Spaces:
Runtime error
Runtime error
Commit
·
0731120
1
Parent(s):
c53cec3
added keyword
Browse files
app.py
CHANGED
|
@@ -54,15 +54,12 @@ def load_model_once():
|
|
| 54 |
)
|
| 55 |
logger.info(f"Model file downloaded: {model_path}")
|
| 56 |
|
| 57 |
-
# ---- load base model architecture ----
|
| 58 |
logger.info("Loading base model architecture...")
|
| 59 |
model = BertForSequenceClassification.from_pretrained(
|
| 60 |
BASE_MODEL,
|
| 61 |
num_labels=2,
|
| 62 |
-
# ❗ PENTING: Tidak boleh pakai low_cpu_mem_usage atau device_map
|
| 63 |
)
|
| 64 |
|
| 65 |
-
# ---- load state_dict ----
|
| 66 |
logger.info("Loading fine-tuned weights (.pth)...")
|
| 67 |
state_dict = torch.load(model_path, map_location="cpu")
|
| 68 |
|
|
@@ -95,7 +92,6 @@ class StressResponse(BaseModel):
|
|
| 95 |
# =====================================================
|
| 96 |
# TWITTER API
|
| 97 |
# =====================================================
|
| 98 |
-
|
| 99 |
def get_user_id(username):
|
| 100 |
url = f"https://api.x.com/2/users/by/username/{username}"
|
| 101 |
headers = {"Authorization": f"Bearer {BEARER_TOKEN}"}
|
|
@@ -116,6 +112,26 @@ def fetch_tweets(user_id, limit=25):
|
|
| 116 |
return [t["text"] for t in tweets], r.json()
|
| 117 |
|
| 118 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 119 |
# =====================================================
|
| 120 |
# INFERENCE
|
| 121 |
# =====================================================
|
|
@@ -162,12 +178,15 @@ def analyze(username: str):
|
|
| 162 |
else:
|
| 163 |
status = 3
|
| 164 |
|
|
|
|
|
|
|
| 165 |
return StressResponse(
|
| 166 |
message="Analysis complete",
|
| 167 |
data={
|
| 168 |
"username": username,
|
| 169 |
"total_tweets": len(tweets),
|
| 170 |
"stress_level": stress_percentage,
|
|
|
|
| 171 |
"stress_status": status
|
| 172 |
}
|
| 173 |
)
|
|
|
|
| 54 |
)
|
| 55 |
logger.info(f"Model file downloaded: {model_path}")
|
| 56 |
|
|
|
|
| 57 |
logger.info("Loading base model architecture...")
|
| 58 |
model = BertForSequenceClassification.from_pretrained(
|
| 59 |
BASE_MODEL,
|
| 60 |
num_labels=2,
|
|
|
|
| 61 |
)
|
| 62 |
|
|
|
|
| 63 |
logger.info("Loading fine-tuned weights (.pth)...")
|
| 64 |
state_dict = torch.load(model_path, map_location="cpu")
|
| 65 |
|
|
|
|
| 92 |
# =====================================================
|
| 93 |
# TWITTER API
|
| 94 |
# =====================================================
|
|
|
|
| 95 |
def get_user_id(username):
|
| 96 |
url = f"https://api.x.com/2/users/by/username/{username}"
|
| 97 |
headers = {"Authorization": f"Bearer {BEARER_TOKEN}"}
|
|
|
|
| 112 |
return [t["text"] for t in tweets], r.json()
|
| 113 |
|
| 114 |
|
| 115 |
+
# =====================================================
|
| 116 |
+
# KEYWORD EXTRACTION
|
| 117 |
+
# =====================================================
|
| 118 |
+
def extract_keywords(tweets):
|
| 119 |
+
stress_words = [
|
| 120 |
+
"capek", "cape", "capai", "letih", "lelah", "pusing",
|
| 121 |
+
"stress", "stres", "burnout", "kesal", "badmood",
|
| 122 |
+
"sedih", "tertekan", "muak", "bosan"
|
| 123 |
+
]
|
| 124 |
+
|
| 125 |
+
found = set()
|
| 126 |
+
for t in tweets:
|
| 127 |
+
lower = t.lower()
|
| 128 |
+
for word in stress_words:
|
| 129 |
+
if word in lower:
|
| 130 |
+
found.add(word)
|
| 131 |
+
|
| 132 |
+
return list(found)
|
| 133 |
+
|
| 134 |
+
|
| 135 |
# =====================================================
|
| 136 |
# INFERENCE
|
| 137 |
# =====================================================
|
|
|
|
| 178 |
else:
|
| 179 |
status = 3
|
| 180 |
|
| 181 |
+
keywords = extract_keywords(tweets)
|
| 182 |
+
|
| 183 |
return StressResponse(
|
| 184 |
message="Analysis complete",
|
| 185 |
data={
|
| 186 |
"username": username,
|
| 187 |
"total_tweets": len(tweets),
|
| 188 |
"stress_level": stress_percentage,
|
| 189 |
+
"keywords": keywords,
|
| 190 |
"stress_status": status
|
| 191 |
}
|
| 192 |
)
|