Spaces:
Runtime error
Runtime error
Commit
·
e73b762
1
Parent(s):
b38b1f8
Added Dockerfile
Browse files- Dockerfile +34 -0
- README.md +14 -2
- app.py +214 -132
Dockerfile
ADDED
|
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Use official Python runtime
|
| 2 |
+
FROM python:3.10-slim
|
| 3 |
+
|
| 4 |
+
# Set working directory
|
| 5 |
+
WORKDIR /app
|
| 6 |
+
|
| 7 |
+
# Install system dependencies
|
| 8 |
+
RUN apt-get update && apt-get install -y \
|
| 9 |
+
build-essential \
|
| 10 |
+
curl \
|
| 11 |
+
&& rm -rf /var/lib/apt/lists/*
|
| 12 |
+
|
| 13 |
+
# Copy requirements first (for better caching)
|
| 14 |
+
COPY requirements.txt .
|
| 15 |
+
|
| 16 |
+
# Install Python dependencies
|
| 17 |
+
RUN pip install --no-cache-dir --upgrade pip && \
|
| 18 |
+
pip install --no-cache-dir -r requirements.txt
|
| 19 |
+
|
| 20 |
+
# Copy application code
|
| 21 |
+
COPY app.py .
|
| 22 |
+
|
| 23 |
+
# Expose port 7860 (required by HF Spaces)
|
| 24 |
+
EXPOSE 7860
|
| 25 |
+
|
| 26 |
+
# Set environment variables
|
| 27 |
+
ENV PYTHONUNBUFFERED=1
|
| 28 |
+
|
| 29 |
+
# Health check
|
| 30 |
+
HEALTHCHECK --interval=30s --timeout=10s --start-period=60s --retries=3 \
|
| 31 |
+
CMD curl -f http://localhost:7860/health || exit 1
|
| 32 |
+
|
| 33 |
+
# Run the application
|
| 34 |
+
CMD ["uvicorn", "app:app", "--host", "0.0.0.0", "--port", "7860", "--workers", "1"]
|
README.md
CHANGED
|
@@ -7,6 +7,18 @@ sdk: docker
|
|
| 7 |
pinned: false
|
| 8 |
---
|
| 9 |
|
| 10 |
-
# Stress Detection API
|
| 11 |
|
| 12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
pinned: false
|
| 8 |
---
|
| 9 |
|
| 10 |
+
# Twitter Stress Detection API
|
| 11 |
|
| 12 |
+
API untuk mendeteksi tingkat stress dari postingan Twitter menggunakan model IndoBERTweet.
|
| 13 |
+
|
| 14 |
+
## Endpoints
|
| 15 |
+
|
| 16 |
+
- `GET /` - Info API
|
| 17 |
+
- `GET /health` - Health check
|
| 18 |
+
- `GET /analyze/{username}` - Analyze user stress level
|
| 19 |
+
- `GET /docs` - Interactive API documentation
|
| 20 |
+
|
| 21 |
+
## Usage
|
| 22 |
+
```bash
|
| 23 |
+
curl https://your-space.hf.space/analyze/username
|
| 24 |
+
```
|
app.py
CHANGED
|
@@ -1,4 +1,5 @@
|
|
| 1 |
-
from fastapi import FastAPI
|
|
|
|
| 2 |
from pydantic import BaseModel
|
| 3 |
from typing import Optional
|
| 4 |
import requests
|
|
@@ -7,6 +8,11 @@ from transformers import AutoTokenizer, BertForSequenceClassification
|
|
| 7 |
from huggingface_hub import hf_hub_download
|
| 8 |
import os
|
| 9 |
import gc
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
|
| 11 |
# -----------------------------
|
| 12 |
# CONFIG
|
|
@@ -21,217 +27,281 @@ BEARER_TOKEN = os.getenv(
|
|
| 21 |
)
|
| 22 |
|
| 23 |
# -----------------------------
|
| 24 |
-
# FASTAPI
|
| 25 |
# -----------------------------
|
| 26 |
app = FastAPI(
|
| 27 |
title="Stress Detection API",
|
| 28 |
-
description="Detect stress levels from X(Twitter) user posts",
|
| 29 |
-
version="1.0.0"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
)
|
| 31 |
|
| 32 |
-
# Global variables
|
| 33 |
model = None
|
| 34 |
tokenizer = None
|
| 35 |
device = None
|
|
|
|
| 36 |
|
|
|
|
|
|
|
|
|
|
| 37 |
class StressResponse(BaseModel):
|
| 38 |
message: str
|
| 39 |
data: Optional[dict] = None
|
| 40 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
|
| 42 |
# -----------------------------
|
| 43 |
-
#
|
| 44 |
# -----------------------------
|
| 45 |
def load_model_once():
|
| 46 |
-
"""Load model
|
| 47 |
-
global model, tokenizer, device
|
| 48 |
-
|
| 49 |
-
if model is not None:
|
| 50 |
-
return # Sudah di-load
|
| 51 |
-
|
| 52 |
-
print("Loading model (first time only)...")
|
| 53 |
-
|
| 54 |
-
# Set device
|
| 55 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 56 |
-
print(f"Using device: {device}")
|
| 57 |
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 95 |
|
| 96 |
# -----------------------------
|
| 97 |
# HELPER FUNCTIONS
|
| 98 |
# -----------------------------
|
| 99 |
-
def get_user_id(username):
|
| 100 |
"""Get Twitter user ID from username"""
|
| 101 |
url = f"https://api.x.com/2/users/by/username/{username}"
|
| 102 |
headers = {"Authorization": f"Bearer {BEARER_TOKEN}"}
|
| 103 |
|
| 104 |
try:
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
return
|
| 108 |
-
except
|
| 109 |
-
|
| 110 |
-
|
|
|
|
|
|
|
| 111 |
|
| 112 |
-
def fetch_tweets(user_id, limit=25):
|
| 113 |
-
"""Fetch
|
| 114 |
url = f"https://api.x.com/2/users/{user_id}/tweets"
|
| 115 |
-
params = {
|
|
|
|
|
|
|
|
|
|
| 116 |
headers = {"Authorization": f"Bearer {BEARER_TOKEN}"}
|
| 117 |
|
| 118 |
try:
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
tweets =
|
| 122 |
-
return [
|
| 123 |
-
except
|
| 124 |
-
|
| 125 |
-
|
| 126 |
|
| 127 |
-
def predict_stress(text):
|
| 128 |
"""Predict stress level from text"""
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 144 |
|
| 145 |
# -----------------------------
|
| 146 |
-
#
|
| 147 |
# -----------------------------
|
| 148 |
@app.on_event("startup")
|
| 149 |
async def startup_event():
|
| 150 |
-
"""Load model
|
| 151 |
-
|
| 152 |
load_model_once()
|
| 153 |
-
|
| 154 |
-
|
| 155 |
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
|
|
|
|
|
|
|
|
|
| 159 |
return {
|
|
|
|
|
|
|
| 160 |
"status": "online",
|
| 161 |
-
"
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
@app.get("/health")
|
| 167 |
-
def health():
|
| 168 |
-
"""Detailed health check"""
|
| 169 |
-
return {
|
| 170 |
-
"status": "healthy",
|
| 171 |
-
"model_loaded": model is not None,
|
| 172 |
-
"device": str(device) if device else "not loaded",
|
| 173 |
-
"tokenizer_loaded": tokenizer is not None
|
| 174 |
}
|
| 175 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 176 |
|
| 177 |
@app.get("/analyze/{username}", response_model=StressResponse)
|
| 178 |
-
def
|
| 179 |
-
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
| 180 |
|
| 181 |
-
#
|
| 182 |
-
if
|
|
|
|
| 183 |
load_model_once()
|
| 184 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 185 |
# 1. Get user ID
|
| 186 |
user_id, error = get_user_id(username)
|
| 187 |
if error:
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
| 191 |
)
|
| 192 |
|
| 193 |
# 2. Fetch tweets
|
| 194 |
tweets, error = fetch_tweets(user_id)
|
| 195 |
if error:
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
|
| 199 |
)
|
| 200 |
|
| 201 |
if not tweets:
|
| 202 |
return StressResponse(
|
| 203 |
-
message="User
|
| 204 |
data=None
|
| 205 |
)
|
| 206 |
|
| 207 |
-
# 3.
|
| 208 |
labels = []
|
| 209 |
-
|
|
|
|
|
|
|
| 210 |
try:
|
| 211 |
-
label,
|
| 212 |
labels.append(label)
|
|
|
|
|
|
|
| 213 |
except Exception as e:
|
| 214 |
-
|
| 215 |
continue
|
| 216 |
|
| 217 |
if not labels:
|
| 218 |
-
|
| 219 |
-
|
| 220 |
-
|
| 221 |
)
|
| 222 |
|
| 223 |
-
# 4. Calculate
|
| 224 |
stress_percentage = round(sum(labels) / len(labels) * 100, 2)
|
|
|
|
| 225 |
|
| 226 |
# Determine stress status
|
| 227 |
if stress_percentage <= 25:
|
| 228 |
-
status = 0
|
|
|
|
| 229 |
elif stress_percentage <= 50:
|
| 230 |
-
status = 1
|
|
|
|
| 231 |
elif stress_percentage <= 75:
|
| 232 |
-
status = 2
|
|
|
|
| 233 |
else:
|
| 234 |
-
status = 3
|
|
|
|
|
|
|
|
|
|
| 235 |
|
| 236 |
return StressResponse(
|
| 237 |
message="Analysis successful",
|
|
@@ -240,13 +310,25 @@ def analyze(username: str):
|
|
| 240 |
"total_tweets": len(tweets),
|
| 241 |
"analyzed_tweets": len(labels),
|
| 242 |
"stress_level": stress_percentage,
|
| 243 |
-
"stress_status": status
|
|
|
|
|
|
|
| 244 |
}
|
| 245 |
)
|
| 246 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 247 |
|
| 248 |
# -----------------------------
|
| 249 |
-
# RUN (
|
| 250 |
# -----------------------------
|
| 251 |
if __name__ == "__main__":
|
| 252 |
import uvicorn
|
|
|
|
| 1 |
+
from fastapi import FastAPI, HTTPException
|
| 2 |
+
from fastapi.middleware.cors import CORSMiddleware
|
| 3 |
from pydantic import BaseModel
|
| 4 |
from typing import Optional
|
| 5 |
import requests
|
|
|
|
| 8 |
from huggingface_hub import hf_hub_download
|
| 9 |
import os
|
| 10 |
import gc
|
| 11 |
+
import logging
|
| 12 |
+
|
| 13 |
+
# Setup logging
|
| 14 |
+
logging.basicConfig(level=logging.INFO)
|
| 15 |
+
logger = logging.getLogger(__name__)
|
| 16 |
|
| 17 |
# -----------------------------
|
| 18 |
# CONFIG
|
|
|
|
| 27 |
)
|
| 28 |
|
| 29 |
# -----------------------------
|
| 30 |
+
# FASTAPI APP
|
| 31 |
# -----------------------------
|
| 32 |
app = FastAPI(
|
| 33 |
title="Stress Detection API",
|
| 34 |
+
description="Detect stress levels from X(Twitter) user posts using IndoBERTweet",
|
| 35 |
+
version="1.0.0",
|
| 36 |
+
docs_url="/docs",
|
| 37 |
+
redoc_url="/redoc"
|
| 38 |
+
)
|
| 39 |
+
|
| 40 |
+
# Add CORS middleware
|
| 41 |
+
app.add_middleware(
|
| 42 |
+
CORSMiddleware,
|
| 43 |
+
allow_origins=["*"],
|
| 44 |
+
allow_credentials=True,
|
| 45 |
+
allow_methods=["*"],
|
| 46 |
+
allow_headers=["*"],
|
| 47 |
)
|
| 48 |
|
| 49 |
+
# Global variables
|
| 50 |
model = None
|
| 51 |
tokenizer = None
|
| 52 |
device = None
|
| 53 |
+
model_loaded = False
|
| 54 |
|
| 55 |
+
# -----------------------------
|
| 56 |
+
# MODELS
|
| 57 |
+
# -----------------------------
|
| 58 |
class StressResponse(BaseModel):
|
| 59 |
message: str
|
| 60 |
data: Optional[dict] = None
|
| 61 |
|
| 62 |
+
class HealthResponse(BaseModel):
|
| 63 |
+
status: str
|
| 64 |
+
model_loaded: bool
|
| 65 |
+
device: Optional[str] = None
|
| 66 |
|
| 67 |
# -----------------------------
|
| 68 |
+
# MODEL LOADING
|
| 69 |
# -----------------------------
|
| 70 |
def load_model_once():
|
| 71 |
+
"""Load model only once at startup"""
|
| 72 |
+
global model, tokenizer, device, model_loaded
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 73 |
|
| 74 |
+
if model_loaded:
|
| 75 |
+
logger.info("Model already loaded, skipping...")
|
| 76 |
+
return
|
| 77 |
|
| 78 |
+
try:
|
| 79 |
+
logger.info("🔄 Starting model loading...")
|
| 80 |
+
|
| 81 |
+
# Set device
|
| 82 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 83 |
+
logger.info(f"📱 Using device: {device}")
|
| 84 |
+
|
| 85 |
+
# Load tokenizer
|
| 86 |
+
logger.info("📝 Loading tokenizer...")
|
| 87 |
+
tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL)
|
| 88 |
+
logger.info("✅ Tokenizer loaded")
|
| 89 |
+
|
| 90 |
+
# Download model weights
|
| 91 |
+
logger.info(f"⬇️ Downloading {PT_FILE}...")
|
| 92 |
+
model_path = hf_hub_download(
|
| 93 |
+
repo_id=HF_MODEL_REPO,
|
| 94 |
+
filename=PT_FILE
|
| 95 |
+
)
|
| 96 |
+
logger.info(f"✅ Model file downloaded: {model_path}")
|
| 97 |
+
|
| 98 |
+
# Load base model
|
| 99 |
+
logger.info("🧠 Loading base model architecture...")
|
| 100 |
+
model = BertForSequenceClassification.from_pretrained(
|
| 101 |
+
BASE_MODEL,
|
| 102 |
+
num_labels=2,
|
| 103 |
+
low_cpu_mem_usage=True,
|
| 104 |
+
torch_dtype=torch.float16 if device == "cuda" else torch.float32
|
| 105 |
+
)
|
| 106 |
+
logger.info("✅ Base model loaded")
|
| 107 |
+
|
| 108 |
+
# Load fine-tuned weights
|
| 109 |
+
logger.info("🔧 Loading fine-tuned weights...")
|
| 110 |
+
state_dict = torch.load(model_path, map_location=device)
|
| 111 |
+
model.load_state_dict(state_dict, strict=False)
|
| 112 |
+
logger.info("✅ Weights loaded")
|
| 113 |
+
|
| 114 |
+
# Move to device and set eval mode
|
| 115 |
+
model.to(device)
|
| 116 |
+
model.eval()
|
| 117 |
+
logger.info(f"✅ Model moved to {device} and set to eval mode")
|
| 118 |
+
|
| 119 |
+
# Clear memory
|
| 120 |
+
gc.collect()
|
| 121 |
+
if device == "cuda":
|
| 122 |
+
torch.cuda.empty_cache()
|
| 123 |
+
|
| 124 |
+
model_loaded = True
|
| 125 |
+
logger.info("✅ Model loading complete!")
|
| 126 |
+
|
| 127 |
+
except Exception as e:
|
| 128 |
+
logger.error(f"❌ Failed to load model: {str(e)}")
|
| 129 |
+
raise
|
| 130 |
|
| 131 |
# -----------------------------
|
| 132 |
# HELPER FUNCTIONS
|
| 133 |
# -----------------------------
|
| 134 |
+
def get_user_id(username: str):
|
| 135 |
"""Get Twitter user ID from username"""
|
| 136 |
url = f"https://api.x.com/2/users/by/username/{username}"
|
| 137 |
headers = {"Authorization": f"Bearer {BEARER_TOKEN}"}
|
| 138 |
|
| 139 |
try:
|
| 140 |
+
response = requests.get(url, headers=headers, timeout=10)
|
| 141 |
+
response.raise_for_status()
|
| 142 |
+
return response.json()["data"]["id"], None
|
| 143 |
+
except requests.exceptions.RequestException as e:
|
| 144 |
+
logger.error(f"Twitter API error (get_user_id): {str(e)}")
|
| 145 |
+
return None, str(e)
|
| 146 |
+
except KeyError:
|
| 147 |
+
return None, "User not found"
|
| 148 |
|
| 149 |
+
def fetch_tweets(user_id: str, limit: int = 25):
|
| 150 |
+
"""Fetch recent tweets from user"""
|
| 151 |
url = f"https://api.x.com/2/users/{user_id}/tweets"
|
| 152 |
+
params = {
|
| 153 |
+
"max_results": min(limit, 100), # Twitter API max is 100
|
| 154 |
+
"tweet.fields": "id,text,created_at"
|
| 155 |
+
}
|
| 156 |
headers = {"Authorization": f"Bearer {BEARER_TOKEN}"}
|
| 157 |
|
| 158 |
try:
|
| 159 |
+
response = requests.get(url, headers=headers, params=params, timeout=10)
|
| 160 |
+
response.raise_for_status()
|
| 161 |
+
tweets = response.json().get("data", [])
|
| 162 |
+
return [tweet["text"] for tweet in tweets], None
|
| 163 |
+
except requests.exceptions.RequestException as e:
|
| 164 |
+
logger.error(f"Twitter API error (fetch_tweets): {str(e)}")
|
| 165 |
+
return None, str(e)
|
| 166 |
|
| 167 |
+
def predict_stress(text: str):
|
| 168 |
"""Predict stress level from text"""
|
| 169 |
+
try:
|
| 170 |
+
inputs = tokenizer(
|
| 171 |
+
text,
|
| 172 |
+
return_tensors="pt",
|
| 173 |
+
truncation=True,
|
| 174 |
+
padding=True,
|
| 175 |
+
max_length=128
|
| 176 |
+
).to(device)
|
| 177 |
+
|
| 178 |
+
with torch.no_grad():
|
| 179 |
+
outputs = model(**inputs)
|
| 180 |
+
probs = torch.softmax(outputs.logits, dim=1)[0]
|
| 181 |
+
|
| 182 |
+
label = torch.argmax(probs).item()
|
| 183 |
+
confidence = float(probs[1])
|
| 184 |
+
|
| 185 |
+
return label, confidence
|
| 186 |
+
except Exception as e:
|
| 187 |
+
logger.error(f"Prediction error: {str(e)}")
|
| 188 |
+
raise
|
| 189 |
|
| 190 |
# -----------------------------
|
| 191 |
+
# STARTUP EVENT
|
| 192 |
# -----------------------------
|
| 193 |
@app.on_event("startup")
|
| 194 |
async def startup_event():
|
| 195 |
+
"""Load model when app starts"""
|
| 196 |
+
logger.info("🚀 Application starting...")
|
| 197 |
load_model_once()
|
| 198 |
+
logger.info("✅ Application ready!")
|
|
|
|
| 199 |
|
| 200 |
+
# -----------------------------
|
| 201 |
+
# API ENDPOINTS
|
| 202 |
+
# -----------------------------
|
| 203 |
+
@app.get("/", response_model=dict)
|
| 204 |
+
async def root():
|
| 205 |
+
"""Root endpoint with API info"""
|
| 206 |
return {
|
| 207 |
+
"name": "Stress Detection API",
|
| 208 |
+
"version": "1.0.0",
|
| 209 |
"status": "online",
|
| 210 |
+
"endpoints": {
|
| 211 |
+
"health": "/health",
|
| 212 |
+
"analyze": "/analyze/{username}",
|
| 213 |
+
"docs": "/docs"
|
| 214 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 215 |
}
|
| 216 |
|
| 217 |
+
@app.get("/health", response_model=HealthResponse)
|
| 218 |
+
async def health_check():
|
| 219 |
+
"""Health check endpoint"""
|
| 220 |
+
return HealthResponse(
|
| 221 |
+
status="healthy" if model_loaded else "loading",
|
| 222 |
+
model_loaded=model_loaded,
|
| 223 |
+
device=str(device) if device else None
|
| 224 |
+
)
|
| 225 |
|
| 226 |
@app.get("/analyze/{username}", response_model=StressResponse)
|
| 227 |
+
async def analyze_user(username: str):
|
| 228 |
+
"""
|
| 229 |
+
Analyze stress level from Twitter user's recent tweets
|
| 230 |
+
|
| 231 |
+
- **username**: Twitter username (without @)
|
| 232 |
+
"""
|
| 233 |
|
| 234 |
+
# Ensure model is loaded
|
| 235 |
+
if not model_loaded:
|
| 236 |
+
logger.warning("Model not loaded yet, loading now...")
|
| 237 |
load_model_once()
|
| 238 |
|
| 239 |
+
# Remove @ if user included it
|
| 240 |
+
username = username.lstrip("@")
|
| 241 |
+
|
| 242 |
+
logger.info(f"📊 Analyzing user: @{username}")
|
| 243 |
+
|
| 244 |
# 1. Get user ID
|
| 245 |
user_id, error = get_user_id(username)
|
| 246 |
if error:
|
| 247 |
+
raise HTTPException(
|
| 248 |
+
status_code=404,
|
| 249 |
+
detail=f"Failed to fetch user profile: {error}"
|
| 250 |
)
|
| 251 |
|
| 252 |
# 2. Fetch tweets
|
| 253 |
tweets, error = fetch_tweets(user_id)
|
| 254 |
if error:
|
| 255 |
+
raise HTTPException(
|
| 256 |
+
status_code=500,
|
| 257 |
+
detail=f"Failed to fetch tweets: {error}"
|
| 258 |
)
|
| 259 |
|
| 260 |
if not tweets:
|
| 261 |
return StressResponse(
|
| 262 |
+
message="No tweets found. User may be protected or has no tweets.",
|
| 263 |
data=None
|
| 264 |
)
|
| 265 |
|
| 266 |
+
# 3. Analyze each tweet
|
| 267 |
labels = []
|
| 268 |
+
confidences = []
|
| 269 |
+
|
| 270 |
+
for i, tweet in enumerate(tweets):
|
| 271 |
try:
|
| 272 |
+
label, confidence = predict_stress(tweet)
|
| 273 |
labels.append(label)
|
| 274 |
+
confidences.append(confidence)
|
| 275 |
+
logger.info(f"Tweet {i+1}/{len(tweets)}: label={label}, confidence={confidence:.2f}")
|
| 276 |
except Exception as e:
|
| 277 |
+
logger.warning(f"Skipping tweet {i+1} due to error: {str(e)}")
|
| 278 |
continue
|
| 279 |
|
| 280 |
if not labels:
|
| 281 |
+
raise HTTPException(
|
| 282 |
+
status_code=500,
|
| 283 |
+
detail="Failed to analyze any tweets"
|
| 284 |
)
|
| 285 |
|
| 286 |
+
# 4. Calculate statistics
|
| 287 |
stress_percentage = round(sum(labels) / len(labels) * 100, 2)
|
| 288 |
+
avg_confidence = round(sum(confidences) / len(confidences) * 100, 2)
|
| 289 |
|
| 290 |
# Determine stress status
|
| 291 |
if stress_percentage <= 25:
|
| 292 |
+
status = 0
|
| 293 |
+
status_text = "Low Stress"
|
| 294 |
elif stress_percentage <= 50:
|
| 295 |
+
status = 1
|
| 296 |
+
status_text = "Medium Stress"
|
| 297 |
elif stress_percentage <= 75:
|
| 298 |
+
status = 2
|
| 299 |
+
status_text = "High Stress"
|
| 300 |
else:
|
| 301 |
+
status = 3
|
| 302 |
+
status_text = "Very High Stress"
|
| 303 |
+
|
| 304 |
+
logger.info(f"✅ Analysis complete: {stress_percentage}% stress ({status_text})")
|
| 305 |
|
| 306 |
return StressResponse(
|
| 307 |
message="Analysis successful",
|
|
|
|
| 310 |
"total_tweets": len(tweets),
|
| 311 |
"analyzed_tweets": len(labels),
|
| 312 |
"stress_level": stress_percentage,
|
| 313 |
+
"stress_status": status,
|
| 314 |
+
"stress_status_text": status_text,
|
| 315 |
+
"average_confidence": avg_confidence
|
| 316 |
}
|
| 317 |
)
|
| 318 |
|
| 319 |
+
# -----------------------------
|
| 320 |
+
# ERROR HANDLERS
|
| 321 |
+
# -----------------------------
|
| 322 |
+
@app.exception_handler(Exception)
|
| 323 |
+
async def global_exception_handler(request, exc):
|
| 324 |
+
logger.error(f"Unhandled exception: {str(exc)}")
|
| 325 |
+
return StressResponse(
|
| 326 |
+
message=f"Internal server error: {str(exc)}",
|
| 327 |
+
data=None
|
| 328 |
+
)
|
| 329 |
|
| 330 |
# -----------------------------
|
| 331 |
+
# RUN (for local testing only)
|
| 332 |
# -----------------------------
|
| 333 |
if __name__ == "__main__":
|
| 334 |
import uvicorn
|