Spaces:
Runtime error
Runtime error
Commit
·
b38b1f8
1
Parent(s):
c173783
Fixed app and requirements
Browse files- README.md +8 -9
- app.py +187 -59
- requirements.txt +7 -7
README.md
CHANGED
|
@@ -1,13 +1,12 @@
|
|
| 1 |
---
|
| 2 |
-
title:
|
| 3 |
-
emoji:
|
| 4 |
-
colorFrom:
|
| 5 |
-
colorTo:
|
| 6 |
-
sdk:
|
| 7 |
-
sdk_version: 6.0.0
|
| 8 |
-
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
-
license: mit
|
| 11 |
---
|
| 12 |
|
| 13 |
-
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
+
title: Stress Detection API
|
| 3 |
+
emoji: 🧠
|
| 4 |
+
colorFrom: blue
|
| 5 |
+
colorTo: purple
|
| 6 |
+
sdk: docker
|
|
|
|
|
|
|
| 7 |
pinned: false
|
|
|
|
| 8 |
---
|
| 9 |
|
| 10 |
+
# Stress Detection API
|
| 11 |
+
|
| 12 |
+
Deteksi tingkat stress dari postingan Twitter menggunakan IndoBERTweet.
|
app.py
CHANGED
|
@@ -3,8 +3,10 @@ from pydantic import BaseModel
|
|
| 3 |
from typing import Optional
|
| 4 |
import requests
|
| 5 |
import torch
|
| 6 |
-
from transformers import AutoTokenizer,
|
| 7 |
from huggingface_hub import hf_hub_download
|
|
|
|
|
|
|
| 8 |
|
| 9 |
# -----------------------------
|
| 10 |
# CONFIG
|
|
@@ -13,38 +15,13 @@ HF_MODEL_REPO = "gaidasalsaa/indobertweet-xstress-model"
|
|
| 13 |
BASE_MODEL = "indolem/indobertweet-base-uncased"
|
| 14 |
PT_FILE = "best_indobertweet.pth"
|
| 15 |
|
| 16 |
-
BEARER_TOKEN =
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
# LOAD MODEL
|
| 20 |
-
# -----------------------------
|
| 21 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 22 |
-
|
| 23 |
-
# Load tokenizer dari base model (AMAN)
|
| 24 |
-
tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL)
|
| 25 |
-
|
| 26 |
-
# Download file .pth dari HuggingFace
|
| 27 |
-
model_path = hf_hub_download(
|
| 28 |
-
repo_id=HF_MODEL_REPO,
|
| 29 |
-
filename=PT_FILE
|
| 30 |
-
)
|
| 31 |
-
|
| 32 |
-
# Load base model dulu
|
| 33 |
-
model = BertForSequenceClassification.from_pretrained(
|
| 34 |
-
"indolem/indobertweet-base-uncased",
|
| 35 |
-
num_labels=2
|
| 36 |
)
|
| 37 |
|
| 38 |
-
# Load weight fine-tuned kamu
|
| 39 |
-
state_dict = torch.load(model_path, map_location=device)
|
| 40 |
-
model.load_state_dict(state_dict, strict=True)
|
| 41 |
-
|
| 42 |
-
model.to(device)
|
| 43 |
-
model.eval()
|
| 44 |
-
|
| 45 |
-
|
| 46 |
# -----------------------------
|
| 47 |
-
# FASTAPI
|
| 48 |
# -----------------------------
|
| 49 |
app = FastAPI(
|
| 50 |
title="Stress Detection API",
|
|
@@ -52,74 +29,225 @@ app = FastAPI(
|
|
| 52 |
version="1.0.0"
|
| 53 |
)
|
| 54 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 55 |
class StressResponse(BaseModel):
|
| 56 |
message: str
|
| 57 |
data: Optional[dict] = None
|
| 58 |
|
| 59 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 60 |
def get_user_id(username):
|
|
|
|
| 61 |
url = f"https://api.x.com/2/users/by/username/{username}"
|
| 62 |
headers = {"Authorization": f"Bearer {BEARER_TOKEN}"}
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
|
|
|
|
|
|
|
|
|
| 67 |
|
| 68 |
|
| 69 |
def fetch_tweets(user_id, limit=25):
|
|
|
|
| 70 |
url = f"https://api.x.com/2/users/{user_id}/tweets"
|
| 71 |
params = {"max_results": limit, "tweet.fields": "id,text,created_at"}
|
| 72 |
headers = {"Authorization": f"Bearer {BEARER_TOKEN}"}
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
|
|
|
|
|
|
|
|
|
| 78 |
|
| 79 |
|
| 80 |
def predict_stress(text):
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 84 |
with torch.no_grad():
|
| 85 |
outputs = model(**inputs)
|
| 86 |
probs = torch.softmax(outputs.logits, dim=1)[0]
|
|
|
|
| 87 |
label = torch.argmax(probs).item()
|
| 88 |
return label, float(probs[1])
|
| 89 |
|
| 90 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 91 |
@app.get("/analyze/{username}", response_model=StressResponse)
|
| 92 |
def analyze(username: str):
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 98 |
if not tweets:
|
| 99 |
-
return StressResponse(
|
| 100 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 101 |
labels = []
|
| 102 |
-
for
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 106 |
stress_percentage = round(sum(labels) / len(labels) * 100, 2)
|
| 107 |
-
|
|
|
|
| 108 |
if stress_percentage <= 25:
|
| 109 |
-
status = 0
|
| 110 |
elif stress_percentage <= 50:
|
| 111 |
-
status = 1
|
| 112 |
elif stress_percentage <= 75:
|
| 113 |
-
status = 2
|
| 114 |
else:
|
| 115 |
-
status = 3
|
| 116 |
-
|
| 117 |
return StressResponse(
|
| 118 |
message="Analysis successful",
|
| 119 |
data={
|
| 120 |
"username": username,
|
| 121 |
"total_tweets": len(tweets),
|
|
|
|
| 122 |
"stress_level": stress_percentage,
|
| 123 |
"stress_status": status
|
| 124 |
}
|
| 125 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
from typing import Optional
|
| 4 |
import requests
|
| 5 |
import torch
|
| 6 |
+
from transformers import AutoTokenizer, BertForSequenceClassification
|
| 7 |
from huggingface_hub import hf_hub_download
|
| 8 |
+
import os
|
| 9 |
+
import gc
|
| 10 |
|
| 11 |
# -----------------------------
|
| 12 |
# CONFIG
|
|
|
|
| 15 |
BASE_MODEL = "indolem/indobertweet-base-uncased"
|
| 16 |
PT_FILE = "best_indobertweet.pth"
|
| 17 |
|
| 18 |
+
BEARER_TOKEN = os.getenv(
|
| 19 |
+
"TWITTER_BEARER_TOKEN",
|
| 20 |
+
"AAAAAAAAAAAAAAAAAAAAAOGp3AEAAAAAMEaOafsh1pNGVFrK%2BN2atq0Cba4%3DE2Gw0MDFfJ1bE4veBIIxhOUqbaqQKOqRxMhGybH4FfOETDNpow"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
)
|
| 22 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
# -----------------------------
|
| 24 |
+
# FASTAPI (Initialize FIRST)
|
| 25 |
# -----------------------------
|
| 26 |
app = FastAPI(
|
| 27 |
title="Stress Detection API",
|
|
|
|
| 29 |
version="1.0.0"
|
| 30 |
)
|
| 31 |
|
| 32 |
+
# Global variables untuk lazy loading
|
| 33 |
+
model = None
|
| 34 |
+
tokenizer = None
|
| 35 |
+
device = None
|
| 36 |
+
|
| 37 |
class StressResponse(BaseModel):
|
| 38 |
message: str
|
| 39 |
data: Optional[dict] = None
|
| 40 |
|
| 41 |
|
| 42 |
+
# -----------------------------
|
| 43 |
+
# LAZY LOAD MODEL
|
| 44 |
+
# -----------------------------
|
| 45 |
+
def load_model_once():
|
| 46 |
+
"""Load model hanya sekali saat pertama kali dipanggil"""
|
| 47 |
+
global model, tokenizer, device
|
| 48 |
+
|
| 49 |
+
if model is not None:
|
| 50 |
+
return # Sudah di-load
|
| 51 |
+
|
| 52 |
+
print("Loading model (first time only)...")
|
| 53 |
+
|
| 54 |
+
# Set device
|
| 55 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 56 |
+
print(f"Using device: {device}")
|
| 57 |
+
|
| 58 |
+
# 1. Load tokenizer
|
| 59 |
+
print("Loading tokenizer...")
|
| 60 |
+
tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL)
|
| 61 |
+
|
| 62 |
+
# 2. Download .pth file
|
| 63 |
+
print(f"⬇Downloading {PT_FILE}...")
|
| 64 |
+
model_path = hf_hub_download(
|
| 65 |
+
repo_id=HF_MODEL_REPO,
|
| 66 |
+
filename=PT_FILE
|
| 67 |
+
)
|
| 68 |
+
print(f"Downloaded to: {model_path}")
|
| 69 |
+
|
| 70 |
+
# 3. Load base model dengan optimasi memory
|
| 71 |
+
print("Loading base model...")
|
| 72 |
+
model = BertForSequenceClassification.from_pretrained(
|
| 73 |
+
BASE_MODEL,
|
| 74 |
+
num_labels=2,
|
| 75 |
+
low_cpu_mem_usage=True,
|
| 76 |
+
torch_dtype=torch.float16 if device == "cuda" else torch.float32
|
| 77 |
+
)
|
| 78 |
+
|
| 79 |
+
# 4. Load fine-tuned weights
|
| 80 |
+
print("Loading fine-tuned weights...")
|
| 81 |
+
state_dict = torch.load(model_path, map_location=device)
|
| 82 |
+
model.load_state_dict(state_dict, strict=False)
|
| 83 |
+
|
| 84 |
+
# 5. Move to device dan set eval mode
|
| 85 |
+
model.to(device)
|
| 86 |
+
model.eval()
|
| 87 |
+
|
| 88 |
+
# 6. Clear cache
|
| 89 |
+
gc.collect()
|
| 90 |
+
if device == "cuda":
|
| 91 |
+
torch.cuda.empty_cache()
|
| 92 |
+
|
| 93 |
+
print("Model loaded successfully!")
|
| 94 |
+
|
| 95 |
+
|
| 96 |
+
# -----------------------------
|
| 97 |
+
# HELPER FUNCTIONS
|
| 98 |
+
# -----------------------------
|
| 99 |
def get_user_id(username):
|
| 100 |
+
"""Get Twitter user ID from username"""
|
| 101 |
url = f"https://api.x.com/2/users/by/username/{username}"
|
| 102 |
headers = {"Authorization": f"Bearer {BEARER_TOKEN}"}
|
| 103 |
+
|
| 104 |
+
try:
|
| 105 |
+
r = requests.get(url, headers=headers, timeout=10)
|
| 106 |
+
r.raise_for_status()
|
| 107 |
+
return r.json()["data"]["id"], None
|
| 108 |
+
except Exception as e:
|
| 109 |
+
return None, {"error": str(e)}
|
| 110 |
|
| 111 |
|
| 112 |
def fetch_tweets(user_id, limit=25):
|
| 113 |
+
"""Fetch user's recent tweets"""
|
| 114 |
url = f"https://api.x.com/2/users/{user_id}/tweets"
|
| 115 |
params = {"max_results": limit, "tweet.fields": "id,text,created_at"}
|
| 116 |
headers = {"Authorization": f"Bearer {BEARER_TOKEN}"}
|
| 117 |
+
|
| 118 |
+
try:
|
| 119 |
+
r = requests.get(url, headers=headers, params=params, timeout=10)
|
| 120 |
+
r.raise_for_status()
|
| 121 |
+
tweets = r.json().get("data", [])
|
| 122 |
+
return [t["text"] for t in tweets], None
|
| 123 |
+
except Exception as e:
|
| 124 |
+
return None, {"error": str(e)}
|
| 125 |
|
| 126 |
|
| 127 |
def predict_stress(text):
|
| 128 |
+
"""Predict stress level from text"""
|
| 129 |
+
inputs = tokenizer(
|
| 130 |
+
text,
|
| 131 |
+
return_tensors="pt",
|
| 132 |
+
truncation=True,
|
| 133 |
+
padding=True,
|
| 134 |
+
max_length=128
|
| 135 |
+
).to(device)
|
| 136 |
+
|
| 137 |
with torch.no_grad():
|
| 138 |
outputs = model(**inputs)
|
| 139 |
probs = torch.softmax(outputs.logits, dim=1)[0]
|
| 140 |
+
|
| 141 |
label = torch.argmax(probs).item()
|
| 142 |
return label, float(probs[1])
|
| 143 |
|
| 144 |
|
| 145 |
+
# -----------------------------
|
| 146 |
+
# API ENDPOINTS
|
| 147 |
+
# -----------------------------
|
| 148 |
+
@app.on_event("startup")
|
| 149 |
+
async def startup_event():
|
| 150 |
+
"""Load model saat aplikasi start"""
|
| 151 |
+
print("Starting application...")
|
| 152 |
+
load_model_once()
|
| 153 |
+
print("Application ready!")
|
| 154 |
+
|
| 155 |
+
|
| 156 |
+
@app.get("/")
|
| 157 |
+
def root():
|
| 158 |
+
"""Health check endpoint"""
|
| 159 |
+
return {
|
| 160 |
+
"status": "online",
|
| 161 |
+
"message": "Stress Detection API is running",
|
| 162 |
+
"model_loaded": model is not None
|
| 163 |
+
}
|
| 164 |
+
|
| 165 |
+
|
| 166 |
+
@app.get("/health")
|
| 167 |
+
def health():
|
| 168 |
+
"""Detailed health check"""
|
| 169 |
+
return {
|
| 170 |
+
"status": "healthy",
|
| 171 |
+
"model_loaded": model is not None,
|
| 172 |
+
"device": str(device) if device else "not loaded",
|
| 173 |
+
"tokenizer_loaded": tokenizer is not None
|
| 174 |
+
}
|
| 175 |
+
|
| 176 |
+
|
| 177 |
@app.get("/analyze/{username}", response_model=StressResponse)
|
| 178 |
def analyze(username: str):
|
| 179 |
+
"""Analyze stress level from user's tweets"""
|
| 180 |
+
|
| 181 |
+
# Pastikan model sudah loaded
|
| 182 |
+
if model is None:
|
| 183 |
+
load_model_once()
|
| 184 |
+
|
| 185 |
+
# 1. Get user ID
|
| 186 |
+
user_id, error = get_user_id(username)
|
| 187 |
+
if error:
|
| 188 |
+
return StressResponse(
|
| 189 |
+
message=f"Failed to fetch user profile: {error.get('error', 'Unknown error')}",
|
| 190 |
+
data=None
|
| 191 |
+
)
|
| 192 |
+
|
| 193 |
+
# 2. Fetch tweets
|
| 194 |
+
tweets, error = fetch_tweets(user_id)
|
| 195 |
+
if error:
|
| 196 |
+
return StressResponse(
|
| 197 |
+
message=f"Failed to fetch tweets: {error.get('error', 'Unknown error')}",
|
| 198 |
+
data=None
|
| 199 |
+
)
|
| 200 |
+
|
| 201 |
if not tweets:
|
| 202 |
+
return StressResponse(
|
| 203 |
+
message="User has no tweets or account is protected.",
|
| 204 |
+
data=None
|
| 205 |
+
)
|
| 206 |
+
|
| 207 |
+
# 3. Predict stress for each tweet
|
| 208 |
labels = []
|
| 209 |
+
for tweet in tweets:
|
| 210 |
+
try:
|
| 211 |
+
label, _ = predict_stress(tweet)
|
| 212 |
+
labels.append(label)
|
| 213 |
+
except Exception as e:
|
| 214 |
+
print(f"Skipping tweet due to error: {e}")
|
| 215 |
+
continue
|
| 216 |
+
|
| 217 |
+
if not labels:
|
| 218 |
+
return StressResponse(
|
| 219 |
+
message="Failed to analyze tweets.",
|
| 220 |
+
data=None
|
| 221 |
+
)
|
| 222 |
+
|
| 223 |
+
# 4. Calculate stress statistics
|
| 224 |
stress_percentage = round(sum(labels) / len(labels) * 100, 2)
|
| 225 |
+
|
| 226 |
+
# Determine stress status
|
| 227 |
if stress_percentage <= 25:
|
| 228 |
+
status = 0 # Low
|
| 229 |
elif stress_percentage <= 50:
|
| 230 |
+
status = 1 # Medium
|
| 231 |
elif stress_percentage <= 75:
|
| 232 |
+
status = 2 # High
|
| 233 |
else:
|
| 234 |
+
status = 3 # Very High
|
| 235 |
+
|
| 236 |
return StressResponse(
|
| 237 |
message="Analysis successful",
|
| 238 |
data={
|
| 239 |
"username": username,
|
| 240 |
"total_tweets": len(tweets),
|
| 241 |
+
"analyzed_tweets": len(labels),
|
| 242 |
"stress_level": stress_percentage,
|
| 243 |
"stress_status": status
|
| 244 |
}
|
| 245 |
)
|
| 246 |
+
|
| 247 |
+
|
| 248 |
+
# -----------------------------
|
| 249 |
+
# RUN (untuk local testing)
|
| 250 |
+
# -----------------------------
|
| 251 |
+
if __name__ == "__main__":
|
| 252 |
+
import uvicorn
|
| 253 |
+
uvicorn.run(app, host="0.0.0.0", port=7860)
|
requirements.txt
CHANGED
|
@@ -1,7 +1,7 @@
|
|
| 1 |
-
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
|
|
|
| 1 |
+
fastapi==0.104.1
|
| 2 |
+
uvicorn[standard]==0.24.0
|
| 3 |
+
torch==2.1.0
|
| 4 |
+
transformers==4.35.0
|
| 5 |
+
huggingface_hub==0.19.4
|
| 6 |
+
requests==2.31.0
|
| 7 |
+
pydantic==2.5.0
|