metadata
dataset_info:
features:
- name: id
dtype: string
- name: game
dtype: string
- name: trial_id
dtype: int32
- name: episode_id
dtype: int32
- name: frame_idx
dtype: int32
- name: action
dtype: string
- name: action_int
dtype: int32
- name: score
dtype: int32
- name: reward
dtype: int32
- name: reaction_time_ms
dtype: int32
- name: gaze_positions
dtype: string
- name: image_bytes
dtype: binary
license: mit
task_categories:
- robotics
- reinforcement-learning
tags:
- atari
- vla
- vision-language-action
- imitation-learning
- human-demonstrations
size_categories:
- 1M<n<10M
TESS-Atari Stage 1 (5Hz)
Human gameplay demonstrations from Atari games, formatted for Vision-Language-Action (VLA) model training.
Overview
| Metric | Value |
|---|---|
| Source | Atari-HEAD |
| Games | 11 (overlapping with DIAMOND benchmark) |
| Samples | ~4M |
| Action Rate | 5 Hz (1 action per observation) |
| Format | Lumine-style action tokens |
Games Included
Alien, Asterix, BankHeist, Breakout, DemonAttack, Freeway, Frostbite, Hero, MsPacman, RoadRunner, Seaquest
Action Format
<|action_start|> FIRE <|action_end|>
<|action_start|> LEFT <|action_end|>
<|action_start|> RIGHTFIRE <|action_end|>
Schema
| Field | Type | Description |
|---|---|---|
id |
string | Unique sample ID: {game}_{trial}_{frame} |
game |
string | Game name (lowercase) |
trial_id |
int | Human player trial number |
episode_id |
int | Episode within trial (-1 if unknown) |
frame_idx |
int | Frame sequence number |
action |
string | Lumine-style action token |
action_int |
int | Raw ALE action code (0-17) |
score |
int | Current game score |
reward |
int | Immediate reward |
reaction_time_ms |
int | Human decision time in ms |
gaze_positions |
string | Eye tracking data (x,y pairs) |
image_bytes |
bytes | PNG image of game frame |
Usage
from datasets import load_dataset
ds = load_dataset("TESS-Computer/atari-vla-stage1-5hz")
# Get a sample
sample = ds["train"][0]
print(sample["action"]) # <|action_start|> FIRE <|action_end|>
# Decode image
from PIL import Image
from io import BytesIO
img = Image.open(BytesIO(sample["image_bytes"]))
Evaluation
Designed for evaluation in DIAMOND world models on the Atari 100k benchmark.
Related
- 15Hz variant - 3 actions per observation for faster gameplay
- Lumine AI - Inspiration for VLA architecture
- DIAMOND - World model for evaluation
Citation
@misc{atarihead2019,
title={Atari-HEAD: Atari Human Eye-Tracking and Demonstration Dataset},
author={Zhang, Ruohan and others},
year={2019},
url={https://zenodo.org/records/3451402}
}