hexsha
stringlengths
40
40
size
int64
4
1.02M
ext
stringclasses
8 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
4
209
max_stars_repo_name
stringlengths
5
121
max_stars_repo_head_hexsha
stringlengths
40
40
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
4
209
max_issues_repo_name
stringlengths
5
121
max_issues_repo_head_hexsha
stringlengths
40
40
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
4
209
max_forks_repo_name
stringlengths
5
121
max_forks_repo_head_hexsha
stringlengths
40
40
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
4
1.02M
avg_line_length
float64
1.07
66.1k
max_line_length
int64
4
266k
alphanum_fraction
float64
0.01
1
9fe2657c1d2c952493c5608c832e57f3ae6a904a
3,031
py
Python
track/object_position.py
seeing-things/track
a8faea4bad93948100347a4604f1f0b78edff616
[ "MIT" ]
4
2019-06-11T20:46:03.000Z
2019-10-28T17:52:45.000Z
track/object_position.py
bgottula/track
a8faea4bad93948100347a4604f1f0b78edff616
[ "MIT" ]
114
2017-06-05T06:51:22.000Z
2019-01-20T23:01:29.000Z
track/object_position.py
bgottula/track
a8faea4bad93948100347a4604f1f0b78edff616
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 """Prints the position of an object from observer's location.""" import sys import datetime import math import ephem import ephem.stars import track from track import gps_client def main(): """See module docstring at the top of this file.""" parser = track.ArgParser() parser.add_argument( '--timestamp', required=False, help='UNIX timestamp', type=float) subparsers = parser.add_subparsers(title='modes', dest='mode') parser_star = subparsers.add_parser('star', help='named star mode') parser_star.add_argument('name', help='name of star') parser_star = subparsers.add_parser('solarsystem', help='named solar system body mode') parser_star.add_argument('name', help='name of planet or moon') gps_client.add_program_arguments(parser) args = parser.parse_args() # Create a PyEphem Observer object location = gps_client.make_location_from_args(args) observer = ephem.Observer() observer.lat = location.lat.deg observer.lon = location.lon.deg observer.elevation = location.height.value # Get the PyEphem Body object corresonding to the given named star if args.mode == 'star': print('In named star mode: looking up \'{}\''.format(args.name)) target = None for name, _ in ephem.stars.stars.items(): if args.name.lower() == name.lower(): print('Found named star: \'{}\''.format(name)) target = ephem.star(name) break if target is None: raise Exception('The named star \'{}\' isn\' present in PyEphem.'.format(args.name)) # Get the PyEphem Body object corresonding to the given named solar system body elif args.mode == 'solarsystem': print('In named solar system body mode: looking up \'{}\''.format(args.name)) # pylint: disable=protected-access ss_objs = [name.lower() for _, _, name in ephem._libastro.builtin_planets()] if args.name.lower() in ss_objs: body_type = None for attr in dir(ephem): if args.name.lower() == attr.lower(): body_type = getattr(ephem, attr) print('Found solar system body: \'{}\''.format(attr)) break assert body_type is not None target = body_type() else: raise Exception( 'The solar system body \'{}\' isn\'t present in PyEphem.'.format(args.name) ) else: print('You must specify a target.') sys.exit(1) if args.timestamp is not None: observer.date = ephem.Date(datetime.datetime.utcfromtimestamp(args.timestamp)) else: observer.date = ephem.Date(datetime.datetime.utcnow()) target.compute(observer) position = { 'az': target.az * 180.0 / math.pi, 'alt': target.alt * 180.0 / math.pi, } print('Expected position: ' + str(position)) if __name__ == "__main__": main()
32.945652
96
0.615308
1def122a4bbeb961e12b9da82f780451743bba17
1,362
py
Python
examples/paraphrase_mining.py
shibing624/sbert
2c53125e1c16453c15444a8219cc6bf458327891
[ "Apache-2.0" ]
2
2021-08-14T08:58:17.000Z
2021-08-14T10:12:58.000Z
examples/paraphrase_mining.py
shibing624/sbert
2c53125e1c16453c15444a8219cc6bf458327891
[ "Apache-2.0" ]
null
null
null
examples/paraphrase_mining.py
shibing624/sbert
2c53125e1c16453c15444a8219cc6bf458327891
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- """ @author:XuMing(xuming624@qq.com) @description: Paraphrase mining is the task of finding pharaphrases (texts with identical / similar meaning) in a large corpus of sentences. In Semantic Textual Similarity we saw a simplified version of finding paraphrases in a list of sentences. The approach presented there used a brute-force approach to score and rank all pairs. However, as this has a quadratic runtime, it fails to scale to large (10,000 and more) collections of sentences. For larger collections, util offers the paraphrase_mining function """ import sys sys.path.append('..') from sbert import SBert, util model = SBert('paraphrase-MiniLM-L6-v2') # Single list of sentences - Possible tens of thousands of sentences sentences = ['The cat sits outside', 'A man is playing guitar', 'I love pasta', 'The new movie is awesome', 'The cat plays in the garden', 'A woman watches TV', 'The new movie is so great', 'Do you like pizza?'] sentence_embeddings = model.encode(sentences) paraphrases = util.paraphrase_mining(sentence_embeddings, corpus_chunk_size=len(sentences), top_k=3) for paraphrase in paraphrases[0:10]: score, i, j = paraphrase print("{} \t\t {} \t\t Score: {:.4f}".format(sentences[i], sentences[j], score))
33.219512
100
0.696769
106c922d0c0224ac70f011f613426b77fd316cee
17,549
py
Python
haystack/indexes.py
speedplane/django-haystack
4ace30aea6aa1b1708f79a5a9df20a00fa0b4d96
[ "BSD-3-Clause" ]
1
2017-10-12T14:25:06.000Z
2017-10-12T14:25:06.000Z
haystack/indexes.py
speedplane/django-haystack
4ace30aea6aa1b1708f79a5a9df20a00fa0b4d96
[ "BSD-3-Clause" ]
2
2021-02-08T21:04:45.000Z
2021-03-31T20:11:18.000Z
haystack/indexes.py
speedplane/django-haystack
4ace30aea6aa1b1708f79a5a9df20a00fa0b4d96
[ "BSD-3-Clause" ]
1
2020-05-03T20:43:17.000Z
2020-05-03T20:43:17.000Z
from __future__ import unicode_literals import copy import threading import warnings from django.core.exceptions import ImproperlyConfigured from django.utils.six import with_metaclass from haystack import connections, connection_router from haystack.constants import ID, DJANGO_CT, DJANGO_ID, Indexable, DEFAULT_ALIAS from haystack.fields import * from haystack.manager import SearchIndexManager from haystack.utils import get_identifier, get_facet_field_name try: from django.utils.encoding import force_text except ImportError: from django.utils.encoding import force_unicode as force_text class DeclarativeMetaclass(type): def __new__(cls, name, bases, attrs): attrs['fields'] = {} # Inherit any fields from parent(s). try: parents = [b for b in bases if issubclass(b, SearchIndex)] # Simulate the MRO. parents.reverse() for p in parents: fields = getattr(p, 'fields', None) if fields: attrs['fields'].update(fields) except NameError: pass # Build a dictionary of faceted fields for cross-referencing. facet_fields = {} for field_name, obj in attrs.items(): # Only need to check the FacetFields. if hasattr(obj, 'facet_for'): if not obj.facet_for in facet_fields: facet_fields[obj.facet_for] = [] facet_fields[obj.facet_for].append(field_name) built_fields = {} for field_name, obj in attrs.items(): if isinstance(obj, SearchField): field = attrs[field_name] field.set_instance_name(field_name) built_fields[field_name] = field # Only check non-faceted fields for the following info. if not hasattr(field, 'facet_for'): if field.faceted == True: # If no other field is claiming this field as # ``facet_for``, create a shadow ``FacetField``. if not field_name in facet_fields: shadow_facet_name = get_facet_field_name(field_name) shadow_facet_field = field.facet_class(facet_for=field_name) shadow_facet_field.set_instance_name(shadow_facet_name) built_fields[shadow_facet_name] = shadow_facet_field attrs['fields'].update(built_fields) # Assigning default 'objects' query manager if it does not already exist if not 'objects' in attrs: try: attrs['objects'] = SearchIndexManager(attrs['Meta'].index_label) except (KeyError, AttributeError): attrs['objects'] = SearchIndexManager(DEFAULT_ALIAS) return super(DeclarativeMetaclass, cls).__new__(cls, name, bases, attrs) class SearchIndex(with_metaclass(DeclarativeMetaclass, threading.local)): """ Base class for building indexes. An example might look like this:: import datetime from haystack import indexes from myapp.models import Note class NoteIndex(indexes.SearchIndex, indexes.Indexable): text = indexes.CharField(document=True, use_template=True) author = indexes.CharField(model_attr='user') pub_date = indexes.DateTimeField(model_attr='pub_date') def get_model(self): return Note def index_queryset(self, using=None): return self.get_model().objects.filter(pub_date__lte=datetime.datetime.now()) """ def __init__(self): self.prepared_data = None content_fields = [] for field_name, field in self.fields.items(): if field.document is True: content_fields.append(field_name) if not len(content_fields) == 1: raise SearchFieldError("The index '%s' must have one (and only one) SearchField with document=True." % self.__class__.__name__) def get_model(self): """ Should return the ``Model`` class (not an instance) that the rest of the ``SearchIndex`` should use. This method is required & you must override it to return the correct class. """ raise NotImplementedError("You must provide a 'model' method for the '%r' index." % self) def index_queryset(self, using=None): """ Get the default QuerySet to index when doing a full update. Subclasses can override this method to avoid indexing certain objects. """ return self.get_model()._default_manager.all() def read_queryset(self, using=None): """ Get the default QuerySet for read actions. Subclasses can override this method to work with other managers. Useful when working with default managers that filter some objects. """ return self.index_queryset(using=using) def build_queryset(self, using=None, start_date=None, end_date=None): """ Get the default QuerySet to index when doing an index update. Subclasses can override this method to take into account related model modification times. The default is to use ``SearchIndex.index_queryset`` and filter based on ``SearchIndex.get_updated_field`` """ extra_lookup_kwargs = {} model = self.get_model() updated_field = self.get_updated_field() update_field_msg = ("No updated date field found for '%s' " "- not restricting by age.") % model.__name__ if start_date: if updated_field: extra_lookup_kwargs['%s__gte' % updated_field] = start_date else: warnings.warn(update_field_msg) if end_date: if updated_field: extra_lookup_kwargs['%s__lte' % updated_field] = end_date else: warnings.warn(update_field_msg) index_qs = None if hasattr(self, 'get_queryset'): warnings.warn("'SearchIndex.get_queryset' was deprecated in Haystack v2. Please rename the method 'index_queryset'.") index_qs = self.get_queryset() else: index_qs = self.index_queryset(using=using) if not hasattr(index_qs, 'filter'): raise ImproperlyConfigured("The '%r' class must return a 'QuerySet' in the 'index_queryset' method." % self) # `.select_related()` seems like a good idea here but can fail on # nullable `ForeignKey` as well as what seems like other cases. return index_qs.filter(**extra_lookup_kwargs).order_by(model._meta.pk.name) def prepare(self, obj): """ Fetches and adds/alters data before indexing. """ self.prepared_data = { ID: get_identifier(obj), DJANGO_CT: "%s.%s" % (obj._meta.app_label, obj._meta.module_name), DJANGO_ID: force_text(obj.pk), } for field_name, field in self.fields.items(): # Use the possibly overridden name, which will default to the # variable name of the field. self.prepared_data[field.index_fieldname] = field.prepare(obj) if hasattr(self, "prepare_%s" % field_name): value = getattr(self, "prepare_%s" % field_name)(obj) self.prepared_data[field.index_fieldname] = value return self.prepared_data def full_prepare(self, obj): self.prepared_data = self.prepare(obj) for field_name, field in self.fields.items(): # Duplicate data for faceted fields. if getattr(field, 'facet_for', None): source_field_name = self.fields[field.facet_for].index_fieldname # If there's data there, leave it alone. Otherwise, populate it # with whatever the related field has. if self.prepared_data[field_name] is None and source_field_name in self.prepared_data: self.prepared_data[field.index_fieldname] = self.prepared_data[source_field_name] # Remove any fields that lack a value and are ``null=True``. if field.null is True: if self.prepared_data[field.index_fieldname] is None: del(self.prepared_data[field.index_fieldname]) return self.prepared_data def get_content_field(self): """Returns the field that supplies the primary document to be indexed.""" for field_name, field in self.fields.items(): if field.document is True: return field.index_fieldname def get_field_weights(self): """Returns a dict of fields with weight values""" weights = {} for field_name, field in self.fields.items(): if field.boost: weights[field_name] = field.boost return weights def _get_backend(self, using): if using is None: try: using = connection_router.for_write(index=self)[0] except IndexError: # There's no backend to handle it. Bomb out. return None return connections[using].get_backend() def update(self, using=None): """ Updates the entire index. If ``using`` is provided, it specifies which connection should be used. Default relies on the routers to decide which backend should be used. """ backend = self._get_backend(using) if backend is not None: backend.update(self, self.index_queryset(using=using)) def update_object(self, instance, using=None, **kwargs): """ Update the index for a single object. Attached to the class's post-save hook. If ``using`` is provided, it specifies which connection should be used. Default relies on the routers to decide which backend should be used. """ # Check to make sure we want to index this first. if self.should_update(instance, **kwargs): backend = self._get_backend(using) if backend is not None: backend.update(self, [instance]) def remove_object(self, instance, using=None, **kwargs): """ Remove an object from the index. Attached to the class's post-delete hook. If ``using`` is provided, it specifies which connection should be used. Default relies on the routers to decide which backend should be used. """ backend = self._get_backend(using) if backend is not None: backend.remove(instance, **kwargs) def clear(self, using=None): """ Clears the entire index. If ``using`` is provided, it specifies which connection should be used. Default relies on the routers to decide which backend should be used. """ backend = self._get_backend(using) if backend is not None: backend.clear(models=[self.get_model()]) def reindex(self, using=None): """ Completely clear the index for this model and rebuild it. If ``using`` is provided, it specifies which connection should be used. Default relies on the routers to decide which backend should be used. """ self.clear(using=using) self.update(using=using) def get_updated_field(self): """ Get the field name that represents the updated date for the model. If specified, this is used by the reindex command to filter out results from the QuerySet, enabling you to reindex only recent records. This method should either return None (reindex everything always) or a string of the Model's DateField/DateTimeField name. """ return None def should_update(self, instance, **kwargs): """ Determine if an object should be updated in the index. It's useful to override this when an object may save frequently and cause excessive reindexing. You should check conditions on the instance and return False if it is not to be indexed. By default, returns True (always reindex). """ return True def load_all_queryset(self): """ Provides the ability to override how objects get loaded in conjunction with ``SearchQuerySet.load_all``. This is useful for post-processing the results from the query, enabling things like adding ``select_related`` or filtering certain data. By default, returns ``all()`` on the model's default manager. """ return self.get_model()._default_manager.all() class BasicSearchIndex(SearchIndex): text = CharField(document=True, use_template=True) # End SearchIndexes # Begin ModelSearchIndexes def index_field_from_django_field(f, default=CharField): """ Returns the Haystack field type that would likely be associated with each Django type. """ result = default if f.get_internal_type() in ('DateField', 'DateTimeField'): result = DateTimeField elif f.get_internal_type() in ('BooleanField', 'NullBooleanField'): result = BooleanField elif f.get_internal_type() in ('CommaSeparatedIntegerField',): result = MultiValueField elif f.get_internal_type() in ('DecimalField', 'FloatField'): result = FloatField elif f.get_internal_type() in ('IntegerField', 'PositiveIntegerField', 'PositiveSmallIntegerField', 'SmallIntegerField'): result = IntegerField return result class ModelSearchIndex(SearchIndex): """ Introspects the model assigned to it and generates a `SearchIndex` based on the fields of that model. In addition, it adds a `text` field that is the `document=True` field and has `use_template=True` option set, just like the `BasicSearchIndex`. Usage of this class might result in inferior `SearchIndex` objects, which can directly affect your search results. Use this to establish basic functionality and move to custom `SearchIndex` objects for better control. At this time, it does not handle related fields. """ text = CharField(document=True, use_template=True) # list of reserved field names fields_to_skip = (ID, DJANGO_CT, DJANGO_ID, 'content', 'text') def __init__(self, extra_field_kwargs=None): self.model = None self.prepared_data = None content_fields = [] self.extra_field_kwargs = extra_field_kwargs or {} # Introspect the model, adding/removing fields as needed. # Adds/Excludes should happen only if the fields are not already # defined in `self.fields`. self._meta = getattr(self, 'Meta', None) if self._meta: self.model = getattr(self._meta, 'model', None) fields = getattr(self._meta, 'fields', []) excludes = getattr(self._meta, 'excludes', []) # Add in the new fields. self.fields.update(self.get_fields(fields, excludes)) for field_name, field in self.fields.items(): if field.document is True: content_fields.append(field_name) if not len(content_fields) == 1: raise SearchFieldError("The index '%s' must have one (and only one) SearchField with document=True." % self.__class__.__name__) def should_skip_field(self, field): """ Given a Django model field, return if it should be included in the contributed SearchFields. """ # Skip fields in skip list if field.name in self.fields_to_skip: return True # Ignore certain fields (AutoField, related fields). if field.primary_key or getattr(field, 'rel'): return True return False def get_model(self): return self.model def get_index_fieldname(self, f): """ Given a Django field, return the appropriate index fieldname. """ return f.name def get_fields(self, fields=None, excludes=None): """ Given any explicit fields to include and fields to exclude, add additional fields based on the associated model. """ final_fields = {} fields = fields or [] excludes = excludes or [] for f in self.model._meta.fields: # If the field name is already present, skip if f.name in self.fields: continue # If field is not present in explicit field listing, skip if fields and f.name not in fields: continue # If field is in exclude list, skip if excludes and f.name in excludes: continue if self.should_skip_field(f): continue index_field_class = index_field_from_django_field(f) kwargs = copy.copy(self.extra_field_kwargs) kwargs.update({ 'model_attr': f.name, }) if f.null is True: kwargs['null'] = True if f.has_default(): kwargs['default'] = f.default final_fields[f.name] = index_field_class(**kwargs) final_fields[f.name].set_instance_name(self.get_index_fieldname(f)) return final_fields
35.814286
139
0.623454
751faedaae21bf7e5100079d0678b241912f476e
3,078
py
Python
calibration/TempReg.py
shuoli90/PAC-confidence-set
ab8dcd5205f9aba6b490aabe7bfc74e1410d0f26
[ "Apache-2.0" ]
6
2020-04-05T18:55:15.000Z
2021-08-23T02:22:48.000Z
calibration/TempReg.py
shuoli90/PAC-confidence-set
ab8dcd5205f9aba6b490aabe7bfc74e1410d0f26
[ "Apache-2.0" ]
null
null
null
calibration/TempReg.py
shuoli90/PAC-confidence-set
ab8dcd5205f9aba6b490aabe7bfc74e1410d0f26
[ "Apache-2.0" ]
1
2021-03-29T15:06:43.000Z
2021-03-29T15:06:43.000Z
import os, sys import types import time import numpy as np import math import torch as tc import torch.tensor as T sys.path.append("../../") #from conf_set.utils import * from classification.utils import * from calibration.calibrator import BaseCalibrator ## ## calibration for regression ## class TempScalingReg(BaseCalibrator): def __init__(self, params, model): super().__init__(params, model) self.set_opt_params(self.model.cal_parameters()) def loss(self, fhs, ys, reduction='mean'): yhs, yhs_var = fhs loss = self.model.neg_log_prob(yhs, yhs_var, ys) if reduction == 'none': return loss elif reduction == 'sum': return loss.sum() elif reduction == 'mean': return loss.mean() else: raise NotImplementedError def train_epoch(self, ld_tr, opt): loss_fn = self.loss for xs_src, ys_src in ld_tr: if hasattr(xs_src, "to"): xs_src = xs_src.to(self.device) else: assert(hasattr(xs_src[0], "to")) xs_src = [x.to(self.device) for x in xs_src] ys_src = ys_src.to(self.device) # init for backprop opt.zero_grad() # compute loss fhs = self.model(xs_src) loss = loss_fn(fhs, ys_src) # backprop loss.backward() # update parameters opt.step() # clip the value [T.data.clamp_(1e-9) for T in self.model.cal_parameters()] print("T:", self.model.cal_parameters()) return loss def test(self, lds, ld_names, model=None): if model is None: model = self.model model.eval() loss_fn = lambda fhs, ys: self.loss(fhs, ys, reduction='none') ## regression loss if ld_names is not None: assert(len(lds) == len(ld_names)) errors = [] for i, ld in enumerate(lds): error, _, _ = compute_cls_error([ld], model, self.device, loss_fn=loss_fn) if ld_names is not None: print("# %s regression loss: %f"%(ld_names[i], error)) else: print("# regression loss: %f"%(error)) errors.append(error.unsqueeze(0)) return errors def validate(self, ld, i): self.model.eval() loss_fn = lambda fhs, ys: self.loss(fhs, ys, reduction='none') loss_mean, _, _ = compute_cls_error([ld], self.model, self.device, loss_fn=loss_fn) if self.loss_best >= loss_mean: self.loss_best = loss_mean self.epoch_best = i return loss_mean def set_stop_criterion(self): self.epoch_best = -np.inf self.loss_best = np.inf def stop_criterion(self, epoch): if epoch - self.epoch_best >= self.params.n_epochs*self.params.early_term_cri: return True else: return False
29.883495
91
0.552307
3b1662d8f3433ed2e651aae9d3d0b91155c986dd
579
py
Python
ros2_facelook_node/launch/ros2_facelook_node.launch.py
Misterblue/ros2-looker
1b42dede9276708364f876e1ecd6e67118e9c09c
[ "Apache-2.0" ]
1
2021-04-07T09:50:20.000Z
2021-04-07T09:50:20.000Z
ros2_facelook_node/launch/ros2_facelook_node.launch.py
Misterblue/ros2-looker
1b42dede9276708364f876e1ecd6e67118e9c09c
[ "Apache-2.0" ]
null
null
null
ros2_facelook_node/launch/ros2_facelook_node.launch.py
Misterblue/ros2-looker
1b42dede9276708364f876e1ecd6e67118e9c09c
[ "Apache-2.0" ]
null
null
null
import launch import launch.actions import launch.substitutions import launch_ros.actions def generate_launch_description(): return launch.LaunchDescription([ launch.actions.DeclareLaunchArgument( 'node_prefix', default_value=[launch.substitutions.EnvironmentVariable('USER'), '_'], description='Prefix for node names'), launch_ros.actions.Node( package='ros2_facelook_node', executable='service', output='screen', name=[launch.substitutions.LaunchConfiguration('node_prefix'), 'talker']), ])
34.058824
86
0.694301
ce9e906f44ab641dbb560ec25c828d9073931af1
9,060
py
Python
sdk/synapse/azure-mgmt-synapse/azure/mgmt/synapse/aio/operations/_sql_pool_maintenance_windows_operations.py
RAY-316/azure-sdk-for-python
4f7790deaf46c6f4e965f099f36eb73a7954ad5b
[ "MIT" ]
2
2021-03-24T06:26:11.000Z
2021-04-18T15:55:59.000Z
sdk/synapse/azure-mgmt-synapse/azure/mgmt/synapse/aio/operations/_sql_pool_maintenance_windows_operations.py
RSidea/azure-sdk-for-python
8f691b2c95ee0fc53b12d08bd83e3f134d9cf0ef
[ "MIT" ]
null
null
null
sdk/synapse/azure-mgmt-synapse/azure/mgmt/synapse/aio/operations/_sql_pool_maintenance_windows_operations.py
RSidea/azure-sdk-for-python
8f691b2c95ee0fc53b12d08bd83e3f134d9cf0ef
[ "MIT" ]
1
2021-12-18T20:01:22.000Z
2021-12-18T20:01:22.000Z
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from typing import Any, Callable, Dict, Generic, Optional, TypeVar import warnings from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error from azure.core.pipeline import PipelineResponse from azure.core.pipeline.transport import AsyncHttpResponse, HttpRequest from azure.mgmt.core.exceptions import ARMErrorFormat from ... import models as _models T = TypeVar('T') ClsType = Optional[Callable[[PipelineResponse[HttpRequest, AsyncHttpResponse], T, Dict[str, Any]], Any]] class SqlPoolMaintenanceWindowsOperations: """SqlPoolMaintenanceWindowsOperations async operations. You should not instantiate this class directly. Instead, you should create a Client instance that instantiates it for you and attaches it as an attribute. :ivar models: Alias to model classes used in this operation group. :type models: ~azure.mgmt.synapse.models :param client: Client for service requests. :param config: Configuration of service client. :param serializer: An object model serializer. :param deserializer: An object model deserializer. """ models = _models def __init__(self, client, config, serializer, deserializer) -> None: self._client = client self._serialize = serializer self._deserialize = deserializer self._config = config async def get( self, resource_group_name: str, workspace_name: str, sql_pool_name: str, maintenance_window_name: str, **kwargs ) -> "_models.MaintenanceWindows": """Get a SQL pool's Maintenance Windows. Get a SQL pool's Maintenance Windows. :param resource_group_name: The name of the resource group. The name is case insensitive. :type resource_group_name: str :param workspace_name: The name of the workspace. :type workspace_name: str :param sql_pool_name: SQL pool name. :type sql_pool_name: str :param maintenance_window_name: Maintenance window name. :type maintenance_window_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: MaintenanceWindows, or the result of cls(response) :rtype: ~azure.mgmt.synapse.models.MaintenanceWindows :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.MaintenanceWindows"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2021-03-01" accept = "application/json" # Construct URL url = self.get.metadata['url'] # type: ignore path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str', min_length=1), 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str', max_length=90, min_length=1, pattern=r'^[-\w\._\(\)]+$'), 'workspaceName': self._serialize.url("workspace_name", workspace_name, 'str'), 'sqlPoolName': self._serialize.url("sql_pool_name", sql_pool_name, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') query_parameters['maintenanceWindowName'] = self._serialize.query("maintenance_window_name", maintenance_window_name, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.get(url, query_parameters, header_parameters) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize(_models.ErrorResponse, response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) deserialized = self._deserialize('MaintenanceWindows', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized get.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Synapse/workspaces/{workspaceName}/sqlPools/{sqlPoolName}/maintenancewindows/current'} # type: ignore async def create_or_update( self, resource_group_name: str, workspace_name: str, sql_pool_name: str, maintenance_window_name: str, parameters: "_models.MaintenanceWindows", **kwargs ) -> None: """Creates or updates a Sql pool's maintenance windows settings. Creates or updates a Sql pool's maintenance windows settings. :param resource_group_name: The name of the resource group. The name is case insensitive. :type resource_group_name: str :param workspace_name: The name of the workspace. :type workspace_name: str :param sql_pool_name: SQL pool name. :type sql_pool_name: str :param maintenance_window_name: Maintenance window name. :type maintenance_window_name: str :param parameters: The required parameters for creating or updating Maintenance Windows settings. :type parameters: ~azure.mgmt.synapse.models.MaintenanceWindows :keyword callable cls: A custom type or function that will be passed the direct response :return: None, or the result of cls(response) :rtype: None :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType[None] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2021-03-01" content_type = kwargs.pop("content_type", "application/json") # Construct URL url = self.create_or_update.metadata['url'] # type: ignore path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str', min_length=1), 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str', max_length=90, min_length=1, pattern=r'^[-\w\._\(\)]+$'), 'workspaceName': self._serialize.url("workspace_name", workspace_name, 'str'), 'sqlPoolName': self._serialize.url("sql_pool_name", sql_pool_name, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') query_parameters['maintenanceWindowName'] = self._serialize.query("maintenance_window_name", maintenance_window_name, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') body_content_kwargs = {} # type: Dict[str, Any] body_content = self._serialize.body(parameters, 'MaintenanceWindows') body_content_kwargs['content'] = body_content request = self._client.put(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) if cls: return cls(pipeline_response, None, {}) create_or_update.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Synapse/workspaces/{workspaceName}/sqlPools/{sqlPoolName}/maintenancewindows/current'} # type: ignore
49.508197
230
0.684658
0cd9263cb56184d9d180dfa439e0dc777c917f4a
22,883
py
Python
frille-lang/lib/python3.6/site-packages/sklearn/linear_model/_base.py
frillecode/CDS-spring-2021-language
a0b2116044cd20d4a34b98f23bd2663256c90c5d
[ "MIT" ]
13
2020-05-03T18:42:05.000Z
2022-03-23T07:44:19.000Z
frille-lang/lib/python3.6/site-packages/sklearn/linear_model/_base.py
frillecode/CDS-spring-2021-language
a0b2116044cd20d4a34b98f23bd2663256c90c5d
[ "MIT" ]
1
2021-06-08T06:03:51.000Z
2021-06-08T06:03:51.000Z
frille-lang/lib/python3.6/site-packages/sklearn/linear_model/_base.py
frillecode/CDS-spring-2021-language
a0b2116044cd20d4a34b98f23bd2663256c90c5d
[ "MIT" ]
7
2020-07-09T15:03:58.000Z
2021-12-22T04:19:27.000Z
""" Generalized Linear Models. """ # Author: Alexandre Gramfort <alexandre.gramfort@inria.fr> # Fabian Pedregosa <fabian.pedregosa@inria.fr> # Olivier Grisel <olivier.grisel@ensta.org> # Vincent Michel <vincent.michel@inria.fr> # Peter Prettenhofer <peter.prettenhofer@gmail.com> # Mathieu Blondel <mathieu@mblondel.org> # Lars Buitinck # Maryan Morel <maryan.morel@polytechnique.edu> # Giorgio Patrini <giorgio.patrini@anu.edu.au> # License: BSD 3 clause from abc import ABCMeta, abstractmethod import numbers import warnings import numpy as np import scipy.sparse as sp from scipy import linalg from scipy import optimize from scipy import sparse from scipy.special import expit from joblib import Parallel from ..base import (BaseEstimator, ClassifierMixin, RegressorMixin, MultiOutputMixin) from ..utils import check_array from ..utils.validation import FLOAT_DTYPES from ..utils.validation import _deprecate_positional_args from ..utils import check_random_state from ..utils.extmath import safe_sparse_dot from ..utils.sparsefuncs import mean_variance_axis, inplace_column_scale from ..utils.fixes import sparse_lsqr from ..utils._seq_dataset import ArrayDataset32, CSRDataset32 from ..utils._seq_dataset import ArrayDataset64, CSRDataset64 from ..utils.validation import check_is_fitted, _check_sample_weight from ..utils.fixes import delayed from ..preprocessing import normalize as f_normalize # TODO: bayesian_ridge_regression and bayesian_regression_ard # should be squashed into its respective objects. SPARSE_INTERCEPT_DECAY = 0.01 # For sparse data intercept updates are scaled by this decay factor to avoid # intercept oscillation. def make_dataset(X, y, sample_weight, random_state=None): """Create ``Dataset`` abstraction for sparse and dense inputs. This also returns the ``intercept_decay`` which is different for sparse datasets. Parameters ---------- X : array-like, shape (n_samples, n_features) Training data y : array-like, shape (n_samples, ) Target values. sample_weight : numpy array of shape (n_samples,) The weight of each sample random_state : int, RandomState instance or None (default) Determines random number generation for dataset shuffling and noise. Pass an int for reproducible output across multiple function calls. See :term:`Glossary <random_state>`. Returns ------- dataset The ``Dataset`` abstraction intercept_decay The intercept decay """ rng = check_random_state(random_state) # seed should never be 0 in SequentialDataset64 seed = rng.randint(1, np.iinfo(np.int32).max) if X.dtype == np.float32: CSRData = CSRDataset32 ArrayData = ArrayDataset32 else: CSRData = CSRDataset64 ArrayData = ArrayDataset64 if sp.issparse(X): dataset = CSRData(X.data, X.indptr, X.indices, y, sample_weight, seed=seed) intercept_decay = SPARSE_INTERCEPT_DECAY else: X = np.ascontiguousarray(X) dataset = ArrayData(X, y, sample_weight, seed=seed) intercept_decay = 1.0 return dataset, intercept_decay def _preprocess_data(X, y, fit_intercept, normalize=False, copy=True, sample_weight=None, return_mean=False, check_input=True): """Center and scale data. Centers data to have mean zero along axis 0. If fit_intercept=False or if the X is a sparse matrix, no centering is done, but normalization can still be applied. The function returns the statistics necessary to reconstruct the input data, which are X_offset, y_offset, X_scale, such that the output X = (X - X_offset) / X_scale X_scale is the L2 norm of X - X_offset. If sample_weight is not None, then the weighted mean of X and y is zero, and not the mean itself. If return_mean=True, the mean, eventually weighted, is returned, independently of whether X was centered (option used for optimization with sparse data in coordinate_descend). This is here because nearly all linear models will want their data to be centered. This function also systematically makes y consistent with X.dtype """ if isinstance(sample_weight, numbers.Number): sample_weight = None if sample_weight is not None: sample_weight = np.asarray(sample_weight) if check_input: X = check_array(X, copy=copy, accept_sparse=['csr', 'csc'], dtype=FLOAT_DTYPES) elif copy: if sp.issparse(X): X = X.copy() else: X = X.copy(order='K') y = np.asarray(y, dtype=X.dtype) if fit_intercept: if sp.issparse(X): X_offset, X_var = mean_variance_axis(X, axis=0) if not return_mean: X_offset[:] = X.dtype.type(0) if normalize: # TODO: f_normalize could be used here as well but the function # inplace_csr_row_normalize_l2 must be changed such that it # can return also the norms computed internally # transform variance to norm in-place X_var *= X.shape[0] X_scale = np.sqrt(X_var, X_var) del X_var X_scale[X_scale == 0] = 1 inplace_column_scale(X, 1. / X_scale) else: X_scale = np.ones(X.shape[1], dtype=X.dtype) else: X_offset = np.average(X, axis=0, weights=sample_weight) X -= X_offset if normalize: X, X_scale = f_normalize(X, axis=0, copy=False, return_norm=True) else: X_scale = np.ones(X.shape[1], dtype=X.dtype) y_offset = np.average(y, axis=0, weights=sample_weight) y = y - y_offset else: X_offset = np.zeros(X.shape[1], dtype=X.dtype) X_scale = np.ones(X.shape[1], dtype=X.dtype) if y.ndim == 1: y_offset = X.dtype.type(0) else: y_offset = np.zeros(y.shape[1], dtype=X.dtype) return X, y, X_offset, y_offset, X_scale # TODO: _rescale_data should be factored into _preprocess_data. # Currently, the fact that sag implements its own way to deal with # sample_weight makes the refactoring tricky. def _rescale_data(X, y, sample_weight): """Rescale data sample-wise by square root of sample_weight. For many linear models, this enables easy support for sample_weight. Returns ------- X_rescaled : {array-like, sparse matrix} y_rescaled : {array-like, sparse matrix} """ n_samples = X.shape[0] sample_weight = np.asarray(sample_weight) if sample_weight.ndim == 0: sample_weight = np.full(n_samples, sample_weight, dtype=sample_weight.dtype) sample_weight = np.sqrt(sample_weight) sw_matrix = sparse.dia_matrix((sample_weight, 0), shape=(n_samples, n_samples)) X = safe_sparse_dot(sw_matrix, X) y = safe_sparse_dot(sw_matrix, y) return X, y class LinearModel(BaseEstimator, metaclass=ABCMeta): """Base class for Linear Models""" @abstractmethod def fit(self, X, y): """Fit model.""" def _decision_function(self, X): check_is_fitted(self) X = check_array(X, accept_sparse=['csr', 'csc', 'coo']) return safe_sparse_dot(X, self.coef_.T, dense_output=True) + self.intercept_ def predict(self, X): """ Predict using the linear model. Parameters ---------- X : array-like or sparse matrix, shape (n_samples, n_features) Samples. Returns ------- C : array, shape (n_samples,) Returns predicted values. """ return self._decision_function(X) _preprocess_data = staticmethod(_preprocess_data) def _set_intercept(self, X_offset, y_offset, X_scale): """Set the intercept_ """ if self.fit_intercept: self.coef_ = self.coef_ / X_scale self.intercept_ = y_offset - np.dot(X_offset, self.coef_.T) else: self.intercept_ = 0. def _more_tags(self): return {'requires_y': True} # XXX Should this derive from LinearModel? It should be a mixin, not an ABC. # Maybe the n_features checking can be moved to LinearModel. class LinearClassifierMixin(ClassifierMixin): """Mixin for linear classifiers. Handles prediction for sparse and dense X. """ def decision_function(self, X): """ Predict confidence scores for samples. The confidence score for a sample is proportional to the signed distance of that sample to the hyperplane. Parameters ---------- X : array-like or sparse matrix, shape (n_samples, n_features) Samples. Returns ------- array, shape=(n_samples,) if n_classes == 2 else (n_samples, n_classes) Confidence scores per (sample, class) combination. In the binary case, confidence score for self.classes_[1] where >0 means this class would be predicted. """ check_is_fitted(self) X = check_array(X, accept_sparse='csr') n_features = self.coef_.shape[1] if X.shape[1] != n_features: raise ValueError("X has %d features per sample; expecting %d" % (X.shape[1], n_features)) scores = safe_sparse_dot(X, self.coef_.T, dense_output=True) + self.intercept_ return scores.ravel() if scores.shape[1] == 1 else scores def predict(self, X): """ Predict class labels for samples in X. Parameters ---------- X : array-like or sparse matrix, shape (n_samples, n_features) Samples. Returns ------- C : array, shape [n_samples] Predicted class label per sample. """ scores = self.decision_function(X) if len(scores.shape) == 1: indices = (scores > 0).astype(int) else: indices = scores.argmax(axis=1) return self.classes_[indices] def _predict_proba_lr(self, X): """Probability estimation for OvR logistic regression. Positive class probabilities are computed as 1. / (1. + np.exp(-self.decision_function(X))); multiclass is handled by normalizing that over all classes. """ prob = self.decision_function(X) expit(prob, out=prob) if prob.ndim == 1: return np.vstack([1 - prob, prob]).T else: # OvR normalization, like LibLinear's predict_probability prob /= prob.sum(axis=1).reshape((prob.shape[0], -1)) return prob class SparseCoefMixin: """Mixin for converting coef_ to and from CSR format. L1-regularizing estimators should inherit this. """ def densify(self): """ Convert coefficient matrix to dense array format. Converts the ``coef_`` member (back) to a numpy.ndarray. This is the default format of ``coef_`` and is required for fitting, so calling this method is only required on models that have previously been sparsified; otherwise, it is a no-op. Returns ------- self Fitted estimator. """ msg = "Estimator, %(name)s, must be fitted before densifying." check_is_fitted(self, msg=msg) if sp.issparse(self.coef_): self.coef_ = self.coef_.toarray() return self def sparsify(self): """ Convert coefficient matrix to sparse format. Converts the ``coef_`` member to a scipy.sparse matrix, which for L1-regularized models can be much more memory- and storage-efficient than the usual numpy.ndarray representation. The ``intercept_`` member is not converted. Returns ------- self Fitted estimator. Notes ----- For non-sparse models, i.e. when there are not many zeros in ``coef_``, this may actually *increase* memory usage, so use this method with care. A rule of thumb is that the number of zero elements, which can be computed with ``(coef_ == 0).sum()``, must be more than 50% for this to provide significant benefits. After calling this method, further fitting with the partial_fit method (if any) will not work until you call densify. """ msg = "Estimator, %(name)s, must be fitted before sparsifying." check_is_fitted(self, msg=msg) self.coef_ = sp.csr_matrix(self.coef_) return self class LinearRegression(MultiOutputMixin, RegressorMixin, LinearModel): """ Ordinary least squares Linear Regression. LinearRegression fits a linear model with coefficients w = (w1, ..., wp) to minimize the residual sum of squares between the observed targets in the dataset, and the targets predicted by the linear approximation. Parameters ---------- fit_intercept : bool, default=True Whether to calculate the intercept for this model. If set to False, no intercept will be used in calculations (i.e. data is expected to be centered). normalize : bool, default=False This parameter is ignored when ``fit_intercept`` is set to False. If True, the regressors X will be normalized before regression by subtracting the mean and dividing by the l2-norm. If you wish to standardize, please use :class:`~sklearn.preprocessing.StandardScaler` before calling ``fit`` on an estimator with ``normalize=False``. copy_X : bool, default=True If True, X will be copied; else, it may be overwritten. n_jobs : int, default=None The number of jobs to use for the computation. This will only provide speedup for n_targets > 1 and sufficient large problems. ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context. ``-1`` means using all processors. See :term:`Glossary <n_jobs>` for more details. positive : bool, default=False When set to ``True``, forces the coefficients to be positive. This option is only supported for dense arrays. .. versionadded:: 0.24 Attributes ---------- coef_ : array of shape (n_features, ) or (n_targets, n_features) Estimated coefficients for the linear regression problem. If multiple targets are passed during the fit (y 2D), this is a 2D array of shape (n_targets, n_features), while if only one target is passed, this is a 1D array of length n_features. rank_ : int Rank of matrix `X`. Only available when `X` is dense. singular_ : array of shape (min(X, y),) Singular values of `X`. Only available when `X` is dense. intercept_ : float or array of shape (n_targets,) Independent term in the linear model. Set to 0.0 if `fit_intercept = False`. See Also -------- Ridge : Ridge regression addresses some of the problems of Ordinary Least Squares by imposing a penalty on the size of the coefficients with l2 regularization. Lasso : The Lasso is a linear model that estimates sparse coefficients with l1 regularization. ElasticNet : Elastic-Net is a linear regression model trained with both l1 and l2 -norm regularization of the coefficients. Notes ----- From the implementation point of view, this is just plain Ordinary Least Squares (scipy.linalg.lstsq) or Non Negative Least Squares (scipy.optimize.nnls) wrapped as a predictor object. Examples -------- >>> import numpy as np >>> from sklearn.linear_model import LinearRegression >>> X = np.array([[1, 1], [1, 2], [2, 2], [2, 3]]) >>> # y = 1 * x_0 + 2 * x_1 + 3 >>> y = np.dot(X, np.array([1, 2])) + 3 >>> reg = LinearRegression().fit(X, y) >>> reg.score(X, y) 1.0 >>> reg.coef_ array([1., 2.]) >>> reg.intercept_ 3.0000... >>> reg.predict(np.array([[3, 5]])) array([16.]) """ @_deprecate_positional_args def __init__(self, *, fit_intercept=True, normalize=False, copy_X=True, n_jobs=None, positive=False): self.fit_intercept = fit_intercept self.normalize = normalize self.copy_X = copy_X self.n_jobs = n_jobs self.positive = positive def fit(self, X, y, sample_weight=None): """ Fit linear model. Parameters ---------- X : {array-like, sparse matrix} of shape (n_samples, n_features) Training data y : array-like of shape (n_samples,) or (n_samples, n_targets) Target values. Will be cast to X's dtype if necessary sample_weight : array-like of shape (n_samples,), default=None Individual weights for each sample .. versionadded:: 0.17 parameter *sample_weight* support to LinearRegression. Returns ------- self : returns an instance of self. """ n_jobs_ = self.n_jobs accept_sparse = False if self.positive else ['csr', 'csc', 'coo'] X, y = self._validate_data(X, y, accept_sparse=accept_sparse, y_numeric=True, multi_output=True) if sample_weight is not None: sample_weight = _check_sample_weight(sample_weight, X, dtype=X.dtype) X, y, X_offset, y_offset, X_scale = self._preprocess_data( X, y, fit_intercept=self.fit_intercept, normalize=self.normalize, copy=self.copy_X, sample_weight=sample_weight, return_mean=True) if sample_weight is not None: # Sample weight can be implemented via a simple rescaling. X, y = _rescale_data(X, y, sample_weight) if self.positive: if y.ndim < 2: self.coef_, self._residues = optimize.nnls(X, y) else: # scipy.optimize.nnls cannot handle y with shape (M, K) outs = Parallel(n_jobs=n_jobs_)( delayed(optimize.nnls)(X, y[:, j]) for j in range(y.shape[1])) self.coef_, self._residues = map(np.vstack, zip(*outs)) elif sp.issparse(X): X_offset_scale = X_offset / X_scale def matvec(b): return X.dot(b) - b.dot(X_offset_scale) def rmatvec(b): return X.T.dot(b) - X_offset_scale * np.sum(b) X_centered = sparse.linalg.LinearOperator(shape=X.shape, matvec=matvec, rmatvec=rmatvec) if y.ndim < 2: out = sparse_lsqr(X_centered, y) self.coef_ = out[0] self._residues = out[3] else: # sparse_lstsq cannot handle y with shape (M, K) outs = Parallel(n_jobs=n_jobs_)( delayed(sparse_lsqr)(X_centered, y[:, j].ravel()) for j in range(y.shape[1])) self.coef_ = np.vstack([out[0] for out in outs]) self._residues = np.vstack([out[3] for out in outs]) else: self.coef_, self._residues, self.rank_, self.singular_ = \ linalg.lstsq(X, y) self.coef_ = self.coef_.T if y.ndim == 1: self.coef_ = np.ravel(self.coef_) self._set_intercept(X_offset, y_offset, X_scale) return self def _pre_fit(X, y, Xy, precompute, normalize, fit_intercept, copy, check_input=True, sample_weight=None): """Aux function used at beginning of fit in linear models Parameters ---------- order : 'F', 'C' or None, default=None Whether X and y will be forced to be fortran or c-style. Only relevant if sample_weight is not None. """ n_samples, n_features = X.shape if sparse.isspmatrix(X): # copy is not needed here as X is not modified inplace when X is sparse precompute = False X, y, X_offset, y_offset, X_scale = _preprocess_data( X, y, fit_intercept=fit_intercept, normalize=normalize, copy=False, return_mean=True, check_input=check_input) else: # copy was done in fit if necessary X, y, X_offset, y_offset, X_scale = _preprocess_data( X, y, fit_intercept=fit_intercept, normalize=normalize, copy=copy, check_input=check_input, sample_weight=sample_weight) if sample_weight is not None: X, y = _rescale_data(X, y, sample_weight=sample_weight) if hasattr(precompute, '__array__') and ( fit_intercept and not np.allclose(X_offset, np.zeros(n_features)) or normalize and not np.allclose(X_scale, np.ones(n_features))): warnings.warn("Gram matrix was provided but X was centered" " to fit intercept, " "or X was normalized : recomputing Gram matrix.", UserWarning) # recompute Gram precompute = 'auto' Xy = None # precompute if n_samples > n_features if isinstance(precompute, str) and precompute == 'auto': precompute = (n_samples > n_features) if precompute is True: # make sure that the 'precompute' array is contiguous. precompute = np.empty(shape=(n_features, n_features), dtype=X.dtype, order='C') np.dot(X.T, X, out=precompute) if not hasattr(precompute, '__array__'): Xy = None # cannot use Xy if precompute is not Gram if hasattr(precompute, '__array__') and Xy is None: common_dtype = np.find_common_type([X.dtype, y.dtype], []) if y.ndim == 1: # Xy is 1d, make sure it is contiguous. Xy = np.empty(shape=n_features, dtype=common_dtype, order='C') np.dot(X.T, y, out=Xy) else: # Make sure that Xy is always F contiguous even if X or y are not # contiguous: the goal is to make it fast to extract the data for a # specific target. n_targets = y.shape[1] Xy = np.empty(shape=(n_features, n_targets), dtype=common_dtype, order='F') np.dot(y.T, X, out=Xy.T) return X, y, X_offset, y_offset, X_scale, precompute, Xy
35.587869
79
0.613032
de32673f71e13901d220def4e92199f64d3258f0
37,615
py
Python
nmmn/plots.py
rsnemmen/nemmen
259887ef4fa0cd1ccc50e404998d3c9e27b2fd79
[ "MIT" ]
16
2016-09-14T00:44:51.000Z
2022-03-11T22:19:10.000Z
nmmn/plots.py
rsnemmen/nemmen
259887ef4fa0cd1ccc50e404998d3c9e27b2fd79
[ "MIT" ]
2
2018-03-04T02:26:20.000Z
2018-07-06T20:32:19.000Z
nmmn/plots.py
rsnemmen/nemmen
259887ef4fa0cd1ccc50e404998d3c9e27b2fd79
[ "MIT" ]
3
2017-11-13T10:46:21.000Z
2019-06-26T07:22:58.000Z
""" Fancy plots ============== """ import numpy from matplotlib import pylab from nmmn import sed def plot(spec): """ Returns the plot of a grmonty spectrum as a pyplot object or plot it on the screen :param param: grmonty spectrum file """ s = sed.SED() s.grmonty(spec) pylab.plot(s.lognu, s.ll) pylab.show() def onehist(x,xlabel='',fontsize=12): """ Script that plots the histogram of x with the corresponding xlabel. """ pylab.clf() pylab.rcParams.update({'font.size': fontsize}) pylab.hist(x,histtype='stepfilled') pylab.legend() #### Change the X-axis appropriately #### pylab.xlabel(xlabel) pylab.ylabel('Number') pylab.draw() pylab.show() def twohists(x1,x2,xmin,xmax,range=None,x1leg='$x_1$',x2leg='$x_2$',xlabel='',fig=1,sharey=False,fontsize=12,bins1=10,bins2=10): """ Script that plots two histograms of quantities x1 and x2 sharing the same X-axis. :param x1,x2: arrays with data to be plotted :param xmin,xmax: lower and upper range of plotted values, will be used to set a consistent x-range for both histograms. :param x1leg, x2leg: legends for each histogram :param xlabel: self-explanatory. :param bins1,bins2: number of bins in each histogram :param fig: which plot window should I use? :param range: in the form (xmin,xmax), same as range argument for hist and applied to both histograms. Inspired by `Scipy <http://www.scipy.org/Cookbook/Matplotlib/Multiple_Subplots_with_One_Axis_Label>`_. """ pylab.rcParams.update({'font.size': fontsize}) fig=pylab.figure(fig) pylab.clf() a=fig.add_subplot(2,1,1) if sharey==True: b=fig.add_subplot(2,1,2, sharex=a, sharey=a) else: b=fig.add_subplot(2,1,2, sharex=a) a.hist(x1,bins1,label=x1leg,color='b',histtype='stepfilled',range=range) a.legend(loc='best',frameon=False) a.set_xlim(xmin,xmax) b.hist(x2,bins2,label=x2leg,color='r',histtype='stepfilled',range=range) b.legend(loc='best',frameon=False) pylab.setp(a.get_xticklabels(), visible=False) b.set_xlabel(xlabel) b.set_ylabel('Number',verticalalignment='bottom') pylab.minorticks_on() pylab.subplots_adjust(hspace=0.15) pylab.draw() pylab.show() def threehists(x1,x2,x3,xmin,xmax,x1leg='$x_1$',x2leg='$x_2$',x3leg='$x_3$',xlabel='',fig=1,sharey=False,fontsize=12): """ Script that plots three histograms of quantities x1, x2 and x3 sharing the same X-axis. Arguments: - x1,x2,x3: arrays with data to be plotted - xmin,xmax: lower and upper range of plotted values, will be used to set a consistent x-range for both histograms. - x1leg, x2leg, x3leg: legends for each histogram - xlabel: self-explanatory. - sharey: sharing the Y-axis among the histograms? - fig: which plot window should I use? Example: x1=Lbol(AD), x2=Lbol(JD), x3=Lbol(EHF10) >>> threehists(x1,x2,x3,38,44,'AD','JD','EHF10','$\log L_{\\rm bol}$ (erg s$^{-1}$)',sharey=True) Inspired by `Scipy <http://www.scipy.org/Cookbook/Matplotlib/Multiple_Subplots_with_One_Axis_Label>`_. """ pylab.rcParams.update({'font.size': fontsize}) fig=pylab.figure(fig) pylab.clf() a=fig.add_subplot(3,1,1) if sharey==True: b=fig.add_subplot(3,1,2, sharex=a, sharey=a) c=fig.add_subplot(3,1,3, sharex=a, sharey=a) else: b=fig.add_subplot(3,1,2, sharex=a) c=fig.add_subplot(3,1,3, sharex=a) a.hist(x1,label=x1leg,color='b',histtype='stepfilled') a.legend(loc='best',frameon=False) a.set_xlim(xmin,xmax) b.hist(x2,label=x2leg,color='r',histtype='stepfilled') b.legend(loc='best',frameon=False) c.hist(x3,label=x3leg,color='y',histtype='stepfilled') c.legend(loc='best',frameon=False) pylab.setp(a.get_xticklabels(), visible=False) pylab.setp(b.get_xticklabels(), visible=False) c.set_xlabel(xlabel) b.set_ylabel('Number') pylab.minorticks_on() pylab.subplots_adjust(hspace=0.15) pylab.draw() pylab.show() def fourhists(x1,x2,x3,x4,xmin,xmax,x1leg='$x_1$',x2leg='$x_2$',x3leg='$x_3$',x4leg='$x_3$',xlabel='',fig=1,sharey=False,fontsize=12,bins1=10,bins2=10,bins3=10,bins4=10,line1=None,line2=None,line3=None,line4=None,line1b=None,line2b=None,line3b=None,line4b=None,loc='best'): """ Script that plots four histograms of quantities x1, x2, x3 and x4 sharing the same X-axis. Arguments: - x1,x2,x3,x4: arrays with data to be plotted - xmin,xmax: lower and upper range of plotted values, will be used to set a consistent x-range or both histograms. - x1leg, x2leg, x3leg, x4leg: legends for each histogram - xlabel: self-explanatory. - sharey: sharing the Y-axis among the histograms? - bins1,bins2,...: number of bins in each histogram - fig: which plot window should I use? - line?: draws vertical solid lines at the positions indicated in each panel - line?b: draws vertical dashed lines at the positions indicated in each panel .. figure:: ../figures/fourhists.png :scale: 100 % :alt: Four histograms in the same figure Four histograms in the same figure. Inspired by `Scipy <http://www.scipy.org/Cookbook/Matplotlib/Multiple_Subplots_with_One_Axis_Label>`_. """ pylab.rcParams.update({'font.size': fontsize}) fig=pylab.figure(fig) pylab.clf() a=fig.add_subplot(4,1,1) if sharey==True: b=fig.add_subplot(4,1,2, sharex=a, sharey=a) c=fig.add_subplot(4,1,3, sharex=a, sharey=a) d=fig.add_subplot(4,1,4, sharex=a, sharey=a) else: b=fig.add_subplot(4,1,2, sharex=a) c=fig.add_subplot(4,1,3, sharex=a) d=fig.add_subplot(4,1,4, sharex=a) def vline(hist,value,linestyle='k'): """Draw vertical line""" yax=hist.set_ylim() hist.plot([value,value],[yax[0],yax[1]],linestyle,linewidth=2) a.hist(x1,bins1,label=x1leg,color='b',histtype='stepfilled') a.legend(loc=loc,frameon=False) a.set_xlim(xmin,xmax) if line1!=None: vline(a,line1) if line1b!=None: vline(a,line1b,'k--') b.hist(x2,bins2,label=x2leg,color='r',histtype='stepfilled') b.legend(loc=loc,frameon=False) if line2!=None: vline(b,line2) if line2b!=None: vline(b,line2b,'k--') c.hist(x3,bins3,label=x3leg,color='y',histtype='stepfilled') c.legend(loc=loc,frameon=False) if line3!=None: vline(c,line3) if line3b!=None: vline(c,line3b,'k--') d.hist(x4,bins4,label=x4leg,color='g',histtype='stepfilled') d.legend(loc=loc,frameon=False) if line4!=None: vline(d,line4) if line4b!=None: vline(d,line4b,'k--') pylab.setp(a.get_xticklabels(), visible=False) pylab.setp(b.get_xticklabels(), visible=False) pylab.setp(c.get_xticklabels(), visible=False) d.set_xlabel(xlabel) c.set_ylabel('Number') pylab.minorticks_on() pylab.subplots_adjust(hspace=0.15) pylab.draw() pylab.show() def fourcumplot(x1,x2,x3,x4,xmin,xmax,x1leg='$x_1$',x2leg='$x_2$',x3leg='$x_3$',x4leg='$x_3$',xlabel='',ylabel='$N(x>x\')$',fig=1,sharey=False,fontsize=12,bins1=50,bins2=50,bins3=50,bins4=50): """ Script that plots the cumulative histograms of four variables x1, x2, x3 and x4 sharing the same X-axis. For each bin, Y is the fraction of the sample with values above X. Arguments: - x1,x2,x3,x4: arrays with data to be plotted - xmin,xmax: lower and upper range of plotted values, will be used to set a consistent x-range for both histograms. - x1leg, x2leg, x3leg, x4leg: legends for each histogram - xlabel: self-explanatory. - sharey: sharing the Y-axis among the histograms? - bins1,bins2,...: number of bins in each histogram - fig: which plot window should I use? Inspired by `Scipy <http://www.scipy.org/Cookbook/Matplotlib/Multiple_Subplots_with_One_Axis_Label>`_. v1 Jun. 2012: inherited from fourhists. """ pylab.rcParams.update({'font.size': fontsize}) fig=pylab.figure(fig) pylab.clf() a=fig.add_subplot(4,1,1) if sharey==True: b=fig.add_subplot(4,1,2, sharex=a, sharey=a) c=fig.add_subplot(4,1,3, sharex=a, sharey=a) d=fig.add_subplot(4,1,4, sharex=a, sharey=a) else: b=fig.add_subplot(4,1,2, sharex=a) c=fig.add_subplot(4,1,3, sharex=a) d=fig.add_subplot(4,1,4, sharex=a) a.hist(x1,bins1,label=x1leg,color='b',cumulative=-True,normed=True,histtype='stepfilled') a.legend(loc='best',frameon=False) a.set_xlim(xmin,xmax) b.hist(x2,bins2,label=x2leg,color='r',cumulative=-True,normed=True,histtype='stepfilled') b.legend(loc='best',frameon=False) c.hist(x3,bins3,label=x3leg,color='y',cumulative=-True,normed=True,histtype='stepfilled') c.legend(loc='best',frameon=False) d.hist(x4,bins4,label=x4leg,color='g',cumulative=-True,normed=True,histtype='stepfilled') d.legend(loc='best',frameon=False) pylab.setp(a.get_xticklabels(), visible=False) pylab.setp(b.get_xticklabels(), visible=False) pylab.setp(c.get_xticklabels(), visible=False) d.set_xlabel(xlabel) c.set_ylabel(ylabel) pylab.minorticks_on() pylab.subplots_adjust(hspace=0.15) pylab.draw() pylab.show() def threehistsx(x1,x2,x3,x1leg='$x_1$',x2leg='$x_2$',x3leg='$x_3$',fig=1,fontsize=12,bins1=10,bins2=10,bins3=10): """ Script that pretty-plots three histograms of quantities x1, x2 and x3. Arguments: :param x1,x2,x3: arrays with data to be plotted :param x1leg, x2leg, x3leg: legends for each histogram :param fig: which plot window should I use? Example: x1=Lbol(AD), x2=Lbol(JD), x3=Lbol(EHF10) >>> threehists(x1,x2,x3,38,44,'AD','JD','EHF10','$\log L_{\\rm bol}$ (erg s$^{-1}$)') Inspired by http://www.scipy.org/Cookbook/Matplotlib/Multiple_Subplots_with_One_Axis_Label. """ pylab.rcParams.update({'font.size': fontsize}) pylab.figure(fig) pylab.clf() pylab.subplot(3,1,1) pylab.hist(x1,label=x1leg,color='b',bins=bins1) pylab.legend(loc='best',frameon=False) pylab.subplot(3,1,2) pylab.hist(x2,label=x2leg,color='r',bins=bins2) pylab.legend(loc='best',frameon=False) pylab.subplot(3,1,3) pylab.hist(x3,label=x3leg,color='y',bins=bins3) pylab.legend(loc='best',frameon=False) pylab.minorticks_on() pylab.subplots_adjust(hspace=0.15) pylab.draw() pylab.show() def fitconf(xdata,ydata,errx,erry,covxy,nboot=1000,bcesMethod='ort',linestyle='',conf=0.683,confcolor='gray',xplot=None,front=False,**args): """ This is a wrapper that given the input data performs the BCES fit, get the orthogonal parameters and plot the best-fit line and confidence band (generated using analytical methods). I decided to put together these commands in a method because I have been using them very frequently. Assumes you initialized the plot window before calling this method. Usage: >>> a1,b1,erra1,errb1,cov1=nemmen.fitconf(x[i],y[i],errx[i],erry[i],covxy[i],nboot,bces,linestyle='k',confcolor='LightGrey') Explanation of some arguments: - xplot: if provided, will compute the confidence band in the X-values provided with xplot - front: if True, then will plot the confidence band in front of the data points; otherwise, will plot it behind the points """ import bces.bces from . import stats from . import misc # Selects the desired BCES method i=misc.whichbces(bcesMethod) # Performs the BCES fit a,b,erra,errb,cov=bces.bces.bcesp(xdata,errx,ydata,erry,covxy,nboot) # Plots best-fit if xplot==None: x=numpy.linspace(xdata.min(),xdata.max(),100) else: x=xplot pylab.plot(x,a[i]*x+b[i],linestyle,**args) fitm=numpy.array([ a[i],b[i] ]) # array with best-fit parameters covm=numpy.array([ (erra[i]**2,cov[i]), (cov[i],errb[i]**2) ]) # covariance matrix def func(x): return x[1]*x[0]+x[2] # Plots confidence band lcb,ucb,xcb=stats.confbandnl(xdata,ydata,func,fitm,covm,2,conf,x) if front==True: zorder=10 else: zorder=None pylab.fill_between(xcb, lcb, ucb, alpha=0.3, facecolor=confcolor, zorder=zorder) return a,b,erra,errb,cov def fitconfmc(xdata,ydata,errx,erry,covxy,nboot=1000,bcesMethod='ort',linestyle='',conf=1.,confcolor='gray',xplot=None,front=False,**args): """ This is a wrapper that given the input data performs the BCES fit, get the orthogonal parameters and plot the best-fit line and confidence band (generated using MC). I decided to put together these commands in a method because I have been using them very frequently. Assumes you initialized the plot window before calling this method. This method is more stable than fitconf, which is plagued with numerical instabilities when computing the gradient. Usage: >>> a1,b1,erra1,errb1,cov1=nemmen.fitconf(x[i],y[i],errx[i],erry[i],covxy[i],nboot,bces,linestyle='k',confcolor='LightGrey') Explanation of some arguments: - xplot: if provided, will compute the confidence band in the X-values provided with xplot - front: if True, then will plot the confidence band in front of the data points; otherwise, will plot it behind the points - conf: size of confidence band to be plotted in standard deviations """ import bces.bces from . import misc # Selects the desired BCES method i=misc.whichbces(bcesMethod) # Performs the BCES fit a,b,erra,errb,cov=bces.bces.bcesp(xdata,errx,ydata,erry,covxy,nboot) # Plots best-fit if xplot==None: x=numpy.linspace(xdata.min(),xdata.max(),100) else: x=xplot pylab.plot(x,a[i]*x+b[i],linestyle,**args) fitm=numpy.array([ a[i],b[i] ]) # array with best-fit parameters covm=numpy.array([ (erra[i]**2,cov[i]), (cov[i],errb[i]**2) ]) # covariance matrix # Plots confidence band lcb,ucb,y=confbandmc(x,fitm,covm,10000,conf) if front==True: zorder=10 else: zorder=None pylab.fill_between(x, lcb, ucb, alpha=0.3, facecolor=confcolor, zorder=zorder) return a,b,erra,errb,cov def plotlinfit(xdata,ydata,a,b,erra,errb,cov,linestyle='',conf=0.683,confcolor='gray',xplot=None,front=False,**args): """ This is a wrapper that given the output data from a linear regression method (for example, bayeslin.pro, the Bayesian linear regression method of Kelly (2007)), it plots the fits and the confidence bands. The input is: X, Y, slope (A), errA, intercept (B), errB and cov(A,B) Assumes you initialized the plot window before calling this method. Usage: >>> nemmen.plotlinfit(x,y,a,b,erra,errb,covab,linestyle='k',confcolor='LightGrey') Explanation of some arguments: - xplot: if provided, will compute the confidence band in the X-values provided with xplot - front: if True, then will plot the confidence band in front of the data points; otherwise, will plot it behind the points """ # Plots best-fit if xplot==None: x=numpy.linspace(xdata.min(),xdata.max(),100) else: x=xplot pylab.plot(x,a*x+b,linestyle,**args) fitm=numpy.array([ a,b ]) # array with best-fit parameters covm=numpy.array([ (erra**2,cov), (cov,errb**2) ]) # covariance matrix def func(x): return x[1]*x[0]+x[2] # Plots confidence band lcb,ucb,xcb=confbandnl(xdata,ydata,func,fitm,covm,2,conf,x) if front==True: zorder=10 else: zorder=None pylab.fill_between(xcb, lcb, ucb, alpha=0.3, facecolor=confcolor, zorder=zorder) def jh(xdata,ydata,errx,erry,covxy,nboot=1000,bces='ort',linestyle='',conf=0.683,confcolor='gray',xplot=None,front=False,**args): """ This is a wrapper that given the input data performs the BCES fit, get the orthogonal parameters, best-fit line and confidence band. Then returns the points corresponding to the line and confidence band. I wrote this for the John Hunter plotting contest, in order to simplify my AGN-GRB plot. Inherited from method fitconf. Usage: >>> x,y,lcb,ucb=nemmen.fitconf(x[i],y[i],errx[i],erry[i],covxy[i],nboot,bces,linestyle='k',confcolor='LightGrey') where y are the line points, lcb and ucb are the lower and upper confidence band points. :param xplot: if provided, will compute the confidence band in the X-values provided with xplot :param front: if True, then will plot the confidence band in front of the data points; otherwise, will plot it behind the points """ # Selects the desired BCES method i=whichbces(bces) # Performs the BCES fit a,b,erra,errb,cov=bcesp(xdata,errx,ydata,erry,covxy,nboot) # Plots best-fit if xplot==None: x=numpy.linspace(xdata.min(),xdata.max(),100) else: x=xplot y=a[i]*x+b[i] fitm=numpy.array([ a[i],b[i] ]) # array with best-fit parameters covm=numpy.array([ (erra[i]**2,cov[i]), (cov[i],errb[i]**2) ]) # covariance matrix def func(x): return x[1]*x[0]+x[2] # Plots confidence band lcb,ucb,xcb=confbandnl(xdata,ydata,func,fitm,covm,2,conf,x) return x,y,lcb,ucb def fitconfpred(xdata,ydata,errx,erry,covxy,nboot=1000,bces='ort',linestyle='',conf=0.68,confcolor='LightGrey',predcolor='Khaki',xplot=None,front=False,**args): """ This is a wrapper that given the input data performs the BCES fit, get the orthogonal parameters and plot (i) the best-fit line, (ii) confidence band and (iii) prediction band. I decided to put together these commands in a method because I have been using them very frequently. Assumes you initialized the plot window before calling this method. Usage: >>> a1,b1,erra1,errb1,cov1=nemmen.fitconfpred(x[i],y[i],errx[i],erry[i],covxy[i],nboot,bces,linestyle='k',confcolor='LightGrey') """ # Selects the desired BCES method i=whichbces(bces) # Performs the BCES fit a,b,erra,errb,cov=bcesp(xdata,errx,ydata,erry,covxy,nboot) # Plots best-fit if xplot==None: x=numpy.linspace(xdata.min(),xdata.max(),100) else: x=xplot pylab.plot(x,a[i]*x+b[i],linestyle,**args) fitm=numpy.array([ a[i],b[i] ]) # array with best-fit parameters covm=numpy.array([ (erra[i]**2,cov[i]), (cov[i],errb[i]**2) ]) # covariance matrix def func(x): return x[1]*x[0]+x[2] if front==True: zorder=10 else: zorder=None # Plots prediction band lpb,upb,xpb=predbandnl(xdata,ydata,func,fitm,covm,2,conf,x) pylab.fill_between(xpb, lpb, upb, facecolor=predcolor,edgecolor='', zorder=zorder) # Plots confidence band lcb,ucb,xcb=confbandnl(xdata,ydata,func,fitm,covm,2,conf,x) pylab.fill_between(xcb, lcb, ucb, facecolor=confcolor,edgecolor='', zorder=zorder) return a,b,erra,errb,cov def fitpred(xdata,ydata,errx,erry,covxy,nboot=1000,bces='ort',linestyle='',conf=0.68,predcolor='Khaki',xplot=None,front=False,**args): """ This is a wrapper that given the input data performs the BCES fit, get the orthogonal parameters and plot (i) the best-fit line and (ii) prediction band. I decided to put together these commands in a method because I have been using them very frequently. Assumes you initialized the plot window before calling this method. Usage: >>> a1,b1,erra1,errb1,cov1=nemmen.fitpred(x[i],y[i],errx[i],erry[i],covxy[i],nboot,bces,linestyle='k',predcolor='LightGrey') """ # Selects the desired BCES method i=whichbces(bces) # Performs the BCES fit a,b,erra,errb,cov=bcesp(xdata,errx,ydata,erry,covxy,nboot) # Plots best-fit if xplot==None: x=numpy.linspace(xdata.min(),xdata.max(),100) else: x=xplot pylab.plot(x,a[i]*x+b[i],linestyle,**args) fitm=numpy.array([ a[i],b[i] ]) # array with best-fit parameters covm=numpy.array([ (erra[i]**2,cov[i]), (cov[i],errb[i]**2) ]) # covariance matrix def func(x): return x[1]*x[0]+x[2] if front==True: zorder=10 else: zorder=None # Plots prediction band lpb,upb,xpb=predbandnl(xdata,ydata,func,fitm,covm,2,conf,x) pylab.fill_between(xpb, lpb, upb, facecolor=predcolor,edgecolor='', zorder=zorder) return a,b,erra,errb,cov def uerrorbar(ux,uy,**args): """ Adaptation of pylab.errorbar to work with arrays defined using the uncertainties package, which include the errorbars built-in. Usage: >>> uerrorbar(x,y,fmt='o') will plot the points and error bars associated with the 'unumpy' arrays x and y """ x=unumpy.nominal_values(ux) y=unumpy.nominal_values(uy) errx=unumpy.std_devs(ux) erry=unumpy.std_devs(uy) pylab.errorbar(x,y,xerr=errx,yerr=erry,**args) def text(x,y,s,**args): """ Version of pylab.text that can be applied to arrays. Usage: >>> text(x,y,s, fontsize=10) will plot the strings in array 's' at coordinates given by arrays 'x' and 'y'. """ for j in range(x.size): pylab.text(x[j],y[j],s[j], **args) def ipyplots(): """ Makes sure we have exactly the same matplotlib settings as in the IPython terminal version. Call this from IPython notebook. `Source <http://stackoverflow.com/questions/16905028/why-is-matplotlib-plot-produced-from-ipython-notebook-slightly-different-from-te)>`_. """ pylab.rcParams['figure.figsize']=(8.0,6.0) #(6.0,4.0) pylab.rcParams['font.size']=12 #10 pylab.rcParams['savefig.dpi']=100 #72 pylab.rcParams['figure.subplot.bottom']=.1 #.125 def make_cmap(colors, position=None, bit=False): ''' make_cmap takes a list of tuples which contain RGB values. The RGB values may either be in 8-bit [0 to 255] (in which bit must be set to True when called) or arithmetic [0 to 1] (default). make_cmap returns a cmap with equally spaced colors. Arrange your tuples so that the first color is the lowest value for the colorbar and the last is the highest. position contains values from 0 to 1 to dictate the location of each color. source: http://schubert.atmos.colostate.edu/~cslocum/custom_cmap.html Chris Slocum, Colorado State University ''' import matplotlib as mpl import numpy as np bit_rgb = np.linspace(0,1,256) if position == None: position = np.linspace(0,1,len(colors)) else: if len(position) != len(colors): sys.exit("position length must be the same as colors") elif position[0] != 0 or position[-1] != 1: sys.exit("position must start with 0 and end with 1") if bit: for i in range(len(colors)): colors[i] = (bit_rgb[colors[i][0]], bit_rgb[colors[i][1]], bit_rgb[colors[i][2]]) cdict = {'red':[], 'green':[], 'blue':[]} for pos, color in zip(position, colors): cdict['red'].append((pos, color[0], color[0])) cdict['green'].append((pos, color[1], color[1])) cdict['blue'].append((pos, color[2], color[2])) cmap = mpl.colors.LinearSegmentedColormap('my_colormap',cdict,256) return cmap def image(Z,xnew,ynew,my_cmap=None,aspect='equal'): """ Creates pretty image. You need to specify: """ imshow(log10(Z),extent=[xnew[0],xnew[-1],ynew[0],ynew[-1]], cmap=my_cmap) pylab.axes().set_aspect('equal') colorbar() circle2=Circle((0,0),1,color='k') gca().add_artist(circle2) savefig('tmp.png',transparent=True,dpi=150) def wolframcmap(): """ Returns colormap that matches closely the one used by default for images in Wolfram Mathematica 11 (dark blue to orange). I spent one hour playing around to reproduce it. Usage: >>> mycmap=nmmn.plots.wolframcmap() >>> imshow(rho, cmap=mycmap) .. figure:: ../figures/wolframcmap.png :scale: 100 % :alt: Image plotted using Wolfram's colormap Image plotted using Wolfram's colormap. """ # Create a list of RGB tuples, recreates Mathematica colormap colors3=[(51,91,150),(111,116,143),(167,136,110),(233,167,85),(251,212,141),(255,247,190)] # Call the function make_cmap which returns your colormap return make_cmap(colors3, bit=True) def parulacmap(): """ Creates the beautiful Parula colormap which is Matlab's default. Usage: >>> mycmap=nmmn.plots.parulacmap() >>> imshow(rho, cmap=mycmap) Code taken from `here <https://github.com/BIDS/colormap/blob/master/parula.py>`_ """ from matplotlib.colors import LinearSegmentedColormap cm_data = [[0.2081, 0.1663, 0.5292], [0.2116238095, 0.1897809524, 0.5776761905], [0.212252381, 0.2137714286, 0.6269714286], [0.2081, 0.2386, 0.6770857143], [0.1959047619, 0.2644571429, 0.7279], [0.1707285714, 0.2919380952, 0.779247619], [0.1252714286, 0.3242428571, 0.8302714286], [0.0591333333, 0.3598333333, 0.8683333333], [0.0116952381, 0.3875095238, 0.8819571429], [0.0059571429, 0.4086142857, 0.8828428571], [0.0165142857, 0.4266, 0.8786333333], [0.032852381, 0.4430428571, 0.8719571429], [0.0498142857, 0.4585714286, 0.8640571429], [0.0629333333, 0.4736904762, 0.8554380952], [0.0722666667, 0.4886666667, 0.8467], [0.0779428571, 0.5039857143, 0.8383714286], [0.079347619, 0.5200238095, 0.8311809524], [0.0749428571, 0.5375428571, 0.8262714286], [0.0640571429, 0.5569857143, 0.8239571429], [0.0487714286, 0.5772238095, 0.8228285714], [0.0343428571, 0.5965809524, 0.819852381], [0.0265, 0.6137, 0.8135], [0.0238904762, 0.6286619048, 0.8037619048], [0.0230904762, 0.6417857143, 0.7912666667], [0.0227714286, 0.6534857143, 0.7767571429], [0.0266619048, 0.6641952381, 0.7607190476], [0.0383714286, 0.6742714286, 0.743552381], [0.0589714286, 0.6837571429, 0.7253857143], [0.0843, 0.6928333333, 0.7061666667], [0.1132952381, 0.7015, 0.6858571429], [0.1452714286, 0.7097571429, 0.6646285714], [0.1801333333, 0.7176571429, 0.6424333333], [0.2178285714, 0.7250428571, 0.6192619048], [0.2586428571, 0.7317142857, 0.5954285714], [0.3021714286, 0.7376047619, 0.5711857143], [0.3481666667, 0.7424333333, 0.5472666667], [0.3952571429, 0.7459, 0.5244428571], [0.4420095238, 0.7480809524, 0.5033142857], [0.4871238095, 0.7490619048, 0.4839761905], [0.5300285714, 0.7491142857, 0.4661142857], [0.5708571429, 0.7485190476, 0.4493904762], [0.609852381, 0.7473142857, 0.4336857143], [0.6473, 0.7456, 0.4188], [0.6834190476, 0.7434761905, 0.4044333333], [0.7184095238, 0.7411333333, 0.3904761905], [0.7524857143, 0.7384, 0.3768142857], [0.7858428571, 0.7355666667, 0.3632714286], [0.8185047619, 0.7327333333, 0.3497904762], [0.8506571429, 0.7299, 0.3360285714], [0.8824333333, 0.7274333333, 0.3217], [0.9139333333, 0.7257857143, 0.3062761905], [0.9449571429, 0.7261142857, 0.2886428571], [0.9738952381, 0.7313952381, 0.266647619], [0.9937714286, 0.7454571429, 0.240347619], [0.9990428571, 0.7653142857, 0.2164142857], [0.9955333333, 0.7860571429, 0.196652381], [0.988, 0.8066, 0.1793666667], [0.9788571429, 0.8271428571, 0.1633142857], [0.9697, 0.8481380952, 0.147452381], [0.9625857143, 0.8705142857, 0.1309], [0.9588714286, 0.8949, 0.1132428571], [0.9598238095, 0.9218333333, 0.0948380952], [0.9661, 0.9514428571, 0.0755333333], [0.9763, 0.9831, 0.0538]] return LinearSegmentedColormap.from_list('parula', cm_data) def turbocmap(): """ Returns the Turbo colormap: an improved version of the awful jet colormap. The look-up table contains 256 entries. Each entry is a floating point sRGB triplet. Usage: >>> turbo=nmmn.plots.turbocmap() >>> imshow(rho, cmap=turbo) Copyright 2019 Google LLC. SPDX-License-Identifier: Apache-2.0 Author: Anton Mikhailov References: - `turbo colormap array <https://gist.github.com/mikhailov-work/ee72ba4191942acecc03fe6da94fc73f>`_ - Google AI `blog post <https://ai.googleblog.com/2019/08/turbo-improved-rainbow-colormap-for.html>`_ describing the advantages of the colormap """ from matplotlib.colors import ListedColormap turbo_colormap_data = [[0.18995,0.07176,0.23217],[0.19483,0.08339,0.26149],[0.19956,0.09498,0.29024],[0.20415,0.10652,0.31844],[0.20860,0.11802,0.34607],[0.21291,0.12947,0.37314],[0.21708,0.14087,0.39964],[0.22111,0.15223,0.42558],[0.22500,0.16354,0.45096],[0.22875,0.17481,0.47578],[0.23236,0.18603,0.50004],[0.23582,0.19720,0.52373],[0.23915,0.20833,0.54686],[0.24234,0.21941,0.56942],[0.24539,0.23044,0.59142],[0.24830,0.24143,0.61286],[0.25107,0.25237,0.63374],[0.25369,0.26327,0.65406],[0.25618,0.27412,0.67381],[0.25853,0.28492,0.69300],[0.26074,0.29568,0.71162],[0.26280,0.30639,0.72968],[0.26473,0.31706,0.74718],[0.26652,0.32768,0.76412],[0.26816,0.33825,0.78050],[0.26967,0.34878,0.79631],[0.27103,0.35926,0.81156],[0.27226,0.36970,0.82624],[0.27334,0.38008,0.84037],[0.27429,0.39043,0.85393],[0.27509,0.40072,0.86692],[0.27576,0.41097,0.87936],[0.27628,0.42118,0.89123],[0.27667,0.43134,0.90254],[0.27691,0.44145,0.91328],[0.27701,0.45152,0.92347],[0.27698,0.46153,0.93309],[0.27680,0.47151,0.94214],[0.27648,0.48144,0.95064],[0.27603,0.49132,0.95857],[0.27543,0.50115,0.96594],[0.27469,0.51094,0.97275],[0.27381,0.52069,0.97899],[0.27273,0.53040,0.98461],[0.27106,0.54015,0.98930],[0.26878,0.54995,0.99303],[0.26592,0.55979,0.99583],[0.26252,0.56967,0.99773],[0.25862,0.57958,0.99876],[0.25425,0.58950,0.99896],[0.24946,0.59943,0.99835],[0.24427,0.60937,0.99697],[0.23874,0.61931,0.99485],[0.23288,0.62923,0.99202],[0.22676,0.63913,0.98851],[0.22039,0.64901,0.98436],[0.21382,0.65886,0.97959],[0.20708,0.66866,0.97423],[0.20021,0.67842,0.96833],[0.19326,0.68812,0.96190],[0.18625,0.69775,0.95498],[0.17923,0.70732,0.94761],[0.17223,0.71680,0.93981],[0.16529,0.72620,0.93161],[0.15844,0.73551,0.92305],[0.15173,0.74472,0.91416],[0.14519,0.75381,0.90496],[0.13886,0.76279,0.89550],[0.13278,0.77165,0.88580],[0.12698,0.78037,0.87590],[0.12151,0.78896,0.86581],[0.11639,0.79740,0.85559],[0.11167,0.80569,0.84525],[0.10738,0.81381,0.83484],[0.10357,0.82177,0.82437],[0.10026,0.82955,0.81389],[0.09750,0.83714,0.80342],[0.09532,0.84455,0.79299],[0.09377,0.85175,0.78264],[0.09287,0.85875,0.77240],[0.09267,0.86554,0.76230],[0.09320,0.87211,0.75237],[0.09451,0.87844,0.74265],[0.09662,0.88454,0.73316],[0.09958,0.89040,0.72393],[0.10342,0.89600,0.71500],[0.10815,0.90142,0.70599],[0.11374,0.90673,0.69651],[0.12014,0.91193,0.68660],[0.12733,0.91701,0.67627],[0.13526,0.92197,0.66556],[0.14391,0.92680,0.65448],[0.15323,0.93151,0.64308],[0.16319,0.93609,0.63137],[0.17377,0.94053,0.61938],[0.18491,0.94484,0.60713],[0.19659,0.94901,0.59466],[0.20877,0.95304,0.58199],[0.22142,0.95692,0.56914],[0.23449,0.96065,0.55614],[0.24797,0.96423,0.54303],[0.26180,0.96765,0.52981],[0.27597,0.97092,0.51653],[0.29042,0.97403,0.50321],[0.30513,0.97697,0.48987],[0.32006,0.97974,0.47654],[0.33517,0.98234,0.46325],[0.35043,0.98477,0.45002],[0.36581,0.98702,0.43688],[0.38127,0.98909,0.42386],[0.39678,0.99098,0.41098],[0.41229,0.99268,0.39826],[0.42778,0.99419,0.38575],[0.44321,0.99551,0.37345],[0.45854,0.99663,0.36140],[0.47375,0.99755,0.34963],[0.48879,0.99828,0.33816],[0.50362,0.99879,0.32701],[0.51822,0.99910,0.31622],[0.53255,0.99919,0.30581],[0.54658,0.99907,0.29581],[0.56026,0.99873,0.28623],[0.57357,0.99817,0.27712],[0.58646,0.99739,0.26849],[0.59891,0.99638,0.26038],[0.61088,0.99514,0.25280],[0.62233,0.99366,0.24579],[0.63323,0.99195,0.23937],[0.64362,0.98999,0.23356],[0.65394,0.98775,0.22835],[0.66428,0.98524,0.22370],[0.67462,0.98246,0.21960],[0.68494,0.97941,0.21602],[0.69525,0.97610,0.21294],[0.70553,0.97255,0.21032],[0.71577,0.96875,0.20815],[0.72596,0.96470,0.20640],[0.73610,0.96043,0.20504],[0.74617,0.95593,0.20406],[0.75617,0.95121,0.20343],[0.76608,0.94627,0.20311],[0.77591,0.94113,0.20310],[0.78563,0.93579,0.20336],[0.79524,0.93025,0.20386],[0.80473,0.92452,0.20459],[0.81410,0.91861,0.20552],[0.82333,0.91253,0.20663],[0.83241,0.90627,0.20788],[0.84133,0.89986,0.20926],[0.85010,0.89328,0.21074],[0.85868,0.88655,0.21230],[0.86709,0.87968,0.21391],[0.87530,0.87267,0.21555],[0.88331,0.86553,0.21719],[0.89112,0.85826,0.21880],[0.89870,0.85087,0.22038],[0.90605,0.84337,0.22188],[0.91317,0.83576,0.22328],[0.92004,0.82806,0.22456],[0.92666,0.82025,0.22570],[0.93301,0.81236,0.22667],[0.93909,0.80439,0.22744],[0.94489,0.79634,0.22800],[0.95039,0.78823,0.22831],[0.95560,0.78005,0.22836],[0.96049,0.77181,0.22811],[0.96507,0.76352,0.22754],[0.96931,0.75519,0.22663],[0.97323,0.74682,0.22536],[0.97679,0.73842,0.22369],[0.98000,0.73000,0.22161],[0.98289,0.72140,0.21918],[0.98549,0.71250,0.21650],[0.98781,0.70330,0.21358],[0.98986,0.69382,0.21043],[0.99163,0.68408,0.20706],[0.99314,0.67408,0.20348],[0.99438,0.66386,0.19971],[0.99535,0.65341,0.19577],[0.99607,0.64277,0.19165],[0.99654,0.63193,0.18738],[0.99675,0.62093,0.18297],[0.99672,0.60977,0.17842],[0.99644,0.59846,0.17376],[0.99593,0.58703,0.16899],[0.99517,0.57549,0.16412],[0.99419,0.56386,0.15918],[0.99297,0.55214,0.15417],[0.99153,0.54036,0.14910],[0.98987,0.52854,0.14398],[0.98799,0.51667,0.13883],[0.98590,0.50479,0.13367],[0.98360,0.49291,0.12849],[0.98108,0.48104,0.12332],[0.97837,0.46920,0.11817],[0.97545,0.45740,0.11305],[0.97234,0.44565,0.10797],[0.96904,0.43399,0.10294],[0.96555,0.42241,0.09798],[0.96187,0.41093,0.09310],[0.95801,0.39958,0.08831],[0.95398,0.38836,0.08362],[0.94977,0.37729,0.07905],[0.94538,0.36638,0.07461],[0.94084,0.35566,0.07031],[0.93612,0.34513,0.06616],[0.93125,0.33482,0.06218],[0.92623,0.32473,0.05837],[0.92105,0.31489,0.05475],[0.91572,0.30530,0.05134],[0.91024,0.29599,0.04814],[0.90463,0.28696,0.04516],[0.89888,0.27824,0.04243],[0.89298,0.26981,0.03993],[0.88691,0.26152,0.03753],[0.88066,0.25334,0.03521],[0.87422,0.24526,0.03297],[0.86760,0.23730,0.03082],[0.86079,0.22945,0.02875],[0.85380,0.22170,0.02677],[0.84662,0.21407,0.02487],[0.83926,0.20654,0.02305],[0.83172,0.19912,0.02131],[0.82399,0.19182,0.01966],[0.81608,0.18462,0.01809],[0.80799,0.17753,0.01660],[0.79971,0.17055,0.01520],[0.79125,0.16368,0.01387],[0.78260,0.15693,0.01264],[0.77377,0.15028,0.01148],[0.76476,0.14374,0.01041],[0.75556,0.13731,0.00942],[0.74617,0.13098,0.00851],[0.73661,0.12477,0.00769],[0.72686,0.11867,0.00695],[0.71692,0.11268,0.00629],[0.70680,0.10680,0.00571],[0.69650,0.10102,0.00522],[0.68602,0.09536,0.00481],[0.67535,0.08980,0.00449],[0.66449,0.08436,0.00424],[0.65345,0.07902,0.00408],[0.64223,0.07380,0.00401],[0.63082,0.06868,0.00401],[0.61923,0.06367,0.00410],[0.60746,0.05878,0.00427],[0.59550,0.05399,0.00453],[0.58336,0.04931,0.00486],[0.57103,0.04474,0.00529],[0.55852,0.04028,0.00579],[0.54583,0.03593,0.00638],[0.53295,0.03169,0.00705],[0.51989,0.02756,0.00780],[0.50664,0.02354,0.00863],[0.49321,0.01963,0.00955],[0.47960,0.01583,0.01055]] return ListedColormap(turbo_colormap_data) def jointplot(X,Y,xlabel=None,ylabel=None,binsim=40,binsh=20,contour=True): """ Plots the joint distribution of posteriors for X1 and X2, including the 1D histograms showing the median and standard deviations. The work that went in creating this nice method is shown, step by step, in the ipython notebook "error contours.ipynb". Sources of inspiration: - http://python4mpia.github.io/intro/quick-tour.html - http://stackoverflow.com/questions/12301071/multidimensional-confidence-intervals Usage: >>> jointplot(M.rtr.trace(),M.mdot.trace(),xlabel='$\log \ r_{\\rm tr}$', ylabel='$\log \ \dot{m}$') gives the following plot. .. figure:: ../figures/jointplot.png :scale: 100 % :alt: Two-dimensional kernel density distribution. Two-dimensional kernel density distribution, along with one-dimensional histograms of each distribution. """ import scipy.stats # Generates 2D histogram for image histt, xt, yt = numpy.histogram2d(X, Y, bins=[binsim,binsim], normed=False) histt = numpy.transpose(histt) # Beware: numpy switches axes, so switch back. # assigns correct proportions to subplots fig=pylab.figure() gs = pylab.GridSpec(2, 2, width_ratios=[3,1], height_ratios=[1,3], wspace=0.001, hspace=0.001) con=pylab.subplot(gs[2]) histx=pylab.subplot(gs[0], sharex=con) histy=pylab.subplot(gs[3], sharey=con) # Image con.imshow(histt,extent=[xt[0],xt[-1], yt[0],yt[-1]],origin='lower',cmap=pylab.cm.gray_r,aspect='auto') # Overplot with error contours 1,2 sigma if contour==True: pdf = scipy.stats.gaussian_kde([X, Y]) x,y = pylab.meshgrid(xt,yt) z = numpy.array(pdf.evaluate([x.flatten(),y.flatten()])).reshape(x.shape) # the [61,15] values were obtained by trial and error until the joint confidence # contours matched the confidence intervals from the individual X,Y s=scipy.stats.scoreatpercentile(pdf(pdf.resample(1000)), [61,15]) cs=con.contour(x,y,z, levels=s, extent=[x[0],x[-1], y[0],y[-1]], linestyles=['-','-','-'], colors=['black','blue']) # use dictionary in order to assign your own labels to the contours. #fmtdict = {s[0]:r'$1\sigma$',s[1]:r'$2\sigma$'} #con.clabel(cs, fmt=fmtdict, inline=True, fontsize=20) if xlabel!=None: con.set_xlabel(xlabel) if ylabel!=None: con.set_ylabel(ylabel) # X-axis histogram histx.hist(X, binsh, histtype='stepfilled',facecolor='lightblue') pylab.setp(histx.get_xticklabels(), visible=False) # no X label pylab.setp(histx.get_yticklabels(), visible=False) # no Y label # Vertical lines with median and 1sigma confidence yax=histx.set_ylim() histx.plot([numpy.median(X),numpy.median(X)],[yax[0],yax[1]],'k-',linewidth=2) # median xsd=scipy.stats.scoreatpercentile(X, [15.87,84.13]) histx.plot([xsd[0],xsd[0]],[yax[0],yax[1]],'k--') # -1sd histx.plot([xsd[-1],xsd[-1]],[yax[0],yax[1]],'k--') # +1sd # Y-axis histogram histy.hist(Y, binsh, histtype='stepfilled', orientation='horizontal',facecolor='lightyellow') pylab.setp(histy.get_yticklabels(), visible=False) # no Y label pylab.setp(histy.get_xticklabels(), visible=False) # no X label # Vertical lines with median and 1sigma confidence xax=histy.set_xlim() histy.plot([xax[0],xax[1]],[numpy.median(Y),numpy.median(Y)],'k-',linewidth=2) # median ysd=scipy.stats.scoreatpercentile(Y, [15.87,84.13]) histy.plot([xax[0],xax[1]],[ysd[0],ysd[0]],'k--') # -1sd histy.plot([xax[0],xax[1]],[ysd[-1],ysd[-1]],'k--') # +1sd def symlog(x, C=1./numpy.log(10.)): """ Applies a modified logarithm function to x that handles negative values while maintaining continuity across zero. This function solves a very concrete problem: how to handle data that spans a huge range and has also negative values? log10 will fail. This is the answer. The transformation is defined in an article from the journal Measurement Science and Technology (Webber, 2012): y = sign(x)*(log10(1+abs(x)/(10^C))) where the scaling constant C determines the resolution of the data around zero. The smallest order of magnitude shown on either side of zero will be 10^ceil(C). Reference: MATHWORKS symlog <https://www.mathworks.com/matlabcentral/fileexchange/57902-symlog> """ return numpy.sign(x)*(numpy.log10(1+numpy.abs(x)/(10**C)))
38.579487
6,680
0.707298
dec2d3d174d005b1c74a52b2d5857caff10c6c8f
3,178
py
Python
zentral/contrib/santa/urls.py
arubdesu/zentral
ac0fe663f6e1c27f9a9f55a7500a87e6ac7d9190
[ "Apache-2.0" ]
634
2015-10-30T00:55:40.000Z
2022-03-31T02:59:00.000Z
zentral/contrib/santa/urls.py
arubdesu/zentral
ac0fe663f6e1c27f9a9f55a7500a87e6ac7d9190
[ "Apache-2.0" ]
145
2015-11-06T00:17:33.000Z
2022-03-16T13:30:31.000Z
zentral/contrib/santa/urls.py
arubdesu/zentral
ac0fe663f6e1c27f9a9f55a7500a87e6ac7d9190
[ "Apache-2.0" ]
103
2015-11-07T07:08:49.000Z
2022-03-18T17:34:36.000Z
from django.conf.urls import url from django.views.decorators.csrf import csrf_exempt from . import views app_name = "santa" urlpatterns = [ # configuration / enrollment url(r'^configurations/$', views.ConfigurationListView.as_view(), name='configuration_list'), url(r'^configurations/create/$', views.CreateConfigurationView.as_view(), name='create_configuration'), url(r'^configurations/(?P<pk>\d+)/$', views.ConfigurationView.as_view(), name='configuration'), url(r'^configurations/(?P<pk>\d+)/update/$', views.UpdateConfigurationView.as_view(), name='update_configuration'), url(r'^configurations/(?P<pk>\d+)/enrollments/create/$', views.CreateEnrollmentView.as_view(), name='create_enrollment'), url(r'^configurations/(?P<configuration_pk>\d+)/enrollments/(?P<pk>\d+)/configuration_plist/$', views.EnrollmentConfigurationView.as_view(response_type="plist"), name='enrollment_configuration_plist'), url(r'^configurations/(?P<configuration_pk>\d+)/enrollments/(?P<pk>\d+)/configuration_profile/$', views.EnrollmentConfigurationView.as_view(response_type="configuration_profile"), name='enrollment_configuration_profile'), # rules url(r'^configurations/(?P<configuration_pk>\d+)/rules/$', views.ConfigurationRulesView.as_view(), name='configuration_rules'), url(r'^configurations/(?P<configuration_pk>\d+)/rules/create/$', views.CreateConfigurationRuleView.as_view(), name='create_configuration_rule'), url(r'^configurations/(?P<configuration_pk>\d+)/rules/(?P<pk>\d+)/update/$', views.UpdateConfigurationRuleView.as_view(), name='update_configuration_rule'), url(r'^configurations/(?P<configuration_pk>\d+)/rules/(?P<pk>\d+)/delete/$', views.DeleteConfigurationRuleView.as_view(), name='delete_configuration_rule'), url(r'configurations/(?P<configuration_pk>\d+)/rules/pick_binary/$', views.PickRuleBinaryView.as_view(), name='pick_rule_binary'), url(r'configurations/(?P<configuration_pk>\d+)/rules/pick_bundle/$', views.PickRuleBundleView.as_view(), name='pick_rule_bundle'), url(r'configurations/(?P<configuration_pk>\d+)/rules/pick_certificate/$', views.PickRuleCertificateView.as_view(), name='pick_rule_certificate'), # API endpoints url(r'^sync/(?P<enrollment_secret>\S+)/preflight/(?P<machine_id>\S+)$', csrf_exempt(views.PreflightView.as_view()), name='preflight'), url(r'^sync/(?P<enrollment_secret>\S+)/ruledownload/(?P<machine_id>\S+)$', csrf_exempt(views.RuleDownloadView.as_view()), name='ruledownload'), url(r'^sync/(?P<enrollment_secret>\S+)/eventupload/(?P<machine_id>\S+)$', csrf_exempt(views.EventUploadView.as_view()), name='eventupload'), url(r'^sync/(?P<enrollment_secret>\S+)/postflight/(?P<machine_id>\S+)$', csrf_exempt(views.PostflightView.as_view()), name='postflight'), ] setup_menu_cfg = { 'items': ( ('configuration_list', 'Configurations', False, ('santa.view_configuration',)), ) }
45.4
101
0.677785
8c229dedab1622cbfd167b77297e10503a4b381e
7,518
py
Python
examples/kubernetes/scripts/hmem_experiments/workload_runner.py
Creatone/workload-collocation-agent
826a2ae67fd23feef74e18d27c0e677f83994add
[ "Apache-2.0" ]
null
null
null
examples/kubernetes/scripts/hmem_experiments/workload_runner.py
Creatone/workload-collocation-agent
826a2ae67fd23feef74e18d27c0e677f83994add
[ "Apache-2.0" ]
1
2021-02-23T19:19:47.000Z
2021-02-23T19:19:47.000Z
examples/kubernetes/scripts/hmem_experiments/workload_runner.py
Creatone/workload-collocation-agent
826a2ae67fd23feef74e18d27c0e677f83994add
[ "Apache-2.0" ]
null
null
null
# Copyright (c) 2020 Intel Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import subprocess from dataclasses import dataclass from typing import Dict from runner import default_shell_run, annotate from kernel_parameters import set_numa_balancing, set_toptier_scale_factor from time import sleep, time from scenarios import Scenario, ExperimentType EXPERIMENT_DESCRIPTION = { ExperimentType.DRAM: 'workloads running exclusively on dram', ExperimentType.PMEM: 'workloads running exclusively on pmem', ExperimentType.HMEM_NUMA_BALANCING: 'workloads running on dram and pmem ' 'with numa balancing turned on', ExperimentType.HMEM_NO_NUMA_BALANCING: 'workloads running on dram and pmem ' 'with numa balancing turned off', ExperimentType.COLD_START: 'workload starts to run on pmem and after set time passes ' 'can move to dram if necessary for workload performance', ExperimentType.TOPTIER: 'workloads have toptier limit; if limit is exceeded some of the ' 'memory from dram goes to pmem', ExperimentType.TOPTIER_WITH_COLDSTART: 'workload starts to run on pmem and after set time ' 'passes can move to dram if necessary for workload ' 'performance; workloads have toptier limit; if ' 'limit is exceeded some of the memory from dram ' 'goes to pmem' } @dataclass class Experiment: name: str number_of_workloads: Dict[str, int] type: ExperimentType description: str start_timestamp: float = None stop_timestamp: float = None @dataclass class ExperimentConfiguration: numa_balancing: bool toptier_scale_factor: str = '2000' ONLY_NUMA_BALANCING_CONF = ExperimentConfiguration(numa_balancing=True) NUMA_BALANCING_OFF_CONF = ExperimentConfiguration(numa_balancing=False) TOPTIER_CONF = ExperimentConfiguration(numa_balancing=True, toptier_scale_factor='10000') EXPERIMENT_CONFS = {ExperimentType.DRAM: NUMA_BALANCING_OFF_CONF, ExperimentType.PMEM: NUMA_BALANCING_OFF_CONF, ExperimentType.HMEM_NUMA_BALANCING: ONLY_NUMA_BALANCING_CONF, ExperimentType.HMEM_NO_NUMA_BALANCING: ExperimentConfiguration( numa_balancing=False), ExperimentType.COLD_START: ONLY_NUMA_BALANCING_CONF, ExperimentType.TOPTIER: TOPTIER_CONF, ExperimentType.TOPTIER_WITH_COLDSTART: TOPTIER_CONF} def experiment_to_json(experiment: Experiment, output_file: str): experiment_dict = {'meta': {'name': experiment.name, 'description': EXPERIMENT_DESCRIPTION[experiment.type], 'params': { 'workloads_count': experiment.number_of_workloads, 'type': experiment.type.value, } }, 'experiment': { 'description': experiment.description, 'start': experiment.start_timestamp, 'end': experiment.stop_timestamp } } with open(output_file, 'w+') as experiment_json_file: json.dump(experiment_dict, experiment_json_file) def _scale_workload(workload_name, number_of_workloads=1): cmd_scale = "kubectl scale sts {} --replicas={}".format( workload_name, number_of_workloads) default_shell_run(cmd_scale) def _set_configuration(configuration: ExperimentConfiguration): set_numa_balancing(configuration.numa_balancing) set_toptier_scale_factor(configuration.toptier_scale_factor) def _run_workloads(number_of_workloads: Dict, sleep_duration: int, reset_workload=True): for workload_name in number_of_workloads.keys(): _scale_workload(workload_name, number_of_workloads[workload_name]) sleep(sleep_duration) if reset_workload: for workload_name in number_of_workloads.keys(): _scale_workload(workload_name, 0) def run_experiment(scenario: Scenario, number_of_workloads): # making sure that toptier limit value is as should be # even if previous toptier limit experiment was stopped before # restoring the old value if not scenario.modify_toptier_limit and ( scenario.experiment_type == ExperimentType.TOPTIER_WITH_COLDSTART or scenario.experiment_type == ExperimentType.TOPTIER): for workload_name in scenario.workloads_count.keys(): base_toptier_value = get_base_toptier_limit(workload_name) patch_toptier_limit(workload_name, base_toptier_value) _set_configuration(EXPERIMENT_CONFS[scenario.experiment_type]) for worklad_name, toptier_value in scenario.modify_toptier_limit.items(): patch_toptier_limit(worklad_name, toptier_value) start_timestamp = time() annotate('Running experiment: {}'.format(scenario.name)) _run_workloads(number_of_workloads, scenario.sleep_duration, scenario.reset_workloads_between_steps) stop_timestamp = time() # restore old toptier value for workload_name in scenario.modify_toptier_limit.keys(): patch_toptier_limit(workload_name, get_base_toptier_limit(workload_name)) return Experiment(scenario.name, number_of_workloads, scenario.experiment_type, EXPERIMENT_DESCRIPTION[scenario.experiment_type], start_timestamp, stop_timestamp) TOPTIER_ANNOTATION_KEY = 'toptierlimit.cri-resource-manager.intel.com/pod' SPEC = 'spec' TEMPLATE = 'template' METADATA = 'metadata' ANNOTATIONS = 'annotations' def get_base_toptier_limit(workload_name): """Returns toptier limit as declared in original stateful set definition. Patching stateful set's toptier limit value for pod template WILL NOT change this value""" get_sts_cmd = 'kubectl get sts {} -o json'.format(workload_name) statefulset_spec = subprocess.run([get_sts_cmd], stdout=subprocess.PIPE, shell=True) json_output = json.loads(statefulset_spec.stdout.decode('utf-8')) # this value should never change for the stateful set, that is why we use it # to read base toptier limit for given stateful set toptier_limit = json_output[METADATA][ANNOTATIONS][TOPTIER_ANNOTATION_KEY] return toptier_limit def patch_toptier_limit(workload_name, toptier_value): patch = {SPEC: {TEMPLATE: {METADATA: {ANNOTATIONS: {TOPTIER_ANNOTATION_KEY: toptier_value}}}}} json_patch = json.dumps(patch) patch_cmd = 'kubectl patch statefulset {} -p \'{}\''.format(workload_name, json_patch) default_shell_run(patch_cmd)
43.206897
95
0.683958
b64b8634ac83b8fa723d7ccfd3c59b96193acf20
3,179
py
Python
koapy/backtrader/KrxHistoricalDailyPriceData.py
resoliwan/koapy
b0616f252bb3588695dfb37c7d9b8580a65649a3
[ "MIT" ]
1
2021-09-25T22:33:01.000Z
2021-09-25T22:33:01.000Z
koapy/backtrader/KrxHistoricalDailyPriceData.py
resoliwan/koapy
b0616f252bb3588695dfb37c7d9b8580a65649a3
[ "MIT" ]
null
null
null
koapy/backtrader/KrxHistoricalDailyPriceData.py
resoliwan/koapy
b0616f252bb3588695dfb37c7d9b8580a65649a3
[ "MIT" ]
1
2021-11-12T15:33:29.000Z
2021-11-12T15:33:29.000Z
import pandas as pd from backtrader import TimeFrame, date2num from backtrader.feed import DataBase from tqdm import tqdm from koapy.utils.data.KrxHistoricalDailyPriceDataForBacktestLoader import ( KrxHistoricalDailyPriceDataForBacktestLoader, ) class KrxHistoricalDailyPriceData(DataBase): # pylint: disable=no-member params = ( ("loader", None), ("symbol", None), ("name", None), ("fromdate", None), ("todate", None), ("compression", 1), ("timeframe", TimeFrame.Days), ("calendar", None), ("lazy", False), ) lines = ( "amount", "marketcap", "shares", ) def __init__(self): super().__init__() assert self.p.loader assert self.p.symbol assert self.p.timeframe == TimeFrame.Days assert self.p.compression == 1 self.p.name = self.p.name or self.p.symbol or "" self._cursor = None self._started_already = False if not self.p.lazy: self.start() def _close_cursor(self): if self._cursor is not None: self._cursor.close() self._cursor = None def _initialize_cursor(self): self._close_cursor() self._cursor = self.p.loader.load_as_cursor( self.p.symbol, start_time=self.p.fromdate, end_time=self.p.todate ) def start(self): if not self._started_already: self._initialize_cursor() self._started_already = True def stop(self): self._close_cursor() self._started_already = False def _load(self): if self._cursor is None: return False try: date, open_, high, low, close, volume, amount, marcap, shares = next( self._cursor ) except StopIteration: return False else: dt = pd.Timestamp(date) self.lines.datetime[0] = date2num(dt) self.lines.open[0] = open_ self.lines.high[0] = high self.lines.low[0] = low self.lines.close[0] = close self.lines.volume[0] = volume self.lines.openinterest[0] = 0.0 self.lines.amount[0] = amount self.lines.marketcap[0] = marcap self.lines.shares[0] = shares return True @classmethod def adddata_fromfile( cls, cerebro, filename, symbols=None, fromdate=None, todate=None, progress_bar=True, ): loader = KrxHistoricalDailyPriceDataForBacktestLoader(filename) if symbols is None: symbols = loader.get_symbols() progress = tqdm(symbols, disable=not progress_bar) for symbol in progress: progress.set_description("Adding Symbol [%s]" % symbol) data = cls( loader=loader, symbol=symbol, fromdate=fromdate, todate=todate, name=symbol, ) # pylint: disable=unexpected-keyword-arg cerebro.adddata(data, name=data.p.name)
26.057377
81
0.559295
cab891add3d6c52028667ed2373c01232eba9e02
26
py
Python
terrascript/mysql/__init__.py
vfoucault/python-terrascript
fe82b3d7e79ffa72b7871538f999828be0a115d0
[ "BSD-2-Clause" ]
null
null
null
terrascript/mysql/__init__.py
vfoucault/python-terrascript
fe82b3d7e79ffa72b7871538f999828be0a115d0
[ "BSD-2-Clause" ]
null
null
null
terrascript/mysql/__init__.py
vfoucault/python-terrascript
fe82b3d7e79ffa72b7871538f999828be0a115d0
[ "BSD-2-Clause" ]
null
null
null
"""2017-11-28 18:08:12"""
13
25
0.538462
4e091e643dce0adeee9bd309d1166a4658336e3d
6,334
py
Python
easysql.py
JBRonaldHandiwinata/easypysql
3aea396c415108504de872db30f6c4fca49fa4f0
[ "MIT" ]
null
null
null
easysql.py
JBRonaldHandiwinata/easypysql
3aea396c415108504de872db30f6c4fca49fa4f0
[ "MIT" ]
null
null
null
easysql.py
JBRonaldHandiwinata/easypysql
3aea396c415108504de872db30f6c4fca49fa4f0
[ "MIT" ]
null
null
null
import MySQLdb import time from MySQLdb.cursors import DictCursor from DBUtils.PooledDB import PooledDB class EasySql(object): __pool = None DB_HOST = "" DB_NAME = "" DB_USER = "" DB_PWD = "" DB_PORT = 3306 DB_CHARSET = "utf8" def __init__(self): self._conn = self.__getConn() self._cursor = self._conn.cursor() @classmethod def __getConn(cls): __pool = cls.__pool if cls.__pool is None: success = False count = 0 while not success: try: __pool = PooledDB(creator=MySQLdb, mincached=1, maxcached=100, host=cls.DB_HOST, port=cls.DB_PORT, user=cls.DB_USER, passwd=cls.DB_PWD, db=cls.DB_NAME, use_unicode=True, charset=cls.DB_CHARSET, cursorclass=DictCursor) if __pool is not None: success = True except MySQLdb.OperationalError as e: if e.args[0] in (2006, 2013, 2003, 2006): print("DB-CONNECTION ERROR: ", str(e.args[0]) + "-" + str(e.args[1])) else: print("UNKNOWN DB ERROR: ", str(e.args[0]) + "-" + str(e.args[1])) success = False time.sleep(2) if count > 100000: raise count += 1 return __pool.connection() def fetch_rows(self, sql, values, many=0): self._cursor.execute(sql, values) retval = self._cursor.fetchone() if many == 0 else self._cursor.fetchall() return retval def insert_rows(self, tbl, colandval, on_duplicate_key_update=False, on_duplicate_key_update_condition=""): ct = 0 setcol = "" lv = "" isMany = False if isinstance(colandval, list) or isinstance(colandval, tuple): isMany = True listtuple = list() for p in colandval: cts = 0 vals = list() for key, val in p.items(): if key == "to": key = "`to`" if key == "status": key = "`status`" if key == "type": key = "`type`" if key == "from": key = "`from`" vals.append(val) if ct == 0: sep = "" if cts == (len(p.items()) - 1) else "," setcol += key + sep lv += "%s" + sep cts += 1 listtuple.append(tuple(vals)) ct += 1 elif isinstance(colandval, dict): vals = list() for key, val in colandval.items(): if key == "to": key = "`to`" if key == "status": key = "`status`" if key == "type": key = "`type`" if key == "from": key = "`from`" vals.append(val) sep = "" if ct == (len(colandval.items()) - 1) else "," setcol += key + sep lv += "%s" + sep ct += 1 listtuple = tuple(vals) else: raise Exception('SQL INSERT err: Wrong data type set in SECOND parameter') sql = "INSERT into " + tbl + " " + "(" + setcol + ")" + " VALUES " + "(" + lv + ")" if on_duplicate_key_update and on_duplicate_key_update_condition: sql += " " + "ON DUPLICATE KEY UPDATE" + " " + on_duplicate_key_update_condition if isMany: self._cursor.executemany(sql, listtuple) else: self._cursor.execute(sql, listtuple) return self._cursor.lastrowid def update_rows(self, tbl, dictset, dictwhere): setval = "" lv = "" if isinstance(dictset, dict): ct = 0 vals = list() for key, val in dictset.items(): vals.append(val) sep = " " if ct == (len(dictset.items()) - 1) else ", " setval += key + "=%s" + sep ct += 1 listtuple_ds = tuple(vals) else: raise Exception('SQL UPDATE err: Wrong data type set in FIRST parameter') if isinstance(dictwhere, dict): ct = 0 vals = list() for key, val in dictwhere.items(): vals.append(val) sep = " " if ct == (len(dictwhere.items()) - 1) else " AND " lv += key + "=%s" + sep ct += 1 listtuple_dw = tuple(vals) else: raise Exception('SQL UPDATE err: Wrong data type set in SECOND parameter') thistuple = listtuple_ds + listtuple_dw sql = "UPDATE " + tbl + " SET " + setval + " WHERE " + lv return self.__query(sql, thistuple) def __query(self, sql, param=None): if param is None: count = self._cursor.execute(sql) else: count = self._cursor.execute(sql, param) return count def __getInsertId(self): """ : :return: """ self._cursor.execute("SELECT @@IDENTITY AS id") result = self._cursor.fetchall() return result[0]['id'] def begin(self): """ :keyword: Open a transaction :return: None """ try: self._conn.autocommit(0) except: pass def end(self, option='commit'): """ :keyword: Closing a transaction :param option: commit or rollback :return: """ if option == 'commit': self._conn.commit() else: self._conn.rollback() def dispose(self, isEnd=1): """ :keyword: Release connection pool resource :param isEnd: 1 or 0 :return: """ if isEnd == 1: self.end('commit') else: self.end('rollback') def closing(self): """ Closing a transaction :return: """ self._cursor.close() self._conn.close()
32.649485
126
0.45832
ff04a75bd16b4647c3bdb09fdb0c8f9a125c8c6b
41,650
py
Python
scripts/arcrest/geometryservice/geometryservice.py
datastark/crime-analysis-toolbox
af45e4ba59284d78b1c7d3e208a05e5001d024dd
[ "Apache-2.0" ]
5
2019-01-12T13:57:52.000Z
2021-05-04T01:24:53.000Z
scripts/arcrest/geometryservice/geometryservice.py
datastark/crime-analysis-toolbox
af45e4ba59284d78b1c7d3e208a05e5001d024dd
[ "Apache-2.0" ]
null
null
null
scripts/arcrest/geometryservice/geometryservice.py
datastark/crime-analysis-toolbox
af45e4ba59284d78b1c7d3e208a05e5001d024dd
[ "Apache-2.0" ]
1
2018-08-11T19:09:57.000Z
2018-08-11T19:09:57.000Z
from __future__ import absolute_import from __future__ import print_function from .._abstract import abstract from ..common.geometry import Point, Polyline, Polygon, MultiPoint, Envelope import json ######################################################################## class GeometryService(abstract.BaseAGSServer): """ A geometry service contains utility methods that provide access to sophisticated and frequently used geometric operations. An ArcGIS Server web site can only expose one geometry service with the static name "Geometry". """ _url = None _securityHandler = None _proxy_url = None _proxy_port = None _json_dict = None _json_string = None #---------------------------------------------------------------------- def __init__(self, url, securityHandler=None, proxy_url=None, proxy_port=None): """Constructor""" self._url = url self._securityHandler = securityHandler if not securityHandler is None: self._referer_url = securityHandler.referer_url self._proxy_port = proxy_port self._proxy_url = proxy_url self.__init() #---------------------------------------------------------------------- def __init(self): """loads the json values""" res = self._get(url=self._url, param_dict={"f": "json"}, securityHandler=self._securityHandler, proxy_url=self._proxy_url, proxy_port=self._proxy_port) self._json_dict = res self._json_string = json.dumps(self._json_dict) for k,v in self._json_dict.items(): setattr(self, k, v) #---------------------------------------------------------------------- def __str__(self): """returns object as a string""" if self._json_string is None: self.__init() return self._json_string #---------------------------------------------------------------------- def __iter__(self): """returns the JSON response in key/value pairs""" if self._json_dict is None: self.__init() for k,v in self._json_dict.items(): yield [k,v] #---------------------------------------------------------------------- def areasAndLengths(self, polygons, lengthUnit, areaUnit, calculationType, ): """ The areasAndLengths operation is performed on a geometry service resource. This operation calculates areas and perimeter lengths for each polygon specified in the input array. Inputs: polygons - The array of polygons whose areas and lengths are to be computed. lengthUnit - The length unit in which the perimeters of polygons will be calculated. If calculationType is planar, then lengthUnit can be any esriUnits constant. If lengthUnit is not specified, the units are derived from sr. If calculationType is not planar, then lengthUnit must be a linear esriUnits constant, such as esriSRUnit_Meter or esriSRUnit_SurveyMile. If lengthUnit is not specified, the units are meters. For a list of valid units, see esriSRUnitType Constants and esriSRUnit2Type Constant. areaUnit - The area unit in which areas of polygons will be calculated. If calculationType is planar, then areaUnit can be any esriUnits constant. If areaUnit is not specified, the units are derived from sr. If calculationType is not planar, then areaUnit must be a linear esriUnits constant such as esriSRUnit_Meter or esriSRUnit_SurveyMile. If areaUnit is not specified, then the units are meters. For a list of valid units, see esriSRUnitType Constants and esriSRUnit2Type constant. The list of valid esriAreaUnits constants include, esriSquareInches | esriSquareFeet | esriSquareYards | esriAcres | esriSquareMiles | esriSquareMillimeters | esriSquareCentimeters | esriSquareDecimeters | esriSquareMeters | esriAres | esriHectares | esriSquareKilometers. calculationType - The type defined for the area and length calculation of the input geometries. The type can be one of the following values: planar - Planar measurements use 2D Euclidean distance to calculate area and length. Th- should only be used if the area or length needs to be calculated in the given spatial reference. Otherwise, use preserveShape. geodesic - Use this type if you want to calculate an area or length using only the vertices of the polygon and define the lines between the points as geodesic segments independent of the actual shape of the polygon. A geodesic segment is the shortest path between two points on an ellipsoid. preserveShape - This type calculates the area or length of the geometry on the surface of the Earth ellipsoid. The shape of the geometry in its coordinate system is preserved. Output: JSON as dictionary """ url = self._url + "/areasAndLengths" params = { "f" : "json", "lengthUnit" : lengthUnit, "areaUnit" : {"areaUnit" : areaUnit}, "calculationType" : calculationType } if isinstance(polygons, list) and len(polygons) > 0: p = polygons[0] if isinstance(p, Polygon): params['sr'] = p.spatialReference['wkid'] params['polygons'] = [poly.asDictionary for poly in polygons] del p else: return "No polygons provided, please submit a list of polygon geometries" return self._get(url=url, param_dict=params, securityHandler=self._securityHandler, proxy_url=self._proxy_url, proxy_port=self._proxy_port) #---------------------------------------------------------------------- def __geometryListToGeomTemplate(self, geometries): """ converts a list of common.Geometry objects to the geometry template value Input: geometries - list of common.Geometry objects Output: Dictionary in geometry service template """ template = {"geometryType": None, "geometries" : []} if isinstance(geometries, list) and len(geometries) > 0: for g in geometries: if isinstance(g, Polyline): template['geometryType'] = "esriGeometryPolyline" elif isinstance(g, Polygon): template['geometryType'] = "esriGeometryPolygon" elif isinstance(g, Point): template['geometryType'] = "esriGeometryPoint" elif isinstance(g, MultiPoint): template['geometryType'] = "esriGeometryMultipoint" elif isinstance(g, Envelope): template['geometryType'] = "esriGeometryEnvelope" else: raise AttributeError("Invalid geometry type") template['geometries'].append(g.asDictionary) del g return template return template #---------------------------------------------------------------------- def __geometryToGeomTemplate(self, geometry): """ Converts a single geometry object to a geometry service geometry template value. Input: geometry - ArcREST geometry object Output: python dictionary of geometry template """ template = {"geometryType": None, "geometry" : None} if isinstance(geometry, Polyline): template['geometryType'] = "esriGeometryPolyline" elif isinstance(geometry, Polygon): template['geometryType'] = "esriGeometryPolygon" elif isinstance(geometry, Point): template['geometryType'] = "esriGeometryPoint" elif isinstance(geometry, MultiPoint): template['geometryType'] = "esriGeometryMultipoint" elif isinstance(geometry, Envelope): template['geometryType'] = "esriGeometryEnvelope" else: raise AttributeError("Invalid geometry type") template['geometry'] = geometry.asDictionary return template #---------------------------------------------------------------------- def __geomToStringArray(self, geometries, returnType="str"): """ function to convert the geomtries to strings """ listGeoms = [] for g in geometries: if isinstance(g, Point): listGeoms.append(g.asDictionary) elif isinstance(g, Polygon): listGeoms.append(g.asDictionary) #json.dumps( elif isinstance(g, Polyline): listGeoms.append({'paths' : g.asDictionary['paths']}) if returnType == "str": return json.dumps(listGeoms) elif returnType == "list": return listGeoms else: return json.dumps(listGeoms) #---------------------------------------------------------------------- def autoComplete(self, polygons=[], polylines=[], sr=None ): """ The autoComplete operation simplifies the process of constructing new polygons that are adjacent to other polygons. It constructs polygons that fill in the gaps between existing polygons and a set of polylines. Inputs: polygons - array of Polygon objects polylines - list of Polyline objects sr - spatial reference of the input geometries WKID """ url = self._url + "/autoComplete" params = {"f":"json"} if sr is not None: params['sr'] = sr params['polygons'] = self.__geomToStringArray(polygons) params['polylines'] = self.__geomToStringArray(polylines) return self._get(url, param_dict=params, securityHandler=self._securityHandler, proxy_url=self._proxy_url, proxy_port=self._proxy_port) #---------------------------------------------------------------------- def buffer(self, geometries, inSR, distances, units, outSR=None, bufferSR=None, unionResults=True, geodesic=True ): """ The buffer operation is performed on a geometry service resource The result of this operation is buffered polygons at the specified distances for the input geometry array. Options are available to union buffers and to use geodesic distance. Inputs: """ url = self._url + "/buffer" params = { "f" : "json", "inSR" : inSR, "geodesic" : geodesic, "unionResults" : unionResults } if isinstance(geometries, list) and len(geometries) > 0: g = geometries[0] if isinstance(g, Polygon): params['geometries'] = {"geometryType": "esriGeometryPolygon", "geometries" : self.__geomToStringArray(geometries, "list")} elif isinstance(g, Point): params['geometries'] = {"geometryType": "esriGeometryPoint", "geometries" : self.__geomToStringArray(geometries, "list")} elif isinstance(g, Polyline): params['geometries'] = {"geometryType": "esriGeometryPolyline", "geometries" : self.__geomToStringArray(geometries, "list")} else: return None if isinstance(distances, list): distances = [str(d) for d in distances] params['distances'] = ",".join(distances) else: params['distances'] = str(distances) params['units'] = units if bufferSR is not None: params['bufferSR'] = bufferSR if outSR is not None: params['outSR'] = outSR return self._get(url, param_dict=params, proxy_port=self._proxy_port, securityHandler=self._securityHandler, proxy_url=self._proxy_url) #---------------------------------------------------------------------- def convexHull(self, geometries, sr=None): """""" url = self._url + "/convexHull" params = { "f" : "json" } if isinstance(geometries, list) and len(geometries) > 0: g = geometries[0] if sr is not None: params['sr'] = sr else: params['sr'] = g._wkid if isinstance(g, Polygon): params['geometries'] = {"geometryType": "esriGeometryPolygon", "geometries" : self.__geomToStringArray(geometries, "list")} elif isinstance(g, Point): params['geometries'] = {"geometryType": "esriGeometryPoint", "geometries" : self.__geomToStringArray(geometries, "list")} elif isinstance(g, Polyline): params['geometries'] = {"geometryType": "esriGeometryPolyline", "geometries" : self.__geomToStringArray(geometries, "list")} else: return None return self._get(url=url, param_dict=params, securityHandler=self._securityHandler, proxy_port=self._proxy_port, proxy_url=self._proxy_url) #---------------------------------------------------------------------- def cut(self, cutter, target, sr=None): """""" url = self._url + "/cut" params = { "f" : "json" } if sr is not None: params['sr'] = sr if isinstance(cutter, Polyline): params['cutter'] = cutter.asDictionary else: raise AttributeError("Input must be type Polyline") if isinstance(target, list) and len(target) > 0: geoms = [] template = {"geometryType": "", "geometries" : []} for g in target: if isinstance(g, Polygon): template['geometryType'] = "esriGeometryPolygon" template['geometries'].append(g.asDictionary) if isinstance(g, Polyline): template['geometryType'] = "esriGeometryPolyline" template['geometries'].append(g.asDictionary) else: AttributeError("Invalid geometry in target, entries can only be Polygon or Polyline") del g params['target'] = template else: AttributeError("You must provide at least 1 Polygon/Polyline geometry in a list") return self._get(url=url, param_dict=params, securityHandler=self._securityHandler, proxy_port=self._proxy_port, proxy_url=self._proxy_url) #---------------------------------------------------------------------- def density(self, geometries, sr, maxSegmentLength, lengthUnit, geodesic=False, ): """""" url = self._url + "/densify" params = { "f" : "json", "sr" : sr, "maxSegmentLength" : maxSegmentLength, "lengthUnit" : lengthUnit, "geodesic" : geodesic } if isinstance(geometries, list) and len(geometries) > 0: template = {"geometryType": None, "geometries" : []} for g in geometries: if isinstance(g, Polyline): template['geometryType'] = "esriGeometryPolyline" elif isinstance(g, Polygon): template['geometryType'] = "esriGeometryPolygon" else: raise AttributeError("Invalid geometry type") template['geometries'].append(g.asDictionary) params['geometries'] = template return self._get(url=url, param_dict=params, securityHandler=self._securityHandler, proxy_url=self._proxy_url, proxy_port = self._proxy_port) #---------------------------------------------------------------------- def difference(self, geometries, sr, geometry ): """""" url = self._url + "/difference" params = { "f" : "json", "sr" : sr } if isinstance(geometries, list) and len(geometries) > 0: template = {"geometryType": None, "geometries" : []} for g in geometries: if isinstance(g, Polyline): template['geometryType'] = "esriGeometryPolyline" elif isinstance(g, Polygon): template['geometryType'] = "esriGeometryPolygon" elif isinstance(g, Point): template['geometryType'] = "esriGeometryPoint" elif isinstance(g, Point): template['geometryType'] = "esriGeometryMultipoint" else: raise AttributeError("Invalid geometry type") template['geometries'].append(g.asDictionary) del g params['geometries'] = template geomTemplate = {"geometryType": None, "geometries" : [] } if isinstance(geometry, Polyline): geomTemplate['geometryType'] = "esriGeometryPolyline" elif isinstance(geometry, Polygon): geomTemplate['geometryType'] = "esriGeometryPolygon" elif isinstance(geometry, Point): geomTemplate['geometryType'] = "esriGeometryPoint" elif isinstance(geometry, Point): geomTemplate['geometryType'] = "esriGeometryMultipoint" else: raise AttributeError("Invalid geometry type") geomTemplate['geometry'] = geometry.asDictionary params['geometry'] = geomTemplate return self._get(url=url, param_dict=params, securityHandler=self._securityHandler, proxy_port=self._proxy_port, proxy_url=self._proxy_url) #---------------------------------------------------------------------- def distance(self, sr, geometry1, geometry2, distanceUnit="", geodesic=False ): """""" url = self._url + "/distance" params = { "f" : "json", "sr" : sr, "distanceUnit" : distanceUnit, "geodesic" : geodesic } geometry1 = self.__geometryToGeomTemplate(geometry=geometry1) geometry2 = self.__geometryToGeomTemplate(geometry=geometry2) params['geometry1'] = geometry1 params['geometry2'] = geometry2 return self._get(url=url, param_dict=params, securityHandler=self._securityHandler, proxy_url=self._proxy_url, proxy_port=self._proxy_port) #---------------------------------------------------------------------- def findTransformation(self, inSR, outSR, extentOfInterest=None, numOfResults=1): """ The findTransformations operation is performed on a geometry service resource. This operation returns a list of applicable geographic transformations you should use when projecting geometries from the input spatial reference to the output spatial reference. The transformations are in JSON format and are returned in order of most applicable to least applicable. Recall that a geographic transformation is not needed when the input and output spatial references have the same underlying geographic coordinate systems. In this case, findTransformations returns an empty list. Every returned geographic transformation is a forward transformation meaning that it can be used as-is to project from the input spatial reference to the output spatial reference. In the case where a predefined transformation needs to be applied in the reverse direction, it is returned as a forward composite transformation containing one transformation and a transformForward element with a value of false. Inputs: inSR - The well-known ID (WKID) of the spatial reference or a spatial reference JSON object for the input geometries outSR - The well-known ID (WKID) of the spatial reference or a spatial reference JSON object for the input geometries extentOfInterest - The bounding box of the area of interest specified as a JSON envelope. If provided, the extent of interest is used to return the most applicable geographic transformations for the area. If a spatial reference is not included in the JSON envelope, the inSR is used for the envelope. numOfResults - The number of geographic transformations to return. The default value is 1. If numOfResults has a value of -1, all applicable transformations are returned. """ params = { "f" : "json", "inSR" : inSR, "outSR" : outSR } url = self._url + "/findTransformations" if isinstance(numOfResults, int): params['numOfResults'] = numOfResults if isinstance(extentOfInterest, Envelope): params['extentOfInterest'] = extentOfInterest.asDictionary return self._post(url=url, param_dict=params, securityHandler=self._securityHandler, proxy_url=self._proxy_url, proxy_port=self._proxy_port) #---------------------------------------------------------------------- def fromGeoCoordinateString(self, sr, strings, conversionType, conversionMode=None): """ The fromGeoCoordinateString operation is performed on a geometry service resource. The operation converts an array of well-known strings into xy-coordinates based on the conversion type and spatial reference supplied by the user. An optional conversion mode parameter is available for some conversion types. Inputs: sr - The well-known ID of the spatial reference or a spatial reference json object. strings - An array of strings formatted as specified by conversionType. Syntax: [<string1>,...,<stringN>] Example: ["01N AA 66021 00000","11S NT 00000 62155", "31U BT 94071 65288"] conversionType - The conversion type of the input strings. Valid conversion types are: MGRS - Military Grid Reference System USNG - United States National Grid UTM - Universal Transverse Mercator GeoRef - World Geographic Reference System GARS - Global Area Reference System DMS - Degree Minute Second DDM - Degree Decimal Minute DD - Decimal Degree conversionMode - Conversion options for MGRS, UTM and GARS conversion types. Conversion options for MGRS and UTM conversion types. Valid conversion modes for MGRS are: mgrsDefault - Default. Uses the spheroid from the given spatial reference. mgrsNewStyle - Treats all spheroids as new, like WGS 1984. The 180 degree longitude falls into Zone 60. mgrsOldStyle - Treats all spheroids as old, like Bessel 1841. The 180 degree longitude falls into Zone 60. mgrsNewWith180InZone01 - Same as mgrsNewStyle except the 180 degree longitude falls into Zone 01. mgrsOldWith180InZone01 - Same as mgrsOldStyle except the 180 degree longitude falls into Zone 01. Valid conversion modes for UTM are: utmDefault - Default. No options. utmNorthSouth - Uses north/south latitude indicators instead of zone numbers. Non-standard. Default is recommended """ url = self._url + "/fromGeoCoordinateString" params = { "f" : "json", "sr" : sr, "strings" : strings, "conversionType" : conversionType } if not conversionMode is None: params['conversionMode'] = conversionMode return self._post(url=url, param_dict=params, securityHandler=self._securityHandler, proxy_url=self._proxy_url, proxy_port=self._proxy_port) #---------------------------------------------------------------------- def generalize(self, sr, geometries, maxDeviation, deviationUnit): """""" url = self._url + "/generalize" params = { "f" : "json", "sr" : sr, "deviationUnit" : deviationUnit, "maxDeviation": maxDeviation } params['geometries'] = self.__geometryListToGeomTemplate(geometries=geometries) return self._get(url=url, param_dict=params, securityHandler=self._securityHandler, proxy_port=self._proxy_port, proxy_url=self._proxy_url) #---------------------------------------------------------------------- def intersect(self, sr, geometries, geometry ): """""" url = self._url + "/intersect" params = { "f" : "json", "sr" : sr, "geometries" : self.__geometryListToGeomTemplate(geometries=geometries), "geometry" : self.__geometryToGeomTemplate(geometry=geometry) } return self._get(url=url, param_dict=params, securityHandler=self._securityHandler, proxy_url=self._proxy_url, proxy_port=self._proxy_port) #---------------------------------------------------------------------- def labelPoints(self, sr, polygons, ): """""" url = self._url + "/labelPoints" params = { "f" : "json", "sr" : sr, "polygons": self.__geomToStringArray(geometries=polygons, returnType="list") } return self._get(url=url, param_dict=params, securityHandler=self._securityHandler, proxy_url=self._proxy_url, proxy_port=self._proxy_port) #---------------------------------------------------------------------- def lengths(self, sr, polylines, lengthUnit, calculationType ): """""" allowedCalcTypes = ['planar', 'geodesic', 'preserveShape'] if calculationType not in allowedCalcTypes: raise AttributeError("Invalid calculation Type") url = self._url + "/lengths" params = { "f" : "json", "sr" : sr, "polylines": self.__geomToStringArray(geometries=polylines, returnType="list"), "lengthUnit" : lengthUnit, "calculationType" : calculationType } return self._get(url=url, param_dict=params, securityHandler=self._securityHandler, proxy_url=self._proxy_url, proxy_port=self._proxy_port) #---------------------------------------------------------------------- def offset(self, geometries, offsetDistance, offsetUnit, offsetHow="esriGeometryOffsetRounded", bevelRatio=10, simplifyResult=False, sr=None, ): """""" allowedHow = ["esriGeometryOffsetRounded", "esriGeometryOffsetBevelled", "esriGeometryOffsetMitered"] if offsetHow not in allowedHow: raise AttributeError("Invalid Offset How value") url = self._url + "/offset" params = { "f" : "json", "sr" : sr, "geometries": self.__geometryListToGeomTemplate(geometries=geometries), "offsetDistance": offsetDistance, "offsetUnit" : offsetUnit, "offsetHow" : offsetHow, "bevelRatio" : bevelRatio, "simplifyResult" : simplifyResult } return self._get(url=url, param_dict=params, securityHandler=self._securityHandler, proxy_url=self._proxy_url, proxy_port=self._proxy_port) #---------------------------------------------------------------------- def project(self, geometries, inSR, outSR, transformation="", transformFoward=False): """""" url = self._url + "/project" params = { "f" : "json", "inSR" : inSR, "geometries": self.__geometryListToGeomTemplate(geometries=geometries), "outSR" : outSR, "transformation" : transformation, "transformFoward": transformFoward } return self._get(url=url, param_dict=params, securityHandler=self._securityHandler, proxy_url=self._proxy_url, proxy_port=self._proxy_port) #---------------------------------------------------------------------- def relation(self, geometries1, geometries2, sr, relation="esriGeometryRelationIntersection", relationParam=""): """""" relationType = [ "esriGeometryRelationCross", "esriGeometryRelationDisjoint", "esriGeometryRelationIn", "esriGeometryRelationInteriorIntersection", "esriGeometryRelationIntersection", "esriGeometryRelationLineCoincidence", "esriGeometryRelationLineTouch", "esriGeometryRelationOverlap", "esriGeometryRelationPointTouch", "esriGeometryRelationTouch", "esriGeometryRelationWithin", "esriGeometryRelationRelation" ] if relation not in relationType: raise AttributeError("Invalid relation type") url = self._url + "/relation" params = { "f" : "json", "sr" : sr, "geometries1": self.__geometryListToGeomTemplate(geometries=geometries1), "geometries2": self.__geometryListToGeomTemplate(geometries=geometries2), "relation" : relation, "relationParam" : relationParam } return self._get(url=url, param_dict=params, securityHandler=self._securityHandler, proxy_url=self._proxy_url, proxy_port=self._proxy_port) #---------------------------------------------------------------------- def reshape(self, sr, target, reshaper ): """calls the reshape command on a geometry service""" url = self._url + "/reshape" params = { "f" : "json", "sr" : sr, "target" : self.__geometryToGeomTemplate(geometry=target) } if isinstance(reshaper, Polyline): params["reshaper"] = reshaper.asDictionary else: raise AttributeError("Invalid reshaper object, must be Polyline") return self._get(url=url, param_dict=params, securityHandler=self._securityHandler, proxy_url=self._proxy_url, proxy_port=self._proxy_port) #---------------------------------------------------------------------- def simplify(self, sr, geometries ): """returns a simplied geometry object""" url = self._url + "/simplify" params = { "f" : "json", "sr" : sr, "geometries" : self.__geometryListToGeomTemplate(geometries=geometries) } return self._get(url=url, param_dict=params, securityHandler=self._securityHandler, proxy_url=self._proxy_url, proxy_port=self._proxy_port) #---------------------------------------------------------------------- def toGeoCoordinateString(self, sr, coordinates, conversionType, conversionMode="mgrsDefault", numOfDigits=None, rounding=True, addSpaces=True ): """ The toGeoCoordinateString operation is performed on a geometry service resource. The operation converts an array of xy-coordinates into well-known strings based on the conversion type and spatial reference supplied by the user. Optional parameters are available for some conversion types. Note that if an optional parameter is not applicable for a particular conversion type, but a value is supplied for that parameter, the value will be ignored. Inputs: sr - The well-known ID of the spatial reference or a spatial reference json object. coordinates - An array of xy-coordinates in JSON format to be converted. Syntax: [[x1,y2],...[xN,yN]] conversionType - The conversion type of the input strings. Allowed Values: MGRS - Military Grid Reference System USNG - United States National Grid UTM - Universal Transverse Mercator GeoRef - World Geographic Reference System GARS - Global Area Reference System DMS - Degree Minute Second DDM - Degree Decimal Minute DD - Decimal Degree conversionMode - Conversion options for MGRS and UTM conversion types. Valid conversion modes for MGRS are: mgrsDefault - Default. Uses the spheroid from the given spatial reference. mgrsNewStyle - Treats all spheroids as new, like WGS 1984. The 180 degree longitude falls into Zone 60. mgrsOldStyle - Treats all spheroids as old, like Bessel 1841. The 180 degree longitude falls into Zone 60. mgrsNewWith180InZone01 - Same as mgrsNewStyle except the 180 degree longitude falls into Zone 01. mgrsOldWith180InZone01 - Same as mgrsOldStyle except the 180 degree longitude falls into Zone 01. Valid conversion modes for UTM are: utmDefault - Default. No options. utmNorthSouth - Uses north/south latitude indicators instead of zone numbers. Non-standard. Default is recommended. numOfDigits - The number of digits to output for each of the numerical portions in the string. The default value for numOfDigits varies depending on conversionType. rounding - If true, then numeric portions of the string are rounded to the nearest whole magnitude as specified by numOfDigits. Otherwise, numeric portions of the string are truncated. The rounding parameter applies only to conversion types MGRS, USNG and GeoRef. The default value is true. addSpaces - If true, then spaces are added between components of the string. The addSpaces parameter applies only to conversion types MGRS, USNG and UTM. The default value for MGRS is false, while the default value for both USNG and UTM is true. """ params = { "f": "json", "sr" : sr, "coordinates" : coordinates, "conversionType": conversionType } url = self._url + "/toGeoCoordinateString" if not conversionMode is None: params['conversionMode'] = conversionMode if isinstance(numOfDigits, int): params['numOfDigits'] = numOfDigits if isinstance(rounding, int): params['rounding'] = rounding if isinstance(addSpaces, bool): params['addSpaces'] = addSpaces return self._post(url=url, param_dict=params, proxy_url=self._proxy_url, proxy_port=self._proxy_port, securityHandler=self._securityHandler) #---------------------------------------------------------------------- def trimExtend(self, sr, polylines, trimExtendTo, extendHow=0): """""" allowedHow = [0,1,2,4,8,16] if extendHow not in allowedHow: raise AttributeError("Invalid extend How value.") url = self._url + "/trimExtend" params = { "f" : "json", "sr" : sr, "polylines" : self.__geomToStringArray(geometries=polylines, returnType="list"), "extendHow": extendHow, "trimExtendTo" : trimExtendTo.asDictionary } return self._get(url=url, param_dict=params, proxy_url=self._proxy_url, securityHandler=self._securityHandler, proxy_port=self._proxy_port) #---------------------------------------------------------------------- def union(self, sr, geometries): """""" url = self._url + "/union" params = { "f" : "json", "sr" : sr, "geometries" : self.__geometryListToGeomTemplate(geometries=geometries) } return self._get(url=url, param_dict=params, securityHandler=self._securityHandler, proxy_url=self._proxy_url, proxy_port=self._proxy_port)
45.419847
116
0.504898
0ccc46e4a10a396efd2992ebac874b3663cb06e6
3,088
py
Python
backend/pyrogram/raw/functions/account/update_profile.py
appheap/social-media-analyzer
0f9da098bfb0b4f9eb38e0244aa3a168cf97d51c
[ "Apache-2.0" ]
5
2021-09-11T22:01:15.000Z
2022-03-16T21:33:42.000Z
backend/pyrogram/raw/functions/account/update_profile.py
iamatlasss/social-media-analyzer
429d1d2bbd8bfce80c50c5f8edda58f87ace668d
[ "Apache-2.0" ]
null
null
null
backend/pyrogram/raw/functions/account/update_profile.py
iamatlasss/social-media-analyzer
429d1d2bbd8bfce80c50c5f8edda58f87ace668d
[ "Apache-2.0" ]
3
2022-01-18T11:06:22.000Z
2022-02-26T13:39:28.000Z
# Pyrogram - Telegram MTProto API Client Library for Python # Copyright (C) 2017-2021 Dan <https://github.com/delivrance> # # This file is part of Pyrogram. # # Pyrogram is free software: you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License as published # by the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # Pyrogram is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public License # along with Pyrogram. If not, see <http://www.gnu.org/licenses/>. from io import BytesIO from pyrogram.raw.core.primitives import Int, Long, Int128, Int256, Bool, Bytes, String, Double, Vector from pyrogram.raw.core import TLObject from pyrogram import raw from typing import List, Union, Any # # # # # # # # # # # # # # # # # # # # # # # # # !!! WARNING !!! # # This is a generated file! # # All changes made in this file will be lost! # # # # # # # # # # # # # # # # # # # # # # # # # class UpdateProfile(TLObject): # type: ignore """Telegram API method. Details: - Layer: ``123`` - ID: ``0x78515775`` Parameters: first_name (optional): ``str`` last_name (optional): ``str`` about (optional): ``str`` Returns: :obj:`User <pyrogram.raw.base.User>` """ __slots__: List[str] = ["first_name", "last_name", "about"] ID = 0x78515775 QUALNAME = "functions.account.UpdateProfile" def __init__(self, *, first_name: Union[None, str] = None, last_name: Union[None, str] = None, about: Union[None, str] = None) -> None: self.first_name = first_name # flags.0?string self.last_name = last_name # flags.1?string self.about = about # flags.2?string @staticmethod def read(data: BytesIO, *args: Any) -> "UpdateProfile": flags = Int.read(data) first_name = String.read(data) if flags & (1 << 0) else None last_name = String.read(data) if flags & (1 << 1) else None about = String.read(data) if flags & (1 << 2) else None return UpdateProfile(first_name=first_name, last_name=last_name, about=about) def write(self) -> bytes: data = BytesIO() data.write(Int(self.ID, False)) flags = 0 flags |= (1 << 0) if self.first_name is not None else 0 flags |= (1 << 1) if self.last_name is not None else 0 flags |= (1 << 2) if self.about is not None else 0 data.write(Int(flags)) if self.first_name is not None: data.write(String(self.first_name)) if self.last_name is not None: data.write(String(self.last_name)) if self.about is not None: data.write(String(self.about)) return data.getvalue()
34.696629
103
0.617876
a76c7f351f105aec46aa0905f0fc28ed5694d28c
7,092
py
Python
transit/write_handlers.py
3wnbr1/transit-python2
fb44976bf41b8bcc6dd9050c16ef7c4a24c9f81c
[ "Apache-2.0" ]
1
2022-02-21T09:34:00.000Z
2022-02-21T09:34:00.000Z
transit/write_handlers.py
3wnbr1/transit-python2
fb44976bf41b8bcc6dd9050c16ef7c4a24c9f81c
[ "Apache-2.0" ]
null
null
null
transit/write_handlers.py
3wnbr1/transit-python2
fb44976bf41b8bcc6dd9050c16ef7c4a24c9f81c
[ "Apache-2.0" ]
null
null
null
## Copyright 2014 Cognitect. All Rights Reserved. ## ## Licensed under the Apache License, Version 2.0 (the "License"); ## you may not use this file except in compliance with the License. ## You may obtain a copy of the License at ## ## http://www.apache.org/licenses/LICENSE-2.0 ## ## Unless required by applicable law or agreed to in writing, software ## distributed under the License is distributed on an "AS-IS" BASIS, ## WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. ## See the License for the specific language governing permissions and ## limitations under the License. import uuid import datetime import struct from transit.class_hash import ClassDict from transit.transit_types import ( Keyword, Symbol, URI, frozendict, TaggedValue, Link, Boolean, ) from decimal import Decimal from dateutil import tz from math import isnan MAX_INT = pow(2, 63) - 1 MIN_INT = -pow(2, 63) ## This file contains Write Handlers - all the top-level objects used when ## writing Transit data. These object must all be immutable and pickleable. class TaggedMap(object): def __init__(self, tag, rep, str): self._tag = tag self._rep = rep self._str = str def tag(self): return self._tag def rep(self): return self._rep def string_rep(self): return self._str class NoneHandler(object): @staticmethod def tag(_): return "_" @staticmethod def rep(_): return None @staticmethod def string_rep(n): return None class IntHandler(object): @staticmethod def tag(i): return "i" @staticmethod def rep(i): return i @staticmethod def string_rep(i): return str(i) class BigIntHandler(object): @staticmethod def tag(_): return "n" @staticmethod def rep(n): return str(n) @staticmethod def string_rep(n): return str(n) class Python3IntHandler(object): @staticmethod def tag(n): if n < MAX_INT and n > MIN_INT: return "i" return "n" @staticmethod def rep(n): return n @staticmethod def string_rep(n): return str(n) class BigDecimalHandler(object): @staticmethod def tag(_): return "f" @staticmethod def rep(n): return str(n) @staticmethod def string_rep(n): return str(n) class FloatHandler(object): @staticmethod def tag(f): return "z" if isnan(f) or f in (float("Inf"), float("-Inf")) else "d" @staticmethod def rep(f): if isnan(f): return "NaN" if f == float("Inf"): return "INF" if f == float("-Inf"): return "-INF" return f @staticmethod def string_rep(f): return str(f) class StringHandler(object): @staticmethod def tag(s): return "s" @staticmethod def rep(s): return s @staticmethod def string_rep(s): return s class BooleanHandler(object): @staticmethod def tag(_): return "?" @staticmethod def rep(b): return bool(b) @staticmethod def string_rep(b): return "t" if b else "f" class ArrayHandler(object): @staticmethod def tag(a): return "array" @staticmethod def rep(a): return a @staticmethod def string_rep(a): return None class MapHandler(object): @staticmethod def tag(m): return "map" @staticmethod def rep(m): return m @staticmethod def string_rep(m): return None class KeywordHandler(object): @staticmethod def tag(k): return ":" @staticmethod def rep(k): return str(k) @staticmethod def string_rep(k): return str(k) class SymbolHandler(object): @staticmethod def tag(s): return "$" @staticmethod def rep(s): return str(s) @staticmethod def string_rep(s): return str(s) class UuidHandler(object): @staticmethod def tag(_): return "u" @staticmethod def rep(u): return struct.unpack(">qq", u.bytes) @staticmethod def string_rep(u): return str(u) class UriHandler(object): @staticmethod def tag(_): return "r" @staticmethod def rep(u): return u.rep @staticmethod def string_rep(u): return u.rep class DateTimeHandler(object): epoch = datetime.datetime(1970, 1, 1).replace(tzinfo=tz.tzutc()) @staticmethod def tag(_): return "m" @staticmethod def rep(d): td = d - DateTimeHandler.epoch return int((td.microseconds + (td.seconds + td.days * 24 * 3600) * pow(10, 6)) / 1e3) @staticmethod def verbose_handler(): return VerboseDateTimeHandler @staticmethod def string_rep(d): return str(DateTimeHandler.rep(d)) class VerboseDateTimeHandler(object): @staticmethod def tag(_): return "t" @staticmethod def rep(d): return d.isoformat() @staticmethod def string_rep(d): return d.isoformat() class SetHandler(object): @staticmethod def tag(_): return "set" @staticmethod def rep(s): return TaggedMap("array", tuple(s), None) @staticmethod def string_rep(_): return None class TaggedValueHandler(object): @staticmethod def tag(tv): return tv.tag @staticmethod def rep(tv): return tv.rep @staticmethod def string_rep(_): return None class LinkHandler(object): @staticmethod def tag(_): return "link" @staticmethod def rep(l): return l.as_map @staticmethod def string_rep(_): return None class WriteHandler(ClassDict): """This is the master handler for encoding/writing Python data into Transit data, based on its type. The Handler itself is a dispatch map, that resolves on full type/object inheritance. These handlers can be overriden during the creation of a Transit Writer. """ def __init__(self): super(WriteHandler, self).__init__() self[type(None)] = NoneHandler self[bool] = BooleanHandler self[Boolean] = BooleanHandler self[str] = StringHandler self[list] = ArrayHandler self[tuple] = ArrayHandler self[dict] = MapHandler self[int] = Python3IntHandler self[float] = FloatHandler self[Keyword] = KeywordHandler self[Symbol] = SymbolHandler self[uuid.UUID] = UuidHandler self[URI] = UriHandler self[datetime.datetime] = DateTimeHandler self[set] = SetHandler self[frozenset] = SetHandler self[TaggedMap] = TaggedMap self[dict] = MapHandler self[frozendict] = MapHandler self[TaggedValue] = TaggedValueHandler self[Link] = LinkHandler self[Decimal] = BigDecimalHandler
19.219512
93
0.606035
c7901f3e108fde9969897d884e2f50430efcced8
11,028
py
Python
ocpp/messages.py
MrMika96/ocpp
bdcb28492c84a977b58069df9a9e78fadb095e9a
[ "MIT" ]
null
null
null
ocpp/messages.py
MrMika96/ocpp
bdcb28492c84a977b58069df9a9e78fadb095e9a
[ "MIT" ]
null
null
null
ocpp/messages.py
MrMika96/ocpp
bdcb28492c84a977b58069df9a9e78fadb095e9a
[ "MIT" ]
1
2019-12-05T18:10:06.000Z
2019-12-05T18:10:06.000Z
""" Module containing classes that model the several OCPP messages types. It also contain some helper functions for packing and unpacking messages. """ import os import json import decimal from dataclasses import asdict, is_dataclass from jsonschema import validate from jsonschema.exceptions import ValidationError as SchemaValidationError from ocpp.exceptions import (OCPPError, FormatViolationError, PropertyConstraintViolationError, ProtocolError, ValidationError, UnknownCallErrorCodeError) _schemas = {} class MessageType: """ Number identifying the different types of OCPP messages. """ #: Call identifies a request. Call = 2 #: CallResult identifies a successful response. CallResult = 3 #: CallError identifies an erroneous response. CallError = 4 def unpack(msg): """ Unpacks a message into either a Call, CallError or CallResult. """ try: msg = json.loads(msg) except json.JSONDecodeError as e: raise FormatViolationError(f'Message is not valid JSON: {e}') if not isinstance(msg, list): raise ProtocolError("OCPP message hasn't the correct format. It " f"should be a list, but got {type(msg)} instead") for cls in [Call, CallResult, CallError]: try: if msg[0] == cls.message_type_id: return cls(*msg[1:]) except IndexError: raise ProtocolError("Message doesn\'t contain MessageTypeID") raise PropertyConstraintViolationError(f"MessageTypeId '{msg[0]}' isn't " "valid") def pack(msg): """ Returns the JSON representation of a Call, CallError or CallResult. It just calls the 'to_json()' method of the message. But it is here mainly to complement the 'unpack' function of this module. """ return msg.to_json() def get_schema(message_type_id, action, ocpp_version, parse_float=float): """ Read schema from disk and return in. Reads will be cached for performance reasons. The `parse_float` argument can be used to set the conversion method that is used to parse floats. It must be a callable taking 1 argument. By default it is `float()`, but certain schema's require `decimal.Decimal()`. """ if ocpp_version not in ["1.6", "2.0"]: raise ValueError schemas_dir = 'v' + ocpp_version.replace('.', '') schema_name = action if message_type_id == MessageType.CallResult: schema_name += 'Response' elif message_type_id == MessageType.Call: if ocpp_version == "2.0": schema_name += 'Request' if ocpp_version == "2.0": schema_name += '_v1p0' dir, _ = os.path.split(os.path.realpath(__file__)) relative_path = f'{schemas_dir}/schemas/{schema_name}.json' path = os.path.join(dir, relative_path) if relative_path in _schemas: return _schemas[relative_path] # The JSON schemas for OCPP 2.0 start with a byte order mark (BOM) # character. If no encoding is given, reading the schema would fail with: # # Unexpected UTF-8 BOM (decode using utf-8-sig): with open(path, 'r', encoding='utf-8-sig') as f: data = f.read() _schemas[relative_path] = json.loads(data, parse_float=parse_float) return _schemas[relative_path] def validate_payload(message, ocpp_version): """ Validate the payload of the message using JSON schemas. """ if type(message) not in [Call, CallResult]: raise ValidationError("Payload can't be validated because message " f"type. It's '{type(message)}', but it should " "be either 'Call' or 'CallResult'.") try: # 3 OCPP 1.6 schedules have fields of type floats. The JSON schema # defines a certain precision for these fields of 1 decimal. A value of # 21.4 is valid, whereas a value if 4.11 is not. # # The problem is that Python's internal representation of 21.4 might # have more than 1 decimal. It might be 21.399999999999995. This would # make the validation fail, although the payload is correct. This is a # known issue with jsonschemas, see: # https://github.com/Julian/jsonschema/issues/247 # # This issue can be fixed by using a different parser for floats than # the default one that is used. # # Both the schema and the payload must be parsed using the different # parser for floats. if ocpp_version == '1.6' and ( (type(message) == Call and message.action in ['SetChargingProfile', 'RemoteStartTransaction']) # noqa or (type(message) == CallResult and message.action == ['GetCompositeSchedule']) ): schema = get_schema( message.message_type_id, message.action, ocpp_version, parse_float=decimal.Decimal ) message.payload = json.loads( json.dumps(message.payload), parse_float=decimal.Decimal ) else: schema = get_schema( message.message_type_id, message.action, ocpp_version ) except (OSError, json.JSONDecodeError) as e: raise ValidationError("Failed to load validation schema for action " f"'{message.action}': {e}") try: validate(message.payload, schema) except SchemaValidationError as e: raise ValidationError(f"Payload '{message.payload} for action " f"'{message.action}' is not valid: {e}") class Call: """ A Call is a type of message that initiate a request/response sequence. Both central systems and charge points can send this message. From the specification: A Call always consists of 4 elements: The standard elements MessageTypeId and UniqueId, a specific Action that is required on the other side and a payload, the arguments to the Action. The syntax of a call looks like this: [<MessageTypeId>, "<UniqueId>", "<Action>", {<Payload>}] ... For example, a BootNotification request could look like this: [2, "19223201", "BootNotification", { "chargePointVendor": "VendorX", "chargePointModel": "SingleSocketCharger" } ] """ message_type_id = 2 def __init__(self, unique_id, action, payload): self.unique_id = unique_id self.action = action self.payload = payload if is_dataclass(payload): self.payload = asdict(payload) def to_json(self): """ Return a valid JSON representation of the instance. """ return json.dumps([ self.message_type_id, self.unique_id, self.action, self.payload, ]) def create_call_result(self, payload): call_result = CallResult(self.unique_id, payload) call_result.action = self.action return call_result def create_call_error(self, exception): error_code = "InternalError" error_description = "An unexpected error occurred." error_details = {} if isinstance(exception, OCPPError): error_code = exception.code error_description = exception.description error_details = exception.details return CallError( self.unique_id, error_code, error_description, error_details, ) def __repr__(self): return f"<Call - unique_id={self.unique_id}, action={self.action}, " \ f"payload={self.payload}>" class CallResult: """ A CallResult is a message indicating that a Call has been handled succesfully. From the specification: A CallResult always consists of 3 elements: The standard elements MessageTypeId, UniqueId and a payload, containing the response to the Action in the original Call. The syntax of a call looks like this: [<MessageTypeId>, "<UniqueId>", {<Payload>}] ... For example, a BootNotification response could look like this: [3, "19223201", { "status":"Accepted", "currentTime":"2013-02-01T20:53:32.486Z", "heartbeatInterval":300 } ] """ message_type_id = 3 def __init__(self, unique_id, payload, action=None): self.unique_id = unique_id self.payload = payload # Strictly speaking no action is required in a CallResult. But in order # to validate the message it is needed. self.action = action def to_json(self): return json.dumps([ self.message_type_id, self.unique_id, self.payload, ]) def __repr__(self): return f"<CallResult - unique_id={self.unique_id}, " \ f"action={self.action}, " \ f"payload={self.payload}>" class CallError: """ A CallError is a response to a Call that indicates an error. From the specification: CallError always consists of 5 elements: The standard elements MessageTypeId and UniqueId, an errorCode string, an errorDescription string and an errorDetails object. The syntax of a call looks like this: [<MessageTypeId>, "<UniqueId>", "<errorCode>", "<errorDescription>", {<errorDetails>}] # noqa """ message_type_id = 4 def __init__(self, unique_id, error_code, error_description, error_details=None): self.unique_id = unique_id self.error_code = error_code self.error_description = error_description self.error_details = error_details def to_json(self): return json.dumps([ self.message_type_id, self.unique_id, self.error_code, self.error_description, self.error_details, ]) def to_exception(self): """ Return the exception that corresponds to the CallError. """ for error in OCPPError.__subclasses__(): if error.code == self.error_code: return error( description=self.error_description, details=self.error_details ) raise UnknownCallErrorCodeError("Error code '%s' is not defined by the" " OCPP specification", self.error_code) def __repr__(self): return f"<CallError - unique_id={self.unique_id}, " \ f"error_code={self.error_code}, " \ f"error_description={self.error_description}, " \ f"error_details={self.error_details}>"
33.317221
105
0.607907
8acdc4f687e8ac998472c334443734723af4f83c
1,592
py
Python
plot.py
dvapan/cerhe
42a860907ea182b98b2243c0d66a4bc0f37d6c78
[ "MIT" ]
null
null
null
plot.py
dvapan/cerhe
42a860907ea182b98b2243c0d66a4bc0f37d6c78
[ "MIT" ]
null
null
null
plot.py
dvapan/cerhe
42a860907ea182b98b2243c0d66a4bc0f37d6c78
[ "MIT" ]
null
null
null
import numpy as np import scipy as sc from cylp.cy import CyClpSimplex from cylp.py.modeling.CyLPModel import CyLPArray import matplotlib.pyplot as plt from poly import mvmonos, powers from constants import * from gas_properties import TGZ, gas_coefficients from air_properties import TBZ, air_coefficients import ceramic_properties as cp pc = np.loadtxt("poly_coeff") cff_cnt = [10,20,10,20] s,f = 0,cff_cnt[0] tgh_cf = pc[s:f] s,f = s+cff_cnt[0],f+cff_cnt[1] tch_cf = pc[s:f] s,f = s+cff_cnt[1],f+cff_cnt[2] tgc_cf = pc[s:f] s,f = s+cff_cnt[2],f+cff_cnt[3] tcc_cf = pc[s:f] X = sc.linspace(0, length, totalx*3) T = sc.linspace(0, time, totalt*3) R = sc.linspace(0.01*rball, rball, 10*3) R = R[::-1] #gas tt,xx = np.meshgrid(T,X) in_pts_cr = np.vstack([tt.flatten(),xx.flatten()]).T pp = mvmonos(in_pts_cr,powers(3,2)) tt,xx = np.meshgrid(T,X) u = pp.dot(tgh_cf) uu = u.reshape((len(T), len(X))) print(uu[0,:]) plt.plot(tt[0,:],uu[-1,:]) # ceramic tt,xx,rr = np.meshgrid(T,X,R[0]) in_pts_cr = np.vstack([tt.flatten(),xx.flatten(),rr.flatten()]).T pp = mvmonos(in_pts_cr,powers(3,3)) u = pp.dot(tch_cf) uu = u.reshape((len(T), len(X))) plt.plot(tt[0,:],uu[-1,:]) tt,xx,rr = np.meshgrid(T,X,R[-1]) in_pts_cr = np.vstack([tt.flatten(),xx.flatten(),rr.flatten()]).T pp = mvmonos(in_pts_cr,powers(3,3)) u = pp.dot(tch_cf) uu = u.reshape((len(T), len(X))) plt.plot(tt[0,:],uu[-1,:]) # fig, ax = plt.subplots() # p = ax.contourf(tt, xx, uu, np.linspace(700, 1900, 100), cmap='inferno') # fig.colorbar(p, ax=ax) # fig.tight_layout() plt.xlim(0, 300) plt.ylim(760, 800) plt.show()
21.808219
74
0.666457
0934702c8d34ef7b4ad29923346fc91c44e9b4ed
27,038
py
Python
language/DeepNet/model/embed.py
huxin711/ColossalAI-Examples
fa3560683dec891315d5356e76c10ff20e41266f
[ "Apache-2.0" ]
null
null
null
language/DeepNet/model/embed.py
huxin711/ColossalAI-Examples
fa3560683dec891315d5356e76c10ff20e41266f
[ "Apache-2.0" ]
null
null
null
language/DeepNet/model/embed.py
huxin711/ColossalAI-Examples
fa3560683dec891315d5356e76c10ff20e41266f
[ "Apache-2.0" ]
null
null
null
# Adapted from https://github.com/hpcaitech/ColossalAI-Examples/blob/main/language/gpt/model/embed.py import torch from torch import nn as nn, Tensor, distributed as dist from torch.nn import functional as F import torch.nn.init as init from colossalai.context import seed, ParallelMode from colossalai.core import global_context as gpc from colossalai.utils import get_current_device from colossalai.nn.layer.base_layer import ParallelLayer from torch.nn.parameter import Parameter from colossalai.registry import LAYERS, LOSSES from colossalai.nn.layer.utils import divide from colossalai.nn.layer.parallel_1d._utils import gather_forward_split_backward, reduce_grad, reduce_input from colossalai.nn.layer.parallel_1d.layers import Linear1D_Row class VocabParallelEmbedding(torch.nn.Module): """Language model embeddings. Arguments: hidden_size: hidden size vocab_size: vocabulary size max_sequence_length: maximum size of sequence. This is used for positional embedding embedding_dropout_prob: dropout probability for embeddings init_method: weight initialization method num_tokentypes: size of the token-type embeddings. 0 value will ignore this embedding """ def __init__(self, hidden_size, vocab_size, max_sequence_length, embedding_dropout_prob, num_tokentypes=0, dtype=torch.float): super(VocabParallelEmbedding, self).__init__() self.hidden_size = hidden_size self.num_tokentypes = num_tokentypes # Word embeddings (parallel). self.word_embeddings = VocabParallelEmbedding1D( vocab_size, self.hidden_size, dtype=dtype) self._word_embeddings_key = 'word_embeddings' # Position embedding (serial). self.position_embeddings = torch.nn.Embedding( max_sequence_length, self.hidden_size, dtype=dtype) self._position_embeddings_key = 'position_embeddings' # Initialize the position embeddings. # self.init_method(self.position_embeddings.weight) # Token type embedding. # Add this as an optional field that can be added through # method call so we can load a pretrain model without # token types and add them as needed. self._tokentype_embeddings_key = 'tokentype_embeddings' if self.num_tokentypes > 0: self.tokentype_embeddings = torch.nn.Embedding(self.num_tokentypes, self.hidden_size, dtype=dtype) # Initialize the token-type embeddings. # self.init_method(self.tokentype_embeddings.weight) else: self.tokentype_embeddings = None # Embeddings dropout self.embedding_dropout = torch.nn.Dropout(embedding_dropout_prob) def zero_parameters(self): """Zero out all parameters in embedding.""" self.word_embeddings.weight.data.fill_(0) self.word_embeddings.weight.shared = True self.position_embeddings.weight.data.fill_(0) self.position_embeddings.weight.shared = True if self.num_tokentypes > 0: self.tokentype_embeddings.weight.data.fill_(0) self.tokentype_embeddings.weight.shared = True def add_tokentype_embeddings(self, num_tokentypes): """Add token-type embedding. This function is provided so we can add token-type embeddings in case the pretrained model does not have it. This allows us to load the model normally and then add this embedding. """ if self.tokentype_embeddings is not None: raise Exception('tokentype embeddings is already initialized') if torch.distributed.get_rank() == 0: print('adding embedding for {} tokentypes'.format(num_tokentypes), flush=True) self.num_tokentypes = num_tokentypes self.tokentype_embeddings = torch.nn.Embedding(num_tokentypes, self.hidden_size) # Initialize the token-type embeddings. # self.init_method(self.tokentype_embeddings.weight) def forward(self, input_ids, position_ids=None, tokentype_ids=None): # Embeddings. if input_ids is not None: input_shape = input_ids.size() input_ids = input_ids.view(-1, input_shape[-1]) words_embeddings = self.word_embeddings(input_ids) if position_ids is not None: position_ids = position_ids.view(-1, input_shape[-1]) if position_ids is None: position_ids = torch.arange(0, input_shape[-1] + 0, dtype=torch.long, device=get_current_device()) position_ids = position_ids.unsqueeze(0).view(-1, input_shape[-1]) position_embeddings = self.position_embeddings(position_ids) embeddings = words_embeddings + position_embeddings # Dropout. with seed(ParallelMode.TENSOR): embeddings = self.embedding_dropout(embeddings) return embeddings def state_dict_for_save_checkpoint(self, destination=None, prefix='', keep_vars=False): """For easy load.""" state_dict_ = {} state_dict_[self._word_embeddings_key] \ = self.word_embeddings.state_dict(destination, prefix, keep_vars) state_dict_[self._position_embeddings_key] \ = self.position_embeddings.state_dict( destination, prefix, keep_vars) if self.num_tokentypes > 0: state_dict_[self._tokentype_embeddings_key] \ = self.tokentype_embeddings.state_dict( destination, prefix, keep_vars) return state_dict_ def load_state_dict(self, state_dict, strict=True): """Customized load.""" # Word embedding. if self._word_embeddings_key in state_dict: state_dict_ = state_dict[self._word_embeddings_key] else: # for backward compatibility. state_dict_ = {} for key in state_dict.keys(): if 'word_embeddings' in key: state_dict_[key.split('word_embeddings.')[1]] \ = state_dict[key] self.word_embeddings.load_state_dict(state_dict_, strict=strict) # Position embedding. if self._position_embeddings_key in state_dict: state_dict_ = state_dict[self._position_embeddings_key] else: # for backward compatibility. state_dict_ = {} for key in state_dict.keys(): if 'position_embeddings' in key: state_dict_[key.split('position_embeddings.')[1]] \ = state_dict[key] self.position_embeddings.load_state_dict(state_dict_, strict=strict) # Tokentype embedding. if self.num_tokentypes > 0: state_dict_ = {} if self._tokentype_embeddings_key in state_dict: state_dict_ = state_dict[self._tokentype_embeddings_key] else: # for backward compatibility. for key in state_dict.keys(): if 'tokentype_embeddings' in key: state_dict_[key.split('tokentype_embeddings.')[1]] \ = state_dict[key] if len(state_dict_.keys()) > 0: self.tokentype_embeddings.load_state_dict(state_dict_, strict=strict) else: print('***WARNING*** expected tokentype embeddings in the ' 'checkpoint but could not find it', flush=True) class VocabParallelEmbedding1D(torch.nn.Module): """Embedding parallelized in the vocabulary dimension. This is mainly adapted from torch.nn.Embedding and all the default values are kept. Arguments: num_embeddings: vocabulary size. embedding_dim: size of hidden state. init_method: method to initialize weights. """ def __init__(self, num_embeddings, embedding_dim, dtype=None, init_method=None): super(VocabParallelEmbedding1D, self).__init__() # Keep the input dimensions. self.num_embeddings = num_embeddings self.embedding_dim = embedding_dim # Set the detauls for compatibility. self.padding_idx = None self.max_norm = None self.norm_type = 2. self.scale_grad_by_freq = False self.sparse = False self._weight = None self.tensor_model_parallel_size = gpc.tensor_parallel_size # Divide the weight matrix along the vocaburaly dimension. self.vocab_start_index, self.vocab_end_index = \ VocabUtility.vocab_range_from_global_vocab_size( self.num_embeddings, gpc.get_local_rank(ParallelMode.PARALLEL_1D), self.tensor_model_parallel_size) self.num_embeddings_per_partition = self.vocab_end_index - \ self.vocab_start_index # Allocate weights and initialize. factory_kwargs = {'device': get_current_device(), 'dtype': dtype} self.weight = Parameter(torch.empty( self.num_embeddings_per_partition, self.embedding_dim, **factory_kwargs)) init.uniform_(self.weight, -1, 1) def forward(self, input_): if self.tensor_model_parallel_size > 1: # Build the mask. input_mask = (input_ < self.vocab_start_index) | \ (input_ >= self.vocab_end_index) # Mask the input. masked_input = input_.clone() - self.vocab_start_index masked_input[input_mask] = 0 else: masked_input = input_ # Get the embeddings. output_parallel = F.embedding(masked_input, self.weight, self.padding_idx, self.max_norm, self.norm_type, self.scale_grad_by_freq, self.sparse) # Mask the output embedding. if self.tensor_model_parallel_size > 1: output_parallel[input_mask, :] = 0.0 # Reduce across all the model parallel GPUs. output = output = reduce_input(output_parallel, ParallelMode.PARALLEL_1D) return output @LOSSES.register_module class vocab_parallel_cross_entropy(nn.Module): def __init__(self): super().__init__() def forward(self, vocab_parallel_logits, target): """Helper function for the cross entropy.""" vocab_parallel_logits = vocab_parallel_logits[..., :-1, :].contiguous() target = target[..., 1:].contiguous() return _VocabParallelCrossEntropy.apply(vocab_parallel_logits.view(-1, vocab_parallel_logits.size(-1)), target.view(-1)) class _VocabParallelCrossEntropy(torch.autograd.Function): @staticmethod def forward(ctx, vocab_parallel_logits, target): # Maximum value along vocab dimension across all GPUs. logits_max = torch.max(vocab_parallel_logits, dim=-1)[0] torch.distributed.all_reduce(logits_max, op=torch.distributed.ReduceOp.MAX, group=gpc.get_group(ParallelMode.PARALLEL_1D)) # Subtract the maximum value. vocab_parallel_logits.sub_(logits_max.unsqueeze(dim=-1)) # Get the partition's vocab indecies get_vocab_range = VocabUtility.vocab_range_from_per_partition_vocab_size partition_vocab_size = vocab_parallel_logits.size()[-1] rank = gpc.get_local_rank(ParallelMode.PARALLEL_1D) world_size = gpc.tensor_parallel_size vocab_start_index, vocab_end_index = get_vocab_range( partition_vocab_size, rank, world_size) # Create a mask of valid vocab ids (1 means it needs to be masked). target_mask = (target < vocab_start_index) | (target >= vocab_end_index) masked_target = target.clone() - vocab_start_index masked_target[target_mask] = 0 # Get predicted-logits = logits[target]. # For Simplicity, we convert logits to a 2-D tensor with size # [*, partition-vocab-size] and target to a 1-D tensor of size [*]. logits_2d = vocab_parallel_logits.view(-1, partition_vocab_size) masked_target_1d = masked_target.view(-1) arange_1d = torch.arange(start=0, end=logits_2d.size()[0], device=logits_2d.device) predicted_logits_1d = logits_2d[arange_1d, masked_target_1d] predicted_logits_1d = predicted_logits_1d.clone().contiguous() predicted_logits = predicted_logits_1d.view_as(target) predicted_logits[target_mask] = 0.0 # All reduce is needed to get the chunks from other GPUs. torch.distributed.all_reduce(predicted_logits, op=torch.distributed.ReduceOp.SUM, group=gpc.get_group(ParallelMode.PARALLEL_1D)) # Sum of exponential of logits along vocab dimension across all GPUs. exp_logits = vocab_parallel_logits torch.exp(vocab_parallel_logits, out=exp_logits) sum_exp_logits = exp_logits.sum(dim=-1) torch.distributed.all_reduce(sum_exp_logits, op=torch.distributed.ReduceOp.SUM, group=gpc.get_group(ParallelMode.PARALLEL_1D)) # Loss = log(sum(exp(logits))) - predicted-logit. loss = torch.log(sum_exp_logits) - predicted_logits loss = loss.mean() # Store softmax, target-mask and masked-target for backward pass. exp_logits.div_(sum_exp_logits.unsqueeze(dim=-1)) ctx.save_for_backward(exp_logits, target_mask, masked_target_1d) return loss @staticmethod def backward(ctx, grad_output): # Retreive tensors from the forward path. softmax, target_mask, masked_target_1d = ctx.saved_tensors # All the inputs have softmax as thier gradient. grad_input = softmax # For simplicity, work with the 2D gradient. partition_vocab_size = softmax.size()[-1] grad_2d = grad_input.view(-1, partition_vocab_size) # Add the gradient from matching classes. arange_1d = torch.arange(start=0, end=grad_2d.size()[0], device=grad_2d.device) grad_2d[arange_1d, masked_target_1d] -= ( 1.0 - target_mask.view(-1).float()) # Finally elementwise multiplication with the output gradients. grad_input.mul_(grad_output.unsqueeze(dim=-1)) return grad_input, None class VocabUtility: """Split the vocabulary into `world_size` chunks amd return the first and last index of the vocabulary belonging to the `rank` partition: Note that indecies in [fist, last)""" @staticmethod def vocab_range_from_per_partition_vocab_size(per_partition_vocab_size, rank, world_size): index_f = rank * per_partition_vocab_size index_l = index_f + per_partition_vocab_size return index_f, index_l @staticmethod def vocab_range_from_global_vocab_size(global_vocab_size, rank, world_size): per_partition_vocab_size = divide(global_vocab_size, world_size) return VocabUtility.vocab_range_from_per_partition_vocab_size( per_partition_vocab_size, rank, world_size) class VocabParallelLMHead1D(ParallelLayer): """ Language model head that shares the same parameters with the embedding matrix. """ def __init__(self, embed=None, vocab_size=None, dtype=None, embed_dim=None ): super().__init__() if embed is not None: self.head = embed else: self.head = VocabParallelEmbedding1D(vocab_size, embed_dim, dtype=dtype) def forward(self, x: Tensor) -> Tensor: x = reduce_grad(x, ParallelMode.PARALLEL_1D) x = F.linear(x, self.head.weight) return x ################################### class HiddenParallelEmbedding(torch.nn.Module): """Language model embeddings. Arguments: hidden_size: hidden size vocab_size: vocabulary size max_sequence_length: maximum size of sequence. This is used for positional embedding embedding_dropout_prob: dropout probability for embeddings init_method: weight initialization method num_tokentypes: size of the token-type embeddings. 0 value will ignore this embedding """ def __init__(self, hidden_size, vocab_size, max_sequence_length, embedding_dropout_prob, dtype=torch.float, padding_idx: int = 0, num_tokentypes=0, ): super(HiddenParallelEmbedding, self).__init__() self.hidden_size = hidden_size self.num_tokentypes = num_tokentypes # Word embeddings (parallel). self.word_embeddings = HiddenParallelEmbedding1D(vocab_size, hidden_size, dtype, padding_idx) self._word_embeddings_key = 'word_embeddings' # Position embedding (serial). self.position_embeddings = torch.nn.Embedding( max_sequence_length, self.hidden_size) self._position_embeddings_key = 'position_embeddings' # Initialize the position embeddings. # self.init_method(self.position_embeddings.weight) # Token type embedding. # Add this as an optional field that can be added through # method call so we can load a pretrain model without # token types and add them as needed. self._tokentype_embeddings_key = 'tokentype_embeddings' if self.num_tokentypes > 0: self.tokentype_embeddings = torch.nn.Embedding(self.num_tokentypes, self.hidden_size) # Initialize the token-type embeddings. # self.init_method(self.tokentype_embeddings.weight) else: self.tokentype_embeddings = None # Embeddings dropout self.embedding_dropout = torch.nn.Dropout(embedding_dropout_prob) def zero_parameters(self): """Zero out all parameters in embedding.""" self.word_embeddings.weight.data.fill_(0) self.word_embeddings.weight.shared = True self.position_embeddings.weight.data.fill_(0) self.position_embeddings.weight.shared = True if self.num_tokentypes > 0: self.tokentype_embeddings.weight.data.fill_(0) self.tokentype_embeddings.weight.shared = True def add_tokentype_embeddings(self, num_tokentypes): """Add token-type embedding. This function is provided so we can add token-type embeddings in case the pretrained model does not have it. This allows us to load the model normally and then add this embedding. """ if self.tokentype_embeddings is not None: raise Exception('tokentype embeddings is already initialized') if torch.distributed.get_rank() == 0: print('adding embedding for {} tokentypes'.format(num_tokentypes), flush=True) self.num_tokentypes = num_tokentypes self.tokentype_embeddings = torch.nn.Embedding(num_tokentypes, self.hidden_size) # Initialize the token-type embeddings. # self.init_method(self.tokentype_embeddings.weight) def forward(self, input_ids, position_ids=None, tokentype_ids=None): if input_ids is not None: input_shape = input_ids.size() input_ids = input_ids.view(-1, input_shape[-1]) words_embeddings = self.word_embeddings(input_ids) if position_ids is not None: position_ids = position_ids.view(-1, input_shape[-1]) if position_ids is None: position_ids = torch.arange(0, input_shape[-1] + 0, dtype=torch.long, device=get_current_device()) position_ids = position_ids.unsqueeze(0).view(-1, input_shape[-1]) position_embeddings = self.position_embeddings(position_ids) embeddings = words_embeddings + position_embeddings # Dropout. with seed(ParallelMode.TENSOR): embeddings = self.embedding_dropout(embeddings) return embeddings def state_dict_for_save_checkpoint(self, destination=None, prefix='', keep_vars=False): """For easy load.""" state_dict_ = {} state_dict_[self._word_embeddings_key] \ = self.word_embeddings.state_dict(destination, prefix, keep_vars) state_dict_[self._position_embeddings_key] \ = self.position_embeddings.state_dict( destination, prefix, keep_vars) if self.num_tokentypes > 0: state_dict_[self._tokentype_embeddings_key] \ = self.tokentype_embeddings.state_dict( destination, prefix, keep_vars) return state_dict_ def load_state_dict(self, state_dict, strict=True): """Customized load.""" # Word embedding. if self._word_embeddings_key in state_dict: state_dict_ = state_dict[self._word_embeddings_key] else: # for backward compatibility. state_dict_ = {} for key in state_dict.keys(): if 'word_embeddings' in key: state_dict_[key.split('word_embeddings.')[1]] \ = state_dict[key] self.word_embeddings.load_state_dict(state_dict_, strict=strict) # Position embedding. if self._position_embeddings_key in state_dict: state_dict_ = state_dict[self._position_embeddings_key] else: # for backward compatibility. state_dict_ = {} for key in state_dict.keys(): if 'position_embeddings' in key: state_dict_[key.split('position_embeddings.')[1]] \ = state_dict[key] self.position_embeddings.load_state_dict(state_dict_, strict=strict) # Tokentype embedding. if self.num_tokentypes > 0: state_dict_ = {} if self._tokentype_embeddings_key in state_dict: state_dict_ = state_dict[self._tokentype_embeddings_key] else: # for backward compatibility. for key in state_dict.keys(): if 'tokentype_embeddings' in key: state_dict_[key.split('tokentype_embeddings.')[1]] \ = state_dict[key] if len(state_dict_.keys()) > 0: self.tokentype_embeddings.load_state_dict(state_dict_, strict=strict) else: print('***WARNING*** expected tokentype embeddings in the ' 'checkpoint but could not find it', flush=True) class HiddenParallelEmbedding1D(torch.nn.Module): """Embedding parallelized in the vocabulary dimension. This is mainly adapted from torch.nn.Embedding and all the default values are kept. Arguments: num_embeddings: vocabulary size. embedding_dim: size of hidden state. init_method: method to initialize weights. """ def __init__(self, num_embeddings, embedding_dim, dtype=torch.float, padding_idx: int = None, init_method=None): super(HiddenParallelEmbedding1D, self).__init__() # Keep the input dimensions. self.num_embeddings = num_embeddings self.embedding_dim = embedding_dim embed_dim_per_partition = divide(embedding_dim, gpc.tensor_parallel_size) # Set the detauls for compatibility. self.padding_idx = padding_idx self.max_norm = None self.norm_type = 2. self.scale_grad_by_freq = False self.sparse = False self._weight = None # Allocate weights and initialize. factory_kwargs = {'device': get_current_device(), 'dtype': dtype} self.weight = Parameter(torch.empty( num_embeddings, embed_dim_per_partition, **factory_kwargs)) init.uniform_(self.weight, -1, 1) def forward(self, input_): # Get the embeddings. output_parallel = F.embedding(input_, self.weight, self.padding_idx, self.max_norm, self.norm_type, self.scale_grad_by_freq, self.sparse) # Reduce across all the model parallel GPUs. output = gather_forward_split_backward(output_parallel, ParallelMode.PARALLEL_1D, dim=-1) return output @LAYERS.register_module class HiddenParallelLMHead1D(ParallelLayer): """ Language model head that shares the same parameters with the embedding matrix. """ def __init__(self, embed=None, embed_dim=None, vocab_size=None, dtype=None, ): super().__init__() if embed is not None: self.head = embed self.synced_embed = True else: # self.embedding = HiddenParallelEmbedding1D(vocab_size, hidden_size, dtype, padding_idx) # (hidden_size/q, vocab_size) self.synced_embed = False self.head = Linear1D_Row(in_features=embed_dim, out_features=vocab_size, bias=False, dtype=dtype, parallel_input=False ) def forward(self, x: Tensor) -> Tensor: if self.synced_embed: x = F.linear(x, self.head.weight) else: x = self.head(x) return x
43.330128
129
0.609956
ae78222521795ad9e8769a7f4b794d5c26ea5981
470
py
Python
app/models.py
james-muriithi/django-api
26c9c96eafd35464366eaabf4811e0b96bb981f6
[ "MIT" ]
null
null
null
app/models.py
james-muriithi/django-api
26c9c96eafd35464366eaabf4811e0b96bb981f6
[ "MIT" ]
null
null
null
app/models.py
james-muriithi/django-api
26c9c96eafd35464366eaabf4811e0b96bb981f6
[ "MIT" ]
null
null
null
from django.db import models from django.contrib.auth.models import User # Create your models here. class News(models.Model): title = models.CharField(max_length=124) description = models.TextField() user = models.ForeignKey( User, on_delete=models.CASCADE, related_name='posted_news') created_at = models.DateTimeField(auto_now_add=True) class Meta: verbose_name_plural = 'News' def __str__(self): return self.title
24.736842
67
0.712766
eeeb5e2ab24b242aa6feaa78f7ca0a8ad5b4fec2
11,176
py
Python
packages/python/plotly/plotly/graph_objs/waterfall/_textfont.py
labaran1/plotly.py
7ec751e8fed4a570c11ea4bea2231806389d62eb
[ "MIT" ]
null
null
null
packages/python/plotly/plotly/graph_objs/waterfall/_textfont.py
labaran1/plotly.py
7ec751e8fed4a570c11ea4bea2231806389d62eb
[ "MIT" ]
null
null
null
packages/python/plotly/plotly/graph_objs/waterfall/_textfont.py
labaran1/plotly.py
7ec751e8fed4a570c11ea4bea2231806389d62eb
[ "MIT" ]
null
null
null
from plotly.basedatatypes import BaseTraceHierarchyType as _BaseTraceHierarchyType import copy as _copy class Textfont(_BaseTraceHierarchyType): # class properties # -------------------- _parent_path_str = "waterfall" _path_str = "waterfall.textfont" _valid_props = {"color", "colorsrc", "family", "familysrc", "size", "sizesrc"} # color # ----- @property def color(self): """ The 'color' property is a color and may be specified as: - A hex string (e.g. '#ff0000') - An rgb/rgba string (e.g. 'rgb(255,0,0)') - An hsl/hsla string (e.g. 'hsl(0,100%,50%)') - An hsv/hsva string (e.g. 'hsv(0,100%,100%)') - A named CSS color: aliceblue, antiquewhite, aqua, aquamarine, azure, beige, bisque, black, blanchedalmond, blue, blueviolet, brown, burlywood, cadetblue, chartreuse, chocolate, coral, cornflowerblue, cornsilk, crimson, cyan, darkblue, darkcyan, darkgoldenrod, darkgray, darkgrey, darkgreen, darkkhaki, darkmagenta, darkolivegreen, darkorange, darkorchid, darkred, darksalmon, darkseagreen, darkslateblue, darkslategray, darkslategrey, darkturquoise, darkviolet, deeppink, deepskyblue, dimgray, dimgrey, dodgerblue, firebrick, floralwhite, forestgreen, fuchsia, gainsboro, ghostwhite, gold, goldenrod, gray, grey, green, greenyellow, honeydew, hotpink, indianred, indigo, ivory, khaki, lavender, lavenderblush, lawngreen, lemonchiffon, lightblue, lightcoral, lightcyan, lightgoldenrodyellow, lightgray, lightgrey, lightgreen, lightpink, lightsalmon, lightseagreen, lightskyblue, lightslategray, lightslategrey, lightsteelblue, lightyellow, lime, limegreen, linen, magenta, maroon, mediumaquamarine, mediumblue, mediumorchid, mediumpurple, mediumseagreen, mediumslateblue, mediumspringgreen, mediumturquoise, mediumvioletred, midnightblue, mintcream, mistyrose, moccasin, navajowhite, navy, oldlace, olive, olivedrab, orange, orangered, orchid, palegoldenrod, palegreen, paleturquoise, palevioletred, papayawhip, peachpuff, peru, pink, plum, powderblue, purple, red, rosybrown, royalblue, rebeccapurple, saddlebrown, salmon, sandybrown, seagreen, seashell, sienna, silver, skyblue, slateblue, slategray, slategrey, snow, springgreen, steelblue, tan, teal, thistle, tomato, turquoise, violet, wheat, white, whitesmoke, yellow, yellowgreen - A list or array of any of the above Returns ------- str|numpy.ndarray """ return self["color"] @color.setter def color(self, val): self["color"] = val # colorsrc # -------- @property def colorsrc(self): """ Sets the source reference on Chart Studio Cloud for `color`. The 'colorsrc' property must be specified as a string or as a plotly.grid_objs.Column object Returns ------- str """ return self["colorsrc"] @colorsrc.setter def colorsrc(self, val): self["colorsrc"] = val # family # ------ @property def family(self): """ HTML font family - the typeface that will be applied by the web browser. The web browser will only be able to apply a font if it is available on the system which it operates. Provide multiple font families, separated by commas, to indicate the preference in which to apply fonts if they aren't available on the system. The Chart Studio Cloud (at https://chart- studio.plotly.com or on-premise) generates images on a server, where only a select number of fonts are installed and supported. These include "Arial", "Balto", "Courier New", "Droid Sans",, "Droid Serif", "Droid Sans Mono", "Gravitas One", "Old Standard TT", "Open Sans", "Overpass", "PT Sans Narrow", "Raleway", "Times New Roman". The 'family' property is a string and must be specified as: - A non-empty string - A tuple, list, or one-dimensional numpy array of the above Returns ------- str|numpy.ndarray """ return self["family"] @family.setter def family(self, val): self["family"] = val # familysrc # --------- @property def familysrc(self): """ Sets the source reference on Chart Studio Cloud for `family`. The 'familysrc' property must be specified as a string or as a plotly.grid_objs.Column object Returns ------- str """ return self["familysrc"] @familysrc.setter def familysrc(self, val): self["familysrc"] = val # size # ---- @property def size(self): """ The 'size' property is a number and may be specified as: - An int or float in the interval [1, inf] - A tuple, list, or one-dimensional numpy array of the above Returns ------- int|float|numpy.ndarray """ return self["size"] @size.setter def size(self, val): self["size"] = val # sizesrc # ------- @property def sizesrc(self): """ Sets the source reference on Chart Studio Cloud for `size`. The 'sizesrc' property must be specified as a string or as a plotly.grid_objs.Column object Returns ------- str """ return self["sizesrc"] @sizesrc.setter def sizesrc(self, val): self["sizesrc"] = val # Self properties description # --------------------------- @property def _prop_descriptions(self): return """\ color colorsrc Sets the source reference on Chart Studio Cloud for `color`. family HTML font family - the typeface that will be applied by the web browser. The web browser will only be able to apply a font if it is available on the system which it operates. Provide multiple font families, separated by commas, to indicate the preference in which to apply fonts if they aren't available on the system. The Chart Studio Cloud (at https://chart-studio.plotly.com or on- premise) generates images on a server, where only a select number of fonts are installed and supported. These include "Arial", "Balto", "Courier New", "Droid Sans",, "Droid Serif", "Droid Sans Mono", "Gravitas One", "Old Standard TT", "Open Sans", "Overpass", "PT Sans Narrow", "Raleway", "Times New Roman". familysrc Sets the source reference on Chart Studio Cloud for `family`. size sizesrc Sets the source reference on Chart Studio Cloud for `size`. """ def __init__( self, arg=None, color=None, colorsrc=None, family=None, familysrc=None, size=None, sizesrc=None, **kwargs, ): """ Construct a new Textfont object Sets the font used for `text`. Parameters ---------- arg dict of properties compatible with this constructor or an instance of :class:`plotly.graph_objs.waterfall.Textfont` color colorsrc Sets the source reference on Chart Studio Cloud for `color`. family HTML font family - the typeface that will be applied by the web browser. The web browser will only be able to apply a font if it is available on the system which it operates. Provide multiple font families, separated by commas, to indicate the preference in which to apply fonts if they aren't available on the system. The Chart Studio Cloud (at https://chart-studio.plotly.com or on- premise) generates images on a server, where only a select number of fonts are installed and supported. These include "Arial", "Balto", "Courier New", "Droid Sans",, "Droid Serif", "Droid Sans Mono", "Gravitas One", "Old Standard TT", "Open Sans", "Overpass", "PT Sans Narrow", "Raleway", "Times New Roman". familysrc Sets the source reference on Chart Studio Cloud for `family`. size sizesrc Sets the source reference on Chart Studio Cloud for `size`. Returns ------- Textfont """ super(Textfont, self).__init__("textfont") if "_parent" in kwargs: self._parent = kwargs["_parent"] return # Validate arg # ------------ if arg is None: arg = {} elif isinstance(arg, self.__class__): arg = arg.to_plotly_json() elif isinstance(arg, dict): arg = _copy.copy(arg) else: raise ValueError( """\ The first argument to the plotly.graph_objs.waterfall.Textfont constructor must be a dict or an instance of :class:`plotly.graph_objs.waterfall.Textfont`""" ) # Handle skip_invalid # ------------------- self._skip_invalid = kwargs.pop("skip_invalid", False) self._validate = kwargs.pop("_validate", True) # Populate data dict with properties # ---------------------------------- _v = arg.pop("color", None) _v = color if color is not None else _v if _v is not None: self["color"] = _v _v = arg.pop("colorsrc", None) _v = colorsrc if colorsrc is not None else _v if _v is not None: self["colorsrc"] = _v _v = arg.pop("family", None) _v = family if family is not None else _v if _v is not None: self["family"] = _v _v = arg.pop("familysrc", None) _v = familysrc if familysrc is not None else _v if _v is not None: self["familysrc"] = _v _v = arg.pop("size", None) _v = size if size is not None else _v if _v is not None: self["size"] = _v _v = arg.pop("sizesrc", None) _v = sizesrc if sizesrc is not None else _v if _v is not None: self["sizesrc"] = _v # Process unknown kwargs # ---------------------- self._process_kwargs(**dict(arg, **kwargs)) # Reset skip_invalid # ------------------ self._skip_invalid = False
33.76435
82
0.558608
e11db7d38894b157ab89c015c8cdb3098e5afce4
700
py
Python
tests/base.py
openprocurement/galleon
d27adaaf1e4c4daa3825dbcc6ce8ef0e0db1cfdc
[ "Apache-2.0" ]
null
null
null
tests/base.py
openprocurement/galleon
d27adaaf1e4c4daa3825dbcc6ce8ef0e0db1cfdc
[ "Apache-2.0" ]
1
2018-06-21T12:20:30.000Z
2018-06-21T12:20:30.000Z
tests/base.py
openprocurement/galleon
d27adaaf1e4c4daa3825dbcc6ce8ef0e0db1cfdc
[ "Apache-2.0" ]
2
2018-05-07T15:47:12.000Z
2022-02-14T21:06:46.000Z
import os.path import json import yaml from galleon import Mapper here = os.path.dirname(os.path.abspath(__file__)) with open(os.path.join(here, 'data/tender.json')) as _in: TENDER = json.load(_in) with open(os.path.join(here, 'data/mapping.yaml')) as _in: MAPPING = yaml.load(_in) with open(os.path.join(here, 'data/schema.json')) as _in: SCHEMA = json.load(_in) with open(os.path.join(here, 'data/expected.json')) as _in: RESULT = json.load(_in) class BaseTest(object): def test_simple(self, resolver, data, result): mapper = Mapper( self.__class__.TEST_MAPPING, resolver ) parsed = mapper.apply(data) assert parsed == result
24.137931
59
0.668571
a49d367efaa2c6492f9a4db3a190885027f3238d
97
py
Python
OA/Mubanspider/apps.py
CircularWorld/AutoOffice
052b95e094ed8790abb9bf22683006d8f3307ee4
[ "Apache-2.0" ]
null
null
null
OA/Mubanspider/apps.py
CircularWorld/AutoOffice
052b95e094ed8790abb9bf22683006d8f3307ee4
[ "Apache-2.0" ]
null
null
null
OA/Mubanspider/apps.py
CircularWorld/AutoOffice
052b95e094ed8790abb9bf22683006d8f3307ee4
[ "Apache-2.0" ]
null
null
null
from django.apps import AppConfig class MubanspiderConfig(AppConfig): name = 'Mubanspider'
16.166667
35
0.773196
c3b3390d521715b4e5a73941afd9aab6112eb290
306
py
Python
Python/minimum-number-of-keypresses.py
Priyansh2/LeetCode-Solutions
d613da1881ec2416ccbe15f20b8000e36ddf1291
[ "MIT" ]
4
2018-10-11T17:50:56.000Z
2018-10-11T21:16:44.000Z
Python/minimum-number-of-keypresses.py
Priyansh2/LeetCode-Solutions
d613da1881ec2416ccbe15f20b8000e36ddf1291
[ "MIT" ]
null
null
null
Python/minimum-number-of-keypresses.py
Priyansh2/LeetCode-Solutions
d613da1881ec2416ccbe15f20b8000e36ddf1291
[ "MIT" ]
4
2018-10-11T18:50:32.000Z
2018-10-12T00:04:09.000Z
# Time: O(n) # Space: O(1) import collections # greedy, sort class Solution(object): def minimumKeypresses(self, s): """ :type s: str :rtype: int """ return sum(cnt*(i//9+1) for i, cnt in enumerate(sorted(collections.Counter(s).itervalues(), reverse=True)))
20.4
115
0.584967
0b313151d321feaed85b5301791bc97a4ec8b0da
7,434
py
Python
code/branches/itmightbedave/python/oauth/example/server.py
learningcom/oauth.googlecode.com
f0d654b215cad1f4d9a3726b5f0bd62c49b566b9
[ "Apache-2.0" ]
2
2017-12-24T02:06:05.000Z
2020-10-21T05:03:22.000Z
code/branches/itmightbedave/python/oauth/example/server.py
learningcom/oauth.googlecode.com
f0d654b215cad1f4d9a3726b5f0bd62c49b566b9
[ "Apache-2.0" ]
null
null
null
code/branches/itmightbedave/python/oauth/example/server.py
learningcom/oauth.googlecode.com
f0d654b215cad1f4d9a3726b5f0bd62c49b566b9
[ "Apache-2.0" ]
1
2020-10-21T05:03:25.000Z
2020-10-21T05:03:25.000Z
from BaseHTTPServer import BaseHTTPRequestHandler, HTTPServer import urllib import oauth REQUEST_TOKEN_URL = 'http://pureshape.corp.yahoo.com/request_token' ACCESS_TOKEN_URL = 'http://pureshape.corp.yahoo.com/access_token' RENEW_ACCESS_TOKEN_URL = 'http://pureshape.corp.yahoo.com/renew_access_token' AUTHORIZATION_URL = 'http://pureshape.corp.yahoo.com/authorize' RESOURCE_URL = 'http://pureshape.corp.yahoo.com/photos' REALM = 'http://pureshape.corp.yahoo.com/' # example store for one of each thing class MockOAuthDataStore(oauth.OAuthDataStore): def __init__(self): self.consumer = oauth.OAuthConsumer('key', 'secret') self.request_token = oauth.OAuthToken('requestkey', 'requestsecret', 3600) self.access_token = oauth.OAuthToken('accesskey', 'accesssecret', 3600, 'sessionhandle', 3600) self.nonce = 'nonce' def lookup_consumer(self, key): if key == self.consumer.key: return self.consumer return None def lookup_token(self, token_type, token): token_attrib = getattr(self, '%s_token' % token_type) if token == token_attrib.key: return token_attrib return None def lookup_nonce(self, oauth_consumer, oauth_token, nonce): if oauth_token and oauth_consumer.key == self.consumer.key and (oauth_token.key == self.request_token.key or oauth_token.key == self.access_token.key) and nonce == self.nonce: return self.nonce return None def fetch_request_token(self, oauth_consumer): if oauth_consumer.key == self.consumer.key: return self.request_token return None def fetch_access_token(self, oauth_consumer, oauth_token): if oauth_consumer.key == self.consumer.key and oauth_token.key == self.request_token.key: # want to check here if token is authorized # for mock store, we assume it is return self.access_token return None def renew_access_token(self, oauth_consumer, oauth_token): if oauth_consumer.key == self.consumer.key and oauth_token.key == self.access_token.key and oauth_token.session_handle == self.access_token.session_handle: # Want to check here for token expiration # Also should make sure the new token is returned with a fresh expiration # for mock store, the old token is returned return self.access_token return None def authorize_request_token(self, oauth_token, user): if oauth_token.key == self.request_token.key: # authorize the request token in the store # for mock store, do nothing return self.request_token return None class RequestHandler(BaseHTTPRequestHandler): def __init__(self, *args, **kwargs): self.oauth_server = oauth.OAuthServer(MockOAuthDataStore()) self.oauth_server.add_signature_method(oauth.OAuthSignatureMethod_PLAINTEXT()) self.oauth_server.add_signature_method(oauth.OAuthSignatureMethod_HMAC_SHA1()) BaseHTTPRequestHandler.__init__(self, *args, **kwargs) # example way to send an oauth error def send_oauth_error(self, err=None): # send a 401 error self.send_error(401, str(err.message)) # return the authenticate header header = oauth.build_authenticate_header(realm=REALM) for k, v in header.iteritems(): self.send_header(k, v) def do_GET(self): # debug info #print self.command, self.path, self.headers # get the post data (if any) postdata = None if self.command == 'POST': try: length = int(self.headers.getheader('content-length')) postdata = self.rfile.read(length) except: pass # construct the oauth request from the request parameters oauth_request = oauth.OAuthRequest.from_request(self.command, self.path, headers=self.headers, query_string=postdata) # request token if self.path.startswith(REQUEST_TOKEN_URL): try: # create a request token token = self.oauth_server.fetch_request_token(oauth_request) # send okay response self.send_response(200, 'OK') self.end_headers() # return the token self.wfile.write(token.to_string()) except oauth.OAuthError, err: self.send_oauth_error(err) return # user authorization if self.path.startswith(AUTHORIZATION_URL): try: # get the request token token = self.oauth_server.fetch_request_token(oauth_request) callback = self.oauth_server.get_callback(oauth_request) # send okay response self.send_response(200, 'OK') self.end_headers() # return the callback url (to show server has it) self.wfile.write('callback: %s' % callback) # authorize the token (kind of does nothing for now) token = self.oauth_server.authorize_token(token, None) self.wfile.write('\n') # return the token key token_key = urllib.urlencode({'oauth_token': token.key}) self.wfile.write('token key: %s' % token_key) except oauth.OAuthError, err: self.send_oauth_error(err) return # access token if self.path.startswith(ACCESS_TOKEN_URL): try: # create an access token token = self.oauth_server.fetch_access_token(oauth_request) # send okay response self.send_response(200, 'OK') self.end_headers() # return the token self.wfile.write(token.to_string()) except oauth.OAuthError, err: self.send_oauth_error(err) return # renew token if self.path.startswith(RENEW_ACCESS_TOKEN_URL): try: token = self.oauth_server.refresh_access_token(oauth_request) # send okay response self.send_response(200, 'OK') self.end_headers() # return the token self.wfile.write(token.to_string()) except oauth.OAuthError, err: self.send_oauth_error(err) return # protected resources if self.path.startswith(RESOURCE_URL): try: # verify the request has been oauth authorized consumer, token, params = self.oauth_server.verify_request(oauth_request) # send okay response self.send_response(200, 'OK') self.end_headers() # return the extra parameters - just for something to return self.wfile.write(str(params)) except oauth.OAuthError, err: self.send_oauth_error(err) return def do_POST(self): return self.do_GET() def main(): try: server = HTTPServer(('', 8080), RequestHandler) print 'Test server running...' server.serve_forever() except KeyboardInterrupt: server.socket.close() if __name__ == '__main__': main()
39.967742
183
0.615281
3fe747323a598b256282253d47629e2f962cb317
4,872
py
Python
docs/conf.py
dem4ply/chibi_command
49efc3070bdf40e5f27146379487345b1accd427
[ "WTFPL" ]
null
null
null
docs/conf.py
dem4ply/chibi_command
49efc3070bdf40e5f27146379487345b1accd427
[ "WTFPL" ]
null
null
null
docs/conf.py
dem4ply/chibi_command
49efc3070bdf40e5f27146379487345b1accd427
[ "WTFPL" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- # # chibi_command documentation build configuration file, created by # sphinx-quickstart on Fri Jun 9 13:47:02 2017. # # This file is execfile()d with the current directory set to its # containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. # If extensions (or modules to document with autodoc) are in another # directory, add these directories to sys.path here. If the directory is # relative to the documentation root, use os.path.abspath to make it # absolute, like shown here. # import os import sys sys.path.insert(0, os.path.abspath('..')) import chibi_command # -- General configuration --------------------------------------------- # If your documentation needs a minimal Sphinx version, state it here. # # needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom ones. extensions = ['sphinx.ext.autodoc', 'sphinx.ext.viewcode'] # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix(es) of source filenames. # You can specify multiple suffix as a list of string: # # source_suffix = ['.rst', '.md'] source_suffix = '.rst' # The master toctree document. master_doc = 'index' # General information about the project. project = u'chibi_command' copyright = u"2020, Dem4ply" author = u"Dem4ply" # The version info for the project you're documenting, acts as replacement # for |version| and |release|, also used in various other places throughout # the built documents. # # The short X.Y version. version = chibi_command.__version__ # The full version, including alpha/beta/rc tags. release = chibi_command.__version__ # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. # # This is also used if you do content translation via gettext catalogs. # Usually you set "language" from the command line for these cases. language = None # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This patterns also effect to html_static_path and html_extra_path exclude_patterns = ['_build', 'Thumbs.db', '.DS_Store'] # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # If true, `todo` and `todoList` produce output, else they produce nothing. todo_include_todos = False # -- Options for HTML output ------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. # html_theme = 'alabaster' # Theme options are theme-specific and customize the look and feel of a # theme further. For a list of options available for each theme, see the # documentation. # # html_theme_options = {} # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # -- Options for HTMLHelp output --------------------------------------- # Output file base name for HTML help builder. htmlhelp_basename = 'chibi_commanddoc' # -- Options for LaTeX output ------------------------------------------ latex_elements = { # The paper size ('letterpaper' or 'a4paper'). # # 'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). # # 'pointsize': '10pt', # Additional stuff for the LaTeX preamble. # # 'preamble': '', # Latex figure (float) alignment # # 'figure_align': 'htbp', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, author, documentclass # [howto, manual, or own class]). latex_documents = [ (master_doc, 'chibi_command.tex', u'chibi_command Documentation', u'Dem4ply', 'manual'), ] # -- Options for manual page output ------------------------------------ # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ (master_doc, 'chibi_command', u'chibi_command Documentation', [author], 1) ] # -- Options for Texinfo output ---------------------------------------- # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ (master_doc, 'chibi_command', u'chibi_command Documentation', author, 'chibi_command', 'One line description of project.', 'Miscellaneous'), ]
29.707317
77
0.687808
c078bcf668c8518936bac20296eabddfe8196d9e
8,705
py
Python
intersight/model/network_element_list_all_of.py
CiscoDevNet/intersight-python
04b721f37c3044646a91c185c7259edfb991557a
[ "Apache-2.0" ]
5
2021-12-16T15:13:32.000Z
2022-03-29T16:09:54.000Z
intersight/model/network_element_list_all_of.py
CiscoDevNet/intersight-python
04b721f37c3044646a91c185c7259edfb991557a
[ "Apache-2.0" ]
4
2022-01-25T19:05:51.000Z
2022-03-29T20:18:37.000Z
intersight/model/network_element_list_all_of.py
CiscoDevNet/intersight-python
04b721f37c3044646a91c185c7259edfb991557a
[ "Apache-2.0" ]
2
2020-07-07T15:01:08.000Z
2022-01-31T04:27:35.000Z
""" Cisco Intersight Cisco Intersight is a management platform delivered as a service with embedded analytics for your Cisco and 3rd party IT infrastructure. This platform offers an intelligent level of management that enables IT organizations to analyze, simplify, and automate their environments in more advanced ways than the prior generations of tools. Cisco Intersight provides an integrated and intuitive management experience for resources in the traditional data center as well as at the edge. With flexible deployment options to address complex security needs, getting started with Intersight is quick and easy. Cisco Intersight has deep integration with Cisco UCS and HyperFlex systems allowing for remote deployment, configuration, and ongoing maintenance. The model-based deployment works for a single system in a remote location or hundreds of systems in a data center and enables rapid, standardized configuration and deployment. It also streamlines maintaining those systems whether you are working with small or very large configurations. The Intersight OpenAPI document defines the complete set of properties that are returned in the HTTP response. From that perspective, a client can expect that no additional properties are returned, unless these properties are explicitly defined in the OpenAPI document. However, when a client uses an older version of the Intersight OpenAPI document, the server may send additional properties because the software is more recent than the client. In that case, the client may receive properties that it does not know about. Some generated SDKs perform a strict validation of the HTTP response body against the OpenAPI document. # noqa: E501 The version of the OpenAPI document: 1.0.9-4950 Contact: intersight@cisco.com Generated by: https://openapi-generator.tech """ import re # noqa: F401 import sys # noqa: F401 from intersight.model_utils import ( # noqa: F401 ApiTypeError, ModelComposed, ModelNormal, ModelSimple, cached_property, change_keys_js_to_python, convert_js_args_to_python_args, date, datetime, file_type, none_type, validate_get_composed_info, ) def lazy_import(): from intersight.model.network_element import NetworkElement globals()['NetworkElement'] = NetworkElement class NetworkElementListAllOf(ModelNormal): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. Attributes: allowed_values (dict): The key is the tuple path to the attribute and the for var_name this is (var_name,). The value is a dict with a capitalized key describing the allowed value and an allowed value. These dicts store the allowed enum values. attribute_map (dict): The key is attribute name and the value is json key in definition. discriminator_value_class_map (dict): A dict to go from the discriminator variable value to the discriminator class name. validations (dict): The key is the tuple path to the attribute and the for var_name this is (var_name,). The value is a dict that stores validations for max_length, min_length, max_items, min_items, exclusive_maximum, inclusive_maximum, exclusive_minimum, inclusive_minimum, and regex. additional_properties_type (tuple): A tuple of classes accepted as additional properties values. """ allowed_values = { } validations = { } additional_properties_type = None _nullable = False @cached_property def openapi_types(): """ This must be a method because a model may have properties that are of type self, this must run after the class is loaded Returns openapi_types (dict): The key is attribute name and the value is attribute type. """ lazy_import() return { 'count': (int,), # noqa: E501 'results': ([NetworkElement], none_type,), # noqa: E501 } @cached_property def discriminator(): return None attribute_map = { 'count': 'Count', # noqa: E501 'results': 'Results', # noqa: E501 } _composed_schemas = {} required_properties = set([ '_data_store', '_check_type', '_spec_property_naming', '_path_to_item', '_configuration', '_visited_composed_classes', ]) @convert_js_args_to_python_args def __init__(self, *args, **kwargs): # noqa: E501 """NetworkElementListAllOf - a model defined in OpenAPI Keyword Args: _check_type (bool): if True, values for parameters in openapi_types will be type checked and a TypeError will be raised if the wrong type is input. Defaults to True _path_to_item (tuple/list): This is a list of keys or values to drill down to the model in received_data when deserializing a response _spec_property_naming (bool): True if the variable names in the input data are serialized names, as specified in the OpenAPI document. False if the variable names in the input data are pythonic names, e.g. snake case (default) _configuration (Configuration): the instance to use when deserializing a file_type parameter. If passed, type conversion is attempted If omitted no type conversion is done. _visited_composed_classes (tuple): This stores a tuple of classes that we have traveled through so that if we see that class again we will not use its discriminator again. When traveling through a discriminator, the composed schema that is is traveled through is added to this set. For example if Animal has a discriminator petType and we pass in "Dog", and the class Dog allOf includes Animal, we move through Animal once using the discriminator, and pick Dog. Then in Dog, we will make an instance of the Animal class but this time we won't travel through its discriminator because we passed in _visited_composed_classes = (Animal,) count (int): The total number of 'network.Element' resources matching the request, accross all pages. The 'Count' attribute is included when the HTTP GET request includes the '$inlinecount' parameter.. [optional] # noqa: E501 results ([NetworkElement], none_type): The array of 'network.Element' resources matching the request.. [optional] # noqa: E501 """ _check_type = kwargs.pop('_check_type', True) _spec_property_naming = kwargs.pop('_spec_property_naming', False) _path_to_item = kwargs.pop('_path_to_item', ()) _configuration = kwargs.pop('_configuration', None) _visited_composed_classes = kwargs.pop('_visited_composed_classes', ()) if args: raise ApiTypeError( "Invalid positional arguments=%s passed to %s. Remove those invalid positional arguments." % ( args, self.__class__.__name__, ), path_to_item=_path_to_item, valid_classes=(self.__class__,), ) self._data_store = {} self._check_type = _check_type self._spec_property_naming = _spec_property_naming self._path_to_item = _path_to_item self._configuration = _configuration self._visited_composed_classes = _visited_composed_classes + (self.__class__,) for var_name, var_value in kwargs.items(): if var_name not in self.attribute_map and \ self._configuration is not None and \ self._configuration.discard_unknown_keys and \ self.additional_properties_type is None: # discard variable. continue setattr(self, var_name, var_value)
49.460227
1,678
0.638599
4c277dbcf4c421307f417bacfa275d71e3c51b3f
2,222
py
Python
loss.py
emanuelevivoli/CompReGAN
33589c3871bed8adcc157bf25a45b8d12ba1af66
[ "MIT" ]
null
null
null
loss.py
emanuelevivoli/CompReGAN
33589c3871bed8adcc157bf25a45b8d12ba1af66
[ "MIT" ]
null
null
null
loss.py
emanuelevivoli/CompReGAN
33589c3871bed8adcc157bf25a45b8d12ba1af66
[ "MIT" ]
null
null
null
import torch from torch import nn from torchvision.models.vgg import vgg16 from utils.jpeg_layer import jpegLayer class GeneratorLoss(nn.Module): def __init__(self): super(GeneratorLoss, self).__init__() vgg = vgg16(pretrained=True) loss_network = nn.Sequential(*list(vgg.features)[:31]).eval() for param in loss_network.parameters(): param.requires_grad = False self.loss_network = loss_network self.mse_loss = nn.MSELoss() self.tv_loss = TVLoss() self.jpeg = jpegLayer def forward(self, out_labels, out_images, target_images, quality_factor): # Adversarial Loss (l^{SR}_{GEN}) # ? adversarial_loss = 1 - out_labels # ??? adversarial_loss = torch.mean(1 - out_labels) # adversarial_loss = - torch.log(out_labels) adversarial_loss = torch.mean(1 - out_labels) # Perception Loss (l^{SR}_{VGG}) perception_loss = self.mse_loss(self.loss_network(out_images), self.loss_network(target_images)) # Image Loss (l^{SR}_{MSE}) image_loss = self.mse_loss(out_images, target_images) # TV Loss (l_{TV}) tv_loss = self.tv_loss(out_images) # Jpeg Loss jpeg_loss = self.mse_loss(self.jpeg(out_images, quality_factor), self.jpeg(target_images, quality_factor)) return jpeg_loss, image_loss, adversarial_loss, 0.006 * perception_loss, 2e-8 * tv_loss class TVLoss(nn.Module): def __init__(self, tv_loss_weight=1): super(TVLoss, self).__init__() self.tv_loss_weight = tv_loss_weight def forward(self, x): batch_size = x.size()[0] h_x = x.size()[2] w_x = x.size()[3] count_h = self.tensor_size(x[:, :, 1:, :]) count_w = self.tensor_size(x[:, :, :, 1:]) h_tv = torch.pow((x[:, :, 1:, :] - x[:, :, :h_x - 1, :]), 2).sum() w_tv = torch.pow((x[:, :, :, 1:] - x[:, :, :, :w_x - 1]), 2).sum() return self.tv_loss_weight * 2 * (h_tv / count_h + w_tv / count_w) / batch_size @staticmethod def tensor_size(t): return t.size()[1] * t.size()[2] * t.size()[3] if __name__ == "__main__": g_loss = GeneratorLoss() print(g_loss)
36.42623
114
0.612061
01875bfbc4dfe636fce5c48188be2f2ceff9d3c5
1,296
py
Python
codes/data/torch_dataset.py
neonbjb/mmsr
2706a84f15613e9dcd48e2ba927e7779046cf681
[ "Apache-2.0" ]
1
2020-06-27T13:18:55.000Z
2020-06-27T13:18:55.000Z
codes/data/torch_dataset.py
neonbjb/mmsr
2706a84f15613e9dcd48e2ba927e7779046cf681
[ "Apache-2.0" ]
null
null
null
codes/data/torch_dataset.py
neonbjb/mmsr
2706a84f15613e9dcd48e2ba927e7779046cf681
[ "Apache-2.0" ]
null
null
null
import torch from torch.utils.data import Dataset import torchvision.transforms as T from torchvision import datasets # Wrapper for basic pytorch datasets which re-wraps them into a format usable by ExtensibleTrainer. class TorchDataset(Dataset): def __init__(self, opt): DATASET_MAP = { "mnist": datasets.MNIST, "fmnist": datasets.FashionMNIST, "cifar10": datasets.CIFAR10, } transforms = [] if opt['flip']: transforms.append(T.RandomHorizontalFlip()) if opt['crop_sz']: transforms.append(T.RandomCrop(opt['crop_sz'], padding=opt['padding'], padding_mode="reflect")) transforms.append(T.ToTensor()) transforms = T.Compose(transforms) is_for_training = opt['test'] if 'test' in opt.keys() else True self.dataset = DATASET_MAP[opt['dataset']](opt['datapath'], train=is_for_training, download=True, transform=transforms) self.len = opt['fixed_len'] if 'fixed_len' in opt.keys() else len(self.dataset) def __getitem__(self, item): underlying_item = self.dataset[item][0] return {'lq': underlying_item, 'hq': underlying_item, 'LQ_path': str(item), 'GT_path': str(item)} def __len__(self): return self.len
40.5
127
0.648148
d394e0cf28a4ad64599043a2a9863312fe69272e
3,468
py
Python
telegrambot/handlers.py
dcopm999/vacancy-telegrambot
a8a87a1eb166b3c6f50af6d4cd301e064e45d798
[ "MIT" ]
null
null
null
telegrambot/handlers.py
dcopm999/vacancy-telegrambot
a8a87a1eb166b3c6f50af6d4cd301e064e45d798
[ "MIT" ]
1
2020-10-08T11:32:10.000Z
2020-10-08T11:32:10.000Z
telegrambot/handlers.py
dcopm999/crm-telegrambot
a8a87a1eb166b3c6f50af6d4cd301e064e45d798
[ "MIT" ]
null
null
null
import logging from abc import ABC, abstractmethod from typing import Any, Optional from telegrambot.bot import TelegramBot from telegrambot.mixins import HistoryMixin, CatalogMixin logger = logging.getLogger(__name__) class Handler(ABC): """ Интерфейс Обработчика объявляет метод построения цепочки обработчиков. Он также объявляет метод для выполнения запроса. """ @abstractmethod def set_next(self, handler): pass @abstractmethod def handle(self, request) -> Optional[str]: pass class AbstractHandler(Handler): """ Поведение цепочки по умолчанию может быть реализовано внутри базового класса обработчика. """ _next_handler: Handler = None def __init__(self): logger.debug('%s: __init__()', self.__class__) self.bot = TelegramBot() def set_next(self, handler: Handler) -> Handler: logger.debug('%s: set_next()', self.__class__) self._next_handler = handler logger.debug('%s: self._next_handler=%s' % (self.__class__, handler)) # Возврат обработчика отсюда позволит связать обработчики простым # способом, вот так: # monkey.set_next(squirrel).set_next(dog) return handler @abstractmethod def handle(self, request: Any) -> str: if self._next_handler: return self._next_handler.handle(request) return None class HandlerCommandBase(AbstractHandler): command: str def handle(self, request: Any) -> str: logger.debug('%s: handle()', self.__class__) if request.get('callback_query', False) or request.get('message').get('text') == self.command or self.command == '__all__': self.run(request) super().handle(request) def run(self, request): return None def get_result(self): return None class HandlerCommandStart(HistoryMixin, HandlerCommandBase): command = '/start' def run(self, request): logger.debug('%s: run()', self.__class__) if request.get('message'): chat_id = request.get('message').get('chat').get('id') keyboard = self.bot.get_kb_catalog() self.bot.send_message(chat_id, 'Catalog', reply_markup=keyboard) super(HandlerCommandStart, self).run(request) def get_result(self): return 'started' class HandlerCommandHelp(HandlerCommandBase): command = '/help' def get_result(self): return 'helped' class HandlerProductList(CatalogMixin, HandlerCommandBase): command = '__all__' def run(self, request): if request.get('message'): chat_id = request.get('message').get('chat').get('id') category = request.get('message').get('text') products = self.get_product_by_categoty(category) if products is None: pass else: for product in products: buy_btn = self.bot.get_kb_inline_buy(product) self.bot.send_photo(chat_id, product.image.path, product.caption, buy_btn) class HandlerProductOrder(CatalogMixin, HandlerCommandBase): command = '__all__' def run(self, request): if request.get('callback_query'): chat_id = request.get('callback_query').get('message').get('chat').get('id') product_id = request.get('callback_query').get('data') self.set_product_order(chat_id=chat_id, product_id=product_id)
30.421053
131
0.647924
4c02be6834a4436fb3b932e8291fdd61428c3111
2,946
py
Python
itertools_2022-02-24.py
cartersimon/learnpython1
16ef511b3917e144c162861808af7bdcbcaebdc6
[ "MIT" ]
null
null
null
itertools_2022-02-24.py
cartersimon/learnpython1
16ef511b3917e144c162861808af7bdcbcaebdc6
[ "MIT" ]
null
null
null
itertools_2022-02-24.py
cartersimon/learnpython1
16ef511b3917e144c162861808af7bdcbcaebdc6
[ "MIT" ]
null
null
null
# https://www.youtube.com/watch?v=HGOBQPFzWKo&list=RDCMUC8butISFwT-Wl7EV0hUK0BQ&start_radio=1&t=181s # Intermediate Python Programming Course (freecodecamp.org) # Tools for handling iterators (iterators can be used in a for loop- lists, etc) # itertools- product, permutations, combinations, accumulate, groupby, infinite iterators from itertools import permutations a = [1, 2, 3] perm = permutations(a) # create all permutations of the elements perm = permutations(a, 2) # permutations with combinations of 2 elements print(list(perm)) from itertools import combinations, combinations_with_replacement a = [1, 2, 3, 4] comb = combinations(a, 2) # returns unique combinations, length arg required print(list(comb)) comb_wr = combinations_with_replacement(a, 2) # as combinations but can duplicate elements from itertools import accumulate # creates an iterator that returns acculumated sums, or other binary functions a = [1, 2, 3, 4] acc = accumulate(a) # Output... [1, 3, 6, 10] # by default adds values but can apply function import operator acc2 = accumulate(a, func=operator.mul()) # multiplies values a = [1, 2, 5, 3, 4] acc2 = accumulate(a, func=max()) # get maximum value # output... [1, 2, 5, 5, 5] from itertools import groupby # creates an iterator that returns keys and groups from an iteratable def smaller_than_3(x): return x < 3 a = [1, 2, 3, 4] grp_obj = groupby(a, key=smaller_than_3) # creates 2 groups (lists), values that match the key, and those that don't for key, value in grp_obj: print(key,list(value)) # Output... # True [1, 2] # False [3, 4] # could also use a llambda function for the key... grp_obj2 = groupby(a, key=lambda x: x < 3) for key, value in grp_obj2: print(key,list(value)) people = [{'name': 'Tim', 'age': 25}, {'name': 'Dan', 'age': 25}, {'name': 'Lisa', 'age': 27}, {'name': 'Claire', 'age': 28}] grp_obj3 = groupby(people, key=lambda x: x['age']) for key, value in grp_obj3: print(key,list(value)) # Output... # 25 [{'name': 'Tim', 'age': 25}, {'name': 'Dan', 'age': 25}] # 27 [{'name': 'Lisa', 'age': 27}] # 28 [{'name': 'Claire', 'age': 28}] # some infinite iterators... from itertools import count, cycle, repeat for i in count(10): # creates a count from 10 to infinity print(i) if i == 15: # break at 15 break b = [1, 2, 3] for i in b: print(i) # cycles thru all values in the list infinitely # Output... # 1 # 2 # 3 # 1 # 2 # etc... for i in repeat(1): # outputs 1 infinitely print(i) for i in repeat(1, 4): # outputs 1 four times print(i)
35.493976
119
0.588934
52b7274aa384b84023dc45e47915c5117e677937
2,004
py
Python
01_ode_example_pendulum.py
benmaier/phase_space_example
70807ce73a749db4b64edd880bc9bf46f5a97383
[ "MIT" ]
3
2018-11-19T12:56:15.000Z
2019-10-16T12:21:09.000Z
01_ode_example_pendulum.py
benmaier/phase_space_example
70807ce73a749db4b64edd880bc9bf46f5a97383
[ "MIT" ]
null
null
null
01_ode_example_pendulum.py
benmaier/phase_space_example
70807ce73a749db4b64edd880bc9bf46f5a97383
[ "MIT" ]
1
2018-11-19T14:02:02.000Z
2018-11-19T14:02:02.000Z
#!/usr/bin/python # -*- coding: utf-8 -*- # import for fast numerics import numpy as np # import the routine for ODE integration from scipy.integrate import ode # import the plotting routines import matplotlib.pyplot as pl # set equation of motion for pendulum def dy_over_dt(t,y,g,l): r"""pendulum: d^2 x / dt^2 = - g/l * sin(x) where x is the angle of the pendulum in phase space: dx/dt = v dv/dt = (-g/l) sin(x) as vector equation d / x \ / 0 1 \ /sin(x)\ dy --- | | = | | | | = -- d t \ v / \ -g/l 0 / \ v / dt """ result = np.zeros_like(y) result[0] = y[1] result[1] = -g/l * np.sin(y[0]) return result # set parameters of pendulum g = 1 # gravitational constant l = 1 # pendulum length # initial values x_0 = 0 # intial angular position v_0 = 1.0 # initial angular momentum t_0 = 0 # initial time # initial y-vector from initial position and momentum y0 = np.array([x_0,v_0]) # initialize integrator r = ode(dy_over_dt) # Runge-Kutta with step size control r.set_integrator('dopri5') # set initial values r.set_initial_value(y0,t_0) # set g, l to pass to dx/dt r.set_f_params(g,l) # max value of time and points in time to integrate to t_max = 10 N_spacing_in_t = 1000 # create vector of time points you want to evaluate t = np.linspace(t_0,t_max,N_spacing_in_t) # create vector of positions for those times y_result = np.zeros((len(t), 2)) # loop through all demanded time points for it, t_ in enumerate(t): # get result of ODE integration up to the demanded time y = r.integrate(t_) # write result to result vector y_result[it,:] = y # get angle and angular momentum angle = y_result[:,0] angular_momentum = y_result[:,1] # plot result pl.plot(angle, angular_momentum,'-',lw=1) pl.xlabel('angle $x$') pl.ylabel('angular momentum $v$') pl.gcf().savefig('pendulum_single_run.png',dpi=300) pl.show()
22.021978
59
0.633733
7eb2dbadf8dfa65a84b458ee447c2841ea4512b1
72,373
py
Python
jumeg/epocher/jumeg_epocher_events.py
fboers/jumeg
e04896989faf72f4dbe7adf136e4d158d212f24a
[ "BSD-3-Clause" ]
null
null
null
jumeg/epocher/jumeg_epocher_events.py
fboers/jumeg
e04896989faf72f4dbe7adf136e4d158d212f24a
[ "BSD-3-Clause" ]
null
null
null
jumeg/epocher/jumeg_epocher_events.py
fboers/jumeg
e04896989faf72f4dbe7adf136e4d158d212f24a
[ "BSD-3-Clause" ]
null
null
null
'''Class JuMEG_Epocher_Events Class to extract event/epoch information and save to hdf5 extract mne-events per condition, save to HDF5 file ---------------------------------------------------------------- Author: -------- Frank Boers <f.boers@fz-juelich.de> Updates: ---------------------------------------------------------------- update: 19.06.2018 complete new, support for IOD and eyetracking events ---------------------------------------------------------------- Example: -------- #--- example via obj: from jumeg.epocher.jumeg_epocher import jumeg_epocher from jumeg.epocher.jumeg_epocher_epochs import JuMEG_Epocher_Epochs from jumeg.jumeg_base import jumeg_base as jb #-- jumeg_epocher.template_path ='.' jumeg_epocher.verbose = verbose #--- jumeg_epocher_epochs = JuMEG_Epocher_Epochs() #--- fname = test.fif raw = None condition_list = ["Cond1","Condi2"] #--- events: finding events, store into pandas dataframe ansd save as hdf5 #--- parameter for apply_events_to_hdf evt_param = { "condition_list":condition_list, "template_path": template_path, "template_name": template_name, "verbose" : verbose } (_,raw,epocher_hdf_fname) = jumeg_epocher.apply_events(fname,raw=raw,**evt_param) #--- epochs ep_param={ "condition_list": condition_list, "template_path" : template_path, "template_name" : template_name, "verbose" : verbose, "parameter":{ "event_extention": ".eve", "save_condition":{"events":True,"epochs":True,"evoked":True} }} #--- print "---> EPOCHER Epochs" print " -> File : "+ fname print " -> Epocher Template: "+ template_name+"\n" jumeg_epocher.apply_epochs(fname=fname,raw=raw,**ep_param) ''' import sys,logging import numpy as np import pandas as pd import mne from copy import deepcopy from jumeg.base.jumeg_base import jumeg_base,JuMEG_Base_Basic from jumeg.epocher.jumeg_epocher_hdf import JuMEG_Epocher_HDF logger = logging.getLogger('jumeg') __version__="2020.01.07.001" pd.set_option('display.precision', 3) class JuMEG_Epocher_Channel_Baseline(object): """ base class for baseline dict definitions & properties "baseline" :{"method":"avg","type_input":"iod_onset","baseline": [null,0]} ToDO: use __slots__? """ def __init__(self,parameter=None,label="baseline"): super(JuMEG_Epocher_Channel_Baseline,self).__init__() self._param = parameter self._label = label #--- def _get_param(self,key=None): try: if key in self._param[self._label]: return self._param[self._label][key] except: pass return None #--- def _set_param(self,key=None,val=None): self._param[self._label][key] = val #---baseline type @property def method(self): return self._get_param("method") @method.setter def method(self,v): self._set_param("method",v) #---baseline type @property def type_input(self): return self._get_param("type_input") @type_input.setter def type_put(self,v): self._set_param("type_input",v) #---baseline @property def baseline(self): return self._get_param("baseline") @baseline.setter def baseline(self,v): self._set_param("baseline",v) #---baseline @property def onset(self): if type( self._get_param("baseline") ) is list: return self.baseline[0] #---baseline @property def offset(self): if type( self._get_param("baseline") ) is list: return self.baseline[1] #--- def info(self): """ logs parameter with logger.info :return: """ logger.info( jumeg_base.pp_list2str(self._param) ) class JuMEG_Epocher_Basic(JuMEG_Base_Basic): """ base class for definitions & properties """ def __init__(self): super(JuMEG_Epocher_Basic,self).__init__() self._rt_type_list = ['MISSED', 'TOEARLY', 'WRONG', 'HIT'] self._data_frame_stimulus_cols = ['id','onset','offset'] self._data_frame_response_cols = ['rt_type','rt','rt_id','rt_onset','rt_offset','rt_index','rt_counts','bads','selected','weighted_selected'] self._stat_postfix = '-epocher-stats.csv' self._idx_bad = -1 #--- @property def idx_bad(self): return self._idx_bad #--- @property def data_frame_stimulus_cols(self): return self._data_frame_stimulus_cols @data_frame_stimulus_cols.setter def data_frame_stimulus_cols(self,v): self._data_frame_stimulus_cols = v #--- @property def data_frame_response_cols (self): return self._data_frame_response_cols @data_frame_response_cols.setter def data_frame_response_cols(self,v): self._data_frame_response_cols = v #--- rt_type list: 'MISSED', 'TOEARLY', 'WRONG', 'HIT' @property def rt_type_list(self): return self._rt_type_list #--- rt type index: 'MISSED', 'TOEARLY', 'WRONG', 'HIT' def rt_type_as_index(self,s): return self._rt_type_list.index( s.upper() ) @property def idx_missed(self): return self._rt_type_list.index( 'MISSED') @property def idx_toearly(self): return self._rt_type_list.index( 'TOEARLY') @property def idx_wrong(self): return self._rt_type_list.index( 'WRONG') @property def idx_hit(self): return self._rt_type_list.index( 'HIT') #--- @property def data_frame_stimulus_cols(self): return self._data_frame_stimulus_cols @data_frame_stimulus_cols.setter def data_frame_stimulus_cols(self,v): self._data_frame_stimulus_cols = v #--- @property def data_frame_response_cols(self): return self._data_frame_response_cols @data_frame_response_cols.setter def data_frame_response_cols(self,v): self._data_frame_response_cols = v #--- events stat file (output as csv) @property def stat_postfix(self): return self._stat_postfix @stat_postfix.setter def stat_postfix(self, v): self._stat_postfix = v class JuMEG_Epocher_Events_Channel_BaseBase(object): """ base class to handel epocher template channel parameter Parameter: ---------- label : first-level key in dictionary <None> parameter: epocher template parameter as dictionary <None> Example: -------- iod_parameter= {"marker" :{"channel":"StimImageOnset","type_input":"img_onset","prefix":"img"}, "response":{"matching":true,"channel":"IOD","type_input":"iod_onset","prefix":"iod"} } response = JuMEG_Epocher_Events_Channel_Base(label="response",parameter= iod_parameter]) print respone.channel >> IOD """ def __init__(self,label=None,parameter=None): self.label = label self._param = parameter #--- def get_channel_parameter(self,key=None,prefix=None): try: if prefix: k = prefix + '_' + key return self._param[self.label][k] else: return self._param[self.label][key] except: pass return None #return self._param #--- def set_channel_parameter(self,key=None,val=None,prefix=None): if key: if prefix: self._param[self.label][prefix + '_' + key] = val else: self._param[self.label][key] = val #--- @property def matching(self): return self.get_channel_parameter(key="matching") @matching.setter def matching(self,v): self.get_channel_parameter(key="matching",val=v) #--- @property def channel(self): return self.get_channel_parameter(key="channel") @channel.setter def channel(self,v): self.set_channel_parameter(key="channel",val=v) #--- @property def prefix(self): return self.get_channel_parameter(key="prefix") @prefix.setter def prefix(self,v): self.set_channel_parameter(key="prefix",val=v) class JuMEG_Epocher_Events_Channel_Base(JuMEG_Epocher_Events_Channel_BaseBase): """ base class to handel epocher template channel parameter Parameter: ---------- label : first-level key in dictionary <None> parameter: epocher template parameter as dictionary <None> Example: -------- iod_parameter= {"marker" :{"channel":"StimImageOnset","type_input":"img_onset","prefix":"img"}, "response":{"matching":true,"channel":"IOD","type_input":"iod_onset","prefix":"iod"} } response = JuMEG_Epocher_Events_Channel_Base(label="response",parameter= iod_parameter]) print respone.channel >> IOD """ def __init__(self,label=None,parameter=None): super().__init__() self.label = label self._param = parameter #--- @property def matching_type(self): return self.get_channel_parameter(key="matching_type") @matching_type.setter def matching_type(self,v): self.get_channel_parameter(key="matching_type",val=v) #--- @property def type_input(self): return self.get_channel_parameter(key="type_input") @type_input.setter def type_input(self,v): self.set_channel_parameter(key="type_input",val=v) #--- @property def type_offset(self): return self.get_channel_parameter(key="type_offset") @type_offset.setter def type_offset(self,v): self.set_channel_parameter(key="type_offset",val=v) #--- @property def type_output(self): return self.get_channel_parameter(key="type_output") @type_output.setter def type_output(self,v): self.set_channel_parameter(key="type_output",val=v) #---type_result: "hit","wrong","missed" @property def type_result(self): return self.get_channel_parameter(key="type_result") @type_result.setter def type_result(self,v): self.set_channel_parameter(key="type_result",val=v) #--- @property def channel_parameter(self): return self._param[self.channel] #--- @property def parameter(self): return self._param @parameter.setter def parameter(self,v): self._param = v #--- @property def get_value_with_prefix(self,v): return self.get_channel_parameter(self,key=v,prefix=self.prefix) #--- def get_parameter(self,k): return self._param[k] #--- def set_parameter(self,k,v): self._param[k]=v #--- @property def time_pre(self): return self.get_parameter("time_pre") @time_pre.setter def time_pre(self,v): self.set_parameter("time_pre",v) #--- @property def time_post(self): return self.get_parameter("time_post") @time_post.setter def time_post(self,v): self.set_parameter("time_post",v) #--- def info(self): """ logs parameter with logger.info :return: """ logger.info( jumeg_base.pp_list2str(self._param) ) class JuMEG_Epocher_Events_Channel_IOD(object): """class to handel epocher template IOD parameter Parameter: ---------- label : first-level key in dictionary <iod> parameter: epocher template parameter as dictionary <None> Return: -------- None Example: -------- input json dictonary parameter={ "default":{ "Stim":{ "events":{"stim_channel":"STI 014","output":"onset","consecutive":true,"min_duration":0.0005,"shortest_event":1,"mask":0}, "event_id":84,"and_mask":255,"system_delay_ms":0.0,"early_ids_to_ignore":null}, "IOD":{ "events":{ "stim_channel":"STI 013","output":"onset","consecutive":true,"min_duration":0.0005,"shortest_event":1,"mask":0}, "and_mask":128,"window":[0.0,0.2],"counts":"first","system_delay_ms":0.0,"early_ids_to_ignore":null,"event_id":128,"and_mask":255} }, "cond1":{ "postfix":"cond1", "info" :" my comments", "iod" :{"marker" :{"channel":"StimImageOnset","type_input":"img_onset","prefix":"img"}, "response":{"matching":true,"channel":"IOD","type_input":"iod_onset","prefix":"iod"}}, "StimImageOnset" : {"event_id":94}, "IOD" : {"event_id":128} } } iod = JuMEG_Epocher_Events_Channel_IOD(label="response",parameter= parameter["condi1"]) print iod.response.channel >> IOD """ def __init__(self,label="iod",parameter=None): #super(JuMEG_Epocher_Events_Channel_IOD,self).__init__(label="iod",meter=None) self._info = None self.label = label self._param = parameter self.response = JuMEG_Epocher_Events_Channel_Base(label="response",parameter=parameter["iod"]) self.marker = JuMEG_Epocher_Events_Channel_Base(label="marker", parameter=parameter["iod"]) #--- @property def iod_matching(self): return self.response.matching @iod_matching.setter def iod_matching(self,v): self.response.matching = v #--- @property def info(self): return self._info @info.setter def info(self,v): self._info = v #--- @property def parameter(self): return self._param @parameter.setter def parameter(self,v): self._param = v self.response.parameter = v["iod"] self.marker.parameter = v["iod"] #--- @property def response_channel_parameter(self): return self._param[self.response.channel] #--- @property def marker_channel_parameter(self): return self._param[self.marker.channel] #--- def info(self): """ logs parameter with logger.info :return: """ logger.info( jumeg_base.pp_list2str(self._param) ) class JuMEG_Epocher_Events_Channel(JuMEG_Epocher_Events_Channel_Base): ''' class for marker and response channel ''' def __init__(self,label=None,parameter=None): super().__init__(label=label,parameter=parameter) self._info = None #--- @property def info(self): return self._info @info.setter def info(self,v): self._info = v #--- @property def stim_channel(self): return self._param[ self.channel ]["events"]["stim_channel"] @property def stim_output(self): return self._param[ self.channel ]["events"]["output"] class JuMEG_Epocher_Events_Window(JuMEG_Epocher_Events_Channel): """ sub class, wrapper for this dict "window_matching":{ "matching": true, "channel": "ET_Events", "window_onset": "iod_onset", "window_offset": "resp_onset", "event_type": "onset", "prefix": "wet" }, Parameter: ---------- param: label param: parameter """ def __init__(self,label=None,parameter=None): super().__init__(label=label,parameter=parameter) @property def window_onset(self): return self.get_channel_parameter(key="window_onset") @property def window_offset(self): return self.get_channel_parameter(key="window_offset") @property def event_type(self): return self.get_channel_parameter(key="event_type") #--- class JuMEG_Epocher_ResponseMatching(JuMEG_Epocher_Basic): """ CLS to do response matching for help refer to JuMEG_Epocher_ResponseMatching.apply() function """ #--- def __init__(self,raw=None,stim_df=None,stim_param=None,stim_type_input="onset",stim_prefix="stim",resp_df=None, resp_param=None,resp_type_input="onset",resp_type_offset="offset",resp_prefix="resp",verbose=False,debug=False): super().__init__() self.column_name_list_update = ['div','type','index','counts'] self.column_name_list_extend = ['bads','selected','weighted_selected'] self.raw = raw self.verbose = verbose self.debug = debug self.stim_df_orig = stim_df self.stim_df = None self.stim_param = stim_param self.stim_type_input = stim_type_input self.stim_prefix = stim_prefix #--- self.resp_df_orig = resp_df self.resp_df = None self.resp_param = resp_param self.resp_type_input = resp_type_input self.resp_type_offset = resp_type_offset self.resp_prefix = resp_prefix #--- self.DataFrame = None #--- @property def div_column(self): return self.resp_prefix+"-div" def reset_dataframe(self,max_rows): """ reset output pandas dataframe add stimulus,response data frame columns and extend with prefix init with zeros x MAXROWS Parameters ---------- max_rows: number of dataframe rows Returns ------- dataframe[ zeros x MaxRows ] """ col=[] col.extend( self.stim_df.columns.tolist() ) col.extend( self.resp_df.columns.tolist() ) for key in self.column_name_list_update: if self.resp_prefix: k = self.resp_prefix +'_'+ key else: k = key if k not in col: col.append( k ) for k in self.column_name_list_extend: if k not in col: col.append(k) return pd.DataFrame(0,index=range(max_rows),columns=col) def update(self,**kwargs): """ update CLS parameter Parameters ---------- raw : raw obj [None] used to calc time-window-range in TSLs stim_df : pandas.DataFrame [None] stimulus channel data frame stim_param : dict() [None] stimulus parameter from template stim_type_input : string ["onset"] data frame column name to process as stimulus input stim_prefix : string ["iod"] stimulus column name prefix e.g. to distinguish between different "onset" columns resp_df : pandas.DataFrame [None] response channel data frame resp_param : dict() [None] response parameter from template resp_type_input : string ["onset"] data frame column name to process as response input resp_prefix : string ["iod"] response column name prefix e.g. to distinguish between different "onset" columns verbose : bool [False] printing information debug """ self.raw = kwargs.get("raw",self.raw) self.stim_param = kwargs.get("stim_param",self.stim_param) self.stim_type_input = kwargs.get("stim_type_input",self.stim_type_input) self.stim_prefix = kwargs.get("stim_prefix",self.stim_prefix) self.resp_param = kwargs.get("resp_param",self.resp_param) self.resp_type_input = kwargs.get("resp_type_input",self.resp_type_input) self.resp_type_offset= kwargs.get("resp_type_offset",self.resp_type_offset) self.resp_prefix = kwargs.get("resp_prefix",self.resp_prefix) if "verbose" in kwargs.keys(): self.verbose = kwargs.get("verbose") if "stim_df" in kwargs.keys(): self.stim_df = None self.stim_df_orig = kwargs.get("stim_df") # df if "resp_df" in kwargs.keys(): self.resp_df = None self.resp_df_orig = kwargs.get("resp_df") # df self.DataFrame = None if not self.resp_type_offset: self.resp_type_offset = self.resp_type_input def _ck_errors(self): """ checking for errors Returns: -------- False if error """ #--- ck errors err_msg =[] if (self.raw is None): err_msg.append("ERROR no RAW obj. provided") if (self.stim_df_orig is None): err_msg.append("ERROR no Stimulus-Data-Frame obj. provided") if (self.stim_param is None): err_msg.append("ERROR no stimulus parameter obj. provided") if (self.stim_type_input is None): err_msg.append("ERROR no stimulus type input provided") if (self.resp_df_orig is None): err_msg.append("ERROR no Response-Data-Frame obj. provided") if (self.resp_param is None): err_msg.append("ERROR no response parameter obj. provided") if (self.resp_type_input is None): err_msg.append("ERROR no response type input provided") try: if err_msg : raise(ValueError) except: logger.exception(jumeg_base.pp_list2str(err_msg,"JuMEG Epocher Response Matching ERROR check")) return False return True def calc_max_rows(self,tsl0=None,tsl1=None,resp_event_id=None,early_ids_to_ignore=None): """ counting the necessary number of rows for dataframe in advance depreached Parameter --------- tsl0 : response window start in tsls <None> tsl1 : response window end in tsls <None> resp_event_id : response event ids <None> early_ids_to_ignore : ignore this response ids if there are to early pressed <None> Returns ------- number of rows to setup the dataframe """ max_rows = 0 #--- get rt important part of respose df resp_tsls = self.resp_df[ self.resp_type_input ] for idx in self.stim_df.index : # st_tsl_onset = self.stim_df[ self.stim_type_input ][idx] st_window_tsl0 = self.stim_df[ self.stim_type_input ][idx] + tsl0 st_window_tsl1 = self.stim_df[ self.stim_type_input ][idx] + tsl1 if (st_window_tsl0 < 0) or (st_window_tsl1 < 0) : continue #--- ck for toearly responses if tsl0 > 0: resp_index = self.find_toearly(tsl1=tsl0,early_ids_to_ignore=early_ids_to_ignore) if isinstance(resp_index, np.ndarray): max_rows+=1 continue #--- find index of responses from window-start till end of res_event_type array [e.g. onset / offset] resp_in_index = self.resp_df[ ( st_window_tsl0 <= resp_tsls ) & ( resp_tsls <= st_window_tsl1 ) ].index #--- MISSED response if resp_in_index.empty: max_rows+=1 continue #---count == all #--- no response count limit e.g. eye-tracking saccards #--- count defined resp ids ignore others if self.resp_param['counts'] == 'all': #--- get True/False index idx_isin_true = np.where( self.resp_df[self.resp_prefix + "_id"][ resp_in_index ].isin( resp_event_id ) )[0] max_rows+=idx_isin_true.size #--- ck if first resp is True/False e.g. IOD matching elif self.resp_param['counts'] == 'first': max_rows+=1 #--- ck for response count limit elif self.resp_param['counts']: #--- found responses are <= allowed resp counts max_rows+=resp_in_index.size else: #--- Wrong: found response counts > counts max_rows+=resp_in_index.size return max_rows #--- def info(self): """ print info Parameter --------- Return -------- prints statistic from column <response-prefix> -div e.g. prints differences in tsls between stimulus and IOD onset """ logger.info("---> Info Response Matching:\n{}".format(self.DataFrame.to_string())) ddiv = self.DataFrame[ self.resp_prefix + "_div" ] zero_ep = ddiv[ddiv == 0 ] n_zeros = ( ddiv == 0 ).sum() tsldiv = abs( ddiv.replace(0,np.NaN) ) dmean = tsldiv.mean() dstd = tsldiv.std() dmin = tsldiv.min() dmax = tsldiv.max() tdmean,tdstd,tdmin,tdmax = 0,0,0,0 if self.raw: if not np.isnan(dmean): tdmean = self.raw.times[ int(dmean)] if not np.isnan(dstd): tdstd = self.raw.times[ int(dstd )] if not np.isnan(dmin): tdmin = self.raw.times[ int(dmin )] if not np.isnan(dmax): tdmax = self.raw.times[ int(dmax )] logger.info("\n".join(["\n --> Response Matching time difference [ms]", " -> bad epochs count : {:d}".format(n_zeros), " -> bad epochs : {}\n".format(zero_ep), " -> mean [ s ]: {:3.3f} std: {:3.3f} max: {:3.3f} min: {:3.3f}".format(tdmean,tdstd,tdmin,tdmax), " -> mean [tsl]: {:3.3f} std: {:3.3f} max: {:3.3f} min: {:3.3f}".format(dmean,dstd,dmin,dmax),"-"*50])) #--- def _set_stim_df_resp(self,df,stim_idx=None,df_idx=None,resp_idx=None,resp_type=0,counts=0): """set dataframe row Parameter --------- df : dataframe stim_idx : index <None> df_idx : <None> resp_idx : <None> resp_type: <0> counts : <0> Return -------- dataframe """ for col in self.stim_df.columns: df[col][df_idx] = self.stim_df[col][stim_idx] if self.is_number( resp_idx ): for col in self.resp_df.columns: df[col][df_idx] = self.resp_df[col][resp_idx] df[self.resp_prefix +'_index'][df_idx] = resp_idx df[self.resp_prefix + '_type'][df_idx] = resp_type df[self.resp_prefix + "_div"][df_idx] = df[self.resp_type_input][df_idx] - df[self.stim_type_input][df_idx] else: for col in self.resp_df.columns: df[col][df_idx] = 0 df[self.resp_prefix +'_index'][df_idx] = -1 # None/nan needs change to np.float df[self.resp_prefix +'_type'][df_idx] = self.idx_missed # resp_type df[self.resp_prefix + "_div"][df_idx] = 0 # None df[self.resp_prefix + "_counts"][df_idx] = counts return df def _set_hit(self,df,stim_idx=None,df_idx=None,resp_idx=None): """ set dataframe row for correct responses Parameter --------- df : dataframe stim_idx : index <None> df_idx : <None> resp_idx : <None> resp_type: <0> counts : <0> Return -------- dataframe index """ cnt = 1 if isinstance(resp_idx,(list)): for ridx in resp_idx: self._set_stim_df_resp(df,stim_idx=stim_idx,df_idx=df_idx,resp_idx=ridx,resp_type=self.idx_hit,counts=cnt) cnt += 1 else: self._set_stim_df_resp(df,stim_idx=stim_idx,df_idx=df_idx,resp_idx=resp_idx,resp_type=self.idx_hit,counts=cnt) return df_idx def _set_wrong(self,df,stim_idx=None,df_idx=None,resp_idx=None): """ set dataframe row for wrong responses Parameter --------- df : dataframe stim_idx : index <None> df_idx : <None> resp_idx : <None> resp_type: <0> counts : <0> Return -------- dataframe index """ cnt = 0 for ridx in resp_idx: #df_idx += 1 cnt += 1 self._set_stim_df_resp(df,stim_idx=stim_idx,df_idx=df_idx,resp_idx=ridx,resp_type=self.idx_wrong,counts=cnt) return df_idx #--- def find_toearly(self,tsl0=0,tsl1=None,early_ids_to_ignore=None): """ look for part of to early response in dataframe Parameters ---------- tsl0 : start tsl range <None> tsl1 : end tsl range <None> early_ids_to_ignores: ignore this ids in window tsl-onset <= tsl < tsl0 <None> Return ------ array Int64Index([ number of toearly responses ], dtype='int64') """ if self.resp_param["early_ids_to_ignore"] == 'all': return early_idx = self.resp_df[ ( tsl0 <= self.resp_df[ self.resp_type_input ] ) & ( self.resp_df[ self.resp_type_input ] < tsl1 ) ].index #--- ck for button is pressed released if self.resp_type_input != self.resp_type_offset: early_idx_off = self.resp_df[ ( tsl0 <= self.resp_df[ self.resp_type_offset] ) & ( self.resp_df[ self.resp_type_offset ] < tsl1 ) ].index early_idx = np.unique( np.concatenate((early_idx,early_idx_off), axis=0) ) if early_idx.any(): if self.resp_param['early_ids_to_ignore']: if early_ids_to_ignore.any(): evt_found = self.resp_df[self.resp_prefix + "_id"][ early_idx ].isin( early_ids_to_ignore ) # true or false if evt_found.all(): return found = np.where( evt_found == False )[0] return found else: return early_idx return None #--- def apply(self,*kargs, **kwargs): """ apply response matching matching correct responses with respect to <stimulus channel> <output type> (onset,offset) Parameters ---------- raw : raw obj [None] used to calc time-window-range in TSLs stim_df : pandas.DataFrame [None] stimulus channel data frame stim_param : dict() [None] stimulus parameter from template stim_type_input : string ["onset"] data frame column name to process as stimulus input stim_prefix : string ["iod"] stimulus column name prefix e.g. to distinguish between different "onset" columns resp_df : pandas.DataFrame [None] response channel data frame resp_param : dict() [None] response parameter from template resp_type_input : string ["onset"] data frame column name to process as response input resp_prefix : string ["iod"] response column name prefix e.g. to distinguish between different "onset" columns verbose : bool [False] printing information debug Returns ------- pandas.DataFrame """ self.update(*kargs,**kwargs) if not self._ck_errors(): return #--- ck RT window range if ( self.resp_param['window'][0] >= self.resp_param['window'][1] ): logger.error(" --> ERROR in response parameter window range: start: {} > end: {}".format(self.resp_param['window'][0],self.resp_param['window'][1])) return (r_window_tsl_start, r_window_tsl_end ) = self.raw.time_as_index( self.resp_param['window'] ); #--- get respose code -> event_id [int or string] as np array resp_event_id = jumeg_base.range_to_numpy( self.resp_param['event_id'] ) #logger.info("events: {} stim_prefix: {} res_prefix: {}".format(resp_event_id,self.stim_prefix,self.resp_prefix)) #logger.info("stim_df : {}".format(self.stim_df_orig.columns)) #--- ck/get STIMULUS/MARKER channel event ids to ignore if self.stim_param.get("event_ids_to_ignore"): event_ids_to_ignore = jumeg_base.range_to_numpy( self.stim_param["event_ids_to_ignore"] ) evt_label = self.stim_param.get("event_prefix","stim")+"_id" idx = np.where( ~self.stim_df_orig[evt_label].isin(event_ids_to_ignore) )[0] self.stim_df = self.stim_df_orig.loc[idx,:] else: self.stim_df = self.stim_df_orig #--- get response ids to ignore if self.resp_param.get("event_ids_to_ignore"): event_ids_to_ignore = jumeg_base.range_to_numpy( self.resp_param["event_ids_to_ignore"] ) resp_label = self.resp_param.get("event_prefix","resp" )+"_id" idx = np.where( ~self.resp_df_orig[resp_label].isin(event_ids_to_ignore) )[0] self.resp_df = self.resp_df_orig.loc[idx,:] else: self.resp_df = self.resp_df_orig #--- ck if any toearly-id is defined, returns None if not early_ids_to_ignore = None if self.resp_param.get("early_ids_to_ignore"): if self.resp_param["early_ids_to_ignore"] != 'all': early_ids_to_ignore = jumeg_base.range_to_numpy( self.resp_param['early_ids_to_ignore'] ) #--- loop for all stim events ridx = 0 df_idx = -1 #--- get rt important part of respose df resp_tsls = self.resp_df[ self.resp_type_input ] max_rows = self.calc_max_rows(tsl0=r_window_tsl_start,tsl1=r_window_tsl_end,resp_event_id=resp_event_id,early_ids_to_ignore=early_ids_to_ignore) df = self.reset_dataframe( max_rows ) #len(self.stim_df.index)) #max_rows) for idx in self.stim_df.index : st_window_tsl0 = self.stim_df[ self.stim_type_input ][idx] + r_window_tsl_start st_window_tsl1 = self.stim_df[ self.stim_type_input ][idx] + r_window_tsl_end if (st_window_tsl0 < 0) or (st_window_tsl1 < 0) : continue #logger.info(" -> resp param wtsl0: {} wtsl1:{} idx:{}".format(st_window_tsl0,st_window_tsl1,idx)) #--- to-early responses e.g. response winfow[0.01,1,0] => => 0<= toearly window < 0.01 if r_window_tsl_start > 0: resp_index = self.find_toearly(tsl1=st_window_tsl0,early_ids_to_ignore=early_ids_to_ignore) if isinstance(resp_index, np.ndarray): df_idx +=1 self._set_stim_df_resp(df,stim_idx=idx,df_idx=idx,resp_idx=ridx,resp_type=self.idx_toearly,counts=resp_index.size ) if self.debug: logger.debug("--->ToEarly : {}\n --> stim df: {}".format(df_idx,self.stim_df)) continue #--- find index of responses from window-start till end of res_event_type array [e.g. onset / offset] resp_in_index = self.resp_df[ ( st_window_tsl0 <= resp_tsls ) & ( resp_tsls <= st_window_tsl1) ].index if self.debug: logger.debug(" -> resp in idx : {} \n -> tsls:\n{}\n -> {}".format(resp_in_index,resp_tsls,self.resp_df.loc[ resp_in_index,:])) #--- MISSED response if resp_in_index.empty: df_idx += 1 self._set_stim_df_resp( df,stim_idx=idx,df_idx=idx,resp_idx=None,resp_type=self.idx_missed,counts=0 ) if self.debug: logger.debug("---> MISSED: idx:{}\n -> {}".format(idx,self.resp_df.loc[resp_in_index,:])) continue #---count == all #--- no response count limit e.g. eye-tracking saccards #--- count defined resp ids ignore others #--- e.g.: find 11 in seq starting with 5 => 5,7,8,11 => resp_event_id =[11] if self.resp_param['counts'] == 'all': #--- get True/False index idx_isin_true = np.where( self.resp_df[self.resp_prefix + "_id"][ resp_in_index ].isin( resp_event_id ) )[0] #--- get index of True Hits resp_in_idx_hits = resp_in_index[idx_isin_true] if self.debug: logger.debug("---> <counts == all>: idx:{}\n -> {}".format(idx_isin_true,resp_in_idx_hits)) df_idx += 1 if idx_isin_true.shape[0]: self._set_hit(df,stim_idx=idx,df_idx=idx,resp_idx=resp_in_idx_hits) else: self._set_stim_df_resp( df,stim_idx=idx,df_idx=idx,resp_idx=None,resp_type=self.idx_missed,counts=0 ) if self.debug: logger.debug("---> MISSED in <counts == all>: idx:{}\n -> {}".format(idx,self.resp_df.loc[resp_in_index,:])) elif self.resp_param['counts'] == 'any': #--- get True/False index idx_isin_true = np.where( self.resp_df[self.resp_prefix + "_id"][ resp_in_index ].isin( resp_event_id ) )[0] logger.info("ANY:\n {}\n event id: {}\n isin: {}".format(self.resp_df[self.resp_prefix + "_id"][ resp_in_index ],resp_event_id,idx_isin_true )) df_idx += 1 if idx_isin_true.shape[0]: #--- get index of True Hits resp_in_idx_hits = resp_in_index[ idx_isin_true[0] ] # if self.debug: logger.info("---> <counts == any>: idx:{}\n -> {}".format(idx_isin_true,resp_in_idx_hits)) self._set_hit(df,stim_idx=idx,df_idx=idx,resp_idx=resp_in_idx_hits) else: self._set_stim_df_resp( df,stim_idx=idx,df_idx=idx,resp_idx=None,resp_type=self.idx_missed,counts=0 ) if self.debug: logger.debug("---> MISSED in <counts == all>: idx:{}\n -> {}".format(idx,self.resp_df.loc[resp_in_index,:])) #--- ck if first resp is True/False e.g. IOD matching elif self.resp_param['counts'] == 'first': if ( self.resp_df[self.resp_prefix + "_id"][ resp_in_index[0] ] in resp_event_id ): df_idx += 1 self._set_hit(df,stim_idx=idx,df_idx=idx,resp_idx=[ resp_in_index[0] ] ) else: df_idx += 1 self._set_wrong(df,stim_idx=idx,df_idx=idx,resp_idx=[resp_in_index[0]] ) #--- ck for response count limit elif self.resp_param['counts']: #--- found responses are <= allowed resp counts if ( resp_in_index.size <= self.resp_param['counts'] ): #--- HITS: all responses are in response event id if np.all( self.resp_df[self.resp_prefix + "_id"][ resp_in_index ].isin( resp_event_id ) ) : df_idx += 1 self._set_hit(df,stim_idx=idx,df_idx=idx,resp_idx=resp_in_index ) else: #--- Wrong: not all responses are in response event id =>found responses are > allowed resp counts df_idx += 1 self._set_wrong(df,stim_idx=idx,df_idx=idx,resp_idx=resp_in_index) #--- Wrong: found response counts > counts else: df_idx += 1 self._set_wrong(df,stim_idx=idx,df_idx=idx,resp_idx=resp_in_index) self.DataFrame = df if self.debug: self.info() return df class JuMEG_Epocher_WindowMatching(JuMEG_Epocher_Basic): """ find events form events-dataframe which occures in a window between <marker_onset> and <marker_offset> given by a marker-window Parameters ---------- raw : raw obj [None] used to calc time-window-range in TSLs marker_df : pandas.DataFrame [None] data frame with onset/offset columns window_onset : string ["onset"] window-DataFrame column window onset window_offset : string ["offset"] window-DataFrame column window offset event_df : pandas.DataFrame events e.g. event/response codes from channel in <stim> <resp> group e.g.: STI 014/STI 013 event_type : DataFrame column label e.g: <prefix>onset verbose : bool [False] printing information debug debug : bool [False] Example Template: ----------------- "SeResp": { "postfix": "SeResp", "time_pre": -0.2, "time_post": 6.0, "info": "search task IODonset and first buton press", "marker": { "channel": "StimImageOnset", "type_input": "iod_onset", "type_output": "iod_onset", "prefix": "iod", "type_result": "hit" }, "response": { "matching": true, "channel": "RESPONSE", "type_input": "resp_onset", "type_offset": "resp_offset", "prefix": "resp" }, "window_matching":{ "matching": true, "channel": "ETevents", "window_onset": "iod_onset", "window_offset": "resp_onset", "event_type": "stim_onset", "prefix": "winET" }, "StimImageOnset": { "event_id": 84 }, "RESPONSE": { "events": { "stim_channel": "STI 013", "output": "onset", "consecutive": true, "min_duration": 0.0005, "shortest_event": 1, "initial_event": true, "mask": null }, "window": [ 0.0, 6.0 ], "counts": "first", "system_delay_ms": 0.0, "early_ids_to_ignore": null, "event_id": "1,2", "and_mask": 3 }, "ETevents": { "event_id": "250-260" } } """ def __init__(self,**kwargs): super().__init__() self.raw = None self.window_onset = None self.window_offset = None self.marker_df = None self.event_df = None self.event_type = None self.DataFrame = None self.verbose = False self.debug = False def update(self,**kwargs): """ update CLS parameter Parameters ---------- raw : raw obj [None] used to calc time-window-range in TSLs marker_df : pandas.DataFrame [None] data frame with onset/offset columns window_onset : string ["onset"] window-DataFrame column window onset window_offset : string ["offset"] window-dataframe column window offset events_df : pandas.DataFrame events e.g. event/response codes from channel in <stim> <resp> group e.g.: STI 014/STI 013 verbose : bool [False] printing information debug debug : bool [False] """ self.raw = kwargs.get("raw",self.raw) self.window_onset = kwargs.get("window_onset",self.window_onset) self.window_offset = kwargs.get("window_offset",self.window_offset) self.event_type = kwargs.get("event_type",self.event_type) if "verbose" in kwargs.keys(): self.verbose = kwargs.get("verbose") if "marker_df" in kwargs.keys(): self.marker_df = kwargs.get("marker_df") # df if "event_df" in kwargs.keys(): self.event_df = kwargs.get("event_df") # df self.DataFrame = None #--- def info(self): """ print info Parameter --------- Return -------- prints DataFrame """ logger.info("---> Info Window Matching:\n"+ " --> window onset : {}".format(self.window_onset) + " --> window offset: {}".format(self.window_onset) + " --> event type : {}".format(self.event_type) + " --> DataFrame:\n{}".format(self.DataFrame.to_string())) def apply(self,**kwargs): self.update(**kwargs) #--- get onset or offsets from events evt = self.event_df[self.event_type] cl1 = self.event_df.columns.tolist() cl2 = self.marker_df.columns.tolist() cl = [] cl.extend(cl1) cl.extend(cl2) dfs = [] for idx in self.marker_df.index: wdf = self.marker_df.iloc[idx] # get series c1 = self.event_df[ self.event_type ] >= wdf[ self.window_onset ] c2 = self.event_df[ self.event_type ] < wdf[ self.window_offset ] df = self.event_df[c1 & c2] if not df.any: continue #--- numpy d = np.zeros([len(df),len(cl)],dtype=np.int32) d[:,0:len(cl1)] += df.get_values() d[:,len(cl1): ] += wdf.get_values() dfs.append(pd.DataFrame(d,columns=cl,index=df.index.get_values())) # print("HITS df last:\n{}".format(dfs[-1])) self.DataFrame = pd.concat(dfs) self.DataFrame.reset_index(drop=False,inplace=True) self.DataFrame["selected"]=1 #--- if self.debug: self.info() return self.DataFrame class JuMEG_Epocher_Events(JuMEG_Epocher_HDF,JuMEG_Epocher_Basic): ''' Main class to find events -> reading epocher event template file -> for each condition find events using mne.find_events function -> looking for IOD and response matching -> store results into pandas dataframes -> save as hdf5 for later to generate epochs,averages Example -------- from jumeg.epocher.jumeg_epocher import jumeg_epocher from jumeg.epocher.jumeg_epocher_epochs import JuMEG_Epocher_Epochs jumeg_epocher_epochs = JuMEG_Epocher_Epochs() jumeg_epocher.template_path = '.' condition_list = ['test01','test02'] fname = "./test01.fif" param = { "condition_list":condition_list, "do_run": True, "template_name": "TEST01", "save": True } (_,raw,epocher_hdf_fname) = jumeg_epocher.apply_events_to_hdf(fname,**param) ''' #--- def __init__(self): super(JuMEG_Epocher_Events, self).__init__() self.parameter= None self.iod = None self.stimulus = None self.response = None self.window = None self.event_data_parameter={"events":{ "stim_channel" : "STI 014", "output" : "onset", "consecutive" : True, "min_duration" : 0.0001, "shortest_event" : 1, "initial_event" : True, "mask" : None }, "event_id" : None, "and_mask" : None, "system_delay_ms" : 0.0 } self.ResponseMatching = JuMEG_Epocher_ResponseMatching() self.WindowMatching = JuMEG_Epocher_WindowMatching() #--- @property def event_data_stim_channel(self): return self.event_data_parameter["events"]["stim_channel"] @event_data_stim_channel.setter def event_data_stim_channel(self,v): self.event_data_parameter["events"]["stim_channel"]=v #--- def channel_events_to_dataframe(self): """ find events from groups mne.pick_types(stim=True) stimulus group <stim> [STI 014 TRIGGER, ET_events, ...] mne.pick_types(resp=True) response group [STI 013 RESPONSE,...] store event information as pandas dataframe and save in hdf5 obj key: /events """ #--- stimulus channel group for ch_idx in jumeg_base.picks.stim(self.raw): #print(ch_idx) ch_label = jumeg_base.picks.picks2labels(self.raw,ch_idx) #print(ch_label) self.event_data_stim_channel = ch_label self._channel_events_dataframe_to_hdf(ch_label,"stim") #--- response channel group for ch_idx in jumeg_base.picks.response(self.raw): ch_label = jumeg_base.picks.picks2labels(self.raw,ch_idx) self.event_data_stim_channel = ch_label self._channel_events_dataframe_to_hdf(ch_label,"resp") #--- def _channel_events_dataframe_to_hdf(self,ch_label,prefix): """ save channel event dataframe to HDF obj Parameter --------- string : channel label e.g.: 'STI 014' pd dataframe: dict : info dict with parameter Results ------- None """ self.event_data_stim_channel = ch_label #print(self.event_data_parameter) found = self.events_find_events(self.raw,prefix=prefix,**self.event_data_parameter) #print(found) if found: df = found[0] info = found[1] #if type(df) == "<class 'pandas.core.frame.DataFrame'>": key = self.hdf_node_name_channel_events +"/"+ ch_label storer_attrs = {'info_parameter': info} self.hdf_obj_update_dataframe(df.astype(np.int64),key=key,**storer_attrs ) # https://stackoverflow.com/questions/17468878/pandas-python-how-to-count-the-number-of-records-or-rows-in-a-dataframe if self.verbose: ids = pd.unique(df.iloc[:,0]) label = df.columns[0] ids.sort() msg = [ "---> Events in DataFrame column: {}".format(label) ] for id in ids: df_id = df[ df[ label ] == id ] msg.append(" -> id: {:4d} counts: {:5d}".format(id,len(df_id.index)) ) logger.info("\n".join(msg)) #--- def apply_iod_matching(self,raw=None): ''' apply image-onset-detection (IOD), generate pandas dataframe with columns for iod e.g. from template parameter for a condition "iod" :{"marker" :{"channel":"StimImageOnset","type_input":"img_onset","prefix":"img"}, "response":{"matching":true,"channel":"IOD","type_input":"iod_onset","prefix":"iod"}}, Parameters ---------- raw: obj [None] mne.raw obj Returns -------- pandas dataframe columns with marker-prefix => id,onset,offset response-prefix => type,div,id,onset,offset,index,counts additionalcolumns => bads,selected,weighted_sel marker info ''' if not self.iod.iod_matching: return None,None #--- marker events .e.g. STIMULUS # logger.info(self.iod.marker_channel_parameter) try: mrk_df,mrk_info = self.events_find_events(raw,prefix=self.iod.marker.prefix,**self.iod.marker_channel_parameter) except: logger.warning(" --> WARNING: IOD Matching: no events found: \n{}\n ".format(self.event_data_parameter)) return None,None #--- resonse eventse.g. IOD resp_df,resp_info = self.events_find_events(raw,prefix=self.iod.response.prefix,**self.iod.response_channel_parameter) if resp_info.get("system_delay_is_applied"): mrk_info["system_delay_is_applied"] = True df = self.ResponseMatching.apply(raw=raw,stim_df=mrk_df,resp_df=resp_df, stim_param = deepcopy(self.iod.marker_channel_parameter), stim_type_input = self.iod.marker.type_input, stim_prefix = self.iod.marker.prefix, resp_param = deepcopy(self.iod.response_channel_parameter), resp_type_input = self.iod.response.type_input, resp_prefix = self.iod.response.prefix, verbose = self.verbose, debug = self.debug ) if self.verbose: if "iod_div" in df.columns: logger.info(" -> Stimulus Onset and IOD div [tsl] mean: {0:3.1f} std:{1:3.1f}".format(df["iod_div"].mean(),df["iod_div"].std())) return df,mrk_info #--- def update_parameter(self,param=None): '''update parameter -> init with default parameter -> merege and overwrite defaults with parameter defined for condition -> init special objs (marker,response,iod) if defined Parameter --------- param: <None> ''' self.parameter = None self.parameter = deepcopy( self.template_data['default'] ) self.parameter = self.template_update_and_merge_dict( self.parameter,param ) #--- self.marker = JuMEG_Epocher_Events_Channel(label="marker",parameter=self.parameter) self.response = JuMEG_Epocher_Events_Channel(label="response",parameter=self.parameter) self.window = JuMEG_Epocher_Events_Window(label="window_matching",parameter=self.parameter) self.iod = JuMEG_Epocher_Events_Channel_IOD(label="iod",parameter=self.parameter) #--- def events_store_to_hdf(self,fname=None,raw=None,condition_list=None,overwrite_hdf=False, template_path=None,template_name=None,hdf_path=None,verbose=False,debug=False): """ find & store epocher data to hdf5: -> readding parameter from epocher template file -> find events from raw-obj using mne.find_events -> apply response matching if true -> save results in pandas dataframes & HDF fromat Parameter --------- fname : string, fif file name <None> fname : string, fif file name <None> raw : raw obj <None> raw : raw obj <None> condition_list: list of conditions to process select special conditions from epocher template default: <None> , will process all defined in template overwrite_hdf : flag for overwriting output HDF file <False> template_path : path to jumeg epocher templates template_name : name of template e.g: experimnet name hdf_path : path to hdf file <None> if None use fif-file path verbose : flag, <False> debug : flag, <False> Results ------- raw obj string: FIF file name """ #--- read template file if template_name: self.template_name = template_name if template_path: self.template_path = template_path if verbose: self.verbose = verbose if debug: self.debug = debug self.template_update_file() self.raw,fname = jumeg_base.get_raw_obj(fname,raw=raw) #--- init obj self.hdf_obj_init(raw=self.raw,hdf_path=hdf_path,overwrite=overwrite_hdf) self.channel_events_to_dataframe() if not condition_list : condition_list = self.template_data.keys() #--- condi loop # for condi, param, in self.template_data.items(): for condi in condition_list: param = self.template_data.get(condi) #--- check if condi is defined if not param: msg = "---> no condition key found in template data\n" msg+= " -> condition: {}\n".format(condi) msg+= " -> template file: {}\n".format(self.template_name) if self.debug: msg+=" -> template data:\n"+ self.pp_list2str(self.template_data) logger.exception(msg) #if self.exit_error_in_condition: #sys.exit() #--- check for real condition if condi == 'default': continue #--- check for condition in list if condi not in self.template_data.keys(): continue #--- update & merge condi self.parameter with defaults self.update_parameter(param=param) iod_data_frame = None logger.info("---> Epocher start store events into HDF\n --> condition: "+ condi) if not self.marker.channel_parameter: continue #--- stimulus init dict's & dataframes marker_info = dict() marker_data_frame = pd.DataFrame() response_data_frame = pd.DataFrame() response_info = dict() window_data_frame = pd.DataFrame() window_info = dict() if self.verbose: logger.info(' --> EPOCHER Template: %s Condition: %s' %(self.template_name,condi)+ '\n -> find events and epochs, save epocher output in HDF5 format') #self.pp(self.parameter,head=" -> parameter") #--- iod matching ckek if true and if channe == stimulus channel if self.iod.iod_matching: iod_data_frame,iod_info = self.apply_iod_matching(raw=self.raw) if iod_data_frame is None: continue marker_data_frame = iod_data_frame marker_info = iod_info #--- copy iod df to res or stim df # if self.response.matching: # if ( self.iod.marker.channel != self.marker.channel ): # response_data_frame = iod_data_frame # response_info = iod_info #--- ck if not stimulus_data_frame if marker_data_frame.empty : logger.info(" -> MARKER CHANNEL -> find events => condition: "+ condi +"\n ---> marker channel: "+ self.marker.channel) if self.verbose: logger.info(self.pp_list2str( self.marker.parameter,head=" -> Marker Channel parameter:")) marker_data_frame,marker_info = self.events_find_events(self.raw,prefix=self.marker.prefix,**self.marker.channel_parameter) #--- if marker_data_frame.empty: continue marker_data_frame['bads'] = 0 marker_data_frame['selected'] = 0 marker_data_frame['weighted_selected']= 0 if self.verbose: logger.info(" -> Marker Epocher Events Data Frame [marker channel]: "+ condi) #--- Marker Matching task #--- match between stimulus and response or vice versa #--- get all response events for condtion e.g. button press 4 #--- apply window mathing : find first,all responses in window if self.response.matching : logger.info(" --> Marker Matching -> matching marker & response channel: {}\n".format(condi)+ " -> marker channel : {}\n".format(self.marker.channel)+ " -> response channel : {}".format(self.response.channel) ) #--- look for all responses => 'event_id' = None if response_data_frame.empty: res_channel_param = deepcopy(self.response.channel_parameter) res_channel_param['event_id'] = None response_data_frame,response_info = self.events_find_events(self.raw,prefix=self.response.prefix,**res_channel_param) if self.verbose: logger.info(self.pp_list2str(self.response.parameter, head="---> Response Epocher Events Data Frame [response channel] : " + self.response.channel)) #logger.info(marker_data_frame) #--- update stimulus epochs with response matching marker_data_frame = self.ResponseMatching.apply(raw = self.raw, stim_df = marker_data_frame, stim_param = deepcopy(self.marker.channel_parameter), stim_type_input = self.marker.type_input, stim_prefix = self.marker.prefix, #--- resp_df = response_data_frame, resp_param = deepcopy(self.response.channel_parameter), resp_type_input = self.response.type_input, resp_type_offset= self.response.type_offset, resp_prefix = self.response.prefix, #--- verbose = self.verbose ) #--- window matching, find events in window if self.window.matching: logger.info("---> window matching => marker data frame:\n{}".format( marker_data_frame.to_string() )) event_df = self.hdf_obj_get_channel_dataframe(self.window.stim_channel) logger.info("---> window matching => event type: {}\n -> DataFrame:\n{}".format(self.window.event_type,event_df.to_string())) if event_df.any: window_data_frame = self.WindowMatching.apply(raw=self.raw,verbose=self.verbose, marker_df = marker_data_frame, window_onset = self.window.window_onset, window_offset = self.window.window_offset, event_df = event_df, event_type = self.window.event_type ) if self.verbose: type = self.response.prefix +'_type' hits = marker_data_frame[type] idx = np.where( hits == self.rt_type_as_index( self.marker.type_result ) )[0] msg=[" -> Response Matching DataFrame : " + condi, " -> correct : {:d} / {:d}".format(len(idx),len(marker_data_frame.index)), " -> marker type : {}".format(type), "-"*40, "{}".format( marker_data_frame.to_string() ) ] logger.info("\n".join(msg)) else: #--- not response matching should be all e.g. hits mrk_type = self.marker.prefix +'_type' if mrk_type not in marker_data_frame : marker_data_frame[ mrk_type ] = self.rt_type_as_index( self.marker.type_result ) if self.verbose: mrk_type = self.marker.prefix +'_type' hits = marker_data_frame[mrk_type] idx = np.where( hits == self.rt_type_as_index( self.marker.type_result ) )[0] msg=[" -> Marker Matching DataFrame : " + condi, " -> correct : {:d} / {:d}".format(len(idx),len(marker_data_frame.index)), " -> marker type : {}".format(mrk_type), "-"*40, "{}".format( marker_data_frame.to_string() ) ] logger.info("\n".join(msg)) key = self.hdf_node_name_epocher +'/'+condi storer_attrs = {'epocher_parameter': self.parameter,'info_parameter':marker_info} if self.window.matching: self.hdf_obj_update_dataframe(window_data_frame.astype(np.int32),key=key,**storer_attrs) else: #--- marker dataframe self.hdf_obj_update_dataframe(marker_data_frame.astype(np.int32),key=key,**storer_attrs ) self.HDFobj.close() logger.info("---> DONE save epocher data into HDF5 : " + self.hdf_filename) return self.raw,fname #--- def events_find_events(self,raw,prefix=None,**param): """find events with <mne.find_events()> Parameters --------- raw : raw obj prefix: prefix for columns <None> param : parameter like <**kwargs> {'event_id': 40, 'and_mask': 255, 'events': {'consecutive': True, 'output':'step','stim_channel': 'STI 014', 'min_duration':0.002,'shortest_event': 2,'mask': 0} } Returns -------- pandas data-frame with epoch event structure for e.g. stimulus, response channel id : event id offset : np array with TSL event code offset onset : np array with TSL event code onset if <prefix> columns are labeled with <prefix> e.g.: prefix=img => img_onset dict() with event structure for stimulus or response channel sfreq : sampling frequency => raw.info['sfreq'] duration : {mean,min,max} in TSL system_delay_is_applied : True/False --> if true <system_delay_ms> converted to TSLs and added to the TSLs in onset,offset (TSL => timeslices,samples) """ if raw is None: logger.error("ERROR in <get_event_structure: raw obj is None") return #--- df = pd.DataFrame(columns = self.data_frame_stimulus_cols) ev_id_idx = np.array([]) ev_onset = np.array([]) ev_offset = np.array([]) #---add prefix to col name if prefix: for k in self.data_frame_stimulus_cols: df.rename(columns={k: prefix+'_'+k},inplace=True ) col_id = prefix+"_id" col_onset = prefix+"_onset" col_offset= prefix+"_offset" else: col_id = "id" col_onset = "onset" col_offset= "offset" #--- events = deepcopy(param['events']) events['output'] = 'step' # self.pp( events ) #--- check if channel label in raw if not jumeg_base.picks.labels2picks(raw,events["stim_channel"]): return df,dict() if self.verbose: logger.debug("---> mne.find_events:\n"+ self.pp_list2str(events)) ev = mne.find_events(raw, **events) #-- return int64 # self.pp(ev) #--- apply and mask e.g. 255 get the first 8 bits in Trigger channel if param['and_mask']: ev[:, 1:] = np.bitwise_and(ev[:, 1:], param['and_mask']) ev[:, 2:] = np.bitwise_and(ev[:, 2:], param['and_mask']) ev_onset = np.squeeze( ev[np.where( ev[:,2] ),:]) # > 0 ev_offset = np.squeeze( ev[np.where( ev[:,1] ),:]) if param['event_id']: ev_id = jumeg_base.str_range_to_numpy(param['event_id'],exclude_zero=True) #print(ev_id) evt_ids=np.where(np.in1d(ev[:,2],ev_id)) #print(evt_ids) #--- check if code in events if len( np.squeeze(evt_ids) ): ev_id_idx = np.squeeze( np.where( np.in1d( ev_onset[:,2],ev_id ))) if ( ev_id_idx.size > 0 ): ev_onset = ev_onset[ ev_id_idx,:] ev_offset= ev_offset[ev_id_idx,:] else: logger.warning('===> No such event code(s) found (ev_id_idx) -> event: ' + str( param['event_id'] )) return else: logger.warning('===> No such event code(s) found (ev_id) -> event: ' + str(param['event_id'])) return #---- use all event ids if ( ev_onset.size == 0 ): logger.warning('===> No such event code(s) found -> event: ' + str(param['event_id'])) return #--- apply system delay if is defined e.g. auditory take`s 20ms to subjects ears if param['system_delay_ms']: system_delay_tsl = raw.time_as_index( param['system_delay_ms']/1000 ) # calc in sec ev_onset[:, 0] += system_delay_tsl ev_offset[:, 0]+= system_delay_tsl system_delay_is_applied = True else: system_delay_is_applied = False #-- avoid invalid index/dimension error if last offset is none df[col_id] = ev_onset[:,2] df[col_onset] = ev_onset[:,0] df[col_offset] = np.zeros( ev_onset[:,0].size,dtype=np.long ) div = np.zeros( ev_offset[:,0].size ) try: if ( ev_onset[:,0].size >= ev_offset[:,0].size ): div = ev_offset[:,0] - ev_onset[:ev_offset[:,0].size,0] df[col_offset][:ev_offset[:,0].size] = ev_offset[:,0] else: idx_max = ev_offset[:,0].size div = ev_offset[:,0] - ev_onset[:idx_max,0] df[col_offset][:] = ev_offset[:idx_max,0] except: assert "ERROR dims onset offset will not fit\n" return df,dict( { 'sfreq' : raw.info['sfreq'], 'duration' :{'mean':np.rint(div.mean()),'min':div.min(),'max':div.max()}, 'system_delay_is_applied' : system_delay_is_applied } ) jumeg_epocher_events = JuMEG_Epocher_Events()
40.140322
159
0.539331
56a9f69718f000d2e1f319317944f285ef18e9f4
4,524
py
Python
bulletin_board/views.py
onursahil/BERT_search_engine
50b10ee3bbaeceeb5879a76ef43463cfa7132ca2
[ "MIT" ]
null
null
null
bulletin_board/views.py
onursahil/BERT_search_engine
50b10ee3bbaeceeb5879a76ef43463cfa7132ca2
[ "MIT" ]
null
null
null
bulletin_board/views.py
onursahil/BERT_search_engine
50b10ee3bbaeceeb5879a76ef43463cfa7132ca2
[ "MIT" ]
null
null
null
from django.shortcuts import render # from .models import Post from django.shortcuts import redirect import datetime import pandas as pd import numpy as np import re import fasttext import fasttext.util from elasticsearch import Elasticsearch from elasticsearch.helpers import bulk, scan from elasticsearch_dsl import Search from elasticsearch_dsl import Q from ast import literal_eval from transformers import pipeline, AutoModelForQuestionAnswering, AutoTokenizer # Create your views here. def home(request): return render(request, 'bulletin_board/home.html') def results(request): search_q = request.GET.get('search') search_query = [] search_keyword = { 'keyword': search_q } search_query.append(search_keyword) fasttext.util.download_model('tr', if_exists='ignore') try: ft = fasttext.load_model('cc.tr.300.bin') except: print("Couldn't load the model") # DOCUMENT SEARCH documents = document_search(search_q, ft) print("\n") print("DOCUMENT SEARCH RESULT") print(documents) # QUESTION & ANSWER answer, score = question_answer(search_q, documents) answer = answer.capitalize() answer_query = [] answer_d = { 'answer_key': answer, 'score': score } answer_query.append(answer_d) print("\n") display_data = [] for index, row in documents.iterrows(): document_dict = {} document_dict['document_id'] = row['document_id'] document_dict['topic_id'] = row['topic_id'] document_dict['document_name'] = row['document_name'] document_dict['topic'] = row['topic'] document_dict['content'] = row['content'] document_dict['score'] = row['score'] display_data.append(document_dict) context = { 'posts': display_data, 'search_q': search_query, 'answer_key': answer_query } return render(request, 'bulletin_board/results.html', context) def question_answer(input_query, document_search_result): model = AutoModelForQuestionAnswering.from_pretrained("kuzgunlar/electra-turkish-qa") tokenizer = AutoTokenizer.from_pretrained("kuzgunlar/electra-turkish-qa") qa=pipeline('question-answering', model=model, tokenizer=tokenizer) qa_content = ' '.join(row['topic_content_result'] for index, row in document_search_result[:5].iterrows()) qa_result = qa(question=input_query, context=qa_content) return qa_result['answer'], qa_result['score'] def semantic_search(input_query): script_query = { "script_score": { "query": { "match_all": {} }, "script": { "source": "cosineSimilarity(params.query_vector, 'topic_content_vector') + 1.0", "params": { "query_vector": input_query } } } } client = Elasticsearch(hosts=["localhost"], http_auth=('elastic', 'changeme')) response = client.search( index='akbank_data', body={ "query": script_query }, size=999 ) all_hits = response['hits']['hits'] document_id_list = [] topic_id_list = [] document_name_list = [] topic = [] content = [] topic_content_result = [] search_score = [] for i in range(len(all_hits)): score = all_hits[i]['_score'] document_id = all_hits[i]['_source'] document_id = document_id['document_id'] topic_id = all_hits[i]['_source'] topic_id = topic_id['topic_id'] document_name = all_hits[i]['_source'] document_name = document_name['document_name'] content_text = all_hits[i]['_source'] content_text = content_text['content'] topic_text = all_hits[i]['_source'] topic_text = topic_text['topic'] topic_content = all_hits[i]['_source'] topic_content = topic_content['topic_content'] document_id_list.append(document_id) topic_id_list.append(topic_id) document_name_list.append(document_name) topic.append(topic_text) content.append(content_text) topic_content_result.append(topic_content) search_score.append(score) document_search_df = pd.DataFrame() document_search_df['document_id'] = document_id_list document_search_df['topic_id'] = topic_id_list document_search_df['document_name'] = document_name_list document_search_df['topic'] = topic document_search_df['content'] = content document_search_df['topic_content_result'] = topic_content_result document_search_df['score'] = search_score return document_search_df def document_search(keyword, ft): input_query_vector = ft.get_sentence_vector(keyword) document_search_result = semantic_search(input_query_vector) return document_search_result
27.925926
107
0.717507
e661afbb08e56d09c4108b37bac00e8d6df3a96d
1,236
py
Python
locking/forms.py
edufrick/django-locking
a342422114ab011b97fd2d91f432453822d0b1f8
[ "BSD-2-Clause-FreeBSD" ]
null
null
null
locking/forms.py
edufrick/django-locking
a342422114ab011b97fd2d91f432453822d0b1f8
[ "BSD-2-Clause-FreeBSD" ]
null
null
null
locking/forms.py
edufrick/django-locking
a342422114ab011b97fd2d91f432453822d0b1f8
[ "BSD-2-Clause-FreeBSD" ]
null
null
null
""" locking.forms Forms class for the django-locking project. """ from __future__ import absolute_import from django import forms from django.contrib.contenttypes.models import ContentType from locking.models import Lock class LockingForm(forms.ModelForm): """ Clean the form to enforce orm locking before saving the object. This will only work if you set lock_type to 'hard' in the locking.models file. """ def clean(self): self.cleaned_data = super(LockingForm, self).clean() try: content_type = ContentType.objects.get_for_model(self.obj) lock = Lock.objects.get( entry_id=self.obj.id, app=content_type.app_label, model=content_type.model, ) except Exception: return self.cleaned_data if lock.is_locked: if lock.locked_by != self.request.user and lock.lock_type == "hard": raise forms.ValidationError( "You cannot save this object because it is locked by user %s for roughly %s more minute(s)." % (lock.locked_by.username, lock.lock_seconds_remaining // 60) ) return self.cleaned_data
32.526316
112
0.631068
1dbd01beddffd993e69a3158910183d0e606d10c
7,306
py
Python
parallel_RRT/parallel_RRT_test_Dask_numba.py
AnsSUN/Parallel-Computing-of-Rapidly-exploring-random-tree-RRT-
4ec2c37f8cd214127421f90f2a0ce2c275f37d94
[ "MIT" ]
3
2019-11-07T06:30:48.000Z
2021-06-06T08:49:36.000Z
parallel_RRT/parallel_RRT_test_Dask_numba.py
AnsSUN/Parallel-Computing-of-Rapidly-exploring-random-tree-RRT-
4ec2c37f8cd214127421f90f2a0ce2c275f37d94
[ "MIT" ]
1
2021-03-01T08:37:04.000Z
2021-03-05T23:06:17.000Z
parallel_RRT/parallel_RRT_test_Dask_numba.py
AnsSUN/Parallel-Computing-of-Rapidly-exploring-random-tree-RRT-
4ec2c37f8cd214127421f90f2a0ce2c275f37d94
[ "MIT" ]
null
null
null
import math import numpy as np from numba import cuda from tqdm import tqdm import matplotlib.pyplot as plt TPB = 256 # number of threads in a block # device function_NN @cuda.jit(device=True) def euc_distance_2d_device(x1,y1,x2,y2): d = math.sqrt((x2-x1)**2+(y2-y1)**2) return d @cuda.jit() def distanceKernel(d_out,x,y,d_V,nov): i = cuda.blockIdx.x*cuda.blockDim.x + cuda.threadIdx.x if i < nov: d_out[i] = euc_distance_2d_device(x,y,d_V[0,i],d_V[1,i]) # wrapper function_NN def dArray(x,y,V,nov): d_V = cuda.to_device(V) # copies the input data to a device array on the GPU d_distance = cuda.device_array(nov) # creates an empty array to hold the output BPG = (nov + TPB - 1)//TPB # computes number of blocks distanceKernel[BPG,TPB](d_distance,x,y,d_V,nov) return d_distance.copy_to_host() # kernel for CC @cuda.jit() def ccKernel(d_out,x,y,d_O,all_radii): i = cuda.blockIdx.x*cuda.blockDim.x + cuda.threadIdx.x #flag = 1 if i < all_radii.size:# and flag ==1: d_out[i] = euc_distance_2d_device(x,y,d_O[0,i],d_O[1,i])>all_radii[i] # should be 1 for no collision # flag = d_out[i] # wrapper function_CC def dArray_CC(x,y,obs_coors,allowable_radii): noo = allowable_radii.size d_all_radii = cuda.to_device(allowable_radii) # copies the input data to a device array on the GPU d_O = cuda.to_device(obs_coors) # copies the input data to a device array on the GPU d_collision = cuda.device_array(noo) # creates an empty array to hold the output BPG = (noo + TPB - 1)//TPB # computes number of blocks ccKernel[BPG,TPB](d_collision,x,y,d_O,d_all_radii) return d_collision.copy_to_host() def euc_distance_2d(x1,y1,x2,y2): return np.sqrt((x2-x1)**2+(y2-y1)**2) def nearest_neighbor_2d_parallel(x,y,V,nov): distance = dArray(x,y,V,nov) ind_min = np.argmin(distance) min_dis = distance[ind_min] return [min_dis,ind_min] def collision_check_parallel(x,y,obstacle_coordinates,obstacle_radii): allowable_radii = obstacle_radii*2/np.sqrt(3) flag = 0 # means no collision if all(dArray_CC(x,y,obstacle_coordinates,allowable_radii)): flag = 1 return flag def draw_circle(xc,yc,r): t = np.arange(0,2*np.pi,.05) x = xc+r*np.sin(t) y = yc+r*np.cos(t) plt.plot(x,y,c='blue') #@cuda.jit(device=True) def main(num_tree): max_iter = 800 epsilon = 2 # step size flag = 0 # for finding a connectivity path # initial and goal points/states x0 = 10 y0 = 10 x_goal = 90 y_goal = 90 plt.figure(figsize=[10,10]) plt.scatter([x0,x_goal],[y0,y_goal],c='r',marker="P") # obstacle info noo = 16 # no. of obstacles radius = np.sqrt(3)/2*epsilon obs_radii = radius*np.ones(noo) obs_coors = 100*np.random.rand(2,noo) # position of obstacles for i in range(0,noo): draw_circle(obs_coors[0,i],obs_coors[1,i],obs_radii[i]) if euc_distance_2d(x0,y0,x_goal,y_goal)<epsilon: flag = 1 plt.plot([x0,x_goal],[y0,y_goal],c='black') else: vertices = np.zeros([2,max_iter+1]) A = -np.ones([max_iter+1,max_iter+1]) vertices[0,0] = x0 vertices[1,0] = y0 A[0,0] = 0 nov = 0 # no. of vertices except the initial one i = 0 while flag==0 and i<max_iter: i += 1 x_rand= 100*np.random.rand(1) y_rand= 100*np.random.rand(1) xy_rand = np.array([x_rand,y_rand]).reshape(2,) [min_dis,p_near] = nearest_neighbor_2d_parallel(x_rand[0],y_rand[0],vertices,nov+1) if min_dis<epsilon: x_new = x_rand y_new = y_rand else: # interpolate r = epsilon/min_dis # ratio x_new = vertices[0,p_near]+r*(x_rand-vertices[0,p_near]) y_new = vertices[1,p_near]+r*(y_rand-vertices[1,p_near]) if collision_check_parallel(x_new[0],y_new[0],obs_coors,obs_radii): nov = nov+1 vertices[0,nov] = x_new vertices[1,nov] = y_new plt.scatter(x_new,y_new,c='g') plt.plot([vertices[0,p_near],x_new],[vertices[1,p_near],y_new],c='black') A[nov,:] = A[p_near,:] A[nov,nov] = nov if euc_distance_2d(x_new,y_new,x_goal,y_goal)<epsilon: nov = nov+1 A[nov,:] = A[nov-1,:] A[nov,nov] = nov vertices[0,nov] = x_goal vertices[1,nov] = y_goal plt.plot([x_new,x_goal],[y_new,y_goal],c='black') flag = 1 plt.xlabel('x-axis') plt.ylabel('y-axis') plt.xlim(0, 100) plt.ylim(0, 100) plt.axis('scaled') if flag ==1 and nov!=0: B = np.zeros(nov) nov_path =0 # no. of vertices on the connectivity path for i in range(0,nov+1): if A[nov,i]>-1: B[nov_path]=A[nov,i] nov_path += 1 B = B[0:nov_path] for i in range(0, B.size-1): plt.plot([vertices[0,int(B[i])],vertices[0,int(B[i+1])]],[vertices[1,int(B[i])],vertices[1,int(B[i+1])]],c='yellow',linewidth=7,alpha=0.5) elif flag ==0: flag = 0 print('No solution has been found for the given maximum number of iterations.') else: print('The initial and goal configurations are close enough.') plt.plot([x0,x_goal],[y0,y_goal],c='yellow',linewidth=7,alpha=0.5) plt.savefig("parralel_tree"+str(num_tree+1)+".png") #plt.show() #for i in range(10): # main() """ @cuda.jit def kernel_euler_method(d_diff, d_f, d_stencil): i= cuda.grid(1) n= d_diff.shape[0] d_diff[0] = 1 d_diff[i] = d_f[i] - d_f[i]*(d_f[i]-d_f[i-1])*d_stencil[0] def wrap_fun_diff(f, dx): n=f.shape[0] c=1.0 dt=0.02 stencil = np.array([(dt/dx)]) d_stencil = cuda.to_device(stencil) d_f = cuda.to_device(f) d_diff = cuda.device_array_like(d_f) blocks, threads = (n+TPB-1)//TPB, TPB kernel_euler_method[blocks, threads](d_diff, d_f, stencil) return d_diff.copy_to_host() """ """ @cuda.jit def kernel_para_RRT(d_diff): i= cuda.blockIdx.x*cuda.blockDim.x + cuda.threadIdx.x if i < d_diff.shape[0]: d_diff[i] = 1 #main() start = cuda.event() stop = cuda.event() starts = [] events = 10 for i in range(events): starts.append(cuda.event()) streams = [] for i in range(events): n = np.ones(10) num = 10 #d_f = cuda.to_device(n) d_diff = cuda.device_array_like(n) streams.append(cuda.stream) starts[i].record(streams[-1]) blocks, threads = (num+TPB-1)//TPB, TPB kernel_para_RRT[blocks, threads, streams[-1]](d_diff) main() stop.record() tot_time = cuda.event_elapsed_time(start, stop) print(" Time taken for RRT: ", i, "is: ", tot_time,"ms") #synchronize() """ #for s in streams: # s.synchronize() #for i in events: # cuda.event_elapsed_time(start[i], end[i]) #main() import dask import timeit import time from dask import delayed main = delayed(main) for n in range(16): start = time.time() _ = main(n).compute() tot_time = (time.time()-start) print("Time required for calculating tree : ", n+1, "is: ", tot_time, " sec") #stream = cuda.stream() #ccKernel[blocks, threads, stream] #stream.synchronize()
30.065844
150
0.615521
0ef26e92f4efb903b5fbd3a001ef20823bbf2ce0
1,137
py
Python
svpv/pedigree.py
VCCRI/SVPV
f902b2b8eea3bae1d4e9b097ea76e08fe41d5400
[ "MIT" ]
30
2016-09-16T02:33:20.000Z
2021-06-03T01:06:29.000Z
svpv/pedigree.py
rhshah/SVPV
f902b2b8eea3bae1d4e9b097ea76e08fe41d5400
[ "MIT" ]
2
2018-05-29T09:18:36.000Z
2021-12-17T09:45:25.000Z
svpv/pedigree.py
rhshah/SVPV
f902b2b8eea3bae1d4e9b097ea76e08fe41d5400
[ "MIT" ]
10
2017-02-28T06:15:22.000Z
2022-02-02T13:45:39.000Z
from __future__ import print_function # read a pedigree and store info in a dictionary class Pedigree: def __init__(self, ped, samples): # dict of list of samples in family self.samples_by_family = {} # dict of family by sample self.families_by_sample = {} # all info from ped file self.samples = {} for line in ped: if line[0] == '#' or line == '\n': continue try: fam, iid, fid, mid = line.split('\t')[0:4] except ValueError: print('Line in pedigree incorrectly formatted:\n"{}"\n'.format(line)) continue if iid not in samples: continue if fam in self.samples_by_family: self.samples_by_family[fam].append(iid) else: self.samples_by_family[fam] = [iid] self.families_by_sample[iid] = fam self.samples[iid] = (fam, iid, fid, mid) for s in samples: if s not in self.samples: print('Warning: sample {} not in pedigree\n'.format(s))
35.53125
85
0.533861
ea5fb5b74d4b1c397f7eb01f77305c582af74312
11,630
py
Python
backtesting/agent/market_makers/SpreadBasedMarketMakerAgent.py
andrewsonin/abides_dev
e8a9c8450bbbe98597f31767362c86eb193597a0
[ "BSD-3-Clause" ]
null
null
null
backtesting/agent/market_makers/SpreadBasedMarketMakerAgent.py
andrewsonin/abides_dev
e8a9c8450bbbe98597f31767362c86eb193597a0
[ "BSD-3-Clause" ]
null
null
null
backtesting/agent/market_makers/SpreadBasedMarketMakerAgent.py
andrewsonin/abides_dev
e8a9c8450bbbe98597f31767362c86eb193597a0
[ "BSD-3-Clause" ]
null
null
null
from collections import namedtuple, deque import pandas as pd from backtesting.agent.TradingAgent import TradingAgent from backtesting.utils.util import ignored from backtesting.utils.util import log_print ANCHOR_TOP_STR = 'top' ANCHOR_BOTTOM_STR = 'bottom' class SpreadBasedMarketMakerAgent(TradingAgent): """ This class implements the Chakraborty-Kearns `ladder` market-making strategy. """ _Order = namedtuple('_Order', ['price', 'id']) # Internal data structure used to describe a placed order def __init__(self, id, name, type, symbol, starting_cash, order_size=1, window_size=5, anchor=ANCHOR_BOTTOM_STR, num_ticks=20, wake_up_freq='1s', subscribe=True, subscribe_freq=10e9, subscribe_num_levels=1, log_orders=False, random_state=None): super().__init__(id, name, random_state=random_state, starting_cash=starting_cash, log_orders=log_orders) self.symbol = symbol # Symbol traded self.order_size = order_size # order size per price level self.window_size = window_size # Size in ticks (cents) of how wide the window around mid price is self.anchor = self.validateAnchor(anchor) # anchor either top of window or bottom of window to mid-price self.num_ticks = num_ticks # number of ticks on each side of window in which to place liquidity self.wake_up_freq = wake_up_freq # Frequency of agent wake up self.subscribe = subscribe # Flag to determine whether to subscribe to data or use polling mechanism self.subscribe_freq = subscribe_freq # Frequency in nanoseconds^-1 at which to receive market updates # in subscribe mode self.subscribe_num_levels = subscribe_num_levels # Number of orderbook levels in subscription mode self.log_orders = log_orders ## Internal variables self.subscription_requested = False self.state = "AWAITING_WAKEUP" self.current_bids = None # double-ended queue holding bid orders in the book self.current_asks = None # double-ended queue holding ask orders in the book self.last_mid = None # last observed mid price self.order_id_counter = 0 # counter for bookkeeping orders made by self self.LIQUIDITY_DROPOUT_WARNING = f"Liquidity dropout for agent {self.name}." def validateAnchor(self, anchor): """ Checks that input parameter anchor takes allowed value, raises ValueError if not. :param anchor: str :return: """ if anchor not in [ANCHOR_TOP_STR, ANCHOR_BOTTOM_STR]: raise ValueError(f"Variable anchor must take the value `{ANCHOR_BOTTOM_STR}` or `{ANCHOR_TOP_STR}`") else: return anchor def kernelStarting(self, startTime): super().kernelStarting(startTime) def wakeup(self, currentTime): """ Agent wakeup is determined by self.wake_up_freq """ can_trade = super().wakeup(currentTime) if self.subscribe and not self.subscription_requested: super().requestDataSubscription(self.symbol, levels=self.subscribe_num_levels, freq=self.subscribe_freq) self.subscription_requested = True self.state = 'AWAITING_MARKET_DATA' elif can_trade and not self.subscribe: self.getCurrentSpread(self.symbol, depth=self.subscribe_num_levels) self.state = 'AWAITING_SPREAD' def receiveMessage(self, currentTime, msg): """ Processes message from exchange. Main function is to update orders in orderbook relative to mid-price. :param simulation current time :param message received by self from ExchangeAgent :type currentTime: pd.Timestamp :type msg: str :return: """ super().receiveMessage(currentTime, msg) if self.last_mid is not None: mid = self.last_mid if not self.subscribe and self.state == 'AWAITING_SPREAD' and msg.body['msg'] == 'QUERY_SPREAD': bid, _, ask, _ = self.getKnownBidAsk(self.symbol) if bid and ask: mid = int((ask + bid) / 2) else: log_print(f"SPREAD MISSING at time {currentTime}") orders_to_cancel = self.computeOrdersToCancel(mid) self.cancelOrders(orders_to_cancel) self.placeOrders(mid) self.setWakeup(currentTime + self.getWakeFrequency()) self.state = 'AWAITING_WAKEUP' self.last_mid = mid elif self.subscribe and self.state == 'AWAITING_MARKET_DATA' and msg.body['msg'] == 'MARKET_DATA': bid = self.known_bids[self.symbol][0][0] if self.known_bids[self.symbol] else None ask = self.known_asks[self.symbol][0][0] if self.known_asks[self.symbol] else None if bid and ask: mid = int((ask + bid) / 2) else: log_print(f"SPREAD MISSING at time {currentTime}") return orders_to_cancel = self.computeOrdersToCancel(mid) self.cancelOrders(orders_to_cancel) self.placeOrders(mid) self.state = 'AWAITING_MARKET_DATA' self.last_mid = mid def computeOrdersToCancel(self, mid): """ Given a mid price, computes the orders that need to be removed from orderbook, and pops these orders from bid and ask deques. :param mid: mid-price :type mid: int :return: """ orders_to_cancel = [] if (self.current_asks is None) or (self.current_bids is None): return orders_to_cancel num_ticks_to_increase = int(mid - self.last_mid) if num_ticks_to_increase > 0: for _ in range(num_ticks_to_increase): with ignored(self.LIQUIDITY_DROPOUT_WARNING, IndexError): orders_to_cancel.append(self.current_bids.popleft()) with ignored(self.LIQUIDITY_DROPOUT_WARNING, IndexError): orders_to_cancel.append(self.current_asks.popleft()) elif num_ticks_to_increase < 0: for _ in range(- num_ticks_to_increase): with ignored(self.LIQUIDITY_DROPOUT_WARNING, IndexError): orders_to_cancel.append(self.current_bids.pop()) with ignored(self.LIQUIDITY_DROPOUT_WARNING, IndexError): orders_to_cancel.append(self.current_asks.pop()) return orders_to_cancel def cancelOrders(self, orders_to_cancel): """ Given a list of _Order objects, remove the corresponding orders from ExchangeAgent's orderbook :param orders_to_cancel: orders to remove from orderbook :type orders_to_cancel: list(_Order) :return: """ for order_tuple in orders_to_cancel: order_id = order_tuple.id try: order = self.orders[order_id] self.cancelOrder(order) except KeyError: continue def computeOrdersToPlace(self, mid): """ Given a mid price, computes the orders that need to be removed from orderbook, and adds these orders to bid and ask deques. :param mid: mid-price :type mid: int :return: """ bids_to_place = [] asks_to_place = [] if (not self.current_asks) or (not self.current_bids): self.cancelAllOrders() self.initialiseBidsAsksDeques(mid) bids_to_place.extend([order for order in self.current_bids]) asks_to_place.extend([order for order in self.current_asks]) return bids_to_place, asks_to_place if self.last_mid is not None: num_ticks_to_increase = int(mid - self.last_mid) else: num_ticks_to_increase = 0 if num_ticks_to_increase > 0: base_bid_price = self.current_bids[-1].price base_ask_price = self.current_asks[-1].price for price_increment in range(1, num_ticks_to_increase + 1): bid_price = base_bid_price + price_increment new_bid_order = self.generateNewOrderId(bid_price) bids_to_place.append(new_bid_order) self.current_bids.append(new_bid_order) ask_price = base_ask_price + price_increment new_ask_order = self.generateNewOrderId(ask_price) asks_to_place.append(new_ask_order) self.current_asks.append(new_ask_order) elif num_ticks_to_increase < 0: base_bid_price = self.current_bids[0].price base_ask_price = self.current_asks[0].price for price_increment in range(1, 1 - num_ticks_to_increase): bid_price = base_bid_price - price_increment new_bid_order = self.generateNewOrderId(bid_price) bids_to_place.append(new_bid_order) self.current_bids.appendleft(new_bid_order) ask_price = base_ask_price - price_increment new_ask_order = self.generateNewOrderId(ask_price) asks_to_place.append(new_ask_order) self.current_asks.appendleft(new_ask_order) return bids_to_place, asks_to_place def placeOrders(self, mid): """ Given a mid-price, compute new orders that need to be placed, then send the orders to the Exchange. :param mid: mid-price :type mid: int """ bid_orders, ask_orders = self.computeOrdersToPlace(mid) for bid_order in bid_orders: log_print(f'{self.name}: Placing BUY limit order of size {self.order_size} @ price {bid_order.price}') self.placeLimitOrder(self.symbol, self.order_size, True, bid_order.price, order_id=bid_order.id) for ask_order in ask_orders: log_print(f'{self.name}: Placing SELL limit order of size {self.order_size} @ price {ask_order.price}') self.placeLimitOrder(self.symbol, self.order_size, False, ask_order.price, order_id=ask_order.id) def initialiseBidsAsksDeques(self, mid): """ Initialise the current_bids and current_asks object attributes, which internally keep track of the limit orders sent to the Exchange. :param mid: mid-price :type mid: int """ if self.anchor == ANCHOR_BOTTOM_STR: highest_bid = int(mid - 1) lowest_ask = int(mid + self.window_size) elif self.anchor == ANCHOR_TOP_STR: highest_bid = int(mid - self.window_size) lowest_ask = int(mid + 1) lowest_bid = highest_bid - self.num_ticks highest_ask = lowest_ask + self.num_ticks self.current_bids = deque([self.generateNewOrderId(price) for price in range(lowest_bid, highest_bid + 1)]) self.current_asks = deque([self.generateNewOrderId(price) for price in range(lowest_ask, highest_ask + 1)]) def generateNewOrderId(self, price): """ Generate a _Order object for a particular price level :param price: :type price: int """ self.order_id_counter += 1 order_id = f"{self.name}_{self.id}_{self.order_id_counter}" return self._Order(price, order_id) def getWakeFrequency(self): """ Get time increment corresponding to wakeup period. """ return pd.Timedelta(self.wake_up_freq) def cancelAllOrders(self): """ Cancels all resting limit orders placed by the market maker """ for _, order in self.orders.items(): self.cancelOrder(order)
40.950704
117
0.646862
462507b5f5688bff89ba3207f9f9f835fb5f7313
9,121
py
Python
onmt/Dataset.py
DanSchum/NMTGMinor
ebcf33cc77b7c2bc73192f1975b99487db0ebc8a
[ "MIT" ]
null
null
null
onmt/Dataset.py
DanSchum/NMTGMinor
ebcf33cc77b7c2bc73192f1975b99487db0ebc8a
[ "MIT" ]
null
null
null
onmt/Dataset.py
DanSchum/NMTGMinor
ebcf33cc77b7c2bc73192f1975b99487db0ebc8a
[ "MIT" ]
null
null
null
from __future__ import division import math import torch import sys from torch.autograd import Variable import onmt class Batch(object): def __init__(self, src_data, tgt_data=None, src_align_right=False, tgt_align_right=False): self.tensors = dict() self.has_target = False self.tensors['source'], self.src_lengths = self.join_data(src_data, align_right=src_align_right) self.tensors['source'] = self.tensors['source'].t().contiguous() self.tensors['src_attn_mask'] = self.tensors['source'].eq(onmt.Constants.PAD).unsqueeze(1) self.tensors['src_pad_mask'] = self.tensors['source'].ne(onmt.Constants.PAD) if tgt_data is not None: target_full, self.tgt_lengths = self.join_data(tgt_data, align_right=tgt_align_right) target_full = target_full.t().contiguous() self.tensors['target_input'] = target_full[:-1] self.tensors['target_output'] = target_full[1:] self.tensors['tgt_pad_mask'] = self.tensors['target_input'].ne(onmt.Constants.PAD) self.tensors['tgt_attn_mask'] = self.tensors['target_input'].ne(onmt.Constants.PAD) self.tensors['tgt_mask'] = self.tensors['target_output'].ne(onmt.Constants.PAD) self.has_target = True self.size = len(src_data) self.tgt_size = sum([len(x) - 1 for x in tgt_data]) self.src_size = sum([len(x) for x in src_data]) def join_data(self, data, align_right=False): lengths = [x.size(0) for x in data] max_length = max(lengths) # initialize with batch_size * length first tensor = data[0].new(len(data), max_length).fill_(onmt.Constants.PAD) for i in range(len(data)): data_length = data[i].size(0) offset = max_length - data_length if align_right else 0 tensor[i].narrow(0, offset, data_length).copy_(data[i]) return tensor, lengths def get(self, name): if name in self.tensors: return self.tensors[name] else: return None def cuda(self): if onmt.Constants.cudaActivated: for key, value in self.tensors.items(): self.tensors[key] = value.cuda() class Dataset(object): ''' batchSize is now changed to have word semantic (probably better) ''' def __init__(self, srcData, tgtData, batchSize, gpus, data_type="text", balance=False, max_seq_num=128, multiplier=1, pad_count=False, sort_by_target=False): self.src = srcData self._type = data_type if tgtData: self.tgt = tgtData assert(len(self.src) == len(self.tgt)) else: self.tgt = None self.cuda = (len(gpus) > 0) self.fullSize = len(self.src) self.n_gpu = len(gpus) self.batchSize = batchSize self.balance = balance self.max_seq_num = max_seq_num # ~ print(self.max_seq_num) self.multiplier = multiplier self.sort_by_target = sort_by_target self.pad_count = pad_count # if self.balance: self.allocateBatch() self.cur_index = 0 self.batchOrder = None # This function allocates the mini-batches (grouping sentences with the same size) def allocateBatch(self): # The sentence pairs are sorted by source already (cool) self.batches = [] cur_batch = [] cur_batch_size = 0 cur_batch_sizes = [] def oversize_(cur_batch): #Check if the length of current batch cur_batch is already exceeding the max_seq_num if len(cur_batch) == self.max_seq_num: return True oversized = False if self.pad_count == False: if ( cur_batch_size + sentence_length > self.batchSize ): return True else: # here we assume the new sentence's participation in the minibatch longest_length = sentence_length if len(cur_batch_sizes) > 0: longest_length = max(max(cur_batch_sizes), sentence_length) if longest_length * (len(cur_batch)+1) > self.batchSize: return True return False i = 0 while i < self.fullSize: sentence_length = self.tgt[i].size(0) - 1 if self.sort_by_target else self.src[i].size(0) oversized = oversize_(cur_batch) # if the current length makes the batch exceeds # the we create a new batch if oversized: current_size = len(cur_batch) scaled_size = max( self.multiplier * (current_size // self.multiplier), current_size % self.multiplier) # ~ print(cur_batch) batch_ = cur_batch[:scaled_size] # ~ print(batch_) # ~ print(len(batch_)) if self.multiplier > 1: assert(len(batch_) % self.multiplier == 0, "batch size is not multiplied, current batch_size is %d " % len(batch_)) self.batches.append(batch_) # add this batch into the batch list cur_batch = cur_batch[scaled_size:] # reset the current batch cur_batch_sizes = cur_batch_sizes[scaled_size:] cur_batch_size = sum(cur_batch_sizes) cur_batch.append(i) cur_batch_size += sentence_length cur_batch_sizes.append(sentence_length) i = i + 1 # catch the last batch if len(cur_batch) > 0: self.batches.append(cur_batch) self.numBatches = len(self.batches) def _batchify(self, data, align_right=False, include_lengths=False, dtype="text"): lengths = [x.size(0) for x in data] max_length = max(lengths) out = data[0].new(len(data), max_length).fill_(onmt.Constants.PAD) for i in range(len(data)): data_length = data[i].size(0) offset = max_length - data_length if align_right else 0 out[i].narrow(0, offset, data_length).copy_(data[i]) if include_lengths: return out, lengths else: return out def __getitem__(self, index): assert index < self.numBatches, "%d > %d" % (index, self.numBatches) batch = self.batches[index] srcData = [self.src[i] for i in batch] if self.tgt: tgtData = [self.tgt[i] for i in batch] else: tgtData = None print('Tgt data not found.') batch = Batch(srcData, tgt_data=tgtData, src_align_right=False, tgt_align_right=False) return batch def __len__(self): return self.numBatches def create_order(self, random=True): if random: self.batchOrder = torch.randperm(self.numBatches) else: self.batchOrder = torch.arange(self.numBatches).long() self.cur_index = 0 return self.batchOrder def next(self, curriculum=False, reset=True, split_sizes=1): # reset iterator if reach data size limit if self.cur_index >= self.numBatches: if reset: self.cur_index = 0 else: return None if curriculum or self.batchOrder is None: batch_index = self.cur_index else: batch_index = self.batchOrder[self.cur_index] batch = self[batch_index] # move the iterator one step self.cur_index += 1 #split that batch to number of gpus samples = [] split_size = 1 # maybe we need a more smart splitting function ? # if batch[1] is not None: # batch_split = zip(batch[0].split(split_size, dim=1), # batch[1].split(split_size, dim=1)) # batch_split = [ [b[0], b[1]] for i, b in enumerate(batch_split) ] # else: # batch_split = zip(batch[0].split(split_size, dim=1)) # batch_split = [ [b[0], None] for i, b in enumerate(batch_split) ] return [batch] def shuffle(self): data = list(zip(self.src, self.tgt)) self.src, self.tgt = zip(*[data[i] for i in torch.randperm(len(data))]) def set_index(self, iteration): assert iteration >= 0 and iteration < self.numBatches self.cur_index = iteration
35.352713
135
0.546979
13a78ee3096804423ed04d3460f60243d070c78c
1,329
py
Python
src/profiles/forms.py
mizamae/HomeAutomation
8c462ee4c31c1fea6792cb19af66a4d2cf7bb2ca
[ "MIT" ]
null
null
null
src/profiles/forms.py
mizamae/HomeAutomation
8c462ee4c31c1fea6792cb19af66a4d2cf7bb2ca
[ "MIT" ]
9
2017-11-21T15:45:18.000Z
2022-02-11T03:37:54.000Z
src/profiles/forms.py
mizamae/HomeAutomation
8c462ee4c31c1fea6792cb19af66a4d2cf7bb2ca
[ "MIT" ]
1
2020-07-22T02:24:17.000Z
2020-07-22T02:24:17.000Z
# coding: utf-8 from __future__ import unicode_literals from crispy_forms.bootstrap import AppendedText, PrependedText, FormActions from crispy_forms.helper import FormHelper from crispy_forms.layout import Layout, Div, Submit, HTML, Button, Row, Field from django import forms from django.contrib.auth import get_user_model from . import models User = get_user_model() class UserForm(forms.ModelForm): def __init__(self, *args, **kwargs): super(UserForm, self).__init__(*args, **kwargs) self.helper = FormHelper() self.helper.form_tag = False self.helper.layout = Layout( Field('name'), ) class Meta: model = User fields = ['name'] class ProfileForm(forms.ModelForm): def __init__(self, *args, **kwargs): super(ProfileForm, self).__init__(*args, **kwargs) self.helper = FormHelper() self.helper.form_tag = False self.helper.layout = Layout( Field('picture'), Field('bio'), Field('tracking'), Field('notifications'), Submit('update', 'Update', css_class="btn-success"), ) class Meta: model = models.Profile fields = ['picture', 'bio','tracking','notifications']
27.6875
78
0.607223
cafe76f54799e953f9451465a4d90ffdbf96b08d
391
py
Python
bouncer/bouncer/wsgi.py
ikechuku/bouncer_rest_api
ca3f21a68c445fa3023168d2ecd3b38001554779
[ "MIT" ]
null
null
null
bouncer/bouncer/wsgi.py
ikechuku/bouncer_rest_api
ca3f21a68c445fa3023168d2ecd3b38001554779
[ "MIT" ]
8
2020-06-05T21:35:47.000Z
2021-09-22T18:42:45.000Z
bouncer/bouncer/wsgi.py
ikechuku/demo-jhipster
e0d0806ee75dccf77eb62b31c4d59c0bf1a7a230
[ "MIT" ]
null
null
null
""" WSGI config for bouncer project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/2.2/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'bouncer.settings') application = get_wsgi_application()
23
78
0.785166
138032e30e63fed8d95cf844be0f47c22a9ac7e2
1,092
py
Python
docker-image/apiserver/app/app.py
wix-playground/supraworker
9672a4f0094ef09c51e47ac6e51655ca27a636c0
[ "Apache-2.0" ]
1
2020-09-24T00:12:58.000Z
2020-09-24T00:12:58.000Z
docker-image/apiserver/app/app.py
wix-playground/supraworker
9672a4f0094ef09c51e47ac6e51655ca27a636c0
[ "Apache-2.0" ]
5
2020-04-05T23:31:42.000Z
2021-08-31T21:22:49.000Z
docker-image/apiserver/app/app.py
wix-playground/supraworker
9672a4f0094ef09c51e47ac6e51655ca27a636c0
[ "Apache-2.0" ]
2
2021-08-03T11:13:43.000Z
2021-08-03T11:15:08.000Z
# -*- coding: utf-8 -*- """ Main file """ import os import logging from flask import Flask from flask_restx.apidoc import apidoc from app.resources.logs import logs_page from app.resources.jobs import job_page logging.basicConfig( level= logging.DEBUG, format='%(asctime)s {%(filename)s:%(lineno)d} %(levelname)s: %(message)s') logging.info("Starting Flask...") logging.info(f"Load FLASK config {os.getenv('APP_SETTINGS', 'flaskconfig.ProductionConfig')}") app = Flask(__name__) app.config.from_object(os.getenv('APP_SETTINGS', 'flaskconfig.ProductionConfig')) logging.info("Register Blueprint") apidoc.static_url_path = "{}/swagger/ui".format(app.config['URL_PREFIX']) app.register_blueprint(job_page, url_prefix="{}/jobs".format(app.config['URL_PREFIX'])) app.register_blueprint(logs_page, url_prefix="{}/logs".format(app.config['URL_PREFIX'])) logging.info("FINISHED INITIALIZATION") if __name__ != '__main__': gunicorn_logger = logging.getLogger('gunicorn.error') app.logger.handlers = gunicorn_logger.handlers app.logger.setLevel(gunicorn_logger.level)
33.090909
94
0.748168
182f3e1b0a6c0654dfba84caf5b80a1be67ff071
237
py
Python
practice_python/list_less_then_five/list_less_then_five.py
alefeans/python_exercises
d7f8ea8dfd993f070d201202d12a526bb8105cc5
[ "MIT" ]
1
2021-06-11T18:29:26.000Z
2021-06-11T18:29:26.000Z
practice_python/list_less_then_five/list_less_then_five.py
alefeans/learning_python
d7f8ea8dfd993f070d201202d12a526bb8105cc5
[ "MIT" ]
null
null
null
practice_python/list_less_then_five/list_less_then_five.py
alefeans/learning_python
d7f8ea8dfd993f070d201202d12a526bb8105cc5
[ "MIT" ]
null
null
null
def check_list(lista): return [lista[i] for i in range(len(lista)) if lista[i] < 5] if __name__ == "__main__": entry = input("Give me a list of numbers: ") lista = list(map(int, entry.split())) print(check_list(lista))
26.333333
64
0.637131
74c5418df253777760034d01ee0a0aa455031dd4
11,314
py
Python
python/ray/serve/tests/test_backend_worker.py
Rid039/ray
eb9330df07150adbb9a4e334ace6b1a3ba6602a2
[ "Apache-2.0" ]
1
2021-02-04T13:45:00.000Z
2021-02-04T13:45:00.000Z
python/ray/serve/tests/test_backend_worker.py
mfitton/ray
fece8db70d703da1aad192178bd50923e83cc99a
[ "Apache-2.0" ]
72
2021-02-06T08:07:16.000Z
2022-03-26T07:17:49.000Z
python/ray/serve/tests/test_backend_worker.py
mfitton/ray
fece8db70d703da1aad192178bd50923e83cc99a
[ "Apache-2.0" ]
2
2020-05-22T15:36:27.000Z
2020-05-22T15:52:03.000Z
import asyncio import pytest import numpy as np import ray from ray import serve from ray.serve.backend_worker import create_backend_replica, wrap_to_ray_error from ray.serve.controller import TrafficPolicy from ray.serve.router import Router, RequestMetadata from ray.serve.config import BackendConfig, BackendMetadata from ray.serve.exceptions import RayServeException from ray.serve.utils import get_random_letters pytestmark = pytest.mark.asyncio def setup_worker(name, func_or_class, init_args=None, backend_config=BackendConfig(), controller_name=""): if init_args is None: init_args = () @ray.remote class WorkerActor: def __init__(self): self.worker = create_backend_replica(func_or_class)( name, name + ":tag", init_args, backend_config, controller_name) def ready(self): pass @ray.method(num_returns=2) async def handle_request(self, *args, **kwargs): return await self.worker.handle_request(*args, **kwargs) def update_config(self, new_config): return self.worker.update_config(new_config) async def drain_pending_queries(self): return await self.worker.drain_pending_queries() worker = WorkerActor.remote() ray.get(worker.ready.remote()) return worker async def add_servable_to_router(servable, router, controller_name, **kwargs): worker = setup_worker( "backend", servable, controller_name=controller_name, **kwargs) await router._update_replica_handles.remote({"backend": [worker]}) await router._update_traffic_policies.remote({ "endpoint": TrafficPolicy({ "backend": 1.0 }) }) if "backend_config" in kwargs: await router._update_backend_configs.remote({ "backend": kwargs["backend_config"] }) return worker def make_request_param(call_method="__call__"): return RequestMetadata( get_random_letters(10), "endpoint", call_method=call_method) @pytest.fixture async def router(serve_instance): q = ray.remote(Router).remote(serve_instance._controller) yield q ray.kill(q) async def test_runner_wraps_error(): wrapped = wrap_to_ray_error(Exception()) assert isinstance(wrapped, ray.exceptions.RayTaskError) async def test_servable_function(serve_instance, router, mock_controller_with_name): def echo(request): return request.query_params["i"] await add_servable_to_router(echo, router, mock_controller_with_name[0]) for query in [333, 444, 555]: query_param = make_request_param() result = await (await router.assign_request.remote( query_param, i=query)) assert result == query async def test_servable_class(serve_instance, router, mock_controller_with_name): class MyAdder: def __init__(self, inc): self.increment = inc def __call__(self, request): return request.query_params["i"] + self.increment await add_servable_to_router( MyAdder, router, mock_controller_with_name[0], init_args=(3, )) for query in [333, 444, 555]: query_param = make_request_param() result = await (await router.assign_request.remote( query_param, i=query)) assert result == query + 3 async def test_task_runner_custom_method_single(serve_instance, router, mock_controller_with_name): class NonBatcher: def a(self, _): return "a" def b(self, _): return "b" await add_servable_to_router(NonBatcher, router, mock_controller_with_name[0]) query_param = make_request_param("a") a_result = await (await router.assign_request.remote(query_param)) assert a_result == "a" query_param = make_request_param("b") b_result = await (await router.assign_request.remote(query_param)) assert b_result == "b" query_param = make_request_param("non_exist") with pytest.raises(ray.exceptions.RayTaskError): await (await router.assign_request.remote(query_param)) async def test_task_runner_custom_method_batch(serve_instance, router, mock_controller_with_name): @serve.accept_batch class Batcher: def a(self, requests): return ["a-{}".format(i) for i in range(len(requests))] def b(self, requests): return ["b-{}".format(i) for i in range(len(requests))] backend_config = BackendConfig( max_batch_size=4, batch_wait_timeout=10, internal_metadata=BackendMetadata(accepts_batches=True)) await add_servable_to_router( Batcher, router, mock_controller_with_name[0], backend_config=backend_config) a_query_param = make_request_param("a") b_query_param = make_request_param("b") futures = [ await router.assign_request.remote(a_query_param) for _ in range(2) ] futures += [ await router.assign_request.remote(b_query_param) for _ in range(2) ] gathered = await asyncio.gather(*futures) assert set(gathered) == {"a-0", "a-1", "b-0", "b-1"} async def test_servable_batch_error(serve_instance, router, mock_controller_with_name): @serve.accept_batch class ErrorBatcher: def error_different_size(self, requests): return [""] * (len(requests) + 10) def error_non_iterable(self, _): return 42 def return_np_array(self, requests): return np.array([1] * len(requests)).astype(np.int32) backend_config = BackendConfig( max_batch_size=4, internal_metadata=BackendMetadata(accepts_batches=True)) await add_servable_to_router( ErrorBatcher, router, mock_controller_with_name[0], backend_config=backend_config) with pytest.raises(RayServeException, match="doesn't preserve batch size"): different_size = make_request_param("error_different_size") await (await router.assign_request.remote(different_size)) with pytest.raises(RayServeException, match="iterable"): non_iterable = make_request_param("error_non_iterable") await (await router.assign_request.remote(non_iterable)) np_array = make_request_param("return_np_array") result_np_value = await (await router.assign_request.remote(np_array)) assert isinstance(result_np_value, np.int32) async def test_task_runner_perform_batch(serve_instance, router, mock_controller_with_name): def batcher(requests): batch_size = len(requests) return [batch_size] * batch_size config = BackendConfig( max_batch_size=2, batch_wait_timeout=10, internal_metadata=BackendMetadata(accepts_batches=True)) await add_servable_to_router( batcher, router, mock_controller_with_name[0], backend_config=config) query_param = make_request_param() my_batch_sizes = await asyncio.gather(*[( await router.assign_request.remote(query_param)) for _ in range(3)]) assert my_batch_sizes == [2, 2, 1] async def test_task_runner_perform_async(serve_instance, router, mock_controller_with_name): @ray.remote class Barrier: def __init__(self, release_on): self.release_on = release_on self.current_waiters = 0 self.event = asyncio.Event() async def wait(self): self.current_waiters += 1 if self.current_waiters == self.release_on: self.event.set() else: await self.event.wait() barrier = Barrier.remote(release_on=10) async def wait_and_go(*args, **kwargs): await barrier.wait.remote() return "done!" config = BackendConfig( max_concurrent_queries=10, internal_metadata=BackendMetadata(is_blocking=False)) await add_servable_to_router( wait_and_go, router, mock_controller_with_name[0], backend_config=config) query_param = make_request_param() done, not_done = await asyncio.wait( [(await router.assign_request.remote(query_param)) for _ in range(10)], timeout=10) assert len(done) == 10 for item in done: assert await item == "done!" async def test_user_config_update(serve_instance, router, mock_controller_with_name): class Customizable: def __init__(self): self.reval = "" def __call__(self, starlette_request): return self.retval def reconfigure(self, config): self.retval = config["return_val"] config = BackendConfig( num_replicas=2, user_config={ "return_val": "original", "b": 2 }) await add_servable_to_router( Customizable, router, mock_controller_with_name[0], backend_config=config) query_param = make_request_param() done = [(await router.assign_request.remote(query_param)) for _ in range(10)] for i in done: assert await i == "original" config = BackendConfig() config.user_config = {"return_val": "new_val"} await mock_controller_with_name[1].update_backend.remote("backend", config) done = [(await router.assign_request.remote(query_param)) for _ in range(10)] for i in done: assert await i == "new_val" async def test_graceful_shutdown(serve_instance, router, mock_controller_with_name): class KeepInflight: def __init__(self): self.events = [] def reconfigure(self, config): if config["release"]: [event.set() for event in self.events] async def __call__(self, _): e = asyncio.Event() self.events.append(e) await e.wait() backend_worker = await add_servable_to_router( KeepInflight, router, mock_controller_with_name[0], backend_config=BackendConfig( num_replicas=1, internal_metadata=BackendMetadata(is_blocking=False), user_config={"release": False})) query_param = make_request_param() refs = [(await router.assign_request.remote(query_param)) for _ in range(6)] shutdown_ref = backend_worker.drain_pending_queries.remote() with pytest.raises(ray.exceptions.GetTimeoutError): # Shutdown should block because there are still inflight queries. ray.get(shutdown_ref, timeout=2) config = BackendConfig() config.user_config = {"release": True} await mock_controller_with_name[1].update_backend.remote("backend", config) # All queries should complete successfully ray.get(refs) # The draining operation should be completed. ray.get(shutdown_ref) if __name__ == "__main__": import sys sys.exit(pytest.main(["-v", "-s", __file__]))
31.168044
79
0.646721
0d691ec72cea914e2e76e9db7179d1a70b269fcf
2,954
py
Python
start.py
joezawisa/dockermc
d4e622ba9dc23fee613e7b14154780e66df9cc00
[ "Apache-2.0" ]
null
null
null
start.py
joezawisa/dockermc
d4e622ba9dc23fee613e7b14154780e66df9cc00
[ "Apache-2.0" ]
null
null
null
start.py
joezawisa/dockermc
d4e622ba9dc23fee613e7b14154780e66df9cc00
[ "Apache-2.0" ]
null
null
null
import argparse import requests import os import sys # Function to load version manifest def get_manifest(url): r = requests.get(url) if r.ok: return r.json() else: print('Error: failed to load manifest', file=sys.stderr) sys.exit(1) # Parse command line arguments parser = argparse.ArgumentParser(description='Start a minecraft server in Docker.') parser.add_argument('-v', '--version', metavar='version', type=str, help='minecraft version', required=False, default='latest') parser.add_argument('-m', '--manifest', metavar='manifest', type=str, help='version manifest', required=False, default='https://launchermeta.mojang.com/mc/game/version_manifest_v2.json') arguments = vars(parser.parse_args()) # Create required directories if they don't already exist for directory in ['versions', 'data']: if not os.path.exists(directory): os.mkdir(directory) version = arguments['version'] manifest = None # If the user chose to run the latest version, find out what version that is if version == 'latest': # Get version manifest manifest = get_manifest(arguments['manifest']) # Get the version number of the latest release from the manifest try: version = manifest['latest']['release'] except KeyError: print('Error: failed to find latest release in manifest', file=sys.stderr) sys.exit(1) # Check whether we already have the requested version if not os.path.exists(f'versions/{version}.jar'): if manifest is None: manifest = get_manifest(arguments['manifest']) # If it's missing, find it in the version manifest server = None try: for v in manifest['versions']: if v['id'] == version: # Get version info r = requests.get(v['url']) if r.ok: metadata = r.json() server = metadata['downloads']['server']['url'] else: print('Error: failed to load version info', file=sys.stderr) sys.exit(1) break except KeyError: print('Error: failed to find server URL', file=sys.stderr) sys.exit(1) # Download the server (we do this in chunks since it might be big) if server is None: print('Error: Requested version not found', file=sys.stderr) sys.exit(1) else: with requests.get(server, stream=True) as r: if r.ok: with open(f'versions/{version}.jar', 'wb') as jar: for chunk in r.iter_content(chunk_size=1024): if chunk: jar.write(chunk) else: print('Error: failed to download server', file=sys.stderr) sys.exit(1) # Start the server os.chdir('./data') os.execvp(file='java', args=['java', '-Xmx1024M', '-Xms1024M', '-jar', f'../versions/{version}.jar', 'nogui'])
36.925
186
0.611713
0e83acad0e58eff2facc4247cbcec272ebd3b2a5
1,705
py
Python
cacreader/swig-4.0.2/Examples/python/import/runme.py
kyletanyag/LL-Smartcard
02abea9de5a13f8bae4d7832ab34cb7f0d9514c9
[ "BSD-3-Clause" ]
1,031
2015-01-02T14:08:47.000Z
2022-03-29T02:25:27.000Z
cacreader/swig-4.0.2/Examples/python/import/runme.py
kyletanyag/LL-Smartcard
02abea9de5a13f8bae4d7832ab34cb7f0d9514c9
[ "BSD-3-Clause" ]
240
2015-01-11T04:27:19.000Z
2022-03-30T00:35:57.000Z
cacreader/swig-4.0.2/Examples/python/import/runme.py
kyletanyag/LL-Smartcard
02abea9de5a13f8bae4d7832ab34cb7f0d9514c9
[ "BSD-3-Clause" ]
224
2015-01-05T06:13:54.000Z
2022-02-25T14:39:51.000Z
# file: runme.py # Test various properties of classes defined in separate modules print "Testing the %import directive" import base import foo import bar import spam # Create some objects print "Creating some objects" a = base.Base() b = foo.Foo() c = bar.Bar() d = spam.Spam() # Try calling some methods print "Testing some methods" print "", print "Should see 'Base::A' ---> ", a.A() print "Should see 'Base::B' ---> ", a.B() print "Should see 'Foo::A' ---> ", b.A() print "Should see 'Foo::B' ---> ", b.B() print "Should see 'Bar::A' ---> ", c.A() print "Should see 'Bar::B' ---> ", c.B() print "Should see 'Spam::A' ---> ", d.A() print "Should see 'Spam::B' ---> ", d.B() # Try some casts print "\nTesting some casts\n" print "", x = a.toBase() print "Should see 'Base::A' ---> ", x.A() print "Should see 'Base::B' ---> ", x.B() x = b.toBase() print "Should see 'Foo::A' ---> ", x.A() print "Should see 'Base::B' ---> ", x.B() x = c.toBase() print "Should see 'Bar::A' ---> ", x.A() print "Should see 'Base::B' ---> ", x.B() x = d.toBase() print "Should see 'Spam::A' ---> ", x.A() print "Should see 'Base::B' ---> ", x.B() x = d.toBar() print "Should see 'Bar::B' ---> ", x.B() print "\nTesting some dynamic casts\n" x = d.toBase() print " Spam -> Base -> Foo : ", y = foo.Foo_fromBase(x) if y: print "bad swig" else: print "good swig" print " Spam -> Base -> Bar : ", y = bar.Bar_fromBase(x) if y: print "good swig" else: print "bad swig" print " Spam -> Base -> Spam : ", y = spam.Spam_fromBase(x) if y: print "good swig" else: print "bad swig" print " Foo -> Spam : ", y = spam.Spam_fromBase(b) if y: print "bad swig" else: print "good swig"
15.787037
64
0.57654
d18bcf0ffa5e179f264dac8fd02a77b6934e007c
8,349
py
Python
component/tile/bfast_tile.py
sepal-contrib/bfast_gpu
22214b0277993835f41f07e6646e6e15deecc9d9
[ "MIT" ]
2
2021-05-21T06:23:20.000Z
2021-06-29T06:03:25.000Z
component/tile/bfast_tile.py
sepal-contrib/bfast_gpu
22214b0277993835f41f07e6646e6e15deecc9d9
[ "MIT" ]
28
2021-04-23T09:38:36.000Z
2021-09-28T09:44:00.000Z
component/tile/bfast_tile.py
sepal-contrib/bfast_gpu
22214b0277993835f41f07e6646e6e15deecc9d9
[ "MIT" ]
2
2021-05-01T09:35:59.000Z
2021-06-22T10:53:33.000Z
from pathlib import Path from datetime import datetime as dt import ipyvuetify as v from sepal_ui import sepalwidgets as sw from sepal_ui.scripts import utils as su from traitlets import Any from component import widget as cw from component.message import cm from component import scripts as cs from component import parameter as cp class BfastTile(sw.Tile): dir_ = Any(None).tag(sync=True) def __init__(self): # create the different widgets # I will not use Io as the information doesn't need to be communicated to any other tile self.folder = cw.FolderSelect() self.out_dir = cw.OutDirSelect() self.tiles = cw.TilesSelect() self.poly = v.Select( label=cm.widget.harmonic.label, v_model=3, items=[i for i in range(3, 11)] ) self.freq = v.Slider( label=cm.widget.freq.label, v_model=12, min=1, max=12, thumb_label="always", class_="mt-5", ) self.trend = v.Switch(v_model=False, label=cm.widget.trend.label) self.hfrac = v.Select( label=cm.widget.hfrac.label, v_model=0.25, items=[0.25, 0.5, 1.0] ) self.level = v.Slider( label=cm.widget.level.label, v_model=0.95, step=0.001, min=0.95, max=1, thumb_label="always", class_="mt-5", ) self.backend = cw.BackendSelect() self.monitoring = cw.DateRangeSlider(label=cm.widget.monitoring.label) self.history = cw.DateSlider(label=cm.widget.history.label) # stack the advance parameters in a expandpanel advance_params = v.ExpansionPanels( class_="mb-5", popout=True, children=[ v.ExpansionPanel( children=[ v.ExpansionPanelHeader(children=[cm.widget.advance_params]), v.ExpansionPanelContent( children=[ v.Flex(xs12=True, children=[self.freq]), v.Flex(xs12=True, children=[self.hfrac]), v.Flex(xs12=True, children=[self.level]), v.Flex(xs12=True, children=[self.backend]), ] ), ] ) ], ) # create the tile super().__init__( "bfast_tile", cm.bfast.folder, # the title is used to describe the first section inputs=[ self.folder, self.out_dir, self.tiles, v.Html(tag="h2", children=[cm.bfast.process]), self.poly, self.trend, advance_params, v.Html(tag="h2", children=[cm.bfast.periods]), self.history, self.monitoring, ], alert=cw.CustomAlert(), btn=sw.Btn(cm.bfast.btn), ) # add js behaviour self.folder.observe(self._on_folder_change, "v_model") self.btn.on_event("click", self._start_process) self.monitoring.observe(self._check_periods, "v_model") self.history.observe(self._check_periods, "v_model") @su.loading_button(debug=True) def _start_process(self, widget, event, data): """start the bfast process""" # gather all the variables for conveniency folder = self.folder.v_model out_dir = self.out_dir.v_model tiles = self.tiles.v_model poly = self.poly.v_model freq = min(self.freq.v_model * 31, 365) trend = self.trend.v_model hfrac = self.hfrac.v_model level = self.level.v_model backend = self.backend.v_model monitoring = self.monitoring.v_model history = self.history.v_model # check the inputs if not self.alert.check_input(folder, cm.widget.folder.no_folder): return if not self.alert.check_input(out_dir, cm.widget.out_dir.no_dir): return if not self.alert.check_input(tiles, cm.widget.tiles.no_tiles): return if not self.alert.check_input(poly, cm.widget.harmonic.no_poly): return if not self.alert.check_input(freq, cm.widget.freq.no_freq): return if not self.alert.check_input(trend, cm.widget.trend.no_trend): return if not self.alert.check_input(hfrac, cm.widget.hfrac.no_frac): return if not self.alert.check_input(level, cm.widget.level.no_level): return if not self.alert.check_input(backend, cm.widget.backend.no_backend): return if not self.alert.check_input(len(monitoring), cm.widget.monitoring.no_dates): return if not self.alert.check_input(history, cm.widget.history.no_date): return # check the dates if not (history < monitoring[0] < monitoring[1]): return self.alert.add_msg(cm.widget.monitoring.bad_order, "error") # run the bfast process res = cs.run_bfast( Path(folder), out_dir, tiles, monitoring, history, freq, poly, hfrac, trend, level, backend, self.alert, ) print(type(res)) print(res) self.dir_ = res # display the end of computation message self.alert.add_live_msg( cm.bfast.complete.format(str(cp.result_dir / out_dir)), "success" ) def _on_folder_change(self, change): """ Change the available tiles according to the selected folder Raise an error if the folder is not structured as a SEPAL time series (i.e. folder number for each tile) """ # get the new selected folder folder = Path(change["new"]) # reset the widgets self.out_dir.v_model = None self.tiles.reset() # check if it's a time series folder if not self.folder.is_valid_ts(): # reset the non working inputs self.monitoring.disable() self.history.disable() self.tiles.reset() self.dates_0 = None # display a message to the end user self.alert.add_msg(cm.widget.folder.no_ts.format(folder), "warning") return self # set the basename self.out_dir.set_folder(folder) # set the items in the dropdown self.tiles.set_items(folder) # set the dates for the sliders # we consider that the dates are consistent through all the folders so we can use only the first one with (folder / "0" / "dates.csv").open() as f: dates = sorted( [ dt.strptime(l, "%Y-%m-%d") for l in f.read().splitlines() if l.rstrip() ] ) self.monitoring.set_dates(dates) self.history.set_dates(dates) self.alert.add_msg(cm.widget.folder.valid_ts.format(folder)) return self def _check_periods(self, change): """check if the historical period have enough images""" # to avoid bug on disable if not (self.history.dates and self.monitoring.dates): return self # get the dates from the folder folder = Path(self.folder.v_model) with (folder / "0" / "dates.csv").open() as f: dates = sorted( [ dt.strptime(l, "%Y-%m-%d") for l in f.read().splitlines() if l.rstrip() ] ) # get the value of the current history and monitoring dates history = next(d[0] for d in enumerate(dates) if d[1] > self.history.v_model) monitor = next( d[0] for d in enumerate(dates) if d[1] > self.monitoring.v_model[0] ) if history > (monitor - cp.min_images): self.alert.add_msg(cm.widget.history.too_short, "warning") else: self.alert.reset() return self
33.262948
112
0.548329
3e3b076c7313d33e4b59b5611b24294163ec667b
4,145
py
Python
tgbot/ext/persistent/sqlite.py
JacoRuit/tgbot
1e32a802bc4869d46562ec4c2d46dc691868061c
[ "MIT" ]
2
2016-08-09T21:28:04.000Z
2016-08-16T12:04:40.000Z
tgbot/ext/persistent/sqlite.py
JacoRuit/tgbot
1e32a802bc4869d46562ec4c2d46dc691868061c
[ "MIT" ]
null
null
null
tgbot/ext/persistent/sqlite.py
JacoRuit/tgbot
1e32a802bc4869d46562ec4c2d46dc691868061c
[ "MIT" ]
null
null
null
import threading import sqlite3 import json from tgbot.ext.persistent import Storage, PersistentChat, PersistentUser class ThreadsafeCursor(object): def __init__(self, connection): self._mutex = threading.Lock() self._connection = connection self._cursor = connection.cursor() def _inside(self): if self._mutex.acquire(False): self._mutex.release() return False else: return True def __enter__(self): self._mutex.acquire() def __exit__(self, type, value, traceback): self._connection.commit() self._mutex.release() def __getattr__(self, key): attr = getattr(self._cursor, key) if hasattr(attr, "__call__"): def wrap(*args, **kwargs): if not self._inside(): raise RuntimeError("Can only call cursor functions inside with block") return attr(*args, **kwargs) return wrap else: return attr class SQLiteStorage(Storage): def __init__(self, database_path): self.database_path = database_path self.connection = None self.cursor = None def create_tables_ifnexists(self): with self.cursor: self.cursor.execute("create table if not exists chats (id text unique, type text, title text, username text, first_name text, last_name text, data text)") self.cursor.execute("create table if not exists users (id text unique, first_name text, last_name text, username text, data text)") def load_chats(self, bot): with self.cursor: for (id, type, title, username, first_name, last_name, data_json) in self.cursor.execute("select * from chats"): try: id = int(id) # Try to convert back to int (will fail for channels) except: pass bot.add_chat(id, { "type": type, "username": username, "first_name": first_name, "last_name": last_name # Data as sent by Telegram API }) try: bot.chats[id].data = json.loads(data_json) except: pass def load_users(self, bot): with self.cursor: for (id, first_name, last_name, username, data_json) in self.cursor.execute("select * from users"): try: id = int(id) # Try to convert back to int (will fail for channels) except: pass bot.add_user(id, { "first_name": first_name, "last_name": last_name, "username": username # Data as sent by Telegram API }) try: bot.users[id].data = json.loads(data_json) except: pass def sql_value(self, var): return str(var) if var is not None else "NULL" def save_chats(self, bot): with self.cursor: for chat in bot.chats.values(): self.cursor.execute("insert or ignore into chats(id) values (?)", [self.sql_value(chat.id)]) self.cursor.execute( "update chats set type = ?, title = ?, username = ?, first_name = ?, last_name = ?, data = ? WHERE id = ?", [self.sql_value(x) for x in [chat.type, chat.title, chat.username, chat.first_name, chat.last_name, json.dumps(chat.data), chat.id]]) def save_users(self, bot): with self.cursor: for user in bot.users.values(): self.cursor.execute("insert or ignore into users(id) values (?)", [self.sql_value(user.id)]) self.cursor.execute( "update users set first_name = ?, last_name = ?, username = ?, data = ? WHERE id = ?", [self.sql_value(x) for x in [user.first_name, user.last_name, user.username, json.dumps(user.data), user.id]]) def open(self): self.connection = sqlite3.connect(self.database_path) self.cursor = ThreadsafeCursor(self.connection) self.create_tables_ifnexists() def close(self): with self.cursor: self.cursor.close() self.connection.close()
40.637255
166
0.586972
2c86f1741a61ee77235397dc66c5de34a8463caa
2,651
py
Python
Wager/migrations/0001_initial.py
tfleech/Wager
b6dc658db063fce7d76ab39619fb8ce2ee83981a
[ "MIT" ]
null
null
null
Wager/migrations/0001_initial.py
tfleech/Wager
b6dc658db063fce7d76ab39619fb8ce2ee83981a
[ "MIT" ]
null
null
null
Wager/migrations/0001_initial.py
tfleech/Wager
b6dc658db063fce7d76ab39619fb8ce2ee83981a
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # Generated by Django 1.10.6 on 2017-03-16 04:05 from __future__ import unicode_literals import datetime from django.db import migrations, models import django.db.models.deletion from django.utils.timezone import utc class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Bet', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('Terms', models.CharField(max_length=200)), ('Stakes', models.CharField(max_length=300)), ('Due_date', models.DateTimeField(default=datetime.datetime(2017, 3, 17, 4, 5, 34, 64194, tzinfo=utc))), ('Status', models.IntegerField()), ('Public', models.BooleanField()), ('Date_created', models.DateTimeField()), ], ), migrations.CreateModel( name='Relationship', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('user1_id', models.IntegerField()), ('user2_id', models.IntegerField()), ('status', models.IntegerField()), ('action_user_id', models.IntegerField()), ], ), migrations.CreateModel( name='User', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('User_Name', models.CharField(max_length=50)), ('Password', models.CharField(max_length=50)), ('Date_joined', models.DateTimeField()), ('Wins', models.IntegerField(default=0)), ('Losses', models.IntegerField(default=0)), ('WinPercent', models.IntegerField(default=0)), ('LossPercent', models.IntegerField(default=0)), ], ), migrations.AlterUniqueTogether( name='relationship', unique_together=set([('user1_id', 'user2_id')]), ), migrations.AddField( model_name='bet', name='user1', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='user1', to='Wager.User'), ), migrations.AddField( model_name='bet', name='user2', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='user2', to='Wager.User'), ), ]
38.42029
120
0.563184
b278c7bd58db1982fd34b24d77b49b41b336f81f
6,763
py
Python
src/generate_snapshot_data/dump.py
saheel1115/szz-
dbfbf3c2d007f61ee8c8793f83dbdc071ad02da3
[ "MIT" ]
9
2017-10-21T13:29:46.000Z
2022-01-10T23:49:54.000Z
src/generate_snapshot_data/dump.py
saheel1115/szz-
dbfbf3c2d007f61ee8c8793f83dbdc071ad02da3
[ "MIT" ]
3
2018-01-09T11:28:55.000Z
2019-01-20T08:45:18.000Z
src/generate_snapshot_data/dump.py
saheel1115/szz-
dbfbf3c2d007f61ee8c8793f83dbdc071ad02da3
[ "MIT" ]
1
2020-12-29T05:10:31.000Z
2020-12-29T05:10:31.000Z
#!/usr/bin/python import argparse import os, sys, inspect import os.path import shutil import logging from git import * from projDB import DbProj #from GitRepo import GitRepo sys.path.append("src/util") sys.path.append("src/changes") from Config import Config from OutDir import OutDir import Log from Util import cd import Util from datetime import datetime from datetime import timedelta import ntpath, pickle #-------------------------------------------------------------------------------------------------------------------------- def pathLeaf(path): """ Returns the basename of the file/directory path in an _extremely_ robust way. For example, pathLeaf('/hame/saheel/git_repos/szz/abc.c/') will return 'abc.c'. Args ---- path: string Path to some file or directory in the system Returns ------- string Basename of the file or directory """ head, tail = ntpath.split(path) return tail or ntpath.basename(head) #-------------------------------------------------------------------------------------------------------------------------- def getProjName(projectPath): proj_path = projectPath.rstrip(os.sep) project_name = proj_path.split(os.sep)[-1] return project_name #-------------------------------------------------------------------------------------------------------------------------- def dumpSnapShots(srcPath, destPath, ss_interval_len, commitDateMin, commitDateMax): print srcPath, destPath, commitDateMin, commitDateMax repo = Repo(srcPath) branch = repo.active_branch print branch project_name = getProjName(srcPath) start_date = commitDateMin + timedelta(days=1) while start_date <= commitDateMax: #snapshot = destPath + os.sep + project_name + os.sep + project_name + "_" + str(start_date) snapshot = destPath + os.sep + project_name + os.sep + str(start_date) print snapshot if not os.path.isdir(snapshot): Util.copy_dir(srcPath,snapshot) git_command = "git checkout `git rev-list -n 1 --no-merges --before=\"" + str(start_date) + "\" " + str(branch) + "`" with cd(snapshot): os.system("git reset --hard") #os.system("git checkout") os.system(git_command) start_date = start_date + timedelta(days=ss_interval_len*30) #snapshot = destPath + os.sep + project_name + os.sep + project_name + "_" + str(commitDateMax) start_date = commitDateMax snapshot = destPath + os.sep + project_name + os.sep + str(start_date) print snapshot if not os.path.isdir(snapshot): Util.copy_dir(srcPath,snapshot) git_command = "git checkout `git rev-list -n 1 --no-merges --before=\"" + str(start_date) + "\" " + str(branch) + "`" with cd(snapshot): os.system("git reset --hard") #os.system("git checkout") os.system(git_command) #-------------------------------------------------------------------------------------------------------------------------- def fetchCommitDates(cfg, projectPath, language): db_config = cfg.ConfigSectionMap("Database") logging.debug("Database configuration = %r\n", db_config) proj_path = projectPath.rstrip(os.sep) project_name = proj_path.split(os.sep)[-1] logging.debug("project = %r\n", project_name) proj = DbProj(project_name, language) proj.connectDb(db_config['database'], db_config['user'], db_config['host'], db_config['port']) proj.fetchDatesFromTable(db_config['table']) logging.debug(proj) print proj print proj.projects assert(len(proj.projects) == 1) _ , _ , commit_date_min, commit_date_max = proj.projects[0] return (commit_date_min, commit_date_max) #============================================================================================= #============================================================================================= # Utility to take snapshots of git repositories at 6 months interval # 1. First, retrieve the 1st commit date from SQL server # 2. Copy the projects to directories: project_date1, project_date2, .... in each 6 months interval # 3. For each copy checkout the dump upto that date if __name__ == "__main__": parser = argparse.ArgumentParser(description='Utility to take snapshots of git repositories at specified (in months) interval') #project specific arguments parser.add_argument('-p',dest="proj_dir", help="the directory containing original src code") parser.add_argument('-d',dest="out_dir", default='out_dir', help="directories to dump the snapshots") parser.add_argument('-l',dest="lang", default='java', help="languages to be processed") parser.add_argument('-m',dest="ss_interval_len", default='6', help="duration of interval (in months) between two snapshots") #logging and config specific arguments parser.add_argument("-v", "--verbose", default = 'w', nargs="?", \ help="increase verbosity: d = debug, i = info, w = warnings, e = error, c = critical. " \ "By default, we will log everything above warnings.") parser.add_argument("--log", dest="log_file", default='log.txt', \ help="file to store the logs, by default it will be stored at log.txt") parser.add_argument("--conf", dest="config_file", default='config.ini', help="configuration file, default is config.ini") args = parser.parse_args() if not os.path.isdir(args.proj_dir): print "!! Please provide a valid directory, given: %s" % (args.proj_dir) sys.exit() print "Going to take snapshot for project %s" % (args.proj_dir) print "Creating output directory at %s" % (args.out_dir) Util.cleanup(args.log_file) Log.setLogger(args.verbose, args.log_file) cfg = Config(args.config_file) #1. First, retrieve the 1st commit date from SQL server commit_dates = fetchCommitDates(cfg, args.proj_dir, args.lang) #2. Snapshot dumpSnapShots(args.proj_dir, args.out_dir, int(args.ss_interval_len), commit_dates[0], commit_dates[1]) project_name = pathLeaf(args.proj_dir) ss_dir = os.path.abspath(args.out_dir) ss_names = os.listdir(ss_dir + '/' + project_name) ss_names.sort() ss_paths = [ss_dir + '/' + project_name + '/' + ss_name + '/' for ss_name in ss_names] ss_name_to_sha = {} for ss_index, ss_path in enumerate(ss_paths): repo = Repo(ss_path) ss_sha = repo.git.log('--format=%H', '-n', '1') ss_name_to_sha[ss_names[ss_index]] = ss_sha with open(ss_dir + '/' + project_name + '/ss_sha_info.txt', 'wb') as out_file: pickle.dump(ss_name_to_sha, out_file)
34.505102
131
0.600917
c6d081bc4881fee1a25eca9f6fed0c003a7b8ecd
3,869
py
Python
examples/python/copula.py
HarryPetr1969/statsmodels
fb448540aa0fa354d4cd2fe7b161cb949ce91888
[ "BSD-3-Clause" ]
6,931
2015-01-01T11:41:55.000Z
2022-03-31T17:03:24.000Z
examples/python/copula.py
HarryPetr1969/statsmodels
fb448540aa0fa354d4cd2fe7b161cb949ce91888
[ "BSD-3-Clause" ]
6,137
2015-01-01T00:33:45.000Z
2022-03-31T22:53:17.000Z
examples/python/copula.py
HarryPetr1969/statsmodels
fb448540aa0fa354d4cd2fe7b161cb949ce91888
[ "BSD-3-Clause" ]
2,608
2015-01-02T21:32:31.000Z
2022-03-31T07:38:30.000Z
#!/usr/bin/env python # coding: utf-8 # DO NOT EDIT # Autogenerated from the notebook copula.ipynb. # Edit the notebook and then sync the output with this file. # # flake8: noqa # DO NOT EDIT # # Copula - Multivariate joint distribution import matplotlib.pyplot as plt import numpy as np import seaborn as sns from scipy import stats sns.set_style("darkgrid") sns.mpl.rc("figure", figsize=(8, 8)) # When modeling a system, there are often cases where multiple parameters # are involved. Each of these parameters could be described with a given # Probability Density Function (PDF). If would like to be able to generate a # new set of parameter values, we need to be able to sample from these # distributions-also called marginals. There are mainly two cases: *(i)* # PDFs are independent; *(ii)* there is a dependency. One way to model the # dependency it to use a **copula**. # ## Sampling from a copula # # Let's use a bi-variate example and assume first that we have a prior and # know how to model the dependence between our 2 variables. # # In this case, we are using the Gumbel copula and fix its hyperparameter # `theta=2`. We can visualize it's 2-dimensional PDF. from statsmodels.distributions.copula.api import CopulaDistribution, GumbelCopula copula = GumbelCopula(theta=2) _ = copula.plot_pdf() # returns a matplotlib figure # And we can sample the PDF. sample = copula.rvs(10000) h = sns.jointplot(x=sample[:, 0], y=sample[:, 1], kind="hex") _ = h.set_axis_labels("X1", "X2", fontsize=16) # Let's come back to our 2 variables for a second. In this case we # consider them to be gamma and normally distributed. If they would be # independent from each other, we could sample from each PDF individually. # Here we use a convenient class to do the same operation. # # ### Reproducibility # # Generating reproducible random values from copulas required explicitly # setting the `seed` argument. # `seed` accepts either an initialized NumPy `Generator` or `RandomState`, # or any argument acceptable # to `np.random.default_rng`, e.g., an integer or a sequence of integers. # This example uses an # integer. # # The singleton `RandomState` that is directly exposed in the `np.random` # distributions is # not used, and setting `np.random.seed` has no effect on the values # generated. marginals = [stats.gamma(2), stats.norm] joint_dist = CopulaDistribution(marginals=marginals, copula=None) sample = joint_dist.rvs(512, random_state=20210801) h = sns.jointplot(x=sample[:, 0], y=sample[:, 1], kind="scatter") _ = h.set_axis_labels("X1", "X2", fontsize=16) # Now, above we have expressed the dependency between our variables using # a copula, we can use this copula to sample a new set of observation with # the same convenient class. joint_dist = CopulaDistribution(marginals=marginals, copula=copula) # Use an initialized Generator object rng = np.random.default_rng([2, 0, 2, 1, 0, 8, 0, 1]) sample = joint_dist.rvs(512, random_state=rng) h = sns.jointplot(x=sample[:, 0], y=sample[:, 1], kind="scatter") _ = h.set_axis_labels("X1", "X2", fontsize=16) # There are two things to note here. *(i)* as in the independent case, the # marginals are correctly showing a gamma and normal distribution; *(ii)* # the dependence is visible between the two variables. # ## Estimating copula parameters # # Now, imagine we already have experimental data and we know that there is # a dependency that can be expressed using a Gumbel copula. But we don't # know what is the hyperparameter value for our copula. In this case, we can # estimate the value. # # We are going to use the sample we just generated as we already know the # value of the hyperparameter we should get: `theta=2`. copula = GumbelCopula() theta = copula.fit_corr_param(sample) print(theta) # We can see that the estimated hyperparameter value is close to the value # set previously.
36.847619
81
0.745929
475cceeef187ebb47ef961786a0cf55184a33c66
2,885
py
Python
spotty/providers/aws/deployment/project_resources/instance_stack.py
Inculus/spotty
56863012668a6c13ad13c2a04f900047e229fbe6
[ "MIT" ]
1
2020-07-17T07:02:09.000Z
2020-07-17T07:02:09.000Z
spotty/providers/aws/deployment/project_resources/instance_stack.py
Inculus/spotty
56863012668a6c13ad13c2a04f900047e229fbe6
[ "MIT" ]
null
null
null
spotty/providers/aws/deployment/project_resources/instance_stack.py
Inculus/spotty
56863012668a6c13ad13c2a04f900047e229fbe6
[ "MIT" ]
null
null
null
import boto3 from spotty.commands.writers.abstract_output_writrer import AbstractOutputWriter from spotty.providers.aws.aws_resources.instance import Instance from spotty.providers.aws.aws_resources.stack import Stack class InstanceStackResource(object): def __init__(self, project_name: str, instance_name: str, region: str): self._cf = boto3.client('cloudformation', region_name=region) self._ec2 = boto3.client('ec2', region_name=region) self._region = region self._stack_name = 'spotty-instance-%s-%s' % (project_name.lower(), instance_name.lower()) @property def name(self): return self._stack_name def get_instance(self): return Instance.get_by_stack_name(self._ec2, self.name) def create_or_update_stack(self, template: str, parameters: dict, output: AbstractOutputWriter): """Runs CloudFormation template.""" # delete the stack if it exists stack = Stack.get_by_name(self._cf, self._stack_name) if stack: self.delete_stack(output) # create new stack stack = Stack.create_stack( cf=self._cf, StackName=self._stack_name, TemplateBody=template, Parameters=[{'ParameterKey': key, 'ParameterValue': value} for key, value in parameters.items()], Capabilities=['CAPABILITY_IAM'], OnFailure='DO_NOTHING', ) output.write('Waiting for the stack to be created...') resource_messages = [ ('Instance', 'launching the instance'), ('DockerReadyWaitCondition', 'waiting for the Docker container to be ready'), ] # wait for the stack to be created with output.prefix(' '): stack = stack.wait_status_changed(waiting_status='CREATE_IN_PROGRESS', resource_messages=resource_messages, resource_success_status='CREATE_COMPLETE', output=output) if stack.status != 'CREATE_COMPLETE': raise ValueError('Stack "%s" was not created.\n' 'Please, see CloudFormation logs for the details.' % self._stack_name) return stack def delete_stack(self, output: AbstractOutputWriter, no_wait=False): stack = Stack.get_by_name(self._cf, self._stack_name) if not stack: return if not no_wait: output.write('Waiting for the stack to be deleted...') # delete the stack try: stack.delete() if not no_wait: stack.wait_stack_deleted() except Exception as e: raise ValueError('Stack "%s" was not deleted. Error: %s\n' 'See CloudFormation logs for details.' % (self._stack_name, str(e)))
37.960526
109
0.612478
2dc0f5fd32bbadaee8f799098aaeede3a0a6a025
31,546
py
Python
test_ghost.py
JIABI/GhostShiftAddNet
870c38248fa1df23ec1262b6690e20c437d1d5d4
[ "MIT" ]
2
2021-08-23T08:43:35.000Z
2021-11-28T17:22:29.000Z
test_ghost.py
selkerdawy/GhostShiftAddNet
870c38248fa1df23ec1262b6690e20c437d1d5d4
[ "MIT" ]
1
2021-11-01T08:35:07.000Z
2021-11-01T08:35:07.000Z
test_ghost.py
selkerdawy/GhostShiftAddNet
870c38248fa1df23ec1262b6690e20c437d1d5d4
[ "MIT" ]
3
2021-11-10T08:37:50.000Z
2022-02-08T13:28:16.000Z
import argparse import os, time import torch import shutil import numpy as np import torch.nn as nn import torchvision.transforms as transforms import torchvision.datasets as datasets import torch.nn.functional as F from pthflops import count_ops import torch.optim as optim from thop import profile from thop import clever_format from torch.autograd import Variable import models import optim import torch.backends.cudnn as cudnn from cyclicLR import CyclicCosAnnealingLR from torchsummary import summary from deepshift.convert import convert_to_shift, round_shift_weights, count_layer_type import distutils.util import matplotlib.pyplot as plt import time from pathlib import Path from adder import Adder2D from models import adder as adder_slow from adder import adder as adder_fast import deepshift from models import resnet20_shiftadd_ghost from models import mobilenet_shiftadd_ghost from models import shufflenet_shiftadd from models import shufflenet_shiftadd_ghost from models import shufflenet_shiftadd_ghost_cpu from se_shift.utils_optim import SGD from se_shift import SEConv2d, SELinear from se_shift.utils_quantize import sparsify_and_nearestpow2 from se_shift.utils_swa import bn_update, moving_average from collections import OrderedDict import pytorch_model_summary as pms from torchvision.models import shufflenet_v2_x0_5 from models import wideres CUDA_VISIBLE_DEVICES = 0 import summary_model # Training settings parser = argparse.ArgumentParser(description='PyTorch AdderNet Trainning') parser.add_argument('--data', type=str, default='D:/datasets/imagenet-mini', help='path to imagenet') parser.add_argument('--dataset', type=str, default='cifar10', help='training dataset') parser.add_argument('--data_path', type=str, default='/home/bella/Desktop/ShiftAddNet', help='path to dataset') parser.add_argument('--batch_size', type=int, default=256, metavar='N', help='batch size for training') parser.add_argument('--test_batch_size', type=int, default=64, metavar='N', help='batch size for testing') parser.add_argument('--epochs', type=int, default=100, metavar='N', help='number of epochs to train') parser.add_argument('--start_epoch', type=int, default=0, metavar='N', help='restart point') parser.add_argument('--schedule', type=int, nargs='+', default=[80, 120], help='learning rate schedule') parser.add_argument('--lr', type=float, default=0.20, metavar='LR', help='learning rate') parser.add_argument('--lr-sign', default=None, type=float, help='separate initial learning rate for sign params') parser.add_argument('--lr_decay', default='stepwise', type=str, choices=['stepwise', 'cosine', 'cyclic_cosine']) parser.add_argument('--optimizer', type=str, default='sgd', help='used optimizer') parser.add_argument('--momentum', type=float, default=0.9, metavar='M', help='SGD momentum') parser.add_argument('--weight_decay', '--wd', default=1e-5, type=float, metavar='W', help='weight decay') parser.add_argument('--resume', default='./temp/shift_ps_40_wb_5_add-None/mobilenetv2_ghost_100%_2x.pth.tar', type=str, metavar='PATH', help='path to latest checkpoint') parser.add_argument('--seed', type=int, default=1, metavar='S', help='random seed') parser.add_argument('--save', default='./temp', type=str, metavar='PATH', help='path to save prune model') parser.add_argument('--arch', default='mobilenet_shiftadd_ghost', type=str, help='architecture to use') parser.add_argument('--no-cuda', action='store_true', default=True, help='disables CUDA training') parser.add_argument('--log_interval', type=int, default=100, metavar='N', help='how many batches to wait before logging training status') # multi-gpus parser.add_argument('--gpu_ids', type=str, default='0', help='gpu ids: e.g. 0 0,1,2, 0,2. use -1 for CPU') # shift hyper-parameters parser.add_argument('--shift_depth', type=int, default=40, help='how many layers to convert to shift') parser.add_argument('--shift_type', type=str, choices=['Q', 'PS'], default='PS', help='shift type for representing weights') parser.add_argument('--rounding', default='deterministic', choices=['deterministic', 'stochastic']) parser.add_argument('--weight_bits', type=int, default=5, help='number of bits to represent the shift weights') parser.add_argument('--sign_threshold_ps', type=float, default=None, help='can be controled') parser.add_argument('--use_kernel', type=lambda x: bool(distutils.util.strtobool(x)), default=False, help='whether using custom shift kernel') # add hyper-parameters parser.add_argument('--add_quant', type=bool, default=True, help='whether to quantize adder layer') parser.add_argument('--add_bits', type=int, help='number of bits to represent the adder filters') parser.add_argument('--add_sparsity', type=float, default=None, help='sparsity in adder filters') parser.add_argument('--quantize_v', type=str, default='sbm', help='quantize version') # shift hyper-parameters parser.add_argument('--shift_quant_bits', type=int, default=32, help='quantization training for shift layer') #parser.add_argument('--sign_threshold', type=float, default=0, help='Threshold for pruning.') #parser.add_argument('--distributed', action='store_true', help='whether to use distributed training') # distributed parallel parser.add_argument("--local_rank", type=int, default=0) parser.add_argument("--port", type=str, default="15000") parser.add_argument('--distributed', action='store_true', help='whether to use distributed training') # eval only parser.add_argument('--eval_only', action='store_true', default=True, help='whether only evaluation') parser.add_argument('--l1', action='store_true', default=True, help='whether sparse shift l1 norm') # sparse parser.add_argument('--threshold', type=float, default=1 * 1e-4, # (>= 2^-7) help='Threshold in prune weight.') parser.add_argument('--sign_threshold', type=float, default=0.1, help='Threshold for pruning.') parser.add_argument('--dist', type=str, default='uniform', choices=['kaiming_normal', 'normal', 'uniform']) parser.add_argument('--percent', default=0, type=float, help='percentage of weight to prune') parser.add_argument('--prune_method', default='magnitude', choices=['random', 'magnitude']) parser.add_argument('--prune_layer', default='add', choices=['shift', 'add', 'all']) model1 = shufflenet_v2_x0_5() input = torch.randn(1, 3, 224, 224) pms.summary(model1, torch.zeros((1, 3, 224, 224)), batch_size=1, show_hierarchical=False, print_summary=True) macs, params = profile(model1, inputs=(input, )) macs, params = clever_format([macs, params], "%.3f") print(macs) print(params) args = parser.parse_args() args.cuda = not args.no_cuda and torch.cuda.is_available() torch.manual_seed(args.seed) if args.cuda: torch.cuda.manual_seed(args.seed) if not os.path.exists(args.save): os.makedirs(args.save) cudnn.benchmark = True gpu = args.gpu_ids gpu_ids = args.gpu_ids.split(',') args.gpu_ids = [] for gpu_id in gpu_ids: id = int(gpu_id) args.gpu_ids.append(id) #print(args.gpu_ids) #if len(args.gpu_ids) > 0: # torch.cuda.set_device(args.gpu_ids[0]) if args.distributed: os.environ['MASTER_PORT'] = args.port torch.distributed.init_process_group(backend="nccl") kwargs = {'num_workers': 8, 'pin_memory': True} if args.cuda else {} if args.dataset == 'cifar10': train_loader = torch.utils.data.DataLoader( datasets.CIFAR10('./data.cifar10/cifar-10-batches-py', train=True, download=True, transform=transforms.Compose([ transforms.RandomHorizontalFlip(), transforms.RandomCrop(size=32, padding=4), transforms.ToTensor(), transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)) ])), batch_size=args.batch_size, shuffle=True, **kwargs) test_loader = torch.utils.data.DataLoader( datasets.CIFAR10('./data.cifar10/cifar-10-batches-py', train=False, transform=transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)) ])), batch_size=args.test_batch_size, shuffle=False, **kwargs) elif args.dataset == 'cifar100': train_loader = torch.utils.data.DataLoader( datasets.CIFAR100('./data.cifar100', train=True, download=True, transform=transforms.Compose([ transforms.Pad(4), transforms.RandomCrop(32), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)) ])), batch_size=args.batch_size, shuffle=True, **kwargs) test_loader = torch.utils.data.DataLoader( datasets.CIFAR100('./data.cifar100', train=False, transform=transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)) ])), batch_size=args.test_batch_size, shuffle=True, **kwargs) elif args.dataset == 'mnist': trainset = datasets.MNIST('../MNIST', download=True, train=True, transform=transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))] ) ) train_loader = torch.utils.data.DataLoader(trainset, batch_size=args.batch_size, shuffle=True, num_workers=4) testset = datasets.MNIST('../MNIST', download=True, train=False, transform=transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))] ) ) test_loader = torch.utils.data.DataLoader(testset, batch_size=args.test_batch_size, shuffle=True, num_workers=4) else: # Data loading code DATA = Path("D:/datasets/imagenet-mini") normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) transform_train = transforms.Compose([ transforms.Resize(64), transforms.RandomResizedCrop(64), transforms.RandomHorizontalFlip(), transforms.ToTensor(), normalize, ]) transform_test = transforms.Compose([ transforms.Resize(64), transforms.CenterCrop(64), transforms.ToTensor(), normalize, ]) train_dataset = datasets.ImageFolder(DATA / 'train', transform_train) test_dataset = datasets.ImageFolder(DATA / 'val', transform_test) train_loader = torch.utils.data.DataLoader( train_dataset, batch_size=args.batch_size, shuffle=True, num_workers=6, pin_memory=True) test_loader = torch.utils.data.DataLoader( test_dataset, batch_size=args.test_batch_size, shuffle=False, pin_memory=True, num_workers=6) #traindir = os.path.join(args.data, 'train') #valdir = os.path.join(args.data, 'val') #train_dataset = datasets.ImageFolder( # traindir, # transforms.Compose([ # transforms.RandomResizedCrop(64), # transforms.RandomHorizontalFlip(), # transforms.ToTensor(), # normalize, # ])) #test_loader = torch.utils.data.DataLoader( # datasets.ImageFolder(valdir, transforms.Compose([ # transforms.Resize(64), # transforms.CenterCrop(64), # transforms.ToTensor(), # normalize, # ])), # batch_size=args.test_batch_size, shuffle=False, # num_workers=16, pin_memory=True) if args.dataset == 'imagenet': num_classes = 1000 model = models.__dict__['resnet50'](num_classes=1000, quantize=args.add_quant, weight_bits=args.add_bits) elif args.dataset == 'cifar10': num_classes = 10 # model = models.shufflenet_shiftadd.ghostnet(num_classes=num_classes, pretrained=False) #model = shufflenet_v2_x0_5() #model = models.shufflenet_shiftadd_ghost.ghostnet(num_classes=num_classes, pretrained=False) #model = models.resnet_backbone.resnet18(num_classes=10) model = models.wideres.Wide_ResNet(28, 10, 0.3, 10) #model = models.vgg_shiftadd.vgg16_nd_ss() #model = models.resnet20_shiftadd_ghost.resnet20_shift(num_classes=num_classes, quantize=args.add_quant, weight_bits=args.add_bits, quantize_v=args.quantize_v) # model = models.mobilenet_shiftadd_ghost.ghostnet(num_classes=num_classes, kernel_size=3, quantize=args.add_quant, weight_bits=args.add_bits, quantize_v=args.quantize_v) #model = models.resnet20_shiftadd_ghost.resnet20_shiftadd_ghost(num_classes=num_classes, quantize=args.add_quant, weight_bits=args.add_bits, quantize_v=args.quantize_v) #model = models.__dict__[args.arch](num_classes=num_classes, quantize=args.add_quant, weight_bits=args.add_bits, quantize_v=args.quantize_v) # model = models.__dict__[args.arch](threshold = args.threshold, sign_threshold = args.sign_threshold, distribution = args.dist, num_classes=10, quantize=args.add_quant, weight_bits=args.add_bits) elif args.dataset == 'cifar100': num_classes = 100 model = models.__dict__[args.arch](num_classes=100, quantize=args.add_quant, weight_bits=args.add_bits, quantize_v=args.quantize_v) elif args.dataset == 'mnist': model = models.__dict__[args.arch](num_classes=10, quantize=args.add_quant, weight_bits=args.add_bits) else: raise NotImplementedError('No such dataset!') #print(model) #M = [] #N = [] #K = [] #S = [] #C = [] #size = 32 #for m in model.modules(): # if isinstance(m, nn.Conv2d): # M.append(m.weight.shape[0]) # N.append(m.weight.shape[1]) # K.append(m.weight.shape[2]) # S.append(m.stride[0]) # C.append(int(size)) # if S[-1] == 2: # size /= 2 #print('M', M) #print('N', N) #print('K', K) #print('S', S) #print('C', C) #print(len(M)) #for i in range(len(M)): # print('const int M{} = {}, N{} = {}, K{} = {}, S{} = {}, C{} = {};'.format( # i, M[i], i, N[i], i, K[i], i, S[i], i, C[i])) # print('const int H{} = C{} - S{} + K{};'.format(i, i, i, i)) #exit() #best_prec1 = None #shift_depth = [] #if best_prec1 is None: # no pretrain # if 'shift' in args.arch: # model, conversion_count = convert_to_shift(model, args.shift_depth, args.shift_type, convert_weights=False, use_kernel=args.use_kernel, rounding=args.rounding, # weight_bits=args.weight_bits, sign_threshold_ps=args.sign_threshold_ps, quant_bits=args.shift_quant_bits) #else: # if 'shift' in args.arch: # model, conversion_count = convert_to_shift(model, shift_depth, args.shift_type, convert_weights=False, # use_kernel=args.use_kernel, rounding=args.rounding, # weight_bits=args.weight_bits, # sign_threshold_ps=args.sign_threshold_ps, # quant_bits=args.shift_quant_bits) if args.cuda: model.cuda() if len(args.gpu_ids) > 1: if args.distributed: model = torch.nn.parallel.DistributedDataParallel(model, device_ids=args.gpu_ids) else: model = torch.nn.DataParallel(model, device_ids=args.gpu_ids) # create optimizer model_other_params = [] model_sign_params = [] model_shift_params = [] for name, param in model.named_parameters(): if(name.endswith(".sign")): model_sign_params.append(param) elif(name.endswith(".shift")): model_shift_params.append(param) else: model_other_params.append(param) params_dict = [ {"params": model_other_params}, {"params": model_sign_params, 'lr': args.lr_sign if args.lr_sign is not None else args.lr, 'weight_decay': 0}, {"params": model_shift_params, 'lr': args.lr, 'weight_decay': 0} ] # optimizer = optim.SGD(model.parameters(), lr=args.lr, momentum=args.momentum, weight_decay=args.weight_decay) optimizer = None if (args.optimizer.lower() == "sgd"): optimizer = torch.optim.SGD(params_dict, args.lr, momentum=args.momentum, weight_decay=args.weight_decay) elif (args.optimizer.lower() == "adadelta"): optimizer = torch.optim.Adadelta(params_dict, args.lr, weight_decay=args.weight_decay) elif (args.optimizer.lower() == "adagrad"): optimizer = torch.optim.Adagrad(params_dict, args.lr, weight_decay=args.weight_decay) elif (args.optimizer.lower() == "adam"): optimizer = torch.optim.Adam(params_dict, args.lr, weight_decay=args.weight_decay) elif (args.optimizer.lower() == "rmsprop"): optimizer = torch.optim.RMSprop(params_dict, args.lr, weight_decay=args.weight_decay) elif (args.optimizer.lower() == "radam"): optimizer = optim.RAdam(params_dict, args.lr, weight_decay=args.weight_decay) elif (args.optimizer.lower() == "ranger"): optimizer = optim.Ranger(params_dict, args.lr, weight_decay=args.weight_decay) else: raise ValueError("Optimizer type: ", args.optimizer, " is not supported or known") schedule_cosine_lr_decay = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, args.epochs, eta_min=0, last_epoch=-1) scheduler_cyclic_cosine_lr_decay = CyclicCosAnnealingLR(optimizer, milestones=[40,60,80,100,140,180,200,240,280,300,340,400], decay_milestones=[100, 200, 300, 400], eta_min=0) def save_checkpoint(state, is_best, epoch, filepath): if epoch == 'init': filepath = os.path.join(filepath, 'init.pth.tar') torch.save(state, filepath) else: # filename = os.path.join(filepath, 'ckpt'+str(epoch)+'.pth.tar') # torch.save(state, filename) filename = os.path.join(filepath, 'ckpt.pth.tar') torch.save(state, filename) if is_best: shutil.copyfile(filename, os.path.join(filepath, 'shufflenet_ghost2sa3.pth.tar')) def load_add_state_dict(state_dict): from collections import OrderedDict new_state_dict = OrderedDict() for k, v in state_dict.items(): if 'weight' in k and not 'bn' in k and not 'fc' in k: if k == 'conv1.weight' or 'downsample.1' in k: new_state_dict[k] = v continue k = k[:-6] + 'adder' # print(k) new_state_dict[k] = v return new_state_dict def load_shiftadd_state_dict(state_dict): from collections import OrderedDict new_state_dict = OrderedDict() for k, v in state_dict.items(): if 'weight' in k and not 'bn' in k and not 'fc' in k: if k == 'conv1.weight' or 'downsample.2' in k: new_state_dict[k] = v continue k = k[:-6] + 'adder' # print(k) new_state_dict[k] = v return new_state_dict if args.resume: if os.path.isfile(args.resume): print("=> loading checkpoint '{}'".format(args.resume)) checkpoint = torch.load(args.resume, map_location='cpu') args.start_epoch = checkpoint['epoch'] best_prec1 = checkpoint['best_prec1'] try: try: model.load_state_dict(checkpoint['state_dict'],strict=False) except: model.load_state_dict(load_add_state_dict(checkpoint['state_dict']),strict=False) except: model.load_state_dict(load_shiftadd_state_dict(checkpoint['state_dict']),strict=False) if not args.eval_only: optimizer.load_state_dict(checkpoint['optimizer']) print("=> loaded checkpoint '{}' (epoch {}) Prec1: {:f}" .format(args.resume, checkpoint['epoch'], best_prec1)) else: print("=> no checkpoint found at '{}'".format(args.resume)) else: save_checkpoint({'state_dict': model.state_dict()}, False, epoch='init', filepath=args.save) #inp = torch.rand(1,3,224,224).to(device) #count_ops(model, inp) #print(count_ops()) #exit() # print("WARNING: The summary function reports duplicate parameters for multi-GPU case") #except: # print("WARNING: Unable to obtain summary of model") # save name # name model sub-directory "shift_all" if all layers are converted to shift layers conv2d_layers_count = count_layer_type(model, nn.Conv2d) #+ count_layer_type(model, unoptimized.UnoptimizedConv2d) linear_layers_count = count_layer_type(model, nn.Linear) #+ count_layer_type(model, unoptimized.UnoptimizedLinear) #print(conv2d_layers_count) if (args.shift_depth > 0): if (args.shift_type == 'Q'): shift_label = "shift_q" else: shift_label = "shift_ps" else: shift_label = "shift" # if (conv2d_layers_count==0 and linear_layers_count==0): if conv2d_layers_count == 0: shift_label += "_all" else: shift_label += "_%s" % (args.shift_depth) if (args.shift_depth > 0): shift_label += "_wb_%s" % (args.weight_bits) if args.add_quant: shift_label += '_add-{}'.format(args.add_bits) if args.sign_threshold_ps: shift_label += '_ps_thre-{}'.format(args.sign_threshold_ps) args.save = os.path.join(args.save, shift_label) if not os.path.exists(args.save): os.makedirs(args.save) history_score = np.zeros((args.epochs, 7)) #history_score1 = np.zeros((args.epochs, 1)) def visualize(feat, labels, epoch): plt.ion() c = ['#ff0000', '#ffff00', '#00ff00', '#00ffff', '#0000ff', '#ff00ff', '#990000', '#999900', '#009900', '#009999'] plt.clf() for i in range(10): plt.plot(feat[labels == i, 0], feat[labels == i, 1], '.', c=c[i]) plt.legend(['0', '1', '2', '3', '4', '5', '6', '7', '8', '9'], loc = 'upper right') # plt.xlim(xmin=-8,xmax=8) # plt.ylim(ymin=-8,ymax=8) # plt.text(-7.8,7.3,"epoch=%d" % epoch) plt.title("epoch=%d" % epoch) vis_dir = os.path.join(args.save, 'visualization') if not os.path.exists(vis_dir): os.makedirs(vis_dir) plt.savefig(vis_dir+'/epoch=%d.jpg' % epoch) plt.draw() plt.pause(0.001) def accuracy(output, target, topk=(1, 5)): """Computes the precision@k for the specified values of k""" maxk = max(topk) batch_size = target.size(0) _, pred = output.topk(maxk, 1, True, True) pred = pred.t() correct = pred.eq(target.view(1, -1).expand_as(pred)) res = [] for k in topk: correct_k = correct[:k].contiguous().view(-1).float().sum(0) res.append(correct_k.mul_(100.0 / batch_size)) return res #if 'shift' in args.arch: if args.shift_type == 'Q': shift_module = deepshift.modules_q.Conv2dShiftQ elif args.shift_type == 'PS': shift_module = deepshift.modules.Conv2dShift else: raise NotImplementedError global total_add total_add = 0 for m in model.modules(): if isinstance(m, Adder2D): total_add += m.adder.data.numel() global total total = 0 def get_shift_range(model): if 'shift' in args.arch: # pruning if args.shift_type == 'Q': total = 0 for m in model.modules(): if isinstance(m, shift_module): total += m.weight.data.numel() shift_weights = torch.zeros(total) index = 0 for m in model.modules(): if isinstance(m, shift_module): size = m.weight.data.numel() shift_weights[index:(index+size)] = m.weight.data.view(-1).abs().clone() #print(shift_weights) index += size y, i = torch.sort(shift_weights) thre_index = int(total * percent) thre = y[thre_index] - 1e-7 weight_unique = torch.unique(shift_weights) #print(weight_unique) print('shift_range:', weight_unique.size()[0]-1) elif args.shift_type == 'PS': total = 0 for m in model.modules(): if isinstance(m, shift_module): total += m.sign.data.numel() sign_weights = torch.zeros(total) shift_weights = torch.zeros(total) index = 0 for m in model.modules(): if isinstance(m, shift_module): size = m.sign.data.numel() sign_weights[index:(index+size)] = m.sign.data.view(-1).abs().clone() shift_weights[index:(index+size)] = m.shift.data.view(-1).abs().clone() index += size y, i = torch.sort(shift_weights) print('y is:', len(y)) print('i is:', len(i)) shift_unique = torch.unique(shift_weights) print('shift range:', shift_unique.size()[0]-1) left_shift_weight = int(torch.sum(shift_weights != 0)) left_shift_mask = int(torch.sum(sign_weights != 0)) # print('pruning ratio:', (1 - left_shift_mask / float(total)) * 100, '%') print('left mask:', left_shift_mask) print('left weights:', left_shift_weight) print('total shift:', total) history_score[epoch][5] = left_shift_mask def get_adder_sparsity(model): #if args.add_sparsity == 0: # print('no sparisty in adder layer.') if 'add' in args.arch: adder_masks = torch.zeros(total_add) index = 0 for m in model.modules(): if isinstance(m, Adder2D): size = m.adder.data.numel() adder_masks[index:(index+size)] = m.adder.data.view(-1).abs().clone() index += size left_adder_mask = int(torch.sum(adder_masks != 0)) print('left adder mask', left_adder_mask) # print('Add sparsity ratio:', (1 - left_adder_mask / float(total_add)) * 100, '%') print('total adders:', total_add) history_score[epoch][6] = left_adder_mask from deepshift import utils def build(self): for name, self in model.named_modules(): if isinstance(self, deepshift.modules.Conv2dShift): self.shift_grad = torch.zeros_like(self.shift.data) self.shift_mean_grad = torch.zeros_like(self.shift.data) self.sign_grad = torch.zeros_like(self.shift.data) self.sign_mean_grad = torch.zeros_like(self.shift.data) self.shift_sum = torch.zeros_like(self.shift.data) self.shift_mask = torch.zeros_like(self.shift.data) if isinstance(self, Adder2D): self.adder_grad = torch.zeros_like(self.adder.data) self.adder_mean_grad = torch.zeros_like(self.adder.data) self.adder_mask = torch.zeros_like(self.adder.data) self.adder_sum = torch.zeros_like(self.adder.data) def create_mask(shape, rate): mask = torch.cuda.FloatTensor(shape).uniform_() > rate return mask + 0 def train(epoch): model.train() global history_score avg_loss = 0. train_acc = 0. pruned = 0. end_time = time.time() feat_loader = [] idx_loader = [] # batch_time = time.time() start_time = time.time() for batch_idx, (data, target) in enumerate(train_loader): # print('total time for one batch: {}'.format(time.time()-batch_time)) # batch_time = time.time() #device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") if args.cuda: data, target = data.cuda(), target.cuda() # with torch.no_grad(): data, target = Variable(data), Variable(target) optimizer.zero_grad() output = model(data) loss = F.cross_entropy(output, target) avg_loss += loss.item() prec1, prec5 = accuracy(output.data, target.data, topk=(1, 5)) train_acc += prec1.item() loss.backward() #for name, m in model.named_modules(): # if isinstance(m, deepshift.modules.Conv2dShift): # print(m.shift.data) # sign = m.sign.data # sign[sign < -0.2] = -1 # sign[sign > 0.2] = 1 # sign[(-0.2 <= sign) & (sign <= 0.2)] = 0 optimizer.step() #for name, m in model.named_modules(): # if isinstance(m, deepshift.modules.Conv2dShift): # m.shift.data = m.shift.data - 0.0008**(epoch+1)*torch.norm(m.shift.data).float().cuda() # m.shift.data[m.shift.data.abs() <= m.shift_mask.abs()] = 0.0 #m.shift_mask = m.shift.data.min().cuda() # weight_copy = m.shift.data.abs().clone() # mask = weight_copy.gt(0).float().cuda() # m.shift.grad.data.mul_(mask) # m.sign.grad.data.mul_(mask) # m.shift.data.mul_(mask) # m.sign.data.mul_(mask) #if epoch == [0, args.epochs, 3]: # m.shift_grad = m.shift.grad.data # m.shift_mean_grad[m.shift_grad != m.shift_grad.mean().cuda()] = m.shift_grad.mean().cuda() # if isinstance(m, Adder2D): #m.mask = m.adder.data.min().cuda() # adder_copy = m.adder.data.abs().clone() # mask = adder_copy.gt(0).float().cuda() # m.adder.grad.data.mul_(mask) # m.adder.data.mul_(mask) #if epoch == [0, args.epochs, 3]: # m.adder_grad = m.adder.grad.data # m.adder_mean_grad[m.adder_grad != m.adder_grad.mean().cuda()] = m.adder_grad.mean().cuda() #torch.cuda.synchronize() if batch_idx % args.log_interval == 0: print('Train Epoch: {} [{}/{} ({:.1f}%)]\tLoss: {:.6f}'.format(epoch, batch_idx * len(data), len(train_loader.dataset), 100. * batch_idx / len(train_loader), loss.item())) Total_train_time = time.time() - start_time history_score[epoch][0] = avg_loss / len(train_loader) history_score[epoch][1] = np.round(train_acc / len(train_loader), 2) history_score[epoch][3] = Total_train_time print('total training time for one epoch: {}'.format(Total_train_time)) torch.cuda.synchronize() def test(): model.eval() test_loss = 0 test_acc = 0 test_acc_5 = 0 start_time = time.time() for data, target in test_loader: if args.cuda: data, target = data.cuda(), target.cuda() else: data, target = data.cpu(), target.cpu() with torch.no_grad(): #data, target = Variable(data, volatile=True), Variable(target) output = model(data) test_loss += F.cross_entropy(output, target, reduction='sum').item() # sum up batch loss prec1, prec5 = accuracy(output.data, target.data, topk=(1, 5)) test_acc += prec1.item() test_acc_5 += prec5.item() Total_test_time = time.time() - start_time history_score[epoch][4] = Total_test_time print('total test time for one epoch: {}'.format(Total_test_time)) test_loss /= len(test_loader.dataset) print('\nTest set: Average loss: {:.4f}, Prec1: {}/{} ({:.2f}%), Prec5: ({:.2f}%)\n'.format( test_loss, test_acc, len(test_loader), test_acc / len(test_loader), test_acc_5 / len(test_loader))) return np.round(test_acc / len(test_loader), 2), np.round(test_acc_5 / len(test_loader), 2), Total_test_time best_prec1 = 0. best_prec5 = 0. best_prec1_p = 0. best_prec1_p1 = 0. percent = 0.1 percent_add = 0.05 Total_time =0 if __name__ == '__main__': for epoch in range(args.start_epoch, args.epochs): #for epoch in range(100): if args.eval_only: with torch.no_grad(): prec1, prec5, Total_test_time = test() print('Prec1: {}; Prec5: {}'.format(prec1, prec5)) Total_time +=Total_test_time best_prec1 = max(prec1, best_prec1) Total_time= Total_time/(args.epochs-args.start_epoch) print('Best accuracy',best_prec1) print('Total_time',Total_time)
44.493653
198
0.651873
20407f8bd3c23fa5b4cf9c3b3fa4be0c7dce831b
35,276
py
Python
lib-python/2.4.1/test/regrtest.py
camillobruni/pygirl
ddbd442d53061d6ff4af831c1eab153bcc771b5a
[ "MIT" ]
12
2016-01-06T07:10:28.000Z
2021-05-13T23:02:02.000Z
lib-python/2.4.1/test/regrtest.py
camillobruni/pygirl
ddbd442d53061d6ff4af831c1eab153bcc771b5a
[ "MIT" ]
null
null
null
lib-python/2.4.1/test/regrtest.py
camillobruni/pygirl
ddbd442d53061d6ff4af831c1eab153bcc771b5a
[ "MIT" ]
2
2016-07-29T07:09:50.000Z
2016-10-16T08:50:26.000Z
#! /usr/bin/env python """Regression test. This will find all modules whose name is "test_*" in the test directory, and run them. Various command line options provide additional facilities. Command line options: -v: verbose -- run tests in verbose mode with output to stdout -q: quiet -- don't print anything except if a test fails -g: generate -- write the output file for a test instead of comparing it -x: exclude -- arguments are tests to *exclude* -s: single -- run only a single test (see below) -r: random -- randomize test execution order -f: fromfile -- read names of tests to run from a file (see below) -l: findleaks -- if GC is available detect tests that leak memory -u: use -- specify which special resource intensive tests to run -h: help -- print this text and exit -t: threshold -- call gc.set_threshold(N) -T: coverage -- turn on code coverage using the trace module -D: coverdir -- Directory where coverage files are put -N: nocoverdir -- Put coverage files alongside modules -L: runleaks -- run the leaks(1) command just before exit -R: huntrleaks -- search for reference leaks (needs debug build, v. slow) If non-option arguments are present, they are names for tests to run, unless -x is given, in which case they are names for tests not to run. If no test names are given, all tests are run. -v is incompatible with -g and does not compare test output files. -T turns on code coverage tracing with the trace module. -D specifies the directory where coverage files are put. -N Put coverage files alongside modules. -s means to run only a single test and exit. This is useful when doing memory analysis on the Python interpreter (which tend to consume too many resources to run the full regression test non-stop). The file /tmp/pynexttest is read to find the next test to run. If this file is missing, the first test_*.py file in testdir or on the command line is used. (actually tempfile.gettempdir() is used instead of /tmp). -f reads the names of tests from the file given as f's argument, one or more test names per line. Whitespace is ignored. Blank lines and lines beginning with '#' are ignored. This is especially useful for whittling down failures involving interactions among tests. -L causes the leaks(1) command to be run just before exit if it exists. leaks(1) is available on Mac OS X and presumably on some other FreeBSD-derived systems. -R runs each test several times and examines sys.gettotalrefcount() to see if the test appears to be leaking references. The argument should be of the form stab:run:fname where 'stab' is the number of times the test is run to let gettotalrefcount settle down, 'run' is the number of times further it is run and 'fname' is the name of the file the reports are written to. These parameters all have defaults (5, 4 and "reflog.txt" respectively), so the minimal invocation is '-R ::'. -u is used to specify which special resource intensive tests to run, such as those requiring large file support or network connectivity. The argument is a comma-separated list of words indicating the resources to test. Currently only the following are defined: all - Enable all special resources. audio - Tests that use the audio device. (There are known cases of broken audio drivers that can crash Python or even the Linux kernel.) curses - Tests that use curses and will modify the terminal's state and output modes. largefile - It is okay to run some test that may create huge files. These tests can take a long time and may consume >2GB of disk space temporarily. network - It is okay to run tests that use external network resource, e.g. testing SSL support for sockets. bsddb - It is okay to run the bsddb testsuite, which takes a long time to complete. decimal - Test the decimal module against a large suite that verifies compliance with standards. compiler - Test the compiler package by compiling all the source in the standard library and test suite. This takes a long time. subprocess Run all tests for the subprocess module. To enable all resources except one, use '-uall,-<resource>'. For example, to run all the tests except for the bsddb tests, give the option '-uall,-bsddb'. """ import os import sys import getopt import random import warnings import sre import cStringIO import traceback # I see no other way to suppress these warnings; # putting them in test_grammar.py has no effect: warnings.filterwarnings("ignore", "hex/oct constants", FutureWarning, ".*test.test_grammar$") if sys.maxint > 0x7fffffff: # Also suppress them in <string>, because for 64-bit platforms, # that's where test_grammar.py hides them. warnings.filterwarnings("ignore", "hex/oct constants", FutureWarning, "<string>") # MacOSX (a.k.a. Darwin) has a default stack size that is too small # for deeply recursive regular expressions. We see this as crashes in # the Python test suite when running test_re.py and test_sre.py. The # fix is to set the stack limit to 2048. # This approach may also be useful for other Unixy platforms that # suffer from small default stack limits. if sys.platform == 'darwin': try: import resource except ImportError: pass else: soft, hard = resource.getrlimit(resource.RLIMIT_STACK) newsoft = min(hard, max(soft, 1024*2048)) resource.setrlimit(resource.RLIMIT_STACK, (newsoft, hard)) from test import test_support RESOURCE_NAMES = ('audio', 'curses', 'largefile', 'network', 'bsddb', 'decimal', 'compiler', 'subprocess') def usage(code, msg=''): print __doc__ if msg: print msg sys.exit(code) def main(tests=None, testdir=None, verbose=0, quiet=False, generate=False, exclude=False, single=False, randomize=False, fromfile=None, findleaks=False, use_resources=None, trace=False, coverdir='coverage', runleaks=False, huntrleaks=False): """Execute a test suite. This also parses command-line options and modifies its behavior accordingly. tests -- a list of strings containing test names (optional) testdir -- the directory in which to look for tests (optional) Users other than the Python test suite will certainly want to specify testdir; if it's omitted, the directory containing the Python test suite is searched for. If the tests argument is omitted, the tests listed on the command-line will be used. If that's empty, too, then all *.py files beginning with test_ will be used. The other default arguments (verbose, quiet, generate, exclude, single, randomize, findleaks, use_resources, trace and coverdir) allow programmers calling main() directly to set the values that would normally be set by flags on the command line. """ test_support.record_original_stdout(sys.stdout) try: opts, args = getopt.getopt(sys.argv[1:], 'hvgqxsrf:lu:t:TD:NLR:', ['help', 'verbose', 'quiet', 'generate', 'exclude', 'single', 'random', 'fromfile', 'findleaks', 'use=', 'threshold=', 'trace', 'coverdir=', 'nocoverdir', 'runleaks', 'huntrleaks=' ]) except getopt.error, msg: usage(2, msg) # Defaults if use_resources is None: use_resources = [] for o, a in opts: if o in ('-h', '--help'): usage(0) elif o in ('-v', '--verbose'): verbose += 1 elif o in ('-q', '--quiet'): quiet = True; verbose = 0 elif o in ('-g', '--generate'): generate = True elif o in ('-x', '--exclude'): exclude = True elif o in ('-s', '--single'): single = True elif o in ('-r', '--randomize'): randomize = True elif o in ('-f', '--fromfile'): fromfile = a elif o in ('-l', '--findleaks'): findleaks = True elif o in ('-L', '--runleaks'): runleaks = True elif o in ('-t', '--threshold'): import gc gc.set_threshold(int(a)) elif o in ('-T', '--coverage'): trace = True elif o in ('-D', '--coverdir'): coverdir = os.path.join(os.getcwd(), a) elif o in ('-N', '--nocoverdir'): coverdir = None elif o in ('-R', '--huntrleaks'): huntrleaks = a.split(':') if len(huntrleaks) != 3: print a, huntrleaks usage(2, '-R takes three colon-separated arguments') if len(huntrleaks[0]) == 0: huntrleaks[0] = 5 else: huntrleaks[0] = int(huntrleaks[0]) if len(huntrleaks[1]) == 0: huntrleaks[1] = 4 else: huntrleaks[1] = int(huntrleaks[1]) if len(huntrleaks[2]) == 0: huntrleaks[2] = "reflog.txt" elif o in ('-u', '--use'): u = [x.lower() for x in a.split(',')] for r in u: if r == 'all': use_resources[:] = RESOURCE_NAMES continue remove = False if r[0] == '-': remove = True r = r[1:] if r not in RESOURCE_NAMES: usage(1, 'Invalid -u/--use option: ' + a) if remove: if r in use_resources: use_resources.remove(r) elif r not in use_resources: use_resources.append(r) if generate and verbose: usage(2, "-g and -v don't go together!") if single and fromfile: usage(2, "-s and -f don't go together!") good = [] bad = [] skipped = [] resource_denieds = [] if findleaks: try: import gc except ImportError: print 'No GC available, disabling findleaks.' findleaks = False else: # Uncomment the line below to report garbage that is not # freeable by reference counting alone. By default only # garbage that is not collectable by the GC is reported. #gc.set_debug(gc.DEBUG_SAVEALL) found_garbage = [] if single: from tempfile import gettempdir filename = os.path.join(gettempdir(), 'pynexttest') try: fp = open(filename, 'r') next = fp.read().strip() tests = [next] fp.close() except IOError: pass if fromfile: tests = [] fp = open(fromfile) for line in fp: guts = line.split() # assuming no test has whitespace in its name if guts and not guts[0].startswith('#'): tests.extend(guts) fp.close() # Strip .py extensions. if args: args = map(removepy, args) if tests: tests = map(removepy, tests) stdtests = STDTESTS[:] nottests = NOTTESTS[:] if exclude: for arg in args: if arg in stdtests: stdtests.remove(arg) nottests[:0] = args args = [] tests = tests or args or findtests(testdir, stdtests, nottests) if single: tests = tests[:1] if randomize: random.shuffle(tests) if trace: import trace tracer = trace.Trace(ignoredirs=[sys.prefix, sys.exec_prefix], trace=False, count=True) test_support.verbose = verbose # Tell tests to be moderately quiet test_support.use_resources = use_resources save_modules = sys.modules.keys() for test in tests: if not quiet: print test sys.stdout.flush() if trace: # If we're tracing code coverage, then we don't exit with status # if on a false return value from main. tracer.runctx('runtest(test, generate, verbose, quiet, testdir)', globals=globals(), locals=vars()) else: ok = runtest(test, generate, verbose, quiet, testdir, huntrleaks) if ok > 0: good.append(test) elif ok == 0: bad.append(test) else: skipped.append(test) if ok == -2: resource_denieds.append(test) if findleaks: gc.collect() if gc.garbage: print "Warning: test created", len(gc.garbage), print "uncollectable object(s)." # move the uncollectable objects somewhere so we don't see # them again found_garbage.extend(gc.garbage) del gc.garbage[:] # Unload the newly imported modules (best effort finalization) for module in sys.modules.keys(): if module not in save_modules and module.startswith("test."): test_support.unload(module) # The lists won't be sorted if running with -r good.sort() bad.sort() skipped.sort() if good and not quiet: if not bad and not skipped and len(good) > 1: print "All", print count(len(good), "test"), "OK." if verbose: print "CAUTION: stdout isn't compared in verbose mode:" print "a test that passes in verbose mode may fail without it." if bad: print count(len(bad), "test"), "failed:" printlist(bad) if skipped and not quiet: print count(len(skipped), "test"), "skipped:" printlist(skipped) e = _ExpectedSkips() plat = sys.platform if e.isvalid(): surprise = set(skipped) - e.getexpected() - set(resource_denieds) if surprise: print count(len(surprise), "skip"), \ "unexpected on", plat + ":" printlist(surprise) else: print "Those skips are all expected on", plat + "." else: print "Ask someone to teach regrtest.py about which tests are" print "expected to get skipped on", plat + "." if single: alltests = findtests(testdir, stdtests, nottests) for i in range(len(alltests)): if tests[0] == alltests[i]: if i == len(alltests) - 1: os.unlink(filename) else: fp = open(filename, 'w') fp.write(alltests[i+1] + '\n') fp.close() break else: os.unlink(filename) if trace: r = tracer.results() r.write_results(show_missing=True, summary=True, coverdir=coverdir) if runleaks: os.system("leaks %d" % os.getpid()) sys.exit(len(bad) > 0) STDTESTS = [ 'test_grammar', 'test_opcodes', 'test_operations', 'test_builtin', 'test_exceptions', 'test_types', ] NOTTESTS = [ 'test_support', 'test_future1', 'test_future2', 'test_future3', ] def findtests(testdir=None, stdtests=STDTESTS, nottests=NOTTESTS): """Return a list of all applicable test modules.""" if not testdir: testdir = findtestdir() names = os.listdir(testdir) tests = [] for name in names: if name[:5] == "test_" and name[-3:] == os.extsep+"py": modname = name[:-3] if modname not in stdtests and modname not in nottests: tests.append(modname) tests.sort() return stdtests + tests def runtest(test, generate, verbose, quiet, testdir=None, huntrleaks=False): """Run a single test. test -- the name of the test generate -- if true, generate output, instead of running the test and comparing it to a previously created output file verbose -- if true, print more messages quiet -- if true, don't print 'skipped' messages (probably redundant) testdir -- test directory """ test_support.unload(test) if not testdir: testdir = findtestdir() outputdir = os.path.join(testdir, "output") outputfile = os.path.join(outputdir, test) if verbose: cfp = None else: cfp = cStringIO.StringIO() if huntrleaks: refrep = open(huntrleaks[2], "a") try: save_stdout = sys.stdout try: if cfp: sys.stdout = cfp print test # Output file starts with test name if test.startswith('test.'): abstest = test else: # Always import it from the test package abstest = 'test.' + test the_package = __import__(abstest, globals(), locals(), []) the_module = getattr(the_package, test) # Most tests run to completion simply as a side-effect of # being imported. For the benefit of tests that can't run # that way (like test_threaded_import), explicitly invoke # their test_main() function (if it exists). indirect_test = getattr(the_module, "test_main", None) if indirect_test is not None: indirect_test() if huntrleaks: # This code *is* hackish and inelegant, yes. # But it seems to do the job. import copy_reg fs = warnings.filters[:] ps = copy_reg.dispatch_table.copy() pic = sys.path_importer_cache.copy() import gc def cleanup(): import _strptime, urlparse, warnings, dircache from distutils.dir_util import _path_created _path_created.clear() warnings.filters[:] = fs gc.collect() sre.purge() _strptime._regex_cache.clear() urlparse.clear_cache() copy_reg.dispatch_table.clear() copy_reg.dispatch_table.update(ps) sys.path_importer_cache.clear() sys.path_importer_cache.update(pic) dircache.reset() if indirect_test: def run_the_test(): indirect_test() else: def run_the_test(): reload(the_module) deltas = [] repcount = huntrleaks[0] + huntrleaks[1] print >> sys.stderr, "beginning", repcount, "repetitions" print >> sys.stderr, \ ("1234567890"*(repcount//10 + 1))[:repcount] for i in range(repcount): rc = sys.gettotalrefcount() run_the_test() sys.stderr.write('.') cleanup() deltas.append(sys.gettotalrefcount() - rc - 2) print >>sys.stderr if max(map(abs, deltas[-huntrleaks[1]:])) > 0: print >>sys.stderr, test, 'leaked', \ deltas[-huntrleaks[1]:], 'references' print >>refrep, test, 'leaked', \ deltas[-huntrleaks[1]:], 'references' # The end of the huntrleaks hackishness. finally: sys.stdout = save_stdout except test_support.ResourceDenied, msg: if not quiet: print test, "skipped --", msg sys.stdout.flush() return -2 except (ImportError, test_support.TestSkipped), msg: if not quiet: print test, "skipped --", msg sys.stdout.flush() return -1 except KeyboardInterrupt: raise except test_support.TestFailed, msg: print "test", test, "failed --", msg sys.stdout.flush() return 0 except: type, value = sys.exc_info()[:2] print "test", test, "crashed --", str(type) + ":", value sys.stdout.flush() if verbose: traceback.print_exc(file=sys.stdout) sys.stdout.flush() return 0 else: if not cfp: return 1 output = cfp.getvalue() if generate: if output == test + "\n": if os.path.exists(outputfile): # Write it since it already exists (and the contents # may have changed), but let the user know it isn't # needed: print "output file", outputfile, \ "is no longer needed; consider removing it" else: # We don't need it, so don't create it. return 1 fp = open(outputfile, "w") fp.write(output) fp.close() return 1 if os.path.exists(outputfile): fp = open(outputfile, "r") expected = fp.read() fp.close() else: expected = test + "\n" if output == expected or huntrleaks: return 1 print "test", test, "produced unexpected output:" sys.stdout.flush() reportdiff(expected, output) sys.stdout.flush() return 0 def reportdiff(expected, output): import difflib print "*" * 70 a = expected.splitlines(1) b = output.splitlines(1) sm = difflib.SequenceMatcher(a=a, b=b) tuples = sm.get_opcodes() def pair(x0, x1): # x0:x1 are 0-based slice indices; convert to 1-based line indices. x0 += 1 if x0 >= x1: return "line " + str(x0) else: return "lines %d-%d" % (x0, x1) for op, a0, a1, b0, b1 in tuples: if op == 'equal': pass elif op == 'delete': print "***", pair(a0, a1), "of expected output missing:" for line in a[a0:a1]: print "-", line, elif op == 'replace': print "*** mismatch between", pair(a0, a1), "of expected", \ "output and", pair(b0, b1), "of actual output:" for line in difflib.ndiff(a[a0:a1], b[b0:b1]): print line, elif op == 'insert': print "***", pair(b0, b1), "of actual output doesn't appear", \ "in expected output after line", str(a1)+":" for line in b[b0:b1]: print "+", line, else: print "get_opcodes() returned bad tuple?!?!", (op, a0, a1, b0, b1) print "*" * 70 def findtestdir(): if __name__ == '__main__': file = sys.argv[0] else: file = __file__ testdir = os.path.dirname(file) or os.curdir return testdir def removepy(name): if name.endswith(os.extsep + "py"): name = name[:-3] return name def count(n, word): if n == 1: return "%d %s" % (n, word) else: return "%d %ss" % (n, word) def printlist(x, width=70, indent=4): """Print the elements of iterable x to stdout. Optional arg width (default 70) is the maximum line length. Optional arg indent (default 4) is the number of blanks with which to begin each line. """ from textwrap import fill blanks = ' ' * indent print fill(' '.join(map(str, x)), width, initial_indent=blanks, subsequent_indent=blanks) # Map sys.platform to a string containing the basenames of tests # expected to be skipped on that platform. # # Special cases: # test_pep277 # The _ExpectedSkips constructor adds this to the set of expected # skips if not os.path.supports_unicode_filenames. # test_normalization # Whether a skip is expected here depends on whether a large test # input file has been downloaded. test_normalization.skip_expected # controls that. # test_socket_ssl # Controlled by test_socket_ssl.skip_expected. Requires the network # resource, and a socket module with ssl support. # test_timeout # Controlled by test_timeout.skip_expected. Requires the network # resource and a socket module. # test_codecmaps_* # Whether a skip is expected here depends on whether a large test # input file has been downloaded. test_codecmaps_*.skip_expected # controls that. _expectations = { 'win32': """ test__locale test_applesingle test_al test_bsddb185 test_bsddb3 test_cd test_cl test_commands test_crypt test_curses test_dbm test_dl test_fcntl test_fork1 test_gdbm test_gl test_grp test_imgfile test_ioctl test_largefile test_linuxaudiodev test_mhlib test_nis test_openpty test_ossaudiodev test_poll test_posix test_pty test_pwd test_resource test_signal test_sunaudiodev test_threadsignals test_timing """, 'linux2': """ test_al test_applesingle test_bsddb185 test_cd test_cl test_curses test_dl test_gl test_imgfile test_largefile test_linuxaudiodev test_nis test_ntpath test_ossaudiodev test_sunaudiodev """, 'mac': """ test_al test_atexit test_bsddb test_bsddb185 test_bsddb3 test_bz2 test_cd test_cl test_commands test_crypt test_curses test_dbm test_dl test_fcntl test_fork1 test_gl test_grp test_ioctl test_imgfile test_largefile test_linuxaudiodev test_locale test_mmap test_nis test_ntpath test_openpty test_ossaudiodev test_poll test_popen test_popen2 test_posix test_pty test_pwd test_resource test_signal test_sunaudiodev test_sundry test_tarfile test_timing """, 'unixware7': """ test_al test_applesingle test_bsddb test_bsddb185 test_cd test_cl test_dl test_gl test_imgfile test_largefile test_linuxaudiodev test_minidom test_nis test_ntpath test_openpty test_pyexpat test_sax test_sunaudiodev test_sundry """, 'openunix8': """ test_al test_applesingle test_bsddb test_bsddb185 test_cd test_cl test_dl test_gl test_imgfile test_largefile test_linuxaudiodev test_minidom test_nis test_ntpath test_openpty test_pyexpat test_sax test_sunaudiodev test_sundry """, 'sco_sv3': """ test_al test_applesingle test_asynchat test_bsddb test_bsddb185 test_cd test_cl test_dl test_fork1 test_gettext test_gl test_imgfile test_largefile test_linuxaudiodev test_locale test_minidom test_nis test_ntpath test_openpty test_pyexpat test_queue test_sax test_sunaudiodev test_sundry test_thread test_threaded_import test_threadedtempfile test_threading """, 'riscos': """ test_al test_applesingle test_asynchat test_atexit test_bsddb test_bsddb185 test_bsddb3 test_cd test_cl test_commands test_crypt test_dbm test_dl test_fcntl test_fork1 test_gdbm test_gl test_grp test_imgfile test_largefile test_linuxaudiodev test_locale test_mmap test_nis test_ntpath test_openpty test_poll test_popen2 test_pty test_pwd test_strop test_sunaudiodev test_sundry test_thread test_threaded_import test_threadedtempfile test_threading test_timing """, 'darwin': """ test__locale test_al test_bsddb test_bsddb3 test_cd test_cl test_curses test_dl test_gdbm test_gl test_imgfile test_largefile test_linuxaudiodev test_locale test_minidom test_nis test_ntpath test_ossaudiodev test_poll test_sunaudiodev """, 'sunos5': """ test_al test_applesingle test_bsddb test_bsddb185 test_cd test_cl test_curses test_dbm test_gdbm test_gl test_gzip test_imgfile test_linuxaudiodev test_openpty test_zipfile test_zlib """, 'hp-ux11': """ test_al test_applesingle test_bsddb test_bsddb185 test_cd test_cl test_curses test_dl test_gdbm test_gl test_gzip test_imgfile test_largefile test_linuxaudiodev test_locale test_minidom test_nis test_ntpath test_openpty test_pyexpat test_sax test_sunaudiodev test_zipfile test_zlib """, 'atheos': """ test_al test_applesingle test_bsddb185 test_cd test_cl test_curses test_dl test_gdbm test_gl test_imgfile test_largefile test_linuxaudiodev test_locale test_mhlib test_mmap test_nis test_poll test_popen2 test_resource test_sunaudiodev """, 'cygwin': """ test_al test_applesingle test_bsddb185 test_bsddb3 test_cd test_cl test_curses test_dbm test_gl test_imgfile test_ioctl test_largefile test_linuxaudiodev test_locale test_nis test_ossaudiodev test_socketserver test_sunaudiodev """, 'os2emx': """ test_al test_applesingle test_audioop test_bsddb185 test_bsddb3 test_cd test_cl test_commands test_curses test_dl test_gl test_imgfile test_largefile test_linuxaudiodev test_mhlib test_mmap test_nis test_openpty test_ossaudiodev test_pty test_resource test_signal test_sunaudiodev """, 'freebsd4': """ test_aepack test_al test_applesingle test_bsddb test_bsddb3 test_cd test_cl test_gdbm test_gl test_imgfile test_linuxaudiodev test_locale test_macfs test_macostools test_nis test_normalization test_ossaudiodev test_pep277 test_plistlib test_pty test_scriptpackages test_socket_ssl test_socketserver test_sunaudiodev test_tcl test_timeout test_unicode_file test_urllibnet test_winreg test_winsound """, } _expectations['freebsd5'] = _expectations['freebsd4'] _expectations['freebsd6'] = _expectations['freebsd4'] class _ExpectedSkips: def __init__(self): import os.path from test import test_normalization from test import test_socket_ssl from test import test_timeout from test import test_codecmaps_cn, test_codecmaps_jp from test import test_codecmaps_kr, test_codecmaps_tw from test import test_codecmaps_hk self.valid = False if sys.platform in _expectations: s = _expectations[sys.platform] self.expected = set(s.split()) if not os.path.supports_unicode_filenames: self.expected.add('test_pep277') if test_normalization.skip_expected: self.expected.add('test_normalization') if test_socket_ssl.skip_expected: self.expected.add('test_socket_ssl') if test_timeout.skip_expected: self.expected.add('test_timeout') for cc in ('cn', 'jp', 'kr', 'tw', 'hk'): if eval('test_codecmaps_' + cc).skip_expected: self.expected.add('test_codecmaps_' + cc) if sys.maxint == 9223372036854775807L: self.expected.add('test_rgbimg') self.expected.add('test_imageop') if not sys.platform in ("mac", "darwin"): MAC_ONLY = ["test_macostools", "test_macfs", "test_aepack", "test_plistlib", "test_scriptpackages"] for skip in MAC_ONLY: self.expected.add(skip) if sys.platform != "win32": WIN_ONLY = ["test_unicode_file", "test_winreg", "test_winsound"] for skip in WIN_ONLY: self.expected.add(skip) self.valid = True def isvalid(self): "Return true iff _ExpectedSkips knows about the current platform." return self.valid def getexpected(self): """Return set of test names we expect to skip on current platform. self.isvalid() must be true. """ assert self.isvalid() return self.expected if __name__ == '__main__': # Remove regrtest.py's own directory from the module search path. This # prevents relative imports from working, and relative imports will screw # up the testing framework. E.g. if both test.test_support and # test_support are imported, they will not contain the same globals, and # much of the testing framework relies on the globals in the # test.test_support module. mydir = os.path.abspath(os.path.normpath(os.path.dirname(sys.argv[0]))) i = pathlen = len(sys.path) while i >= 0: i -= 1 if os.path.abspath(os.path.normpath(sys.path[i])) == mydir: del sys.path[i] if len(sys.path) == pathlen: print 'Could not find %r in sys.path to remove it' % mydir main()
30.648132
79
0.56177
d66f02c27f8a678dcab009c8776f8c3cce8afe62
2,584
py
Python
2018/06/danger.py
stacybrock/advent-of-code
781e097bbd506faa4b05ebd844f5641127a6cd08
[ "MIT" ]
null
null
null
2018/06/danger.py
stacybrock/advent-of-code
781e097bbd506faa4b05ebd844f5641127a6cd08
[ "MIT" ]
null
null
null
2018/06/danger.py
stacybrock/advent-of-code
781e097bbd506faa4b05ebd844f5641127a6cd08
[ "MIT" ]
null
null
null
# solution to Advent of Code 2018, day 6 part one and two # https://adventofcode.com/2018/day/6 # # assumes puzzle input is in a file called input.txt import fileinput from collections import defaultdict from operator import itemgetter def main(): raw_coordinates = list(line.strip() for line in fileinput.input()) # convert 'x, y' formatted coordinates into tuples of ints coords = [tuple(map(int,c.split(", "))) for c in raw_coordinates] # calculate outer boundary of grid min_x = min(coords, key=itemgetter(0))[0] max_x = max(coords, key=itemgetter(0))[0] min_y = min(coords, key=itemgetter(1))[1] max_y = max(coords, key=itemgetter(1))[1] # create sets of coordinates that lie on the outer boundary leftedge = set([c for c in coords if c[0] == min_x]) rightedge = set([c for c in coords if c[0] == max_x]) topedge = set([c for c in coords if c[1] == min_y]) bottomedge = set([c for c in coords if c[1] == max_y]) # use set math to determine the coordinates that lie # within the outermost edges interior_coords = set(coords) - leftedge - rightedge - topedge - bottomedge # grid is a dict-of-dicts containing the closest coordinate # to that point # {0: {0: (x, y)}} grid = defaultdict(dict) for x in range(min_x, max_x+1): for y in range(min_y, max_y+1): distances = {} for c in coords: distances[c] = manhattan_distance((x, y), c) (candidate, distance) = min(distances.items(), key=itemgetter(1)) if list(distances.values()).count(distance) == 1: grid[x][y] = candidate else: grid[x][y] = None # solve part one coordinate_areas = list( [sum([1 for x, y_val in grid.items() for c2 in y_val.values() if c2 == c]) for c in interior_coords] ) print(f"Size of largest area: {max(coordinate_areas)}") # solve part two grid = defaultdict(dict) for x in range(min_x, max_x+1): for y in range(min_y, max_y+1): total_distance = sum([manhattan_distance((x, y), c) for c in coords]) if total_distance < 10000: grid[x][y] = 1 area = sum([sum(list(y_val.values())) for x, y_val in grid.items()]) print(f"Size of < 10000 region: {area}") def manhattan_distance(a, b): """Calculate Manhattan distance between two coordinates Inputs: a - tuple for point 1 b - tuple for point 2 """ return abs(a[0] - b[0]) + abs(a[1] - b[1]) if __name__ == '__main__': main()
34.453333
108
0.614551
268d96d52e584d409a63a1d739e2a3208ae481ce
10,394
py
Python
venv/lib/python2.7/site-packages/ansible/modules/cloud/amazon/elb_application_lb_facts.py
haind27/test01
7f86c0a33eb0874a6c3f5ff9a923fd0cfc8ef852
[ "MIT" ]
1
2021-04-02T08:08:39.000Z
2021-04-02T08:08:39.000Z
venv/lib/python2.7/site-packages/ansible/modules/cloud/amazon/elb_application_lb_facts.py
haind27/test01
7f86c0a33eb0874a6c3f5ff9a923fd0cfc8ef852
[ "MIT" ]
null
null
null
venv/lib/python2.7/site-packages/ansible/modules/cloud/amazon/elb_application_lb_facts.py
haind27/test01
7f86c0a33eb0874a6c3f5ff9a923fd0cfc8ef852
[ "MIT" ]
1
2020-05-03T01:13:16.000Z
2020-05-03T01:13:16.000Z
#!/usr/bin/python # Copyright: Ansible Project # GNU General Public License v3.0+ (see COPYING or https://www.gnu.org/licenses/gpl-3.0.txt) from __future__ import absolute_import, division, print_function __metaclass__ = type ANSIBLE_METADATA = {'metadata_version': '1.1', 'status': ['preview'], 'supported_by': 'community'} DOCUMENTATION = ''' --- module: elb_application_lb_facts short_description: Gather facts about application ELBs in AWS description: - Gather facts about application ELBs in AWS version_added: "2.4" requirements: [ boto3 ] author: Rob White (@wimnat) options: load_balancer_arns: description: - The Amazon Resource Names (ARN) of the load balancers. You can specify up to 20 load balancers in a single call. required: false names: description: - The names of the load balancers. required: false extends_documentation_fragment: - aws - ec2 ''' EXAMPLES = ''' # Note: These examples do not set authentication details, see the AWS Guide for details. # Gather facts about all target groups - elb_application_lb_facts: # Gather facts about the target group attached to a particular ELB - elb_application_lb_facts: load_balancer_arns: - "arn:aws:elasticloadbalancing:ap-southeast-2:001122334455:loadbalancer/app/my-elb/aabbccddeeff" # Gather facts about a target groups named 'tg1' and 'tg2' - elb_application_lb_facts: names: - elb1 - elb2 ''' RETURN = ''' load_balancers: description: a list of load balancers returned: always type: complex contains: access_logs_s3_bucket: description: The name of the S3 bucket for the access logs. returned: when status is present type: string sample: mys3bucket access_logs_s3_enabled: description: Indicates whether access logs stored in Amazon S3 are enabled. returned: when status is present type: string sample: true access_logs_s3_prefix: description: The prefix for the location in the S3 bucket. returned: when status is present type: string sample: /my/logs availability_zones: description: The Availability Zones for the load balancer. returned: when status is present type: list sample: "[{'subnet_id': 'subnet-aabbccddff', 'zone_name': 'ap-southeast-2a'}]" canonical_hosted_zone_id: description: The ID of the Amazon Route 53 hosted zone associated with the load balancer. returned: when status is present type: string sample: ABCDEF12345678 created_time: description: The date and time the load balancer was created. returned: when status is present type: string sample: "2015-02-12T02:14:02+00:00" deletion_protection_enabled: description: Indicates whether deletion protection is enabled. returned: when status is present type: string sample: true dns_name: description: The public DNS name of the load balancer. returned: when status is present type: string sample: internal-my-elb-123456789.ap-southeast-2.elb.amazonaws.com idle_timeout_timeout_seconds: description: The idle timeout value, in seconds. returned: when status is present type: string sample: 60 ip_address_type: description: The type of IP addresses used by the subnets for the load balancer. returned: when status is present type: string sample: ipv4 load_balancer_arn: description: The Amazon Resource Name (ARN) of the load balancer. returned: when status is present type: string sample: arn:aws:elasticloadbalancing:ap-southeast-2:0123456789:loadbalancer/app/my-elb/001122334455 load_balancer_name: description: The name of the load balancer. returned: when status is present type: string sample: my-elb scheme: description: Internet-facing or internal load balancer. returned: when status is present type: string sample: internal security_groups: description: The IDs of the security groups for the load balancer. returned: when status is present type: list sample: ['sg-0011223344'] state: description: The state of the load balancer. returned: when status is present type: dict sample: "{'code': 'active'}" tags: description: The tags attached to the load balancer. returned: when status is present type: dict sample: "{ 'Tag': 'Example' }" type: description: The type of load balancer. returned: when status is present type: string sample: application vpc_id: description: The ID of the VPC for the load balancer. returned: when status is present type: string sample: vpc-0011223344 ''' import traceback try: import boto3 from botocore.exceptions import ClientError, NoCredentialsError HAS_BOTO3 = True except ImportError: HAS_BOTO3 = False from ansible.module_utils.basic import AnsibleModule from ansible.module_utils.ec2 import (boto3_conn, boto3_tag_list_to_ansible_dict, camel_dict_to_snake_dict, ec2_argument_spec, get_aws_connection_info) def get_elb_listeners(connection, module, elb_arn): try: return connection.describe_listeners(LoadBalancerArn=elb_arn)['Listeners'] except ClientError as e: module.fail_json(msg=e.message, exception=traceback.format_exc(), **camel_dict_to_snake_dict(e.response)) def get_listener_rules(connection, module, listener_arn): try: return connection.describe_rules(ListenerArn=listener_arn)['Rules'] except ClientError as e: module.fail_json(msg=e.message, exception=traceback.format_exc(), **camel_dict_to_snake_dict(e.response)) def get_load_balancer_attributes(connection, module, load_balancer_arn): try: load_balancer_attributes = boto3_tag_list_to_ansible_dict(connection.describe_load_balancer_attributes(LoadBalancerArn=load_balancer_arn)['Attributes']) except ClientError as e: module.fail_json(msg=e.message, exception=traceback.format_exc(), **camel_dict_to_snake_dict(e.response)) # Replace '.' with '_' in attribute key names to make it more Ansibley for k, v in list(load_balancer_attributes.items()): load_balancer_attributes[k.replace('.', '_')] = v del load_balancer_attributes[k] return load_balancer_attributes def get_load_balancer_tags(connection, module, load_balancer_arn): try: return boto3_tag_list_to_ansible_dict(connection.describe_tags(ResourceArns=[load_balancer_arn])['TagDescriptions'][0]['Tags']) except ClientError as e: module.fail_json(msg=e.message, exception=traceback.format_exc(), **camel_dict_to_snake_dict(e.response)) def list_load_balancers(connection, module): load_balancer_arns = module.params.get("load_balancer_arns") names = module.params.get("names") try: load_balancer_paginator = connection.get_paginator('describe_load_balancers') if not load_balancer_arns and not names: load_balancers = load_balancer_paginator.paginate().build_full_result() if load_balancer_arns: load_balancers = load_balancer_paginator.paginate(LoadBalancerArns=load_balancer_arns).build_full_result() if names: load_balancers = load_balancer_paginator.paginate(Names=names).build_full_result() except ClientError as e: if e.response['Error']['Code'] == 'LoadBalancerNotFound': module.exit_json(load_balancers=[]) else: module.fail_json(msg=e.message, exception=traceback.format_exc(), **camel_dict_to_snake_dict(e.response)) except NoCredentialsError as e: module.fail_json(msg="AWS authentication problem. " + e.message, exception=traceback.format_exc()) for load_balancer in load_balancers['LoadBalancers']: # Get the attributes for each elb load_balancer.update(get_load_balancer_attributes(connection, module, load_balancer['LoadBalancerArn'])) # Get the listeners for each elb load_balancer['listeners'] = get_elb_listeners(connection, module, load_balancer['LoadBalancerArn']) # For each listener, get listener rules for listener in load_balancer['listeners']: listener['rules'] = get_listener_rules(connection, module, listener['ListenerArn']) # Turn the boto3 result in to ansible_friendly_snaked_names snaked_load_balancers = [camel_dict_to_snake_dict(load_balancer) for load_balancer in load_balancers['LoadBalancers']] # Get tags for each load balancer for snaked_load_balancer in snaked_load_balancers: snaked_load_balancer['tags'] = get_load_balancer_tags(connection, module, snaked_load_balancer['load_balancer_arn']) module.exit_json(load_balancers=snaked_load_balancers) def main(): argument_spec = ec2_argument_spec() argument_spec.update( dict( load_balancer_arns=dict(type='list'), names=dict(type='list') ) ) module = AnsibleModule(argument_spec=argument_spec, mutually_exclusive=['load_balancer_arns', 'names'], supports_check_mode=True ) if not HAS_BOTO3: module.fail_json(msg='boto3 required for this module') region, ec2_url, aws_connect_params = get_aws_connection_info(module, boto3=True) if region: connection = boto3_conn(module, conn_type='client', resource='elbv2', region=region, endpoint=ec2_url, **aws_connect_params) else: module.fail_json(msg="region must be specified") list_load_balancers(connection, module) if __name__ == '__main__': main()
37.121429
160
0.670483
2c1458742461dfa240e506483652c644420aea3b
1,000
py
Python
tests/test_utils.py
tranquilitybase-io/tb-aws-dac
7ea6a2d1dc4d237e23aa457980d6f81817c8ffee
[ "Apache-2.0" ]
null
null
null
tests/test_utils.py
tranquilitybase-io/tb-aws-dac
7ea6a2d1dc4d237e23aa457980d6f81817c8ffee
[ "Apache-2.0" ]
null
null
null
tests/test_utils.py
tranquilitybase-io/tb-aws-dac
7ea6a2d1dc4d237e23aa457980d6f81817c8ffee
[ "Apache-2.0" ]
1
2021-06-23T20:35:39.000Z
2021-06-23T20:35:39.000Z
import unittest from unittest import TestCase from gcpdac.utils import labellize class Utils_Test(TestCase): def test_labellize(self): # google label rules here - https://cloud.google.com/compute/docs/labeling-resources self.assertEqual("abc", labellize("abc")) self.assertEqual("ab-c", labellize("ab c")) self.assertEqual("ab-c", labellize("ab&c")) self.assertEqual("ab_c", labellize("ab_c")) self.assertEqual("ab-c", labellize("ab-c")) self.assertEqual("abc", labellize("ABC")) self.assertEqual("a123", labellize("123")) self.assertEqual("a-123", labellize("-123")) self.assertEqual("a-abc", labellize("-abc")) self.assertEqual("a_123", labellize("_123")) self.assertEqual("abcdefghijklimnopqrstuvwxyz-0123456789_abcdefghijklimnopqrstuvw", labellize("abcdefghijklimnopqrstuvwxyz-0123456789_abcdefghijklimnopqrstuvwxyz")) if __name__ == '__main__': unittest.main()
38.461538
105
0.67
3e0738a9f7170c7a85d9deb2f310f2117e21188d
33
py
Python
pyrec/implicit/__init__.py
redbubble/pyrec
8f1a7ed73b69352f960f33e643eb20be7e74830a
[ "MIT" ]
1
2019-10-17T02:09:18.000Z
2019-10-17T02:09:18.000Z
pyrec/implicit/__init__.py
redbubble/pyrec
8f1a7ed73b69352f960f33e643eb20be7e74830a
[ "MIT" ]
null
null
null
pyrec/implicit/__init__.py
redbubble/pyrec
8f1a7ed73b69352f960f33e643eb20be7e74830a
[ "MIT" ]
null
null
null
from .als import load_recommender
33
33
0.878788
149d12cd1fd9cece180b04a3b036de54b7acdda2
11,926
py
Python
e2e_tests/tests/experiment/test_metrics.py
seanr15/determined
f0eba7d43cf55a67832cc6001127c0b1e7326a9e
[ "Apache-2.0" ]
null
null
null
e2e_tests/tests/experiment/test_metrics.py
seanr15/determined
f0eba7d43cf55a67832cc6001127c0b1e7326a9e
[ "Apache-2.0" ]
null
null
null
e2e_tests/tests/experiment/test_metrics.py
seanr15/determined
f0eba7d43cf55a67832cc6001127c0b1e7326a9e
[ "Apache-2.0" ]
null
null
null
import json import multiprocessing as mp from typing import Set, Union import pytest import determined_common.api.authentication as auth from determined_common import api from tests import config as conf from tests import experiment as exp @pytest.mark.e2e_cpu # type: ignore @pytest.mark.timeout(600) # type: ignore def test_streaming_metrics_api() -> None: auth.initialize_session(conf.make_master_url(), try_reauth=True) pool = mp.pool.ThreadPool(processes=7) experiment_id = exp.create_experiment( conf.fixtures_path("mnist_pytorch/adaptive_short.yaml"), conf.tutorials_path("mnist_pytorch"), ) # To fully test the streaming APIs, the requests need to start running immediately after the # experiment, and then stay open until the experiment is complete. To accomplish this with all # of the API calls on a single experiment, we spawn them all in threads. metric_names_thread = pool.apply_async(request_metric_names, (experiment_id,)) train_metric_batches_thread = pool.apply_async(request_train_metric_batches, (experiment_id,)) valid_metric_batches_thread = pool.apply_async(request_valid_metric_batches, (experiment_id,)) train_trials_snapshot_thread = pool.apply_async(request_train_trials_snapshot, (experiment_id,)) valid_trials_snapshot_thread = pool.apply_async(request_valid_trials_snapshot, (experiment_id,)) train_trials_sample_thread = pool.apply_async(request_train_trials_sample, (experiment_id,)) valid_trials_sample_thread = pool.apply_async(request_valid_trials_sample, (experiment_id,)) metric_names_results = metric_names_thread.get() train_metric_batches_results = train_metric_batches_thread.get() valid_metric_batches_results = valid_metric_batches_thread.get() train_trials_snapshot_results = train_trials_snapshot_thread.get() valid_trials_snapshot_results = valid_trials_snapshot_thread.get() train_trials_sample_results = train_trials_sample_thread.get() valid_trials_sample_results = valid_trials_sample_thread.get() if metric_names_results is not None: pytest.fail("metric-names: %s. Results: %s" % metric_names_results) if train_metric_batches_results is not None: pytest.fail("metric-batches (training): %s. Results: %s" % train_metric_batches_results) if valid_metric_batches_results is not None: pytest.fail("metric-batches (validation): %s. Results: %s" % valid_metric_batches_results) if train_trials_snapshot_results is not None: pytest.fail("trials-snapshot (training): %s. Results: %s" % train_trials_snapshot_results) if valid_trials_snapshot_results is not None: pytest.fail("trials-snapshot (validation): %s. Results: %s" % valid_trials_snapshot_results) if train_trials_sample_results is not None: pytest.fail("trials-sample (training): %s. Results: %s" % train_trials_sample_results) if valid_trials_sample_results is not None: pytest.fail("trials-sample (validation): %s. Results: %s" % valid_trials_sample_results) def request_metric_names(experiment_id): # type: ignore response = api.get( conf.make_master_url(), "api/v1/experiments/{}/metrics-stream/metric-names".format(experiment_id), ) results = [message["result"] for message in map(json.loads, response.text.splitlines())] # First let's verify an empty response was sent back before any real work was done if results[0]["searcherMetric"] != "validation_loss": return ("unexpected searcher metric in first response", results) if results[0]["trainingMetrics"] != []: return ("unexpected training metric in first response", results) if results[0]["validationMetrics"] != []: return ("unexpected validation metric in first response", results) # Then we verify that all expected responses are eventually received exactly once accumulated_training = set() accumulated_validation = set() for i in range(1, len(results)): for training in results[i]["trainingMetrics"]: if training in accumulated_training: return ("training metric appeared twice", results) accumulated_training.add(training) for validation in results[i]["validationMetrics"]: if validation in accumulated_validation: return ("training metric appeared twice", results) accumulated_validation.add(validation) if accumulated_training != {"loss"}: return ("unexpected set of training metrics", results) if accumulated_validation != {"validation_loss", "accuracy"}: return ("unexpected set of validation metrics", results) return None def request_train_metric_batches(experiment_id): # type: ignore response = api.get( conf.make_master_url(), "api/v1/experiments/{}/metrics-stream/batches".format(experiment_id), params={"metric_name": "loss", "metric_type": "METRIC_TYPE_TRAINING"}, ) results = [message["result"] for message in map(json.loads, response.text.splitlines())] # First let's verify an empty response was sent back before any real work was done if results[0]["batches"] != []: return ("unexpected batches in first response", results) # Then we verify that all expected responses are eventually received exactly once accumulated = set() for i in range(1, len(results)): for batch in results[i]["batches"]: if batch in accumulated: return ("batch appears twice", results) accumulated.add(batch) if accumulated != {100, 200, 300, 400}: return ("unexpected set of batches", results) return None def request_valid_metric_batches(experiment_id): # type: ignore response = api.get( conf.make_master_url(), "api/v1/experiments/{}/metrics-stream/batches".format(experiment_id), params={"metric_name": "accuracy", "metric_type": "METRIC_TYPE_VALIDATION"}, ) results = [message["result"] for message in map(json.loads, response.text.splitlines())] # First let's verify an empty response was sent back before any real work was done if results[0]["batches"] != []: return ("unexpected batches in first response", results) # Then we verify that all expected responses are eventually received exactly once accumulated = set() for i in range(1, len(results)): for batch in results[i]["batches"]: if batch in accumulated: return ("batch appears twice", results) accumulated.add(batch) if accumulated != {200, 400}: return ("unexpected set of batches", results) return None def validate_hparam_types(hparams: dict) -> Union[None, str]: for hparam in ["dropout1", "dropout2", "learning_rate"]: if type(hparams[hparam]) != float: return "hparam %s of unexpected type" % hparam for hparam in ["global_batch_size", "n_filters1", "n_filters2"]: if type(hparams[hparam]) != int: return "hparam %s of unexpected type" % hparam return None def request_train_trials_snapshot(experiment_id): # type: ignore response = api.get( conf.make_master_url(), "api/v1/experiments/{}/metrics-stream/trials-snapshot".format(experiment_id), params={ "metric_name": "loss", "metric_type": "METRIC_TYPE_TRAINING", "batches_processed": 100, }, ) results = [message["result"] for message in map(json.loads, response.text.splitlines())] # First let's verify an empty response was sent back before any real work was done if results[0]["trials"] != []: return ("unexpected trials in first response", results) # Then we verify that we receive the expected number of trials and the right types trials = set() for i in range(1, len(results)): for trial in results[i]["trials"]: trials.add(trial["trialId"]) validate_hparam_types(trial["hparams"]) if type(trial["metric"]) != float: return ("metric of unexpected type", results) if len(trials) != 5: return ("unexpected number of trials received", results) return None def request_valid_trials_snapshot(experiment_id): # type: ignore response = api.get( conf.make_master_url(), "api/v1/experiments/{}/metrics-stream/trials-snapshot".format(experiment_id), params={ "metric_name": "accuracy", "metric_type": "METRIC_TYPE_VALIDATION", "batches_processed": 200, }, ) results = [message["result"] for message in map(json.loads, response.text.splitlines())] # First let's verify an empty response was sent back before any real work was done if results[0]["trials"] != []: return ("unexpected trials in first response", results) # Then we verify that we receive the expected number of trials and the right types trials = set() for i in range(1, len(results)): for trial in results[i]["trials"]: trials.add(trial["trialId"]) hparam_error = validate_hparam_types(trial["hparams"]) if hparam_error is not None: return (hparam_error, results) if type(trial["metric"]) != float: return ("metric of unexpected type", results) if len(trials) != 5: return ("unexpected number of trials received", results) return None def check_trials_sample_result(results: list) -> Union[None, tuple]: # First let's verify an empty response was sent back before any real work was done if ( results[0]["trials"] != [] or results[0]["promotedTrials"] != [] or results[0]["demotedTrials"] != [] ): return ("unexpected trials in first response", results) # Then we verify that we receive the expected number of trials and the right types trials: Set[int] = set() datapoints = {} for i in range(1, len(results)): newTrials = set() for trial in results[i]["promotedTrials"]: if trial in trials: return ("trial lists as promoted twice", results) newTrials.add(trial) datapoints[trial] = 0 for trial in results[i]["trials"]: if trial["trialId"] in newTrials: hparam_error = validate_hparam_types(trial["hparams"]) if hparam_error is not None: return (hparam_error, results) else: if trial["hparams"] is not None: return ("hparams repeated for trial", results) for point in trial["data"]: if point["batches"] > datapoints[trial["trialId"]]: datapoints[trial["trialId"]] = point["batches"] else: return ("data received out of order: " + str(trial["trialId"]), results) return None def request_train_trials_sample(experiment_id): # type: ignore response = api.get( conf.make_master_url(), "api/v1/experiments/{}/metrics-stream/trials-sample".format(experiment_id), params={ "metric_name": "loss", "metric_type": "METRIC_TYPE_TRAINING", }, ) results = [message["result"] for message in map(json.loads, response.text.splitlines())] return check_trials_sample_result(results) def request_valid_trials_sample(experiment_id): # type: ignore response = api.get( conf.make_master_url(), "api/v1/experiments/{}/metrics-stream/trials-sample".format(experiment_id), params={ "metric_name": "accuracy", "metric_type": "METRIC_TYPE_VALIDATION", }, ) results = [message["result"] for message in map(json.loads, response.text.splitlines())] return check_trials_sample_result(results)
43.845588
100
0.670636
965bbc1f52c5fc0da021d85fdb3ffed45c7fd55b
606
py
Python
var/spack/repos/builtin/packages/py-cmocean/package.py
MiddelkoopT/spack
4d94c4c4600f42a7a3bb3d06ec879140bc259304
[ "ECL-2.0", "Apache-2.0", "MIT-0", "MIT" ]
null
null
null
var/spack/repos/builtin/packages/py-cmocean/package.py
MiddelkoopT/spack
4d94c4c4600f42a7a3bb3d06ec879140bc259304
[ "ECL-2.0", "Apache-2.0", "MIT-0", "MIT" ]
null
null
null
var/spack/repos/builtin/packages/py-cmocean/package.py
MiddelkoopT/spack
4d94c4c4600f42a7a3bb3d06ec879140bc259304
[ "ECL-2.0", "Apache-2.0", "MIT-0", "MIT" ]
null
null
null
# Copyright 2013-2020 Lawrence Livermore National Security, LLC and other # Spack Project Developers. See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: (Apache-2.0 OR MIT) class PyCmocean(PythonPackage): """Colormaps for Oceanography.""" homepage = "https://matplotlib.org/cmocean/" pypi = "cmocean/cmocean-2.0.tar.gz" version('2.0', sha256='13eea3c8994d8e303e32a2db0b3e686f6edfb41cb21e7b0e663c2b17eea9b03a') depends_on('py-setuptools', type='build') depends_on('py-matplotlib', type=('build', 'run')) depends_on('py-numpy', type=('build', 'run'))
33.666667
93
0.719472
a77048dbcd0e475a86560a19cc2b9d09a841d023
807
py
Python
chatrah/urls.py
Mukthar86/kushwanth
a9a18437d9728037606a141569eca5439c20c22f
[ "MIT" ]
1
2022-02-09T06:00:01.000Z
2022-02-09T06:00:01.000Z
chatrah/urls.py
Mukthar86/kushwanth
a9a18437d9728037606a141569eca5439c20c22f
[ "MIT" ]
null
null
null
chatrah/urls.py
Mukthar86/kushwanth
a9a18437d9728037606a141569eca5439c20c22f
[ "MIT" ]
null
null
null
from django.contrib import admin from django.urls import path, include, re_path from django.conf import settings from django.conf.urls.static import static admin.site.site_header = 'Chatrah' admin.site.site_title = 'Chatrah' admin.site.index_title = 'Chatrah Administration' admin.empty_value_display = '**Empty**' urlpatterns = [ path('admin/', admin.site.urls), path('paper/', include('paper.urls')), path('', include('users.urls')), #path('', include('pwa.urls')), path('grow/', include('oppurtunities.urls')), path('resume/',include('resume.urls')), path('dashboard/', include('dashboard.urls')), path('academic/', include('academic.urls')), path('summernote/', include('django_summernote.urls')), ] + static(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT)
35.086957
65
0.703841
2cfd48132d875803ceb3bda75f35e00a5cd5c818
1,648
py
Python
cal_flops.py
devzhk/Implicit-Competitive-Regularization
71bda29f2db18d1d7ae9860e4a761ff61cbec756
[ "Apache-2.0" ]
107
2019-10-15T15:55:20.000Z
2021-12-27T02:02:50.000Z
cal_flops.py
AzR919/Implicit-Competitive-Regularization
d69b66b1843cf72d94a1b0957aa30eb34e46af53
[ "Apache-2.0" ]
11
2019-10-16T09:41:23.000Z
2020-12-16T08:44:38.000Z
cal_flops.py
AzR919/Implicit-Competitive-Regularization
d69b66b1843cf72d94a1b0957aa30eb34e46af53
[ "Apache-2.0" ]
26
2019-10-15T03:38:41.000Z
2021-03-25T11:52:08.000Z
from train_utils import get_model import torch from ptflops import get_model_complexity_info if __name__ == '__main__': z_dim = 128 model_name= 'Resnet' model_config = {'image_size': 64, 'image_channel': 3, 'feature_num': 128, 'n_extra_layers': 0, 'batchnorm_d': True, 'batchnorm_g': True} with torch.cuda.device(0): D, G = get_model(model_name=model_name, z_dim=z_dim, configs=model_config) macsD, paramsD = get_model_complexity_info(D, (model_config['image_channel'], model_config['image_size'], model_config['image_size']), as_strings=True, print_per_layer_stat=True, verbose=True) print('{:<30} {:<8}'.format('Computational complexity: ', macsD)) print('{:<30} {:<8}'.format('Number of parameters: ', paramsD)) macsG, paramsG = get_model_complexity_info(G, (z_dim,), as_strings=True, print_per_layer_stat=True, verbose=True) print('{:<30} {:<8}'.format('Computational complexity: ', macsG)) print('{:<30} {:<8}'.format('Number of parameters: ', paramsG))
51.5
82
0.432039
f646d5f9f321e722d5ab661f7a905134270d6c67
1,470
py
Python
helper-functions/get_satellite_data.py
scottlittle/solar-sensors
c9bd496e6cb589a73a7340522c48a530d3131672
[ "Apache-2.0" ]
1
2015-08-19T02:29:41.000Z
2015-08-19T02:29:41.000Z
helper-functions/get_satellite_data.py
scottlittle/solar-sensors
c9bd496e6cb589a73a7340522c48a530d3131672
[ "Apache-2.0" ]
null
null
null
helper-functions/get_satellite_data.py
scottlittle/solar-sensors
c9bd496e6cb589a73a7340522c48a530d3131672
[ "Apache-2.0" ]
null
null
null
# the directory where this is run must have the list.txt file that # generates the local http files (http_files) with the command: # "wget -i list.txt" at the command line. This command should be # run before running this script import pandas as pd import os import glob import requests mypath = "data/satellite/sfarea/" #"data/satellite/colorado/summer6months/" http_files = filter(os.path.isfile, glob.glob(mypath + "*")) #local http files http_files.sort(key=lambda x: os.path.getmtime(x)) #sorts by time http_files = [os.path.basename(i) for i in http_files] #extract filename my_list_file = http_files[0] #pop out the list used to generate files in this dir http_files = http_files[1:] #keep what is not popped out with open(mypath + my_list_file) as f: #find noaa http files begin_urls = f.read().splitlines() #beginning part of urls to make downloads len_begin_urls = len(begin_urls) #used for displaying completion percentage for i, begin_url in enumerate(begin_urls): print "------------- ", 100.0 * i/len_begin_urls, " percent done overall---------------" df = pd.read_html(mypath + http_files[i],header=0)[0] #read local http file into df filenames = [] for j in range(len(df)): #generate filenames from dataframe for data filenames.append(df.loc[j, 'Name']) for filename in filenames: req = requests.get(begin_url + '/' + filename) with open( mypath + 'data/' + filename , 'wb' ) as fout: #save data! fout.write(req.content)
37.692308
89
0.719728
bd6ef4d1d10b52ec1a5f708ba3723cad0813e3f0
332
py
Python
images/migrations/0004_auto_20201126_2252.py
cebanauskes/ida_images
708eb44274b28d53f9b0422fbf3711d85ac62a6b
[ "MIT" ]
null
null
null
images/migrations/0004_auto_20201126_2252.py
cebanauskes/ida_images
708eb44274b28d53f9b0422fbf3711d85ac62a6b
[ "MIT" ]
null
null
null
images/migrations/0004_auto_20201126_2252.py
cebanauskes/ida_images
708eb44274b28d53f9b0422fbf3711d85ac62a6b
[ "MIT" ]
null
null
null
# Generated by Django 3.1.3 on 2020-11-26 19:52 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('images', '0003_auto_20201126_2228'), ] operations = [ migrations.RenameModel( old_name='ImageModel', new_name='Image', ), ]
18.444444
47
0.596386
b682027b06dff29eea2d25f2d0f376ab9f8d7176
7,873
py
Python
test/functional/rpc_users.py
petegee/CnBCoin
0566ad715ff36c0a983741752bd2796ea2633010
[ "MIT" ]
1
2021-05-16T06:17:44.000Z
2021-05-16T06:17:44.000Z
test/functional/rpc_users.py
petegee/CnBCoin
0566ad715ff36c0a983741752bd2796ea2633010
[ "MIT" ]
null
null
null
test/functional/rpc_users.py
petegee/CnBCoin
0566ad715ff36c0a983741752bd2796ea2633010
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # Copyright (c) 2015-2018 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Test multiple RPC users.""" from test_framework.test_framework import BitcoinTestFramework from test_framework.util import ( assert_equal, get_datadir_path, str_to_b64str, ) import os import http.client import urllib.parse import subprocess from random import SystemRandom import string import configparser import sys class HTTPBasicsTest(BitcoinTestFramework): def set_test_params(self): self.num_nodes = 2 def setup_chain(self): super().setup_chain() #Append rpcauth to bitcoin.conf before initialization rpcauth = "rpcauth=rt:93648e835a54c573682c2eb19f882535$7681e9c5b74bdd85e78166031d2058e1069b3ed7ed967c93fc63abba06f31144" rpcauth2 = "rpcauth=rt2:f8607b1a88861fac29dfccf9b52ff9f$ff36a0c23c8c62b4846112e50fa888416e94c17bfd4c42f88fd8f55ec6a3137e" rpcuser = "rpcuser=rpcuser💻" rpcpassword = "rpcpassword=rpcpassword🔑" self.user = ''.join(SystemRandom().choice(string.ascii_letters + string.digits) for _ in range(10)) config = configparser.ConfigParser() config.read_file(open(self.options.configfile)) gen_rpcauth = config['environment']['RPCAUTH'] p = subprocess.Popen([sys.executable, gen_rpcauth, self.user], stdout=subprocess.PIPE, universal_newlines=True) lines = p.stdout.read().splitlines() rpcauth3 = lines[1] self.password = lines[3] with open(os.path.join(get_datadir_path(self.options.tmpdir, 0), "cnbcoin.conf"), 'a', encoding='utf8') as f: f.write(rpcauth+"\n") f.write(rpcauth2+"\n") f.write(rpcauth3+"\n") with open(os.path.join(get_datadir_path(self.options.tmpdir, 1), "cnbcoin.conf"), 'a', encoding='utf8') as f: f.write(rpcuser+"\n") f.write(rpcpassword+"\n") def run_test(self): ################################################## # Check correctness of the rpcauth config option # ################################################## url = urllib.parse.urlparse(self.nodes[0].url) #Old authpair authpair = url.username + ':' + url.password #New authpair generated via share/rpcauth tool password = "cA773lm788buwYe4g4WT+05pKyNruVKjQ25x3n0DQcM=" #Second authpair with different username password2 = "8/F3uMDw4KSEbw96U3CA1C4X05dkHDN2BPFjTgZW4KI=" authpairnew = "rt:"+password self.log.info('Correct...') headers = {"Authorization": "Basic " + str_to_b64str(authpair)} conn = http.client.HTTPConnection(url.hostname, url.port) conn.connect() conn.request('POST', '/', '{"method": "getbestblockhash"}', headers) resp = conn.getresponse() assert_equal(resp.status, 200) conn.close() #Use new authpair to confirm both work self.log.info('Correct...') headers = {"Authorization": "Basic " + str_to_b64str(authpairnew)} conn = http.client.HTTPConnection(url.hostname, url.port) conn.connect() conn.request('POST', '/', '{"method": "getbestblockhash"}', headers) resp = conn.getresponse() assert_equal(resp.status, 200) conn.close() #Wrong login name with rt's password self.log.info('Wrong...') authpairnew = "rtwrong:"+password headers = {"Authorization": "Basic " + str_to_b64str(authpairnew)} conn = http.client.HTTPConnection(url.hostname, url.port) conn.connect() conn.request('POST', '/', '{"method": "getbestblockhash"}', headers) resp = conn.getresponse() assert_equal(resp.status, 401) conn.close() #Wrong password for rt self.log.info('Wrong...') authpairnew = "rt:"+password+"wrong" headers = {"Authorization": "Basic " + str_to_b64str(authpairnew)} conn = http.client.HTTPConnection(url.hostname, url.port) conn.connect() conn.request('POST', '/', '{"method": "getbestblockhash"}', headers) resp = conn.getresponse() assert_equal(resp.status, 401) conn.close() #Correct for rt2 self.log.info('Correct...') authpairnew = "rt2:"+password2 headers = {"Authorization": "Basic " + str_to_b64str(authpairnew)} conn = http.client.HTTPConnection(url.hostname, url.port) conn.connect() conn.request('POST', '/', '{"method": "getbestblockhash"}', headers) resp = conn.getresponse() assert_equal(resp.status, 200) conn.close() #Wrong password for rt2 self.log.info('Wrong...') authpairnew = "rt2:"+password2+"wrong" headers = {"Authorization": "Basic " + str_to_b64str(authpairnew)} conn = http.client.HTTPConnection(url.hostname, url.port) conn.connect() conn.request('POST', '/', '{"method": "getbestblockhash"}', headers) resp = conn.getresponse() assert_equal(resp.status, 401) conn.close() #Correct for randomly generated user self.log.info('Correct...') authpairnew = self.user+":"+self.password headers = {"Authorization": "Basic " + str_to_b64str(authpairnew)} conn = http.client.HTTPConnection(url.hostname, url.port) conn.connect() conn.request('POST', '/', '{"method": "getbestblockhash"}', headers) resp = conn.getresponse() assert_equal(resp.status, 200) conn.close() #Wrong password for randomly generated user self.log.info('Wrong...') authpairnew = self.user+":"+self.password+"Wrong" headers = {"Authorization": "Basic " + str_to_b64str(authpairnew)} conn = http.client.HTTPConnection(url.hostname, url.port) conn.connect() conn.request('POST', '/', '{"method": "getbestblockhash"}', headers) resp = conn.getresponse() assert_equal(resp.status, 401) conn.close() ############################################################### # Check correctness of the rpcuser/rpcpassword config options # ############################################################### url = urllib.parse.urlparse(self.nodes[1].url) # rpcuser and rpcpassword authpair self.log.info('Correct...') rpcuserauthpair = "rpcuser💻:rpcpassword🔑" headers = {"Authorization": "Basic " + str_to_b64str(rpcuserauthpair)} conn = http.client.HTTPConnection(url.hostname, url.port) conn.connect() conn.request('POST', '/', '{"method": "getbestblockhash"}', headers) resp = conn.getresponse() assert_equal(resp.status, 200) conn.close() #Wrong login name with rpcuser's password rpcuserauthpair = "rpcuserwrong:rpcpassword" headers = {"Authorization": "Basic " + str_to_b64str(rpcuserauthpair)} conn = http.client.HTTPConnection(url.hostname, url.port) conn.connect() conn.request('POST', '/', '{"method": "getbestblockhash"}', headers) resp = conn.getresponse() assert_equal(resp.status, 401) conn.close() #Wrong password for rpcuser self.log.info('Wrong...') rpcuserauthpair = "rpcuser:rpcpasswordwrong" headers = {"Authorization": "Basic " + str_to_b64str(rpcuserauthpair)} conn = http.client.HTTPConnection(url.hostname, url.port) conn.connect() conn.request('POST', '/', '{"method": "getbestblockhash"}', headers) resp = conn.getresponse() assert_equal(resp.status, 401) conn.close() if __name__ == '__main__': HTTPBasicsTest ().main ()
38.033816
129
0.614505
7bad6ab9693c2e19c6a4520c75dd9601d6beee75
3,989
py
Python
lost_years/ssa.py
gojiplus/lost_years
b7af037827bbb478b8defb7db007bfc950d9ebfe
[ "MIT" ]
5
2020-04-02T05:43:43.000Z
2020-04-02T18:26:13.000Z
lost_years/ssa.py
gojiplus/lost_years
b7af037827bbb478b8defb7db007bfc950d9ebfe
[ "MIT" ]
null
null
null
lost_years/ssa.py
gojiplus/lost_years
b7af037827bbb478b8defb7db007bfc950d9ebfe
[ "MIT" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- import sys import argparse import pandas as pd from pkg_resources import resource_filename from .utils import column_exists, fixup_columns, closest SSA_DATA = resource_filename(__name__, "data/ssa.csv") SSA_COLS = ['age', 'male_life_expectancy', 'female_life_expectancy', 'year'] class LostYearsSSAData(): __df = None @classmethod def lost_years_ssa(cls, df, cols=None): """Appends Life expectancycolumn from SSA data to the input DataFrame based on age, sex and year in the specific cols mapping Args: df (:obj:`DataFrame`): Pandas DataFrame containing the last name column. cols (dict or None): Column mapping for age, sex, and year in DataFrame (None for default mapping: {'age': 'age', 'sex': 'sex', 'year': 'year'}) Returns: DataFrame: Pandas DataFrame with life expectency column(s):- 'ssa_age', 'ssa_year', 'ssa_life_expectancy' """ df_cols = {} for col in ['age', 'sex', 'year']: tcol = col if cols is None else cols[col] if tcol not in df.columns: print("No column `{0!s}` in the DataFrame".format(tcol)) return df df_cols[col] = tcol if cls.__df is None: cls.__df = pd.read_csv(SSA_DATA, usecols=SSA_COLS) out_df = pd.DataFrame() for i, r in df.iterrows(): if r[df_cols['sex']].lower() in ['m', 'male']: ecol = 'male_life_expectancy' else: ecol = 'female_life_expectancy' sdf = cls.__df[['age', 'year', ecol]] for c in ['age', 'year']: sdf = sdf[sdf[c] == closest(sdf[c].unique(), r[df_cols[c]])] odf = sdf[['age', 'year', ecol]].copy() odf.columns = ['ssa_age', 'ssa_year', 'ssa_life_expectancy'] odf['index'] = i out_df = pd.concat([out_df, odf]) out_df.set_index('index', drop=True, inplace=True) rdf = df.join(out_df) return rdf lost_years_ssa = LostYearsSSAData.lost_years_ssa def main(argv=sys.argv[1:]): title = ('Appends Lost Years data column(s) by age, sex and year') parser = argparse.ArgumentParser(description=title) parser.add_argument('input', default=None, help='Input file') parser.add_argument('-a', '--age', default='age', help='Columns name of age in the input file' '(default=`age`)') parser.add_argument('-s', '--sex', default='sex', help='Columns name of sex in the input file' '(default=`sex`)') parser.add_argument('-y', '--year', default='year', help='Columns name of year in the input file' '(default=`year`)') parser.add_argument('-o', '--output', default='lost-years-output.csv', help='Output file with Lost Years data column(s)') args = parser.parse_args(argv) print(args) df = pd.read_csv(args.input) if not column_exists(df, args.age): print("Column: `{0!s}` not found in the input file".format(args.age)) return -1 if not column_exists(df, args.sex): print("Column: `{0!s}` not found in the input file".format(args.sex)) return -1 if not column_exists(df, args.year): print("Column: `{0!s}` not found in the input file".format(args.year)) return -1 rdf = lost_years_ssa(df, cols={'age': args.age, 'sex': args.sex, 'year': args.year}) print("Saving output to file: `{0:s}`".format(args.output)) rdf.columns = fixup_columns(rdf.columns) rdf.to_csv(args.output, index=False) return 0 if __name__ == "__main__": sys.exit(main())
34.991228
78
0.55628
536eceeb7fee1f8f93ced3a8638a937413d4cecb
1,162
py
Python
qiskit/_classicalregister.py
Phonemetra/TurboQuantum
c168d6dda361258ca1ffce60e7e8ac5d10e69f06
[ "Apache-2.0" ]
1
2017-07-12T02:04:53.000Z
2017-07-12T02:04:53.000Z
qiskit/_classicalregister.py
Phonemetra/TurboQuantum
c168d6dda361258ca1ffce60e7e8ac5d10e69f06
[ "Apache-2.0" ]
null
null
null
qiskit/_classicalregister.py
Phonemetra/TurboQuantum
c168d6dda361258ca1ffce60e7e8ac5d10e69f06
[ "Apache-2.0" ]
6
2018-05-27T10:52:02.000Z
2021-04-02T19:20:11.000Z
# -*- coding: utf-8 -*- # Copyright 2017 IBM RESEARCH. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================= """ Classical register reference object. Author: Andrew Cross """ from ._register import Register class ClassicalRegister(Register): """Implement a classical register.""" def qasm(self): """Return OPENQASM string for this register.""" return "creg %s[%d];" % (self.name, self.size) def __str__(self): """Return a string representing the register.""" return "ClassicalRegister(%s,%d)" % (self.name, self.size)
32.277778
79
0.658348
d67710f14549a3396ca9af109968823e049a849d
675
py
Python
ROAR/planning_module/mission_planner/mission_planner.py
RyanC1681/RCAI1122
c9683110b58c255a7a78d880ff73df7ff2329405
[ "Apache-2.0" ]
18
2020-10-16T00:38:55.000Z
2022-03-03T06:01:49.000Z
ROAR/planning_module/mission_planner/mission_planner.py
RyanC1681/RCAI1122
c9683110b58c255a7a78d880ff73df7ff2329405
[ "Apache-2.0" ]
20
2020-07-23T03:50:50.000Z
2021-11-09T04:00:26.000Z
ROAR/planning_module/mission_planner/mission_planner.py
RyanC1681/RCAI1122
c9683110b58c255a7a78d880ff73df7ff2329405
[ "Apache-2.0" ]
140
2019-11-20T22:46:02.000Z
2022-03-29T13:26:17.000Z
from typing import List import logging from ROAR.utilities_module.data_structures_models import Transform from collections import deque from ROAR.planning_module.abstract_planner import AbstractPlanner class MissionPlanner(AbstractPlanner): def __init__(self, agent, **kwargs): super().__init__(agent=agent,**kwargs) self.logger = logging.getLogger(__name__) self.mission_plan: deque = deque() def run_in_series(self) -> List[Transform]: """ Abstract run step function for Mission Planner Args: vehicle: new vehicle state Returns: Plan for next steps """ return []
25.961538
66
0.677037
4b5562856173fe69e2883aed8b3d02680f362781
569
py
Python
mapBookmarkSite/mapbookmark/migrations/0005_auto_20210408_1559.py
UJHa/MapBookmarkSite
f80aa1576ccfab2fe53e993b36f1c798450af56b
[ "MIT" ]
null
null
null
mapBookmarkSite/mapbookmark/migrations/0005_auto_20210408_1559.py
UJHa/MapBookmarkSite
f80aa1576ccfab2fe53e993b36f1c798450af56b
[ "MIT" ]
null
null
null
mapBookmarkSite/mapbookmark/migrations/0005_auto_20210408_1559.py
UJHa/MapBookmarkSite
f80aa1576ccfab2fe53e993b36f1c798450af56b
[ "MIT" ]
null
null
null
# Generated by Django 3.1.7 on 2021-04-08 06:59 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('mapbookmark', '0004_auto_20210407_0820'), ] operations = [ migrations.AlterField( model_name='marker', name='content', field=models.CharField(default='', max_length=300), ), migrations.AlterField( model_name='marker', name='title', field=models.CharField(default='', max_length=100), ), ]
23.708333
63
0.578207
1ec0238c252fb78ade6d32b5ef08ead50069a5f4
263
py
Python
youtube_subdownloader/youtube.py
lavinske/Automation-scripts
3803a39c761971e630e0b1e659d1372c90be178a
[ "MIT" ]
null
null
null
youtube_subdownloader/youtube.py
lavinske/Automation-scripts
3803a39c761971e630e0b1e659d1372c90be178a
[ "MIT" ]
null
null
null
youtube_subdownloader/youtube.py
lavinske/Automation-scripts
3803a39c761971e630e0b1e659d1372c90be178a
[ "MIT" ]
null
null
null
from selenium import webdriver open = webdriver.Chrome() open.get('https://youtube.com') searchmenu = open.find_element_by_xpath('//*[@id="search"]') searchmenu.send_keys('Pewdiepie') go = open.find_element_by_xpath('//*[@id="search-icon-legacy"]') go.click()
23.909091
64
0.726236
84765592541142b2647a85631a7cc7abbcba88ba
254
py
Python
nodemcu_uploader/__init__.py
j-keck/nodemcu-uploader
557a25f37b1fb4e31a745719e237e42fff192834
[ "MIT" ]
null
null
null
nodemcu_uploader/__init__.py
j-keck/nodemcu-uploader
557a25f37b1fb4e31a745719e237e42fff192834
[ "MIT" ]
null
null
null
nodemcu_uploader/__init__.py
j-keck/nodemcu-uploader
557a25f37b1fb4e31a745719e237e42fff192834
[ "MIT" ]
1
2020-03-17T04:13:22.000Z
2020-03-17T04:13:22.000Z
#!/usr/bin/env python # -*- coding: utf-8 -*- # Copyright (C) 2015-2016 Peter Magnusson <peter@birchroad.net> """Library and util for uploading files to NodeMCU version 0.9.4 and later""" from .version import __version__ from .uploader import Uploader
28.222222
77
0.732283
b9d6b0ba55947aa4ad28b621451d92fe46e46846
401
py
Python
Awwardsclone/wsgi.py
MungaiKeren/Awwards-Clone
3aaff84dbe19e6163efec90436777d1bb687507c
[ "MIT" ]
null
null
null
Awwardsclone/wsgi.py
MungaiKeren/Awwards-Clone
3aaff84dbe19e6163efec90436777d1bb687507c
[ "MIT" ]
9
2020-06-05T23:59:38.000Z
2022-02-10T09:33:34.000Z
Awwardsclone/wsgi.py
MungaiKeren/Awwards-Clone
3aaff84dbe19e6163efec90436777d1bb687507c
[ "MIT" ]
1
2020-05-26T03:18:39.000Z
2020-05-26T03:18:39.000Z
""" WSGI config for Awwardsclone project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/2.2/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'Awwardsclone.settings') application = get_wsgi_application()
23.588235
78
0.790524
a142204391ce7d63a4a8b3a7e73976c5bf4f7770
2,034
py
Python
utils.py
dude123studios/Connect
cd4669d025720b394080d8f99eedce02c31f835b
[ "CC0-1.0" ]
null
null
null
utils.py
dude123studios/Connect
cd4669d025720b394080d8f99eedce02c31f835b
[ "CC0-1.0" ]
null
null
null
utils.py
dude123studios/Connect
cd4669d025720b394080d8f99eedce02c31f835b
[ "CC0-1.0" ]
1
2021-03-16T19:42:22.000Z
2021-03-16T19:42:22.000Z
from passlib.hash import pbkdf2_sha256 from itsdangerous import URLSafeTimedSerializer from flask import current_app import uuid from flask_uploads import extension from extensions import image_set, cache from PIL import Image import os def hash_password(password): return pbkdf2_sha256.hash(password) def check_password(password, hashed): return pbkdf2_sha256.verify(password, hashed) def generate_token(email, salt=None): serializer = URLSafeTimedSerializer(current_app.config.get('SECRET_KEY')) return serializer.dumps(email, salt=salt) def save_image(image, folder): filename = '{}.{}'.format(uuid.uuid4(), extension(image.filename)) image_set.save(image, folder=folder, name=filename) filename = compress_image(filename=filename, folder=folder) return filename def verify_token(token, max_age=(30*60), salt=None): serializer = URLSafeTimedSerializer(current_app.config.get('SECRET_KEY')) try: email = serializer.loads(token, max_age=max_age, salt=salt) except: return False return email def compress_image(filename, folder): filepath = image_set.path(filename=filename, folder=folder) image = Image.open(filepath) if image.mode != 'RGB': image = image.convert('RGB') if max(image.width, image.height) > 1600: maxsize = (1600, 1600) image.thumbnail(maxsize, Image.ANTIALIAS) compressed_filename = '{}.jpg'.format(uuid.uuid4()) compressed_filepath = image_set.path(compressed_filename, folder=folder) image.save(compressed_filepath, optimizer=True, quality=50) os.remove(filepath) return compressed_filename def clear_cache(key_prefix): keys = [key for key in cache.cache._cache.keys() if key.startswith(key_prefix)] cache.delete_many(*keys) class Mail(object): def __init__(self, domain, api_key): # do stuff def send_email(self, to, subject, text, html, link): #do stuff
33.344262
83
0.696657
5f9efb753be1a0571e6db375c0317779d5badb98
154
py
Python
client/admin.py
JohnChen97/authentication-lab
19f382c53ed04fbbe765d12094735aacd05c0ef7
[ "MIT" ]
null
null
null
client/admin.py
JohnChen97/authentication-lab
19f382c53ed04fbbe765d12094735aacd05c0ef7
[ "MIT" ]
null
null
null
client/admin.py
JohnChen97/authentication-lab
19f382c53ed04fbbe765d12094735aacd05c0ef7
[ "MIT" ]
null
null
null
from django.contrib import admin from rest_framework.authtoken.admin import TokenAdmin # Register your models here. TokenAdmin.raw_id_fields = ('user', )
30.8
53
0.811688
db76c7ff157947f10d2fde13d3492380f8216499
56,230
py
Python
build/management/commands/build_g_proteins.py
jesperswillem/protwis
a36cd60fe9724d61b2c78c4d16f9d3697543b8aa
[ "Apache-2.0" ]
null
null
null
build/management/commands/build_g_proteins.py
jesperswillem/protwis
a36cd60fe9724d61b2c78c4d16f9d3697543b8aa
[ "Apache-2.0" ]
null
null
null
build/management/commands/build_g_proteins.py
jesperswillem/protwis
a36cd60fe9724d61b2c78c4d16f9d3697543b8aa
[ "Apache-2.0" ]
null
null
null
from django.core.management.base import BaseCommand, CommandError from django.conf import settings from django.db import connection from django.db import IntegrityError from common.models import WebResource, WebLink from protein.models import (Protein, ProteinGProtein,ProteinGProteinPair, ProteinConformation, ProteinState, ProteinFamily, ProteinAlias, ProteinSequenceType, Species, Gene, ProteinSource, ProteinSegment) from residue.models import (ResidueNumberingScheme, ResidueGenericNumber, Residue, ResidueGenericNumberEquivalent) from signprot.models import SignprotStructure, SignprotBarcode, SignprotComplex import pandas as pd from optparse import make_option from itertools import islice import pandas as pd from Bio import SeqIO import Bio.PDB as PDB from Bio import pairwise2 from Bio.pairwise2 import format_alignment from collections import OrderedDict import math import numpy as np import logging import csv import sys, os import csv import shlex, subprocess import requests, xmltodict import yaml import xlrd from urllib.request import urlopen def read_excel(excelpath, sheet=None): workbook = xlrd.open_workbook(excelpath) worksheets = workbook.sheet_names() data = {} for worksheet_name in worksheets: if sheet and worksheet_name != sheet: continue worksheet = workbook.sheet_by_name(worksheet_name) num_rows = worksheet.nrows - 1 num_cells = worksheet.ncols - 1 curr_row = -1 #skip first, otherwise -1 while curr_row < num_rows: curr_row += 1 row = worksheet.row(curr_row) curr_cell = -1 if worksheet.cell_value(curr_row, 0) == '' and worksheet.cell_value(curr_row, 1) == 'SEM': #if empty reference # If sem row, then add previous first cell, which is the protein name. protein = worksheet.cell_value(curr_row-1, 0) data_type = 'SEM' curr_cell = 0 #skip first empty cell. elif curr_row!=0 and worksheet.cell_value(curr_row, 0) == '': #if empty row continue elif curr_row == 0: # First row -- fetch headers headers = [] while curr_cell < num_cells: curr_cell += 1 cell_value = worksheet.cell_value(curr_row, curr_cell) if cell_value: headers.append(cell_value) continue else: # MEAN row protein = worksheet.cell_value(curr_row, 0) data_type = 'mean' if protein not in data: data[protein] = {} curr_cell = 1 #Skip first two rows which contain protein and type while curr_cell < num_cells: curr_cell += 1 cell_value = worksheet.cell_value(curr_row, curr_cell) gprotein = headers[curr_cell-2] if gprotein not in data[protein]: data[protein][gprotein] = {} data[protein][gprotein][data_type] = cell_value return data class Command(BaseCommand): help = 'Build G proteins' # source file directory gprotein_data_path = os.sep.join([settings.DATA_DIR, 'g_protein_data']) if not os.path.exists(os.sep.join([settings.DATA_DIR, 'g_protein_data', 'PDB_UNIPROT_ENSEMBLE_ALL.txt'])): with open(os.sep.join([settings.DATA_DIR, 'g_protein_data', 'PDB_UNIPROT_ENSEMBLE_ALL.txt']),'w') as f: f.write('PDB_ID\tPDB_Chain\tPosition\tResidue\tCGN\tEnsembl_Protein_ID\tUniprot_ACC\tUniprot_ID\tsortColumn\n') gprotein_data_file = os.sep.join([settings.DATA_DIR, 'g_protein_data', 'PDB_UNIPROT_ENSEMBLE_ALL.txt']) barcode_data_file = os.sep.join([settings.DATA_DIR, 'g_protein_data', 'barcode_data.csv']) pdbs_path = os.sep.join([settings.DATA_DIR, 'g_protein_data', 'pdbs']) lookup = os.sep.join([settings.DATA_DIR, 'g_protein_data', 'CGN_lookup.csv']) alignment_file = os.sep.join([settings.DATA_DIR, 'g_protein_data', 'CGN_referenceAlignment.fasta']) ortholog_file = os.sep.join([settings.DATA_DIR, 'g_protein_data', 'gprotein_orthologs.csv']) aska_file = os.sep.join([settings.DATA_DIR, 'g_protein_data', 'LogRAi G-chimera submitted ver.xlsx']) local_uniprot_dir = os.sep.join([settings.DATA_DIR, 'g_protein_data', 'uniprot']) local_uniprot_beta_dir = os.sep.join([settings.DATA_DIR, 'g_protein_data', 'uniprot_beta']) local_uniprot_gamma_dir = os.sep.join([settings.DATA_DIR, 'g_protein_data', 'uniprot_gamma']) remote_uniprot_dir = 'http://www.uniprot.org/uniprot/' logger = logging.getLogger(__name__) def add_arguments(self, parser): parser.add_argument('--filename', action='append', dest='filename', help='Filename to import. Can be used multiple times') parser.add_argument('--wt', default=False, type=str, help='Add wild type protein sequence to data') parser.add_argument('--xtal', default=False, type=str, help='Add xtal to data') parser.add_argument('--build_datafile', default=False, action='store_true', help='Build PDB_UNIPROT_ENSEMBLE_ALL file') def handle(self, *args, **options): self.options = options # self.update_alignment() # self.add_new_orthologs() # return 0 # self.fetch_missing_uniprot_files() # return 0 # files = os.listdir(self.local_uniprot_dir) # for f in files: # print(f) # with open(os.sep.join([settings.DATA_DIR, 'g_protein_data', 'uniprot', f]), 'r') as fi: # for l in fi.readlines(): # if l.startswith('DE'): # print(l) # return 0 # with open(os.sep.join([settings.DATA_DIR, 'g_protein_data', 'g_protein_segment_ends.yaml']), 'r') as yfile: # dic = yaml.load(yfile) # with open(os.sep.join([settings.DATA_DIR, 'g_protein_data', 'test_alignment.fasta']), 'w') as testfile: # for record in SeqIO.parse(os.sep.join([settings.DATA_DIR, 'g_protein_data', 'g_proteins.fasta']), 'fasta'): # sp, accession, name, ens = record.id.split('|') # sequence = record.seq # for d in dic: # if name.lower() in dic[d]: # offset = 0 # try: # for seg in ['HN','S1','H1','HA','HB','HC','HD','HE','HF','S2','S3','H2','S4','H3','S5','HG','H4','S6','H5']: # s, e = dic[d][name.lower()][seg][0], dic[d][name.lower()][seg][1] # sequence = sequence[:s-1+offset]+'['+sequence[s-1+offset:e+offset]+']'+sequence[e+offset:] # offset+=2 # break # except: # pass # testfile.write(record.id+'\n'+str(sequence)+'\n') # return 0 # dic = {} # for record in SeqIO.parse(os.sep.join([settings.DATA_DIR, 'g_protein_data', 'g_proteins.fasta']), 'fasta'): # sp, accession, name, ens = record.id.split('|') # if 'HUMAN' in name: # subtype = name.split('_')[0].lower() # dic[subtype] = {name.lower(): {}} # else: # dic[subtype][name.lower()] = {} # # dic[subtype][name.lower()]['accession'] = accession # # dic[subtype][name.lower()]['ensemble'] = # try: # p = Protein.objects.get(entry_name=name.lower()) # helices = ProteinSegment.objects.filter(proteinfamily='Alpha', category__in=['helix','sheet']) # for h in helices: # helix_resis = Residue.objects.filter(protein_conformation__protein=p, protein_segment=h) # start, end = helix_resis[0], helix_resis.reverse()[0] # dic[subtype][name.lower()][h.slug] = [start.sequence_number, end.sequence_number] # except: # print(name) # with open(os.sep.join([settings.DATA_DIR, 'g_protein_data', 'g_protein_segment_ends.yaml']), 'w') as f: # yaml.dump(dic, f, indent=4) # return 0 # with open(self.barcode_data_file,'r') as bdf: # bdf_lines = bdf.readlines() # new_lines = [] # for line in bdf_lines: # line_split = line.split(',') # if line_split[4] in ['G.hgh4.09','G.hgh4.10','G.H4.01','G.H4.02','G.H4.03','G.H4.04','G.H4.05','G.H4.06','G.H4.07','G.H4.08','G.H4.09','G.H4.10','G.H4.11','G.H4.12','G.H4.13', # 'G.H4.14','G.H4.15','G.H4.16','G.H4.17','G.H4.18','G.H4.19','G.H4.20','G.H4.21','G.H4.22','G.H4.23','G.H4.24','G.H4.25','G.H4.26','G.H4.27']: # line_split[1] = str(0) # line_split[2] = str(0) # line_split[5] = str(0)+'\n' # if line_split[4] in ['G.hgh4.09','G.hgh4.10']: # if line_split[3] not in ['GNAS2', 'GNAL']: # if line_split[4]=='G.hgh4.09': # line_split[4] = 'G.H4.01' # if line_split[4]=='G.hgh4.10': # line_split[4] = 'G.H4.02' # elif line_split[4]=='G.H4.01': # if line_split[3] in ['GNAS2', 'GNAL']: # line_split[4] = 'G.hgh4.11' # else: # line_split[4] = 'G.H4.03' # elif line_split[4]=='G.H4.02': # if line_split[3] in ['GNAS2', 'GNAL']: # line_split[4] = 'G.hgh4.12' # else: # line_split[4] = 'G.H4.04' # elif line_split[4]=='G.H4.03': # if line_split[3] in ['GNAS2', 'GNAL']: # line_split[4] = 'G.hgh4.13' # else: # line_split[4] = 'G.H4.05' # elif line_split[4]=='G.H4.04': # if line_split[3] in ['GNAS2', 'GNAL']: # line_split[4] = 'G.hgh4.14' # else: # line_split[4] = 'G.H4.06' # elif line_split[4]=='G.H4.05': # if line_split[3] in ['GNAS2', 'GNAL']: # line_split[4] = 'G.hgh4.15' # else: # line_split[4] = 'G.H4.07' # elif line_split[4]=='G.H4.06': # if line_split[3] in ['GNAS2', 'GNAL']: # line_split[4] = 'G.hgh4.16' # else: # line_split[4] = 'G.H4.08' # elif line_split[4]=='G.H4.07': # if line_split[3] in ['GNAS2', 'GNAL']: # line_split[4] = 'G.hgh4.17' # else: # line_split[4] = 'G.H4.09' # if line_split[3] in ['GNAS2', 'GNAL']: # if line_split[4]=='G.H4.08': # line_split[4] = 'G.hgh4.18' # elif line_split[4]=='G.H4.09': # line_split[4] = 'G.hgh4.19' # elif line_split[4]=='G.H4.10': # line_split[4] = 'G.hgh4.20' # elif line_split[4]=='G.H4.11': # line_split[4] = 'G.hgh4.21' # elif line_split[4]=='G.H4.12': # line_split[4] = 'G.H4.01' # elif line_split[4]=='G.H4.13': # line_split[4] = 'G.H4.02' # elif line_split[4]=='G.H4.14': # line_split[4] = 'G.H4.03' # elif line_split[4]=='G.H4.15': # line_split[4] = 'G.H4.04' # elif line_split[4]=='G.H4.16': # line_split[4] = 'G.H4.05' # elif line_split[4]=='G.H4.17': # line_split[4] = 'G.H4.06' # elif line_split[4]=='G.H4.18': # line_split[4] = 'G.H4.07' # elif line_split[4]=='G.H4.19': # line_split[4] = 'G.H4.08' # elif line_split[4]=='G.H4.20': # line_split[4] = 'G.H4.10' # elif line_split[4]=='G.H4.21': # line_split[4] = 'G.H4.11' # elif line_split[4]=='G.H4.22': # line_split[4] = 'G.H4.12' # elif line_split[4]=='G.H4.23': # line_split[4] = 'G.H4.13' # elif line_split[4]=='G.H4.24': # line_split[4] = 'G.H4.14' # elif line_split[4]=='G.H4.25': # line_split[4] = 'G.H4.15' # elif line_split[4]=='G.H4.26': # line_split[4] = 'G.H4.16' # elif line_split[4]=='G.H4.27': # line_split[4] = 'G.H4.17' # else: # if line_split[4]=='G.H4.20': # line_split[4] = 'G.H4.10' # elif line_split[4]=='G.H4.21': # line_split[4] = 'G.H4.11' # elif line_split[4]=='G.H4.22': # line_split[4] = 'G.H4.12' # elif line_split[4]=='G.H4.23': # line_split[4] = 'G.H4.13' # elif line_split[4]=='G.H4.24': # line_split[4] = 'G.H4.14' # elif line_split[4]=='G.H4.25': # line_split[4] = 'G.H4.15' # elif line_split[4]=='G.H4.26': # line_split[4] = 'G.H4.16' # elif line_split[4]=='G.H4.27': # line_split[4] = 'G.H4.17' # new_lines.append(line_split) # with open(os.sep.join([settings.DATA_DIR, 'g_protein_data', 'barcode_test.csv']), 'w') as f: # out_lines = [] # for l in new_lines: # out_line = ','.join(l) # out_lines.append(out_line) # out = ''.join(out_lines) # f.write(out) # return 0 if options['filename']: filenames = options['filename'] else: filenames = False if self.options['wt']: self.add_entry() elif self.options['build_datafile']: self.build_table_from_fasta() else: #add gproteins from cgn db try: self.purge_signprot_complex_data() self.purge_coupling_data() # self.purge_cgn_residues() # self.purge_other_subunit_residues() self.purge_cgn_proteins() self.purge_other_subunit_proteins() self.ortholog_mapping = OrderedDict() with open(self.ortholog_file, 'r') as ortholog_file: ortholog_data = csv.reader(ortholog_file, delimiter=',') for i,row in enumerate(ortholog_data): if i==0: header = list(row) continue for j, column in enumerate(row): if j in [0,1]: continue if '_' in column: self.ortholog_mapping[column] = row[0] else: if column=='': continue self.ortholog_mapping[column+'_'+header[j]] = row[0] self.create_g_proteins(filenames) self.cgn_create_proteins_and_families() human_and_orths = self.cgn_add_proteins() self.update_protein_conformation(human_and_orths) self.create_barcode() self.add_other_subunits() if os.path.exists(self.aska_file): self.add_aska_coupling_data() except Exception as msg: exc_type, exc_obj, exc_tb = sys.exc_info() fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)[1] print(exc_type, fname, exc_tb.tb_lineno) self.logger.error(msg) def add_other_subunits(self): beta_fam, created = ProteinFamily.objects.get_or_create(slug='100_002', name='Beta', parent=ProteinFamily.objects.get(name='G-Protein')) gigsgt, created = ProteinFamily.objects.get_or_create(slug='100_002_001', name='G(I)/G(S)/G(T)', parent=beta_fam) gamma_fam, created = ProteinFamily.objects.get_or_create(slug='100_003', name='Gamma', parent=ProteinFamily.objects.get(name='G-Protein')) gigsgo, created = ProteinFamily.objects.get_or_create(slug='100_003_001', name='G(I)/G(S)/G(O)', parent=gamma_fam) # create proteins self.create_beta_gamma_proteins(self.local_uniprot_beta_dir, gigsgt) self.create_beta_gamma_proteins(self.local_uniprot_gamma_dir, gigsgo) # create residues self.create_beta_gamma_residues(gigsgt) self.create_beta_gamma_residues(gigsgo) def create_beta_gamma_residues(self, proteinfamily): bulk = [] fam = Protein.objects.filter(family=proteinfamily) for prot in fam: for i,j in enumerate(prot.sequence): prot_conf = ProteinConformation.objects.get(protein=prot) r = Residue(sequence_number=i+1, amino_acid=j, display_generic_number=None, generic_number=None, protein_conformation=prot_conf, protein_segment=None) bulk.append(r) if len(bulk) % 10000 == 0: self.logger.info('Inserted bulk {} (Index:{})'.format(len(bulk),i)) # print(len(bulk),"inserts!",index) Residue.objects.bulk_create(bulk) # print('inserted!') bulk = [] Residue.objects.bulk_create(bulk) def create_beta_gamma_proteins(self, uniprot_dir, proteinfamily): files = os.listdir(uniprot_dir) for f in files: acc = f.split('.')[0] up = self.parse_uniprot_file(acc) pst = ProteinSequenceType.objects.get(slug='wt') species = Species.objects.get(common_name=up['species_common_name']) source = ProteinSource.objects.get(name=up['source']) try: name = up['names'][0].split('Guanine nucleotide-binding protein ')[1] except: name = up['names'][0] prot, created = Protein.objects.get_or_create(entry_name=up['entry_name'], accession=acc, name=name, sequence=up['sequence'], family=proteinfamily, parent=None, residue_numbering_scheme=None, sequence_type=pst, source=source, species=species) state = ProteinState.objects.get(slug='active') prot_conf, created = ProteinConformation.objects.get_or_create(protein=prot, state=state, template_structure=None) def fetch_missing_uniprot_files(self): BASE = 'http://www.uniprot.org' KB_ENDPOINT = '/uniprot/' uniprot_files = os.listdir(self.local_uniprot_dir) new_uniprot_files = os.listdir(os.sep.join([settings.DATA_DIR, 'g_protein_data', 'uniprot'])) for record in SeqIO.parse(self.alignment_file, 'fasta'): sp, accession, name, ens = record.id.split('|') if accession+'.txt' not in uniprot_files and accession+'.txt' not in new_uniprot_files: g_prot, species = name.split('_') result = requests.get(BASE + KB_ENDPOINT + accession + '.txt') with open(os.sep.join([settings.DATA_DIR, 'g_protein_data', 'uniprot', accession+'.txt']), 'w') as f: f.write(result.text) else: try: os.rename(os.sep.join([self.local_uniprot_dir, accession+'.txt']), os.sep.join([settings.DATA_DIR, 'g_protein_data', 'uniprot', accession+'.txt'])) except: print('Missing: {}'.format(accession)) def update_alignment(self): with open(self.lookup, 'r') as csvfile: lookup_data = csv.reader(csvfile, delimiter=',', quotechar='"') lookup_dict = OrderedDict([('-1','NA.N-terminal insertion.-1'),('-2','NA.N-terminal insertion.-2'),('-3','NA.N-terminal insertion.-3')]) for row in lookup_data: lookup_dict[row[0]] = row[1:] residue_data = pd.read_table(self.gprotein_data_file, sep="\t", low_memory=False) for i, row in residue_data.iterrows(): try: residue_data['CGN'][i] = lookup_dict[str(int(residue_data['sortColumn'][i]))][6].replace('(','').replace(')','') except: pass residue_data['sortColumn'] = residue_data['sortColumn'].astype(int) residue_data.to_csv(path_or_buf=self.gprotein_data_path+'/test.txt', sep='\t', na_rep='NA', index=False) def add_new_orthologs(self): residue_data = pd.read_table(self.gprotein_data_file, sep="\t", low_memory=False) with open(self.lookup, 'r') as csvfile: lookup_data = csv.reader(csvfile, delimiter=',', quotechar='"') lookup_dict = OrderedDict([('-1','NA.N-terminal insertion.-1'),('-2','NA.N-terminal insertion.-2'),('-3','NA.N-terminal insertion.-3')]) for row in lookup_data: lookup_dict[row[0]] = row[1:] fasta_dict = OrderedDict() for record in SeqIO.parse(self.alignment_file, 'fasta'): sp, accession, name, ens = record.id.split('|') g_prot, species = name.split('_') if g_prot not in fasta_dict: fasta_dict[g_prot] = OrderedDict([(name, [accession, ens, str(record.seq)])]) else: fasta_dict[g_prot][name] = [accession, ens, str(record.seq)] with open(self.ortholog_file, 'r') as ortholog_file: ortholog_data = csv.reader(ortholog_file, delimiter=',') for i,row in enumerate(ortholog_data): if i==0: header = list(row) continue for j, column in enumerate(row): if j in [0,1]: continue if column!='': if '_' in column: entry_name = column BASE = 'http://www.uniprot.org' KB_ENDPOINT = '/uniprot/' result = requests.get(BASE + KB_ENDPOINT, params={'query': 'mnemonic:{}'.format(entry_name), 'format':'list'}) accession = result.text.replace('\n','') else: entry_name = '{}_{}'.format(column,header[j]) accession = column if entry_name not in fasta_dict[row[0]]: result = requests.get('https://www.uniprot.org/uniprot/{}.xml'.format(accession)) uniprot_entry = result.text try: entry_dict = xmltodict.parse(uniprot_entry) except: self.logger.warning('Skipped: {}'.format(accession)) continue try: ensembl = [i for i in entry_dict['uniprot']['entry']['dbReference'] if i['@type']=='Ensembl'][0]['@id'] except: self.logger.warning('Missing Ensembl: {}'.format(accession)) sequence = entry_dict['uniprot']['entry']['sequence']['#text'].replace('\n','') seqc = SeqCompare() aligned_seq = seqc.align(fasta_dict[row[0]][row[0]+'_HUMAN'][2],sequence) fasta_dict[row[0]][entry_name] = [accession, ensembl, aligned_seq] with open(os.sep.join([settings.DATA_DIR, 'g_protein_data','fasta_test.fa']),'w') as f: for g,val in fasta_dict.items(): for i,j in val.items(): f.write('>sp|{}|{}|{}\n{}\n'.format(j[0],i,j[1],j[2])) def add_entry(self): if not self.options['wt']: raise AssertionError('Error: Missing wt name') residue_data = pd.read_table(self.gprotein_data_file, sep="\t", low_memory=False) try: if residue_data['Uniprot_ID'][self.options['wt']] and not self.options['xtal']: return 0 except: pass with open(self.lookup, 'r') as csvfile: lookup_data = csv.reader(csvfile, delimiter=',', quotechar='"') lookup_dict = OrderedDict([('-1','NA.N-terminal insertion.-1'),('-2','NA.N-terminal insertion.-2'),('-3','NA.N-terminal insertion.-3')]) for row in lookup_data: lookup_dict[row[0]] = row[1:] sequence = '' for record in SeqIO.parse(self.alignment_file, 'fasta'): sp, accession, name, ens = record.id.split('|') if name==self.options['wt'].upper(): sequence = record.seq break with open(self.gprotein_data_file, 'a') as f: count_sort, count_res = 0,0 if self.options['xtal']: m = PDB.PDBParser(os.sep.join('st', [pdbs_path, self.options['xtal']+'.pdb']))[0] else: for i in sequence: count_sort+=1 if i=='-': continue count_res+=1 try: cgn = lookup_dict[str(count_sort)][6].replace('(','').replace(')','') except: print('Dict error: {}'.format(self.options['wt'])) line = 'NA\tNA\t{}\t{}\t{}\t{}\t{}\t{}\t{}\n'.format(count_res, i, cgn, ens, accession, name, count_sort) f.write(line) def build_table_from_fasta(self): os.chdir('/vagrant/shared/sites/protwis') for record in SeqIO.parse(self.alignment_file, 'fasta'): sp, accession, name, ens = record.id.split('|') if len(record.seq)!=455: continue command = "/env/bin/python3 manage.py build_g_proteins --wt "+str(name.lower()) subprocess.call(shlex.split(command)) def purge_coupling_data(self): try: ProteinGProteinPair.objects.filter().delete() ProteinGProtein.all().delete() ProteinAlias.objects.filter(protein__family__slug__startswith='100').delete() except: self.logger.warning('Existing data cannot be deleted') def purge_cgn_residues(self): try: Residue.objects.filter(generic_number_id__scheme__slug="cgn").delete() except: self.logger.warning('Existing Residue data cannot be deleted') def purge_other_subunit_residues(self): try: Residue.objects.filter(protein_conformation__protein__family__parent__name="Beta").delete() except: self.logger.warning('Existing Residue data cannot be deleted') try: Residue.objects.filter(protein_conformation__protein__family__parent__name="Gamma").delete() except: self.logger.warning('Existing Residue data cannot be deleted') def purge_signprot_complex_data(self): try: SignprotComplex.objects.all().delete() except: self.logger.warning('SignprotComplex data cannot be deleted') def create_barcode(self): barcode_data = pd.read_csv(self.barcode_data_file, low_memory=False) for index, entry in enumerate(barcode_data.iterrows()): similarity = barcode_data[index:index+1]['aln_seqSim'].values[0] identity = barcode_data[index:index+1]['aln_seqIdn'].values[0] entry_name = barcode_data[index:index+1]['subfamily'].values[0].lower()+'_human' CGN = barcode_data[index:index+1]['CGN'].values[0] paralog = barcode_data[index:index+1]['paralog'].values[0] try: p = Protein.objects.get(entry_name=entry_name) except Protein.DoesNotExist: self.logger.warning('Protein not found for entry_name {}'.format(entry_name)) continue try: cgn=Residue.objects.get(protein_conformation__protein=p, display_generic_number__label=CGN) except: # self.logger.warning('No residue number (GAP - position) for', CGN, "in ", p.name, "") continue if cgn: try: barcode, created = SignprotBarcode.objects.get_or_create(protein=p, residue=cgn, seq_similarity=similarity, seq_identity=identity, paralog_score=paralog) if created: self.logger.info('Created barcode for ' + CGN + ' for protein ' + p.name) except IntegrityError: self.logger.error('Failed creating barcode for ' + CGN + ' for protein ' + p.name) def create_g_proteins(self, filenames=False): self.logger.info('CREATING GPROTEINS') translation = {'Gs family':'100_001_001', 'Gi/Go family':'100_001_002', 'Gq/G11 family':'100_001_003','G12/G13 family':'100_001_004',} # read source files if not filenames: filenames = [fn for fn in os.listdir(self.gprotein_data_path) if fn.endswith('Gprotein_crossclass.csv')] source = "GuideToPharma" for filename in filenames: filepath = os.sep.join([self.gprotein_data_path, filename]) self.logger.info('Reading filename' + filename) with open(filepath, 'r') as f: reader = csv.reader(f) for row in islice(reader, 1, None): # skip first line entry_name = row[0] primary = row[8] secondary = row[9] # fetch protein try: p = Protein.objects.get(entry_name=entry_name) except Protein.DoesNotExist: self.logger.warning('Protein not found for entry_name {}'.format(entry_name)) print("protein not found for ", entry_name) continue primary = primary.replace("G protein (identity unknown)","None") #replace none primary = primary.split(", ") secondary = secondary.replace("G protein (identity unknown)","None") #replace none secondary = secondary.split(", ") if primary=='None' and secondary=='None': print('no data for ', entry_name) continue # print(primary,secondary) try: for gp in primary: if gp in ['','None','_-arrestin','Arrestin','G protein independent mechanism']: #skip bad ones continue g = ProteinGProtein.objects.get_or_create(name=gp, slug=translation[gp])[0] # print(p, g) gpair = ProteinGProteinPair(protein=p, g_protein=g, transduction='primary', source = source) gpair.save() except: print("error in primary assignment", p, gp) try: for gp in secondary: if gp in ['None','_-arrestin','Arrestin','G protein independent mechanism', '']: #skip bad ones continue if gp in primary: #sip those that were already primary continue g = ProteinGProtein.objects.get_or_create(name=gp, slug=translation[gp])[0] gpair = ProteinGProteinPair(protein=p, g_protein=g, transduction='secondary', source = source) gpair.save() except: print("error in secondary assignment", p, gp) self.logger.info('COMPLETED CREATING G PROTEINS') def add_aska_coupling_data(self): self.logger.info('CREATING ASKA COUPLING') translation = {'Gs family':'100_001_001', 'Gi/Go family':'100_001_002', 'Gq/G11 family':'100_001_003','G12/G13 family':'100_001_004',} # read source files filepath = self.aska_file sheet = "LogRAi mean and SEM" self.logger.info('Reading filename' + filepath) data = read_excel(filepath,sheet) source = 'Aska' lookup = {} for entry_name, couplings in data.items(): # if it has / then pick first, since it gets same protein entry_name = entry_name.split("/")[0] # append _human to entry name # entry_name = "{}_HUMAN".format(entry_name).lower() # Fetch protein try: p = Protein.objects.filter(genes__name=entry_name, species__common_name="Human")[0] except Protein.DoesNotExist: self.logger.warning('Protein not found for entry_name {}'.format(entry_name)) print("protein not found for ", entry_name) continue for gprotein, values in couplings.items(): if gprotein not in lookup: gp = Protein.objects.filter(genes__name=gprotein, species__common_name="Human")[0] lookup[gprotein] = gp else: gp = lookup[gprotein] # Assume there are there. if gp.family.slug not in lookup: g = ProteinGProtein.objects.get(slug=gp.family.slug) lookup[gp.family.slug] = g else: g = lookup[gp.family.slug] gpair = ProteinGProteinPair(protein=p, g_protein=g, source = source, log_rai_mean=values['mean'], log_rai_sem=values['SEM'], g_protein_subunit = gp) gpair.save() self.logger.info('COMPLETED ADDING ASKA COULPLING DATA') def purge_cgn_proteins(self): try: Protein.objects.filter(residue_numbering_scheme__slug='cgn').delete() except: self.logger.info('Protein to delete not found') def purge_other_subunit_proteins(self): try: Protein.objects.filter(residue_numbering_scheme=None).delete() except: self.logger.info('Protein to delete not found') def add_cgn_residues(self, gprotein_list): #Parsing pdb uniprot file for residues self.logger.info('Start parsing PDB_UNIPROT_ENSEMBLE_ALL') self.logger.info('Parsing file ' + self.gprotein_data_file) residue_data = pd.read_table(self.gprotein_data_file, sep="\t", low_memory=False) residue_data = residue_data.loc[residue_data['Uniprot_ACC'].isin(gprotein_list)] cgn_scheme = ResidueNumberingScheme.objects.get(slug='cgn') # Temp files to speed things up temp = {} temp['proteins'] = {} temp['rgn'] = {} temp['segment'] = {} temp['equivalent'] = {} bulk = [] self.logger.info('Insert residues: {} rows'.format(len(residue_data))) for index, row in residue_data.iterrows(): if row['Uniprot_ACC'] in temp['proteins']: pr = temp['proteins'][row['Uniprot_ACC']][0] pc = temp['proteins'][row['Uniprot_ACC']][1] else: #fetch protein for protein conformation pr, c= Protein.objects.get_or_create(accession=row['Uniprot_ACC']) #fetch protein conformation pc, c= ProteinConformation.objects.get_or_create(protein_id=pr) temp['proteins'][row['Uniprot_ACC']] = [pr,pc] #fetch residue generic number rgnsp=[] if(int(row['CGN'].split('.')[2])<10): rgnsp = row['CGN'].split('.') rgn_new = rgnsp[0]+'.'+rgnsp[1]+'.0'+rgnsp[2] if rgn_new in temp['rgn']: rgn = temp['rgn'][rgn_new] else: rgn, c= ResidueGenericNumber.objects.get_or_create(label=rgn_new) temp['rgn'][rgn_new] = rgn else: if row['CGN'] in temp['rgn']: rgn = temp['rgn'][row['CGN']] else: rgn, c= ResidueGenericNumber.objects.get_or_create(label=row['CGN']) temp['rgn'][row['CGN']] = rgn #fetch protein segment id if row['CGN'].split(".")[1] in temp['segment']: ps = temp['segment'][row['CGN'].split(".")[1]] else: ps, c= ProteinSegment.objects.get_or_create(slug=row['CGN'].split(".")[1], proteinfamily='Alpha') temp['segment'][row['CGN'].split(".")[1]] = ps try: bulk_r = Residue(sequence_number=row['Position'], protein_conformation=pc, amino_acid=row['Residue'], generic_number=rgn, display_generic_number=rgn, protein_segment=ps) # self.logger.info("Residues added to db") bulk.append(bulk_r) except: self.logger.error("Failed to add residues") if len(bulk) % 10000 == 0: self.logger.info('Inserted bulk {} (Index:{})'.format(len(bulk),index)) # print(len(bulk),"inserts!",index) Residue.objects.bulk_create(bulk) # print('inserted!') bulk = [] # Add also to the ResidueGenericNumberEquivalent table needed for single residue selection try: if rgn.label not in temp['equivalent']: ResidueGenericNumberEquivalent.objects.get_or_create(label=rgn.label,default_generic_number=rgn, scheme=cgn_scheme) temp['equivalent'][rgn.label] = 1 # self.logger.info("Residues added to ResidueGenericNumberEquivalent") except: self.logger.error("Failed to add residues to ResidueGenericNumberEquivalent") self.logger.info('Inserted bulk {} (Index:{})'.format(len(bulk),index)) Residue.objects.bulk_create(bulk) def update_protein_conformation(self, gprotein_list): #gprotein_list=['gnaz_human','gnat3_human', 'gnat2_human', 'gnat1_human', 'gnas2_human', 'gnaq_human', 'gnao_human', 'gnal_human', 'gnai3_human', 'gnai2_human','gnai1_human', 'gna15_human', 'gna14_human', 'gna12_human', 'gna11_human', 'gna13_human'] state = ProteinState.objects.get(slug='active') #add new cgn protein conformations for g in gprotein_list: gp = Protein.objects.get(accession=g) try: pc, created= ProteinConformation.objects.get_or_create(protein=gp, state=state, template_structure=None) self.logger.info('Created protein conformation') except: self.logger.error('Failed to create protein conformation') self.update_genericresiduenumber_and_proteinsegments(gprotein_list) def update_genericresiduenumber_and_proteinsegments(self, gprotein_list): #Parsing pdb uniprot file for generic residue numbers self.logger.info('Start parsing PDB_UNIPROT_ENSEMBLE_ALL') self.logger.info('Parsing file ' + self.gprotein_data_file) residue_data = pd.read_table(self.gprotein_data_file, sep="\t", low_memory=False) residue_data = residue_data[residue_data.Uniprot_ID.notnull()] #residue_data = residue_data[residue_data['Uniprot_ID'].str.contains('_HUMAN')] residue_data = residue_data[residue_data['Uniprot_ACC'].isin(gprotein_list)] #filtering for human gproteins using list above residue_generic_numbers= residue_data['CGN'] #Residue numbering scheme is the same for all added residue generic numbers (CGN) cgn_scheme = ResidueNumberingScheme.objects.get(slug='cgn') #purge line #ResidueGenericNumber.objects.filter(scheme_id=12).delete() for rgn in residue_generic_numbers.unique(): ps, c= ProteinSegment.objects.get_or_create(slug=rgn.split('.')[1], proteinfamily='Alpha') rgnsp=[] if(int(rgn.split('.')[2])<10): rgnsp = rgn.split('.') rgn_new = rgnsp[0]+'.'+rgnsp[1]+'.0'+rgnsp[2] else: rgn_new = rgn try: res_gen_num, created= ResidueGenericNumber.objects.get_or_create(label=rgn_new, scheme=cgn_scheme, protein_segment=ps) self.logger.info('Created generic residue number') except: self.logger.error('Failed creating generic residue number') self.add_cgn_residues(gprotein_list) def cgn_add_proteins(self): self.logger.info('Start parsing PDB_UNIPROT_ENSEMBLE_ALL') self.logger.info('Parsing file ' + self.gprotein_data_file) #parsing file for accessions df = pd.read_table(self.gprotein_data_file, sep="\t", low_memory=False) prot_type = 'purge' pfm = ProteinFamily() #Human proteins from CGN with families as keys: http://www.mrc-lmb.cam.ac.uk/CGN/about.html cgn_dict = {} cgn_dict['G-Protein']=['Gs', 'Gi/o', 'Gq/11', 'G12/13'] cgn_dict['100_001_001']=['GNAS2_HUMAN', 'GNAL_HUMAN'] cgn_dict['100_001_002']=['GNAI2_HUMAN', 'GNAI1_HUMAN', 'GNAI3_HUMAN', 'GNAT2_HUMAN', 'GNAT1_HUMAN', 'GNAT3_HUMAN', 'GNAZ_HUMAN', 'GNAO_HUMAN' ] cgn_dict['100_001_003']=['GNAQ_HUMAN', 'GNA11_HUMAN', 'GNA14_HUMAN', 'GNA15_HUMAN'] cgn_dict['100_001_004']=['GNA12_HUMAN', 'GNA13_HUMAN'] #list of all 16 proteins cgn_proteins_list=[] for k in cgn_dict.keys(): for p in cgn_dict[k]: if p.endswith('_HUMAN'): cgn_proteins_list.append(p) #print(cgn_proteins_list) #GNA13_HUMAN missing from cambridge file accessions= df.loc[df['Uniprot_ID'].isin(cgn_proteins_list)] accessions= accessions['Uniprot_ACC'].unique() #Create new residue numbering scheme self.create_cgn_rns() #purging one cgn entry #ResidueNumberingScheme.objects.filter(name='cgn').delete() rns = ResidueNumberingScheme.objects.get(slug='cgn') for a in accessions: up = self.parse_uniprot_file(a) #Fetch Protein Family for gproteins for k in cgn_dict.keys(): name=str(up['entry_name']).upper() if name in cgn_dict[k]: pfm = ProteinFamily.objects.get(slug=k) #Create new Protein self.cgn_creat_gproteins(pfm, rns, a, up) ###################ORTHOLOGS############### orthologs_pairs =[] orthologs =[] #Orthologs for human gproteins allprots = list(df.Uniprot_ID.unique()) allprots = list(set(allprots) - set(cgn_proteins_list)) # for gp in cgn_proteins_list: for p in allprots: # if str(p).startswith(gp.split('_')[0]): if str(p) in self.ortholog_mapping: # orthologs_pairs.append((str(p), self.ortholog_mapping[str(p)]+'_HUMAN')) orthologs.append(str(p)) accessions_orth= df.loc[df['Uniprot_ID'].isin(orthologs)] accessions_orth= accessions_orth['Uniprot_ACC'].unique() for a in accessions_orth: up = self.parse_uniprot_file(a) #Fetch Protein Family for gproteins for k in cgn_dict.keys(): name=str(up['entry_name']).upper() name = name.split('_')[0]+'_'+'HUMAN' if name in cgn_dict[k]: pfm = ProteinFamily.objects.get(slug=k) else: try: if self.ortholog_mapping[str(up['entry_name']).upper()]+'_HUMAN' in cgn_dict[k]: pfm = ProteinFamily.objects.get(slug=k) except: pass #Create new Protein self.cgn_creat_gproteins(pfm, rns, a, up) #human gproteins orthologs_lower = [x.lower() for x in orthologs] #print(orthologs_lower) #orthologs to human gproteins cgn_proteins_list_lower = [x.lower() for x in cgn_proteins_list] #all gproteins gprotein_list = cgn_proteins_list_lower + orthologs_lower accessions_all = list(accessions_orth) + list(accessions) return list(accessions_all) def cgn_creat_gproteins(self, family, residue_numbering_scheme, accession, uniprot): # get/create protein source try: source, created = ProteinSource.objects.get_or_create(name=uniprot['source'], defaults={'name': uniprot['source']}) if created: self.logger.info('Created protein source ' + source.name) except IntegrityError: source = ProteinSource.objects.get(name=uniprot['source']) # get/create species try: species, created = Species.objects.get_or_create(latin_name=uniprot['species_latin_name'], defaults={ 'common_name': uniprot['species_common_name'], }) if created: self.logger.info('Created species ' + species.latin_name) except IntegrityError: species = Species.objects.get(latin_name=uniprot['species_latin_name']) # get/create protein sequence type # Wild-type for all sequences from source file try: sequence_type, created = ProteinSequenceType.objects.get_or_create(slug='wt', defaults={ 'slug': 'wt', 'name': 'Wild-type', }) if created: self.logger.info('Created protein sequence type Wild-type') except: self.logger.error('Failed creating protein sequence type Wild-type') # create protein p = Protein() p.family = family p.species = species p.source = source p.residue_numbering_scheme = residue_numbering_scheme p.sequence_type = sequence_type if accession: p.accession = accession p.entry_name = uniprot['entry_name'].lower() try: p.name = uniprot['names'][0].split('Guanine nucleotide-binding protein ')[1] except: p.name = uniprot['names'][0] p.sequence = uniprot['sequence'] try: p.save() self.logger.info('Created protein {}'.format(p.entry_name)) except Exception as msg: self.logger.error('Failed creating protein {} ({})'.format(p.entry_name,msg)) # protein aliases for i, alias in enumerate(uniprot['names']): pcgn = Protein.objects.get(entry_name=uniprot['entry_name'].lower()) a = ProteinAlias() a.protein = pcgn a.name = alias a.position = i try: a.save() self.logger.info('Created protein alias ' + a.name + ' for protein ' + p.name) except: self.logger.error('Failed creating protein alias ' + a.name + ' for protein ' + p.name) # genes for i, gene in enumerate(uniprot['genes']): g = False try: g, created = Gene.objects.get_or_create(name=gene, species=species, position=i) if created: self.logger.info('Created gene ' + g.name + ' for protein ' + p.name) except IntegrityError: g = Gene.objects.get(name=gene, species=species, position=i) if g: pcgn = Protein.objects.get(entry_name=uniprot['entry_name'].lower()) g.proteins.add(pcgn) # structures for i, structure in enumerate(uniprot['structures']): try: res = structure[1] if res == '-': res = 0 structure, created = SignprotStructure.objects.get_or_create(PDB_code=structure[0], resolution=res) if created: self.logger.info('Created structure ' + structure.PDB_code + ' for protein ' + p.name) except IntegrityError: self.logger.error('Failed creating structure ' + structure.PDB_code + ' for protein ' + p.name) if g: pcgn = Protein.objects.get(entry_name=uniprot['entry_name'].lower()) structure.origin.add(pcgn) structure.save() def cgn_parent_protein_family(self): pf_cgn, created_pf = ProteinFamily.objects.get_or_create(slug='100', defaults={ 'name': 'G-Protein'}, parent=ProteinFamily.objects.get(slug='000')) pff_cgn = ProteinFamily.objects.get(slug='100', name='G-Protein') #Changed name "No Ligands" to "Gprotein" pf1_cgn = ProteinFamily.objects.get_or_create(slug='100_001', name='Alpha', parent=pff_cgn) def create_cgn_rns(self): rns_cgn, created= ResidueNumberingScheme.objects.get_or_create(slug='cgn', short_name='CGN', defaults={ 'name': 'Common G-alpha numbering scheme'}) def cgn_create_proteins_and_families(self): #Creating single entries in "protein_family' table ProteinFamily.objects.filter(slug__startswith="100").delete() self.cgn_parent_protein_family() #Human proteins from CGN: http://www.mrc-lmb.cam.ac.uk/CGN/about.html cgn_dict = {} levels = ['2', '3'] keys = ['Alpha', 'Gs', 'Gi/o', 'Gq/11', 'G12/13', '001'] slug1='100' slug3= '' i=1 cgn_dict['Alpha']=['001'] cgn_dict['001']=['Gs', 'Gi/o', 'Gq/11', 'G12/13'] #Protein families to be added #Key of dictionary is level in hierarchy cgn_dict['1']=['Alpha'] cgn_dict['2']=['001'] cgn_dict['3']=['Gs', 'Gi/o', 'Gq/11', 'G12/13'] #Protein lines not to be added to Protein families cgn_dict['4']=['GNAS2', 'GNAL', 'GNAI1', 'GNAI2', 'GNAI3', 'GNAT2', 'GNAT1', 'GNAT3', 'GNAO', 'GNAZ', 'GNAQ', 'GNA11', 'GNA14', 'GNA15', 'GNA12', 'GNA13'] for entry in cgn_dict['001']: name = entry slug2= '_001' slug3= '_00' + str(i) slug = slug1 + slug2 + slug3 slug3 = '' i = i+1 pff_cgn = ProteinFamily.objects.get(slug='100_001') new_pf, created = ProteinFamily.objects.get_or_create(slug=slug, name=entry, parent=pff_cgn) #function to create necessary arguments to add protein entry self.cgn_add_proteins() def parse_uniprot_file(self, accession): filename = accession + '.txt' local_file_path = os.sep.join([self.local_uniprot_dir, filename]) remote_file_path = self.remote_uniprot_dir + filename up = {} up['genes'] = [] up['names'] = [] up['structures'] = [] read_sequence = False remote = False # record whether organism has been read os_read = False # should local file be written? local_file = False try: if os.path.isfile(local_file_path): uf = open(local_file_path, 'r') self.logger.info('Reading local file ' + local_file_path) else: uf = urlopen(remote_file_path) remote = True self.logger.info('Reading remote file ' + remote_file_path) local_file = open(local_file_path, 'w') for raw_line in uf: # line format if remote: line = raw_line.decode('UTF-8') else: line = raw_line # write to local file if appropriate if local_file: local_file.write(line) # end of file if line.startswith('//'): break # entry name and review status if line.startswith('ID'): split_id_line = line.split() up['entry_name'] = split_id_line[1].lower() review_status = split_id_line[2].strip(';') if review_status == 'Unreviewed': up['source'] = 'TREMBL' elif review_status == 'Reviewed': up['source'] = 'SWISSPROT' # species elif line.startswith('OS') and not os_read: species_full = line[2:].strip().strip('.') species_split = species_full.split('(') up['species_latin_name'] = species_split[0].strip() if len(species_split) > 1: up['species_common_name'] = species_split[1].strip().strip(')') else: up['species_common_name'] = up['species_latin_name'] os_read = True # names elif line.startswith('DE'): split_de_line = line.split('=') if len(split_de_line) > 1: split_segment = split_de_line[1].split('{') up['names'].append(split_segment[0].strip().strip(';')) # genes elif line.startswith('GN'): split_gn_line = line.split(';') for segment in split_gn_line: if '=' in segment: split_segment = segment.split('=') split_segment = split_segment[1].split(',') for gene_name in split_segment: split_gene_name = gene_name.split('{') up['genes'].append(split_gene_name[0].strip()) # structures elif line.startswith('DR') and 'PDB' in line and not 'sum' in line: split_gn_line = line.split(';') up['structures'].append([split_gn_line[1].lstrip(),split_gn_line[3].lstrip().split(" A")[0]]) # sequence elif line.startswith('SQ'): split_sq_line = line.split() seq_len = int(split_sq_line[2]) read_sequence = True up['sequence'] = '' elif read_sequence == True: up['sequence'] += line.strip().replace(' ', '') # close the Uniprot file uf.close() except: return False # close the local file if appropriate if local_file: local_file.close() return up class SeqCompare(object): def __init__(self): pass def align(self, seq1, seq2): for p in pairwise2.align.globalms(seq1, seq2, 8, 5, -5, -5): return format_alignment(*p).split('\n')[2]
44.485759
257
0.53708
80109f7c8f0889af2c93cb81eaaed583566f120d
2,415
py
Python
devpotato_bot/error_handler.py
cl0ne/cryptopotato-bot
af62d794adffe186a4f6a4b0aa7ecd4f7e8700a1
[ "MIT" ]
1
2021-05-15T23:41:29.000Z
2021-05-15T23:41:29.000Z
devpotato_bot/error_handler.py
cl0ne/cryptopotato-bot
af62d794adffe186a4f6a4b0aa7ecd4f7e8700a1
[ "MIT" ]
1
2022-02-19T20:38:33.000Z
2022-02-19T23:53:39.000Z
devpotato_bot/error_handler.py
cl0ne/cryptopotato-bot
af62d794adffe186a4f6a4b0aa7ecd4f7e8700a1
[ "MIT" ]
1
2021-05-15T23:42:21.000Z
2021-05-15T23:42:21.000Z
import logging import sys import traceback import telegram from telegram import Update, ParseMode, Chat, User from telegram.ext import CallbackContext def create_callback(developer_ids): logger = logging.getLogger(__name__) def callback(update: Update, context: CallbackContext): """Log Errors caused by Updates.""" error_str = str(context.error) if not error_str: error_str = repr(context.error) message_parts = [f'An error <code>{error_str}</code> was triggered'] if update: user: User = update.effective_user if user: message_parts.append(f' by user {user.mention_html()}') chat: Chat = update.effective_chat if chat: if chat.type == 'private': message_parts.append(' in private chat') else: message_parts.append(f' in {chat.type} <i>{chat.title}</i>') if update.effective_chat.username: message_parts.append(f' (@{chat.username})') message_parts.append(f' (id: {chat.id})') if update.poll: message_parts.append(f' with poll id {update.poll.id}') trace = ''.join(traceback.format_tb(sys.exc_info()[2])) if trace: message_parts.append(f'. Full traceback:\n\n<code>{trace}</code>') message_text = ''.join(message_parts) delivery_failed = set() for dev_id in developer_ids: try: context.bot.send_message(dev_id, message_text, parse_mode=ParseMode.HTML) except (telegram.error.Unauthorized, telegram.error.BadRequest): # User blocked the bot or didn't initiate conversation with it delivery_failed.add(dev_id) logger.warning('Update "%s" triggered an error', update, exc_info=context.error) if delivery_failed: failed_ids_str = ' '.join(str(i) for i in delivery_failed) text = f'DM error reports delivery failed for users: {failed_ids_str}' for dev_id in (developer_ids - delivery_failed): try: context.bot.send_message(dev_id, text) except (telegram.error.Unauthorized, telegram.error.BadRequest): pass # just ignore it logger.warning(text) return callback
39.590164
89
0.595445
b1ebc17e9c05a9affc49ef3b1c2730745b493ffe
12,068
py
Python
core/domain/rights_domain.py
Rijuta-s/oppia
f4f3cd71f90285abee3b0f74062586aaafadce7d
[ "Apache-2.0" ]
null
null
null
core/domain/rights_domain.py
Rijuta-s/oppia
f4f3cd71f90285abee3b0f74062586aaafadce7d
[ "Apache-2.0" ]
3
2021-02-13T08:35:34.000Z
2021-05-18T12:17:06.000Z
core/domain/rights_domain.py
Rijuta-s/oppia
f4f3cd71f90285abee3b0f74062586aaafadce7d
[ "Apache-2.0" ]
null
null
null
# Copyright 2020 The Oppia Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS-IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Domain objects for rights for various user actions.""" from __future__ import annotations from core import feconf from core import python_utils from core import utils from core.constants import constants from core.domain import change_domain from core.domain import user_services # IMPORTANT: Ensure that all changes to how these cmds are interpreted preserve # backward-compatibility with previous exploration snapshots in the datastore. # Do not modify the definitions of CMD keys that already exist. CMD_CREATE_NEW = feconf.CMD_CREATE_NEW CMD_CHANGE_ROLE = feconf.CMD_CHANGE_ROLE CMD_REMOVE_ROLE = feconf.CMD_REMOVE_ROLE CMD_CHANGE_EXPLORATION_STATUS = feconf.CMD_CHANGE_EXPLORATION_STATUS CMD_CHANGE_COLLECTION_STATUS = feconf.CMD_CHANGE_COLLECTION_STATUS CMD_CHANGE_PRIVATE_VIEWABILITY = feconf.CMD_CHANGE_PRIVATE_VIEWABILITY CMD_RELEASE_OWNERSHIP = feconf.CMD_RELEASE_OWNERSHIP CMD_UPDATE_FIRST_PUBLISHED_MSEC = feconf.CMD_UPDATE_FIRST_PUBLISHED_MSEC ACTIVITY_STATUS_PRIVATE = constants.ACTIVITY_STATUS_PRIVATE ACTIVITY_STATUS_PUBLIC = constants.ACTIVITY_STATUS_PUBLIC ROLE_OWNER = feconf.ROLE_OWNER ROLE_EDITOR = feconf.ROLE_EDITOR ROLE_VOICE_ARTIST = feconf.ROLE_VOICE_ARTIST ROLE_VIEWER = feconf.ROLE_VIEWER ROLE_NONE = feconf.ROLE_NONE ASSIGN_ROLE_COMMIT_MESSAGE_TEMPLATE = 'Changed role of %s from %s to %s' ASSIGN_ROLE_COMMIT_MESSAGE_REGEX = '^Changed role of (.*) from (.*) to (.*)$' DEASSIGN_ROLE_COMMIT_MESSAGE_TEMPLATE = 'Remove %s from role %s' DEASSIGN_ROLE_COMMIT_MESSAGE_REGEX = '^Remove (.*) from role (.*)$' class ActivityRights: """Domain object for the rights/publication status of an activity (an exploration or a collection). """ def __init__( self, exploration_id, owner_ids, editor_ids, voice_artist_ids, viewer_ids, community_owned=False, cloned_from=None, status=ACTIVITY_STATUS_PRIVATE, viewable_if_private=False, first_published_msec=None): self.id = exploration_id self.owner_ids = owner_ids self.editor_ids = editor_ids self.voice_artist_ids = voice_artist_ids self.viewer_ids = viewer_ids self.community_owned = community_owned self.cloned_from = cloned_from self.status = status self.viewable_if_private = viewable_if_private self.first_published_msec = first_published_msec def validate(self): """Validates an ActivityRights object. Raises: utils.ValidationError. If any of the owners, editors, voice artists and viewers lists overlap, or if a community-owned exploration has owners, editors, voice artists or viewers specified. """ if self.community_owned: if (self.owner_ids or self.editor_ids or self.voice_artist_ids or self.viewer_ids): raise utils.ValidationError( 'Community-owned explorations should have no owners, ' 'editors, voice artists or viewers specified.') if self.community_owned and self.status == ACTIVITY_STATUS_PRIVATE: raise utils.ValidationError( 'Community-owned explorations cannot be private.') if self.status != ACTIVITY_STATUS_PRIVATE and self.viewer_ids: raise utils.ValidationError( 'Public explorations should have no viewers specified.') owner_editor = set(self.owner_ids) & set(self.editor_ids) owner_voice_artist = set(self.owner_ids) & set(self.voice_artist_ids) owner_viewer = set(self.owner_ids) & set(self.viewer_ids) editor_voice_artist = set(self.editor_ids) & set(self.voice_artist_ids) editor_viewer = set(self.editor_ids) & set(self.viewer_ids) voice_artist_viewer = set(self.voice_artist_ids) & set(self.viewer_ids) if owner_editor: raise utils.ValidationError( 'A user cannot be both an owner and an editor: %s' % owner_editor) if owner_voice_artist: raise utils.ValidationError( 'A user cannot be both an owner and a voice artist: %s' % owner_voice_artist) if owner_viewer: raise utils.ValidationError( 'A user cannot be both an owner and a viewer: %s' % owner_viewer) if editor_voice_artist: raise utils.ValidationError( 'A user cannot be both an editor and a voice artist: %s' % editor_voice_artist) if editor_viewer: raise utils.ValidationError( 'A user cannot be both an editor and a viewer: %s' % editor_viewer) if voice_artist_viewer: raise utils.ValidationError( 'A user cannot be both a voice artist and a viewer: %s' % voice_artist_viewer) if not self.community_owned and len(self.owner_ids) == 0: raise utils.ValidationError( 'Activity should have atleast one owner.') def to_dict(self): """Returns a dict suitable for use by the frontend. Returns: dict. A dict version of ActivityRights suitable for use by the frontend. """ if self.community_owned: return { 'cloned_from': self.cloned_from, 'status': self.status, 'community_owned': True, 'owner_names': [], 'editor_names': [], 'voice_artist_names': [], 'viewer_names': [], 'viewable_if_private': self.viewable_if_private, } else: return { 'cloned_from': self.cloned_from, 'status': self.status, 'community_owned': False, 'owner_names': user_services.get_human_readable_user_ids( self.owner_ids), 'editor_names': user_services.get_human_readable_user_ids( self.editor_ids), 'voice_artist_names': user_services.get_human_readable_user_ids( self.voice_artist_ids), 'viewer_names': user_services.get_human_readable_user_ids( self.viewer_ids), 'viewable_if_private': self.viewable_if_private, } def is_owner(self, user_id): """Checks whether given user is owner of activity. Args: user_id: str or None. Id of the user. Returns: bool. Whether user is an activity owner. """ return bool(user_id in self.owner_ids) def is_editor(self, user_id): """Checks whether given user is editor of activity. Args: user_id: str or None. Id of the user. Returns: bool. Whether user is an activity editor. """ return bool(user_id in self.editor_ids) def is_voice_artist(self, user_id): """Checks whether given user is voice artist of activity. Args: user_id: str or None. Id of the user. Returns: bool. Whether user is an activity voice artist. """ return bool(user_id in self.voice_artist_ids) def is_viewer(self, user_id): """Checks whether given user is viewer of activity. Args: user_id: str or None. Id of the user. Returns: bool. Whether user is an activity viewer. """ return bool(user_id in self.viewer_ids) def is_published(self): """Checks whether activity is published. Returns: bool. Whether activity is published. """ return bool(self.status == ACTIVITY_STATUS_PUBLIC) def is_private(self): """Checks whether activity is private. Returns: bool. Whether activity is private. """ return bool(self.status == ACTIVITY_STATUS_PRIVATE) def is_solely_owned_by_user(self, user_id): """Checks whether the activity is solely owned by the user. Args: user_id: str. The id of the user. Returns: bool. Whether the activity is solely owned by the user. """ return user_id in self.owner_ids and len(self.owner_ids) == 1 def assign_new_role(self, user_id, new_role): """Assigns new role to user and removes previous role if present. Args: user_id: str. The ID of the user. new_role: str. The role of the user. Returns: str. The previous role of the user. """ old_role = ROLE_NONE if new_role == ROLE_VIEWER: if self.status != ACTIVITY_STATUS_PRIVATE: raise Exception( 'Public explorations can be viewed by anyone.') for role, user_ids in python_utils.ZIP( [ROLE_OWNER, ROLE_EDITOR, ROLE_VIEWER, ROLE_VOICE_ARTIST], [self.owner_ids, self.editor_ids, self.viewer_ids, self.voice_artist_ids]): if user_id in user_ids: user_ids.remove(user_id) old_role = role if new_role == role and old_role != new_role: user_ids.append(user_id) if old_role == new_role: if old_role == ROLE_OWNER: raise Exception( 'This user already owns this exploration.') elif old_role == ROLE_EDITOR: raise Exception( 'This user already can edit this exploration.') elif old_role == ROLE_VOICE_ARTIST: raise Exception( 'This user already can voiceover this exploration.') elif old_role == ROLE_VIEWER: raise Exception( 'This user already can view this exploration.') return old_role class ExplorationRightsChange(change_domain.BaseChange): """Domain object class for an exploration rights change. The allowed commands, together with the attributes: - 'create_new' - 'change_role' (with assignee_id, old_role, new_role) - 'change_exploration_status' (with old_status, new_status) - 'change_private_viewability' (with old_viewable_if_private, new_viewable_if_private) - 'release_ownership' - 'update_first_published_msec' (with old_first_published_msec, new_first_published_msec) A role must be one of the ALLOWED_ROLES. A status must be one of the ALLOWED_STATUS. """ ALLOWED_COMMANDS = feconf.EXPLORATION_RIGHTS_CHANGE_ALLOWED_COMMANDS class CollectionRightsChange(change_domain.BaseChange): """Domain object class for an collection rights change. The allowed commands, together with the attributes: - 'create_new' - 'change_role' (with assignee_id, old_role, new_role) - 'change_collection_status' (with old_status, new_status) - 'change_private_viewability' (with old_viewable_if_private, new_viewable_if_private) - 'release_ownership' - 'update_first_published_msec' (with old_first_published_msec, new_first_published_msec) A role must be one of the ALLOWED_ROLES. A status must be one of the ALLOWED_STATUS. """ ALLOWED_COMMANDS = feconf.COLLECTION_RIGHTS_CHANGE_ALLOWED_COMMANDS
38.069401
80
0.643934
6a46a6f2e5e6e7481ef08753ec23e8e320d79092
53
py
Python
src/models/__init__.py
jkpawlowski96/TRD-client-api
d85c182981e155e94b185c8f1367841143fd33e0
[ "Unlicense" ]
null
null
null
src/models/__init__.py
jkpawlowski96/TRD-client-api
d85c182981e155e94b185c8f1367841143fd33e0
[ "Unlicense" ]
null
null
null
src/models/__init__.py
jkpawlowski96/TRD-client-api
d85c182981e155e94b185c8f1367841143fd33e0
[ "Unlicense" ]
null
null
null
from .pair import Pair from .interval import Interval
26.5
30
0.830189
645e4b45b88df6b1116cef3dff3bb1426f358c5b
202
py
Python
entities/application.py
fic2/python-dokuwiki-export
3584c4cd146e1d8510504064c8c8094e41a5fc9e
[ "MIT" ]
null
null
null
entities/application.py
fic2/python-dokuwiki-export
3584c4cd146e1d8510504064c8c8094e41a5fc9e
[ "MIT" ]
null
null
null
entities/application.py
fic2/python-dokuwiki-export
3584c4cd146e1d8510504064c8c8094e41a5fc9e
[ "MIT" ]
null
null
null
from . import NamedEntity class Application(NamedEntity): def __init__(self, name, provider): NamedEntity.__init__(self, name) self.provider = provider def get_descendants(self): return []
16.833333
36
0.742574
8b3e140224a7116296f99c7d4571a3e1076e6401
7,215
py
Python
doc/conf.py
antoniotrento/modoboa
98eea782a080a3cdfea5abea7d288ff3d49595c6
[ "ISC" ]
1
2019-06-12T19:24:42.000Z
2019-06-12T19:24:42.000Z
doc/conf.py
antoniotrento/modoboa
98eea782a080a3cdfea5abea7d288ff3d49595c6
[ "ISC" ]
null
null
null
doc/conf.py
antoniotrento/modoboa
98eea782a080a3cdfea5abea7d288ff3d49595c6
[ "ISC" ]
1
2020-11-20T00:25:23.000Z
2020-11-20T00:25:23.000Z
# -*- coding: utf-8 -*- # # Modoboa documentation build configuration file, created by # sphinx-quickstart on Mon Jan 3 22:29:25 2011. # # This file is execfile()d with the current directory set to its containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. import sys, os # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. #sys.path.insert(0, os.path.abspath('.')) # -- General configuration ----------------------------------------------------- # If your documentation needs a minimal Sphinx version, state it here. #needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be extensions # coming with Sphinx (named 'sphinx.ext.*') or your custom ones. extensions = [ 'sphinx.ext.intersphinx', ] # Add any paths that contain templates here, relative to this directory. templates_path = ['.templates'] # The suffix of source filenames. source_suffix = '.rst' # The encoding of source files. #source_encoding = 'utf-8-sig' # The master toctree document. master_doc = 'index' # General information about the project. project = u'Modoboa' copyright = u'2017, Antoine Nguyen' # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The short X.Y version. version = '1.9' # The full version, including alpha/beta/rc tags. release = '1.9.0' # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. #language = None # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: #today = '' # Else, today_fmt is used as the format for a strftime call. #today_fmt = '%B %d, %Y' # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. exclude_patterns = ['.build'] # The reST default role (used for this markup: `text`) to use for all documents. #default_role = None # If true, '()' will be appended to :func: etc. cross-reference text. #add_function_parentheses = True # If true, the current module name will be prepended to all description # unit titles (such as .. function::). #add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. #show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # A list of ignored prefixes for module index sorting. #modindex_common_prefix = [] # -- Options for HTML output --------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. on_rtd = os.environ.get('READTHEDOCS', None) == 'True' if on_rtd: html_theme = 'default' else: html_theme = 'nature' # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. #html_theme_options = {} # Add any paths that contain custom themes here, relative to this directory. #html_theme_path = [] # The name for this set of Sphinx documents. If None, it defaults to # "<project> v<release> documentation". #html_title = None # A shorter title for the navigation bar. Default is the same as html_title. #html_short_title = None # The name of an image file (relative to this directory) to place at the top # of the sidebar. #html_logo = None # The name of an image file (within the static path) to use as favicon of the # docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # pixels large. #html_favicon = None # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # If not '', a 'Last updated on:' timestamp is inserted at every page bottom, # using the given strftime format. #html_last_updated_fmt = '%b %d, %Y' # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. #html_use_smartypants = True # Custom sidebar templates, maps document names to template names. #html_sidebars = {} # Additional templates that should be rendered to pages, maps page names to # template names. #html_additional_pages = {} # If false, no module index is generated. #html_domain_indices = True # If false, no index is generated. #html_use_index = True # If true, the index is split into individual pages for each letter. #html_split_index = False # If true, links to the reST sources are added to the pages. #html_show_sourcelink = True # If true, "Created using Sphinx" is shown in the HTML footer. Default is True. #html_show_sphinx = True # If true, "(C) Copyright ..." is shown in the HTML footer. Default is True. #html_show_copyright = True # If true, an OpenSearch description file will be output, and all pages will # contain a <link> tag referring to it. The value of this option must be the # base URL from which the finished HTML is served. #html_use_opensearch = '' # This is the file name suffix for HTML files (e.g. ".xhtml"). #html_file_suffix = None # Output file base name for HTML help builder. htmlhelp_basename = 'Modoboadoc' # -- Options for LaTeX output -------------------------------------------------- # The paper size ('letter' or 'a4'). #latex_paper_size = 'letter' # The font size ('10pt', '11pt' or '12pt'). #latex_font_size = '10pt' # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, author, documentclass [howto/manual]). latex_documents = [ ('index', 'Modoboa.tex', u'Modoboa Documentation', u'Antoine Nguyen', 'manual'), ] # The name of an image file (relative to this directory) to place at the top of # the title page. #latex_logo = None # For "manual" documents, if this is true, then toplevel headings are parts, # not chapters. #latex_use_parts = False # If true, show page references after internal links. #latex_show_pagerefs = False # If true, show URL addresses after external links. #latex_show_urls = False # Additional stuff for the LaTeX preamble. #latex_preamble = '' # Documents to append as an appendix to all manuals. #latex_appendices = [] # If false, no module index is generated. #latex_domain_indices = True # -- Options for manual page output -------------------------------------------- # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ ('index', 'modoboa', u'Modoboa Documentation', [u'Antoine Nguyen'], 1) ] intersphinx_mapping = { 'amavis': ('http://modoboa-amavis.readthedocs.org/en/latest/', None) }
31.644737
80
0.716286
9b0aa9a957b4908d82d64571a4d33700be4d2f82
744
py
Python
contentcuration/contentcuration/test_settings.py
Tlazypanda/studio
cd1c2f169c705027cdd808cbbcae907d0a9b21d2
[ "MIT" ]
null
null
null
contentcuration/contentcuration/test_settings.py
Tlazypanda/studio
cd1c2f169c705027cdd808cbbcae907d0a9b21d2
[ "MIT" ]
null
null
null
contentcuration/contentcuration/test_settings.py
Tlazypanda/studio
cd1c2f169c705027cdd808cbbcae907d0a9b21d2
[ "MIT" ]
null
null
null
import logging from .settings import * # noqa DEBUG = True if RUNNING_TESTS: # if we're running tests, run Celery tests synchronously so tests won't complete before the process # is finished. CELERY_TASK_ALWAYS_EAGER = True ALLOWED_HOSTS = ["studio.local", "192.168.31.9", "127.0.0.1", "*"] ACCOUNT_ACTIVATION_DAYS = 7 EMAIL_BACKEND = 'django.core.mail.backends.console.EmailBackend' SITE_ID = 2 logging.basicConfig(level='INFO') # Allow the debug() context processor to add variables to template context. # Include here the IPs from which a local dev server might be accessed. See # https://docs.djangoproject.com/en/2.0/ref/settings/#internal-ips INTERNAL_IPS = ( '127.0.0.1', 'studio.local', '192.168.31.9', )
27.555556
103
0.721774
f04a2c0cd5fc8c26a002f7dee8363477dc27f4ce
22,021
py
Python
vespid/models/clustering.py
QS-2/VESPID
f7d27f0c4aa99229d12d90fce9a52a48339e0a59
[ "Apache-2.0" ]
null
null
null
vespid/models/clustering.py
QS-2/VESPID
f7d27f0c4aa99229d12d90fce9a52a48339e0a59
[ "Apache-2.0" ]
null
null
null
vespid/models/clustering.py
QS-2/VESPID
f7d27f0c4aa99229d12d90fce9a52a48339e0a59
[ "Apache-2.0" ]
null
null
null
from multiprocessing.sharedctypes import Value import hdbscan import pandas as pd import numpy as np from sklearn.pipeline import Pipeline import pickle from tqdm import tqdm import umap import optuna from sklearn.linear_model import LogisticRegressionCV from sklearn.preprocessing import StandardScaler from sklearn.model_selection import train_test_split from sklearn.pipeline import Pipeline import mlflow from mlflow.tracking import MlflowClient from vespid.models.mlflow_tools import load_model as load_mlflow_model import cloudpickle from smart_open import open from vespid.features.interdisciplinarity import calculate_interdisciplinarity_score from vespid import setup_logger logger = setup_logger(module_name=__name__) RANDOM_STATE = 42 # for reproducibility class HdbscanEstimator(hdbscan.HDBSCAN, mlflow.pyfunc.PythonModel): ''' Simple wrapper class for HDBSCAN that allows us to add some scikit-learn-like scoring functionality for doing parameter tuning with sklearn tools easily. ''' # Note that __init__ should not be overwritten as it is difficult to abide # by the sklearn introspection techniques hdbscan.HDBSCAN uses under the # hood when doing so def fit(self, X, y=None, soft_cluster=False): ''' Modified version of the original hdbscan fit method from https://github.com/scikit-learn-contrib/hdbscan/blob/2179c24a31742aab459c75ac4823acad2dca38cf/hdbscan/hdbscan_.py#L1133. This version allows for soft clustering to be done at the same time as the main clustering task, for efficiency's sake. Parameters ---------- X : array or sparse (CSR) matrix of shape (n_samples, n_features), or array of shape (n_samples, n_samples) A feature array, or array of distances between samples if ``metric='precomputed'``. y : ignored soft_cluster : bool, optional Indicates if soft clustering should occur along with fitting via the main algorithm, by default False ''' super().fit(X) self.n_features_ = X.shape[1] self._is_fit = True if soft_cluster: logger.debug("Fitting secondary soft clustering model...") self.soft_cluster(X, train_model=True) return self def soft_cluster(self, data=None, train_model=False, use_original_method=False): ''' Performs a soft-clustering with the given trained model to generate probabilities of membership for each datum relative to all clusters in the solution of the trained model. Serves as a way to determine the strength of membership of a given datum to every cluster in the solution. Parameters ---------- data: numpy array or pandas DataFrame. Data that you want to assess for cluster membership. Note that, if this is run post-clustering, the cluster solution will *not* be re-solved, but rather the new points will simply be assessed relative to the existing solution. Should be of shape (n_samples, n_features_original), where n_features_original refers to the feature dimensionality present in the training data. If None, results will be returned for the training data and assigned as the attribute self.soft_clusters. train_model: bool. If True, assumes you don't want to use the existing trained soft clustering model (if there is one). Ignored if self.soft_cluster_model is None or `use_original_method=True`. use_original_method: bool. Indicates if you want to use the distance- and noise-based approach to soft clustering from the hdbscan library (True) or the new approach using a secondary model predicting probabilities of class membership (False). Note that, with `use_original_method=True`, the probabilities for each sample are not guaranteed to sum to 1.0. Returns ------- pandas DataFrame that is of shape (n_samples, n_clusters). ''' if not self.prediction_data and use_original_method: raise ValueError("Model didn't set `prediction_data=True` " "during training so we probably can't get soft " "cluster probabilities...") if use_original_method: self.soft_cluster_model = None if data is None: soft_clusters = hdbscan.all_points_membership_vectors(self) else: soft_clusters = hdbscan.prediction.membership_vector( self, data) else: num_labels = len(np.unique(self.labels_)) if num_labels <= 1: logger.warning(f"Clustering resulted in only {num_labels} " "labels, which means soft clustering won't " "work!") raise optuna.TrialPruned() elif train_model or not hasattr(self, 'soft_cluster_model'): if isinstance(data, pd.DataFrame): data = data.values # Make data into DataFrame to facilitate tracking shuffled samples df = pd.DataFrame( data, columns=[f'x_{i}' for i in range(data.shape[1])] ) feature_columns = df.columns df['label'] = self.labels_ df_no_noise = df[df['label'] > -1] if len(df_no_noise) == 0: raise RuntimeError("df_no_noise is length zero") X_train, X_test, y_train, y_test = train_test_split( df_no_noise[feature_columns], df_no_noise['label'], train_size=0.6, shuffle=True, stratify=df_no_noise['label'], random_state=RANDOM_STATE ) scaler = StandardScaler() logreg = LogisticRegressionCV( Cs=25, cv=5, # 80/20 train/test split scoring='f1_micro', multi_class='multinomial', max_iter=100_000, random_state=RANDOM_STATE ) self.soft_cluster_model = Pipeline([ ('scaler', scaler), ('logreg', logreg) ]) self.soft_cluster_model.fit(X_train, y_train) soft_clusters = self.soft_cluster_model.predict_proba(data) # Put everything into one view, labels and probabilities df = pd.DataFrame( soft_clusters, columns=[f"prob_cluster{n}" for n in range(soft_clusters.shape[1])] ) # Save for later reference and usage if train_model: self.soft_cluster_probabilities = df self._test_soft_clustering() return df def predict_proba(self, X=None): ''' Generates probability vectors for all points provided, indicating each point's probability of belonging to one of the clusters identified during fitting. Similar to self.soft_cluster(), but this works in pure inference mode and assumes no knowledge of the cluster labels (as this can be used for "clustering" new points without re-fitting the entire algorithm). Parameters ---------- X : pandas DataFrame, optional The input features for soft clustering. Should be of shape self.n_features_. If None, will just return the pre-computed probability vectors for the training data, by default None Returns ------- pandas DataFrame with columns "prob_cluster{i}" Membership vectors (one cluster per column) for each data point. Raises ------ RuntimeError If no data are provided but no soft clustering results are available either. ''' if X is None and hasattr(self, 'soft_cluster_probabilities'): return self.soft_cluster_probabilities elif not hasattr(self, 'soft_cluster_probabilities'): raise RuntimeError("No soft clustering model available") elif isinstance(X, np.ndarray): X = pd.DataFrame(X) return pd.DataFrame( self.soft_cluster_model.predict_proba(X), columns=self.soft_cluster_probabilities.columns, index=X.index ) def predict(self, context, X=None): ''' Provides cluster labels for all points provided. If no data are provided, simply returns the labels for the training data. Uses the pre-trained soft clustering model to find the cluster for each point with the highest predicted probability and returns that label. Parameters ---------- context : mlflow.pyfunc.PythonModelContext object Provides contextual information (usually data from mlflow artifact store needed to do predictions). Can be None and often is. X : pandas DataFrame, optional Input features. X.shape[1] == self.n_features_. If None, pre-computed labels for all training data will be returned, by default None Returns ------- pandas DataFrame with an index matching `X.index` Cluster labels for each point. ''' if X is None: logger.info("No data provided for inference so returning " "pre-calcluated labels") return self.labels_ if isinstance(X, np.ndarray): X = pd.DataFrame(X) # Use the soft clustering model to predict new data cluster membership return pd.DataFrame( self.predict_proba(X).values.argmax(axis=1), index=X.index ) # def load_context(self, context): # '''Used for loading data to be used at prediction time mainly''' # with open(context.artifacts["hdb_model"], 'rb') as f: # self = cloudpickle.load(f) def info(self): ''' Prints to the log a bunch of useful metrics about the cluster solution, like DBCV, mean persistence, etc. ''' num_noise_points = len(self.labels_[self.labels_ == -1]) num_all_points = len(self.labels_) pct_noise_points = round(num_noise_points / num_all_points * 100, 2) num_clusters = pd.Series(self.labels_[self.labels_ > -1]).nunique() persistence = self.cluster_persistence_ soft_model_presence = 'is' if hasattr( self, 'soft_cluster_model') else 'is not' logger.info(f"Number of clusters in this solution is {num_clusters} and " f"there are {num_noise_points} ({pct_noise_points})% noise points. " f"DBCV score is {self.relative_validity_}. " "Additionally, there is a mean cluster persistence of " f"{persistence.mean()} and a standard deviation of {persistence.std()}. " f"Average cluster membership probability is {self.probabilities_.mean()} " f"and average outlier score is {self.outlier_scores_.mean()}. " f'Soft cluster model {soft_model_presence} present') def score(self, X=None, y=None): ''' Provides the DBCV value of the clustering solution found after fitting. Parameters ---------- X: ignored, as it's passed during the fit() phase. y: ignored, as this is unsupervised learning! Returns ------- Dict of various trained-model-specific scores/stats. ''' # Give some useful info for reporting during tuning self.info() num_clusters = pd.Series(self.labels_[self.labels_ > -1]).nunique() num_noise_points = len(self.labels_[self.labels_ == -1]) scores = { 'DBCV': self.relative_validity_, 'num_clusters': num_clusters, 'num_noise_points': num_noise_points, 'persistence_mean': self.cluster_persistence_.mean(), 'persistence_std': self.cluster_persistence_.std(), 'probability_mean': self.probabilities_.mean(), 'probability_std': self.probabilities_.std(), 'outlier_score_mean': self.outlier_scores_.mean(), 'outlier_score_std': self.outlier_scores_.std(), } return scores # @classmethod # def load_model(cls, filepath): # ''' # Loads a trained HDBSCAN model, checks it for some valuable # attributes we'll need downstream, and spits out the trained # model object as well as a DataFrame with useful data. # Parameters # ---------- # filepath: str. Path to pickled HDBSCAN object. # Returns # ------- # HdbscanEstimator object with DataFrame # self.soft_cluster_probabilities included, showing the probability of each # datum belonging to each possible cluster in this model's solution. # ''' # with open(filepath, 'rb') as f: # model = pickle.load(f) # # Check that model has everything we want to play around with # target_attributes = [ # 'cluster_persistence_', # 'probabilities_', # 'outlier_scores_', # 'exemplars_' # ] # model_contents = dir(model) # for a in target_attributes: # if a not in model_contents: # raise ValueError(f"We're missing the attribute '{a}'!!") # num_clusters = np.unique(model.labels_).shape[0] # includes noise # logger.info(f"This HDBSCAN solution has {num_clusters} clusters, " # "including a noise cluster, if noise is present") # # For backwards compatibility # # Check if model has each method; if not, bind the method to it for use # if 'soft_cluster' not in model_contents or model.soft_cluster is None: # model.soft_cluster = cls.soft_cluster.__get__(model) # if 'num_clusters_' not in model_contents: # model.num_clusters_ = len([l for l in np.unique(model.labels_) if l != -1]) # model.soft_cluster() # return model @classmethod def load_model( cls, run_id=None, model_name=None, model_version=None ): ''' Loads an mlflow-logged model from its serialized (AKA pickled) form. NOTE: this is not expected to work unless you are loading it into an identical environment as the one described by the model's logged conda.yaml file. If this isn't possible, consider loading it via the `mlflow.pyfunc.load_model()` functionality described in the UI page for the model. This will, however, not provide you direct access to all of the original model attributes/methods/etc., whereas this method will. Parameters ---------- run_id : str, optional Unique ID of a model training run. May only be used if `model_name` and `model_version` are not used, by default None model_name : str, optional Unique name of a registered model. May only be used if `run_id` is not used, by default None model_version : int, optional Version number of the registered model identified by `model_name`. May not be used if `run_id` is used, by default None model_stage : str, optional Model stage of registered model, if there is one. Allowed values can be found in vespid.models.mlflow_tools.MODEL_STAGES, by default None Returns ------- HdbscanEstimator object The logged model object in its original state as of the logging event. Raises ------ ValueError Errors out if a run ID is specified at the same time as registered model information ''' # TODO: complete URI generation code in vespid.models.mlflow to handle run_ids, registered model names, etc. return load_mlflow_model(run_id=run_id) if run_id is not None: if model_name is not None or model_version is not None: raise ValueError("`run_id` must be the only parameter " "specified if it is not None") model_uri = client.get_run(run_id).info.artifact_uri + '/model' elif model_name is not None: if run_id is not None: raise ValueError("`run_id` and `model_name` cannot both be " "specified") model_uri = client.get_model_version_download_uri( model_name, model_version ) def _test_soft_clustering(self): if isinstance(self.soft_cluster_probabilities, pd.DataFrame): membership_vectors = self.soft_cluster_probabilities.values else: membership_vectors = self.soft_cluster_probabilities # Check the membership_vectors shape # Should be (num_points, num_clusters) vector_shape = membership_vectors.shape if -1 in self.labels_: num_clusters = len(np.unique(self.labels_)) - \ 1 # account for noise else: num_clusters = len(np.unique(self.labels_)) assert len(vector_shape) == 2, f"membership_vectors should be 2-d, got {len(vector_shape)} dimensions" assertion_str = f"membership_vectors should be of shape " + \ f"(num_points, num_clusters), but got {vector_shape}" assert vector_shape[1] == num_clusters, assertion_str # Each vector between 0.0 and 1.0? Noise can allow less than 1.0 with some fuzziness for rounding error assert np.logical_and(membership_vectors.sum(axis=1) < 1.0000001, membership_vectors.sum(axis=1) > 0).sum( ) / membership_vectors.shape[0] == 1, f"Some probability vectors sum up to less than 0.0 or more than 1.0" df_clusters = pd.DataFrame({ 'label': self.labels_, 'probability': self.probabilities_, 'max_soft_probability': membership_vectors.max(axis=1), 'max_soft_p_label': membership_vectors.argmax(axis=1) }) # Does the max soft cluster probility match the original cluster assignment? df_clusters = df_clusters[df_clusters['label'] > -1] labels_match_rate = ( df_clusters['label'] == df_clusters['max_soft_p_label'] ).sum() / len(df_clusters) labels_match_pct = round(labels_match_rate * 100, 2) assertion_str = f"Max soft cluster assignment only " + \ f"matches main algorithm assignment for non-noise points " + \ f"{labels_match_pct}% of the time" if labels_match_rate < 0.9: assert labels_match_rate == 1, assertion_str else: logger.info("Soft-clustering-derived labels and main " f"algorithm labels agree {labels_match_pct}% " "of the time.") return labels_match_rate def build_cluster_pipeline( umap_n_components=100, umap_n_neighbors=30, umap_min_dist=0.0, umap_metric='euclidean', hdbscan_min_samples=25, hdbscan_min_cluster_size=75, hdbscan_cluster_selection_method='eom' ): ''' Given a set of hyperparameters, builds an un-trained UMAP + HdbscanEstimator pipeline that can be trained and then used for other downstream tasks. Parameters ---------- umap_n_components: int. Desired dimensionality of the output UMAP embedding. Must be smaller than embeddings.shape[1]. umap_n_neighbors: int. Used in determining the balance between local (low values) and global (high values) structure in the UMAP reduced-dimensionality embedding. umap_min_dist: float in the range [0.0, 0.99]. Controls how tightly UMAP is allowed to pack points together, with low values causing "clumpier" embeddings and thus being useful for clustering. umap_metric: str. Indicates the distance metric to be used when generating UMAP embeddings. hdbscan_min_samples: int. Number of neighbors required by HDBSCAN for a point to be considered a "core point". Typically higher values lead to more points labeled as noise and denser + fewer clusters. hdbscan_min_cluster_size: int. Number of points required for HDBSCAN to consider a cluster valid. hdbscan_cluster_selection_method: str. Type of method to use for determining final flat cluster structure. Options are ['eom', 'leaf']. Returns ------- sklearn.Pipeline object with a UMAP component (accessed via pipe.named_steps['umap']) and an HdbscanEstimator component (accessed via pipe.named_steps['hdbscan']). ''' um = umap.UMAP( n_jobs=1, n_neighbors=umap_n_neighbors, min_dist=umap_min_dist, metric=umap_metric, n_components=umap_n_components ) hdb = HdbscanEstimator( gen_min_span_tree=True, prediction_data=False, algorithm='boruvka_kdtree', core_dist_n_jobs=1, min_cluster_size=hdbscan_min_cluster_size, min_samples=hdbscan_min_samples, cluster_selection_method=hdbscan_cluster_selection_method ) return Pipeline(steps=[('umap', um), ('hdbscan', hdb)])
38.70123
128
0.618092
66dd17110384ff6e4810c07a02b8c854336173c5
7,470
py
Python
tests/test_command_parse.py
jesuslosada/scrapy
8be28fe4ca8b1cd011d5f7e03661da8a6bb3217b
[ "BSD-3-Clause" ]
2
2018-03-29T08:26:17.000Z
2019-06-17T10:56:19.000Z
tests/test_command_parse.py
jesuslosada/scrapy
8be28fe4ca8b1cd011d5f7e03661da8a6bb3217b
[ "BSD-3-Clause" ]
1
2016-10-20T13:15:22.000Z
2016-11-21T09:21:26.000Z
tests/test_command_parse.py
jesuslosada/scrapy
8be28fe4ca8b1cd011d5f7e03661da8a6bb3217b
[ "BSD-3-Clause" ]
3
2017-10-11T01:07:20.000Z
2019-10-07T02:01:11.000Z
from os.path import join, abspath from twisted.trial import unittest from twisted.internet import defer from scrapy.utils.testsite import SiteTest from scrapy.utils.testproc import ProcessTest from scrapy.utils.python import to_native_str from tests.test_commands import CommandTest class ParseCommandTest(ProcessTest, SiteTest, CommandTest): command = 'parse' def setUp(self): super(ParseCommandTest, self).setUp() self.spider_name = 'parse_spider' fname = abspath(join(self.proj_mod_path, 'spiders', 'myspider.py')) with open(fname, 'w') as f: f.write(""" import scrapy from scrapy.linkextractors import LinkExtractor from scrapy.spiders import CrawlSpider, Rule class MySpider(scrapy.Spider): name = '{0}' def parse(self, response): if getattr(self, 'test_arg', None): self.logger.debug('It Works!') return [scrapy.Item(), dict(foo='bar')] def parse_request_with_meta(self, response): foo = response.meta.get('foo', 'bar') if foo == 'bar': self.logger.debug('It Does Not Work :(') else: self.logger.debug('It Works!') def parse_request_without_meta(self, response): foo = response.meta.get('foo', 'bar') if foo == 'bar': self.logger.debug('It Works!') else: self.logger.debug('It Does Not Work :(') class MyGoodCrawlSpider(CrawlSpider): name = 'goodcrawl{0}' rules = ( Rule(LinkExtractor(allow=r'/html'), callback='parse_item', follow=True), Rule(LinkExtractor(allow=r'/text'), follow=True), ) def parse_item(self, response): return [scrapy.Item(), dict(foo='bar')] def parse(self, response): return [scrapy.Item(), dict(nomatch='default')] class MyBadCrawlSpider(CrawlSpider): '''Spider which doesn't define a parse_item callback while using it in a rule.''' name = 'badcrawl{0}' rules = ( Rule(LinkExtractor(allow=r'/html'), callback='parse_item', follow=True), ) def parse(self, response): return [scrapy.Item(), dict(foo='bar')] """.format(self.spider_name)) fname = abspath(join(self.proj_mod_path, 'pipelines.py')) with open(fname, 'w') as f: f.write(""" import logging class MyPipeline(object): component_name = 'my_pipeline' def process_item(self, item, spider): logging.info('It Works!') return item """) fname = abspath(join(self.proj_mod_path, 'settings.py')) with open(fname, 'a') as f: f.write(""" ITEM_PIPELINES = {'%s.pipelines.MyPipeline': 1} """ % self.project_name) @defer.inlineCallbacks def test_spider_arguments(self): _, _, stderr = yield self.execute(['--spider', self.spider_name, '-a', 'test_arg=1', '-c', 'parse', self.url('/html')]) self.assertIn("DEBUG: It Works!", to_native_str(stderr)) @defer.inlineCallbacks def test_request_with_meta(self): raw_json_string = '{"foo" : "baz"}' _, _, stderr = yield self.execute(['--spider', self.spider_name, '--meta', raw_json_string, '-c', 'parse_request_with_meta', self.url('/html')]) self.assertIn("DEBUG: It Works!", to_native_str(stderr)) _, _, stderr = yield self.execute(['--spider', self.spider_name, '-m', raw_json_string, '-c', 'parse_request_with_meta', self.url('/html')]) self.assertIn("DEBUG: It Works!", to_native_str(stderr)) @defer.inlineCallbacks def test_request_without_meta(self): _, _, stderr = yield self.execute(['--spider', self.spider_name, '-c', 'parse_request_without_meta', self.url('/html')]) self.assertIn("DEBUG: It Works!", to_native_str(stderr)) @defer.inlineCallbacks def test_pipelines(self): _, _, stderr = yield self.execute(['--spider', self.spider_name, '--pipelines', '-c', 'parse', self.url('/html')]) self.assertIn("INFO: It Works!", to_native_str(stderr)) @defer.inlineCallbacks def test_parse_items(self): status, out, stderr = yield self.execute( ['--spider', self.spider_name, '-c', 'parse', self.url('/html')] ) self.assertIn("""[{}, {'foo': 'bar'}]""", to_native_str(out)) @defer.inlineCallbacks def test_parse_items_no_callback_passed(self): status, out, stderr = yield self.execute( ['--spider', self.spider_name, self.url('/html')] ) self.assertIn("""[{}, {'foo': 'bar'}]""", to_native_str(out)) @defer.inlineCallbacks def test_wrong_callback_passed(self): status, out, stderr = yield self.execute( ['--spider', self.spider_name, '-c', 'dummy', self.url('/html')] ) self.assertRegexpMatches(to_native_str(out), """# Scraped Items -+\n\[\]""") self.assertIn("""Cannot find callback""", to_native_str(stderr)) @defer.inlineCallbacks def test_crawlspider_matching_rule_callback_set(self): """If a rule matches the URL, use it's defined callback.""" status, out, stderr = yield self.execute( ['--spider', 'goodcrawl'+self.spider_name, '-r', self.url('/html')] ) self.assertIn("""[{}, {'foo': 'bar'}]""", to_native_str(out)) @defer.inlineCallbacks def test_crawlspider_matching_rule_default_callback(self): """If a rule match but it has no callback set, use the 'parse' callback.""" status, out, stderr = yield self.execute( ['--spider', 'goodcrawl'+self.spider_name, '-r', self.url('/text')] ) self.assertIn("""[{}, {'nomatch': 'default'}]""", to_native_str(out)) @defer.inlineCallbacks def test_spider_with_no_rules_attribute(self): """Using -r with a spider with no rule should not produce items.""" status, out, stderr = yield self.execute( ['--spider', self.spider_name, '-r', self.url('/html')] ) self.assertRegexpMatches(to_native_str(out), """# Scraped Items -+\n\[\]""") self.assertIn("""No CrawlSpider rules found""", to_native_str(stderr)) @defer.inlineCallbacks def test_crawlspider_missing_callback(self): status, out, stderr = yield self.execute( ['--spider', 'badcrawl'+self.spider_name, '-r', self.url('/html')] ) self.assertRegexpMatches(to_native_str(out), """# Scraped Items -+\n\[\]""") @defer.inlineCallbacks def test_crawlspider_no_matching_rule(self): """The requested URL has no matching rule, so no items should be scraped""" status, out, stderr = yield self.execute( ['--spider', 'badcrawl'+self.spider_name, '-r', self.url('/enc-gb18030')] ) self.assertRegexpMatches(to_native_str(out), """# Scraped Items -+\n\[\]""") self.assertIn("""Cannot find a rule that matches""", to_native_str(stderr))
38.112245
85
0.575234
b0f391074ee0a8fad9af9ef39a3027250a8fc68c
7,358
py
Python
catkin_ws/devel/lib/python2.7/dist-packages/duckietown_msgs/msg/_CoordinationSignal.py
bendychua/final
35fd0477ec5950479f0e082a65db2aa05a92db82
[ "CC-BY-2.0" ]
1
2019-05-13T00:40:11.000Z
2019-05-13T00:40:11.000Z
catkin_ws/devel/lib/python2.7/dist-packages/duckietown_msgs/msg/_CoordinationSignal.py
bendychua/final
35fd0477ec5950479f0e082a65db2aa05a92db82
[ "CC-BY-2.0" ]
null
null
null
catkin_ws/devel/lib/python2.7/dist-packages/duckietown_msgs/msg/_CoordinationSignal.py
bendychua/final
35fd0477ec5950479f0e082a65db2aa05a92db82
[ "CC-BY-2.0" ]
null
null
null
# This Python file uses the following encoding: utf-8 """autogenerated by genpy from duckietown_msgs/CoordinationSignal.msg. Do not edit.""" import sys python3 = True if sys.hexversion > 0x03000000 else False import genpy import struct import std_msgs.msg class CoordinationSignal(genpy.Message): _md5sum = "38d01c6c7727f64c628b7afcb3e7ccd2" _type = "duckietown_msgs/CoordinationSignal" _has_header = True #flag to mark the presence of a Header object _full_text = """Header header string signal # these must match with LED_protocol.yaml string OFF=light_off string SIGNAL_A=CAR_SIGNAL_A string SIGNAL_B=CAR_SIGNAL_B string SIGNAL_C=CAR_SIGNAL_C string TL_GO_ALL=tl_go_all string TL_STOP_ALL=tl_stop_all string TL_GO_N=tl_go_N string TL_GO_S=tl_go_S string TL_GO_W=tl_go_W string TL_GO_E=tl_go_E string TL_YIELD=tl_yield ================================================================================ MSG: std_msgs/Header # Standard metadata for higher-level stamped data types. # This is generally used to communicate timestamped data # in a particular coordinate frame. # # sequence ID: consecutively increasing ID uint32 seq #Two-integer timestamp that is expressed as: # * stamp.sec: seconds (stamp_secs) since epoch (in Python the variable is called 'secs') # * stamp.nsec: nanoseconds since stamp_secs (in Python the variable is called 'nsecs') # time-handling sugar is provided by the client library time stamp #Frame this data is associated with # 0: no frame # 1: global frame string frame_id """ # Pseudo-constants OFF = 'light_off' SIGNAL_A = 'CAR_SIGNAL_A' SIGNAL_B = 'CAR_SIGNAL_B' SIGNAL_C = 'CAR_SIGNAL_C' TL_GO_ALL = 'tl_go_all' TL_STOP_ALL = 'tl_stop_all' TL_GO_N = 'tl_go_N' TL_GO_S = 'tl_go_S' TL_GO_W = 'tl_go_W' TL_GO_E = 'tl_go_E' TL_YIELD = 'tl_yield' __slots__ = ['header','signal'] _slot_types = ['std_msgs/Header','string'] def __init__(self, *args, **kwds): """ Constructor. Any message fields that are implicitly/explicitly set to None will be assigned a default value. The recommend use is keyword arguments as this is more robust to future message changes. You cannot mix in-order arguments and keyword arguments. The available fields are: header,signal :param args: complete set of field values, in .msg order :param kwds: use keyword arguments corresponding to message field names to set specific fields. """ if args or kwds: super(CoordinationSignal, self).__init__(*args, **kwds) #message fields cannot be None, assign default values for those that are if self.header is None: self.header = std_msgs.msg.Header() if self.signal is None: self.signal = '' else: self.header = std_msgs.msg.Header() self.signal = '' def _get_types(self): """ internal API method """ return self._slot_types def serialize(self, buff): """ serialize message into buffer :param buff: buffer, ``StringIO`` """ try: _x = self buff.write(_struct_3I.pack(_x.header.seq, _x.header.stamp.secs, _x.header.stamp.nsecs)) _x = self.header.frame_id length = len(_x) if python3 or type(_x) == unicode: _x = _x.encode('utf-8') length = len(_x) if python3: buff.write(struct.pack('<I%sB'%length, length, *_x)) else: buff.write(struct.pack('<I%ss'%length, length, _x)) _x = self.signal length = len(_x) if python3 or type(_x) == unicode: _x = _x.encode('utf-8') length = len(_x) if python3: buff.write(struct.pack('<I%sB'%length, length, *_x)) else: buff.write(struct.pack('<I%ss'%length, length, _x)) except struct.error as se: self._check_types(struct.error("%s: '%s' when writing '%s'" % (type(se), str(se), str(_x)))) except TypeError as te: self._check_types(ValueError("%s: '%s' when writing '%s'" % (type(te), str(te), str(_x)))) def deserialize(self, str): """ unpack serialized message in str into this message instance :param str: byte array of serialized message, ``str`` """ try: if self.header is None: self.header = std_msgs.msg.Header() end = 0 _x = self start = end end += 12 (_x.header.seq, _x.header.stamp.secs, _x.header.stamp.nsecs,) = _struct_3I.unpack(str[start:end]) start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) start = end end += length if python3: self.header.frame_id = str[start:end].decode('utf-8') else: self.header.frame_id = str[start:end] start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) start = end end += length if python3: self.signal = str[start:end].decode('utf-8') else: self.signal = str[start:end] return self except struct.error as e: raise genpy.DeserializationError(e) #most likely buffer underfill def serialize_numpy(self, buff, numpy): """ serialize message with numpy array types into buffer :param buff: buffer, ``StringIO`` :param numpy: numpy python module """ try: _x = self buff.write(_struct_3I.pack(_x.header.seq, _x.header.stamp.secs, _x.header.stamp.nsecs)) _x = self.header.frame_id length = len(_x) if python3 or type(_x) == unicode: _x = _x.encode('utf-8') length = len(_x) if python3: buff.write(struct.pack('<I%sB'%length, length, *_x)) else: buff.write(struct.pack('<I%ss'%length, length, _x)) _x = self.signal length = len(_x) if python3 or type(_x) == unicode: _x = _x.encode('utf-8') length = len(_x) if python3: buff.write(struct.pack('<I%sB'%length, length, *_x)) else: buff.write(struct.pack('<I%ss'%length, length, _x)) except struct.error as se: self._check_types(struct.error("%s: '%s' when writing '%s'" % (type(se), str(se), str(_x)))) except TypeError as te: self._check_types(ValueError("%s: '%s' when writing '%s'" % (type(te), str(te), str(_x)))) def deserialize_numpy(self, str, numpy): """ unpack serialized message in str into this message instance using numpy for array types :param str: byte array of serialized message, ``str`` :param numpy: numpy python module """ try: if self.header is None: self.header = std_msgs.msg.Header() end = 0 _x = self start = end end += 12 (_x.header.seq, _x.header.stamp.secs, _x.header.stamp.nsecs,) = _struct_3I.unpack(str[start:end]) start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) start = end end += length if python3: self.header.frame_id = str[start:end].decode('utf-8') else: self.header.frame_id = str[start:end] start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) start = end end += length if python3: self.signal = str[start:end].decode('utf-8') else: self.signal = str[start:end] return self except struct.error as e: raise genpy.DeserializationError(e) #most likely buffer underfill _struct_I = genpy.struct_I _struct_3I = struct.Struct("<3I")
31.991304
123
0.639032
af6b721f354894bf72177f73e581408e08ee4d78
10,403
py
Python
horovod/run/common/util/network.py
tirkarthi/horovod
957fe7418b1222ee8ad2698c7352a2629d4b5eb0
[ "Apache-2.0" ]
1
2020-04-02T11:52:05.000Z
2020-04-02T11:52:05.000Z
horovod/run/common/util/network.py
marload/horovod
16297493ac5fe8b0dbb303b9cbf66d8178b727e2
[ "Apache-2.0" ]
null
null
null
horovod/run/common/util/network.py
marload/horovod
16297493ac5fe8b0dbb303b9cbf66d8178b727e2
[ "Apache-2.0" ]
null
null
null
# Copyright 2019 Uber Technologies, Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== import random import socket import struct import threading import cloudpickle import psutil from six.moves import queue, socketserver from horovod.run.common.util import secret from horovod.run.util.network import find_port class PingRequest(object): pass class NoValidAddressesFound(Exception): pass class PingResponse(object): def __init__(self, service_name, source_address): self.service_name = service_name """Service name that responded to this ping.""" self.source_address = source_address """Source IP address that was visible to the service.""" class AckResponse(object): """Used for situations when the response does not carry any data.""" pass class Wire(object): """ Used for serialization/deserialization of objects over the wire. We use HMAC to protect services from unauthorized use. The key used for the HMAC digest is distributed by Open MPI and Spark. The objects are serialized using cloudpickle. Serialized objects become the body of the message. Structure of the message is as follows: - HMAC digest of the body (32 bytes) - length of the body (4 bytes) - body """ def __init__(self, key): self._key = key def write(self, obj, wfile): message = cloudpickle.dumps(obj) digest = secret.compute_digest(self._key, message) wfile.write(digest) # Pack message length into 4-byte integer. wfile.write(struct.pack('i', len(message))) wfile.write(message) wfile.flush() def read(self, rfile): digest = rfile.read(secret.DIGEST_LENGTH) # Unpack message length into 4-byte integer. message_len = struct.unpack('i', rfile.read(4))[0] message = rfile.read(message_len) if not secret.check_digest(self._key, message, digest): raise Exception('Security error: digest did not match the message.') return cloudpickle.loads(message) class BasicService(object): def __init__(self, service_name, key, nics): self._service_name = service_name self._wire = Wire(key) self._nics = nics self._server, _ = find_port( lambda addr: socketserver.ThreadingTCPServer( addr, self._make_handler())) self._port = self._server.socket.getsockname()[1] self._addresses = self._get_local_addresses() self._thread = threading.Thread(target=self._server.serve_forever) self._thread.daemon = True self._thread.start() def _make_handler(self): server = self class _Handler(socketserver.StreamRequestHandler): def handle(self): try: req = server._wire.read(self.rfile) resp = server._handle(req, self.client_address) if not resp: raise Exception('Handler did not return a response.') server._wire.write(resp, self.wfile) except EOFError: # Happens when client is abruptly terminated, don't want to pollute the logs. pass return _Handler def _handle(self, req, client_address): if isinstance(req, PingRequest): return PingResponse(self._service_name, client_address[0]) raise NotImplementedError(req) def _get_local_addresses(self): result = {} for intf, intf_addresses in psutil.net_if_addrs().items(): if self._nics and intf not in self._nics: continue for addr in intf_addresses: if addr.family == socket.AF_INET: if intf not in result: result[intf] = [] result[intf].append((addr.address, self._port)) if not result and self._nics: raise NoValidAddressesFound( 'No available network interface found matching user provided interface: {}'.format(self._nics)) return result def addresses(self): return self._addresses def shutdown(self): self._server.shutdown() self._server.server_close() self._thread.join() def get_port(self): return self._port class BasicClient(object): def __init__(self, service_name, addresses, key, verbose, match_intf=False, probe_timeout=20, attempts=3): # Note: because of retry logic, ALL RPC calls are REQUIRED to be idempotent. self._verbose = verbose self._service_name = service_name self._wire = Wire(key) self._match_intf = match_intf self._probe_timeout = probe_timeout self._attempts = attempts self._addresses = self._probe(addresses) if not self._addresses: raise NoValidAddressesFound( 'Horovod was unable to connect to {service_name} on any ' 'of the following addresses: {addresses}.\n\n' 'One possible cause of this problem is that ' 'horovod currently requires every host to have at ' 'least one routable network interface with the same ' 'name across all of the hosts. ' 'You can run \"ifconfig -a\" ' 'on every host and check for the common ' 'routable interface. ' 'To fix the problem, you can rename interfaces on ' 'Linux.'.format(service_name=service_name, addresses=addresses)) def _probe(self, addresses): result_queue = queue.Queue() threads = [] for intf, intf_addresses in addresses.items(): for addr in intf_addresses: thread = threading.Thread(target=self._probe_one, args=(intf, addr, result_queue)) thread.daemon = True thread.start() threads.append(thread) for t in threads: t.join() result = {} while not result_queue.empty(): intf, addr = result_queue.get() if intf not in result: result[intf] = [] result[intf].append(addr) return result def _probe_one(self, intf, addr, result_queue): for iter in range(self._attempts): sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) sock.settimeout(self._probe_timeout) try: sock.connect(addr) rfile = sock.makefile('rb') wfile = sock.makefile('wb') try: self._wire.write(PingRequest(), wfile) resp = self._wire.read(rfile) if resp.service_name != self._service_name: return if self._match_intf: # Interface name of destination and source must match # since `match_intf` is requested. client_intf_addrs = [x.address for x in psutil.net_if_addrs().get(intf, []) if x.family == socket.AF_INET] if resp.source_address not in client_intf_addrs: if self._verbose >= 2: # Need to find the local interface name whose # address was visible to the target host's server. resp_intf = '' for key in psutil.net_if_addrs().keys(): key_intf_addrs = [x.address for x in psutil.net_if_addrs().get(key, [])] if resp.source_address in key_intf_addrs: resp_intf = key break print('WARNING: Expected to connect the host ' '{addr} using interface ' '{intf}, but reached it on interface ' '{resp_intf}.'.format( addr=str(addr[0])+':'+str(addr[1]), intf=intf, resp_intf=resp_intf)) return result_queue.put((intf, addr)) return finally: rfile.close() wfile.close() except: pass finally: sock.close() def _send_one(self, addr, req): for iter in range(self._attempts): sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) try: sock.connect(addr) rfile = sock.makefile('rb') wfile = sock.makefile('wb') try: self._wire.write(req, wfile) resp = self._wire.read(rfile) return resp finally: rfile.close() wfile.close() except: if iter == self._attempts - 1: # Raise exception on the last retry. raise finally: sock.close() def _send(self, req): # Since all the addresses were vetted, use the first one. addr = list(self._addresses.values())[0][0] return self._send_one(addr, req) def addresses(self): return self._addresses
38.106227
111
0.548496
9ff2ad7e59ce81e8ad8a8369bbf4ce054a667d37
2,580
py
Python
vppy/hough/_hough_lines_kde.py
EvDuijnhoven/vppy
3678e3438730ee56d13f423c7b0307f96afaac42
[ "MIT" ]
null
null
null
vppy/hough/_hough_lines_kde.py
EvDuijnhoven/vppy
3678e3438730ee56d13f423c7b0307f96afaac42
[ "MIT" ]
null
null
null
vppy/hough/_hough_lines_kde.py
EvDuijnhoven/vppy
3678e3438730ee56d13f423c7b0307f96afaac42
[ "MIT" ]
null
null
null
import numpy as np from sklearn.base import BaseEstimator from ._hough_line import HoughLine from typing import List, Tuple class HoughLinesKDE(BaseEstimator): """Computes a KDE (Kernel Density Estimate) for a list of HoughLines""" def __init__(self, shape, beta=5, kde_width=200, kde_height=200): self.shape = shape self.beta = beta self.kde_width = kde_width self.kde_height = kde_height def fit(self, X: List[HoughLine], y=None): # Define the bandwidth relative to the image size bandwidth = 100 * self.beta / max(self.shape) img_height, img_width = self.shape kde = np.zeros((self.kde_height, self.kde_width), dtype=np.float32) # For every HoughLine compute and add its kernel to the total kde for line in X: distance = self._get_distance_matrix(line, bandwidth, img_width, img_height) # Calculate the kernel over the distance matrix kernel = self._epanechnikov_matrix(distance) # Add the weighted value of the kernel to the total kde. kde = np.add(kde, kernel * line.weight) # Get the max index of the kde as the vanishing point y, x = np.unravel_index(kde.argmax(), kde.shape) self.vp_ = self._scale_point(x, y, img_width, img_height) self.kde_ = kde return self def _get_distance_matrix(self, line: HoughLine, bandwidth: float, img_width: int, img_height: int) -> np.ndarray: """Calculates the distance matrix for every point in the grid to the HoughLine""" # Calculate the rho for every point in the matrix, defined by x cos(theta) + y sin(theta) X = np.repeat([np.linspace(0, 1, self.kde_width) * img_width * np.cos(line.theta)], self.kde_height, axis=0) Y = np.transpose( np.repeat([np.linspace(0, 1, self.kde_height) * img_height * np.sin(line.theta)], self.kde_width, axis=0)) # Center every point around rho, smooth using the bandwidth. return (np.add(X, Y) - line.rho) * bandwidth def _scale_point(self, x, y, img_width: int, img_height: int) -> Tuple[int, int]: """Scales points to the size of the image""" return int(np.round((x + 0.5) * img_width / self.kde_width)), int( np.round((y + 0.5) * img_height / self.kde_height)) @staticmethod def _epanechnikov_matrix(distance): """Epanechnikov kernel; https://en.wikipedia.org/wiki/Kernel_(statistics)#Kernel_functions_in_common_use""" return 0.75 * (1 - np.minimum(np.square(distance), 1))
43.728814
118
0.656589
a09b1746539042e1a996d1fff7c0aed7db26a61d
2,797
py
Python
setup.py
CygnusNetworks/stomp.py
1599cbdcf3868989ce204c6eb4fd20448bf4f253
[ "Apache-2.0" ]
null
null
null
setup.py
CygnusNetworks/stomp.py
1599cbdcf3868989ce204c6eb4fd20448bf4f253
[ "Apache-2.0" ]
null
null
null
setup.py
CygnusNetworks/stomp.py
1599cbdcf3868989ce204c6eb4fd20448bf4f253
[ "Apache-2.0" ]
1
2020-03-22T12:55:31.000Z
2020-03-22T12:55:31.000Z
#!/usr/bin/env python from distutils.core import Command from setuptools import setup import logging.config import os import shutil import sys import unittest try: logging.config.fileConfig('stomp.log.conf') except: pass # Import this after configuring logging import stomp class TestCommand(Command): user_options = [('test=', 't', 'specific test to run')] def initialize_options(self): self.test = '*' def finalize_options(self): pass def run(self): try: import coverage cov = coverage.coverage() cov.start() except ImportError: cov = None suite = unittest.TestSuite() if self.test == '*': print('Running all tests') tests = stomp.test.__all__ else: tests = self.test.split(',') import stomp.test for tst in tests: suite.addTests(unittest.TestLoader().loadTestsFromName('stomp.test.%s' % tst)) runner = unittest.TextTestRunner(verbosity=2) res = runner.run(suite) if len(res.errors) > 0 or len(res.failures) > 0: sys.exit(1) if cov: cov.stop() cov.save() cov.html_report(directory='../stomppy-docs/htmlcov') class TestPipInstallCommand(Command): user_options = [] def initialize_options(self): pass def finalize_options(self): pass def run(self): if os.path.exists('tmp'): shutil.rmtree('tmp') os.mkdir('tmp') from virtualenvapi.manage import VirtualEnvironment env = VirtualEnvironment('tmp/scratch') env.install('stomp.py') class DoxygenCommand(Command): user_options = [] def initialize_options(self): pass def finalize_options(self): pass def run(self): os.system('doxygen config.dox') def version(): s = [] for num in stomp.__version__: s.append(str(num)) return '.'.join(s) setup( name='stomp.py', version=version(), description='Python STOMP client, supporting versions 1.0, 1.1 and 1.2 of the protocol', license='Apache', url='https://github.com/jasonrbriggs/stomp.py', author='Jason R Briggs', author_email='jasonrbriggs@gmail.com', platforms=['any'], packages=['stomp', 'stomp.adapter'], cmdclass={'test': TestCommand, 'docs': DoxygenCommand, 'piptest': TestPipInstallCommand}, scripts=['./scripts/stomp'], classifiers=[ 'Development Status :: 5 - Production/Stable', 'Intended Audience :: Developers', 'License :: OSI Approved :: Apache Software License', 'Programming Language :: Python :: 2', 'Programming Language :: Python :: 3' ] )
23.905983
93
0.599571
3902db3f63490fedfe34f5ae153ac21db54de645
3,996
py
Python
syntax practice.py
whitevegagabriel/pygame-blueprint
33fd11c13f8fc85a006891ecd4ad617444999edd
[ "MIT" ]
null
null
null
syntax practice.py
whitevegagabriel/pygame-blueprint
33fd11c13f8fc85a006891ecd4ad617444999edd
[ "MIT" ]
null
null
null
syntax practice.py
whitevegagabriel/pygame-blueprint
33fd11c13f8fc85a006891ecd4ad617444999edd
[ "MIT" ]
null
null
null
import os ##print('hello \t im ben') q = 'if ' self = 'self.' colon = ':' isstand = 'isstanding' isup = 'isup' isdown = 'isdown' isright = 'isright' isleft = 'isleft' checks = [isstand, isup , isdown, isright, isleft] # this should be the action or item to blit display0 = 'win.blit(' path_basic = '' #Edit HERE style_folder = 'chain' + '/' #EDIT HERE paths_plus ='chain_helm' paths = path_basic + style_folder + paths_plus + '/' paths2 = path_basic +'text'+'/' + paths_plus +'.txt' oldname = 'tile' filetype = '.png' x=0 files = 36 div = files / 4 pop = list() while x != files: pop.append(x) x += 1 #print(pop) x = 0 pyg = "pygame.image.load('" f = open(paths2,'w') for char in pop: print(x) if x < 10: imager = str(pop[x]) comb = paths + oldname +'00' + imager + filetype combpy = pyg + paths + '00' + imager + filetype + "'" +")"+"," combnew = paths +'00' + imager + filetype if x == 0: combpy =self + paths_plus + '_up' '=' + '[' + pyg + paths + '00' + imager + filetype + "'" +")"+"," if x ==7: combpy = pyg + paths + '00' + imager + filetype + "'" +")"+"]" if x == 8: combpy = self + paths_plus + '_lft' '=' + '[' + pyg + paths + '00' + imager + filetype + "'" +")"+"," x +=1 elif x >=10: imager = str(pop[x]) combpy = pyg + paths + '0' + imager + filetype + "'"+")"+"," comb = paths + oldname + '0' + imager + filetype combnew = paths + '0' + imager + filetype if x == 15: combpy = pyg + paths + '0' + imager + filetype + "'" +")"+"]" if x == 16: combpy =self + paths_plus + '_down' '=' + '[' + pyg + paths + '0' + imager + filetype + "'" +")"+"," if x == 23: combpy = pyg + paths + '0' + imager + filetype + "'" +")"+"]" if x == 24: combpy = self + paths_plus + '_rt' '=' + '[' + pyg + paths + '0' + imager + filetype + "'" +")"+"]" x+=1 #print(combpy) print(comb) print(combnew) #os.rename(comb,combnew) f.write(combpy) f.write('\n') helpful_notes='4x8: 0-8, 9 - 17, 18-26, 27-36' textpath = 'text' t = [0, 1, 2, 3] tt = [0,1,2,3,4] up = 'up' lft = 'lft' down = 'down' rt = 'rt' stand = 'standing' direction = [up, lft, down, rt, stand] #IF then blits, Next step is to combine multiple files to write out things like hood, shirt, pants ect. for num in tt: if_status = q + self + checks[num] + colon if checks[num] == isup: blits = '\n'+'\t'+display0 + self + paths_plus + '_' + direction[0] +'[self.walkCount//3)]' + ', (' + self + 'x - ' + self + 'CameraX, ' +self + 'y - ' + self+ 'CameraY))'+'\n' elif checks[num] == isleft: blits = '\n'+'\t'+display0 + self + paths_plus + '_' + direction[1] +'[self.walkCount//3)]' + ', (' + self + 'x - ' + self + 'CameraX, ' +self + 'y - ' + self+ 'CameraY))'+'\n' elif checks[num] == isdown: blits = '\n'+'\t'+display0 + self + paths_plus + '_' + direction[2] +'[self.walkCount//3)]' + ', (' + self + 'x - ' + self + 'CameraX, ' +self + 'y - ' + self+ 'CameraY))'+'\n' elif checks[num] == isright: blits ='\n'+ '\t'+display0 + self + paths_plus + '_' + direction[3] +'[self.walkCount//3)]' + ', (' + self + 'x - ' + self + 'CameraX, ' +self + 'y - ' + self+ 'CameraY))'+'\n' elif checks[num] == isstand: blits ='\n'+'\t'+ display0 + self + paths_plus + '_' + direction[4] + '[self.walkCount//3)]' +', (' + self + 'x - ' + self + 'CameraX, ' +self + 'y - ' + self+ 'CameraY))'+'\n' # print(if_status,blits) f.write(if_status) f.write(blits) #BLIT # up lft down rt #win.blit(self.doing_wearing_lft[self.Walkcount //3], (self.x - self.CameraX, self.y - self.CameraY)) for num in t: blits = display0 + self + paths_plus + '_' + direction[num] + ', (' + self + 'x - ' + self + 'CameraX, ' +self + 'y - ' + self+ 'CameraY))' #print(blits) f.close()
30.738462
184
0.50951
0151193feb3406ccd7e6d9336e9f572f0ddef308
1,487
py
Python
src/archive/data_set.py
physicsgoddess1972/Precipitable-Water-Model
5280067fac90d1ed6dfe2a2ad589f444d81f95b3
[ "MIT" ]
2
2019-04-07T21:26:18.000Z
2022-03-09T22:41:56.000Z
src/archive/data_set.py
physicsgoddess1972/Precipitable-Water-Model
5280067fac90d1ed6dfe2a2ad589f444d81f95b3
[ "MIT" ]
25
2019-06-27T19:27:08.000Z
2022-02-20T17:34:13.000Z
src/archive/data_set.py
physicsgoddess1972/Precipitable-Water-Model
5280067fac90d1ed6dfe2a2ad589f444d81f95b3
[ "MIT" ]
8
2019-04-07T20:09:46.000Z
2021-06-29T21:46:58.000Z
from numpy import * fname1 = "../../data/modtran/temp_offset_wsv_half/modtran-5.csv" fname2 = "../../data/modtran/temp_offset_wsv_half/modtran0.csv" fname3 = "../../data/modtran/temp_offset_wsv_half/modtran+5.csv" sname = "../../data/modtran/temp_offset_wsv_half/modtran.csv" # fname1 = "../../data/modtran/ir_band/flir_low.csv" # fname2 = "../../data/modtran/ir_band/flir_high.csv" # fname3 = "../../data/modtran/ir_band/ames_low.csv" # fname4 = "../../data/modtran/ir_band/ames_high.csv" # sname = "../../data/modtran/ir_band/modtran.csv" wl = loadtxt(fname1, delimiter=",", unpack=True, skiprows=3)[1] rd1 = loadtxt(fname1, delimiter=",", unpack=True, skiprows=3)[3] rd2 = loadtxt(fname2, delimiter=",", unpack=True, skiprows=3)[3] rd3 = loadtxt(fname3, delimiter=",", unpack=True, skiprows=3)[3] # rd4 = loadtxt(fname4, delimiter=",", unpack=True, skiprows=3)[3] # rd5 = loadtxt(fname5, delimiter=",", unpack=True, skiprows=3)[3] f = open(sname, "w") # f.write("wavelength,Radiance (WVS 0.25),Radiance (WVS 0.5),Radiance (WVS 1.0),Radiance (WVS 1.5),Radiance (WVS 2.0)\n") f.write("wavelength, Radiance (T-5), Radiance (T), Radiance (T+5)\n") for i in range(0, len(wl)): f.write(str(wl[i])) f.write(",") # f.write(str(rd5[i])) # f.write(",") f.write(str(rd1[i])) f.write(",") f.write(str(rd2[i])) f.write(",") f.write(str(rd3[i])) # f.write(",") # f.write(str(rd4[i])) f.write("\n") f.close()
39.131579
122
0.62273
47c03814378ef1adbc73d4f74bc2da6c25fc4c48
4,892
py
Python
python3-virtualenv/lib/python3.8/site-packages/setuptools/command/setopt.py
bbalkaransingh23888/OrientationHack
7eae6cce1226112c000ea8a175f6dc5a82ee0ac2
[ "MIT" ]
null
null
null
python3-virtualenv/lib/python3.8/site-packages/setuptools/command/setopt.py
bbalkaransingh23888/OrientationHack
7eae6cce1226112c000ea8a175f6dc5a82ee0ac2
[ "MIT" ]
null
null
null
python3-virtualenv/lib/python3.8/site-packages/setuptools/command/setopt.py
bbalkaransingh23888/OrientationHack
7eae6cce1226112c000ea8a175f6dc5a82ee0ac2
[ "MIT" ]
null
null
null
from distutils.util import convert_path from distutils import log from distutils.errors import DistutilsOptionError import distutils import os import configparser from setuptools import Command __all__ = ["config_file", "edit_config", "option_base", "setopt"] def config_file(kind="local"): """Get the filename of the distutils, local, global, or per-user config `kind` must be one of "local", "global", or "user" """ if kind == "local": return "setup.cfg" if kind == "global": return os.path.join(os.path.dirname(distutils.__file__), "distutils.cfg") if kind == "user": dot = os.name == "posix" and "." or "" return os.path.expanduser(convert_path("~/%spydistutils.cfg" % dot)) raise ValueError("config_file() type must be 'local', 'global', or 'user'", kind) def edit_config(filename, settings, dry_run=False): """Edit a configuration file to include `settings` `settings` is a dictionary of dictionaries or ``None`` values, keyed by command/section name. A ``None`` value means to delete the entire section, while a dictionary lists settings to be changed or deleted in that section. A setting of ``None`` means to delete that setting. """ log.debug("Reading configuration from %s", filename) opts = configparser.RawConfigParser() opts.read([filename]) for section, options in settings.items(): if options is None: log.info("Deleting section [%s] from %s", section, filename) opts.remove_section(section) else: if not opts.has_section(section): log.debug("Adding new section [%s] to %s", section, filename) opts.add_section(section) for option, value in options.items(): if value is None: log.debug("Deleting %s.%s from %s", section, option, filename) opts.remove_option(section, option) if not opts.options(section): log.info( "Deleting empty [%s] section from %s", section, filename ) opts.remove_section(section) else: log.debug( "Setting %s.%s to %r in %s", section, option, value, filename ) opts.set(section, option, value) log.info("Writing %s", filename) if not dry_run: with open(filename, "w") as f: opts.write(f) class option_base(Command): """Abstract base class for commands that mess with config files""" user_options = [ ("global-config", "g", "save options to the site-wide distutils.cfg file"), ("user-config", "u", "save options to the current user's pydistutils.cfg file"), ("filename=", "f", "configuration file to use (default=setup.cfg)"), ] boolean_options = [ "global-config", "user-config", ] def initialize_options(self): self.global_config = None self.user_config = None self.filename = None def finalize_options(self): filenames = [] if self.global_config: filenames.append(config_file("global")) if self.user_config: filenames.append(config_file("user")) if self.filename is not None: filenames.append(self.filename) if not filenames: filenames.append(config_file("local")) if len(filenames) > 1: raise DistutilsOptionError( "Must specify only one configuration file option", filenames ) (self.filename,) = filenames class setopt(option_base): """Save command-line options to a file""" description = "set an option in setup.cfg or another config file" user_options = [ ("command=", "c", "command to set an option for"), ("option=", "o", "option to set"), ("set-value=", "s", "value of the option"), ("remove", "r", "remove (unset) the value"), ] + option_base.user_options boolean_options = option_base.boolean_options + ["remove"] def initialize_options(self): option_base.initialize_options(self) self.command = None self.option = None self.set_value = None self.remove = None def finalize_options(self): option_base.finalize_options(self) if self.command is None or self.option is None: raise DistutilsOptionError("Must specify --command *and* --option") if self.set_value is None and not self.remove: raise DistutilsOptionError("Must specify --set-value or --remove") def run(self): edit_config( self.filename, {self.command: {self.option.replace("-", "_"): self.set_value}}, self.dry_run, )
35.449275
88
0.596688
79b859a848e8ff3f32eb90f9b2af4ad4fdf36f2d
2,634
py
Python
raiden_contracts/tests/unit/test_settle_timeout_invariant.py
karlb/raiden-contracts
944eb6aa4cc0189caab5b735b46bb6fb72ad5658
[ "MIT" ]
null
null
null
raiden_contracts/tests/unit/test_settle_timeout_invariant.py
karlb/raiden-contracts
944eb6aa4cc0189caab5b735b46bb6fb72ad5658
[ "MIT" ]
null
null
null
raiden_contracts/tests/unit/test_settle_timeout_invariant.py
karlb/raiden-contracts
944eb6aa4cc0189caab5b735b46bb6fb72ad5658
[ "MIT" ]
null
null
null
from typing import Callable import pytest from eth_tester.exceptions import TransactionFailed from web3 import Web3 from web3.contract import Contract from raiden_contracts.constants import TEST_SETTLE_TIMEOUT_MAX, TEST_SETTLE_TIMEOUT_MIN from raiden_contracts.tests.utils import LOCKSROOT_OF_NO_LOCKS, call_and_transact, fake_bytes from raiden_contracts.tests.utils.blockchain import mine_blocks def test_settle_timeout_inrange( token_network: Contract, get_accounts: Callable, web3: Web3, create_close_signature_for_no_balance_proof: Callable, ) -> None: """The TokenNetwork constructor must enforce that settle timeout is in the valid range. Also asserts that the constants.py and the netting channel contract values are synched. """ (A, B) = get_accounts(2) small_settle_timeout = TEST_SETTLE_TIMEOUT_MIN - 1 large_settle_timeout = TEST_SETTLE_TIMEOUT_MAX + 1 with pytest.raises(TransactionFailed): token_network.functions.openChannel(A, B, small_settle_timeout).call() with pytest.raises(TransactionFailed): token_network.functions.openChannel(A, B, large_settle_timeout).call() call_and_transact(token_network.functions.openChannel(A, B, TEST_SETTLE_TIMEOUT_MIN)) channel_identifier = token_network.functions.getChannelIdentifier(A, B).call() (settle_block_number, _) = token_network.functions.getChannelInfo( channel_identifier, A, B ).call() assert settle_block_number == TEST_SETTLE_TIMEOUT_MIN closing_sig = create_close_signature_for_no_balance_proof(A, channel_identifier) call_and_transact( token_network.functions.closeChannel( channel_identifier=channel_identifier, non_closing_participant=B, closing_participant=A, balance_hash=fake_bytes(32), nonce=0, additional_hash=fake_bytes(32), non_closing_signature=fake_bytes(65), closing_signature=closing_sig, ), {"from": A}, ) mine_blocks(web3, TEST_SETTLE_TIMEOUT_MIN + 1) call_and_transact( token_network.functions.settleChannel( channel_identifier, A, 0, 0, LOCKSROOT_OF_NO_LOCKS, B, 0, 0, LOCKSROOT_OF_NO_LOCKS ), {"from": A}, ) call_and_transact(token_network.functions.openChannel(A, B, TEST_SETTLE_TIMEOUT_MAX)) channel_identifier = token_network.functions.getChannelIdentifier(A, B).call() (settle_block_number, _) = token_network.functions.getChannelInfo( channel_identifier, A, B ).call() assert settle_block_number == TEST_SETTLE_TIMEOUT_MAX
36.583333
94
0.738421
9568b329da27278776ec83dd156692a1f6bf585d
17,521
py
Python
sdk/python/lib/pulumi/output.py
marcusturewicz/pulumi
fbf391fd4bf76142ab10160a8679fb0986435bdf
[ "Apache-2.0" ]
null
null
null
sdk/python/lib/pulumi/output.py
marcusturewicz/pulumi
fbf391fd4bf76142ab10160a8679fb0986435bdf
[ "Apache-2.0" ]
null
null
null
sdk/python/lib/pulumi/output.py
marcusturewicz/pulumi
fbf391fd4bf76142ab10160a8679fb0986435bdf
[ "Apache-2.0" ]
null
null
null
# Copyright 2016-2018, Pulumi Corporation. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import asyncio from functools import reduce from inspect import isawaitable from typing import ( TypeVar, Generic, Set, Callable, Awaitable, Union, cast, Mapping, Any, List, Optional, TYPE_CHECKING ) from . import runtime from .runtime import rpc if TYPE_CHECKING: from .resource import Resource T = TypeVar('T') U = TypeVar('U') Input = Union[T, Awaitable[T], 'Output[T]'] Inputs = Mapping[str, Input[Any]] class Output(Generic[T]): """ Output helps encode the relationship between Resources in a Pulumi application. Specifically an Output holds onto a piece of Data and the Resource it was generated from. An Output value can then be provided when constructing new Resources, allowing that new Resource to know both the value as well as the Resource the value came from. This allows for a precise 'Resource dependency graph' to be created, which properly tracks the relationship between resources. """ _is_known: Awaitable[bool] """ Whether or not this 'Output' should actually perform .apply calls. During a preview, an Output value may not be known (because it would have to actually be computed by doing an 'update'). In that case, we don't want to perform any .apply calls as the callbacks may not expect an undefined value. So, instead, we just transition to another Output value that itself knows it should not perform .apply calls. """ _is_secret: Awaitable[bool] """ Whether or not this 'Output' should be treated as containing secret data. Secret outputs are tagged when flowing across the RPC interface to the resource monitor, such that when they are persisted to disk in our state file, they are encrypted instead of being in plaintext. """ _future: Awaitable[T] """ Future that actually produces the concrete value of this output. """ _resources: Awaitable[Set['Resource']] """ The list of resources that this output value depends on. """ def __init__(self, resources: Union[Awaitable[Set['Resource']], Set['Resource']], future: Awaitable[T], is_known: Awaitable[bool], is_secret: Optional[Awaitable[bool]] = None) -> None: is_known = asyncio.ensure_future(is_known) future = asyncio.ensure_future(future) async def is_value_known() -> bool: return await is_known and not contains_unknowns(await future) if isinstance(resources, set): self._resources = asyncio.Future() self._resources.set_result(resources) else: self._resources = asyncio.ensure_future(resources) self._future = future self._is_known = asyncio.ensure_future(is_value_known()) if is_secret is not None: self._is_secret = asyncio.ensure_future(is_secret) else: self._is_secret = asyncio.Future() self._is_secret.set_result(False) # Private implementation details - do not document. def resources(self) -> Awaitable[Set['Resource']]: return self._resources def future(self, with_unknowns: Optional[bool] = None) -> Awaitable[Optional[T]]: # If the caller did not explicitly ask to see unknown values and the value of this output contains unnkowns, # return None. This preserves compatibility with earlier versios of the Pulumi SDK. async def get_value() -> Optional[T]: val = await self._future return None if not with_unknowns and contains_unknowns(val) else val return asyncio.ensure_future(get_value()) def is_known(self) -> Awaitable[bool]: return self._is_known def is_secret(self) -> Awaitable[bool]: return self._is_secret # End private implementation details. def apply(self, func: Callable[[T], Input[U]], run_with_unknowns: Optional[bool] = None) -> 'Output[U]': """ Transforms the data of the output with the provided func. The result remains a Output so that dependent resources can be properly tracked. 'func' is not allowed to make resources. 'func' can return other Outputs. This can be handy if you have a Output<SomeVal> and you want to get a transitive dependency of it. This function will be called during execution of a 'pulumi up' request. It may not run during 'pulumi preview' (as the values of resources are of course may not be known then). :param Callable[[T],Input[U]] func: A function that will, given this Output's value, transform the value to an Input of some kind, where an Input is either a prompt value, a Future, or another Output of the given type. :return: A transformed Output obtained from running the transformation function on this Output's value. :rtype: Output[U] """ result_resources: asyncio.Future[Set['Resource']] = asyncio.Future() result_is_known: asyncio.Future[bool] = asyncio.Future() result_is_secret: asyncio.Future[bool] = asyncio.Future() # The "run" coroutine actually runs the apply. async def run() -> U: try: # Await this output's details. resources = await self._resources is_known = await self._is_known is_secret = await self._is_secret value = await self._future if runtime.is_dry_run(): # During previews only perform the apply if the engine was able to give us an actual value for this # Output or if the caller is able to tolerate unknown values. apply_during_preview = is_known or run_with_unknowns if not apply_during_preview: # We didn't actually run the function, our new Output is definitely # **not** known. result_resources.set_result(resources) result_is_known.set_result(False) result_is_secret.set_result(is_secret) return cast(U, None) # If we are running with unknown values and the value is explicitly unknown but does not actually # contain any unknown values, collapse its value to the unknown value. This ensures that callbacks # that expect to see unknowns during preview in outputs that are not known will always do so. if not is_known and run_with_unknowns and not contains_unknowns(value): value = cast(T, UNKNOWN) transformed: Input[U] = func(value) # Transformed is an Input, meaning there are three cases: # 1. transformed is an Output[U] if isinstance(transformed, Output): transformed_as_output = cast(Output[U], transformed) # Forward along the inner output's _resources, _is_known and _is_secret values. transformed_resources = await transformed_as_output._resources result_resources.set_result(resources | transformed_resources) result_is_known.set_result(await transformed_as_output._is_known) result_is_secret.set_result(await transformed_as_output._is_secret or is_secret) return await transformed.future(with_unknowns=True) # 2. transformed is an Awaitable[U] if isawaitable(transformed): # Since transformed is not an Output, it is known. result_resources.set_result(resources) result_is_known.set_result(True) result_is_secret.set_result(is_secret) return await cast(Awaitable[U], transformed) # 3. transformed is U. It is trivially known. result_resources.set_result(resources) result_is_known.set_result(True) result_is_secret.set_result(is_secret) return cast(U, transformed) finally: # Always resolve the future if it hasn't been done already. if not result_is_known.done(): # Try and set the result. This might fail if we're shutting down, # so swallow that error if that occurs. try: result_resources.set_result(resources) result_is_known.set_result(False) result_is_secret.set_result(False) except RuntimeError: pass run_fut = asyncio.ensure_future(run()) return Output(result_resources, run_fut, result_is_known, result_is_secret) def __getattr__(self, item: str) -> 'Output[Any]': # type: ignore """ Syntax sugar for retrieving attributes off of outputs. :param str item: An attribute name. :return: An Output of this Output's underlying value's property with the given name. :rtype: Output[Any] """ return self.apply(lambda v: UNKNOWN if isinstance(v, Unknown) else getattr(v, item), True) def __getitem__(self, key: Any) -> 'Output[Any]': """ Syntax sugar for looking up attributes dynamically off of outputs. :param Any key: Key for the attribute dictionary. :return: An Output of this Output's underlying value, keyed with the given key as if it were a dictionary. :rtype: Output[Any] """ return self.apply(lambda v: UNKNOWN if isinstance(v, Unknown) else cast(Any, v)[key], True) @staticmethod def from_input(val: Input[T]) -> 'Output[T]': """ Takes an Input value and produces an Output value from it, deeply unwrapping nested Input values through nested lists and dicts. Nested objects of other types (including Resources) are not deeply unwrapped. :param Input[T] val: An Input to be converted to an Output. :return: A deeply-unwrapped Output that is guaranteed to not contain any Input values. :rtype: Output[T] """ # Is it an output already? Recurse into the value contained within it. if isinstance(val, Output): return val.apply(Output.from_input, True) # Is a dict or list? Recurse into the values within them. if isinstance(val, dict): # Since Output.all works on lists early, serialize this dictionary into a list of lists first. # Once we have a output of the list of properties, we can use an apply to re-hydrate it back into a dict. dict_items = [[k, Output.from_input(v)] for k, v in val.items()] # type checker doesn't like returing a Dict in the apply callback fn = cast(Callable[[List[Any]], T], lambda props: {k: v for k, v in props}) # pylint: disable=unnecessary-comprehension return Output.all(*dict_items).apply(fn, True) if isinstance(val, list): list_items: List[Union[Any, Awaitable[Any], Output[Any]]] = [Output.from_input(v) for v in val] # invariant: http://mypy.readthedocs.io/en/latest/common_issues.html#variance output: Output[T] = cast(Output[T], Output.all(*list(list_items))) # type: ignore return output # If it's not an output, list, or dict, it must be known and not secret is_known_fut: asyncio.Future[bool] = asyncio.Future() is_secret_fut: asyncio.Future[bool] = asyncio.Future() is_known_fut.set_result(True) is_secret_fut.set_result(False) # Is it awaitable? If so, schedule it for execution and use the resulting future # as the value future for a new output. if isawaitable(val): val_fut = cast(asyncio.Future, val) promise_output = Output(set(), asyncio.ensure_future(val_fut), is_known_fut, is_secret_fut) return promise_output.apply(Output.from_input, True) # Is it a prompt value? Set up a new resolved future and use that as the value future. value_fut: asyncio.Future[Any] = asyncio.Future() value_fut.set_result(val) return Output(set(), value_fut, is_known_fut, is_secret_fut) @staticmethod def secret(val: Input[T]) -> 'Output[T]': """ Takes an Input value and produces an Output value from it, deeply unwrapping nested Input values as necessary given the type. It also marks the returned Output as a secret, so its contents will be persisted in an encrypted form in state files. :param Input[T] val: An Input to be converted to an Secret Output. :return: A deeply-unwrapped Output that is guaranteed to not contain any Input values and is marked as a Secret. :rtype: Output[T] """ o = Output.from_input(val) is_secret: asyncio.Future[bool] = asyncio.Future() is_secret.set_result(True) return Output(o._resources, o._future, o._is_known, is_secret) @staticmethod def all(*args: Input[T]) -> 'Output[List[T]]': """ Produces an Output of Lists from a List of Inputs. This function can be used to combine multiple, separate Inputs into a single Output which can then be used as the target of `apply`. Resource dependencies are preserved in the returned Output. :param Input[T] args: A list of Inputs to convert. :return: An output of lists, converted from an Input to prompt values. :rtype: Output[List[T]] """ # Three asynchronous helper functions to assist in the implementation: # is_known, which returns True if all of the input's values are known, # and false if any of them are not known, async def is_known(outputs): is_known_futures = list(map(lambda o: o._is_known, outputs)) each_is_known = await asyncio.gather(*is_known_futures) return all(each_is_known) # is_secret, which returns True if any of the input values are secret, and # false if none of them are secret. async def is_secret(outputs): is_secret_futures = list(map(lambda o: o._is_secret, outputs)) each_is_secret = await asyncio.gather(*is_secret_futures) return any(each_is_secret) async def get_resources(outputs): resources_futures = list(map(lambda o: o._resources, outputs)) resources_agg = await asyncio.gather(*resources_futures) # Merge the list of resource dependencies across all inputs. return reduce(lambda acc, r: acc.union(r), resources_agg, set()) # gather_futures, which aggregates the list of futures in each input to a future of a list. async def gather_futures(outputs): value_futures = list(map(lambda o: asyncio.ensure_future(o.future(with_unknowns=True)), outputs)) return await asyncio.gather(*value_futures) from_input = cast(Callable[[Union[T, Awaitable[T], Output[T]]], Output[T]], Output.from_input) # First, map all inputs to outputs using `from_input`. all_outputs = list(map(from_input, args)) # Aggregate the list of futures into a future of lists. value_futures = asyncio.ensure_future(gather_futures(all_outputs)) # Aggregate whether or not this output is known. resources_futures = asyncio.ensure_future(get_resources(all_outputs)) known_futures = asyncio.ensure_future(is_known(all_outputs)) secret_futures = asyncio.ensure_future(is_secret(all_outputs)) return Output(resources_futures, value_futures, known_futures, secret_futures) @staticmethod def concat(*args: Input[str]) -> 'Output[str]': """ Concatenates a collection of Input[str] into a single Output[str]. This function takes a sequence of Input[str], stringifies each, and concatenates all values into one final string. This can be used like so: url = Output.concat("http://", server.hostname, ":", loadBalancer.port) :param Input[str] args: A list of string Inputs to concatenate. :return: A concatenated output string. :rtype: Output[str] """ transformed_items: List[Input[Any]] = [Output.from_input(v) for v in args] # invariant http://mypy.readthedocs.io/en/latest/common_issues.html#variance return Output.all(*transformed_items).apply("".join) # type: ignore class Unknown: """ Unknown represents a value that is unknown. """ def __init__(self): pass UNKNOWN = Unknown() """ UNKNOWN is the singleton unknown value. """ def contains_unknowns(val: Any) -> bool: return rpc.contains_unknowns(val)
45.157216
131
0.649335
cfcea27e4074c3343fc2cbd61cd878b415c3865d
8,234
py
Python
api/vimeoapi.py
atsuchiy11/api-fastapi-video
f3f7e35d279cf5b64ee22055296baf772689b8e7
[ "MIT" ]
null
null
null
api/vimeoapi.py
atsuchiy11/api-fastapi-video
f3f7e35d279cf5b64ee22055296baf772689b8e7
[ "MIT" ]
null
null
null
api/vimeoapi.py
atsuchiy11/api-fastapi-video
f3f7e35d279cf5b64ee22055296baf772689b8e7
[ "MIT" ]
null
null
null
import vimeo import requests import urllib.parse from requests import HTTPError import os # from os.path import join, dirname from dotenv import load_dotenv from pprint import pprint # env_path = join(dirname(__file__), "../.env") load_dotenv(override=True) def create_vimeo_client(): """create Vimeo client""" return vimeo.VimeoClient( token=os.environ.get("VIMEO_TOKEN_PROD"), key=os.environ.get("VIMEO_KEY_PROD"), secret=os.environ.get("VIMEO_SECRET_PROD"), ) def about_me(client): res = client.get("/me") pprint(res.json()) # OK def get_video_from_vimeo(client, video_id): """Get specified video from VimeoAPI""" params = { "fields": "uri,name,duration,stats,privacy,embed.html,pictures.sizes", } query_params = urllib.parse.urlencode(params) try: res = client.get(f"/videos/{video_id}?{query_params}") res.raise_for_status() res_json = res.json() # sort data = {} data["uri"] = res_json.get("uri", None) data["name"] = res_json.get("name", None) data["duration"] = res_json.get("duration", 0) data["stats"] = res_json.get("stats").get("plays", 0) # data["privacy"] = res_json.get("privacy").get("view", None) data["html"] = res_json.get("embed").get("html") pictures = res_json.get("pictures").get("sizes") *_, max_size = pictures data["thumbnail"] = max_size.get("link") return data except HTTPError as err: raise err except requests.exceptions.RequestException as err: raise err # OK def get_upload_url(client, file): """Get upload URL for vimeo""" preset_id = 120971641 try: # get upload URL res = client.post( "/me/videos", data={ "name": file.name, "description": file.description, "locale": "ja", "privacy": {"download": False, "view": "disable"}, "upload": {"approach": "tus", "size": str(file.size)}, }, ) res_parsed = res.json() pprint(res_parsed) res_filtered = {} res_filtered["uri"] = res_parsed.get("uri", "") res_filtered["name"] = res_parsed.get("name", "") res_filtered["type"] = res_parsed.get("type", "") res_filtered["description"] = res_parsed.get("description", "") res_filtered["link"] = res_parsed.get("link", "") if (upload := res_parsed.get("upload", None)) is None: res_filtered["upload_link"] = "" else: res_filtered["upload_link"] = upload.get("upload_link", "") # allow domain client.put(res_parsed["uri"] + "/privacy/domains/localhost:3000") client.put(res_parsed["uri"] + "/privacy/domains/prime-studio.vercel.app") client.patch(res_parsed["uri"], data={"privacy": {"embed": "whitelist"}}) # append embed presets client.put(res_parsed["uri"] + f"/presets/{preset_id}") return res_filtered except Exception as err: print(err) # OK def get_upload_status(client, video_id): """Get status for upload video to vimeo""" uri = f"/videos/{video_id}" res = client.get(uri + "?fields=transcode.status").json() if res["transcode"]["status"] == "complete": print("Your video finished transcoding.") elif res["transcode"]["status"] == "in_progress": print("Your video is still transcoding.") else: print("Your video encountered an error during transcoding.") return {"transcode_status": res["transcode"]["status"]} ### def get_total(client): params = {"fields": "total"} query_params = urllib.parse.urlencode(params) try: res = client.get(f"/me/videos?{query_params}") # res.rasie_for_status() res_json = res.json() return res_json except HTTPError as err: raise err except requests.exceptions.RequestException as err: raise err def get_videos_from_vimeo_async(client, chunk, page): params = { "page": page, "per_page": chunk, "fields": "uri,name,duration,stats,privacy,embed.html,pictures.sizes", } query_params = urllib.parse.urlencode(params) print(f"getting videos: {page}") try: res = client.get(f"/me/videos?{query_params}") # res.rasie_for_status() res_json = res.json() print(f"got videos: {page}") api_response = {} api_response["total"] = res_json.get("total", None) api_response["data"] = [] for d in res_json.get("data", []): _d = {} _d["uri"] = d.get("uri", None) _d["name"] = d.get("name", None) _d["duration"] = d.get("duration", None) _d["stats"] = d.get("stats", {}) _d["privacy"] = {} _d["privacy"]["view"] = d.get("privacy", {}).get("view", None) _d["html"] = d.get("embed", {}).get("html", None) _d["thumbnail"] = {} if (pictures := d.get("pictures", {}).get("sizes", None)) is not None: *_, max_size = pictures _d["thumbnail"] = max_size api_response["data"].append(_d) return api_response except HTTPError as err: raise err except requests.exceptions.RequestException as err: raise err def get_videos_from_vimeo(client, all, page): """Get videos from VimeoAPI""" per_page = 100 videos = {"total": 0, "data": []} def getter(page, per_page, videos): params = { "page": page, "per_page": per_page, "fields": "uri,name,duration,stats,privacy,embed.html,pictures.sizes", } query_params = urllib.parse.urlencode(params) try: res = client.get(f"/me/videos?{query_params}") res.raise_for_status() res_json = res.json() videos["data"] += res_json["data"] videos["total"] = res_json["total"] # 再帰しない if not all: return videos # 再帰する if int(res_json.get("total", 0)) - (per_page * int(page)) > 0: page = int(page) + 1 query_params = urllib.parse.urlencode(params) getter(page, per_page, videos) return videos except HTTPError as err: raise err except requests.exceptions.RequestException as err: raise err try: vimeo_json = getter(page, per_page, videos) except HTTPError as err: raise err except requests.exceptions.RequestException as err: raise err api_response = {} api_response["total"] = vimeo_json.get("total", None) api_response["data"] = [] for d in vimeo_json.get("data", []): _d = {} _d["uri"] = d.get("uri", None) _d["name"] = d.get("name", None) _d["duration"] = d.get("duration", None) _d["stats"] = d.get("stats", {}) _d["privacy"] = {} _d["privacy"]["view"] = d.get("privacy", {}).get("view", None) _d["html"] = d.get("embed", {}).get("html", None) _d["thumbnail"] = {} if (pictures := d.get("pictures", {}).get("sizes", None)) is not None: *_, max_size = pictures _d["thumbnail"] = max_size api_response["data"].append(_d) return api_response def upload_thumbnail(client, video_id, tmp_path): """Upload thumbnail to Vimeo""" try: res = client.upload_picture(f"/videos/{video_id}", tmp_path, activate=True) return res except HTTPError as err: print("HTTPError", err) raise err except requests.exceptions.RequestException as err: print(err) raise err except BaseException as err: print("BaseException", err) raise err except Exception as err: print("Exception", err) raise (err) if __name__ == "__main__": """Run locally""" client = create_vimeo_client() try: # get_videos_from_vimeo(client) upload_thumbnail(client) except BaseException as err: raise err
30.609665
83
0.568861
5bc960776f57727dd057c02268fa04baf971a275
99
py
Python
L15:Adding and Blending Images/add.py
animeshsrivastava24/OPEN_CV
cee2a4ffbc738a282e280ad531d7beb1ba476ad6
[ "MIT" ]
9
2017-06-08T16:53:43.000Z
2021-05-18T11:15:03.000Z
L15:Adding and Blending Images/add.py
animeshsrivastava24/OPEN_CV
cee2a4ffbc738a282e280ad531d7beb1ba476ad6
[ "MIT" ]
null
null
null
L15:Adding and Blending Images/add.py
animeshsrivastava24/OPEN_CV
cee2a4ffbc738a282e280ad531d7beb1ba476ad6
[ "MIT" ]
12
2018-03-15T11:15:40.000Z
2021-01-28T20:43:58.000Z
import numpy as np import cv2 x = np.uint8([250]) y = np.uint8([10]) print cv2.add(x,y) print x+y
12.375
19
0.656566
a347f437390b8185fef80b7044037b1448ad33f3
5,173
py
Python
configs/ruby/AMD_Base_Constructor.py
He-Liu-ooo/Computer-Architecture-THUEE-2022-spring-
9d36aaacbc7eea357608524113bec97bae2ea229
[ "BSD-3-Clause" ]
16
2020-09-24T00:17:36.000Z
2021-08-12T06:11:52.000Z
configs/ruby/AMD_Base_Constructor.py
He-Liu-ooo/Computer-Architecture-THUEE-2022-spring-
9d36aaacbc7eea357608524113bec97bae2ea229
[ "BSD-3-Clause" ]
5
2021-01-27T23:09:06.000Z
2022-01-07T03:19:39.000Z
configs/ruby/AMD_Base_Constructor.py
He-Liu-ooo/Computer-Architecture-THUEE-2022-spring-
9d36aaacbc7eea357608524113bec97bae2ea229
[ "BSD-3-Clause" ]
15
2020-11-18T00:15:28.000Z
2021-12-12T03:18:34.000Z
# Copyright (c) 2015-2017 Advanced Micro Devices, Inc. # All rights reserved. # # For use for simulation and test purposes only # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from this # software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. import math import m5 from m5.objects import * from m5.defines import buildEnv from m5.util import addToPath, convert from .CntrlBase import * addToPath('../') from topologies.Cluster import Cluster # # Note: the L1 Cache latency is only used by the sequencer on fast path hits # class L1Cache(RubyCache): latency = 1 resourceStalls = False def create(self, size, assoc, options): self.size = MemorySize(size) self.assoc = assoc self.replacement_policy = TreePLRURP() # # Note: the L2 Cache latency is not currently used # class L2Cache(RubyCache): latency = 10 resourceStalls = False def create(self, size, assoc, options): self.size = MemorySize(size) self.assoc = assoc self.replacement_policy = TreePLRURP() class CPCntrl(AMD_Base_Controller, CntrlBase): def create(self, options, ruby_system, system): self.version = self.versionCount() self.cntrl_id = self.cntrlCount() self.L1Icache = L1Cache() self.L1Icache.create(options.l1i_size, options.l1i_assoc, options) self.L1D0cache = L1Cache() self.L1D0cache.create(options.l1d_size, options.l1d_assoc, options) self.L1D1cache = L1Cache() self.L1D1cache.create(options.l1d_size, options.l1d_assoc, options) self.L2cache = L2Cache() self.L2cache.create(options.l2_size, options.l2_assoc, options) self.sequencer = RubySequencer() self.sequencer.version = self.seqCount() self.sequencer.icache = self.L1Icache self.sequencer.dcache = self.L1D0cache self.sequencer.ruby_system = ruby_system self.sequencer.coreid = 0 self.sequencer.is_cpu_sequencer = True self.sequencer1 = RubySequencer() self.sequencer1.version = self.seqCount() self.sequencer1.icache = self.L1Icache self.sequencer1.dcache = self.L1D1cache self.sequencer1.ruby_system = ruby_system self.sequencer1.coreid = 1 self.sequencer1.is_cpu_sequencer = True self.issue_latency = options.cpu_to_dir_latency self.send_evictions = send_evicts(options) self.ruby_system = ruby_system if options.recycle_latency: self.recycle_latency = options.recycle_latency def define_options(parser): parser.add_option("--cpu-to-dir-latency", type="int", default=15) def construct(options, system, ruby_system): if (buildEnv['PROTOCOL'] != 'GPU_VIPER' or buildEnv['PROTOCOL'] != 'GPU_VIPER_Region' or buildEnv['PROTOCOL'] != 'GPU_VIPER_Baseline'): panic("This script requires VIPER based protocols \ to be built.") cpu_sequencers = [] cpuCluster = None cpuCluster = Cluster(name="CPU Cluster", extBW = 8, intBW=8) # 16 GB/s for i in range((options.num_cpus + 1) // 2): cp_cntrl = CPCntrl() cp_cntrl.create(options, ruby_system, system) # Connect the CP controllers to the ruby network cp_cntrl.requestFromCore = ruby_system.network.slave cp_cntrl.responseFromCore = ruby_system.network.slave cp_cntrl.unblockFromCore = ruby_system.network.slave cp_cntrl.probeToCore = ruby_system.network.master cp_cntrl.responseToCore = ruby_system.network.master exec("system.cp_cntrl%d = cp_cntrl" % i) # # Add controllers and sequencers to the appropriate lists # cpu_sequencers.extend([cp_cntrl.sequencer, cp_cntrl.sequencer1]) cpuCluster.add(cp_cntrl) return cpu_sequencers, cpuCluster
38.604478
78
0.714672
314ceeb981c2767361e99f528ba33b693d1a8faf
3,506
py
Python
GMM/segment.py
zzhmark/insitu-GMM-on-umap
01f003475a9c82f98aee5aab6af874732d3049bb
[ "MIT" ]
null
null
null
GMM/segment.py
zzhmark/insitu-GMM-on-umap
01f003475a9c82f98aee5aab6af874732d3049bb
[ "MIT" ]
null
null
null
GMM/segment.py
zzhmark/insitu-GMM-on-umap
01f003475a9c82f98aee5aab6af874732d3049bb
[ "MIT" ]
null
null
null
import numpy as np from typing import Tuple, List from sklearn.mixture import GaussianMixture, BayesianGaussianMixture import pandas as pd def gmm(data: np.ndarray, n: int, method: str = 'default') -> \ Tuple[List[int], List[int]]: """ :param data: list of input :param n: number of components :param method: 'default' or 'bayesian' :return: (labels, means) """ # To avoid error, the number of components should be # no more than the length of input data. noc = min(len(data), n) if method.lower() == 'bayesian': model = BayesianGaussianMixture(n_components=noc, random_state=123) model.fit(data) else: model = GaussianMixture(n_components=noc, random_state=123) model.fit(data) return model.predict(data), model.means_ def global_gmm(expr: np.ndarray, n: int): """ :param expr: a list of values representing expression :param n: number of components :return: (labels, means table) Solve GMM for the heat map, iteratively find the minimalist mean of GMM models and separate the corresponding points. """ # Down sample the images and masks to reduce calculation. label_out = np.zeros(expr.shape, dtype=np.uint8) min_expr = np.min(expr) expr_copy = expr - min_expr nol = 0 # The count of labels. model_out = pd.DataFrame(columns=[0, 1]) global_mean = np.mean(expr_copy) while True: labels, means = gmm(expr_copy, n) max_pts, max_mean = labels == np.argmax(means), max(means) # When the minimum mean reach the global mean, break the loop. if max_mean < global_mean: break # Otherwise, label the points in the output mask, # and dump them in the next run. nol += 1 label_out[max_pts] = nol expr_copy[max_pts] = 0 model_out = model_out.append([[nol, max_mean + min_expr]]) model_out.columns = ['label', 'mean'] model_out = model_out.set_index('label') return label_out, model_out def local_gmm(coord: np.ndarray, label: np.ndarray, global_model: pd.DataFrame, n: int) -> \ Tuple[np.ndarray, np.ndarray, pd.DataFrame]: """ :param coord: a list of coordinates :param global_model: parameters of global gmm, pandas data frame :param n: maximum number of components for the bayesian algorithm :return: (labels, means table) Solve GMM for points' local distribution within each grayscale level generated by the global model. """ label_out = np.zeros(label.shape) model_out = pd.DataFrame(columns=['label', 'mean']) # Iterate over different expression levels in the global model. for i, mean in zip(global_model.index, global_model['mean']): pts = coord[label == i] # Retrieve points with a specific label. labels = gmm(pts, n, 'bayesian')[0] # Adjust labels from 0..n-1 to 1..n. # Because labels can be discontinuous. levels = np.unique(labels) labels = [np.where(levels == i)[0][0] + 1 for i in labels] # Label the areas on the output mask. start = np.max(label_out) for p, label in zip(pts, labels): label_out[tuple(p)] = start + label model = pd.DataFrame({'label': [*range(start, start + max(labels))], 'mean': [mean] * max(labels)}) model_out = model_out.append(model) model_out = model_out.set_index('label') return label_out, model_out
38.527473
76
0.640901
d5e005aa4b41a9219bda0fdc13fd81e0f58a6d08
5,248
py
Python
assignments/assignment-4/src/lr_mnist.py
JakubR12/cds-visual
5fa90ecb39ddfee5365478d4d6d2ed4a9cddc364
[ "MIT" ]
1
2021-05-19T10:56:59.000Z
2021-05-19T10:56:59.000Z
assignments/assignment-4/src/lr_mnist.py
JakubR12/cds-visual-portfolio
40c991f3fc9a3bc4bc2448e76d7d795cd67ab757
[ "MIT" ]
null
null
null
assignments/assignment-4/src/lr_mnist.py
JakubR12/cds-visual-portfolio
40c991f3fc9a3bc4bc2448e76d7d795cd67ab757
[ "MIT" ]
null
null
null
#!/usr/bin/python # importin modules import argparse import os import sys sys.path.append(os.path.join("..")) import numpy as np # Import utils for classification, preprocessing import utils.classifier_utils as clf_util import utils.ml_preprocessing as mlp # Import sklearn metrics from sklearn import metrics from sklearn.linear_model import LogisticRegression from sklearn.metrics import accuracy_score ''' There are 7 arguments which can but do not have to be specified: flags: -tr, --train_size, default: 0.8: description: int or float, a proportion of the data the model to be trained on flags: -ts, --test_size: default: 0.2, description: int or float, a proportion of the data the model to be trained on flags: -r, --random_state: default: None, description: int, a random seed flags: -sm, --save_metrics: default: None, description: bool, whether to save the metrics flags: -mf, --metrics_safe, default: logistic_regression_metrics.txt, description: str, the filename of the metrics with the .txt ending flags: -t, --tolerance, default: 0.1, description: float, Tolerance for stopping criteria flags: -p, --penalty, default: None, description: "none" "l1", ‘l2’, "elasticnet examples: python lr-mnist.py -tr 0.7 -ts 0.3 -r 2 -sm -mf log_reg_filename.txt -t 0.001 -p l2 When using boolean flags (-sm), just leave it empty. ''' def main(train_size = 0.8, test_size = 0.2, random_state = None, save_metrics = True, metrics_filename = "logistic_regression_metrics.txt", penalty= "none", tolerance = 0.1): """ This functions trains a logistic regression classifier on the mnist data set and prints the metrics. input: train_size, default: 0.8: description: int or float, a proportion of the data the model to be trained on test_size: default: 0.2, description: int or float, a proportion of the data the model to be trained on random_state: default: None, description: int, a random seed save_metrics: default: True, description: bool, whether to save the metrics metrics_filename, default: logistic_regression_metrics.txt, description: str, the filename of the metrics with the .txt ending tolerance, default: 0.1, description: float, Tolerance for stopping criteria penalty, default: None, description: "none" "l1", ‘l2’, "elasticnet output: classification report as a string. Can optionally be saved as a txt file """ print("Preparing data. This may take a while ...") # using a function we built in the ml_preprocessing.py script to load, format, split and scale the data -> we get a clean data X_train, X_test, y_train, y_test = mlp.fetch_visual_data(train_size = train_size, test_size = test_size, random_state = random_state) print("The MNIST dataset has been loaded, split and scaled.") # calling a logistic regression with customizable arguments clf = LogisticRegression(penalty='none', tol=0.1, solver='saga', multi_class='multinomial').fit(X_train, y_train) # calculating predictions for the test data, printing output metrics y_pred = clf.predict(X_test) cm = metrics.classification_report(y_test, y_pred) print(cm) # optional argument to save the data in the out file as a text file if save_metrics == True: filepath = os.path.join("..","models",metrics_filename) text_file = open(filepath, "w") text_file.write(cm) text_file.close() print("The metric was saved into models folder") if __name__=="__main__": # define comman line interface arguments ap = argparse.ArgumentParser() ap.add_argument("-tr", "--train_size", required = False, default = 0.8, help = "int or float: A proportion of the data the model to be trained on") ap.add_argument("-ts", "--test_size", required = False, default = 0.2, help = "int or float: A proportion of the data the model to be tested on") ap.add_argument("-r", "--random_state", required = False, default = None, type = int, help = "int: a random seed") ap.add_argument("-sm","--save_metrics", required = False, action = "store_true", help = "bool: whether to save the metrics") ap.add_argument("-mf", "--metrics_filename", required = False, default = "logistic_regression_metrics.txt",type = str, help = "the filename of the metrics with the .txt ending") ap.add_argument("-t", "--tolerance", required = False, default = 0.1, type = float, help = "float: Tolerance for stopping criteria") ap.add_argument("-p", "--penalty", required = False, default = "none", type = str, help = '''penalty: "none" "l1", ‘l2’, "elasticnet"''') # parse arguments, parse the argumets and returns them as a list of arguments/variables args = vars(ap.parse_args()) print(args) # instead of listing all comman line interface arguments separately, we can list all of them at once with **args main(**args)
43.733333
137
0.663872
f830b5538776854237f2bef03ef8992abf59c5d8
2,183
py
Python
src/pyinterp/__init__.py
apatlpo/pangeo-pyinterp
b5242c6869d7e601a5695b304c81992deb63367d
[ "BSD-3-Clause" ]
null
null
null
src/pyinterp/__init__.py
apatlpo/pangeo-pyinterp
b5242c6869d7e601a5695b304c81992deb63367d
[ "BSD-3-Clause" ]
null
null
null
src/pyinterp/__init__.py
apatlpo/pangeo-pyinterp
b5242c6869d7e601a5695b304c81992deb63367d
[ "BSD-3-Clause" ]
null
null
null
# Copyright (c) 2019 CNES # # All rights reserved. Use of this source code is governed by a # BSD-style license that can be found in the LICENSE file. """ Common classes -------------- """ from typing import Tuple import numpy as np from . import core from . import interface class GridInterpolator: """Abstract class of interpolation of numerical grids. Args: *args (tuple): Constructor's arguments. .. warning:: This class should not be instantiated directly. """ _CLASS = None _INTEROLATOR = None def __init__(self, *args): self._class = self._CLASS + interface._core_suffix(args[-1]) self._instance = getattr(core, self._class)(*args) @classmethod def _n_variate_interpolator(cls, interpolator: str, **kwargs): if interpolator == "bilinear": return getattr(core, "Bilinear" + cls._INTEROLATOR)(**kwargs) elif interpolator == "nearest": return getattr(core, "Nearest" + cls._INTEROLATOR)(**kwargs) elif interpolator == "inverse_distance_weighting": return getattr(core, "InverseDistanceWeighting" + cls._INTEROLATOR)(**kwargs) raise ValueError(f"interpolator {interpolator!r} is not defined") @property def x(self) -> core.Axis: """ Gets the X-Axis handled by this instance Returns: pyinterp.core.Axis: X-Axis """ return self._instance.x @property def y(self) -> core.Axis: """ Gets the Y-Axis handled by this instance Returns: pyinterp.core.Axis: Y-Axis """ return self._instance.y @property def array(self) -> np.ndarray: """ Gets the values handled by this instance Returns: numpy.ndarray: values """ return self._instance.array def __getstate__(self) -> Tuple: return (self._class, self._instance.__getstate__()) def __setstate__(self, state) -> None: self._class, state = state self._instance = getattr(getattr(core, self._class), "_setstate")(state)
26.950617
73
0.601466
10b6b0d236eb9914fb71847831c77aaa78f544b6
10,197
py
Python
metno_locationforecast/forecast.py
Amir-101/metno-locationforecast
6332b4dca45ee35ecb671b36859533776600dcbc
[ "MIT" ]
null
null
null
metno_locationforecast/forecast.py
Amir-101/metno-locationforecast
6332b4dca45ee35ecb671b36859533776600dcbc
[ "MIT" ]
null
null
null
metno_locationforecast/forecast.py
Amir-101/metno-locationforecast
6332b4dca45ee35ecb671b36859533776600dcbc
[ "MIT" ]
null
null
null
"""Where the magic happens. Classes: Forecast: Stores forecast data, has methods for updating, saving and loading data. """ import datetime as dt import json from pathlib import Path from typing import Optional, Dict, Union import requests from .config import Config from .data_containers import Interval, Place, Variable, Data YR_DATETIME_FORMAT = "%Y-%m-%dT%H:%M:%SZ" HTTP_DATETIME_FORMAT = "%a, %d %b %Y %H:%M:%S %Z" CONFIG = Config() class Forecast: """Retrieves, stores and updates forecast data. Attributes: place (Place): Location for the forecast. forecast_type: The type of forecast. user_agent: the user agent to be sent with requests. save_location (Path): Location to cache data. base_url: Base url to make requests to. response (requests.Response): Response object. json_string (str): Json data as a string. json: Json data as an object. data (dict): Weather data. Methods: save: Save data to save location. load: Load data from saved file. update: Update forecast data. """ forecast_types = {"compact", "complete"} def __init__( self, place: Place, user_agent: Optional[str] = None, forecast_type: Optional[str] = None, save_location: Optional[str] = None, base_url: Optional[str] = None, ): """Create a Forecast object. Args: place: Place object for the forecast user_agent: The user-agent identifier to be sent with the request forecast_type: The type of foreast to retrieve save_location: Optional; Location to cache data base_url: Optional; URL to make requests to """ if not isinstance(place, Place): msg = f"{place} is not a metno_locationforecast.Place object." raise TypeError(msg) self.place = place if user_agent is None: if CONFIG.user_agent is None: msg = ( "User agent has not been provided. This must be passed as an argument or set " "as a configuration." ) raise ValueError(msg) self.user_agent = CONFIG.user_agent else: self.user_agent = user_agent if forecast_type is None: self.forecast_type = CONFIG.forecast_type else: self.forecast_type = forecast_type if save_location is None: self.save_location = Path(CONFIG.save_location) else: self.save_location = Path(save_location) if base_url is None: self.base_url = CONFIG.base_url else: self.base_url = base_url if ( self.base_url == "https://api.met.no/weatherapi/locationforecast/2.0/" and self.forecast_type not in Forecast.forecast_types ): msg = ( f"{self.forecast_type} is not an available forecast type. Available types are: " f"{Forecast.forecast_types}." ) raise ValueError(msg) # Typing information for mypy. self.response: requests.Response self.json_string: str self.json: dict # type: ignore self.data: Data def __repr__(self) -> str: return ( f"Forecast({self.place}, {self.user_agent}, {self.forecast_type}, " f"{self.save_location}, {self.base_url})" ) def __str__(self) -> str: if not hasattr(self, "data"): return "No forecast data yet." forecast_string = f"Forecast for {self.place.name}:" for interval in self.data.intervals: lines = str(interval).split("\n") forecast_string += f"\n\t{lines[0]}" for line in lines[1:]: forecast_string += f"\n\t{line}" return forecast_string @property def url(self) -> str: """The url for requests.""" return f"{self.base_url}{self.forecast_type}" @property def url_parameters(self,) -> Dict[str, Union[int, float]]: """Parameters to be sent with request.""" parameters: Dict[str, Union[int, float]] = {} if self.place.coordinates["latitude"] is not None: parameters["lat"] = self.place.coordinates["latitude"] if self.place.coordinates["longitude"] is not None: parameters["lon"] = self.place.coordinates["longitude"] if self.place.coordinates["altitude"] is not None: parameters["altitude"] = self.place.coordinates["altitude"] return parameters @property def url_headers(self) -> Dict[str, str]: """Headers to be sent with request.""" headers = { "User-Agent": self.user_agent, } if hasattr(self, "data"): headers["If-Modified-Since"] = ( self.data.last_modified.strftime(HTTP_DATETIME_FORMAT) + "GMT" ) return headers @property def file_name(self) -> str: """File name for caching data.""" return ( f"lat{self.place.coordinates['latitude']}lon{self.place.coordinates['longitude']}" + f"altitude{self.place.coordinates['altitude']}_{self.forecast_type}.json" ) def _json_from_response(self) -> None: """Create json data from response. Side Effects: self.json_string self.json """ if self.response.status_code == 304: self.json["status_code"] = self.response.status_code self.json["headers"] = dict(self.response.headers) self.json_string = json.dumps(self.json) else: json_string = "{" json_string += f'"status_code":{self.response.status_code},' json_string += f'"headers":{json.dumps(dict(self.response.headers))},' json_string += f'"data":{self.response.text}' json_string += "}" self.json_string = json_string self.json = json.loads(json_string) def _parse_json(self) -> None: """Retrieve weather data from json data. Side Effects: self.data """ json = self.json last_modified = dt.datetime.strptime(json["headers"]["Last-Modified"], HTTP_DATETIME_FORMAT) expires = dt.datetime.strptime(json["headers"]["Expires"], HTTP_DATETIME_FORMAT) updated_at = dt.datetime.strptime( json["data"]["properties"]["meta"]["updated_at"], YR_DATETIME_FORMAT ) units = json["data"]["properties"]["meta"]["units"] intervals = [] for timeseries in json["data"]["properties"]["timeseries"]: start_time = dt.datetime.strptime(timeseries["time"], YR_DATETIME_FORMAT) variables = {} for var_name, var_value in timeseries["data"]["instant"]["details"].items(): variables[var_name] = Variable(var_name, var_value, units[var_name]) # Take the shortest time interval available. hours = 0 if "next_1_hours" in timeseries["data"]: hours = 1 elif "next_6_hours" in timeseries["data"]: hours = 6 elif "next_12_hours" in timeseries["data"]: hours = 12 end_time = start_time + dt.timedelta(hours=hours) if hours != 0: symbol_code = timeseries["data"][f"next_{hours}_hours"]["summary"]["symbol_code"] for var_name, var_value in timeseries["data"][f"next_{hours}_hours"][ "details" ].items(): variables[var_name] = Variable(var_name, var_value, units[var_name]) else: symbol_code = None intervals.append(Interval(start_time, end_time, symbol_code, variables)) self.data = Data(last_modified, expires, updated_at, units, intervals) def _data_outdated(self) -> bool: return self.data.expires < dt.datetime.utcnow() def save(self) -> None: """Save data to save location.""" if not self.save_location.exists(): self.save_location.mkdir(parents=True) elif not self.save_location.is_dir(): raise NotADirectoryError(f"Expected {self.save_location} to be a directory.") file_path = Path(self.save_location).joinpath(self.file_name) file_path.write_text(self.json_string) def load(self) -> None: """Load data from saved file.""" file_path = Path(self.save_location).joinpath(self.file_name) self.json_string = file_path.read_text() self.json = json.loads(self.json_string) self._parse_json() def update(self) -> str: """Update forecast data. Will make a request to the MET API for data and will save the data to the 'save_location'. If data already exists for the forecast this will only request new data if the data has expired and will make the request using the appropriate 'If-Modified-Since' header. Returns: "Data-Not-Expired": If the data has not expired yet. "Data-Not-Modified": If data has expired but has not been modified yet. "Data-Modified": If new data has been acquired. """ return_status = "" if not hasattr(self, "data"): file_path = Path(self.save_location).joinpath(self.file_name) if file_path.exists(): self.load() if hasattr(self, "data") and not self._data_outdated(): return_status = "Data-Not-Expired" return return_status self.response = requests.get(self.url, params=self.url_parameters, headers=self.url_headers) if self.response.status_code == 304: return_status = "Data-Not-Modified" else: self.response.raise_for_status() return_status = "Data-Modified" self._json_from_response() self.save() self._parse_json() return return_status
33.99
100
0.589683
98380f23dfcf279b597aa81500e73121c3b6a0c7
840
py
Python
.guides/tests/part9.py
nejohnston/processing-images
d45d8e351cc960703cb9f1975ae407fa71e7f205
[ "MIT" ]
null
null
null
.guides/tests/part9.py
nejohnston/processing-images
d45d8e351cc960703cb9f1975ae407fa71e7f205
[ "MIT" ]
null
null
null
.guides/tests/part9.py
nejohnston/processing-images
d45d8e351cc960703cb9f1975ae407fa71e7f205
[ "MIT" ]
null
null
null
#!/usr/local/bin/python3 """ Assess part 9, before submission (flip) This file is insecurely available to students, but if they find it and modify it, they really did not need this course. Author: Walker M. White Date: July 31, 2018 """ import verifier import sys def check_func9(file): """ Checks that the test cases are correct Parameter file: The file to check Precondition: file is a string """ func = 'flip' opts = {'vertical':True} result = verifier.grade_docstring(file,0) if not result[0]: result = verifier.grade_func(file,func,{},0) if not result[0]: result = verifier.grade_func(file,func,opts,0) if not result[0]: print("The 'flip' operations look correct.") return result[0] if __name__ == '__main__': sys.exit(check_func9('plugins.py'))
23.333333
86
0.661905