File size: 3,063 Bytes
3a2c49c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 |
---
dataset_info:
features:
- name: id
dtype: string
- name: game
dtype: string
- name: trial_id
dtype: int32
- name: episode_id
dtype: int32
- name: frame_idx
dtype: int32
- name: action
dtype: string
- name: action_int
dtype: int32
- name: score
dtype: int32
- name: reward
dtype: int32
- name: reaction_time_ms
dtype: int32
- name: gaze_positions
dtype: string
- name: image_bytes
dtype: binary
license: mit
task_categories:
- robotics
- reinforcement-learning
tags:
- atari
- vla
- vision-language-action
- imitation-learning
- human-demonstrations
size_categories:
- 1M<n<10M
---
# TESS-Atari Stage 1 (5Hz)
Human gameplay demonstrations from Atari games, formatted for Vision-Language-Action (VLA) model training.
## Overview
| Metric | Value |
|--------|-------|
| Source | [Atari-HEAD](https://zenodo.org/records/3451402) |
| Games | 11 (overlapping with DIAMOND benchmark) |
| Samples | ~4M |
| Action Rate | 5 Hz (1 action per observation) |
| Format | Lumine-style action tokens |
## Games Included
Alien, Asterix, BankHeist, Breakout, DemonAttack, Freeway, Frostbite, Hero, MsPacman, RoadRunner, Seaquest
## Action Format
```
<|action_start|> FIRE <|action_end|>
<|action_start|> LEFT <|action_end|>
<|action_start|> RIGHTFIRE <|action_end|>
```
## Schema
| Field | Type | Description |
|-------|------|-------------|
| `id` | string | Unique sample ID: `{game}_{trial}_{frame}` |
| `game` | string | Game name (lowercase) |
| `trial_id` | int | Human player trial number |
| `episode_id` | int | Episode within trial (-1 if unknown) |
| `frame_idx` | int | Frame sequence number |
| `action` | string | Lumine-style action token |
| `action_int` | int | Raw ALE action code (0-17) |
| `score` | int | Current game score |
| `reward` | int | Immediate reward |
| `reaction_time_ms` | int | Human decision time in ms |
| `gaze_positions` | string | Eye tracking data (x,y pairs) |
| `image_bytes` | bytes | PNG image of game frame |
## Usage
```python
from datasets import load_dataset
ds = load_dataset("TESS-Computer/atari-vla-stage1-5hz")
# Get a sample
sample = ds["train"][0]
print(sample["action"]) # <|action_start|> FIRE <|action_end|>
# Decode image
from PIL import Image
from io import BytesIO
img = Image.open(BytesIO(sample["image_bytes"]))
```
## Evaluation
Designed for evaluation in [DIAMOND](https://diamond-wm.github.io/) world models on the Atari 100k benchmark.
## Related
- [15Hz variant](https://huggingface.co/datasets/TESS-Computer/atari-vla-stage1-15hz) - 3 actions per observation for faster gameplay
- [Lumine AI](https://www.lumine-ai.org/) - Inspiration for VLA architecture
- [DIAMOND](https://diamond-wm.github.io/) - World model for evaluation
## Citation
```bibtex
@misc{atarihead2019,
title={Atari-HEAD: Atari Human Eye-Tracking and Demonstration Dataset},
author={Zhang, Ruohan and others},
year={2019},
url={https://zenodo.org/records/3451402}
}
```
|