Spaces:
Runtime error
Runtime error
File size: 5,810 Bytes
c53cec3 6fffb3a b38b1f8 96c4799 e73b762 c53cec3 e73b762 6fffb3a c53cec3 6fffb3a c53cec3 96c4799 6c55ffe 6be0105 e4e76f9 c53cec3 b38b1f8 c53cec3 b38b1f8 6fffb3a c53cec3 6fffb3a c53cec3 6fffb3a c53cec3 6fffb3a c53cec3 0731120 6c55ffe 0731120 c53cec3 e73b762 b38b1f8 c53cec3 6fffb3a c53cec3 6be0105 c53cec3 6fffb3a c53cec3 6fffb3a e73b762 6fffb3a e73b762 6fffb3a e73b762 6fffb3a e73b762 c53cec3 0731120 6fffb3a c53cec3 6fffb3a 0731120 c53cec3 6fffb3a a0fd2a1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 |
from fastapi import FastAPI
from pydantic import BaseModel
from typing import Optional
import requests
import torch
from transformers import AutoTokenizer, BertForSequenceClassification
from huggingface_hub import hf_hub_download
import logging
logger = logging.getLogger("app")
logging.basicConfig(level=logging.INFO)
# =====================================================
# CONFIG
# =====================================================
HF_MODEL_REPO = "gaidasalsaa/indobertweet-xstress-model"
BASE_MODEL = "indolem/indobertweet-base-uncased"
PT_FILE = "model_indobertweet.pth"
BEARER_TOKEN = "AAAAAAAAAAAAAAAAAAAAADXr5gEAAAAAnQZgkYRrC4iM5WTblBxDyt58oj8%3DriQZkuHuvRL6Suc3rmDhD3umqbHaxwim2Tfb34rfQpnKqf9Xhd"
# =====================================================
# GLOBAL MODEL STORAGE
# =====================================================
tokenizer = None
model = None
# =====================================================
# LOAD MODEL
# =====================================================
def load_model_once():
global tokenizer, model
if tokenizer is not None and model is not None:
logger.info("Model already loaded.")
return
logger.info("Starting model loading...")
device = "cpu"
logger.info(f"Using device: {device}")
# ---- load tokenizer ----
logger.info("Loading tokenizer...")
tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL)
logger.info("Tokenizer loaded")
# ---- download .pth ----
logger.info("Downloading best_indobertweet.pth...")
model_path = hf_hub_download(
repo_id=HF_MODEL_REPO,
filename=PT_FILE,
)
logger.info(f"Model file downloaded: {model_path}")
logger.info("Loading base model architecture...")
model = BertForSequenceClassification.from_pretrained(
BASE_MODEL,
num_labels=2,
)
logger.info("Loading fine-tuned weights (.pth)...")
state_dict = torch.load(model_path, map_location="cpu")
model.load_state_dict(state_dict, strict=True)
logger.info("Weights loaded successfully")
model.to(device)
model.eval()
logger.info("MODEL READY")
# =====================================================
# FASTAPI
# =====================================================
app = FastAPI(title="Stress Detection API")
@app.on_event("startup")
def startup_event():
logger.info("Starting model loading on startup...")
load_model_once()
class StressResponse(BaseModel):
message: str
data: Optional[dict] = None
# =====================================================
# TWITTER API
# =====================================================
def get_user_id(username):
url = f"https://api.x.com/2/users/by/username/{username}"
headers = {"Authorization": f"Bearer {BEARER_TOKEN}"}
r = requests.get(url, headers=headers)
if r.status_code != 200:
return None, r.json()
return r.json()["data"]["id"], r.json()
def fetch_tweets(user_id, limit=25):
url = f"https://api.x.com/2/users/{user_id}/tweets"
params = {"max_results": limit, "tweet.fields": "id,text,created_at"}
headers = {"Authorization": f"Bearer {BEARER_TOKEN}"}
r = requests.get(url, headers=headers, params=params)
if r.status_code != 200:
return None, r.json()
tweets = r.json().get("data", [])
return [t["text"] for t in tweets], r.json()
# =====================================================
# KEYWORD EXTRACTION
# =====================================================
def extract_keywords(tweets):
stress_words = [
"gelisah","cemas","tidur","takut","hati",
"resah","sampe","tenang","suka","mulu",
"sedih","ngerasa","gimana","gatau",
"perasaan","nangis","deg","khawatir",
"pikiran","harap","gabisa","bener","pengen",
"sakit","susah","bangun","biar","jam","kaya",
"bingung","mikir","tuhan","mikirin",
"bawaannya","marah","tbtb","anjir","cape",
"panik","enak","kali","pusing","semoga",
"kadang","langsung","kemarin","tugas",
"males"
]
found = set()
for t in tweets:
lower = t.lower()
for word in stress_words:
if word in lower:
found.add(word)
return list(found)
# =====================================================
# INFERENCE
# =====================================================
def predict_stress(text):
inputs = tokenizer(
text,
return_tensors="pt",
truncation=True,
padding=True,
max_length=128
)
with torch.no_grad():
outputs = model(**inputs)
probs = torch.softmax(outputs.logits, dim=1)[0]
label = torch.argmax(probs).item()
return label, float(probs[1])
# =====================================================
# API ROUTE
# =====================================================
@app.get("/analyze/{username}", response_model=StressResponse)
def analyze(username: str):
user_id, _ = get_user_id(username)
if user_id is None:
return StressResponse(message="Failed to fetch profile", data=None)
tweets, _ = fetch_tweets(user_id)
if not tweets:
return StressResponse(message="No tweets available", data=None)
labels = [predict_stress(t)[0] for t in tweets]
stress_percentage = round(sum(labels) / len(labels) * 100, 2)
if stress_percentage <= 25:
status = 0
elif stress_percentage <= 50:
status = 1
elif stress_percentage <= 75:
status = 2
else:
status = 3
keywords = extract_keywords(tweets)
return StressResponse(
message="Analysis complete",
data={
"username": username,
"total_tweets": len(tweets),
"stress_level": stress_percentage,
"keywords": keywords,
"stress_status": status
}
) |