2fbe89b692c29f7fea8f
[ "MIT" ]
null
null
null
ForVictoria.py
njhovorka/mini-rpg
c3af63839925a873302b2fbe89b692c29f7fea8f
[ "MIT" ]
null
null
null
import pygame import random pygame.init() win = pygame.display.set_mode((500,480)) pygame.display.set_caption('For Victoria') idle_list = [[pygame.image.load('images/heavy_idle1.png'), pygame.image.load('images/heavy_idle1.png'), pygame.image.load('images/heavy_idle2.png'), pygame.image.load('images/heavy_idle2.png')] , \ [pygame.image.load('images/captain_idle1.png'), pygame.image.load('images/captain_idle1.png'), pygame.image.load('images/captain_idle2.png'), pygame.image.load('images/captain_idle2.png')], \ [pygame.image.load('images/engineer_idle1.png'), pygame.image.load('images/engineer_idle1.png'), pygame.image.load('images/engineer_idle2.png'), pygame.image.load('images/engineer_idle2.png')], \ [pygame.image.load('images/bot_idle1.png'), pygame.image.load('images/bot_idle1.png'), pygame.image.load('images/bot_idle2.png'), pygame.image.load('images/bot_idle2.png')], \ [pygame.image.load('images/rifler_idle1.png'), pygame.image.load('images/rifler_idle1.png'), pygame.image.load('rimages/ifler_idle2.png'), pygame.image.load('images/rifler_idle2.png')], \ [pygame.image.load('images/alchemist_idle1.png'), pygame.image.load('images/alchemist_idle1.png'), pygame.image.load('images/alchemist_idle2.png'), pygame.image.load('images/alchemist_idle2.png')]] firing_list = [[pygame.image.load('images/heavy_firing1.png'), pygame.image.load('images/heavy_firing2.png'), pygame.image.load('images/heavy_firing1.png'), pygame.image.load('images/heavy_firing2.png')], \ [pygame.image.load('images/captain_firing1.png'), pygame.image.load('images/captain_firing2.png'), pygame.image.load('images/captain_firing1.png'), pygame.image.load('images/captain_firing2.png')], \ [pygame.image.load('images/engineer_firing1.png'), pygame.image.load('images/engineer_firing2.png'), pygame.image.load('images/engineer_firing1.png'), pygame.image.load('images/engineer_firing2.png')], \ [pygame.image.load('images/bot_firing1.png'), pygame.image.load('images/bot_firing2.png'), pygame.image.load('images/bot_firing1.png'), pygame.image.load('images/bot_firing2.png')],\ [pygame.image.load('images/rifler_firing1.png'), pygame.image.load('images/rifler_firing1.png'), pygame.image.load('images/rifler_firing2.png'), pygame.image.load('images/rifler_firing1.png')], \ [pygame.image.load('images/alchemist_firing1.png'), pygame.image.load('images/alchemist_firing2.png'), pygame.image.load('images/alchemist_firing1.png'), pygame.image.load('images/alchemist_firing2.png')]] action_list = ["Pick Action: 'a', 'h', 's'", "Pick Target: 1-4"] hp_list = [20, 20, 20, 20] enemy_idle = [] enemy_firing = [] action_count = 0 bg = pygame.image.load('images/background.png') fighter_pick = pygame.image.load('images/fighter_pick.png') invalid_pic = pygame.image.load('images/invalid_pic.png') clock = pygame.time.Clock() tick_count = 0 invalid = False combat_page = False reinforcement_text = False fighter_list = [] fighters = [] target_list = [] y_lineup = 30 x_lineup = 30 setup = True run = True enemy_setup = False combat_buffer = False turn_pick = False turn_pick_buffer = False target_pick = False combat =False delay = 0 turn_attack = False turn_heal = False turn_special = False hp_list = [] bot_count = 4 death_delay = [False, False, False, False] death_count = 0 rifler_buff = False heavy_buff = False alchemist_buff = False captain_buff = False engineer_buff = False bot_choice = ['a', 'd', 'b'] class fighter(object): def __init__(self, x, y, width, height, name, idle_index, firing_index): self.x = x self.y = y self.name = name self.width = width self.height = height self.idle = True self.firing = False self.tick_count = 0 self.idle_index = idle_index self.firing_index = firing_index self.hp = 10 self.dead = False self.defend = False self.delay = False self.rifler_buff = False self.heavy_buff = False self.alchemist_buff = False self.captain_buff = False self.engineer_buff = False def draw(self, win): if self.tick_count == 3: if self.idle: win.blit(idle_list[self.idle_index][self.tick_count], (self.x, self.y)) elif self.firing: win.blit(firing_list[self.firing_index][self.tick_count], (self.x, self.y)) self.tick_count = 0 elif self.idle: win.blit(idle_list[self.idle_index][self.tick_count], (self.x, self.y)) self.tick_count += 1 elif self.firing: win.blit(firing_list[self.firing_index][self.tick_count], (self.x, self.y)) self.tick_count += 1 if self.captain_buff: pygame.draw.rect(win, (255, 0, 0), (self.x - 5, self.y + 40, 4, 4)) if self.rifler_buff: pygame.draw.rect(win, (0, 0, 255), (self.x - 5, self.y + 45, 4, 4)) if self.heavy_buff: pygame.draw.rect(win, (0, 255, 0), (self.x - 5, self.y + 50, 4, 4)) if self.engineer_buff: pygame.draw.rect(win, (255, 255, 0), (self.x - 5, self.y + 55, 4, 4)) if self.alchemist_buff: pygame.draw.rect(win, (255, 0, 255), (self.x - 5, self.y + 60, 4, 4)) def heal(self, target): healed_person = (fighters[target - 1]) healed_person_2 = (fighters[random.randint(0, 3)]) healed_person.hp += 1 if self.name == 'alchemist': healed_person.hp += 1 if self.captain_buff: heal = [10] for x in fighters: try: if x.hp < heal[0].hp: heal[0] = x except: heal[0] = 10 healed_person_2.hp = heal[0] if self.name == 'alchemist': healed_person_2.hp += 1 self.captain_buff = False return def attack(self, target): if self.idle_index == 3: attacked_person = (fighters[target - 1]) attacked_person.hp -= 1 if attacked_person.rifler_buff: self.hp -= 2 attacked_person.rifler_buff = False if attacked_person.heavy_buff: attacked_person.hp += 1 attacked_person.heavy_buff = False elif self.idle_index != 3: attacked_person = (fighters[target + 3]) attacked_person.hp -= 1 if self.engineer_buff: attacked_person.hp -= 2 self.engineer_buff = False if self.idle_index == 4 and self.rifler_buff: attacked_person.hp -= 1 self.rifler_buff = False if self.captain_buff: attacked_person = (fighters[random.randint(0,3)]) attacked_person.hp -= 1 self.captain_buff = False return class bot(fighter): def __init__(self, x, y, width, height, name, idle_index, firing_index): fighter.__init__(self, x, y, width, height, name, idle_index, firing_index) def __repr__(self): return(self.name) def buff(self, target): return class alchemist(fighter): def __init__(self, x, y, width, height, name, idle_index, firing_index): fighter.__init__(self, x, y, width, height, name, idle_index, firing_index) def __repr__(self): return(self.name) def special(self, target): fighters[target - 1].alchemist_buff = True return class heavy(fighter): def __init__(self, x, y, width, height, name, idle_index, firing_index): fighter.__init__(self, x, y, width, height, name, idle_index, firing_index) def __repr__(self): return(self.name) def special(self, target): fighters[target - 1].heavy_buff = True return class captain(fighter): def __init__(self, x, y, width, height, name, idle_index, firing_index): fighter.__init__(self, x, y, width, height, name, idle_index, firing_index) def __repr__(self): return(self.name) def special(self, target): fighters[target - 1].captain_buff = True return class engineer(fighter): def __init__(self, x, y, width, height, name, idle_index, firing_index): fighter.__init__(self, x, y, width, height, name, idle_index, firing_index) def __repr__(self): return(self.name) def special(self, target): fighters[target - 1].engineer_buff = True return class rifler(fighter): def __init__(self, x, y, width, height, name, idle_index, firing_index): fighter.__init__(self, x, y, width, height, name, idle_index, firing_index) def __repr__(self): return(self.name) def special(self, target): fighters[target - 1].rifler_buff = True return enemy_list = [bot(385, 25, 96, 96, 'Bot No. 1', 3, 3), bot(385, 130, 96, 96, 'Bot No. 2', 3, 3), \ bot(385, 240, 96, 96, 'Bot No. 3', 3, 3), bot(385, 340, 96, 96, 'Bot No. 4', 3, 3)] def drawWindow(): global tick_count win.blit(bg, (0,0)) if not setup: for x in fighters: if x.hp > 0 and (not x.delay): x.draw(win) if setup: win.blit(fighter_pick, (130, 450)) if reinforcement_text: text = font.render('reinforcement: Bot No. ' + str(bot_count), 1, (255,255,255)) win.blit(text, (125,15)) if turn_pick or target_pick: turn_text = font.render(action_list[action_count], 1, (255,255,255)) win.blit(turn_text, (125,450)) hp_x = 10 hp_y = 45 enemy_x = 475 if len(fighters) >= 4: hp_list = [fighters[0].hp, fighters[1].hp, fighters[2].hp, fighters[3].hp] for k in hp_list: text = font.render(str(k) , 1, (0,0,0)) win.blit(text, (hp_x, hp_y)) hp_y += 105 hp_y = 45 for k in fighters: if k.idle_index == 3: enemy_text = font.render(str(k.hp) , 1, (0,0,0)) win.blit(enemy_text, (enemy_x, hp_y)) hp_y += 105 pygame.display.update() #Main Loop-------------------------------------------------- font = pygame.font.SysFont('comicsans', 30, True) while run: keys = pygame.key.get_pressed() if setup: invalid = False if keys[pygame.K_c]: fighter_list.append('c') if keys[pygame.K_h]: fighter_list.append('h') if keys[pygame.K_e]: fighter_list.append('e') if keys[pygame.K_r]: fighter_list.append('r') if keys[pygame.K_a]: fighter_list.append('a') if len(fighter_list) == 4: turn_pick_buffer = True setup = False for x in fighter_list: if x == 'h': new = heavy(x_lineup, y_lineup, 96, 96, 'heavy', 0, 0) fighters.append(new) if x == 'a': new = alchemist(x_lineup, y_lineup, 96, 96, 'alchemist', 5, 5) fighters.append(new) if x == 'r': new = rifler(x_lineup, y_lineup, 96, 96, 'rifler', 4, 4) fighters.append(new) if x == 'e': new = engineer(x_lineup, y_lineup, 96, 96, 'engineer', 2, 2) fighters.append(new) if x == 'c': new = captain(x_lineup, y_lineup, 96, 96, 'captain', 1, 1) fighters.append(new) y_lineup += 105 for x in enemy_list: fighters.append(x) x.hp = 8 if combat: for x in fighters: x.idle = False x.firing = True if turn_attack and x.idle_index == 2: x.idle = True x.firing = False delay += 1 if delay == 10: for k in fighters: if k.idle_index == 3 and not k.delay: choice = bot_choice[random.randint(0,2)] if choice == 'd': k.defend = True if choice == 'a': k.attack(random.randint (1,4)) if choice == 'b': k.buff(random.randint(1,4)) #automate bot! if turn_attack: for x in fighters: if x.idle_index != 3 and x.idle_index != 2: x.attack(target_list[0]) if x.idle_index == 0: x.attack(target_list[0]) elif x.idle_index == 2 and x.captain_buff: x.attack(target_list[0]) if turn_heal: for x in fighters: if x.idle_index != 0 and x.idle_index != 3: x.heal(target_list[0]) elif x.idle_index == 0: x.heal(fighters.index(x) + 1) if x.hp > 10: x.hp = 10 for x in fighters: if x.hp > 10: x.hp = 10 if turn_special: for k in fighters: if k.idle_index != 3: k.special(target_list[0]) if k.alchemist_buff: valid = False while not valid: index = random.randint(0,3) if index != target_list: valid = True k.special(index) alchemist_buff = False for k in fighters: if k.delay: k.delay = False if k.hp <= 0: if k.idle_index == 3: bot_count += 1 new_bot = bot(k.x, k.y, 96, 96, ('Bot No: ' + str(bot_count)), 3, 3) fighters[fighters.index(k)] = new_bot new_bot.hp = 4 + bot_count #new_bot.hp = 8 for not scaling new_bot.tick_count = fighters[0].tick_count reinforcement_text = True new_bot.delay = True else: del(fighters[fighters.index(k)]) k.idle = True k.firing = False target_list = [] combat = False turn_attack = False turn_heal = False turn_special = False turn_pick = True delay = 0 if target_pick: action_count = 1 if keys[pygame.K_1]: target_list.append(1) if keys[pygame.K_2]: target_list.append(2) if keys[pygame.K_3]: target_list.append(3) if keys[pygame.K_4]: target_list.append(4) if len(target_list) == 1: combat = True target_pick = False if turn_pick: action_count = 0 if keys[pygame.K_a]: turn_pick = False turn_attack = True target_pick = True if keys[pygame.K_h]: turn_pick = False turn_heal = True target_pick = True if keys[pygame.K_s]: turn_pick = False turn_special = True target_pick = True if turn_pick_buffer: turn_pick = True turn_pick_buffer = False tick_count += 1 clock.tick(4) for event in pygame.event.get(): if event.type == pygame.QUIT: run = False main_menu = True drawWindow() pygame.quit()
34.519833
220
0.526822
6d37c28ba06a4c472baf21f58569c13385c5432b
7,220
py
Python
neutron/common/rpc.py
glove747/liberty-neutron
35a4c85e781d10da4521565c3a367e4ecb50739d
[ "Apache-2.0" ]
null
null
null
neutron/common/rpc.py
glove747/liberty-neutron
35a4c85e781d10da4521565c3a367e4ecb50739d
[ "Apache-2.0" ]
null
null
null
neutron/common/rpc.py
glove747/liberty-neutron
35a4c85e781d10da4521565c3a367e4ecb50739d
[ "Apache-2.0" ]
null
null
null
# Copyright (c) 2012 OpenStack Foundation. # Copyright (c) 2014 Red Hat, Inc. # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from oslo_config import cfg from oslo_log import log as logging import oslo_messaging from oslo_messaging import serializer as om_serializer from oslo_service import service from neutron.common import exceptions from neutron import context LOG = logging.getLogger(__name__) TRANSPORT = None NOTIFIER = None ALLOWED_EXMODS = [ exceptions.__name__, ] EXTRA_EXMODS = [] TRANSPORT_ALIASES = { 'neutron.openstack.common.rpc.impl_fake': 'fake', 'neutron.openstack.common.rpc.impl_qpid': 'qpid', 'neutron.openstack.common.rpc.impl_kombu': 'rabbit', 'neutron.openstack.common.rpc.impl_zmq': 'zmq', 'neutron.rpc.impl_fake': 'fake', 'neutron.rpc.impl_qpid': 'qpid', 'neutron.rpc.impl_kombu': 'rabbit', 'neutron.rpc.impl_zmq': 'zmq', } # NOTE(salv-orlando): I am afraid this is a global variable. While not ideal, # they're however widely used throughout the code base. It should be set to # true if the RPC server is not running in the current process space. This # will prevent get_connection from creating connections to the AMQP server RPC_DISABLED = False def init(conf): global TRANSPORT, NOTIFIER exmods = get_allowed_exmods() TRANSPORT = oslo_messaging.get_transport(conf, allowed_remote_exmods=exmods, aliases=TRANSPORT_ALIASES) serializer = RequestContextSerializer() NOTIFIER = oslo_messaging.Notifier(TRANSPORT, serializer=serializer) def cleanup(): global TRANSPORT, NOTIFIER assert TRANSPORT is not None assert NOTIFIER is not None TRANSPORT.cleanup() TRANSPORT = NOTIFIER = None def add_extra_exmods(*args): EXTRA_EXMODS.extend(args) def clear_extra_exmods(): del EXTRA_EXMODS[:] def get_allowed_exmods(): return ALLOWED_EXMODS + EXTRA_EXMODS def get_client(target, version_cap=None, serializer=None): assert TRANSPORT is not None serializer = RequestContextSerializer(serializer) return oslo_messaging.RPCClient(TRANSPORT, target, version_cap=version_cap, serializer=serializer) def get_server(target, endpoints, serializer=None): assert TRANSPORT is not None serializer = RequestContextSerializer(serializer) return oslo_messaging.get_rpc_server(TRANSPORT, target, endpoints, 'eventlet', serializer) def get_notifier(service=None, host=None, publisher_id=None): assert NOTIFIER is not None if not publisher_id: publisher_id = "%s.%s" % (service, host or cfg.CONF.host) return NOTIFIER.prepare(publisher_id=publisher_id) class RequestContextSerializer(om_serializer.Serializer): """This serializer is used to convert RPC common context into Neutron Context. """ def __init__(self, base=None): super(RequestContextSerializer, self).__init__() self._base = base def serialize_entity(self, ctxt, entity): if not self._base: return entity return self._base.serialize_entity(ctxt, entity) def deserialize_entity(self, ctxt, entity): if not self._base: return entity return self._base.deserialize_entity(ctxt, entity) def serialize_context(self, ctxt): return ctxt.to_dict() def deserialize_context(self, ctxt): rpc_ctxt_dict = ctxt.copy() user_id = rpc_ctxt_dict.pop('user_id', None) if not user_id: user_id = rpc_ctxt_dict.pop('user', None) tenant_id = rpc_ctxt_dict.pop('tenant_id', None) if not tenant_id: tenant_id = rpc_ctxt_dict.pop('project_id', None) return context.Context(user_id, tenant_id, **rpc_ctxt_dict) class Service(service.Service): """Service object for binaries running on hosts. A service enables rpc by listening to queues based on topic and host. """ def __init__(self, host, topic, manager=None, serializer=None): super(Service, self).__init__() self.host = host self.topic = topic self.serializer = serializer if manager is None: self.manager = self else: self.manager = manager def start(self): super(Service, self).start() self.conn = create_connection(new=True) LOG.debug("Creating Consumer connection for Service %s", self.topic) endpoints = [self.manager] self.conn.create_consumer(self.topic, endpoints) # Hook to allow the manager to do other initializations after # the rpc connection is created. if callable(getattr(self.manager, 'initialize_service_hook', None)): self.manager.initialize_service_hook(self) # Consume from all consumers in threads self.conn.consume_in_threads() def stop(self): # Try to shut the connection down, but if we get any sort of # errors, go ahead and ignore them.. as we're shutting down anyway try: self.conn.close() except Exception: pass super(Service, self).stop() class Connection(object): def __init__(self): super(Connection, self).__init__() self.servers = [] def create_consumer(self, topic, endpoints, fanout=False): target = oslo_messaging.Target( topic=topic, server=cfg.CONF.host, fanout=fanout) server = get_server(target, endpoints) self.servers.append(server) def consume_in_threads(self): for server in self.servers: server.start() return self.servers def close(self): for server in self.servers: server.stop() for server in self.servers: server.wait() class VoidConnection(object): def create_consumer(self, topic, endpoints, fanout=False): pass def consume_in_threads(self): pass def close(self): pass # functions def create_connection(new=True): # NOTE(salv-orlando): This is a clever interpretation of the factory design # patter aimed at preventing plugins from initializing RPC servers upon # initialization when they are running in the REST over HTTP API server. # The educated reader will perfectly be able that this a fairly dirty hack # to avoid having to change the initialization process of every plugin. if RPC_DISABLED: return VoidConnection() return Connection()
31.12069
79
0.669114
4a87e4400116e42a0e3618d5d7323e645ed4e58a
772
py
Python
parser/fase2/team08/Tytus_SQLPARSER_G8/Instrucciones/FunctionMathematical/TrimScale.py
webdev188/tytus
847071edb17b218f51bb969d335a8ec093d13f94
[ "MIT" ]
null
null
null
parser/fase2/team08/Tytus_SQLPARSER_G8/Instrucciones/FunctionMathematical/TrimScale.py
webdev188/tytus
847071edb17b218f51bb969d335a8ec093d13f94
[ "MIT" ]
null
null
null
parser/fase2/team08/Tytus_SQLPARSER_G8/Instrucciones/FunctionMathematical/TrimScale.py
webdev188/tytus
847071edb17b218f51bb969d335a8ec093d13f94
[ "MIT" ]
4
2020-12-19T17:12:13.000Z
2021-01-07T20:29:53.000Z
import math from Instrucciones.TablaSimbolos.Instruccion import Instruccion class TrimScale(Instruccion): def __init__(self, valor, tipo, strGram, linea, columna): Instruccion.__init__(self,tipo,linea,columna, strGram) self.valor = valor def ejecutar(self, tabla, arbol): super().ejecutar(tabla,arbol) arbol.consola.append('Función en proceso...') def analizar(self, tabla, arbol): pass def traducir(self, tabla, arbol): retorno = self.valor.traducir(tabla,arbol) #print(retorno.temporalAnterior) #print(type(self.valor)) #print(self.valor.opIzq.traducir(tabla,arbol).temporalAnterior) return f"TRIM_SCALE({self.valor.traducir(tabla,arbol).temporalAnterior})"
35.090909
81
0.680052
8fd14ff13559c76f4be64565ce9189db84986baf
405
py
Python
env/Lib/site-packages/plotly/validators/densitymapbox/_radiussrc.py
andresgreen-byte/Laboratorio-1--Inversion-de-Capital
8a4707301d19c3826c31026c4077930bcd6a8182
[ "MIT" ]
11,750
2015-10-12T07:03:39.000Z
2022-03-31T20:43:15.000Z
venv/Lib/site-packages/plotly/validators/densitymapbox/_radiussrc.py
wakisalvador/constructed-misdirection
74779e9ec640a11bc08d5d1967c85ac4fa44ea5e
[ "Unlicense" ]
2,951
2015-10-12T00:41:25.000Z
2022-03-31T22:19:26.000Z
venv/Lib/site-packages/plotly/validators/densitymapbox/_radiussrc.py
wakisalvador/constructed-misdirection
74779e9ec640a11bc08d5d1967c85ac4fa44ea5e
[ "Unlicense" ]
2,623
2015-10-15T14:40:27.000Z
2022-03-28T16:05:50.000Z
import _plotly_utils.basevalidators class RadiussrcValidator(_plotly_utils.basevalidators.SrcValidator): def __init__(self, plotly_name="radiussrc", parent_name="densitymapbox", **kwargs): super(RadiussrcValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop("edit_type", "none"), **kwargs )
33.75
87
0.681481
ac82aaf7fcdf6ff7c3b51050d18d476facf37e10
660
py
Python
tests/helpers/settings.py
AdamSwenson/TwitterProject
8c5dc7a57eac611b555058736d609f2f204cb836
[ "MIT" ]
null
null
null
tests/helpers/settings.py
AdamSwenson/TwitterProject
8c5dc7a57eac611b555058736d609f2f204cb836
[ "MIT" ]
6
2020-03-24T17:34:24.000Z
2021-12-13T20:14:34.000Z
tests/helpers/settings.py
AdamSwenson/TwitterProject
8c5dc7a57eac611b555058736d609f2f204cb836
[ "MIT" ]
null
null
null
""" This defines global variables for testing. Most importantly, this exposes settings.Session which is the scoped session maker for anything needing to use sqlalchemy's session for testing Usage for factories # Use the not-so-global scoped_session # Warning: DO NOT USE common.Session()! sqlalchemy_session = settings.Session Created by adam on 6/27/18 """ __author__ = 'adam' from sqlalchemy import orm, create_engine Session = orm.scoped_session(orm.sessionmaker()) # an Engine, which the Session will use for connection # resources engine = create_engine( 'sqlite://' ) # create a configured "Session" class Session.configure(bind=engine )
23.571429
54
0.766667
e7bfaca2198763692d2f4fe6bb84fc7cdc55484d
10,217
py
Python
discord/ui/button.py
Vondyy/pycord
26e11e8a8f6ae95bf81d86261a2526c6f8e3432d
[ "MIT" ]
4
2021-11-13T14:47:41.000Z
2021-12-20T23:55:10.000Z
discord/ui/button.py
pycord/pycord
3d098a82d2a1450297bd187eb4f4d06ba30478fe
[ "MIT" ]
null
null
null
discord/ui/button.py
pycord/pycord
3d098a82d2a1450297bd187eb4f4d06ba30478fe
[ "MIT" ]
null
null
null
""" The MIT License (MIT) Copyright (c) 2015-2021 Rapptz Copyright (c) 2021-present Pycord Development Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ from __future__ import annotations import inspect import os from typing import TYPE_CHECKING, Callable, Optional, Tuple, Type, TypeVar, Union from ..components import Button as ButtonComponent from ..enums import ButtonStyle, ComponentType from ..partial_emoji import PartialEmoji, _EmojiTag from .item import Item, ItemCallbackType __all__ = ( "Button", "button", ) if TYPE_CHECKING: from ..emoji import Emoji from .view import View B = TypeVar("B", bound="Button") V = TypeVar("V", bound="View", covariant=True) class Button(Item[V]): """Represents a UI button. .. versionadded:: 2.0 Parameters ------------ style: :class:`discord.ButtonStyle` The style of the button. custom_id: Optional[:class:`str`] The ID of the button that gets received during an interaction. If this button is for a URL, it does not have a custom ID. url: Optional[:class:`str`] The URL this button sends you to. disabled: :class:`bool` Whether the button is disabled or not. label: Optional[:class:`str`] The label of the button, if any. emoji: Optional[Union[:class:`.PartialEmoji`, :class:`.Emoji`, :class:`str`]] The emoji of the button, if available. row: Optional[:class:`int`] The relative row this button belongs to. A Discord component can only have 5 rows. By default, items are arranged automatically into those 5 rows. If you'd like to control the relative positioning of the row then passing an index is advised. For example, row=1 will show up before row=2. Defaults to ``None``, which is automatic ordering. The row number must be between 0 and 4 (i.e. zero indexed). """ __item_repr_attributes__: Tuple[str, ...] = ( "style", "url", "disabled", "label", "emoji", "row", ) def __init__( self, *, style: ButtonStyle = ButtonStyle.secondary, label: Optional[str] = None, disabled: bool = False, custom_id: Optional[str] = None, url: Optional[str] = None, emoji: Optional[Union[str, Emoji, PartialEmoji]] = None, row: Optional[int] = None, ): super().__init__() if custom_id is not None and url is not None: raise TypeError("cannot mix both url and custom_id with Button") self._provided_custom_id = custom_id is not None if url is None and custom_id is None: custom_id = os.urandom(16).hex() if url is not None: style = ButtonStyle.link if emoji is not None: if isinstance(emoji, str): emoji = PartialEmoji.from_str(emoji) elif isinstance(emoji, _EmojiTag): emoji = emoji._to_partial() else: raise TypeError(f"expected emoji to be str, Emoji, or PartialEmoji not {emoji.__class__}") self._underlying = ButtonComponent._raw_construct( type=ComponentType.button, custom_id=custom_id, url=url, disabled=disabled, label=label, style=style, emoji=emoji, ) self.row = row @property def style(self) -> ButtonStyle: """:class:`discord.ButtonStyle`: The style of the button.""" return self._underlying.style @style.setter def style(self, value: ButtonStyle): self._underlying.style = value @property def custom_id(self) -> Optional[str]: """Optional[:class:`str`]: The ID of the button that gets received during an interaction. If this button is for a URL, it does not have a custom ID. """ return self._underlying.custom_id @custom_id.setter def custom_id(self, value: Optional[str]): if value is not None and not isinstance(value, str): raise TypeError("custom_id must be None or str") self._underlying.custom_id = value @property def url(self) -> Optional[str]: """Optional[:class:`str`]: The URL this button sends you to.""" return self._underlying.url @url.setter def url(self, value: Optional[str]): if value is not None and not isinstance(value, str): raise TypeError("url must be None or str") self._underlying.url = value @property def disabled(self) -> bool: """:class:`bool`: Whether the button is disabled or not.""" return self._underlying.disabled @disabled.setter def disabled(self, value: bool): self._underlying.disabled = bool(value) @property def label(self) -> Optional[str]: """Optional[:class:`str`]: The label of the button, if available.""" return self._underlying.label @label.setter def label(self, value: Optional[str]): self._underlying.label = str(value) if value is not None else value @property def emoji(self) -> Optional[PartialEmoji]: """Optional[:class:`.PartialEmoji`]: The emoji of the button, if available.""" return self._underlying.emoji @emoji.setter def emoji(self, value: Optional[Union[str, Emoji, PartialEmoji]]): # type: ignore if value is None: self._underlying.emoji = None elif isinstance(value, str): self._underlying.emoji = PartialEmoji.from_str(value) elif isinstance(value, _EmojiTag): self._underlying.emoji = value._to_partial() else: raise TypeError(f"expected str, Emoji, or PartialEmoji, received {value.__class__} instead") @classmethod def from_component(cls: Type[B], button: ButtonComponent) -> B: return cls( style=button.style, label=button.label, disabled=button.disabled, custom_id=button.custom_id, url=button.url, emoji=button.emoji, row=None, ) @property def type(self) -> ComponentType: return self._underlying.type def to_component_dict(self): return self._underlying.to_dict() def is_dispatchable(self) -> bool: return self.custom_id is not None def is_persistent(self) -> bool: if self.style is ButtonStyle.link: return self.url is not None return super().is_persistent() def refresh_component(self, button: ButtonComponent) -> None: self._underlying = button def button( *, label: Optional[str] = None, custom_id: Optional[str] = None, disabled: bool = False, style: ButtonStyle = ButtonStyle.secondary, emoji: Optional[Union[str, Emoji, PartialEmoji]] = None, row: Optional[int] = None, ) -> Callable[[ItemCallbackType], ItemCallbackType]: """A decorator that attaches a button to a component. The function being decorated should have three parameters, ``self`` representing the :class:`discord.ui.View`, the :class:`discord.ui.Button` being pressed and the :class:`discord.Interaction` you receive. .. note:: Buttons with a URL cannot be created with this function. Consider creating a :class:`Button` manually instead. This is because buttons with a URL do not have a callback associated with them since Discord does not do any processing with it. Parameters ------------ label: Optional[:class:`str`] The label of the button, if any. custom_id: Optional[:class:`str`] The ID of the button that gets received during an interaction. It is recommended not to set this parameter to prevent conflicts. style: :class:`.ButtonStyle` The style of the button. Defaults to :attr:`.ButtonStyle.grey`. disabled: :class:`bool` Whether the button is disabled or not. Defaults to ``False``. emoji: Optional[Union[:class:`str`, :class:`.Emoji`, :class:`.PartialEmoji`]] The emoji of the button. This can be in string form or a :class:`.PartialEmoji` or a full :class:`.Emoji`. row: Optional[:class:`int`] The relative row this button belongs to. A Discord component can only have 5 rows. By default, items are arranged automatically into those 5 rows. If you'd like to control the relative positioning of the row then passing an index is advised. For example, row=1 will show up before row=2. Defaults to ``None``, which is automatic ordering. The row number must be between 0 and 4 (i.e. zero indexed). """ def decorator(func: ItemCallbackType) -> ItemCallbackType: if not inspect.iscoroutinefunction(func): raise TypeError("button function must be a coroutine function") func.__discord_ui_model_type__ = Button func.__discord_ui_model_kwargs__ = { "style": style, "custom_id": custom_id, "url": None, "disabled": disabled, "label": label, "emoji": emoji, "row": row, } return func return decorator
35.231034
106
0.646374
1eada36f90d10c6b95e2ef6899d7e1ee064d1fca
186
py
Python
tests/test_package.py
davidt0x/lca_onnx
11123c6d7e14daa6071222c6c5205ea49ce60946
[ "BSD-3-Clause" ]
null
null
null
tests/test_package.py
davidt0x/lca_onnx
11123c6d7e14daa6071222c6c5205ea49ce60946
[ "BSD-3-Clause" ]
2
2021-11-29T08:26:29.000Z
2021-12-15T08:24:29.000Z
tests/test_package.py
davidt0x/lca_onnx
11123c6d7e14daa6071222c6c5205ea49ce60946
[ "BSD-3-Clause" ]
1
2021-10-13T15:47:04.000Z
2021-10-13T15:47:04.000Z
import lca_onnx as m import lca_onnx._core as cpp def test_pybind11(): assert cpp.add(1, 2) == 3 assert cpp.subtract(1, 2) == -1 def test_version(): assert m.__version__
15.5
35
0.672043
b5d41715f774c8ab3755c00764c48d85f4312c38
72,863
py
Python
sympy/physics/quantum/spin.py
sid21g/sympy
440d289ee1e8b54e5e3e5e7262e06651f5ec5878
[ "BSD-3-Clause" ]
null
null
null
sympy/physics/quantum/spin.py
sid21g/sympy
440d289ee1e8b54e5e3e5e7262e06651f5ec5878
[ "BSD-3-Clause" ]
null
null
null
sympy/physics/quantum/spin.py
sid21g/sympy
440d289ee1e8b54e5e3e5e7262e06651f5ec5878
[ "BSD-3-Clause" ]
1
2020-02-06T17:54:20.000Z
2020-02-06T17:54:20.000Z
"""Quantum mechanical angular momemtum.""" from __future__ import print_function, division from sympy import (Add, binomial, cos, exp, Expr, factorial, I, Integer, Mul, pi, Rational, S, sin, simplify, sqrt, Sum, symbols, sympify, Tuple, Dummy) from sympy.core.compatibility import unicode, range from sympy.matrices import zeros from sympy.printing.pretty.stringpict import prettyForm, stringPict from sympy.printing.pretty.pretty_symbology import pretty_symbol from sympy.physics.quantum.qexpr import QExpr from sympy.physics.quantum.operator import (HermitianOperator, Operator, UnitaryOperator) from sympy.physics.quantum.state import Bra, Ket, State from sympy.functions.special.tensor_functions import KroneckerDelta from sympy.physics.quantum.constants import hbar from sympy.physics.quantum.hilbert import ComplexSpace, DirectSumHilbertSpace from sympy.physics.quantum.tensorproduct import TensorProduct from sympy.physics.quantum.cg import CG from sympy.physics.quantum.qapply import qapply __all__ = [ 'm_values', 'Jplus', 'Jminus', 'Jx', 'Jy', 'Jz', 'J2', 'Rotation', 'WignerD', 'JxKet', 'JxBra', 'JyKet', 'JyBra', 'JzKet', 'JzBra', 'JzOp', 'J2Op', 'JxKetCoupled', 'JxBraCoupled', 'JyKetCoupled', 'JyBraCoupled', 'JzKetCoupled', 'JzBraCoupled', 'couple', 'uncouple' ] def m_values(j): j = sympify(j) size = 2*j + 1 if not size.is_Integer or not size > 0: raise ValueError( 'Only integer or half-integer values allowed for j, got: : %r' % j ) return size, [j - i for i in range(int(2*j + 1))] #----------------------------------------------------------------------------- # Spin Operators #----------------------------------------------------------------------------- class SpinOpBase(object): """Base class for spin operators.""" @classmethod def _eval_hilbert_space(cls, label): # We consider all j values so our space is infinite. return ComplexSpace(S.Infinity) @property def name(self): return self.args[0] def _print_contents(self, printer, *args): return '%s%s' % (unicode(self.name), self._coord) def _print_contents_pretty(self, printer, *args): a = stringPict(unicode(self.name)) b = stringPict(self._coord) return self._print_subscript_pretty(a, b) def _print_contents_latex(self, printer, *args): return r'%s_%s' % ((unicode(self.name), self._coord)) def _represent_base(self, basis, **options): j = options.get('j', S.Half) size, mvals = m_values(j) result = zeros(size, size) for p in range(size): for q in range(size): me = self.matrix_element(j, mvals[p], j, mvals[q]) result[p, q] = me return result def _apply_op(self, ket, orig_basis, **options): state = ket.rewrite(self.basis) # If the state has only one term if isinstance(state, State): ret = (hbar*state.m)*state # state is a linear combination of states elif isinstance(state, Sum): ret = self._apply_operator_Sum(state, **options) else: ret = qapply(self*state) if ret == self*state: raise NotImplementedError return ret.rewrite(orig_basis) def _apply_operator_JxKet(self, ket, **options): return self._apply_op(ket, 'Jx', **options) def _apply_operator_JxKetCoupled(self, ket, **options): return self._apply_op(ket, 'Jx', **options) def _apply_operator_JyKet(self, ket, **options): return self._apply_op(ket, 'Jy', **options) def _apply_operator_JyKetCoupled(self, ket, **options): return self._apply_op(ket, 'Jy', **options) def _apply_operator_JzKet(self, ket, **options): return self._apply_op(ket, 'Jz', **options) def _apply_operator_JzKetCoupled(self, ket, **options): return self._apply_op(ket, 'Jz', **options) def _apply_operator_TensorProduct(self, tp, **options): # Uncoupling operator is only easily found for coordinate basis spin operators # TODO: add methods for uncoupling operators if not (isinstance(self, JxOp) or isinstance(self, JyOp) or isinstance(self, JzOp)): raise NotImplementedError result = [] for n in range(len(tp.args)): arg = [] arg.extend(tp.args[:n]) arg.append(self._apply_operator(tp.args[n])) arg.extend(tp.args[n + 1:]) result.append(tp.__class__(*arg)) return Add(*result).expand() # TODO: move this to qapply_Mul def _apply_operator_Sum(self, s, **options): new_func = qapply(self*s.function) if new_func == self*s.function: raise NotImplementedError return Sum(new_func, *s.limits) def _eval_trace(self, **options): #TODO: use options to use different j values #For now eval at default basis # is it efficient to represent each time # to do a trace? return self._represent_default_basis().trace() class JplusOp(SpinOpBase, Operator): """The J+ operator.""" _coord = '+' basis = 'Jz' def _eval_commutator_JminusOp(self, other): return 2*hbar*JzOp(self.name) def _apply_operator_JzKet(self, ket, **options): j = ket.j m = ket.m if m.is_Number and j.is_Number: if m >= j: return S.Zero return hbar*sqrt(j*(j + S.One) - m*(m + S.One))*JzKet(j, m + S.One) def _apply_operator_JzKetCoupled(self, ket, **options): j = ket.j m = ket.m jn = ket.jn coupling = ket.coupling if m.is_Number and j.is_Number: if m >= j: return S.Zero return hbar*sqrt(j*(j + S.One) - m*(m + S.One))*JzKetCoupled(j, m + S.One, jn, coupling) def matrix_element(self, j, m, jp, mp): result = hbar*sqrt(j*(j + S.One) - mp*(mp + S.One)) result *= KroneckerDelta(m, mp + 1) result *= KroneckerDelta(j, jp) return result def _represent_default_basis(self, **options): return self._represent_JzOp(None, **options) def _represent_JzOp(self, basis, **options): return self._represent_base(basis, **options) def _eval_rewrite_as_xyz(self, *args, **kwargs): return JxOp(args[0]) + I*JyOp(args[0]) class JminusOp(SpinOpBase, Operator): """The J- operator.""" _coord = '-' basis = 'Jz' def _apply_operator_JzKet(self, ket, **options): j = ket.j m = ket.m if m.is_Number and j.is_Number: if m <= -j: return S.Zero return hbar*sqrt(j*(j + S.One) - m*(m - S.One))*JzKet(j, m - S.One) def _apply_operator_JzKetCoupled(self, ket, **options): j = ket.j m = ket.m jn = ket.jn coupling = ket.coupling if m.is_Number and j.is_Number: if m <= -j: return S.Zero return hbar*sqrt(j*(j + S.One) - m*(m - S.One))*JzKetCoupled(j, m - S.One, jn, coupling) def matrix_element(self, j, m, jp, mp): result = hbar*sqrt(j*(j + S.One) - mp*(mp - S.One)) result *= KroneckerDelta(m, mp - 1) result *= KroneckerDelta(j, jp) return result def _represent_default_basis(self, **options): return self._represent_JzOp(None, **options) def _represent_JzOp(self, basis, **options): return self._represent_base(basis, **options) def _eval_rewrite_as_xyz(self, *args, **kwargs): return JxOp(args[0]) - I*JyOp(args[0]) class JxOp(SpinOpBase, HermitianOperator): """The Jx operator.""" _coord = 'x' basis = 'Jx' def _eval_commutator_JyOp(self, other): return I*hbar*JzOp(self.name) def _eval_commutator_JzOp(self, other): return -I*hbar*JyOp(self.name) def _apply_operator_JzKet(self, ket, **options): jp = JplusOp(self.name)._apply_operator_JzKet(ket, **options) jm = JminusOp(self.name)._apply_operator_JzKet(ket, **options) return (jp + jm)/Integer(2) def _apply_operator_JzKetCoupled(self, ket, **options): jp = JplusOp(self.name)._apply_operator_JzKetCoupled(ket, **options) jm = JminusOp(self.name)._apply_operator_JzKetCoupled(ket, **options) return (jp + jm)/Integer(2) def _represent_default_basis(self, **options): return self._represent_JzOp(None, **options) def _represent_JzOp(self, basis, **options): jp = JplusOp(self.name)._represent_JzOp(basis, **options) jm = JminusOp(self.name)._represent_JzOp(basis, **options) return (jp + jm)/Integer(2) def _eval_rewrite_as_plusminus(self, *args, **kwargs): return (JplusOp(args[0]) + JminusOp(args[0]))/2 class JyOp(SpinOpBase, HermitianOperator): """The Jy operator.""" _coord = 'y' basis = 'Jy' def _eval_commutator_JzOp(self, other): return I*hbar*JxOp(self.name) def _eval_commutator_JxOp(self, other): return -I*hbar*J2Op(self.name) def _apply_operator_JzKet(self, ket, **options): jp = JplusOp(self.name)._apply_operator_JzKet(ket, **options) jm = JminusOp(self.name)._apply_operator_JzKet(ket, **options) return (jp - jm)/(Integer(2)*I) def _apply_operator_JzKetCoupled(self, ket, **options): jp = JplusOp(self.name)._apply_operator_JzKetCoupled(ket, **options) jm = JminusOp(self.name)._apply_operator_JzKetCoupled(ket, **options) return (jp - jm)/(Integer(2)*I) def _represent_default_basis(self, **options): return self._represent_JzOp(None, **options) def _represent_JzOp(self, basis, **options): jp = JplusOp(self.name)._represent_JzOp(basis, **options) jm = JminusOp(self.name)._represent_JzOp(basis, **options) return (jp - jm)/(Integer(2)*I) def _eval_rewrite_as_plusminus(self, *args, **kwargs): return (JplusOp(args[0]) - JminusOp(args[0]))/(2*I) class JzOp(SpinOpBase, HermitianOperator): """The Jz operator.""" _coord = 'z' basis = 'Jz' def _eval_commutator_JxOp(self, other): return I*hbar*JyOp(self.name) def _eval_commutator_JyOp(self, other): return -I*hbar*JxOp(self.name) def _eval_commutator_JplusOp(self, other): return hbar*JplusOp(self.name) def _eval_commutator_JminusOp(self, other): return -hbar*JminusOp(self.name) def matrix_element(self, j, m, jp, mp): result = hbar*mp result *= KroneckerDelta(m, mp) result *= KroneckerDelta(j, jp) return result def _represent_default_basis(self, **options): return self._represent_JzOp(None, **options) def _represent_JzOp(self, basis, **options): return self._represent_base(basis, **options) class J2Op(SpinOpBase, HermitianOperator): """The J^2 operator.""" _coord = '2' def _eval_commutator_JxOp(self, other): return S.Zero def _eval_commutator_JyOp(self, other): return S.Zero def _eval_commutator_JzOp(self, other): return S.Zero def _eval_commutator_JplusOp(self, other): return S.Zero def _eval_commutator_JminusOp(self, other): return S.Zero def _apply_operator_JxKet(self, ket, **options): j = ket.j return hbar**2*j*(j + 1)*ket def _apply_operator_JxKetCoupled(self, ket, **options): j = ket.j return hbar**2*j*(j + 1)*ket def _apply_operator_JyKet(self, ket, **options): j = ket.j return hbar**2*j*(j + 1)*ket def _apply_operator_JyKetCoupled(self, ket, **options): j = ket.j return hbar**2*j*(j + 1)*ket def _apply_operator_JzKet(self, ket, **options): j = ket.j return hbar**2*j*(j + 1)*ket def _apply_operator_JzKetCoupled(self, ket, **options): j = ket.j return hbar**2*j*(j + 1)*ket def matrix_element(self, j, m, jp, mp): result = (hbar**2)*j*(j + 1) result *= KroneckerDelta(m, mp) result *= KroneckerDelta(j, jp) return result def _represent_default_basis(self, **options): return self._represent_JzOp(None, **options) def _represent_JzOp(self, basis, **options): return self._represent_base(basis, **options) def _print_contents_pretty(self, printer, *args): a = prettyForm(unicode(self.name)) b = prettyForm(u'2') return a**b def _print_contents_latex(self, printer, *args): return r'%s^2' % str(self.name) def _eval_rewrite_as_xyz(self, *args, **kwargs): return JxOp(args[0])**2 + JyOp(args[0])**2 + JzOp(args[0])**2 def _eval_rewrite_as_plusminus(self, *args, **kwargs): a = args[0] return JzOp(a)**2 + \ S.Half*(JplusOp(a)*JminusOp(a) + JminusOp(a)*JplusOp(a)) class Rotation(UnitaryOperator): """Wigner D operator in terms of Euler angles. Defines the rotation operator in terms of the Euler angles defined by the z-y-z convention for a passive transformation. That is the coordinate axes are rotated first about the z-axis, giving the new x'-y'-z' axes. Then this new coordinate system is rotated about the new y'-axis, giving new x''-y''-z'' axes. Then this new coordinate system is rotated about the z''-axis. Conventions follow those laid out in [1]_. Parameters ========== alpha : Number, Symbol First Euler Angle beta : Number, Symbol Second Euler angle gamma : Number, Symbol Third Euler angle Examples ======== A simple example rotation operator: >>> from sympy import pi >>> from sympy.physics.quantum.spin import Rotation >>> Rotation(pi, 0, pi/2) R(pi,0,pi/2) With symbolic Euler angles and calculating the inverse rotation operator: >>> from sympy import symbols >>> a, b, c = symbols('a b c') >>> Rotation(a, b, c) R(a,b,c) >>> Rotation(a, b, c).inverse() R(-c,-b,-a) See Also ======== WignerD: Symbolic Wigner-D function D: Wigner-D function d: Wigner small-d function References ========== .. [1] Varshalovich, D A, Quantum Theory of Angular Momentum. 1988. """ @classmethod def _eval_args(cls, args): args = QExpr._eval_args(args) if len(args) != 3: raise ValueError('3 Euler angles required, got: %r' % args) return args @classmethod def _eval_hilbert_space(cls, label): # We consider all j values so our space is infinite. return ComplexSpace(S.Infinity) @property def alpha(self): return self.label[0] @property def beta(self): return self.label[1] @property def gamma(self): return self.label[2] def _print_operator_name(self, printer, *args): return 'R' def _print_operator_name_pretty(self, printer, *args): if printer._use_unicode: return prettyForm(u'\N{SCRIPT CAPITAL R}' + u' ') else: return prettyForm("R ") def _print_operator_name_latex(self, printer, *args): return r'\mathcal{R}' def _eval_inverse(self): return Rotation(-self.gamma, -self.beta, -self.alpha) @classmethod def D(cls, j, m, mp, alpha, beta, gamma): """Wigner D-function. Returns an instance of the WignerD class corresponding to the Wigner-D function specified by the parameters. Parameters =========== j : Number Total angular momentum m : Number Eigenvalue of angular momentum along axis after rotation mp : Number Eigenvalue of angular momentum along rotated axis alpha : Number, Symbol First Euler angle of rotation beta : Number, Symbol Second Euler angle of rotation gamma : Number, Symbol Third Euler angle of rotation Examples ======== Return the Wigner-D matrix element for a defined rotation, both numerical and symbolic: >>> from sympy.physics.quantum.spin import Rotation >>> from sympy import pi, symbols >>> alpha, beta, gamma = symbols('alpha beta gamma') >>> Rotation.D(1, 1, 0,pi, pi/2,-pi) WignerD(1, 1, 0, pi, pi/2, -pi) See Also ======== WignerD: Symbolic Wigner-D function """ return WignerD(j, m, mp, alpha, beta, gamma) @classmethod def d(cls, j, m, mp, beta): """Wigner small-d function. Returns an instance of the WignerD class corresponding to the Wigner-D function specified by the parameters with the alpha and gamma angles given as 0. Parameters =========== j : Number Total angular momentum m : Number Eigenvalue of angular momentum along axis after rotation mp : Number Eigenvalue of angular momentum along rotated axis beta : Number, Symbol Second Euler angle of rotation Examples ======== Return the Wigner-D matrix element for a defined rotation, both numerical and symbolic: >>> from sympy.physics.quantum.spin import Rotation >>> from sympy import pi, symbols >>> beta = symbols('beta') >>> Rotation.d(1, 1, 0, pi/2) WignerD(1, 1, 0, 0, pi/2, 0) See Also ======== WignerD: Symbolic Wigner-D function """ return WignerD(j, m, mp, 0, beta, 0) def matrix_element(self, j, m, jp, mp): result = self.__class__.D( jp, m, mp, self.alpha, self.beta, self.gamma ) result *= KroneckerDelta(j, jp) return result def _represent_base(self, basis, **options): j = sympify(options.get('j', S.Half)) # TODO: move evaluation up to represent function/implement elsewhere evaluate = sympify(options.get('doit')) size, mvals = m_values(j) result = zeros(size, size) for p in range(size): for q in range(size): me = self.matrix_element(j, mvals[p], j, mvals[q]) if evaluate: result[p, q] = me.doit() else: result[p, q] = me return result def _represent_default_basis(self, **options): return self._represent_JzOp(None, **options) def _represent_JzOp(self, basis, **options): return self._represent_base(basis, **options) def _apply_operator_uncoupled(self, state, ket, **options): a = self.alpha b = self.beta g = self.gamma j = ket.j m = ket.m if j.is_number: s = [] size = m_values(j) sz = size[1] for mp in sz: r = Rotation.D(j, m, mp, a, b, g) z = r.doit() s.append(z*state(j, mp)) return Add(*s) else: if options.pop('dummy', True): mp = Dummy('mp') else: mp = symbols('mp') return Sum(Rotation.D(j, m, mp, a, b, g)*state(j, mp), (mp, -j, j)) def _apply_operator_JxKet(self, ket, **options): return self._apply_operator_uncoupled(JxKet, ket, **options) def _apply_operator_JyKet(self, ket, **options): return self._apply_operator_uncoupled(JyKet, ket, **options) def _apply_operator_JzKet(self, ket, **options): return self._apply_operator_uncoupled(JzKet, ket, **options) def _apply_operator_coupled(self, state, ket, **options): a = self.alpha b = self.beta g = self.gamma j = ket.j m = ket.m jn = ket.jn coupling = ket.coupling if j.is_number: s = [] size = m_values(j) sz = size[1] for mp in sz: r = Rotation.D(j, m, mp, a, b, g) z = r.doit() s.append(z*state(j, mp, jn, coupling)) return Add(*s) else: if options.pop('dummy', True): mp = Dummy('mp') else: mp = symbols('mp') return Sum(Rotation.D(j, m, mp, a, b, g)*state( j, mp, jn, coupling), (mp, -j, j)) def _apply_operator_JxKetCoupled(self, ket, **options): return self._apply_operator_coupled(JxKetCoupled, ket, **options) def _apply_operator_JyKetCoupled(self, ket, **options): return self._apply_operator_coupled(JyKetCoupled, ket, **options) def _apply_operator_JzKetCoupled(self, ket, **options): return self._apply_operator_coupled(JzKetCoupled, ket, **options) class WignerD(Expr): r"""Wigner-D function The Wigner D-function gives the matrix elements of the rotation operator in the jm-representation. For the Euler angles `\alpha`, `\beta`, `\gamma`, the D-function is defined such that: .. math :: <j,m| \mathcal{R}(\alpha, \beta, \gamma ) |j',m'> = \delta_{jj'} D(j, m, m', \alpha, \beta, \gamma) Where the rotation operator is as defined by the Rotation class [1]_. The Wigner D-function defined in this way gives: .. math :: D(j, m, m', \alpha, \beta, \gamma) = e^{-i m \alpha} d(j, m, m', \beta) e^{-i m' \gamma} Where d is the Wigner small-d function, which is given by Rotation.d. The Wigner small-d function gives the component of the Wigner D-function that is determined by the second Euler angle. That is the Wigner D-function is: .. math :: D(j, m, m', \alpha, \beta, \gamma) = e^{-i m \alpha} d(j, m, m', \beta) e^{-i m' \gamma} Where d is the small-d function. The Wigner D-function is given by Rotation.D. Note that to evaluate the D-function, the j, m and mp parameters must be integer or half integer numbers. Parameters ========== j : Number Total angular momentum m : Number Eigenvalue of angular momentum along axis after rotation mp : Number Eigenvalue of angular momentum along rotated axis alpha : Number, Symbol First Euler angle of rotation beta : Number, Symbol Second Euler angle of rotation gamma : Number, Symbol Third Euler angle of rotation Examples ======== Evaluate the Wigner-D matrix elements of a simple rotation: >>> from sympy.physics.quantum.spin import Rotation >>> from sympy import pi >>> rot = Rotation.D(1, 1, 0, pi, pi/2, 0) >>> rot WignerD(1, 1, 0, pi, pi/2, 0) >>> rot.doit() sqrt(2)/2 Evaluate the Wigner-d matrix elements of a simple rotation >>> rot = Rotation.d(1, 1, 0, pi/2) >>> rot WignerD(1, 1, 0, 0, pi/2, 0) >>> rot.doit() -sqrt(2)/2 See Also ======== Rotation: Rotation operator References ========== .. [1] Varshalovich, D A, Quantum Theory of Angular Momentum. 1988. """ is_commutative = True def __new__(cls, *args, **hints): if not len(args) == 6: raise ValueError('6 parameters expected, got %s' % args) args = sympify(args) evaluate = hints.get('evaluate', False) if evaluate: return Expr.__new__(cls, *args)._eval_wignerd() return Expr.__new__(cls, *args) @property def j(self): return self.args[0] @property def m(self): return self.args[1] @property def mp(self): return self.args[2] @property def alpha(self): return self.args[3] @property def beta(self): return self.args[4] @property def gamma(self): return self.args[5] def _latex(self, printer, *args): if self.alpha == 0 and self.gamma == 0: return r'd^{%s}_{%s,%s}\left(%s\right)' % \ ( printer._print(self.j), printer._print( self.m), printer._print(self.mp), printer._print(self.beta) ) return r'D^{%s}_{%s,%s}\left(%s,%s,%s\right)' % \ ( printer._print( self.j), printer._print(self.m), printer._print(self.mp), printer._print(self.alpha), printer._print(self.beta), printer._print(self.gamma) ) def _pretty(self, printer, *args): top = printer._print(self.j) bot = printer._print(self.m) bot = prettyForm(*bot.right(',')) bot = prettyForm(*bot.right(printer._print(self.mp))) pad = max(top.width(), bot.width()) top = prettyForm(*top.left(' ')) bot = prettyForm(*bot.left(' ')) if pad > top.width(): top = prettyForm(*top.right(' '*(pad - top.width()))) if pad > bot.width(): bot = prettyForm(*bot.right(' '*(pad - bot.width()))) if self.alpha == 0 and self.gamma == 0: args = printer._print(self.beta) s = stringPict('d' + ' '*pad) else: args = printer._print(self.alpha) args = prettyForm(*args.right(',')) args = prettyForm(*args.right(printer._print(self.beta))) args = prettyForm(*args.right(',')) args = prettyForm(*args.right(printer._print(self.gamma))) s = stringPict('D' + ' '*pad) args = prettyForm(*args.parens()) s = prettyForm(*s.above(top)) s = prettyForm(*s.below(bot)) s = prettyForm(*s.right(args)) return s def doit(self, **hints): hints['evaluate'] = True return WignerD(*self.args, **hints) def _eval_wignerd(self): j = sympify(self.j) m = sympify(self.m) mp = sympify(self.mp) alpha = sympify(self.alpha) beta = sympify(self.beta) gamma = sympify(self.gamma) if not j.is_number: raise ValueError( 'j parameter must be numerical to evaluate, got %s' % j) r = 0 if beta == pi/2: # Varshalovich Equation (5), Section 4.16, page 113, setting # alpha=gamma=0. for k in range(2*j + 1): if k > j + mp or k > j - m or k < mp - m: continue r += (S.NegativeOne)**k*binomial(j + mp, k)*binomial(j - mp, k + m - mp) r *= (S.NegativeOne)**(m - mp) / 2**j*sqrt(factorial(j + m) * factorial(j - m) / (factorial(j + mp)*factorial(j - mp))) else: # Varshalovich Equation(5), Section 4.7.2, page 87, where we set # beta1=beta2=pi/2, and we get alpha=gamma=pi/2 and beta=phi+pi, # then we use the Eq. (1), Section 4.4. page 79, to simplify: # d(j, m, mp, beta+pi) = (-1)**(j-mp)*d(j, m, -mp, beta) # This happens to be almost the same as in Eq.(10), Section 4.16, # except that we need to substitute -mp for mp. size, mvals = m_values(j) for mpp in mvals: r += Rotation.d(j, m, mpp, pi/2).doit()*(cos(-mpp*beta) + I*sin(-mpp*beta))*\ Rotation.d(j, mpp, -mp, pi/2).doit() # Empirical normalization factor so results match Varshalovich # Tables 4.3-4.12 # Note that this exact normalization does not follow from the # above equations r = r*I**(2*j - m - mp)*(-1)**(2*m) # Finally, simplify the whole expression r = simplify(r) r *= exp(-I*m*alpha)*exp(-I*mp*gamma) return r Jx = JxOp('J') Jy = JyOp('J') Jz = JzOp('J') J2 = J2Op('J') Jplus = JplusOp('J') Jminus = JminusOp('J') #----------------------------------------------------------------------------- # Spin States #----------------------------------------------------------------------------- class SpinState(State): """Base class for angular momentum states.""" _label_separator = ',' def __new__(cls, j, m): j = sympify(j) m = sympify(m) if j.is_number: if 2*j != int(2*j): raise ValueError( 'j must be integer or half-integer, got: %s' % j) if j < 0: raise ValueError('j must be >= 0, got: %s' % j) if m.is_number: if 2*m != int(2*m): raise ValueError( 'm must be integer or half-integer, got: %s' % m) if j.is_number and m.is_number: if abs(m) > j: raise ValueError('Allowed values for m are -j <= m <= j, got j, m: %s, %s' % (j, m)) if int(j - m) != j - m: raise ValueError('Both j and m must be integer or half-integer, got j, m: %s, %s' % (j, m)) return State.__new__(cls, j, m) @property def j(self): return self.label[0] @property def m(self): return self.label[1] @classmethod def _eval_hilbert_space(cls, label): return ComplexSpace(2*label[0] + 1) def _represent_base(self, **options): j = self.j m = self.m alpha = sympify(options.get('alpha', 0)) beta = sympify(options.get('beta', 0)) gamma = sympify(options.get('gamma', 0)) size, mvals = m_values(j) result = zeros(size, 1) # TODO: Use KroneckerDelta if all Euler angles == 0 # breaks finding angles on L930 for p, mval in enumerate(mvals): if m.is_number: result[p, 0] = Rotation.D( self.j, mval, self.m, alpha, beta, gamma).doit() else: result[p, 0] = Rotation.D(self.j, mval, self.m, alpha, beta, gamma) return result def _eval_rewrite_as_Jx(self, *args, **options): if isinstance(self, Bra): return self._rewrite_basis(Jx, JxBra, **options) return self._rewrite_basis(Jx, JxKet, **options) def _eval_rewrite_as_Jy(self, *args, **options): if isinstance(self, Bra): return self._rewrite_basis(Jy, JyBra, **options) return self._rewrite_basis(Jy, JyKet, **options) def _eval_rewrite_as_Jz(self, *args, **options): if isinstance(self, Bra): return self._rewrite_basis(Jz, JzBra, **options) return self._rewrite_basis(Jz, JzKet, **options) def _rewrite_basis(self, basis, evect, **options): from sympy.physics.quantum.represent import represent j = self.j args = self.args[2:] if j.is_number: if isinstance(self, CoupledSpinState): if j == int(j): start = j**2 else: start = (2*j - 1)*(2*j + 1)/4 else: start = 0 vect = represent(self, basis=basis, **options) result = Add( *[vect[start + i]*evect(j, j - i, *args) for i in range(2*j + 1)]) if isinstance(self, CoupledSpinState) and options.get('coupled') is False: return uncouple(result) return result else: i = 0 mi = symbols('mi') # make sure not to introduce a symbol already in the state while self.subs(mi, 0) != self: i += 1 mi = symbols('mi%d' % i) break # TODO: better way to get angles of rotation if isinstance(self, CoupledSpinState): test_args = (0, mi, (0, 0)) else: test_args = (0, mi) if isinstance(self, Ket): angles = represent( self.__class__(*test_args), basis=basis)[0].args[3:6] else: angles = represent(self.__class__( *test_args), basis=basis)[0].args[0].args[3:6] if angles == (0, 0, 0): return self else: state = evect(j, mi, *args) lt = Rotation.D(j, mi, self.m, *angles) return Sum(lt*state, (mi, -j, j)) def _eval_innerproduct_JxBra(self, bra, **hints): result = KroneckerDelta(self.j, bra.j) if bra.dual_class() is not self.__class__: result *= self._represent_JxOp(None)[bra.j - bra.m] else: result *= KroneckerDelta( self.j, bra.j)*KroneckerDelta(self.m, bra.m) return result def _eval_innerproduct_JyBra(self, bra, **hints): result = KroneckerDelta(self.j, bra.j) if bra.dual_class() is not self.__class__: result *= self._represent_JyOp(None)[bra.j - bra.m] else: result *= KroneckerDelta( self.j, bra.j)*KroneckerDelta(self.m, bra.m) return result def _eval_innerproduct_JzBra(self, bra, **hints): result = KroneckerDelta(self.j, bra.j) if bra.dual_class() is not self.__class__: result *= self._represent_JzOp(None)[bra.j - bra.m] else: result *= KroneckerDelta( self.j, bra.j)*KroneckerDelta(self.m, bra.m) return result def _eval_trace(self, bra, **hints): # One way to implement this method is to assume the basis set k is # passed. # Then we can apply the discrete form of Trace formula here # Tr(|i><j| ) = \Sum_k <k|i><j|k> #then we do qapply() on each each inner product and sum over them. # OR # Inner product of |i><j| = Trace(Outer Product). # we could just use this unless there are cases when this is not true return (bra*self).doit() class JxKet(SpinState, Ket): """Eigenket of Jx. See JzKet for the usage of spin eigenstates. See Also ======== JzKet: Usage of spin states """ @classmethod def dual_class(self): return JxBra @classmethod def coupled_class(self): return JxKetCoupled def _represent_default_basis(self, **options): return self._represent_JxOp(None, **options) def _represent_JxOp(self, basis, **options): return self._represent_base(**options) def _represent_JyOp(self, basis, **options): return self._represent_base(alpha=pi*Rational(3, 2), **options) def _represent_JzOp(self, basis, **options): return self._represent_base(beta=pi/2, **options) class JxBra(SpinState, Bra): """Eigenbra of Jx. See JzKet for the usage of spin eigenstates. See Also ======== JzKet: Usage of spin states """ @classmethod def dual_class(self): return JxKet @classmethod def coupled_class(self): return JxBraCoupled class JyKet(SpinState, Ket): """Eigenket of Jy. See JzKet for the usage of spin eigenstates. See Also ======== JzKet: Usage of spin states """ @classmethod def dual_class(self): return JyBra @classmethod def coupled_class(self): return JyKetCoupled def _represent_default_basis(self, **options): return self._represent_JyOp(None, **options) def _represent_JxOp(self, basis, **options): return self._represent_base(gamma=pi/2, **options) def _represent_JyOp(self, basis, **options): return self._represent_base(**options) def _represent_JzOp(self, basis, **options): return self._represent_base(alpha=pi*Rational(3, 2), beta=-pi/2, gamma=pi/2, **options) class JyBra(SpinState, Bra): """Eigenbra of Jy. See JzKet for the usage of spin eigenstates. See Also ======== JzKet: Usage of spin states """ @classmethod def dual_class(self): return JyKet @classmethod def coupled_class(self): return JyBraCoupled class JzKet(SpinState, Ket): """Eigenket of Jz. Spin state which is an eigenstate of the Jz operator. Uncoupled states, that is states representing the interaction of multiple separate spin states, are defined as a tensor product of states. Parameters ========== j : Number, Symbol Total spin angular momentum m : Number, Symbol Eigenvalue of the Jz spin operator Examples ======== *Normal States:* Defining simple spin states, both numerical and symbolic: >>> from sympy.physics.quantum.spin import JzKet, JxKet >>> from sympy import symbols >>> JzKet(1, 0) |1,0> >>> j, m = symbols('j m') >>> JzKet(j, m) |j,m> Rewriting the JzKet in terms of eigenkets of the Jx operator: Note: that the resulting eigenstates are JxKet's >>> JzKet(1,1).rewrite("Jx") |1,-1>/2 - sqrt(2)*|1,0>/2 + |1,1>/2 Get the vector representation of a state in terms of the basis elements of the Jx operator: >>> from sympy.physics.quantum.represent import represent >>> from sympy.physics.quantum.spin import Jx, Jz >>> represent(JzKet(1,-1), basis=Jx) Matrix([ [ 1/2], [sqrt(2)/2], [ 1/2]]) Apply innerproducts between states: >>> from sympy.physics.quantum.innerproduct import InnerProduct >>> from sympy.physics.quantum.spin import JxBra >>> i = InnerProduct(JxBra(1,1), JzKet(1,1)) >>> i <1,1|1,1> >>> i.doit() 1/2 *Uncoupled States:* Define an uncoupled state as a TensorProduct between two Jz eigenkets: >>> from sympy.physics.quantum.tensorproduct import TensorProduct >>> j1,m1,j2,m2 = symbols('j1 m1 j2 m2') >>> TensorProduct(JzKet(1,0), JzKet(1,1)) |1,0>x|1,1> >>> TensorProduct(JzKet(j1,m1), JzKet(j2,m2)) |j1,m1>x|j2,m2> A TensorProduct can be rewritten, in which case the eigenstates that make up the tensor product is rewritten to the new basis: >>> TensorProduct(JzKet(1,1),JxKet(1,1)).rewrite('Jz') |1,1>x|1,-1>/2 + sqrt(2)*|1,1>x|1,0>/2 + |1,1>x|1,1>/2 The represent method for TensorProduct's gives the vector representation of the state. Note that the state in the product basis is the equivalent of the tensor product of the vector representation of the component eigenstates: >>> represent(TensorProduct(JzKet(1,0),JzKet(1,1))) Matrix([ [0], [0], [0], [1], [0], [0], [0], [0], [0]]) >>> represent(TensorProduct(JzKet(1,1),JxKet(1,1)), basis=Jz) Matrix([ [ 1/2], [sqrt(2)/2], [ 1/2], [ 0], [ 0], [ 0], [ 0], [ 0], [ 0]]) See Also ======== JzKetCoupled: Coupled eigenstates sympy.physics.quantum.tensorproduct.TensorProduct: Used to specify uncoupled states uncouple: Uncouples states given coupling parameters couple: Couples uncoupled states """ @classmethod def dual_class(self): return JzBra @classmethod def coupled_class(self): return JzKetCoupled def _represent_default_basis(self, **options): return self._represent_JzOp(None, **options) def _represent_JxOp(self, basis, **options): return self._represent_base(beta=pi*Rational(3, 2), **options) def _represent_JyOp(self, basis, **options): return self._represent_base(alpha=pi*Rational(3, 2), beta=pi/2, gamma=pi/2, **options) def _represent_JzOp(self, basis, **options): return self._represent_base(**options) class JzBra(SpinState, Bra): """Eigenbra of Jz. See the JzKet for the usage of spin eigenstates. See Also ======== JzKet: Usage of spin states """ @classmethod def dual_class(self): return JzKet @classmethod def coupled_class(self): return JzBraCoupled # Method used primarily to create coupled_n and coupled_jn by __new__ in # CoupledSpinState # This same method is also used by the uncouple method, and is separated from # the CoupledSpinState class to maintain consistency in defining coupling def _build_coupled(jcoupling, length): n_list = [ [n + 1] for n in range(length) ] coupled_jn = [] coupled_n = [] for n1, n2, j_new in jcoupling: coupled_jn.append(j_new) coupled_n.append( (n_list[n1 - 1], n_list[n2 - 1]) ) n_sort = sorted(n_list[n1 - 1] + n_list[n2 - 1]) n_list[n_sort[0] - 1] = n_sort return coupled_n, coupled_jn class CoupledSpinState(SpinState): """Base class for coupled angular momentum states.""" def __new__(cls, j, m, jn, *jcoupling): # Check j and m values using SpinState SpinState(j, m) # Build and check coupling scheme from arguments if len(jcoupling) == 0: # Use default coupling scheme jcoupling = [] for n in range(2, len(jn)): jcoupling.append( (1, n, Add(*[jn[i] for i in range(n)])) ) jcoupling.append( (1, len(jn), j) ) elif len(jcoupling) == 1: # Use specified coupling scheme jcoupling = jcoupling[0] else: raise TypeError("CoupledSpinState only takes 3 or 4 arguments, got: %s" % (len(jcoupling) + 3) ) # Check arguments have correct form if not (isinstance(jn, list) or isinstance(jn, tuple) or isinstance(jn, Tuple)): raise TypeError('jn must be Tuple, list or tuple, got %s' % jn.__class__.__name__) if not (isinstance(jcoupling, list) or isinstance(jcoupling, tuple) or isinstance(jcoupling, Tuple)): raise TypeError('jcoupling must be Tuple, list or tuple, got %s' % jcoupling.__class__.__name__) if not all(isinstance(term, list) or isinstance(term, tuple) or isinstance(term, Tuple) for term in jcoupling): raise TypeError( 'All elements of jcoupling must be list, tuple or Tuple') if not len(jn) - 1 == len(jcoupling): raise ValueError('jcoupling must have length of %d, got %d' % (len(jn) - 1, len(jcoupling))) if not all(len(x) == 3 for x in jcoupling): raise ValueError('All elements of jcoupling must have length 3') # Build sympified args j = sympify(j) m = sympify(m) jn = Tuple( *[sympify(ji) for ji in jn] ) jcoupling = Tuple( *[Tuple(sympify( n1), sympify(n2), sympify(ji)) for (n1, n2, ji) in jcoupling] ) # Check values in coupling scheme give physical state if any(2*ji != int(2*ji) for ji in jn if ji.is_number): raise ValueError('All elements of jn must be integer or half-integer, got: %s' % jn) if any(n1 != int(n1) or n2 != int(n2) for (n1, n2, _) in jcoupling): raise ValueError('Indices in jcoupling must be integers') if any(n1 < 1 or n2 < 1 or n1 > len(jn) or n2 > len(jn) for (n1, n2, _) in jcoupling): raise ValueError('Indices must be between 1 and the number of coupled spin spaces') if any(2*ji != int(2*ji) for (_, _, ji) in jcoupling if ji.is_number): raise ValueError('All coupled j values in coupling scheme must be integer or half-integer') coupled_n, coupled_jn = _build_coupled(jcoupling, len(jn)) jvals = list(jn) for n, (n1, n2) in enumerate(coupled_n): j1 = jvals[min(n1) - 1] j2 = jvals[min(n2) - 1] j3 = coupled_jn[n] if sympify(j1).is_number and sympify(j2).is_number and sympify(j3).is_number: if j1 + j2 < j3: raise ValueError('All couplings must have j1+j2 >= j3, ' 'in coupling number %d got j1,j2,j3: %d,%d,%d' % (n + 1, j1, j2, j3)) if abs(j1 - j2) > j3: raise ValueError("All couplings must have |j1+j2| <= j3, " "in coupling number %d got j1,j2,j3: %d,%d,%d" % (n + 1, j1, j2, j3)) if int(j1 + j2) == j1 + j2: pass jvals[min(n1 + n2) - 1] = j3 if len(jcoupling) > 0 and jcoupling[-1][2] != j: raise ValueError('Last j value coupled together must be the final j of the state') # Return state return State.__new__(cls, j, m, jn, jcoupling) def _print_label(self, printer, *args): label = [printer._print(self.j), printer._print(self.m)] for i, ji in enumerate(self.jn, start=1): label.append('j%d=%s' % ( i, printer._print(ji) )) for jn, (n1, n2) in zip(self.coupled_jn[:-1], self.coupled_n[:-1]): label.append('j(%s)=%s' % ( ','.join(str(i) for i in sorted(n1 + n2)), printer._print(jn) )) return ','.join(label) def _print_label_pretty(self, printer, *args): label = [self.j, self.m] for i, ji in enumerate(self.jn, start=1): symb = 'j%d' % i symb = pretty_symbol(symb) symb = prettyForm(symb + '=') item = prettyForm(*symb.right(printer._print(ji))) label.append(item) for jn, (n1, n2) in zip(self.coupled_jn[:-1], self.coupled_n[:-1]): n = ','.join(pretty_symbol("j%d" % i)[-1] for i in sorted(n1 + n2)) symb = prettyForm('j' + n + '=') item = prettyForm(*symb.right(printer._print(jn))) label.append(item) return self._print_sequence_pretty( label, self._label_separator, printer, *args ) def _print_label_latex(self, printer, *args): label = [self.j, self.m] for i, ji in enumerate(self.jn, start=1): label.append('j_{%d}=%s' % (i, printer._print(ji)) ) for jn, (n1, n2) in zip(self.coupled_jn[:-1], self.coupled_n[:-1]): n = ','.join(str(i) for i in sorted(n1 + n2)) label.append('j_{%s}=%s' % (n, printer._print(jn)) ) return self._print_sequence( label, self._label_separator, printer, *args ) @property def jn(self): return self.label[2] @property def coupling(self): return self.label[3] @property def coupled_jn(self): return _build_coupled(self.label[3], len(self.label[2]))[1] @property def coupled_n(self): return _build_coupled(self.label[3], len(self.label[2]))[0] @classmethod def _eval_hilbert_space(cls, label): j = Add(*label[2]) if j.is_number: return DirectSumHilbertSpace(*[ ComplexSpace(x) for x in range(int(2*j + 1), 0, -2) ]) else: # TODO: Need hilbert space fix, see issue 5732 # Desired behavior: #ji = symbols('ji') #ret = Sum(ComplexSpace(2*ji + 1), (ji, 0, j)) # Temporary fix: return ComplexSpace(2*j + 1) def _represent_coupled_base(self, **options): evect = self.uncoupled_class() if not self.j.is_number: raise ValueError( 'State must not have symbolic j value to represent') if not self.hilbert_space.dimension.is_number: raise ValueError( 'State must not have symbolic j values to represent') result = zeros(self.hilbert_space.dimension, 1) if self.j == int(self.j): start = self.j**2 else: start = (2*self.j - 1)*(1 + 2*self.j)/4 result[start:start + 2*self.j + 1, 0] = evect( self.j, self.m)._represent_base(**options) return result def _eval_rewrite_as_Jx(self, *args, **options): if isinstance(self, Bra): return self._rewrite_basis(Jx, JxBraCoupled, **options) return self._rewrite_basis(Jx, JxKetCoupled, **options) def _eval_rewrite_as_Jy(self, *args, **options): if isinstance(self, Bra): return self._rewrite_basis(Jy, JyBraCoupled, **options) return self._rewrite_basis(Jy, JyKetCoupled, **options) def _eval_rewrite_as_Jz(self, *args, **options): if isinstance(self, Bra): return self._rewrite_basis(Jz, JzBraCoupled, **options) return self._rewrite_basis(Jz, JzKetCoupled, **options) class JxKetCoupled(CoupledSpinState, Ket): """Coupled eigenket of Jx. See JzKetCoupled for the usage of coupled spin eigenstates. See Also ======== JzKetCoupled: Usage of coupled spin states """ @classmethod def dual_class(self): return JxBraCoupled @classmethod def uncoupled_class(self): return JxKet def _represent_default_basis(self, **options): return self._represent_JzOp(None, **options) def _represent_JxOp(self, basis, **options): return self._represent_coupled_base(**options) def _represent_JyOp(self, basis, **options): return self._represent_coupled_base(alpha=pi*Rational(3, 2), **options) def _represent_JzOp(self, basis, **options): return self._represent_coupled_base(beta=pi/2, **options) class JxBraCoupled(CoupledSpinState, Bra): """Coupled eigenbra of Jx. See JzKetCoupled for the usage of coupled spin eigenstates. See Also ======== JzKetCoupled: Usage of coupled spin states """ @classmethod def dual_class(self): return JxKetCoupled @classmethod def uncoupled_class(self): return JxBra class JyKetCoupled(CoupledSpinState, Ket): """Coupled eigenket of Jy. See JzKetCoupled for the usage of coupled spin eigenstates. See Also ======== JzKetCoupled: Usage of coupled spin states """ @classmethod def dual_class(self): return JyBraCoupled @classmethod def uncoupled_class(self): return JyKet def _represent_default_basis(self, **options): return self._represent_JzOp(None, **options) def _represent_JxOp(self, basis, **options): return self._represent_coupled_base(gamma=pi/2, **options) def _represent_JyOp(self, basis, **options): return self._represent_coupled_base(**options) def _represent_JzOp(self, basis, **options): return self._represent_coupled_base(alpha=pi*Rational(3, 2), beta=-pi/2, gamma=pi/2, **options) class JyBraCoupled(CoupledSpinState, Bra): """Coupled eigenbra of Jy. See JzKetCoupled for the usage of coupled spin eigenstates. See Also ======== JzKetCoupled: Usage of coupled spin states """ @classmethod def dual_class(self): return JyKetCoupled @classmethod def uncoupled_class(self): return JyBra class JzKetCoupled(CoupledSpinState, Ket): r"""Coupled eigenket of Jz Spin state that is an eigenket of Jz which represents the coupling of separate spin spaces. The arguments for creating instances of JzKetCoupled are ``j``, ``m``, ``jn`` and an optional ``jcoupling`` argument. The ``j`` and ``m`` options are the total angular momentum quantum numbers, as used for normal states (e.g. JzKet). The other required parameter in ``jn``, which is a tuple defining the `j_n` angular momentum quantum numbers of the product spaces. So for example, if a state represented the coupling of the product basis state `\left|j_1,m_1\right\rangle\times\left|j_2,m_2\right\rangle`, the ``jn`` for this state would be ``(j1,j2)``. The final option is ``jcoupling``, which is used to define how the spaces specified by ``jn`` are coupled, which includes both the order these spaces are coupled together and the quantum numbers that arise from these couplings. The ``jcoupling`` parameter itself is a list of lists, such that each of the sublists defines a single coupling between the spin spaces. If there are N coupled angular momentum spaces, that is ``jn`` has N elements, then there must be N-1 sublists. Each of these sublists making up the ``jcoupling`` parameter have length 3. The first two elements are the indices of the product spaces that are considered to be coupled together. For example, if we want to couple `j_1` and `j_4`, the indices would be 1 and 4. If a state has already been coupled, it is referenced by the smallest index that is coupled, so if `j_2` and `j_4` has already been coupled to some `j_{24}`, then this value can be coupled by referencing it with index 2. The final element of the sublist is the quantum number of the coupled state. So putting everything together, into a valid sublist for ``jcoupling``, if `j_1` and `j_2` are coupled to an angular momentum space with quantum number `j_{12}` with the value ``j12``, the sublist would be ``(1,2,j12)``, N-1 of these sublists are used in the list for ``jcoupling``. Note the ``jcoupling`` parameter is optional, if it is not specified, the default coupling is taken. This default value is to coupled the spaces in order and take the quantum number of the coupling to be the maximum value. For example, if the spin spaces are `j_1`, `j_2`, `j_3`, `j_4`, then the default coupling couples `j_1` and `j_2` to `j_{12}=j_1+j_2`, then, `j_{12}` and `j_3` are coupled to `j_{123}=j_{12}+j_3`, and finally `j_{123}` and `j_4` to `j=j_{123}+j_4`. The jcoupling value that would correspond to this is: ``((1,2,j1+j2),(1,3,j1+j2+j3))`` Parameters ========== args : tuple The arguments that must be passed are ``j``, ``m``, ``jn``, and ``jcoupling``. The ``j`` value is the total angular momentum. The ``m`` value is the eigenvalue of the Jz spin operator. The ``jn`` list are the j values of argular momentum spaces coupled together. The ``jcoupling`` parameter is an optional parameter defining how the spaces are coupled together. See the above description for how these coupling parameters are defined. Examples ======== Defining simple spin states, both numerical and symbolic: >>> from sympy.physics.quantum.spin import JzKetCoupled >>> from sympy import symbols >>> JzKetCoupled(1, 0, (1, 1)) |1,0,j1=1,j2=1> >>> j, m, j1, j2 = symbols('j m j1 j2') >>> JzKetCoupled(j, m, (j1, j2)) |j,m,j1=j1,j2=j2> Defining coupled spin states for more than 2 coupled spaces with various coupling parameters: >>> JzKetCoupled(2, 1, (1, 1, 1)) |2,1,j1=1,j2=1,j3=1,j(1,2)=2> >>> JzKetCoupled(2, 1, (1, 1, 1), ((1,2,2),(1,3,2)) ) |2,1,j1=1,j2=1,j3=1,j(1,2)=2> >>> JzKetCoupled(2, 1, (1, 1, 1), ((2,3,1),(1,2,2)) ) |2,1,j1=1,j2=1,j3=1,j(2,3)=1> Rewriting the JzKetCoupled in terms of eigenkets of the Jx operator: Note: that the resulting eigenstates are JxKetCoupled >>> JzKetCoupled(1,1,(1,1)).rewrite("Jx") |1,-1,j1=1,j2=1>/2 - sqrt(2)*|1,0,j1=1,j2=1>/2 + |1,1,j1=1,j2=1>/2 The rewrite method can be used to convert a coupled state to an uncoupled state. This is done by passing coupled=False to the rewrite function: >>> JzKetCoupled(1, 0, (1, 1)).rewrite('Jz', coupled=False) -sqrt(2)*|1,-1>x|1,1>/2 + sqrt(2)*|1,1>x|1,-1>/2 Get the vector representation of a state in terms of the basis elements of the Jx operator: >>> from sympy.physics.quantum.represent import represent >>> from sympy.physics.quantum.spin import Jx >>> from sympy import S >>> represent(JzKetCoupled(1,-1,(S(1)/2,S(1)/2)), basis=Jx) Matrix([ [ 0], [ 1/2], [sqrt(2)/2], [ 1/2]]) See Also ======== JzKet: Normal spin eigenstates uncouple: Uncoupling of coupling spin states couple: Coupling of uncoupled spin states """ @classmethod def dual_class(self): return JzBraCoupled @classmethod def uncoupled_class(self): return JzKet def _represent_default_basis(self, **options): return self._represent_JzOp(None, **options) def _represent_JxOp(self, basis, **options): return self._represent_coupled_base(beta=pi*Rational(3, 2), **options) def _represent_JyOp(self, basis, **options): return self._represent_coupled_base(alpha=pi*Rational(3, 2), beta=pi/2, gamma=pi/2, **options) def _represent_JzOp(self, basis, **options): return self._represent_coupled_base(**options) class JzBraCoupled(CoupledSpinState, Bra): """Coupled eigenbra of Jz. See the JzKetCoupled for the usage of coupled spin eigenstates. See Also ======== JzKetCoupled: Usage of coupled spin states """ @classmethod def dual_class(self): return JzKetCoupled @classmethod def uncoupled_class(self): return JzBra #----------------------------------------------------------------------------- # Coupling/uncoupling #----------------------------------------------------------------------------- def couple(expr, jcoupling_list=None): """ Couple a tensor product of spin states This function can be used to couple an uncoupled tensor product of spin states. All of the eigenstates to be coupled must be of the same class. It will return a linear combination of eigenstates that are subclasses of CoupledSpinState determined by Clebsch-Gordan angular momentum coupling coefficients. Parameters ========== expr : Expr An expression involving TensorProducts of spin states to be coupled. Each state must be a subclass of SpinState and they all must be the same class. jcoupling_list : list or tuple Elements of this list are sub-lists of length 2 specifying the order of the coupling of the spin spaces. The length of this must be N-1, where N is the number of states in the tensor product to be coupled. The elements of this sublist are the same as the first two elements of each sublist in the ``jcoupling`` parameter defined for JzKetCoupled. If this parameter is not specified, the default value is taken, which couples the first and second product basis spaces, then couples this new coupled space to the third product space, etc Examples ======== Couple a tensor product of numerical states for two spaces: >>> from sympy.physics.quantum.spin import JzKet, couple >>> from sympy.physics.quantum.tensorproduct import TensorProduct >>> couple(TensorProduct(JzKet(1,0), JzKet(1,1))) -sqrt(2)*|1,1,j1=1,j2=1>/2 + sqrt(2)*|2,1,j1=1,j2=1>/2 Numerical coupling of three spaces using the default coupling method, i.e. first and second spaces couple, then this couples to the third space: >>> couple(TensorProduct(JzKet(1,1), JzKet(1,1), JzKet(1,0))) sqrt(6)*|2,2,j1=1,j2=1,j3=1,j(1,2)=2>/3 + sqrt(3)*|3,2,j1=1,j2=1,j3=1,j(1,2)=2>/3 Perform this same coupling, but we define the coupling to first couple the first and third spaces: >>> couple(TensorProduct(JzKet(1,1), JzKet(1,1), JzKet(1,0)), ((1,3),(1,2)) ) sqrt(2)*|2,2,j1=1,j2=1,j3=1,j(1,3)=1>/2 - sqrt(6)*|2,2,j1=1,j2=1,j3=1,j(1,3)=2>/6 + sqrt(3)*|3,2,j1=1,j2=1,j3=1,j(1,3)=2>/3 Couple a tensor product of symbolic states: >>> from sympy import symbols >>> j1,m1,j2,m2 = symbols('j1 m1 j2 m2') >>> couple(TensorProduct(JzKet(j1,m1), JzKet(j2,m2))) Sum(CG(j1, m1, j2, m2, j, m1 + m2)*|j,m1 + m2,j1=j1,j2=j2>, (j, m1 + m2, j1 + j2)) """ a = expr.atoms(TensorProduct) for tp in a: # Allow other tensor products to be in expression if not all([ isinstance(state, SpinState) for state in tp.args]): continue # If tensor product has all spin states, raise error for invalid tensor product state if not all([state.__class__ is tp.args[0].__class__ for state in tp.args]): raise TypeError('All states must be the same basis') expr = expr.subs(tp, _couple(tp, jcoupling_list)) return expr def _couple(tp, jcoupling_list): states = tp.args coupled_evect = states[0].coupled_class() # Define default coupling if none is specified if jcoupling_list is None: jcoupling_list = [] for n in range(1, len(states)): jcoupling_list.append( (1, n + 1) ) # Check jcoupling_list valid if not len(jcoupling_list) == len(states) - 1: raise TypeError('jcoupling_list must be length %d, got %d' % (len(states) - 1, len(jcoupling_list))) if not all( len(coupling) == 2 for coupling in jcoupling_list): raise ValueError('Each coupling must define 2 spaces') if any([n1 == n2 for n1, n2 in jcoupling_list]): raise ValueError('Spin spaces cannot couple to themselves') if all([sympify(n1).is_number and sympify(n2).is_number for n1, n2 in jcoupling_list]): j_test = [0]*len(states) for n1, n2 in jcoupling_list: if j_test[n1 - 1] == -1 or j_test[n2 - 1] == -1: raise ValueError('Spaces coupling j_n\'s are referenced by smallest n value') j_test[max(n1, n2) - 1] = -1 # j values of states to be coupled together jn = [state.j for state in states] mn = [state.m for state in states] # Create coupling_list, which defines all the couplings between all # the spaces from jcoupling_list coupling_list = [] n_list = [ [i + 1] for i in range(len(states)) ] for j_coupling in jcoupling_list: # Least n for all j_n which is coupled as first and second spaces n1, n2 = j_coupling # List of all n's coupled in first and second spaces j1_n = list(n_list[n1 - 1]) j2_n = list(n_list[n2 - 1]) coupling_list.append( (j1_n, j2_n) ) # Set new j_n to be coupling of all j_n in both first and second spaces n_list[ min(n1, n2) - 1 ] = sorted(j1_n + j2_n) if all(state.j.is_number and state.m.is_number for state in states): # Numerical coupling # Iterate over difference between maximum possible j value of each coupling and the actual value diff_max = [ Add( *[ jn[n - 1] - mn[n - 1] for n in coupling[0] + coupling[1] ] ) for coupling in coupling_list ] result = [] for diff in range(diff_max[-1] + 1): # Determine available configurations n = len(coupling_list) tot = binomial(diff + n - 1, diff) for config_num in range(tot): diff_list = _confignum_to_difflist(config_num, diff, n) # Skip the configuration if non-physical # This is a lazy check for physical states given the loose restrictions of diff_max if any( [ d > m for d, m in zip(diff_list, diff_max) ] ): continue # Determine term cg_terms = [] coupled_j = list(jn) jcoupling = [] for (j1_n, j2_n), coupling_diff in zip(coupling_list, diff_list): j1 = coupled_j[ min(j1_n) - 1 ] j2 = coupled_j[ min(j2_n) - 1 ] j3 = j1 + j2 - coupling_diff coupled_j[ min(j1_n + j2_n) - 1 ] = j3 m1 = Add( *[ mn[x - 1] for x in j1_n] ) m2 = Add( *[ mn[x - 1] for x in j2_n] ) m3 = m1 + m2 cg_terms.append( (j1, m1, j2, m2, j3, m3) ) jcoupling.append( (min(j1_n), min(j2_n), j3) ) # Better checks that state is physical if any([ abs(term[5]) > term[4] for term in cg_terms ]): continue if any([ term[0] + term[2] < term[4] for term in cg_terms ]): continue if any([ abs(term[0] - term[2]) > term[4] for term in cg_terms ]): continue coeff = Mul( *[ CG(*term).doit() for term in cg_terms] ) state = coupled_evect(j3, m3, jn, jcoupling) result.append(coeff*state) return Add(*result) else: # Symbolic coupling cg_terms = [] jcoupling = [] sum_terms = [] coupled_j = list(jn) for j1_n, j2_n in coupling_list: j1 = coupled_j[ min(j1_n) - 1 ] j2 = coupled_j[ min(j2_n) - 1 ] if len(j1_n + j2_n) == len(states): j3 = symbols('j') else: j3_name = 'j' + ''.join(["%s" % n for n in j1_n + j2_n]) j3 = symbols(j3_name) coupled_j[ min(j1_n + j2_n) - 1 ] = j3 m1 = Add( *[ mn[x - 1] for x in j1_n] ) m2 = Add( *[ mn[x - 1] for x in j2_n] ) m3 = m1 + m2 cg_terms.append( (j1, m1, j2, m2, j3, m3) ) jcoupling.append( (min(j1_n), min(j2_n), j3) ) sum_terms.append((j3, m3, j1 + j2)) coeff = Mul( *[ CG(*term) for term in cg_terms] ) state = coupled_evect(j3, m3, jn, jcoupling) return Sum(coeff*state, *sum_terms) def uncouple(expr, jn=None, jcoupling_list=None): """ Uncouple a coupled spin state Gives the uncoupled representation of a coupled spin state. Arguments must be either a spin state that is a subclass of CoupledSpinState or a spin state that is a subclass of SpinState and an array giving the j values of the spaces that are to be coupled Parameters ========== expr : Expr The expression containing states that are to be coupled. If the states are a subclass of SpinState, the ``jn`` and ``jcoupling`` parameters must be defined. If the states are a subclass of CoupledSpinState, ``jn`` and ``jcoupling`` will be taken from the state. jn : list or tuple The list of the j-values that are coupled. If state is a CoupledSpinState, this parameter is ignored. This must be defined if state is not a subclass of CoupledSpinState. The syntax of this parameter is the same as the ``jn`` parameter of JzKetCoupled. jcoupling_list : list or tuple The list defining how the j-values are coupled together. If state is a CoupledSpinState, this parameter is ignored. This must be defined if state is not a subclass of CoupledSpinState. The syntax of this parameter is the same as the ``jcoupling`` parameter of JzKetCoupled. Examples ======== Uncouple a numerical state using a CoupledSpinState state: >>> from sympy.physics.quantum.spin import JzKetCoupled, uncouple >>> from sympy import S >>> uncouple(JzKetCoupled(1, 0, (S(1)/2, S(1)/2))) sqrt(2)*|1/2,-1/2>x|1/2,1/2>/2 + sqrt(2)*|1/2,1/2>x|1/2,-1/2>/2 Perform the same calculation using a SpinState state: >>> from sympy.physics.quantum.spin import JzKet >>> uncouple(JzKet(1, 0), (S(1)/2, S(1)/2)) sqrt(2)*|1/2,-1/2>x|1/2,1/2>/2 + sqrt(2)*|1/2,1/2>x|1/2,-1/2>/2 Uncouple a numerical state of three coupled spaces using a CoupledSpinState state: >>> uncouple(JzKetCoupled(1, 1, (1, 1, 1), ((1,3,1),(1,2,1)) )) |1,-1>x|1,1>x|1,1>/2 - |1,0>x|1,0>x|1,1>/2 + |1,1>x|1,0>x|1,0>/2 - |1,1>x|1,1>x|1,-1>/2 Perform the same calculation using a SpinState state: >>> uncouple(JzKet(1, 1), (1, 1, 1), ((1,3,1),(1,2,1)) ) |1,-1>x|1,1>x|1,1>/2 - |1,0>x|1,0>x|1,1>/2 + |1,1>x|1,0>x|1,0>/2 - |1,1>x|1,1>x|1,-1>/2 Uncouple a symbolic state using a CoupledSpinState state: >>> from sympy import symbols >>> j,m,j1,j2 = symbols('j m j1 j2') >>> uncouple(JzKetCoupled(j, m, (j1, j2))) Sum(CG(j1, m1, j2, m2, j, m)*|j1,m1>x|j2,m2>, (m1, -j1, j1), (m2, -j2, j2)) Perform the same calculation using a SpinState state >>> uncouple(JzKet(j, m), (j1, j2)) Sum(CG(j1, m1, j2, m2, j, m)*|j1,m1>x|j2,m2>, (m1, -j1, j1), (m2, -j2, j2)) """ a = expr.atoms(SpinState) for state in a: expr = expr.subs(state, _uncouple(state, jn, jcoupling_list)) return expr def _uncouple(state, jn, jcoupling_list): if isinstance(state, CoupledSpinState): jn = state.jn coupled_n = state.coupled_n coupled_jn = state.coupled_jn evect = state.uncoupled_class() elif isinstance(state, SpinState): if jn is None: raise ValueError("Must specify j-values for coupled state") if not (isinstance(jn, list) or isinstance(jn, tuple)): raise TypeError("jn must be list or tuple") if jcoupling_list is None: # Use default jcoupling_list = [] for i in range(1, len(jn)): jcoupling_list.append( (1, 1 + i, Add(*[jn[j] for j in range(i + 1)])) ) if not (isinstance(jcoupling_list, list) or isinstance(jcoupling_list, tuple)): raise TypeError("jcoupling must be a list or tuple") if not len(jcoupling_list) == len(jn) - 1: raise ValueError("Must specify 2 fewer coupling terms than the number of j values") coupled_n, coupled_jn = _build_coupled(jcoupling_list, len(jn)) evect = state.__class__ else: raise TypeError("state must be a spin state") j = state.j m = state.m coupling_list = [] j_list = list(jn) # Create coupling, which defines all the couplings between all the spaces for j3, (n1, n2) in zip(coupled_jn, coupled_n): # j's which are coupled as first and second spaces j1 = j_list[n1[0] - 1] j2 = j_list[n2[0] - 1] # Build coupling list coupling_list.append( (n1, n2, j1, j2, j3) ) # Set new value in j_list j_list[min(n1 + n2) - 1] = j3 if j.is_number and m.is_number: diff_max = [ 2*x for x in jn ] diff = Add(*jn) - m n = len(jn) tot = binomial(diff + n - 1, diff) result = [] for config_num in range(tot): diff_list = _confignum_to_difflist(config_num, diff, n) if any( [ d > p for d, p in zip(diff_list, diff_max) ] ): continue cg_terms = [] for coupling in coupling_list: j1_n, j2_n, j1, j2, j3 = coupling m1 = Add( *[ jn[x - 1] - diff_list[x - 1] for x in j1_n ] ) m2 = Add( *[ jn[x - 1] - diff_list[x - 1] for x in j2_n ] ) m3 = m1 + m2 cg_terms.append( (j1, m1, j2, m2, j3, m3) ) coeff = Mul( *[ CG(*term).doit() for term in cg_terms ] ) state = TensorProduct( *[ evect(j, j - d) for j, d in zip(jn, diff_list) ] ) result.append(coeff*state) return Add(*result) else: # Symbolic coupling m_str = "m1:%d" % (len(jn) + 1) mvals = symbols(m_str) cg_terms = [(j1, Add(*[mvals[n - 1] for n in j1_n]), j2, Add(*[mvals[n - 1] for n in j2_n]), j3, Add(*[mvals[n - 1] for n in j1_n + j2_n])) for j1_n, j2_n, j1, j2, j3 in coupling_list[:-1] ] cg_terms.append(*[(j1, Add(*[mvals[n - 1] for n in j1_n]), j2, Add(*[mvals[n - 1] for n in j2_n]), j, m) for j1_n, j2_n, j1, j2, j3 in [coupling_list[-1]] ]) cg_coeff = Mul(*[CG(*cg_term) for cg_term in cg_terms]) sum_terms = [ (m, -j, j) for j, m in zip(jn, mvals) ] state = TensorProduct( *[ evect(j, m) for j, m in zip(jn, mvals) ] ) return Sum(cg_coeff*state, *sum_terms) def _confignum_to_difflist(config_num, diff, list_len): # Determines configuration of diffs into list_len number of slots diff_list = [] for n in range(list_len): prev_diff = diff # Number of spots after current one rem_spots = list_len - n - 1 # Number of configurations of distributing diff among the remaining spots rem_configs = binomial(diff + rem_spots - 1, diff) while config_num >= rem_configs: config_num -= rem_configs diff -= 1 rem_configs = binomial(diff + rem_spots - 1, diff) diff_list.append(prev_diff - diff) return diff_list
34.048131
131
0.580363
3f7469488053355fd4e40e749641bd484d069e65
45,874
py
Python
pandas/core/indexes/interval.py
mwaskom/pandas
d1010643fea058ba43c2c7124af75cc462ccf242
[ "PSF-2.0", "Apache-2.0", "BSD-3-Clause-No-Nuclear-License-2014", "MIT", "BSD-3-Clause" ]
3
2017-02-09T20:01:04.000Z
2021-08-11T00:33:41.000Z
pandas/core/indexes/interval.py
mwaskom/pandas
d1010643fea058ba43c2c7124af75cc462ccf242
[ "PSF-2.0", "Apache-2.0", "BSD-3-Clause-No-Nuclear-License-2014", "MIT", "BSD-3-Clause" ]
null
null
null
pandas/core/indexes/interval.py
mwaskom/pandas
d1010643fea058ba43c2c7124af75cc462ccf242
[ "PSF-2.0", "Apache-2.0", "BSD-3-Clause-No-Nuclear-License-2014", "MIT", "BSD-3-Clause" ]
null
null
null
""" define the IntervalIndex """ import numpy as np from pandas.core.dtypes.missing import notna, isna from pandas.core.dtypes.generic import ABCPeriodIndex from pandas.core.dtypes.dtypes import IntervalDtype from pandas.core.dtypes.cast import maybe_convert_platform from pandas.core.dtypes.common import ( _ensure_platform_int, is_list_like, is_datetime_or_timedelta_dtype, is_integer_dtype, is_object_dtype, is_categorical_dtype, is_float_dtype, is_interval_dtype, is_scalar, is_float, is_number, is_integer) from pandas.core.indexes.base import ( Index, _ensure_index, default_pprint, _index_shared_docs) from pandas._libs import Timestamp, Timedelta from pandas._libs.interval import ( Interval, IntervalMixin, IntervalTree, intervals_to_interval_bounds) from pandas.core.indexes.datetimes import date_range from pandas.core.indexes.timedeltas import timedelta_range from pandas.core.indexes.multi import MultiIndex from pandas.compat.numpy import function as nv from pandas.core.common import ( _all_not_none, _any_none, _asarray_tuplesafe, _count_not_none, is_bool_indexer, _maybe_box_datetimelike, _not_none) from pandas.util._decorators import cache_readonly, Appender from pandas.core.config import get_option from pandas.tseries.frequencies import to_offset from pandas.tseries.offsets import DateOffset import pandas.core.indexes.base as ibase _index_doc_kwargs = dict(ibase._index_doc_kwargs) _index_doc_kwargs.update( dict(klass='IntervalIndex', target_klass='IntervalIndex or list of Intervals')) _VALID_CLOSED = set(['left', 'right', 'both', 'neither']) def _get_next_label(label): dtype = getattr(label, 'dtype', type(label)) if isinstance(label, (Timestamp, Timedelta)): dtype = 'datetime64' if is_datetime_or_timedelta_dtype(dtype): return label + np.timedelta64(1, 'ns') elif is_integer_dtype(dtype): return label + 1 elif is_float_dtype(dtype): return np.nextafter(label, np.infty) else: raise TypeError('cannot determine next label for type %r' % type(label)) def _get_prev_label(label): dtype = getattr(label, 'dtype', type(label)) if isinstance(label, (Timestamp, Timedelta)): dtype = 'datetime64' if is_datetime_or_timedelta_dtype(dtype): return label - np.timedelta64(1, 'ns') elif is_integer_dtype(dtype): return label - 1 elif is_float_dtype(dtype): return np.nextafter(label, -np.infty) else: raise TypeError('cannot determine next label for type %r' % type(label)) def _get_interval_closed_bounds(interval): """ Given an Interval or IntervalIndex, return the corresponding interval with closed bounds. """ left, right = interval.left, interval.right if interval.open_left: left = _get_next_label(left) if interval.open_right: right = _get_prev_label(right) return left, right def _new_IntervalIndex(cls, d): """ This is called upon unpickling, rather than the default which doesn't have arguments and breaks __new__ """ return cls.from_arrays(**d) class IntervalIndex(IntervalMixin, Index): """ Immutable Index implementing an ordered, sliceable set. IntervalIndex represents an Index of intervals that are all closed on the same side. .. versionadded:: 0.20.0 .. warning:: The indexing behaviors are provisional and may change in a future version of pandas. Attributes ---------- left, right : array-like (1-dimensional) Left and right bounds for each interval. closed : {'left', 'right', 'both', 'neither'}, optional Whether the intervals are closed on the left-side, right-side, both or neither. Defaults to 'right'. name : object, optional Name to be stored in the index. copy : boolean, default False Copy the meta-data mid values is_non_overlapping_monotonic Methods ------- from_arrays from_tuples from_breaks from_intervals contains Examples --------- A new ``IntervalIndex`` is typically constructed using :func:`interval_range`: >>> pd.interval_range(start=0, end=5) IntervalIndex([(0, 1], (1, 2], (2, 3], (3, 4], (4, 5]] closed='right', dtype='interval[int64]') It may also be constructed using one of the constructor methods :meth:`IntervalIndex.from_arrays`, :meth:`IntervalIndex.from_breaks`, :meth:`IntervalIndex.from_intervals` and :meth:`IntervalIndex.from_tuples`. See further examples in the doc strings of ``interval_range`` and the mentioned constructor methods. Notes ------ See the `user guide <http://pandas.pydata.org/pandas-docs/stable/advanced.html#intervalindex>`_ for more. See Also -------- Index : The base pandas Index type Interval : A bounded slice-like interval interval_range : Function to create a fixed frequency IntervalIndex, IntervalIndex.from_arrays, IntervalIndex.from_breaks, IntervalIndex.from_intervals, IntervalIndex.from_tuples cut, qcut : convert arrays of continuous data into categoricals/series of ``Interval``. """ _typ = 'intervalindex' _comparables = ['name'] _attributes = ['name', 'closed'] _allow_index_ops = True # we would like our indexing holder to defer to us _defer_to_indexing = True _mask = None def __new__(cls, data, closed=None, name=None, copy=False, dtype=None, fastpath=False, verify_integrity=True): if fastpath: return cls._simple_new(data.left, data.right, closed, name, copy=copy, verify_integrity=False) if name is None and hasattr(data, 'name'): name = data.name if isinstance(data, IntervalIndex): left = data.left right = data.right closed = data.closed else: # don't allow scalars if is_scalar(data): cls._scalar_data_error(data) data = maybe_convert_platform(data) left, right, infer_closed = intervals_to_interval_bounds(data) if _all_not_none(closed, infer_closed) and closed != infer_closed: # GH 18421 msg = ("conflicting values for closed: constructor got " "'{closed}', inferred from data '{infer_closed}'" .format(closed=closed, infer_closed=infer_closed)) raise ValueError(msg) closed = closed or infer_closed return cls._simple_new(left, right, closed, name, copy=copy, verify_integrity=verify_integrity) @classmethod def _simple_new(cls, left, right, closed=None, name=None, copy=False, verify_integrity=True): result = IntervalMixin.__new__(cls) if closed is None: closed = 'right' left = _ensure_index(left, copy=copy) right = _ensure_index(right, copy=copy) # coerce dtypes to match if needed if is_float_dtype(left) and is_integer_dtype(right): right = right.astype(left.dtype) if is_float_dtype(right) and is_integer_dtype(left): left = left.astype(right.dtype) if type(left) != type(right): raise ValueError("must not have differing left [{}] " "and right [{}] types".format( type(left), type(right))) if isinstance(left, ABCPeriodIndex): raise ValueError("Period dtypes are not supported, " "use a PeriodIndex instead") result._left = left result._right = right result._closed = closed result.name = name if verify_integrity: result._validate() result._reset_identity() return result @Appender(_index_shared_docs['_shallow_copy']) def _shallow_copy(self, left=None, right=None, **kwargs): if left is None: # no values passed left, right = self.left, self.right elif right is None: # only single value passed, could be an IntervalIndex # or array of Intervals if not isinstance(left, IntervalIndex): left = type(self).from_intervals(left) left, right = left.left, left.right else: # both left and right are values pass attributes = self._get_attributes_dict() attributes.update(kwargs) attributes['verify_integrity'] = False return self._simple_new(left, right, **attributes) def _validate(self): """ Verify that the IntervalIndex is valid. """ if self.closed not in _VALID_CLOSED: raise ValueError("invalid options for 'closed': %s" % self.closed) if len(self.left) != len(self.right): raise ValueError('left and right must have the same length') left_mask = notna(self.left) right_mask = notna(self.right) if not (left_mask == right_mask).all(): raise ValueError('missing values must be missing in the same ' 'location both left and right sides') if not (self.left[left_mask] <= self.right[left_mask]).all(): raise ValueError('left side of interval must be <= right side') self._mask = ~left_mask @cache_readonly def hasnans(self): """ return if I have any nans; enables various perf speedups """ return self._isnan.any() @cache_readonly def _isnan(self): """ return if each value is nan""" if self._mask is None: self._mask = isna(self.left) return self._mask @cache_readonly def _engine(self): return IntervalTree(self.left, self.right, closed=self.closed) @property def _constructor(self): return type(self).from_intervals def __contains__(self, key): """ return a boolean if this key is IN the index We *only* accept an Interval Parameters ---------- key : Interval Returns ------- boolean """ if not isinstance(key, Interval): return False try: self.get_loc(key) return True except KeyError: return False def contains(self, key): """ return a boolean if this key is IN the index We accept / allow keys to be not *just* actual objects. Parameters ---------- key : int, float, Interval Returns ------- boolean """ try: self.get_loc(key) return True except KeyError: return False @classmethod def from_breaks(cls, breaks, closed='right', name=None, copy=False): """ Construct an IntervalIndex from an array of splits Parameters ---------- breaks : array-like (1-dimensional) Left and right bounds for each interval. closed : {'left', 'right', 'both', 'neither'}, optional Whether the intervals are closed on the left-side, right-side, both or neither. Defaults to 'right'. name : object, optional Name to be stored in the index. copy : boolean, default False copy the data Examples -------- >>> pd.IntervalIndex.from_breaks([0, 1, 2, 3]) IntervalIndex([(0, 1], (1, 2], (2, 3]] closed='right', dtype='interval[int64]') See Also -------- interval_range : Function to create a fixed frequency IntervalIndex IntervalIndex.from_arrays : Construct an IntervalIndex from a left and right array IntervalIndex.from_intervals : Construct an IntervalIndex from an array of Interval objects IntervalIndex.from_tuples : Construct an IntervalIndex from a list/array of tuples """ breaks = maybe_convert_platform(breaks) return cls.from_arrays(breaks[:-1], breaks[1:], closed, name=name, copy=copy) @classmethod def from_arrays(cls, left, right, closed='right', name=None, copy=False): """ Construct an IntervalIndex from a a left and right array Parameters ---------- left : array-like (1-dimensional) Left bounds for each interval. right : array-like (1-dimensional) Right bounds for each interval. closed : {'left', 'right', 'both', 'neither'}, optional Whether the intervals are closed on the left-side, right-side, both or neither. Defaults to 'right'. name : object, optional Name to be stored in the index. copy : boolean, default False copy the data Examples -------- >>> pd.IntervalIndex.from_arrays([0, 1, 2], [1, 2, 3]) IntervalIndex([(0, 1], (1, 2], (2, 3]] closed='right', dtype='interval[int64]') See Also -------- interval_range : Function to create a fixed frequency IntervalIndex IntervalIndex.from_breaks : Construct an IntervalIndex from an array of splits IntervalIndex.from_intervals : Construct an IntervalIndex from an array of Interval objects IntervalIndex.from_tuples : Construct an IntervalIndex from a list/array of tuples """ left = maybe_convert_platform(left) right = maybe_convert_platform(right) return cls._simple_new(left, right, closed, name=name, copy=copy, verify_integrity=True) @classmethod def from_intervals(cls, data, name=None, copy=False): """ Construct an IntervalIndex from a 1d array of Interval objects Parameters ---------- data : array-like (1-dimensional) Array of Interval objects. All intervals must be closed on the same sides. name : object, optional Name to be stored in the index. copy : boolean, default False by-default copy the data, this is compat only and ignored Examples -------- >>> pd.IntervalIndex.from_intervals([pd.Interval(0, 1), ... pd.Interval(1, 2)]) IntervalIndex([(0, 1], (1, 2]] closed='right', dtype='interval[int64]') The generic Index constructor work identically when it infers an array of all intervals: >>> pd.Index([pd.Interval(0, 1), pd.Interval(1, 2)]) IntervalIndex([(0, 1], (1, 2]] closed='right', dtype='interval[int64]') See Also -------- interval_range : Function to create a fixed frequency IntervalIndex IntervalIndex.from_arrays : Construct an IntervalIndex from a left and right array IntervalIndex.from_breaks : Construct an IntervalIndex from an array of splits IntervalIndex.from_tuples : Construct an IntervalIndex from a list/array of tuples """ if isinstance(data, IntervalIndex): left, right, closed = data.left, data.right, data.closed name = name or data.name else: data = maybe_convert_platform(data) left, right, closed = intervals_to_interval_bounds(data) return cls.from_arrays(left, right, closed, name=name, copy=False) @classmethod def from_tuples(cls, data, closed='right', name=None, copy=False): """ Construct an IntervalIndex from a list/array of tuples Parameters ---------- data : array-like (1-dimensional) Array of tuples closed : {'left', 'right', 'both', 'neither'}, optional Whether the intervals are closed on the left-side, right-side, both or neither. Defaults to 'right'. name : object, optional Name to be stored in the index. copy : boolean, default False by-default copy the data, this is compat only and ignored Examples -------- >>> pd.IntervalIndex.from_tuples([(0, 1), (1,2)]) IntervalIndex([(0, 1], (1, 2]], closed='right', dtype='interval[int64]') See Also -------- interval_range : Function to create a fixed frequency IntervalIndex IntervalIndex.from_arrays : Construct an IntervalIndex from a left and right array IntervalIndex.from_breaks : Construct an IntervalIndex from an array of splits IntervalIndex.from_intervals : Construct an IntervalIndex from an array of Interval objects """ if len(data): left, right = [], [] else: left = right = data for d in data: if isna(d): left.append(np.nan) right.append(np.nan) continue l, r = d left.append(l) right.append(r) # TODO # if we have nulls and we previous had *only* # integer data, then we have changed the dtype return cls.from_arrays(left, right, closed, name=name, copy=False) def to_tuples(self): return Index(_asarray_tuplesafe(zip(self.left, self.right))) @cache_readonly def _multiindex(self): return MultiIndex.from_arrays([self.left, self.right], names=['left', 'right']) @property def left(self): return self._left @property def right(self): return self._right @property def closed(self): return self._closed def __len__(self): return len(self.left) @cache_readonly def values(self): """ Returns the IntervalIndex's data as a numpy array of Interval objects (with dtype='object') """ left = self.left right = self.right mask = self._isnan closed = self._closed result = np.empty(len(left), dtype=object) for i in range(len(left)): if mask[i]: result[i] = np.nan else: result[i] = Interval(left[i], right[i], closed) return result def __array__(self, result=None): """ the array interface, return my values """ return self.values def __array_wrap__(self, result, context=None): # we don't want the superclass implementation return result def _array_values(self): return self.values def __reduce__(self): d = dict(left=self.left, right=self.right) d.update(self._get_attributes_dict()) return _new_IntervalIndex, (self.__class__, d), None @Appender(_index_shared_docs['copy']) def copy(self, deep=False, name=None): left = self.left.copy(deep=True) if deep else self.left right = self.right.copy(deep=True) if deep else self.right name = name if name is not None else self.name closed = self.closed return type(self).from_arrays(left, right, closed=closed, name=name) @Appender(_index_shared_docs['astype']) def astype(self, dtype, copy=True): if is_interval_dtype(dtype): if copy: self = self.copy() return self elif is_object_dtype(dtype): return Index(self.values, dtype=object) elif is_categorical_dtype(dtype): from pandas import Categorical return Categorical(self, ordered=True) raise ValueError('Cannot cast IntervalIndex to dtype %s' % dtype) @cache_readonly def dtype(self): return IntervalDtype.construct_from_string(str(self.left.dtype)) @property def inferred_type(self): return 'interval' @Appender(Index.memory_usage.__doc__) def memory_usage(self, deep=False): # we don't use an explict engine # so return the bytes here return (self.left.memory_usage(deep=deep) + self.right.memory_usage(deep=deep)) @cache_readonly def mid(self): """Returns the mid-point of each interval in the index as an array """ try: return Index(0.5 * (self.left.values + self.right.values)) except TypeError: # datetime safe version delta = self.right.values - self.left.values return Index(self.left.values + 0.5 * delta) @cache_readonly def is_monotonic(self): return self._multiindex.is_monotonic @cache_readonly def is_monotonic_increasing(self): return self._multiindex.is_monotonic_increasing @cache_readonly def is_monotonic_decreasing(self): return self._multiindex.is_monotonic_decreasing @cache_readonly def is_unique(self): return self._multiindex.is_unique @cache_readonly def is_non_overlapping_monotonic(self): # must be increasing (e.g., [0, 1), [1, 2), [2, 3), ... ) # or decreasing (e.g., [-1, 0), [-2, -1), [-3, -2), ...) # we already require left <= right # strict inequality for closed == 'both'; equality implies overlapping # at a point when both sides of intervals are included if self.closed == 'both': return bool((self.right[:-1] < self.left[1:]).all() or (self.left[:-1] > self.right[1:]).all()) # non-strict inequality when closed != 'both'; at least one side is # not included in the intervals, so equality does not imply overlapping return bool((self.right[:-1] <= self.left[1:]).all() or (self.left[:-1] >= self.right[1:]).all()) @Appender(_index_shared_docs['_convert_scalar_indexer']) def _convert_scalar_indexer(self, key, kind=None): if kind == 'iloc': return super(IntervalIndex, self)._convert_scalar_indexer( key, kind=kind) return key def _maybe_cast_slice_bound(self, label, side, kind): return getattr(self, side)._maybe_cast_slice_bound(label, side, kind) @Appender(_index_shared_docs['_convert_list_indexer']) def _convert_list_indexer(self, keyarr, kind=None): """ we are passed a list-like indexer. Return the indexer for matching intervals. """ locs = self.get_indexer_for(keyarr) # we have missing values if (locs == -1).any(): raise KeyError return locs def _maybe_cast_indexed(self, key): """ we need to cast the key, which could be a scalar or an array-like to the type of our subtype """ if isinstance(key, IntervalIndex): return key subtype = self.dtype.subtype if is_float_dtype(subtype): if is_integer(key): key = float(key) elif isinstance(key, (np.ndarray, Index)): key = key.astype('float64') elif is_integer_dtype(subtype): if is_integer(key): key = int(key) return key def _check_method(self, method): if method is None: return if method in ['bfill', 'backfill', 'pad', 'ffill', 'nearest']: raise NotImplementedError( 'method {} not yet implemented for ' 'IntervalIndex'.format(method)) raise ValueError("Invalid fill method") def _searchsorted_monotonic(self, label, side, exclude_label=False): if not self.is_non_overlapping_monotonic: raise KeyError('can only get slices from an IntervalIndex if ' 'bounds are non-overlapping and all monotonic ' 'increasing or decreasing') if isinstance(label, IntervalMixin): raise NotImplementedError if ((side == 'left' and self.left.is_monotonic_increasing) or (side == 'right' and self.left.is_monotonic_decreasing)): sub_idx = self.right if self.open_right or exclude_label: label = _get_next_label(label) else: sub_idx = self.left if self.open_left or exclude_label: label = _get_prev_label(label) return sub_idx._searchsorted_monotonic(label, side) def _get_loc_only_exact_matches(self, key): if isinstance(key, Interval): if not self.is_unique: raise ValueError("cannot index with a slice Interval" " and a non-unique index") # TODO: this expands to a tuple index, see if we can # do better return Index(self._multiindex.values).get_loc(key) raise KeyError def _find_non_overlapping_monotonic_bounds(self, key): if isinstance(key, IntervalMixin): start = self._searchsorted_monotonic( key.left, 'left', exclude_label=key.open_left) stop = self._searchsorted_monotonic( key.right, 'right', exclude_label=key.open_right) elif isinstance(key, slice): # slice start, stop = key.start, key.stop if (key.step or 1) != 1: raise NotImplementedError("cannot slice with a slice step") if start is None: start = 0 else: start = self._searchsorted_monotonic(start, 'left') if stop is None: stop = len(self) else: stop = self._searchsorted_monotonic(stop, 'right') else: # scalar or index-like start = self._searchsorted_monotonic(key, 'left') stop = self._searchsorted_monotonic(key, 'right') return start, stop def get_loc(self, key, method=None): """Get integer location, slice or boolean mask for requested label. Parameters ---------- key : label method : {None}, optional * default: matches where the label is within an interval only. Returns ------- loc : int if unique index, slice if monotonic index, else mask Examples --------- >>> i1, i2 = pd.Interval(0, 1), pd.Interval(1, 2) >>> index = pd.IntervalIndex.from_intervals([i1, i2]) >>> index.get_loc(1) 0 You can also supply an interval or an location for a point inside an interval. >>> index.get_loc(pd.Interval(0, 2)) array([0, 1], dtype=int64) >>> index.get_loc(1.5) 1 If a label is in several intervals, you get the locations of all the relevant intervals. >>> i3 = pd.Interval(0, 2) >>> overlapping_index = pd.IntervalIndex.from_intervals([i2, i3]) >>> overlapping_index.get_loc(1.5) array([0, 1], dtype=int64) """ self._check_method(method) original_key = key key = self._maybe_cast_indexed(key) if self.is_non_overlapping_monotonic: if isinstance(key, Interval): left = self._maybe_cast_slice_bound(key.left, 'left', None) right = self._maybe_cast_slice_bound(key.right, 'right', None) key = Interval(left, right, key.closed) else: key = self._maybe_cast_slice_bound(key, 'left', None) start, stop = self._find_non_overlapping_monotonic_bounds(key) if start is None or stop is None: return slice(start, stop) elif start + 1 == stop: return start elif start < stop: return slice(start, stop) else: raise KeyError(original_key) else: # use the interval tree if isinstance(key, Interval): left, right = _get_interval_closed_bounds(key) return self._engine.get_loc_interval(left, right) else: return self._engine.get_loc(key) def get_value(self, series, key): if is_bool_indexer(key): loc = key elif is_list_like(key): loc = self.get_indexer(key) elif isinstance(key, slice): if not (key.step is None or key.step == 1): raise ValueError("cannot support not-default " "step in a slice") try: loc = self.get_loc(key) except TypeError: # we didn't find exact intervals # or are non-unique raise ValueError("unable to slice with " "this key: {}".format(key)) else: loc = self.get_loc(key) return series.iloc[loc] @Appender(_index_shared_docs['get_indexer'] % _index_doc_kwargs) def get_indexer(self, target, method=None, limit=None, tolerance=None): self._check_method(method) target = _ensure_index(target) target = self._maybe_cast_indexed(target) if self.equals(target): return np.arange(len(self), dtype='intp') if self.is_non_overlapping_monotonic: start, stop = self._find_non_overlapping_monotonic_bounds(target) start_plus_one = start + 1 if not ((start_plus_one < stop).any()): return np.where(start_plus_one == stop, start, -1) if not self.is_unique: raise ValueError("cannot handle non-unique indices") # IntervalIndex if isinstance(target, IntervalIndex): indexer = self._get_reindexer(target) # non IntervalIndex else: indexer = np.concatenate([self.get_loc(i) for i in target]) return _ensure_platform_int(indexer) def _get_reindexer(self, target): """ Return an indexer for a target IntervalIndex with self """ # find the left and right indexers lindexer = self._engine.get_indexer(target.left.values) rindexer = self._engine.get_indexer(target.right.values) # we want to return an indexer on the intervals # however, our keys could provide overlapping of multiple # intervals, so we iterate thru the indexers and construct # a set of indexers indexer = [] n = len(self) for i, (l, r) in enumerate(zip(lindexer, rindexer)): target_value = target[i] # matching on the lhs bound if (l != -1 and self.closed == 'right' and target_value.left == self[l].right): l += 1 # matching on the lhs bound if (r != -1 and self.closed == 'left' and target_value.right == self[r].left): r -= 1 # not found if l == -1 and r == -1: indexer.append(np.array([-1])) elif r == -1: indexer.append(np.arange(l, n)) elif l == -1: # care about left/right closed here value = self[i] # target.closed same as self.closed if self.closed == target.closed: if target_value.left < value.left: indexer.append(np.array([-1])) continue # target.closed == 'left' elif self.closed == 'right': if target_value.left <= value.left: indexer.append(np.array([-1])) continue # target.closed == 'right' elif self.closed == 'left': if target_value.left <= value.left: indexer.append(np.array([-1])) continue indexer.append(np.arange(0, r + 1)) else: indexer.append(np.arange(l, r + 1)) return np.concatenate(indexer) @Appender(_index_shared_docs['get_indexer_non_unique'] % _index_doc_kwargs) def get_indexer_non_unique(self, target): target = self._maybe_cast_indexed(_ensure_index(target)) return super(IntervalIndex, self).get_indexer_non_unique(target) @Appender(_index_shared_docs['where']) def where(self, cond, other=None): if other is None: other = self._na_value values = np.where(cond, self.values, other) return self._shallow_copy(values) def delete(self, loc): new_left = self.left.delete(loc) new_right = self.right.delete(loc) return self._shallow_copy(new_left, new_right) def insert(self, loc, item): if isinstance(item, Interval): if item.closed != self.closed: raise ValueError('inserted item must be closed on the same ' 'side as the index') left_insert = item.left right_insert = item.right elif is_scalar(item) and isna(item): # GH 18295 left_insert = right_insert = item else: raise ValueError('can only insert Interval objects and NA into ' 'an IntervalIndex') new_left = self.left.insert(loc, left_insert) new_right = self.right.insert(loc, right_insert) return self._shallow_copy(new_left, new_right) def _as_like_interval_index(self, other, error_msg): self._assert_can_do_setop(other) other = _ensure_index(other) if (not isinstance(other, IntervalIndex) or self.closed != other.closed): raise ValueError(error_msg) return other def _concat_same_dtype(self, to_concat, name): """ assert that we all have the same .closed we allow a 0-len index here as well """ if not len({i.closed for i in to_concat if len(i)}) == 1: msg = ('can only append two IntervalIndex objects ' 'that are closed on the same side') raise ValueError(msg) return super(IntervalIndex, self)._concat_same_dtype(to_concat, name) @Appender(_index_shared_docs['take'] % _index_doc_kwargs) def take(self, indices, axis=0, allow_fill=True, fill_value=None, **kwargs): nv.validate_take(tuple(), kwargs) indices = _ensure_platform_int(indices) left, right = self.left, self.right if fill_value is None: fill_value = self._na_value mask = indices == -1 if not mask.any(): # we won't change dtype here in this case # if we don't need allow_fill = False taker = lambda x: x.take(indices, allow_fill=allow_fill, fill_value=fill_value) try: new_left = taker(left) new_right = taker(right) except ValueError: # we need to coerce; migth have NA's in an # integer dtype new_left = taker(left.astype(float)) new_right = taker(right.astype(float)) return self._shallow_copy(new_left, new_right) def __getitem__(self, value): mask = self._isnan[value] if is_scalar(mask) and mask: return self._na_value left = self.left[value] right = self.right[value] # scalar if not isinstance(left, Index): return Interval(left, right, self.closed) return self._shallow_copy(left, right) # __repr__ associated methods are based on MultiIndex def _format_with_header(self, header, **kwargs): return header + list(self._format_native_types(**kwargs)) def _format_native_types(self, na_rep='', quoting=None, **kwargs): """ actually format my specific types """ from pandas.io.formats.format import IntervalArrayFormatter return IntervalArrayFormatter(values=self, na_rep=na_rep, justify='all').get_result() def _format_data(self, name=None): # TODO: integrate with categorical and make generic # name argument is unused here; just for compat with base / categorical n = len(self) max_seq_items = min((get_option( 'display.max_seq_items') or n) // 10, 10) formatter = str if n == 0: summary = '[]' elif n == 1: first = formatter(self[0]) summary = '[{}]'.format(first) elif n == 2: first = formatter(self[0]) last = formatter(self[-1]) summary = '[{}, {}]'.format(first, last) else: if n > max_seq_items: n = min(max_seq_items // 2, 10) head = [formatter(x) for x in self[:n]] tail = [formatter(x) for x in self[-n:]] summary = '[{} ... {}]'.format(', '.join(head), ', '.join(tail)) else: head = [] tail = [formatter(x) for x in self] summary = '[{}]'.format(', '.join(tail)) return summary + self._format_space() def _format_attrs(self): attrs = [('closed', repr(self.closed))] if self.name is not None: attrs.append(('name', default_pprint(self.name))) attrs.append(('dtype', "'%s'" % self.dtype)) return attrs def _format_space(self): return "\n%s" % (' ' * (len(self.__class__.__name__) + 1)) def argsort(self, *args, **kwargs): return np.lexsort((self.right, self.left)) def equals(self, other): if self.is_(other): return True # if we can coerce to an II # then we can compare if not isinstance(other, IntervalIndex): if not is_interval_dtype(other): return False other = Index(getattr(other, '.values', other)) return (self.left.equals(other.left) and self.right.equals(other.right) and self.closed == other.closed) def _setop(op_name): def func(self, other): msg = ('can only do set operations between two IntervalIndex ' 'objects that are closed on the same side') other = self._as_like_interval_index(other, msg) result = getattr(self._multiindex, op_name)(other._multiindex) result_name = self.name if self.name == other.name else None return type(self).from_tuples(result.values, closed=self.closed, name=result_name) return func union = _setop('union') intersection = _setop('intersection') difference = _setop('difference') symmetric_difference = _setop('symmetric_difference') # TODO: arithmetic operations IntervalIndex._add_logical_methods_disabled() def _is_valid_endpoint(endpoint): """helper for interval_range to check if start/end are valid types""" return any([is_number(endpoint), isinstance(endpoint, Timestamp), isinstance(endpoint, Timedelta), endpoint is None]) def _is_type_compatible(a, b): """helper for interval_range to check type compat of start/end/freq""" is_ts_compat = lambda x: isinstance(x, (Timestamp, DateOffset)) is_td_compat = lambda x: isinstance(x, (Timedelta, DateOffset)) return ((is_number(a) and is_number(b)) or (is_ts_compat(a) and is_ts_compat(b)) or (is_td_compat(a) and is_td_compat(b)) or _any_none(a, b)) def interval_range(start=None, end=None, periods=None, freq=None, name=None, closed='right'): """ Return a fixed frequency IntervalIndex Parameters ---------- start : numeric or datetime-like, default None Left bound for generating intervals end : numeric or datetime-like, default None Right bound for generating intervals periods : integer, default None Number of periods to generate freq : numeric, string, or DateOffset, default None The length of each interval. Must be consistent with the type of start and end, e.g. 2 for numeric, or '5H' for datetime-like. Default is 1 for numeric and 'D' (calendar daily) for datetime-like. name : string, default None Name of the resulting IntervalIndex closed : string, default 'right' options are: 'left', 'right', 'both', 'neither' Notes ----- Of the three parameters: ``start``, ``end``, and ``periods``, exactly two must be specified. Returns ------- rng : IntervalIndex Examples -------- Numeric ``start`` and ``end`` is supported. >>> pd.interval_range(start=0, end=5) IntervalIndex([(0, 1], (1, 2], (2, 3], (3, 4], (4, 5]] closed='right', dtype='interval[int64]') Additionally, datetime-like input is also supported. >>> pd.interval_range(start=pd.Timestamp('2017-01-01'), end=pd.Timestamp('2017-01-04')) IntervalIndex([(2017-01-01, 2017-01-02], (2017-01-02, 2017-01-03], (2017-01-03, 2017-01-04]] closed='right', dtype='interval[datetime64[ns]]') The ``freq`` parameter specifies the frequency between the left and right. endpoints of the individual intervals within the ``IntervalIndex``. For numeric ``start`` and ``end``, the frequency must also be numeric. >>> pd.interval_range(start=0, periods=4, freq=1.5) IntervalIndex([(0.0, 1.5], (1.5, 3.0], (3.0, 4.5], (4.5, 6.0]] closed='right', dtype='interval[float64]') Similarly, for datetime-like ``start`` and ``end``, the frequency must be convertible to a DateOffset. >>> pd.interval_range(start=pd.Timestamp('2017-01-01'), periods=3, freq='MS') IntervalIndex([(2017-01-01, 2017-02-01], (2017-02-01, 2017-03-01], (2017-03-01, 2017-04-01]] closed='right', dtype='interval[datetime64[ns]]') The ``closed`` parameter specifies which endpoints of the individual intervals within the ``IntervalIndex`` are closed. >>> pd.interval_range(end=5, periods=4, closed='both') IntervalIndex([[1, 2], [2, 3], [3, 4], [4, 5]] closed='both', dtype='interval[int64]') See Also -------- IntervalIndex : an Index of intervals that are all closed on the same side. """ if _count_not_none(start, end, periods) != 2: raise ValueError('Of the three parameters: start, end, and periods, ' 'exactly two must be specified') start = _maybe_box_datetimelike(start) end = _maybe_box_datetimelike(end) endpoint = next(_not_none(start, end)) if not _is_valid_endpoint(start): msg = 'start must be numeric or datetime-like, got {start}' raise ValueError(msg.format(start=start)) if not _is_valid_endpoint(end): msg = 'end must be numeric or datetime-like, got {end}' raise ValueError(msg.format(end=end)) if is_float(periods): periods = int(periods) elif not is_integer(periods) and periods is not None: msg = 'periods must be a number, got {periods}' raise TypeError(msg.format(periods=periods)) freq = freq or (1 if is_number(endpoint) else 'D') if not is_number(freq): try: freq = to_offset(freq) except ValueError: raise ValueError('freq must be numeric or convertible to ' 'DateOffset, got {freq}'.format(freq=freq)) # verify type compatibility if not all([_is_type_compatible(start, end), _is_type_compatible(start, freq), _is_type_compatible(end, freq)]): raise TypeError("start, end, freq need to be type compatible") if is_number(endpoint): if periods is None: periods = int((end - start) // freq) if start is None: start = end - periods * freq # force end to be consistent with freq (lower if freq skips over end) end = start + periods * freq # end + freq for inclusive endpoint breaks = np.arange(start, end + freq, freq) elif isinstance(endpoint, Timestamp): # add one to account for interval endpoints (n breaks = n-1 intervals) if periods is not None: periods += 1 breaks = date_range(start=start, end=end, periods=periods, freq=freq) else: # add one to account for interval endpoints (n breaks = n-1 intervals) if periods is not None: periods += 1 breaks = timedelta_range(start=start, end=end, periods=periods, freq=freq) return IntervalIndex.from_breaks(breaks, name=name, closed=closed)
34.336826
79
0.582051
522468155ac7c64ffb929ce098546aad885e3b0d
5,625
py
Python
cogdl/datasets/gtn_data.py
cenyk1230/cogdl
fa1f74d5c3a15b5a52abfc7cd3f04dce4b7dbcce
[ "MIT" ]
null
null
null
cogdl/datasets/gtn_data.py
cenyk1230/cogdl
fa1f74d5c3a15b5a52abfc7cd3f04dce4b7dbcce
[ "MIT" ]
null
null
null
cogdl/datasets/gtn_data.py
cenyk1230/cogdl
fa1f74d5c3a15b5a52abfc7cd3f04dce4b7dbcce
[ "MIT" ]
null
null
null
import os.path as osp import pickle import numpy as np import torch from cogdl.data import Graph, Dataset from cogdl.utils import download_url, untar from . import register_dataset class GTNDataset(Dataset): r"""The network datasets "ACM", "DBLP" and "IMDB" from the `"Graph Transformer Networks" <https://arxiv.org/abs/1911.06455>`_ paper. Args: root (string): Root directory where the dataset should be saved. name (string): The name of the dataset (:obj:`"gtn-acm"`, :obj:`"gtn-dblp"`, :obj:`"gtn-imdb"`). """ def __init__(self, root, name): self.name = name self.url = f"https://github.com/cenyk1230/gtn-data/blob/master/{name}.zip?raw=true" super(GTNDataset, self).__init__(root) self.data = torch.load(self.processed_paths[0]) self.num_edge = len(self.data.adj) self.num_nodes = self.data.x.shape[0] @property def raw_file_names(self): names = ["edges.pkl", "labels.pkl", "node_features.pkl"] return names @property def processed_file_names(self): return ["data.pt"] @property def num_classes(self): return torch.max(self.data.train_target).item() + 1 def read_gtn_data(self, folder): edges = pickle.load(open(osp.join(folder, "edges.pkl"), "rb")) labels = pickle.load(open(osp.join(folder, "labels.pkl"), "rb")) node_features = pickle.load(open(osp.join(folder, "node_features.pkl"), "rb")) data = Graph() data.x = torch.from_numpy(node_features).type(torch.FloatTensor) num_nodes = edges[0].shape[0] node_type = np.zeros((num_nodes), dtype=int) assert len(edges) == 4 assert len(edges[0].nonzero()) == 2 node_type[edges[0].nonzero()[0]] = 0 node_type[edges[0].nonzero()[1]] = 1 node_type[edges[1].nonzero()[0]] = 1 node_type[edges[1].nonzero()[1]] = 0 node_type[edges[2].nonzero()[0]] = 0 node_type[edges[2].nonzero()[1]] = 2 node_type[edges[3].nonzero()[0]] = 2 node_type[edges[3].nonzero()[1]] = 0 print(node_type) data.pos = torch.from_numpy(node_type) edge_list = [] for i, edge in enumerate(edges): edge_tmp = torch.from_numpy(np.vstack((edge.nonzero()[0], edge.nonzero()[1]))).type(torch.LongTensor) edge_list.append(edge_tmp) data.edge_index = torch.cat(edge_list, 1) A = [] for i, edge in enumerate(edges): edge_tmp = torch.from_numpy(np.vstack((edge.nonzero()[0], edge.nonzero()[1]))).type(torch.LongTensor) value_tmp = torch.ones(edge_tmp.shape[1]).type(torch.FloatTensor) A.append((edge_tmp, value_tmp)) edge_tmp = torch.stack((torch.arange(0, num_nodes), torch.arange(0, num_nodes))).type(torch.LongTensor) value_tmp = torch.ones(num_nodes).type(torch.FloatTensor) A.append((edge_tmp, value_tmp)) data.adj = A data.train_node = torch.from_numpy(np.array(labels[0])[:, 0]).type(torch.LongTensor) data.train_target = torch.from_numpy(np.array(labels[0])[:, 1]).type(torch.LongTensor) data.valid_node = torch.from_numpy(np.array(labels[1])[:, 0]).type(torch.LongTensor) data.valid_target = torch.from_numpy(np.array(labels[1])[:, 1]).type(torch.LongTensor) data.test_node = torch.from_numpy(np.array(labels[2])[:, 0]).type(torch.LongTensor) data.test_target = torch.from_numpy(np.array(labels[2])[:, 1]).type(torch.LongTensor) y = np.zeros((num_nodes), dtype=int) x_index = torch.cat((data.train_node, data.valid_node, data.test_node)) y_index = torch.cat((data.train_target, data.valid_target, data.test_target)) y[x_index.numpy()] = y_index.numpy() data.y = torch.from_numpy(y) self.data = data def get(self, idx): assert idx == 0 return self.data def apply_to_device(self, device): self.data.x = self.data.x.to(device) self.data.train_node = self.data.train_node.to(device) self.data.valid_node = self.data.valid_node.to(device) self.data.test_node = self.data.test_node.to(device) self.data.train_target = self.data.train_target.to(device) self.data.valid_target = self.data.valid_target.to(device) self.data.test_target = self.data.test_target.to(device) new_adj = [] for (t1, t2) in self.data.adj: new_adj.append((t1.to(device), t2.to(device))) self.data.adj = new_adj def download(self): download_url(self.url, self.raw_dir, name=self.name + ".zip") untar(self.raw_dir, self.name + ".zip") def process(self): self.read_gtn_data(self.raw_dir) torch.save(self.data, self.processed_paths[0]) def __repr__(self): return "{}()".format(self.name) @register_dataset("gtn-acm") class ACM_GTNDataset(GTNDataset): def __init__(self, data_path="data"): dataset = "gtn-acm" path = osp.join(data_path, dataset) super(ACM_GTNDataset, self).__init__(path, dataset) @register_dataset("gtn-dblp") class DBLP_GTNDataset(GTNDataset): def __init__(self, data_path="data"): dataset = "gtn-dblp" path = osp.join(data_path, dataset) super(DBLP_GTNDataset, self).__init__(path, dataset) @register_dataset("gtn-imdb") class IMDB_GTNDataset(GTNDataset): def __init__(self, data_path="data"): dataset = "gtn-imdb" path = osp.join(data_path, dataset) super(IMDB_GTNDataset, self).__init__(path, dataset)
36.525974
113
0.632889
c41c4d5328470a51353999abe04ca1c1ed9eef82
2,237
py
Python
salvia/wallet/puzzles/prefarm/make_prefarm_ph.py
mikando/salvia-blockchain
02181d0b5a063374f01eea951570dbc661bddc34
[ "Apache-2.0" ]
null
null
null
salvia/wallet/puzzles/prefarm/make_prefarm_ph.py
mikando/salvia-blockchain
02181d0b5a063374f01eea951570dbc661bddc34
[ "Apache-2.0" ]
null
null
null
salvia/wallet/puzzles/prefarm/make_prefarm_ph.py
mikando/salvia-blockchain
02181d0b5a063374f01eea951570dbc661bddc34
[ "Apache-2.0" ]
null
null
null
from clvm.casts import int_from_bytes from clvm_tools import binutils from salvia.consensus.block_rewards import calculate_base_farmer_reward, calculate_pool_reward from salvia.types.blockchain_format.program import Program from salvia.types.condition_opcodes import ConditionOpcode from salvia.util.bech32m import decode_puzzle_hash, encode_puzzle_hash from salvia.util.condition_tools import parse_sexp_to_conditions from salvia.util.ints import uint32 address1 = "txch15gx26ndmacfaqlq8m0yajeggzceu7cvmaz4df0hahkukes695rss6lej7h" # Gene wallet (m/12381/8444/2/42): address2 = "txch1c2cguswhvmdyz9hr3q6hak2h6p9dw4rz82g4707k2xy2sarv705qcce4pn" # Mariano address (m/12381/8444/2/0) ph1 = decode_puzzle_hash(address1) ph2 = decode_puzzle_hash(address2) pool_amounts = int(calculate_pool_reward(uint32(0)) / 2) farmer_amounts = int(calculate_base_farmer_reward(uint32(0)) / 2) assert pool_amounts * 2 == calculate_pool_reward(uint32(0)) assert farmer_amounts * 2 == calculate_base_farmer_reward(uint32(0)) def make_puzzle(amount: int) -> int: puzzle = f"(q . ((51 0x{ph1.hex()} {amount}) (51 0x{ph2.hex()} {amount})))" # print(puzzle) puzzle_prog = Program.to(binutils.assemble(puzzle)) print("Program: ", puzzle_prog) puzzle_hash = puzzle_prog.get_tree_hash() solution = "()" prefix = "xslv" print("PH", puzzle_hash) print(f"Address: {encode_puzzle_hash(puzzle_hash, prefix)}") result = puzzle_prog.run(solution) error, result_human = parse_sexp_to_conditions(result) total_salvia = 0 if error: print(f"Error: {error}") else: assert result_human is not None for cvp in result_human: assert len(cvp.vars) == 2 total_salvia += int_from_bytes(cvp.vars[1]) print( f"{ConditionOpcode(cvp.opcode).name}: {encode_puzzle_hash(cvp.vars[0], prefix)}," f" amount: {int_from_bytes(cvp.vars[1])}" ) return total_salvia total_salvia = 0 print("Pool address: ") total_salvia += make_puzzle(pool_amounts) print("\nFarmer address: ") total_salvia += make_puzzle(farmer_amounts) assert total_salvia == calculate_base_farmer_reward(uint32(0)) + calculate_pool_reward(uint32(0))
36.080645
114
0.734019
254b6dede099cb3cb058a353025fcea46e8213ae
1,409
py
Python
tests/integration/fenics_tests/tutorials/page_9.py
muh-hassani/pyiron_continuum
44777f91a6c5defb0e5f8a7ad74908368bc37aba
[ "BSD-3-Clause" ]
null
null
null
tests/integration/fenics_tests/tutorials/page_9.py
muh-hassani/pyiron_continuum
44777f91a6c5defb0e5f8a7ad74908368bc37aba
[ "BSD-3-Clause" ]
50
2021-02-19T19:33:38.000Z
2022-03-22T14:26:04.000Z
tests/integration/fenics_tests/tutorials/page_9.py
muh-hassani/pyiron_continuum
44777f91a6c5defb0e5f8a7ad74908368bc37aba
[ "BSD-3-Clause" ]
1
2021-09-11T09:25:19.000Z
2021-09-11T09:25:19.000Z
# coding: utf-8 # Copyright (c) Max-Planck-Institut für Eisenforschung GmbH - Computational Materials Design (CM) Department # Distributed under the terms of "New BSD License", see the LICENSE file. from fenics import * from ufl import nabla_div def linear_elasticity(): # Scaled variables L = 1; W = 0.2 mu = 1 rho = 1 delta = W / L gamma = 0.4 * delta ** 2 beta = 1.25 lambda_ = beta g = gamma # Create mesh and define function space mesh = BoxMesh(Point(0, 0, 0), Point(L, W, W), 10, 3, 3) V = VectorFunctionSpace(mesh, 'P', 1) # Define boundary condition tol = 1E-14 def clamped_boundary(x, on_boundary): return on_boundary and x[0] < tol bc = DirichletBC(V, Constant((0, 0, 0)), clamped_boundary) # Define strain and stress def epsilon(u): return 0.5 * (nabla_grad(u) + nabla_grad(u).T) # return sym(nabla_grad(u)) def sigma(u): return lambda_ * nabla_div(u) * Identity(d) + 2 * mu * epsilon(u) # Define variational problem u = TrialFunction(V) d = u.geometric_dimension() # space dimension v = TestFunction(V) f = Constant((0, 0, -rho * g)) T = Constant((0, 0, 0)) a = inner(sigma(u), epsilon(v)) * dx L = dot(f, v) * dx + dot(T, v) * ds # Compute solution u = Function(V) solve(a == L, u, bc) return u.compute_vertex_values(mesh)
26.092593
108
0.605394
c2ed93936cef3e5050f2a18c10ba079293fdadb6
14,655
py
Python
onnx/backend/test/runner/__init__.py
How-Wang/onnx
c940fa3fea84948e46603cab2f86467291443beb
[ "Apache-2.0" ]
1
2022-02-04T07:45:14.000Z
2022-02-04T07:45:14.000Z
onnx/backend/test/runner/__init__.py
How-Wang/onnx
c940fa3fea84948e46603cab2f86467291443beb
[ "Apache-2.0" ]
null
null
null
onnx/backend/test/runner/__init__.py
How-Wang/onnx
c940fa3fea84948e46603cab2f86467291443beb
[ "Apache-2.0" ]
null
null
null
# SPDX-License-Identifier: Apache-2.0 from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals from collections import defaultdict import functools import glob import os import re import shutil import sys import tarfile import tempfile import time import unittest import numpy as np # type: ignore import onnx from onnx import helper, numpy_helper, NodeProto, ModelProto, TypeProto from onnx.backend.base import Backend from urllib.request import urlretrieve from ..loader import load_model_tests from ..case.test_case import TestCase from .item import TestItem from typing import Optional, Pattern, Set, Dict, Text, Type, Sequence, Any, Callable, Union, Iterable, List class BackendIsNotSupposedToImplementIt(unittest.SkipTest): pass def retry_excute(times: int) -> Callable[[Callable[..., Any]], Callable[..., Any]]: assert times >= 1 def wrapper(func: Callable[..., Any]) -> Callable[..., Any]: @functools.wraps(func) def wrapped(*args: Any, **kwargs: Any) -> Any: for i in range(1, times + 1): try: return func(*args, **kwargs) except Exception: print('{} times tried'.format(i)) if i == times: raise time.sleep(5 * i) return wrapped return wrapper class Runner(object): def __init__(self, backend: Type[Backend], parent_module: Optional[str] = None) -> None: self.backend = backend self._parent_module = parent_module self._include_patterns: Set[Pattern[Text]] = set() self._exclude_patterns: Set[Pattern[Text]] = set() self._xfail_patterns: Set[Pattern[Text]] = set() # This is the source of the truth of all test functions. # Properties `test_cases`, `test_suite` and `tests` will be # derived from it. # {category: {name: func}} self._test_items: Dict[Text, Dict[Text, TestItem]] = defaultdict(dict) for rt in load_model_tests(kind='node'): self._add_model_test(rt, 'Node') for rt in load_model_tests(kind='real'): self._add_model_test(rt, 'Real') for rt in load_model_tests(kind='simple'): self._add_model_test(rt, 'Simple') for ct in load_model_tests(kind='pytorch-converted'): self._add_model_test(ct, 'PyTorchConverted') for ot in load_model_tests(kind='pytorch-operator'): self._add_model_test(ot, 'PyTorchOperator') def _get_test_case(self, name: Text) -> Type[unittest.TestCase]: test_case = type(str(name), (unittest.TestCase,), {}) if self._parent_module: test_case.__module__ = self._parent_module return test_case # TODO: Use proper type annotation rather than string # once we drop Python 3.6 support. See # https://www.python.org/dev/peps/pep-0563/. def include(self, pattern: Text) -> 'Runner': self._include_patterns.add(re.compile(pattern)) return self def exclude(self, pattern: Text) -> 'Runner': self._exclude_patterns.add(re.compile(pattern)) return self def xfail(self, pattern: Text) -> 'Runner': self._xfail_patterns.add(re.compile(pattern)) return self def enable_report(self) -> 'Runner': import pytest # type: ignore for category, items_map in self._test_items.items(): for name, item in items_map.items(): item.func = pytest.mark.onnx_coverage(item.proto, category)(item.func) return self @property def _filtered_test_items(self) -> Dict[Text, Dict[Text, TestItem]]: filtered: Dict[Text, Dict[Text, TestItem]] = {} for category, items_map in self._test_items.items(): filtered[category] = {} for name, item in items_map.items(): if (self._include_patterns and (not any(include.search(name) for include in self._include_patterns))): item.func = unittest.skip( 'no matched include pattern' )(item.func) for exclude in self._exclude_patterns: if exclude.search(name): item.func = unittest.skip( 'matched exclude pattern "{}"'.format( exclude.pattern) )(item.func) for xfail in self._xfail_patterns: if xfail.search(name): item.func = unittest.expectedFailure(item.func) filtered[category][name] = item return filtered @property def test_cases(self) -> Dict[str, Type[unittest.TestCase]]: ''' List of test cases to be applied on the parent scope Example usage: globals().update(BackendTest(backend).test_cases) ''' test_cases = {} for category, items_map in self._filtered_test_items.items(): test_case_name = str('OnnxBackend{}Test').format(category) test_case = self._get_test_case(test_case_name) for name, item in sorted(items_map.items()): setattr(test_case, name, item.func) test_cases[test_case_name] = test_case return test_cases @property def test_suite(self) -> unittest.TestSuite: ''' TestSuite that can be run by TestRunner Example usage: unittest.TextTestRunner().run(BackendTest(backend).test_suite) ''' suite = unittest.TestSuite() for case in sorted(self.test_cases.values()): suite.addTests(unittest.defaultTestLoader.loadTestsFromTestCase(case)) return suite # For backward compatibility (we used to expose `.tests`) @property def tests(self) -> Type[unittest.TestCase]: ''' One single unittest.TestCase that hosts all the test functions Example usage: onnx_backend_tests = BackendTest(backend).tests ''' tests = self._get_test_case('OnnxBackendTest') for items_map in sorted(self._filtered_test_items.values()): for name, item in sorted(items_map.items()): setattr(tests, name, item.func) return tests @classmethod def assert_similar_outputs(cls, ref_outputs: Sequence[Any], outputs: Sequence[Any], rtol: float, atol: float) -> None: np.testing.assert_equal(len(outputs), len(ref_outputs)) for i in range(len(outputs)): if isinstance(outputs[i], (list, tuple)): for j in range(len(outputs[i])): cls.assert_similar_outputs(ref_outputs[i][j], outputs[i][j], rtol, atol) else: np.testing.assert_equal(outputs[i].dtype, ref_outputs[i].dtype) if ref_outputs[i].dtype == np.object: np.testing.assert_array_equal(outputs[i], ref_outputs[i]) else: np.testing.assert_allclose( outputs[i], ref_outputs[i], rtol=rtol, atol=atol) @classmethod @retry_excute(3) def download_model(cls, model_test: TestCase, model_dir: Text, models_dir: Text) -> None: # On Windows, NamedTemporaryFile can not be opened for a # second time download_file = tempfile.NamedTemporaryFile(delete=False) try: download_file.close() print('Start downloading model {} from {}'.format( model_test.model_name, model_test.url)) urlretrieve(model_test.url, download_file.name) print('Done') with tarfile.open(download_file.name) as t: t.extractall(models_dir) except Exception as e: print('Failed to prepare data for model {}: {}'.format( model_test.model_name, e)) raise finally: os.remove(download_file.name) @classmethod def prepare_model_data(cls, model_test: TestCase) -> Text: onnx_home = os.path.expanduser(os.getenv('ONNX_HOME', os.path.join('~', '.onnx'))) models_dir = os.getenv('ONNX_MODELS', os.path.join(onnx_home, 'models')) model_dir: Text = os.path.join(models_dir, model_test.model_name) if not os.path.exists(os.path.join(model_dir, 'model.onnx')): if os.path.exists(model_dir): bi = 0 while True: dest = '{}.old.{}'.format(model_dir, bi) if os.path.exists(dest): bi += 1 continue shutil.move(model_dir, dest) break os.makedirs(model_dir) cls.download_model(model_test=model_test, model_dir=model_dir, models_dir=models_dir) return model_dir def _add_test(self, category: Text, test_name: Text, test_func: Callable[..., Any], report_item: List[Optional[Union[ModelProto, NodeProto]]], devices: Iterable[Text] = ('CPU', 'CUDA'), ) -> None: # We don't prepend the 'test_' prefix to improve greppability if not test_name.startswith('test_'): raise ValueError( 'Test name must start with test_: {}'.format(test_name)) def add_device_test(device: Text) -> None: device_test_name = '{}_{}'.format(test_name, device.lower()) if device_test_name in self._test_items[category]: raise ValueError( 'Duplicated test name "{}" in category "{}"'.format( device_test_name, category)) @unittest.skipIf( # type: ignore not self.backend.supports_device(device), "Backend doesn't support device {}".format(device)) @functools.wraps(test_func) def device_test_func(*args: Any, **kwargs: Any) -> Any: try: return test_func(*args, device=device, **kwargs) except BackendIsNotSupposedToImplementIt as e: # hacky verbose reporting if '-v' in sys.argv or '--verbose' in sys.argv: print('Test {} is effectively skipped: {}'.format( device_test_name, e)) self._test_items[category][device_test_name] = TestItem( device_test_func, report_item) for device in devices: add_device_test(device) def _add_model_test(self, model_test: TestCase, kind: Text) -> None: # model is loaded at runtime, note sometimes it could even # never loaded if the test skipped model_marker: List[Optional[Union[ModelProto, NodeProto]]] = [None] def run(test_self: Any, device: Text) -> None: if model_test.model_dir is None: model_dir = self.prepare_model_data(model_test) else: model_dir = model_test.model_dir model_pb_path = os.path.join(model_dir, 'model.onnx') model = onnx.load(model_pb_path) model_marker[0] = model if hasattr(self.backend, 'is_compatible') \ and callable(self.backend.is_compatible) \ and not self.backend.is_compatible(model): raise unittest.SkipTest('Not compatible with backend') prepared_model = self.backend.prepare(model, device) assert prepared_model is not None # TODO after converting all npz files to protobuf, we can delete this. for test_data_npz in glob.glob( os.path.join(model_dir, 'test_data_*.npz')): test_data = np.load(test_data_npz, encoding='bytes') inputs = list(test_data['inputs']) outputs = list(prepared_model.run(inputs)) ref_outputs = test_data['outputs'] self.assert_similar_outputs(ref_outputs, outputs, rtol=model_test.rtol, atol=model_test.atol) for test_data_dir in glob.glob( os.path.join(model_dir, "test_data_set*")): inputs = [] inputs_num = len(glob.glob(os.path.join(test_data_dir, 'input_*.pb'))) for i in range(inputs_num): input_file = os.path.join(test_data_dir, 'input_{}.pb'.format(i)) self._load_proto(input_file, inputs, model.graph.input[i].type) ref_outputs = [] ref_outputs_num = len(glob.glob(os.path.join(test_data_dir, 'output_*.pb'))) for i in range(ref_outputs_num): output_file = os.path.join(test_data_dir, 'output_{}.pb'.format(i)) self._load_proto(output_file, ref_outputs, model.graph.output[i].type) outputs = list(prepared_model.run(inputs)) self.assert_similar_outputs(ref_outputs, outputs, rtol=model_test.rtol, atol=model_test.atol) self._add_test(kind + 'Model', model_test.name, run, model_marker) def _load_proto(self, proto_filename: Text, target_list: List[Union[np.ndarray, List[Any]]], model_type_proto: TypeProto) -> None: with open(proto_filename, 'rb') as f: protobuf_content = f.read() if model_type_proto.HasField('sequence_type'): sequence = onnx.SequenceProto() sequence.ParseFromString(protobuf_content) target_list.append(numpy_helper.to_list(sequence)) elif model_type_proto.HasField('tensor_type'): tensor = onnx.TensorProto() tensor.ParseFromString(protobuf_content) target_list.append(numpy_helper.to_array(tensor)) elif model_type_proto.HasField('optional_type'): optional = onnx.OptionalProto() optional.ParseFromString(protobuf_content) target_list.append(numpy_helper.to_optional(optional)) else: print('Loading proto of that specific type (Map/Sparse Tensor) is currently not supported')
42.601744
134
0.583623
7095bdcfb2b29c4c897e71b7184aac06a00bbc86
19
py
Python
ion/runner.py
tor4z/ion
aa60ac23246f5fab5a5199704a65f7068d316179
[ "MIT" ]
null
null
null
ion/runner.py
tor4z/ion
aa60ac23246f5fab5a5199704a65f7068d316179
[ "MIT" ]
null
null
null
ion/runner.py
tor4z/ion
aa60ac23246f5fab5a5199704a65f7068d316179
[ "MIT" ]
null
null
null
def run(): pass
9.5
10
0.526316
afd08d8f34e1e97f9d69458483ba9bef998f13f2
135
py
Python
main.py
thiago-rezende/se-covid-assignment
ea1b9f9c40bf5671cad43ee0cc4d297262d60f63
[ "Apache-2.0" ]
null
null
null
main.py
thiago-rezende/se-covid-assignment
ea1b9f9c40bf5671cad43ee0cc4d297262d60f63
[ "Apache-2.0" ]
null
null
null
main.py
thiago-rezende/se-covid-assignment
ea1b9f9c40bf5671cad43ee0cc4d297262d60f63
[ "Apache-2.0" ]
null
null
null
# Application entry point from horus.application import Application if __name__ == "__main__": app = Application() app.run()
16.875
41
0.711111
fbad8dd55a681ac1c270ad1b0a6788711c694594
955
py
Python
temp.py
nadavleh/CNN-from-scratch
b865a15bae844b16d345eda9a5d40b08b07ccf04
[ "MIT" ]
null
null
null
temp.py
nadavleh/CNN-from-scratch
b865a15bae844b16d345eda9a5d40b08b07ccf04
[ "MIT" ]
null
null
null
temp.py
nadavleh/CNN-from-scratch
b865a15bae844b16d345eda9a5d40b08b07ccf04
[ "MIT" ]
null
null
null
from cnn_layers import * import numpy as np # b = convLayer3D(6, (6,5,5), (-0.1,0.1)) # a = np.ones((6,12,12)) # b.forwardProp(a) # import skimage.data # from matplotlib import pyplot as plt # # Reading the image # img = skimage.data.chelsea() # # Converting the image into gray. # img = skimage.color.rgb2gray(img) # plt.figure(0) # plt.imshow(img, cmap = 'gray') a = np.array([[i for i in range(k,k+10)] for k in range(0,100,10)]) b = np.array([[i for i in range(k,k+10)] for k in range(100,200,10)]) ab = np.zeros((2,10,10)) ab[0,:,:] = a ab[1,:,:] = b img2 = np.array([i for i in range(64)]) img2 = img2.reshape((8,8)) img1 = np.array([i for i in range(64,64+64)]) img1 = img1.reshape((8,8)) img = np.array([img2,img1]) # res = ab.flatten() # print("the 3D matrix", ab) # print("flatten() result", res) m = maxPool() a,b = m.forwardProp(ab)
13.642857
70
0.558115
ad2e8cc739c65f73b2c8fe63503b9a89fbaaad48
1,394
py
Python
python/cuml/neighbors/__init__.py
tzemicheal/cuml
377f3c2773e3fc64d93d3d64a3f2fcd6c8759044
[ "Apache-2.0" ]
1
2021-01-01T10:52:18.000Z
2021-01-01T10:52:18.000Z
python/cuml/neighbors/__init__.py
tzemicheal/cuml
377f3c2773e3fc64d93d3d64a3f2fcd6c8759044
[ "Apache-2.0" ]
null
null
null
python/cuml/neighbors/__init__.py
tzemicheal/cuml
377f3c2773e3fc64d93d3d64a3f2fcd6c8759044
[ "Apache-2.0" ]
null
null
null
# # Copyright (c) 2019, NVIDIA CORPORATION. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from cuml.common.import_utils import has_dask from cuml.neighbors.nearest_neighbors import NearestNeighbors from cuml.neighbors.nearest_neighbors import kneighbors_graph from cuml.neighbors.kneighbors_classifier import KNeighborsClassifier from cuml.neighbors.kneighbors_regressor import KNeighborsRegressor VALID_METRICS = { "brute": set([ "l2", "euclidean", "l1", "cityblock", "manhattan", "taxicab", "braycurtis", "canberra", "minkowski", "lp", "chebyshev", "linf", "jensenshannon", "cosine", "correlation", "inner_product", "sqeuclidean" ]), "sparse": set(["euclidean", "l2", "inner_product"]), "ivfflat": set(["l2", "euclidean"]), "ivfpq": set(["l2", "euclidean"]), "ivfsq": set(["l2", "euclidean"]) }
34.85
74
0.697274
d323dbb12ab50a187d78829f8c255460431eddf8
458
py
Python
databases/seeds/user_table_seeder.py
vaibhavmule/orm
8eb7b4667dc97870df46ef7a6724b21d5fb58fdb
[ "MIT" ]
null
null
null
databases/seeds/user_table_seeder.py
vaibhavmule/orm
8eb7b4667dc97870df46ef7a6724b21d5fb58fdb
[ "MIT" ]
null
null
null
databases/seeds/user_table_seeder.py
vaibhavmule/orm
8eb7b4667dc97870df46ef7a6724b21d5fb58fdb
[ "MIT" ]
null
null
null
"""UserTableSeeder Seeder.""" from src.masonite.orm.seeds import Seeder from src.masonite.orm.factories import Factory as factory from app.User import User factory.register(User, lambda faker: {'email': faker.email()}) class UserTableSeeder(Seeder): def run(self): """Run the database seeds.""" print('run table seeder for users') factory(User, 5).create({ 'name': 'Joe', 'password': 'joe', })
25.444444
62
0.631004
b2670f945ea4985e2a0172449cf451256e089be2
1,937
py
Python
scripts/data/make_handlabel_data_7keypooints.py
Xingyu-Romantic/MoveNet.Paddle
aa6c36b5027092ad38a793117b7ee52bb2c94a18
[ "MIT" ]
87
2021-11-13T11:05:55.000Z
2022-03-30T11:00:45.000Z
scripts/data/make_handlabel_data_7keypooints.py
Dyian-snow/movenet.pytorch
95ec8535245228aa4335243e68722810e50bcaf8
[ "MIT" ]
18
2021-11-16T01:13:19.000Z
2022-03-31T16:04:31.000Z
scripts/data/make_handlabel_data_7keypooints.py
Dyian-snow/movenet.pytorch
95ec8535245228aa4335243e68722810e50bcaf8
[ "MIT" ]
28
2021-11-13T11:22:05.000Z
2022-03-29T10:02:09.000Z
""" @Fire https://github.com/fire717 """ import os import json import pickle import cv2 import numpy as np import glob read_dir = "label5" save_dir = "croped" output_name = 'croped/%s.json' % read_dir output_img_dir = "croped/imgs" if __name__ == '__main__': imgs = glob.glob(read_dir+'/*.jpg') print(len(imgs)) new_label = [] for i, img_path in enumerate(imgs): img_name = os.path.basename(img_path) img = cv2.imread(img_path) h,w = img.shape[:2] label_path = img_path[:-3]+'txt' with open(label_path, 'r') as f: lines = f.readlines() if len(lines)!=8: continue keypoints = [] for line in lines[1:]: x,y = [float(x) for x in line.strip().split(' ')[:2]] keypoints.extend([x,y,2]) # center = [(keypoints[2*3]+keypoints[4*3])/2, # (keypoints[2*3+1]+keypoints[4*3+1])/2] min_key_x = np.min(np.array(keypoints)[[0,3,6,9,12,15,18]]) max_key_x = np.max(np.array(keypoints)[[0,3,6,9,12,15,18]]) min_key_y = np.min(np.array(keypoints)[[1,4,7,10,13,16,19]]) max_key_y = np.max(np.array(keypoints)[[1,4,7,10,13,16,19]]) center = [(min_key_x+max_key_x)/2, (min_key_y+max_key_y)/2] save_item = { "img_name":img_name, "keypoints":keypoints, "center":center, "other_centers":[], "other_keypoints":[[] for _ in range(7)], } # print(save_item) new_label.append(save_item) cv2.imwrite(os.path.join(output_img_dir, img_name), img) with open(output_name,'w') as f: json.dump(new_label, f, ensure_ascii=False) print('Total write ', len(new_label))
24.833333
69
0.512648
a5d1f1397b63fc37f5f4dc112c25930c88f6424a
1,177
py
Python
Deprecated Source Code/stockExpectedReturn.py
TFSM00/Efficient-Frontier-Calculator
6277c7c2d85f4639900931739e54d010057e22a6
[ "MIT" ]
null
null
null
Deprecated Source Code/stockExpectedReturn.py
TFSM00/Efficient-Frontier-Calculator
6277c7c2d85f4639900931739e54d010057e22a6
[ "MIT" ]
null
null
null
Deprecated Source Code/stockExpectedReturn.py
TFSM00/Efficient-Frontier-Calculator
6277c7c2d85f4639900931739e54d010057e22a6
[ "MIT" ]
null
null
null
from stockStatistics import stockStatistics import pandas as pd tickers = ["AAPL","GOOG","AMZN","MSFT","INTC","IBM","ORCL","CSCO","NVDA"] def Average_StdDev_Data(tickerList): """ Returns a dataframe with the average and std. deviation for every ticker """ data = stockStatistics(tickerList) average = [] stdev = [] for key in data.keys(): average.append(data.get(key)[0]) #average is first value stdev.append(data.get(key)[1]) #stdev is the second value table = pd.DataFrame([average,stdev], index=["Expected Return Rate","Standard Deviation"],columns=tickerList) return table def stdDeviation(tickerList): """ Returns the standard deviations as a list """ data = stockStatistics(tickerList) stdev = [] for key in data.keys(): stdev.append(data.get(key)[1]) return stdev def average(tickerList): """ Returns the averages as a list """ data = stockStatistics(tickerList) average = [] for key in data.keys(): average.append(data.get(key)[1]) return average if __name__ == '__main__': print(Average_StdDev_Data(tickers))
23.54
113
0.641461
be73a970fabf6a6900473be5d3508048aee1ffc3
307
py
Python
vaultier/vaultier/tasks.py
dz0ny/Vaultier
e23d86c7576f4785b4e369242d7b5f7125e4d8c6
[ "BSD-3-Clause" ]
30
2015-07-13T11:11:23.000Z
2021-01-25T14:21:18.000Z
vaultier/vaultier/tasks.py
corpusops/vaultier
3baef4346add0b3bdff322257467f74b2a0c856c
[ "BSD-3-Clause" ]
null
null
null
vaultier/vaultier/tasks.py
corpusops/vaultier
3baef4346add0b3bdff322257467f74b2a0c856c
[ "BSD-3-Clause" ]
31
2015-08-10T12:10:16.000Z
2020-09-18T09:43:28.000Z
from __future__ import absolute_import from vaultier.statistics.statistics import StatisticsManager from celery import shared_task @shared_task() def task_statistics_collector(): """ Collects statistics from database and sends them to vaultier.org """ StatisticsManager.send_statistics()
23.615385
68
0.791531
0f876536ce64275220dd54bb29ee85255b3862b3
6,285
py
Python
old_tests/test_forcefield.py
schmolly/timemachine
7d13a0406dc2d09ac67892988641ba4965bfb206
[ "Apache-2.0" ]
3
2020-01-28T21:19:54.000Z
2020-01-29T16:03:44.000Z
old_tests/test_forcefield.py
schmolly/timemachine
7d13a0406dc2d09ac67892988641ba4965bfb206
[ "Apache-2.0" ]
null
null
null
old_tests/test_forcefield.py
schmolly/timemachine
7d13a0406dc2d09ac67892988641ba4965bfb206
[ "Apache-2.0" ]
null
null
null
import os import unittest import ast from ff import forcefield from ff import system from ff import openmm_converter import itertools import numpy as np import pathlib from rdkit import Chem from simtk.openmm import app from simtk.openmm.app import PDBFile def get_masses(m): masses = [] for a in m.GetAtoms(): masses.append(a.GetMass()) return masses class TestForcefield(unittest.TestCase): def get_smirnoff(self): cwd = pathlib.Path(__file__).parent.parent.absolute() fpath = os.path.join(cwd, 'ff', "smirnoff_1.1.0.py") ff = forcefield.Forcefield(fpath) return ff def test_forcefield(self): cwd = pathlib.Path(__file__).parent.parent.absolute() fpath = os.path.join(cwd, 'ff', "smirnoff_1.1.0.py") ff = forcefield.Forcefield(fpath) ff_res = ff.serialize() ff_raw = ast.literal_eval(open(fpath).read()) self.assertDictEqual(ff_res, ff_raw) def test_params_and_groups(self): itercount = itertools.count() handle = { 'Angle': {'params': [ ['[*:1]~[#6X4:2]-[*:3]', next(itercount)/5, next(itercount)/5], ['[#1:1]-[#6X4:2]-[#1:3]', next(itercount)/5,next(itercount)/5], ['[*;r3:1]1~;@[*;r3:2]~;@[*;r3:3]1', next(itercount)/5, next(itercount)/5], ]}, 'Bond': {'params': [['[#6X4:1]-[#6X4:2]', next(itercount)/5, next(itercount)/5], ['[#6X4:1]-[#6X3:2]', next(itercount)/5, next(itercount)/5], ['[#6X4:1]-[#6X3:2]=[#8X1+0]', next(itercount)/5, next(itercount)/5], ]}, 'Improper': {'params': [['[*:1]~[#6X3:2](~[*:3])~[*:4]', next(itercount)/5, next(itercount)/5, next(itercount)/5], ['[*:1]~[#6X3:2](~[#8X1:3])~[#8:4]', next(itercount)/5, next(itercount)/5, next(itercount)/5] ]}, 'Proper': {'params': [['[*:1]-[#6X4:2]-[#6X4:3]-[*:4]', [[next(itercount)/5, next(itercount)/5, next(itercount)/5]]], ['[#6X4:1]-[#6X4:2]-[#6X4:3]-[#6X4:4]', [[next(itercount)/5, next(itercount)/5, next(itercount)/5], [next(itercount)/5, next(itercount)/5, next(itercount)/5], [next(itercount)/5, next(itercount)/5, next(itercount)/5]]] ]}, 'vdW': {'params': [['[#1:1]', next(itercount)/5, next(itercount)/5], ['[#1:1]-[#6X4]', next(itercount)/5, next(itercount)/5], ], 'props': {'combining_rules': 'Lorentz-Berthelot', 'method': 'cutoff', 'potential': 'Lennard-Jones-12-6', 'scale12': 0.0, 'scale13': 0.0, 'scale14': 0.5, 'scale15': 1.0} }, 'GBSA': { 'params': [ ['[*:1]', next(itercount)/5, next(itercount)/5], ], 'props': { 'solvent_dielectric' : 78.3, # matches OBC2, 'solute_dielectric' : 1.0, 'probe_radius' : 0.14, 'surface_tension' : 28.3919551, 'dielectric_offset' : 0.009, # GBOBC1 'alpha' : 0.8, 'beta' : 0.0, 'gamma' : 2.909125 } }, 'SimpleCharges': { 'params': [ ['[#1:1]', next(itercount)/5], ['[#1:1]-[#6X4]', next(itercount)/5], ] } } ff = forcefield.Forcefield(handle) # the -1 is for exclusions np.testing.assert_equal(np.arange(next(itercount))/5, ff.params[:-1]) ref_groups = [0,1, 0,1, 0,1, 2,3, 2,3, 2,3, 4,5,6, 4,5,6, 7,8,9, 7,8,9, 7,8,9, 7,8,9, 10,11, 10,11, 12,13, 14,14] np.testing.assert_equal(ref_groups, ff.param_groups[:-1]) def test_parameterization(self): ff = self.get_smirnoff() mol1 = Chem.AddHs(Chem.MolFromSmiles("O=C(N)C[C@H](N)C(=O)O")) nrg_fns_1 = ff.parameterize(mol1) # mol2 = Chem.AddHs(Chem.MolFromSmiles("O=C(C)Oc1ccccc1C(=O)O")) # nrg_fns_2 = ff.parameterize(mol2) def test_merging(self): ff = self.get_smirnoff() mol1 = Chem.AddHs(Chem.MolFromSmiles("O=C(N)C[C@H](N)C(=O)O")) nrg_fns1 = ff.parameterize(mol1) mol1_masses = get_masses(mol1) mol2 = Chem.AddHs(Chem.MolFromSmiles("O=C(C)Oc1ccccc1C(=O)O")) nrg_fns2 = ff.parameterize(mol2) mol2_masses = get_masses(mol2) system1 = system.System(nrg_fns1, ff.params, ff.param_groups, mol1_masses) system2 = system.System(nrg_fns2, ff.params, ff.param_groups, mol2_masses) system3 = system1.merge(system2) np.testing.assert_equal(system3.masses, np.concatenate([system1.masses, system2.masses])) np.testing.assert_equal(system3.params, np.concatenate([system1.params, system2.params])) np.testing.assert_equal(system3.param_groups, np.concatenate([system1.param_groups, system2.param_groups])) system3.make_gradients(3, np.float64) def test_merging_with_openmm(self): ff = self.get_smirnoff() mol1 = Chem.AddHs(Chem.MolFromSmiles("O=C(N)C[C@H](N)C(=O)O")) nrg_fns1 = ff.parameterize(mol1) mol1_masses = get_masses(mol1) host_pdb = app.PDBFile("examples/BRD4_minimized.pdb") amber_ff = app.ForceField('amber99sbildn.xml', 'amber99_obc.xml') protein_system = amber_ff.createSystem( host_pdb.topology, nonbondedMethod=app.NoCutoff, constraints=None, rigidWater=False ) system1 = system.System(nrg_fns1, ff.params, ff.param_groups, mol1_masses) protein_sys = openmm_converter.deserialize_system(protein_system) combined_system = protein_sys.merge(system1) np.testing.assert_equal(combined_system.masses, np.concatenate([protein_sys.masses, system1.masses])) np.testing.assert_equal(combined_system.params, np.concatenate([protein_sys.params, system1.params])) np.testing.assert_equal(combined_system.param_groups, np.concatenate([protein_sys.param_groups, system1.param_groups])) # open("examples/BRD4_minimized.pdb") # print(system)
39.528302
241
0.561814
5b4e201d76ab3689bc8847d6141b2fff1a852174
3,341
py
Python
script/update.py
pranayaryal/electron
a7052efaf4fc6bb2aeedd6579e662e98aa2237dd
[ "MIT" ]
2
2018-06-23T22:04:12.000Z
2018-06-28T08:59:52.000Z
script/update.py
pranayaryal/electron
a7052efaf4fc6bb2aeedd6579e662e98aa2237dd
[ "MIT" ]
8
2020-06-26T00:58:18.000Z
2020-11-04T04:11:46.000Z
script/update.py
pranayaryal/electron
a7052efaf4fc6bb2aeedd6579e662e98aa2237dd
[ "MIT" ]
1
2018-10-05T17:29:23.000Z
2018-10-05T17:29:23.000Z
#!/usr/bin/env python import argparse import os import platform import subprocess import sys from lib.config import get_target_arch, PLATFORM from lib.util import get_host_arch, import_vs_env SOURCE_ROOT = os.path.abspath(os.path.dirname(os.path.dirname(__file__))) def main(): os.chdir(SOURCE_ROOT) if PLATFORM != 'win32' and platform.architecture()[0] != '64bit': print 'Electron is required to be built on a 64bit machine' return 1 update_external_binaries() return update_gyp() def parse_args(): parser = argparse.ArgumentParser(description='Update build configurations') parser.add_argument('--defines', default='', help='The build variables passed to gyp') group = parser.add_mutually_exclusive_group(required=False) group.add_argument('--msvs', action='store_true', help='Generate Visual Studio project') group.add_argument('--xcode', action='store_true', help='Generate XCode project') return parser.parse_args() def update_external_binaries(): uf = os.path.join('script', 'update-external-binaries.py') subprocess.check_call([sys.executable, uf]) def update_gyp(): # Since gyp doesn't support specify link_settings for each configuration, # we are not able to link to different libraries in "Debug" and "Release" # configurations. # In order to work around this, we decided to generate the configuration # for twice, one is to generate "Debug" config, the other one to generate # the "Release" config. And the settings are controlled by the variable # "libchromiumcontent_component" which is defined before running gyp. target_arch = get_target_arch() return (run_gyp(target_arch, 0) or run_gyp(target_arch, 1)) def run_gyp(target_arch, component): # Update the VS build env. import_vs_env(target_arch) env = os.environ.copy() if PLATFORM == 'linux' and target_arch != get_host_arch(): env['GYP_CROSSCOMPILE'] = '1' elif PLATFORM == 'win32': env['GYP_MSVS_VERSION'] = '2017' python = sys.executable if sys.platform == 'cygwin': # Force using win32 python on cygwin. python = os.path.join('vendor', 'python_26', 'python.exe') gyp = os.path.join('vendor', 'gyp', 'gyp_main.py') gyp_pylib = os.path.join(os.path.dirname(gyp), 'pylib') # Avoid using the old gyp lib in system. env['PYTHONPATH'] = os.path.pathsep.join([gyp_pylib, env.get('PYTHONPATH', '')]) # Whether to build for Mac App Store. if os.environ.has_key('MAS_BUILD'): mas_build = 1 else: mas_build = 0 defines = [ '-Dlibchromiumcontent_component={0}'.format(component), '-Dtarget_arch={0}'.format(target_arch), '-Dhost_arch={0}'.format(get_host_arch()), '-Dlibrary=static_library', '-Dmas_build={0}'.format(mas_build), ] # Add the defines passed from command line. args = parse_args() for define in [d.strip() for d in args.defines.split(' ')]: if define: defines += ['-D' + define] generator = 'ninja' if args.msvs: generator = 'msvs-ninja' elif args.xcode: generator = 'xcode-ninja' return subprocess.call([python, gyp, '-f', generator, '--depth', '.', 'electron.gyp', '-Icommon.gypi'] + defines, env=env) if __name__ == '__main__': sys.exit(main())
31.518868
78
0.675846
4c3564fd1062c3a7d2134b57a274eddc564fd172
2,717
py
Python
src/transformers/configuration_pegasus.py
abufadl/transformers
c84bb6eb92b654e04a82fada26417fcdab45f3af
[ "Apache-2.0" ]
null
null
null
src/transformers/configuration_pegasus.py
abufadl/transformers
c84bb6eb92b654e04a82fada26417fcdab45f3af
[ "Apache-2.0" ]
2
2020-09-03T13:54:34.000Z
2020-09-25T19:01:29.000Z
src/transformers/configuration_pegasus.py
abufadl/transformers
c84bb6eb92b654e04a82fada26417fcdab45f3af
[ "Apache-2.0" ]
null
null
null
# coding=utf-8 # Copyright 2020 Google and The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PEGASUS model configuration """ from .configuration_bart import BART_CONFIG_ARGS_DOC, BartConfig from .file_utils import add_start_docstrings_to_callable from .utils import logging logger = logging.get_logger(__name__) # These config values do not vary between checkpoints DEFAULTS = dict( vocab_size=96103, max_position_embeddings=512, d_model=1024, encoder_ffn_dim=4096, decoder_ffn_dim=4096, encoder_attention_heads=16, decoder_attention_heads=16, encoder_layers=16, decoder_layers=16, dropout=0.1, attention_dropout=0.1, activation_dropout=0.1, pad_token_id=0, eos_token_id=1, is_encoder_decoder=True, normalize_before=True, scale_embedding=True, normalize_embedding=False, add_final_layer_norm=True, static_position_embeddings=True, num_beams=8, activation_function="relu", ) # Config values that vary between checkpoints: for testing and conversion max_gen_length = { # See appendix C of paper "xsum": 64, "cnn_dailymail": 128, "newsroom": 128, "wikihow": 256, "multi_news": 256, "reddit_tifu": 128, "big_patent": 256, "arxiv": 256, "pubmed": 256, "gigaword": 32, "aeslc": 32, "billsum": 256, "large": 256, # @sshleifer chose arbitrarily } max_model_length = { "xsum": 512, "cnn_dailymail": 1024, "newsroom": 512, "wikihow": 512, "multi_news": 1024, "reddit_tifu": 512, "big_patent": 1024, "arxiv": 1024, "pubmed": 1024, "gigaword": 128, "aeslc": 512, "billsum": 1024, "large": 1024, } expected_alpha = { "multinews": 0.9, "wikihow": 0.6, "reddit_tifu": 0.6, "big_patent": 0.7, "gigaword": 0.6, "aeslc": 0.6, "billsum": 0.6, } # otherwise 0.8 @add_start_docstrings_to_callable(BART_CONFIG_ARGS_DOC) class PegasusConfig(BartConfig): r""" :class:`~transformers.PegasusConfig` is the configuration class to store the configuration of a `PegasusModel`. """ model_type = "pegasus" # The implementation of the config object is in BartConfig
27.17
99
0.691572
8733e19444aa1963a9d23833ad9a02af35ca6e36
1,294
py
Python
tensorflow_io/ffmpeg/__init__.py
sshrdp/io
1b0f8087fa1faa76db1951148288d7f960fed6f6
[ "Apache-2.0" ]
1
2019-10-10T06:11:23.000Z
2019-10-10T06:11:23.000Z
tensorflow_io/ffmpeg/__init__.py
VonRosenchild/io
de05464e53672389119a6215fea9ceacf7f77203
[ "Apache-2.0" ]
null
null
null
tensorflow_io/ffmpeg/__init__.py
VonRosenchild/io
de05464e53672389119a6215fea9ceacf7f77203
[ "Apache-2.0" ]
1
2019-10-10T06:11:24.000Z
2019-10-10T06:11:24.000Z
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """FFmpeg Dataset. @@AudioDataset @@VideoDataset @@decode_video """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow_io.ffmpeg.python.ops.ffmpeg_ops import AudioDataset from tensorflow_io.ffmpeg.python.ops.ffmpeg_ops import VideoDataset from tensorflow_io.ffmpeg.python.ops.ffmpeg_ops import decode_video from tensorflow.python.util.all_util import remove_undocumented _allowed_symbols = [ "AudioDataset", "VideoDataset", "decode_video", ] remove_undocumented(__name__, allowed_exception_list=_allowed_symbols)
33.179487
80
0.746522
b96022b3d1d84a918bc30e04598aa937223a5506
3,641
py
Python
tests/core/test_hook.py
tomekr/cement
fece8629c48bcd598fd61d8aa7457a5df4c4f831
[ "BSD-3-Clause" ]
826
2015-01-09T13:23:35.000Z
2022-03-18T01:19:40.000Z
tests/core/test_hook.py
tomekr/cement
fece8629c48bcd598fd61d8aa7457a5df4c4f831
[ "BSD-3-Clause" ]
316
2015-01-14T10:35:22.000Z
2022-03-08T17:18:10.000Z
tests/core/test_hook.py
tomekr/cement
fece8629c48bcd598fd61d8aa7457a5df4c4f831
[ "BSD-3-Clause" ]
112
2015-01-10T15:04:26.000Z
2022-03-16T08:11:58.000Z
"""Tests for cement.core.hook.""" from unittest.mock import Mock from pytest import raises from cement.core.exc import FrameworkError from cement.core.foundation import TestApp # module tests class TestHookManager(object): pass # app functionality and coverage tests def test_define(): with TestApp() as app: app.hook.define('test_hook') # is it defined? assert app.hook.defined('test_hook') # registering again should throw exception with raises(FrameworkError, match='Hook name .* already defined!'): app.hook.define('test_hook') def test_register_and_run(): def hook_one(): return 'kapla 1' def hook_two(): return 'kapla 2' def hook_three(): return 'kapla 3' with TestApp() as app: app.hook.define('test_hook') app.hook.register('test_hook', hook_one, weight=99) app.hook.register('test_hook', hook_two, weight=-1) app.hook.register('test_hook', hook_three, weight=-99) assert len(app.hook.__hooks__['test_hook']) == 3 # and run it... track results to verify weight run order results = [] for res in app.hook.run('test_hook'): results.append(res) assert results == ['kapla 3', 'kapla 2', 'kapla 1'] def test_register_hook_name_not_defined(): with TestApp() as app: ret = app.hook.register('bogus_hook', print) assert ret is False def test_run_bad_hook(): with TestApp() as app: with raises(FrameworkError, match='Hook name .* is not defined!'): for res in app.hook.run('some_bogus_hook'): pass def test_framework_hooks(): test_hook = Mock(return_value='bogus') test_hook.__name__ = 'bogusname' test_hook_again = Mock(return_value='fake') test_hook_again.__name__ = 'bogusname' class MyApp(TestApp): class Meta: hooks = [ ('pre_setup', test_hook), ('post_setup', test_hook), ('pre_run', test_hook), ('post_run', test_hook), ('pre_argument_parsing', test_hook), ('post_argument_parsing', test_hook), ('pre_close', test_hook), ('post_close', test_hook), ('signal', test_hook), ('pre_render', test_hook), ('pre_render', test_hook_again), ('post_render', test_hook), ('post_render', test_hook), ] with MyApp() as app: # Pre- and post- setup assert test_hook.call_count == 2 test_hook.reset_mock() # Pre/post run (+ pre/post argparse) # App has no controller, so it also parses args here app.run() assert test_hook.call_count == 4 test_hook.reset_mock() # pre/post render # two hooks each, one is test_hook_again app.render({1: 'bogus'}) assert test_hook.call_count == 3 assert test_hook_again.call_count == 1 test_hook.reset_mock() test_hook_again.reset_mock() # TODO: Test that signal hook gets called properly # pre/post close assert test_hook.call_count == 2 def test_generate_type_hook(): def my_generator(): for i in [1, 1, 1]: yield i with TestApp() as app: app.hook.define('test_hook') app.hook.register('test_hook', my_generator) app.run() for res in app.hook.run('test_hook'): assert res == 1 def test_list(): with TestApp() as app: assert 'pre_setup' in app.hook.list()
27.171642
75
0.592145
50458d53406099c4bf8e9d47bc50aa981ef2484b
90
py
Python
ciphey/__init__.py
usama7628674/Ciphey
e18801c506e93e7e9377d0bbc6870ecd84ae2f61
[ "MIT" ]
1
2021-05-30T19:55:00.000Z
2021-05-30T19:55:00.000Z
ciphey/__init__.py
usama7628674/Ciphey
e18801c506e93e7e9377d0bbc6870ecd84ae2f61
[ "MIT" ]
null
null
null
ciphey/__init__.py
usama7628674/Ciphey
e18801c506e93e7e9377d0bbc6870ecd84ae2f61
[ "MIT" ]
null
null
null
from . import common from . import iface from . import basemods from . import __main__
11.25
22
0.744444
deaf136c5924ed815bb2b4f78dd974d08e76afd3
17,758
py
Python
uds/message/nrc.py
mdabrowski1990/uds
1aee0c1de446ee3dd461706949504f2c218db1e8
[ "MIT" ]
18
2021-03-28T22:39:18.000Z
2022-02-13T21:50:37.000Z
uds/message/nrc.py
mdabrowski1990/uds
1aee0c1de446ee3dd461706949504f2c218db1e8
[ "MIT" ]
153
2021-02-09T09:27:05.000Z
2022-03-29T06:09:15.000Z
uds/message/nrc.py
mdabrowski1990/uds
1aee0c1de446ee3dd461706949504f2c218db1e8
[ "MIT" ]
1
2021-05-13T16:01:46.000Z
2021-05-13T16:01:46.000Z
""" Module with an entire Negative Response Code (NRC) data parameters implementation. .. note:: Explanation of :ref:`NRC <knowledge-base-nrc>` values meaning is located in appendix A1 of ISO 14229-1 standard. """ __all__ = ["NRC"] from aenum import unique from uds.utilities import ByteEnum, ValidatedEnum, ExtendableEnum @unique class NRC(ByteEnum, ValidatedEnum, ExtendableEnum): """ Negative Response Codes (NRC) values. `Negative Response Code <knowledge-base-nrc>` is a data parameter located in the last byte of a negative response message. NRC informs why a server is not sending a positive response message. """ # PositiveResponse = 0x00 # This NRC shall not be used in a negative response message as positiveResponse parameter value is reserved # for server internal implementation. Refer to 8.7.5 of ISO 14229-1 for more details. GeneralReject = 0x10 # noqa: F841 """GeneralReject (0x10) NRC indicates that the requested action has been rejected by the server.""" ServiceNotSupported = 0x11 # noqa: F841 """ServiceNotSupported (0x11) NRC indicates that the requested action will not be taken because the server does not support the requested service.""" SubFunctionNotSupported = 0x12 # noqa: F841 """SubFunctionNotSupported (0x12) NRC indicates that the requested action will not be taken because the server does not support the service specific parameters of the request message.""" IncorrectMessageLengthOrInvalidFormat = 0x13 # noqa: F841 """IncorrectMessageLengthOrInvalidFormat (0x13) NRC indicates that the requested action will not be taken because the length of the received request message does not match the prescribed length for the specified service or the format of the parameters do not match the prescribed format for the specified service.""" ResponseTooLong = 0x14 # noqa: F841 """ResponseTooLong (0x14) NRC shall be reported by the server if the response to be generated exceeds the maximum number of bytes available by the underlying network layer. This could occur if the response message exceeds the maximum size allowed by the underlying transport protocol or if the response message exceeds the server buffer size allocated for that purpose.""" BusyRepeatRequest = 0x21 # noqa: F841 """BusyRepeatRequest (0x21) NRC indicates that the server is temporarily too busy to perform the requested operation. In this circumstance the client shall perform repetition of the “identical request message” or “another request message”. The repetition of the request shall be delayed by a time specified in the respective implementation documents.""" ConditionsNotCorrect = 0x22 # noqa: F841 """ConditionsNotCorrect (0x22) NRC indicates that the requested action will not be taken because the server prerequisite conditions are not met.""" RequestSequenceError = 0x24 # noqa: F841 """RequestSequenceError (0x24) NRC indicates that the requested action will not be taken because the server expects a different sequence of request messages or message as sent by the client. This may occur when sequence sensitive requests are issued in the wrong order.""" NoResponseFromSubnetComponent = 0x25 # noqa: F841 """NoResponseFromSubnetComponent (0x25) NRC indicates that the server has received the request but the requested action could not be performed by the server as a subnet component which is necessary to supply the requested information did not respond within the specified time.""" FailurePreventsExecutionOfRequestedAction = 0x26 # noqa: F841 """FailurePreventsExecutionOfRequestedAction (0x26) NRC indicates that the requested action will not be taken because a failure condition, identified by a DTC (with at least one DTC status bit for TestFailed, Pending, Confirmed or TestFailedSinceLastClear set to 1), has occurred and that this failure condition prevents the server from performing the requested action.""" RequestOutOfRange = 0x31 # noqa: F841 """RequestOutOfRange (0x31) NRC indicates that the requested action will not be taken because the server has detected that the request message contains a parameter which attempts to substitute a value beyond its range of authority (e.g. attempting to substitute a data byte of 111 when the data is only defined to 100), or which attempts to access a DataIdentifier/RoutineIdentifer that is not supported or not supported in active session.""" SecurityAccessDenied = 0x33 # noqa: F841 """SecurityAccessDenied (0x33) NRC indicates that the requested action will not be taken because the server’s security strategy has not been satisfied by the client.""" AuthenticationRequired = 0x34 # noqa: F841 """AuthenticationRequired (0x34) NRC indicates that the requested service will not be taken because the client has insufficient rights based on its Authentication state.""" InvalidKey = 0x35 # noqa: F841 """InvalidKey (0x35) NRC indicates that the server has not given security access because the key sent by the client did not match with the key in the server’s memory. This counts as an attempt to gain security.""" ExceedNumberOfAttempts = 0x36 # noqa: F841 """ExceedNumberOfAttempts (0x36) NRC indicates that the requested action will not be taken because the client has unsuccessfully attempted to gain security access more times than the server’s security strategy will allow.""" RequiredTimeDelayNotExpired = 0x37 # noqa: F841 """RequiredTimeDelayNotExpired (0x37) NRC indicates that the requested action will not be taken because the client’s latest attempt to gain security access was initiated before the server’s required timeout period had elapsed.""" SecureDataTransmissionRequired = 0x38 # noqa: F841 """SecureDataTransmissionRequired (0x38) NRC indicates that the requested service will not be taken because the requested action is required to be sent using a secured communication channel.""" SecureDataTransmissionNotAllowed = 0x39 # noqa: F841 """SecureDataTransmissionNotAllowed (0x39) NRC indicates that this message was received using the SecuredDataTransmission (SID 0x84) service. However, the requested action is not allowed to be sent using the SecuredDataTransmission (0x84) service.""" SecureDataVerificationFailed = 0x3A # noqa: F841 """SecureDataVerificationFailed (0x3A) NRC indicates that the message failed in the security sub-layer.""" CertificateVerificationFailed_InvalidTimePeriod = 0x50 # noqa: F841 """CertificateVerificationFailed_InvalidTimePeriod (0x50) NRC indicates that date and time of the server does not match the validity period of the Certificate.""" CertificateVerificationFailed_InvalidSignature = 0x51 # noqa: F841 """CertificateVerificationFailed_InvalidSignature (0x51) NRC indicates that signature of the Certificate could not be verified.""" CertificateVerificationFailed_InvalidChainOfTrust = 0x52 # noqa: F841 """CertificateVerificationFailed_InvalidChainOfTrust (0x52) NRC indicates that The Certificate could not be verified against stored information about the issuing authority.""" CertificateVerificationFailed_InvalidType = 0x53 # noqa: F841 """CertificateVerificationFailed_InvalidType (0x53) NRC indicates that the Certificate does not match the current requested use case.""" CertificateVerificationFailed_InvalidFormat = 0x54 # noqa: F841 """CertificateVerificationFailed_InvalidFormat (0x54) NRC indicates that the Certificate could not be evaluated because the format requirement has not been met.""" CertificateVerificationFailed_InvalidContent = 0x55 # noqa: F841 """CertificateVerificationFailed_InvalidContent (0x55) NRC indicates that the Certificate could not be verified because the content does not match.""" CertificateVerificationFailed_InvalidScope = 0x56 # noqa: F841 """CertificateVerificationFailed_InvalidScope (0x56) NRC indicates that the scope of the Certificate does not match the contents of the server.""" CertificateVerificationFailed_InvalidCertificate = 0x57 # noqa: F841 """CertificateVerificationFailed_InvalidCertificate (0x57) NRC indicates that the Certificate received from client is invalid, because the server has revoked access for some reason.""" OwnershipVerificationFailed = 0x58 # noqa: F841 """OwnershipVerificationFailed (0x58) NRC indicates that delivered Ownership does not match the provided challenge or could not verified with the own private key.""" ChallengeCalculationFailed = 0x59 # noqa: F841 """ChallengeCalculationFailed (0x59) NRC indicates that the challenge could not be calculated on the server side.""" SettingAccessRightsFailed = 0x5A # noqa: F841 """SettingAccessRightsFailed (0x5A) NRC indicates that the server could not set the access rights.""" SessionKeyCreationOrDerivationFailed = 0x5B # noqa: F841 """SessionKeyCreationOrDerivationFailed (0x5B) NRC indicates that the server could not create or derive a session key.""" ConfigurationDataUsageFailed = 0x5C # noqa: F841 """ConfigurationDataUsageFailed (0x5C) NRC indicates that the server could not work with the provided configuration data.""" DeAuthenticationFailed = 0x5D # noqa: F841 """DeAuthenticationFailed (0x5D) NRC indicates that DeAuthentication was not successful, server could still be unprotected.""" UploadDownloadNotAccepted = 0x70 # noqa: F841 """UploadDownloadNotAccepted (0x70) NRC indicates that an attempt to upload/download to a server’s memory cannot be accomplished due to some fault conditions.""" TransferDataSuspended = 0x71 # noqa: F841 """TransferDataSuspended (0x71) NRC indicates that a data transfer operation was halted due to some fault. The active transferData sequence shall be aborted.""" GeneralProgrammingFailure = 0x72 # noqa: F841 """GeneralProgrammingFailure (0x72) NRC indicates that the server detected an error when erasing or programming a memory location in the permanent memory device (e.g. Flash Memory).""" WrongBlockSequenceCounter = 0x73 # noqa: F841 """WrongBlockSequenceCounter (0x73) NRC indicates that the server detected an error in the sequence of blockSequenceCounter values. Note that the repetition of a TransferData request message with a blockSequenceCounter equal to the one included in the previous TransferData request message shall be accepted by the server.""" RequestCorrectlyReceived_ResponsePending = 0x78 # noqa: F841 """RequestCorrectlyReceived_ResponsePending (0x78) NRC ndicates that the request message was received correctly, and that all parameters in the request message were valid (these checks can be delayed until after sending this NRC if executing the boot software), but the action to be performed is not yet completed and the server is not yet ready to receive another request. As soon as the requested service has been completed, the server shall send a positive response message or negative response message with a response code different from this.""" SubFunctionNotSupportedInActiveSession = 0x7E # noqa: F841 """SubFunctionNotSupportedInActiveSession (0x7E) NRC indicates that the requested action will not be taken because the server does not support the requested SubFunction in the session currently active. This NRC shall only be used when the requested SubFunction is known to be supported in another session, otherwise response code SubFunctionNotSupported shall be used.""" ServiceNotSupportedInActiveSession = 0x7F # noqa: F841 """ServiceNotSupportedInActiveSession (0x7F) NRC indicates that the requested action will not be taken because the server does not support the requested service in the session currently active. This NRC shall only be used when the requested service is known to be supported in another session, otherwise response code serviceNotSupported shall be used.""" RpmTooHigh = 0x81 # noqa: F841 """RpmTooHigh (0x81) NRC indicates that the requested action will not be taken because the server prerequisite condition for RPM is not met (current RPM is above a preprogrammed maximum threshold).""" RpmTooLow = 0x82 # noqa: F841 """RpmTooLow (0x82) NRC indicates that the requested action will not be taken because the server prerequisite condition for RPM is not met (current RPM is below a preprogrammed minimum threshold).""" EngineIsRunning = 0x83 # noqa: F841 """EngineIsRunning (0x83) NRC is required for those actuator tests which cannot be actuated while the Engine is running. This is different from RPM too high negative response, and shall be allowed.""" EngineIsNotRunning = 0x84 # noqa: F841 """EngineIsNotRunning (0x84) NRC is required for those actuator tests which cannot be actuated unless the Engine is running. This is different from RPM too low negative response, and shall be allowed.""" EngineRunTimeTooLow = 0x85 # noqa: F841 """EngineRunTimeTooLow (0x85) NRC indicates that the requested action will not be taken because the server prerequisite condition for engine run time is not met (current engine run time is below a preprogrammed limit).""" TemperatureTooHigh = 0x86 # noqa: F841 """TemperatureTooHigh (0x86) NRC indicates that the requested action will not be taken because the serve prerequisite condition for temperature is not met (current temperature is above a preprogrammed maximum threshold).""" TemperatureTooLow = 0x87 # noqa: F841 """TemperatureTooLow (0x87) NRC indicates that the requested action will not be taken because the server prerequisite condition for temperature is not met (current temperature is below a preprogrammed minimum threshold).""" VehicleSpeedTooHigh = 0x88 # noqa: F841 """VehicleSpeedTooHigh (0x88) NRC indicates that the requested action will not be taken because the server prerequisite condition for vehicle speed is not met (current VS is above a preprogrammed maximum threshold).""" VehicleSpeedTooLow = 0x89 # noqa: F841 """VehicleSpeedTooLow (0x89) NRC indicates that the requested action will not be taken because the server prerequisite condition for vehicle speed is not met (current VS is below a preprogrammed minimum threshold).""" ThrottleOrPedalTooHigh = 0x8A # noqa: F841 """ThrottleOrPedalTooHigh (0x8A) NRC indicates that the requested action will not be taken because the server prerequisite condition for throttle/pedal position is not met (current throttle/pedal position is above a preprogrammed maximum threshold).""" ThrottleOrPedalTooLow = 0x8B # noqa: F841 """ThrottleOrPedalTooLow (0x8B) NRC indicates that the requested action will not be taken because the server prerequisite condition for throttle/pedal position is not met (current throttle/pedal position is below a preprogrammed minimum threshold).""" TransmissionRangeNotInNeutral = 0x8C # noqa: F841 """TransmissionRangeNotInNeutral (0x8C) NRC indicates that the requested action will not be taken because the server prerequisite condition for being in neutral is not met (current transmission range is not in neutral).""" TransmissionRangeNotInGear = 0x8D # noqa: F841 """TransmissionRangeNotInGear (0x8D) NRC indicates that the requested action will not be taken because the server prerequisite condition for being in gear is not met (current transmission range is not in gear).""" BrakeSwitchOrSwitchesNotClosed = 0x8F # noqa: F841 """BrakeSwitchOrSwitchesNotClosed (0x8F) NRC indicates that for safety reasons, this is required for certain tests before it begins, and shall be maintained for the entire duration of the test.""" ShifterLeverNotInPark = 0x90 # noqa: F841 """ShifterLeverNotInPark (0x90) NRC indicates that for safety reasons, this is required for certain tests before it begins, and shall be maintained for the entire duration of the test.""" TorqueConvertClutchLocked = 0x91 # noqa: F841 """TorqueConvertClutchLocked (0x91) RC indicates that the requested action will not be taken because the server prerequisite condition for torque converter clutch is not met (current torque converter clutch status above a preprogrammed limit or locked).""" VoltageTooHigh = 0x92 # noqa: F841 """VoltageTooHigh (0x92) NRC indicates that the requested action will not be taken because the server prerequisite condition for voltage at the primary pin of the server (ECU) is not met (current voltage is above a preprogrammed maximum threshold).""" VoltageTooLow = 0x93 # noqa: F841 """VoltageTooLow (0x93) NRC indicates that the requested action will not be taken because the server prerequisite condition for voltage at the primary pin of the server (ECU) is not met (current voltage is below a preprogrammed minimum threshold).""" ResourceTemporarilyNotAvailable = 0x94 # noqa: F841 """ResourceTemporarilyNotAvailable (0x94) NRC indicates that the server has received the request but the requested action could not be performed by the server because an application which is necessary to supply the requested information is temporality not available. This NRC is in general supported by each diagnostic service, as not otherwise stated in the data link specific implementation document, therefore it is not listed in the list of applicable response codes of the diagnostic services.""" # TODO: add alias
76.214592
120
0.768837
710319a6f514f246ad36204b0d678dd54a257995
413
py
Python
backend/patient_frog_28586/wsgi.py
crowdbotics-apps/patient-frog-28586
882a4431d2aae31c535ad0845f17fee5503a231c
[ "FTL", "AML", "RSA-MD" ]
null
null
null
backend/patient_frog_28586/wsgi.py
crowdbotics-apps/patient-frog-28586
882a4431d2aae31c535ad0845f17fee5503a231c
[ "FTL", "AML", "RSA-MD" ]
20
2021-07-08T11:44:38.000Z
2021-07-08T11:44:40.000Z
backend/patient_frog_28586/wsgi.py
crowdbotics-apps/patient-frog-28586
882a4431d2aae31c535ad0845f17fee5503a231c
[ "FTL", "AML", "RSA-MD" ]
null
null
null
""" WSGI config for patient_frog_28586 project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/2.2/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'patient_frog_28586.settings') application = get_wsgi_application()
24.294118
78
0.79661
db2c97ae0f84d7ef10b854b5656dd53835714ecd
54
py
Python
mpl_scipub/__init__.py
dormrod/matplotlib_wrapper
40ef4c20ac0d394cbbbfcb91da92c2c919271c6b
[ "MIT" ]
1
2020-08-02T00:13:01.000Z
2020-08-02T00:13:01.000Z
mpl_scipub/__init__.py
dormrod/mpl_scipub
40ef4c20ac0d394cbbbfcb91da92c2c919271c6b
[ "MIT" ]
null
null
null
mpl_scipub/__init__.py
dormrod/mpl_scipub
40ef4c20ac0d394cbbbfcb91da92c2c919271c6b
[ "MIT" ]
null
null
null
from .plotter import Plot from .dataset import DataSet
27
28
0.833333
1a381b8511c7524f3f8331b5c64c3e07385898b1
2,512
py
Python
tools/build/genids.py
fraca7/dsremap
fb8f4fb13e74b512ed0cac05387fbe9694faebcf
[ "MIT" ]
8
2020-09-06T02:15:10.000Z
2022-01-12T22:49:20.000Z
tools/build/genids.py
fraca7/dsremap
fb8f4fb13e74b512ed0cac05387fbe9694faebcf
[ "MIT" ]
5
2021-03-29T20:37:46.000Z
2021-09-19T13:20:24.000Z
tools/build/genids.py
fraca7/dsremap
fb8f4fb13e74b512ed0cac05387fbe9694faebcf
[ "MIT" ]
2
2020-09-16T01:45:49.000Z
2021-06-12T12:38:15.000Z
#!/usr/bin/env python3 import os import time import codecs import getopt import sys import pickle """ Generates the C header file that #defines the numerical message log IDs """ def write_ids(defname, dstname, strname): current = 0 strings = {} seen = set() with codecs.getreader('utf-8')(open(defname, 'rb')) as src: with codecs.getwriter('utf-8')(open(dstname, 'wb')) as dst: name = os.path.basename(dstname).upper().replace('.', '_') dst.write('\n#ifndef %s\n' % name) dst.write('#define %s\n\n' % name) for line in src: line = line.strip() if not line: dst.write('\n') continue if line.startswith('#'): dst.write('/* %s */\n' % line[1:].strip()) continue idx = line.index(' ') name, value = line[:idx], line[idx:].strip() if value in seen: raise ValueError('Duplicate string ID "%s"' % value) seen.add(value) dst.write('#define %s %d // %s\n' % (name, current, value)) strings[current] = value current += 1 if current == 65536: raise ValueError('Too much string IDs') dst.write('#endif\n') with open(strname, 'wb') as fileobj: pickle.dump(strings, fileobj) def usage(code=1): print('Usage: %s -o output_filename -s strings_filename input_filename' % sys.argv[0]) sys.exit(code) def main(argv): try: opts, args = getopt.getopt(argv, 'ho:s:', ['help', 'output=', 'strings=']) except getopt.Error as exc: print(exc) usage() if len(args) == 0: print('No input file specified') usage() if len(args) > 1: print('Too many arguments') usage() outname = None strname = None for opt, val in opts: if opt in ('-h', '--help'): usage(0) if opt in ('-o', '--output'): outname = val if opt in ('-s', '--strings'): strname = val if outname is None: print('No output file specified') usage() if strname is None: print('No strings file specified') usage() try: write_ids(args[0], outname, strname) except Exception as exc: print(exc) usage() if __name__ == '__main__': main(sys.argv[1:])
26.166667
90
0.506768
d24142157aafef9fec1e4c59909c8fdd6d0c4adf
2,086
py
Python
PLAYLIST DURATION/playlistduration.py
Pratyay360/python-youtube
4d9200851705728e433c79680b11435648c87d35
[ "MIT" ]
1
2021-06-16T14:27:20.000Z
2021-06-16T14:27:20.000Z
PLAYLIST DURATION/playlistduration.py
Pratyay360/python-youtube
4d9200851705728e433c79680b11435648c87d35
[ "MIT" ]
null
null
null
PLAYLIST DURATION/playlistduration.py
Pratyay360/python-youtube
4d9200851705728e433c79680b11435648c87d35
[ "MIT" ]
null
null
null
# CREATED BY PRATYAY import os import re from datetime import timedelta from googleapiclient.discovery import build ''' ENTER API KEY COLLECTED FROM https://developers.google.com/youtube/v3/getting-started ''' api_key = os.environ.get('API_KEY_HERE') youtube = build('youtube', 'v3', developerKey=api_key) hours_pattern = re.compile(r'(\d+)H') minutes_pattern = re.compile(r'(\d+)M') seconds_pattern = re.compile(r'(\d+)S') total_seconds = 0 nextPageToken = None while True: pl_request = youtube.playlistItems().list( part='contentDetails', ## ## Enter playlist id # https://www.youtube.com/playlist?list=PL-kIBfSqQg3vm9LJsLW-ct_egdWKv3WKR # this is a youtube playlist link. # here code after https://www.youtube.com/playlist?list= # is the playlist id........ playlistId="PLAYLIST_ID_HERE", maxResults=5000, pageToken=nextPageToken ) pl_response = pl_request.execute() vid_ids = [] for item in pl_response['items']: vid_ids.append(item['contentDetails']['videoId']) vid_request = youtube.videos().list( part="contentDetails", id=','.join(vid_ids) ) vid_response = vid_request.execute() for item in vid_response['items']: duration = item['contentDetails']['duration'] hours = hours_pattern.search(duration) minutes = minutes_pattern.search(duration) seconds = seconds_pattern.search(duration) hours = int(hours.group(1)) if hours else 0 minutes = int(minutes.group(1)) if minutes else 0 seconds = int(seconds.group(1)) if seconds else 0 video_seconds = timedelta( hours=hours, minutes=minutes, seconds=seconds ).total_seconds() total_seconds += video_seconds nextPageToken = pl_response.get('nextPageToken') if not nextPageToken: break total_seconds = int(total_seconds) minutes, seconds = divmod(total_seconds, 60) hours, minutes = divmod(minutes, 60) print(f'{hours}:{minutes}:{seconds}')
26.405063
85
0.655801
22fa2f249da5df80119685484986ca4a0a849762
4,638
py
Python
LongTermMemory/src/LongTermMemoryServer.py
emschimmel/BrainPi
96c0ccb727507bcce4d48292f77bb80a77164a0c
[ "Apache-2.0" ]
4
2017-11-12T12:55:32.000Z
2020-03-05T06:12:25.000Z
LongTermMemory/src/LongTermMemoryServer.py
emschimmel/BrainPi
96c0ccb727507bcce4d48292f77bb80a77164a0c
[ "Apache-2.0" ]
21
2017-11-24T10:18:29.000Z
2018-01-24T10:09:34.000Z
LongTermMemory/src/LongTermMemoryServer.py
emschimmel/BrainPi
96c0ccb727507bcce4d48292f77bb80a77164a0c
[ "Apache-2.0" ]
null
null
null
import signal import sys import consul from multiprocessing.managers import SyncManager sys.path.append('./gen-py') from LongMemory import LongMemoryService from LongMemory.ttypes import * from ThriftException.ttypes import * from Memory.PersonMemory import PersonMemory from Memory.AutorisationActions import AutorisationActions from thrift.transport import TSocket from thrift.transport import TTransport from thrift.protocol import TBinaryProtocol from thrift.server import TServer from ThriftException.ttypes import BadHashException from ThriftException.ttypes import LoginFailedException from ThriftException.ttypes import UniqueFailedException sys.path.append('../../') import config import logging import random import statsd port = random.randint(58850, 58860) stat = statsd.StatsClient(config.statsd_ip, config.statsd_port) log = logging.getLogger() log.setLevel(logging.DEBUG) class LongTermMemoryThriftServer: def __init__(self): self.log = {} @stat.timer("LongTermMemory.loginCall") def loginCall(self, loginobject): try: person = AutorisationActions().login(loginobject) return person except BadHashException as bad: raise BadHashException except LoginFailedException as fail: raise LoginFailedException @stat.timer("LongTermMemory.getPersonConfig") def getPersonConfig(self, uniquename): try: return PersonMemory().getPerson(uniquename) except Exception as ex: print('invalid request %s' % ex) @stat.timer("LongTermMemory.storeNewPerson") def storeNewPerson(self, person): try: PersonMemory().storeNewPerson(person=person) except UniqueFailedException as unique: raise unique except Exception as ex: print('invalid request %s' % ex) @stat.timer("LongTermMemory.updatePerson") def updatePerson(self, field, person): try: PersonMemory().updatePerson(uniquename=person.uniquename, field=field, person=person) except Exception as ex: print('invalid request %s' % ex) @stat.timer("LongTermMemory.updateActionConfig") def updateActionConfig(self, uniquename, action, user_config): try: PersonMemory().updateActionConfig(uniquename=uniquename, action=action, user_config=user_config) except Exception as ex: print('invalid request %s' % ex) @stat.timer("LongTermMemory.changePassword") def changePassword(self, username, password): try: AutorisationActions().changePassword(username, password) except BadHashException as bad: raise bad @stat.timer("LongTermMemory.getAll") def getAll(self): try: return PersonMemory().getAll() except Exception as ex: print('invalid request %s' % ex) def get_ip(): import socket s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) try: s.connect(('255.255.255.255', 1)) # isn't reachable intentionally IP = s.getsockname()[0] except: IP = '127.0.0.1' finally: s.close() return IP def create_server(): handler = LongTermMemoryThriftServer() return TServer.TSimpleServer( LongMemoryService.Processor(handler), TSocket.TServerSocket(port=port), TTransport.TBufferedTransportFactory(), TBinaryProtocol.TBinaryProtocolFactory() ) def register(): log.info("register started") c = consul.Consul(host=config.consul_ip, port=config.consul_port) check = consul.Check.tcp(host=get_ip(), port=port, interval=config.consul_interval, timeout=config.consul_timeout, deregister=unregister()) c.agent.service.register(name="long-term-memory", service_id="long-term-memory-%d" % port, port=port, check=check) log.info("services: " + str(c.agent.services())) def unregister(): log.info("unregister started") c = consul.Consul(host=config.consul_ip, port=config.consul_port) c.agent.service.deregister("long-term-memory-%d" % port) c.agent.service.deregister("long-term-memory") log.info("services: " + str(c.agent.services())) def interupt_manager(): signal.signal(signal.SIGINT, signal.SIG_IGN) def main(args=None): manager = SyncManager() manager.start(interupt_manager) try: server = create_server() register() server.serve() finally: unregister() print('finally Long term memory Shutting down') manager.shutdown() if __name__ == '__main__': main()
31.55102
118
0.68564
5a711d138047e6627d1cbd27de035918f9afcea9
215
py
Python
tests/setup_test/test.py
khurrumsaleem/plotter
a8abcda71c20f6f51f635636338a3ee95a78733e
[ "MIT" ]
17
2019-03-30T14:44:08.000Z
2022-03-15T16:00:47.000Z
tests/setup_test/test.py
khurrumsaleem/plotter
a8abcda71c20f6f51f635636338a3ee95a78733e
[ "MIT" ]
55
2019-03-22T18:44:19.000Z
2022-03-03T19:11:06.000Z
tests/setup_test/test.py
khurrumsaleem/plotter
a8abcda71c20f6f51f635636338a3ee95a78733e
[ "MIT" ]
11
2019-03-22T22:52:56.000Z
2021-03-18T22:59:00.000Z
from openmc_plotter.main_window import MainWindow, _openmcReload def test_window(qtbot): _openmcReload() mw = MainWindow() mw.loadGui() mw.plotIm.figure.savefig("test.png") qtbot.addWidget(mw)
21.5
64
0.72093
a9420af5c49eeb7db1623f370c6e48e76b87b7d2
2,452
py
Python
trax/tf_numpy/numpy_impl/dtypes.py
Nishant-Pall/trax
f714a271111578d4e6b3ac445eef86ca03dc7fa6
[ "Apache-2.0" ]
2
2020-08-08T14:38:53.000Z
2021-03-04T01:00:17.000Z
trax/tf_numpy/numpy/dtypes.py
ZachT1711/trax
a0a3dd8d49e53fc48bb24cc08c10a8a53517e7bc
[ "Apache-2.0" ]
null
null
null
trax/tf_numpy/numpy/dtypes.py
ZachT1711/trax
a0a3dd8d49e53fc48bb24cc08c10a8a53517e7bc
[ "Apache-2.0" ]
1
2020-03-06T06:36:36.000Z
2020-03-06T06:36:36.000Z
# coding=utf-8 # Copyright 2020 The Trax Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Dtypes and dtype utilities.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np # We use numpy's dtypes instead of TF's, because the user expects to use them # with numpy facilities such as `np.dtype(np.int64)` and # `if x.dtype.type is np.int64`. # pylint: disable=unused-import # pylint: disable=g-bad-import-order from numpy import bool_ from numpy import int_ from numpy import int16 from numpy import int32 from numpy import int64 from numpy import int8 from numpy import uint16 from numpy import uint32 from numpy import uint64 from numpy import uint8 from numpy import float_ from numpy import float16 from numpy import float32 from numpy import float64 from numpy import complex_ from numpy import complex64 from numpy import complex128 from numpy import inexact from numpy import iinfo from numpy import issubdtype from numpy import inf # TODO(wangpeng): Make bfloat16 a numpy dtype instead of using TF's from tensorflow.compat.v2 import bfloat16 # pylint: enable=g-bad-import-order # pylint: enable=unused-import _to_float32 = { np.dtype('float64'): np.dtype('float32'), np.dtype('complex128'): np.dtype('complex64'), } _allow_float64 = True def is_allow_float64(): return _allow_float64 def set_allow_float64(b): global _allow_float64 _allow_float64 = b def canonicalize_dtype(dtype): if not is_allow_float64(): return _to_float32.get(dtype, dtype) else: return dtype def _result_type(*arrays_and_dtypes): dtype = np.result_type(*arrays_and_dtypes) return canonicalize_dtype(dtype) def default_float_type(): """Gets the default float type. Returns: If `is_allow_float64()` is true, returns float64; otherwise returns float32. """ if is_allow_float64(): return float64 else: return float32
24.767677
80
0.766721
9526056407692c0d76e952e26eea096b8f9a29c2
814
py
Python
MLProjects/Phishing-URL-Detection/phishingurldetector/phishingurldetector/urls.py
evidawei/HacktoberFest_2021
3c950c6a6451ac732c4090f374c7dc4b6ef36c50
[ "MIT" ]
33
2021-10-01T17:51:53.000Z
2022-03-20T11:30:09.000Z
MLProjects/Phishing-URL-Detection/phishingurldetector/phishingurldetector/urls.py
evidawei/HacktoberFest_2021
3c950c6a6451ac732c4090f374c7dc4b6ef36c50
[ "MIT" ]
69
2021-10-01T09:07:22.000Z
2021-10-20T02:21:12.000Z
MLProjects/Phishing-URL-Detection/phishingurldetector/phishingurldetector/urls.py
evidawei/HacktoberFest_2021
3c950c6a6451ac732c4090f374c7dc4b6ef36c50
[ "MIT" ]
187
2021-10-01T09:06:51.000Z
2022-01-29T03:18:30.000Z
"""phishingurldetector URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/3.2/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path,include urlpatterns = [ path('', include('phishingapp.urls')), path('admin/', admin.site.urls), ]
33.916667
77
0.707617
d5b726a2b257a4922f376184299305300848ca92
9,913
py
Python
tierpsy/analysis/int_ske_orient/checkFinalOrientation.py
SKFnordquist/tierpsy-tracker
7ed935fdd3ee5920914effb1bf52dec45b7d54fc
[ "MIT" ]
1
2019-02-24T23:45:36.000Z
2019-02-24T23:45:36.000Z
tierpsy/analysis/int_ske_orient/checkFinalOrientation.py
SKFnordquist/tierpsy-tracker
7ed935fdd3ee5920914effb1bf52dec45b7d54fc
[ "MIT" ]
null
null
null
tierpsy/analysis/int_ske_orient/checkFinalOrientation.py
SKFnordquist/tierpsy-tracker
7ed935fdd3ee5920914effb1bf52dec45b7d54fc
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """ Created on Tue Mar 15 15:37:12 2016 @author: ajaver """ import glob import os import numpy as np import pandas as pd import tables from scipy.signal import savgol_filter from tierpsy.analysis.ske_orient.checkHeadOrientation import isWormHTSwitched from tierpsy.helper.misc import print_flush def getHeadProbMov( skeletons_file, trajectories_worm, max_gap_allowed=10, window_std=25, segment4angle=5, min_block_size=250): skel_group = ( trajectories_worm['skeleton_id'].min(), trajectories_worm['skeleton_id'].max()) with tables.File(skeletons_file, 'r') as fid: good_skeletons = trajectories_worm['int_map_id'].values != -1 skeletons_id = trajectories_worm['skeleton_id'].values[good_skeletons] dd = fid.get_node('/skeleton').shape skeletons = np.full((len(good_skeletons), dd[1], dd[2]), np.nan) if len(skeletons_id) > 0: skeletons[good_skeletons, :, :] = fid.get_node( '/skeleton')[skeletons_id, :, :] else: return np.nan, skel_group #savgol_filter does not accept even windows if window_std % 2 == 0: window_std += 1 #get the indexes of valid skeletons skel_ind_valid = ~np.isnan(skeletons[:, 0, 0]) #smooth on time to reduce the variance but only on the points that are going to be used to calculate the angles for nn in [0, segment4angle, -segment4angle -1 , -1]: for ii in range(2): dat = pd.Series(skeletons[:, nn, ii]).fillna(method='ffill').fillna(method='bfill') dat = savgol_filter(dat, window_std, 3) skeletons[:, nn, ii] = dat #total range in coordinates of the head movement top = np.max(skeletons[:, 0], axis=0) bot = np.min(skeletons[:, 0], axis=0) head_path_range = np.sqrt(np.sum((top-bot)**2)) #average head tail distance ht_dist = np.sqrt(((skeletons[:, 0] - skeletons[:, -1])**2).sum(axis=1)) ht_dist_avg = np.nanmean(ht_dist)/2 #%% if head_path_range < ht_dist_avg: #here I find that it works better to use a very large window since the movement is less window_std = window_std*50 #make sure the the window is at most half of the total size of the valid skeletons window dd, = np.where(skel_ind_valid) bot, top = dd[0], dd[-1] N = max(1, (top-bot + 1)//2) window_std = min(window_std, N) is_switch_skel, roll_std = isWormHTSwitched(skeletons, segment4angle=segment4angle, max_gap_allowed=max_gap_allowed, window_std = window_std, min_block_size=min_block_size) #%% #calculate the head tail probability at each point and get the average p_mov = roll_std['head_angle']/(roll_std['head_angle'] +roll_std['tail_angle']) #remove values that are too small, if the std is zero i cannot really calculate this values dd = roll_std['head_angle'] + roll_std['tail_angle'] ind_valid = skel_ind_valid & (dd > 1e-3) p_mov = p_mov.values[ind_valid] if p_mov.size == 0: import pdb pdb.set_trace() #average using only the indexes of valid skeletons p_mov_avg = np.nanmean(p_mov) return p_mov_avg, skel_group def searchIntPeaks( median_int, peak_search_limits=[ 0.054, 0.192, 0.269, 0.346]): ''' Look for local maxima in the intensity profile, it will first look for a minima within 0 and search lim 0, then for a maxima between the minima and the search lim 1, then for a minima and finally for a maxima... ''' length_resampling = median_int.shape[0] peaks_ind = [] hh = 0 tt = length_resampling for ii, ds in enumerate(peak_search_limits): peak_lim = round(ds * length_resampling) func_search = np.argmin if ii % 2 == 0 else np.argmax hh = func_search(median_int[hh:peak_lim]) + hh dd = length_resampling - peak_lim tt = func_search(median_int[dd:tt]) + dd peaks_ind.append((hh, tt)) return peaks_ind def getHeadProvInt( intensities_file, trajectories_worm, min_block_size, peak_search_limits): ''' Calculate the probability of an intensity profile being in the correct orientation according to the intensity profile ''' with tables.File(intensities_file, 'r') as fid: int_map_id = trajectories_worm.loc[ trajectories_worm['int_map_id'] != -1, 'int_map_id'] if int_map_id.size == 0 or int_map_id.size < min_block_size: # the number of maps is too small let's return nan's nothing to do # here return np.nan, np.nan, [] worm_int = fid.get_node( '/straighten_worm_intensity_median')[int_map_id].astype(np.float) worm_int -= np.median(worm_int, axis=1)[:, np.newaxis] # get the median intensity profile median_int = np.median(worm_int, axis=0) # search for the peaks in the intensity profile (the head typically have a # minimum, follow by a maximum, then a minimum and then a maxima) peaks_ind = searchIntPeaks(median_int, peak_search_limits=peak_search_limits) # calculate the distance between the second minima and the second maxima headbot2neck = median_int[peaks_ind[3][0]] - median_int[peaks_ind[2][0]] headbot2neck = 0 if headbot2neck < 0 else headbot2neck tailbot2waist = median_int[peaks_ind[3][1]] - median_int[peaks_ind[2][1]] tailbot2waist = 0 if tailbot2waist < 0 else tailbot2waist p_int_bot = headbot2neck / (headbot2neck + tailbot2waist) # calculate the distance between the second minima and the first maxima headtop2bot = median_int[peaks_ind[1][0]] - median_int[peaks_ind[2][0]] headtop2bot = 0 if headtop2bot < 0 else headtop2bot tailtop2bot = median_int[peaks_ind[1][1]] - median_int[peaks_ind[2][1]] tailtop2bot = 0 if tailtop2bot < 0 else tailtop2bot p_int_top = headtop2bot / (headtop2bot + tailtop2bot) int_group = (np.min(int_map_id), np.max(int_map_id)) # #%% # plt.figure() # plt.title(base_name) # plt.plot(median_int, label ='0.3') # # strC = 'rgck' # for ii, dd in enumerate(peaks_ind): # for xx in dd: # plt.plot(xx, median_int[xx], 'o' + strC[ii]) return p_int_top, p_int_bot, int_group def checkFinalOrientation( skeletons_file, intensities_file, trajectories_worm, min_block_size, head_tail_param): peak_search_limits = [0.054, 0.192, 0.269, 0.346] p_mov, skel_group = getHeadProbMov( skeletons_file, trajectories_worm, **head_tail_param) p_int_top, p_int_bot, int_group = getHeadProvInt( intensities_file, trajectories_worm, min_block_size, peak_search_limits=peak_search_limits) # The weights I am using will give the p_tot > 0.5 as long as the # std of the head is twice than the tail, if it is less the intensity # will take a higher role. The difference between the second minimum (traquea) # and the second maximum (neck) given by p_int_bot, seems to be a better predictor, # since typically the second maxima does not exists in the tail. However, # the difference between the first maximum (head tip) and the second mimimum (traquea) # given by p_int_top, can be important therefore both weights are similar. p_tot = 0.75 * p_mov + 0.15 * p_int_bot + 0.1 * p_int_top # if it is nan, both int changes where negatives, equal the probability to # the p_mov if p_tot != p_tot: p_tot = p_mov return p_tot, [skel_group], [int_group] #%% if __name__ == '__main__': from tierpsy.analysis.int_ske_orient.correctHeadTailIntensity import switchBlocks check_dir = '/Users/ajaver/Desktop/Videos/single_worm/agar_1/MaskedVideos/' head_tail_param = { 'max_gap_allowed': 10, 'window_std': 25, 'segment4angle': 5, 'min_block_size': 250} #peak_search_limits = [0.054, 0.192, 0.269, 0.346] all_median = [] for ff in glob.glob(os.path.join(check_dir, '*')): ff = ff.replace('MaskedVideos', 'Results') base_name = os.path.split(ff)[1].rpartition('.')[0] trajectories_file = ff[:-5] + '_trajectories.hdf5' skeletons_file = ff[:-5] + '_skeletons.hdf5' intensities_file = ff[:-5] + '_intensities.hdf5' # check the file finished in the correct step # with tables.File(skeletons_file, 'r') as fid: # assert fid.get_node('/skeleton')._v_attrs['has_finished'] >= 4 with pd.HDFStore(skeletons_file, 'r') as fid: trajectories_data = fid['/trajectories_data'] grouped_trajectories = trajectories_data.groupby('worm_index_joined') tot_worms = len(grouped_trajectories) # variables to report progress base_name = skeletons_file.rpartition( '.')[0].rpartition(os.sep)[-1].rpartition('_')[0] print_flush( base_name + " Checking if the final Head-Tail orientation is correct") for index_n, (worm_index, trajectories_worm) in enumerate( grouped_trajectories): p_tot, skel_group, int_group = checkFinalOrientation( skeletons_file, intensities_file, trajectories_worm, head_tail_param) if p_tot < 0.5: switchBlocks( skel_group, skeletons_file, int_group, intensities_file)
35.530466
121
0.630082
e25373abb1704dba604263e3208608756befdea6
142
py
Python
src/141A.py
viing937/codeforces
d694eb6967cd56af02963c3a662066048cb78d07
[ "MIT" ]
2
2016-08-19T09:47:03.000Z
2016-10-01T10:15:03.000Z
src/141A.py
viing937/codeforces
d694eb6967cd56af02963c3a662066048cb78d07
[ "MIT" ]
null
null
null
src/141A.py
viing937/codeforces
d694eb6967cd56af02963c3a662066048cb78d07
[ "MIT" ]
1
2015-07-01T23:57:32.000Z
2015-07-01T23:57:32.000Z
# coding: utf-8 s1 = input() s2 = input() s = input() if sorted(list(s1)+list(s2)) == sorted(list(s)): print('YES') else: print('NO')
15.777778
48
0.56338
f03284717bc211e6600613a99d2dc6cbf51fcafa
16,743
py
Python
models/stl10/cnn.py
mathczh/GANL2L
fdffbcb1547cf8f3a7287a4a21d3f4871f3e4e42
[ "MIT" ]
null
null
null
models/stl10/cnn.py
mathczh/GANL2L
fdffbcb1547cf8f3a7287a4a21d3f4871f3e4e42
[ "MIT" ]
null
null
null
models/stl10/cnn.py
mathczh/GANL2L
fdffbcb1547cf8f3a7287a4a21d3f4871f3e4e42
[ "MIT" ]
null
null
null
import torch.nn as nn import torch from ..OrthConv import * from ..SNConv import * from ..SphereConv import * __all__ = ['cnn_D','cnn_G','cnnv1_D','cnnv1_G','cnnv2_D','cnnv2_G','set_use_bias_cnn'] USE_BIAS = False def set_use_bias_cnn(x): global USE_BIAS USE_BIAS = x class CNN_D(nn.Module): def __init__(self, isize, nc, ndf, ngpu, n_extra_layers=0, norm_type = 'none', loss_type='wgan', version = 1): super(CNN_D, self).__init__() self.ngpu = ngpu main = nn.Sequential() # input is nc x isize x isize if 'OR' in norm_type: if 'Mani' in norm_type: self.myConv2d = Orth_Plane_Mani_Conv2d else: self.myConv2d = Orth_Plane_Conv2d elif 'UVR' in norm_type: if 'Mani' in norm_type: self.myConv2d = Orth_UV_Mani_Conv2d else: self.myConv2d = Orth_UV_Conv2d elif 'WN' in norm_type: self.myConv2d = WN_Conv2d elif 'SN' in norm_type: self.myConv2d = SNConv2d elif 'Sphere' in norm_type: self.myConv2d = Sphere_Conv2d else: self.myConv2d = nn.Conv2d if version == 1: if 'OR' in norm_type: main.add_module('initial_4x4conv_{0}-{1}'.format(nc, ndf), GroupOrthConv(self.myConv2d, nc, ndf, 4, 2, 1, bias=USE_BIAS)) else: main.add_module('initial_4x4conv_{0}-{1}'.format(nc, ndf), self.myConv2d(nc, ndf, 4, 2, 1, bias=USE_BIAS)) if "BN" in norm_type: main.add_module('initial_{0}_4x4batchnorm'.format(ndf), nn.BatchNorm2d(ndf)) elif "LN" in norm_type: main.add_module('initial_{0}_4x4layernorm'.format(ndf), nn.LayerNorm((ndf,isize//2,isize//2))) main.add_module('initial_4x4relu_{0}'.format(ndf), nn.LeakyReLU(0.2, inplace=True)) if version == 2: # 3*3 block if 'OR' in norm_type: main.add_module('initial_3x3conv_{0}-{1}'.format(nc, ndf), GroupOrthConv(self.myConv2d, nc, ndf, 3, 1, 1, bias=USE_BIAS)) else: main.add_module('initial_3x3conv_{0}-{1}'.format(nc, ndf), self.myConv2d(nc, ndf, 3, 1, 1, bias=USE_BIAS)) if "BN" in norm_type: main.add_module('initial_{0}_3x3batchnorm'.format(ndf), nn.BatchNorm2d(ndf)) elif "LN" in norm_type: main.add_module('initial_{0}_3x3layernorm'.format(ndf), nn.LayerNorm((ndf,isize,isize))) main.add_module('initial_3x3relu_{0}'.format(ndf), nn.LeakyReLU(0.1, inplace=True)) # 4*4 block main.add_module('initial_4x4conv_{0}-{1}'.format(ndf, ndf), self.myConv2d(ndf, ndf, 4, 2, 1, bias=USE_BIAS)) if "BN" in norm_type: main.add_module('initial_{0}_4x4batchnorm'.format(ndf), nn.BatchNorm2d(ndf)) elif "LN" in norm_type: main.add_module('initial_{0}_4x4layernorm'.format(ndf), nn.LayerNorm((ndf,isize//2,isize//2))) main.add_module('initial_4x4relu_{0}'.format(ndf), nn.LeakyReLU(0.1, inplace=True)) csize, cndf = isize // 2, ndf # Extra layers for t in range(n_extra_layers): main.add_module('extra-layers-{0}-{1}_conv'.format(t, cndf), self.myConv2d(cndf, cndf, 3, 1, 1, bias=USE_BIAS)) if "BN" in norm_type: main.add_module('extra-layers-{0}-{1}_batchnorm'.format(t, cndf), nn.BatchNorm2d(cndf)) elif "LN" in norm_type: main.add_module('extra-layers-{0}-{1}_layernorm'.format(t, cndf), nn.LayerNorm((cndf,csize,csize))) main.add_module('extra-layers-{0}-{1}_relu'.format(t, cndf), nn.LeakyReLU(0.2, inplace=True)) while csize > 6: in_feat = cndf out_feat = cndf * 2 ############################################################## # V1 ############################################################## if version == 1: main.add_module('pyramid_{0}-{1}_4x4conv'.format(in_feat, out_feat), self.myConv2d(in_feat, out_feat, 4, 2, 1, bias=USE_BIAS)) if "BN" in norm_type: main.add_module('pyramid_{0}_4x4batchnorm'.format(out_feat), nn.BatchNorm2d(out_feat)) elif "LN" in norm_type: main.add_module('pyramid_{0}_4x4layernorm'.format(out_feat), nn.LayerNorm((out_feat,csize//2,csize//2))) main.add_module('pyramid_{0}_4x4relu'.format(out_feat), nn.LeakyReLU(0.2, inplace=True)) ############################################################## # V2 ############################################################## if version == 2: # 3*3 block main.add_module('pyramid_{0}-{1}_3x3conv'.format(in_feat, out_feat), self.myConv2d(in_feat, out_feat, 3, 1, 1, bias=USE_BIAS)) if "BN" in norm_type: main.add_module('pyramid_{0}_3x3batchnorm'.format(out_feat), nn.BatchNorm2d(out_feat)) elif "LN" in norm_type: main.add_module('pyramid_{0}_3x3layernorm'.format(out_feat), nn.LayerNorm((out_feat,csize,csize))) main.add_module('pyramid_{0}_3x3relu'.format(out_feat), nn.LeakyReLU(0.1, inplace=True)) # 4*4 block main.add_module('pyramid_{0}-{1}_4x4conv'.format(out_feat, out_feat), self.myConv2d(out_feat, out_feat, 4, 2, 1, bias=USE_BIAS)) if "BN" in norm_type: main.add_module('pyramid_{0}_4x4batchnorm'.format(out_feat), nn.BatchNorm2d(out_feat)) elif "LN" in norm_type: main.add_module('pyramid_{0}_4x4layernorm'.format(out_feat), nn.LayerNorm((out_feat,csize//2,csize//2))) main.add_module('pyramid_{0}_4x4relu'.format(out_feat), nn.LeakyReLU(0.1, inplace=True)) cndf = cndf * 2 csize = csize // 2 # state size. K x 4 x 4 if version == 1: main.add_module('final_{0}-{1}_4x4conv'.format(cndf, 1), self.myConv2d(cndf, 1, 6, 1, 0, bias=USE_BIAS)) if version == 2: in_feat = cndf out_feat = cndf * 2 # 3*3 block main.add_module('final_{0}-{1}_3x3conv'.format(in_feat, out_feat), self.myConv2d(in_feat, out_feat, 3, 1, 1, bias=USE_BIAS)) if "BN" in norm_type: main.add_module('final_{0}_3x3batchnorm'.format(out_feat), nn.BatchNorm2d(out_feat)) elif "LN" in norm_type: main.add_module('final_{0}_3x3layernorm'.format(out_feat), nn.LayerNorm((out_feat,4,4))) main.add_module('final_{0}_3x3relu'.format(out_feat), nn.LeakyReLU(0.1, inplace=True)) main.add_module('final_{0}-{1}_4x4conv'.format(out_feat, 1), self.myConv2d(out_feat, 1, 6, 1, 0, bias=USE_BIAS)) cndf = cndf * 2 if loss_type == "dcgan": main.add_module('final_sigmoid', nn.Sigmoid()) self.main = main for m_name, m in self.named_modules(): print(m_name+': '+m.__class__.__name__) if isinstance(m, nn.Conv2d): # Special Convlayer has their own ini m.weight.data.normal_(0,0.02) m.bias.data.fill_(0) elif isinstance(m, nn.BatchNorm2d) or isinstance(m, nn.LayerNorm): m.weight.data.normal_(1.0,0.02) m.bias.data.fill_(0) def forward(self, input): if isinstance(input.data, torch.cuda.FloatTensor) and self.ngpu > 1: output = nn.parallel.data_parallel(self.main, input, range(self.ngpu)) else: output = self.main(input) return output.squeeze() def showBNInfo(self): for m_name, m in self.named_modules(): if isinstance(m, nn.BatchNorm2d): print("BN weight: max: %f; mean: %f; min: %f; var: %f" %( m.weight.data.max(), m.weight.data.mean(), m.weight.data.min(),m.weight.data.var())) print("BN bias: max: %f; mean: %f; min: %f; var: %f" %( m.bias.data.max(), m.bias.data.mean(), m.bias.data.min(), m.bias.data.var())) def showOrthInfo(self): ss = [] for m_name, m in self.named_modules(): if hasattr(m, 'showOrthInfo') and isinstance(m, self.myConv2d): s = m.showOrthInfo() s,_ = s.sort() ss.append(s.cpu().numpy()) return ss # elif isinstance(m, nn.BatchNorm2d): # print("BN Wei: ",m.weight.data," BN Bias: ",m.bias.data) def setmode(self, mode): for m_name, m in self.named_modules(): if hasattr(m, 'setmode') and isinstance(m, self.myConv2d): m.setmode(mode) def project(self): for m_name, m in self.named_modules(): if hasattr(m, 'project') and isinstance(m, self.myConv2d): m.project() def update_sigma(self,**kwargs): """ Only for SN and UVR(mde 1 & 2) """ for m_name, m in self.named_modules(): if hasattr(m, 'update_sigma') and isinstance(m, self.myConv2d): m.update_sigma(**kwargs) def log_spectral(self): """ Only for SN and UVR(mde 1 & 2) """ log_s = 0 for m_name, m in self.named_modules(): if hasattr(m, 'log_spectral') and isinstance(m, self.myConv2d): log_s = log_s + m.log_spectral() return log_s def orth_penalty(self): penalty = 0 for m_name, m in self.named_modules(): if hasattr(m, 'orth_penalty') and isinstance(m, self.myConv2d): penalty = penalty + m.orth_penalty() return penalty def spectral_penalty(self): penalty = 0 for m_name, m in self.named_modules(): if hasattr(m, 'spectral_penalty') and isinstance(m, self.myConv2d): penalty = penalty + m.spectral_penalty() return penalty def cnn_D(isize, nc, ndf, ngpu, n_extra_layers=0, norm_type = 'none', loss_type='wgan'): model = CNN_D(isize, nc, ndf, ngpu, n_extra_layers, norm_type, loss_type, version = 1) return model cnnv1_D = cnn_D def cnnv2_D(isize, nc, ndf, ngpu, n_extra_layers=0, norm_type = 'none', loss_type='wgan'): model = CNN_D(isize, nc, ndf, ngpu, n_extra_layers, norm_type, loss_type, version = 2) return model class CNN_G(nn.Module): def __init__(self, isize, nz, nc, ngf, ngpu, n_extra_layers=0): super(CNN_G, self).__init__() self.ngpu = ngpu assert isize % 16 == 0, "isize has to be a multiple of 16" cngf, tisize = ngf//2, 4 while tisize != isize: cngf = cngf * 2 tisize = tisize * 2 main = nn.Sequential() # input is Z, going into a convolution main.add_module('initial_{0}-{1}_convt'.format(nz, cngf), nn.ConvTranspose2d(nz, cngf, 6, 1, 0, bias=USE_BIAS)) main.add_module('initial_{0}_batchnorm'.format(cngf), nn.BatchNorm2d(cngf)) main.add_module('initial_{0}_relu'.format(cngf), nn.ReLU(True)) csize, cndf = 4, cngf while csize < isize//2: main.add_module('pyramid_{0}-{1}_convt'.format(cngf, cngf//2), nn.ConvTranspose2d(cngf, cngf//2, 4, 2, 1, bias=USE_BIAS)) main.add_module('pyramid_{0}_batchnorm'.format(cngf//2), nn.BatchNorm2d(cngf//2)) main.add_module('pyramid_{0}_relu'.format(cngf//2), nn.ReLU(True)) cngf = cngf // 2 csize = csize * 2 # Extra layers for t in range(n_extra_layers): main.add_module('extra-layers-{0}-{1}_conv'.format(t, cngf), nn.Conv2d(cngf, cngf, 3, 1, 1, bias=USE_BIAS)) main.add_module('extra-layers-{0}-{1}_batchnorm'.format(t, cngf), nn.BatchNorm2d(cngf)) main.add_module('extra-layers-{0}-{1}_relu'.format(t, cngf), nn.ReLU(True)) main.add_module('final_{0}-{1}_convt'.format(cngf, nc), nn.ConvTranspose2d(cngf, nc, 4, 2, 1, bias=USE_BIAS)) main.add_module('final_{0}_tanh'.format(nc), nn.Tanh()) self.main = main for m_name, m in self.named_modules(): if isinstance(m, nn.ConvTranspose2d): # Special Convlayer has their own ini m.weight.data.normal_(0,0.02) m.bias.data.fill_(0) elif isinstance(m, nn.BatchNorm2d) or isinstance(m, nn.LayerNorm): m.weight.data.normal_(1.0,0.02) m.bias.data.fill_(0) def forward(self, input): if isinstance(input.data, torch.cuda.FloatTensor) and self.ngpu > 1: output = nn.parallel.data_parallel(self.main, input, range(self.ngpu)) else: output = self.main(input) return output def cnn_G(isize, nz, nc, ngf, ngpu, n_extra_layers=0): model = CNN_G(isize, nz, nc, ngf, ngpu, n_extra_layers) return model cnnv1_G = cnn_G class CNNv2_G(nn.Module): def __init__(self, isize, nz, nc, ngf, ngpu, n_extra_layers=0): super(CNNv2_G, self).__init__() self.ngpu = ngpu assert isize % 16 == 0, "isize has to be a multiple of 16" cngf, tisize = ngf//2, 6 while tisize != isize: cngf = cngf * 2 tisize = tisize * 2 cngf = cngf * 2 tisize = tisize * 2 main = nn.Sequential() # input is Z, going into a convolution main.add_module('initial_{0}-{1}_convt'.format(nz, cngf), nn.ConvTranspose2d(nz, cngf, 6, 1, 0)) main.add_module('initial_{0}_batchnorm'.format(cngf), nn.BatchNorm2d(cngf)) main.add_module('initial_{0}_relu'.format(cngf), nn.ReLU(True)) csize, cndf = 6, cngf while csize <= isize//2: main.add_module('pyramid_{0}-{1}_convt'.format(cngf, cngf//2), nn.ConvTranspose2d(cngf, cngf//2, 4, 2, 1)) main.add_module('pyramid_{0}_batchnorm'.format(cngf//2), nn.BatchNorm2d(cngf//2)) main.add_module('pyramid_{0}_relu'.format(cngf//2), nn.ReLU(True)) cngf = cngf // 2 csize = csize * 2 main.add_module('final_{0}-{1}_convt'.format(cngf, nc), nn.ConvTranspose2d(cngf, nc, 3, 1, 1)) main.add_module('final_{0}_tanh'.format(nc), nn.Tanh()) self.main = main for m_name, m in self.named_modules(): if isinstance(m, nn.ConvTranspose2d): # Special Convlayer has their own ini m.weight.data.normal_(0,0.02) m.bias.data.fill_(0) elif isinstance(m, nn.BatchNorm2d) or isinstance(m, nn.LayerNorm): m.weight.data.normal_(1.0,0.02) m.bias.data.fill_(0) def forward(self, input): if isinstance(input.data, torch.cuda.FloatTensor) and self.ngpu > 1: output = nn.parallel.data_parallel(self.main, input, range(self.ngpu)) else: output = self.main(input) return output def cnnv2_G(isize, nz, nc, ngf, ngpu): model = CNNv2_G(isize, nz, nc, ngf, ngpu) return model
42.820972
158
0.51747