hexsha
stringlengths
40
40
size
int64
4
1.02M
ext
stringclasses
8 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
4
209
max_stars_repo_name
stringlengths
5
121
max_stars_repo_head_hexsha
stringlengths
40
40
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
4
209
max_issues_repo_name
stringlengths
5
121
max_issues_repo_head_hexsha
stringlengths
40
40
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
4
209
max_forks_repo_name
stringlengths
5
121
max_forks_repo_head_hexsha
stringlengths
40
40
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
4
1.02M
avg_line_length
float64
1.07
66.1k
max_line_length
int64
4
266k
alphanum_fraction
float64
0.01
1
4f5e45394a67bcb9a07150dcb0360887e8a8d81f
2,347
bzl
Python
closure/private/files_equal_test.bzl
ribrdb/rules_closure
814465e8d46d5375415193f33d8abbb5ee5d6a6e
[ "Apache-2.0" ]
1
2019-08-25T15:11:13.000Z
2019-08-25T15:11:13.000Z
closure/private/files_equal_test.bzl
ribrdb/rules_closure
814465e8d46d5375415193f33d8abbb5ee5d6a6e
[ "Apache-2.0" ]
1
2022-03-01T18:29:50.000Z
2022-03-01T18:29:50.000Z
closure/private/files_equal_test.bzl
ribrdb/rules_closure
814465e8d46d5375415193f33d8abbb5ee5d6a6e
[ "Apache-2.0" ]
null
null
null
# Copyright 2016 The Closure Rules Authors. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests that two files contain the same data.""" def _impl(ctx): if ctx.file.golden == ctx.file.actual: fail("GOLDEN and ACTUAL should be different files") ctx.file_action( output=ctx.outputs.executable, content="\n".join([ "#!/bin/bash", "function checksum() {", " if command -v openssl >/dev/null; then", " openssl sha1 $1 | cut -f 2 -d ' '", " elif command -v sha256sum >/dev/null; then", " sha256sum $1 | cut -f 1 -d ' '", " elif command -v shasum >/dev/null; then", " cat $1 | shasum -a 256 | cut -f 1 -d ' '", " else", " echo please install openssl >&2", " exit 1", " fi", "}", "SUM1=$(checksum %s)" % ctx.file.golden.short_path, "SUM2=$(checksum %s)" % ctx.file.actual.short_path, "if [[ ${SUM1} != ${SUM2} ]]; then", " echo ERROR: %s >&2" % ctx.attr.error_message, " echo %s ${SUM1} >&2" % ctx.file.golden.short_path, " echo %s ${SUM2} >&2" % ctx.file.actual.short_path, " exit 1", "fi", ]), executable=True) return struct(runfiles=ctx.runfiles([ctx.file.golden, ctx.file.actual])) files_equal_test = rule( attrs = { "golden": attr.label( mandatory = True, allow_files = True, single_file = True), "actual": attr.label( mandatory = True, allow_files = True, single_file = True), "error_message": attr.string( default="FILES DO NOT HAVE EQUAL CONTENTS"), }, implementation = _impl, test = True)
36.671875
74
0.563698
b3b0231227343c2351e05199296c6d3a0def9baf
1,187
py
Python
src/gluonts/nursery/few_shot_prediction/src/meta/callbacks/__init__.py
RingoIngo/gluon-ts
62fb20c36025fc969653accaffaa783671709564
[ "Apache-2.0" ]
null
null
null
src/gluonts/nursery/few_shot_prediction/src/meta/callbacks/__init__.py
RingoIngo/gluon-ts
62fb20c36025fc969653accaffaa783671709564
[ "Apache-2.0" ]
null
null
null
src/gluonts/nursery/few_shot_prediction/src/meta/callbacks/__init__.py
RingoIngo/gluon-ts
62fb20c36025fc969653accaffaa783671709564
[ "Apache-2.0" ]
null
null
null
# Copyright 2018 Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). # You may not use this file except in compliance with the License. # A copy of the License is located at # # http://www.apache.org/licenses/LICENSE-2.0 # # or in the "license" file accompanying this file. This file is distributed # on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either # express or implied. See the License for the specific language governing # permissions and limitations under the License. from .plot import ( ForecastPlotLoggerCallback, ForecastSupportSetAttentionPlotLoggerCallback, LossPlotLoggerCallback, CheatLossPlotLoggerCallback, MacroCRPSPlotCallback, ) from .count import ParameterCountCallback from .save import InitialSaveCallback from .metric import QuantileMetricLoggerCallback __all__ = [ "ForecastPlotLoggerCallback", "ParameterCountCallback", "InitialSaveCallback", "ForecastSupportSetAttentionPlotLoggerCallback", "LossPlotLoggerCallback", "CheatLossPlotLoggerCallback", "MacroCRPSPlotCallback", "QuantileMetricLoggerCallback", ]
33.914286
75
0.775063
4b1e99bcd9a6c625a8a8a52833d6188c4fd010f1
15,127
py
Python
tools/genattrs.py
rabinv/tsplex
bfa2b229086a7ad57dbd9fa462edfd4c5e71ca77
[ "Apache-2.0" ]
null
null
null
tools/genattrs.py
rabinv/tsplex
bfa2b229086a7ad57dbd9fa462edfd4c5e71ca77
[ "Apache-2.0" ]
null
null
null
tools/genattrs.py
rabinv/tsplex
bfa2b229086a7ad57dbd9fa462edfd4c5e71ca77
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python3 import argparse import json import pprint import attr import sqlite3 import os import re import sys import jinja2 import logging import itertools from genchars import Char from tagger import Tagger @attr.s class Attribute(object): name: str = attr.ib() group: str = attr.ib() tagprefix: str = attr.ib() stateprefix: str = attr.ib() defaultstate: str = attr.ib(None) states = attr.ib(factory=list) tagid: int = attr.ib(default=-1) @attr.s class AttributeState(object): name: str = attr.ib() tagid: int = attr.ib() class AttributeGen(object): def __init__(self, chars): self.tagger = Tagger(dict([(c.char, c) for c in chars])) self.chars = chars self.tags = ['INVALID'] self.tagmap = {} self.tagidx = 1 self.transmap = dict([(c.name, c.sv.capitalize()) for c in self.chars]) self.transmap.update({ # These are fixed up to use the terms used in the textual # transcriptions 'interaction_type_angling': 'Vinkelkontakt', 'interaction_type_diverging': 'Förs från varandra', 'interaction_type_entering': 'Entré / Flätas', 'interaction_type_converging': 'Förs mot varandra', 'interaction_type_crossing': 'Korskontakt', 'interaction_type_exchanging': 'Byter plats med varandra', 'interaction_type_hooking': 'Hakas', 'motion_type_circling': 'Förs i cirkel', 'motion_type_curving': 'Förs i båge', 'other_repetition': 'Upprepas', 'attitude_pointed_backward': 'Inåtriktad', 'attitude_turned_backward': 'Inåtvänd', # Pseudo-tags generated by massage_tags 'hands_one': 'En hand', 'hands_two': 'Två händer, båda aktiva', 'hands_two_but_one_active': 'Två händer, en aktiv', 'position_hand': '(Handen)', 'position_unspecified': '(Neutrala läget)', 'contact_unspecified': '(Kontakt)', 'motion_type_moving': 'Förs', 'motion_type_fingers': 'Fingrarna', 'hands_any': 'En eller två händer', 'position_any': 'Alla lägen', 'handshape_any': 'Alla handformer', 'attitude_pointed_any': 'Alla riktningar', 'attitude_turned_any': 'Alla vridningar', 'handshape_same': '(Samma handform)', 'attitude_pointed_same': '(Samma riktning)', 'attitude_turned_same': '(Samma vridning)', 'attitude_pointed_symmetric': '(Symmetrisk riktning)', 'attitude_turned_symmetric': '(Symmetrisk vridning)', # Titles for filters in UI '': '', 'hands': 'Händer', 'position': 'Läge', 'right': 'Höger hand', 'left': 'Vänster hand', 'actions': 'Rörelse', }) def massage_tag(self, t): if t.endswith('modifier_medial_contact'): return 'action-interaction_type_contact-modifier_medial_contact' if t == 'action-interaction_type_contact': return 'action-interaction_type_contact-contact_unspecified' if t.startswith('handshape'): return 'position_hand' if t == 'left-handshape_none': return None # The states for these attributes are not complete. See validate(). if 'action-interaction_type_diverging-modifier' in t: return 'action-interaction_type_diverging' if 'position-relation' in t: return None parts = t.split('-') if len(parts) > 1 and parts[0] == 'action': if parts[1] in [ 'motion_backward', 'motion_backward_short', 'motion_rightward', 'motion_rightward_short', 'motion_downward', 'motion_downward_short', 'motion_depthwise', 'motion_leftward', 'motion_leftward_short', 'motion_forward', 'motion_forward_short', 'motion_upward', 'motion_upward_short', 'motion_sideways', 'motion_vertically', ]: direction = parts[1].split('_')[1] if direction == 'backward': direction = 'backwards' parts[1] = 'motion_type_moving-modifier_' + direction return '-'.join(parts) elif parts[1] in [ 'motion_type_bending', 'motion_type_playing', 'motion_type_strewing', 'motion_type_waving', ]: parts[1] = 'motion_type_fingers-' + parts[1] return '-'.join(parts) elif parts[1] in [ 'interaction_type_angling', 'interaction_type_crossing', 'interaction_type_entering', 'interaction_type_hooking' ]: parts[1] = 'interaction_type_contact-' + parts[1] return '-'.join(parts) return t def massage_tags(self, sign, tags): tags = [self.massage_tag(t) for t in tags] tags = [t for t in tags if t] if sign.hands == 1: # handshape_none is the fake left hand which the tagger adds for # the attitude of position_arm_lower. if sign.left and sign.left.shape != 'handshape_none': tags.append('hands_two_but_one_active') else: tags.append('hands_one') elif sign.hands == 2: tags.append('hands_two') if sign.left: if sign.left.shape == sign.right.shape: tags.extend(['left-handshape_same', 'right-handshape_same']) if sign.left.pointed == sign.right.pointed: tags.extend(['left-attitude_pointed_same', 'right-attitude_pointed_same']) if sign.left.turned == sign.right.turned: tags.extend(['left-attitude_turned_same', 'right-attitude_turned_same']) symmetric = [ ('forward', 'backward'), ('backward', 'forward'), ('leftward', 'rightward'), ('rightward', 'leftward'), ('upward', 'downward'), ('downward', 'upward'), ] def direction(v): return v.split('_')[-1] if (direction(sign.left.pointed), direction(sign.right.pointed)) in symmetric: tags.extend(['left-attitude_pointed_symmetric', 'right-attitude_pointed_symmetric']) if (direction(sign.left.turned), direction(sign.right.turned)) in symmetric: tags.extend(['left-attitude_turned_symmetric', 'right-attitude_turned_symmetric']) if any(t for t in tags if 'motion_type_moving' in t): tags.append('action-motion_type_moving') if any(t for t in tags if 'fingers' in t): tags.append('action-motion_type_fingers') if any(t for t in tags if 'contact' in t): tags.append('action-interaction_type_contact') return sorted(list(set(tags))) def tag(self, signs): for sign in signs: sign['tagids'] = [] idn = int(sign['id-nummer']) segs = self.tagger.tag(sign) if not segs: continue for seg in segs: assert seg.tags tags = self.massage_tags(seg, seg.tags) tagids = [] for t in tags: try: v = self.tagmap[t] except KeyError: v = self.tagidx self.tagmap[t] = self.tagidx self.tags.append(t) self.tagidx += 1 tagids.append(v) sign['tagids'].append(tuple(tagids)) return signs def get_attribs(self): tags = list(self.tagmap.keys()) attribs = [ Attribute(name='hands', group='', defaultstate='hands_any', tagprefix='hands_', stateprefix=''), Attribute(name='position', group='', defaultstate='position_any', tagprefix='position_', stateprefix=''), Attribute(name='right', group='right', defaultstate='handshape_any', tagprefix='right-handshape', stateprefix='right-'), Attribute(name='right', group='right', defaultstate='attitude_pointed_any', tagprefix='right-attitude_pointed', stateprefix='right-'), Attribute(name='right', group='right', defaultstate='attitude_turned_any', tagprefix='right-attitude_turned', stateprefix='right-'), Attribute(name='left', group='left', defaultstate='handshape_any', tagprefix='left-handshape', stateprefix='left-'), Attribute(name='left', group='left', defaultstate='attitude_pointed_any', tagprefix='left-attitude_pointed', stateprefix='left-'), Attribute(name='left', group='left', defaultstate='attitude_turned_any', tagprefix='left-attitude_turned', stateprefix='left-'), ] actionattribs = [] for t in tags: if not t.startswith('action-'): continue parts = t.split('-') if len(parts) > 2: continue action = parts[1] actionattribs.append(Attribute(name=action, group='actions', tagprefix=t, stateprefix=action)) actionattribs = sorted(actionattribs, key=lambda a:self.transmap[a.name]) attribs += actionattribs for attrib in attribs: for t in [t for t in tags if t.startswith(attrib.tagprefix)]: if 'short' in t and 'short' not in attrib.stateprefix: print(attrib, t) continue tags.remove(t) statename = t.replace('action-', '').replace(attrib.stateprefix, '').lstrip('-') if not statename or 'any' in statename and not attrib.defaultstate: assert attrib.tagid == -1 attrib.tagid = self.tagmap[t] continue state = AttributeState(name=statename, tagid=self.tagmap[t]) attrib.states.append(state) attrib.states = sorted(attrib.states, key=lambda s:self.transmap[s.name]) assert not any(a for a in attribs if a.defaultstate and a.tagid != -1) assert not any(a for a in attribs if not a.defaultstate and a.tagid == -1) if tags: pprint.pprint(tags) assert not tags return attribs def validate(self, attribs, signs): def signs_with_tag(tagid): if tagid == -1: return [s['id-nummer'] for s in signs if s['tagids']] return [s['id-nummer'] for s in signs if [seg for seg in s['tagids'] if tagid in seg]] for a in attribs: if not a.states or a.group == 'left': continue assert(len(a.states) > 1) match = sorted(signs_with_tag(a.tagid)) assert(len(match)) smatch = [] for st in a.states: thismatch = signs_with_tag(st.tagid) assert len(thismatch) != len(match) smatch.extend(thismatch) smatch = sorted(set(smatch)) if match != smatch: print(set(match) - set(smatch)) print(a) print(len(match)) print(len(smatch)) assert False def gen(self, attribs): env = jinja2.Environment(trim_blocks=False, lstrip_blocks=True, undefined=jinja2.StrictUndefined) template = env.from_string(''' // Auto-generated. Do not edit. package `in`.rab.tsplex object Attributes { val attributes = arrayOf( {% for attr in attribs %} Attribute( name = "{{ transmap[attr.name] }}", group = "{{ transmap[attr.group] }}", {% if attr.defaultstate %} defaultStateName = "{{ transmap[attr.defaultstate] }}", {% endif %} tagId = {{ attr.tagid }}, states = arrayOf( {% for state in attr.states %} AttributeState( name = "{{ transmap[state.name] }}", tagId = {{ state.tagid }} ){% if not loop.last %},{% endif %} {% endfor %} ) ){% if not loop.last %},{% endif %} {% endfor %} ) val redundantTagIds = arrayOf( {% for tagid in redundant %} {{ tagid }}{% if not loop.last %},{% endif %} {% endfor %} ) } '''.lstrip()) redundant = ['-'.join(x) for x in itertools.product(('left', 'right'), \ ['handshape_same', 'attitude_pointed_same', 'attitude_turned_same', 'attitude_pointed_symmetric', 'attitude_turned_symmetric', ])] return template.render(attribs=attribs, transmap=self.transmap, redundant=[self.tagmap[t] for t in redundant]) def main(): parser = argparse.ArgumentParser() parser.add_argument('--signs', default='signs.json') parser.add_argument('--chars', default='chars.json') parser.add_argument('-v', '--verbose', action='store_true') args = parser.parse_args() logging.basicConfig(level=logging.DEBUG if args.verbose else logging.INFO) with open(args.signs, 'r') as f: signs = json.load(f) with open(args.chars, 'r') as f: chars = [Char(**o) for o in json.load(f)] attgen = AttributeGen(chars) signs = attgen.tag(signs) attribs = attgen.get_attribs() attgen.validate(attribs, signs) pprint.pprint(sorted(attgen.tagmap.items(), key=lambda t:t[0])) print(attgen.gen(attribs)) if __name__ == '__main__': main()
34.615561
98
0.51147
426a8b72401b77bac3195d0222cf54d036b323a0
565
py
Python
source/_static/code/scipy/bisection.py
tuttugu-ryo/lecture-source-py
9ce84044c2cc421775ea63a004556d7ae3b4e504
[ "BSD-3-Clause" ]
56
2017-05-09T10:45:23.000Z
2022-01-20T20:33:27.000Z
source/_static/code/scipy/bisection.py
tuttugu-ryo/lecture-source-py
9ce84044c2cc421775ea63a004556d7ae3b4e504
[ "BSD-3-Clause" ]
7
2017-06-30T01:52:46.000Z
2019-05-01T20:09:47.000Z
source/_static/code/scipy/bisection.py
tuttugu-ryo/lecture-source-py
9ce84044c2cc421775ea63a004556d7ae3b4e504
[ "BSD-3-Clause" ]
117
2017-04-25T16:09:17.000Z
2022-03-23T02:30:29.000Z
def bisect(f, a, b, tol=10e-5): """ Implements the bisection root finding algorithm, assuming that f is a real-valued function on [a, b] satisfying f(a) < 0 < f(b). """ lower, upper = a, b while upper - lower > tol: middle = 0.5 * (upper + lower) # === if root is between lower and middle === # if f(middle) > 0: lower, upper = lower, middle # === if root is between middle and upper === # else: lower, upper = middle, upper return 0.5 * (upper + lower)
28.25
73
0.520354
b32d0c7abc26f50a9596acd6d16d263e34621876
5,606
py
Python
demos/redemo.py
houzw/knowledge-base-data
60771e8bf300227e1a26c9e77f56b09d23acd64a
[ "MIT" ]
null
null
null
demos/redemo.py
houzw/knowledge-base-data
60771e8bf300227e1a26c9e77f56b09d23acd64a
[ "MIT" ]
null
null
null
demos/redemo.py
houzw/knowledge-base-data
60771e8bf300227e1a26c9e77f56b09d23acd64a
[ "MIT" ]
1
2018-12-17T06:40:53.000Z
2018-12-17T06:40:53.000Z
#!/usr/bin/env python # -*- coding: utf-8 -*- # author: houzhiwei # time: 2018/12/18 9:58 import re v = re.search("Minimum: \d+\.\d+", "Minimum: 0.000000 Default: 1.000000") v2 = re.search("Default: (\w+|\d+\.\d+)", "Minimum: 0.000000 Default: xxx") # print(v) # print(v2) ac = re.match("Available Choices: [\[\]0-9A-Za-z -]+[Default:]?", "Available Choices: [0] Nearest Neighbour " "[1] Bilinear Interpolation " "[2] Bicubic Spline Interpolation" " [3] B-Spline Interpolation Default: 0") # print(ac.group()) all = re.findall("\[[0-9]\][ a-zA-Z-]+", ac.group().replace("Default:", '')) # for l in all: # print(l) # print(re.search("(?<=\[)[0-9]", l).group()) # print(re.search("[a-zA-Z -]+", l).group()) # print(re.search("(?P<choice>(?<=\[)[0-9])(?P<des>[a-zA-Z -]+)", l)) # http://www.saga-gis.org/saga_tool_doc/7.0.0/shapes_tools_0.html test = "28 Parameters: - 1. Available Choices: [0] Albers Equal Area " \ "[1] Azimuthal Equidistant [2] Airy [3] Aitoff [4] Mod. Stererographics of Alaska " \ "[5] Apian Globular I [6] August Epicycloidal [7] Bacon Globular [8] Bipolar conic of western hemisphere " \ "[9] Boggs Eumorphic [10] Bonne (Werner lat_1=90) [11] Cassini [12] Central Cylindrical [13] Equal Area Cylindrical" \ " [14] Chamberlin Trimetric [15] Collignon [16] Craster Parabolic (Putnins P4) [17] Denoyer Semi-Elliptical [18] Eckert I " \ "[19] Eckert II [20] Eckert III [21] Eckert IV [22] Eckert V [23] Eckert VI [24] Equidistant Cylindrical (Plate Caree) " \ "[25] Equidistant Conic [26] Euler [27] Extended Transverse Mercator [28] Fahey [29] Foucaut [30] Foucaut Sinusoidal " \ "[31] Gall (Gall Stereographic) [32] Geocentric [33] Geostationary Satellite View [34] Ginsburg VIII (TsNIIGAiK)" # http://www.saga-gis.org/saga_tool_doc/7.0.0/grid_tools_20.html test2 = "3 Fields: - 1. [8 byte floating point number] Value in Grid 1 " \ "- 2. [8 byte floating point number] Value in Grid 2 " \ "- 3. [8 byte floating point number] Resulting Value" # print(re.search("^\d+ Parameters:",test).group()) # print(re.search("^\d+ Fields:",test2)) test3 = "Available Choices: [0] Difference to left neighbour " \ "[1] Difference to left neighbour (using a while loop) " \ "[2] Slope gradient to left neighbour [%%] " \ "[3] Slope gradient to left neighbour [Degree] Default: 0" # print(re.search("Available Choices: [\[\]\w()% -]+[Default:]?", test3).group()) # print(re.search("Default: [\w\.]+", test3).group()) t = "Menu: Spatial and Geostatistics|Geographically Weighted Regression" t = t.replace("Menu: ", '') # print(re.split("\|", t)) name = "Tool 13: Reprojecting a shapes layer" name = re.sub("^Tool [0-9]+: ", '', name) print(name) name2 = "Measured Points (PC)" print(re.sub("\([a-zA-Z ]+\)", '', name2)) ttt = None if ttt: print(True) else: print(False) st = " / ? abscd, () *" st_r = re.sub('[()/?,*]', '', st) print(st_r) def get_choices(_options): to_append_id = -1 to_remove_ids = [] for i, option in enumerate(_options): if option['data_type'] == 'Choices': to_append_id = i print(to_append_id) _options[to_append_id]['availableChoices'] = [] print(option['parameter_name']) else: if option['data_type'] == 'Choice': to_remove_ids.append(i) choice = dict() print(option['parameter_name']) choice['choice'] = option['parameter_name'].lower() choice['description'] = option['explanation'] _options[to_append_id]['availableChoices'].append(choice) else: to_append_id = -1 # 倒序移除,避免移除时原列表变化导致索引超出范围 # to_remove_ids.sort(reverse=True) # sort 会修改 to_remove_ids 并返回None! for i in sorted(to_remove_ids,reverse=True): _options.pop(i) return _options options = [ { "flag": "channel", "parameter_name": "Selected Channel", "data_type": "Int", "explanation": [] }, { "flag": "ram", "parameter_name": "Available RAM (Mb)", "data_type": "Int", "explanation": [] }, { "flag": "structype", "parameter_name": "Structuring Element Type", "data_type": "Choices", "explanation": [] }, { "flag": "structype ball", "parameter_name": "Ball", "data_type": "Choice", "explanation": [] }, { "flag": "structype cross", "parameter_name": "Cross", "data_type": "Choice", "explanation": [] }, { "flag": "structype.ball.xradius", "parameter_name": "The Structuring Element X Radius", "data_type": "Int", "explanation": [ "The Structuring Element X Radius." ] }, { "flag": "structype.ball.yradius", "parameter_name": "The Structuring Element Y Radius", "data_type": "Int", "explanation": [ "The Structuring Element Y Radius." ] }, { "flag": "filter", "parameter_name": "Morphological Operation", "data_type": "Choices", "explanation": [] }, { "flag": "filter dilate", "parameter_name": "Dilate", "data_type": "Choice", "explanation": [] }, { "flag": "filter erode", "parameter_name": "Erode", "data_type": "Choice", "explanation": [] }, { "flag": "filter opening", "parameter_name": "Opening", "data_type": "Choice", "explanation": [] }, { "flag": "filter closing", "parameter_name": "Closing", "data_type": "Choice", "explanation": [] }, { "flag": "inxml", "parameter_name": "Load otb application from xml file", "data_type": "XML input parameters file", "explanation": [] }, { "flag": "outxml", "parameter_name": "Save otb application to xml file", "data_type": "XML output parameters file", "explanation": [] } ] print(get_choices(options))
31.144444
132
0.623796
bfdd157bdf943db3f3a75084d8c0b4d34351821c
74,486
py
Python
python/friesian/test/bigdl/friesian/feature/test_table.py
EmiCareOfCell44/BigDL
6278ee8eed09b5072da53dab3a99530cf5f69ba2
[ "Apache-2.0" ]
3
2021-07-14T01:28:47.000Z
2022-03-02T01:16:32.000Z
python/friesian/test/bigdl/friesian/feature/test_table.py
liangs6212/BigDL
3c89ff7e8bbdc713110536c18099506811cd2b3a
[ "Apache-2.0" ]
null
null
null
python/friesian/test/bigdl/friesian/feature/test_table.py
liangs6212/BigDL
3c89ff7e8bbdc713110536c18099506811cd2b3a
[ "Apache-2.0" ]
null
null
null
# # Copyright 2016 The BigDL Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import shutil import os.path import pytest import hashlib import operator from unittest import TestCase from pyspark.sql.functions import col, concat, max, min, array, udf, lit from pyspark.sql.types import StructType, StructField, StringType, IntegerType, ArrayType, \ DoubleType from bigdl.orca import OrcaContext from bigdl.friesian.feature import FeatureTable, StringIndex, TargetCode from bigdl.dllib.nncontext import * class TestTable(TestCase): def setup_method(self, method): """ setup any state tied to the execution of the given method in a class. setup_method is invoked for every test method of a class. """ self.resource_path = os.path.join(os.path.split(__file__)[0], "../resources") def test_apply(self): file_path = os.path.join(self.resource_path, "parquet/data1.parquet") feature_tbl = FeatureTable.read_parquet(file_path) feature_tbl = feature_tbl.fillna(0, "col_1") # udf on single column transform = lambda x: x + 1 feature_tbl = feature_tbl.apply("col_1", "new_col_1", transform, dtype="int") col1_values = feature_tbl.select("col_1").df.rdd.flatMap(lambda x: x).collect() updated_col1_values = feature_tbl.select("new_col_1").df.rdd.flatMap(lambda x: x).collect() assert [v + 1 for v in col1_values] == updated_col1_values # udf on multi columns transform = lambda x: "xxxx" feature_tbl = feature_tbl.apply(["col_2", "col_4", "col_5"], "out", transform) out_values = feature_tbl.select("out").df.rdd.flatMap(lambda x: x).collect() assert out_values == ["xxxx"] * len(out_values) def test_apply_with_data(self): file_path = os.path.join(self.resource_path, "parquet/data1.parquet") feature_tbl = FeatureTable.read_parquet(file_path) feature_tbl = feature_tbl.fillna(0, "col_1") # udf on single column y = {"ace": 1, "aa": 2} transform = lambda x: y.get(x, 0) feature_tbl = feature_tbl.apply("col_5", "out", transform, "int") assert(feature_tbl.filter(col("out") == 2).size() == 3) assert(feature_tbl.filter(col("out") == 1).size() == 1) assert(feature_tbl.filter(col("out") == 0).size() == 1) def test_fillna_int(self): file_path = os.path.join(self.resource_path, "parquet/data1.parquet") feature_tbl = FeatureTable.read_parquet(file_path) filled_tbl = feature_tbl.fillna(5, ["col_2", "col_3"]) assert isinstance(filled_tbl, FeatureTable), "filled_tbl should be a FeatureTable" assert feature_tbl.df.filter("col_2 is null").count() != 0 and feature_tbl \ .df.filter("col_3 is null").count() != 0, "feature_tbl should not be changed" assert filled_tbl.df.filter("col_2 == 5").count() == 1, "col_2 null values should be " \ "filled with 5" assert filled_tbl.df.filter("col_3 == 5").count() == 1, "col_3 null values should be " \ "filled with 5" filled_tbl = feature_tbl.fillna(5, None) assert filled_tbl.df.filter("col_2 == 5").count() == 1, "col_2 null values should be " \ "filled with 5" assert filled_tbl.df.filter("col_3 == 5").count() == 1, "col_3 null values should be " \ "filled with 5" with self.assertRaises(Exception) as context: feature_tbl.fillna(0, ["col_2", "col_3", "col_8"]) self.assertTrue('do not exist in this Table' in str(context.exception)) def test_fillna_double(self): file_path = os.path.join(self.resource_path, "parquet/data1.parquet") feature_tbl = FeatureTable.read_parquet(file_path) filled_tbl = feature_tbl.fillna(3.2, ["col_2", "col_3"]) assert isinstance(filled_tbl, FeatureTable), "filled_tbl should be a FeatureTable" assert feature_tbl.df.filter("col_2 is null").count() != 0 and feature_tbl \ .df.filter("col_3 is null").count() != 0, "feature_tbl should not be changed" assert filled_tbl.df.filter("col_2 is null").count() == 0, "col_2 null values should be " \ "filled" assert filled_tbl.df.filter("col_3 is null").count() == 0, "col_3 null values should be " \ "filled" filled_tbl = feature_tbl.fillna(5, ["col_2", "col_3"]) assert filled_tbl.df.filter("col_2 == 5").count() == 1, "col_2 null values should be " \ "filled with 5" assert filled_tbl.df.filter("col_3 == 5").count() == 1, "col_3 null values should be " \ "filled with 5" def test_fillna_long(self): file_path = os.path.join(self.resource_path, "parquet/data1.parquet") feature_tbl = FeatureTable.read_parquet(file_path) filled_tbl = feature_tbl.fillna(3, ["col_1", "col_2", "col_3"]) assert isinstance(filled_tbl, FeatureTable), "filled_tbl should be a FeatureTable" assert feature_tbl.df.filter("col_2 is null").count() != 0 and feature_tbl \ .df.filter("col_3 is null").count() != 0, "feature_tbl should not be changed" assert filled_tbl.df.filter("col_1 is null").count() == 0, "col_1 null values should be " \ "filled" assert filled_tbl.df.filter("col_2 is null").count() == 0, "col_2 null values should be " \ "filled" assert filled_tbl.df.filter("col_3 is null").count() == 0, "col_3 null values should be " \ "filled" def test_fillna_string(self): file_path = os.path.join(self.resource_path, "parquet/data1.parquet") feature_tbl = FeatureTable.read_parquet(file_path) with self.assertRaises(Exception) as context: feature_tbl.fillna(3.2, ["col_4", "col_5"]) self.assertTrue('numeric does not match the type of column col_4' in str(context.exception)) filled_tbl = feature_tbl.fillna("bb", ["col_4", "col_5"]) assert isinstance(filled_tbl, FeatureTable), "filled_tbl should be a FeatureTable" assert filled_tbl.df.filter("col_4 is null").count() == 0, "col_4 null values should be " \ "filled" assert filled_tbl.df.filter("col_5 is null").count() == 0, "col_5 null values should be " \ "filled" def test_filter_by_frequency(self): data = [("a", "b", 1), ("b", "a", 2), ("a", "bc", 3), ("c", "c", 2), ("b", "a", 2), ("ab", "c", 1), ("c", "b", 1), ("a", "b", 1)] schema = StructType([StructField("A", StringType(), True), StructField("B", StringType(), True), StructField("C", IntegerType(), True)]) spark = OrcaContext.get_spark_session() df = spark.createDataFrame(data, schema) tbl = FeatureTable(df).filter_by_frequency(["A", "B", "C"]) assert tbl.to_spark_df().count() == 2, "the count of frequency >=2 should be 2" def test_hash_encode(self): spark = OrcaContext.get_spark_session() data = [("a", "b", 1), ("b", "a", 2), ("a", "c", 3), ("c", "c", 2), ("b", "a", 1), ("a", "d", 1)] schema = StructType([StructField("A", StringType(), True), StructField("B", StringType(), True), StructField("C", IntegerType(), True)]) df = spark.createDataFrame(data, schema) tbl = FeatureTable(df) hash_str = lambda x: hashlib.md5(str(x).encode('utf-8', 'strict')).hexdigest() hash_int = lambda x: int(hash_str(x), 16) % 100 hash_value = [] for row in df.collect(): hash_value.append(hash_int(row[0])) tbl_hash = [] for record in tbl.hash_encode(["A"], 100).to_spark_df().collect(): tbl_hash.append(int(record[0])) assert(operator.eq(hash_value, tbl_hash)), "the hash encoded value should be equal" def test_cross_hash_encode(self): spark = OrcaContext.get_spark_session() data = [("a", "b", "c", 1), ("b", "a", "d", 2), ("a", "c", "e", 3), ("c", "c", "c", 2), ("b", "a", "d", 1), ("a", "d", "e", 1)] schema = StructType([StructField("A", StringType(), True), StructField("B", StringType(), True), StructField("C", StringType(), True), StructField("D", IntegerType(), True)]) df = spark.createDataFrame(data, schema) cross_hash_df = df.withColumn("A_B_C", concat("A", "B", "C")) tbl = FeatureTable(df) cross_hash_str = lambda x: hashlib.md5(str(x).encode('utf-8', 'strict')).hexdigest() cross_hash_int = lambda x: int(cross_hash_str(x), 16) % 100 cross_hash_value = [] for row in cross_hash_df.collect(): cross_hash_value.append(cross_hash_int(row[4])) tbl_cross_hash = [] for record in tbl.cross_hash_encode(["A", "B", "C"], 100).to_spark_df().collect(): tbl_cross_hash.append(int(record[4])) assert(operator.eq(cross_hash_value, tbl_cross_hash)), "the crossed hash encoded value" \ "should be equal" def test_gen_string_idx(self): file_path = os.path.join(self.resource_path, "parquet/data1.parquet") feature_tbl = FeatureTable.read_parquet(file_path) string_idx_list = feature_tbl.gen_string_idx(["col_4", "col_5"], freq_limit=1) assert string_idx_list[0].size() == 3, "col_4 should have 3 indices" assert string_idx_list[1].size() == 2, "col_5 should have 2 indices" with tempfile.TemporaryDirectory() as local_path: for str_idx in string_idx_list: str_idx.write_parquet(local_path) str_idx_log = str_idx.log(["id"]) assert str_idx.df.filter("id == 1").count() == 1, "id in str_idx should = 1" assert str_idx_log.df.filter("id == 1").count() == 0, "id in str_idx_log should " \ "!= 1" assert os.path.isdir(local_path + "/col_4.parquet") assert os.path.isdir(local_path + "/col_5.parquet") new_col_4_idx = StringIndex.read_parquet(local_path + "/col_4.parquet") assert "col_4" in new_col_4_idx.df.columns, "col_4 should be a column of new_col_4_idx" with self.assertRaises(Exception) as context: StringIndex.read_parquet(local_path + "/col_5.parquet", "col_4") self.assertTrue('col_4 should be a column of the DataFrame' in str(context.exception)) def test_gen_string_idx_dict(self): file_path = os.path.join(self.resource_path, "parquet/data1.parquet") feature_tbl = FeatureTable.read_parquet(file_path) string_idx_list = feature_tbl.gen_string_idx(["col_4", "col_5"], freq_limit={"col_4": 1, "col_5": 3}) with self.assertRaises(Exception) as context: feature_tbl.gen_string_idx(["col_4", "col_5"], freq_limit="col_4:1,col_5:3") self.assertTrue('freq_limit only supports int, dict or None, but get str' in str( context.exception)) assert string_idx_list[0].size() == 3, "col_4 should have 3 indices" assert string_idx_list[1].size() == 1, "col_5 should have 1 indices" def test_gen_string_idx_none(self): file_path = os.path.join(self.resource_path, "parquet/data1.parquet") feature_tbl = FeatureTable.read_parquet(file_path) string_idx_list = feature_tbl.gen_string_idx(["col_4", "col_5"], freq_limit=None) assert string_idx_list[0].size() == 3, "col_4 should have 3 indices" assert string_idx_list[1].size() == 2, "col_5 should have 2 indices" def test_gen_reindex_mapping(self): file_path = os.path.join(self.resource_path, "parquet/data1.parquet") feature_tbl = FeatureTable.read_parquet(file_path) string_idx_list = feature_tbl.gen_string_idx(["col_4", "col_5"], freq_limit={"col_4": 1, "col_5": 1}, order_by_freq=False) tbl = feature_tbl.encode_string(["col_4", "col_5"], string_idx_list) index_tbls = tbl.gen_reindex_mapping(["col_4", "col_5"], 1) assert(index_tbls[0].size() == 3) assert(index_tbls[1].size() == 2) def test_gen_string_idx_union(self): file_path = os.path.join(self.resource_path, "parquet/data1.parquet") feature_tbl = FeatureTable.read_parquet(file_path) string_idx_list1 = feature_tbl \ .gen_string_idx(["col_4", 'col_5'], freq_limit=1) assert string_idx_list1[0].size() == 3, "col_4 should have 3 indices" assert string_idx_list1[1].size() == 2, "col_5 should have 2 indices" new_tbl1 = feature_tbl.encode_string(['col_4', 'col_5'], string_idx_list1) assert new_tbl1.max("col_5").to_list("max")[0] == 2, "col_5 max value should be 2" string_idx_list2 = feature_tbl \ .gen_string_idx(["col_4", {"src_cols": ["col_4", "col_5"], "col_name": 'col_5'}], freq_limit=1) assert string_idx_list2[0].size() == 3, "col_4 should have 3 indices" assert string_idx_list2[1].size() == 4, "col_5 should have 4 indices" new_tbl2 = feature_tbl.encode_string(['col_4', 'col_5'], string_idx_list2) assert new_tbl2.max("col_5").to_list("max")[0] == 4, "col_5 max value should be 4" string_idx_3 = feature_tbl \ .gen_string_idx({"src_cols": ["col_4", "col_5"], "col_name": 'col_5'}, freq_limit=1) assert string_idx_3.size() == 4, "col_5 should have 4 indices" new_tbl3 = feature_tbl.encode_string('col_5', string_idx_3) assert new_tbl3.max("col_5").to_list("max")[0] == 4, "col_5 max value should be 4" def test_gen_string_idx_split(self): file_path = os.path.join(self.resource_path, "parquet/data1.parquet") feature_tbl = FeatureTable.read_parquet(file_path) to_list_str = udf(lambda arr: ','.join(arr)) df = feature_tbl.dropna(['col_4', 'col_5']).df.withColumn("list1", array('col_4', 'col_5'))\ .withColumn("list1", to_list_str(col("list1"))) tbl = FeatureTable(df) string_idx_1 = tbl.gen_string_idx("list1", do_split=True, sep=",", freq_limit=1) assert string_idx_1.size() == 4, "list1 should have 4 indices" new_tbl1 = tbl.encode_string('list1', string_idx_1, do_split=True, sep=",") assert isinstance(new_tbl1.to_list("list1"), list), \ "encode list should return list of int" new_tbl2 = tbl.encode_string(['list1'], string_idx_1, do_split=True, sep=",", sort_for_array=True) l1 = new_tbl2.to_list("list1")[0] l2 = l1.copy() l2.sort() assert l1 == l2, "encode list with sort should sort" new_tbl3 = tbl.encode_string(['list1'], string_idx_1, do_split=True, sep=",", keep_most_frequent=True) assert isinstance(new_tbl3.to_list("list1")[0], int), \ "encode list with keep most frequent should only keep one int" def test_clip(self): file_path = os.path.join(self.resource_path, "parquet/data1.parquet") feature_tbl = FeatureTable.read_parquet(file_path) clip_tbl = feature_tbl.clip(["col_1", "col_2", "col_3"], min=2, max=None) assert isinstance(clip_tbl, FeatureTable), "clip_tbl should be a FeatureTable" assert feature_tbl.df.filter("col_1 < 2").count() != 0 and feature_tbl \ .df.filter("col_2 < 2").count() != 0, "feature_tbl should not be changed" assert clip_tbl.df.filter("col_1 < 2").count() == 0, "col_1 should >= 2" assert clip_tbl.df.filter("col_2 < 2").count() == 0, "col_2 should >= 2" assert clip_tbl.df.filter("col_3 < 2").count() == 0, "col_3 should >= 2" with self.assertRaises(Exception) as context: feature_tbl.clip(None, 2) self.assertTrue('columns should be str or a list of str, but got None.' in str(context.exception)) feature_tbl = FeatureTable.read_parquet(file_path) clip_tbl = feature_tbl.clip(["col_1", "col_2", "col_3"], min=None, max=1) assert isinstance(clip_tbl, FeatureTable), "clip_tbl should be a FeatureTable" assert feature_tbl.df.filter("col_1 > 1").count() != 0 and feature_tbl \ .df.filter("col_2 > 1").count() != 0, "feature_tbl should not be changed" assert clip_tbl.df.filter("col_1 > 1").count() == 0, "col_1 should <= 1" assert clip_tbl.df.filter("col_2 > 1").count() == 0, "col_2 should <= 1" assert clip_tbl.df.filter("col_3 > 1").count() == 0, "col_3 should <= 1" feature_tbl = FeatureTable.read_parquet(file_path) clip_tbl = feature_tbl.clip(["col_1", "col_2", "col_3"], min=0, max=1) assert isinstance(clip_tbl, FeatureTable), "clip_tbl should be a FeatureTable" assert feature_tbl.df.filter("col_1 > 1 or col_1 < 0").count() != 0 and feature_tbl \ .df.filter("col_2 > 1 or col_2 < 0").count() != 0, "feature_tbl should not be changed" assert clip_tbl.df.filter("col_1 < 0").count() == 0, "col_1 should >= 0" assert clip_tbl.df.filter("col_2 > 1").count() == 0, "col_2 should <= 1" assert clip_tbl.df.filter("col_3 < 0 or col_3 > 1").count() == 0, "col_3 should >=0 " \ "and <= 1" def test_dropna(self): file_path = os.path.join(self.resource_path, "parquet/data1.parquet") feature_tbl = FeatureTable.read_parquet(file_path) dropped_tbl = feature_tbl.dropna(["col_1", "col_4"]) assert isinstance(dropped_tbl, FeatureTable), "dropped_tbl should be a FeatureTable" assert feature_tbl.df.filter("col_1 is null").count() != 0 and feature_tbl\ .df.filter("col_4 is null").count() != 0, "feature_tbl should not be changed" assert dropped_tbl.df.filter("col_1 is null").count() == 0, "col_1 null values should " \ "be dropped" assert dropped_tbl.df.filter("col_4 is null").count() == 0, "col_4 null values should " \ "be dropped" assert 0 < dropped_tbl.df.count() < feature_tbl.df.count(), "the number of rows should " \ "be decreased" dropped_tbl = feature_tbl.dropna(["col_1", "col_4"], how="all") assert dropped_tbl.df.filter("col_1 is null and col_4 is null").count() == 0, \ "col_1 and col_4 should not both have null values" dropped_tbl = feature_tbl.dropna(["col_2", "col_4"], how="all") assert dropped_tbl.df.filter("col_2 is null").count() > 0, \ "col_2 should still have null values after dropna with how=all" dropped_tbl = feature_tbl.dropna(["col_2", "col_3", "col_5"], thresh=2) assert dropped_tbl.df.filter("col_2 is null").count() > 0, \ "col_2 should still have null values after dropna with thresh=2" assert dropped_tbl.df.filter("col_3 is null and col_5 is null").count() == 0, \ "col_3 and col_5 should not both have null values" def test_fill_median(self): file_path = os.path.join(self.resource_path, "parquet/data1.parquet") feature_tbl = FeatureTable.read_parquet(file_path) with self.assertRaises(Exception) as context: feature_tbl.fill_median(["col_4", "col_5"]) self.assertTrue('col_4 with data type StringType is not supported' in str(context.exception)) filled_tbl = feature_tbl.fill_median(["col_1", "col_2"]) assert isinstance(filled_tbl, FeatureTable), "filled_tbl should be a FeatureTable" assert filled_tbl.df.filter("col_1 is null").count() == 0, "col_1 null values should be " \ "filled" assert filled_tbl.df.filter("col_2 is null").count() == 0, "col_2 null values should be " \ "filled" def test_filter(self): file_path = os.path.join(self.resource_path, "parquet/data1.parquet") feature_tbl = FeatureTable.read_parquet(file_path) filtered_tbl = feature_tbl.filter(feature_tbl.col_1 == 1) assert filtered_tbl.size() == 3, "Only 3 out of 5 rows has value 1 for col_1" filtered_tbl2 = feature_tbl.filter( (feature_tbl.col("col_1") == 1) & (feature_tbl.col_2 == 1)) assert filtered_tbl2.size() == 1, "Only 1 out of 5 rows has value 1 for col_1 and col_2" def test_random_split(self): file_path = os.path.join(self.resource_path, "parquet/data1.parquet") feature_tbl = FeatureTable.read_parquet(file_path) table1, table2 = feature_tbl.random_split([0.8, 0.2], seed=1) cnt1, cnt2 = table1.size(), table2.size() cnt = feature_tbl.size() assert cnt == cnt1 + cnt2, "size of full table should equal to sum of size of splited ones" def test_rename(self): file_path = os.path.join(self.resource_path, "parquet/data1.parquet") feature_tbl = FeatureTable.read_parquet(file_path) name_dict = {"col_1": "new_col1", "col_4": "new_col4"} rename_tbl = feature_tbl.rename(name_dict) cols = rename_tbl.df.columns assert isinstance(rename_tbl, FeatureTable), "rename_tbl should be a FeatureTable" assert "col_1" in feature_tbl.df.columns, "feature_tbl should not be changed" assert "new_col1" in cols, "new_col1 should be a column of the renamed tbl." assert "new_col4" in cols, "new_col4 should be a column of the renamed tbl." def test_log(self): file_path = os.path.join(self.resource_path, "parquet/data1.parquet") feature_tbl = FeatureTable.read_parquet(file_path) log_tbl = feature_tbl.log(["col_1", "col_2", "col_3"]) assert isinstance(log_tbl, FeatureTable), "log_tbl should be a FeatureTable" assert feature_tbl.df.filter("col_1 == 1").count() != 0 and feature_tbl \ .df.filter("col_2 == 1").count() != 0, "feature_tbl should not be changed" assert log_tbl.df.filter("col_1 == 1").count() == 0, "col_1 should != 1" assert log_tbl.df.filter("col_2 == 1").count() == 0, "col_2 should != 1" assert log_tbl.df.filter("col_3 == 1").count() == 0, "col_3 should != 1" def test_merge(self): file_path = os.path.join(self.resource_path, "parquet/data1.parquet") feature_tbl = FeatureTable.read_parquet(file_path) merged_tbl = feature_tbl.merge_cols(["col_1", "col_2", "col_3"], "int_cols") assert "col_1" not in merged_tbl.df.columns, "col_1 shouldn't be a column of merged_tbl" assert "int_cols" in merged_tbl.df.columns, "int_cols should be a column of merged_tbl" assert "col_1" in feature_tbl.df.columns, "col_1 should be a column of feature_tbl" def test_norm(self): file_path = os.path.join(self.resource_path, "parquet/data1.parquet") feature_tbl = FeatureTable.read_parquet(file_path).fillna(0, ["col_2", "col_3"]) normalized_tbl, min_max_dic = feature_tbl.min_max_scale(["col_2"]) max_value = normalized_tbl.df.select("col_2") \ .agg(max(col("col_2")).alias("max")) \ .rdd.map(lambda row: row['max']).collect()[0] min_value = normalized_tbl.df.select("col_2") \ .agg(min(col("col_2")).alias("min")) \ .rdd.map(lambda row: row['min']).collect()[0] assert max_value <= 1, "col_2 shouldn't be more than 1 after normalization" assert min_value >= 0, "col_2 shouldn't be less than 0 after normalization" tbl2 = FeatureTable(feature_tbl.df.withColumn("col2-col3", array(["col_2", "col_3"]))) normalized_tbl2, min_max_dic2 = tbl2.min_max_scale(["col_2", "col2-col3"]) test_file_path = os.path.join(self.resource_path, "parquet/data3.parquet") test_tbl = FeatureTable.read_parquet(test_file_path).fillna(0, ["col_2", "col_3"]) scaled = test_tbl.transform_min_max_scale(["col_2"], min_max_dic) max_value = scaled.df.select("col_2") \ .agg(max(col("col_2")).alias("max")) \ .rdd.map(lambda row: row['max']).collect()[0] min_value = scaled.df.select("col_2") \ .agg(min(col("col_2")).alias("min")) \ .rdd.map(lambda row: row['min']).collect()[0] assert max_value <= 1, "col_2 shouldn't be more than 1 after normalization" assert min_value >= 0, "col_2 shouldn't be less than 0 after normalization" test_tbl2 = FeatureTable(test_tbl.df.withColumn("col2-col3", array(["col_2", "col_3"]))) scaled2 = test_tbl2.transform_min_max_scale(["col_2", "col2-col3"], min_max_dic2) max_value = scaled2.df.select("col2-col3") \ .agg(max(col("col2-col3")).alias("max")) \ .rdd.map(lambda row: row['max']).collect()[0] min_value = scaled2.df.select("col2-col3") \ .agg(min(col("col2-col3")).alias("min")) \ .rdd.map(lambda row: row['min']).collect()[0] assert max_value[0] <= 1 and max_value[1] <= 1, \ "col2-col3 shouldn't be more than 1 after normalization" assert min_value[0] >= 0 and min_value[1] >= 0, \ "col2-col3 shouldn't be less than 0 after normalization" def test_cross(self): file_path = os.path.join(self.resource_path, "parquet/data1.parquet") feature_tbl = FeatureTable.read_parquet(file_path).fillna(0, ["col_2", "col_3"]) crossed_tbl = feature_tbl.cross_columns([["col_2", "col_3"]], [100]) assert "col_2_col_3" in crossed_tbl.df.columns, "crossed column is not created" max_value = crossed_tbl.df.select("col_2_col_3") \ .agg(max(col("col_2_col_3")).alias("max")) \ .rdd.map(lambda row: row['max']).collect()[0] min_value = crossed_tbl.df.select("col_2_col_3") \ .agg(min(col("col_2_col_3")).alias("min")) \ .rdd.map(lambda row: row['min']).collect()[0] assert max_value <= 100, "cross value shouldn't be more than 100 after cross" assert min_value > 0, "cross value shouldn't be less than 0 after cross" def test_add_negative_items(self): spark = OrcaContext.get_spark_session() data = [("jack", 1, "2019-07-01 12:01:19.000"), ("jack", 2, "2019-08-01 12:01:19.000"), ("jack", 3, "2019-09-01 12:01:19.000"), ("alice", 4, "2019-09-01 12:01:19.000"), ("alice", 5, "2019-10-01 12:01:19.000"), ("alice", 6, "2019-11-01 12:01:19.000")] schema = StructType([ StructField("name", StringType(), True), StructField("item", IntegerType(), True), StructField("time", StringType(), True) ]) df = spark.createDataFrame(data=data, schema=schema) tbl = FeatureTable(df).add_negative_samples(10) dft = tbl.df assert tbl.size() == 12 assert dft.filter("label == 1").count() == 6 assert dft.filter("label == 0").count() == 6 def test_add_hist_seq(self): spark = OrcaContext.get_spark_session() data = [("jack", 1, "2019-07-01 12:01:19.000"), ("jack", 2, "2019-08-01 12:01:19.000"), ("jack", 3, "2019-09-01 12:01:19.000"), ("jack", 4, "2019-07-02 12:01:19.000"), ("jack", 5, "2019-08-03 12:01:19.000"), ("jack", 6, "2019-07-04 12:01:19.000"), ("jack", 7, "2019-08-05 12:01:19.000"), ("alice", 4, "2019-09-01 12:01:19.000"), ("alice", 5, "2019-10-01 12:01:19.000"), ("alice", 6, "2019-11-01 12:01:19.000")] schema = StructType([StructField("name", StringType(), True), StructField("item", IntegerType(), True), StructField("time", StringType(), True)]) df = spark.createDataFrame(data=data, schema=schema) df = df.withColumn("ts", col("time").cast("timestamp").cast("long")) tbl = FeatureTable(df.select("name", "item", "ts")) \ .add_hist_seq(["item"], "name", "ts", 1, 4) tbl2 = FeatureTable(df.select("name", "item", "ts")) \ .add_hist_seq(["item"], "name", "ts", 1, 4, 1) assert tbl.size() == 8 assert tbl.df.filter(col("name") == "alice").count() == 2 assert tbl.df.filter("name like '%jack'").count() == 6 assert "item_hist_seq" in tbl.df.columns assert tbl2.size() == 2 assert tbl2.df.filter(col("name") == "alice").count() == 1 assert tbl2.df.filter("name like '%jack'").count() == 1 assert "item_hist_seq" in tbl2.df.columns def test_gen_neg_hist_seq(self): spark = OrcaContext.get_spark_session() sc = OrcaContext.get_spark_context() data = [ ("jack", [1, 2, 3, 4, 5]), ("alice", [4, 5, 6, 7, 8]), ("rose", [1, 2])] schema = StructType([ StructField("name", StringType(), True), StructField("item_hist_seq", ArrayType(IntegerType()), True)]) df = spark.createDataFrame(data, schema) df2 = sc \ .parallelize([(1, 0), (2, 0), (3, 0), (4, 1), (5, 1), (6, 1), (7, 2), (8, 2), (9, 2)]) \ .toDF(["item", "category"]).withColumn("item", col("item").cast("Integer")) \ .withColumn("category", col("category").cast("Integer")) tbl = FeatureTable(df) tbl = tbl.add_neg_hist_seq(9, "item_hist_seq", 4) assert tbl.df.select("neg_item_hist_seq").count() == 3 def test_add_value_features(self): spark = OrcaContext.get_spark_session() sc = OrcaContext.get_spark_context() data = [ ("jack", [1, 2, 3, 4, 5]), ("alice", [4, 5, 6, 7, 8]), ("rose", [1, 2])] schema = StructType([ StructField("name", StringType(), True), StructField("item_hist_seq", ArrayType(IntegerType()), True)]) df = spark.createDataFrame(data, schema) df.filter("name like '%alice%'").show() df2 = sc \ .parallelize([(0, 0), (1, 0), (2, 0), (3, 0), (4, 1), (5, 1), (6, 1), (8, 2), (9, 2)]) \ .toDF(["item", "category"]).withColumn("item", col("item").cast("Integer")) \ .withColumn("category", col("category").cast("Integer")) tbl = FeatureTable(df) tbl2 = tbl.add_neg_hist_seq(9, "item_hist_seq", 4) tbl3 = tbl2.add_value_features(["item_hist_seq", "neg_item_hist_seq"], FeatureTable(df2), "item", "category") assert tbl3.df.select("category_hist_seq").count() == 3 assert tbl3.df.select("neg_category_hist_seq").count() == 3 assert tbl3.df.filter("name like '%alice%'").select("neg_category_hist_seq").count() == 1 assert tbl3.df.filter("name == 'rose'").select("neg_category_hist_seq").count() == 1 def test_reindex(self): file_path = os.path.join(self.resource_path, "parquet/data1.parquet") feature_tbl = FeatureTable.read_parquet(file_path) string_idx_list = feature_tbl.gen_string_idx(["col_4", "col_5"], freq_limit={"col_4": 1, "col_5": 1}, order_by_freq=False) tbl_with_index = feature_tbl.encode_string(["col_4", "col_5"], string_idx_list) index_tbls = tbl_with_index.gen_reindex_mapping(["col_4", "col_5"], 2) reindexed = tbl_with_index.reindex(["col_4", "col_5"], index_tbls) assert(reindexed.filter(col("col_4") == 0).size() == 2) assert(reindexed.filter(col("col_4") == 1).size() == 2) assert(reindexed.filter(col("col_5") == 0).size() == 1) assert(reindexed.filter(col("col_5") == 1).size() == 3) def test_pad(self): spark = OrcaContext.get_spark_session() data = [ ("jack", [1, 2, 3, 4, 5], [[1, 2, 3], [1, 2, 3]]), ("alice", [4, 5, 6, 7, 8], [[1, 2, 3], [1, 2, 3]]), ("rose", [1, 2], [[1, 2, 3]])] schema = StructType([StructField("name", StringType(), True), StructField("list", ArrayType(IntegerType()), True), StructField("matrix", ArrayType(ArrayType(IntegerType())))]) df = spark.createDataFrame(data, schema) tbl1 = FeatureTable(df).pad(["list", "matrix"], seq_len=4) dft1 = tbl1.df tbl2 = FeatureTable(df).pad(cols=["list", "matrix"], mask_cols=["list"], seq_len=4) assert dft1.filter("size(matrix) = 4").count() == 3 assert dft1.filter("size(list) = 4").count() == 3 assert tbl2.df.filter("size(list_mask) = 4").count() == 3 assert tbl2.df.filter("size(list_mask) = 2").count() == 0 assert "list_mask" in tbl2.df.columns def test_median(self): file_path = os.path.join(self.resource_path, "parquet/data1.parquet") feature_tbl = FeatureTable.read_parquet(file_path) with self.assertRaises(Exception) as context: feature_tbl.median(["col_4", "col_5"]) self.assertTrue('col_4 with data type StringType is not supported' in str(context.exception)) median_tbl = feature_tbl.median(["col_1", "col_2", "col_3"]) assert isinstance(median_tbl, FeatureTable), "median_tbl should be a FeatureTable" assert median_tbl.df.count() == 3, "the number of rows of median_tbl should be equal to " \ "the number of specified columns" assert median_tbl.df.filter("column == 'col_1'").count() == 1, "col_1 should exist in " \ "'column' of median_tbl" assert median_tbl.df.filter("column == 'col_2'").filter("median == 1.0").count() == 1, \ "the median of col_2 should be 1.0" def test_cast(self): spark = OrcaContext.get_spark_session() data = [("jack", "123", 14, 8), ("alice", "34", 25, 9), ("rose", "25344", 23, 10)] schema = StructType([StructField("name", StringType(), True), StructField("a", StringType(), True), StructField("b", IntegerType(), True), StructField("c", IntegerType(), True)]) df = spark.createDataFrame(data, schema) tbl = FeatureTable(df) tbl = tbl.cast("a", "int") assert dict(tbl.df.dtypes)['a'] == "int", "column a should be now be cast to integer type" tbl = tbl.cast("a", "float") assert dict(tbl.df.dtypes)['a'] == "float", "column a should be now be cast to float type" tbl = tbl.cast(["b", "c"], "double") assert dict(tbl.df.dtypes)['b'] == dict(tbl.df.dtypes)['c'] == "double", \ "column b and c should be now be cast to double type" tbl = tbl.cast(None, "float") assert dict(tbl.df.dtypes)['name'] == dict(tbl.df.dtypes)['a'] == dict(tbl.df.dtypes)['b'] \ == dict(tbl.df.dtypes)['c'] == "float", \ "all the columns should now be cast to float type" with self.assertRaises(Exception) as context: tbl = tbl.cast("a", "notvalid") self.assertTrue( "type should be string, boolean, int, long, short, float, double." in str(context.exception)) def test_select(self): file_path = os.path.join(self.resource_path, "parquet/data1.parquet") feature_tbl = FeatureTable.read_parquet(file_path) select_tbl = feature_tbl.select("col_1", "col_2") assert "col_1" in select_tbl.df.columns, "col_1 shoul be selected" assert "col_2" in select_tbl.df.columns, "col_2 shoud be selected" assert "col_3" not in select_tbl.df.columns, "col_3 shoud not be selected" assert feature_tbl.size() == select_tbl.size(), \ "the selected table should have the same rows" with self.assertRaises(Exception) as context: feature_tbl.select() self.assertTrue("cols should be str or a list of str, but got None." in str(context.exception)) def test_create_from_dict(self): indices = {'a': 1, 'b': 2, 'c': 3} col_name = 'letter' tbl = StringIndex.from_dict(indices, col_name) assert 'id' in tbl.df.columns, "id should be one column in the stringindex" assert 'letter' in tbl.df.columns, "letter should be one column in the stringindex" assert tbl.size() == 3, "the StringIndex should have three rows" with self.assertRaises(Exception) as context: StringIndex.from_dict(indices, None) self.assertTrue("col_name should be str, but get None" in str(context.exception)) with self.assertRaises(Exception) as context: StringIndex.from_dict(indices, 12) self.assertTrue("col_name should be str, but get int" in str(context.exception)) with self.assertRaises(Exception) as context: StringIndex.from_dict([indices], col_name) self.assertTrue("indices should be dict, but get list" in str(context.exception)) def test_encode_string_from_dict(self): spark = OrcaContext.get_spark_session() data = [("jack", "123", 14, 8), ("alice", "34", 25, 9), ("rose", "25344", 23, 10)] schema = StructType([StructField("name", StringType(), True), StructField("num", StringType(), True), StructField("age", IntegerType(), True), StructField("height", IntegerType(), True)]) tbl = FeatureTable(spark.createDataFrame(data, schema)) columns = ["name", "num"] indices = [] indices.append({"jack": 1, "alice": 2, "rose": 3}) indices.append({"123": 3, "34": 1, "25344": 2}) tbl = tbl.encode_string(columns, indices) assert 'name' in tbl.df.columns, "name should be still in the columns" assert 'num' in tbl.df.columns, "num should be still in the columns" assert tbl.df.where(tbl.df.age == 14).select("name").collect()[0]["name"] == 1, \ "the first row of name should be 1" assert tbl.df.where(tbl.df.height == 10).select("num").collect()[0]["num"] == 2, \ "the third row of num should be 2" def test_write_csv(self): spark = OrcaContext.get_spark_session() data = [("jack", 14, 8), ("alice", 25, 9), ("rose", 23, 10)] schema = StructType([StructField("name", StringType(), True), StructField("age", IntegerType(), True), StructField("height", IntegerType(), True)]) tbl = FeatureTable(spark.createDataFrame(data, schema)) directory = "write.csv" if os.path.exists("write.csv"): shutil.rmtree("write.csv") tbl.write_csv(directory, mode="overwrite", header=True, num_partitions=1) assert os.path.exists("write.csv"), "files not write" result = FeatureTable(spark.read.csv(directory, header=True)) assert isinstance(result, FeatureTable) assert result.size() == 3, "the size of result should be 3" assert result.filter("age == 23").size() == 1, "wrong age" assert result.filter("name == 'jack'").size() == 1, "wrong name" assert result.filter("name == 'alice'").size() == 1, "wrong name" shutil.rmtree(directory) def test_concat(self): spark = OrcaContext.get_spark_session() data1 = [("jack", 1)] data2 = [(2, "alice")] data3 = [("amy", 3, 50)] schema1 = StructType([StructField("name", StringType(), True), StructField("id", IntegerType(), True)]) schema2 = StructType([StructField("id", IntegerType(), True), StructField("name", StringType(), True)]) schema3 = StructType([StructField("name", StringType(), True), StructField("id", IntegerType(), True), StructField("weight", IntegerType(), True)]) tbl1 = FeatureTable(spark.createDataFrame(data1, schema1)) tbl2 = FeatureTable(spark.createDataFrame(data2, schema2)) tbl3 = FeatureTable(spark.createDataFrame(data3, schema3)) tbl = tbl1.concat(tbl1) assert tbl.size() == 2 tbl = tbl1.concat(tbl1, distinct=True) assert tbl.size() == 1 tbl = tbl1.concat(tbl2) assert tbl.filter("name == 'jack'").size() == 1 assert tbl.filter("name == 'alice'").size() == 1 tbl = tbl1.concat(tbl3, mode="inner") assert tbl.df.schema.names == ["name", "id"] tbl = tbl1.concat(tbl3, mode="outer") assert tbl.df.schema.names == ["name", "id", "weight"] assert tbl.fillna(0, "weight").filter("weight == 0").size() == 1 tbl = tbl1.concat([tbl1, tbl2, tbl3]) assert tbl.size() == 4 assert tbl.distinct().size() == 3 tbl = tbl1.concat([tbl1, tbl2, tbl3], distinct=True) assert tbl.size() == 3 def test_drop_duplicates(self): spark = OrcaContext.get_spark_session() schema = StructType([StructField("name", StringType(), True), StructField("grade", StringType(), True), StructField("number", IntegerType(), True)]) data = [("jack", "a", 1), ("jack", "a", 3), ("jack", "b", 2), ("amy", "a", 2), ("amy", "a", 5), ("amy", "a", 4)] tbl = FeatureTable(spark.createDataFrame(data, schema)) tbl2 = tbl.drop_duplicates(subset=['name', 'grade'], sort_cols='number', keep='min') tbl2.df.show() assert tbl2.size() == 3 assert tbl2.df.filter((tbl2.df.name == 'jack') & (tbl2.df.grade == 'a'))\ .select("number").collect()[0]["number"] == 1 assert tbl2.df.filter((tbl2.df.name == 'jack') & (tbl2.df.grade == 'b'))\ .select("number").collect()[0]["number"] == 2 assert tbl2.df.filter((tbl2.df.name == 'amy') & (tbl2.df.grade == 'a'))\ .select("number").collect()[0]["number"] == 2 tbl3 = tbl.drop_duplicates(subset=['name', 'grade'], sort_cols='number', keep='max') tbl3.df.show() assert tbl3.size() == 3 assert tbl3.df.filter((tbl2.df.name == 'jack') & (tbl2.df.grade == 'a'))\ .select("number").collect()[0]["number"] == 3 assert tbl3.df.filter((tbl2.df.name == 'jack') & (tbl2.df.grade == 'b'))\ .select("number").collect()[0]["number"] == 2 assert tbl3.df.filter((tbl2.df.name == 'amy') & (tbl2.df.grade == 'a'))\ .select("number").collect()[0]["number"] == 5 tbl4 = tbl.drop_duplicates(subset=None, sort_cols='number', keep='max') tbl4.df.show() assert tbl4.size() == 6 tbl5 = tbl.drop_duplicates(subset=['name', 'grade'], sort_cols=None, keep='max') tbl5.df.show() assert tbl5.size() == 3 tbl6 = tbl.drop_duplicates(subset=['name'], sort_cols=["grade", "number"], keep='max') assert tbl6.size() == 2 tbl6.df.show() assert tbl6.df.filter((tbl6.df.name == 'jack') & (tbl6.df.grade == 'b') & (tbl6.df.number == 2))\ .select("number").collect()[0]["number"] == 2 assert tbl6.df.filter((tbl6.df.name == 'amy') & (tbl6.df.grade == 'a') & (tbl6.df.number == 5))\ .select("number").collect()[0]["number"] == 5 def test_join(self): spark = OrcaContext.get_spark_session() schema = StructType([StructField("name", StringType(), True), StructField("id", IntegerType(), True)]) data = [("jack", 1), ("jack", 2), ("jack", 3)] tbl = FeatureTable(spark.createDataFrame(data, schema)) tbl2 = FeatureTable(spark.createDataFrame(data, schema)) tbl = tbl.join(tbl2, on="id", lsuffix="_l", rsuffix="_r") assert "name_l" in tbl.df.schema.names assert "id" in tbl.df.schema.names assert "name_r" in tbl.df.schema.names def test_cut_bins(self): spark = OrcaContext.get_spark_session() values = [("a", 23), ("b", 45), ("c", 10), ("d", 60), ("e", 56), ("f", 2), ("g", 25), ("h", 40), ("j", 33)] tbl = FeatureTable(spark.createDataFrame(values, ["name", "ages"])) splits = [6, 18, 60] labels = ["infant", "minor", "adult", "senior"] # test drop false, name defined new_tbl = tbl.cut_bins(bins=splits, columns="ages", labels=labels, out_cols="age_bucket", drop=False) assert "age_bucket" in new_tbl.columns assert "ages" in new_tbl.columns assert new_tbl.df.select("age_bucket").rdd.flatMap(lambda x: x).collect() ==\ ["adult", "adult", "minor", "senior", "adult", "infant", "adult", "adult", "adult"] # test out_col equal to input column new_tbl = tbl.cut_bins(bins=splits, columns="ages", labels=labels, out_cols="ages", drop=True) assert "ages" in new_tbl.columns assert new_tbl.df.select("ages").rdd.flatMap(lambda x: x).collect() == \ ["adult", "adult", "minor", "senior", "adult", "infant", "adult", "adult", "adult"] # test name not defined new_tbl = tbl.cut_bins(bins=splits, columns="ages", labels=labels, drop=True) assert "ages_bin" in new_tbl.columns assert new_tbl.df.select("ages_bin").rdd.flatMap(lambda x: x).collect() == \ ["adult", "adult", "minor", "senior", "adult", "infant", "adult", "adult", "adult"] # test integer bins new_tbl = tbl.cut_bins(bins=2, columns="ages", labels=labels, drop=False) assert "ages_bin" in new_tbl.columns assert new_tbl.df.select("ages_bin").rdd.flatMap(lambda x: x).collect() \ == ["minor", "adult", "minor", "senior", "adult", "minor", "minor", "adult", "adult"] # test label is None new_tbl = tbl.cut_bins(bins=4, columns="ages", drop=True) assert "ages_bin" in new_tbl.columns assert new_tbl.df.select("ages_bin").rdd.flatMap(lambda x: x).collect() \ == [2, 3, 1, 5, 4, 1, 2, 3, 3] # test multiple columns values = [("a", 23, 23), ("b", 45, 45), ("c", 10, 10), ("d", 60, 60), ("e", 56, 56), ("f", 2, 2), ("g", 25, 25), ("h", 40, 40), ("j", 33, 33)] tbl = FeatureTable(spark.createDataFrame(values, ["name", "ages", "number"])) splits = [6, 18, 60] splits2 = [6, 18, 60] labels = ["infant", "minor", "adult", "senior"] new_tbl = tbl.cut_bins(bins={'ages': splits, 'number': splits2}, columns=["ages", 'number'], labels={'ages': labels, 'number': labels}, out_cols=None, drop=False) assert "ages_bin" in new_tbl.columns assert "ages" in new_tbl.columns assert "number_bin" in new_tbl.columns assert new_tbl.df.select("ages_bin").rdd.flatMap(lambda x: x).collect() ==\ ["adult", "adult", "minor", "senior", "adult", "infant", "adult", "adult", "adult"] def test_columns(self): file_path = os.path.join(self.resource_path, "parquet/data1.parquet") feature_tbl = FeatureTable.read_parquet(file_path) col_names = feature_tbl.columns assert isinstance(col_names, list), "col_names should be a list of strings" assert col_names == ["col_1", "col_2", "col_3", "col_4", "col_5"], \ "column names are incorrenct" def test_get_stats(self): spark = OrcaContext.get_spark_session() data = [("jack", "123", 14, 8.5), ("alice", "34", 25, 9.7), ("rose", "25344", 23, 10.0)] schema = StructType([StructField("name", StringType(), True), StructField("num", StringType(), True), StructField("age", IntegerType(), True), StructField("height", DoubleType(), True)]) tbl = FeatureTable(spark.createDataFrame(data, schema)) columns = ["age", "height"] # test str statistics = tbl.get_stats(columns, "min") assert len(statistics) == 2, "the dict should contain two statistics" assert statistics["age"] == 14, "the min value of age is not correct" assert statistics["height"] == 8.5, "the min value of height is not correct" columns = ["age", "height"] # test dict statistics = tbl.get_stats(columns, {"age": "max", "height": "avg"}) assert len(statistics) == 2, "the dict should contain two statistics" assert statistics["age"] == 25, "the max value of age is not correct" assert statistics["height"] == 9.4, "the avg value of height is not correct" # test list statistics = tbl.get_stats(columns, ["min", "max"]) assert len(statistics) == 2, "the dict should contain two statistics" assert statistics["age"][0] == 14, "the min value of age is not correct" assert statistics["age"][1] == 25, "the max value of age is not correct" assert statistics["height"][0] == 8.5, "the min value of height is not correct" assert statistics["height"][1] == 10.0, "the max value of height is not correct" # test dict of list statistics = tbl.get_stats(columns, {"age": ["min", "max"], "height": ["min", "avg"]}) assert len(statistics) == 2, "the dict should contain two statistics" assert statistics["age"][0] == 14, "the min value of age is not correct" assert statistics["age"][1] == 25, "the max value of age is not correct" assert statistics["height"][0] == 8.5, "the min value of height is not correct" assert statistics["height"][1] == 9.4, "the max value of height is not correct" statistics = tbl.get_stats(None, "min") assert len(statistics) == 2, "the dict should contain two statistics" assert statistics["age"] == 14, "the min value of age is not correct" assert statistics["height"] == 8.5, "the min value of height is not correct" def test_min(self): spark = OrcaContext.get_spark_session() data = [("jack", "123", 14, 8.5), ("alice", "34", 25, 9.7), ("rose", "25344", 23, 10.0)] schema = StructType([StructField("name", StringType(), True), StructField("num", StringType(), True), StructField("age", IntegerType(), True), StructField("height", DoubleType(), True)]) tbl = FeatureTable(spark.createDataFrame(data, schema)) columns = ["age", "height"] min_result = tbl.min(columns) assert min_result.to_list("min") == [14, 8.5], \ "the min value for age and height is not correct" def test_max(self): spark = OrcaContext.get_spark_session() data = [("jack", "123", 14, 8.5), ("alice", "34", 25, 9.7), ("rose", "25344", 23, 10.0)] schema = StructType([StructField("name", StringType(), True), StructField("num", StringType(), True), StructField("age", IntegerType(), True), StructField("height", DoubleType(), True)]) tbl = FeatureTable(spark.createDataFrame(data, schema)) columns = ["age", "height"] min_result = tbl.max(columns) assert min_result.to_list("max") == [25, 10.0], \ "the maximum value for age and height is not correct" def test_to_list(self): spark = OrcaContext.get_spark_session() data = [("jack", "123", 14, 8.5, [0, 0]), ("alice", "34", 25, 9.6, [1, 1]), ("rose", "25344", 23, 10.0, [2, 2])] schema = StructType([StructField("name", StringType(), True), StructField("num", StringType(), True), StructField("age", IntegerType(), True), StructField("height", DoubleType(), True), StructField("array", ArrayType(IntegerType()), True)]) tbl = FeatureTable(spark.createDataFrame(data, schema)) list1 = tbl.to_list("name") list2 = tbl.to_list("num") list3 = tbl.to_list("age") list4 = tbl.to_list("height") list5 = tbl.to_list("array") assert list1 == ["jack", "alice", "rose"], "the result of name is not correct" assert list2 == ["123", "34", "25344"], "the result of num is not correct" assert list3 == [14, 25, 23], "the result of age is not correct" assert list4 == [8.5, 9.6, 10.0], "the result of height is not correct" assert list5 == [[0, 0], [1, 1], [2, 2]], "the result of array is not correct" def test_to_dict(self): spark = OrcaContext.get_spark_session() # test the case the column of key is unique data = [("jack", "123", 14), ("alice", "34", 25), ("rose", "25344", 23)] schema = StructType([StructField("name", StringType(), True), StructField("num", StringType(), True), StructField("age", IntegerType(), True)]) tbl = FeatureTable(spark.createDataFrame(data, schema)) dictionary = tbl.to_dict() print(dictionary) assert dictionary["name"] == ['jack', 'alice', 'rose'] def test_to_pandas(self): spark = OrcaContext.get_spark_session() data = [("jack", "123", 14), ("alice", "34", 25), ("rose", "25344", 23)] schema = StructType([StructField("name", StringType(), True), StructField("num", StringType(), True), StructField("age", IntegerType(), True)]) tbl = FeatureTable(spark.createDataFrame(data, schema)) pddf = tbl.to_pandas() assert(pddf["name"].values.tolist() == ['jack', 'alice', 'rose']) def test_from_pandas(self): import pandas as pd data = [['tom', 10], ['nick', 15], ['juli', 14]] pddf = pd.DataFrame(data, columns=['Name', 'Age']) tbl = FeatureTable.from_pandas(pddf) assert(tbl.size() == 3) def test_sort(self): import pandas as pd data = [['tom', 10], ['nick', 15], ['juli', 14]] pddf = pd.DataFrame(data, columns=['Name', 'Age']) tbl = FeatureTable.from_pandas(pddf) tbl = tbl.sort("Age", ascending=False) assert(tbl.select("Name").to_list("Name") == ["nick", "juli", "tom"]) tbl = tbl.sort("Name") assert(tbl.select("Name").to_list("Name") == ["juli", "nick", "tom"]) def test_add(self): spark = OrcaContext.get_spark_session() data = [("jack", "123", 14, 8.5), ("alice", "34", 25, 9.6), ("rose", "25344", 23, 10.0)] schema = StructType([StructField("name", StringType(), True), StructField("num", StringType(), True), StructField("age", IntegerType(), True), StructField("height", DoubleType(), True)]) tbl = FeatureTable(spark.createDataFrame(data, schema)) columns = ["age", "height"] new_tbl = tbl.add(columns, 1.5) new_list = new_tbl.df.take(3) assert len(new_list) == 3, "new_tbl should have 3 rows" assert new_list[0]['age'] == 15.5, "the age of jack should increase 1.5" assert new_list[0]['height'] == 10, "the height of jack should increase 1.5" assert new_list[1]['age'] == 26.5, "the age of alice should increase 1.5" assert new_list[1]['height'] == 11.1, "the height of alice should increase 1.5" assert new_list[2]['age'] == 24.5, "the age of rose should increase 1.5" assert new_list[2]['height'] == 11.5, "the height of rose should increase 1.5" new_tbl = tbl.add(columns, -1) new_list = new_tbl.df.take(3) assert len(new_list) == 3, "new_tbl should have 3 rows" assert new_list[0]['age'] == 13, "the age of jack should decrease 1" assert new_list[0]['height'] == 7.5, "the height of jack should decrease 1" assert new_list[1]['age'] == 24, "the age of alice should decrease 1" assert new_list[1]['height'] == 8.6, "the height of alice should decrease 1" assert new_list[2]['age'] == 22, "the age of rose should decrease 1" assert new_list[2]['height'] == 9.0, "the height of rose should decrease 1" def test_sample(self): spark = OrcaContext.get_spark_session() df = spark.range(1000) feature_tbl = FeatureTable(df) total_line_1 = feature_tbl.size() feature_tbl2 = feature_tbl.sample(0.5) total_line_2 = feature_tbl2.size() assert int(total_line_1/2) - 100 < total_line_2 < int(total_line_1/2) + 100, \ "the number of rows should be half" total_distinct_line = feature_tbl2.distinct().size() assert total_line_2 == total_distinct_line, "all rows should be distinct" def test_group_by(self): file_path = os.path.join(self.resource_path, "parquet/data2.parquet") feature_tbl = FeatureTable.read_parquet(file_path) groupby_tbl1 = feature_tbl.group_by("col_4", agg={"col_1": ["sum", "count"]}) assert groupby_tbl1.df.filter("col_4 == 'a' and sum(col_1) == 3").count() == 1, \ "the sum of col_1 with col_4 = 'a' should be 3" assert groupby_tbl1.df.filter("col_4 == 'b' and `count(col_1)` == 5").count() == 1, \ "the count of col_1 with col_4 = 'b' should be 5" groupby_tbl2 = feature_tbl.group_by(agg={"target": "avg", "col_2": "last"}) assert groupby_tbl2.df.collect()[0]["avg(target)"] == 0.9, \ "the mean of target should be 0.9" groupby_tbl3 = feature_tbl.group_by("col_5", agg=["max", "min"], join=True) assert len(groupby_tbl3.df.columns) == len(feature_tbl.df.columns) + 10, \ "groupby_tbl3 should have (#df.columns - #columns)*len(agg)=10 more columns" assert groupby_tbl3.df.filter("col_5 == 'cc' and `max(col_2)` == 9").count() == \ feature_tbl.df.filter("col_5 == 'cc'").count(), \ "max of col_2 should 9 for all col_5 = 'cc' in groupby_tbl3" assert groupby_tbl3.df.filter("col_5 == 'aa' and `min(col_3)` == 1.0").count() == \ feature_tbl.df.filter("col_5 == 'aa'").count(), \ "min of col_3 should 1.0 for all col_5 = 'aa' in groupby_tbl3" groupby_tbl4 = feature_tbl.group_by(["col_4", "col_5"], agg="first", join=True) assert groupby_tbl4.df.filter("col_4 == 'b' and col_5 == 'dd' and `first(col_1)` == 0") \ .count() == feature_tbl.df.filter("col_4 == 'b' and col_5 == 'dd'").count(), \ "first of col_1 should be 0 for all col_4 = 'b' and col_5 = 'dd' in groupby_tbl4" def test_append_column(self): file_path = os.path.join(self.resource_path, "data.csv") tbl = FeatureTable.read_csv(file_path, header=True) tbl = tbl.append_column("z", lit(0)) assert tbl.select("z").size() == 4 assert tbl.filter("z == 0").size() == 4 tbl = tbl.append_column("str", lit("a")) assert tbl.select("str").size() == 4 assert tbl.filter("str == 'a'").size() == 4 tbl = tbl.append_column("float", lit(1.2)) assert tbl.select("float").size() == 4 assert tbl.filter("float == 1.2").size() == 4 def test_ordinal_shuffle(self): spark = OrcaContext.get_spark_session() data = [("a", 14), ("b", 25), ("c", 23), ("d", 2), ("e", 1)] schema = StructType([StructField("name", StringType(), True), StructField("num", IntegerType(), True)]) tbl = FeatureTable(spark.createDataFrame(data, schema).repartition(1)) shuffled_tbl = tbl.ordinal_shuffle_partition() rows = tbl.df.collect() shuffled_rows = shuffled_tbl.df.collect() rows.sort(key=lambda x: x[1]) shuffled_rows.sort(key=lambda x: x[1]) assert rows == shuffled_rows def test_write_parquet(self): file_path = os.path.join(self.resource_path, "parquet/data1.parquet") feature_tbl = FeatureTable.read_parquet(file_path) feature_tbl.write_parquet("saved.parquet") loaded_tbl = FeatureTable.read_parquet("saved.parquet") if os.path.exists("saved.parquet"): shutil.rmtree("saved.parquet") def test_read_csv(self): file_path = os.path.join(self.resource_path, "data.csv") feature_tbl = FeatureTable.read_csv(file_path, header=True) assert feature_tbl.size() == 4 columns = feature_tbl.columns assert columns == ["col1", "col2", "col3"] records = feature_tbl.df.collect() assert isinstance(records[0][0], float) assert isinstance(records[0][1], str) and isinstance(records[0][1], str) file_path2 = os.path.join(self.resource_path, "data_no_header.csv") feature_tbl2 = FeatureTable.read_csv(file_path2, names=["col1", "_col2", "col3"], dtype={"col1": "int"}) assert feature_tbl2.size() == 4 columns2 = feature_tbl2.columns assert columns2 == ["col1", "_col2", "col3"] records2 = feature_tbl2.df.collect() assert isinstance(records2[0][0], int) assert isinstance(records2[0][1], str) and isinstance(records2[0][1], str) feature_tbl3 = FeatureTable.read_csv(file_path, header=True, dtype=["int", "str", "str"]) records3 = feature_tbl3.df.collect() assert isinstance(records3[0][0], int) assert isinstance(records3[0][1], str) and isinstance(records3[0][1], str) def test_category_encode_and_one_hot_encode(self): file_path = os.path.join(self.resource_path, "data.csv") feature_tbl = FeatureTable.read_csv(file_path, header=True) feature_tbl, indices = feature_tbl.category_encode(columns=["col2", "col3"]) assert isinstance(indices, list) and len(indices) == 2 assert isinstance(indices[0], StringIndex) and isinstance(indices[1], StringIndex) assert indices[0].size() == 3 and indices[1].size() == 4 dict1 = indices[0].to_dict() dict2 = indices[1].to_dict() records = feature_tbl.df.collect() assert records[0][1] == dict1["x"] and records[0][2] == dict2["abc"] assert records[3][1] == dict1["z"] and records[2][2] == dict2["aaa"] feature_tbl = feature_tbl.one_hot_encode(columns=["col2", "col3"], prefix=["o1", "o2"]) feature_tbl.show() columns = feature_tbl.columns assert columns == ["col1", "o1_0", "o1_1", "o1_2", "o1_3", "o2_0", "o2_1", "o2_2", "o2_3", "o2_4"] records = feature_tbl.df.collect() record = records[0] value1 = dict1["x"] value2 = dict2["abc"] for i in range(1, 4): if i == value1: assert record[i+1] == 1 else: assert record[i+1] == 0 for i in range(1, 5): if i == value2: assert record[i+5] == 1 else: assert record[i+5] == 0 def test_split(self): file_path = os.path.join(self.resource_path, "ncf.csv") feature_tbl = FeatureTable.read_csv(file_path, header=True, dtype="int") tbl1, tbl2 = feature_tbl.split([0.8, 0.2], seed=1128) total_size = feature_tbl.size() size1 = tbl1.size() size2 = tbl2.size() assert size1 + size2 == total_size def test_target_encode(self): file_path = os.path.join(self.resource_path, "parquet/data2.parquet") feature_tbl = FeatureTable.read_parquet(file_path) with self.assertRaises(Exception) as context: feature_tbl.target_encode("col_4", "target", kfold=-1) self.assertTrue("kfold should be an integer larger than 0" in str(context.exception)) with self.assertRaises(Exception) as context: feature_tbl.target_encode("col_4", "col_5") self.assertTrue("target_cols should be numeric" in str(context.exception)) with self.assertRaises(Exception) as context: feature_tbl.target_encode("col_4", "target", target_mean={"target": "2"}) self.assertTrue("mean in target_mean should be numeric" in str(context.exception)) with self.assertRaises(Exception) as context: feature_tbl.target_encode("col_4", "target", kfold=2, fold_col="col_3") self.assertTrue("fold_col should be integer type" in str(context.exception)) target_tbl1, target_list1 = feature_tbl.target_encode("col_4", "target", kfold=1, smooth=0) assert len(target_list1) == 1, "len(target_list1) = len(cat_cols) of target_encode" target_code1 = target_list1[0] assert isinstance(target_code1, TargetCode), "target_list1 should be list of TargetCode" assert target_code1.df.filter("col_4 == 'a'").collect()[0]["col_4_te_target"] == \ feature_tbl.df.filter("col_4 == 'a'").agg({"target": "mean"}) \ .collect()[0]["avg(target)"], \ "col_4_te_target should contain mean of target grouped by col_4" cat_cols = ["col_4", "col_5"] target_cols = ["col_3", "target"] fold_col = "fold" target_mean = {"col_3": 5, "target": 0.5} out_cols = [[cat_col + target_col for target_col in target_cols] for cat_col in cat_cols] target_tbl2, target_list2 = feature_tbl.target_encode( cat_cols, target_cols, target_mean=target_mean, kfold=3, fold_seed=4, fold_col=fold_col, drop_cat=False, drop_fold=False, out_cols=out_cols) assert fold_col in target_tbl2.df.columns, "fold_col should be in target_tbl2" assert len(target_list2) == len(cat_cols), "len(target_list2) = len(cat_cols)" for i in range(len(cat_cols)): assert target_list2[i].cat_col == cat_cols[i], "each element in target_list2 should " \ "correspond to the element in cat_cols" for out_col in out_cols[i]: assert out_col in target_list2[i].df.columns, "every out_cols should be one of " \ "the columns in returned TargetCode" assert target_mean[target_list2[i].out_target_mean[out_col][0]] == \ target_list2[i].out_target_mean[out_col][1], \ "the global mean in TargetCode should be the same as the assigned mean in " \ "target_mean" target_tbl3, target_list3 = feature_tbl.target_encode([["col_4", "col_5"]], "target", kfold=2, drop_cat=False) assert len(target_tbl3.columns) == len(feature_tbl.columns) + 1, \ "target_tbl3 should have one more column col_4_col_5_te_target" def test_encode_target(self): file_path = os.path.join(self.resource_path, "parquet/data2.parquet") feature_tbl = FeatureTable.read_parquet(file_path) spark = OrcaContext.get_spark_session() data = [("aa", 1.0), ("bb", 2.0), ("cc", 3.0), ("dd", 4.0)] schema = StructType([StructField("unknown", StringType(), True), StructField("col_5_te_col_1", DoubleType(), True)]) df0 = spark.createDataFrame(data, schema) target_code0 = TargetCode(df0, cat_col="unknown", out_target_mean={"col_5_te_col_1": ("col_1", 0.5)}) with self.assertRaises(Exception) as context: feature_tbl.encode_target(target_code0) self.assertTrue("unknown in TargetCode.cat_col in targets does not exist in Table" in str(context.exception)) target_code1 = target_code0.rename({"unknown": "col_5"}) target_tbl1 = feature_tbl.encode_target(target_code1) assert target_tbl1.df.filter("col_5_te_col_1 == 1").count() == \ feature_tbl.df.filter("col_5 == 'aa'").count(), \ "the row with col_5 = 'aa' be encoded as col_5_te_col_1 = 1 in target_tbl1" assert target_tbl1.df.filter("col_3 == 8.0 and col_4 == 'd'") \ .filter("col_5_te_col_1 == 3"), \ "the row with col_3 = 8.0 and col_4 = 'd' has col_5 = 'cc', " \ "so it should be encoded with col_5_te_col_1 = 3 in target_tbl1" target_tbl2, target_list2 = feature_tbl.target_encode( ["col_4", "col_5"], ["col_3", "target"], kfold=2) target_tbl3 = feature_tbl.encode_target(target_list2, target_cols="target", drop_cat=False) assert "col_4" in target_tbl3.df.columns, \ "col_4 should exist in target_tbl2 since drop_cat is False" assert "col_4_te_target" in target_tbl3.df.columns, \ "col_4_te_target should exist in target_tbl2 as encoded column" assert "col_4_te_col_3" not in target_tbl3.df.columns, \ "col_4_te_col_3 should not exist in target_tbl2 since col_3 is not in target_cols" def test_difference_lag(self): file_path = os.path.join(self.resource_path, "parquet/data2.parquet") feature_tbl = FeatureTable.read_parquet(file_path) with self.assertRaises(Exception) as context: feature_tbl.difference_lag("col_4", "col_4") self.assertTrue("columns should be numeric" in str(context.exception)) diff_tbl1 = feature_tbl.difference_lag("col_1", "col_1") assert diff_tbl1.df.filter("col_1_diff_lag_col_1_1 == 1").count() == 5 and \ diff_tbl1.df.filter("col_1_diff_lag_col_1_1 == 0").count() == 13 and \ diff_tbl1.df.filter("col_1_diff_lag_col_1_1 is null").count() == 2, \ "col_1 has 6 different values and 1 null, so after sorted by col_1, there should" \ " be 5 rows with (lag of col_1) = 1, 2 rows with (lag of col_1) = null," \ " and other rows with (lag of col_1) = 0" diff_tbl2 = feature_tbl.difference_lag( ["col_1", "col_2"], ["col_3"], shifts=[1, -1], partition_cols=["col_5"], out_cols=[["c1p1", "c1m1"], ["c2p1", "c2m1"]]) assert diff_tbl2.df.filter("col_3 == 8.0 and col_5 == 'cc'") \ .filter("c1p1 == 1 and c1m1 == 2 and c2p1 == -1 and c2m1 == -4") \ .count() == 1, "the row with col_3 = 8.0 and col_5 = 'cc' should have c1p1 = 1, " \ "c1m1 = 2, c2p1 = -1, c2m1 = -4 after difference_lag" diff_tbl3 = feature_tbl.difference_lag("col_1", ["col_3"], shifts=[-1], partition_cols=["col_5"], out_cols="c1m1") assert diff_tbl3.df.filter("c1m1 == 2").count() == \ diff_tbl2.df.filter("c1m1 == 2").count(), \ "c1m1 should be the same in diff_tbl3 and in diff_tbl2" diff_tbl4 = feature_tbl.difference_lag("col_1", ["col_3"], shifts=[-1, 1], partition_cols=["col_5"], out_cols=["c1m1", "c1p1"]) assert diff_tbl4.df.filter("c1p1 == -1").count() == \ diff_tbl2.df.filter("c1p1 == -1").count(), \ "c1p1 should be the same in diff_tbl4 and in diff_tbl2" def test_cache(self): file_path = os.path.join(self.resource_path, "parquet/data2.parquet") feature_tbl = FeatureTable.read_parquet(file_path) feature_tbl.cache() assert feature_tbl.df.is_cached, "Cache table should be cached" feature_tbl.uncache() assert not feature_tbl.df.is_cached, "Uncache table should be uncached" if __name__ == "__main__": pytest.main([__file__])
55.962434
100
0.574846
f48d24676816c53a1b23a2e1a46e79d0a307d885
10,228
py
Python
raiden/transfer/mediated_transfer/mediation_fee.py
christianbrb/raiden
64f0715af076747b293671157e2cbbd235cab81b
[ "MIT" ]
null
null
null
raiden/transfer/mediated_transfer/mediation_fee.py
christianbrb/raiden
64f0715af076747b293671157e2cbbd235cab81b
[ "MIT" ]
null
null
null
raiden/transfer/mediated_transfer/mediation_fee.py
christianbrb/raiden
64f0715af076747b293671157e2cbbd235cab81b
[ "MIT" ]
null
null
null
from bisect import bisect, bisect_right from copy import copy from dataclasses import dataclass, field from fractions import Fraction from typing import List, Optional, Sequence, Tuple, TypeVar, Union from raiden.exceptions import UndefinedMediationFee from raiden.transfer.architecture import State from raiden.utils.typing import ( Balance, FeeAmount, PaymentWithFeeAmount, ProportionalFeeAmount, TokenAmount, ) NUM_DISCRETISATION_POINTS = 21 class Interpolate: # pylint: disable=too-few-public-methods """ Linear interpolation of a function with given points Based on https://stackoverflow.com/a/7345691/114926 """ def __init__( self, x_list: Sequence[Union[Fraction, int]], y_list: Sequence[Union[Fraction, int]] ) -> None: if any(y - x <= 0 for x, y in zip(x_list, x_list[1:])): raise ValueError("x_list must be in strictly ascending order!") self.x_list: List[Fraction] = [Fraction(x) for x in x_list] self.y_list: List[Fraction] = [Fraction(y) for y in y_list] intervals = zip(self.x_list, self.x_list[1:], y_list, y_list[1:]) self.slopes: List[Fraction] = [(y2 - y1) / (x2 - x1) for x1, x2, y1, y2 in intervals] def __call__(self, x: Union[Fraction, int]) -> Fraction: if not self.x_list[0] <= x <= self.x_list[-1]: raise ValueError("x out of bounds!") if x == self.x_list[-1]: return self.y_list[-1] i = bisect_right(self.x_list, x) - 1 return self.y_list[i] + self.slopes[i] * (Fraction(x) - self.x_list[i]) def __repr__(self) -> str: return f"Interpolate({self.x_list}, {self.y_list})" def sign(x: Union[float, Fraction]) -> int: """ Sign of input, returns zero on zero input """ if x == 0: return 0 else: return 1 if x > 0 else -1 def _collect_x_values( penalty_func_in: Interpolate, penalty_func_out: Interpolate, balance_in: Balance, balance_out: Balance, max_x: int, ) -> List[Fraction]: """ Normalizes the x-axis of the penalty functions around the amount of tokens being transferred. A penalty function maps the participant's balance to a fee. These functions are then used to penalize transfers that unbalance the node's channels, and as a consequence incentivize transfers that re-balance the channels. Here the x-axis of the penalty functions normalized around the current channel's capacity. So that instead of computing: penalty(current_capacity + amount_being_transferred) One can simply compute: penalty(amount_being_transferred) To find the penalty fee for the current transfer. """ all_x_vals = [x - balance_in for x in penalty_func_in.x_list] + [ balance_out - x for x in penalty_func_out.x_list ] limited_x_vals = (max(min(x, balance_out, max_x), 0) for x in all_x_vals) return sorted(set(Fraction(x) for x in limited_x_vals)) def _cap_fees( x_list: List[Fraction], y_list: List[Fraction] ) -> Tuple[List[Fraction], List[Fraction]]: """ Insert extra points for intersections with x-axis, see `test_fee_capping` """ x_list = copy(x_list) y_list = copy(y_list) for i in range(len(x_list) - 1): y1, y2 = y_list[i : i + 2] if sign(y1) * sign(y2) == -1: x1, x2 = x_list[i : i + 2] new_x = x1 + abs(y1) / abs(y2 - y1) * (x2 - x1) new_index = bisect(x_list, new_x) x_list.insert(new_index, new_x) y_list.insert(new_index, Fraction(0)) # Cap points that are below zero y_list = [max(y, Fraction(0)) for y in y_list] return x_list, y_list def _mediation_fee_func( schedule_in: "FeeScheduleState", schedule_out: "FeeScheduleState", balance_in: Balance, balance_out: Balance, receivable: TokenAmount, amount_with_fees: Optional[PaymentWithFeeAmount], amount_without_fees: Optional[PaymentWithFeeAmount], cap_fees: bool, ) -> Interpolate: """ Returns a function which calculates total_mediation_fee(x) Either `amount_with_fees` or `amount_without_fees` must be given while the other one is None. The returned function will depend on the value that is not given. """ assert ( amount_with_fees is None or amount_without_fees is None ), "Must be called with either amount_with_fees or amount_without_fees as None" # If either channel can't transfer even a single token, there can be no mediation. if balance_out == 0 or receivable == 0: raise UndefinedMediationFee() # Add dummy penalty funcs if none are set if not schedule_in._penalty_func: schedule_in = copy(schedule_in) schedule_in._penalty_func = Interpolate([0, balance_in + receivable], [0, 0]) if not schedule_out._penalty_func: schedule_out = copy(schedule_out) schedule_out._penalty_func = Interpolate([0, balance_out], [0, 0]) x_list = _collect_x_values( penalty_func_in=schedule_in._penalty_func, penalty_func_out=schedule_out._penalty_func, balance_in=balance_in, balance_out=balance_out, max_x=receivable if amount_with_fees is None else balance_out, ) # Sum up fees where either `amount_with_fees` or `amount_without_fees` is # fixed and the other one is represented by `x`. try: y_list = [ schedule_in.fee( balance_in, x if amount_with_fees is None else Fraction(amount_with_fees) ) + schedule_out.fee( balance_out, -x if amount_without_fees is None else -Fraction(amount_without_fees) ) for x in x_list ] except ValueError: raise UndefinedMediationFee() if cap_fees: x_list, y_list = _cap_fees(x_list, y_list) return Interpolate(x_list, y_list) T = TypeVar("T", bound="FeeScheduleState") @dataclass class FeeScheduleState(State): # pylint: disable=not-an-iterable cap_fees: bool = True flat: FeeAmount = FeeAmount(0) proportional: ProportionalFeeAmount = ProportionalFeeAmount(0) # as micros, e.g. 1% = 0.01e6 imbalance_penalty: Optional[List[Tuple[TokenAmount, FeeAmount]]] = None _penalty_func: Optional[Interpolate] = field(init=False, repr=False, default=None) def __post_init__(self) -> None: self._update_penalty_func() def _update_penalty_func(self) -> None: if self.imbalance_penalty: assert isinstance(self.imbalance_penalty, list) x_list, y_list = tuple(zip(*self.imbalance_penalty)) self._penalty_func = Interpolate(x_list, y_list) def fee(self, balance: Balance, amount: Fraction) -> Fraction: return ( self.flat + Fraction(self.proportional, int(1e6)) * Fraction(abs(amount)) + (self._penalty_func(balance + amount) - self._penalty_func(balance)) if self._penalty_func else Fraction(0) ) @staticmethod def mediation_fee_func( schedule_in: "FeeScheduleState", schedule_out: "FeeScheduleState", balance_in: Balance, balance_out: Balance, receivable: TokenAmount, amount_with_fees: PaymentWithFeeAmount, cap_fees: bool, ) -> Interpolate: """ Returns a function which calculates total_mediation_fee(amount_without_fees) """ return _mediation_fee_func( schedule_in=schedule_in, schedule_out=schedule_out, balance_in=balance_in, balance_out=balance_out, receivable=receivable, amount_with_fees=amount_with_fees, amount_without_fees=None, cap_fees=cap_fees, ) @staticmethod def mediation_fee_backwards_func( schedule_in: "FeeScheduleState", schedule_out: "FeeScheduleState", balance_in: Balance, balance_out: Balance, receivable: TokenAmount, amount_without_fees: PaymentWithFeeAmount, cap_fees: bool, ) -> Interpolate: """ Returns a function which calculates total_mediation_fee(amount_with_fees) """ return _mediation_fee_func( schedule_in=schedule_in, schedule_out=schedule_out, balance_in=balance_in, balance_out=balance_out, receivable=receivable, amount_with_fees=None, amount_without_fees=amount_without_fees, cap_fees=cap_fees, ) def linspace(start: TokenAmount, stop: TokenAmount, num: int) -> List[TokenAmount]: """ Returns a list of num numbers from start to stop (inclusive). """ assert num > 1 assert start <= stop step = (stop - start) / (num - 1) result = [] for i in range(num): result.append(TokenAmount(start + round(i * step))) return result def calculate_imbalance_fees( channel_capacity: TokenAmount, proportional_imbalance_fee: ProportionalFeeAmount ) -> Optional[List[Tuple[TokenAmount, FeeAmount]]]: """ Calculates a U-shaped imbalance curve The penalty term takes the following value at the extrema: channel_capacity * (proportional_imbalance_fee / 1_000_000) """ assert channel_capacity >= 0 assert proportional_imbalance_fee >= 0 if proportional_imbalance_fee == 0: return None if channel_capacity == 0: return None MAXIMUM_SLOPE = 0.1 max_imbalance_fee = channel_capacity * proportional_imbalance_fee / 1e6 assert proportional_imbalance_fee / 1e6 <= MAXIMUM_SLOPE / 2, "Too high imbalance fee" # calculate function parameters s = MAXIMUM_SLOPE c = max_imbalance_fee o = channel_capacity / 2 b = s * o / c b = min(b, 10) # limit exponent to keep numerical stability a = c / o ** b def f(x: TokenAmount) -> FeeAmount: return FeeAmount(int(round(a * abs(x - o) ** b))) # calculate discrete function points num_base_points = min(NUM_DISCRETISATION_POINTS, channel_capacity + 1) x_values = linspace(TokenAmount(0), channel_capacity, num_base_points) y_values = [f(x) for x in x_values] return list(zip(x_values, y_values))
34.207358
98
0.663668
ad407364429060d5c3616fb9e42f221a150f5d0d
238
py
Python
scope.py
theGreenJedi/practicepy
330da97b0c79c3c8792ebb4166ecf2609545e127
[ "MIT" ]
null
null
null
scope.py
theGreenJedi/practicepy
330da97b0c79c3c8792ebb4166ecf2609545e127
[ "MIT" ]
null
null
null
scope.py
theGreenJedi/practicepy
330da97b0c79c3c8792ebb4166ecf2609545e127
[ "MIT" ]
null
null
null
global_var = 1 def my_vars() : print( 'Global Variable:' , global_var ) local_var = 2 print( 'Local Variable:' , local_var ) global inner_var inner_var = 3 my_vars() print( 'Coerced Global:' , inner_var )
13.222222
42
0.613445
cc893b5a3a2102a3681e5b53db186a18f81a9dc1
890
py
Python
Visualization/rendering_categorical_maps.py
liuxb555/earthengine-py-examples
cff5d154b15a17d6a241e3c003b7fc9a2c5903f3
[ "MIT" ]
75
2020-06-09T14:40:11.000Z
2022-03-07T08:38:10.000Z
Visualization/rendering_categorical_maps.py
gentaprekazi/earthengine-py-examples
76ae8e071a71b343f5e464077afa5b0ed2f9314c
[ "MIT" ]
1
2022-03-15T02:23:45.000Z
2022-03-15T02:23:45.000Z
Visualization/rendering_categorical_maps.py
gentaprekazi/earthengine-py-examples
76ae8e071a71b343f5e464077afa5b0ed2f9314c
[ "MIT" ]
35
2020-06-12T23:23:48.000Z
2021-11-15T17:34:50.000Z
import ee import geemap # Create a map centered at (lat, lon). Map = geemap.Map(center=[40, -100], zoom=4) # Load 2012 MODIS land cover and select the IGBP classification. cover = ee.Image('MODIS/051/MCD12Q1/2012_01_01').select('Land_Cover_Type_1') # Define a palette for the 18 distinct land cover classes. igbpPalette = [ 'aec3d4', # water '152106', '225129', '369b47', '30eb5b', '387242', # forest '6a2325', 'c3aa69', 'b76031', 'd9903d', '91af40', # shrub, grass '111149', # wetlands 'cdb33b', # croplands 'cc0013', # urban '33280d', # crop mosaic 'd7cdcc', # snow and ice 'f7e084', # barren '6f6f6f' # tundra ] # Specify the min and max labels and the color palette matching the labels. Map.setCenter(-99.229, 40.413, 5) Map.addLayer(cover, {'min': 0, 'max': 17, 'palette': igbpPalette}, 'IGBP classification') # Display the map. Map
28.709677
76
0.658427
a1ebc1841bb1d7d777d6556f7cfdf8151e4c0e9a
2,285
py
Python
xcenternet/datasets/ximilar_dataset.py
wanghh2000/xcenternet
458d43e01e96adf864809d9a15c756302ec75cd7
[ "Apache-2.0", "MIT" ]
null
null
null
xcenternet/datasets/ximilar_dataset.py
wanghh2000/xcenternet
458d43e01e96adf864809d9a15c756302ec75cd7
[ "Apache-2.0", "MIT" ]
null
null
null
xcenternet/datasets/ximilar_dataset.py
wanghh2000/xcenternet
458d43e01e96adf864809d9a15c756302ec75cd7
[ "Apache-2.0", "MIT" ]
null
null
null
import random import os import tensorflow as tf from xcenternet.datasets.dataset import Dataset from ximilar.client.utils.json_data import read_json_file_list class XimilarDataset(Dataset): def __init__(self, dataset_path, init_lr): labels = read_json_file_list(os.path.join(dataset_path, "labels.json")) self.labels = {label["id"]: key for key, label in enumerate(labels)} records = read_json_file_list(os.path.join(dataset_path, "images.json")) # TODO random split might not distribute labels correctly random.seed(2020) random.shuffle(records) train_num = int(len(records) * 0.8) self.records_train = records[:train_num] self.records_validation = records[train_num:] super().__init__(len(self.labels), init_lr) @tf.function def _load_image(self, img_path): image_encoded = tf.io.read_file(img_path) image = tf.image.decode_jpeg(image_encoded) return image def _preprocess_record(self, records): files, labels, bboxes = [], [], [] for rec in records: b = [obj["data"] for obj in rec["objects"]] b = [[bbox[1], bbox[0], bbox[3], bbox[2]] for bbox in b] files.append(rec["_file"]) labels.append([self.labels[obj["detection_label"]] for obj in rec["objects"]]) bboxes.append(b) data = (files, tf.ragged.constant(labels), tf.ragged.constant(bboxes)) return tf.data.Dataset.from_tensor_slices(data) def load_train_datasets(self): return self._preprocess_record(self.records_train), len(self.records_train) def load_validation_datasets(self): return self._preprocess_record(self.records_validation), len(self.records_validation) def decode(self, image_path, labels, bboxes): image = self._load_image(image_path) h, w = tf.shape(image)[0], tf.shape(image)[1] bboxes = bboxes.to_tensor() bboxes /= tf.stack([h, w, h, w]) return image, labels, bboxes def scheduler(self, epoch): if epoch < 40: return self.initial_learning_rate elif epoch < 80: return self.initial_learning_rate * 0.1 else: return self.initial_learning_rate * 0.01
34.621212
93
0.650766
ec5a7a858a6de678092d5ec54cbe8c20f1869729
2,713
py
Python
tests/types/test_interfaces.py
ernestoarbitrio/strawberry
772703c7c47173eeb9e4e8d4c43fccd28166d520
[ "MIT" ]
null
null
null
tests/types/test_interfaces.py
ernestoarbitrio/strawberry
772703c7c47173eeb9e4e8d4c43fccd28166d520
[ "MIT" ]
1
2021-01-18T18:58:45.000Z
2021-01-18T19:39:09.000Z
tests/types/test_interfaces.py
ernestoarbitrio/strawberry
772703c7c47173eeb9e4e8d4c43fccd28166d520
[ "MIT" ]
null
null
null
import strawberry def test_defining_interface(): @strawberry.interface class Node: id: strawberry.ID definition = Node._type_definition assert definition.name == "Node" assert len(definition.fields) == 1 assert definition.fields[0].name == "id" assert definition.fields[0].type == strawberry.ID assert definition.is_interface def test_implementing_interfaces(): @strawberry.interface class Node: id: strawberry.ID @strawberry.type class User(Node): name: str definition = User._type_definition assert definition.name == "User" assert len(definition.fields) == 2 assert definition.fields[0].name == "id" assert definition.fields[0].type == strawberry.ID assert definition.fields[1].name == "name" assert definition.fields[1].type == str assert definition.is_interface is False assert definition.interfaces == [Node._type_definition] def test_implementing_interface_twice(): @strawberry.interface class Node: id: strawberry.ID @strawberry.type class User(Node): name: str @strawberry.type class Person(Node): name: str definition = User._type_definition assert definition.name == "User" assert len(definition.fields) == 2 assert definition.fields[0].name == "id" assert definition.fields[0].type == strawberry.ID assert definition.fields[1].name == "name" assert definition.fields[1].type == str assert definition.is_interface is False assert definition.interfaces == [Node._type_definition] definition = Person._type_definition assert definition.name == "Person" assert len(definition.fields) == 2 assert definition.fields[0].name == "id" assert definition.fields[0].type == strawberry.ID assert definition.fields[1].name == "name" assert definition.fields[1].type == str assert definition.is_interface is False assert definition.interfaces == [Node._type_definition] def test_interfaces_can_implement_other_interfaces(): @strawberry.interface class Node: id: strawberry.ID @strawberry.interface class UserNodeInterface(Node): id: strawberry.ID name: str @strawberry.type class Person(UserNodeInterface): id: strawberry.ID name: str assert UserNodeInterface._type_definition.is_interface is True assert UserNodeInterface._type_definition.interfaces == [Node._type_definition] definition = Person._type_definition assert definition.is_interface is False assert definition.interfaces == [ UserNodeInterface._type_definition, Node._type_definition, ]
24.663636
83
0.693328
64931123f69114f98a410d154434d1afae978604
561
py
Python
app/db/models/users.py
JvitorS23/jobboard_fastAPI
5abcc69f19417ad99352c0434db96407e2d7da76
[ "MIT" ]
1
2021-10-01T16:40:33.000Z
2021-10-01T16:40:33.000Z
app/db/models/users.py
JvitorS23/jobboard_fastAPI
5abcc69f19417ad99352c0434db96407e2d7da76
[ "MIT" ]
null
null
null
app/db/models/users.py
JvitorS23/jobboard_fastAPI
5abcc69f19417ad99352c0434db96407e2d7da76
[ "MIT" ]
null
null
null
from sqlalchemy import Column, Integer, String, Boolean, ForeignKey from sqlalchemy.orm import relationship from db.base_class import Base class User(Base): """Users model""" id = Column(Integer, primary_key=True, index=True) username = Column(String, unique=True, nullable=False) email = Column(String, nullable=False, unique=True, index=True) password = Column(String, nullable=False) is_active = Column(Boolean, default=True) is_superuser = Column(Boolean, default=False) jobs = relationship('Job', back_populates='owner')
35.0625
67
0.734403
8228f83a7623c33c0ae02ed77c486b687e4848d7
1,879
py
Python
python/metaparticle_pkg/runner/docker_runner.py
bwoodhouse322/package
c9ffaece59637689ed48607c157227818ea7f60f
[ "MIT" ]
512
2017-10-05T06:19:10.000Z
2022-01-09T23:04:28.000Z
python/metaparticle_pkg/runner/docker_runner.py
bwoodhouse322/package
c9ffaece59637689ed48607c157227818ea7f60f
[ "MIT" ]
116
2017-12-05T16:14:26.000Z
2020-08-25T03:39:57.000Z
python/metaparticle_pkg/runner/docker_runner.py
bwoodhouse322/package
c9ffaece59637689ed48607c157227818ea7f60f
[ "MIT" ]
73
2017-12-07T00:00:36.000Z
2022-02-25T20:06:29.000Z
from __future__ import absolute_import import logging from docker import APIClient # use a generic logger name: metaparticle_pkg.runner logger = logging.getLogger('.'.join(__name__.split('.')[:-1])) class DockerRunner: def __init__(self): self.docker_client = None def run(self, img, name, options): if self.docker_client is None: self.docker_client = APIClient(version='auto') ports = [] host_config = None # Prepare port configuration if options.ports is not None and len(options.ports) > 0: for port_number in options.ports: ports.append(port_number) host_config = self.docker_client.create_host_config( port_bindings={p: p for p in ports} ) # Launch docker container container = self.docker_client.create_container( img, host_config=host_config, name=name, ports=ports ) logger.info('Starting container {}'.format(container)) self.docker_client.start(container=container.get('Id')) self.container = container def logs(self, *args, **kwargs): if self.docker_client is None: self.docker_client = APIClient(version='auto') # seems like we are hitting bug # https://github.com/docker/docker-py/issues/300 log_stream = self.docker_client.logs( self.container.get('Id'), stream=True, follow=True ) for line in log_stream: logger.info(line.decode("utf-8").strip('\n')) def cancel(self, name): if self.docker_client is None: self.docker_client = APIClient(version='auto') self.docker_client.kill(self.container.get('Id')) self.docker_client.remove_container(self.container.get('Id'))
29.825397
69
0.611495
6527b0ed25191dbf47d2fef3f6730e0f11a350d5
4,991
py
Python
plonk/simulation/evolution.py
matthewturk/plonk
a2cfb8ebb858cff8fdfdfeb0be1fd672b9022ed1
[ "MIT" ]
1
2019-09-10T16:22:52.000Z
2019-09-10T16:22:52.000Z
plonk/simulation/evolution.py
benedettaveronesi/plonk
2403e41adfaa74688404f592462e011fa9f74516
[ "MIT" ]
null
null
null
plonk/simulation/evolution.py
benedettaveronesi/plonk
2403e41adfaa74688404f592462e011fa9f74516
[ "MIT" ]
null
null
null
"""Evolution class for global quantites. This module contains the Evolution class for tracking global quantities and sink particle time series data. These files track averaged quantities that are more frequently output than snapshot files. """ from __future__ import annotations from pathlib import Path from typing import List, Tuple, Union import numpy as np import pandas as pd from pandas import DataFrame class Evolution: """Smoothed particle hydrodynamics simulation time series object. Evolution files track global quantities, such as energy, momentum, and density, over time. The time increments in these files is smaller than the snapshot file output time. These files are typically stored as text files. The data is stored as a pandas DataFrame. Examples -------- Reading a single evolution file into an Evolution object. >>> file_name = 'simulation.ev' >>> ev = plonk.load_ev(file_name) Reading a collection of evolution files into an Evolution object. >>> file_names = ('sim01.ev', 'sim02.ev', 'sim03.ev') >>> ev = plonk.load_ev(file_names) Accessing the data as a pandas DataFrame or Series. >>> df = ev.data >>> time = ev.data['time'] Plotting kinetic and thermal energy against time using pandas. >>> ev.plot('time', ['ekin', 'etherm']) """ def __init__(self): self.file_paths: Tuple[Path, ...] self.file_names: Tuple[str, ...] def load_from_file( self, filenames: Union[str, Path, Tuple[str], Tuple[Path], List[str], List[Path]], ) -> Evolution: """Load from file(s). Parameters ---------- filename(s) Collection of paths to evolution file(s) in chronological order. These should all contain the same columns. """ if isinstance(filenames, (str, Path)): _filenames = [filenames] elif isinstance(filenames, (list, tuple)): _filenames = list(filenames) else: raise ValueError('filenames is not a known type') _file_paths = list() _file_names = list() for filename in _filenames: path = Path(filename) _file_paths.append(path.resolve()) _file_names.append(path.name) self.file_paths = tuple(_file_paths) self.file_names = tuple(_file_names) _check_file_consistency(self.file_paths) self._columns = _get_columns(self.file_paths[0]) self._data = self._get_data() return self @property def columns(self) -> Tuple[str, ...]: """List of available time evolution data.""" return self._columns @property def data(self) -> DataFrame: """Time evolution data as a pandas DataFrame.""" return self._data def plot(self, *args, **kwargs): """Plot using pandas.""" return self.data.plot(*args, **kwargs) def _get_data(self) -> DataFrame: times = list() for filename in self.file_paths: times.append(np.loadtxt(filename, usecols=0)) _skiprows = [0] if len(times) > 1: for t1, t2 in zip(times, times[1:]): _skiprows.append(np.where(t2 < t1[-1])[0][-1] + 2) df = pd.concat( ( pd.read_csv( f, names=self._columns, skiprows=skiprows, skipinitialspace=True, delim_whitespace=True, comment='#', ) for f, skiprows in zip(self.file_paths, _skiprows) ) ) df.reset_index(inplace=True, drop=True) return df def __repr__(self): """Dunder repr method.""" return self.__str__() def __str__(self): """Dunder str method.""" return f'<plonk.Evolution: "{self.file_names}">' def __len__(self): """Dunder len method.""" return len(self.data) def _get_columns(filename: Path) -> Tuple[str, ...]: with open(filename) as f: column_line = f.readline().strip('\n') _column_line = [item.strip('] ')[2:].strip(' ') for item in column_line.split('[')] return tuple(_column_line[1:]) def _check_file_consistency(filenames: Tuple[Path, ...]) -> None: columns = _get_columns(filenames[0]) for filename in filenames: columns_previous = columns columns = _get_columns(filename) if columns != columns_previous: raise ValueError('files have different columns') def load_ev( filenames: Union[str, Path, Tuple[str], Tuple[Path], List[str], List[Path]], ) -> Evolution: """Load Evolution from file(s). Parameters ---------- filename(s) Collection of paths to evolution file(s) in chronological order. These should all contain the same columns. """ return Evolution().load_from_file(filenames)
28.19774
87
0.602084
ad192cb5e3ac0daa0885231e4d6fa50e43873aeb
381
py
Python
fides/__init__.py
fides-dev/fides
f481387a3e01a1480c556a826cbdaa9a99636c34
[ "BSD-3-Clause" ]
7
2020-11-12T19:45:14.000Z
2021-12-16T19:17:44.000Z
fides/__init__.py
fides-dev/fides
f481387a3e01a1480c556a826cbdaa9a99636c34
[ "BSD-3-Clause" ]
44
2020-11-12T18:13:06.000Z
2022-02-10T17:15:14.000Z
fides/__init__.py
fides-dev/fides
f481387a3e01a1480c556a826cbdaa9a99636c34
[ "BSD-3-Clause" ]
2
2020-12-03T11:11:11.000Z
2021-04-02T13:25:09.000Z
""" Fides ----------- Fides is an interior trust-region reflective optimizer """ # flake8: noqa from .minimize import Optimizer from .hessian_approximation import ( SR1, BFGS, DFP, FX, HybridFixed, GNSBFGS, BB, BG, Broyden, SSM, TSSM ) from .logging import create_logger from .version import __version__ from .constants import Options, SubSpaceDim, StepBackStrategy, ExitFlag
25.4
72
0.753281
3f01a0eb7b0c9450b6538c444b2252788996b8fa
870
py
Python
manpage-builder/conf.py
domdfcoding/rsc-on-this-day
4669b2608f93394e2c53fb163ea5b6c6e0e3fd7d
[ "MIT" ]
null
null
null
manpage-builder/conf.py
domdfcoding/rsc-on-this-day
4669b2608f93394e2c53fb163ea5b6c6e0e3fd7d
[ "MIT" ]
23
2020-11-16T23:47:27.000Z
2022-01-16T01:24:45.000Z
manpage-builder/conf.py
domdfcoding/rsc-on-this-day
4669b2608f93394e2c53fb163ea5b6c6e0e3fd7d
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # stdlib import os import re import sys sys.path.append(os.path.abspath('.')) sys.path.append(os.path.abspath("..")) # this package from __pkginfo__ import __author__, __copyright__, __version__, modname project = modname slug = re.sub(r'\W+', '-', modname.lower()) release = __version__ author = __author__ language = "en" source_suffix = ".rst" exclude_patterns = [] suppress_warnings = ["image.nonlocal_uri"] pygments_style = "default" version = f"{modname} {__version__}" copyright = ( f"{__copyright__}. License GPLv3+: GNU GPL version 3 or later " f"<http://gnu.org/licenses/gpl.html>\n\n" "This is free software: you are free to change and redistribute it under certain conditions.\n\n" "There is NO WARRANTY, to the extent permitted by law." ) master_doc = "manpage" man_pages = [("manpage", slug, modname, [author], 1)]
24.166667
99
0.712644
bfa15b3f796454b0ad89206e00ad83075959f38f
2,442
py
Python
examples/adspygoogle/dfp/v201208/update_third_party_slot.py
krux/adspygoogle
6505a71122f45fe3e675f27f2c29f67a1768069b
[ "Apache-2.0", "BSD-3-Clause" ]
null
null
null
examples/adspygoogle/dfp/v201208/update_third_party_slot.py
krux/adspygoogle
6505a71122f45fe3e675f27f2c29f67a1768069b
[ "Apache-2.0", "BSD-3-Clause" ]
null
null
null
examples/adspygoogle/dfp/v201208/update_third_party_slot.py
krux/adspygoogle
6505a71122f45fe3e675f27f2c29f67a1768069b
[ "Apache-2.0", "BSD-3-Clause" ]
2
2020-04-02T19:00:31.000Z
2020-08-06T03:28:38.000Z
#!/usr/bin/python # # Copyright 2012 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """This code example updates the first third party slot's description.""" __author__ = 'api.shamjeff@gmail.com (Jeff Sham)' # Locate the client library. If module was installed via "setup.py" script, then # the following two lines are not needed. import os import sys sys.path.insert(0, os.path.join('..', '..', '..', '..')) # Import appropriate classes from the client library. from adspygoogle import DfpClient # Initialize client object. client = DfpClient(path=os.path.join('..', '..', '..', '..')) # Initialize appropriate service. third_party_slot_service = client.GetService( 'ThirdPartySlotService', version='v201208') # Create statement object to only select third party slots that are active. values = [{ 'key': 'status', 'value': { 'xsi_type': 'TextValue', 'value': 'ACTIVE' } }] filter_statement = {'query': 'WHERE status = :status LIMIT 1', 'values': values} # Get a third party slot by statement. response = third_party_slot_service.GetThirdPartySlotsByStatement( filter_statement)[0] third_party_slots = [] if 'results' in response: third_party_slots = response['results'] if third_party_slots: # Update the local third party slot object by changing the description. third_party_slot = third_party_slots[0] third_party_slot['description'] = 'Updated description.' # Update third party slots remotely. third_party_slot = third_party_slot_service.UpdateThirdPartySlot( third_party_slot)[0] # Display results. if third_party_slot: print ('A third party slot with id \'%s\' and description \'%s\' was ' 'updated.' % (third_party_slot['id'], third_party_slot['description'])) else: print 'No third party slots were updated.' else: print 'No third party slots found to update.'
33
80
0.708436
0de790684aac5e5a64aefc7bc9e7bb045df15b6c
1,083
py
Python
returns/primitives/types.py
ksurta/returns
9746e569303f214d035462ae3dffe5c49abdcfa7
[ "BSD-2-Clause" ]
null
null
null
returns/primitives/types.py
ksurta/returns
9746e569303f214d035462ae3dffe5c49abdcfa7
[ "BSD-2-Clause" ]
null
null
null
returns/primitives/types.py
ksurta/returns
9746e569303f214d035462ae3dffe5c49abdcfa7
[ "BSD-2-Clause" ]
null
null
null
# -*- coding: utf-8 -*- from typing import Any, NoReturn from returns.primitives.exceptions import ImmutableStateError class Immutable(object): """ Helper type for objects that should be immutable. When applied, each instance becames immutable. Nothing can be added or deleted from it. .. code:: python >>> from returns.primitives.types import Immutable >>> class MyModel(Immutable): ... ... ... >>> model = MyModel() .. code:: >>> model.prop = 1 Traceback (most recent call last): ... returns.primitives.exceptions.ImmutableStateError See :class:`returns.primitives.container.BaseContainer` for examples. """ def __setattr__(self, attr_name: str, attr_value: Any) -> NoReturn: """Makes inner state of the containers immutable for modification.""" raise ImmutableStateError() def __delattr__(self, attr_name: str) -> NoReturn: # noqa: WPS603 """Makes inner state of the containers immutable for deletion.""" raise ImmutableStateError()
26.414634
77
0.65097
8f9489601bb7707826675e276fbf1cdfccc5a057
40,692
py
Python
plotly/vis.py
NREL/MetMastVis
0c3dd87540471c061eb491c871fdb32e6dabd31b
[ "Apache-2.0" ]
1
2018-05-25T20:03:48.000Z
2018-05-25T20:03:48.000Z
plotly/vis.py
nhamilto/MetMast
38475682adb21081c86c58e9008a278971306c23
[ "Apache-2.0" ]
null
null
null
plotly/vis.py
nhamilto/MetMast
38475682adb21081c86c58e9008a278971306c23
[ "Apache-2.0" ]
2
2018-06-07T20:00:03.000Z
2020-11-26T21:52:04.000Z
""" :module: vis :platform: Unix, Windows :synopsis: This code is used as a visualization library for the Met Mast data so it is specifically designed to handle MetDat object from the "met_funcs.py" library. :moduleauthor: Nicholas Hamilton <Nicholas.Hamilton@nrel.gov> Rafael Mudafort <Rafael.Mudafort@nrel.gov> Lucas McCullum <Lucas.McCullum@nrel.gov> """ ########################################### # Visualization ########################################### import utils import matplotlib.cm as cm import matplotlib.pyplot as plt import numpy as np from colour import Color from windrose import WindroseAxes import pandas as pd plt.rc('font', family='serif') plt.rc('font', size=12) plt.rc('facecolor') def cumulative_profile(metdat, catinfo, category=None): """**Get Variable Profile**. Plot the vertical profile of a given variable (or category of variables) grouped by a given condition (or set of conditions). Parameters: 1. metdat (Pandas DataFrame): The desired input data (Met Mast). 2. catinfo (dictionary): Categorization information for the desired input data. Holds column names, labels, units, and save names. 3. category (string): Specifies the category of information that is desired for plotting. Returns: 1. fig (Matplotlib Figure): The figure object for the desired input data and categories. 2. ax (Matplotlib Axes): The axes object for the desired input data and categories. """ if category is None: print('not sure what to plot...') pass # extract vertical locations of data from variable names colnames, vertlocs, ind = utils.get_vertical_locations(catinfo['columns'][category]) plotdat = metdat[colnames].mean() fig, ax = plt.subplots(figsize=(3.5,5)) ax.plot(plotdat, vertlocs) ax.set_ylabel('Probe Height [m]') ax.set_xlabel(catinfo['labels'][category]) fig.tight_layout() return fig, ax def monthly_profile(metdat, catinfo, category=None, basecolor='cycle'): """**Get Monthly Profile**. Plot the monthly profile of a given variable (or category of variables) grouped by a given condition (or set of conditions). Parameters: 1. metdat (Pandas DataFrame): The desired input data (Met Mast). 2. catinfo (dictionary): Categorization information for the desired input data. Holds column names, labels, units, and save names. 3. category (string) [default: None]: Specifies the category of information that is desired for plotting. 4. basecolor (string) [default: 'cycle']: Provides the color code information to get from "utils.py". Returns: 1. fig (Matplotlib Figure): The figure object for the desired input data and categories. 2. ax (Matplotlib Axes): The axes object for the desired input data and categories. """ if category is None: print('not sure what to plot...') pass months = utils.monthnames() colors = utils.get_colors(len(months), basecolor=basecolor) colnames, vertlocs, ind = utils.get_vertical_locations(catinfo['columns'][category]) plotdat = metdat[colnames].groupby(metdat.index.month).mean() fig, ax = plt.subplots(figsize=(3.5,5), sharex=True, sharey=True) for iax in range(len(months)): ax.plot(plotdat.xs(iax+1), vertlocs, color=colors[iax]) leg = ax.legend(months, loc=7, bbox_to_anchor=(1.75, 0.5), edgecolor='w') ax.set_ylabel('Probe Height [m]') ax.set_xlabel(catinfo['labels'][category]) fig.tight_layout() return fig, ax def stability_profile(metdat, catinfo, category=None, vertloc=80, basecolor='cycle'): """**Get Stability Profile**. Plot the stability profile of a given variable (or category of variables) grouped by a given condition (or set of conditions). Parameters: 1. metdat (Pandas DataFrame): The desired input data (Met Mast). 2. catinfo (dictionary): Categorization information for the desired input data. Holds column names, labels, units, and save names. 3. category (string) [default: None]: Specifies the category of information that is desired for plotting. 4. vertloc (integer, float) [default: 80]: Describes the desired vertical location alond the tower for analysis. 5. basecolor (string) [default: 'cycle]: Provides the color code information to get from "utils.py". Returns: 1. fig (Matplotlib Figure): The figure object for the desired input data and categories. 2. ax (Matplotlib Axes): The axes object for the desired input data and categories. """ if category is None: print('not sure what to plot...') pass stab, stabloc, ind = utils.get_vertical_locations(catinfo['columns']['stability flag'], location=vertloc) colors = utils.get_colors(5,basecolor=basecolor) stabconds = utils.get_stabconds() plotdat = metdat.groupby(stab).mean() pdat = plotdat[catinfo['columns'][category]].get_values() # Extract vertical locations of data from variable names _, vertlocs, ind = utils.get_vertical_locations(catinfo['columns'][category]) fig, ax = plt.subplots(figsize=(3.5,5)) for ii, cond in enumerate(stabconds): ax.plot(pdat[ii,ind], vertlocs, color=colors[ii]) ax.set_ylabel('Probe Height [m]') ax.set_xlabel(catinfo['labels'][category]) fig.legend(stabconds, loc=6, bbox_to_anchor=(1,0.5), frameon=False) fig.tight_layout() return fig, ax def monthly_stability_profiles(metdat, catinfo, category=None, vertloc=80, basecolor='span'): """**Get Monthly Stability Profile**. Plot the monthly stability profile of a given variable (or category of variables) grouped by a given condition (or set of conditions). Parameters: 1. metdat (Pandas DataFrame): The desired input data (Met Mast). 2. catinfo (dictionary): Categorization information for the desired input data. Holds column names, labels, units, and save names. 3. category (string) [default: None]: Specifies the category of information that is desired for plotting. 4. vertloc (integer, float) [default: 80]: Describes the desired vertical location alond the tower for analysis. 5. basecolor (string) [default: 'span']: Provides the color code information to get from "utils.py". Returns: 1. fig (Matplotlib Figure): The figure object for the desired input data and categories. 2. ax (Matplotlib Axes): The axes object for the desired input data and categories. """ if category is None: print('not sure what to plot...') pass stab, stabloc, ind = utils.get_vertical_locations(catinfo['columns']['stability flag'], location=vertloc) plotdat = metdat.groupby([metdat.index.month, stab]) colors = utils.get_colors(5,basecolor='span') months = utils.monthnames() stabconds = utils.get_stabconds() # extract vertical locations of data from variable names _, vertlocs, ind = utils.get_vertical_locations(catinfo['columns'][category]) fig, ax = plt.subplots(4,3, figsize=(8,13), sharex=True, sharey=True) for iax, month in enumerate(months): for ii, cond in enumerate(stabconds): pdat = plotdat[catinfo['columns'][category]].get_group((iax+1, cond)).mean() ax.flatten()[iax].plot(pdat[ind], vertlocs, color=colors[ii]) ax.flatten()[iax].set_title(month) fig.text(0,0.58, 'Probe Height [m]', ha='center', va='center', fontsize=14, rotation='vertical') leg = fig.legend(stabconds, loc=9, bbox_to_anchor=(0.55, 0.12), frameon=False) fig.tight_layout() fig.subplots_adjust(bottom=0.175) fig.text(0.525,0.135, catinfo['labels'][category], ha='center', va='center', fontsize=14) return fig, ax def hourlyplot(metdat, catinfo, category=None, basecolor='span'): """**Get Hourly Averaged Profile**. Plot the hourly averaged profile of a given variable (or category of variables) grouped by a given condition (or set of conditions). Parameters: 1. metdat (Pandas DataFrame): The desired input data (Met Mast). 2. catinfo (dictionary): Categorization information for the desired input data. Holds column names, labels, units, and save names. 3. category (string): Specifies the category of information that is desired for plotting. 4. basecolor (string): Provides the color code information to get from "utils.py". Returns: 1. fig (Matplotlib Figure): The figure object for the desired input data and categories. 2. ax (Matplotlib Axes): The axes object for the desired input data and categories. """ if category is None: print('not sure what to plot...') pass colors = utils.get_colors(len(catinfo['columns'][category]), basecolor=basecolor, reverse=True) colnames, vertlocs, ind = utils.get_vertical_locations(catinfo['columns'][category], reverse=True) plotdat = metdat[colnames].groupby(metdat.index.hour).mean() fig, ax = plt.subplots(figsize=(5,3.5), sharex=True, sharey=True) for iax in range(len(colnames)): ax.plot(plotdat[colnames[iax]], color=colors[iax]) leg = ax.legend([str(v) + ' m' for v in vertlocs], loc=6, bbox_to_anchor=(1, 0.5), frameon=False) ax.set_xlabel('Time [hour]') ax.set_ylabel(catinfo['labels'][category]) fig.tight_layout() return fig, ax def monthlyhourlyplot(metdat, catinfo, category=None, basecolor='span'): """**Get Monthly Hourly Averaged Profile**. Plot the monthly hourly averaged profile of a given variable (or category of variables) grouped by a given condition (or set of conditions). Parameters: 1. metdat (Pandas DataFrame): The desired input data (Met Mast). 2. catinfo (dictionary): Categorization information for the desired input data. Holds column names, labels, units, and save names. 3. category (string) [default: None]: Specifies the category of information that is desired for plotting. 4. basecolor (string) [default: 'span']: Provides the color code information to get from "utils.py". Returns: 1. fig (Matplotlib Figure): The figure object for the desired input data and categories. 2. ax (Matplotlib Axes): The axes object for the desired input data and categories. """ if category is None: print('not sure what to plot...') pass months = utils.monthnames() colors = utils.get_colors(len(catinfo['columns'][category]), basecolor=basecolor, reverse=True) colnames, vertlocs, ind = utils.get_vertical_locations(catinfo['columns'][category], reverse=True) plotdat = metdat[colnames].groupby([metdat.index.month.rename('month'), metdat.index.hour.rename('hour')]).mean() fig, ax = plt.subplots(4,3, figsize=(9,11), sharex=True, sharey=True) for iax in range(len(months)): for catitem in range(len(colnames)): ax.flatten()[iax].plot(plotdat[colnames[catitem]].xs(iax+1), color=colors[catitem]) ax.flatten()[iax].set_title(months[iax], fontsize=12) fig.text(0.5,0.2, 'Time of Day [hour]', ha='center', va='center') leg = fig.legend([str(v) + ' m' for v in vertlocs], loc = 'upper center', bbox_to_anchor = (0,-0.825,1,1), bbox_transform = plt.gcf().transFigure, frameon=False, ncol=2) fig.tight_layout() fig.subplots_adjust(bottom=0.25) fig.text(0,0.6125, catinfo['labels'][category], ha='center', va='center', rotation='vertical') return fig, ax def rose_fig(metdat, catinfo, category=None, vertloc=80, bins=6, nsector=36, ylim=None, noleg=False): """**Get Wind Rose Figure**. Plot the wind rose of a given variable (or category of variables) grouped by a given condition (or set of conditions). Parameters: 1. metdat (Pandas DataFrame): The desired input data (Met Mast). 2. catinfo (dictionary): Categorization information for the desired input data. Holds column names, labels, units, and save names. 3. category (string) [default: None]: Specifies the category of information that is desired for plotting. 4. vertloc (integer, float) [default: 80]: Describes the desired vertical location alond the tower for analysis. 5. bins (integer, list) [default: 6]: Indicates the number of equally spaced bins to divide the variable. 6. nsector (integer) [default: 36]: Indicated the number of sector directions to divide the rose figure. 7. ylim (float) [default: None]: Provides the maximum value for the frequency of observations and is used to plot different roses with uniform limits. 8. noleg (Boolean) [default: False]: Determines whether or not there will be a legend to the figure. Returns: 1. fig (Matplotlib Figure): The figure object for the desired input data and categories. 2. ax (Matplotlib Axes): The axes object for the desired input data and categories. 3. leg (Matplotlib Legend): The legend object for the desired input data and categories. """ # set up data dircol, _, _= utils.get_vertical_locations(catinfo['columns']['direction'], location=vertloc) varcol, vertloc, _= utils.get_vertical_locations(catinfo['columns'][category], location=vertloc) winddir = metdat[dircol] var = metdat[varcol] # get var divisions set up if isinstance(bins, int): nbins = bins else: nbins = len(bins) # set up plotting colors colors = utils.get_colors(nbins-1, basecolor='span') colors += ['#3A4246'] # add something dark to the end. colors = tuple(colors[0:nbins]) # built figure fig = plt.figure() ax = WindroseAxes.from_ax(fig=fig) ax.bar(winddir, var, normed=True, opening=0.95, edgecolor='white', bins=bins, nsector=nsector,colors=colors, linewidth=0.35) # legend leg=['blank'] if noleg is not True: leg = ax.set_legend(loc=7,bbox_to_anchor=(1.55,0.5), fontsize=10, frameon=False) # add labels to legend leg.set_title(catinfo['labels'][category]) fig.text(0.875, 0.275, r'$z={}$ m'.format(vertloc)) # adjust plot for specified max frequency if ylim is None: ylim = ax.get_ylim()[-1] # frequency axis limits and labels ax.set_ylim(0,ylim) ax.set_yticks(np.linspace(0,ylim,4)) ax.set_yticklabels([str(round(x,1)) for x in np.linspace(0,ylim,4)]) return fig, ax, leg def monthly_rose_fig(metdat, catinfo, category=None, vertloc=80, bins=6, nsector=36, ylim=None, noleg=False): """**Get Monthly Wind Rose Figure**. Plot the monthly wind rose of a given variable (or category of variables) grouped by a given condition (or set of conditions). Parameters: 1. metdat (Pandas DataFrame): The desired input data (Met Mast). 2. catinfo (dictionary): Categorization information for the desired input data. Holds column names, labels, units, and save names. 3. category (string) [default: None]: Specifies the category of information that is desired for plotting. 4. vertloc (integer, float) [default: 80]: Describes the desired vertical location alond the tower for analysis. 5. bins (integer, list) [default: 6]: Indicates the number of equally spaced bins to divide the variable. 6. nsector (integer) [default: 36]: Indicated the number of sector directions to divide the rose figure. 7. ylim (float) [default: None]: Provides the maximum value for the frequency of observations and is used to plot different roses with uniform limits. 8. noleg (Boolean) [default: False]: Determines whether or not there will be a legend to the figure. Returns: 1. fig (Matplotlib Figure): The figure object for the desired input data and categories. 2. ax (Matplotlib Axes): The axes object for the desired input data and categories. 3. leg (Matplotlib Legend): The legend object for the desired input data and categories. """ # set up data dircol, _, _= utils.get_vertical_locations(catinfo['columns']['direction'], location=vertloc) varcol, vertloc, _= utils.get_vertical_locations(catinfo['columns'][category], location=vertloc) plotdat = metdat.groupby(metdat.index.month) winddir = plotdat[dircol] var = plotdat[varcol] months = utils.monthnames() # wind speed bins to use in wind roses # get var divisions set up if isinstance(bins, int): nbins = bins else: nbins = len(bins) # set up plotting colors colors = utils.get_colors(nbins-1, basecolor='span') colors += ['#3A4246'] # add something dark to the end. colors = tuple(colors[0:nbins]) fig = plt.figure(figsize=(9,13)) for iax,month in enumerate(months): ax = fig.add_subplot(4,3,iax+1, projection="windrose") ax.bar(winddir.get_group(iax+1), var.get_group(iax+1), bins=bins, nsector=36, colors=colors, linewidth=0.35, normed=True) # Set the tick labels font for label in (ax.get_xticklabels() + ax.get_yticklabels()): label.set_fontname('Arial') label.set_fontsize(12) ax.set_title(month,fontsize=12,y=1.15) if iax == 10: leg = plt.legend(loc=8, ncol=2, bbox_to_anchor = (0.5,-0.65), frameon=False) leg.set_title(catinfo['labels'][category]) fig.text(0.5, -0.085, r'$z={}$ m'.format(vertloc), ha='center', va='center') axes = fig.get_children()[1:] # adjust plot for specified max frequency if ylim is None: ylim = 0.0 for iax,month in enumerate(months): ylim = np.max([ylim, axes[iax].get_ylim()[-1]]) for iax,month in enumerate(months): axes[iax].set_ylim(0,ylim) axes[iax].set_yticks(np.linspace(0.0,ylim,4)) # print(axes[iax].get_yticks()) axes[iax].set_yticklabels([str(np.round(x,decimals=1)) for x in axes[iax].get_yticks()]) fig.tight_layout() return fig, axes, leg def winddir_scatter(metdat, catinfo, category, vertloc=80, basecolor='red', exclude_angles=[(46, 228)]): """**Get Wind Direction Scatter Figure**. Plot the wind direction scatter of a given variable (or category of variables) grouped by a given condition (or set of conditions). Parameters: 1. metdat (Pandas DataFrame): The desired input data (Met Mast). 2. catinfo (dictionary): Categorization information for the desired input data. Holds column names, labels, units, and save names. 3. category (string): Specifies the category of information that is desired for plotting. 4. vertloc (integer, float): Describes the desired vertical location alond the tower for analysis. 5. basecolor (string): Provides the color code information to get from "utils.py". 6. exclude_angles (tuple, list): Defines the start and stop angles to shade out regions according to International Electrotechnical Commission (IEC) standards. Returns: 1. fig (Matplotlib Figure): The figure object for the desired input data and categories. 2. ax (Matplotlib Axes): The axes object for the desired input data and categories. """ # set up data dircol, _, _= utils.get_vertical_locations(catinfo['columns']['direction'], location=vertloc) varcol, vertloc, _= utils.get_vertical_locations(catinfo['columns'][category], location=vertloc) colors = utils.get_nrelcolors() fig = plt.figure(figsize=(8,2.5)) ax = fig.add_subplot(111) ax.scatter(metdat[dircol], metdat[varcol], marker='o',facecolor='w',color='k',lw=0.5,alpha=0.7) ax.set_xlim([0,360]) for ii in range(len(exclude_angles)): ax.axvspan(exclude_angles[ii][0], exclude_angles[ii][1], alpha=0.1, color=colors[basecolor][0]) ax.set_title(r'$z={}$ m'.format(vertloc)) ax.set_xlabel(r'Wind Direction [$^\circ$]') ax.set_ylabel(catinfo['labels'][category]) return fig, ax#, leg def stability_winddir_scatter(metdat, catinfo, category, vertloc=80, basecolor='red', exclude_angles=[(46, 228)]): """**Get Wind Direction Stability Scatter Figure**. Plot the wind direction stability scatter of a given variable (or category of variables) grouped by a given condition (or set of conditions). Parameters: 1. metdat (Pandas DataFrame): The desired input data (Met Mast). 2. catinfo (dictionary): Categorization information for the desired input data. Holds column names, labels, units, and save names. 3. category (string): Specifies the category of information that is desired for plotting. 4. vertloc (integer, float) [default: 80]: Describes the desired vertical location alond the tower for analysis. 5. basecolor (string) [default: 'red']: Provides the color code information to get from "utils.py". 6. exclude_angles (tuple, list) [default: [(46, 228)]]: Defines the start and stop angles to shade out regions according to International Electrotechnical Commission (IEC) standards. Returns: 1. fig (Matplotlib Figure): The figure object for the desired input data and categories. 2. ax (Matplotlib Axes): The axes object for the desired input data and categories. """ stabconds = utils.get_stabconds() colors = utils.get_colors(len(stabconds),basecolor='span') nrelcolors = utils.get_nrelcolors() # Set up data dircol, _, _= utils.get_vertical_locations(catinfo['columns']['direction'], location=vertloc) varcol, vertloc, _= utils.get_vertical_locations(catinfo['columns'][category], location=vertloc) stabcol, _, _= utils.get_vertical_locations(catinfo['columns']['stability flag'], location=vertloc) # dirind = utils.get_nearest_direction(metdat[category]) fig, ax = plt.subplots(len(stabconds),1, sharex=True, sharey=True, figsize=(6,8)) plotdat = metdat.groupby(stabcol) for ind, stabcond in enumerate(stabconds): ax.flatten()[ind].scatter(plotdat[dircol].get_group(stabcond),plotdat[varcol].get_group(stabcond), marker='o',facecolor=colors[ind],color='k',lw=0.5,alpha=0.7) ax.flatten()[ind].set_xlim([0,360]) # ax.flatten()[ind].set_ylim([0,120]) ax.flatten()[ind].legend([stabcond], fontsize=12, loc=1, frameon=False) for ii in range(len(exclude_angles)): ax.flatten()[ind].axvspan(exclude_angles[ii][0], exclude_angles[ii][1], alpha=0.1, color=nrelcolors[basecolor][0]) if ind == 0: ax.flatten()[ind].set_title(r'$z={}$ m'.format(vertloc)) fig.tight_layout() fig.text(0.5,0, r'Wind Direction [$^\circ$]', ha='center', va='center') fig.text(0, 0.5, catinfo['labels'][category], ha='center', va='center', rotation='vertical') return fig, ax #, leg def groupby_scatter(metdat, catinfo, category, abscissa='direction', groupby='ti', nbins=5, vertloc=80, basecolor='span'): """**Get Wind Direction Grouped Scatter Figure**. Plot the wind direction grouped scatter of a given variable (or category of variables) grouped by a given condition (or set of conditions). Parameters: 1. metdat (Pandas DataFrame): The desired input data (Met Mast). 2. catinfo (dictionary): Categorization information for the desired input data. Holds column names, labels, units, and save names. 3. category (string): Specifies the category of information that is desired for plotting. 4. abscissa (string) [default: 'direction']: independent variable to plot again 5. groupby (string) [default: 'ti']: Describes which categories to group by. 6. nbins (integer) [default: 5]: Divides the *groupby* variable into bins. 7. vertloc (integer, float) [default: 80]: Describes the desired vertical location alond the tower for analysis. 8. basecolor (string) [default: 'span']: Provides the color code information to get from "utils.py". Returns: 1. fig (Matplotlib Figure): The figure object for the desired input data and categories. 2. ax (Matplotlib Axes): The axes object for the desired input data and categories. """ # set up data varcol, vertloc, _= utils.get_vertical_locations(catinfo['columns'][category], location=vertloc) groupcol, _, _= utils.get_vertical_locations(catinfo['columns'][groupby], location=vertloc) abscol, _, _= utils.get_vertical_locations(catinfo['columns'][abscissa], location=vertloc) temp = pd.cut(metdat[groupcol],5) plotdat = metdat[[varcol,abscol,groupcol]].groupby(temp) groups = list(plotdat.indices.keys()) colors = utils.get_colors(len(groups), basecolor=basecolor) fig, ax = plt.subplots(figsize=(5,3), sharex=True, sharey=True) for iax,group in enumerate(groups): ax.scatter(plotdat[abscol].get_group(group), plotdat[varcol].get_group(group),facecolor=colors[iax],color='k',lw=0.5,alpha=0.7) leg = ax.legend(groups, loc=6, bbox_to_anchor=(1, 0.5), frameon=False) leg.set_title(catinfo['labels'][groupby]) # labels ax.set_xlabel(catinfo['labels'][abscissa]) ax.set_ylabel(catinfo['labels'][category]) ax.set_title(r'$z={}$ m'.format(vertloc)) fig.tight_layout() return fig, ax #, leg def hist(metdat, catinfo, category, vertloc=80, basecolor='blue'): """**Get Histogram Figure**. Plot the histogram of a given variable (or category of variables) grouped by a given condition (or set of conditions). Parameters: 1. metdat (Pandas DataFrame): The desired input data (Met Mast). 2. catinfo (dictionary): Categorization information for the desired input data. Holds column names, labels, units, and save names. 3. category (string): Specifies the category of information that is desired for plotting. 4. vertloc (integer, float) [default: 80]: Describes the desired vertical location alond the tower for analysis. 5. basecolor (string) [default: 'blue']: Provides the color code information to get from "utils.py". Returns: 1. fig (Matplotlib Figure): The figure object for the desired input data and categories. 2. ax (Matplotlib Axes): The axes object for the desired input data and categories. """ colors = utils.get_nrelcolors() color = colors[basecolor][0] # set up data varcol, vertloc, _= utils.get_vertical_locations(catinfo['columns'][category], location=vertloc) data = metdat[varcol].dropna(how='any') fig, ax = plt.subplots(figsize=(5,3)) ax.hist(data, bins = 35, facecolor=color, edgecolor='k', weights=np.ones(len(data)) / len(data), density=False) ax.set_title(r'$z={}$ m'.format(vertloc)) fig.text(0,0.5,'Frequency [%]',rotation='vertical', ha='center', va='center') fig.text(0.5,0,catinfo['labels'][category], ha='center', va='center') fig.tight_layout() return fig, ax def monthly_hist(metdat, catinfo, category, vertloc=80, basecolor='blue'): """**Get Monthly Histogram Figure**. Plot the monthly histogram of a given variable (or category of variables) grouped by a given condition (or set of conditions). Parameters: 1. metdat (Pandas DataFrame): The desired input data (Met Mast). 2. catinfo (dictionary): Categorization information for the desired input data. Holds column names, labels, units, and save names. 3. category (string): Specifies the category of information that is desired for plotting. 4. vertloc (integer, float) [default: 80]: Describes the desired vertical location alond the tower for analysis. 5. basecolor (string) [default: 'blue']: Provides the color code information to get from "utils.py". Returns: 1. fig (Matplotlib Figure): The figure object for the desired input data and categories. 2. ax (Matplotlib Axes): The axes object for the desired input data and categories. """ colors = utils.get_nrelcolors() color = colors[basecolor][0] months = utils.monthnames() # set up data varcol, vertloc, _= utils.get_vertical_locations(catinfo['columns'][category], location=vertloc) temp = metdat.groupby(metdat.index.month) temp = temp[varcol] binwidth = (metdat[varcol].dropna().max() - metdat[varcol].dropna().min())/35 bins = np.arange(metdat[varcol].dropna().min(),metdat[varcol].dropna().max(), binwidth) fig, ax = plt.subplots(4,3, figsize=(9,9), sharex=True, sharey=True) for im,month in enumerate(months): data = temp.get_group(im+1).dropna() ax.flatten()[im].hist(data, bins=bins, color=color, edgecolor='k', weights=np.ones(len(data))/len(data)*100) ax.flatten()[im].set_title(month, fontsize=12) fig.tight_layout() fig.text(0,0.5,'Frequency [%]',rotation='vertical', ha='center', va='center') fig.text(0.5,0,catinfo['labels'][category], ha='center', va='center') return fig, ax def hist_by_stability(metdat, catinfo, category, vertloc=80, basecolor='span'): """**Get Stability Grouped Histogram Figure**. Plot the stability grouped histogram of a given variable (or category of variables) grouped by a given condition (or set of conditions). Parameters: 1. metdat (Pandas DataFrame): The desired input data (Met Mast). 2. catinfo (dictionary): Categorization information for the desired input data. Holds column names, labels, units, and save names. 3. category (string): Specifies the category of information that is desired for plotting. 4. vertloc (integer, float) [default: 80]: Describes the desired vertical location alond the tower for analysis. 5. basecolor (string) [default: 'span']: Provides the color code information to get from "utils.py". Returns: 1. fig (Matplotlib Figure): The figure object for the desired input data and categories. 2. ax (Matplotlib Axes): The axes object for the desired input data and categories. """ stabconds = utils.get_stabconds() stabcol, _, _= utils.get_vertical_locations(catinfo['columns']['stability flag'], location=vertloc) varcol, vertloc, _= utils.get_vertical_locations(catinfo['columns'][category], location=vertloc) colors = utils.get_colors(len(stabconds),basecolor=basecolor) metdat = metdat.groupby(stabcol) fig,ax = plt.subplots(len(stabconds),1, figsize=(4,6), sharex=True, sharey=True) for ii,stab in enumerate(stabconds): data = metdat[varcol].get_group(stab).dropna() ax.flatten()[ii].hist(data, facecolor=colors[ii], edgecolor='k', bins=50, weights=np.ones(len(data)) / len(data), density=False) ax.flatten()[ii].legend([stab], fontsize=10, frameon=False) ax.flatten()[0].set_title(r'$z={}$m'.format(vertloc)) fig.text(-0.03,0.5,'Frequency [%]',rotation='vertical', ha='center', va='center') fig.text(0.5,0,catinfo['labels'][category], ha='center', va='center') fig.tight_layout() return fig, ax def stacked_hist_by_stability(metdat, catinfo, category, vertloc=80): """**Get Stacked Stability Grouped Histogram Figure**. Plot the stacked stability grouped histogram of a given variable (or category of variables) grouped by a given condition (or set of conditions). Parameters: 1. metdat (Pandas DataFrame): The desired input data (Met Mast). 2. catinfo (dictionary): Categorization information for the desired input data. Holds column names, labels, units, and save names. 3. category (string): Specifies the category of information that is desired for plotting. 4. vertloc (integer, float): Describes the desired vertical location alond the tower for analysis. Returns: 1. fig (Matplotlib Figure): The figure object for the desired input data and categories. 2. ax (Matplotlib Axes): The axes object for the desired input data and categories. """ stabconds = utils.get_stabconds() stabcol, _, _= utils.get_vertical_locations(catinfo['columns']['stability flag'], location=vertloc) varcol, vertloc, _= utils.get_vertical_locations(catinfo['columns'][category], location=vertloc) colors = utils.get_colors(len(stabconds), basecolor='span') plotdat = metdat.groupby(stabcol) fig, ax = plt.subplots() temp = pd.DataFrame({cond: plotdat[varcol].get_group(cond) for cond in stabconds}) temp.plot.hist(ax=ax, stacked=True, color=colors, bins=35, edgecolor='k', legend=False, # weights = np.ones(temp.shape) / len(temp.index), density=True) ax.set_xlabel(catinfo['labels'][category]) ax.set_title(r'$z={}$m'.format(vertloc)) fig.legend(stabconds, loc=6, bbox_to_anchor=(1, 0.5), frameon=False) fig.tight_layout() return fig, ax def monthly_stacked_hist_by_stability(metdat, catinfo, category, vertloc=80): """**Get Monthly Stacked Stability Grouped Histogram Figure**. Plot the monthly stacked stability grouped histogram of a given variable (or category of variables) grouped by a given condition (or set of conditions). Parameters: 1. metdat (Pandas DataFrame): The desired input data (Met Mast). 2. catinfo (dictionary): Categorization information for the desired input data. Holds column names, labels, units, and save names. 3. category (string): Specifies the category of information that is desired for plotting. 4. vertloc (integer, float) [default: 80]: Describes the desired vertical location alond the tower for analysis. Returns: 1. fig (Matplotlib Figure): The figure object for the desired input data and categories. 2. ax (Matplotlib Axes): The axes object for the desired input data and categories. """ stabconds = utils.get_stabconds() stabcol, _, _= utils.get_vertical_locations(catinfo['columns']['stability flag'], location=vertloc) varcol, vertloc, _= utils.get_vertical_locations(catinfo['columns'][category], location=vertloc) colors = utils.get_colors(len(stabconds), basecolor='span') months = utils.monthnames() plotdat = metdat.groupby([metdat.index.month, stabcol]) plotdat = plotdat[varcol] fig, ax = plt.subplots(4,3, figsize=(9,10), sharex=True, sharey=True) for iax, month in enumerate(months): temp = pd.DataFrame({cond: plotdat.get_group((iax+1,cond)) for cond in stabconds}) temp.plot.hist(ax=ax.flatten()[iax], stacked=True, color=colors, bins=35, edgecolor='k', legend=False, # weights = np.ones(temp.dropna().shape) / np.prod(temp.shape), density=True) ax.flatten()[iax].set_title(month) ax.flatten()[iax].set_ylabel('') # fig.legend(stabconds, loc=8, bbox_to_anchor=(0, -0.1), edgecolor='w') fig.text(0,0.58, 'Frequency', ha='center', va='center', fontsize=14, rotation='vertical') leg = fig.legend(stabconds, loc=9, bbox_to_anchor=(0.55, 0.15), frameon=False) fig.tight_layout() fig.subplots_adjust(bottom=0.21) fig.text(0.5, 0.16, catinfo['labels'][category], ha='center', va='center', fontsize=14) return fig, ax#, leg def normalized_hist_by_stability(metdat, catinfo, vertloc=80): """**Get Normalized Stability Grouped Histogram Figure**. Plot the normalized stability grouped histogram of a given variable (or category of variables) grouped by a given condition (or set of conditions). Parameters: 1. metdat (Pandas DataFrame): The desired input data (Met Mast). 2. catinfo (dictionary): Categorization information for the desired input data. Holds column names, labels, units, and save names. 3. vertloc (integer, float) [default: 80]: Describes the desired vertical location alond the tower for analysis. Returns: 1. fig (Matplotlib Figure): The figure object for the desired input data and categories. 2. ax (Matplotlib Axes): The axes object for the desired input data and categories. """ stabconds = utils.get_stabconds() stabcol, _, _= utils.get_vertical_locations(catinfo['columns']['stability flag'], location=vertloc) colors = utils.get_colors(len(stabconds), basecolor='span') temp = metdat[stabcol].dropna() garb = temp.groupby(temp.index.hour).value_counts(normalize=True) garb.index.names = ['hour','stabclass'] garb = garb.reorder_levels(['stabclass','hour']) hours = np.arange(24) newbottom = np.zeros(24) fig,ax = plt.subplots() for jj,cond in enumerate(stabconds): # Use this for missing data, also works for full data a = garb.loc[cond] b = a.index.tolist() c = a.values.tolist() for i in range(len(hours)): if (hours[i]) in b: pass else: b.insert(i,hours[i]) c.insert(i,0) d = pd.Series(data = c, index = b) ax.bar(hours, d, color=colors[jj], bottom=newbottom) newbottom += c #<-- for if missing data, also works for full data #ax.bar(hours, garb.loc[cond], color=colors[jj], bottom=newbottom) #newbottom += garb.loc[cond] ax.set_ylabel('Probability [%]') ax.set_xlabel('Time of Day [Hour]') fig.legend(stabconds) #fig.legend(stabconds, loc=6, bbox_to_anchor=(1,0.5),framealpha=0) fig.tight_layout() return fig, ax def normalized_monthly_hist_by_stability(metdat, catinfo, vertloc=80): """**Get Normalized Monthly Stability Grouped Histogram Figure**. Plot the normalized monthly stability grouped histogram of a given variable (or category of variables) grouped by a given condition (or set of conditions). Parameters: 1. metdat (Pandas DataFrame): The desired input data (Met Mast). 2. catinfo (dictionary): Categorization information for the desired input data. Holds column names, labels, units, and save names. 3. vertloc (integer, float) [default: 80]: Describes the desired vertical location alond the tower for analysis. Returns: 1. fig (Matplotlib Figure): The figure object for the desired input data and categories. 2. ax (Matplotlib Axes): The axes object for the desired input data and categories. """ months = utils.monthnames() hours = np.arange(24) stabcol, _, _= utils.get_vertical_locations(catinfo['columns']['stability flag'], location=vertloc) stabconds = utils.get_stabconds() colors = utils.get_colors(5,basecolor='span') temp = metdat[stabcol].dropna() plotdata = temp.groupby([temp.index.month.rename('month'), temp.index.hour.rename('hour')]).value_counts(normalize=True) plotdata.index.names = ['month','hour','stabclass'] temp = plotdata.reorder_levels(['month','stabclass','hour']) indexvals = [np.arange(1,13),stabconds, np.arange(24)] indx = pd.MultiIndex.from_product(indexvals, names=['month','stabclass','hour']) temp = temp.reindex(index=indx).fillna(0.0) fig,ax = plt.subplots(4,3, figsize=(9,10), sharex=True, sharey=True) for ii,month in enumerate(months): newbottom = np.zeros(24) for jj,cond in enumerate(stabconds): pdat = temp.loc[ii+1,cond] ax.flatten()[ii].bar(hours, pdat, color=colors[jj],bottom=newbottom) newbottom += pdat # fig.legend(stabconds, loc=8, bbox_to_anchor=(0, -0.1), edgecolor='w') fig.text(-0.02,0.58, 'Probability [%]', ha='center', va='center', rotation='vertical') leg = fig.legend(stabconds, loc=9, bbox_to_anchor=(0.55, 0.125), frameon=False) fig.tight_layout() fig.subplots_adjust(bottom=0.21) fig.text(0.5, 0.165, 'Time of Day [Hour]', ha='center', va='center') return fig, ax ########################################### # End of Code ###########################################
46.293515
190
0.665266
660a049f3ec33b87d1f4eb5ea8d298baaaafbc2b
1,092
py
Python
name_gen.py
brahmcapoor/naming-changes-complexity
604369ebcb2649b2a7994a1405b944dd6cb37f18
[ "MIT" ]
null
null
null
name_gen.py
brahmcapoor/naming-changes-complexity
604369ebcb2649b2a7994a1405b944dd6cb37f18
[ "MIT" ]
null
null
null
name_gen.py
brahmcapoor/naming-changes-complexity
604369ebcb2649b2a7994a1405b944dd6cb37f18
[ "MIT" ]
null
null
null
from random import sample, shuffle, randint, choice """ Generates 8 random pairs of names, one simple and one complex. It's a pretty simple script, so it's not commented. """ VOWELS = ['a', 'e', 'i', 'o', 'u'] CONSONANTS = ['s', 'z', 'f', 'v', 'k', 'g', 'p', 'b', 't', 'd'] def generate_random_word(complex=False): """ Generates one random word """ if complex: letters = 3 else: letters = 1 vowels = sample(VOWELS, letters) consonants = sample(CONSONANTS, letters) shuffle(vowels) shuffle(consonants) return "".join(consonants[i] + vowels[i] for i in range(letters)) def generate_pair_name(): """ Generates a string of names for a pair """ simple = generate_random_word() while True: hard = generate_random_word(True) if simple not in hard: break return simple + " " + hard def main(): names = [generate_pair_name() for i in range(8)] with open('names.txt', 'wb') as f: f.writelines(name + '\n' for name in names) if __name__ == '__main__': main()
20.603774
69
0.595238
345e8084c4e8f87fac27409e079d337af81cfe36
3,858
py
Python
src/p1.py
BLTowsen/NeuralNetworkFromScratch
fe222a2142f66c9bab5a4ff8539e9c4b46d4e597
[ "MIT" ]
1
2020-07-22T12:33:39.000Z
2020-07-22T12:33:39.000Z
src/p1.py
BLTowsen/NeuralNetworkFromScratch
fe222a2142f66c9bab5a4ff8539e9c4b46d4e597
[ "MIT" ]
null
null
null
src/p1.py
BLTowsen/NeuralNetworkFromScratch
fe222a2142f66c9bab5a4ff8539e9c4b46d4e597
[ "MIT" ]
null
null
null
import numpy as np import nnfs from nnfs.datasets import spiral_data nnfs.init() # setting random seed and default data type for numpy to use # X = [[1, 2, 3, 2.5], # [2.0, 5.0, -1.0, 2.0], # [-1.5, 2.7, 3.3, -0.8]] # X = [[1], [2]] ################################## # Long version of softmax function ################################## # layer_outputs = [4.8, 1.21, 2.385] # # E = 2.71828182846 # # exp_values = [] # for output in layer_outputs: # exp_values.append(E ** output) # print('exponentiated values:') # print(exp_values) # # norm_base = sum(exp_values) #sum all values # norm_values = [] # for value in exp_values: # norm_values.append(value/norm_base) # print('normalized expinentiated values:') # print(norm_values) # print('sim of normalized values: ', sum(norm_values)) ################################### # Sleek softmax function ################################### # layer_outputs = [4.8, 1.21, 2.385] # # # For each value in a vector, calculate the exponential value # exp_values = np.exp(layer_outputs) # print('exponentiated values:') # print(exp_values) # # # Now normalize values # norm_values = exp_values / np.sum(exp_values) # print('normalized exponentiated values:') # print(norm_values) # # print('sum of normalized values: ', np.sum(norm_values)) ########################################## """ sum(arrayOfArrays, axis=?, keepdims=?) ? = 0, 1 or none 0=columns(adds columns and outputs array) 1 = rows (adds rows and outputs array) none = adds everything(outputs num) keepdims = True || False - to keep original dimensions of array or not """ # layer_outputs = [[4.8, 1.21, 2.385], # [8.9, -1.21, 0.2], # [1.41, 1.051, 0.026]] # print('so we can sum axis 1, but note the current shape:') # print(np.sum(layer_outputs, axis=1, keepdims=True)) # X, y = spiral_data(100, 3) class Layer_Dense: def __init__(self, n_inputs, n_neurons): self.weights = 0.10 * np.random.randn(n_inputs, n_neurons) self.biases = np.zeros((1, n_neurons)) def forward(self, inputs): self.output = np.dot(inputs, self.weights) + self.biases class Activation_ReLU: def forward(self, inputs): self.output = np.maximum(0, inputs) # Softmax activation class Activation_Softmax: # Forward pass def forward(self, inputs): # Get unnormalized probabilities exp_values = np.exp(inputs - np.max(inputs, axis=1, keepdims=True)) # changes values so that is negative when exponentiated, so get fractional numbers # Normalize them for each sample probabilities = exp_values / np.sum(exp_values, axis=1, keepdims=True) self.output = probabilities # Create dataset X, y = spiral_data(100, 3) # Create Dense layer with 2 input features and 3 output values dense1 = Layer_Dense(2, 3) # first dense layer, 2 inputs (each sample has 2 features), 3 outputs # Create ReLU activation (to be used with Dense layer): activation1 = Activation_ReLU() # Create second Dense layer with 3 input features (as we take output of previous layer here) and 3 output values dense2 = Layer_Dense(3, 3) # second dense layer, 3 inputs, 3 outputs # Create Softmax activation (to be used with Dense layer): activation2 = Activation_Softmax() # Make a forward pass of our training data through this layer dense1.forward(X) # Make a forward pass through activation function # it takes the output of first dense layer here activation1.forward(dense1.output) # Make a forward pass through second dense layer # it takes output of activation function of first layer as inputs dense2.forward(activation1.output) # Make a forward pass through activation function # it takes the output of the second dense layer here activation2.forward(dense2.output) # Let's see output of the first few samples: print(activation2.output[:5])
29.007519
158
0.665111
39ddaa5914616bd9ad686fffeb7eef291ee7eb64
4,524
py
Python
ekorpkit/models/sentiment/analyser.py
entelecheia/ekorpkit
400cb15005fdbcaa2ab0c311e338799283f28fe0
[ "CC-BY-4.0" ]
4
2022-02-26T10:54:16.000Z
2022-02-26T11:01:56.000Z
ekorpkit/models/sentiment/analyser.py
entelecheia/ekorpkit
400cb15005fdbcaa2ab0c311e338799283f28fe0
[ "CC-BY-4.0" ]
1
2022-03-25T06:37:12.000Z
2022-03-25T06:45:53.000Z
ekorpkit/models/sentiment/analyser.py
entelecheia/ekorpkit
400cb15005fdbcaa2ab0c311e338799283f28fe0
[ "CC-BY-4.0" ]
null
null
null
import logging import pandas as pd from .base import BaseSentimentAnalyser log = logging.getLogger(__name__) class HIV4SA(BaseSentimentAnalyser): """ A class for sentiment analysis using the HIV4 lexicon. """ def __init__(self, preprocessor=None, lexicon=None, **kwargs): super().__init__(preprocessor=preprocessor, lexicon=lexicon, **kwargs) def _get_score(self, tokens, lexicon_features, feature="polarity"): """Get score for features. :returns: int """ lxfeat_names = self._features.get(feature).get("lexicon_features") lxfeat = pd.DataFrame.from_dict(lexicon_features, orient="index") score = {} if feature == "polarity": lxfeat["pos"] = lxfeat.apply( lambda x: 1 * x["count"] if x["Positiv"] else 0, axis=1 ) lxfeat["neg"] = lxfeat.apply( lambda x: 1 * x["count"] if x["Negativ"] else 0, axis=1 ) lxfeat_agg = lxfeat.agg({"pos": "sum", "neg": "sum"}) polarity = (lxfeat_agg["pos"] - lxfeat_agg["neg"]) / ( lxfeat_agg["pos"] + lxfeat_agg["neg"] + self.EPSILON ) subjectivity = (lxfeat_agg["pos"] + lxfeat_agg["neg"]) / ( len(tokens) + self.EPSILON ) score["polarity"] = polarity score["subjectivity"] = subjectivity elif isinstance(lxfeat_names, str): lxfeat[feature] = lxfeat.apply( lambda x: 1 * x["count"] if x[lxfeat_names] else 0, axis=1 ) lxfeat_agg = lxfeat.agg({feature: "sum"}) feat_score = lxfeat_agg[feature] / (len(tokens) + self.EPSILON) score[feature] = feat_score return score def _assign_class(self, score, feature="polarity"): """Assign class to a score. :returns: str """ labels = self._features.get(feature).get("labels") if labels: score["label"] = "" for label, thresh in labels.items(): if isinstance(thresh, str): thresh = eval(thresh) if score[feature] >= thresh[0] and score[feature] <= thresh[1]: score["label"] = label return score class LMSA(BaseSentimentAnalyser): """ A class for sentiment analysis using the LM lexicon. """ def __init__(self, preprocessor=None, lexicon=None, **kwargs): super().__init__(preprocessor=preprocessor, lexicon=lexicon, **kwargs) def _get_score(self, tokens, lexicon_features, feature="polarity"): """Get score for features. :returns: int """ lxfeat_names = self._features.get(feature).get("lexicon_features") lxfeat = pd.DataFrame.from_dict(lexicon_features, orient="index") score = {} if feature == "polarity": lxfeat["pos"] = lxfeat.apply( lambda x: 1 * x["count"] if x["Positive"] > 0 else 0, axis=1 ) lxfeat["neg"] = lxfeat.apply( lambda x: 1 * x["count"] if x["Negative"] > 0 else 0, axis=1 ) lxfeat_agg = lxfeat.agg({"pos": "sum", "neg": "sum"}) polarity = (lxfeat_agg["pos"] - lxfeat_agg["neg"]) / ( lxfeat_agg["pos"] + lxfeat_agg["neg"] + self.EPSILON ) subjectivity = (lxfeat_agg["pos"] + lxfeat_agg["neg"]) / ( len(tokens) + self.EPSILON ) score[feature] = polarity score["subjectivity"] = subjectivity elif isinstance(lxfeat_names, str): lxfeat[feature] = lxfeat.apply( lambda x: 1 * x["count"] if x[lxfeat_names] > 0 else 0, axis=1 ) lxfeat_agg = lxfeat.agg({feature: "sum"}) feat_score = lxfeat_agg[feature] / (len(tokens) + self.EPSILON) score[feature] = feat_score return score def _assign_class(self, score, feature="polarity"): """Assign class to a score. :returns: str """ label_key = feature + "_label" labels = self._features.get(feature).get("labels") if labels: score[label_key] = "" for label, thresh in labels.items(): if isinstance(thresh, str): thresh = eval(thresh) if score[feature] >= thresh[0] and score[feature] <= thresh[1]: score[label_key] = label return score
36.780488
79
0.54443
333949faf73bd0077bd9909ad09820ce35ff7a7b
2,780
py
Python
rec/mrnas.py
OmnesRes/OncoRank
38e76cedff9846a0e76aeee5da07258ed2ec3a49
[ "MIT" ]
1
2020-03-03T05:11:00.000Z
2020-03-03T05:11:00.000Z
rec/mrnas.py
OmnesRes/OncoRank
38e76cedff9846a0e76aeee5da07258ed2ec3a49
[ "MIT" ]
null
null
null
rec/mrnas.py
OmnesRes/OncoRank
38e76cedff9846a0e76aeee5da07258ed2ec3a49
[ "MIT" ]
1
2020-03-04T10:12:42.000Z
2020-03-04T10:12:42.000Z
import scipy.stats as stats import numpy as np import math from rpy2 import robjects as ro import os BASE_DIR = os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) cancers=['BLCA','BRCA','CESC','COAD','ESCA','GBM','HNSC','KIRC','KIRP','LAML','LGG','LIHC','LUAD','LUSC','OV',\ 'PAAD','READ','SARC','SKCM','STAD','UCEC'] genes={} for cancer in cancers: ##path to https://github.com/OmnesRes/onco_lnc repository f=open(os.path.join(BASE_DIR,'onco_lnc','mrna','cox',cancer,'coeffs_pvalues.txt')) data=sorted([[j.split('\t')[0],float(j.split('\t')[-2])] for j in f],key=lambda x:x[-1]) for index,i in enumerate(data): genes[i[0]]=genes.get(i[0],[])+[(index+1)/float(len(data))-.5*1/float(len(data))] chi_stats={} for i in genes: stat=-2*sum([math.log(k) for k in genes[i]]) chi_stats[i]=[len(genes[i]),stats.chi2.sf(stat,len(genes[i])*2)] genes_reversed={} for cancer in cancers: ##path to https://github.com/OmnesRes/onco_lnc repository f=open(os.path.join(BASE_DIR,'onco_lnc','mrna','cox',cancer,'coeffs_pvalues.txt')) data=sorted([[j.split('\t')[0],float(j.split('\t')[-2])] for j in f],key=lambda x:x[-1]) for index,i in enumerate(data): genes_reversed[i[0]]=genes_reversed.get(i[0],[])+[(len(data)-index)/float(len(data))-.5*1/float(len(data))] chi_stats_reversed={} for i in genes_reversed: stat=-2*sum([math.log(k) for k in genes_reversed[i]]) chi_stats_reversed[i]=[len(genes_reversed[i]),stats.chi2.sf(stat,len(genes_reversed[i])*2)] print len(chi_stats) print len(chi_stats_reversed) merged=[] for i in chi_stats: if chi_stats[i][0]>=8: if chi_stats[i][1]<chi_stats_reversed[i][1]: merged.append([i,math.log(2*chi_stats[i][1],10),2*chi_stats[i][1]]) elif chi_stats[i][1]>chi_stats_reversed[i][1]: merged.append([i,-1*math.log(2*chi_stats_reversed[i][1],10),2*chi_stats_reversed[i][1]]) else: merged.append([i,0,2*chi_stats_reversed[i][1]]) print i,chi_stats_reversed[i][1] print len(merged) f=open(os.path.join(BASE_DIR,'onco_rank','oncolnc_mrna_names.txt')) data=[eval(i.strip()) for i in f] name_dict={} for i in data: name_dict[i[0]]=i[1:] print len(name_dict) merged.sort(key=lambda x:x[-1]) ##BH correction pvalues=[i[-1] for i in merged] #prepare data for R ro.globalenv['pvalues']=ro.FloatVector(pvalues) #perform BH adjustment res=ro.r('p.adjust(pvalues,"BH")') #extract data adjusted=list(res) f=open('mrna_ranks.txt','w') for i,fdr in zip(merged,adjusted): f.write(i[0]) f.write('\t') for j in name_dict[i[0]]: f.write(j) f.write('\t') f.write(str(i[1])) f.write('\t') f.write(str(fdr)) f.write('\n') f.close()
29.892473
115
0.641007
c29c5d8f5096365929c2719bf1a0c0b792a500d5
4,748
py
Python
observations/models.py
UiL-OTS-labs/ethics
7782e08a4f772b375ba56b4b865fa9efcd730ca1
[ "MIT" ]
2
2017-04-22T11:07:13.000Z
2018-03-02T12:23:24.000Z
observations/models.py
UiL-OTS-labs/ethics
7782e08a4f772b375ba56b4b865fa9efcd730ca1
[ "MIT" ]
124
2020-04-30T07:06:58.000Z
2022-03-28T12:50:16.000Z
observations/models.py
UiL-OTS-labs/etcl
a22df7ff78620b704a500354fb218fbe9bcabf5f
[ "MIT" ]
1
2021-08-04T11:44:21.000Z
2021-08-04T11:44:21.000Z
from django.core.validators import MaxValueValidator from django.db import models from django.utils.translation import ugettext_lazy as _ from main.models import SettingModel from main.validators import validate_pdf_or_doc from studies.models import Study class Registration(models.Model): order = models.PositiveIntegerField(unique=True) description = models.CharField(max_length=200) needs_details = models.BooleanField(default=False) requires_review = models.BooleanField(default=False) class Meta: ordering = ['order'] def __str__(self): return self.description class Observation(SettingModel): # This is used internally to provide backwards compatibility with the old # version of this model. All old fields are still used if this is 1. version = models.PositiveIntegerField( 'INTERNAL - Describes which version of the observation model is used', default=2) details_who = models.TextField( _('Beschrijf <b>wie</b> er wordt geobserveerd.'), help_text=_( 'Maak duidelijk voor de commissie wie er wordt geobserveerd en wat er precies van de deelnemer wordt' ' geobserveerd. Bijvoorbeeld: De leraar zal geobserveerd worden. De observatie moet de interactie ' 'tussen leraar en leerling in kaart brengen.'), blank=True, ) details_why = models.TextField( _('Beschrijf <b>waarom</b> er wordt geobserveerd.'), help_text=_( 'Wat is het doel van de observatie? Bijvoorbeeld: Het doel van de ' 'observatie is inzicht te krijgen in hoe de leerkracht omgaat met ' 'de uitleg van de nieuwe lesmethode. Doet die dat op de gewenste ' 'manier en in begrijpelijke taal?'), blank=True, ) details_frequency = models.TextField( _( 'Beschrijf <b>hoe vaak en hoe lang</b> de observant wordt geobserveerd.'), help_text=_('Bijvoorbeeld: De leraar zal 5 lessen van 45 minuten ' 'worden geobserveerd.'), blank=True, ) is_anonymous = models.BooleanField( _('Wordt er anoniem geobserveerd?'), help_text=_( 'Zoals zou kunnen voorkomen op fora en de onderzoeker ook een account heeft.'), default=False, ) is_anonymous_details = models.TextField( _('Licht toe'), blank=True, ) is_in_target_group = models.BooleanField( _('Doet de onderzoeker zich voor als behorende tot de doelgroep?'), default=False, ) is_in_target_group_details = models.TextField( _('Licht toe'), blank=True, ) is_nonpublic_space = models.BooleanField( _('Wordt er geobserveerd in een niet-openbare ruimte?'), help_text=_('Bijvoorbeeld er wordt geobserveerd bij iemand thuis, \ tijdens een hypotheekgesprek, tijdens politieverhoren of een forum waar \ een account voor moet worden aangemaakt.'), default=False, ) is_nonpublic_space_details = models.TextField( _('Licht toe'), blank=True, ) has_advanced_consent = models.BooleanField( _('Vindt informed consent van tevoren plaats?'), default=True, ) has_advanced_consent_details = models.TextField( _( 'Leg uit waarom informed consent niet van te voren plaatsvindt en ' 'geef ook op welke wijze dit achteraf verzorgd wordt.' ), blank=True, ) needs_approval = models.BooleanField( _('Heb je toestemming nodig van een (samenwerkende) instantie \ om deze observatie te mogen uitvoeren?'), default=False, ) approval_institution = models.CharField( _('Welke instantie?'), max_length=200, blank=True, ) approval_document = models.FileField( _('Upload hier het toestemmingsdocument (in .pdf of .doc(x)-formaat)'), blank=True, validators=[validate_pdf_or_doc], ) registrations = models.ManyToManyField( Registration, verbose_name=_('Hoe wordt het gedrag geregistreerd?')) registrations_details = models.CharField( _('Namelijk'), max_length=200, blank=True) # Legacy, only used in v1 days = models.PositiveIntegerField( _('Op hoeveel dagen wordt er geobserveerd (per deelnemer)?'), blank=True, null=True) mean_hours = models.DecimalField( _('Hoeveel uur wordt er gemiddeld per dag geobserveerd?'), max_digits=4, decimal_places=2, validators=[MaxValueValidator(24)], blank=True, null=True) # References study = models.OneToOneField( Study, on_delete=models.CASCADE)
32.081081
113
0.65417
1c30bad2d352bf9d602223667dd3a7db097949ed
4,347
py
Python
src/sage/server/notebook/colorize.py
bopopescu/sage-5
9d85b34956ca2edd55af307f99c5d3859acd30bf
[ "BSL-1.0" ]
2
2021-08-20T00:30:35.000Z
2021-11-17T10:54:00.000Z
src/sage/server/notebook/colorize.py
bopopescu/sage-5
9d85b34956ca2edd55af307f99c5d3859acd30bf
[ "BSL-1.0" ]
null
null
null
src/sage/server/notebook/colorize.py
bopopescu/sage-5
9d85b34956ca2edd55af307f99c5d3859acd30bf
[ "BSL-1.0" ]
null
null
null
# This file is part of the OLD Sage notebook and is NOT actively developed, # maintained, or supported. As of Sage v4.1.2, all notebook development has # moved to the separate Sage Notebook project: # # http://nb.sagemath.org/ # # The new notebook is installed in Sage as an spkg (e.g., sagenb-0.3.spkg). # # Please visit the project's home page for more information, including directions on # obtaining the latest source code. For notebook-related development and support, # please consult the sage-notebook discussion group: # # http://groups.google.com/group/sage-notebook """nodoctest """ # -*- coding: utf-8 -*- ############################################################################# # Copyright (C) 2007 William Stein <wstein@gmail.com> # Distributed under the terms of the GNU General Public License (GPL) # The full text of the GPL is available at: # http://www.gnu.org/licenses/ ############################################################################# """ Colorize - Python source formatter that outputs Python code in XHTML. This script is based on MoinMoin - The Python Source Parser. FROM: Modified version of http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/442482 """ # Imports import cgi import string import sys import cStringIO import keyword import token import tokenize #Set up basic values. _KEYWORD = token.NT_OFFSET + 1 _TEXT = token.NT_OFFSET + 2 _classes = { token.NUMBER: 'token_number', token.OP: 'token_op', token.STRING: 'token_string', tokenize.COMMENT: 'token_comment', token.NAME: 'token_name', token.ERRORTOKEN: 'token_error', _KEYWORD: 'keyword', _TEXT: 'text', } class Parser: """ Send colored python source. """ def __init__(self, raw, out = sys.stdout): """ Store the source text. """ self.raw = string.strip(string.expandtabs(raw)) self.out = out def format(self, formatter, form): """ Parse and send the colored source. """ # store line offsets in self.lines self.lines = [0, 0] pos = 0 while 1: pos = string.find(self.raw, '\n', pos) + 1 if not pos: break self.lines.append(pos) self.lines.append(len(self.raw)) # parse the source and write it self.pos = 0 text = cStringIO.StringIO(self.raw) try: tokenize.tokenize(text.readline, self) except tokenize.TokenError, ex: msg = ex[0] line = ex[1][0] self.out.write("<h3>ERROR: %s</h3>%s\n" % ( msg, self.raw[self.lines[line]:])) def __call__(self, toktype, toktext, (srow,scol), (erow,ecol), line): """ Token handler. """ if 0: print "type", toktype, token.tok_name[toktype], "text", toktext, print "start", srow, scol, "end", erow, ecol, "<br />" # calculate new positions oldpos = self.pos newpos = self.lines[srow] + scol self.pos = newpos + len(toktext) # handle newlines if toktype in [token.NEWLINE, tokenize.NL]: self.out.write('\n') return # send the original whitespace, if needed if newpos > oldpos: self.out.write(self.raw[oldpos:newpos]) # skip indenting tokens if toktype in [token.INDENT, token.DEDENT]: self.pos = newpos return # map token type to a color/class group if token.LPAR <= toktype and toktype <= token.OP: toktype = token.OP elif toktype == token.NAME and keyword.iskeyword(toktext): toktype = _KEYWORD classval = _classes.get(toktype, _classes[_TEXT]) style = '' if toktype == token.ERRORTOKEN: style = ' style="border: solid 1.5pt #FF0000;"' # send text self.out.write('<span class="%s"%s>' % (classval, style)) self.out.write(cgi.escape(toktext)) self.out.write('</span>') def colorize(source): import os, sys # write colorized version to "[filename].py.html" html = cStringIO.StringIO() Parser(source, html).format(None, None) html.flush() html.seek(0) return html.read()
30.1875
84
0.576259
81ea9d65797320e42006a33cdc8c858186bee79a
198
py
Python
ex015.py
AdaltonVitor/python-curso-em-video
b7c0b5f72e22c0ea045ca0d47bb577e9832e76f3
[ "MIT" ]
1
2022-01-02T21:59:04.000Z
2022-01-02T21:59:04.000Z
ex015.py
AdaltonVitor/python-curso-em-video
b7c0b5f72e22c0ea045ca0d47bb577e9832e76f3
[ "MIT" ]
null
null
null
ex015.py
AdaltonVitor/python-curso-em-video
b7c0b5f72e22c0ea045ca0d47bb577e9832e76f3
[ "MIT" ]
null
null
null
salario = float(input('Qual o salario do funcionario? R$')) novo = salario + (salario * 15 / 100) print('O salario do funcionario era R${} e com o ajuste de 15% foi para R${} '.format(salario,novo))
66
100
0.686869
3267ce7e719235cd196603a526872cbd9cdcfaa0
12,587
py
Python
selfdrive/car/gm/values.py
tunabelly/openpilot
cbd4731145ebba06f6fab822c5e23e146eaa562f
[ "MIT" ]
1
2019-05-24T22:04:41.000Z
2019-05-24T22:04:41.000Z
selfdrive/car/gm/values.py
tunabelly/openpilot
cbd4731145ebba06f6fab822c5e23e146eaa562f
[ "MIT" ]
null
null
null
selfdrive/car/gm/values.py
tunabelly/openpilot
cbd4731145ebba06f6fab822c5e23e146eaa562f
[ "MIT" ]
null
null
null
from cereal import car from selfdrive.car import dbc_dict class CAR: HOLDEN_ASTRA = "HOLDEN ASTRA RS-V BK 2017" VOLT = "CHEVROLET VOLT PREMIER 2017" CADILLAC_ATS = "CADILLAC ATS Premium Performance 2018" CADILLAC_CT6 = "CADILLAC CT6 SUPERCRUISE 2018" MALIBU = "CHEVROLET MALIBU PREMIER 2017" ACADIA = "GMC ACADIA DENALI 2018" BUICK_REGAL = "BUICK REGAL ESSENCE 2018" YUKON = "GMC YUKON DENALI 2017" # MSA, YUKON SUPERCRUISE_CARS = [CAR.CADILLAC_CT6] class CruiseButtons: UNPRESS = 1 RES_ACCEL = 2 DECEL_SET = 3 MAIN = 5 CANCEL = 6 class AccState: OFF = 0 ACTIVE = 1 FAULTED = 3 STANDSTILL = 4 def is_eps_status_ok(eps_status, car_fingerprint): valid_eps_status = [] if car_fingerprint in SUPERCRUISE_CARS: valid_eps_status += [0, 1, 4, 5, 6] else: valid_eps_status += [0, 1] return eps_status in valid_eps_status def parse_gear_shifter(can_gear): if can_gear == 0: return car.CarState.GearShifter.park elif can_gear == 1: return car.CarState.GearShifter.neutral elif can_gear == 2: return car.CarState.GearShifter.drive elif can_gear == 3: return car.CarState.GearShifter.reverse else: return car.CarState.GearShifter.unknown FINGERPRINTS = { # Astra BK MY17, ASCM unplugged CAR.HOLDEN_ASTRA: [{ 190: 8, 193: 8, 197: 8, 199: 4, 201: 8, 209: 7, 211: 8, 241: 6, 249: 8, 288: 5, 298: 8, 304: 1, 309: 8, 311: 8, 313: 8, 320: 3, 328: 1, 352: 5, 381: 6, 384: 4, 386: 8, 388: 8, 393: 8, 398: 8, 401: 8, 413: 8, 417: 8, 419: 8, 422: 1, 426: 7, 431: 8, 442: 8, 451: 8, 452: 8, 453: 8, 455: 7, 456: 8, 458: 5, 479: 8, 481: 7, 485: 8, 489: 8, 497: 8, 499: 3, 500: 8, 501: 8, 508: 8, 528: 5, 532: 6, 554: 3, 560: 8, 562: 8, 563: 5, 564: 5, 565: 5, 567: 5, 647: 5, 707: 8, 715: 8, 723: 8, 753: 5, 761: 7, 806: 1, 810: 8, 840: 5, 842: 5, 844: 8, 866: 4, 961: 8, 969: 8, 977: 8, 979: 8, 985: 5, 1001: 8, 1009: 8, 1011: 6, 1017: 8, 1019: 3, 1020: 8, 1105: 6, 1217: 8, 1221: 5, 1225: 8, 1233: 8, 1249: 8, 1257: 6, 1259: 8, 1261: 7, 1263: 4, 1265: 8, 1267: 8, 1280: 4, 1300: 8, 1328: 4, 1417: 8, 1906: 7, 1907: 7, 1908: 7, 1912: 7, 1919: 7, }], CAR.VOLT: [ # Volt Premier w/ ACC 2017 { 170: 8, 171: 8, 189: 7, 190: 6, 193: 8, 197: 8, 199: 4, 201: 8, 209: 7, 211: 2, 241: 6, 288: 5, 289: 8, 298: 8, 304: 1, 308: 4, 309: 8, 311: 8, 313: 8, 320: 3, 328: 1, 352: 5, 381: 6, 384: 4, 386: 8, 388: 8, 389: 2, 390: 7, 417: 7, 419: 1, 426: 7, 451: 8, 452: 8, 453: 6, 454: 8, 456: 8, 479: 3, 481: 7, 485: 8, 489: 8, 493: 8, 495: 4, 497: 8, 499: 3, 500: 6, 501: 8, 508: 8, 528: 4, 532: 6, 546: 7, 550: 8, 554: 3, 558: 8, 560: 8, 562: 8, 563: 5, 564: 5, 565: 5, 566: 5, 567: 3, 568: 1, 573: 1, 577: 8, 647: 3, 707: 8, 711: 6, 715: 8, 761: 7, 810: 8, 840: 5, 842: 5, 844: 8, 866: 4, 961: 8, 969: 8, 977: 8, 979: 7, 988: 6, 989: 8, 995: 7, 1001: 8, 1005: 6, 1009: 8, 1017: 8, 1019: 2, 1020: 8, 1105: 6, 1187: 4, 1217: 8, 1221: 5, 1223: 3, 1225: 7, 1227: 4, 1233: 8, 1249: 8, 1257: 6, 1265: 8, 1267: 1, 1273: 3, 1275: 3, 1280: 4, 1300: 8, 1322: 6, 1323: 4, 1328: 4, 1417: 8, 1601: 8, 1905: 7, 1906: 7, 1907: 7, 1910: 7, 1912: 7, 1922: 7, 1927: 7, 1928: 7, 2016: 8, 2020: 8, 2024: 8, 2028: 8 }, # Volt Premier w/ ACC 2018 { 170: 8, 171: 8, 189: 7, 190: 6, 193: 8, 197: 8, 199: 4, 201: 8, 209: 7, 211: 2, 241: 6, 288: 5, 298: 8, 304: 1, 308: 4, 309: 8, 311: 8, 313: 8, 320: 3, 328: 1, 352: 5, 381: 6, 384: 4, 386: 8, 388: 8, 389: 2, 390: 7, 417: 7, 419: 1, 426: 7, 451: 8, 452: 8, 453: 6, 454: 8, 456: 8, 479: 3, 481: 7, 485: 8, 489: 8, 493: 8, 495: 4, 497: 8, 499: 3, 500: 6, 501: 8, 508: 8, 528: 4, 532: 6, 546: 7, 550: 8, 554: 3, 558: 8, 560: 8, 562: 8, 563: 5, 564: 5, 565: 5, 566: 5, 567: 3, 568: 1, 573: 1, 577: 8, 578: 8, 608: 8, 609: 6, 610: 6, 611: 6, 612: 8, 613: 8, 647: 3, 707: 8, 711: 6, 715: 8, 717: 5, 761: 7, 810: 8, 840: 5, 842: 5, 844: 8, 866: 4, 869: 4, 880: 6, 961: 8, 967: 4, 969: 8, 977: 8, 979: 7, 988: 6, 989: 8, 995: 7, 1001: 8, 1005: 6, 1009: 8, 1017: 8, 1019: 2, 1020: 8, 1033: 7, 1034: 7, 1105: 6, 1187: 4, 1217: 8, 1221: 5, 1223: 3, 1225: 7, 1227: 4, 1233: 8, 1249: 8, 1257: 6, 1265: 8, 1267: 1, 1273: 3, 1275: 3, 1280: 4, 1296: 4, 1300: 8, 1322: 6, 1323: 4, 1328: 4, 1417: 8, 1516: 8, 1601: 8, 1618: 8, 1905: 7, 1906: 7, 1907: 7, 1910: 7, 1912: 7, 1922: 7, 1927: 7, 1930: 7, 2016: 8, 2018: 8, 2020: 8, 2024: 8, 2028: 8 }], CAR.BUICK_REGAL : [ # Regal TourX Essence w/ ACC 2018 { 190: 8, 193: 8, 197: 8, 199: 4, 201: 8, 209: 7, 211: 8, 241: 6, 249: 8, 288: 5, 298: 8, 304: 1, 309: 8, 311: 8, 313: 8, 320: 3, 322: 7, 328: 1, 352: 5, 381: 6, 384: 4, 386: 8, 388: 8, 393: 7, 398: 8, 407: 7, 413: 8, 417: 8, 419: 8, 422: 4, 426: 8, 431: 8, 442: 8, 451: 8, 452: 8, 453: 8, 455: 7, 456: 8, 463: 3, 479: 8, 481: 7, 485: 8, 487: 8, 489: 8, 495: 8, 497: 8, 499: 3, 500: 8, 501: 8, 508: 8, 528: 5, 532: 6, 554: 3, 560: 8, 562: 8, 563: 5, 564: 5, 565: 5, 567: 5, 569: 3, 573: 1, 577: 8, 578: 8, 579: 8, 587: 8, 608: 8, 609: 6, 610: 6, 611: 6, 612: 8, 613: 8, 647: 3, 707: 8, 715: 8, 717: 5, 753: 5, 761: 7, 810: 8, 840: 5, 842: 5, 844: 8, 866: 4, 869: 4, 880: 6, 882: 8, 884: 8, 890: 1, 892: 2, 893: 2, 894: 1, 961: 8, 967: 8, 969: 8, 977: 8, 979: 8, 985: 8, 1001: 8, 1005: 6, 1009: 8, 1011: 8, 1013: 3, 1017: 8, 1020: 8, 1024: 8, 1025: 8, 1026: 8, 1027: 8, 1028: 8, 1029: 8, 1030: 8, 1031: 8, 1032: 2, 1033: 7, 1034: 7, 1105: 6, 1217: 8, 1221: 5, 1223: 8, 1225: 7, 1233: 8, 1249: 8, 1257: 6, 1259: 8, 1261: 8, 1263: 8, 1265: 8, 1267: 8, 1271: 8, 1280: 4, 1296: 4, 1300: 8, 1322: 6, 1328: 4, 1417: 8, 1601: 8, 1602: 8, 1603: 7, 1611: 8, 1618: 8, 1906: 8, 1907: 7, 1912: 7, 1914: 7, 1916: 7, 1919: 7, 1930: 7, 2016: 8, 2018: 8, 2019: 8, 2024: 8, 2026: 8 }], CAR.CADILLAC_ATS: [ # Cadillac ATS Coupe Premium Performance 3.6L RWD w/ ACC 2018 { 190: 6, 193: 8, 197: 8, 199: 4, 201: 8, 209: 7, 211: 2, 241: 6, 249: 8, 288: 5, 298: 8, 304: 1, 309: 8, 311: 8, 313: 8, 320: 3, 322: 7, 328: 1, 352: 5, 368: 3, 381: 6, 384: 4, 386: 8, 388: 8, 393: 7, 398: 8, 401: 8, 407: 7, 413: 8, 417: 7, 419: 1, 422: 4, 426: 7, 431: 8, 442: 8, 451: 8, 452: 8, 453: 6, 455: 7, 456: 8, 462: 4, 479: 3, 481: 7, 485: 8, 487: 8, 489: 8, 491: 2, 493: 8, 497: 8, 499: 3, 500: 6, 501: 8, 508: 8, 510: 8, 528: 5, 532: 6, 534: 2, 554: 3, 560: 8, 562: 8, 563: 5, 564: 5, 565: 5, 567: 5, 573: 1, 577: 8, 608: 8, 609: 6, 610: 6, 611: 6, 612: 8, 613: 8, 647: 6, 707: 8, 715: 8, 717: 5, 719: 5, 723: 2, 753: 5, 761: 7, 801: 8, 804: 3, 810: 8, 840: 5, 842: 5, 844: 8, 866: 4, 869: 4, 880: 6, 882: 8, 890: 1, 892: 2, 893: 2, 894: 1, 961: 8, 967: 4, 969: 8, 977: 8, 979: 8, 985: 5, 1001: 8, 1005: 6, 1009: 8, 1011: 6, 1013: 3, 1017: 8, 1019: 2, 1020: 8, 1033: 7, 1034: 7, 1105: 6, 1217: 8, 1221: 5, 1223: 3, 1225: 7, 1233: 8, 1241: 3, 1249: 8, 1257: 6, 1259: 8, 1261: 7, 1263: 4, 1265: 8, 1267: 1, 1271: 8, 1280: 4, 1296: 4, 1300: 8, 1322: 6, 1323: 4, 1328: 4, 1417: 8, 1601: 8, 1904: 7, 1906: 7, 1907: 7, 1912: 7, 1916: 7, 1917: 7, 1918: 7, 1919: 7, 1920: 7, 1930: 7, 2016: 8, 2024: 8 }], CAR.CADILLAC_CT6: [{ 190: 6, 193: 8, 197: 8, 199: 4, 201: 8, 209: 7, 211: 2, 241: 6, 249: 8, 288: 5, 298: 8, 304: 1, 309: 8, 313: 8, 320: 3, 322: 7, 328: 1, 336: 1, 338: 6, 340: 6, 352: 5, 354: 5, 356: 8, 368: 3, 372: 5, 381: 8, 386: 8, 393: 7, 398: 8, 407: 7, 413: 8, 417: 7, 419: 1, 422: 4, 426: 7, 431: 8, 442: 8, 451: 8, 452: 8, 453: 6, 455: 7, 456: 8, 458: 5, 460: 5, 462: 4, 463: 3, 479: 3, 481: 7, 485: 8, 487: 8, 489: 8, 495: 4, 497: 8, 499: 3, 500: 6, 501: 8, 508: 8, 528: 5, 532: 6, 534: 2, 554: 3, 560: 8, 562: 8, 563: 5, 564: 5, 565: 5, 567: 5, 569: 3, 573: 1, 577: 8, 608: 8, 609: 6, 610: 6, 611: 6, 612: 8, 613: 8, 647: 6, 707: 8, 715: 8, 717: 5, 719: 5, 723: 2, 753: 5, 761: 7, 800: 6, 801: 8, 804: 3, 810: 8, 832: 8, 833: 8, 834: 8, 835: 6, 836: 5, 837: 8, 838: 8, 839: 8, 840: 5, 842: 5, 844: 8, 866: 4, 869: 4, 880: 6, 884: 8, 961: 8, 969: 8, 977: 8, 979: 8, 985: 5, 1001: 8, 1005: 6, 1009: 8, 1011: 6, 1013: 1, 1017: 8, 1019: 2, 1020: 8, 1105: 6, 1217: 8, 1221: 5, 1223: 3, 1225: 7, 1233: 8, 1249: 8, 1257: 6, 1259: 8, 1261: 7, 1263: 4, 1265: 8, 1267: 1, 1280: 4, 1296: 4, 1300: 8, 1322: 6, 1417: 8, 1601: 8, 1906: 7, 1907: 7, 1912: 7, 1914: 7, 1918: 7, 1919: 7, 1934: 7, 2016: 8, 2024: 8 }], CAR.MALIBU: [ # Malibu Premier w/ ACC 2017 { 190: 6, 193: 8, 197: 8, 199: 4, 201: 8, 209: 7, 211: 2, 241: 6, 249: 8, 288: 5, 298: 8, 304: 1, 309: 8, 311: 8, 313: 8, 320: 3, 328: 1, 352: 5, 381: 6, 384: 4, 386: 8, 388: 8, 393: 7, 398: 8, 407: 7, 413: 8, 417: 7, 419: 1, 422: 4, 426: 7, 431: 8, 442: 8, 451: 8, 452: 8, 453: 6, 455: 7, 456: 8, 479: 3, 481: 7, 485: 8, 487: 8, 489: 8, 495: 4, 497: 8, 499: 3, 500: 6, 501: 8, 508: 8, 510: 8, 528: 5, 532: 6, 554: 3, 560: 8, 562: 8, 563: 5, 564: 5, 565: 5, 567: 5, 573: 1, 577: 8, 608: 8, 609: 6, 610: 6, 611: 6, 612: 8, 613: 8, 647: 6, 707: 8, 715: 8, 717: 5, 753: 5, 761: 7, 810: 8, 840: 5, 842: 5, 844: 8, 866: 4, 869: 4, 880: 6, 961: 8, 969: 8, 977: 8, 979: 8, 985: 5, 1001: 8, 1005: 6, 1009: 8, 1013: 3, 1017: 8, 1019: 2, 1020: 8, 1033: 7, 1034: 7, 1105: 6, 1217: 8, 1221: 5, 1223: 2, 1225: 7, 1233: 8, 1249: 8, 1257: 6, 1265: 8, 1267: 1, 1280: 4, 1296: 4, 1300: 8, 1322: 6, 1323: 4, 1328: 4, 1417: 8, 1601: 8, 1906: 7, 1907: 7, 1912: 7, 1919: 7, 1930: 7, 2016: 8, 2024: 8, }], CAR.ACADIA: [ # Acadia Denali w/ /ACC 2018 { 190: 6, 193: 8, 197: 8, 199: 4, 201: 8, 208: 8, 209: 7, 211: 2, 241: 6, 249: 8, 288: 5, 289: 8, 298: 8, 304: 1, 309: 8, 313: 8, 320: 3, 322: 7, 328: 1, 338: 6, 340: 6, 352: 5, 381: 8, 384: 4, 386: 8, 388: 8, 393: 8, 398: 8, 413: 8, 417: 7, 419: 1, 422: 4, 426: 7, 431: 8, 442: 8, 451: 8, 452: 8, 453: 6, 454: 8, 455: 7, 462: 4, 463: 3, 479: 3, 481: 7, 485: 8, 489: 8, 497: 8, 499: 3, 500: 6, 501: 8, 508: 8, 510: 8, 532: 6, 554: 3, 560: 8, 562: 8, 563: 5, 564: 5, 567: 5, 573: 1, 577: 8, 608: 8, 609: 6, 610: 6, 611: 6, 612: 8, 613: 8, 647: 6, 707: 8, 715: 8, 717: 5, 753: 5, 761: 7, 840: 5, 842: 5, 844: 8, 866: 4, 869: 4, 880: 6, 961: 8, 969: 8, 977: 8, 979: 8, 985: 5, 1001: 8, 1005: 6, 1009: 8, 1017: 8, 1020: 8, 1033: 7, 1034: 7, 1105: 6, 1217: 8, 1221: 5, 1225: 8, 1233: 8, 1249: 8, 1257: 6, 1265: 8, 1267: 1, 1280: 4, 1296: 4, 1300: 8, 1322: 6, 1328: 4, 1417: 8, 1601: 8, 1906: 7, 1907: 7, 1912: 7, 1914: 7, 1919: 7, 1920: 7, 1930: 7, 2016: 8, 2024: 8 }], CAR.YUKON: [{ # Yukon Denali w/ ACC 2017 170: 8, 190: 6, 192: 5, 193: 8, 197: 8, 199: 4, 201: 6, 208: 8, 209: 7, 211: 2, 241: 6, 249: 8, 288: 5, 289: 1, 290: 1, 298: 8, 304: 8, 309: 8, 311: 8, 313: 8, 320: 8, 322: 7, 328: 1, 352: 7, 368: 8, 381: 6, 386: 8, 388: 8, 393: 7, 398: 8, 407: 4, 413: 8, 417: 7, 419: 1, 422: 4, 426: 7, 431: 8, 442: 8, 451: 8, 452: 8, 453: 6, 454: 8, 455: 7, 460: 5, 462: 4, 463: 3, 479: 3, 481: 7, 485: 8, 487: 8, 489: 5, 493: 8, 497: 8, 499: 3, 500: 6, 501: 8, 508: 8, 510: 8, 512: 3, 528: 5, 530: 8, 532: 6, 534: 2, 536: 5, 562: 8, 563: 5, 564: 5, 570: 1, 573: 1, 577: 8, 608: 8, 609: 6, 610: 6, 611: 6, 612: 8, 613: 8, 647: 6, 707: 8, 715: 8, 717: 5, 761: 7, 789: 5, 800: 6, 801: 8, 803: 8, 804: 3, 810: 8, 832: 8, 840: 5, 842: 6, 844: 8, 848: 4, 866: 4, 869: 4, 880: 6, 961: 8, 967: 4, 969: 8, 977: 8, 979: 8, 985: 5, 1001: 8, 1005: 6, 1009: 8, 1017: 8, 1019: 2, 1020: 8, 1105: 6, 1217: 8, 1221: 5, 1223: 2, 1225: 7, 1233: 8, 1249: 8, 1257: 6, 1265: 8, 1267: 1, 1280: 4, 1296: 4, 1300: 8, 1322: 6, 1323: 4, 1328: 4, 1417: 8, 1601: 8, 1906: 7, 1907: 7, 1912: 7, 1914: 7, 1915: 7, 1918: 7, 1919: 7, 1920: 7, 1925: 7, 2016: 8, 2024: 8 }], } STEER_THRESHOLD = 1.0 class ECU: CAM = 0 ECU_FINGERPRINT = { #ECU.CAM: [384, 715] # 384 = "ASCMLKASteeringCmd", 715 = "ASCMGasRegenCmd" # MSA ECU.CAM: [384] # 384 = "ASCMLKASteeringCmd", 715 = "ASCMGasRegenCmd" } DBC = { CAR.HOLDEN_ASTRA: dbc_dict('gm_global_a_powertrain', 'gm_global_a_object', chassis_dbc='gm_global_a_chassis'), CAR.VOLT: dbc_dict('gm_global_a_powertrain', 'gm_global_a_object', chassis_dbc='gm_global_a_chassis'), CAR.MALIBU: dbc_dict('gm_global_a_powertrain', 'gm_global_a_object', chassis_dbc='gm_global_a_chassis'), CAR.ACADIA: dbc_dict('gm_global_a_powertrain', 'gm_global_a_object', chassis_dbc='gm_global_a_chassis'), CAR.CADILLAC_ATS: dbc_dict('gm_global_a_powertrain', 'gm_global_a_object', chassis_dbc='gm_global_a_chassis'), CAR.BUICK_REGAL: dbc_dict('gm_global_a_powertrain', 'gm_global_a_object', chassis_dbc='gm_global_a_chassis'), CAR.CADILLAC_CT6: dbc_dict('cadillac_ct6_powertrain', 'cadillac_ct6_object', chassis_dbc='cadillac_ct6_chassis'), CAR.YUKON: dbc_dict('gm_global_a_powertrain', 'gm_global_a_object', chassis_dbc='gm_global_a_chassis'), }
111.389381
1,265
0.559943
c61ab811738772f57059cce027a2c76c5a307c87
1,246
py
Python
azure-devops/azext_devops/devops_sdk/v5_1/customer_intelligence/models.py
keithlemon/azure-devops-cli-extension
4989e5f53650f186e638ccc186605986c76d59bf
[ "MIT" ]
326
2019-04-10T12:38:23.000Z
2022-03-31T23:07:49.000Z
azure-devops/azext_devops/devops_sdk/v5_1/customer_intelligence/models.py
keithlemon/azure-devops-cli-extension
4989e5f53650f186e638ccc186605986c76d59bf
[ "MIT" ]
562
2019-04-10T07:36:12.000Z
2022-03-28T07:37:54.000Z
azure-devops/azext_devops/devops_sdk/v5_1/customer_intelligence/models.py
keithlemon/azure-devops-cli-extension
4989e5f53650f186e638ccc186605986c76d59bf
[ "MIT" ]
166
2019-04-10T07:59:40.000Z
2022-03-16T14:17:13.000Z
# -------------------------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # -------------------------------------------------------------------------------------------- # Generated file, DO NOT EDIT # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------------------------- from msrest.serialization import Model class CustomerIntelligenceEvent(Model): """ :param area: :type area: str :param feature: :type feature: str :param properties: :type properties: dict """ _attribute_map = { 'area': {'key': 'area', 'type': 'str'}, 'feature': {'key': 'feature', 'type': 'str'}, 'properties': {'key': 'properties', 'type': '{object}'} } def __init__(self, area=None, feature=None, properties=None): super(CustomerIntelligenceEvent, self).__init__() self.area = area self.feature = feature self.properties = properties __all__ = [ 'CustomerIntelligenceEvent', ]
32.789474
95
0.501605
a5f87d0dd4cdc7ca57c5c6795a22fb2b97eb3b7f
4,429
py
Python
package_control/versions.py
William-Cao/Less-
b4cb03d2457bcac29ba3cfc13689098aee103971
[ "Unlicense", "MIT" ]
3
2019-06-06T00:13:44.000Z
2020-08-16T20:11:13.000Z
package_control/versions.py
Allyn69/package_control
f78578ed67529e263fb1f4e4f90f92295830560f
[ "MIT", "Unlicense" ]
null
null
null
package_control/versions.py
Allyn69/package_control
f78578ed67529e263fb1f4e4f90f92295830560f
[ "MIT", "Unlicense" ]
1
2021-07-26T00:35:53.000Z
2021-07-26T00:35:53.000Z
import re from .semver import SemVer from .console_write import console_write def semver_compat(v): """ Converts a string version number into SemVer. If the version is based on a date, converts to 0.0.1+yyyy.mm.dd.hh.mm.ss. :param v: A string, dict with 'version' key, or a SemVer object :return: A string that is a valid semantic version number """ if isinstance(v, SemVer): # SemVer only defined __str__, not __unicode__, so we always use str() return str(v) # Allowing passing in a dict containing info about a package if isinstance(v, dict): if 'version' not in v: return '0' v = v['version'] # Trim v off of the front v = re.sub('^v', '', v) # We prepend 0 to all date-based version numbers so that developers # may switch to explicit versioning from GitHub/BitBucket # versioning based on commit dates. # # When translating dates into semver, the way to get each date # segment into the version is to treat the year and month as # minor and patch, and then the rest as a numeric build version # with four different parts. The result looks like: # 0.2012.11+10.31.23.59 date_match = re.match('(\d{4})\.(\d{2})\.(\d{2})\.(\d{2})\.(\d{2})\.(\d{2})$', v) if date_match: v = '0.0.1+%s.%s.%s.%s.%s.%s' % date_match.groups() # This handles version that were valid pre-semver with 4+ dotted # groups, such as 1.6.9.0 four_plus_match = re.match('(\d+\.\d+\.\d+)[T\.](\d+(\.\d+)*)$', v) if four_plus_match: v = '%s+%s' % (four_plus_match.group(1), four_plus_match.group(2)) # Semver must have major, minor, patch elif re.match('^\d+$', v): v += '.0.0' elif re.match('^\d+\.\d+$', v): v += '.0' return v def version_comparable(string): return SemVer(semver_compat(string)) def version_exclude_prerelease(versions): """ Remove prerelease versions for a list of SemVer versions :param versions: The list of versions to filter :return: The list of versions with pre-releases removed """ output = [] for version in versions: if SemVer(semver_compat(version)).prerelease is not None: continue output.append(version) return output def version_process(versions, filter_prefix): """ Filter a list of versions to ones that are valid SemVers, if a prefix is provided, only match versions starting with the prefix and split :param versions: The list of versions to filter :param filter_prefix: Remove this prefix from the version before checking if it is a valid SemVer. If this prefix is not present, skip the version. :return: A list of dicts, each of which has the keys "version" and "prefix" """ output = [] for version in versions: prefix = '' if filter_prefix: if version[0:len(filter_prefix)] != filter_prefix: continue check_version = version[len(filter_prefix):] prefix = filter_prefix else: check_version = re.sub('^v', '', version) if check_version != version: prefix = 'v' if not SemVer.valid(check_version): continue output.append({'version': check_version, 'prefix': prefix}) return output def version_sort(sortable, *fields, **kwargs): """ Sorts a list that is a list of versions, or dicts with a 'version' key. Can also secondly sort by another field. :param sortable: The list to sort :param *fields: If sortable is a list of dicts, perform secondary sort via these fields, in order :param **kwargs: Keyword args to pass on to sorted() :return: A copy of sortable that is sorted according to SemVer rules """ def _version_sort_key(item): result = SemVer(semver_compat(item)) if fields: values = [result] for field in fields: values.append(item[field]) result = tuple(values) return result try: return sorted(sortable, key=_version_sort_key, **kwargs) except (ValueError) as e: console_write( u''' Error sorting versions - %s ''', e ) return []
28.031646
85
0.600813
7730053bcdd4204539a300d9a33cbed7e734f38f
12,813
py
Python
huaweicloud-sdk-cloudpipeline/huaweicloudsdkcloudpipeline/v2/model/template_view.py
Adek06/huaweicloud-sdk-python-v3
3d13b27d089e04a1ae567cd649b3c5509e0391d2
[ "Apache-2.0" ]
null
null
null
huaweicloud-sdk-cloudpipeline/huaweicloudsdkcloudpipeline/v2/model/template_view.py
Adek06/huaweicloud-sdk-python-v3
3d13b27d089e04a1ae567cd649b3c5509e0391d2
[ "Apache-2.0" ]
null
null
null
huaweicloud-sdk-cloudpipeline/huaweicloudsdkcloudpipeline/v2/model/template_view.py
Adek06/huaweicloud-sdk-python-v3
3d13b27d089e04a1ae567cd649b3c5509e0391d2
[ "Apache-2.0" ]
null
null
null
# coding: utf-8 import pprint import re import six class TemplateView: """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ sensitive_list = [] openapi_types = { 'template_id': 'str', 'template_name': 'str', 'template_type': 'str', 'template_url': 'str', 'user_id': 'str', 'user_name': 'str', 'domain_id': 'str', 'domain_name': 'str', 'is_build_in': 'bool', 'region': 'str', 'project_id': 'str', 'project_name': 'str', 'is_watch': 'bool', 'description': 'str', 'parameter': 'TemplateParam', 'flow': 'FlowItem', 'states': 'StateItem' } attribute_map = { 'template_id': 'template_id', 'template_name': 'template_name', 'template_type': 'template_type', 'template_url': 'template_url', 'user_id': 'user_id', 'user_name': 'user_name', 'domain_id': 'domain_id', 'domain_name': 'domain_name', 'is_build_in': 'is_build_in', 'region': 'region', 'project_id': 'project_id', 'project_name': 'project_name', 'is_watch': 'is_watch', 'description': 'description', 'parameter': 'parameter', 'flow': 'flow', 'states': 'states' } def __init__(self, template_id=None, template_name=None, template_type=None, template_url=None, user_id=None, user_name=None, domain_id=None, domain_name=None, is_build_in=None, region=None, project_id=None, project_name=None, is_watch=None, description=None, parameter=None, flow=None, states=None): """TemplateView - a model defined in huaweicloud sdk""" self._template_id = None self._template_name = None self._template_type = None self._template_url = None self._user_id = None self._user_name = None self._domain_id = None self._domain_name = None self._is_build_in = None self._region = None self._project_id = None self._project_name = None self._is_watch = None self._description = None self._parameter = None self._flow = None self._states = None self.discriminator = None self.template_id = template_id self.template_name = template_name self.template_type = template_type self.template_url = template_url self.user_id = user_id self.user_name = user_name self.domain_id = domain_id self.domain_name = domain_name self.is_build_in = is_build_in self.region = region self.project_id = project_id self.project_name = project_name self.is_watch = is_watch self.description = description self.parameter = parameter self.flow = flow self.states = states @property def template_id(self): """Gets the template_id of this TemplateView. 模板ID :return: The template_id of this TemplateView. :rtype: str """ return self._template_id @template_id.setter def template_id(self, template_id): """Sets the template_id of this TemplateView. 模板ID :param template_id: The template_id of this TemplateView. :type: str """ self._template_id = template_id @property def template_name(self): """Gets the template_name of this TemplateView. 模板名字 :return: The template_name of this TemplateView. :rtype: str """ return self._template_name @template_name.setter def template_name(self, template_name): """Sets the template_name of this TemplateView. 模板名字 :param template_name: The template_name of this TemplateView. :type: str """ self._template_name = template_name @property def template_type(self): """Gets the template_type of this TemplateView. 模板类型 :return: The template_type of this TemplateView. :rtype: str """ return self._template_type @template_type.setter def template_type(self, template_type): """Sets the template_type of this TemplateView. 模板类型 :param template_type: The template_type of this TemplateView. :type: str """ self._template_type = template_type @property def template_url(self): """Gets the template_url of this TemplateView. 模板编辑URL :return: The template_url of this TemplateView. :rtype: str """ return self._template_url @template_url.setter def template_url(self, template_url): """Sets the template_url of this TemplateView. 模板编辑URL :param template_url: The template_url of this TemplateView. :type: str """ self._template_url = template_url @property def user_id(self): """Gets the user_id of this TemplateView. 用户ID :return: The user_id of this TemplateView. :rtype: str """ return self._user_id @user_id.setter def user_id(self, user_id): """Sets the user_id of this TemplateView. 用户ID :param user_id: The user_id of this TemplateView. :type: str """ self._user_id = user_id @property def user_name(self): """Gets the user_name of this TemplateView. 用户名字 :return: The user_name of this TemplateView. :rtype: str """ return self._user_name @user_name.setter def user_name(self, user_name): """Sets the user_name of this TemplateView. 用户名字 :param user_name: The user_name of this TemplateView. :type: str """ self._user_name = user_name @property def domain_id(self): """Gets the domain_id of this TemplateView. 租户ID :return: The domain_id of this TemplateView. :rtype: str """ return self._domain_id @domain_id.setter def domain_id(self, domain_id): """Sets the domain_id of this TemplateView. 租户ID :param domain_id: The domain_id of this TemplateView. :type: str """ self._domain_id = domain_id @property def domain_name(self): """Gets the domain_name of this TemplateView. 租户名字 :return: The domain_name of this TemplateView. :rtype: str """ return self._domain_name @domain_name.setter def domain_name(self, domain_name): """Sets the domain_name of this TemplateView. 租户名字 :param domain_name: The domain_name of this TemplateView. :type: str """ self._domain_name = domain_name @property def is_build_in(self): """Gets the is_build_in of this TemplateView. 是否内置模板 :return: The is_build_in of this TemplateView. :rtype: bool """ return self._is_build_in @is_build_in.setter def is_build_in(self, is_build_in): """Sets the is_build_in of this TemplateView. 是否内置模板 :param is_build_in: The is_build_in of this TemplateView. :type: bool """ self._is_build_in = is_build_in @property def region(self): """Gets the region of this TemplateView. region :return: The region of this TemplateView. :rtype: str """ return self._region @region.setter def region(self, region): """Sets the region of this TemplateView. region :param region: The region of this TemplateView. :type: str """ self._region = region @property def project_id(self): """Gets the project_id of this TemplateView. 项目ID :return: The project_id of this TemplateView. :rtype: str """ return self._project_id @project_id.setter def project_id(self, project_id): """Sets the project_id of this TemplateView. 项目ID :param project_id: The project_id of this TemplateView. :type: str """ self._project_id = project_id @property def project_name(self): """Gets the project_name of this TemplateView. 项目名字 :return: The project_name of this TemplateView. :rtype: str """ return self._project_name @project_name.setter def project_name(self, project_name): """Sets the project_name of this TemplateView. 项目名字 :param project_name: The project_name of this TemplateView. :type: str """ self._project_name = project_name @property def is_watch(self): """Gets the is_watch of this TemplateView. 是否关注 :return: The is_watch of this TemplateView. :rtype: bool """ return self._is_watch @is_watch.setter def is_watch(self, is_watch): """Sets the is_watch of this TemplateView. 是否关注 :param is_watch: The is_watch of this TemplateView. :type: bool """ self._is_watch = is_watch @property def description(self): """Gets the description of this TemplateView. 模板描述 :return: The description of this TemplateView. :rtype: str """ return self._description @description.setter def description(self, description): """Sets the description of this TemplateView. 模板描述 :param description: The description of this TemplateView. :type: str """ self._description = description @property def parameter(self): """Gets the parameter of this TemplateView. :return: The parameter of this TemplateView. :rtype: TemplateParam """ return self._parameter @parameter.setter def parameter(self, parameter): """Sets the parameter of this TemplateView. :param parameter: The parameter of this TemplateView. :type: TemplateParam """ self._parameter = parameter @property def flow(self): """Gets the flow of this TemplateView. :return: The flow of this TemplateView. :rtype: FlowItem """ return self._flow @flow.setter def flow(self, flow): """Sets the flow of this TemplateView. :param flow: The flow of this TemplateView. :type: FlowItem """ self._flow = flow @property def states(self): """Gets the states of this TemplateView. :return: The states of this TemplateView. :rtype: StateItem """ return self._states @states.setter def states(self, states): """Sets the states of this TemplateView. :param states: The states of this TemplateView. :type: StateItem """ self._states = states def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: if attr in self.sensitive_list: result[attr] = "****" else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, TemplateView): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
24.640385
304
0.579333
4d4ee63f17394cafaba0656cc86597c10da02852
5,854
py
Python
client/diagnose.py
brad999/nikita-client
e025bb57eb78a169ce6b1807c58788ba59c08933
[ "MIT" ]
1
2015-05-31T18:48:47.000Z
2015-05-31T18:48:47.000Z
client/diagnose.py
brad999/nikita
e025bb57eb78a169ce6b1807c58788ba59c08933
[ "MIT" ]
34
2015-04-09T01:48:43.000Z
2015-05-04T17:23:24.000Z
client/diagnose.py
brad999/nikita
e025bb57eb78a169ce6b1807c58788ba59c08933
[ "MIT" ]
null
null
null
# -*- coding: utf-8-*- import os import sys import time import socket import subprocess import pkgutil import logging import pip.req import nikitapath if sys.version_info < (3, 3): from distutils.spawn import find_executable else: from shutil import which as find_executable logger = logging.getLogger(__name__) def check_network_connection(server="www.google.com"): """ Checks if nikita can connect a network server. Arguments: server -- (optional) the server to connect with (Default: "www.google.com") Returns: True or False """ logger = logging.getLogger(__name__) logger.debug("Checking network connection to server '%s'...", server) try: # see if we can resolve the host name -- tells us if there is # a DNS listening host = socket.gethostbyname(server) # connect to the host -- tells us if the host is actually # reachable socket.create_connection((host, 80), 2) except Exception: logger.debug("Network connection not working") return False else: logger.debug("Network connection working") return True def check_executable(executable): """ Checks if an executable exists in $PATH. Arguments: executable -- the name of the executable (e.g. "echo") Returns: True or False """ logger = logging.getLogger(__name__) logger.debug("Checking executable '%s'...", executable) executable_path = find_executable(executable) found = executable_path is not None if found: logger.debug("Executable '%s' found: '%s'", executable, executable_path) else: logger.debug("Executable '%s' not found", executable) return found def check_python_import(package_or_module): """ Checks if a python package or module is importable. Arguments: package_or_module -- the package or module name to check Returns: True or False """ logger = logging.getLogger(__name__) logger.debug("Checking python import '%s'...", package_or_module) loader = pkgutil.get_loader(package_or_module) found = loader is not None if found: logger.debug("Python %s '%s' found: %r", "package" if loader.is_package(package_or_module) else "module", package_or_module, loader.get_filename()) else: logger.debug("Python import '%s' not found", package_or_module) return found def get_pip_requirements(fname=os.path.join(nikitapath.LIB_PATH, 'requirements.txt')): """ Gets the PIP requirements from a text file. If the files does not exists or is not readable, it returns None Arguments: fname -- (optional) the requirement text file (Default: "client/requirements.txt") Returns: A list of pip requirement objects or None """ logger = logging.getLogger(__name__) if os.access(fname, os.R_OK): reqs = list(pip.req.parse_requirements(fname)) logger.debug("Found %d PIP requirements in file '%s'", len(reqs), fname) return reqs else: logger.debug("PIP requirements file '%s' not found or not readable", fname) def get_git_revision(): """ Gets the current git revision hash as hex string. If the git executable is missing or git is unable to get the revision, None is returned Returns: A hex string or None """ logger = logging.getLogger(__name__) if not check_executable('git'): logger.warning("'git' command not found, git revision not detectable") return None output = subprocess.check_output(['git', 'rev-parse', 'HEAD']).strip() if not output: logger.warning("Couldn't detect git revision (not a git repository?)") return None return output def run(): """ Performs a series of checks against the system and writes the results to the logging system. Returns: The number of failed checks as integer """ logger = logging.getLogger(__name__) # Set loglevel of this module least to info loglvl = logger.getEffectiveLevel() if loglvl == logging.NOTSET or loglvl > logging.INFO: logger.setLevel(logging.INFO) logger.info("Starting nikita diagnostic at %s" % time.strftime("%c")) logger.info("Git revision: %r", get_git_revision()) failed_checks = 0 if not check_network_connection(): failed_checks += 1 for executable in ['phonetisaurus-g2p', 'espeak', 'say']: if not check_executable(executable): logger.warning("Executable '%s' is missing in $PATH", executable) failed_checks += 1 for req in get_pip_requirements(): logger.debug("Checking PIP package '%s'...", req.name) if not req.check_if_exists(): logger.warning("PIP package '%s' is missing", req.name) failed_checks += 1 else: logger.debug("PIP package '%s' found", req.name) for fname in [os.path.join(nikitapath.APP_PATH, os.pardir, "phonetisaurus", "g014b2b.fst")]: logger.debug("Checking file '%s'...", fname) if not os.access(fname, os.R_OK): logger.warning("File '%s' is missing", fname) failed_checks += 1 else: logger.debug("File '%s' found", fname) if not failed_checks: logger.info("All checks passed") else: logger.info("%d checks failed" % failed_checks) return failed_checks if __name__ == '__main__': logging.basicConfig(stream=sys.stdout) logger = logging.getLogger() if '--debug' in sys.argv: logger.setLevel(logging.DEBUG) run()
30.175258
79
0.627947
5a6cc6bed39bb8978b1cad2ed760d88a2018ca77
920
py
Python
km_api/functional_tests/know_me/profile/profile_items/list_entries/test_sort_list_entries.py
knowmetools/km-api
e4b72484c42e88a6c0087c9b1d5fef240e66cbb0
[ "Apache-2.0" ]
4
2017-08-03T00:46:31.000Z
2018-11-06T03:32:32.000Z
km_api/functional_tests/know_me/profile/profile_items/list_entries/test_sort_list_entries.py
knowmetools/km-api
e4b72484c42e88a6c0087c9b1d5fef240e66cbb0
[ "Apache-2.0" ]
526
2017-06-27T18:13:59.000Z
2021-06-10T18:00:21.000Z
km_api/functional_tests/know_me/profile/profile_items/list_entries/test_sort_list_entries.py
knowmetools/km-api
e4b72484c42e88a6c0087c9b1d5fef240e66cbb0
[ "Apache-2.0" ]
1
2017-07-10T19:46:27.000Z
2017-07-10T19:46:27.000Z
from rest_framework import status def test_sort_list_entries( api_client, enable_premium_requirement, profile_list_entry_factory, user_factory, ): """ Premium users should be able to sort list entries with respect to their parent profile item. """ password = "password" user = user_factory(has_premium=True, password="password") api_client.log_in(user.primary_email.email, password) e1 = profile_list_entry_factory( profile_item__topic__profile__km_user__user=user ) e2 = profile_list_entry_factory(profile_item=e1.profile_item) data = {"order": [e2.pk, e1.pk]} url = f"/know-me/profile/profile-items/{e1.profile_item.pk}/list-entries/" response = api_client.put(url, data) assert response.status_code == status.HTTP_200_OK sorted1, sorted2 = api_client.get(url).json() assert [sorted1["id"], sorted2["id"]] == data["order"]
28.75
78
0.709783
c19c4316a774aa05c01d490fca3935bc7052d09d
2,317
py
Python
src/ferment_ng/scripts.py
ushacow/ferment
1ba77be38243f9c074c76bd7b901606f1077d8f3
[ "Apache-2.0" ]
1
2020-08-19T20:45:07.000Z
2020-08-19T20:45:07.000Z
src/ferment_ng/scripts.py
ushacow/ferment
1ba77be38243f9c074c76bd7b901606f1077d8f3
[ "Apache-2.0" ]
null
null
null
src/ferment_ng/scripts.py
ushacow/ferment
1ba77be38243f9c074c76bd7b901606f1077d8f3
[ "Apache-2.0" ]
1
2019-02-13T15:29:46.000Z
2019-02-13T15:29:46.000Z
import click import docker from wheezy.template.engine import Engine from wheezy.template.ext.core import CoreExtension from wheezy.template.ext.code import CodeExtension from wheezy.template.loader import DictLoader from . import templates import logging LOG = logging.getLogger(__name__) LOG_LEVELS = { "info": logging.INFO, "warn": logging.WARN, "debug": logging.DEBUG, "error": logging.ERROR, "critical": logging.CRITICAL, } class Context(dict): def __init__(self, *args, **kwargs): self.__dict__ = self super(Context, self).__init__(*args, **kwargs) class FermConfig(object): def __init__(self, path): self.path = path template_dct = { 'docker': templates.docker, } engine = Engine( loader=DictLoader(template_dct), extensions=[ CoreExtension(), CodeExtension() ] ) self.templates = { name: engine.get_template(name) for name in template_dct } def get_config(self, config): return self.templates['docker'].render(config) @click.group() @click.option( "--log-level", type=click.Choice([k for k, v in sorted(LOG_LEVELS.iteritems(), key=lambda x: x[1])]), default="info", help="Logging level.") @click.pass_context def run(ctx, log_level): logging.basicConfig(level=LOG_LEVELS[log_level]) ctx.obj = Context() @run.group("docker") @click.option( "api", "--docker", "-d", type=click.Path(), default="unix://var/run/docker.sock", help="The docker api socket." ) @click.option( "--cidr", "-c", default="172.18.0.0/16", help="Docker CIDR." ) @click.option( "--interface", "-i", default="docker0", help="Docker interface." ) @click.pass_context def docker_grp(ctx, api, cidr, interface): ctx.obj.client = docker.Client(base_url=api) ctx.obj.cidr = cidr ctx.obj.interface = interface @docker_grp.command(name="config") @click.pass_context def docker_config(ctx): ferm = FermConfig(None) # get all containers containers = ctx.obj.client.containers() ctx.obj.containers = [ ctx.obj.client.inspect_container(container['Id']) for container in containers ] click.echo(ferm.get_config(ctx.obj))
22.940594
90
0.637894
4f2911f123117d6e653c7f09d545d8f115019bc4
1,081
py
Python
utils.py
karush17/esac
9a17d5a6bcff25ed5799e122e59aaedc696e11ac
[ "MIT" ]
22
2020-06-29T03:06:02.000Z
2021-12-01T12:45:08.000Z
utils.py
karush17/Rough-Notebooks
9a17d5a6bcff25ed5799e122e59aaedc696e11ac
[ "MIT" ]
3
2021-02-09T01:00:38.000Z
2021-10-05T16:49:48.000Z
utils.py
karush17/Rough-Notebooks
9a17d5a6bcff25ed5799e122e59aaedc696e11ac
[ "MIT" ]
6
2020-06-29T03:06:04.000Z
2022-02-26T02:01:56.000Z
import math import torch def create_log_gaussian(mean, log_std, t): quadratic = -((0.5 * (t - mean) / (log_std.exp())).pow(2)) l = mean.shape log_z = log_std z = l[-1] * math.log(2 * math.pi) log_p = quadratic.sum(dim=-1) - log_z.sum(dim=-1) - 0.5 * z return log_p def logsumexp(inputs, dim=None, keepdim=False): if dim is None: inputs = inputs.view(-1) dim = 0 s, _ = torch.max(inputs, dim=dim, keepdim=True) outputs = s + (inputs - s).exp().sum(dim=dim, keepdim=True).log() if not keepdim: outputs = outputs.squeeze(dim) return outputs def soft_update(target, source, tau): for target_param, param in zip(target.parameters(), source.parameters()): target_param.data.copy_(target_param.data * (1.0 - tau) + param.data * tau) def hard_update(target, source): for target_param, param in zip(target.parameters(), source.parameters()): target_param.data.copy_(param.data) def dm_wrap(state, wrap=True): if wrap==True: state = state["observations"] return state
30.885714
83
0.630897
687e130dc8b68600c36cc29b95fd12e6fa44eb37
1,282
py
Python
.Python Challenges - 101Computing/Fast Typing Test/interface.py
Gustavo-daCosta/Projetos
459cbf6fc0b67532c1bf2043ccdb915d16ba0df2
[ "MIT" ]
2
2021-09-13T22:04:30.000Z
2022-01-05T14:01:43.000Z
.Python Challenges - 101Computing/Fast Typing Test/interface.py
Gustavo-daCosta/Projetos
459cbf6fc0b67532c1bf2043ccdb915d16ba0df2
[ "MIT" ]
null
null
null
.Python Challenges - 101Computing/Fast Typing Test/interface.py
Gustavo-daCosta/Projetos
459cbf6fc0b67532c1bf2043ccdb915d16ba0df2
[ "MIT" ]
null
null
null
from tkinter import * import time from os import system from random import randint app = Tk() app.title("Fast Typing Test") app.geometry("600x550") def semComando(): print("Sem comando") barra_menu = Menu(app) menuHelp = Menu(barra_menu, tearoff=0) menuHelp.add_command(label="How the app works?", command=semComando) menuHelp.add_command(label="Pangram's list") barra_menu.add_cascade(label="Help", menu=menuHelp) menuAbout = Menu(barra_menu, tearoff=0) menuAbout.add_command(label="Source Code", command=semComando) menuAbout.add_command(label="Credits", command=semComando) menuAbout.add_command(label="About", command=semComando) app.config(menu=barra_menu) titulo = Label(app, text="Fast Typing Test Challenge", font=("Helvetica", 20)) titulo.pack() textoMenu = '''Level [1] - Type the Alphabet Level [2] - Type the following quote: "The quick brown fox jumps over the lazy dog" Level [3] - Type a random pangram of the list — “The quick brown fox jumps over the lazy dog” — “The five boxing wizards jump quickly” — “Pack my box with five dozen liquor jugs” — "The jay, pig, fox, zebra and my wolves quack!" — "By Jove, my quick study of lexicography won a prize!"''' Menu = Label(app, text=textoMenu, font=("Helvetica", 12)) Menu.place(x=10, y=40) app.mainloop()
30.52381
83
0.74259
9993477c7ce93e69f346a448139f363536941d25
1,587
py
Python
src/olympia/constants/scanners.py
covariant/addons-server
41e6ee9e426facb19a1e1ca8d40277cb6f94a7da
[ "BSD-3-Clause" ]
843
2016-02-09T13:00:37.000Z
2022-03-20T19:17:06.000Z
src/olympia/constants/scanners.py
covariant/addons-server
41e6ee9e426facb19a1e1ca8d40277cb6f94a7da
[ "BSD-3-Clause" ]
10,187
2016-02-05T23:51:05.000Z
2022-03-31T15:24:44.000Z
src/olympia/constants/scanners.py
covariant/addons-server
41e6ee9e426facb19a1e1ca8d40277cb6f94a7da
[ "BSD-3-Clause" ]
551
2016-02-08T20:32:16.000Z
2022-03-15T16:49:24.000Z
from django.utils.translation import gettext_lazy as _ CUSTOMS = 1 WAT = 2 YARA = 3 MAD = 4 SCANNERS = {CUSTOMS: 'customs', WAT: 'wat', YARA: 'yara', MAD: 'mad'} # Action IDs are also used for severity (the higher, the more severe). # The field is a PositiveSmallIntegerField, it should go up to 65535. NO_ACTION = 1 FLAG_FOR_HUMAN_REVIEW = 20 DELAY_AUTO_APPROVAL = 100 DELAY_AUTO_APPROVAL_INDEFINITELY = 200 DELAY_AUTO_APPROVAL_INDEFINITELY_AND_RESTRICT = 300 DELAY_AUTO_APPROVAL_INDEFINITELY_AND_RESTRICT_FUTURE_APPROVALS = 400 ACTIONS = { NO_ACTION: _('No action'), FLAG_FOR_HUMAN_REVIEW: _('Flag for human review'), DELAY_AUTO_APPROVAL: _('Delay auto-approval'), DELAY_AUTO_APPROVAL_INDEFINITELY: _('Delay auto-approval indefinitely'), DELAY_AUTO_APPROVAL_INDEFINITELY_AND_RESTRICT: _( 'Delay auto-approval indefinitely and add restrictions' ), DELAY_AUTO_APPROVAL_INDEFINITELY_AND_RESTRICT_FUTURE_APPROVALS: _( 'Delay auto-approval indefinitely and add restrictions to future approvals' ), } UNKNOWN = None TRUE_POSITIVE = 1 FALSE_POSITIVE = 2 INCONCLUSIVE = 3 RESULT_STATES = { UNKNOWN: _('Unknown'), TRUE_POSITIVE: _('True positive'), FALSE_POSITIVE: _('False positive'), INCONCLUSIVE: _('Inconclusive'), } NEW = 1 RUNNING = 2 ABORTED = 3 COMPLETED = 4 ABORTING = 5 SCHEDULED = 6 QUERY_RULE_STATES = { NEW: _('New'), RUNNING: _('Running'), ABORTED: _('Aborted'), ABORTING: _('Aborting'), COMPLETED: _('Completed'), SCHEDULED: _('Scheduled'), } LABEL_BAD = 'bad' LABEL_GOOD = 'good'
25.190476
83
0.724008
655043a83e02a52b06eb32a34ff7c4ca7f09a3e4
1,505
py
Python
damage_network.py
addison-schwamb/WorkingMemoryModelingAdapted
47c0319b117152d7f88b8740593846b3aa06e7a3
[ "Apache-2.0" ]
null
null
null
damage_network.py
addison-schwamb/WorkingMemoryModelingAdapted
47c0319b117152d7f88b8740593846b3aa06e7a3
[ "Apache-2.0" ]
null
null
null
damage_network.py
addison-schwamb/WorkingMemoryModelingAdapted
47c0319b117152d7f88b8740593846b3aa06e7a3
[ "Apache-2.0" ]
null
null
null
""" Functions for damaging neural networks written in Python 3.8.3 @ Addison Schwamb """ import numpy as np import time def remove_neurons(JT, pct_rmv, inhibitory): tic = time.time() JT_dim = np.shape(JT) if inhibitory: remove = JT<0 else: remove = JT>0 num_to_keep = ((1-pct_rmv)*(remove.sum())).astype(int) keep_indices = np.random.randint(1,JT_dim[0],(2,num_to_keep)) num_kept = 0 for i in range(num_to_keep): if remove[keep_indices[0][i]][keep_indices[1][i]]: remove[keep_indices[0][i]][keep_indices[1][i]] = False num_kept += 1 elif np.count_nonzero(remove[keep_indices[0][i]])>0: j = (keep_indices[1][i]+1)%(JT_dim[0]) while not remove[keep_indices[0][i]][j]: j = (j+1)%(JT_dim[0]) remove[keep_indices[0][i]][j] = False num_kept += 1 elif np.count_nonzero(remove,axis=0)[keep_indices[1][i]]>0: j = (keep_indices[0][i]+1)%(JT_dim[1]) while not remove[j][keep_indices[1][i]]: j = (j+1)%(JT_dim[1]) remove[j][keep_indices[1][i]] = False num_kept += 1 else: keep_indices[0][i] = np.random.randint(1,JT_dim[0]) keep_indices[1][i] = np.random.randint(1,JT_dim[1]) i -= 1 JT[remove] = 0 toc = time.time() print('time out: ', (toc-tic)/60) print(np.size(JT)) print(num_to_keep) print(num_kept) return JT
31.354167
67
0.554817
caed021c66a6443cdd7f613de79ff95bb255cde5
3,138
py
Python
tests/ut/python/nn/test_psnr.py
ythlml/mindspore
028ae212624164044cfaa84f347fc502cb7fcb0f
[ "Apache-2.0" ]
7
2020-05-24T03:19:26.000Z
2020-05-24T03:20:00.000Z
tests/ut/python/nn/test_psnr.py
ythlml/mindspore
028ae212624164044cfaa84f347fc502cb7fcb0f
[ "Apache-2.0" ]
null
null
null
tests/ut/python/nn/test_psnr.py
ythlml/mindspore
028ae212624164044cfaa84f347fc502cb7fcb0f
[ "Apache-2.0" ]
null
null
null
# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """ test psnr """ import numpy as np import pytest import mindspore.nn as nn from mindspore import Tensor from mindspore.common import dtype as mstype from mindspore.common.api import _executor class PSNRNet(nn.Cell): def __init__(self, max_val=1.0): super(PSNRNet, self).__init__() self.net = nn.PSNR(max_val) def construct(self, img1, img2): return self.net(img1, img2) def test_compile_psnr(): max_val = 1.0 net = PSNRNet(max_val) img1 = Tensor(np.random.random((8, 3, 16, 16))) img2 = Tensor(np.random.random((8, 3, 16, 16))) _executor.compile(net, img1, img2) def test_compile_psnr_grayscale(): max_val = 255 net = PSNRNet(max_val) img1 = Tensor(np.random.randint(0, 256, (8, 1, 16, 16), np.uint8)) img2 = Tensor(np.random.randint(0, 256, (8, 1, 16, 16), np.uint8)) _executor.compile(net, img1, img2) def test_psnr_max_val_negative(): max_val = -1 with pytest.raises(ValueError): net = PSNRNet(max_val) def test_psnr_max_val_bool(): max_val = True with pytest.raises(TypeError): net = PSNRNet(max_val) def test_psnr_max_val_zero(): max_val = 0 with pytest.raises(ValueError): net = PSNRNet(max_val) def test_psnr_different_shape(): shape_1 = (8, 3, 16, 16) shape_2 = (8, 3, 8, 8) img1 = Tensor(np.random.random(shape_1)) img2 = Tensor(np.random.random(shape_2)) net = PSNRNet() with pytest.raises(ValueError): _executor.compile(net, img1, img2) def test_psnr_different_dtype(): dtype_1 = mstype.float32 dtype_2 = mstype.float16 img1 = Tensor(np.random.random((8, 3, 16, 16)), dtype=dtype_1) img2 = Tensor(np.random.random((8, 3, 16, 16)), dtype=dtype_2) net = PSNRNet() with pytest.raises(TypeError): _executor.compile(net, img1, img2) def test_psnr_invalid_5d_input(): shape_1 = (8, 3, 16, 16) shape_2 = (8, 3, 8, 8) invalid_shape = (8, 3, 16, 16, 1) img1 = Tensor(np.random.random(shape_1)) invalid_img1 = Tensor(np.random.random(invalid_shape)) img2 = Tensor(np.random.random(shape_2)) invalid_img2 = Tensor(np.random.random(invalid_shape)) net = PSNRNet() with pytest.raises(ValueError): _executor.compile(net, invalid_img1, img2) with pytest.raises(ValueError): _executor.compile(net, img1, invalid_img2) with pytest.raises(ValueError): _executor.compile(net, invalid_img1, invalid_img2)
29.603774
78
0.666348
a949b74a92c19a5bac0fce2b81e52ac95a06605b
1,436
py
Python
rcaudio/simple_recorder.py
selenakkaya/MushroomGame
59ecfddb536929cd137198bdab01e9ffab33cc5f
[ "MIT" ]
31
2018-09-27T03:35:06.000Z
2022-01-11T09:49:26.000Z
rcaudio/simple_recorder.py
selenakkaya/MushroomGame
59ecfddb536929cd137198bdab01e9ffab33cc5f
[ "MIT" ]
3
2018-11-20T07:49:24.000Z
2021-01-06T11:48:41.000Z
rcaudio/simple_recorder.py
selenakkaya/MushroomGame
59ecfddb536929cd137198bdab01e9ffab33cc5f
[ "MIT" ]
7
2019-04-23T06:32:23.000Z
2020-09-25T14:18:32.000Z
from .core_recorder import CoreRecorder import threading import logging import time class SimpleRecorder(threading.Thread): def __init__(self, sr = 2000, #Sample Rate ): threading.Thread.__init__(self) self.audio_data = [] self.audio_lock = threading.Lock() self.logger = logging.getLogger(__name__+".SimpleWatcher") self.recorder = CoreRecorder(sr = sr) self.analyzers = [] self.sr = sr self.start_time = None self.__running = threading.Event() self.__running.set() def register(self,analyzer): self.analyzers.append(analyzer) analyzer.register_recorder(self) def run(self): self.recorder.start() for analyzer in self.analyzers: analyzer.start() while self.__running.isSet(): self.start_time = self.recorder.start_time if self.start_time is not None: break time.sleep(.05) while self.__running.isSet(): while not self.recorder.buffer.empty(): v = self.recorder.buffer.get() self.audio_data.append(v) for analyzer in self.analyzers: analyzer.stop() analyzer.join() self.recorder.stop() self.recorder.join() def stop(self): self.logger.warn("Stop Signal Received!") self.__running.clear()
28.156863
66
0.590529
93f2fa0168f4bec25485db2bc7a869c01979430b
2,286
py
Python
scripts/testing/gateway-responses/test-sender.py
jcjveraa/EDDN
d0cbae6b7a2cac180dd414cbc324c2d84c867cd8
[ "BSD-3-Clause" ]
100
2017-07-19T10:11:04.000Z
2020-07-05T22:07:39.000Z
scripts/testing/gateway-responses/test-sender.py
jcjveraa/EDDN
d0cbae6b7a2cac180dd414cbc324c2d84c867cd8
[ "BSD-3-Clause" ]
24
2017-07-03T22:30:32.000Z
2020-07-04T21:04:30.000Z
scripts/testing/gateway-responses/test-sender.py
jcjveraa/EDDN
d0cbae6b7a2cac180dd414cbc324c2d84c867cd8
[ "BSD-3-Clause" ]
23
2017-08-08T22:57:16.000Z
2020-06-26T06:19:25.000Z
#!/usr/bin/env python3 # vim: tabstop=4 shiftwidth=4 expandtab smarttab textwidth=0 wrapmargin=0 import argparse import requests import zlib upload_url = 'https://dev.eddn.edcd.io:4432/upload/' def send_message(url, args): print(f''' send_message: URL: {url} input file: "{args.messagefile}" ''') with open(args.messagefile, 'r') as f: msg = f.read() if args.formdata: if args.formdata == 'good': msg = 'data=' + msg elif args.formdata == 'bad': msg = 'BADLYENCODED=' + msg s = requests.Session() if args.gzip: # We assume that the argparse setup is enforcing the value being # valid, i.e. `'good'` if it's not `'bad'`. msg = zlib.compress(msg.encode('utf-8')) s.headers['Content-Encoding'] = 'gzip' if args.gzip == 'bad': # Prepend a character so it's not a valid gzip header msg = b'w' + msg r = s.post(upload_url, data=msg) print(f'Response: {r!r}') print(f'Body: {r.content.decode()}') if __name__ == "__main__": __parser = argparse.ArgumentParser( description='Send test messages to an EDDN /upload/ endpoint', ) __parser.add_argument( '--url', metavar='<full URL of /upload/ endpoint>', help='The full URL of an EDDN /upload/ endpoint', ) __parser.add_argument( '--formdata', choices=('good', 'bad'), help='Specify to form-encode the request body', ) __parser.add_argument( '--gzip', choices=('good', 'bad'), help='Specify to gzip-compress the request body', ) __parser.add_argument( 'messagefile', metavar='<input file name>', help='Name of a file containing the body of the EDDN message to be sent', ) args = __parser.parse_args() if args.url: # Allow for some short aliases, but NOT!!! for live !!! if args.url == 'beta': upload_url = 'https://beta.eddn.edcd.io:4431/upload/' elif args.url == 'dev': upload_url = 'https://dev.eddn.edcd.io:4432/upload/' else: upload_url = args.url send_message(upload_url, args)
26.275862
81
0.56168
9c7f0b86d23252eb667a628a9f5a6c0fd2927da0
5,634
py
Python
aiida_quantumespresso/calculations/matdyn.py
unkcpz/aiida-quantumespresso
fbac0993bb8b6cdeba85717453debcf0ab062b5a
[ "MIT" ]
null
null
null
aiida_quantumespresso/calculations/matdyn.py
unkcpz/aiida-quantumespresso
fbac0993bb8b6cdeba85717453debcf0ab062b5a
[ "MIT" ]
null
null
null
aiida_quantumespresso/calculations/matdyn.py
unkcpz/aiida-quantumespresso
fbac0993bb8b6cdeba85717453debcf0ab062b5a
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- import os from aiida.common.utils import classproperty from aiida.orm.data.folder import FolderData from aiida.orm.data.remote import RemoteData from aiida.orm.data.array.kpoints import KpointsData from aiida_quantumespresso.calculations.namelists import NamelistsCalculation from aiida_quantumespresso.calculations.q2r import Q2rCalculation class MatdynCalculation(NamelistsCalculation): """ matdyn.x code of the Quantum ESPRESSO distribution, used to obtain the phonon frequencies in reciprocal space from the interatomic force constants given by q2r. For more information, refer to http://www.quantum-espresso.org/ """ def _init_internal_params(self): super(MatdynCalculation, self)._init_internal_params() self._PHONON_FREQUENCIES_NAME = 'phonon_frequencies.dat' self._PHONON_MODES_NAME = 'phonon_displacements.dat' self._PHONON_DOS_NAME = 'phonon_dos.dat' self._default_namelists = ['INPUT'] self._blocked_keywords = [('INPUT','flfrq',self._PHONON_FREQUENCIES_NAME), # output freq. ('INPUT','flvec',self._PHONON_MODES_NAME), # output displ. ('INPUT','fldos',self._PHONON_DOS_NAME), # output dos ('INPUT','q_in_cryst_coord',True), # kpoints always in crystal coordinates # this is dynamically added in the _prepare_for_submission #('INPUT','flfrc',Q2rCalculation.FORCE_CONSTANTS_NAME), # input ] self._internal_retrieve_list = [self._PHONON_FREQUENCIES_NAME, self._PHONON_DOS_NAME] # Default Matdyn output parser provided by AiiDA self._default_parser = 'quantumespresso.matdyn' @classproperty def _use_methods(cls): """ Use_* methods for the matdyn class. """ retdict = NamelistsCalculation._use_methods retdict.update({ "kpoints": { 'valid_types': (KpointsData), 'additional_parameter': None, 'linkname': 'kpoints', 'docstring': ("Kpoints on which to calculate the phonon " "frequencies"), }, }) return retdict def use_parent_calculation(self,calc): """ Set the parent calculation, from which it will inherit the outputsubfolder. The link will be created from parent RemoteData and NamelistCalculation """ if not isinstance(calc,Q2rCalculation): raise ValueError("Parent calculation must be a Q2rCalculation") from aiida.common.exceptions import UniquenessError localdatas = [_[1] for _ in calc.get_outputs(also_labels=True) if _[0] == calc.get_linkname_force_matrix()] if len(localdatas) == 0: raise UniquenessError("No output retrieved data found in the parent " "calc, probably it did not finish yet, " "or it crashed") if len(localdatas) != 1: raise UniquenessError("More than one output retrieved data found") localdata = localdatas[0] self.use_parent_folder(localdata) def _get_following_text(self, inputdict, settings): """ Add the kpoints after the namelist. This function should consume the content of inputdict (if it requires a different node) or the keys inside settings, using the 'pop' method, so that inputdict and settings should remain empty at the end of _prepare_for_submission, if all flags/nodes were recognized """ from aiida.common.exceptions import InputValidationError try: kpoints = inputdict.pop(self.get_linkname('kpoints')) except KeyError: raise InputValidationError("No kpoints specified for this calculation") if not isinstance(kpoints, KpointsData): raise InputValidationError("kpoints is not of type KpointsData") try: klist = kpoints.get_kpoints() except AttributeError: klist = kpoints.get_kpoints_mesh(print_list=True) retlist = ["{}".format(len(klist))] for k in klist: retlist.append("{:18.10f} {:18.10f} {:18.10f}".format(*k)) return "\n".join(retlist)+"\n" def _prepare_for_submission(self,tempfolder, inputdict): from aiida.orm.data.singlefile import SinglefileData parent_calc_folder = inputdict.get(self.get_linkname('parent_folder'), None) if isinstance(parent_calc_folder, SinglefileData): self._blocked_keywords.append( ('INPUT', 'flfrc', os.path.split( parent_calc_folder.get_file_abs_path())[1] )) else: raise NotImplementedError( "Input different from SinglefileData is not supported" " yet for MatdynCalculation; it is {}".format( type(parent_calc_folder))) self._blocked_keywords.append( ('INPUT', 'flfrc', Q2rCalculation._FORCE_CONSTANTS_NAME )) calcinfo = super(MatdynCalculation, self)._prepare_for_submission( tempfolder, inputdict) return calcinfo
43.674419
108
0.599397
a17a354f9959537b8175591c7f74e6c0a1a4108f
9,484
py
Python
matdeeplearn/models/dospredict.py
vxfung/MatDeepLearn_DOS
4c2998bacfe5627958bc792ea62ec2baab2507a1
[ "MIT" ]
1
2022-03-28T13:09:49.000Z
2022-03-28T13:09:49.000Z
matdeeplearn/models/dospredict.py
vxfung/MatDeepLearn_DOS
4c2998bacfe5627958bc792ea62ec2baab2507a1
[ "MIT" ]
null
null
null
matdeeplearn/models/dospredict.py
vxfung/MatDeepLearn_DOS
4c2998bacfe5627958bc792ea62ec2baab2507a1
[ "MIT" ]
null
null
null
from typing import Union, Tuple import torch from torch import Tensor import torch.nn.functional as F from torch.nn import Sequential, Linear, BatchNorm1d, PReLU import torch_geometric from torch_geometric.typing import PairTensor, Adj, OptTensor, Size from torch_geometric.nn.conv import MessagePassing from torch_scatter import scatter_mean, scatter_add, scatter_max, scatter from torch_geometric.nn import ( Set2Set, global_mean_pool, global_add_pool, global_max_pool, CGConv, ) #GNN model class DOSpredict(torch.nn.Module): def __init__( self, data, dim1=64, dim2=64, pre_fc_count=1, gc_count=3, batch_norm="True", batch_track_stats="True", dropout_rate=0.0, **kwargs ): super(DOSpredict, self).__init__() if batch_track_stats == "False": self.batch_track_stats = False else: self.batch_track_stats = True self.batch_norm = batch_norm self.dropout_rate = dropout_rate ##Determine gc dimension dimension assert gc_count > 0, "Need at least 1 GC layer" if pre_fc_count == 0: self.gc_dim = data.num_features else: self.gc_dim = dim1 ##Determine post_fc dimension if pre_fc_count == 0: post_fc_dim = data.num_features else: post_fc_dim = dim1 ##Determine output dimension length if data[0].y.ndim == 0: output_dim = 1 else: output_dim = len(data[0].y[0]) ##Set up pre-GNN dense layers if pre_fc_count > 0: self.pre_lin_list = torch.nn.ModuleList() for i in range(pre_fc_count): if i == 0: lin = Sequential(torch.nn.Linear(data.num_features, dim1), torch.nn.PReLU()) self.pre_lin_list.append(lin) else: lin = Sequential(torch.nn.Linear(dim1, dim1), torch.nn.PReLU()) self.pre_lin_list.append(lin) elif pre_fc_count == 0: self.pre_lin_list = torch.nn.ModuleList() ##Set up GNN layers self.conv_list = torch.nn.ModuleList() self.bn_list = torch.nn.ModuleList() for i in range(gc_count): conv = GC_block(self.gc_dim, data.num_edge_features, aggr="mean") #conv = CGConv(self.gc_dim, data.num_edge_features, aggr="mean", batch_norm=False) self.conv_list.append(conv) if self.batch_norm == "True": bn = BatchNorm1d(self.gc_dim, track_running_stats=self.batch_track_stats, affine=True) self.bn_list.append(bn) self.dos_mlp = Sequential(Linear(post_fc_dim, dim2), torch.nn.PReLU(), Linear(dim2, output_dim), torch.nn.PReLU(), ) self.scaling_mlp = Sequential(Linear(post_fc_dim, dim2), torch.nn.PReLU(), Linear(dim2, 1), ) def forward(self, data): ##Pre-GNN dense layers for i in range(0, len(self.pre_lin_list)): if i == 0: out = self.pre_lin_list[i](data.x) else: out = self.pre_lin_list[i](out) ##GNN layers for i in range(0, len(self.conv_list)): if len(self.pre_lin_list) == 0 and i == 0: if self.batch_norm == "True": out = self.conv_list[i](data.x, data.edge_index, data.edge_attr) out = self.bn_list[i](out) else: out = self.conv_list[i](data.x, data.edge_index, data.edge_attr) else: if self.batch_norm == "True": out = self.conv_list[i](out, data.edge_index, data.edge_attr) out = self.bn_list[i](out) else: out = self.conv_list[i](out, data.edge_index, data.edge_attr) out = F.dropout(out, p=self.dropout_rate, training=self.training) ##Post-GNN dense layers dos_out = self.dos_mlp(out) scaling = self.scaling_mlp(out) if dos_out.shape[1] == 1: return dos_out.view(-1), scaling.view(-1) else: return dos_out, scaling.view(-1) # Smooth Overlap of Atomic Positions with neural network class SOAP_DOS(torch.nn.Module): def __init__(self, data, dim1, fc_count, **kwargs): super(SOAP_DOS, self).__init__() if data[0].y.ndim == 0: output_dim = 1 else: output_dim = len(data[0].y[0]) self.lin1 = torch.nn.Linear(data[0].extra_features_SOAP.shape[1], dim1) self.lin_list_dos = torch.nn.ModuleList( [torch.nn.Linear(dim1, dim1) for i in range(fc_count)] ) self.lin_out_dos = torch.nn.Linear(dim1, output_dim) self.lin_list_scaling = torch.nn.ModuleList( [torch.nn.Linear(dim1, dim1) for i in range(fc_count)] ) self.lin_out_scaling = torch.nn.Linear(dim1, 1) def forward(self, data): dos_out = F.relu(self.lin1(data.extra_features_SOAP)) scaling = F.relu(self.lin1(data.extra_features_SOAP)) for layer in self.lin_list_dos: dos_out = F.relu(layer(dos_out)) dos_out = self.lin_out_dos(dos_out) for layer in self.lin_list_scaling: scaling = F.relu(layer(scaling)) scaling = self.lin_out_scaling(scaling) if dos_out.shape[1] == 1: return dos_out.view(-1), scaling.view(-1) else: return dos_out, scaling.view(-1) # Local Many Body Tensor with neural network class LMBTR_DOS(torch.nn.Module): def __init__(self, data, dim1, fc_count, **kwargs): super(LMBTR_DOS, self).__init__() if data[0].y.ndim == 0: output_dim = 1 else: output_dim = len(data[0].y[0]) self.lin1 = torch.nn.Linear(data[0].extra_features_LMBTR.shape[1], dim1) self.lin_list_dos = torch.nn.ModuleList( [torch.nn.Linear(dim1, dim1) for i in range(fc_count)] ) self.lin_out_dos = torch.nn.Linear(dim1, output_dim) self.lin_list_scaling = torch.nn.ModuleList( [torch.nn.Linear(dim1, dim1) for i in range(fc_count)] ) self.lin_out_scaling = torch.nn.Linear(dim1, 1) def forward(self, data): dos_out = F.relu(self.lin1(data.extra_features_LMBTR)) scaling = F.relu(self.lin1(data.extra_features_LMBTR)) for layer in self.lin_list_dos: dos_out = F.relu(layer(dos_out)) dos_out = self.lin_out_dos(dos_out) for layer in self.lin_list_scaling: scaling = F.relu(layer(scaling)) scaling = self.lin_out_scaling(scaling) if dos_out.shape[1] == 1: return dos_out.view(-1), scaling.view(-1) else: return dos_out, scaling.view(-1) #Dummy model class Dummy(torch.nn.Module): def __init__( self, data, **kwargs ): super(Dummy, self).__init__() self.lin = torch.nn.Linear(len(data[0].x[0]), len(data[0].y[0])) def forward(self, data): out = self.lin(data.x)*0 return out, torch.ones(out.shape[0]).to(out) ##################################################### class GC_block(MessagePassing): def __init__(self, channels: Union[int, Tuple[int, int]], dim: int = 0, aggr: str = 'mean', **kwargs): super(GC_block, self).__init__(aggr=aggr, **kwargs) self.channels = channels self.dim = dim if isinstance(channels, int): channels = (channels, channels) self.mlp = Sequential(Linear(sum(channels) + dim, channels[1]), torch.nn.PReLU(), ) self.mlp2 = Sequential(Linear(dim, dim), torch.nn.PReLU(), ) def forward(self, x: Union[Tensor, PairTensor], edge_index: Adj, edge_attr: OptTensor = None, size: Size = None) -> Tensor: if isinstance(x, Tensor): x: PairTensor = (x, x) # propagate_type: (x: PairTensor, edge_attr: OptTensor) out = self.propagate(edge_index, x=x, edge_attr=edge_attr, size=size) out += x[1] return out def message(self, x_i, x_j, edge_attr: OptTensor) -> Tensor: z = torch.cat([x_i, x_j, self.mlp2(edge_attr)], dim=-1) z = self.mlp(z) return z
36.198473
128
0.515816
c0c438e63d46941a8a0f5ad9e851353a8375dbc5
3,781
py
Python
_unittests/ut_finance/test_stock_file.py
mohamedelkansouli/Ensae_py2
e54a05f90c6aa6e2a5065eac9f9ec10aca64b46a
[ "MIT" ]
null
null
null
_unittests/ut_finance/test_stock_file.py
mohamedelkansouli/Ensae_py2
e54a05f90c6aa6e2a5065eac9f9ec10aca64b46a
[ "MIT" ]
null
null
null
_unittests/ut_finance/test_stock_file.py
mohamedelkansouli/Ensae_py2
e54a05f90c6aa6e2a5065eac9f9ec10aca64b46a
[ "MIT" ]
null
null
null
""" @brief test log(time=3s) """ import sys import os import unittest import datetime import warnings from quandl.errors.quandl_error import LimitExceededError from pyquickhelper.loghelper import fLOG from pyquickhelper.pycode import get_temp_folder try: import src except ImportError: path = os.path.normpath( os.path.abspath( os.path.join( os.path.split(__file__)[0], "..", ".."))) if path not in sys.path: sys.path.append(path) import src from src.pyensae.finance.astock import StockPrices, StockPricesHTTPException class TestStockFile (unittest.TestCase): def test_save_stock_google(self): fLOG( __file__, self._testMethodName, OutputPrint=__name__ == "__main__") temp = get_temp_folder(__file__, "temp_cache_file_google") cache = temp try: stock = StockPrices("NASDAQ:MSFT", folder=cache, end=datetime.datetime(2014, 1, 15), url="google") except StockPricesHTTPException as e: warnings.warn(str(e)) return file = os.path.join(cache, "save.txt") if os.path.exists(file): os.remove(file) stock.to_csv(file) self.assertTrue(os.path.exists(file)) stock2 = StockPrices(file, sep="\t") self.assertEqual(stock.dataframe.shape, stock2.dataframe.shape) df = stock2.dataframe file = os.path.join(cache, "out_excel.xlsx") if os.path.exists(file): os.remove(file) df.to_excel(file) self.assertTrue(os.path.exists(file)) def test_save_stock_quandl(self): fLOG( __file__, self._testMethodName, OutputPrint=__name__ == "__main__") temp = get_temp_folder(__file__, "temp_cache_file_quandl") cache = temp try: stock = StockPrices("EURONEXT/BNP", url="quandl", folder=cache, end=datetime.datetime(2017, 1, 15)) except LimitExceededError: warnings.warn( "[test_save_stock_quandl] reached quandl free quota. Stop test.") return file = os.path.join(cache, "save.txt") if os.path.exists(file): os.remove(file) stock.to_csv(file) self.assertTrue(os.path.exists(file)) stock2 = StockPrices(file, sep="\t") self.assertEqual(stock.dataframe.shape, stock2.dataframe.shape) df = stock2.dataframe file = os.path.join(cache, "out_excel.xlsx") if os.path.exists(file): os.remove(file) df.to_excel(file) self.assertTrue(os.path.exists(file)) def test_save_stock_yahoo_new(self): fLOG( __file__, self._testMethodName, OutputPrint=__name__ == "__main__") temp = get_temp_folder(__file__, "temp_cache_file_yahoo") cache = temp stock = StockPrices( "AAPL", folder=cache, url="yahoo_new", end=datetime.datetime( 2014, 1, 15)) file = os.path.join(cache, "save.txt") if os.path.exists(file): os.remove(file) stock.to_csv(file) self.assertTrue(os.path.exists(file)) stock2 = StockPrices(file, sep="\t") self.assertEqual(stock.dataframe.shape, stock2.dataframe.shape) df = stock2.dataframe file = os.path.join(cache, "out_excel.xlsx") if os.path.exists(file): os.remove(file) df.to_excel(file) self.assertTrue(os.path.exists(file)) if __name__ == "__main__": unittest.main()
28.216418
81
0.579212
b42465cec5f949e4e3ada5be78ff768320a11910
11,286
py
Python
uweb3/connections.py
stefvanhouten/uweb3
bd6b03a3c819582afd845b31970b8a49312d1245
[ "ISC" ]
null
null
null
uweb3/connections.py
stefvanhouten/uweb3
bd6b03a3c819582afd845b31970b8a49312d1245
[ "ISC" ]
3
2020-05-20T09:53:14.000Z
2020-07-12T21:42:37.000Z
uweb3/connections.py
stefvanhouten/uweb3
bd6b03a3c819582afd845b31970b8a49312d1245
[ "ISC" ]
3
2020-04-29T09:49:07.000Z
2020-12-03T09:51:22.000Z
#!/usr/bin/python """This file contains all the connectionManager classes that interact with databases, restfull apis, secure cookies, config files etc.""" __author__ = 'Jan Klopper (janunderdark.nl)' __version__ = 0.1 import os import sys from base64 import b64encode class ConnectionError(Exception): """Error class thrown when the underlying connectors thrown an error on connecting.""" class ConnectionManager(object): """This is the connection manager object that is handled by all Model Objects. It finds out which connection was requested by looking at the call stack, and figuring out what database type the model class calling it belongs to. Connected databases are stored and reused. On delete, the databases are closed and any lingering transactions are committed. to complete the database writes. """ DEFAULTCONNECTIONMANAGER = None def __init__(self, config, options, debug): self.__connectors = {} # classes self.__connections = {} # instances self.config = config self.options = options self.debug = debug self.LoadDefaultConnectors() def LoadDefaultConnectors(self): self.RegisterConnector(SignedCookie) self.RegisterConnector(Mysql, True) self.RegisterConnector(Sqlite) self.RegisterConnector(Mongo) self.RegisterConnector(SqlAlchemy) def RegisterConnector(self, classname, default=False): """Make the ConnectonManager aware of a new type of connector.""" if default: self.DEFAULTCONNECTIONMANAGER = classname.Name() self.__connectors[classname.Name()] = classname def RelevantConnection(self, level=2): """Returns the relevant database connection dependant on the caller model class. If the caller model cannot be determined, the 'relational' database connection is returned as a fallback method. Level indicates how many stack layers we should go up. Defaults to two. """ # Figure out caller type or instance # pylint: disable=W0212 #TODO use inspect module instead, and iterate over frames caller_locals = sys._getframe(level).f_locals # pylint: enable=W0212 if 'self' in caller_locals: caller_cls = type(caller_locals['self']) else: caller_cls = caller_locals.get('cls', type) # Decide the type of connection to return for this caller con_type = (caller_cls._CONNECTOR if hasattr(caller_cls, '_CONNECTOR') else self.DEFAULTCONNECTIONMANAGER) if (con_type in self.__connections and hasattr(self.__connections[con_type], 'connection')): return self.__connections[con_type].connection else: request = sys._getframe(3).f_locals['self'].req try: # instantiate a connection self.__connections[con_type] = self.__connectors[con_type]( self.config, self.options, request, self.debug) return self.__connections[con_type].connection except KeyError: raise TypeError('No connector for: %r, available: %r' % (con_type, self.__connectors)) def __enter__(self): """Proxies the transaction to the underlying relevant connection.""" return self.RelevantConnection().__enter__() def __exit__(self, *args): """Proxies the transaction to the underlying relevant connection.""" return self.RelevantConnection().__exit__(*args) def __getattr__(self, attribute): return getattr(self.RelevantConnection(), attribute) def RollbackAll(self): """Performas a rollback on all connectors with pending commits""" if self.debug: print('Rolling back uncommited transaction on all connectors.') for classname in self.__connections: try: self.__connections[classname].Rollback() except NotImplementedError: pass def PostRequest(self): """This cleans up any non persistent connections.""" cleanups = [] for classname in self.__connections: if (hasattr(self.__connections[classname], 'PERSISTENT') and not self.__connections[classname].PERSISTENT): cleanups.append(classname) for classname in cleanups: try: self.__connections[classname].Disconnect() except (NotImplementedError, TypeError, ConnectionError): pass del(self.__connections[classname]) def __iter__(self): """Pass tru to the Relevant connection as an Iterable, so variable unpacking can be used by the consuming class. This is used in the SecureCookie Model class.""" return iter(self.RelevantConnection()) def __del__(self): """Cleans up all references, and closes all connectors""" print('Deleting model connections.') for classname in self.__connectors: if not hasattr(self.__connectors[classname], 'connection'): continue try: self.__connections[classname].Disconnect() except (NotImplementedError, TypeError, ConnectionError): pass class Connector(object): """Base Connector class, subclass from this to create your own connectors. Usually the name of your class is used to lookup its config in the configuration file, or the database or local filename. Connectors based on this class are Usually Singletons. One global connection is kept alive, and multiple model classes use it to connect to their respective tables, cookies, or files. """ _NAME = None @classmethod def Name(cls): """Returns the 'connector' name, which is usally used to lookup its config in the config file. If this is not explicitly defined by the class constant `_TABLE`, the return value will be the class name with the first letter lowercased. """ if cls._NAME: return cls._NAME name = cls.__name__ return name[0].lower() + name[1:] def Disconnect(self): """Standard interface to disconnect from data source""" raise NotImplementedError def Rollback(self): """Standard interface to rollback any pending commits""" raise NotImplementedError class SignedCookie(Connector): """Adds a signed cookie connection to the connection manager object. The name of the class is used as the Cookiename""" PERSISTENT = False def __init__(self, config, options, request, debug=False): """Sets up the local connection to the signed cookie store, and generates a new secret key if no key can be found in the config""" # Generating random seeds on uWeb3 startup or fetch from config self.debug = debug try: self.options = options[self.Name()] self.secure_cookie_secret = self.options['secret'] except KeyError: secret = self.GenerateNewKey() config.Create(self.Name(), 'secret', secret) if self.debug: print('SignedCookie: Wrote new secret random to config.') self.secure_cookie_secret = secret self.connection = (request, request.vars['cookie'], self.secure_cookie_secret) @staticmethod def GenerateNewKey(length=128): return b64encode(os.urandom(length)).decode('utf-8') class Mysql(Connector): """Adds MySQL support to connection manager object.""" def __init__(self, config, options, request, debug=False): """Returns a MySQL database connection.""" self.debug = debug self.options = {'host': 'localhost', 'user': None, 'password': None, 'database': ''} try: from .libs.sqltalk import mysql try: self.options = options[self.Name()] except KeyError: pass self.connection = mysql.Connect( host=self.options.get('host', 'localhost'), user=self.options.get('user'), passwd=self.options.get('password'), db=self.options.get('database'), charset=self.options.get('charset', 'utf8'), debug=self.debug) except Exception as e: raise ConnectionError('Connection to "%s" of type "%s" resulted in: %r' % (self.Name(), type(self), e)) def Rollback(self): with self.connection as cursor: return cursor.Execute("ROLLBACK") def Disconnect(self): """Closes the MySQL connection.""" if self.debug: print('%s closed connection to: %r' % (self.Name(), self.options.get('database'))) self.connection.close() del(self.connection) class Mongo(Connector): """Adds MongoDB support to connection manager object.""" def __init__(self, config, options, request, debug=False): """Returns a MongoDB database connection.""" self.debug = debug import pymongo self.options = options.get(self.Name(), {}) try: self.connection = pymongo.connection.Connection( host=self.options.get('host', 'localhost'), port=self.options.get('port', 27017)) if 'database' in self.options: self.connection = self.connection[self.options['database']] except Exception as e: raise ConnectionError('Connection to "%s" of type "%s" resulted in: %r' % (self.Name(), type(self), e)) def Disconnect(self): """Closes the Mongo connection.""" if self.debug: print('%s closed connection to: %r' % (self.Name(), self.options.get('database', 'Unspecified'))) self.connection.close() del(self.connection) class SqlAlchemy(Connector): """Adds MysqlAlchemy connection to ConnectionManager.""" def __init__(self, config, options, request, debug=False): """Returns a Mysql database connection wrapped in a SQLAlchemy session.""" from sqlalchemy.orm import sessionmaker self.debug = debug self.options = {'host': 'localhost', 'user': None, 'password': None, 'database': ''} try: self.options = options[self.Name()] except KeyError: pass Session = sessionmaker() Session.configure(bind=self.engine, expire_on_commit=False) try: self.connection = Session() except Exception as e: raise ConnectionError('Connection to "%s" of type "%s" resulted in: %r' % (self.Name(), type(self), e)) def engine(self): from sqlalchemy import create_engine return create_engine('mysql://{username}:{password}@{host}/{database}'.format( username=self.options.get('user'), password=self.options.get('password'), host=self.options.get('host', 'localhost'), database=self.options.get('database')), pool_size=5, max_overflow=0, encoding=self.options.get('charset', 'utf8'),) class Sqlite(Connector): """Adds SQLite support to connection manager object.""" def __init__(self, config, options, request, debug=False): """Returns a SQLite database connection. The name of the class is used as the local filename. """ from .libs.sqltalk import sqlite self.debug = debug self.options = options[self.Name()] try: self.connection = sqlite.Connect(self.options.get('database')) except Exception as e: raise ConnectionError('Connection to "%s" of type "%s" resulted in: %r' % (self.Name(), type(self), e)) def Rollback(self): """Rolls back any uncommited transactions.""" return self.connection.rollback() def Disconnect(self): """Closes the SQLite connection.""" if self.debug: print('%s closed connection to: %r' % (self.Name(), self.options.get('database'))) self.connection.close() del(self.connection)
35.37931
109
0.683856
667c5e4bd9fd065108749849979bbfc8087b34aa
1,380
py
Python
python_serial_sender/sender.py
vvzen/arduino-python-serial-communication-example
6fb5175266f490acf49ac2ff1c119dfd0b2ee938
[ "MIT" ]
null
null
null
python_serial_sender/sender.py
vvzen/arduino-python-serial-communication-example
6fb5175266f490acf49ac2ff1c119dfd0b2ee938
[ "MIT" ]
null
null
null
python_serial_sender/sender.py
vvzen/arduino-python-serial-communication-example
6fb5175266f490acf49ac2ff1c119dfd0b2ee938
[ "MIT" ]
null
null
null
import time import serial ARDUINO_URL = "/dev/tty.usbmodem142301" MAX_WAIT = 32 # seconds ARDUINO_RESET_WAIT_TIME = 5 # seconds END_MESSAGE_DELIMITER = b">" def hello_world(): serial_device = serial.Serial(ARDUINO_URL, 9600, timeout=1) print("Will talk to ", serial_device.name) # This is fundamental! Give enough time to arduino to reset # before trying to write and read from the serial print("Waiting %i seconds for arduino to reset.. " % ARDUINO_RESET_WAIT_TIME) time.sleep(ARDUINO_RESET_WAIT_TIME) hello_world_message = b"<MoveX10Y10>" print("Sending ", hello_world_message.decode("ascii")) serial_device.write(hello_world_message) current_message = [] i = 0 while True: current_char = serial_device.read(1) current_message.append(current_char) # print(current_char) if current_char == END_MESSAGE_DELIMITER: break i += 1 if i > MAX_WAIT: print("Closing communication, timeout was reached without " "finding end of message ", END_MESSAGE_DELIMITER) break # Read as bytes, decode them into ascii message_as_ascii = "".join([c.decode("ascii") for c in current_message]) print("Received ", message_as_ascii) serial_device.close() def main(): hello_world() if __name__ == '__main__': main()
27.058824
81
0.671739
5f65efd5f67fbfc56de8446a2fa219df0cfc8e45
10,780
py
Python
boundlexx/api/v1/serializers/world.py
AngellusMortis/boundlexx
407f5e38e8e0f067cbcb358787fc9af6a9be9b2a
[ "MIT" ]
1
2021-04-23T11:49:50.000Z
2021-04-23T11:49:50.000Z
boundlexx/api/v1/serializers/world.py
AngellusMortis/boundlexx
407f5e38e8e0f067cbcb358787fc9af6a9be9b2a
[ "MIT" ]
1
2021-04-17T18:17:12.000Z
2021-04-17T18:17:12.000Z
boundlexx/api/v1/serializers/world.py
AngellusMortis/boundlexx
407f5e38e8e0f067cbcb358787fc9af6a9be9b2a
[ "MIT" ]
null
null
null
from rest_framework import serializers from boundlexx.api.common.serializers import ( BlockColorSerializer, ItemColorSerializer, PossibleWBCSerializer, ResourcesSerializer, SimpleWorldSerializer, WorldBlockColorSerializer, WorldColorSerializer, WorldDistanceSerializer, WorldPollLeaderboardSerializer, WorldPollResourcesSerializer, WorldPollSerializer, WorldSerializer, ) from boundlexx.api.v1.serializers.base import ( NestedHyperlinkedIdentityField, RequestBasketsURL, ShopStandsURL, SimpleColorSerializer, URLSimpleItemSerializer, URLSimpleSkillSerializer, URLSimpleWorldSerializer, ) from boundlexx.boundless.models import ( ResourceCount, World, WorldBlockColor, WorldDistance, WorldPoll, ) class URLWorldSerializer(WorldSerializer): url = serializers.HyperlinkedIdentityField( view_name="world-detail", lookup_field="id", ) polls_url = NestedHyperlinkedIdentityField( view_name="world-poll-list", lookup_field=["id"], lookup_url_kwarg=["world_id"], ) block_colors_url = serializers.HyperlinkedIdentityField( view_name="world-block-colors", lookup_field="id", ) distances_url = NestedHyperlinkedIdentityField( view_name="world-distance-list", lookup_field=["id"], lookup_url_kwarg=["world_source__id"], ) request_baskets_url = RequestBasketsURL() shop_stands_url = ShopStandsURL() assignment = URLSimpleWorldSerializer(allow_null=True) protection_skill = URLSimpleSkillSerializer() class Meta: model = World fields = [ "url", "id", "polls_url", "block_colors_url", "distances_url", "request_baskets_url", "next_request_basket_update", "shop_stands_url", "next_shop_stand_update", "active", "name", "display_name", "text_name", "html_name", "address", "image_url", "forum_url", "assignment", "region", "tier", "size", "world_type", "special_type", "protection_points", "protection_skill", "time_offset", "last_updated", "is_sovereign", "is_perm", "is_exo", "is_creative", "is_locked", "is_public", "is_public_edit", "is_public_claim", "is_finalized", "number_of_regions", "start", "end", "atmosphere_color", "water_color", "surface_liquid", "core_liquid", "bows", "atlas_image_url", ] class URLWorldPollLeaderboardSerializer(WorldPollLeaderboardSerializer): world_poll_url = NestedHyperlinkedIdentityField( view_name="world-poll-detail", lookup_field=["world.id", "id"], lookup_url_kwarg=["world_id", "id"], read_only=True, ) class Meta: model = WorldPoll fields = ["world_poll_id", "world_poll_url", "leaderboard"] class URLResourcesSerializer(ResourcesSerializer): item = URLSimpleItemSerializer() class Meta: model = ResourceCount fields = ["item", "is_embedded", "percentage", "count", "average_per_chunk"] class URLWorldPollResourcesSerializer(WorldPollResourcesSerializer): world_poll_url = NestedHyperlinkedIdentityField( view_name="world-poll-detail", lookup_field=["world.id", "id"], lookup_url_kwarg=["world_id", "id"], read_only=True, ) resources = URLResourcesSerializer(many=True) class Meta: model = WorldPoll fields = ["world_poll_id", "world_poll_url", "resources"] class URLWorldBlockColorSerializer(WorldBlockColorSerializer): item = URLSimpleItemSerializer() color = SimpleColorSerializer() is_perm = serializers.BooleanField() is_sovereign_only = serializers.BooleanField() is_exo_only = serializers.BooleanField() days_since_exo = serializers.IntegerField(allow_null=True) days_since_transform_exo = serializers.IntegerField(allow_null=True) first_world = URLSimpleWorldSerializer(allow_null=True) last_exo = URLSimpleWorldSerializer(allow_null=True) transform_first_world = URLSimpleWorldSerializer(allow_null=True) transform_last_exo = URLSimpleWorldSerializer(allow_null=True) class Meta: model = WorldBlockColor fields = [ "item", "color", "active", "is_default", "is_perm", "is_sovereign_only", "is_exo_only", "is_new", "is_new_exo", "is_new_transform", "days_since_exo", "days_since_transform_exo", "first_world", "last_exo", "transform_first_world", "transform_last_exo", ] class URLWorldDistanceSerializer(WorldDistanceSerializer): world_source = URLSimpleWorldSerializer() world_dest = URLSimpleWorldSerializer() class Meta: model = WorldDistance fields = [ "world_source", "world_dest", "distance", "cost", "min_portal_cost", "min_portal_open_cost", "min_conduits", ] class URLBlockColorSerializer(BlockColorSerializer): item = URLSimpleItemSerializer() world = URLSimpleWorldSerializer() first_world = URLSimpleWorldSerializer(allow_null=True) last_exo = URLSimpleWorldSerializer(allow_null=True) transform_first_world = URLSimpleWorldSerializer(allow_null=True) transform_last_exo = URLSimpleWorldSerializer(allow_null=True) class Meta: model = WorldBlockColor fields = [ "item", "world", "active", "is_default", "is_perm", "is_sovereign_only", "is_exo_only", "is_new", "is_new_exo", "is_new_transform", "days_since_exo", "days_since_transform_exo", "first_world", "last_exo", "transform_first_world", "transform_last_exo", ] class URLItemColorSerializer(ItemColorSerializer): color = SimpleColorSerializer() first_world = URLSimpleWorldSerializer(allow_null=True) last_exo = URLSimpleWorldSerializer(allow_null=True) transform_first_world = URLSimpleWorldSerializer(allow_null=True) transform_last_exo = URLSimpleWorldSerializer(allow_null=True) class Meta: model = WorldBlockColor fields = [ "color", "active", "is_default", "is_perm", "is_sovereign_only", "is_exo_only", "is_new", "is_new_exo", "is_new_transform", "days_since_exo", "days_since_transform_exo", "first_world", "last_exo", "transform_first_world", "transform_last_exo", ] class PossibleColorSerializer(PossibleWBCSerializer): color = SimpleColorSerializer() class Meta: model = WorldBlockColor fields = [ "color", ] class PossibleItemSerializer(serializers.ModelSerializer): item = URLSimpleItemSerializer() class Meta: model = WorldBlockColor fields = [ "item", ] class URLWorldColorSerializer(WorldColorSerializer): world = URLSimpleWorldSerializer() first_world = URLSimpleWorldSerializer(allow_null=True) last_exo = URLSimpleWorldSerializer(allow_null=True) transform_first_world = URLSimpleWorldSerializer(allow_null=True) transform_last_exo = URLSimpleWorldSerializer(allow_null=True) class Meta: model = WorldBlockColor fields = [ "color", "world", "active", "is_default", "is_perm", "is_sovereign_only", "is_exo_only", "is_new", "is_new_exo", "is_new_transform", "days_since_exo", "days_since_transform_exo", "first_world", "last_exo", "transform_first_world", "transform_last_exo", ] class WorldBlockColorsViewSerializer( serializers.Serializer ): # pylint: disable=abstract-method world_url = serializers.HyperlinkedIdentityField( view_name="world-detail", lookup_field="id", read_only=True, ) block_colors = URLWorldBlockColorSerializer(many=True, read_only=True) class URLWorldPollSerializer(WorldPollSerializer): url = NestedHyperlinkedIdentityField( view_name="world-poll-detail", lookup_field=["world.id", "id"], lookup_url_kwarg=["world_id", "id"], read_only=True, ) leaderboard_url = NestedHyperlinkedIdentityField( view_name="world-poll-leaderboard", lookup_field=["world.id", "id"], lookup_url_kwarg=["world_id", "id"], read_only=True, ) resources_url = NestedHyperlinkedIdentityField( view_name="world-poll-resources", lookup_field=["world.id", "id"], lookup_url_kwarg=["world_id", "id"], read_only=True, ) world = URLSimpleWorldSerializer() class Meta: model = WorldPoll fields = [ "url", "id", "leaderboard_url", "resources_url", "time", "world", "player_count", "beacon_count", "plot_count", "total_prestige", ] class KindOfSimpleWorldSerializer(SimpleWorldSerializer): url = serializers.HyperlinkedIdentityField( view_name="world-detail", lookup_field="id", ) class Meta: model = World fields = [ "url", "id", "active", "image_url", "name", "display_name", "text_name", "html_name", "world_class", "tier", "size", "world_type", "region", "address", "special_type", "last_updated", "is_sovereign", "is_perm", "is_exo", "is_creative", "is_locked", "is_public", "is_public_edit", "is_public_claim", "atlas_image_url", ]
27.641026
84
0.589889
906fa70ef90f7290724b60ee60af3812b8db4440
982
py
Python
bindings/python/examples/ispace.py
stkaplan/legion
ad82a1c1f39ed20a16df29aa331428d42c0ecfb6
[ "Apache-2.0" ]
null
null
null
bindings/python/examples/ispace.py
stkaplan/legion
ad82a1c1f39ed20a16df29aa331428d42c0ecfb6
[ "Apache-2.0" ]
null
null
null
bindings/python/examples/ispace.py
stkaplan/legion
ad82a1c1f39ed20a16df29aa331428d42c0ecfb6
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python3 # Copyright 2020 Stanford University # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from __future__ import print_function import pygion from pygion import task, Ispace, RW @task def main(): d = Ispace(10) t = 0 for x in d: print(x) t += int(x) assert t == 45 d2 = Ispace([3, 3], [1, 1]) t2 = 0 for x in d2: print(x) t2 += x[0] * x[1] assert t2 == 36 if __name__ == '__main__': main()
23.95122
74
0.664969
6e8ec8675682c91053215bdfe303b385987104df
426
py
Python
LTC4099_constants.py
chisl/LTC4099-py2
b30b58c27eedc7a064059e0d7a9ed4466a13a0b6
[ "MIT" ]
null
null
null
LTC4099_constants.py
chisl/LTC4099-py2
b30b58c27eedc7a064059e0d7a9ed4466a13a0b6
[ "MIT" ]
null
null
null
LTC4099_constants.py
chisl/LTC4099-py2
b30b58c27eedc7a064059e0d7a9ed4466a13a0b6
[ "MIT" ]
null
null
null
#!/usr/bin/env python2 # -*- coding: utf-8 -*- """LTC4099: I2C Controlled USB Power Manager/Charger with Overvoltage Protection""" __author__ = "ChISL" __copyright__ = "TBD" __credits__ = ["Linear Technology"] __license__ = "TBD" __version__ = "0.1" __maintainer__ = "https://chisl.io" __email__ = "info@chisl.io" __status__ = "Test" class REG: COMMAND_0 = 0 COMMAND_1 = 1 IRQ_MASK = 2 OUTPUT = 3
22.421053
83
0.661972
1b3ab150aaf325723b197d105dfc2d1ee634ff5e
264
py
Python
tests/artificial/transf_Logit/trend_Lag1Trend/cycle_12/ar_12/test_artificial_1024_Logit_Lag1Trend_12_12_100.py
shaido987/pyaf
b9afd089557bed6b90b246d3712c481ae26a1957
[ "BSD-3-Clause" ]
377
2016-10-13T20:52:44.000Z
2022-03-29T18:04:14.000Z
tests/artificial/transf_Logit/trend_Lag1Trend/cycle_12/ar_12/test_artificial_1024_Logit_Lag1Trend_12_12_100.py
ysdede/pyaf
b5541b8249d5a1cfdc01f27fdfd99b6580ed680b
[ "BSD-3-Clause" ]
160
2016-10-13T16:11:53.000Z
2022-03-28T04:21:34.000Z
tests/artificial/transf_Logit/trend_Lag1Trend/cycle_12/ar_12/test_artificial_1024_Logit_Lag1Trend_12_12_100.py
ysdede/pyaf
b5541b8249d5a1cfdc01f27fdfd99b6580ed680b
[ "BSD-3-Clause" ]
63
2017-03-09T14:51:18.000Z
2022-03-27T20:52:57.000Z
import pyaf.Bench.TS_datasets as tsds import tests.artificial.process_artificial_dataset as art art.process_dataset(N = 1024 , FREQ = 'D', seed = 0, trendtype = "Lag1Trend", cycle_length = 12, transform = "Logit", sigma = 0.0, exog_count = 100, ar_order = 12);
37.714286
164
0.731061
a6d8ea49a252d1cfab2a78eadf25dbd70115aa1a
586
py
Python
wc.py
HansGR/WorldsCollide
af227be553e120ee004b130598360c61daf7df59
[ "MIT" ]
7
2022-01-15T02:53:53.000Z
2022-02-17T00:51:32.000Z
wc.py
HansGR/WorldsCollide
af227be553e120ee004b130598360c61daf7df59
[ "MIT" ]
8
2022-01-16T02:45:24.000Z
2022-03-21T02:08:27.000Z
wc.py
HansGR/WorldsCollide
af227be553e120ee004b130598360c61daf7df59
[ "MIT" ]
5
2022-01-15T02:53:38.000Z
2022-01-19T17:42:10.000Z
def main(): import args import log from memory.memory import Memory memory = Memory() from data.data import Data data = Data(memory.rom, args) from event.events import Events events = Events(memory.rom, args, data) from menus.menus import Menus menus = Menus(data.characters, data.dances) from battle import Battle battle = Battle() from settings import Settings settings = Settings() from bug_fixes import BugFixes bug_fixes = BugFixes() data.write() memory.write() if __name__ == '__main__': main()
18.903226
47
0.658703
a118e2c7c7d2367792ee43adc2e63b575a16051b
7,463
py
Python
purity_fb/purity_fb_1dot6/__init__.py
bsamz-ps/purity_fb_python_client
11f27ef0c72d8aac1fc4e1ed036cca038b85dfa4
[ "Apache-2.0" ]
null
null
null
purity_fb/purity_fb_1dot6/__init__.py
bsamz-ps/purity_fb_python_client
11f27ef0c72d8aac1fc4e1ed036cca038b85dfa4
[ "Apache-2.0" ]
null
null
null
purity_fb/purity_fb_1dot6/__init__.py
bsamz-ps/purity_fb_python_client
11f27ef0c72d8aac1fc4e1ed036cca038b85dfa4
[ "Apache-2.0" ]
null
null
null
# coding: utf-8 """ Pure Storage FlashBlade REST 1.6 Python SDK Pure Storage FlashBlade REST 1.X Python SDK, developed by [Pure Storage, Inc](http://www.purestorage.com/). Documentations can be found at [purity-fb.readthedocs.io](http://purity-fb.readthedocs.io/). OpenAPI spec version: 1.6 Contact: info@purestorage.com Generated by: https://github.com/swagger-api/swagger-codegen.git """ from __future__ import absolute_import # import models into sdk package from .models.admin import Admin from .models.admin_api_token import AdminApiToken from .models.admin_cache import AdminCache from .models.admin_cache_response import AdminCacheResponse from .models.admin_response import AdminResponse from .models.alert import Alert from .models.alert_response import AlertResponse from .models.alert_watcher import AlertWatcher from .models.alert_watcher_response import AlertWatcherResponse from .models.alert_watcher_test import AlertWatcherTest from .models.alert_watcher_test_response import AlertWatcherTestResponse from .models.array_http_performance import ArrayHttpPerformance from .models.array_http_performance_response import ArrayHttpPerformanceResponse from .models.array_performance import ArrayPerformance from .models.array_performance_response import ArrayPerformanceResponse from .models.array_response import ArrayResponse from .models.array_s3_performance import ArrayS3Performance from .models.array_s3_performance_response import ArrayS3PerformanceResponse from .models.array_space import ArraySpace from .models.array_space_response import ArraySpaceResponse from .models.blade import Blade from .models.blade_response import BladeResponse from .models.bucket import Bucket from .models.bucket_patch import BucketPatch from .models.bucket_post import BucketPost from .models.bucket_response import BucketResponse from .models._built_in import BuiltIn from .models.certificate import Certificate from .models.certificate_response import CertificateResponse from .models.client_performance import ClientPerformance from .models.client_performance_response import ClientPerformanceResponse from .models.directory_service import DirectoryService from .models.directory_service_response import DirectoryServiceResponse from .models.directory_service_role import DirectoryServiceRole from .models.directory_service_roles_response import DirectoryServiceRolesResponse from .models.directoryservice_smb import DirectoryserviceSmb from .models.dns import Dns from .models.dns_response import DnsResponse from .models.error_response import ErrorResponse from .models.file_system import FileSystem from .models.file_system_performance import FileSystemPerformance from .models.file_system_performance_response import FileSystemPerformanceResponse from .models.file_system_response import FileSystemResponse from .models.file_system_snapshot import FileSystemSnapshot from .models.file_system_snapshot_response import FileSystemSnapshotResponse from .models._fixed_reference import FixedReference from .models.hardware import Hardware from .models.hardware_connector import HardwareConnector from .models.hardware_connector_response import HardwareConnectorResponse from .models.hardware_response import HardwareResponse from .models.link_aggregation_group import LinkAggregationGroup from .models.link_aggregation_group_response import LinkAggregationGroupResponse from .models.linkaggregationgroup import Linkaggregationgroup from .models.login_response import LoginResponse from .models.network_interface import NetworkInterface from .models.network_interface_response import NetworkInterfaceResponse from .models.nfs_rule import NfsRule from .models.object_response import ObjectResponse from .models.object_store_access_key import ObjectStoreAccessKey from .models.object_store_access_key_response import ObjectStoreAccessKeyResponse from .models.object_store_account import ObjectStoreAccount from .models.object_store_account_response import ObjectStoreAccountResponse from .models.object_store_user import ObjectStoreUser from .models.object_store_user_response import ObjectStoreUserResponse from .models.objectstoreaccesskey import Objectstoreaccesskey from .models.pagination_info import PaginationInfo from .models.policy import Policy from .models.policy_objects import PolicyObjects from .models.policy_objects_response import PolicyObjectsResponse from .models.policy_patch import PolicyPatch from .models._policy_reference import PolicyReference from .models.policy_response import PolicyResponse from .models.protocol_rule import ProtocolRule from .models.pure_array import PureArray from .models.pure_error import PureError from .models.pure_object import PureObject from .models.quotas_group import QuotasGroup from .models.quotas_group_response import QuotasGroupResponse from .models.quotas_user import QuotasUser from .models.quotas_user_response import QuotasUserResponse from .models.quotasgroup_group import QuotasgroupGroup from .models.quotasuser_user import QuotasuserUser from .models.reference import Reference from .models._resource import Resource from .models._resource_rule import ResourceRule from .models._resource_type import ResourceType from .models.smb_rule import SmbRule from .models.smtp import Smtp from .models.smtp_response import SmtpResponse from .models.snapshot_suffix import SnapshotSuffix from .models.space import Space from .models.subnet import Subnet from .models.subnet_response import SubnetResponse from .models.support import Support from .models.support_remote_assist_paths import SupportRemoteAssistPaths from .models.support_response import SupportResponse from .models.test_result import TestResult from .models.test_result_response import TestResultResponse from .models.version_response import VersionResponse # import apis into sdk package from .apis.admins_api import AdminsApi from .apis.admins_cache_api import AdminsCacheApi from .apis.alert_watchers_api import AlertWatchersApi from .apis.alerts_api import AlertsApi from .apis.arrays_api import ArraysApi from .apis.authentication_api import AuthenticationApi from .apis.blade_api import BladeApi from .apis.buckets_api import BucketsApi from .apis.certificates_api import CertificatesApi from .apis.directory_services_api import DirectoryServicesApi from .apis.dns_api import DnsApi from .apis.file_system_snapshots_api import FileSystemSnapshotsApi from .apis.file_systems_api import FileSystemsApi from .apis.hardware_api import HardwareApi from .apis.hardware_connectors_api import HardwareConnectorsApi from .apis.link_aggregation_groups_api import LinkAggregationGroupsApi from .apis.logs_api import LogsApi from .apis.network_interfaces_api import NetworkInterfacesApi from .apis.object_store_access_keys_api import ObjectStoreAccessKeysApi from .apis.object_store_accounts_api import ObjectStoreAccountsApi from .apis.object_store_users_api import ObjectStoreUsersApi from .apis.policies_api import PoliciesApi from .apis.quotas_groups_api import QuotasGroupsApi from .apis.quotas_users_api import QuotasUsersApi from .apis.smtp_api import SmtpApi from .apis.subnets_api import SubnetsApi from .apis.support_api import SupportApi from .apis.usage_groups_api import UsageGroupsApi from .apis.usage_users_api import UsageUsersApi from .apis.version_api import VersionApi # import ApiClient from .api_client import ApiClient from .configuration import Configuration configuration = Configuration()
48.148387
204
0.874715
ddb31abd0d9e9f8e730b621fc194ec33325db38d
676
py
Python
Container/LineList.py
ervin-meng/pyspider
cb98eed7f61a9ebde39a42d469e7fd93b06e15aa
[ "MIT" ]
null
null
null
Container/LineList.py
ervin-meng/pyspider
cb98eed7f61a9ebde39a42d469e7fd93b06e15aa
[ "MIT" ]
null
null
null
Container/LineList.py
ervin-meng/pyspider
cb98eed7f61a9ebde39a42d469e7fd93b06e15aa
[ "MIT" ]
null
null
null
# -*- coding=UTF-8 -*- import redis class LineList: _type = 'stack' #queue _name = '' _media = '' def __init__(self,name='',media='redis'): self._name = name if media=='redis': self._media = redis.Redis(host='127.0.0.1',port=6379,decode_responses=True) def add(self,data): return self._media.rpush(self._name,data) def get(self): if(self._type=='queue'): return self._media.lpop(self._name) else: return self._media.rpop(self._name) def llen(self): return self._media.llen(self._name) def clean(self): return self._media.delete(self._name)
24.142857
87
0.578402
36a3f80c653ff0f67ba5a6ae16e450915d71366b
5,699
py
Python
Rain_fall_in_Australia.py
HeyKashit/Rain-fall-predication-in-Australia
e56d2f652352409d62c76652011d9afa2d9ec4f8
[ "MIT" ]
5
2021-08-16T17:17:02.000Z
2021-09-26T10:45:20.000Z
Rain_fall_in_Australia.py
HeyKashit/Rain-fall-predication-in-Australia
e56d2f652352409d62c76652011d9afa2d9ec4f8
[ "MIT" ]
null
null
null
Rain_fall_in_Australia.py
HeyKashit/Rain-fall-predication-in-Australia
e56d2f652352409d62c76652011d9afa2d9ec4f8
[ "MIT" ]
null
null
null
#!/usr/bin/env python # coding: utf-8 # # This is Rain fall predication in Australia and EDA. # ### Importing Modules # In[1]: # importing modules import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt get_ipython().run_line_magic('matplotlib', 'inline') import warnings warnings.filterwarnings(action="ignore") from sklearn.model_selection import train_test_split from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import accuracy_score, confusion_matrix,classification_report,roc_curve, roc_auc_score # ### Importing Dataset # In[3]: df = pd.read_csv("weatherAUS.csv",nrows=10000) df.head().T # In[4]: # Info of data df.info() # In[5]: # shape of data: print(f'Number of columns: { df.shape[0]} and Number of rows: {df.shape[1]}') # In[6]: # Checking for null values df.isna().sum() # In[7]: # statistical info of dataset df.describe().T # In[8]: df.describe() # In[9]: # Identifying Continuous and Categorical Columns category=[] contin = [] for i in df.columns: if df[i].dtype =="object": category.append(i) else: contin.append(i) print("Categorical:",category) print("Continuous:", contin) # In[10]: df.head() # **Encoding RainToday and RainTomorrow Columns** using LabelEncoder # In[11]: df['RainTomorrow'] = df['RainTomorrow'].map({'Yes': 1, 'No': 0}) df['RainToday'] = df['RainToday'].map({'Yes': 1, 'No': 0}) # In[12]: df["RainToday"].unique() # In[13]: df["RainTomorrow"].unique() # In[14]: from sklearn.preprocessing import LabelEncoder le = LabelEncoder() # In[15]: df[["RainToday","RainTomorrow"]] # Percentage of **Null values in dataset** # In[16]: (df.isnull().sum()/len(df))*100 # In[17]: (df.isnull().sum()/len(df)) # In[18]: df.head().T # In[19]: df.columns # ### Handling Null values # In[20]: # filling the missing values for continuous variables with mean df["MinTemp"]= df["MinTemp"].fillna(df["MinTemp"].mean()) df["MaxTemp"]= df["MaxTemp"].fillna(df["MaxTemp"].mean()) df["Evaporation"]= df["Evaporation"].fillna(df["Evaporation"].mean()) df["Sunshine"]= df["Sunshine"].fillna(df["Sunshine"].mean()) df["WindGustSpeed"]= df["WindGustSpeed"].fillna(df["WindGustSpeed"].mean()) df["Rainfall"]= df["Rainfall"].fillna(df["Rainfall"].mean()) df["WindSpeed9am"]= df["WindSpeed9am"].fillna(df["WindSpeed9am"].mean()) df["WindSpeed3pm"]= df["WindSpeed3pm"].fillna(df["WindSpeed3pm"].mean()) df["Humidity9am"]= df["Humidity9am"].fillna(df["Humidity9am"].mean()) df["Humidity3pm"]= df["Humidity3pm"].fillna(df["Humidity3pm"].mean()) df["Pressure9am"]= df["Pressure9am"].fillna(df["Pressure9am"].mean()) df["Pressure3pm"]= df["Pressure3pm"].fillna(df["Pressure3pm"].mean()) df["Cloud9am"]= df["Cloud9am"].fillna(df["Cloud9am"].mean()) df["Cloud3pm"]= df["Cloud3pm"].fillna(df["Cloud3pm"].mean()) df["Temp9am"]= df["Temp9am"].fillna(df["Temp9am"].mean()) df["Temp3pm"]= df["Temp3pm"].fillna(df["Temp3pm"].mean()) # In[21]: #Filling the missing values for continuous variables with mode df['RainToday']=df['RainToday'].fillna(df['RainToday'].mode()[0]) df['RainTomorrow']=df['RainTomorrow'].fillna(df['RainTomorrow'].mode()[0]) df['WindDir9am'] = df['WindDir9am'].fillna(df['WindDir9am'].mode()[0]) df['WindGustDir'] = df['WindGustDir'].fillna(df['WindGustDir'].mode()[0]) df['WindDir3pm'] = df['WindDir3pm'].fillna(df['WindDir3pm'].mode()[0]) # In[22]: df.head() # In[23]: # again checking for null values (df.isnull().sum()/len(df))*100 # ### **Countplot** for RainToday and Raintomorrow: # In[24]: fig, ax =plt.subplots(1,2) plt.figure(figsize=(8,5)) sns.countplot(df["RainToday"],ax=ax[0]) sns.countplot(df["RainTomorrow"],ax = ax[1]) # ### Heatmap showing **Correlation** among attributes of data # In[25]: #heatmap plt.figure(figsize=(18,12)) sns.heatmap(df.corr(), annot=True) plt.xticks(rotation=90) plt.show() # **Inferences from Heatmap**: # * MinTemp and Temp9am highly correlated. # * MinTemp and Temp3pm highly correlated. # * MaxTemp and Temp9am highly correlated. # * MaxTemp and Temp3pm highly correlated. # * Temp3pm and Temp9am highly correlated. # * Humidity9am and Humidity3pm highly correlated. # In[26]: #encoding remaining columns df["Location"] = le.fit_transform(df["Location"]) df["WindDir9am"]= le.fit_transform(df["WindDir9am"]) df["WindDir3pm"]= le.fit_transform(df["WindDir3pm"]) df["WindGustDir"] = le.fit_transform(df["WindGustDir"]) # In[27]: df.head() # In[28]: # Dropping highly correlated columns df=df.drop(['Temp3pm','Temp9am','Humidity9am',"Date"],axis=1) df.columns # In[29]: df.head() # In[30]: x=df.drop(['RainTomorrow','Location','WindGustDir','WindGustSpeed','WindDir3pm','WindDir9am','WindSpeed3pm','Pressure3pm','Cloud3pm','Evaporation','RainToday','Pressure9am','WindSpeed9am'],axis=1) y=df['RainTomorrow'] x.columns # ### Splitting data into Training and Testing Set # In[31]: X_train, X_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=42) # ### RandomforestClassifier # In[32]: model=RandomForestClassifier() model.fit(X_train,y_train) # In[33]: # accuracy of RandomForest Model y_predxgb = model.predict(X_test) report = classification_report(y_test, y_predxgb) print(report) print("Accuracy of the RandomForest Model is:",accuracy_score(y_test,y_predxgb)*100,"%") cm = confusion_matrix(y_test, y_predxgb) sns.heatmap(cm, annot=True,cmap="YlGnBu") plt.title("Confusion Matrix for RandomForest Model") plt.show() # In[34]: import pickle pickle_out = open("Finalmodel.pkl","wb") pickle.dump(model, pickle_out) pickle_out.close() # In[35]: df # In[ ]: # In[ ]:
17.535385
196
0.684331
6b7aee7b98cdf372573e4b7565f5301fc345a582
397
py
Python
backend/test_32387/wsgi.py
crowdbotics-apps/test-32387
a415af4c96bb26031486d8f66f5e6df4a398d7dd
[ "FTL", "AML", "RSA-MD" ]
null
null
null
backend/test_32387/wsgi.py
crowdbotics-apps/test-32387
a415af4c96bb26031486d8f66f5e6df4a398d7dd
[ "FTL", "AML", "RSA-MD" ]
null
null
null
backend/test_32387/wsgi.py
crowdbotics-apps/test-32387
a415af4c96bb26031486d8f66f5e6df4a398d7dd
[ "FTL", "AML", "RSA-MD" ]
null
null
null
""" WSGI config for test_32387 project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/2.2/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'test_32387.settings') application = get_wsgi_application()
23.352941
78
0.788413
6365dcfd20853dd8205b7b4447f4d7388c73f03f
7,437
py
Python
python/led.py
wserr/audio-reactive-led-strip
0da690891ab028c681ca251d2d0195c41108f79f
[ "MIT" ]
null
null
null
python/led.py
wserr/audio-reactive-led-strip
0da690891ab028c681ca251d2d0195c41108f79f
[ "MIT" ]
null
null
null
python/led.py
wserr/audio-reactive-led-strip
0da690891ab028c681ca251d2d0195c41108f79f
[ "MIT" ]
null
null
null
from __future__ import print_function from __future__ import division import platform import numpy as np import config # ESP8266 uses WiFi communication if config.DEVICE == 'esp8266': import socket _sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) # Raspberry Pi controls the LED strip directly elif config.DEVICE == 'pi': import neopixel strip = neopixel.Adafruit_NeoPixel(config.N_PIXELS, config.LED_PIN, config.LED_FREQ_HZ, config.LED_DMA, config.LED_INVERT, config.BRIGHTNESS) strip.begin() elif config.DEVICE == 'blinkstick': from blinkstick import blinkstick import signal import sys #Will turn all leds off when invoked. def signal_handler(signal, frame): all_off = [0]*(config.N_PIXELS*3) stick.set_led_data(0, all_off) sys.exit(0) stick = blinkstick.find_first() # Create a listener that turns the leds off when the program terminates signal.signal(signal.SIGTERM, signal_handler) signal.signal(signal.SIGINT, signal_handler) elif config.DEVICE == 'max7219': from luma.led_matrix.device import max7219 from luma.core.interface.serial import spi, noop from luma.core.render import canvas serial = spi(port=0, device=0,gpio=noop()) device = max7219(serial, cascaded=1,block_orientation=-90) _gamma = np.load(config.GAMMA_TABLE_PATH) """Gamma lookup table used for nonlinear brightness correction""" _prev_pixels = np.tile(253, (3, config.N_PIXELS)) """Pixel values that were most recently displayed on the LED strip""" pixels = np.tile(1, (3, config.N_PIXELS)) """Pixel values for the LED strip""" _is_python_2 = int(platform.python_version_tuple()[0]) == 2 def _update_esp8266(): """Sends UDP packets to ESP8266 to update LED strip values The ESP8266 will receive and decode the packets to determine what values to display on the LED strip. The communication protocol supports LED strips with a maximum of 256 LEDs. The packet encoding scheme is: |i|r|g|b| where i (0 to 255): Index of LED to change (zero-based) r (0 to 255): Red value of LED g (0 to 255): Green value of LED b (0 to 255): Blue value of LED """ global pixels, _prev_pixels # Truncate values and cast to integer pixels = np.clip(pixels, 0, 255).astype(int) # Optionally apply gamma correc tio p = _gamma[pixels] if config.SOFTWARE_GAMMA_CORRECTION else np.copy(pixels) MAX_PIXELS_PER_PACKET = 126 # Pixel indices idx = range(pixels.shape[1]) idx = [i for i in idx if not np.array_equal(p[:, i], _prev_pixels[:, i])] n_packets = len(idx) // MAX_PIXELS_PER_PACKET + 1 idx = np.array_split(idx, n_packets) for packet_indices in idx: m = '' if _is_python_2 else [] for i in packet_indices: if _is_python_2: m += chr(i) + chr(p[0][i]) + chr(p[1][i]) + chr(p[2][i]) else: m.append(i) # Index of pixel to change m.append(p[0][i]) # Pixel red value m.append(p[1][i]) # Pixel green value m.append(p[2][i]) # Pixel blue value m = m if _is_python_2 else bytes(m) _sock.sendto(m, (config.UDP_IP, config.UDP_PORT)) _prev_pixels = np.copy(p) def _update_pi(): """Writes new LED values to the Raspberry Pi's LED strip Raspberry Pi uses the rpi_ws281x to control the LED strip directly. This function updates the LED strip with new values. """ global pixels, _prev_pixels # Truncate values and cast to integer pixels = np.clip(pixels, 0, 255).astype(int) # Optional gamma correction p = _gamma[pixels] if config.SOFTWARE_GAMMA_CORRECTION else np.copy(pixels) # Encode 24-bit LED values in 32 bit integers r = np.left_shift(p[0][:].astype(int), 8) g = np.left_shift(p[1][:].astype(int), 16) b = p[2][:].astype(int) rgb = np.bitwise_or(np.bitwise_or(r, g), b) # Update the pixels for i in range(config.N_PIXELS): # Ignore pixels if they haven't changed (saves bandwidth) if np.array_equal(p[:, i], _prev_pixels[:, i]): continue strip._led_data[i] = rgb[i] _prev_pixels = np.copy(p) strip.show() def RoundToOne(n): if n > 120: return 1 else: return 0 def _update_max7219(): """Updates the max 7219 chip """ global pixels, _prev_pixels # Truncate values and cast to integer pixels = np.clip(pixels, 0, 255).astype(int) # Optional gamma correction p = _gamma[pixels] if config.SOFTWARE_GAMMA_CORRECTION else np.copy(pixels) x = 0 y = 0 for i in range(config.N_PIXELS): with canvas(device) as draw: if p[1][i] > 64: draw.point((x,y),fill="white") x=x+1 if x == 8: x=0 y=y+1 def _update_test(): """Updates the max 7219 chip """ global pixels, _prev_pixels # Truncate values and cast to integer pixels = np.clip(pixels, 0, 255).astype(int) # Optional gamma correction p = _gamma[pixels] if config.SOFTWARE_GAMMA_CORRECTION else np.copy(pixels) # Encode 24-bit LED values in 32 bit integers r = np.left_shift(p[0][:].astype(int), 8) g = np.left_shift(p[1][:].astype(int), 16) b = p[2][:].astype(int) rgb = np.bitwise_or(np.bitwise_or(r, g), b) x = 0 y = 0 for i in range(config.N_PIXELS): if p[1][i] > 64: print(1,end='') else: print(0,end='') x=x+1 if x == 8: x=0 y=y+1 print(" ") def _update_blinkstick(): """Writes new LED values to the Blinkstick. This function updates the LED strip with new values. """ global pixels # Truncate values and cast to integer pixels = np.clip(pixels, 0, 255).astype(int) # Optional gamma correction p = _gamma[pixels] if config.SOFTWARE_GAMMA_CORRECTION else np.copy(pixels) # Read the rgb values r = p[0][:].astype(int) g = p[1][:].astype(int) b = p[2][:].astype(int) #create array in which we will store the led states newstrip = [None]*(config.N_PIXELS*3) for i in range(config.N_PIXELS): # blinkstick uses GRB format newstrip[i*3] = g[i] newstrip[i*3+1] = r[i] newstrip[i*3+2] = b[i] #send the data to the blinkstick stick.set_led_data(0, newstrip) def update(): """Updates the LED strip values""" if config.DEVICE == 'esp8266': _update_esp8266() elif config.DEVICE == 'pi': _update_pi() elif config.DEVICE == 'blinkstick': _update_blinkstick() elif config.DEVICE == 'max7219': _update_max7219() elif config.DEVICE == 'test': _update_test() else: raise ValueError('Invalid device selected') # Execute this file to run a LED strand test # If everything is working, you should see a red, green, and blue pixel scroll # across the LED strip continously if __name__ == '__main__': import time # Turn all pixels off pixels *= 0 pixels[0, 0] = 255 # Set 1st pixel red pixels[1, 1] = 255 # Set 2nd pixel green pixels[2, 2] = 255 # Set 3rd pixel blue print('Starting LED strand test') while True: pixels = np.roll(pixels, 1, axis=1) update() time.sleep(.1)
32.194805
79
0.627269
816a5b78b8ee254579b6831402b421fd89de43d4
1,617
py
Python
constants.py
deadrobots/Create-17
c90c985c75f5994e17b6b9e5f1754e582b2d1310
[ "MIT" ]
null
null
null
constants.py
deadrobots/Create-17
c90c985c75f5994e17b6b9e5f1754e582b2d1310
[ "MIT" ]
null
null
null
constants.py
deadrobots/Create-17
c90c985c75f5994e17b6b9e5f1754e582b2d1310
[ "MIT" ]
null
null
null
from wallaby import digital # Misc ALLOW_BUTTON_WAIT = False START_TIME = 0 CLONE_SWITCH = 9 IS_CLONE = digital(CLONE_SWITCH) IS_PRIME = not IS_CLONE STARTLIGHT = 2 FRONT_BUMPED = 0 # Tophats LEFT_TOPHAT = 0 RIGHT_TOPHAT = 5 THRESHOLD = 1500 # Servos SERVO_CLAW = 3 SERVO_ARM = 1 SERVO_HAY_SPIN = 2 SERVO_HAY_ARM = 0 #2 1569 #3 170 #1 Same for now # Motors Y_ARM = 0 HAY_MOTOR = 1 # Servo Values if IS_PRIME: ARM_OFFSET = -200 CLAW_OFFSET = 0 HAY_ARM_OFFSET = 0 HAY_SPIN_OFFSET = 0 else: ARM_OFFSET = -330 CLAW_OFFSET = 0 HAY_ARM_OFFSET = 0 HAY_SPIN_OFFSET = 80 ARM_BACK = 2000#2040 ARM_UP = 1647 + ARM_OFFSET ARM_DOWN = 475 + ARM_OFFSET ARM_DROP = 600 + ARM_OFFSET # if IS_CLONE: # ARM_BACK = 1600 CLAW_OPEN = 0 + CLAW_OFFSET CLAW_CLOSE = 2047 + CLAW_OFFSET HAY_ARM_FLAT = 1776 + HAY_ARM_OFFSET HAY_ARM_UP = 500 + HAY_ARM_OFFSET HAY_ARM_GATHER = 1900 + HAY_ARM_OFFSET HAY_ARM_STORE = 0 + HAY_ARM_OFFSET HAY_ARM_BARN = 1200 + HAY_ARM_OFFSET HAY_ARM_START = 170 + HAY_ARM_OFFSET HAY_ARM_START_BOX = 620 + HAY_ARM_OFFSET HAY_ARM_PICK_UP = 1900 + HAY_ARM_OFFSET HAY_ARM_PICK_DRIVE = 1820 + HAY_ARM_OFFSET # if IS_CLONE: # HAY_ARM_UP = 1270 HAY_SPIN_DRIVE = 1000 + HAY_SPIN_OFFSET HAY_SPIN_DELIVER = 2040 + HAY_SPIN_OFFSET HAY_SPIN_BARN = 0 # HAY_SPIN_BARN_CLONE = 250 + HAY_SPIN_OFFSET HAY_SPIN_START = 1570 + HAY_SPIN_OFFSET HAY_SPIN_PICK_UP = 800 + HAY_SPIN_OFFSET # if IS_CLONE: # HAY_SPIN_START = HAY_SPIN_DRIVE # Drive Info TURN_TIME = 0 # -20 # 0, 15, 40 if IS_CLONE: TURN_TIME = 40 seeding = True LOGFILE = "" # Leave empty ROBOT_NAME = "Create-17"
19.25
45
0.737168
aae54f0ed01ffd698276125639b4ed160db2db92
11,521
py
Python
datalad/distribution/create_sibling_github.py
psychoinformatics-de/datalad
7435edc1d3c73ae2254fa4bfcb8412a8de6d8d4c
[ "MIT" ]
null
null
null
datalad/distribution/create_sibling_github.py
psychoinformatics-de/datalad
7435edc1d3c73ae2254fa4bfcb8412a8de6d8d4c
[ "MIT" ]
null
null
null
datalad/distribution/create_sibling_github.py
psychoinformatics-de/datalad
7435edc1d3c73ae2254fa4bfcb8412a8de6d8d4c
[ "MIT" ]
null
null
null
# emacs: -*- mode: python; py-indent-offset: 4; tab-width: 4; indent-tabs-mode: nil -*- # ex: set sts=4 ts=4 sw=4 noet: # ## ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the datalad package for the # copyright and license terms. # # ## ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """High-level interface for creating a publication target on GitHub """ __docformat__ = 'restructuredtext' import logging import re import warnings from datalad.interface.base import ( build_doc, Interface, ) from datalad.interface.common_opts import ( recursion_flag, recursion_limit, publish_depends, ) from datalad.interface.results import get_status_dict from datalad.interface.utils import eval_results from datalad.support.param import Parameter from datalad.support.constraints import ( EnsureChoice, EnsureNone, EnsureStr, ) from datalad.distribution.dataset import ( datasetmethod, EnsureDataset, require_dataset, ) from datalad.distribution.siblings import Siblings lgr = logging.getLogger('datalad.distribution.create_sibling_github') def normalize_reponame(path): """Turn name (e.g. path) into a Github compliant repository name """ return re.sub(r'\s+', '_', re.sub(r'[/\\]+', '-', path)) @build_doc class CreateSiblingGithub(Interface): """Create dataset sibling on GitHub. An existing GitHub project, or a project created via the GitHub website can be configured as a sibling with the :command:`siblings` command. Alternatively, this command can create a repository under a user's GitHub account, or any organization a user is a member of (given appropriate permissions). This is particularly helpful for recursive sibling creation for subdatasets. In such a case, a dataset hierarchy is represented as a flat list of GitHub repositories. GitHub cannot host dataset content (but LFS special remote could be used, http://handbook.datalad.org/r.html?LFS). However, in combination with other data sources (and siblings), publishing a dataset to GitHub can facilitate distribution and exchange, while still allowing any dataset consumer to obtain actual data content from alternative sources. For GitHub authentication a personal access token is needed. Such a token can be generated by visiting https://github.com/settings/tokens or navigating via GitHub Web UI through: Settings -> Developer settings -> Personal access tokens. We will first consult Git configuration *hub.oauthtoken* for tokens possibly available there, and then from the system credential store. If you provide [PY: `github_login` PY][CMD: --github-login NAME CMD], we will consider only tokens associated with that GitHub login from *hub.oauthtoken*, and store/check the token in credential store as associated with that specific login name. """ _params_ = dict( dataset=Parameter( args=("--dataset", "-d",), doc="""specify the dataset to create the publication target for. If no dataset is given, an attempt is made to identify the dataset based on the current working directory""", constraints=EnsureDataset() | EnsureNone()), reponame=Parameter( args=('reponame',), metavar='REPONAME', doc="""GitHub repository name. When operating recursively, a suffix will be appended to this name for each subdataset""", constraints=EnsureStr()), recursive=recursion_flag, recursion_limit=recursion_limit, name=Parameter( args=('-s', '--name',), metavar='NAME', doc="""name to represent the GitHub repository in the local dataset installation""", constraints=EnsureStr()), existing=Parameter( args=("--existing",), constraints=EnsureChoice('skip', 'error', 'reconfigure', 'replace'), metavar='MODE', doc="""desired behavior when already existing or configured siblings are discovered. In this case, a dataset can be skipped ('skip'), the sibling configuration be updated ('reconfigure'), or process interrupts with error ('error'). DANGER ZONE: If 'replace' is used, an existing github repository will be irreversibly removed, re-initialized, and the sibling (re-)configured (thus implies 'reconfigure'). `replace` could lead to data loss, so use with care. To minimize possibility of data loss, in interactive mode DataLad will ask for confirmation, but it would raise an exception in non-interactive mode. """,), github_login=Parameter( args=('--github-login',), constraints=EnsureStr() | EnsureNone(), metavar='NAME', doc="""GitHub user name or access token"""), github_organization=Parameter( args=('--github-organization',), constraints=EnsureStr() | EnsureNone(), metavar='NAME', doc="""If provided, the repository will be created under this GitHub organization. The respective GitHub user needs appropriate permissions."""), access_protocol=Parameter( args=("--access-protocol",), constraints=EnsureChoice('https', 'ssh'), doc="""Which access protocol/URL to configure for the sibling"""), publish_depends=publish_depends, private=Parameter( args=("--private",), action="store_true", default=False, doc="""If this flag is set, the repository created on github will be marked as private and only visible to those granted access or by membership of a team/organization/etc. """), dry_run=Parameter( args=("--dry-run",), action="store_true", doc="""If this flag is set, no repositories will be created. Instead tests for name collisions with existing projects will be performed, and would-be repository names are reported for all relevant datasets"""), dryrun=Parameter( args=("--dryrun",), action="store_true", doc="""Deprecated. Use the renamed [CMD: --dry-run CMD][PY: `dry_run` PY] parameter"""), ) @staticmethod @datasetmethod(name='create_sibling_github') @eval_results def __call__( reponame, dataset=None, recursive=False, recursion_limit=None, name='github', existing='error', github_login=None, github_organization=None, access_protocol='https', publish_depends=None, private=False, dryrun=False, dry_run=False): if dryrun and not dry_run: # the old one is used, and not in agreement with the new one warnings.warn( "datalad-create-sibling-github's `dryrun` option is " "deprecated and will be removed in a future release, " "use the renamed `dry_run/--dry-run` option instead.", DeprecationWarning) dry_run = dryrun # this is an absolute leaf package, import locally to avoid # unnecessary dependencies from datalad.support.github_ import _make_github_repos_ if reponame != normalize_reponame(reponame): raise ValueError('Invalid name for a GitHub project: {}'.format( reponame)) # what to operate on ds = require_dataset( dataset, check_installed=True, purpose='create GitHub sibling(s)') res_kwargs = dict( action='create_sibling_github [dry-run]' if dry_run else 'create_sibling_github', logger=lgr, refds=ds.path, ) # gather datasets and essential info # dataset instance and mountpoint relative to the top toprocess = [ds] if recursive: for sub in ds.subdatasets( fulfilled=None, # we want to report on missing dataset in here recursive=recursive, recursion_limit=recursion_limit, result_xfm='datasets'): if not sub.is_installed(): lgr.info('Ignoring unavailable subdataset %s', sub) continue toprocess.append(sub) # check for existing remote configuration filtered = [] for d in toprocess: if name in d.repo.get_remotes(): yield get_status_dict( ds=d, status='error' if existing == 'error' else 'notneeded', message=('already has a configured sibling "%s"', name), **res_kwargs) continue gh_reponame = reponame if d == ds else \ '{}-{}'.format( reponame, normalize_reponame(str(d.pathobj.relative_to(ds.pathobj)))) filtered.append((d, gh_reponame)) if not filtered: # all skipped return # actually make it happen on GitHub for res in _make_github_repos_( github_login, github_organization, filtered, existing, access_protocol, private, dry_run): # blend reported results with standard properties res = dict( res, **res_kwargs) if 'message' not in res: res['message'] = ("Dataset sibling '%s', project at %s", name, res['url']) # report to caller yield get_status_dict(**res) if res['status'] not in ('ok', 'notneeded'): # something went wrong, do not proceed continue # lastly configure the local datasets if not dry_run: extra_remote_vars = { # first make sure that annex doesn't touch this one # but respect any existing config 'annex-ignore': 'true', # first push should separately push active branch first # to overcome github issue of choosing "default" branch # alphabetically if its name does not match the default # branch for the user (or organization) which now defaults # to "main" 'datalad-push-default-first': 'true' } for var_name, var_value in extra_remote_vars.items(): var = 'remote.{}.{}'.format(name, var_name) if var not in d.config: d.config.add(var, var_value, where='local') yield from Siblings()( 'configure', dataset=d, name=name, url=res['url'], recursive=False, # TODO fetch=True, maybe only if one existed already publish_depends=publish_depends, result_renderer='disabled') # TODO let submodule URLs point to GitHub (optional)
41.442446
90
0.588143
4be32c9cff0e5dbf1af563bfa8c53555adceb91c
2,185
py
Python
core/error.py
ykomashiro/gd-backup
02d2513345a666aec131e94411b5f4c177fbe6ec
[ "MIT" ]
1
2020-12-11T04:13:20.000Z
2020-12-11T04:13:20.000Z
core/error.py
ykomashiro/gd-backup
02d2513345a666aec131e94411b5f4c177fbe6ec
[ "MIT" ]
null
null
null
core/error.py
ykomashiro/gd-backup
02d2513345a666aec131e94411b5f4c177fbe6ec
[ "MIT" ]
null
null
null
import logging import logging.config import os import threading import yaml def synchronized(func): func.__lock__ = threading.Lock() def lock_func(*args, **kwargs): with func.__lock__: return func(*args, **kwargs) return lock_func class LogSingleton(object): instance = None def __init__(self): LogSingleton.setup_logging() self.logger = logging.getLogger("logger") def info(self, msg: str): self.logger.info(msg) def warning(self, msg: str): self.logger.warning(msg) def error(self, msg: str): self.logger.error(msg) def critical(self, msg: str): self.logger.critical(msg) @staticmethod def setup_logging(default_path="data/log.yaml", default_level=logging.INFO, env_key="LOG_CFG"): path = default_path value = os.getenv(env_key, None) if value: path = value if os.path.exists(path): with open(path, "r") as f: config = yaml.load(f, Loader=yaml.FullLoader) logging.config.dictConfig(config) @synchronized def __new__(cls, *args, **kwargs): """ :type kwargs: object """ if cls.instance is None: cls.instance = super().__new__(cls) return cls.instance class RuntimeException(Exception): def __init__(self, code=-1, message="unknown error", description="unknown error"): self.code_ = code self.message_ = message self.description_ = description self.__write_log() def __repr__(self): text = f">>{self.code_} >>{self.message_} >>{self.description_}" return text def __str__(self): text = f">>{self.code_} >>{self.message_} >>{self.description_}" return text def __write_log(self): text = f">>{self.code_} >>{self.message_} >>{self.description_}" logger = LogSingleton() logger.error(text) if __name__ == "__main__": try: raise RuntimeException() except RuntimeException as e: print(e)
24.550562
72
0.577574
12f7a3ce5186ac63f9cb24543fa28cbce8a64e51
12,920
py
Python
mars/scheduler/assigner.py
wdkwyf/mars
3f750e360e64380eab779301a5103994d4886b6a
[ "Apache-2.0" ]
null
null
null
mars/scheduler/assigner.py
wdkwyf/mars
3f750e360e64380eab779301a5103994d4886b6a
[ "Apache-2.0" ]
null
null
null
mars/scheduler/assigner.py
wdkwyf/mars
3f750e360e64380eab779301a5103994d4886b6a
[ "Apache-2.0" ]
null
null
null
# Copyright 1999-2018 Alibaba Group Holding Ltd. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy import heapq import logging import os import random import sys import time from collections import defaultdict from .. import promise from ..config import options from ..errors import DependencyMissing from ..utils import log_unhandled from .resource import ResourceActor from .utils import SchedulerActor logger = logging.getLogger(__name__) class ChunkPriorityItem(object): """ Class providing an order for operands for assignment """ def __init__(self, session_id, op_key, op_info, callback): self._op_key = op_key self._session_id = session_id self._op_info = op_info self._target_worker = op_info.get('target_worker') self._callback = callback self._priority = () self.update_priority(op_info['optimize']) def update_priority(self, priority_data, copyobj=False): obj = self if copyobj: obj = copy.deepcopy(obj) priorities = [] priorities.extend([ priority_data.get('depth', 0), priority_data.get('demand_depths', ()), -priority_data.get('successor_size', 0), -priority_data.get('placement_order', 0), priority_data.get('descendant_size'), ]) obj._priority = tuple(priorities) return obj @property def session_id(self): return self._session_id @property def op_key(self): return self._op_key @property def target_worker(self): return self._target_worker @target_worker.setter def target_worker(self, value): self._target_worker = value @property def callback(self): return self._callback @property def op_info(self): return self._op_info def __repr__(self): return '<ChunkPriorityItem(%s(%s))>' % (self.op_key, self.op_info['op_name']) def __lt__(self, other): return self._priority > other._priority class AssignerActor(SchedulerActor): """ Actor handling worker assignment requests from operands. Note that this actor does not assign workers itself. """ @staticmethod def gen_uid(session_id): return 's:h1:assigner$%s' % session_id def __init__(self): super(AssignerActor, self).__init__() self._requests = dict() self._req_heap = [] self._cluster_info_ref = None self._actual_ref = None self._resource_ref = None self._worker_metrics = None # since worker metrics does not change frequently, we update it # only when it is out of date self._worker_metric_time = 0 def post_create(self): logger.debug('Actor %s running in process %d', self.uid, os.getpid()) self.set_cluster_info_ref() # the ref of the actor actually handling assignment work session_id = self.uid.rsplit('$', 1)[-1] self._actual_ref = self.ctx.create_actor(AssignEvaluationActor, self.ref(), uid=AssignEvaluationActor.gen_uid(session_id)) self._resource_ref = self.get_actor_ref(ResourceActor.default_uid()) def pre_destroy(self): self._actual_ref.destroy() def allocate_top_resources(self): self._actual_ref.allocate_top_resources(_tell=True) def mark_metrics_expired(self): logger.debug('Metrics cache marked as expired.') self._worker_metric_time = 0 self._actual_ref.mark_metrics_expired(_tell=True) def _refresh_worker_metrics(self): t = time.time() if self._worker_metrics is None or self._worker_metric_time + 1 < time.time(): # update worker metrics from ResourceActor self._worker_metrics = self._resource_ref.get_workers_meta() self._worker_metric_time = t def filter_alive_workers(self, workers, refresh=False): if refresh: self._refresh_worker_metrics() return [w for w in workers if w in self._worker_metrics] if self._worker_metrics else [] @promise.reject_on_exception @log_unhandled def apply_for_resource(self, session_id, op_key, op_info, callback=None): """ Register resource request for an operand :param session_id: session id :param op_key: operand key :param op_info: operand information, should be a dict :param callback: promise callback, called when the resource is assigned """ self._refresh_worker_metrics() priority_item = ChunkPriorityItem(session_id, op_key, op_info, callback) if priority_item.target_worker not in self._worker_metrics: priority_item.target_worker = None self._requests[op_key] = priority_item heapq.heappush(self._req_heap, priority_item) self._actual_ref.allocate_top_resources(_tell=True) @log_unhandled def update_priority(self, op_key, priority_data): """ Update priority data for an operand. The priority item will be pushed into priority queue again. :param op_key: operand key :param priority_data: new priority data """ if op_key not in self._requests: return obj = self._requests[op_key].update_priority(priority_data, copyobj=True) heapq.heappush(self._req_heap, obj) @log_unhandled def remove_apply(self, op_key): """ Cancel request for an operand :param op_key: operand key """ if op_key in self._requests: del self._requests[op_key] def pop_head(self): """ Pop and obtain top-priority request from queue :return: top item """ item = None while self._req_heap: item = heapq.heappop(self._req_heap) if item.op_key in self._requests: # use latest request item item = self._requests[item.op_key] break else: item = None return item def extend(self, items): """ Extend heap by an iterable object. The heap will be reheapified. :param items: priority items """ self._req_heap.extend(items) heapq.heapify(self._req_heap) class AssignEvaluationActor(SchedulerActor): """ Actor assigning operands to workers """ @classmethod def gen_uid(cls, session_id): return 's:0:%s$%s' % (cls.__name__, session_id) def __init__(self, assigner_ref): super(AssignEvaluationActor, self).__init__() self._worker_metrics = None self._worker_metric_time = time.time() - 2 self._cluster_info_ref = None self._assigner_ref = assigner_ref self._resource_ref = None self._sufficient_operands = set() self._operand_sufficient_time = dict() def post_create(self): logger.debug('Actor %s running in process %d', self.uid, os.getpid()) self.set_cluster_info_ref() self._assigner_ref = self.ctx.actor_ref(self._assigner_ref) self._resource_ref = self.get_actor_ref(ResourceActor.default_uid()) self.periodical_allocate() def mark_metrics_expired(self): logger.debug('Metrics cache marked as expired.') self._worker_metric_time = 0 def periodical_allocate(self): self.allocate_top_resources() self.ref().periodical_allocate(_tell=True, _delay=0.5) def allocate_top_resources(self): """ Allocate resources given the order in AssignerActor """ t = time.time() if self._worker_metrics is None or self._worker_metric_time + 1 < time.time(): # update worker metrics from ResourceActor self._worker_metrics = self._resource_ref.get_workers_meta() self._worker_metric_time = t if not self._worker_metrics: return unassigned = [] reject_workers = set() # the assigning procedure will continue till while len(reject_workers) < len(self._worker_metrics): item = self._assigner_ref.pop_head() if not item: break try: alloc_ep, rejects = self._allocate_resource( item.session_id, item.op_key, item.op_info, item.target_worker, reject_workers=reject_workers, callback=item.callback) except: # noqa: E722 logger.exception('Unexpected error occurred in %s', self.uid) self.tell_promise(item.callback, *sys.exc_info(), **dict(_accept=False)) continue # collect workers failed to assign operand to reject_workers.update(rejects) if alloc_ep: # assign successfully, we remove the application self._assigner_ref.remove_apply(item.op_key) else: # put the unassigned item into unassigned list to add back to the queue later unassigned.append(item) if unassigned: # put unassigned back to the queue, if any self._assigner_ref.extend(unassigned) @log_unhandled def _allocate_resource(self, session_id, op_key, op_info, target_worker=None, reject_workers=None, callback=None): """ Allocate resource for single operand :param session_id: session id :param op_key: operand key :param op_info: operand info dict :param target_worker: worker to allocate, can be None :param reject_workers: workers denied to assign to :param callback: promise callback from operands """ if target_worker not in self._worker_metrics: target_worker = None reject_workers = reject_workers or set() op_io_meta = op_info['io_meta'] try: input_metas = op_io_meta['input_data_metas'] input_data_keys = list(input_metas.keys()) input_sizes = dict((k, v.chunk_size) for k, v in input_metas.items()) except KeyError: input_data_keys = op_io_meta['input_chunks'] input_metas = self._get_chunks_meta(session_id, input_data_keys) if any(m is None for m in input_metas.values()): raise DependencyMissing('Dependency missing for operand %s' % op_key) input_sizes = dict((k, meta.chunk_size) for k, meta in input_metas.items()) if target_worker is None: who_has = dict((k, meta.workers) for k, meta in input_metas.items()) candidate_workers = self._get_eps_by_worker_locality(input_data_keys, who_has, input_sizes) else: candidate_workers = [target_worker] candidate_workers = [w for w in candidate_workers if w not in reject_workers] if not candidate_workers: return None, [] # todo make more detailed allocation plans alloc_dict = dict(cpu=options.scheduler.default_cpu_usage, memory=sum(input_sizes.values())) rejects = [] for worker_ep in candidate_workers: if self._resource_ref.allocate_resource(session_id, op_key, worker_ep, alloc_dict): logger.debug('Operand %s(%s) allocated to run in %s', op_key, op_info['op_name'], worker_ep) self.tell_promise(callback, worker_ep, input_sizes) return worker_ep, rejects rejects.append(worker_ep) return None, rejects def _get_chunks_meta(self, session_id, keys): return dict(zip(keys, self.chunk_meta.batch_get_chunk_meta(session_id, keys))) def _get_eps_by_worker_locality(self, input_keys, chunk_workers, input_sizes): locality_data = defaultdict(lambda: 0) for k in input_keys: if k in chunk_workers: for ep in chunk_workers[k]: locality_data[ep] += input_sizes[k] workers = list(self._worker_metrics.keys()) random.shuffle(workers) max_locality = -1 max_eps = [] for ep in workers: if locality_data[ep] > max_locality: max_locality = locality_data[ep] max_eps = [ep] elif locality_data[ep] == max_locality: max_eps.append(ep) return max_eps
35.20436
118
0.641486
121cd448f86b4f1d0e8b5865b5282f4a2fbeb2d1
10,789
py
Python
l5kit/l5kit/tests/evaluation/metrics_test.py
cdicle-motional/l5kit
4dc4ee5391479bb71f0b373f39c316f9eef5a961
[ "Apache-2.0" ]
1
2021-12-04T17:48:53.000Z
2021-12-04T17:48:53.000Z
l5kit/l5kit/tests/evaluation/metrics_test.py
cdicle-motional/l5kit
4dc4ee5391479bb71f0b373f39c316f9eef5a961
[ "Apache-2.0" ]
null
null
null
l5kit/l5kit/tests/evaluation/metrics_test.py
cdicle-motional/l5kit
4dc4ee5391479bb71f0b373f39c316f9eef5a961
[ "Apache-2.0" ]
1
2021-11-19T08:13:46.000Z
2021-11-19T08:13:46.000Z
import numpy as np import pytest import torch from l5kit.evaluation.metrics import (_assert_shapes, average_displacement_error_mean, average_displacement_error_oracle, CollisionType, detect_collision, distance_to_reference_trajectory, final_displacement_error_mean, final_displacement_error_oracle, neg_multi_log_likelihood, prob_true_mode, rmse, time_displace) from l5kit.planning.utils import _get_bounding_box, _get_sides, within_range def test_assert_shapes() -> None: num_modes, future_len, num_coords = 4, 12, 2 gt = np.random.randn(future_len, num_coords) pred = np.random.randn(num_modes, future_len, num_coords) avail = np.ones(future_len) conf = np.random.rand(num_modes) conf /= np.sum(conf, axis=-1, keepdims=True) # test un-normalised conf with pytest.raises(AssertionError): conf_un = np.random.rand(4) _assert_shapes(gt, pred, conf_un, avail) # test single pred with no axis with pytest.raises(AssertionError): _assert_shapes(gt, pred[0], conf, avail) # NLL shape must be () assert neg_multi_log_likelihood(gt, pred, conf, avail).shape == () # RMSE shape must be () assert rmse(gt, pred, conf, avail).shape == () # prob_true_mode shape must be (M) assert prob_true_mode(gt, pred, conf, avail).shape == (num_modes,) # displace_t shape must be (T) assert time_displace(gt, pred, conf, avail).shape == (future_len,) def test_neg_multi_log_likelihood_known_results() -> None: # below M=2, T=3, C=1 and CONF=[1,1,1] num_modes, future_len, num_coords = 2, 3, 1 avail = np.ones(future_len) gt = np.zeros((future_len, num_coords)) pred = np.zeros((num_modes, future_len, num_coords)) pred[0] = [[0], [0], [0]] pred[1] = [[10], [10], [10]] # single mode, one 100% right confs = np.asarray((1, 0)) assert np.allclose(neg_multi_log_likelihood(gt, pred, confs, avail), 0) assert np.allclose(rmse(gt, pred, confs, avail), 0) # two equal modes, one 100% right confs = np.asarray((0.5, 0.5)) assert np.allclose(neg_multi_log_likelihood(gt, pred, confs, avail), 0.69314, atol=1e-4) assert np.allclose(rmse(gt, pred, confs, avail), np.sqrt(2 * 0.69314 / future_len), atol=1e-4) # two equal modes, answer in between gt = np.full((future_len, num_coords), 5) confs = np.asarray((0.5, 0.5)) assert np.allclose(neg_multi_log_likelihood(gt, pred, confs, avail), 37.5, atol=1e-4) assert np.allclose(rmse(gt, pred, confs, avail), np.sqrt(2 * 37.5 / future_len), atol=1e-4) # two modes, one 50% right = answer in between gt = np.full((future_len, num_coords), 5) confs = np.asarray((1, 0)) assert np.allclose(neg_multi_log_likelihood(gt, pred, confs, avail), 37.5, atol=1e-4) assert np.allclose(rmse(gt, pred, confs, avail), np.sqrt(2 * 37.5 / future_len), atol=1e-4) # Example 5 gt = np.zeros((future_len, num_coords)) gt[1, 0] = 10 confs = np.asarray((1, 0)) assert np.allclose(neg_multi_log_likelihood(gt, pred, confs, avail), 50, atol=1e-4) assert np.allclose(rmse(gt, pred, confs, avail), np.sqrt(2 * 50 / future_len), atol=1e-4) # Example 6 gt = np.zeros((future_len, num_coords)) gt[1, 0] = 10 confs = np.asarray((0.5, 0.5)) assert np.allclose(neg_multi_log_likelihood(gt, pred, confs, avail), 50.6931, atol=1e-4) assert np.allclose(rmse(gt, pred, confs, avail), np.sqrt(2 * 50.6931 / future_len), atol=1e-4) # Test overflow resistance in two situations confs = np.asarray((0.5, 0.5)) pred[0] = [[1000], [1000], [1000]] pred[1] = [[1000], [1000], [1000]] gt = np.zeros((future_len, num_coords)) assert not np.isinf(neg_multi_log_likelihood(gt, pred, confs, avail)) assert not np.isinf(rmse(gt, pred, confs, avail)) # this breaks also max-version if confidence is not included in exp confs = np.asarray((1.0, 0.0)) pred[0] = [[100000], [1000], [1000]] pred[1] = [[1000], [1000], [1000]] gt = np.zeros((future_len, num_coords)) assert not np.isinf(neg_multi_log_likelihood(gt, pred, confs, avail)) assert not np.isinf(rmse(gt, pred, confs, avail)) def test_other_metrics_known_results() -> None: gt = np.asarray([[50, 0], [50, 0], [50, 0]]) avail = np.ones(3) pred = np.asarray([[[50, 0], [50, 0], [50, 0]], [[100, 100], [100, 100], [100, 100]]]) confs = np.asarray((0.5, 0.5)) assert np.allclose(prob_true_mode(gt, pred, confs, avail), (1.0, 0.0)) assert np.allclose(time_displace(gt, pred, confs, avail), (0.0, 0.0, 0.0)) pred = np.asarray([[[52, 0], [52, 0], [52, 0]], [[49, 0], [51, 0], [50, 2]]]) confs = np.asarray((0.1, 0.9)) assert np.allclose(prob_true_mode(gt, pred, confs, avail), (0.0055, 0.9944), atol=1e-4) assert np.allclose(time_displace(gt, pred, confs, avail), (1.0055, 1.0055, 2.0), atol=1e-4) def test_ade_fde_known_results() -> None: # below M=2, T=3, C=1 and CONF=[1,1,1] num_modes, future_len, num_coords = 2, 3, 1 avail = np.ones(future_len) gt = np.zeros((future_len, num_coords)) pred = np.zeros((num_modes, future_len, num_coords)) pred[0] = [[0], [0], [0]] pred[1] = [[1], [2], [3]] # Confidences do not matter here. confs = np.asarray((0.5, 0.5)) assert np.allclose(average_displacement_error_mean(gt, pred, confs, avail), 1) assert np.allclose(average_displacement_error_oracle(gt, pred, confs, avail), 0) assert np.allclose(final_displacement_error_mean(gt, pred, confs, avail), 1.5) assert np.allclose(final_displacement_error_oracle(gt, pred, confs, avail), 0) gt = np.full((future_len, num_coords), 0.5) assert np.allclose(average_displacement_error_mean(gt, pred, confs, avail), 1.0) assert np.allclose(average_displacement_error_oracle(gt, pred, confs, avail), 0.5) assert np.allclose(final_displacement_error_mean(gt, pred, confs, avail), 1.5) assert np.allclose(final_displacement_error_oracle(gt, pred, confs, avail), 0.5) def test_within_range() -> None: # Fixture: overlapping ego and agent ego_centroid = np.array([[10., 10.]]) ego_extent = np.array([[5.0, 2.0, 2.0]]) agent_centroid = np.array([[10.0, 10.0]]) agent_extent = np.array([[5., 2., 2.]]) # Ovelarpping ego and agent should be within range assert within_range(ego_centroid, ego_extent, agent_centroid, agent_extent) # The contrary is also true assert within_range(agent_centroid, agent_extent, ego_centroid, ego_extent) # Agent is far from the ego, not within range assert not within_range(ego_centroid, ego_extent, agent_centroid + 1000.0, agent_extent) # Repeat dimension (10, D) num_repeat = 10 ego_centroid = ego_centroid.repeat(num_repeat, axis=0) ego_extent = ego_extent.repeat(num_repeat, axis=0) agent_centroid = agent_centroid.repeat(num_repeat, axis=0) agent_extent = agent_extent.repeat(num_repeat, axis=0) truth_value = within_range(ego_centroid, ego_extent, agent_centroid, agent_extent) assert len(truth_value) == num_repeat assert truth_value.all() # Only half not within range ego_centroid[5:, :] += 1000.0 truth_value = within_range(ego_centroid, ego_extent, agent_centroid, agent_extent) assert len(truth_value) == num_repeat assert np.count_nonzero(truth_value) == 5 def test_get_bounding_box() -> None: agent_centroid = np.array([10., 10.]) agent_extent = np.array([5.0, 2.0, 2.0]) agent_yaw = 1.0 bbox = _get_bounding_box(agent_centroid, agent_yaw, agent_extent) # Check centroid coordinates and other preoperties of the polygon assert np.allclose(bbox.centroid.coords, agent_centroid) assert np.allclose(bbox.area, 10.0) assert not bbox.is_empty assert bbox.is_valid def test_get_sides() -> None: agent_centroid = np.array([10., 10.]) agent_extent = np.array([5.0, 2.0, 2.0]) agent_yaw = 1.0 bbox = _get_bounding_box(agent_centroid, agent_yaw, agent_extent) front, rear, left, right = _get_sides(bbox) # The parallel offset of s1 should be the same as s2 coords_parallel_s1 = np.array(front.parallel_offset(agent_extent[0], 'right').coords) coords_s2 = np.array(rear.coords) assert np.allclose(coords_s2, coords_parallel_s1) # One side shouldn't touch the other parallel side assert not front.touches(rear) # .. but should touch other ortoghonal assert front.touches(left) assert front.touches(right) assert np.allclose(left.length, agent_extent[0]) assert np.allclose(right.length, agent_extent[0]) assert np.allclose(front.length, agent_extent[1]) assert np.allclose(rear.length, agent_extent[1]) def test_detect_collision() -> None: pred_centroid = np.array([0.0, 0.0]) pred_yaw = np.array([1.0]) pred_extent = np.array([5., 2., 2.]) target_agents_dtype = np.dtype([('centroid', '<f8', (2,)), ('extent', '<f4', (3,)), ('yaw', '<f4'), ('track_id', '<u8')]) target_agents = np.array([ ([1000.0, 1000.0], [5., 2., 2.], 1.0, 1), # Not in range ([0., 0.], [5., 2., 2.], 1.0, 2), # In range ([0., 0.], [5., 2., 2.], 1.0, 3), # In range ], dtype=target_agents_dtype) collision = detect_collision(pred_centroid, pred_yaw, pred_extent, target_agents) assert collision == (CollisionType.SIDE, 2) target_agents = np.array([ ([1000.0, 1000.0], [5., 2., 2.], 1.0, 1), ], dtype=target_agents_dtype) collision = detect_collision(pred_centroid, pred_yaw, pred_extent, target_agents) assert collision is None @pytest.mark.parametrize("device", ["cpu", "cuda"]) def test_distance_to_reference_trajectory(device: str) -> None: if device == "cuda" and not torch.cuda.is_available(): pytest.skip("requires CUDA") # [batch_size, 2] pred_centroid = torch.tensor([[1, 0], [1, 1], [1.5, 2]], dtype=torch.float32, device=device) # [batch_size, num_timestamps, 2] ref_traj = torch.tensor([[[0, 0], [1, 0], [2, 0], [3, 0]], [[0, 0], [1, 0], [2, 0], [3, 0]], [[0, 3], [1, 3], [2, 3], [3, 3]]], dtype=torch.float32, device=device) # [batch_size,] distance = distance_to_reference_trajectory(pred_centroid, ref_traj) expected_distance = torch.tensor([0, 1, 1.11803], dtype=torch.float32, device=device) assert torch.allclose(distance, expected_distance, atol=1e-4)
39.811808
118
0.640467
508c810ab44598fb3c1164e772a97e5433629d51
2,612
py
Python
subastas_repo/personas/views.py
diegoduncan21/subastas
3bae0c9bbb90ad93688b91d6e86bcc64215c0125
[ "BSD-3-Clause" ]
null
null
null
subastas_repo/personas/views.py
diegoduncan21/subastas
3bae0c9bbb90ad93688b91d6e86bcc64215c0125
[ "BSD-3-Clause" ]
null
null
null
subastas_repo/personas/views.py
diegoduncan21/subastas
3bae0c9bbb90ad93688b91d6e86bcc64215c0125
[ "BSD-3-Clause" ]
null
null
null
from django.contrib import messages from django.contrib.auth.decorators import login_required from django.core.urlresolvers import reverse_lazy from django.views.generic import CreateView from django.views.generic import DeleteView from django.views.generic import ListView from django.views.generic import UpdateView from django.shortcuts import get_object_or_404, render, redirect from braces.views import LoginRequiredMixin from personas.forms import ProfesionalForm from subastas.forms import InscriptionForm from subastas.models import Subasta from .models import Persona, Profesional @login_required def asociar(request, subasta_id): subasta = get_object_or_404(Subasta, pk=subasta_id) if request.method == "POST": form = InscriptionForm(request.POST, instance=subasta) if form.is_valid(): personas = form.cleaned_data.get('personas') subasta.personas.add(*personas) msg = 'Usuarios agregados exitosamente.' else: msg = 'No tiene personas tildadas.' messages.add_message(request, messages.INFO, msg) return redirect(reverse_lazy('subastas:acreditadores')+'?tab=search') @login_required def desasociar(request, subasta_id, persona_id): subasta = get_object_or_404(Subasta, pk=subasta_id) persona = get_object_or_404(Persona, pk=persona_id) subasta.personas.remove(persona) messages.add_message(request, messages.INFO, 'Se borro la inscripcion exitosamente.') return redirect(reverse_lazy('subastas:acreditadores')+'?tab=search') class ProfesionalListView(LoginRequiredMixin, ListView): model = Profesional template_name = 'personas/profesionales/list.html' def get_queryset(self): return Profesional.objects.all().order_by('titulo') class ProfesionalCreateView(LoginRequiredMixin, CreateView): form_class = ProfesionalForm model = Profesional template_name = 'personas/profesionales/form.html' success_url = reverse_lazy('personas:profesionales_list') class ProfesionalUpdateView(LoginRequiredMixin, UpdateView): context_object_name = 'instance' form_class = ProfesionalForm model = Profesional template_name = 'personas/profesionales/form.html' success_url = reverse_lazy('personas:profesionales_list') class ProfesionalDeleteView(LoginRequiredMixin, DeleteView): model = Profesional template_name = 'personas/profesionales/confirm_delete.html' success_url = reverse_lazy('personas:profesionales_list')
35.780822
73
0.737366
11ab84b872f8ffdb6b635eb6f4fbd6192888e39b
228
py
Python
chart/models.py
Dev-Briann/tutorials
01faee527b869d7b3ca4393f194fd715e9325d10
[ "MIT" ]
null
null
null
chart/models.py
Dev-Briann/tutorials
01faee527b869d7b3ca4393f194fd715e9325d10
[ "MIT" ]
null
null
null
chart/models.py
Dev-Briann/tutorials
01faee527b869d7b3ca4393f194fd715e9325d10
[ "MIT" ]
null
null
null
from django.db import models class SalesRecords(models.Model): month = models.IntegerField() sales = models.DecimalField(max_digits=5, decimal_places=1) expenses = models.DecimalField(max_digits=5, decimal_places=1)
38
66
0.77193
83f39f1971833d9baede06e20e95a4f7bb985a47
11,793
py
Python
dithermaker.py
deapplegate/wtgpipeline
9693e8562022cc97bf5a96427e22965e1a5e8497
[ "MIT" ]
1
2019-03-15T04:01:19.000Z
2019-03-15T04:01:19.000Z
dithermaker.py
deapplegate/wtgpipeline
9693e8562022cc97bf5a96427e22965e1a5e8497
[ "MIT" ]
5
2017-12-11T00:11:39.000Z
2021-07-09T17:05:16.000Z
dithermaker.py
deapplegate/wtgpipeline
9693e8562022cc97bf5a96427e22965e1a5e8497
[ "MIT" ]
2
2017-08-15T21:19:11.000Z
2017-10-12T00:36:35.000Z
#!/usr/bin/env python ####################### # Script to take center RA/DEC location & generate dithered offsets # for baseline project exposures ######################## ### History: ## 2014/07/21 rgm: take out "coordinates": "absolute", ## which we are told is invalid. ## 2014/07/25 rgm: fix --disableoutrigger; add argv to end of config import sys, argparse, random, numpy as np import json, math ######################## def generateMainDithers(nexp, dithersize): if nexp == 0: return [] exp_offsets = [(0., 0.)] if nexp == 1: return exp_offsets OneOffsetPositive = True OneOffsetCount = 0 IndexPositive = True IndexCount = 1 IndexOffsetLeft = True for i in range(1, nexp): IndexOffset = i if not IndexPositive: IndexOffset = -i OneOffset = 1 if not OneOffsetPositive: OneOffset = -1 if IndexOffsetLeft: exp_offsets.append((IndexOffset*dithersize, OneOffset*dithersize)) else: exp_offsets.append((OneOffset*dithersize, IndexOffset*dithersize)) IndexOffsetLeft = not IndexOffsetLeft OneOffsetCount += 1 if OneOffsetCount == 2: OneOffsetPositive = not OneOffsetPositive OneOffsetCount = 0 IndexCount += 1 if IndexCount == 2: IndexPositive = not IndexPositive IndexCount = 0 return exp_offsets ######################## def absolutePointings(ra, dec, exp_offsets): cum_offsets = [] ra = ra dec = dec for offset in exp_offsets: ra += (offset[0]/3600.)/np.cos(dec*np.pi/180.) dec += (offset[1]/3600.) cum_offsets.append((ra, dec)) return cum_offsets ######################## def generateOutriggers(ra, dec, outriggersize): exp_positions = [] posangle = random.uniform(0, 360) for i in range(3): angle = (posangle + i*(360/3.))*(np.pi/180.) exp_positions.append( (ra + outriggersize*np.cos(angle)/np.cos(dec*np.pi/180.), dec + outriggersize*np.sin(angle)) ) return exp_positions ######################## def writeExposures(output, exposures): json_string = json.dumps(exposures, sort_keys = True, indent=4) output.write(json_string) ####################### def countTime(exposures, overhead): nexp = len(exposures) if nexp == 0: return 0, 0 imagetime = reduce(lambda x,y:x+y, [x['expTime'] for x in exposures if 'break' not in x]) totaltime = imagetime + nexp*overhead return imagetime, totaltime ######################## def createScript(args): output = open(args.scriptname, 'w') ### deal with stuff always at the start of the exposure sequence start_exposures = [] if args.breakstart: breakKeys = {'break' : True} start_exposures.append(breakKeys) #short test exposure if not args.noshortexp: seqid = '%s_%s_%d_short' % (args.object, args.filter, args.visit) keywords = {'expType' : 'object', # 'coordinates' : 'absolute', 'RA' : args.ra, 'dec' : args.dec, 'filter' : args.filter, 'object' : args.object, 'expTime' : 10, 'seqid' : seqid, 'seqnum' : 0, 'seqtot' : 2} start_exposures.append(keywords) exptime = math.ceil(10**((np.log10(10.) + \ np.log10(args.singletime))/2.)) keywords = {'expType' : 'object', # 'coordinates' : 'absolute', 'RA' : args.ra, 'dec' : args.dec, 'filter' : args.filter, 'object' : args.object, 'expTime' : exptime, 'seqid' : seqid, 'seqnum' : 0, 'seqtot' : 2} start_exposures.append(keywords) breakKeys = {'break' : True} start_exposures.append(breakKeys) #deal with dithers seqid = '%s_%s_%d_dither' % (args.object, args.filter, args.visit) nexp = args.nexp science_exposures = [] exposure_offsets = generateMainDithers(nexp = nexp, dithersize=args.dithersize) abs_pointings = absolutePointings(args.ra, args.dec, exposure_offsets) expIDoffset = args.startwithexpnum for seqnum, pointing in enumerate(abs_pointings[expIDoffset:]): # keywords = {'expType' : 'object', 'coordinates' : 'absolute', 'RA' : pointing[0], 'DEC' : pointing[1], keywords = {'expType' : 'object', 'RA' : pointing[0], 'DEC' : pointing[1], 'filter' : args.filter, 'object' : args.object, 'expTime' : args.singletime, 'seqid' : seqid, 'seqnum' : expIDoffset+seqnum, 'seqtot' : nexp} science_exposures.append(keywords) #deal with outriggers outrigger_exposures = [] if not args.disableoutrigger: outrigger_positions = generateOutriggers(ra = args.ra, dec = args.dec, outriggersize = args.outriggersize) # make sure we grab the central exposure if we aren't taking science images outriggerid = '%s_%s_%d_outrigger' % (args.object, args.filter, args.visit) outriggernum = 3 if args.nexp == 0: outrigger_positions.insert(0,(args.ra, args.dec)) outriggernum = 4 for seqnum, exp_pos in enumerate(outrigger_positions): # keywords = {'expType' : 'object', 'coordinates' : 'absolute', keywords = {'expType' : 'object', 'RA' : exp_pos[0], 'DEC' : exp_pos[1], 'filter' : args.filter, 'object' : args.object, 'expTime' : args.outriggertime, 'seqid' : outriggerid, 'seqnum' : seqnum, 'seqtot' : outriggernum} outrigger_exposures.append(keywords) if args.outriggerfirst: exposures = start_exposures + outrigger_exposures + science_exposures else: exposures = start_exposures + science_exposures + outrigger_exposures if not args.nobreakend: breakKeys = {'break' : True} exposures.append(breakKeys) writeExposures(output, exposures) output.close() calibImage, calibTotal = countTime(start_exposures + outrigger_exposures, args.overhead) sciImage, sciTotal = countTime(science_exposures, args.overhead) return sciImage, calibImage, sciTotal + calibTotal ######################## def main(argv): parser = argparse.ArgumentParser() parser.add_argument('--ra', type=float) parser.add_argument('--dec', type=float) parser.add_argument('--nexp', type=int, help = 'Total number of full-length science exposures') parser.add_argument('--singletime', type=int, help = 'Exposure time per image') parser.add_argument('--dithersize', type=float, default=60.0, help = 'Basic unit size for dither; arcseconds') parser.add_argument('--disableoutrigger', default=False, action='store_true') parser.add_argument('--outriggersize', type=float, default = 0.5, help = 'Step size from center for outrigger exp; degrees') parser.add_argument('--outriggertime', type=int, default=-1, help = 'Exposure time for each outrigger') parser.add_argument('--outriggerfirst', default=False, action='store_true') parser.add_argument('--filter', type=str) parser.add_argument('--object', type=str) parser.add_argument('--visit', type=int, default=0) parser.add_argument('--breakstart', default=False, action='store_true') parser.add_argument('--nobreakend', default=False, action='store_true') parser.add_argument('--startwithexpnum', type=int, default = 0, help='Start at a different initial dither; 0-indexed') parser.add_argument('--noshortexp', default=False, action='store_true') parser.add_argument('--overhead', type=int, default = 30) parser.add_argument('--offset', type=float, default = -4.5, help = 'Offset in DEC direction to place center of cluster in the middle of a chip (in arcmin)') parser.add_argument('--scriptname', type=str, default='') args = parser.parse_args(argv) args.offset = args.offset/60. args.dec = args.dec + args.offset if args.outriggertime == -1: args.outriggertime = args.singletime / 2. outriggerFlag = 1 if args.disableoutrigger: outriggerFlag = 0 if args.scriptname == '': args.scriptname = '%s_%s_v%d_sci%d-%d_out%d.script' % (args.object, args.filter, args.visit, args.startwithexpnum, args.nexp, outriggerFlag) configfile = '%s.config' % args.scriptname print 'Called with configuration:' print 'RA: %f' % args.ra print 'DEC: %f' % (args.dec - args.offset) print 'DEC Offset: %f arcmin' % (60*args.offset) print 'Number of Science Exposures: %d' % args.nexp print 'Single Exposure: %d' % args.singletime print 'Dither Size: %f' % args.dithersize print 'Disable Outrigger?: %s' % args.disableoutrigger print 'Outrigger First?: %s' % args.outriggerfirst print 'Outrigger Size: %f' % args.outriggersize print 'Outrigger time: %f' % args.outriggertime print 'Filter: %s' % args.filter print 'Object: %s' % args.object print 'Break Start? : %s' % args.breakstart print 'Break End? : %s' % (not args.nobreakend) print 'Overhead: %d' % args.overhead print 'First Exposure : %d' % args.startwithexpnum print 'Script Name: %s' % args.scriptname scitime, calibtime, totaltime = createScript(args) print print 'Science Time: %d' % scitime print 'Calib Time: %d' % calibtime print 'Total Time: %d' % totaltime with open(configfile, 'w') as output: output.write('Called with configuration:\n' ) output.write('RA: %f\n' % args.ra ) output.write('DEC: %f\n' % (args.dec - args.offset) ) output.write('DEC Offset: %f arcmin\n' % (60*args.offset)) output.write('Number of Science Exposures: %d\n' % args.nexp ) output.write('Single Exposure: %d\n' % args.singletime ) output.write('Dither Size: %f\n' % args.dithersize ) output.write('Disable Outrigger?: %s\n' % args.disableoutrigger ) output.write('Outrigger First?: %s\n' % args.outriggerfirst ) output.write('Outrigger Size: %f\n' % args.outriggersize ) output.write('Outigger Time: %f\n' % args.outriggertime ) output.write('Filter: %s\n' % args.filter ) output.write('Object: %s\n' % args.object ) output.write('Break Start? : %s\n' % args.breakstart ) output.write('Break End? : %s\n' % (not args.nobreakend) ) output.write('Overhead : %d\n' % args.overhead ) output.write('First Exposure : %d\n' % args.startwithexpnum ) output.write('Script Name: %s\n' % args.scriptname ) output.write('Science Time: %d\n' % scitime ) output.write('Calib Time: %d\n' % calibtime ) output.write('Total Time: %d\n' % totaltime ) output.write('Arguments: %s\n' % ' '.join(map(str,sys.argv[1:]))) ######################### if __name__ == '__main__': main(argv = sys.argv[1:])
34.890533
149
0.572882
e3736f9d4e331c23c6f68daeddb8f940fea9e6e4
1,270
py
Python
cloudml-samples-master/reddit_tft/path_constants.py
liufuyang/kaggle-youtube-8m
1cfbbf92ec9b5ead791f98f7a09463ee165a8120
[ "MIT" ]
16
2017-04-09T09:51:00.000Z
2019-04-29T11:29:32.000Z
cloudml-samples-master/reddit_tft/path_constants.py
liufuyang/kaggle-youtube-8m
1cfbbf92ec9b5ead791f98f7a09463ee165a8120
[ "MIT" ]
null
null
null
cloudml-samples-master/reddit_tft/path_constants.py
liufuyang/kaggle-youtube-8m
1cfbbf92ec9b5ead791f98f7a09463ee165a8120
[ "MIT" ]
15
2017-03-12T18:17:21.000Z
2019-07-16T21:52:24.000Z
# Copyright 2016 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """File paths for the Reddit Classification pipeline. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function TEMP_DIR = 'tmp' TRANSFORM_FN_DIR = 'transform_fn' RAW_METADATA_DIR = 'raw_metadata' TRANSFORMED_METADATA_DIR = 'transformed_metadata' TRANSFORMED_TRAIN_DATA_FILE_PREFIX = 'features_train' TRANSFORMED_EVAL_DATA_FILE_PREFIX = 'features_eval' TRANSFORMED_PREDICT_DATA_FILE_PREFIX = 'features_predict' TRAIN_RESULTS_FILE = 'train_results' DEPLOY_SAVED_MODEL_DIR = 'saved_model' MODEL_DIR = 'model_dir' MODEL_EVALUATIONS_FILE = 'model_evaluations' BATCH_PREDICTION_RESULTS_FILE = 'batch_prediction_results'
37.352941
74
0.807874
23f891cddb45ff35c600092f13e618d6f99f5db0
2,063
py
Python
PythonBaseDemo/WINSOCKdemo/15.4/multicast_test.py
CypHelp/TestNewWorldDemo
ee6f73df05756f191c1c56250fa290461fdd1b9a
[ "Apache-2.0" ]
null
null
null
PythonBaseDemo/WINSOCKdemo/15.4/multicast_test.py
CypHelp/TestNewWorldDemo
ee6f73df05756f191c1c56250fa290461fdd1b9a
[ "Apache-2.0" ]
null
null
null
PythonBaseDemo/WINSOCKdemo/15.4/multicast_test.py
CypHelp/TestNewWorldDemo
ee6f73df05756f191c1c56250fa290461fdd1b9a
[ "Apache-2.0" ]
null
null
null
# coding: utf-8 ######################################################################### # 网站: <a href="http://www.crazyit.org">疯狂Java联盟</a> # # author yeeku.H.lee kongyeeku@163.com # # # # version 1.0 # # # # Copyright (C), 2001-2018, yeeku.H.Lee # # # # This program is protected by copyright laws. # # # # Program Name: # # # # <br>Date: # ######################################################################### import time, socket, threading, os # 定义本机IP地址 SENDERIP = '192.168.1.88' # 定义本地端口 SENDERPORT = 30000 # 定义本程序的多点广播IP地址 MYGROUP = '230.0.0.1' # 通过type属性指定创建基于UDP协议的socket s = socket.socket(type=socket.SOCK_DGRAM) # 将该socket绑定到0.0.0.0的虚拟IP s.bind(('0.0.0.0', SENDERPORT)) # ① # 设置广播消息的TTL(Time-To-Live) s.setsockopt(socket.IPPROTO_IP, socket.IP_MULTICAST_TTL, 64) # 设置允许多点广播使用相同的端口 s.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) # 将socket进入广播组 status = s.setsockopt(socket.IPPROTO_IP, socket.IP_ADD_MEMBERSHIP, socket.inet_aton(MYGROUP) + socket.inet_aton(SENDERIP)) # 定义从socket读取数据的方法 def read_socket(sock): while True: data = sock.recv(2048) print("信息: ", data.decode('utf-8')) # 以read_socket作为target启动多线程 threading.Thread(target=read_socket, args=(s, )).start() # 采用循环不断读取键盘输入,并输出到socket中 while True: line = input('') if line is None or line == 'exit': break os._exit(0) # 将line输出到socket中 s.sendto(line.encode('utf-8'), (MYGROUP, SENDERPORT))
40.45098
73
0.428017
9044a36594457b9784f5addacc13cfaec75800b8
8,627
py
Python
lib/dgm.py
marcsv87/Deep-PDE-Solvers
3322704f0291dc98e5bdf8c81c57a95cbfe70981
[ "MIT" ]
5
2021-01-27T03:32:59.000Z
2022-03-07T08:34:57.000Z
lib/dgm.py
msabvid/Deep-PDE-Solvers
3322704f0291dc98e5bdf8c81c57a95cbfe70981
[ "MIT" ]
null
null
null
lib/dgm.py
msabvid/Deep-PDE-Solvers
3322704f0291dc98e5bdf8c81c57a95cbfe70981
[ "MIT" ]
3
2021-02-05T04:56:40.000Z
2021-11-20T09:01:55.000Z
""" Deep Galerkin Method: https://arxiv.org/abs/1708.07469 """ import torch import torch.nn as nn import numpy as np import tqdm from lib.options import BaseOption class DGM_Layer(nn.Module): def __init__(self, dim_x, dim_S, activation='Tanh'): super(DGM_Layer, self).__init__() if activation == 'ReLU': self.activation = nn.ReLU() elif activation == 'Tanh': self.activation = nn.Tanh() elif activation == 'Sigmoid': self.activation = nn.Sigmoid() elif activation == 'LogSigmoid': self.activation = nn.LogSigmoid() else: raise ValueError("Unknown activation function {}".format(activation)) self.gate_Z = self.layer(dim_x+dim_S, dim_S) self.gate_G = self.layer(dim_x+dim_S, dim_S) self.gate_R = self.layer(dim_x+dim_S, dim_S) self.gate_H = self.layer(dim_x+dim_S, dim_S) def layer(self, nIn, nOut): l = nn.Sequential(nn.Linear(nIn, nOut), self.activation) return l def forward(self, x, S): x_S = torch.cat([x,S],1) Z = self.gate_Z(x_S) G = self.gate_G(x_S) R = self.gate_R(x_S) input_gate_H = torch.cat([x, S*R],1) H = self.gate_H(input_gate_H) output = ((1-G))*H + Z*S return output class Net_DGM(nn.Module): def __init__(self, dim_x, dim_S, activation='Tanh'): super(Net_DGM, self).__init__() self.dim = dim_x if activation == 'ReLU': self.activation = nn.ReLU() elif activation == 'Tanh': self.activation = nn.Tanh() elif activation == 'Sigmoid': self.activation = nn.Sigmoid() elif activation == 'LogSigmoid': self.activation = nn.LogSigmoid() else: raise ValueError("Unknown activation function {}".format(activation)) self.input_layer = nn.Sequential(nn.Linear(dim_x+1, dim_S), self.activation) self.DGM1 = DGM_Layer(dim_x=dim_x+1, dim_S=dim_S, activation=activation) self.DGM2 = DGM_Layer(dim_x=dim_x+1, dim_S=dim_S, activation=activation) self.DGM3 = DGM_Layer(dim_x=dim_x+1, dim_S=dim_S, activation=activation) self.output_layer = nn.Linear(dim_S, 1) def forward(self,t,x): tx = torch.cat([t,x], 1) S1 = self.input_layer(tx) S2 = self.DGM1(tx,S1) S3 = self.DGM2(tx,S2) S4 = self.DGM3(tx,S3) output = self.output_layer(S4) return output def get_gradient(output, x): grad = torch.autograd.grad(output, x, grad_outputs=torch.ones_like(output), create_graph=True, retain_graph=True, only_inputs=True)[0] return grad def get_laplacian(grad, x): hess_diag = [] for d in range(x.shape[1]): v = grad[:,d].view(-1,1) grad2 = torch.autograd.grad(v,x,grad_outputs=torch.ones_like(v), only_inputs=True, create_graph=True, retain_graph=True)[0] hess_diag.append(grad2[:,d].view(-1,1)) hess_diag = torch.cat(hess_diag,1) laplacian = hess_diag.sum(1, keepdim=True) return laplacian class PDE_DGM_BlackScholes(nn.Module): def __init__(self, d: int, hidden_dim: int, mu:float, sigma: float, ts: torch.Tensor=None): super().__init__() self.d = d self.mu = mu self.sigma = sigma self.net_dgm = Net_DGM(d, hidden_dim, activation='Tanh') self.ts = ts def fit(self, max_updates: int, batch_size: int, option, device): optimizer = torch.optim.Adam(self.net_dgm.parameters(), lr=0.001) scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones = (10000,),gamma=0.1) loss_fn = nn.MSELoss() pbar = tqdm.tqdm(total=max_updates) for it in range(max_updates): optimizer.zero_grad() input_domain = 0.5 + 2*torch.rand(batch_size, self.d, device=device, requires_grad=True) t0, T = self.ts[0], self.ts[-1] t = t0 + T*torch.rand(batch_size, 1, device=device, requires_grad=True) u_of_tx = self.net_dgm(t, input_domain) grad_u_x = get_gradient(u_of_tx,input_domain) grad_u_t = get_gradient(u_of_tx, t) laplacian = get_laplacian(grad_u_x, input_domain) target_functional = torch.zeros_like(u_of_tx) pde = grad_u_t + torch.sum(self.mu*input_domain.detach()*grad_u_x,1,keepdim=True) + 0.5*self.sigma**2 * laplacian - self.mu * u_of_tx MSE_functional = loss_fn(pde, target_functional) input_terminal = 0.5 + 2*torch.rand(batch_size, self.d, device=device, requires_grad=True) t = torch.ones(batch_size, 1, device=device) * T u_of_tx = self.net_dgm(t, input_terminal) target_terminal = option.payoff(input_terminal) MSE_terminal = loss_fn(u_of_tx, target_terminal) loss = MSE_functional + MSE_terminal loss.backward() optimizer.step() scheduler.step() if it%10 == 0: pbar.update(10) pbar.write("Iteration: {}/{}\t MSE functional: {:.4f}\t MSE terminal: {:.4f}\t Total Loss: {:.4f}".format(it, max_updates, MSE_functional.item(), MSE_terminal.item(), loss.item())) def sdeint(self, ts, x0, antithetic = False): """ Euler scheme to solve the SDE. Parameters ---------- ts: troch.Tensor timegrid. Vector of length N x0: torch.Tensor initial value of SDE. Tensor of shape (batch_size, d) brownian: Optional. torch.tensor of shape (batch_size, N, d) Note ---- I am assuming uncorrelated Brownian motion """ if antithetic: x = torch.cat([x0.unsqueeze(1), x0.unsqueeze(1)], dim=0) else: x = x0.unsqueeze(1) batch_size = x.shape[0] device = x.device brownian_increments = torch.zeros(batch_size, len(ts), self.d, device=device) for idx, t in enumerate(ts[1:]): h = ts[idx+1]-ts[idx] if antithetic: brownian_increments[:batch_size//2,idx,:] = torch.randn(batch_size//2, self.d, device=device)*torch.sqrt(h) brownian_increments[-batch_size//2:,idx,:] = -brownian_increments[:batch_size//2, idx, :].clone() else: brownian_increments[:,idx,:] = torch.randn(batch_size, self.d, device=device)*torch.sqrt(h) x_new = x[:,-1,:] + self.mu*x[:,-1,:]*h + self.sigma*x[:,-1,:]*brownian_increments[:,idx,:] x = torch.cat([x, x_new.unsqueeze(1)],1) return x, brownian_increments def unbiased_price(self, ts: torch.Tensor, x0:torch.Tensor, option: BaseOption, MC_samples: int, ): """ We calculate an unbiased estimator of the price at time t=0 (for now) using Monte Carlo, and the stochastic integral as a control variate Parameters ---------- ts: troch.Tensor timegrid. Vector of length N x0: torch.Tensor initial value of SDE. Tensor of shape (1, d) option: object of class option to calculate payoff MC_samples: int Monte Carlo samples """ assert x0.shape[0] == 1, "we need just 1 sample" x0 = x0.repeat(MC_samples, 1) with torch.no_grad(): x, brownian_increments = self.sdeint(ts, x0) payoff = option.payoff(x[:,-1,:]) # (batch_size, 1) device = x.device batch_size = x.shape[0] t = ts.reshape(1,-1,1).repeat(batch_size,1,1) tx = torch.cat([t,x],2) # (batch_size, L, dim+1) Z = [] for idt, t in enumerate(ts[:-1]): tt = torch.ones(batch_size, 1, device=device)*t tt.requires_grad_(True) xx = x[:,idt,:].requires_grad_(True) Y = self.net_dgm(tt, xx) Z.append(get_gradient(Y,xx)) Z = torch.stack(Z, 1) stoch_int = 0 for idx,t in enumerate(ts[:-1]): discount_factor = torch.exp(-self.mu*t) stoch_int += discount_factor * torch.sum(Z[:,idx,:]*brownian_increments[:,idx,:], 1, keepdim=True) mc = torch.exp(-self.mu*ts[-1])*payoff cv = stoch_int cv_mult = torch.mean((mc-mc.mean())*(cv-cv.mean())) / cv.var() # optimal multiplier. cf. Belomestny book return mc, mc - cv_mult*stoch_int # stoch_int has expected value 0, thus it doesn't add any bias to the MC estimator, and it is correlated with payoff
38.86036
196
0.588849
858121d9f4460e5291a0092474472dd95a4c8edf
61,299
py
Python
moto/events/models.py
number09/moto
9e61ab22207454f69a84a7a9afaeef9eebafec43
[ "Apache-2.0" ]
null
null
null
moto/events/models.py
number09/moto
9e61ab22207454f69a84a7a9afaeef9eebafec43
[ "Apache-2.0" ]
null
null
null
moto/events/models.py
number09/moto
9e61ab22207454f69a84a7a9afaeef9eebafec43
[ "Apache-2.0" ]
null
null
null
import copy import os import re import json import sys import warnings from collections import namedtuple from datetime import datetime from enum import Enum, unique from json import JSONDecodeError from operator import lt, le, eq, ge, gt from boto3 import Session from moto.core.exceptions import JsonRESTError from moto.core import ACCOUNT_ID, BaseBackend, CloudFormationModel, BaseModel from moto.core.utils import unix_time, iso_8601_datetime_without_milliseconds from moto.events.exceptions import ( ValidationException, ResourceNotFoundException, ResourceAlreadyExistsException, InvalidEventPatternException, IllegalStatusException, ) from moto.utilities.tagging_service import TaggingService from uuid import uuid4 class Rule(CloudFormationModel): Arn = namedtuple("Arn", ["service", "resource_type", "resource_id"]) def __init__( self, name, region_name, description, event_pattern, schedule_exp, role_arn, event_bus_name, state, managed_by=None, targets=None, ): self.name = name self.region_name = region_name self.description = description self.event_pattern = EventPattern.load(event_pattern) self.scheduled_expression = schedule_exp self.role_arn = role_arn self.event_bus_name = event_bus_name self.state = state or "ENABLED" self.managed_by = managed_by # can only be set by AWS services self.created_by = ACCOUNT_ID self.targets = targets or [] @property def arn(self): event_bus_name = ( "" if self.event_bus_name == "default" else "{}/".format(self.event_bus_name) ) return "arn:aws:events:{region}:{account_id}:rule/{event_bus_name}{name}".format( region=self.region_name, account_id=ACCOUNT_ID, event_bus_name=event_bus_name, name=self.name, ) @property def physical_resource_id(self): return self.name # This song and dance for targets is because we need order for Limits and NextTokens, but can't use OrderedDicts # with Python 2.6, so tracking it with an array it is. def _check_target_exists(self, target_id): for i in range(0, len(self.targets)): if target_id == self.targets[i]["Id"]: return i return None def enable(self): self.state = "ENABLED" def disable(self): self.state = "DISABLED" def delete(self, region_name): event_backend = events_backends[region_name] event_backend.delete_rule(name=self.name) def put_targets(self, targets): # Not testing for valid ARNs. for target in targets: index = self._check_target_exists(target["Id"]) if index is not None: self.targets[index] = target else: self.targets.append(target) def remove_targets(self, ids): for target_id in ids: index = self._check_target_exists(target_id) if index is not None: self.targets.pop(index) def send_to_targets(self, event_bus_name, event): event_bus_name = event_bus_name.split("/")[-1] if event_bus_name != self.event_bus_name.split("/")[-1]: return if not self.event_pattern.matches_event(event): return # supported targets # - CloudWatch Log Group # - EventBridge Archive # - SQS Queue + FIFO Queue for target in self.targets: arn = self._parse_arn(target["Arn"]) if arn.service == "logs" and arn.resource_type == "log-group": self._send_to_cw_log_group(arn.resource_id, event) elif arn.service == "events" and not arn.resource_type: input_template = json.loads(target["InputTransformer"]["InputTemplate"]) archive_arn = self._parse_arn(input_template["archive-arn"]) self._send_to_events_archive(archive_arn.resource_id, event) elif arn.service == "sqs": group_id = target.get("SqsParameters", {}).get("MessageGroupId") self._send_to_sqs_queue(arn.resource_id, event, group_id) else: raise NotImplementedError("Expr not defined for {0}".format(type(self))) def _parse_arn(self, arn): # http://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html # this method needs probably some more fine tuning, # when also other targets are supported elements = arn.split(":", 5) service = elements[2] resource = elements[5] if ":" in resource and "/" in resource: if resource.index(":") < resource.index("/"): resource_type, resource_id = resource.split(":", 1) else: resource_type, resource_id = resource.split("/", 1) elif ":" in resource: resource_type, resource_id = resource.split(":", 1) elif "/" in resource: resource_type, resource_id = resource.split("/", 1) else: resource_type = None resource_id = resource return self.Arn( service=service, resource_type=resource_type, resource_id=resource_id ) def _send_to_cw_log_group(self, name, event): from moto.logs import logs_backends event_copy = copy.deepcopy(event) event_copy["time"] = iso_8601_datetime_without_milliseconds( datetime.utcfromtimestamp(event_copy["time"]) ) log_stream_name = str(uuid4()) log_events = [ { "timestamp": unix_time(datetime.utcnow()), "message": json.dumps(event_copy), } ] logs_backends[self.region_name].create_log_stream(name, log_stream_name) logs_backends[self.region_name].put_log_events( name, log_stream_name, log_events, None ) def _send_to_events_archive(self, resource_id, event): archive_name, archive_uuid = resource_id.split(":") archive = events_backends[self.region_name].archives.get(archive_name) if archive.uuid == archive_uuid: archive.events.append(event) def _send_to_sqs_queue(self, resource_id, event, group_id=None): from moto.sqs import sqs_backends event_copy = copy.deepcopy(event) event_copy["time"] = iso_8601_datetime_without_milliseconds( datetime.utcfromtimestamp(event_copy["time"]) ) if group_id: queue_attr = sqs_backends[self.region_name].get_queue_attributes( queue_name=resource_id, attribute_names=["ContentBasedDeduplication"] ) if queue_attr["ContentBasedDeduplication"] == "false": warnings.warn( "To let EventBridge send messages to your SQS FIFO queue, " "you must enable content-based deduplication." ) return sqs_backends[self.region_name].send_message( queue_name=resource_id, message_body=json.dumps(event_copy), group_id=group_id, ) def get_cfn_attribute(self, attribute_name): from moto.cloudformation.exceptions import UnformattedGetAttTemplateException if attribute_name == "Arn": return self.arn raise UnformattedGetAttTemplateException() @staticmethod def cloudformation_name_type(): return "Name" @staticmethod def cloudformation_type(): # https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-events-rule.html return "AWS::Events::Rule" @classmethod def create_from_cloudformation_json( cls, resource_name, cloudformation_json, region_name ): properties = cloudformation_json["Properties"] properties.setdefault("EventBusName", "default") event_name = resource_name event_pattern = properties.get("EventPattern") scheduled_expression = properties.get("ScheduleExpression") state = properties.get("State") desc = properties.get("Description") role_arn = properties.get("RoleArn") event_bus_name = properties.get("EventBusName") tags = properties.get("Tags") backend = events_backends[region_name] return backend.put_rule( event_name, scheduled_expression=scheduled_expression, event_pattern=event_pattern, state=state, description=desc, role_arn=role_arn, event_bus_name=event_bus_name, tags=tags, ) @classmethod def update_from_cloudformation_json( cls, original_resource, new_resource_name, cloudformation_json, region_name ): original_resource.delete(region_name) return cls.create_from_cloudformation_json( new_resource_name, cloudformation_json, region_name ) @classmethod def delete_from_cloudformation_json( cls, resource_name, cloudformation_json, region_name ): event_backend = events_backends[region_name] event_name = resource_name event_backend.delete_rule(name=event_name) def describe(self): attributes = { "Arn": self.arn, "CreatedBy": self.created_by, "Description": self.description, "EventBusName": self.event_bus_name, "EventPattern": self.event_pattern.dump(), "ManagedBy": self.managed_by, "Name": self.name, "RoleArn": self.role_arn, "ScheduleExpression": self.scheduled_expression, "State": self.state, } attributes = { attr: value for attr, value in attributes.items() if value is not None } return attributes class EventBus(CloudFormationModel): def __init__(self, region_name, name, tags=None): self.region = region_name self.name = name self.tags = tags or [] self._statements = {} @property def arn(self): return "arn:aws:events:{region}:{account_id}:event-bus/{name}".format( region=self.region, account_id=ACCOUNT_ID, name=self.name ) @property def policy(self): if self._statements: policy = { "Version": "2012-10-17", "Statement": [stmt.describe() for stmt in self._statements.values()], } return json.dumps(policy) return None def has_permissions(self): return len(self._statements) > 0 def delete(self, region_name): event_backend = events_backends[region_name] event_backend.delete_event_bus(name=self.name) def get_cfn_attribute(self, attribute_name): from moto.cloudformation.exceptions import UnformattedGetAttTemplateException if attribute_name == "Arn": return self.arn elif attribute_name == "Name": return self.name elif attribute_name == "Policy": return self.policy raise UnformattedGetAttTemplateException() @staticmethod def cloudformation_name_type(): return "Name" @staticmethod def cloudformation_type(): # https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-events-eventbus.html return "AWS::Events::EventBus" @classmethod def create_from_cloudformation_json( cls, resource_name, cloudformation_json, region_name ): properties = cloudformation_json["Properties"] event_backend = events_backends[region_name] event_name = resource_name event_source_name = properties.get("EventSourceName") return event_backend.create_event_bus( name=event_name, event_source_name=event_source_name ) @classmethod def update_from_cloudformation_json( cls, original_resource, new_resource_name, cloudformation_json, region_name ): original_resource.delete(region_name) return cls.create_from_cloudformation_json( new_resource_name, cloudformation_json, region_name ) @classmethod def delete_from_cloudformation_json( cls, resource_name, cloudformation_json, region_name ): event_backend = events_backends[region_name] event_bus_name = resource_name event_backend.delete_event_bus(event_bus_name) def _remove_principals_statements(self, *principals): statements_to_delete = set() for principal in principals: for sid, statement in self._statements.items(): if statement.principal == principal: statements_to_delete.add(sid) # This is done separately to avoid: # RuntimeError: dictionary changed size during iteration for sid in statements_to_delete: del self._statements[sid] def add_permission(self, statement_id, action, principal, condition): self._remove_principals_statements(principal) statement = EventBusPolicyStatement( sid=statement_id, action=action, principal=principal, condition=condition, resource=self.arn, ) self._statements[statement_id] = statement def add_policy(self, policy): policy_statements = policy["Statement"] principals = [stmt["Principal"] for stmt in policy_statements] self._remove_principals_statements(*principals) for new_statement in policy_statements: sid = new_statement["Sid"] self._statements[sid] = EventBusPolicyStatement.from_dict(new_statement) def remove_statement(self, sid): return self._statements.pop(sid, None) def remove_statements(self): self._statements.clear() class EventBusPolicyStatement: def __init__( self, sid, principal, action, resource, effect="Allow", condition=None ): self.sid = sid self.principal = principal self.action = action self.resource = resource self.effect = effect self.condition = condition def describe(self): statement = dict( Sid=self.sid, Effect=self.effect, Principal=self.principal, Action=self.action, Resource=self.resource, ) if self.condition: statement["Condition"] = self.condition return statement @classmethod def from_dict(cls, statement_dict): params = dict( sid=statement_dict["Sid"], effect=statement_dict["Effect"], principal=statement_dict["Principal"], action=statement_dict["Action"], resource=statement_dict["Resource"], ) condition = statement_dict.get("Condition") if condition: params["condition"] = condition return cls(**params) class Archive(CloudFormationModel): # https://docs.aws.amazon.com/eventbridge/latest/APIReference/API_ListArchives.html#API_ListArchives_RequestParameters VALID_STATES = [ "ENABLED", "DISABLED", "CREATING", "UPDATING", "CREATE_FAILED", "UPDATE_FAILED", ] def __init__( self, region_name, name, source_arn, description, event_pattern, retention ): self.region = region_name self.name = name self.source_arn = source_arn self.description = description self.event_pattern = EventPattern.load(event_pattern) self.retention = retention if retention else 0 self.creation_time = unix_time(datetime.utcnow()) self.state = "ENABLED" self.uuid = str(uuid4()) self.events = [] self.event_bus_name = source_arn.split("/")[-1] @property def arn(self): return "arn:aws:events:{region}:{account_id}:archive/{name}".format( region=self.region, account_id=ACCOUNT_ID, name=self.name ) def describe_short(self): return { "ArchiveName": self.name, "EventSourceArn": self.source_arn, "State": self.state, "RetentionDays": self.retention, "SizeBytes": sys.getsizeof(self.events) if len(self.events) > 0 else 0, "EventCount": len(self.events), "CreationTime": self.creation_time, } def describe(self): result = { "ArchiveArn": self.arn, "Description": self.description, "EventPattern": self.event_pattern.dump(), } result.update(self.describe_short()) return result def update(self, description, event_pattern, retention): if description: self.description = description if event_pattern: self.event_pattern = EventPattern.load(event_pattern) if retention: self.retention = retention def delete(self, region_name): event_backend = events_backends[region_name] event_backend.archives.pop(self.name) def get_cfn_attribute(self, attribute_name): from moto.cloudformation.exceptions import UnformattedGetAttTemplateException if attribute_name == "ArchiveName": return self.name elif attribute_name == "Arn": return self.arn raise UnformattedGetAttTemplateException() @staticmethod def cloudformation_name_type(): return "ArchiveName" @staticmethod def cloudformation_type(): # https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-events-archive.html return "AWS::Events::Archive" @classmethod def create_from_cloudformation_json( cls, resource_name, cloudformation_json, region_name ): properties = cloudformation_json["Properties"] event_backend = events_backends[region_name] source_arn = properties.get("SourceArn") description = properties.get("Description") event_pattern = properties.get("EventPattern") retention = properties.get("RetentionDays") return event_backend.create_archive( resource_name, source_arn, description, event_pattern, retention ) @classmethod def update_from_cloudformation_json( cls, original_resource, new_resource_name, cloudformation_json, region_name ): if new_resource_name == original_resource.name: properties = cloudformation_json["Properties"] original_resource.update( properties.get("Description"), properties.get("EventPattern"), properties.get("Retention"), ) return original_resource else: original_resource.delete(region_name) return cls.create_from_cloudformation_json( new_resource_name, cloudformation_json, region_name ) @classmethod def delete_from_cloudformation_json( cls, resource_name, cloudformation_json, region_name ): event_backend = events_backends[region_name] event_backend.delete_archive(resource_name) @unique class ReplayState(Enum): # https://docs.aws.amazon.com/eventbridge/latest/APIReference/API_ListReplays.html#API_ListReplays_RequestParameters STARTING = "STARTING" RUNNING = "RUNNING" CANCELLING = "CANCELLING" COMPLETED = "COMPLETED" CANCELLED = "CANCELLED" FAILED = "FAILED" class Replay(BaseModel): def __init__( self, region_name, name, description, source_arn, start_time, end_time, destination, ): self.region = region_name self.name = name self.description = description self.source_arn = source_arn self.event_start_time = start_time self.event_end_time = end_time self.destination = destination self.state = ReplayState.STARTING self.start_time = unix_time(datetime.utcnow()) self.end_time = None @property def arn(self): return "arn:aws:events:{region}:{account_id}:replay/{name}".format( region=self.region, account_id=ACCOUNT_ID, name=self.name ) def describe_short(self): return { "ReplayName": self.name, "EventSourceArn": self.source_arn, "State": self.state.value, "EventStartTime": self.event_start_time, "EventEndTime": self.event_end_time, "ReplayStartTime": self.start_time, "ReplayEndTime": self.end_time, } def describe(self): result = { "ReplayArn": self.arn, "Description": self.description, "Destination": self.destination, } result.update(self.describe_short()) return result def replay_events(self, archive): event_bus_name = self.destination["Arn"].split("/")[-1] for event in archive.events: for rule in events_backends[self.region].rules.values(): rule.send_to_targets( event_bus_name, dict(event, **{"id": str(uuid4()), "replay-name": self.name}), ) self.state = ReplayState.COMPLETED self.end_time = unix_time(datetime.utcnow()) class Connection(BaseModel): def __init__( self, name, region_name, description, authorization_type, auth_parameters, ): self.uuid = uuid4() self.name = name self.region = region_name self.description = description self.authorization_type = authorization_type self.auth_parameters = auth_parameters self.creation_time = unix_time(datetime.utcnow()) self.state = "AUTHORIZED" @property def arn(self): return "arn:aws:events:{0}:{1}:connection/{2}/{3}".format( self.region, ACCOUNT_ID, self.name, self.uuid ) def describe_short(self): """ Create the short description for the Connection object. Taken our from the Response Syntax of this API doc: - https://docs.aws.amazon.com/eventbridge/latest/APIReference/API_DeleteConnection.html Something to consider: - The original response also has - LastAuthorizedTime (number) - LastModifiedTime (number) - At the time of implementing this, there was no place where to set/get those attributes. That is why they are not in the response. Returns: dict """ return { "ConnectionArn": self.arn, "ConnectionState": self.state, "CreationTime": self.creation_time, } def describe(self): """ Create a complete description for the Connection object. Taken our from the Response Syntax of this API doc: - https://docs.aws.amazon.com/eventbridge/latest/APIReference/API_DescribeConnection.html Something to consider: - The original response also has: - LastAuthorizedTime (number) - LastModifiedTime (number) - SecretArn (string) - StateReason (string) - At the time of implementing this, there was no place where to set/get those attributes. That is why they are not in the response. Returns: dict """ return { "AuthorizationType": self.authorization_type, "AuthParameters": self.auth_parameters, "ConnectionArn": self.arn, "ConnectionState": self.state, "CreationTime": self.creation_time, "Description": self.description, "Name": self.name, } class Destination(BaseModel): def __init__( self, name, region_name, description, connection_arn, invocation_endpoint, invocation_rate_limit_per_second, http_method, ): self.uuid = uuid4() self.name = name self.region = region_name self.description = description self.connection_arn = connection_arn self.invocation_endpoint = invocation_endpoint self.invocation_rate_limit_per_second = invocation_rate_limit_per_second self.creation_time = unix_time(datetime.utcnow()) self.http_method = http_method self.state = "ACTIVE" @property def arn(self): return "arn:aws:events:{0}:{1}:api-destination/{2}/{3}".format( self.region, ACCOUNT_ID, self.name, self.uuid ) def describe(self): """ Describes the Destination object as a dict Docs: Response Syntax in https://docs.aws.amazon.com/eventbridge/latest/APIReference/API_DescribeApiDestination.html Something to consider: - The response also has [InvocationRateLimitPerSecond] which was not available when implementing this method Returns: dict """ return { "ApiDestinationArn": self.arn, "ApiDestinationState": self.state, "ConnectionArn": self.connection_arn, "CreationTime": self.creation_time, "Description": self.description, "HttpMethod": self.http_method, "InvocationEndpoint": self.invocation_endpoint, "InvocationRateLimitPerSecond": self.invocation_rate_limit_per_second, "LastModifiedTime": self.creation_time, "Name": self.name, } def describe_short(self): return { "ApiDestinationArn": self.arn, "ApiDestinationState": self.state, "CreationTime": self.creation_time, "LastModifiedTime": self.creation_time, } class EventPattern: def __init__(self, raw_pattern, pattern): self._raw_pattern = raw_pattern self._pattern = pattern def matches_event(self, event): if not self._pattern: return True event = json.loads(json.dumps(event)) return self._does_event_match(event, self._pattern) def _does_event_match(self, event, pattern): items_and_filters = [(event.get(k), v) for k, v in pattern.items()] nested_filter_matches = [ self._does_event_match(item, nested_filter) for item, nested_filter in items_and_filters if isinstance(nested_filter, dict) ] filter_list_matches = [ self._does_item_match_filters(item, filter_list) for item, filter_list in items_and_filters if isinstance(filter_list, list) ] return all(nested_filter_matches + filter_list_matches) def _does_item_match_filters(self, item, filters): allowed_values = [value for value in filters if isinstance(value, str)] allowed_values_match = item in allowed_values if allowed_values else True named_filter_matches = [ self._does_item_match_named_filter(item, pattern) for pattern in filters if isinstance(pattern, dict) ] return allowed_values_match and all(named_filter_matches) @staticmethod def _does_item_match_named_filter(item, pattern): filter_name, filter_value = list(pattern.items())[0] if filter_name == "exists": is_leaf_node = not isinstance(item, dict) leaf_exists = is_leaf_node and item is not None should_exist = filter_value return leaf_exists if should_exist else not leaf_exists if filter_name == "prefix": prefix = filter_value return item.startswith(prefix) if filter_name == "numeric": as_function = {"<": lt, "<=": le, "=": eq, ">=": ge, ">": gt} operators_and_values = zip(filter_value[::2], filter_value[1::2]) numeric_matches = [ as_function[operator](item, value) for operator, value in operators_and_values ] return all(numeric_matches) else: warnings.warn( "'{}' filter logic unimplemented. defaulting to True".format( filter_name ) ) return True @classmethod def load(cls, raw_pattern): parser = EventPatternParser(raw_pattern) pattern = parser.parse() return cls(raw_pattern, pattern) def dump(self): return self._raw_pattern class EventPatternParser: def __init__(self, pattern): self.pattern = pattern def _validate_event_pattern(self, pattern): # values in the event pattern have to be either a dict or an array for attr, value in pattern.items(): if isinstance(value, dict): self._validate_event_pattern(value) elif isinstance(value, list): if len(value) == 0: raise InvalidEventPatternException( reason="Empty arrays are not allowed" ) else: raise InvalidEventPatternException( reason=f"'{attr}' must be an object or an array" ) def parse(self): try: parsed_pattern = json.loads(self.pattern) if self.pattern else dict() self._validate_event_pattern(parsed_pattern) return parsed_pattern except JSONDecodeError: raise InvalidEventPatternException(reason="Invalid JSON") class EventsBackend(BaseBackend): ACCOUNT_ID = re.compile(r"^(\d{1,12}|\*)$") STATEMENT_ID = re.compile(r"^[a-zA-Z0-9-_]{1,64}$") _CRON_REGEX = re.compile(r"^cron\(.*\)") _RATE_REGEX = re.compile(r"^rate\(\d*\s(minute|minutes|hour|hours|day|days)\)") def __init__(self, region_name): self.rules = {} # This array tracks the order in which the rules have been added, since # 2.6 doesn't have OrderedDicts. self.rules_order = [] self.next_tokens = {} self.region_name = region_name self.event_buses = {} self.event_sources = {} self.archives = {} self.replays = {} self.tagger = TaggingService() self._add_default_event_bus() self.connections = {} self.destinations = {} def reset(self): region_name = self.region_name self.__dict__ = {} self.__init__(region_name) def _add_default_event_bus(self): self.event_buses["default"] = EventBus(self.region_name, "default") def _get_rule_by_index(self, i): return self.rules.get(self.rules_order[i]) def _gen_next_token(self, index): token = os.urandom(128).encode("base64") self.next_tokens[token] = index return token def _process_token_and_limits(self, array_len, next_token=None, limit=None): start_index = 0 end_index = array_len new_next_token = None if next_token: start_index = self.next_tokens.pop(next_token, 0) if limit is not None: new_end_index = start_index + int(limit) if new_end_index < end_index: end_index = new_end_index new_next_token = self._gen_next_token(end_index) return start_index, end_index, new_next_token def _get_event_bus(self, name): event_bus_name = name.split("/")[-1] event_bus = self.event_buses.get(event_bus_name) if not event_bus: raise ResourceNotFoundException( "Event bus {} does not exist.".format(event_bus_name) ) return event_bus def _get_replay(self, name): replay = self.replays.get(name) if not replay: raise ResourceNotFoundException("Replay {} does not exist.".format(name)) return replay def put_rule( self, name, *, description=None, event_bus_name=None, event_pattern=None, role_arn=None, scheduled_expression=None, state=None, managed_by=None, tags=None, ): event_bus_name = event_bus_name or "default" if not event_pattern and not scheduled_expression: raise JsonRESTError( "ValidationException", "Parameter(s) EventPattern or ScheduleExpression must be specified.", ) if scheduled_expression: if event_bus_name != "default": raise ValidationException( "ScheduleExpression is supported only on the default event bus." ) if not ( self._CRON_REGEX.match(scheduled_expression) or self._RATE_REGEX.match(scheduled_expression) ): raise ValidationException("Parameter ScheduleExpression is not valid.") existing_rule = self.rules.get(name) targets = existing_rule.targets if existing_rule else list() rule = Rule( name, self.region_name, description, event_pattern, scheduled_expression, role_arn, event_bus_name, state, managed_by, targets=targets, ) self.rules[name] = rule self.rules_order.append(name) if tags: self.tagger.tag_resource(rule.arn, tags) return rule def delete_rule(self, name): self.rules_order.pop(self.rules_order.index(name)) arn = self.rules.get(name).arn if self.tagger.has_tags(arn): self.tagger.delete_all_tags_for_resource(arn) return self.rules.pop(name) is not None def describe_rule(self, name): rule = self.rules.get(name) if not rule: raise ResourceNotFoundException("Rule {} does not exist.".format(name)) return rule def disable_rule(self, name): if name in self.rules: self.rules[name].disable() return True return False def enable_rule(self, name): if name in self.rules: self.rules[name].enable() return True return False def list_rule_names_by_target(self, target_arn, next_token=None, limit=None): matching_rules = [] return_obj = {} start_index, end_index, new_next_token = self._process_token_and_limits( len(self.rules), next_token, limit ) for i in range(start_index, end_index): rule = self._get_rule_by_index(i) for target in rule.targets: if target["Arn"] == target_arn: matching_rules.append(rule.name) return_obj["RuleNames"] = matching_rules if new_next_token is not None: return_obj["NextToken"] = new_next_token return return_obj def list_rules(self, prefix=None, next_token=None, limit=None): match_string = ".*" if prefix is not None: match_string = "^" + prefix + match_string match_regex = re.compile(match_string) matching_rules = [] return_obj = {} start_index, end_index, new_next_token = self._process_token_and_limits( len(self.rules), next_token, limit ) for i in range(start_index, end_index): rule = self._get_rule_by_index(i) if match_regex.match(rule.name): matching_rules.append(rule) return_obj["Rules"] = matching_rules if new_next_token is not None: return_obj["NextToken"] = new_next_token return return_obj def list_targets_by_rule(self, rule, next_token=None, limit=None): # We'll let a KeyError exception be thrown for response to handle if # rule doesn't exist. rule = self.rules[rule] start_index, end_index, new_next_token = self._process_token_and_limits( len(rule.targets), next_token, limit ) returned_targets = [] return_obj = {} for i in range(start_index, end_index): returned_targets.append(rule.targets[i]) return_obj["Targets"] = returned_targets if new_next_token is not None: return_obj["NextToken"] = new_next_token return return_obj def put_targets(self, name, event_bus_name, targets): # super simple ARN check invalid_arn = next( ( target["Arn"] for target in targets if not re.match(r"arn:[\d\w:\-/]*", target["Arn"]) ), None, ) if invalid_arn: raise ValidationException( "Parameter {} is not valid. " "Reason: Provided Arn is not in correct format.".format(invalid_arn) ) for target in targets: arn = target["Arn"] if ( ":sqs:" in arn and arn.endswith(".fifo") and not target.get("SqsParameters") ): raise ValidationException( "Parameter(s) SqsParameters must be specified for target: {}.".format( target["Id"] ) ) rule = self.rules.get(name) if not rule: raise ResourceNotFoundException( "Rule {0} does not exist on EventBus {1}.".format(name, event_bus_name) ) rule.put_targets(targets) def put_events(self, events): num_events = len(events) if num_events > 10: # the exact error text is longer, the Value list consists of all the put events raise ValidationException( "1 validation error detected: " "Value '[PutEventsRequestEntry]' at 'entries' failed to satisfy constraint: " "Member must have length less than or equal to 10" ) entries = [] for event in events: if "Source" not in event: entries.append( { "ErrorCode": "InvalidArgument", "ErrorMessage": "Parameter Source is not valid. Reason: Source is a required argument.", } ) elif "DetailType" not in event: entries.append( { "ErrorCode": "InvalidArgument", "ErrorMessage": "Parameter DetailType is not valid. Reason: DetailType is a required argument.", } ) elif "Detail" not in event: entries.append( { "ErrorCode": "InvalidArgument", "ErrorMessage": "Parameter Detail is not valid. Reason: Detail is a required argument.", } ) else: try: json.loads(event["Detail"]) except ValueError: # json.JSONDecodeError exists since Python 3.5 entries.append( { "ErrorCode": "MalformedDetail", "ErrorMessage": "Detail is malformed.", } ) continue event_id = str(uuid4()) entries.append({"EventId": event_id}) # if 'EventBusName' is not especially set, it will be sent to the default one event_bus_name = event.get("EventBusName", "default") for rule in self.rules.values(): rule.send_to_targets( event_bus_name, { "version": "0", "id": event_id, "detail-type": event["DetailType"], "source": event["Source"], "account": ACCOUNT_ID, "time": event.get("Time", unix_time(datetime.utcnow())), "region": self.region_name, "resources": event.get("Resources", []), "detail": json.loads(event["Detail"]), }, ) return entries def remove_targets(self, name, event_bus_name, ids): rule = self.rules.get(name) if not rule: raise ResourceNotFoundException( "Rule {0} does not exist on EventBus {1}.".format(name, event_bus_name) ) rule.remove_targets(ids) def test_event_pattern(self): raise NotImplementedError() @staticmethod def _put_permission_from_policy(event_bus, policy): try: policy_doc = json.loads(policy) event_bus.add_policy(policy_doc) except JSONDecodeError: raise JsonRESTError( "ValidationException", "This policy contains invalid Json" ) @staticmethod def _condition_param_to_stmt_condition(condition): if condition: key = condition["Key"] value = condition["Value"] condition_type = condition["Type"] return {condition_type: {key: value}} return None def _put_permission_from_params( self, event_bus, action, principal, statement_id, condition ): if principal is None: raise JsonRESTError( "ValidationException", "Parameter Principal must be specified." ) if condition and principal != "*": raise JsonRESTError( "InvalidParameterValue", "Value of the parameter 'principal' must be '*' when the parameter 'condition' is set.", ) if not condition and self.ACCOUNT_ID.match(principal) is None: raise JsonRESTError( "InvalidParameterValue", f"Value {principal} at 'principal' failed to satisfy constraint: " r"Member must satisfy regular expression pattern: (\d{12}|\*)", ) if action is None or action != "events:PutEvents": raise JsonRESTError( "ValidationException", "Provided value in parameter 'action' is not supported.", ) if statement_id is None or self.STATEMENT_ID.match(statement_id) is None: raise JsonRESTError( "InvalidParameterValue", r"StatementId must match ^[a-zA-Z0-9-_]{1,64}$" ) principal = {"AWS": f"arn:aws:iam::{principal}:root"} stmt_condition = self._condition_param_to_stmt_condition(condition) event_bus.add_permission(statement_id, action, principal, stmt_condition) def put_permission( self, event_bus_name, action, principal, statement_id, condition, policy ): if not event_bus_name: event_bus_name = "default" event_bus = self.describe_event_bus(event_bus_name) if policy: self._put_permission_from_policy(event_bus, policy) else: self._put_permission_from_params( event_bus, action, principal, statement_id, condition ) def remove_permission(self, event_bus_name, statement_id, remove_all_permissions): if not event_bus_name: event_bus_name = "default" event_bus = self.describe_event_bus(event_bus_name) if remove_all_permissions: event_bus.remove_statements() else: if not event_bus.has_permissions(): raise JsonRESTError( "ResourceNotFoundException", "EventBus does not have a policy." ) statement = event_bus.remove_statement(statement_id) if not statement: raise JsonRESTError( "ResourceNotFoundException", "Statement with the provided id does not exist.", ) def describe_event_bus(self, name): if not name: name = "default" event_bus = self._get_event_bus(name) return event_bus def create_event_bus(self, name, event_source_name=None, tags=None): if name in self.event_buses: raise JsonRESTError( "ResourceAlreadyExistsException", "Event bus {} already exists.".format(name), ) if not event_source_name and "/" in name: raise JsonRESTError( "ValidationException", "Event bus name must not contain '/'." ) if event_source_name and event_source_name not in self.event_sources: raise JsonRESTError( "ResourceNotFoundException", "Event source {} does not exist.".format(event_source_name), ) event_bus = EventBus(self.region_name, name, tags=tags) self.event_buses[name] = event_bus if tags: self.tagger.tag_resource(event_bus.arn, tags) return self.event_buses[name] def list_event_buses(self, name_prefix): if name_prefix: return [ event_bus for event_bus in self.event_buses.values() if event_bus.name.startswith(name_prefix) ] return list(self.event_buses.values()) def delete_event_bus(self, name): if name == "default": raise JsonRESTError( "ValidationException", "Cannot delete event bus default." ) event_bus = self.event_buses.pop(name, None) if event_bus: self.tagger.delete_all_tags_for_resource(event_bus.arn) def list_tags_for_resource(self, arn): name = arn.split("/")[-1] registries = [self.rules, self.event_buses] for registry in registries: if name in registry: return self.tagger.list_tags_for_resource(registry[name].arn) raise ResourceNotFoundException( "Rule {0} does not exist on EventBus default.".format(name) ) def tag_resource(self, arn, tags): name = arn.split("/")[-1] registries = [self.rules, self.event_buses] for registry in registries: if name in registry: self.tagger.tag_resource(registry[name].arn, tags) return {} raise ResourceNotFoundException( "Rule {0} does not exist on EventBus default.".format(name) ) def untag_resource(self, arn, tag_names): name = arn.split("/")[-1] registries = [self.rules, self.event_buses] for registry in registries: if name in registry: self.tagger.untag_resource_using_names(registry[name].arn, tag_names) return {} raise ResourceNotFoundException( "Rule {0} does not exist on EventBus default.".format(name) ) def create_archive(self, name, source_arn, description, event_pattern, retention): if len(name) > 48: raise ValidationException( " 1 validation error detected: " "Value '{}' at 'archiveName' failed to satisfy constraint: " "Member must have length less than or equal to 48".format(name) ) event_bus = self._get_event_bus(source_arn) if name in self.archives: raise ResourceAlreadyExistsException( "Archive {} already exists.".format(name) ) archive = Archive( self.region_name, name, source_arn, description, event_pattern, retention ) rule_event_pattern = json.loads(event_pattern or "{}") rule_event_pattern["replay-name"] = [{"exists": False}] rule_name = "Events-Archive-{}".format(name) rule = self.put_rule( rule_name, event_pattern=json.dumps(rule_event_pattern), event_bus_name=event_bus.name, managed_by="prod.vhs.events.aws.internal", ) self.put_targets( rule.name, rule.event_bus_name, [ { "Id": rule.name, "Arn": "arn:aws:events:{}:::".format(self.region_name), "InputTransformer": { "InputPathsMap": {}, "InputTemplate": json.dumps( { "archive-arn": "{0}:{1}".format( archive.arn, archive.uuid ), "event": "<aws.events.event.json>", "ingestion-time": "<aws.events.event.ingestion-time>", } ), }, } ], ) self.archives[name] = archive return archive def describe_archive(self, name): archive = self.archives.get(name) if not archive: raise ResourceNotFoundException("Archive {} does not exist.".format(name)) return archive.describe() def list_archives(self, name_prefix, source_arn, state): if [name_prefix, source_arn, state].count(None) < 2: raise ValidationException( "At most one filter is allowed for ListArchives. " "Use either : State, EventSourceArn, or NamePrefix." ) if state and state not in Archive.VALID_STATES: raise ValidationException( "1 validation error detected: " "Value '{0}' at 'state' failed to satisfy constraint: " "Member must satisfy enum value set: " "[{1}]".format(state, ", ".join(Archive.VALID_STATES)) ) if [name_prefix, source_arn, state].count(None) == 3: return [archive.describe_short() for archive in self.archives.values()] result = [] for archive in self.archives.values(): if name_prefix and archive.name.startswith(name_prefix): result.append(archive.describe_short()) elif source_arn and archive.source_arn == source_arn: result.append(archive.describe_short()) elif state and archive.state == state: result.append(archive.describe_short()) return result def update_archive(self, name, description, event_pattern, retention): archive = self.archives.get(name) if not archive: raise ResourceNotFoundException("Archive {} does not exist.".format(name)) archive.update(description, event_pattern, retention) return { "ArchiveArn": archive.arn, "CreationTime": archive.creation_time, "State": archive.state, } def delete_archive(self, name): archive = self.archives.get(name) if not archive: raise ResourceNotFoundException("Archive {} does not exist.".format(name)) archive.delete(self.region_name) def start_replay( self, name, description, source_arn, start_time, end_time, destination ): event_bus_arn = destination["Arn"] event_bus_arn_pattern = r"^arn:aws:events:[a-zA-Z0-9-]+:\d{12}:event-bus/" if not re.match(event_bus_arn_pattern, event_bus_arn): raise ValidationException( "Parameter Destination.Arn is not valid. " "Reason: Must contain an event bus ARN." ) self._get_event_bus(event_bus_arn) archive_name = source_arn.split("/")[-1] archive = self.archives.get(archive_name) if not archive: raise ValidationException( "Parameter EventSourceArn is not valid. " "Reason: Archive {} does not exist.".format(archive_name) ) if event_bus_arn != archive.source_arn: raise ValidationException( "Parameter Destination.Arn is not valid. " "Reason: Cross event bus replay is not permitted." ) if start_time > end_time: raise ValidationException( "Parameter EventEndTime is not valid. " "Reason: EventStartTime must be before EventEndTime." ) if name in self.replays: raise ResourceAlreadyExistsException( "Replay {} already exists.".format(name) ) replay = Replay( self.region_name, name, description, source_arn, start_time, end_time, destination, ) self.replays[name] = replay replay.replay_events(archive) return { "ReplayArn": replay.arn, "ReplayStartTime": replay.start_time, "State": ReplayState.STARTING.value, # the replay will be done before returning the response } def describe_replay(self, name): replay = self._get_replay(name) return replay.describe() def list_replays(self, name_prefix, source_arn, state): if [name_prefix, source_arn, state].count(None) < 2: raise ValidationException( "At most one filter is allowed for ListReplays. " "Use either : State, EventSourceArn, or NamePrefix." ) valid_states = sorted([item.value for item in ReplayState]) if state and state not in valid_states: raise ValidationException( "1 validation error detected: " "Value '{0}' at 'state' failed to satisfy constraint: " "Member must satisfy enum value set: " "[{1}]".format(state, ", ".join(valid_states)) ) if [name_prefix, source_arn, state].count(None) == 3: return [replay.describe_short() for replay in self.replays.values()] result = [] for replay in self.replays.values(): if name_prefix and replay.name.startswith(name_prefix): result.append(replay.describe_short()) elif source_arn and replay.source_arn == source_arn: result.append(replay.describe_short()) elif state and replay.state == state: result.append(replay.describe_short()) return result def cancel_replay(self, name): replay = self._get_replay(name) # replays in the state 'COMPLETED' can't be canceled, # but the implementation is done synchronously, # so they are done right after the start if replay.state not in [ ReplayState.STARTING, ReplayState.RUNNING, ReplayState.COMPLETED, ]: raise IllegalStatusException( "Replay {} is not in a valid state for this operation.".format(name) ) replay.state = ReplayState.CANCELLED return {"ReplayArn": replay.arn, "State": ReplayState.CANCELLING.value} def create_connection(self, name, description, authorization_type, auth_parameters): connection = Connection( name, self.region_name, description, authorization_type, auth_parameters ) self.connections[name] = connection return connection def update_connection(self, *, name, **kwargs): connection = self.connections.get(name) if not connection: raise ResourceNotFoundException( "Connection '{}' does not exist.".format(name) ) for attr, value in kwargs.items(): if value is not None and hasattr(connection, attr): setattr(connection, attr, value) return connection.describe_short() def list_connections(self): return self.connections.values() def describe_connection(self, name): """ Retrieves details about a connection. Docs: https://docs.aws.amazon.com/eventbridge/latest/APIReference/API_DescribeConnection.html Args: name: The name of the connection to retrieve. Raises: ResourceNotFoundException: When the connection is not present. Returns: dict """ connection = self.connections.get(name) if not connection: raise ResourceNotFoundException( "Connection '{}' does not exist.".format(name) ) return connection.describe() def delete_connection(self, name): """ Deletes a connection. Docs: https://docs.aws.amazon.com/eventbridge/latest/APIReference/API_DeleteConnection.html Args: name: The name of the connection to delete. Raises: ResourceNotFoundException: When the connection is not present. Returns: dict """ connection = self.connections.pop(name, None) if not connection: raise ResourceNotFoundException( "Connection '{}' does not exist.".format(name) ) return connection.describe_short() def create_api_destination( self, name, description, connection_arn, invocation_endpoint, invocation_rate_limit_per_second, http_method, ): """ Creates an API destination, which is an HTTP invocation endpoint configured as a target for events. Docs: https://docs.aws.amazon.com/eventbridge/latest/APIReference/API_CreateApiDestination.html Returns: dict """ destination = Destination( name=name, region_name=self.region_name, description=description, connection_arn=connection_arn, invocation_endpoint=invocation_endpoint, invocation_rate_limit_per_second=invocation_rate_limit_per_second, http_method=http_method, ) self.destinations[name] = destination return destination.describe_short() def list_api_destinations(self): return self.destinations.values() def describe_api_destination(self, name): """ Retrieves details about an API destination. Docs: https://docs.aws.amazon.com/eventbridge/latest/APIReference/API_DescribeApiDestination.html Args: name: The name of the API destination to retrieve. Returns: dict """ destination = self.destinations.get(name) if not destination: raise ResourceNotFoundException( "An api-destination '{}' does not exist.".format(name) ) return destination.describe() def update_api_destination(self, *, name, **kwargs): """ Creates an API destination, which is an HTTP invocation endpoint configured as a target for events. Docs: https://docs.aws.amazon.com/eventbridge/latest/APIReference/API_UpdateApiDestination.html Returns: dict """ destination = self.destinations.get(name) if not destination: raise ResourceNotFoundException( "An api-destination '{}' does not exist.".format(name) ) for attr, value in kwargs.items(): if value is not None and hasattr(destination, attr): setattr(destination, attr, value) return destination.describe_short() def delete_api_destination(self, name): """ Deletes the specified API destination. Docs: https://docs.aws.amazon.com/eventbridge/latest/APIReference/API_DeleteApiDestination.html Args: name: The name of the destination to delete. Raises: ResourceNotFoundException: When the destination is not present. Returns: dict """ destination = self.destinations.pop(name, None) if not destination: raise ResourceNotFoundException( "An api-destination '{}' does not exist.".format(name) ) return {} events_backends = {} for region in Session().get_available_regions("events"): events_backends[region] = EventsBackend(region) for region in Session().get_available_regions("events", partition_name="aws-us-gov"): events_backends[region] = EventsBackend(region) for region in Session().get_available_regions("events", partition_name="aws-cn"): events_backends[region] = EventsBackend(region)
33.717822
122
0.594431
928c7fd1f8ed0dd9a409c3faef0da00a25f58723
7,293
py
Python
test/test_tensorflow_graph_pad_conv.py
deb-intel/LPOTtest
f7b7524c733e581668d15192b69f9d9a7ca5222d
[ "Apache-2.0" ]
null
null
null
test/test_tensorflow_graph_pad_conv.py
deb-intel/LPOTtest
f7b7524c733e581668d15192b69f9d9a7ca5222d
[ "Apache-2.0" ]
null
null
null
test/test_tensorflow_graph_pad_conv.py
deb-intel/LPOTtest
f7b7524c733e581668d15192b69f9d9a7ca5222d
[ "Apache-2.0" ]
null
null
null
import unittest import os import yaml import tensorflow as tf from tensorflow.python.framework import graph_util from lpot.adaptor.tf_utils.util import disable_random def build_fake_yaml(): fake_yaml = ''' model: name: fake_yaml framework: tensorflow inputs: input outputs: op_to_store device: cpu quantization: model_wise: weight: granularity: per_tensor scheme: sym dtype: int8 algorithm: kl evaluation: accuracy: metric: topk: 1 tuning: strategy: name: mse accuracy_criterion: relative: 0.01 exit_policy: performance_only: True workspace: path: saved ''' y = yaml.load(fake_yaml, Loader=yaml.SafeLoader) with open('fake_yaml.yaml', "w", encoding="utf-8") as f: yaml.dump(y, f) f.close() class TestFoldPadConv(unittest.TestCase): @classmethod def setUpClass(self): build_fake_yaml() @classmethod def tearDownClass(self): os.remove('fake_yaml.yaml') @disable_random() def test_fold_pad_conv(self): x = tf.compat.v1.placeholder(tf.float32, [1, 56, 56, 16], name="input") paddings = tf.constant([[0, 0], [1, 1], [1, 1], [0, 0]]) x_pad = tf.pad(x, paddings, "CONSTANT") conv_weights = tf.compat.v1.get_variable("weight", [3, 3, 16, 16], initializer=tf.compat.v1.random_normal_initializer()) conv = tf.nn.conv2d(x_pad, conv_weights, strides=[1, 2, 2, 1], padding="VALID") normed = tf.compat.v1.layers.batch_normalization(conv) relu = tf.nn.relu(normed, name='op_to_store') out_name = relu.name.split(':')[0] with tf.compat.v1.Session() as sess: sess.run(tf.compat.v1.global_variables_initializer()) output_graph_def = graph_util.convert_variables_to_constants( sess=sess, input_graph_def=sess.graph_def, output_node_names=[out_name]) from lpot.experimental import Quantization, common quantizer = Quantization('fake_yaml.yaml') dataset = quantizer.dataset('dummy', shape=(100, 56, 56, 16), label=True) quantizer.eval_dataloader = common.DataLoader(dataset) quantizer.calib_dataloader = common.DataLoader(dataset) quantizer.model = output_graph_def output_graph = quantizer() found_pad = False if tf.__version__ >= "2.0.0": for i in output_graph.graph_def.node: if i.op == 'Pad': found_pad = True break self.assertEqual(found_pad, True) @disable_random() def test_fold_pad_conv2(self): x = tf.compat.v1.placeholder(tf.float32, [1, 56, 56, 16], name="input") paddings = tf.constant([[0, 0], [1, 1], [1, 1], [0, 0]]) x_pad = tf.pad(x, paddings, "CONSTANT") conv_weights = tf.compat.v1.get_variable("weight", [3, 3, 16, 16], initializer=tf.compat.v1.random_normal_initializer()) conv = tf.nn.conv2d(x_pad, conv_weights, strides=[1, 2, 2, 1], padding="VALID") normed = tf.compat.v1.layers.batch_normalization(conv) relu = tf.nn.relu(normed) paddings2 = tf.constant([[0, 0], [1, 1], [1, 1], [0, 0]]) x_pad2 = tf.pad(x, paddings2, "CONSTANT") conv_weights2 = tf.compat.v1.get_variable("weight2", [3, 3, 16, 16], initializer=tf.compat.v1.random_normal_initializer()) conv2 = tf.nn.conv2d(x_pad2, conv_weights2, strides=[1, 2, 2, 1], padding="VALID") normed2 = tf.compat.v1.layers.batch_normalization(conv2) relu2 = tf.nn.relu(normed2) add = tf.math.add(relu, relu2, name='op_to_store') out_name = add.name.split(':')[0] with tf.compat.v1.Session() as sess: sess.run(tf.compat.v1.global_variables_initializer()) output_graph_def = graph_util.convert_variables_to_constants( sess=sess, input_graph_def=sess.graph_def, output_node_names=[out_name]) from lpot.experimental import Quantization, common quantizer = Quantization('fake_yaml.yaml') dataset = quantizer.dataset('dummy', shape=(100, 56, 56, 16), label=True) quantizer.eval_dataloader = common.DataLoader(dataset) quantizer.calib_dataloader = common.DataLoader(dataset) quantizer.model = output_graph_def output_graph = quantizer() found_pad = False if tf.__version__ >= "2.0.0": for i in output_graph.graph_def.node: if i.op == 'Pad': found_pad = True break self.assertEqual(found_pad, True) @disable_random() def test_fold_pad_conv3(self): x = tf.compat.v1.placeholder(tf.float32, [1, 56, 56, 16], name="input") paddings = tf.constant([[0, 0], [1, 1], [1, 1], [0, 0]]) x_pad = tf.pad(x, paddings, "CONSTANT") conv_weights = tf.compat.v1.get_variable("weight", [3, 3, 16, 16], initializer=tf.compat.v1.random_normal_initializer()) conv = tf.nn.conv2d(x_pad, conv_weights, strides=[1, 2, 2, 1], padding="VALID") normed = tf.compat.v1.layers.batch_normalization(conv) relu = tf.nn.relu(normed) conv_weights2 = tf.compat.v1.get_variable("weight2", [3, 3, 16, 16], initializer=tf.compat.v1.random_normal_initializer()) conv2 = tf.nn.conv2d(x, conv_weights2, strides=[1, 2, 2, 1], padding="SAME") normed2 = tf.compat.v1.layers.batch_normalization(conv2) relu2 = tf.nn.relu(normed2) add = tf.math.add(relu, relu2, name='op_to_store') out_name = add.name.split(':')[0] with tf.compat.v1.Session() as sess: sess.run(tf.compat.v1.global_variables_initializer()) output_graph_def = graph_util.convert_variables_to_constants( sess=sess, input_graph_def=sess.graph_def, output_node_names=[out_name]) from lpot.experimental import Quantization, common quantizer = Quantization('fake_yaml.yaml') dataset = quantizer.dataset('dummy', shape=(100, 56, 56, 16), label=True) quantizer.eval_dataloader = common.DataLoader(dataset) quantizer.calib_dataloader = common.DataLoader(dataset) quantizer.model = output_graph_def output_graph = quantizer() found_pad = False if tf.__version__ >= "2.0.0": for i in output_graph.graph_def.node: if i.op == 'Pad': found_pad = True break self.assertEqual(found_pad, True) if __name__ == "__main__": unittest.main()
41.913793
103
0.566296
28949667ce219452bc7902e75750b933d46409c9
317
py
Python
sapextractor/factory.py
aarkue/sap-meta-explorer
613bf657bbaa72a3781a84664e5de7626516532f
[ "Apache-2.0" ]
null
null
null
sapextractor/factory.py
aarkue/sap-meta-explorer
613bf657bbaa72a3781a84664e5de7626516532f
[ "Apache-2.0" ]
null
null
null
sapextractor/factory.py
aarkue/sap-meta-explorer
613bf657bbaa72a3781a84664e5de7626516532f
[ "Apache-2.0" ]
null
null
null
from sapextractor.database_connection import factory as conn_factory from sapextractor.algo import factory as algo_factory def apply(db_type, db_con_arg, process, ext_type, ext_arg): print(process) con = conn_factory.apply(db_type, db_con_arg) return algo_factory.apply(con, process, ext_type, ext_arg)
35.222222
68
0.798107
10eb809e38f62b27a9fd8f3084eb1e1b1061d198
83
py
Python
unicorn_binance_websocket_api/unicorn_binance_websocket_api_manager.py
byte-trading/unicorn-binance-websocket-api
3aa2f87ef107db75c0c1aaebbcc6a8564357b256
[ "MIT" ]
null
null
null
unicorn_binance_websocket_api/unicorn_binance_websocket_api_manager.py
byte-trading/unicorn-binance-websocket-api
3aa2f87ef107db75c0c1aaebbcc6a8564357b256
[ "MIT" ]
null
null
null
unicorn_binance_websocket_api/unicorn_binance_websocket_api_manager.py
byte-trading/unicorn-binance-websocket-api
3aa2f87ef107db75c0c1aaebbcc6a8564357b256
[ "MIT" ]
null
null
null
# backward compatibility <= 1.35.0 from .manager import BinanceWebSocketApiManager
27.666667
47
0.819277
ef944e45ac26c99652ffd616ddbf206a9ff3004b
7,943
py
Python
python3/madasterapi/model/account_response.py
Madaster/examples
bd2e8e464172e0d47cac8ed1672501a24ba624c3
[ "MIT" ]
2
2021-04-13T12:19:26.000Z
2021-09-13T15:40:44.000Z
python3/madasterapi/model/account_response.py
Madaster/examples
bd2e8e464172e0d47cac8ed1672501a24ba624c3
[ "MIT" ]
null
null
null
python3/madasterapi/model/account_response.py
Madaster/examples
bd2e8e464172e0d47cac8ed1672501a24ba624c3
[ "MIT" ]
null
null
null
""" Madaster Private API - Build: 8815 Welcome to the **Madaster Private API** endpoint. This endpoint can be used to interact with the Madaster Platform and its resources. This API does not fully cover all functionality of the platform yet, please see below for the available functions and what they can be used for. For detailed information about the platform and this API, please refer to the [Madaster Documentation](https://docs.madaster.com) or the [Madaster API Documentation](https://docs.madaster.com/api).<br/><br/>To access these resources, you need an authorization token. If you do not have one yet, see the chapter about Authorization in the [API documentation](https://docs.madaster.com/api). This token should be sent as a header with the name 'X-API-Key', which will authenticate the request with the token. The documentation below specifies which requests are available and which responses they might produce.<br/><br/>This API can be reached at the endpoint: **[https://api.madaster.com/](https://api.madaster.com/)** # noqa: E501 The version of the OpenAPI document: v3.0 Contact: service@madaster.com Generated by: https://openapi-generator.tech """ import re # noqa: F401 import sys # noqa: F401 from madasterapi.model_utils import ( # noqa: F401 ApiTypeError, ModelComposed, ModelNormal, ModelSimple, cached_property, change_keys_js_to_python, convert_js_args_to_python_args, date, datetime, file_type, none_type, validate_get_composed_info, ) def lazy_import(): from madasterapi.model.account_type import AccountType globals()['AccountType'] = AccountType class AccountResponse(ModelNormal): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. Attributes: allowed_values (dict): The key is the tuple path to the attribute and the for var_name this is (var_name,). The value is a dict with a capitalized key describing the allowed value and an allowed value. These dicts store the allowed enum values. attribute_map (dict): The key is attribute name and the value is json key in definition. discriminator_value_class_map (dict): A dict to go from the discriminator variable value to the discriminator class name. validations (dict): The key is the tuple path to the attribute and the for var_name this is (var_name,). The value is a dict that stores validations for max_length, min_length, max_items, min_items, exclusive_maximum, inclusive_maximum, exclusive_minimum, inclusive_minimum, and regex. additional_properties_type (tuple): A tuple of classes accepted as additional properties values. """ allowed_values = { } validations = { } additional_properties_type = None _nullable = False @cached_property def openapi_types(): """ This must be a method because a model may have properties that are of type self, this must run after the class is loaded Returns openapi_types (dict): The key is attribute name and the value is attribute type. """ lazy_import() return { 'id': (str,), # noqa: E501 'name': (str, none_type,), # noqa: E501 'account_type': (AccountType,), # noqa: E501 } @cached_property def discriminator(): return None attribute_map = { 'id': 'id', # noqa: E501 'name': 'name', # noqa: E501 'account_type': 'accountType', # noqa: E501 } _composed_schemas = {} required_properties = set([ '_data_store', '_check_type', '_spec_property_naming', '_path_to_item', '_configuration', '_visited_composed_classes', ]) @convert_js_args_to_python_args def __init__(self, *args, **kwargs): # noqa: E501 """AccountResponse - a model defined in OpenAPI Keyword Args: _check_type (bool): if True, values for parameters in openapi_types will be type checked and a TypeError will be raised if the wrong type is input. Defaults to True _path_to_item (tuple/list): This is a list of keys or values to drill down to the model in received_data when deserializing a response _spec_property_naming (bool): True if the variable names in the input data are serialized names, as specified in the OpenAPI document. False if the variable names in the input data are pythonic names, e.g. snake case (default) _configuration (Configuration): the instance to use when deserializing a file_type parameter. If passed, type conversion is attempted If omitted no type conversion is done. _visited_composed_classes (tuple): This stores a tuple of classes that we have traveled through so that if we see that class again we will not use its discriminator again. When traveling through a discriminator, the composed schema that is is traveled through is added to this set. For example if Animal has a discriminator petType and we pass in "Dog", and the class Dog allOf includes Animal, we move through Animal once using the discriminator, and pick Dog. Then in Dog, we will make an instance of the Animal class but this time we won't travel through its discriminator because we passed in _visited_composed_classes = (Animal,) id (str): The account identifier. [optional] # noqa: E501 name (str, none_type): The account name. [optional] # noqa: E501 account_type (AccountType): [optional] # noqa: E501 """ _check_type = kwargs.pop('_check_type', True) _spec_property_naming = kwargs.pop('_spec_property_naming', False) _path_to_item = kwargs.pop('_path_to_item', ()) _configuration = kwargs.pop('_configuration', None) _visited_composed_classes = kwargs.pop('_visited_composed_classes', ()) if args: raise ApiTypeError( "Invalid positional arguments=%s passed to %s. Remove those invalid positional arguments." % ( args, self.__class__.__name__, ), path_to_item=_path_to_item, valid_classes=(self.__class__,), ) self._data_store = {} self._check_type = _check_type self._spec_property_naming = _spec_property_naming self._path_to_item = _path_to_item self._configuration = _configuration self._visited_composed_classes = _visited_composed_classes + (self.__class__,) for var_name, var_value in kwargs.items(): if var_name not in self.attribute_map and \ self._configuration is not None and \ self._configuration.discard_unknown_keys and \ self.additional_properties_type is None: # discard variable. continue setattr(self, var_name, var_value)
44.374302
1,015
0.607075
10c75cb45373b832a70aee9a8a77d1549bd75f6c
5,398
py
Python
ceph_installer/tests/controllers/test_tasks.py
ceph/ceph-installer
79988577176d6ea628d6c4f50ed3f55831012a34
[ "MIT" ]
16
2016-02-26T01:06:13.000Z
2020-03-04T02:04:35.000Z
ceph_installer/tests/controllers/test_tasks.py
ceph/ceph-installer
79988577176d6ea628d6c4f50ed3f55831012a34
[ "MIT" ]
73
2016-02-11T14:56:25.000Z
2021-11-25T02:09:04.000Z
ceph_installer/tests/controllers/test_tasks.py
ceph/mariner-installer
79988577176d6ea628d6c4f50ed3f55831012a34
[ "MIT" ]
7
2016-02-12T17:49:02.000Z
2021-01-27T10:49:14.000Z
from datetime import datetime from uuid import uuid4 from ceph_installer.models import Task class TestTasksController(object): def create_task(self, **kw): Task( identifier=kw.get('identifier', str(uuid4())), endpoint='/api/rgw/', command='ansible-playbook -i "rgw.example.com," playbook.yml', stderr='', stdout='', started=kw.get('started', datetime.utcnow()), ended=kw.get('ended', datetime.utcnow()), succeeded=True ) def test_index_get_no_tasks(self, session): result = session.app.get("/api/tasks/") assert result.json == [] def test_index_get_single_task(self, session): self.create_task() session.commit() result = session.app.get("/api/tasks/") assert len(result.json) == 1 def test_index_get_single_task_identifier(self, session): self.create_task(identifier='uuid-1') session.commit() result = session.app.get("/api/tasks/") assert result.json[0]['identifier'] == 'uuid-1' def test_index_get_single_task_endpoint(self, session): self.create_task() session.commit() result = session.app.get("/api/tasks/") assert result.json[0]['endpoint'] == '/api/rgw/' def test_index_get_single_task_command(self, session): self.create_task() session.commit() result = session.app.get("/api/tasks/") assert result.json[0]['command'] == 'ansible-playbook -i "rgw.example.com," playbook.yml' def test_index_get_single_task_stdout(self, session): self.create_task() session.commit() result = session.app.get("/api/tasks/") assert result.json[0]['stdout'] == '' def test_index_get_single_task_stderr(self, session): self.create_task() session.commit() result = session.app.get("/api/tasks/") assert result.json[0]['stderr'] == '' def test_index_get_single_task_started(self, session): started = datetime.utcnow() self.create_task(started=started) session.commit() result = session.app.get("/api/tasks/") assert result.json[0]['started'] == started.isoformat().replace('T', ' ') def test_index_get_single_task_ended(self, session): ended = datetime.utcnow() self.create_task(ended=ended) session.commit() result = session.app.get("/api/tasks/") assert result.json[0]['ended'] == ended.isoformat().replace('T', ' ') def test_index_get_single_task_succeeded(self, session): self.create_task() session.commit() result = session.app.get("/api/tasks/") assert result.json[0]['succeeded'] is True class TestTaskController(object): def create_task(self, **kw): Task( identifier=kw.get('identifier', str(uuid4())), endpoint='/api/rgw/', command='ansible-playbook -i "rgw.example.com," playbook.yml', stderr='', stdout='', started=kw.get('started', datetime.utcnow()), ended=kw.get('ended', datetime.utcnow()), succeeded=True ) def test_task_not_found(self, session): result = session.app.get( '/api/tasks/1234-asdf-1234-asdf/', expect_errors=True) assert result.status_int == 404 def test_task_exists_with_metadata(self, session): identifier = '1234-asdf-1234-asdf' self.create_task(identifier=identifier) result = session.app.get('/api/tasks/1234-asdf-1234-asdf/') assert result.json['identifier'] class TestTaskControllerRequests(object): def create_task(self, **kw): Task( request=kw.get('request'), identifier=kw.get('identifier', '1234-asdf-1234-asdf'), endpoint='/api/rgw/', command='ansible-playbook -i "rgw.example.com," playbook.yml', stderr='', stdout='', started=kw.get('started', datetime.utcnow()), ended=kw.get('ended', datetime.utcnow()), succeeded=True ) def test_request_is_none(self, session): self.create_task() result = session.app.get( '/api/tasks/1234-asdf-1234-asdf/', expect_errors=True) print result.json assert result.json['user_agent'] == '' assert result.json['http_method'] == '' assert result.json['request'] == '' def test_request_with_valid_method(self, fake, session): fake_request = fake(method='POST') self.create_task(request=fake_request) result = session.app.get('/api/tasks/1234-asdf-1234-asdf/') assert result.json['http_method'] == 'POST' def test_request_with_valid_body(self, fake, session): fake_request = fake(body='{"host": "example.com"}') self.create_task(request=fake_request) result = session.app.get('/api/tasks/1234-asdf-1234-asdf/') assert result.json['request'] == '{"host": "example.com"}' def test_request_with_valid_user_agent(self, fake, session): fake_request = fake(user_agent='Mozilla/5.0') self.create_task(request=fake_request) result = session.app.get('/api/tasks/1234-asdf-1234-asdf/') assert result.json['user_agent'] == 'Mozilla/5.0'
35.513158
97
0.607818
beaa6e7dcb4fd89545e8acf61e26958347409499
777
py
Python
samples/python2/mser.py
bonanza-market/opencv
6550cb2a90b2b074234a3b2ae354d01a1e55fd2b
[ "BSD-3-Clause" ]
144
2015-01-15T03:38:44.000Z
2022-02-17T09:07:52.000Z
samples/python2/mser.py
bonanza-market/opencv
6550cb2a90b2b074234a3b2ae354d01a1e55fd2b
[ "BSD-3-Clause" ]
9
2015-09-09T06:51:46.000Z
2020-06-17T14:10:10.000Z
samples/python2/mser.py
bonanza-market/opencv
6550cb2a90b2b074234a3b2ae354d01a1e55fd2b
[ "BSD-3-Clause" ]
73
2015-06-20T15:59:27.000Z
2020-03-15T22:43:36.000Z
#!/usr/bin/env python ''' MSER detector demo ================== Usage: ------ mser.py [<video source>] Keys: ----- ESC - exit ''' import numpy as np import cv2 import video if __name__ == '__main__': import sys try: video_src = sys.argv[1] except: video_src = 0 cam = video.create_capture(video_src) mser = cv2.MSER() while True: ret, img = cam.read() gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) vis = img.copy() regions = mser.detect(gray, None) hulls = [cv2.convexHull(p.reshape(-1, 1, 2)) for p in regions] cv2.polylines(vis, hulls, 1, (0, 255, 0)) cv2.imshow('img', vis) if 0xFF & cv2.waitKey(5) == 27: break cv2.destroyAllWindows()
18.069767
70
0.544402
55ff1b78f2053054f32802d609009c846a1fa086
2,866
py
Python
python/game-idea/main.py
ASMlover/study
5878f862573061f94c5776a351e30270dfd9966a
[ "BSD-2-Clause" ]
22
2015-05-18T07:04:36.000Z
2021-08-02T03:01:43.000Z
python/game-idea/main.py
ASMlover/study
5878f862573061f94c5776a351e30270dfd9966a
[ "BSD-2-Clause" ]
1
2017-08-31T22:13:57.000Z
2017-09-05T15:00:25.000Z
python/game-idea/main.py
ASMlover/study
5878f862573061f94c5776a351e30270dfd9966a
[ "BSD-2-Clause" ]
6
2015-06-06T07:16:12.000Z
2021-07-06T13:45:56.000Z
#!/usr/bin/env python # -*- encoding: utf-8 -*- # # Copyright (c) 2015 ASMlover. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # # * Redistributions of source code must retain the above copyright # notice, this list ofconditions and the following disclaimer. # # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in # the documentation and/or other materialsprovided with the # distribution. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS # FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE # COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, # INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, # BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT # LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN # ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. import trigger as tm class Space(object): def __init__(self): pass def monster_count(self): return 0 class TriggerManager(object): def __init__(self, space=None): self.space = space self.triggers = {} self.activate_triggers = set() def register(self, trigger_no, infos): trigger_name = 'Trigger%d' % trigger_no trigger_type = getattr(tm, trigger_name) if trigger_type: trigger = trigger_type(self.space, infos) self.triggers[trigger_no] = trigger if trigger.activatiable(): self.activate_triggers.add(trigger_no) def unregister(self, trigger_no): self.triggers.pop(trigger_no, None) def on_event_notify(self, notify, *args): completed_triggers = [] for trigger_no in self.activate_triggers: trigger = self.triggers.get(trigger_no, None) if not trigger: continue on_event = getattr(trigger, notify, None) if on_event: on_event(*args) if trigger.is_completed(): completed_triggers.append(trigger_no) [self.activate_triggers.discard(no) for no in completed_triggers] if __name__ == '__main__': space = Space() trigger_mgr = TriggerManager(space) trigger_mgr.register(1101, {'cond': 0, 'action': 'all monsters dead !!!'}) trigger_mgr.on_event_notify('on_monster_die')
36.278481
78
0.693301
64afce562e4810200045ab9a731f6f158c821182
10,165
py
Python
src/test/python/apache/aurora/client/commands/test_hooks.py
wickman/incubator-aurora
9906d217093568ed4c9cfe620862818f15ce4150
[ "Apache-2.0" ]
null
null
null
src/test/python/apache/aurora/client/commands/test_hooks.py
wickman/incubator-aurora
9906d217093568ed4c9cfe620862818f15ce4150
[ "Apache-2.0" ]
null
null
null
src/test/python/apache/aurora/client/commands/test_hooks.py
wickman/incubator-aurora
9906d217093568ed4c9cfe620862818f15ce4150
[ "Apache-2.0" ]
null
null
null
# # Copyright 2013 Apache Software Foundation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import contextlib import unittest from apache.aurora.client.commands.core import create from apache.aurora.client.commands.util import AuroraClientCommandTest from apache.aurora.client.config import AuroraConfig, GlobalHookRegistry from apache.aurora.client.hooks.hooked_api import HookedAuroraClientAPI from twitter.common import app from twitter.common.contextutil import temporary_file from gen.apache.aurora.ttypes import ( AssignedTask, Identity, Response, ResponseCode, Result, ScheduledTask, ScheduleStatus, ScheduleStatusResult, TaskEvent, TaskQuery, ) from mock import Mock, patch from pystachio.config import Config class CreateHookForTesting(object): def __init__(self, succeed): self.created_jobs = [] self.succeed = succeed def pre_create_job(self, api, config): self.created_jobs.append(config) return self.succeed class TestClientCreateCommand(AuroraClientCommandTest): def setUp(self): GlobalHookRegistry.reset() @classmethod def setup_mock_options(cls): """set up to get a mock options object.""" mock_options = Mock() mock_options.json = False mock_options.bindings = {} mock_options.open_browser = False mock_options.cluster = None mock_options.wait_until = 'RUNNING' # or 'FINISHED' for other tests mock_options.disable_all_hooks_reason = None return mock_options @classmethod def create_mock_task(cls, task_id, instance_id, initial_time, status): mock_task = Mock(spec=ScheduledTask) mock_task.assignedTask = Mock(spec=AssignedTask) mock_task.assignedTask.taskId = task_id mock_task.assignedTask.instanceId = instance_id mock_task.status = status mock_task_event = Mock(spec=TaskEvent) mock_task_event.timestamp = initial_time mock_task.taskEvents = [mock_task_event] return mock_task @classmethod def create_mock_status_query_result(cls, scheduleStatus): mock_query_result = cls.create_simple_success_response() mock_query_result.result.scheduleStatusResult = Mock(spec=ScheduleStatusResult) if scheduleStatus == ScheduleStatus.INIT: # status query result for before job is launched. mock_query_result.result.scheduleStatusResult.tasks = [] else: mock_task_one = cls.create_mock_task('hello', 0, 1000, scheduleStatus) mock_task_two = cls.create_mock_task('hello', 1, 1004, scheduleStatus) mock_query_result.result.scheduleStatusResult.tasks = [mock_task_one, mock_task_two] return mock_query_result @classmethod def create_mock_query(cls): return TaskQuery(owner=Identity(role=cls.TEST_ROLE), environment=cls.TEST_ENV, jobName=cls.TEST_JOB) @classmethod def get_createjob_response(cls): # Then, we call api.create_job(config) return cls.create_simple_success_response() @classmethod def get_failed_createjob_response(cls): return cls.create_error_response() @classmethod def assert_create_job_called(cls, mock_api): # Check that create_job was called exactly once, with an AuroraConfig parameter. assert mock_api.create_job.call_count == 1 assert isinstance(mock_api.create_job.call_args_list[0][0][0], AuroraConfig) @classmethod def assert_scheduler_called(cls, mock_api, mock_query, num_queries): # scheduler.scheduler() is called once, as a part of the handle_open call. assert mock_api.scheduler_proxy.getTasksStatus.call_count == num_queries mock_api.scheduler_proxy.getTasksStatus.assert_called_with(mock_query) def test_create_job_hook_called(self): """Run a test of the "create" command against a mocked API; verifies that a required hook runs, even though the config doesn't mention it. """ # Create a hook on "create_job" that just adds something to a list in the test. # Patch in HookedAuroraClientAPI to replace the UnhookedAuroraClientAPI with a mock. mock_options = self.setup_mock_options() hook = CreateHookForTesting(True) GlobalHookRegistry.register_global_hook(hook) # create first calls get_job_config, which calls get_config. As long as we've got the options # set up correctly, this should work. # Next, create gets an API object via make_client. We need to replace that with a mock API. (mock_api, mock_scheduler_proxy) = self.create_mock_api() with contextlib.nested( patch('apache.aurora.client.factory.CLUSTERS', new=self.TEST_CLUSTERS), patch('apache.aurora.client.api.SchedulerProxy', return_value = mock_scheduler_proxy), patch('twitter.common.app.get_options', return_value=mock_options)): mock_query = self.create_mock_query() mock_scheduler_proxy.createJob.return_value=self.get_createjob_response() mock_scheduler_proxy.getTasksStatus.side_effect = [ self.create_mock_status_query_result(ScheduleStatus.INIT), self.create_mock_status_query_result(ScheduleStatus.RUNNING) ] # Finally, it calls the monitor to watch and make sure the jobs started; # but we already set that up in the side-effects list for the query mock. # This is the real test: invoke create as if it had been called by the command line. with temporary_file() as fp: fp.write(self.get_valid_config()) fp.flush() create(['west/mchucarroll/test/hello', fp.name]) # Now check that the right API calls got made. assert mock_scheduler_proxy.createJob.call_count == 1 assert len(hook.created_jobs) == 1 def test_create_job_hook_aborts(self): """Run a test of the "create" command against a mocked API; verifies that a required hook runs, even though the config doesn't mention it. """ # Create a hook on "create_job" that just adds something to a list in the test. # Patch in HookedAuroraClientAPI to replace the UnhookedAuroraClientAPI with a mock. mock_options = self.setup_mock_options() hook = CreateHookForTesting(False) GlobalHookRegistry.register_global_hook(hook) # create first calls get_job_config, which calls get_config. As long as we've got the options # set up correctly, this should work. # Next, create gets an API object via make_client. We need to replace that with a mock API. (mock_api, mock_scheduler_proxy) = self.create_mock_api() with contextlib.nested( patch('apache.aurora.client.factory.CLUSTERS', new=self.TEST_CLUSTERS), patch('apache.aurora.client.api.SchedulerProxy', return_value = mock_scheduler_proxy), patch('twitter.common.app.get_options', return_value=mock_options)): mock_query = self.create_mock_query() mock_scheduler_proxy.createJob.return_value=self.get_createjob_response() mock_scheduler_proxy.getTasksStatus.side_effect = [ self.create_mock_status_query_result(ScheduleStatus.INIT), self.create_mock_status_query_result(ScheduleStatus.RUNNING) ] # Finally, it calls the monitor to watch and make sure the jobs started; # but we already set that up in the side-effects list for the query mock. # This is the real test: invoke create as if it had been called by the command line. with temporary_file() as fp: fp.write(self.get_valid_config()) fp.flush() self.assertRaises(HookedAuroraClientAPI.PreHooksStoppedCall, create, ['west/mchucarroll/test/hello', fp.name]) # Now check that the right API calls got made. assert mock_scheduler_proxy.createJob.call_count == 0 assert len(hook.created_jobs) == 1 def test_block_hooks(self): """Run a test of the "create" command against a mocked API; verifies that a required hook runs, even though the config doesn't mention it. """ # Create a hook on "create_job" that just adds something to a list in the test. # Patch in HookedAuroraClientAPI to replace the UnhookedAuroraClientAPI with a mock. mock_options = self.setup_mock_options() hook = CreateHookForTesting(True) GlobalHookRegistry.register_global_hook(hook) mock_options.disable_all_hooks_reason = "Because I said so." # create first calls get_job_config, which calls get_config. As long as we've got the options # set up correctly, this should work. # Next, create gets an API object via make_client. We need to replace that with a mock API. (mock_api, mock_scheduler_proxy) = self.create_mock_api() with contextlib.nested( patch('apache.aurora.client.factory.CLUSTERS', new=self.TEST_CLUSTERS), patch('apache.aurora.client.api.SchedulerProxy', return_value = mock_scheduler_proxy), patch('twitter.common.app.get_options', return_value=mock_options)): mock_query = self.create_mock_query() mock_scheduler_proxy.createJob.return_value=self.get_createjob_response() mock_scheduler_proxy.getTasksStatus.side_effect = [ self.create_mock_status_query_result(ScheduleStatus.INIT), self.create_mock_status_query_result(ScheduleStatus.RUNNING) ] # Finally, it calls the monitor to watch and make sure the jobs started; # but we already set that up in the side-effects list for the query mock. # This is the real test: invoke create as if it had been called by the command line. with temporary_file() as fp: fp.write(self.get_valid_config()) fp.flush() create(['west/mchucarroll/test/hello', fp.name]) # Now check that the right API calls got made. assert mock_scheduler_proxy.createJob.call_count == 1 assert len(hook.created_jobs) == 0
40.987903
97
0.742056
c646c7b3541053893948864e59933756383f6dc0
2,235
py
Python
bevy/app/agents/hooks.py
ZechCodes/bevy.app
c56bd1dba456969807abd8b71f8f02a68c23025d
[ "MIT" ]
null
null
null
bevy/app/agents/hooks.py
ZechCodes/bevy.app
c56bd1dba456969807abd8b71f8f02a68c23025d
[ "MIT" ]
null
null
null
bevy/app/agents/hooks.py
ZechCodes/bevy.app
c56bd1dba456969807abd8b71f8f02a68c23025d
[ "MIT" ]
null
null
null
from __future__ import annotations from asyncio import gather from collections import defaultdict from copy import deepcopy from inspect import isawaitable, getmro from typing import Awaitable, Callable, cast, Generator, Iterable, ParamSpec, TypeVar P = ParamSpec("P") R = TypeVar("R") class HookClassRepository: def __init__(self): self.repo = {} def __get__(self, _, owner: Hookable) -> dict[str, set[str]]: if id(owner) not in self.repo: self.repo[id(owner)] = self.build_hook_dict(owner) return self.repo[id(owner)] def build_hook_dict(self, owner): for super_ in getmro(owner): if super_ is not owner and hasattr(super_, "__bevy_hooks__"): return deepcopy(super_.__bevy_hooks__) return defaultdict(set) class Hookable: __bevy_hooks__: dict[str, set[str]] = HookClassRepository() def dispatch_to_hook( self, hook_name: str, *args: P.args, **kwargs: P.kwargs ) -> Awaitable: return gather( *self.__run_callbacks(self.__get_callbacks(hook_name), *args, **kwargs) ) def __get_callbacks(self, hook_name: str) -> Generator[None, Callable[P, R], None]: yield from ( getattr(self, name) for name in type(self).__bevy_hooks__[hook_name] ) def __run_callbacks( self, callbacks: Iterable[Callable[P, R]], *args: P.args, **kwargs: P.kwargs ) -> Generator[None, Awaitable, None]: yield from ( ret for callback in callbacks if isawaitable(ret := self.__run_callback(callback, *args, **kwargs)) ) def __run_callback(self, callback, *args, **kwargs) -> Awaitable | None: return callback(*args, **kwargs) class Hook: def __init__(self, hook_name: str): self._hook_name = hook_name self._func = None def __call__(self, func: Callable[P, R]) -> Callable[P, R]: self._func = func return self def __set_name__(self, owner: Hookable, name: str): owner.__bevy_hooks__[self._hook_name].add(name) setattr(owner, name, self._func) def hook(hook_name: str) -> Callable[P, R]: return cast(Callable[P, R], Hook(hook_name))
29.8
87
0.640268
2263c68d084352050a83e2bb94465b9c0f097aff
7,004
py
Python
desktop/core/ext-py/Twisted/twisted/internet/pollreactor.py
civascu/hue
82f2de44789ff5a981ed725175bae7944832d1e9
[ "Apache-2.0" ]
19
2015-05-01T19:59:03.000Z
2021-12-09T08:03:16.000Z
desktop/core/ext-py/Twisted/twisted/internet/pollreactor.py
civascu/hue
82f2de44789ff5a981ed725175bae7944832d1e9
[ "Apache-2.0" ]
1
2018-01-03T15:26:49.000Z
2018-01-03T15:26:49.000Z
desktop/core/ext-py/Twisted/twisted/internet/pollreactor.py
civascu/hue
82f2de44789ff5a981ed725175bae7944832d1e9
[ "Apache-2.0" ]
30
2015-03-25T19:40:07.000Z
2021-05-28T22:59:26.000Z
# Copyright (c) 2001-2007 Twisted Matrix Laboratories. # See LICENSE for details. """ A poll() based implementation of the twisted main loop. To install the event loop (and you should do this before any connections, listeners or connectors are added):: from twisted.internet import pollreactor pollreactor.install() Maintainer: Itamar Shtull-Trauring """ # System imports import errno, sys from select import error as SelectError, poll from select import POLLIN, POLLOUT, POLLHUP, POLLERR, POLLNVAL from zope.interface import implements # Twisted imports from twisted.python import log from twisted.internet import main, posixbase, error from twisted.internet.interfaces import IReactorFDSet POLL_DISCONNECTED = (POLLHUP | POLLERR | POLLNVAL) class PollReactor(posixbase.PosixReactorBase): """ A reactor that uses poll(2). @ivar _poller: A L{poll} which will be used to check for I/O readiness. @ivar _selectables: A dictionary mapping integer file descriptors to instances of L{FileDescriptor} which have been registered with the reactor. All L{FileDescriptors} which are currently receiving read or write readiness notifications will be present as values in this dictionary. @ivar _reads: A dictionary mapping integer file descriptors to arbitrary values (this is essentially a set). Keys in this dictionary will be registered with C{_poller} for read readiness notifications which will be dispatched to the corresponding L{FileDescriptor} instances in C{_selectables}. @ivar _writes: A dictionary mapping integer file descriptors to arbitrary values (this is essentially a set). Keys in this dictionary will be registered with C{_poller} for write readiness notifications which will be dispatched to the corresponding L{FileDescriptor} instances in C{_selectables}. """ implements(IReactorFDSet) def __init__(self): """ Initialize polling object, file descriptor tracking dictionaries, and the base class. """ self._poller = poll() self._selectables = {} self._reads = {} self._writes = {} posixbase.PosixReactorBase.__init__(self) def _updateRegistration(self, fd): """Register/unregister an fd with the poller.""" try: self._poller.unregister(fd) except KeyError: pass mask = 0 if fd in self._reads: mask = mask | POLLIN if fd in self._writes: mask = mask | POLLOUT if mask != 0: self._poller.register(fd, mask) else: if fd in self._selectables: del self._selectables[fd] def _dictRemove(self, selectable, mdict): try: # the easy way fd = selectable.fileno() # make sure the fd is actually real. In some situations we can get # -1 here. mdict[fd] except: # the hard way: necessary because fileno() may disappear at any # moment, thanks to python's underlying sockets impl for fd, fdes in self._selectables.items(): if selectable is fdes: break else: # Hmm, maybe not the right course of action? This method can't # fail, because it happens inside error detection... return if fd in mdict: del mdict[fd] self._updateRegistration(fd) def addReader(self, reader): """Add a FileDescriptor for notification of data available to read. """ fd = reader.fileno() if fd not in self._reads: self._selectables[fd] = reader self._reads[fd] = 1 self._updateRegistration(fd) def addWriter(self, writer): """Add a FileDescriptor for notification of data available to write. """ fd = writer.fileno() if fd not in self._writes: self._selectables[fd] = writer self._writes[fd] = 1 self._updateRegistration(fd) def removeReader(self, reader): """Remove a Selectable for notification of data available to read. """ return self._dictRemove(reader, self._reads) def removeWriter(self, writer): """Remove a Selectable for notification of data available to write. """ return self._dictRemove(writer, self._writes) def removeAll(self): """Remove all selectables, and return a list of them.""" if self.waker is not None: self.removeReader(self.waker) result = self._selectables.values() fds = self._selectables.keys() self._reads.clear() self._writes.clear() self._selectables.clear() for fd in fds: self._poller.unregister(fd) if self.waker is not None: self.addReader(self.waker) return result def doPoll(self, timeout): """Poll the poller for new events.""" if timeout is not None: timeout = int(timeout * 1000) # convert seconds to milliseconds try: l = self._poller.poll(timeout) except SelectError, e: if e[0] == errno.EINTR: return else: raise _drdw = self._doReadOrWrite for fd, event in l: try: selectable = self._selectables[fd] except KeyError: # Handles the infrequent case where one selectable's # handler disconnects another. continue log.callWithLogger(selectable, _drdw, selectable, fd, event) doIteration = doPoll def _doReadOrWrite(self, selectable, fd, event): why = None inRead = False if event & POLL_DISCONNECTED and not (event & POLLIN): why = main.CONNECTION_LOST else: try: if event & POLLIN: why = selectable.doRead() inRead = True if not why and event & POLLOUT: why = selectable.doWrite() inRead = False if not selectable.fileno() == fd: why = error.ConnectionFdescWentAway('Filedescriptor went away') inRead = False except: log.deferr() why = sys.exc_info()[1] if why: self._disconnectSelectable(selectable, why, inRead) def getReaders(self): return [self._selectables[fd] for fd in self._reads] def getWriters(self): return [self._selectables[fd] for fd in self._writes] def install(): """Install the poll() reactor.""" p = PollReactor() from twisted.internet.main import installReactor installReactor(p) __all__ = ["PollReactor", "install"]
32.12844
83
0.602227
ae14ade4b9a99521ad80e408e0d523f519e11c82
2,918
py
Python
thumbor/engines/gif.py
ustun/thumbor
2641b17a6cea5d3ebf20abd1d2b464565c1b8b97
[ "MIT" ]
1
2019-03-05T13:30:19.000Z
2019-03-05T13:30:19.000Z
thumbor/engines/gif.py
ustun/thumbor
2641b17a6cea5d3ebf20abd1d2b464565c1b8b97
[ "MIT" ]
null
null
null
thumbor/engines/gif.py
ustun/thumbor
2641b17a6cea5d3ebf20abd1d2b464565c1b8b97
[ "MIT" ]
null
null
null
#!/usr/bin/python # -*- coding: utf-8 -*- # thumbor imaging service # https://github.com/globocom/thumbor/wiki # Licensed under the MIT license: # http://www.opensource.org/licenses/mit-license # Copyright (c) 2011 globo.com timehome@corp.globo.com import re from subprocess import Popen, PIPE from thumbor.engines.pil import Engine as PILEngine GIFSICLE_SIZE_REGEX = re.compile(r'(?:logical\sscreen\s(\d+x\d+))') GIFSICLE_IMAGE_COUNT_REGEX = re.compile(r'(?:(\d+)\simage)') class Engine(PILEngine): @property def size(self): return self.image_size def run_gifsicle(self, command): p = Popen([self.context.server.gifsicle_path] + command.split(' '), stdout=PIPE, stdin=PIPE, stderr=PIPE) stdout_data = p.communicate(input=self.buffer)[0] return stdout_data def is_multiple(self): return self.frame_count > 1 def update_image_info(self): self._is_multiple = False result = self.run_gifsicle('--info') size = GIFSICLE_SIZE_REGEX.search(result) self.image_size = size.groups()[0].split('x') self.image_size[0], self.image_size[1] = int(self.image_size[0]), int(self.image_size[1]) count = GIFSICLE_IMAGE_COUNT_REGEX.search(result) self.frame_count = int(count.groups()[0]) def load(self, buffer, extension): self.extension = self.get_mimetype(buffer) self.buffer= buffer self.operations = [] self.update_image_info() def draw_rectangle(self, x, y, width, height): raise NotImplementedError() def resize(self, width, height): if width == 0 and height == 0: return if width > 0 and height == 0: arguments = "--resize-width %d" % width elif height > 0 and width == 0: arguments = "--resize-height %d" % height else: arguments = "--resize %dx%d" % (width, height) self.operations.append(arguments) def crop(self, left, top, right, bottom): arguments = "--crop %d,%d-%d,%d" % (left, top, right, bottom) self.operations.append(arguments) self.flush_operations() self.update_image_info() def rotate(self, degrees): if degrees not in [90, 180, 270]: return arguments = '--rotate-%d' % degrees self.operations.append(arguments) def flip_vertically(self): self.operations.append('--flip-vertical') def flip_horizontally(self): self.operations.append('--flip-horizontal') def flush_operations(self): if not self.operations: return self.buffer = self.run_gifsicle(" ".join(self.operations)) self.operations = [] def read(self, extension=None, quality=None): self.flush_operations() return self.buffer def convert_to_grayscale(self): self.operations.append('--use-colormap gray')
29.77551
113
0.63194
57b7fafdadde1c9a1b526801b9000a04c4b48fb6
8,305
py
Python
FGSM-RS/src/base.py
MTandHJ/Pytorch-Robust
612ec7e71ca11d3b84aacb3aead3253436ba3d2b
[ "MIT" ]
4
2021-11-20T13:11:20.000Z
2021-12-11T06:50:34.000Z
FGSM-RS/src/base.py
MTandHJ/PyTorch-Robust
1ba0a96953032db7952278ea49b2f1d5cdfac12c
[ "MIT" ]
null
null
null
FGSM-RS/src/base.py
MTandHJ/PyTorch-Robust
1ba0a96953032db7952278ea49b2f1d5cdfac12c
[ "MIT" ]
null
null
null
from typing import Callable, Any, Union, Optional, List, Tuple, Dict, Iterable, cast import torch import torch.nn as nn import foolbox as fb import os from models.base import AdversarialDefensiveModule from .utils import AverageMeter, ProgressMeter, timemeter, getLogger from .loss_zoo import cross_entropy, kl_divergence, lploss from .config import SAVED_FILENAME, PRE_BESTNAT, PRE_BESTROB, \ BOUNDS, PREPROCESSING, DEVICE def enter_attack_exit(func) -> Callable: def wrapper(attacker: "Adversary", *args, **kwargs): attacker.model.attack(True) results = func(attacker, *args, **kwargs) attacker.model.attack(False) return results wrapper.__name__ = func.__name__ wrapper.__doc__ = func.__doc__ return wrapper class Coach: def __init__( self, model: AdversarialDefensiveModule, loss_func: Callable, optimizer: torch.optim.Optimizer, learning_policy: "learning rate policy", device: torch.device = DEVICE ): self.model = model self.device = device self.loss_func = loss_func self.optimizer = optimizer self.learning_policy = learning_policy self.loss = AverageMeter("Loss") self.acc = AverageMeter("Acc", fmt=".3%") self.progress = ProgressMeter(self.loss, self.acc) self._best_nat = 0. self._best_rob = 0. def save_best_nat(self, acc_nat: float, path: str, prefix: str = PRE_BESTNAT): if acc_nat > self._best_nat: self._best_nat = acc_nat self.save(path, '_'.join((prefix, SAVED_FILENAME))) return 1 else: return 0 def save_best_rob(self, acc_rob: float, path: str, prefix: str = PRE_BESTROB): if acc_rob > self._best_rob: self._best_rob = acc_rob self.save(path, '_'.join((prefix, SAVED_FILENAME))) return 1 else: return 0 def check_best( self, acc_nat: float, acc_rob: float, path: str, epoch: int = 8888 ): logger = getLogger() if self.save_best_nat(acc_nat, path): logger.debug(f"[Coach] Saving the best nat ({acc_nat:.3%}) model at epoch [{epoch}]") if self.save_best_rob(acc_rob, path): logger.debug(f"[Coach] Saving the best rob ({acc_rob:.3%}) model at epoch [{epoch}]") def save(self, path: str, filename: str = SAVED_FILENAME) -> None: torch.save(self.model.state_dict(), os.path.join(path, filename)) @timemeter("AdvTraining/Epoch") def adv_train( self, trainloader: Iterable[Tuple[torch.Tensor, torch.Tensor]], attacker: "Adversary", *, epoch: int = 8888 ) -> float: self.progress.step() # reset the meter for inputs, labels in trainloader: inputs = inputs.to(self.device) labels = labels.to(self.device) clipped = attacker(inputs, labels) self.model.train() outs = self.model(clipped) loss = self.loss_func(outs, labels) self.optimizer.zero_grad() loss.backward() self.optimizer.step() accuracy_count = (outs.argmax(-1) == labels).sum().item() self.loss.update(loss.item(), inputs.size(0), mode="mean") self.acc.update(accuracy_count, inputs.size(0), mode="sum") self.learning_policy.step() # update the learning rate self.progress.display(epoch=epoch) return self.loss.avg class Adversary: def __init__( self, model: AdversarialDefensiveModule, attacker: Callable, device: torch.device = DEVICE, ) -> None: model.eval() self.model = model self.attacker = attacker self.device = device def attack(self, inputs: torch.Tensor, targets: torch.Tensor) -> torch.Tensor: raise NotImplementedError def __call__(self, inputs: torch.Tensor, targets: torch.Tensor) -> torch.Tensor: return self.attack(inputs, targets) class AdversaryForTrain(Adversary): @enter_attack_exit def attack(self, inputs: torch.Tensor, targets: torch.Tensor) -> torch.Tensor: self.model.train() # FGSM-RS crafts adversarial samples in training mode !!! return self.attacker(self.model, inputs, targets) class AdversaryForValid(Adversary): def attack(self, inputs: torch.Tensor, targets: torch.Tensor) -> torch.Tensor: self.model.eval() # make sure in inference mode return self.attacker(self.model, inputs, targets) @torch.no_grad() def accuracy(self, inputs: torch.Tensor, labels: torch.Tensor) -> int: self.model.eval() # make sure in evaluation mode ... predictions = self.model(inputs).argmax(dim=-1) accuracy = (predictions == labels) return cast(int, accuracy.sum().item()) def evaluate( self, dataloader: Iterable[Tuple[torch.Tensor, torch.Tensor]], *, defending: bool = True ) -> Tuple[float, float]: datasize = len(dataloader.dataset) # type: ignore acc_nat = 0 acc_adv = 0 self.model.defend(defending) # enter 'defending' mode self.model.eval() for inputs, labels in dataloader: inputs = inputs.to(self.device) labels = labels.to(self.device) inputs_adv = self.attack(inputs, labels) acc_nat += self.accuracy(inputs, labels) acc_adv += self.accuracy(inputs_adv, labels) return acc_nat / datasize, acc_adv / datasize class FBAdversary(Adversary): """ FBAdversary is mainly based on foolbox, especially pytorchmodel. model: Make sure that the model's output is the logits or the attack is adapted. attacker: the attack implemented by foolbox or a similar one device: ... bounds: typically [0, 1] preprocessing: including mean, std, which is similar to normalizer criterion: typically given the labels and consequently it is Misclassification, other critera could be given to carry target attack or black attack. """ def __init__( self, model: AdversarialDefensiveModule, attacker: Callable, epsilon: Union[None, float, List[float]], device: torch.device = DEVICE, bounds: Tuple[float, float] = BOUNDS, preprocessing: Optional[Dict] = PREPROCESSING ) -> None: super(FBAdversary, self).__init__( model=model, attacker=attacker, device=device ) self.model.eval() self.fmodel = fb.PyTorchModel( model, bounds=bounds, preprocessing=preprocessing, device=device ) self.device = device self.epsilon = epsilon self.attacker = attacker def attack( self, inputs: torch.Tensor, criterion: Any, epsilon: Union[None, float, List[float]] = None ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: if epsilon is None: epsilon = self.epsilon self.model.eval() # make sure in evaluation mode ... return self.attacker(self.fmodel, inputs, criterion, epsilons=epsilon) def __call__( self, inputs: torch.Tensor, criterion: Any, epsilon: Optional[float] = None ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: return self.attack(inputs, criterion, epsilon) class FBDefense: def __init__( self, model: nn.Module, device: torch.device = DEVICE, bounds: Tuple[float, float] = BOUNDS, preprocessing: Optional[Dict] = PREPROCESSING ) -> None: self.rmodel = fb.PyTorchModel( model, bounds=bounds, preprocessing=preprocessing, device=device ) self.model = model def train(self, mode: bool = True) -> None: self.model.train(mode=mode) def eval(self) -> None: self.train(mode=False) def query(self, inputs: torch.Tensor) -> torch.Tensor: return self.rmodel(inputs) def __call__(self, inputs: torch.Tensor) -> torch.Tensor: return self.query(inputs)
33.087649
97
0.615653
b17c36265cd2fe08df7021090d94b14b34aa97f9
5,254
py
Python
torch_geometric/nn/conv/gmm_conv.py
shrey-bansal/pytorch_geometric
17108a08066b0a73530544d01719b186f2625ef2
[ "MIT" ]
1
2020-11-23T14:29:11.000Z
2020-11-23T14:29:11.000Z
torch_geometric/nn/conv/gmm_conv.py
shrey-bansal/pytorch_geometric
17108a08066b0a73530544d01719b186f2625ef2
[ "MIT" ]
null
null
null
torch_geometric/nn/conv/gmm_conv.py
shrey-bansal/pytorch_geometric
17108a08066b0a73530544d01719b186f2625ef2
[ "MIT" ]
null
null
null
import torch from torch.nn import Parameter from torch_geometric.nn.conv import MessagePassing from ..inits import zeros, glorot class GMMConv(MessagePassing): r"""The gaussian mixture model convolutional operator from the `"Geometric Deep Learning on Graphs and Manifolds using Mixture Model CNNs" <https://arxiv.org/abs/1611.08402>`_ paper .. math:: \mathbf{x}^{\prime}_i = \frac{1}{|\mathcal{N}(i)|} \sum_{j \in \mathcal{N}(i)} \frac{1}{K} \sum_{k=1}^K \mathbf{w}_k(\mathbf{e}_{i,j}) \odot \mathbf{\Theta}_k \mathbf{x}_j, where .. math:: \mathbf{w}_k(\mathbf{e}) = \exp \left( -\frac{1}{2} {\left( \mathbf{e} - \mathbf{\mu}_k \right)}^{\top} \Sigma_k^{-1} \left( \mathbf{e} - \mathbf{\mu}_k \right) \right) denotes a weighting function based on trainable mean vector :math:`\mathbf{\mu}_k` and diagonal covariance matrix :math:`\mathbf{\Sigma}_k`. Args: in_channels (int): Size of each input sample. out_channels (int): Size of each output sample. dim (int): Pseudo-coordinate dimensionality. kernel_size (int): Number of kernels :math:`K`. separate_gaussians (bool, optional): If set to :obj:`True`, will learn separate GMMs for every pair of input and output channel, inspired by traditional CNNs. (default: :obj:`False`) aggr (string, optional): The aggregation operator to use (:obj:`"add"`, :obj:`"mean"`, :obj:`"max"`). (default: :obj:`"mean"`) root_weight (bool, optional): If set to :obj:`False`, the layer will not add transformed root node features to the output. (default: :obj:`True`) bias (bool, optional): If set to :obj:`False`, the layer will not learn an additive bias. (default: :obj:`True`) **kwargs (optional): Additional arguments of :class:`torch_geometric.nn.conv.MessagePassing`. """ def __init__(self, in_channels, out_channels, dim, kernel_size, separate_gaussians=False, aggr='mean', root_weight=True, bias=True, **kwargs): super(GMMConv, self).__init__(aggr=aggr, **kwargs) self.in_channels = in_channels self.out_channels = out_channels self.dim = dim self.kernel_size = kernel_size self.separate_gaussians = separate_gaussians self.g = Parameter( torch.Tensor(in_channels, out_channels * kernel_size)) if not self.separate_gaussians: self.mu = Parameter(torch.Tensor(kernel_size, dim)) self.sigma = Parameter(torch.Tensor(kernel_size, dim)) else: self.mu = Parameter( torch.Tensor(in_channels, out_channels, kernel_size, dim)) self.sigma = Parameter( torch.Tensor(in_channels, out_channels, kernel_size, dim)) if root_weight: self.root = Parameter(torch.Tensor(in_channels, out_channels)) else: self.register_parameter('root', None) if bias: self.bias = Parameter(torch.Tensor(out_channels)) else: self.register_parameter('bias', None) self.reset_parameters() def reset_parameters(self): glorot(self.g) glorot(self.mu) glorot(self.sigma) glorot(self.root) zeros(self.bias) def forward(self, x, edge_index, pseudo): """""" x = x.unsqueeze(-1) if x.dim() == 1 else x pseudo = pseudo.unsqueeze(-1) if pseudo.dim() == 1 else pseudo N, K, M = x.size(0), self.kernel_size, self.out_channels if not self.separate_gaussians: out = torch.matmul(x, self.g).view(N, K, M) out = self.propagate(edge_index, x=out, pseudo=pseudo) else: out = self.propagate(edge_index, x=x, pseudo=pseudo) if self.root is not None: out = out + torch.matmul(x, self.root) if self.bias is not None: out = out + self.bias return out def message(self, x_j, pseudo): EPS = 1e-15 F, M = self.in_channels, self.out_channels (E, D), K = pseudo.size(), self.kernel_size if not self.separate_gaussians: gaussian = -0.5 * (pseudo.view(E, 1, D) - self.mu.view(1, K, D)).pow(2) gaussian = gaussian / (EPS + self.sigma.view(1, K, D).pow(2)) gaussian = torch.exp(gaussian.sum(dim=-1)) # [E, K] return (x_j.view(E, K, M) * gaussian.view(E, K, 1)).sum(dim=-2) else: gaussian = -0.5 * (pseudo.view(E, 1, 1, 1, D) - self.mu.view(1, F, M, K, D)).pow(2) gaussian = gaussian / (EPS + self.sigma.view(1, F, M, K, D).pow(2)) gaussian = torch.exp(gaussian.sum(dim=-1)) # [E, F, M, K] gaussian = gaussian * self.g.view(1, F, M, K) gaussian = gaussian.sum(dim=-1) # [E, F, M] return (x_j.view(E, F, 1) * gaussian).sum(dim=-2) # [E, M] def __repr__(self): return '{}({}, {})'.format(self.__class__.__name__, self.in_channels, self.out_channels)
38.072464
79
0.57461
66380fd391d9d62a64060be4225f406eaca6e5fd
501
py
Python
packages/pyright-internal/src/tests/samples/generators5.py
lipovsek/pytea
c536515a5e5947fac8871784323ba7eddc58956d
[ "MIT" ]
null
null
null
packages/pyright-internal/src/tests/samples/generators5.py
lipovsek/pytea
c536515a5e5947fac8871784323ba7eddc58956d
[ "MIT" ]
null
null
null
packages/pyright-internal/src/tests/samples/generators5.py
lipovsek/pytea
c536515a5e5947fac8871784323ba7eddc58956d
[ "MIT" ]
null
null
null
# This sample tests various type checking operations relating to # async generator functions where the return type is declared. from typing import AsyncIterable, AsyncIterator async def g1_explicit() -> AsyncIterator[int]: yield 1 yield 2 async def g2_explicit(): async for v in g1_explicit(): yield v async def g3_explicit() -> AsyncIterable[int]: yield 1 yield 2 async def g4_explicit(): async for v in g3_explicit(): yield v
20.04
65
0.668663
c4a12bd449c153af1a4891a952d953cf0bc1ca66
531
py
Python
packages/python/plotly/plotly/validators/heatmap/colorbar/_exponentformat.py
mastermind88/plotly.py
efa70710df1af22958e1be080e105130042f1839
[ "MIT" ]
null
null
null
packages/python/plotly/plotly/validators/heatmap/colorbar/_exponentformat.py
mastermind88/plotly.py
efa70710df1af22958e1be080e105130042f1839
[ "MIT" ]
null
null
null
packages/python/plotly/plotly/validators/heatmap/colorbar/_exponentformat.py
mastermind88/plotly.py
efa70710df1af22958e1be080e105130042f1839
[ "MIT" ]
null
null
null
import _plotly_utils.basevalidators class ExponentformatValidator(_plotly_utils.basevalidators.EnumeratedValidator): def __init__( self, plotly_name="exponentformat", parent_name="heatmap.colorbar", **kwargs ): super(ExponentformatValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop("edit_type", "colorbars"), values=kwargs.pop("values", ["none", "e", "E", "power", "SI", "B"]), **kwargs, )
35.4
84
0.640301
3874ca2d0bcf303f0911b6fffc2c91174ab19f06
291
py
Python
8day/pan05.py
jsjang93/joony
62f7a325094c887212b894932263bf84500e0f03
[ "MIT" ]
null
null
null
8day/pan05.py
jsjang93/joony
62f7a325094c887212b894932263bf84500e0f03
[ "MIT" ]
null
null
null
8day/pan05.py
jsjang93/joony
62f7a325094c887212b894932263bf84500e0f03
[ "MIT" ]
null
null
null
#Pan05 import chardet def find_encoding(file): f1 = open(file, 'rb').read() #print(f1) res = chardet.detect(f1) encType = res['encoding'] return encType import pandas as pd file1 = './data/01. CCTV_in_Seoul.csv' df1 = pd.read_csv(file1, encoding= find_encoding(file1))
20.785714
56
0.676976
75a28812f23ef9578f19bb919b6158135858ce77
1,346
py
Python
girvi/filters.py
rajeshr188/django-onex
f1086a4159b1d135e54327c77c93fcc6c446338f
[ "MIT" ]
2
2019-06-08T22:50:59.000Z
2020-07-12T14:13:18.000Z
girvi/filters.py
rajeshr188/django-onex
f1086a4159b1d135e54327c77c93fcc6c446338f
[ "MIT" ]
13
2020-02-11T23:51:43.000Z
2021-06-05T13:10:49.000Z
girvi/filters.py
rajeshr188/django-onex
f1086a4159b1d135e54327c77c93fcc6c446338f
[ "MIT" ]
null
null
null
from .models import Loan, LoanStatement,Release,Adjustment from contact.models import Customer import django_filters from django_select2.forms import Select2Widget class LoanFilter(django_filters.FilterSet): loanid=django_filters.CharFilter(lookup_expr='icontains') itemdesc=django_filters.CharFilter(lookup_expr='icontains') customer=django_filters.ModelChoiceFilter( queryset = Customer.objects.filter(type='Re',active = True), widget=Select2Widget) Status = django_filters.BooleanFilter(field_name='release', method='filter_status') def filter_status(self,queryset,name,value): return queryset.filter(release__isnull=value) class Meta: model=Loan fields=['loanid','series','customer','itemtype','itemweight','itemdesc','loanamount'] class LoanStatementFilter(django_filters.FilterSet): loan = django_filters.ModelChoiceFilter( widget = Select2Widget, queryset = Loan.objects.filter(series__is_active = True) ) class Meta: model = LoanStatement fields = ['loan'] class AdjustmentFilter(django_filters.FilterSet): class Meta: model = Adjustment fields = ['loan'] class ReleaseFilter(django_filters.FilterSet): class Meta: model = Release fields = ['releaseid','loan']
35.421053
93
0.70951
f39e96656d5c1472b3ffaa5714389a87faff49b2
3,675
py
Python
src/sentry/models/groupmeta.py
ChadKillingsworth/sentry
ffcb9007a95a83ee267935fe605f8ee8f03a85a5
[ "BSD-3-Clause" ]
null
null
null
src/sentry/models/groupmeta.py
ChadKillingsworth/sentry
ffcb9007a95a83ee267935fe605f8ee8f03a85a5
[ "BSD-3-Clause" ]
null
null
null
src/sentry/models/groupmeta.py
ChadKillingsworth/sentry
ffcb9007a95a83ee267935fe605f8ee8f03a85a5
[ "BSD-3-Clause" ]
null
null
null
""" sentry.models.groupmeta ~~~~~~~~~~~~~~~~~~~~~~~ :copyright: (c) 2010-2014 by the Sentry Team, see AUTHORS for more details. :license: BSD, see LICENSE for more details. """ from __future__ import absolute_import import threading from celery.signals import task_postrun from django.core.signals import request_finished from django.db import models from sentry.exceptions import CacheNotPopulated from sentry.db.models import FlexibleForeignKey, Model, sane_repr from sentry.db.models.manager import BaseManager ERR_CACHE_MISISNG = 'Cache not populated for instance id=%s' class GroupMetaManager(BaseManager): def __init__(self, *args, **kwargs): super(GroupMetaManager, self).__init__(*args, **kwargs) self.__local_cache = threading.local() def __getstate__(self): d = self.__dict__.copy() d.pop('_GroupMetaManager__local_cache', None) return d def __setstate__(self, state): self.__dict__.update(state) self.__local_cache = threading.local() def _get_cache(self): if not hasattr(self.__local_cache, 'value'): self.__local_cache.value = {} return self.__local_cache.value def _set_cache(self, value): self.__local_cache.value = value __cache = property(_get_cache, _set_cache) def contribute_to_class(self, model, name): model.CacheNotPopulated = CacheNotPopulated super(GroupMetaManager, self).contribute_to_class(model, name) task_postrun.connect(self.clear_local_cache) request_finished.connect(self.clear_local_cache) def clear_local_cache(self, **kwargs): self.__cache = {} def populate_cache(self, instance_list): for group in instance_list: self.__cache.setdefault(group.id, {}) results = self.filter( group__in=instance_list, ).values_list('group', 'key', 'value') for group_id, key, value in results: self.__cache[group_id][key] = value def get_value_bulk(self, instance_list, key, default=None): results = {} for instance in instance_list: try: inst_cache = self.__cache[instance.id] except KeyError: raise self.model.CacheNotPopulated(ERR_CACHE_MISISNG % (instance.id,)) results[instance] = inst_cache.get(key, default) return results def get_value(self, instance, key, default=None): try: inst_cache = self.__cache[instance.id] except KeyError: raise self.model.CacheNotPopulated(ERR_CACHE_MISISNG % (instance.id,)) return inst_cache.get(key, default) def unset_value(self, instance, key): self.filter(group=instance, key=key).delete() try: del self.__cache[instance.id][key] except KeyError: pass def set_value(self, instance, key, value): self.create_or_update( group=instance, key=key, defaults={ 'value': value, }, ) self.__cache.setdefault(instance.id, {}) self.__cache[instance.id][key] = value class GroupMeta(Model): """ Arbitrary key/value store for Groups. Generally useful for things like storing metadata provided by plugins. """ group = FlexibleForeignKey('sentry.Group') key = models.CharField(max_length=64) value = models.TextField() objects = GroupMetaManager() class Meta: app_label = 'sentry' db_table = 'sentry_groupmeta' unique_together = (('group', 'key'),) __repr__ = sane_repr('group_id', 'key', 'value')
30.122951
86
0.646531
23418c7b5788e28db416fa1622a539028b61882b
6,401
py
Python
pystash/web.py
ashishchopra/pystash
6fad5e7ea4684eb4cf749028be2162c047db1f30
[ "MIT" ]
6
2015-02-23T19:41:42.000Z
2015-12-24T10:25:54.000Z
pystash/web.py
ashishchopra/pystash
6fad5e7ea4684eb4cf749028be2162c047db1f30
[ "MIT" ]
null
null
null
pystash/web.py
ashishchopra/pystash
6fad5e7ea4684eb4cf749028be2162c047db1f30
[ "MIT" ]
2
2017-06-01T04:40:08.000Z
2021-08-30T20:15:04.000Z
# -*- coding: utf-8 -*- from requests.auth import AuthBase import requests import json import hashlib import sys import os import getpass from clint.textui import colored from common import output import netrc STASH_HOST = 'http://getstash.herokuapp.com' if 'STASH_HOST' in os.environ: STASH_HOST = os.environ['STASH_HOST'] class DuplicateKeyword(Exception): """ Key already exist """ pass class WrongArgumentsSet(Exception): """ Not enough arguments """ pass class WrongKey(Exception): """ Key not found """ pass class NoInternetConnection(Exception): """ No Internet connection or server not available """ pass class ServerError(Exception): """ Server error """ pass class UnknownServerError(Exception): """ Unknown server error """ pass class WrongCredentials(Exception): pass class TokenAuth(AuthBase): """Attaches HTTP Token Authentication to the given Request object.""" def __init__(self, username, password): # setup any auth-related data here self.username = username self.password = password def __call__(self, r): # modify and return the request r.headers['X-Token'] = self.password return r class AlreadyLoggedIn(Exception): pass class API(object): username = None token = None def check_login(self): """ Check if user logged in. If True - return login and token, else returns None """ netrc_path = os.path.join(os.path.expanduser('~'), '.netrc') if not os.path.exists(netrc_path): open(netrc_path, 'w').close() info = netrc.netrc() login, account, password = info.authenticators(STASH_HOST) or (None, None, None) if password and login: if self.username is None or self.token is None: self.username = login # todo: why token is equal to password? self.token = password return login, password return None def login_decorator(fn): def wrapper(*args, **kwargs): if len(args) > 0 and isinstance(args[0], API): if args[0].check_login() is not None: return fn(*args, **kwargs) raise Exception('Unknown credentials.\nTry to do stash login at first.\n') #output('Unknown credentials.\nTry to do stash login at first.\n', color='yellow') return wrapper def send_request_decorator(fn): """ Request decorator (avoiding code duplication) """ def wrapper(self, *args): data = fn(self, *args) data.update(self.get_user_data()) url = STASH_HOST + '/api/json' try: data['token'] = self.token headers = {'Stash-Token': self.token} r = requests.post(url, data=json.dumps(data), headers=headers) except requests.exceptions.ConnectionError: raise NoInternetConnection # todo: replace with regular python exceptions if r.status_code == 404: raise WrongKey if r.status_code == 401: raise WrongCredentials if r.status_code == 500: raise ServerError if r.status_code == 200: return r.json() else: return UnknownServerError return wrapper def get_user_data(self): return {'user': self.username} def login(self, login, password): if self.check_login() is not None: raise AlreadyLoggedIn m = hashlib.new('md5') m.update(password) r = self.get_token(login, password) #TODO check if r is an error (remove / from stash host for example) if 'token' in r: # todo: maybe we don't need this two lines? self.username = login self.token = r['token'] with open(os.path.join(os.environ['HOME'], ".netrc"), "a") as f: f.write("machine " + STASH_HOST + " login " + login + " password " + str(r['token']) + "\n") f.close() else: # todo: do something pass if 'error' in r: raise Exception(r['error']) return True def logout(self): """ Clear .netrc record """ netrc_path = os.path.join(os.path.expanduser('~'), '.netrc') if not os.path.exists(netrc_path): open(netrc_path, 'w').close() info = netrc.netrc() if STASH_HOST in info.hosts: del info.hosts[STASH_HOST] else: raise Exception('You haven\'t logged in yet') with open(netrc_path, 'w') as f: f.write(info.__repr__()) f.close() return True # ========== @send_request_decorator @login_decorator def get(self, key): return {'get': key} @send_request_decorator @login_decorator def search(self, key): return {'search': key} @send_request_decorator @login_decorator def set(self, key, value, tags, overwrite=False,append=False): return {'set': { key: value }, 'tags' : tags, 'overwrite': overwrite, 'append' : append} @send_request_decorator @login_decorator def delete(self, key): return {'delete': key} @send_request_decorator @login_decorator def all(self): return {'getkeys': True} @send_request_decorator @login_decorator def gettags(self): return {'gettags': True} @send_request_decorator @login_decorator def tags(self, key): return {'tags': key } @send_request_decorator @login_decorator def push(self, list_title, value): return {'push': {list_title: value}} @send_request_decorator def get_token(self, username, password): return {'login': {username: password}} # ========= @login_decorator @send_request_decorator def sync(self, local_db_data): return { 'sync' : local_db_data } @send_request_decorator def get_token(self, username, password): return {'login': {username: password}} def push(self): """Push data to cloud""" def pull(self): """Pull data from cloud"""
25.91498
108
0.578816
a2641655841c9b41f0882b5bd354b408ef903a9a
5,833
py
Python
from_3b1b/on_hold/holomorphic.py
WRangers/manim
38acb22c7e5c1a95afdf05678e07ad506513d676
[ "MIT" ]
1
2021-09-20T14:16:46.000Z
2021-09-20T14:16:46.000Z
source/manimlib/from_3b1b/on_hold/holomorphic.py
WRangers/manim_doc
22e0936ab3b409358fa71b335897aa99aa46b5a0
[ "MIT" ]
null
null
null
source/manimlib/from_3b1b/on_hold/holomorphic.py
WRangers/manim_doc
22e0936ab3b409358fa71b335897aa99aa46b5a0
[ "MIT" ]
1
2021-08-23T04:14:19.000Z
2021-08-23T04:14:19.000Z
from manimlib.imports import * class ComplexAnalysisOverlay(Scene): def construct(self): words = TextMobject("Complex analysis") words.scale(1.25) words.to_edge(UP) words.add_background_rectangle() self.add(words) self.wait() class AnalyzeZSquared(ComplexTransformationScene, ZoomedScene): CONFIG = { "plane_config": { "line_frequency": 0.1, }, "num_anchors_to_add_per_line": 20, "complex_homotopy": lambda z, t: z**(1.0 + t), "zoom_factor": 0.05, } def setup(self): ComplexTransformationScene.setup(self) ZoomedScene.setup(self) def construct(self): set_gpus([0,1]) self.edit_background_plane() self.add_title() # self.add_transforming_planes() # self.preview_some_numbers() self.zoom_in_to_one_plus_half_i() self.write_derivative() def add_title(self): title = TexMobject("z \\rightarrow z^2") title.add_background_rectangle() title.scale(1.5) title.to_corner(UL, buff=MED_SMALL_BUFF) self.add_foreground_mobject(title) def edit_background_plane(self): self.backgrounds.set_stroke(GREY, 2) self.background.secondary_lines.set_stroke(DARK_GREY, 1) self.add_foreground_mobject(self.background.coordinate_labels) def add_transforming_planes(self): self.plane = self.get_plane() self.add_transformable_mobjects(self.plane) def preview_some_numbers(self): dots = VGroup(*[ Dot().move_to(self.background.number_to_point(z)) for z in [ 1, 2, complex(0, 1), -1, complex(2, 0.5), complex(-1, -1), complex(3, 0.5), ] ]) dots.set_color_by_gradient(RED, YELLOW) d_angle = 30 * DEGREES dot_groups = VGroup() for dot in dots: point = dot.get_center() z = self.background.point_to_number(point) z_out = self.complex_homotopy(z, 1) out_point = self.background.number_to_point(z_out) path_arc = angle_of_vector(point) if abs(z - 1) < 0.01: # One is special arrow = Arc( start_angle=(-90 * DEGREES + d_angle), angle=(360 * DEGREES - 2 * d_angle), radius=0.25 ) arrow.add_tip(tip_length=0.15) arrow.pointwise_become_partial(arrow, 0, 0.9) arrow.next_to(dot, UP, buff=0) else: arrow = Arrow( point, out_point, path_arc=path_arc, buff=SMALL_BUFF, ) arrow.match_color(dot) out_dot = dot.copy() # out_dot.set_fill(opacity=0.5) out_dot.set_stroke(BLUE, 1) out_dot.move_to(out_point) dot.path_arc = path_arc dot.out_dot = out_dot dot_group = VGroup(dot, arrow, out_dot) dot_groups.add(dot_group) dot_copy = dot.copy() dot.save_state() dot.scale(3) dot.fade(1) dot_group.anim = Succession( ApplyMethod(dot.restore), AnimationGroup( ShowCreation(arrow), ReplacementTransform( dot_copy, out_dot, path_arc=path_arc ) ) ) for dot_group in dot_groups[:3]: self.play(dot_group.anim) self.wait() self.play(*[dg.anim for dg in dot_groups[3:]]) self.apply_complex_homotopy( self.complex_homotopy, added_anims=[Animation(dot_groups)] ) self.wait() self.play(FadeOut(dot_groups)) self.wait() self.play(FadeOut(self.plane)) self.transformable_mobjects.remove(self.plane) def zoom_in_to_one_plus_half_i(self): z = complex(1, 0.5) point = self.background.number_to_point(z) point_mob = VectorizedPoint(point) frame = self.zoomed_camera.frame frame.move_to(point) tiny_plane = NumberPlane( x_radius=2, y_radius=2, color=GREEN, secondary_color=GREEN_E ) tiny_plane.replace(frame) plane = self.get_plane() words = TextMobject("What does this look like") words.add_background_rectangle() words.next_to(self.zoomed_display, LEFT, aligned_edge=UP) arrow = Arrow(words.get_bottom(), self.zoomed_display.get_left()) VGroup(words, arrow).set_color(YELLOW) self.play(FadeIn(plane)) self.activate_zooming(animate=True) self.play(ShowCreation(tiny_plane)) self.wait() self.add_transformable_mobjects(plane, tiny_plane, point_mob) self.add_foreground_mobjects(words, arrow) self.apply_complex_homotopy( self.complex_homotopy, added_anims=[ Write(words), GrowArrow(arrow), MaintainPositionRelativeTo(frame, point_mob) ] ) self.wait(2) def write_derivative(self): pass # Helpers def get_plane(self): top_plane = NumberPlane( y_radius=FRAME_HEIGHT / 2, x_line_frequency=0.1, y_line_frequency=0.1, ) self.prepare_for_transformation(top_plane) bottom_plane = top_plane.copy() tiny_tiny_buff = 0.001 top_plane.next_to(ORIGIN, UP, buff=tiny_tiny_buff) bottom_plane.next_to(ORIGIN, DOWN, buff=tiny_tiny_buff) return VGroup(top_plane, bottom_plane)
31.701087
73
0.564032
59fb44dc6cef37153964603c83f25d1ee81c7672
2,698
py
Python
plugins/lookup/vars_dict_start_with.py
franzs/ansible-plugins
1babfc9f0876b3dc54cc680931543bc2217e6ed4
[ "MIT" ]
2
2015-11-03T14:28:57.000Z
2018-03-31T18:41:04.000Z
plugins/lookup/vars_dict_start_with.py
franzs/ansible-plugins
1babfc9f0876b3dc54cc680931543bc2217e6ed4
[ "MIT" ]
3
2017-09-20T20:32:29.000Z
2020-01-22T14:51:18.000Z
plugins/lookup/vars_dict_start_with.py
franzs/ansible-plugins
1babfc9f0876b3dc54cc680931543bc2217e6ed4
[ "MIT" ]
1
2018-06-27T07:35:07.000Z
2018-06-27T07:35:07.000Z
# (c) 2018 David Lundgren # MIT from __future__ import (absolute_import, division, print_function) __metaclass__ = type DOCUMENTATION = """ lookup: vars_dict_starts_with author: David Lundgren version_added: "2.5" short_description: Lookup templated value of variables that start with a prefix description: - Retrieves the value of an Ansible variable. options: _terms: description: The variable names to look up. required: True default: description: - What to return if a variable is undefined. - If no default is set, it will result in an error if any of the variables is undefined. """ EXAMPLES = """ - name: find several related variables debug: msg="{{ lookup('vars_dict_start_with', 'ansible_play') }}" - name: find several related variables excluding others debug: msg="{{ lookup('vars_dict_start_with', 'ansible_play', '!ansible_play_never') }}" - name: alternate way to find some 'prefixed vars' in loop debug: msg="{{ lookup('vars', 'ansible_play_' + item) }}" loop: - hosts - batch - hosts_all """ RETURN = """ _value: description: - value of the variables requested. """ from ansible.errors import AnsibleError, AnsibleUndefinedVariable from ansible.module_utils.six import string_types from ansible.plugins.lookup import LookupBase class LookupModule(LookupBase): def is_excluded(self, excludes, key): if key in excludes: return True for term in excludes: if key.startswith(term): return True return False def run(self, terms, variables=None, **kwargs): if variables is not None: self._templar.set_available_variables(variables) myvars = getattr(self._templar, '_available_variables', {}) self.set_options(direct=kwargs) default = self.get_option('default') excludes = [] for idx,term in enumerate(terms): if term.startswith('!'): excludes.append(term[1:]) terms.pop(idx) ret = {} for term in terms: if not isinstance(term, string_types): raise AnsibleError('Invalid setting identifier, "%s" is not a string, its a %s' % (term, type(term))) try: for key in myvars: if key.startswith(term) and not self.is_excluded(excludes, key): ret.update(self._templar.template(myvars[key], fail_on_undefined=True)) for key in myvars['hostvars'][myvars['inventory_hostname']]: if key.startswith(term) and not self.is_excluded(excludes, key): ret.update(self._templar.template(myvars['hostvars'][myvars['inventory_hostname']][key], fail_on_undefined=True)) except AnsibleUndefinedVariable: if default is not None: ret.update(default) else: raise return ret
29.010753
119
0.699036
d6f1a867c1e8f0150a4954ddeb454cb8768dd876
1,057
py
Python
datastructure/practice/c2/c_2_27.py
stoneyangxu/python-kata
979af91c74718a525dcd2a83fe53ec6342af9741
[ "MIT" ]
null
null
null
datastructure/practice/c2/c_2_27.py
stoneyangxu/python-kata
979af91c74718a525dcd2a83fe53ec6342af9741
[ "MIT" ]
null
null
null
datastructure/practice/c2/c_2_27.py
stoneyangxu/python-kata
979af91c74718a525dcd2a83fe53ec6342af9741
[ "MIT" ]
null
null
null
import unittest import time class Range: def __init__(self, start, stop=None, step=1): if step == 0: raise ValueError("step cannot be 0") if stop is None: start, stop = 0, start self._length = max(0, (stop - start + step - 1) // step) self._start = start self._step = step def __len__(self): return self._length def __getitem__(self, i): if i < 0: i += len(self) if not 0 <= i < self._length: raise IndexError("index out of range") return self._start + i * self._step def __contains__(self, val): return (val - self._start) % self._step == 0 class MyTestCase(unittest.TestCase): def test_something(self): start = time.time() print(2 in Range(100000000)) time1 = time.time() print(9999999 in Range(100000000)) time2 = time.time() print(time2 - time1, time1 - start, (time2 - time1) // (time1 - start)) if __name__ == '__main__': unittest.main()
23.488889
79
0.561022
ce4fc51f61fbd73810eeb56a5985ea09981fb25b
14,597
py
Python
src/gui/main_gui_controller.py
kamilcieslik/test_house_price_app
f7c5786d0e79e23bafaedd24088aa506c04b5527
[ "MIT" ]
1
2019-02-15T03:42:43.000Z
2019-02-15T03:42:43.000Z
src/gui/main_gui_controller.py
kamilcieslik/test_house_price_app
f7c5786d0e79e23bafaedd24088aa506c04b5527
[ "MIT" ]
1
2021-06-01T22:12:11.000Z
2021-06-01T22:12:11.000Z
src/gui/main_gui_controller.py
kamilcieslik/test_house_price_app
f7c5786d0e79e23bafaedd24088aa506c04b5527
[ "MIT" ]
null
null
null
import sys from PyQt5 import QtWidgets from src.gui.main_gui import GuiMainWindow from src.gui.widgets_data_validation import DataValidation from calculator.prices_calculator import PricesCalculator from calculator import exception from googlemaps.exceptions import TransportError import os from pathlib import Path from ctypes import cdll import ctypes dll_path = str(Path(os.getcwd()).parent) + "\\native_c\\Converter.dll" if os.path.exists(dll_path): libc = cdll.LoadLibrary(dll_path) class MainGuiController(object): def __init__(self, google_api_key): self._prices_calculator = PricesCalculator(google_api_key) self._data_validation = DataValidation # Inicjalizacja komponentów GUI. self._ui = GuiMainWindow() app = QtWidgets.QApplication(sys.argv) MainWindow = QtWidgets.QMainWindow() self._ui.setup_ui(MainWindow) # Inicjacja listenerów komponentów GUI. self.init_listeners() # Inicjacja kontroli wprowadzanych danych. self.init_data_validation() # Wypełnienie combo-boxów danymi. self.fill_combo_boxes_with_data() # Zresetowanie wartości komponentów (nadpisanie przykładowych). self.reset_components_values() # Wyświetlenie GUI. MainWindow.show() sys.exit(app.exec_()) def init_data_validation(self): self \ ._ui.text_edit_construction_year \ .textChanged \ .connect(lambda: self ._data_validation .text_edit_validation(self._ui .text_edit_construction_year, self._ui. label_construction_year_message, "Podaj rok budowy.", "^[1-9]{1}[0-9]{3}$", "Niepoprawny format.")) self \ ._ui.text_edit_meters \ .textChanged.connect(lambda: self ._data_validation .text_edit_validation(self._ui .text_edit_meters, self._ui. label_meters_message, "Podaj il. metrów kw.", "^[1-9]{1}[0-9]{1,2}$", "Niepoprawny format.")) self \ ._ui.combo_box_address. \ currentTextChanged \ .connect(lambda: self._data_validation .text_edit_validation(self._ui .combo_box_address, self._ui.label_address_message, "Wybierz adres.")) self \ ._ui.combo_box_market_type \ .currentTextChanged \ .connect(lambda: self._data_validation .text_edit_validation(self._ui .combo_box_market_type, self._ui.label_market_type_message, "Wybierz rynek.")) self._ui.combo_box_building_type \ .currentTextChanged \ .connect(lambda: self._data_validation .text_edit_validation(self._ui .combo_box_building_type, self._ui .label_building_type_message, "Wybierz rodzaj zabudowy.")) self._ui.combo_box_building_material \ .currentTextChanged \ .connect(lambda: self._data_validation .text_edit_validation(self._ui .combo_box_building_material, self._ui .label_building_material_message, "Wybierz materiał budynku.")) def init_listeners(self): self._ui.push_button_calculate.clicked.connect( self.push_button_calculate_on_click) self._ui.push_button_reset.clicked.connect( self.push_button_reset_on_click) self._ui.push_button_search_address.clicked.connect( self.push_button_search_address_on_click) self._ui.combo_box_address.currentIndexChanged.connect( self.combo_box_address_on_index_changed) def fill_combo_boxes_with_data(self): self._ui.combo_box_building_type.addItem("") self._ui.combo_box_building_type.addItems( self._prices_calculator.building_types) self._ui.combo_box_market_type.addItem("") self._ui.combo_box_market_type.addItems( self._prices_calculator.market_types) self._ui.combo_box_building_material.addItem("") self._ui.combo_box_building_material.addItems( self._prices_calculator.building_materials) def reset_components_values(self): self._ui.text_edit_search_address.setText("") if self._prices_calculator.autocomplete_addresses: self._prices_calculator.autocomplete_addresses = [] self._ui.combo_box_address.setCurrentIndex(0) self._ui.combo_box_market_type.setCurrentIndex(0) self._ui.text_edit_construction_year.setText("") self._ui.text_edit_meters.setText("") self._ui.combo_box_building_type.setCurrentIndex(0) self._ui.combo_box_building_material.setCurrentIndex(0) self._ui.check_box_balcony.setChecked(False) self._ui.chech_box_cellar.setChecked(False) self._ui.check_box_garden.setChecked(False) self._ui.check_box_terrace.setChecked(False) self._ui.check_box_elevator.setChecked(False) self._ui.check_box_separate_kitchen.setChecked(False) self._ui.check_box_guarded_estate.setChecked(False) self._ui.label_reference_city_data.setText("------") self._ui.label_reference_city_price_per_meter_data.setText("------") self._ui.label_distance_data.setText("------") self._ui.label_basic_price_per_meter_data.setText("------") self._ui.label_final_price_data.setText("------") self._ui.label_final_price_per_meter_data.setText("------") def push_button_calculate_on_click(self): if self._ui.label_address_message.text() == "" and self \ ._ui.label_building_type_message.text() == "" \ and self._ui.label_market_type_message.text() == "" \ and self._ui.label_construction_year_message.text() == "" \ and self._ui.label_meters_message.text() == "" \ and self._ui.label_building_material_message.text() == "": try: calculator_result = self._prices_calculator \ .calculate_house_price(self._ui.combo_box_building_type # TUTAJ .currentText(), self._ui.combo_box_market_type .currentText(), self._ui.combo_box_building_material .currentText(), self._ui.text_edit_construction_year .toPlainText(), self._ui.text_edit_meters .toPlainText(), self._ui.check_box_balcony .isChecked(), self._ui.chech_box_cellar .isChecked(), self._ui.check_box_garden .isChecked(), self._ui.check_box_terrace .isChecked(), self._ui.check_box_elevator .isChecked(), self._ui.check_box_separate_kitchen .isChecked(), self._ui.check_box_guarded_estate .isChecked()) if self._ui.combo_box_market_type.currentText() == "pierwotny": self._ui.label_reference_city_price_per_meter_data \ .setText(str(round(calculator_result .nearest_reference_city .price_per_meter_on_primary_market, 2)) + " zł") else: self._ui.label_reference_city_price_per_meter_data \ .setText(str(round(calculator_result .nearest_reference_city .price_per_meter_on_aftermarket, 2)) + " zł") string_upper = libc.string_toupper string_upper.argtypes = [ctypes.c_char_p] string_upper.restype = ctypes.c_char_p self.set_reference_city_name\ (str(string_upper(str.encode(calculator_result.nearest_reference_city.name)), "utf-8")) self._ui.label_distance_data.setText( str(round(calculator_result .distance_from_flat_to_nearest_reference_city / 1000, 2)) + " km") self._ui.label_basic_price_per_meter_data.setText( str(round(calculator_result.basic_price_per_meter, 2)) + " zł") self._ui.label_final_price_data.setText( str(round(calculator_result.house_price, 2)) + " zł") self._ui.label_final_price_per_meter_data.setText( str(round(calculator_result.final_price_per_meter, 2)) + " zł") self._ui.browser.page().runJavaScript("drawFlatMarker=true;") self._ui.browser.page().runJavaScript( "drawReferenceCity=true;") self._ui.browser.page().runJavaScript( "yourFlatLat=" + str( self._prices_calculator.selected_address.latitude)) self._ui.browser.page().runJavaScript( "yourFlatLng=" + str( self._prices_calculator.selected_address.longitude)) self._ui.browser.page().runJavaScript( "referenceCityLat=" + str( calculator_result.nearest_reference_city.latitude)) self._ui.browser.page().runJavaScript( "referenceCityLng=" + str( calculator_result.nearest_reference_city.longitude)) self._ui.browser.page().runJavaScript("initMap();") except (exception.ConstructionYearViolationException, exception.FlatParameterMismatchException) as e: msgBox = QtWidgets.QMessageBox(self._ui.widget_central) msgBox.about(self._ui.widget_central, "Ostrzeżenie", "Operacja oszacowania wartości nie powiedzie się." "\n" "Powód: {}.".format(str(e))) else: msgBox = QtWidgets.QMessageBox(self._ui.widget_central) msgBox.about(self._ui.widget_central, "Ostrzeżenie", "Operacja oszacowania wartości nie powiedzie się.\n" "Powód: Nie wszystkie wartości mają poprawny format.") def push_button_reset_on_click(self): self.reset_components_values() self._ui.browser.page().runJavaScript("drawFlatMarker=false;") self._ui.browser.page().runJavaScript("drawReferenceCity=false;") self._ui.browser.page().runJavaScript("initMap();") def push_button_search_address_on_click(self): try: self._ui.combo_box_address.clear() self._prices_calculator.autocomplete_addresses = \ self._ui.text_edit_search_address.toPlainText() if self._prices_calculator.autocomplete_addresses: self._ui.combo_box_address.addItem("") for address in self._prices_calculator.autocomplete_addresses: self._ui.combo_box_address.addItem(str(address)) self._ui.browser.page().runJavaScript("drawFlatMarker=false;") self._ui.browser.page().runJavaScript( "drawReferenceCity=false;") self._ui.browser.page().runJavaScript("initMap();") except TransportError as e: msgBox = QtWidgets.QMessageBox(self._ui.widget_central) msgBox.about(self._ui.widget_central, "Ostrzeżenie", "Operacja typowania adresów nie powiodła się.\n" "Powód: {}.".format(str(e))) def combo_box_address_on_index_changed(self): if self._ui.combo_box_address.currentText() != "": self._prices_calculator.selected_address = \ self._ui.combo_box_address.currentIndex() - 1 self._ui.browser.page().runJavaScript("drawFlatMarker=true;") self._ui.browser.page().runJavaScript("drawReferenceCity=false;") self._ui.browser.page().runJavaScript( "yourFlatLat=" + str( self._prices_calculator.selected_address.latitude)) self._ui.browser.page().runJavaScript( "yourFlatLng=" + str( self._prices_calculator.selected_address.longitude)) self._ui.browser.page().runJavaScript("initMap();") def set_reference_city_name(self, converted_reference_city_name): self._ui.label_reference_city_data.setText(converted_reference_city_name)
49.314189
107
0.536823
57e58f2eebb06c089b1fed3da60669000227a5e5
8,100
py
Python
tools/subunit-trace.py
queria/my-tempest
a9cdee0201bb956c7502fd372dab467b056ba67f
[ "Apache-2.0" ]
1
2021-06-12T14:54:52.000Z
2021-06-12T14:54:52.000Z
tools/subunit-trace.py
queria/my-tempest
a9cdee0201bb956c7502fd372dab467b056ba67f
[ "Apache-2.0" ]
null
null
null
tools/subunit-trace.py
queria/my-tempest
a9cdee0201bb956c7502fd372dab467b056ba67f
[ "Apache-2.0" ]
1
2017-07-11T13:54:27.000Z
2017-07-11T13:54:27.000Z
#!/usr/bin/env python # Copyright 2014 Hewlett-Packard Development Company, L.P. # Copyright 2014 Samsung Electronics # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """Trace a subunit stream in reasonable detail and high accuracy.""" import argparse import functools import re import sys import subunit import testtools DAY_SECONDS = 60 * 60 * 24 FAILS = [] RESULTS = {} def cleanup_test_name(name, strip_tags=True, strip_scenarios=False): """Clean up the test name for display. By default we strip out the tags in the test because they don't help us in identifying the test that is run to it's result. Make it possible to strip out the testscenarios information (not to be confused with tempest scenarios) however that's often needed to indentify generated negative tests. """ if strip_tags: tags_start = name.find('[') tags_end = name.find(']') if tags_start > 0 and tags_end > tags_start: newname = name[:tags_start] newname += name[tags_end + 1:] name = newname if strip_scenarios: tags_start = name.find('(') tags_end = name.find(')') if tags_start > 0 and tags_end > tags_start: newname = name[:tags_start] newname += name[tags_end + 1:] name = newname return name def get_duration(timestamps): start, end = timestamps if not start or not end: duration = '' else: delta = end - start duration = '%d.%06ds' % ( delta.days * DAY_SECONDS + delta.seconds, delta.microseconds) return duration def find_worker(test): for tag in test['tags']: if tag.startswith('worker-'): return int(tag[7:]) return 'NaN' # Print out stdout/stderr if it exists, always def print_attachments(stream, test, all_channels=False): """Print out subunit attachments. Print out subunit attachments that contain content. This runs in 2 modes, one for successes where we print out just stdout and stderr, and an override that dumps all the attachments. """ channels = ('stdout', 'stderr') for name, detail in test['details'].items(): # NOTE(sdague): the subunit names are a little crazy, and actually # are in the form pythonlogging:'' (with the colon and quotes) name = name.split(':')[0] if detail.content_type.type == 'test': detail.content_type.type = 'text' if (all_channels or name in channels) and detail.as_text(): title = "Captured %s:" % name stream.write("\n%s\n%s\n" % (title, ('~' * len(title)))) # indent attachment lines 4 spaces to make them visually # offset for line in detail.as_text().split('\n'): stream.write(" %s\n" % line) def show_outcome(stream, test, print_failures=False): global RESULTS status = test['status'] # TODO(sdague): ask lifeless why on this? if status == 'exists': return worker = find_worker(test) name = cleanup_test_name(test['id']) duration = get_duration(test['timestamps']) if worker not in RESULTS: RESULTS[worker] = [] RESULTS[worker].append(test) # don't count the end of the return code as a fail if name == 'process-returncode': return if status == 'success': stream.write('{%s} %s [%s] ... ok\n' % ( worker, name, duration)) print_attachments(stream, test) elif status == 'fail': FAILS.append(test) stream.write('{%s} %s [%s] ... FAILED\n' % ( worker, name, duration)) if not print_failures: print_attachments(stream, test, all_channels=True) elif status == 'skip': stream.write('{%s} %s ... SKIPPED: %s\n' % ( worker, name, test['details']['reason'].as_text())) else: stream.write('{%s} %s [%s] ... %s\n' % ( worker, name, duration, test['status'])) if not print_failures: print_attachments(stream, test, all_channels=True) stream.flush() def print_fails(stream): """Print summary failure report. Currently unused, however there remains debate on inline vs. at end reporting, so leave the utility function for later use. """ if not FAILS: return stream.write("\n==============================\n") stream.write("Failed %s tests - output below:" % len(FAILS)) stream.write("\n==============================\n") for f in FAILS: stream.write("\n%s\n" % f['id']) stream.write("%s\n" % ('-' * len(f['id']))) print_attachments(stream, f, all_channels=True) stream.write('\n') def count_tests(key, value): count = 0 for k, v in RESULTS.items(): for item in v: if key in item: if re.search(value, item[key]): count += 1 return count def run_time(): runtime = 0.0 for k, v in RESULTS.items(): for test in v: runtime += float(get_duration(test['timestamps']).strip('s')) return runtime def worker_stats(worker): tests = RESULTS[worker] num_tests = len(tests) delta = tests[-1]['timestamps'][1] - tests[0]['timestamps'][0] return num_tests, delta def print_summary(stream): stream.write("\n======\nTotals\n======\n") stream.write("Run: %s in %s sec.\n" % (count_tests('status', '.*'), run_time())) stream.write(" - Passed: %s\n" % count_tests('status', 'success')) stream.write(" - Skipped: %s\n" % count_tests('status', 'skip')) stream.write(" - Failed: %s\n" % count_tests('status', 'fail')) # we could have no results, especially as we filter out the process-codes if RESULTS: stream.write("\n==============\nWorker Balance\n==============\n") for w in range(max(RESULTS.keys()) + 1): if w not in RESULTS: stream.write( " - WARNING: missing Worker %s! " "Race in testr accounting.\n" % w) else: num, time = worker_stats(w) stream.write(" - Worker %s (%s tests) => %ss\n" % (w, num, time)) def parse_args(): parser = argparse.ArgumentParser() parser.add_argument('--no-failure-debug', '-n', action='store_true', dest='print_failures', help='Disable printing failure ' 'debug information in realtime') parser.add_argument('--fails', '-f', action='store_true', dest='post_fails', help='Print failure debug ' 'information after the stream is proccesed') return parser.parse_args() def main(): args = parse_args() stream = subunit.ByteStreamToStreamResult( sys.stdin, non_subunit_name='stdout') outcomes = testtools.StreamToDict( functools.partial(show_outcome, sys.stdout, print_failures=args.print_failures)) summary = testtools.StreamSummary() result = testtools.CopyStreamResult([outcomes, summary]) result.startTestRun() try: stream.run(result) finally: result.stopTestRun() if count_tests('status', '.*') == 0: print("The test run didn't actually run any tests") return 1 if args.post_fails: print_fails(sys.stdout) print_summary(sys.stdout) return (0 if summary.wasSuccessful() else 1) if __name__ == '__main__': sys.exit(main())
32.66129
79
0.596543
080ceaf39eda9a13dae50629f0ca816ca74a421f
1,745
py
Python
apps/drug_target_interaction/sman/metrics.py
RuikangSun/PaddleHelix
1c84ea6d51625d2d66b3eef1d9a7cc9a87c99e0e
[ "Apache-2.0" ]
454
2020-11-21T01:02:45.000Z
2022-03-29T12:53:40.000Z
apps/drug_target_interaction/sman/metrics.py
chupvl/PaddleHelix
6e082f89b8090c3c360593d40a08bffc884165dd
[ "Apache-2.0" ]
161
2020-12-12T06:35:54.000Z
2022-03-27T11:31:13.000Z
apps/drug_target_interaction/sman/metrics.py
chupvl/PaddleHelix
6e082f89b8090c3c360593d40a08bffc884165dd
[ "Apache-2.0" ]
108
2020-12-07T09:01:10.000Z
2022-03-31T14:42:29.000Z
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ This file implement several metrics. """ import numpy as np from math import sqrt from scipy import stats from sklearn.linear_model import LinearRegression def rmse(y,f): rmse = sqrt(((y - f)**2).mean(axis=0)) return rmse def mae(y,f): mae = (np.abs(y-f)).mean() return mae def sd(y,f): f,y = f.reshape(-1,1),y.reshape(-1,1) lr = LinearRegression() lr.fit(f,y) y_ = lr.predict(f) sd = (((y - y_) ** 2).sum() / (len(y) - 1)) ** 0.5 return sd def mse(y,f): mse = ((y - f)**2).mean(axis=0) return mse def pearson(y,f): rp = np.corrcoef(y, f)[0,1] return rp def spearman(y,f): rs = stats.spearmanr(y, f)[0] return rs def ci(y,f): ind = np.argsort(y) y = y[ind] f = f[ind] i = len(y)-1 j = i-1 z = 0.0 S = 0.0 while i > 0: while j >= 0: if y[i] > y[j]: z = z+1 u = f[i] - f[j] if u > 0: S = S + 1 elif u == 0: S = S + 0.5 j = j - 1 i = i - 1 j = i-1 ci = S/z return ci
23.90411
74
0.558166
b328322788cbfca9d9bffe46d26a1da6db094786
32,933
py
Python
src/unity/python/turicreate/toolkits/topic_model/topic_model.py
fossabot/turicreate
a500d5e52143ad15ebdf771d9f74198982c7c45c
[ "BSD-3-Clause" ]
1
2019-04-16T19:51:18.000Z
2019-04-16T19:51:18.000Z
src/unity/python/turicreate/toolkits/topic_model/topic_model.py
tashby/turicreate
7f07ce795833d0c56c72b3a1fb9339bed6d178d1
[ "BSD-3-Clause" ]
3
2021-09-08T02:18:00.000Z
2022-03-12T00:39:44.000Z
src/unity/python/turicreate/toolkits/topic_model/topic_model.py
tashby/turicreate
7f07ce795833d0c56c72b3a1fb9339bed6d178d1
[ "BSD-3-Clause" ]
null
null
null
# -*- coding: utf-8 -*- # Copyright © 2017 Apple Inc. All rights reserved. # # Use of this source code is governed by a BSD-3-clause license that can # be found in the LICENSE.txt file or at https://opensource.org/licenses/BSD-3-Clause """ Methods for creating a topic model and predicting the topics of new documents. """ from __future__ import print_function as _ from __future__ import division as _ from __future__ import absolute_import as _ import turicreate as _turicreate from turicreate.toolkits._model import Model as _Model from turicreate.data_structures.sframe import SFrame as _SFrame from turicreate.data_structures.sarray import SArray as _SArray from turicreate.toolkits.text_analytics._util import _check_input from turicreate.toolkits.text_analytics._util import random_split as _random_split from turicreate.toolkits._internal_utils import _check_categorical_option_type, \ _map_unity_proxy_to_object, \ _precomputed_field, \ _toolkit_repr_print import sys as _sys if _sys.version_info.major == 3: _izip = zip _xrange = range else: from itertools import izip as _izip _xrange = xrange import operator as _operator import array as _array def create(dataset, num_topics=10, initial_topics=None, alpha=None, beta=.1, num_iterations=10, num_burnin=5, associations=None, verbose=False, print_interval=10, validation_set=None, method='auto'): """ Create a topic model from the given data set. A topic model assumes each document is a mixture of a set of topics, where for each topic some words are more likely than others. One statistical approach to do this is called a "topic model". This method learns a topic model for the given document collection. Parameters ---------- dataset : SArray of type dict or SFrame with a single column of type dict A bag of words representation of a document corpus. Each element is a dictionary representing a single document, where the keys are words and the values are the number of times that word occurs in that document. num_topics : int, optional The number of topics to learn. initial_topics : SFrame, optional An SFrame with a column of unique words representing the vocabulary and a column of dense vectors representing probability of that word given each topic. When provided, these values are used to initialize the algorithm. alpha : float, optional Hyperparameter that controls the diversity of topics in a document. Smaller values encourage fewer topics per document. Provided value must be positive. Default value is 50/num_topics. beta : float, optional Hyperparameter that controls the diversity of words in a topic. Smaller values encourage fewer words per topic. Provided value must be positive. num_iterations : int, optional The number of iterations to perform. num_burnin : int, optional The number of iterations to perform when inferring the topics for documents at prediction time. verbose : bool, optional When True, print most probable words for each topic while printing progress. print_interval : int, optional The number of iterations to wait between progress reports. associations : SFrame, optional An SFrame with two columns named "word" and "topic" containing words and the topic id that the word should be associated with. These words are not considered during learning. validation_set : SArray of type dict or SFrame with a single column A bag of words representation of a document corpus, similar to the format required for `dataset`. This will be used to monitor model performance during training. Each document in the provided validation set is randomly split: the first portion is used estimate which topic each document belongs to, and the second portion is used to estimate the model's performance at predicting the unseen words in the test data. method : {'cgs', 'alias'}, optional The algorithm used for learning the model. - *cgs:* Collapsed Gibbs sampling - *alias:* AliasLDA method. Returns ------- out : TopicModel A fitted topic model. This can be used with :py:func:`~TopicModel.get_topics()` and :py:func:`~TopicModel.predict()`. While fitting is in progress, several metrics are shown, including: +------------------+---------------------------------------------------+ | Field | Description | +==================+===================================================+ | Elapsed Time | The number of elapsed seconds. | +------------------+---------------------------------------------------+ | Tokens/second | The number of unique words processed per second | +------------------+---------------------------------------------------+ | Est. Perplexity | An estimate of the model's ability to model the | | | training data. See the documentation on evaluate. | +------------------+---------------------------------------------------+ See Also -------- TopicModel, TopicModel.get_topics, TopicModel.predict, turicreate.SArray.dict_trim_by_keys, TopicModel.evaluate References ---------- - `Wikipedia - Latent Dirichlet allocation <http://en.wikipedia.org/wiki/Latent_Dirichlet_allocation>`_ - Alias method: Li, A. et al. (2014) `Reducing the Sampling Complexity of Topic Models. <http://www.sravi.org/pubs/fastlda-kdd2014.pdf>`_. KDD 2014. Examples -------- The following example includes an SArray of documents, where each element represents a document in "bag of words" representation -- a dictionary with word keys and whose values are the number of times that word occurred in the document: >>> docs = turicreate.SArray('https://static.turi.com/datasets/nytimes') Once in this form, it is straightforward to learn a topic model. >>> m = turicreate.topic_model.create(docs) It is also easy to create a new topic model from an old one -- whether it was created using Turi Create or another package. >>> m2 = turicreate.topic_model.create(docs, initial_topics=m['topics']) To manually fix several words to always be assigned to a topic, use the `associations` argument. The following will ensure that topic 0 has the most probability for each of the provided words: >>> from turicreate import SFrame >>> associations = SFrame({'word':['hurricane', 'wind', 'storm'], 'topic': [0, 0, 0]}) >>> m = turicreate.topic_model.create(docs, associations=associations) More advanced usage allows you to control aspects of the model and the learning method. >>> import turicreate as tc >>> m = tc.topic_model.create(docs, num_topics=20, # number of topics num_iterations=10, # algorithm parameters alpha=.01, beta=.1) # hyperparameters To evaluate the model's ability to generalize, we can create a train/test split where a portion of the words in each document are held out from training. >>> train, test = tc.text_analytics.random_split(.8) >>> m = tc.topic_model.create(train) >>> results = m.evaluate(test) >>> print results['perplexity'] """ dataset = _check_input(dataset) _check_categorical_option_type("method", method, ['auto', 'cgs', 'alias']) if method == 'cgs' or method == 'auto': model_name = 'cgs_topic_model' else: model_name = 'alias_topic_model' # If associations are provided, check they are in the proper format if associations is None: associations = _turicreate.SFrame({'word': [], 'topic': []}) if isinstance(associations, _turicreate.SFrame) and \ associations.num_rows() > 0: assert set(associations.column_names()) == set(['word', 'topic']), \ "Provided associations must be an SFrame containing a word column\ and a topic column." assert associations['word'].dtype == str, \ "Words must be strings." assert associations['topic'].dtype == int, \ "Topic ids must be of int type." if alpha is None: alpha = float(50) / num_topics if validation_set is not None: _check_input(validation_set) # Must be a single column if isinstance(validation_set, _turicreate.SFrame): column_name = validation_set.column_names()[0] validation_set = validation_set[column_name] (validation_train, validation_test) = _random_split(validation_set) else: validation_train = _SArray() validation_test = _SArray() opts = {'model_name': model_name, 'data': dataset, 'num_topics': num_topics, 'num_iterations': num_iterations, 'print_interval': print_interval, 'alpha': alpha, 'beta': beta, 'num_burnin': num_burnin, 'associations': associations} # Initialize the model with basic parameters response = _turicreate.toolkits._main.run("text_topicmodel_init", opts) m = TopicModel(response['model']) # If initial_topics provided, load it into the model if isinstance(initial_topics, _turicreate.SFrame): assert set(['vocabulary', 'topic_probabilities']) == \ set(initial_topics.column_names()), \ "The provided initial_topics does not have the proper format, \ e.g. wrong column names." observed_topics = initial_topics['topic_probabilities'].apply(lambda x: len(x)) assert all(observed_topics == num_topics), \ "Provided num_topics value does not match the number of provided initial_topics." # Rough estimate of total number of words weight = len(dataset) * 1000 opts = {'model': m.__proxy__, 'topics': initial_topics['topic_probabilities'], 'vocabulary': initial_topics['vocabulary'], 'weight': weight} response = _turicreate.toolkits._main.run("text_topicmodel_set_topics", opts) m = TopicModel(response['model']) # Train the model on the given data set and retrieve predictions opts = {'model': m.__proxy__, 'data': dataset, 'verbose': verbose, 'validation_train': validation_train, 'validation_test': validation_test} response = _turicreate.toolkits._main.run("text_topicmodel_train", opts) m = TopicModel(response['model']) return m class TopicModel(_Model): """ TopicModel objects can be used to predict the underlying topic of a document. This model cannot be constructed directly. Instead, use :func:`turicreate.topic_model.create` to create an instance of this model. A detailed list of parameter options and code samples are available in the documentation for the create function. """ def __init__(self, model_proxy): self.__proxy__ = model_proxy @classmethod def _native_name(cls): return ["cgs_topic_model", "alias_topic_model"] def __str__(self): """ Return a string description of the model to the ``print`` method. Returns ------- out : string A description of the model. """ return self.__repr__() def _get_summary_struct(self): """ Returns a structured description of the model, including (where relevant) the schema of the training data, description of the training data, training statistics, and model hyperparameters. Returns ------- sections : list (of list of tuples) A list of summary sections. Each section is a list. Each item in a section list is a tuple of the form: ('<label>','<field>') section_titles: list A list of section titles. The order matches that of the 'sections' object. """ section_titles=['Schema','Settings'] vocab_length = len(self.vocabulary) verbose = self.verbose == 1 sections=[ [ ('Vocabulary Size',_precomputed_field(vocab_length)) ], [ ('Number of Topics', 'num_topics'), ('alpha','alpha'), ('beta','beta'), ('Iterations', 'num_iterations'), ('Training time', 'training_time'), ('Verbose', _precomputed_field(verbose)) ] ] return (sections, section_titles) def __repr__(self): """ Print a string description of the model when the model name is entered in the terminal. """ key_str = "{:<{}}: {}" width = 30 (sections, section_titles) = self._get_summary_struct() out = _toolkit_repr_print(self, sections, section_titles, width=width) extra = [] extra.append(key_str.format("Accessible fields", width, "")) extra.append(key_str.format("m.topics",width,"An SFrame containing the topics.")) extra.append(key_str.format("m.vocabulary",width,"An SArray containing the words in the vocabulary.")) extra.append(key_str.format("Useful methods", width, "")) extra.append(key_str.format("m.get_topics()",width,"Get the most probable words per topic.")) extra.append(key_str.format("m.predict(new_docs)",width,"Make predictions for new documents.")) return out + '\n' + '\n'.join(extra) def _get(self, field): """ Return the value of a given field. The list of all queryable fields is detailed below, and can be obtained with the :py:func:`~TopicModel._list_fields` method. +-----------------------+----------------------------------------------+ | Field | Description | +=======================+==============================================+ | topics | An SFrame containing a column with the unique| | | words observed during training, and a column | | | of arrays containing the probability values | | | for each word given each of the topics. | +-----------------------+----------------------------------------------+ | vocabulary | An SArray containing the words used. This is | | | same as the vocabulary column in the topics | | | field above. | +-----------------------+----------------------------------------------+ Parameters ---------- field : string Name of the field to be retrieved. Returns ------- out Value of the requested field. """ opts = {'model': self.__proxy__, 'field': field} response = _turicreate.toolkits._main.run("text_topicmodel_get_value", opts) if field == 'vocabulary': return _SArray(None, _proxy=response['value']) elif field == 'topics': return _SFrame(None, _proxy=response['value']) return response['value'] def _training_stats(self): """ Return a dictionary of statistics collected during creation of the model. These statistics are also available with the ``get`` method and are described in more detail in that method's documentation. Returns ------- out : dict Dictionary of statistics compiled during creation of the TopicModel. See Also -------- summary Examples -------- >>> docs = turicreate.SArray('https://static.turi.com/datasets/nips-text') >>> m = turicreate.topic_model.create(docs) >>> m._training_stats() {'training_iterations': 20, 'training_time': 20.5034} """ fields = self._list_fields() stat_fields = ['training_time', 'training_iterations'] if 'validation_perplexity' in fields: stat_fields.append('validation_perplexity') ret = {k : self._get(k) for k in stat_fields} return ret def get_topics(self, topic_ids=None, num_words=5, cdf_cutoff=1.0, output_type='topic_probabilities'): """ Get the words associated with a given topic. The score column is the probability of choosing that word given that you have chosen a particular topic. Parameters ---------- topic_ids : list of int, optional The topics to retrieve words. Topic ids are zero-based. Throws an error if greater than or equal to m['num_topics'], or if the requested topic name is not present. num_words : int, optional The number of words to show. cdf_cutoff : float, optional Allows one to only show the most probable words whose cumulative probability is below this cutoff. For example if there exist three words where .. math:: p(word_1 | topic_k) = .1 p(word_2 | topic_k) = .2 p(word_3 | topic_k) = .05 then setting :math:`cdf_{cutoff}=.3` would return only :math:`word_1` and :math:`word_2` since :math:`p(word_1 | topic_k) + p(word_2 | topic_k) <= cdf_{cutoff}` output_type : {'topic_probabilities' | 'topic_words'}, optional Determine the type of desired output. See below. Returns ------- out : SFrame If output_type is 'topic_probabilities', then the returned value is an SFrame with a column of words ranked by a column of scores for each topic. Otherwise, the returned value is a SArray where each element is a list of the most probable words for each topic. Examples -------- Get the highest ranked words for all topics. >>> docs = turicreate.SArray('https://static.turi.com/datasets/nips-text') >>> m = turicreate.topic_model.create(docs, num_iterations=50) >>> m.get_topics() +-------+----------+-----------------+ | topic | word | score | +-------+----------+-----------------+ | 0 | cell | 0.028974400831 | | 0 | input | 0.0259470208503 | | 0 | image | 0.0215721599763 | | 0 | visual | 0.0173635081992 | | 0 | object | 0.0172447874156 | | 1 | function | 0.0482834508265 | | 1 | input | 0.0456270024091 | | 1 | point | 0.0302662839454 | | 1 | result | 0.0239474934631 | | 1 | problem | 0.0231750116011 | | ... | ... | ... | +-------+----------+-----------------+ Get the highest ranked words for topics 0 and 1 and show 15 words per topic. >>> m.get_topics([0, 1], num_words=15) +-------+----------+------------------+ | topic | word | score | +-------+----------+------------------+ | 0 | cell | 0.028974400831 | | 0 | input | 0.0259470208503 | | 0 | image | 0.0215721599763 | | 0 | visual | 0.0173635081992 | | 0 | object | 0.0172447874156 | | 0 | response | 0.0139740298286 | | 0 | layer | 0.0122585145062 | | 0 | features | 0.0115343177265 | | 0 | feature | 0.0103530459301 | | 0 | spatial | 0.00823387994361 | | ... | ... | ... | +-------+----------+------------------+ If one wants to instead just get the top words per topic, one may change the format of the output as follows. >>> topics = m.get_topics(output_type='topic_words') dtype: list Rows: 10 [['cell', 'image', 'input', 'object', 'visual'], ['algorithm', 'data', 'learning', 'method', 'set'], ['function', 'input', 'point', 'problem', 'result'], ['model', 'output', 'pattern', 'set', 'unit'], ['action', 'learning', 'net', 'problem', 'system'], ['error', 'function', 'network', 'parameter', 'weight'], ['information', 'level', 'neural', 'threshold', 'weight'], ['control', 'field', 'model', 'network', 'neuron'], ['hidden', 'layer', 'system', 'training', 'vector'], ['component', 'distribution', 'local', 'model', 'optimal']] """ _check_categorical_option_type('output_type', output_type, ['topic_probabilities', 'topic_words']) if topic_ids is None: topic_ids = list(range(self._get('num_topics'))) assert isinstance(topic_ids, list), \ "The provided topic_ids is not a list." if any([type(x) == str for x in topic_ids]): raise ValueError("Only integer topic_ids can be used at this point in time.") if not all([x >= 0 and x < self.num_topics for x in topic_ids]): raise ValueError("Topic id values must be non-negative and less than the " + \ "number of topics used to fit the model.") opts = {'model': self.__proxy__, 'topic_ids': topic_ids, 'num_words': num_words, 'cdf_cutoff': cdf_cutoff} response = _turicreate.toolkits._main.run('text_topicmodel_get_topic', opts) ret = _map_unity_proxy_to_object(response['top_words']) def sort_wordlist_by_prob(z): words = sorted(z.items(), key=_operator.itemgetter(1), reverse=True) return [word for (word, prob) in words] if output_type != 'topic_probabilities': ret = ret.groupby('topic', {'word': _turicreate.aggregate.CONCAT('word', 'score')}) words = ret.sort('topic')['word'].apply(sort_wordlist_by_prob) ret = _SFrame({'words': words}) return ret def predict(self, dataset, output_type='assignment', num_burnin=None): """ Use the model to predict topics for each document. The provided `dataset` should be an SArray object where each element is a dict representing a single document in bag-of-words format, where keys are words and values are their corresponding counts. If `dataset` is an SFrame, then it must contain a single column of dict type. The current implementation will make inferences about each document given its estimates of the topics learned when creating the model. This is done via Gibbs sampling. Parameters ---------- dataset : SArray, SFrame of type dict A set of documents to use for making predictions. output_type : str, optional The type of output desired. This can either be - assignment: the returned values are integers in [0, num_topics) - probability: each returned prediction is a vector with length num_topics, where element k prepresents the probability that document belongs to topic k. num_burnin : int, optional The number of iterations of Gibbs sampling to perform when inferring the topics for documents at prediction time. If provided this will override the burnin value set during training. Returns ------- out : SArray See Also -------- evaluate Examples -------- Make predictions about which topic each document belongs to. >>> docs = turicreate.SArray('https://static.turi.com/datasets/nips-text') >>> m = turicreate.topic_model.create(docs) >>> pred = m.predict(docs) If one is interested in the probability of each topic >>> pred = m.predict(docs, output_type='probability') Notes ----- For each unique word w in a document d, we sample an assignment to topic k with probability proportional to .. math:: p(z_{dw} = k) \propto (n_{d,k} + \\alpha) * \Phi_{w,k} where - :math:`W` is the size of the vocabulary, - :math:`n_{d,k}` is the number of other times we have assigned a word in document to d to topic :math:`k`, - :math:`\Phi_{w,k}` is the probability under the model of choosing word :math:`w` given the word is of topic :math:`k`. This is the matrix returned by calling `m['topics']`. This represents a collapsed Gibbs sampler for the document assignments while we keep the topics learned during training fixed. This process is done in parallel across all documents, five times per document. """ dataset = _check_input(dataset) if num_burnin is None: num_burnin = self.num_burnin opts = {'model': self.__proxy__, 'data': dataset, 'num_burnin': num_burnin} response = _turicreate.toolkits._main.run("text_topicmodel_predict", opts) preds = _SArray(None, _proxy=response['predictions']) # Get most likely topic if probabilities are not requested if output_type not in ['probability', 'probabilities', 'prob']: # equivalent to numpy.argmax(x) preds = preds.apply(lambda x: max(_izip(x, _xrange(len(x))))[1]) return preds def evaluate(self, train_data, test_data=None, metric='perplexity'): """ Estimate the model's ability to predict new data. Imagine you have a corpus of books. One common approach to evaluating topic models is to train on the first half of all of the books and see how well the model predicts the second half of each book. This method returns a metric called perplexity, which is related to the likelihood of observing these words under the given model. See :py:func:`~turicreate.topic_model.perplexity` for more details. The provided `train_data` and `test_data` must have the same length, i.e., both data sets must have the same number of documents; the model will use train_data to estimate which topic the document belongs to, and this is used to estimate the model's performance at predicting the unseen words in the test data. See :py:func:`~turicreate.topic_model.TopicModel.predict` for details on how these predictions are made, and see :py:func:`~turicreate.text_analytics.random_split` for a helper function that can be used for making train/test splits. Parameters ---------- train_data : SArray or SFrame A set of documents to predict topics for. test_data : SArray or SFrame, optional A set of documents to evaluate performance on. By default this will set to be the same as train_data. metric : str The chosen metric to use for evaluating the topic model. Currently only 'perplexity' is supported. Returns ------- out : dict The set of estimated evaluation metrics. See Also -------- predict, turicreate.toolkits.text_analytics.random_split Examples -------- >>> docs = turicreate.SArray('https://static.turi.com/datasets/nips-text') >>> train_data, test_data = turicreate.text_analytics.random_split(docs) >>> m = turicreate.topic_model.create(train_data) >>> m.evaluate(train_data, test_data) {'perplexity': 2467.530370396021} """ train_data = _check_input(train_data) if test_data is None: test_data = train_data else: test_data = _check_input(test_data) predictions = self.predict(train_data, output_type='probability') topics = self.topics ret = {} ret['perplexity'] = perplexity(test_data, predictions, topics['topic_probabilities'], topics['vocabulary']) return ret @classmethod def _get_queryable_methods(cls): '''Returns a list of method names that are queryable through Predictive Service''' return {'predict':{'dataset':'sarray'}} def perplexity(test_data, predictions, topics, vocabulary): """ Compute the perplexity of a set of test documents given a set of predicted topics. Let theta be the matrix of document-topic probabilities, where theta_ik = p(topic k | document i). Let Phi be the matrix of term-topic probabilities, where phi_jk = p(word j | topic k). Then for each word in each document, we compute for a given word w and document d .. math:: p(word | \theta[doc_id,:], \phi[word_id,:]) = \sum_k \theta[doc_id, k] * \phi[word_id, k] We compute loglikelihood to be: .. math:: l(D) = \sum_{i \in D} \sum_{j in D_i} count_{i,j} * log Pr(word_{i,j} | \theta, \phi) and perplexity to be .. math:: \exp \{ - l(D) / \sum_i \sum_j count_{i,j} \} Parameters ---------- test_data : SArray of type dict or SFrame with a single colum of type dict Documents in bag-of-words format. predictions : SArray An SArray of vector type, where each vector contains estimates of the probability that this document belongs to each of the topics. This must have the same size as test_data; otherwise an exception occurs. This can be the output of :py:func:`~turicreate.topic_model.TopicModel.predict`, for example. topics : SFrame An SFrame containing two columns: 'vocabulary' and 'topic_probabilities'. The value returned by m['topics'] is a valid input for this argument, where m is a trained :py:class:`~turicreate.topic_model.TopicModel`. vocabulary : SArray An SArray of words to use. All words in test_data that are not in this vocabulary will be ignored. Notes ----- For more details, see equations 13-16 of [PattersonTeh2013]. References ---------- .. [PERP] `Wikipedia - perplexity <http://en.wikipedia.org/wiki/Perplexity>`_ .. [PattersonTeh2013] Patterson, Teh. `"Stochastic Gradient Riemannian Langevin Dynamics on the Probability Simplex" <http://www.stats.ox.ac.uk/~teh/research/compstats/PatTeh2013a.pdf>`_ NIPS, 2013. Examples -------- >>> from turicreate import topic_model >>> train_data, test_data = turicreate.text_analytics.random_split(docs) >>> m = topic_model.create(train_data) >>> pred = m.predict(train_data) >>> topics = m['topics'] >>> p = topic_model.perplexity(test_data, pred, topics['topic_probabilities'], topics['vocabulary']) >>> p 1720.7 # lower values are better """ test_data = _check_input(test_data) assert isinstance(predictions, _SArray), \ "Predictions must be an SArray of vector type." assert predictions.dtype == _array.array, \ "Predictions must be probabilities. Try using m.predict() with " + \ "output_type='probability'." opts = {'test_data': test_data, 'predictions': predictions, 'topics': topics, 'vocabulary': vocabulary} response = _turicreate.toolkits._main.run("text_topicmodel_get_perplexity", opts) return response['perplexity']
39.48801
110
0.582698
72b9f9fecf8548643a9b6d1e938fb80d5005be97
1,304
py
Python
diayn/policies/diayn_policy.py
fgitmichael/SelfSupevisedSkillDiscovery
60eee11cfd67046190dd2784bf40e97bdbed9d40
[ "MIT" ]
null
null
null
diayn/policies/diayn_policy.py
fgitmichael/SelfSupevisedSkillDiscovery
60eee11cfd67046190dd2784bf40e97bdbed9d40
[ "MIT" ]
6
2021-02-02T23:00:02.000Z
2022-01-13T03:13:51.000Z
diayn/policies/diayn_policy.py
fgitmichael/SelfSupevisedSkillDiscovery
60eee11cfd67046190dd2784bf40e97bdbed9d40
[ "MIT" ]
null
null
null
import numpy as np from diayn_cont.policy.skill_policy_obs_dim_select import SkillTanhGaussianPolicyObsSelect from rlkit.policies.base import Policy class SkillTanhGaussianPolicyObsSelectDIAYN(SkillTanhGaussianPolicyObsSelect): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self._skill = 0 @property def skill(self): return self._skill @skill.setter def skill(self, skill_to_set): assert isinstance(skill_to_set, int) assert skill_to_set < self.skill_dim self._skill = skill_to_set class MakeDeterministic(Policy): def __init__(self, stochastic_policy: SkillTanhGaussianPolicyObsSelectDIAYN): self.stochastic_policy = stochastic_policy def get_action(self, obs_np: np.ndarray, deterministic: bool = None): assert deterministic is None return self.stochastic_policy.get_action( obs_np, deterministic=True ) @property def skill_dim(self): return self.stochastic_policy.skill_dim @property def skill(self): return self.stochastic_policy.skill @skill.setter def skill(self, skill_to_set): self.stochastic_policy.skill = skill_to_set
25.076923
90
0.67408
776e847d3eb72eec215f75615acef2f5b20f6386
3,758
py
Python
animate_flex.py
martin-rdz/trace_airmass_source
0b850d6dcfc33ebc6fe19a0c0898ab3e7d5693de
[ "MIT" ]
3
2020-12-11T10:38:06.000Z
2021-03-07T11:06:16.000Z
animate_flex.py
martin-rdz/trace_airmass_source
0b850d6dcfc33ebc6fe19a0c0898ab3e7d5693de
[ "MIT" ]
3
2020-12-03T15:50:14.000Z
2021-04-06T08:20:30.000Z
animate_flex.py
martin-rdz/trace_airmass_source
0b850d6dcfc33ebc6fe19a0c0898ab3e7d5693de
[ "MIT" ]
2
2021-03-03T02:17:01.000Z
2022-02-07T16:52:21.000Z
#! /usr/bin/env python3 # coding=utf-8 """""" """ Author: radenz@tropos.de """ import datetime import argparse import sys, os import gc import subprocess import traceback import numpy as np import toml sys.path.append("..") import trace_source parser = argparse.ArgumentParser() parser.add_argument('--station', help='station name like limassol, barbados or mcmurdo') parser.add_argument('--datetime', help='date in the format YYYYMMDD-HH') parser.add_argument('--levels', nargs='+', type=int) parser.add_argument('--dynamics', default='false', help='add the isobars/isoterms from the grib files') #parser.add_argument('--daterange', help='date range in the format YYYYMMDD-YYYMMDD') args = parser.parse_args() config_file = 'config_{}.toml'.format(args.station) with open(config_file) as f: config = toml.loads(f.read()) end = datetime.datetime.strptime(args.datetime, '%Y%m%d-%H') savepath = '{}/{}_maps'.format(config['plot_dir'], end.strftime('%Y%m%d_%H')) print("savepath ", savepath) folder = config['partposit_dir'] + '{}/'.format(end.strftime('%Y%m%d_%H')) print('partposit_dir', folder) dt_range = [end-datetime.timedelta(days=10), end] files = os.listdir(folder) files = sorted([f for f in files if 'partposit' in f]) ls = trace_source.land_sfc.land_sfc() if args.levels is not None: levels = args.levels else: # get levels from config file raise ValueError print('levels ', args.levels) if args.dynamics == 'false': add_dyn = False elif args.dynamics == 'true': add_dyn = True else: raise ValueError level_to_heights = {} for f in files[:]: for i in levels: dt = datetime.datetime.strptime(f[10:], '%Y%m%d%H%M%S') part_pos = trace_source.flexpart.read_partpositions(folder + f, 1, ctable=False) traj = trace_source.flexpart.read_flexpart_traj_meta(folder + "trajectories.txt") level_to_heights[i] = np.mean(traj['releases_meta'][i]['heights']) trace_source.flexpart.plot_part_loc_map(part_pos, i, dt, traj, savepath, ls=ls, config=config, add_dyn=add_dyn, ) #add_fire='M6_7452') gc.collect() os.chdir(savepath) print(os.getcwd()) for i in levels: fname_animation = "{}_{:.0f}_r{:0>2}_{}.gif".format(end.strftime('%Y%m%d_%H'), level_to_heights[i], i, args.station) command = "convert -scale 70% -coalesce -layers Optimize -delay 20 -loop 0 `ls r{:0>2}*.png | sort -r` {}".format(i, fname_animation) print('run: ', command) try: process = subprocess.run(command, shell=True, check=True, stdout=subprocess.PIPE, universal_newlines=True) except: traceback.print_exc() fname_animation = "{}_{:.0f}_r{:0>2}_{}_f.gif".format(end.strftime('%Y%m%d_%H'), level_to_heights[i], i, args.station) command = "convert -scale 70% -coalesce -layers Optimize -delay 20 -loop 0 `ls r{:0>2}*.png | sort ` {}".format(i, fname_animation) print('run: ', command) try: process = subprocess.run(command, shell=True, check=True, stdout=subprocess.PIPE, universal_newlines=True) except: traceback.print_exc() # from flexpart module # convert -scale 70% -coalesce -layers Optimize -delay 20 -loop 0 `ls r11*.png | sort -r` r11.gif # from notebook # convert -delay 20 -loop 0 `ls r2*.png | sort -r` r2.gif # convert -resize 1500x1000 -delay 20 -loop 0 `ls r4*.png | sort -r` r4.gif # convert -scale 50% -coalesce -layers Optimize -delay 20 -loop 0 `ls r11*.png | sort -r` r11.gif # convert -scale 70% -coalesce -layers Optimize -delay 20 -loop 0 `ls r11*.png | sort -r` r11.gif
33.553571
137
0.644758
e1b6524a7d7500c72a6ffb0bf4b324174c35d36c
660
py
Python
examples/plotting/file/linked_brushing.py
andreagrant/bokehDev
a684afee183496c54d4f187a890707cf6b5ec2a5
[ "BSD-3-Clause" ]
1
2021-04-03T13:05:55.000Z
2021-04-03T13:05:55.000Z
examples/plotting/file/linked_brushing.py
andreagrant/bokehDev
a684afee183496c54d4f187a890707cf6b5ec2a5
[ "BSD-3-Clause" ]
null
null
null
examples/plotting/file/linked_brushing.py
andreagrant/bokehDev
a684afee183496c54d4f187a890707cf6b5ec2a5
[ "BSD-3-Clause" ]
null
null
null
import numpy as np from bokeh.models import ColumnDataSource from bokeh.plotting import figure, gridplot, show, output_file N = 300 x = np.linspace(0, 4*np.pi, N) y1 = np.sin(x) y2 = np.cos(x) source = ColumnDataSource(data=dict(x=x, y1=y1, y2=y2)) TOOLS = "pan,wheel_zoom,box_zoom,reset,save,box_select,lasso_select" s1 = figure(tools=TOOLS, title="Figure 1", min_border=5) s1.circle('x', 'y1', source=source) s2 = figure(tools=TOOLS) # linked brushing is expressed by sharing data sources between renderers s2.circle('x', 'y2', source=source) p = gridplot([[s1,s2]]) output_file("linked_brushing.html", title="linked_brushing.py example") show(p)
22.758621
72
0.730303
17a3d8f982232d537ecc9171ac1945c9c6316042
1,686
py
Python
minmax.py
lkesteloot/verilog_minmax
f6d774cd8a823d2382c86a349b4385545483fc99
[ "Apache-2.0" ]
1
2018-05-13T20:54:18.000Z
2018-05-13T20:54:18.000Z
minmax.py
lkesteloot/verilog_minmax
f6d774cd8a823d2382c86a349b4385545483fc99
[ "Apache-2.0" ]
null
null
null
minmax.py
lkesteloot/verilog_minmax
f6d774cd8a823d2382c86a349b4385545483fc99
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/python # Copyright 2017 Lawrence Kesteloot # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Generates Verilog code to compute the min or max of a set of registers or # constants. Specify the operator and all the operands on the command line. # # Examples: # # python minmax.py "<" vertex_0_x vertex_1_x vertex_2_x # python minmax.py ">" vertex_0_x vertex_1_x vertex_2_x # import sys INDENT = " " # Generate the sub-tree with the given indent, operator, and operands. def generate(indent, operator, operands): if len(operands) == 0: raise Exception("Should never have zero operands") if len(operands) == 1: return operands[0] return "%s %s %s\n%s? %s\n%s: %s" % (operands[0], operator, operands[1], indent, generate(indent + INDENT, operator, [operands[0]] + operands[2:]), indent, generate(indent + INDENT, operator, [operands[1]] + operands[2:])) def main(args): if len(args) < 2: print "Usage: minmax.py operator a b c . . ." sys.exit(1) print "result <= " + generate(INDENT, args[0], args[1:]) + ";" main(sys.argv[1:])
32.423077
78
0.658363
f361983656edd9ac8d26c35bf68e545514e019ec
1,434
py
Python
noxfile.py
kjelljorner/libconeangle
52ef8f38d41a8d6feea0869f457a85598cf6e59b
[ "MIT" ]
8
2022-03-21T07:02:14.000Z
2022-03-31T22:58:32.000Z
noxfile.py
kjelljorner/libconeangle
52ef8f38d41a8d6feea0869f457a85598cf6e59b
[ "MIT" ]
1
2022-03-26T10:24:32.000Z
2022-03-26T14:12:02.000Z
noxfile.py
kjelljorner/libconeangle
52ef8f38d41a8d6feea0869f457a85598cf6e59b
[ "MIT" ]
null
null
null
"""Automated testing linting and formatting apparatus.""" import nox from nox.sessions import Session package = "libconeangle" nox.options.sessions = "lint", "tests", "mypy" # default session locations = "libconeangle", "test", "noxfile.py" # Linting locations pyversions = ["3.8", "3.9", "3.10"] # Testing @nox.session(python=pyversions) def tests(session: Session) -> None: """Run tests.""" args = session.posargs + ["--cov=libconeangle", "--import-mode=importlib", "-s"] session.install("pytest", "pytest-cov") session.install(".") session.run("pytest", *args) # Linting @nox.session(python="3.9") def lint(session: Session) -> None: """Lint code.""" args = session.posargs or locations session.install( "flake8", "flake8-black", "flake8-bugbear", "flake8-import-order", "flake8-annotations", "flake8-docstrings", "darglint", ) session.run("flake8", *args) # Code formatting @nox.session(python="3.9") def black(session: Session) -> None: """Format code.""" args = session.posargs or locations session.install("black") session.run("black", *args) # Static typing @nox.session(python="3.9") def mypy(session: Session) -> None: """Run the static type checker.""" args = session.posargs or locations session.install("mypy") session.install("types-pkg_resources") session.run("mypy", *args)
25.607143
84
0.638075
201bf1453b1c34e9762b94dece9cbb1570bcd514
4,205
py
Python
userbot/modules/emojigames.py
Rewtio/Mikoo-Userbot
418f0017241fa65bdf7f99c84381317cb4dbeb55
[ "Naumen", "Condor-1.1", "MS-PL" ]
4
2022-03-03T01:31:48.000Z
2022-03-26T00:15:41.000Z
userbot/modules/emojigames.py
Rewtio/Mikoo-Userbot
418f0017241fa65bdf7f99c84381317cb4dbeb55
[ "Naumen", "Condor-1.1", "MS-PL" ]
1
2022-03-16T02:54:27.000Z
2022-03-17T09:17:12.000Z
userbot/modules/emojigames.py
Rewtio/Mikoo-Userbot
418f0017241fa65bdf7f99c84381317cb4dbeb55
[ "Naumen", "Condor-1.1", "MS-PL" ]
1
2022-03-16T02:41:38.000Z
2022-03-16T02:41:38.000Z
# fix by @heyworld for OUB # bug fixed by @d3athwarrior # Recode by @divarvian # t.me/MikooUserbot from telethon.tl.types import InputMediaDice from userbot import CMD_HANDLER as cmd from userbot import CMD_HELP from userbot.utils import man_cmd @man_cmd(pattern="dice(?: |$)(.*)") async def _(event): if event.fwd_from: return input_str = event.pattern_match.group(1) await event.delete() r = await event.reply(file=InputMediaDice("")) if input_str: try: required_number = int(input_str) while r.media.value != required_number: await r.delete() r = await event.reply(file=InputMediaDice("")) except BaseException: pass @man_cmd(pattern="dart(?: |$)(.*)") async def _(event): if event.fwd_from: return input_str = event.pattern_match.group(1) await event.delete() r = await event.reply(file=InputMediaDice("🎯")) if input_str: try: required_number = int(input_str) while r.media.value != required_number: await r.delete() r = await event.reply(file=InputMediaDice("🎯")) except BaseException: pass @man_cmd(pattern="basket(?: |$)(.*)") async def _(event): if event.fwd_from: return input_str = event.pattern_match.group(1) await event.delete() r = await event.reply(file=InputMediaDice("🏀")) if input_str: try: required_number = int(input_str) while r.media.value != required_number: await r.delete() r = await event.reply(file=InputMediaDice("🏀")) except BaseException: pass @man_cmd(pattern="bowling(?: |$)(.*)") async def _(event): if event.fwd_from: return input_str = event.pattern_match.group(1) await event.delete() r = await event.reply(file=InputMediaDice("🎳")) if input_str: try: required_number = int(input_str) while r.media.value != required_number: await r.delete() r = await event.reply(file=InputMediaDice("🎳")) except BaseException: pass @man_cmd(pattern="ball(?: |$)(.*)") async def _(event): if event.fwd_from: return input_str = event.pattern_match.group(1) await event.delete() r = await event.reply(file=InputMediaDice("⚽")) if input_str: try: required_number = int(input_str) while r.media.value != required_number: await r.delete() r = await event.reply(file=InputMediaDice("⚽")) except BaseException: pass @man_cmd(pattern="jackpot(?: |$)(.*)") async def _(event): if event.fwd_from: return input_str = event.pattern_match.group(1) await event.delete() r = await event.reply(file=InputMediaDice("🎰")) if input_str: try: required_number = int(input_str) while r.media.value != required_number: await r.delete() r = await event.reply(file=InputMediaDice("🎰")) except BaseException: pass CMD_HELP.update( { "emojigames": f"**Plugin : **`emojigames`\ \n\n • **Syntax :** `{cmd}dice` 1-6\ \n • **Function : **Memainkan emoji game dice dengan score yg di tentukan kita.\ \n\n • **Syntax :** `{cmd}dart` 1-6\ \n • **Function : **Memainkan emoji game dart dengan score yg di tentukan kita.\ \n\n • **Syntax :** `{cmd}basket` 1-5\ \n • **Function : **Memainkan emoji game basket dengan score yg di tentukan kita.\ \n\n • **Syntax :** `{cmd}bowling` 1-6\ \n • **Function : **Memainkan emoji game bowling dengan score yg di tentukan kita.\ \n\n • **Syntax :** `{cmd}ball` 1-5\ \n • **Function : **Memainkan emoji game ball telegram score yg di tentukan kita.\ \n\n • **Syntax :** `{cmd}jackpot` 1\ \n • **Function : **Memainkan emoji game jackpot dengan score yg di tentukan kita.\ \n\n • **NOTE: **Jangan gunakan nilai lebih atau bot akan Crash**\ " } )
31.380597
93
0.575981
ca03532eed4d8af744b0ba9f8bb14c25db6d08d4
2,308
py
Python
stem_testing/examples/client_usage/Custom_Path_Selection.py
joshuatee/Posh-Stem
bc7f1d4e010e8a7f1e1e4dd70518ec6b1d210fa0
[ "Unlicense" ]
1
2019-04-02T00:15:59.000Z
2019-04-02T00:15:59.000Z
stem_testing/examples/client_usage/Custom_Path_Selection.py
joshuatee/Posh-Stem
bc7f1d4e010e8a7f1e1e4dd70518ec6b1d210fa0
[ "Unlicense" ]
null
null
null
stem_testing/examples/client_usage/Custom_Path_Selection.py
joshuatee/Posh-Stem
bc7f1d4e010e8a7f1e1e4dd70518ec6b1d210fa0
[ "Unlicense" ]
null
null
null
import StringIO import time import pycurl import stem.control # Static exit for us to make 2-hop circuits through. Picking aurora, a # particularly beefy one... # # https://atlas.torproject.org/#details/379FB450010D17078B3766C2273303C358C3A442 EXIT_FINGERPRINT = '379FB450010D17078B3766C2273303C358C3A442' SOCKS_PORT = 9050 CONNECTION_TIMEOUT = 30 # timeout before we give up on a circuit def query(url): """ Uses pycurl to fetch a site using the proxy on the SOCKS_PORT. """ output = StringIO.StringIO() query = pycurl.Curl() query.setopt(pycurl.URL, url) query.setopt(pycurl.PROXY, 'localhost') query.setopt(pycurl.PROXYPORT, SOCKS_PORT) query.setopt(pycurl.PROXYTYPE, pycurl.PROXYTYPE_SOCKS5_HOSTNAME) query.setopt(pycurl.CONNECTTIMEOUT, CONNECTION_TIMEOUT) query.setopt(pycurl.WRITEFUNCTION, output.write) try: query.perform() return output.getvalue() except pycurl.error as exc: raise ValueError("Unable to reach %s (%s)" % (url, exc)) def scan(controller, path): """ Fetch check.torproject.org through the given path of relays, providing back the time it took. """ circuit_id = controller.new_circuit(path, await_build = True) def attach_stream(stream): if stream.status == 'NEW': controller.attach_stream(stream.id, circuit_id) controller.add_event_listener(attach_stream, stem.control.EventType.STREAM) try: controller.set_conf('__LeaveStreamsUnattached', '1') # leave stream management to us start_time = time.time() check_page = query('https://check.torproject.org/') if 'Congratulations. This browser is configured to use Tor.' not in check_page: raise ValueError("Request didn't have the right content") return time.time() - start_time finally: controller.remove_event_listener(attach_stream) controller.reset_conf('__LeaveStreamsUnattached') with stem.control.Controller.from_port() as controller: controller.authenticate() relay_fingerprints = [desc.fingerprint for desc in controller.get_network_statuses()] for fingerprint in relay_fingerprints: try: time_taken = scan(controller, [fingerprint, EXIT_FINGERPRINT]) print('%s => %0.2f seconds' % (fingerprint, time_taken)) except Exception as exc: print('%s => %s' % (fingerprint, exc))
29.21519
89
0.737002