hexsha
stringlengths
40
40
size
int64
4
1.02M
ext
stringclasses
8 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
4
209
max_stars_repo_name
stringlengths
5
121
max_stars_repo_head_hexsha
stringlengths
40
40
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
4
209
max_issues_repo_name
stringlengths
5
121
max_issues_repo_head_hexsha
stringlengths
40
40
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
4
209
max_forks_repo_name
stringlengths
5
121
max_forks_repo_head_hexsha
stringlengths
40
40
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
4
1.02M
avg_line_length
float64
1.07
66.1k
max_line_length
int64
4
266k
alphanum_fraction
float64
0.01
1
f1a6184fa2d53d7b5baa96f74858af1bfa6bb07d
707
py
Python
example/complex_factories_sample/migrations/0003_hasautoslugexample.py
kaoslabsinc/django-building-blocks
b5f74121b4002e2b96b5addd6f2593c1a2cead98
[ "BSD-3-Clause" ]
1
2021-08-03T12:42:37.000Z
2021-08-03T12:42:37.000Z
example/complex_factories_sample/migrations/0003_hasautoslugexample.py
kaoslabsinc/django-building-blocks
b5f74121b4002e2b96b5addd6f2593c1a2cead98
[ "BSD-3-Clause" ]
4
2021-07-27T18:22:35.000Z
2021-08-06T21:55:39.000Z
example/complex_factories_sample/migrations/0003_hasautoslugexample.py
kaoslabsinc/django-building-blocks
b5f74121b4002e2b96b5addd6f2593c1a2cead98
[ "BSD-3-Clause" ]
null
null
null
# Generated by Django 3.2.5 on 2021-07-27 00:25 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('complex_factories_sample', '0002_hasautocodegeneratefunctionexample'), ] operations = [ migrations.CreateModel( name='HasAutoSlugExample', fields=[ ('id', models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=255)), ('slug', models.SlugField(max_length=255, unique=True)), ], options={ 'abstract': False, }, ), ]
28.28
117
0.577086
ee4b91a0875fe093ad5e3948fb3edd18c322e9e8
19,293
py
Python
benchmarks/f3_wrong_hints_permutations/scaling_ltl_timed_transition_system/18-sender_receiver_35.py
EnricoMagnago/F3
c863215c318d7d5f258eb9be38c6962cf6863b52
[ "MIT" ]
3
2021-04-23T23:29:26.000Z
2022-03-23T10:00:30.000Z
benchmarks/f3_wrong_hints_permutations/scaling_ltl_timed_transition_system/18-sender_receiver_35.py
EnricoMagnago/F3
c863215c318d7d5f258eb9be38c6962cf6863b52
[ "MIT" ]
null
null
null
benchmarks/f3_wrong_hints_permutations/scaling_ltl_timed_transition_system/18-sender_receiver_35.py
EnricoMagnago/F3
c863215c318d7d5f258eb9be38c6962cf6863b52
[ "MIT" ]
1
2021-11-17T22:02:56.000Z
2021-11-17T22:02:56.000Z
from typing import FrozenSet from collections import Iterable from math import log, ceil from mathsat import msat_term, msat_env from mathsat import msat_make_constant, msat_declare_function from mathsat import msat_get_integer_type, msat_get_rational_type, msat_get_bool_type from mathsat import msat_make_and, msat_make_not, msat_make_or, msat_make_iff from mathsat import msat_make_leq, msat_make_equal, msat_make_true from mathsat import msat_make_number, msat_make_plus, msat_make_times from pysmt.environment import Environment as PysmtEnv import pysmt.typing as types from ltl.ltl import TermMap, LTLEncoder from utils import name_next, symb_to_next from hint import Hint, Location delta_name = "delta" def decl_consts(menv: msat_env, name: str, c_type) -> tuple: assert not name.startswith("_"), name s = msat_declare_function(menv, name, c_type) s = msat_make_constant(menv, s) x_s = msat_declare_function(menv, name_next(name), c_type) x_s = msat_make_constant(menv, x_s) return s, x_s def make_enum(menv, v_name: str, enum_size: int): bool_type = msat_get_bool_type(menv) num_bits = ceil(log(enum_size, 2)) b_vars = [] for idx in range(num_bits): c_name = "{}{}".format(v_name, idx) b_vars.append(tuple(decl_consts(menv, c_name, bool_type))) vals = [] x_vals = [] for enum_val in range(enum_size): bit_val = format(enum_val, '0{}b'.format(num_bits)) assert len(bit_val) == num_bits assert all(c in {'0', '1'} for c in bit_val) assign = [b_vars[idx] if c == '1' else (msat_make_not(menv, b_vars[idx][0]), msat_make_not(menv, b_vars[idx][1])) for idx, c in enumerate(reversed(bit_val))] pred = assign[0][0] x_pred = assign[0][1] for it in assign[1:]: pred = msat_make_and(menv, pred, it[0]) x_pred = msat_make_and(menv, x_pred, it[1]) vals.append(pred) x_vals.append(x_pred) assert len(vals) == enum_size assert len(x_vals) == enum_size return b_vars, vals, x_vals def msat_make_minus(menv: msat_env, arg0: msat_term, arg1: msat_term): m_one = msat_make_number(menv, "-1") arg1 = msat_make_times(menv, arg1, m_one) return msat_make_plus(menv, arg0, arg1) def msat_make_lt(menv: msat_env, arg0: msat_term, arg1: msat_term): geq = msat_make_geq(menv, arg0, arg1) return msat_make_not(menv, geq) def msat_make_geq(menv: msat_env, arg0: msat_term, arg1: msat_term): return msat_make_leq(menv, arg1, arg0) def msat_make_gt(menv: msat_env, arg0: msat_term, arg1: msat_term): leq = msat_make_leq(menv, arg0, arg1) return msat_make_not(menv, leq) def msat_make_impl(menv: msat_env, arg0: msat_term, arg1: msat_term): n_arg0 = msat_make_not(menv, arg0) return msat_make_or(menv, n_arg0, arg1) def diverging_symbs(menv: msat_env) -> frozenset: real_type = msat_get_rational_type(menv) delta = msat_declare_function(menv, delta_name, real_type) delta = msat_make_constant(menv, delta) return frozenset([delta]) def check_ltl(menv: msat_env, enc: LTLEncoder) -> (Iterable, msat_term, msat_term, msat_term): assert menv assert isinstance(menv, msat_env) assert enc assert isinstance(enc, LTLEncoder) int_type = msat_get_integer_type(menv) real_type = msat_get_rational_type(menv) r2s, x_r2s = decl_consts(menv, "r2s", int_type) s2r, x_s2r = decl_consts(menv, "s2r", int_type) delta, x_delta = decl_consts(menv, delta_name, real_type) sender = Sender("s", menv, enc, r2s, x_r2s, s2r, x_s2r, delta) receiver = Receiver("r", menv, enc, s2r, x_s2r, r2s, x_r2s, delta) curr2next = {r2s: x_r2s, s2r: x_s2r, delta: x_delta} for comp in [sender, receiver]: for s, x_s in comp.symb2next.items(): curr2next[s] = x_s zero = msat_make_number(menv, "0") init = msat_make_and(menv, receiver.init, sender.init) trans = msat_make_and(menv, receiver.trans, sender.trans) # invar delta >= 0 init = msat_make_and(menv, init, msat_make_geq(menv, delta, zero)) trans = msat_make_and(menv, trans, msat_make_geq(menv, x_delta, zero)) # delta > 0 -> (r2s' = r2s & s2r' = s2r) lhs = msat_make_gt(menv, delta, zero) rhs = msat_make_and(menv, msat_make_equal(menv, x_r2s, r2s), msat_make_equal(menv, x_s2r, s2r)) trans = msat_make_and(menv, trans, msat_make_impl(menv, lhs, rhs)) # (G F !s.stutter) -> G (s.wait_ack -> F s.send) lhs = enc.make_G(enc.make_F(msat_make_not(menv, sender.stutter))) rhs = enc.make_G(msat_make_impl(menv, sender.wait_ack, enc.make_F(sender.send))) ltl = msat_make_impl(menv, lhs, rhs) return TermMap(curr2next), init, trans, ltl class Module: def __init__(self, name: str, menv: msat_env, enc: LTLEncoder, *args, **kwargs): self.name = name self.menv = menv self.enc = enc self.symb2next = {} true = msat_make_true(menv) self.init = true self.trans = true def _symb(self, v_name, v_type): v_name = "{}_{}".format(self.name, v_name) return decl_consts(self.menv, v_name, v_type) def _enum(self, v_name: str, enum_size: int): c_name = "{}_{}".format(self.name, v_name) return make_enum(self.menv, c_name, enum_size) class Sender(Module): def __init__(self, name: str, menv: msat_env, enc: LTLEncoder, in_c, x_in_c, out_c, x_out_c, delta): super().__init__(name, menv, enc) bool_type = msat_get_bool_type(menv) int_type = msat_get_integer_type(menv) real_type = msat_get_rational_type(menv) loc, x_loc = self._symb("l", bool_type) evt, x_evt = self._symb("evt", bool_type) msg_id, x_msg_id = self._symb("msg_id", int_type) timeout, x_timeout = self._symb("timeout", real_type) c, x_c = self._symb("c", real_type) self.move = evt self.stutter = msat_make_not(menv, evt) self.x_move = x_evt self.x_stutter = msat_make_not(menv, x_evt) self.send = loc self.wait_ack = msat_make_not(menv, loc) self.x_send = x_loc self.x_wait_ack = msat_make_not(menv, x_loc) self.symb2next = {loc: x_loc, evt: x_evt, msg_id: x_msg_id, timeout: x_timeout, c: x_c} zero = msat_make_number(menv, "0") one = msat_make_number(menv, "1") base_timeout = one # send & c = 0 & msg_id = 0 self.init = msat_make_and(menv, msat_make_and(menv, self.send, msat_make_equal(menv, c, zero)), msat_make_equal(menv, msg_id, zero)) # invar: wait_ack -> c <= timeout self.init = msat_make_and( menv, self.init, msat_make_impl(menv, self.wait_ack, msat_make_leq(menv, c, timeout))) self.trans = msat_make_impl(menv, self.x_wait_ack, msat_make_leq(menv, x_c, x_timeout)) # delta > 0 | stutter -> l' = l & msg_id' = msg_id & timeout' = timeout & # c' = c + delta & out_c' = out_c lhs = msat_make_or(menv, msat_make_gt(menv, delta, zero), self.stutter) rhs = msat_make_and( menv, msat_make_and(menv, msat_make_iff(menv, x_loc, loc), msat_make_equal(menv, x_msg_id, msg_id)), msat_make_and(menv, msat_make_equal(menv, x_timeout, timeout), msat_make_equal(menv, x_c, msat_make_plus(menv, c, delta)))) rhs = msat_make_and(menv, rhs, msat_make_equal(menv, x_out_c, out_c)) self.trans = msat_make_and(menv, self.trans, msat_make_impl(menv, lhs, rhs)) disc_t = msat_make_and(menv, self.move, msat_make_equal(menv, delta, zero)) # (send & send') -> # (msg_id' = msg_id & timeout' = base_timeout & c' = 0 & out_c' = out_c) lhs = msat_make_and(menv, disc_t, msat_make_and(menv, self.send, self.x_send)) rhs = msat_make_and( menv, msat_make_and(menv, msat_make_equal(menv, x_msg_id, msg_id), msat_make_equal(menv, x_timeout, base_timeout)), msat_make_and(menv, msat_make_equal(menv, x_c, zero), msat_make_equal(menv, x_out_c, out_c))) self.trans = msat_make_and(menv, self.trans, msat_make_impl(menv, lhs, rhs)) # (send & wait_ack') -> # (msg_id' = msg_id + 1 & timeout' = base_timeout & c' = 0 & out_c' = out_c) lhs = msat_make_and(menv, disc_t, msat_make_and(menv, self.send, self.x_wait_ack)) rhs = msat_make_and( menv, msat_make_and(menv, msat_make_equal(menv, x_msg_id, msat_make_plus(menv, msg_id, one)), msat_make_equal(menv, x_timeout, base_timeout)), msat_make_and(menv, msat_make_equal(menv, x_c, zero), msat_make_equal(menv, x_out_c, out_c))) self.trans = msat_make_and(menv, self.trans, msat_make_impl(menv, lhs, rhs)) # (wait_ack) -> (c' = 0 & out_c' = out_c & # (wait_ack' <-> (in_c != msg_id & c > timeout)) lhs = msat_make_and(menv, disc_t, self.wait_ack) rhs_iff = msat_make_and(menv, msat_make_not(menv, msat_make_equal(menv, in_c, msg_id)), msat_make_geq(menv, c, timeout)) rhs_iff = msat_make_iff(menv, self.x_wait_ack, rhs_iff) rhs = msat_make_and(menv, msat_make_and(menv, msat_make_equal(menv, x_c, zero), msat_make_equal(menv, x_out_c, out_c)), rhs_iff) self.trans = msat_make_and(menv, self.trans, msat_make_impl(menv, lhs, rhs)) # (wait_ack & wait_ack') -> (timeout' > timeout) lhs = msat_make_and(menv, disc_t, msat_make_and(menv, self.wait_ack, self.x_wait_ack)) rhs = msat_make_gt(menv, x_timeout, timeout) self.trans = msat_make_and(menv, self.trans, msat_make_impl(menv, lhs, rhs)) # (wait_ack) -> (send' <-> (in_c = msg_id & c < timeout)) lhs = msat_make_and(menv, disc_t, self.wait_ack) rhs = msat_make_iff(menv, self.x_send, msat_make_and(menv, msat_make_equal(menv, in_c, msg_id), msat_make_lt(menv, c, timeout))) self.trans = msat_make_and(menv, self.trans, msat_make_impl(menv, lhs, rhs)) # (wait_ack & send') -> (timeout' = base_timeout) lhs = msat_make_and(menv, disc_t, msat_make_and(menv, self.wait_ack, self.x_send)) rhs = msat_make_equal(menv, x_timeout, base_timeout) self.trans = msat_make_and(menv, self.trans, msat_make_impl(menv, lhs, rhs)) class Receiver(Module): def __init__(self, name: str, menv: msat_env, enc: LTLEncoder, in_c, x_in_c, out_c, x_out_c, delta): super().__init__(name, menv, enc) bool_type = msat_get_bool_type(menv) loc, x_loc = self._symb("l", bool_type) self.wait = loc self.work = msat_make_not(menv, loc) self.x_wait = x_loc self.x_work = msat_make_not(menv, x_loc) self.symb2next = {loc: x_loc} zero = msat_make_number(menv, "0") # wait self.init = self.wait # delta > 0 -> loc' = loc & out_c' = out_c lhs = msat_make_gt(menv, delta, zero) rhs = msat_make_and(menv, msat_make_iff(menv, x_loc, loc), msat_make_equal(menv, x_out_c, out_c)) self.trans = msat_make_impl(menv, lhs, rhs) disc_t = msat_make_equal(menv, delta, zero) # wait -> (wait' <-> in_c = out_c) lhs = msat_make_and(menv, disc_t, self.wait) rhs = msat_make_iff(menv, self.x_wait, msat_make_equal(menv, in_c, out_c)) self.trans = msat_make_and(menv, self.trans, msat_make_impl(menv, lhs, rhs)) # (wait & wait') -> (out_c' = out_c) lhs = msat_make_and(menv, disc_t, msat_make_and(menv, self.wait, self.x_wait)) rhs = msat_make_equal(menv, x_out_c, out_c) self.trans = msat_make_and(menv, self.trans, msat_make_impl(menv, lhs, rhs)) # (wait & work') -> out_c' = in_c lhs = msat_make_and(menv, disc_t, msat_make_and(menv, self.wait, self.x_work)) rhs = msat_make_equal(menv, x_out_c, in_c) self.trans = msat_make_and(menv, self.trans, msat_make_impl(menv, lhs, rhs)) # work -> out_c' = out_c lhs = msat_make_and(menv, disc_t, self.work) rhs = msat_make_equal(menv, x_out_c, out_c) self.trans = msat_make_and(menv, self.trans, msat_make_impl(menv, lhs, rhs)) def hints(env: PysmtEnv) -> FrozenSet[Hint]: assert isinstance(env, PysmtEnv) mgr = env.formula_manager delta = mgr.Symbol(delta_name, types.REAL) r2s = mgr.Symbol("r2s", types.INT) s2r = mgr.Symbol("r2s", types.INT) s_l = mgr.Symbol("s_l", types.BOOL) s_evt = mgr.Symbol("s_evt", types.BOOL) s_msg_id = mgr.Symbol("s_msg_id", types.INT) s_timeout = mgr.Symbol("s_timeout", types.REAL) s_c = mgr.Symbol("s_c", types.REAL) r_l = mgr.Symbol("r_l", types.BOOL) symbs = frozenset([delta, r2s, s2r, s_l, s_evt, s_msg_id, s_timeout, s_c, r_l]) x_delta = symb_to_next(mgr, delta) x_r2s = symb_to_next(mgr, r2s) x_s2r = symb_to_next(mgr, s2r) x_s_l = symb_to_next(mgr, s_l) x_s_evt = symb_to_next(mgr, s_evt) x_s_msg_id = symb_to_next(mgr, s_msg_id) x_s_timeout = symb_to_next(mgr, s_timeout) x_s_c = symb_to_next(mgr, s_c) x_r_l = symb_to_next(mgr, r_l) res = [] r0 = mgr.Real(0) r1 = mgr.Real(1) i0 = mgr.Int(0) i1 = mgr.Int(1) loc0 = Location(env, mgr.Equals(s_msg_id, i0)) loc0.set_progress(0, mgr.Equals(x_s_msg_id, i0)) hint = Hint("h_s_msg_id0", env, frozenset([s_msg_id]), symbs) hint.set_locs([loc0]) res.append(hint) loc0 = Location(env, mgr.GE(r2s, i0)) loc0.set_progress(0, mgr.Equals(x_r2s, i1)) hint = Hint("h_r2s1", env, frozenset([r2s]), symbs) hint.set_locs([loc0]) res.append(hint) loc0 = Location(env, s_l) loc0.set_progress(1, mgr.Not(x_s_l)) loc1 = Location(env, mgr.Not(s_l)) loc1.set_progress(0, x_s_l) hint = Hint("h_s_l1", env, frozenset([s_l]), symbs) hint.set_locs([loc0, loc1]) res.append(hint) loc0 = Location(env, mgr.Equals(s_timeout, r0)) loc0.set_progress(0, mgr.Equals(x_s_timeout, r0)) hint = Hint("h_s_timeout0", env, frozenset([s_timeout]), symbs) hint.set_locs([loc0]) res.append(hint) loc0 = Location(env, s_l) loc0.set_progress(0, x_s_l) hint = Hint("h_s_l0", env, frozenset([s_l]), symbs) hint.set_locs([loc0]) res.append(hint) loc0 = Location(env, mgr.GE(s2r, i0)) loc0.set_progress(0, mgr.Equals(x_s2r, mgr.Plus(s2r, i1))) hint = Hint("h_s2r2", env, frozenset([s2r]), symbs) hint.set_locs([loc0]) res.append(hint) loc0 = Location(env, mgr.GE(s_c, r0)) loc0.set_progress(0, mgr.Equals(x_s_c, mgr.Plus(s_c, r1))) hint = Hint("h_s_c1", env, frozenset([s_c]), symbs) hint.set_locs([loc0]) res.append(hint) loc0 = Location(env, s_evt) loc0.set_progress(1, mgr.Not(x_s_evt)) loc1 = Location(env, mgr.Not(s_evt)) loc1.set_progress(0, x_s_evt) hint = Hint("h_s_evt1", env, frozenset([s_evt]), symbs) hint.set_locs([loc0, loc1]) res.append(hint) loc0 = Location(env, mgr.GE(delta, r0)) loc0.set_progress(0, mgr.Equals(x_delta, r1)) hint = Hint("h_delta1", env, frozenset([delta]), symbs) hint.set_locs([loc0]) res.append(hint) loc0 = Location(env, mgr.GE(s_timeout, r0)) loc0.set_progress(0, mgr.Equals(x_s_timeout, mgr.Plus(s_timeout, r1))) hint = Hint("h_s_timeout1", env, frozenset([s_timeout]), symbs) hint.set_locs([loc0]) res.append(hint) loc0 = Location(env, mgr.GE(s2r, i0)) loc0.set_progress(0, mgr.Equals(x_s2r, i1)) hint = Hint("h_s2r1", env, frozenset([s2r]), symbs) hint.set_locs([loc0]) res.append(hint) loc0 = Location(env, r_l) loc0.set_progress(1, mgr.Not(x_r_l)) loc1 = Location(env, mgr.Not(r_l)) loc1.set_progress(0, x_r_l) hint = Hint("h_r_l1", env, frozenset([r_l]), symbs) hint.set_locs([loc0, loc1]) res.append(hint) loc0 = Location(env, mgr.Equals(r2s, i0)) loc0.set_progress(0, mgr.Equals(x_r2s, i0)) hint = Hint("h_r2s0", env, frozenset([r2s]), symbs) hint.set_locs([loc0]) res.append(hint) loc0 = Location(env, mgr.GE(s_msg_id, i0)) loc0.set_progress(0, mgr.Equals(x_s_msg_id, mgr.Plus(s_msg_id, i1))) hint = Hint("h_s_msg_id1", env, frozenset([s_msg_id]), symbs) hint.set_locs([loc0]) res.append(hint) loc0 = Location(env, mgr.Equals(delta, r0)) loc0.set_progress(0, mgr.Equals(x_delta, r0)) hint = Hint("h_delta0", env, frozenset([delta]), symbs) hint.set_locs([loc0]) res.append(hint) loc0 = Location(env, s_evt) loc0.set_progress(0, x_s_evt) hint = Hint("h_s_evt0", env, frozenset([s_evt]), symbs) hint.set_locs([loc0]) res.append(hint) loc0 = Location(env, mgr.Equals(s_c, r0)) loc0.set_progress(0, mgr.Equals(x_s_c, r0)) hint = Hint("h_s_c0", env, frozenset([s_c]), symbs) hint.set_locs([loc0]) res.append(hint) loc0 = Location(env, mgr.GE(delta, r0)) loc0.set_progress(0, mgr.Equals(x_delta, mgr.Plus(delta, r1))) hint = Hint("h_delta2", env, frozenset([delta]), symbs) hint.set_locs([loc0]) res.append(hint) return frozenset(res)
38.053254
89
0.579226
ba62ea267175dae4e3191a0bd55fee8d9e39dea7
15,301
py
Python
setup.py
phamlehuy53/mmcv
519b4ec028bdf2cc4ec32195fb78e6111774a004
[ "Apache-2.0" ]
1
2021-08-22T14:47:13.000Z
2021-08-22T14:47:13.000Z
setup.py
zsinba/mmcv
f31f1cdb8ee6671a512d6756d2f0dfd68d04272f
[ "Apache-2.0" ]
null
null
null
setup.py
zsinba/mmcv
f31f1cdb8ee6671a512d6756d2f0dfd68d04272f
[ "Apache-2.0" ]
1
2020-12-10T08:35:35.000Z
2020-12-10T08:35:35.000Z
import glob import os import platform import re from pkg_resources import DistributionNotFound, get_distribution from setuptools import find_packages, setup EXT_TYPE = '' try: import torch if torch.__version__ == 'parrots': from parrots.utils.build_extension import BuildExtension EXT_TYPE = 'parrots' else: from torch.utils.cpp_extension import BuildExtension EXT_TYPE = 'pytorch' cmd_class = {'build_ext': BuildExtension} except ModuleNotFoundError: cmd_class = {} print('Skip building ext ops due to the absence of torch.') def choose_requirement(primary, secondary): """If some version of primary requirement installed, return primary, else return secondary.""" try: name = re.split(r'[!<>=]', primary)[0] get_distribution(name) except DistributionNotFound: return secondary return str(primary) def get_version(): version_file = 'mmcv/version.py' with open(version_file, 'r', encoding='utf-8') as f: exec(compile(f.read(), version_file, 'exec')) return locals()['__version__'] def parse_requirements(fname='requirements/runtime.txt', with_version=True): """Parse the package dependencies listed in a requirements file but strips specific versioning information. Args: fname (str): path to requirements file with_version (bool, default=False): if True include version specs Returns: List[str]: list of requirements items CommandLine: python -c "import setup; print(setup.parse_requirements())" """ import sys from os.path import exists require_fpath = fname def parse_line(line): """Parse information from a line in a requirements text file.""" if line.startswith('-r '): # Allow specifying requirements in other files target = line.split(' ')[1] for info in parse_require_file(target): yield info else: info = {'line': line} if line.startswith('-e '): info['package'] = line.split('#egg=')[1] else: # Remove versioning from the package pat = '(' + '|'.join(['>=', '==', '>']) + ')' parts = re.split(pat, line, maxsplit=1) parts = [p.strip() for p in parts] info['package'] = parts[0] if len(parts) > 1: op, rest = parts[1:] if ';' in rest: # Handle platform specific dependencies # http://setuptools.readthedocs.io/en/latest/setuptools.html#declaring-platform-specific-dependencies version, platform_deps = map(str.strip, rest.split(';')) info['platform_deps'] = platform_deps else: version = rest # NOQA info['version'] = (op, version) yield info def parse_require_file(fpath): with open(fpath, 'r') as f: for line in f.readlines(): line = line.strip() if line and not line.startswith('#'): for info in parse_line(line): yield info def gen_packages_items(): if exists(require_fpath): for info in parse_require_file(require_fpath): parts = [info['package']] if with_version and 'version' in info: parts.extend(info['version']) if not sys.version.startswith('3.4'): # apparently package_deps are broken in 3.4 platform_deps = info.get('platform_deps') if platform_deps is not None: parts.append(';' + platform_deps) item = ''.join(parts) yield item packages = list(gen_packages_items()) return packages install_requires = parse_requirements() try: # OpenCV installed via conda. import cv2 # NOQA: F401 major, minor, *rest = cv2.__version__.split('.') if int(major) < 3: raise RuntimeError( f'OpenCV >=3 is required but {cv2.__version__} is installed') except ImportError: # If first not installed install second package CHOOSE_INSTALL_REQUIRES = [('opencv-python-headless>=3', 'opencv-python>=3')] for main, secondary in CHOOSE_INSTALL_REQUIRES: install_requires.append(choose_requirement(main, secondary)) def get_extensions(): extensions = [] if os.getenv('MMCV_WITH_TRT', '0') != '0': ext_name = 'mmcv._ext_trt' from torch.utils.cpp_extension import include_paths, library_paths library_dirs = [] libraries = [] include_dirs = [] tensorrt_path = os.getenv('TENSORRT_DIR', '0') tensorrt_lib_path = glob.glob( os.path.join(tensorrt_path, 'targets', '*', 'lib'))[0] library_dirs += [tensorrt_lib_path] libraries += ['nvinfer', 'nvparsers', 'nvinfer_plugin'] libraries += ['cudart'] define_macros = [] extra_compile_args = {'cxx': []} include_path = os.path.abspath('./mmcv/ops/csrc/common/cuda') include_trt_path = os.path.abspath('./mmcv/ops/csrc/tensorrt') include_dirs.append(include_path) include_dirs.append(include_trt_path) include_dirs.append(os.path.join(tensorrt_path, 'include')) include_dirs += include_paths(cuda=True) op_files = glob.glob('./mmcv/ops/csrc/tensorrt/plugins/*') define_macros += [('MMCV_WITH_CUDA', None)] define_macros += [('MMCV_WITH_TRT', None)] cuda_args = os.getenv('MMCV_CUDA_ARGS') extra_compile_args['nvcc'] = [cuda_args] if cuda_args else [] # prevent cub/thrust conflict with other python library # More context See issues #1454 extra_compile_args['nvcc'] += ['-Xcompiler=-fno-gnu-unique'] library_dirs += library_paths(cuda=True) from setuptools import Extension ext_ops = Extension( name=ext_name, sources=op_files, include_dirs=include_dirs, define_macros=define_macros, extra_compile_args=extra_compile_args, language='c++', library_dirs=library_dirs, libraries=libraries) extensions.append(ext_ops) if os.getenv('MMCV_WITH_OPS', '0') == '0': return extensions if EXT_TYPE == 'parrots': ext_name = 'mmcv._ext' from parrots.utils.build_extension import Extension # new parrots op impl do not use MMCV_USE_PARROTS # define_macros = [('MMCV_USE_PARROTS', None)] define_macros = [] include_dirs = [] op_files = glob.glob('./mmcv/ops/csrc/pytorch/cuda/*.cu') +\ glob.glob('./mmcv/ops/csrc/parrots/*.cpp') include_dirs.append(os.path.abspath('./mmcv/ops/csrc/common')) include_dirs.append(os.path.abspath('./mmcv/ops/csrc/common/cuda')) cuda_args = os.getenv('MMCV_CUDA_ARGS') extra_compile_args = { 'nvcc': [cuda_args] if cuda_args else [], 'cxx': [], } if torch.cuda.is_available() or os.getenv('FORCE_CUDA', '0') == '1': define_macros += [('MMCV_WITH_CUDA', None)] extra_compile_args['nvcc'] += [ '-D__CUDA_NO_HALF_OPERATORS__', '-D__CUDA_NO_HALF_CONVERSIONS__', '-D__CUDA_NO_HALF2_OPERATORS__', ] ext_ops = Extension( name=ext_name, sources=op_files, include_dirs=include_dirs, define_macros=define_macros, extra_compile_args=extra_compile_args, cuda=True, pytorch=True) extensions.append(ext_ops) elif EXT_TYPE == 'pytorch': ext_name = 'mmcv._ext' from torch.utils.cpp_extension import CppExtension, CUDAExtension # prevent ninja from using too many resources try: import psutil num_cpu = len(psutil.Process().cpu_affinity()) cpu_use = max(4, num_cpu - 1) except (ModuleNotFoundError, AttributeError): cpu_use = 4 os.environ.setdefault('MAX_JOBS', str(cpu_use)) define_macros = [] # Before PyTorch1.8.0, when compiling CUDA code, `cxx` is a # required key passed to PyTorch. Even if there is no flag passed # to cxx, users also need to pass an empty list to PyTorch. # Since PyTorch1.8.0, it has a default value so users do not need # to pass an empty list anymore. # More details at https://github.com/pytorch/pytorch/pull/45956 extra_compile_args = {'cxx': []} # Since the PR (https://github.com/open-mmlab/mmcv/pull/1463) uses # c++14 features, the argument ['std=c++14'] must be added here. # However, in the windows environment, some standard libraries # will depend on c++17 or higher. In fact, for the windows # environment, the compiler will choose the appropriate compiler # to compile those cpp files, so there is no need to add the # argument if platform.system() != 'Windows': extra_compile_args['cxx'] = ['-std=c++14'] include_dirs = [] is_rocm_pytorch = False try: from torch.utils.cpp_extension import ROCM_HOME is_rocm_pytorch = True if ((torch.version.hip is not None) and (ROCM_HOME is not None)) else False except ImportError: pass project_dir = 'mmcv/ops/csrc/' if is_rocm_pytorch: from torch.utils.hipify import hipify_python hipify_python.hipify( project_directory=project_dir, output_directory=project_dir, includes='mmcv/ops/csrc/*', show_detailed=True, is_pytorch_extension=True, ) define_macros += [('MMCV_WITH_CUDA', None)] define_macros += [('HIP_DIFF', None)] cuda_args = os.getenv('MMCV_CUDA_ARGS') extra_compile_args['nvcc'] = [cuda_args] if cuda_args else [] op_files = glob.glob('./mmcv/ops/csrc/pytorch/hip/*') \ + glob.glob('./mmcv/ops/csrc/pytorch/cpu/hip/*') extension = CUDAExtension include_dirs.append(os.path.abspath('./mmcv/ops/csrc/common/hip')) elif torch.cuda.is_available() or os.getenv('FORCE_CUDA', '0') == '1': define_macros += [('MMCV_WITH_CUDA', None)] cuda_args = os.getenv('MMCV_CUDA_ARGS') extra_compile_args['nvcc'] = [cuda_args] if cuda_args else [] op_files = glob.glob('./mmcv/ops/csrc/pytorch/*.cpp') + \ glob.glob('./mmcv/ops/csrc/pytorch/cpu/*.cpp') + \ glob.glob('./mmcv/ops/csrc/pytorch/cuda/*.cu') + \ glob.glob('./mmcv/ops/csrc/pytorch/cuda/*.cpp') extension = CUDAExtension include_dirs.append(os.path.abspath('./mmcv/ops/csrc/common')) include_dirs.append(os.path.abspath('./mmcv/ops/csrc/common/cuda')) else: print(f'Compiling {ext_name} without CUDA') op_files = glob.glob('./mmcv/ops/csrc/pytorch/*.cpp') + \ glob.glob('./mmcv/ops/csrc/pytorch/cpu/*.cpp') extension = CppExtension include_dirs.append(os.path.abspath('./mmcv/ops/csrc/common')) # Since the PR (https://github.com/open-mmlab/mmcv/pull/1463) uses # c++14 features, the argument ['std=c++14'] must be added here. # However, in the windows environment, some standard libraries # will depend on c++17 or higher. In fact, for the windows # environment, the compiler will choose the appropriate compiler # to compile those cpp files, so there is no need to add the # argument if 'nvcc' in extra_compile_args and platform.system() != 'Windows': extra_compile_args['nvcc'] += ['-std=c++14'] ext_ops = extension( name=ext_name, sources=op_files, include_dirs=include_dirs, define_macros=define_macros, extra_compile_args=extra_compile_args) extensions.append(ext_ops) if EXT_TYPE == 'pytorch' and os.getenv('MMCV_WITH_ORT', '0') != '0': ext_name = 'mmcv._ext_ort' from torch.utils.cpp_extension import library_paths, include_paths import onnxruntime library_dirs = [] libraries = [] include_dirs = [] ort_path = os.getenv('ONNXRUNTIME_DIR', '0') library_dirs += [os.path.join(ort_path, 'lib')] libraries.append('onnxruntime') define_macros = [] extra_compile_args = {'cxx': []} include_path = os.path.abspath('./mmcv/ops/csrc/onnxruntime') include_dirs.append(include_path) include_dirs.append(os.path.join(ort_path, 'include')) op_files = glob.glob('./mmcv/ops/csrc/onnxruntime/cpu/*') if onnxruntime.get_device() == 'GPU' or os.getenv('FORCE_CUDA', '0') == '1': define_macros += [('MMCV_WITH_CUDA', None)] cuda_args = os.getenv('MMCV_CUDA_ARGS') extra_compile_args['nvcc'] = [cuda_args] if cuda_args else [] op_files += glob.glob('./mmcv/ops/csrc/onnxruntime/gpu/*') include_dirs += include_paths(cuda=True) library_dirs += library_paths(cuda=True) else: include_dirs += include_paths(cuda=False) library_dirs += library_paths(cuda=False) from setuptools import Extension ext_ops = Extension( name=ext_name, sources=op_files, include_dirs=include_dirs, define_macros=define_macros, extra_compile_args=extra_compile_args, language='c++', library_dirs=library_dirs, libraries=libraries) extensions.append(ext_ops) return extensions setup( name='mmcv' if os.getenv('MMCV_WITH_OPS', '0') == '0' else 'mmcv-full', version=get_version(), description='OpenMMLab Computer Vision Foundation', keywords='computer vision', packages=find_packages(), include_package_data=True, classifiers=[ 'Development Status :: 4 - Beta', 'License :: OSI Approved :: Apache Software License', 'Operating System :: OS Independent', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.7', 'Programming Language :: Python :: 3.8', 'Programming Language :: Python :: 3.9', 'Topic :: Utilities', ], url='https://github.com/open-mmlab/mmcv', author='MMCV Contributors', author_email='openmmlab@gmail.com', setup_requires=['pytest-runner'], tests_require=['pytest'], install_requires=install_requires, ext_modules=get_extensions(), cmdclass=cmd_class, zip_safe=False)
39.639896
125
0.588785
ecf47c21389da8806ec1dc196d69d07887e5acf2
318
py
Python
Google/Google CodeJam Preparation/temp.py
EldiiarDzhunusov/Code
6b0708e4007233d3efdc74c09d09ee5bc377a45d
[ "MIT" ]
2
2020-10-12T06:50:03.000Z
2021-06-08T17:19:43.000Z
Google/Google CodeJam Preparation/temp.py
EldiiarDzhunusov/Code
6b0708e4007233d3efdc74c09d09ee5bc377a45d
[ "MIT" ]
null
null
null
Google/Google CodeJam Preparation/temp.py
EldiiarDzhunusov/Code
6b0708e4007233d3efdc74c09d09ee5bc377a45d
[ "MIT" ]
1
2020-12-22T16:44:50.000Z
2020-12-22T16:44:50.000Z
t= int(input("")) while t!=0: c=1 size = int(input("")) lydia = list(input("")) myroad=[] for i in range(len(lydia)): if lydia[i]=="E": myroad.append("S") else: myroad.append("E") print("Case #{}:".format(c),"".join(myroad)) c +=1 t -=1
19.875
48
0.433962
4bb73b7aaa5b7699ed617db6c7d9b0b3afb94442
4,988
py
Python
bilean/common/utils.py
lvdongbing/bilean
592f5fb53e3bceee35a01d0171905b282bc9a3db
[ "Apache-2.0" ]
2
2016-01-03T11:20:42.000Z
2016-01-06T06:41:51.000Z
bilean/common/utils.py
lvdongbing/bilean
592f5fb53e3bceee35a01d0171905b282bc9a3db
[ "Apache-2.0" ]
null
null
null
bilean/common/utils.py
lvdongbing/bilean
592f5fb53e3bceee35a01d0171905b282bc9a3db
[ "Apache-2.0" ]
null
null
null
# Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. ''' Utilities module. ''' import random import string from cryptography.fernet import Fernet import requests from requests import exceptions from six.moves import urllib from oslo_config import cfg from oslo_log import log as logging from oslo_utils import encodeutils from oslo_utils import strutils from bilean.common import exception from bilean.common.i18n import _ from bilean.common.i18n import _LI cfg.CONF.import_opt('max_response_size', 'bilean.common.config') LOG = logging.getLogger(__name__) class URLFetchError(exception.Error, IOError): pass def parse_int_param(name, value, allow_zero=True, allow_negative=False, lower_limit=None, upper_limit=None): if value is None: return None if value in ('0', 0): if allow_zero: return int(value) raise exception.InvalidParameter(name=name, value=value) try: result = int(value) except (TypeError, ValueError): raise exception.InvalidParameter(name=name, value=value) else: if any([(allow_negative is False and result < 0), (lower_limit and result < lower_limit), (upper_limit and result > upper_limit)]): raise exception.InvalidParameter(name=name, value=value) return result def parse_bool_param(name, value): if str(value).lower() not in ('true', 'false'): raise exception.InvalidParameter(name=name, value=str(value)) return strutils.bool_from_string(value, strict=True) def url_fetch(url, allowed_schemes=('http', 'https')): '''Get the data at the specified URL. The URL must use the http: or https: schemes. The file: scheme is also supported if you override the allowed_schemes argument. Raise an IOError if getting the data fails. ''' LOG.info(_LI('Fetching data from %s'), url) components = urllib.parse.urlparse(url) if components.scheme not in allowed_schemes: raise URLFetchError(_('Invalid URL scheme %s') % components.scheme) if components.scheme == 'file': try: return urllib.request.urlopen(url).read() except urllib.error.URLError as uex: raise URLFetchError(_('Failed to retrieve data: %s') % uex) try: resp = requests.get(url, stream=True) resp.raise_for_status() # We cannot use resp.text here because it would download the entire # file, and a large enough file would bring down the engine. The # 'Content-Length' header could be faked, so it's necessary to # download the content in chunks to until max_response_size is reached. # The chunk_size we use needs to balance CPU-intensive string # concatenation with accuracy (eg. it's possible to fetch 1000 bytes # greater than max_response_size with a chunk_size of 1000). reader = resp.iter_content(chunk_size=1000) result = "" for chunk in reader: result += chunk if len(result) > cfg.CONF.max_response_size: raise URLFetchError("Data exceeds maximum allowed size (%s" " bytes)" % cfg.CONF.max_response_size) return result except exceptions.RequestException as ex: raise URLFetchError(_('Failed to retrieve data: %s') % ex) def encrypt(msg): '''Encrypt message with random key. :param msg: message to be encrypted :returns: encrypted msg and key to decrypt ''' password = Fernet.generate_key() f = Fernet(password) key = f.encrypt(encodeutils.safe_encode(msg)) return encodeutils.safe_decode(password), encodeutils.safe_decode(key) def decrypt(msg, key): '''Decrypt message using provided key. :param msg: encrypted message :param key: key used to decrypt :returns: decrypted message string ''' f = Fernet(encodeutils.safe_encode(msg)) msg = f.decrypt(encodeutils.safe_encode(key)) return encodeutils.safe_decode(msg) def random_name(length=8): if length <= 0: return '' lead = random.choice(string.ascii_letters) tail = ''.join(random.choice(string.ascii_letters + string.digits) for i in range(length-1)) return lead + tail def format_time(value): """Cut microsecond and format to isoformat string.""" if value: value = value.replace(microsecond=0) value = value.isoformat() return value
31.56962
79
0.679631
ad98409ffd63e1c06ba579a91fcfd251d351303a
219
py
Python
aioalice/utils/json.py
mahenzon/aioalice
f87b2e24c42444b5cb274c95eff20555314ec4f6
[ "MIT" ]
33
2019-09-22T16:35:40.000Z
2022-03-24T11:24:05.000Z
aioalice/utils/json.py
mahenzon/aioalice
f87b2e24c42444b5cb274c95eff20555314ec4f6
[ "MIT" ]
7
2019-09-26T17:43:01.000Z
2021-02-24T21:08:48.000Z
aioalice/utils/json.py
mahenzon/aioalice
f87b2e24c42444b5cb274c95eff20555314ec4f6
[ "MIT" ]
11
2019-09-26T09:51:59.000Z
2022-03-14T16:14:12.000Z
try: import simplejson as json except ImportError: try: import rapidjson as json except ImportError: try: import ujson as json except ImportError: import json
19.909091
32
0.593607
2b88e21162f95e512abb40c2a44e9511c85c43db
1,027
py
Python
apps/markets3/migrations/0003_auto_20160802_1306.py
uktrade/enav-alpha
8d38f05763367ca6b6747203241f267612fd6e44
[ "MIT" ]
null
null
null
apps/markets3/migrations/0003_auto_20160802_1306.py
uktrade/enav-alpha
8d38f05763367ca6b6747203241f267612fd6e44
[ "MIT" ]
67
2016-07-11T12:57:58.000Z
2016-08-08T12:59:19.000Z
apps/markets3/migrations/0003_auto_20160802_1306.py
UKTradeInvestment/enav-alpha
8d38f05763367ca6b6747203241f267612fd6e44
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # Generated by Django 1.9.7 on 2016-08-02 13:06 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('markets3', '0002_market_platform_type'), ] operations = [ migrations.AddField( model_name='market', name='local_customer_service', field=models.BooleanField(default=False), ), migrations.AddField( model_name='market', name='product_type', field=models.CharField(blank=True, choices=[('0', 'Luxury'), ('1', 'Mid rage'), ('2', 'Discount')], max_length=1, null=True), ), migrations.AlterField( model_name='market', name='logistics_structure', field=models.CharField(blank=True, choices=[('0', 'Dropshipping'), ('1', 'Warehousing')], max_length=1, null=True), ), ]
31.121212
111
0.550146
642ca6d7b895cf09e78cd91aee64b6e8f60a9bdd
1,262
py
Python
plugins/digitalbitbox/qt.py
BTCPrivate/electrum-bitcoinprivate
d18dbd83353d006136bc986e143e19dbb954c36a
[ "MIT" ]
1
2021-04-02T20:35:15.000Z
2021-04-02T20:35:15.000Z
plugins/digitalbitbox/qt.py
ArdeshirV/electrum-bitcoinprivate
d18dbd83353d006136bc986e143e19dbb954c36a
[ "MIT" ]
null
null
null
plugins/digitalbitbox/qt.py
ArdeshirV/electrum-bitcoinprivate
d18dbd83353d006136bc986e143e19dbb954c36a
[ "MIT" ]
1
2021-04-06T18:34:31.000Z
2021-04-06T18:34:31.000Z
from functools import partial from ..hw_wallet.qt import QtHandlerBase, QtPluginBase from .digitalbitbox import DigitalBitboxPlugin from electrum_bitcoinprivate.i18n import _ from electrum_bitcoinprivate.plugins import hook from electrum_bitcoinprivate.wallet import Standard_Wallet class Plugin(DigitalBitboxPlugin, QtPluginBase): icon_unpaired = ":icons/digitalbitbox_unpaired.png" icon_paired = ":icons/digitalbitbox.png" def create_handler(self, window): return DigitalBitbox_Handler(window) @hook def receive_menu(self, menu, addrs, wallet): if type(wallet) is not Standard_Wallet: return keystore = wallet.get_keystore() if type(keystore) is not self.keystore_class: return if not self.is_mobile_paired(): return if not keystore.is_p2pkh(): return if len(addrs) == 1: def show_address(): keystore.thread.add(partial(self.show_address, wallet, keystore, addrs[0])) menu.addAction(_("Show on {}").format(self.device), show_address) class DigitalBitbox_Handler(QtHandlerBase): def __init__(self, win): super(DigitalBitbox_Handler, self).__init__(win, 'Digital Bitbox')
28.681818
91
0.693344
ae821e00f9cbe2cf504b6b2f1485e72948385fa2
20,108
py
Python
ebcli/operations/platform_version_ops.py
sdolenc/aws-elastic-beanstalk-cli
4167a38bd599a4433c62c1d3516b8836248a4171
[ "Apache-2.0" ]
110
2020-01-15T22:58:46.000Z
2022-03-27T20:47:33.000Z
ebcli/operations/platform_version_ops.py
QPC-database/aws-elastic-beanstalk-cli
87ad9d8bbe5e4e7cb01b1bd4392eda33cb1943f7
[ "Apache-2.0" ]
89
2020-01-15T23:18:34.000Z
2022-03-31T21:56:05.000Z
ebcli/operations/platform_version_ops.py
QPC-database/aws-elastic-beanstalk-cli
87ad9d8bbe5e4e7cb01b1bd4392eda33cb1943f7
[ "Apache-2.0" ]
50
2020-01-15T22:58:53.000Z
2022-02-11T17:39:28.000Z
# Copyright 2015 Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). You # may not use this file except in compliance with the License. A copy of # the License is located at # # http://aws.amazon.com/apache2.0/ # # or in the "license" file accompanying this file. This file is # distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF # ANY KIND, either express or implied. See the License for the specific # language governing permissions and limitations under the License. from datetime import datetime import os import sys import tempfile from shutil import copyfile, move import threading import yaml from semantic_version import Version from termcolor import colored from ebcli.core import io, fileoperations from ebcli.core.ebglobals import Constants from ebcli.lib import elasticbeanstalk, heuristics, s3 from ebcli.objects import api_filters from ebcli.objects.exceptions import ( InvalidPlatformVersionError, NotFoundError, PlatformWorkspaceEmptyError, ValidationError, ) from ebcli.objects.platform import PlatformBranch, PlatformVersion from ebcli.objects.sourcecontrol import SourceControl from ebcli.operations import commonops, logsops from ebcli.operations.tagops import tagops from ebcli.resources.statics import namespaces, option_names from ebcli.resources.strings import alerts, strings, prompts from ebcli.resources.regex import PackerRegExpressions, PlatformRegExpressions class PackerStreamMessage(object): def __init__(self, event): self.event = event def raw_message(self): event = self.event if isinstance(event, bytes): event = event.decode('utf-8') matches = PackerRegExpressions.LOG_MESSAGE_REGEX.search(event) return matches.groups(0)[0] if matches else None def message_severity(self): matches = PackerRegExpressions.LOG_MESSAGE_SEVERITY_REGEX.search(self.event) return matches.groups(0)[0] if matches else None def format(self): ui_message = self.ui_message() if ui_message: return ui_message other_packer_message = self.other_packer_message() if other_packer_message: if sys.version_info < (3, 0): other_packer_message = other_packer_message.encode('utf-8') other_packer_message_target = self.other_packer_message_target() formatted_other_message = '{}:{}'.format( other_packer_message_target, other_packer_message ) if sys.version_info < (3, 0): formatted_other_message = formatted_other_message.decode('utf-8') return formatted_other_message other_message = self.other_message() if other_message: return other_message def ui_message(self): return self.__return_match(PackerRegExpressions.PACKER_UI_MESSAGE_FORMAT_REGEX) def other_packer_message(self): return self.__return_match(PackerRegExpressions.PACKER_OTHER_MESSAGE_DATA_REGEX) def other_packer_message_target(self): return self.__return_match(PackerRegExpressions.PACKER_OTHER_MESSAGE_TARGET_REGEX) def other_message(self): return self.__return_match(PackerRegExpressions.OTHER_FORMAT_REGEX) def __return_match(self, regex): raw_message = self.raw_message() if not raw_message: return if isinstance(raw_message, bytes): raw_message = raw_message.decode('utf-8') matches = regex.search(raw_message) return matches.groups(0)[0].strip() if matches else None class PackerStreamFormatter(object): def format(self, message, stream_name=None): packer_stream_message = PackerStreamMessage(message) if packer_stream_message.raw_message(): formatted_message = packer_stream_message.format() else: formatted_message = '{0} {1}'.format(stream_name, message) return formatted_message def create_platform_version( version, major_increment, minor_increment, patch_increment, instance_type, vpc=None, staged=False, timeout=None, tags=None, ): _raise_if_directory_is_empty() _raise_if_platform_definition_file_is_missing() version and _raise_if_version_format_is_invalid(version) platform_name = fileoperations.get_platform_name() instance_profile = fileoperations.get_instance_profile(None) key_name = commonops.get_default_keyname() version = version or _resolve_version_number( platform_name, major_increment, minor_increment, patch_increment ) tags = tagops.get_and_validate_tags(tags) source_control = SourceControl.get_source_control() io.log_warning(strings['sc.unstagedchanges']) if source_control.untracked_changes_exist() else None version_label = _resolve_version_label(source_control, staged) bucket, key, file_path = _resolve_s3_bucket_and_key(platform_name, version_label, source_control, staged) _upload_platform_version_to_s3_if_necessary(bucket, key, file_path) io.log_info('Creating Platform Version ' + version_label) response = elasticbeanstalk.create_platform_version( platform_name, version, bucket, key, instance_profile, key_name, instance_type, tags, vpc) environment_name = 'eb-custom-platform-builder-packer' io.echo(colored( strings['platformbuildercreation.info'].format(environment_name), attrs=['reverse'])) fileoperations.update_platform_version(version) commonops.set_environment_for_current_branch(environment_name) stream_platform_logs(response, platform_name, version, timeout) def delete_platform_version(platform_version, force=False): arn = version_to_arn(platform_version) if not force: io.echo(prompts['platformdelete.confirm'].replace('{platform-arn}', arn)) io.validate_action(prompts['platformdelete.validate'], arn) environments = [] try: environments = [env for env in elasticbeanstalk.get_environments() if env.platform.version == arn] except NotFoundError: pass if len(environments) > 0: _, platform_name, platform_version = PlatformVersion.arn_to_platform(arn) raise ValidationError(strings['platformdeletevalidation.error'].format( platform_name, platform_version, '\n '.join([env.name for env in environments]) )) response = elasticbeanstalk.delete_platform(arn) request_id = response['ResponseMetadata']['RequestId'] timeout = 10 commonops.wait_for_success_events(request_id, timeout_in_minutes=timeout, platform_arn=arn) def describe_custom_platform_version( owner=None, platform_arn=None, platform_name=None, platform_version=None, status=None ): if not platform_arn: platforms = list_custom_platform_versions( platform_name=platform_name, platform_version=platform_version, status=status ) platform_arn = platforms[0] return elasticbeanstalk.describe_platform_version(platform_arn) def find_custom_platform_version_from_string(solution_string): available_custom_platforms = list_custom_platform_versions() for custom_platform_matcher in [ PlatformVersion.match_with_complete_arn, PlatformVersion.match_with_platform_name, ]: matched_custom_platform = custom_platform_matcher(available_custom_platforms, solution_string) if matched_custom_platform: return matched_custom_platform def get_latest_custom_platform_version(platform): """ :param platform: A custom platform ARN or a custom platform name :return: A PlatformVersion object representing the latest version of `platform` """ account_id, platform_name, platform_version = PlatformVersion.arn_to_platform(platform) if account_id: matching_platforms = list_custom_platform_versions( platform_name=platform_name, status='Ready' ) if matching_platforms: return PlatformVersion(matching_platforms[0]) def get_latest_eb_managed_platform(platform_arn): account_id, platform_name, platform_version = PlatformVersion.arn_to_platform(platform_arn) if not account_id: matching_platforms = list_eb_managed_platform_versions( platform_name=platform_name, status='Ready' ) if matching_platforms: return PlatformVersion(matching_platforms[0]) def get_latest_platform_version(platform_name=None, owner=None, ignored_states=None): if ignored_states is None: ignored_states = ['Deleting', 'Failed'] platforms = get_platforms( platform_name=platform_name, ignored_states=ignored_states, owner=owner, platform_version="latest" ) try: return platforms[platform_name] except KeyError: return None def get_platforms(platform_name=None, ignored_states=None, owner=None, platform_version=None): platform_list = list_custom_platform_versions( platform_name=platform_name, platform_version=platform_version ) platforms = dict() for platform in platform_list: if ignored_states and platform['PlatformStatus'] in ignored_states: continue _, platform_name, platform_version = PlatformVersion.arn_to_platform(platform) platforms[platform_name] = platform_version return platforms def get_platform_arn(platform_name, platform_version, owner=None): platform = describe_custom_platform_version( platform_name=platform_name, platform_version=platform_version, owner=owner ) if platform: return platform['PlatformArn'] def get_platform_versions_for_branch(branch_name, recommended_only=False): filters = [ { 'Type': 'PlatformBranchName', 'Operator': '=', 'Values': [branch_name], } ] if recommended_only: filters.append({ 'Type': 'PlatformLifecycleState', 'Operator': '=', 'Values': ['Recommended'], }) platform_version_summaries = elasticbeanstalk.list_platform_versions( filters=filters) return [ PlatformVersion.from_platform_version_summary(summary) for summary in platform_version_summaries] def get_preferred_platform_version_for_branch(branch_name): """ Gets the latest recommended platform version for a platform branch. If no platform versions are recommended it retreives the latest. """ matched_versions = get_platform_versions_for_branch(branch_name) matched_versions = list(sorted( matched_versions, key=lambda x: x.sortable_version, reverse=True)) recommended_versions = [ version for version in matched_versions if version.is_recommended] if len(recommended_versions) > 0: return recommended_versions[0] elif len(matched_versions) > 0: return matched_versions[0] else: raise NotFoundError(alerts['platform.invalidstring'].format( branch_name)) def list_custom_platform_versions( platform_name=None, platform_version=None, show_status=False, status=None ): filters = [api_filters.PlatformOwnerFilter(values=[Constants.OWNED_BY_SELF]).json()] return list_platform_versions(filters, platform_name, platform_version, show_status, status) def list_eb_managed_platform_versions( platform_name=None, platform_version=None, show_status=False, status=None ): filters = [api_filters.PlatformOwnerFilter(values=['AWSElasticBeanstalk']).json()] return list_platform_versions(filters, platform_name, platform_version, show_status, status) def list_platform_versions( filters, platform_name=None, platform_version=None, show_status=False, status=None ): if platform_name: filters.append( api_filters.PlatformNameFilter(values=[platform_name]).json() ) if platform_version: filters.append( api_filters.PlatformVersionFilter(values=[platform_version]).json() ) if status: filters.append( api_filters.PlatformStatusFilter(values=[status]).json() ) platforms_list = elasticbeanstalk.list_platform_versions(filters=filters) return __formatted_platform_descriptions(platforms_list, show_status) def stream_platform_logs(response, platform_name, version, timeout): arn = response['PlatformSummary']['PlatformArn'] request_id = response['ResponseMetadata']['RequestId'] streamer = io.get_event_streamer() builder_events = threading.Thread( target=logsops.stream_platform_logs, args=(platform_name, version, streamer, 5, None, PackerStreamFormatter())) builder_events.daemon = True builder_events.start() commonops.wait_for_success_events( request_id, platform_arn=arn, streamer=streamer, timeout_in_minutes=timeout or 30 ) def version_to_arn(platform_version): platform_name = fileoperations.get_platform_name() arn = None if PlatformRegExpressions.VALID_PLATFORM_VERSION_FORMAT.match(platform_version): arn = get_platform_arn(platform_name, platform_version, owner=Constants.OWNED_BY_SELF) elif PlatformVersion.is_valid_arn(platform_version): arn = platform_version elif PlatformRegExpressions.VALID_PLATFORM_SHORT_FORMAT.match(platform_version): match = PlatformRegExpressions.VALID_PLATFORM_SHORT_FORMAT.match(platform_version) platform_name, platform_version = match.group(1, 2) arn = get_platform_arn(platform_name, platform_version, owner=Constants.OWNED_BY_SELF) if not arn: raise InvalidPlatformVersionError(strings['exit.nosuchplatformversion']) return arn def _create_app_version_zip_if_not_present_on_s3( platform_name, version_label, source_control, staged ): s3_bucket, s3_key = commonops.get_app_version_s3_location(platform_name, version_label) file_name, file_path = None, None if s3_bucket is None and s3_key is None: file_name, file_path = commonops._zip_up_project(version_label, source_control, staged=staged) s3_bucket = elasticbeanstalk.get_storage_location() s3_key = platform_name + '/' + file_name return s3_bucket, s3_key, file_path def _datetime_now(): return datetime.now() def _enable_healthd(): option_settings = [] option_settings.append({ 'namespace': namespaces.HEALTH_SYSTEM, 'option_name': option_names.SYSTEM_TYPE, 'value': 'enhanced' }) option_settings.append({ 'namespace': namespaces.ENVIRONMENT, 'option_name': option_names.SERVICE_ROLE, 'value': 'aws-elasticbeanstalk-service-role' }) fileoperations.ProjectRoot.traverse() with open('platform.yaml', 'r') as stream: platform_yaml = yaml.safe_load(stream) try: platform_options = platform_yaml['option_settings'] except KeyError: platform_options = [] options_to_inject = [] for option in option_settings: found_option = False for platform_option in platform_options: if option['namespace'] == ( platform_option['namespace'] and option['option_name'] == platform_option['option_name'] ): found_option = True break if not found_option: options_to_inject.append(option) platform_options.extend(options_to_inject) platform_yaml['option_settings'] = list(platform_options) with open('platform.yaml', 'w') as stream: stream.write(yaml.dump(platform_yaml, default_flow_style=False)) def _generate_platform_yaml_copy(): file_descriptor, original_platform_yaml = tempfile.mkstemp() os.close(file_descriptor) copyfile('platform.yaml', original_platform_yaml) return original_platform_yaml def _raise_if_directory_is_empty(): cwd = os.getcwd() fileoperations.ProjectRoot.traverse() try: if heuristics.directory_is_empty(): raise PlatformWorkspaceEmptyError(strings['exit.platformworkspaceempty']) finally: os.chdir(cwd) def _raise_if_platform_definition_file_is_missing(): if not heuristics.has_platform_definition_file(): raise PlatformWorkspaceEmptyError(strings['exit.no_pdf_file']) def _raise_if_version_format_is_invalid(version): if not PlatformRegExpressions.VALID_PLATFORM_VERSION_FORMAT.match(version): raise InvalidPlatformVersionError(strings['exit.invalidversion']) def _resolve_s3_bucket_and_key( platform_name, version_label, source_control, staged ): platform_yaml_copy = _generate_platform_yaml_copy() try: _enable_healthd() s3_bucket, s3_key, file_path = _create_app_version_zip_if_not_present_on_s3( platform_name, version_label, source_control, staged ) finally: move(platform_yaml_copy, 'platform.yaml') return s3_bucket, s3_key, file_path def _resolve_version_label(source_control, staged): version_label = source_control.get_version_label() if staged: timestamp = _datetime_now().strftime("%y%m%d_%H%M%S") version_label = version_label + '-stage-' + timestamp return version_label def _resolve_version_number( platform_name, major_increment, minor_increment, patch_increment ): version = get_latest_platform_version( platform_name=platform_name, owner=Constants.OWNED_BY_SELF, ignored_states=[] ) if version is None: version = '1.0.0' else: major, minor, patch = version.split('.', 3) if major_increment: major = str(int(major) + 1) minor = '0' patch = '0' if minor_increment: minor = str(int(minor) + 1) patch = '0' if patch_increment or not(major_increment or minor_increment): patch = str(int(patch) + 1) version = "%s.%s.%s" % (major, minor, patch) return version def __formatted_platform_descriptions(platforms_list, show_status): platform_tuples = [] for platform in platforms_list: platform_tuples.append( { 'PlatformArn': platform['PlatformArn'], 'PlatformStatus': platform['PlatformStatus'] } ) platform_tuples.sort( key=lambda platform_tuple: ( PlatformVersion.get_platform_name(platform_tuple['PlatformArn']), Version(PlatformVersion.get_platform_version(platform_tuple['PlatformArn'])) ), reverse=True ) formatted_platform_descriptions = [] for index, platform_tuple in enumerate(platform_tuples): if show_status: formatted_platform_description = '{platform_arn} Status: {platform_status}'.format( platform_arn=platform_tuple['PlatformArn'], platform_status=platform_tuple['PlatformStatus'] ) else: formatted_platform_description = platform_tuple['PlatformArn'] formatted_platform_descriptions.append(formatted_platform_description) return formatted_platform_descriptions def _upload_platform_version_to_s3_if_necessary(bucket, key, file_path): try: s3.get_object_info(bucket, key) io.log_info('S3 Object already exists. Skipping upload.') except NotFoundError: io.log_info('Uploading archive to s3 location: ' + key) s3.upload_platform_version(bucket, key, file_path) fileoperations.delete_app_versions()
31.517241
109
0.701562
20a6c985d526f34522849a1ac0510dc9b1aa909f
1,595
py
Python
tools/vscode-extension/server/tests/test_imports.py
orlandoojr1/wave
e86d0c87c6c67e510fb4e1fa571982ca0a09f33c
[ "Apache-2.0" ]
1
2022-03-02T21:54:36.000Z
2022-03-02T21:54:36.000Z
tools/vscode-extension/server/tests/test_imports.py
orlandoojr1/wave
e86d0c87c6c67e510fb4e1fa571982ca0a09f33c
[ "Apache-2.0" ]
null
null
null
tools/vscode-extension/server/tests/test_imports.py
orlandoojr1/wave
e86d0c87c6c67e510fb4e1fa571982ca0a09f33c
[ "Apache-2.0" ]
null
null
null
import os from server.lsp_server import did_save from server.parser import read_file from server.tests.utils import BaseTestCase, FakeSaveParams, root_uri class TestImportCompletions(BaseTestCase): def test_import_deps(self): self.assert_state('q.client.', doc_uri=os.path.join(root_uri, 'utils.py')) def test_remove_import_deps(self): self.assert_state('q.client.', doc_uri=os.path.join(root_uri, 'utils.py')) file_path = os.path.join(root_uri, 'main.py') removed_imports = read_file(file_path).replace('import utils, utils2', '') # Mock save action. did_save(self.server, FakeSaveParams(removed_imports, file_path)) completions = self.get_completions('q.client.', doc_uri=os.path.join(root_uri, 'utils.py')) self.assertEqual(len(completions), 1) self.assertTrue('regular_import' in completions) def test_add_import_deps(self): file_path = os.path.join(root_uri, 'main.py') removed_imports = read_file(file_path).replace('import utils, utils2', '') # Mock save action. did_save(self.server, FakeSaveParams(removed_imports, file_path)) completions = self.get_completions('q.client.', doc_uri=os.path.join(root_uri, 'utils.py')) self.assertEqual(len(completions), 1) self.assertTrue('regular_import' in completions) # Mock save action. did_save(self.server, FakeSaveParams('import utils, utils2\n' + removed_imports, file_path)) self.assert_state('q.client.', doc_uri=os.path.join(root_uri, 'utils.py'))
43.108108
100
0.692163
3d60411b9169a34fe013df41882bae4d5b49762b
56,886
py
Python
drgpom/methods/biomarkers/neuron_biomarkers.py
oliverbritton/drg-pom
8a1455db7791b35501071070b4c74c5b83283dbf
[ "MIT" ]
1
2021-05-11T20:10:42.000Z
2021-05-11T20:10:42.000Z
drgpom/methods/biomarkers/neuron_biomarkers.py
oliverbritton/drg-pom
8a1455db7791b35501071070b4c74c5b83283dbf
[ "MIT" ]
null
null
null
drgpom/methods/biomarkers/neuron_biomarkers.py
oliverbritton/drg-pom
8a1455db7791b35501071070b4c74c5b83283dbf
[ "MIT" ]
null
null
null
# neuron_biomarkers.py # calculation of AP biomarkers from neuronal voltage traces import sys import numpy as np import pandas as pd from scipy import optimize from matplotlib import pyplot as plt from . import davidson_biomarkers as db from .. import simulation_helpers as sh from .. import analysis as an # Biomarkers to manage and analyse neuronal simulation data and potentially experimental # data too RHEO_FAIL = np.nan # Code to return if rheobase calculation fails. # np.nan == np.nan returns False so use is not instead. pom code # relies on this value being nan to interface with pandas correctly. def calculate_biomarkers(traces, model): " Calculate every biomarker and output to dict " " TODO: Use the rheobase to work out what simulation to run to calculate biomarkers " " off of (at rheobase) " # biomarker_names = ['APFullWidth', 'APPeak', 'APRiseTime', 'APSlopeMin', 'APSlopeMax',. 'AHPAmp', 'AHPTau', 'ISI', 'RMP', 'Rheobase'] biomarkers = calculate_simple_biomarkers(traces, model) biomarkers['RMP'] = np.mean(calculate_rmp(traces)) # Need to do rheobase separately biomarkers['Rheobase'] = calculate_rheobase(model, amp_step=0.1, amp_max=5, make_plot=False,) return biomarkers def average_biomarker_values(biomarkers, how_to_handle_nans='return'): " Average biomarker values for multiple APs while handling biomarkers that " if how_to_handle_nans == 'return': # Advantage is we return nan if there are any nans - good for calibration and trouble shooting - shows up weird models easily. pass elif how_to_handle_nans == 'remove': # Risky option. Advantage is we still get a number back in mixed cases of nan and non-nan biomarkers, which is potentially risky as it hides a problem in one or more APs. biomarkers = np.array(biomarkers) if biomarkers[~np.isnan(biomarkers)].size == 0: return np.nan else: biomarkers = biomarkers[~np.isnan(biomarkers)] else: raise ValueError("{} is not an accepted nan handling method.".format(how_to_handle_nans)) mean_result = np.mean(biomarkers) return mean_result def calculate_simple_biomarkers(traces, model="Not needed", how_to_handle_nans='return'): """ Calculate every biomarker that can be calculated from a normal simulation trace and output to dict - rheobase and RMP need to be calculated separately.""" biomarkers = {} # biomarker_names = ['APFullWidth', 'APPeak', 'APRiseTime', 'APSlopeMin', 'APSlopeMax',. 'AHPAmp', 'AHPTau', 'ISI', 'RMP', 'Rheobase'] def error_handle(filename, traces): # Error handler for finding out why biomarkers are throwing errors. import pickle print(sys.exc_info()) print(traces['numAPs']) plt.figure() for t,v in zip(traces['t'],traces['v']): plt.plot(t,v) with open(filename, 'wb') as handle: pickle.dump(traces, handle) print("Error, traces dumped to {}.".format(filename)) try: biomarkers['APFullWidth'] = average_biomarker_values(calculate_ap_full_width(traces,threshold=5.,method='gradient'), how_to_handle_nans) except: error_handle('fullwidth.pickle',traces) try: biomarkers['APHalfWidth'] = average_biomarker_values(calculate_ap_half_width(traces,threshold=5.,method='gradient'), how_to_handle_nans) except: error_handle('halfwidth.pickle',traces) biomarkers['APPeak'] = average_biomarker_values(calculate_ap_peak(traces),how_to_handle_nans) try: biomarkers['APRiseTime'] = average_biomarker_values(calculate_ap_rise_time(traces,dvdtthreshold=5),how_to_handle_nans) except: error_handle('risetime.pickle',traces) ap_slope_mins, ap_slope_maxs = calculate_ap_slope_min_max(traces) biomarkers['APSlopeMin'] = average_biomarker_values(ap_slope_mins, how_to_handle_nans) biomarkers['APSlopeMax'] = average_biomarker_values(ap_slope_maxs, how_to_handle_nans) biomarkers['Threshold'] = average_biomarker_values(calculate_threshold(traces), how_to_handle_nans) amp, tau, trough = fit_afterhyperpolarization(traces=traces,dvdt_threshold=5, ahp_model='single_exp', full_output=False) """ try: amp, tau = fit_afterhyperpolarization(traces=traces,dvdt_threshold=5, ahp_model='single_exp', full_output=False) except: error_handle('fitahp.pickle',traces) amp=0 tau=0 """ biomarkers['AHPAmp'] = amp biomarkers['AHPTau'] = tau biomarkers['AHPTrough'] = trough biomarkers['ISI'] = inter_spike_interval(traces) biomarkers['numAPs'] = traces['numAPs'] return biomarkers def compute_model_biomarkers(model=None, mechanisms=None, make_plot=False, sim_kwargs=None, xlims=None): " Find all standard biomarkers of a model or mechanism set. " biomarkers = {} if model == None: model = sh.build_model(mechanisms) # Else use model if sim_kwargs: sim_kwargs['model'] = model else: sim_kwargs = sh.get_default_simulation_kwargs(model=model) rheobase = calculate_rheobase(model, amp_step=0.1, amp_max=5, make_plot=False, sim_kwargs = sim_kwargs) if (isinstance(rheobase,float) == False) & (isinstance(rheobase,int) == False): # Rheobase not found, don't calculate other biomarkers find_other_biomarkers = False else: find_other_biomarkers = True if sim_kwargs: sim_kwargs['amp'] = rheobase sim_kwargs['model'] = model else: sim_kwargs = sh.get_default_simulation_kwargs(amp=rheobase, model=model) sim_kwargs['make_plot'] = make_plot if find_other_biomarkers: output = sh.simulation(**sim_kwargs) t = output['t']; v = output['v'] t = t[::2]; v = v[::2] # 20 kHz traces = split_trace_into_aps(t,v) biomarkers = calculate_simple_biomarkers(traces,model,how_to_handle_nans='remove') # RMP rmp_kwargs = {'amp':0.0, 'dur':3000., 'delay':0., 'interval':0., 'num_stims':1, 't_stop':3000.} for kwarg in sim_kwargs: # Write in sim_kwargs where they are not already present in rmp_kwargs # so that non-RMP specific kwargs are consistent between simulations if kwarg not in rmp_kwargs: rmp_kwargs[kwarg] = sim_kwargs[kwarg] output = sh.simulation(**rmp_kwargs) rmp_t = output['t']; rmp_v = output['v'] rmp_t = rmp_t[::2]; rmp_v = rmp_v[::2] # 20 kHz rmp_traces = split_trace_into_aps(rmp_t,rmp_v) rmp = np.mean(calculate_rmp(rmp_traces)) if (make_plot & (xlims != None)): plt.xlim(xlims[0], xlims[1]) # If we calculated other biomarkers, add extras calculated in separate simulations. # If we didn't add to empty dictionary, will leave nans when added to master dataframe # which is what we want. biomarkers['Rheobase'] = rheobase biomarkers['RMP'] = rmp return biomarkers " --- Calculation and trace manipulation functions -- " def split_trace_into_aps(t,v,threshold=0,time_threshold=5, check_voltage_gradient=True):# """ Threshold is at 0 mV which can let RF to cause spurious AP detection unless we perform a voltage gradient check, which defaults to True. -- Old ideas to solve the spurious AP detection problem with threshold at 0 mV -- One idea is to do split trace and then calculate AP width using a voltage threshold of something like -25 mV. Then, if AP width is really long (> 100 ms?), redo the calculation with a lower threshold (0 mV?). If mean AP width is then < 100 ms, we use the new split. We could write a log file to say that this happened, with the trace in it. However, that is complex and may break if something comes up I haven't thought of. Instead we could reset the default threshold to 0 mV but add in a gradient check on the voltage crossing from below. Currently a gradient threshold of 1 mV/ms seems like it should be effective although I don't have any examples of slow calcium initated APs to test against. """ # Units for defaults # t, time_threshold - ms # v, threshold - mV assert len(t) == len(v), "v and t length mismatch" crossings = [] time_crossings = np.array([]) # Looks for crossings from below for i,voltage in enumerate(v[:-1]): if (voltage < threshold) & (v[i+1] >= threshold): # Check local voltage gradient if neeeded, if gradient is too small ignore the crossing # Time window set to 1.0 to try to counteract bug with averaging too much of the pre-upstroke. if (check_voltage_gradient) & (is_voltage_gradient_too_small(i, t, v, dvdt_threshold=1.0, time_window=1.0)): continue # Don't add the crossing if the local voltage gradient is small and we're checking for that crossings.append(i) time_crossings = np.append(time_crossings,t[i]) # For each crossing, remove all instances within the time threshold, leaving only the first crossing of the threshold grouped_crossings = np.zeros(np.size(crossings),float) for i in range(len(crossings)-1): if grouped_crossings[i] == 0: nearby_crossings = np.array( (time_crossings[i+1:] - time_crossings[i]) < time_threshold ) # Assign grouped_crossings[i+1:] += nearby_crossings assert all(grouped_crossings < 2), "Grouped crossing grouped more than once" firstCrossIndices = np.where(grouped_crossings == 0) # Need to turn crossings into a numpy array to index it with np.where firstCrossings = np.array(crossings)[firstCrossIndices] numAPs = len(firstCrossings) assert numAPs >= 0, "Negative number of APs!" # Assign time and voltage to traces times = [] voltages = [] # If 1 or 0 APs, return 1 trace, otherwise... # if (numAPs == 0) | (numAPs == 1): # times.append(t) # voltages.append(v) """ There are some commented assumptions about where traces begin and end here. The core idea is that all data points in the trace have to be assigned to 1 and only 1 AP. If areas of quiescence are a problem for particular analysis methods, they will be stripped out by other specialised functions. Our goal in this function is to divide up the trace without leaving any of it out, so that we have everything for any future analysis. """ # If we have multiple APs, for each AP find the minimum value # of Vm before the next AP if numAPs > 0: startIdx = np.zeros(numAPs,int) endIdx = np.zeros(numAPs,int) for AP in range(numAPs): if AP == 0: startIdx[0] = 0 # Start of first AP is beginning of trace else: startIdx[AP] = endIdx[AP-1]+1 # Start of all other APs is after last AP if AP == numAPs-1: endIdx[AP] = len(v)-1 # End of last AP is end of trace else: # Calculate end of this trace - end is minimum voltage of this trace # From threshold of this AP to just before beginning of next threshold voltageDuringCurrentAP = v[firstCrossings[AP]:firstCrossings[AP+1]] # Get index of minimum voltage AFTER the peak max_idx = np.argmax(voltageDuringCurrentAP) minVmIdx = np.argmin(voltageDuringCurrentAP[max_idx:]) endIdx[AP] = firstCrossings[AP] + max_idx + minVmIdx # Don't think I need to minus 1 because Python indices start at 0 times.append(t[startIdx[AP]:endIdx[AP]+1]) voltages.append(v[startIdx[AP]:endIdx[AP]+1]) # Add 1 to as Python slicing ends 1 before last index for i in range(len(startIdx)-1): assert endIdx[i]+1 == startIdx[i+1], "startIdx and endIdx don't match up." # Case for no APs - numAPs causes problems here so set indices manually elif numAPs == 0: times.append(t) voltages.append(v) startIdx = np.array([0],int) endIdx = np.array([len(v)-1],int) assert startIdx[0] == 0, "First AP doesn't start at beginning of trace." assert endIdx[-1] == len(v)-1, "Last AP doesn't end at end of trace." return{'t':times, 'v':voltages, 'startIndices':startIdx, 'endIndices':endIdx, 'numAPs':numAPs} SplitTraceIntoAPs = split_trace_into_aps # Alias def voltage_gradient(t,v, method='gradient'): # There is a gradient function in numpy to take central differences if method == 'gradient': dvdt = np.gradient(v,t)# Central differences except at end points elif method == 'diff': dvdt = np.diff(v)/np.diff(t) # Difference between adjacent points else : raise ValueError("Method not found.") return dvdt VoltageGradient = voltage_gradient # Alias def is_voltage_gradient_too_small(i, t, v, dvdt_threshold, time_window): """ Check if the voltage gradient around the threshold crossing from below at v[i] to v[i+1] is too small to have a reasonable likelihood of being a real AP. Inputs: i - index at which threshold is crossed, between v[i] and v[i+1] t,v - time and voltage arrays dvdt threshold - mV/ms time window (either side of indices i and i+1, so effective window is double the size) - ms """ voltage_gradient_too_small = False # Get time window around v[i] and v[i+1] lower_t_bound = t[i] - time_window if lower_t_bound < 0: lower_t_bound = 0 upper_t_bound = t[i+1] + time_window # Get indices of t and v that are within the window t = np.array(t) window_indices = (t >= lower_t_bound) & (t <= upper_t_bound) _t = t[window_indices] _v = v[window_indices] _dvdt = np.gradient(_v,_t) # Check mean gradient against threshold if np.mean(_dvdt) < dvdt_threshold: voltage_gradient_too_small = True return voltage_gradient_too_small # --- Biomarkers --- def rmp(v): # RMP should be calculated from a quiescent trace (no stimulus) # Ignore first 90% of trace to remove artifacts vLen = len(v) startIdx = 90*vLen//100 RMP = min(v[startIdx:]) RMPIdx = np.argmin(v[startIdx:]) return RMP, RMPIdx RMP = rmp # Alias def input_res(t, v, current_injection_time): # Input resistance calculated from a protocol with an equilibration phase # to get to RMP, followed by a sustained small current input. # Input res then = (v[-1] - v[RMP])/(I-0) # In Davidson, 50 to 100 pA current pulse was used to determine input resistance. # Divide trace at injection time: # Get RMP at t < injection time: # Get RMP at t > injection time: # Rheobase - find the first trace with an action potential # Assumes traces are sorted in order from smallest amplitude upwards """ To Do - check that simulations is a bunch of simulations, not just an array """ def rheobase(simulations,amps): # Check amps is sorted for i in range(len(amps)-1): assert amps[i+1] > amps[i], 'Amps in rheobase biomarker not increasing monotonically!' for simulation,amp in zip(simulations,amps): # Search for first trace which produces an AP result = SplitTraceIntoAPs(simulation['t'],simulation['v']) if result['numAPs'] > 0: return {'rheobase':amp, 'trace':simulation} # If no APs found return {'rheobase':np.nan, 'trace':[]} Rheobase = rheobase # Alias def ap_peak(v): peak = max(v) location = np.argmax(v) return [peak,location] APPeak = ap_peak # Alias def threshold(t, v, dvdt_threshold=5.): # Calculation of threshold voltage as described in Davidson et al., 2014 PAIN using gradient # Threshold is in V/s - default of 5 is what was used by Davidson et al. dvdt = np.gradient(v,t) thresholds = [] for i, gradient in enumerate(dvdt[0:-1]): if (gradient < dvdt_threshold) & (dvdt[i+1] > dvdt_threshold): # Look for crossing of threshold thresholds.append(v[i]) if thresholds: return thresholds[0] # Only use first threshold of crossing else: return np.nan def ap_rise_time(t,v,threshold=5): """ Threshold here is a dVdt threshold in mV/ms` Default threshold is taken from Davidson et al. 2014, PAIN """ assert threshold > 0, 'Rise time threshold is a gradient threshold, should be > 0!' dVdt = np.gradient(v,t) peak = ap_peak(v) peak_idx = peak[1] peak_time = t[peak_idx] # If dVdt is a tuple, second part is gradient found_thresholds = [] for i,gradient in enumerate(dVdt[0:-1]): # Is dVdt a time vector as well? if gradient < threshold: if dVdt[i+1] > threshold: found_thresholds.append(i) num_threshold = len(found_thresholds) if num_threshold == 1: threshold_time = t[found_thresholds[0]] rise_time = peak_time - threshold_time if rise_time < 0: #rise_time = 'Rise time < 0: %.3f' % rise_time rise_time = np.nan # assert rise_time >=0, 'Rise time < 0!' elif num_threshold == 0: rise_time = np.nan elif num_threshold > 1: # assert False, 'More than 1 threshold for rise time - APs may not be clearly separated.' # Take the first one - later ones are probably rapid spikes e.g. on the shoulder threshold_time = t[found_thresholds[0]] rise_time = peak_time - threshold_time return rise_time APRiseTime = ap_rise_time # Alias def ap_slope_min_max(t,v): dVdt = np.gradient(v,t) slope_min = min(dVdt) slope_max = max(dVdt) ### Need mins and maxes return [slope_min,slope_max] APSlopeMinMax = ap_slope_min_max # Alias def ap_width(t, v, alpha, _threshold=5., threshold_type='gradient'): """ Generic ap width calculating function. Alpha determines the fraction of the voltage gap between threshold and ap peak that is used to set the voltage threshold. Specifically, if Th is the calculate threshold voltage and P is the peak voltage, the voltage threshold used depends on alpha so that width threshold WTh = alpha*P + (1-alpha)*Th So for full width alpha = 0, as we just use the bare threshold Th, for half width alpha = 0.5, and alpha = 1 should give a width of 0 as it goes all the way to the peak. Defaults are consistent with Davidson et al. 2014 (5 mV/ms gradient to find threshold voltage) _threshold named to avoid overlapping with threshold function """ # Calculate AP threshold and AP peak voltages if threshold_type == 'gradient': v_threshold = threshold(t, v, _threshold) elif threshold_type == 'voltage': v_threshold = _threshold else: raise ValueError("threshold type: {} not recognised".format(threshold_type)) if np.isnan(v_threshold): return np.nan v_peak = ap_peak(v)[0] width_v_threshold = alpha * v_peak + (1.0 - alpha) * v_threshold # Find crossing points ups, downs = find_threshold_crossings(v, width_v_threshold) # Check we have crossings if ups and downs: last_down = downs[-1] first_up = ups[0] width = t[last_down] - t[first_up] return width else: return np.nan def ap_full_width(t,v ,_threshold=5., threshold_type='gradient'): """ Calculate full width of AP by one of two methods, a voltage threshold or a voltage/time gradient threshold Defaults are consistent with Davidson et al. 2014 (5 mV/ms gradient to find threshold voltage) _threshold named to avoid overlapping with threshold function """ if threshold_type == 'voltage': assert not np.isnan(_threshold), "Threshold {} is nan".format(_threshold) ups, downs = find_threshold_crossings(v, _threshold) elif threshold_type == 'gradient': # Find voltage at which we cross the dvdt threshold dvdt = np.gradient(v,t) gradient_threshold = None for i, _ in enumerate(dvdt[:-1]): if (dvdt[i] < _threshold) and (dvdt[i+1] >= _threshold): gradient_threshold = v[i] break # Return if we don't cross the threshold if gradient_threshold: ups, downs = find_threshold_crossings(v, gradient_threshold) else: return np.nan else: raise ValueError("threshold type: {} not recognised".format(threshold_type)) #print(arr) #print(ups,downs) num_ups = len(ups) num_downs = len(downs) if (num_ups < 1) | (num_downs < 1): # Not enough crossings full_width = np.nan elif (num_ups == 1) & (num_downs == 1): # One crossing of threshold each way full_width = t[downs[0]] - t[ups[0]] elif (num_ups > 1) | (num_downs > 1): # Too many crossings # Find earliest crossing from below and latest crossing from above # to calculate full width first_up = ups[0] last_down = downs[-1] full_width = t[last_down] - t[first_up] return full_width APFullWidth = ap_full_width # Alias def ap_half_width(t,v, dvdt_threshold=5.): """ Definition from neuroelectro.org: AP duration at membrane voltage halfway between AP threshold and AP peak. Currently only uses gradient method for finding threshold for simplicity. """ # Calculate AP threshold and AP peak voltages v_threshold = threshold(t,v, dvdt_threshold=dvdt_threshold,) v_peak = ap_peak(v)[0] half_width_v_threshold = (v_threshold + v_peak)/2. # Find crossing points ups, downs = find_threshold_crossings(v,half_width_v_threshold) # Check we have crossings if ups and downs: last_down = downs[-1] first_up = ups[0] half_width = t[last_down] - t[first_up] return half_width else: return np.nan def fit_afterhyperpolarization(traces, dvdt_threshold, max_time_from_peak=50., ahp_model = 'single_exp', full_output=False): """ Gather afterhyperpolarisation regions from a set of traces and fit them to a model of a single exponential (other models can be added as needed) Outputs: Returns either amp,tau or if full_output is selected returns five outputs. """ # Fit to single exponential model if ahp_model == 'single_exp': def model(x, a, b, c): return a - b * np.exp(-x/c) else: raise ValueError('Model \"{}\" not valid'.format(ahp_model)) # Return function if we have a result we can't fit a hyperpolarisation to def hyperpolarisation_fit_failure(full_output): if full_output: return np.nan, np.nan, np.nan, np.nan,np.nan, np.nan else: return np.nan, np.nan, np.nan # Arrange data to contain each interval between peaks (num APs > 1) or peak to end of trace (n=1) """ This caused a bug for thr last AP since when the stimulus turns off there is a bigger AHP than the AHP itself. Instead, for the last trace in the sequence only, check only for 50 ms after the peak. Could also check for some multiple of AP full width, but 50 ms should be sufficient for all but very long abnormal APs. """ num_APs = traces['numAPs'] if num_APs < 1: return hyperpolarisation_fit_failure(full_output) elif num_APs == 1: _t = traces['t'][0] _v = traces['v'][0] max_idx = np.argmax(_v) # Check that the peak is not right at the end of the trace if max_idx == len(_v)-1: return hyperpolarisation_fit_failure(full_output) # Get the period between t(peak) and t(peak) + max_time_from_peak t_peak = _t[max_idx] t_end = t_peak + max_time_from_peak end_idx = np.argmin(abs(_t - t_end)) ts = [_t[max_idx+1:end_idx]] # Single element lists from just after peak to end of max_time_from_peak period vs = [_v[max_idx+1:end_idx]] elif num_APs > 1: ts = [] vs = [] # Traces 1 to N-1 for i in range(num_APs-1): _ts = [traces['t'][idx] for idx in [i, i+1]] _vs = [traces['v'][idx] for idx in [i, i+1]] max_idxs = [np.argmax(_v) for _v in _vs] # Concatenate the two parts of the interval from each trace _t_start = _ts[0][max_idxs[0]:] _t_end = _ts[1][:max_idxs[1]-1] _v_start =_vs[0][max_idxs[0]:] _v_end = _vs[1][:max_idxs[1]-1] _t = np.concatenate([_t_start, _t_end], axis=0) _v = np.concatenate([_v_start, _v_end], axis=0) ts.append(_t) vs.append(_v) # Trace N - final trace - use same process as for when there is only 1 AP except change the index _t = traces['t'][num_APs-1] _v = traces['v'][num_APs-1] max_idx = np.argmax(_v) # Check that the peak is not right at the end of the trace if max_idx == len(_v)-1: return hyperpolarisation_fit_failure(full_output) # Get the period between t(peak) and t(peak) + max_time_from_peak t_peak = _t[max_idx] t_end = t_peak + max_time_from_peak end_idx = np.argmin(abs(_t - t_end)) ts.append(_t[max_idx+1:end_idx]) vs.append(_v[max_idx+1:end_idx]) # For each interval attempt to fit an AHP amps = [] taus = [] troughs = [] if full_output: output_ts = [] output_vs = [] popts = [] for i, (t, v) in enumerate(zip(ts, vs)): # Start from the minimum, until dvdt exceeds the threshold given as input min_idx = np.argmin(v) dvdt = np.gradient(v,t) threshold_exceeded = dvdt > dvdt_threshold if any(threshold_exceeded): cutoff_idx = np.where(threshold_exceeded)[0][0] - 1 else: # Use the whole trace cutoff_idx = len(t)-1 t = t[min_idx:cutoff_idx] v = v[min_idx:cutoff_idx] # Check v and t are all there if any(np.isnan(v)) | any(np.isnan(t)): return hyperpolarisation_fit_failure(full_output) # If the membrane potential slowly monotonically decreases after a spike, then the min_idx will be the # last element of the trace, and so t and v will be empty. # Also, if the AHP part of the trace has a very small number of elements, then the calculation might not work. # So we will impose a minimum length threshold for the ahp. # With dt = 0.05 ms after downsampling, and a real AHP tau of order 10 ms, any trace of # less than length 100 (5 ms) is probably no good, # and any trace less than length 10 (0.5 ms) # is almost certainly not going to contain a viable AHP. # This does assume the default dt though so we should check it is not larger than about 0.1 ms, # which would equate to a 1 ms minimum AHP duration. length_threshold = 10 if (len(t) <= length_threshold) | (len(v) <= length_threshold): return hyperpolarisation_fit_failure(full_output) dt = np.gradient(t) assert np.mean(dt) < 0.1, "dt is large, check length_threshold" # We can check for this and return failure if it is the case. To do: think about whether this is the best # way to handle the lack of an ahp. There could also be cases where we have an AP with no AHP, # and these might give odd tau and amp readings that should not be averaged. For calibration this is fine, # but for mechanistic investigation it might not be so good. # Use scipy.optimise.curvefit to fit curve - another option would be to use the more complex # LMFIT library, but I have no experience with it's advantages over the basic scipy lsq fit function if ahp_model == 'single_exp': t = t - t[0] # Zero out t as model assumes this popt, pcov = optimize.curve_fit(model, t, v) # Do the fitting # following neuroelectro: https://neuroelectro.org/ephys_prop/index/ # AHP amplitude is from threshold voltage to trough trough = min(v) # Need original AP to calculate thresh = threshold(traces['t'][i], traces['v'][i], dvdt_threshold) ahp_amp = trough - thresh # will be -ve ahp_tau = popt[2] ahp_trough = trough " Alternate approaches to calculation" """ calculation_method = False if calculation_method == "Simple": ahp_amp = trough elif calculation_method == "ToRecovery": ahp_amp = None """ else: raise ValueError('Model \"{}\" not valid'.format(ahp_model)) amps.append(ahp_amp) taus.append(ahp_tau) troughs.append(ahp_trough) if full_output: output_ts.append(t) output_vs.append(v) popts.append(popt) # Return non averaged output and cutoff times and voltages if full output requested " if full_output == True: return amps, taus, troughs, output_ts, output_vs, popts # Otherwise just return mean amplitude and time constant of the AHP " else: amp = np.mean(amps) tau = np.mean(taus) trough = np.mean(troughs) return amp, tau, trough """ def expFunc(t, amp, slope, start): return amp*(1 - np.exp(-slope*t)+start) maxIdx = [] maxIdx.append(np.argmax(v)) # Get idx of max(v) maxIdx.append(np.argmax(v2))# Get idx of max(v2) workingTime = np.concatenate((t[maxIdx[0]:],t2[:maxIdx[1]+1]),0) ### join t[maxIdx1:] up to t2[1:maxIdx[1]] workingVoltage = np.concatenate((v[maxIdx[0]:],v2[:maxIdx[1]+1]),0) ### join # AHP amplitude amp = min(workingVoltage) ampIdx = np.argmin(workingVoltage) # dvdt = VoltageGradient(workingTime[ampIdx:], workingVoltage[ampIdx:]) # plt.plot(workingTime[ampIdx:-1],dvdt) # temp = np.argwhere(dvdt > dvdt_threshold) # Temp because we only need the first element # takeoffIdx = temp[0][0] # TODO This will break if there's no points above dvdt_threshold # plt.plot(workingTime[ampIdx:ampIdx+takeoffIdx],workingVoltage[ampIdx:ampIdx+takeoffIdx]) # plt.plot(workingTime,workingVoltage) # AHP time constant # TO DO!! # Look up curve fitting tau = 'Time constant not implemented' return amp, tau """ def inter_spike_interval(traces): """ Calculate average interspike interval from a divided set of traces Total interspike interval is the time difference between the first and last peak of a trace, divided by the number of intervals (number of APs - 1) """ numAPs = traces['numAPs'] if numAPs < 2: #print('ISI cannot be calculated with < 2 APs') return np.nan else: # Find the peak of the first and last trace voltages = traces['v'] first_spike = np.argmax(voltages[0]) last_spike = np.argmax(voltages[-1]) # Get the time difference times = traces['t'] time_diff = times[-1][last_spike] - times[0][first_spike] assert time_diff > 0, 'time_diff for ISI < 0: {}'.format(time_diff) # Divide by number of intervals (numAPs - 1) to get mean ISI inter_spike_interval = time_diff/(numAPs-1) return inter_spike_interval def absmax(i): """ Returns the largest absolute value present in an array in its raw form (e.g. in [-2, 0, 1] it returns -2, in [-2,0,3] it returns 3.) """ # Use the absolute largest value in its raw form if max(i) > abs(min(i)): return max(i) elif abs(min(i)) >= max(i): return min(i) else: raise ValueError() # ---- Calculating biomarkers over multiple traces ---- def calculate_rmp(traces): RMPVals = [] for i,v in enumerate(traces['v']): RMPValue, RMPIdx = RMP(v) RMPVals.append(RMPValue) return RMPVals CalculateRMP = calculate_rmp # Alias def calculate_input_res(): input_res_vals = [] for i,v in enumerate(traces['v']): input_res_vals.append(input_res(v)) return input_res_vals CalculateInputRes = calculate_input_res # Alias def calculate_ramp_ap(): """ Can't remember what this biomarker was supposed to do? We just run ramp simulations and calculate biomarkers on those now. """ # TODO return 0 CalculateRampAP = calculate_ramp_ap # Alias def calculate_rheobase(cell_model, amp_step=0.1, amp_max=5., make_plot=False, sim_kwargs=None, search='simple'): " Run a series of simulations to calculate rheobase" " Rheobase is defined as the threshold current for an infinite duration pulse " " We'll try 2 seconds " # Fill out sim_kwargs with defaults if needed if sim_kwargs is None: sim_kwargs = {} default_kwargs = {'dur':500., 'delay':1000., 'interval':0., 'num_stims':1, 't_stop':1500., 'mechanisms':None, 'make_plot':False, 'plot_type':'default', 'model':cell_model} for kwarg in default_kwargs.keys(): if kwarg in sim_kwargs.keys(): pass else: sim_kwargs[kwarg] = default_kwargs[kwarg] def rheobase_simulation(amp): # Returns simulation amplitude if an AP is found, otherwise returns RHEO_FAIL if no APs found sim_kwargs['amp'] = amp output = sh.simulation(**sim_kwargs) t = output['t']; v = output['v']; # Look for an AP, after throwing away the delay period, leave a 1 ms run up to catch the start run_up = 1. delay = sim_kwargs['delay'] stim_period_indices = (t >= (delay-run_up)) # TODO - why did I put tuple here earlier? t = t[stim_period_indices] v = v[stim_period_indices] traces = split_trace_into_aps(t,v,threshold=0.,time_threshold=5.) if traces['numAPs'] > 0: # rheobase found if make_plot: plot_traces(traces) rheobase = amp return rheobase else: return RHEO_FAIL amp_min = 0. amps = np.arange(amp_min, amp_max, amp_step) # (nA) # Two search modes # 1. simple starts from amp_min and works up until it finds an AP # 2. divide starts from the middle and does a binary search # simple should be quicker when rheobase is usually very low and very few models have no rheobase # divide should be quicker if rheobase is distributed any other way if search == 'simple': for amp in amps: rheobase = rheobase_simulation(amp) if rheobase is not RHEO_FAIL: # Is not is used because np.nan == np.nan reutrns False return rheobase return RHEO_FAIL elif search == 'divide': # Divide and conquer algorithm using a binary search idx0 = 0 idxn = len(amps) - 1 rheobases = np.empty(len(amps)) rheobases[:] = None while idx0 <= idxn: midval = (idx0 + idxn)// 2 rheobase = rheobase_simulations(amps[midval]) rheobases[midval] = rheobase if rheobase is not RHEO_FAIL: # Is not is used because np.nan == np.nan reutrns False if midval == 0: # Rheobase is minimum return amps[0] elif rheobases[midval-1] is not RHEO_FAIL: # Is not is used because np.nan == np.nan reutrns False # Found minimal amp for an AP - return rheobase return amps[midval] else: # AP found but not definitely lowest amp so lower idxn idxn = midval - 1 elif rheobase is not RHEO_FAIL: # Is not is used because np.nan == np.nan reutrns False if midval == (len(amps) - 1): # No rheobase for highest amp return RHEO_FAIL elif isinstance(rheobases[midval+1], float): # We've found highest amp with no AP, so one up is rheobase return amps[midval+1] else: # No AP found but not definitely highest amp so raise idx0 idx0 = midval + 1 else: raise Exception('Rheobase not accepted value.' ) raise Exception('No rheobase found') elif search == 'smart': # Simple search but after first two searches upwards we check the max value to check for # no rheobase. If the first 5? searches fail we switch to binary. # TODO pass CalculateRheobase = calculate_rheobase # Alias for compatibility def calculate_threshold(traces, dvdt_threshold=5.): thresholds = [] for t,v in zip(traces['t'], traces['v']): thresholds.append(threshold(t, v, dvdt_threshold=dvdt_threshold,)) return thresholds def calculate_ap_peak(traces): ap_peak_vals = [] for _,v in zip(range(len(traces['t'])),traces['v']): ap_peak_vals.append(ap_peak(v)[0]) return ap_peak_vals CalculateAPPeak = calculate_ap_peak # Alias def calculate_ap_rise_time(traces,dvdtthreshold=5.): ap_rise_time_vals = [] for t,v in zip(traces['t'],traces['v']): ap_rise_time_vals.append(ap_rise_time(t,v,dvdtthreshold)) return ap_rise_time_vals CalculateAPRiseTime = calculate_ap_rise_time # Alias def calculate_ap_slope_min_max(traces): ap_slope_min_vals = [] ap_slope_max_vals = [] for t,v in zip(traces['t'],traces['v']): dvdt = np.gradient(v,t) ap_slope_min_vals.append(min(dvdt)) ap_slope_max_vals.append(max(dvdt)) return ap_slope_min_vals, ap_slope_max_vals CalculateAPSlopeMinMax = calculate_ap_slope_min_max # Alias def calculate_ap_width(traces, alpha, threshold=0, method='voltage'): ap_width_vals = [] for t,v in zip(traces['t'],traces['v']): ap_width_vals.append(ap_width(t,v,alpha,threshold,method)) return ap_width_vals def calculate_ap_half_width(traces, threshold=0, method='voltage'): alpha = 0.5 ap_half_width_vals = calculate_ap_width(traces,alpha,threshold,method) return ap_half_width_vals def calculate_ap_full_width(traces,threshold=0, method='voltage'): alpha = 0.0 # Calculate at the threshold so set alpha = 0 ap_full_width_vals = calculate_ap_width(traces,alpha,threshold,method) return ap_full_width_vals CalculateAPFullWidth = calculate_ap_full_width # Alias def calculate_ahp_amp(traces,dvdt_threshold=5): ahp_amp_vals = [] if traces['numAPs'] > 1: for i in range(traces['numAPs']-1): t = traces['t'][i] v = traces['v'][i] t2 = traces['t'][i+1] v2 = traces['v'][i+1] amp, tau, trough = fit_afterhyperpolarization(t,v,t2,v2,dvdt_threshold) AHPAmpVals.append(amp) elif traces['numAPs'] == 1: v = traces['v'][0] max_idx = np.argmax(v) working_voltage = v[max_idx:]### join amp = min(working_voltage) ahp_amp_vals.append(amp) return ahp_amp_vals CalculateAHPAmp = calculate_ahp_amp # Alias def calculate_ahp_tau(): # TODO return 0 CalculateAHPTau = calculate_ahp_tau # Alias # -- Firing Patterns -- # See Balachandar and Prescott 2018 for algorithms # TODO: Find algorithms for phasic and burst patterns def determine_firing_pattern(traces, stim_start, stim_end): """ Define firing pattern of traces as one or more of n types: 1. Reluctant 2. Single 3. Tonic 4. Delayed 5. Gap 6. Phasic - multi-AP firing that ends before end of stimulus 7. Burst firing 8. Wide 9. Repolarisation failure """ def first_spike_delay(traces, stim_start): # Find delay between stim start and first spike first_spike_v = traces['v'][0] first_spike_t = traces['t'][0] single_spike_index = ap_peak(first_spike_v)[1] single_spike_time = first_spike_t[single_spike_index] delay = single_spike_time - stim_start #print("delay = {}".format(delay)) return delay def first_two_spikes_isi(traces): # Find delay between first and second spikes spike_times = [] for i in [0,1]: spike_idx = ap_peak(traces['v'][i])[1] spike_times.append(traces['t'][i][spike_idx]) delay = spike_times[1] - spike_times[0] return delay def second_third_spikes_isi(traces): # Find delay between second and third spikes spike_times = [] for i in [1,2]: spike_idx = ap_peak(traces['v'][i])[1] spike_times.append(traces['t'][i][spike_idx]) delay = spike_times[1] - spike_times[0] return delay def check_delayed(traces): # Check if firing pattern is delayed delayed = False num_aps = traces['numAPs'] # Delayed firing pattern criterion for 1 spike: # Delay from stim start to first spike is > 100 ms if num_aps == 1: if first_spike_delay(traces, stim_start) > 100.0: delayed = True # Delayed firing pattern criterion for > 1 spike: # Delay between stimulus start and firing first spike is > 1.5 # times the ISI between spikes 1 and 2. elif num_aps > 1: if first_spike_delay(traces, stim_start) > 1.5*first_two_spikes_isi(traces): delayed = True return delayed def check_gap(traces): gap = False num_aps = traces['numAPs'] # Gap firing criteria: # Number of spikes > 2 # ISI between spikes 1 and 2 > 1.5 times ISI between spikes 2 and 3 gap = False if num_aps > 2: if first_two_spikes_isi(traces) > 1.5*second_third_spikes_isi(traces): gap = True return gap def check_phasic(traces, stim_end, ratio_threshold=0.25): """ Phasic - firing of multiple APs followed by a period of quiescence. Cases 1. Idea is use ratio of - Time from last spike to stimulus end:time from first to last spike If the ratio is above some threshold. 2. Simply time from last peak to end of stimulus compared to a threshold. """ phasic = False # Characterisation cases case1 = True case2 = False # First, check we have multiple APs # We will class single spikes as single spikes, not phasic. num_aps = traces['numAPs'] if num_aps < 2: return False spike_times = [] for i in range(num_aps): spike_idx = ap_peak(traces['v'][i])[1] spike_times.append(traces['t'][i][spike_idx]) # Case 1 if case1: last_spike_to_stim_end = stim_end - spike_times[-1] # check stimulus ended before last spike, if not can't be phasic if last_spike_to_stim_end > 0: first_to_last_spike = spike_times[-1] - spike_times[0] assert first_to_last_spike > 0 ratio = last_spike_to_stim_end/first_to_last_spike #print("Ratio = {}".format(ratio)) if ratio > ratio_threshold: phasic = True # Case 2 if case2: raw_time_threshold = 50.0 if last_spike_to_stimulus_end > raw_time_threshold: phasic = True return phasic def check_bursting(traces, stim_start): """ Bursting - bursts of APs separated by rest periods Not sure how to characterize currently. 1. Find all AP peaks. 2. Divide trace up into quiet periods and firing periods Quiet period is region where distance between two APs or last AP and stimulus end is greater than some multiple of the average ISI (median?). """ bursting = False return bursting def check_wide(traces, mean_width_threshold=10.0): """ Abnormally wide APs - feature seen when inserting hNav 1.8 into mice (Han et al. 2015). """ wide = False # Get width of each AP using AP half width biomarker # Use half width as we can compare against data in Han et al. 2015 # Figure 8D shows half-width distributions, which motivated the choice to # set default width threshold for 'wide' designation to 10 ms. half_widths = [] for t, v in zip(traces['t'], traces['v']): half_widths.append(ap_half_width(t ,v, dvdt_threshold=5.)) if half_widths: # Check we have widths if np.mean(half_widths) > mean_width_threshold: wide = True return wide def check_rep_fail(traces, rep_fail_threshold=0.0): """ Repolarisation failure - trace does not recover to a reasonably depolarised voltage This can be set by user but we'll start with using 0 mV as default threshold and can tune as needed. """ rep_fail = False last_trace = traces['v'][-1] # Check last element of last trace against threshold if last_trace[-1] > rep_fail_threshold: rep_fail = True return rep_fail firing_pattern = [] num_aps = traces['numAPs'] if num_aps == 0: firing_pattern.append('reluctant') elif num_aps == 1: firing_pattern.append('single') if check_delayed(traces): firing_pattern.append('delayed') if check_wide(traces): firing_pattern.append('wide') if check_rep_fail(traces): firing_pattern.append('rep_fail') elif num_aps > 1: firing_pattern.append('multi') # Determine if tonic spiking - can't be delayed, gap, phasic or repolarisation failure phasic = check_phasic(traces, stim_end, ratio_threshold=0.25) delayed = check_delayed(traces) gap = check_gap(traces) rep_fail = check_rep_fail(traces) if (not delayed) and (not gap) and (not phasic) and (not rep_fail): firing_pattern.append('tonic') if phasic: firing_pattern.append('phasic') if delayed: firing_pattern.append('delayed') if gap: firing_pattern.append('gap') if rep_fail: firing_pattern.append('rep_fail') # Check wide if check_wide(traces, mean_width_threshold=10.0): firing_pattern.append('wide') #print(" TODO:Bursting") return firing_pattern # ---- Plotting ---- def plot_traces(traces): for t,v in zip(traces['t'], traces['v']): plt.plot(t,v) # ---- I/O ---- def write_header(biomarker_file): string = 'Index' for biomarker in db.biomarkerNames: string += (';' + biomarker) string += ';' + 'stimAmp' string += '\n' biomarker_file.write(string) return WriteHeader = write_header # Alias def write_biomarkers(biomarkers,biomarker_file): # Write the values of each biomarker in csv format string = str(biomarkers['Index']) for biomarker in db.biomarkerNames: string += (';' + str(biomarkers[biomarker])) string += (';' + str(biomarkers['stimAmp'])) string += '\n' biomarker_file.write(string) return WriteBiomarkers = write_biomarkers # Alias # ---- Frequency intensity curve biomarkers ---- class FICurves(object): """ Class to hold FI curve data Frequencies Amplitudes Results Which simulations go together And allow you to extract FI curves, plot them and obtain summary statistics """ def __init__(self, results, simulations): self.results = results.copy() self.simulations = simulations.copy() self.groups = [] # Data storage for each group """ Get all the simulations that have a constant stimulus amplitude and aren't run to rheobase and group by block parameters and stimulus type TODO: And also check all other features (e.g. """ self.group_simulations() self.get_FI_curves() # Process results to remove parameters if 'Parameters' in self.results.columns.levels[0]: self.results = self.results.drop('Parameters',axis=1,level=0) self.results.columns = self.results.columns.drop('Parameters',level=0) """ If we need multiple stim unit definitions: 1. Turn above line into for loop 2 Create a function called get_stim_amp_designations that gives all the things like nA or pA to search for 3. Search for any of them in the simulation name and accept those that hit one and only one of them """ def group_simulations(self): """ Group simulations together that are the same except for their stimulus amplitudes """ self.groups = [] for name, sim in self.simulations.items(): amp, shared_params = self.get_simulation_parameters(sim.protocols) # Check for a fixed amplitude (not a simulation to find rheobase) if amp: # Check whether there is an existing group with matching shared parameters (scaling factors, stim function) group = self.check_for_existing_group(shared_params) if group is not None: # Add sim name and amplitude to group as key, val self.groups[group]['simulations'][name] = amp #print("Appending: {}".format(self.groups[group])) else: new_group = {'simulations': {name:amp}, 'shared_params':shared_params} #print("Making: {}".format(new_group)) self.groups.append(new_group) def get_simulation_parameters(self, sim_protocols): """ Extract needed simulation parameters Currently: amplitude, stimulus type and scaling factors """ amp = sim_protocols['amp'] shared_params = {} shared_params['stim_type'] = sim_protocols['stim_func'] if 'parameter_scaling' in sim_protocols: shared_params['parameter_scaling'] = sim_protocols['parameter_scaling'] return amp, shared_params def check_for_existing_group(self, shared_params): """ Check groups for a group that mathches other_params. Returns: Group index if group exists None if group does not exist """ # Check if other_params matches all other_params in any other group group_idx = None for i, group in enumerate(self.groups): if shared_params == group['shared_params']: assert group_idx is None, "group_idx should equal None, instead: {}".format(group_idx) group_idx = i return group_idx def get_FI_curves(self): """ Use the ISIs to compute firing curves for each group, for models that have non-nan ISIs Firing curves are calculated for each simulation group """ num_groups = len(self.groups) assert num_groups > 0, "Num groups: {} is not > 0".format(num_groups) # Iterate through each group for group in self.groups: """ Get frequencies for each simulation in the group and build into a dataframe Dataframe format: rows = model indices columns = simulation amplitudes """ idx = self.results.index amps = [amp for amp in group['simulations'].values()] fi_data = pd.DataFrame(index=idx, columns=amps) # Populate this group's fi curve df for sim_name, amp in group['simulations'].items(): ISIs = self.results.loc[:,(sim_name,'ISI')] frequencies = self.calculate_frequencies(ISIs) fi_data.loc[:,amp] = frequencies # Save this group's data group['FI'] = fi_data def plot_FI_curves(self): """ Plot FI curves and maybe compute some summary statistics Do scatter and line plots so that if we have a single datapoint for a model it still gets plotted """ num_groups = len(self.groups) subplot_dim = int(np.ceil(np.sqrt(num_groups))) # Number of subplots (square) plt.figure(figsize=(10,10)) for i, group in enumerate(self.groups): plt.subplot(subplot_dim,subplot_dim, i+1) fi_data = group['FI'].copy() for idx in fi_data.index: data = fi_data.loc[idx,:] plt.plot(data.index, data) plt.scatter(data.index, data) plt.xlim(min(fi_data.columns)-0.1, max(fi_data.columns)+0.1) plt.ylim(0, None) # Make a rough title separator = '_' for i, sim_name in enumerate(group['simulations']): if i == 0: temp_title = sim_name else: s1 = temp_title.split(separator) s2 = sim_name.split(separator) title_parts = [part for part in s1 if part in s2] title = separator.join(title_parts) plt.title(title) plt.xlabel('I (nA)') plt.ylabel('f (Hz)') def calculate_frequencies(self, ISIs): return 1000.0/ISIs # Converts ms to Hz: ISI of 500 ms = 2 Hz, ISI of 2000 ms = 0.5 Hz # ---- Util ---- def get_biomarker_names(biomarker_set='all'): ''' Biomarkers TODO from neuroelectro: * Input resistance * AP Half width * Membrane time constant * Cell capacitance (fixed by simulation) * Maximum firing rate * Sag ratio * Adaptation ratio * First spike latency * FI slope * Spike rise time * Spontaneous firing rate * There are others but think they are other names for the same concepts ''' if biomarker_set == 'all': biomarker_names = ['Threshold', 'APFullWidth', 'APPeak', 'APRiseTime', 'APSlopeMin', 'APSlopeMax', 'AHPAmp', 'AHPTau', 'AHPTrough', 'ISI', 'RMP', 'Rheobase'] else: raise ValueError('biomarker_set {} not found'.format(biomarker_set)) return biomarker_names def find_threshold_crossings(arr, _threshold): """ Find all indices at which a threshold is crossed from above and from below in an array. Used for finding indices to compute ap widths and half widths. """ #print("threshold = {}".format(_threshold)) ups = [] downs = [] for i, _ in enumerate(arr[:-1]): # Don't iterate on last element # Get crossings of threshold from below if arr[i] < _threshold: if arr[i+1] >= _threshold: ups.append(i) # Get crossings of threshold from above if arr[i] > _threshold: if arr[i+1] <= _threshold: downs.append(i) return ups, downs def add_total_width_biomarker(pop, width_biomarker='APHalfWidth', filter_width=False, verbose=False): """ Add a total width biomarker to each simulation in a population's results """ def compute_total_width(df, width_biomarker, filter_width=False): """ Compute the total width of a simulation from its results dataframe with optional filtering out of AP Width outliers """ freq = 1000.0/df['ISI'] numAPs = df['numAPs'] freq[numAPs == 1] = 1 # Approximation width = df[width_biomarker] if filter_width: outlier_definition = an.get_outlier_definition(width_biomarker) width = width[width < outlier_definition] total_width = width * freq total_width = total_width.fillna(0) return total_width simulations = [col for col in pop.results.columns.levels[0] if col not in ['Parameters']] for col in simulations: if verbose: print(col) total_width = compute_total_width(df=pop.results[col], width_biomarker=width_biomarker, filter_width=filter_width) pop.results.loc[:, (col, 'APTotalWidth')] = total_width
39.586639
302
0.628116
c40f60e0a299755f90374a3d9149113439d53a84
9,589
py
Python
netbox_onboarding/tests/test_views.py
hoanhan101/ntc-netbox-plugin-onboarding
09764a0ac68e948accbd9346ea0f1ae0af569e3d
[ "Apache-2.0" ]
null
null
null
netbox_onboarding/tests/test_views.py
hoanhan101/ntc-netbox-plugin-onboarding
09764a0ac68e948accbd9346ea0f1ae0af569e3d
[ "Apache-2.0" ]
null
null
null
netbox_onboarding/tests/test_views.py
hoanhan101/ntc-netbox-plugin-onboarding
09764a0ac68e948accbd9346ea0f1ae0af569e3d
[ "Apache-2.0" ]
null
null
null
"""Unit tests for netbox_onboarding views. (c) 2020 Network To Code Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ from django.contrib.auth.models import User, Permission from django.test import Client, TestCase, override_settings from django.urls import reverse from dcim.models import Site from netbox_onboarding.models import OnboardingTask class OnboardingTaskListViewTestCase(TestCase): """Test the OnboardingTaskListView view.""" def setUp(self): """Create a user and baseline data for testing.""" self.user = User.objects.create(username="testuser") self.client = Client() self.client.force_login(self.user) self.url = reverse("plugins:netbox_onboarding:onboarding_task_list") self.site1 = Site.objects.create(name="USWEST", slug="uswest") self.onboarding_task1 = OnboardingTask.objects.create(ip_address="10.10.10.10", site=self.site1) self.onboarding_task2 = OnboardingTask.objects.create(ip_address="192.168.1.1", site=self.site1) @override_settings(EXEMPT_VIEW_PERMISSIONS=["*"]) def test_list_onboarding_tasks_anonymous(self): """Verify that OnboardingTasks can be listed without logging in if permissions are exempted.""" self.client.logout() response = self.client.get(self.url) self.assertEqual(response.status_code, 200) self.assertTemplateUsed(response, "netbox_onboarding/onboarding_tasks_list.html") @override_settings(EXEMPT_VIEW_PERMISSIONS=[]) def test_list_onboarding_tasks(self): """Verify that OnboardingTasks can be listed by a user with appropriate permissions.""" # Attempt to access without permissions response = self.client.get(self.url) self.assertEqual(response.status_code, 403) # Add permission self.user.user_permissions.add( Permission.objects.get(content_type__app_label="netbox_onboarding", codename="view_onboardingtask") ) response = self.client.get(self.url) self.assertEqual(response.status_code, 200) self.assertTemplateUsed(response, "netbox_onboarding/onboarding_tasks_list.html") class OnboardingTaskCreateViewTestCase(TestCase): """Test the OnboardingTaskCreateView view.""" def setUp(self): """Create a user and baseline data for testing.""" self.user = User.objects.create(username="testuser") self.client = Client() self.client.force_login(self.user) self.url = reverse("plugins:netbox_onboarding:onboarding_task_add") self.site1 = Site.objects.create(name="USWEST", slug="uswest") @override_settings(EXEMPT_VIEW_PERMISSIONS=["*"]) def test_get_anonymous(self): """Verify that the view cannot be accessed by anonymous users even if permissions are exempted.""" self.client.logout() response = self.client.get(self.url) # Redirected to the login page self.assertEqual(response.status_code, 302) @override_settings(EXEMPT_VIEW_PERMISSIONS=[]) def test_get(self): """Verify that the view can be seen by a user with appropriate permissions.""" # Attempt to access without permissions response = self.client.get(self.url) self.assertEqual(response.status_code, 403) # Add permission self.user.user_permissions.add( Permission.objects.get(content_type__app_label="netbox_onboarding", codename="add_onboardingtask") ) response = self.client.get(self.url) self.assertEqual(response.status_code, 200) self.assertTemplateUsed(response, "netbox_onboarding/onboarding_task_edit.html") @override_settings(EXEMPT_VIEW_PERMISSIONS=["*"]) def test_post_anonymous(self): """Verify that the view cannot be accessed by anonymous users even if permissions are exempted.""" self.client.logout() response = self.client.get(self.url) # Redirected to the login page self.assertEqual(response.status_code, 302) @override_settings(EXEMPT_VIEW_PERMISSIONS=[]) def test_post(self): """Verify that the view can be used by a user with appropriate permissions.""" # Attempt to access without permissions response = self.client.post(self.url) self.assertEqual(response.status_code, 403) # Add permission self.user.user_permissions.add( Permission.objects.get(content_type__app_label="netbox_onboarding", codename="add_onboardingtask") ) response = self.client.post( self.url, data={"ip_address": "10.10.10.10", "site": "uswest", "port": "22", "timeout": "30"} ) self.assertEqual(response.status_code, 302) self.assertEqual(OnboardingTask.objects.count(), 1) class OnboardingTaskBulkDeleteViewTestCase(TestCase): """Test the OnboardingTaskBulkDeleteView view.""" def setUp(self): """Create a user and baseline data for testing.""" self.user = User.objects.create(username="testuser") self.client = Client() self.client.force_login(self.user) self.url = reverse("plugins:netbox_onboarding:onboarding_task_bulk_delete") self.site1 = Site.objects.create(name="USWEST", slug="uswest") self.onboarding_task1 = OnboardingTask.objects.create(ip_address="10.10.10.10", site=self.site1) self.onboarding_task2 = OnboardingTask.objects.create(ip_address="192.168.1.1", site=self.site1) @override_settings(EXEMPT_VIEW_PERMISSIONS=["*"]) def test_post_anonymous(self): """Verify that the view cannot be accessed by anonymous users even if permissions are exempted.""" self.client.logout() response = self.client.post(self.url) # Redirected to the login page self.assertEqual(response.status_code, 302) @override_settings(EXEMPT_VIEW_PERMISSIONS=[]) def test_post(self): """Verify that the view can be seen by a user with appropriate permissions.""" # Attempt to access without permissions response = self.client.post( self.url, data={"pk": [self.onboarding_task1.pk], "confirm": True, "_confirm": True} ) self.assertEqual(response.status_code, 403) # Add permission self.user.user_permissions.add( Permission.objects.get(content_type__app_label="netbox_onboarding", codename="delete_onboardingtask") ) response = self.client.post( self.url, data={"pk": [self.onboarding_task1.pk], "confirm": True, "_confirm": True} ) self.assertEqual(response.status_code, 302) self.assertEqual(OnboardingTask.objects.count(), 1) class OnboardingTaskFeedBulkImportViewTestCase(TestCase): """Test the OnboardingTaskFeedBulkImportView view.""" def setUp(self): """Create a superuser and baseline data for testing.""" self.user = User.objects.create(username="testuser") self.client = Client() self.client.force_login(self.user) self.url = reverse("plugins:netbox_onboarding:onboarding_task_import") self.site1 = Site.objects.create(name="USWEST", slug="uswest") @override_settings(EXEMPT_VIEW_PERMISSIONS=["*"]) def test_get_anonymous(self): """Verify that the import view cannot be seen by an anonymous user even if permissions are exempted.""" self.client.logout() response = self.client.get(self.url) # Redirected to the login page self.assertEqual(response.status_code, 302) @override_settings(EXEMPT_VIEW_PERMISSIONS=[]) def test_get(self): """Verify that the import view can be seen by a user with appropriate permissions.""" # Attempt to access without permissions response = self.client.get(self.url) self.assertEqual(response.status_code, 403) # Add permission self.user.user_permissions.add( Permission.objects.get(content_type__app_label="netbox_onboarding", codename="add_onboardingtask") ) response = self.client.get(self.url) self.assertEqual(response.status_code, 200) self.assertTemplateUsed(response, "utilities/obj_bulk_import.html") @override_settings(EXEMPT_VIEW_PERMISSIONS=[]) def test_post(self): """Verify that tasks can be bulk-imported.""" csv_data = [ "site,ip_address", "uswest,10.10.10.10", "uswest,10.10.10.20", "uswest,10.10.10.30", ] # Attempt to access without permissions response = self.client.post(self.url, data={"csv": "\n".join(csv_data)}) self.assertEqual(response.status_code, 403) # Add permission self.user.user_permissions.add( Permission.objects.get(content_type__app_label="netbox_onboarding", codename="add_onboardingtask") ) response = self.client.post(self.url, data={"csv": "\n".join(csv_data)}) self.assertEqual(response.status_code, 200) self.assertEqual(OnboardingTask.objects.count(), len(csv_data) - 1)
41.691304
113
0.689957
0c946e23d9d9365b94324eeb63a27760eff8239c
1,609
py
Python
var/spack/repos/builtin/packages/espanso/package.py
kkauder/spack
6ae8d5c380c1f42094b05d38be26b03650aafb39
[ "ECL-2.0", "Apache-2.0", "MIT-0", "MIT" ]
2,360
2017-11-06T08:47:01.000Z
2022-03-31T14:45:33.000Z
var/spack/repos/builtin/packages/espanso/package.py
kkauder/spack
6ae8d5c380c1f42094b05d38be26b03650aafb39
[ "ECL-2.0", "Apache-2.0", "MIT-0", "MIT" ]
13,838
2017-11-04T07:49:45.000Z
2022-03-31T23:38:39.000Z
var/spack/repos/builtin/packages/espanso/package.py
kkauder/spack
6ae8d5c380c1f42094b05d38be26b03650aafb39
[ "ECL-2.0", "Apache-2.0", "MIT-0", "MIT" ]
1,793
2017-11-04T07:45:50.000Z
2022-03-30T14:31:53.000Z
# Copyright 2013-2021 Lawrence Livermore National Security, LLC and other # Spack Project Developers. See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: (Apache-2.0 OR MIT) from spack import * class Espanso(Package): """Cross-platform Text Expander written in Rust""" homepage = "https://github.com/federico-terzi/espanso" url = "https://github.com/federico-terzi/espanso/releases/download/v0.6.3/espanso-linux.tar.gz" maintainers = ['zicklag'] version('0.6.3', sha256='eb9f9563ed0924d1494f0b406b6d3df9d7df00e81affaf15023d1c82dd8ac561') version('0.6.2', sha256='db2e53c8e0a17575f69739e53dd6a486dd0e912abbc7ac7c33d98567bd1f0e18') version('0.6.1', sha256='0917d4a990bfc5ced368ce9fbc3aa4bc4dac4d39ddea88359dc628fee16daf87') version('0.6.0', sha256='97689b734235224dde2fb4723bee24324a53355a6b549fb9d024a0c8ddb3cd98') version('0.5.5', sha256='94687a3049a43ed4c2ed3814afb4e32e09dec8ec396e54a7b012de936f0260e9') version('0.5.4', sha256='87e4c4a8a7bfb95a3ee987e34af3a37ca4d962bec3f863ef74be7fc8cdd1a9dd') version('0.5.3', sha256='1db21f74385b1eb94ac6d27def550d02dce8da34bce1f8f4a0c4eb9bfd80d135') version('0.5.2', sha256='69c8d3460ae497a2224cbf290c334c9151fc756053f65cbaf9ce8e9284ad50fd') version('0.5.1', sha256='e68d90256f9eb26b57085b5170e238752bfbfcf3d50ccaa5693974460cb19deb') version('0.5.0', sha256='f85c098a20b1022d8a6b751e3a56431caa01c796ce88ab95aae8950a1233da55') depends_on('xclip') depends_on('xdotool') def install(self, spec, prefix): mkdir(prefix.bin) install('espanso', prefix.bin)
48.757576
104
0.778745
f97274119f9a359f25f3495d71e742f9f229fbe1
69
py
Python
routes/api_admin.py
ashhosts/kittenpanel
1463253f107262e97722ebb7d6bd939040d66c26
[ "MIT" ]
1
2021-08-30T11:53:59.000Z
2021-08-30T11:53:59.000Z
routes/api_admin.py
ashhosts/kittenpanel
1463253f107262e97722ebb7d6bd939040d66c26
[ "MIT" ]
null
null
null
routes/api_admin.py
ashhosts/kittenpanel
1463253f107262e97722ebb7d6bd939040d66c26
[ "MIT" ]
null
null
null
from fastapi import APIRouter router = APIRouter(prefix="/api/admin")
34.5
39
0.797101
18aed31fe65fa56bb74ee7808271b15da926ce29
4,661
py
Python
v2.5.7/toontown/minigame/TwoDSection.py
TTOFFLINE-LEAK/ttoffline
bb0e91704a755d34983e94288d50288e46b68380
[ "MIT" ]
4
2019-07-01T15:46:43.000Z
2021-07-23T16:26:48.000Z
v2.5.7/toontown/minigame/TwoDSection.py
TTOFFLINE-LEAK/ttoffline
bb0e91704a755d34983e94288d50288e46b68380
[ "MIT" ]
1
2019-06-29T03:40:05.000Z
2021-06-13T01:15:16.000Z
v2.5.7/toontown/minigame/TwoDSection.py
TTOFFLINE-LEAK/ttoffline
bb0e91704a755d34983e94288d50288e46b68380
[ "MIT" ]
4
2019-07-28T21:18:46.000Z
2021-02-25T06:37:25.000Z
from panda3d.core import * from direct.directnotify import DirectNotifyGlobal from direct.showbase.DirectObject import DirectObject from toontown.minigame import ToonBlitzGlobals from toontown.minigame import TwoDBlock from toontown.minigame import TwoDEnemyMgr from toontown.minigame import TwoDTreasureMgr from toontown.minigame import TwoDSpawnPointMgr from toontown.minigame import TwoDStomperMgr class TwoDSection(DirectObject): notify = DirectNotifyGlobal.directNotify.newCategory('TwoDSection') def __init__(self, indexNum, sectionInfo, sectionNP, sectionMgr): self.indexNum = indexNum self.sectionNP = sectionNP self.sectionMgr = sectionMgr self.blocks = [] self.load(sectionInfo) def destroy(self): for block in self.blocks: block.destroy() self.enemyMgr.destroy() del self.enemyMgr self.treasureMgr.destroy() del self.treasureMgr self.spawnPointMgr.destroy() del self.spawnPointMgr self.stomperMgr.destroy() del self.stomperMgr self.sectionMgr = None self.sectionNP = None self.blockList = [] self.enemyList = [] self.treasureList = [] self.spawnPointList = [] return def load(self, sectionInfo): self.sectionTypeNum = sectionInfo[0] enemyIndicesSelected = sectionInfo[1] treasureIndicesSelected = sectionInfo[2] spawnPointIndicesSelected = sectionInfo[3] stomperIndicesSelected = sectionInfo[4] attribs = ToonBlitzGlobals.SectionTypes[self.sectionTypeNum] self.length = attribs[1] self.blockList = attribs[2] enemiesPool = attribs[3] treasuresPool = attribs[4] spawnPointsPool = attribs[5] stompersPool = attribs[6] self.enemyList = [] for enemyIndex in enemyIndicesSelected: self.enemyList.append(enemiesPool[enemyIndex]) self.treasureList = [] for treasure in treasureIndicesSelected: treasureIndex = treasure[0] treasureValue = treasure[1] treasureAttribs = treasuresPool[treasureIndex] self.treasureList.append((treasureAttribs, treasureValue)) self.spawnPointList = [] for spawnPointIndex in spawnPointIndicesSelected: self.spawnPointList.append(spawnPointsPool[spawnPointIndex]) self.stomperList = [] for stomperIndex in stomperIndicesSelected: self.stomperList.append(stompersPool[stomperIndex]) self.blocksNP = NodePath('Blocks') self.blocksNP.reparentTo(self.sectionNP) if self.blockList[0][1][0] != (0, 0, 12): self.notify.warning('First block of section %s does not start at (0, 0, 12)' % self.sectionTypeNum) for index in range(0, len(self.blockList)): blockAttribs = self.blockList[index] fileName = ToonBlitzGlobals.BlockTypes[blockAttribs[0]][0] blockIndex = int(fileName[(-1)]) blockType = self.sectionMgr.game.assetMgr.blockTypes[blockIndex] sectionizedId = self.getSectionizedId(index) newBlock = TwoDBlock.TwoDBlock(blockType, sectionizedId, blockAttribs) newBlock.model.reparentTo(self.blocksNP) self.blocks.append(newBlock) self.enemyMgr = TwoDEnemyMgr.TwoDEnemyMgr(self, self.enemyList) self.treasureMgr = TwoDTreasureMgr.TwoDTreasureMgr(self, self.treasureList, self.enemyList) self.spawnPointMgr = TwoDSpawnPointMgr.TwoDSpawnPointMgr(self, self.spawnPointList) self.stomperMgr = TwoDStomperMgr.TwoDStomperMgr(self, self.stomperList) if self.sectionTypeNum == 'end': self.spawnPointMgr.setupLastSavePointHandle() def enterPlay(self, elapsedTime): for block in self.blocks: block.start(elapsedTime) self.enemyMgr.enterPlay(elapsedTime) self.stomperMgr.enterPlay(elapsedTime) def exitPlay(self): pass def enterPause(self): for block in self.blocks: block.enterPause() self.enemyMgr.enterPause() self.stomperMgr.enterPause() def exitPause(self): for block in self.blocks: block.exitPause() self.enemyMgr.exitPause() self.stomperMgr.exitPause() def getSectionizedId(self, num): def getTwoDigitString(index): if index < 10: output = '0' + str(index) else: output = str(index) return output return getTwoDigitString(self.indexNum) + '-' + getTwoDigitString(num)
36.700787
111
0.661017
52f4cde386c35bfd9ee3b632cfc39521dd7f177b
259
py
Python
manage_beta.py
damienlaine/djoro-server
7f167662732e6106aa6be8b1e835f6321a981dc6
[ "MIT" ]
null
null
null
manage_beta.py
damienlaine/djoro-server
7f167662732e6106aa6be8b1e835f6321a981dc6
[ "MIT" ]
3
2020-02-12T03:12:33.000Z
2021-06-10T21:59:04.000Z
manage_beta.py
damienlaine/djoro-server
7f167662732e6106aa6be8b1e835f6321a981dc6
[ "MIT" ]
null
null
null
#!/usr/bin/env python import os import sys if __name__ == "__main__": os.environ.setdefault("DJANGO_SETTINGS_MODULE", "djoro_server.settings_beta") from django.core.management import execute_from_command_line execute_from_command_line(sys.argv)
25.9
81
0.783784
eb5219c12db6ce3577f19a7b047517b452000d1a
6,692
py
Python
OmniDB/OmniDB/settings.py
mapcoding-cn/omnidb-cn
f7cbd29b4cdbc68eb5c4c25c9703ac9448c54b0a
[ "MIT" ]
2
2022-03-28T06:26:53.000Z
2022-03-29T04:28:54.000Z
OmniDB/OmniDB/settings.py
mapcoding-cn/OmniDB
f7cbd29b4cdbc68eb5c4c25c9703ac9448c54b0a
[ "MIT" ]
null
null
null
OmniDB/OmniDB/settings.py
mapcoding-cn/OmniDB
f7cbd29b4cdbc68eb5c4c25c9703ac9448c54b0a
[ "MIT" ]
null
null
null
import os import sys import shutil import random import string import getpass from . import custom_settings #import ldap #import django_auth_ldap #import django_auth_ldap.config # Development Mode DEBUG = custom_settings.DEV_MODE DESKTOP_MODE = custom_settings.DESKTOP_MODE BASE_DIR = custom_settings.BASE_DIR HOME_DIR = custom_settings.HOME_DIR TEMP_DIR = os.path.join(BASE_DIR,'OmniDB_app','static','temp') PLUGINS_DIR = os.path.join(BASE_DIR,'OmniDB_app','plugins') PLUGINS_STATIC_DIR = os.path.join(BASE_DIR,'OmniDB_app','static','plugins') APP_DIR = os.path.join(BASE_DIR,'OmniDB_app') SESSION_COOKIE_SECURE = custom_settings.SESSION_COOKIE_SECURE CSRF_COOKIE_SECURE = custom_settings.CSRF_COOKIE_SECURE CSRF_TRUSTED_ORIGINS = [] SESSION_COOKIE_NAME = 'omnidb_sessionid' CSRF_COOKIE_NAME = 'omnidb_csrftoken' ALLOWED_HOSTS = ['*'] # Database DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(HOME_DIR, 'omnidb.db') } } if DEBUG: SECRET_KEY = 'ijbq-+%n_(_^ct+qnqp%ir8fzu3n#q^i71j4&y#-6#qe(dx!h3' else: SECRET_KEY = ''.join(random.choice(string.ascii_lowercase + string.digits) for i in range(50)) INSTALLED_APPS = [ 'OmniDB_app', 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'social_django', 'django_sass' ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'OmniDB.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'OmniDB.wsgi.application' #import ldap #import django_auth_ldap.config #from django_auth_ldap.config import LDAPSearch #AUTH_LDAP_SERVER_URI = 'SERVER' #AUTH_LDAP_BIND_DN = "uid=example,dc=example,dc=com" #AUTH_LDAP_BIND_PASSWORD = "password" #AUTH_LDAP_USER_SEARCH = django_auth_ldap.config.LDAPSearch( # "uid=example,dc=example,dc=com", ldap.SCOPE_SUBTREE, "uid=%(user)s" # ) #AUTH_LDAP_USER_ATTR_MAP = { # "username": "sAMAccountName", # "first_name": "givenName", # "last_name": "sn", # "email": "mail", #} #from django_auth_ldap.config import ActiveDirectoryGroupType #AUTH_LDAP_GROUP_SEARCH = LDAPSearch( # "dc=tech,dc=local", ldap.SCOPE_SUBTREE, "(objectCategory=Group)" # ) #AUTH_LDAP_GROUP_TYPE = ActiveDirectoryGroupType(name_attr="cn") #AUTH_LDAP_USER_FLAGS_BY_GROUP = { # "is_superuser": "CN=django-admins,CN=Users,DC=TECH,DC=LOCAL", # "is_staff": "CN=django-admins,CN=Users,DC=TECH,DC=LOCAL", # } #AUTH_LDAP_FIND_GROUP_PERMS = True #AUTH_LDAP_CACHE_GROUPS = True #AUTH_LDAP_GROUP_CACHE_TIMEOUT = 1 # 1 hour cache AUTHENTICATION_BACKENDS = [ #'django_auth_ldap.backend.LDAPBackend', 'django.contrib.auth.backends.ModelBackend', ] SOCIAL_AUTH_GITHUB_KEY = 'Iv1.b66f09dc30df16f3' SOCIAL_AUTH_GITHUB_SECRET = '3403a3cc31a991d48ef72fbd73fa45e3af5b62ba' AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] LANGUAGE_CODE = 'zh-hans' TIME_ZONE = 'Asia/Shanghai' USE_I18N = True USE_L10N = True USE_TZ = True PATH = custom_settings.PATH # Processing PATH if PATH == '/': PATH = '' elif PATH != '': if PATH[0] != '/': PATH = '/' + PATH if PATH[len(PATH)-1] == '/': PATH = PATH[:-1] LOGIN_URL = PATH + '/omnidb_login' LOGIN_REDIRECT_URL = PATH + '/' STATIC_URL = PATH + '/static/' STATIC_ROOT = os.path.join(BASE_DIR, "OmniDB_app/static") SESSION_SERIALIZER = 'django.contrib.sessions.serializers.PickleSerializer' #OMNIDB LOGGING LOGGING = { 'version': 1, 'disable_existing_loggers': False, 'formatters': { 'standard': { 'format' : "[%(asctime)s] %(levelname)s [%(name)s:%(lineno)s] %(message)s", 'datefmt' : "%m/%d/%Y %H:%M:%S" }, }, 'handlers': { 'logfile_omnidb': { 'class':'logging.handlers.RotatingFileHandler', 'filename': os.path.join(HOME_DIR, 'omnidb.log'), 'maxBytes': 1024*1024*5, # 5 MB 'backupCount': 5, 'formatter': 'standard', }, 'logfile_django': { 'class':'logging.handlers.RotatingFileHandler', 'filename': os.path.join(HOME_DIR, 'omnidb.log'), 'maxBytes': 1024*1024*5, # 5 MB 'backupCount': 5, 'formatter': 'standard', 'level':'ERROR', }, 'console_django':{ 'class':'logging.StreamHandler', 'formatter': 'standard' }, 'console_omnidb_app':{ 'class':'logging.StreamHandler', 'formatter': 'standard', 'level':'ERROR', }, }, 'loggers': { 'django': { 'handlers':['logfile_django','console_django'], 'propagate': False, }, 'OmniDB_app': { 'handlers': ['logfile_omnidb','console_omnidb_app'], 'propagate': False, 'level':'INFO', }, 'cherrypy.error': { 'handlers': ['logfile_django','console_omnidb_app'], 'level': 'INFO', 'propagate': False } } } #OMNIDB PARAMETERS OMNIDB_VERSION = custom_settings.OMNIDB_VERSION OMNIDB_SHORT_VERSION = custom_settings.OMNIDB_SHORT_VERSION CH_CMDS_PER_PAGE = 20 PWD_TIMEOUT_TOTAL = 1800 PWD_TIMEOUT_REFRESH = 300 THREAD_POOL_MAX_WORKERS = 2
29.875
98
0.639719
7a71b4a62ca5c2b94bf6dddd55a086b19f0a37d8
242
py
Python
src/oscar/apps/wishlists/apps.py
Jean1508/ya-madoa
1ffb1d11e15bf33e4c3a09698675a4357e887eaa
[ "BSD-3-Clause" ]
null
null
null
src/oscar/apps/wishlists/apps.py
Jean1508/ya-madoa
1ffb1d11e15bf33e4c3a09698675a4357e887eaa
[ "BSD-3-Clause" ]
5
2021-05-28T19:38:28.000Z
2022-03-12T00:45:39.000Z
src/oscar/apps/wishlists/apps.py
Jean1508/ya-madoa
1ffb1d11e15bf33e4c3a09698675a4357e887eaa
[ "BSD-3-Clause" ]
null
null
null
from django.utils.translation import gettext_lazy as _ from oscar.core.application import OscarConfig class WishlistsConfig(OscarConfig): label = 'wishlists' name = 'oscar.apps.wishlists' verbose_name = _('Wishlists')
24.2
55
0.731405
03ce15e39cf7c42d2dff2639579cebb966e36851
3,529
py
Python
Machine_Learning/Feature_Tutorials/02-profiling-example/files/alexnet_zcu102/common/dputils.py
mkolod/Vitis-Tutorials
33d6cf9686398ef1179778dc0da163291c68b465
[ "Apache-2.0" ]
3
2020-10-29T15:00:30.000Z
2021-10-21T08:09:34.000Z
Machine_Learning/Feature_Tutorials/02-profiling-example/files/alexnet_zcu102/common/dputils.py
mkolod/Vitis-Tutorials
33d6cf9686398ef1179778dc0da163291c68b465
[ "Apache-2.0" ]
20
2020-10-31T03:19:03.000Z
2020-11-02T18:59:49.000Z
Machine_Learning/Feature_Tutorials/02-profiling-example/files/alexnet_zcu102/common/dputils.py
mkolod/Vitis-Tutorials
33d6cf9686398ef1179778dc0da163291c68b465
[ "Apache-2.0" ]
9
2020-10-14T02:04:10.000Z
2020-12-01T08:23:02.000Z
''' Copyright 2019 Xilinx Inc. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ''' from ctypes import * import cv2 import numpy as np from dnndk import n2cube try: pyc_libdputils = cdll.LoadLibrary("libn2cube.so") except Exception: print('Load libn2cube.so failed\nPlease install DNNDK first!') def dpuSetInputImageWithScale(task, nodeName, image, mean, scale, idx=0): """Set image into DPU Task's input Tensor with a specified scale parameter""" height = n2cube.dpuGetInputTensorHeight(task, nodeName, idx) width = n2cube.dpuGetInputTensorWidth(task, nodeName, idx) channel = n2cube.dpuGetInputTensorChannel(task, nodeName, idx) (imageHeight, imageWidth, imageChannel) = image.shape inputMean = (c_float * channel)() for i in range(0, channel): inputMean[i] = mean[i] if height == imageHeight and width == imageWidth: newImage = image else: newImage = cv2.resize(image, (width, height), 0, 0, cv2.INTER_LINEAR) inputImage = np.asarray(newImage, dtype=np.byte) inputImage2 = inputImage.ctypes.data_as(c_char_p) return pyc_libdputils.pyc_dpuSetInputData(task, c_char_p(nodeName.encode("utf-8")), inputImage2, c_int(height), c_int(width), c_int(imageChannel), inputMean, c_float(scale), c_int(idx)) def dpuSetInputImage(task, nodeName, image, mean, idx=0): """ Set image into DPU Task's input Tensor task: DPU Task nodeName: The pointer to DPU Node name. image: Input image in OpenCV Mat format. Single channel and 3-channel input image are supported. mean: Mean value array which contains 1 member for single channel input image or 3 members for 3-channel input image Note: You can get the mean values from the input Caffe prototxt. At present, the format of mean value file is not yet supported idx: The index of a single input tensor for the Node, with default value as 0 """ return dpuSetInputImageWithScale(task, nodeName, image, mean, 1.0, idx) def dpuSetInputImage2(task, nodeName, image, idx=0): """ Set image into DPU Task's input Tensor (mean values automatically processed by N2Cube) nodeName: The pointer to DPU Node name. image: Input image in OpenCV Mat format. Single channel and 3-channel input image are supported. idx: The index of a single input tensor for the Node, with default value as 0 """ channel = n2cube.dpuGetInputTensorChannel(task, nodeName, idx) output = (c_float * channel)() outputMean = POINTER(c_float)(output) pyc_libdputils.loadMean(task, outputMean, channel) for i in range(channel): outputMean[i] = float(outputMean[i]) return dpuSetInputImageWithScale(task, nodeName, image, outputMean, 1.0, idx)
42.518072
103
0.665061
5343e380683f1555be794e3bf29dcad44a5421db
2,168
py
Python
WWV_utility2.py
rkayakr/ProcessPolt
6952b812f151f941b46592540e205770b8cfa38e
[ "CC0-1.0" ]
1
2021-11-17T12:41:00.000Z
2021-11-17T12:41:00.000Z
WWV_utility2.py
rkayakr/ProcessPolt
6952b812f151f941b46592540e205770b8cfa38e
[ "CC0-1.0" ]
null
null
null
WWV_utility2.py
rkayakr/ProcessPolt
6952b812f151f941b46592540e205770b8cfa38e
[ "CC0-1.0" ]
null
null
null
# -*- coding: utf-8 -*- """ 20 February 2020 WWV utility file Routines and classes used in WWV file management and graphing David Kazdan, AD8Y John Gibbons, N8OBJ - mods to plot header 2/3/20 """ #%% utility function needed here to convert ISO time into decimal hours def time_string_to_decimals(time_string): #returns float decimal hours #print('Input time string=',time_string) # if (NewHdr = 'New'): # if new header strip off date and Zulu stuff # time_string = time_string[11:-1] # Hack off date 'YYYY-MM-DDT' and ending 'Z' time_string = time_string[11:-1] # Hack off date 'YYYY-MM-DDT' and ending 'Z' #print('Used Time_String=',time_string) fields=time_string.split(":") hours=float(fields[0]) if len(fields)>0 else 0.0 minutes=float(fields[1])/60. if len(fields)>0 else 0.0 seconds=float(fields[2])/3600. if len(fields)>0 else 0.0 #print('Hr=',hours, ' Min=',minutes, ' Sec=',seconds, '\n') return (hours + minutes + seconds) #% #%% modified from "Double-y axis plot, # http://kitchingroup.cheme.cmu.edu/blog/2013/09/13/Plotting-two-datasets-with-very-different-scales/ #import matplotlib.pyplot as plt #from matplotlib.pyplot import plot, legend, show, grid, figure, savefig def graph_Doppler_and_power_data(): fig = plt.figure(figsize=(19,10)) # inches x, y with 72 dots per inch ax1 = fig.add_subplot(111) ax1.plot(hours, filtDoppler, 'k') # color k for black ax1.set_ylabel('Doppler shift, Hz') ax1.set_xlim(0,24) # UTC day ax1.set_ylim([-1, 1]) # -1 to 1 Hz for Doppler shift # ax2 = ax1.twinx() ax2.plot(hours, filtPower, 'r-') # NOTE: Set for filtered version ax2.set_ylabel('Power in relative dB', color='r') ax2.set_ylim(min_power, max_power) #as determined above for this data set for tl in ax2.get_yticklabels(): tl.set_color('r') # # plt.title('HF Beacon Doppler Shift Plot for: ' + OrgName + ' \nLat= ' + Lat + ' Long=' + Lon + ' Elv= ' + Alt + ' M\n WWV 5 MHz ' + PlotDate) # plt.savefig(DATADIR+ 'two-scales-5.png', dpi=250, orientation='landscape') #&
41.692308
159
0.649446
9ac04ed66f2122f3cdadca94f5f1e0b0bed2ad9d
18,810
py
Python
test/functional/test_framework/util.py
stamhe/bitcoin-abc
a1ba303c6b4f164ae94612e83b824e564405a96e
[ "MIT" ]
1
2022-01-09T22:29:10.000Z
2022-01-09T22:29:10.000Z
test/functional/test_framework/util.py
EGYVOICE/bitcoin-abc-avalanche
e0f1fe857e1fc85f01903f1c323c2d5c54aecc1c
[ "MIT" ]
17
2021-08-06T21:27:41.000Z
2022-03-31T08:28:08.000Z
test/functional/test_framework/util.py
EGYVOICE/bitcoin-abc-avalanche
e0f1fe857e1fc85f01903f1c323c2d5c54aecc1c
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # Copyright (c) 2014-2019 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Helpful routines for regression testing.""" import inspect import json import logging import os import re import time import unittest from base64 import b64encode from binascii import unhexlify from decimal import ROUND_DOWN, Decimal from io import BytesIO from subprocess import CalledProcessError from . import coverage from .authproxy import AuthServiceProxy, JSONRPCException logger = logging.getLogger("TestFramework.utils") # Assert functions ################## def assert_approx(v, vexp, vspan=10): """Assert that `v` is within `vspan` of `vexp`""" if v < vexp - vspan: raise AssertionError("{} < [{}..{}]".format( str(v), str(vexp - vspan), str(vexp + vspan))) if v > vexp + vspan: raise AssertionError("{} > [{}..{}]".format( str(v), str(vexp - vspan), str(vexp + vspan))) def assert_fee_amount(fee, tx_size, fee_per_kB, wiggleroom=2): """ Assert the fee was in range wiggleroom defines an amount that the test expects the wallet to be off by when estimating fees. This can be due to the dummy signature that is added during fee calculation, or due to the wallet funding transactions using the ceiling of the calculated fee. """ target_fee = satoshi_round(tx_size * fee_per_kB / 1000) if fee < (tx_size - wiggleroom) * fee_per_kB / 1000: raise AssertionError( "Fee of {} XEC too low! (Should be {} XEC)".format(str(fee), str(target_fee))) if fee > (tx_size + wiggleroom) * fee_per_kB / 1000: raise AssertionError( "Fee of {} XEC too high! (Should be {} XEC)".format(str(fee), str(target_fee))) def assert_equal(thing1, thing2, *args): if thing1 != thing2 or any(thing1 != arg for arg in args): raise AssertionError("not({})".format(" == ".join(str(arg) for arg in (thing1, thing2) + args))) def assert_greater_than(thing1, thing2): if thing1 <= thing2: raise AssertionError("{} <= {}".format(str(thing1), str(thing2))) def assert_greater_than_or_equal(thing1, thing2): if thing1 < thing2: raise AssertionError("{} < {}".format(str(thing1), str(thing2))) def assert_raises(exc, fun, *args, **kwds): assert_raises_message(exc, None, fun, *args, **kwds) def assert_raises_message(exc, message, fun, *args, **kwds): try: fun(*args, **kwds) except JSONRPCException: raise AssertionError( "Use assert_raises_rpc_error() to test RPC failures") except exc as e: if message is not None and message not in e.error['message']: raise AssertionError( "Expected substring not found in error message:\nsubstring: '{}'\nerror message: '{}'.".format( message, e.error['message'])) except Exception as e: raise AssertionError( "Unexpected exception raised: " + type(e).__name__) else: raise AssertionError("No exception raised") def assert_raises_process_error(returncode, output, fun, *args, **kwds): """Execute a process and asserts the process return code and output. Calls function `fun` with arguments `args` and `kwds`. Catches a CalledProcessError and verifies that the return code and output are as expected. Throws AssertionError if no CalledProcessError was raised or if the return code and output are not as expected. Args: returncode (int): the process return code. output (string): [a substring of] the process output. fun (function): the function to call. This should execute a process. args*: positional arguments for the function. kwds**: named arguments for the function. """ try: fun(*args, **kwds) except CalledProcessError as e: if returncode != e.returncode: raise AssertionError( "Unexpected returncode {}".format(e.returncode)) if output not in e.output: raise AssertionError("Expected substring not found:" + e.output) else: raise AssertionError("No exception raised") def assert_raises_rpc_error(code, message, fun, *args, **kwds): """Run an RPC and verify that a specific JSONRPC exception code and message is raised. Calls function `fun` with arguments `args` and `kwds`. Catches a JSONRPCException and verifies that the error code and message are as expected. Throws AssertionError if no JSONRPCException was raised or if the error code/message are not as expected. Args: code (int), optional: the error code returned by the RPC call (defined in src/rpc/protocol.h). Set to None if checking the error code is not required. message (string), optional: [a substring of] the error string returned by the RPC call. Set to None if checking the error string is not required. fun (function): the function to call. This should be the name of an RPC. args*: positional arguments for the function. kwds**: named arguments for the function. """ assert try_rpc(code, message, fun, *args, **kwds), "No exception raised" def try_rpc(code, message, fun, *args, **kwds): """Tries to run an rpc command. Test against error code and message if the rpc fails. Returns whether a JSONRPCException was raised.""" try: fun(*args, **kwds) except JSONRPCException as e: # JSONRPCException was thrown as expected. Check the code and message # values are correct. if (code is not None) and (code != e.error["code"]): raise AssertionError( "Unexpected JSONRPC error code {}".format(e.error["code"])) if (message is not None) and (message not in e.error['message']): raise AssertionError( "Expected substring not found in error message:\nsubstring: '{}'\nerror message: '{}'.".format( message, e.error['message'])) return True except Exception as e: raise AssertionError( "Unexpected exception raised: " + type(e).__name__) else: return False def assert_is_hex_string(string): try: int(string, 16) except Exception as e: raise AssertionError( "Couldn't interpret {!r} as hexadecimal; raised: {}".format(string, e)) def assert_is_hash_string(string, length=64): if not isinstance(string, str): raise AssertionError( "Expected a string, got type {!r}".format(type(string))) elif length and len(string) != length: raise AssertionError( "String of length {} expected; got {}".format(length, len(string))) elif not re.match('[abcdef0-9]+$', string): raise AssertionError( "String {!r} contains invalid characters for a hash.".format(string)) def assert_array_result(object_array, to_match, expected, should_not_find=False): """ Pass in array of JSON objects, a dictionary with key/value pairs to match against, and another dictionary with expected key/value pairs. If the should_not_find flag is true, to_match should not be found in object_array """ if should_not_find: assert_equal(expected, {}) num_matched = 0 for item in object_array: all_match = True for key, value in to_match.items(): if item[key] != value: all_match = False if not all_match: continue elif should_not_find: num_matched = num_matched + 1 for key, value in expected.items(): if item[key] != value: raise AssertionError("{} : expected {}={}".format( str(item), str(key), str(value))) num_matched = num_matched + 1 if num_matched == 0 and not should_not_find: raise AssertionError("No objects matched {}".format(str(to_match))) if num_matched > 0 and should_not_find: raise AssertionError("Objects were found {}".format(str(to_match))) # Utility functions ################### def check_json_precision(): """Make sure json library being used does not lose precision converting XEC values""" n = Decimal("20000000.00000003") satoshis = int(json.loads(json.dumps(float(n))) * 1.0e8) if satoshis != 2000000000000003: raise RuntimeError("JSON encode/decode loses precision") def EncodeDecimal(o): if isinstance(o, Decimal): return str(o) raise TypeError(repr(o) + " is not JSON serializable") def count_bytes(hex_string): return len(bytearray.fromhex(hex_string)) def hex_str_to_bytes(hex_str): return unhexlify(hex_str.encode('ascii')) def str_to_b64str(string): return b64encode(string.encode('utf-8')).decode('ascii') def satoshi_round(amount): return Decimal(amount).quantize(Decimal('0.01'), rounding=ROUND_DOWN) def wait_until_helper(predicate, *, attempts=float('inf'), timeout=float('inf'), lock=None, timeout_factor=1.0): """Sleep until the predicate resolves to be True. Warning: Note that this method is not recommended to be used in tests as it is not aware of the context of the test framework. Using the `wait_until()` members from `BitcoinTestFramework` or `P2PInterface` class ensures the timeout is properly scaled. Furthermore, `wait_until()` from `P2PInterface` class in `p2p.py` has a preset lock. """ if attempts == float('inf') and timeout == float('inf'): timeout = 60 timeout = timeout * timeout_factor attempt = 0 time_end = time.time() + timeout while attempt < attempts and time.time() < time_end: if lock: with lock: if predicate(): return else: if predicate(): return attempt += 1 time.sleep(0.05) # Print the cause of the timeout predicate_source = "''''\n" + inspect.getsource(predicate) + "'''" logger.error("wait_until() failed. Predicate: {}".format(predicate_source)) if attempt >= attempts: raise AssertionError("Predicate {} not true after {} attempts".format( predicate_source, attempts)) elif time.time() >= time_end: raise AssertionError( "Predicate {} not true after {} seconds".format(predicate_source, timeout)) raise RuntimeError('Unreachable') # RPC/P2P connection constants and functions ############################################ # The maximum number of nodes a single test can spawn MAX_NODES = 12 # Don't assign rpc or p2p ports lower than this (for example: 18333 is the # default testnet port) PORT_MIN = int(os.getenv('TEST_RUNNER_PORT_MIN', default=20000)) # The number of ports to "reserve" for p2p and rpc, each PORT_RANGE = 5000 class PortSeed: # Must be initialized with a unique integer for each process n = None def get_rpc_proxy(url, node_number, *, timeout=None, coveragedir=None): """ Args: url (str): URL of the RPC server to call node_number (int): the node number (or id) that this calls to Kwargs: timeout (int): HTTP timeout in seconds coveragedir (str): Directory Returns: AuthServiceProxy. convenience object for making RPC calls. """ proxy_kwargs = {} if timeout is not None: proxy_kwargs['timeout'] = int(timeout) proxy = AuthServiceProxy(url, **proxy_kwargs) proxy.url = url # store URL on proxy for info coverage_logfile = coverage.get_filename( coveragedir, node_number) if coveragedir else None return coverage.AuthServiceProxyWrapper(proxy, coverage_logfile) def p2p_port(n): assert n <= MAX_NODES return PORT_MIN + n + \ (MAX_NODES * PortSeed.n) % (PORT_RANGE - 1 - MAX_NODES) def rpc_port(n): return PORT_MIN + PORT_RANGE + n + \ (MAX_NODES * PortSeed.n) % (PORT_RANGE - 1 - MAX_NODES) def rpc_url(datadir, chain, host, port): rpc_u, rpc_p = get_auth_cookie(datadir, chain) if host is None: host = '127.0.0.1' return "http://{}:{}@{}:{}".format(rpc_u, rpc_p, host, int(port)) # Node functions ################ def initialize_datadir(dirname, n, chain): datadir = get_datadir_path(dirname, n) if not os.path.isdir(datadir): os.makedirs(datadir) # Translate chain name to config name if chain == 'testnet3': chain_name_conf_arg = 'testnet' chain_name_conf_section = 'test' else: chain_name_conf_arg = chain chain_name_conf_section = chain with open(os.path.join(datadir, "bitcoin.conf"), 'w', encoding='utf8') as f: f.write("{}=1\n".format(chain_name_conf_arg)) f.write("[{}]\n".format(chain_name_conf_section)) f.write("port=" + str(p2p_port(n)) + "\n") f.write("rpcport=" + str(rpc_port(n)) + "\n") f.write("fallbackfee=200\n") f.write("server=1\n") f.write("keypool=1\n") f.write("discover=0\n") f.write("dnsseed=0\n") f.write("listenonion=0\n") f.write("usecashaddr=1\n") f.write("shrinkdebugfile=0\n") os.makedirs(os.path.join(datadir, 'stderr'), exist_ok=True) os.makedirs(os.path.join(datadir, 'stdout'), exist_ok=True) return datadir def get_datadir_path(dirname, n): return os.path.join(dirname, "node" + str(n)) def append_config(datadir, options): with open(os.path.join(datadir, "bitcoin.conf"), 'a', encoding='utf8') as f: for option in options: f.write(option + "\n") def get_auth_cookie(datadir, chain): user = None password = None if os.path.isfile(os.path.join(datadir, "bitcoin.conf")): with open(os.path.join(datadir, "bitcoin.conf"), 'r', encoding='utf8') as f: for line in f: if line.startswith("rpcuser="): assert user is None # Ensure that there is only one rpcuser line user = line.split("=")[1].strip("\n") if line.startswith("rpcpassword="): assert password is None # Ensure that there is only one rpcpassword line password = line.split("=")[1].strip("\n") try: with open(os.path.join(datadir, chain, ".cookie"), 'r', encoding="ascii") as f: userpass = f.read() split_userpass = userpass.split(':') user = split_userpass[0] password = split_userpass[1] except OSError: pass if user is None or password is None: raise ValueError("No RPC credentials") return user, password # If a cookie file exists in the given datadir, delete it. def delete_cookie_file(datadir, chain): if os.path.isfile(os.path.join(datadir, chain, ".cookie")): logger.debug("Deleting leftover cookie file") os.remove(os.path.join(datadir, chain, ".cookie")) def set_node_times(nodes, t): for node in nodes: node.setmocktime(t) # Transaction/Block functions ############################# def find_output(node, txid, amount, *, blockhash=None): """ Return index to output of txid with value amount Raises exception if there is none. """ txdata = node.getrawtransaction(txid, 1, blockhash) for i in range(len(txdata["vout"])): if txdata["vout"][i]["value"] == amount: return i raise RuntimeError("find_output txid {} : {} not found".format( txid, str(amount))) # Create large OP_RETURN txouts that can be appended to a transaction # to make it large (helper for constructing large transactions). def gen_return_txouts(): # Some pre-processing to create a bunch of OP_RETURN txouts to insert into transactions we create # So we have big transactions (and therefore can't fit very many into each block) # create one script_pubkey script_pubkey = "6a4d0200" # OP_RETURN OP_PUSH2 512 bytes for _ in range(512): script_pubkey = script_pubkey + "01" # concatenate 128 txouts of above script_pubkey which we'll insert before # the txout for change txouts = [] from .messages import CTxOut txout = CTxOut() txout.nValue = 0 txout.scriptPubKey = hex_str_to_bytes(script_pubkey) for _ in range(128): txouts.append(txout) return txouts # Create a spend of each passed-in utxo, splicing in "txouts" to each raw # transaction to make it large. See gen_return_txouts() above. def create_lots_of_big_transactions(node, txouts, utxos, num, fee): addr = node.getnewaddress() txids = [] from .messages import CTransaction for _ in range(num): t = utxos.pop() inputs = [{"txid": t["txid"], "vout": t["vout"]}] outputs = {} change = t['amount'] - fee outputs[addr] = satoshi_round(change) rawtx = node.createrawtransaction(inputs, outputs) tx = CTransaction() tx.deserialize(BytesIO(hex_str_to_bytes(rawtx))) for txout in txouts: tx.vout.append(txout) newtx = tx.serialize().hex() signresult = node.signrawtransactionwithwallet( newtx, None, "NONE|FORKID") txid = node.sendrawtransaction(signresult["hex"], 0) txids.append(txid) return txids def find_vout_for_address(node, txid, addr): """ Locate the vout index of the given transaction sending to the given address. Raises runtime error exception if not found. """ tx = node.getrawtransaction(txid, True) for i in range(len(tx["vout"])): if any([addr == a for a in tx["vout"][i]["scriptPubKey"]["addresses"]]): return i raise RuntimeError( "Vout not found for address: txid={}, addr={}".format(txid, addr)) def modinv(a, n): """Compute the modular inverse of a modulo n using the extended Euclidean Algorithm. See https://en.wikipedia.org/wiki/Extended_Euclidean_algorithm#Modular_integers. """ # TODO: Change to pow(a, -1, n) available in Python 3.8 t1, t2 = 0, 1 r1, r2 = n, a while r2 != 0: q = r1 // r2 t1, t2 = t2, t1 - q * t2 r1, r2 = r2, r1 - q * r2 if r1 > 1: return None if t1 < 0: t1 += n return t1 class TestFrameworkUtil(unittest.TestCase): def test_modinv(self): test_vectors = [ [7, 11], [11, 29], [90, 13], [1891, 3797], [6003722857, 77695236973], ] for a, n in test_vectors: self.assertEqual(modinv(a, n), pow(a, n - 2, n))
34.833333
111
0.632483
96e2bfd7397f358bd9511ab0b3c963337f174c60
869
py
Python
setup.py
dchoruzy/django_admin_sticky_notes
3e2643dbbf1c405d82852281fd1398a7f02419b6
[ "MIT" ]
6
2021-09-08T04:45:21.000Z
2021-09-14T17:44:30.000Z
setup.py
dchoruzy/django_admin_sticky_notes
3e2643dbbf1c405d82852281fd1398a7f02419b6
[ "MIT" ]
null
null
null
setup.py
dchoruzy/django_admin_sticky_notes
3e2643dbbf1c405d82852281fd1398a7f02419b6
[ "MIT" ]
null
null
null
import setuptools with open("README.md", "r", encoding="utf-8") as fh: long_description = fh.read() setuptools.setup( name="django-admin-sticky-notes", version="1.0.0", author="Dariusz Choruzy", author_email="dariusz.choruzy@gmail.com", description="Django admin sticky notes", long_description=long_description, long_description_content_type="text/markdown", url="https://github.com/dchoruzy/django-admin-sticky-notes", project_urls={ "Bug Tracker": "https://github.com/dchoruzy/django-admin-sticky-notes/issues", }, license='MIT License', classifiers=[ "Programming Language :: Python :: 3", "License :: OSI Approved :: MIT License", "Operating System :: OS Independent", ], packages=setuptools.find_packages(), include_package_data=True, python_requires=">=3.6", )
32.185185
86
0.670886
3130f1a4242a80d0415cd24010fe42a0cc199485
1,607
py
Python
example/simple_example.py
jupiterbak/FAPSDemonstratorAPI
4a6f4f251a9836676577509b5cfe72ee3ffbb1d1
[ "MIT" ]
1
2018-11-25T20:58:13.000Z
2018-11-25T20:58:13.000Z
example/simple_example.py
jupiterbak/FAPSDemonstratorAPI
4a6f4f251a9836676577509b5cfe72ee3ffbb1d1
[ "MIT" ]
null
null
null
example/simple_example.py
jupiterbak/FAPSDemonstratorAPI
4a6f4f251a9836676577509b5cfe72ee3ffbb1d1
[ "MIT" ]
null
null
null
#!/usr/bin/python import pika from FAPSDemonstratorAPI import Command, CommandMode, ParameterMode, Program print('pika version: %s' % pika.__version__) if __name__ == '__main__': demonstrator_program = Program() if demonstrator_program.connect(): demonstrator_program.reset() demonstrator_program.append_instruction( Command.CMD_SET_PATH_VELO, CommandMode.WCD, 20, 0, 0, ParameterMode.ABSOLUTE, 0 ) demonstrator_program.append_instruction( Command.CMD_POS_REL_XYZ, CommandMode.WCD, 10, 0, 0, ParameterMode.ABSOLUTE, 0 ) demonstrator_program.append_instruction( Command.CMD_POS_REL_XYZ, CommandMode.WCD, -10, 0, 0, ParameterMode.ABSOLUTE, 0 ) demonstrator_program.append_instruction( Command.CMD_SET_PATH_VELO, CommandMode.WCD, 50, 0, 0, ParameterMode.ABSOLUTE, 0 ) demonstrator_program.execute() else: print('Connection cannot be established to the Demonstrator')
31.509804
76
0.439328
6f71e9e01ed5f23e0de0b75a0c70747bbc5a0316
26,028
py
Python
lte/gateway/python/magma/pipelined/service_manager.py
parthiban337/magma
51bc4c02aa7214821ebefcc94a201e9740730aa4
[ "BSD-3-Clause" ]
null
null
null
lte/gateway/python/magma/pipelined/service_manager.py
parthiban337/magma
51bc4c02aa7214821ebefcc94a201e9740730aa4
[ "BSD-3-Clause" ]
70
2021-05-31T08:39:40.000Z
2022-03-25T16:31:46.000Z
lte/gateway/python/magma/pipelined/service_manager.py
kkahrs/magma
73e666627dc28e0c492feab7321bb7d6dd433b09
[ "BSD-3-Clause" ]
1
2021-07-07T14:26:13.000Z
2021-07-07T14:26:13.000Z
#!/usr/bin/env python3 """ Copyright 2020 The Magma Authors. This source code is licensed under the BSD-style license found in the LICENSE file in the root directory of this source tree. Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ServiceManager manages the lifecycle and chaining of network services, which are cloud managed and provide discrete network functions. These network services consist of Ryu apps, which operate on tables managed by the ServiceManager. OVS provides a set number of tables that can be programmed to match and modify traffic. We split these tables two categories, main tables and scratch tables. All apps from the same service are associated with a main table, which is visible to other services and they are used to forward traffic between different services. Apps can also optionally claim additional scratch tables, which may be required for complex flow matching and aggregation use cases. Scratch tables should not be accessible to apps from other services. """ # pylint: skip-file # pylint does not play well with aioeventlet, as it uses asyncio.async which # produces a parse error import time import asyncio import logging from concurrent.futures import Future from collections import namedtuple, OrderedDict from typing import List import aioeventlet from lte.protos.mconfig.mconfigs_pb2 import PipelineD from lte.protos.mobilityd_pb2_grpc import MobilityServiceStub from lte.protos.session_manager_pb2_grpc import ( LocalSessionManagerStub, SetInterfaceForUserPlaneStub) from magma.pipelined.app.base import ControllerType from magma.pipelined.app import of_rest_server from magma.pipelined.app.access_control import AccessControlController from magma.pipelined.app.conntrack import ConntrackController from magma.pipelined.app.tunnel_learn import TunnelLearnController from magma.pipelined.app.vlan_learn import VlanLearnController from magma.pipelined.app.arp import ArpController from magma.pipelined.app.ipv6_solicitation import \ IPV6SolicitationController from magma.pipelined.app.dpi import DPIController from magma.pipelined.app.gy import GYController from magma.pipelined.app.enforcement import EnforcementController from magma.pipelined.app.ipfix import IPFIXController from magma.pipelined.app.li_mirror import LIMirrorController from magma.pipelined.app.enforcement_stats import EnforcementStatsController from magma.pipelined.app.inout import EGRESS, INGRESS, PHYSICAL_TO_LOGICAL, \ InOutController from magma.pipelined.app.ue_mac import UEMacAddressController from magma.pipelined.app.xwf_passthru import XWFPassthruController from magma.pipelined.app.startup_flows import StartupFlows from magma.pipelined.app.check_quota import CheckQuotaController from magma.pipelined.app.uplink_bridge import UplinkBridgeController from magma.pipelined.app.ng_services import NGServiceController from magma.pipelined.rule_mappers import RuleIDToNumMapper, \ SessionRuleToVersionMapper from magma.pipelined.ipv6_prefix_store import InterfaceIDToPrefixMapper from magma.pipelined.tunnel_id_store import TunnelToTunnelMapper from magma.pipelined.internal_ip_allocator import InternalIPAllocator from ryu.base.app_manager import AppManager from magma.common.service import MagmaService from magma.common.service_registry import ServiceRegistry from magma.configuration import environment from magma.pipelined.app.classifier import Classifier from magma.pipelined.app.he import HeaderEnrichmentController, PROXY_TABLE # Type is either Physical or Logical, highest order_priority is at zero App = namedtuple('App', ['name', 'module', 'type', 'order_priority']) class Tables: __slots__ = ['main_table', 'type', 'scratch_tables'] def __init__(self, main_table, type, scratch_tables=None): self.main_table = main_table self.type = type self.scratch_tables = scratch_tables if self.scratch_tables is None: self.scratch_tables = [] class TableNumException(Exception): """ Exception used for when table number allocation fails. """ pass class TableRange: """ Used to generalize different table ranges. """ def __init__(self, start: int, end: int): self._start = start self._end = end self._next_table = self._start def allocate_table(self): if (self._next_table == self._end): raise TableNumException('Cannot generate more tables. Table limit' 'of %s reached!' % self._end) table_num = self._next_table self._next_table += 1 return table_num def allocate_tables(self, count: int): if self._next_table + count >= self._end: raise TableNumException('Cannot generate more tables. Table limit' 'of %s reached!' % self._end) tables = [self.allocate_table() for i in range(0, count)] return tables def get_next_table(self, table: int): if table + 1 < self._next_table: return table + 1 else: return self._end class _TableManager: """ TableManager maintains an internal mapping between apps to their main and scratch tables. """ GTP_TABLE_NUM = 0 INGRESS_TABLE_NUM = 1 PHYSICAL_TO_LOGICAL_TABLE_NUM = 10 EGRESS_TABLE_NUM = 20 LOGICAL_TABLE_LIMIT_NUM = EGRESS_TABLE_NUM # exclusive SCRATCH_TABLE_START_NUM = EGRESS_TABLE_NUM + 1 # 21 SCRATCH_TABLE_LIMIT_NUM = 200 # 200 - 255 is used for apps that share a table ALL_TABLE_LIMIT_NUM = 255 # exclusive def __init__(self): self._table_ranges = { ControllerType.SPECIAL: TableRange(self.GTP_TABLE_NUM, self.GTP_TABLE_NUM + 1), ControllerType.PHYSICAL: TableRange(self.INGRESS_TABLE_NUM + 1, self.PHYSICAL_TO_LOGICAL_TABLE_NUM), ControllerType.LOGICAL: TableRange(self.PHYSICAL_TO_LOGICAL_TABLE_NUM + 1, self.EGRESS_TABLE_NUM) } self._scratch_range = TableRange(self.SCRATCH_TABLE_START_NUM, self.SCRATCH_TABLE_LIMIT_NUM) self._tables_by_app = { INGRESS: Tables(main_table=self.INGRESS_TABLE_NUM, type=ControllerType.SPECIAL), PHYSICAL_TO_LOGICAL: Tables( main_table=self.PHYSICAL_TO_LOGICAL_TABLE_NUM, type=ControllerType.SPECIAL), EGRESS: Tables(main_table=self.EGRESS_TABLE_NUM, type=ControllerType.SPECIAL), } def _allocate_main_table(self, type: ControllerType) -> int: if type not in self._table_ranges: raise TableNumException('Cannot generate a table for %s' % type) return self._table_ranges[type].allocate_table() def register_apps_for_service(self, apps: List[App]): """ Register the apps for a service with a main table. All Apps must share the same contoller type """ if not all(apps[0].type == app.type for app in apps): raise TableNumException('Cannot register apps with different' 'controller type') table_num = self._allocate_main_table(apps[0].type) for app in apps: self._tables_by_app[app.name] = Tables(main_table=table_num, type=app.type) def register_apps_for_table0_service(self, apps: List[App]): """ Register the apps for a service with main table 0 """ for app in apps: self._tables_by_app[app.name] = Tables(main_table=0, type=app.type) def get_table_num(self, app_name: str) -> int: if app_name not in self._tables_by_app: raise Exception('App is not registered: %s' % app_name) return self._tables_by_app[app_name].main_table def get_next_table_num(self, app_name: str) -> int: """ Returns the main table number of the next service. If there are no more services after the current table, return the EGRESS table """ if app_name not in self._tables_by_app: raise Exception('App is not registered: %s' % app_name) app = self._tables_by_app[app_name] if app.type == ControllerType.SPECIAL: if app_name == INGRESS: return self._table_ranges[ControllerType.PHYSICAL].get_next_table(app.main_table) elif app_name == PHYSICAL_TO_LOGICAL: return self._table_ranges[ControllerType.LOGICAL].get_next_table(app.main_table) else: raise TableNumException('No next table found for %s' % app_name) return self._table_ranges[app.type].get_next_table(app.main_table) def is_app_enabled(self, app_name: str) -> bool: return app_name in self._tables_by_app or \ app_name == InOutController.APP_NAME def allocate_scratch_tables(self, app_name: str, count: int) -> \ List[int]: tbl_nums = self._scratch_range.allocate_tables(count) self._tables_by_app[app_name].scratch_tables.extend(tbl_nums) return tbl_nums def get_scratch_table_nums(self, app_name: str) -> List[int]: if app_name not in self._tables_by_app: raise Exception('App is not registered: %s' % app_name) return self._tables_by_app[app_name].scratch_tables def get_all_table_assignments(self) -> 'OrderedDict[str, Tables]': resp = OrderedDict(sorted(self._tables_by_app.items(), key=lambda kv: (kv[1].main_table, kv[0]))) # Include table 0 when it is managed by the EPC, for completeness. if not any(table in ['ue_mac', 'xwf_passthru', 'classifier'] for table in self._tables_by_app): resp['mme'] = Tables(main_table=0, type=None) resp.move_to_end('mme', last=False) return resp class ServiceManager: """ ServiceManager manages the service lifecycle and chaining of services for the Ryu apps. Ryu apps are loaded based on the services specified in the YAML config for static apps and mconfig for dynamic apps. ServiceManager also maintains a mapping between apps to the flow tables they use. Currently, its use cases include: - Starting all Ryu apps - Flow table number lookup for Ryu apps - Main & scratch tables management """ UE_MAC_ADDRESS_SERVICE_NAME = 'ue_mac' ARP_SERVICE_NAME = 'arpd' ACCESS_CONTROL_SERVICE_NAME = 'access_control' ipv6_solicitation_SERVICE_NAME = 'ipv6_solicitation' TUNNEL_LEARN_SERVICE_NAME = 'tunnel_learn' VLAN_LEARN_SERVICE_NAME = 'vlan_learn' IPFIX_SERVICE_NAME = 'ipfix' CONNTRACK_SERVICE_NAME = 'conntrack' RYU_REST_SERVICE_NAME = 'ryu_rest_service' RYU_REST_APP_NAME = 'ryu_rest_app' STARTUP_FLOWS_RECIEVER_CONTROLLER = 'startup_flows' CHECK_QUOTA_SERVICE_NAME = 'check_quota' LI_MIRROR_SERVICE_NAME = 'li_mirror' XWF_PASSTHRU_NAME = 'xwf_passthru' UPLINK_BRIDGE_NAME = 'uplink_bridge' CLASSIFIER_NAME = 'classifier' HE_CONTROLLER_NAME = 'proxy' NG_SERVICE_CONTROLLER_NAME = 'ng_services' INTERNAL_APP_SET_TABLE_NUM = 201 INTERNAL_IMSI_SET_TABLE_NUM = 202 INTERNAL_IPFIX_SAMPLE_TABLE_NUM = 203 INTERNAL_MAC_IP_REWRITE_TBL_NUM = 204 # Mapping between services defined in mconfig and the names and modules of # the corresponding Ryu apps in PipelineD. The module is used for the Ryu # app manager to instantiate the app. # Note that a service may require multiple apps. DYNAMIC_SERVICE_TO_APPS = { PipelineD.ENFORCEMENT: [ App(name=GYController.APP_NAME, module=GYController.__module__, type=GYController.APP_TYPE, order_priority=499), App(name=EnforcementController.APP_NAME, module=EnforcementController.__module__, type=EnforcementController.APP_TYPE, order_priority=500), App(name=EnforcementStatsController.APP_NAME, module=EnforcementStatsController.__module__, type=EnforcementStatsController.APP_TYPE, order_priority=501), ], PipelineD.DPI: [ App(name=DPIController.APP_NAME, module=DPIController.__module__, type=DPIController.APP_TYPE, order_priority=400), ], } # Mapping between the app names defined in pipelined.yml and the names and # modules of their corresponding Ryu apps in PipelineD. STATIC_SERVICE_TO_APPS = { UE_MAC_ADDRESS_SERVICE_NAME: [ App(name=UEMacAddressController.APP_NAME, module=UEMacAddressController.__module__, type=None, order_priority=0), ], ARP_SERVICE_NAME: [ App(name=ArpController.APP_NAME, module=ArpController.__module__, type=ArpController.APP_TYPE, order_priority=200) ], ACCESS_CONTROL_SERVICE_NAME: [ App(name=AccessControlController.APP_NAME, module=AccessControlController.__module__, type=AccessControlController.APP_TYPE, order_priority=400), ], HE_CONTROLLER_NAME: [ App(name=HeaderEnrichmentController.APP_NAME, module=HeaderEnrichmentController.__module__, type=HeaderEnrichmentController.APP_TYPE, order_priority=401), ], ipv6_solicitation_SERVICE_NAME: [ App(name=IPV6SolicitationController.APP_NAME, module=IPV6SolicitationController.__module__, type=IPV6SolicitationController.APP_TYPE, order_priority=210), ], TUNNEL_LEARN_SERVICE_NAME: [ App(name=TunnelLearnController.APP_NAME, module=TunnelLearnController.__module__, type=TunnelLearnController.APP_TYPE, order_priority=300), ], VLAN_LEARN_SERVICE_NAME: [ App(name=VlanLearnController.APP_NAME, module=VlanLearnController.__module__, type=VlanLearnController.APP_TYPE, order_priority=500), ], RYU_REST_SERVICE_NAME: [ App(name=RYU_REST_APP_NAME, module='ryu.app.ofctl_rest', type=None, order_priority=0), ], STARTUP_FLOWS_RECIEVER_CONTROLLER: [ App(name=StartupFlows.APP_NAME, module=StartupFlows.__module__, type=StartupFlows.APP_TYPE, order_priority=0), ], CHECK_QUOTA_SERVICE_NAME: [ App(name=CheckQuotaController.APP_NAME, module=CheckQuotaController.__module__, type=CheckQuotaController.APP_TYPE, order_priority=300), ], CONNTRACK_SERVICE_NAME: [ App(name=ConntrackController.APP_NAME, module=ConntrackController.__module__, type=ConntrackController.APP_TYPE, order_priority=700), ], IPFIX_SERVICE_NAME: [ App(name=IPFIXController.APP_NAME, module=IPFIXController.__module__, type=IPFIXController.APP_TYPE, order_priority=800), ], LI_MIRROR_SERVICE_NAME: [ App(name=LIMirrorController.APP_NAME, module=LIMirrorController.__module__, type=LIMirrorController.APP_TYPE, order_priority=900), ], XWF_PASSTHRU_NAME: [ App(name=XWFPassthruController.APP_NAME, module=XWFPassthruController.__module__, type=XWFPassthruController.APP_TYPE, order_priority=0), ], UPLINK_BRIDGE_NAME: [ App(name=UplinkBridgeController.APP_NAME, module=UplinkBridgeController.__module__, type=UplinkBridgeController.APP_TYPE, order_priority=0), ], CLASSIFIER_NAME: [ App(name=Classifier.APP_NAME, module=Classifier.__module__, type=Classifier.APP_TYPE, order_priority=0), ], # 5G Related services NG_SERVICE_CONTROLLER_NAME: [ App(name=NGServiceController.APP_NAME, module=NGServiceController.__module__, type=None, order_priority=0), ], } # Some apps do not use a table, so they need to be excluded from table # allocation. STATIC_APP_WITH_NO_TABLE = [ RYU_REST_APP_NAME, StartupFlows.APP_NAME, UplinkBridgeController.APP_NAME, NGServiceController.APP_NAME, ] def __init__(self, magma_service: MagmaService): self._magma_service = magma_service if '5G_feature_set' not in magma_service.config: self._5G_flag_enable = False else: ng_flag = magma_service.config.get('5G_feature_set') self._5G_flag_enable = ng_flag['enable'] # inout is a mandatory app and it occupies: # table 1(for ingress) # table 10(for middle) # table 20(for egress) self._apps = [App(name=InOutController.APP_NAME, module=InOutController.__module__, type=None, order_priority=0)] self._table_manager = _TableManager() self.rule_id_mapper = RuleIDToNumMapper() self.session_rule_version_mapper = SessionRuleToVersionMapper() self.interface_to_prefix_mapper = InterfaceIDToPrefixMapper() self.tunnel_id_mapper = TunnelToTunnelMapper() apps = self._get_static_apps() apps.extend(self._get_dynamic_apps()) apps.sort(key=lambda x: x.order_priority) self._apps.extend(apps) # Filter out reserved apps and apps that don't need a table for app in apps: if app.name in self.STATIC_APP_WITH_NO_TABLE: continue # UE MAC service must be registered with Table 0 if app.name in [self.UE_MAC_ADDRESS_SERVICE_NAME, self.XWF_PASSTHRU_NAME]: self._table_manager.register_apps_for_table0_service([app]) continue if self._5G_flag_enable: if app.name in [self.CLASSIFIER_NAME]: self._table_manager.register_apps_for_table0_service([app]) continue self._table_manager.register_apps_for_service([app]) def _get_static_apps(self): """ _init_static_services populates app modules and allocates a main table for each static service. """ static_services = self._magma_service.config['static_services'] nat_enabled = self._magma_service.config.get('nat_enabled', False) setup_type = self._magma_service.config.get('setup_type', None) if setup_type == 'LTE': static_services.append(self.__class__.UPLINK_BRIDGE_NAME) logging.info("added uplink bridge controller") if self._5G_flag_enable: static_services.append(self.__class__.CLASSIFIER_NAME) static_services.append(self.__class__.NG_SERVICE_CONTROLLER_NAME) logging.info("added classifier and ng service controller") static_apps = \ [app for service in static_services for app in self.STATIC_SERVICE_TO_APPS[service]] return static_apps def _get_dynamic_apps(self): """ _init_dynamic_services populates app modules and allocates a main table for each dynamic service. """ dynamic_services = [] for service in self._magma_service.mconfig.services: if service not in self.DYNAMIC_SERVICE_TO_APPS: # Most likely cause: the config contains a deprecated # pipelined service. # Fix: update the relevant network's network_services settings. logging.warning( 'Mconfig contains unsupported network_services service: %s', service, ) continue dynamic_services.append(service) dynamic_apps = [app for service in dynamic_services for app in self.DYNAMIC_SERVICE_TO_APPS[service]] return dynamic_apps def load(self): """ Instantiates and schedules the Ryu app eventlets in the service eventloop. """ # Some setups might not use REDIS if (self._magma_service.config['redis_enabled']): # Wait for redis as multiple controllers rely on it while not redisAvailable(self.rule_id_mapper.redis_cli): logging.warning("Pipelined waiting for redis...") time.sleep(1) else: self.rule_id_mapper._rule_nums_by_rule = {} self.rule_id_mapper._rules_by_rule_num = {} self.session_rule_version_mapper._version_by_imsi_and_rule = {} self.interface_to_prefix_mapper._prefix_by_interface = {} self.tunnel_id_mapper._tunnel_map = {} manager = AppManager.get_instance() manager.load_apps([app.module for app in self._apps]) contexts = manager.create_contexts() contexts['rule_id_mapper'] = self.rule_id_mapper contexts[ 'session_rule_version_mapper'] = self.session_rule_version_mapper contexts['interface_to_prefix_mapper'] = self.interface_to_prefix_mapper contexts['tunnel_id_mapper'] = self.tunnel_id_mapper contexts['app_futures'] = {app.name: Future() for app in self._apps} contexts['internal_ip_allocator'] = \ InternalIPAllocator(self._magma_service.config) contexts['config'] = self._magma_service.config contexts['mconfig'] = self._magma_service.mconfig contexts['loop'] = self._magma_service.loop contexts['service_manager'] = self sessiond_chan = ServiceRegistry.get_rpc_channel( 'sessiond', ServiceRegistry.LOCAL) mobilityd_chan = ServiceRegistry.get_rpc_channel( 'mobilityd', ServiceRegistry.LOCAL) contexts['rpc_stubs'] = { 'mobilityd': MobilityServiceStub(mobilityd_chan), 'sessiond': LocalSessionManagerStub(sessiond_chan), } if self._5G_flag_enable: contexts['rpc_stubs'].update({'sessiond_setinterface': \ SetInterfaceForUserPlaneStub(sessiond_chan)}) # Instantiate and schedule apps for app in manager.instantiate_apps(**contexts): # Wrap the eventlet in asyncio so it will stop when the loop is # stopped future = aioeventlet.wrap_greenthread(app, self._magma_service.loop) # Schedule the eventlet for evaluation in service loop asyncio.ensure_future(future) # In development mode, run server so that if environment.is_dev_mode(): server_thread = of_rest_server.start(manager) future = aioeventlet.wrap_greenthread(server_thread, self._magma_service.loop) asyncio.ensure_future(future) def get_table_num(self, app_name: str) -> int: """ Args: app_name: Name of the app Returns: The app's main table number """ return self._table_manager.get_table_num(app_name) def get_next_table_num(self, app_name: str) -> int: """ Args: app_name: Name of the app Returns: The main table number of the next service. If there are no more services after the current table, return the EGRESS table """ return self._table_manager.get_next_table_num(app_name) def is_app_enabled(self, app_name: str) -> bool: """ Args: app_name: Name of the app Returns: Whether or not the app is enabled """ return self._table_manager.is_app_enabled(app_name) def allocate_scratch_tables(self, app_name: str, count: int) -> List[int]: """ Args: app_name: Each scratch table is associated with an app. This is used to help enforce scratch table isolation between apps. count: Number of scratch tables to be claimed Returns: List of scratch table numbers Raises: TableNumException if there are no more available tables """ return self._table_manager.allocate_scratch_tables(app_name, count) def get_scratch_table_nums(self, app_name: str) -> List[int]: """ Returns the scratch tables claimed by the given app. """ return self._table_manager.get_scratch_table_nums(app_name) def get_all_table_assignments(self): """ Returns: OrderedDict of app name to tables mapping, ordered by main table number, and app name. """ return self._table_manager.get_all_table_assignments() def redisAvailable(redis_cli): try: redis_cli.ping() except Exception as e: logging.error(e) return False return True
40.228748
103
0.653642
ef12ced7493df356515c5c25c59fc6157ba2d5a0
3,204
py
Python
lyrebird/mock/handlers/proxy_handler.py
Rena-Yuan/lyrebird
f350a080c38dcb2acd6be2ca960fa094be51f557
[ "MIT" ]
737
2019-02-20T06:51:50.000Z
2022-03-31T09:00:32.000Z
lyrebird/mock/handlers/proxy_handler.py
Rena-Yuan/lyrebird
f350a080c38dcb2acd6be2ca960fa094be51f557
[ "MIT" ]
203
2019-02-19T02:57:29.000Z
2022-03-30T11:11:32.000Z
lyrebird/mock/handlers/proxy_handler.py
Rena-Yuan/lyrebird
f350a080c38dcb2acd6be2ca960fa094be51f557
[ "MIT" ]
140
2019-02-18T03:32:50.000Z
2022-03-18T03:37:39.000Z
import urllib import requests from requests.packages import urllib3 from flask import Response, jsonify, stream_with_context from .. import context from lyrebird import application from lyrebird.log import get_logger from lyrebird.mock import lb_http_status from .duplicate_request_handler import DuplicateRequest import traceback # 关闭ssl警告 urllib3.disable_warnings() logger = get_logger() class ProxyHandler: """ 按照代理规则代理 """ def handle(self, handler_context): request = handler_context.flow['request'] origin_url = request.get('url') logger.info(f'<Proxy> {origin_url}') if not origin_url: handler_context.is_proxiable = False return parsed_url = urllib.parse.urlparse(origin_url) if not parsed_url.hostname: handler_context.is_proxiable = False return elif parsed_url.hostname in ['localhost', '127.0.0.1', ] and parsed_url.port == application.config["mock.port"]: DuplicateRequest().handle(handler_context) return data = handler_context.get_request_body() method = request['method'] headers = handler_context.get_request_headers() try: r = requests.request( method, origin_url, headers=headers, data=data, cookies=handler_context.request.cookies, stream=True, verify=False, allow_redirects=False) logger.info(f'<Proxy> SUCCESS {r.status_code} {origin_url}') except: trace_str = traceback.format_exc() error_response = { 'code': 3000, 'message': 'proxy error', 'trace': trace_str } resp = jsonify(error_response) resp.status = lb_http_status.STATUS_PROXY_ERROR handler_context.response = resp logger.info(f'<Proxy> PROXY ERROR {origin_url}\n------\ntrace:\n{trace_str}\n------\n<Proxy> PROXY ERROR {origin_url}') return # 增加数据源标记,此数据经代理得到 resp_headers = [('lyrebird', 'proxy')] for name, value in r.raw.headers.items(): # rm 'content-length' from ignore list if name.lower() in ('content-encoding', 'transfer-encoding'): continue if name.lower() == 'content-length' and 'content-encoding' in r.headers and r.headers['content-encoding'] == 'gzip': # 如果是gzip请求,由于requests自动解压gzip,所以此处抹去content-length,以匹配解压后的数据长度 continue resp_headers.append((name, value)) # HTTP Status code 204 => No content if r.status_code == 204: handler_context.response = Response(None, status=r.status_code, headers=resp_headers) return # After huangyuanzhen test, we use 2048byte buffer :D handler_context.response = Response( stream_with_context(r.iter_content(chunk_size=handler_context.response_chunk_size)), status=r.status_code, headers=resp_headers)
33.030928
131
0.598627
155864547f90034b4ab64b78b9798314af980ad8
30,516
py
Python
main.py
ajoaoff/mef_eline
a63869068e001c55c81235b83934ae29017a1796
[ "MIT" ]
null
null
null
main.py
ajoaoff/mef_eline
a63869068e001c55c81235b83934ae29017a1796
[ "MIT" ]
null
null
null
main.py
ajoaoff/mef_eline
a63869068e001c55c81235b83934ae29017a1796
[ "MIT" ]
null
null
null
"""Main module of kytos/mef_eline Kytos Network Application. NApp to provision circuits from user request. """ import time from threading import Lock from flask import jsonify, request from werkzeug.exceptions import (BadRequest, Conflict, Forbidden, MethodNotAllowed, NotFound, UnsupportedMediaType) from kytos.core import KytosNApp, log, rest from kytos.core.events import KytosEvent from kytos.core.helpers import listen_to from kytos.core.interface import TAG, UNI from kytos.core.link import Link from napps.kytos.mef_eline import settings from napps.kytos.mef_eline.exceptions import InvalidPath from napps.kytos.mef_eline.models import EVC, DynamicPathManager, Path from napps.kytos.mef_eline.scheduler import CircuitSchedule, Scheduler from napps.kytos.mef_eline.storehouse import StoreHouse from napps.kytos.mef_eline.utils import emit_event # pylint: disable=too-many-public-methods class Main(KytosNApp): """Main class of amlight/mef_eline NApp. This class is the entry point for this napp. """ def setup(self): """Replace the '__init__' method for the KytosNApp subclass. The setup method is automatically called by the controller when your application is loaded. So, if you have any setup routine, insert it here. """ # object used to scheduler circuit events self.sched = Scheduler() # object to save and load circuits self.storehouse = StoreHouse(self.controller) # set the controller that will manager the dynamic paths DynamicPathManager.set_controller(self.controller) # dictionary of EVCs created. It acts as a circuit buffer. # Every create/update/delete must be synced to storehouse. self.circuits = {} # dictionary of EVCs by interface self._circuits_by_interface = {} self._lock = Lock() self.execute_as_loop(settings.DEPLOY_EVCS_INTERVAL) self.load_time = time.time() self.load_all_evcs() def execute(self): """Execute once when the napp is running.""" for circuit in tuple(self.circuits.values()): if ( circuit.is_enabled() and not circuit.is_active() and not circuit.lock.locked() ): if circuit.check_traces(): with circuit.lock: circuit.activate() circuit.sync() else: running_for = time.time() - self.load_time if running_for > settings.WAIT_FOR_OLD_PATH: with circuit.lock: circuit.deploy() def shutdown(self): """Execute when your napp is unloaded. If you have some cleanup procedure, insert it here. """ @rest('/v2/evc/', methods=['GET']) def list_circuits(self): """Endpoint to return circuits stored. If archived is set to True return all circuits, else only the ones not archived. """ log.debug('list_circuits /v2/evc') archived = request.args.get('archived', False) circuits = self.storehouse.get_data() if not circuits: return jsonify({}), 200 if archived: return jsonify(circuits), 200 return jsonify({circuit_id: circuit for circuit_id, circuit in circuits.items() if not circuit.get('archived', False)}), 200 @rest('/v2/evc/<circuit_id>', methods=['GET']) def get_circuit(self, circuit_id): """Endpoint to return a circuit based on id.""" log.debug('get_circuit /v2/evc/%s', circuit_id) circuits = self.storehouse.get_data() try: result = circuits[circuit_id] except KeyError: result = f'circuit_id {circuit_id} not found' log.debug('get_circuit result %s %s', result, 404) raise NotFound(result) status = 200 log.debug('get_circuit result %s %s', result, status) return jsonify(result), status @rest('/v2/evc/', methods=['POST']) def create_circuit(self): """Try to create a new circuit. Firstly, for EVPL: E-Line NApp verifies if UNI_A's requested C-VID and UNI_Z's requested C-VID are available from the interfaces' pools. This is checked when creating the UNI object. Then, E-Line NApp requests a primary and a backup path to the Pathfinder NApp using the attributes primary_links and backup_links submitted via REST # For each link composing paths in #3: # - E-Line NApp requests a S-VID available from the link VLAN pool. # - Using the S-VID obtained, generate abstract flow entries to be # sent to FlowManager Push abstract flow entries to FlowManager and FlowManager pushes OpenFlow entries to datapaths E-Line NApp generates an event to notify all Kytos NApps of a new EVC creation Finnaly, notify user of the status of its request. """ # Try to create the circuit object log.debug('create_circuit /v2/evc/') try: data = request.get_json() except BadRequest: result = 'The request body is not a well-formed JSON.' log.debug('create_circuit result %s %s', result, 400) raise BadRequest(result) if data is None: result = 'The request body mimetype is not application/json.' log.debug('create_circuit result %s %s', result, 415) raise UnsupportedMediaType(result) try: evc = self._evc_from_dict(data) except ValueError as exception: log.debug('create_circuit result %s %s', exception, 400) raise BadRequest(str(exception)) if evc.primary_path: try: evc.primary_path.is_valid(evc.uni_a.interface.switch, evc.uni_z.interface.switch, bool(evc.circuit_scheduler)) except InvalidPath as exception: raise BadRequest(f'primary_path is not valid: {exception}') if evc.backup_path: try: evc.backup_path.is_valid(evc.uni_a.interface.switch, evc.uni_z.interface.switch, bool(evc.circuit_scheduler)) except InvalidPath as exception: raise BadRequest(f'backup_path is not valid: {exception}') # verify duplicated evc if self._is_duplicated_evc(evc): result = "The EVC already exists." log.debug('create_circuit result %s %s', result, 409) raise Conflict(result) if ( not evc.primary_path and evc.dynamic_backup_path is False and evc.uni_a.interface.switch != evc.uni_z.interface.switch ): result = "The EVC must have a primary path or allow dynamic paths." log.debug('create_circuit result %s %s', result, 400) raise BadRequest(result) # store circuit in dictionary self.circuits[evc.id] = evc # save circuit self.storehouse.save_evc(evc) # Schedule the circuit deploy self.sched.add(evc) # Circuit has no schedule, deploy now if not evc.circuit_scheduler: with evc.lock: evc.deploy() # Notify users event = KytosEvent(name='kytos.mef_eline.created', content=evc.as_dict()) self.controller.buffers.app.put(event) result = {"circuit_id": evc.id} status = 201 log.debug('create_circuit result %s %s', result, status) emit_event(self.controller, 'created', evc_id=evc.id) return jsonify(result), status @rest('/v2/evc/<circuit_id>', methods=['PATCH']) def update(self, circuit_id): """Update a circuit based on payload. The EVC required attributes (name, uni_a, uni_z) can't be updated. """ log.debug('update /v2/evc/%s', circuit_id) try: evc = self.circuits[circuit_id] except KeyError: result = f'circuit_id {circuit_id} not found' log.debug('update result %s %s', result, 404) raise NotFound(result) if evc.archived: result = "Can't update archived EVC" log.debug('update result %s %s', result, 405) raise MethodNotAllowed(['GET'], result) try: data = request.get_json() except BadRequest: result = 'The request body is not a well-formed JSON.' log.debug('update result %s %s', result, 400) raise BadRequest(result) if data is None: result = 'The request body mimetype is not application/json.' log.debug('update result %s %s', result, 415) raise UnsupportedMediaType(result) try: enable, redeploy = \ evc.update(**self._evc_dict_with_instances(data)) except ValueError as exception: log.error(exception) log.debug('update result %s %s', exception, 400) raise BadRequest(str(exception)) if evc.is_active(): if enable is False: # disable if active with evc.lock: evc.remove() elif redeploy is not None: # redeploy if active with evc.lock: evc.remove() evc.deploy() else: if evc.is_enabled(): # enable if inactive with evc.lock: evc.deploy() result = {evc.id: evc.as_dict()} status = 200 log.debug('update result %s %s', result, status) emit_event(self.controller, 'updated', evc_id=evc.id, data=data) return jsonify(result), status @rest('/v2/evc/<circuit_id>', methods=['DELETE']) def delete_circuit(self, circuit_id): """Remove a circuit. First, the flows are removed from the switches, and then the EVC is disabled. """ log.debug('delete_circuit /v2/evc/%s', circuit_id) try: evc = self.circuits[circuit_id] except KeyError: result = f'circuit_id {circuit_id} not found' log.debug('delete_circuit result %s %s', result, 404) raise NotFound(result) if evc.archived: result = f'Circuit {circuit_id} already removed' log.debug('delete_circuit result %s %s', result, 404) raise NotFound(result) log.info('Removing %s', evc) evc.remove_current_flows() evc.deactivate() evc.disable() self.sched.remove(evc) evc.archive() evc.sync() log.info('EVC removed. %s', evc) result = {'response': f'Circuit {circuit_id} removed'} status = 200 log.debug('delete_circuit result %s %s', result, status) emit_event(self.controller, 'deleted', evc_id=evc.id) return jsonify(result), status @rest('v2/evc/<circuit_id>/metadata', methods=['GET']) def get_metadata(self, circuit_id): """Get metadata from an EVC.""" try: return jsonify({"metadata": self.circuits[circuit_id].metadata}), 200 except KeyError: raise NotFound(f'circuit_id {circuit_id} not found.') @rest('v2/evc/<circuit_id>/metadata', methods=['POST']) def add_metadata(self, circuit_id): """Add metadata to an EVC.""" try: metadata = request.get_json() content_type = request.content_type except BadRequest: result = 'The request body is not a well-formed JSON.' raise BadRequest(result) if content_type is None: result = 'The request body is empty.' raise BadRequest(result) if metadata is None: if content_type != 'application/json': result = ('The content type must be application/json ' f'(received {content_type}).') else: result = 'Metadata is empty.' raise UnsupportedMediaType(result) try: evc = self.circuits[circuit_id] except KeyError: raise NotFound(f'circuit_id {circuit_id} not found.') evc.extend_metadata(metadata) evc.sync() return jsonify("Operation successful"), 201 @rest('v2/evc/<circuit_id>/metadata/<key>', methods=['DELETE']) def delete_metadata(self, circuit_id, key): """Delete metadata from an EVC.""" try: evc = self.circuits[circuit_id] except KeyError: raise NotFound(f'circuit_id {circuit_id} not found.') evc.remove_metadata(key) evc.sync() return jsonify("Operation successful"), 200 @rest('/v2/evc/<circuit_id>/redeploy', methods=['PATCH']) def redeploy(self, circuit_id): """Endpoint to force the redeployment of an EVC.""" log.debug('redeploy /v2/evc/%s/redeploy', circuit_id) try: evc = self.circuits[circuit_id] except KeyError: result = f'circuit_id {circuit_id} not found' raise NotFound(result) if evc.is_enabled(): with evc.lock: evc.remove_current_flows() evc.deploy() result = {'response': f'Circuit {circuit_id} redeploy received.'} status = 202 else: result = {'response': f'Circuit {circuit_id} is disabled.'} status = 409 return jsonify(result), status @rest('/v2/evc/schedule', methods=['GET']) def list_schedules(self): """Endpoint to return all schedules stored for all circuits. Return a JSON with the following template: [{"schedule_id": <schedule_id>, "circuit_id": <circuit_id>, "schedule": <schedule object>}] """ log.debug('list_schedules /v2/evc/schedule') circuits = self.storehouse.get_data().values() if not circuits: result = {} status = 200 return jsonify(result), status result = [] status = 200 for circuit in circuits: circuit_scheduler = circuit.get("circuit_scheduler") if circuit_scheduler: for scheduler in circuit_scheduler: value = {"schedule_id": scheduler.get("id"), "circuit_id": circuit.get("id"), "schedule": scheduler} result.append(value) log.debug('list_schedules result %s %s', result, status) return jsonify(result), status @rest('/v2/evc/schedule/', methods=['POST']) def create_schedule(self): """ Create a new schedule for a given circuit. This service do no check if there are conflicts with another schedule. Payload example: { "circuit_id":"aa:bb:cc", "schedule": { "date": "2019-08-07T14:52:10.967Z", "interval": "string", "frequency": "1 * * * *", "action": "create" } } """ log.debug('create_schedule /v2/evc/schedule/') json_data = self._json_from_request('create_schedule') try: circuit_id = json_data['circuit_id'] except TypeError: result = 'The payload should have a dictionary.' log.debug('create_schedule result %s %s', result, 400) raise BadRequest(result) except KeyError: result = 'Missing circuit_id.' log.debug('create_schedule result %s %s', result, 400) raise BadRequest(result) try: schedule_data = json_data['schedule'] except KeyError: result = 'Missing schedule data.' log.debug('create_schedule result %s %s', result, 400) raise BadRequest(result) # Get EVC from circuits buffer circuits = self._get_circuits_buffer() # get the circuit evc = circuits.get(circuit_id) # get the circuit if not evc: result = f'circuit_id {circuit_id} not found' log.debug('create_schedule result %s %s', result, 404) raise NotFound(result) # Can not modify circuits deleted and archived if evc.archived: result = f'Circuit {circuit_id} is archived. Update is forbidden.' log.debug('create_schedule result %s %s', result, 403) raise Forbidden(result) # new schedule from dict new_schedule = CircuitSchedule.from_dict(schedule_data) # If there is no schedule, create the list if not evc.circuit_scheduler: evc.circuit_scheduler = [] # Add the new schedule evc.circuit_scheduler.append(new_schedule) # Add schedule job self.sched.add_circuit_job(evc, new_schedule) # save circuit to storehouse evc.sync() result = new_schedule.as_dict() status = 201 log.debug('create_schedule result %s %s', result, status) return jsonify(result), status @rest('/v2/evc/schedule/<schedule_id>', methods=['PATCH']) def update_schedule(self, schedule_id): """Update a schedule. Change all attributes from the given schedule from a EVC circuit. The schedule ID is preserved as default. Payload example: { "date": "2019-08-07T14:52:10.967Z", "interval": "string", "frequency": "1 * * *", "action": "create" } """ log.debug('update_schedule /v2/evc/schedule/%s', schedule_id) # Try to find a circuit schedule evc, found_schedule = self._find_evc_by_schedule_id(schedule_id) # Can not modify circuits deleted and archived if not found_schedule: result = f'schedule_id {schedule_id} not found' log.debug('update_schedule result %s %s', result, 404) raise NotFound(result) if evc.archived: result = f'Circuit {evc.id} is archived. Update is forbidden.' log.debug('update_schedule result %s %s', result, 403) raise Forbidden(result) data = self._json_from_request('update_schedule') new_schedule = CircuitSchedule.from_dict(data) new_schedule.id = found_schedule.id # Remove the old schedule evc.circuit_scheduler.remove(found_schedule) # Append the modified schedule evc.circuit_scheduler.append(new_schedule) # Cancel all schedule jobs self.sched.cancel_job(found_schedule.id) # Add the new circuit schedule self.sched.add_circuit_job(evc, new_schedule) # Save EVC to the storehouse evc.sync() result = new_schedule.as_dict() status = 200 log.debug('update_schedule result %s %s', result, status) return jsonify(result), status @rest('/v2/evc/schedule/<schedule_id>', methods=['DELETE']) def delete_schedule(self, schedule_id): """Remove a circuit schedule. Remove the Schedule from EVC. Remove the Schedule from cron job. Save the EVC to the Storehouse. """ log.debug('delete_schedule /v2/evc/schedule/%s', schedule_id) evc, found_schedule = self._find_evc_by_schedule_id(schedule_id) # Can not modify circuits deleted and archived if not found_schedule: result = f'schedule_id {schedule_id} not found' log.debug('delete_schedule result %s %s', result, 404) raise NotFound(result) if evc.archived: result = f'Circuit {evc.id} is archived. Update is forbidden.' log.debug('delete_schedule result %s %s', result, 403) raise Forbidden(result) # Remove the old schedule evc.circuit_scheduler.remove(found_schedule) # Cancel all schedule jobs self.sched.cancel_job(found_schedule.id) # Save EVC to the storehouse evc.sync() result = "Schedule removed" status = 200 log.debug('delete_schedule result %s %s', result, status) return jsonify(result), status def _is_duplicated_evc(self, evc): """Verify if the circuit given is duplicated with the stored evcs. Args: evc (EVC): circuit to be analysed. Returns: boolean: True if the circuit is duplicated, otherwise False. """ for circuit in tuple(self.circuits.values()): if not circuit.archived and circuit.shares_uni(evc): return True return False @listen_to('kytos/topology.link_up') def handle_link_up(self, event): """Change circuit when link is up or end_maintenance.""" log.debug("Event handle_link_up %s", event) for evc in self.circuits.values(): if evc.is_enabled() and not evc.archived: with evc.lock: evc.handle_link_up(event.content['link']) @listen_to('kytos/topology.link_down') def handle_link_down(self, event): """Change circuit when link is down or under_mantenance.""" log.debug("Event handle_link_down %s", event) for evc in self.circuits.values(): with evc.lock: if evc.is_affected_by_link(event.content['link']): log.debug(f'Handling evc {evc.id} on link down') if evc.handle_link_down(): emit_event(self.controller, 'redeployed_link_down', evc_id=evc.id) else: emit_event(self.controller, 'error_redeploy_link_down', evc_id=evc.id) def load_circuits_by_interface(self, circuits): """Load circuits in storehouse for in-memory dictionary.""" for circuit_id, circuit in circuits.items(): if circuit['archived'] is True: continue intf_a = circuit['uni_a']['interface_id'] self.add_to_dict_of_sets(intf_a, circuit_id) intf_z = circuit['uni_z']['interface_id'] self.add_to_dict_of_sets(intf_z, circuit_id) for path in ('current_path', 'primary_path', 'backup_path'): for link in circuit[path]: intf_a = link['endpoint_a']['id'] self.add_to_dict_of_sets(intf_a, circuit_id) intf_b = link['endpoint_b']['id'] self.add_to_dict_of_sets(intf_b, circuit_id) def add_to_dict_of_sets(self, intf, circuit_id): """Add a single item to the dictionary of circuits by interface.""" if intf not in self._circuits_by_interface: self._circuits_by_interface[intf] = set() self._circuits_by_interface[intf].add(circuit_id) @listen_to('kytos/topology.port.created') def load_evcs(self, event): """Try to load the unloaded EVCs from storehouse.""" with self._lock: log.debug("Event load_evcs %s", event) circuits = self.storehouse.get_data() if not self._circuits_by_interface: self.load_circuits_by_interface(circuits) interface_id = '{}:{}'.format(event.content['switch'], event.content['port']) for circuit_id in self._circuits_by_interface.get(interface_id, []): if circuit_id in circuits and circuit_id not in self.circuits: self._load_evc(circuits[circuit_id]) def load_all_evcs(self): """Try to load all EVCs on startup.""" for circuit_id, circuit in self.storehouse.get_data().items(): if circuit_id not in self.circuits: self._load_evc(circuit) def _load_evc(self, circuit_dict): """Load one EVC from storehouse to memory.""" try: evc = self._evc_from_dict(circuit_dict) except ValueError as exception: log.error( f'Could not load EVC {circuit_dict["id"]} ' f'because {exception}') return None if evc.archived: return None evc.deactivate() evc.sync() self.circuits.setdefault(evc.id, evc) self.sched.add(evc) return evc @listen_to('kytos/flow_manager.flow.error') def handle_flow_mod_error(self, event): """Handle flow mod errors related to an EVC.""" flow = event.content['flow'] command = event.content.get('error_command') if command != 'add': return evc_id = f'{flow.cookie:x}' evc = self.circuits.get(evc_id) if evc: evc.remove_current_flows() def _evc_dict_with_instances(self, evc_dict): """Convert some dict values to instance of EVC classes. This method will convert: [UNI, Link] """ data = evc_dict.copy() # Do not modify the original dict for attribute, value in data.items(): # Get multiple attributes. # Ex: uni_a, uni_z if 'uni' in attribute: try: data[attribute] = self._uni_from_dict(value) except ValueError as exc: raise ValueError(f'Error creating UNI: {exc}') if attribute == 'circuit_scheduler': data[attribute] = [] for schedule in value: data[attribute].append(CircuitSchedule.from_dict(schedule)) # Get multiple attributes. # Ex: primary_links, # backup_links, # current_links_cache, # primary_links_cache, # backup_links_cache if 'links' in attribute: data[attribute] = [self._link_from_dict(link) for link in value] # Get multiple attributes. # Ex: current_path, # primary_path, # backup_path if 'path' in attribute and attribute != 'dynamic_backup_path': data[attribute] = Path([self._link_from_dict(link) for link in value]) return data def _evc_from_dict(self, evc_dict): data = self._evc_dict_with_instances(evc_dict) return EVC(self.controller, **data) def _uni_from_dict(self, uni_dict): """Return a UNI object from python dict.""" if uni_dict is None: return False interface_id = uni_dict.get("interface_id") interface = self.controller.get_interface_by_id(interface_id) if interface is None: raise ValueError(f'Could not instantiate interface {interface_id}') tag_dict = uni_dict.get('tag', None) if tag_dict: tag = TAG.from_dict(tag_dict) else: tag = None uni = UNI(interface, tag) return uni def _link_from_dict(self, link_dict): """Return a Link object from python dict.""" id_a = link_dict.get('endpoint_a').get('id') id_b = link_dict.get('endpoint_b').get('id') endpoint_a = self.controller.get_interface_by_id(id_a) endpoint_b = self.controller.get_interface_by_id(id_b) link = Link(endpoint_a, endpoint_b) if 'metadata' in link_dict: link.extend_metadata(link_dict.get('metadata')) s_vlan = link.get_metadata('s_vlan') if s_vlan: tag = TAG.from_dict(s_vlan) if tag is False: error_msg = f'Could not instantiate tag from dict {s_vlan}' raise ValueError(error_msg) link.update_metadata('s_vlan', tag) return link def _find_evc_by_schedule_id(self, schedule_id): """ Find an EVC and CircuitSchedule based on schedule_id. :param schedule_id: Schedule ID :return: EVC and Schedule """ circuits = self._get_circuits_buffer() found_schedule = None evc = None # pylint: disable=unused-variable for c_id, circuit in circuits.items(): for schedule in circuit.circuit_scheduler: if schedule.id == schedule_id: found_schedule = schedule evc = circuit break if found_schedule: break return evc, found_schedule def _get_circuits_buffer(self): """ Return the circuit buffer. If the buffer is empty, try to load data from storehouse. """ if not self.circuits: # Load storehouse circuits to buffer circuits = self.storehouse.get_data() for c_id, circuit in circuits.items(): evc = self._evc_from_dict(circuit) self.circuits[c_id] = evc return self.circuits @staticmethod def _json_from_request(caller): """Return a json from request. If it was not possible to get a json from the request, log, for debug, who was the caller and the error that ocurred, and raise an Exception. """ try: json_data = request.get_json() except ValueError as exception: log.error(exception) log.debug(f'{caller} result {exception} 400') raise BadRequest(str(exception)) except BadRequest: result = 'The request is not a valid JSON.' log.debug(f'{caller} result {result} 400') raise BadRequest(result) if json_data is None: result = 'Content-Type must be application/json' log.debug(f'{caller} result {result} 415') raise UnsupportedMediaType(result) return json_data
36.502392
79
0.579696
d275a74df6afb0d4e12a36bf299515bddea1659d
70
py
Python
genie/models/__init__.py
epfl-dlab/GenIE
62ae6af936c9375c36d3d5ad60401bf579875bd9
[ "MIT" ]
8
2022-02-08T11:12:37.000Z
2022-03-16T08:27:50.000Z
genie/models/__init__.py
epfl-dlab/GenIE
62ae6af936c9375c36d3d5ad60401bf579875bd9
[ "MIT" ]
1
2022-03-07T07:36:24.000Z
2022-03-07T20:58:12.000Z
genie/models/__init__.py
epfl-dlab/GenIE
62ae6af936c9375c36d3d5ad60401bf579875bd9
[ "MIT" ]
7
2022-02-22T22:48:35.000Z
2022-03-18T05:18:30.000Z
from .genie_base_hf import GenieHF from .genie_base_pl import GeniePL
23.333333
34
0.857143
25f658c22b0a38bd7ad8abc2167719a2a704c363
156,169
py
Python
nuitka/nodes/AttributeNodesGenerated.py
roired/Nuitka
d240a14b4b00c03d60050b4ba67382fb09c7dba8
[ "Apache-2.0" ]
null
null
null
nuitka/nodes/AttributeNodesGenerated.py
roired/Nuitka
d240a14b4b00c03d60050b4ba67382fb09c7dba8
[ "Apache-2.0" ]
null
null
null
nuitka/nodes/AttributeNodesGenerated.py
roired/Nuitka
d240a14b4b00c03d60050b4ba67382fb09c7dba8
[ "Apache-2.0" ]
null
null
null
# Copyright 2021, Kay Hayen, mailto:kay.hayen@gmail.com # # Part of "Nuitka", an optimizing Python compiler that is compatible and # integrates with CPython, but also works on its own. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """Specialized attribute nodes WARNING, this code is GENERATED. Modify the template AttributeNodeFixed.py.j2 instead! """ from nuitka.specs.BuiltinParameterSpecs import extractBuiltinArgs from .AttributeLookupNodes import ExpressionAttributeLookupFixedBase from .NodeBases import SideEffectsFromChildrenMixin attribute_classes = {} attribute_typed_classes = set() class ExpressionAttributeLookupFixedCapitalize(ExpressionAttributeLookupFixedBase): """Looking up an attribute value 'capitalize' of an object. Typically code like: source.capitalize """ kind = "EXPRESSION_ATTRIBUTE_LOOKUP_FIXED_CAPITALIZE" attribute_name = "capitalize" def computeExpression(self, trace_collection): subnode_expression = self.subnode_expression if subnode_expression.hasShapeStrExact(): result = ExpressionAttributeLookupStrCapitalize( expression=subnode_expression, source_ref=self.source_ref ) return ( result, "new_expression", "Attribute lookup 'capitalize' on str shape resolved.", ) return subnode_expression.computeExpressionAttribute( lookup_node=self, attribute_name="capitalize", trace_collection=trace_collection, ) def mayRaiseException(self, exception_type): return self.subnode_expression.mayRaiseExceptionAttributeLookup( exception_type=exception_type, attribute_name="capitalize" ) attribute_classes["capitalize"] = ExpressionAttributeLookupFixedCapitalize from nuitka.specs.BuiltinStrOperationSpecs import str_capitalize_spec class ExpressionAttributeLookupStrCapitalize( SideEffectsFromChildrenMixin, ExpressionAttributeLookupFixedCapitalize ): """Attribute Capitalize lookup on a str. Typically code like: some_str.capitalize """ kind = "EXPRESSION_ATTRIBUTE_LOOKUP_STR_CAPITALIZE" attribute_name = "capitalize" def computeExpression(self, trace_collection): return self, None, None def computeExpressionCall(self, call_node, call_args, call_kw, trace_collection): def wrapExpressionStrOperationCapitalize(source_ref): from .StrNodes import ExpressionStrOperationCapitalize return ExpressionStrOperationCapitalize( str_arg=self.subnode_expression, source_ref=source_ref ) # Anything may happen. On next pass, if replaced, we might be better # but not now. trace_collection.onExceptionRaiseExit(BaseException) result = extractBuiltinArgs( node=call_node, builtin_class=wrapExpressionStrOperationCapitalize, builtin_spec=str_capitalize_spec, ) return result, "new_expression", "Call to 'capitalize' of str recognized." attribute_typed_classes.add(ExpressionAttributeLookupStrCapitalize) class ExpressionAttributeLookupFixedCasefold(ExpressionAttributeLookupFixedBase): """Looking up an attribute value 'casefold' of an object. Typically code like: source.casefold """ kind = "EXPRESSION_ATTRIBUTE_LOOKUP_FIXED_CASEFOLD" attribute_name = "casefold" def computeExpression(self, trace_collection): subnode_expression = self.subnode_expression if str is not bytes and subnode_expression.hasShapeStrExact(): result = ExpressionAttributeLookupStrCasefold( expression=subnode_expression, source_ref=self.source_ref ) return ( result, "new_expression", "Attribute lookup 'casefold' on str shape resolved.", ) return subnode_expression.computeExpressionAttribute( lookup_node=self, attribute_name="casefold", trace_collection=trace_collection, ) def mayRaiseException(self, exception_type): return self.subnode_expression.mayRaiseExceptionAttributeLookup( exception_type=exception_type, attribute_name="casefold" ) attribute_classes["casefold"] = ExpressionAttributeLookupFixedCasefold class ExpressionAttributeLookupStrCasefold( SideEffectsFromChildrenMixin, ExpressionAttributeLookupFixedCasefold ): """Attribute Casefold lookup on a str. Typically code like: some_str.casefold """ kind = "EXPRESSION_ATTRIBUTE_LOOKUP_STR_CASEFOLD" attribute_name = "casefold" def computeExpression(self, trace_collection): return self, None, None # No computeExpressionCall as str operation ExpressionStrOperationCasefold is not yet implemented attribute_typed_classes.add(ExpressionAttributeLookupStrCasefold) class ExpressionAttributeLookupFixedCenter(ExpressionAttributeLookupFixedBase): """Looking up an attribute value 'center' of an object. Typically code like: source.center """ kind = "EXPRESSION_ATTRIBUTE_LOOKUP_FIXED_CENTER" attribute_name = "center" def computeExpression(self, trace_collection): subnode_expression = self.subnode_expression if subnode_expression.hasShapeStrExact(): result = ExpressionAttributeLookupStrCenter( expression=subnode_expression, source_ref=self.source_ref ) return ( result, "new_expression", "Attribute lookup 'center' on str shape resolved.", ) return subnode_expression.computeExpressionAttribute( lookup_node=self, attribute_name="center", trace_collection=trace_collection, ) def mayRaiseException(self, exception_type): return self.subnode_expression.mayRaiseExceptionAttributeLookup( exception_type=exception_type, attribute_name="center" ) attribute_classes["center"] = ExpressionAttributeLookupFixedCenter class ExpressionAttributeLookupStrCenter( SideEffectsFromChildrenMixin, ExpressionAttributeLookupFixedCenter ): """Attribute Center lookup on a str. Typically code like: some_str.center """ kind = "EXPRESSION_ATTRIBUTE_LOOKUP_STR_CENTER" attribute_name = "center" def computeExpression(self, trace_collection): return self, None, None # No computeExpressionCall as str operation ExpressionStrOperationCenter is not yet implemented attribute_typed_classes.add(ExpressionAttributeLookupStrCenter) class ExpressionAttributeLookupFixedClear(ExpressionAttributeLookupFixedBase): """Looking up an attribute value 'clear' of an object. Typically code like: source.clear """ kind = "EXPRESSION_ATTRIBUTE_LOOKUP_FIXED_CLEAR" attribute_name = "clear" def computeExpression(self, trace_collection): subnode_expression = self.subnode_expression if subnode_expression.hasShapeDictionaryExact(): result = ExpressionAttributeLookupDictClear( expression=subnode_expression, source_ref=self.source_ref ) return ( result, "new_expression", "Attribute lookup 'clear' on dict shape resolved.", ) return subnode_expression.computeExpressionAttribute( lookup_node=self, attribute_name="clear", trace_collection=trace_collection, ) def mayRaiseException(self, exception_type): return self.subnode_expression.mayRaiseExceptionAttributeLookup( exception_type=exception_type, attribute_name="clear" ) attribute_classes["clear"] = ExpressionAttributeLookupFixedClear from nuitka.specs.BuiltinDictOperationSpecs import dict_clear_spec class ExpressionAttributeLookupDictClear( SideEffectsFromChildrenMixin, ExpressionAttributeLookupFixedClear ): """Attribute Clear lookup on a dict. Typically code like: some_dict.clear """ kind = "EXPRESSION_ATTRIBUTE_LOOKUP_DICT_CLEAR" attribute_name = "clear" def computeExpression(self, trace_collection): return self, None, None def computeExpressionCall(self, call_node, call_args, call_kw, trace_collection): def wrapExpressionDictOperationClear(source_ref): from .DictionaryNodes import ExpressionDictOperationClear return ExpressionDictOperationClear( dict_arg=self.subnode_expression, source_ref=source_ref ) # Anything may happen. On next pass, if replaced, we might be better # but not now. trace_collection.onExceptionRaiseExit(BaseException) result = extractBuiltinArgs( node=call_node, builtin_class=wrapExpressionDictOperationClear, builtin_spec=dict_clear_spec, ) return result, "new_expression", "Call to 'clear' of dictionary recognized." attribute_typed_classes.add(ExpressionAttributeLookupDictClear) class ExpressionAttributeLookupFixedCopy(ExpressionAttributeLookupFixedBase): """Looking up an attribute value 'copy' of an object. Typically code like: source.copy """ kind = "EXPRESSION_ATTRIBUTE_LOOKUP_FIXED_COPY" attribute_name = "copy" def computeExpression(self, trace_collection): subnode_expression = self.subnode_expression if subnode_expression.hasShapeDictionaryExact(): result = ExpressionAttributeLookupDictCopy( expression=subnode_expression, source_ref=self.source_ref ) return ( result, "new_expression", "Attribute lookup 'copy' on dict shape resolved.", ) return subnode_expression.computeExpressionAttribute( lookup_node=self, attribute_name="copy", trace_collection=trace_collection, ) def mayRaiseException(self, exception_type): return self.subnode_expression.mayRaiseExceptionAttributeLookup( exception_type=exception_type, attribute_name="copy" ) attribute_classes["copy"] = ExpressionAttributeLookupFixedCopy from nuitka.specs.BuiltinDictOperationSpecs import dict_copy_spec class ExpressionAttributeLookupDictCopy( SideEffectsFromChildrenMixin, ExpressionAttributeLookupFixedCopy ): """Attribute Copy lookup on a dict. Typically code like: some_dict.copy """ kind = "EXPRESSION_ATTRIBUTE_LOOKUP_DICT_COPY" attribute_name = "copy" def computeExpression(self, trace_collection): return self, None, None def computeExpressionCall(self, call_node, call_args, call_kw, trace_collection): def wrapExpressionDictOperationCopy(source_ref): from .DictionaryNodes import ExpressionDictOperationCopy return ExpressionDictOperationCopy( dict_arg=self.subnode_expression, source_ref=source_ref ) # Anything may happen. On next pass, if replaced, we might be better # but not now. trace_collection.onExceptionRaiseExit(BaseException) result = extractBuiltinArgs( node=call_node, builtin_class=wrapExpressionDictOperationCopy, builtin_spec=dict_copy_spec, ) return result, "new_expression", "Call to 'copy' of dictionary recognized." attribute_typed_classes.add(ExpressionAttributeLookupDictCopy) class ExpressionAttributeLookupFixedCount(ExpressionAttributeLookupFixedBase): """Looking up an attribute value 'count' of an object. Typically code like: source.count """ kind = "EXPRESSION_ATTRIBUTE_LOOKUP_FIXED_COUNT" attribute_name = "count" def computeExpression(self, trace_collection): subnode_expression = self.subnode_expression if subnode_expression.hasShapeStrExact(): result = ExpressionAttributeLookupStrCount( expression=subnode_expression, source_ref=self.source_ref ) return ( result, "new_expression", "Attribute lookup 'count' on str shape resolved.", ) return subnode_expression.computeExpressionAttribute( lookup_node=self, attribute_name="count", trace_collection=trace_collection, ) def mayRaiseException(self, exception_type): return self.subnode_expression.mayRaiseExceptionAttributeLookup( exception_type=exception_type, attribute_name="count" ) attribute_classes["count"] = ExpressionAttributeLookupFixedCount class ExpressionAttributeLookupStrCount( SideEffectsFromChildrenMixin, ExpressionAttributeLookupFixedCount ): """Attribute Count lookup on a str. Typically code like: some_str.count """ kind = "EXPRESSION_ATTRIBUTE_LOOKUP_STR_COUNT" attribute_name = "count" def computeExpression(self, trace_collection): return self, None, None # No computeExpressionCall as str operation ExpressionStrOperationCount is not yet implemented attribute_typed_classes.add(ExpressionAttributeLookupStrCount) class ExpressionAttributeLookupFixedDecode(ExpressionAttributeLookupFixedBase): """Looking up an attribute value 'decode' of an object. Typically code like: source.decode """ kind = "EXPRESSION_ATTRIBUTE_LOOKUP_FIXED_DECODE" attribute_name = "decode" def computeExpression(self, trace_collection): subnode_expression = self.subnode_expression if str is bytes and subnode_expression.hasShapeStrExact(): result = ExpressionAttributeLookupStrDecode( expression=subnode_expression, source_ref=self.source_ref ) return ( result, "new_expression", "Attribute lookup 'decode' on str shape resolved.", ) return subnode_expression.computeExpressionAttribute( lookup_node=self, attribute_name="decode", trace_collection=trace_collection, ) def mayRaiseException(self, exception_type): return self.subnode_expression.mayRaiseExceptionAttributeLookup( exception_type=exception_type, attribute_name="decode" ) attribute_classes["decode"] = ExpressionAttributeLookupFixedDecode class ExpressionAttributeLookupStrDecode( SideEffectsFromChildrenMixin, ExpressionAttributeLookupFixedDecode ): """Attribute Decode lookup on a str. Typically code like: some_str.decode """ kind = "EXPRESSION_ATTRIBUTE_LOOKUP_STR_DECODE" attribute_name = "decode" def computeExpression(self, trace_collection): return self, None, None # No computeExpressionCall as str operation ExpressionStrOperationDecode is not yet implemented attribute_typed_classes.add(ExpressionAttributeLookupStrDecode) class ExpressionAttributeLookupFixedEncode(ExpressionAttributeLookupFixedBase): """Looking up an attribute value 'encode' of an object. Typically code like: source.encode """ kind = "EXPRESSION_ATTRIBUTE_LOOKUP_FIXED_ENCODE" attribute_name = "encode" def computeExpression(self, trace_collection): subnode_expression = self.subnode_expression if subnode_expression.hasShapeStrExact(): result = ExpressionAttributeLookupStrEncode( expression=subnode_expression, source_ref=self.source_ref ) return ( result, "new_expression", "Attribute lookup 'encode' on str shape resolved.", ) return subnode_expression.computeExpressionAttribute( lookup_node=self, attribute_name="encode", trace_collection=trace_collection, ) def mayRaiseException(self, exception_type): return self.subnode_expression.mayRaiseExceptionAttributeLookup( exception_type=exception_type, attribute_name="encode" ) attribute_classes["encode"] = ExpressionAttributeLookupFixedEncode class ExpressionAttributeLookupStrEncode( SideEffectsFromChildrenMixin, ExpressionAttributeLookupFixedEncode ): """Attribute Encode lookup on a str. Typically code like: some_str.encode """ kind = "EXPRESSION_ATTRIBUTE_LOOKUP_STR_ENCODE" attribute_name = "encode" def computeExpression(self, trace_collection): return self, None, None # No computeExpressionCall as str operation ExpressionStrOperationEncode is not yet implemented attribute_typed_classes.add(ExpressionAttributeLookupStrEncode) class ExpressionAttributeLookupFixedEndswith(ExpressionAttributeLookupFixedBase): """Looking up an attribute value 'endswith' of an object. Typically code like: source.endswith """ kind = "EXPRESSION_ATTRIBUTE_LOOKUP_FIXED_ENDSWITH" attribute_name = "endswith" def computeExpression(self, trace_collection): subnode_expression = self.subnode_expression if subnode_expression.hasShapeStrExact(): result = ExpressionAttributeLookupStrEndswith( expression=subnode_expression, source_ref=self.source_ref ) return ( result, "new_expression", "Attribute lookup 'endswith' on str shape resolved.", ) return subnode_expression.computeExpressionAttribute( lookup_node=self, attribute_name="endswith", trace_collection=trace_collection, ) def mayRaiseException(self, exception_type): return self.subnode_expression.mayRaiseExceptionAttributeLookup( exception_type=exception_type, attribute_name="endswith" ) attribute_classes["endswith"] = ExpressionAttributeLookupFixedEndswith from nuitka.specs.BuiltinStrOperationSpecs import str_endswith_spec class ExpressionAttributeLookupStrEndswith( SideEffectsFromChildrenMixin, ExpressionAttributeLookupFixedEndswith ): """Attribute Endswith lookup on a str. Typically code like: some_str.endswith """ kind = "EXPRESSION_ATTRIBUTE_LOOKUP_STR_ENDSWITH" attribute_name = "endswith" def computeExpression(self, trace_collection): return self, None, None def computeExpressionCall(self, call_node, call_args, call_kw, trace_collection): def wrapExpressionStrOperationEndswith(suffix, start, end, source_ref): if end is not None: from .StrNodes import ExpressionStrOperationEndswith4 return ExpressionStrOperationEndswith4( str_arg=self.subnode_expression, suffix=suffix, start=start, end=end, source_ref=source_ref, ) elif start is not None: from .StrNodes import ExpressionStrOperationEndswith3 return ExpressionStrOperationEndswith3( str_arg=self.subnode_expression, suffix=suffix, start=start, source_ref=source_ref, ) else: from .StrNodes import ExpressionStrOperationEndswith2 return ExpressionStrOperationEndswith2( str_arg=self.subnode_expression, suffix=suffix, source_ref=source_ref, ) # Anything may happen. On next pass, if replaced, we might be better # but not now. trace_collection.onExceptionRaiseExit(BaseException) result = extractBuiltinArgs( node=call_node, builtin_class=wrapExpressionStrOperationEndswith, builtin_spec=str_endswith_spec, ) return result, "new_expression", "Call to 'endswith' of str recognized." attribute_typed_classes.add(ExpressionAttributeLookupStrEndswith) class ExpressionAttributeLookupFixedExpandtabs(ExpressionAttributeLookupFixedBase): """Looking up an attribute value 'expandtabs' of an object. Typically code like: source.expandtabs """ kind = "EXPRESSION_ATTRIBUTE_LOOKUP_FIXED_EXPANDTABS" attribute_name = "expandtabs" def computeExpression(self, trace_collection): subnode_expression = self.subnode_expression if subnode_expression.hasShapeStrExact(): result = ExpressionAttributeLookupStrExpandtabs( expression=subnode_expression, source_ref=self.source_ref ) return ( result, "new_expression", "Attribute lookup 'expandtabs' on str shape resolved.", ) return subnode_expression.computeExpressionAttribute( lookup_node=self, attribute_name="expandtabs", trace_collection=trace_collection, ) def mayRaiseException(self, exception_type): return self.subnode_expression.mayRaiseExceptionAttributeLookup( exception_type=exception_type, attribute_name="expandtabs" ) attribute_classes["expandtabs"] = ExpressionAttributeLookupFixedExpandtabs class ExpressionAttributeLookupStrExpandtabs( SideEffectsFromChildrenMixin, ExpressionAttributeLookupFixedExpandtabs ): """Attribute Expandtabs lookup on a str. Typically code like: some_str.expandtabs """ kind = "EXPRESSION_ATTRIBUTE_LOOKUP_STR_EXPANDTABS" attribute_name = "expandtabs" def computeExpression(self, trace_collection): return self, None, None # No computeExpressionCall as str operation ExpressionStrOperationExpandtabs is not yet implemented attribute_typed_classes.add(ExpressionAttributeLookupStrExpandtabs) class ExpressionAttributeLookupFixedFind(ExpressionAttributeLookupFixedBase): """Looking up an attribute value 'find' of an object. Typically code like: source.find """ kind = "EXPRESSION_ATTRIBUTE_LOOKUP_FIXED_FIND" attribute_name = "find" def computeExpression(self, trace_collection): subnode_expression = self.subnode_expression if subnode_expression.hasShapeStrExact(): result = ExpressionAttributeLookupStrFind( expression=subnode_expression, source_ref=self.source_ref ) return ( result, "new_expression", "Attribute lookup 'find' on str shape resolved.", ) return subnode_expression.computeExpressionAttribute( lookup_node=self, attribute_name="find", trace_collection=trace_collection, ) def mayRaiseException(self, exception_type): return self.subnode_expression.mayRaiseExceptionAttributeLookup( exception_type=exception_type, attribute_name="find" ) attribute_classes["find"] = ExpressionAttributeLookupFixedFind from nuitka.specs.BuiltinStrOperationSpecs import str_find_spec class ExpressionAttributeLookupStrFind( SideEffectsFromChildrenMixin, ExpressionAttributeLookupFixedFind ): """Attribute Find lookup on a str. Typically code like: some_str.find """ kind = "EXPRESSION_ATTRIBUTE_LOOKUP_STR_FIND" attribute_name = "find" def computeExpression(self, trace_collection): return self, None, None def computeExpressionCall(self, call_node, call_args, call_kw, trace_collection): def wrapExpressionStrOperationFind(sub, start, end, source_ref): if end is not None: from .StrNodes import ExpressionStrOperationFind4 return ExpressionStrOperationFind4( str_arg=self.subnode_expression, sub=sub, start=start, end=end, source_ref=source_ref, ) elif start is not None: from .StrNodes import ExpressionStrOperationFind3 return ExpressionStrOperationFind3( str_arg=self.subnode_expression, sub=sub, start=start, source_ref=source_ref, ) else: from .StrNodes import ExpressionStrOperationFind2 return ExpressionStrOperationFind2( str_arg=self.subnode_expression, sub=sub, source_ref=source_ref ) # Anything may happen. On next pass, if replaced, we might be better # but not now. trace_collection.onExceptionRaiseExit(BaseException) result = extractBuiltinArgs( node=call_node, builtin_class=wrapExpressionStrOperationFind, builtin_spec=str_find_spec, ) return result, "new_expression", "Call to 'find' of str recognized." attribute_typed_classes.add(ExpressionAttributeLookupStrFind) class ExpressionAttributeLookupFixedFormat(ExpressionAttributeLookupFixedBase): """Looking up an attribute value 'format' of an object. Typically code like: source.format """ kind = "EXPRESSION_ATTRIBUTE_LOOKUP_FIXED_FORMAT" attribute_name = "format" def computeExpression(self, trace_collection): subnode_expression = self.subnode_expression if subnode_expression.hasShapeStrExact(): result = ExpressionAttributeLookupStrFormat( expression=subnode_expression, source_ref=self.source_ref ) return ( result, "new_expression", "Attribute lookup 'format' on str shape resolved.", ) return subnode_expression.computeExpressionAttribute( lookup_node=self, attribute_name="format", trace_collection=trace_collection, ) def mayRaiseException(self, exception_type): return self.subnode_expression.mayRaiseExceptionAttributeLookup( exception_type=exception_type, attribute_name="format" ) attribute_classes["format"] = ExpressionAttributeLookupFixedFormat class ExpressionAttributeLookupStrFormat( SideEffectsFromChildrenMixin, ExpressionAttributeLookupFixedFormat ): """Attribute Format lookup on a str. Typically code like: some_str.format """ kind = "EXPRESSION_ATTRIBUTE_LOOKUP_STR_FORMAT" attribute_name = "format" def computeExpression(self, trace_collection): return self, None, None # No computeExpressionCall as str operation ExpressionStrOperationFormat is not yet implemented attribute_typed_classes.add(ExpressionAttributeLookupStrFormat) class ExpressionAttributeLookupFixedFormatmap(ExpressionAttributeLookupFixedBase): """Looking up an attribute value 'format_map' of an object. Typically code like: source.format_map """ kind = "EXPRESSION_ATTRIBUTE_LOOKUP_FIXED_FORMATMAP" attribute_name = "format_map" def computeExpression(self, trace_collection): subnode_expression = self.subnode_expression if str is not bytes and subnode_expression.hasShapeStrExact(): result = ExpressionAttributeLookupStrFormatmap( expression=subnode_expression, source_ref=self.source_ref ) return ( result, "new_expression", "Attribute lookup 'format_map' on str shape resolved.", ) return subnode_expression.computeExpressionAttribute( lookup_node=self, attribute_name="format_map", trace_collection=trace_collection, ) def mayRaiseException(self, exception_type): return self.subnode_expression.mayRaiseExceptionAttributeLookup( exception_type=exception_type, attribute_name="format_map" ) attribute_classes["format_map"] = ExpressionAttributeLookupFixedFormatmap class ExpressionAttributeLookupStrFormatmap( SideEffectsFromChildrenMixin, ExpressionAttributeLookupFixedFormatmap ): """Attribute Formatmap lookup on a str. Typically code like: some_str.format_map """ kind = "EXPRESSION_ATTRIBUTE_LOOKUP_STR_FORMATMAP" attribute_name = "format_map" def computeExpression(self, trace_collection): return self, None, None # No computeExpressionCall as str operation ExpressionStrOperationFormatmap is not yet implemented attribute_typed_classes.add(ExpressionAttributeLookupStrFormatmap) class ExpressionAttributeLookupFixedFromkeys(ExpressionAttributeLookupFixedBase): """Looking up an attribute value 'fromkeys' of an object. Typically code like: source.fromkeys """ kind = "EXPRESSION_ATTRIBUTE_LOOKUP_FIXED_FROMKEYS" attribute_name = "fromkeys" def computeExpression(self, trace_collection): subnode_expression = self.subnode_expression if subnode_expression.hasShapeDictionaryExact(): result = ExpressionAttributeLookupDictFromkeys( expression=subnode_expression, source_ref=self.source_ref ) return ( result, "new_expression", "Attribute lookup 'fromkeys' on dict shape resolved.", ) return subnode_expression.computeExpressionAttribute( lookup_node=self, attribute_name="fromkeys", trace_collection=trace_collection, ) def mayRaiseException(self, exception_type): return self.subnode_expression.mayRaiseExceptionAttributeLookup( exception_type=exception_type, attribute_name="fromkeys" ) attribute_classes["fromkeys"] = ExpressionAttributeLookupFixedFromkeys class ExpressionAttributeLookupDictFromkeys( SideEffectsFromChildrenMixin, ExpressionAttributeLookupFixedFromkeys ): """Attribute Fromkeys lookup on a dict. Typically code like: some_dict.fromkeys """ kind = "EXPRESSION_ATTRIBUTE_LOOKUP_DICT_FROMKEYS" attribute_name = "fromkeys" def computeExpression(self, trace_collection): return self, None, None # No computeExpressionCall as dict operation ExpressionDictOperationFromkeys is not yet implemented attribute_typed_classes.add(ExpressionAttributeLookupDictFromkeys) class ExpressionAttributeLookupFixedGet(ExpressionAttributeLookupFixedBase): """Looking up an attribute value 'get' of an object. Typically code like: source.get """ kind = "EXPRESSION_ATTRIBUTE_LOOKUP_FIXED_GET" attribute_name = "get" def computeExpression(self, trace_collection): subnode_expression = self.subnode_expression if subnode_expression.hasShapeDictionaryExact(): result = ExpressionAttributeLookupDictGet( expression=subnode_expression, source_ref=self.source_ref ) return ( result, "new_expression", "Attribute lookup 'get' on dict shape resolved.", ) return subnode_expression.computeExpressionAttribute( lookup_node=self, attribute_name="get", trace_collection=trace_collection, ) def mayRaiseException(self, exception_type): return self.subnode_expression.mayRaiseExceptionAttributeLookup( exception_type=exception_type, attribute_name="get" ) attribute_classes["get"] = ExpressionAttributeLookupFixedGet from nuitka.specs.BuiltinDictOperationSpecs import dict_get_spec class ExpressionAttributeLookupDictGet( SideEffectsFromChildrenMixin, ExpressionAttributeLookupFixedGet ): """Attribute Get lookup on a dict. Typically code like: some_dict.get """ kind = "EXPRESSION_ATTRIBUTE_LOOKUP_DICT_GET" attribute_name = "get" def computeExpression(self, trace_collection): return self, None, None def computeExpressionCall(self, call_node, call_args, call_kw, trace_collection): def wrapExpressionDictOperationGet(key, default, source_ref): if default is not None: from .DictionaryNodes import ExpressionDictOperationGet3 return ExpressionDictOperationGet3( dict_arg=self.subnode_expression, key=key, default=default, source_ref=source_ref, ) else: from .DictionaryNodes import ExpressionDictOperationGet2 return ExpressionDictOperationGet2( dict_arg=self.subnode_expression, key=key, source_ref=source_ref ) # Anything may happen. On next pass, if replaced, we might be better # but not now. trace_collection.onExceptionRaiseExit(BaseException) result = extractBuiltinArgs( node=call_node, builtin_class=wrapExpressionDictOperationGet, builtin_spec=dict_get_spec, ) return result, "new_expression", "Call to 'get' of dictionary recognized." attribute_typed_classes.add(ExpressionAttributeLookupDictGet) class ExpressionAttributeLookupFixedHaskey(ExpressionAttributeLookupFixedBase): """Looking up an attribute value 'has_key' of an object. Typically code like: source.has_key """ kind = "EXPRESSION_ATTRIBUTE_LOOKUP_FIXED_HASKEY" attribute_name = "has_key" def computeExpression(self, trace_collection): subnode_expression = self.subnode_expression if str is bytes and subnode_expression.hasShapeDictionaryExact(): result = ExpressionAttributeLookupDictHaskey( expression=subnode_expression, source_ref=self.source_ref ) return ( result, "new_expression", "Attribute lookup 'has_key' on dict shape resolved.", ) return subnode_expression.computeExpressionAttribute( lookup_node=self, attribute_name="has_key", trace_collection=trace_collection, ) def mayRaiseException(self, exception_type): return self.subnode_expression.mayRaiseExceptionAttributeLookup( exception_type=exception_type, attribute_name="has_key" ) attribute_classes["has_key"] = ExpressionAttributeLookupFixedHaskey from nuitka.specs.BuiltinDictOperationSpecs import dict_has_key_spec class ExpressionAttributeLookupDictHaskey( SideEffectsFromChildrenMixin, ExpressionAttributeLookupFixedHaskey ): """Attribute Haskey lookup on a dict. Typically code like: some_dict.has_key """ kind = "EXPRESSION_ATTRIBUTE_LOOKUP_DICT_HASKEY" attribute_name = "has_key" def computeExpression(self, trace_collection): return self, None, None def computeExpressionCall(self, call_node, call_args, call_kw, trace_collection): def wrapExpressionDictOperationHaskey(key, source_ref): from .DictionaryNodes import ExpressionDictOperationHaskey return ExpressionDictOperationHaskey( dict_arg=self.subnode_expression, key=key, source_ref=source_ref ) # Anything may happen. On next pass, if replaced, we might be better # but not now. trace_collection.onExceptionRaiseExit(BaseException) result = extractBuiltinArgs( node=call_node, builtin_class=wrapExpressionDictOperationHaskey, builtin_spec=dict_has_key_spec, ) return result, "new_expression", "Call to 'has_key' of dictionary recognized." attribute_typed_classes.add(ExpressionAttributeLookupDictHaskey) class ExpressionAttributeLookupFixedIndex(ExpressionAttributeLookupFixedBase): """Looking up an attribute value 'index' of an object. Typically code like: source.index """ kind = "EXPRESSION_ATTRIBUTE_LOOKUP_FIXED_INDEX" attribute_name = "index" def computeExpression(self, trace_collection): subnode_expression = self.subnode_expression if subnode_expression.hasShapeStrExact(): result = ExpressionAttributeLookupStrIndex( expression=subnode_expression, source_ref=self.source_ref ) return ( result, "new_expression", "Attribute lookup 'index' on str shape resolved.", ) return subnode_expression.computeExpressionAttribute( lookup_node=self, attribute_name="index", trace_collection=trace_collection, ) def mayRaiseException(self, exception_type): return self.subnode_expression.mayRaiseExceptionAttributeLookup( exception_type=exception_type, attribute_name="index" ) attribute_classes["index"] = ExpressionAttributeLookupFixedIndex from nuitka.specs.BuiltinStrOperationSpecs import str_index_spec class ExpressionAttributeLookupStrIndex( SideEffectsFromChildrenMixin, ExpressionAttributeLookupFixedIndex ): """Attribute Index lookup on a str. Typically code like: some_str.index """ kind = "EXPRESSION_ATTRIBUTE_LOOKUP_STR_INDEX" attribute_name = "index" def computeExpression(self, trace_collection): return self, None, None def computeExpressionCall(self, call_node, call_args, call_kw, trace_collection): def wrapExpressionStrOperationIndex(sub, start, end, source_ref): if end is not None: from .StrNodes import ExpressionStrOperationIndex4 return ExpressionStrOperationIndex4( str_arg=self.subnode_expression, sub=sub, start=start, end=end, source_ref=source_ref, ) elif start is not None: from .StrNodes import ExpressionStrOperationIndex3 return ExpressionStrOperationIndex3( str_arg=self.subnode_expression, sub=sub, start=start, source_ref=source_ref, ) else: from .StrNodes import ExpressionStrOperationIndex2 return ExpressionStrOperationIndex2( str_arg=self.subnode_expression, sub=sub, source_ref=source_ref ) # Anything may happen. On next pass, if replaced, we might be better # but not now. trace_collection.onExceptionRaiseExit(BaseException) result = extractBuiltinArgs( node=call_node, builtin_class=wrapExpressionStrOperationIndex, builtin_spec=str_index_spec, ) return result, "new_expression", "Call to 'index' of str recognized." attribute_typed_classes.add(ExpressionAttributeLookupStrIndex) class ExpressionAttributeLookupFixedIsalnum(ExpressionAttributeLookupFixedBase): """Looking up an attribute value 'isalnum' of an object. Typically code like: source.isalnum """ kind = "EXPRESSION_ATTRIBUTE_LOOKUP_FIXED_ISALNUM" attribute_name = "isalnum" def computeExpression(self, trace_collection): subnode_expression = self.subnode_expression if subnode_expression.hasShapeStrExact(): result = ExpressionAttributeLookupStrIsalnum( expression=subnode_expression, source_ref=self.source_ref ) return ( result, "new_expression", "Attribute lookup 'isalnum' on str shape resolved.", ) return subnode_expression.computeExpressionAttribute( lookup_node=self, attribute_name="isalnum", trace_collection=trace_collection, ) def mayRaiseException(self, exception_type): return self.subnode_expression.mayRaiseExceptionAttributeLookup( exception_type=exception_type, attribute_name="isalnum" ) attribute_classes["isalnum"] = ExpressionAttributeLookupFixedIsalnum from nuitka.specs.BuiltinStrOperationSpecs import str_isalnum_spec class ExpressionAttributeLookupStrIsalnum( SideEffectsFromChildrenMixin, ExpressionAttributeLookupFixedIsalnum ): """Attribute Isalnum lookup on a str. Typically code like: some_str.isalnum """ kind = "EXPRESSION_ATTRIBUTE_LOOKUP_STR_ISALNUM" attribute_name = "isalnum" def computeExpression(self, trace_collection): return self, None, None def computeExpressionCall(self, call_node, call_args, call_kw, trace_collection): def wrapExpressionStrOperationIsalnum(source_ref): from .StrNodes import ExpressionStrOperationIsalnum return ExpressionStrOperationIsalnum( str_arg=self.subnode_expression, source_ref=source_ref ) # Anything may happen. On next pass, if replaced, we might be better # but not now. trace_collection.onExceptionRaiseExit(BaseException) result = extractBuiltinArgs( node=call_node, builtin_class=wrapExpressionStrOperationIsalnum, builtin_spec=str_isalnum_spec, ) return result, "new_expression", "Call to 'isalnum' of str recognized." attribute_typed_classes.add(ExpressionAttributeLookupStrIsalnum) class ExpressionAttributeLookupFixedIsalpha(ExpressionAttributeLookupFixedBase): """Looking up an attribute value 'isalpha' of an object. Typically code like: source.isalpha """ kind = "EXPRESSION_ATTRIBUTE_LOOKUP_FIXED_ISALPHA" attribute_name = "isalpha" def computeExpression(self, trace_collection): subnode_expression = self.subnode_expression if subnode_expression.hasShapeStrExact(): result = ExpressionAttributeLookupStrIsalpha( expression=subnode_expression, source_ref=self.source_ref ) return ( result, "new_expression", "Attribute lookup 'isalpha' on str shape resolved.", ) return subnode_expression.computeExpressionAttribute( lookup_node=self, attribute_name="isalpha", trace_collection=trace_collection, ) def mayRaiseException(self, exception_type): return self.subnode_expression.mayRaiseExceptionAttributeLookup( exception_type=exception_type, attribute_name="isalpha" ) attribute_classes["isalpha"] = ExpressionAttributeLookupFixedIsalpha from nuitka.specs.BuiltinStrOperationSpecs import str_isalpha_spec class ExpressionAttributeLookupStrIsalpha( SideEffectsFromChildrenMixin, ExpressionAttributeLookupFixedIsalpha ): """Attribute Isalpha lookup on a str. Typically code like: some_str.isalpha """ kind = "EXPRESSION_ATTRIBUTE_LOOKUP_STR_ISALPHA" attribute_name = "isalpha" def computeExpression(self, trace_collection): return self, None, None def computeExpressionCall(self, call_node, call_args, call_kw, trace_collection): def wrapExpressionStrOperationIsalpha(source_ref): from .StrNodes import ExpressionStrOperationIsalpha return ExpressionStrOperationIsalpha( str_arg=self.subnode_expression, source_ref=source_ref ) # Anything may happen. On next pass, if replaced, we might be better # but not now. trace_collection.onExceptionRaiseExit(BaseException) result = extractBuiltinArgs( node=call_node, builtin_class=wrapExpressionStrOperationIsalpha, builtin_spec=str_isalpha_spec, ) return result, "new_expression", "Call to 'isalpha' of str recognized." attribute_typed_classes.add(ExpressionAttributeLookupStrIsalpha) class ExpressionAttributeLookupFixedIsascii(ExpressionAttributeLookupFixedBase): """Looking up an attribute value 'isascii' of an object. Typically code like: source.isascii """ kind = "EXPRESSION_ATTRIBUTE_LOOKUP_FIXED_ISASCII" attribute_name = "isascii" def computeExpression(self, trace_collection): subnode_expression = self.subnode_expression if str is not bytes and subnode_expression.hasShapeStrExact(): result = ExpressionAttributeLookupStrIsascii( expression=subnode_expression, source_ref=self.source_ref ) return ( result, "new_expression", "Attribute lookup 'isascii' on str shape resolved.", ) return subnode_expression.computeExpressionAttribute( lookup_node=self, attribute_name="isascii", trace_collection=trace_collection, ) def mayRaiseException(self, exception_type): return self.subnode_expression.mayRaiseExceptionAttributeLookup( exception_type=exception_type, attribute_name="isascii" ) attribute_classes["isascii"] = ExpressionAttributeLookupFixedIsascii class ExpressionAttributeLookupStrIsascii( SideEffectsFromChildrenMixin, ExpressionAttributeLookupFixedIsascii ): """Attribute Isascii lookup on a str. Typically code like: some_str.isascii """ kind = "EXPRESSION_ATTRIBUTE_LOOKUP_STR_ISASCII" attribute_name = "isascii" def computeExpression(self, trace_collection): return self, None, None # No computeExpressionCall as str operation ExpressionStrOperationIsascii is not yet implemented attribute_typed_classes.add(ExpressionAttributeLookupStrIsascii) class ExpressionAttributeLookupFixedIsdecimal(ExpressionAttributeLookupFixedBase): """Looking up an attribute value 'isdecimal' of an object. Typically code like: source.isdecimal """ kind = "EXPRESSION_ATTRIBUTE_LOOKUP_FIXED_ISDECIMAL" attribute_name = "isdecimal" def computeExpression(self, trace_collection): subnode_expression = self.subnode_expression if str is not bytes and subnode_expression.hasShapeStrExact(): result = ExpressionAttributeLookupStrIsdecimal( expression=subnode_expression, source_ref=self.source_ref ) return ( result, "new_expression", "Attribute lookup 'isdecimal' on str shape resolved.", ) return subnode_expression.computeExpressionAttribute( lookup_node=self, attribute_name="isdecimal", trace_collection=trace_collection, ) def mayRaiseException(self, exception_type): return self.subnode_expression.mayRaiseExceptionAttributeLookup( exception_type=exception_type, attribute_name="isdecimal" ) attribute_classes["isdecimal"] = ExpressionAttributeLookupFixedIsdecimal class ExpressionAttributeLookupStrIsdecimal( SideEffectsFromChildrenMixin, ExpressionAttributeLookupFixedIsdecimal ): """Attribute Isdecimal lookup on a str. Typically code like: some_str.isdecimal """ kind = "EXPRESSION_ATTRIBUTE_LOOKUP_STR_ISDECIMAL" attribute_name = "isdecimal" def computeExpression(self, trace_collection): return self, None, None # No computeExpressionCall as str operation ExpressionStrOperationIsdecimal is not yet implemented attribute_typed_classes.add(ExpressionAttributeLookupStrIsdecimal) class ExpressionAttributeLookupFixedIsdigit(ExpressionAttributeLookupFixedBase): """Looking up an attribute value 'isdigit' of an object. Typically code like: source.isdigit """ kind = "EXPRESSION_ATTRIBUTE_LOOKUP_FIXED_ISDIGIT" attribute_name = "isdigit" def computeExpression(self, trace_collection): subnode_expression = self.subnode_expression if subnode_expression.hasShapeStrExact(): result = ExpressionAttributeLookupStrIsdigit( expression=subnode_expression, source_ref=self.source_ref ) return ( result, "new_expression", "Attribute lookup 'isdigit' on str shape resolved.", ) return subnode_expression.computeExpressionAttribute( lookup_node=self, attribute_name="isdigit", trace_collection=trace_collection, ) def mayRaiseException(self, exception_type): return self.subnode_expression.mayRaiseExceptionAttributeLookup( exception_type=exception_type, attribute_name="isdigit" ) attribute_classes["isdigit"] = ExpressionAttributeLookupFixedIsdigit from nuitka.specs.BuiltinStrOperationSpecs import str_isdigit_spec class ExpressionAttributeLookupStrIsdigit( SideEffectsFromChildrenMixin, ExpressionAttributeLookupFixedIsdigit ): """Attribute Isdigit lookup on a str. Typically code like: some_str.isdigit """ kind = "EXPRESSION_ATTRIBUTE_LOOKUP_STR_ISDIGIT" attribute_name = "isdigit" def computeExpression(self, trace_collection): return self, None, None def computeExpressionCall(self, call_node, call_args, call_kw, trace_collection): def wrapExpressionStrOperationIsdigit(source_ref): from .StrNodes import ExpressionStrOperationIsdigit return ExpressionStrOperationIsdigit( str_arg=self.subnode_expression, source_ref=source_ref ) # Anything may happen. On next pass, if replaced, we might be better # but not now. trace_collection.onExceptionRaiseExit(BaseException) result = extractBuiltinArgs( node=call_node, builtin_class=wrapExpressionStrOperationIsdigit, builtin_spec=str_isdigit_spec, ) return result, "new_expression", "Call to 'isdigit' of str recognized." attribute_typed_classes.add(ExpressionAttributeLookupStrIsdigit) class ExpressionAttributeLookupFixedIsidentifier(ExpressionAttributeLookupFixedBase): """Looking up an attribute value 'isidentifier' of an object. Typically code like: source.isidentifier """ kind = "EXPRESSION_ATTRIBUTE_LOOKUP_FIXED_ISIDENTIFIER" attribute_name = "isidentifier" def computeExpression(self, trace_collection): subnode_expression = self.subnode_expression if str is not bytes and subnode_expression.hasShapeStrExact(): result = ExpressionAttributeLookupStrIsidentifier( expression=subnode_expression, source_ref=self.source_ref ) return ( result, "new_expression", "Attribute lookup 'isidentifier' on str shape resolved.", ) return subnode_expression.computeExpressionAttribute( lookup_node=self, attribute_name="isidentifier", trace_collection=trace_collection, ) def mayRaiseException(self, exception_type): return self.subnode_expression.mayRaiseExceptionAttributeLookup( exception_type=exception_type, attribute_name="isidentifier" ) attribute_classes["isidentifier"] = ExpressionAttributeLookupFixedIsidentifier class ExpressionAttributeLookupStrIsidentifier( SideEffectsFromChildrenMixin, ExpressionAttributeLookupFixedIsidentifier ): """Attribute Isidentifier lookup on a str. Typically code like: some_str.isidentifier """ kind = "EXPRESSION_ATTRIBUTE_LOOKUP_STR_ISIDENTIFIER" attribute_name = "isidentifier" def computeExpression(self, trace_collection): return self, None, None # No computeExpressionCall as str operation ExpressionStrOperationIsidentifier is not yet implemented attribute_typed_classes.add(ExpressionAttributeLookupStrIsidentifier) class ExpressionAttributeLookupFixedIslower(ExpressionAttributeLookupFixedBase): """Looking up an attribute value 'islower' of an object. Typically code like: source.islower """ kind = "EXPRESSION_ATTRIBUTE_LOOKUP_FIXED_ISLOWER" attribute_name = "islower" def computeExpression(self, trace_collection): subnode_expression = self.subnode_expression if subnode_expression.hasShapeStrExact(): result = ExpressionAttributeLookupStrIslower( expression=subnode_expression, source_ref=self.source_ref ) return ( result, "new_expression", "Attribute lookup 'islower' on str shape resolved.", ) return subnode_expression.computeExpressionAttribute( lookup_node=self, attribute_name="islower", trace_collection=trace_collection, ) def mayRaiseException(self, exception_type): return self.subnode_expression.mayRaiseExceptionAttributeLookup( exception_type=exception_type, attribute_name="islower" ) attribute_classes["islower"] = ExpressionAttributeLookupFixedIslower from nuitka.specs.BuiltinStrOperationSpecs import str_islower_spec class ExpressionAttributeLookupStrIslower( SideEffectsFromChildrenMixin, ExpressionAttributeLookupFixedIslower ): """Attribute Islower lookup on a str. Typically code like: some_str.islower """ kind = "EXPRESSION_ATTRIBUTE_LOOKUP_STR_ISLOWER" attribute_name = "islower" def computeExpression(self, trace_collection): return self, None, None def computeExpressionCall(self, call_node, call_args, call_kw, trace_collection): def wrapExpressionStrOperationIslower(source_ref): from .StrNodes import ExpressionStrOperationIslower return ExpressionStrOperationIslower( str_arg=self.subnode_expression, source_ref=source_ref ) # Anything may happen. On next pass, if replaced, we might be better # but not now. trace_collection.onExceptionRaiseExit(BaseException) result = extractBuiltinArgs( node=call_node, builtin_class=wrapExpressionStrOperationIslower, builtin_spec=str_islower_spec, ) return result, "new_expression", "Call to 'islower' of str recognized." attribute_typed_classes.add(ExpressionAttributeLookupStrIslower) class ExpressionAttributeLookupFixedIsnumeric(ExpressionAttributeLookupFixedBase): """Looking up an attribute value 'isnumeric' of an object. Typically code like: source.isnumeric """ kind = "EXPRESSION_ATTRIBUTE_LOOKUP_FIXED_ISNUMERIC" attribute_name = "isnumeric" def computeExpression(self, trace_collection): subnode_expression = self.subnode_expression if str is not bytes and subnode_expression.hasShapeStrExact(): result = ExpressionAttributeLookupStrIsnumeric( expression=subnode_expression, source_ref=self.source_ref ) return ( result, "new_expression", "Attribute lookup 'isnumeric' on str shape resolved.", ) return subnode_expression.computeExpressionAttribute( lookup_node=self, attribute_name="isnumeric", trace_collection=trace_collection, ) def mayRaiseException(self, exception_type): return self.subnode_expression.mayRaiseExceptionAttributeLookup( exception_type=exception_type, attribute_name="isnumeric" ) attribute_classes["isnumeric"] = ExpressionAttributeLookupFixedIsnumeric class ExpressionAttributeLookupStrIsnumeric( SideEffectsFromChildrenMixin, ExpressionAttributeLookupFixedIsnumeric ): """Attribute Isnumeric lookup on a str. Typically code like: some_str.isnumeric """ kind = "EXPRESSION_ATTRIBUTE_LOOKUP_STR_ISNUMERIC" attribute_name = "isnumeric" def computeExpression(self, trace_collection): return self, None, None # No computeExpressionCall as str operation ExpressionStrOperationIsnumeric is not yet implemented attribute_typed_classes.add(ExpressionAttributeLookupStrIsnumeric) class ExpressionAttributeLookupFixedIsprintable(ExpressionAttributeLookupFixedBase): """Looking up an attribute value 'isprintable' of an object. Typically code like: source.isprintable """ kind = "EXPRESSION_ATTRIBUTE_LOOKUP_FIXED_ISPRINTABLE" attribute_name = "isprintable" def computeExpression(self, trace_collection): subnode_expression = self.subnode_expression if str is not bytes and subnode_expression.hasShapeStrExact(): result = ExpressionAttributeLookupStrIsprintable( expression=subnode_expression, source_ref=self.source_ref ) return ( result, "new_expression", "Attribute lookup 'isprintable' on str shape resolved.", ) return subnode_expression.computeExpressionAttribute( lookup_node=self, attribute_name="isprintable", trace_collection=trace_collection, ) def mayRaiseException(self, exception_type): return self.subnode_expression.mayRaiseExceptionAttributeLookup( exception_type=exception_type, attribute_name="isprintable" ) attribute_classes["isprintable"] = ExpressionAttributeLookupFixedIsprintable class ExpressionAttributeLookupStrIsprintable( SideEffectsFromChildrenMixin, ExpressionAttributeLookupFixedIsprintable ): """Attribute Isprintable lookup on a str. Typically code like: some_str.isprintable """ kind = "EXPRESSION_ATTRIBUTE_LOOKUP_STR_ISPRINTABLE" attribute_name = "isprintable" def computeExpression(self, trace_collection): return self, None, None # No computeExpressionCall as str operation ExpressionStrOperationIsprintable is not yet implemented attribute_typed_classes.add(ExpressionAttributeLookupStrIsprintable) class ExpressionAttributeLookupFixedIsspace(ExpressionAttributeLookupFixedBase): """Looking up an attribute value 'isspace' of an object. Typically code like: source.isspace """ kind = "EXPRESSION_ATTRIBUTE_LOOKUP_FIXED_ISSPACE" attribute_name = "isspace" def computeExpression(self, trace_collection): subnode_expression = self.subnode_expression if subnode_expression.hasShapeStrExact(): result = ExpressionAttributeLookupStrIsspace( expression=subnode_expression, source_ref=self.source_ref ) return ( result, "new_expression", "Attribute lookup 'isspace' on str shape resolved.", ) return subnode_expression.computeExpressionAttribute( lookup_node=self, attribute_name="isspace", trace_collection=trace_collection, ) def mayRaiseException(self, exception_type): return self.subnode_expression.mayRaiseExceptionAttributeLookup( exception_type=exception_type, attribute_name="isspace" ) attribute_classes["isspace"] = ExpressionAttributeLookupFixedIsspace from nuitka.specs.BuiltinStrOperationSpecs import str_isspace_spec class ExpressionAttributeLookupStrIsspace( SideEffectsFromChildrenMixin, ExpressionAttributeLookupFixedIsspace ): """Attribute Isspace lookup on a str. Typically code like: some_str.isspace """ kind = "EXPRESSION_ATTRIBUTE_LOOKUP_STR_ISSPACE" attribute_name = "isspace" def computeExpression(self, trace_collection): return self, None, None def computeExpressionCall(self, call_node, call_args, call_kw, trace_collection): def wrapExpressionStrOperationIsspace(source_ref): from .StrNodes import ExpressionStrOperationIsspace return ExpressionStrOperationIsspace( str_arg=self.subnode_expression, source_ref=source_ref ) # Anything may happen. On next pass, if replaced, we might be better # but not now. trace_collection.onExceptionRaiseExit(BaseException) result = extractBuiltinArgs( node=call_node, builtin_class=wrapExpressionStrOperationIsspace, builtin_spec=str_isspace_spec, ) return result, "new_expression", "Call to 'isspace' of str recognized." attribute_typed_classes.add(ExpressionAttributeLookupStrIsspace) class ExpressionAttributeLookupFixedIstitle(ExpressionAttributeLookupFixedBase): """Looking up an attribute value 'istitle' of an object. Typically code like: source.istitle """ kind = "EXPRESSION_ATTRIBUTE_LOOKUP_FIXED_ISTITLE" attribute_name = "istitle" def computeExpression(self, trace_collection): subnode_expression = self.subnode_expression if subnode_expression.hasShapeStrExact(): result = ExpressionAttributeLookupStrIstitle( expression=subnode_expression, source_ref=self.source_ref ) return ( result, "new_expression", "Attribute lookup 'istitle' on str shape resolved.", ) return subnode_expression.computeExpressionAttribute( lookup_node=self, attribute_name="istitle", trace_collection=trace_collection, ) def mayRaiseException(self, exception_type): return self.subnode_expression.mayRaiseExceptionAttributeLookup( exception_type=exception_type, attribute_name="istitle" ) attribute_classes["istitle"] = ExpressionAttributeLookupFixedIstitle from nuitka.specs.BuiltinStrOperationSpecs import str_istitle_spec class ExpressionAttributeLookupStrIstitle( SideEffectsFromChildrenMixin, ExpressionAttributeLookupFixedIstitle ): """Attribute Istitle lookup on a str. Typically code like: some_str.istitle """ kind = "EXPRESSION_ATTRIBUTE_LOOKUP_STR_ISTITLE" attribute_name = "istitle" def computeExpression(self, trace_collection): return self, None, None def computeExpressionCall(self, call_node, call_args, call_kw, trace_collection): def wrapExpressionStrOperationIstitle(source_ref): from .StrNodes import ExpressionStrOperationIstitle return ExpressionStrOperationIstitle( str_arg=self.subnode_expression, source_ref=source_ref ) # Anything may happen. On next pass, if replaced, we might be better # but not now. trace_collection.onExceptionRaiseExit(BaseException) result = extractBuiltinArgs( node=call_node, builtin_class=wrapExpressionStrOperationIstitle, builtin_spec=str_istitle_spec, ) return result, "new_expression", "Call to 'istitle' of str recognized." attribute_typed_classes.add(ExpressionAttributeLookupStrIstitle) class ExpressionAttributeLookupFixedIsupper(ExpressionAttributeLookupFixedBase): """Looking up an attribute value 'isupper' of an object. Typically code like: source.isupper """ kind = "EXPRESSION_ATTRIBUTE_LOOKUP_FIXED_ISUPPER" attribute_name = "isupper" def computeExpression(self, trace_collection): subnode_expression = self.subnode_expression if subnode_expression.hasShapeStrExact(): result = ExpressionAttributeLookupStrIsupper( expression=subnode_expression, source_ref=self.source_ref ) return ( result, "new_expression", "Attribute lookup 'isupper' on str shape resolved.", ) return subnode_expression.computeExpressionAttribute( lookup_node=self, attribute_name="isupper", trace_collection=trace_collection, ) def mayRaiseException(self, exception_type): return self.subnode_expression.mayRaiseExceptionAttributeLookup( exception_type=exception_type, attribute_name="isupper" ) attribute_classes["isupper"] = ExpressionAttributeLookupFixedIsupper from nuitka.specs.BuiltinStrOperationSpecs import str_isupper_spec class ExpressionAttributeLookupStrIsupper( SideEffectsFromChildrenMixin, ExpressionAttributeLookupFixedIsupper ): """Attribute Isupper lookup on a str. Typically code like: some_str.isupper """ kind = "EXPRESSION_ATTRIBUTE_LOOKUP_STR_ISUPPER" attribute_name = "isupper" def computeExpression(self, trace_collection): return self, None, None def computeExpressionCall(self, call_node, call_args, call_kw, trace_collection): def wrapExpressionStrOperationIsupper(source_ref): from .StrNodes import ExpressionStrOperationIsupper return ExpressionStrOperationIsupper( str_arg=self.subnode_expression, source_ref=source_ref ) # Anything may happen. On next pass, if replaced, we might be better # but not now. trace_collection.onExceptionRaiseExit(BaseException) result = extractBuiltinArgs( node=call_node, builtin_class=wrapExpressionStrOperationIsupper, builtin_spec=str_isupper_spec, ) return result, "new_expression", "Call to 'isupper' of str recognized." attribute_typed_classes.add(ExpressionAttributeLookupStrIsupper) class ExpressionAttributeLookupFixedItems(ExpressionAttributeLookupFixedBase): """Looking up an attribute value 'items' of an object. Typically code like: source.items """ kind = "EXPRESSION_ATTRIBUTE_LOOKUP_FIXED_ITEMS" attribute_name = "items" def computeExpression(self, trace_collection): subnode_expression = self.subnode_expression if subnode_expression.hasShapeDictionaryExact(): result = ExpressionAttributeLookupDictItems( expression=subnode_expression, source_ref=self.source_ref ) return ( result, "new_expression", "Attribute lookup 'items' on dict shape resolved.", ) return subnode_expression.computeExpressionAttribute( lookup_node=self, attribute_name="items", trace_collection=trace_collection, ) def mayRaiseException(self, exception_type): return self.subnode_expression.mayRaiseExceptionAttributeLookup( exception_type=exception_type, attribute_name="items" ) attribute_classes["items"] = ExpressionAttributeLookupFixedItems from nuitka.specs.BuiltinDictOperationSpecs import dict_items_spec class ExpressionAttributeLookupDictItems( SideEffectsFromChildrenMixin, ExpressionAttributeLookupFixedItems ): """Attribute Items lookup on a dict. Typically code like: some_dict.items """ kind = "EXPRESSION_ATTRIBUTE_LOOKUP_DICT_ITEMS" attribute_name = "items" def computeExpression(self, trace_collection): return self, None, None def computeExpressionCall(self, call_node, call_args, call_kw, trace_collection): def wrapExpressionDictOperationItems(source_ref): if str is bytes: from .DictionaryNodes import ExpressionDictOperationItems return ExpressionDictOperationItems( dict_arg=self.subnode_expression, source_ref=source_ref ) else: from .DictionaryNodes import ExpressionDictOperationIteritems return ExpressionDictOperationIteritems( dict_arg=self.subnode_expression, source_ref=source_ref ) # Anything may happen. On next pass, if replaced, we might be better # but not now. trace_collection.onExceptionRaiseExit(BaseException) result = extractBuiltinArgs( node=call_node, builtin_class=wrapExpressionDictOperationItems, builtin_spec=dict_items_spec, ) return result, "new_expression", "Call to 'items' of dictionary recognized." attribute_typed_classes.add(ExpressionAttributeLookupDictItems) class ExpressionAttributeLookupFixedIteritems(ExpressionAttributeLookupFixedBase): """Looking up an attribute value 'iteritems' of an object. Typically code like: source.iteritems """ kind = "EXPRESSION_ATTRIBUTE_LOOKUP_FIXED_ITERITEMS" attribute_name = "iteritems" def computeExpression(self, trace_collection): subnode_expression = self.subnode_expression if str is bytes and subnode_expression.hasShapeDictionaryExact(): result = ExpressionAttributeLookupDictIteritems( expression=subnode_expression, source_ref=self.source_ref ) return ( result, "new_expression", "Attribute lookup 'iteritems' on dict shape resolved.", ) return subnode_expression.computeExpressionAttribute( lookup_node=self, attribute_name="iteritems", trace_collection=trace_collection, ) def mayRaiseException(self, exception_type): return self.subnode_expression.mayRaiseExceptionAttributeLookup( exception_type=exception_type, attribute_name="iteritems" ) attribute_classes["iteritems"] = ExpressionAttributeLookupFixedIteritems from nuitka.specs.BuiltinDictOperationSpecs import dict_iteritems_spec class ExpressionAttributeLookupDictIteritems( SideEffectsFromChildrenMixin, ExpressionAttributeLookupFixedIteritems ): """Attribute Iteritems lookup on a dict. Typically code like: some_dict.iteritems """ kind = "EXPRESSION_ATTRIBUTE_LOOKUP_DICT_ITERITEMS" attribute_name = "iteritems" def computeExpression(self, trace_collection): return self, None, None def computeExpressionCall(self, call_node, call_args, call_kw, trace_collection): def wrapExpressionDictOperationIteritems(source_ref): from .DictionaryNodes import ExpressionDictOperationIteritems return ExpressionDictOperationIteritems( dict_arg=self.subnode_expression, source_ref=source_ref ) # Anything may happen. On next pass, if replaced, we might be better # but not now. trace_collection.onExceptionRaiseExit(BaseException) result = extractBuiltinArgs( node=call_node, builtin_class=wrapExpressionDictOperationIteritems, builtin_spec=dict_iteritems_spec, ) return result, "new_expression", "Call to 'iteritems' of dictionary recognized." attribute_typed_classes.add(ExpressionAttributeLookupDictIteritems) class ExpressionAttributeLookupFixedIterkeys(ExpressionAttributeLookupFixedBase): """Looking up an attribute value 'iterkeys' of an object. Typically code like: source.iterkeys """ kind = "EXPRESSION_ATTRIBUTE_LOOKUP_FIXED_ITERKEYS" attribute_name = "iterkeys" def computeExpression(self, trace_collection): subnode_expression = self.subnode_expression if str is bytes and subnode_expression.hasShapeDictionaryExact(): result = ExpressionAttributeLookupDictIterkeys( expression=subnode_expression, source_ref=self.source_ref ) return ( result, "new_expression", "Attribute lookup 'iterkeys' on dict shape resolved.", ) return subnode_expression.computeExpressionAttribute( lookup_node=self, attribute_name="iterkeys", trace_collection=trace_collection, ) def mayRaiseException(self, exception_type): return self.subnode_expression.mayRaiseExceptionAttributeLookup( exception_type=exception_type, attribute_name="iterkeys" ) attribute_classes["iterkeys"] = ExpressionAttributeLookupFixedIterkeys from nuitka.specs.BuiltinDictOperationSpecs import dict_iterkeys_spec class ExpressionAttributeLookupDictIterkeys( SideEffectsFromChildrenMixin, ExpressionAttributeLookupFixedIterkeys ): """Attribute Iterkeys lookup on a dict. Typically code like: some_dict.iterkeys """ kind = "EXPRESSION_ATTRIBUTE_LOOKUP_DICT_ITERKEYS" attribute_name = "iterkeys" def computeExpression(self, trace_collection): return self, None, None def computeExpressionCall(self, call_node, call_args, call_kw, trace_collection): def wrapExpressionDictOperationIterkeys(source_ref): from .DictionaryNodes import ExpressionDictOperationIterkeys return ExpressionDictOperationIterkeys( dict_arg=self.subnode_expression, source_ref=source_ref ) # Anything may happen. On next pass, if replaced, we might be better # but not now. trace_collection.onExceptionRaiseExit(BaseException) result = extractBuiltinArgs( node=call_node, builtin_class=wrapExpressionDictOperationIterkeys, builtin_spec=dict_iterkeys_spec, ) return result, "new_expression", "Call to 'iterkeys' of dictionary recognized." attribute_typed_classes.add(ExpressionAttributeLookupDictIterkeys) class ExpressionAttributeLookupFixedItervalues(ExpressionAttributeLookupFixedBase): """Looking up an attribute value 'itervalues' of an object. Typically code like: source.itervalues """ kind = "EXPRESSION_ATTRIBUTE_LOOKUP_FIXED_ITERVALUES" attribute_name = "itervalues" def computeExpression(self, trace_collection): subnode_expression = self.subnode_expression if str is bytes and subnode_expression.hasShapeDictionaryExact(): result = ExpressionAttributeLookupDictItervalues( expression=subnode_expression, source_ref=self.source_ref ) return ( result, "new_expression", "Attribute lookup 'itervalues' on dict shape resolved.", ) return subnode_expression.computeExpressionAttribute( lookup_node=self, attribute_name="itervalues", trace_collection=trace_collection, ) def mayRaiseException(self, exception_type): return self.subnode_expression.mayRaiseExceptionAttributeLookup( exception_type=exception_type, attribute_name="itervalues" ) attribute_classes["itervalues"] = ExpressionAttributeLookupFixedItervalues from nuitka.specs.BuiltinDictOperationSpecs import dict_itervalues_spec class ExpressionAttributeLookupDictItervalues( SideEffectsFromChildrenMixin, ExpressionAttributeLookupFixedItervalues ): """Attribute Itervalues lookup on a dict. Typically code like: some_dict.itervalues """ kind = "EXPRESSION_ATTRIBUTE_LOOKUP_DICT_ITERVALUES" attribute_name = "itervalues" def computeExpression(self, trace_collection): return self, None, None def computeExpressionCall(self, call_node, call_args, call_kw, trace_collection): def wrapExpressionDictOperationItervalues(source_ref): from .DictionaryNodes import ExpressionDictOperationItervalues return ExpressionDictOperationItervalues( dict_arg=self.subnode_expression, source_ref=source_ref ) # Anything may happen. On next pass, if replaced, we might be better # but not now. trace_collection.onExceptionRaiseExit(BaseException) result = extractBuiltinArgs( node=call_node, builtin_class=wrapExpressionDictOperationItervalues, builtin_spec=dict_itervalues_spec, ) return ( result, "new_expression", "Call to 'itervalues' of dictionary recognized.", ) attribute_typed_classes.add(ExpressionAttributeLookupDictItervalues) class ExpressionAttributeLookupFixedJoin(ExpressionAttributeLookupFixedBase): """Looking up an attribute value 'join' of an object. Typically code like: source.join """ kind = "EXPRESSION_ATTRIBUTE_LOOKUP_FIXED_JOIN" attribute_name = "join" def computeExpression(self, trace_collection): subnode_expression = self.subnode_expression if subnode_expression.hasShapeStrExact(): result = ExpressionAttributeLookupStrJoin( expression=subnode_expression, source_ref=self.source_ref ) return ( result, "new_expression", "Attribute lookup 'join' on str shape resolved.", ) return subnode_expression.computeExpressionAttribute( lookup_node=self, attribute_name="join", trace_collection=trace_collection, ) def mayRaiseException(self, exception_type): return self.subnode_expression.mayRaiseExceptionAttributeLookup( exception_type=exception_type, attribute_name="join" ) attribute_classes["join"] = ExpressionAttributeLookupFixedJoin from nuitka.specs.BuiltinStrOperationSpecs import str_join_spec class ExpressionAttributeLookupStrJoin( SideEffectsFromChildrenMixin, ExpressionAttributeLookupFixedJoin ): """Attribute Join lookup on a str. Typically code like: some_str.join """ kind = "EXPRESSION_ATTRIBUTE_LOOKUP_STR_JOIN" attribute_name = "join" def computeExpression(self, trace_collection): return self, None, None def computeExpressionCall(self, call_node, call_args, call_kw, trace_collection): def wrapExpressionStrOperationJoin(iterable, source_ref): from .StrNodes import ExpressionStrOperationJoin return ExpressionStrOperationJoin( str_arg=self.subnode_expression, iterable=iterable, source_ref=source_ref, ) # Anything may happen. On next pass, if replaced, we might be better # but not now. trace_collection.onExceptionRaiseExit(BaseException) result = extractBuiltinArgs( node=call_node, builtin_class=wrapExpressionStrOperationJoin, builtin_spec=str_join_spec, ) return result, "new_expression", "Call to 'join' of str recognized." attribute_typed_classes.add(ExpressionAttributeLookupStrJoin) class ExpressionAttributeLookupFixedKeys(ExpressionAttributeLookupFixedBase): """Looking up an attribute value 'keys' of an object. Typically code like: source.keys """ kind = "EXPRESSION_ATTRIBUTE_LOOKUP_FIXED_KEYS" attribute_name = "keys" def computeExpression(self, trace_collection): subnode_expression = self.subnode_expression if subnode_expression.hasShapeDictionaryExact(): result = ExpressionAttributeLookupDictKeys( expression=subnode_expression, source_ref=self.source_ref ) return ( result, "new_expression", "Attribute lookup 'keys' on dict shape resolved.", ) return subnode_expression.computeExpressionAttribute( lookup_node=self, attribute_name="keys", trace_collection=trace_collection, ) def mayRaiseException(self, exception_type): return self.subnode_expression.mayRaiseExceptionAttributeLookup( exception_type=exception_type, attribute_name="keys" ) attribute_classes["keys"] = ExpressionAttributeLookupFixedKeys from nuitka.specs.BuiltinDictOperationSpecs import dict_keys_spec class ExpressionAttributeLookupDictKeys( SideEffectsFromChildrenMixin, ExpressionAttributeLookupFixedKeys ): """Attribute Keys lookup on a dict. Typically code like: some_dict.keys """ kind = "EXPRESSION_ATTRIBUTE_LOOKUP_DICT_KEYS" attribute_name = "keys" def computeExpression(self, trace_collection): return self, None, None def computeExpressionCall(self, call_node, call_args, call_kw, trace_collection): def wrapExpressionDictOperationKeys(source_ref): if str is bytes: from .DictionaryNodes import ExpressionDictOperationKeys return ExpressionDictOperationKeys( dict_arg=self.subnode_expression, source_ref=source_ref ) else: from .DictionaryNodes import ExpressionDictOperationIterkeys return ExpressionDictOperationIterkeys( dict_arg=self.subnode_expression, source_ref=source_ref ) # Anything may happen. On next pass, if replaced, we might be better # but not now. trace_collection.onExceptionRaiseExit(BaseException) result = extractBuiltinArgs( node=call_node, builtin_class=wrapExpressionDictOperationKeys, builtin_spec=dict_keys_spec, ) return result, "new_expression", "Call to 'keys' of dictionary recognized." attribute_typed_classes.add(ExpressionAttributeLookupDictKeys) class ExpressionAttributeLookupFixedLjust(ExpressionAttributeLookupFixedBase): """Looking up an attribute value 'ljust' of an object. Typically code like: source.ljust """ kind = "EXPRESSION_ATTRIBUTE_LOOKUP_FIXED_LJUST" attribute_name = "ljust" def computeExpression(self, trace_collection): subnode_expression = self.subnode_expression if subnode_expression.hasShapeStrExact(): result = ExpressionAttributeLookupStrLjust( expression=subnode_expression, source_ref=self.source_ref ) return ( result, "new_expression", "Attribute lookup 'ljust' on str shape resolved.", ) return subnode_expression.computeExpressionAttribute( lookup_node=self, attribute_name="ljust", trace_collection=trace_collection, ) def mayRaiseException(self, exception_type): return self.subnode_expression.mayRaiseExceptionAttributeLookup( exception_type=exception_type, attribute_name="ljust" ) attribute_classes["ljust"] = ExpressionAttributeLookupFixedLjust class ExpressionAttributeLookupStrLjust( SideEffectsFromChildrenMixin, ExpressionAttributeLookupFixedLjust ): """Attribute Ljust lookup on a str. Typically code like: some_str.ljust """ kind = "EXPRESSION_ATTRIBUTE_LOOKUP_STR_LJUST" attribute_name = "ljust" def computeExpression(self, trace_collection): return self, None, None # No computeExpressionCall as str operation ExpressionStrOperationLjust is not yet implemented attribute_typed_classes.add(ExpressionAttributeLookupStrLjust) class ExpressionAttributeLookupFixedLower(ExpressionAttributeLookupFixedBase): """Looking up an attribute value 'lower' of an object. Typically code like: source.lower """ kind = "EXPRESSION_ATTRIBUTE_LOOKUP_FIXED_LOWER" attribute_name = "lower" def computeExpression(self, trace_collection): subnode_expression = self.subnode_expression if subnode_expression.hasShapeStrExact(): result = ExpressionAttributeLookupStrLower( expression=subnode_expression, source_ref=self.source_ref ) return ( result, "new_expression", "Attribute lookup 'lower' on str shape resolved.", ) return subnode_expression.computeExpressionAttribute( lookup_node=self, attribute_name="lower", trace_collection=trace_collection, ) def mayRaiseException(self, exception_type): return self.subnode_expression.mayRaiseExceptionAttributeLookup( exception_type=exception_type, attribute_name="lower" ) attribute_classes["lower"] = ExpressionAttributeLookupFixedLower from nuitka.specs.BuiltinStrOperationSpecs import str_lower_spec class ExpressionAttributeLookupStrLower( SideEffectsFromChildrenMixin, ExpressionAttributeLookupFixedLower ): """Attribute Lower lookup on a str. Typically code like: some_str.lower """ kind = "EXPRESSION_ATTRIBUTE_LOOKUP_STR_LOWER" attribute_name = "lower" def computeExpression(self, trace_collection): return self, None, None def computeExpressionCall(self, call_node, call_args, call_kw, trace_collection): def wrapExpressionStrOperationLower(source_ref): from .StrNodes import ExpressionStrOperationLower return ExpressionStrOperationLower( str_arg=self.subnode_expression, source_ref=source_ref ) # Anything may happen. On next pass, if replaced, we might be better # but not now. trace_collection.onExceptionRaiseExit(BaseException) result = extractBuiltinArgs( node=call_node, builtin_class=wrapExpressionStrOperationLower, builtin_spec=str_lower_spec, ) return result, "new_expression", "Call to 'lower' of str recognized." attribute_typed_classes.add(ExpressionAttributeLookupStrLower) class ExpressionAttributeLookupFixedLstrip(ExpressionAttributeLookupFixedBase): """Looking up an attribute value 'lstrip' of an object. Typically code like: source.lstrip """ kind = "EXPRESSION_ATTRIBUTE_LOOKUP_FIXED_LSTRIP" attribute_name = "lstrip" def computeExpression(self, trace_collection): subnode_expression = self.subnode_expression if subnode_expression.hasShapeStrExact(): result = ExpressionAttributeLookupStrLstrip( expression=subnode_expression, source_ref=self.source_ref ) return ( result, "new_expression", "Attribute lookup 'lstrip' on str shape resolved.", ) return subnode_expression.computeExpressionAttribute( lookup_node=self, attribute_name="lstrip", trace_collection=trace_collection, ) def mayRaiseException(self, exception_type): return self.subnode_expression.mayRaiseExceptionAttributeLookup( exception_type=exception_type, attribute_name="lstrip" ) attribute_classes["lstrip"] = ExpressionAttributeLookupFixedLstrip from nuitka.specs.BuiltinStrOperationSpecs import str_lstrip_spec class ExpressionAttributeLookupStrLstrip( SideEffectsFromChildrenMixin, ExpressionAttributeLookupFixedLstrip ): """Attribute Lstrip lookup on a str. Typically code like: some_str.lstrip """ kind = "EXPRESSION_ATTRIBUTE_LOOKUP_STR_LSTRIP" attribute_name = "lstrip" def computeExpression(self, trace_collection): return self, None, None def computeExpressionCall(self, call_node, call_args, call_kw, trace_collection): def wrapExpressionStrOperationLstrip(chars, source_ref): if chars is not None: from .StrNodes import ExpressionStrOperationLstrip2 return ExpressionStrOperationLstrip2( str_arg=self.subnode_expression, chars=chars, source_ref=source_ref ) else: from .StrNodes import ExpressionStrOperationLstrip1 return ExpressionStrOperationLstrip1( str_arg=self.subnode_expression, source_ref=source_ref ) # Anything may happen. On next pass, if replaced, we might be better # but not now. trace_collection.onExceptionRaiseExit(BaseException) result = extractBuiltinArgs( node=call_node, builtin_class=wrapExpressionStrOperationLstrip, builtin_spec=str_lstrip_spec, ) return result, "new_expression", "Call to 'lstrip' of str recognized." attribute_typed_classes.add(ExpressionAttributeLookupStrLstrip) class ExpressionAttributeLookupFixedMaketrans(ExpressionAttributeLookupFixedBase): """Looking up an attribute value 'maketrans' of an object. Typically code like: source.maketrans """ kind = "EXPRESSION_ATTRIBUTE_LOOKUP_FIXED_MAKETRANS" attribute_name = "maketrans" def computeExpression(self, trace_collection): subnode_expression = self.subnode_expression if str is not bytes and subnode_expression.hasShapeStrExact(): result = ExpressionAttributeLookupStrMaketrans( expression=subnode_expression, source_ref=self.source_ref ) return ( result, "new_expression", "Attribute lookup 'maketrans' on str shape resolved.", ) return subnode_expression.computeExpressionAttribute( lookup_node=self, attribute_name="maketrans", trace_collection=trace_collection, ) def mayRaiseException(self, exception_type): return self.subnode_expression.mayRaiseExceptionAttributeLookup( exception_type=exception_type, attribute_name="maketrans" ) attribute_classes["maketrans"] = ExpressionAttributeLookupFixedMaketrans class ExpressionAttributeLookupStrMaketrans( SideEffectsFromChildrenMixin, ExpressionAttributeLookupFixedMaketrans ): """Attribute Maketrans lookup on a str. Typically code like: some_str.maketrans """ kind = "EXPRESSION_ATTRIBUTE_LOOKUP_STR_MAKETRANS" attribute_name = "maketrans" def computeExpression(self, trace_collection): return self, None, None # No computeExpressionCall as str operation ExpressionStrOperationMaketrans is not yet implemented attribute_typed_classes.add(ExpressionAttributeLookupStrMaketrans) class ExpressionAttributeLookupFixedPartition(ExpressionAttributeLookupFixedBase): """Looking up an attribute value 'partition' of an object. Typically code like: source.partition """ kind = "EXPRESSION_ATTRIBUTE_LOOKUP_FIXED_PARTITION" attribute_name = "partition" def computeExpression(self, trace_collection): subnode_expression = self.subnode_expression if subnode_expression.hasShapeStrExact(): result = ExpressionAttributeLookupStrPartition( expression=subnode_expression, source_ref=self.source_ref ) return ( result, "new_expression", "Attribute lookup 'partition' on str shape resolved.", ) return subnode_expression.computeExpressionAttribute( lookup_node=self, attribute_name="partition", trace_collection=trace_collection, ) def mayRaiseException(self, exception_type): return self.subnode_expression.mayRaiseExceptionAttributeLookup( exception_type=exception_type, attribute_name="partition" ) attribute_classes["partition"] = ExpressionAttributeLookupFixedPartition from nuitka.specs.BuiltinStrOperationSpecs import str_partition_spec class ExpressionAttributeLookupStrPartition( SideEffectsFromChildrenMixin, ExpressionAttributeLookupFixedPartition ): """Attribute Partition lookup on a str. Typically code like: some_str.partition """ kind = "EXPRESSION_ATTRIBUTE_LOOKUP_STR_PARTITION" attribute_name = "partition" def computeExpression(self, trace_collection): return self, None, None def computeExpressionCall(self, call_node, call_args, call_kw, trace_collection): def wrapExpressionStrOperationPartition(sep, source_ref): from .StrNodes import ExpressionStrOperationPartition return ExpressionStrOperationPartition( str_arg=self.subnode_expression, sep=sep, source_ref=source_ref ) # Anything may happen. On next pass, if replaced, we might be better # but not now. trace_collection.onExceptionRaiseExit(BaseException) result = extractBuiltinArgs( node=call_node, builtin_class=wrapExpressionStrOperationPartition, builtin_spec=str_partition_spec, ) return result, "new_expression", "Call to 'partition' of str recognized." attribute_typed_classes.add(ExpressionAttributeLookupStrPartition) class ExpressionAttributeLookupFixedPop(ExpressionAttributeLookupFixedBase): """Looking up an attribute value 'pop' of an object. Typically code like: source.pop """ kind = "EXPRESSION_ATTRIBUTE_LOOKUP_FIXED_POP" attribute_name = "pop" def computeExpression(self, trace_collection): subnode_expression = self.subnode_expression if subnode_expression.hasShapeDictionaryExact(): result = ExpressionAttributeLookupDictPop( expression=subnode_expression, source_ref=self.source_ref ) return ( result, "new_expression", "Attribute lookup 'pop' on dict shape resolved.", ) return subnode_expression.computeExpressionAttribute( lookup_node=self, attribute_name="pop", trace_collection=trace_collection, ) def mayRaiseException(self, exception_type): return self.subnode_expression.mayRaiseExceptionAttributeLookup( exception_type=exception_type, attribute_name="pop" ) attribute_classes["pop"] = ExpressionAttributeLookupFixedPop from nuitka.specs.BuiltinDictOperationSpecs import dict_pop_spec class ExpressionAttributeLookupDictPop( SideEffectsFromChildrenMixin, ExpressionAttributeLookupFixedPop ): """Attribute Pop lookup on a dict. Typically code like: some_dict.pop """ kind = "EXPRESSION_ATTRIBUTE_LOOKUP_DICT_POP" attribute_name = "pop" def computeExpression(self, trace_collection): return self, None, None def computeExpressionCall(self, call_node, call_args, call_kw, trace_collection): def wrapExpressionDictOperationPop(key, default, source_ref): if default is not None: from .DictionaryNodes import ExpressionDictOperationPop3 return ExpressionDictOperationPop3( dict_arg=self.subnode_expression, key=key, default=default, source_ref=source_ref, ) else: from .DictionaryNodes import ExpressionDictOperationPop2 return ExpressionDictOperationPop2( dict_arg=self.subnode_expression, key=key, source_ref=source_ref ) # Anything may happen. On next pass, if replaced, we might be better # but not now. trace_collection.onExceptionRaiseExit(BaseException) result = extractBuiltinArgs( node=call_node, builtin_class=wrapExpressionDictOperationPop, builtin_spec=dict_pop_spec, ) return result, "new_expression", "Call to 'pop' of dictionary recognized." attribute_typed_classes.add(ExpressionAttributeLookupDictPop) class ExpressionAttributeLookupFixedPopitem(ExpressionAttributeLookupFixedBase): """Looking up an attribute value 'popitem' of an object. Typically code like: source.popitem """ kind = "EXPRESSION_ATTRIBUTE_LOOKUP_FIXED_POPITEM" attribute_name = "popitem" def computeExpression(self, trace_collection): subnode_expression = self.subnode_expression if subnode_expression.hasShapeDictionaryExact(): result = ExpressionAttributeLookupDictPopitem( expression=subnode_expression, source_ref=self.source_ref ) return ( result, "new_expression", "Attribute lookup 'popitem' on dict shape resolved.", ) return subnode_expression.computeExpressionAttribute( lookup_node=self, attribute_name="popitem", trace_collection=trace_collection, ) def mayRaiseException(self, exception_type): return self.subnode_expression.mayRaiseExceptionAttributeLookup( exception_type=exception_type, attribute_name="popitem" ) attribute_classes["popitem"] = ExpressionAttributeLookupFixedPopitem class ExpressionAttributeLookupDictPopitem( SideEffectsFromChildrenMixin, ExpressionAttributeLookupFixedPopitem ): """Attribute Popitem lookup on a dict. Typically code like: some_dict.popitem """ kind = "EXPRESSION_ATTRIBUTE_LOOKUP_DICT_POPITEM" attribute_name = "popitem" def computeExpression(self, trace_collection): return self, None, None # No computeExpressionCall as dict operation ExpressionDictOperationPopitem is not yet implemented attribute_typed_classes.add(ExpressionAttributeLookupDictPopitem) class ExpressionAttributeLookupFixedReplace(ExpressionAttributeLookupFixedBase): """Looking up an attribute value 'replace' of an object. Typically code like: source.replace """ kind = "EXPRESSION_ATTRIBUTE_LOOKUP_FIXED_REPLACE" attribute_name = "replace" def computeExpression(self, trace_collection): subnode_expression = self.subnode_expression if subnode_expression.hasShapeStrExact(): result = ExpressionAttributeLookupStrReplace( expression=subnode_expression, source_ref=self.source_ref ) return ( result, "new_expression", "Attribute lookup 'replace' on str shape resolved.", ) return subnode_expression.computeExpressionAttribute( lookup_node=self, attribute_name="replace", trace_collection=trace_collection, ) def mayRaiseException(self, exception_type): return self.subnode_expression.mayRaiseExceptionAttributeLookup( exception_type=exception_type, attribute_name="replace" ) attribute_classes["replace"] = ExpressionAttributeLookupFixedReplace from nuitka.specs.BuiltinStrOperationSpecs import str_replace_spec from .StrNodes import ExpressionStrOperationReplace4 class ExpressionAttributeLookupStrReplace( SideEffectsFromChildrenMixin, ExpressionAttributeLookupFixedReplace ): """Attribute Replace lookup on a str. Typically code like: some_str.replace """ kind = "EXPRESSION_ATTRIBUTE_LOOKUP_STR_REPLACE" attribute_name = "replace" def computeExpression(self, trace_collection): return self, None, None def computeExpressionCall(self, call_node, call_args, call_kw, trace_collection): def wrapExpressionStrOperationReplace(old, new, count, source_ref): if count is not None: return ExpressionStrOperationReplace4( str_arg=self.subnode_expression, old=old, new=new, count=count, source_ref=source_ref, ) else: from .StrNodes import ExpressionStrOperationReplace3 return ExpressionStrOperationReplace3( str_arg=self.subnode_expression, old=old, new=new, source_ref=source_ref, ) # Anything may happen. On next pass, if replaced, we might be better # but not now. trace_collection.onExceptionRaiseExit(BaseException) result = extractBuiltinArgs( node=call_node, builtin_class=wrapExpressionStrOperationReplace, builtin_spec=str_replace_spec, ) return result, "new_expression", "Call to 'replace' of str recognized." attribute_typed_classes.add(ExpressionAttributeLookupStrReplace) class ExpressionAttributeLookupFixedRfind(ExpressionAttributeLookupFixedBase): """Looking up an attribute value 'rfind' of an object. Typically code like: source.rfind """ kind = "EXPRESSION_ATTRIBUTE_LOOKUP_FIXED_RFIND" attribute_name = "rfind" def computeExpression(self, trace_collection): subnode_expression = self.subnode_expression if subnode_expression.hasShapeStrExact(): result = ExpressionAttributeLookupStrRfind( expression=subnode_expression, source_ref=self.source_ref ) return ( result, "new_expression", "Attribute lookup 'rfind' on str shape resolved.", ) return subnode_expression.computeExpressionAttribute( lookup_node=self, attribute_name="rfind", trace_collection=trace_collection, ) def mayRaiseException(self, exception_type): return self.subnode_expression.mayRaiseExceptionAttributeLookup( exception_type=exception_type, attribute_name="rfind" ) attribute_classes["rfind"] = ExpressionAttributeLookupFixedRfind from nuitka.specs.BuiltinStrOperationSpecs import str_rfind_spec class ExpressionAttributeLookupStrRfind( SideEffectsFromChildrenMixin, ExpressionAttributeLookupFixedRfind ): """Attribute Rfind lookup on a str. Typically code like: some_str.rfind """ kind = "EXPRESSION_ATTRIBUTE_LOOKUP_STR_RFIND" attribute_name = "rfind" def computeExpression(self, trace_collection): return self, None, None def computeExpressionCall(self, call_node, call_args, call_kw, trace_collection): def wrapExpressionStrOperationRfind(sub, start, end, source_ref): if end is not None: from .StrNodes import ExpressionStrOperationRfind4 return ExpressionStrOperationRfind4( str_arg=self.subnode_expression, sub=sub, start=start, end=end, source_ref=source_ref, ) elif start is not None: from .StrNodes import ExpressionStrOperationRfind3 return ExpressionStrOperationRfind3( str_arg=self.subnode_expression, sub=sub, start=start, source_ref=source_ref, ) else: from .StrNodes import ExpressionStrOperationRfind2 return ExpressionStrOperationRfind2( str_arg=self.subnode_expression, sub=sub, source_ref=source_ref ) # Anything may happen. On next pass, if replaced, we might be better # but not now. trace_collection.onExceptionRaiseExit(BaseException) result = extractBuiltinArgs( node=call_node, builtin_class=wrapExpressionStrOperationRfind, builtin_spec=str_rfind_spec, ) return result, "new_expression", "Call to 'rfind' of str recognized." attribute_typed_classes.add(ExpressionAttributeLookupStrRfind) class ExpressionAttributeLookupFixedRindex(ExpressionAttributeLookupFixedBase): """Looking up an attribute value 'rindex' of an object. Typically code like: source.rindex """ kind = "EXPRESSION_ATTRIBUTE_LOOKUP_FIXED_RINDEX" attribute_name = "rindex" def computeExpression(self, trace_collection): subnode_expression = self.subnode_expression if subnode_expression.hasShapeStrExact(): result = ExpressionAttributeLookupStrRindex( expression=subnode_expression, source_ref=self.source_ref ) return ( result, "new_expression", "Attribute lookup 'rindex' on str shape resolved.", ) return subnode_expression.computeExpressionAttribute( lookup_node=self, attribute_name="rindex", trace_collection=trace_collection, ) def mayRaiseException(self, exception_type): return self.subnode_expression.mayRaiseExceptionAttributeLookup( exception_type=exception_type, attribute_name="rindex" ) attribute_classes["rindex"] = ExpressionAttributeLookupFixedRindex from nuitka.specs.BuiltinStrOperationSpecs import str_rindex_spec class ExpressionAttributeLookupStrRindex( SideEffectsFromChildrenMixin, ExpressionAttributeLookupFixedRindex ): """Attribute Rindex lookup on a str. Typically code like: some_str.rindex """ kind = "EXPRESSION_ATTRIBUTE_LOOKUP_STR_RINDEX" attribute_name = "rindex" def computeExpression(self, trace_collection): return self, None, None def computeExpressionCall(self, call_node, call_args, call_kw, trace_collection): def wrapExpressionStrOperationRindex(sub, start, end, source_ref): if end is not None: from .StrNodes import ExpressionStrOperationRindex4 return ExpressionStrOperationRindex4( str_arg=self.subnode_expression, sub=sub, start=start, end=end, source_ref=source_ref, ) elif start is not None: from .StrNodes import ExpressionStrOperationRindex3 return ExpressionStrOperationRindex3( str_arg=self.subnode_expression, sub=sub, start=start, source_ref=source_ref, ) else: from .StrNodes import ExpressionStrOperationRindex2 return ExpressionStrOperationRindex2( str_arg=self.subnode_expression, sub=sub, source_ref=source_ref ) # Anything may happen. On next pass, if replaced, we might be better # but not now. trace_collection.onExceptionRaiseExit(BaseException) result = extractBuiltinArgs( node=call_node, builtin_class=wrapExpressionStrOperationRindex, builtin_spec=str_rindex_spec, ) return result, "new_expression", "Call to 'rindex' of str recognized." attribute_typed_classes.add(ExpressionAttributeLookupStrRindex) class ExpressionAttributeLookupFixedRjust(ExpressionAttributeLookupFixedBase): """Looking up an attribute value 'rjust' of an object. Typically code like: source.rjust """ kind = "EXPRESSION_ATTRIBUTE_LOOKUP_FIXED_RJUST" attribute_name = "rjust" def computeExpression(self, trace_collection): subnode_expression = self.subnode_expression if subnode_expression.hasShapeStrExact(): result = ExpressionAttributeLookupStrRjust( expression=subnode_expression, source_ref=self.source_ref ) return ( result, "new_expression", "Attribute lookup 'rjust' on str shape resolved.", ) return subnode_expression.computeExpressionAttribute( lookup_node=self, attribute_name="rjust", trace_collection=trace_collection, ) def mayRaiseException(self, exception_type): return self.subnode_expression.mayRaiseExceptionAttributeLookup( exception_type=exception_type, attribute_name="rjust" ) attribute_classes["rjust"] = ExpressionAttributeLookupFixedRjust class ExpressionAttributeLookupStrRjust( SideEffectsFromChildrenMixin, ExpressionAttributeLookupFixedRjust ): """Attribute Rjust lookup on a str. Typically code like: some_str.rjust """ kind = "EXPRESSION_ATTRIBUTE_LOOKUP_STR_RJUST" attribute_name = "rjust" def computeExpression(self, trace_collection): return self, None, None # No computeExpressionCall as str operation ExpressionStrOperationRjust is not yet implemented attribute_typed_classes.add(ExpressionAttributeLookupStrRjust) class ExpressionAttributeLookupFixedRpartition(ExpressionAttributeLookupFixedBase): """Looking up an attribute value 'rpartition' of an object. Typically code like: source.rpartition """ kind = "EXPRESSION_ATTRIBUTE_LOOKUP_FIXED_RPARTITION" attribute_name = "rpartition" def computeExpression(self, trace_collection): subnode_expression = self.subnode_expression if subnode_expression.hasShapeStrExact(): result = ExpressionAttributeLookupStrRpartition( expression=subnode_expression, source_ref=self.source_ref ) return ( result, "new_expression", "Attribute lookup 'rpartition' on str shape resolved.", ) return subnode_expression.computeExpressionAttribute( lookup_node=self, attribute_name="rpartition", trace_collection=trace_collection, ) def mayRaiseException(self, exception_type): return self.subnode_expression.mayRaiseExceptionAttributeLookup( exception_type=exception_type, attribute_name="rpartition" ) attribute_classes["rpartition"] = ExpressionAttributeLookupFixedRpartition from nuitka.specs.BuiltinStrOperationSpecs import str_rpartition_spec class ExpressionAttributeLookupStrRpartition( SideEffectsFromChildrenMixin, ExpressionAttributeLookupFixedRpartition ): """Attribute Rpartition lookup on a str. Typically code like: some_str.rpartition """ kind = "EXPRESSION_ATTRIBUTE_LOOKUP_STR_RPARTITION" attribute_name = "rpartition" def computeExpression(self, trace_collection): return self, None, None def computeExpressionCall(self, call_node, call_args, call_kw, trace_collection): def wrapExpressionStrOperationRpartition(sep, source_ref): from .StrNodes import ExpressionStrOperationRpartition return ExpressionStrOperationRpartition( str_arg=self.subnode_expression, sep=sep, source_ref=source_ref ) # Anything may happen. On next pass, if replaced, we might be better # but not now. trace_collection.onExceptionRaiseExit(BaseException) result = extractBuiltinArgs( node=call_node, builtin_class=wrapExpressionStrOperationRpartition, builtin_spec=str_rpartition_spec, ) return result, "new_expression", "Call to 'rpartition' of str recognized." attribute_typed_classes.add(ExpressionAttributeLookupStrRpartition) class ExpressionAttributeLookupFixedRsplit(ExpressionAttributeLookupFixedBase): """Looking up an attribute value 'rsplit' of an object. Typically code like: source.rsplit """ kind = "EXPRESSION_ATTRIBUTE_LOOKUP_FIXED_RSPLIT" attribute_name = "rsplit" def computeExpression(self, trace_collection): subnode_expression = self.subnode_expression if subnode_expression.hasShapeStrExact(): result = ExpressionAttributeLookupStrRsplit( expression=subnode_expression, source_ref=self.source_ref ) return ( result, "new_expression", "Attribute lookup 'rsplit' on str shape resolved.", ) return subnode_expression.computeExpressionAttribute( lookup_node=self, attribute_name="rsplit", trace_collection=trace_collection, ) def mayRaiseException(self, exception_type): return self.subnode_expression.mayRaiseExceptionAttributeLookup( exception_type=exception_type, attribute_name="rsplit" ) attribute_classes["rsplit"] = ExpressionAttributeLookupFixedRsplit from nuitka.specs.BuiltinStrOperationSpecs import str_rsplit_spec class ExpressionAttributeLookupStrRsplit( SideEffectsFromChildrenMixin, ExpressionAttributeLookupFixedRsplit ): """Attribute Rsplit lookup on a str. Typically code like: some_str.rsplit """ kind = "EXPRESSION_ATTRIBUTE_LOOKUP_STR_RSPLIT" attribute_name = "rsplit" def computeExpression(self, trace_collection): return self, None, None def computeExpressionCall(self, call_node, call_args, call_kw, trace_collection): def wrapExpressionStrOperationRsplit(sep, maxsplit, source_ref): if maxsplit is not None: from .StrNodes import ExpressionStrOperationRsplit3 return ExpressionStrOperationRsplit3( str_arg=self.subnode_expression, sep=sep, maxsplit=maxsplit, source_ref=source_ref, ) elif sep is not None: from .StrNodes import ExpressionStrOperationRsplit2 return ExpressionStrOperationRsplit2( str_arg=self.subnode_expression, sep=sep, source_ref=source_ref ) else: from .StrNodes import ExpressionStrOperationRsplit1 return ExpressionStrOperationRsplit1( str_arg=self.subnode_expression, source_ref=source_ref ) # Anything may happen. On next pass, if replaced, we might be better # but not now. trace_collection.onExceptionRaiseExit(BaseException) result = extractBuiltinArgs( node=call_node, builtin_class=wrapExpressionStrOperationRsplit, builtin_spec=str_rsplit_spec, ) return result, "new_expression", "Call to 'rsplit' of str recognized." attribute_typed_classes.add(ExpressionAttributeLookupStrRsplit) class ExpressionAttributeLookupFixedRstrip(ExpressionAttributeLookupFixedBase): """Looking up an attribute value 'rstrip' of an object. Typically code like: source.rstrip """ kind = "EXPRESSION_ATTRIBUTE_LOOKUP_FIXED_RSTRIP" attribute_name = "rstrip" def computeExpression(self, trace_collection): subnode_expression = self.subnode_expression if subnode_expression.hasShapeStrExact(): result = ExpressionAttributeLookupStrRstrip( expression=subnode_expression, source_ref=self.source_ref ) return ( result, "new_expression", "Attribute lookup 'rstrip' on str shape resolved.", ) return subnode_expression.computeExpressionAttribute( lookup_node=self, attribute_name="rstrip", trace_collection=trace_collection, ) def mayRaiseException(self, exception_type): return self.subnode_expression.mayRaiseExceptionAttributeLookup( exception_type=exception_type, attribute_name="rstrip" ) attribute_classes["rstrip"] = ExpressionAttributeLookupFixedRstrip from nuitka.specs.BuiltinStrOperationSpecs import str_rstrip_spec class ExpressionAttributeLookupStrRstrip( SideEffectsFromChildrenMixin, ExpressionAttributeLookupFixedRstrip ): """Attribute Rstrip lookup on a str. Typically code like: some_str.rstrip """ kind = "EXPRESSION_ATTRIBUTE_LOOKUP_STR_RSTRIP" attribute_name = "rstrip" def computeExpression(self, trace_collection): return self, None, None def computeExpressionCall(self, call_node, call_args, call_kw, trace_collection): def wrapExpressionStrOperationRstrip(chars, source_ref): if chars is not None: from .StrNodes import ExpressionStrOperationRstrip2 return ExpressionStrOperationRstrip2( str_arg=self.subnode_expression, chars=chars, source_ref=source_ref ) else: from .StrNodes import ExpressionStrOperationRstrip1 return ExpressionStrOperationRstrip1( str_arg=self.subnode_expression, source_ref=source_ref ) # Anything may happen. On next pass, if replaced, we might be better # but not now. trace_collection.onExceptionRaiseExit(BaseException) result = extractBuiltinArgs( node=call_node, builtin_class=wrapExpressionStrOperationRstrip, builtin_spec=str_rstrip_spec, ) return result, "new_expression", "Call to 'rstrip' of str recognized." attribute_typed_classes.add(ExpressionAttributeLookupStrRstrip) class ExpressionAttributeLookupFixedSetdefault(ExpressionAttributeLookupFixedBase): """Looking up an attribute value 'setdefault' of an object. Typically code like: source.setdefault """ kind = "EXPRESSION_ATTRIBUTE_LOOKUP_FIXED_SETDEFAULT" attribute_name = "setdefault" def computeExpression(self, trace_collection): subnode_expression = self.subnode_expression if subnode_expression.hasShapeDictionaryExact(): result = ExpressionAttributeLookupDictSetdefault( expression=subnode_expression, source_ref=self.source_ref ) return ( result, "new_expression", "Attribute lookup 'setdefault' on dict shape resolved.", ) return subnode_expression.computeExpressionAttribute( lookup_node=self, attribute_name="setdefault", trace_collection=trace_collection, ) def mayRaiseException(self, exception_type): return self.subnode_expression.mayRaiseExceptionAttributeLookup( exception_type=exception_type, attribute_name="setdefault" ) attribute_classes["setdefault"] = ExpressionAttributeLookupFixedSetdefault from nuitka.specs.BuiltinDictOperationSpecs import dict_setdefault_spec class ExpressionAttributeLookupDictSetdefault( SideEffectsFromChildrenMixin, ExpressionAttributeLookupFixedSetdefault ): """Attribute Setdefault lookup on a dict. Typically code like: some_dict.setdefault """ kind = "EXPRESSION_ATTRIBUTE_LOOKUP_DICT_SETDEFAULT" attribute_name = "setdefault" def computeExpression(self, trace_collection): return self, None, None def computeExpressionCall(self, call_node, call_args, call_kw, trace_collection): def wrapExpressionDictOperationSetdefault(key, default, source_ref): if default is not None: from .DictionaryNodes import ExpressionDictOperationSetdefault3 return ExpressionDictOperationSetdefault3( dict_arg=self.subnode_expression, key=key, default=default, source_ref=source_ref, ) else: from .DictionaryNodes import ExpressionDictOperationSetdefault2 return ExpressionDictOperationSetdefault2( dict_arg=self.subnode_expression, key=key, source_ref=source_ref ) # Anything may happen. On next pass, if replaced, we might be better # but not now. trace_collection.onExceptionRaiseExit(BaseException) result = extractBuiltinArgs( node=call_node, builtin_class=wrapExpressionDictOperationSetdefault, builtin_spec=dict_setdefault_spec, ) return ( result, "new_expression", "Call to 'setdefault' of dictionary recognized.", ) attribute_typed_classes.add(ExpressionAttributeLookupDictSetdefault) class ExpressionAttributeLookupFixedSplit(ExpressionAttributeLookupFixedBase): """Looking up an attribute value 'split' of an object. Typically code like: source.split """ kind = "EXPRESSION_ATTRIBUTE_LOOKUP_FIXED_SPLIT" attribute_name = "split" def computeExpression(self, trace_collection): subnode_expression = self.subnode_expression if subnode_expression.hasShapeStrExact(): result = ExpressionAttributeLookupStrSplit( expression=subnode_expression, source_ref=self.source_ref ) return ( result, "new_expression", "Attribute lookup 'split' on str shape resolved.", ) return subnode_expression.computeExpressionAttribute( lookup_node=self, attribute_name="split", trace_collection=trace_collection, ) def mayRaiseException(self, exception_type): return self.subnode_expression.mayRaiseExceptionAttributeLookup( exception_type=exception_type, attribute_name="split" ) attribute_classes["split"] = ExpressionAttributeLookupFixedSplit from nuitka.specs.BuiltinStrOperationSpecs import str_split_spec class ExpressionAttributeLookupStrSplit( SideEffectsFromChildrenMixin, ExpressionAttributeLookupFixedSplit ): """Attribute Split lookup on a str. Typically code like: some_str.split """ kind = "EXPRESSION_ATTRIBUTE_LOOKUP_STR_SPLIT" attribute_name = "split" def computeExpression(self, trace_collection): return self, None, None def computeExpressionCall(self, call_node, call_args, call_kw, trace_collection): def wrapExpressionStrOperationSplit(sep, maxsplit, source_ref): if maxsplit is not None: from .StrNodes import ExpressionStrOperationSplit3 return ExpressionStrOperationSplit3( str_arg=self.subnode_expression, sep=sep, maxsplit=maxsplit, source_ref=source_ref, ) elif sep is not None: from .StrNodes import ExpressionStrOperationSplit2 return ExpressionStrOperationSplit2( str_arg=self.subnode_expression, sep=sep, source_ref=source_ref ) else: from .StrNodes import ExpressionStrOperationSplit1 return ExpressionStrOperationSplit1( str_arg=self.subnode_expression, source_ref=source_ref ) # Anything may happen. On next pass, if replaced, we might be better # but not now. trace_collection.onExceptionRaiseExit(BaseException) result = extractBuiltinArgs( node=call_node, builtin_class=wrapExpressionStrOperationSplit, builtin_spec=str_split_spec, ) return result, "new_expression", "Call to 'split' of str recognized." attribute_typed_classes.add(ExpressionAttributeLookupStrSplit) class ExpressionAttributeLookupFixedSplitlines(ExpressionAttributeLookupFixedBase): """Looking up an attribute value 'splitlines' of an object. Typically code like: source.splitlines """ kind = "EXPRESSION_ATTRIBUTE_LOOKUP_FIXED_SPLITLINES" attribute_name = "splitlines" def computeExpression(self, trace_collection): subnode_expression = self.subnode_expression if subnode_expression.hasShapeStrExact(): result = ExpressionAttributeLookupStrSplitlines( expression=subnode_expression, source_ref=self.source_ref ) return ( result, "new_expression", "Attribute lookup 'splitlines' on str shape resolved.", ) return subnode_expression.computeExpressionAttribute( lookup_node=self, attribute_name="splitlines", trace_collection=trace_collection, ) def mayRaiseException(self, exception_type): return self.subnode_expression.mayRaiseExceptionAttributeLookup( exception_type=exception_type, attribute_name="splitlines" ) attribute_classes["splitlines"] = ExpressionAttributeLookupFixedSplitlines class ExpressionAttributeLookupStrSplitlines( SideEffectsFromChildrenMixin, ExpressionAttributeLookupFixedSplitlines ): """Attribute Splitlines lookup on a str. Typically code like: some_str.splitlines """ kind = "EXPRESSION_ATTRIBUTE_LOOKUP_STR_SPLITLINES" attribute_name = "splitlines" def computeExpression(self, trace_collection): return self, None, None # No computeExpressionCall as str operation ExpressionStrOperationSplitlines is not yet implemented attribute_typed_classes.add(ExpressionAttributeLookupStrSplitlines) class ExpressionAttributeLookupFixedStartswith(ExpressionAttributeLookupFixedBase): """Looking up an attribute value 'startswith' of an object. Typically code like: source.startswith """ kind = "EXPRESSION_ATTRIBUTE_LOOKUP_FIXED_STARTSWITH" attribute_name = "startswith" def computeExpression(self, trace_collection): subnode_expression = self.subnode_expression if subnode_expression.hasShapeStrExact(): result = ExpressionAttributeLookupStrStartswith( expression=subnode_expression, source_ref=self.source_ref ) return ( result, "new_expression", "Attribute lookup 'startswith' on str shape resolved.", ) return subnode_expression.computeExpressionAttribute( lookup_node=self, attribute_name="startswith", trace_collection=trace_collection, ) def mayRaiseException(self, exception_type): return self.subnode_expression.mayRaiseExceptionAttributeLookup( exception_type=exception_type, attribute_name="startswith" ) attribute_classes["startswith"] = ExpressionAttributeLookupFixedStartswith from nuitka.specs.BuiltinStrOperationSpecs import str_startswith_spec class ExpressionAttributeLookupStrStartswith( SideEffectsFromChildrenMixin, ExpressionAttributeLookupFixedStartswith ): """Attribute Startswith lookup on a str. Typically code like: some_str.startswith """ kind = "EXPRESSION_ATTRIBUTE_LOOKUP_STR_STARTSWITH" attribute_name = "startswith" def computeExpression(self, trace_collection): return self, None, None def computeExpressionCall(self, call_node, call_args, call_kw, trace_collection): def wrapExpressionStrOperationStartswith(prefix, start, end, source_ref): if end is not None: from .StrNodes import ExpressionStrOperationStartswith4 return ExpressionStrOperationStartswith4( str_arg=self.subnode_expression, prefix=prefix, start=start, end=end, source_ref=source_ref, ) elif start is not None: from .StrNodes import ExpressionStrOperationStartswith3 return ExpressionStrOperationStartswith3( str_arg=self.subnode_expression, prefix=prefix, start=start, source_ref=source_ref, ) else: from .StrNodes import ExpressionStrOperationStartswith2 return ExpressionStrOperationStartswith2( str_arg=self.subnode_expression, prefix=prefix, source_ref=source_ref, ) # Anything may happen. On next pass, if replaced, we might be better # but not now. trace_collection.onExceptionRaiseExit(BaseException) result = extractBuiltinArgs( node=call_node, builtin_class=wrapExpressionStrOperationStartswith, builtin_spec=str_startswith_spec, ) return result, "new_expression", "Call to 'startswith' of str recognized." attribute_typed_classes.add(ExpressionAttributeLookupStrStartswith) class ExpressionAttributeLookupFixedStrip(ExpressionAttributeLookupFixedBase): """Looking up an attribute value 'strip' of an object. Typically code like: source.strip """ kind = "EXPRESSION_ATTRIBUTE_LOOKUP_FIXED_STRIP" attribute_name = "strip" def computeExpression(self, trace_collection): subnode_expression = self.subnode_expression if subnode_expression.hasShapeStrExact(): result = ExpressionAttributeLookupStrStrip( expression=subnode_expression, source_ref=self.source_ref ) return ( result, "new_expression", "Attribute lookup 'strip' on str shape resolved.", ) return subnode_expression.computeExpressionAttribute( lookup_node=self, attribute_name="strip", trace_collection=trace_collection, ) def mayRaiseException(self, exception_type): return self.subnode_expression.mayRaiseExceptionAttributeLookup( exception_type=exception_type, attribute_name="strip" ) attribute_classes["strip"] = ExpressionAttributeLookupFixedStrip from nuitka.specs.BuiltinStrOperationSpecs import str_strip_spec class ExpressionAttributeLookupStrStrip( SideEffectsFromChildrenMixin, ExpressionAttributeLookupFixedStrip ): """Attribute Strip lookup on a str. Typically code like: some_str.strip """ kind = "EXPRESSION_ATTRIBUTE_LOOKUP_STR_STRIP" attribute_name = "strip" def computeExpression(self, trace_collection): return self, None, None def computeExpressionCall(self, call_node, call_args, call_kw, trace_collection): def wrapExpressionStrOperationStrip(chars, source_ref): if chars is not None: from .StrNodes import ExpressionStrOperationStrip2 return ExpressionStrOperationStrip2( str_arg=self.subnode_expression, chars=chars, source_ref=source_ref ) else: from .StrNodes import ExpressionStrOperationStrip1 return ExpressionStrOperationStrip1( str_arg=self.subnode_expression, source_ref=source_ref ) # Anything may happen. On next pass, if replaced, we might be better # but not now. trace_collection.onExceptionRaiseExit(BaseException) result = extractBuiltinArgs( node=call_node, builtin_class=wrapExpressionStrOperationStrip, builtin_spec=str_strip_spec, ) return result, "new_expression", "Call to 'strip' of str recognized." attribute_typed_classes.add(ExpressionAttributeLookupStrStrip) class ExpressionAttributeLookupFixedSwapcase(ExpressionAttributeLookupFixedBase): """Looking up an attribute value 'swapcase' of an object. Typically code like: source.swapcase """ kind = "EXPRESSION_ATTRIBUTE_LOOKUP_FIXED_SWAPCASE" attribute_name = "swapcase" def computeExpression(self, trace_collection): subnode_expression = self.subnode_expression if subnode_expression.hasShapeStrExact(): result = ExpressionAttributeLookupStrSwapcase( expression=subnode_expression, source_ref=self.source_ref ) return ( result, "new_expression", "Attribute lookup 'swapcase' on str shape resolved.", ) return subnode_expression.computeExpressionAttribute( lookup_node=self, attribute_name="swapcase", trace_collection=trace_collection, ) def mayRaiseException(self, exception_type): return self.subnode_expression.mayRaiseExceptionAttributeLookup( exception_type=exception_type, attribute_name="swapcase" ) attribute_classes["swapcase"] = ExpressionAttributeLookupFixedSwapcase from nuitka.specs.BuiltinStrOperationSpecs import str_swapcase_spec class ExpressionAttributeLookupStrSwapcase( SideEffectsFromChildrenMixin, ExpressionAttributeLookupFixedSwapcase ): """Attribute Swapcase lookup on a str. Typically code like: some_str.swapcase """ kind = "EXPRESSION_ATTRIBUTE_LOOKUP_STR_SWAPCASE" attribute_name = "swapcase" def computeExpression(self, trace_collection): return self, None, None def computeExpressionCall(self, call_node, call_args, call_kw, trace_collection): def wrapExpressionStrOperationSwapcase(source_ref): from .StrNodes import ExpressionStrOperationSwapcase return ExpressionStrOperationSwapcase( str_arg=self.subnode_expression, source_ref=source_ref ) # Anything may happen. On next pass, if replaced, we might be better # but not now. trace_collection.onExceptionRaiseExit(BaseException) result = extractBuiltinArgs( node=call_node, builtin_class=wrapExpressionStrOperationSwapcase, builtin_spec=str_swapcase_spec, ) return result, "new_expression", "Call to 'swapcase' of str recognized." attribute_typed_classes.add(ExpressionAttributeLookupStrSwapcase) class ExpressionAttributeLookupFixedTitle(ExpressionAttributeLookupFixedBase): """Looking up an attribute value 'title' of an object. Typically code like: source.title """ kind = "EXPRESSION_ATTRIBUTE_LOOKUP_FIXED_TITLE" attribute_name = "title" def computeExpression(self, trace_collection): subnode_expression = self.subnode_expression if subnode_expression.hasShapeStrExact(): result = ExpressionAttributeLookupStrTitle( expression=subnode_expression, source_ref=self.source_ref ) return ( result, "new_expression", "Attribute lookup 'title' on str shape resolved.", ) return subnode_expression.computeExpressionAttribute( lookup_node=self, attribute_name="title", trace_collection=trace_collection, ) def mayRaiseException(self, exception_type): return self.subnode_expression.mayRaiseExceptionAttributeLookup( exception_type=exception_type, attribute_name="title" ) attribute_classes["title"] = ExpressionAttributeLookupFixedTitle from nuitka.specs.BuiltinStrOperationSpecs import str_title_spec class ExpressionAttributeLookupStrTitle( SideEffectsFromChildrenMixin, ExpressionAttributeLookupFixedTitle ): """Attribute Title lookup on a str. Typically code like: some_str.title """ kind = "EXPRESSION_ATTRIBUTE_LOOKUP_STR_TITLE" attribute_name = "title" def computeExpression(self, trace_collection): return self, None, None def computeExpressionCall(self, call_node, call_args, call_kw, trace_collection): def wrapExpressionStrOperationTitle(source_ref): from .StrNodes import ExpressionStrOperationTitle return ExpressionStrOperationTitle( str_arg=self.subnode_expression, source_ref=source_ref ) # Anything may happen. On next pass, if replaced, we might be better # but not now. trace_collection.onExceptionRaiseExit(BaseException) result = extractBuiltinArgs( node=call_node, builtin_class=wrapExpressionStrOperationTitle, builtin_spec=str_title_spec, ) return result, "new_expression", "Call to 'title' of str recognized." attribute_typed_classes.add(ExpressionAttributeLookupStrTitle) class ExpressionAttributeLookupFixedTranslate(ExpressionAttributeLookupFixedBase): """Looking up an attribute value 'translate' of an object. Typically code like: source.translate """ kind = "EXPRESSION_ATTRIBUTE_LOOKUP_FIXED_TRANSLATE" attribute_name = "translate" def computeExpression(self, trace_collection): subnode_expression = self.subnode_expression if subnode_expression.hasShapeStrExact(): result = ExpressionAttributeLookupStrTranslate( expression=subnode_expression, source_ref=self.source_ref ) return ( result, "new_expression", "Attribute lookup 'translate' on str shape resolved.", ) return subnode_expression.computeExpressionAttribute( lookup_node=self, attribute_name="translate", trace_collection=trace_collection, ) def mayRaiseException(self, exception_type): return self.subnode_expression.mayRaiseExceptionAttributeLookup( exception_type=exception_type, attribute_name="translate" ) attribute_classes["translate"] = ExpressionAttributeLookupFixedTranslate class ExpressionAttributeLookupStrTranslate( SideEffectsFromChildrenMixin, ExpressionAttributeLookupFixedTranslate ): """Attribute Translate lookup on a str. Typically code like: some_str.translate """ kind = "EXPRESSION_ATTRIBUTE_LOOKUP_STR_TRANSLATE" attribute_name = "translate" def computeExpression(self, trace_collection): return self, None, None # No computeExpressionCall as str operation ExpressionStrOperationTranslate is not yet implemented attribute_typed_classes.add(ExpressionAttributeLookupStrTranslate) class ExpressionAttributeLookupFixedUpdate(ExpressionAttributeLookupFixedBase): """Looking up an attribute value 'update' of an object. Typically code like: source.update """ kind = "EXPRESSION_ATTRIBUTE_LOOKUP_FIXED_UPDATE" attribute_name = "update" def computeExpression(self, trace_collection): subnode_expression = self.subnode_expression if subnode_expression.hasShapeDictionaryExact(): result = ExpressionAttributeLookupDictUpdate( expression=subnode_expression, source_ref=self.source_ref ) return ( result, "new_expression", "Attribute lookup 'update' on dict shape resolved.", ) return subnode_expression.computeExpressionAttribute( lookup_node=self, attribute_name="update", trace_collection=trace_collection, ) def mayRaiseException(self, exception_type): return self.subnode_expression.mayRaiseExceptionAttributeLookup( exception_type=exception_type, attribute_name="update" ) attribute_classes["update"] = ExpressionAttributeLookupFixedUpdate from nuitka.specs.BuiltinDictOperationSpecs import dict_update_spec class ExpressionAttributeLookupDictUpdate( SideEffectsFromChildrenMixin, ExpressionAttributeLookupFixedUpdate ): """Attribute Update lookup on a dict. Typically code like: some_dict.update """ kind = "EXPRESSION_ATTRIBUTE_LOOKUP_DICT_UPDATE" attribute_name = "update" def computeExpression(self, trace_collection): return self, None, None def computeExpressionCall(self, call_node, call_args, call_kw, trace_collection): def wrapExpressionDictOperationUpdate(list_args, kw_args, source_ref): if kw_args is not None: from .DictionaryNodes import ExpressionDictOperationUpdate3 return ExpressionDictOperationUpdate3( dict_arg=self.subnode_expression, iterable=list_args, pairs=kw_args, source_ref=source_ref, ) else: from .DictionaryNodes import ExpressionDictOperationUpdate2 return ExpressionDictOperationUpdate2( dict_arg=self.subnode_expression, iterable=list_args, source_ref=source_ref, ) # Anything may happen. On next pass, if replaced, we might be better # but not now. trace_collection.onExceptionRaiseExit(BaseException) result = extractBuiltinArgs( node=call_node, builtin_class=wrapExpressionDictOperationUpdate, builtin_spec=dict_update_spec, ) return result, "new_expression", "Call to 'update' of dictionary recognized." attribute_typed_classes.add(ExpressionAttributeLookupDictUpdate) class ExpressionAttributeLookupFixedUpper(ExpressionAttributeLookupFixedBase): """Looking up an attribute value 'upper' of an object. Typically code like: source.upper """ kind = "EXPRESSION_ATTRIBUTE_LOOKUP_FIXED_UPPER" attribute_name = "upper" def computeExpression(self, trace_collection): subnode_expression = self.subnode_expression if subnode_expression.hasShapeStrExact(): result = ExpressionAttributeLookupStrUpper( expression=subnode_expression, source_ref=self.source_ref ) return ( result, "new_expression", "Attribute lookup 'upper' on str shape resolved.", ) return subnode_expression.computeExpressionAttribute( lookup_node=self, attribute_name="upper", trace_collection=trace_collection, ) def mayRaiseException(self, exception_type): return self.subnode_expression.mayRaiseExceptionAttributeLookup( exception_type=exception_type, attribute_name="upper" ) attribute_classes["upper"] = ExpressionAttributeLookupFixedUpper from nuitka.specs.BuiltinStrOperationSpecs import str_upper_spec class ExpressionAttributeLookupStrUpper( SideEffectsFromChildrenMixin, ExpressionAttributeLookupFixedUpper ): """Attribute Upper lookup on a str. Typically code like: some_str.upper """ kind = "EXPRESSION_ATTRIBUTE_LOOKUP_STR_UPPER" attribute_name = "upper" def computeExpression(self, trace_collection): return self, None, None def computeExpressionCall(self, call_node, call_args, call_kw, trace_collection): def wrapExpressionStrOperationUpper(source_ref): from .StrNodes import ExpressionStrOperationUpper return ExpressionStrOperationUpper( str_arg=self.subnode_expression, source_ref=source_ref ) # Anything may happen. On next pass, if replaced, we might be better # but not now. trace_collection.onExceptionRaiseExit(BaseException) result = extractBuiltinArgs( node=call_node, builtin_class=wrapExpressionStrOperationUpper, builtin_spec=str_upper_spec, ) return result, "new_expression", "Call to 'upper' of str recognized." attribute_typed_classes.add(ExpressionAttributeLookupStrUpper) class ExpressionAttributeLookupFixedValues(ExpressionAttributeLookupFixedBase): """Looking up an attribute value 'values' of an object. Typically code like: source.values """ kind = "EXPRESSION_ATTRIBUTE_LOOKUP_FIXED_VALUES" attribute_name = "values" def computeExpression(self, trace_collection): subnode_expression = self.subnode_expression if subnode_expression.hasShapeDictionaryExact(): result = ExpressionAttributeLookupDictValues( expression=subnode_expression, source_ref=self.source_ref ) return ( result, "new_expression", "Attribute lookup 'values' on dict shape resolved.", ) return subnode_expression.computeExpressionAttribute( lookup_node=self, attribute_name="values", trace_collection=trace_collection, ) def mayRaiseException(self, exception_type): return self.subnode_expression.mayRaiseExceptionAttributeLookup( exception_type=exception_type, attribute_name="values" ) attribute_classes["values"] = ExpressionAttributeLookupFixedValues from nuitka.specs.BuiltinDictOperationSpecs import dict_values_spec class ExpressionAttributeLookupDictValues( SideEffectsFromChildrenMixin, ExpressionAttributeLookupFixedValues ): """Attribute Values lookup on a dict. Typically code like: some_dict.values """ kind = "EXPRESSION_ATTRIBUTE_LOOKUP_DICT_VALUES" attribute_name = "values" def computeExpression(self, trace_collection): return self, None, None def computeExpressionCall(self, call_node, call_args, call_kw, trace_collection): def wrapExpressionDictOperationValues(source_ref): if str is bytes: from .DictionaryNodes import ExpressionDictOperationValues return ExpressionDictOperationValues( dict_arg=self.subnode_expression, source_ref=source_ref ) else: from .DictionaryNodes import ExpressionDictOperationItervalues return ExpressionDictOperationItervalues( dict_arg=self.subnode_expression, source_ref=source_ref ) # Anything may happen. On next pass, if replaced, we might be better # but not now. trace_collection.onExceptionRaiseExit(BaseException) result = extractBuiltinArgs( node=call_node, builtin_class=wrapExpressionDictOperationValues, builtin_spec=dict_values_spec, ) return result, "new_expression", "Call to 'values' of dictionary recognized." attribute_typed_classes.add(ExpressionAttributeLookupDictValues) class ExpressionAttributeLookupFixedViewitems(ExpressionAttributeLookupFixedBase): """Looking up an attribute value 'viewitems' of an object. Typically code like: source.viewitems """ kind = "EXPRESSION_ATTRIBUTE_LOOKUP_FIXED_VIEWITEMS" attribute_name = "viewitems" def computeExpression(self, trace_collection): subnode_expression = self.subnode_expression if str is bytes and subnode_expression.hasShapeDictionaryExact(): result = ExpressionAttributeLookupDictViewitems( expression=subnode_expression, source_ref=self.source_ref ) return ( result, "new_expression", "Attribute lookup 'viewitems' on dict shape resolved.", ) return subnode_expression.computeExpressionAttribute( lookup_node=self, attribute_name="viewitems", trace_collection=trace_collection, ) def mayRaiseException(self, exception_type): return self.subnode_expression.mayRaiseExceptionAttributeLookup( exception_type=exception_type, attribute_name="viewitems" ) attribute_classes["viewitems"] = ExpressionAttributeLookupFixedViewitems from nuitka.specs.BuiltinDictOperationSpecs import dict_viewitems_spec class ExpressionAttributeLookupDictViewitems( SideEffectsFromChildrenMixin, ExpressionAttributeLookupFixedViewitems ): """Attribute Viewitems lookup on a dict. Typically code like: some_dict.viewitems """ kind = "EXPRESSION_ATTRIBUTE_LOOKUP_DICT_VIEWITEMS" attribute_name = "viewitems" def computeExpression(self, trace_collection): return self, None, None def computeExpressionCall(self, call_node, call_args, call_kw, trace_collection): def wrapExpressionDictOperationViewitems(source_ref): from .DictionaryNodes import ExpressionDictOperationViewitems return ExpressionDictOperationViewitems( dict_arg=self.subnode_expression, source_ref=source_ref ) # Anything may happen. On next pass, if replaced, we might be better # but not now. trace_collection.onExceptionRaiseExit(BaseException) result = extractBuiltinArgs( node=call_node, builtin_class=wrapExpressionDictOperationViewitems, builtin_spec=dict_viewitems_spec, ) return result, "new_expression", "Call to 'viewitems' of dictionary recognized." attribute_typed_classes.add(ExpressionAttributeLookupDictViewitems) class ExpressionAttributeLookupFixedViewkeys(ExpressionAttributeLookupFixedBase): """Looking up an attribute value 'viewkeys' of an object. Typically code like: source.viewkeys """ kind = "EXPRESSION_ATTRIBUTE_LOOKUP_FIXED_VIEWKEYS" attribute_name = "viewkeys" def computeExpression(self, trace_collection): subnode_expression = self.subnode_expression if str is bytes and subnode_expression.hasShapeDictionaryExact(): result = ExpressionAttributeLookupDictViewkeys( expression=subnode_expression, source_ref=self.source_ref ) return ( result, "new_expression", "Attribute lookup 'viewkeys' on dict shape resolved.", ) return subnode_expression.computeExpressionAttribute( lookup_node=self, attribute_name="viewkeys", trace_collection=trace_collection, ) def mayRaiseException(self, exception_type): return self.subnode_expression.mayRaiseExceptionAttributeLookup( exception_type=exception_type, attribute_name="viewkeys" ) attribute_classes["viewkeys"] = ExpressionAttributeLookupFixedViewkeys from nuitka.specs.BuiltinDictOperationSpecs import dict_viewkeys_spec class ExpressionAttributeLookupDictViewkeys( SideEffectsFromChildrenMixin, ExpressionAttributeLookupFixedViewkeys ): """Attribute Viewkeys lookup on a dict. Typically code like: some_dict.viewkeys """ kind = "EXPRESSION_ATTRIBUTE_LOOKUP_DICT_VIEWKEYS" attribute_name = "viewkeys" def computeExpression(self, trace_collection): return self, None, None def computeExpressionCall(self, call_node, call_args, call_kw, trace_collection): def wrapExpressionDictOperationViewkeys(source_ref): from .DictionaryNodes import ExpressionDictOperationViewkeys return ExpressionDictOperationViewkeys( dict_arg=self.subnode_expression, source_ref=source_ref ) # Anything may happen. On next pass, if replaced, we might be better # but not now. trace_collection.onExceptionRaiseExit(BaseException) result = extractBuiltinArgs( node=call_node, builtin_class=wrapExpressionDictOperationViewkeys, builtin_spec=dict_viewkeys_spec, ) return result, "new_expression", "Call to 'viewkeys' of dictionary recognized." attribute_typed_classes.add(ExpressionAttributeLookupDictViewkeys) class ExpressionAttributeLookupFixedViewvalues(ExpressionAttributeLookupFixedBase): """Looking up an attribute value 'viewvalues' of an object. Typically code like: source.viewvalues """ kind = "EXPRESSION_ATTRIBUTE_LOOKUP_FIXED_VIEWVALUES" attribute_name = "viewvalues" def computeExpression(self, trace_collection): subnode_expression = self.subnode_expression if str is bytes and subnode_expression.hasShapeDictionaryExact(): result = ExpressionAttributeLookupDictViewvalues( expression=subnode_expression, source_ref=self.source_ref ) return ( result, "new_expression", "Attribute lookup 'viewvalues' on dict shape resolved.", ) return subnode_expression.computeExpressionAttribute( lookup_node=self, attribute_name="viewvalues", trace_collection=trace_collection, ) def mayRaiseException(self, exception_type): return self.subnode_expression.mayRaiseExceptionAttributeLookup( exception_type=exception_type, attribute_name="viewvalues" ) attribute_classes["viewvalues"] = ExpressionAttributeLookupFixedViewvalues from nuitka.specs.BuiltinDictOperationSpecs import dict_viewvalues_spec class ExpressionAttributeLookupDictViewvalues( SideEffectsFromChildrenMixin, ExpressionAttributeLookupFixedViewvalues ): """Attribute Viewvalues lookup on a dict. Typically code like: some_dict.viewvalues """ kind = "EXPRESSION_ATTRIBUTE_LOOKUP_DICT_VIEWVALUES" attribute_name = "viewvalues" def computeExpression(self, trace_collection): return self, None, None def computeExpressionCall(self, call_node, call_args, call_kw, trace_collection): def wrapExpressionDictOperationViewvalues(source_ref): from .DictionaryNodes import ExpressionDictOperationViewvalues return ExpressionDictOperationViewvalues( dict_arg=self.subnode_expression, source_ref=source_ref ) # Anything may happen. On next pass, if replaced, we might be better # but not now. trace_collection.onExceptionRaiseExit(BaseException) result = extractBuiltinArgs( node=call_node, builtin_class=wrapExpressionDictOperationViewvalues, builtin_spec=dict_viewvalues_spec, ) return ( result, "new_expression", "Call to 'viewvalues' of dictionary recognized.", ) attribute_typed_classes.add(ExpressionAttributeLookupDictViewvalues) class ExpressionAttributeLookupFixedZfill(ExpressionAttributeLookupFixedBase): """Looking up an attribute value 'zfill' of an object. Typically code like: source.zfill """ kind = "EXPRESSION_ATTRIBUTE_LOOKUP_FIXED_ZFILL" attribute_name = "zfill" def computeExpression(self, trace_collection): subnode_expression = self.subnode_expression if subnode_expression.hasShapeStrExact(): result = ExpressionAttributeLookupStrZfill( expression=subnode_expression, source_ref=self.source_ref ) return ( result, "new_expression", "Attribute lookup 'zfill' on str shape resolved.", ) return subnode_expression.computeExpressionAttribute( lookup_node=self, attribute_name="zfill", trace_collection=trace_collection, ) def mayRaiseException(self, exception_type): return self.subnode_expression.mayRaiseExceptionAttributeLookup( exception_type=exception_type, attribute_name="zfill" ) attribute_classes["zfill"] = ExpressionAttributeLookupFixedZfill class ExpressionAttributeLookupStrZfill( SideEffectsFromChildrenMixin, ExpressionAttributeLookupFixedZfill ): """Attribute Zfill lookup on a str. Typically code like: some_str.zfill """ kind = "EXPRESSION_ATTRIBUTE_LOOKUP_STR_ZFILL" attribute_name = "zfill" def computeExpression(self, trace_collection): return self, None, None # No computeExpressionCall as str operation ExpressionStrOperationZfill is not yet implemented attribute_typed_classes.add(ExpressionAttributeLookupStrZfill)
31.780423
105
0.689983
131668a619ff05fe9716089c047193de98ccfc87
303
py
Python
python/ray/ml/__init__.py
willfrey/ray
288a81b42ef0186ab4db33b30191614a7bdb69f6
[ "Apache-2.0" ]
1
2019-06-19T02:23:43.000Z
2019-06-19T02:23:43.000Z
python/ray/ml/__init__.py
willfrey/ray
288a81b42ef0186ab4db33b30191614a7bdb69f6
[ "Apache-2.0" ]
73
2021-09-25T07:11:39.000Z
2022-03-26T07:10:59.000Z
python/ray/ml/__init__.py
willfrey/ray
288a81b42ef0186ab4db33b30191614a7bdb69f6
[ "Apache-2.0" ]
1
2019-09-24T16:24:49.000Z
2019-09-24T16:24:49.000Z
from ray.ml.checkpoint import Checkpoint from ray.ml.config import RunConfig, ScalingConfig from ray.ml.preprocessor import Preprocessor from ray.ml.utils.datasets import train_test_split __all__ = [ "Checkpoint", "Preprocessor", "RunConfig", "ScalingConfig", "train_test_split", ]
23.307692
50
0.752475
4efb264d134e2bb6f62ac3ebc67f34abd4ed84d0
413
py
Python
plot/test.py
MCCCSunny/vnpy-edited
c9ef56d4b809bac1f083c213ca37f74a1f80b65e
[ "MIT" ]
null
null
null
plot/test.py
MCCCSunny/vnpy-edited
c9ef56d4b809bac1f083c213ca37f74a1f80b65e
[ "MIT" ]
null
null
null
plot/test.py
MCCCSunny/vnpy-edited
c9ef56d4b809bac1f083c213ca37f74a1f80b65e
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """ Created on Wed Nov 22 10:20:35 2017 @author: WCP """ import sys sys.path.append('C:\\Users\\WCP\\Desktop\\vnpy1.7.2_SC\\vnpy-master\\examples\\VnTrader\\temp') sys.path.append('C:\\Users\\WCP\\Desktop\\vnpy1.7.2_SC\\vnpy-master') import vnpy.trader.vtObject import shelve f=shelve.open('C:\\Users\\WCP\\Desktop\\vnpy1.7.2_SC\\vnpy-master\\examples\\VnTrader\\temp\\ContractData.vt')
29.5
110
0.702179
1877886c45ccb6a98c2ae46418bc5800a29bce5d
430
py
Python
tavastiaevents/urls.py
hamk-uas/TavastiaEventsOld
b808a1418ee89ba1e774c814364e5b55ea4f9a2c
[ "MIT" ]
null
null
null
tavastiaevents/urls.py
hamk-uas/TavastiaEventsOld
b808a1418ee89ba1e774c814364e5b55ea4f9a2c
[ "MIT" ]
null
null
null
tavastiaevents/urls.py
hamk-uas/TavastiaEventsOld
b808a1418ee89ba1e774c814364e5b55ea4f9a2c
[ "MIT" ]
null
null
null
from django.core.urlresolvers import reverse from django.conf.urls import url, include from django.views.generic import View from .views import message_event from django.views.generic import TemplateView app_name = 'tavastiaevents' urlpatterns = [ url(r'report/', message_event, name='message-event'), url(r'documentation/$', TemplateView.as_view(template_name="rest_framework/api_info.html"), name='documentation') ]
28.666667
117
0.783721
0ec53ea5068181444a7deb7ec2d5a9e3f08b6bce
4,642
py
Python
csv/build_spm.py
miurahr/libgeotiff
d9c877b6a5f7aac46905e1665f95d8a0469140fa
[ "MIT" ]
null
null
null
csv/build_spm.py
miurahr/libgeotiff
d9c877b6a5f7aac46905e1665f95d8a0469140fa
[ "MIT" ]
null
null
null
csv/build_spm.py
miurahr/libgeotiff
d9c877b6a5f7aac46905e1665f95d8a0469140fa
[ "MIT" ]
null
null
null
#!/usr/bin/env python #****************************************************************************** # $Id$ # # Project: GDAL # Purpose: Build stateplane.csv, relating USGS state plane numbers with # EPSG coordinate system, and some supporting info fields. # Author: Frank Warmerdam, warmerdam@pobox.com #****************************************************************************** # Copyright (c) 2002, Frank Warmerdam <warmerdam@pobox.com> # # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included # in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS # OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL # THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER # DEALINGS IN THE SOFTWARE. #****************************************************************************** # # $Log$ # Revision 1.1 2002/11/28 16:11:47 warmerda # New # # import string import csv_tools ############################################################################## # read_stateplane_txt() def read_stateplane_txt( filename ): spt = csv_tools.CSVTable() spt.add_field( "ID" ) spt.add_field( "STATE" ) spt.add_field( "ZONE" ) spt.add_field( "PROJ_METHOD" ) spt.add_field( "DATUM" ) spt.add_field( "USGS_CODE" ) spt.add_field( "EPSG_PCS_CODE" ) src_lines = open(filename).readlines() for line in src_lines: rec = {} rec['STATE'] = string.strip(line[0:16]) rec['ZONE'] = string.strip(line[16:39]) rec['PROJ_METHOD'] = string.strip(line[39:40]) rec['DATUM'] = string.strip(line[48:65]) rec['USGS_CODE'] = string.strip(line[65:]) rec['EPSG_PCS_CODE'] = '' if rec['DATUM'] == 'NAD27': rec['ID'] = str(int(rec['USGS_CODE']) + 10000) else: rec['ID'] = rec['USGS_CODE'] spt.add_record( int(rec['ID']), rec ) return spt ############################################################################## # main() spt = read_stateplane_txt( '/home/warmerda/gdal/data/stateplane.txt' ) pcs = csv_tools.CSVTable() pcs.read_from_csv( 'coordinate_reference_system.csv' ) coord_sys_by_name = {} ids_to_replace = [] pcs_keys = pcs.data.keys() #pcs_keys = [ 2204, 32036 ] for pcs_key in pcs_keys: rec = pcs.get_record( pcs_key ) if rec['COORD_REF_SYS_KIND'] != 'projected': continue dep = rec['DEPRECATED'] coc = int(rec['PROJECTION_CONV_CODE']) if rec['SOURCE_GEOGCRS_CODE'] == '4269': zone = coc - 10030 id = zone else: zone = coc - 10000 id = zone + 10000 if dep == '0': name = rec['COORD_REF_SYS_NAME'] if coord_sys_by_name.has_key(name): print 'Yikes, more than one ', name else: coord_sys_by_name[name] = pcs_key if spt.data.has_key(id): spt_rec = spt.get_record( id ) if len(spt_rec['EPSG_PCS_CODE']) > 0: raise ValueError, 'already have this State Plane Zone!' spt_rec['EPSG_PCS_CODE'] = str(pcs_key) spt.set_record( id, spt_rec ) if dep == '1': ids_to_replace.append( id ) print 'Found %d deprecated PCS codes to upgrade by name.' % len(ids_to_replace) for id in ids_to_replace: spt_rec = spt.get_record( id ) dep_pcs_rec = pcs.get_record( int(spt_rec['EPSG_PCS_CODE']) ) name = dep_pcs_rec['COORD_REF_SYS_NAME'] if coord_sys_by_name.has_key(name): spt_rec['EPSG_PCS_CODE'] = str(coord_sys_by_name[name]) else: print 'Unable to find non-deprecated value for ', name for spt_id in spt.data.keys(): rec = spt.get_record(spt_id) if len(rec['EPSG_PCS_CODE']) == 0: print 'Never got match for %s / %s' % (rec['STATE'], rec['ZONE']) spt.write_to_csv( 'stateplane.csv' )
32.921986
79
0.592417
0acdbf1bdf3e63582a7971ed05ade77b5d07d2db
515
py
Python
app/migrations/versions/0169ae36e249_.py
adamw523/simple-flask-app
07ba4e796c0f89118dd3beafa3ce46c35f993f66
[ "MIT" ]
null
null
null
app/migrations/versions/0169ae36e249_.py
adamw523/simple-flask-app
07ba4e796c0f89118dd3beafa3ce46c35f993f66
[ "MIT" ]
null
null
null
app/migrations/versions/0169ae36e249_.py
adamw523/simple-flask-app
07ba4e796c0f89118dd3beafa3ce46c35f993f66
[ "MIT" ]
null
null
null
"""empty message Revision ID: 0169ae36e249 Revises: None Create Date: 2016-10-12 23:40:23.906003 """ # revision identifiers, used by Alembic. revision = '0169ae36e249' down_revision = None from alembic import op import sqlalchemy as sa def upgrade(): op.create_table( 'posts', sa.Column('id', sa.Integer, primary_key=True), sa.Column('title', sa.String), sa.Column('body', sa.String), sa.PrimaryKeyConstraint('id') ) def downgrade(): op.drop_table('posts')
19.074074
54
0.660194
b668f39e66b2a5668bd7a2b1eeb26783c06028f2
7,444
py
Python
examples/pipelines/osmfish_pipeline.py
haoxusci/starfish
d7bd856024c75f2ce41504406f2a663566c3814b
[ "MIT" ]
null
null
null
examples/pipelines/osmfish_pipeline.py
haoxusci/starfish
d7bd856024c75f2ce41504406f2a663566c3814b
[ "MIT" ]
null
null
null
examples/pipelines/osmfish_pipeline.py
haoxusci/starfish
d7bd856024c75f2ce41504406f2a663566c3814b
[ "MIT" ]
null
null
null
""" .. _osmfish_example: Reproduce published osmFISH results with starfish ================================================= osmFISH is an image based transcriptomics technique that can spatially resolve tens of RNA transcripts and their expression levels **in situ**. The protocol and data analysis are described in this `publication`_. This notebook walks through how to use starfish to process the raw images from an osmFISH experiment into a spatially resolved gene expression image. We verify that starfish can accurately reproduce the results from the authors' original Python `pipeline`_ .. _publication: https://www.nature.com/articles/s41592-018-0175-z .. _pipeline: http://linnarssonlab.org/osmFISH/image_analysis/ """ from IPython import get_ipython import matplotlib import matplotlib.pyplot as plt # equivalent to %gui qt and %matplotlib inline ipython = get_ipython() ipython.magic("gui qt5") ipython.magic("matplotlib inline") matplotlib.rcParams["figure.dpi"] = 150 ################################################################################################### # Load Data into starfish from the cloud # -------------------------------------- # The data from an osmFISH experiment are similar in form to a standard smFISH experiment. For each # round, each color channel corresponds to presence of a particular gene. Across rounds, the color # channels index different genes. Here, we analyze one FOV from the first round (r) and first # channel (c), which consists of 45 z-planes (z). Each image in this image stack is of dimensions # 2048x2048. The data are taken from mouse somatosensory cortex, and the gene in this channel is # Adloc. from starfish import data from starfish import FieldOfView experiment = data.osmFISH(use_test_data=True) imgs = experiment["fov_000"].get_image(FieldOfView.PRIMARY_IMAGES) print(imgs) ################################################################################################### # Filter and visualize data # ------------------------- # First, we remove background signal using a gaussian high-pass filter. from starfish.image import Filter filter_ghp = Filter.GaussianHighPass(sigma=(1, 8, 8), is_volume=True) imgs_ghp = filter_ghp.run(imgs, in_place=False) ################################################################################################### # Next, we enhance the spots by filtering with a Laplace filter. filter_laplace = Filter.Laplace(sigma=(0.2, 0.5, 0.5), is_volume=True) imgs_ghp_laplace = filter_laplace.run(imgs_ghp, in_place=False) ################################################################################################### # Finally, we take a maximum projection over z, which effectively mitigates effects of out of focus # z-planes. from starfish.types import Axes mp = imgs_ghp_laplace.reduce({Axes.ZPLANE}, func="max") ################################################################################################### # We can now visualize our data before and after filtering. from numpy import np single_plane = imgs.reduce({Axes.ZPLANE}, func="max").xarray.sel({Axes.CH:0}).squeeze() single_plane_filtered = mp.xarray.sel({Axes.CH: 0}).squeeze() plt.figure(figsize=(10, 10)) plt.subplot(121) plt.imshow(single_plane, cmap='gray', clim=list(np.percentile(single_plane.data, [1, 99.9]))) plt.axis('off') plt.title('Original data, Round:0, Channel: 0') plt.subplot(122) plt.imshow(single_plane_filtered, cmap='gray', clim=list(np.percentile(single_plane_filtered.data, [1, 99.9]))) plt.title('Filtered data, Round:0, Channel: 0') plt.axis('off') ################################################################################################### # Decode the processed data into spatially resolved gene expression # ----------------------------------------------------------------- # Decoding in a non-multiplexed image based transcriptomics method is equivalent to simple spot # finding, since each spot in each color channel and round corresponds to a different gene. To # find spots in osmFISH data, the authors employ a peak finder that distinguishes local maxima # from their surroundings whose absolute intensities exceed a threshold value. It tests a number # of different thresholds, building a curve from the number of peaks detected at each threshold. # A threshold in the stable region or knee of the curve is selected, and final peaks are called # with that threshold. # # This process is repeated independently for each round and channel. Here we show this process on # a single round and channel to demonstrate the procedure. See the documentation for a precise # description of the parameters. from starfish.spots import DecodeSpots, FindSpots from starfish.types import TraceBuildingStrategies lmp = FindSpots.LocalMaxPeakFinder( min_distance=6, stringency=0, min_obj_area=6, max_obj_area=600, is_volume=True ) spots = lmp.run(mp) decoder = DecodeSpots.PerRoundMaxChannel(codebook=experiment.codebook, trace_building_strategy=TraceBuildingStrategies.SEQUENTIAL) decoded_intensities = decoder.run(spots=spots) ################################################################################################### # Compare to pySMFISH peak calls # ------------------------------ # The Field of view that we've used for the test data corresponds to Aldoc, imaged in round one, in # position 33. We've also packaged the results from the osmFISH publication for this target to # demonstrate that starfish is capable of recovering the same results. import os import pandas as pd import pickle def load_results(pickle_file): with open(pickle_file, "rb") as f: return pickle.load(f) def get_benchmark_peaks(loaded_results, redo_flag=False): if not redo_flag: sp = pd.DataFrame( { "y":loaded_results["selected_peaks"][:, 0], "x":loaded_results["selected_peaks"][:, 1], "selected_peaks_int": loaded_results["selected_peaks_int"], } ) else: p = peaks(loaded_results) coords = p[p.thr_array==loaded_results["selected_thr"]].peaks_coords coords = coords.values[0] sp = pd.DataFrame({"x": coords[:, 0], "y": coords[:, 1]}) return sp try: module_path = __file__ except NameError: # this is probably being run from jupyter cwd = "." else: cwd = os.path.dirname(module_path) benchmark_results = load_results(os.path.join( cwd, "data", "EXP-17-BP3597_hyb1_Aldoc_pos_33.pkl")) benchmark_peaks = get_benchmark_peaks(benchmark_results, redo_flag=False) ################################################################################################### # Plot spots detected in the benchmark as blue spots, and overlay spots from starfish as orange x's. # Starfish detects the same spot positions, but 41 fewer spots in total. benchmark_spot_count = len(benchmark_peaks) starfish_spot_count = len(decoded_intensities) plt.figure(figsize=(10, 10)) plt.plot(benchmark_peaks.x, -benchmark_peaks.y, "o") plt.plot(decoded_intensities[Axes.X.value], -decoded_intensities[Axes.Y.value], "x") plt.legend(["Benchmark: {} spots".format(benchmark_spot_count), "Starfish: {} spots".format(starfish_spot_count)]) plt.title("Starfish x osmFISH Benchmark Comparison") spot_difference = benchmark_spot_count - starfish_spot_count print(f"Starfish finds {spot_difference} fewer spots")
41.355556
111
0.650591
c1fc6969b12543bced3597e18e724050c7e4b751
5,963
py
Python
heat/tests/generic_resource.py
pshchelo/heat
6cf94a3ece89d77b839f61292e5f023c3f192c82
[ "Apache-2.0" ]
null
null
null
heat/tests/generic_resource.py
pshchelo/heat
6cf94a3ece89d77b839f61292e5f023c3f192c82
[ "Apache-2.0" ]
null
null
null
heat/tests/generic_resource.py
pshchelo/heat
6cf94a3ece89d77b839f61292e5f023c3f192c82
[ "Apache-2.0" ]
null
null
null
# # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from oslo_log import log as logging import six from heat.common.i18n import _LW from heat.engine import attributes from heat.engine import constraints from heat.engine import properties from heat.engine import resource from heat.engine.resources import signal_responder from heat.engine.resources import stack_user LOG = logging.getLogger(__name__) class GenericResource(resource.Resource): ''' Dummy resource for use in tests ''' properties_schema = {} attributes_schema = {'foo': attributes.Schema('A generic attribute'), 'Foo': attributes.Schema('Another generic attribute')} def handle_create(self): LOG.warn(_LW('Creating generic resource (Type "%s")'), self.type()) def handle_update(self, json_snippet, tmpl_diff, prop_diff): LOG.warn(_LW('Updating generic resource (Type "%s")'), self.type()) def handle_delete(self): LOG.warn(_LW('Deleting generic resource (Type "%s")'), self.type()) def _resolve_attribute(self, name): return self.name def handle_suspend(self): LOG.warn(_LW('Suspending generic resource (Type "%s")'), self.type()) def handle_resume(self): LOG.warn(_LW('Resuming generic resource (Type "%s")'), self.type()) class ResWithComplexPropsAndAttrs(GenericResource): properties_schema = { 'a_string': properties.Schema(properties.Schema.STRING), 'a_list': properties.Schema(properties.Schema.LIST), 'a_map': properties.Schema(properties.Schema.MAP), 'an_int': properties.Schema(properties.Schema.INTEGER)} attributes_schema = {'list': attributes.Schema('A list'), 'map': attributes.Schema('A map'), 'string': attributes.Schema('A string')} update_allowed_properties = ('an_int',) def _resolve_attribute(self, name): try: return self.properties["a_%s" % name] except KeyError: return None class ResourceWithProps(GenericResource): properties_schema = { 'Foo': properties.Schema(properties.Schema.STRING), 'FooInt': properties.Schema(properties.Schema.INTEGER)} class ResourceWithPropsAndAttrs(ResourceWithProps): attributes_schema = {'Bar': attributes.Schema('Something.')} class ResourceWithResourceID(GenericResource): properties_schema = {'ID': properties.Schema(properties.Schema.STRING)} def handle_create(self): super(ResourceWithResourceID, self).handle_create() self.resource_id_set(self.properties.get('ID')) def handle_delete(self): self.mox_resource_id(self.resource_id) def mox_resource_id(self, resource_id): pass class ResourceWithComplexAttributes(GenericResource): attributes_schema = { 'list': attributes.Schema('A list'), 'flat_dict': attributes.Schema('A flat dictionary'), 'nested_dict': attributes.Schema('A nested dictionary'), 'none': attributes.Schema('A None') } list = ['foo', 'bar'] flat_dict = {'key1': 'val1', 'key2': 'val2', 'key3': 'val3'} nested_dict = {'list': [1, 2, 3], 'string': 'abc', 'dict': {'a': 1, 'b': 2, 'c': 3}} def _resolve_attribute(self, name): if name == 'list': return self.list if name == 'flat_dict': return self.flat_dict if name == 'nested_dict': return self.nested_dict if name == 'none': return None class ResourceWithRequiredProps(GenericResource): properties_schema = {'Foo': properties.Schema(properties.Schema.STRING, required=True)} class SignalResource(signal_responder.SignalResponder): properties_schema = {} attributes_schema = {'AlarmUrl': attributes.Schema('Get a signed webhook')} def handle_create(self): super(SignalResource, self).handle_create() self.resource_id_set(self._get_user_id()) def handle_signal(self, details=None): LOG.warn(_LW('Signaled resource (Type "%(type)s") %(details)s'), {'type': self.type(), 'details': details}) def _resolve_attribute(self, name): if name == 'AlarmUrl' and self.resource_id is not None: return six.text_type(self._get_signed_url()) class StackUserResource(stack_user.StackUser): properties_schema = {} attributes_schema = {} def handle_create(self): super(StackUserResource, self).handle_create() self.resource_id_set(self._get_user_id()) class ResourceWithCustomConstraint(GenericResource): properties_schema = { 'Foo': properties.Schema( properties.Schema.STRING, constraints=[constraints.CustomConstraint('neutron.network')])} class ResourceWithAttributeType(GenericResource): attributes_schema = { 'attr1': attributes.Schema('A generic attribute', type=attributes.Schema.STRING), 'attr2': attributes.Schema('Another generic attribute', type=attributes.Schema.MAP) } def _resolve_attribute(self, name): if name == 'attr1': return "valid_sting" elif name == 'attr2': return "invalid_type"
33.127778
79
0.64263
11e6f832124eb57fb7590c9b0a950c0d25329e70
5,011
py
Python
networking_cisco/apps/saf/server/services/firewall/native/drivers/phy_asa.py
Tehsmash/networking-cisco
fdbd79a832fe090f3c4c7bd7a4f0ec0c349d4d16
[ "Apache-2.0" ]
1
2019-01-19T09:12:49.000Z
2019-01-19T09:12:49.000Z
networking_cisco/apps/saf/server/services/firewall/native/drivers/phy_asa.py
Tehsmash/networking-cisco
fdbd79a832fe090f3c4c7bd7a4f0ec0c349d4d16
[ "Apache-2.0" ]
null
null
null
networking_cisco/apps/saf/server/services/firewall/native/drivers/phy_asa.py
Tehsmash/networking-cisco
fdbd79a832fe090f3c4c7bd7a4f0ec0c349d4d16
[ "Apache-2.0" ]
null
null
null
# Copyright 2016 Cisco Systems, Inc. # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. # from networking_cisco.apps.saf.common import dfa_logger as logging from networking_cisco.apps.saf.server.services.firewall.native import ( fabric_setup_base as FP) from networking_cisco.apps.saf.server.services.firewall.native.drivers import ( asa_rest as asa) from networking_cisco.apps.saf.server.services.firewall.native.drivers import ( base) LOG = logging.getLogger(__name__) class PhyAsa(base.BaseDriver, FP.FabricApi): """Physical ASA Driver. """ def __init__(self): LOG.info("Initializing physical ASA") super(PhyAsa, self).__init__() def initialize(self, cfg_dict): self.mgmt_ip_addr = cfg_dict.get('mgmt_ip_addr').strip() self.user = cfg_dict.get('user').strip() self.pwd = cfg_dict.get('pwd').strip() self.interface_in = cfg_dict.get('interface_in').strip() self.interface_out = cfg_dict.get('interface_out').strip() LOG.info("ASA with mgmt %s getting initialized", self.mgmt_ip_addr) self.asa5585 = asa.Asa5585(self.mgmt_ip_addr, self.user, self.pwd) def populate_event_que(self, que_obj): LOG.info("Populate Event for PhyAsa") def populate_dcnm_obj(self, dcnm_obj): LOG.info("Populate Event for DCNM obj") def network_create_notif(self, tenant_id, tenant_name, cidr): """Network Create Notification. """ LOG.info("Nwk Create Notif PhyAsa") def network_delete_notif(self, tenant_id, tenant_name, network_id): """Network Delete Notification. """ LOG.info("Nwk Delete Notif PhyAsa") def is_device_virtual(self): return False def get_name(self): return 'phy_asa' def get_max_quota(self): return self.asa5585.get_quota() def create_fw(self, tenant_id, data): LOG.info("In creating phy ASA FW data is %s", data) tenant_name = data.get('tenant_name') in_ip_dict = self.get_in_ip_addr(tenant_id) in_gw = in_ip_dict.get('gateway') in_sec_gw = in_ip_dict.get('sec_gateway') in_serv_node = self.get_in_srvc_node_ip_addr(tenant_id) out_ip_dict = self.get_out_ip_addr(tenant_id) out_ip_gw = out_ip_dict.get('gateway') out_sec_gw = out_ip_dict.get('sec_gateway') out_serv_node = self.get_out_srvc_node_ip_addr(tenant_id) in_seg, in_vlan = self.get_in_seg_vlan(tenant_id) out_seg, out_vlan = self.get_out_seg_vlan(tenant_id) kw = {'params': {'tenant_name': tenant_name, 'in_vlan': in_vlan, 'out_vlan': out_vlan, 'in_ip': in_serv_node, 'in_mask': '255.255.255.0', 'in_gw': in_gw, 'in_sec_gw': in_sec_gw, 'out_ip': out_serv_node, 'out_mask': '255.255.255.0', 'out_gw': out_ip_gw, 'out_sec_gw': out_sec_gw, 'intf_in': self.interface_in, 'intf_out': self.interface_out}} status = self.asa5585.setup(**kw) if status is False: LOG.error("Physical FW instance creation failure for " "tenant %s", tenant_name) return False status = self.asa5585.apply_policy(data) if status is False: LOG.error("Applying FW policy failure for tenant %s", tenant_name) return status def delete_fw(self, tenant_id, data): LOG.info("In Delete fw data is %s", data) tenant_name = data.get('tenant_name') in_serv_node = self.get_in_srvc_node_ip_addr(tenant_id) out_serv_node = self.get_out_srvc_node_ip_addr(tenant_id) in_seg, in_vlan = self.get_in_seg_vlan(tenant_id) out_seg, out_vlan = self.get_out_seg_vlan(tenant_id) kw = dict(params=dict(tenant_name=tenant_name, in_vlan=in_vlan, out_vlan=out_vlan, in_ip=in_serv_node, in_mask='255.255.255.0', out_ip=out_serv_node, out_mask='255.255.255.0', intf_in=self.interface_in, intf_out=self.interface_out)) status = self.asa5585.cleanup(**kw) return status def modify_fw(self, tenant_id, data): LOG.info("In Modify fw data is %s", data) return self.asa5585.apply_policy(data)
40.41129
79
0.637398
e2b961a46a3ccd9750c1063b97dca5c8bb9cae52
25,035
py
Python
TrainingExtensions/tensorflow/test/python/test_cross_layer_equalization.py
Rohan-Chaudhury/aimet
1c38cac8cc0fd32dca40ce5e39940805d29f7a4a
[ "BSD-3-Clause" ]
945
2020-04-30T02:23:55.000Z
2022-03-31T08:44:32.000Z
TrainingExtensions/tensorflow/test/python/test_cross_layer_equalization.py
Rohan-Chaudhury/aimet
1c38cac8cc0fd32dca40ce5e39940805d29f7a4a
[ "BSD-3-Clause" ]
563
2020-05-01T03:07:22.000Z
2022-03-30T05:35:58.000Z
TrainingExtensions/tensorflow/test/python/test_cross_layer_equalization.py
Rohan-Chaudhury/aimet
1c38cac8cc0fd32dca40ce5e39940805d29f7a4a
[ "BSD-3-Clause" ]
186
2020-04-30T00:55:26.000Z
2022-03-30T09:54:51.000Z
# /usr/bin/env python3.5 # -*- mode: python -*- # ============================================================================= # @@-COPYRIGHT-START-@@ # # Copyright (c) 2019, Qualcomm Innovation Center, Inc. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its contributors # may be used to endorse or promote products derived from this software # without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. # # SPDX-License-Identifier: BSD-3-Clause # # @@-COPYRIGHT-END-@@ # ============================================================================= """ This file contains unit tests for testing cross layer scaling feature of CLE """ import unittest import numpy as np import os import tensorflow as tf tf.compat.v1.logging.set_verbosity(tf.logging.WARN) os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3" import aimet_tensorflow.utils.graph_saver from aimet_tensorflow.cross_layer_equalization import CrossLayerScaling, GraphSearchUtils, equalize_model, \ fold_all_batch_norms, HighBiasFold from aimet_tensorflow.utils.op.conv import WeightTensorUtils, BiasUtils class TestCrossLayerEqualization(unittest.TestCase): """ Test methods for Cross layer equalization """ @staticmethod def _custom_two_conv_layer_model(): """ Builds a custom model with two conv layers :return: """ tf.compat.v1.reset_default_graph() inputs = tf.keras.Input(shape=(32, 32, 3,), name="inputs") x = tf.keras.layers.Conv2D(32, (3, 3))(inputs) x = tf.nn.relu(x, name='ReluInTheMiddle') x = tf.keras.layers.Conv2D(32, (3, 3))(x) x = tf.nn.relu(x, name='Relu') return x @staticmethod def _custom_three_layer_model_keras(): """ Builds a custom model with three conv layers :return: """ tf.compat.v1.reset_default_graph() inputs = tf.keras.Input(shape=(32, 32, 3,), name="inputs") x = tf.keras.layers.Conv2D(32, (3, 3))(inputs) x = tf.nn.relu(x, name='ReluInTheMiddle') x = tf.keras.layers.Conv2D(32, (3, 3))(x) x = tf.keras.layers.ReLU(name='AnotherRelu')(x) x = tf.keras.layers.Conv2D(32, (3, 3))(x) x = tf.nn.relu(x, name='Relu') return x @staticmethod def _custom_three_layer_model_keras_prelu(): """ Builds a custom model with three conv layers :return: """ tf.compat.v1.reset_default_graph() inputs = tf.keras.Input(shape=(32, 32, 3,), name="inputs") x = tf.keras.layers.Conv2D(32, (3, 3))(inputs) x = tf.nn.relu(x, name='ReluInTheMiddle') x = tf.keras.layers.Conv2D(32, (3, 3))(x) x = tf.keras.layers.PReLU(name='prelu')(x) x = tf.keras.layers.Conv2D(32, (3, 3))(x) x = tf.nn.relu(x, name='Relu') return x def test_find_layer_groups_to_scale_custom_model_with_candidate_layers(self): """ Test find_layer_groups_to_scale() on a custom model """ _ = TestCrossLayerEqualization._custom_two_conv_layer_model() tf.set_random_seed(0) init = tf.compat.v1.global_variables_initializer() sess = tf.compat.v1.Session() sess.run(init) start_op = "inputs" graph_util = GraphSearchUtils(tf.compat.v1.get_default_graph(), start_op, 'Relu') _ , layer_groups = graph_util.find_layer_groups_to_scale() self.assertEqual(1, len(layer_groups)) def test_find_layers_groups_tp_scale_custom_model_without_candidate_layers(self): """ Test find_layer_groups_to_scale() on a model without potential layers for scaling """ tf.compat.v1.reset_default_graph() tf.set_random_seed(0) inputs = tf.keras.Input(shape=(32, 32, 3,), name="inputs") conv_op = tf.keras.layers.Conv2D(32, (3, 3))(inputs) bn_op = tf.keras.layers.BatchNormalization(fused=True)(conv_op) _ = tf.nn.relu(bn_op) init = tf.compat.v1.global_variables_initializer() sess = tf.compat.v1.Session() sess.run(init) graph_util = GraphSearchUtils(tf.compat.v1.get_default_graph(), "inputs", 'Relu') _ , layer_groups = graph_util.find_layer_groups_to_scale() self.assertEqual(0, len(layer_groups)) sess.close() def test_update_weight_tensor_for_op(self): """ Test update_weight_tensor_for_op() on custom conv op """ # get VGG16 model tf.compat.v1.reset_default_graph() tf.set_random_seed(0) inputs = tf.keras.Input(shape=(32, 32, 3,), name="inputs") conv_op = tf.keras.layers.Conv2D(32, (3, 3))(inputs) _ = tf.nn.relu(conv_op) init = tf.compat.v1.global_variables_initializer() sess = tf.compat.v1.Session() sess.run(init) conv_op = sess.graph.get_operation_by_name('conv2d/Conv2D') initial_data = WeightTensorUtils.get_tensor_as_numpy_data(sess, conv_op) wt_data = initial_data + 2 # this is block1_conv1/Conv2D in VGG16 WeightTensorUtils.update_tensor_for_op(sess, conv_op, wt_data) new_sess = aimet_tensorflow.utils.graph_saver.save_and_load_graph('./temp_conv_wt_updated', sess) # check for if reroute was successful # read op from conv op should be same as one defined by new variable type conv_op = new_sess.graph.get_operation_by_name('conv2d/Conv2D') new_wt_data = WeightTensorUtils.get_tensor_as_numpy_data(new_sess, conv_op) assert not np.allclose(initial_data, new_wt_data) sess.close() def test_scale_cls_set_with_conv_layers_custom_model(self): """ Test scale_cls_set_with_conv_layers() on a custom model """ tf.set_random_seed(0) _ = TestCrossLayerEqualization._custom_two_conv_layer_model() init = tf.compat.v1.global_variables_initializer() sess = tf.compat.v1.Session() sess.run(init) graph_util = GraphSearchUtils(tf.compat.v1.get_default_graph(), "inputs", 'Relu') _ , layer_groups_as_tf_ops = graph_util.find_layer_groups_to_scale() scaling_factors = CrossLayerScaling.scale_cls_set_with_conv_layers(sess, layer_groups_as_tf_ops[0]) self.assertEqual(32, len(scaling_factors)) range_conv1_after_scaling = np.amax(np.abs(WeightTensorUtils.get_tensor_as_numpy_data( sess, layer_groups_as_tf_ops[0][0])), axis=(2, 0, 1)) range_conv2_after_scaling = np.amax(np.abs(WeightTensorUtils.get_tensor_as_numpy_data( sess, layer_groups_as_tf_ops[0][1])), axis=(3, 0, 1)) assert np.allclose(range_conv1_after_scaling, range_conv2_after_scaling) sess.close() def test_scale_cls_set_with_depthwise_conv_layer_custom_model(self): """ Test test_scale_cls_set_with_depthwise_layers() on a custom model """ tf.set_random_seed(0) tf.compat.v1.reset_default_graph() inputs = tf.keras.Input(shape=(10, 10, 3,)) x = tf.keras.layers.Conv2D(10, (1, 1))(inputs) y = tf.keras.layers.DepthwiseConv2D((3, 3), padding='valid',depth_multiplier=1, strides=(1,1), use_bias=False)(x) z = tf.keras.layers.Conv2D(10, (1, 1))(y) _ = tf.nn.relu(z) init = tf.compat.v1.global_variables_initializer() sess = tf.compat.v1.Session(graph = tf.compat.v1.get_default_graph()) sess.run(init) graph_util = GraphSearchUtils(tf.compat.v1.get_default_graph(), "input_1", 'Relu') _ , layer_groups_as_tf_ops = graph_util.find_layer_groups_to_scale() scaling_matrix12, scaling_matrix23 = CrossLayerScaling.scale_cls_set_with_depthwise_layers( sess, layer_groups_as_tf_ops[0]) self.assertEqual(10, len(scaling_matrix12)) self.assertEqual(10, len(scaling_matrix23)) sess.close() def test_scale_model_custom(self): """ Test scale_model on a custom model """ tf.set_random_seed(0) _ = TestCrossLayerEqualization._custom_two_conv_layer_model() init = tf.compat.v1.global_variables_initializer() sess = tf.compat.v1.Session() sess.run(init) new_sess, scaling_factors = CrossLayerScaling.scale_model(sess, "inputs", 'Relu') # scaling factors for number of groups selected for scaling returned self.assertEqual(1, len(scaling_factors)) self.assertTrue(scaling_factors[0].cls_pair_info_list[0].relu_activation_between_layers) sess.close() def test_scale_three_layer_model(self): """ Test scale_model on a custom 3-layer model """ _ = TestCrossLayerEqualization._custom_three_layer_model_keras() init = tf.compat.v1.global_variables_initializer() sess = tf.compat.v1.Session() sess.run(init) new_sess, scaling_factors = CrossLayerScaling.scale_model(sess, "inputs", 'Relu') # scaling factors for number of groups selected for scaling returned self.assertEqual(2, len(scaling_factors)) self.assertTrue(scaling_factors[0].cls_pair_info_list[0].relu_activation_between_layers) self.assertTrue(scaling_factors[1].cls_pair_info_list[0].relu_activation_between_layers) sess.close() def test_scale_three_layer_model_with_prelu(self): """ Test scale_model on a custom 3-layer model with prelu """ tf.set_random_seed(0) _ = TestCrossLayerEqualization._custom_three_layer_model_keras_prelu() init = tf.compat.v1.global_variables_initializer() sess = tf.compat.v1.Session() sess.run(init) new_sess, scaling_factors = CrossLayerScaling.scale_model(sess, "inputs", 'Relu') # scaling factors for number of groups selected for scaling returned self.assertEqual(2, len(scaling_factors)) self.assertTrue(scaling_factors[0].cls_pair_info_list[0].relu_activation_between_layers) self.assertTrue(scaling_factors[1].cls_pair_info_list[0].relu_activation_between_layers) sess.close() def test_relu6_replaced_with_relu(self): """ Test replacing Relu6 wth Relu """ tf.compat.v1.reset_default_graph() tf.set_random_seed(0) inputs = tf.keras.Input(shape=(32, 32, 3,)) conv_op = tf.keras.layers.Conv2D(32, (3, 3))(inputs) _ = tf.nn.relu6(conv_op) init = tf.compat.v1.global_variables_initializer() sess = tf.compat.v1.Session() sess.run(init) bias_add = sess.graph.get_operation_by_name('conv2d/BiasAdd') self.assertEqual('Relu6', bias_add.outputs[0].consumers()[0].type) #update Relu start_op = "input_1" graph_util = GraphSearchUtils(sess.graph, start_op, 'Relu6') after_relu_replace_sess = graph_util.find_and_replace_relu6_with_relu(sess) updated_bias_add = after_relu_replace_sess.graph.get_operation_by_name('conv2d/BiasAdd') self.assertEqual('Relu', updated_bias_add.outputs[0].consumers()[0].type) sess.close() def test_high_bias_fold_two_bn_folded_convs(self): """ Test high bias fold with a custom model with two BN folded convs """ tf.compat.v1.reset_default_graph() tf.set_random_seed(0) inputs = tf.keras.Input(shape=(32, 32, 3,)) conv_op = tf.keras.layers.Conv2D(32, (3, 3))(inputs) bn_op = tf.keras.layers.BatchNormalization(fused=True)(conv_op) relu_1= tf.nn.relu(bn_op) conv2_op = tf.keras.layers.Conv2D(32, (3, 3))(relu_1) bn_op_2 = tf.keras.layers.BatchNormalization(fused=True)(conv2_op) relu_2 = tf.nn.relu(bn_op_2) init = tf.compat.v1.global_variables_initializer() sess = tf.compat.v1.Session() sess.run(init) np.random.seed(0) conv_op = sess.graph.get_operation_by_name('conv2d/Conv2D') start_op_names = conv_op.inputs[0].op.name output_op_names = 'Relu_1' # fold batchnorm layers after_bn_fold_sess, folded_pairs = fold_all_batch_norms(sess, start_op_names, output_op_names) # replace any ReLU6 layers with ReLU graph_util = GraphSearchUtils(after_bn_fold_sess.graph, start_op_names, output_op_names) after_relu_replace_sess = graph_util.find_and_replace_relu6_with_relu(after_bn_fold_sess) # perform cross-layer scaling on applicable layer sets after_cls_sess, cls_set_info_list = CrossLayerScaling.scale_model(after_relu_replace_sess, start_op_names, output_op_names) # we want to validate that after high bias fold, bias for conv is >= bias before high bias fold. conv_op = after_cls_sess.graph.get_operation_by_name('conv2d_1/Conv2D') before_high_bias_fold_bias_data = BiasUtils.get_bias_as_numpy_data(after_cls_sess, conv_op) # perform high-bias fold after_hbf_sess = HighBiasFold.bias_fold(after_cls_sess, folded_pairs, cls_set_info_list) # read updated bias value conv_op = after_hbf_sess.graph.get_operation_by_name('conv2d_1/Conv2D') high_bias_folded_bias_data = BiasUtils.get_bias_as_numpy_data(after_hbf_sess, conv_op) for i in range(len(before_high_bias_fold_bias_data)): # folded bias should be greater than previous bias self.assertTrue(high_bias_folded_bias_data[i] >= before_high_bias_fold_bias_data[i]) sess.close() def test_bias_add_custom_model(self): """ test update bias when no bias present """ tf.compat.v1.reset_default_graph() tf.set_random_seed(0) inputs = tf.keras.Input(shape=(32, 32, 3,)) conv_op = tf.keras.layers.Conv2D(32, (3, 3), use_bias=False)(inputs) conv2_op = tf.keras.layers.Conv2D(32, (3, 3), use_bias=False)(inputs) relu2= tf.nn.relu(conv2_op) add = tf.keras.layers.add([conv_op, relu2]) relu= tf.nn.relu(add) init = tf.compat.v1.global_variables_initializer() sess = tf.compat.v1.Session() sess.run(init) shape = WeightTensorUtils.get_tensor_shape(conv_op.op) np.random.seed(0) bias_data = np.random.rand(shape[3]) assert BiasUtils.is_bias_none(conv_op.op) BiasUtils.update_bias_for_op(sess, conv_op.op, bias_data) n_sess = aimet_tensorflow.utils.graph_saver.save_and_load_graph('./test_update', sess) conv_op_updated = n_sess.graph.get_operation_by_name(conv_op.op.name) assert not BiasUtils.is_bias_none(conv_op_updated) updated_bias = BiasUtils.get_bias_as_numpy_data(n_sess, conv_op_updated) self.assertTrue(np.allclose(updated_bias, bias_data)) sess.close() def test_cls_layer_select_conv_with_identity(self): """ test cross layer scaling layer selection code when convs have identity nodes in-btw. This was observed with TF Slim Mobilenetv2 model """ tf.compat.v1.reset_default_graph() tf.set_random_seed(0) inputs = tf.keras.Input(shape=(32, 32, 3,), name="inputs") conv1_op = tf.keras.layers.Conv2D(32, (3, 3))(inputs) relu_op = tf.nn.relu(conv1_op) identity = tf.identity(relu_op) conv2_op = tf.keras.layers.Conv2D(32, (3, 3))(identity) relu2_op = tf.nn.relu(conv2_op) init = tf.compat.v1.global_variables_initializer() sess = tf.compat.v1.Session() sess.run(init) start_op = "inputs" output_op = 'Relu_1' graph_search = GraphSearchUtils(sess.graph, start_op, output_op) _ , layer_groups_as_tf_ops = graph_search.find_layer_groups_to_scale() assert len(layer_groups_as_tf_ops) == 1 sess.close() def test_high_bias_fold_custom_model(self): """ Test high bias fold with a custom model """ tf.compat.v1.reset_default_graph() tf.set_random_seed(0) inputs = tf.keras.Input(shape=(32, 32, 3,)) conv_op = tf.keras.layers.Conv2D(32, (3, 3))(inputs) relu_1= tf.nn.relu(conv_op) conv2_op = tf.keras.layers.Conv2D(32, (3, 3))(relu_1) bn_op_2 = tf.keras.layers.BatchNormalization(fused=True)(conv2_op) conv3_op = tf.keras.layers.Conv2D(32, (3, 3))(bn_op_2) relu_2 = tf.nn.relu(conv3_op) init = tf.compat.v1.global_variables_initializer() sess = tf.compat.v1.Session() sess.run(init) np.random.seed(0) conv_op = sess.graph.get_operation_by_name('conv2d/Conv2D') start_op_names = conv_op.inputs[0].op.name output_op_names = relu_2.op.name # fold batchnorm layers after_bn_fold_sess, folded_pairs = fold_all_batch_norms(sess, start_op_names, output_op_names) # replace any ReLU6 layers with ReLU graph_util = GraphSearchUtils(after_bn_fold_sess.graph, start_op_names, output_op_names) after_relu_replace_sess = graph_util.find_and_replace_relu6_with_relu(after_bn_fold_sess) # perform cross-layer scaling on applicable layer sets after_cls_sess, cls_set_info_list = CrossLayerScaling.scale_model(after_relu_replace_sess, start_op_names, output_op_names) # we want to validate that after high bias fold, bias for conv is >= bias before high bias fold. conv_op = after_cls_sess.graph.get_operation_by_name('conv2d_2/Conv2D') before_high_bias_fold_bias_data = BiasUtils.get_bias_as_numpy_data(after_cls_sess, conv_op) # perform high-bias fold after_hbf_sess = HighBiasFold.bias_fold(after_cls_sess, folded_pairs, cls_set_info_list) # read updated bias value conv_op = after_hbf_sess.graph.get_operation_by_name('conv2d_2/Conv2D') high_bias_folded_bias_data = BiasUtils.get_bias_as_numpy_data(after_hbf_sess, conv_op) for i in range(len(before_high_bias_fold_bias_data)): # folded bias should be greater than previous bias self.assertTrue(high_bias_folded_bias_data[i] >= before_high_bias_fold_bias_data[i]) sess.close() def test_equalize_model_multi_input(self): """ Test bn fold with multiple input nodes """ tf.compat.v1.reset_default_graph() tf.set_random_seed(0) input1 = tf.keras.Input(name='input1', shape=(10, 10, 3)) input2 = tf.keras.Input(name='input2', shape=(12, 12, 3)) x1 = tf.keras.layers.Conv2D(8, (1, 1), name='conv1a', kernel_initializer=tf.random_uniform_initializer(-1, 1), bias_initializer='random_uniform')(input1) x2 = tf.keras.layers.Conv2D(8, (3, 3), name='conv1b', kernel_initializer=tf.random_uniform_initializer(-1, 1), bias_initializer='random_uniform')(x1) x3 = tf.keras.layers.Conv2D(8, (3, 3), name='conv1c', kernel_initializer=tf.random_uniform_initializer(-1, 1), bias_initializer='random_uniform')(input2) x4 = tf.keras.layers.Conv2D(8, (3, 3), name='conv1d', kernel_initializer=tf.random_uniform_initializer(-1, 1), bias_initializer='random_uniform')(x3) x = tf.keras.layers.add([x2, x4]) conv2_op = tf.keras.layers.Conv2D(32, (3, 3))(x) bn_op = tf.keras.layers.BatchNormalization(fused=True)(conv2_op) _ = tf.nn.relu(bn_op) init = tf.compat.v1.global_variables_initializer() sess = tf.compat.v1.Session() sess.run(init) conv_1b_before_equalize = sess.graph.get_operation_by_name('conv1b/Conv2D') conv_1b_bias_data_before_fold = BiasUtils.get_bias_as_numpy_data(sess, conv_1b_before_equalize) conv_1d_before_equalize = sess.graph.get_operation_by_name('conv1d/Conv2D') conv_1d_bias_data_before_fold = BiasUtils.get_bias_as_numpy_data(sess, conv_1d_before_equalize) new_sess = equalize_model(sess, ["input1", "input2"], 'Relu') conv_1b_after_equalize = new_sess.graph.get_operation_by_name('conv1b/Conv2D') conv_1b_bias_data_after_fold = BiasUtils.get_bias_as_numpy_data(new_sess, conv_1b_after_equalize) conv_1d_after_equalize = new_sess.graph.get_operation_by_name('conv1d/Conv2D') conv_1d_bias_data_after_fold = BiasUtils.get_bias_as_numpy_data(new_sess, conv_1d_after_equalize) for i in range(len(conv_1b_bias_data_after_fold)): self.assertTrue(conv_1b_bias_data_after_fold[i] <= conv_1b_bias_data_before_fold[i]) for i in range(len(conv_1d_bias_data_after_fold)): self.assertTrue(conv_1d_bias_data_after_fold[i] <= conv_1d_bias_data_before_fold[i]) sess.close() def test_equalize_with_custom_model_no_bias(self): """ Test equalize with a custom model with conv without bias param """ tf.compat.v1.reset_default_graph() sess = tf.compat.v1.Session(graph=tf.compat.v1.get_default_graph()) with sess.as_default(): inputs = tf.keras.Input(shape=(32, 32, 3,)) conv_op = tf.keras.layers.Conv2D(32, (3, 3), use_bias=False)(inputs) bn_op = tf.keras.layers.BatchNormalization(fused=True)(conv_op) relu_1= tf.nn.relu(bn_op) conv2_op = tf.keras.layers.Conv2D(32, (3, 3), use_bias=False)(relu_1) bn_op_2 = tf.keras.layers.BatchNormalization(fused=True)(conv2_op, training=False) relu_2 = tf.nn.relu(bn_op_2) init = tf.compat.v1.global_variables_initializer() sess.run(init) old_conv_op = sess.graph.get_operation_by_name('conv2d/Conv2D') self.assertTrue(BiasUtils.is_bias_none(old_conv_op)) conv_op = sess.graph.get_operation_by_name('conv2d/Conv2D') new_sess = equalize_model(sess, conv_op.inputs[0].op.name, 'Relu_1') new_conv_op = new_sess.graph.get_operation_by_name('conv2d/Conv2D') bias = BiasUtils.get_bias_as_numpy_data(new_sess, new_conv_op) self.assertFalse(BiasUtils.is_bias_none(new_conv_op)) sess.close() def test_equalize_fold_forward(self): """ Test equalize on a model with a forward bn fold """ tf.compat.v1.reset_default_graph() inputs = tf.keras.Input(shape=(32, 32, 3,), name="inputs") conv_op = tf.keras.layers.Conv2D(32, (3, 3))(inputs) r_op = tf.nn.relu(conv_op) bn_op = tf.keras.layers.BatchNormalization(fused=True)(r_op) conv2_op = tf.keras.layers.Conv2D(32, (3, 3))(bn_op) conv3_op = tf.keras.layers.Conv2D(32, (3, 3))(conv2_op) _ = tf.nn.relu(conv3_op) init = tf.compat.v1.global_variables_initializer() sess = tf.compat.v1.Session(graph = tf.compat.v1.get_default_graph()) sess.run(init) old_conv_op = sess.graph.get_operation_by_name('conv2d/Conv2D') conv_bias_data_before_fold = BiasUtils.get_bias_as_numpy_data(sess, old_conv_op) conv_op = sess.graph.get_operation_by_name('conv2d/Conv2D') new_sess = equalize_model(sess, conv_op.inputs[0].op.name, 'Relu_1') new_conv_op = new_sess.graph.get_operation_by_name('conv2d/Conv2D') self.assertFalse(BiasUtils.is_bias_none(new_conv_op)) conv_bias_data_after_fold = BiasUtils.get_bias_as_numpy_data(new_sess, new_conv_op) for i in range(len(conv_bias_data_before_fold)): self.assertTrue(conv_bias_data_before_fold[i] <= conv_bias_data_after_fold[i]) sess.close()
43.767483
121
0.669383
a3e649c36610eb6bf06a40cbc29a123ad064f0b4
21,968
py
Python
spark_fhir_schemas/r4/complex_types/observation_component.py
icanbwell/SparkFhirSchemas
8c828313c39850b65f8676e67f526ee92b7d624e
[ "Apache-2.0" ]
null
null
null
spark_fhir_schemas/r4/complex_types/observation_component.py
icanbwell/SparkFhirSchemas
8c828313c39850b65f8676e67f526ee92b7d624e
[ "Apache-2.0" ]
null
null
null
spark_fhir_schemas/r4/complex_types/observation_component.py
icanbwell/SparkFhirSchemas
8c828313c39850b65f8676e67f526ee92b7d624e
[ "Apache-2.0" ]
null
null
null
from typing import Union, List, Optional from pyspark.sql.types import ( StructType, StructField, StringType, ArrayType, BooleanType, IntegerType, DataType, TimestampType, ) # This file is auto-generated by generate_schema so do not edit it manually # noinspection PyPep8Naming class Observation_ComponentSchema: """ Measurements and simple assertions made about a patient, device or other subject. """ # noinspection PyDefaultArgument @staticmethod def get_schema( max_nesting_depth: Optional[int] = 6, nesting_depth: int = 0, nesting_list: List[str] = [], max_recursion_limit: Optional[int] = 2, include_extension: Optional[bool] = False, extension_fields: Optional[List[str]] = None, extension_depth: int = 0, max_extension_depth: Optional[int] = 2, include_modifierExtension: Optional[bool] = False, use_date_for: Optional[List[str]] = None, parent_path: Optional[str] = "", ) -> Union[StructType, DataType]: """ Measurements and simple assertions made about a patient, device or other subject. id: Unique id for the element within a resource (for internal references). This may be any string value that does not contain spaces. extension: May be used to represent additional information that is not part of the basic definition of the element. To make the use of extensions safe and manageable, there is a strict set of governance applied to the definition and use of extensions. Though any implementer can define an extension, there is a set of requirements that SHALL be met as part of the definition of the extension. modifierExtension: May be used to represent additional information that is not part of the basic definition of the element and that modifies the understanding of the element in which it is contained and/or the understanding of the containing element's descendants. Usually modifier elements provide negation or qualification. To make the use of extensions safe and manageable, there is a strict set of governance applied to the definition and use of extensions. Though any implementer can define an extension, there is a set of requirements that SHALL be met as part of the definition of the extension. Applications processing a resource are required to check for modifier extensions. Modifier extensions SHALL NOT change the meaning of any elements on Resource or DomainResource (including cannot change the meaning of modifierExtension itself). code: Describes what was observed. Sometimes this is called the observation "code". valueQuantity: The information determined as a result of making the observation, if the information has a simple value. valueCodeableConcept: The information determined as a result of making the observation, if the information has a simple value. valueString: The information determined as a result of making the observation, if the information has a simple value. valueBoolean: The information determined as a result of making the observation, if the information has a simple value. valueInteger: The information determined as a result of making the observation, if the information has a simple value. valueRange: The information determined as a result of making the observation, if the information has a simple value. valueRatio: The information determined as a result of making the observation, if the information has a simple value. valueSampledData: The information determined as a result of making the observation, if the information has a simple value. valueTime: The information determined as a result of making the observation, if the information has a simple value. valueDateTime: The information determined as a result of making the observation, if the information has a simple value. valuePeriod: The information determined as a result of making the observation, if the information has a simple value. dataAbsentReason: Provides a reason why the expected value in the element Observation.component.value[x] is missing. interpretation: A categorical assessment of an observation value. For example, high, low, normal. referenceRange: Guidance on how to interpret the value by comparison to a normal or recommended range. """ if extension_fields is None: extension_fields = [ "valueBoolean", "valueCode", "valueDate", "valueDateTime", "valueDecimal", "valueId", "valueInteger", "valuePositiveInt", "valueString", "valueTime", "valueUnsignedInt", "valueUri", "valueUrl", "valueReference", "valueCodeableConcept", "valueAddress", ] from spark_fhir_schemas.r4.complex_types.extension import ExtensionSchema from spark_fhir_schemas.r4.complex_types.codeableconcept import ( CodeableConceptSchema, ) from spark_fhir_schemas.r4.complex_types.quantity import QuantitySchema from spark_fhir_schemas.r4.complex_types.range import RangeSchema from spark_fhir_schemas.r4.complex_types.ratio import RatioSchema from spark_fhir_schemas.r4.complex_types.sampleddata import SampledDataSchema from spark_fhir_schemas.r4.complex_types.period import PeriodSchema from spark_fhir_schemas.r4.complex_types.observation_referencerange import ( Observation_ReferenceRangeSchema, ) if ( max_recursion_limit and nesting_list.count("Observation_Component") >= max_recursion_limit ) or (max_nesting_depth and nesting_depth >= max_nesting_depth): return StructType([StructField("id", StringType(), True)]) # add my name to recursion list for later my_nesting_list: List[str] = nesting_list + ["Observation_Component"] my_parent_path = ( parent_path + ".observation_component" if parent_path else "observation_component" ) schema = StructType( [ # Unique id for the element within a resource (for internal references). This # may be any string value that does not contain spaces. StructField("id", StringType(), True), # May be used to represent additional information that is not part of the basic # definition of the element. To make the use of extensions safe and manageable, # there is a strict set of governance applied to the definition and use of # extensions. Though any implementer can define an extension, there is a set of # requirements that SHALL be met as part of the definition of the extension. StructField( "extension", ArrayType( ExtensionSchema.get_schema( max_nesting_depth=max_nesting_depth, nesting_depth=nesting_depth + 1, nesting_list=my_nesting_list, max_recursion_limit=max_recursion_limit, include_extension=include_extension, extension_fields=extension_fields, extension_depth=extension_depth, max_extension_depth=max_extension_depth, include_modifierExtension=include_modifierExtension, use_date_for=use_date_for, parent_path=my_parent_path, ) ), True, ), # May be used to represent additional information that is not part of the basic # definition of the element and that modifies the understanding of the element # in which it is contained and/or the understanding of the containing element's # descendants. Usually modifier elements provide negation or qualification. To # make the use of extensions safe and manageable, there is a strict set of # governance applied to the definition and use of extensions. Though any # implementer can define an extension, there is a set of requirements that SHALL # be met as part of the definition of the extension. Applications processing a # resource are required to check for modifier extensions. # # Modifier extensions SHALL NOT change the meaning of any elements on Resource # or DomainResource (including cannot change the meaning of modifierExtension # itself). StructField( "modifierExtension", ArrayType( ExtensionSchema.get_schema( max_nesting_depth=max_nesting_depth, nesting_depth=nesting_depth + 1, nesting_list=my_nesting_list, max_recursion_limit=max_recursion_limit, include_extension=include_extension, extension_fields=extension_fields, extension_depth=extension_depth, max_extension_depth=max_extension_depth, include_modifierExtension=include_modifierExtension, use_date_for=use_date_for, parent_path=my_parent_path, ) ), True, ), # Describes what was observed. Sometimes this is called the observation "code". StructField( "code", CodeableConceptSchema.get_schema( max_nesting_depth=max_nesting_depth, nesting_depth=nesting_depth + 1, nesting_list=my_nesting_list, max_recursion_limit=max_recursion_limit, include_extension=include_extension, extension_fields=extension_fields, extension_depth=extension_depth + 1, max_extension_depth=max_extension_depth, include_modifierExtension=include_modifierExtension, use_date_for=use_date_for, parent_path=my_parent_path, ), True, ), # The information determined as a result of making the observation, if the # information has a simple value. StructField( "valueQuantity", QuantitySchema.get_schema( max_nesting_depth=max_nesting_depth, nesting_depth=nesting_depth + 1, nesting_list=my_nesting_list, max_recursion_limit=max_recursion_limit, include_extension=include_extension, extension_fields=extension_fields, extension_depth=extension_depth + 1, max_extension_depth=max_extension_depth, include_modifierExtension=include_modifierExtension, use_date_for=use_date_for, parent_path=my_parent_path, ), True, ), # The information determined as a result of making the observation, if the # information has a simple value. StructField( "valueCodeableConcept", CodeableConceptSchema.get_schema( max_nesting_depth=max_nesting_depth, nesting_depth=nesting_depth + 1, nesting_list=my_nesting_list, max_recursion_limit=max_recursion_limit, include_extension=include_extension, extension_fields=extension_fields, extension_depth=extension_depth + 1, max_extension_depth=max_extension_depth, include_modifierExtension=include_modifierExtension, use_date_for=use_date_for, parent_path=my_parent_path, ), True, ), # The information determined as a result of making the observation, if the # information has a simple value. StructField("valueString", StringType(), True), # The information determined as a result of making the observation, if the # information has a simple value. StructField("valueBoolean", BooleanType(), True), # The information determined as a result of making the observation, if the # information has a simple value. StructField("valueInteger", IntegerType(), True), # The information determined as a result of making the observation, if the # information has a simple value. StructField( "valueRange", RangeSchema.get_schema( max_nesting_depth=max_nesting_depth, nesting_depth=nesting_depth + 1, nesting_list=my_nesting_list, max_recursion_limit=max_recursion_limit, include_extension=include_extension, extension_fields=extension_fields, extension_depth=extension_depth + 1, max_extension_depth=max_extension_depth, include_modifierExtension=include_modifierExtension, use_date_for=use_date_for, parent_path=my_parent_path, ), True, ), # The information determined as a result of making the observation, if the # information has a simple value. StructField( "valueRatio", RatioSchema.get_schema( max_nesting_depth=max_nesting_depth, nesting_depth=nesting_depth + 1, nesting_list=my_nesting_list, max_recursion_limit=max_recursion_limit, include_extension=include_extension, extension_fields=extension_fields, extension_depth=extension_depth + 1, max_extension_depth=max_extension_depth, include_modifierExtension=include_modifierExtension, use_date_for=use_date_for, parent_path=my_parent_path, ), True, ), # The information determined as a result of making the observation, if the # information has a simple value. StructField( "valueSampledData", SampledDataSchema.get_schema( max_nesting_depth=max_nesting_depth, nesting_depth=nesting_depth + 1, nesting_list=my_nesting_list, max_recursion_limit=max_recursion_limit, include_extension=include_extension, extension_fields=extension_fields, extension_depth=extension_depth + 1, max_extension_depth=max_extension_depth, include_modifierExtension=include_modifierExtension, use_date_for=use_date_for, parent_path=my_parent_path, ), True, ), # The information determined as a result of making the observation, if the # information has a simple value. StructField("valueTime", StringType(), True), # The information determined as a result of making the observation, if the # information has a simple value. StructField("valueDateTime", TimestampType(), True), # The information determined as a result of making the observation, if the # information has a simple value. StructField( "valuePeriod", PeriodSchema.get_schema( max_nesting_depth=max_nesting_depth, nesting_depth=nesting_depth + 1, nesting_list=my_nesting_list, max_recursion_limit=max_recursion_limit, include_extension=include_extension, extension_fields=extension_fields, extension_depth=extension_depth + 1, max_extension_depth=max_extension_depth, include_modifierExtension=include_modifierExtension, use_date_for=use_date_for, parent_path=my_parent_path, ), True, ), # Provides a reason why the expected value in the element # Observation.component.value[x] is missing. StructField( "dataAbsentReason", CodeableConceptSchema.get_schema( max_nesting_depth=max_nesting_depth, nesting_depth=nesting_depth + 1, nesting_list=my_nesting_list, max_recursion_limit=max_recursion_limit, include_extension=include_extension, extension_fields=extension_fields, extension_depth=extension_depth + 1, max_extension_depth=max_extension_depth, include_modifierExtension=include_modifierExtension, use_date_for=use_date_for, parent_path=my_parent_path, ), True, ), # A categorical assessment of an observation value. For example, high, low, # normal. StructField( "interpretation", ArrayType( CodeableConceptSchema.get_schema( max_nesting_depth=max_nesting_depth, nesting_depth=nesting_depth + 1, nesting_list=my_nesting_list, max_recursion_limit=max_recursion_limit, include_extension=include_extension, extension_fields=extension_fields, extension_depth=extension_depth, max_extension_depth=max_extension_depth, include_modifierExtension=include_modifierExtension, use_date_for=use_date_for, parent_path=my_parent_path, ) ), True, ), # Guidance on how to interpret the value by comparison to a normal or # recommended range. StructField( "referenceRange", ArrayType( Observation_ReferenceRangeSchema.get_schema( max_nesting_depth=max_nesting_depth, nesting_depth=nesting_depth + 1, nesting_list=my_nesting_list, max_recursion_limit=max_recursion_limit, include_extension=include_extension, extension_fields=extension_fields, extension_depth=extension_depth, max_extension_depth=max_extension_depth, include_modifierExtension=include_modifierExtension, use_date_for=use_date_for, parent_path=my_parent_path, ) ), True, ), ] ) if not include_extension: schema.fields = [ c if c.name != "extension" else StructField("extension", StringType(), True) for c in schema.fields ] if not include_modifierExtension: schema.fields = [ c if c.name != "modifierExtension" else StructField("modifierExtension", StringType(), True) for c in schema.fields ] return schema
49.589165
104
0.559177
28594a0b7b1e5f0237dd7c52af6b6b97c95688c7
1,010
py
Python
setup.py
adw62/viridian_workflow
5215697e432e2504978186b121ab2b398ece02d7
[ "MIT" ]
null
null
null
setup.py
adw62/viridian_workflow
5215697e432e2504978186b121ab2b398ece02d7
[ "MIT" ]
null
null
null
setup.py
adw62/viridian_workflow
5215697e432e2504978186b121ab2b398ece02d7
[ "MIT" ]
null
null
null
import glob from setuptools import setup, find_packages from Cython.Build import cythonize with open("requirements.txt") as f: install_requires = [x.rstrip() for x in f] setup( name="viridian_workflow", version="0.3.4", description="FIXME", packages=find_packages(), package_data={"viridian_workflow": ["amplicon_scheme_data/*"]}, author="Jeff Knaggs,Martin Hunt", author_email="FIXME", url="https://github.com/iqbal-lab-org/viridian_workflow", test_suite="nose.collector", tests_require=["pytest"], entry_points={ "console_scripts": ["viridian_workflow = viridian_workflow.__main__:main"] }, install_requires=install_requires, license="MIT", classifiers=[ "Development Status :: 4 - Beta", "Topic :: Scientific/Engineering :: Bio-Informatics", "Programming Language :: Python :: 3 :: Only", "License :: OSI Approved :: MIT License", ], ext_modules=cythonize("./viridian_workflow/self_qc.pyx") )
31.5625
82
0.672277
a4eded3812123bdb44bc2f004afe4f6aa7191de5
422
py
Python
abuseipdb/komand_abuseipdb/util/helper.py
emartin-merrill-r7/insightconnect-plugins
a589745dbcc9f01d3e601431e77ab7221a84c117
[ "MIT" ]
1
2020-03-18T09:14:55.000Z
2020-03-18T09:14:55.000Z
abuseipdb/komand_abuseipdb/util/helper.py
OSSSP/insightconnect-plugins
846758dab745170cf1a8c146211a8bea9592e8ff
[ "MIT" ]
1
2021-02-23T23:57:37.000Z
2021-02-23T23:57:37.000Z
abuseipdb/komand_abuseipdb/util/helper.py
OSSSP/insightconnect-plugins
846758dab745170cf1a8c146211a8bea9592e8ff
[ "MIT" ]
null
null
null
from komand.exceptions import PluginException def get_json(response): json_ = response.json() if "errors" in json_: details = '' if len(json_['errors']) > 0 and 'details' in json_['errors'][0]: details = json_['errors'][0]["detail"] raise PluginException(cause='Received an error response from AbuseIPDB.', assistance=details) return json_
28.133333
81
0.601896
d143c71acf4eea61af584ab605953eeaf9867e52
1,434
py
Python
zephyrus_sc2_parser/game/perception_action_cycle.py
dareonion/zephyrus-sc2-parser
0e31ac86e4546466eba44f37ed13ab2880fe5d39
[ "MIT" ]
null
null
null
zephyrus_sc2_parser/game/perception_action_cycle.py
dareonion/zephyrus-sc2-parser
0e31ac86e4546466eba44f37ed13ab2880fe5d39
[ "MIT" ]
null
null
null
zephyrus_sc2_parser/game/perception_action_cycle.py
dareonion/zephyrus-sc2-parser
0e31ac86e4546466eba44f37ed13ab2880fe5d39
[ "MIT" ]
null
null
null
class PerceptionActionCycle: def __init__(self, initial_camera_position, initial_gameloop): self.initial_camera_position = initial_camera_position self.initial_gameloop = initial_gameloop self.final_camera_position = None self.final_gameloop = None self.actions = [] self.camera_moves = [] self.min_duration = 4 # 4 game loops (~2sec) minimum self.min_camera_move = 6 # 6 camera units (x or y) minimum def check_position(self, new_position): """ Compares the initial camera position of the PAC to the current camera position. If the current position differs by more than 6 units, a boolean (False) is returned and the current PAC ends. """ x_diff = abs(new_position[0] - self.initial_camera_position[0]) y_diff = abs(new_position[1] - self.initial_camera_position[1]) total_diff = (x_diff**2) + (y_diff**2) if total_diff > self.min_camera_move**2: return False return True def check_duration(self, new_gameloop): """ Compares the initial gameloop the PAC started on to the current gameloop. If the difference is greater than 4 units, the PAC is valid and a boolean (True) is returned. """ if new_gameloop - self.initial_gameloop > self.min_duration: return True return False
36.769231
71
0.644351
551229b82b58a26e8bb736115f25f59f56499229
5,659
py
Python
tests/test_provider_sql_ts.py
flzara/shaystack
6bf815f25f3a5d64494ec1c4a34a7b23ea0ad4ce
[ "BSD-2-Clause" ]
9
2021-04-30T13:04:31.000Z
2022-01-11T14:11:53.000Z
tests/test_provider_sql_ts.py
flzara/shaystack
6bf815f25f3a5d64494ec1c4a34a7b23ea0ad4ce
[ "BSD-2-Clause" ]
7
2021-03-19T07:31:22.000Z
2021-03-26T12:31:45.000Z
tests/test_provider_sql_ts.py
flzara/shaystack
6bf815f25f3a5d64494ec1c4a34a7b23ea0ad4ce
[ "BSD-2-Clause" ]
5
2021-04-29T11:51:04.000Z
2022-02-22T21:10:19.000Z
import datetime import logging import os from typing import cast from unittest.mock import patch import pytz from nose.plugins.attrib import attr # noinspection PyProtectedMember from shaystack import Ref, Grid, Quantity, MARKER, REMOVE, Coordinate, NA, parse_date_range, XStr from shaystack.providers import get_provider from shaystack.providers.sql import Provider as SQLProvider from shaystack.providers.timestream import Provider as DBTSProvider # Set HAYSTACK_DB variable, before running the tests to validate with another database # HAYSTACK_DB = 'postgresql://postgres:password@172.17.0.2:5432/postgres#haystack' HAYSTACK_DB = os.environ.get("_HAYSTACK_DB", 'sqlite3:///:memory:#haystack') HAYSTACK_TS = os.environ.get("_HAYSTACK_TS", 'timestream://HaystackDemo/?mem_ttl=8766&mag_ttl=400#haystack') FAKE_NOW = datetime.datetime(2020, 10, 1, 0, 0, 0, 0, tzinfo=pytz.UTC) log = logging.getLogger("sql_ts.Provider") @attr('aws') def test_create_db(): envs = {'HAYSTACK_DB': HAYSTACK_DB, 'HAYSTACK_TS': HAYSTACK_TS, 'AWS_PROFILE': os.environ['AWS_PROFILE'], 'AWS_REGION': os.environ['AWS_REGION'] } with cast(DBTSProvider, get_provider("shaystack.providers.timestream", envs)) as provider: provider.create_db() @attr('aws') @patch.object(SQLProvider, 'get_customer_id') @patch.object(DBTSProvider, 'get_customer_id') def test_import_ts_grid_in_db_and_his_read(mock1, mock2): mock1.return_value = "customer" mock2.return_value = "customer" envs = {'HAYSTACK_DB': HAYSTACK_DB, 'HAYSTACK_TS': HAYSTACK_TS, 'AWS_PROFILE': os.environ['AWS_PROFILE'], 'AWS_REGION': os.environ['AWS_REGION'] } with cast(DBTSProvider, get_provider("shaystack.providers.timestream", envs)) as provider: values = [ (XStr("hex", "deadbeef"), "Str"), ("100", "Str"), (100.0, "Number"), (Quantity(1, "m"), "Number"), (100, "Number"), (True, "Bool"), (False, "Bool"), (MARKER, "Marker"), (None, "Marker"), (REMOVE, "Remove"), (None, "Remove"), (NA, "NA"), (None, "NA"), (Ref("abc"), "Ref"), (datetime.datetime.utcnow().replace(microsecond=0), "DateTime"), (datetime.date.today(), "Date"), (datetime.datetime.utcnow().time(), "Time"), (datetime.time(16, 58, 57, 994), "Time"), (Coordinate(100.0, 200.0), "Coord"), ] # Check TS with all types entity_id = Ref("abc") for val, kind in values: # Clean DB for the specific kind provider.purge_db() provider.create_db() # Insert an entity for the TS, with an attribut "kind" grid = Grid(columns=["id", "kind"]) grid.append({"id": entity_id, "kind": kind}) # Without "kind", the default is "Number" or "float" version = datetime.datetime.now(tz=pytz.UTC) provider.update_grid(diff_grid=grid, version=version, customer_id="customer") # WARNING: timestream accept only datetime in the memory retention period. # Not before and not after. log.debug("Test %s", type(val)) grid = Grid(columns=["ts", "val"]) # You must use utcnow() and a retention grid.append({"ts": datetime.datetime.utcnow(), "val": val}) provider._import_ts_in_db(grid, entity_id, "customer", FAKE_NOW) grid_ts = provider.his_read(entity_id, parse_date_range("today", provider.get_tz()), None) assert grid_ts[0]['val'] == val, f"with kind={kind} and val={val}" @attr('aws') @patch.object(SQLProvider, 'get_customer_id') @patch.object(DBTSProvider, 'get_customer_id') def test_import_ts_grid_in_db_with_a_lot_of_records(mock1, mock2): mock1.return_value = "customer" mock2.return_value = "customer" envs = {'HAYSTACK_DB': HAYSTACK_DB, 'HAYSTACK_TS': HAYSTACK_TS, 'AWS_PROFILE': os.environ['AWS_PROFILE'], 'AWS_REGION': os.environ['AWS_REGION'] } with cast(DBTSProvider, get_provider("shaystack.providers.timestream", envs)) as provider: # Check TS with all types entity_id = Ref("abc") # Insert an antity for the TS, with an attribut "kind" provider.purge_db() grid = Grid(columns=["id", "kind"]) grid.append({"id": entity_id, "kind": "Number"}) # Without "kind", the default is "Number" or "float" version = datetime.datetime.now(tz=pytz.UTC) provider.update_grid(diff_grid=grid, version=version, customer_id="customer") # WARNING: timestream accept only datetime in the memory retention period. # Not before and not after. # It's not possible to extend the memory retention temporary to inject an old value provider.purge_ts() provider.create_db() grid = Grid(columns=["ts", "val"]) # You must use utcnow() and a retention for i in range(0, 200): grid.append({"ts": datetime.datetime.utcnow().replace(microsecond=i * 1000), "val": i}) provider._import_ts_in_db(grid, entity_id, "customer", FAKE_NOW) @attr('aws') def test_about(): envs = {'HAYSTACK_DB': HAYSTACK_DB, 'HAYSTACK_TS': HAYSTACK_TS, 'AWS_PROFILE': os.environ['AWS_PROFILE'], 'AWS_REGION': os.environ['AWS_REGION'] } with get_provider("shaystack.providers.timestream", envs) as provider: result = provider.about("http://localhost") assert result[0]['moduleName'] == 'SQLProvider'
40.71223
110
0.63209
6dd561598e4fc44fed4cd764acf9e5ef26618c40
3,243
py
Python
LEGOxGBA/gba_input.py
CoderBeanLiang/OhMyGenius
e0874490cae44c6c2a619f3d84dd313716000889
[ "CC0-1.0" ]
null
null
null
LEGOxGBA/gba_input.py
CoderBeanLiang/OhMyGenius
e0874490cae44c6c2a619f3d84dd313716000889
[ "CC0-1.0" ]
null
null
null
LEGOxGBA/gba_input.py
CoderBeanLiang/OhMyGenius
e0874490cae44c6c2a619f3d84dd313716000889
[ "CC0-1.0" ]
null
null
null
import RPi.GPIO as GPIO import uinput import time # Define GPIO BCM code # Should be related to your own GPIO wires btnLeft = 24 btnRight = 23 btnUp = 25 btnDown = 18 btnA = 26 btnB = 21 btnL = 22 btnR = 20 btnStart = 17 btnSelect = 27 # Button callback, param channel is BCM code defined above # GPIO state 'Low' means button pressed because my wires are PUD_UP mode def button_trigger(channel): state = not GPIO.input(channel) if channel == btnLeft: device.emit(uinput.BTN_DPAD_LEFT, state) elif channel == btnRight: device.emit(uinput.BTN_DPAD_RIGHT, state) elif channel == btnUp: device.emit(uinput.BTN_DPAD_UP, state) elif channel == btnDown: device.emit(uinput.BTN_DPAD_DOWN, state) elif channel == btnA: device.emit(uinput.BTN_A, state) elif channel == btnB: device.emit(uinput.BTN_B, state) elif channel == btnL: device.emit(uinput.BTN_TL, state) elif channel == btnR: device.emit(uinput.BTN_TR, state) elif channel == btnStart: device.emit(uinput.BTN_START, state) elif channel == btnSelect: device.emit(uinput.BTN_SELECT, state) # See print out to check your wires if state == 1: print("Pressed:{:>2}".format(channel)) else: print("Release:{:>2}".format(channel)) # Set mode GPIO.setmode(GPIO.BCM) # Disable warnings # GPIO.setwarnings(False) # Init GPIO, PUD_UP means 'High' defaut, should input 'Low' GPIO.setup(btnLeft, GPIO.IN, pull_up_down=GPIO.PUD_UP) GPIO.setup(btnRight, GPIO.IN, pull_up_down=GPIO.PUD_UP) GPIO.setup(btnUp, GPIO.IN, pull_up_down=GPIO.PUD_UP) GPIO.setup(btnDown, GPIO.IN, pull_up_down=GPIO.PUD_UP) GPIO.setup(btnA, GPIO.IN, pull_up_down=GPIO.PUD_UP) GPIO.setup(btnB, GPIO.IN, pull_up_down=GPIO.PUD_UP) GPIO.setup(btnL, GPIO.IN, pull_up_down=GPIO.PUD_UP) GPIO.setup(btnR, GPIO.IN, pull_up_down=GPIO.PUD_UP) GPIO.setup(btnStart, GPIO.IN, pull_up_down=GPIO.PUD_UP) GPIO.setup(btnSelect, GPIO.IN, pull_up_down=GPIO.PUD_UP) # Add call back GPIO.add_event_detect(btnLeft, GPIO.BOTH, callback=button_trigger) GPIO.add_event_detect(btnRight, GPIO.BOTH, callback=button_trigger) GPIO.add_event_detect(btnUp, GPIO.BOTH, callback=button_trigger) GPIO.add_event_detect(btnDown, GPIO.BOTH, callback=button_trigger) GPIO.add_event_detect(btnA, GPIO.BOTH, callback=button_trigger) GPIO.add_event_detect(btnB, GPIO.BOTH, callback=button_trigger) GPIO.add_event_detect(btnL, GPIO.BOTH, callback=button_trigger) GPIO.add_event_detect(btnR, GPIO.BOTH, callback=button_trigger) GPIO.add_event_detect(btnStart, GPIO.BOTH, callback=button_trigger) GPIO.add_event_detect(btnSelect, GPIO.BOTH, callback=button_trigger) # uinput init # Simply use BTN_0 ~ BTN_9 maybe OK, because button's # real function only depends on input configs of RetroPie events = ( uinput.BTN_A, uinput.BTN_B, uinput.BTN_TL, uinput.BTN_TR, uinput.BTN_START, uinput.BTN_SELECT, uinput.BTN_DPAD_LEFT, uinput.BTN_DPAD_RIGHT, uinput.BTN_DPAD_UP, uinput.BTN_DPAD_DOWN, ) # Open uinput device with uinput.Device(events) as device: print("GBA_INPUT DEVICE STARTED!") while True: # Dont know if this sleep is needed time.sleep(0.01)
31.794118
72
0.728955
0b50548f3eab0f05b1ed36ab5db0bee7c6b0e063
5,430
py
Python
setup/categories/classifier_setup.py
aber-wgr/OD-test
1f0836dd7a1c5ede34caca1a3492e9e7c3023538
[ "MIT" ]
61
2018-09-14T02:48:01.000Z
2022-02-14T09:13:45.000Z
setup/categories/classifier_setup.py
ashafaei/OD-test
8252aace84e2ae1ab95067876985f62a1060aad6
[ "MIT" ]
3
2019-07-31T09:59:46.000Z
2020-04-16T21:55:16.000Z
setup/categories/classifier_setup.py
aber-wgr/OD-test
1f0836dd7a1c5ede34caca1a3492e9e7c3023538
[ "MIT" ]
12
2018-09-25T10:36:39.000Z
2022-03-28T18:09:00.000Z
from __future__ import print_function import os from termcolor import colored import torch import torch.nn as nn import torch.optim as optim from torch.utils.data import DataLoader import models as Models import global_vars as Global from utils.iterative_trainer import IterativeTrainer, IterativeTrainerConfig from utils.logger import Logger from datasets import MirroredDataset def get_classifier_config(args, model, dataset): print("Preparing training D1 for %s"%(dataset.name)) # 80%, 20% for local train+test train_ds, valid_ds = dataset.split_dataset(0.8) if dataset.name in Global.mirror_augment: print(colored("Mirror augmenting %s"%dataset.name, 'green')) new_train_ds = train_ds + MirroredDataset(train_ds) train_ds = new_train_ds # Initialize the multi-threaded loaders. train_loader = DataLoader(train_ds, batch_size=args.batch_size, shuffle=True, num_workers=args.workers, pin_memory=True) valid_loader = DataLoader(valid_ds, batch_size=args.batch_size, num_workers=args.workers, pin_memory=True) all_loader = DataLoader(dataset, batch_size=args.batch_size, num_workers=args.workers, pin_memory=True) # Set up the criterion criterion = nn.NLLLoss().to(args.device) # Set up the model model = model.to(args.device) # Set up the config config = IterativeTrainerConfig() config.name = 'classifier_%s_%s'%(dataset.name, model.__class__.__name__) config.train_loader = train_loader config.valid_loader = valid_loader config.phases = { 'train': {'dataset' : train_loader, 'backward': True}, 'test': {'dataset' : valid_loader, 'backward': False}, 'all': {'dataset' : all_loader, 'backward': False}, } config.criterion = criterion config.classification = True config.stochastic_gradient = True config.visualize = not args.no_visualize config.model = model config.logger = Logger() config.optim = optim.Adam(model.parameters(), lr=1e-3) config.scheduler = optim.lr_scheduler.ReduceLROnPlateau(config.optim, patience=10, threshold=1e-2, min_lr=1e-6, factor=0.1, verbose=True) config.max_epoch = 120 if hasattr(model, 'train_config'): model_train_config = model.train_config() for key, value in model_train_config.iteritems(): print('Overriding config.%s'%key) config.__setattr__(key, value) return config def train_classifier(args, model, dataset): config = get_classifier_config(args, model, dataset) home_path = Models.get_ref_model_path(args, config.model.__class__.__name__, dataset.name, model_setup=True, suffix_str='base') hbest_path = os.path.join(home_path, 'model.best.pth') if not os.path.isdir(home_path): os.makedirs(home_path) trainer = IterativeTrainer(config, args) if not os.path.isfile(hbest_path+".done"): print(colored('Training from scratch', 'green')) best_accuracy = -1 for epoch in range(1, config.max_epoch+1): # Track the learning rates. lrs = [float(param_group['lr']) for param_group in config.optim.param_groups] config.logger.log('LRs', lrs, epoch) config.logger.get_measure('LRs').legend = ['LR%d'%i for i in range(len(lrs))] # One epoch of train and test. trainer.run_epoch(epoch, phase='train') trainer.run_epoch(epoch, phase='test') train_loss = config.logger.get_measure('train_loss').mean_epoch() config.scheduler.step(train_loss) if config.visualize: # Show the average losses for all the phases in one figure. config.logger.visualize_average_keys('.*_loss', 'Average Loss', trainer.visdom) config.logger.visualize_average_keys('.*_accuracy', 'Average Accuracy', trainer.visdom) config.logger.visualize_average('LRs', trainer.visdom) test_average_acc = config.logger.get_measure('test_accuracy').mean_epoch() # Save the logger for future reference. torch.save(config.logger.measures, os.path.join(home_path, 'logger.pth')) # Saving a checkpoint. Enable if needed! # if args.save and epoch % 10 == 0: # print('Saving a %s at iter %s'%(colored('snapshot', 'yellow'), colored('%d'%epoch, 'yellow'))) # torch.save(config.model.state_dict(), os.path.join(home_path, 'model.%d.pth'%epoch)) if args.save and best_accuracy < test_average_acc: print('Updating the on file model with %s'%(colored('%.4f'%test_average_acc, 'red'))) best_accuracy = test_average_acc torch.save(config.model.state_dict(), hbest_path) torch.save({'finished':True}, hbest_path + ".done") if config.visualize: trainer.visdom.save([trainer.visdom.env]) else: print("Skipping %s"%(colored(home_path, 'yellow'))) print("Loading the best model.") config.model.load_state_dict(torch.load(hbest_path)) config.model.eval() trainer.run_epoch(0, phase='all') test_average_acc = config.logger.get_measure('all_accuracy').mean_epoch(epoch=0) print("All average accuracy %s"%colored('%.4f%%'%(test_average_acc*100), 'red'))
41.450382
141
0.660589
661d666d96a8f21b888817e4ba1fcc3f6a192afd
13,758
py
Python
FWCore/Integration/test/testRunMergeTEST1_cfg.py
nistefan/cmssw
ea13af97f7f2117a4f590a5e654e06ecd9825a5b
[ "Apache-2.0" ]
null
null
null
FWCore/Integration/test/testRunMergeTEST1_cfg.py
nistefan/cmssw
ea13af97f7f2117a4f590a5e654e06ecd9825a5b
[ "Apache-2.0" ]
null
null
null
FWCore/Integration/test/testRunMergeTEST1_cfg.py
nistefan/cmssw
ea13af97f7f2117a4f590a5e654e06ecd9825a5b
[ "Apache-2.0" ]
null
null
null
# This is the same as testRunMergeTEST except the noEventSort # option is set in the PoolSource, which changes the order # events are processed. Within a LuminosityBlock, they are # in entry order instead of event number order. The RunLumiEventAnalyzer # module checks this. import FWCore.ParameterSet.Config as cms process = cms.Process("TEST") process.load("FWCore.MessageService.MessageLogger_cfi") process.MessageLogger.cerr.FwkReport.reportEvery = 1000 process.MessageLogger.cerr.threshold = 'ERROR' import FWCore.Framework.test.cmsExceptionsFatalOption_cff process.options = cms.untracked.PSet( fileMode = cms.untracked.string('FULLMERGE'), Rethrow = FWCore.Framework.test.cmsExceptionsFatalOption_cff.Rethrow ) process.source = cms.Source("PoolSource", fileNames = cms.untracked.vstring( 'file:testRunMerge.root', 'file:testRunMerge.root' ), secondaryFileNames = cms.untracked.vstring( 'file:testRunMerge1.root', 'file:testRunMerge2.root', 'file:testRunMerge3.root', 'file:testRunMerge4.root', 'file:testRunMerge5.root' ), noEventSort = cms.untracked.bool(True) , duplicateCheckMode = cms.untracked.string('checkEachRealDataFile') ) process.out = cms.OutputModule("PoolOutputModule", fileName = cms.untracked.string('file:testRunMergeRecombined1.root') ) process.test = cms.EDAnalyzer("TestMergeResults", # These values below are just arbitrary and meaningless # We are checking to see that the value we get out matches what # was put in. # expected values listed below come in sets of three # value expected in Thing # value expected in ThingWithMerge # value expected in ThingWithIsEqual # This set of 3 is repeated below at each point it might change # The Prod suffix refers to objects from the process named PROD # The New suffix refers to objects created in the most recent process # When the sequence of parameter values is exhausted it stops checking # 0's are just placeholders, if the value is a "0" the check is not made # and it indicates the product does not exist at that point. # *'s indicate lines where the checks are actually run by the test module. expectedBeginRunProd = cms.untracked.vint32( 0, 0, 0, # start 0, 0, 0, # begin file 1 10001, 20004, 10003, # * begin run 1 10001, 30006, 10003, # * events 10001, 30006, 10003, # end run 1 10001, 10002, 10003, # * begin run 2 10001, 10002, 10003, # * events 10001, 10002, 10003, # end run 2 10001, 20004, 10003, # * begin run 11 10001, 20004, 10003, # * events 10001, 20004, 10003, # begin file 2 10001, 20004, 10003, # end run 11 10001, 20004, 10003, # * begin run 1 10001, 30006, 10003, # * events 10001, 30006, 10003, # end run 1 10001, 10002, 10003, # * begin run 2 10001, 10002, 10003, # * events 10001, 10002, 10003, # end run 2 10001, 20004, 10003, # * begin run 11 10001, 20004, 10003, # * events 10001, 20004, 10003 # end run 11 ), expectedEndRunProd = cms.untracked.vint32( 0, 0, 0, # start 0, 0, 0, # begin file 1 100001, 200004, 100003, # begin run 1 100001, 300006, 100003, # * events 100001, 300006, 100003, # * end run 1 100001, 100002, 100003, # begin run 2 100001, 100002, 100003, # * events 100001, 100002, 100003, # * end run 2 100001, 200004, 100003, # begin run 11 100001, 200004, 100003, # * events 100001, 200004, 100003, # begin file 2 100001, 200004, 100003, # * end run 11 100001, 200004, 100003, # begin run 1 100001, 300006, 100003, # * events 100001, 300006, 100003, # * end run 1 100001, 100002, 100003, # begin run 2 100001, 100002, 100003, # * events 100001, 100002, 100003, # * end run 2 100001, 200004, 100003, # * begin run 11 100001, 200004, 100003, # * events 100001, 200004, 100003 # * end run 11 ), expectedBeginLumiProd = cms.untracked.vint32( 0, 0, 0, # start 0, 0, 0, # begin file 1 101, 204, 103, # * begin run 1 lumi 1 101, 306, 103, # * events 101, 306, 103, # end run 1 lumi 1 101, 102, 103, # * begin run 2 lumi 1 101, 102, 103, # * events 101, 102, 103, # end run 2 lumi 1 101, 102, 103, # * begin run 11 lumi 1 101, 102, 103, # * events 101, 102, 103, # end run 11 lumi 1 101, 102, 103, # * begin run 11 lumi 2 101, 102, 103, # * events 101, 102, 103, # begin file 2 101, 102, 103, # end run 11 lumi 2 101, 204, 103, # * begin run 1 lumi 1 101, 306, 103, # * events 101, 306, 103, # end run 1 lumi 1 101, 102, 103, # * begin run 2 lumi 1 101, 102, 103, # * events 101, 102, 103, # end run 2 lumi 1 101, 102, 103, # * begin run 11 lumi 1 101, 102, 103, # * events 101, 102, 103, # end run 11 lumi 1 101, 102, 103, # * begin run 11 lumi 2 101, 102, 103, # * events 101, 102, 103 # end run 11 lumi 2 ), expectedEndLumiProd = cms.untracked.vint32( 0, 0, 0, # start 0, 0, 0, # begin file 1 1001, 2004, 1003, # begin run 1 lumi 1 1001, 3006, 1003, # * events 1001, 3006, 1003, # * end run 1 lumi 1 1001, 1002, 1003, # begin run 2 lumi 1 1001, 1002, 1003, # * events 1001, 1002, 1003, # * end run 2 lumi 1 1001, 1002, 1003, # begin run 11 lumi 1 1001, 1002, 1003, # * events 1001, 1002, 1003, # * end run 11 lumi 1 1001, 1002, 1003, # begin run 11 lumi 2 1001, 1002, 1003, # * events 1001, 1002, 1003, # begin file 2 1001, 1002, 1003, # * end run 11 lumi 2 1001, 2004, 1003, # begin run 1 lumi 1 1001, 3006, 1003, # * events 1001, 3006, 1003, # * end run 1 lumi 1 1001, 1002, 1003, # begin run 2 lumi 1 1001, 1002, 1003, # * events 1001, 1002, 1003, # * end run 2 lumi 1 1001, 1002, 1003, # begin run 11 lumi 1 1001, 1002, 1003, # * events 1001, 1002, 1003, # * end run 11 lumi 1 1001, 1002, 1003, # begin run 11 lumi 2 1001, 1002, 1003, # * events 1001, 1002, 1003 # * end run 11 lumi 2 ), expectedBeginRunNew = cms.untracked.vint32( 0, 0, 0, # start 0, 0, 0, # begin file 1 10001, 10002, 10003, # * begin run 1 10001, 20004, 10003, # * events 10001, 20004, 10003, # end run 1 10001, 10002, 10003, # * begin run 2 10001, 10002, 10003, # * events 10001, 10002, 10003, # end run 2 10001, 10002, 10003, # * begin run 11 10001, 10002, 10003, # * events 10001, 10002, 10003, # begin file 2 10001, 10002, 10003, # end run 11 10001, 10002, 10003, # * begin run 1 10001, 20004, 10003, # * events 10001, 20004, 10003, # end run 1 10001, 10002, 10003, # * begin run 2 10001, 10002, 10003, # * events 10001, 10002, 10003, # end run 2 10001, 10002, 10003, # * begin run 11 10001, 10002, 10003, # * events 10001, 10002, 10003 # end run 11 ), expectedEndRunNew = cms.untracked.vint32( 0, 0, 0, # start 0, 0, 0, # begin file 1 100001, 100002, 100003, # begin run 1 100001, 200004, 100003, # * events 100001, 200004, 100003, # * end run 1 100001, 100002, 100003, # begin run 2 100001, 100002, 100003, # * events 100001, 100002, 100003, # * end run 2 100001, 100002, 100003, # begin run 11 100001, 100002, 100003, # * events 100001, 100002, 100003, # begin file 2 100001, 100002, 100003, # * end run 11 100001, 100002, 100003, # begin run 1 100001, 200004, 100003, # * events 100001, 200004, 100003, # * end run 1 100001, 100002, 100003, # begin run 2 100001, 100002, 100003, # * events 100001, 100002, 100003, # * end run 2 100001, 100002, 100003, # begin run 11 100001, 100002, 100003, # * events 100001, 100002, 100003 # * end run 11 ), expectedBeginLumiNew = cms.untracked.vint32( 0, 0, 0, # start 0, 0, 0, # begin file 1 101, 102, 103, # * begin run 1 lumi 1 101, 204, 103, # * events 101, 204, 103, # end run 1 lumi 1 101, 102, 103, # * begin run 2 lumi 1 101, 102, 103, # * events 101, 102, 103, # end run 2 lumi 1 101, 102, 103, # * begin run 11 lumi 1 101, 102, 103, # * events 101, 102, 103, # end run 11 lumi 1 101, 102, 103, # * begin run 11 lumi 2 101, 102, 103, # * events 101, 102, 103, # begin file 2 101, 102, 103, # end run 11 lumi 2 101, 102, 103, # * begin run 1 lumi 1 101, 204, 103, # * events 101, 204, 103, # end run 1 lumi 1 101, 102, 103, # * begin run 2 lumi 1 101, 102, 103, # * events 101, 102, 103, # end run 2 lumi 1 101, 102, 103, # * begin run 11 lumi 1 101, 102, 103, # * events 101, 102, 103, # end run 11 lumi 1 101, 102, 103, # * begin run 11 lumi 2 101, 102, 103, # * events 101, 102, 103 # end run 11 lumi 2 ), expectedEndLumiNew = cms.untracked.vint32( 0, 0, 0, # start 0, 0, 0, # begin file 1 1001, 1002, 1003, # begin run 1 lumi 1 1001, 2004, 1003, # * events 1001, 2004, 1003, # * end run 1 lumi 1 1001, 1002, 1003, # begin run 2 lumi 1 1001, 1002, 1003, # * events 1001, 1002, 1003, # * end run 2 lumi 1 1001, 1002, 1003, # begin run 11 lumi 1 1001, 1002, 1003, # * events 1001, 1002, 1003, # * end run 11 lumi 1 1001, 1002, 1003, # begin run 11 lumi 2 1001, 1002, 1003, # * events 1001, 1002, 1003, # begin file 2 1001, 1002, 1003, # * end run 11 lumi 2 1001, 1002, 1003, # begin run 1 lumi 1 1001, 2004, 1003, # * events 1001, 2004, 1003, # * end run 1 lumi 1 1001, 1002, 1003, # begin run 2 lumi 1 1001, 1002, 1003, # * events 1001, 1002, 1003, # * end run 2 lumi 1 1001, 1002, 1003, # begin run 11 lumi 1 1001, 1002, 1003, # * events 1001, 1002, 1003, # * end run 11 lumi 1 1001, 1002, 1003, # begin run 11 lumi 2 1001, 1002, 1003, # * events 1001, 1002, 1003 # * end run 11 lumi 2 ), expectedDroppedEvent = cms.untracked.vint32(13, 10003, 100003, 103, 1003), verbose = cms.untracked.bool(False), expectedParents = cms.untracked.vstring( 'm1', 'm1', 'm1', 'm1', 'm1', 'm1', 'm1', 'm1', 'm1', 'm1', 'm2', 'm2', 'm2', 'm2', 'm2', 'm3', 'm3', 'm3', 'm3', 'm3', 'm3', 'm3', 'm3', 'm3', 'm3', 'm2', 'm2', 'm2', 'm2', 'm2', 'm1', 'm1', 'm1', 'm1', 'm1', 'm1', 'm1', 'm1', 'm1', 'm1', 'm1', 'm1', 'm2', 'm2', 'm2', 'm2', 'm2', 'm3', 'm3', 'm3', 'm3', 'm3', 'm3', 'm3', 'm3', 'm3', 'm3', 'm2', 'm2', 'm2', 'm2', 'm2', 'm1', 'm1' ) ) process.test2 = cms.EDAnalyzer('RunLumiEventAnalyzer', verbose = cms.untracked.bool(True), expectedRunLumiEvents = cms.untracked.vuint32( 1, 0, 0, 1, 1, 0, 1, 1, 11, 1, 1, 12, 1, 1, 13, 1, 1, 14, 1, 1, 15, 1, 1, 16, 1, 1, 17, 1, 1, 18, 1, 1, 19, 1, 1, 20, 1, 1, 21, 1, 1, 22, 1, 1, 23, 1, 1, 24, 1, 1, 25, 1, 1, 1, 1, 1, 2, 1, 1, 3, 1, 1, 4, 1, 1, 5, 1, 1, 6, 1, 1, 7, 1, 1, 8, 1, 1, 9, 1, 1, 10, 1, 1, 0, 1, 0, 0, 2, 0, 0, 2, 1, 0, 2, 1, 1, 2, 1, 2, 2, 1, 3, 2, 1, 4, 2, 1, 5, 2, 1, 0, 2, 0, 0, 11, 0, 0, 11, 1, 0, 11, 1, 1, 11, 1, 0, 11, 2, 0, 11, 2, 1, 11, 2, 0, 11, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 11, 1, 1, 12, 1, 1, 13, 1, 1, 14, 1, 1, 15, 1, 1, 16, 1, 1, 17, 1, 1, 18, 1, 1, 19, 1, 1, 20, 1, 1, 21, 1, 1, 22, 1, 1, 23, 1, 1, 24, 1, 1, 25, 1, 1, 1, 1, 1, 2, 1, 1, 3, 1, 1, 4, 1, 1, 5, 1, 1, 6, 1, 1, 7, 1, 1, 8, 1, 1, 9, 1, 1, 10, 1, 1, 0, 1, 0, 0, 2, 0, 0, 2, 1, 0, 2, 1, 1, 2, 1, 2, 2, 1, 3, 2, 1, 4, 2, 1, 5, 2, 1, 0, 2, 0, 0 ) ) process.path1 = cms.Path(process.test + process.test2) process.endpath1 = cms.EndPath(process.out)
35.186701
80
0.496366
8630d53384ca87932be69f6f8ad4462f46f41a5a
4,575
py
Python
tournament_test.py
bschmoker/fireside
70c8d9b8c6c3bdc0b437ec68be0aa99f904e7598
[ "MIT" ]
1
2015-11-05T20:15:34.000Z
2015-11-05T20:15:34.000Z
tournament_test.py
bschmoker/fireside
70c8d9b8c6c3bdc0b437ec68be0aa99f904e7598
[ "MIT" ]
3
2015-08-30T19:55:11.000Z
2015-08-30T19:56:20.000Z
tournament_test.py
bschmoker/fireside
70c8d9b8c6c3bdc0b437ec68be0aa99f904e7598
[ "MIT" ]
null
null
null
#!/usr/bin/env python # # Test cases for tournament.py from tournament import * def testDeleteMatches(): deleteMatches() print "1. Old matches can be deleted." def testDelete(): deleteMatches() deletePlayers() print "2. Player records can be deleted." def testCount(): deleteMatches() deletePlayers() c = countPlayers() if c == '0': raise TypeError( "countPlayers() should return numeric zero, not string '0'.") if c != 0: raise ValueError("After deleting, countPlayers should return zero.") print "3. After deleting, countPlayers() returns zero." def testRegister(): deleteMatches() deletePlayers() registerPlayer("Jeff Goldblum") c = countPlayers() if c != 1: raise ValueError( "After one player registers, countPlayers() should be 1.") print "4. After registering a player, countPlayers() returns 1." def testRegisterCountDelete(): deleteMatches() deletePlayers() registerPlayer("Jeff Goldblum") registerPlayer("Dweezil Zappa") registerPlayer("Josh Brolin") registerPlayer("Atlanta Hope") c = countPlayers() if c != 4: raise ValueError( "After registering four players, countPlayers should be 4.") deletePlayers() c = countPlayers() if c != 0: raise ValueError("After deleting, countPlayers should return zero.") print "5. Players can be registered and deleted." def testStandingsBeforeMatches(): deleteMatches() deletePlayers() registerPlayer("Jeff Goldblum") registerPlayer("Biff Rackchest") standings = playerStandings() if len(standings) < 2: raise ValueError("Players should appear in playerStandings even before " "they have played any matches.") elif len(standings) > 2: raise ValueError("Only registered players should appear in standings.") if len(standings[0]) != 4: raise ValueError("Each playerStandings row should have four columns.") [(id1, name1, wins1, matches1), (id2, name2, wins2, matches2)] = standings if matches1 != 0 or matches2 != 0 or wins1 != 0 or wins2 != 0: raise ValueError( "Newly registered players should have no matches or wins.") if set([name1, name2]) != set(["Melpomene Murray", "Randy Schwartz"]): raise ValueError("Registered players' names should appear in standings, " "even if they have no matches played.") print "6. Newly registered players appear in the standings with no matches." def testReportMatches(): deleteMatches() deletePlayers() registerPlayer("Jeff Goldblum") registerPlayer("Jeff Goldblum") registerPlayer("Jeff Goldblum") registerPlayer("Jeff Goldblum") standings = playerStandings() [id1, id2, id3, id4] = [row[0] for row in standings] reportMatch(id1, id2) reportMatch(id3, id4) standings = playerStandings() for (i, n, w, m) in standings: if m != 1: raise ValueError("Each player should have one match recorded.") if i in (id1, id3) and w != 1: raise ValueError("Each match winner should have one win recorded.") elif i in (id2, id4) and w != 0: raise ValueError("Each match loser should have zero wins recorded.") print "7. After a match, players have updated standings." def testPairings(): deleteMatches() deletePlayers() registerPlayer("Thrall") registerPlayer("Valeera") registerPlayer("Jaina Proudmoore") registerPlayer("Goldfarmer #888") standings = playerStandings() [id1, id2, id3, id4] = [row[0] for row in standings] reportMatch(id1, id2) reportMatch(id3, id4) pairings = swissPairings() if len(pairings) != 2: raise ValueError( "For four players, swissPairings should return two pairs.") [(pid1, pname1, pid2, pname2), (pid3, pname3, pid4, pname4)] = pairings correct_pairs = set([frozenset([id1, id3]), frozenset([id2, id4])]) actual_pairs = set([frozenset([pid1, pid2]), frozenset([pid3, pid4])]) if correct_pairs != actual_pairs: raise ValueError( "After one match, players with one win should be paired.") print "8. After one match, players with one win are paired." if __name__ == '__main__': testDeleteMatches() testDelete() testCount() testRegister() testRegisterCountDelete() testStandingsBeforeMatches() testReportMatches() testPairings() print "Success! All tests pass!"
32.678571
81
0.65071
81c2effb53159158d85b3cc8df7a0fbb3acf75d3
2,498
py
Python
Python/Tic-Tac-Toe/Tic-tac-toe.py
AyushBilkhiwal/Hacktoberfest2020_
5f8155b0b8a950643c10b58b1c5ea3cbf007384f
[ "MIT" ]
null
null
null
Python/Tic-Tac-Toe/Tic-tac-toe.py
AyushBilkhiwal/Hacktoberfest2020_
5f8155b0b8a950643c10b58b1c5ea3cbf007384f
[ "MIT" ]
null
null
null
Python/Tic-Tac-Toe/Tic-tac-toe.py
AyushBilkhiwal/Hacktoberfest2020_
5f8155b0b8a950643c10b58b1c5ea3cbf007384f
[ "MIT" ]
null
null
null
""" @author: Arpit Somani """ # Import the required modules import numpy # Creating the platform, where we play the game. board = numpy.array([['_', '_', '_'], ['_', '_', '_'], ['_', '_', '_']]) # We have 2 symbols , as its a 2 player game p1s = 'X' p2s = 'O' # Checking for empty place in rows def check_rows(symbol): for r in range(3): count = 0 for c in range(3): if board[r][c] == symbol: count = count + 1 if count == 3: print(symbol, "Won") return True return False # Checking for empty place in columns def check_cols(symbol): for c in range(3): count = 0 for r in range(3): if board[r][c] == symbol: count = count + 1 if count == 3: print(symbol, "Won") return True return False # Checking for empty place in diagonals def check_diagonals(symbol): if board[0][2] == board[1][1] and board[1][1] == board[2][0] and board[1][1] == symbol: print(symbol, "Won") return True if board[0][0] == board[1][1] and board[1][1] == board[2][2] and board[1][1] == symbol: print(symbol, "Won") return True return False # When a player get into the win siituation, when a straight line formed either at row,column or diagonal position. def won(symbol): return check_rows(symbol) or check_cols(symbol) or check_diagonals(symbol) # Placing of players symbol as desired empty position def place(symbol): print(numpy.matrix(board)) while 1: row = int(input('Enter row: 1 or 2 or 3: ')) col = int(input('Enter col: 1 or 2 or 3: ')) if row in range(4) and col in range(4) and board[row - 1][col - 1] == '_': break else: print('Invalid input. PLease enter again!') board[row - 1][col - 1] = symbol # The play function, player 1 starts game, and the chances will revolve one by one in between 2 players, # until a winner arise. def play(): for turn in range(9): if turn % 2 == 0: print("X's turn") place(p1s) if won(p1s): break else: print("O's turn") place(p2s) if won(p2s): break if not (won(p1s)) and not (won(p2s)): print("Draw!") # Calling play function play()
24.490196
116
0.527622
36510440ae397fde7f1b1b56e2c94615e39f81df
7,604
py
Python
readthedocs/core/views/serve.py
chirathr/readthedocs.org
4f1a5dc07fd9d55d4284fdb22deae735932b2ec9
[ "MIT" ]
1
2020-03-12T14:24:48.000Z
2020-03-12T14:24:48.000Z
readthedocs/core/views/serve.py
chirathr/readthedocs.org
4f1a5dc07fd9d55d4284fdb22deae735932b2ec9
[ "MIT" ]
1
2018-12-24T04:01:31.000Z
2018-12-24T04:01:31.000Z
readthedocs/core/views/serve.py
chirathr/readthedocs.org
4f1a5dc07fd9d55d4284fdb22deae735932b2ec9
[ "MIT" ]
6
2019-02-13T16:08:41.000Z
2020-03-12T14:17:14.000Z
# -*- coding: utf-8 -*- """ Doc serving from Python. In production there are two modes, * Serving from public symlinks in nginx (readthedocs.org & readthedocs.com) * Serving from private symlinks in Python (readthedocs.com only) In development, we have two modes: * Serving from public symlinks in Python * Serving from private symlinks in Python This means we should only serve from public symlinks in dev, and generally default to serving from private symlinks in Python only. Privacy ------- These views will take into account the version privacy level. Settings -------- PYTHON_MEDIA (False) - Set this to True to serve docs & media from Python SERVE_DOCS (['private']) - The list of ['private', 'public'] docs to serve. """ from __future__ import ( absolute_import, division, print_function, unicode_literals) import logging import mimetypes import os from functools import wraps from django.conf import settings from django.http import HttpResponse, HttpResponseRedirect, Http404 from django.shortcuts import get_object_or_404 from django.shortcuts import render from django.views.static import serve from readthedocs.builds.models import Version from readthedocs.core.permissions import AdminPermission from readthedocs.core.resolver import resolve, resolve_path from readthedocs.core.symlink import PrivateSymlink, PublicSymlink from readthedocs.projects import constants from readthedocs.projects.models import Project, ProjectRelationship log = logging.getLogger(__name__) def map_subproject_slug(view_func): """ A decorator that maps a ``subproject_slug`` URL param into a Project. :raises: Http404 if the Project doesn't exist .. warning:: Does not take into account any kind of privacy settings. """ @wraps(view_func) def inner_view(request, subproject=None, subproject_slug=None, *args, **kwargs): # noqa if subproject is None and subproject_slug: # Try to fetch by subproject alias first, otherwise we might end up # redirected to an unrelated project. try: # Depends on a project passed into kwargs rel = ProjectRelationship.objects.get( parent=kwargs['project'], alias=subproject_slug, ) subproject = rel.child except (ProjectRelationship.DoesNotExist, KeyError): subproject = get_object_or_404(Project, slug=subproject_slug) return view_func(request, subproject=subproject, *args, **kwargs) return inner_view def map_project_slug(view_func): """ A decorator that maps a ``project_slug`` URL param into a Project. :raises: Http404 if the Project doesn't exist .. warning:: Does not take into account any kind of privacy settings. """ @wraps(view_func) def inner_view(request, project=None, project_slug=None, *args, **kwargs): # noqa if project is None: if not project_slug: project_slug = request.slug try: project = Project.objects.get(slug=project_slug) except Project.DoesNotExist: raise Http404('Project does not exist.') return view_func(request, project=project, *args, **kwargs) return inner_view @map_project_slug @map_subproject_slug def redirect_project_slug(request, project, subproject): # pylint: disable=unused-argument """Handle / -> /en/latest/ directs on subdomains.""" return HttpResponseRedirect(resolve(subproject or project)) @map_project_slug @map_subproject_slug def redirect_page_with_filename(request, project, subproject, filename): # pylint: disable=unused-argument # noqa """Redirect /page/file.html to /en/latest/file.html.""" return HttpResponseRedirect( resolve(subproject or project, filename=filename)) def _serve_401(request, project): res = render(request, '401.html') res.status_code = 401 log.debug('Unauthorized access to {0} documentation'.format(project.slug)) return res def _serve_file(request, filename, basepath): # Serve the file from the proper location if settings.DEBUG or getattr(settings, 'PYTHON_MEDIA', False): # Serve from Python return serve(request, filename, basepath) # Serve from Nginx content_type, encoding = mimetypes.guess_type( os.path.join(basepath, filename)) content_type = content_type or 'application/octet-stream' response = HttpResponse(content_type=content_type) if encoding: response['Content-Encoding'] = encoding try: response['X-Accel-Redirect'] = os.path.join( basepath[len(settings.SITE_ROOT):], filename, ) except UnicodeEncodeError: raise Http404 return response @map_project_slug @map_subproject_slug def serve_docs( request, project, subproject, lang_slug=None, version_slug=None, filename=''): """Exists to map existing proj, lang, version, filename views to the file format.""" if not version_slug: version_slug = project.get_default_version() try: version = project.versions.public(request.user).get(slug=version_slug) except Version.DoesNotExist: # Properly raise a 404 if the version doesn't exist (or is inactive) and # a 401 if it does if project.versions.filter(slug=version_slug, active=True).exists(): return _serve_401(request, project) raise Http404('Version does not exist.') filename = resolve_path( subproject or project, # Resolve the subproject if it exists version_slug=version_slug, language=lang_slug, filename=filename, subdomain=True, # subdomain will make it a "full" path without a URL prefix ) if (version.privacy_level == constants.PRIVATE and not AdminPermission.is_member(user=request.user, obj=project)): return _serve_401(request, project) return _serve_symlink_docs( request, filename=filename, project=project, privacy_level=version.privacy_level, ) @map_project_slug def _serve_symlink_docs(request, project, privacy_level, filename=''): """Serve a file by symlink, or a 404 if not found.""" # Handle indexes if filename == '' or filename[-1] == '/': filename += 'index.html' # This breaks path joining, by ignoring the root when given an "absolute" path if filename[0] == '/': filename = filename[1:] log.info('Serving %s for %s', filename, project) files_tried = [] serve_docs = getattr(settings, 'SERVE_DOCS', [constants.PRIVATE]) if (settings.DEBUG or constants.PUBLIC in serve_docs) and privacy_level != constants.PRIVATE: # yapf: disable # noqa public_symlink = PublicSymlink(project) basepath = public_symlink.project_root if os.path.exists(os.path.join(basepath, filename)): return _serve_file(request, filename, basepath) files_tried.append(os.path.join(basepath, filename)) if (settings.DEBUG or constants.PRIVATE in serve_docs) and privacy_level == constants.PRIVATE: # yapf: disable # noqa # Handle private private_symlink = PrivateSymlink(project) basepath = private_symlink.project_root if os.path.exists(os.path.join(basepath, filename)): return _serve_file(request, filename, basepath) files_tried.append(os.path.join(basepath, filename)) raise Http404( 'File not found. Tried these files: %s' % ','.join(files_tried))
34.880734
123
0.692136
4067c5c33136a3077df6e5eb986575b53a6927fd
316
py
Python
ThirdParty/Blizzard/Storm/Current/src/GenDef.py
alanoooaao/YDWE
fa9c6dc24d01f78919b5c8b2c69252291536424a
[ "Apache-2.0" ]
5
2019-01-22T02:35:35.000Z
2022-02-28T02:50:03.000Z
ThirdParty/Blizzard/Storm/Current/src/GenDef.py
shawwwn/YDWE
b83ffe041d9623409d9ffd951988e2b482d9cfc3
[ "Apache-2.0" ]
8
2016-10-19T00:04:05.000Z
2016-11-14T10:58:14.000Z
ThirdParty/Blizzard/Storm/Current/src/GenDef.py
shawwwn/YDWE
b83ffe041d9623409d9ffd951988e2b482d9cfc3
[ "Apache-2.0" ]
2
2016-11-14T11:39:37.000Z
2019-09-06T00:21:15.000Z
# coding: utf-8 # Python 3 scripts import os, sys, re rg = re.compile(r"\s*//\s+(\d+)\s+(\w+)") print('LIBRARY "Storm"') print('EXPORTS') with open("../include/BlizzardStorm.h", "r") as f: for line in f: mat = rg.match(line) if mat: print('\t{0}\t\t\t@{1}\tNONAME'.format(mat.group(2), mat.group(1)))
19.75
70
0.591772
af869d43f1291b05d190187cf1fb1a717a769211
7,021
py
Python
src/packages/database/database_manager.py
nathanctech/pipsqueak3
f5c038fcecb0f54a6a71f6000c13e683ae72920f
[ "BSD-3-Clause" ]
null
null
null
src/packages/database/database_manager.py
nathanctech/pipsqueak3
f5c038fcecb0f54a6a71f6000c13e683ae72920f
[ "BSD-3-Clause" ]
null
null
null
src/packages/database/database_manager.py
nathanctech/pipsqueak3
f5c038fcecb0f54a6a71f6000c13e683ae72920f
[ "BSD-3-Clause" ]
null
null
null
""" database_manager.py - allows connections to SQL databases. Provides postgreSQL connectivity for mechasqueak3. Copyright (c) 2018 The Fuel Rat Mischief, All rights reserved. Licensed under the BSD 3-Clause License. See LICENSE.md """ import typing import psycopg2 from loguru import logger from psycopg2 import sql, pool from src.config import CONFIG_MARKER class DatabaseManager: """ Database Manager class intended to be inherited by a parent class that requires database connectivity. Currently, only PostgreSQL 9.5+ is supported. ODBC drivers are not required on Windows. Usage: >>> DatabaseManager(dbhost='DatabaseServer.org', ... dbport=5432, ... dbname='DatabaseName', ... dbuser='DatabaseUserName', ... dbpassword='UserPassword') # doctest: +SKIP All arguments are optional. If omitted, config values will be pulled from config file. Instantiation of the DBM is not intended to be done per method, but rather once as a class property, and the DatabaseManage.query() method used to perform a query. Connections are managed by a SimpleConnectionPool, keeping a minimum of 5 and a maximum of 10 connections, able to dynamically open/close ports as needed. Performing A Query: .query() does not accept a direct string. You must use a psycopg2 composed SQL (sql.SQL) object, with appropriate substitutions. DO NOT USE STRING CONCATENATION OR APPEND VALUES. THIS IS BAD PRACTICE, AND AN INJECTION RISK! >>> query = sql.SQL( ... "SELECT FROM public.table WHERE table.name=%s AND table.lang=%s AND table.something=%s") >>> dbm.query(query, ('tuple','of','values'))# doctest: +SKIP """ _config: typing.ClassVar[typing.Dict] = {} @classmethod @CONFIG_MARKER def rehash_handler(cls, data: typing.Dict): """ Apply new configuration data Args: data (typing.Dict): new configuration data to apply. """ cls._config = data @classmethod @CONFIG_MARKER def validate_config(cls, data: typing.Dict): """ Validate database portion of the configuration file Args: data(typing.Dict): configuration object """ module_config = data['database'] # Require all values to be set for setting in module_config.values(): if not setting: raise ValueError(f"[database]{setting} is required for instantiation but was empty") # Host if not isinstance(module_config['host'], str): raise ValueError("[database]host must be a string.") # Port if not isinstance(module_config['port'], int): raise ValueError("[database]port must be an integer.") # Database Name if not isinstance(module_config['dbname'], str): raise ValueError("[database]database name must be a string.") # Database Username if not isinstance(module_config['username'], str): raise ValueError("[database]database username must be a string.") # Database Password if not isinstance(module_config['password'], str): raise ValueError("[database]database password must be a string") def __init__(self, dbhost=None, dbport=None, dbname=None, dbuser=None, dbpassword=None ): if not hasattr(self, "_initialized"): self._initialized = True # Utilize function arguments if they are provided, # otherwise retrieve from config file and use those values. self._dbhost = dbhost if dbhost is not None else self._config['database'].get('host') assert self._dbhost self._dbport = dbport if dbhost is not None else self._config['database'].get('port') assert self._dbport self._dbname = dbname if dbname is not None else self._config['database'].get('dbname') assert self._dbname self._dbuser = dbuser if dbuser is not None else self._config['database'].get( 'username') assert self._dbuser self._dbpass = dbpassword if dbpassword is not None else \ self._config['database'].get('password') assert self._dbpass # Create Database Connections Pool try: self._dbpool = psycopg2.pool.SimpleConnectionPool(5, 10, host=self._dbhost, port=self._dbport, dbname=self._dbname, user=self._dbuser, password=self._dbpass) except psycopg2.DatabaseError as error: logger.exception("Unable to connect to database!") raise error async def query(self, query: sql.SQL, values: typing.Union[typing.Tuple, typing.Dict]) -> typing.List: """ Send a query to the connected database. Pulls a connection from the pool and creates a cursor, executing the composed query with the values. Requires a composed SQL object (See psycopg2 docs) Args: query: composed SQL query object values: tuple or dict of values for query Returns: List of rows matching query. May return an empty list if there are no matching rows. """ # Verify composed SQL object if not isinstance(query, sql.SQL): raise TypeError("Expected composed SQL object for query.") # Verify value is tuple or dict. if not isinstance(values, (dict, tuple)): raise TypeError(f"Expected tuple or dict for query values.") # Pull a connection from the pool, and create a cursor from it. with self._dbpool.getconn() as connection: # If we could set these at connection time, we would, # but they must be set outside the pool. connection.autocommit = True connection.set_client_encoding('utf-8') # Create cursor, and execute the query. with connection.cursor() as cursor: cursor.execute(query, values) # Check if cursor.description is NONE - meaning no results returned. if cursor.description: result = cursor.fetchall() else: # Return a blank tuple if there are no results, since we are # forcing this to a list. result = () # Release connection back to the pool. self._dbpool.putconn(connection) return list(result)
36.952632
100
0.590514
8eab7851f5a8f96a4ecc4a5c6af7777d198e7a32
3,616
py
Python
deep-rl/lib/python2.7/site-packages/OpenGL/arrays/numbers.py
ShujaKhalid/deep-rl
99c6ba6c3095d1bfdab81bd01395ced96bddd611
[ "MIT" ]
210
2016-04-09T14:26:00.000Z
2022-03-25T18:36:19.000Z
deep-rl/lib/python2.7/site-packages/OpenGL/arrays/numbers.py
ShujaKhalid/deep-rl
99c6ba6c3095d1bfdab81bd01395ced96bddd611
[ "MIT" ]
72
2016-09-04T09:30:19.000Z
2022-03-27T17:06:53.000Z
deep-rl/lib/python2.7/site-packages/OpenGL/arrays/numbers.py
ShujaKhalid/deep-rl
99c6ba6c3095d1bfdab81bd01395ced96bddd611
[ "MIT" ]
64
2016-04-09T14:26:49.000Z
2022-03-21T11:19:47.000Z
"""Numbers passed as array handling code for PyOpenGL """ REGISTRY_NAME = 'numbers' from OpenGL.raw.GL import _types from OpenGL.raw.GL.VERSION import GL_1_1 from OpenGL.arrays import formathandler import ctypes from OpenGL._bytes import long, integer_types class NumberHandler( formathandler.FormatHandler ): """Allows the user to pass a bald Python float,int, etceteras as an array-of-1""" HANDLED_TYPES = integer_types + ( float, _types.GLdouble, _types.GLfloat, _types.GLint, _types.GLshort, _types.GLuint, _types.GLulong, _types.GLushort, _types.GLclampf, _types.GLclampd, ) def from_param( self, value, typeCode=None ): """If it's a ctypes value, pass on, otherwise do asArray""" try: return ctypes.byref(value) except TypeError as err: err.args += (' If you have ERROR_ON_COPY enabled, remember to pass in an array to array-requiring functions.', ) raise dataPointer = from_param def zeros( self, dims, typeCode=None ): """Currently don't allow Number as output types!""" raise NotImplemented( """Number data-type not allowed as an output array format""" ) def ones( self, dims, typeCode=None ): """Currently don't allow Number as output types!""" raise NotImplemented( """Number data-type not allowed as an output array format""" ) def arrayToGLType( self, value ): """Given a value, guess OpenGL type of the corresponding pointer""" if value.__class__ in TARGET_TYPES: return TARGET_TYPES[ value.__class__ ] else: guess = DEFAULT_TYPES.get( value.__class__ ) if guess is not None: return guess[1] raise TypeError( """Can't guess array data-type for %r types"""%(type(value))) def arraySize( self, value, typeCode = None ): """Given a data-value, calculate ravelled size for the array""" return 1 def asArray( self, value, typeCode=None ): """Convert given value to an array value of given typeCode""" if value.__class__ in TARGET_TYPES: return value targetType = CONSTANT_TO_TYPE.get( typeCode ) if targetType is not None: return targetType( value ) raise TypeError( """Don't know how to convert %r to an array type"""%( typeCode, )) def unitSize( self, value, typeCode=None ): """Determine unit size of an array (if possible)""" return 1 # there's only 1 possible value in the set... def registerEquivalent( self, typ, base ): """Register a sub-class for handling as the base-type""" global TARGET_TYPE_TUPLE for source in (DEFAULT_TYPES, TARGET_TYPES, BYTE_SIZES): if base in source: source[typ] = source[base] if base in TARGET_TYPES: TARGET_TYPE_TUPLE = TARGET_TYPE_TUPLE + (base,) DEFAULT_TYPES = { float: (_types.GLdouble,GL_1_1.GL_DOUBLE), int: (_types.GLint,GL_1_1.GL_INT), long: (_types.GLint,GL_1_1.GL_INT), } TARGET_TYPES = dict([ (getattr( _types,n),c) for (n,c) in _types.ARRAY_TYPE_TO_CONSTANT ]) TARGET_TYPE_TUPLE = tuple([ getattr(_types,n) for (n,c) in _types.ARRAY_TYPE_TO_CONSTANT ]) CONSTANT_TO_TYPE = dict([ (c,getattr( _types, n)) for (n,c) in _types.ARRAY_TYPE_TO_CONSTANT ]) BYTE_SIZES = dict([ ( c, ctypes.sizeof( getattr( _types, n) ) ) for (n,c) in _types.ARRAY_TYPE_TO_CONSTANT ]) try: del n,c except NameError as err: pass
36.16
124
0.636892
754cefe05860bbb3fed4cc2f8d5f2e7d02435eb2
21,275
py
Python
cogs/moderation.py
cringshotadeer/snakebot
e24730dbf49ebdd2dadb7912d07e94a88e988491
[ "MIT" ]
null
null
null
cogs/moderation.py
cringshotadeer/snakebot
e24730dbf49ebdd2dadb7912d07e94a88e988491
[ "MIT" ]
null
null
null
cogs/moderation.py
cringshotadeer/snakebot
e24730dbf49ebdd2dadb7912d07e94a88e988491
[ "MIT" ]
null
null
null
import asyncio from discord.ext import commands, menus import discord import orjson class HistoryMenu(menus.ListPageSource): def __init__(self, data): super().__init__(data, per_page=10) async def format_page(self, menu, entries): embed = discord.Embed(color=discord.Color.blurple()) for date, message in entries: if not message: continue embed.add_field(name=f"<t:{date}:R>", value=message) return embed class moderation(commands.Cog): """For commands related to moderation.""" def __init__(self, bot: commands.Bot) -> None: self.bot = bot self.DB = bot.DB self.loop = bot.loop @commands.command() async def inactive(self, ctx, days: int = 7): """Gets how many people can be pruned. days: int """ inactive = await ctx.guild.estimate_pruned_members(days=days) await ctx.send( embed=discord.Embed( color=discord.Color.blurple(), description=f"```{inactive} members inactive for {days} days```", ) ) async def _end_poll(self, guild, message): """Ends a poll and sends the results.""" polls = self.DB.main.get(b"polls") if not polls: return message_id = str(message.id) polls = orjson.loads(polls) if guild not in polls: return if message_id not in polls[guild]: return winner = max( polls[guild][message_id], key=lambda x: polls[guild][message_id][x]["count"] ) await message.reply(f"Winner of the poll was {winner}") polls[guild].pop(message_id) self.DB.main.put(b"polls", orjson.dumps(polls)) @commands.command() @commands.has_permissions(kick_members=True) async def poll(self, ctx, title, *options): """Starts a poll. title: str options: tuple """ embed = discord.Embed(color=discord.Color.blurple()) if len(options) > 20: embed.description = "```You can have a maximum of 20 options```" return await ctx.send(embed=embed) if len(options) < 2: embed.description = "```You need at least 2 options```" return await ctx.send(embed=embed) polls = self.DB.main.get(b"polls") if not polls: polls = {} else: polls = orjson.loads(polls) guild = str(ctx.guild.id) if guild not in polls: polls[guild] = {} polls[guild]["temp"] = {} embed.description = "" for number, option in enumerate(options): emoji = chr(127462 + number) polls[guild]["temp"][emoji] = { "name": option, "count": 0, } embed.description += f"{emoji}: {option}\n" embed.title = title message = await ctx.send(embed=embed) polls[guild][str(message.id)] = polls[guild].pop("temp") for i in range(len(options)): await message.add_reaction(chr(127462 + i)) self.DB.main.put(b"polls", orjson.dumps(polls)) self.loop.call_later(21600, asyncio.create_task, self.end_poll(guild, message)) @commands.command() @commands.has_permissions(kick_members=True) async def end_poll(self, ctx, message_id): """Ends a poll based off its message id.""" polls = self.DB.main.get(b"polls") if not polls: return polls = orjson.loads(polls) if str(ctx.guild.id) not in polls: return await ctx.send( embed=discord.Embed( color=discord.Colo.blurple(), description="No polls found" ) ) if message_id not in polls[str(ctx.guild.id)]: return await ctx.send( embed=discord.Embed( color=discord.Colo.blurple(), description="Poll not found" ) ) winner = max( polls[str(ctx.guild.id)][message_id], key=lambda x: polls[str(ctx.guild.id)][message_id][x]["count"], ) await ctx.reply(f"Winner of the poll was {winner}") polls[str(ctx.guild.id)].pop(message_id) self.DB.main.put(b"polls", orjson.dumps(polls)) @commands.command(name="mute") @commands.has_permissions(kick_members=True) async def mute_member(self, ctx, member: discord.Member, *, reason=None): """Mutes a member. member: discord.member reason: str """ role = discord.utils.get(ctx.guild.roles, name="Muted") embed = discord.Embed(color=discord.Color.blurple()) if role in member.roles: await member.remove_roles(role) embed.description = f"```Unmuted {member.display_name}```" return await ctx.send(embed=embed) member_id = f"{ctx.guild.id}-{member.id}".encode() infractions = self.DB.infractions.get(member_id) if not infractions: infractions = { "count": 0, "bans": [], "kicks": [], "mutes": [], "warnings": [], } else: infractions = orjson.loads(infractions) infractions["count"] += 1 infractions["mutes"].append(reason) if not role: reactions = ["✅", "❎"] def check(reaction: discord.Reaction, user: discord.User) -> bool: return ( user.id == ctx.author.id and reaction.message.channel == ctx.channel and reaction.emoji in reactions ) embed.description = "```No muted role found react to add Muted role.```" message = await ctx.send(embed=embed) for reaction in reactions: await message.add_reaction(reaction) reaction, user = await ctx.bot.wait_for( "reaction_add", timeout=60.0, check=check ) if reaction.emoji == "✅": role = await ctx.guild.create_role( name="Muted", color=discord.Color.dark_red() ) for categories in ctx.guild.categories: await categories.set_permissions( role, send_messages=False, connect=False ) else: return await member.add_roles(role) embed = discord.Embed( color=discord.Color.dark_red(), description="{} has been muted. They have {} total infractions.".format( member.mention, infractions["count"] ), ) await ctx.send(embed=embed) self.DB.infractions.put(member_id, orjson.dumps(infractions)) @commands.command() @commands.has_permissions(manage_nicknames=True) async def nick(self, ctx, member: discord.Member, *, nickname): """Changes a members nickname. member: discord.Member nickname: str """ await member.edit(nick=nickname) await ctx.send(f"Changed {member.display_name}'s nickname to {nickname}'") @commands.command(name="warn") @commands.has_permissions(manage_messages=True) async def warn_member(self, ctx, member: discord.Member, *, reason=None): """Warns a member and keeps track of how many warnings a member has. member: discord.member reason: str """ member_id = f"{ctx.guild.id}-{member.id}".encode() infractions = self.DB.infractions.get(member_id) if not infractions: infractions = { "count": 0, "bans": [], "kicks": [], "mutes": [], "warnings": [], } else: infractions = orjson.loads(infractions) infractions["count"] += 1 infractions["warnings"].append(reason) embed = discord.Embed( color=discord.Color.dark_red(), description="{} has been warned. They have {} total infractions.".format( member.mention, infractions["count"] ), ) await ctx.send(embed=embed) self.DB.infractions.put(member_id, orjson.dumps(infractions)) @commands.command() @commands.has_permissions(manage_messages=True) async def warnings(self, ctx, member: discord.Member): """Shows the warnings a member has. member: discord.members """ member_id = f"{ctx.guild.id}-{member.id}".encode() infractions = self.DB.infractions.get(member_id) embed = discord.Embed(color=discord.Color.blurple()) if not infractions: embed.description = "```Member has no infractions```" return await ctx.send(embed=embed) infractions = orjson.loads(infractions) embed.description = "```{} Has {} warnings\n\n{}```".format( member.display_name, len(infractions["warnings"]), "\n".join(infractions["warnings"]), ) await ctx.send(embed=embed) async def end_date(self, duration): """Converts a duration to an end date. duration: str How much to add onto the current date e.g 5d 10h 25m 5s """ seconds = 0 times = {"s": 1, "m": 60, "h": 3600, "d": 86400} try: for time in duration.split(): seconds += int(time[:-1]) * times[time[-1]] except ValueError: return None return seconds async def ban(self, ctx, member: discord.Member, duration=None, *, reason=None): """Bans a member. member: discord.Member The member to ban. duration: str How long to ban the member for. reason: str The reason for banning the member. """ embed = discord.Embed(color=discord.Color.dark_red()) if ctx.author.top_role <= member.top_role and ctx.guild.owner != ctx.author: embed.description = "```You can't ban someone higher or equal to you```" return await ctx.send(embed=embed) if duration: seconds = await self.end_date(duration) if not seconds: embed.description = "```Invalid duration. Example: '3d 5h 10m'```" return await ctx.send(embed=embed) self.loop.call_later(seconds, asyncio.create_task, ctx.guild.unban(member)) embed.title = f"Banned {member.display_name} for {seconds}s" else: embed.title = f"Banned {member.display_name}" await member.ban(reason=reason) member_id = f"{ctx.guild.id}-{member.id}".encode() infractions = self.DB.infractions.get(member_id) if not infractions: infractions = { "count": 0, "bans": [], "kicks": [], "mutes": [], "warnings": [], } else: infractions = orjson.loads(infractions) infractions["count"] += 1 infractions["bans"].append(reason) embed.description = f"```They had {infractions['count']} total infractions.```" self.DB.infractions.put(member_id, orjson.dumps(infractions)) await ctx.send(embed=embed) @commands.command(name="ban") @commands.has_permissions(ban_members=True) async def ban_member(self, ctx, member: discord.Member, *, reason=None): """Bans a member. Usage: .ban @Singularity#8953 He was rude member: discord.Member The member to ban. reason: str The reason for banning the member. """ await self.ban(ctx=ctx, member=member, reason=reason) @commands.command(name="tempban") @commands.has_permissions(ban_members=True) async def temp_ban_member( self, ctx, member: discord.Member, duration=None, *, reason=None ): """Temporarily bans a member. Usage: .ban @Singularity#8953 "3d 5h 10m" He was rude You need the quotes for the duration or it will only get the first argument member: discord.Member The member to ban. duration: str How long to ban the member for. reason: str The reason for banning the member. """ await self.ban(ctx=ctx, member=member, duration=duration, reason=reason) @commands.command() @commands.has_permissions(ban_members=True) async def unban(self, ctx, name): """Unbans a member based off their name. name: str """ embed = discord.Embed(color=discord.Color.blurple()) for entry in await ctx.guild.bans(): if name == entry.user.name: embed.description = "```User Unbanned.```" await ctx.guild.unban(entry.user) return await ctx.send(embed=embed) embed.description = f"```User {name} Not Found.```" await ctx.send(embed=embed) @commands.command(name="kick") @commands.has_permissions(kick_members=True) async def kick_member(self, ctx, member: discord.Member, *, reason=None): """Kicks a member. member: discord.Member The member to kick can be an id, @ or name. reason: str """ if ctx.author.top_role <= member.top_role and ctx.guild.owner != ctx.author: return await ctx.send( embed=discord.Embed( color=discord.Color.blurple(), description="```You can't kick someone higher or equal to you```", ) ) await member.kick() member_id = f"{ctx.guild.id}-{member.id}".encode() infractions = self.DB.infractions.get(member_id) if not infractions: infractions = { "count": 0, "bans": [], "kicks": [], "mutes": [], "warnings": [], } else: infractions = orjson.loads(infractions) infractions["count"] += 1 infractions["kicks"].append(reason) embed = discord.Embed( color=discord.Color.dark_red(), title=f"{member.display_name} has been kicked", description=f"```They had {infractions['count']} total infractions.```", ) await ctx.send(embed=embed) self.DB.infractions.put(member_id, orjson.dumps(infractions)) @commands.command() @commands.has_permissions(manage_roles=True) async def role(self, ctx, member: discord.Member, role: discord.Role): """Gives member a role. role: discord.Role The name of the role. member: discord.Member The member to give the role. """ embed = discord.Embed(color=discord.Color.blurple()) if ( ctx.author != member and ctx.author.top_role <= member.top_role and ctx.guild.owner != ctx.author ): embed.description = ( "```You can't change the roles of someone higher than you.```" ) return await ctx.send(embed=embed) if ( ctx.author == member and ctx.author.top_role <= role and ctx.guild.owner != ctx.author ): embed.description = ( "```You can't give yourself a role higher than your highest role.```" ) return await ctx.send(embed=embed) if role in member.roles: await member.remove_roles(role) embed.description = f"```Removed the role {role} from {member}```" return await ctx.send(embed=embed) await member.add_roles(role) embed.description = f"```Gave {member} the role {role}```" return await ctx.send(embed=embed) @commands.group() @commands.has_permissions(manage_messages=True) @commands.guild_only() async def purge(self, ctx): """Purges messages. num: int The number of messages to delete. """ if not ctx.invoked_subcommand: try: await ctx.channel.purge(limit=int(ctx.subcommand_passed) + 1) except ValueError: embed = discord.Embed( color=discord.Color.blurple(), description=f"```Usage: {ctx.prefix}purge [amount]```", ) await ctx.send(embed=embed) @purge.command() @commands.has_permissions(manage_messages=True) @commands.guild_only() async def till(self, ctx, message_id: int): """Clear messages in a channel until the given message_id. Given ID is not deleted.""" try: message = await ctx.fetch_message(message_id) except discord.errors.NotFound: return await ctx.send( embed=discord.Embed( color=discord.Color.blurple(), description="```Message could not be found in this channel```", ) ) await ctx.channel.purge(after=message) @purge.command() @commands.has_permissions(manage_messages=True) @commands.guild_only() async def user(self, ctx, user: discord.User, num_messages: int = 100): """Clear all messagges of <User> withing the last [n=100] messages. user: discord.User The user to purge the messages of. num_messages: int The number of messages to check. """ def check(msg): return msg.author.id == user.id await ctx.channel.purge(limit=num_messages, check=check, before=None) @purge.command() @commands.has_permissions(manage_channels=True) @commands.guild_only() async def channel(self, ctx, channel: discord.TextChannel = None): """Purges a channel by cloning and then deleting it. channel: discord.TextChannel """ channel = channel or ctx.channel await channel.clone() await channel.delete() @commands.group() @commands.has_permissions(manage_messages=True) async def history(self, ctx): """Shows the edited message or deleted message history of a member.""" if not ctx.invoked_subcommand: embed = discord.Embed( color=discord.Color.blurple(), description=f"```Usage: {ctx.prefix}history [deleted/edited]```", ) await ctx.send(embed=embed) @history.command(aliases=["d"]) @commands.has_permissions(manage_messages=True) async def deleted(self, ctx, member: discord.Member = None): """Shows a members most recent deleted message history. member: discord.Member The user to get the history of. amount: int The amount of messages to get. """ member = member or ctx.author member_id = f"{ctx.guild.id}-{member.id}".encode() deleted = self.DB.deleted.get(member_id) embed = discord.Embed(color=discord.Color.blurple()) if not deleted: embed.description = "```No deleted messages found```" return await ctx.send(embed=embed) deleted = orjson.loads(deleted) messages = [] for index, date in enumerate(reversed(deleted)): messages.append((date, deleted[date].replace("`", "`​"))) pages = menus.MenuPages( source=HistoryMenu(messages), clear_reactions_after=True, delete_message_after=True, ) await pages.start(ctx) @history.command(aliases=["e"]) @commands.has_permissions(manage_messages=True) async def edited(self, ctx, member: discord.Member = None, amount: int = 10): """Shows a users most recent edit message history. member: discord.Member The user to get the edit history of. amount: int The amount of messages to get. """ member = member or ctx.author member_id = f"{ctx.guild.id}-{member.id}".encode() edited = self.DB.edited.get(member_id) embed = discord.Embed(color=discord.Color.blurple()) if not edited: embed.description = "```No edited messages found```" return await ctx.send(embed=embed) edited = orjson.loads(edited) messages = [] for index, date in enumerate(reversed(edited)): if index == amount: break before = edited[date][0].replace("`", "`\u200b") after = edited[date][1].replace("`", "`\u200b") messages.append((date, f"{before} >>> {after}")) pages = menus.MenuPages( source=HistoryMenu(messages), clear_reactions_after=True, delete_message_after=True, ) await pages.start(ctx) def setup(bot: commands.Bot) -> None: """Starts moderation cog.""" bot.add_cog(moderation(bot))
32.38204
94
0.560423
3c548306372fe5f5cee470b6dc9c08324371c74f
11,338
py
Python
train.py
ky207/yolov4-tiny
204e5a07fb6dbbf11ab3165f57253ffcc5328df3
[ "MIT" ]
1
2022-02-21T01:34:56.000Z
2022-02-21T01:34:56.000Z
train.py
ky207/yolov4-tiny
204e5a07fb6dbbf11ab3165f57253ffcc5328df3
[ "MIT" ]
null
null
null
train.py
ky207/yolov4-tiny
204e5a07fb6dbbf11ab3165f57253ffcc5328df3
[ "MIT" ]
null
null
null
#-------------------------------------# # 对数据集进行训练 #-------------------------------------# import numpy as np import torch import torch.backends.cudnn as cudnn import torch.optim as optim from torch.utils.data import DataLoader from nets.yolo import YoloBody from nets.yolo_training import YOLOLoss, weights_init from utils.callbacks import LossHistory from utils.dataloader import YoloDataset, yolo_dataset_collate from utils.utils import get_anchors, get_classes from utils.utils_fit import fit_one_epoch ''' 训练自己的目标检测模型一定需要注意以下几点: 1、训练前仔细检查自己的格式是否满足要求,该库要求数据集格式为VOC格式,需要准备好的内容有输入图片和标签 输入图片为.jpg图片,无需固定大小,传入训练前会自动进行resize。 灰度图会自动转成RGB图片进行训练,无需自己修改。 输入图片如果后缀非jpg,需要自己批量转成jpg后再开始训练。 标签为.xml格式,文件中会有需要检测的目标信息,标签文件和输入图片文件相对应。 2、训练好的权值文件保存在logs文件夹中,每个epoch都会保存一次,如果只是训练了几个step是不会保存的,epoch和step的概念要捋清楚一下。 在训练过程中,该代码并没有设定只保存最低损失的,因此按默认参数训练完会有100个权值,如果空间不够可以自行删除。 这个并不是保存越少越好也不是保存越多越好,有人想要都保存、有人想只保存一点,为了满足大多数的需求,还是都保存可选择性高。 3、损失值的大小用于判断是否收敛,比较重要的是有收敛的趋势,即验证集损失不断下降,如果验证集损失基本上不改变的话,模型基本上就收敛了。 损失值的具体大小并没有什么意义,大和小只在于损失的计算方式,并不是接近于0才好。如果想要让损失好看点,可以直接到对应的损失函数里面除上10000。 训练过程中的损失值会保存在logs文件夹下的loss_%Y_%m_%d_%H_%M_%S文件夹中 4、调参是一门蛮重要的学问,没有什么参数是一定好的,现有的参数是我测试过可以正常训练的参数,因此我会建议用现有的参数。 但是参数本身并不是绝对的,比如随着batch的增大学习率也可以增大,效果也会好一些;过深的网络不要用太大的学习率等等。 这些都是经验上,只能靠各位同学多查询资料和自己试试了。 ''' if __name__ == "__main__": #-------------------------------# # 是否使用Cuda # 没有GPU可以设置成False #-------------------------------# Cuda = True #--------------------------------------------------------# # 训练前一定要修改classes_path,使其对应自己的数据集 #--------------------------------------------------------# classes_path = 'model_data/voc_classes.txt' #---------------------------------------------------------------------# # anchors_path代表先验框对应的txt文件,一般不修改。 # anchors_mask用于帮助代码找到对应的先验框,一般不修改。 #---------------------------------------------------------------------# anchors_path = 'model_data/yolo_anchors.txt' anchors_mask = [[3, 4, 5], [1, 2, 3]] #----------------------------------------------------------------------------------------------------------------------------# # 权值文件的下载请看README,可以通过网盘下载。模型的 预训练权重 对不同数据集是通用的,因为特征是通用的。 # 模型的 预训练权重 比较重要的部分是 主干特征提取网络的权值部分,用于进行特征提取。 # 预训练权重对于99%的情况都必须要用,不用的话主干部分的权值太过随机,特征提取效果不明显,网络训练的结果也不会好 # # 如果训练过程中存在中断训练的操作,可以将model_path设置成logs文件夹下的权值文件,将已经训练了一部分的权值再次载入。 # 同时修改下方的 冻结阶段 或者 解冻阶段 的参数,来保证模型epoch的连续性。 # # 当model_path = ''的时候不加载整个模型的权值。 # # 此处使用的是整个模型的权重,因此是在train.py进行加载的。 # 如果想要让模型从0开始训练,则设置model_path = '',下面的Freeze_Train = Fasle,此时从0开始训练,且没有冻结主干的过程。 # 一般来讲,从0开始训练效果会很差,因为权值太过随机,特征提取效果不明显。 # # 网络一般不从0开始训练,至少会使用主干部分的权值,有些论文提到可以不用预训练,主要原因是他们 数据集较大 且 调参能力优秀。 # 如果一定要训练网络的主干部分,可以了解imagenet数据集,首先训练分类模型,分类模型的 主干部分 和该模型通用,基于此进行训练。 #----------------------------------------------------------------------------------------------------------------------------# model_path = 'model_data/yolov4_tiny_weights_coco.pth' #------------------------------------------------------# # 输入的shape大小,一定要是32的倍数 #------------------------------------------------------# input_shape = [416, 416] #-------------------------------# # 所使用的注意力机制的类型 # phi = 0为不使用注意力机制 # phi = 1为SE # phi = 2为CBAM # phi = 3为ECA #-------------------------------# phi = 0 #------------------------------------------------------# # Yolov4的tricks应用 # mosaic 马赛克数据增强 True or False # 实际测试时mosaic数据增强并不稳定,所以默认为False # Cosine_lr 余弦退火学习率 True or False # label_smoothing 标签平滑 0.01以下一般 如0.01、0.005 #------------------------------------------------------# mosaic = False Cosine_lr = False label_smoothing = 0 #----------------------------------------------------# # 训练分为两个阶段,分别是冻结阶段和解冻阶段。 # 显存不足与数据集大小无关,提示显存不足请调小batch_size。 # 受到BatchNorm层影响,batch_size最小为2,不能为1。 #----------------------------------------------------# #----------------------------------------------------# # 冻结阶段训练参数 # 此时模型的主干被冻结了,特征提取网络不发生改变 # 占用的显存较小,仅对网络进行微调 #----------------------------------------------------# Init_Epoch = 0 Freeze_Epoch = 50 Freeze_batch_size = 32 Freeze_lr = 1e-3 #----------------------------------------------------# # 解冻阶段训练参数 # 此时模型的主干不被冻结了,特征提取网络会发生改变 # 占用的显存较大,网络所有的参数都会发生改变 #----------------------------------------------------# UnFreeze_Epoch = 100 Unfreeze_batch_size = 16 Unfreeze_lr = 1e-4 #------------------------------------------------------# # 是否进行冻结训练,默认先冻结主干训练后解冻训练。 #------------------------------------------------------# Freeze_Train = True #------------------------------------------------------# # 用于设置是否使用多线程读取数据 # 开启后会加快数据读取速度,但是会占用更多内存 # 内存较小的电脑可以设置为2或者0 #------------------------------------------------------# num_workers = 4 #----------------------------------------------------# # 获得图片路径和标签 #----------------------------------------------------# train_annotation_path = '2007_train.txt' val_annotation_path = '2007_val.txt' #----------------------------------------------------# # 获取classes和anchor #----------------------------------------------------# class_names, num_classes = get_classes(classes_path) anchors, num_anchors = get_anchors(anchors_path) #------------------------------------------------------# # 创建yolo模型 #------------------------------------------------------# model = YoloBody(anchors_mask, num_classes, phi = phi) weights_init(model) if model_path != '': #------------------------------------------------------# # 权值文件请看README,百度网盘下载 #------------------------------------------------------# print('Load weights {}.'.format(model_path)) device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') model_dict = model.state_dict() pretrained_dict = torch.load(model_path, map_location = device) pretrained_dict = {k: v for k, v in pretrained_dict.items() if np.shape(model_dict[k]) == np.shape(v)} model_dict.update(pretrained_dict) model.load_state_dict(model_dict) model_train = model.train() if Cuda: model_train = torch.nn.DataParallel(model) cudnn.benchmark = True model_train = model_train.cuda() yolo_loss = YOLOLoss(anchors, num_classes, input_shape, Cuda, anchors_mask, label_smoothing) loss_history = LossHistory("logs/") #---------------------------# # 读取数据集对应的txt #---------------------------# with open(train_annotation_path) as f: train_lines = f.readlines() with open(val_annotation_path) as f: val_lines = f.readlines() num_train = len(train_lines) num_val = len(val_lines) #------------------------------------------------------# # 主干特征提取网络特征通用,冻结训练可以加快训练速度 # 也可以在训练初期防止权值被破坏。 # Init_Epoch为起始世代 # Freeze_Epoch为冻结训练的世代 # UnFreeze_Epoch总训练世代 # 提示OOM或者显存不足请调小Batch_size #------------------------------------------------------# if True: batch_size = Freeze_batch_size lr = Freeze_lr start_epoch = Init_Epoch end_epoch = Freeze_Epoch optimizer = optim.Adam(model_train.parameters(), lr, weight_decay = 5e-4) if Cosine_lr: lr_scheduler = optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=5, eta_min=1e-5) else: lr_scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=0.94) train_dataset = YoloDataset(train_lines, input_shape, num_classes, mosaic=mosaic, train = True) val_dataset = YoloDataset(val_lines, input_shape, num_classes, mosaic=False, train = False) gen = DataLoader(train_dataset, shuffle = True, batch_size = batch_size, num_workers = num_workers, pin_memory=True, drop_last=True, collate_fn=yolo_dataset_collate) gen_val = DataLoader(val_dataset , shuffle = True, batch_size = batch_size, num_workers = num_workers, pin_memory=True, drop_last=True, collate_fn=yolo_dataset_collate) epoch_step = num_train // batch_size epoch_step_val = num_val // batch_size if epoch_step == 0 or epoch_step_val == 0: raise ValueError("数据集过小,无法进行训练,请扩充数据集。") #------------------------------------# # 冻结一定部分训练 #------------------------------------# if Freeze_Train: for param in model.backbone.parameters(): param.requires_grad = False for epoch in range(start_epoch, end_epoch): fit_one_epoch(model_train, model, yolo_loss, loss_history, optimizer, epoch, epoch_step, epoch_step_val, gen, gen_val, end_epoch, Cuda) lr_scheduler.step() if True: batch_size = Unfreeze_batch_size lr = Unfreeze_lr start_epoch = Freeze_Epoch end_epoch = UnFreeze_Epoch optimizer = optim.Adam(model_train.parameters(), lr, weight_decay = 5e-4) if Cosine_lr: lr_scheduler = optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=5, eta_min=1e-5) else: lr_scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=0.94) train_dataset = YoloDataset(train_lines, input_shape, num_classes, mosaic=mosaic, train = True) val_dataset = YoloDataset(val_lines, input_shape, num_classes, mosaic=False, train = False) gen = DataLoader(train_dataset, shuffle = True, batch_size = batch_size, num_workers = num_workers, pin_memory=True, drop_last=True, collate_fn=yolo_dataset_collate) gen_val = DataLoader(val_dataset , shuffle = True, batch_size = batch_size, num_workers = num_workers, pin_memory=True, drop_last=True, collate_fn=yolo_dataset_collate) epoch_step = num_train // batch_size epoch_step_val = num_val // batch_size if epoch_step == 0 or epoch_step_val == 0: raise ValueError("数据集过小,无法进行训练,请扩充数据集。") #------------------------------------# # 冻结一定部分训练 #------------------------------------# if Freeze_Train: for param in model.backbone.parameters(): param.requires_grad = True for epoch in range(start_epoch, end_epoch): fit_one_epoch(model_train, model, yolo_loss, loss_history, optimizer, epoch, epoch_step, epoch_step_val, gen, gen_val, end_epoch, Cuda) lr_scheduler.step()
44.116732
138
0.500176
c63fa04c73b074bd4280094b17d2effa90dd9a8c
3,921
py
Python
test/functional/wallet_scriptaddress2.py
DrRayThe2nd/litecoin
961f9a36d55c52a5fe5f940a205fa9f7b45330b3
[ "MIT" ]
null
null
null
test/functional/wallet_scriptaddress2.py
DrRayThe2nd/litecoin
961f9a36d55c52a5fe5f940a205fa9f7b45330b3
[ "MIT" ]
null
null
null
test/functional/wallet_scriptaddress2.py
DrRayThe2nd/litecoin
961f9a36d55c52a5fe5f940a205fa9f7b45330b3
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # Copyright (c) 2015-2016 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. # # Test new Pittscoin multisig prefix functionality. # from test_framework.test_framework import BitcoinTestFramework from test_framework.util import * import decimal class ScriptAddress2Test(BitcoinTestFramework): def set_test_params(self): self.num_nodes = 3 self.setup_clean_chain = False self.extra_args = [['-addresstype=legacy'], [], []] def setup_network(self, split=False): self.setup_nodes() connect_nodes(self.nodes[1], 0) connect_nodes(self.nodes[2], 0) self.sync_all() def run_test(self): cnt = self.nodes[0].getblockcount() # Mine some blocks self.nodes[1].generate(101) self.sync_all() if (self.nodes[0].getblockcount() != cnt + 101): raise AssertionError("Failed to mine 100 blocks") addr = self.nodes[0].getnewaddress() addr2 = self.nodes[0].getnewaddress() multisig_addr = self.nodes[0].addmultisigaddress(2, [addr, addr2], "multisigaccount")['address'] assert_equal(multisig_addr[0], 'Q') # Send to a new multisig address txid = self.nodes[1].sendtoaddress(multisig_addr, 1) block = self.nodes[1].generate(3) self.sync_all() tx = self.nodes[2].getrawtransaction(txid, 1) dest_addrs = [tx["vout"][0]['scriptPubKey']['addresses'][0], tx["vout"][1]['scriptPubKey']['addresses'][0]] assert(multisig_addr in dest_addrs) # Spend from the new multisig address addr3 = self.nodes[1].getnewaddress() txid = self.nodes[0].sendfrom("multisigaccount", addr3, 0.8) block = self.nodes[0].generate(2) self.sync_all() assert(self.nodes[0].getbalance("multisigaccount", 1) < 0.2) assert(self.nodes[1].listtransactions()[-1]['address'] == addr3) # Send to an old multisig address. The api addmultisigaddress # can only generate a new address so we manually compute # multisig_addr_old beforehand using an old client. priv_keys = ["cU7eeLPKzXeKMeZvnEJhvZZ3tLqVF3XGeo1BbM8dnbmV7pP3Qg89", "cTw7mRhSvTfzqCt6MFgBoTBqwBpYu2rWugisXcwjv4cAASh3iqPt"] addrs = ["mj6gNGRXPXrD69R5ApjcsDerZGrYKSfb6v", "mqET4JA3L7P7FoUjUP3F6m6YsLpCkyzzou"] self.nodes[0].importprivkey(priv_keys[0]) self.nodes[0].importprivkey(priv_keys[1]) multisig_addr_new = self.nodes[0].addmultisigaddress(2, addrs, "multisigaccount2")['address'] assert_equal(multisig_addr_new, 'QZ974ZrPrmqMmm1PSVp4m8YEgo3bCQZBbe') multisig_addr_old = "2N5nLwYz9qfnGdaFLpPn3gS6oYQbmLTWPjq" ## Let's send to the old address. We can then find it in the ## new address with the new client. So basically the old ## address and the new one are the same thing. txid = self.nodes[1].sendtoaddress(multisig_addr_old, 1) block = self.nodes[1].generate(1) self.sync_all() tx = self.nodes[2].getrawtransaction(txid, 1) dest_addrs = [tx["vout"][0]['scriptPubKey']['addresses'][0], tx["vout"][1]['scriptPubKey']['addresses'][0]] assert(multisig_addr_new in dest_addrs) assert(multisig_addr_old not in dest_addrs) # Spend from the new multisig address addr4 = self.nodes[1].getnewaddress() txid = self.nodes[0].sendfrom("multisigaccount2", addr4, 0.8) block = self.nodes[0].generate(2) self.sync_all() assert(self.nodes[0].getbalance("multisigaccount2", 1) < 0.2) assert(self.nodes[1].listtransactions()[-1]['address'] == addr4) if __name__ == '__main__': ScriptAddress2Test().main()
40.010204
104
0.650344
0b10dbf0f445ba43d342e483e7d79686d75a3486
2,742
py
Python
tests/kafkatest/utils/util.py
ss10/kafka
bc5051565171cf65b4ed7dd4d9ef269d66a1021a
[ "Apache-2.0" ]
null
null
null
tests/kafkatest/utils/util.py
ss10/kafka
bc5051565171cf65b4ed7dd4d9ef269d66a1021a
[ "Apache-2.0" ]
null
null
null
tests/kafkatest/utils/util.py
ss10/kafka
bc5051565171cf65b4ed7dd4d9ef269d66a1021a
[ "Apache-2.0" ]
null
null
null
# Copyright 2015 Confluent Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from kafkatest import __version__ as __kafkatest_version__ import re def kafkatest_version(): """Return string representation of current ducktape version.""" return __kafkatest_version__ def _kafka_jar_versions(proc_string): """Use a rough heuristic to find all kafka versions explicitly in the process classpath""" versions = re.findall("kafka-[a-z]+-([0-9]+\.[0-9]+\.[0-9]+\.[0-9]+)", proc_string) versions.extend(re.findall("kafka-([0-9]+\.[0-9]+\.[0-9]+\.[0-9]+)", proc_string)) return set(versions) def is_version(node, version_list, proc_grep_string="kafka"): """Heuristic to check that only the specified version appears in the classpath of the process A useful tool to aid in checking that service version apis are working correctly. """ lines = [l for l in node.account.ssh_capture("ps ax | grep %s | grep -v grep" % proc_grep_string)] assert len(lines) == 1 versions = _kafka_jar_versions(lines[0]) return versions == {str(v) for v in version_list} def is_int(msg): """Method used to check whether the given message is an integer return int or raises an exception if message is not an integer """ try: return int(msg) except ValueError: raise Exception("Unexpected message format (expected an integer). Message: %s" % (msg)) def is_int_with_prefix(msg): """ Method used check whether the given message is of format 'integer_prefix'.'integer_value' :param msg: message to validate :return: msg or raises an exception is a message is of wrong format """ try: parts = msg.split(".") if len(parts) != 2: raise Exception("Unexpected message format. Message should be of format: integer " "prefix dot integer value. Message: %s" % (msg)) int(parts[0]) int(parts[1]) return msg except ValueError: raise Exception("Unexpected message format. Message should be of format: integer " "prefix dot integer value, but one of the two parts (before or after dot) " "are not integers. Message: %s" % (msg))
37.054054
102
0.677243
7417851690f6648356a4781e40d6b4ca4808e91d
34,242
py
Python
frappe/core/doctype/user/user.py
mojerro/frappe
0f434846bed87c02491aad0a3da631df382bfb3c
[ "MIT" ]
null
null
null
frappe/core/doctype/user/user.py
mojerro/frappe
0f434846bed87c02491aad0a3da631df382bfb3c
[ "MIT" ]
null
null
null
frappe/core/doctype/user/user.py
mojerro/frappe
0f434846bed87c02491aad0a3da631df382bfb3c
[ "MIT" ]
null
null
null
# Copyright (c) 2015, Frappe Technologies Pvt. Ltd. and Contributors # MIT License. See license.txt from __future__ import unicode_literals, print_function from bs4 import BeautifulSoup import frappe import frappe.share import frappe.defaults import frappe.permissions from frappe.model.document import Document from frappe.utils import (cint, flt, has_gravatar, escape_html, format_datetime, now_datetime, get_formatted_email, today) from frappe import throw, msgprint, _ from frappe.utils.password import update_password as _update_password, check_password, get_password_reset_limit from frappe.desk.notifications import clear_notifications from frappe.desk.doctype.notification_settings.notification_settings import create_notification_settings, toggle_notifications from frappe.utils.user import get_system_managers from frappe.website.utils import is_signup_disabled from frappe.rate_limiter import rate_limit from frappe.core.doctype.user_type.user_type import user_linked_with_permission_on_doctype STANDARD_USERS = ("Guest", "Administrator") class User(Document): __new_password = None def __setup__(self): # because it is handled separately self.flags.ignore_save_passwords = ['new_password'] def autoname(self): """set name as Email Address""" if self.get("is_admin") or self.get("is_guest"): self.name = self.first_name else: self.email = self.email.strip().lower() self.name = self.email def onload(self): from frappe.config import get_modules_from_all_apps self.set_onload('all_modules', [m.get("module_name") for m in get_modules_from_all_apps()]) def before_insert(self): self.flags.in_insert = True throttle_user_creation() def after_insert(self): create_notification_settings(self.name) frappe.cache().delete_key('users_for_mentions') frappe.cache().delete_key('enabled_users') def validate(self): # clear new password self.__new_password = self.new_password self.new_password = "" if not frappe.flags.in_test: self.password_strength_test() if self.name not in STANDARD_USERS: self.validate_email_type(self.email) self.validate_email_type(self.name) self.add_system_manager_role() self.set_system_user() self.set_full_name() self.check_enable_disable() self.ensure_unique_roles() self.remove_all_roles_for_guest() self.validate_username() self.remove_disabled_roles() self.validate_user_email_inbox() ask_pass_update() self.validate_roles() self.validate_allowed_modules() self.validate_user_image() if self.language == "Loading...": self.language = None if (self.name not in ["Administrator", "Guest"]) and (not self.get_social_login_userid("frappe")): self.set_social_login_userid("frappe", frappe.generate_hash(length=39)) def validate_roles(self): if self.role_profile_name: role_profile = frappe.get_doc('Role Profile', self.role_profile_name) self.set('roles', []) self.append_roles(*[role.role for role in role_profile.roles]) def validate_allowed_modules(self): if self.module_profile: module_profile = frappe.get_doc('Module Profile', self.module_profile) self.set('block_modules', []) for d in module_profile.get('block_modules'): self.append('block_modules', { 'module': d.module }) def validate_user_image(self): if self.user_image and len(self.user_image) > 2000: frappe.throw(_("Not a valid User Image.")) def on_update(self): # clear new password self.share_with_self() clear_notifications(user=self.name) frappe.clear_cache(user=self.name) now=frappe.flags.in_test or frappe.flags.in_install self.send_password_notification(self.__new_password) frappe.enqueue( 'frappe.core.doctype.user.user.create_contact', user=self, ignore_mandatory=True, now=now ) if self.name not in ('Administrator', 'Guest') and not self.user_image: frappe.enqueue('frappe.core.doctype.user.user.update_gravatar', name=self.name, now=now) # Set user selected timezone if self.time_zone: frappe.defaults.set_default("time_zone", self.time_zone, self.name) if self.has_value_changed('allow_in_mentions') or self.has_value_changed('user_type'): frappe.cache().delete_key('users_for_mentions') if self.has_value_changed('enabled'): frappe.cache().delete_key('enabled_users') def has_website_permission(self, ptype, user, verbose=False): """Returns true if current user is the session user""" return self.name == frappe.session.user def set_full_name(self): self.full_name = " ".join(filter(None, [self.first_name, self.last_name])) def check_enable_disable(self): # do not allow disabling administrator/guest if not cint(self.enabled) and self.name in STANDARD_USERS: frappe.throw(_("User {0} cannot be disabled").format(self.name)) if not cint(self.enabled): self.a_system_manager_should_exist() # clear sessions if disabled if not cint(self.enabled) and getattr(frappe.local, "login_manager", None): frappe.local.login_manager.logout(user=self.name) # toggle notifications based on the user's status toggle_notifications(self.name, enable=cint(self.enabled)) def add_system_manager_role(self): # if adding system manager, do nothing if not cint(self.enabled) or ("System Manager" in [user_role.role for user_role in self.get("roles")]): return if (self.name not in STANDARD_USERS and self.user_type == "System User" and not self.get_other_system_managers() and cint(frappe.db.get_single_value('System Settings', 'setup_complete'))): msgprint(_("Adding System Manager to this User as there must be atleast one System Manager")) self.append("roles", { "doctype": "Has Role", "role": "System Manager" }) if self.name == 'Administrator': # Administrator should always have System Manager Role self.extend("roles", [ { "doctype": "Has Role", "role": "System Manager" }, { "doctype": "Has Role", "role": "Administrator" } ]) def email_new_password(self, new_password=None): if new_password and not self.flags.in_insert: _update_password(user=self.name, pwd=new_password, logout_all_sessions=self.logout_all_sessions) def set_system_user(self): '''For the standard users like admin and guest, the user type is fixed.''' user_type_mapper = { 'Administrator': 'System User', 'Guest': 'Website User' } if self.user_type and not frappe.get_cached_value('User Type', self.user_type, 'is_standard'): if user_type_mapper.get(self.name): self.user_type = user_type_mapper.get(self.name) else: self.set_roles_and_modules_based_on_user_type() else: '''Set as System User if any of the given roles has desk_access''' self.user_type = 'System User' if self.has_desk_access() else 'Website User' def set_roles_and_modules_based_on_user_type(self): user_type_doc = frappe.get_cached_doc('User Type', self.user_type) if user_type_doc.role: self.roles = [] # Check whether User has linked with the 'Apply User Permission On' doctype or not if user_linked_with_permission_on_doctype(user_type_doc, self.name): self.append('roles', { 'role': user_type_doc.role }) frappe.msgprint(_('Role has been set as per the user type {0}') .format(self.user_type), alert=True) user_type_doc.update_modules_in_user(self) def has_desk_access(self): '''Return true if any of the set roles has desk access''' if not self.roles: return False return len(frappe.db.sql("""select name from `tabRole` where desk_access=1 and name in ({0}) limit 1""".format(', '.join(['%s'] * len(self.roles))), [d.role for d in self.roles])) def share_with_self(self): frappe.share.add(self.doctype, self.name, self.name, write=1, share=1, flags={"ignore_share_permission": True}) def validate_share(self, docshare): pass # if docshare.user == self.name: # if self.user_type=="System User": # if docshare.share != 1: # frappe.throw(_("Sorry! User should have complete access to their own record.")) # else: # frappe.throw(_("Sorry! Sharing with Website User is prohibited.")) def send_password_notification(self, new_password): try: if self.flags.in_insert: if self.name not in STANDARD_USERS: if new_password: # new password given, no email required _update_password(user=self.name, pwd=new_password, logout_all_sessions=self.logout_all_sessions) if not self.flags.no_welcome_mail and cint(self.send_welcome_email): self.send_welcome_mail_to_user() self.flags.email_sent = 1 if frappe.session.user != 'Guest': msgprint(_("Welcome email sent")) return else: self.email_new_password(new_password) except frappe.OutgoingEmailError: print(frappe.get_traceback()) pass # email server not set, don't send email @Document.hook def validate_reset_password(self): pass def reset_password(self, send_email=False, password_expired=False): from frappe.utils import random_string, get_url key = random_string(32) self.db_set("reset_password_key", key) url = "/update-password?key=" + key if password_expired: url = "/update-password?key=" + key + '&password_expired=true' link = get_url(url) if send_email: self.password_reset_mail(link) return link def get_other_system_managers(self): return frappe.db.sql("""select distinct `user`.`name` from `tabHas Role` as `user_role`, `tabUser` as `user` where user_role.role='System Manager' and `user`.docstatus<2 and `user`.enabled=1 and `user_role`.parent = `user`.name and `user_role`.parent not in ('Administrator', %s) limit 1""", (self.name,)) def get_fullname(self): """get first_name space last_name""" return (self.first_name or '') + \ (self.first_name and " " or '') + (self.last_name or '') def password_reset_mail(self, link): self.send_login_mail(_("Password Reset"), "password_reset", {"link": link}, now=True) def send_welcome_mail_to_user(self): from frappe.utils import get_url link = self.reset_password() subject = None method = frappe.get_hooks("welcome_email") if method: subject = frappe.get_attr(method[-1])() if not subject: site_name = frappe.db.get_default('site_name') or frappe.get_conf().get("site_name") if site_name: subject = _("Welcome to {0}").format(site_name) else: subject = _("Complete Registration") self.send_login_mail(subject, "new_user", dict( link=link, site_url=get_url(), )) def send_login_mail(self, subject, template, add_args, now=None): """send mail with login details""" from frappe.utils.user import get_user_fullname from frappe.utils import get_url created_by = get_user_fullname(frappe.session['user']) if created_by == "Guest": created_by = "Administrator" args = { 'first_name': self.first_name or self.last_name or "user", 'user': self.name, 'title': subject, 'login_url': get_url(), 'created_by': created_by } args.update(add_args) sender = frappe.session.user not in STANDARD_USERS and get_formatted_email(frappe.session.user) or None frappe.sendmail(recipients=self.email, sender=sender, subject=subject, template=template, args=args, header=[subject, "green"], delayed=(not now) if now!=None else self.flags.delay_emails, retry=3) def a_system_manager_should_exist(self): if not self.get_other_system_managers(): throw(_("There should remain at least one System Manager")) def on_trash(self): frappe.clear_cache(user=self.name) if self.name in STANDARD_USERS: throw(_("User {0} cannot be deleted").format(self.name)) self.a_system_manager_should_exist() # disable the user and log him/her out self.enabled = 0 if getattr(frappe.local, "login_manager", None): frappe.local.login_manager.logout(user=self.name) # delete todos frappe.db.sql("""DELETE FROM `tabToDo` WHERE `owner`=%s""", (self.name,)) frappe.db.sql("""UPDATE `tabToDo` SET `assigned_by`=NULL WHERE `assigned_by`=%s""", (self.name,)) # delete events frappe.db.sql("""delete from `tabEvent` where owner=%s and event_type='Private'""", (self.name,)) # delete shares frappe.db.sql("""delete from `tabDocShare` where user=%s""", self.name) # delete messages frappe.db.sql("""delete from `tabCommunication` where communication_type in ('Chat', 'Notification') and reference_doctype='User' and (reference_name=%s or owner=%s)""", (self.name, self.name)) # unlink contact frappe.db.sql("""update `tabContact` set `user`=null where `user`=%s""", (self.name)) # delete notification settings frappe.delete_doc("Notification Settings", self.name, ignore_permissions=True) if self.get('allow_in_mentions'): frappe.cache().delete_key('users_for_mentions') frappe.cache().delete_key('enabled_users') def before_rename(self, old_name, new_name, merge=False): frappe.clear_cache(user=old_name) self.validate_rename(old_name, new_name) def validate_rename(self, old_name, new_name): # do not allow renaming administrator and guest if old_name in STANDARD_USERS: throw(_("User {0} cannot be renamed").format(self.name)) self.validate_email_type(new_name) def validate_email_type(self, email): from frappe.utils import validate_email_address validate_email_address(email.strip(), True) def after_rename(self, old_name, new_name, merge=False): tables = frappe.db.get_tables() for tab in tables: desc = frappe.db.get_table_columns_description(tab) has_fields = [] for d in desc: if d.get('name') in ['owner', 'modified_by']: has_fields.append(d.get('name')) for field in has_fields: frappe.db.sql("""UPDATE `%s` SET `%s` = %s WHERE `%s` = %s""" % (tab, field, '%s', field, '%s'), (new_name, old_name)) if frappe.db.exists("Notification Settings", old_name): frappe.rename_doc("Notification Settings", old_name, new_name, force=True, show_alert=False) # set email frappe.db.sql("""UPDATE `tabUser` SET email = %s WHERE name = %s""", (new_name, new_name)) def append_roles(self, *roles): """Add roles to user""" current_roles = [d.role for d in self.get("roles")] for role in roles: if role in current_roles: continue self.append("roles", {"role": role}) def add_roles(self, *roles): """Add roles to user and save""" self.append_roles(*roles) self.save() def remove_roles(self, *roles): existing_roles = dict((d.role, d) for d in self.get("roles")) for role in roles: if role in existing_roles: self.get("roles").remove(existing_roles[role]) self.save() def remove_all_roles_for_guest(self): if self.name == "Guest": self.set("roles", list(set(d for d in self.get("roles") if d.role == "Guest"))) def remove_disabled_roles(self): disabled_roles = [d.name for d in frappe.get_all("Role", filters={"disabled":1})] for role in list(self.get('roles')): if role.role in disabled_roles: self.get('roles').remove(role) def ensure_unique_roles(self): exists = [] for i, d in enumerate(self.get("roles")): if (not d.role) or (d.role in exists): self.get("roles").remove(d) else: exists.append(d.role) def validate_username(self): if not self.username and self.is_new() and self.first_name: self.username = frappe.scrub(self.first_name) if not self.username: return # strip space and @ self.username = self.username.strip(" @") if self.username_exists(): if self.user_type == 'System User': frappe.msgprint(_("Username {0} already exists").format(self.username)) self.suggest_username() self.username = "" def password_strength_test(self): """ test password strength """ if self.flags.ignore_password_policy: return if self.__new_password: user_data = (self.first_name, self.middle_name, self.last_name, self.email, self.birth_date) result = test_password_strength(self.__new_password, '', None, user_data) feedback = result.get("feedback", None) if feedback and not feedback.get('password_policy_validation_passed', False): handle_password_test_fail(result) def suggest_username(self): def _check_suggestion(suggestion): if self.username != suggestion and not self.username_exists(suggestion): return suggestion return None # @firstname username = _check_suggestion(frappe.scrub(self.first_name)) if not username: # @firstname_last_name username = _check_suggestion(frappe.scrub("{0} {1}".format(self.first_name, self.last_name or ""))) if username: frappe.msgprint(_("Suggested Username: {0}").format(username)) return username def username_exists(self, username=None): return frappe.db.get_value("User", {"username": username or self.username, "name": ("!=", self.name)}) def get_blocked_modules(self): """Returns list of modules blocked for that user""" return [d.module for d in self.block_modules] if self.block_modules else [] def validate_user_email_inbox(self): """ check if same email account added in User Emails twice """ email_accounts = [ user_email.email_account for user_email in self.user_emails ] if len(email_accounts) != len(set(email_accounts)): frappe.throw(_("Email Account added multiple times")) def get_social_login_userid(self, provider): try: for p in self.social_logins: if p.provider == provider: return p.userid except: return None def set_social_login_userid(self, provider, userid, username=None): social_logins = { "provider": provider, "userid": userid } if username: social_logins["username"] = username self.append("social_logins", social_logins) def get_restricted_ip_list(self): if not self.restrict_ip: return return [i.strip() for i in self.restrict_ip.split(",")] @classmethod def find_by_credentials(cls, user_name: str, password: str, validate_password: bool = True): """Find the user by credentials. This is a login utility that needs to check login related system settings while finding the user. 1. Find user by email ID by default 2. If allow_login_using_mobile_number is set, you can use mobile number while finding the user. 3. If allow_login_using_user_name is set, you can use username while finding the user. """ login_with_mobile = cint(frappe.db.get_value("System Settings", "System Settings", "allow_login_using_mobile_number")) login_with_username = cint(frappe.db.get_value("System Settings", "System Settings", "allow_login_using_user_name")) or_filters = [{"name": user_name}] if login_with_mobile: or_filters.append({"mobile_no": user_name}) if login_with_username: or_filters.append({"username": user_name}) users = frappe.db.get_all('User', fields=['name', 'enabled'], or_filters=or_filters, limit=1) if not users: return user = users[0] user['is_authenticated'] = True if validate_password: try: check_password(user['name'], password, delete_tracker_cache=False) except frappe.AuthenticationError: user['is_authenticated'] = False return user @frappe.whitelist() def get_timezones(): import pytz return { "timezones": pytz.all_timezones } @frappe.whitelist() def get_all_roles(arg=None): """return all roles""" active_domains = frappe.get_active_domains() roles = frappe.get_all("Role", filters={ "name": ("not in", "Administrator,Guest,All"), "disabled": 0 }, or_filters={ "ifnull(restrict_to_domain, '')": "", "restrict_to_domain": ("in", active_domains) }, order_by="name") return [ role.get("name") for role in roles ] @frappe.whitelist() def get_roles(arg=None): """get roles for a user""" return frappe.get_roles(frappe.form_dict['uid']) @frappe.whitelist() def get_perm_info(role): """get permission info""" from frappe.permissions import get_all_perms return get_all_perms(role) @frappe.whitelist(allow_guest=True) def update_password(new_password, logout_all_sessions=0, key=None, old_password=None): #validate key to avoid key input like ['like', '%'], '', ['in', ['']] if key and not isinstance(key, str): frappe.throw(_('Invalid key type')) result = test_password_strength(new_password, key, old_password) feedback = result.get("feedback", None) if feedback and not feedback.get('password_policy_validation_passed', False): handle_password_test_fail(result) res = _get_user_for_update_password(key, old_password) if res.get('message'): frappe.local.response.http_status_code = 410 return res['message'] else: user = res['user'] logout_all_sessions = cint(logout_all_sessions) or frappe.db.get_single_value("System Settings", "logout_on_password_reset") _update_password(user, new_password, logout_all_sessions=cint(logout_all_sessions)) user_doc, redirect_url = reset_user_data(user) # get redirect url from cache redirect_to = frappe.cache().hget('redirect_after_login', user) if redirect_to: redirect_url = redirect_to frappe.cache().hdel('redirect_after_login', user) frappe.local.login_manager.login_as(user) frappe.db.set_value("User", user, "last_password_reset_date", today()) frappe.db.set_value("User", user, "reset_password_key", "") if user_doc.user_type == "System User": return "/app" else: return redirect_url if redirect_url else "/" @frappe.whitelist(allow_guest=True) def test_password_strength(new_password, key=None, old_password=None, user_data=None): from frappe.utils.password_strength import test_password_strength as _test_password_strength password_policy = frappe.db.get_value("System Settings", None, ["enable_password_policy", "minimum_password_score"], as_dict=True) or {} enable_password_policy = cint(password_policy.get("enable_password_policy", 0)) minimum_password_score = cint(password_policy.get("minimum_password_score", 0)) if not enable_password_policy: return {} if not user_data: user_data = frappe.db.get_value('User', frappe.session.user, ['first_name', 'middle_name', 'last_name', 'email', 'birth_date']) if new_password: result = _test_password_strength(new_password, user_inputs=user_data) password_policy_validation_passed = False # score should be greater than 0 and minimum_password_score if result.get('score') and result.get('score') >= minimum_password_score: password_policy_validation_passed = True result['feedback']['password_policy_validation_passed'] = password_policy_validation_passed return result #for login @frappe.whitelist() def has_email_account(email): return frappe.get_list("Email Account", filters={"email_id": email}) @frappe.whitelist(allow_guest=False) def get_email_awaiting(user): waiting = frappe.db.sql("""select email_account,email_id from `tabUser Email` where awaiting_password = 1 and parent = %(user)s""", {"user":user}, as_dict=1) if waiting: return waiting else: frappe.db.sql("""update `tabUser Email` set awaiting_password =0 where parent = %(user)s""",{"user":user}) return False def ask_pass_update(): # update the sys defaults as to awaiting users from frappe.utils import set_default users = frappe.db.sql("""SELECT DISTINCT(parent) as user FROM `tabUser Email` WHERE awaiting_password = 1""", as_dict=True) password_list = [ user.get("user") for user in users ] set_default("email_user_password", u','.join(password_list)) def _get_user_for_update_password(key, old_password): # verify old password result = frappe._dict() if key: result.user = frappe.db.get_value("User", {"reset_password_key": key}) if not result.user: result.message = _("The Link specified has either been used before or Invalid") elif old_password: # verify old password frappe.local.login_manager.check_password(frappe.session.user, old_password) user = frappe.session.user result.user = user return result def reset_user_data(user): user_doc = frappe.get_doc("User", user) redirect_url = user_doc.redirect_url user_doc.reset_password_key = '' user_doc.redirect_url = '' user_doc.save(ignore_permissions=True) return user_doc, redirect_url @frappe.whitelist() def verify_password(password): frappe.local.login_manager.check_password(frappe.session.user, password) @frappe.whitelist(allow_guest=True) def sign_up(email, full_name, redirect_to): if is_signup_disabled(): frappe.throw(_('Sign Up is disabled'), title='Not Allowed') user = frappe.db.get("User", {"email": email}) if user: if user.enabled: return 0, _("Already Registered") else: return 0, _("Registered but disabled") else: if frappe.db.get_creation_count('User', 60) > 300: frappe.respond_as_web_page(_('Temporarily Disabled'), _('Too many users signed up recently, so the registration is disabled. Please try back in an hour'), http_status_code=429) from frappe.utils import random_string user = frappe.get_doc({ "doctype":"User", "email": email, "first_name": escape_html(full_name), "enabled": 1, "new_password": random_string(10), "user_type": "Website User" }) user.flags.ignore_permissions = True user.flags.ignore_password_policy = True user.insert() # set default signup role as per Portal Settings default_role = frappe.db.get_value("Portal Settings", None, "default_role") if default_role: user.add_roles(default_role) if redirect_to: frappe.cache().hset('redirect_after_login', user.name, redirect_to) if user.flags.email_sent: return 1, _("Please check your email for verification") else: return 2, _("Please ask your administrator to verify your sign-up") @frappe.whitelist(allow_guest=True) @rate_limit(limit=get_password_reset_limit, seconds = 24*60*60, methods=['POST']) def reset_password(user): if user=="Administrator": return 'not allowed' try: user = frappe.get_doc("User", user) if not user.enabled: return 'disabled' user.validate_reset_password() user.reset_password(send_email=True) return frappe.msgprint(_("Password reset instructions have been sent to your email")) except frappe.DoesNotExistError: frappe.clear_messages() return 'not found' @frappe.whitelist() @frappe.validate_and_sanitize_search_inputs def user_query(doctype, txt, searchfield, start, page_len, filters): from frappe.desk.reportview import get_match_cond, get_filters_cond conditions=[] user_type_condition = "and user_type != 'Website User'" if filters and filters.get('ignore_user_type'): user_type_condition = '' filters.pop('ignore_user_type') txt = "%{}%".format(txt) return frappe.db.sql("""SELECT `name`, CONCAT_WS(' ', first_name, middle_name, last_name) FROM `tabUser` WHERE `enabled`=1 {user_type_condition} AND `docstatus` < 2 AND `name` NOT IN ({standard_users}) AND ({key} LIKE %(txt)s OR CONCAT_WS(' ', first_name, middle_name, last_name) LIKE %(txt)s) {fcond} {mcond} ORDER BY CASE WHEN `name` LIKE %(txt)s THEN 0 ELSE 1 END, CASE WHEN concat_ws(' ', first_name, middle_name, last_name) LIKE %(txt)s THEN 0 ELSE 1 END, NAME asc LIMIT %(page_len)s OFFSET %(start)s """.format( user_type_condition = user_type_condition, standard_users=", ".join([frappe.db.escape(u) for u in STANDARD_USERS]), key=searchfield, fcond=get_filters_cond(doctype, filters, conditions), mcond=get_match_cond(doctype) ), dict(start=start, page_len=page_len, txt=txt) ) def get_total_users(): """Returns total no. of system users""" return flt(frappe.db.sql('''SELECT SUM(`simultaneous_sessions`) FROM `tabUser` WHERE `enabled` = 1 AND `user_type` = 'System User' AND `name` NOT IN ({})'''.format(", ".join(["%s"]*len(STANDARD_USERS))), STANDARD_USERS)[0][0]) def get_system_users(exclude_users=None, limit=None): if not exclude_users: exclude_users = [] elif not isinstance(exclude_users, (list, tuple)): exclude_users = [exclude_users] limit_cond = '' if limit: limit_cond = 'limit {0}'.format(limit) exclude_users += list(STANDARD_USERS) system_users = frappe.db.sql_list("""select name from `tabUser` where enabled=1 and user_type != 'Website User' and name not in ({}) {}""".format(", ".join(["%s"]*len(exclude_users)), limit_cond), exclude_users) return system_users def get_active_users(): """Returns No. of system users who logged in, in the last 3 days""" return frappe.db.sql("""select count(*) from `tabUser` where enabled = 1 and user_type != 'Website User' and name not in ({}) and hour(timediff(now(), last_active)) < 72""".format(", ".join(["%s"]*len(STANDARD_USERS))), STANDARD_USERS)[0][0] def get_website_users(): """Returns total no. of website users""" return frappe.db.sql("""select count(*) from `tabUser` where enabled = 1 and user_type = 'Website User'""")[0][0] def get_active_website_users(): """Returns No. of website users who logged in, in the last 3 days""" return frappe.db.sql("""select count(*) from `tabUser` where enabled = 1 and user_type = 'Website User' and hour(timediff(now(), last_active)) < 72""")[0][0] def get_permission_query_conditions(user): if user=="Administrator": return "" else: return """(`tabUser`.name not in ({standard_users}))""".format( standard_users = ", ".join(frappe.db.escape(user) for user in STANDARD_USERS)) def has_permission(doc, user): if (user != "Administrator") and (doc.name in STANDARD_USERS): # dont allow non Administrator user to view / edit Administrator user return False def notify_admin_access_to_system_manager(login_manager=None): if (login_manager and login_manager.user == "Administrator" and frappe.local.conf.notify_admin_access_to_system_manager): site = '<a href="{0}" target="_blank">{0}</a>'.format(frappe.local.request.host_url) date_and_time = '<b>{0}</b>'.format(format_datetime(now_datetime(), format_string="medium")) ip_address = frappe.local.request_ip access_message = _('Administrator accessed {0} on {1} via IP Address {2}.').format( site, date_and_time, ip_address) frappe.sendmail( recipients=get_system_managers(), subject=_("Administrator Logged In"), template="administrator_logged_in", args={'access_message': access_message}, header=['Access Notification', 'orange'] ) def extract_mentions(txt): """Find all instances of @mentions in the html.""" soup = BeautifulSoup(txt, 'html.parser') emails = [] for mention in soup.find_all(class_='mention'): if mention.get('data-is-group') == 'true': try: user_group = frappe.get_cached_doc('User Group', mention['data-id']) emails += [d.user for d in user_group.user_group_members] except frappe.DoesNotExistError: pass continue email = mention['data-id'] emails.append(email) return emails def handle_password_test_fail(result): suggestions = result['feedback']['suggestions'][0] if result['feedback']['suggestions'] else '' warning = result['feedback']['warning'] if 'warning' in result['feedback'] else '' suggestions += "<br>" + _("Hint: Include symbols, numbers and capital letters in the password") + '<br>' frappe.throw(' '.join([_('Invalid Password:'), warning, suggestions])) def update_gravatar(name): gravatar = has_gravatar(name) if gravatar: frappe.db.set_value('User', name, 'user_image', gravatar) def throttle_user_creation(): if frappe.flags.in_import: return if frappe.db.get_creation_count('User', 60) > frappe.local.conf.get("throttle_user_limit", 60): frappe.throw(_('Throttled')) @frappe.whitelist() def get_role_profile(role_profile): roles = frappe.get_doc('Role Profile', {'role_profile': role_profile}) return roles.roles @frappe.whitelist() def get_module_profile(module_profile): module_profile = frappe.get_doc('Module Profile', {'module_profile_name': module_profile}) return module_profile.get('block_modules') def create_contact(user, ignore_links=False, ignore_mandatory=False): from frappe.contacts.doctype.contact.contact import get_contact_name if user.name in ["Administrator", "Guest"]: return contact_name = get_contact_name(user.email) if not contact_name: contact = frappe.get_doc({ "doctype": "Contact", "first_name": user.first_name, "last_name": user.last_name, "user": user.name, "gender": user.gender, }) if user.email: contact.add_email(user.email, is_primary=True) if user.phone: contact.add_phone(user.phone, is_primary_phone=True) if user.mobile_no: contact.add_phone(user.mobile_no, is_primary_mobile_no=True) contact.insert(ignore_permissions=True, ignore_links=ignore_links, ignore_mandatory=ignore_mandatory) else: contact = frappe.get_doc("Contact", contact_name) contact.first_name = user.first_name contact.last_name = user.last_name contact.gender = user.gender # Add mobile number if phone does not exists in contact if user.phone and not any(new_contact.phone == user.phone for new_contact in contact.phone_nos): # Set primary phone if there is no primary phone number contact.add_phone( user.phone, is_primary_phone=not any( new_contact.is_primary_phone == 1 for new_contact in contact.phone_nos ) ) # Add mobile number if mobile does not exists in contact if user.mobile_no and not any(new_contact.phone == user.mobile_no for new_contact in contact.phone_nos): # Set primary mobile if there is no primary mobile number contact.add_phone( user.mobile_no, is_primary_mobile_no=not any( new_contact.is_primary_mobile_no == 1 for new_contact in contact.phone_nos ) ) contact.save(ignore_permissions=True) @frappe.whitelist() def generate_keys(user): """ generate api key and api secret :param user: str """ frappe.only_for("System Manager") user_details = frappe.get_doc("User", user) api_secret = frappe.generate_hash(length=15) # if api key is not set generate api key if not user_details.api_key: api_key = frappe.generate_hash(length=15) user_details.api_key = api_key user_details.api_secret = api_secret user_details.save() return {"api_secret": api_secret} @frappe.whitelist() def switch_theme(theme): if theme in ["Dark", "Light"]: frappe.db.set_value("User", frappe.session.user, "desk_theme", theme) def get_enabled_users(): def _get_enabled_users(): enabled_users = frappe.get_all("User", filters={"enabled": "1"}, pluck="name") return enabled_users return frappe.cache().get_value("enabled_users", _get_enabled_users)
32.487666
126
0.729017
74b28c20ded47fd1a6c9fe812cf2f8b4850a4578
3,094
py
Python
test/functional/getblocktemplate_longpoll.py
twairgroup/wondercoin
c075c2d0c1a4927d9f04d5100106e369a85128e5
[ "MIT" ]
1
2021-04-29T09:04:49.000Z
2021-04-29T09:04:49.000Z
test/functional/getblocktemplate_longpoll.py
twairgroup/wondercoin
c075c2d0c1a4927d9f04d5100106e369a85128e5
[ "MIT" ]
2
2021-06-08T21:50:46.000Z
2021-06-09T14:04:30.000Z
test/functional/getblocktemplate_longpoll.py
twairgroup/wondercoin
c075c2d0c1a4927d9f04d5100106e369a85128e5
[ "MIT" ]
1
2021-06-09T01:09:47.000Z
2021-06-09T01:09:47.000Z
#!/usr/bin/env python3 # Copyright (c) 2014-2016 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Test longpolling with getblocktemplate.""" from test_framework.test_framework import WondercoinTestFramework from test_framework.util import * import threading class LongpollThread(threading.Thread): def __init__(self, node): threading.Thread.__init__(self) # query current longpollid templat = node.getblocktemplate() self.longpollid = templat['longpollid'] # create a new connection to the node, we can't use the same # connection from two threads self.node = get_rpc_proxy(node.url, 1, timeout=600, coveragedir=node.coverage_dir) def run(self): self.node.getblocktemplate({'longpollid':self.longpollid}) class GetBlockTemplateLPTest(WondercoinTestFramework): def set_test_params(self): self.num_nodes = 2 def run_test(self): self.log.info("Warning: this test will take about 70 seconds in the best case. Be patient.") self.nodes[0].generate(10) templat = self.nodes[0].getblocktemplate() longpollid = templat['longpollid'] # longpollid should not change between successive invocations if nothing else happens templat2 = self.nodes[0].getblocktemplate() assert(templat2['longpollid'] == longpollid) # Test 1: test that the longpolling wait if we do nothing thr = LongpollThread(self.nodes[0]) thr.start() # check that thread still lives thr.join(5) # wait 5 seconds or until thread exits assert(thr.is_alive()) # Test 2: test that longpoll will terminate if another node generates a block self.nodes[1].generate(1) # generate a block on another node # check that thread will exit now that new transaction entered mempool thr.join(5) # wait 5 seconds or until thread exits assert(not thr.is_alive()) # Test 3: test that longpoll will terminate if we generate a block ourselves thr = LongpollThread(self.nodes[0]) thr.start() self.nodes[0].generate(1) # generate a block on another node thr.join(5) # wait 5 seconds or until thread exits assert(not thr.is_alive()) # Test 4: test that introducing a new transaction into the mempool will terminate the longpoll thr = LongpollThread(self.nodes[0]) thr.start() # generate a random transaction and submit it min_relay_fee = self.nodes[0].getnetworkinfo()["relayfee"] # min_relay_fee is fee per 1000 bytes, which should be more than enough. (txid, txhex, fee) = random_transaction(self.nodes, Decimal("1.1"), min_relay_fee, Decimal("0.001"), 20) # after one minute, every 10 seconds the mempool is probed, so in 80 seconds it should have returned thr.join(60 + 20) assert(not thr.is_alive()) if __name__ == '__main__': GetBlockTemplateLPTest().main()
42.972222
112
0.682935
23ed797094023866f4c08ecdda4e47d80d676510
881
py
Python
test/token_utils.py
lumapps/endpoints-management-python
0408547e82de2a344ebb6b5600559f82e78c3980
[ "Apache-2.0" ]
22
2016-09-01T16:40:34.000Z
2020-12-13T14:54:18.000Z
test/token_utils.py
lumapps/endpoints-management-python
0408547e82de2a344ebb6b5600559f82e78c3980
[ "Apache-2.0" ]
69
2016-09-01T22:25:16.000Z
2020-10-20T07:44:10.000Z
test/token_utils.py
lumapps/endpoints-management-python
0408547e82de2a344ebb6b5600559f82e78c3980
[ "Apache-2.0" ]
20
2016-09-01T22:05:07.000Z
2022-03-13T02:26:59.000Z
# Copyright 2016 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Provides a utility method that generates auth token.""" import json from jwkest import jws def generate_auth_token(payload, keys, alg=u"ES256", kid=None): json_web_signature = jws.JWS(json.dumps(payload), alg=alg, kid=kid) return json_web_signature.sign_compact(keys=keys)
35.24
74
0.763905
0759bc964a76f278f346f96fdfd4d7b43ce0d951
1,485
py
Python
bagpipe/exabgp/message/update/attribute/mprnlri.py
taheri0/MPLS-over-GRE
7d14b819d396b7779b02ea1150bcaf412cb6d36c
[ "Apache-2.0" ]
94
2015-01-05T17:15:21.000Z
2022-01-09T20:05:16.000Z
bagpipe/exabgp/message/update/attribute/mprnlri.py
taheri0/MPLS-over-GRE
7d14b819d396b7779b02ea1150bcaf412cb6d36c
[ "Apache-2.0" ]
18
2015-03-16T16:16:55.000Z
2017-03-27T11:22:38.000Z
bagpipe/exabgp/message/update/attribute/mprnlri.py
taheri0/MPLS-over-GRE
7d14b819d396b7779b02ea1150bcaf412cb6d36c
[ "Apache-2.0" ]
36
2015-03-13T02:30:15.000Z
2021-06-22T10:10:23.000Z
# encoding: utf-8 """ mprnlri.py Created by Thomas Mangin on 2009-11-05. Copyright (c) 2009-2012 Exa Networks. All rights reserved. Modified by Orange - 2014 """ from bagpipe.exabgp.structure.address import Address, SAFI #,AFI from bagpipe.exabgp.message.update.attribute import AttributeID,Flag,Attribute # =================================================================== MP Reacheable NLRI (15) class MPRNLRI (Attribute): FLAG = Flag.OPTIONAL ID = AttributeID.MP_REACH_NLRI MULTIPLE = True def __init__ (self,routes): # all the routes must have the same next-hop self.routes = routes def pack (self): next_hop = '' # EOR do not have any next_hop if self.routes[0].attributes.has(AttributeID.NEXT_HOP): # we do not want a next_hop attribute packed (with the _attribute()) but just the next_hop itself next_hop = self.routes[0].attributes[AttributeID.NEXT_HOP].next_hop.pack() # FIX: for SAFI 128, the next-hop is encoded like this: if self.routes[0].nlri.safi == SAFI.mpls_vpn: next_hop = "\0"*8 + next_hop routes = ''.join([route.nlri.pack() for route in self.routes]) return self._attribute( self.routes[0].nlri.afi.pack() + self.routes[0].nlri.safi.pack() + chr(len(next_hop)) + next_hop + chr(0) + routes ) def __len__ (self): return len(self.pack()) def __str__ (self): return "MP_REACH_NLRI Family %s %d NLRI(s)" % (Address.__str__(self.routes[0]),len(self.routes)) def __repr__ (self): return str(self)
28.557692
100
0.674074
9bfb219fb7c5ccdab033d4366c8fbe22ffe36b2e
4,987
py
Python
scrapy_redis/dupefilter.py
vanilla111/CQUPT_Spider
c404a398b5f84eba5215511b3eb5a80bcc8563dd
[ "MIT" ]
3
2020-01-06T00:29:53.000Z
2021-03-23T15:10:51.000Z
scrapy_redis/dupefilter.py
vanilla111/CQUPT_Spider
c404a398b5f84eba5215511b3eb5a80bcc8563dd
[ "MIT" ]
null
null
null
scrapy_redis/dupefilter.py
vanilla111/CQUPT_Spider
c404a398b5f84eba5215511b3eb5a80bcc8563dd
[ "MIT" ]
2
2019-08-01T07:11:41.000Z
2020-02-14T04:57:48.000Z
import logging import time from scrapy.dupefilters import BaseDupeFilter from scrapy.utils.request import request_fingerprint from . import defaults from .connection import get_redis_from_settings from .bloomfilter import BloomFilter logger = logging.getLogger(__name__) class RFPDupeFilter(BaseDupeFilter): """Redis-based request duplicates filter. This class can also be used with default Scrapy's scheduler. """ logger = logger def __init__(self, server, key, debug, bit, hash_number): """Initialize the duplicates filter. Parameters ---------- server : redis.StrictRedis The redis server instance. key : str Redis key Where to store fingerprints. debug : bool, optional Whether to log filtered requests. """ self.server = server self.key = key self.debug = debug self.logdupes = True self.bf = BloomFilter(server, self.key, bit, hash_number) @classmethod def from_settings(cls, settings): """Returns an instance from given settings. This uses by default the key ``dupefilter:<timestamp>``. When using the ``scrapy_redis.scheduler.Scheduler`` class, this method is not used as it needs to pass the spider name in the key. Parameters ---------- settings : scrapy.settings.Settings Returns ------- RFPDupeFilter A RFPDupeFilter instance. """ server = get_redis_from_settings(settings) # XXX: This creates one-time key. needed to support to use this # class as standalone dupefilter with scrapy's default scheduler # if scrapy passes spider on open() method this wouldn't be needed # TODO: Use SCRAPY_JOB env as default and fallback to timestamp. key = defaults.DUPEFILTER_KEY % {'timestamp': int(time.time())} debug = settings.getbool('DUPEFILTER_DEBUG') bit = settings.getint('BLOOMFILTER_BIT', defaults.BLOOMFILTER_BIT) hash_number = settings.getint('BLOOMFILTER_HASH_NUMBER', defaults.BLOOMFILTER_HASH_NUMBER) return cls(server, key=key, debug=debug, bit=bit, hash_number=hash_number) @classmethod def from_crawler(cls, crawler): """Returns instance from crawler. Parameters ---------- crawler : scrapy.crawler.Crawler Returns ------- RFPDupeFilter Instance of RFPDupeFilter. """ return cls.from_settings(crawler.settings) def request_seen(self, request): """Returns True if request was already seen. Parameters ---------- request : scrapy.http.Request Returns ------- bool """ fp = self.request_fingerprint(request) # This returns the number of values added, zero if already exists. if self.bf.exists(fp): return True self.bf.insert(fp) return False def request_fingerprint(self, request): """Returns a fingerprint for a given request. Parameters ---------- request : scrapy.http.Request Returns ------- str """ return request_fingerprint(request) @classmethod def from_spider(cls, spider): settings = spider.settings server = get_redis_from_settings(settings) dupefilter_key = settings.get("SCHEDULER_DUPEFILTER_KEY", defaults.SCHEDULER_DUPEFILTER_KEY) key = dupefilter_key % {'spider': spider.name} debug = settings.getbool('DUPEFILTER_DEBUG') bit = settings.getint('BLOOMFILTER_BIT', defaults.BLOOMFILTER_BIT) hash_number = settings.getint('BLOOMFILTER_HASH_NUMBER', defaults.BLOOMFILTER_HASH_NUMBER) return cls(server, key=key, debug=debug, bit=bit, hash_number=hash_number) def close(self, reason=''): """Delete data on close. Called by Scrapy's scheduler. Parameters ---------- reason : str, optional """ self.clear() def clear(self): """Clears fingerprints data.""" self.server.delete(self.key) def log(self, request, spider): """Logs given request. Parameters ---------- request : scrapy.http.Request spider : scrapy.spiders.Spider """ if self.debug: msg = "Filtered duplicate request: %(request)s" self.logger.debug(msg, {'request': request}, extra={'spider': spider}) elif self.logdupes: msg = ("Filtered duplicate request %(request)s" " - no more duplicates will be shown" " (see DUPEFILTER_DEBUG to show all duplicates)") self.logger.debug(msg, {'request': request}, extra={'spider': spider}) self.logdupes = False spider.crawler.stats.inc_value('bloomfilter/filtered', spider=spider)
29.862275
100
0.614798
794747a28490edd4f4f0299e6243b3d70b80e72d
12,168
py
Python
script.mrknow.urlresolver/lib/urlresolver9/lib/net.py
mrknow/filmkodi
0162cde9ae25ddbf4a69330948714833ff2f78c9
[ "Apache-2.0" ]
105
2015-11-28T00:03:11.000Z
2021-05-05T20:47:42.000Z
script.mrknow.urlresolver/lib/urlresolver9/lib/net.py
rrosajp/filmkodi
0162cde9ae25ddbf4a69330948714833ff2f78c9
[ "Apache-2.0" ]
918
2015-11-28T14:12:40.000Z
2022-03-23T20:24:49.000Z
script.mrknow.urlresolver/lib/urlresolver9/lib/net.py
rrosajp/filmkodi
0162cde9ae25ddbf4a69330948714833ff2f78c9
[ "Apache-2.0" ]
111
2015-12-01T14:06:10.000Z
2020-08-01T10:44:39.000Z
''' common XBMC Module Copyright (C) 2011 t0mm0 This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. ''' import random import cookielib import gzip import re import StringIO import urllib import urllib2 import socket import time import kodi # Set Global timeout - Useful for slow connections and Putlocker. socket.setdefaulttimeout(10) BR_VERS = [ ['%s.0' % i for i in xrange(18, 50)], ['37.0.2062.103', '37.0.2062.120', '37.0.2062.124', '38.0.2125.101', '38.0.2125.104', '38.0.2125.111', '39.0.2171.71', '39.0.2171.95', '39.0.2171.99', '40.0.2214.93', '40.0.2214.111', '40.0.2214.115', '42.0.2311.90', '42.0.2311.135', '42.0.2311.152', '43.0.2357.81', '43.0.2357.124', '44.0.2403.155', '44.0.2403.157', '45.0.2454.101', '45.0.2454.85', '46.0.2490.71', '46.0.2490.80', '46.0.2490.86', '47.0.2526.73', '47.0.2526.80', '48.0.2564.116', '49.0.2623.112', '50.0.2661.86'], ['11.0'], ['8.0', '9.0', '10.0', '10.6']] WIN_VERS = ['Windows NT 10.0', 'Windows NT 7.0', 'Windows NT 6.3', 'Windows NT 6.2', 'Windows NT 6.1', 'Windows NT 6.0', 'Windows NT 5.1', 'Windows NT 5.0'] FEATURES = ['; WOW64', '; Win64; IA64', '; Win64; x64', ''] RAND_UAS = ['Mozilla/5.0 ({win_ver}{feature}; rv:{br_ver}) Gecko/20100101 Firefox/{br_ver}', 'Mozilla/5.0 ({win_ver}{feature}) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/{br_ver} Safari/537.36', 'Mozilla/5.0 ({win_ver}{feature}; Trident/7.0; rv:{br_ver}) like Gecko', 'Mozilla/5.0 (compatible; MSIE {br_ver}; {win_ver}{feature}; Trident/6.0)'] def get_ua(): try: last_gen = int(kodi.get_setting('last_ua_create')) except: last_gen = 0 if not kodi.get_setting('current_ua') or last_gen < (time.time() - (7 * 24 * 60 * 60)): index = random.randrange(len(RAND_UAS)) versions = {'win_ver': random.choice(WIN_VERS), 'feature': random.choice(FEATURES), 'br_ver': random.choice(BR_VERS[index])} user_agent = RAND_UAS[index].format(**versions) # log_utils.log('Creating New User Agent: %s' % (user_agent), log_utils.LOGDEBUG) kodi.set_setting('current_ua', user_agent) kodi.set_setting('last_ua_create', str(int(time.time()))) else: user_agent = kodi.get_setting('current_ua') return user_agent class Net: ''' This class wraps :mod:`urllib2` and provides an easy way to make http requests while taking care of cookies, proxies, gzip compression and character encoding. Example:: from addon.common.net import Net net = Net() response = net.http_GET('http://xbmc.org') print response.content ''' _cj = cookielib.LWPCookieJar() _proxy = None _user_agent = 'Mozilla/5.0 (Windows NT 6.3; rv:36.0) Gecko/20100101 Firefox/36.0' _http_debug = False def __init__(self, cookie_file='', proxy='', user_agent='', http_debug=False): ''' Kwargs: cookie_file (str): Full path to a file to be used to load and save cookies to. proxy (str): Proxy setting (eg. ``'http://user:pass@example.com:1234'``) user_agent (str): String to use as the User Agent header. If not supplied the class will use a default user agent (chrome) http_debug (bool): Set ``True`` to have HTTP header info written to the XBMC log for all requests. ''' if cookie_file: self.set_cookies(cookie_file) if proxy: self.set_proxy(proxy) if user_agent: self.set_user_agent(user_agent) self._http_debug = http_debug self._update_opener() def set_cookies(self, cookie_file): ''' Set the cookie file and try to load cookies from it if it exists. Args: cookie_file (str): Full path to a file to be used to load and save cookies to. ''' try: self._cj.load(cookie_file, ignore_discard=True) self._update_opener() return True except: return False def get_cookies(self): '''Returns A dictionary containing all cookie information by domain.''' return self._cj._cookies def save_cookies(self, cookie_file): ''' Saves cookies to a file. Args: cookie_file (str): Full path to a file to save cookies to. ''' self._cj.save(cookie_file, ignore_discard=True) def set_proxy(self, proxy): ''' Args: proxy (str): Proxy setting (eg. ``'http://user:pass@example.com:1234'``) ''' self._proxy = proxy self._update_opener() def get_proxy(self): '''Returns string containing proxy details.''' return self._proxy def set_user_agent(self, user_agent): ''' Args: user_agent (str): String to use as the User Agent header. ''' self._user_agent = user_agent def get_user_agent(self): '''Returns user agent string.''' return self._user_agent def _update_opener(self): ''' Builds and installs a new opener to be used by all future calls to :func:`urllib2.urlopen`. ''' if self._http_debug: http = urllib2.HTTPHandler(debuglevel=1) else: http = urllib2.HTTPHandler() if self._proxy: opener = urllib2.build_opener(urllib2.HTTPCookieProcessor(self._cj), urllib2.ProxyHandler({'http': self._proxy}), urllib2.HTTPBasicAuthHandler(), http) else: opener = urllib2.build_opener(urllib2.HTTPCookieProcessor(self._cj), urllib2.HTTPBasicAuthHandler(), http) urllib2.install_opener(opener) def http_GET(self, url, headers={}, compression=True): ''' Perform an HTTP GET request. Args: url (str): The URL to GET. Kwargs: headers (dict): A dictionary describing any headers you would like to add to the request. (eg. ``{'X-Test': 'testing'}``) compression (bool): If ``True`` (default), try to use gzip compression. Returns: An :class:`HttpResponse` object containing headers and other meta-information about the page and the page content. ''' return self._fetch(url, headers=headers, compression=compression) def http_POST(self, url, form_data, headers={}, compression=True): ''' Perform an HTTP POST request. Args: url (str): The URL to POST. form_data (dict): A dictionary of form data to POST. Kwargs: headers (dict): A dictionary describing any headers you would like to add to the request. (eg. ``{'X-Test': 'testing'}``) compression (bool): If ``True`` (default), try to use gzip compression. Returns: An :class:`HttpResponse` object containing headers and other meta-information about the page and the page content. ''' return self._fetch(url, form_data, headers=headers, compression=compression) def http_HEAD(self, url, headers={}): ''' Perform an HTTP HEAD request. Args: url (str): The URL to GET. Kwargs: headers (dict): A dictionary describing any headers you would like to add to the request. (eg. ``{'X-Test': 'testing'}``) Returns: An :class:`HttpResponse` object containing headers and other meta-information about the page. ''' request = urllib2.Request(url) request.get_method = lambda: 'HEAD' request.add_header('User-Agent', self._user_agent) for key in headers: request.add_header(key, headers[key]) response = urllib2.urlopen(request) return HttpResponse(response) def _fetch(self, url, form_data={}, headers={}, compression=True): ''' Perform an HTTP GET or POST request. Args: url (str): The URL to GET or POST. form_data (dict): A dictionary of form data to POST. If empty, the request will be a GET, if it contains form data it will be a POST. Kwargs: headers (dict): A dictionary describing any headers you would like to add to the request. (eg. ``{'X-Test': 'testing'}``) compression (bool): If ``True`` (default), try to use gzip compression. Returns: An :class:`HttpResponse` object containing headers and other meta-information about the page and the page content. ''' req = urllib2.Request(url) if form_data: if isinstance(form_data, basestring): form_data = form_data else: form_data = urllib.urlencode(form_data, True) req = urllib2.Request(url, form_data) req.add_header('User-Agent', self._user_agent) for key in headers: req.add_header(key, headers[key]) if compression: req.add_header('Accept-Encoding', 'gzip') req.add_unredirected_header('Host', req.get_host()) response = urllib2.urlopen(req) return HttpResponse(response) class HttpResponse: ''' This class represents a resoponse from an HTTP request. The content is examined and every attempt is made to properly encode it to Unicode. .. seealso:: :meth:`Net.http_GET`, :meth:`Net.http_HEAD` and :meth:`Net.http_POST` ''' content = '' '''Unicode encoded string containing the body of the reposne.''' def __init__(self, response): ''' Args: response (:class:`mimetools.Message`): The object returned by a call to :func:`urllib2.urlopen`. ''' self._response = response @property def content(self): html = self._response.read() encoding = None try: if self._response.headers['content-encoding'].lower() == 'gzip': html = gzip.GzipFile(fileobj=StringIO.StringIO(html)).read() except: pass try: content_type = self._response.headers['content-type'] if 'charset=' in content_type: encoding = content_type.split('charset=')[-1] except: pass r = re.search('<meta\s+http-equiv="Content-Type"\s+content="(?:.+?);\s+charset=(.+?)"', html, re.IGNORECASE) if r: encoding = r.group(1) if encoding is not None: try: html = html.decode(encoding) except: pass return html def get_headers(self, as_dict=False): '''Returns headers returned by the server. If as_dict is True, headers are returned as a dictionary otherwise a list''' if as_dict: return dict([(item[0].title(), item[1]) for item in self._response.info().items()]) else: return self._response.info().headers def get_url(self): ''' Return the URL of the resource retrieved, commonly used to determine if a redirect was followed. ''' return self._response.geturl()
35.683284
187
0.585059
eb34f473dc1a474cde296645eb64cde5cd6a49af
1,801
py
Python
bakpack/main.py
pramasoul/bakpack
804652e008a2d1bb04a521d6025a4d73ac7511af
[ "MIT" ]
null
null
null
bakpack/main.py
pramasoul/bakpack
804652e008a2d1bb04a521d6025a4d73ac7511af
[ "MIT" ]
null
null
null
bakpack/main.py
pramasoul/bakpack
804652e008a2d1bb04a521d6025a4d73ac7511af
[ "MIT" ]
null
null
null
# from absl import app from absl import flags from absl import logging from collections import defaultdict import json from pathlib import Path from sys import stdout from .packer import binpack FLAGS = flags.FLAGS flags.DEFINE_integer("size", None, "How much a bin can hold", lower_bound=1) flags.DEFINE_string("output", None, "Output filename (defaults to stdout)") flags.DEFINE_bool("json", False, "Output only JSON of files with sizes") def main(argv): logging.info(f"Bin size is {FLAGS.size}") logging.info(f"args are {argv}") pathnames_of_size = defaultdict(list) sizes = [] for pathname in argv[1:]: path = Path(pathname) size = path.stat().st_size sizes.append(size) pathnames_of_size[size].append(pathname) logging.info(f"pathnames_of_size is {pathnames_of_size}") logging.info(f"sizes: {sizes}") packed = binpack(FLAGS.size, sizes) logging.info(f"packed {packed}") pathed = [] for bin_contents in packed: paths = [] for size in bin_contents: paths.append((pathnames_of_size[size].pop(), size)) pathed.append(paths) with get_outfile() as f: if FLAGS.json: json.dump(pathed, f) return f.write("# Some overall preamble\n") for bin_contents in pathed: f.write(f"# Some preamble to a particular tape\n") for pathname, size in bin_contents: f.write(f"# process Path {pathname}\n") f.write(f"# Some post-process for a particular tape\n") f.write(f"# Any overall post-process\n") def get_outfile(): if FLAGS.output is None: return stdout return open(FLAGS.output, "w") def entry(): app.run(main) if __name__ == "__main__": app.run(main)
26.880597
76
0.642976
8f3897135e0873e20e04513d2e5d938e37ce5b7b
1,361
py
Python
weather/havesine.py
jawahar273/bm
0501210077c5435b27d04c96a2f85da453d63689
[ "MIT" ]
null
null
null
weather/havesine.py
jawahar273/bm
0501210077c5435b27d04c96a2f85da453d63689
[ "MIT" ]
218
2018-05-29T00:34:55.000Z
2021-06-10T18:40:26.000Z
weather/havesine.py
jawahar273/bm
0501210077c5435b27d04c96a2f85da453d63689
[ "MIT" ]
null
null
null
import math class Haversine: """ use the haversine class to calculate the distance between two lon/lat coordnate pairs. output distance available in kilometers, meters, miles, and feet. example usage: Haversine([lon1,lat1],[lon2,lat2]).feet Distance of the user's location and weather's stations is calucated to call the `weather api` get the weather details. please ref this `link <https://nathanrooy.github.io/posts/2016-09-07/haversine-with-python/>`_ to know more of its formula by its author Nathan A. Rooy. """ def __init__(self, coord1, coord2): lon1, lat1 = coord1 lon2, lat2 = coord2 R = 6371000 # radius of Earth in meters phi_1 = math.radians(lat1) phi_2 = math.radians(lat2) delta_phi = math.radians(lat2 - lat1) delta_lambda = math.radians(lon2 - lon1) a = ( math.sin(delta_phi / 2.0) ** 2 + math.cos(phi_1) * math.cos(phi_2) * math.sin(delta_lambda / 2.0) ** 2 ) c = 2 * math.atan2(math.sqrt(a), math.sqrt(1 - a)) self.meters = R * c # output distance in meters self.km = self.meters / 1000.0 # output distance in kilometers self.miles = self.meters * 0.000621371 # output distance in miles self.feet = self.miles * 5280 # output distance in feet
32.404762
83
0.626745
f797f902bc87faffb58c58ad7ac27d0eff5369f4
2,863
py
Python
src/first_bot_email.py
dvntaka/hawaii_coronavirus_bot
091d8f4a1f9a75250973234f0ad82807bbf2e2ae
[ "MIT" ]
null
null
null
src/first_bot_email.py
dvntaka/hawaii_coronavirus_bot
091d8f4a1f9a75250973234f0ad82807bbf2e2ae
[ "MIT" ]
2
2021-05-26T22:24:23.000Z
2021-05-26T22:26:38.000Z
src/first_bot_email.py
dvntaka/hawaii_coronavirus_bot
091d8f4a1f9a75250973234f0ad82807bbf2e2ae
[ "MIT" ]
null
null
null
# Created follow a tutorial at: https://towardsdatascience.com/how-to-track-coronavirus-with-python-a5320b778c8e from datetime import date from urllib.request import Request, urlopen import pandas as pd import smtplib def get_data(): #req = Request('https://www.worldometers.info/coronavirus/#countries', headers={'User-Agent': 'Mozilla/5.0'}) req = Request('https://www.worldometers.info/coronavirus/country/us/', headers={'User-Agent': 'Mozilla/5.0'}) webpage = urlopen(req).read() df = pd.read_html(webpage)[0] # class Coronavirus(): # def _init_(self): # self.driver = webdriver.Chrome() # # def get_data(self): # self.driver.get('https://www.worldometers.info/coronavirus/country/us/') #df = pd.read_html('https://www.worldometers.info/coronavirus/#countries')[0] hi = df.loc[df['USAState'].isin(['Hawaii'])] #df.loc[df['TotalCases'] == 'USA']# df[['TotalCases'] == 'USA'] hi = hi.fillna(0) total_cases = int(hi.iloc[0]['TotalCases']) new_cases = int(hi.iloc[0]['NewCases']) total_deaths = int(hi.iloc[0]['TotalDeaths']) new_deaths = int(hi.iloc[0]['NewDeaths']) # categories = [] # categories.append(total_cases) # categories.append(new_cases) # categories.append(total_deaths) # categories.append(new_deaths) # # for x in categories: # if math.isnan(x): # print('hi') # x = '0' # print(categories) print(new_cases) # /html/body/div[4]/div[1]/div/div[5]/div[1]/div/table#usa_table_countries_today # document.querySelector("#main_table_countries_today") # #main_table_countries_today # /html/body/div[3]/div[3]/div/div[3]/div[1]/div/table send_mail(total_cases,new_cases,total_deaths, new_deaths) def send_mail(total_cases, new_cases, total_deaths, new_deaths): body = 'Total cases: ' + str(total_cases) + '\ \nNew cases: ' + str(new_cases) + '\ \nTotal deaths: ' + str(total_deaths) + '\ \nNew deaths: ' + str(new_deaths) + '\ \nCheck the link: https://www.worldometers.info/coronavirus/country/us' FROM = 'pythonbotsarefun@gmail.com' TO = 'dvntaka@yahoo.com' SUBJECT = 'HI Coronavirus Stats for ' + str(date.today()) TEXT = body message = """From: %s\nTo: %s\nSubject: %s\n\n%s """ % (FROM, TO, SUBJECT, TEXT) server = smtplib.SMTP('smtp.gmail.com', 587) server.ehlo() server.starttls() server.login('pythonbotsarefun@gmail.com', 'aT@8J8f!') server.sendmail( FROM, TO, message ) print('Hey Email has been sent!') server.close() if __name__=="__main__": get_data() #schedule.every().day.at("13:46").do(get_data) #schedule.every(10).seconds.do(get_data) # while True: # schedule.run_pending() # time.sleep(60)
30.457447
113
0.630807
cbb1e0547b46c49dd575eedb41df8747748768a1
1,410
py
Python
eks_auth/aws/client.py
ElDiabloRojo/eks_auth
c87430d82b70698958cd75b710ccda8cfcbbbb96
[ "MIT" ]
1
2020-10-13T19:51:18.000Z
2020-10-13T19:51:18.000Z
eks_auth/aws/client.py
ElDiabloRojo/eks_auth
c87430d82b70698958cd75b710ccda8cfcbbbb96
[ "MIT" ]
537
2020-04-23T21:06:54.000Z
2022-03-31T17:42:17.000Z
eks_auth/aws/client.py
ElDiabloRojo/eks_auth
c87430d82b70698958cd75b710ccda8cfcbbbb96
[ "MIT" ]
null
null
null
import boto3 class AWSCLient: def __init__(self, service, access_key, secret_key, region, session_token=None): self.service = service self.access_key = access_key self.secret_access_key = secret_key self.session_token = session_token self.region = region def primary_client(self): client = boto3.client( self.service, aws_access_key_id=self.access_key, aws_secret_access_key=self.secret_access_key ) return client def session_token_client(self, region): client = boto3.client( self.service, aws_access_key_id=self.access_key, aws_secret_access_key=self.secret_access_key, aws_session_token=self.session_token, region_name=region ) return client def get_session_token(self, user_name, account_number): mfa_code = input('Enter the MFA code: ') client = boto3.client( self.service, aws_access_key_id=self.access_key, aws_secret_access_key=self.secret_access_key ) response = client.get_session_token( DurationSeconds=3600, SerialNumber='arn:aws:iam::' + account_number + ':mfa/' + user_name, TokenCode=mfa_code ) return response def show_object(self): print(self.__dict__)
29.375
84
0.623404
981da89342f0934b5191b93a28613d9cff40b493
1,525
py
Python
source/legacy/muc4_type_samples.py
Glaciohound/Schema_Induction
116df31a0a042ad4358d093f303b21a051ebdaad
[ "MIT" ]
null
null
null
source/legacy/muc4_type_samples.py
Glaciohound/Schema_Induction
116df31a0a042ad4358d093f303b21a051ebdaad
[ "MIT" ]
null
null
null
source/legacy/muc4_type_samples.py
Glaciohound/Schema_Induction
116df31a0a042ad4358d093f303b21a051ebdaad
[ "MIT" ]
null
null
null
import argparse import json from components.load_muc4 import load_muc4 from components.muc4_tools import \ extract_relevant_sentences, corpora_to_dict, all_types def get_args(): parser = argparse.ArgumentParser() parser.add_argument("--dir", default="data/muc34/TASK/CORPORA", type=str) parser.add_argument("--output-file", type=str, default="data/muc34/outputs/muc4-type-samples.txt") args = parser.parse_args() return args def main(args): dev_corpora, dev_events, tst_corpora, tst_events, proper_nouns = \ load_muc4() dev_corpora_dict = corpora_to_dict(dev_corpora) dev_grouped = { _type: list(filter( lambda x: x["INCIDENT: TYPE"][0] == _type, dev_events)) for _type in all_types} with open(args.output_file, 'w') as f: for _type, _samples in dev_grouped.items(): f.write(_type) f.write("\n") f.write("=" * 30) f.write("\n") for _sample in _samples[:30]: f.write(json.dumps(_sample, indent=4)) f.write("\n") f.write(json.dumps( extract_relevant_sentences( _sample, dev_corpora_dict[_sample["MESSAGE: ID"]]), indent=4 )[0]) f.write("\n") f.write("-" * 30) f.write("\n") f.write("\n") if __name__ == "__main__": args = get_args() main(args)
30.5
77
0.554754
b1a241155f8906edc4b80182a8ad94dc0542d621
5,867
py
Python
contrib/node/tests/python/pants_test/contrib/node/tasks/test_node_bundle_integration.py
oseemann/pants
628c83d5ab2706b0f64d69568c57a718ec7c5e2a
[ "Apache-2.0" ]
null
null
null
contrib/node/tests/python/pants_test/contrib/node/tasks/test_node_bundle_integration.py
oseemann/pants
628c83d5ab2706b0f64d69568c57a718ec7c5e2a
[ "Apache-2.0" ]
null
null
null
contrib/node/tests/python/pants_test/contrib/node/tasks/test_node_bundle_integration.py
oseemann/pants
628c83d5ab2706b0f64d69568c57a718ec7c5e2a
[ "Apache-2.0" ]
null
null
null
# coding=utf-8 # Copyright 2015 Pants project contributors (see CONTRIBUTORS.md). # Licensed under the Apache License, Version 2.0 (see LICENSE). from __future__ import (absolute_import, division, generators, nested_scopes, print_function, unicode_literals, with_statement) import os from contextlib import contextmanager from pants.fs.archive import archiver, archiver_for_path from pants.util.contextutil import temporary_dir from pants_test.pants_run_integration_test import PantsRunIntegrationTest class NodeBundleIntegrationTest(PantsRunIntegrationTest): DIST_DIR = 'dist' TGZ_SUFFIX = '.tar.gz' JAR_SUFFIX = '.jar' PROJECT_DIR = 'contrib/node/examples/src/node/web-component-button' WEB_COMPONENT_BUTTON_PROJECT = 'web-component-button' WEB_COMPONENT_BUTTON_PROCESSED_PROJECT = 'web-component-button-processed' WITH_DEPENDENCY_ARTIFACTS_PROJECT = 'web-component-button-processed-with-dependency-artifacts' WEB_COMPONENT_BUTTON_BUNDLE = 'web-component-button-bundle' WEB_COMPONENT_BUTTON_PROCESSED_BUNDLE = 'web-component-button-processed-bundle' PREINSTALLED_PROJECT_DIR = 'contrib/node/examples/src/node/preinstalled-project' PREINSTALLED_PROJECT = 'preinstalled-project' PREINSTALLED_BUNDLE = 'preinstalled-project-bundle' JVM_PROJECT = 'jsresources' JVM_WITH_ARTIFACTS_PROJECT = 'jsresources-with-dependency-artifacts' JVM_PROJECT_DIR = 'contrib/node/examples/src/java/org/pantsbuild/testproject/jsresources' WEB_COMPONENT_BUTTON_ARTIFACT = os.path.join( DIST_DIR, WEB_COMPONENT_BUTTON_BUNDLE + TGZ_SUFFIX) WEB_COMPONENT_BUTTON_PROCESSED_ARTIFACT = os.path.join( DIST_DIR, WEB_COMPONENT_BUTTON_PROCESSED_BUNDLE + TGZ_SUFFIX) PREINSTALLED_ARTIFACT = os.path.join( DIST_DIR, PREINSTALLED_BUNDLE + TGZ_SUFFIX) JVM_PROJECT_ARTIFACT = os.path.join(DIST_DIR, JVM_PROJECT + JAR_SUFFIX) JVM_WITH_ARTIFACTS_ARTIFACT = os.path.join(DIST_DIR, JVM_WITH_ARTIFACTS_PROJECT + JAR_SUFFIX) def test_bundle_node_module(self): command = [ 'bundle', ':'.join([self.PROJECT_DIR, self.WEB_COMPONENT_BUTTON_BUNDLE])] pants_run = self.run_pants(command=command) self.assert_success(pants_run) with self._extract_archive(self.WEB_COMPONENT_BUTTON_ARTIFACT) as temp_dir: actual_set = set(os.listdir(temp_dir)) expected_set = set(['src', 'test', 'node_modules', 'package.json', 'webpack.config.js']) self.assertTrue(expected_set <= actual_set) if expected_set < actual_set: # npm 5 introduced package-lock.json self.assertEqual(actual_set - expected_set, set(['package-lock.json'])) # Make sure .bin symlinks remains as symlinks. self.assertTrue(os.path.islink(os.path.join(temp_dir, 'node_modules', '.bin', 'mocha'))) def test_bundle_node_module_processed(self): command = [ 'bundle', ':'.join([self.PROJECT_DIR, self.WEB_COMPONENT_BUTTON_PROCESSED_BUNDLE])] pants_run = self.run_pants(command=command) self.assert_success(pants_run) with self._extract_archive(self.WEB_COMPONENT_BUTTON_PROCESSED_ARTIFACT) as temp_dir: self.assertEquals( set(os.listdir(temp_dir)), set(['Button.js']) ) def test_bundle_jvm_binary_with_node_module(self): command = [ 'binary', ':'.join([self.JVM_PROJECT_DIR, self.JVM_PROJECT]) ] pants_run = self.run_pants(command=command) self.assert_success(pants_run) with self._extract_archive(self.JVM_PROJECT_ARTIFACT) as temp_dir: self.assertEquals( set(os.listdir(os.path.join(temp_dir, self.WEB_COMPONENT_BUTTON_PROCESSED_PROJECT))), set(['Button.js']) ) # Only include node build results, not original node_modules directory self.assertTrue('node_modules' not in os.listdir(temp_dir)) # Transitive dependency that marked as not generating artifacts should not be included. self.assertTrue('web-build-tool' not in os.listdir(temp_dir)) def test_bundle_jvm_binary_with_node_module_and_dependencies(self): command = [ 'binary', ':'.join([self.JVM_PROJECT_DIR, self.JVM_WITH_ARTIFACTS_PROJECT]) ] pants_run = self.run_pants(command=command) self.assert_success(pants_run) with self._extract_archive(self.JVM_WITH_ARTIFACTS_ARTIFACT) as temp_dir: print (os.listdir(temp_dir)) self.assertEquals( set(os.listdir(os.path.join(temp_dir, self.WITH_DEPENDENCY_ARTIFACTS_PROJECT))), set(['Button.js']) ) # Only include node build results, not original node_modules directory self.assertTrue('node_modules' not in os.listdir(temp_dir)) # Transitive dependency should not be included. self.assertTrue('web-dependency-test' in os.listdir(temp_dir)) def test_bundle_node_preinstalled_module(self): command = [ 'bundle', ':'.join([self.PREINSTALLED_PROJECT_DIR, self.PREINSTALLED_BUNDLE])] self.assert_success(self.run_pants(command=command)) with self._extract_archive(self.PREINSTALLED_ARTIFACT) as temp_dir: self.assertEquals( set(os.listdir(temp_dir)), set(['src', 'test', 'node_modules', 'package.json']) ) def test_no_bundle_for_node_module(self): command = ['bundle', ':'.join([self.PREINSTALLED_PROJECT_DIR, self.PREINSTALLED_PROJECT])] self.assert_success(self.run_pants(command=command)) self.assertFalse(os.path.exists(self.PREINSTALLED_BUNDLE)) @contextmanager def _extract_archive(self, archive_path): with temporary_dir() as temp_dir: _, extension = os.path.splitext(archive_path) print (extension) if extension == '.jar': extraction_archiver = archiver('zip') else: extraction_archiver = archiver_for_path(os.path.basename(archive_path)) extraction_archiver.extract(archive_path, temp_dir) yield temp_dir
39.911565
96
0.740583
3b269112fe4d005db7eb6627217b27c9c690f6b2
712
py
Python
telegram_bot/config.py
Carmo-sousa/telegram-bot
7a2f675bc3b5da65742851c1a2c4438f9e982745
[ "MIT" ]
null
null
null
telegram_bot/config.py
Carmo-sousa/telegram-bot
7a2f675bc3b5da65742851c1a2c4438f9e982745
[ "MIT" ]
null
null
null
telegram_bot/config.py
Carmo-sousa/telegram-bot
7a2f675bc3b5da65742851c1a2c4438f9e982745
[ "MIT" ]
null
null
null
import os import logging from dotenv import load_dotenv # Carrega as váriaveis de ambiente do projeto. load_dotenv() logging.basicConfig( format="%(asctime)s - %(name)s - %(levelname)s - %(message)s", level=logging.INFO, ) class Config: # Nível de permição do projeto. # https://developers.google.com/sheets/api/guides/authorizing SCOPES = ["https://www.googleapis.com/auth/spreadsheets"] # ID da planilha SPREADSHEET_ID = os.getenv("SPREADSHEET_ID") RANGE_NAME = os.getenv("RANGE_NAME") # Token do bot do telegram # https://t.me/botfather TOKEN = os.getenv("TOKEN", "1435718138:AAFJkL3MTrSvXPYpcz6cueZHdCQTNnYFRhM") PORT = os.getenv("PORT", 8443) pass
24.551724
80
0.695225
c6e1959a2fb2c84fcda3660890feafa3bb1eafda
8,298
py
Python
server/attender-mobile/lib/requests/packages/urllib3/connection.py
denbedilov/SIStore
da8e6f38170959efe756bafe2f83adcf1fbb14a4
[ "MIT" ]
71
2015-05-15T08:27:25.000Z
2022-01-16T03:45:42.000Z
server/attender-mobile/lib/requests/packages/urllib3/connection.py
denbedilov/SIStore
da8e6f38170959efe756bafe2f83adcf1fbb14a4
[ "MIT" ]
11
2015-10-26T22:47:32.000Z
2020-10-16T19:13:09.000Z
server/attender-mobile/lib/requests/packages/urllib3/connection.py
denbedilov/SIStore
da8e6f38170959efe756bafe2f83adcf1fbb14a4
[ "MIT" ]
27
2015-03-08T22:03:00.000Z
2021-07-27T05:19:37.000Z
import datetime import sys import socket from socket import timeout as SocketTimeout import warnings try: # Python 3 from http.client import HTTPConnection as _HTTPConnection, HTTPException except ImportError: from httplib import HTTPConnection as _HTTPConnection, HTTPException class DummyConnection(object): "Used to detect a failed ConnectionCls import." pass try: # Compiled with SSL? HTTPSConnection = DummyConnection import ssl BaseSSLError = ssl.SSLError except (ImportError, AttributeError): # Platform-specific: No SSL. ssl = None class BaseSSLError(BaseException): pass from .exceptions import ( ConnectTimeoutError, SystemTimeWarning, ) from .packages.ssl_match_hostname import match_hostname from .packages import six from .util.ssl_ import ( resolve_cert_reqs, resolve_ssl_version, ssl_wrap_socket, assert_fingerprint, ) from .util import connection port_by_scheme = { 'http': 80, 'https': 443, } RECENT_DATE = datetime.date(2014, 1, 1) class HTTPConnection(_HTTPConnection, object): """ Based on httplib.HTTPConnection but provides an extra constructor backwards-compatibility layer between older and newer Pythons. Additional keyword parameters are used to configure attributes of the connection. Accepted parameters include: - ``strict``: See the documentation on :class:`urllib3.connectionpool.HTTPConnectionPool` - ``source_address``: Set the source address for the current connection. .. note:: This is ignored for Python 2.6. It is only applied for 2.7 and 3.x - ``socket_options``: Set specific options on the underlying socket. If not specified, then defaults are loaded from ``HTTPConnection.default_socket_options`` which includes disabling Nagle's algorithm (sets TCP_NODELAY to 1) unless the connection is behind a proxy. For example, if you wish to enable TCP Keep Alive in addition to the defaults, you might pass:: HTTPConnection.default_socket_options + [ (socket.SOL_SOCKET, socket.SO_KEEPALIVE, 1), ] Or you may want to disable the defaults by passing an empty list (e.g., ``[]``). """ default_port = port_by_scheme['http'] #: Disable Nagle's algorithm by default. #: ``[(socket.IPPROTO_TCP, socket.TCP_NODELAY, 1)]`` default_socket_options = [(socket.IPPROTO_TCP, socket.TCP_NODELAY, 1)] #: Whether this connection verifies the host's certificate. is_verified = False def __init__(self, *args, **kw): if six.PY3: # Python 3 kw.pop('strict', None) # Pre-set source_address in case we have an older Python like 2.6. self.source_address = kw.get('source_address') if sys.version_info < (2, 7): # Python 2.6 # _HTTPConnection on Python 2.6 will balk at this keyword arg, but # not newer versions. We can still use it when creating a # connection though, so we pop it *after* we have saved it as # self.source_address. kw.pop('source_address', None) #: The socket options provided by the user. If no options are #: provided, we use the default options. self.socket_options = kw.pop('socket_options', self.default_socket_options) # Superclass also sets self.source_address in Python 2.7+. _HTTPConnection.__init__(self, *args, **kw) def _new_conn(self): """ Establish a socket connection and set nodelay settings on it. :return: New socket connection. """ extra_kw = {} if self.source_address: extra_kw['source_address'] = self.source_address if self.socket_options: extra_kw['socket_options'] = self.socket_options try: conn = connection.create_connection( (self.host, self.port), self.timeout, **extra_kw) except SocketTimeout: raise ConnectTimeoutError( self, "Connection to %s timed out. (connect timeout=%s)" % (self.host, self.timeout)) return conn def _prepare_conn(self, conn): self.sock = conn # the _tunnel_host attribute was added in python 2.6.3 (via # http://hg.python.org/cpython/rev/0f57b30a152f) so pythons 2.6(0-2) do # not have them. if getattr(self, '_tunnel_host', None): # TODO: Fix tunnel so it doesn't depend on self.sock state. self._tunnel() # Mark this connection as not reusable self.auto_open = 0 def connect(self): conn = self._new_conn() self._prepare_conn(conn) class HTTPSConnection(HTTPConnection): default_port = port_by_scheme['https'] def __init__(self, host, port=None, key_file=None, cert_file=None, strict=None, timeout=socket._GLOBAL_DEFAULT_TIMEOUT, **kw): HTTPConnection.__init__(self, host, port, strict=strict, timeout=timeout, **kw) self.key_file = key_file self.cert_file = cert_file # Required property for Google AppEngine 1.9.0 which otherwise causes # HTTPS requests to go out as HTTP. (See Issue #356) self._protocol = 'https' def connect(self): conn = self._new_conn() self._prepare_conn(conn) self.sock = ssl.wrap_socket(conn, self.key_file, self.cert_file) class VerifiedHTTPSConnection(HTTPSConnection): """ Based on httplib.HTTPSConnection but wraps the socket with SSL certification. """ cert_reqs = None ca_certs = None ssl_version = None assert_fingerprint = None def set_cert(self, key_file=None, cert_file=None, cert_reqs=None, ca_certs=None, assert_hostname=None, assert_fingerprint=None): self.key_file = key_file self.cert_file = cert_file self.cert_reqs = cert_reqs self.ca_certs = ca_certs self.assert_hostname = assert_hostname self.assert_fingerprint = assert_fingerprint def connect(self): # Add certificate verification conn = self._new_conn() resolved_cert_reqs = resolve_cert_reqs(self.cert_reqs) resolved_ssl_version = resolve_ssl_version(self.ssl_version) hostname = self.host if getattr(self, '_tunnel_host', None): # _tunnel_host was added in Python 2.6.3 # (See: http://hg.python.org/cpython/rev/0f57b30a152f) self.sock = conn # Calls self._set_hostport(), so self.host is # self._tunnel_host below. self._tunnel() # Mark this connection as not reusable self.auto_open = 0 # Override the host with the one we're requesting data from. hostname = self._tunnel_host is_time_off = datetime.date.today() < RECENT_DATE if is_time_off: warnings.warn(( 'System time is way off (before {0}). This will probably ' 'lead to SSL verification errors').format(RECENT_DATE), SystemTimeWarning ) # Wrap socket using verification with the root certs in # trusted_root_certs self.sock = ssl_wrap_socket(conn, self.key_file, self.cert_file, cert_reqs=resolved_cert_reqs, ca_certs=self.ca_certs, server_hostname=hostname, ssl_version=resolved_ssl_version) if self.assert_fingerprint: assert_fingerprint(self.sock.getpeercert(binary_form=True), self.assert_fingerprint) elif resolved_cert_reqs != ssl.CERT_NONE \ and self.assert_hostname is not False: match_hostname(self.sock.getpeercert(), self.assert_hostname or hostname) self.is_verified = (resolved_cert_reqs == ssl.CERT_REQUIRED or self.assert_fingerprint is not None) if ssl: # Make a copy for testing. UnverifiedHTTPSConnection = HTTPSConnection HTTPSConnection = VerifiedHTTPSConnection
33.595142
99
0.639552
c1a1d7f8f4c2245347d7fbda04e2f20628a24f10
755
py
Python
test_program/test_fetchdata.py
YuhaoCheng/IoT-Project
26b4473c2366b00ba7606c6782de95fea250296b
[ "Apache-2.0" ]
7
2018-05-06T02:34:38.000Z
2020-11-07T14:52:50.000Z
test_program/test_fetchdata.py
YuhaoCheng/IoT-Project
26b4473c2366b00ba7606c6782de95fea250296b
[ "Apache-2.0" ]
null
null
null
test_program/test_fetchdata.py
YuhaoCheng/IoT-Project
26b4473c2366b00ba7606c6782de95fea250296b
[ "Apache-2.0" ]
1
2018-03-29T03:26:59.000Z
2018-03-29T03:26:59.000Z
import pymysql import json def handle_request(conn,json_str,day,time): db = pymysql.connect("172.17.118.89", "root", "123456", "pycom") cursor = db.cursor() cursor = db.cursor() sql = """select * from console_device""" reply = {"Messagetype":'result'} deviceList = [] gatewayId = json_str['GatewayID'] reply["GatewayID"] = gatewayId reply["Day"] = day reply["Time"] = time try: cursor.execute(sql) results = cursor.fetchall() for row in results: deviceList.append(row[1]) # return deviceList except: print('No the table') reply["DeviceList"] = deviceList reply_str = json.dumps(reply) conn.send(bytes(reply_str,'utf8')) conn.close()
23.59375
68
0.602649
9ee251504285643e735c14711f277a462fc64e48
5,103
py
Python
groups/admin.py
FroshOU/manga
60ec24a007a7e9ebe0c152cf1f2a2aa0362f17f2
[ "MIT" ]
58
2019-03-04T09:22:42.000Z
2022-02-18T09:11:57.000Z
groups/admin.py
FroshOU/manga
60ec24a007a7e9ebe0c152cf1f2a2aa0362f17f2
[ "MIT" ]
21
2019-03-07T19:34:53.000Z
2021-12-19T12:46:40.000Z
groups/admin.py
FroshOU/manga
60ec24a007a7e9ebe0c152cf1f2a2aa0362f17f2
[ "MIT" ]
14
2019-06-06T09:53:13.000Z
2021-12-17T14:34:13.000Z
"""Admin models for the groups app.""" from typing import Optional from django.contrib import admin from django.db.models.functions import Lower # XXX: cannot be resolved under TYPE_CHECKING from django.forms.models import BaseInlineFormSet, ModelForm from django.forms.widgets import HiddenInput # XXX: cannot be resolved under TYPE_CHECKING from django.http import HttpRequest from django.utils.html import format_html from MangAdventure import filters, utils from .models import Group, Member, Role class MemberRoleInline(admin.StackedInline): """Inline admin model for :class:`~groups.models.Role`.""" model = Role extra = 1 def get_formset(self, request: 'HttpRequest', obj: Optional[Role], **kwargs ) -> 'BaseInlineFormSet': # pragma: no cover formset = super().get_formset(request, obj, **kwargs) if 'group' in formset.form.base_fields: formset.form.base_fields['group'].queryset = \ Group.objects.filter(manager_id=request.user.id) return formset class MemberAdmin(admin.ModelAdmin): """Admin model for :class:`~groups.models.Member`.""" inlines = (MemberRoleInline,) ordering = (Lower('name'),) list_display = ('name', '_twitter', 'discord', 'irc', '_reddit') search_fields = ('name', 'twitter', 'discord', 'irc', 'reddit') list_filter = ( ('roles__group__name', filters.related_filter('group')), ('roles__role', filters.related_filter('role')), ) def _twitter(self, obj: Member) -> str: if not obj.twitter: return '' return format_html( '<a href="https://twitter.com/{0}" rel="noopener noreferrer"' ' target="_blank">@{0}</a>', obj.twitter ) _twitter.short_description = 'twitter' _twitter.admin_order_field = 'twitter' def _reddit(self, obj: Member) -> str: if not obj.reddit: return '' return format_html( '<a href="https://reddit.com/u/{0}" rel="noopener noreferrer"' ' target="_blank">/u/{0}</a>', obj.reddit ) _reddit.short_description = 'reddit' _reddit.admin_order_field = 'reddit' class GroupAdmin(admin.ModelAdmin): """Admin model for :class:`~groups.models.Group`.""" exclude = ('id',) ordering = (Lower('name'),) list_display = ('image', 'name', '_website', 'manager', 'description') search_fields = ('name', 'website', 'description') list_display_links = ('name',) list_filter = ( ('manager', filters.related_filter('manager')), ) empty_value_display = 'N/A' def get_form(self, request: 'HttpRequest', obj: Optional[Group] = None, change: bool = False, **kwargs) -> 'ModelForm': form = super().get_form(request, obj, change, **kwargs) if 'manager' in form.base_fields: form.base_fields['manager'].initial = request.user.id if not request.user.is_superuser: # pragma: no cover form.base_fields['manager'].widget = HiddenInput() return form def image(self, obj: Group) -> str: """ Get the logo of the group as an HTML ``<img>``. :param obj: A ``Group`` model instance. :return: An ``<img>`` tag with the group's logo. """ return utils.img_tag(obj.logo, 'logo', height=25) image.short_description = 'logo' def _website(self, obj: Group) -> str: if not obj.website: return '' return format_html( '<a href="{0}" rel="noopener noreferrer"' ' target="_blank">{0}</a>', obj.website ) _website.short_description = 'website' _website.admin_order_field = 'website' def has_change_permission(self, request: 'HttpRequest', obj: Optional[Group] = None) -> bool: """ Return ``True`` if editing the object is permitted. | Superusers can edit any group. | Scanlators can only edit groups they manage. :param request: The original request. :param obj: A ``Group`` model instance. :return: ``True`` if the user is allowed to edit the group. """ if request.user.is_superuser or obj is None: return True return obj.manager_id == request.user.id def has_delete_permission(self, request: 'HttpRequest', obj: Optional[Group] = None) -> bool: """ Return ``True`` if deleting the object is permitted. | Superusers can delete any group. | Scanlators can only delete groups they manage. :param request: The original request. :param obj: A ``Group`` model instance. :return: ``True`` if the user is allowed to delete the group. """ if request.user.is_superuser or obj is None: return True return obj.manager_id == request.user.id admin.site.register(Group, GroupAdmin) admin.site.register(Member, MemberAdmin) __all__ = ['MemberRoleInline', 'MemberAdmin', 'GroupAdmin']
33.794702
74
0.612777
5b1f033c6f806d5d2900afee9152b4093e38b7e8
28,840
py
Python
Lib/test/lock_tests.py
Himanshu-Lakhara/cpython
3b20d3454e8082e07dba93617793de5dc9237828
[ "PSF-2.0" ]
15
2015-04-14T00:33:13.000Z
2021-10-18T01:08:54.000Z
Lib/test/lock_tests.py
Himanshu-Lakhara/cpython
3b20d3454e8082e07dba93617793de5dc9237828
[ "PSF-2.0" ]
1
2019-10-06T22:32:10.000Z
2020-08-01T15:22:38.000Z
Lib/test/lock_tests.py
Himanshu-Lakhara/cpython
3b20d3454e8082e07dba93617793de5dc9237828
[ "PSF-2.0" ]
3
2015-04-23T11:12:32.000Z
2021-10-18T01:08:55.000Z
""" Various tests for synchronization primitives. """ import sys import time from _thread import start_new_thread, TIMEOUT_MAX import threading import unittest import weakref from test import support def _wait(): # A crude wait/yield function not relying on synchronization primitives. time.sleep(0.01) class Bunch(object): """ A bunch of threads. """ def __init__(self, f, n, wait_before_exit=False): """ Construct a bunch of `n` threads running the same function `f`. If `wait_before_exit` is True, the threads won't terminate until do_finish() is called. """ self.f = f self.n = n self.started = [] self.finished = [] self._can_exit = not wait_before_exit self.wait_thread = support.wait_threads_exit() self.wait_thread.__enter__() def task(): tid = threading.get_ident() self.started.append(tid) try: f() finally: self.finished.append(tid) while not self._can_exit: _wait() try: for i in range(n): start_new_thread(task, ()) except: self._can_exit = True raise def wait_for_started(self): while len(self.started) < self.n: _wait() def wait_for_finished(self): while len(self.finished) < self.n: _wait() # Wait for threads exit self.wait_thread.__exit__(None, None, None) def do_finish(self): self._can_exit = True class BaseTestCase(unittest.TestCase): def setUp(self): self._threads = support.threading_setup() def tearDown(self): support.threading_cleanup(*self._threads) support.reap_children() def assertTimeout(self, actual, expected): # The waiting and/or time.time() can be imprecise, which # is why comparing to the expected value would sometimes fail # (especially under Windows). self.assertGreaterEqual(actual, expected * 0.6) # Test nothing insane happened self.assertLess(actual, expected * 10.0) class BaseLockTests(BaseTestCase): """ Tests for both recursive and non-recursive locks. """ def test_constructor(self): lock = self.locktype() del lock def test_repr(self): lock = self.locktype() self.assertRegex(repr(lock), "<unlocked .* object (.*)?at .*>") del lock def test_locked_repr(self): lock = self.locktype() lock.acquire() self.assertRegex(repr(lock), "<locked .* object (.*)?at .*>") del lock def test_acquire_destroy(self): lock = self.locktype() lock.acquire() del lock def test_acquire_release(self): lock = self.locktype() lock.acquire() lock.release() del lock def test_try_acquire(self): lock = self.locktype() self.assertTrue(lock.acquire(False)) lock.release() def test_try_acquire_contended(self): lock = self.locktype() lock.acquire() result = [] def f(): result.append(lock.acquire(False)) Bunch(f, 1).wait_for_finished() self.assertFalse(result[0]) lock.release() def test_acquire_contended(self): lock = self.locktype() lock.acquire() N = 5 def f(): lock.acquire() lock.release() b = Bunch(f, N) b.wait_for_started() _wait() self.assertEqual(len(b.finished), 0) lock.release() b.wait_for_finished() self.assertEqual(len(b.finished), N) def test_with(self): lock = self.locktype() def f(): lock.acquire() lock.release() def _with(err=None): with lock: if err is not None: raise err _with() # Check the lock is unacquired Bunch(f, 1).wait_for_finished() self.assertRaises(TypeError, _with, TypeError) # Check the lock is unacquired Bunch(f, 1).wait_for_finished() def test_thread_leak(self): # The lock shouldn't leak a Thread instance when used from a foreign # (non-threading) thread. lock = self.locktype() def f(): lock.acquire() lock.release() n = len(threading.enumerate()) # We run many threads in the hope that existing threads ids won't # be recycled. Bunch(f, 15).wait_for_finished() if len(threading.enumerate()) != n: # There is a small window during which a Thread instance's # target function has finished running, but the Thread is still # alive and registered. Avoid spurious failures by waiting a # bit more (seen on a buildbot). time.sleep(0.4) self.assertEqual(n, len(threading.enumerate())) def test_timeout(self): lock = self.locktype() # Can't set timeout if not blocking self.assertRaises(ValueError, lock.acquire, 0, 1) # Invalid timeout values self.assertRaises(ValueError, lock.acquire, timeout=-100) self.assertRaises(OverflowError, lock.acquire, timeout=1e100) self.assertRaises(OverflowError, lock.acquire, timeout=TIMEOUT_MAX + 1) # TIMEOUT_MAX is ok lock.acquire(timeout=TIMEOUT_MAX) lock.release() t1 = time.time() self.assertTrue(lock.acquire(timeout=5)) t2 = time.time() # Just a sanity test that it didn't actually wait for the timeout. self.assertLess(t2 - t1, 5) results = [] def f(): t1 = time.time() results.append(lock.acquire(timeout=0.5)) t2 = time.time() results.append(t2 - t1) Bunch(f, 1).wait_for_finished() self.assertFalse(results[0]) self.assertTimeout(results[1], 0.5) def test_weakref_exists(self): lock = self.locktype() ref = weakref.ref(lock) self.assertIsNotNone(ref()) def test_weakref_deleted(self): lock = self.locktype() ref = weakref.ref(lock) del lock self.assertIsNone(ref()) class LockTests(BaseLockTests): """ Tests for non-recursive, weak locks (which can be acquired and released from different threads). """ def test_reacquire(self): # Lock needs to be released before re-acquiring. lock = self.locktype() phase = [] def f(): lock.acquire() phase.append(None) lock.acquire() phase.append(None) with support.wait_threads_exit(): start_new_thread(f, ()) while len(phase) == 0: _wait() _wait() self.assertEqual(len(phase), 1) lock.release() while len(phase) == 1: _wait() self.assertEqual(len(phase), 2) def test_different_thread(self): # Lock can be released from a different thread. lock = self.locktype() lock.acquire() def f(): lock.release() b = Bunch(f, 1) b.wait_for_finished() lock.acquire() lock.release() def test_state_after_timeout(self): # Issue #11618: check that lock is in a proper state after a # (non-zero) timeout. lock = self.locktype() lock.acquire() self.assertFalse(lock.acquire(timeout=0.01)) lock.release() self.assertFalse(lock.locked()) self.assertTrue(lock.acquire(blocking=False)) class RLockTests(BaseLockTests): """ Tests for recursive locks. """ def test_reacquire(self): lock = self.locktype() lock.acquire() lock.acquire() lock.release() lock.acquire() lock.release() lock.release() def test_release_unacquired(self): # Cannot release an unacquired lock lock = self.locktype() self.assertRaises(RuntimeError, lock.release) lock.acquire() lock.acquire() lock.release() lock.acquire() lock.release() lock.release() self.assertRaises(RuntimeError, lock.release) def test_release_save_unacquired(self): # Cannot _release_save an unacquired lock lock = self.locktype() self.assertRaises(RuntimeError, lock._release_save) lock.acquire() lock.acquire() lock.release() lock.acquire() lock.release() lock.release() self.assertRaises(RuntimeError, lock._release_save) def test_different_thread(self): # Cannot release from a different thread lock = self.locktype() def f(): lock.acquire() b = Bunch(f, 1, True) try: self.assertRaises(RuntimeError, lock.release) finally: b.do_finish() b.wait_for_finished() def test__is_owned(self): lock = self.locktype() self.assertFalse(lock._is_owned()) lock.acquire() self.assertTrue(lock._is_owned()) lock.acquire() self.assertTrue(lock._is_owned()) result = [] def f(): result.append(lock._is_owned()) Bunch(f, 1).wait_for_finished() self.assertFalse(result[0]) lock.release() self.assertTrue(lock._is_owned()) lock.release() self.assertFalse(lock._is_owned()) class EventTests(BaseTestCase): """ Tests for Event objects. """ def test_is_set(self): evt = self.eventtype() self.assertFalse(evt.is_set()) evt.set() self.assertTrue(evt.is_set()) evt.set() self.assertTrue(evt.is_set()) evt.clear() self.assertFalse(evt.is_set()) evt.clear() self.assertFalse(evt.is_set()) def _check_notify(self, evt): # All threads get notified N = 5 results1 = [] results2 = [] def f(): results1.append(evt.wait()) results2.append(evt.wait()) b = Bunch(f, N) b.wait_for_started() _wait() self.assertEqual(len(results1), 0) evt.set() b.wait_for_finished() self.assertEqual(results1, [True] * N) self.assertEqual(results2, [True] * N) def test_notify(self): evt = self.eventtype() self._check_notify(evt) # Another time, after an explicit clear() evt.set() evt.clear() self._check_notify(evt) def test_timeout(self): evt = self.eventtype() results1 = [] results2 = [] N = 5 def f(): results1.append(evt.wait(0.0)) t1 = time.time() r = evt.wait(0.5) t2 = time.time() results2.append((r, t2 - t1)) Bunch(f, N).wait_for_finished() self.assertEqual(results1, [False] * N) for r, dt in results2: self.assertFalse(r) self.assertTimeout(dt, 0.5) # The event is set results1 = [] results2 = [] evt.set() Bunch(f, N).wait_for_finished() self.assertEqual(results1, [True] * N) for r, dt in results2: self.assertTrue(r) def test_set_and_clear(self): # Issue #13502: check that wait() returns true even when the event is # cleared before the waiting thread is woken up. evt = self.eventtype() results = [] N = 5 def f(): results.append(evt.wait(1)) b = Bunch(f, N) b.wait_for_started() time.sleep(0.5) evt.set() evt.clear() b.wait_for_finished() self.assertEqual(results, [True] * N) def test_reset_internal_locks(self): # ensure that condition is still using a Lock after reset evt = self.eventtype() with evt._cond: self.assertFalse(evt._cond.acquire(False)) evt._reset_internal_locks() with evt._cond: self.assertFalse(evt._cond.acquire(False)) class ConditionTests(BaseTestCase): """ Tests for condition variables. """ def test_acquire(self): cond = self.condtype() # Be default we have an RLock: the condition can be acquired multiple # times. cond.acquire() cond.acquire() cond.release() cond.release() lock = threading.Lock() cond = self.condtype(lock) cond.acquire() self.assertFalse(lock.acquire(False)) cond.release() self.assertTrue(lock.acquire(False)) self.assertFalse(cond.acquire(False)) lock.release() with cond: self.assertFalse(lock.acquire(False)) def test_unacquired_wait(self): cond = self.condtype() self.assertRaises(RuntimeError, cond.wait) def test_unacquired_notify(self): cond = self.condtype() self.assertRaises(RuntimeError, cond.notify) def _check_notify(self, cond): # Note that this test is sensitive to timing. If the worker threads # don't execute in a timely fashion, the main thread may think they # are further along then they are. The main thread therefore issues # _wait() statements to try to make sure that it doesn't race ahead # of the workers. # Secondly, this test assumes that condition variables are not subject # to spurious wakeups. The absence of spurious wakeups is an implementation # detail of Condition Cariables in current CPython, but in general, not # a guaranteed property of condition variables as a programming # construct. In particular, it is possible that this can no longer # be conveniently guaranteed should their implementation ever change. N = 5 ready = [] results1 = [] results2 = [] phase_num = 0 def f(): cond.acquire() ready.append(phase_num) result = cond.wait() cond.release() results1.append((result, phase_num)) cond.acquire() ready.append(phase_num) result = cond.wait() cond.release() results2.append((result, phase_num)) b = Bunch(f, N) b.wait_for_started() # first wait, to ensure all workers settle into cond.wait() before # we continue. See issues #8799 and #30727. while len(ready) < 5: _wait() ready.clear() self.assertEqual(results1, []) # Notify 3 threads at first cond.acquire() cond.notify(3) _wait() phase_num = 1 cond.release() while len(results1) < 3: _wait() self.assertEqual(results1, [(True, 1)] * 3) self.assertEqual(results2, []) # make sure all awaken workers settle into cond.wait() while len(ready) < 3: _wait() # Notify 5 threads: they might be in their first or second wait cond.acquire() cond.notify(5) _wait() phase_num = 2 cond.release() while len(results1) + len(results2) < 8: _wait() self.assertEqual(results1, [(True, 1)] * 3 + [(True, 2)] * 2) self.assertEqual(results2, [(True, 2)] * 3) # make sure all workers settle into cond.wait() while len(ready) < 5: _wait() # Notify all threads: they are all in their second wait cond.acquire() cond.notify_all() _wait() phase_num = 3 cond.release() while len(results2) < 5: _wait() self.assertEqual(results1, [(True, 1)] * 3 + [(True,2)] * 2) self.assertEqual(results2, [(True, 2)] * 3 + [(True, 3)] * 2) b.wait_for_finished() def test_notify(self): cond = self.condtype() self._check_notify(cond) # A second time, to check internal state is still ok. self._check_notify(cond) def test_timeout(self): cond = self.condtype() results = [] N = 5 def f(): cond.acquire() t1 = time.time() result = cond.wait(0.5) t2 = time.time() cond.release() results.append((t2 - t1, result)) Bunch(f, N).wait_for_finished() self.assertEqual(len(results), N) for dt, result in results: self.assertTimeout(dt, 0.5) # Note that conceptually (that"s the condition variable protocol) # a wait() may succeed even if no one notifies us and before any # timeout occurs. Spurious wakeups can occur. # This makes it hard to verify the result value. # In practice, this implementation has no spurious wakeups. self.assertFalse(result) def test_waitfor(self): cond = self.condtype() state = 0 def f(): with cond: result = cond.wait_for(lambda : state==4) self.assertTrue(result) self.assertEqual(state, 4) b = Bunch(f, 1) b.wait_for_started() for i in range(4): time.sleep(0.01) with cond: state += 1 cond.notify() b.wait_for_finished() def test_waitfor_timeout(self): cond = self.condtype() state = 0 success = [] def f(): with cond: dt = time.time() result = cond.wait_for(lambda : state==4, timeout=0.1) dt = time.time() - dt self.assertFalse(result) self.assertTimeout(dt, 0.1) success.append(None) b = Bunch(f, 1) b.wait_for_started() # Only increment 3 times, so state == 4 is never reached. for i in range(3): time.sleep(0.01) with cond: state += 1 cond.notify() b.wait_for_finished() self.assertEqual(len(success), 1) class BaseSemaphoreTests(BaseTestCase): """ Common tests for {bounded, unbounded} semaphore objects. """ def test_constructor(self): self.assertRaises(ValueError, self.semtype, value = -1) self.assertRaises(ValueError, self.semtype, value = -sys.maxsize) def test_acquire(self): sem = self.semtype(1) sem.acquire() sem.release() sem = self.semtype(2) sem.acquire() sem.acquire() sem.release() sem.release() def test_acquire_destroy(self): sem = self.semtype() sem.acquire() del sem def test_acquire_contended(self): sem = self.semtype(7) sem.acquire() N = 10 sem_results = [] results1 = [] results2 = [] phase_num = 0 def f(): sem_results.append(sem.acquire()) results1.append(phase_num) sem_results.append(sem.acquire()) results2.append(phase_num) b = Bunch(f, 10) b.wait_for_started() while len(results1) + len(results2) < 6: _wait() self.assertEqual(results1 + results2, [0] * 6) phase_num = 1 for i in range(7): sem.release() while len(results1) + len(results2) < 13: _wait() self.assertEqual(sorted(results1 + results2), [0] * 6 + [1] * 7) phase_num = 2 for i in range(6): sem.release() while len(results1) + len(results2) < 19: _wait() self.assertEqual(sorted(results1 + results2), [0] * 6 + [1] * 7 + [2] * 6) # The semaphore is still locked self.assertFalse(sem.acquire(False)) # Final release, to let the last thread finish sem.release() b.wait_for_finished() self.assertEqual(sem_results, [True] * (6 + 7 + 6 + 1)) def test_try_acquire(self): sem = self.semtype(2) self.assertTrue(sem.acquire(False)) self.assertTrue(sem.acquire(False)) self.assertFalse(sem.acquire(False)) sem.release() self.assertTrue(sem.acquire(False)) def test_try_acquire_contended(self): sem = self.semtype(4) sem.acquire() results = [] def f(): results.append(sem.acquire(False)) results.append(sem.acquire(False)) Bunch(f, 5).wait_for_finished() # There can be a thread switch between acquiring the semaphore and # appending the result, therefore results will not necessarily be # ordered. self.assertEqual(sorted(results), [False] * 7 + [True] * 3 ) def test_acquire_timeout(self): sem = self.semtype(2) self.assertRaises(ValueError, sem.acquire, False, timeout=1.0) self.assertTrue(sem.acquire(timeout=0.005)) self.assertTrue(sem.acquire(timeout=0.005)) self.assertFalse(sem.acquire(timeout=0.005)) sem.release() self.assertTrue(sem.acquire(timeout=0.005)) t = time.time() self.assertFalse(sem.acquire(timeout=0.5)) dt = time.time() - t self.assertTimeout(dt, 0.5) def test_default_value(self): # The default initial value is 1. sem = self.semtype() sem.acquire() def f(): sem.acquire() sem.release() b = Bunch(f, 1) b.wait_for_started() _wait() self.assertFalse(b.finished) sem.release() b.wait_for_finished() def test_with(self): sem = self.semtype(2) def _with(err=None): with sem: self.assertTrue(sem.acquire(False)) sem.release() with sem: self.assertFalse(sem.acquire(False)) if err: raise err _with() self.assertTrue(sem.acquire(False)) sem.release() self.assertRaises(TypeError, _with, TypeError) self.assertTrue(sem.acquire(False)) sem.release() class SemaphoreTests(BaseSemaphoreTests): """ Tests for unbounded semaphores. """ def test_release_unacquired(self): # Unbounded releases are allowed and increment the semaphore's value sem = self.semtype(1) sem.release() sem.acquire() sem.acquire() sem.release() class BoundedSemaphoreTests(BaseSemaphoreTests): """ Tests for bounded semaphores. """ def test_release_unacquired(self): # Cannot go past the initial value sem = self.semtype() self.assertRaises(ValueError, sem.release) sem.acquire() sem.release() self.assertRaises(ValueError, sem.release) class BarrierTests(BaseTestCase): """ Tests for Barrier objects. """ N = 5 defaultTimeout = 2.0 def setUp(self): self.barrier = self.barriertype(self.N, timeout=self.defaultTimeout) def tearDown(self): self.barrier.abort() def run_threads(self, f): b = Bunch(f, self.N-1) f() b.wait_for_finished() def multipass(self, results, n): m = self.barrier.parties self.assertEqual(m, self.N) for i in range(n): results[0].append(True) self.assertEqual(len(results[1]), i * m) self.barrier.wait() results[1].append(True) self.assertEqual(len(results[0]), (i + 1) * m) self.barrier.wait() self.assertEqual(self.barrier.n_waiting, 0) self.assertFalse(self.barrier.broken) def test_barrier(self, passes=1): """ Test that a barrier is passed in lockstep """ results = [[],[]] def f(): self.multipass(results, passes) self.run_threads(f) def test_barrier_10(self): """ Test that a barrier works for 10 consecutive runs """ return self.test_barrier(10) def test_wait_return(self): """ test the return value from barrier.wait """ results = [] def f(): r = self.barrier.wait() results.append(r) self.run_threads(f) self.assertEqual(sum(results), sum(range(self.N))) def test_action(self): """ Test the 'action' callback """ results = [] def action(): results.append(True) barrier = self.barriertype(self.N, action) def f(): barrier.wait() self.assertEqual(len(results), 1) self.run_threads(f) def test_abort(self): """ Test that an abort will put the barrier in a broken state """ results1 = [] results2 = [] def f(): try: i = self.barrier.wait() if i == self.N//2: raise RuntimeError self.barrier.wait() results1.append(True) except threading.BrokenBarrierError: results2.append(True) except RuntimeError: self.barrier.abort() pass self.run_threads(f) self.assertEqual(len(results1), 0) self.assertEqual(len(results2), self.N-1) self.assertTrue(self.barrier.broken) def test_reset(self): """ Test that a 'reset' on a barrier frees the waiting threads """ results1 = [] results2 = [] results3 = [] def f(): i = self.barrier.wait() if i == self.N//2: # Wait until the other threads are all in the barrier. while self.barrier.n_waiting < self.N-1: time.sleep(0.001) self.barrier.reset() else: try: self.barrier.wait() results1.append(True) except threading.BrokenBarrierError: results2.append(True) # Now, pass the barrier again self.barrier.wait() results3.append(True) self.run_threads(f) self.assertEqual(len(results1), 0) self.assertEqual(len(results2), self.N-1) self.assertEqual(len(results3), self.N) def test_abort_and_reset(self): """ Test that a barrier can be reset after being broken. """ results1 = [] results2 = [] results3 = [] barrier2 = self.barriertype(self.N) def f(): try: i = self.barrier.wait() if i == self.N//2: raise RuntimeError self.barrier.wait() results1.append(True) except threading.BrokenBarrierError: results2.append(True) except RuntimeError: self.barrier.abort() pass # Synchronize and reset the barrier. Must synchronize first so # that everyone has left it when we reset, and after so that no # one enters it before the reset. if barrier2.wait() == self.N//2: self.barrier.reset() barrier2.wait() self.barrier.wait() results3.append(True) self.run_threads(f) self.assertEqual(len(results1), 0) self.assertEqual(len(results2), self.N-1) self.assertEqual(len(results3), self.N) def test_timeout(self): """ Test wait(timeout) """ def f(): i = self.barrier.wait() if i == self.N // 2: # One thread is late! time.sleep(1.0) # Default timeout is 2.0, so this is shorter. self.assertRaises(threading.BrokenBarrierError, self.barrier.wait, 0.5) self.run_threads(f) def test_default_timeout(self): """ Test the barrier's default timeout """ # create a barrier with a low default timeout barrier = self.barriertype(self.N, timeout=0.3) def f(): i = barrier.wait() if i == self.N // 2: # One thread is later than the default timeout of 0.3s. time.sleep(1.0) self.assertRaises(threading.BrokenBarrierError, barrier.wait) self.run_threads(f) def test_single_thread(self): b = self.barriertype(1) b.wait() b.wait()
30.389884
84
0.551768
b8bbc5d9dc0f40879c40227455e339b700ea707c
16,386
py
Python
prody/proteins/localpdb.py
grandevelia/ProDy
7c725640a94c16543423c0756388998cb86a97ae
[ "MIT" ]
1
2017-10-01T18:52:08.000Z
2017-10-01T18:52:08.000Z
prody/proteins/localpdb.py
grandevelia/ProDy
7c725640a94c16543423c0756388998cb86a97ae
[ "MIT" ]
null
null
null
prody/proteins/localpdb.py
grandevelia/ProDy
7c725640a94c16543423c0756388998cb86a97ae
[ "MIT" ]
1
2021-10-03T06:10:45.000Z
2021-10-03T06:10:45.000Z
# -*- coding: utf-8 -*- """This module defines functions for handling local PDB folders.""" from glob import glob, iglob from os.path import sep as pathsep from os.path import abspath, isdir, isfile, join, split, splitext, normpath from prody import LOGGER, SETTINGS from prody.utilities import makePath, gunzip, relpath, copyFile, isWritable from prody.utilities import sympath from . import wwpdb from .wwpdb import checkIdentifiers, fetchPDBviaFTP, fetchPDBviaHTTP __all__ = ['pathPDBFolder', 'pathPDBMirror', 'fetchPDB', 'fetchPDBfromMirror', 'iterPDBFilenames', 'findPDBFiles'] def pathPDBFolder(folder=None, divided=False): """Returns or specify local PDB folder for storing PDB files downloaded from `wwPDB <http://www.wwpdb.org/>`_ servers. Files stored in this folder can be accessed via :func:`.fetchPDB` from any working directory. To release the current folder, pass an invalid path, e.g. ``folder=''``. If *divided* is **True**, the divided folder structure of wwPDB servers will be assumed when reading from and writing to the local folder. For example, a structure with identifier **1XYZ** will be present as :file:`pdblocalfolder/yz/pdb1xyz.pdb.gz`. If *divided* is **False**, a plain folder structure will be expected and adopted when saving files. For example, the same structure will be present as :file:`pdblocalfolder/1xyz.pdb.gz`. Finally, in either case, lower case letters will be used and compressed files will be stored.""" if folder is None: folder = SETTINGS.get('pdb_local_folder') if folder: if isdir(folder): return folder, SETTINGS.get('pdb_local_divided', True) else: LOGGER.warn('PDB local folder {0} is not a accessible.' .format(repr(folder))) else: if isdir(folder): folder = abspath(folder) LOGGER.info('Local PDB folder is set: {0}'.format(repr(folder))) if divided: LOGGER.info('wwPDB divided folder structure will be assumed.') else: LOGGER.info('A plain folder structure will be assumed.') SETTINGS['pdb_local_folder'] = folder SETTINGS['pdb_local_divided'] = bool(divided) SETTINGS.save() else: current = SETTINGS.pop('pdb_local_folder') if current: LOGGER.info('PDB folder {0} is released.' .format(repr(current))) SETTINGS.pop('pdb_local_divided') SETTINGS.save() else: raise IOError('{0} is not a valid path.'.format(repr(folder))) wwpdb.pathPDBFolder = pathPDBFolder def pathPDBMirror(path=None, format=None): """Returns or specify PDB mirror path to be used by :func:`.fetchPDB`. To release the current mirror, pass an invalid path, e.g. ``path=''``. If you are keeping a partial mirror, such as PDB files in :file:`/data/structures/divided/pdb/` folder, specify *format*, which is ``'pdb'`` in this case.""" if path is None: path = SETTINGS.get('pdb_mirror_path') format = SETTINGS.get('pdb_mirror_format', None) if path: if isdir(path): if format is None: return path else: return path, format else: LOGGER.warning('PDB mirror path {0} is not a accessible.' .format(repr(path))) else: if isdir(path): path = abspath(path) LOGGER.info('Local PDB mirror path is set: {0}' .format(repr(path))) SETTINGS['pdb_mirror_path'] = path SETTINGS['pdb_mirror_format'] = format SETTINGS.save() else: current = SETTINGS.pop('pdb_mirror_path') if current: LOGGER.info('PDB mirror {0} is released.' .format(repr(current))) SETTINGS.save() else: raise IOError('{0} is not a valid path.'.format(repr(path))) def fetchPDBfromMirror(*pdb, **kwargs): """Returns path(s) to PDB (default), PDBML, or mmCIF file(s) for specified *pdb* identifier(s). If a *folder* is specified, files will be copied into this folder. If *compressed* is **False**, files will decompressed. *format* argument can be used to get `PDBML <http://pdbml.pdb.org/>`_ and `mmCIF <http://mmcif.pdb.org/>`_ files: ``format='cif'`` will fetch an mmCIF file, and ``format='xml'`` will fetch a PDBML file. If PDBML header file is desired, ``noatom=True`` argument will do the job.""" mirror = pathPDBMirror() if mirror is None: raise IOError('no mirror path is set') try: mirror, mirror_format = mirror except ValueError: mirror_format = None format = str(kwargs.pop('format', 'pdb')).lower() if kwargs.get('check', True): identifiers = checkIdentifiers(*pdb) else: identifiers = list(pdb) if format == 'pdb': ftp_divided = 'data/structures/divided/pdb' ftp_pdbext = '.ent.gz' ftp_prefix = 'pdb' extension = '.pdb' elif format == 'xml': if bool(kwargs.pop('noatom', False)): ftp_divided = 'data/structures/divided/XML-noatom' ftp_pdbext = '-noatom.xml.gz' extension = '-noatom.xml' else: ftp_divided = 'data/structures/divided/XML' ftp_pdbext = '.xml.gz' extension = '.xml' ftp_prefix = '' elif format == 'cif': ftp_divided = 'data/structures/divided/mmCIF' ftp_pdbext = '.cif.gz' ftp_prefix = '' extension = '.cif' else: if format: raise ValueError('{0} is not a recognized format' .format(repr(format))) else: raise ValueError('please specify a valid format') if mirror_format: if mirror_format.lower() != format: raise IOError('mirror contains only ' + mirror_format + ' files') ftp_divided = '' else: ftp_divided = join(*ftp_divided.split('/')) folder = kwargs.get('folder') compressed = kwargs.get('compressed', True) filenames = [] append = filenames.append success = 0 failure = 0 for pdb in identifiers: if pdb is None: append(None) continue fn = join(mirror, ftp_divided, pdb[1:3], ftp_prefix + pdb + ftp_pdbext) if isfile(fn): if folder or not compressed: if compressed: fn = copyFile(fn, join(folder or '.', pdb + extension + '.gz')) else: fn = gunzip(fn, join(folder or '.', pdb + extension)) append(normpath(fn)) success += 1 else: append(None) failure += 1 if len(identifiers) == 1: fn = filenames[0] if success: LOGGER.debug('PDB file is found in the local mirror ({0}).' .format(sympath(fn))) return fn else: LOGGER.debug('PDB files found in the local mirror ({0} found, ' '{1} missed).'.format(success, failure)) return filenames def fetchPDB(*pdb, **kwargs): """Returns path(s) to PDB file(s) for specified *pdb* identifier(s). Files will be sought in user specified *folder* or current working director, and then in local PDB folder and mirror, if they are available. If *copy* is set **True**, files will be copied into *folder*. If *compressed* is **False**, all files will be decompressed. See :func:`pathPDBFolder` and :func:`pathPDBMirror` for managing local resources, :func:`.fetchPDBviaFTP` and :func:`.fetchPDBviaHTTP` for downloading files from PDB servers.""" if len(pdb) == 1 and isinstance(pdb[0], list): pdb = pdb[0] if 'format' in kwargs and kwargs.get('format') != 'pdb': return fetchPDBviaFTP(*pdb, **kwargs) identifiers = checkIdentifiers(*pdb) folder = kwargs.get('folder', '.') compressed = kwargs.get('compressed') # check *folder* specified by the user, usually pwd ('.') filedict = findPDBFiles(folder, compressed=compressed) filenames = [] not_found = [] exists = 0 for i, pdb in enumerate(identifiers): if pdb is None: filenames.append(None) elif pdb in filedict: filenames.append(filedict[pdb]) exists += 1 else: filenames.append(None) not_found.append((i, pdb)) if not not_found: if len(filenames) == 1: filenames = filenames[0] if exists: LOGGER.debug('PDB file is found in working directory ({0}).' .format(sympath(filenames))) return filenames if not isWritable(folder): raise IOError('permission to write in {0} is denied, please ' 'specify another folder'.format(folder)) if compressed is not None and not compressed: filedict = findPDBFiles(folder, compressed=True) not_found, decompress = [], not_found for i, pdb in decompress: if pdb in filedict: fn = filedict[pdb] filenames[i] = gunzip(fn, splitext(fn)[0]) else: not_found.append((i, pdb)) if not not_found: return filenames[0] if len(identifiers) == 1 else filenames local_folder = pathPDBFolder() copy = kwargs.setdefault('copy', False) if local_folder: local_folder, is_divided = local_folder temp, not_found = not_found, [] for i, pdb in temp: if is_divided: fn = join(local_folder, pdb[1:3], 'pdb' + pdb + '.pdb.gz') else: fn = join(local_folder, pdb + '.pdb.gz') if isfile(fn): if copy or not compressed and compressed is not None: if compressed: fn = copyFile(fn, join(folder, pdb + 'pdb.gz')) else: fn = gunzip(fn, join(folder, pdb + '.pdb')) filenames[i] = normpath(fn) else: not_found.append((i, pdb)) if not not_found: if len(identifiers) == 1: fn = filenames[0] items = fn.split(pathsep) if len(items) > 5: fndisp = pathsep.join(items[:3] + ['...'] + items[-1:]) else: fndisp = relpath(fn) LOGGER.debug('PDB file is found in the local folder ({0}).' .format(fndisp)) return fn else: return filenames if kwargs['copy'] or (compressed is not None and not compressed): kwargs['folder'] = folder downloads = [pdb for i, pdb in not_found] fns = None try: fns = fetchPDBfromMirror(*downloads, **kwargs) except IOError: pass else: if len(downloads) == 1: fns = [fns] temp, not_found = not_found, [] for i, fn in enumerate(fns): if fn is None: not_found.append(temp[i]) else: i, _ = temp[i] filenames[i] = fn if not not_found: return filenames[0] if len(identifiers) == 1 else filenames if fns: downloads = [pdb for i, pdb in not_found] fns = None tp = kwargs.pop('tp', None) if tp is not None: tp = tp.lower() if tp == 'http': try: fns = fetchPDBviaHTTP(*downloads, check=False, **kwargs) except Exception as err: LOGGER.warn('Downloading PDB files via HTTP failed ' '({0}).'.format(str(err))) elif tp == 'ftp': try: fns = fetchPDBviaFTP(*downloads, check=False, **kwargs) except Exception as err: LOGGER.warn('Downloading PDB files via FTP failed ' '({0}).'.format(str(err))) else: tryHTTP = False try: fns = fetchPDBviaFTP(*downloads, check=False, **kwargs) except Exception as err: tryHTTP = True if fns is None or isinstance(fns, list) and None in fns: tryHTTP = True elif isinstance(fns, list): downloads = [not_found[i][1] for i in range(len(fns)) if fns[i] is None] if len(downloads) > 0: tryHTTP = True if tryHTTP: LOGGER.info('Downloading PDB files via FTP failed, ' 'trying HTTP.') try: fns = fetchPDBviaHTTP(*downloads, check=False, **kwargs) except Exception as err: LOGGER.warn('Downloading PDB files via HTTP also failed ' '({0}).'.format(str(err))) if len(downloads) == 1: fns = [fns] if fns: for i, fn in zip([i for i, pdb in not_found], fns): filenames[i] = fn return filenames[0] if len(identifiers) == 1 else filenames def iterPDBFilenames(path=None, sort=False, unique=True, **kwargs): """Yield PDB filenames in *path* specified by the user or in local PDB mirror (see :func:`.pathPDBMirror`). When *unique* is **True**, files one of potentially identical files will be yielded (e.g. :file:`1mkp.pdb` and :file:`pdb1mkp.ent.gz1`). :file:`.pdb` and :file:`.ent` extensions, and compressed files are considered.""" from re import compile, IGNORECASE if path is None or kwargs.get('mirror') is True: if path is None: path = pathPDBMirror() if path is None: raise ValueError('path must be specified or PDB mirror path ' 'must be set') if sort: pdbs = glob(join(path, 'data/structures/divided/pdb/', '*/*.ent.gz')) pdbs.sort(reverse=kwargs.get('reverse')) else: pdbs = iglob(join(path, 'data/structures/divided/pdb/', '*/*.ent.gz')) for fn in pdbs: yield fn else: unique=bool(unique) if unique: yielded = set() compressed = kwargs.get('compressed') if compressed is None: pdbext = compile('\.(pdb|ent)(\.gz)?$', IGNORECASE) elif compressed: pdbext = compile('\.(pdb|ent)\.gz$', IGNORECASE) else: pdbext = compile('\.(pdb|ent)$', IGNORECASE) pdbs = [pdb for pdb in iglob(join(path, '*')) if pdbext.search(pdb)] if sort: pdbs.sort(reverse=kwargs.get('reverse')) for fn in pdbs: if unique: pdb = splitext(splitext(split(fn)[1])[0])[0] if len(pdb) == 7 and pdb.startswith('pdb'): pdb = pdb[3:] if pdb in yielded: continue else: yielded.add(pdb) yield fn def findPDBFiles(path, case=None, **kwargs): """Returns a dictionary that maps PDB filenames to file paths. If *case* is specified (``'u[pper]'`` or ``'l[ower]'``), dictionary keys (filenames) will be modified accordingly. If a PDB filename has :file:`pdb` prefix, it will be trimmed, for example ``'1mkp'`` will be mapped to file path :file:`./pdb1mkp.pdb.gz`). If a file is present with multiple extensions, only one of them will be returned. See also :func:`.iterPDBFilenames`.""" case = str(case).lower() upper = lower = False if case.startswith('u'): upper = True elif case.startswith('l'): lower = True pdbs = {} for fn in iterPDBFilenames(path, sort=True, reverse=True, **kwargs): fn = normpath(fn) pdb = splitext(splitext(split(fn)[1])[0])[0] if len(pdb) == 7 and pdb.startswith('pdb'): pdb = pdb[3:] if upper: pdbs[pdb.upper()] = fn elif lower: pdbs[pdb.lower()] = fn else: pdbs[pdb] = fn return pdbs
36.332594
84
0.554864
26ccb580be10a6d722cd5312c0ef793f30a2ba61
2,462
py
Python
Server_DL/main_dl.py
nhattruongpham/APS
46166236d34b32457b71d6ef52423bcbf71bc1e8
[ "MIT" ]
null
null
null
Server_DL/main_dl.py
nhattruongpham/APS
46166236d34b32457b71d6ef52423bcbf71bc1e8
[ "MIT" ]
null
null
null
Server_DL/main_dl.py
nhattruongpham/APS
46166236d34b32457b71d6ef52423bcbf71bc1e8
[ "MIT" ]
null
null
null
#!/usr/bin/python3 #-*- coding: utf8 -*- from getImage import * from insert_db import * from mul_update_db_4 import * from select_db import * from mul_update_db_6 import * from getPlate import * from LCD import * from MFRC522 import * from myconnutils import * from license_plate_recognize import * import time import datetime import RPi.GPIO as GPIO import cv2 import numpy as np import os GPIO.setmode(GPIO.BCM) GPIO.setwarnings(False) MIFAREReader = MFRC522() connection = getConnection() cursor = connection.cursor() _number = 'ID1' def main(): _idx = 0 while True: (status,TagType) = MIFAREReader.MFRC522_Request(MIFAREReader.PICC_REQIDL) (status,uid) = MIFAREReader.MFRC522_Anticoll() if (status == MIFAREReader.MI_OK): start = time.time() _timeIn = datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S') _uid = str(uid[0])+"." + str(uid[1]) + "." + str(uid[2]) +"." + str(uid[3]) lcd_string("ID:" + _uid, LCD_LINE_1) _idx = _idx + 1 InsertDB("ParkingSlot", "AutoPlate", "UID", _uid, "TimeIN", _timeIn) Mul_UpdateDB_4("ParkingSlot", "Slot", "INP", _idx, "Number", _number) _money = SelectDB("Money", "ParkingSlot", "DataSample", "UID", _uid) lcd_string("Balance: " + str(_money), LCD_LINE_1) #imgOriginalScene = cv2.imread("2.jpg") imgOriginalScene = GetImage() _license_plate, _plate_image_full, _plate_image_low = getPlate_OCR(imgOriginalScene) cv2.imwrite(os.path.join(os.path.join(os.getcwd(), "result_full/" + _license_plate + "_" + str(_idx) + ".png")), _plate_image_full) cv2.imwrite(os.path.join(os.path.join(os.getcwd(), "result_low/" + _license_plate + "_" + str(_idx) + ".png")), _plate_image_low) lcd_string("Plate: " + _license_plate, LCD_LINE_2) Mul_UpdateDB_6("ParkingSlot", "AutoPlate", "PlateIN", _license_plate, "Balance", _money, "UID", _uid) _outp = SelectDB("OUTP", "ParkingSlot", "Slot", "Number", _number) _inp = SelectDB("INP", "ParkingSlot", "Slot", "Number", _number) available = 10 - int(inp1) + int(outp) lcd_string("Available: " + str(available), LCD_LINE_2) if (available < 5): lcd_string("ParkingSlot Full", LCD_LINE_2) print("Time: ", time.time() - start) if __name__ == "__main__": main()
38.46875
139
0.621852
3fea0257cb9a18df494daa646fb8fc0da6b8c77d
1,008
py
Python
skaben/shape/views.py
skaben/server_core
46ba0551459790dda75abc9cf0ff147fae6d62e8
[ "MIT" ]
null
null
null
skaben/shape/views.py
skaben/server_core
46ba0551459790dda75abc9cf0ff147fae6d62e8
[ "MIT" ]
12
2020-08-14T12:43:04.000Z
2021-09-01T00:22:26.000Z
skaben/shape/views.py
skaben/server_core
46ba0551459790dda75abc9cf0ff147fae6d62e8
[ "MIT" ]
null
null
null
from core.views import DynamicAuthMixin from rest_framework import status, viewsets from .models import AccessCode, MenuItem, Permission, WorkMode from .serializers import ( AccessCodeSerializer, MenuItemSerializer, PermissionSerializer, WorkModeSerializer, ) class AccessCodeViewSet(viewsets.ModelViewSet, DynamicAuthMixin): """ Events in database """ queryset = AccessCode.objects.all() serializer_class = AccessCodeSerializer class PermissionViewSet(viewsets.ModelViewSet, DynamicAuthMixin): """ Events in database """ queryset = Permission.objects.all() serializer_class = PermissionSerializer class MenuItemViewSet(viewsets.ModelViewSet, DynamicAuthMixin): """ Manage locks in database """ queryset = MenuItem.objects.all() serializer_class = MenuItemSerializer class WorkModeViewSet(viewsets.ModelViewSet, DynamicAuthMixin): """ Manage locks in database """ queryset = WorkMode.objects.all() serializer_class = WorkModeSerializer
29.647059
65
0.765873
65a8a0c9529b2e9777d5350a74cbfbac3f65b765
27,171
py
Python
tests/test_auto_sharding_bert.py
alpa-projects/alpa
2c54de2a8fa8a48c77069f4bad802f4e8fa6d126
[ "Apache-2.0" ]
114
2022-03-02T20:38:16.000Z
2022-03-31T20:41:50.000Z
tests/test_auto_sharding_bert.py
alpa-projects/alpa
2c54de2a8fa8a48c77069f4bad802f4e8fa6d126
[ "Apache-2.0" ]
6
2022-03-09T22:04:50.000Z
2022-03-30T17:53:15.000Z
tests/test_auto_sharding_bert.py
alpa-projects/alpa
2c54de2a8fa8a48c77069f4bad802f4e8fa6d126
[ "Apache-2.0" ]
5
2022-03-05T12:04:31.000Z
2022-03-31T03:55:42.000Z
"""Test auto sharding on transformer layers and bert models.""" import unittest import jax import jax.numpy as jnp import numpy as np from flax import optim, linen as nn from alpa import parallelize, ShardParallel, LocalPhysicalDeviceMesh, AutoShardingOption from alpa.model.bert_model import (BertConfig, FlaxBertLayerCollection, FlaxBertForMaskedLMModule) from alpa.util import count_communication_primitives from test_auto_sharding_mlp import ( assert_all_replicated, assert_close, assert_column_partitioned, assert_data_parallel_cost, assert_fully_sharded, assert_less_equal, assert_sharded, assert_replicated_column_partitioned, assert_replicated_row_partitioned, assert_row_partitioned, is_fully_sharded, assert_sharding_zero_stage_3) class AutoShardingAttentionTest(unittest.TestCase): def setUp(self): assert len(jax.local_devices()) >= 4 self.physical_mesh = LocalPhysicalDeviceMesh(jax.local_devices()[:4]) self.as_option = AutoShardingOption() def get_device_mesh(self, shape, mesh_alpha, mesh_beta): return self.physical_mesh.get_logical_mesh(shape, mesh_alpha, mesh_beta) def run_bert_layers(self, batch_size, seq_len, num_layers, hidden_size, num_heads, deterministic, use_remat, device_mesh): @parallelize(method=ShardParallel(devices=device_mesh, auto_sharding_option=self.as_option)) def train_step(optimizer, batch, deterministic, apply_fn): def loss_func(params): rngs = {"dropout": batch["rng"]} out = apply_fn(params, batch["hidden_states"], batch["attention_mask"], deterministic, rngs=rngs)[0] return jnp.mean((out - batch["label"])**2) grad = jax.grad(loss_func)(optimizer.target) new_optimizer = optimizer.apply_gradient(grad) return new_optimizer # Init model and optimizer hidden_states = jnp.ones((batch_size, seq_len, hidden_size), dtype=jnp.float32) attention_mask = jnp.ones((batch_size, seq_len), dtype=jnp.int32) label = jnp.ones((batch_size, seq_len, hidden_size), dtype=jnp.float32) model = FlaxBertLayerCollection( BertConfig(num_hidden_layers=num_layers, hidden_size=hidden_size, intermediate_size=hidden_size * 4, num_attention_heads=num_heads, gradient_checkpointing=use_remat)) rngkey = jax.random.PRNGKey(0) params = model.init(rngkey, hidden_states, attention_mask) optimizer = optim.Adam(1e-2).create(params) # JIT compile optimizer = train_step( optimizer, { "hidden_states": hidden_states, "attention_mask": attention_mask, "label": label, "rng": rngkey }, deterministic, model.apply) # Get optimized HLO IR executable = train_step.get_executable( optimizer, { "hidden_states": hidden_states, "attention_mask": attention_mask, "label": label, "rng": rngkey }, deterministic, model.apply) return (optimizer, executable.get_hlo_text(), executable.auto_sharding_objective) def run_bert_mlm(self, batch_size, seq_len, num_layers, hidden_size, num_heads, vocab_size, deterministic, device_mesh): @parallelize(method=ShardParallel(devices=device_mesh, auto_sharding_option=self.as_option)) def train_step(optimizer, batch): def loss_func(params): rngs = {"dropout": batch["rng"]} logits = model.apply(params, batch["input_ids"], batch["attention_mask"], batch["token_type_ids"], batch["position_ids"], deterministic=deterministic, rngs=rngs)[0] label_mask = jnp.where(batch["labels"] > 0, 1.0, 0.0) labels = jax.nn.one_hot(batch["labels"], logits.shape[-1]) loss = -jnp.sum(labels * jax.nn.log_softmax(logits, axis=-1), axis=-1) return (label_mask * loss).sum() / label_mask.sum() * 0.1234 grad = jax.grad(loss_func)(optimizer.target) new_optimizer = optimizer.apply_gradient(grad) return new_optimizer # Init model and optimizer input_ids = jnp.ones((batch_size, seq_len), dtype=jnp.int32) attention_mask = jnp.ones((batch_size, seq_len), dtype=jnp.int32) token_type_ids = jnp.ones((batch_size, seq_len), dtype=jnp.int32) position_ids = jnp.ones((batch_size, seq_len), dtype=jnp.int32) labels = jnp.ones((batch_size, seq_len), dtype=jnp.int32) model = FlaxBertForMaskedLMModule( BertConfig( num_hidden_layers=num_layers, hidden_size=hidden_size, intermediate_size=hidden_size * 4, num_attention_heads=num_heads, vocab_size=vocab_size, max_position_embeddings=seq_len, )) rngkey = jax.random.PRNGKey(0) params = model.init(rngkey, input_ids, attention_mask, token_type_ids, position_ids) optimizer = optim.Adam(1e-2).create(params) # JIT compile optimizer = train_step( optimizer, { "input_ids": input_ids, "attention_mask": attention_mask, "token_type_ids": token_type_ids, "position_ids": position_ids, "labels": labels, "rng": rngkey }) # Get optimized HLO IR executable = train_step.get_executable( optimizer, { "input_ids": input_ids, "attention_mask": attention_mask, "token_type_ids": token_type_ids, "position_ids": position_ids, "labels": labels, "rng": rngkey }) return (optimizer, executable.get_hlo_text(), executable.auto_sharding_objective) def test_bert_layer_data_parallel(self): batch_size = 64 seq_len = 64 num_layers = 2 hidden_size = 32 num_heads = 8 deterministic = False use_remat = False # Test on different logical mesh shapes for i, mesh_shape in enumerate([(4, 1), (1, 4)]): device_mesh = self.get_device_mesh(mesh_shape, [1, 1], [1, 1]) optimizer, hlo_ir, objective = self.run_bert_layers( batch_size, seq_len, num_layers, hidden_size, num_heads, deterministic, use_remat, device_mesh) assert_data_parallel_cost(optimizer, hlo_ir, objective, device_mesh, self.as_option, i) def test_bert_layer_model_parallel(self): batch_size = 8 seq_len = 8 num_layers = 2 hidden_size = 128 num_heads = 8 deterministic = False use_remat = False # Test on different logical mesh shapes for i, mesh_shape in enumerate([(4, 1), (1, 4)]): device_mesh = self.get_device_mesh(mesh_shape, [1, 1], [1, 1]) optimizer, hlo_ir, objective = self.run_bert_layers( batch_size, seq_len, num_layers, hidden_size, num_heads, deterministic, use_remat, device_mesh) # Check communication cost expected = (num_layers * 4 - 1) * device_mesh.all_reduce_cost( batch_size * seq_len * hidden_size * 4, i) assert_close(objective, expected) n_total, n_all_reduce, n_all_gather, n_reduce_scatter, _ = ( count_communication_primitives(hlo_ir)) if self.as_option.prefer_reduce_scatter: assert n_total == num_layers * 4 - 1 assert n_all_reduce == num_layers * 4 - 1 assert n_total == n_all_reduce else: assert n_total == num_layers * 4 - 1 assert n_all_reduce == num_layers * 4 - 1 assert n_total == n_all_reduce # Check sharding specification for k in range(num_layers): params = optimizer.target["params"][str(k)] weights = [ params["attention"]["self"]["qvk_combined"]["kernel"], params["attention"]["output"]["dense"]["kernel"], params["intermediate"]["dense"]["kernel"], params["output"]["dense"]["kernel"], ] for j in range(len(weights)): if j % 2 == 0: assert_column_partitioned(weights[j], mesh_shape[i], i) else: assert_row_partitioned(weights[j], mesh_shape[i], i) def test_bert_layer_2d_mesh(self): batch_size = 8 seq_len = 8 num_layers = 2 hidden_size = 128 num_heads = 8 deterministic = False use_remat = False # Test on different logical mesh shapes mesh_shape = [2, 2] device_mesh = self.get_device_mesh(mesh_shape, [2, 2], [1, 0.1]) optimizer, hlo_ir, objective = self.run_bert_layers( batch_size, seq_len, num_layers, hidden_size, num_heads, deterministic, use_remat, device_mesh) # Check communication cost params = jax.tree_util.tree_leaves(optimizer.target) expected = (sum( device_mesh.all_reduce_cost( np.prod(x.shape) * 4 / mesh_shape[1], 0) for x in params) + device_mesh.all_reduce_cost( batch_size * seq_len * hidden_size * 4 / mesh_shape[0], 1) * (num_layers * 4 - 1)) assert_close(objective, expected) n_total, n_all_reduce, n_all_gather, n_reduce_scatter, _ = ( count_communication_primitives(hlo_ir, ignore_scalar_all_reduce=True)) if self.as_option.prefer_reduce_scatter: assert n_all_reduce == num_layers * 4 - 1 assert n_reduce_scatter == 2 assert n_all_gather == 1 assert n_total == n_all_reduce + n_reduce_scatter + n_all_gather else: assert n_all_reduce == num_layers * 4 assert n_total == n_all_reduce # Check sharding specification if self.as_option.prefer_reduce_scatter: for weight in jax.tree_util.tree_leaves( optimizer.state.param_states): if len(weight.shape) > 1: assert_fully_sharded(weight) else: for k in range(num_layers): params = optimizer.target["params"][str(k)] weights = [ params["attention"]["self"]["qvk_combined"]["kernel"], params["attention"]["output"]["dense"]["kernel"], params["intermediate"]["dense"]["kernel"], params["output"]["dense"]["kernel"], ] for j in range(len(weights)): if j % 2 == 0: assert_replicated_column_partitioned( weights[j], mesh_shape) else: assert_replicated_row_partitioned( weights[j], mesh_shape) def test_bert_layer_force_batch_dim_mapping(self): batch_size = 64 seq_len = 64 num_layers = 2 hidden_size = 32 num_heads = 8 deterministic = False use_remat = False self.as_option.force_batch_dim_to_mesh_dim = 0 # data parallel device_mesh = self.get_device_mesh([4, 1], [1, 1], [1, 1]) optimizer, hlo_ir, objective = self.run_bert_layers( batch_size, seq_len, num_layers, hidden_size, num_heads, deterministic, use_remat, device_mesh) assert_data_parallel_cost(optimizer, hlo_ir, objective, device_mesh, self.as_option, 0) # model parallel (case 1) device_mesh = self.get_device_mesh([1, 4], [1, 1], [1, 1]) optimizer, hlo_ir, objective = self.run_bert_layers( batch_size, seq_len, num_layers, hidden_size, num_heads, deterministic, use_remat, device_mesh) expected = (num_layers * 4 - 1) * device_mesh.all_reduce_cost( batch_size * seq_len * hidden_size * 4, 1) assert_close(objective, expected) # model parallel (case 2) batch_size = 1 device_mesh = self.get_device_mesh([1, 4], [1, 1], [1, 1]) optimizer, hlo_ir, objective = self.run_bert_layers( batch_size, seq_len, num_layers, hidden_size, num_heads, deterministic, use_remat, device_mesh) expected = (num_layers * 4 - 1) * device_mesh.all_reduce_cost( batch_size * seq_len * hidden_size * 4, 1) assert_close(objective, expected) def test_embedding_2d_mesh(self): vocab_size = 1024 hidden_size = 8 batch_size = 8 seq_len = 8 mesh_shape = [2, 2] # Model and training step definition class Model(nn.Module): """Tied input and output embedding.""" def setup(self): self.embed = nn.Embed(vocab_size, hidden_size) def __call__(self, x): x = self.embed(x) embed = self.embed.variables["params"]["embedding"] x = x @ embed.T return x logical_mesh = self.get_device_mesh(mesh_shape, [1, 1], [1, 1]) @parallelize(method=ShardParallel(devices=logical_mesh)) def func(optimizer, x, y): def loss_func(params): out = model.apply(params, x) y_ = jax.nn.one_hot(y, out.shape[-1]) loss = -jnp.sum(y_ * jax.nn.log_softmax(out, axis=-1), axis=-1) return loss.sum() grad = jax.grad(loss_func)(optimizer.target) new_optimizer = optimizer.apply_gradient(grad) return new_optimizer # Init model and optimizer x = jnp.ones((batch_size, seq_len), np.int32) y = jnp.ones((batch_size, seq_len), np.int32) model = Model() rngkey = jax.random.PRNGKey(0) params = model.init(rngkey, x) optimizer = optim.Adam(1e-2).create(params) # JIT Compile optimize = func(optimizer, x, y) # Check communication cost executable = func.get_executable(optimizer, x, y) hlo_ir = executable.get_hlo_text() objective = executable.auto_sharding_objective params = jax.tree_util.tree_leaves(optimizer.target) expected = ( logical_mesh.all_reduce_cost( vocab_size * hidden_size * 4 / mesh_shape[1], 0) + logical_mesh.all_reduce_cost( batch_size * seq_len * hidden_size * 4 / mesh_shape[0], 1) * 2 + logical_mesh.all_reduce_cost( batch_size * seq_len * 4 / mesh_shape[0], 1) * 2) assert_close(objective, expected) n_total, n_all_reduce, n_all_gather, n_reduce_scatter, _ = ( count_communication_primitives(hlo_ir)) assert n_total == n_all_reduce def test_bert_mlm_data_parallel(self): batch_size = 32 seq_len = 32 num_layers = 2 hidden_size = 16 num_heads = 4 vocab_size = 128 deterministic = False # Test on different logical mesh shapes for i, mesh_shape in enumerate([(4, 1), (1, 4)]): device_mesh = self.get_device_mesh(mesh_shape, [1, 1], [1, 1]) optimizer, hlo_ir, objective = self.run_bert_mlm( batch_size, seq_len, num_layers, hidden_size, num_heads, vocab_size, deterministic, device_mesh) if self.as_option.force_zero_stage_3: # only the weight and opt_state of token_embed is not sharded assert_sharding_zero_stage_3(optimizer, 3) continue assert_data_parallel_cost(optimizer, hlo_ir, objective, device_mesh, self.as_option, i, 1) @unittest.skip("This test is broken after we disallow some replicated iota." ) def test_bert_mlm_model_parallel(self): batch_size = 16 seq_len = 16 num_layers = 2 hidden_size = 128 num_heads = 4 vocab_size = 512 deterministic = False self.as_option.allow_all_gather = False # Temporary hack self.as_option.allow_all_to_all = False # Temporary hack # Test on different logical mesh shapes for i, mesh_shape in enumerate([(4, 1), (1, 4)]): device_mesh = self.get_device_mesh(mesh_shape, [1, 1], [1, 1]) optimizer, hlo_ir, objective = self.run_bert_mlm( batch_size, seq_len, num_layers, hidden_size, num_heads, vocab_size, deterministic, device_mesh) # Check communication cost # expected_cost = embed.forward (1) + embed.backward(2) + # LM_head.forward (1) + LM_head.backward (1) + # LM_head.weight.backward (1) + log_softmax.forward (2) + # transformer.forward (2 * num_layers) + transformer.backward (2 * num_layers) # # Note that the final cost is different from this estimated cost in ILP solver. # The SPMD partitioner will eliminate some unnecessary communication in favor of # redundant computation (e.g., it will elimiate the all-reduce in embed.backward). expected = ( device_mesh.all_reduce_cost( batch_size * seq_len * hidden_size * 4, i) * 5 + device_mesh.all_reduce_cost(hidden_size * hidden_size * 4, i) + device_mesh.all_reduce_cost(batch_size * seq_len * 4, i) * 2 + device_mesh.all_reduce_cost( batch_size * seq_len * hidden_size * 4, i) * num_layers * 4) assert_close(objective, expected) n_total, n_all_reduce, n_all_gather, n_reduce_scatter, _ = ( count_communication_primitives(hlo_ir)) # real number of all-reduce = transformers (4 * num_layers) + log_softmax (2) + # embed.forward (1) + embad.backward (1) assert n_all_reduce == num_layers * 4 + 4 assert n_total == n_all_reduce # Check sharding specification embed_weight = optimizer.target["params"]["bert"]["embeddings"][ "word_embeddings"]["embedding"] lm_head = optimizer.target["params"]["cls"]["predictions"][ "transform"]["dense"]["kernel"] assert_row_partitioned(embed_weight, mesh_shape[i], i) assert_all_replicated(lm_head, np.prod(mesh_shape)) for k in range(num_layers): params = optimizer.target["params"]["bert"]["encoder"]["layer"][ str(k)] weights = [ params["attention"]["self"]["qvk_combined"]["kernel"], params["attention"]["output"]["dense"]["kernel"], params["intermediate"]["dense"]["kernel"], params["output"]["dense"]["kernel"], ] for j in range(len(weights)): if j % 2 == 0: assert_column_partitioned(weights[j], mesh_shape[i], i) else: assert_row_partitioned(weights[j], mesh_shape[i], i) def test_bert_mlm_2d_mesh(self): batch_size = 4 seq_len = 4 num_layers = 2 hidden_size = 512 num_heads = 4 vocab_size = 4096 deterministic = False # To generate the desired strategy, we have to turn off mixed mesh shape and all-gather # and enable recomputing heavy ops. self.as_option.allow_recompute_heavy_op = True self.as_option.allow_all_gather = False self.as_option.allow_mixed_mesh_shape = False mesh_shape = [2, 2] device_mesh = self.get_device_mesh(mesh_shape, [2, 2], [1, 0.1]) optimizer, hlo_ir, objective = self.run_bert_mlm( batch_size, seq_len, num_layers, hidden_size, num_heads, vocab_size, deterministic, device_mesh) # Check communication cost. n_total, n_all_reduce, n_all_gather, n_reduce_scatter, _ = ( count_communication_primitives(hlo_ir, ignore_scalar_all_reduce=True)) if self.as_option.prefer_reduce_scatter: assert n_all_reduce == 4 * num_layers + 2 + 2 assert n_reduce_scatter <= 3 # The correct number should be 2, # but GpuMultiOutputFusion can make # some reduce-scatter unable to be combined assert n_all_gather == 1 assert n_total == n_all_reduce + n_all_gather + n_reduce_scatter else: # real number of all-reduce = transformers (4 * num_layers) + log_softmax (2) + # embed.forward (1) + embad.backward (1) + weights (1) assert n_all_reduce == 4 * num_layers + 2 + 2 + 1 assert n_total == n_all_reduce # Check sharding specification assert "s32[4,4,4096]{2,1,0} iota()" not in hlo_ir assert "s32[2,4,2048]{2,1,0} iota()" in hlo_ir if self.as_option.prefer_reduce_scatter: num_not_sharded = 0 # allow the token_type_embeddings not partitioned. for weight in jax.tree_util.tree_leaves( optimizer.state.param_states): if len(weight.shape) > 1: if not is_fully_sharded(weight): num_not_sharded += 1 assert num_not_sharded <= 2 else: embed_weight = (optimizer.target["params"]["bert"]["embeddings"] ["word_embeddings"]["embedding"]) lm_head = (optimizer.target["params"]["cls"]["predictions"] ["transform"]["dense"]["kernel"]) assert_replicated_row_partitioned(embed_weight, mesh_shape) assert_all_replicated(lm_head, np.prod(mesh_shape)) for k in range(num_layers): params = optimizer.target["params"]["bert"]["encoder"]["layer"][ str(k)] weights = [ params["attention"]["self"]["qvk_combined"]["kernel"], params["attention"]["output"]["dense"]["kernel"], params["intermediate"]["dense"]["kernel"], params["output"]["dense"]["kernel"], ] for j in range(len(weights)): if j % 2 == 0: assert_replicated_column_partitioned( weights[j], mesh_shape) else: assert_replicated_row_partitioned( weights[j], mesh_shape) def test_bert_layer_data_parallel_reduce_scatter(self): self.as_option.prefer_reduce_scatter = True self.test_bert_layer_data_parallel() def test_bert_layer_model_parallel_reduce_scatter(self): self.as_option.prefer_reduce_scatter = True self.test_bert_layer_model_parallel() def test_bert_layer_2d_mesh_reduce_scatter(self): self.as_option.prefer_reduce_scatter = True self.test_bert_layer_2d_mesh() def test_bert_mlm_data_parallel_reduce_scatter(self): self.as_option.prefer_reduce_scatter = True self.test_bert_mlm_data_parallel() def test_bert_mlm_data_parallel_reduce_scatter_zero_3(self): self.as_option.force_zero_stage_3 = True self.as_option.force_zero_stage_3_all_gather_threshold = 1 self.test_bert_mlm_data_parallel() @unittest.skip("This test is broken after we disallow some replicated iota." ) def test_bert_mlm_model_parallel_reduce_scatter(self): self.as_option.prefer_reduce_scatter = True self.test_bert_mlm_model_parallel() def test_bert_mlm_2d_mesh_reduce_scatter(self): self.as_option.prefer_reduce_scatter = True self.test_bert_mlm_2d_mesh() def test_bert_layer_model_parallel_remat(self): batch_size = 8 seq_len = 8 num_layers = 2 hidden_size = 128 num_heads = 8 deterministic = False use_remat = True # Test on different logical mesh shapes for i, mesh_shape in enumerate([(4, 1), (1, 4)]): device_mesh = self.get_device_mesh(mesh_shape, [1, 1], [1, 1]) optimizer, hlo_ir, objective = self.run_bert_layers( batch_size, seq_len, num_layers, hidden_size, num_heads, deterministic, use_remat, device_mesh) expected = (num_layers * 6 - 1) * device_mesh.all_reduce_cost( batch_size * seq_len * hidden_size * 4, i) assert_close(objective, expected) n_total, n_all_reduce, n_all_gather, n_reduce_scatter, _ = ( count_communication_primitives(hlo_ir)) assert n_total == num_layers * 6 - 1 assert n_all_reduce == num_layers * 6 - 1 assert n_total == n_all_reduce def suite(): suite = unittest.TestSuite() def add(name): suite.addTest(AutoShardingAttentionTest(name)) add("test_bert_layer_data_parallel") add("test_bert_layer_model_parallel") add("test_bert_layer_2d_mesh") add("test_bert_layer_force_batch_dim_mapping") add("test_embedding_2d_mesh") add("test_bert_mlm_data_parallel") add("test_bert_mlm_model_parallel") add("test_bert_mlm_2d_mesh") add("test_bert_layer_data_parallel_reduce_scatter") add("test_bert_layer_model_parallel_reduce_scatter") add("test_bert_layer_2d_mesh_reduce_scatter") add("test_bert_mlm_data_parallel_reduce_scatter") add("test_bert_mlm_model_parallel_reduce_scatter") add("test_bert_mlm_2d_mesh_reduce_scatter") add("test_bert_mlm_data_parallel_reduce_scatter_zero_3") add("test_bert_layer_model_parallel_remat") return suite if __name__ == "__main__": runner = unittest.TextTestRunner() runner.run(suite())
41.673313
106
0.581208
22676eb943b62a7e6c4cad675d1021dd479e7e9b
786
py
Python
test/test_taxon_database.py
sckott/pytaxa
ea9f47dfbb3bf5bba53d82eb2bc7116051af87fb
[ "MIT" ]
9
2018-06-14T23:32:01.000Z
2019-09-29T00:42:59.000Z
test/test_taxon_database.py
sckott/pytaxa
ea9f47dfbb3bf5bba53d82eb2bc7116051af87fb
[ "MIT" ]
16
2018-06-26T21:43:30.000Z
2018-07-07T01:18:04.000Z
test/test_taxon_database.py
sckott/pytaxa
ea9f47dfbb3bf5bba53d82eb2bc7116051af87fb
[ "MIT" ]
1
2018-08-05T21:49:11.000Z
2018-08-05T21:49:11.000Z
"""Tests for taxon_database""" import os # from nose.tools import * import pytest from pytaxa import constructors as c def test_taxon_database(): "taxon_database - param: database" res = c.taxon_database('ncbi') assert dict == res.__class__ assert 4 == len(res) assert 'ncbi' == res['database'] def test_taxon_database_other_params(): "taxon_database - param: all" res = c.taxon_database("ncbi", "http://www.ncbi.nlm.nih.gov/taxonomy", "NCBI Taxonomy Database", "*") assert dict == res.__class__ assert 4 == len(res) assert 'ncbi' == res['database'] assert "http://www.ncbi.nlm.nih.gov/taxonomy" == res['url'] assert "NCBI Taxonomy Database" == res['description'] assert "*" == res['id_regex']
30.230769
63
0.63486
acbeb430dce160ba5bee96ad70fd8a69435019be
4,969
py
Python
pythonProject1/venv/Lib/site-packages/pydantic/error_wrappers.py
mjtomlinson/CNE330_Python_1_Final_Project
05020806860937ef37b9a0ad2e27de4897a606de
[ "CC0-1.0" ]
10
2020-06-11T23:20:03.000Z
2022-01-14T16:07:27.000Z
pythonProject1/venv/Lib/site-packages/pydantic/error_wrappers.py
mjtomlinson/CNE330_Python_1_Final_Project
05020806860937ef37b9a0ad2e27de4897a606de
[ "CC0-1.0" ]
2
2021-05-12T00:09:30.000Z
2022-02-14T01:36:14.000Z
pythonProject1/venv/Lib/site-packages/pydantic/error_wrappers.py
mjtomlinson/CNE330_Python_1_Final_Project
05020806860937ef37b9a0ad2e27de4897a606de
[ "CC0-1.0" ]
2
2020-06-22T09:46:57.000Z
2021-04-25T21:32:04.000Z
import json from typing import TYPE_CHECKING, Any, Dict, Generator, List, Optional, Sequence, Tuple, Type, Union from .json import pydantic_encoder from .utils import Representation if TYPE_CHECKING: from .main import BaseConfig # noqa: F401 from .types import ModelOrDc # noqa: F401 from .typing import ReprArgs Loc = Tuple[Union[int, str], ...] __all__ = 'ErrorWrapper', 'ValidationError' class ErrorWrapper(Representation): __slots__ = 'exc', '_loc' def __init__(self, exc: Exception, loc: Union[str, 'Loc']) -> None: self.exc = exc self._loc = loc def loc_tuple(self) -> 'Loc': if isinstance(self._loc, tuple): return self._loc else: return (self._loc,) def __repr_args__(self) -> 'ReprArgs': return [('exc', self.exc), ('loc', self.loc_tuple())] # ErrorList is something like Union[List[Union[List[ErrorWrapper], ErrorWrapper]], ErrorWrapper] # but recursive, therefore just use: ErrorList = Union[Sequence[Any], ErrorWrapper] class ValidationError(Representation, ValueError): __slots__ = 'raw_errors', 'model', '_error_cache' def __init__(self, errors: Sequence[ErrorList], model: 'ModelOrDc') -> None: self.raw_errors = errors self.model = model self._error_cache: Optional[List[Dict[str, Any]]] = None def errors(self) -> List[Dict[str, Any]]: if self._error_cache is None: try: config = self.model.__config__ # type: ignore except AttributeError: config = self.model.__pydantic_model__.__config__ # type: ignore self._error_cache = list(flatten_errors(self.raw_errors, config)) return self._error_cache def json(self, *, indent: Union[None, int, str] = 2) -> str: return json.dumps(self.errors(), indent=indent, default=pydantic_encoder) def __str__(self) -> str: errors = self.errors() no_errors = len(errors) return ( f'{no_errors} validation error{"" if no_errors == 1 else "s"} for {self.model.__name__}\n' f'{display_errors(errors)}' ) def __repr_args__(self) -> 'ReprArgs': return [('model', self.model.__name__), ('errors', self.errors())] def display_errors(errors: List[Dict[str, Any]]) -> str: return '\n'.join(f'{_display_error_loc(e)}\n {e["msg"]} ({_display_error_type_and_ctx(e)})' for e in errors) def _display_error_loc(error: Dict[str, Any]) -> str: return ' -> '.join(str(l) for l in error['loc']) def _display_error_type_and_ctx(error: Dict[str, Any]) -> str: t = 'type=' + error['type'] ctx = error.get('ctx') if ctx: return t + ''.join(f'; {k}={v}' for k, v in ctx.items()) else: return t def flatten_errors( errors: Sequence[Any], config: Type['BaseConfig'], loc: Optional['Loc'] = None ) -> Generator[Dict[str, Any], None, None]: for error in errors: if isinstance(error, ErrorWrapper): if loc: error_loc = loc + error.loc_tuple() else: error_loc = error.loc_tuple() if isinstance(error.exc, ValidationError): yield from flatten_errors(error.exc.raw_errors, config, error_loc) else: yield error_dict(error.exc, config, error_loc) elif isinstance(error, list): yield from flatten_errors(error, config, loc=loc) else: raise RuntimeError(f'Unknown error object: {error}') def error_dict(exc: Exception, config: Type['BaseConfig'], loc: 'Loc') -> Dict[str, Any]: type_ = get_exc_type(exc.__class__) msg_template = config.error_msg_templates.get(type_) or getattr(exc, 'msg_template', None) ctx = exc.__dict__ if msg_template: msg = msg_template.format(**ctx) else: msg = str(exc) d: Dict[str, Any] = {'loc': loc, 'msg': msg, 'type': type_} if ctx: d['ctx'] = ctx return d _EXC_TYPE_CACHE: Dict[Type[Exception], str] = {} def get_exc_type(cls: Type[Exception]) -> str: # slightly more efficient than using lru_cache since we don't need to worry about the cache filling up try: return _EXC_TYPE_CACHE[cls] except KeyError: r = _get_exc_type(cls) _EXC_TYPE_CACHE[cls] = r return r def _get_exc_type(cls: Type[Exception]) -> str: if issubclass(cls, AssertionError): return 'assertion_error' base_name = 'type_error' if issubclass(cls, TypeError) else 'value_error' if cls in (TypeError, ValueError): # just TypeError or ValueError, no extra code return base_name # if it's not a TypeError or ValueError, we just take the lowercase of the exception name # no chaining or snake case logic, use "code" for more complex error types. code = getattr(cls, 'code', None) or cls.__name__.replace('Error', '').lower() return base_name + '.' + code
32.690789
113
0.630912
977b2d00b513c6629f2b2ceb3ad305d8dabbe239
3,241
py
Python
lib/surface/iot/devices/update.py
kustodian/google-cloud-sdk
b6bae4137d4b58030adb3dcb1271216dfb19f96d
[ "Apache-2.0" ]
null
null
null
lib/surface/iot/devices/update.py
kustodian/google-cloud-sdk
b6bae4137d4b58030adb3dcb1271216dfb19f96d
[ "Apache-2.0" ]
11
2020-02-29T02:51:12.000Z
2022-03-30T23:20:08.000Z
lib/surface/iot/devices/update.py
kustodian/google-cloud-sdk
b6bae4137d4b58030adb3dcb1271216dfb19f96d
[ "Apache-2.0" ]
1
2020-07-24T18:47:35.000Z
2020-07-24T18:47:35.000Z
# -*- coding: utf-8 -*- # # Copyright 2017 Google LLC. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """`gcloud iot devices update` command.""" from __future__ import absolute_import from __future__ import division from __future__ import unicode_literals from googlecloudsdk.api_lib.cloudiot import devices from googlecloudsdk.calliope import base from googlecloudsdk.command_lib.iot import flags from googlecloudsdk.command_lib.iot import resource_args from googlecloudsdk.command_lib.iot import util from googlecloudsdk.core import log @base.ReleaseTracks(base.ReleaseTrack.GA) class Update(base.UpdateCommand): """Update an existing device.""" @staticmethod def Args(parser): resource_args.AddDeviceResourceArg(parser, 'to update') flags.AddDeviceFlagsToParser(parser, default_for_blocked_flags=False) flags.AddLogLevelFlagToParser(parser) def Run(self, args): client = devices.DevicesClient() device_ref = args.CONCEPTS.device.Parse() metadata = util.ParseMetadata(args.metadata, args.metadata_from_file, client.messages) log_level = util.ParseLogLevel( args.log_level, client.messages.Device.LogLevelValueValuesEnum) device = client.Patch(device_ref, blocked=args.blocked, metadata=metadata, log_level=log_level) log.UpdatedResource(device_ref.Name(), 'device') return device @base.ReleaseTracks(base.ReleaseTrack.ALPHA, base.ReleaseTrack.BETA) class UpdateAlpha(base.UpdateCommand): """Update an existing device.""" @staticmethod def Args(parser): resource_args.AddDeviceResourceArg(parser, 'to update') flags.AddDeviceFlagsToParser(parser, default_for_blocked_flags=False) flags.GATEWAY_AUTH_METHOD_ENUM_MAPPER.choice_arg.AddToParser(parser) flags.AddLogLevelFlagToParser(parser) def Run(self, args): client = devices.DevicesClient() device_ref = args.CONCEPTS.device.Parse() metadata = util.ParseMetadata(args.metadata, args.metadata_from_file, client.messages) auth_method = flags.GATEWAY_AUTH_METHOD_ENUM_MAPPER.GetEnumForChoice( args.auth_method) log_level = util.ParseLogLevel( args.log_level, client.messages.Device.LogLevelValueValuesEnum) device = client.Patch(device_ref, blocked=args.blocked, metadata=metadata, auth_method=auth_method, log_level=log_level) log.UpdatedResource(device_ref.Name(), 'device') return device
35.615385
74
0.695773
fecaaf82e30984425cb558de36c37f9f02f3e2cf
659
py
Python
corpus/tests.py
agladman/betterbot
ecabd63022b9aa0a2f7104caff69a37ecfa98781
[ "MIT" ]
null
null
null
corpus/tests.py
agladman/betterbot
ecabd63022b9aa0a2f7104caff69a37ecfa98781
[ "MIT" ]
null
null
null
corpus/tests.py
agladman/betterbot
ecabd63022b9aa0a2f7104caff69a37ecfa98781
[ "MIT" ]
null
null
null
# from django.test import TestCase import unittest import unittest.mock as mock import markovify from .models import Sentence as Sen from betterbot.settings import TEXT_MODEL_JSON_FILE @unittest.skip('blocked') class SentenceTestCase(unittest.TestCase): """ can't create test db, old migration that was run with --fake (corpus 0004_auto_20161214_1203) seems to be blocking it """ def test_load_reconstituted_text_model(self): reconstituted_model = markovify.Text.from_json(TEXT_MODEL_JSON_FILE) self.assertTrue(reconstituted_model) def test_create_method(self): s = Sen.create() self.assertTrue(s)
27.458333
76
0.746586
38a2463fdde84789b376972f458e8b05f0ac9080
1,545
py
Python
flex/loading/schema/__init__.py
maroux/flex
dfd7c6d79d065d7ce1b0c799e51e9bb5292612b2
[ "MIT" ]
160
2015-01-15T05:36:44.000Z
2021-08-04T00:43:54.000Z
flex/loading/schema/__init__.py
maroux/flex
dfd7c6d79d065d7ce1b0c799e51e9bb5292612b2
[ "MIT" ]
151
2015-01-20T16:45:36.000Z
2022-02-23T21:07:58.000Z
flex/loading/schema/__init__.py
maroux/flex
dfd7c6d79d065d7ce1b0c799e51e9bb5292612b2
[ "MIT" ]
90
2015-01-20T11:19:36.000Z
2021-08-03T08:58:18.000Z
from flex.constants import ( OBJECT, ) from flex.datastructures import ( ValidationDict, ) from flex.validation.common import ( generate_object_validator, ) from flex.loading.common.mimetypes import ( mimetype_validator, ) from .info import info_validator from .swagger import swagger_version_validator from .host import host_validator from .base_path import base_path_validator from .schemes import schemes_validator from .paths import paths_validator __ALL__ = [ 'info_validator', 'swagger_schema_validators', 'host_validator', 'base_path_validator', 'schemes_validator', 'mimetype_validator', 'paths_validator', ] swagger_schema = { 'type': OBJECT, 'required': [ 'info', 'paths', 'swagger', ], } non_field_validators = ValidationDict() non_field_validators.add_property_validator('info', info_validator) non_field_validators.add_property_validator('swagger', swagger_version_validator) non_field_validators.add_property_validator('host', host_validator) non_field_validators.add_property_validator('basePath', base_path_validator) non_field_validators.add_property_validator('schemes', schemes_validator) non_field_validators.add_property_validator('produces', mimetype_validator) non_field_validators.add_property_validator('consumes', mimetype_validator) non_field_validators.add_property_validator('paths', paths_validator) swagger_schema_validator = generate_object_validator( schema=swagger_schema, non_field_validators=non_field_validators, )
28.611111
81
0.794175
264d3e14d545cd517b88673576f7787d3334300e
6,781
py
Python
src/app.py
luisarojas/temp-imm-policy
660adc750e1c3312627a4a24df246a8e2701081a
[ "MIT" ]
1
2021-05-12T12:48:55.000Z
2021-05-12T12:48:55.000Z
src/app.py
luisarojas/temp-imm-policy
660adc750e1c3312627a4a24df246a8e2701081a
[ "MIT" ]
null
null
null
src/app.py
luisarojas/temp-imm-policy
660adc750e1c3312627a4a24df246a8e2701081a
[ "MIT" ]
null
null
null
from selenium import webdriver from selenium.webdriver.common.by import By from selenium.webdriver.support.ui import WebDriverWait from selenium.webdriver.support import expected_conditions as EC from bs4 import BeautifulSoup from pathlib import Path from datetime import datetime, timedelta from email.message import EmailMessage import time import sys import smtplib import ssl import socket import platform import pytz est_timezone = pytz.timezone('EST') testing = False test_file_html='test.html' prev_page_content = None prev_page_content_length = None content_changed = False length_changed = False html = None url = "https://www.canada.ca/en/immigration-refugees-citizenship/corporate/mandate/policies-operational-instructions-agreements/public-policies/trpr-international-graduates.html" def check_diff(): if not testing: chrome_options = webdriver.ChromeOptions() chrome_options.add_argument('--headless') chrome_options.add_argument('--no-sandbox') # Required when running as root user; otherwise there are "no sandbox" errors try: driver_file_name = '' if "Linux" in platform.platform(): driver_file_name = './drivers/chromedriver-v90-linux' elif "macOS" in platform.platform(): driver_file_name = './drivers/chromedriver-v90-mac' else: print("Cannot identify the current OS") sys.exit(-1) driver = webdriver.Chrome(driver_file_name, options=chrome_options, service_args=['--verbose', '--log-path=/tmp/chromedriver.log']) driver.get(url) # Wait for a maximum of 10 seconds for an element matching the given criteria to be found element = WebDriverWait(driver, 10).until( EC.presence_of_element_located((By.CLASS_NAME, 'mwsgeneric-base-html')) ) html = driver.page_source finally: driver.close() driver.quit() else: with open(test_file_html,'r') as file: html = file.read() soup = BeautifulSoup(html, "html.parser") page_content_soup = soup.select('div.mwsgeneric-base-html.parbase.section') try: page_content = page_content_soup[0] except IndexError as e: return {"content-changed": False, "length-changed": True, "html": f'There has been a change in the number of sections in this page, which resulted in an error when parsing the site.<br><br>Error: {e}'} page_content_length = len(page_content_soup) global prev_page_content global prev_page_content_length # Check if either the contents or the number of sections changed if ((hash(prev_page_content) != hash(page_content)) and (prev_page_content)) or ((hash(prev_page_content_length) != hash(page_content)) and (prev_page_content_length)): content_changed = True if (prev_page_content_length != page_content_length) and (prev_page_content_length): length_changed = True else: content_changed = False length_changed = False prev_page_content = page_content message_html = page_content if length_changed: message_html = f'There has been a change in the number of sections in this page.' return {"content-changed": content_changed, "length-changed": length_changed, "html": message_html} def send_email(html_message): if Path('env.py').exists(): from env import ENV try: recipient_emails_str = ', '.join(ENV['recipient']['emails']) if testing: recipient_emails_str = ENV['recipient']['emails'][0] print(f'Sending notification e-mail to: {recipient_emails_str}... ',end='') except Exception as e: print('\n', e) print('Error: Unable to properly read recipient emails from env.py file') sys.exit(-1) try: port = 465 # For SSL smtp_server = "smtp.gmail.com" sender_email = ENV['sender']['email'] password = ENV['sender']['password'] subject = '🆕 Temp. Immigration Policy Update' if testing: subject += ' - Test' message = EmailMessage() message['Subject'] = subject message['From'] = sender_email message['To'] = recipient_emails_str try: message.set_content(html_message.get_text()) except Exception as e: message.set_content(f'There was a problem setting the content for this message:<br>{e}') html_template = '' with open('template.html','r') as file: html_template = file.read() html_message = html_template.replace('[page-content]', str(html_message)).replace('[url]', url) message.add_alternative(html_message, subtype='html') context = ssl.create_default_context() with smtplib.SMTP_SSL(smtp_server, port, context=context) as server: server.login(sender_email, password) server.send_message(message) print('Sent.') except Exception as e: print('\n', e) else: print('Unable to import env.py file. Won\'t send e-mail.') def reset_settings(): html = None content_changed = False length_changed = False if __name__ == "__main__": if testing: print('\033[93m\033[1m' + ('-'*30) + '\n*** IN TESTING ENVIRONMENT ***\n' + ('-'*30)) print(f'Using `{test_file_html}` as source of web-scrapping content\033[0m') start_date = est_timezone.localize(datetime(2021, 4, 26, 9, 0, 0)) # Apr 26, 2021 at 9 AM seconds = 86400 # check every 24 hours # seconds = 60 # check every minute print('Frequency: Every ', end='') if seconds < 60: print(f'{seconds} second(s)') elif (seconds/60) < 60: print(f'{int(seconds/60)} minutes(s)') else: print(f'{int(seconds/60/60)} hours(s)') print(f"Starting time: {format(start_date.strftime('%b %d, %Y at %I:%M %p %Z'))}\n") while True: now = est_timezone.localize(datetime.now()) # Have not yet reached the start date if now <= start_date: time.sleep(60) # Try again in 60 seconds else: print(now.strftime('%b %d, %Y at %I:%M %p %Z'),': ', end='') res = check_diff() if res["length-changed"]: print(f'\033[91mUnable to find HTML objects\033[0m') send_email(res['html']) sys.exit(0) elif res["content-changed"]: print(f'\033[92mThere are content changes\033[0m') send_email(res['html']) else: print('No changes') reset_settings() time.sleep(seconds)
35.317708
209
0.630733
941f13501ea23a47f81d705fda6a5c9028d604fd
147
py
Python
ws-python/ex032.py
DerickSilva/Python
8e81c6fe403e3321f18d2767f0bdfc818b180fd2
[ "MIT" ]
null
null
null
ws-python/ex032.py
DerickSilva/Python
8e81c6fe403e3321f18d2767f0bdfc818b180fd2
[ "MIT" ]
null
null
null
ws-python/ex032.py
DerickSilva/Python
8e81c6fe403e3321f18d2767f0bdfc818b180fd2
[ "MIT" ]
null
null
null
ano = int(input('Que ano deseja analisar? ')) if ano % 4 == 0: print(f'O ano {ano} é Bissexto') else: print(f'O ano {ano} não é bissexto')
24.5
45
0.605442
ae4d0e249376ef73dd34edbd99d2989644d80bcd
11,983
py
Python
tests/mypy_test.py
andrewshadura/typeshed
bf2049ef18244b8b3024cd7a8cb28b7457dd4652
[ "Apache-2.0" ]
null
null
null
tests/mypy_test.py
andrewshadura/typeshed
bf2049ef18244b8b3024cd7a8cb28b7457dd4652
[ "Apache-2.0" ]
null
null
null
tests/mypy_test.py
andrewshadura/typeshed
bf2049ef18244b8b3024cd7a8cb28b7457dd4652
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python3 """Test runner for typeshed. Depends on mypy being installed. Approach: 1. Parse sys.argv 2. Compute appropriate arguments for mypy 3. Stuff those arguments into sys.argv 4. Run mypy.main('') 5. Repeat steps 2-4 for other mypy runs (e.g. --py2) """ import argparse import os import re import sys import tempfile from glob import glob from pathlib import Path from typing import Dict, NamedTuple import tomli parser = argparse.ArgumentParser(description="Test runner for typeshed. Patterns are unanchored regexps on the full path.") parser.add_argument("-v", "--verbose", action="count", default=0, help="More output") parser.add_argument("-n", "--dry-run", action="store_true", help="Don't actually run mypy") parser.add_argument("-x", "--exclude", type=str, nargs="*", help="Exclude pattern") parser.add_argument("-p", "--python-version", type=str, nargs="*", help="These versions only (major[.minor])") parser.add_argument("--platform", help="Run mypy for a certain OS platform (defaults to sys.platform)") parser.add_argument( "--warn-unused-ignores", action="store_true", help="Run mypy with --warn-unused-ignores " "(hint: only get rid of warnings that are " "unused for all platforms and Python versions)", ) parser.add_argument("filter", type=str, nargs="*", help="Include pattern (default all)") def log(args, *varargs): if args.verbose >= 2: print(*varargs) def match(fn, args): if not args.filter and not args.exclude: log(args, fn, "accept by default") return True if args.exclude: for f in args.exclude: if re.search(f, fn): log(args, fn, "excluded by pattern", f) return False if args.filter: for f in args.filter: if re.search(f, fn): log(args, fn, "accepted by pattern", f) return True if args.filter: log(args, fn, "rejected (no pattern matches)") return False log(args, fn, "accepted (no exclude pattern matches)") return True _VERSION_LINE_RE = re.compile(r"^([a-zA-Z_][a-zA-Z0-9_.]*): ([23]\.\d{1,2})-([23]\.\d{1,2})?$") def parse_versions(fname): result = {} with open(fname) as f: for line in f: # Allow having some comments or empty lines. line = line.split("#")[0].strip() if line == "": continue m = _VERSION_LINE_RE.match(line) assert m, "invalid VERSIONS line: " + line mod = m.group(1) min_version = parse_version(m.group(2)) max_version = parse_version(m.group(3)) if m.group(3) else (99, 99) result[mod] = min_version, max_version return result _VERSION_RE = re.compile(r"^([23])\.(\d+)$") def parse_version(v_str): m = _VERSION_RE.match(v_str) assert m, "invalid version: " + v_str return int(m.group(1)), int(m.group(2)) def is_supported(distribution, major): dist_path = Path("stubs", distribution) with open(dist_path / "METADATA.toml") as f: data = dict(tomli.loads(f.read())) if major == 2: # Python 2 is not supported by default. return bool(data.get("python2", False)) # Python 3 is supported by default. return has_py3_stubs(dist_path) # Keep this in sync with stubtest_third_party.py def has_py3_stubs(dist: Path) -> bool: return len(glob(f"{dist}/*.pyi")) > 0 or len(glob(f"{dist}/[!@]*/__init__.pyi")) > 0 def add_files(files, seen, root, name, args): """Add all files in package or module represented by 'name' located in 'root'.""" full = os.path.join(root, name) mod, ext = os.path.splitext(name) if ext in [".pyi", ".py"]: if match(full, args): seen.add(mod) files.append(full) elif os.path.isfile(os.path.join(full, "__init__.pyi")) or os.path.isfile(os.path.join(full, "__init__.py")): for r, ds, fs in os.walk(full): ds.sort() fs.sort() for f in fs: m, x = os.path.splitext(f) if x in [".pyi", ".py"]: fn = os.path.join(r, f) if match(fn, args): seen.add(mod) files.append(fn) class MypyDistConf(NamedTuple): module_name: str values: Dict # The configuration section in the metadata file looks like the following, with multiple module sections possible # [mypy-tests] # [mypy-tests.yaml] # module_name = "yaml" # [mypy-tests.yaml.values] # disallow_incomplete_defs = true # disallow_untyped_defs = true def add_configuration(configurations: list[MypyDistConf], distribution: str) -> None: with open(os.path.join("stubs", distribution, "METADATA.toml")) as f: data = dict(tomli.loads(f.read())) mypy_tests_conf = data.get("mypy-tests") if not mypy_tests_conf: return assert isinstance(mypy_tests_conf, dict), "mypy-tests should be a section" for section_name, mypy_section in mypy_tests_conf.items(): assert isinstance(mypy_section, dict), "{} should be a section".format(section_name) module_name = mypy_section.get("module_name") assert module_name is not None, "{} should have a module_name key".format(section_name) assert isinstance(module_name, str), "{} should be a key-value pair".format(section_name) values = mypy_section.get("values") assert values is not None, "{} should have a values section".format(section_name) assert isinstance(values, dict), "values should be a section" configurations.append(MypyDistConf(module_name, values.copy())) def run_mypy(args, configurations, major, minor, files, *, custom_typeshed=False): try: from mypy.main import main as mypy_main except ImportError: print("Cannot import mypy. Did you install it?") sys.exit(1) with tempfile.NamedTemporaryFile("w+") as temp: temp.write("[mypy]\n") for dist_conf in configurations: temp.write("[mypy-%s]\n" % dist_conf.module_name) for k, v in dist_conf.values.items(): temp.write("{} = {}\n".format(k, v)) temp.flush() flags = get_mypy_flags(args, major, minor, temp.name, custom_typeshed=custom_typeshed) sys.argv = ["mypy"] + flags + files if args.verbose: print("running", " ".join(sys.argv)) if not args.dry_run: try: mypy_main("", sys.stdout, sys.stderr) except SystemExit as err: return err.code return 0 def get_mypy_flags(args, major: int, minor: int, temp_name: str, *, custom_typeshed: bool = False) -> list[str]: flags = [ "--python-version", "%d.%d" % (major, minor), "--config-file", temp_name, "--no-site-packages", "--show-traceback", "--no-implicit-optional", "--disallow-untyped-decorators", "--disallow-any-generics", "--warn-incomplete-stub", "--show-error-codes", "--no-error-summary", ] if custom_typeshed: # Setting custom typeshed dir prevents mypy from falling back to its bundled # typeshed in case of stub deletions flags.extend(["--custom-typeshed-dir", os.path.dirname(os.path.dirname(__file__))]) if args.warn_unused_ignores: flags.append("--warn-unused-ignores") if args.platform: flags.extend(["--platform", args.platform]) return flags def read_dependencies(distribution: str) -> list[str]: with open(os.path.join("stubs", distribution, "METADATA.toml")) as f: data = dict(tomli.loads(f.read())) requires = data.get("requires", []) assert isinstance(requires, list) dependencies = [] for dependency in requires: assert isinstance(dependency, str) assert dependency.startswith("types-") dependencies.append(dependency[6:]) return dependencies def add_third_party_files( distribution: str, major: int, files: list[str], args, configurations: list[MypyDistConf], seen_dists: set[str] ) -> None: if distribution in seen_dists: return seen_dists.add(distribution) dependencies = read_dependencies(distribution) for dependency in dependencies: add_third_party_files(dependency, major, files, args, configurations, seen_dists) root = os.path.join("stubs", distribution) for name in os.listdir(root): mod, _ = os.path.splitext(name) if mod.startswith("."): continue add_files(files, set(), root, name, args) add_configuration(configurations, distribution) def test_third_party_distribution(distribution: str, major: int, minor: int, args) -> tuple[int, int]: """Test the stubs of a third-party distribution. Return a tuple, where the first element indicates mypy's return code and the second element is the number of checked files. """ files: list[str] = [] configurations: list[MypyDistConf] = [] seen_dists: set[str] = set() add_third_party_files(distribution, major, files, args, configurations, seen_dists) print(f"testing {distribution} ({len(files)} files)...") if not files: print("--- no files found ---") sys.exit(1) code = run_mypy(args, configurations, major, minor, files) return code, len(files) def main(): args = parser.parse_args() versions = [(3, 10), (3, 9), (3, 8), (3, 7), (3, 6), (2, 7)] if args.python_version: versions = [v for v in versions if any(("%d.%d" % v).startswith(av) for av in args.python_version)] if not versions: print("--- no versions selected ---") sys.exit(1) code = 0 files_checked = 0 for major, minor in versions: print(f"*** Testing Python {major}.{minor}") seen = {"__builtin__", "builtins", "typing"} # Always ignore these. # Test standard library files. files = [] if major == 2: root = os.path.join("stdlib", "@python2") for name in os.listdir(root): mod, _ = os.path.splitext(name) if mod in seen or mod.startswith("."): continue add_files(files, seen, root, name, args) else: supported_versions = parse_versions(os.path.join("stdlib", "VERSIONS")) root = "stdlib" for name in os.listdir(root): if name == "@python2" or name == "VERSIONS" or name.startswith("."): continue mod, _ = os.path.splitext(name) if supported_versions[mod][0] <= (major, minor) <= supported_versions[mod][1]: add_files(files, seen, root, name, args) if files: print("Running mypy " + " ".join(get_mypy_flags(args, major, minor, "/tmp/...", custom_typeshed=True))) print(f"testing stdlib ({len(files)} files)...") this_code = run_mypy(args, [], major, minor, files, custom_typeshed=True) code = max(code, this_code) files_checked += len(files) # Test files of all third party distributions. print("Running mypy " + " ".join(get_mypy_flags(args, major, minor, "/tmp/..."))) for distribution in sorted(os.listdir("stubs")): if not is_supported(distribution, major): continue this_code, checked = test_third_party_distribution(distribution, major, minor, args) code = max(code, this_code) files_checked += checked print() if code: print(f"--- exit status {code}, {files_checked} files checked ---") sys.exit(code) if not files_checked: print("--- nothing to do; exit 1 ---") sys.exit(1) print(f"--- success, {files_checked} files checked ---") if __name__ == "__main__": main()
34.632948
123
0.610365
d286a6569ef52a235d026ef23ec84b423b79a274
117
py
Python
tellurium/roadrunner/__init__.py
kirichoi/tellurium
77cf6e794600587741ebe209644a78051e0db1d5
[ "Apache-2.0" ]
73
2016-06-13T12:44:28.000Z
2021-12-31T14:44:39.000Z
tellurium/roadrunner/__init__.py
kirichoi/tellurium
77cf6e794600587741ebe209644a78051e0db1d5
[ "Apache-2.0" ]
461
2015-03-26T00:05:16.000Z
2022-03-16T17:24:35.000Z
tellurium/roadrunner/__init__.py
kirichoi/tellurium
77cf6e794600587741ebe209644a78051e0db1d5
[ "Apache-2.0" ]
30
2016-01-18T16:50:54.000Z
2021-07-06T09:29:53.000Z
from __future__ import print_function, division, absolute_import from .extended_roadrunner import ExtendedRoadRunner
39
64
0.888889
657ee7cd7ce0a451f1a19f1b73d966705677c5bf
19,372
py
Python
app/extension/confluence/extension_locust.py
frsCommunardo/dc-app-performance-toolkit
39eb794b329f53e4457eec9e54b9d927612bd810
[ "Apache-2.0" ]
null
null
null
app/extension/confluence/extension_locust.py
frsCommunardo/dc-app-performance-toolkit
39eb794b329f53e4457eec9e54b9d927612bd810
[ "Apache-2.0" ]
null
null
null
app/extension/confluence/extension_locust.py
frsCommunardo/dc-app-performance-toolkit
39eb794b329f53e4457eec9e54b9d927612bd810
[ "Apache-2.0" ]
null
null
null
import re import random from locustio.common_utils import confluence_measure, fetch_by_re, timestamp_int, \ TEXT_HEADERS, NO_TOKEN_HEADERS, JSON_HEADERS, RESOURCE_HEADERS, generate_random_string, init_logger, \ raise_if_login_failed from locustio.confluence.requests_params import confluence_datasets, Login, ViewPage, ViewDashboard, ViewBlog, \ CreateBlog, CreateEditPage, UploadAttachments, LikePage logger = init_logger(app_type='confluence') @confluence_measure("locust_csi_embed_sharepoint_document") def csi_embed_sharepoint_document(locust): r = locust.get('/rest/csi/spc/templaterenderer/vm/csi-embed-sharepoint-document', catch_response = True) # call app-specific GET endpoint content = r.content.decode('utf-8') # decode response content token_pattern_example = '"token":"(.+?)"' id_pattern_example = '"id":"(.+?)"' token = re.findall(token_pattern_example, content) # get TOKEN from response using regexp id = re.findall(id_pattern_example, content) # get ID from response using regexp logger.locust_info(f'token: {token}, id: {id}') # log information for debug when verbose is true in jira.yml file if 'Add a SharePoint Document' not in content: logger.error(f"'Add a SharePoint Document' was not found in {content}") assert 'Add a SharePoint Document' in content # assert specific string in response content @confluence_measure("locust_csi_embed_sharepoint_list") def csi_embed_sharepoint_list(locust): r = locust.get('/rest/csi/spc/templaterenderer/vm/csi-embed-sharepoint-list', catch_response = True) # call app-specific GET endpoint content = r.content.decode('utf-8') # decode response content token_pattern_example = '"token":"(.+?)"' id_pattern_example = '"id":"(.+?)"' token = re.findall(token_pattern_example, content) # get TOKEN from response using regexp id = re.findall(id_pattern_example, content) # get ID from response using regexp logger.locust_info(f'token: {token}, id: {id}') # log information for debug when verbose is true in jira.yml file if 'Add a SharePoint List' not in content: logger.error(f"'Add a SharePoint List' was not found in {content}") assert 'Add a SharePoint List' in content # assert specific string in response content @confluence_measure("locust_csi_adal_helper") def csi_adal_helper(locust): r = locust.get('/plugins/servlet/csi/adal-helper', catch_response=True) # call app-specific GET endpoint content = r.content.decode('utf-8') # decode response content token_pattern_example = '"token":"(.+?)"' id_pattern_example = '"id":"(.+?)"' token = re.findall(token_pattern_example, content) # get TOKEN from response using regexp id = re.findall(id_pattern_example, content) # get ID from response using regexp logger.locust_info(f'token: {token}, id: {id}') # log information for debug when verbose is true in jira.yml file if 'Redirect Target for adal' not in content: logger.error(f"'Redirect Target for adal' was not found in {content}") assert 'Redirect Target for adal' in content # assert specific string in response content @confluence_measure("locust_csi_spc_license") def csi_spc_license(locust): r = locust.get('/rest/csi/spc/license', catch_response=True) # call app-specific GET endpoint content = r.content.decode('utf-8') # decode response content token_pattern_example = '"token":"(.+?)"' id_pattern_example = '"id":"(.+?)"' token = re.findall(token_pattern_example, content) # get TOKEN from response using regexp id = re.findall(id_pattern_example, content) # get ID from response using regexp logger.locust_info(f'token: {token}, id: {id}') # log information for debug when verbose is true in jira.yml file if 'licenseValid' not in content: logger.error(f"'licenseValid' was not found in {content}") assert 'licenseValid' in content # assert specific string in response content @confluence_measure("locust_csi_view_page_document_macro") def csi_view_page_document_macro(locust): raise_if_login_failed(locust) params = ViewPage() r = locust.get(f'/display/CSIO/Document+Macro+View', catch_response=True) content = r.content.decode('utf-8') if 'Created by' not in content or 'Save for later' not in content: logger.error(f'Fail to open page CSIO/Document+Macro+View: {content}') assert 'Created by' in content and 'Save for later' in content, 'Could not open page.' parent_page_id = fetch_by_re(params.parent_page_id_re, content) parsed_page_id = fetch_by_re(params.page_id_re, content) space_key = fetch_by_re(params.space_key_re, content) tree_request_id = fetch_by_re(params.tree_result_id_re, content) has_no_root = fetch_by_re(params.has_no_root_re, content) root_page_id = fetch_by_re(params.root_page_id_re, content) atl_token_view_issue = fetch_by_re(params.atl_token_view_issue_re, content) editable = fetch_by_re(params.editable_re, content) ancestor_ids = re.findall(params.ancestor_ids_re, content) ancestor_str = 'ancestors=' for ancestor in ancestor_ids: ancestor_str = ancestor_str + str(ancestor) + '&' locust.session_data_storage['page_id'] = parsed_page_id locust.session_data_storage['has_no_root'] = has_no_root locust.session_data_storage['tree_request_id'] = tree_request_id locust.session_data_storage['root_page_id'] = root_page_id locust.session_data_storage['ancestors'] = ancestor_str locust.session_data_storage['space_key'] = space_key locust.session_data_storage['editable'] = editable locust.session_data_storage['atl_token_view_issue'] = atl_token_view_issue locust.get('/rest/helptips/1.0/tips', catch_response=True) locust.post('/rest/webResources/1.0/resources', json=params.resources_body.get("110"), headers=RESOURCE_HEADERS, catch_response=True) locust.get(f'/rest/likes/1.0/content/{parsed_page_id}/likes?commentLikes=true&_={timestamp_int()}', catch_response=True) locust.get(f'/rest/highlighting/1.0/panel-items?pageId={parsed_page_id}&_={timestamp_int()}', catch_response=True) locust.get(f'/rest/mywork/latest/status/notification/count?pageId={parsed_page_id}&_={timestamp_int()}', catch_response=True) r = locust.get(f'/rest/inlinecomments/1.0/comments?containerId={parsed_page_id}&_={timestamp_int()}', catch_response=True) content = r.content.decode('utf-8') if 'authorDisplayName' not in content and '[]' not in content: logger.error(f'Could not open comments for page {parsed_page_id}: {content}') assert 'authorDisplayName' in content or '[]' in content, 'Could not open comments for page.' locust.get(f'/plugins/editor-loader/editor.action?parentPageId={parent_page_id}&pageId={parsed_page_id}' f'&spaceKey={space_key}&atl_after_login_redirect=/pages/viewpage.action' f'&timeout=12000&_={timestamp_int()}', catch_response=True) locust.get(f'/rest/watch-button/1.0/watchState/{parsed_page_id}?_={timestamp_int()}', catch_response=True) locust.post('/rest/webResources/1.0/resources', json=params.resources_body.get("145"), headers=RESOURCE_HEADERS, catch_response=True) locust.post('/rest/webResources/1.0/resources', json=params.resources_body.get("150"), headers=RESOURCE_HEADERS, catch_response=True) locust.post('/rest/webResources/1.0/resources', json=params.resources_body.get("155"), headers=RESOURCE_HEADERS, catch_response=True) locust.post('/rest/webResources/1.0/resources', json=params.resources_body.get("160"), headers=RESOURCE_HEADERS, catch_response=True) @confluence_measure("locust_csi_view_page_list_macro") def csi_view_page_list_macro(locust): raise_if_login_failed(locust) params = ViewPage() r = locust.get(f'/display/CSIO/List+Macro+View', catch_response=True) content = r.content.decode('utf-8') if 'Created by' not in content or 'Save for later' not in content: logger.error(f'Fail to open page CSIO/List+Macro+View: {content}') assert 'Created by' in content and 'Save for later' in content, 'Could not open page.' parent_page_id = fetch_by_re(params.parent_page_id_re, content) parsed_page_id = fetch_by_re(params.page_id_re, content) space_key = fetch_by_re(params.space_key_re, content) tree_request_id = fetch_by_re(params.tree_result_id_re, content) has_no_root = fetch_by_re(params.has_no_root_re, content) root_page_id = fetch_by_re(params.root_page_id_re, content) atl_token_view_issue = fetch_by_re(params.atl_token_view_issue_re, content) editable = fetch_by_re(params.editable_re, content) ancestor_ids = re.findall(params.ancestor_ids_re, content) ancestor_str = 'ancestors=' for ancestor in ancestor_ids: ancestor_str = ancestor_str + str(ancestor) + '&' locust.session_data_storage['page_id'] = parsed_page_id locust.session_data_storage['has_no_root'] = has_no_root locust.session_data_storage['tree_request_id'] = tree_request_id locust.session_data_storage['root_page_id'] = root_page_id locust.session_data_storage['ancestors'] = ancestor_str locust.session_data_storage['space_key'] = space_key locust.session_data_storage['editable'] = editable locust.session_data_storage['atl_token_view_issue'] = atl_token_view_issue locust.get('/rest/helptips/1.0/tips', catch_response=True) locust.post('/rest/webResources/1.0/resources', json=params.resources_body.get("110"), headers=RESOURCE_HEADERS, catch_response=True) locust.get(f'/rest/likes/1.0/content/{parsed_page_id}/likes?commentLikes=true&_={timestamp_int()}', catch_response=True) locust.get(f'/rest/highlighting/1.0/panel-items?pageId={parsed_page_id}&_={timestamp_int()}', catch_response=True) locust.get(f'/rest/mywork/latest/status/notification/count?pageId={parsed_page_id}&_={timestamp_int()}', catch_response=True) r = locust.get(f'/rest/inlinecomments/1.0/comments?containerId={parsed_page_id}&_={timestamp_int()}', catch_response=True) content = r.content.decode('utf-8') if 'authorDisplayName' not in content and '[]' not in content: logger.error(f'Could not open comments for page {parsed_page_id}: {content}') assert 'authorDisplayName' in content or '[]' in content, 'Could not open comments for page.' locust.get(f'/plugins/editor-loader/editor.action?parentPageId={parent_page_id}&pageId={parsed_page_id}' f'&spaceKey={space_key}&atl_after_login_redirect=/pages/viewpage.action' f'&timeout=12000&_={timestamp_int()}', catch_response=True) locust.get(f'/rest/watch-button/1.0/watchState/{parsed_page_id}?_={timestamp_int()}', catch_response=True) locust.post('/rest/webResources/1.0/resources', json=params.resources_body.get("145"), headers=RESOURCE_HEADERS, catch_response=True) locust.post('/rest/webResources/1.0/resources', json=params.resources_body.get("150"), headers=RESOURCE_HEADERS, catch_response=True) locust.post('/rest/webResources/1.0/resources', json=params.resources_body.get("155"), headers=RESOURCE_HEADERS, catch_response=True) locust.post('/rest/webResources/1.0/resources', json=params.resources_body.get("160"), headers=RESOURCE_HEADERS, catch_response=True) @confluence_measure("locust_csi_view_blog_document_macro") def csi_view_page_blog_document_macro(locust): raise_if_login_failed(locust) params = ViewPage() r = locust.get(f'/display/CSIO/2021/01/01/Blog+Document+Macro+View', catch_response=True) content = r.content.decode('utf-8') if 'Created by' not in content or 'Save for later' not in content: logger.error(f'Fail to open page CSIO/2021/01/01/Blog+Document+Macro+View: {content}') assert 'Created by' in content and 'Save for later' in content, 'Could not open page.' parent_page_id = fetch_by_re(params.parent_page_id_re, content) parsed_page_id = fetch_by_re(params.page_id_re, content) space_key = fetch_by_re(params.space_key_re, content) tree_request_id = fetch_by_re(params.tree_result_id_re, content) has_no_root = fetch_by_re(params.has_no_root_re, content) root_page_id = fetch_by_re(params.root_page_id_re, content) atl_token_view_issue = fetch_by_re(params.atl_token_view_issue_re, content) editable = fetch_by_re(params.editable_re, content) ancestor_ids = re.findall(params.ancestor_ids_re, content) ancestor_str = 'ancestors=' for ancestor in ancestor_ids: ancestor_str = ancestor_str + str(ancestor) + '&' locust.session_data_storage['page_id'] = parsed_page_id locust.session_data_storage['has_no_root'] = has_no_root locust.session_data_storage['tree_request_id'] = tree_request_id locust.session_data_storage['root_page_id'] = root_page_id locust.session_data_storage['ancestors'] = ancestor_str locust.session_data_storage['space_key'] = space_key locust.session_data_storage['editable'] = editable locust.session_data_storage['atl_token_view_issue'] = atl_token_view_issue locust.get('/rest/helptips/1.0/tips', catch_response=True) locust.post('/rest/webResources/1.0/resources', json=params.resources_body.get("110"), headers=RESOURCE_HEADERS, catch_response=True) locust.get(f'/rest/likes/1.0/content/{parsed_page_id}/likes?commentLikes=true&_={timestamp_int()}', catch_response=True) locust.get(f'/rest/highlighting/1.0/panel-items?pageId={parsed_page_id}&_={timestamp_int()}', catch_response=True) locust.get(f'/rest/mywork/latest/status/notification/count?pageId={parsed_page_id}&_={timestamp_int()}', catch_response=True) r = locust.get(f'/rest/inlinecomments/1.0/comments?containerId={parsed_page_id}&_={timestamp_int()}', catch_response=True) content = r.content.decode('utf-8') if 'authorDisplayName' not in content and '[]' not in content: logger.error(f'Could not open comments for page {parsed_page_id}: {content}') assert 'authorDisplayName' in content or '[]' in content, 'Could not open comments for page.' locust.get(f'/plugins/editor-loader/editor.action?parentPageId={parent_page_id}&pageId={parsed_page_id}' f'&spaceKey={space_key}&atl_after_login_redirect=/pages/viewpage.action' f'&timeout=12000&_={timestamp_int()}', catch_response=True) locust.get(f'/rest/watch-button/1.0/watchState/{parsed_page_id}?_={timestamp_int()}', catch_response=True) locust.post('/rest/webResources/1.0/resources', json=params.resources_body.get("145"), headers=RESOURCE_HEADERS, catch_response=True) locust.post('/rest/webResources/1.0/resources', json=params.resources_body.get("150"), headers=RESOURCE_HEADERS, catch_response=True) locust.post('/rest/webResources/1.0/resources', json=params.resources_body.get("155"), headers=RESOURCE_HEADERS, catch_response=True) locust.post('/rest/webResources/1.0/resources', json=params.resources_body.get("160"), headers=RESOURCE_HEADERS, catch_response=True) @confluence_measure("locust_csi_view_blog_list_macro") def csi_view_page_blog_list_macro(locust): raise_if_login_failed(locust) params = ViewPage() r = locust.get(f'/display/CSIO/2021/01/01/Blog+List+Macro+View', catch_response=True) content = r.content.decode('utf-8') if 'Created by' not in content or 'Save for later' not in content: logger.error(f'Fail to open page CSIO/2021/01/01/Blog+List+Macro+View: {content}') assert 'Created by' in content and 'Save for later' in content, 'Could not open page.' parent_page_id = fetch_by_re(params.parent_page_id_re, content) parsed_page_id = fetch_by_re(params.page_id_re, content) space_key = fetch_by_re(params.space_key_re, content) tree_request_id = fetch_by_re(params.tree_result_id_re, content) has_no_root = fetch_by_re(params.has_no_root_re, content) root_page_id = fetch_by_re(params.root_page_id_re, content) atl_token_view_issue = fetch_by_re(params.atl_token_view_issue_re, content) editable = fetch_by_re(params.editable_re, content) ancestor_ids = re.findall(params.ancestor_ids_re, content) ancestor_str = 'ancestors=' for ancestor in ancestor_ids: ancestor_str = ancestor_str + str(ancestor) + '&' locust.session_data_storage['page_id'] = parsed_page_id locust.session_data_storage['has_no_root'] = has_no_root locust.session_data_storage['tree_request_id'] = tree_request_id locust.session_data_storage['root_page_id'] = root_page_id locust.session_data_storage['ancestors'] = ancestor_str locust.session_data_storage['space_key'] = space_key locust.session_data_storage['editable'] = editable locust.session_data_storage['atl_token_view_issue'] = atl_token_view_issue locust.get('/rest/helptips/1.0/tips', catch_response=True) locust.post('/rest/webResources/1.0/resources', json=params.resources_body.get("110"), headers=RESOURCE_HEADERS, catch_response=True) locust.get(f'/rest/likes/1.0/content/{parsed_page_id}/likes?commentLikes=true&_={timestamp_int()}', catch_response=True) locust.get(f'/rest/highlighting/1.0/panel-items?pageId={parsed_page_id}&_={timestamp_int()}', catch_response=True) locust.get(f'/rest/mywork/latest/status/notification/count?pageId={parsed_page_id}&_={timestamp_int()}', catch_response=True) r = locust.get(f'/rest/inlinecomments/1.0/comments?containerId={parsed_page_id}&_={timestamp_int()}', catch_response=True) content = r.content.decode('utf-8') if 'authorDisplayName' not in content and '[]' not in content: logger.error(f'Could not open comments for page {parsed_page_id}: {content}') assert 'authorDisplayName' in content or '[]' in content, 'Could not open comments for page.' locust.get(f'/plugins/editor-loader/editor.action?parentPageId={parent_page_id}&pageId={parsed_page_id}' f'&spaceKey={space_key}&atl_after_login_redirect=/pages/viewpage.action' f'&timeout=12000&_={timestamp_int()}', catch_response=True) locust.get(f'/rest/watch-button/1.0/watchState/{parsed_page_id}?_={timestamp_int()}', catch_response=True) locust.post('/rest/webResources/1.0/resources', json=params.resources_body.get("145"), headers=RESOURCE_HEADERS, catch_response=True) locust.post('/rest/webResources/1.0/resources', json=params.resources_body.get("150"), headers=RESOURCE_HEADERS, catch_response=True) locust.post('/rest/webResources/1.0/resources', json=params.resources_body.get("155"), headers=RESOURCE_HEADERS, catch_response=True) locust.post('/rest/webResources/1.0/resources', json=params.resources_body.get("160"), headers=RESOURCE_HEADERS, catch_response=True)
59.790123
142
0.72326
02b045d2c6994f9aa4abdebc34d56d233a699284
3,246
py
Python
Sentiment scoring/old/ScoreSentiment_Rating.py
stancld/MSc-Project
31a57ed58a902fe998649b948c61e70ca78729a4
[ "MIT" ]
2
2021-05-27T12:43:20.000Z
2022-02-24T07:01:55.000Z
Sentiment scoring/old/ScoreSentiment_Rating.py
stancld/MSc-Project
31a57ed58a902fe998649b948c61e70ca78729a4
[ "MIT" ]
5
2021-03-19T08:52:22.000Z
2021-09-22T19:21:44.000Z
Sentiment scoring/old/ScoreSentiment_Rating.py
stancld/MSc-Project
31a57ed58a902fe998649b948c61e70ca78729a4
[ "MIT" ]
2
2020-09-29T03:27:38.000Z
2020-11-07T05:41:10.000Z
""" File: ScoreSentiment_Rating.py Author: Daniel Stancl Description: This file takes companies and reviews dataframe and generate columns with employee sentiment for companies in a given month/ over a given period etc. """ import pandas as pd class ScoreSentiment_Rating(object): def __init__(self, companies, reviews): self.companies = companies self.reviews = reviews def run(self, sentiment_path, periods, difference): self.sentimentMonthly(sentiment_path, difference) [self.sentimentCustom(period, sentiment_path, difference) for period in periods] def sentimentMonthly(self, sentiment_path, difference, _return=False): sentiment = pd.DataFrame( pd.DataFrame( self.reviews .groupby(['Company', 'Year-Month']) .Rating .agg(['mean', 'count']) ).to_records() ) sentiment.columns = ['Company', 'Year-Month', 'Rating', 'Count'] self.sentiment_rating = pd.pivot_table(sentiment, 'Rating', index='Company', columns='Year-Month', fill_value=None) self.sentiment_count = pd.pivot_table(sentiment, 'Count', index='Company', columns='Year-Month', fill_value=0) # save fname = f"{sentiment_path}Sentiment_Rating_1M.csv" self.sentiment_rating.to_csv(fname) fname = f"{sentiment_path}Sentiment_Count_1M.csv" self.sentiment_count.to_csv(fname) # compute difference if difference: sentiment_diff = self._sentimentDifference( data=self.sentiment_rating, ) fname = f"{sentiment_path}Sentiment_Rating_Diff_1M.csv" sentiment_diff.to_csv(fname) if _return: return self.sentiment_rating, self.sentiment_count, self.sen def sentimentCustom(self, period, sentiment_path, difference, _return=False): sentimentSums = self.sentiment_count * self.sentiment_rating rollingCounts = ( self.sentiment_count .T .rolling(window=period) .sum() .T ) rollingSums = ( sentimentSums .fillna(0) .T .rolling(window=period) .sum() .T .replace( to_replace=0, value=None ) ) rollingSentiment = rollingSums / rollingCounts fname = f"{sentiment_path}Sentiment_Rating_{period}M.csv" rollingSentiment.to_csv(fname) # compute difference if difference: sentiment_diff = self._sentimentDifference( data=rollingSentiment ) fname = f"{sentiment_path}Sentiment_Rating_Diff_{period}M.csv" sentiment_diff.to_csv(fname) if _return: return rollingSentiment, sentiment_diff def _sentimentDifference(self, data): sentimentDiff = ( data .T .rolling(window=2) .apply(lambda x: self._diff_function(x)) .T ) return sentimentDiff def _diff_function(self, x): return x.iloc[1] - x.iloc[0]
31.514563
123
0.59273
72b14d4fcb5dfae7ae0a0e28c60b24f59ad27d84
35,489
py
Python
tensorflow/python/keras/initializers/initializers_v2.py
TL-Rubick/tensorflow
6cf1ccf6060a95aad3ccc84544d0aa166990ec72
[ "Apache-2.0" ]
9
2019-06-05T06:48:07.000Z
2020-09-29T07:08:02.000Z
tensorflow/python/keras/initializers/initializers_v2.py
TL-Rubick/tensorflow
6cf1ccf6060a95aad3ccc84544d0aa166990ec72
[ "Apache-2.0" ]
7
2021-11-10T20:21:23.000Z
2022-03-22T19:18:39.000Z
tensorflow/python/keras/initializers/initializers_v2.py
TL-Rubick/tensorflow
6cf1ccf6060a95aad3ccc84544d0aa166990ec72
[ "Apache-2.0" ]
3
2019-06-28T02:28:27.000Z
2021-07-06T08:16:19.000Z
# Copyright 2020 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Keras initializers for TF 2. """ # pylint: disable=g-classes-have-attributes from __future__ import absolute_import from __future__ import division from __future__ import print_function import math from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.keras import backend from tensorflow.python.ops import array_ops from tensorflow.python.ops import gen_linalg_ops from tensorflow.python.ops import linalg_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import random_ops from tensorflow.python.ops import stateless_random_ops from tensorflow.python.util.tf_export import keras_export _PARTITION_SHAPE = 'partition_shape' _PARTITION_OFFSET = 'partition_offset' @keras_export('keras.initializers.Initializer') class Initializer(object): """Initializer base class: all Keras initializers inherit from this class. Initializers should implement a `__call__` method with the following signature: ```python def __call__(self, shape, dtype=None, **kwargs): # returns a tensor of shape `shape` and dtype `dtype` # containing values drawn from a distribution of your choice. ``` Optionally, you an also implement the method `get_config` and the class method `from_config` in order to support serialization -- just like with any Keras object. Here's a simple example: a random normal initializer. ```python import tensorflow as tf class ExampleRandomNormal(tf.keras.initializers.Initializer): def __init__(self, mean, stddev): self.mean = mean self.stddev = stddev def __call__(self, shape, dtype=None, **kwargs): return tf.random.normal( shape, mean=self.mean, stddev=self.stddev, dtype=dtype) def get_config(self): # To support serialization return {"mean": self.mean, "stddev": self.stddev} ``` Note that we don't have to implement `from_config` in the example above since the constructor arguments of the class the keys in the config returned by `get_config` are the same. In this case, the default `from_config` works fine. """ def __call__(self, shape, dtype=None, **kwargs): """Returns a tensor object initialized as specified by the initializer. Args: shape: Shape of the tensor. dtype: Optional dtype of the tensor. **kwargs: Additional keyword arguments. """ raise NotImplementedError def get_config(self): """Returns the configuration of the initializer as a JSON-serializable dict. Returns: A JSON-serializable Python dict. """ return {} @classmethod def from_config(cls, config): """Instantiates an initializer from a configuration dictionary. Example: ```python initializer = RandomUniform(-1, 1) config = initializer.get_config() initializer = RandomUniform.from_config(config) ``` Args: config: A Python dictionary, the output of `get_config`. Returns: A `tf.keras.initializers.Initializer` instance. """ config.pop('dtype', None) return cls(**config) @keras_export('keras.initializers.Zeros', 'keras.initializers.zeros', v1=[]) class Zeros(Initializer): """Initializer that generates tensors initialized to 0. Also available via the shortcut function `tf.keras.initializers.zeros`. Examples: >>> # Standalone usage: >>> initializer = tf.keras.initializers.Zeros() >>> values = initializer(shape=(2, 2)) >>> # Usage in a Keras layer: >>> initializer = tf.keras.initializers.Zeros() >>> layer = tf.keras.layers.Dense(3, kernel_initializer=initializer) """ def __call__(self, shape, dtype=None, **kwargs): """Returns a tensor object initialized as specified by the initializer. Args: shape: Shape of the tensor. dtype: Optional dtype of the tensor. Only numeric or boolean dtypes are supported. If not specified, `tf.keras.backend.floatx()` is used, which default to `float32` unless you configured it otherwise (via `tf.keras.backend.set_floatx(float_dtype)`). **kwargs: Additional keyword arguments. """ _validate_kwargs(self.__class__.__name__, kwargs) dtype = _get_dtype(dtype) if not dtype.is_numpy_compatible or dtype == dtypes.string: raise ValueError('Expected numeric or boolean dtype, got %s.' % dtype) if _PARTITION_SHAPE in kwargs: shape = kwargs[_PARTITION_SHAPE] return array_ops.zeros(shape, dtype) @keras_export('keras.initializers.Ones', 'keras.initializers.ones', v1=[]) class Ones(Initializer): """Initializer that generates tensors initialized to 1. Also available via the shortcut function `tf.keras.initializers.ones`. Examples: >>> # Standalone usage: >>> initializer = tf.keras.initializers.Ones() >>> values = initializer(shape=(2, 2)) >>> # Usage in a Keras layer: >>> initializer = tf.keras.initializers.Ones() >>> layer = tf.keras.layers.Dense(3, kernel_initializer=initializer) """ def __call__(self, shape, dtype=None, **kwargs): """Returns a tensor object initialized as specified by the initializer. Args: shape: Shape of the tensor. dtype: Optional dtype of the tensor. Only numeric or boolean dtypes are supported. If not specified, `tf.keras.backend.floatx()` is used, which default to `float32` unless you configured it otherwise (via `tf.keras.backend.set_floatx(float_dtype)`). **kwargs: Additional keyword arguments. """ _validate_kwargs(self.__class__.__name__, kwargs) dtype = _get_dtype(dtype) if not dtype.is_numpy_compatible or dtype == dtypes.string: raise ValueError('Expected numeric or boolean dtype, got %s.' % dtype) if _PARTITION_SHAPE in kwargs: shape = kwargs[_PARTITION_SHAPE] return array_ops.ones(shape, dtype) @keras_export('keras.initializers.Constant', 'keras.initializers.constant', v1=[]) class Constant(Initializer): """Initializer that generates tensors with constant values. Also available via the shortcut function `tf.keras.initializers.constant`. Only scalar values are allowed. The constant value provided must be convertible to the dtype requested when calling the initializer. Examples: >>> # Standalone usage: >>> initializer = tf.keras.initializers.Constant(3.) >>> values = initializer(shape=(2, 2)) >>> # Usage in a Keras layer: >>> initializer = tf.keras.initializers.Constant(3.) >>> layer = tf.keras.layers.Dense(3, kernel_initializer=initializer) Args: value: A Python scalar. """ def __init__(self, value=0): self.value = value def __call__(self, shape, dtype=None, **kwargs): """Returns a tensor object initialized to `self.value`. Args: shape: Shape of the tensor. dtype: Optional dtype of the tensor. If not specified, `tf.keras.backend.floatx()` is used, which default to `float32` unless you configured it otherwise (via `tf.keras.backend.set_floatx(float_dtype)`). **kwargs: Additional keyword arguments. """ del kwargs return constant_op.constant( self.value, dtype=_get_dtype(dtype), shape=shape) def get_config(self): return {'value': self.value} @keras_export('keras.initializers.RandomUniform', 'keras.initializers.random_uniform', v1=[]) class RandomUniform(Initializer): """Initializer that generates tensors with a uniform distribution. Also available via the shortcut function `tf.keras.initializers.random_uniform`. Examples: >>> # Standalone usage: >>> initializer = tf.keras.initializers.RandomUniform(minval=0., maxval=1.) >>> values = initializer(shape=(2, 2)) >>> # Usage in a Keras layer: >>> initializer = tf.keras.initializers.RandomUniform(minval=0., maxval=1.) >>> layer = tf.keras.layers.Dense(3, kernel_initializer=initializer) Args: minval: A python scalar or a scalar tensor. Lower bound of the range of random values to generate (inclusive). maxval: A python scalar or a scalar tensor. Upper bound of the range of random values to generate (exclusive). seed: A Python integer. An initializer created with a given seed will always produce the same random tensor for a given shape and dtype. """ def __init__(self, minval=-0.05, maxval=0.05, seed=None): self.minval = minval self.maxval = maxval self.seed = seed self._random_generator = _RandomGenerator(seed) def __call__(self, shape, dtype=None, **kwargs): """Returns a tensor object initialized as specified by the initializer. Args: shape: Shape of the tensor. dtype: Optional dtype of the tensor. Only floating point and integer types are supported. If not specified, `tf.keras.backend.floatx()` is used, which default to `float32` unless you configured it otherwise (via `tf.keras.backend.set_floatx(float_dtype)`). **kwargs: Additional keyword arguments. """ _validate_kwargs(self.__class__.__name__, kwargs) dtype = _get_dtype(dtype) if not dtype.is_floating and not dtype.is_integer: raise ValueError('Expected float or integer dtype, got %s.' % dtype) if _PARTITION_SHAPE in kwargs: shape = kwargs[_PARTITION_SHAPE] return self._random_generator.random_uniform(shape, self.minval, self.maxval, dtype) def get_config(self): return { 'minval': self.minval, 'maxval': self.maxval, 'seed': self.seed } @keras_export('keras.initializers.RandomNormal', 'keras.initializers.random_normal', v1=[]) class RandomNormal(Initializer): """Initializer that generates tensors with a normal distribution. Also available via the shortcut function `tf.keras.initializers.random_normal`. Examples: >>> # Standalone usage: >>> initializer = tf.keras.initializers.RandomNormal(mean=0., stddev=1.) >>> values = initializer(shape=(2, 2)) >>> # Usage in a Keras layer: >>> initializer = tf.keras.initializers.RandomNormal(mean=0., stddev=1.) >>> layer = tf.keras.layers.Dense(3, kernel_initializer=initializer) Args: mean: a python scalar or a scalar tensor. Mean of the random values to generate. stddev: a python scalar or a scalar tensor. Standard deviation of the random values to generate. seed: A Python integer. An initializer created with a given seed will always produce the same random tensor for a given shape and dtype. """ def __init__(self, mean=0.0, stddev=0.05, seed=None): self.mean = mean self.stddev = stddev self.seed = seed self._random_generator = _RandomGenerator(seed) def __call__(self, shape, dtype=None, **kwargs): """Returns a tensor object initialized to random normal values. Args: shape: Shape of the tensor. dtype: Optional dtype of the tensor. Only floating point types are supported. If not specified, `tf.keras.backend.floatx()` is used, which default to `float32` unless you configured it otherwise (via `tf.keras.backend.set_floatx(float_dtype)`) **kwargs: Additional keyword arguments. """ _validate_kwargs(self.__class__.__name__, kwargs) dtype = _assert_float_dtype(_get_dtype(dtype)) if _PARTITION_SHAPE in kwargs: shape = kwargs[_PARTITION_SHAPE] return self._random_generator.random_normal(shape, self.mean, self.stddev, dtype) def get_config(self): return { 'mean': self.mean, 'stddev': self.stddev, 'seed': self.seed } @keras_export('keras.initializers.TruncatedNormal', 'keras.initializers.truncated_normal', v1=[]) class TruncatedNormal(Initializer): """Initializer that generates a truncated normal distribution. Also available via the shortcut function `tf.keras.initializers.truncated_normal`. The values generated are similar to values from a `tf.keras.initializers.RandomNormal` initializer except that values more than two standard deviations from the mean are discarded and re-drawn. Examples: >>> # Standalone usage: >>> initializer = tf.keras.initializers.TruncatedNormal(mean=0., stddev=1.) >>> values = initializer(shape=(2, 2)) >>> # Usage in a Keras layer: >>> initializer = tf.keras.initializers.TruncatedNormal(mean=0., stddev=1.) >>> layer = tf.keras.layers.Dense(3, kernel_initializer=initializer) Args: mean: a python scalar or a scalar tensor. Mean of the random values to generate. stddev: a python scalar or a scalar tensor. Standard deviation of the random values to generate. seed: A Python integer. An initializer created with a given seed will always produce the same random tensor for a given shape and dtype. """ def __init__(self, mean=0.0, stddev=0.05, seed=None): self.mean = mean self.stddev = stddev self.seed = seed self._random_generator = _RandomGenerator(seed) def __call__(self, shape, dtype=None, **kwargs): """Returns a tensor object initialized to random normal values (truncated). Args: shape: Shape of the tensor. dtype: Optional dtype of the tensor. Only floating point types are supported. If not specified, `tf.keras.backend.floatx()` is used, which default to `float32` unless you configured it otherwise (via `tf.keras.backend.set_floatx(float_dtype)`) **kwargs: Additional keyword arguments. """ _validate_kwargs(self.__class__.__name__, kwargs) dtype = _assert_float_dtype(_get_dtype(dtype)) if _PARTITION_SHAPE in kwargs: shape = kwargs[_PARTITION_SHAPE] return self._random_generator.truncated_normal(shape, self.mean, self.stddev, dtype) def get_config(self): return { 'mean': self.mean, 'stddev': self.stddev, 'seed': self.seed } @keras_export('keras.initializers.VarianceScaling', 'keras.initializers.variance_scaling', v1=[]) class VarianceScaling(Initializer): """Initializer capable of adapting its scale to the shape of weights tensors. Also available via the shortcut function `tf.keras.initializers.variance_scaling`. With `distribution="truncated_normal" or "untruncated_normal"`, samples are drawn from a truncated/untruncated normal distribution with a mean of zero and a standard deviation (after truncation, if used) `stddev = sqrt(scale / n)`, where `n` is: - number of input units in the weight tensor, if `mode="fan_in"` - number of output units, if `mode="fan_out"` - average of the numbers of input and output units, if `mode="fan_avg"` With `distribution="uniform"`, samples are drawn from a uniform distribution within `[-limit, limit]`, where `limit = sqrt(3 * scale / n)`. Examples: >>> # Standalone usage: >>> initializer = tf.keras.initializers.VarianceScaling( ... scale=0.1, mode='fan_in', distribution='uniform') >>> values = initializer(shape=(2, 2)) >>> # Usage in a Keras layer: >>> initializer = tf.keras.initializers.VarianceScaling( ... scale=0.1, mode='fan_in', distribution='uniform') >>> layer = tf.keras.layers.Dense(3, kernel_initializer=initializer) Args: scale: Scaling factor (positive float). mode: One of "fan_in", "fan_out", "fan_avg". distribution: Random distribution to use. One of "truncated_normal", "untruncated_normal" and "uniform". seed: A Python integer. An initializer created with a given seed will always produce the same random tensor for a given shape and dtype. """ def __init__(self, scale=1.0, mode='fan_in', distribution='truncated_normal', seed=None): if scale <= 0.: raise ValueError('`scale` must be positive float.') if mode not in {'fan_in', 'fan_out', 'fan_avg'}: raise ValueError('Invalid `mode` argument:', mode) distribution = distribution.lower() # Compatibility with keras-team/keras. if distribution == 'normal': distribution = 'truncated_normal' if distribution not in {'uniform', 'truncated_normal', 'untruncated_normal'}: raise ValueError('Invalid `distribution` argument:', distribution) self.scale = scale self.mode = mode self.distribution = distribution self.seed = seed self._random_generator = _RandomGenerator(seed) def __call__(self, shape, dtype=None, **kwargs): """Returns a tensor object initialized as specified by the initializer. Args: shape: Shape of the tensor. dtype: Optional dtype of the tensor. Only floating point types are supported. If not specified, `tf.keras.backend.floatx()` is used, which default to `float32` unless you configured it otherwise (via `tf.keras.backend.set_floatx(float_dtype)`) **kwargs: Additional keyword arguments. """ _validate_kwargs(self.__class__.__name__, kwargs) dtype = _assert_float_dtype(_get_dtype(dtype)) scale = self.scale fan_in, fan_out = _compute_fans(shape) if _PARTITION_SHAPE in kwargs: shape = kwargs[_PARTITION_SHAPE] if self.mode == 'fan_in': scale /= max(1., fan_in) elif self.mode == 'fan_out': scale /= max(1., fan_out) else: scale /= max(1., (fan_in + fan_out) / 2.) if self.distribution == 'truncated_normal': # constant from scipy.stats.truncnorm.std(a=-2, b=2, loc=0., scale=1.) stddev = math.sqrt(scale) / .87962566103423978 return self._random_generator.truncated_normal(shape, 0.0, stddev, dtype) elif self.distribution == 'untruncated_normal': stddev = math.sqrt(scale) return self._random_generator.random_normal(shape, 0.0, stddev, dtype) else: limit = math.sqrt(3.0 * scale) return self._random_generator.random_uniform(shape, -limit, limit, dtype) def get_config(self): return { 'scale': self.scale, 'mode': self.mode, 'distribution': self.distribution, 'seed': self.seed } @keras_export('keras.initializers.Orthogonal', 'keras.initializers.orthogonal', v1=[]) class Orthogonal(Initializer): """Initializer that generates an orthogonal matrix. Also available via the shortcut function `tf.keras.initializers.orthogonal`. If the shape of the tensor to initialize is two-dimensional, it is initialized with an orthogonal matrix obtained from the QR decomposition of a matrix of random numbers drawn from a normal distribution. If the matrix has fewer rows than columns then the output will have orthogonal rows. Otherwise, the output will have orthogonal columns. If the shape of the tensor to initialize is more than two-dimensional, a matrix of shape `(shape[0] * ... * shape[n - 2], shape[n - 1])` is initialized, where `n` is the length of the shape vector. The matrix is subsequently reshaped to give a tensor of the desired shape. Examples: >>> # Standalone usage: >>> initializer = tf.keras.initializers.Orthogonal() >>> values = initializer(shape=(2, 2)) >>> # Usage in a Keras layer: >>> initializer = tf.keras.initializers.Orthogonal() >>> layer = tf.keras.layers.Dense(3, kernel_initializer=initializer) Args: gain: multiplicative factor to apply to the orthogonal matrix seed: A Python integer. An initializer created with a given seed will always produce the same random tensor for a given shape and dtype. References: [Saxe et al., 2014](https://openreview.net/forum?id=_wzZwKpTDF_9C) ([pdf](https://arxiv.org/pdf/1312.6120.pdf)) """ def __init__(self, gain=1.0, seed=None): self.gain = gain self.seed = seed self._random_generator = _RandomGenerator(seed) def __call__(self, shape, dtype=None, **kwargs): """Returns a tensor object initialized to an orthogonal matrix. Args: shape: Shape of the tensor. dtype: Optional dtype of the tensor. Only floating point types are supported. If not specified, `tf.keras.backend.floatx()` is used, which default to `float32` unless you configured it otherwise (via `tf.keras.backend.set_floatx(float_dtype)`) **kwargs: Additional keyword arguments. """ _validate_kwargs(self.__class__.__name__, kwargs, support_partition=False) dtype = _assert_float_dtype(_get_dtype(dtype)) # Check the shape if len(shape) < 2: raise ValueError('The tensor to initialize must be ' 'at least two-dimensional') # Flatten the input shape with the last dimension remaining # its original shape so it works for conv2d num_rows = 1 for dim in shape[:-1]: num_rows *= dim num_cols = shape[-1] flat_shape = (max(num_cols, num_rows), min(num_cols, num_rows)) # Generate a random matrix a = self._random_generator.random_normal(flat_shape, dtype=dtype) # Compute the qr factorization q, r = gen_linalg_ops.qr(a, full_matrices=False) # Make Q uniform d = array_ops.tensor_diag_part(r) q *= math_ops.sign(d) if num_rows < num_cols: q = array_ops.matrix_transpose(q) return self.gain * array_ops.reshape(q, shape) def get_config(self): return {'gain': self.gain, 'seed': self.seed} @keras_export('keras.initializers.Identity', 'keras.initializers.identity', v1=[]) class Identity(Initializer): """Initializer that generates the identity matrix. Also available via the shortcut function `tf.keras.initializers.identity`. Only usable for generating 2D matrices. Examples: >>> # Standalone usage: >>> initializer = tf.keras.initializers.Identity() >>> values = initializer(shape=(2, 2)) >>> # Usage in a Keras layer: >>> initializer = tf.keras.initializers.Identity() >>> layer = tf.keras.layers.Dense(3, kernel_initializer=initializer) Args: gain: Multiplicative factor to apply to the identity matrix. """ def __init__(self, gain=1.0): self.gain = gain def __call__(self, shape, dtype=None, **kwargs): """Returns a tensor object initialized to a 2D identity matrix. Args: shape: Shape of the tensor. It should have exactly rank 2. dtype: Optional dtype of the tensor. Only floating point types are supported. If not specified, `tf.keras.backend.floatx()` is used, which default to `float32` unless you configured it otherwise (via `tf.keras.backend.set_floatx(float_dtype)`) **kwargs: Additional keyword arguments. """ _validate_kwargs(self.__class__.__name__, kwargs, support_partition=False) dtype = _assert_float_dtype(_get_dtype(dtype)) if len(shape) != 2: raise ValueError( 'Identity matrix initializer can only be used for 2D matrices.') initializer = linalg_ops.eye(*shape, dtype=dtype) return self.gain * initializer def get_config(self): return {'gain': self.gain} @keras_export('keras.initializers.GlorotUniform', 'keras.initializers.glorot_uniform', v1=[]) class GlorotUniform(VarianceScaling): """The Glorot uniform initializer, also called Xavier uniform initializer. Also available via the shortcut function `tf.keras.initializers.glorot_uniform`. Draws samples from a uniform distribution within `[-limit, limit]`, where `limit = sqrt(6 / (fan_in + fan_out))` (`fan_in` is the number of input units in the weight tensor and `fan_out` is the number of output units). Examples: >>> # Standalone usage: >>> initializer = tf.keras.initializers.GlorotUniform() >>> values = initializer(shape=(2, 2)) >>> # Usage in a Keras layer: >>> initializer = tf.keras.initializers.GlorotUniform() >>> layer = tf.keras.layers.Dense(3, kernel_initializer=initializer) Args: seed: A Python integer. An initializer created with a given seed will always produce the same random tensor for a given shape and dtype. References: [Glorot et al., 2010](http://proceedings.mlr.press/v9/glorot10a.html) ([pdf](http://jmlr.org/proceedings/papers/v9/glorot10a/glorot10a.pdf)) """ def __init__(self, seed=None): super(GlorotUniform, self).__init__( scale=1.0, mode='fan_avg', distribution='uniform', seed=seed) def get_config(self): return {'seed': self.seed} @keras_export('keras.initializers.GlorotNormal', 'keras.initializers.glorot_normal', v1=[]) class GlorotNormal(VarianceScaling): """The Glorot normal initializer, also called Xavier normal initializer. Also available via the shortcut function `tf.keras.initializers.glorot_normal`. Draws samples from a truncated normal distribution centered on 0 with `stddev = sqrt(2 / (fan_in + fan_out))` where `fan_in` is the number of input units in the weight tensor and `fan_out` is the number of output units in the weight tensor. Examples: >>> # Standalone usage: >>> initializer = tf.keras.initializers.GlorotNormal() >>> values = initializer(shape=(2, 2)) >>> # Usage in a Keras layer: >>> initializer = tf.keras.initializers.GlorotNormal() >>> layer = tf.keras.layers.Dense(3, kernel_initializer=initializer) Args: seed: A Python integer. An initializer created with a given seed will always produce the same random tensor for a given shape and dtype. References: [Glorot et al., 2010](http://proceedings.mlr.press/v9/glorot10a.html) ([pdf](http://jmlr.org/proceedings/papers/v9/glorot10a/glorot10a.pdf)) """ def __init__(self, seed=None): super(GlorotNormal, self).__init__( scale=1.0, mode='fan_avg', distribution='truncated_normal', seed=seed) def get_config(self): return {'seed': self.seed} @keras_export('keras.initializers.LecunNormal', 'keras.initializers.lecun_normal', v1=[]) class LecunNormal(VarianceScaling): """Lecun normal initializer. Also available via the shortcut function `tf.keras.initializers.lecun_normal`. Initializers allow you to pre-specify an initialization strategy, encoded in the Initializer object, without knowing the shape and dtype of the variable being initialized. Draws samples from a truncated normal distribution centered on 0 with `stddev = sqrt(1 / fan_in)` where `fan_in` is the number of input units in the weight tensor. Examples: >>> # Standalone usage: >>> initializer = tf.keras.initializers.LecunNormal() >>> values = initializer(shape=(2, 2)) >>> # Usage in a Keras layer: >>> initializer = tf.keras.initializers.LecunNormal() >>> layer = tf.keras.layers.Dense(3, kernel_initializer=initializer) Args: seed: A Python integer. Used to seed the random generator. References: - Self-Normalizing Neural Networks, [Klambauer et al., 2017] (https://papers.nips.cc/paper/6698-self-normalizing-neural-networks) ([pdf] (https://papers.nips.cc/paper/6698-self-normalizing-neural-networks.pdf)) - Efficient Backprop, [Lecun et al., 1998](http://yann.lecun.com/exdb/publis/pdf/lecun-98b.pdf) """ def __init__(self, seed=None): super(LecunNormal, self).__init__( scale=1., mode='fan_in', distribution='truncated_normal', seed=seed) def get_config(self): return {'seed': self.seed} @keras_export('keras.initializers.LecunUniform', 'keras.initializers.lecun_uniform', v1=[]) class LecunUniform(VarianceScaling): """Lecun uniform initializer. Also available via the shortcut function `tf.keras.initializers.lecun_uniform`. Draws samples from a uniform distribution within `[-limit, limit]`, where `limit = sqrt(3 / fan_in)` (`fan_in` is the number of input units in the weight tensor). Examples: >>> # Standalone usage: >>> initializer = tf.keras.initializers.LecunUniform() >>> values = initializer(shape=(2, 2)) >>> # Usage in a Keras layer: >>> initializer = tf.keras.initializers.LecunUniform() >>> layer = tf.keras.layers.Dense(3, kernel_initializer=initializer) Args: seed: A Python integer. An initializer created with a given seed will always produce the same random tensor for a given shape and dtype. References: - Self-Normalizing Neural Networks, [Klambauer et al., 2017](https://papers.nips.cc/paper/6698-self-normalizing-neural-networks) # pylint: disable=line-too-long ([pdf](https://papers.nips.cc/paper/6698-self-normalizing-neural-networks.pdf)) - Efficient Backprop, [Lecun et al., 1998](http://yann.lecun.com/exdb/publis/pdf/lecun-98b.pdf) """ def __init__(self, seed=None): super(LecunUniform, self).__init__( scale=1., mode='fan_in', distribution='uniform', seed=seed) def get_config(self): return {'seed': self.seed} @keras_export('keras.initializers.HeNormal', 'keras.initializers.he_normal', v1=[]) class HeNormal(VarianceScaling): """He normal initializer. Also available via the shortcut function `tf.keras.initializers.he_normal`. It draws samples from a truncated normal distribution centered on 0 with `stddev = sqrt(2 / fan_in)` where `fan_in` is the number of input units in the weight tensor. Examples: >>> # Standalone usage: >>> initializer = tf.keras.initializers.HeNormal() >>> values = initializer(shape=(2, 2)) >>> # Usage in a Keras layer: >>> initializer = tf.keras.initializers.HeNormal() >>> layer = tf.keras.layers.Dense(3, kernel_initializer=initializer) Args: seed: A Python integer. An initializer created with a given seed will always produce the same random tensor for a given shape and dtype. References: [He et al., 2015](https://www.cv-foundation.org/openaccess/content_iccv_2015/html/He_Delving_Deep_into_ICCV_2015_paper.html) # pylint: disable=line-too-long ([pdf](https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/He_Delving_Deep_into_ICCV_2015_paper.pdf)) """ def __init__(self, seed=None): super(HeNormal, self).__init__( scale=2., mode='fan_in', distribution='truncated_normal', seed=seed) def get_config(self): return {'seed': self.seed} @keras_export('keras.initializers.HeUniform', 'keras.initializers.he_uniform', v1=[]) class HeUniform(VarianceScaling): """He uniform variance scaling initializer. Also available via the shortcut function `tf.keras.initializers.he_uniform`. Draws samples from a uniform distribution within `[-limit, limit]`, where `limit = sqrt(6 / fan_in)` (`fan_in` is the number of input units in the weight tensor). Examples: >>> # Standalone usage: >>> initializer = tf.keras.initializers.HeUniform() >>> values = initializer(shape=(2, 2)) >>> # Usage in a Keras layer: >>> initializer = tf.keras.initializers.HeUniform() >>> layer = tf.keras.layers.Dense(3, kernel_initializer=initializer) Args: seed: A Python integer. An initializer created with a given seed will always produce the same random tensor for a given shape and dtype. References: [He et al., 2015](https://www.cv-foundation.org/openaccess/content_iccv_2015/html/He_Delving_Deep_into_ICCV_2015_paper.html) # pylint: disable=line-too-long ([pdf](https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/He_Delving_Deep_into_ICCV_2015_paper.pdf)) """ def __init__(self, seed=None): super(HeUniform, self).__init__( scale=2., mode='fan_in', distribution='uniform', seed=seed) def get_config(self): return {'seed': self.seed} def _get_dtype(dtype): if dtype is None: dtype = backend.floatx() return dtypes.as_dtype(dtype) def _assert_float_dtype(dtype): """Validate and return floating point type based on `dtype`. `dtype` must be a floating point type. Args: dtype: The data type to validate. Returns: Validated type. Raises: ValueError: if `dtype` is not a floating point type. """ dtype = dtypes.as_dtype(dtype) if not dtype.is_floating: raise ValueError('Expected floating point type, got %s.' % dtype) return dtype class _RandomGenerator(object): """Random generator that selects appropriate random ops.""" def __init__(self, seed=None): super(_RandomGenerator, self).__init__() if seed is not None: # Stateless random ops requires 2-int seed. self.seed = [seed, 0] else: self.seed = None def random_normal(self, shape, mean=0.0, stddev=1, dtype=dtypes.float32): """A deterministic random normal if seed is passed.""" if self.seed: op = stateless_random_ops.stateless_random_normal else: op = random_ops.random_normal return op( shape=shape, mean=mean, stddev=stddev, dtype=dtype, seed=self.seed) def random_uniform(self, shape, minval, maxval, dtype): """A deterministic random uniform if seed is passed.""" if self.seed: op = stateless_random_ops.stateless_random_uniform else: op = random_ops.random_uniform return op( shape=shape, minval=minval, maxval=maxval, dtype=dtype, seed=self.seed) def truncated_normal(self, shape, mean, stddev, dtype): """A deterministic truncated normal if seed is passed.""" if self.seed: op = stateless_random_ops.stateless_truncated_normal else: op = random_ops.truncated_normal return op( shape=shape, mean=mean, stddev=stddev, dtype=dtype, seed=self.seed) def _compute_fans(shape): """Computes the number of input and output units for a weight shape. Args: shape: Integer shape tuple or TF tensor shape. Returns: A tuple of integer scalars (fan_in, fan_out). """ if len(shape) < 1: # Just to avoid errors for constants. fan_in = fan_out = 1 elif len(shape) == 1: fan_in = fan_out = shape[0] elif len(shape) == 2: fan_in = shape[0] fan_out = shape[1] else: # Assuming convolution kernels (2D, 3D, or more). # kernel shape: (..., input_depth, depth) receptive_field_size = 1 for dim in shape[:-2]: receptive_field_size *= dim fan_in = shape[-2] * receptive_field_size fan_out = shape[-1] * receptive_field_size return int(fan_in), int(fan_out) def _validate_kwargs(cls_name, kwargs, support_partition=True): for kwarg in kwargs: if kwarg not in [_PARTITION_SHAPE, _PARTITION_OFFSET]: raise TypeError('Unknown keyword arguments: %s' % kwarg) elif not support_partition: raise ValueError('%s initializer doesn\'t support partition-related ' 'arguments' % cls_name)
34.488824
162
0.690552
b6a72e359718d6a21b7fc28b4b4a0751e3e26821
4,561
py
Python
tensorflow_model_analysis/extractors/slice_key_extractor_test.py
yifanmai/model-analysis
ae11318876ac6233ded77ac30c8aacc94da691d3
[ "Apache-2.0" ]
2
2019-10-20T05:40:09.000Z
2019-10-31T17:25:51.000Z
tensorflow_model_analysis/extractors/slice_key_extractor_test.py
yifanmai/model-analysis
ae11318876ac6233ded77ac30c8aacc94da691d3
[ "Apache-2.0" ]
null
null
null
tensorflow_model_analysis/extractors/slice_key_extractor_test.py
yifanmai/model-analysis
ae11318876ac6233ded77ac30c8aacc94da691d3
[ "Apache-2.0" ]
1
2019-10-10T06:20:25.000Z
2019-10-10T06:20:25.000Z
# Copyright 2018 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Test for slice_key_extractor.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function # Standard Imports import apache_beam as beam from apache_beam.testing import util import numpy as np import tensorflow as tf from tensorflow_model_analysis import constants from tensorflow_model_analysis import types from tensorflow_model_analysis.eval_saved_model import testutil from tensorflow_model_analysis.extractors import slice_key_extractor from tensorflow_model_analysis.slicer import slicer def make_features_dict(features_dict): result = {} for key, value in features_dict.items(): result[key] = {'node': np.array(value)} return result def create_fpls(): fpl1 = types.FeaturesPredictionsLabels( input_ref=0, features=make_features_dict({ 'gender': ['f'], 'age': [13], 'interest': ['cars'] }), predictions=make_features_dict({ 'kb': [1], }), labels=make_features_dict({'ad_risk_score': [0]})) fpl2 = types.FeaturesPredictionsLabels( input_ref=0, features=make_features_dict({ 'gender': ['m'], 'age': [10], 'interest': ['cars'] }), predictions=make_features_dict({ 'kb': [1], }), labels=make_features_dict({'ad_risk_score': [0]})) return [fpl1, fpl2] def wrap_fpl(fpl): return { constants.INPUT_KEY: fpl, constants.FEATURES_PREDICTIONS_LABELS_KEY: fpl } class SliceTest(testutil.TensorflowModelAnalysisTest): def testSliceKeys(self): with beam.Pipeline() as pipeline: fpls = create_fpls() slice_keys_extracts = ( pipeline | 'CreateTestInput' >> beam.Create(fpls) | 'WrapFpls' >> beam.Map(wrap_fpl) | 'ExtractSlices' >> slice_key_extractor._ExtractSliceKeys([ slicer.SingleSliceSpec(), slicer.SingleSliceSpec(columns=['gender']) ])) def check_result(got): try: self.assertEqual(2, len(got), 'got: %s' % got) expected_results = sorted([[(), (('gender', 'f'),)], [(), (('gender', 'm'),)]]) got_results = [] for item in got: self.assertTrue(constants.SLICE_KEY_TYPES_KEY in item) got_results.append(sorted(item[constants.SLICE_KEY_TYPES_KEY])) self.assertEqual(sorted(got_results), sorted(expected_results)) except AssertionError as err: raise util.BeamAssertException(err) util.assert_that(slice_keys_extracts, check_result) def testMaterializedSliceKeys(self): with beam.Pipeline() as pipeline: fpls = create_fpls() slice_keys_extracts = ( pipeline | 'CreateTestInput' >> beam.Create(fpls) | 'WrapFpls' >> beam.Map(wrap_fpl) | 'ExtractSlices' >> slice_key_extractor._ExtractSliceKeys( [ slicer.SingleSliceSpec(), slicer.SingleSliceSpec(columns=['gender']) ], materialize=True)) def check_result(got): try: self.assertEqual(2, len(got), 'got: %s' % got) expected_results = sorted([ types.MaterializedColumn( name=constants.SLICE_KEYS_KEY, value=[b'Overall', b'gender:f']), types.MaterializedColumn( name=constants.SLICE_KEYS_KEY, value=[b'Overall', b'gender:m']) ]) got_results = [] for item in got: self.assertTrue(constants.SLICE_KEYS_KEY in item) got_results.append(item[constants.SLICE_KEYS_KEY]) self.assertEqual(sorted(got_results), sorted(expected_results)) except AssertionError as err: raise util.BeamAssertException(err) util.assert_that(slice_keys_extracts, check_result) if __name__ == '__main__': tf.test.main()
32.578571
75
0.637799
60f3a7a9a73eed8afe761d313aba03759d8ba25d
4,423
py
Python
colour/difference/tests/test_cam02_ucs.py
JGoldstone/colour
6829b363d5f0682bff0f4826995e7ceac189ff28
[ "BSD-3-Clause" ]
null
null
null
colour/difference/tests/test_cam02_ucs.py
JGoldstone/colour
6829b363d5f0682bff0f4826995e7ceac189ff28
[ "BSD-3-Clause" ]
null
null
null
colour/difference/tests/test_cam02_ucs.py
JGoldstone/colour
6829b363d5f0682bff0f4826995e7ceac189ff28
[ "BSD-3-Clause" ]
null
null
null
# -*- coding: utf-8 -*- """ Defines the unit tests for the :mod:`colour.difference.cam02_ucs` module. """ import numpy as np import unittest from itertools import permutations from colour.difference import ( delta_E_CAM02LCD, delta_E_CAM02SCD, delta_E_CAM02UCS, ) from colour.difference.cam02_ucs import delta_E_Luo2006 from colour.models.cam02_ucs import COEFFICIENTS_UCS_LUO2006 from colour.utilities import ignore_numpy_errors __author__ = 'Colour Developers' __copyright__ = 'Copyright (C) 2013-2021 - Colour Developers' __license__ = 'New BSD License - https://opensource.org/licenses/BSD-3-Clause' __maintainer__ = 'Colour Developers' __email__ = 'colour-developers@colour-science.org' __status__ = 'Production' __all__ = [ 'TestDelta_E_Luo2006', ] class TestDelta_E_Luo2006(unittest.TestCase): """ Defines :func:`colour.difference.cam02_ucs.delta_E_Luo2006` definition unit tests methods. """ def test_delta_E_Luo2006(self): """ Tests :func:`colour.difference.cam02_ucs.delta_E_Luo2006` definition. """ self.assertAlmostEqual( delta_E_Luo2006( np.array([54.90433134, -0.08450395, -0.06854831]), np.array([54.80352754, -3.96940084, -13.57591013]), COEFFICIENTS_UCS_LUO2006['CAM02-LCD']), 14.055546437777583, places=7) self.assertAlmostEqual( delta_E_Luo2006( np.array([54.90433134, -0.08450395, -0.06854831]), np.array([54.80352754, -3.96940084, -13.57591013]), COEFFICIENTS_UCS_LUO2006['CAM02-LCD']), delta_E_CAM02LCD( np.array([54.90433134, -0.08450395, -0.06854831]), np.array([54.80352754, -3.96940084, -13.57591013])), places=7) self.assertAlmostEqual( delta_E_Luo2006( np.array([54.90433134, -0.08450395, -0.06854831]), np.array([54.80352754, -3.96940084, -13.57591013]), COEFFICIENTS_UCS_LUO2006['CAM02-SCD']), delta_E_CAM02SCD( np.array([54.90433134, -0.08450395, -0.06854831]), np.array([54.80352754, -3.96940084, -13.57591013])), places=7) self.assertAlmostEqual( delta_E_Luo2006( np.array([54.90433134, -0.08450395, -0.06854831]), np.array([54.80352754, -3.96940084, -13.57591013]), COEFFICIENTS_UCS_LUO2006['CAM02-UCS']), delta_E_CAM02UCS( np.array([54.90433134, -0.08450395, -0.06854831]), np.array([54.80352754, -3.96940084, -13.57591013])), places=7) def test_n_dimensional_delta_E_Luo2006(self): """ Tests :func:`colour.difference.cam02_ucs.delta_E_Luo2006` definition n-dimensional arrays support. """ Jpapbp_1 = np.array([54.90433134, -0.08450395, -0.06854831]) Jpapbp_2 = np.array([54.80352754, -3.96940084, -13.57591013]) delta_E_p = delta_E_Luo2006(Jpapbp_1, Jpapbp_2, COEFFICIENTS_UCS_LUO2006['CAM02-LCD']) Jpapbp_1 = np.tile(Jpapbp_1, (6, 1)) Jpapbp_2 = np.tile(Jpapbp_2, (6, 1)) delta_E_p = np.tile(delta_E_p, 6) np.testing.assert_almost_equal( delta_E_Luo2006(Jpapbp_1, Jpapbp_2, COEFFICIENTS_UCS_LUO2006['CAM02-LCD']), delta_E_p, decimal=7) Jpapbp_1 = np.reshape(Jpapbp_1, (2, 3, 3)) Jpapbp_2 = np.reshape(Jpapbp_2, (2, 3, 3)) delta_E_p = np.reshape(delta_E_p, (2, 3)) np.testing.assert_almost_equal( delta_E_Luo2006(Jpapbp_1, Jpapbp_2, COEFFICIENTS_UCS_LUO2006['CAM02-LCD']), delta_E_p, decimal=7) @ignore_numpy_errors def test_nan_delta_E_Luo2006(self): """ Tests :func:`colour.difference.cam02_ucs.delta_E_Luo2006` definition nan support. """ cases = [-1.0, 0.0, 1.0, -np.inf, np.inf, np.nan] cases = set(permutations(cases * 3, r=3)) for case in cases: Jpapbp_1 = np.array(case) Jpapbp_2 = np.array(case) delta_E_Luo2006(Jpapbp_1, Jpapbp_2, COEFFICIENTS_UCS_LUO2006['CAM02-LCD']), if __name__ == '__main__': unittest.main()
34.826772
79
0.597558
b98403697b502e8293de5c0c37092d0c9d538399
1,486
py
Python
mds/github.py
RMK0110/mds-provider
3bdb8e2a94c67b07e13763f1ede984feba944eaa
[ "MIT" ]
null
null
null
mds/github.py
RMK0110/mds-provider
3bdb8e2a94c67b07e13763f1ede984feba944eaa
[ "MIT" ]
1
2018-12-14T03:51:31.000Z
2018-12-14T03:51:31.000Z
mds/github.py
RMK0110/mds-provider
3bdb8e2a94c67b07e13763f1ede984feba944eaa
[ "MIT" ]
null
null
null
""" Data and helpers for MDS on GitHub. """ GITHUB = "https://github.com" GITHUB_RAW = "https://raw.githubusercontent.com" MDS_DEFAULT_REF = "master" MDS_ORG_NAME = "CityOfLosAngeles" MDS_REPO_NAME = "mobility-data-specification" MDS = (GITHUB, MDS_ORG_NAME, MDS_REPO_NAME) MDS_RAW = (GITHUB_RAW, MDS_ORG_NAME, MDS_REPO_NAME) MDS_PROVIDER_REGISTRY = "/".join(MDS_RAW + ("{}/providers.csv",)) MDS_SCHEMA = "/".join(MDS_RAW + ("{}/provider/{}.json",)) def registry_url(ref=None): """ Helper to return a formatted provider registry URL. Parameters: ref: str, Version, optional Reference the schema at the version specified, which could be any of: * git branch name * git commit hash (long or short) * version str or Version instance Return: str """ ref = ref or MDS_DEFAULT_REF return MDS_PROVIDER_REGISTRY.format(ref) def schema_url(schema_type, ref=None): """ Helper to return a formatted schema URL. Parameters: schema_type: str The type of MDS Provider schema ("status_changes" or "trips"). ref: str, Version, optional Reference the schema at the version specified, which could be any of: * git branch name * git commit hash (long or short) * version str or Version instance Return: str """ ref = ref or MDS_DEFAULT_REF return MDS_SCHEMA.format(ref, schema_type)
26.070175
81
0.641992
a833b0d86543d75c6c2003937cd22b52086e448e
603
py
Python
benchmarks/sqlite/cost-factors/launch-time/time_estimation.py
vschiavoni/unine-twine
312d770585ea88c13ef135ef467fee779494fd90
[ "Apache-2.0" ]
20
2021-04-05T20:05:57.000Z
2022-02-19T18:48:52.000Z
benchmarks/sqlite/cost-factors/launch-time/time_estimation.py
vschiavoni/unine-twine
312d770585ea88c13ef135ef467fee779494fd90
[ "Apache-2.0" ]
null
null
null
benchmarks/sqlite/cost-factors/launch-time/time_estimation.py
vschiavoni/unine-twine
312d770585ea88c13ef135ef467fee779494fd90
[ "Apache-2.0" ]
4
2021-02-22T14:52:21.000Z
2022-01-10T16:58:39.000Z
import time import pexpect import sys # Start the timer for measuring process time t_start = time.perf_counter() # Spawn a child process with the enclave analyzer = pexpect.spawn(" ".join(sys.argv[1:]), encoding='utf-8', timeout=None) # Wait until the enclave is ready to be measured analyzer.expect("Initialization done") # End the timer for measuring process time t_end = time.perf_counter() # Send a dummy input to continue the child process analyzer.sendline("0") # Print the time to start the process in ms print(int((t_end - t_start) * 1_000)) # Wait until the enclave ends analyzer.wait()
24.12
80
0.751244
d48f55e9ff6d76abaa8055ee3122ff9445f99cc7
38,346
py
Python
mne/tests/test_source_space.py
guiomar/mne-python
2d19800a07904cfe69c1ba290c3eaf712625c6ab
[ "BSD-3-Clause" ]
2
2020-05-11T13:34:36.000Z
2020-05-28T19:43:21.000Z
mne/tests/test_source_space.py
guiomar/mne-python
2d19800a07904cfe69c1ba290c3eaf712625c6ab
[ "BSD-3-Clause" ]
8
2018-03-03T19:59:16.000Z
2020-10-14T11:00:33.000Z
mne/tests/test_source_space.py
guiomar/mne-python
2d19800a07904cfe69c1ba290c3eaf712625c6ab
[ "BSD-3-Clause" ]
4
2017-08-14T18:03:22.000Z
2021-03-04T06:55:29.000Z
# -*- coding: utf-8 -*- # Authors: Alexandre Gramfort <alexandre.gramfort@inria.fr> # Eric Larson <larson.eric.d@gmail.com> # # License: BSD-3-Clause import os.path as op from shutil import copytree import pytest import scipy import numpy as np from numpy.testing import (assert_array_equal, assert_allclose, assert_equal, assert_array_less) from mne.datasets import testing import mne from mne import (read_source_spaces, write_source_spaces, setup_source_space, setup_volume_source_space, add_source_space_distances, read_bem_surfaces, morph_source_spaces, SourceEstimate, make_sphere_model, compute_source_morph, pick_types, read_bem_solution, read_freesurfer_lut, read_trans) from mne.fixes import _get_img_fdata from mne.utils import (requires_nibabel, run_subprocess, modified_env, requires_mne, check_version) from mne.surface import _accumulate_normals, _triangle_neighbors from mne.source_estimate import _get_src_type from mne.source_space import (get_volume_labels_from_src, _compare_source_spaces, compute_distance_to_sensors) from mne.io.pick import _picks_to_idx from mne.io.constants import FIFF data_path = testing.data_path(download=False) subjects_dir = op.join(data_path, 'subjects') fname_mri = op.join(data_path, 'subjects', 'sample', 'mri', 'T1.mgz') aseg_fname = op.join(data_path, 'subjects', 'sample', 'mri', 'aseg.mgz') fname = op.join(subjects_dir, 'sample', 'bem', 'sample-oct-6-src.fif') fname_vol = op.join(subjects_dir, 'sample', 'bem', 'sample-volume-7mm-src.fif') fname_bem = op.join(data_path, 'subjects', 'sample', 'bem', 'sample-1280-bem.fif') fname_bem_sol = op.join(data_path, 'subjects', 'sample', 'bem', 'sample-1280-bem-sol.fif') fname_bem_3 = op.join(data_path, 'subjects', 'sample', 'bem', 'sample-1280-1280-1280-bem.fif') fname_bem_3_sol = op.join(data_path, 'subjects', 'sample', 'bem', 'sample-1280-1280-1280-bem-sol.fif') fname_fs = op.join(subjects_dir, 'fsaverage', 'bem', 'fsaverage-ico-5-src.fif') fname_morph = op.join(subjects_dir, 'sample', 'bem', 'sample-fsaverage-ico-5-src.fif') fname_src = op.join( data_path, 'subjects', 'sample', 'bem', 'sample-oct-4-src.fif') fname_fwd = op.join( data_path, 'MEG', 'sample', 'sample_audvis_trunc-meg-eeg-oct-4-fwd.fif') trans_fname = op.join(data_path, 'MEG', 'sample', 'sample_audvis_trunc-trans.fif') base_dir = op.join(op.dirname(__file__), '..', 'io', 'tests', 'data') fname_small = op.join(base_dir, 'small-src.fif.gz') fname_ave = op.join(base_dir, 'test-ave.fif') rng = np.random.RandomState(0) @testing.requires_testing_data @pytest.mark.parametrize('picks, limits', [ ('meg', (0.02, 0.250)), (None, (0.01, 0.250)), # should be same as EEG ('eeg', (0.01, 0.250)), ]) def test_compute_distance_to_sensors(picks, limits): """Test computation of distances between vertices and sensors.""" src = read_source_spaces(fname_src) fwd = mne.read_forward_solution(fname_fwd) info = fwd['info'] trans = read_trans(trans_fname) # trans = fwd['info']['mri_head_t'] if isinstance(picks, str): kwargs = dict() kwargs[picks] = True if picks == 'eeg': info['dev_head_t'] = None # should not break anything use_picks = pick_types(info, **kwargs, exclude=()) else: use_picks = picks n_picks = len(_picks_to_idx(info, use_picks, 'data', exclude=())) # Make sure same vertices are used in src and fwd src[0]['inuse'] = fwd['src'][0]['inuse'] src[1]['inuse'] = fwd['src'][1]['inuse'] src[0]['nuse'] = fwd['src'][0]['nuse'] src[1]['nuse'] = fwd['src'][1]['nuse'] n_verts = src[0]['nuse'] + src[1]['nuse'] # minimum distances between vertices and sensors depths = compute_distance_to_sensors(src, info=info, picks=use_picks, trans=trans) assert depths.shape == (n_verts, n_picks) assert limits[0] * 5 > depths.min() # meaningful choice of limits assert_array_less(limits[0], depths) assert_array_less(depths, limits[1]) # If source space from Forward Solution and trans=None (i.e. identity) then # depths2 should be the same as depth. depths2 = compute_distance_to_sensors(src=fwd['src'], info=info, picks=use_picks, trans=None) assert_allclose(depths, depths2, rtol=1e-5) if picks != 'eeg': # this should break things info['dev_head_t'] = None with pytest.raises(ValueError, match='Transform between meg<->head'): compute_distance_to_sensors(src, info, use_picks, trans) def _read_small_src(remove=True): src = read_source_spaces(fname_small) if remove: for s in src: s['nearest'] = None s['nearest_dist'] = None s['pinfo'] = None return src def test_add_patch_info(monkeypatch): """Test adding patch info to source space.""" # let's setup a small source space src = _read_small_src(remove=False) src_new = _read_small_src() # test that no patch info is added for small dist_limit add_source_space_distances(src_new, dist_limit=0.00001) assert all(s['nearest'] is None for s in src_new) assert all(s['nearest_dist'] is None for s in src_new) assert all(s['pinfo'] is None for s in src_new) # now let's use one that works (and test our warning-throwing) with monkeypatch.context() as m: m.setattr(mne.source_space, '_DIST_WARN_LIMIT', 1) with pytest.warns(RuntimeWarning, match='Computing distances for 258'): add_source_space_distances(src_new) _compare_source_spaces(src, src_new, 'approx') # Old SciPy can't do patch info only src_new = _read_small_src() with monkeypatch.context() as m: m.setattr(scipy, '__version__', '1.0') with pytest.raises(RuntimeError, match='required to calculate patch '): add_source_space_distances(src_new, dist_limit=0) # New SciPy can if check_version('scipy', '1.3'): src_nodist = src.copy() for s in src_nodist: for key in ('dist', 'dist_limit'): s[key] = None add_source_space_distances(src_new, dist_limit=0) _compare_source_spaces(src, src_new, 'approx') @testing.requires_testing_data def test_add_source_space_distances_limited(tmp_path): """Test adding distances to source space with a dist_limit.""" src = read_source_spaces(fname) src_new = read_source_spaces(fname) del src_new[0]['dist'] del src_new[1]['dist'] n_do = 200 # limit this for speed src_new[0]['vertno'] = src_new[0]['vertno'][:n_do].copy() src_new[1]['vertno'] = src_new[1]['vertno'][:n_do].copy() out_name = tmp_path / 'temp-src.fif' add_source_space_distances(src_new, dist_limit=0.007) write_source_spaces(out_name, src_new) src_new = read_source_spaces(out_name) for so, sn in zip(src, src_new): assert_array_equal(so['dist_limit'], np.array([-0.007], np.float32)) assert_array_equal(sn['dist_limit'], np.array([0.007], np.float32)) do = so['dist'] dn = sn['dist'] # clean out distances > 0.007 in C code do.data[do.data > 0.007] = 0 do.eliminate_zeros() # make sure we have some comparable distances assert np.sum(do.data < 0.007) > 400 # do comparison over the region computed d = (do - dn)[:sn['vertno'][n_do - 1]][:, :sn['vertno'][n_do - 1]] assert_allclose(np.zeros_like(d.data), d.data, rtol=0, atol=1e-6) @pytest.mark.slowtest @testing.requires_testing_data def test_add_source_space_distances(tmp_path): """Test adding distances to source space.""" src = read_source_spaces(fname) src_new = read_source_spaces(fname) del src_new[0]['dist'] del src_new[1]['dist'] n_do = 19 # limit this for speed src_new[0]['vertno'] = src_new[0]['vertno'][:n_do].copy() src_new[1]['vertno'] = src_new[1]['vertno'][:n_do].copy() out_name = tmp_path / 'temp-src.fif' n_jobs = 2 assert n_do % n_jobs != 0 with pytest.raises(ValueError, match='non-negative'): add_source_space_distances(src_new, dist_limit=-1) add_source_space_distances(src_new, n_jobs=n_jobs) write_source_spaces(out_name, src_new) src_new = read_source_spaces(out_name) # iterate over both hemispheres for so, sn in zip(src, src_new): v = so['vertno'][:n_do] assert_array_equal(so['dist_limit'], np.array([-0.007], np.float32)) assert_array_equal(sn['dist_limit'], np.array([np.inf], np.float32)) do = so['dist'] dn = sn['dist'] # clean out distances > 0.007 in C code (some residual), and Python ds = list() for d in [do, dn]: d.data[d.data > 0.007] = 0 d = d[v][:, v] d.eliminate_zeros() ds.append(d) # make sure we actually calculated some comparable distances assert np.sum(ds[0].data < 0.007) > 10 # do comparison d = ds[0] - ds[1] assert_allclose(np.zeros_like(d.data), d.data, rtol=0, atol=1e-9) @testing.requires_testing_data @requires_mne def test_discrete_source_space(tmp_path): """Test setting up (and reading/writing) discrete source spaces.""" src = read_source_spaces(fname) v = src[0]['vertno'] # let's make a discrete version with the C code, and with ours temp_name = tmp_path / 'temp-src.fif' # save temp_pos = tmp_path / 'temp-pos.txt' np.savetxt(str(temp_pos), np.c_[src[0]['rr'][v], src[0]['nn'][v]]) # let's try the spherical one (no bem or surf supplied) run_subprocess(['mne_volume_source_space', '--meters', '--pos', temp_pos, '--src', temp_name]) src_c = read_source_spaces(temp_name) pos_dict = dict(rr=src[0]['rr'][v], nn=src[0]['nn'][v]) src_new = setup_volume_source_space(pos=pos_dict) assert src_new.kind == 'discrete' _compare_source_spaces(src_c, src_new, mode='approx') assert_allclose(src[0]['rr'][v], src_new[0]['rr'], rtol=1e-3, atol=1e-6) assert_allclose(src[0]['nn'][v], src_new[0]['nn'], rtol=1e-3, atol=1e-6) # now do writing write_source_spaces(temp_name, src_c, overwrite=True) src_c2 = read_source_spaces(temp_name) _compare_source_spaces(src_c, src_c2) # now do MRI with pytest.raises(ValueError, match='Cannot create interpolation'): setup_volume_source_space('sample', pos=pos_dict, mri=fname_mri) assert repr(src_new).split('~')[0] == repr(src_c).split('~')[0] assert ' kB' in repr(src_new) assert src_new.kind == 'discrete' assert _get_src_type(src_new, None) == 'discrete' with pytest.raises(RuntimeError, match='finite'): setup_volume_source_space( pos=dict(rr=[[0, 0, float('inf')]], nn=[[0, 1, 0]])) @requires_nibabel() @pytest.mark.slowtest @testing.requires_testing_data def test_volume_source_space(tmp_path): """Test setting up volume source spaces.""" src = read_source_spaces(fname_vol) temp_name = tmp_path / 'temp-src.fif' surf = read_bem_surfaces(fname_bem, s_id=FIFF.FIFFV_BEM_SURF_ID_BRAIN) surf['rr'] *= 1e3 # convert to mm bem_sol = read_bem_solution(fname_bem_3_sol) bem = read_bem_solution(fname_bem_sol) # The one in the testing dataset (uses bem as bounds) for this_bem, this_surf in zip( (bem, fname_bem, fname_bem_3, bem_sol, fname_bem_3_sol, None), (None, None, None, None, None, surf)): src_new = setup_volume_source_space( 'sample', pos=7.0, bem=this_bem, surface=this_surf, subjects_dir=subjects_dir) write_source_spaces(temp_name, src_new, overwrite=True) src[0]['subject_his_id'] = 'sample' # XXX: to make comparison pass _compare_source_spaces(src, src_new, mode='approx') del src_new src_new = read_source_spaces(temp_name) _compare_source_spaces(src, src_new, mode='approx') with pytest.raises(IOError, match='surface file.*not found'): setup_volume_source_space( 'sample', surface='foo', mri=fname_mri, subjects_dir=subjects_dir) bem['surfs'][-1]['coord_frame'] = FIFF.FIFFV_COORD_HEAD with pytest.raises(ValueError, match='BEM is not in MRI coord.* got head'): setup_volume_source_space( 'sample', bem=bem, mri=fname_mri, subjects_dir=subjects_dir) bem['surfs'] = bem['surfs'][:-1] # no inner skull surf with pytest.raises(ValueError, match='Could not get inner skul.*from BEM'): setup_volume_source_space( 'sample', bem=bem, mri=fname_mri, subjects_dir=subjects_dir) del bem assert repr(src) == repr(src_new) assert ' MB' in repr(src) assert src.kind == 'volume' # Spheres sphere = make_sphere_model(r0=(0., 0., 0.), head_radius=0.1, relative_radii=(0.9, 1.0), sigmas=(0.33, 1.0)) src = setup_volume_source_space(pos=10, sphere=(0., 0., 0., 0.09)) src_new = setup_volume_source_space(pos=10, sphere=sphere) _compare_source_spaces(src, src_new, mode='exact') with pytest.raises(ValueError, match='sphere, if str'): setup_volume_source_space(sphere='foo') # Need a radius sphere = make_sphere_model(head_radius=None) with pytest.raises(ValueError, match='be spherical with multiple layers'): setup_volume_source_space(sphere=sphere) @testing.requires_testing_data @requires_mne def test_other_volume_source_spaces(tmp_path): """Test setting up other volume source spaces.""" # these are split off because they require the MNE tools, and # Travis doesn't seem to like them # let's try the spherical one (no bem or surf supplied) temp_name = tmp_path / 'temp-src.fif' run_subprocess(['mne_volume_source_space', '--grid', '7.0', '--src', temp_name, '--mri', fname_mri]) src = read_source_spaces(temp_name) sphere = (0., 0., 0., 0.09) src_new = setup_volume_source_space(None, pos=7.0, mri=fname_mri, subjects_dir=subjects_dir, sphere=sphere) # we use a more accurate elimination criteria, so let's fix the MNE-C # source space assert len(src_new[0]['vertno']) == 7497 assert len(src) == 1 assert len(src_new) == 1 good_mask = np.in1d(src[0]['vertno'], src_new[0]['vertno']) src[0]['inuse'][src[0]['vertno'][~good_mask]] = 0 assert src[0]['inuse'].sum() == 7497 src[0]['vertno'] = src[0]['vertno'][good_mask] assert len(src[0]['vertno']) == 7497 src[0]['nuse'] = len(src[0]['vertno']) assert src[0]['nuse'] == 7497 _compare_source_spaces(src_new, src, mode='approx') assert 'volume, shape' in repr(src) del src del src_new pytest.raises(ValueError, setup_volume_source_space, 'sample', pos=7.0, sphere=[1., 1.], mri=fname_mri, # bad sphere subjects_dir=subjects_dir) # now without MRI argument, it should give an error when we try # to read it run_subprocess(['mne_volume_source_space', '--grid', '7.0', '--src', temp_name]) pytest.raises(ValueError, read_source_spaces, temp_name) @pytest.mark.timeout(60) # can be slow on OSX Travis @pytest.mark.slowtest @testing.requires_testing_data def test_triangle_neighbors(): """Test efficient vertex neighboring triangles for surfaces.""" this = read_source_spaces(fname)[0] this['neighbor_tri'] = [list() for _ in range(this['np'])] for p in range(this['ntri']): verts = this['tris'][p] this['neighbor_tri'][verts[0]].append(p) this['neighbor_tri'][verts[1]].append(p) this['neighbor_tri'][verts[2]].append(p) this['neighbor_tri'] = [np.array(nb, int) for nb in this['neighbor_tri']] neighbor_tri = _triangle_neighbors(this['tris'], this['np']) assert all(np.array_equal(nt1, nt2) for nt1, nt2 in zip(neighbor_tri, this['neighbor_tri'])) def test_accumulate_normals(): """Test efficient normal accumulation for surfaces.""" # set up comparison n_pts = int(1.6e5) # approx number in sample source space n_tris = int(3.2e5) # use all positive to make a worst-case for cumulative summation # (real "nn" vectors will have both positive and negative values) tris = (rng.rand(n_tris, 1) * (n_pts - 2)).astype(int) tris = np.c_[tris, tris + 1, tris + 2] tri_nn = rng.rand(n_tris, 3) this = dict(tris=tris, np=n_pts, ntri=n_tris, tri_nn=tri_nn) # cut-and-paste from original code in surface.py: # Find neighboring triangles and accumulate vertex normals this['nn'] = np.zeros((this['np'], 3)) for p in range(this['ntri']): # vertex normals verts = this['tris'][p] this['nn'][verts, :] += this['tri_nn'][p, :] nn = _accumulate_normals(this['tris'], this['tri_nn'], this['np']) # the moment of truth (or reckoning) assert_allclose(nn, this['nn'], rtol=1e-7, atol=1e-7) @pytest.mark.slowtest @testing.requires_testing_data def test_setup_source_space(tmp_path): """Test setting up ico, oct, and all source spaces.""" fname_ico = op.join(data_path, 'subjects', 'fsaverage', 'bem', 'fsaverage-ico-5-src.fif') # first lets test some input params for spacing in ('oct', 'oct6e'): with pytest.raises(ValueError, match='subdivision must be an integer'): setup_source_space('sample', spacing=spacing, add_dist=False, subjects_dir=subjects_dir) for spacing in ('oct0', 'oct-4'): with pytest.raises(ValueError, match='oct subdivision must be >= 1'): setup_source_space('sample', spacing=spacing, add_dist=False, subjects_dir=subjects_dir) with pytest.raises(ValueError, match='ico subdivision must be >= 0'): setup_source_space('sample', spacing='ico-4', add_dist=False, subjects_dir=subjects_dir) with pytest.raises(ValueError, match='must be a string with values'): setup_source_space('sample', spacing='7emm', add_dist=False, subjects_dir=subjects_dir) with pytest.raises(ValueError, match='must be a string with values'): setup_source_space('sample', spacing='alls', add_dist=False, subjects_dir=subjects_dir) # ico 5 (fsaverage) - write to temp file src = read_source_spaces(fname_ico) with pytest.warns(None): # sklearn equiv neighbors src_new = setup_source_space('fsaverage', spacing='ico5', subjects_dir=subjects_dir, add_dist=False) _compare_source_spaces(src, src_new, mode='approx') assert repr(src).split('~')[0] == repr(src_new).split('~')[0] assert repr(src).count('surface (') == 2 assert_array_equal(src[0]['vertno'], np.arange(10242)) assert_array_equal(src[1]['vertno'], np.arange(10242)) # oct-6 (sample) - auto filename + IO src = read_source_spaces(fname) temp_name = tmp_path / 'temp-src.fif' with pytest.warns(None): # sklearn equiv neighbors src_new = setup_source_space('sample', spacing='oct6', subjects_dir=subjects_dir, add_dist=False) write_source_spaces(temp_name, src_new, overwrite=True) assert_equal(src_new[0]['nuse'], 4098) _compare_source_spaces(src, src_new, mode='approx', nearest=False) src_new = read_source_spaces(temp_name) _compare_source_spaces(src, src_new, mode='approx', nearest=False) # all source points - no file writing src_new = setup_source_space('sample', spacing='all', subjects_dir=subjects_dir, add_dist=False) assert src_new[0]['nuse'] == len(src_new[0]['rr']) assert src_new[1]['nuse'] == len(src_new[1]['rr']) # dense source space to hit surf['inuse'] lines of _create_surf_spacing pytest.raises(RuntimeError, setup_source_space, 'sample', spacing='ico6', subjects_dir=subjects_dir, add_dist=False) @testing.requires_testing_data @requires_mne @pytest.mark.slowtest @pytest.mark.timeout(60) @pytest.mark.parametrize('spacing', [2, 7]) def test_setup_source_space_spacing(tmp_path, spacing): """Test setting up surface source spaces using a given spacing.""" copytree(op.join(subjects_dir, 'sample'), tmp_path / 'sample') args = [] if spacing == 7 else ['--spacing', str(spacing)] with modified_env(SUBJECTS_DIR=str(tmp_path), SUBJECT='sample'): run_subprocess(['mne_setup_source_space'] + args) src = read_source_spaces( tmp_path / 'sample' / 'bem' / ('sample-%d-src.fif' % spacing) ) src_new = setup_source_space('sample', spacing=spacing, add_dist=False, subjects_dir=subjects_dir) _compare_source_spaces(src, src_new, mode='approx', nearest=True) # Degenerate conditions with pytest.raises(TypeError, match='spacing must be.*got.*float.*'): setup_source_space('sample', 7., subjects_dir=subjects_dir) with pytest.raises(ValueError, match='spacing must be >= 2, got 1'): setup_source_space('sample', 1, subjects_dir=subjects_dir) @testing.requires_testing_data def test_read_source_spaces(): """Test reading of source space meshes.""" src = read_source_spaces(fname, patch_stats=True) # 3D source space lh_points = src[0]['rr'] lh_faces = src[0]['tris'] lh_use_faces = src[0]['use_tris'] rh_points = src[1]['rr'] rh_faces = src[1]['tris'] rh_use_faces = src[1]['use_tris'] assert lh_faces.min() == 0 assert lh_faces.max() == lh_points.shape[0] - 1 assert lh_use_faces.min() >= 0 assert lh_use_faces.max() <= lh_points.shape[0] - 1 assert rh_faces.min() == 0 assert rh_faces.max() == rh_points.shape[0] - 1 assert rh_use_faces.min() >= 0 assert rh_use_faces.max() <= rh_points.shape[0] - 1 @pytest.mark.slowtest @testing.requires_testing_data def test_write_source_space(tmp_path): """Test reading and writing of source spaces.""" src0 = read_source_spaces(fname, patch_stats=False) temp_fname = tmp_path / 'tmp-src.fif' write_source_spaces(temp_fname, src0) src1 = read_source_spaces(temp_fname, patch_stats=False) _compare_source_spaces(src0, src1) # test warnings on bad filenames src_badname = tmp_path / 'test-bad-name.fif.gz' with pytest.warns(RuntimeWarning, match='-src.fif'): write_source_spaces(src_badname, src0) with pytest.warns(RuntimeWarning, match='-src.fif'): read_source_spaces(src_badname) @testing.requires_testing_data @requires_nibabel() @pytest.mark.parametrize('pass_ids', (True, False)) def test_source_space_from_label(tmp_path, pass_ids): """Test generating a source space from volume label.""" aseg_short = 'aseg.mgz' atlas_ids, _ = read_freesurfer_lut() volume_label = 'Left-Cerebellum-Cortex' # Test pos as dict pos = dict() with pytest.raises(ValueError, match='mri must be None if pos is a dict'): setup_volume_source_space( 'sample', pos=pos, volume_label=volume_label, mri=aseg_short, subjects_dir=subjects_dir) # Test T1.mgz provided with pytest.raises(RuntimeError, match=r'Must use a \*aseg.mgz file'): setup_volume_source_space( 'sample', mri='T1.mgz', volume_label=volume_label, subjects_dir=subjects_dir) # Test invalid volume label mri = aseg_short with pytest.raises(ValueError, match="'Left-Cerebral' not found.*Did you"): setup_volume_source_space( 'sample', volume_label='Left-Cerebral', mri=mri, subjects_dir=subjects_dir) # These should be equivalent if pass_ids: use_volume_label = {volume_label: atlas_ids[volume_label]} else: use_volume_label = volume_label # ensure it works even when not provided (detect that it should be aseg) src = setup_volume_source_space( 'sample', volume_label=use_volume_label, add_interpolator=False, subjects_dir=subjects_dir) assert_equal(volume_label, src[0]['seg_name']) assert src[0]['nuse'] == 404 # for our given pos and label # test reading and writing out_name = tmp_path / 'temp-src.fif' write_source_spaces(out_name, src) src_from_file = read_source_spaces(out_name) _compare_source_spaces(src, src_from_file, mode='approx') @testing.requires_testing_data @requires_nibabel() def test_source_space_exclusive_complete(src_volume_labels): """Test that we produce exclusive and complete labels.""" # these two are neighbors and are quite large, so let's use them to # ensure no overlaps src, volume_labels, _ = src_volume_labels ii = volume_labels.index('Left-Cerebral-White-Matter') jj = volume_labels.index('Left-Cerebral-Cortex') assert src[ii]['nuse'] == 755 # 2034 with pos=5, was 2832 assert src[jj]['nuse'] == 616 # 1520 with pos=5, was 2623 src_full = read_source_spaces(fname_vol) # This implicitly checks for overlap because np.sort would preserve # duplicates, and it checks for completeness because the sets should match assert_array_equal(src_full[0]['vertno'], np.sort(np.concatenate([s['vertno'] for s in src]))) for si, s in enumerate(src): assert_allclose(src_full[0]['rr'], s['rr'], atol=1e-6) # also check single_volume=True -- should be the same result with pytest.warns(RuntimeWarning, match='Found no usable.*Left-vessel.*'): src_single = setup_volume_source_space( src[0]['subject_his_id'], 7., 'aseg.mgz', bem=fname_bem, volume_label=volume_labels, single_volume=True, add_interpolator=False, subjects_dir=subjects_dir) assert len(src_single) == 1 assert 'Unknown+Left-Cerebral-White-Matter+Left-' in repr(src_single) assert_array_equal(src_full[0]['vertno'], src_single[0]['vertno']) @pytest.mark.timeout(60) # ~24 sec on Travis @pytest.mark.slowtest @testing.requires_testing_data @requires_nibabel() def test_read_volume_from_src(): """Test reading volumes from a mixed source space.""" labels_vol = ['Left-Amygdala', 'Brain-Stem', 'Right-Amygdala'] src = read_source_spaces(fname) # Setup a volume source space vol_src = setup_volume_source_space('sample', mri=aseg_fname, pos=5.0, bem=fname_bem, volume_label=labels_vol, subjects_dir=subjects_dir) # Generate the mixed source space, testing some list methods assert src.kind == 'surface' assert vol_src.kind == 'volume' src += vol_src assert src.kind == 'mixed' assert vol_src.kind == 'volume' assert src[:2].kind == 'surface' assert src[2:].kind == 'volume' assert src[:].kind == 'mixed' with pytest.raises(RuntimeError, match='Invalid source space'): src[::2] volume_src = get_volume_labels_from_src(src, 'sample', subjects_dir) volume_label = volume_src[0].name volume_label = 'Left-' + volume_label.replace('-lh', '') # Test assert_equal(volume_label, src[2]['seg_name']) assert_equal(src[2]['type'], 'vol') @testing.requires_testing_data @requires_nibabel() def test_combine_source_spaces(tmp_path): """Test combining source spaces.""" import nibabel as nib rng = np.random.RandomState(2) volume_labels = ['Brain-Stem', 'Right-Hippocampus'] # two fairly large # create a sparse surface source space to ensure all get mapped # when mri_resolution=False srf = setup_source_space('sample', 'oct3', add_dist=False, subjects_dir=subjects_dir) # setup 2 volume source spaces vol = setup_volume_source_space('sample', subjects_dir=subjects_dir, volume_label=volume_labels[0], mri=aseg_fname, add_interpolator=False) # setup a discrete source space rr = rng.randint(0, 11, (20, 3)) * 5e-3 nn = np.zeros(rr.shape) nn[:, -1] = 1 pos = {'rr': rr, 'nn': nn} disc = setup_volume_source_space('sample', subjects_dir=subjects_dir, pos=pos, verbose='error') # combine source spaces assert srf.kind == 'surface' assert vol.kind == 'volume' assert disc.kind == 'discrete' src = srf + vol + disc assert src.kind == 'mixed' assert srf.kind == 'surface' assert vol.kind == 'volume' assert disc.kind == 'discrete' # test addition of source spaces assert len(src) == 4 # test reading and writing src_out_name = tmp_path / 'temp-src.fif' src.save(src_out_name) src_from_file = read_source_spaces(src_out_name) _compare_source_spaces(src, src_from_file, mode='approx') assert repr(src).split('~')[0] == repr(src_from_file).split('~')[0] assert_equal(src.kind, 'mixed') # test that all source spaces are in MRI coordinates coord_frames = np.array([s['coord_frame'] for s in src]) assert (coord_frames == FIFF.FIFFV_COORD_MRI).all() # test errors for export_volume image_fname = tmp_path / 'temp-image.mgz' # source spaces with no volume with pytest.raises(ValueError, match='at least one volume'): srf.export_volume(image_fname, verbose='error') # unrecognized source type disc2 = disc.copy() disc2[0]['type'] = 'kitty' with pytest.raises(ValueError, match='Invalid value'): src + disc2 del disc2 # unrecognized file type bad_image_fname = tmp_path / 'temp-image.png' # vertices outside vol space warning pytest.raises(ValueError, src.export_volume, bad_image_fname, verbose='error') # mixed coordinate frames disc3 = disc.copy() disc3[0]['coord_frame'] = 10 src_mixed_coord = src + disc3 with pytest.raises(ValueError, match='must be in head coordinates'): src_mixed_coord.export_volume(image_fname, verbose='error') # now actually write it fname_img = tmp_path / 'img.nii' for mri_resolution in (False, 'sparse', True): for src, up in ((vol, 705), (srf + vol, 27272), (disc + vol, 705)): src.export_volume( fname_img, use_lut=False, mri_resolution=mri_resolution, overwrite=True) img_data = _get_img_fdata(nib.load(str(fname_img))) n_src = img_data.astype(bool).sum() n_want = sum(s['nuse'] for s in src) if mri_resolution is True: n_want += up assert n_src == n_want, src # gh-8004 temp_aseg = tmp_path / 'aseg.mgz' aseg_img = nib.load(aseg_fname) aseg_affine = aseg_img.affine aseg_affine[:3, :3] *= 0.7 new_aseg = nib.MGHImage(aseg_img.dataobj, aseg_affine) nib.save(new_aseg, str(temp_aseg)) lh_cereb = mne.setup_volume_source_space( "sample", mri=temp_aseg, volume_label="Left-Cerebellum-Cortex", add_interpolator=False, subjects_dir=subjects_dir) src = srf + lh_cereb with pytest.warns(RuntimeWarning, match='2 surf vertices lay outside'): src.export_volume(image_fname, mri_resolution="sparse", overwrite=True) @testing.requires_testing_data def test_morph_source_spaces(): """Test morphing of source spaces.""" src = read_source_spaces(fname_fs) src_morph = read_source_spaces(fname_morph) src_morph_py = morph_source_spaces(src, 'sample', subjects_dir=subjects_dir) _compare_source_spaces(src_morph, src_morph_py, mode='approx') @pytest.mark.timeout(60) # can be slow on OSX Travis @pytest.mark.slowtest @testing.requires_testing_data def test_morphed_source_space_return(): """Test returning a morphed source space to the original subject.""" # let's create some random data on fsaverage data = rng.randn(20484, 1) tmin, tstep = 0, 1. src_fs = read_source_spaces(fname_fs) stc_fs = SourceEstimate(data, [s['vertno'] for s in src_fs], tmin, tstep, 'fsaverage') n_verts_fs = sum(len(s['vertno']) for s in src_fs) # Create our morph source space src_morph = morph_source_spaces(src_fs, 'sample', subjects_dir=subjects_dir) n_verts_sample = sum(len(s['vertno']) for s in src_morph) assert n_verts_fs == n_verts_sample # Morph the data over using standard methods stc_morph = compute_source_morph( src_fs, 'fsaverage', 'sample', spacing=[s['vertno'] for s in src_morph], smooth=1, subjects_dir=subjects_dir, warn=False).apply(stc_fs) assert stc_morph.data.shape[0] == n_verts_sample # We can now pretend like this was real data we got e.g. from an inverse. # To be complete, let's remove some vertices keeps = [np.sort(rng.permutation(np.arange(len(v)))[:len(v) - 10]) for v in stc_morph.vertices] stc_morph = SourceEstimate( np.concatenate([stc_morph.lh_data[keeps[0]], stc_morph.rh_data[keeps[1]]]), [v[k] for v, k in zip(stc_morph.vertices, keeps)], tmin, tstep, 'sample') # Return it to the original subject stc_morph_return = stc_morph.to_original_src( src_fs, subjects_dir=subjects_dir) # This should fail (has too many verts in SourceMorph) with pytest.warns(RuntimeWarning, match='vertices not included'): morph = compute_source_morph( src_morph, subject_from='sample', spacing=stc_morph_return.vertices, smooth=1, subjects_dir=subjects_dir) with pytest.raises(ValueError, match='vertices do not match'): morph.apply(stc_morph) # Compare to the original data with pytest.warns(RuntimeWarning, match='vertices not included'): stc_morph_morph = compute_source_morph( src=stc_morph, subject_from='sample', spacing=stc_morph_return.vertices, smooth=1, subjects_dir=subjects_dir).apply(stc_morph) assert_equal(stc_morph_return.subject, stc_morph_morph.subject) for ii in range(2): assert_array_equal(stc_morph_return.vertices[ii], stc_morph_morph.vertices[ii]) # These will not match perfectly because morphing pushes data around corr = np.corrcoef(stc_morph_return.data[:, 0], stc_morph_morph.data[:, 0])[0, 1] assert corr > 0.99, corr # Explicitly test having two vertices map to the same target vertex. We # simulate this by having two vertices be at the same position. src_fs2 = src_fs.copy() vert1, vert2 = src_fs2[0]['vertno'][:2] src_fs2[0]['rr'][vert1] = src_fs2[0]['rr'][vert2] stc_morph_return = stc_morph.to_original_src( src_fs2, subjects_dir=subjects_dir) # test to_original_src method result equality for ii in range(2): assert_array_equal(stc_morph_return.vertices[ii], stc_morph_morph.vertices[ii]) # These will not match perfectly because morphing pushes data around corr = np.corrcoef(stc_morph_return.data[:, 0], stc_morph_morph.data[:, 0])[0, 1] assert corr > 0.99, corr # Degenerate cases stc_morph.subject = None # no .subject provided pytest.raises(ValueError, stc_morph.to_original_src, src_fs, subject_orig='fsaverage', subjects_dir=subjects_dir) stc_morph.subject = 'sample' del src_fs[0]['subject_his_id'] # no name in src_fsaverage pytest.raises(ValueError, stc_morph.to_original_src, src_fs, subjects_dir=subjects_dir) src_fs[0]['subject_his_id'] = 'fsaverage' # name mismatch pytest.raises(ValueError, stc_morph.to_original_src, src_fs, subject_orig='foo', subjects_dir=subjects_dir) src_fs[0]['subject_his_id'] = 'sample' src = read_source_spaces(fname) # wrong source space pytest.raises(RuntimeError, stc_morph.to_original_src, src, subjects_dir=subjects_dir) # The following code was used to generate small-src.fif.gz. # Unfortunately the C code bombs when trying to add source space distances, # possibly due to incomplete "faking" of a smaller surface on our part here. """ # -*- coding: utf-8 -*- import os import numpy as np import mne data_path = mne.datasets.sample.data_path() src = mne.setup_source_space('sample', fname=None, spacing='oct5') hemis = ['lh', 'rh'] fnames = [data_path + '/subjects/sample/surf/%s.decimated' % h for h in hemis] vs = list() for s, fname in zip(src, fnames): coords = s['rr'][s['vertno']] vs.append(s['vertno']) idx = -1 * np.ones(len(s['rr'])) idx[s['vertno']] = np.arange(s['nuse']) faces = s['use_tris'] faces = idx[faces] mne.write_surface(fname, coords, faces) # we need to move sphere surfaces spheres = [data_path + '/subjects/sample/surf/%s.sphere' % h for h in hemis] for s in spheres: os.rename(s, s + '.bak') try: for s, v in zip(spheres, vs): coords, faces = mne.read_surface(s + '.bak') coords = coords[v] mne.write_surface(s, coords, faces) src = mne.setup_source_space('sample', fname=None, spacing='oct4', surface='decimated') finally: for s in spheres: os.rename(s + '.bak', s) fname = 'small-src.fif' fname_gz = fname + '.gz' mne.write_source_spaces(fname, src) mne.utils.run_subprocess(['mne_add_patch_info', '--src', fname, '--srcp', fname]) mne.write_source_spaces(fname_gz, mne.read_source_spaces(fname)) """
41.011765
79
0.648699
afc71626c25d674b62980ce4631c1dfbc7b45e7c
318
py
Python
app/test.py
williamFalcon/docker-flask-nginx-uwsgi-miniconda-3.4
4608969c974a9a506b905a3f69d1df0570b1376f
[ "MIT" ]
4
2018-06-22T05:36:39.000Z
2021-12-26T15:39:51.000Z
app/test.py
williamFalcon/docker-flask-nginx-uwsgi-miniconda-3.4
4608969c974a9a506b905a3f69d1df0570b1376f
[ "MIT" ]
null
null
null
app/test.py
williamFalcon/docker-flask-nginx-uwsgi-miniconda-3.4
4608969c974a9a506b905a3f69d1df0570b1376f
[ "MIT" ]
3
2019-02-25T12:50:06.000Z
2019-10-25T16:45:14.000Z
import unittest from application import app class TestPost(unittest.TestCase): def test_post(self): self.test_app = app.test_client() response = self.test_app.get('/', content_type='html/text') self.assertEqual(response.status_code, 200) if __name__ == '__main__': unittest.main()
21.2
67
0.688679
cbbad0789d712cbf7b1deb2398438c2b41b7234f
7,335
py
Python
args.py
isamu-isozaki/hidden-networks
7dcb96a7de43b65ffde176d771f88b5ecedb84ab
[ "Apache-2.0" ]
null
null
null
args.py
isamu-isozaki/hidden-networks
7dcb96a7de43b65ffde176d771f88b5ecedb84ab
[ "Apache-2.0" ]
null
null
null
args.py
isamu-isozaki/hidden-networks
7dcb96a7de43b65ffde176d771f88b5ecedb84ab
[ "Apache-2.0" ]
null
null
null
import argparse import sys import yaml from configs import parser as _parser args = None def parse_arguments(): parser = argparse.ArgumentParser(description="PyTorch ImageNet Training") # General Config parser.add_argument( "--data", help="path to dataset base directory", default="/mnt/disk1/datasets" ) parser.add_argument("--optimizer", help="Which optimizer to use", default="sgd") parser.add_argument("--set", help="name of dataset", type=str, default="ImageNet") parser.add_argument( "-a", "--arch", metavar="ARCH", default="ResNet18", help="model architecture" ) parser.add_argument( "--config", help="Config file to use (see configs dir)", default=None ) parser.add_argument( "--log-dir", help="Where to save the runs. If None use ./runs", default=None ) parser.add_argument( "-j", "--workers", default=20, type=int, metavar="N", help="number of data loading workers (default: 20)", ) parser.add_argument( "--epochs", default=90, type=int, metavar="N", help="number of total epochs to run", ) parser.add_argument( "--start-epoch", default=None, type=int, metavar="N", help="manual epoch number (useful on restarts)", ) parser.add_argument( "-b", "--batch-size", default=256, type=int, metavar="N", help="mini-batch size (default: 256), this is the total " "batch size of all GPUs on the current node when " "using Data Parallel or Distributed Data Parallel", ) parser.add_argument( "--lr", "--learning-rate", default=0.1, type=float, metavar="LR", help="initial learning rate", dest="lr", ) parser.add_argument( "--warmup_length", default=0, type=int, help="Number of warmup iterations" ) parser.add_argument( "--momentum", default=0.9, type=float, metavar="M", help="momentum" ) parser.add_argument( "--wd", "--weight-decay", default=1e-4, type=float, metavar="W", help="weight decay (default: 1e-4)", dest="weight_decay", ) parser.add_argument( "-p", "--print-freq", default=10, type=int, metavar="N", help="print frequency (default: 10)", ) parser.add_argument("--num-classes", default=10, type=int) parser.add_argument( "--resume", default="", type=str, metavar="PATH", help="path to latest checkpoint (default: none)", ) parser.add_argument( "-e", "--evaluate", dest="evaluate", action="store_true", help="evaluate model on validation set", ) parser.add_argument( "--pretrained", dest="pretrained", default=None, type=str, help="use pre-trained model", ) parser.add_argument( "--seed", default=None, type=int, help="seed for initializing training. " ) parser.add_argument( "--multigpu", default=None, type=lambda x: [int(a) for a in x.split(",")], help="Which GPUs to use for multigpu training", ) parser.add_argument( "--gpu", default=None, type=str, help="The name of the gpu", ) # Learning Rate Policy Specific parser.add_argument( "--lr-policy", default="constant_lr", help="Policy for the learning rate." ) parser.add_argument( "--multistep-lr-adjust", default=30, type=int, help="Interval to drop lr" ) parser.add_argument( "--multistep-lr-gamma", default=0.1, type=int, help="Multistep multiplier" ) parser.add_argument( "--name", default=None, type=str, help="Experiment name to append to filepath" ) parser.add_argument( "--save_every", default=-1, type=int, help="Save every ___ epochs" ) parser.add_argument( "--prune-rate", default=0.0, help="Amount of pruning to do during sparse training", type=float, ) parser.add_argument( "--low-data", default=1, help="Amount of data to use", type=float ) parser.add_argument( "--width-mult", default=1.0, help="How much to vary the width of the network.", type=float, ) parser.add_argument( "--nesterov", default=False, action="store_true", help="Whether or not to use nesterov for SGD", ) parser.add_argument( "--random-subnet", action="store_true", help="Whether or not to use a random subnet when fine tuning for lottery experiments", ) parser.add_argument( "--one-batch", action="store_true", help="One batch train set for debugging purposes (test overfitting)", ) parser.add_argument( "--conv-type", type=str, default=None, help="What kind of sparsity to use" ) parser.add_argument( "--freeze-weights", action="store_true", help="Whether or not to train only subnet (this freezes weights)", ) parser.add_argument("--mode", default="fan_in", help="Weight initialization mode") parser.add_argument( "--nonlinearity", default="relu", help="Nonlinearity used by initialization" ) parser.add_argument("--bn-type", default=None, help="BatchNorm type") parser.add_argument( "--init", default="kaiming_normal", help="Weight initialization modifications" ) parser.add_argument( "--no-bn-decay", action="store_true", default=False, help="No batchnorm decay" ) parser.add_argument( "--scale-fan", action="store_true", default=False, help="scale fan" ) parser.add_argument( "--first-layer-dense", action="store_true", help="First layer dense or sparse" ) parser.add_argument( "--last-layer-dense", action="store_true", help="Last layer dense or sparse" ) parser.add_argument( "--label-smoothing", type=float, help="Label smoothing to use, default 0.0", default=None, ) parser.add_argument( "--first-layer-type", type=str, default=None, help="Conv type of first layer" ) parser.add_argument( "--trainer", type=str, default="default", help="cs, ss, or standard training" ) parser.add_argument( "--score-init-constant", type=float, default=None, help="Sample Baseline Subnet Init", ) args = parser.parse_args() # Allow for use from notebook without config file if len(sys.argv) > 1: get_config(args) return args def get_config(args): # get commands from command line override_args = _parser.argv_to_vars(sys.argv) # load yaml file yaml_txt = open(args.config).read() # override args loaded_yaml = yaml.load(yaml_txt, Loader=yaml.FullLoader) for v in override_args: loaded_yaml[v] = getattr(args, v) print(f"=> Reading YAML config from {args.config}") args.__dict__.update(loaded_yaml) def run_args(): global args if args is None: args = parse_arguments() run_args()
28.652344
94
0.591411
cf8de8a0e73919dec44958a50d8da1fbd8487cc1
1,043
py
Python
app/core/migrations/0004_recipe.py
MortenTobiasNielsen/recipe-app-api
1bd1b7e8796f867a8c1773fbacfb5003ab2942d2
[ "MIT" ]
null
null
null
app/core/migrations/0004_recipe.py
MortenTobiasNielsen/recipe-app-api
1bd1b7e8796f867a8c1773fbacfb5003ab2942d2
[ "MIT" ]
null
null
null
app/core/migrations/0004_recipe.py
MortenTobiasNielsen/recipe-app-api
1bd1b7e8796f867a8c1773fbacfb5003ab2942d2
[ "MIT" ]
null
null
null
# Generated by Django 2.1.15 on 2020-12-13 13:38 from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('core', '0003_ingredient'), ] operations = [ migrations.CreateModel( name='Recipe', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('title', models.CharField(max_length=255)), ('time_minutes', models.IntegerField()), ('price', models.DecimalField(decimal_places=2, max_digits=5)), ('link', models.CharField(blank=True, max_length=255)), ('Ingredients', models.ManyToManyField(to='core.Ingredient')), ('tags', models.ManyToManyField(to='core.Tag')), ('user', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL)), ], ), ]
35.965517
118
0.604027
2d64246d761db74873b590f0a4be9a67f35af981
735
py
Python
filesystemManager.py
noahlessard/folderManager
f76175eea3f1d76edee60230ff6e6a790d2412ed
[ "CC0-1.0" ]
null
null
null
filesystemManager.py
noahlessard/folderManager
f76175eea3f1d76edee60230ff6e6a790d2412ed
[ "CC0-1.0" ]
null
null
null
filesystemManager.py
noahlessard/folderManager
f76175eea3f1d76edee60230ff6e6a790d2412ed
[ "CC0-1.0" ]
null
null
null
import os from pathlib import Path import time while True: path = Path("C:/Users/Administrator/Desktop/Zack\'s New World/backups").rglob('*.zip') fileArray = [] nameArray = [] for name in path: fileArray.append(os.path.getmtime(name)) nameArray.append(name) print ('name= ', name, '\n') if len(nameArray) > 3: KeepNameNum = fileArray.index(max(fileArray)) print(nameArray[KeepNameNum]) for name in nameArray: if name != nameArray[KeepNameNum]: print("deleting ", name, "... \n") os.remove(name) continue else: time.sleep(10) continue
21.617647
91
0.529252
d5aeaf5b6ab7358d005d29e65bb9fc6a9247f441
546
py
Python
Face Reconstruction/Fast Few-shot Face alignment by Reconstruction/landmarks/lmconfig.py
swapnilgarg7/Face-X
fab21bf667fa7387b8e73e5a1d72fcba4fba2818
[ "MIT" ]
175
2020-10-02T13:42:50.000Z
2022-03-30T15:57:12.000Z
Face Reconstruction/Fast Few-shot Face alignment by Reconstruction/landmarks/lmconfig.py
swapnilgarg7/Face-X
fab21bf667fa7387b8e73e5a1d72fcba4fba2818
[ "MIT" ]
704
2020-09-30T10:44:13.000Z
2022-03-30T07:18:28.000Z
Face Reconstruction/Fast Few-shot Face alignment by Reconstruction/landmarks/lmconfig.py
swapnilgarg7/Face-X
fab21bf667fa7387b8e73e5a1d72fcba4fba2818
[ "MIT" ]
342
2020-10-02T14:04:49.000Z
2022-03-31T10:14:20.000Z
LANDMARK_TARGET = 'multi_channel' MIN_LANDMARK_CONF = 0.8 LANDMARK_OCULAR_NORM = 'outer' PREDICT_HEATMAP = True HEATMAP_SIZE = 128 LANDMARKS_6 = [36, 39, 42, 45, 48, 54] LANDMARKS_9 = [30, 36, 39, 42, 45, 48, 51, 54, 57] LANDMARKS_12 = [21, 22, 27, 30, 36, 39, 42, 45, 48, 51, 54, 57] LANDMARKS_19 = [0, 4, 8, 12, 16, 17, 21, 22, 26, 27, 30, 36, 39, 42, 45, 48, 51, 54, 57] LANDMARKS_22 = [0, 4, 8, 12, 16, 17, 21, 22, 26, 27, 28, 29, 30, 36, 39, 42, 45, 48, 51, 54, 57] LANDMARKS_14 = [17, 26, 21, 22, 27, 30, 36, 39, 42, 45, 48, 51, 54, 57]
36.4
96
0.608059
f89b238506bec89cdc22b0e1f9818be98993b50c
6,361
py
Python
market_data.py
alex-bormotov/AXE-Bot-open
51b7bd768bc0f08ecc9ed81becbc806f41940ed1
[ "MIT" ]
18
2019-11-20T15:21:28.000Z
2021-12-19T22:21:28.000Z
market_data.py
alex-bormotov/AXE-Bot-open
51b7bd768bc0f08ecc9ed81becbc806f41940ed1
[ "MIT" ]
null
null
null
market_data.py
alex-bormotov/AXE-Bot-open
51b7bd768bc0f08ecc9ed81becbc806f41940ed1
[ "MIT" ]
6
2019-11-13T10:11:07.000Z
2021-12-03T01:03:34.000Z
import time import json import requests import pandas as pd import datetime as dt from time import sleep from notification import notificator from requests.adapters import HTTPAdapter from exchange import api_requests_frequency show_error = "YES" api_requests_frequency = api_requests_frequency() # GET PRICE FROM CRYPTOWAT.CH: def check_coin_price(coin_pair_for_get_bars): def get_price(): # https://developer.cryptowat.ch/reference/rest-api-getting-started root_url = "https://api.cryptowat.ch/markets/binance/" url = root_url + coin_pair_for_get_bars.lower() + "/price" user_agent = 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_10_1) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/39.0.2171.95 Safari/537.36' req_session = requests.Session() req_session.headers.update({"User-Agent": user_agent}) req_session.mount(url, HTTPAdapter(max_retries=3)) try: while True: req = req_session.get(url, headers={"User-Agent": user_agent}) if req.ok: if 'price' in req_session.get(url, headers={"User-Agent": user_agent}).text: price = json.loads(req.text)["result"]["price"] if type(price) is int or type(price) is float: return float(price) break else: time.sleep(api_requests_frequency) continue else: time.sleep(api_requests_frequency) continue else: time.sleep(api_requests_frequency) continue except Exception: pass while True: price = get_price() if price is not None: return(price) break else: continue # GET DATA FROM CRYPTOWAT.CH: def get_bars(symbol, interval): # https://developer.cryptowat.ch/reference/rest-api-getting-started if interval == "1m": periods_seconds = 60 if interval == "5m": periods_seconds = 300 if interval == "15m": periods_seconds = 900 if interval == "30m": periods_seconds = 1800 if interval == "1h": periods_seconds = 3600 if interval == "4h": periods_seconds = 14400 if interval == "1d": periods_seconds = 86400 user_agent = 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_9_3) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/35.0.1916.47 Safari/537.36' url = f'https://api.cryptowat.ch/markets/binance/{symbol.lower()}/ohlc?periods={periods_seconds}' req_session = requests.Session() req_session.headers.update({"User-Agent": user_agent}) req_session.mount(url, HTTPAdapter(max_retries=3)) try: req = req_session.get(url, headers={"User-Agent": user_agent}) if req.ok: df = pd.DataFrame(json.loads(req.text)["result"][str(periods_seconds)]) df.columns = [ "open_time", "open", "high", "low", "close", "volume", "qav", ] df.index = [dt.datetime.fromtimestamp(x) for x in df.open_time] df.open = df.open.astype(float) df.close = df.close.astype(float) return df except Exception as e: if show_error == "YES": notificator(str(e) + ' from get_bars' + ' df ' + str(df)) # GET PRICE FROM BINANCE (CCXT): # from exchange import exchange # exchange = exchange() # def check_coin_price(coin_pair): # try: # return exchange.fetch_ticker(coin_pair)["last"] # # except Exception as e: # if show_error == "YES": # notificator(f'coin_pair must be like ETH/USDT (for CCXT), received {coin_pair}') # notificator( # str(e) + " this shit happened in market_data.py (check_coin_price)" # ) # GET PRICE FROM BINANCE (requests): # def check_coin_price(coin_pair_for_get_bars): # root_url = "https://api.binance.com/api/v3/ticker/24hr?symbol=" # url = root_url + coin_pair_for_get_bars # user_agent = "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_9_3) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/35.0.1916.47 Safari/537.36" # # req_session = requests.Session() # req_session.headers.update({"User-Agent": user_agent}) # req_session.mount(url, HTTPAdapter(max_retries=3)) # # try: # req = req_session.get(url, headers={"User-Agent": user_agent}) # price = json.loads(req.text)["lastPrice"] # return price # # except Exception as e: # if show_error == "YES": # notificator(f'coin_pair must be like ETHUSDT, received {coin_pair_for_get_bars}') # notificator( # str(e) + " this shit happened in market_data.py (check_coin_price)" # ) # GET DATA FROM BINANCE: # def get_bars(symbol, interval): # root_url = "https://api.binance.com/api/v1/klines" # user_agent = "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_9_3) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/35.0.1916.47 Safari/537.36" # url = root_url + "?symbol=" + symbol + "&interval=" + interval # # req_session = requests.Session() # req_session.headers.update({"User-Agent": user_agent}) # req_session.mount(url, HTTPAdapter(max_retries=3)) # # try: # req = req_session.get(url, headers={"User-Agent": user_agent}) # # if req.ok: # df = pd.DataFrame(json.loads(req.text)) # df.columns = [ # "open_time", # "open", # "high", # "low", # "close", # "volume", # "close_time", # "qav", # "num_trades", # "taker_base_vol", # "taker_quote_vol", # "ignore", # ] # df.index = [dt.datetime.fromtimestamp(x / 1000.0) for x in df.close_time] # df.open = df.open.astype(float) # df.close = df.close.astype(float) # # return df # # except Exception as e: # if show_error == "YES": # notificator(str(e))
35.143646
143
0.567521
af2d5bf91996788bd7279e96df8eea8ea1969a70
2,669
py
Python
meal_planner/recipes/forms.py
brandonw/meal_planner
63200e6987b2794313492bfd3153d68b762f9b84
[ "BSD-3-Clause" ]
1
2016-06-16T15:03:34.000Z
2016-06-16T15:03:34.000Z
meal_planner/recipes/forms.py
brandonw/meal_planner
63200e6987b2794313492bfd3153d68b762f9b84
[ "BSD-3-Clause" ]
null
null
null
meal_planner/recipes/forms.py
brandonw/meal_planner
63200e6987b2794313492bfd3153d68b762f9b84
[ "BSD-3-Clause" ]
null
null
null
from django import forms from django.core.urlresolvers import reverse from crispy_forms.helper import FormHelper from crispy_forms.layout import Layout from crispy_forms.bootstrap import StrictButton from recipes.models import Recipe class RecipeHomeForm(forms.Form): NAME = 'name' RATING = 'rating' SORT_CHOICES = ( (NAME, 'Name'), (RATING, 'Rating'), ) sort_by = forms.ChoiceField( choices=SORT_CHOICES, label='Sort by', required=False) class RecipeCreateForm(forms.ModelForm): class Meta: model = Recipe fields = ['name', 'rating', 'url', 'description', 'tags'] def __init__(self, *args, **kwargs): self.user = kwargs.pop('user', None) super(RecipeCreateForm, self).__init__(*args, **kwargs) self.helper = FormHelper() self.helper.form_id = 'recipe-create-form' self.helper.form_class = 'form-horizontal' self.helper.label_class = 'col-sm-2' self.helper.field_class = 'col-sm-8' self.helper.layout = Layout( 'name', 'rating', 'url', 'description', 'tags', StrictButton( 'Add', css_class='col-sm-offset-2 btn btn-default', type='submit'), ) self.helper.form_action = reverse('recipe-add') def clean(self): cleaned_data = super(RecipeCreateForm, self).clean() name = cleaned_data.get('name') if name and Recipe.objects \ .filter(user=self.user) \ .filter(name=name) \ .exists(): raise forms.ValidationError('%s recipe already exists.' % name) class RecipeUpdateForm(forms.ModelForm): class Meta: model = Recipe fields = ['rating', 'url', 'description', 'tags'] def __init__(self, *args, **kwargs): super(RecipeUpdateForm, self).__init__(*args, **kwargs) self.helper = FormHelper() self.helper.form_id = 'recipe-update-form' self.helper.form_class = 'form-horizontal' self.helper.label_class = 'col-sm-2' self.helper.field_class = 'col-sm-8' self.helper.layout = Layout( 'rating', 'url', 'description', 'tags', StrictButton( 'Update', css_class='col-sm-offset-2 btn btn-default', type='submit'), ) self.helper.form_action = reverse( 'recipe-update', args=[self.instance.slug]) class RecipeUpdateRatingForm(forms.ModelForm): class Meta: model = Recipe fields = ['rating']
28.698925
76
0.576995