hexsha
stringlengths
40
40
size
int64
4
1.02M
ext
stringclasses
8 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
4
209
max_stars_repo_name
stringlengths
5
121
max_stars_repo_head_hexsha
stringlengths
40
40
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
4
209
max_issues_repo_name
stringlengths
5
121
max_issues_repo_head_hexsha
stringlengths
40
40
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
4
209
max_forks_repo_name
stringlengths
5
121
max_forks_repo_head_hexsha
stringlengths
40
40
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
4
1.02M
avg_line_length
float64
1.07
66.1k
max_line_length
int64
4
266k
alphanum_fraction
float64
0.01
1
c307c01322f202fd16db183f5cc4916c31fb584e
12,205
py
Python
holoviews/plotting/bokeh/annotation.py
cocoaaa/holoviews
bb3dc4975c2604f38d141ccad1c931ed5d9b1322
[ "BSD-3-Clause" ]
null
null
null
holoviews/plotting/bokeh/annotation.py
cocoaaa/holoviews
bb3dc4975c2604f38d141ccad1c931ed5d9b1322
[ "BSD-3-Clause" ]
null
null
null
holoviews/plotting/bokeh/annotation.py
cocoaaa/holoviews
bb3dc4975c2604f38d141ccad1c931ed5d9b1322
[ "BSD-3-Clause" ]
null
null
null
from __future__ import absolute_import, division, unicode_literals from collections import defaultdict import param import numpy as np from bokeh.models import Span, Arrow, Div as BkDiv try: from bokeh.models.arrow_heads import TeeHead, NormalHead arrow_start = {'<->': NormalHead, '<|-|>': NormalHead} arrow_end = {'->': NormalHead, '-[': TeeHead, '-|>': NormalHead, '-': None} except: from bokeh.models.arrow_heads import OpenHead, NormalHead arrow_start = {'<->': NormalHead, '<|-|>': NormalHead} arrow_end = {'->': NormalHead, '-[': OpenHead, '-|>': NormalHead, '-': None} from bokeh.transform import dodge from ...core.util import datetime_types, dimension_sanitizer, basestring from ...element import HLine, VLine from ..plot import GenericElementPlot from .element import AnnotationPlot, ElementPlot, CompositeElementPlot, ColorbarPlot from .styles import text_properties, line_properties from .plot import BokehPlot from .util import date_to_integer class TextPlot(ElementPlot, AnnotationPlot): style_opts = text_properties+['color', 'angle'] _plot_methods = dict(single='text', batched='text') def get_data(self, element, ranges, style): mapping = dict(x='x', y='y', text='text') if self.static_source: return dict(x=[], y=[], text=[]), mapping, style if self.invert_axes: data = dict(x=[element.y], y=[element.x]) else: data = dict(x=[element.x], y=[element.y]) self._categorize_data(data, ('x', 'y'), element.dimensions()) data['text'] = [element.text] if 'text_align' not in style: style['text_align'] = element.halign baseline = 'middle' if element.valign == 'center' else element.valign if 'text_baseline' not in style: style['text_baseline'] = baseline if 'text_font_size' not in style: style['text_font_size'] = '%dPt' % element.fontsize if 'color' in style: style['text_color'] = style.pop('color') style['angle'] = np.deg2rad(style.get('angle', element.rotation)) return (data, mapping, style) def get_batched_data(self, element, ranges=None): data = defaultdict(list) zorders = self._updated_zorders(element) for (key, el), zorder in zip(element.data.items(), zorders): style = self.lookup_options(element.last, 'style') style = style.max_cycles(len(self.ordering))[zorder] eldata, elmapping, style = self.get_data(el, ranges, style) for k, eld in eldata.items(): data[k].extend(eld) return data, elmapping, style def get_extents(self, element, ranges=None, range_type='combined'): return None, None, None, None class LabelsPlot(ColorbarPlot, AnnotationPlot): show_legend = param.Boolean(default=False, doc=""" Whether to show legend for the plot.""") xoffset = param.Number(default=None, doc=""" Amount of offset to apply to labels along x-axis.""") yoffset = param.Number(default=None, doc=""" Amount of offset to apply to labels along x-axis.""") # Deprecated options color_index = param.ClassSelector(default=None, class_=(basestring, int), allow_None=True, doc=""" Deprecated in favor of color style mapping, e.g. `color=dim('color')`""") style_opts = text_properties + ['cmap', 'angle'] _nonvectorized_styles = ['cmap'] _plot_methods = dict(single='text', batched='text') _batched_style_opts = text_properties def get_data(self, element, ranges, style): style = self.style[self.cyclic_index] if 'angle' in style and isinstance(style['angle'], (int, float)): style['angle'] = np.deg2rad(style.get('angle', 0)) dims = element.dimensions() coords = (1, 0) if self.invert_axes else (0, 1) xdim, ydim, tdim = (dimension_sanitizer(dims[i].name) for i in coords+(2,)) mapping = dict(x=xdim, y=ydim, text=tdim) data = {d: element.dimension_values(d) for d in (xdim, ydim)} if self.xoffset is not None: mapping['x'] = dodge(xdim, self.xoffset) if self.yoffset is not None: mapping['y'] = dodge(ydim, self.yoffset) data[tdim] = [dims[2].pprint_value(v) for v in element.dimension_values(2)] self._categorize_data(data, (xdim, ydim), element.dimensions()) cdim = element.get_dimension(self.color_index) if cdim is None: return data, mapping, style cdata, cmapping = self._get_color_data(element, ranges, style, name='text_color') if dims[2] is cdim and cdata: # If color dim is same as text dim, rename color column data['text_color'] = cdata[tdim] mapping['text_color'] = dict(cmapping['text_color'], field='text_color') else: data.update(cdata) mapping.update(cmapping) return data, mapping, style class LineAnnotationPlot(ElementPlot, AnnotationPlot): style_opts = line_properties + ['level'] apply_ranges = param.Boolean(default=False, doc=""" Whether to include the annotation in axis range calculations.""") _plot_methods = dict(single='Span') def get_data(self, element, ranges, style): data, mapping = {}, {} dim = 'width' if isinstance(element, HLine) else 'height' if self.invert_axes: dim = 'width' if dim == 'height' else 'height' mapping['dimension'] = dim loc = element.data if isinstance(loc, datetime_types): loc = date_to_integer(loc) mapping['location'] = loc return (data, mapping, style) def _init_glyph(self, plot, mapping, properties): """ Returns a Bokeh glyph object. """ box = Span(level=properties.get('level', 'glyph'), **mapping) plot.renderers.append(box) return None, box def get_extents(self, element, ranges=None, range_type='combined'): loc = element.data if isinstance(element, VLine): dim = 'x' elif isinstance(element, HLine): dim = 'y' if self.invert_axes: dim = 'x' if dim == 'y' else 'x' ranges[dim]['soft'] = loc, loc return super(LineAnnotationPlot, self).get_extents(element, ranges, range_type) class SplinePlot(ElementPlot, AnnotationPlot): """ Draw the supplied Spline annotation (see Spline docstring). Does not support matplotlib Path codes. """ style_opts = line_properties _plot_methods = dict(single='bezier') def get_data(self, element, ranges, style): if self.invert_axes: data_attrs = ['y0', 'x0', 'cy0', 'cx0', 'cy1', 'cx1', 'y1', 'x1'] else: data_attrs = ['x0', 'y0', 'cx0', 'cy0', 'cx1', 'cy1', 'x1', 'y1'] verts = np.array(element.data[0]) inds = np.where(np.array(element.data[1])==1)[0] data = {da: [] for da in data_attrs} skipped = False for vs in np.split(verts, inds[1:]): if len(vs) != 4: skipped = len(vs) > 1 continue for x, y, xl, yl in zip(vs[:, 0], vs[:, 1], data_attrs[::2], data_attrs[1::2]): data[xl].append(x) data[yl].append(y) if skipped: self.param.warning( 'Bokeh SplitPlot only support cubic splines, unsupported ' 'splines were skipped during plotting.') data = {da: data[da] for da in data_attrs} return (data, dict(zip(data_attrs, data_attrs)), style) class ArrowPlot(CompositeElementPlot, AnnotationPlot): style_opts = (['arrow_%s' % p for p in line_properties+['size']] + text_properties) _style_groups = {'arrow': 'arrow', 'label': 'text'} def get_data(self, element, ranges, style): plot = self.state label_mapping = dict(x='x', y='y', text='text') # Compute arrow x1, y1 = element.x, element.y axrange = plot.x_range if self.invert_axes else plot.y_range span = (axrange.end - axrange.start) / 6. if element.direction == '^': x2, y2 = x1, y1-span label_mapping['text_baseline'] = 'top' elif element.direction == '<': x2, y2 = x1+span, y1 label_mapping['text_align'] = 'left' label_mapping['text_baseline'] = 'middle' elif element.direction == '>': x2, y2 = x1-span, y1 label_mapping['text_align'] = 'right' label_mapping['text_baseline'] = 'middle' else: x2, y2 = x1, y1+span label_mapping['text_baseline'] = 'bottom' arrow_opts = {'x_end': x1, 'y_end': y1, 'x_start': x2, 'y_start': y2} # Define arrowhead arrow_opts['arrow_start'] = arrow_start.get(element.arrowstyle, None) arrow_opts['arrow_end'] = arrow_end.get(element.arrowstyle, NormalHead) # Compute label if self.invert_axes: label_data = dict(x=[y2], y=[x2]) else: label_data = dict(x=[x2], y=[y2]) label_data['text'] = [element.text] return ({'label': label_data}, {'arrow': arrow_opts, 'label': label_mapping}, style) def _init_glyph(self, plot, mapping, properties, key): """ Returns a Bokeh glyph object. """ properties.pop('legend', None) if key == 'arrow': properties.pop('source') arrow_end = mapping.pop('arrow_end') arrow_start = mapping.pop('arrow_start') start = arrow_start(**properties) if arrow_start else None end = arrow_end(**properties) if arrow_end else None renderer = Arrow(start=start, end=end, **dict(**mapping)) glyph = renderer else: properties = {p if p == 'source' else 'text_'+p: v for p, v in properties.items()} renderer, glyph = super(ArrowPlot, self)._init_glyph( plot, mapping, properties, 'text_1') plot.renderers.append(renderer) return renderer, glyph def get_extents(self, element, ranges=None, range_type='combined'): return None, None, None, None class DivPlot(BokehPlot, GenericElementPlot, AnnotationPlot): height = param.Number(default=300) width = param.Number(default=300) finalize_hooks = param.HookList(default=[], doc=""" Deprecated; use hooks options instead.""") hooks = param.HookList(default=[], doc=""" Optional list of hooks called when finalizing a plot. The hook is passed the plot object and the displayed element, and other plotting handles can be accessed via plot.handles.""") _stream_data = False def __init__(self, element, plot=None, **params): super(DivPlot, self).__init__(element, **params) self.callbacks = [] self.handles = {} if plot is None else self.handles['plot'] self.static = len(self.hmap) == 1 and len(self.keys) == len(self.hmap) def get_data(self, element, ranges, style): return element.data, {}, style def initialize_plot(self, ranges=None, plot=None, plots=None, source=None): """ Initializes a new plot object with the last available frame. """ # Get element key and ranges for frame element = self.hmap.last key = self.keys[-1] self.current_frame = element self.current_key = key data, _, _ = self.get_data(element, ranges, {}) div = BkDiv(text=data, width=self.width, height=self.height) self.handles['plot'] = div self._execute_hooks(element) self.drawn = True return div def update_frame(self, key, ranges=None, plot=None): """ Updates an existing plot with data corresponding to the key. """ element = self._get_frame(key) text, _, _ = self.get_data(element, ranges, {}) self.handles['plot'].text = text
37.210366
91
0.599754
f01ebb21b59e2cb82f71dd187737dc49d06cf708
41,038
py
Python
setup.py
hubert-pietron/airflow
3f9073c46940ef1f25a9f46b447d9cf84435c3ed
[ "Apache-2.0" ]
8,092
2016-04-27T20:32:29.000Z
2019-01-05T07:39:33.000Z
setup.py
hubert-pietron/airflow
3f9073c46940ef1f25a9f46b447d9cf84435c3ed
[ "Apache-2.0" ]
2,961
2016-05-05T07:16:16.000Z
2019-01-05T08:47:59.000Z
setup.py
hubert-pietron/airflow
3f9073c46940ef1f25a9f46b447d9cf84435c3ed
[ "Apache-2.0" ]
3,546
2016-05-04T20:33:16.000Z
2019-01-05T05:14:26.000Z
# # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """Setup.py for the Airflow project.""" import glob import logging import os import subprocess import sys import unittest from copy import deepcopy from os.path import dirname, relpath from textwrap import wrap from typing import Dict, List from setuptools import Command, Distribution, find_namespace_packages, setup from setuptools.command.develop import develop as develop_orig from setuptools.command.install import install as install_orig # Setuptools patches this import to point to a vendored copy instead of the # stdlib, which is deprecated in Python 3.10 and will be removed in 3.12. from distutils import log # isort: skip # Controls whether providers are installed from packages or directly from sources # It is turned on by default in case of development environments such as Breeze # And it is particularly useful when you add a new provider and there is no # PyPI version to install the provider package from INSTALL_PROVIDERS_FROM_SOURCES = 'INSTALL_PROVIDERS_FROM_SOURCES' PY39 = sys.version_info >= (3, 9) logger = logging.getLogger(__name__) version = '2.4.0.dev0' my_dir = dirname(__file__) def airflow_test_suite() -> unittest.TestSuite: """Test suite for Airflow tests""" test_loader = unittest.TestLoader() test_suite = test_loader.discover(os.path.join(my_dir, 'tests'), pattern='test_*.py') return test_suite class CleanCommand(Command): """ Command to tidy up the project root. Registered as cmdclass in setup() so it can be called with ``python setup.py extra_clean``. """ description = "Tidy up the project root" user_options: List[str] = [] def initialize_options(self) -> None: """Set default values for options.""" def finalize_options(self) -> None: """Set final values for options.""" @staticmethod def rm_all_files(files: List[str]) -> None: """Remove all files from the list""" for file in files: try: os.remove(file) except Exception as e: logger.warning("Error when removing %s: %s", file, e) def run(self) -> None: """Remove temporary files and directories.""" os.chdir(my_dir) self.rm_all_files(glob.glob('./build/*')) self.rm_all_files(glob.glob('./**/__pycache__/*', recursive=True)) self.rm_all_files(glob.glob('./**/*.pyc', recursive=True)) self.rm_all_files(glob.glob('./dist/*')) self.rm_all_files(glob.glob('./*.egg-info')) self.rm_all_files(glob.glob('./docker-context-files/*.whl')) self.rm_all_files(glob.glob('./docker-context-files/*.tgz')) class CompileAssets(Command): """ Compile and build the frontend assets using yarn and webpack. Registered as cmdclass in setup() so it can be called with ``python setup.py compile_assets``. """ description = "Compile and build the frontend assets" user_options: List[str] = [] def initialize_options(self) -> None: """Set default values for options.""" def finalize_options(self) -> None: """Set final values for options.""" def run(self) -> None: """Run a command to compile and build assets.""" subprocess.check_call('./airflow/www/compile_assets.sh') class ListExtras(Command): """ List all available extras Registered as cmdclass in setup() so it can be called with ``python setup.py list_extras``. """ description = "List available extras" user_options: List[str] = [] def initialize_options(self) -> None: """Set default values for options.""" def finalize_options(self) -> None: """Set final values for options.""" def run(self) -> None: """List extras.""" print("\n".join(wrap(", ".join(EXTRAS_REQUIREMENTS.keys()), 100))) def git_version(version_: str) -> str: """ Return a version to identify the state of the underlying git repo. The version will indicate whether the head of the current git-backed working directory is tied to a release tag or not : it will indicate the former with a 'release:{version}' prefix and the latter with a '.dev0' suffix. Following the prefix will be a sha of the current branch head. Finally, a "dirty" suffix is appended to indicate that uncommitted changes are present. :param str version_: Semver version :return: Found Airflow version in Git repo :rtype: str """ try: import git try: repo = git.Repo(os.path.join(*[my_dir, '.git'])) except git.NoSuchPathError: logger.warning('.git directory not found: Cannot compute the git version') return '' except git.InvalidGitRepositoryError: logger.warning('Invalid .git directory not found: Cannot compute the git version') return '' except ImportError: logger.warning('gitpython not found: Cannot compute the git version.') return '' if repo: sha = repo.head.commit.hexsha if repo.is_dirty(): return f'.dev0+{sha}.dirty' # commit is clean return f'.release:{version_}+{sha}' return 'no_git_version' def write_version(filename: str = os.path.join(*[my_dir, "airflow", "git_version"])) -> None: """ Write the Semver version + git hash to file, e.g. ".dev0+2f635dc265e78db6708f59f68e8009abb92c1e65". :param str filename: Destination file to write """ text = f"{git_version(version)}" with open(filename, 'w') as file: file.write(text) pandas_requirement = 'pandas>=0.17.1' # 'Start dependencies group' and 'Start dependencies group' are mark for ./scripts/ci/check_order_setup.py # If you change this mark you should also change ./scripts/ci/check_order_setup.py # Start dependencies group alibaba = [ 'oss2>=2.14.0', ] amazon = [ 'boto3>=1.15.0', # watchtower 3 has been released end Jan and introduced breaking change across the board that might # change logging behaviour: # https://github.com/kislyuk/watchtower/blob/develop/Changes.rst#changes-for-v300-2022-01-26 # TODO: update to watchtower >3 'watchtower~=2.0.1', 'jsonpath_ng>=1.5.3', 'redshift_connector>=2.0.888', 'sqlalchemy_redshift>=0.8.6', pandas_requirement, 'mypy-boto3-rds>=1.21.0', 'mypy-boto3-redshift-data>=1.21.0', ] apache_beam = [ 'apache-beam>=2.33.0', ] arangodb = ['python-arango>=7.3.2'] asana = ['asana>=0.10'] async_packages = [ 'eventlet>=0.9.7', 'gevent>=0.13', 'greenlet>=0.4.9', ] atlas = [ 'atlasclient>=0.1.2', ] azure = [ 'azure-batch>=8.0.0', 'azure-cosmos>=4.0.0', 'azure-datalake-store>=0.0.45', 'azure-identity>=1.3.1', 'azure-keyvault-secrets>=4.1.0,<5.0', 'azure-kusto-data>=0.0.43,<0.1', # Azure integration uses old librarires and the limits below reflect that # TODO: upgrade to newer versions of all the below libraries 'azure-mgmt-containerinstance>=1.5.0,<2.0', 'azure-mgmt-datafactory>=1.0.0,<2.0', 'azure-mgmt-datalake-store>=0.5.0', 'azure-mgmt-resource>=2.2.0', # limited due to https://github.com/Azure/azure-sdk-for-python/pull/18801 implementation released in 12.9 'azure-storage-blob>=12.7.0,<12.9.0', 'azure-storage-common>=2.1.0', 'azure-storage-file>=2.1.0', ] cassandra = [ 'cassandra-driver>=3.13.0', ] celery = [ # The Celery is known to introduce problems when upgraded to a MAJOR version. Airflow Core # Uses Celery for CeleryExecutor, and we also know that Kubernetes Python client follows SemVer # (https://docs.celeryq.dev/en/stable/contributing.html?highlight=semver#versions). # This is a crucial component of Airflow, so we should limit it to the next MAJOR version and only # deliberately bump the version when we tested it, and we know it can be bumped. # Bumping this version should also be connected with # limiting minimum airflow version supported in cncf.kubernetes provider, due to the # potential breaking changes in Airflow Core as well (celery is added as extra, so Airflow # core is not hard-limited via install-requirements, only by extra). 'celery>=5.2.3,<6', 'flower>=1.0.0', ] cgroups = [ # Cgroupspy 0.2.2 added Python 3.10 compatibility 'cgroupspy>=0.2.2', ] cloudant = [ 'cloudant>=2.0', ] dask = [ # Dask support is limited, we need Dask team to upgrade support for dask if we were to continue # Supporting it in the future 'cloudpickle>=1.4.1', 'dask>=2.9.0', 'distributed>=2.11.1', ] databricks = [ 'requests>=2.26.0, <3', 'databricks-sql-connector>=2.0.0, <3.0.0', ] datadog = [ 'datadog>=0.14.0', ] deprecated_api = [ 'requests>=2.26.0', ] doc = [ 'click>=8.0', 'sphinx>=4.4.0', # Docutils 0.17.0 converts generated <div class="section"> into <section> and breaks our doc formatting # By adding a lot of whitespace separation. This limit can be lifted when we update our doc to handle # <section> tags for sections 'docutils<0.17.0', # Without this, Sphinx goes in to a _very_ large backtrack on Python 3.7, # even though Sphinx 4.4.0 has this but with python_version<3.10. 'importlib-metadata>=4.4; python_version < "3.8"', 'sphinx-airflow-theme', 'sphinx-argparse>=0.1.13', 'sphinx-autoapi>=1.8.0', 'sphinx-copybutton', 'sphinx-jinja>=2.0', 'sphinx-rtd-theme>=0.1.6', 'sphinxcontrib-httpdomain>=1.7.0', 'sphinxcontrib-redoc>=1.6.0', 'sphinxcontrib-spelling>=7.3', ] docker = [ 'docker>=5.0.3', ] drill = ['sqlalchemy-drill>=1.1.0', 'sqlparse>=0.4.1'] druid = [ 'pydruid>=0.4.1', ] elasticsearch = [ 'elasticsearch>7', 'elasticsearch-dbapi', 'elasticsearch-dsl>=5.0.0', ] exasol = ['pyexasol>=0.5.1', pandas_requirement] facebook = [ 'facebook-business>=6.0.2', ] flask_appbuilder_authlib = [ 'authlib', ] github = [ 'pygithub', ] google = [ # Google has very clear rules on what dependencies should be used. All the limits below # follow strict guidelines of Google Libraries as quoted here: # While this issue is open, dependents of google-api-core, google-cloud-core. and google-auth # should preserve >1, <3 pins on these packages. # https://github.com/googleapis/google-cloud-python/issues/10566 # Some of Google Packages are limited to <2.0.0 because 2.0.0 releases of the libraries # Introduced breaking changes across the board. Those libraries should be upgraded soon # TODO: Upgrade all Google libraries that are limited to <2.0.0 'PyOpenSSL', 'google-ads>=15.1.1', 'google-api-core>=2.7.0,<3.0.0', 'google-api-python-client>=1.6.0,<2.0.0', 'google-auth>=1.0.0', 'google-auth-httplib2>=0.0.1', 'google-cloud-aiplatform>=1.7.1,<2.0.0', 'google-cloud-automl>=2.1.0', 'google-cloud-bigquery-datatransfer>=3.0.0', 'google-cloud-bigtable>=1.0.0,<2.0.0', 'google-cloud-build>=3.0.0', 'google-cloud-container>=2.2.0,<3.0.0', 'google-cloud-datacatalog>=3.0.0', 'google-cloud-dataplex>=0.1.0', 'google-cloud-dataproc>=3.1.0', 'google-cloud-dataproc-metastore>=1.2.0,<2.0.0', 'google-cloud-dlp>=0.11.0,<2.0.0', 'google-cloud-kms>=2.0.0', 'google-cloud-language>=1.1.1,<2.0.0', 'google-cloud-logging>=2.1.1', 'google-cloud-memcache>=0.2.0', 'google-cloud-monitoring>=2.0.0', 'google-cloud-os-login>=2.0.0', 'google-cloud-orchestration-airflow>=1.0.0,<2.0.0', 'google-cloud-pubsub>=2.0.0', 'google-cloud-redis>=2.0.0', 'google-cloud-secret-manager>=0.2.0,<2.0.0', 'google-cloud-spanner>=1.10.0,<2.0.0', 'google-cloud-speech>=0.36.3,<2.0.0', 'google-cloud-storage>=1.30,<2.0.0', 'google-cloud-tasks>=2.0.0', 'google-cloud-texttospeech>=0.4.0,<2.0.0', 'google-cloud-translate>=1.5.0,<2.0.0', 'google-cloud-videointelligence>=1.7.0,<2.0.0', 'google-cloud-vision>=0.35.2,<2.0.0', 'google-cloud-workflows>=0.1.0,<2.0.0', 'grpcio-gcp>=0.2.2', 'httpx', 'json-merge-patch>=0.2', 'looker-sdk>=22.2.0', 'pandas-gbq', pandas_requirement, 'sqlalchemy-bigquery>=1.2.1', ] grpc = [ # Google has very clear rules on what dependencies should be used. All the limits below # follow strict guidelines of Google Libraries as quoted here: # While this issue is open, dependents of google-api-core, google-cloud-core. and google-auth # should preserve >1, <3 pins on these packages. # https://github.com/googleapis/google-cloud-python/issues/10566 'google-auth>=1.0.0, <3.0.0', 'google-auth-httplib2>=0.0.1', 'grpcio>=1.15.0', ] hashicorp = [ 'hvac>=0.10', ] hdfs = [ 'snakebite-py3', 'hdfs[avro,dataframe,kerberos]>=2.0.4', ] hive = [ 'hmsclient>=0.1.0', 'pyhive[hive]>=0.6.0', # in case of Python 3.9 sasl library needs to be installed with version higher or equal than # 0.3.1 because only that version supports Python 3.9. For other Python version pyhive[hive] pulls # the sasl library anyway (and there sasl library version is not relevant) 'sasl>=0.3.1; python_version>="3.9"', 'thrift>=0.9.2', pandas_requirement, ] http = [ # The 2.26.0 release of requests got rid of the chardet LGPL mandatory dependency, allowing us to # release it as a requirement for airflow 'requests>=2.26.0', ] http_provider = [ 'apache-airflow-providers-http', ] influxdb = [ 'influxdb-client>=1.19.0', pandas_requirement, ] jdbc = [ 'jaydebeapi>=1.1.1', ] jenkins = [ 'python-jenkins>=1.0.0', ] jira = [ 'JIRA>1.0.7', ] kerberos = [ 'pykerberos>=1.1.13', 'requests_kerberos>=0.10.0', 'thrift_sasl>=0.2.0', ] kubernetes = [ 'cryptography>=2.0.0', # The Kubernetes API is known to introduce problems when upgraded to a MAJOR version. Airflow Core # Uses Kubernetes for Kubernetes executor, and we also know that Kubernetes Python client follows SemVer # (https://github.com/kubernetes-client/python#compatibility). This is a crucial component of Airflow # So we should limit it to the next MAJOR version and only deliberately bump the version when we # tested it, and we know it can be bumped. Bumping this version should also be connected with # limiting minimum airflow version supported in cncf.kubernetes provider, due to the # potential breaking changes in Airflow Core as well (kubernetes is added as extra, so Airflow # core is not hard-limited via install-requirements, only by extra). 'kubernetes>=21.7.0,<24', ] kylin = ['kylinpy>=2.6'] ldap = [ 'ldap3>=2.5.1', 'python-ldap', ] leveldb = ['plyvel; platform_machine != "aarch64"'] mongo = [ 'dnspython>=1.13.0', # pymongo 4.0.0 removes connection option `ssl_cert_reqs` which is used in providers-mongo/2.2.0 # TODO: Upgrade to pymongo 4.0.0+ 'pymongo>=3.6.0,<4.0.0', ] mssql = [ 'pymssql>=2.1.5; platform_machine != "aarch64"', ] mysql = [ 'mysql-connector-python>=8.0.11; platform_machine != "aarch64"', 'mysqlclient>=1.3.6; platform_machine != "aarch64"', ] neo4j = ['neo4j>=4.2.1'] odbc = [ 'pyodbc', ] opsgenie = [ 'opsgenie-sdk>=2.1.5', ] oracle = [ 'cx_Oracle>=5.1.2', ] pagerduty = [ 'pdpyras>=4.1.2', ] pandas = [ pandas_requirement, ] papermill = [ 'papermill[all]>=1.2.1', 'scrapbook[all]', ] password = [ 'bcrypt>=2.0.0', 'flask-bcrypt>=0.7.1', ] pinot = [ # pinotdb v0.1.1 may still work with older versions of Apache Pinot, but we've confirmed that it # causes a problem with newer versions. 'pinotdb>0.1.2', ] plexus = [ 'arrow>=0.16.0', ] postgres = [ 'psycopg2-binary>=2.7.4', ] presto = [ # The limit to Presto 0.8 for unknown reason # TODO: Remove the limit 'presto-python-client>=0.7.0,<0.8', pandas_requirement, ] psrp = [ 'pypsrp>=0.8', ] qubole = [ 'qds-sdk>=1.10.4', ] rabbitmq = [ 'amqp', ] redis = [ # Redis 4 introduced a number of changes that likely need testing including mixins in redis commands # as well as unquoting URLS with `urllib.parse.unquote`: # https://github.com/redis/redis-py/blob/master/CHANGES # TODO: upgrade to support redis package >=4 'redis~=3.2', ] salesforce = ['simple-salesforce>=1.0.0', 'tableauserverclient', pandas_requirement] samba = [ 'smbprotocol>=1.5.0', ] segment = [ 'analytics-python>=1.2.9', ] sendgrid = [ 'sendgrid>=6.0.0', ] sentry = [ 'blinker>=1.1', 'sentry-sdk>=0.8.0', ] singularity = ['spython>=0.0.56'] slack = [ 'slack_sdk>=3.0.0', ] snowflake = [ 'snowflake-connector-python>=2.4.1', 'snowflake-sqlalchemy>=1.1.0', ] spark = [ 'pyspark', ] ssh = [ 'paramiko>=2.6.0', 'pysftp>=0.2.9', 'sshtunnel>=0.3.2', ] statsd = [ 'statsd>=3.3.0', ] tableau = [ 'tableauserverclient', ] telegram = [ 'python-telegram-bot>=13.0', ] trino = [ 'trino>=0.301.0', pandas_requirement, ] vertica = [ 'vertica-python>=0.5.1', ] virtualenv = [ 'virtualenv', ] webhdfs = [ 'hdfs[avro,dataframe,kerberos]>=2.0.4', ] winrm = [ 'pywinrm>=0.4', ] yandex = [ 'yandexcloud>=0.146.0', ] zendesk = [ 'zenpy>=2.0.24', ] # End dependencies group # Mypy 0.900 and above ships only with stubs from stdlib so if we need other stubs, we need to install them # manually as `types-*`. See https://mypy.readthedocs.io/en/stable/running_mypy.html#missing-imports # for details. Wy want to install them explicitly because we want to eventually move to # mypyd which does not support installing the types dynamically with --install-types mypy_dependencies = [ # TODO: upgrade to newer versions of MyPy continuously as they are released 'mypy==0.910', 'types-boto', 'types-certifi', 'types-croniter', 'types-Deprecated', 'types-docutils', 'types-freezegun', 'types-paramiko', 'types-protobuf', 'types-python-dateutil', 'types-python-slugify', 'types-pytz', 'types-redis', 'types-requests', 'types-setuptools', 'types-termcolor', 'types-tabulate', 'types-toml', 'types-Markdown', 'types-PyMySQL', 'types-PyYAML', ] # Dependencies needed for development only devel_only = [ 'aws_xray_sdk', 'beautifulsoup4>=4.7.1', 'black', 'blinker', 'bowler', 'click>=8.0', 'coverage', 'filelock', 'flake8>=3.6.0', 'flake8-colors', 'flaky', 'freezegun', # Github3 version 3.1.2 requires PyJWT>=2.3.0 which clashes with Flask App Builder where PyJWT is <2.0.0 # Actually GitHub3.1.0 already introduced PyJWT>=2.3.0 but so far `pip` was able to resolve it without # getting into a long backtracking loop and figure out that github3 3.0.0 version is the right version # similarly limiting it to 3.1.2 causes pip not to enter the backtracking loop. Apparently when there # are 3 versions with PyJWT>=2.3.0 (3.1.0, 3.1.1 an 3.1.2) pip enters into backtrack loop and fails # to resolve that github3 3.0.0 is the right version to use. # This limitation could be removed if PyJWT limitation < 2.0.0 is dropped from FAB or when # pip resolution is improved to handle the case. The issue which describes this PIP behaviour # and hopefully allowing to improve it is tracked in https://github.com/pypa/pip/issues/10924 'github3.py<3.1.0', 'gitpython', 'ipdb', 'jira', 'jsondiff', 'mongomock', 'moto[glue]>=3.1.6', 'parameterized', 'paramiko', 'pipdeptree', 'pre-commit', 'pypsrp', 'pygithub', 'pysftp', # Pytest 7 has been released in February 2022 and we should attempt to upgrade and remove the limit # It contains a number of potential breaking changes but none of them looks breaking our use # https://docs.pytest.org/en/latest/changelog.html#pytest-7-0-0-2022-02-03 # TODO: upgrade it and remove the limit 'pytest~=6.0', 'pytest-asyncio', 'pytest-cov', 'pytest-instafail', # We should attempt to remove the limit when we upgrade Pytest # TODO: remove the limit when we upgrade pytest 'pytest-rerunfailures~=9.1', 'pytest-timeouts', 'pytest-xdist', 'python-jose', 'pywinrm', 'qds-sdk>=1.9.6', 'pytest-httpx', 'requests_mock', 'rich_click', 'semver', 'towncrier', 'twine', 'wheel', 'yamllint', ] devel = cgroups + devel_only + doc + kubernetes + mypy_dependencies + mysql + pandas + password devel_hadoop = devel + hdfs + hive + kerberos + presto + webhdfs # Dict of all providers which are part of the Apache Airflow repository together with their requirements PROVIDERS_REQUIREMENTS: Dict[str, List[str]] = { 'airbyte': http_provider, 'alibaba': alibaba, 'amazon': amazon, 'apache.beam': apache_beam, 'apache.cassandra': cassandra, 'apache.drill': drill, 'apache.druid': druid, 'apache.hdfs': hdfs, 'apache.hive': hive, 'apache.kylin': kylin, 'apache.livy': http_provider, 'apache.pig': [], 'apache.pinot': pinot, 'apache.spark': spark, 'apache.sqoop': [], 'arangodb': arangodb, 'asana': asana, 'celery': celery, 'cloudant': cloudant, 'cncf.kubernetes': kubernetes, 'databricks': databricks, 'datadog': datadog, 'dbt.cloud': http_provider, 'dingding': [], 'discord': [], 'docker': docker, 'elasticsearch': elasticsearch, 'exasol': exasol, 'facebook': facebook, 'ftp': [], 'github': github, 'google': google, 'grpc': grpc, 'hashicorp': hashicorp, 'http': http, 'imap': [], 'influxdb': influxdb, 'jdbc': jdbc, 'jenkins': jenkins, 'jira': jira, 'microsoft.azure': azure, 'microsoft.mssql': mssql, 'microsoft.psrp': psrp, 'microsoft.winrm': winrm, 'mongo': mongo, 'mysql': mysql, 'neo4j': neo4j, 'odbc': odbc, 'openfaas': [], 'opsgenie': opsgenie, 'oracle': oracle, 'pagerduty': pagerduty, 'papermill': papermill, 'plexus': plexus, 'postgres': postgres, 'presto': presto, 'qubole': qubole, 'redis': redis, 'salesforce': salesforce, 'samba': samba, 'segment': segment, 'sendgrid': sendgrid, 'sftp': ssh, 'singularity': singularity, 'slack': slack, 'snowflake': snowflake, 'sqlite': [], 'ssh': ssh, 'tableau': tableau, 'telegram': telegram, 'trino': trino, 'vertica': vertica, 'yandex': yandex, 'zendesk': zendesk, } # Those are all additional extras which do not have their own 'providers' # The 'apache.atlas' and 'apache.webhdfs' are extras that provide additional libraries # but they do not have separate providers (yet?), they are merely there to add extra libraries # That can be used in custom python/bash operators. ADDITIONAL_EXTRAS_REQUIREMENTS: Dict[str, List[str]] = { 'apache.atlas': atlas, 'apache.webhdfs': webhdfs, } # Those are extras that are extensions of the 'core' Airflow. They provide additional features # To airflow core. They do not have separate providers because they do not have any operators/hooks etc. CORE_EXTRAS_REQUIREMENTS: Dict[str, List[str]] = { 'async': async_packages, 'celery': celery, # also has provider, but it extends the core with the CeleryExecutor 'cgroups': cgroups, 'cncf.kubernetes': kubernetes, # also has provider, but it extends the core with the KubernetesExecutor 'dask': dask, 'deprecated_api': deprecated_api, 'github_enterprise': flask_appbuilder_authlib, 'google_auth': flask_appbuilder_authlib, 'kerberos': kerberos, 'ldap': ldap, 'leveldb': leveldb, 'pandas': pandas, 'password': password, 'rabbitmq': rabbitmq, 'sentry': sentry, 'statsd': statsd, 'virtualenv': virtualenv, } EXTRAS_REQUIREMENTS: Dict[str, List[str]] = deepcopy(CORE_EXTRAS_REQUIREMENTS) def add_extras_for_all_providers() -> None: """ Adds extras for all providers. By default all providers have the same extra name as provider id, for example 'apache.hive' extra has 'apache.hive' provider requirement. """ for provider_name, provider_requirement in PROVIDERS_REQUIREMENTS.items(): EXTRAS_REQUIREMENTS[provider_name] = provider_requirement def add_additional_extras() -> None: """Adds extras for all additional extras.""" for extra_name, extra_requirement in ADDITIONAL_EXTRAS_REQUIREMENTS.items(): EXTRAS_REQUIREMENTS[extra_name] = extra_requirement add_extras_for_all_providers() add_additional_extras() ############################################################################################################# # The whole section can be removed in Airflow 3.0 as those old aliases are deprecated in 2.* series ############################################################################################################# # Dictionary of aliases from 1.10 - deprecated in Airflow 2.* EXTRAS_DEPRECATED_ALIASES: Dict[str, str] = { 'atlas': 'apache.atlas', 'aws': 'amazon', 'azure': 'microsoft.azure', 'cassandra': 'apache.cassandra', 'crypto': '', # All crypto requirements are installation requirements of core Airflow 'druid': 'apache.druid', 'gcp': 'google', 'gcp_api': 'google', 'hdfs': 'apache.hdfs', 'hive': 'apache.hive', 'kubernetes': 'cncf.kubernetes', 'mssql': 'microsoft.mssql', 'pinot': 'apache.pinot', 'qds': 'qubole', 's3': 'amazon', 'spark': 'apache.spark', 'webhdfs': 'apache.webhdfs', 'winrm': 'microsoft.winrm', } EXTRAS_DEPRECATED_ALIASES_NOT_PROVIDERS: List[str] = [ "crypto", "webhdfs", ] def add_extras_for_all_deprecated_aliases() -> None: """ Add extras for all deprecated aliases. Requirements for those deprecated aliases are the same as the extras they are replaced with. The requirements are not copies - those are the same lists as for the new extras. This is intended. Thanks to that if the original extras are later extended with providers, aliases are extended as well. """ for alias, extra in EXTRAS_DEPRECATED_ALIASES.items(): requirements = EXTRAS_REQUIREMENTS.get(extra) if extra != '' else [] if requirements is None: raise Exception(f"The extra {extra} is missing for deprecated alias {alias}") EXTRAS_REQUIREMENTS[alias] = requirements def add_all_deprecated_provider_packages() -> None: """ For deprecated aliases that are providers, we will swap the providers requirements to instead be the provider itself. e.g. {"kubernetes": ["kubernetes>=3.0.0, <12.0.0", ...]} becomes {"kubernetes": ["apache-airflow-provider-cncf-kubernetes"]} """ for alias, provider in EXTRAS_DEPRECATED_ALIASES.items(): if alias in EXTRAS_DEPRECATED_ALIASES_NOT_PROVIDERS: continue replace_extra_requirement_with_provider_packages(alias, [provider]) add_extras_for_all_deprecated_aliases() ############################################################################################################# # End of deprecated section ############################################################################################################# # This is list of all providers. It's a shortcut for anyone who would like to easily get list of # All providers. It is used by pre-commits. ALL_PROVIDERS = list(PROVIDERS_REQUIREMENTS.keys()) ALL_DB_PROVIDERS = [ 'apache.cassandra', 'apache.drill', 'apache.druid', 'apache.hdfs', 'apache.hive', 'apache.pinot', 'arangodb', 'cloudant', 'databricks', 'exasol', 'influxdb', 'microsoft.mssql', 'mongo', 'mysql', 'neo4j', 'postgres', 'presto', 'trino', 'vertica', ] # Special requirements for all database-related providers. They are de-duplicated. all_dbs = list({req for db_provider in ALL_DB_PROVIDERS for req in PROVIDERS_REQUIREMENTS[db_provider]}) # Requirements for all "user" extras (no devel). They are de-duplicated. Note that we do not need # to separately add providers requirements - they have been already added as 'providers' extras above _all_requirements = list({req for extras_reqs in EXTRAS_REQUIREMENTS.values() for req in extras_reqs}) # All user extras here EXTRAS_REQUIREMENTS["all"] = _all_requirements # All db user extras here EXTRAS_REQUIREMENTS["all_dbs"] = all_dbs + pandas # This can be simplified to devel_hadoop + _all_requirements due to inclusions # but we keep it for explicit sake. We are de-duplicating it anyway. devel_all = list(set(_all_requirements + doc + devel + devel_hadoop)) # Those are packages excluded for "all" dependencies PACKAGES_EXCLUDED_FOR_ALL = [] PACKAGES_EXCLUDED_FOR_ALL.extend( [ 'snakebite', ] ) def is_package_excluded(package: str, exclusion_list: List[str]) -> bool: """ Checks if package should be excluded. :param package: package name (beginning of it) :param exclusion_list: list of excluded packages :return: true if package should be excluded """ return any(package.startswith(excluded_package) for excluded_package in exclusion_list) devel_all = [ package for package in devel_all if not is_package_excluded(package=package, exclusion_list=PACKAGES_EXCLUDED_FOR_ALL) ] devel_ci = devel_all # Those are extras that we have to add for development purposes # They can be use to install some predefined set of dependencies. EXTRAS_REQUIREMENTS["doc"] = doc EXTRAS_REQUIREMENTS["devel"] = devel # devel already includes doc EXTRAS_REQUIREMENTS["devel_hadoop"] = devel_hadoop # devel_hadoop already includes devel EXTRAS_REQUIREMENTS["devel_all"] = devel_all EXTRAS_REQUIREMENTS["devel_ci"] = devel_ci def sort_extras_requirements() -> Dict[str, List[str]]: """ The dictionary order remains when keys() are retrieved. Sort both: extras and list of dependencies to make it easier to analyse problems external packages will be first, then if providers are added they are added at the end of the lists. """ sorted_requirements = dict(sorted(EXTRAS_REQUIREMENTS.items())) for extra_list in sorted_requirements.values(): extra_list.sort() return sorted_requirements EXTRAS_REQUIREMENTS = sort_extras_requirements() # Those providers are pre-installed always when airflow is installed. # Those providers do not have dependency on airflow2.0 because that would lead to circular dependencies. # This is not a problem for PIP but some tools (pipdeptree) show those as a warning. PREINSTALLED_PROVIDERS = [ 'ftp', 'http', 'imap', 'sqlite', ] def get_provider_package_from_package_id(package_id: str) -> str: """ Builds the name of provider package out of the package id provided/ :param package_id: id of the package (like amazon or microsoft.azure) :return: full name of package in PyPI """ package_suffix = package_id.replace(".", "-") return f"apache-airflow-providers-{package_suffix}" def get_excluded_providers() -> List[str]: """Returns packages excluded for the current python version.""" return [] def get_all_provider_packages() -> str: """Returns all provider packages configured in setup.py""" excluded_providers = get_excluded_providers() return " ".join( get_provider_package_from_package_id(package) for package in PROVIDERS_REQUIREMENTS if package not in excluded_providers ) class AirflowDistribution(Distribution): """The setuptools.Distribution subclass with Airflow specific behaviour""" def __init__(self, attrs=None): super().__init__(attrs) self.install_requires = None def parse_config_files(self, *args, **kwargs) -> None: """ Ensure that when we have been asked to install providers from sources that we don't *also* try to install those providers from PyPI. Also we should make sure that in this case we copy provider.yaml files so that Providers manager can find package information. """ super().parse_config_files(*args, **kwargs) if os.getenv(INSTALL_PROVIDERS_FROM_SOURCES) == 'true': self.install_requires = [ req for req in self.install_requires if not req.startswith('apache-airflow-providers-') ] provider_yaml_files = glob.glob("airflow/providers/**/provider.yaml", recursive=True) for provider_yaml_file in provider_yaml_files: provider_relative_path = relpath(provider_yaml_file, os.path.join(my_dir, "airflow")) self.package_data['airflow'].append(provider_relative_path) else: self.install_requires.extend( [get_provider_package_from_package_id(package_id) for package_id in PREINSTALLED_PROVIDERS] ) def replace_extra_requirement_with_provider_packages(extra: str, providers: List[str]) -> None: """ Replaces extra requirement with provider package. The intention here is that when the provider is added as dependency of extra, there is no need to add the dependencies separately. This is not needed and even harmful, because in case of future versions of the provider, the requirements might change, so hard-coding requirements from the version that was available at the release time might cause dependency conflicts in the future. Say for example that you have salesforce provider with those deps: { 'salesforce': ['simple-salesforce>=1.0.0', 'tableauserverclient'] } Initially ['salesforce'] extra has those requirements and it works like that when you install it when INSTALL_PROVIDERS_FROM_SOURCES is set to `true` (during the development). However, when the production installation is used, The dependencies are changed: { 'salesforce': ['apache-airflow-providers-salesforce'] } And then, 'apache-airflow-providers-salesforce' package has those 'install_requires' dependencies: ['simple-salesforce>=1.0.0', 'tableauserverclient'] So transitively 'salesforce' extra has all the requirements it needs and in case the provider changes its dependencies, they will transitively change as well. In the constraint mechanism we save both - provider versions and it's dependencies version, which means that installation using constraints is repeatable. For K8s and Celery which are both "Core executors" and "Providers" we have to add the base dependencies to core as well, in order to mitigate problems where newer version of provider will have less strict limits. This should be done for both extras and their deprecated aliases. This is not a full protection however, the way extras work, this will not add "hard" limits for Airflow and the user who does not use constraints. :param extra: Name of the extra to add providers to :param providers: list of provider ids """ if extra in ['cncf.kubernetes', 'kubernetes', 'celery']: EXTRAS_REQUIREMENTS[extra].extend( [get_provider_package_from_package_id(package_name) for package_name in providers] ) else: EXTRAS_REQUIREMENTS[extra] = [ get_provider_package_from_package_id(package_name) for package_name in providers ] def add_provider_packages_to_extra_requirements(extra: str, providers: List[str]) -> None: """ Adds provider packages as requirements to extra. This is used to add provider packages as requirements to the "bulk" kind of extras. Those bulk extras do not have the detailed 'extra' requirements as initial values, so instead of replacing them (see previous function) we can extend them. :param extra: Name of the extra to add providers to :param providers: list of provider ids """ EXTRAS_REQUIREMENTS[extra].extend( [get_provider_package_from_package_id(package_name) for package_name in providers] ) def add_all_provider_packages() -> None: """ In case of regular installation (providers installed from packages), we should add extra dependencies to Airflow - to get the providers automatically installed when those extras are installed. For providers installed from sources we skip that step. That helps to test and install airflow with all packages in CI - for example when new providers are added, otherwise the installation would fail as the new provider is not yet in PyPI. """ for provider in ALL_PROVIDERS: replace_extra_requirement_with_provider_packages(provider, [provider]) add_provider_packages_to_extra_requirements("all", ALL_PROVIDERS) add_provider_packages_to_extra_requirements("devel_ci", ALL_PROVIDERS) add_provider_packages_to_extra_requirements("devel_all", ALL_PROVIDERS) add_provider_packages_to_extra_requirements("all_dbs", ALL_DB_PROVIDERS) add_provider_packages_to_extra_requirements( "devel_hadoop", ["apache.hdfs", "apache.hive", "presto", "trino"] ) add_all_deprecated_provider_packages() class Develop(develop_orig): """Forces removal of providers in editable mode.""" def run(self) -> None: # type: ignore self.announce('Installing in editable mode. Uninstalling provider packages!', level=log.INFO) # We need to run "python3 -m pip" because it might be that older PIP binary is in the path # And it results with an error when running pip directly (cannot import pip module) # also PIP does not have a stable API so we have to run subprocesses ¯\_(ツ)_/¯ try: installed_packages = ( subprocess.check_output(["python3", "-m", "pip", "freeze"]).decode().splitlines() ) airflow_provider_packages = [ package_line.split("=")[0] for package_line in installed_packages if package_line.startswith("apache-airflow-providers") ] self.announce(f'Uninstalling ${airflow_provider_packages}!', level=log.INFO) subprocess.check_call(["python3", "-m", "pip", "uninstall", "--yes", *airflow_provider_packages]) except subprocess.CalledProcessError as e: self.announce(f'Error when uninstalling airflow provider packages: {e}!', level=log.WARN) super().run() class Install(install_orig): """Forces installation of providers from sources in editable mode.""" def run(self) -> None: self.announce('Standard installation. Providers are installed from packages', level=log.INFO) super().run() def do_setup() -> None: """ Perform the Airflow package setup. Most values come from setup.cfg, only the dynamically calculated ones are passed to setup function call. See https://setuptools.readthedocs.io/en/latest/userguide/declarative_config.html """ setup_kwargs = {} def include_provider_namespace_packages_when_installing_from_sources() -> None: """ When installing providers from sources we install all namespace packages found below airflow, including airflow and provider packages, otherwise defaults from setup.cfg control this. The kwargs in setup() call override those that are specified in setup.cfg. """ if os.getenv(INSTALL_PROVIDERS_FROM_SOURCES) == 'true': setup_kwargs['packages'] = find_namespace_packages(include=['airflow*']) include_provider_namespace_packages_when_installing_from_sources() if os.getenv(INSTALL_PROVIDERS_FROM_SOURCES) == 'true': print("Installing providers from sources. Skip adding providers as dependencies") else: add_all_provider_packages() write_version() setup( distclass=AirflowDistribution, version=version, extras_require=EXTRAS_REQUIREMENTS, download_url=('https://archive.apache.org/dist/airflow/' + version), cmdclass={ 'extra_clean': CleanCommand, 'compile_assets': CompileAssets, 'list_extras': ListExtras, 'install': Install, # type: ignore 'develop': Develop, }, test_suite='setup.airflow_test_suite', **setup_kwargs, # type: ignore ) if __name__ == "__main__": do_setup() # comment
34.572873
110
0.669428
024796d43fb3318444b50d74f16942094bda2f6c
235
py
Python
src/fractal/world/fractum/placement/placement/analysis.py
jedhsu/fractal
97833ddc5063fae72352cf590738fef508c02f0c
[ "MIT" ]
null
null
null
src/fractal/world/fractum/placement/placement/analysis.py
jedhsu/fractal
97833ddc5063fae72352cf590738fef508c02f0c
[ "MIT" ]
null
null
null
src/fractal/world/fractum/placement/placement/analysis.py
jedhsu/fractal
97833ddc5063fae72352cf590738fef508c02f0c
[ "MIT" ]
null
null
null
from dataclasses import dataclass @dataclass class PlacementAnalysis(Placement): prior_probability: float # Prior probability as given by the orac energy: float # Cumulated Q-value for the action (Q = W/N) excites: int
26.111111
70
0.744681
93c15870bd3d644ee75092f5a428bdda4835f206
462
py
Python
Day 7/day_7.py
loveyourpassion/comm
8295a72557d928ccb9a9d37fad73692ea82f3035
[ "MIT" ]
149
2020-03-18T17:46:09.000Z
2022-03-17T09:30:18.000Z
Day 7/day_7.py
loveyourpassion/comm
8295a72557d928ccb9a9d37fad73692ea82f3035
[ "MIT" ]
2
2020-10-15T17:17:13.000Z
2021-04-30T10:34:52.000Z
Day 7/day_7.py
loveyourpassion/comm
8295a72557d928ccb9a9d37fad73692ea82f3035
[ "MIT" ]
90
2020-03-23T19:06:01.000Z
2022-03-10T11:08:04.000Z
class Animal(): name = 'Amy' noise = "Grunt" size = "Large" color = "Brown" hair = 'Covers body' def get_color(self): return self.color def make_noise(self): return self.noise dog = Animal() dog.make_noise() dog.size = "small" dog.color = "black" dog.hair = "hairless" class Dog(Animal): name = 'Jon' size = "small" color = "black" age = 19 jon = Dog() jon.color = 'white' jon.name = 'Jon Snow'
14.903226
25
0.571429
37a69527dd77246a5e343319211c833e9987164b
8,708
py
Python
main.py
JibbyJames/coursera-data-scraper
7b012576795e7724b2495ac51f3eb15dfbbdaae1
[ "Apache-2.0" ]
null
null
null
main.py
JibbyJames/coursera-data-scraper
7b012576795e7724b2495ac51f3eb15dfbbdaae1
[ "Apache-2.0" ]
null
null
null
main.py
JibbyJames/coursera-data-scraper
7b012576795e7724b2495ac51f3eb15dfbbdaae1
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- import json import time import urllib.request import pandas as pd import numpy as np import seaborn as sns from matplotlib import pyplot as plt def expand_list(df, list_column, new_column): lens_of_lists = df[list_column].apply(len) origin_rows = range(df.shape[0]) destination_rows = np.repeat(origin_rows, lens_of_lists) non_list_cols = ( [idx for idx, col in enumerate(df.columns) if col != list_column] ) expanded_df = df.iloc[destination_rows, non_list_cols].copy() expanded_df[new_column] = ( [item for items in df[list_column] for item in items] ) expanded_df.reset_index(inplace=True, drop=True) return expanded_df run_locally = True wait_length = 0.5 algolia_url = 'https://lua9b20g37-dsn.algolia.net/1/indexes/test_products?x-algolia-application-id=LUA9B20G37&x-algolia-api-key=dcc55281ffd7ba6f24c3a9b18288499b&hitsPerPage=1000&page=' product_pages = 4 ## Fetch the data ########################################################## if(run_locally): print(f"Reading courses from local file courses.json.") courses_df = pd.read_json('courses.json', orient='records') print(f"Reading courses from local file specializations.json.") specs_df = pd.read_json('specializations.json', orient='records') else: all_products_list = [] # Loop through each of the pages returned for the all products request for i in range(0, product_pages + 1): # Request data from algolia for current page with urllib.request.urlopen(f'{algolia_url}{i}') as url: print(f"Fetching coursera program data on page {i}.") page_data = json.loads(url.read().decode()) # Save page data to local json file. with open(f'all-products-{i}.json', 'w') as outfile: json.dump(page_data, outfile) # Merge all products data into single list. all_products_list = all_products_list + page_data['hits'] # Wait before scraping next data time.sleep(wait_length) # Convert raw products json data into datframe all_products_df = pd.DataFrame.from_dict(all_products_list) # Group Courses, and clean data before creating dict courses_df = all_products_df.loc[all_products_df['entityType'] == 'COURSE'].reset_index(drop=True) courses_df['id'] = courses_df.apply(lambda row: row['objectID'].replace('course~',''), axis=1) courses_df = courses_df.set_index('id') courses = courses_df.to_dict('index') # Group Specializations, and clean data before creating dict specs_df = all_products_df.loc[all_products_df['entityType'] == 'SPECIALIZATION'].reset_index(drop=True) specs_df['id'] = specs_df.apply(lambda row: row['objectID'].replace('s12n~',''), axis=1) specs_df = specs_df.set_index('id') specs = specs_df.to_dict('index') # Loop through all specializations to collect their courses loop_length = len(specs.keys()) for index, spec_id in enumerate(list(specs.keys())[:loop_length]): # Get specialization URL specs[spec_id]['courses'] = [] spec_row = specs[spec_id] slug = spec_row['objectUrl'].replace("/specializations/", "") print(f"[{index+1}/{loop_length}] - Fetching course data for \"{slug}\"") spec_url = f"https://www.coursera.org/api/onDemandSpecializations.v1?q=slug&slug={slug}&fields=courseIds,id" # Make a request to that URL with urllib.request.urlopen(spec_url) as url: # Parse the JSON response. spec_data = json.loads(url.read().decode()) course_ids = spec_data['elements'][0]['courseIds'] # Loop through each course for course_id in course_ids: # Check that we have a record of this course already from Algolia if course_id not in courses: print(f" - {course_id} - 404") else: # Initialize specs array for course if required. if 'specializations' not in courses[course_id].keys(): courses[course_id]['specializations'] = [] print(f" - {courses[course_id]['name']}") # Add Specialization to Course, and vice versa if spec_id not in courses[course_id]['specializations']: courses[course_id]['specializations'].append(spec_id) if course_id not in specs[spec_id]['courses']: specs[spec_id]['courses'].append(course_id) # Wait before scraping next data time.sleep(wait_length) # Convert back to DF and save to local JSON specs_df = pd.DataFrame.from_dict(specs, orient='index') specs_df.to_json('specializations.json') # Pricing Data for courses loop_length = len(courses.keys()) for index, course_id in enumerate(list(courses.keys())[:loop_length]): print(f"[{index+1}/{loop_length}] - Fetching price data for \"{courses[course_id]['name']}\"") courses[course_id]['price'] = 0 price_url = f"https://www.coursera.org/api/productPrices.v3/VerifiedCertificate~{course_id}~GBP~GB" try: with urllib.request.urlopen(price_url) as url: price_data = json.loads(url.read().decode()) courses[course_id]['price'] = price_data['elements'][0]['amount'] print(f'{courses[course_id]["name"]}: £{courses[course_id]["price"]}') except: print(f'{courses[course_id]["name"]}: ERROR - Not found') # Wait before scraping next data time.sleep(wait_length) # Convert back to DF and save to JSON courses_df = pd.DataFrame.from_dict(courses, orient='index') courses_df.to_json('courses.json') ## Aggregate metrics ########################################### # Add some fields for later use specs_df['partners_str'] = specs_df.apply(lambda x : 'Offered by ' + ' & '.join(x['partners']),axis=1) specs_df['specialization'] = specs_df['name'] + '\n' + specs_df['partners_str'] courses_df['partners_str'] = courses_df.apply(lambda x : 'Offered by ' + ' & '.join(x['partners']),axis=1) courses_df['course'] = courses_df['name'] + '\n' + courses_df['partners_str'] # Expand the lists we want to aggregate in the specializations table specs_df['courses'] = specs_df['courses'].apply(lambda d: d if isinstance(d, list) else []) specs_with_expanded_courses_df = expand_list(specs_df, 'courses', 'course_id') specs_with_expanded_partners_df = expand_list(specs_df, 'partners', 'partner_name') # Join to the courses dataframe for additional metrics and clean columns names. merged_specs_df = pd.merge(specs_with_expanded_courses_df, courses_df, left_on='course_id', right_index=True) aggd_specs_df = merged_specs_df.groupby('specialization', as_index=False).sum()[['specialization','avgLearningHours_y','price']] aggd_specs_df.rename(columns={'avgLearningHours_y': 'avgLearningHours', 'avgLearningHours_y': 'avgLearningHours'}, inplace=True) ## Plot some graphs ############################################ # Init Seaborn style sns.set(style="whitegrid") # What are some general stats on all specializations? fig, axes = plt.subplots(4, 1) sns.boxplot(x='enrollments', data=specs_df, ax=axes[0]) sns.boxplot(x='avgLearningHours', data=aggd_specs_df, ax=axes[1]) sns.boxplot(x='price', data=aggd_specs_df, ax=axes[2]) sns.boxplot(x='avgProductRating', data=specs_df, ax=axes[3]) # What are the most popular specializations? top_specs_enrollments = specs_df.nlargest(15,'enrollments') sns.barplot(x="enrollments", y="specialization", data=top_specs_enrollments) # What are the most popular courses? top_courses_enrollments = courses_df.nlargest(15,'enrollments') sns.barplot(x="enrollments", y="course", data=courses_df) # Are popular courses generally rated higher? (min number of enrollments) sns.scatterplot(x="enrollments", y="avgProductRating", data=specs_df) #courses_df.boxplot() # Do longer courses have fewer enrollments? # Scatter # Do more expensive courses have fewer enrollments? # Scatter # Is there an organisation that provides the best courses? # Does specialization duration have an impact on enrollments or reviews? # Does price? # What are the top ten courses by enrollments
39.944954
184
0.639757
d09da574941d23c9c605c085d32feed9a0aeff78
1,545
py
Python
src/compas_fab/utilities/filesystem.py
Kathrin3010/compas_fab
18230b70479ab57635b24832762c340e41102c10
[ "MIT" ]
1
2019-08-15T17:34:43.000Z
2019-08-15T17:34:43.000Z
src/compas_fab/utilities/filesystem.py
Kathrin3010/compas_fab
18230b70479ab57635b24832762c340e41102c10
[ "MIT" ]
3
2019-07-30T13:50:51.000Z
2019-07-30T14:27:27.000Z
src/compas_fab/utilities/filesystem.py
yijiangh/compas_fab
d4e8e630d4daeb8981200456f2ef6b6a09ac88a8
[ "MIT" ]
null
null
null
import os __all__ = [ 'list_files_in_directory' ] def list_files_in_directory(directory, fullpath=False, extensions=[]): """This function lists just the files in a directory, not sub-directories. Args: directory (str): the directory to search for files. fullpath (:obj:`bool`, optional): specifies if the returned list of strings is with the full path. Defaults to False. extensions (:obj:`list` of :obj:`str`, optional): a list of allowed extensions, e.g. ["jpg", "png"] if you just want to list images. Defaults to empty list. Returns: files (:obj:`list` of :obj:`str`): A list of files as string if files exist, or empty list. """ directory = os.path.abspath(directory) files = [] extensions = [".%s" % ext for ext in extensions if ext[0] != "."] for item in os.listdir(directory): item_fullpath = os.path.join(directory, item) if os.path.isfile(item_fullpath): if len(extensions): found = reduce(lambda x, y: x or y, [item.endswith(ext) for ext in extensions]) if not found: continue if fullpath: files.append(item_fullpath) else: files.append(item) return files if __name__ == "__main__": path = os.path.join(os.path.dirname(__file__), "..", "robots", "ur", "ur10", "model") os.listdir(path) print(list_files_in_directory(path, fullpath=True, extensions=["obj"]))
34.333333
95
0.598058
def68f6235f4a2b14d62ec0cc6cca1c36cde911a
13,973
py
Python
highway_env/road/road.py
ma-rapp/highway-env
d5ce0c38a615b9e5a111bcaf7183045265cbd190
[ "MIT" ]
1
2021-07-05T09:14:39.000Z
2021-07-05T09:14:39.000Z
highway_env/road/road.py
Derekabc/highway-env
f26387926be88cf1f9e2e99a9ab99439687d0fd8
[ "MIT" ]
null
null
null
highway_env/road/road.py
Derekabc/highway-env
f26387926be88cf1f9e2e99a9ab99439687d0fd8
[ "MIT" ]
1
2020-11-03T01:10:54.000Z
2020-11-03T01:10:54.000Z
import numpy as np import pandas as pd import logging from typing import List, Tuple, Dict, TYPE_CHECKING, Optional from highway_env.road.lane import LineType, StraightLane, AbstractLane from highway_env.road.objects import Landmark if TYPE_CHECKING: from highway_env.vehicle import kinematics from highway_env.road import objects logger = logging.getLogger(__name__) LaneIndex = Tuple[str, str, int] Route = List[LaneIndex] class RoadNetwork(object): graph: Dict[str, Dict[str, List[AbstractLane]]] def __init__(self): self.graph = {} def add_lane(self, _from: str, _to: str, lane: AbstractLane) -> None: """ A lane is encoded as an edge in the road network. :param _from: the node at which the lane starts. :param _to: the node at which the lane ends. :param AbstractLane lane: the lane geometry. """ if _from not in self.graph: self.graph[_from] = {} if _to not in self.graph[_from]: self.graph[_from][_to] = [] self.graph[_from][_to].append(lane) def get_lane(self, index: LaneIndex) -> AbstractLane: """ Get the lane geometry corresponding to a given index in the road network. :param index: a tuple (origin node, destination node, lane id on the road). :return: the corresponding lane geometry. """ _from, _to, _id = index if _id is None and len(self.graph[_from][_to]) == 1: _id = 0 return self.graph[_from][_to][_id] def get_closest_lane_index(self, position: np.ndarray) -> LaneIndex: """ Get the index of the lane closest to a world position. :param position: a world position [m]. :return: the index of the closest lane. """ indexes, distances = [], [] for _from, to_dict in self.graph.items(): for _to, lanes in to_dict.items(): for _id, l in enumerate(lanes): distances.append(l.distance(position)) indexes.append((_from, _to, _id)) return indexes[int(np.argmin(distances))] def next_lane(self, current_index: LaneIndex, route: Route = None, position: np.ndarray = None, np_random: np.random.RandomState = np.random) -> LaneIndex: """ Get the index of the next lane that should be followed after finishing the current lane. - If a plan is available and matches with current lane, follow it. - Else, pick next road randomly. - If it has the same number of lanes as current road, stay in the same lane. - Else, pick next road's closest lane. :param current_index: the index of the current lane. :param route: the planned route, if any. :param position: the vehicle position. :param np_random: a source of randomness. :return: the index of the next lane to be followed when current lane is finished. """ _from, _to, _id = current_index next_to = None # Pick next road according to planned route if route: if route[0][:2] == current_index[:2]: # We just finished the first step of the route, drop it. route.pop(0) if route and route[0][0] == _to: # Next road in route is starting at the end of current road. _, next_to, _ = route[0] elif route: logger.warning("Route {} does not start after current road {}.".format(route[0], current_index)) # Randomly pick next road if not next_to: try: next_to = list(self.graph[_to].keys())[np_random.randint(len(self.graph[_to]))] except KeyError: # logger.warning("End of lane reached.") return current_index # If next road has same number of lane, stay on the same lane if len(self.graph[_from][_to]) == len(self.graph[_to][next_to]): next_id = _id # Else, pick closest lane else: lanes = range(len(self.graph[_to][next_to])) next_id = min(lanes, key=lambda l: self.get_lane((_to, next_to, l)).distance(position)) return _to, next_to, next_id def bfs_paths(self, start: str, goal: str) -> List[List[str]]: """ Breadth-first search of all routes from start to goal. :param start: starting node :param goal: goal node :return: list of paths from start to goal. """ queue = [(start, [start])] while queue: (node, path) = queue.pop(0) if node not in self.graph: yield [] for _next in set(self.graph[node].keys()) - set(path): if _next == goal: yield path + [_next] elif _next in self.graph: queue.append((_next, path + [_next])) def shortest_path(self, start: str, goal: str) -> List[str]: """ Breadth-first search of shortest path from start to goal. :param start: starting node :param goal: goal node :return: shortest path from start to goal. """ return next(self.bfs_paths(start, goal), []) def all_side_lanes(self, lane_index: LaneIndex) -> List[LaneIndex]: """ :param lane_index: the index of a lane. :return: all lanes belonging to the same road. """ return [(lane_index[0], lane_index[1], i) for i in range(len(self.graph[lane_index[0]][lane_index[1]]))] def side_lanes(self, lane_index: LaneIndex) -> List[LaneIndex]: """ :param lane_index: the index of a lane. :return: indexes of lanes next to a an input lane, to its right or left. """ _from, _to, _id = lane_index lanes = [] if _id > 0: lanes.append((_from, _to, _id - 1)) if _id < len(self.graph[_from][_to]) - 1: lanes.append((_from, _to, _id + 1)) return lanes @staticmethod def is_same_road(lane_index_1: LaneIndex, lane_index_2: LaneIndex, same_lane: bool = False) -> bool: """Is lane 1 in the same road as lane 2?""" return lane_index_1[:2] == lane_index_2[:2] and (not same_lane or lane_index_1[2] == lane_index_2[2]) @staticmethod def is_leading_to_road(lane_index_1: LaneIndex, lane_index_2: LaneIndex, same_lane: bool = False) -> bool: """Is lane 1 leading to of lane 2?""" return lane_index_1[1] == lane_index_2[0] and (not same_lane or lane_index_1[2] == lane_index_2[2]) def is_connected_road(self, lane_index_1: LaneIndex, lane_index_2: LaneIndex, route: Route = None, same_lane: bool = False, depth: int = 0) -> bool: """ Is the lane 2 leading to a road within lane 1's route? Vehicles on these lanes must be considered for collisions. :param lane_index_1: origin lane :param lane_index_2: target lane :param route: route from origin lane, if any :param same_lane: compare lane id :param depth: search depth from lane 1 along its route :return: whether the roads are connected """ if RoadNetwork.is_same_road(lane_index_2, lane_index_1, same_lane) \ or RoadNetwork.is_leading_to_road(lane_index_2, lane_index_1, same_lane): return True if depth > 0: if route and route[0][:2] == lane_index_1[:2]: # Route is starting at current road, skip it return self.is_connected_road(lane_index_1, lane_index_2, route[1:], same_lane, depth) elif route and route[0][0] == lane_index_1[1]: # Route is continuing from current road, follow it return self.is_connected_road(route[0], lane_index_2, route[1:], same_lane, depth - 1) else: # Recursively search all roads at intersection _from, _to, _id = lane_index_1 return any([self.is_connected_road((_to, l1_to, _id), lane_index_2, route, same_lane, depth - 1) for l1_to in self.graph.get(_to, {}).keys()]) return False def lanes_list(self) -> List[AbstractLane]: return [lane for to in self.graph.values() for ids in to.values() for lane in ids] @staticmethod def straight_road_network(lanes: int = 4, length: float = 10000, angle: float = 0) -> 'RoadNetwork': net = RoadNetwork() for lane in range(lanes): origin = np.array([0, lane * StraightLane.DEFAULT_WIDTH]) end = np.array([length, lane * StraightLane.DEFAULT_WIDTH]) rotation = np.array([[np.cos(angle), np.sin(angle)], [-np.sin(angle), np.cos(angle)]]) origin = rotation @ origin end = rotation @ end line_types = [LineType.CONTINUOUS_LINE if lane == 0 else LineType.STRIPED, LineType.CONTINUOUS_LINE if lane == lanes - 1 else LineType.NONE] net.add_lane("0", "1", StraightLane(origin, end, line_types=line_types)) return net def position_heading_along_route(self, route: Route, longitudinal: float, lateral: float) \ -> Tuple[np.ndarray, float]: """ Get the absolute position and heading along a route composed of several lanes at some local coordinates. :param route: a planned route, list of lane indexes :param longitudinal: longitudinal position :param lateral: : lateral position :return: position, heading """ while len(route) > 1 and longitudinal > self.get_lane(route[0]).length: longitudinal -= self.get_lane(route[0]).length route = route[1:] return self.get_lane(route[0]).position(longitudinal, lateral), self.get_lane(route[0]).heading_at(longitudinal) class Road(object): """A road is a set of lanes, and a set of vehicles driving on these lanes.""" def __init__(self, network: RoadNetwork = None, vehicles: List['kinematics.Vehicle'] = None, road_objects: List['objects.RoadObject'] = None, np_random: np.random.RandomState = None, record_history: bool = False) -> None: """ New road. :param network: the road network describing the lanes :param vehicles: the vehicles driving on the road :param road_objects: the objects on the road including obstacles and landmarks :param np.random.RandomState np_random: a random number generator for vehicle behaviour :param record_history: whether the recent trajectories of vehicles should be recorded for display """ self.network = network self.vehicles = vehicles or [] self.objects = road_objects or [] self.np_random = np_random if np_random else np.random.RandomState() self.record_history = record_history def close_vehicles_to(self, vehicle: 'kinematics.Vehicle', distance: float, count: int = None, see_behind: bool = True) -> object: vehicles = [v for v in self.vehicles if np.linalg.norm(v.position - vehicle.position) < distance and v is not vehicle and (see_behind or -2 * vehicle.LENGTH < vehicle.lane_distance_to(v))] vehicles = sorted(vehicles, key=lambda v: abs(vehicle.lane_distance_to(v))) if count: vehicles = vehicles[:count] return vehicles def act(self) -> None: """Decide the actions of each entity on the road.""" for vehicle in self.vehicles: vehicle.act() def step(self, dt: float) -> None: """ Step the dynamics of each entity on the road. :param dt: timestep [s] """ for vehicle in self.vehicles: vehicle.step(dt) for vehicle in self.vehicles: for other in self.vehicles: vehicle.check_collision(other) for other in self.objects: vehicle.check_collision(other) def neighbour_vehicles(self, vehicle: 'kinematics.Vehicle', lane_index: LaneIndex = None) \ -> Tuple[Optional['kinematics.Vehicle'], Optional['kinematics.Vehicle']]: """ Find the preceding and following vehicles of a given vehicle. :param vehicle: the vehicle whose neighbours must be found :param lane_index: the lane on which to look for preceding and following vehicles. It doesn't have to be the current vehicle lane but can also be another lane, in which case the vehicle is projected on it considering its local coordinates in the lane. :return: its preceding vehicle, its following vehicle """ lane_index = lane_index or vehicle.lane_index if not lane_index: return None, None lane = self.network.get_lane(lane_index) s = self.network.get_lane(lane_index).local_coordinates(vehicle.position)[0] s_front = s_rear = None v_front = v_rear = None for v in self.vehicles + self.objects: if v is not vehicle and not isinstance(v, Landmark): # self.network.is_connected_road(v.lane_index, # lane_index, same_lane=True): s_v, lat_v = lane.local_coordinates(v.position) if not lane.on_lane(v.position, s_v, lat_v, margin=1): continue if s <= s_v and (s_front is None or s_v <= s_front): s_front = s_v v_front = v if s_v < s and (s_rear is None or s_v > s_rear): s_rear = s_v v_rear = v return v_front, v_rear def __repr__(self): return self.vehicles.__repr__()
43.39441
120
0.600945
2be9b52c7ac0476096392703b38a249caa45d610
61
py
Python
src/ralph/lib/table/__init__.py
angry-tony/cmdb-ralph
eb2ad2212a133025b698eb48e379c0bfe14cace0
[ "Apache-2.0" ]
null
null
null
src/ralph/lib/table/__init__.py
angry-tony/cmdb-ralph
eb2ad2212a133025b698eb48e379c0bfe14cace0
[ "Apache-2.0" ]
null
null
null
src/ralph/lib/table/__init__.py
angry-tony/cmdb-ralph
eb2ad2212a133025b698eb48e379c0bfe14cace0
[ "Apache-2.0" ]
null
null
null
from ralph.lib.table.table import Table __all__ = ['Table']
15.25
39
0.737705
82ec43434d3779f29f8f0596258d56a540a6011d
2,512
py
Python
Libraries/Python/CommonEnvironment/v1.0/CommonEnvironment/TypeInfo/FundamentalTypes/Serialization/UnitTests/JsonLikeSerialization_UnitTest.py
davidbrownell/Common_Environment
4015872aeac8d5da30a6aa7940e1035a6aa6a75d
[ "BSL-1.0" ]
1
2017-04-25T13:15:10.000Z
2017-04-25T13:15:10.000Z
Libraries/Python/CommonEnvironment/v1.0/CommonEnvironment/TypeInfo/FundamentalTypes/Serialization/UnitTests/JsonLikeSerialization_UnitTest.py
davidbrownell/Common_Environment
4015872aeac8d5da30a6aa7940e1035a6aa6a75d
[ "BSL-1.0" ]
null
null
null
Libraries/Python/CommonEnvironment/v1.0/CommonEnvironment/TypeInfo/FundamentalTypes/Serialization/UnitTests/JsonLikeSerialization_UnitTest.py
davidbrownell/Common_Environment
4015872aeac8d5da30a6aa7940e1035a6aa6a75d
[ "BSL-1.0" ]
null
null
null
# ---------------------------------------------------------------------- # | # | JsonLikeSerialization_UnitTest.py # | # | David Brownell <db@DavidBrownell.com> # | 2016-09-06 17:31:15 # | # ---------------------------------------------------------------------- # | # | Copyright David Brownell 2016-18. # | Distributed under the Boost Software License, Version 1.0. # | (See accompanying file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) # | # ---------------------------------------------------------------------- import datetime import os import sys import unittest from CommonEnvironment import Package # ---------------------------------------------------------------------- _script_fullpath = os.path.abspath(__file__) if "python" in sys.executable.lower() else sys.executable _script_dir, _script_name = os.path.split(_script_fullpath) # ---------------------------------------------------------------------- with Package.NameInfo(__package__) as ni: __package__ = ni.created from ..JsonLikeSerialization import * from ... import * __package__ = ni.original # ---------------------------------------------------------------------- class UnitTest(unittest.TestCase): # ---------------------------------------------------------------------- def test_SerializeItem(self): self.assertEqual(JsonLikeSerialization.SerializeItem(BoolTypeInfo(), True), True) self.assertEqual(JsonLikeSerialization.SerializeItem(FloatTypeInfo(), 1.0), 1.0) self.assertEqual(JsonLikeSerialization.SerializeItem(IntTypeInfo(), 100), 100) self.assertEqual(JsonLikeSerialization.SerializeItem(DurationTypeInfo(), datetime.timedelta(seconds=130)), "0:02:10.000000") # ---------------------------------------------------------------------- def test_DeserializeItem(self): self.assertEqual(JsonLikeSerialization.DeserializeItem(BoolTypeInfo(), True), True) self.assertEqual(JsonLikeSerialization.DeserializeItem(FloatTypeInfo(), 1.0), 1.0) self.assertEqual(JsonLikeSerialization.DeserializeItem(IntTypeInfo(), 100), 100) self.assertEqual(JsonLikeSerialization.DeserializeItem(DurationTypeInfo(), "0:02:10.0"), datetime.timedelta(seconds=130)) # --------------------------------------------------------------------------- if __name__ == "__main__": try: sys.exit(unittest.main(verbosity=2)) except KeyboardInterrupt: pass
44.857143
133
0.52508
0d8219d2d4ddf5daacb13d3536d21eb28b1bae58
12,928
py
Python
SARSA_Agent.py
GrayKS3248/RL_Agents
dc84321b18131b811f39bc5491f4714e3554d610
[ "MIT" ]
null
null
null
SARSA_Agent.py
GrayKS3248/RL_Agents
dc84321b18131b811f39bc5491f4714e3554d610
[ "MIT" ]
null
null
null
SARSA_Agent.py
GrayKS3248/RL_Agents
dc84321b18131b811f39bc5491f4714e3554d610
[ "MIT" ]
null
null
null
""" Created on Tuesday Sep 15 10:56:33 CST 2020 @author: Grayson Schaer """ import numpy as np import random class SARSA_Agent(): # Agent constructor # @param n_s - integer size of the state space # @param n_a - integer size of the action space # @param n_rows - Size of the state space in the x direction # @param n_cols - Size of the state space in the y direction # @param alpha - learning rate # @param gamma - discount ratio # @param epsilon - elpsilon-greedy action choice parameter def __init__(self, n_s, n_a, n_rows, n_cols, alpha, gamma, epsilon): # Sets the size of the state space self.n_s = n_s # Sets the size of the action space self.n_a = n_a # Sets the size of the x direction in the state space self.n_rows = n_rows # Sets the size of the y direction in the state space self.n_cols = n_cols # Defines the learning rate for the agent self.alpha = alpha # Defines the discounting rate defined by the problem definition self.gamma = gamma # Defines the greedy ratio for exploration - exploitation (epsilon-greedy) self.epsilon = epsilon # Initializes estimated Value function (updated by TD(0)) self.V = [0.0]*self.n_s # Initializes estimated Quality function (updated by SARSA algorithm) self.Q = np.zeros((self.n_s, self.n_a)) # Initializes policy (deterministic based on Quality function) self.p = np.zeros((self.n_s, self.n_a)) for i in range(self.n_s): self.p[i][np.argmax(self.Q[i])] = 1.0 # Defines the variables used in the log self.r_tot = 0 self.r_tot_discount = 0 self.curr_step = 0 # Defines the variables used in the logbook self.entry_number = 1 self.highest_r_tot = -1 self.last_episode_last_index = -1 # Creates a log that tracks learning during a single episode set # @entry s - the state at each iteration step # @entry a - the action taken at each iteration step # @entry r - the reward given at each iteration step # @entry r_tot - the sum of all rewards given up to the current iteration step # @entry r_tot_discount - the sum of all the discounted rewards given up to the current iteration step # @entry avg_value - the average of the value function at each iteration step # @curr_step - the iteration step at which all other values are measured self.log = { 's': [], 'a': [], 'r': [], 'r_tot': [], 'r_tot_discount': [], 'avg_value': [], } # Creates a book that tracks results from previous episode sets # @entry logs - records each log for each set of episodes run by an agent # @entry avg_Q - tracks the average Quality function generated by each agent # @entry avg_V - tracks the average Value function generated by each agent # @entry avg_p - tracks the average policy function generated by each agent # @entry alpha - learning rate of episode set # @entry gamma - discount factor of episode set # @entry epsilon - exploration rate of episode set self.logbook = { 'best_s': [], 'best_a': [], 'best_r': [], 'r_tot_avg': 0, 'r_tot_discount_avg': 0, 'avg_val_avg': 0, 'avg_Q': 0, 'avg_V': 0, 'avg_p': 0, 'alpha': [], 'gamma': [], 'epsilon': [], } # Public getter for the estimated value function # @return estimated value function in planar state space form def get_V(self): # Init planar representation of the Value function planar_V = np.zeros((self.n_rows, self.n_cols)) # Assign each cell in planar_V its associated Value function output index = 0 for i in range(self.n_rows): for j in range(self.n_cols): planar_V[i][j] = self.V[index] index += 1 # Return the pretty version of the Value function return planar_V # Public getter for the current policy # @return current policy in planar state space form def get_p(self): # Init planar representation of the policy function planar_p = np.zeros((self.n_rows, self.n_cols)) # Get best policy data self.update_p() # Assign each cell in planar_p its associated action based on the policy, action_min, and action_space index = 0 for i in range(self.n_rows): for j in range(self.n_cols): action_index = np.argmax(self.p[index]) planar_p[i][j] = action_index index += 1 # Return the pretty representation of the policy return planar_p # Updates the best trajectory at the end of each episode def end_episode(self): # Update the best trajectory log if self.log['r_tot'][-1] > self.highest_r_tot: self.highest_r_tot = self.log['r_tot'][-1] self.logbook['best_s'] = self.log['s'][(self.last_episode_last_index + 1):(len(self.log['r_tot']) - 1)] self.logbook['best_a'] = self.log['a'][(self.last_episode_last_index + 1):(len(self.log['r_tot']) - 1)] self.logbook['best_r'] = self.log['r'][(self.last_episode_last_index + 1):(len(self.log['r_tot']) - 1)] self.last_episode_last_index = len(self.log['r_tot']) - 1 # Archives the log from the current episode to the log book. Resets agent to initial conditions # @param alpha - learning rate # @param gamma - discount ratio # @param epsilon - elpsilon-greedy action choice parameter def terminate_agent(self): # Update the average learning curves n = self.entry_number self.entry_number += 1 r_tot_avg = (1/n) * ((n - 1) * self.logbook['r_tot_avg'] + np.asarray(self.log['r_tot'])) r_tot_discount_avg = (1/n) * ((n - 1) * self.logbook['r_tot_discount_avg'] + np.asarray(self.log['r_tot_discount'])) avg_val_avg = (1/n) * ((n - 1) * self.logbook['avg_val_avg'] + np.asarray(self.log['avg_value'])) avg_Q = (1/n) * ((n - 1) * self.logbook['avg_Q'] + self.Q) avg_V = (1/n) * ((n - 1) * self.logbook['avg_V'] + self.get_V()) avg_p = (1/n) * ((n - 1) * self.logbook['avg_p'] + self.get_p()) # In the case of the first set, the average value is just the current value if n==1: avg_Q = self.Q avg_V = self.get_V() avg_p = self.get_p() r_tot_avg = self.log['r_tot'] r_tot_discount_avg = self.log['r_tot_discount'] avg_val_avg = self.log['avg_value'] # Input the average function values self.logbook['r_tot_avg'] = r_tot_avg self.logbook['r_tot_discount_avg'] = r_tot_discount_avg self.logbook['avg_val_avg'] = avg_val_avg self.logbook['avg_Q'] = avg_Q self.logbook['avg_V'] = avg_V self.logbook['avg_p'] = avg_p # Input the agent parameters self.logbook['alpha'].append(self.alpha) self.logbook['gamma'].append(self.gamma) self.logbook['epsilon'].append(self.epsilon) # Reset the log self.log = { 's': [], 'a': [], 'r': [], 'r_tot': [], 'r_tot_discount': [], 'avg_value': [], } # Initializes estimated Value function (updated by TD(0)) self.V = [0.0]*self.n_s # Initializes estimated Quality function (updated by SARSA algorithm) self.Q = np.zeros((self.n_s, self.n_a)) # Initializes policy (deterministic based on Quality function) self.p = np.zeros((self.n_s, self.n_a)) for i in range(self.n_s): self.p[i][np.argmax(self.Q[i])] = 1.0 # Defines the variables used in the log self.r_tot = 0 self.r_tot_discount = 0 self.curr_step = 0 # Updates the quality function estimate based on the Q-learning algorithm # @param s1 - The state before an action is taken # @param a1 - The action taken in the second state # @param s2 - The state after an action is taken # @param r - The reward returned traveling from s1 to s2 # @return Current estimate of quality function def update_Q(self, s1, a1, s2, a2, r): # Implementation of SARSA algorithm self.Q[s1][a1] = self.Q[s1][a1] + self.alpha*(r + self.gamma*self.Q[s2][a2] - self.Q[s1][a1]) # Update the current Value function estimate self.update_V(s1, s2, r) #Update the log self.r_tot = self.r_tot + r self.r_tot_discount = self.r_tot_discount + (self.gamma ** (self.curr_step)) * r avg_value = sum(self.V) / len(self.V) self.log['s'].append(s1) self.log['a'].append(a1) self.log['r'].append(r) self.log['r_tot'].append(self.r_tot) self.log['r_tot_discount'].append(self.r_tot_discount) self.log['avg_value'].append(avg_value) self.curr_step = self.curr_step + 1 return self.Q # Updates the policy function based on the Quality function # @return Current policy def update_p(self): # Update the deterministic policy function based on the new Quality function self.p = np.zeros((self.n_s, self.n_a)) for i in range(self.n_s): self.p[i][np.argmax(self.Q[i])] = 1.0 return self.p # Updates the value function estimate based on the TD(0) algorithm # @param s1 - The state before an action is taken # @param s2 - The state after an action is taken # @param r - The reward returned traveling from s1 to s2 # @return Current estimate of value function def update_V(self, s1, s2, r): # Implementation of TD(0) algorithm self.V[s1] = self.V[s1] + self.alpha * (r + self.gamma * self.V[s2] - self.V[s1]) return self.V # Ask for an action based on the current quality fnc, epsilon-greedy parameters, and the current state # @param s - The current state # @return - The calculated epsilon-greedy action def get_action(self, s): # Choose a random variable to determine action choice = random.random() # Init action to impossible value # the variable a necesarily must be updated, so it is placed outside of the if loop so that it can be returned # i.e., I don't know how scope works in Python so I want to make sure a is scoped to the proper field # but I also want to make sure if it isn't selected properly the env throws an error. # This is because I am too lazy to do error checks here a = -1 # If the choice variable is smaller than epsilon, take a random action in the action space if (choice <= self.epsilon): a = random.randint(0, self.n_a-1) # Otherwise, choose the best action based on the current Q function else: # Get the argmax a from Q a = np.argmax(self.Q[s]) # Checks if any quality fnc outputs are the same identical = np.zeros(self.n_a) for i in range(self.n_a): if (self.Q[s][i] == self.Q[s][a]): identical[i] = 1 # If there are identities, randomly sample from the collection of identies if sum(identical) != 1: # Chose a random index of one of the identical actions ident_a_index = random.randint(0, sum(identical) - 1) # Convert the identical array from truth array to identical action index+1 array identical = np.matmul(identical,np.diag(range(1,self.n_a + 1))) # Remove all indices that are zero (ie actions do not have identical outcomes) identical = identical[identical != 0] # Convert the identical array from identical action index+1 array to identical action index array identical -= 1 # Select the random sampled action from the space of all identical outcome actions a = int(identical[ident_a_index]) # Return the selected action return a
41.569132
124
0.578125
a5e7dd2e876c6c04295a7a2a406f14c0bea3f9c2
3,568
py
Python
installSynApps/view_model/new_config_screen.py
NSLS-II/installSynApps
0f8e978939715bbba1a064ead3044fa36215cb09
[ "BSD-3-Clause" ]
3
2019-10-16T20:57:31.000Z
2019-10-24T15:30:01.000Z
installSynApps/view_model/new_config_screen.py
jwlodek/installSynApps
d1fe1703cdee71be9ee34f62c85ee527d1f9ebcc
[ "BSD-3-Clause" ]
62
2019-02-02T22:51:12.000Z
2020-12-14T20:32:17.000Z
installSynApps/view_model/new_config_screen.py
epicsNSLS2-deploy/installSynApps
e39307fffb071d25031b4988285f5010e9e2bc29
[ "BSD-3-Clause" ]
3
2019-02-13T20:21:03.000Z
2019-11-25T20:26:34.000Z
"""Module containing view model for creating new configurations """ # Tkinter imports import tkinter as tk from tkinter import Button, Label, Toplevel, Frame, BooleanVar, Checkbutton from tkinter import GROOVE, Text, END, INSERT from tkinter import messagebox from tkinter import filedialog from tkinter import font as tkFont import tkinter.scrolledtext as ScrolledText # Standard lib imports import os class NewConfigGUI: """Class for a window that allows editing of loaded macros. Attributes ---------- root : Tk Main Tk root window master : TopLevel New window smallFont : ttkFont Smaller font size largeFont : ttkFont larger font size viewFrame : Frame main container frame config_type : IntVar selector for which config base to use config_types : dict of int->str maps config_type to string dir_box : Text Textfield for target directory update_tags_var : booleanVar variable that stores whether to auto-update tags update_tags_button : checkbutton toggles update_tags_var """ def __init__(self, root): """Initializer for NewConfigGUI """ self.root = root self.master = Toplevel() self.master.title('New Install Config') self.master.resizable(False, False) self.smallFont = tkFont.Font(family = "Helvetica", size = 10) self.largeFont = tkFont.Font(family = "Helvetica", size = 14) self.viewFrame = Frame(self.master, relief = GROOVE, padx = 10, pady = 10) self.viewFrame.pack() Label(self.viewFrame, text='Install Location:').grid(row=1, column=0, pady=5) Button(self.viewFrame, text='Browse', command=self.selectInstallLoc).grid(row=1, column=3, padx=5, pady=5) self.dir_box = Text(self.viewFrame, height=1, width=45, padx=3, pady=3) self.dir_box.grid(row=1, column=1, columnspan=2) Label(self.viewFrame, text='').grid(row=4) self.update_tags_var = BooleanVar() self.update_tags_var.set(True) self.update_tags_button = Checkbutton(self.viewFrame, text='Auto-Update Tags', onvalue=True, offvalue=False, variable=self.update_tags_var) self.update_tags_button.grid(row=4, column=0, padx=3, pady=3) Button(self.viewFrame, text='Create', command = self.applyChanges, width=12).grid(row = 4, column = 2, columnspan = 1, padx = 5, pady = 5) Button(self.viewFrame, text='Cancel', command = self.cancel, width=12).grid(row = 4, column = 3, columnspan = 1, padx = 5, pady = 5) self.master.mainloop() def reloadPanel(self): """Refreshes the current window """ self.dir_box.delete('1.0', END) def applyChanges(self): """Creates new install configuration given properties """ u = self.update_tags_var.get() i = self.dir_box.get('1.0', END).strip() if not os.path.exists(i) or not os.path.isdir(i): self.root.showErrorMessage('Error', 'ERROR - Path: {} does not exist or is not a directory!'.format(i), force_popup=True) return self.root.newConfig(i, update_tags=u) self.cancel() def cancel(self): """Closes window """ self.master.destroy() def selectInstallLoc(self): """Shows file selection popup """ dir = filedialog.askdirectory(initialdir='.') if dir is not None: self.dir_box.delete('1.0', END) self.dir_box.insert(INSERT, dir)
31.857143
147
0.642096
8f2334028f28b64dc069f820c16b5e879596c6aa
1,118
py
Python
aula5.py
mauriciopicirillo/Aprendendo-Python
fceb5124dc1f0446a364351358b74d37b3c99335
[ "MIT" ]
null
null
null
aula5.py
mauriciopicirillo/Aprendendo-Python
fceb5124dc1f0446a364351358b74d37b3c99335
[ "MIT" ]
null
null
null
aula5.py
mauriciopicirillo/Aprendendo-Python
fceb5124dc1f0446a364351358b74d37b3c99335
[ "MIT" ]
null
null
null
lista = [12, 10, 5, 7] lista_animal = ['cachorro', 'gato', 'elefante'] tupla = (1, 10, 12, 14) print(len(tupla)) print(len(lista_animal)) tupla_animal = tuple(lista_animal) print(type(tupla_animal)) print(tupla_animal) lista_numerica = list(tupla) print(type(lista_numerica)) lista_numerica[0] = 100 print(lista_numerica) # lista.sort() # lista_animal.sort() # print(lista) # print(lista_animal) # lista_animal.reverse() # print(lista_animal) # if 'lobo' in lista_animal: # print('Existe um lobo na lista') # else: # print('Não existe um lobo na lista. Será incluido.') # lista_animal.append('lobo') # print(lista_animal) # lista_animal.remove('elefante') # print(lista_animal) # lista_animal.pop(0) # print(lista_animal) # nova_lista = lista_animal * 3 # print(nova_lista) # if 'lobo' in lista_animal: # print('existe um lobo na lista') # else: # print('não existe um lobo na lista') # print(lista_animal[1]) # print(min(lista)) # print(max(lista)) # print(sum(lista)) # soma = 0 # for x in lista: # print(x) # soma += x # print(soma) # for x in lista_animal: # print(x)
19.964286
58
0.677996
204235a7acd1f47284d913c8d89e5e0b9784c8f2
8,938
py
Python
tests/test_path.py
agos-tech/jsons
33db6d4c4d186303ddac2a7c3b1a17dcb141e7a8
[ "MIT" ]
null
null
null
tests/test_path.py
agos-tech/jsons
33db6d4c4d186303ddac2a7c3b1a17dcb141e7a8
[ "MIT" ]
null
null
null
tests/test_path.py
agos-tech/jsons
33db6d4c4d186303ddac2a7c3b1a17dcb141e7a8
[ "MIT" ]
null
null
null
import os.path from pathlib import Path, PureWindowsPath, PurePosixPath from unittest import TestCase import jsons class TestPath(TestCase): def test_dump_singlepart_relative_path(self): self.assertEqual('abc', jsons.dump(Path('abc'))) def test_dump_singlepart_pure_windows_path(self): self.assertEqual('abc', jsons.dump(PureWindowsPath('abc'))) def test_dump_singlepart_pure_posix_path(self): self.assertEqual('abc', jsons.dump(PurePosixPath('abc'))) def test_dump_multipart_relative_path(self): self.assertEqual( 'abc/def/ghi', jsons.dump(Path('abc', 'def', 'ghi')) ) self.assertEqual( 'abc/def/ghi', jsons.dump(Path('abc/def/ghi')) ) def test_dump_multipart_pure_windows_path(self): self.assertEqual( 'abc/def/ghi', jsons.dump(PureWindowsPath('abc', 'def', 'ghi')) ) self.assertEqual( 'abc/def/ghi', jsons.dump(PureWindowsPath('abc/def/ghi')) ) self.assertEqual( 'abc/def/ghi', jsons.dump(PureWindowsPath('abc\\def\\ghi')) ) def test_dump_multipart_pure_posix_path(self): self.assertEqual( 'abc/def/ghi', jsons.dump(PurePosixPath('abc', 'def', 'ghi')) ) self.assertEqual( 'abc/def/ghi', jsons.dump(PurePosixPath('abc/def/ghi')) ) self.assertEqual( 'abc\\def\\ghi', jsons.dump(PurePosixPath('abc\\def\\ghi')) ) def test_dump_multipart_drived_pure_windows_path(self): self.assertEqual( 'Z:/abc/def/ghi', jsons.dump(PureWindowsPath('Z:\\', 'abc', 'def', 'ghi')) ) self.assertEqual( 'Z:/abc/def/ghi', jsons.dump(PureWindowsPath('Z:/abc/def/ghi')) ) self.assertEqual( 'Z:/abc/def/ghi', jsons.dump(PureWindowsPath('Z:\\abc\\def\\ghi')) ) def test_dump_multipart_drived_pure_posix_path(self): self.assertEqual( 'Z:/abc/def/ghi', jsons.dump(PurePosixPath('Z:', 'abc', 'def', 'ghi')) ) self.assertEqual( 'Z:/abc/def/ghi', jsons.dump(PurePosixPath('Z:/abc/def/ghi')) ) self.assertEqual( 'Z:\\abc\\def\\ghi', jsons.dump(PurePosixPath('Z:\\abc\\def\\ghi')) ) ################# def test_load_singlepart_relative_path(self): self.assertEqual( Path('abc'), jsons.load('abc', Path) ) def test_load_singlepart_pure_windows_path(self): self.assertEqual( PureWindowsPath('abc'), jsons.load('abc', PureWindowsPath) ) def test_load_singlepart_pure_posix_path(self): self.assertEqual( PurePosixPath('abc'), jsons.load('abc', PurePosixPath) ) def test_load_multipart_relative_path(self): self.assertEqual( Path('abc', 'def', 'ghi'), jsons.load('abc/def/ghi', Path) ) self.assertEqual( Path('abc/def/ghi'), jsons.load('abc/def/ghi', Path) ) def test_load_multipart_pure_windows_path(self): # We should be able to load Posix-style paths on Windows. self.assertEqual( PureWindowsPath('abc', 'def', 'ghi'), jsons.load('abc/def/ghi', PureWindowsPath) ) self.assertEqual( PureWindowsPath('abc/def/ghi'), jsons.load('abc/def/ghi', PureWindowsPath) ) self.assertEqual( PureWindowsPath('abc\\def\\ghi'), jsons.load('abc/def/ghi', PureWindowsPath) ) # We should be able to load Windows-style paths on Windows. self.assertEqual( PureWindowsPath('abc', 'def', 'ghi'), jsons.load('abc\\def\\ghi', PureWindowsPath) ) self.assertEqual( PureWindowsPath('abc/def/ghi'), jsons.load('abc\\def\\ghi', PureWindowsPath) ) self.assertEqual( PureWindowsPath('abc\\def\\ghi'), jsons.load('abc\\def\\ghi', PureWindowsPath) ) def test_load_multipart_pure_posix_path(self): # We should be able to load Posix-style paths on Posix systems. self.assertEqual( PurePosixPath('abc', 'def', 'ghi'), jsons.load('abc/def/ghi', PurePosixPath) ) self.assertEqual( PurePosixPath('abc/def/ghi'), jsons.load('abc/def/ghi', PurePosixPath) ) self.assertNotEqual( PurePosixPath('abc\\def\\ghi'), jsons.load('abc/def/ghi', PurePosixPath) ) # Backslashes on Posix systems should be interpreted as escapes. self.assertNotEqual( PurePosixPath('abc', 'def', 'ghi'), jsons.load('abc\\def\\ghi', PurePosixPath) ) self.assertNotEqual( PurePosixPath('abc/def/ghi'), jsons.load('abc\\def\\ghi', PurePosixPath) ) self.assertEqual( PurePosixPath('abc\\def\\ghi'), jsons.load('abc\\def\\ghi', PurePosixPath) ) def test_load_multipart_drived_pure_windows_path(self): # We should be able to load Posix-style paths on Windows. self.assertEqual( PureWindowsPath('Z:\\', 'abc', 'def', 'ghi'), jsons.load('Z:/abc/def/ghi', PureWindowsPath) ) self.assertEqual( PureWindowsPath('Z:/abc/def/ghi'), jsons.load('Z:/abc/def/ghi', PureWindowsPath) ) self.assertEqual( PureWindowsPath('Z:\\abc\\def\\ghi'), jsons.load('Z:/abc/def/ghi', PureWindowsPath) ) # We should be able to load Windows-style paths on Windows. self.assertEqual( PureWindowsPath('Z:\\', 'abc', 'def', 'ghi'), jsons.load('Z:\\abc\\def\\ghi', PureWindowsPath) ) self.assertEqual( PureWindowsPath('Z:/abc/def/ghi'), jsons.load('Z:\\abc\\def\\ghi', PureWindowsPath) ) self.assertEqual( PureWindowsPath('Z:\\abc\\def\\ghi'), jsons.load('Z:\\abc\\def\\ghi', PureWindowsPath) ) def test_load_multipart_drived_pure_posix_path(self): # We should be able to load Posix-style paths on Windows. self.assertEqual( PurePosixPath('Z:', 'abc', 'def', 'ghi'), jsons.load('Z:/abc/def/ghi', PurePosixPath) ) self.assertEqual( PurePosixPath('Z:/abc/def/ghi'), jsons.load('Z:/abc/def/ghi', PurePosixPath) ) self.assertNotEqual( PurePosixPath('Z:\\abc\\def\\ghi'), jsons.load('Z:/abc/def/ghi', PurePosixPath) ) # Backslashes on Posix systems should be interpreted as escapes. self.assertNotEqual( PurePosixPath('Z:', 'abc', 'def', 'ghi'), jsons.load('Z:\\abc\\def\\ghi', PurePosixPath) ) self.assertNotEqual( PurePosixPath('Z:/abc/def/ghi'), jsons.load('Z:\\abc\\def\\ghi', PurePosixPath) ) self.assertEqual( PurePosixPath('Z:\\abc\\def\\ghi'), jsons.load('Z:\\abc\\def\\ghi', PurePosixPath) ) def test_dump_posix_load_windows(self): dump_result = jsons.dump(PurePosixPath('abc', 'def', 'ghi')) self.assertEqual( 'abc/def/ghi', dump_result ) load_result = jsons.load(dump_result, PureWindowsPath) self.assertEqual( PureWindowsPath('abc', 'def', 'ghi'), load_result ) def test_dump_windows_load_posix(self): dump_result = jsons.dump(PureWindowsPath('abc', 'def', 'ghi')) self.assertEqual( 'abc/def/ghi', dump_result ) load_result = jsons.load(dump_result, PurePosixPath) self.assertEqual( PurePosixPath('abc', 'def', 'ghi'), load_result ) def test_dump_posix_load_posix(self): dump_result = jsons.dump(PurePosixPath('abc', 'def', 'ghi')) self.assertEqual( 'abc/def/ghi', dump_result ) load_result = jsons.load(dump_result, PurePosixPath) self.assertEqual( PurePosixPath('abc', 'def', 'ghi'), load_result ) def test_dump_windows_load_windows(self): dump_result = jsons.dump(PureWindowsPath('abc', 'def', 'ghi')) self.assertEqual( 'abc/def/ghi', dump_result ) load_result = jsons.load(dump_result, PureWindowsPath) self.assertEqual( PureWindowsPath('abc', 'def', 'ghi'), load_result )
32.620438
72
0.54934
642bef74b6b8d741cd4326ef0b9a883e114eaade
3,159
py
Python
backend/src/baserow/contrib/database/webhooks/models.py
LiuJun666888/baserow
bc5b7f8ebe319f90ed1aabdb7f5dfd8916c3dad1
[ "MIT" ]
null
null
null
backend/src/baserow/contrib/database/webhooks/models.py
LiuJun666888/baserow
bc5b7f8ebe319f90ed1aabdb7f5dfd8916c3dad1
[ "MIT" ]
null
null
null
backend/src/baserow/contrib/database/webhooks/models.py
LiuJun666888/baserow
bc5b7f8ebe319f90ed1aabdb7f5dfd8916c3dad1
[ "MIT" ]
null
null
null
import uuid from django.db import models from baserow.core.models import CreatedAndUpdatedOnMixin from baserow.contrib.database.table.models import Table from .validators import header_name_validator, header_value_validator class WebhookRequestMethods(models.TextChoices): POST = "POST" GET = "GET" PUT = "PUT" PATCH = "PATCH" DELETE = "DELETE" class TableWebhook(CreatedAndUpdatedOnMixin, models.Model): table = models.ForeignKey(Table, on_delete=models.CASCADE) active = models.BooleanField( default=True, help_text="Indicates whether the web hook is active. When a webhook has " "failed multiple times, it will automatically be deactivated.", ) use_user_field_names = models.BooleanField( default=True, help_text="Indicates whether the field names must be used as payload key " "instead of the id.", ) url = models.URLField( help_text="The URL that must call when the webhook is " "triggered." ) request_method = models.CharField( max_length=10, choices=WebhookRequestMethods.choices, default=WebhookRequestMethods.POST, help_text="The request method that be used when the event occurs.", ) name = models.CharField( max_length=255, help_text="An internal name of the webhook." ) include_all_events = models.BooleanField( default=True, help_text="Indicates whether this webhook should listen to all events.", ) failed_triggers = models.IntegerField( default=0, help_text="The amount of failed webhook calls." ) @property def header_dict(self): return {header.name: header.value for header in self.headers.all()} class Meta: ordering = ("id",) class TableWebhookEvent(CreatedAndUpdatedOnMixin, models.Model): webhook = models.ForeignKey( TableWebhook, related_name="events", on_delete=models.CASCADE ) event_type = models.CharField(max_length=50) class TableWebhookHeader(models.Model): webhook = models.ForeignKey( TableWebhook, related_name="headers", on_delete=models.CASCADE ) name = models.TextField(validators=[header_name_validator]) value = models.TextField(validators=[header_value_validator]) class TableWebhookCall(models.Model): id = models.UUIDField(primary_key=True, default=uuid.uuid4, editable=False) webhook = models.ForeignKey( TableWebhook, related_name="calls", on_delete=models.CASCADE ) event_type = models.CharField(max_length=50) called_time = models.DateTimeField(null=True) called_url = models.URLField() request = models.TextField( null=True, help_text="A text copy of the request headers and body." ) response = models.TextField( null=True, help_text="A text copy of the response headers and body." ) response_status = models.IntegerField( null=True, help_text="The HTTP response status code." ) error = models.TextField( null=True, help_text="An internal error reflecting what went wrong." ) class Meta: ordering = ("-called_time",)
32.56701
82
0.697056
6a35a52fcf7dcf718ba0fa780280b780d1a577b0
96
py
Python
apps.py
giovanniherdigein/my_first_django
ed547cf8802951a6af17c0683a642548e025935f
[ "Unlicense" ]
null
null
null
apps.py
giovanniherdigein/my_first_django
ed547cf8802951a6af17c0683a642548e025935f
[ "Unlicense" ]
null
null
null
apps.py
giovanniherdigein/my_first_django
ed547cf8802951a6af17c0683a642548e025935f
[ "Unlicense" ]
null
null
null
from django.apps import AppConfig class CrudsiteConfig(AppConfig): name = 'crudsite'
16
34
0.71875
a52cf3c301bea855a7cdc839ddcd30b8d4a0a340
1,528
py
Python
fastai/callbacks/rnn.py
suleepkumar/fastai
728a7154dc120c177fe3499d2e3bf1ba389580fb
[ "Apache-2.0" ]
1
2018-12-30T04:12:43.000Z
2018-12-30T04:12:43.000Z
fastai/callbacks/rnn.py
suleepkumar/fastai
728a7154dc120c177fe3499d2e3bf1ba389580fb
[ "Apache-2.0" ]
2
2021-05-20T23:02:08.000Z
2021-09-28T05:48:00.000Z
fastai/callbacks/rnn.py
Acidburn0zzz/fastai
0bc9f78668455af3c0ff8894ea1b2375ec4cd91b
[ "Apache-2.0" ]
null
null
null
"Regroups lr adjustment to seq_len, AR and TAR" from ..torch_core import * from ..callback import * from ..basic_train import Learner, LearnerCallback __all__ = ['RNNTrainer'] @dataclass class RNNTrainer(LearnerCallback): "`Callback` that regroups lr adjustment to seq_len, AR and TAR." bptt:int=0 alpha:float=0. beta:float=0. adjust:bool=True def on_train_begin(self, **kwargs): "IN LM, put the training dataloader `first` attribute to `True` to avoid OOM." if hasattr(self.learn.data.train_dl, 'first'): self.learn.data.first = True def on_epoch_begin(self, **kwargs): "Reset the hidden state of the model." self.learn.model.reset() def on_loss_begin(self, last_output:Tuple[Tensor,Tensor,Tensor], **kwargs): "Save the extra outputs for later and only returns the true output." self.raw_out,self.out = last_output[1],last_output[2] return last_output[0] def on_backward_begin(self, last_loss:Rank0Tensor, last_input:Tensor, **kwargs): "Adjusts the lr to the sequence length and applies AR and TAR to `last_loss`." if self.adjust: self.learn.opt.lr *= last_input.size(1) / self.bptt #AR and TAR if self.alpha != 0.: last_loss += (self.alpha * self.out[-1].pow(2).mean()).sum().float() if self.beta != 0.: h = self.raw_out[-1] if len(h)>1: last_loss += (self.beta * (h[1:] - h[:-1]).pow(2).mean()).sum().float() return last_loss
39.179487
98
0.639398
f2250ff3f18b334488053a4837d680aa449442ea
5,061
py
Python
examples/decoding/ssd_spatial_filters.py
andylikescodes/mne-python
79ea57a4318d8d045f5966c26360b079f40a4865
[ "BSD-3-Clause" ]
1
2022-02-19T08:13:49.000Z
2022-02-19T08:13:49.000Z
examples/decoding/ssd_spatial_filters.py
LiFeng-SECUC/mne-python
732bb1f994e64e41a8e95dcc10dc98c22cac95c0
[ "BSD-3-Clause" ]
null
null
null
examples/decoding/ssd_spatial_filters.py
LiFeng-SECUC/mne-python
732bb1f994e64e41a8e95dcc10dc98c22cac95c0
[ "BSD-3-Clause" ]
null
null
null
""" =========================================================== Compute Spectro-Spatial Decomposition (SSD) spatial filters =========================================================== In this example, we will compute spatial filters for retaining oscillatory brain activity and down-weighting 1/f background signals as proposed by :footcite:`NikulinEtAl2011`. The idea is to learn spatial filters that separate oscillatory dynamics from surrounding non-oscillatory noise based on the covariance in the frequency band of interest and the noise covariance based on surrounding frequencies. """ # Author: Denis A. Engemann <denis.engemann@gmail.com> # Victoria Peterson <victoriapeterson09@gmail.com> # License: BSD-3-Clause # %% import matplotlib.pyplot as plt import mne from mne import Epochs from mne.datasets.fieldtrip_cmc import data_path from mne.decoding import SSD # %% # Define parameters fname = data_path() / 'SubjectCMC.ds' # Prepare data raw = mne.io.read_raw_ctf(fname) raw.crop(50., 110.).load_data() # crop for memory purposes raw.resample(sfreq=250) raw.pick_types(meg=True, eeg=False, ref_meg=False) freqs_sig = 9, 12 freqs_noise = 8, 13 ssd = SSD(info=raw.info, reg='oas', sort_by_spectral_ratio=False, # False for purpose of example. filt_params_signal=dict(l_freq=freqs_sig[0], h_freq=freqs_sig[1], l_trans_bandwidth=1, h_trans_bandwidth=1), filt_params_noise=dict(l_freq=freqs_noise[0], h_freq=freqs_noise[1], l_trans_bandwidth=1, h_trans_bandwidth=1)) ssd.fit(X=raw.get_data()) # %% # Let's investigate spatial filter with max power ratio. # We will first inspect the topographies. # According to Nikulin et al. 2011 this is done by either inverting the filters # (W^{-1}) or by multiplying the noise cov with the filters Eq. (22) (C_n W)^t. # We rely on the inversion approach here. pattern = mne.EvokedArray(data=ssd.patterns_[:4].T, info=ssd.info) pattern.plot_topomap(units=dict(mag='A.U.'), time_format='') # The topographies suggest that we picked up a parietal alpha generator. # Transform ssd_sources = ssd.transform(X=raw.get_data()) # Get psd of SSD-filtered signals. psd, freqs = mne.time_frequency.psd_array_welch( ssd_sources, sfreq=raw.info['sfreq'], n_fft=4096) # Get spec_ratio information (already sorted). # Note that this is not necessary if sort_by_spectral_ratio=True (default). spec_ratio, sorter = ssd.get_spectral_ratio(ssd_sources) # Plot spectral ratio (see Eq. 24 in Nikulin 2011). fig, ax = plt.subplots(1) ax.plot(spec_ratio, color='black') ax.plot(spec_ratio[sorter], color='orange', label='sorted eigenvalues') ax.set_xlabel("Eigenvalue Index") ax.set_ylabel(r"Spectral Ratio $\frac{P_f}{P_{sf}}$") ax.legend() ax.axhline(1, linestyle='--') # We can see that the initial sorting based on the eigenvalues # was already quite good. However, when using few components only # the sorting might make a difference. # %% # Let's also look at the power spectrum of that source and compare it to # to the power spectrum of the source with lowest SNR. below50 = freqs < 50 # for highlighting the freq. band of interest bandfilt = (freqs_sig[0] <= freqs) & (freqs <= freqs_sig[1]) fig, ax = plt.subplots(1) ax.loglog(freqs[below50], psd[0, below50], label='max SNR') ax.loglog(freqs[below50], psd[-1, below50], label='min SNR') ax.loglog(freqs[below50], psd[:, below50].mean(axis=0), label='mean') ax.fill_between(freqs[bandfilt], 0, 10000, color='green', alpha=0.15) ax.set_xlabel('log(frequency)') ax.set_ylabel('log(power)') ax.legend() # We can clearly see that the selected component enjoys an SNR that is # way above the average power spectrum. # %% # Epoched data # ------------ # Although we suggest to use this method before epoching, there might be some # situations in which data can only be treated by chunks. # Build epochs as sliding windows over the continuous raw file. events = mne.make_fixed_length_events(raw, id=1, duration=5.0, overlap=0.0) # Epoch length is 5 seconds. epochs = Epochs(raw, events, tmin=0., tmax=5, baseline=None, preload=True) ssd_epochs = SSD(info=epochs.info, reg='oas', filt_params_signal=dict(l_freq=freqs_sig[0], h_freq=freqs_sig[1], l_trans_bandwidth=1, h_trans_bandwidth=1), filt_params_noise=dict(l_freq=freqs_noise[0], h_freq=freqs_noise[1], l_trans_bandwidth=1, h_trans_bandwidth=1)) ssd_epochs.fit(X=epochs.get_data()) # Plot topographies. pattern_epochs = mne.EvokedArray(data=ssd_epochs.patterns_[:4].T, info=ssd_epochs.info) pattern_epochs.plot_topomap(units=dict(mag='A.U.'), time_format='') # %% # References # ---------- # # .. footbibliography::
35.640845
79
0.662912
cff551e5b5c1f9558d284ea20028f6d72517a187
23,069
py
Python
zerver/lib/test_helpers.py
guettli/zulip
d9431a5e66a97c619aecfe92c4a2cb4acc609431
[ "Apache-2.0" ]
null
null
null
zerver/lib/test_helpers.py
guettli/zulip
d9431a5e66a97c619aecfe92c4a2cb4acc609431
[ "Apache-2.0" ]
null
null
null
zerver/lib/test_helpers.py
guettli/zulip
d9431a5e66a97c619aecfe92c4a2cb4acc609431
[ "Apache-2.0" ]
null
null
null
import collections import os import re import sys import time from contextlib import contextmanager from typing import ( IO, TYPE_CHECKING, Any, Callable, Dict, Generator, Iterable, Iterator, List, Mapping, Optional, Tuple, TypeVar, Union, cast, ) from unittest import mock import boto3 import fakeldap import ldap import orjson from boto3.resources.base import ServiceResource from django.conf import settings from django.db.migrations.state import StateApps from django.http import HttpResponse, HttpResponseRedirect from django.test import override_settings from django.urls import URLResolver from moto import mock_s3 import zerver.lib.upload from zerver.lib import cache from zerver.lib.actions import do_set_realm_property from zerver.lib.avatar import avatar_url from zerver.lib.cache import get_cache_backend from zerver.lib.db import Params, ParamsT, Query, TimeTrackingCursor from zerver.lib.integrations import WEBHOOK_INTEGRATIONS from zerver.lib.upload import LocalUploadBackend, S3UploadBackend from zerver.models import ( Client, Message, Realm, Subscription, UserMessage, UserProfile, get_realm, get_stream, ) from zerver.tornado import django_api as django_tornado_api from zerver.tornado.handlers import AsyncDjangoHandler, allocate_handler_id from zerver.worker import queue_processors from zproject.backends import ExternalAuthDataDict, ExternalAuthResult if TYPE_CHECKING: # Avoid an import cycle; we only need these for type annotations. from zerver.lib.test_classes import MigrationsTestCase, ZulipTestCase class MockLDAP(fakeldap.MockLDAP): class LDAPError(ldap.LDAPError): pass class INVALID_CREDENTIALS(ldap.INVALID_CREDENTIALS): pass class NO_SUCH_OBJECT(ldap.NO_SUCH_OBJECT): pass class ALREADY_EXISTS(ldap.ALREADY_EXISTS): pass @contextmanager def stub_event_queue_user_events(event_queue_return: Any, user_events_return: Any) -> Iterator[None]: with mock.patch('zerver.lib.events.request_event_queue', return_value=event_queue_return): with mock.patch('zerver.lib.events.get_user_events', return_value=user_events_return): yield @contextmanager def simulated_queue_client(client: Callable[..., Any]) -> Iterator[None]: with mock.patch.object(queue_processors, 'SimpleQueueClient', client): yield @contextmanager def tornado_redirected_to_list(lst: List[Mapping[str, Any]]) -> Iterator[None]: real_event_queue_process_notification = django_tornado_api.process_notification django_tornado_api.process_notification = lambda notice: lst.append(notice) # process_notification takes a single parameter called 'notice'. # lst.append takes a single argument called 'object'. # Some code might call process_notification using keyword arguments, # so mypy doesn't allow assigning lst.append to process_notification # So explicitly change parameter name to 'notice' to work around this problem yield django_tornado_api.process_notification = real_event_queue_process_notification class EventInfo: def populate(self, call_args_list: List[Any]) -> None: args = call_args_list[0][0] self.realm_id = args[0] self.payload = args[1] self.user_ids = args[2] @contextmanager def capture_event(event_info: EventInfo) -> Iterator[None]: # Use this for simple endpoints that throw a single event # in zerver.lib.actions. with mock.patch('zerver.lib.actions.send_event') as m: yield if len(m.call_args_list) == 0: raise AssertionError('No event was sent inside actions.py') if len(m.call_args_list) > 1: raise AssertionError('Too many events sent by action') event_info.populate(m.call_args_list) @contextmanager def simulated_empty_cache() -> Iterator[List[Tuple[str, Union[str, List[str]], Optional[str]]]]: cache_queries: List[Tuple[str, Union[str, List[str]], Optional[str]]] = [] def my_cache_get(key: str, cache_name: Optional[str]=None) -> Optional[Dict[str, Any]]: cache_queries.append(('get', key, cache_name)) return None def my_cache_get_many(keys: List[str], cache_name: Optional[str]=None) -> Dict[str, Any]: # nocoverage -- simulated code doesn't use this cache_queries.append(('getmany', keys, cache_name)) return {} old_get = cache.cache_get old_get_many = cache.cache_get_many cache.cache_get = my_cache_get cache.cache_get_many = my_cache_get_many yield cache_queries cache.cache_get = old_get cache.cache_get_many = old_get_many @contextmanager def queries_captured(include_savepoints: bool=False) -> Generator[ List[Dict[str, Union[str, bytes]]], None, None]: ''' Allow a user to capture just the queries executed during the with statement. ''' queries: List[Dict[str, Union[str, bytes]]] = [] def wrapper_execute(self: TimeTrackingCursor, action: Callable[[str, ParamsT], None], sql: Query, params: ParamsT) -> None: cache = get_cache_backend(None) cache.clear() start = time.time() try: return action(sql, params) finally: stop = time.time() duration = stop - start if include_savepoints or not isinstance(sql, str) or 'SAVEPOINT' not in sql: queries.append({ 'sql': self.mogrify(sql, params).decode('utf-8'), 'time': f"{duration:.3f}", }) def cursor_execute(self: TimeTrackingCursor, sql: Query, params: Optional[Params]=None) -> None: return wrapper_execute(self, super(TimeTrackingCursor, self).execute, sql, params) def cursor_executemany(self: TimeTrackingCursor, sql: Query, params: Iterable[Params]) -> None: return wrapper_execute(self, super(TimeTrackingCursor, self).executemany, sql, params) # nocoverage -- doesn't actually get used in tests with mock.patch.multiple(TimeTrackingCursor, execute=cursor_execute, executemany=cursor_executemany): yield queries @contextmanager def stdout_suppressed() -> Iterator[IO[str]]: """Redirect stdout to /dev/null.""" with open(os.devnull, 'a') as devnull: stdout, sys.stdout = sys.stdout, devnull yield stdout sys.stdout = stdout def reset_emails_in_zulip_realm() -> None: realm = get_realm('zulip') do_set_realm_property(realm, 'email_address_visibility', Realm.EMAIL_ADDRESS_VISIBILITY_EVERYONE) def get_test_image_file(filename: str) -> IO[Any]: test_avatar_dir = os.path.abspath(os.path.join(os.path.dirname(__file__), '../tests/images')) return open(os.path.join(test_avatar_dir, filename), 'rb') def avatar_disk_path(user_profile: UserProfile, medium: bool=False, original: bool=False) -> str: avatar_url_path = avatar_url(user_profile, medium) assert avatar_url_path is not None avatar_disk_path = os.path.join(settings.LOCAL_UPLOADS_DIR, "avatars", avatar_url_path.split("/")[-2], avatar_url_path.split("/")[-1].split("?")[0]) if original: return avatar_disk_path.replace(".png", ".original") return avatar_disk_path def make_client(name: str) -> Client: client, _ = Client.objects.get_or_create(name=name) return client def find_key_by_email(address: str) -> Optional[str]: from django.core.mail import outbox key_regex = re.compile("accounts/do_confirm/([a-z0-9]{24})>") for message in reversed(outbox): if address in message.to: match = key_regex.search(message.body) assert match is not None [key] = match.groups() return key return None # nocoverage -- in theory a test might want this case, but none do def message_stream_count(user_profile: UserProfile) -> int: return UserMessage.objects. \ select_related("message"). \ filter(user_profile=user_profile). \ count() def most_recent_usermessage(user_profile: UserProfile) -> UserMessage: query = UserMessage.objects. \ select_related("message"). \ filter(user_profile=user_profile). \ order_by('-message') return query[0] # Django does LIMIT here def most_recent_message(user_profile: UserProfile) -> Message: usermessage = most_recent_usermessage(user_profile) return usermessage.message def get_subscription(stream_name: str, user_profile: UserProfile) -> Subscription: stream = get_stream(stream_name, user_profile.realm) recipient_id = stream.recipient_id return Subscription.objects.get(user_profile=user_profile, recipient_id=recipient_id, active=True) def get_user_messages(user_profile: UserProfile) -> List[Message]: query = UserMessage.objects. \ select_related("message"). \ filter(user_profile=user_profile). \ order_by('message') return [um.message for um in query] class DummyHandler(AsyncDjangoHandler): def __init__(self) -> None: allocate_handler_id(self) class POSTRequestMock: method = "POST" def __init__(self, post_data: Dict[str, Any], user_profile: Optional[UserProfile]) -> None: self.GET: Dict[str, Any] = {} # Convert any integer parameters passed into strings, even # though of course the HTTP API would do so. Ideally, we'd # get rid of this abstraction entirely and just use the HTTP # API directly, but while it exists, we need this code. self.POST: Dict[str, str] = {} for key in post_data: self.POST[key] = str(post_data[key]) self.user = user_profile self._tornado_handler = DummyHandler() self._log_data: Dict[str, Any] = {} self.META = {'PATH_INFO': 'test'} self.path = '' class HostRequestMock: """A mock request object where get_host() works. Useful for testing routes that use Zulip's subdomains feature""" def __init__(self, user_profile: Optional[UserProfile]=None, host: str=settings.EXTERNAL_HOST) -> None: self.host = host self.GET: Dict[str, Any] = {} self.POST: Dict[str, Any] = {} self.META = {'PATH_INFO': 'test'} self.path = '' self.user = user_profile self.method = '' self.body = '' self.content_type = '' def get_host(self) -> str: return self.host class MockPythonResponse: def __init__(self, text: str, status_code: int, headers: Optional[Dict[str, str]]=None) -> None: self.text = text self.status_code = status_code if headers is None: headers = {'content-type': 'text/html'} self.headers = headers @property def ok(self) -> bool: return self.status_code == 200 def iter_content(self, n: int) -> Generator[str, Any, None]: yield self.text[:n] INSTRUMENTING = os.environ.get('TEST_INSTRUMENT_URL_COVERAGE', '') == 'TRUE' INSTRUMENTED_CALLS: List[Dict[str, Any]] = [] UrlFuncT = TypeVar("UrlFuncT", bound=Callable[..., HttpResponse]) # TODO: make more specific def append_instrumentation_data(data: Dict[str, Any]) -> None: INSTRUMENTED_CALLS.append(data) def instrument_url(f: UrlFuncT) -> UrlFuncT: if not INSTRUMENTING: # nocoverage -- option is always enabled; should we remove? return f else: def wrapper(self: 'ZulipTestCase', url: str, info: object = {}, **kwargs: Any) -> HttpResponse: start = time.time() result = f(self, url, info, **kwargs) delay = time.time() - start test_name = self.id() if '?' in url: url, extra_info = url.split('?', 1) else: extra_info = '' if isinstance(info, POSTRequestMock): info = "<POSTRequestMock>" elif isinstance(info, bytes): info = "<bytes>" elif isinstance(info, dict): info = { k: "<file object>" if hasattr(v, "read") and callable(getattr(v, "read")) else v for k, v in info.items() } append_instrumentation_data(dict( url=url, status_code=result.status_code, method=f.__name__, delay=delay, extra_info=extra_info, info=info, test_name=test_name, kwargs=kwargs)) return result return cast(UrlFuncT, wrapper) # https://github.com/python/mypy/issues/1927 def write_instrumentation_reports(full_suite: bool, include_webhooks: bool) -> None: if INSTRUMENTING: calls = INSTRUMENTED_CALLS from zproject.urls import urlpatterns, v1_api_and_json_patterns # Find our untested urls. pattern_cnt: Dict[str, int] = collections.defaultdict(int) def re_strip(r: Any) -> str: return str(r).lstrip('^').rstrip('$') def find_patterns(patterns: List[Any], prefixes: List[str]) -> None: for pattern in patterns: find_pattern(pattern, prefixes) def cleanup_url(url: str) -> str: if url.startswith('/'): url = url[1:] if url.startswith('http://testserver/'): url = url[len('http://testserver/'):] if url.startswith('http://zulip.testserver/'): url = url[len('http://zulip.testserver/'):] if url.startswith('http://testserver:9080/'): url = url[len('http://testserver:9080/'):] return url def find_pattern(pattern: Any, prefixes: List[str]) -> None: if isinstance(pattern, type(URLResolver)): return # nocoverage -- shouldn't actually happen if hasattr(pattern, 'url_patterns'): return canon_pattern = prefixes[0] + re_strip(pattern.pattern.regex.pattern) cnt = 0 for call in calls: if 'pattern' in call: continue url = cleanup_url(call['url']) for prefix in prefixes: if url.startswith(prefix): match_url = url[len(prefix):] if pattern.resolve(match_url): if call['status_code'] in [200, 204, 301, 302]: cnt += 1 call['pattern'] = canon_pattern pattern_cnt[canon_pattern] += cnt find_patterns(urlpatterns, ['', 'en/', 'de/']) find_patterns(v1_api_and_json_patterns, ['api/v1/', 'json/']) assert len(pattern_cnt) > 100 untested_patterns = {p.replace("\\", "") for p in pattern_cnt if pattern_cnt[p] == 0} exempt_patterns = { # We exempt some patterns that are called via Tornado. 'api/v1/events', 'api/v1/events/internal', 'api/v1/register', # We also exempt some development environment debugging # static content URLs, since the content they point to may # or may not exist. 'coverage/(?P<path>.+)', 'node-coverage/(?P<path>.+)', 'docs/(?P<path>.+)', 'casper/(?P<path>.+)', 'static/(?P<path>.*)', *(webhook.url for webhook in WEBHOOK_INTEGRATIONS if not include_webhooks), } untested_patterns -= exempt_patterns var_dir = 'var' # TODO make sure path is robust here fn = os.path.join(var_dir, 'url_coverage.txt') with open(fn, 'wb') as f: for call in calls: f.write(orjson.dumps(call, option=orjson.OPT_APPEND_NEWLINE)) if full_suite: print(f'INFO: URL coverage report is in {fn}') print('INFO: Try running: ./tools/create-test-api-docs') if full_suite and len(untested_patterns): # nocoverage -- test suite error handling print("\nERROR: Some URLs are untested! Here's the list of untested URLs:") for untested_pattern in sorted(untested_patterns): print(f" {untested_pattern}") sys.exit(1) def load_subdomain_token(response: HttpResponse) -> ExternalAuthDataDict: assert isinstance(response, HttpResponseRedirect) token = response.url.rsplit('/', 1)[1] data = ExternalAuthResult(login_token=token, delete_stored_data=False).data_dict assert data is not None return data FuncT = TypeVar('FuncT', bound=Callable[..., None]) def use_s3_backend(method: FuncT) -> FuncT: @mock_s3 @override_settings(LOCAL_UPLOADS_DIR=None) def new_method(*args: Any, **kwargs: Any) -> Any: zerver.lib.upload.upload_backend = S3UploadBackend() try: return method(*args, **kwargs) finally: zerver.lib.upload.upload_backend = LocalUploadBackend() return new_method def create_s3_buckets(*bucket_names: Tuple[str]) -> List[ServiceResource]: session = boto3.Session(settings.S3_KEY, settings.S3_SECRET_KEY) s3 = session.resource('s3') buckets = [s3.create_bucket(Bucket=name) for name in bucket_names] return buckets def use_db_models(method: Callable[..., None]) -> Callable[..., None]: # nocoverage def method_patched_with_mock(self: 'MigrationsTestCase', apps: StateApps) -> None: ArchivedAttachment = apps.get_model('zerver', 'ArchivedAttachment') ArchivedMessage = apps.get_model('zerver', 'ArchivedMessage') ArchivedUserMessage = apps.get_model('zerver', 'ArchivedUserMessage') Attachment = apps.get_model('zerver', 'Attachment') BotConfigData = apps.get_model('zerver', 'BotConfigData') BotStorageData = apps.get_model('zerver', 'BotStorageData') Client = apps.get_model('zerver', 'Client') CustomProfileField = apps.get_model('zerver', 'CustomProfileField') CustomProfileFieldValue = apps.get_model('zerver', 'CustomProfileFieldValue') DefaultStream = apps.get_model('zerver', 'DefaultStream') DefaultStreamGroup = apps.get_model('zerver', 'DefaultStreamGroup') EmailChangeStatus = apps.get_model('zerver', 'EmailChangeStatus') Huddle = apps.get_model('zerver', 'Huddle') Message = apps.get_model('zerver', 'Message') MultiuseInvite = apps.get_model('zerver', 'MultiuseInvite') MutedTopic = apps.get_model('zerver', 'MutedTopic') PreregistrationUser = apps.get_model('zerver', 'PreregistrationUser') PushDeviceToken = apps.get_model('zerver', 'PushDeviceToken') Reaction = apps.get_model('zerver', 'Reaction') Realm = apps.get_model('zerver', 'Realm') RealmAuditLog = apps.get_model('zerver', 'RealmAuditLog') RealmDomain = apps.get_model('zerver', 'RealmDomain') RealmEmoji = apps.get_model('zerver', 'RealmEmoji') RealmFilter = apps.get_model('zerver', 'RealmFilter') Recipient = apps.get_model('zerver', 'Recipient') Recipient.PERSONAL = 1 Recipient.STREAM = 2 Recipient.HUDDLE = 3 ScheduledEmail = apps.get_model('zerver', 'ScheduledEmail') ScheduledMessage = apps.get_model('zerver', 'ScheduledMessage') Service = apps.get_model('zerver', 'Service') Stream = apps.get_model('zerver', 'Stream') Subscription = apps.get_model('zerver', 'Subscription') UserActivity = apps.get_model('zerver', 'UserActivity') UserActivityInterval = apps.get_model('zerver', 'UserActivityInterval') UserGroup = apps.get_model('zerver', 'UserGroup') UserGroupMembership = apps.get_model('zerver', 'UserGroupMembership') UserHotspot = apps.get_model('zerver', 'UserHotspot') UserMessage = apps.get_model('zerver', 'UserMessage') UserPresence = apps.get_model('zerver', 'UserPresence') UserProfile = apps.get_model('zerver', 'UserProfile') zerver_models_patch = mock.patch.multiple( 'zerver.models', ArchivedAttachment=ArchivedAttachment, ArchivedMessage=ArchivedMessage, ArchivedUserMessage=ArchivedUserMessage, Attachment=Attachment, BotConfigData=BotConfigData, BotStorageData=BotStorageData, Client=Client, CustomProfileField=CustomProfileField, CustomProfileFieldValue=CustomProfileFieldValue, DefaultStream=DefaultStream, DefaultStreamGroup=DefaultStreamGroup, EmailChangeStatus=EmailChangeStatus, Huddle=Huddle, Message=Message, MultiuseInvite=MultiuseInvite, MutedTopic=MutedTopic, PreregistrationUser=PreregistrationUser, PushDeviceToken=PushDeviceToken, Reaction=Reaction, Realm=Realm, RealmAuditLog=RealmAuditLog, RealmDomain=RealmDomain, RealmEmoji=RealmEmoji, RealmFilter=RealmFilter, Recipient=Recipient, ScheduledEmail=ScheduledEmail, ScheduledMessage=ScheduledMessage, Service=Service, Stream=Stream, Subscription=Subscription, UserActivity=UserActivity, UserActivityInterval=UserActivityInterval, UserGroup=UserGroup, UserGroupMembership=UserGroupMembership, UserHotspot=UserHotspot, UserMessage=UserMessage, UserPresence=UserPresence, UserProfile=UserProfile, ) zerver_test_helpers_patch = mock.patch.multiple( 'zerver.lib.test_helpers', Client=Client, Message=Message, Subscription=Subscription, UserMessage=UserMessage, UserProfile=UserProfile, ) zerver_test_classes_patch = mock.patch.multiple( 'zerver.lib.test_classes', Client=Client, Message=Message, Realm=Realm, Recipient=Recipient, Stream=Stream, Subscription=Subscription, UserProfile=UserProfile, ) with zerver_models_patch,\ zerver_test_helpers_patch,\ zerver_test_classes_patch: method(self, apps) return method_patched_with_mock def create_dummy_file(filename: str) -> str: filepath = os.path.join(settings.TEST_WORKER_DIR, filename) with open(filepath, 'w') as f: f.write('zulip!') return filepath def zulip_reaction_info() -> Dict[str, str]: return dict( emoji_name='zulip', emoji_code='zulip', reaction_type='zulip_extra_emoji', )
38.320598
146
0.639213
85b16c3336dc2ac41c92a43966b446f103d69bb2
4,295
py
Python
model_zoo/dac_ctr/feature_transform.py
QiJune/elasticdl
6b01f5b32fd757badff96ed652662bd94afe9263
[ "MIT" ]
null
null
null
model_zoo/dac_ctr/feature_transform.py
QiJune/elasticdl
6b01f5b32fd757badff96ed652662bd94afe9263
[ "MIT" ]
null
null
null
model_zoo/dac_ctr/feature_transform.py
QiJune/elasticdl
6b01f5b32fd757badff96ed652662bd94afe9263
[ "MIT" ]
null
null
null
# Copyright 2020 The ElasticDL Authors. All rights reserved. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import tensorflow as tf from elasticdl.python.common.log_utils import default_logger as logger from elasticdl_preprocessing.layers import ( ConcatenateWithOffset, Discretization, Hashing, Normalizer, ) from model_zoo.dac_ctr.feature_config import ( BUCKET_FEATURES, FEATURE_BOUNDARIES, FEATURE_DISTINCT_COUNT, FEATURES_AVGS, FEATURES_STDDEVS, HASH_FEATURES, STANDARDIZED_FEATURES, ) MAX_HASHING_BUCKET_SIZE = 1000000 def transform_feature(inputs, feature_groups): """According to the FeatureConfig object and feature groups to transform inputs to dense tensors. Args: inputs: A dict contains Keras inputs where the key is the feature name and the value is the Keras input. feature_groups: 2-D list. each sub-list contains feature names of a group Returns: standardized_tensor: A float tensor group_tensors: A dict where the key is group name like "group_0" and the value is the integer tensor. group_max_ids: A dict which has the same keys as group_tensors and the value is the max value of the integer tensor in group_tensors. """ standardized_outputs = [] for feature in STANDARDIZED_FEATURES: standardized_result = Normalizer( subtractor=FEATURES_AVGS[feature], divisor=FEATURES_STDDEVS[feature], )(inputs[feature]) standardized_outputs.append(standardized_result) numerical_tensor = ( tf.concat(standardized_outputs, -1) if standardized_outputs else None ) if not feature_groups: feature_names = BUCKET_FEATURES + HASH_FEATURES feature_groups = [feature_names] id_tensors = {} max_ids = {} for i, features in enumerate(feature_groups): group_name = "group_{}".format(i) id_tensor, max_id = transform_group(inputs, features) id_tensors[group_name] = id_tensor max_ids[group_name] = max_id return numerical_tensor, id_tensors, max_ids def transform_group(inputs, features): """Transform the inputs and concatenate inputs in a group to a dense tensor Args: inputs: A dict contains Keras inputs where the key is the feature name and the value is the Keras input. features: A list which contains feature names. Returns: A integer tensor, max_id: The max value of the returned tensor """ group_items = [] id_offsets = [0] for feature in features: if feature in BUCKET_FEATURES: discretize_layer = Discretization(bins=FEATURE_BOUNDARIES[feature]) transform_output = discretize_layer(inputs[feature]) group_items.append(transform_output) id_offsets.append(id_offsets[-1] + len(discretize_layer.bins) + 1) logger.info("{}:{}".format(feature, discretize_layer.bins)) elif feature in HASH_FEATURES: num_bins = FEATURE_DISTINCT_COUNT[feature] if num_bins > MAX_HASHING_BUCKET_SIZE: num_bins = MAX_HASHING_BUCKET_SIZE hash_layer = Hashing(num_bins=num_bins) transform_output = hash_layer(inputs[feature]) id_offsets.append(id_offsets[-1] + hash_layer.num_bins) group_items.append(transform_output) logger.info("{}:{}".format(feature, hash_layer.num_bins)) else: logger.warning( "The preprocessing is not configured for the feature " "{}".format(feature) ) concated = ConcatenateWithOffset(id_offsets[0:-1])(group_items) max_id = id_offsets[-1] return concated, max_id
36.092437
79
0.686147
935cdfa4a2ac2af7ec1353c1ae48f791a06c5e99
2,313
py
Python
houdini/handlers/login/__init__.py
TeegxCP/houdini
edb55ef6094500c6a20a6827a6af9525ea2b7b36
[ "MIT" ]
444
2020-05-30T22:28:53.000Z
2022-02-13T04:27:48.000Z
houdini/handlers/login/__init__.py
TeegxCP/houdini
edb55ef6094500c6a20a6827a6af9525ea2b7b36
[ "MIT" ]
43
2020-05-18T17:40:12.000Z
2021-11-05T02:53:46.000Z
houdini/handlers/login/__init__.py
TeegxCP/houdini
edb55ef6094500c6a20a6827a6af9525ea2b7b36
[ "MIT" ]
56
2020-05-20T16:31:18.000Z
2022-03-07T19:49:59.000Z
from houdini import handlers from houdini.constants import ClientType from houdini.converters import VersionChkConverter from houdini.data.buddy import BuddyList from houdini.handlers import XMLPacket @handlers.handler(XMLPacket('verChk')) @handlers.allow_once async def handle_version_check(p, version: VersionChkConverter): if not p.server.config.single_client_mode: if p.server.config.legacy_version == version: p.client_type = ClientType.Legacy elif p.server.config.vanilla_version == version: p.client_type = ClientType.Vanilla elif p.server.config.default_version == version: p.client_type = p.server.config.default_client if p.client_type is None: await p.send_xml({'body': {'action': 'apiKO', 'r': '0'}}) await p.close() else: await p.send_xml({'body': {'action': 'apiOK', 'r': '0'}}) @handlers.handler(XMLPacket('rndK')) @handlers.allow_once async def handle_random_key(p, _): await p.send_xml({'body': {'action': 'rndK', 'r': '-1'}, 'k': p.server.config.auth_key}) async def get_server_presence(p, pdata): buddy_worlds = [] world_populations = [] pops = await p.server.redis.hgetall('houdini.population') for server_id, server_population in pops.items(): server_population = 7 if int(server_population) == p.server.config.capacity \ else int(server_population) // (p.server.config.capacity // 6) server_population = server_population if not pdata.moderator else 0 world_populations.append(f'{int(server_id)},{int(server_population)}') server_key = f'houdini.players.{int(server_id)}' if await p.server.redis.scard(server_key): async with p.server.db.transaction(): buddies = BuddyList.select('buddy_id').where(BuddyList.penguin_id == pdata.id).gino.iterate() async with p.server.redis.pipeline(transaction=True) as tr: async for buddy_id, in buddies: tr.sismember(server_key, buddy_id) online_buddies = await tr.execute() if any(online_buddies): buddy_worlds.append(str(int(server_id))) return '|'.join(world_populations), '|'.join(buddy_worlds)
39.87931
109
0.653696
89199b273ca9e9f3c60ee387520a6385f6db6c3e
6,265
py
Python
galpy/potential_src/FlattenedPowerPotential.py
fardal/galpy
93a1b6fc8d138899922127086cc66184919c8cba
[ "BSD-3-Clause" ]
null
null
null
galpy/potential_src/FlattenedPowerPotential.py
fardal/galpy
93a1b6fc8d138899922127086cc66184919c8cba
[ "BSD-3-Clause" ]
null
null
null
galpy/potential_src/FlattenedPowerPotential.py
fardal/galpy
93a1b6fc8d138899922127086cc66184919c8cba
[ "BSD-3-Clause" ]
null
null
null
############################################################################### # FlattenedPowerPotential.py: Power-law potential that is flattened in the # potential (NOT the density) # # amp # phi(R,z)= --------- ; m^2 = R^2 + z^2/q^2 # m^\alpha ############################################################################### import numpy as nu from scipy import special, integrate from galpy.potential_src.Potential import Potential _CORE=10**-8 class FlattenedPowerPotential(Potential): """Class that implements a power-law potential that is flattened in the potential (NOT the density) .. math:: \\Phi(R,z) = -\\frac{\\mathrm{amp}}{\\alpha\\,\\left(R^2+(z/q)^2+\\mathrm{core}^2\\right)^{\\alpha/2}} and the same as LogarithmicHaloPotential for :math:`\\alpha=0` See Figure 1 in `Evans (1994) <http://adsabs.harvard.edu/abs/1994MNRAS.267..333E>`_ for combinations of alpha and q that correspond to positive densities """ def __init__(self,amp=1.,alpha=0.5,q=0.9,core=_CORE,normalize=False): """ NAME: __init__ PURPOSE: initialize a flattened power-law potential INPUT: amp - amplitude to be applied to the potential (default: 1) alpha - power q - flattening core - core radius normalize - if True, normalize such that vc(1.,0.)=1., or, if given as a number, such that the force is this fraction of the force necessary to make vc(1.,0.)=1. OUTPUT: (none) HISTORY: 2013-01-09 - Written - Bovy (IAS) """ Potential.__init__(self,amp=amp) self.alpha= alpha self.q2= q**2. self.core2= core**2. if normalize or \ (isinstance(normalize,(int,float)) \ and not isinstance(normalize,bool)): #pragma: no cover self.normalize(normalize) self.hasC= True self.hasC_dxdv= True def _evaluate(self,R,z,phi=0.,t=0.): """ NAME: _evaluate PURPOSE: evaluate the potential at R,z INPUT: R - Galactocentric cylindrical radius z - vertical height phi - azimuth t - time OUTPUT: Phi(R,z) HISTORY: 2013-01-09 - Started - Bovy (IAS) """ if self.alpha == 0.: return 1./2.*nu.log(R**2.+z**2./self.q2+self.core2) else: m2= self.core2+R**2.+z**2./self.q2 return -m2**(-self.alpha/2.)/self.alpha def _Rforce(self,R,z,phi=0.,t=0.): """ NAME: _Rforce PURPOSE: evaluate the radial force for this potential INPUT: R - Galactocentric cylindrical radius z - vertical height phi - azimuth t - time OUTPUT: the radial force HISTORY: 2010-07-10 - Written - Bovy (NYU) """ if self.alpha == 0.: return -R/(R**2.+z**2./self.q2+self.core2) else: m2= self.core2+R**2.+z**2./self.q2 return -m2**(-self.alpha/2.-1.)*R def _zforce(self,R,z,phi=0.,t=0.): """ NAME: _zforce PURPOSE: evaluate the vertical force for this potential INPUT: R - Galactocentric cylindrical radius z - vertical height phi - azimuth t - time OUTPUT: the vertical force HISTORY: 2010-07-10 - Written - Bovy (NYU) """ if self.alpha == 0.: return -z/self.q2/(R**2.+z**2./self.q2+self.core2) else: m2= self.core2+R**2.+z**2./self.q2 return -m2**(-self.alpha/2.-1.)*z/self.q2 def _R2deriv(self,R,z,phi=0.,t=0.): """ NAME: _Rderiv PURPOSE: evaluate the second radial derivative for this potential INPUT: R - Galactocentric cylindrical radius z - vertical height phi - azimuth t - time OUTPUT: the second radial derivative HISTORY: 2011-10-09 - Written - Bovy (NYU) """ if self.alpha == 0.: denom= 1./(R**2.+z**2./self.q2+self.core2) return denom-2.*R**2.*denom**2. else: m2= self.core2+R**2.+z**2./self.q2 return -m2**(-self.alpha/2.-1.)*((self.alpha+2)*R**2./m2-1.) def _z2deriv(self,R,z,phi=0.,t=0.): """ NAME: _z2deriv PURPOSE: evaluate the second vertical derivative for this potential INPUT: R - Galactocentric cylindrical radius z - vertical height phi - azimuth t- time OUTPUT: the second vertical derivative HISTORY: 2012-07-26 - Written - Bovy (IAS@MPIA) """ if self.alpha == 0.: denom= 1./(R**2.+z**2./self.q2+self.core2) return denom/self.q2-2.*z**2.*denom**2./self.q2**2. else: m2= self.core2+R**2.+z**2./self.q2 return -1./self.q2*m2**(-self.alpha/2.-1.)*((self.alpha+2)*z**2./m2/self.q2-1.) def _dens(self,R,z,phi=0.,t=0.): """ NAME: _dens PURPOSE: evaluate the density force for this potential INPUT: R - Galactocentric cylindrical radius z - vertical height phi - azimuth t - time OUTPUT: the density HISTORY: 2013-01-09 - Written - Bovy (IAS) """ if self.alpha == 0.: return 1./4./nu.pi/self.q2*((2.*self.q2+1.)*self.core2+R**2.\ +(2.-1./self.q2)*z**2.)/\ (R**2.+z**2./self.q2+self.core2)**2. else: m2= self.core2+R**2.+z**2./self.q2 return 1./self.q2*(self.core2*(1.+2.*self.q2)+R**2.*(1.-self.alpha*self.q2)+z**2.*(2.-(1.+self.alpha)/self.q2))*m2**(-self.alpha/2.-2.)/4./nu.pi
31.014851
172
0.480447
e6866b851103bd65fe3988d9b6f2dd5bc74c5176
5,978
py
Python
fkie_iop_node_manager/src/fkie_iop_node_manager/statistics/collector.py
fkie/iop_node_manager
c2e12989a6baf7098c93c33ca6e95acf7584e462
[ "Apache-2.0" ]
1
2021-05-05T14:57:06.000Z
2021-05-05T14:57:06.000Z
fkie_iop_node_manager/src/fkie_iop_node_manager/statistics/collector.py
fkie/iop_node_manager
c2e12989a6baf7098c93c33ca6e95acf7584e462
[ "Apache-2.0" ]
null
null
null
fkie_iop_node_manager/src/fkie_iop_node_manager/statistics/collector.py
fkie/iop_node_manager
c2e12989a6baf7098c93c33ca6e95acf7584e462
[ "Apache-2.0" ]
null
null
null
# **************************************************************************** # # fkie_iop_node_manager # Copyright 2019 Fraunhofer FKIE # Author: Alexander Tiderko # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # **************************************************************************** from __future__ import division, absolute_import, print_function, unicode_literals import logging import os import threading import time import traceback from .msg_entry import MsgEntry class Empty(Exception): pass class Full(Exception): pass class Collector(object): def __init__(self, cfg, logger_name='collector'): ''' :param fkie_iop_node_manager.config.Config cfg: configuration ''' self.cfg = cfg self.logger = logging.getLogger(logger_name) self._stop = False self._cv = threading.Condition() self._msgs_recv = [] self._idx_current = 0 self._count = 0 self.stats_file = None self.stats_path = '' self.stats_enabled = self.cfg.param('statistics/enable', False) self.logger.info("Statistics enabled: %s" % self.stats_enabled) if self.stats_enabled: self._stats_file_open() self.cfg.add_param_listener('global/statistics/enable', self._callback_param_enable) self._thread_analyse = threading.Thread(target=self._loop_write_to_file) self._thread_analyse.start() def stop(self): self._stop = True self.clear() self._stats_file_close() def clear(self): self.logger.debug("Clear collector") with self._cv: del self._msgs_recv[:] self._cv.notify() def _stats_file_open(self): if self.stats_file is not None: return try: self.stats_dir = os.path.expanduser(self.cfg.param('statistics/path', False)) if not os.path.isdir(self.stats_dir): os.makedirs(self.stats_dir) self.stats_path = os.path.join(self.stats_dir, 'last.msgs') if os.path.exists(self.stats_path): print("rename", self.stats_path, os.path.join(self.stats_dir, 'prev_%.0f.msgs' % time.time())) os.rename(self.stats_path, os.path.join(self.stats_dir, 'prev_%.0f.msgs' % time.time())) self.logger.info(" write statistics to '%s'" % self.stats_path) self.stats_file = open(self.stats_path, 'w+') self.stats_file.write(MsgEntry.title()) self.stats_file.flush() except Exception as err: self.stats_file = None self.logger.warning("Error while open statistics file: %s" % err) def _stats_file_close(self): try: if self.stats_file is not None: self.stats_file.close() self.stats_file = None except Exception as err: self.logger.warning("Error while close statistics file: %s" % err) def str2bool(self, v): if isinstance(v, bool): return v return v.lower() in ["yes", "true", "t", "1"] def _callback_param_enable(self, param, value): boolval = self.str2bool(value) if boolval: self._stats_file_open() else: self._stats_file_close() def add(self, msg): ''' Adds a message to the queue. The items of this queue are written in a separate thread to a file. :param fkie_iop_node_manager.message.Mesage msg: received or sent message. ''' if self.stats_file is None: return msg.ts_recv = time.time() with self._cv: self._msgs_recv.append(msg) self._count += 1 self._cv.notify() def get(self, block=True): try: with self._cv: if self.size() == 0: if block: self._cv.wait() else: item = None try: item = self._msgs_recv.pop(0) self._count -= 1 except IndexError: pass if item is None: raise Empty() self.logger.debug("get %s" % item) return item return None except Exception: import traceback print(traceback.format_exc()) def size(self): return self._count def _loop_write_to_file(self): ''' Writes the messages of the queue to a file. ''' while not self._stop: try: msg = self.get() if msg is not None: if msg.tinfo_src is None: self.logger.warning("Collects a message without valid tinfo_src, ignore...") continue try: self.stats_file.write(MsgEntry.toline(msg, self.cfg)) self.stats_file.flush() except Exception as err: print(traceback.format_exc()) self.logger.warning("Error write message to statistics file: %s" % err) except Empty: pass except Exception as e: print(traceback.format_exc()) self.logger.warning("Error while get send item from collector queue: %s" % e)
34.554913
110
0.556708
6b9e076b3fe61f349d4021b5919bece1fe3756b4
12,410
py
Python
sdks/python/client/argo_workflows/model/key_to_path.py
parallel-domain/argo-workflows
c055b48b6e216dcdeb1c9840f14199a72329bdaf
[ "Apache-2.0" ]
1
2022-02-20T16:56:43.000Z
2022-02-20T16:56:43.000Z
sdks/python/client/argo_workflows/model/key_to_path.py
parallel-domain/argo-workflows
c055b48b6e216dcdeb1c9840f14199a72329bdaf
[ "Apache-2.0" ]
10
2022-02-21T04:17:37.000Z
2022-03-11T11:34:30.000Z
sdks/python/client/argo_workflows/model/key_to_path.py
parallel-domain/argo-workflows
c055b48b6e216dcdeb1c9840f14199a72329bdaf
[ "Apache-2.0" ]
null
null
null
""" Argo Workflows API Argo Workflows is an open source container-native workflow engine for orchestrating parallel jobs on Kubernetes. For more information, please see https://argoproj.github.io/argo-workflows/ # noqa: E501 The version of the OpenAPI document: VERSION Generated by: https://openapi-generator.tech """ import re # noqa: F401 import sys # noqa: F401 from argo_workflows.model_utils import ( # noqa: F401 ApiTypeError, ModelComposed, ModelNormal, ModelSimple, cached_property, change_keys_js_to_python, convert_js_args_to_python_args, date, datetime, file_type, none_type, validate_get_composed_info, ) from ..model_utils import OpenApiModel from argo_workflows.exceptions import ApiAttributeError class KeyToPath(ModelNormal): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. Attributes: allowed_values (dict): The key is the tuple path to the attribute and the for var_name this is (var_name,). The value is a dict with a capitalized key describing the allowed value and an allowed value. These dicts store the allowed enum values. attribute_map (dict): The key is attribute name and the value is json key in definition. discriminator_value_class_map (dict): A dict to go from the discriminator variable value to the discriminator class name. validations (dict): The key is the tuple path to the attribute and the for var_name this is (var_name,). The value is a dict that stores validations for max_length, min_length, max_items, min_items, exclusive_maximum, inclusive_maximum, exclusive_minimum, inclusive_minimum, and regex. additional_properties_type (tuple): A tuple of classes accepted as additional properties values. """ allowed_values = { } validations = { } @cached_property def additional_properties_type(): """ This must be a method because a model may have properties that are of type self, this must run after the class is loaded """ return (bool, date, datetime, dict, float, int, list, str, none_type,) # noqa: E501 _nullable = False @cached_property def openapi_types(): """ This must be a method because a model may have properties that are of type self, this must run after the class is loaded Returns openapi_types (dict): The key is attribute name and the value is attribute type. """ return { 'key': (str,), # noqa: E501 'path': (str,), # noqa: E501 'mode': (int,), # noqa: E501 } @cached_property def discriminator(): return None attribute_map = { 'key': 'key', # noqa: E501 'path': 'path', # noqa: E501 'mode': 'mode', # noqa: E501 } read_only_vars = { } _composed_schemas = {} @classmethod @convert_js_args_to_python_args def _from_openapi_data(cls, key, path, *args, **kwargs): # noqa: E501 """KeyToPath - a model defined in OpenAPI Args: key (str): The key to project. path (str): The relative path of the file to map the key to. May not be an absolute path. May not contain the path element '..'. May not start with the string '..'. Keyword Args: _check_type (bool): if True, values for parameters in openapi_types will be type checked and a TypeError will be raised if the wrong type is input. Defaults to True _path_to_item (tuple/list): This is a list of keys or values to drill down to the model in received_data when deserializing a response _spec_property_naming (bool): True if the variable names in the input data are serialized names, as specified in the OpenAPI document. False if the variable names in the input data are pythonic names, e.g. snake case (default) _configuration (Configuration): the instance to use when deserializing a file_type parameter. If passed, type conversion is attempted If omitted no type conversion is done. _visited_composed_classes (tuple): This stores a tuple of classes that we have traveled through so that if we see that class again we will not use its discriminator again. When traveling through a discriminator, the composed schema that is is traveled through is added to this set. For example if Animal has a discriminator petType and we pass in "Dog", and the class Dog allOf includes Animal, we move through Animal once using the discriminator, and pick Dog. Then in Dog, we will make an instance of the Animal class but this time we won't travel through its discriminator because we passed in _visited_composed_classes = (Animal,) mode (int): Optional: mode bits to use on this file, must be a value between 0 and 0777. If not specified, the volume defaultMode will be used. This might be in conflict with other options that affect the file mode, like fsGroup, and the result can be other mode bits set.. [optional] # noqa: E501 """ _check_type = kwargs.pop('_check_type', True) _spec_property_naming = kwargs.pop('_spec_property_naming', False) _path_to_item = kwargs.pop('_path_to_item', ()) _configuration = kwargs.pop('_configuration', None) _visited_composed_classes = kwargs.pop('_visited_composed_classes', ()) self = super(OpenApiModel, cls).__new__(cls) if args: raise ApiTypeError( "Invalid positional arguments=%s passed to %s. Remove those invalid positional arguments." % ( args, self.__class__.__name__, ), path_to_item=_path_to_item, valid_classes=(self.__class__,), ) self._data_store = {} self._check_type = _check_type self._spec_property_naming = _spec_property_naming self._path_to_item = _path_to_item self._configuration = _configuration self._visited_composed_classes = _visited_composed_classes + (self.__class__,) self.key = key self.path = path for var_name, var_value in kwargs.items(): if var_name not in self.attribute_map and \ self._configuration is not None and \ self._configuration.discard_unknown_keys and \ self.additional_properties_type is None: # discard variable. continue setattr(self, var_name, var_value) return self required_properties = set([ '_data_store', '_check_type', '_spec_property_naming', '_path_to_item', '_configuration', '_visited_composed_classes', ]) @convert_js_args_to_python_args def __init__(self, key, path, *args, **kwargs): # noqa: E501 """KeyToPath - a model defined in OpenAPI Args: key (str): The key to project. path (str): The relative path of the file to map the key to. May not be an absolute path. May not contain the path element '..'. May not start with the string '..'. Keyword Args: _check_type (bool): if True, values for parameters in openapi_types will be type checked and a TypeError will be raised if the wrong type is input. Defaults to True _path_to_item (tuple/list): This is a list of keys or values to drill down to the model in received_data when deserializing a response _spec_property_naming (bool): True if the variable names in the input data are serialized names, as specified in the OpenAPI document. False if the variable names in the input data are pythonic names, e.g. snake case (default) _configuration (Configuration): the instance to use when deserializing a file_type parameter. If passed, type conversion is attempted If omitted no type conversion is done. _visited_composed_classes (tuple): This stores a tuple of classes that we have traveled through so that if we see that class again we will not use its discriminator again. When traveling through a discriminator, the composed schema that is is traveled through is added to this set. For example if Animal has a discriminator petType and we pass in "Dog", and the class Dog allOf includes Animal, we move through Animal once using the discriminator, and pick Dog. Then in Dog, we will make an instance of the Animal class but this time we won't travel through its discriminator because we passed in _visited_composed_classes = (Animal,) mode (int): Optional: mode bits to use on this file, must be a value between 0 and 0777. If not specified, the volume defaultMode will be used. This might be in conflict with other options that affect the file mode, like fsGroup, and the result can be other mode bits set.. [optional] # noqa: E501 """ _check_type = kwargs.pop('_check_type', True) _spec_property_naming = kwargs.pop('_spec_property_naming', False) _path_to_item = kwargs.pop('_path_to_item', ()) _configuration = kwargs.pop('_configuration', None) _visited_composed_classes = kwargs.pop('_visited_composed_classes', ()) if args: raise ApiTypeError( "Invalid positional arguments=%s passed to %s. Remove those invalid positional arguments." % ( args, self.__class__.__name__, ), path_to_item=_path_to_item, valid_classes=(self.__class__,), ) self._data_store = {} self._check_type = _check_type self._spec_property_naming = _spec_property_naming self._path_to_item = _path_to_item self._configuration = _configuration self._visited_composed_classes = _visited_composed_classes + (self.__class__,) self.key = key self.path = path for var_name, var_value in kwargs.items(): if var_name not in self.attribute_map and \ self._configuration is not None and \ self._configuration.discard_unknown_keys and \ self.additional_properties_type is None: # discard variable. continue setattr(self, var_name, var_value) if var_name in self.read_only_vars: raise ApiAttributeError(f"`{var_name}` is a read-only attribute. Use `from_openapi_data` to instantiate " f"class with read only attributes.")
45.625
310
0.578566
37d7feeccb3e6c0919f8d30e723c3af1a9445465
662
py
Python
venv/lib/python3.9/site-packages/libfuturize/fixes/fix_add__future__imports_except_unicode_literals.py
qarik-hanrattyjen/apache-airflow-backport-providers-google-2021.3.3
630dcef73e6a258b6e9a52f934e2dd912ce741f8
[ "Apache-2.0" ]
908
2015-01-01T21:20:45.000Z
2022-03-29T20:47:16.000Z
venv/lib/python3.9/site-packages/libfuturize/fixes/fix_add__future__imports_except_unicode_literals.py
qarik-hanrattyjen/apache-airflow-backport-providers-google-2021.3.3
630dcef73e6a258b6e9a52f934e2dd912ce741f8
[ "Apache-2.0" ]
402
2015-01-04T01:30:19.000Z
2022-03-24T11:56:38.000Z
venv/lib/python3.9/site-packages/libfuturize/fixes/fix_add__future__imports_except_unicode_literals.py
qarik-hanrattyjen/apache-airflow-backport-providers-google-2021.3.3
630dcef73e6a258b6e9a52f934e2dd912ce741f8
[ "Apache-2.0" ]
305
2015-01-18T19:29:37.000Z
2022-03-24T09:40:09.000Z
""" Fixer for adding: from __future__ import absolute_import from __future__ import division from __future__ import print_function This is "stage 1": hopefully uncontroversial changes. Stage 2 adds ``unicode_literals``. """ from lib2to3 import fixer_base from libfuturize.fixer_util import future_import class FixAddFutureImportsExceptUnicodeLiterals(fixer_base.BaseFix): BM_compatible = True PATTERN = "file_input" run_order = 9 def transform(self, node, results): # Reverse order: future_import(u"absolute_import", node) future_import(u"division", node) future_import(u"print_function", node)
24.518519
67
0.73565
3ec6bda85c25e2b025def7d171ba9457d0985703
475
py
Python
apps/user_app/migrations/0006_auto_20161227_2017.py
lightless233/npiss
8338f50d971600fe2b2366836ca2fb543f2276d5
[ "MIT" ]
1
2016-11-22T13:25:02.000Z
2016-11-22T13:25:02.000Z
apps/user_app/migrations/0006_auto_20161227_2017.py
LiGhT1EsS/npiss
8338f50d971600fe2b2366836ca2fb543f2276d5
[ "MIT" ]
4
2020-06-05T17:28:20.000Z
2022-03-11T23:15:49.000Z
apps/user_app/migrations/0006_auto_20161227_2017.py
lightless233/npiss
8338f50d971600fe2b2366836ca2fb543f2276d5
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # Generated by Django 1.10.3 on 2016-12-27 12:17 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('user_app', '0005_auto_20161227_2016'), ] operations = [ migrations.AlterField( model_name='pissuser', name='created_time', field=models.DateTimeField(auto_now=True, null=True), ), ]
22.619048
65
0.629474
5c3b1724c19e25ee420ec68a069a3bb17d0a9ee4
6,526
py
Python
texar/tf/module_base.py
jiajunhua/asyml-texar
22d7b8eea5bd43eef68b615ba87b2e8220bafdf8
[ "Apache-2.0" ]
1
2020-09-18T04:36:43.000Z
2020-09-18T04:36:43.000Z
texar/tf/module_base.py
jiajunhua/asyml-texar
22d7b8eea5bd43eef68b615ba87b2e8220bafdf8
[ "Apache-2.0" ]
6
2020-09-26T01:31:48.000Z
2021-08-25T16:13:51.000Z
texar/tf/module_base.py
jiajunhua/asyml-texar
22d7b8eea5bd43eef68b615ba87b2e8220bafdf8
[ "Apache-2.0" ]
null
null
null
# Copyright 2018 The Texar Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Base class for modules. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import re import tensorflow as tf from texar.tf.utils.exceptions import TexarError from texar.tf.hyperparams import HParams __all__ = [ "ModuleBase" ] class ModuleBase(object): """Base class inherited by modules that create Variables and are configurable through hyperparameters. A Texar module inheriting :class:`~texar.tf.ModuleBase` has following key features: - **Convenient variable re-use**: A module instance creates \ its own sets of variables, and automatically re-uses its variables on \ subsequent calls. Hence TF variable/name scope is \ transparent to users. For example: .. code-block:: python encoder = UnidirectionalRNNEncoder(hparams) # create instance output_1 = encoder(inputs_1) # variables are created output_2 = encoder(inputs_2) # variables are re-used print(encoder.trainable_variables) # access trainable variables # [ ... ] - **Configurable through hyperparameters**: Each module defines \ allowed hyperparameters and default values. Hyperparameters not \ specified by users will take default values. - **Callable**: As the above example, a module instance is "called" \ with input tensors and returns output tensors. Every call of a module \ will add ops to the Graph to perform the module's logic. Args: hparams (dict, optional): Hyperparameters of the module. See :meth:`default_hparams` for the structure and default values. .. document private functions .. automethod:: _build """ def __init__(self, hparams=None): if not hasattr(self, '_hparams'): self._hparams = HParams(hparams, self.default_hparams()) else: # Probably already parsed by subclasses. We rely on subclass # implementations to get this right. # As a sanity check, we require `hparams` to be `None` in this case. if hparams is not None: raise ValueError( "`self._hparams` already exists. Argument `hparams` " "must be set to `None` in this case.") self._template = tf.make_template(self._hparams.name, self._build, create_scope_now_=True) self._unique_name = self.variable_scope.name.split("/")[-1] self._trainable_variables = [] self._built = False @staticmethod def default_hparams(): """Returns a `dict` of hyperparameters of the module with default values. Used to replace the missing values of input `hparams` during module construction. .. code-block:: python { "name": "module" } """ return { "name": "module" } def _build(self, *args, **kwargs): """Subclass must implement this method to build the logic. Args: *args: Arguments. **kwargs: Keyword arguments. Returns: Output Tensor(s). """ raise NotImplementedError def __call__(self, *args, **kwargs): """Executes the module logic defined in _build method Args: *args: Arguments of _build method. **kwargs: Keyword arguments of _build method. Returns: The output of _build method. """ return self._template(*args, **kwargs) def _add_internal_trainable_variables(self): # pylint: disable=invalid-name """Collects trainable variables constructured internally in this module. This is typically called at the end of `_build()` where all necessary trainable variables have been constructed. """ scope_name = self.variable_scope.name # Escape to handle possible "." characters in the name. # Append a slash to the end to avoid searching scopes that have this # scope name as a prefix. scope_name = re.escape(scope_name) + "/" internal_trainable_variables = tf.get_collection( tf.GraphKeys.TRAINABLE_VARIABLES, scope=scope_name) self._add_trainable_variable(internal_trainable_variables) def _add_trainable_variable(self, variable): """Adds a trainable variable to the trainable variable list of the module. Args: variable: a (list of) trainable variable(s) constructed either internally in the module or constructured outside but used inside the module. """ if isinstance(variable, (list, tuple)): for var in variable: self._add_trainable_variable(var) else: if variable not in self._trainable_variables: self._trainable_variables.append(variable) @property def variable_scope(self): """The variable scope of the module. """ return self._template.variable_scope @property def name(self): """The uniquified name of the module. """ return self._unique_name @property def trainable_variables(self): """The list of trainable variables of the module. """ if not self._built: raise TexarError( "Attempting to access trainable_variables before module %s " "was fully built. The module is built once it is called, " "e.g., with `%s(...)`" % (self.name, self.name)) return self._trainable_variables @property def hparams(self): """An :class:`~texar.tf.HParams` instance. The hyperparameters of the module. """ return self._hparams
34.529101
80
0.630555
6c664978ad6b2474b5abc6332caee877be61fb00
22,466
py
Python
lgp/models/alfred/hlsm/hlsm_subgoal_model.py
keio-smilab22/HLSM-MAT
6f34a5ec9226b28c01ae47ef16fe28662ab32935
[ "BSD-3-Clause" ]
null
null
null
lgp/models/alfred/hlsm/hlsm_subgoal_model.py
keio-smilab22/HLSM-MAT
6f34a5ec9226b28c01ae47ef16fe28662ab32935
[ "BSD-3-Clause" ]
null
null
null
lgp/models/alfred/hlsm/hlsm_subgoal_model.py
keio-smilab22/HLSM-MAT
6f34a5ec9226b28c01ae47ef16fe28662ab32935
[ "BSD-3-Clause" ]
null
null
null
from typing import Dict, List, Union import torch import torch.nn as nn from lgp.abcd.functions.action_proposal import ActionProposal from lgp.abcd.model import LearnableModel import lgp.env.alfred.segmentation_definitions as segdef from lgp.env.alfred.alfred_subgoal import AlfredSubgoal from lgp.ops.spatial_distr import multidim_logsoftmax from lgp.models.alfred.hlsm.hlsm_state_repr import AlfredSpatialStateRepr from lgp.models.alfred.hlsm.hlsm_task_repr import HlsmTaskRepr from lgp.models.alfred.hlsm.transformer_modules.subgoal_history_encoder import SubgoalHistoryEncoder from lgp.models.alfred.hlsm.transformer_modules.state_repr_encoder_pooled import StateReprEncoderPooled from lgp.models.alfred.hlsm.transformer_modules.language_encoder import BERTLanguageEncoder from lgp.models.alfred.hlsm.transformer_modules.action_predictor import ActionPredictor from lgp.models.alfred.hlsm.unets.lingunet_3 import Lingunet3 from lgp.models.alfred.voxel_grid import VoxelGrid from lgp.ops.misc import batched_index_select from lgp.utils.viz import show_image from lgp.flags import GLOBAL_VIZ from lgp.parameters import Hyperparams class HlsmSubgoalModel(ActionProposal, LearnableModel): class ModelState(ActionProposal.ModelState): def __init__(self): self.action_history = [] self.logged_failure = False self.step = 0 def action_execution_failed(self): # Remove the last action from the action history and allow a re-try. if not self.logged_failure: print(" LOGGING SKILL FAILURE") self.action_history = self.action_history[:-1] self.logged_failure = True def log_action(self, action): # When we log a new predicted action, reset the logged_failure flag so that if this action fails, # it can be removed from the action history self.logged_failure = False self.action_history.append(action) print(" LOGGING NEW ACTION") @classmethod def blank(cls): return None def __init__(self, hparams: Hyperparams): super().__init__() self.action_type_dim = AlfredSubgoal.get_action_type_space_dim() self.data_c = AlfredSpatialStateRepr.get_num_data_channels() self.hidden_dim = 128 self.trm_dim = hparams.get("trm_dim") self.no_posemb_baseline = hparams.get("no_posemb_baseline", False) self.no_acthist_baseline = hparams.get("no_acthist_baseline", False) self.no_vision_baseline = hparams.get("no_vision_baseline", False) self.no_language_baseline = hparams.get("no_language_baseline", False) print("SpatialTransformerModel2 baseline config:" f"No vision: {self.no_vision_baseline}" f"No language: {self.no_language_baseline}" f"No posemb: {self.no_posemb_baseline}" f"No acthist: {self.no_acthist_baseline}") # Networks / Models if not self.no_language_baseline: self.language_encoder = BERTLanguageEncoder(self.hidden_dim) if not self.no_vision_baseline: self.state_repr_encoder = StateReprEncoderPooled(self.hidden_dim) self.action_history_encoder = SubgoalHistoryEncoder(self.hidden_dim, ablate_no_acthist=self.no_acthist_baseline, ablate_no_posemb=self.no_posemb_baseline) self.mask_model = Lingunet3(2 * self.action_type_dim + AlfredSpatialStateRepr.get_2d_feature_dim(), self.hidden_dim, 1) self.action_predictor = ActionPredictor(self.hidden_dim, joint_prob=True, trm_dim=self.trm_dim) self.nllloss = nn.NLLLoss(reduce=True, size_average=True) self.act = nn.LeakyReLU() self.iter_step = 0 self.model_state = None self.log_internal_activations = True self.trace = { "subgoal": None } self.metrics = {} self.reset_state() def set_log_internal_activations(self, enable): self.log_internal_activations = enable def _get_state_for_action(self, action: AlfredSubgoal) -> "ActionProposal.ModelState": # TODO: If we want to do any action-conditioned reasoning, do it here. # TODO: Make sure to not increment model_state.step in two different places (here and forward) return self.model_state def get_trace(self, device="cpu") -> Dict: return {k: v.to(device) if v is not None else v for k, v in self.trace.items()} def clear_trace(self): ... #self.trace = {} def action_execution_failed(self): self.model_state.action_execution_failed() def log_action(self, action: AlfredSubgoal): self.model_state.log_action(action) def get_state(self) -> "HlsmSubgoalModel.ModelState": return self.model_state def set_state(self, state: "HlsmSubgoalModel.ModelState"): self.model_state = state def reset_state(self): self.model_state = HlsmSubgoalModel.ModelState() self.trace = { "subgoal": None } def _argmax_action(self, type_distr, arg_vectors): act_type_id = torch.argmax(type_distr, dim=1) act_type_id = act_type_id[0].item() act_type_str = AlfredSubgoal.action_type_intid_to_str(act_type_id) # TODO: Check for HL->Subgoal arg_vector = arg_vectors[:, act_type_id, :] # Computed for debugging purposes only top5_objects = [(segdef.object_intid_to_string(x.item() - 1), arg_vector[0, x.item()].item()) for x in reversed(arg_vector[0].argsort()[-5:])] # print(f"Top5 objects: {top5_objects}") pass_objects = arg_vector > 0.04 arg_vector = arg_vector * pass_objects arg_vector /= (arg_vector.sum() + 1e-10) return AlfredSubgoal.from_type_str_and_arg_vector(act_type_str, arg_vector) def _sample_subgoal(self, type_distr, arg_vectors): act_type_id = torch.distributions.Categorical(type_distr).sample().item() act_type_str = AlfredSubgoal.action_type_intid_to_str(act_type_id) arg_vector = arg_vectors[:, act_type_id, :] top5_types = [(AlfredSubgoal.action_type_intid_to_str(a.item()), type_distr[0, a.item()].item()) for a in reversed(type_distr[0].argsort()[-5:])] print(f"Top5 types: {top5_types}") # Computed for debugging purposes only top5_objects = [(segdef.object_intid_to_string(x.item() - 1), arg_vector[0, x.item()].item()) for x in reversed(arg_vector[0].argsort()[-5:])] print(f"Top5 objects: {top5_objects}") print(f"Action history: {[str(a) for a in self.model_state.action_history]}") # Zero out the long tail - otherwise that contains most of the prob mass which doesn't make sense. pass_objects = arg_vector > 0.04 arg_vector = arg_vector * pass_objects arg_vector /= (arg_vector.sum() + 1e-10) act_arg_id = torch.distributions.Categorical(arg_vector).sample().item() arg_vector_out = torch.zeros_like(arg_vector) arg_vector_out[0, act_arg_id] = 1.0 return AlfredSubgoal.from_type_str_and_arg_vector(act_type_str, arg_vector_out) def mle(self, state: AlfredSpatialStateRepr, task: HlsmTaskRepr, model_state: "HlsmSubgoalModel.ModelState"): return self.forward_inference(state, task, model_state) # --------------------------------------------------------------------------------- def _log_activations(self, states, act_type_distr, act_arg_distr, action): if self.log_internal_activations: with torch.no_grad(): act_arg_distr_argmax_type = act_arg_distr[:, act_type_distr[0].argmax(), :] state_kernel = act_arg_distr_argmax_type[:, 1:].clone() state_data = states.data.data # B x C x W x L x H state_response = torch.einsum("bcwlh,bc->bwlh", state_data.float(), state_kernel.float()) # B x W x L x H action_arg_distribution_log = multidim_logsoftmax(state_response, dims=(1, 2, 3)) # Replicate - use the same argument distribution for "all action types" action_arg_distribution_log = action_arg_distribution_log[:, None, :, :, :].repeat( (1, self.action_type_dim, 1, 1, 1)) #self.trace["state_repr"] = states #self.trace["filters"] = state_kernel #self.trace["action_type_distribution"] = torch.exp(act_type_distr) #self.trace["action_arg_distribution"] = torch.exp(action_arg_distribution_log) self.trace["subgoal"] = action return def forward_inference(self, states: AlfredSpatialStateRepr, tasks: HlsmTaskRepr, model_state: "HlsmSubgoalModel.ModelState"): device = states.data.data.device action_history = model_state.action_history # The most recent timestep doesn't have an action label - that's what we're predicting. # Add a dummy tensor there. The downstream model doesn't look at it anyway (it's masked out in attention masks) current_action_label = torch.zeros((1, 2), device=device, dtype=torch.int64) current_action_label[0, 0] = 2 current_action_label[0, 1] = 33 action_labels = torch.cat([a.to_tensor(device=device, dtype=torch.int64) for a in action_history] + [current_action_label], dim=0) batch_id = [0 for _ in range(len(action_labels))] _, _, act_type_logprobs, act_arg_logprobs, task_emb = self._forward_model(states, tasks, action_labels, batch_id) # We care about predicting the CURRENT action (the last one), # even though we are running the model on the entire action history sequence. act_type_logprob = act_type_logprobs[-1:, :] act_arg_logprob = act_arg_logprobs[-1:, :] type_distr = torch.exp(act_type_logprob) arg_distr = torch.exp(act_arg_logprob) arg_distr = arg_distr / arg_distr.sum(dim=2, keepdim=True) # Re-normalize subgoal = self._sample_subgoal(type_distr, arg_distr) arg_mask_3d = self.forward_mask(states, task_emb, subgoal, self.model_state.action_history, batch_training=False) arg_mask_voxelgrid = VoxelGrid(arg_mask_3d, arg_mask_3d, states.data.voxel_size, states.data.origin) subgoal.argument_mask = arg_mask_voxelgrid # Create some graphics for the gifs self._log_activations(states, torch.exp(act_type_logprob), torch.exp(act_arg_logprob), subgoal) return subgoal def _forward_model(self, states: Union[AlfredSpatialStateRepr, torch.tensor], tasks: HlsmTaskRepr, sem_actions: torch.tensor, batch_id: List[int], adv_training: bool = False, adv_modality: list = None, adv_delta_state: torch.tensor = None, adv_delta_task: torch.tensor = None, adv_delta_action_hist: torch.tensor = None): # sem_actions: B x 2 bs = states.data.data.shape[0] device = states.data.data.device # TxD_{u} if self.no_language_baseline: task_embeddings = torch.zeros((bs, self.hidden_dim), device=device, dtype=torch.float32) else: task_embeddings = self.language_encoder(tasks) # TxD_{a} action_hist_embeddings = self.action_history_encoder(sem_actions, batch_id) # TxD_{s} if self.no_vision_baseline: state_embeddings = torch.zeros((bs, self.hidden_dim), device=device) else: state_embeddings = self.state_repr_encoder(states, task_embeddings, action_hist_embeddings) # Drop the last action history embedding action_hist_embeddings = action_hist_embeddings[:-1] # If we're running inference, we want to predict the most recent action from the most recent state. # Take the most recent action embedding ns = state_embeddings.shape[0] action_hist_embeddings = action_hist_embeddings[-ns:] if adv_training and 'state' in adv_modality: state_embeddings = state_embeddings + adv_delta_state if adv_training and 'task' in adv_modality: task_embeddings = task_embeddings + adv_delta_task if adv_training and 'action_hist' in adv_modality: action_hist_embeddings = action_hist_embeddings + adv_delta_action_hist act_type_prob, act_arg_prob, act_type_logprob, act_arg_logprob = self.action_predictor( state_embeddings, task_embeddings, action_hist_embeddings) return act_type_prob, act_arg_prob, act_type_logprob, act_arg_logprob, task_embeddings def forward_mask(self, state_repr, task_emb : torch.tensor, action: AlfredSubgoal, action_history: List[AlfredSubgoal], batch_training=False): # STATE REPRESENTATION state_features = state_repr.get_nav_features_2d() # ACTION HISTORY REPRESENTATION if len(action_history) > 0: action_history = AlfredSubgoal.collate(action_history) past_action_types = action_history.type_oh() past_action_masks = action_history.get_argument_mask() past_action_typed_mask_3d = past_action_types[:, :, None, None, None] * past_action_masks action_history_typed_masks_2d = past_action_typed_mask_3d.cumsum(dim=0).max(dim=4).values else: b, f, h, w = state_features.shape ac = AlfredSubgoal.get_action_type_space_dim() action_history_typed_masks_2d = torch.zeros((b, ac, h, w), device=state_features.device) # PROPOSED ACTION REPRESENTATION # Build proposal of current action type and arg proposed_action_masks = action.build_spatial_arg_proposal(state_repr) proposed_action_masks_2d = proposed_action_masks.max(dim=4).values proposed_action_types = action.type_oh() proposed_typed_masks_2d = proposed_action_types[:, :, None, None] * proposed_action_masks_2d if batch_training: # Roll action histories forward so that the model can't peek at curent action argument masks action_history_typed_masks_2d = action_history_typed_masks_2d.roll(shifts=1, dims=0).clone() # The last action rolls back to the start - zero it out. action_history_typed_masks_2d[0] = 0 else: # Take the last action history mask representation action_history_typed_masks_2d = action_history_typed_masks_2d[-1:] # Run the mask prediction LingUNet x = torch.cat([action_history_typed_masks_2d, proposed_typed_masks_2d, state_features], dim=1) ctx = task_emb pred_masks_2d = self.mask_model(x, ctx) pred_logprobs_2d = multidim_logsoftmax(pred_masks_2d, dims=(2, 3)) if batch_training: # During training, learn to predict masks in top-down view. No need to go to 3D return pred_logprobs_2d, proposed_action_masks_2d else: # At test-time, lift the mask to 3D by masking the proposals pred_probs_3d = proposed_action_masks * torch.exp(pred_logprobs_2d)[:, :, :, :, None] # Standardize against the peak activation pred_probs_3d = pred_probs_3d / (pred_probs_3d.max() + 1e-10) VIZ = GLOBAL_VIZ if VIZ: show_image(pred_probs_3d.max(dim=4).values[0].detach().cpu(), "Refined mask", waitkey=1, scale=4) show_image(proposed_action_masks_2d[0].detach().cpu(), "Proposed mask", waitkey=1, scale=4) return pred_probs_3d def get_name(self) -> str: return "alfred_spatial_transformer_model_2" def success(self, pred_logits, class_indices): amax_idx = pred_logits.argmax(1) target_idx = class_indices #print(amax_idx[0], target_idx[0])# == target_idx.sum()) succ = (amax_idx == target_idx) return succ def collect_metrics(self, act_type_logprob, act_type_gt, act_arg_logprob, act_arg_gt, sem_actions, batch_id): # Metrics: type_step_success = self.success(act_type_logprob, act_type_gt) arg_step_success = self.success(act_arg_logprob, act_arg_gt) tensor_batchid = torch.tensor(batch_id, device=sem_actions.device) type_per_step_success_rate = type_step_success.sum().item() / type_step_success.shape[0] arg_per_step_success_rate = arg_step_success.sum().item() / arg_step_success.shape[0] act_per_step_success_rate = (type_step_success * arg_step_success).sum().item() / type_step_success.shape[0] type_full_correct = 0 arg_full_correct = 0 act_full_correct = 0 num_b = max(batch_id) + 1 for b in range(num_b): isb = (tensor_batchid == b) b_type_succ_cnt = (type_step_success * isb).sum() b_arg_succ_cnt = (arg_step_success * isb).sum() b_cnt = isb.sum() b_tc = (b_type_succ_cnt == b_cnt).item() b_ac = (b_arg_succ_cnt == b_cnt).item() type_full_correct += 1 if b_tc else 0 arg_full_correct += 1 if b_ac else 0 act_full_correct += 1 if b_ac * b_tc else 0 type_sequence_success_rate = type_full_correct / num_b arg_sequence_success_rate = arg_full_correct / num_b act_sequence_success_rate = act_full_correct / num_b metrics = { "act_type_step_sr": type_per_step_success_rate, "act_arg_step_sr": arg_per_step_success_rate, "act_step_sr": act_per_step_success_rate, "act_type_seq_sr": type_sequence_success_rate, "act_arg_seq_sr": arg_sequence_success_rate, "act_seq_sr": act_sequence_success_rate } return metrics def loss(self, batch: Dict): # This is now forward return self.forward(batch) def forward(self, batch: Dict, adv_training=False, adv_modality=None, adv_delta_state=None, adv_delta_task=None, adv_delta_action_hist=None): if batch["states"] is None: states = batch["states_preproc"] else: states = batch["states"] tasks = batch["task_reprs"] subgoals_gt : AlfredSubgoal = batch["subgoals"] batch_id = batch["batch_id"] actions_gt_sem_tensor = subgoals_gt.to_tensor() act_type_prob, act_arg_prob, act_type_logprob, act_arg_logprob, task_emb = self._forward_model( states, tasks, actions_gt_sem_tensor, batch_id, adv_training, adv_modality, adv_delta_state, adv_delta_task, adv_delta_action_hist) output = {} output['act_type_prob'] = act_type_prob output['act_type_logprob'] = act_type_logprob output['act_arg_prob'] = act_arg_prob output['act_arg_logprob'] = act_arg_logprob act_type_gt = actions_gt_sem_tensor[:, 0] act_arg_gt = actions_gt_sem_tensor[:, 1] + 1 # For each batch element, grab the argument distribution corresponding to the ground truth action type act_arg_logprob = batched_index_select(act_arg_logprob, dim=1, index=act_type_gt)[:, 0, :] # Predict action argument masks action_history_gt: List[AlfredSubgoal] = subgoals_gt.disperse() act_mask_pred_logprob_2d, act_mask_proposed_2d = self.forward_mask( states, task_emb, subgoals_gt, action_history_gt, batch_training=True) # It only makes sense to learn action argument prediction over observed space obs_mask = states.get_observability_map_2d() act_mask_pred_prob_2d = torch.exp(act_mask_pred_logprob_2d) act_mask_gt_2d = subgoals_gt.get_argument_mask().max(dim=4).values act_mask_gt_2d = act_mask_gt_2d * obs_mask domain_size = act_mask_gt_2d.sum(dim=(1, 2, 3), keepdims=True) act_mask_gt_2d = act_mask_gt_2d / (domain_size + 1e-10) has_arg_mask = act_mask_gt_2d.sum(dim=(1, 2, 3)) > 0 output['act_mask_pred_prob_2d'] = act_mask_pred_prob_2d output['act_mask_pred_logprob_2d'] = act_mask_pred_logprob_2d # TODO: Sem actions should be AlfredActionHLSem type_loss = self.nllloss(input=act_type_logprob, target=act_type_gt) arg_loss = self.nllloss(input=act_arg_logprob, target=act_arg_gt) # Spatial cross-entropy loss: argmask_loss = -((act_mask_gt_2d * act_mask_pred_logprob_2d).sum(dim=(2, 3)) * has_arg_mask).mean() # BCE loss: #argmask_loss = -((act_mask_gt_2d * torch.log(act_mask_pred_2d)).sum(dim=(1, 2, 3)) / ( # act_mask_gt_2d.sum(dim=(1, 2, 3)) + 1e-10)).mean() loss = type_loss + arg_loss + argmask_loss metrics = self.collect_metrics(act_type_logprob, act_type_gt, act_arg_logprob, act_arg_gt, actions_gt_sem_tensor, batch_id) metrics["loss"] = loss.detach().cpu().item() metrics["type_loss"] = type_loss.detach().cpu().item() metrics["arg_loss"] = arg_loss.detach().cpu().item() metrics["argmask_loss"] = argmask_loss.detach().cpu().item() VIZ = GLOBAL_VIZ if VIZ: with torch.no_grad(): mask_viz = torch.cat([act_mask_gt_2d[0], act_mask_proposed_2d[0], act_mask_pred_prob_2d[0] * domain_size[0]], dim=0).clamp(0, 1) mask_viz = mask_viz * has_arg_mask[0] # Just blank out examples where there are no argument labels mask_viz_np = mask_viz.permute((1, 2, 0)).detach().cpu().numpy() show_image(mask_viz_np, "R: gt, G: proposal, B: refined pred", scale=4, waitkey=1) state_viz = states.get_nav_features_2d_viz()[0].permute((1, 2, 0)).detach().cpu().numpy() show_image(state_viz, "State features", scale=4, waitkey=1) return loss, metrics, output import lgp.model_registry lgp.model_registry.register_model("alfred_subgoal_model", HlsmSubgoalModel)
46.131417
153
0.661177
8115d691592d91374b6ccc17b919d54bee9b6196
1,489
py
Python
runtime/image_classification/models/vgg16/gpus=16_straight/stage10.py
NestLakerJasonLIN/pipedream
f50827f2e28cbdbd82a4ea686c0498272b1460d6
[ "MIT" ]
273
2019-08-31T14:12:11.000Z
2022-03-05T13:34:25.000Z
runtime/image_classification/models/vgg16/gpus=16_straight/stage10.py
albertsh10/pipedream
cad624f79a71f44ba79099f0c38321347b13e5c2
[ "MIT" ]
67
2019-09-19T15:36:59.000Z
2022-01-13T09:11:54.000Z
runtime/image_classification/models/vgg16/gpus=16_straight/stage10.py
albertsh10/pipedream
cad624f79a71f44ba79099f0c38321347b13e5c2
[ "MIT" ]
100
2019-09-16T20:59:14.000Z
2022-03-23T12:56:56.000Z
# Copyright (c) Microsoft Corporation. # Licensed under the MIT license. import torch class Stage10(torch.nn.Module): def __init__(self): super(Stage10, self).__init__() self.layer1 = torch.nn.Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) self.layer2 = torch.nn.ReLU(inplace=True) self.layer3 = torch.nn.MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False) self.layer4 = torch.nn.Conv2d(256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) self.layer5 = torch.nn.ReLU(inplace=True) self._initialize_weights() def forward(self, input0): out0 = input0.clone() out1 = self.layer1(out0) out2 = self.layer2(out1) out3 = self.layer3(out2) out4 = self.layer4(out3) out5 = self.layer5(out4) return out5 def _initialize_weights(self): for m in self.modules(): if isinstance(m, torch.nn.Conv2d): torch.nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') if m.bias is not None: torch.nn.init.constant_(m.bias, 0) elif isinstance(m, torch.nn.BatchNorm2d): torch.nn.init.constant_(m.weight, 1) torch.nn.init.constant_(m.bias, 0) elif isinstance(m, torch.nn.Linear): torch.nn.init.normal_(m.weight, 0, 0.01) torch.nn.init.constant_(m.bias, 0)
39.184211
105
0.596373
1782b420a2321848288590dc58b6078b526c9ac6
899
py
Python
coding202-parsing-json/activity-parse-4.py
bayotheman/coding-skills-sample-code
f75c45bf85474a179857df857cc8836e5f21ecc2
[ "Apache-2.0" ]
215
2015-02-09T18:43:51.000Z
2022-03-27T09:07:23.000Z
coding202-parsing-json/activity-parse-4.py
bayotheman/coding-skills-sample-code
f75c45bf85474a179857df857cc8836e5f21ecc2
[ "Apache-2.0" ]
9
2015-06-24T22:32:22.000Z
2020-09-17T22:22:39.000Z
coding202-parsing-json/activity-parse-4.py
bayotheman/coding-skills-sample-code
f75c45bf85474a179857df857cc8836e5f21ecc2
[ "Apache-2.0" ]
190
2015-02-09T18:29:31.000Z
2022-02-15T23:00:47.000Z
from urllib.request import Request, urlopen import json uri_cmx = 'https://devnetapi.cisco.com/sandbox/mse/api/config/v1/maps/info/CiscoCampus' # Let's wrap our common get functionality in a function definition def get_content(uri): req = Request(uri) req.add_header('Authorization', 'Basic bGVhcm5pbmc6bGVhcm5pbmc=') # req.add_header('Accept', 'application/json') response = urlopen(req) response_string = response.read().decode("utf-8") response.close() return response_string json_object = json.loads(get_content(uri_cmx)) building_names = [] buildings = json_object["buildingList"] for building in buildings: building_names.append(building["name"]) print(building_names) print(type(building_names)) # for building_name in building_names: # building_uri = uri_cmx + "/" + building_name # print(building_uri) # print(get_content(building_uri))
27.242424
87
0.740823
ff0beef64b27289422a85df4940b2ba7f5257911
413
py
Python
lambda2.py
PRASAD-DANGARE/PYTHON
36214f7dc3762d327e5a29e40752edeb098249c8
[ "MIT" ]
1
2021-06-07T07:55:28.000Z
2021-06-07T07:55:28.000Z
lambda2.py
PRASAD-DANGARE/PYTHON
36214f7dc3762d327e5a29e40752edeb098249c8
[ "MIT" ]
null
null
null
lambda2.py
PRASAD-DANGARE/PYTHON
36214f7dc3762d327e5a29e40752edeb098249c8
[ "MIT" ]
null
null
null
# Python Program Using Lambda Function To Calculate Sum Of Two Numbers ''' Function Name : Lambda Function To Calculate Sum Of Two Numbers. Function Date : 8 Sep 2020 Function Author : Prasad Dangare Input : Float Output : Float ''' f = lambda x, y: x + y # Write Lambda Function result = f(1.55, 10) # Call Lambda Function print('sum = ', result) # Display Result
31.769231
71
0.641646
8f8ebfc07115953f41ad7c8e17a55c37cd98389b
4,429
py
Python
src/estimagic/dashboard/plot_functions.py
janosg/estimagic
58e17ff94339076f4b7688b1dbef5685f48157e2
[ "BSD-3-Clause" ]
7
2019-05-11T07:19:46.000Z
2019-05-31T07:03:13.000Z
src/estimagic/dashboard/plot_functions.py
janosg/estimagic
58e17ff94339076f4b7688b1dbef5685f48157e2
[ "BSD-3-Clause" ]
14
2019-05-04T14:15:52.000Z
2019-06-10T11:45:27.000Z
src/estimagic/dashboard/plot_functions.py
janosg/estimagic
58e17ff94339076f4b7688b1dbef5685f48157e2
[ "BSD-3-Clause" ]
1
2019-05-21T08:44:37.000Z
2019-05-21T08:44:37.000Z
"""Helper functions for the dashboard.""" from bokeh.models import HoverTool from bokeh.models import Legend from bokeh.plotting import figure from estimagic.config import GRID_VISIBLE from estimagic.config import LEGEND_LABEL_TEXT_FONT_SIZE from estimagic.config import LEGEND_SPACING from estimagic.config import MAJOR_TICK_IN from estimagic.config import MAJOR_TICK_OUT from estimagic.config import MIN_BORDER_BOTTOM from estimagic.config import MIN_BORDER_LEFT from estimagic.config import MIN_BORDER_RIGHT from estimagic.config import MIN_BORDER_TOP from estimagic.config import MINOR_TICK_LINE_COLOR from estimagic.config import OUTLINE_LINE_WIDTH from estimagic.config import PLOT_HEIGHT from estimagic.config import PLOT_WIDTH from estimagic.config import TOOLBAR_LOCATION from estimagic.config import Y_RANGE_PADDING from estimagic.config import Y_RANGE_PADDING_UNITS from estimagic.dashboard.colors import get_colors def plot_time_series( data, y_keys, x_name, title, name=None, y_names=None, plot_width=PLOT_WIDTH, ): """Plot time series linking the *y_keys* to a common *x_name* variable. Args: data (ColumnDataSource): data that contain the y_keys and x_name y_keys (list): list of the entries in the data that are to be plotted. x_name (str): name of the entry in the data that will be on the x axis. title (str): title of the plot. name (str, optional): name of the plot for later retrieval with bokeh. y_names (list, optional): if given these replace the y keys as line names. Returns: plot (bokeh Figure) """ if y_names is None: y_names = [str(key) for key in y_keys] plot = create_styled_figure(title=title, name=name, plot_width=plot_width) # this ensures that the y range spans at least 0.1 plot.y_range.range_padding = Y_RANGE_PADDING plot.y_range.range_padding_units = Y_RANGE_PADDING_UNITS colors = get_colors("categorical", len(y_keys)) legend_items = [] for color, y_key, y_name in zip(colors, y_keys, y_names): if len(y_name) <= 35: label = y_name else: label = "..." + y_name[-32:] line_glyph = plot.line( source=data, x=x_name, y=y_key, line_width=2, color=color, muted_color=color, muted_alpha=0.2, ) legend_items.append((label, [line_glyph])) legend_items.append((" " * 60, [])) tooltips = [(x_name, "@" + x_name)] tooltips += [("param_name", y_name), ("param_value", "@" + y_key)] hover = HoverTool(renderers=[line_glyph], tooltips=tooltips) plot.tools.append(hover) legend = Legend( items=legend_items, border_line_color=None, label_width=100, label_text_font_size=LEGEND_LABEL_TEXT_FONT_SIZE, spacing=LEGEND_SPACING, ) legend.click_policy = "mute" plot.add_layout(legend, "right") return plot def create_styled_figure( title, name=None, tooltips=None, plot_width=PLOT_WIDTH, ): """Return a styled, empty figure of predetermined height and width. Args: title (str): Title of the figure. name (str): Name of the plot for later retrieval by bokeh. If not given the title is set as name tooltips (list, optional): List of bokeh tooltips to add to the figure. Returns: fig (bokeh Figure) """ assert plot_width is not None name = name if name is not None else title fig = figure( plot_height=PLOT_HEIGHT, plot_width=plot_width, title=title.title(), tooltips=tooltips, name=name, y_axis_type="linear", sizing_mode="scale_width", ) fig.title.text_font_size = "15pt" # set minimum borders fig.min_border_left = MIN_BORDER_LEFT fig.min_border_right = MIN_BORDER_RIGHT fig.min_border_top = MIN_BORDER_TOP fig.min_border_bottom = MIN_BORDER_BOTTOM # remove toolbar fig.toolbar_location = TOOLBAR_LOCATION # remove grid fig.grid.visible = GRID_VISIBLE # remove minor ticks fig.axis.minor_tick_line_color = MINOR_TICK_LINE_COLOR # remove tick lines fig.axis.major_tick_out = MAJOR_TICK_OUT fig.axis.major_tick_in = MAJOR_TICK_IN # remove outline fig.outline_line_width = OUTLINE_LINE_WIDTH return fig
30.544828
83
0.687514
601fe42837bb01ce09c706ae2419c23b8001e79f
230
py
Python
aqua/tests/common.py
divyamamgai/integrations-extras
8c40a9cf870578687cc224ee91d3c70cd3a435a4
[ "BSD-3-Clause" ]
158
2016-06-02T16:25:31.000Z
2022-03-16T15:55:14.000Z
aqua/tests/common.py
divyamamgai/integrations-extras
8c40a9cf870578687cc224ee91d3c70cd3a435a4
[ "BSD-3-Clause" ]
554
2016-03-15T17:39:12.000Z
2022-03-31T10:29:16.000Z
aqua/tests/common.py
divyamamgai/integrations-extras
8c40a9cf870578687cc224ee91d3c70cd3a435a4
[ "BSD-3-Clause" ]
431
2016-05-13T15:33:13.000Z
2022-03-31T10:06:46.000Z
# (C) Datadog, Inc. 2019 # All rights reserved # Licensed under a 3-clause BSD style license (see LICENSE) from datadog_checks.dev import get_docker_hostname, get_here HERE = get_here() HOST = get_docker_hostname() PORT = '8080'
25.555556
60
0.76087
4e4dcc58390964f6462f9ecc6814f7648a10336b
5,762
py
Python
mcetl/download/GlobusDownload.py
materials-commons/pymcetl
b4311ba50bb35bc36527b9d313a91778f9550a92
[ "MIT" ]
null
null
null
mcetl/download/GlobusDownload.py
materials-commons/pymcetl
b4311ba50bb35bc36527b9d313a91778f9550a92
[ "MIT" ]
null
null
null
mcetl/download/GlobusDownload.py
materials-commons/pymcetl
b4311ba50bb35bc36527b9d313a91778f9550a92
[ "MIT" ]
null
null
null
import logging import os from materials_commons.api import get_project_by_id from .MaterialsCommonsACLInterface import MaterialsCommonsACLInterface from ..common.access_exceptions import RequiredAttributeException from ..common.McdirHelper import McdirHelper from ..database.DatabaseInterface import DatabaseInterface DOWNLOAD_NO_FILES_FOUND = "GlobusDownload - No Files Found" class GlobusDownload: def __init__(self, mc_user_id, apikey, project_id): self.log = logging.getLogger(self.__class__.__name__) self.mc_user_id = mc_user_id self.apikey = apikey self.project_id = project_id self.file_list = None self.path_list = None self.transfer_client = None self.user_dir = None self.mc_globus_acl_interface = MaterialsCommonsACLInterface(mc_user_id) download_ep_id = os.environ.get('MC_CONFIDENTIAL_CLIENT_ENDPOINT') self.log.info("Download endpoint id = {}".format(download_ep_id)) if not download_ep_id: self.log.error("Download endpoint is not set: MC_CONFIDENTIAL_CLIENT_ENDPOINT is undefined") raise RequiredAttributeException("MC_CONFIDENTIAL_CLIENT_ENDPOINT is undefined") self.download_ep_id = download_ep_id mcdir_helper = McdirHelper() self.mc_base = mcdir_helper.base_dir() self.download_dir = mcdir_helper.get_download_dir() self.mc_endpoint_path = None def download(self): if not self.setup(): return DOWNLOAD_NO_FILES_FOUND self.stage() self.expose() return self.exposed_ep_url() def setup(self): probe = self.mc_globus_acl_interface.set_user_globus_id() if not probe: self.log.error("Users globus_user_id is undefined") raise RequiredAttributeException("Globus user id is not set correctly") self.log.info("Using globus id: {}".format(probe)) self.mc_globus_acl_interface.get_cc_transfer_client() project = get_project_by_id(self.project_id, self.apikey) self.log.info("Get file list for project = {} ({})". format(project.name, project.id)) directory = project.get_top_directory() self.file_list = [] self.path_list = [] path = "" self.recursively_add_directory(path, directory) if not self.file_list: self.log.info("No files found.") return False self.log.info("Found {} files.".format(len(self.file_list))) self.log.info("Found {} directory paths.".format(len(self.path_list))) for file in self.file_list: self.log.debug("File: {} - {}".format(file.name, file.path)) for path in self.path_list: self.log.debug("Path {}".format(path)) return True def recursively_add_directory(self, path, directory): if path: self.path_list.append(path) file_or_dir_list = directory.get_children() for file_or_dir in file_or_dir_list: instance_path = path + file_or_dir.name self.log.debug("File or dir otype = {}; name = {}; path = {}; {}". format(file_or_dir.otype, file_or_dir.name, file_or_dir.path, instance_path)) if file_or_dir.otype == 'file': file_or_dir.path = instance_path self.file_list.append(file_or_dir) if file_or_dir.otype == "directory": self.recursively_add_directory(instance_path + '/', file_or_dir) def stage(self): self.log.info("Staging - start") staging_dir = self.download_dir self.user_dir = self.make_random_name('etl-download-') self.log.info("Staging - user_dir = {}".format(self.user_dir)) staging_dir = os.path.join(staging_dir, self.user_dir) self.log.info("Staging - staging_dir = {}".format(staging_dir)) self.mc_endpoint_path = "/__download_staging/" + self.user_dir + "/" self.log.info("Staging - mc_endpoint_path = {}".format(self.mc_endpoint_path)) os.makedirs(staging_dir) for path in self.path_list: staging_path = os.path.join(staging_dir, path) self.log.debug("About to create dir {}".format(staging_path)) os.makedirs(staging_path) for file in self.file_list: file_id = file.id usesid = file.usesid if usesid: file_id = usesid p1 = file_id[9:11] p2 = file_id[11:13] file_path = os.path.join(self.mc_base, p1, p2, file_id) link_path = os.path.join(staging_dir, file.path) try: os.link(file_path, link_path) except: pass self.log.info("Staging - end") def expose(self): self.log.info("Expose - start") self.log.info("Setting ACL rule for path = {}".format(self.mc_endpoint_path)) self.mc_globus_acl_interface.set_user_access_rule(self.mc_endpoint_path) self.log.info("Expose - end") def exposed_ep_url(self): origin_id = self.download_ep_id path = self.mc_endpoint_path if path: if not path.startswith('/'): path = "/" + path if not path.endswith('/'): path = path + "/" url_base = "https://app.globus.org/file-manager" path = path.replace('/', '%2F') url = '{}?origin_id={}&origin_path={}'.format(url_base, origin_id, path) return url else: return None @staticmethod def make_random_name(prefix): uuid = DatabaseInterface().get_uuid() return prefix + uuid
41.157143
104
0.622353
fea58feede888178265a32cb7566879a519bd395
942
py
Python
server/axeshome/social.py
kevinmcguinness/axes-home
d41b7e605c8b0d3d6f274eccdd59b3fce794a28b
[ "Apache-2.0" ]
2
2015-06-25T03:10:03.000Z
2016-02-22T11:34:08.000Z
server/axeshome/social.py
kevinmcguinness/axes-home
d41b7e605c8b0d3d6f274eccdd59b3fce794a28b
[ "Apache-2.0" ]
null
null
null
server/axeshome/social.py
kevinmcguinness/axes-home
d41b7e605c8b0d3d6f274eccdd59b3fce794a28b
[ "Apache-2.0" ]
null
null
null
# # (c) Copyright 2015 Kevin McGuinness. All Rights Reserved. # """ Social features """ import axeshome.backend as backend from axeshome.api import mongo def get_video_stats(uri): uri = backend.fix_uri(uri) mongo.db.videostats.ensure_index('uri') stats = mongo.db.videostats.find_one({'uri': uri}) if stats is None: stats = {'uri': uri, 'views': 0, 'bookmarks': 0, 'likes': 0} ident = mongo.db.videostats.insert(stats) stats = mongo.db.videostats.find_one({'_id': ident}) return stats def increment_stats(uri, field): stats = get_video_stats(uri) stats[field] += 1 mongo.db.videostats.save(stats) return stats def decrement_stats(uri, field): stats = get_video_stats(uri) stats[field] -= 1 mongo.db.videostats.save(stats) return stats def find_popular_videos(n=100): return mongo.db.videostats.find( sort=[('likes', -1), ('views', -1)], limit=n)
27.705882
68
0.660297
6628a9e9541ae14c6f6eb8f793a0d2e491a9b00a
1,084
py
Python
test-support/test-repl.py
JakeWheat/burdock
5626803ea6bb844951cd0205f2eb7cbfa3f2bab5
[ "BSD-3-Clause" ]
null
null
null
test-support/test-repl.py
JakeWheat/burdock
5626803ea6bb844951cd0205f2eb7cbfa3f2bab5
[ "BSD-3-Clause" ]
null
null
null
test-support/test-repl.py
JakeWheat/burdock
5626803ea6bb844951cd0205f2eb7cbfa3f2bab5
[ "BSD-3-Clause" ]
null
null
null
#!/usr/bin/env python3 """x definitely want to try to do an expect in burdock looked at the documentation for pexpect, and it looks very difficult to do something general it's probably fairly easy to write a numpty expect that works well enough for burdock's automated testing needs, which might be better this also serves as an example of how to do pexpect using burdock, which is really useful even if it's not needed for the burdock testing itself """ import pexpect import sys if len(sys.argv) != 2: raise Exception("expected 1 arg, got: " + str(sys.argv)) def do_repl_test(lst): child = pexpect.spawn('_build/burdock') for l in lst: child.expect("b > ", timeout=0.1) child.sendline(l[0]) child.expect(l[1], timeout=0.1) child.expect("b > ", timeout=0.1) child.sendcontrol("d") child.close() # add timeout do_repl_test(eval(sys.argv[1])) #do_repl_test([("1 + 2", "3")]) #do_repl_test([("a = 5", ""), ("a + 3", "8")]) #do_repl_test(eval('[("1 + 2", "3")]')) #do_repl_test([("import lists", ""), ("a + 3", "8")])
23.565217
70
0.653137
bd68cbe6f5801e785a59e3b830351b61540d8bfa
5,565
py
Python
isi_sdk_8_1_1/isi_sdk_8_1_1/models/event_categories_extended.py
mohitjain97/isilon_sdk_python
a371f438f542568edb8cda35e929e6b300b1177c
[ "Unlicense" ]
24
2018-06-22T14:13:23.000Z
2022-03-23T01:21:26.000Z
isi_sdk_8_1_1/isi_sdk_8_1_1/models/event_categories_extended.py
mohitjain97/isilon_sdk_python
a371f438f542568edb8cda35e929e6b300b1177c
[ "Unlicense" ]
46
2018-04-30T13:28:22.000Z
2022-03-21T21:11:07.000Z
isi_sdk_8_1_1/isi_sdk_8_1_1/models/event_categories_extended.py
mohitjain97/isilon_sdk_python
a371f438f542568edb8cda35e929e6b300b1177c
[ "Unlicense" ]
29
2018-06-19T00:14:04.000Z
2022-02-08T17:51:19.000Z
# coding: utf-8 """ Isilon SDK Isilon SDK - Language bindings for the OneFS API # noqa: E501 OpenAPI spec version: 6 Contact: sdk@isilon.com Generated by: https://github.com/swagger-api/swagger-codegen.git """ import pprint import re # noqa: F401 import six from isi_sdk_8_1_1.models.event_categories import EventCategories # noqa: F401,E501 from isi_sdk_8_1_1.models.event_category import EventCategory # noqa: F401,E501 class EventCategoriesExtended(object): """NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'categories': 'list[EventCategory]', 'resume': 'str', 'total': 'int' } attribute_map = { 'categories': 'categories', 'resume': 'resume', 'total': 'total' } def __init__(self, categories=None, resume=None, total=None): # noqa: E501 """EventCategoriesExtended - a model defined in Swagger""" # noqa: E501 self._categories = None self._resume = None self._total = None self.discriminator = None if categories is not None: self.categories = categories if resume is not None: self.resume = resume if total is not None: self.total = total @property def categories(self): """Gets the categories of this EventCategoriesExtended. # noqa: E501 :return: The categories of this EventCategoriesExtended. # noqa: E501 :rtype: list[EventCategory] """ return self._categories @categories.setter def categories(self, categories): """Sets the categories of this EventCategoriesExtended. :param categories: The categories of this EventCategoriesExtended. # noqa: E501 :type: list[EventCategory] """ self._categories = categories @property def resume(self): """Gets the resume of this EventCategoriesExtended. # noqa: E501 Continue returning results from previous call using this token (token should come from the previous call, resume cannot be used with other options). # noqa: E501 :return: The resume of this EventCategoriesExtended. # noqa: E501 :rtype: str """ return self._resume @resume.setter def resume(self, resume): """Sets the resume of this EventCategoriesExtended. Continue returning results from previous call using this token (token should come from the previous call, resume cannot be used with other options). # noqa: E501 :param resume: The resume of this EventCategoriesExtended. # noqa: E501 :type: str """ if resume is not None and len(resume) < 0: raise ValueError("Invalid value for `resume`, length must be greater than or equal to `0`") # noqa: E501 self._resume = resume @property def total(self): """Gets the total of this EventCategoriesExtended. # noqa: E501 Total number of items available. # noqa: E501 :return: The total of this EventCategoriesExtended. # noqa: E501 :rtype: int """ return self._total @total.setter def total(self, total): """Sets the total of this EventCategoriesExtended. Total number of items available. # noqa: E501 :param total: The total of this EventCategoriesExtended. # noqa: E501 :type: int """ if total is not None and total > 4294967295: # noqa: E501 raise ValueError("Invalid value for `total`, must be a value less than or equal to `4294967295`") # noqa: E501 if total is not None and total < 0: # noqa: E501 raise ValueError("Invalid value for `total`, must be a value greater than or equal to `0`") # noqa: E501 self._total = total def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, EventCategoriesExtended): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
31.264045
170
0.600898
bc8e7f229c1f54bc983a57247945517401d03081
379
py
Python
py_week_work/week8_032.py
x06lan/mt
3e4ddacc7717595acbfd689e22cd1e154843b99e
[ "MIT" ]
null
null
null
py_week_work/week8_032.py
x06lan/mt
3e4ddacc7717595acbfd689e22cd1e154843b99e
[ "MIT" ]
null
null
null
py_week_work/week8_032.py
x06lan/mt
3e4ddacc7717595acbfd689e22cd1e154843b99e
[ "MIT" ]
null
null
null
save={"0":0,"1":1,"2":1} def findmap(data,targe): for i in data: if i==str(targe): return data[i] return None def F(data,n): # print(n) if findmap(data,n)==None: data[str(n)]=F(data,n-1)+F(data,n-2) return data[str(n)] i=int(input()) out=[] while i!=-1: out.append(str(F(save,i))) i=int(input()) for i in out: print(i)
19.947368
44
0.530343
5a87ae0a84340c3ec13ca388247fe93ccb6daf46
1,337
py
Python
BASS/modules/WebcamVideoStream.py
nrvnrv/yv4cpu
7e6afd7a5f414f9debe773ac1340c591db6a8adf
[ "MIT" ]
null
null
null
BASS/modules/WebcamVideoStream.py
nrvnrv/yv4cpu
7e6afd7a5f414f9debe773ac1340c591db6a8adf
[ "MIT" ]
null
null
null
BASS/modules/WebcamVideoStream.py
nrvnrv/yv4cpu
7e6afd7a5f414f9debe773ac1340c591db6a8adf
[ "MIT" ]
null
null
null
from threading import Thread, Lock import cv2 class WebcamVideoStream: def __init__(self, src=0, width=320, height=240): self.thread = Thread(target=self.update, daemon=True, args=()) self.stream = cv2.VideoCapture(src) self.stream.set(cv2.CAP_PROP_FRAME_WIDTH, width) self.stream.set(cv2.CAP_PROP_FRAME_HEIGHT, height) self.stream.set(cv2.CAP_PROP_BUFFERSIZE,0) (self.grabbed, self.frame) = self.stream.read() self.started = False self.read_lock = Lock() def start(self): if self.started: print("There is an instance of WebcamVideoStream running already") return None self.started = True self.thread.start() return self def update(self): while self.started: (grabbed, frame) = self.stream.read() self.read_lock.acquire() self.grabbed, self.frame = grabbed, frame self.read_lock.release() def read(self): self.read_lock.acquire() frame = self.frame.copy() self.read_lock.release() return frame def stop(self): self.started = False self.thread.join() def __exit__(self, exc_type, exc_value, traceback): self.stream.release() if __name__=="__main__": WebcamVideoStream(0)
29.711111
78
0.620045
3c4ec0120909bd1598a9b0b52e79bc9f682eff02
4,796
py
Python
language/gpt/train_gpt.py
SaraBakic/ColossalAI-Examples
072b7c972e166de0965a71a2cb02c95126cdec42
[ "Apache-2.0" ]
null
null
null
language/gpt/train_gpt.py
SaraBakic/ColossalAI-Examples
072b7c972e166de0965a71a2cb02c95126cdec42
[ "Apache-2.0" ]
null
null
null
language/gpt/train_gpt.py
SaraBakic/ColossalAI-Examples
072b7c972e166de0965a71a2cb02c95126cdec42
[ "Apache-2.0" ]
null
null
null
from colossalai.context.parallel_mode import ParallelMode from colossalai.logging import get_dist_logger, disable_existing_loggers import colossalai import os from colossalai.core import global_context as gpc from colossalai.utils.timer import MultiTimer from colossalai.zero import zero3_model_context import colossalai.utils as utils from colossalai.trainer import hooks, Trainer from colossalai.nn import LinearWarmupLR import torch.nn as nn from dataset.webtext import WebtextDataset import contextlib from colossalai.engine.schedule import PipelineSchedule, InterleavedPipelineSchedule from model_zoo.gpt.gpt import GPTLMLoss from colossalai.utils import is_using_pp def main(): parser = colossalai.get_default_parser() parser.add_argument('--from_torch', default=False, action='store_true') args = parser.parse_args() disable_existing_loggers() if args.from_torch: colossalai.launch_from_torch(config=args.config) else: colossalai.launch_from_slurm(config=args.config, host=args.host, port=29500, seed=42) logger = get_dist_logger() logger.info('Build data loader', ranks=[0]) train_ds = WebtextDataset(os.environ['DATA'], seq_len=gpc.config.SEQ_LEN) train_dataloader = utils.get_dataloader(train_ds, seed=42, batch_size=gpc.config.BATCH_SIZE, pin_memory=True, shuffle=True, drop_last=True) logger.info('Build model', ranks=[0]) use_pipeline = is_using_pp() use_interleaved = hasattr(gpc.config.model, 'num_chunks') use_zero3 = hasattr(gpc.config, 'zero') and gpc.config.zero.level == 3 ctx = zero3_model_context() if use_zero3 else contextlib.nullcontext() with ctx: model = gpc.config.model.pop('type')(**gpc.config.model) if use_pipeline and use_interleaved and not isinstance(model, nn.ModuleList): model = nn.ModuleList([model]) criterion = getattr(gpc.config, 'loss_fn', None) if criterion is not None: criterion = criterion.type() else: criterion = GPTLMLoss() logger.info('Build optimizer', ranks=[0]) optimizer = gpc.config.optimizer.pop('type')( model.parameters(), **gpc.config.optimizer) lr_scheduler = LinearWarmupLR( optimizer, total_steps=gpc.config.NUM_EPOCHS, warmup_steps=5) engine, train_dataloader, _, lr_scheduler = colossalai.initialize(model, optimizer, criterion, train_dataloader=train_dataloader, lr_scheduler=lr_scheduler) global_batch_size = gpc.config.BATCH_SIZE * \ gpc.get_world_size(ParallelMode.DATA) * getattr(gpc.config, "gradient_accumulation", 1) logger.info(f'Init done, global batch size = {global_batch_size}', ranks=[0]) tensor_shape = getattr(gpc.config, 'TENSOR_SHAPE', None) schedule = None if use_pipeline: if use_interleaved: logger.info('Build InterleavedPipelineSchedule', ranks=[0]) schedule = InterleavedPipelineSchedule(gpc.config.NUM_MICRO_BATCHES, gpc.config.model.num_chunks, tensor_shape=tensor_shape, scatter_gather_tensors=True) else: logger.info('Build PipelineSchedule', ranks=[0]) schedule = PipelineSchedule(gpc.config.NUM_MICRO_BATCHES, tensor_shape=tensor_shape, scatter_gather_tensors=True) timier = MultiTimer() trainer = Trainer( engine=engine, logger=logger, schedule=schedule, timer=timier ) hook_list = [ hooks.LossHook(), hooks.LRSchedulerHook(lr_scheduler=lr_scheduler, by_epoch=True), hooks.LogMetricByEpochHook(logger), hooks.ThroughputHook(), hooks.LogMetricByStepHook(), # hooks.TensorboardHook(log_dir='./tb_logs', ranks=[0]), # hooks.LogMemoryByEpochHook(logger), # hooks.LogTimingByEpochHook(timer, logger), # hooks.SaveCheckpointHook(checkpoint_dir='./ckpt') ] trainer.fit( train_dataloader=train_dataloader, epochs=gpc.config.NUM_EPOCHS, test_interval=1, hooks=hook_list, display_progress=True, return_output_label=False ) if __name__ == '__main__': main()
40.302521
135
0.615721
9ae554d21299327aa83bbe496106de88c492d22e
2,365
py
Python
setup.py
WanlongCai/tespy
fd00cfaa1872c61a1806a270222de311b3ce0f86
[ "MIT" ]
null
null
null
setup.py
WanlongCai/tespy
fd00cfaa1872c61a1806a270222de311b3ce0f86
[ "MIT" ]
null
null
null
setup.py
WanlongCai/tespy
fd00cfaa1872c61a1806a270222de311b3ce0f86
[ "MIT" ]
null
null
null
#!/usr/bin/env python # -*- encoding: utf-8 -*- from __future__ import absolute_import from __future__ import print_function import io import re from glob import glob from os.path import basename from os.path import dirname from os.path import join from os.path import splitext from setuptools import find_packages from setuptools import setup def read(*names, **kwargs): with io.open( join(dirname(__file__), *names), encoding=kwargs.get('encoding', 'utf8') ) as fh: return fh.read() setup( name='TESPy', version='0.3.3.dev0', license='MIT', description='Thermal Engineering Systems in Python (TESPy)', long_description='%s' % ( re.compile('^.. start-badges.*^.. end-badges', re.M | re.S).sub( '', read('README.rst') ) ), author='Francesco Witte', author_email='francesco.witte@hs-flensburg.de', url='https://github.com/oemof/tespy', packages=find_packages('src'), package_dir={'': 'src'}, py_modules=[splitext(basename(path))[0] for path in glob('src/*.py')], include_package_data=True, zip_safe=False, data_files=[('src/tespy/data', [ 'src/tespy/data/char_lines.json', 'src/tespy/data/char_maps.json'])], classifiers=[ 'Development Status :: 4 - Beta', 'Intended Audience :: Education', 'Intended Audience :: Science/Research', 'License :: OSI Approved :: MIT License', 'Operating System :: Unix', 'Operating System :: POSIX', 'Operating System :: Microsoft :: Windows', 'Programming Language :: Python', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.7', 'Programming Language :: Python :: 3.8', 'Topic :: Scientific/Engineering', ], project_urls={ 'Documentation': 'https://tespy.readthedocs.io/', 'Changelog': 'https://tespy.readthedocs.io/en/latest/whats_new.html', 'Issue Tracker': 'https://github.com/oemof/tespy/issues', }, python_requires='>=3.6, <3.9', install_requires=[ 'CoolProp>=6.4,<7', 'numpy>=1.13.3,<2', 'pandas>=0.19.2,!=1.0.0,<2', 'scipy>=0.19.1,<2', 'tabulate>=0.8.2,<0.9' ], extras_require={'dev': ['pytest', 'sphinx', 'sphinx_rtd_theme', ], 'dummy': ['tespy']} )
31.118421
77
0.602114
9458647a92d1ce4315a0e47ece9db136211589e1
2,746
py
Python
affirm.py
gooli/affirm
79cf60380be49dfa7b2dfa01ebb5412e06f57f45
[ "MIT" ]
48
2016-06-03T05:19:20.000Z
2016-08-01T12:03:33.000Z
affirm.py
gooli/affirm
79cf60380be49dfa7b2dfa01ebb5412e06f57f45
[ "MIT" ]
1
2016-10-28T23:44:27.000Z
2016-10-30T16:41:30.000Z
affirm.py
gooli/affirm
79cf60380be49dfa7b2dfa01ebb5412e06f57f45
[ "MIT" ]
1
2016-11-24T07:26:56.000Z
2016-11-24T07:26:56.000Z
# affirm.py / Eli Finer / 2016 # # This script causes assert statements to output much better default error messages # that include the tested condition and the values for any variables referenced in it. # # Here are some examples: # # >>> assert 1 > 2 # AssertionError: assertion (1 > 2) failed # # >>> a = 1; b = 2; c = 'foo'; d = None # >>> assert a > b # AssertionError: assertion (a > b) failed with a=1, b=2 # # >>> assert c is None # AssertionError: assertion (c is None) failed with c='foo' # # >>> assert a == b == c # AssertionError: assertion (a == b == c) failed with a=1, b=2, c='foo' import re import ast import types import inspect from collections import OrderedDict def make_assert_message(frame, regex): def extract_condition(): code_context = inspect.getframeinfo(frame)[3] if not code_context: return '' match = re.search(regex, code_context[0]) if not match: return '' return match.group(1).strip() class ReferenceFinder(ast.NodeVisitor): def __init__(self): self.names = [] def find(self, tree, frame): self.visit(tree) nothing = object() deref = OrderedDict() for name in self.names: value = frame.f_locals.get(name, nothing) or frame.f_globals.get(name, nothing) if value is not nothing and not isinstance(value, (types.ModuleType, types.FunctionType)): deref[name] = repr(value) return deref def visit_Name(self, node): self.names.append(node.id) condition = extract_condition() if not condition: return deref = ReferenceFinder().find(ast.parse(condition), frame) deref_str = '' if deref: deref_str = ' with ' + ', '.join('{}={}'.format(k, v) for k, v in deref.items()) return 'assertion {} failed{}'.format(condition, deref_str) import sys _old_excepthook = sys.excepthook def assert_excepthook(type, value, traceback): if type == AssertionError: from traceback import print_exception if not value.args: top = traceback while top.tb_next and top.tb_next.tb_frame: top = top.tb_next message = make_assert_message(top.tb_frame, r'assert\s+([^#]+)') value = AssertionError(message) print_exception(type, value, traceback) else: _old_excepthook(type, value, traceback) sys.excepthook = assert_excepthook def affirm(condition): if not __debug__: return if condition: return else: message = make_assert_message(inspect.currentframe().f_back, r'affirm\s*\(\s*(.+)\s*\)') raise AssertionError(message)
32.305882
106
0.619446
adec3950d0cdab369b9e36fb61716b4d67b53b3a
72,990
py
Python
pyzotero/zotero.py
michi-zuri/pyzotero
c984418524c447eabfcaef935c70becad18c4d54
[ "MIT" ]
null
null
null
pyzotero/zotero.py
michi-zuri/pyzotero
c984418524c447eabfcaef935c70becad18c4d54
[ "MIT" ]
null
null
null
pyzotero/zotero.py
michi-zuri/pyzotero
c984418524c447eabfcaef935c70becad18c4d54
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # pylint: disable=R0904 """ zotero.py Created by Stephan Hügel on 2011-02-28 This file is part of Pyzotero. The MIT License (MIT) Copyright (c) 2015 Stephan Hügel Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ from __future__ import unicode_literals __author__ = "Stephan Hügel" __version__ = "1.4.18" __api_version__ = "3" import sys import requests from requests import Request import socket import feedparser import bibtexparser import json import copy import uuid import time import threading import os import hashlib import datetime import re import pytz import mimetypes from pathlib import Path from . import zotero_errors as ze from functools import wraps # Python 3 compatibility faffing if sys.version_info[0] == 2: from urllib import urlencode from urllib import quote from urlparse import urlparse, urlunparse, parse_qsl, urlunsplit else: from urllib.parse import urlencode from urllib.parse import urlparse, urlunparse, parse_qsl, urlunsplit from urllib.parse import quote try: from collections import OrderedDict except ImportError: from ordereddict import OrderedDict # Avoid hanging the application if there's no server response timeout = 30 socket.setdefaulttimeout(timeout) def ib64_patched(self, attrsD, contentparams): """ Patch isBase64 to prevent Base64 encoding of JSON content """ if attrsD.get("mode", "") == "base64": return 0 if self.contentparams["type"].startswith("text/"): return 0 if self.contentparams["type"].endswith("+xml"): return 0 if self.contentparams["type"].endswith("/xml"): return 0 if self.contentparams["type"].endswith("/json"): return 0 return 0 def token(): """ Return a unique 32-char write-token """ return str(uuid.uuid4().hex) # Override feedparser's buggy isBase64 method until they fix it feedparser._FeedParserMixin._isBase64 = ib64_patched def cleanwrap(func): """ Wrapper for Zotero._cleanup """ def enc(self, *args, **kwargs): """ Send each item to _cleanup() """ return (func(self, item, **kwargs) for item in args) return enc def chunks(l, n): """Yield successive n-sized chunks from l.""" for i in range(0, len(l), n): yield l[i : i + n] def tcache(func): """ Take care of the URL building and caching for template functions """ @wraps(func) def wrapped_f(self, *args, **kwargs): """ Calls the decorated function to get query string and params, builds URL, retrieves template, caches result, and returns template """ query_string, params = func(self, *args, **kwargs) r = Request("GET", self.endpoint + query_string, params=params).prepare() # now split up the URL result = urlparse(r.url) # construct cache key cachekey = result.path + "_" + result.query if self.templates.get(cachekey) and not self._updated( query_string, self.templates[cachekey], cachekey ): return self.templates[cachekey]["tmplt"] # otherwise perform a normal request and cache the response retrieved = self._retrieve_data(query_string, params=params) return self._cache(retrieved, cachekey) return wrapped_f def backoff_check(func): """ Perform backoff processing func must return a Requests GET / POST / PUT / PATCH / DELETE etc This is is intercepted: we first check for an active backoff and wait if need be. After the response is received, we do normal error checking and set a new backoff if necessary, before returning Use with functions that are intended to return True """ @wraps(func) def wrapped_f(self, *args, **kwargs): self._check_backoff() # resp is a Requests response object resp = func(self, *args, **kwargs) try: resp.raise_for_status() except requests.exceptions.HTTPError: error_handler(self, resp) self.request = resp backoff = resp.headers.get("backoff") if backoff: self._set_backoff(backoff) return True return wrapped_f def retrieve(func): """ Decorator for Zotero read API methods; calls _retrieve_data() and passes the result to the correct processor, based on a lookup """ @wraps(func) def wrapped_f(self, *args, **kwargs): """ Returns result of _retrieve_data() func's return value is part of a URI, and it's this which is intercepted and passed to _retrieve_data: '/users/123/items?key=abc123' """ if kwargs: self.add_parameters(**kwargs) retrieved = self._retrieve_data(func(self, *args)) # we now always have links in the header response self.links = self._extract_links() # determine content and format, based on url params content = ( self.content.search(self.request.url) and self.content.search(self.request.url).group(0) or "bib" ) # JSON by default formats = { "application/atom+xml": "atom", "application/x-bibtex": "bibtex", "application/json": "json", "text/html": "snapshot", "text/plain": "plain", "application/pdf; charset=utf-8": "pdf", "application/pdf": "pdf", "application/msword": "doc", "application/vnd.openxmlformats-officedocument.spreadsheetml.sheet": "xlsx", "application/vnd.openxmlformats-officedocument.wordprocessingml.document": "docx", "application/zip": "zip", "application/epub+zip": "zip", "audio/mpeg": "mp3", "video/mp4": "mp4", "audio/x-wav": "wav", "video/x-msvideo": "avi", "application/octet-stream": "octet", "application/x-tex": "tex", "application/x-texinfo": "texinfo", "image/jpeg": "jpeg", "image/png": "png", "image/gif": "gif", "image/tiff": "tiff", "application/postscript": "postscript", "application/rtf": "rtf", } # select format, or assume JSON content_type_header = self.request.headers["Content-Type"].lower() + ";" re.compile("\s+") fmt = formats.get( # strip "; charset=..." segment content_type_header[0 : content_type_header.index(";")], "json", ) # clear all query parameters self.url_params = None # check to see whether it's tag data if "tags" in self.request.url: self.tag_data = False return self._tags_data(retrieved.json()) if fmt == "atom": parsed = feedparser.parse(retrieved.text) # select the correct processor processor = self.processors.get(content) # process the content correctly with a custom rule return processor(parsed) if fmt == "snapshot": # we need to dump as a zip! self.snapshot = True if fmt == "bibtex": parser = bibtexparser.bparser.BibTexParser(common_strings=True) return parser.parse(retrieved.text) # it's binary, so return raw content elif fmt != "json": return retrieved.content # no need to do anything special, return JSON else: return retrieved.json() return wrapped_f def ss_wrap(func): """ ensure that a SavedSearch object exists """ def wrapper(self, *args, **kwargs): if not self.savedsearch: self.savedsearch = SavedSearch(self) return func(self, *args, **kwargs) return wrapper class Zotero(object): """ Zotero API methods A full list of methods can be found here: http://www.zotero.org/support/dev/server_api """ def __init__( self, library_id=None, library_type=None, api_key=None, preserve_json_order=False, locale="en-US", ): """ Store Zotero credentials """ self.endpoint = "https://api.zotero.org" if library_id and library_type: self.library_id = library_id # library_type determines whether query begins w. /users or /groups self.library_type = library_type + "s" else: raise ze.MissingCredentials( "Please provide both the library ID and the library type" ) # api_key is not required for public individual or group libraries self.api_key = api_key self.preserve_json_order = preserve_json_order self.locale = locale self.url_params = None self.tag_data = False self.request = None self.snapshot = False # these aren't valid item fields, so never send them to the server self.temp_keys = set(["key", "etag", "group_id", "updated"]) # determine which processor to use for the parsed content self.fmt = re.compile(r"(?<=format=)\w+") self.content = re.compile(r"(?<=content=)\w+") self.processors = { "bib": self._bib_processor, "citation": self._citation_processor, "bibtex": self._bib_processor, "bookmarks": self._bib_processor, "coins": self._bib_processor, "csljson": self._csljson_processor, "mods": self._bib_processor, "refer": self._bib_processor, "rdf_bibliontology": self._bib_processor, "rdf_dc": self._bib_processor, "rdf_zotero": self._bib_processor, "ris": self._bib_processor, "tei": self._bib_processor, "wikipedia": self._bib_processor, "json": self._json_processor, "html": self._bib_processor, } self.links = None self.self_link = {} self.templates = {} self.savedsearch = None # these are required for backoff handling self.backoff = False self.backoff_duration = 0.0 def _set_backoff(self, duration): """ Set a backoff Spins up a timer in a background thread which resets the backoff logic when it expires, then sets the time at which the backoff will expire. The latter step is required so that other calls can check whether there's an active backoff, because the threading.Timer method has no way of returning a duration """ duration = float(duration) self.backoff = True threading.Timer(duration, self._reset_backoff).start() self.backoff_duration = time.time() + duration def _reset_backoff(self): self.backoff = False self.backoff_duration = 0.0 def _check_backoff(self): """ Before an API call is made, we check whether there's an active backoff. If there is, we check whether there's any time left on the backoff. If there is, we sleep for the remainder before returning """ if self.backoff: remainder = self.backoff_duration - time.time() if remainder > 0.0: time.sleep(remainder) def default_headers(self): """ It's always OK to include these headers """ _headers = { "User-Agent": "Pyzotero/%s" % __version__, "Zotero-API-Version": "%s" % __api_version__, } if self.api_key: _headers["Authorization"] = "Bearer %s" % self.api_key return _headers def _cache(self, response, key): """ Add a retrieved template to the cache for 304 checking accepts a dict and key name, adds the retrieval time, and adds both to self.templates as a new dict using the specified key """ # cache template and retrieval time for subsequent calls thetime = datetime.datetime.utcnow().replace(tzinfo=pytz.timezone("GMT")) self.templates[key] = {"tmplt": response.json(), "updated": thetime} return copy.deepcopy(response.json()) @cleanwrap def _cleanup(self, to_clean, allow=()): """ Remove keys we added for internal use """ # this item's been retrieved from the API, we only need the 'data' # entry if to_clean.keys() == ["links", "library", "version", "meta", "key", "data"]: to_clean = to_clean["data"] return dict( [ [k, v] for k, v in list(to_clean.items()) if (k in allow or k not in self.temp_keys) ] ) def _retrieve_data(self, request=None, params=None): """ Retrieve Zotero items via the API Combine endpoint and request to access the specific resource Returns a JSON document """ full_url = "%s%s" % (self.endpoint, request) # The API doesn't return this any more, so we have to cheat self.self_link = request # ensure that we wait if there's an active backoff self._check_backoff() self.request = requests.get( url=full_url, headers=self.default_headers(), params=params ) self.request.encoding = "utf-8" try: self.request.raise_for_status() except requests.exceptions.HTTPError: error_handler(self, self.request) backoff = self.request.headers.get("backoff") if backoff: self._set_backoff(backoff) return self.request def _extract_links(self): """ Extract self, first, next, last links from a request response """ extracted = dict() try: for key, value in self.request.links.items(): parsed = urlparse(value["url"]) fragment = "{path}?{query}".format(path=parsed[2], query=parsed[4]) extracted[key] = fragment # add a 'self' link parsed = list(urlparse(self.self_link)) # strip 'format' query parameter stripped = "&".join( [ "%s=%s" % (p[0], p[1]) for p in parse_qsl(parsed[4]) if p[0] != "format" ] ) # rebuild url fragment # this is a death march extracted["self"] = urlunparse( [parsed[0], parsed[1], parsed[2], parsed[3], stripped, parsed[5]] ) return extracted except KeyError: # No links present, because it's a single item return None def _updated(self, url, payload, template=None): """ Generic call to see if a template request returns 304 accepts: - a string to combine with the API endpoint - a dict of format values, in case they're required by 'url' - a template name to check for As per the API docs, a template less than 1 hour old is assumed to be fresh, and will immediately return False if found """ # If the template is more than an hour old, try a 304 if ( abs( datetime.datetime.utcnow().replace(tzinfo=pytz.timezone("GMT")) - self.templates[template]["updated"] ).seconds > 3600 ): query = self.endpoint + url.format( u=self.library_id, t=self.library_type, **payload ) headers = { "If-Modified-Since": payload["updated"].strftime( "%a, %d %b %Y %H:%M:%S %Z" ) } headers.update(self.default_headers()) # perform the request, and check whether the response returns 304 self._check_backoff() req = requests.get(query, headers=headers) try: req.raise_for_status() except requests.exceptions.HTTPError: error_handler(self, req) backoff = self.request.headers.get("backoff") if backoff: self._set_backoff(backoff) return req.status_code == 304 # Still plenty of life left in't return False def add_parameters(self, **params): """ Add URL parameters Also ensure that only valid format/content combinations are requested """ self.url_params = None # we want JSON by default if not params.get("format"): params["format"] = "json" # non-standard content must be retrieved as Atom if params.get("content"): params["format"] = "atom" # TODO: rewrite format=atom, content=json request if "limit" not in params or params.get("limit") == 0: params["limit"] = 100 # Need ability to request arbitrary number of results for version # response # -1 value is hack that works with current version elif params["limit"] == -1 or params["limit"] is None: del params["limit"] # bib format can't have a limit if params.get("format") == "bib": del params["limit"] self.url_params = urlencode(params, doseq=True) def _build_query(self, query_string, no_params=False): """ Set request parameters. Will always add the user ID if it hasn't been specifically set by an API method """ try: query = quote(query_string.format(u=self.library_id, t=self.library_type)) except KeyError as err: raise ze.ParamNotPassed("There's a request parameter missing: %s" % err) # Add the URL parameters and the user key, if necessary if no_params is False: if not self.url_params: self.add_parameters() query = "%s?%s" % (query, self.url_params) return query @retrieve def publications(self): """ Return the contents of My Publications """ if self.library_type != "users": raise ze.CallDoesNotExist( "This API call does not exist for group libraries" ) query_string = "/{t}/{u}/publications/items" return self._build_query(query_string) # The following methods are Zotero Read API calls def num_items(self): """ Return the total number of top-level items in the library """ query = "/{t}/{u}/items/top" return self._totals(query) def count_items(self): """ Return the count of all items in a group / library """ query = "/{t}/{u}/items" return self._totals(query) def num_collectionitems(self, collection): """ Return the total number of items in the specified collection """ query = "/{t}/{u}/collections/{c}/items".format( u=self.library_id, t=self.library_type, c=collection.upper() ) return self._totals(query) def _totals(self, query): """ General method for returning total counts """ self.add_parameters(limit=1) query = self._build_query(query) self._retrieve_data(query) self.url_params = None # extract the 'total items' figure return int(self.request.headers["Total-Results"]) @retrieve def key_info(self, **kwargs): """ Retrieve info about the permissions associated with the key associated to the given Zotero instance """ query_string = "/keys/{k}".format(k=self.api_key) return self._build_query(query_string) @retrieve def items(self, **kwargs): """ Get user items """ query_string = "/{t}/{u}/items" return self._build_query(query_string) @retrieve def fulltext_item(self, itemkey, **kwargs): """ Get full-text content for an item""" query_string = "/{t}/{u}/items/{itemkey}/fulltext".format( t=self.library_type, u=self.library_id, itemkey=itemkey ) return self._build_query(query_string) @backoff_check def set_fulltext(self, itemkey, payload): """" Set full-text data for an item <itemkey> should correspond to an existing attachment item. payload should be a dict containing three keys: 'content': the full-text content and either For text documents, 'indexedChars' and 'totalChars' OR For PDFs, 'indexedPages' and 'totalPages'. """ headers = self.default_headers() headers.update({"Content-Type": "application/json"}) return requests.put( url=self.endpoint + "/{t}/{u}/items/{k}/fulltext".format( t=self.library_type, u=self.library_id, k=itemkey ), headers=headers, data=json.dumps(payload), ) def new_fulltext(self, version): """ Retrieve list of full-text content items and versions which are newer than <version> """ query_string = "/{t}/{u}/fulltext".format( t=self.library_type, u=self.library_id ) headers = {"since": str(version)} headers.update(self.default_headers()) self._check_backoff() resp = requests.get(self.endpoint + query_string, headers=headers) try: resp.raise_for_status() except requests.exceptions.HTTPError: error_handler(self, resp) backoff = self.request.headers.get("backoff") if backoff: self._set_backoff(backoff) return resp.json() def item_versions(self, **kwargs): """ Returns dict associating items keys (all no limit by default) to versions. Accepts a since= parameter in kwargs to limit the data to those updated since since= """ if "limit" not in kwargs: kwargs["limit"] = None kwargs["format"] = "versions" return self.items(**kwargs) def collection_versions(self, **kwargs): """ Returns dict associating collection keys (all no limit by default) to versions. Accepts a since= parameter in kwargs to limit the data to those updated since since= """ if "limit" not in kwargs: kwargs["limit"] = None kwargs["format"] = "versions" return self.collections(**kwargs) def last_modified_version(self, **kwargs): """ Get the last modified version """ self.items(**kwargs) return int(self.request.headers.get("last-modified-version", 0)) @retrieve def top(self, **kwargs): """ Get user top-level items """ query_string = "/{t}/{u}/items/top" return self._build_query(query_string) @retrieve def trash(self, **kwargs): """ Get all items in the trash """ query_string = "/{t}/{u}/items/trash" return self._build_query(query_string) @retrieve def searches(self, **kwargs): """ Get saved searches """ query_string = "/{t}/{u}/searches" return self._build_query(query_string) @retrieve def deleted(self, **kwargs): """ Get all deleted items (requires since= parameter) """ if "limit" not in kwargs: # Currently deleted API doesn't respect limit leaving it out by # default preserves compat kwargs["limit"] = None query_string = "/{t}/{u}/deleted" return self._build_query(query_string) @retrieve def item(self, item, **kwargs): """ Get a specific item """ query_string = "/{t}/{u}/items/{i}".format( u=self.library_id, t=self.library_type, i=item.upper() ) return self._build_query(query_string) @retrieve def file(self, item, **kwargs): """ Get the file from an specific item """ query_string = "/{t}/{u}/items/{i}/file".format( u=self.library_id, t=self.library_type, i=item.upper() ) return self._build_query(query_string, no_params=True) def dump(self, itemkey, filename=None, path=None): """ Dump a file attachment to disk, with optional filename and path """ if not filename: filename = self.item(itemkey)["data"]["filename"] if path: pth = os.path.join(path, filename) else: pth = filename file = self.file(itemkey) if self.snapshot: self.snapshot = False pth = pth + ".zip" with open(pth, "wb") as f: f.write(file) @retrieve def children(self, item, **kwargs): """ Get a specific item's child items """ query_string = "/{t}/{u}/items/{i}/children".format( u=self.library_id, t=self.library_type, i=item.upper() ) return self._build_query(query_string) @retrieve def collection_items(self, collection, **kwargs): """ Get a specific collection's items """ query_string = "/{t}/{u}/collections/{c}/items".format( u=self.library_id, t=self.library_type, c=collection.upper() ) return self._build_query(query_string) @retrieve def collection_items_top(self, collection, **kwargs): """ Get a specific collection's top-level items """ query_string = "/{t}/{u}/collections/{c}/items/top".format( u=self.library_id, t=self.library_type, c=collection.upper() ) return self._build_query(query_string) @retrieve def collection_tags(self, collection, **kwargs): """ Get a specific collection's tags """ query_string = "/{t}/{u}/collections/{c}/tags".format( u=self.library_id, t=self.library_type, c=collection.upper() ) return self._build_query(query_string) @retrieve def collection(self, collection, **kwargs): """ Get user collection """ query_string = "/{t}/{u}/collections/{c}".format( u=self.library_id, t=self.library_type, c=collection.upper() ) return self._build_query(query_string) @retrieve def collections(self, **kwargs): """ Get user collections """ query_string = "/{t}/{u}/collections" return self._build_query(query_string) def all_collections(self, collid=None): """ Retrieve all collections and subcollections. Works for top-level collections or for a specific collection. Works at all collection depths. """ all_collections = [] def subcoll(clct): """ recursively add collections to a flat master list """ all_collections.append(clct) if clct["meta"].get("numCollections", 0) > 0: # add collection to master list & recur with all child # collections [ subcoll(c) for c in self.everything(self.collections_sub(clct["data"]["key"])) ] # select all top-level collections or a specific collection and # children if collid: toplevel = [self.collection(collid)] else: toplevel = self.everything(self.collections_top()) [subcoll(collection) for collection in toplevel] return all_collections @retrieve def collections_top(self, **kwargs): """ Get top-level user collections """ query_string = "/{t}/{u}/collections/top" return self._build_query(query_string) @retrieve def collections_sub(self, collection, **kwargs): """ Get subcollections for a specific collection """ query_string = "/{t}/{u}/collections/{c}/collections".format( u=self.library_id, t=self.library_type, c=collection.upper() ) return self._build_query(query_string) @retrieve def groups(self, **kwargs): """ Get user groups """ query_string = "/users/{u}/groups" return self._build_query(query_string) @retrieve def tags(self, **kwargs): """ Get tags """ query_string = "/{t}/{u}/tags" self.tag_data = True return self._build_query(query_string) @retrieve def item_tags(self, item, **kwargs): """ Get tags for a specific item """ query_string = "/{t}/{u}/items/{i}/tags".format( u=self.library_id, t=self.library_type, i=item.upper() ) self.tag_data = True return self._build_query(query_string) def all_top(self, **kwargs): """ Retrieve all top-level items """ return self.everything(self.top(**kwargs)) @retrieve def follow(self): """ Return the result of the call to the URL in the 'Next' link """ if self.links.get("next"): return self.links.get("next") else: return def iterfollow(self): """ Generator for self.follow() """ # use same criterion as self.follow() while True: if self.links.get("next"): yield self.follow() else: return def makeiter(self, func): """ Return a generator of func's results """ # reset the link. This results in an extra API call, yes self.links["next"] = self.links["self"] return self.iterfollow() def everything(self, query): """ Retrieve all items in the library for a particular query This method will override the 'limit' parameter if it's been set """ try: items = [] items.extend(query) while self.links.get("next"): items.extend(self.follow()) except TypeError: # we have a bibliography object ughh items = copy.deepcopy(query) while self.links.get("next"): items.entries.extend(self.follow().entries) return items def get_subset(self, subset): """ Retrieve a subset of items Accepts a single argument: a list of item IDs """ if len(subset) > 50: raise ze.TooManyItems("You may only retrieve 50 items per call") # remember any url parameters that have been set params = self.url_params retr = [] for itm in subset: retr.extend(self.item(itm)) self.url_params = params # clean up URL params when we're finished self.url_params = None return retr # The following methods process data returned by Read API calls def _json_processor(self, retrieved): """ Format and return data from API calls which return Items """ json_kwargs = {} if self.preserve_json_order: json_kwargs["object_pairs_hook"] = OrderedDict # send entries to _tags_data if there's no JSON try: items = [ json.loads(e["content"][0]["value"], **json_kwargs) for e in retrieved.entries ] except KeyError: return self._tags_data(retrieved) return items def _csljson_processor(self, retrieved): """ Return a list of dicts which are dumped CSL JSON """ items = [] json_kwargs = {} if self.preserve_json_order: json_kwargs["object_pairs_hook"] = OrderedDict for csl in retrieved.entries: items.append(json.loads(csl["content"][0]["value"], **json_kwargs)) self.url_params = None return items def _bib_processor(self, retrieved): """ Return a list of strings formatted as HTML bibliography entries """ items = [] for bib in retrieved.entries: items.append(bib["content"][0]["value"]) self.url_params = None return items def _citation_processor(self, retrieved): """ Return a list of strings formatted as HTML citation entries """ items = [] for cit in retrieved.entries: items.append(cit["content"][0]["value"]) self.url_params = None return items def _tags_data(self, retrieved): """ Format and return data from API calls which return Tags """ self.url_params = None return [t["tag"] for t in retrieved] # The following methods are Write API calls def item_template(self, itemtype, linkmode=None): """ Get a template for a new item """ # if we have a template and it hasn't been updated since we stored it template_name = "{}_{}_{}".format(*["item_template", itemtype, linkmode or ""]) query_string = "/items/new?itemType={i}".format(i=itemtype) if self.templates.get(template_name) and not self._updated( query_string, self.templates[template_name], template_name ): return copy.deepcopy(self.templates[template_name]["tmplt"]) # Set linkMode parameter for API request if itemtype is attachment if itemtype == "attachment": query_string = "{}&linkMode={}".format(query_string, linkmode) # otherwise perform a normal request and cache the response retrieved = self._retrieve_data(query_string) return self._cache(retrieved, template_name) def _attachment_template(self, attachment_type): """ Return a new attachment template of the required type: imported_file imported_url linked_file linked_url """ return self.item_template("attachment&linkMode=" + attachment_type) def _attachment(self, payload, parentid=None): """ Create attachments accepts a list of one or more attachment template dicts and an optional parent Item ID. If this is specified, attachments are created under this ID """ attachment = Zupload(self, payload, parentid) res = attachment.upload() return res @ss_wrap def show_operators(self): """ Show available saved search operators """ return self.savedsearch.operators @ss_wrap def show_conditions(self): """ Show available saved search conditions """ return self.savedsearch.conditions_operators.keys() @ss_wrap def show_condition_operators(self, condition): """ Show available operators for a given saved search condition """ # dict keys of allowed operators for the current condition permitted_operators = self.savedsearch.conditions_operators.get(condition) # transform these into values permitted_operators_list = set( [self.savedsearch.operators.get(op) for op in permitted_operators] ) return permitted_operators_list @ss_wrap def saved_search(self, name, conditions): """ Create a saved search. conditions is a list of dicts containing search conditions, and must contain the following str keys: condition, operator, value """ self.savedsearch._validate(conditions) payload = [{"name": name, "conditions": conditions}] headers = {"Zotero-Write-Token": token()} headers.update(self.default_headers()) self._check_backoff() req = requests.post( url=self.endpoint + "/{t}/{u}/searches".format(t=self.library_type, u=self.library_id), headers=headers, data=json.dumps(payload), ) self.request = req try: req.raise_for_status() except requests.exceptions.HTTPError: error_handler(self, req) backoff = self.request.headers.get("backoff") if backoff: self._set_backoff(backoff) return req.json() @ss_wrap def delete_saved_search(self, keys): """ Delete one or more saved searches by passing a list of one or more unique search keys """ headers = {"Zotero-Write-Token": token()} headers.update(self.default_headers()) self._check_backoff() req = requests.delete( url=self.endpoint + "/{t}/{u}/searches".format(t=self.library_type, u=self.library_id), headers=headers, params={"searchKey": ",".join(keys)}, ) self.request = req try: req.raise_for_status() except requests.exceptions.HTTPError: error_handler(self, req) backoff = self.request.headers.get("backoff") if backoff: self._set_backoff(backoff) return req.status_code def upload_attachments(self, attachments, parentid=None, basedir=None): """Upload files to the already created (but never uploaded) attachments""" return Zupload(self, attachments, parentid, basedir=basedir).upload() def add_tags(self, item, *tags): """ Add one or more tags to a retrieved item, then update it on the server Accepts a dict, and one or more tags to add to it Returns the updated item from the server """ # Make sure there's a tags field, or add one try: assert item["data"]["tags"] except AssertionError: item["data"]["tags"] = list() for tag in tags: item["data"]["tags"].append({"tag": "%s" % tag}) # make sure everything's OK assert self.check_items([item]) return self.update_item(item) def check_items(self, items): """ Check that items to be created contain no invalid dict keys Accepts a single argument: a list of one or more dicts The retrieved fields are cached and re-used until a 304 call fails """ params = {"locale": self.locale} query_string = "/itemFields" r = Request("GET", self.endpoint + query_string, params=params).prepare() # now split up the URL result = urlparse(r.url) # construct cache key cachekey = result.path + "_" + result.query if self.templates.get(cachekey) and not self._updated( query_string, self.templates[cachekey], cachekey ): template = set(t["field"] for t in self.templates[cachekey]["tmplt"]) else: template = set(t["field"] for t in self.item_fields()) # add fields we know to be OK template = template | set( [ "path", "tags", "notes", "itemType", "creators", "mimeType", "linkMode", "note", "charset", "dateAdded", "version", "collections", "dateModified", "relations", # attachment items "parentItem", "mtime", "contentType", "md5", "filename", ] ) template = template | set(self.temp_keys) for pos, item in enumerate(items): if set(item) == set(["links", "library", "version", "meta", "key", "data"]): # we have an item that was retrieved from the API item = item["data"] to_check = set(i for i in list(item.keys())) difference = to_check.difference(template) if difference: raise ze.InvalidItemFields( "Invalid keys present in item %s: %s" % (pos + 1, " ".join(i for i in difference)) ) return items @tcache def item_types(self): """ Get all available item types """ # Check for a valid cached version params = {"locale": self.locale} query_string = "/itemTypes" return query_string, params @tcache def creator_fields(self): """ Get localised creator fields """ # Check for a valid cached version params = {"locale": self.locale} query_string = "/creatorFields" return query_string, params @tcache def item_type_fields(self, itemtype): """ Get all valid fields for an item """ params = {"itemType": itemtype, "locale": self.locale} query_string = "/itemTypeFields" return query_string, params @tcache def item_creator_types(self, itemtype): """ Get all available creator types for an item """ params = {"itemType": itemtype, "locale": self.locale} query_string = "/itemTypeCreatorTypes" return query_string, params @tcache def item_fields(self): """ Get all available item fields """ # Check for a valid cached version params = {"locale": self.locale} query_string = "/itemFields" return query_string, params def item_attachment_link_modes(self): """ Get all available link mode types. Note: No viable REST API route was found for this, so I tested and built a list from documentation found here - https://www.zotero.org/support/dev/web_api/json """ return ["imported_file", "imported_url", "linked_file", "linked_url"] def create_items(self, payload, parentid=None, last_modified=None): """ Create new Zotero items Accepts two arguments: a list containing one or more item dicts an optional parent item ID. Note that this can also be used to update existing items """ if len(payload) > 50: raise ze.TooManyItems("You may only create up to 50 items per call") # TODO: strip extra data if it's an existing item headers = {"Zotero-Write-Token": token(), "Content-Type": "application/json"} if last_modified is not None: headers["If-Unmodified-Since-Version"] = str(last_modified) to_send = json.dumps([i for i in self._cleanup(*payload, allow=("key"))]) headers.update(self.default_headers()) self._check_backoff() req = requests.post( url=self.endpoint + "/{t}/{u}/items".format(t=self.library_type, u=self.library_id), data=to_send, headers=dict(headers), ) self.request = req try: req.raise_for_status() except requests.exceptions.HTTPError: error_handler(self, req) resp = req.json() backoff = self.request.headers.get("backoff") if backoff: self._set_backoff(backoff) if parentid: # we need to create child items using PATCH # TODO: handle possibility of item creation + failed parent # attachment uheaders = { "If-Unmodified-Since-Version": req.headers["last-modified-version"] } uheaders.update(self.default_headers()) for value in resp["success"].values(): payload = json.dumps({"parentItem": parentid}) self._check_backoff() presp = requests.patch( url=self.endpoint + "/{t}/{u}/items/{v}".format( t=self.library_type, u=self.library_id, v=value ), data=payload, headers=dict(uheaders), ) self.request = presp try: presp.raise_for_status() except requests.exceptions.HTTPError: error_handler(self, presp) backoff = presp.headers.get("backoff") if backoff: self._set_backoff(backoff) return resp def create_collection(self, payload, last_modified=None): """Alias for create_collections to preserve backward compatibility""" return self.create_collections(payload, last_modified) def create_collections(self, payload, last_modified=None): """ Create new Zotero collections Accepts one argument, a list of dicts containing the following keys: 'name': the name of the collection 'parentCollection': OPTIONAL, the parent collection to which you wish to add this """ # no point in proceeding if there's no 'name' key for item in payload: if "name" not in item: raise ze.ParamNotPassed("The dict you pass must include a 'name' key") # add a blank 'parentCollection' key if it hasn't been passed if "parentCollection" not in item: item["parentCollection"] = "" headers = {"Zotero-Write-Token": token()} if last_modified is not None: headers["If-Unmodified-Since-Version"] = str(last_modified) headers.update(self.default_headers()) self._check_backoff() req = requests.post( url=self.endpoint + "/{t}/{u}/collections".format(t=self.library_type, u=self.library_id), headers=headers, data=json.dumps(payload), ) self.request = req try: req.raise_for_status() except requests.exceptions.HTTPError: error_handler(self, req) backoff = req.headers.get("backoff") if backoff: self._set_backoff(backoff) return req.json() @backoff_check def update_collection(self, payload, last_modified=None): """ Update a Zotero collection property such as 'name' Accepts one argument, a dict containing collection data retrieved using e.g. 'collections()' """ modified = payload["version"] if last_modified is not None: modified = last_modified key = payload["key"] headers = {"If-Unmodified-Since-Version": str(modified)} headers.update(self.default_headers()) headers.update({"Content-Type": "application/json"}) return requests.put( url=self.endpoint + "/{t}/{u}/collections/{c}".format( t=self.library_type, u=self.library_id, c=key ), headers=headers, data=json.dumps(payload), ) def attachment_simple(self, files, parentid=None): """ Add attachments using filenames as title Arguments: One or more file paths to add as attachments: An optional Item ID, which will create child attachments """ orig = self._attachment_template("imported_file") to_add = [orig.copy() for fls in files] for idx, tmplt in enumerate(to_add): tmplt["title"] = os.path.basename(files[idx]) tmplt["filename"] = files[idx] if parentid: return self._attachment(to_add, parentid) else: return self._attachment(to_add) def attachment_both(self, files, parentid=None): """ Add child attachments using title, filename Arguments: One or more lists or tuples containing title, file path An optional Item ID, which will create child attachments """ orig = self._attachment_template("imported_file") to_add = [orig.copy() for f in files] for idx, tmplt in enumerate(to_add): tmplt["title"] = files[idx][0] tmplt["filename"] = files[idx][1] if parentid: return self._attachment(to_add, parentid) else: return self._attachment(to_add) @backoff_check def update_item(self, payload, last_modified=None): """ Update an existing item Accepts one argument, a dict containing Item data """ to_send = self.check_items([payload])[0] if last_modified is None: modified = payload["version"] else: modified = last_modified ident = payload["key"] headers = {"If-Unmodified-Since-Version": str(modified)} headers.update(self.default_headers()) return requests.patch( url=self.endpoint + "/{t}/{u}/items/{id}".format( t=self.library_type, u=self.library_id, id=ident ), headers=headers, data=json.dumps(to_send), ) def update_items(self, payload): """ Update existing items Accepts one argument, a list of dicts containing Item data """ to_send = [self.check_items([p])[0] for p in payload] headers = {} headers.update(self.default_headers()) # the API only accepts 50 items at a time, so we have to split # anything longer for chunk in chunks(to_send, 50): self._check_backoff() req = requests.post( url=self.endpoint + "/{t}/{u}/items/".format(t=self.library_type, u=self.library_id), headers=headers, data=json.dumps(chunk), ) self.request = req try: req.raise_for_status() except requests.exceptions.HTTPError: error_handler(self, req) backoff = req.headers.get("backoff") if backoff: self._set_backoff(backoff) return True def update_collections(self, payload): """ Update existing collections Accepts one argument, a list of dicts containing Collection data """ to_send = [self.check_items([p])[0] for p in payload] headers = {} headers.update(self.default_headers()) # the API only accepts 50 items at a time, so we have to split # anything longer for chunk in chunks(to_send, 50): self._check_backoff() req = requests.post( url=self.endpoint + "/{t}/{u}/collections/".format( t=self.library_type, u=self.library_id ), headers=headers, data=json.dumps(chunk), ) self.request = req try: req.raise_for_status() except requests.exceptions.HTTPError: error_handler(self, req) backoff = req.headers.get("backoff") if backoff: self._set_backoff(backoff) return True @backoff_check def addto_collection(self, collection, payload): """ Add one or more items to a collection Accepts two arguments: The collection ID, and an item dict """ ident = payload["key"] modified = payload["version"] # add the collection data from the item modified_collections = payload["data"]["collections"] + [collection] headers = {"If-Unmodified-Since-Version": str(modified)} headers.update(self.default_headers()) return requests.patch( url=self.endpoint + "/{t}/{u}/items/{i}".format( t=self.library_type, u=self.library_id, i=ident ), data=json.dumps({"collections": modified_collections}), headers=headers, ) @backoff_check def deletefrom_collection(self, collection, payload): """ Delete an item from a collection Accepts two arguments: The collection ID, and and an item dict """ ident = payload["key"] modified = payload["version"] # strip the collection data from the item modified_collections = [ c for c in payload["data"]["collections"] if c != collection ] headers = {"If-Unmodified-Since-Version": str(modified)} headers.update(self.default_headers()) return requests.patch( url=self.endpoint + "/{t}/{u}/items/{i}".format( t=self.library_type, u=self.library_id, i=ident ), data=json.dumps({"collections": modified_collections}), headers=headers, ) @backoff_check def delete_tags(self, *payload): """ Delete a group of tags pass in up to 50 tags, or use *[tags] """ if len(payload) > 50: raise ze.TooManyItems("Only 50 tags or fewer may be deleted") modified_tags = " || ".join([tag for tag in payload]) # first, get version data by getting one tag self.tags(limit=1) headers = { "If-Unmodified-Since-Version": self.request.headers["last-modified-version"] } headers.update(self.default_headers()) return requests.delete( url=self.endpoint + "/{t}/{u}/tags".format(t=self.library_type, u=self.library_id), params={"tag": modified_tags}, headers=headers, ) @backoff_check def delete_item(self, payload, last_modified=None): """ Delete Items from a Zotero library Accepts a single argument: a dict containing item data OR a list of dicts containing item data """ params = None if isinstance(payload, list): params = {"itemKey": ",".join([p["key"] for p in payload])} if last_modified is not None: modified = last_modified else: modified = payload[0]["version"] url = self.endpoint + "/{t}/{u}/items".format( t=self.library_type, u=self.library_id ) else: ident = payload["key"] if last_modified is not None: modified = last_modified else: modified = payload["version"] url = self.endpoint + "/{t}/{u}/items/{c}".format( t=self.library_type, u=self.library_id, c=ident ) headers = {"If-Unmodified-Since-Version": str(modified)} headers.update(self.default_headers()) return requests.delete(url=url, params=params, headers=headers) @backoff_check def delete_collection(self, payload, last_modified=None): """ Delete a Collection from a Zotero library Accepts a single argument: a dict containing item data OR a list of dicts containing item data """ params = None if isinstance(payload, list): params = {"collectionKey": ",".join([p["key"] for p in payload])} if last_modified is not None: modified = last_modified else: modified = payload[0]["version"] url = self.endpoint + "/{t}/{u}/collections".format( t=self.library_type, u=self.library_id ) else: ident = payload["key"] if last_modified is not None: modified = last_modified else: modified = payload["version"] url = self.endpoint + "/{t}/{u}/collections/{c}".format( t=self.library_type, u=self.library_id, c=ident ) headers = {"If-Unmodified-Since-Version": str(modified)} headers.update(self.default_headers()) return requests.delete(url=url, params=params, headers=headers) def error_handler(zot, req): """ Error handler for HTTP requests """ error_codes = { 400: ze.UnsupportedParams, 401: ze.UserNotAuthorised, 403: ze.UserNotAuthorised, 404: ze.ResourceNotFound, 409: ze.Conflict, 412: ze.PreConditionFailed, 413: ze.RequestEntityTooLarge, 428: ze.PreConditionRequired, 429: ze.TooManyRequests, } def err_msg(req): """ Return a nicely-formatted error message """ return "\nCode: %s\nURL: %s\nMethod: %s\nResponse: %s" % ( req.status_code, # error.msg, req.url, req.request.method, req.text, ) if error_codes.get(req.status_code): # check to see whether its 429 if req.status_code == 429: # try to get backoff duration delay = req.headers.get("backoff") if not delay: raise ze.TooManyRetries( "You are being rate-limited and no backoff duration has been received from the server. Try again later" ) else: zot._set_backoff(delay) else: raise error_codes.get(req.status_code)(err_msg(req)) else: raise ze.HTTPError(err_msg(req)) class SavedSearch(object): """ Saved search functionality """ def __init__(self, zinstance): super(SavedSearch, self).__init__() self.zinstance = zinstance self.searchkeys = ("condition", "operator", "value") # always exclude these fields from zotero.item_keys() self.excluded_items = ( "accessDate", "date", "pages", "section", "seriesNumber", "issue", ) self.operators = { # this is a bit hacky, but I can't be bothered with Python's enums "is": "is", "isNot": "isNot", "beginsWith": "beginsWith", "contains": "contains", "doesNotContain": "doesNotContain", "isLessThan": "isLessThan", "isGreaterThan": "isGreaterThan", "isBefore": "isBefore", "isAfter": "isAfter", "isInTheLast": "isInTheLast", "any": "any", "all": "all", "true": "true", "false": "false", } # common groupings of operators self.groups = { "A": (self.operators["true"], self.operators["false"]), "B": (self.operators["any"], self.operators["all"]), "C": ( self.operators["is"], self.operators["isNot"], self.operators["contains"], self.operators["doesNotContain"], ), "D": (self.operators["is"], self.operators["isNot"]), "E": ( self.operators["is"], self.operators["isNot"], self.operators["isBefore"], self.operators["isInTheLast"], ), "F": (self.operators["contains"], self.operators["doesNotContain"]), "G": ( self.operators["is"], self.operators["isNot"], self.operators["contains"], self.operators["doesNotContain"], self.operators["isLessThan"], self.operators["isGreaterThan"], ), "H": ( self.operators["is"], self.operators["isNot"], self.operators["beginsWith"], ), "I": (self.operators["is"]), } self.conditions_operators = { "deleted": self.groups["A"], "noChildren": self.groups["A"], "unfiled": self.groups["A"], "publications": self.groups["A"], "includeParentsAndChildren": self.groups["A"], "includeParents": self.groups["A"], "includeChildren": self.groups["A"], "recursive": self.groups["A"], "joinMode": self.groups["B"], "quicksearch-titleCreatorYear": self.groups["C"], "quicksearch-fields": self.groups["C"], "quicksearch-everything": self.groups["C"], "collectionID": self.groups["D"], "savedSearchID": self.groups["D"], "collection": self.groups["D"], "savedSearch": self.groups["D"], "dateAdded": self.groups["E"], "dateModified": self.groups["E"], "itemTypeID": self.groups["D"], "itemType": self.groups["D"], "fileTypeID": self.groups["D"], "tagID": self.groups["D"], "tag": self.groups["C"], "note": self.groups["F"], "childNote": self.groups["F"], "creator": self.groups["C"], "lastName": self.groups["C"], "field": self.groups["C"], "datefield": self.groups["E"], "year": self.groups["C"], "numberfield": self.groups["G"], "libraryID": self.groups["D"], "key": self.groups["H"], "itemID": self.groups["D"], "annotation": self.groups["F"], "fulltextWord": self.groups["F"], "fulltextContent": self.groups["F"], "tempTable": self.groups["I"], } ########### # ALIASES # ########### # aliases for numberfield pagefields = ( "pages", "numPages", "numberOfVolumes", "section", "seriesNumber", "issue", ) for pf in pagefields: self.conditions_operators[pf] = self.conditions_operators.get("numberfield") # aliases for datefield datefields = ("accessDate", "date", "dateDue", "accepted") for df in datefields: self.conditions_operators[df] = self.conditions_operators.get("datefield") # aliases for field - this makes a blocking API call unless item types have been cached item_fields = [ itm["field"] for itm in self.zinstance.item_fields() if itm["field"] not in set(self.excluded_items) ] for itf in item_fields: self.conditions_operators[itf] = self.conditions_operators.get("field") def _validate(self, conditions): """ Validate saved search conditions, raising an error if any contain invalid operators """ allowed_keys = set(self.searchkeys) operators_set = set(self.operators.keys()) for condition in conditions: if set(condition.keys()) != allowed_keys: raise ze.ParamNotPassed( "Keys must be all of: %s" % ", ".join(self.searchkeys) ) if condition.get("operator") not in operators_set: raise ze.ParamNotPassed( "You have specified an unknown operator: %s" % condition.get("operator") ) # dict keys of allowed operators for the current condition permitted_operators = self.conditions_operators.get( condition.get("condition") ) # transform these into values permitted_operators_list = set( [self.operators.get(op) for op in permitted_operators] ) if condition.get("operator") not in permitted_operators_list: raise ze.ParamNotPassed( "You may not use the '%s' operator when selecting the '%s' condition. \nAllowed operators: %s" % ( condition.get("operator"), condition.get("condition"), ", ".join(list(permitted_operators_list)), ) ) class Zupload(object): """ Zotero file attachment helper Receives a Zotero instance, file(s) to upload, and optional parent ID """ def __init__(self, zinstance, payload, parentid=None, basedir=None): super(Zupload, self).__init__() self.zinstance = zinstance self.payload = payload self.parentid = parentid if basedir is None: self.basedir = Path("") elif isinstance(basedir, Path): self.basedir = basedir else: self.basedir = Path(basedir) def _verify(self, payload): """ ensure that all files to be attached exist open()'s better than exists(), cos it avoids a race condition """ if not payload: # Check payload has nonzero length raise ze.ParamNotPassed for templt in payload: if os.path.isfile(str(self.basedir.joinpath(templt["filename"]))): try: # if it is a file, try to open it, and catch the error with open(str(self.basedir.joinpath(templt["filename"]))): pass except IOError: raise ze.FileDoesNotExist( "The file at %s couldn't be opened or found." % str(self.basedir.joinpath(templt["filename"])) ) # no point in continuing if the file isn't a file else: raise ze.FileDoesNotExist( "The file at %s couldn't be opened or found." % str(self.basedir.joinpath(templt["filename"])) ) def _create_prelim(self): """ Step 0: Register intent to upload files """ self._verify(self.payload) if "key" in self.payload[0] and self.payload[0]["key"]: if next((i for i in self.payload if "key" not in i), False): raise ze.UnsupportedParams( "Can't pass payload entries with and without keys to Zupload" ) return None # Don't do anything if payload comes with keys liblevel = "/{t}/{u}/items" # Create one or more new attachments headers = {"Zotero-Write-Token": token(), "Content-Type": "application/json"} headers.update(self.zinstance.default_headers()) # If we have a Parent ID, add it as a parentItem if self.parentid: for child in self.payload: child["parentItem"] = self.parentid to_send = json.dumps(self.payload) self.zinstance._check_backoff() req = requests.post( url=self.zinstance.endpoint + liblevel.format( t=self.zinstance.library_type, u=self.zinstance.library_id ), data=to_send, headers=headers, ) try: req.raise_for_status() except requests.exceptions.HTTPError: error_handler(self.zinstance, req) backoff = req.headers.get("backoff") if backoff: self.zinstance._set_backoff(backoff) data = req.json() for k in data["success"]: self.payload[int(k)]["key"] = data["success"][k] return data def _get_auth(self, attachment, reg_key, md5=None): """ Step 1: get upload authorisation for a file """ mtypes = mimetypes.guess_type(attachment) digest = hashlib.md5() with open(attachment, "rb") as att: for chunk in iter(lambda: att.read(8192), b""): digest.update(chunk) auth_headers = {"Content-Type": "application/x-www-form-urlencoded"} if not md5: auth_headers["If-None-Match"] = "*" else: # docs specify that for existing file we use this auth_headers["If-Match"] = md5 auth_headers.update(self.zinstance.default_headers()) data = { "md5": digest.hexdigest(), "filename": os.path.basename(attachment), "filesize": os.path.getsize(attachment), "mtime": str(int(os.path.getmtime(attachment) * 1000)), "contentType": mtypes[0] or "application/octet-stream", "charset": mtypes[1], "params": 1, } self.zinstance._check_backoff() auth_req = requests.post( url=self.zinstance.endpoint + "/{t}/{u}/items/{i}/file".format( t=self.zinstance.library_type, u=self.zinstance.library_id, i=reg_key ), data=data, headers=auth_headers, ) try: auth_req.raise_for_status() except requests.exceptions.HTTPError: error_handler(self.zinstance, auth_req) backoff = auth_req.headers.get("backoff") if backoff: zinstance._set_backoff(backoff) return auth_req.json() def _upload_file(self, authdata, attachment, reg_key): """ Step 2: auth successful, and file not on server zotero.org/support/dev/server_api/file_upload#a_full_upload reg_key isn't used, but we need to pass it through to Step 3 """ upload_dict = authdata["params"] # pass tuple of tuples (not dict!), to ensure key comes first upload_list = [("key", upload_dict.pop("key"))] for key, value in upload_dict.items(): upload_list.append((key, value)) upload_list.append(("file", open(attachment, "rb").read())) upload_pairs = tuple(upload_list) try: self.zinstance._check_backoff() upload = requests.post( url=authdata["url"], files=upload_pairs, headers={"User-Agent": "Pyzotero/%s" % __version__}, ) except (requests.exceptions.ConnectionError): raise ze.UploadError("ConnectionError") try: upload.raise_for_status() except requests.exceptions.HTTPError: error_handler(zinstance, upload) backoff = upload.headers.get("backoff") if backoff: zinstance._set_backoff(backoff) # now check the responses return self._register_upload(authdata, reg_key) def _register_upload(self, authdata, reg_key): """ Step 3: upload successful, so register it """ reg_headers = { "Content-Type": "application/x-www-form-urlencoded", "If-None-Match": "*", } reg_headers.update(self.zinstance.default_headers()) reg_data = {"upload": authdata.get("uploadKey")} self.zinstance._check_backoff() upload_reg = requests.post( url=self.zinstance.endpoint + "/{t}/{u}/items/{i}/file".format( t=self.zinstance.library_type, u=self.zinstance.library_id, i=reg_key ), data=reg_data, headers=dict(reg_headers), ) try: upload_reg.raise_for_status() except requests.exceptions.HTTPError: error_handler(zinstance, upload_reg) backoff = upload_reg.headers.get("backoff") if backoff: self._set_backoff(backoff) def upload(self): """ File upload functionality Goes through upload steps 0 - 3 (private class methods), and returns a dict noting success, failure, or unchanged (returning the payload entries with that property as a list for each status) """ result = {"success": [], "failure": [], "unchanged": []} self._create_prelim() for item in self.payload: if "key" not in item: result["failure"].append(item) continue attach = str(self.basedir.joinpath(item["filename"])) authdata = self._get_auth(attach, item["key"], md5=item.get("md5", None)) # no need to keep going if the file exists if authdata.get("exists"): result["unchanged"].append(item) continue self._upload_file(authdata, attach, item["key"]) result["success"].append(item) return result
36.044444
123
0.570147
7ab5c2106e3d1907bf21b279d952fea9575b3647
265
py
Python
aptitudetech_private/aptitudetech_private/doctype/issue_time_details/issue_time_details.py
CloudGround/aptitudetech_private
d4d150226bd33ea0c76086264286ae7cae52457f
[ "MIT" ]
null
null
null
aptitudetech_private/aptitudetech_private/doctype/issue_time_details/issue_time_details.py
CloudGround/aptitudetech_private
d4d150226bd33ea0c76086264286ae7cae52457f
[ "MIT" ]
null
null
null
aptitudetech_private/aptitudetech_private/doctype/issue_time_details/issue_time_details.py
CloudGround/aptitudetech_private
d4d150226bd33ea0c76086264286ae7cae52457f
[ "MIT" ]
1
2019-05-17T00:04:05.000Z
2019-05-17T00:04:05.000Z
# -*- coding: utf-8 -*- # Copyright (c) 2019, Aptitudetech and contributors # For license information, please see license.txt from __future__ import unicode_literals import frappe from frappe.model.document import Document class Issuetimedetails(Document): pass
24.090909
51
0.788679
d3509fa3556c4fab8805b2ea4d69a615e33b405e
1,340
py
Python
solutions/022/solve22.py
zsarge/ProjectEuler
751b19df53483d517e6bf71ccc5fb9918ff50322
[ "MIT" ]
null
null
null
solutions/022/solve22.py
zsarge/ProjectEuler
751b19df53483d517e6bf71ccc5fb9918ff50322
[ "MIT" ]
null
null
null
solutions/022/solve22.py
zsarge/ProjectEuler
751b19df53483d517e6bf71ccc5fb9918ff50322
[ "MIT" ]
1
2021-06-07T18:45:07.000Z
2021-06-07T18:45:07.000Z
# https://projecteuler.net/problem=22 # Run with: 'python solve22.py' # using Python 3.6.9 # by Zack Sargent # Prompt: # Using p022_names.txt, # a 46K text file containing over five-thousand first names, # begin by sorting it into alphabetical order. # Then working out the alphabetical value for each name, # multiply this value by its alphabetical position in the list # to obtain a name score. # # For example, when the list is sorted into alphabetical order, # COLIN, which is worth 3 + 15 + 12 + 9 + 14 = 53, # is the 938th name in the list. # So, COLIN would obtain a score of 938 × 53 = 49714. # What is the total of all the name scores in the file? names = [] with open("p022_names.txt", "r") as f: text = f.read() names = text.replace('"', "").split(",") names.sort() def letter_value(letter: str) -> int: if len(letter) != 1: raise Exception("letter_value expects one letter") return (ord(letter) - ord("A") + 1) # alphabetical value def alpha_value(name: str) -> int: value = 0 for letter in name: value += letter_value(letter) return value def position(name: str) -> int: return names.index(name) + 1 def name_score(name: str) -> int: return position(name) * alpha_value(name) total = 0 for name in names: total += name_score(name) print(total) # -> 871198282
25.769231
63
0.671642
9c93d80e5a52da798098fdd8e3419c56617f20b5
1,760
py
Python
arekit/common/data/views/samples.py
nicolay-r/AREk
19c39ec0dc9a17464cade03b9c4da0c6d1d21191
[ "MIT" ]
18
2019-12-14T18:43:11.000Z
2022-03-21T05:55:36.000Z
arekit/common/data/views/samples.py
nicolay-r/AREk
19c39ec0dc9a17464cade03b9c4da0c6d1d21191
[ "MIT" ]
284
2020-08-08T20:52:44.000Z
2022-03-31T05:26:20.000Z
arekit/common/data/views/samples.py
nicolay-r/AREk
19c39ec0dc9a17464cade03b9c4da0c6d1d21191
[ "MIT" ]
1
2021-08-07T13:17:43.000Z
2021-08-07T13:17:43.000Z
from arekit.common.data import const from arekit.common.data.row_ids.base import BaseIDProvider from arekit.common.data.storages.base import BaseRowsStorage class BaseSampleStorageView(object): """ Pandas-based input samples proovider """ def __init__(self, storage, row_ids_provider): assert(isinstance(row_ids_provider, BaseIDProvider)) assert(isinstance(storage, BaseRowsStorage)) self.__row_ids_provider = row_ids_provider self._storage = storage # TODO. #240 This is just a wrapper over storage. def iter_rows(self, handle_rows): assert(callable(handle_rows) or handle_rows is None) for row_index, row in self._storage: if handle_rows is None: yield row_index, row else: yield handle_rows(row) def iter_rows_linked_by_text_opinions(self): undefined = -1 linked = [] current_doc_id = undefined current_opinion_id = undefined for row_index, sample_id in enumerate(self._storage.iter_column_values(const.ID)): sample_id = str(sample_id) doc_id = self._storage.get_cell(row_index=row_index, column_name=const.DOC_ID) opinion_id = self.__row_ids_provider.parse_opinion_in_sample_id(sample_id) if current_doc_id != undefined and current_opinion_id != undefined: if doc_id != current_doc_id or opinion_id != current_opinion_id: yield linked linked = [] else: current_doc_id = doc_id current_opinion_id = opinion_id linked.append(self._storage.get_row(row_index)) if len(linked) > 0: yield linked
32.592593
90
0.648295
8304ce3e6606b76f2ec3c687035dd3050c02c5ec
4,840
py
Python
demo/mmaction2/webcam_demo.py
ZJCV/TSN
ec6ad668d20f477df44eab7035e2553d95a835f3
[ "Apache-2.0" ]
2
2021-11-29T10:29:40.000Z
2022-03-22T02:39:44.000Z
demo/mmaction2/webcam_demo.py
ZJCV/TSN
ec6ad668d20f477df44eab7035e2553d95a835f3
[ "Apache-2.0" ]
1
2022-03-13T09:28:52.000Z
2022-03-13T09:28:52.000Z
demo/mmaction2/webcam_demo.py
ZJCV/TSN
ec6ad668d20f477df44eab7035e2553d95a835f3
[ "Apache-2.0" ]
1
2021-03-09T08:14:22.000Z
2021-03-09T08:14:22.000Z
# -*- coding: utf-8 -*- """ @date: 2021/1/14 下午2:51 @file: visualization.py @author: zj @description: """ from operator import itemgetter import numpy as np import torch from collections import deque from threading import Thread from tsn.model.recognizers.build import build_recognizer from tsn.data.transforms.build import build_transform from tsn.util.distributed import get_device, get_local_rank from demo.mmaction2.visualization.configs.constant import * from demo.mmaction2.visualization.utils.parser import parse_args, load_config from demo.mmaction2.visualization.utils.misc import get_cap, get_output_file, get_label def show_results(): if output_file is None: print('Press "Esc", "q" or "Q" to exit') if cap is None: return text_info = {} while True: msg = 'Waiting for action ...' ret, frame = cap.read() if not ret: break frame_queue.append(np.array(frame[:, :, ::-1])) if len(result_queue) != 0: text_info = {} results = result_queue.popleft() for i, result in enumerate(results): selected_label, score = result if score < threshold: # 如果本次检测成绩小于阈值,则不修改显示字符串 break location = (0, 40 + i * 20) text = selected_label + ': ' + str(round(score, 2)) text_info[location] = text cv2.putText(frame, text, location, FONTFACE, FONTSCALE, FONTCOLOR, THICKNESS, LINETYPE) elif len(text_info): for location, text in text_info.items(): cv2.putText(frame, text, location, FONTFACE, FONTSCALE, FONTCOLOR, THICKNESS, LINETYPE) else: cv2.putText(frame, msg, (0, 40), FONTFACE, FONTSCALE, MSGCOLOR, THICKNESS, LINETYPE) if output_file is not None: output_file.write(frame) else: cv2.imshow('camera', frame) ch = cv2.waitKey(int(1 / output_fps * 1000)) if ch == 27 or ch == ord('q') or ch == ord('Q'): break if cap is not None: cap.release() if output_file is not None: output_file.release() cv2.destroyAllWindows() def inference(): score_cache = deque() scores_sum = 0 while True: cur_windows = [] while len(cur_windows) == 0: if len(frame_queue) == sample_length: cur_windows = list(np.array(frame_queue)) cur_windows = cur_windows[frame_interval // 2::frame_interval] frames = [test_pipeline(frame) for frame in cur_windows] images = torch.stack(frames).transpose(0, 1).unsqueeze(0).to(device=device, non_blocking=True) with torch.no_grad(): outputs = model(images)['probs'].cpu().detach() scores = torch.softmax(outputs, dim=1).numpy()[0] score_cache.append(scores) scores_sum += scores if len(score_cache) == average_size: scores_avg = scores_sum / average_size num_selected_labels = min(len(label), 5) scores_tuples = tuple(zip(label, scores_avg)) scores_sorted = sorted( scores_tuples, key=itemgetter(1), reverse=True) results = scores_sorted[:num_selected_labels] result_queue.append(results) scores_sum -= score_cache.popleft() def main(): # 帧队列 检测结果 结果队列 global frame_queue, results, result_queue # 捕获设备 输出文件 输出帧率 global cap, output_file, output_fps # 可以显示结果的最小阈值 采样长度 帧间隔 测试图像转换 检测模型 设备 平均前N检测成绩的长度 标签列表 global threshold, sample_length, frame_interval, test_pipeline, model, device, average_size, label args = parse_args() cfg = load_config(args) cap = get_cap(cfg) output_file, output_fps = get_output_file(cfg, cap) label = get_label(cfg) average_size = cfg.DEMO.AVG_SIZE threshold = cfg.DEMO.THRESHOLD np.random.seed(cfg.RNG_SEED) torch.manual_seed(cfg.RNG_SEED) torch.backends.cudnn.deterministic = False torch.backends.cudnn.benchmark = True device = get_device(get_local_rank()) model = build_recognizer(cfg, device) # prepare test pipeline from non-camera pipeline test_pipeline = build_transform(cfg, is_train=False) sample_length = cfg.DATASETS.CLIP_LEN * cfg.DATASETS.NUM_CLIPS * cfg.DATASETS.FRAME_INTERVAL frame_interval = cfg.DATASETS.FRAME_INTERVAL assert sample_length > 0 try: frame_queue = deque(maxlen=sample_length) result_queue = deque(maxlen=1) pw = Thread(target=show_results, args=(), daemon=True) pr = Thread(target=inference, args=(), daemon=True) pw.start() pr.start() pw.join() except KeyboardInterrupt: pass if __name__ == '__main__': main()
32.05298
103
0.630579
ebefab53ec3b80637482261b92bf8029b7543a63
10,102
py
Python
sdk/python/lib/pulumi/runtime/mocks.py
sticha/pulumi
76ee1b8ccfee815eb315d9e0e0ddfaaf505c472b
[ "Apache-2.0" ]
1
2021-08-22T01:34:11.000Z
2021-08-22T01:34:11.000Z
sdk/python/lib/pulumi/runtime/mocks.py
sticha/pulumi
76ee1b8ccfee815eb315d9e0e0ddfaaf505c472b
[ "Apache-2.0" ]
null
null
null
sdk/python/lib/pulumi/runtime/mocks.py
sticha/pulumi
76ee1b8ccfee815eb315d9e0e0ddfaaf505c472b
[ "Apache-2.0" ]
null
null
null
# Copyright 2016-2018, Pulumi Corporation. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Mocks for testing. """ import functools import logging from abc import ABC, abstractmethod from typing import Dict, List, NamedTuple, Optional, Tuple, TYPE_CHECKING from google.protobuf import empty_pb2 from . import rpc, rpc_manager from .settings import Settings, configure, get_stack, get_project, get_root_resource from .sync_await import _ensure_event_loop, _sync_await from ..runtime.proto import engine_pb2, provider_pb2, resource_pb2 from ..runtime.stack import Stack, run_pulumi_func, wait_for_rpcs if TYPE_CHECKING: from ..resource import Resource def test(fn): """ Decorates a test function to make sure that a returned Future or Output is awaited as part of the test. """ @functools.wraps(fn) def wrapper(*args, **kwargs): from .. import Output # pylint: disable=import-outside-toplevel try: _sync_await(run_pulumi_func(lambda: _sync_await(Output.from_input(fn(*args, **kwargs)).future()))) finally: rpc_manager.RPC_MANAGER.clear() return wrapper class MockResourceArgs: """ MockResourceArgs is used to construct a newResource Mock """ typ: str name: str inputs: dict provider: Optional[str] = None resource_id: Optional[str] = None custom: Optional[bool] = None def __init__(self, typ: str, name: str, inputs: dict, provider: Optional[str] = None, resource_id: Optional[str] = None, custom: Optional[bool] = None) -> None: """ :param str typ: The token that indicates which resource type is being constructed. This token is of the form "package:module:type". :param str name: The logical name of the resource instance. :param dict inputs: The inputs for the resource. :param str provider: The identifier of the provider instance being used to manage this resource. :param str resource_id: The physical identifier of an existing resource to read or import. :param bool custom: Specifies whether or not the resource is Custom (i.e. managed by a resource provider). """ self.typ = typ self.name = name self.inputs = inputs self.provider = provider self.resource_id = resource_id self.custom = custom class MockCallArgs: """ MockCallArgs is used to construct a call Mock """ token: str args: dict provider: str def __init__(self, token: str, args: dict, provider: str) -> None: """ :param str token: The token that indicates which function is being called. This token is of the form "package:module:function". :param dict args: The arguments provided to the function call. :param str provider: The identifier of the provider instance being used to make the call """ self.token = token self.args = args self.provider = provider class Mocks(ABC): """ Mocks is an abstract class that allows subclasses to replace operations normally implemented by the Pulumi engine with their own implementations. This can be used during testing to ensure that calls to provider functions and resource constructors return predictable values. """ @abstractmethod def call(self, args: MockCallArgs) -> Tuple[dict, Optional[List[Tuple[str,str]]]]: """ call mocks provider-implemented function calls (e.g. aws.get_availability_zones). :param MockCallArgs args. """ return {}, None @abstractmethod def new_resource(self, args: MockResourceArgs) -> Tuple[Optional[str], dict]: """ new_resource mocks resource construction calls. This function should return the physical identifier and the output properties for the resource being constructed. :param MockResourceArgs args. """ return "", {} class MockMonitor: class ResourceRegistration(NamedTuple): urn: str id: str state: dict mocks: Mocks resources: Dict[str, ResourceRegistration] def __init__(self, mocks: Mocks): self.mocks = mocks self.resources = {} def make_urn(self, parent: str, type_: str, name: str) -> str: if parent != "": qualifiedType = parent.split("::")[2] parentType = qualifiedType.split("$").pop() type_ = parentType + "$" + type_ return "urn:pulumi:" + "::".join([get_stack(), get_project(), type_, name]) def Invoke(self, request): # Ensure we have an event loop on this thread because it's needed when deserializing resource references. _ensure_event_loop() args = rpc.deserialize_properties(request.args) if request.tok == "pulumi:pulumi:getResource": registered_resource = self.resources.get(args["urn"]) if registered_resource is None: raise Exception(f"unknown resource {args['urn']}") ret_proto = _sync_await(rpc.serialize_properties(registered_resource._asdict(), {})) fields = {"failures": None, "return": ret_proto} return provider_pb2.InvokeResponse(**fields) call_args = MockCallArgs(token=request.tok, args=args, provider=request.provider) tup = self.mocks.call(call_args) if isinstance(tup, dict): (ret, failures) = (tup, None) else: (ret, failures) = tup[0], [provider_pb2.CheckFailure(property=failure[0], reason=failure[1]) for failure in tup[1]] ret_proto = _sync_await(rpc.serialize_properties(ret, {})) fields = {"failures": failures, "return": ret_proto} return provider_pb2.InvokeResponse(**fields) def ReadResource(self, request): # Ensure we have an event loop on this thread because it's needed when deserializing resource references. _ensure_event_loop() state = rpc.deserialize_properties(request.properties) resource_args = MockResourceArgs(typ=request.type, name=request.name, inputs=state, provider=request.provider, resource_id=request.id) id_, state = self.mocks.new_resource(resource_args) props_proto = _sync_await(rpc.serialize_properties(state, {})) urn = self.make_urn(request.parent, request.type, request.name) self.resources[urn] = MockMonitor.ResourceRegistration(urn, id_, state) return resource_pb2.ReadResourceResponse(urn=urn, properties=props_proto) def RegisterResource(self, request): urn = self.make_urn(request.parent, request.type, request.name) if request.type == "pulumi:pulumi:Stack": return resource_pb2.RegisterResourceResponse(urn=urn) # Ensure we have an event loop on this thread because it's needed when deserializing resource references. _ensure_event_loop() inputs = rpc.deserialize_properties(request.object) resource_args = MockResourceArgs(typ=request.type, name=request.name, inputs=inputs, provider=request.provider, resource_id=request.importId, custom=request.custom or False) id_, state = self.mocks.new_resource(resource_args) obj_proto = _sync_await(rpc.serialize_properties(state, {})) self.resources[urn] = MockMonitor.ResourceRegistration(urn, id_, state) return resource_pb2.RegisterResourceResponse(urn=urn, id=id_, object=obj_proto) def RegisterResourceOutputs(self, request): # pylint: disable=unused-argument return empty_pb2.Empty() def SupportsFeature(self, request): # pylint: disable=unused-argument return type('SupportsFeatureResponse', (object,), {'hasSupport' : True}) class MockEngine: logger: logging.Logger def __init__(self, logger: Optional[logging.Logger]): self.logger = logger if logger is not None else logging.getLogger() def Log(self, request): if request.severity == engine_pb2.DEBUG: self.logger.debug(request.message) elif request.severity == engine_pb2.INFO: self.logger.info(request.message) elif request.severity == engine_pb2.WARNING: self.logger.warning(request.message) elif request.severity == engine_pb2.ERROR: self.logger.error(request.message) def set_mocks(mocks: Mocks, project: Optional[str] = None, stack: Optional[str] = None, preview: Optional[bool] = None, logger: Optional[logging.Logger] = None): """ set_mocks configures the Pulumi runtime to use the given mocks for testing. """ settings = Settings(monitor=MockMonitor(mocks), engine=MockEngine(logger), project=project if project is not None else 'project', stack=stack if stack is not None else 'stack', dry_run=preview, test_mode_enabled=True) configure(settings) # Ensure a new root stack resource has been initialized. if get_root_resource() is None: Stack(lambda: None)
37.553903
139
0.640764
60be7f0bb65cdd4fb2502c7dfcd4f8ff265da1b2
23,851
py
Python
lib/rucio/tests/test_subscription.py
llwang00/rucio
f49c5c9599e147823110dc6da22a0bc33a881f8e
[ "Apache-2.0" ]
1
2019-03-15T19:29:35.000Z
2019-03-15T19:29:35.000Z
lib/rucio/tests/test_subscription.py
llwang00/rucio
f49c5c9599e147823110dc6da22a0bc33a881f8e
[ "Apache-2.0" ]
58
2020-04-14T09:04:04.000Z
2021-07-13T15:12:59.000Z
lib/rucio/tests/test_subscription.py
llwang00/rucio
f49c5c9599e147823110dc6da22a0bc33a881f8e
[ "Apache-2.0" ]
1
2020-03-02T17:18:14.000Z
2020-03-02T17:18:14.000Z
# -*- coding: utf-8 -*- # Copyright 2013-2020 CERN # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Authors: # - Cedric Serfon <cedric.serfon@cern.ch>, 2013-2017 # - Vincent Garonne <vincent.garonne@cern.ch>, 2013-2017 # - Thomas Beermann <thomas.beermann@cern.ch>, 2014 # - Martin Barisits <martin.barisits@cern.ch>, 2015-2016 # - Joaquín Bogado <jbogado@linti.unlp.edu.ar>, 2018 # - Mario Lassnig <mario.lassnig@cern.ch>, 2018 # - Andrew Lister <andrew.lister@stfc.ac.uk>, 2019 # - Hannes Hansen <hannes.jakob.hansen@cern.ch>, 2019 # - Eli Chadwick <eli.chadwick@stfc.ac.uk>, 2020 # - Patrick Austin <patrick.austin@stfc.ac.uk>, 2020 # - Benedikt Ziemons <benedikt.ziemons@cern.ch>, 2020 from __future__ import print_function import unittest from json import loads import pytest from rucio.api.subscription import list_subscriptions, add_subscription, update_subscription, \ list_subscription_rule_states, get_subscription_by_id from rucio.client.didclient import DIDClient from rucio.client.subscriptionclient import SubscriptionClient from rucio.common.config import config_get, config_get_bool from rucio.common.exception import InvalidObject, SubscriptionNotFound, SubscriptionDuplicate from rucio.common.types import InternalAccount, InternalScope from rucio.common.utils import generate_uuid as uuid from rucio.core.account import add_account from rucio.core.account_limit import set_local_account_limit from rucio.core.did import add_did, set_new_dids from rucio.core.rse import add_rse from rucio.core.rule import add_rule from rucio.core.scope import add_scope from rucio.daemons.transmogrifier.transmogrifier import run from rucio.db.sqla.constants import AccountType, DIDType from rucio.tests.common import headers, auth class TestSubscriptionCoreApi(unittest.TestCase): @classmethod def setUpClass(cls): if config_get_bool('common', 'multi_vo', raise_exception=False, default=False): cls.vo = {'vo': config_get('client', 'vo', raise_exception=False, default='tst')} else: cls.vo = {} cls.projects = ['data12_900GeV', 'data12_8TeV', 'data13_900GeV', 'data13_8TeV'] cls.pattern1 = r'(_tid|physics_(Muons|JetTauEtmiss|Egamma)\..*\.ESD|express_express(?!.*NTUP|.*\.ESD|.*RAW)|(physics|express)(?!.*NTUP).* \ \.x|physics_WarmStart|calibration(?!_PixelBeam.merge.(NTUP_IDVTXLUMI|AOD))|merge.HIST|NTUP_MUONCALIB|NTUP_TRIG)' def test_create_and_update_and_list_subscription(self): """ SUBSCRIPTION (API): Test the creation of a new subscription, update it, list it """ subscription_name = uuid() with pytest.raises(InvalidObject): result = add_subscription(name=subscription_name, account='root', filter={'project': self.projects, 'datatype': ['AOD', ], 'excluded_pattern': self.pattern1, 'account': ['tier0', ]}, replication_rules=[{'lifetime': 86400, 'rse_expression': 'MOCK|MOCK2', 'copies': 2, 'activity': 'noactivity'}], lifetime=100000, retroactive=0, dry_run=0, comments='This is a comment', issuer='root', **self.vo) result = add_subscription(name=subscription_name, account='root', filter={'project': self.projects, 'datatype': ['AOD', ], 'excluded_pattern': self.pattern1, 'account': ['tier0', ]}, replication_rules=[{'lifetime': 86400, 'rse_expression': 'MOCK|MOCK2', 'copies': 2, 'activity': 'Data Brokering'}], lifetime=100000, retroactive=0, dry_run=0, comments='This is a comment', issuer='root', **self.vo) with pytest.raises(TypeError): result = update_subscription(name=subscription_name, account='root', metadata={'filter': 'toto'}, issuer='root', **self.vo) with pytest.raises(InvalidObject): result = update_subscription(name=subscription_name, account='root', metadata={'filter': {'project': 'toto'}}, issuer='root', **self.vo) result = update_subscription(name=subscription_name, account='root', metadata={'filter': {'project': ['toto', ]}}, issuer='root', **self.vo) assert result is None result = list_subscriptions(name=subscription_name, account='root', **self.vo) sub = [] for res in result: sub.append(res) assert len(sub) == 1 assert loads(sub[0]['filter'])['project'][0] == 'toto' def test_create_list_subscription_by_id(self): """ SUBSCRIPTION (API): Test the creation of a new subscription and list it by id """ subscription_name = uuid() subscription_id = add_subscription(name=subscription_name, account='root', filter={'project': self.projects, 'datatype': ['AOD', ], 'excluded_pattern': self.pattern1, 'account': ['tier0', ]}, replication_rules=[{'lifetime': 86400, 'rse_expression': 'MOCK|MOCK2', 'copies': 2, 'activity': 'Data Brokering'}], lifetime=100000, retroactive=0, dry_run=0, comments='This is a comment', issuer='root', **self.vo) subscription_info = get_subscription_by_id(subscription_id, **self.vo) assert loads(subscription_info['filter'])['project'] == self.projects def test_create_existing_subscription(self): """ SUBSCRIPTION (API): Test the creation of a existing subscription """ subscription_name = uuid() def genkwargs(): kwargs = { 'name': subscription_name, 'account': 'root', 'filter': {'project': self.projects, 'datatype': ['AOD', ], 'excluded_pattern': self.pattern1, 'account': ['tier0', ]}, 'replication_rules': [{'lifetime': 86400, 'rse_expression': 'MOCK|MOCK2', 'copies': 2, 'activity': 'Data Brokering'}], 'lifetime': 100000, 'retroactive': 0, 'dry_run': 0, 'comments': 'This is a comment', 'issuer': 'root' } kwargs.update(self.vo) return kwargs add_subscription(**genkwargs()) with pytest.raises(SubscriptionDuplicate): add_subscription(**genkwargs()) def test_update_nonexisting_subscription(self): """ SUBSCRIPTION (API): Test the update of a non-existing subscription """ subscription_name = uuid() with pytest.raises(SubscriptionNotFound): update_subscription(name=subscription_name, account='root', metadata={'filter': {'project': ['toto', ]}}, issuer='root', **self.vo) def test_list_rules_states(self): """ SUBSCRIPTION (API): Test listing of rule states for subscription """ tmp_scope = InternalScope('mock_' + uuid()[:8], **self.vo) root = InternalAccount('root', **self.vo) add_scope(tmp_scope, root) site_a = 'RSE%s' % uuid().upper() site_b = 'RSE%s' % uuid().upper() site_a_id = add_rse(site_a, **self.vo) site_b_id = add_rse(site_b, **self.vo) # Add quota set_local_account_limit(root, site_a_id, -1) set_local_account_limit(root, site_b_id, -1) # add a new dataset dsn = 'dataset-%s' % uuid() add_did(scope=tmp_scope, name=dsn, type=DIDType.DATASET, account=root) subscription_name = uuid() subid = add_subscription(name=subscription_name, account='root', filter={'account': ['root', ], 'scope': [tmp_scope.external, ]}, replication_rules=[{'lifetime': 86400, 'rse_expression': 'MOCK|MOCK2', 'copies': 2, 'activity': 'Data Brokering'}], lifetime=100000, retroactive=0, dry_run=0, comments='This is a comment', issuer='root', **self.vo) # Add two rules add_rule(dids=[{'scope': tmp_scope, 'name': dsn}], account=root, copies=1, rse_expression=site_a, grouping='NONE', weight=None, lifetime=None, locked=False, subscription_id=subid) add_rule(dids=[{'scope': tmp_scope, 'name': dsn}], account=root, copies=1, rse_expression=site_b, grouping='NONE', weight=None, lifetime=None, locked=False, subscription_id=subid) for rule in list_subscription_rule_states(account='root', name=subscription_name, **self.vo): assert rule[3] == 2 def test_create_and_update_and_list_subscription(rest_client, auth_token): """ SUBSCRIPTION (REST): Test the creation of a new subscription, update it, list it """ subscription_name = uuid() projects = ['data12_900GeV', 'data12_8TeV', 'data13_900GeV', 'data13_8TeV'] pattern1 = r'(_tid|physics_(Muons|JetTauEtmiss|Egamma)\..*\.ESD|express_express(?!.*NTUP|.*\.ESD|.*RAW)|(physics|express)(?!.*NTUP).* \ \.x|physics_WarmStart|calibration(?!_PixelBeam.merge.(NTUP_IDVTXLUMI|AOD))|merge.HIST|NTUP_MUONCALIB|NTUP_TRIG)' data = {'options': {'filter': {'project': projects, 'datatype': ['AOD', ], 'excluded_pattern': pattern1, 'account': ['tier0', ]}, 'replication_rules': [{'lifetime': 86400, 'rse_expression': 'MOCK|MOCK2', 'copies': 2, 'activity': 'Data Brokering'}], 'lifetime': 100000, 'retroactive': 0, 'dry_run': 0, 'comments': 'blahblah'}} response = rest_client.post('/subscriptions/root/' + subscription_name, headers=headers(auth(auth_token)), json=data) assert response.status_code == 201 data = {'options': {'filter': {'project': ['toto', ]}}} response = rest_client.put('/subscriptions/root/' + subscription_name, headers=headers(auth(auth_token)), json=data) assert response.status_code == 201 response = rest_client.get('/subscriptions/root/' + subscription_name, headers=headers(auth(auth_token))) assert response.status_code == 200 assert loads(loads(response.get_data(as_text=True))['filter'])['project'][0] == 'toto' def test_create_and_list_subscription_by_id(rest_client, auth_token): """ SUBSCRIPTION (REST): Test the creation of a new subscription and get by subscription id """ subscription_name = uuid() projects = ['data12_900GeV', 'data12_8TeV', 'data13_900GeV', 'data13_8TeV'] pattern1 = r'(_tid|physics_(Muons|JetTauEtmiss|Egamma)\..*\.ESD|express_express(?!.*NTUP|.*\.ESD|.*RAW)|(physics|express)(?!.*NTUP).* \ \.x|physics_WarmStart|calibration(?!_PixelBeam.merge.(NTUP_IDVTXLUMI|AOD))|merge.HIST|NTUP_MUONCALIB|NTUP_TRIG)' data = {'options': {'filter': {'project': projects, 'datatype': ['AOD', ], 'excluded_pattern': pattern1, 'account': ['tier0', ]}, 'replication_rules': [{'lifetime': 86400, 'rse_expression': 'MOCK|MOCK2', 'copies': 2, 'activity': 'Data Brokering'}], 'lifetime': 100000, 'retroactive': 0, 'dry_run': 0, 'comments': 'blahblah'}} response = rest_client.post('/subscriptions/root/' + subscription_name, headers=headers(auth(auth_token)), json=data) assert response.status_code == 201 subscription_id = response.get_data(as_text=True) response = rest_client.get('/subscriptions/Id/' + subscription_id, headers=headers(auth(auth_token))) assert response.status_code == 200 assert loads(loads(response.get_data(as_text=True))['filter'])['project'][0] == 'data12_900GeV' def test_create_existing_subscription(rest_client, auth_token): """ SUBSCRIPTION (REST): Test the creation of a existing subscription """ subscription_name = uuid() projects = ['data12_900GeV', 'data12_8TeV', 'data13_900GeV', 'data13_8TeV'] pattern1 = r'(_tid|physics_(Muons|JetTauEtmiss|Egamma)\..*\.ESD|express_express(?!.*NTUP|.*\.ESD|.*RAW)|(physics|express)(?!.*NTUP).* \ \.x|physics_WarmStart|calibration(?!_PixelBeam.merge.(NTUP_IDVTXLUMI|AOD))|merge.HIST|NTUP_MUONCALIB|NTUP_TRIG)' data = {'options': {'name': subscription_name, 'filter': {'project': projects, 'datatype': ['AOD', ], 'excluded_pattern': pattern1, 'account': ['tier0', ]}, 'replication_rules': [{'lifetime': 86400, 'rse_expression': 'MOCK|MOCK2', 'copies': 2, 'activity': 'Data Brokering'}], 'lifetime': 100000, 'retroactive': 0, 'dry_run': 0, 'comments': 'We are the knights who say Ni !'}} response = rest_client.post('/subscriptions/root/' + subscription_name, headers=headers(auth(auth_token)), json=data) assert response.status_code == 201 response = rest_client.post('/subscriptions/root/' + subscription_name, headers=headers(auth(auth_token)), json=data) assert response.status_code == 409 assert response.headers.get('ExceptionClass') == 'SubscriptionDuplicate' def test_update_nonexisting_subscription(rest_client, auth_token): """ SUBSCRIPTION (REST): Test the update of a non-existing subscription """ subscription_name = uuid() data = {'options': {'filter': {'project': ['toto', ]}}} response = rest_client.put('/subscriptions/root/' + subscription_name, headers=headers(auth(auth_token)), json=data) assert response.status_code == 404 assert response.headers.get('ExceptionClass') == 'SubscriptionNotFound' def test_list_rules_states(vo, rest_client, auth_token): """ SUBSCRIPTION (REST): Test listing of rule states for subscription """ tmp_scope = InternalScope('mock_' + uuid()[:8], vo=vo) root = InternalAccount('root', vo=vo) add_scope(tmp_scope, root) site_a = 'RSE%s' % uuid().upper() site_b = 'RSE%s' % uuid().upper() site_a_id = add_rse(site_a, vo=vo) site_b_id = add_rse(site_b, vo=vo) # Add quota set_local_account_limit(root, site_a_id, -1) set_local_account_limit(root, site_b_id, -1) # add a new dataset dsn = 'dataset-%s' % uuid() add_did(scope=tmp_scope, name=dsn, type=DIDType.DATASET, account=root) subscription_name = uuid() subid = add_subscription(name=subscription_name, account='root', filter={'account': ['root', ], 'scope': [tmp_scope.external, ]}, replication_rules=[{'lifetime': 86400, 'rse_expression': 'MOCK|MOCK2', 'copies': 2, 'activity': 'Data Brokering'}], lifetime=100000, retroactive=0, dry_run=0, comments='We want a shrubbery', issuer='root', vo=vo) # Add two rules add_rule(dids=[{'scope': tmp_scope, 'name': dsn}], account=root, copies=1, rse_expression=site_a, grouping='NONE', weight=None, lifetime=None, locked=False, subscription_id=subid) add_rule(dids=[{'scope': tmp_scope, 'name': dsn}], account=root, copies=1, rse_expression=site_b, grouping='NONE', weight=None, lifetime=None, locked=False, subscription_id=subid) response = rest_client.get('/subscriptions/%s/%s/Rules/States' % ('root', subscription_name), headers=headers(auth(auth_token))) assert response.status_code == 200 rulestates = None for line in response.get_data(as_text=True).split('\n'): if line: rulestates = loads(line) if rulestates[1] == subscription_name: break assert rulestates is not None assert rulestates[3] == 2 class TestSubscriptionClient(unittest.TestCase): @classmethod def setUpClass(cls): if config_get_bool('common', 'multi_vo', raise_exception=False, default=False): cls.vo = {'vo': config_get('client', 'vo', raise_exception=False, default='tst')} else: cls.vo = {} cls.sub_client = SubscriptionClient() cls.did_client = DIDClient() cls.projects = ['data12_900GeV', 'data12_8TeV', 'data13_900GeV', 'data13_8TeV'] cls.pattern1 = r'(_tid|physics_(Muons|JetTauEtmiss|Egamma)\..*\.ESD|express_express(?!.*NTUP|.*\.ESD|.*RAW)|(physics|express)(?!.*NTUP).* \ \.x|physics_WarmStart|calibration(?!_PixelBeam.merge.(NTUP_IDVTXLUMI|AOD))|merge.HIST|NTUP_MUONCALIB|NTUP_TRIG)' def test_create_and_update_and_list_subscription(self): """ SUBSCRIPTION (CLIENT): Test the creation of a new subscription, update it, list it """ subscription_name = uuid() with pytest.raises(InvalidObject): subid = self.sub_client.add_subscription(name=subscription_name, account='root', filter={'project': self.projects, 'datatype': ['AOD', ], 'excluded_pattern': self.pattern1, 'account': ['tier0', ]}, replication_rules=[{'lifetime': 86400, 'rse_expression': 'MOCK|MOCK2', 'copies': 2, 'activity': 'noactivity'}], lifetime=100000, retroactive=0, dry_run=0, comments='Ni ! Ni!') subid = self.sub_client.add_subscription(name=subscription_name, account='root', filter={'project': self.projects, 'datatype': ['AOD', ], 'excluded_pattern': self.pattern1, 'account': ['tier0', ]}, replication_rules=[{'lifetime': 86400, 'rse_expression': 'MOCK|MOCK2', 'copies': 2, 'activity': 'Data Brokering'}], lifetime=100000, retroactive=0, dry_run=0, comments='Ni ! Ni!') result = [sub['id'] for sub in list_subscriptions(name=subscription_name, account='root', **self.vo)] assert subid == result[0] with pytest.raises(TypeError): result = self.sub_client.update_subscription(name=subscription_name, account='root', filter='toto') result = self.sub_client.update_subscription(name=subscription_name, account='root', filter={'project': ['toto', ]}) assert result result = list_subscriptions(name=subscription_name, account='root', **self.vo) sub = [] for res in result: sub.append(res) assert len(sub) == 1 assert loads(sub[0]['filter'])['project'][0] == 'toto' def test_create_existing_subscription(self): """ SUBSCRIPTION (CLIENT): Test the creation of a existing subscription """ subscription_name = uuid() result = self.sub_client.add_subscription(name=subscription_name, account='root', filter={'project': self.projects, 'datatype': ['AOD', ], 'excluded_pattern': self.pattern1, 'account': ['tier0', ]}, replication_rules=[{'lifetime': 86400, 'rse_expression': 'MOCK|MOCK2', 'copies': 2, 'activity': 'Data Brokering'}], lifetime=100000, retroactive=0, dry_run=0, comments='Ni ! Ni!') assert result with pytest.raises(SubscriptionDuplicate): self.sub_client.add_subscription(name=subscription_name, account='root', filter={'project': self.projects, 'datatype': ['AOD', ], 'excluded_pattern': self.pattern1, 'account': ['tier0', ]}, replication_rules=[{'lifetime': 86400, 'rse_expression': 'MOCK|MOCK2', 'copies': 2, 'activity': 'Data Brokering'}], lifetime=100000, retroactive=0, dry_run=0, comments='Ni ! Ni!') def test_update_nonexisting_subscription(self): """ SUBSCRIPTION (CLIENT): Test the update of a non-existing subscription """ subscription_name = uuid() with pytest.raises(SubscriptionNotFound): self.sub_client.update_subscription(name=subscription_name, filter={'project': ['toto', ]}) def test_create_and_list_subscription_by_account(self): """ SUBSCRIPTION (CLIENT): Test retrieval of subscriptions for an account """ subscription_name = uuid() account_name = uuid()[:10] add_account(InternalAccount(account_name, **self.vo), AccountType.USER, 'rucio@email.com') subid = self.sub_client.add_subscription(name=subscription_name, account=account_name, filter={'project': self.projects, 'datatype': ['AOD', ], 'excluded_pattern': self.pattern1, 'account': ['tier0', ]}, replication_rules=[{'lifetime': 86400, 'rse_expression': 'MOCK|MOCK2', 'copies': 2, 'activity': 'Data Brokering'}], lifetime=100000, retroactive=0, dry_run=0, comments='Ni ! Ni!') result = [sub['id'] for sub in self.sub_client.list_subscriptions(account=account_name)] assert subid == result[0] def test_create_and_list_subscription_by_name(self): """ SUBSCRIPTION (CLIENT): Test retrieval of subscriptions for an account """ subscription_name = uuid() subid = self.sub_client.add_subscription(name=subscription_name, account='root', filter={'project': self.projects, 'datatype': ['AOD', ], 'excluded_pattern': self.pattern1, 'account': ['tier0', ]}, replication_rules=[{'lifetime': 86400, 'rse_expression': 'MOCK|MOCK2', 'copies': 2, 'activity': 'Data Brokering'}], lifetime=100000, retroactive=0, dry_run=0, comments='Ni ! Ni!') result = [sub['id'] for sub in self.sub_client.list_subscriptions(name=subscription_name)] assert subid == result[0] def test_run_transmogrifier(self): """ SUBSCRIPTION (DAEMON): Test the transmogrifier and the split_rule mode """ tmp_scope = InternalScope('mock_' + uuid()[:8], **self.vo) root = InternalAccount('root', **self.vo) add_scope(tmp_scope, root) subscription_name = uuid() dsn = 'dataset-%s' % uuid() add_did(scope=tmp_scope, name=dsn, type=DIDType.DATASET, account=root) subid = self.sub_client.add_subscription(name=subscription_name, account='root', filter={'scope': [tmp_scope.external, ], 'pattern': 'dataset-.*', 'split_rule': True}, replication_rules=[{'lifetime': 86400, 'rse_expression': 'MOCK-POSIX|MOCK2|MOCK3', 'copies': 2, 'activity': 'Data Brokering'}], lifetime=None, retroactive=0, dry_run=0, comments='Ni ! Ni!', priority=1) run(threads=1, bulk=1000000, once=True) rules = [rule for rule in self.did_client.list_did_rules(scope=tmp_scope.external, name=dsn) if str(rule['subscription_id']) == str(subid)] assert len(rules) == 2 set_new_dids([{'scope': tmp_scope, 'name': dsn}, ], 1) run(threads=1, bulk=1000000, once=True) rules = [rule for rule in self.did_client.list_did_rules(scope=tmp_scope.external, name=dsn) if str(rule['subscription_id']) == str(subid)] assert len(rules) == 2
60.078086
229
0.621945
cd49468429721093dab5a59de12204cbf09fefea
3,436
py
Python
Project/src/Shared/Recomender.py
gasperthegracner/psis2017
8f9c74ec788eccea1bc969a2baf080ff75e33e7a
[ "Apache-2.0" ]
null
null
null
Project/src/Shared/Recomender.py
gasperthegracner/psis2017
8f9c74ec788eccea1bc969a2baf080ff75e33e7a
[ "Apache-2.0" ]
null
null
null
Project/src/Shared/Recomender.py
gasperthegracner/psis2017
8f9c74ec788eccea1bc969a2baf080ff75e33e7a
[ "Apache-2.0" ]
null
null
null
import numpy import random import os class Recommender: ''' Class for generating recommendation data based input parameters like min intensity, max intensity, min duration, max duration, min heath rate, max heath rate and training days ''' def __init__(self, filename="../../Data/clusteredIntensity_cleaned.csv", savetofile="../../Data/generated_trainings.csv"): raw_data = numpy.genfromtxt(open(filename, 'rb'), delimiter=";", dtype=None).astype(str) self.data = [] self.save_to_file = savetofile for ind, row in enumerate(raw_data): if ind == 0: continue tmpobj = { "avgHR": float(row[0]), "intensity": float(row[1]), "duration": float(row[3]), "all": [float(row[0]), float(row[1]), float(row[3])] } self.data.append(tmpobj) def __save_generated_trainings(self, generated): header_string = 'mon_intensity;mon_duration;mon_hr;tue_intensity;tue_duration;tue_hr;' \ 'wed_intensity;wed_duration;wed_hr;thu_intensity;thu_duration;thu_hr;fri_intensity;' \ 'fri_duration;fri_hr;sat_intensity;sat_duration;sat_hr;sun_intensity;sun_duration;sun_hr' path = self.save_to_file with open(path, 'w') as the_file: the_file.write(header_string+"\n") for g in generated: s = ";".join(str(g_item) for g_item in g) the_file.write(s + "\n") return os.path.abspath(path) def generate_possible_combinations(self, min_intensity=0, max_intensity=3, min_duration=0, max_duration=1000000, min_HR=0, max_HR=1000, days=7): fitted = [] min_intensity = float(min_intensity) max_intensity = float(max_intensity) min_duration = float(min_duration) min_HR = float(min_HR) max_HR = float(max_HR) for row in self.data: if row["intensity"] > min_intensity and row["intensity"] <= max_intensity: if row["avgHR"] > min_HR and row["avgHR"] <= max_HR: if row["duration"] > min_duration and row["duration"] <= max_duration: fitted.append(row) # mon_intensity;mon_duration;mon_hr;tue_intensity;tue_duration;tue_hr;wed_intensity; # wed_duration;wed_hr;thu_intensity;thu_duration;thu_hr;fri_intensity;fri_duration;fri_hr; # sat_intensity;sat_duration;sat_hr;sun_intensity;sun_duration;sun_hr len_of_fitted = len(fitted) num_of_posibilities = 100 weeks_posibilities = [] for p in range(0, num_of_posibilities): num_of_true = 0 week = [] for i in range(0, 7): take_day = random.randrange(2) if take_day == 1 and num_of_true <= days: num_of_true += 1 fited_ind = random.randrange(len_of_fitted) week.append(fitted[fited_ind]["intensity"]) week.append(fitted[fited_ind]["duration"]) week.append(fitted[fited_ind]["avgHR"]) else: week.append(0) week.append(0) week.append(0) weeks_posibilities.append(week) file_path = self.__save_generated_trainings(weeks_posibilities) return file_path
40.904762
148
0.595169
edbc1d9241418f15d7e6d56e2f8e7cd73bd4c0fc
27,022
py
Python
tests/postgres_tests/test_array.py
dmedvinsky/django
f6681393d3f53a67b4e0645e8d02f95579d8ae2d
[ "PSF-2.0", "BSD-3-Clause" ]
1
2017-02-11T07:07:16.000Z
2017-02-11T07:07:16.000Z
tests/postgres_tests/test_array.py
dmedvinsky/django
f6681393d3f53a67b4e0645e8d02f95579d8ae2d
[ "PSF-2.0", "BSD-3-Clause" ]
null
null
null
tests/postgres_tests/test_array.py
dmedvinsky/django
f6681393d3f53a67b4e0645e8d02f95579d8ae2d
[ "PSF-2.0", "BSD-3-Clause" ]
2
2018-03-30T04:24:48.000Z
2021-05-09T12:39:09.000Z
import decimal import json import unittest import uuid from django import forms from django.core import exceptions, serializers, validators from django.core.management import call_command from django.db import IntegrityError, connection, models from django.test import TransactionTestCase, override_settings from django.test.utils import isolate_apps from django.utils import timezone from . import PostgreSQLTestCase from .models import ( ArrayFieldSubclass, CharArrayModel, DateTimeArrayModel, IntegerArrayModel, NestedIntegerArrayModel, NullableIntegerArrayModel, OtherTypesArrayModel, PostgreSQLModel, Tag, ) try: from django.contrib.postgres.fields import ArrayField from django.contrib.postgres.forms import SimpleArrayField, SplitArrayField except ImportError: pass class TestSaveLoad(PostgreSQLTestCase): def test_integer(self): instance = IntegerArrayModel(field=[1, 2, 3]) instance.save() loaded = IntegerArrayModel.objects.get() self.assertEqual(instance.field, loaded.field) def test_char(self): instance = CharArrayModel(field=['hello', 'goodbye']) instance.save() loaded = CharArrayModel.objects.get() self.assertEqual(instance.field, loaded.field) def test_dates(self): instance = DateTimeArrayModel( datetimes=[timezone.now()], dates=[timezone.now().date()], times=[timezone.now().time()], ) instance.save() loaded = DateTimeArrayModel.objects.get() self.assertEqual(instance.datetimes, loaded.datetimes) self.assertEqual(instance.dates, loaded.dates) self.assertEqual(instance.times, loaded.times) def test_tuples(self): instance = IntegerArrayModel(field=(1,)) instance.save() loaded = IntegerArrayModel.objects.get() self.assertSequenceEqual(instance.field, loaded.field) def test_integers_passed_as_strings(self): # This checks that get_prep_value is deferred properly instance = IntegerArrayModel(field=['1']) instance.save() loaded = IntegerArrayModel.objects.get() self.assertEqual(loaded.field, [1]) def test_default_null(self): instance = NullableIntegerArrayModel() instance.save() loaded = NullableIntegerArrayModel.objects.get(pk=instance.pk) self.assertEqual(loaded.field, None) self.assertEqual(instance.field, loaded.field) def test_null_handling(self): instance = NullableIntegerArrayModel(field=None) instance.save() loaded = NullableIntegerArrayModel.objects.get() self.assertEqual(instance.field, loaded.field) instance = IntegerArrayModel(field=None) with self.assertRaises(IntegrityError): instance.save() def test_nested(self): instance = NestedIntegerArrayModel(field=[[1, 2], [3, 4]]) instance.save() loaded = NestedIntegerArrayModel.objects.get() self.assertEqual(instance.field, loaded.field) def test_other_array_types(self): instance = OtherTypesArrayModel( ips=['192.168.0.1', '::1'], uuids=[uuid.uuid4()], decimals=[decimal.Decimal(1.25), 1.75], tags=[Tag(1), Tag(2), Tag(3)], ) instance.save() loaded = OtherTypesArrayModel.objects.get() self.assertEqual(instance.ips, loaded.ips) self.assertEqual(instance.uuids, loaded.uuids) self.assertEqual(instance.decimals, loaded.decimals) self.assertEqual(instance.tags, loaded.tags) def test_null_from_db_value_handling(self): instance = OtherTypesArrayModel.objects.create( ips=['192.168.0.1', '::1'], uuids=[uuid.uuid4()], decimals=[decimal.Decimal(1.25), 1.75], tags=None, ) instance.refresh_from_db() self.assertIsNone(instance.tags) def test_model_set_on_base_field(self): instance = IntegerArrayModel() field = instance._meta.get_field('field') self.assertEqual(field.model, IntegerArrayModel) self.assertEqual(field.base_field.model, IntegerArrayModel) class TestQuerying(PostgreSQLTestCase): def setUp(self): self.objs = [ NullableIntegerArrayModel.objects.create(field=[1]), NullableIntegerArrayModel.objects.create(field=[2]), NullableIntegerArrayModel.objects.create(field=[2, 3]), NullableIntegerArrayModel.objects.create(field=[20, 30, 40]), NullableIntegerArrayModel.objects.create(field=None), ] def test_exact(self): self.assertSequenceEqual( NullableIntegerArrayModel.objects.filter(field__exact=[1]), self.objs[:1] ) def test_exact_charfield(self): instance = CharArrayModel.objects.create(field=['text']) self.assertSequenceEqual( CharArrayModel.objects.filter(field=['text']), [instance] ) def test_exact_nested(self): instance = NestedIntegerArrayModel.objects.create(field=[[1, 2], [3, 4]]) self.assertSequenceEqual( NestedIntegerArrayModel.objects.filter(field=[[1, 2], [3, 4]]), [instance] ) def test_isnull(self): self.assertSequenceEqual( NullableIntegerArrayModel.objects.filter(field__isnull=True), self.objs[-1:] ) def test_gt(self): self.assertSequenceEqual( NullableIntegerArrayModel.objects.filter(field__gt=[0]), self.objs[:4] ) def test_lt(self): self.assertSequenceEqual( NullableIntegerArrayModel.objects.filter(field__lt=[2]), self.objs[:1] ) def test_in(self): self.assertSequenceEqual( NullableIntegerArrayModel.objects.filter(field__in=[[1], [2]]), self.objs[:2] ) def test_contained_by(self): self.assertSequenceEqual( NullableIntegerArrayModel.objects.filter(field__contained_by=[1, 2]), self.objs[:2] ) def test_contains(self): self.assertSequenceEqual( NullableIntegerArrayModel.objects.filter(field__contains=[2]), self.objs[1:3] ) def test_contains_charfield(self): # Regression for #22907 self.assertSequenceEqual( CharArrayModel.objects.filter(field__contains=['text']), [] ) def test_contained_by_charfield(self): self.assertSequenceEqual( CharArrayModel.objects.filter(field__contained_by=['text']), [] ) def test_overlap_charfield(self): self.assertSequenceEqual( CharArrayModel.objects.filter(field__overlap=['text']), [] ) def test_index(self): self.assertSequenceEqual( NullableIntegerArrayModel.objects.filter(field__0=2), self.objs[1:3] ) def test_index_chained(self): self.assertSequenceEqual( NullableIntegerArrayModel.objects.filter(field__0__lt=3), self.objs[0:3] ) def test_index_nested(self): instance = NestedIntegerArrayModel.objects.create(field=[[1, 2], [3, 4]]) self.assertSequenceEqual( NestedIntegerArrayModel.objects.filter(field__0__0=1), [instance] ) @unittest.expectedFailure def test_index_used_on_nested_data(self): instance = NestedIntegerArrayModel.objects.create(field=[[1, 2], [3, 4]]) self.assertSequenceEqual( NestedIntegerArrayModel.objects.filter(field__0=[1, 2]), [instance] ) def test_overlap(self): self.assertSequenceEqual( NullableIntegerArrayModel.objects.filter(field__overlap=[1, 2]), self.objs[0:3] ) def test_len(self): self.assertSequenceEqual( NullableIntegerArrayModel.objects.filter(field__len__lte=2), self.objs[0:3] ) def test_len_empty_array(self): obj = NullableIntegerArrayModel.objects.create(field=[]) self.assertSequenceEqual( NullableIntegerArrayModel.objects.filter(field__len=0), [obj] ) def test_slice(self): self.assertSequenceEqual( NullableIntegerArrayModel.objects.filter(field__0_1=[2]), self.objs[1:3] ) self.assertSequenceEqual( NullableIntegerArrayModel.objects.filter(field__0_2=[2, 3]), self.objs[2:3] ) @unittest.expectedFailure def test_slice_nested(self): instance = NestedIntegerArrayModel.objects.create(field=[[1, 2], [3, 4]]) self.assertSequenceEqual( NestedIntegerArrayModel.objects.filter(field__0__0_1=[1]), [instance] ) def test_usage_in_subquery(self): self.assertSequenceEqual( NullableIntegerArrayModel.objects.filter( id__in=NullableIntegerArrayModel.objects.filter(field__len=3) ), [self.objs[3]] ) class TestDateTimeExactQuerying(PostgreSQLTestCase): def setUp(self): now = timezone.now() self.datetimes = [now] self.dates = [now.date()] self.times = [now.time()] self.objs = [ DateTimeArrayModel.objects.create( datetimes=self.datetimes, dates=self.dates, times=self.times, ) ] def test_exact_datetimes(self): self.assertSequenceEqual( DateTimeArrayModel.objects.filter(datetimes=self.datetimes), self.objs ) def test_exact_dates(self): self.assertSequenceEqual( DateTimeArrayModel.objects.filter(dates=self.dates), self.objs ) def test_exact_times(self): self.assertSequenceEqual( DateTimeArrayModel.objects.filter(times=self.times), self.objs ) class TestOtherTypesExactQuerying(PostgreSQLTestCase): def setUp(self): self.ips = ['192.168.0.1', '::1'] self.uuids = [uuid.uuid4()] self.decimals = [decimal.Decimal(1.25), 1.75] self.tags = [Tag(1), Tag(2), Tag(3)] self.objs = [ OtherTypesArrayModel.objects.create( ips=self.ips, uuids=self.uuids, decimals=self.decimals, tags=self.tags, ) ] def test_exact_ip_addresses(self): self.assertSequenceEqual( OtherTypesArrayModel.objects.filter(ips=self.ips), self.objs ) def test_exact_uuids(self): self.assertSequenceEqual( OtherTypesArrayModel.objects.filter(uuids=self.uuids), self.objs ) def test_exact_decimals(self): self.assertSequenceEqual( OtherTypesArrayModel.objects.filter(decimals=self.decimals), self.objs ) def test_exact_tags(self): self.assertSequenceEqual( OtherTypesArrayModel.objects.filter(tags=self.tags), self.objs ) @isolate_apps('postgres_tests') class TestChecks(PostgreSQLTestCase): def test_field_checks(self): class MyModel(PostgreSQLModel): field = ArrayField(models.CharField()) model = MyModel() errors = model.check() self.assertEqual(len(errors), 1) # The inner CharField is missing a max_length. self.assertEqual(errors[0].id, 'postgres.E001') self.assertIn('max_length', errors[0].msg) def test_invalid_base_fields(self): class MyModel(PostgreSQLModel): field = ArrayField(models.ManyToManyField('postgres_tests.IntegerArrayModel')) model = MyModel() errors = model.check() self.assertEqual(len(errors), 1) self.assertEqual(errors[0].id, 'postgres.E002') def test_nested_field_checks(self): """ Nested ArrayFields are permitted. """ class MyModel(PostgreSQLModel): field = ArrayField(ArrayField(models.CharField())) model = MyModel() errors = model.check() self.assertEqual(len(errors), 1) # The inner CharField is missing a max_length. self.assertEqual(errors[0].id, 'postgres.E001') self.assertIn('max_length', errors[0].msg) @unittest.skipUnless(connection.vendor == 'postgresql', "PostgreSQL specific tests") class TestMigrations(TransactionTestCase): available_apps = ['postgres_tests'] def test_deconstruct(self): field = ArrayField(models.IntegerField()) name, path, args, kwargs = field.deconstruct() new = ArrayField(*args, **kwargs) self.assertEqual(type(new.base_field), type(field.base_field)) def test_deconstruct_with_size(self): field = ArrayField(models.IntegerField(), size=3) name, path, args, kwargs = field.deconstruct() new = ArrayField(*args, **kwargs) self.assertEqual(new.size, field.size) def test_deconstruct_args(self): field = ArrayField(models.CharField(max_length=20)) name, path, args, kwargs = field.deconstruct() new = ArrayField(*args, **kwargs) self.assertEqual(new.base_field.max_length, field.base_field.max_length) def test_subclass_deconstruct(self): field = ArrayField(models.IntegerField()) name, path, args, kwargs = field.deconstruct() self.assertEqual(path, 'django.contrib.postgres.fields.ArrayField') field = ArrayFieldSubclass() name, path, args, kwargs = field.deconstruct() self.assertEqual(path, 'postgres_tests.models.ArrayFieldSubclass') @override_settings(MIGRATION_MODULES={ "postgres_tests": "postgres_tests.array_default_migrations", }) def test_adding_field_with_default(self): # See #22962 table_name = 'postgres_tests_integerarraydefaultmodel' with connection.cursor() as cursor: self.assertNotIn(table_name, connection.introspection.table_names(cursor)) call_command('migrate', 'postgres_tests', verbosity=0) with connection.cursor() as cursor: self.assertIn(table_name, connection.introspection.table_names(cursor)) call_command('migrate', 'postgres_tests', 'zero', verbosity=0) with connection.cursor() as cursor: self.assertNotIn(table_name, connection.introspection.table_names(cursor)) @override_settings(MIGRATION_MODULES={ "postgres_tests": "postgres_tests.array_index_migrations", }) def test_adding_arrayfield_with_index(self): """ ArrayField shouldn't have varchar_patterns_ops or text_patterns_ops indexes. """ table_name = 'postgres_tests_chartextarrayindexmodel' call_command('migrate', 'postgres_tests', verbosity=0) with connection.cursor() as cursor: like_constraint_field_names = [ c.rsplit('_', 2)[0][len(table_name) + 1:] for c in connection.introspection.get_constraints(cursor, table_name) if c.endswith('_like') ] # Only the CharField should have a LIKE index. self.assertEqual(like_constraint_field_names, ['char2']) with connection.cursor() as cursor: indexes = connection.introspection.get_indexes(cursor, table_name) # All fields should have regular indexes. self.assertIn('char', indexes) self.assertIn('char2', indexes) self.assertIn('text', indexes) call_command('migrate', 'postgres_tests', 'zero', verbosity=0) with connection.cursor() as cursor: self.assertNotIn(table_name, connection.introspection.table_names(cursor)) class TestSerialization(PostgreSQLTestCase): test_data = ( '[{"fields": {"field": "[\\"1\\", \\"2\\", null]"}, "model": "postgres_tests.integerarraymodel", "pk": null}]' ) def test_dumping(self): instance = IntegerArrayModel(field=[1, 2, None]) data = serializers.serialize('json', [instance]) self.assertEqual(json.loads(data), json.loads(self.test_data)) def test_loading(self): instance = list(serializers.deserialize('json', self.test_data))[0].object self.assertEqual(instance.field, [1, 2, None]) class TestValidation(PostgreSQLTestCase): def test_unbounded(self): field = ArrayField(models.IntegerField()) with self.assertRaises(exceptions.ValidationError) as cm: field.clean([1, None], None) self.assertEqual(cm.exception.code, 'item_invalid') self.assertEqual( cm.exception.message % cm.exception.params, 'Item 1 in the array did not validate: This field cannot be null.' ) def test_blank_true(self): field = ArrayField(models.IntegerField(blank=True, null=True)) # This should not raise a validation error field.clean([1, None], None) def test_with_size(self): field = ArrayField(models.IntegerField(), size=3) field.clean([1, 2, 3], None) with self.assertRaises(exceptions.ValidationError) as cm: field.clean([1, 2, 3, 4], None) self.assertEqual(cm.exception.messages[0], 'List contains 4 items, it should contain no more than 3.') def test_nested_array_mismatch(self): field = ArrayField(ArrayField(models.IntegerField())) field.clean([[1, 2], [3, 4]], None) with self.assertRaises(exceptions.ValidationError) as cm: field.clean([[1, 2], [3, 4, 5]], None) self.assertEqual(cm.exception.code, 'nested_array_mismatch') self.assertEqual(cm.exception.messages[0], 'Nested arrays must have the same length.') def test_with_base_field_error_params(self): field = ArrayField(models.CharField(max_length=2)) with self.assertRaises(exceptions.ValidationError) as cm: field.clean(['abc'], None) self.assertEqual(len(cm.exception.error_list), 1) exception = cm.exception.error_list[0] self.assertEqual( exception.message, 'Item 0 in the array did not validate: Ensure this value has at most 2 characters (it has 3).' ) self.assertEqual(exception.code, 'item_invalid') self.assertEqual(exception.params, {'nth': 0, 'value': 'abc', 'limit_value': 2, 'show_value': 3}) def test_with_validators(self): field = ArrayField(models.IntegerField(validators=[validators.MinValueValidator(1)])) field.clean([1, 2], None) with self.assertRaises(exceptions.ValidationError) as cm: field.clean([0], None) self.assertEqual(len(cm.exception.error_list), 1) exception = cm.exception.error_list[0] self.assertEqual( exception.message, 'Item 0 in the array did not validate: Ensure this value is greater than or equal to 1.' ) self.assertEqual(exception.code, 'item_invalid') self.assertEqual(exception.params, {'nth': 0, 'value': 0, 'limit_value': 1, 'show_value': 0}) class TestSimpleFormField(PostgreSQLTestCase): def test_valid(self): field = SimpleArrayField(forms.CharField()) value = field.clean('a,b,c') self.assertEqual(value, ['a', 'b', 'c']) def test_to_python_fail(self): field = SimpleArrayField(forms.IntegerField()) with self.assertRaises(exceptions.ValidationError) as cm: field.clean('a,b,9') self.assertEqual(cm.exception.messages[0], 'Item 0 in the array did not validate: Enter a whole number.') def test_validate_fail(self): field = SimpleArrayField(forms.CharField(required=True)) with self.assertRaises(exceptions.ValidationError) as cm: field.clean('a,b,') self.assertEqual(cm.exception.messages[0], 'Item 2 in the array did not validate: This field is required.') def test_validate_fail_base_field_error_params(self): field = SimpleArrayField(forms.CharField(max_length=2)) with self.assertRaises(exceptions.ValidationError) as cm: field.clean('abc,c,defg') errors = cm.exception.error_list self.assertEqual(len(errors), 2) first_error = errors[0] self.assertEqual( first_error.message, 'Item 0 in the array did not validate: Ensure this value has at most 2 characters (it has 3).' ) self.assertEqual(first_error.code, 'item_invalid') self.assertEqual(first_error.params, {'nth': 0, 'value': 'abc', 'limit_value': 2, 'show_value': 3}) second_error = errors[1] self.assertEqual( second_error.message, 'Item 2 in the array did not validate: Ensure this value has at most 2 characters (it has 4).' ) self.assertEqual(second_error.code, 'item_invalid') self.assertEqual(second_error.params, {'nth': 2, 'value': 'defg', 'limit_value': 2, 'show_value': 4}) def test_validators_fail(self): field = SimpleArrayField(forms.RegexField('[a-e]{2}')) with self.assertRaises(exceptions.ValidationError) as cm: field.clean('a,bc,de') self.assertEqual(cm.exception.messages[0], 'Item 0 in the array did not validate: Enter a valid value.') def test_delimiter(self): field = SimpleArrayField(forms.CharField(), delimiter='|') value = field.clean('a|b|c') self.assertEqual(value, ['a', 'b', 'c']) def test_delimiter_with_nesting(self): field = SimpleArrayField(SimpleArrayField(forms.CharField()), delimiter='|') value = field.clean('a,b|c,d') self.assertEqual(value, [['a', 'b'], ['c', 'd']]) def test_prepare_value(self): field = SimpleArrayField(forms.CharField()) value = field.prepare_value(['a', 'b', 'c']) self.assertEqual(value, 'a,b,c') def test_max_length(self): field = SimpleArrayField(forms.CharField(), max_length=2) with self.assertRaises(exceptions.ValidationError) as cm: field.clean('a,b,c') self.assertEqual(cm.exception.messages[0], 'List contains 3 items, it should contain no more than 2.') def test_min_length(self): field = SimpleArrayField(forms.CharField(), min_length=4) with self.assertRaises(exceptions.ValidationError) as cm: field.clean('a,b,c') self.assertEqual(cm.exception.messages[0], 'List contains 3 items, it should contain no fewer than 4.') def test_required(self): field = SimpleArrayField(forms.CharField(), required=True) with self.assertRaises(exceptions.ValidationError) as cm: field.clean('') self.assertEqual(cm.exception.messages[0], 'This field is required.') def test_model_field_formfield(self): model_field = ArrayField(models.CharField(max_length=27)) form_field = model_field.formfield() self.assertIsInstance(form_field, SimpleArrayField) self.assertIsInstance(form_field.base_field, forms.CharField) self.assertEqual(form_field.base_field.max_length, 27) def test_model_field_formfield_size(self): model_field = ArrayField(models.CharField(max_length=27), size=4) form_field = model_field.formfield() self.assertIsInstance(form_field, SimpleArrayField) self.assertEqual(form_field.max_length, 4) class TestSplitFormField(PostgreSQLTestCase): def test_valid(self): class SplitForm(forms.Form): array = SplitArrayField(forms.CharField(), size=3) data = {'array_0': 'a', 'array_1': 'b', 'array_2': 'c'} form = SplitForm(data) self.assertTrue(form.is_valid()) self.assertEqual(form.cleaned_data, {'array': ['a', 'b', 'c']}) def test_required(self): class SplitForm(forms.Form): array = SplitArrayField(forms.CharField(), required=True, size=3) data = {'array_0': '', 'array_1': '', 'array_2': ''} form = SplitForm(data) self.assertFalse(form.is_valid()) self.assertEqual(form.errors, {'array': ['This field is required.']}) def test_remove_trailing_nulls(self): class SplitForm(forms.Form): array = SplitArrayField(forms.CharField(required=False), size=5, remove_trailing_nulls=True) data = {'array_0': 'a', 'array_1': '', 'array_2': 'b', 'array_3': '', 'array_4': ''} form = SplitForm(data) self.assertTrue(form.is_valid(), form.errors) self.assertEqual(form.cleaned_data, {'array': ['a', '', 'b']}) def test_remove_trailing_nulls_not_required(self): class SplitForm(forms.Form): array = SplitArrayField( forms.CharField(required=False), size=2, remove_trailing_nulls=True, required=False, ) data = {'array_0': '', 'array_1': ''} form = SplitForm(data) self.assertTrue(form.is_valid()) self.assertEqual(form.cleaned_data, {'array': []}) def test_required_field(self): class SplitForm(forms.Form): array = SplitArrayField(forms.CharField(), size=3) data = {'array_0': 'a', 'array_1': 'b', 'array_2': ''} form = SplitForm(data) self.assertFalse(form.is_valid()) self.assertEqual(form.errors, {'array': ['Item 2 in the array did not validate: This field is required.']}) def test_invalid_integer(self): msg = 'Item 1 in the array did not validate: Ensure this value is less than or equal to 100.' with self.assertRaisesMessage(exceptions.ValidationError, msg): SplitArrayField(forms.IntegerField(max_value=100), size=2).clean([0, 101]) def test_rendering(self): class SplitForm(forms.Form): array = SplitArrayField(forms.CharField(), size=3) self.assertHTMLEqual(str(SplitForm()), ''' <tr> <th><label for="id_array_0">Array:</label></th> <td> <input id="id_array_0" name="array_0" type="text" required /> <input id="id_array_1" name="array_1" type="text" required /> <input id="id_array_2" name="array_2" type="text" required /> </td> </tr> ''') def test_invalid_char_length(self): field = SplitArrayField(forms.CharField(max_length=2), size=3) with self.assertRaises(exceptions.ValidationError) as cm: field.clean(['abc', 'c', 'defg']) self.assertEqual(cm.exception.messages, [ 'Item 0 in the array did not validate: Ensure this value has at most 2 characters (it has 3).', 'Item 2 in the array did not validate: Ensure this value has at most 2 characters (it has 4).', ])
37.687587
118
0.637185
9b757b23d0640a3f48fe4929260897d16668b053
13,117
py
Python
privex/jsonrpc/helpers.py
r3st3rcr0w/python-jsonrpc
cdf2fae411a7dac038aedea0d790d43d690f4930
[ "X11" ]
2
2019-03-18T03:48:25.000Z
2020-06-25T22:13:54.000Z
privex/jsonrpc/helpers.py
r3st3rcr0w/python-jsonrpc
cdf2fae411a7dac038aedea0d790d43d690f4930
[ "X11" ]
1
2019-07-17T09:26:59.000Z
2019-07-17T09:26:59.000Z
privex/jsonrpc/helpers.py
r3st3rcr0w/python-jsonrpc
cdf2fae411a7dac038aedea0d790d43d690f4930
[ "X11" ]
2
2019-03-23T20:45:41.000Z
2021-01-09T05:27:52.000Z
import logging from decimal import Decimal from privex.jsonrpc.JsonRPC import JsonRPC from typing import List, Union, Dict log = logging.getLogger(__name__) class BitcoinRPC(JsonRPC): """ Wrapper class for JsonRPC, with default host 127.0.0.1 and port 8332 Contains pre-defined methods with pydoc for interacting with `bitcoind` compatible JsonRPC services including most coin daemons forked from Bitcoin, e.g. litecoind, dogecoind etc. If a method is not defined, you can still use it! You just won't get any IDE hints with the parameters. Basic usage (by default, connects to http://127.0.0.1:8332): >>> j = BitcoinRPC(username='bitcoinrpc', password='somesecurepassword') >>> j.getbalance() Decimal(0.2456337) """ def __init__(self, hostname='127.0.0.1', port=8332, username=None, password=None, ssl=False, timeout=120, url: str = '', auth: str = 'plain'): super().__init__( hostname=hostname, port=port, username=username, password=password, ssl=ssl, timeout=timeout, url=url, auth=auth ) def getnewaddress(self, account="", address_type=None) -> str: """ Generate a new crypto address and return it as a string. :param account: Name of the account to store address in. Default is blank ``""`` :param address_type: The address type to use. Options are ``legacy``, ``p2sh-segwit``, and ``bech32``. :return: string - the address that was generated """ if address_type is None: return self.call('getnewaddress', account) return self.call('getnewaddress', account, address_type) def getbalance(self, account="*", confirmations: int = 0, watch_only=False) -> Decimal: """ Get the current wallet balance as a Decimal :param str account: DEPRECATED - Get the balance of this wallet account, ``*`` means all accs. :param int confirmations: Get wallet balance that has at least this many confirms :param bool watch_only: Include "Watch Only" addresses in the balance figure :return Decimal balance: The total balance of the given account """ bal = self.call('getbalance', account, confirmations, watch_only) if type(bal) == float: bal = '{0:.8f}'.format(bal) return Decimal(bal) def getreceivedbyaddress(self, address, confirmations: int = 0) -> Decimal: """ Get the total amount of coins received by an address (must exist in the wallet) :param str address: The address to lookup :param int confirmations: Get received amount that has at least this many confirms :return Decimal balance: The total amount of coins received by an address. """ bal = self.call('getreceivedbyaddress', address, confirmations) if type(bal) == float: bal = '{0:.8f}'.format(bal) return Decimal(bal) def sendtoaddress(self, address, amount: Union[float, str, Decimal], comment="", comment_to="", subtractfee: bool = False, force_float=True) -> str: """ Send coins to an address :param str address: The destination address to send coins to :param float amount: The amount of coins to send. If coin supports string amounts, see ``force_float`` param. :param str comment: A comment used to store what the transaction is for. :param str comment_to: A comment, representing the name of the person or organization you're sending to. :param bool subtractfee: (Default False) If set to True, reduce the sending amount to cover the TX fee. :param bool force_float: (Default True) If set to True, the ``amount`` parameter will be casted to a float before sending via JSONRPC. If you're dealing with a coin daemon that can handle string amounts, set this to False and pass amount as a str :return str txid: The transaction ID for this "send coins" transaction. """ if force_float: amount = float(amount) return self.call('sendtoaddress', address, amount, comment, comment_to, subtractfee) def listtransactions(self, account="*", count: int = 10, skip: int = 0, watch_only=False) -> List[dict]: """ List transactions sent/received/generated by an account, or all accounts :param account: Account to list TXs for :param count: Load this many recent TXs :param skip: Skip this many recent TXs (for pagination) :param watch_only: Include watchonly addresses :return: [ {account, address, category, amount, label, vout, fee, confirmations, trusted, generated, blockhash, blockindex, blocktime, txid, walletconflicts, time, timereceived, comment, to, otheraccount, bip125-replaceable, abandoned}, ... ] """ return self.call('listtransactions', account, count, skip, watch_only) def getblockchaininfo(self) -> dict: """ Get information about the blockchain, such as the current block/header height, network difficulty etc. :return dict networkinfo: Returns blockchain information as a dict, in this format Return format:: { chain:str, blocks:int, headers: int, bestblockhash: str, difficulty: float, mediantime: int, verificationprogress: float, initialblockdownload: bool, chainwork: str, size_on_disk: int, pruned: bool, softforks: List[dict], bip9_softforks: Dict[dict], warnings: str } """ return self.call('getblockchaininfo') def getnetworkinfo(self) -> dict: """ Get information about the network, such as daemon version, relay fees, total connections etc. :return dict networkinfo: Returns network information as a dict, in this format Return format:: { version:int, subversion:str, localservices:str, localrelay:bool, timeoffset:int, networkactive:bool, connections:int, networks:List[dict], relayfee:float, incrementalfee:float, localaddresses:List[dict], warnings:str } """ return self.call('getnetworkinfo') def getinfo(self) -> dict: """ WARNING: This is deprecated in favour of getnetworkinfo/getblockchaininfo, and is only here for compatibility with older cryptocurrency daemons. :return dict daemoninfo: Various status info, such as current block, balance etc. See below. Return format:: { version:int, protocolversion: int, walletversion: int, balance: float, blocks:int, timeoffset: int, connections: int, proxy: str, difficulty: float, testnet: bool, keypoololdest: int, keypoolsize: int, paytxfee: float, relayfee: float, warnings: str } """ return self.call('getinfo') class LitecoinRPC(BitcoinRPC): """ Wrapper class for JsonRPC, with default host 127.0.0.1 and port 8332 """ def __init__(self, hostname='127.0.0.1', port=9332, username=None, password=None, ssl=False, timeout=120, url: str = '', auth: str = 'plain'): super().__init__( hostname=hostname, port=port, username=username, password=password, ssl=ssl, timeout=timeout, url=url, auth=auth ) class SteemEngineRPC(JsonRPC): """ +===================================================+ | © 2019 Privex Inc. | | https://www.privex.io | +===================================================+ | | | Python Simple JSON RPC library | | License: X11/MIT | | | | Core Developer(s): | | | | (+) Chris (@someguy123) [Privex] | | | +===================================================+ """ DEF_HOST = 'api.steem-engine.com' DEF_URL = '/rpc/contracts' def __init__(self, hostname=DEF_HOST, port=443, username=None, password=None, ssl=True, timeout=120, url=DEF_URL, auth='plain'): super().__init__( hostname=hostname, port=port, username=username, password=password, ssl=ssl, timeout=timeout, url=url, auth=auth ) def getcontract(self, name: str) -> dict: """ Returns information about a given contract, such as 'tokens' :param name: Name of the contract, e.g. tokens :return: None if not found :return: {name, owner, code, codeHash, tables, $loki} """ return self.call('getContract', name=name) def findone(self, contract: str, table: str, query: dict) -> dict: """ Returns the first result of a contract table query as a dictionary >>> rpc = SteemEngineRPC() >>> t = rpc.findone(contract='tokens',table='tokens',query=dict(symbol='ENG')) >>> t['name'] 'Steem Engine Token' :param contract: Name of the contract, e.g. tokens :param table: The table of the contract to query, e.g. balances :param query: A dictionary query for filtering results, e.g. {'account': 'someguy123'} :return: None if not found :return: Dictionary containing the row data """ return self.call('findOne', contract=contract, table=table, query=query) def find(self, contract, table, query: dict = None, limit: int = 1000, offset: int = 0, indexes: list = None) -> list: """ Returns a list of matching rows for a given contract table query Example - Get a list of all tokens (max 1000 results by default): >>> rpc = SteemEngineRPC() >>> t = rpc.find(contract='tokens',table='tokens') :param contract: Name of the contract, e.g. tokens :param table: The table of the contract to query, e.g. balances :param query: A dictionary query for filtering results, e.g. {'account': 'someguy123'} (Default: {}) :param limit: Maximum results to retrieve :param offset: Skip this many results :param indexes: :return: A list of matching rows, as dict's """ return self.call( 'find', contract=contract, table=table, query=query if query is not None else {}, limit=limit, offset=offset, indexes=indexes if indexes is not None else [] ) """ +===================================================+ | © 2019 Privex Inc. | | https://www.privex.io | +===================================================+ | | | Python Simple JSON RPC library | | License: X11/MIT | | | | Core Developer(s): | | | | (+) Chris (@someguy123) [Privex] | | | +===================================================+ Python Json RPC - A simple library for interacting with JsonRPC services Copyright (c) 2019 Privex Inc. ( https://www.privex.io ) Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. Except as contained in this notice, the name(s) of the above copyright holders shall not be used in advertising or otherwise to promote the sale, use or other dealings in this Software without prior written authorization. """
46.679715
132
0.586033
806f0a3bfdfab6ee06b775a27c47db7a6c91716c
1,069
py
Python
malwarebazaar/platform.py
Rafiot/bazaar
ee61622de49a7ba3fa7c4c8ad07346b36e5e36e0
[ "MIT" ]
15
2021-06-16T21:25:27.000Z
2022-02-21T10:48:32.000Z
malwarebazaar/platform.py
Rafiot/bazaar
ee61622de49a7ba3fa7c4c8ad07346b36e5e36e0
[ "MIT" ]
3
2021-09-28T07:33:21.000Z
2022-02-21T19:03:23.000Z
malwarebazaar/platform.py
Rafiot/bazaar
ee61622de49a7ba3fa7c4c8ad07346b36e5e36e0
[ "MIT" ]
3
2021-06-17T20:12:54.000Z
2022-02-21T09:31:55.000Z
import os from sys import platform from rich.console import Console def is_linux() -> bool: return platform == "linux" def is_win() -> bool: return platform == "win32" def is_darwin() -> bool: return platform == "darwin" def get_config_dir(ec: Console = Console(stderr=True, style="bold red")) -> str: """Returns path to directory in user dir""" u_path = None u_env = os.getenv("BAZAAR_PATH", None) if u_env: return u_env if is_linux() or is_darwin(): u_path = os.path.abspath(os.path.join(os.getenv("HOME"), ".config", "bazaar")) elif is_win(): u_path = os.path.abspath(os.path.join(os.getenv("APPDATA"), "bazaar")) else: ec.print(f"Unknown platform: {platform}.") exit(-1) if not os.path.exists(u_path): os.mkdir(u_path) return u_path def get_config_path() -> str: """Return path to config.toml""" c_env = os.getenv("BAZAAR_CONFIG", None) if c_env: return c_env c_path = os.path.join(get_config_dir(), "config.yml") return c_path
23.23913
86
0.624883
97ac4c1ffc51093d5b56fdd99168c098a6c5cd21
1,953
py
Python
model/contact.py
zarinabaisakalova/trainings
4f8149ffa4797eb678fd5649f29821e1146bd57e
[ "Apache-2.0" ]
null
null
null
model/contact.py
zarinabaisakalova/trainings
4f8149ffa4797eb678fd5649f29821e1146bd57e
[ "Apache-2.0" ]
null
null
null
model/contact.py
zarinabaisakalova/trainings
4f8149ffa4797eb678fd5649f29821e1146bd57e
[ "Apache-2.0" ]
null
null
null
_author_ = 'zarina' from sys import maxsize class Contact: def __init__(self, id=None, firstname=None, lastname=None, middlename=None, nickname=None, title=None, company=None, all_phones_from_home_page=None, all_emails_from_home_page=None, address=None, homephone=None, mobilephone=None, workphone=None, secondaryphone=None, fax=None, homepage=None, address2=None, notes=None, bday=None, bmonth=None, byear=None, aday=None, amonth=None, ayear=None, email=None, email2=None, email3=None): self.firstname = firstname self.lastname = lastname self.middlename = middlename self.nickname = nickname self.id = id self.homephone = homephone self.mobilephone = mobilephone self.workphone = workphone self.secondaryphone = secondaryphone self.fax = fax self.address = address self.address2 = address2 self.email = email self.email2 = email2 self.email3 = email3 self.all_phones_from_home_page = all_phones_from_home_page self.all_emails_from_home_page = all_emails_from_home_page self.title = title self.company = company self.homepage = homepage self.notes = notes self.bday = bday self.bmonth = bmonth self.byear = byear self.aday = aday self.amonth = amonth self.ayear = ayear def __repr__(self): #return f'{self.id}:{self.firstname} {self.lastname}' return "%s:%s:%s" % (self.id, self.lastname, self.firstname) def __eq__(self, other): return (self.id == other.id or self.id is None or other.id is None) \ and self.firstname == other.firstname \ and self.lastname == other.lastname def id_or_max(self): if self.id: return int(self.id) else: return maxsize
34.875
120
0.61956
c1be88d05dd0c859c3da3f8b911606e3a8ea43f6
1,208
py
Python
utils/parameters/environment.py
martyw/finance
b323a0224c8152ce1c1ce628d92f4563f3a59f90
[ "MIT" ]
null
null
null
utils/parameters/environment.py
martyw/finance
b323a0224c8152ce1c1ce628d92f4563f3a59f90
[ "MIT" ]
null
null
null
utils/parameters/environment.py
martyw/finance
b323a0224c8152ce1c1ce628d92f4563f3a59f90
[ "MIT" ]
null
null
null
import unittest from datetime import date class Environment: def __init__(self, vd=date(2008, 1, 1)): self._valuation_date = vd self.curves = {} self.surfaces = {} self.constants = {} @property def valuation_date(self): return self._valuation_date @valuation_date.setter def valuation_date(self, val_date): self._valuation_date = val_date def relative_date(self, rel_date): ret = (rel_date - self._valuation_date).days assert ret > 0, "date before pricing date" return ret def add_curve(self, key, curve): if key in self.curves: del self.curves[key] self.curves[key] = curve def add_surface(self, key, surface): if key in self.surfaces: del self.surfaces[key] self.surfaces[key] = surface def add_constant(self, key, constant): if key in self.constants: del self.constants[key] self.constants[key] = constant def get_curve(self, key): return self.curves[key] def get_surface(self, key): return self.surfaces[key] def get_constant(self, key): return self.constants[key]
25.166667
52
0.61755
9a5838da4be758a6471d0ad45394c9a5d7fc1331
3,466
py
Python
tests/test_rand_zoomd.py
loftwah/MONAI
37fb3e779121e6dc74127993df102fc91d9065f8
[ "Apache-2.0" ]
1
2020-04-23T13:05:29.000Z
2020-04-23T13:05:29.000Z
tests/test_rand_zoomd.py
tranduyquockhanh/MONAI
37fb3e779121e6dc74127993df102fc91d9065f8
[ "Apache-2.0" ]
null
null
null
tests/test_rand_zoomd.py
tranduyquockhanh/MONAI
37fb3e779121e6dc74127993df102fc91d9065f8
[ "Apache-2.0" ]
1
2021-09-20T12:10:01.000Z
2021-09-20T12:10:01.000Z
# Copyright 2020 MONAI Consortium # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np import importlib from scipy.ndimage import zoom as zoom_scipy from parameterized import parameterized from monai.transforms import RandZoomd from tests.utils import NumpyImageTestCase2D VALID_CASES = [(0.9, 1.1, 3, 'constant', 0, True, False, False)] class TestRandZoomd(NumpyImageTestCase2D): @parameterized.expand(VALID_CASES) def test_correct_results(self, min_zoom, max_zoom, order, mode, cval, prefilter, use_gpu, keep_size): key = 'img' random_zoom = RandZoomd(key, prob=1.0, min_zoom=min_zoom, max_zoom=max_zoom, order=order, mode=mode, cval=cval, prefilter=prefilter, use_gpu=use_gpu, keep_size=keep_size) random_zoom.set_random_state(234) zoomed = random_zoom({key: self.imt[0]}) expected = list() for channel in self.imt[0]: expected.append(zoom_scipy(channel, zoom=random_zoom._zoom, mode=mode, order=order, cval=cval, prefilter=prefilter)) expected = np.stack(expected).astype(np.float32) self.assertTrue(np.allclose(expected, zoomed[key])) @parameterized.expand([ (0.8, 1.2, 1, 'constant', 0, True) ]) def test_gpu_zoom(self, min_zoom, max_zoom, order, mode, cval, prefilter): key = 'img' if importlib.util.find_spec('cupy'): random_zoom = RandZoomd( key, prob=1.0, min_zoom=min_zoom, max_zoom=max_zoom, order=order, mode=mode, cval=cval, prefilter=prefilter, use_gpu=True, keep_size=False) random_zoom.set_random_state(234) zoomed = random_zoom({key: self.imt[0]}) expected = list() for channel in self.imt[0]: expected.append(zoom_scipy(channel, zoom=random_zoom._zoom, mode=mode, order=order, cval=cval, prefilter=prefilter)) expected = np.stack(expected).astype(np.float32) self.assertTrue(np.allclose(expected, zoomed)) def test_keep_size(self): key = 'img' random_zoom = RandZoomd(key, prob=1.0, min_zoom=0.6, max_zoom=0.7, keep_size=True) zoomed = random_zoom({key: self.imt[0]}) self.assertTrue(np.array_equal(zoomed[key].shape, self.imt.shape[1:])) @parameterized.expand([ ("no_min_zoom", None, 1.1, 1, TypeError), ("invalid_order", 0.9, 1.1 , 's', AssertionError) ]) def test_invalid_inputs(self, _, min_zoom, max_zoom, order, raises): key = 'img' with self.assertRaises(raises): random_zoom = RandZoomd(key, prob=1.0, min_zoom=min_zoom, max_zoom=max_zoom, order=order) zoomed = random_zoom({key: self.imt[0]}) if __name__ == '__main__': unittest.main()
41.261905
101
0.639065
a6e7d8ea0751d5d09fa1b14f83214be024a9c8db
14,881
py
Python
src/best_params.py
waddupitzme/graph-neural-pde
004a30c9e838866ac8b78d14b7414224a24014a5
[ "Apache-2.0" ]
125
2021-06-16T09:36:18.000Z
2022-03-26T00:16:22.000Z
src/best_params.py
waddupitzme/graph-neural-pde
004a30c9e838866ac8b78d14b7414224a24014a5
[ "Apache-2.0" ]
8
2021-06-23T04:49:12.000Z
2022-03-28T20:25:47.000Z
src/best_params.py
waddupitzme/graph-neural-pde
004a30c9e838866ac8b78d14b7414224a24014a5
[ "Apache-2.0" ]
20
2021-06-23T06:55:35.000Z
2022-03-21T17:04:17.000Z
best_params_dict = {'Cora': {'M_nodes': 64, 'adaptive': False, 'add_source': True, 'adjoint': False, 'adjoint_method': 'adaptive_heun', 'adjoint_step_size': 1, 'alpha': 1.0, 'alpha_dim': 'sc', 'att_samp_pct': 1, 'attention_dim': 128, 'attention_norm_idx': 1, 'attention_rewiring': False, 'attention_type': 'scaled_dot', 'augment': False, 'baseline': False, 'batch_norm': False, 'beltrami': False, 'beta_dim': 'sc', 'block': 'attention', 'cpus': 1, 'data_norm': 'rw', 'dataset': 'Cora', 'decay': 0.00507685443154266, 'directional_penalty': None, 'dropout': 0.046878964627763316, 'dt': 0.001, 'dt_min': 1e-05, 'epoch': 100, 'exact': True, 'fc_out': False, 'feat_hidden_dim': 64, 'function': 'laplacian', 'gdc_avg_degree': 64, 'gdc_k': 64, 'gdc_method': 'ppr', 'gdc_sparsification': 'topk', 'gdc_threshold': 0.01, 'gpus': 0.5, 'grace_period': 20, 'heads': 8, 'heat_time': 3.0, 'hidden_dim': 80, 'input_dropout': 0.5, 'jacobian_norm2': None, 'kinetic_energy': None, 'label_rate': 0.5, 'leaky_relu_slope': 0.2, 'lr': 0.022924849756740397, 'max_epochs': 1000, 'max_iters': 100, 'max_nfe': 2000, 'method': 'dopri5', 'metric': 'accuracy', 'mix_features': False, 'name': 'cora_beltrami_splits', 'new_edges': 'random', 'no_alpha_sigmoid': False, 'not_lcc': True, 'num_init': 1, 'num_samples': 1000, 'num_splits': 2, 'ode_blocks': 1, 'optimizer': 'adamax', 'patience': 100, 'pos_enc_hidden_dim': 16, 'pos_enc_orientation': 'row', 'pos_enc_type': 'GDC', 'ppr_alpha': 0.05, 'reduction_factor': 10, 'regularise': False, 'reweight_attention': False, 'rewire_KNN': False, 'rewire_KNN_T': 'T0', 'rewire_KNN_epoch': 10, 'rewire_KNN_k': 64, 'rewire_KNN_sym': False, 'rewiring': None, 'rw_addD': 0.02, 'rw_rmvR': 0.02, 'self_loop_weight': 1, 'sparsify': 'S_hat', 'square_plus': True, 'step_size': 1, 'threshold_type': 'addD_rvR', 'time': 18.294754260552843, 'tol_scale': 821.9773048827274, 'tol_scale_adjoint': 1.0, 'total_deriv': None, 'use_cora_defaults': False, 'use_flux': False, 'use_labels': False, 'use_lcc': True, 'use_mlp': False}, 'Citeseer': {'M_nodes': 64, 'adaptive': False, 'add_source': True, 'adjoint': False, 'adjoint_method': 'adaptive_heun', 'adjoint_step_size': 1, 'alpha': 1.0, 'alpha_dim': 'sc', 'att_samp_pct': 1, 'attention_dim': 32, 'attention_norm_idx': 1, 'attention_rewiring': False, 'attention_type': 'exp_kernel', 'augment': False, 'baseline': False, 'batch_norm': False, 'beltrami': False, 'beta_dim': 'sc', 'block': 'attention', 'cpus': 1, 'data_norm': 'rw', 'dataset': 'Citeseer', 'decay': 0.1, 'directional_penalty': None, 'dropout': 0.7488085003122172, 'dt': 0.001, 'dt_min': 1e-05, 'epoch': 250, 'exact': True, 'fc_out': False, 'feat_hidden_dim': 64, 'function': 'laplacian', 'gdc_avg_degree': 64, 'gdc_k': 128, 'gdc_method': 'ppr', 'gdc_sparsification': 'topk', 'gdc_threshold': 0.01, 'gpus': 1.0, 'grace_period': 20, 'heads': 8, 'heat_time': 3.0, 'hidden_dim': 80, 'input_dropout': 0.6803233752085334, 'jacobian_norm2': None, 'kinetic_energy': None, 'label_rate': 0.5, 'leaky_relu_slope': 0.5825086997804176, 'lr': 0.00863585231323069, 'max_epochs': 1000, 'max_iters': 100, 'max_nfe': 3000, 'method': 'dopri5', 'metric': 'accuracy', 'mix_features': False, 'name': 'Citeseer_beltrami_1_KNN', 'new_edges': 'random', 'no_alpha_sigmoid': False, 'not_lcc': True, 'num_class': 6, 'num_feature': 3703, 'num_init': 2, 'num_nodes': 2120, 'num_samples': 400, 'num_splits': 0, 'ode_blocks': 1, 'optimizer': 'adam', 'patience': 100, 'pos_enc_dim': 'row', 'pos_enc_hidden_dim': 16, 'ppr_alpha': 0.05, 'reduction_factor': 4, 'regularise': False, 'reweight_attention': False, 'rewire_KNN': False, 'rewire_KNN_epoch': 10, 'rewire_KNN_k': 64, 'rewire_KNN_sym': False, 'rewiring': None, 'rw_addD': 0.02, 'rw_rmvR': 0.02, 'self_loop_weight': 1, 'sparsify': 'S_hat', 'square_plus': True, 'step_size': 1, 'threshold_type': 'addD_rvR', 'time': 7.874113442879092, 'tol_scale': 2.9010446330432815, 'tol_scale_adjoint': 1.0, 'total_deriv': None, 'use_cora_defaults': False, 'use_flux': False, 'use_labels': False, 'use_lcc': True, 'use_mlp': False}, 'Pubmed': {'M_nodes': 64, 'adaptive': False, 'add_source': True, 'adjoint': True, 'adjoint_method': 'adaptive_heun', 'adjoint_step_size': 1, 'alpha': 1.0, 'alpha_dim': 'sc', 'att_samp_pct': 1, 'attention_dim': 16, 'attention_norm_idx': 0, 'attention_rewiring': False, 'attention_type': 'cosine_sim', 'augment': False, 'baseline': False, 'batch_norm': False, 'beltrami': False, 'beta_dim': 'sc', 'block': 'attention', 'cpus': 1, 'data_norm': 'rw', 'dataset': 'Pubmed', 'decay': 0.0018236722171703636, 'directional_penalty': None, 'dropout': 0.07191100715473969, 'dt': 0.001, 'dt_min': 1e-05, 'epoch': 600, 'exact': False, 'fc_out': False, 'feat_hidden_dim': 64, 'function': 'laplacian', 'gdc_avg_degree': 64, 'gdc_k': 64, 'gdc_method': 'ppr', 'gdc_sparsification': 'topk', 'gdc_threshold': 0.01, 'gpus': 1.0, 'grace_period': 20, 'heads': 1, 'heat_time': 3.0, 'hidden_dim': 128, 'input_dropout': 0.5, 'jacobian_norm2': None, 'kinetic_energy': None, 'label_rate': 0.5, 'leaky_relu_slope': 0.2, 'lr': 0.014669345840305131, 'max_epochs': 1000, 'max_iters': 100, 'max_nfe': 5000, 'method': 'dopri5', 'metric': 'test_acc', 'mix_features': False, 'name': None, 'new_edges': 'random', 'no_alpha_sigmoid': False, 'not_lcc': True, 'num_init': 1, 'num_samples': 400, 'num_splits': 8, 'ode_blocks': 1, 'optimizer': 'adamax', 'patience': 100, 'pos_enc_dim': 'row', 'pos_enc_hidden_dim': 16, 'ppr_alpha': 0.05, 'reduction_factor': 10, 'regularise': False, 'reweight_attention': False, 'rewire_KNN': False, 'rewire_KNN_T': 'T0', 'rewire_KNN_epoch': 10, 'rewire_KNN_k': 64, 'rewire_KNN_sym': False, 'rewiring': None, 'rw_addD': 0.02, 'rw_rmvR': 0.02, 'self_loop_weight': 1, 'sparsify': 'S_hat', 'square_plus': True, 'step_size': 1, 'threshold_type': 'addD_rvR', 'time': 12.942327880200853, 'tol_scale': 1991.0688305523001, 'tol_scale_adjoint': 16324.368093998313, 'total_deriv': None, 'use_cora_defaults': False, 'use_flux': False, 'use_labels': False, 'use_lcc': True, 'use_mlp': False, 'folder': 'pubmed_linear_att_beltrami_adj2', 'index': 0, 'run_with_KNN': False, 'change_att_sim_type': False, 'reps': 1, 'max_test_steps': 100, 'no_early': False, 'earlystopxT': 5.0, 'pos_enc_csv': False, 'pos_enc_type': 'GDC'}, 'CoauthorCS': {'M_nodes': 64, 'adaptive': False, 'add_source': False, 'adjoint': True, 'adjoint_method': 'dopri5', 'adjoint_step_size': 1, 'alpha': 1.0, 'alpha_dim': 'sc', 'att_samp_pct': 1, 'attention_dim': 8, 'attention_norm_idx': 1, 'attention_rewiring': False, 'attention_type': 'scaled_dot', 'augment': False, 'baseline': False, 'batch_norm': False, 'beltrami': False, 'beta_dim': 'sc', 'block': 'attention', 'cpus': 1, 'data_norm': 'rw', 'dataset': 'CoauthorCS', 'decay': 0.004738413087298854, 'directional_penalty': None, 'dropout': 0.6857774850321, 'dt': 0.001, 'dt_min': 1e-05, 'edge_sampling': False, 'edge_sampling_T': 'T0', 'edge_sampling_add': 0.05, 'edge_sampling_epoch': 5, 'edge_sampling_online': False, 'edge_sampling_online_reps': 4, 'edge_sampling_rmv': 0.05, 'edge_sampling_space': 'pos_distance', 'edge_sampling_sym': False, 'epoch': 250, 'exact': False, 'fa_layer': False, 'fc_out': False, 'feat_hidden_dim': 128, 'function': 'laplacian', 'gdc_avg_degree': 64, 'gdc_k': 64, 'gdc_method': 'ppr', 'gdc_sparsification': 'topk', 'gdc_threshold': 0.0001, 'gpus': 1, 'grace_period': 20, 'heads': 4, 'heat_time': 3.0, 'hidden_dim': 16, 'input_dropout': 0.5275042493231822, 'jacobian_norm2': None, 'kinetic_energy': None, 'label_rate': 0.5, 'leaky_relu_slope': 0.7181389780997276, 'lr': 0.0009342860080741642, 'max_iters': 100, 'max_nfe': 3000, 'method': 'dopri5', 'metric': 'accuracy', 'mix_features': False, 'name': 'CoauthorCS_final_tune_posencGDC', 'new_edges': 'random', 'no_alpha_sigmoid': False, 'not_lcc': True, 'num_init': 1, 'num_samples': 400, 'num_splits': 4, 'ode_blocks': 1, 'optimizer': 'rmsprop', 'pos_dist_quantile': 0.001, 'pos_enc_csv': False, 'pos_enc_hidden_dim': 32, 'pos_enc_orientation': 'row', 'pos_enc_type': 'GDC', 'ppr_alpha': 0.05, 'reduction_factor': 10, 'regularise': False, 'reweight_attention': False, 'rewire_KNN': False, 'rewire_KNN_T': 'T0', 'rewire_KNN_epoch': 5, 'rewire_KNN_k': 64, 'rewire_KNN_sym': False, 'rewiring': None, 'rw_addD': 0.02, 'rw_rmvR': 0.02, 'self_loop_weight': 0, 'sparsify': 'S_hat', 'square_plus': True, 'step_size': 1, 'symmetric_attention': False, 'threshold_type': 'addD_rvR', 'time': 3.126400580172773, 'tol_scale': 9348.983916372074, 'tol_scale_adjoint': 6599.1250595331385, 'total_deriv': None, 'use_cora_defaults': False, 'use_flux': False, 'use_labels': False, 'use_mlp': False}, 'Computers': {'M_nodes': 64, 'adaptive': False, 'add_source': False, 'adjoint': True, 'adjoint_method': 'dopri5', 'adjoint_step_size': 1, 'alpha': 1.0, 'alpha_dim': 'sc', 'att_samp_pct': 0.572918052062338, 'attention_dim': 64, 'attention_norm_idx': 0, 'attention_rewiring': False, 'attention_type': 'scaled_dot', 'augment': False, 'baseline': False, 'batch_norm': False, 'beltrami': False, 'beta_dim': 'sc', 'block': 'hard_attention', 'cpus': 1, 'data_norm': 'rw', 'dataset': 'Computers', 'decay': 0.007674669913252157, 'directional_penalty': None, 'dropout': 0.08732611854459256, 'dt': 0.001, 'dt_min': 1e-05, 'epoch': 100, 'exact': False, 'fc_out': False, 'feat_hidden_dim': 64, 'function': 'laplacian', 'gdc_avg_degree': 64, 'gdc_k': 64, 'gdc_method': 'ppr', 'gdc_sparsification': 'topk', 'gdc_threshold': 0.01, 'gpus': 1.0, 'grace_period': 25, 'heads': 4, 'heat_time': 3.0, 'hidden_dim': 128, 'input_dropout': 0.5973137276937647, 'jacobian_norm2': None, 'kinetic_energy': None, 'label_rate': 0.5, 'leaky_relu_slope': 0.2, 'lr': 0.0035304663972281548, 'max_epochs': 1000, 'max_iters': 100, 'max_nfe': 500, 'method': 'dopri5', 'metric': 'accuracy', 'mix_features': False, 'name': 'computer_beltrami_hard_att1', 'new_edges': 'random', 'no_alpha_sigmoid': False, 'not_lcc': True, 'num_init': 1, 'num_samples': 400, 'num_splits': 2, 'ode_blocks': 1, 'optimizer': 'adam', 'patience': 100, 'pos_enc_hidden_dim': 32, 'pos_enc_orientation': 'row', 'pos_enc_type': 'DW128', 'ppr_alpha': 0.05, 'reduction_factor': 10, 'regularise': False, 'reweight_attention': False, 'rewire_KNN': False, 'rewire_KNN_T': 'T0', 'rewire_KNN_epoch': 10, 'rewire_KNN_k': 64, 'rewire_KNN_sym': False, 'rewiring': None, 'rw_addD': 0.02, 'rw_rmvR': 0.02, 'self_loop_weight': 1.7138583550928912, 'sparsify': 'S_hat', 'square_plus': False, 'step_size': 1, 'threshold_type': 'addD_rvR', 'time': 3.249016177876166, 'tol_scale': 127.46369887079446, 'tol_scale_adjoint': 443.81436775321754, 'total_deriv': None, 'use_cora_defaults': False, 'use_flux': False, 'use_labels': False, 'use_mlp': False}, 'Photo': {'M_nodes': 64, 'adaptive': False, 'add_source': False, 'adjoint': True, 'adjoint_method': 'rk4', 'adjoint_step_size': 1, 'alpha': 1.0, 'alpha_dim': 'sc', 'att_samp_pct': 0.9282359956104751, 'attention_dim': 64, 'attention_norm_idx': 0, 'attention_rewiring': False, 'attention_type': 'pearson', 'augment': False, 'baseline': False, 'batch_norm': True, 'beltrami': False, 'beta_dim': 'sc', 'block': 'hard_attention', 'cpus': 1, 'data_norm': 'rw', 'dataset': 'Photo', 'decay': 0.004707800883497945, 'directional_penalty': None, 'dropout': 0.46502284638600183, 'dt': 0.001, 'dt_min': 1e-05, 'epoch': 100, 'exact': False, 'fc_out': False, 'feat_hidden_dim': 64, 'function': 'laplacian', 'gdc_avg_degree': 64, 'gdc_k': 64, 'gdc_method': 'ppr', 'gdc_sparsification': 'topk', 'gdc_threshold': 0.01, 'gpus': 1.0, 'grace_period': 25, 'heads': 4, 'heat_time': 3.0, 'hidden_dim': 64, 'input_dropout': 0.42903126506740247, 'jacobian_norm2': None, 'kinetic_energy': None, 'label_rate': 0.5, 'leaky_relu_slope': 0.2, 'lr': 0.005560726683883279, 'max_epochs': 1000, 'max_iters': 100, 'max_nfe': 500, 'method': 'dopri5', 'metric': 'accuracy', 'mix_features': False, 'name': 'photo_beltrami_hard_att1', 'new_edges': 'random', 'no_alpha_sigmoid': False, 'not_lcc': True, 'num_init': 1, 'num_samples': 400, 'num_splits': 2, 'ode_blocks': 1, 'optimizer': 'adam', 'patience': 100, 'pos_enc_hidden_dim': 16, 'pos_enc_orientation': 'row', 'pos_enc_type': 'DW128', 'ppr_alpha': 0.05, 'reduction_factor': 10, 'regularise': False, 'reweight_attention': False, 'rewire_KNN': False, 'rewire_KNN_T': 'T0', 'rewire_KNN_epoch': 10, 'rewire_KNN_k': 64, 'rewire_KNN_sym': False, 'rewiring': None, 'rw_addD': 0.02, 'rw_rmvR': 0.02, 'self_loop_weight': 0.05783612585280118, 'sparsify': 'S_hat', 'square_plus': False, 'step_size': 1, 'threshold_type': 'addD_rvR', 'time': 3.5824027975386623, 'tol_scale': 2086.525473167121, 'tol_scale_adjoint': 14777.606112557354, 'total_deriv': None, 'use_cora_defaults': False, 'use_flux': False, 'use_labels': False, 'use_mlp': False}, 'ogbn-arxiv': {'M_nodes': 64, 'adaptive': False, 'add_source': False, 'adjoint': True, 'adjoint_method': 'rk4', 'adjoint_step_size': 1, 'alpha': 1.0, 'alpha_dim': 'sc', 'att_samp_pct': 0.8105268910037231, 'attention_dim': 32, 'attention_norm_idx': 0, 'attention_rewiring': False, 'attention_type': 'scaled_dot', 'augment': False, 'baseline': False, 'batch_norm': True, 'beltrami': False, 'beta_dim': 'sc', 'block': 'hard_attention', 'cpus': 1, 'data_norm': 'rw', 'dataset': 'ogbn-arxiv', 'decay': 0, 'directional_penalty': None, 'dropout': 0.11594990901233933, 'dt': 0.001, 'dt_min': 1e-05, 'epoch': 100, 'exact': False, 'fc_out': False, 'feat_hidden_dim': 64, 'function': 'laplacian', 'gdc_avg_degree': 64, 'gdc_k': 64, 'gdc_method': 'ppr', 'gdc_sparsification': 'topk', 'gdc_threshold': 0.01, 'gpus': 1.0, 'grace_period': 20, 'heads': 2, 'heat_time': 3.0, 'hidden_dim': 162, 'input_dropout': 0, 'jacobian_norm2': None, 'kinetic_energy': None, 'label_rate': 0.21964773835397075, 'leaky_relu_slope': 0.2, 'lr': 0.005451476553977102, 'max_epochs': 1000, 'max_iters': 100, 'max_nfe': 500, 'method': 'dopri5', 'metric': 'accuracy', 'mix_features': False, 'name': 'arxiv_beltrami_hard_att', 'new_edges': 'random', 'no_alpha_sigmoid': False, 'not_lcc': False, 'num_init': 2, 'num_samples': 200, 'num_splits': 0, 'ode_blocks': 1, 'optimizer': 'rmsprop', 'patience': 100, 'pos_enc_hidden_dim': 98, 'pos_enc_orientation': 'row', 'pos_enc_type': 'DW64', 'ppr_alpha': 0.05, 'reduction_factor': 10, 'regularise': False, 'reweight_attention': False, 'rewire_KNN': False, 'rewire_KNN_T': 'T0', 'rewire_KNN_epoch': 10, 'rewire_KNN_k': 64, 'rewire_KNN_sym': False, 'rewiring': None, 'rw_addD': 0.02, 'rw_rmvR': 0.02, 'self_loop_weight': 1, 'sparsify': 'S_hat', 'square_plus': False, 'step_size': 1, 'threshold_type': 'addD_rvR', 'time': 3.6760155951687636, 'tol_scale': 11353.558848254957, 'tol_scale_adjoint': 1.0, 'total_deriv': None, 'use_cora_defaults': False, 'use_flux': False, 'use_labels': False, 'use_lcc': True, 'use_mlp': False} }
1,488.1
2,380
0.689806
af54bb5e0a3cdcb5c9e66d75e27248d701c1652c
3,720
py
Python
kubernetes/client/models/v1_volume.py
SEJeff/client-python
baba523c28a684b3f537502977d600dedd1f17c5
[ "Apache-2.0" ]
null
null
null
kubernetes/client/models/v1_volume.py
SEJeff/client-python
baba523c28a684b3f537502977d600dedd1f17c5
[ "Apache-2.0" ]
null
null
null
kubernetes/client/models/v1_volume.py
SEJeff/client-python
baba523c28a684b3f537502977d600dedd1f17c5
[ "Apache-2.0" ]
null
null
null
# coding: utf-8 """ Kubernetes No description provided (generated by Swagger Codegen https://github.com/swagger-api/swagger-codegen) OpenAPI spec version: v1.5.0-beta.1 Generated by: https://github.com/swagger-api/swagger-codegen.git Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ from pprint import pformat from six import iteritems import re class V1Volume(object): """ NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ def __init__(self, name=None): """ V1Volume - a model defined in Swagger :param dict swaggerTypes: The key is attribute name and the value is attribute type. :param dict attributeMap: The key is attribute name and the value is json key in definition. """ self.swagger_types = { 'name': 'str' } self.attribute_map = { 'name': 'name' } self._name = name @property def name(self): """ Gets the name of this V1Volume. Volume's name. Must be a DNS_LABEL and unique within the pod. More info: http://kubernetes.io/docs/user-guide/identifiers#names :return: The name of this V1Volume. :rtype: str """ return self._name @name.setter def name(self, name): """ Sets the name of this V1Volume. Volume's name. Must be a DNS_LABEL and unique within the pod. More info: http://kubernetes.io/docs/user-guide/identifiers#names :param name: The name of this V1Volume. :type: str """ if name is None: raise ValueError("Invalid value for `name`, must not be `None`") self._name = name def to_dict(self): """ Returns the model properties as a dict """ result = {} for attr, _ in iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """ Returns the string representation of the model """ return pformat(self.to_dict()) def __repr__(self): """ For `print` and `pprint` """ return self.to_str() def __eq__(self, other): """ Returns true if both objects are equal """ return self.__dict__ == other.__dict__ def __ne__(self, other): """ Returns true if both objects are not equal """ return not self == other
28.837209
135
0.568548
b3d17993485d8f2275024e20b40cd628301c3186
3,095
py
Python
models/convnet.py
latimerb/soft_dtree
fac3f3eded0cabe512e3cbf7a2945dcfcfd70fe4
[ "MIT" ]
57
2018-10-05T07:57:06.000Z
2022-02-23T19:50:31.000Z
models/convnet.py
latimerb/soft_dtree
fac3f3eded0cabe512e3cbf7a2945dcfcfd70fe4
[ "MIT" ]
6
2018-10-17T14:21:54.000Z
2021-03-14T11:07:28.000Z
models/convnet.py
latimerb/soft_dtree
fac3f3eded0cabe512e3cbf7a2945dcfcfd70fe4
[ "MIT" ]
27
2018-09-10T20:50:53.000Z
2021-12-08T21:50:12.000Z
import os import numpy as np import tensorflow as tf from tensorflow.keras.layers import (Input, Permute, Conv2D, MaxPooling2D, Dropout, Flatten, Dense) from tensorflow.keras.models import Model, load_model from tensorflow.keras.optimizers import Adam class ConvNet(object): def __init__(self, img_rows, img_cols, img_chans, n_classes, optimizer=Adam, loss='categorical_crossentropy', metrics=['acc'], learning_rate=3e-04): self.img_rows = img_rows self.img_cols = img_cols self.img_chans = img_chans self.n_classes = n_classes self.optimizer = Adam(lr=learning_rate) self.loss = loss self.metrics = metrics self.model = None def build_model(self): input_layer = Input(shape=(self.img_rows, self.img_cols, self.img_chans)) # handle image dimensions ordering if tf.keras.backend.image_data_format() == 'channels_first': latent = Permute((3, 1, 2))(input_layer) else: latent = input_layer # define the network architecture latent = Conv2D(filters=32, kernel_size=(3, 3), activation='relu')(latent) latent = Conv2D(filters=64, kernel_size=(3, 3), activation='relu')(latent) latent = MaxPooling2D(pool_size=(2, 2))(latent) latent = Dropout(rate=0.25)(latent) latent = Flatten()(latent) latent = Dense(units=128, activation='relu')(latent) latent = Dropout(rate=0.5)(latent) output_layer = Dense(units=self.n_classes, activation='softmax')(latent) self.model = Model(inputs=input_layer, outputs=output_layer) self.model.compile(optimizer=self.optimizer, loss=self.loss, metrics=self.metrics) def maybe_train(self, data_train, data_valid, batch_size, epochs): DIR_ASSETS = 'assets/' PATH_MODEL = DIR_ASSETS + 'nn-model.hdf5' if os.path.exists(PATH_MODEL): print('Loading trained model from {}.'.format(PATH_MODEL)) self.model = load_model(PATH_MODEL) else: print('No checkpoint found on {}. Training from scratch.'.format( PATH_MODEL)) self.build_model() x_train, y_train = data_train self.model.fit(x_train, y_train, validation_data=data_valid, batch_size=batch_size, epochs=epochs) print('Saving trained model to {}.'.format(PATH_MODEL)) if not os.path.isdir(DIR_ASSETS): os.mkdir(DIR_ASSETS) self.model.save(PATH_MODEL) def evaluate(self, x, y): if self.model: score = self.model.evaluate(x, y) print('accuracy: {:.2f}% | loss: {}'.format(100*score[1], score[0])) else: print('Missing model instance.') def predict(self, x): if self.model: return self.model.predict(x, verbose=1) else: print('Missing model instance.')
37.289157
81
0.599354
130035b54d4d70de371ccd9fe60922f1f423ae6b
4,068
py
Python
leads/migrations/0001_initial.py
rakibul-islam-raju/django-crm
bd2fe84e6662b2d2425d890c64a9f15c3b76127a
[ "MIT" ]
null
null
null
leads/migrations/0001_initial.py
rakibul-islam-raju/django-crm
bd2fe84e6662b2d2425d890c64a9f15c3b76127a
[ "MIT" ]
null
null
null
leads/migrations/0001_initial.py
rakibul-islam-raju/django-crm
bd2fe84e6662b2d2425d890c64a9f15c3b76127a
[ "MIT" ]
null
null
null
# Generated by Django 3.1.5 on 2021-01-14 05:39 from django.conf import settings import django.contrib.auth.models import django.contrib.auth.validators from django.db import migrations, models import django.db.models.deletion import django.utils.timezone class Migration(migrations.Migration): initial = True dependencies = [ ('auth', '0012_alter_user_first_name_max_length'), ] operations = [ migrations.CreateModel( name='User', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('password', models.CharField(max_length=128, verbose_name='password')), ('last_login', models.DateTimeField(blank=True, null=True, verbose_name='last login')), ('is_superuser', models.BooleanField(default=False, help_text='Designates that this user has all permissions without explicitly assigning them.', verbose_name='superuser status')), ('username', models.CharField(error_messages={'unique': 'A user with that username already exists.'}, help_text='Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.', max_length=150, unique=True, validators=[django.contrib.auth.validators.UnicodeUsernameValidator()], verbose_name='username')), ('first_name', models.CharField(blank=True, max_length=150, verbose_name='first name')), ('last_name', models.CharField(blank=True, max_length=150, verbose_name='last name')), ('email', models.EmailField(blank=True, max_length=254, verbose_name='email address')), ('is_staff', models.BooleanField(default=False, help_text='Designates whether the user can log into this admin site.', verbose_name='staff status')), ('is_active', models.BooleanField(default=True, help_text='Designates whether this user should be treated as active. Unselect this instead of deleting accounts.', verbose_name='active')), ('date_joined', models.DateTimeField(default=django.utils.timezone.now, verbose_name='date joined')), ('groups', models.ManyToManyField(blank=True, help_text='The groups this user belongs to. A user will get all permissions granted to each of their groups.', related_name='user_set', related_query_name='user', to='auth.Group', verbose_name='groups')), ('user_permissions', models.ManyToManyField(blank=True, help_text='Specific permissions for this user.', related_name='user_set', related_query_name='user', to='auth.Permission', verbose_name='user permissions')), ], options={ 'verbose_name': 'user', 'verbose_name_plural': 'users', 'abstract': False, }, managers=[ ('objects', django.contrib.auth.models.UserManager()), ], ), migrations.CreateModel( name='Agent', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('user', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL)), ], ), migrations.CreateModel( name='Lead', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('first_name', models.CharField(max_length=20)), ('last_name', models.CharField(max_length=20)), ('age', models.IntegerField(default=0)), ('description', models.TextField()), ('date_added', models.DateTimeField(auto_now_add=True)), ('phone_number', models.CharField(max_length=20)), ('email', models.EmailField(max_length=254)), ('agent', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, to='leads.agent')), ], ), ]
59.823529
329
0.639381
a7601499b4525ab528a8d05d549bd9d2c6d25b84
1,972
py
Python
PyPortal_Electioncal_US/electioncal/code.py
albinger/Adafruit_Learning_System_Guides
4fe2da261fe5d1ca282b86bd3b93ee1466346fa7
[ "MIT" ]
null
null
null
PyPortal_Electioncal_US/electioncal/code.py
albinger/Adafruit_Learning_System_Guides
4fe2da261fe5d1ca282b86bd3b93ee1466346fa7
[ "MIT" ]
null
null
null
PyPortal_Electioncal_US/electioncal/code.py
albinger/Adafruit_Learning_System_Guides
4fe2da261fe5d1ca282b86bd3b93ee1466346fa7
[ "MIT" ]
null
null
null
# SPDX-FileCopyrightText: 2020 Alvaro Figueroa for Adafruit Industries # # SPDX-License-Identifier: MIT import sys import time import board from adafruit_pyportal import PyPortal cwd = ("/"+__file__).rsplit('/', 1)[0] # the current working directory (where this file is) sys.path.append(cwd) import electioncal_graphics # pylint: disable=wrong-import-position # Get wifi details and more from a secrets.py file try: from secrets import secrets # pylint: disable=unused-import except ImportError: print("WiFi secrets are kept in secrets.py, please add them there!") raise # Change this to your state and county, replacing spaces for underscores and in lowercase STATE="new_york" COUNTY="new_york" DATA_SOURCE = "https://electioncal.us/en/" + STATE +"/" + COUNTY + "/voter.json" DATA_LOCATION = [] # Initialize the pyportal object and let us know what data to fetch and where # to display it pyportal = PyPortal(url=DATA_SOURCE, json_path=DATA_LOCATION, status_neopixel=board.NEOPIXEL, default_bg=0x000000) gfx = electioncal_graphics.Electioncal_Graphics(pyportal.splash, am_pm=True) display_refresh = None while True: # only query the online time once per hour (and on first run) if (not display_refresh) or (time.monotonic() - display_refresh) > 3600: try: print("Getting time from internet!") pyportal.get_local_time() display_refresh = time.monotonic() except RuntimeError as e: print("Some error occured, retrying! -", e) continue try: value = pyportal.fetch() #print("Response is", value) gfx.load_data(value) except RuntimeError as e: print("Some error occured, retrying! -", e) continue try: gfx.elections_cycle() except RuntimeError as e: print("Some error ocurred, retrying! -", e) continue
32.866667
91
0.666329
e352a8a5ac6bb4a3b63f6a21c10e195cc277a55d
293
py
Python
Appendix B/setup.py
lzhang1/BeginningPygame
c239925041a6fa361386f65316ef4bea12c3b482
[ "MIT" ]
43
2015-09-20T02:05:48.000Z
2022-03-01T22:00:43.000Z
Appendix B/setup.py
lzhang1/BeginningPygame
c239925041a6fa361386f65316ef4bea12c3b482
[ "MIT" ]
null
null
null
Appendix B/setup.py
lzhang1/BeginningPygame
c239925041a6fa361386f65316ef4bea12c3b482
[ "MIT" ]
40
2015-05-19T06:51:13.000Z
2022-03-27T18:11:16.000Z
import cx_Freeze executables = [cx_Freeze.Executable("ants_game.py")] cx_Freeze.setup( name="Ant Game", options={"build_exe": {"packages":["pygame"], "include_files":["ant.png","leaf.png","spider.png",'gameobjects']}}, executables = executables )
24.416667
95
0.610922
40a376b22d8d7348adc8c693ee9c49003b59ccc5
6,225
py
Python
carla/env/env_rendering.py
sebzap/CarlaRL
5283d15dee9e8dc5e728314d56875b4fbca3acb2
[ "MIT" ]
null
null
null
carla/env/env_rendering.py
sebzap/CarlaRL
5283d15dee9e8dc5e728314d56875b4fbca3acb2
[ "MIT" ]
null
null
null
carla/env/env_rendering.py
sebzap/CarlaRL
5283d15dee9e8dc5e728314d56875b4fbca3acb2
[ "MIT" ]
null
null
null
import math import numpy as np from contextual_gridworld.environment.colors import IDX_TO_COLOR, COLOR_TO_IDX from contextual_gridworld.environment.env import load_context_config, Grid, WorldObj class EnvRenderer: def __init__(self, total_objects, grid_size=8, tile_size=8, context_config="color_contexts.yaml"): self.tile_size = tile_size self.total_objects = total_objects self.contexts, self.subdivs = load_context_config(context_config) self.context = self.contexts[0] self.obstacles = [] self.goodies = [] # Environment configuration self.width = grid_size self.height = grid_size # Current position and direction of the agent self.agent_pos = None self.agent_dir = None self.grid = None self.empty_grid() def empty_grid(self): # Create an empty grid self.grid = Grid(self.width, self.height) # Generate the surrounding walls self.grid.wall_rect(0, 0, self.width, self.height) def get_empty_positions(self, agent_pos, agent_dir): self.empty_grid() self.agent_pos = np.round(agent_pos).astype(np.int32) self.agent_dir = agent_dir empty_positions = [] empty_positions_transformed = [] grid = self.grid for j in range(0, grid.height): for i in range(0, grid.width): cell = grid.get(i, j) agent_here = agent_pos[0] == i and agent_pos[1] == j if not agent_here and cell is None: pos = np.asarray([i, j]) empty_positions.append(pos) theta = np.deg2rad(-self.agent_dir * 90) rotation = np.array([[math.cos(theta), -math.sin(theta)], [math.sin(theta), math.cos(theta)]]) pos = np.dot(rotation, pos) % (self.width - 1) empty_positions_transformed.append(pos) self.agent_pos = None self.agent_dir = None return empty_positions, empty_positions_transformed def transfer_positions(self, pos): # undo rotation theta = np.deg2rad(self.agent_dir*90) rotation = np.array([[math.cos(theta), -math.sin(theta)], [math.sin(theta), math.cos(theta)]]) pos = np.dot(rotation, pos) % (self.width - 1) return np.round(pos).astype(dtype=np.int32) def render_gt(self, gt, agent_pos, agent_dir): self.empty_grid() self.agent_pos = np.round(agent_pos).astype(np.int32) self.agent_dir = agent_dir agent_gt = gt[::self.total_objects] goal_gt = gt[1::self.total_objects] n_goodies = n_obstacles = (self.total_objects - 2) // 2 goodies_gt = [] for i in range(2, 2+n_goodies): goodies_gt.append(gt[i::self.total_objects]) obstacles_gt = [] for i in range(2+n_goodies, 2+n_goodies+n_obstacles): obstacles_gt.append(gt[i::self.total_objects]) goal_x, goal_y, color_idx = goal_gt if goal_x >= 0: goal_x, goal_y = self.transfer_positions(np.asarray([goal_x, goal_y])) self.grid.set(goal_x, goal_y, WorldObj('goal', IDX_TO_COLOR[int(color_idx)])) for goodie in goodies_gt: pos_x, pos_y, color_idx = goodie if pos_x >= 0: pos_x, pos_y = self.transfer_positions(np.asarray([pos_x, pos_y])) self.grid.set(pos_x, pos_y, WorldObj('goodie', IDX_TO_COLOR[int(color_idx)])) for obstacle in obstacles_gt: pos_x, pos_y, color_idx = obstacle if pos_x >= 0: pos_x, pos_y = self.transfer_positions(np.asarray([pos_x, pos_y])) self.grid.set(pos_x, pos_y, WorldObj('obstacle', IDX_TO_COLOR[int(color_idx)])) # Render the whole grid img = self.grid.render( self.tile_size, self.agent_pos, self.agent_dir, # 0, subdivs=self.subdivs, agent_id=IDX_TO_COLOR[int(agent_gt[2])] ) img = np.rot90(img, k=self.agent_dir) return img def get_gt_factors(env, total_objects, max_n_goodies, max_n_obstacles): """ this is the order of variables: x,y,color and this is the order of objects: agent, goal, goodie1, goodie2, obstacle1, obstacle2 in details, this is how the array is filled: agent_x, goal_x, ...., agent_y, goal_y,...., agent_colour, goal_colour .... :return: """ gt = np.ones(3 * total_objects) * -1 # rotate positions according to agent direction theta = np.deg2rad(-env.agent_dir*90) rotation = np.array([[math.cos(theta), -math.sin(theta)], [math.sin(theta), math.cos(theta)]]) agent_pos = np.dot(rotation, env.agent_pos) % (env.width - 1) goal_pos = np.dot(rotation, env.goal_pos) % (env.width - 1) goodies_pos = [] for goodie in env.goodies: goodies_pos.append(np.dot(rotation, goodie.cur_pos) % (env.width - 1)) obstacles_pos = [] for obstacle in env.obstacles: obstacles_pos.append(np.dot(rotation, obstacle.cur_pos) % (env.width - 1)) offset = 0 # place agent gt[offset] = agent_pos[0] gt[total_objects + offset] = agent_pos[1] gt[2*total_objects + offset] = COLOR_TO_IDX[env.context['agent']] offset += 1 # place goal if goal_pos is not None: gt[offset] = goal_pos[0] gt[total_objects + offset] = goal_pos[1] gt[2*total_objects + offset] = COLOR_TO_IDX[env.context['goal']] offset += 1 for idx in range(max_n_goodies): if len(goodies_pos) > idx: gt[offset] = goodies_pos[idx][0] gt[total_objects + offset] = goodies_pos[idx][1] gt[2*total_objects + offset] = COLOR_TO_IDX[env.context['goodie']] offset += 1 for idx in range(max_n_obstacles): if len(obstacles_pos) > idx: gt[offset] = obstacles_pos[idx][0] gt[total_objects + offset] = obstacles_pos[idx][1] gt[2*total_objects + offset] = COLOR_TO_IDX[env.context['obstacle']] offset += 1 return gt, env.agent_pos, env.agent_dir
30.665025
114
0.606265
0ef523af9a2b173cea183c43fc6e162147490a5f
629
py
Python
46.py
silviuapostu/project-euler-solutions
6b6c9ca3eee8d351a1e98783f3087a05f6a894fc
[ "MIT" ]
null
null
null
46.py
silviuapostu/project-euler-solutions
6b6c9ca3eee8d351a1e98783f3087a05f6a894fc
[ "MIT" ]
null
null
null
46.py
silviuapostu/project-euler-solutions
6b6c9ca3eee8d351a1e98783f3087a05f6a894fc
[ "MIT" ]
null
null
null
''' Goldbach's other conjecture What is the smallest odd composite that cannot be written as the sum of a prime and twice a square? ''' from euler_utils import is_prime from math import sqrt, ceil def goldbach2(): n = 35 while True: if not is_prime(n) and n % 2 == 1: y = 1 found = False while y <= ceil(sqrt((n-1)/2)) and not found: x = n - 2 * y**2 if is_prime(x): found = True y += 1 if not found: return n n += 1 if __name__ == '__main__': print(goldbach2())
20.966667
71
0.502385
48079c5b109413cb6c5f8098890a53c2c13d11fc
24,486
py
Python
pybats/dglm.py
bking124/pybats
b99def91901e7a154e95d32e22ceb44a48374f1d
[ "Apache-2.0" ]
29
2019-11-11T14:49:11.000Z
2022-03-11T13:23:57.000Z
pybats/dglm.py
bking124/pybats
b99def91901e7a154e95d32e22ceb44a48374f1d
[ "Apache-2.0" ]
7
2020-08-04T15:08:54.000Z
2022-02-26T10:10:16.000Z
pybats/dglm.py
bking124/pybats
b99def91901e7a154e95d32e22ceb44a48374f1d
[ "Apache-2.0" ]
12
2019-11-20T15:21:48.000Z
2022-02-16T23:18:44.000Z
# AUTOGENERATED! DO NOT EDIT! File to edit: nbs/00_dglm.ipynb (unless otherwise specified). __all__ = ['dglm', 'bern_dglm', 'pois_dglm', 'dlm', 'bin_dglm'] # Internal Cell from nbdev.showdoc import * import numpy as np import scipy as sc import pandas as pd from collections.abc import Iterable from .latent_factor_fxns import update_lf_analytic, update_lf_sample, forecast_marginal_lf_analytic, \ forecast_marginal_lf_sample, forecast_path_lf_copula, forecast_path_lf_sample, get_mean_and_var_lf, \ get_mean_and_var_lf_dlm, update_lf_analytic_dlm from .seasonal import seascomp, createFourierToSeasonalL from .update import update, update_dlm, update_bindglm from .forecast import forecast_marginal, forecast_path, forecast_path_copula,\ forecast_marginal_bindglm, forecast_path_dlm, forecast_state_mean_and_var from .conjugates import trigamma, bern_conjugate_params, bin_conjugate_params, pois_conjugate_params # These are for the bernoulli and Poisson DGLMs from scipy.special import digamma from scipy.special import beta as beta_fxn from scipy import stats # Cell class dglm: def __init__(self, a0=None, R0=None, nregn=0, ntrend=0, nlf=0, nhol=0, seasPeriods=[], seasHarmComponents=[], deltrend=1, delregn=1, dellf=1, delhol=1, delseas=1, rho=1, interpolate=True, adapt_discount=False, adapt_factor=0.5, discount_forecast=False): """ A Dynamic Generalized Linear Model (DGLM). Generic Class. Children include Poisson, Bernoulli, and Binomial DGLMs, as well as the Normal DLM. :param a0: Prior mean vector :param R0: Prior covariance matrix :param nregn: Number of regression components :param ntrend: Number of trend components :param nhol: Number of holiday components :param seasPeriods: List of periods of seasonal components :param seasHarmComponents: List of harmonic components included for each period :param deltrend: Discount factor on trend components :param delregn: Discount factor on regression components :param delhol: Discount factor on holiday components (currently deprecated) :param delseas: Discount factor on seasonal components :param interpolate: Whether to use interpolation for conjugate parameters (provides a computational speedup) :param adapt_discount: What method of discount adaption. False = None, 'positive_regn' = only discount if regression information is available, 'info' = information based,\ :param adapt_factor: If adapt_discount='info', then a higher value adapt_factor leads to a quicker adaptation (with less discounting) on overly uncertain parameters :param discount_forecast: Whether to use discounting when forecasting :return An object of class dglm """ # Setting up trend F, G matrices i = 0 self.itrend = list(range(i, ntrend)) i += ntrend if ntrend == 0: Gtrend = np.empty([0, 0]) Ftrend = np.zeros([ntrend]).reshape(-1, 1) # Local level elif ntrend == 1: Gtrend = np.identity(ntrend) Ftrend = np.array([1]).reshape(-1, 1) # Locally linear elif ntrend == 2: Gtrend = np.array([[1, 1], [0, 1]]) Ftrend = np.array([1, 0]).reshape(-1, 1) # Setting up regression F, G matrices self.iregn = list(range(i, i + nregn)) if nregn == 0: Fregn = np.empty([0]).reshape(-1, 1) Gregn = np.empty([0, 0]) else: Gregn = np.identity(nregn) Fregn = np.ones([nregn]).reshape(-1, 1) i += nregn # Setting up holiday F, G matrices (additional regression indicators components) self.ihol = list(range(i, i + nhol)) self.iregn.extend(self.ihol) # Adding on to the self.iregn if nhol == 0: Fhol = np.empty([0]).reshape(-1, 1) Ghol = np.empty([0, 0]) else: Ghol = np.identity(nhol) Fhol = np.ones([nhol]).reshape(-1, 1) i += nhol # Setting up seasonal F, G matrices self.iseas = [] if len(seasPeriods) == 0: Fseas = np.empty([0]).reshape(-1, 1) Gseas = np.empty([0, 0]) nseas = 0 else: output = list(map(seascomp, seasPeriods, seasHarmComponents)) Flist = [x[0] for x in output] Glist = [x[1] for x in output] self.L = list(map(createFourierToSeasonalL, seasPeriods, seasHarmComponents, Flist, Glist)) nseas = 2 * sum(map(len, seasHarmComponents)) Fseas = np.zeros([nseas]).reshape(-1, 1) Gseas = np.zeros([nseas, nseas]) idx = 0 for harmComponents in seasHarmComponents: self.iseas.append(list(range(i, i + 2 * len(harmComponents)))) i += 2 * len(harmComponents) for Fs, Gs in output: idx2 = idx + Fs.shape[0] Fseas[idx:idx2, 0] = Fs.squeeze() Gseas[idx:idx2, idx:idx2] = Gs idx = idx2 # Setting up the latent factor F, G matrices if nlf == 0: self.latent_factor = False Glf = np.empty([0, 0]) Flf = np.zeros([0]).reshape(-1, 1) else: self.latent_factor = True Glf = np.identity(nlf) Flf = np.ones([nlf]).reshape(-1, 1) self.ilf = list(range(i, i + nlf)) i += nlf # Combine the F and G components together F = np.vstack([Ftrend, Fregn, Fhol, Fseas, Flf]) G = sc.linalg.block_diag(Gtrend, Gregn, Ghol, Gseas, Glf) # store the discount info self.deltrend = deltrend self.delregn = delregn self.delhol = delhol self.delseas = delseas self.dellf = dellf # Random effect to inflate variance (if rho < 1) self.rho = rho self.ntrend = ntrend self.nregn = nregn + nhol # Adding on nhol self.nregn_exhol = nregn self.nhol = nhol self.nseas = nseas self.nlf = nlf self.adapt_discount = adapt_discount self.k = adapt_factor # Set up discount matrix self.discount_forecast = discount_forecast Discount = self.build_discount_matrix() self.Discount = Discount self.param1 = 2 # Random initial guess self.param2 = 2 # Random initial guess self.seasPeriods = seasPeriods self.seasHarmComponents = seasHarmComponents self.F = F self.G = G self.a = a0.reshape(-1, 1) self.R = R0 self.t = 0 self.interpolate = interpolate self.W = self.get_W() def build_discount_matrix(self, X=None, phi_mu=None): # build up discount factors while possibly taking special care to not discount when the "regn" # type factors are zero # do this all with matrix slicing which is much faster than the block diag p = np.sum([self.ntrend, self.nregn_exhol, self.nhol, self.nseas, self.nlf]) # start with no discounting component_discounts = np.ones([p, p]) i = 0 # this will be the offset of the current block for discount_pair, n in zip([('std', self.deltrend), ('regn', self.delregn), ('hol', self.delhol), ('std', self.delseas), ('lf', self.dellf)], [self.ntrend, self.nregn_exhol, self.nhol, self.nseas, self.nlf]): discount_type, discount = discount_pair if n > 0: if isinstance(discount, Iterable): if len(discount) < n: raise ValueError('Error: Length of discount factors must be 1 or match component length') for j, disc in enumerate(discount[:n]): # fill the diags one at a time component_discounts[i+j, i+j] = disc else: # fill the block with the constant component_discounts[i:(i+n), i:(i+n)] = discount # overwrite with ones if doing the positive logic if X is not None and self.adapt_discount == 'positive_regn' and (discount_type == 'regn' or discount_type == 'hol'): if not isinstance(X, Iterable): X = [X] if discount_type == 'regn': # offset of the regression params regn_i = 0 elif discount_type == 'hol': regn_i = self.nregn_exhol # look through the regression params and set that slice on the # discount to 1 if 0 for j in range(n): if X[regn_i] == 0: # set all discounts to one (i offsets the block and j offsets the regn param) component_discounts[i + j, :] = 1. component_discounts[:, i + j] = 1. regn_i += 1 if phi_mu is not None and self.adapt_discount == 'positive_regn' and discount_type == 'lf': # offset of the latent factor params lf_i = 0 # look through the latent factor params and set that slice on the # discount to 1 if 0 for j in range(n): if phi_mu[lf_i] == 0: # set all discounts to one (i offsets the block and j offsets the regn param) component_discounts[i + j, :] = 1. component_discounts[:, i + j] = 1. lf_i += 1 # move on to the next block i += n return component_discounts def update(self, y=None, X=None, phi_mu = None, phi_sigma = None, analytic=True, phi_samps=None, **kwargs): """ Update the DGLM state vector mean and covariance after observing 'y', with covariates 'X'. """ if self.latent_factor: if analytic: update_lf_analytic(self, y, X, phi_mu, phi_sigma) else: parallel = kwargs.get('parallel') if parallel is None: parallel = False update_lf_sample(self, y, X, phi_samps, parallel) else: update(self, y, X) def forecast_marginal(self, k, X=None, nsamps=1, mean_only=False, phi_mu = None, phi_sigma=None, analytic=True, phi_samps=None, state_mean_var=False, y=None): """ Simulate from the forecast distribution at time *t+k*. """ if self.latent_factor: if analytic: return forecast_marginal_lf_analytic(self, k, X, phi_mu, phi_sigma, nsamps, mean_only, state_mean_var) else: forecast_marginal_lf_sample(self, k, X, phi_samps, mean_only) else: return forecast_marginal(self, k, X, nsamps, mean_only, state_mean_var, y) def forecast_path(self, k, X=None, nsamps=1, copula=True, phi_mu=None, phi_sigma=None, phi_psi=None, analytic=True, phi_samps=None, **kwargs): """ Simulate from the path (joint) forecast distribution from *1* to *k* steps ahead. """ if self.latent_factor: if analytic: return forecast_path_lf_copula(self, k, X, phi_mu, phi_sigma, phi_psi, nsamps, **kwargs) else: return forecast_path_lf_sample(self, k, X, phi_samps) else: if copula: return forecast_path_copula(self, k, X, nsamps, **kwargs) else: return forecast_path(self, k, X, nsamps) def forecast_path_copula(self, k, X=None, nsamps=1, **kwargs): return forecast_path_copula(self, k, X, nsamps, **kwargs) # Define specific update and forecast functions, which advanced users can access manually def update_lf_sample(self, y=None, X=None, phi_samps=None, parallel=False): update_lf_sample(self, y, X, phi_samps, parallel) def update_lf_analytic(self, y=None, X=None, phi_mu=None, phi_sigma=None): update_lf_analytic(self, y, X, phi_mu, phi_sigma) def forecast_marginal_lf_analytic(self, k, X=None, phi_mu=None, phi_sigma=None, nsamps=1, mean_only=False, state_mean_var=False): return forecast_marginal_lf_analytic(self, k, X, phi_mu, phi_sigma, nsamps, mean_only, state_mean_var) def forecast_marginal_lf_sample(self, k, X=None, phi_samps=None, mean_only=False): return forecast_marginal_lf_sample(self, k, X, phi_samps, mean_only) def forecast_path_lf_copula(self, k, X=None, phi_mu=None, phi_sigma=None, phi_psi=None, nsamps=1, **kwargs): return forecast_path_lf_copula(self, k, X, phi_mu, phi_sigma, phi_psi, nsamps, **kwargs) def forecast_path_lf_sample(self, k, X=None, phi_samps=None, nsamps=1, **kwargs): return forecast_path_lf_sample(self, k, X, phi_samps) def forecast_state_mean_and_var(self, k, X = None): return forecast_state_mean_and_var(self, k, X) def get_mean_and_var(self, F, a, R): mean, var = F.T @ a, F.T @ R @ F / self.rho return np.ravel(mean)[0], np.ravel(var)[0] def get_mean_and_var_lf(self, F, a, R, phi_mu, phi_sigma, ilf): return get_mean_and_var_lf(self, F, a, R, phi_mu, phi_sigma, ilf) def get_W(self, X=None): if self.adapt_discount == 'info': info = np.abs(self.a.flatten() / np.sqrt(self.R.diagonal())) diag = self.Discount.diagonal() diag = np.round(diag + (1 - diag) * np.exp(-self.k * info), 5) Discount = np.ones(self.Discount.shape) np.fill_diagonal(Discount, diag) elif self.adapt_discount == 'positive_regn' and X is not None: Discount = self.build_discount_matrix(X) else: Discount = self.Discount return self.R / Discount - self.R def get_coef(self, component=None): """Return the coefficient (state vector) means and standard deviations. If component=None, then the full state vector is returned. Otherwise, specify a single component from 'trend', 'regn', 'seas', 'hol', and 'lf'. """ trend_names = ['Intercept', 'Local Slope'][:self.ntrend] regn_names = ['Regn ' + str(i) for i in range(1, self.nregn_exhol+1)] seas_names = ['Seas ' + str(i) for i in range(1, self.nseas+1)] hol_names = ['Hol ' + str(i) for i in range(1, self.nhol+1)] lf_names = ['LF ' + str(i) for i in range(1, self.nlf+1)] if component is None: names = [*trend_names, *regn_names, *seas_names, *hol_names, *lf_names] return pd.DataFrame({'Mean':self.a.reshape(-1), 'Standard Deviation': np.sqrt(self.R.diagonal())}, index=names).round(2) elif component == 'trend': names = trend_names return pd.DataFrame({'Mean':self.a.reshape(-1)[self.itrend], 'Standard Deviation': np.sqrt(self.R.diagonal())[self.itrend]}, index=names).round(2) elif component == 'regn': names = regn_names return pd.DataFrame({'Mean':self.a.reshape(-1)[self.iregn], 'Standard Deviation': np.sqrt(self.R.diagonal())[self.iregn]}, index=names).round(2) elif component == 'seas': names = seas_names seas_idx = [] for idx in self.iseas: seas_idx.extend(idx) return pd.DataFrame({'Mean':self.a.reshape(-1)[seas_idx], 'Standard Deviation': np.sqrt(self.R.diagonal())[seas_idx]}, index=names).round(2) elif component == 'hol': names = hol_names return pd.DataFrame({'Mean':self.a.reshape(-1)[self.ihol], 'Standard Deviation': np.sqrt(self.R.diagonal())[self.ihol]}, index=names).round(2) elif component == 'lf': names = lf_names return pd.DataFrame({'Mean':self.a.reshape(-1)[self.ilf], 'Standard Deviation': np.sqrt(self.R.diagonal())[self.ilf]}, index=names).round(2) # Cell class bern_dglm(dglm): def get_conjugate_params(self, ft, qt, alpha_init, beta_init): # Choose conjugate prior, beta, and match mean & variance return bern_conjugate_params(ft, qt, alpha_init, beta_init, interp=self.interpolate) def update_conjugate_params(self, y, alpha, beta): # Update alpha and beta to the conjugate posterior coefficients alpha = alpha + y beta = beta + 1 - y # Get updated ft* and qt* ft_star = digamma(alpha) - digamma(beta) qt_star = trigamma(alpha) + trigamma(beta) # constrain this thing from going to crazy places ft_star = max(-8, min(ft_star, 8)) qt_star = max(0.001 ** 2, min(qt_star, 4 ** 2)) return alpha, beta, ft_star, qt_star def simulate(self, alpha, beta, nsamps): p = np.random.beta(alpha, beta, [nsamps]) return np.random.binomial(1, p, size=[nsamps]) def simulate_from_sampling_model(self, p, nsamps): return np.random.binomial(1, p, [nsamps]) def simulate_from_prior(self, alpha, beta, nsamps): return stats.beta.rvs(a=alpha, b=beta, size=nsamps) def prior_inverse_cdf(self, cdf, alpha, beta): return stats.beta.ppf(cdf, alpha, beta) def sampling_density(self, y, p): return stats.binom.pmf(n=1, p=p, k=y) def marginal_cdf(self, y, alpha, beta): if y == 1: return 1 elif y == 0: return beta_fxn(y + alpha, 1 - y + beta) / beta_fxn(alpha, beta) def loglik(self, y, alpha, beta): return stats.bernoulli.logpmf(y, alpha / (alpha + beta)) def get_mean(self, alpha, beta): return np.ravel(alpha / (alpha + beta))[0] def get_prior_var(self, alpha, beta): return (alpha * beta) / ((alpha + beta) ** 2 * (alpha + beta + 1)) # Cell class pois_dglm(dglm): def get_conjugate_params(self, ft, qt, alpha_init, beta_init): # Choose conjugate prior, gamma, and match mean & variance return pois_conjugate_params(ft, qt, alpha_init, beta_init, interp=self.interpolate) def update_conjugate_params(self, y, alpha, beta): # Update alpha and beta to the conjugate posterior coefficients alpha = alpha + float(y) beta = beta + 1 # Get updated ft* and qt* ft_star = digamma(alpha) - np.log(beta) qt_star = trigamma(alpha) # constrain this thing from going to crazy places? qt_star = max(0.001 ** 2, min(qt_star, 4 ** 2)) return alpha, beta, ft_star, qt_star def simulate(self, alpha, beta, nsamps): return np.random.negative_binomial(alpha, beta / (1 + beta), [nsamps]) def simulate_from_sampling_model(self, rate, nsamps): return np.random.poisson(rate, [nsamps]) def simulate_from_prior(self, alpha, beta, nsamps): return stats.gamma.rvs(a=alpha, scale=1/beta, size=nsamps) def prior_inverse_cdf(self, cdf, alpha, beta): return stats.gamma.ppf(cdf, a=alpha, scale=1 / beta) def sampling_density(self, y, mu): return stats.poisson.pmf(mu=mu, k=y) def marginal_cdf(self, y, alpha, beta): return stats.nbinom.cdf(y, alpha, beta / (1 + beta)) def marginal_inverse_cdf(self, cdf, alpha, beta): return stats.nbinom.ppf(cdf, alpha, beta / (1 + beta)) def loglik(self, y, alpha, beta): return stats.nbinom.logpmf(y, alpha, beta / (1 + beta)) def get_mean(self, alpha, beta): return np.ravel(alpha/beta)[0] def get_prior_var(self, alpha, beta): return alpha / beta ** 2 # Cell class dlm(dglm): def __init__(self, *args, n0=1, s0=1, delVar=1, **kwargs): self.delVar = delVar # Discount factor for the variance - using a beta-gamma random walk self.n = n0 # Prior sample size for the variance self.s = s0 # Prior mean for the variance super().__init__(*args, **kwargs) def get_mean_and_var(self, F, a, R): return F.T @ a, F.T @ R @ F + self.s def get_mean_and_var_lf(self, F, a, R, phi_mu, phi_sigma, ilf): ct = self.n / (self.n - 2) ft, qt = get_mean_and_var_lf_dlm(F, a, R, phi_mu, phi_sigma, ilf, ct) qt = qt + self.s return ft, qt def get_mean(self, ft, qt): return np.ravel(ft)[0] def get_conjugate_params(self, ft, qt, mean, var): return ft, qt def simulate(self, mean, var, nsamps): return mean + np.sqrt(var) * np.random.standard_t(self.n, size=[nsamps]) def simulate_from_sampling_model(self, mean, var, nsamps): return np.random.normal(mean, np.sqrt(var), nsamps) def update(self, y=None, X=None, phi_mu=None, phi_sigma=None, analytic=True, phi_samps=None, **kwargs): if self.latent_factor: if analytic: update_lf_analytic_dlm(self, y, X, phi_mu, phi_sigma) else: print('Sampled-based updating for the Latent Factor DLM is not yet implemented - please use analytic inference') else: update_dlm(self, y, X) def forecast_path(self, k, X=None, nsamps=1, **kwargs): if self.latent_factor: print('Path forecasting for latent factor DLMs is not yet implemented') else: return forecast_path_dlm(self, k, X, nsamps) def update_lf_analytic(self, y=None, X=None, phi_mu=None, phi_sigma=None): update_lf_analytic_dlm(self, y, X, phi_mu, phi_sigma) def loglik(self, y, mean, var): return stats.t.logpdf(y, df=self.n, loc=mean, scale=np.sqrt(var)) # Cell class bin_dglm(dglm): def get_conjugate_params(self, ft, qt, alpha_init, beta_init): # Choose conjugate prior, beta, and match mean & variance return bin_conjugate_params(ft, qt, alpha_init, beta_init, interp=self.interpolate) def update_conjugate_params(self, n, y, alpha, beta): # Update alpha and beta to the conjugate posterior coefficients alpha = alpha + y beta = beta + n - y # Get updated ft* and qt* ft_star = digamma(alpha) - digamma(beta) qt_star = trigamma(alpha) + trigamma(beta) # constrain this thing from going to crazy places? ft_star = max(-8, min(ft_star, 8)) qt_star = max(0.001 ** 2, min(qt_star, 4 ** 2)) return alpha, beta, ft_star, qt_star def simulate(self, n, alpha, beta, nsamps): p = np.random.beta(alpha, beta, [nsamps]) return np.random.binomial(n.astype(int), p, size=[nsamps]) def simulate_from_sampling_model(self, n, p, nsamps): return np.random.binomial(n, p, [nsamps]) def prior_inverse_cdf(self, cdf, alpha, beta): return stats.beta.ppf(cdf, alpha, beta) def marginal_cdf(self, y, n, alpha, beta): cdf = 0.0 for i in range(y + 1): cdf += sc.misc.comb(n, y) * beta_fxn(y + alpha, n - y + beta) / beta_fxn(alpha, beta) return cdf def loglik(self, data, alpha, beta): n, y = data return stats.binom.logpmf(y, n, alpha / (alpha + beta)) def get_mean(self, n, alpha, beta): return np.ravel(n * (alpha / (alpha + beta)))[0] def get_prior_var(self, alpha, beta): return (alpha * beta) / ((alpha + beta) ** 2 * (alpha + beta + 1)) def update(self, n=None, y=None, X=None): update_bindglm(self, n, y, X) def forecast_marginal(self, n, k, X=None, nsamps=1, mean_only=False): return forecast_marginal_bindglm(self, n, k, X, nsamps, mean_only)
40.405941
179
0.58462
60560f0b924548bbce6492ff83fd3e3cbc225151
2,731
py
Python
microcosm_daemon/error_policy.py
globality-corp/microcosm-daemon
86c384462c00d98431d61ed4890b980b0424cb36
[ "Apache-2.0" ]
null
null
null
microcosm_daemon/error_policy.py
globality-corp/microcosm-daemon
86c384462c00d98431d61ed4890b980b0424cb36
[ "Apache-2.0" ]
10
2016-03-25T00:37:22.000Z
2022-02-09T21:16:16.000Z
microcosm_daemon/error_policy.py
globality-corp/microcosm-daemon
86c384462c00d98431d61ed4890b980b0424cb36
[ "Apache-2.0" ]
2
2016-12-19T22:41:21.000Z
2019-03-17T03:46:31.000Z
""" Error handling policy. """ from logging import getLogger from time import time from microcosm.api import defaults from microcosm.config.validation import typed # nagios style health codes HEALTH_OK = 0 HEALTH_WARN = 1 HEALTH_ERROR = 2 logger = getLogger("daemon.error_policy") class ExitError(Exception): """ Unconditionally exit the state machine. """ pass class FatalError(Exception): """ Unconditionally exit the state machine. """ pass class ErrorPolicy: """ Handle errors from state functions. """ def __init__(self, strict, health_report_interval): self.strict = strict self.health_report_interval = health_report_interval self.errors = [] self.health = self.compute_health() self.last_health_report_time = 0 def compute_health(self): """ Compute the current daemon health. """ return HEALTH_OK if not self.errors else HEALTH_ERROR def should_report_health(self, new_health): """ Should health be reported? True if health status changes or enough time elapses. """ if self.health != new_health: return True return self.last_health_report_time + self.health_report_interval < time() def report_health(self, new_health): """ Report health information to logs. """ self.last_health_report_time = time() message = "Health is {}".format( new_health, ) if self.health != new_health: logger.info(message) else: logger.debug(message) for error in self.errors: if isinstance(error, ExitError): continue logger.warn("Caught error during state evaluation: {}".format(error), exc_info=True) def maybe_report_health(self): """ Conditionally report health information. """ new_health = self.compute_health() if self.should_report_health(new_health): self.report_health(new_health) self.health = new_health def __enter__(self): # reset errors on every iteration self.errors = [] return self def __exit__(self, type, value, traceback): if value: self.errors.append(value) self.maybe_report_health() return not self.strict and type not in (ExitError, FatalError) @defaults( strict=False, health_report_interval=typed(float, 3.0), ) def configure_error_policy(graph): return ErrorPolicy( strict=graph.config.error_policy.strict, health_report_interval=graph.config.error_policy.health_report_interval, )
22.94958
96
0.6342
67d3a05e5ef93b7e059e98d1ba2a0dc9410372db
1,405
py
Python
ESRGAN/dataset.py
Vrushank264/GANs-PyTorch
3fe406666ecec74140c36f9670b47da3b2b12a6c
[ "Apache-2.0" ]
2
2021-07-23T16:33:04.000Z
2021-11-14T06:18:19.000Z
ESRGAN/dataset.py
Vrushank264/GANs-PyTorch
3fe406666ecec74140c36f9670b47da3b2b12a6c
[ "Apache-2.0" ]
null
null
null
ESRGAN/dataset.py
Vrushank264/GANs-PyTorch
3fe406666ecec74140c36f9670b47da3b2b12a6c
[ "Apache-2.0" ]
null
null
null
import torch import os from PIL import Image from torch.utils.data import DataLoader, dataset import torchvision.transforms as T class TrainDataset(dataset.Dataset): def __init__(self, root: str, img_size: int = 128, upscale_factor: int = 4): super().__init__() lr_img_size = img_size // upscale_factor self.fnames = [os.path.join(root, file) for file in os.listdir(root)] self.hr_transforms = T.Compose([T.Resize((img_size, img_size), interpolation = Image.BICUBIC), T.RandomHorizontalFlip(0.25), T.RandomVerticalFlip(0.25), T.ToTensor(), T.Normalize([0.0, 0.0, 0.0], [1.0, 1.0, 1.0])]) self.lr_transforms = T.Compose([T.ToPILImage(), T.Resize((lr_img_size, lr_img_size), interpolation = Image.BICUBIC), T.ToTensor()]) def __len__(self): return len(self.fnames) def __getitem__(self, idx): hr = Image.open(self.fnames[idx]).convert('RGB') hr = self.hr_transforms(hr) lr = self.lr_transforms(hr) return hr, lr
36.025641
109
0.482562
7e82cc67eb7b7b35fa591c1aa8a29c32edcfc6f3
1,794
py
Python
my_classes/.history/Tuples/modifying_extending_named_tuples_20210723165021.py
minefarmer/deep-Dive-1
b0675b853180c5b5781888266ea63a3793b8d855
[ "Unlicense" ]
null
null
null
my_classes/.history/Tuples/modifying_extending_named_tuples_20210723165021.py
minefarmer/deep-Dive-1
b0675b853180c5b5781888266ea63a3793b8d855
[ "Unlicense" ]
null
null
null
my_classes/.history/Tuples/modifying_extending_named_tuples_20210723165021.py
minefarmer/deep-Dive-1
b0675b853180c5b5781888266ea63a3793b8d855
[ "Unlicense" ]
null
null
null
''' Modifying and extending Named Tuples Named tuples are immutable How we can change values inside the tuple Just like with strings, we have to create a new tuple, with the modified values Point2D = namedtuple('Point2D', 'x y') pt = Point2D(0, 0) # will not work Suppose we need to change the value of the x coordinate: Simple approach: pt = Point2P(100, pt.y) Note: the memory address of pt has now changed This approach can work well, but it has a major drawback Stock = namedtuple('Stock", 'symbol year month day open high low close') djia = Stock('DJIA', 2021, 7, 23, 26313, 26458, 26260, 26393) the _replace instance method The replace instance method Named tuples have a very handy instance method, _replace It will copy the named tuple into a new one, replacing any values from keyword arguments The keword arguments are simply the field names in the tuple and the new value The keyword name must match an existing field name the _replace instance method ''' Stock = namedtuple('Stock", 'symbol year month day open high low close') djia = Stock('DJIA', 2021, 7, 22, 26313, 26458, 26260, 26393) djia = djia._replace(day=23, high=26459, close=26_394) djia = Stock('DJIA', 2021, 7, 23, 26313, 26458, 26260, 26394) ''' Extending a named tuple Sometimes we want to create a named tuple that extends another named tuple, appending one or more fields Stock = namedtuple('Stock", 'symbol year month day open high low close') We want to create a new named tuple class, StockExt that adds a single field, previous_close When dealing with classes, this is sometimes done by using subclassing. But this is not easy to do with named tuples and there is a cleaner way of doing it anyway ''' Point
28.47619
104
0.721293
91e81bc985f81d1bfc0d72f13d418290fc12749f
3,699
py
Python
tests/test_concept.py
jhosoume/pymfe
b454f8a5470ebd4dbbeb1a7e5570443dd65fdf9a
[ "MIT" ]
null
null
null
tests/test_concept.py
jhosoume/pymfe
b454f8a5470ebd4dbbeb1a7e5570443dd65fdf9a
[ "MIT" ]
null
null
null
tests/test_concept.py
jhosoume/pymfe
b454f8a5470ebd4dbbeb1a7e5570443dd65fdf9a
[ "MIT" ]
null
null
null
"""Test module for concept metafeatures.""" import pytest from pymfe.mfe import MFE from tests.utils import load_xy import numpy as np GNAME = "concept" class TestConcept: """TestClass dedicated to test concept metafeatures.""" @pytest.mark.parametrize( "dt_id, ft_name, exp_value, precompute", [ ################### # Mixed data ################### (0, "cohesiveness", [10.055, 1.1869723], True), (0, "conceptvar", [0.5389795, 0.010408287], True), (0, "impconceptvar", [5.275, 0.59225446], True), (0, "wg_dist", [1.4762982, 0.07838156], True), (0, "cohesiveness", [10.055, 1.1869723], False), (0, "conceptvar", [0.5389795, 0.010408287], False), (0, "impconceptvar", [5.275, 0.59225446], False), (0, "wg_dist", [1.4762982, 0.07838156], False), ################### # Categorical data ################### (1, "cohesiveness", [306.5352, 48.729893], True), (1, "conceptvar", [0.47566572, 0.036749393], True), (1, "impconceptvar", [146.3541, 25.366209], True), (1, "wg_dist", [2.9002495, 0.21794802], True), (1, "cohesiveness", [306.5352, 48.729893], False), (1, "conceptvar", [0.47566572, 0.036749393], False), (1, "impconceptvar", [146.3541, 25.366209], False), (1, "wg_dist", [2.9002495, 0.21794802], False), ################### # Numerical data ################### (2, "cohesiveness", [67.12, 5.3592987], True), (2, "conceptvar", [0.4956224, 0.07772438], True), (2, "impconceptvar", [42.626667, 5.358048], True), (2, "wg_dist", [0.46218988, 0.05621875], True), (2, "cohesiveness", [67.12, 5.3592987], False), (2, "conceptvar", [0.4956224, 0.07772438], False), (2, "impconceptvar", [42.626667, 5.358048], False), (2, "wg_dist", [0.46218988, 0.05621875], False), ]) def test_ft_methods_complexity(self, dt_id, ft_name, exp_value, precompute): """Function to test each meta-feature belongs to concept group. """ precomp_group = GNAME if precompute else None X, y = load_xy(dt_id) mfe = MFE(groups=[GNAME], features=[ft_name], random_state=1234) mfe.fit(X.values, y.values, precomp_groups=precomp_group) value = mfe.extract()[1] if exp_value is np.nan: assert value[0] is exp_value else: assert np.allclose(value, exp_value, equal_nan=True) @pytest.mark.parametrize( "dt_id, exp_value, precompute", [ ################### # Mixed data ################### (0, [10.055, 0.5389795, 5.275, 1.4762982], False), (0, [10.055, 0.5389795, 5.275, 1.4762982], True), ################### # Numerical data ################### (2, [67.12, 0.4956224, 42.626667, 0.46218988], False), (2, [67.12, 0.4956224, 42.626667, 0.46218988], True), ]) def test_integration_concept(self, dt_id, exp_value, precompute): """Function to test each all concept meta-features. """ precomp_group = GNAME if precompute else None X, y = load_xy(dt_id) mfe = MFE(groups=[GNAME], summary="mean", random_state=1234) mfe.fit(X.values, y.values, precomp_groups=precomp_group) value = mfe.extract()[1] assert np.allclose(value, exp_value, equal_nan=True)
38.53125
72
0.510408
c4bfc346c4f3ef4270c03733a1072827eb831ffc
9,931
py
Python
Core/Rule.py
sybila/eBCSgen
d3e66c84eb908c989d22efbee20e41766948bdec
[ "MIT" ]
1
2020-11-09T15:51:35.000Z
2020-11-09T15:51:35.000Z
Core/Rule.py
sybila/eBCSgen
d3e66c84eb908c989d22efbee20e41766948bdec
[ "MIT" ]
33
2020-01-29T09:51:45.000Z
2022-03-30T10:09:32.000Z
Core/Rule.py
sybila/eBCSgen
d3e66c84eb908c989d22efbee20e41766948bdec
[ "MIT" ]
1
2020-09-07T11:24:22.000Z
2020-09-07T11:24:22.000Z
import collections import itertools import random from copy import copy, deepcopy from Core import Rate from Core.Complex import Complex from Core.Side import Side from Core.Reaction import Reaction from TS.State import Multiset def column(lst, index): return tuple(map(lambda x: x[index], lst)) class Rule: def __init__(self, agents: tuple, mid: int, compartments: list, complexes: list, pairs: list, rate: Rate, label=None): """ Class to represent BCSL rule :param agents: tuple of Atomic/Structure agents in the order as given by the rule :param mid: index of first agent from right-hand side :param compartments: list assigning to each position a compartment (for each agent) :param complexes: list of pairs (from, to) indicating where the complex starts and ends :param pairs: entangled agents from LHS to RHS :param rate: string representing expression """ self.agents = agents self.mid = mid self.compartments = compartments self.complexes = complexes self.pairs = pairs self.rate = rate self.label = label self.comment = (False, []) def __eq__(self, other: 'Rule'): return self.agents == other.agents and self.mid == other.mid and self.compartments == other.compartments and \ self.complexes == other.complexes and self.pairs == other.pairs and str(self.rate) == str(other.rate) def __repr__(self): return str(self) def __str__(self): lhs, rhs = self.create_complexes() rate = " @ " + str(self.rate) if self.rate else "" pre_comment, post_comment = "", "" if self.comment[1]: comment = "// redundant #{" + ", ".join(list(map(str, self.comment[1]))) + "} " pre_comment = comment + "// " if self.comment[0] else "" post_comment = " " + comment if not self.comment[0] else "" label = str(self.label) + " ~ " if self.label else "" return label + pre_comment + " + ".join(lhs.to_list_of_strings()) + \ " => " + " + ".join(rhs.to_list_of_strings()) + rate + post_comment def __lt__(self, other): return str(self) < str(other) def __hash__(self): return hash(str(self)) def create_complexes(self): """ Creates left- and right-hand sides of rule as multisets of Complexes. :return: two multisets of Complexes represented as object Side """ lhs, rhs = [], [] for (f, t) in self.complexes: c = Complex(self.agents[f:t + 1], self.compartments[f]) lhs.append(c) if t < self.mid else rhs.append(c) return Side(lhs), Side(rhs) def to_reaction(self) -> Reaction: """ Converts Rule to Reactions -> complicated rule structure is simplified to multiset (resp. Side) representation of both sides. :return: created Reaction """ lhs, rhs = self.create_complexes() return Reaction(lhs, rhs, copy(self.rate), self.label) def rate_to_vector(self, ordering, definitions: dict): """ Converts all occurrences of Complexes in rate to vector representation. :param ordering: given ordering of unique of Complexes (as sortedcontainers.SortedList) :param definitions: dict of (param_name, value) """ if self.rate: self.rate.vectorize(ordering, definitions) def create_reactions(self, atomic_signature: dict, structure_signature: dict) -> set: """ Adds context to all agents and generated all possible combinations. Then, new rules with these enhances agents are generated and converted to Reactions. :param atomic_signature: given mapping of atomic name to possible states :param structure_signature: given mapping of structure name to possible atomics :return: """ results = [] for (l, r) in self.pairs: if l is None: right = -1 left = self.agents[r] elif r is None: right = 1 left = self.agents[l] else: left = self.agents[l] right = self.agents[r] results.append(left.add_context(right, atomic_signature, structure_signature)) reactions = set() for result in itertools.product(*results): new_agents = tuple(filter(None, column(result, 0) + column(result, 1))) new_rule = Rule(new_agents, self.mid, self.compartments, self.complexes, self.pairs, self.rate, self.label) reactions.add(new_rule.to_reaction()) return reactions def compatible(self, other: 'Rule') -> bool: """ Checks whether Rule is compatible (position-wise) with the other Rule. Is done by formaly translating to Reactions (just a better object handling). :param other: given Rule :return: True if compatible """ self_reaction = self.to_reaction() other_reaction = other.to_reaction() return self_reaction.compatible(other_reaction) def reduce_context(self): """ Reduces context of Rule to minimum. Includes both agents and Rate. :return: new Rule with reduced context """ new_agents = tuple([agent.reduce_context() for agent in self.agents]) new_rate = self.rate.reduce_context() if self.rate else None return Rule(new_agents, self.mid, self.compartments, self.complexes, self.pairs, new_rate) def is_meaningful(self) -> bool: """ Checks whether the Rule does any change, i.e. is meaningful. Done by translating to Reaction and comparing its sides. :return: True if meaningful """ reaction = self.to_reaction() return not reaction.lhs == reaction.rhs def exists_compatible_agent(self, agent: Complex) -> bool: """ Checks whether there exists a compatible agent in the rhs of the rule. :param agent: given Complex agent :return: True if exists compatible """ reaction = self.to_reaction() return reaction.rhs.exists_compatible_agent(agent) def create_all_compatible(self, atomic_signature: dict, structure_signature: dict): """ Creates all fully specified complexes for all both Sides :param atomic_signature: given atomic signature :param structure_signature: given structure signature :return: set of all created Complexes """ return self.to_reaction().create_all_compatible(atomic_signature, structure_signature) def evaluate_rate(self, state, params): """ Evaluate rate based on current state and parameter values. @param state: given state @param params: mapping of params to its value @return: a real number of the rate """ values = dict() for (state_complex, count) in state.content.value.items(): for agent in self.rate_agents: if agent.compatible(state_complex): values[agent] = values.get(agent, 0) + count return self.rate.evaluate_direct(values, params) def match(self, state, all=False): """ Find all possible matches of the rule to given state. @param state: given state @param all: bool to indicate if choose one matching randomly or return all of them @return: random match/all matches """ state = deepcopy(state.content.value) matches = find_all_matches(self.lhs.agents, state) matches = [sum(match, []) for match in matches] if len(matches) == 0: return None if not all: return random.choice(matches) return matches def replace(self, aligned_match): """ Apply rule to chosen match. Match contains agents which satisfy LHS of the rule an can be safely replaced based on RHS @param aligned_match: complexes fitting LHS of the rule """ # replace respective agents resulting_rhs = [] for i, rhs_agent in enumerate(self.agents[self.mid:]): if len(aligned_match) <= i: resulting_rhs.append(rhs_agent) else: resulting_rhs.append(rhs_agent.replace(aligned_match[i])) # construct resulting complexes output_complexes = [] for (f, t) in list(filter(lambda item: item[0] >= self.mid, self.complexes)): output_complexes.append(Complex(resulting_rhs[f - self.mid:t - self.mid + 1], self.compartments[f])) return Multiset(collections.Counter(output_complexes)) def reconstruct_complexes_from_match(self, match): """ Create complexes from agents matched to the LHS @param match: value of """ output_complexes = [] for (f, t) in list(filter(lambda item: item[1] < self.mid, self.complexes)): output_complexes.append(Complex(match[f:t + 1], self.compartments[f])) return Multiset(collections.Counter(output_complexes)) def find_all_matches(lhs_agents, state): """ Finds all possible matches which actually can be used for given state. @param lhs_agents: given LHS of a rule @param state: state to be applied to @return: candidates for match """ choices = [] if len(lhs_agents) == 0: return [choices] lhs_complex = lhs_agents[0] for candidate in list(state): if lhs_complex.compatible(candidate): state[candidate] -= 1 aligns = candidate.align_match(lhs_complex) for branch in find_all_matches(lhs_agents[1:], deepcopy(+state)): for align in aligns: choices.append([align] + branch) return choices
37.334586
122
0.623099
1576717bd3476b9dcf7aaeb71fa1a8f1c340eccf
481
py
Python
src/pymir-viz/src/config.py
IJtLJZ8Rm4Yr/ymir-backend
73baa7822bb0d8ec1d152b07d9cabaddb2ae895d
[ "Apache-2.0" ]
null
null
null
src/pymir-viz/src/config.py
IJtLJZ8Rm4Yr/ymir-backend
73baa7822bb0d8ec1d152b07d9cabaddb2ae895d
[ "Apache-2.0" ]
null
null
null
src/pymir-viz/src/config.py
IJtLJZ8Rm4Yr/ymir-backend
73baa7822bb0d8ec1d152b07d9cabaddb2ae895d
[ "Apache-2.0" ]
null
null
null
import os env = os.environ.get SANDBOX_ROOT = env("SANDBOX_ROOT", '/data/mir_root') REDIS_URI = env("VIZ_REDIS_URI") # redis key info ASSET_ID_DETAIL = "detail" ASSETS_CLASS_IDS_COUNT = "class_ids_count" ASSETS_CLASS_ID_INDEX = "index" # the middle data structure, it will save into cache,like Redis MIDDLE_STRUCTURE_VERSION = "0.1" # added all assets index by viz ALL_INDEX_CLASSIDS = "__all_index_classids__" # set flag status when generating cache CACHE_STATUS = "status"
22.904762
63
0.775468
ed453df1490e9088e9b4c10635c07203d93a61f0
67
py
Python
scripts/test/test/dsl.py
cedar101/quepy-ko
532744e50d9754befeea2eff6a261fa9cd095473
[ "BSD-3-Clause" ]
null
null
null
scripts/test/test/dsl.py
cedar101/quepy-ko
532744e50d9754befeea2eff6a261fa9cd095473
[ "BSD-3-Clause" ]
null
null
null
scripts/test/test/dsl.py
cedar101/quepy-ko
532744e50d9754befeea2eff6a261fa9cd095473
[ "BSD-3-Clause" ]
null
null
null
# coding: utf-8 """ Domain specific language for test quepy. """
9.571429
40
0.656716
1886db8a9bf3c721e263a166fd04c84d88807c43
38,937
py
Python
vipermonkey/core/vba_object.py
kirk-sayre-work/ViperMonkey
29078c1042645855a856fabc8db0a8e7780faa22
[ "Unlicense" ]
78
2017-11-15T13:51:13.000Z
2022-03-15T09:22:33.000Z
vipermonkey/core/vba_object.py
kirk-sayre-work/ViperMonkey
29078c1042645855a856fabc8db0a8e7780faa22
[ "Unlicense" ]
17
2018-09-14T19:14:47.000Z
2021-11-17T19:03:05.000Z
vipermonkey/core/vba_object.py
kirk-sayre-work/ViperMonkey
29078c1042645855a856fabc8db0a8e7780faa22
[ "Unlicense" ]
13
2018-09-12T20:48:16.000Z
2022-02-07T06:16:24.000Z
"""@package vipermonkey.core.vba_object Base class for all VBA objects and top level functions for evaluating ViperMonkey VBA objects. """ # pylint: disable=pointless-string-statement """ ViperMonkey: VBA Grammar - Base class for all VBA objects ViperMonkey is a specialized engine to parse, analyze and interpret Microsoft VBA macros (Visual Basic for Applications), mainly for malware analysis. Author: Philippe Lagadec - http://www.decalage.info License: BSD, see source code or documentation Project Repository: https://github.com/decalage2/ViperMonkey """ # === LICENSE ================================================================== # ViperMonkey is copyright (c) 2015-2019 Philippe Lagadec (http://www.decalage.info) # All rights reserved. # # Redistribution and use in source and binary forms, with or without modification, # are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ------------------------------------------------------------------------------ # CHANGELOG: # 2015-02-12 v0.01 PL: - first prototype # 2015-2016 PL: - many updates # 2016-06-11 v0.02 PL: - split vipermonkey into several modules __version__ = '0.08' # ------------------------------------------------------------------------------ # TODO: # --- IMPORTS ------------------------------------------------------------------ import logging from logger import log import re from curses_ascii import isprint import traceback from inspect import getouterframes, currentframe import sys from datetime import datetime import pyparsing from var_in_expr_visitor import var_in_expr_visitor from utils import safe_str_convert import utils import excel max_emulation_time = None class VbaLibraryFunc(object): """Marker class to tell if a class emulates a VBA function. """ def eval(self, context, params=None): """Emulate the VBScript/VBA function. @param context (Context object) The current program state. This will be updated. @param params (list) The function call parameters. @return (any) The result of emulating the function call. """ context = context # pylint params = params # pylint raise ValueError("eval() method not implemented.") def num_args(self): """Get the # of arguments (minimum) required by the function. @return (int) The number of required arguments for the emulated function. """ log.warning("Using default # args of 1 for " + safe_str_convert(type(self))) return 1 def return_type(self): """Get the type returned from the emulated function ('INTEGER' or 'STRING'). @return (str) The function return type. """ log.warning("Using default return type of 'INTEGER' for " + safe_str_convert(type(self))) return "INTEGER" def limits_exceeded(throw_error=False): """Check to see if we are about to exceed the maximum recursion depth. Also check to see if emulation is taking too long (if needed). @param throw_error (boolean) If True throw an exception if the recursion depth or runtime has been exceeded. @return (boolean) True if the recursion depth or runtime has been exceeded, False if not. @throws RuntimeError This is thrown if throw_error is True and processing limits have been exceeded. """ # Check to see if we are approaching the recursion limit. level = len(getouterframes(currentframe(1))) recursion_exceeded = (level > (sys.getrecursionlimit() * .50)) time_exceeded = False # Check to see if we have exceeded the time limit. if (max_emulation_time is not None): time_exceeded = (datetime.now() > max_emulation_time) if (recursion_exceeded): log.error("Call recursion depth approaching limit.") if (throw_error): raise RuntimeError("The ViperMonkey recursion depth will be exceeded. Aborting analysis.") if (time_exceeded): log.error("Emulation time exceeded.") if (throw_error): raise RuntimeError("The ViperMonkey emulation time limit was exceeded. Aborting analysis.") return (recursion_exceeded or time_exceeded) class VBA_Object(object): """Base class for all VBA objects that can be evaluated. """ # Upper bound for loop iterations. 0 or less means unlimited. loop_upper_bound = 500000 def __init__(self, original_str, location, tokens): """VBA_Object constructor, to be called as a parse action by a pyparsing parser @param original_str (str) original string matched by the parser. @param location (int) location of the match. @param tokens (PyParsing tokens thing) tokens extracted by the parser """ self.original_str = original_str self.location = location self.tokens = tokens self._children = None self.is_useless = False self.is_loop = False self.exited_with_goto = False def eval(self, context, params=None): """Evaluate the current value of the object. @param context (Context object) Context for the evaluation (local and global variables). State updates will be reflected in the given context. @param params (list) Any parameters provided to the object. @return (any) The result of emulating the current object. """ context = context # pylint params = params # pylint if (log.getEffectiveLevel() == logging.DEBUG): log.debug(self) # raise NotImplementedError def __repr__(self): """Full string representation of the object. @return (str) Object as a string. """ raise NotImplementedError("__repr__() not implemented in " + safe_str_convert(type(self))) def full_str(self): """Full string representation of the object. @return (str) Object as a string. """ return safe_str_convert(self) def get_children(self): """Return the child VBA objects of the current object. @return (list) The children (VBA_Object objects) of the current object. """ # Check for timeouts. limits_exceeded(throw_error=True) # The default behavior is to count any VBA_Object attribute as # a child. if ((hasattr(self, "_children")) and (self._children is not None)): return self._children r = [] for _, value in self.__dict__.iteritems(): if (isinstance(value, VBA_Object)): r.append(value) if isinstance(value, (list, pyparsing.ParseResults)): for i in value: if (isinstance(i, VBA_Object)): r.append(i) if (isinstance(value, dict)): for i in value.values(): if (isinstance(i, VBA_Object)): r.append(i) self._children = r return r def accept(self, visitor, no_embedded_loops=False): """Visitor design pattern support, Accept a visitor. @param visitor (visitor object) The visitor object to use to visit the current object and it's children. @param no_embedded_loops (boolean) Whether to skip visiting loops (While, For, etc.) in the current object. """ # Check for timeouts. limits_exceeded(throw_error=True) # Skipping visiting embedded loops? Check to see if we are already # in a loop and the current VBA object is a loop. if (no_embedded_loops and hasattr(visitor, "in_loop") and visitor.in_loop and self.is_loop): #print "SKIPPING LOOP!!" #print self return # Set initial in loop status of visitor if needed. if (not hasattr(visitor, "in_loop")): visitor.in_loop = self.is_loop # Have we moved into a loop? if ((not visitor.in_loop) and (self.is_loop)): visitor.in_loop = True # Visit the current item. visit_status = visitor.visit(self) if (not visit_status): return # Save the in loop status so we can restore it after visiting the children. old_in_loop = visitor.in_loop # Visit all the children. for child in self.get_children(): child.accept(visitor, no_embedded_loops=no_embedded_loops) # Back in current VBA object. Restore the in loop status. visitor.in_loop = old_in_loop def to_python(self, context, params=None, indent=0): """JIT compile this VBA object to Python code for direct emulation. @param context (Context object) Context for the Python code generation (local and global variables). Current program state will be read from the context. @param params (list) Any parameters provided to the object. @param indent (int) The number of spaces of indent to use at the beginning of the generated Python code. @return (str) The current object with it's emulation implemented as Python code. """ log.warning("to_python() not implemented in " + safe_str_convert(type(self))) raise NotImplementedError("to_python() not implemented in " + safe_str_convert(type(self))) def _read_from_excel(arg, context): """Try to evaluate an argument by reading from the loaded Excel spreadsheet. @param arg (VBA_Object object) The argument to evaluate. @param context (Context object) The current program state. @return (any) The result of the evaluation on success, None on failure. """ # Try handling reading value from an Excel spreadsheet cell. # ThisWorkbook.Sheets('YHRPN').Range('J106').Value if ("MemberAccessExpression" not in safe_str_convert(type(arg))): return None arg_str = safe_str_convert(arg) if (("sheets(" in arg_str.lower()) and (("range(" in arg_str.lower()) or ("cells(" in arg_str.lower()))): if (log.getEffectiveLevel() == logging.DEBUG): log.debug("Try as Excel cell read...") return arg.eval(context) # Not handled. return None def _read_from_object_text(arg, context): """Try to read in a value from the text associated with a object like a Shape. @param arg (VBA_Object object) The argument to evaluate. @param context (Context object) The current program state. @return (any) The result of the evaluation on success, None on failure. """ # Do we have an object text access? arg_str = safe_str_convert(arg) arg_str_low = arg_str.lower().strip() # Shapes('test33'). TextFrame.TextRange.text # Shapes('FrXXBbPlWaco').TextFrame.TextRange # # Make sure not to pull out Shapes() references that appear as arguments to function # calls. import expressions if (("shapes(" in arg_str_low) and (not isinstance(arg, expressions.Function_Call))): # Yes we do. if (log.getEffectiveLevel() == logging.DEBUG): log.debug("eval_arg: Try to get as ....TextFrame.TextRange.Text value: " + arg_str.lower()) # Handle member access? lhs = "Shapes('1')" if ("inlineshapes" in arg_str_low): lhs = "InlineShapes('1')" if ("MemberAccessExpression" in safe_str_convert(type(arg))): # Drop off ActiveDocument prefix. lhs = arg.lhs if ((safe_str_convert(lhs) == "ActiveDocument") or (safe_str_convert(lhs) == "ThisDocument")): lhs = arg.rhs[0] # Eval the leftmost prefix element of the member access expression first. if (log.getEffectiveLevel() == logging.DEBUG): log.debug("eval_obj_text: Old member access lhs = " + safe_str_convert(lhs)) if ((hasattr(lhs, "eval")) and (not isinstance(lhs, pyparsing.ParseResults))): lhs = lhs.eval(context) else: # Look this up as a variable name. var_name = safe_str_convert(lhs) try: lhs = context.get(var_name) except KeyError: lhs = var_name if (lhs == "NULL"): lhs = "Shapes('1')" if ("inlineshapes" in arg_str_low): lhs = "InlineShapes('1')" if (log.getEffectiveLevel() == logging.DEBUG): log.debug("eval_obj_text: Evaled member access lhs = " + safe_str_convert(lhs)) # Try to get this as a doc var. doc_var_name = safe_str_convert(lhs) + ".TextFrame.TextRange.Text" doc_var_name = doc_var_name.replace(".TextFrame.TextFrame", ".TextFrame") if (("InlineShapes(" in doc_var_name) and (not doc_var_name.startswith("InlineShapes("))): doc_var_name = doc_var_name[doc_var_name.index("InlineShapes("):] elif (("Shapes(" in doc_var_name) and (not doc_var_name.startswith("Shapes(")) and ("InlineShapes(" not in doc_var_name)): doc_var_name = doc_var_name[doc_var_name.index("Shapes("):] if (log.getEffectiveLevel() == logging.DEBUG): log.debug("eval_obj_text: Looking for object text " + safe_str_convert(doc_var_name)) val = context.get_doc_var(doc_var_name.lower()) if (val is not None): if (log.getEffectiveLevel() == logging.DEBUG): log.debug("eval_obj_text: Found " + safe_str_convert(doc_var_name) + " = " + safe_str_convert(val)) return val # Not found. Try looking for the object with index 1. lhs_str = safe_str_convert(lhs) if ("'" not in lhs_str): return None new_lhs = lhs_str[:lhs_str.index("'") + 1] + "1" + lhs_str[lhs_str.rindex("'"):] doc_var_name = new_lhs + ".TextFrame.TextRange.Text" doc_var_name = doc_var_name.replace(".TextFrame.TextFrame", ".TextFrame") if (("InlineShapes(" in doc_var_name) and (not doc_var_name.startswith("InlineShapes("))): doc_var_name = doc_var_name[doc_var_name.index("InlineShapes("):] elif (("Shapes(" in doc_var_name) and (not doc_var_name.startswith("Shapes(")) and ("InlineShapes(" not in doc_var_name)): doc_var_name = doc_var_name[doc_var_name.index("Shapes("):] if (log.getEffectiveLevel() == logging.DEBUG): log.debug("eval_arg: Fallback, looking for object text " + safe_str_convert(doc_var_name)) val = context.get_doc_var(doc_var_name.lower()) return val # Not handled. return None def contains_excel(arg): """See if a given expression contains Excel book or sheet objects. @param arg (VBA_Object object) The argument to check. @return (boolean) True if the given VBA expression contains Excel book or sheet objects, False if not. """ # Got actual Excel objects? if isinstance(arg, (excel.ExcelBook, excel.ExcelSheet)): return True # Got a function call? import expressions if (not isinstance(arg, expressions.Function_Call)): return False # Is this an Excel function call? excel_funcs = set(["usedrange", "sheets", "specialcells"]) return (safe_str_convert(arg.name).lower() in excel_funcs) constant_expr_cache = {} def get_cached_value(arg): """Get the cached value of an all constant numeric expression if we have it. @param arg (VBA_Object object) The argument to check. @return (int or VBA_Object) The cached value of the all constant numeric expression if it is in the cache, the original given argument if not. """ # Don't do any more work if this is already a resolved value. if isinstance(arg, (dict, int)): return arg # If it is something that may be hard to convert to a string, no cached value. if contains_excel(arg): return None # This is not already resolved to an int. See if we computed this before. arg_str = safe_str_convert(arg) if (arg_str not in constant_expr_cache.keys()): return None return constant_expr_cache[arg_str] def set_cached_value(arg, val): """Set the cached value of an all constant numeric expression. @param arg (VBA_Object object) The unresolved expression to cache. @param val (int, float, complex) The value of the resolved expression. """ # We should be setting this to a numeric expression if ((not isinstance(val, int)) and (not isinstance(val, float)) and (not isinstance(val, complex))): if (log.getEffectiveLevel() == logging.DEBUG): log.warning("Expression '" + safe_str_convert(val) + "' is a " + safe_str_convert(type(val)) + ", not an int. Not caching.") return # Don't cache things that contain Excel sheets or workbooks. if contains_excel(arg): return # We have a number. Cache it. arg_str = safe_str_convert(arg) try: if (log.getEffectiveLevel() == logging.DEBUG): log.debug("Cache value of " + arg_str + " = " + safe_str_convert(val)) except UnicodeEncodeError: pass constant_expr_cache[arg_str] = val def is_constant_math(arg): """See if a given expression is a simple math expression with all literal numbers. @param arg (VBA_Object object) The expression to check. @return (boolean) True if this is a simple math expression with all numeric literals, False if not. """ # Sanity check. If there are variables in the expression it is not all literals. if (isinstance(arg, VBA_Object)): var_visitor = var_in_expr_visitor() arg.accept(var_visitor) if (len(var_visitor.variables) > 0): return False # Some things are not math expressions. if (isinstance(arg, dict) or contains_excel(arg)): return False # Speed this up with the rure regex library if it is installed. try: import rure as local_re except ImportError: # Renaming of failed to import rure package. # pylint: disable=reimported import re as local_re # Use a regex to see if this is an all constant expression. base_pat = "(?:\\s*\\d+(?:\\.\\d+)?\\s*[+\\-\\*/]\\s*)*\\s*\\d+" paren_pat = base_pat + "|(?:\\((?:\\s*" + base_pat + "\\s*[+\\-\\*\\\\]\\s*)*\\s*" + base_pat + "\\))" arg_str = safe_str_convert(arg).strip() try: arg_str = unicode(arg_str) except UnicodeDecodeError: arg_str = filter(isprint, arg_str) arg_str = unicode(arg_str) return (local_re.match(unicode(paren_pat), arg_str) is not None) def _handle_wscriptshell_run(arg, context, got_constant_math): """Handle cases where wscriptshell.run() is being called and there is a local run() function. @param arg (VBA_Object object) The item being evaluated. @param context (Context object) The current program state. @param got_constant_math (boolean) If True the given arg is an all numeric literal expression, if False it is not. @return (??) On success the evaluated item is returned, None is returned on error. """ # Handle cases where wscriptshell.run() is being called and there is a local run() function. if ((".run(" in safe_str_convert(arg).lower()) and (context.contains("run"))): # Resolve the run() call. if ("MemberAccessExpression" in safe_str_convert(type(arg))): arg_evaled = arg.eval(context) if got_constant_math: set_cached_value(arg, arg_evaled) return arg_evaled # Not handled. return None def _handle_shapes_access(r, arg, context, got_constant_math): """Finish handling a partially handled Shapes() access. @param arg (VBA_Object object) The item being evaluated. @param context (Context object) The current program state. @param got_constant_math (boolean) If True the given arg is an all numeric literal expression, if False it is not. @return (??) On success the evaluated item is returned, None is returned on error. """ # Is this a Shapes() access that still needs to be handled? poss_shape_txt = "" if isinstance(r, (VBA_Object, str)): poss_shape_txt = safe_str_convert(r) if ((poss_shape_txt.startswith("Shapes(")) or (poss_shape_txt.startswith("InlineShapes("))): if (log.getEffectiveLevel() == logging.DEBUG): log.debug("eval_arg: Handling intermediate Shapes() access for " + safe_str_convert(r)) r = eval_arg(r, context) if got_constant_math: set_cached_value(arg, r) return r # Not handled. return None def _handle_nodetypedvalue_read(arg, context, got_constant_math): """Handle reads of the nodeTypedValue field of an object. @param arg (VBA_Object object) The item being evaluated. @param context (Context object) The current program state. @param got_constant_math (boolean) If True the given arg is an all numeric literal expression, if False it is not. @return (??) On success the evaluated item is returned, None is returned on error. """ # This is a hack to get values saved in the .text field of objects. # To do this properly we need to save "FOO.text" as a variable and # return the value of "FOO.text" when getting "FOO.nodeTypedValue". if ("nodetypedvalue" in arg.lower()): try: tmp = arg.lower().replace("nodetypedvalue", "text") if (log.getEffectiveLevel() == logging.DEBUG): log.debug("eval_arg: Try to get as " + tmp + "...") val = context.get(tmp) # It looks like maybe this magically does base64 decode? Try that. if (log.getEffectiveLevel() == logging.DEBUG): log.debug("eval_arg: Try base64 decode of '" + safe_str_convert(val) + "'...") val_decode = utils.b64_decode(val) if (val_decode is not None): if got_constant_math: set_cached_value(arg, val_decode) return val_decode except KeyError: if (log.getEffectiveLevel() == logging.DEBUG): log.debug("eval_arg: Not found as .text.") # Not handled. return None def _handle_selected_item_read(arg, context, got_constant_math): """Handle reads of the selectedItem field of an object. @param arg (VBA_Object object) The item being evaluated. @param context (Context object) The current program state. @param got_constant_math (boolean) If True the given arg is an all numeric literal expression, if False it is not. @return (??) On success the evaluated item is returned, None is returned on error. """ # This is a hack to get values saved in the .rapt.Value field of objects. if (".selecteditem" in arg.lower()): try: tmp = arg.lower().replace(".selecteditem", ".rapt.value") if (log.getEffectiveLevel() == logging.DEBUG): log.debug("eval_arg: Try to get as " + tmp + "...") val = context.get(tmp) if got_constant_math: set_cached_value(arg, val) return val except KeyError: if (log.getEffectiveLevel() == logging.DEBUG): log.debug("eval_arg: Not found as .rapt.value.") # Not handled. return None # Read in Office file metadata. meta = None def _handle_form_variable_read(arg, context, got_constant_math): """Handle reading some VBA form variable (looks like reading a field of an object). @param arg (VBA_Object object) The item being evaluated. @param context (Context object) The current program state. @param got_constant_math (boolean) If True the given arg is an all numeric literal expression, if False it is not. @return (??) On success the evaluated item is returned, None is returned on error. """ # Is this trying to access some VBA form variable? if ("." in arg.lower()): # Try easy button first. See if this is just a doc var. doc_var_val = context.get_doc_var(arg) if (doc_var_val is not None): if got_constant_math: set_cached_value(arg, doc_var_val) return doc_var_val # Peel off items seperated by a '.', trying them as functions. arg_peeled = arg while ("." in arg_peeled): # Try it as a form variable. curr_var_attempt = arg_peeled.lower() try: if (log.getEffectiveLevel() == logging.DEBUG): log.debug("eval_arg: Try to load as variable " + curr_var_attempt + "...") val = context.get(curr_var_attempt) if (val != safe_str_convert(arg)): if got_constant_math: set_cached_value(arg, val) return val except KeyError: if (log.getEffectiveLevel() == logging.DEBUG): log.debug("eval_arg: Not found as variable") arg_peeled = arg_peeled[arg_peeled.index(".") + 1:] # Try it as a function func_name = arg.lower() func_name = func_name[func_name.rindex(".")+1:] try: # Lookp and execute the function. if (log.getEffectiveLevel() == logging.DEBUG): log.debug("eval_arg: Try to run as function '" + func_name + "'...") func = context.get(func_name) r = func import procedures if (isinstance(func, (procedures.Function, procedures.Sub)) or ('vipermonkey.core.vba_library.' in safe_str_convert(type(func)))): r = eval_arg(func, context, treat_as_var_name=True) # Did the function resolve to a value? if (r != func): # Yes it did. Return the function result. if got_constant_math: set_cached_value(arg, r) return r # The function did to resolve to a value. Return as the # original string. if got_constant_math: set_cached_value(arg, arg) return arg except KeyError: if (log.getEffectiveLevel() == logging.DEBUG): log.debug("eval_arg: Not found as function") except Exception as e: if (log.getEffectiveLevel() == logging.DEBUG): log.debug("eval_arg: Failed. Not a function. " + safe_str_convert(e)) traceback.print_exc() # Are we trying to load some document meta data? tmp = arg.lower().strip() if (tmp.startswith("activedocument.item(")): # Try to pull the result from the document meta data. prop = tmp.replace("activedocument.item(", "").replace(")", "").replace("'","").strip() # Make sure we read in the metadata. if (meta is None): log.error("BuiltInDocumentProperties: Metadata not read.") return "" # See if we can find the metadata attribute. if (not hasattr(meta, prop.lower())): log.error("BuiltInDocumentProperties: Metadata field '" + prop + "' not found.") return "" # We have the attribute. Return it. r = getattr(meta, prop.lower()) if (log.getEffectiveLevel() == logging.DEBUG): log.debug("BuiltInDocumentProperties: return %r -> %r" % (prop, r)) return r # Are we trying to load some document data? if ((tmp.startswith("thisdocument.builtindocumentproperties(")) or (tmp.startswith("activeworkbook.builtindocumentproperties("))): # Try to pull the result from the document data. var = tmp.replace("thisdocument.builtindocumentproperties(", "").replace(")", "").replace("'","").strip() var = var.replace("activeworkbook.builtindocumentproperties(", "") val = context.get_doc_var(var) if (val is not None): return val # Try getting from meta data. val = context.read_metadata_item(var) if (val is not None): return val # Are we loading a document variable? if (tmp.startswith("activedocument.variables(")): # ActiveDocument.Variables("ER0SNQAWT").Value # Try to pull the result from the document variables. if (log.getEffectiveLevel() == logging.DEBUG): log.debug("eval_arg: handle expression as doc var lookup '" + tmp + "'") var = tmp.replace("activedocument.variables(", "").\ replace(")", "").\ replace("'","").\ replace('"',"").\ replace('.value',"").\ replace("(", "").\ strip() if (log.getEffectiveLevel() == logging.DEBUG): log.debug("eval_arg: look for '" + var + "' as document variable...") val = context.get_doc_var(var) if (val is not None): if (log.getEffectiveLevel() == logging.DEBUG): log.debug("eval_arg: got it as document variable.") return val else: if (log.getEffectiveLevel() == logging.DEBUG): log.debug("eval_arg: did NOT get it as document variable.") # Are we loading a custom document property? if (tmp.startswith("activedocument.customdocumentproperties(")): # ActiveDocument.CustomDocumentProperties("l3qDvt3B53wxeXu").Value # Try to pull the result from the custom properties. var = tmp.replace("activedocument.customdocumentproperties(", "").\ replace(")", "").\ replace("'","").\ replace('"',"").\ replace('.value',"").\ replace("(", "").\ strip() val = context.get_doc_var(var) if (val is not None): return val # As a last resort try reading it as a wildcarded form variable. wild_name = tmp[:tmp.index(".")] + "*" for i in range(0, 11): tmp_name = wild_name + safe_str_convert(i) try: val = context.get(tmp_name) if (log.getEffectiveLevel() == logging.DEBUG): log.debug("eval_arg: Found '" + tmp + "' as wild card form variable '" + tmp_name + "'") return val except KeyError: pass # Not handled. return None def eval_arg(arg, context, treat_as_var_name=False): """Evaluate a single argument if it is a VBA_Object, otherwise return its value. @param arg (VBA_Object object) The item being evaluated. @param context (Context object) The current program state. @param treat_as_var_name (boolean) If True try to look up a variable with the given name, if False try to directly evaluate the given item. @return (??) On success the evaluated item is returned, None is returned on error. """ # pypy seg faults sometimes if the recursion depth is exceeded. Try to # avoid that. Also check to see if emulation has taken too long. limits_exceeded(throw_error=True) if (log.getEffectiveLevel() == logging.DEBUG): log.debug("try eval arg: %s (%s, %s, %s)" % (arg, type(arg), isinstance(arg, VBA_Object), treat_as_var_name)) # Is this a constant math expression? got_constant_math = is_constant_math(arg) # Do we have the cached value of this expression? cached_val = get_cached_value(arg) if (cached_val is not None): if (log.getEffectiveLevel() == logging.DEBUG): log.debug("eval_arg: Got cached value %r = %r" % (arg, cached_val)) return cached_val # Try handling reading value from an Excel spreadsheet cell. excel_val = _read_from_excel(arg, context) if (excel_val is not None): if got_constant_math: set_cached_value(arg, excel_val) return excel_val # Short circuit the checks and see if we are accessing some object text first. obj_text_val = _read_from_object_text(arg, context) if (obj_text_val is not None): if got_constant_math: set_cached_value(arg, obj_text_val) return obj_text_val # Not reading from an Excel cell. Try as a VBA object. if isinstance(arg, (VBA_Object, VbaLibraryFunc)): # Handle cases where wscriptshell.run() is being called and there is a local run() function. tmp_r = _handle_wscriptshell_run(arg, context, got_constant_math) if (tmp_r is not None): return tmp_r # Handle as a regular VBA object. if (log.getEffectiveLevel() == logging.DEBUG): log.debug("eval_arg: eval as VBA_Object %s" % arg) r = arg.eval(context=context) # Is this a Shapes() access that still needs to be handled? tmp_r = _handle_shapes_access(r, arg, context, got_constant_math) if (tmp_r is not None): return tmp_r # Regular VBA object. if got_constant_math: set_cached_value(arg, r) return r # Not a VBA object. else: if (log.getEffectiveLevel() == logging.DEBUG): log.debug("eval_arg: not a VBA_Object: %r" % arg) # Might this be a special type of variable lookup? if (isinstance(arg, str)): # Simple case first. Is this a variable? try: if (log.getEffectiveLevel() == logging.DEBUG): log.debug("eval_arg: Try as variable name: %r" % arg) r = context.get(arg) if (log.getEffectiveLevel() == logging.DEBUG): log.debug("eval_arg: Got %r = %r" % (arg, r)) if got_constant_math: set_cached_value(arg, r) return r except KeyError: # No it is not. Try more complicated cases. if (log.getEffectiveLevel() == logging.DEBUG): log.debug("eval_arg: Not found as variable name: %r" % arg) else: if (log.getEffectiveLevel() == logging.DEBUG): log.debug("eval_arg: Do not try as variable name: %r" % arg) # This is a hack to get values saved in the .text field of objects. # To do this properly we need to save "FOO.text" as a variable and # return the value of "FOO.text" when getting "FOO.nodeTypedValue". tmp_r = _handle_nodetypedvalue_read(arg, context, got_constant_math) if (tmp_r is not None): return tmp_r # This is a hack to get values saved in the .rapt.Value field of objects. tmp_r = _handle_selected_item_read(arg, context, got_constant_math) if (tmp_r is not None): return tmp_r # Is this trying to access some VBA form variable? tmp_r = _handle_form_variable_read(arg, context, got_constant_math) if (tmp_r is not None): return tmp_r # Should this be handled as a variable? Must be a valid var name to do this. if (treat_as_var_name and (re.match(r"[a-zA-Z_][\w\d]*", safe_str_convert(arg)) is not None)): # We did not resolve the variable. Treat it as unitialized. if (log.getEffectiveLevel() == logging.DEBUG): log.debug("eval_arg: return 'NULL'") return "NULL" # Are we referring to a form element that we cannot find? form_fields = [".tag", ".boundvalue", ".column", ".caption", ".groupname", ".seltext", ".controltiptext", ".passwordchar", ".controlsource", ".value"] for form_field in form_fields: if (safe_str_convert(arg).lower().endswith(form_field)): return "" # The .text hack did not work. if (log.getEffectiveLevel() == logging.DEBUG): log.debug("eval_arg: return " + safe_str_convert(arg)) return arg def eval_args(args, context, treat_as_var_name=False): """Evaluate a list of arguments if they are VBA_Objects, otherwise return their value as-is. @param args (list) The list of items (VBA_Object object) being evaluated. @param context (Context object) The current program state. @param treat_as_var_name (boolean) If True try to look up variable with the given names in the args list, if False try to directly evaluate the given items. @return (list) Return the list of evaluated arguments on success, the original args on failure. """ # Punt if we can't iterate over the args. try: _ = iter(args) except TypeError: return args # Short circuit check to see if there are any VBA objects. got_vba_objects = False for arg in args: if (isinstance(arg, VBA_Object)): got_vba_objects = True if (not got_vba_objects): return args r = map(lambda arg: eval_arg(arg, context=context, treat_as_var_name=treat_as_var_name), args) return r
37.439423
136
0.613581
74cb3e8e507497c5e505ab1d4fe0a9b05dda8fd9
330
py
Python
app/authentication/api_key_manipulation.py
jabertuhin/fastapi-with-redis
aad3fd2c3c1ae011c43bfb37f29903ef7835026e
[ "MIT" ]
5
2021-08-14T17:08:48.000Z
2022-01-06T18:29:16.000Z
app/authentication/api_key_manipulation.py
jabertuhin/fastapi-with-redis
aad3fd2c3c1ae011c43bfb37f29903ef7835026e
[ "MIT" ]
2
2021-09-25T11:24:09.000Z
2021-09-25T11:24:20.000Z
app/authentication/api_key_manipulation.py
jabertuhin/fastapi-with-redis
aad3fd2c3c1ae011c43bfb37f29903ef7835026e
[ "MIT" ]
null
null
null
from datetime import datetime from typing import NewType Seconds = NewType("Seconds", int) def get_api_key_with_time(api_key: str, time: Seconds) -> str: # Based on minute. if time//60 == 1: return f"{api_key}:{str(datetime.now().minute)}" raise ValueError("Doesn't support other than minute(60 seconds).")
30
70
0.693939
ddfd8d9c28d3d412e71ea0a77568dad918a38e10
501
py
Python
env/Lib/site-packages/plotly/validators/treemap/marker/colorbar/title/_side.py
andresgreen-byte/Laboratorio-1--Inversion-de-Capital
8a4707301d19c3826c31026c4077930bcd6a8182
[ "MIT" ]
11,750
2015-10-12T07:03:39.000Z
2022-03-31T20:43:15.000Z
env/Lib/site-packages/plotly/validators/treemap/marker/colorbar/title/_side.py
andresgreen-byte/Laboratorio-1--Inversion-de-Capital
8a4707301d19c3826c31026c4077930bcd6a8182
[ "MIT" ]
2,951
2015-10-12T00:41:25.000Z
2022-03-31T22:19:26.000Z
env/Lib/site-packages/plotly/validators/treemap/marker/colorbar/title/_side.py
andresgreen-byte/Laboratorio-1--Inversion-de-Capital
8a4707301d19c3826c31026c4077930bcd6a8182
[ "MIT" ]
2,623
2015-10-15T14:40:27.000Z
2022-03-28T16:05:50.000Z
import _plotly_utils.basevalidators class SideValidator(_plotly_utils.basevalidators.EnumeratedValidator): def __init__( self, plotly_name="side", parent_name="treemap.marker.colorbar.title", **kwargs ): super(SideValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop("edit_type", "colorbars"), values=kwargs.pop("values", ["right", "top", "bottom"]), **kwargs )
33.4
87
0.640719
40688750253d0e9bd6a78056ce1a8127fda7c458
2,818
py
Python
disnake/types/raw_models.py
MisileLab/disnake
c7f6a61f2fe2a05cb57027486d6f2cd7fe5399fa
[ "MIT" ]
null
null
null
disnake/types/raw_models.py
MisileLab/disnake
c7f6a61f2fe2a05cb57027486d6f2cd7fe5399fa
[ "MIT" ]
null
null
null
disnake/types/raw_models.py
MisileLab/disnake
c7f6a61f2fe2a05cb57027486d6f2cd7fe5399fa
[ "MIT" ]
null
null
null
""" The MIT License (MIT) Copyright (c) 2015-2021 Rapptz Copyright (c) 2021-present Disnake Development Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ from typing import TypedDict, List from .snowflake import Snowflake from .member import Member from .emoji import PartialEmoji class _MessageEventOptional(TypedDict, total=False): guild_id: Snowflake class MessageDeleteEvent(_MessageEventOptional): id: Snowflake channel_id: Snowflake class BulkMessageDeleteEvent(_MessageEventOptional): ids: List[Snowflake] channel_id: Snowflake class _ReactionActionEventOptional(TypedDict, total=False): guild_id: Snowflake member: Member class MessageUpdateEvent(_MessageEventOptional): id: Snowflake channel_id: Snowflake class ReactionActionEvent(_ReactionActionEventOptional): user_id: Snowflake channel_id: Snowflake message_id: Snowflake emoji: PartialEmoji class _ReactionClearEventOptional(TypedDict, total=False): guild_id: Snowflake class ReactionClearEvent(_ReactionClearEventOptional): channel_id: Snowflake message_id: Snowflake class _ReactionClearEmojiEventOptional(TypedDict, total=False): guild_id: Snowflake class ReactionClearEmojiEvent(_ReactionClearEmojiEventOptional): channel_id: int message_id: int emoji: PartialEmoji class MemberScreeningRejectEvent(TypedDict): guild_id: Snowflake user_id: Snowflake class _IntegrationDeleteEventOptional(TypedDict, total=False): application_id: Snowflake class IntegrationDeleteEvent(_IntegrationDeleteEventOptional): id: Snowflake guild_id: Snowflake class _TypingEventOptional(TypedDict, total=False): guild_id: Snowflake member: Member class TypingEvent(_TypingEventOptional): user_id: Snowflake channel_id: Snowflake timestamp: int
26.838095
75
0.792406
9d715c7f950bf32ec25cddcc64145f7116c79793
6,138
py
Python
eksisozluk.py
teko424/eksisozluk_entries
1e4c5158a0c2b854c675aabbc9ad92d6399da63a
[ "MIT" ]
null
null
null
eksisozluk.py
teko424/eksisozluk_entries
1e4c5158a0c2b854c675aabbc9ad92d6399da63a
[ "MIT" ]
null
null
null
eksisozluk.py
teko424/eksisozluk_entries
1e4c5158a0c2b854c675aabbc9ad92d6399da63a
[ "MIT" ]
null
null
null
# kullanıcı arama, entry sıra numarası özelliği getirilecek import os import sys from subprocess import check_call try: import requests import bs4 except ImportError or ModuleNotFoundError: packages = ["requests", "BeautifulSoup4", "lxml"] for package in packages: check_call(["pip", "install", package]) os.execv(sys.executable, ["python"] + sys.argv) def eksi(): searchlist = [] c_range = 150 while 1: q = input("aramak istediğiniz başlık: ") searchlist.append(q) try: if q: headers = "" search = "https://eksisozluk.com/?q=" page = 1 url = search + q r = requests.get(url, headers=headers) source = bs4.BeautifulSoup(r.content, "lxml") header = source.title link = source.find("a", attrs={"itemprop": "url"}).get("href") search = "https://eksisozluk.com" url = search + link entries = source.find_all("div", attrs={"class": "content"}) if not entries: print("böyle bir şey yok. ama olabilir de.") continue dates = source.find_all("a", attrs={"class": "entry-date permalink"}) date_list = [] nicks = source.find_all("a", attrs={"class": "entry-author"}) nick_list = [] nd_num = 0 if len(entries) >= 10: pagecount = source.find("div", {"data-currentpage": str(page)}) pagecount = \ str(pagecount)[str(pagecount).find("data-pagecount"):str(pagecount).find(">")].split("=")[1] pagecount = pagecount.strip("\"") else: pagecount = 1 print("\n", header.text) [nick_list.append(nick.text) for nick in nicks] [date_list.append(date.text) for date in dates] for num, entry in enumerate(entries, start=1): print(f"\n {num} -) {entry.text} \n {date_list[nd_num]} " f"\n\n - {nick_list[nd_num]} -") if len(entry.text) <= c_range: print("—" * len(entry.text)) else: print("—" * c_range) nd_num += 1 print(f"\nsayfa numarası: {page}\n{pagecount} sayfa mevcut") while 1: qa = input("""\nsonraki sayfaya geçmek içn (+) girin\n--------- \ngeri gitmek için (-) girin\n--------- \nsayfa numarası için bir sayı girin\n--------- \ngündemi görmek için (*) girin\n--------- \narama kaydı için (/) girin\n--------- \nson sayfa için (") girin\n--------- \nbaşka bir şey aramak için \"h\" girin: """) page += 1 if qa == "+": pass elif qa == "-": page -= 2 if page < 1: print("\nçok geri gittin. biraz ileri gel.") continue elif qa.isdigit(): page = int(qa) elif qa == "*": page -= 1 pass elif qa == "/": print("\n") for value in searchlist: print(value) page -= 1 continue elif qa == "\"": page -= 1 page = int(pagecount) else: break pageurl = "?p=" + str(page) urls = url + pageurl r = requests.get(urls, headers=headers) source = bs4.BeautifulSoup(r.content, "lxml") if qa == "*": entries = source.find_all("ul", attrs={"class": "topic-list partial"}) else: entries = source.find_all("div", attrs={"class": "content"}) if not entries: print("entry kalmadı.\nbaşka bir başlık aratabilirsiniz.") continue nicks = source.find_all("a", attrs={"class": "entry-author"}) nick_list = [] dates = source.find_all("a", attrs={"class": "entry-date permalink"}) date_list = [] nd_num = 0 print("\n", header.text) if qa != "*": [nick_list.append(nick.text) for nick in nicks] [date_list.append(date.text) for date in dates] for num, entry in enumerate(entries, start=1): print(f"\n {num} -) {entry.text} \n {date_list[nd_num]} " f"\n\n - {nick_list[nd_num]} -") if len(entry.text) <= c_range: print("—" * len(entry.text)) else: print("—" * c_range) nd_num += 1 print(f"\nsayfa numarası: {page}\n{pagecount} sayfa mevcut") else: for title in entries: print(title.text) else: break except bs4.FeatureNotFound: check_call(["pip", "install", "lxml"]) os.execv(sys.executable, ["python"] + sys.argv) except requests.exceptions.ConnectionError: print("bağlantınızı kontrol edin") if __name__ == "__main__": eksi()
44.478261
117
0.40404
4efe7aa4b340d1e92817301158cf94aa1f808d19
739
py
Python
pyContabo/types/licenses.py
xLeon-python/pyContabo
9863bd1ab0f95b50186902c90c40ce53d3026afd
[ "MIT" ]
5
2022-01-03T10:34:35.000Z
2022-01-27T10:34:41.000Z
pyContabo/types/licenses.py
xLeon-python/pyContabo
9863bd1ab0f95b50186902c90c40ce53d3026afd
[ "MIT" ]
4
2022-01-14T10:37:57.000Z
2022-01-20T20:44:54.000Z
pyContabo/types/licenses.py
xLeon-python/pyContabo
9863bd1ab0f95b50186902c90c40ce53d3026afd
[ "MIT" ]
1
2022-01-20T14:59:32.000Z
2022-01-20T14:59:32.000Z
from enum import Enum class license(Enum): PleskHost = "PleskHost" PleskPro = "PleskPro" PleskAdmin = "PleskAdmin" cPanel5 = "cPanel5" cPanel30 = "cPanel30" cPanel50 = "cPanel50" cPanel100 = "cPanel100" cPanel150 = "cPanel150" cPanel200 = "cPanel200" cPanel250 = "cPanel250" cPanel300 = "cPanel300" cPanel350 = "cPanel350" cPanel400 = "cPanel400" cPanel450 = "cPanel450" cPanel500 = "cPanel500" cPanel550 = "cPanel550" cPanel600 = "cPanel600" cPanel650 = "cPanel650" cPanel700 = "cPanel700" cPanel750 = "cPanel750" cPanel800 = "cPanel800" cPanel850 = "cPanel850" cPanel900 = "cPanel900" cPanel950 = "cPanel950" cPanel1000 = "cPanel1000"
24.633333
29
0.64682
45d6e11b18fc8ca746bae139df7d082c8efd5b60
13,008
py
Python
PathPlanning/HybridAStar/hybrid_a_star.py
pruidzeko/PythonRobotics
5ff9b70d737121c2947d844ecfb1fa07abdd210c
[ "MIT" ]
5
2021-01-24T12:06:36.000Z
2022-03-05T18:32:15.000Z
PathPlanning/HybridAStar/hybrid_a_star.py
pruidzeko/PythonRobotics
5ff9b70d737121c2947d844ecfb1fa07abdd210c
[ "MIT" ]
61
2020-08-17T20:02:09.000Z
2022-03-14T20:01:01.000Z
PathPlanning/HybridAStar/hybrid_a_star.py
pruidzeko/PythonRobotics
5ff9b70d737121c2947d844ecfb1fa07abdd210c
[ "MIT" ]
1
2021-05-02T09:26:52.000Z
2021-05-02T09:26:52.000Z
""" Hybrid A* path planning author: Zheng Zh (@Zhengzh) """ import heapq import math import os import sys import matplotlib.pyplot as plt import numpy as np from scipy.spatial import cKDTree sys.path.append(os.path.dirname(os.path.abspath(__file__)) + "/../ReedsSheppPath") try: from a_star_heuristic import dp_planning import reeds_shepp_path_planning as rs from car import move, check_car_collision, MAX_STEER, WB, plot_car except Exception: raise XY_GRID_RESOLUTION = 2.0 # [m] YAW_GRID_RESOLUTION = np.deg2rad(15.0) # [rad] MOTION_RESOLUTION = 0.1 # [m] path interpolate resolution N_STEER = 20 # number of steer command VR = 1.0 # robot radius SB_COST = 100.0 # switch back penalty cost BACK_COST = 5.0 # backward penalty cost STEER_CHANGE_COST = 5.0 # steer angle change penalty cost STEER_COST = 1.0 # steer angle change penalty cost H_COST = 5.0 # Heuristic cost show_animation = True class Node: def __init__(self, x_ind, y_ind, yaw_ind, direction, x_list, y_list, yaw_list, directions, steer=0.0, parent_index=None, cost=None): self.x_index = x_ind self.y_index = y_ind self.yaw_index = yaw_ind self.direction = direction self.x_list = x_list self.y_list = y_list self.yaw_list = yaw_list self.directions = directions self.steer = steer self.parent_index = parent_index self.cost = cost class Path: def __init__(self, x_list, y_list, yaw_list, direction_list, cost): self.x_list = x_list self.y_list = y_list self.yaw_list = yaw_list self.direction_list = direction_list self.cost = cost class Config: def __init__(self, ox, oy, xy_resolution, yaw_resolution): min_x_m = min(ox) min_y_m = min(oy) max_x_m = max(ox) max_y_m = max(oy) ox.append(min_x_m) oy.append(min_y_m) ox.append(max_x_m) oy.append(max_y_m) self.min_x = round(min_x_m / xy_resolution) self.min_y = round(min_y_m / xy_resolution) self.max_x = round(max_x_m / xy_resolution) self.max_y = round(max_y_m / xy_resolution) self.x_w = round(self.max_x - self.min_x) self.y_w = round(self.max_y - self.min_y) self.min_yaw = round(- math.pi / yaw_resolution) - 1 self.max_yaw = round(math.pi / yaw_resolution) self.yaw_w = round(self.max_yaw - self.min_yaw) def calc_motion_inputs(): for steer in np.concatenate((np.linspace(-MAX_STEER, MAX_STEER, N_STEER), [0.0])): for d in [1, -1]: yield [steer, d] def get_neighbors(current, config, ox, oy, kd_tree): for steer, d in calc_motion_inputs(): node = calc_next_node(current, steer, d, config, ox, oy, kd_tree) if node and verify_index(node, config): yield node def calc_next_node(current, steer, direction, config, ox, oy, kd_tree): x, y, yaw = current.x_list[-1], current.y_list[-1], current.yaw_list[-1] arc_l = XY_GRID_RESOLUTION * 1.5 x_list, y_list, yaw_list = [], [], [] for _ in np.arange(0, arc_l, MOTION_RESOLUTION): x, y, yaw = move(x, y, yaw, MOTION_RESOLUTION * direction, steer) x_list.append(x) y_list.append(y) yaw_list.append(yaw) if not check_car_collision(x_list, y_list, yaw_list, ox, oy, kd_tree): return None d = direction == 1 x_ind = round(x / XY_GRID_RESOLUTION) y_ind = round(y / XY_GRID_RESOLUTION) yaw_ind = round(yaw / YAW_GRID_RESOLUTION) added_cost = 0.0 if d != current.direction: added_cost += SB_COST # steer penalty added_cost += STEER_COST * abs(steer) # steer change penalty added_cost += STEER_CHANGE_COST * abs(current.steer - steer) cost = current.cost + added_cost + arc_l node = Node(x_ind, y_ind, yaw_ind, d, x_list, y_list, yaw_list, [d], parent_index=calc_index(current, config), cost=cost, steer=steer) return node def is_same_grid(n1, n2): if n1.x_index == n2.x_index \ and n1.y_index == n2.y_index \ and n1.yaw_index == n2.yaw_index: return True return False def analytic_expansion(current, goal, ox, oy, kd_tree): start_x = current.x_list[-1] start_y = current.y_list[-1] start_yaw = current.yaw_list[-1] goal_x = goal.x_list[-1] goal_y = goal.y_list[-1] goal_yaw = goal.yaw_list[-1] max_curvature = math.tan(MAX_STEER) / WB paths = rs.calc_paths(start_x, start_y, start_yaw, goal_x, goal_y, goal_yaw, max_curvature, step_size=MOTION_RESOLUTION) if not paths: return None best_path, best = None, None for path in paths: if check_car_collision(path.x, path.y, path.yaw, ox, oy, kd_tree): cost = calc_rs_path_cost(path) if not best or best > cost: best = cost best_path = path return best_path def update_node_with_analytic_expansion(current, goal, c, ox, oy, kd_tree): path = analytic_expansion(current, goal, ox, oy, kd_tree) if path: if show_animation: plt.plot(path.x, path.y) f_x = path.x[1:] f_y = path.y[1:] f_yaw = path.yaw[1:] f_cost = current.cost + calc_rs_path_cost(path) f_parent_index = calc_index(current, c) fd = [] for d in path.directions[1:]: fd.append(d >= 0) f_steer = 0.0 f_path = Node(current.x_index, current.y_index, current.yaw_index, current.direction, f_x, f_y, f_yaw, fd, cost=f_cost, parent_index=f_parent_index, steer=f_steer) return True, f_path return False, None def calc_rs_path_cost(reed_shepp_path): cost = 0.0 for length in reed_shepp_path.lengths: if length >= 0: # forward cost += length else: # back cost += abs(length) * BACK_COST # switch back penalty for i in range(len(reed_shepp_path.lengths) - 1): # switch back if reed_shepp_path.lengths[i] * reed_shepp_path.lengths[i + 1] < 0.0: cost += SB_COST # steer penalty for course_type in reed_shepp_path.ctypes: if course_type != "S": # curve cost += STEER_COST * abs(MAX_STEER) # ==steer change penalty # calc steer profile n_ctypes = len(reed_shepp_path.ctypes) u_list = [0.0] * n_ctypes for i in range(n_ctypes): if reed_shepp_path.ctypes[i] == "R": u_list[i] = - MAX_STEER elif reed_shepp_path.ctypes[i] == "L": u_list[i] = MAX_STEER for i in range(len(reed_shepp_path.ctypes) - 1): cost += STEER_CHANGE_COST * abs(u_list[i + 1] - u_list[i]) return cost def hybrid_a_star_planning(start, goal, ox, oy, xy_resolution, yaw_resolution): """ start: start node goal: goal node ox: x position list of Obstacles [m] oy: y position list of Obstacles [m] xy_resolution: grid resolution [m] yaw_resolution: yaw angle resolution [rad] """ start[2], goal[2] = rs.pi_2_pi(start[2]), rs.pi_2_pi(goal[2]) tox, toy = ox[:], oy[:] obstacle_kd_tree = cKDTree(np.vstack((tox, toy)).T) config = Config(tox, toy, xy_resolution, yaw_resolution) start_node = Node(round(start[0] / xy_resolution), round(start[1] / xy_resolution), round(start[2] / yaw_resolution), True, [start[0]], [start[1]], [start[2]], [True], cost=0) goal_node = Node(round(goal[0] / xy_resolution), round(goal[1] / xy_resolution), round(goal[2] / yaw_resolution), True, [goal[0]], [goal[1]], [goal[2]], [True]) openList, closedList = {}, {} _, _, h_dp = dp_planning(start_node.x_list[-1], start_node.y_list[-1], goal_node.x_list[-1], goal_node.y_list[-1], ox, oy, xy_resolution, VR) pq = [] openList[calc_index(start_node, config)] = start_node heapq.heappush(pq, (calc_cost(start_node, h_dp, config), calc_index(start_node, config))) final_path = None while True: if not openList: print("Error: Cannot find path, No open set") return [], [], [] cost, c_id = heapq.heappop(pq) if c_id in openList: current = openList.pop(c_id) closedList[c_id] = current else: continue if show_animation: # pragma: no cover plt.plot(current.x_list[-1], current.y_list[-1], "xc") # for stopping simulation with the esc key. plt.gcf().canvas.mpl_connect( 'key_release_event', lambda event: [exit(0) if event.key == 'escape' else None]) if len(closedList.keys()) % 10 == 0: plt.pause(0.001) is_updated, final_path = update_node_with_analytic_expansion( current, goal_node, config, ox, oy, obstacle_kd_tree) if is_updated: print("path found") break for neighbor in get_neighbors(current, config, ox, oy, obstacle_kd_tree): neighbor_index = calc_index(neighbor, config) if neighbor_index in closedList: continue if neighbor not in openList \ or openList[neighbor_index].cost > neighbor.cost: heapq.heappush( pq, (calc_cost(neighbor, h_dp, config), neighbor_index)) openList[neighbor_index] = neighbor path = get_final_path(closedList, final_path) return path def calc_cost(n, h_dp, c): ind = (n.y_index - c.min_y) * c.x_w + (n.x_index - c.min_x) if ind not in h_dp: return n.cost + 999999999 # collision cost return n.cost + H_COST * h_dp[ind].cost def get_final_path(closed, goal_node): reversed_x, reversed_y, reversed_yaw = \ list(reversed(goal_node.x_list)), list(reversed(goal_node.y_list)), \ list(reversed(goal_node.yaw_list)) direction = list(reversed(goal_node.directions)) nid = goal_node.parent_index final_cost = goal_node.cost while nid: n = closed[nid] reversed_x.extend(list(reversed(n.x_list))) reversed_y.extend(list(reversed(n.y_list))) reversed_yaw.extend(list(reversed(n.yaw_list))) direction.extend(list(reversed(n.directions))) nid = n.parent_index reversed_x = list(reversed(reversed_x)) reversed_y = list(reversed(reversed_y)) reversed_yaw = list(reversed(reversed_yaw)) direction = list(reversed(direction)) # adjust first direction direction[0] = direction[1] path = Path(reversed_x, reversed_y, reversed_yaw, direction, final_cost) return path def verify_index(node, c): x_ind, y_ind = node.x_index, node.y_index if c.min_x <= x_ind <= c.max_x and c.min_y <= y_ind <= c.max_y: return True return False def calc_index(node, c): ind = (node.yaw_index - c.min_yaw) * c.x_w * c.y_w + \ (node.y_index - c.min_y) * c.x_w + (node.x_index - c.min_x) if ind <= 0: print("Error(calc_index):", ind) return ind def main(): print("Start Hybrid A* planning") ox, oy = [], [] for i in range(60): ox.append(i) oy.append(0.0) for i in range(60): ox.append(60.0) oy.append(i) for i in range(61): ox.append(i) oy.append(60.0) for i in range(61): ox.append(0.0) oy.append(i) for i in range(40): ox.append(20.0) oy.append(i) for i in range(40): ox.append(40.0) oy.append(60.0 - i) # Set Initial parameters start = [10.0, 10.0, np.deg2rad(90.0)] goal = [50.0, 50.0, np.deg2rad(-90.0)] print("start : ", start) print("goal : ", goal) if show_animation: plt.plot(ox, oy, ".k") rs.plot_arrow(start[0], start[1], start[2], fc='g') rs.plot_arrow(goal[0], goal[1], goal[2]) plt.grid(True) plt.axis("equal") path = hybrid_a_star_planning( start, goal, ox, oy, XY_GRID_RESOLUTION, YAW_GRID_RESOLUTION) x = path.x_list y = path.y_list yaw = path.yaw_list if show_animation: for i_x, i_y, i_yaw in zip(x, y, yaw): plt.cla() plt.plot(ox, oy, ".k") plt.plot(x, y, "-r", label="Hybrid A* path") plt.grid(True) plt.axis("equal") plot_car(i_x, i_y, i_yaw) plt.pause(0.0001) print(__file__ + " done!!") if __name__ == '__main__': main()
29.100671
79
0.58956
d29aa590873ef7d8f492b2cd43450e694776f457
1,216
py
Python
python_toolbox/address_tools/shared.py
hboshnak/python_toolbox
cb9ef64b48f1d03275484d707dc5079b6701ad0c
[ "MIT" ]
119
2015-02-05T17:59:47.000Z
2022-02-21T22:43:40.000Z
python_toolbox/address_tools/shared.py
hboshnak/python_toolbox
cb9ef64b48f1d03275484d707dc5079b6701ad0c
[ "MIT" ]
4
2019-04-24T14:01:14.000Z
2020-05-21T12:03:29.000Z
python_toolbox/address_tools/shared.py
hboshnak/python_toolbox
cb9ef64b48f1d03275484d707dc5079b6701ad0c
[ "MIT" ]
14
2015-03-30T06:30:42.000Z
2021-12-24T23:45:11.000Z
# Copyright 2009-2017 Ram Rachum. # This program is distributed under the MIT license. '''Various objects and tools for `address_tools`.''' import re _address_pattern = re.compile( r"^(?P<address>([a-zA-Z_][0-9a-zA-Z_]*)(\.[a-zA-Z_][0-9a-zA-Z_]*)*)$" ) '''Pattern for Python addresses, like 'email.encoders'.''' _contained_address_pattern = re.compile( r"(?P<address>([a-zA-Z_][0-9a-zA-Z_]*)(\.[a-zA-Z_][0-9a-zA-Z_]*)*)" ) ''' Pattern for strings containing Python addresses, like '{email.encoders: 1}'. ''' def _get_parent_and_dict_from_namespace(namespace): ''' Extract the parent object and `dict` from `namespace`. For the `namespace`, the user can give either a parent object (`getattr(namespace, address) is obj`) or a `dict`-like namespace (`namespace[address] is obj`). Returns `(parent_object, namespace_dict)`. ''' if hasattr(namespace, '__getitem__') and hasattr(namespace, 'keys'): parent_object = None namespace_dict = namespace else: parent_object = namespace namespace_dict = vars(parent_object) return (parent_object, namespace_dict) def is_address(string): return bool(_address_pattern.match(string))
26.434783
76
0.674342
577988bc58ca65fe8c92317e1008aabab8080c44
12,475
py
Python
homeassistant/components/media_player/yamaha.py
dotlambda/home-assistant
68d2851ecf2dcd05bd5197240a31980d4fee8d2e
[ "Apache-2.0" ]
null
null
null
homeassistant/components/media_player/yamaha.py
dotlambda/home-assistant
68d2851ecf2dcd05bd5197240a31980d4fee8d2e
[ "Apache-2.0" ]
5
2022-03-01T06:31:03.000Z
2022-03-31T07:20:45.000Z
homeassistant/components/media_player/yamaha.py
dotlambda/home-assistant
68d2851ecf2dcd05bd5197240a31980d4fee8d2e
[ "Apache-2.0" ]
null
null
null
""" Support for Yamaha Receivers. For more details about this platform, please refer to the documentation at https://home-assistant.io/components/media_player.yamaha/ """ import logging import voluptuous as vol from homeassistant.components.media_player import ( SUPPORT_TURN_OFF, SUPPORT_TURN_ON, SUPPORT_VOLUME_MUTE, SUPPORT_VOLUME_SET, SUPPORT_SELECT_SOURCE, SUPPORT_PLAY_MEDIA, SUPPORT_PAUSE, SUPPORT_STOP, SUPPORT_NEXT_TRACK, SUPPORT_PREVIOUS_TRACK, SUPPORT_PLAY, MEDIA_TYPE_MUSIC, MEDIA_PLAYER_SCHEMA, DOMAIN, MediaPlayerDevice, PLATFORM_SCHEMA) from homeassistant.const import (CONF_NAME, CONF_HOST, STATE_OFF, STATE_ON, STATE_PLAYING, STATE_IDLE, ATTR_ENTITY_ID) import homeassistant.helpers.config_validation as cv REQUIREMENTS = ['rxv==0.5.1'] _LOGGER = logging.getLogger(__name__) SUPPORT_YAMAHA = SUPPORT_VOLUME_SET | SUPPORT_VOLUME_MUTE | \ SUPPORT_TURN_ON | SUPPORT_TURN_OFF | SUPPORT_SELECT_SOURCE | SUPPORT_PLAY CONF_SOURCE_NAMES = 'source_names' CONF_SOURCE_IGNORE = 'source_ignore' CONF_ZONE_NAMES = 'zone_names' CONF_ZONE_IGNORE = 'zone_ignore' DEFAULT_NAME = 'Yamaha Receiver' DATA_YAMAHA = 'yamaha_known_receivers' PLATFORM_SCHEMA = PLATFORM_SCHEMA.extend({ vol.Optional(CONF_NAME, default=DEFAULT_NAME): cv.string, vol.Optional(CONF_HOST): cv.string, vol.Optional(CONF_SOURCE_IGNORE, default=[]): vol.All(cv.ensure_list, [cv.string]), vol.Optional(CONF_ZONE_IGNORE, default=[]): vol.All(cv.ensure_list, [cv.string]), vol.Optional(CONF_SOURCE_NAMES, default={}): {cv.string: cv.string}, vol.Optional(CONF_ZONE_NAMES, default={}): {cv.string: cv.string}, }) SERVICE_ENABLE_OUTPUT = 'yamaha_enable_output' ATTR_PORT = 'port' ATTR_ENABLED = 'enabled' ENABLE_OUTPUT_SCHEMA = MEDIA_PLAYER_SCHEMA.extend({ vol.Required(ATTR_PORT): cv.string, vol.Required(ATTR_ENABLED): cv.boolean }) def setup_platform(hass, config, add_devices, discovery_info=None): """Set up the Yamaha platform.""" import rxv # Keep track of configured receivers so that we don't end up # discovering a receiver dynamically that we have static config # for. Map each device from its unique_id to an instance since # YamahaDevice is not hashable (thus not possible to add to a set). if hass.data.get(DATA_YAMAHA) is None: hass.data[DATA_YAMAHA] = {} name = config.get(CONF_NAME) host = config.get(CONF_HOST) source_ignore = config.get(CONF_SOURCE_IGNORE) source_names = config.get(CONF_SOURCE_NAMES) zone_ignore = config.get(CONF_ZONE_IGNORE) zone_names = config.get(CONF_ZONE_NAMES) if discovery_info is not None: name = discovery_info.get('name') model = discovery_info.get('model_name') ctrl_url = discovery_info.get('control_url') desc_url = discovery_info.get('description_url') receivers = rxv.RXV( ctrl_url, model_name=model, friendly_name=name, unit_desc_url=desc_url).zone_controllers() _LOGGER.info("Receivers: %s", receivers) # when we are dynamically discovered config is empty zone_ignore = [] elif host is None: receivers = [] for recv in rxv.find(): receivers.extend(recv.zone_controllers()) else: ctrl_url = "http://{}:80/YamahaRemoteControl/ctrl".format(host) receivers = rxv.RXV(ctrl_url, name).zone_controllers() devices = [] for receiver in receivers: if receiver.zone in zone_ignore: continue device = YamahaDevice(name, receiver, source_ignore, source_names, zone_names) # Only add device if it's not already added if device.unique_id not in hass.data[DATA_YAMAHA]: hass.data[DATA_YAMAHA][device.unique_id] = device devices.append(device) else: _LOGGER.debug('Ignoring duplicate receiver %s', name) def service_handler(service): """Handle for services.""" entity_ids = service.data.get(ATTR_ENTITY_ID) devices = [device for device in hass.data[DATA_YAMAHA].values() if not entity_ids or device.entity_id in entity_ids] for device in devices: port = service.data[ATTR_PORT] enabled = service.data[ATTR_ENABLED] device.enable_output(port, enabled) device.schedule_update_ha_state(True) hass.services.register( DOMAIN, SERVICE_ENABLE_OUTPUT, service_handler, schema=ENABLE_OUTPUT_SCHEMA) add_devices(devices) class YamahaDevice(MediaPlayerDevice): """Representation of a Yamaha device.""" def __init__(self, name, receiver, source_ignore, source_names, zone_names): """Initialize the Yamaha Receiver.""" self.receiver = receiver self._muted = False self._volume = 0 self._pwstate = STATE_OFF self._current_source = None self._source_list = None self._source_ignore = source_ignore or [] self._source_names = source_names or {} self._zone_names = zone_names or {} self._reverse_mapping = None self._playback_support = None self._is_playback_supported = False self._play_status = None self._name = name self._zone = receiver.zone @property def unique_id(self): """Return an unique ID.""" return '{0}:{1}'.format(self.receiver.ctrl_url, self._zone) def update(self): """Get the latest details from the device.""" self._play_status = self.receiver.play_status() if self.receiver.on: if self._play_status is None: self._pwstate = STATE_ON elif self._play_status.playing: self._pwstate = STATE_PLAYING else: self._pwstate = STATE_IDLE else: self._pwstate = STATE_OFF self._muted = self.receiver.mute self._volume = (self.receiver.volume / 100) + 1 if self.source_list is None: self.build_source_list() current_source = self.receiver.input self._current_source = self._source_names.get( current_source, current_source) self._playback_support = self.receiver.get_playback_support() self._is_playback_supported = self.receiver.is_playback_supported( self._current_source) def build_source_list(self): """Build the source list.""" self._reverse_mapping = {alias: source for source, alias in self._source_names.items()} self._source_list = sorted( self._source_names.get(source, source) for source in self.receiver.inputs() if source not in self._source_ignore) @property def name(self): """Return the name of the device.""" name = self._name zone_name = self._zone_names.get(self._zone, self._zone) if zone_name != "Main_Zone": # Zone will be one of Main_Zone, Zone_2, Zone_3 name += " " + zone_name.replace('_', ' ') return name @property def state(self): """Return the state of the device.""" return self._pwstate @property def volume_level(self): """Volume level of the media player (0..1).""" return self._volume @property def is_volume_muted(self): """Boolean if volume is currently muted.""" return self._muted @property def source(self): """Return the current input source.""" return self._current_source @property def source_list(self): """List of available input sources.""" return self._source_list @property def supported_features(self): """Flag media player features that are supported.""" supported_features = SUPPORT_YAMAHA supports = self._playback_support mapping = {'play': (SUPPORT_PLAY | SUPPORT_PLAY_MEDIA), 'pause': SUPPORT_PAUSE, 'stop': SUPPORT_STOP, 'skip_f': SUPPORT_NEXT_TRACK, 'skip_r': SUPPORT_PREVIOUS_TRACK} for attr, feature in mapping.items(): if getattr(supports, attr, False): supported_features |= feature return supported_features def turn_off(self): """Turn off media player.""" self.receiver.on = False def set_volume_level(self, volume): """Set volume level, range 0..1.""" receiver_vol = 100 - (volume * 100) negative_receiver_vol = -receiver_vol self.receiver.volume = negative_receiver_vol def mute_volume(self, mute): """Mute (true) or unmute (false) media player.""" self.receiver.mute = mute def turn_on(self): """Turn the media player on.""" self.receiver.on = True self._volume = (self.receiver.volume / 100) + 1 def media_play(self): """Send play command.""" self._call_playback_function(self.receiver.play, "play") def media_pause(self): """Send pause command.""" self._call_playback_function(self.receiver.pause, "pause") def media_stop(self): """Send stop command.""" self._call_playback_function(self.receiver.stop, "stop") def media_previous_track(self): """Send previous track command.""" self._call_playback_function(self.receiver.previous, "previous track") def media_next_track(self): """Send next track command.""" self._call_playback_function(self.receiver.next, "next track") def _call_playback_function(self, function, function_text): import rxv try: function() except rxv.exceptions.ResponseException: _LOGGER.warning( "Failed to execute %s on %s", function_text, self._name) def select_source(self, source): """Select input source.""" self.receiver.input = self._reverse_mapping.get(source, source) def play_media(self, media_type, media_id, **kwargs): """Play media from an ID. This exposes a pass through for various input sources in the Yamaha to direct play certain kinds of media. media_type is treated as the input type that we are setting, and media id is specific to it. For the NET RADIO mediatype the format for ``media_id`` is a "path" in your vtuner hierarchy. For instance: ``Bookmarks>Internet>Radio Paradise``. The separators are ``>`` and the parts of this are navigated by name behind the scenes. There is a looping construct built into the yamaha library to do this with a fallback timeout if the vtuner service is unresponsive. NOTE: this might take a while, because the only API interface for setting the net radio station emulates button pressing and navigating through the net radio menu hiearchy. And each sub menu must be fetched by the receiver from the vtuner service. """ if media_type == "NET RADIO": self.receiver.net_radio(media_id) def enable_output(self, port, enabled): """Enable or disable an output port..""" self.receiver.enable_output(port, enabled) @property def media_artist(self): """Artist of current playing media.""" if self._play_status is not None: return self._play_status.artist @property def media_album_name(self): """Album of current playing media.""" if self._play_status is not None: return self._play_status.album @property def media_content_type(self): """Content type of current playing media.""" # Loose assumption that if playback is supported, we are playing music if self._is_playback_supported: return MEDIA_TYPE_MUSIC return None @property def media_title(self): """Artist of current playing media.""" if self._play_status is not None: song = self._play_status.song station = self._play_status.station # If both song and station is available, print both, otherwise # just the one we have. if song and station: return '{}: {}'.format(station, song) return song or station
34.943978
79
0.647375
1a4f0876e2404ab4eb5abae22c4c2ec27f4f0d12
13,209
py
Python
bson/codec_options.py
educatornum/mongo-python-driver
2cb34e4efc84445abb18c45572b2a35c4a81d3e5
[ "Apache-2.0" ]
1
2020-03-09T02:18:46.000Z
2020-03-09T02:18:46.000Z
bson/codec_options.py
educatornum/mongo-python-driver
2cb34e4efc84445abb18c45572b2a35c4a81d3e5
[ "Apache-2.0" ]
null
null
null
bson/codec_options.py
educatornum/mongo-python-driver
2cb34e4efc84445abb18c45572b2a35c4a81d3e5
[ "Apache-2.0" ]
null
null
null
# Copyright 2014-present MongoDB, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tools for specifying BSON codec options.""" import datetime from abc import abstractmethod from collections import namedtuple from bson.py3compat import ABC, abc, abstractproperty, string_type from bson.binary import (ALL_UUID_REPRESENTATIONS, PYTHON_LEGACY, UUID_REPRESENTATION_NAMES) _RAW_BSON_DOCUMENT_MARKER = 101 def _raw_document_class(document_class): """Determine if a document_class is a RawBSONDocument class.""" marker = getattr(document_class, '_type_marker', None) return marker == _RAW_BSON_DOCUMENT_MARKER class TypeEncoder(ABC): """Base class for defining type codec classes which describe how a custom type can be transformed to one of the types BSON understands. Codec classes must implement the ``python_type`` attribute, and the ``transform_python`` method to support encoding. """ @abstractproperty def python_type(self): """The Python type to be converted into something serializable.""" pass @abstractmethod def transform_python(self, value): """Convert the given Python object into something serializable.""" pass class TypeDecoder(ABC): """Base class for defining type codec classes which describe how a BSON type can be transformed to a custom type. Codec classes must implement the ``bson_type`` attribute, and the ``transform_bson`` method to support decoding. """ @abstractproperty def bson_type(self): """The BSON type to be converted into our own type.""" pass @abstractmethod def transform_bson(self, value): """Convert the given BSON value into our own type.""" pass class TypeCodec(TypeEncoder, TypeDecoder): """Base class for defining type codec classes which describe how a custom type can be transformed to/from one of the types BSON already understands, and can encode/decode. Codec classes must implement the ``python_type`` attribute, and the ``transform_python`` method to support encoding, as well as the ``bson_type`` attribute, and the ``transform_bson`` method to support decoding. """ pass class TypeRegistry(object): """Encapsulates type codecs used in encoding and / or decoding BSON, as well as the fallback encoder. Type registries cannot be modified after instantiation. ``TypeRegistry`` can be initialized with an iterable of type codecs, and a callable for the fallback encoder:: >>> from bson.codec_options import TypeRegistry >>> type_registry = TypeRegistry([Codec1, Codec2, Codec3, ...], ... fallback_encoder) :Parameters: - `type_codecs` (optional): iterable of type codec instances. If ``type_codecs`` contains multiple codecs that transform a single python or BSON type, the transformation specified by the type codec occurring last prevails. - `fallback_encoder` (optional): callable that accepts a single, unencodable python value and transforms it into a type that BSON can encode. """ def __init__(self, type_codecs=None, fallback_encoder=None): self.__type_codecs = list(type_codecs or []) self._fallback_encoder = fallback_encoder self._encoder_map = {} self._decoder_map = {} if self._fallback_encoder is not None: if not callable(fallback_encoder): raise TypeError("fallback_encoder %r is not a callable" % ( fallback_encoder)) for codec in self.__type_codecs: is_valid_codec = False if isinstance(codec, TypeEncoder): self._validate_type_encoder(codec) is_valid_codec = True self._encoder_map[codec.python_type] = codec.transform_python if isinstance(codec, TypeDecoder): is_valid_codec = True self._decoder_map[codec.bson_type] = codec.transform_bson if not is_valid_codec: raise TypeError( "Expected an instance of %s, %s, or %s, got %r instead" % ( TypeEncoder.__name__, TypeDecoder.__name__, TypeCodec.__name__, codec)) def _validate_type_encoder(self, codec): from bson import _BUILT_IN_TYPES for pytype in _BUILT_IN_TYPES: if issubclass(codec.python_type, pytype): err_msg = ("TypeEncoders cannot change how built-in types are " "encoded (encoder %s transforms type %s)" % (codec, pytype)) raise TypeError(err_msg) def __repr__(self): return ('%s(type_codecs=%r, fallback_encoder=%r)' % ( self.__class__.__name__, self.__type_codecs, self._fallback_encoder)) def __eq__(self, other): if not isinstance(other, type(self)): return NotImplemented return ((self._decoder_map == other._decoder_map) and (self._encoder_map == other._encoder_map) and (self._fallback_encoder == other._fallback_encoder)) _options_base = namedtuple( 'CodecOptions', ('document_class', 'tz_aware', 'uuid_representation', 'unicode_decode_error_handler', 'tzinfo', 'type_registry')) class CodecOptions(_options_base): """Encapsulates options used encoding and / or decoding BSON. The `document_class` option is used to define a custom type for use decoding BSON documents. Access to the underlying raw BSON bytes for a document is available using the :class:`~bson.raw_bson.RawBSONDocument` type:: >>> from bson.raw_bson import RawBSONDocument >>> from bson.codec_options import CodecOptions >>> codec_options = CodecOptions(document_class=RawBSONDocument) >>> coll = db.get_collection('test', codec_options=codec_options) >>> doc = coll.find_one() >>> doc.raw '\\x16\\x00\\x00\\x00\\x07_id\\x00[0\\x165\\x91\\x10\\xea\\x14\\xe8\\xc5\\x8b\\x93\\x00' The document class can be any type that inherits from :class:`~collections.MutableMapping`:: >>> class AttributeDict(dict): ... # A dict that supports attribute access. ... def __getattr__(self, key): ... return self[key] ... def __setattr__(self, key, value): ... self[key] = value ... >>> codec_options = CodecOptions(document_class=AttributeDict) >>> coll = db.get_collection('test', codec_options=codec_options) >>> doc = coll.find_one() >>> doc._id ObjectId('5b3016359110ea14e8c58b93') See :doc:`/examples/datetimes` for examples using the `tz_aware` and `tzinfo` options. See :class:`~bson.binary.UUIDLegacy` for examples using the `uuid_representation` option. :Parameters: - `document_class`: BSON documents returned in queries will be decoded to an instance of this class. Must be a subclass of :class:`~collections.MutableMapping`. Defaults to :class:`dict`. - `tz_aware`: If ``True``, BSON datetimes will be decoded to timezone aware instances of :class:`~datetime.datetime`. Otherwise they will be naive. Defaults to ``False``. - `uuid_representation`: The BSON representation to use when encoding and decoding instances of :class:`~uuid.UUID`. Defaults to :data:`~bson.binary.PYTHON_LEGACY`. - `unicode_decode_error_handler`: The error handler to apply when a Unicode-related error occurs during BSON decoding that would otherwise raise :exc:`UnicodeDecodeError`. Valid options include 'strict', 'replace', and 'ignore'. Defaults to 'strict'. - `tzinfo`: A :class:`~datetime.tzinfo` subclass that specifies the timezone to/from which :class:`~datetime.datetime` objects should be encoded/decoded. - `type_registry`: Instance of :class:`TypeRegistry` used to customize encoding and decoding behavior. .. warning:: Care must be taken when changing `unicode_decode_error_handler` from its default value ('strict'). The 'replace' and 'ignore' modes should not be used when documents retrieved from the server will be modified in the client application and stored back to the server. """ def __new__(cls, document_class=dict, tz_aware=False, uuid_representation=PYTHON_LEGACY, unicode_decode_error_handler="strict", tzinfo=None, type_registry=None): if not (issubclass(document_class, abc.MutableMapping) or _raw_document_class(document_class)): raise TypeError("document_class must be dict, bson.son.SON, " "bson.raw_bson.RawBSONDocument, or a " "sublass of collections.MutableMapping") if not isinstance(tz_aware, bool): raise TypeError("tz_aware must be True or False") if uuid_representation not in ALL_UUID_REPRESENTATIONS: raise ValueError("uuid_representation must be a value " "from bson.binary.ALL_UUID_REPRESENTATIONS") if not isinstance(unicode_decode_error_handler, (string_type, None)): raise ValueError("unicode_decode_error_handler must be a string " "or None") if tzinfo is not None: if not isinstance(tzinfo, datetime.tzinfo): raise TypeError( "tzinfo must be an instance of datetime.tzinfo") if not tz_aware: raise ValueError( "cannot specify tzinfo without also setting tz_aware=True") type_registry = type_registry or TypeRegistry() if not isinstance(type_registry, TypeRegistry): raise TypeError("type_registry must be an instance of TypeRegistry") return tuple.__new__( cls, (document_class, tz_aware, uuid_representation, unicode_decode_error_handler, tzinfo, type_registry)) def _arguments_repr(self): """Representation of the arguments used to create this object.""" document_class_repr = ( 'dict' if self.document_class is dict else repr(self.document_class)) uuid_rep_repr = UUID_REPRESENTATION_NAMES.get(self.uuid_representation, self.uuid_representation) return ('document_class=%s, tz_aware=%r, uuid_representation=%s, ' 'unicode_decode_error_handler=%r, tzinfo=%r, ' 'type_registry=%r' % (document_class_repr, self.tz_aware, uuid_rep_repr, self.unicode_decode_error_handler, self.tzinfo, self.type_registry)) def __repr__(self): return '%s(%s)' % (self.__class__.__name__, self._arguments_repr()) def with_options(self, **kwargs): """Make a copy of this CodecOptions, overriding some options:: >>> from bson.codec_options import DEFAULT_CODEC_OPTIONS >>> DEFAULT_CODEC_OPTIONS.tz_aware False >>> options = DEFAULT_CODEC_OPTIONS.with_options(tz_aware=True) >>> options.tz_aware True .. versionadded:: 3.5 """ return CodecOptions( kwargs.get('document_class', self.document_class), kwargs.get('tz_aware', self.tz_aware), kwargs.get('uuid_representation', self.uuid_representation), kwargs.get('unicode_decode_error_handler', self.unicode_decode_error_handler), kwargs.get('tzinfo', self.tzinfo), kwargs.get('type_registry', self.type_registry) ) DEFAULT_CODEC_OPTIONS = CodecOptions() def _parse_codec_options(options): """Parse BSON codec options.""" return CodecOptions( document_class=options.get( 'document_class', DEFAULT_CODEC_OPTIONS.document_class), tz_aware=options.get( 'tz_aware', DEFAULT_CODEC_OPTIONS.tz_aware), uuid_representation=options.get( 'uuidrepresentation', DEFAULT_CODEC_OPTIONS.uuid_representation), unicode_decode_error_handler=options.get( 'unicode_decode_error_handler', DEFAULT_CODEC_OPTIONS.unicode_decode_error_handler), tzinfo=options.get('tzinfo', DEFAULT_CODEC_OPTIONS.tzinfo), type_registry=options.get( 'type_registry', DEFAULT_CODEC_OPTIONS.type_registry))
41.149533
94
0.65304
f90e5df321138c4504824397a5f4efe2a1507724
10,081
py
Python
mysql-utilities-1.6.0/mysql/utilities/common/my_print_defaults.py
bopopescu/mysql-dbcompare
1e912fd87282be3b3bed48487e6beb0ecb1de339
[ "Apache-2.0" ]
2
2018-03-20T07:42:58.000Z
2018-03-20T07:43:49.000Z
mysql-utilities-1.6.0/mysql/utilities/common/my_print_defaults.py
bopopescu/mysql-dbcompare
1e912fd87282be3b3bed48487e6beb0ecb1de339
[ "Apache-2.0" ]
null
null
null
mysql-utilities-1.6.0/mysql/utilities/common/my_print_defaults.py
bopopescu/mysql-dbcompare
1e912fd87282be3b3bed48487e6beb0ecb1de339
[ "Apache-2.0" ]
1
2020-07-23T23:07:08.000Z
2020-07-23T23:07:08.000Z
# # Copyright (c) 2013 Oracle and/or its affiliates. All rights reserved. # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; version 2 of the License. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # """ This module provides features to read MySQL configuration files, wrapping the tool my_print_defaults. """ import optparse import os.path import re import subprocess import tempfile from mysql.utilities.common.tools import get_tool_path from mysql.utilities.exception import UtilError _MY_PRINT_DEFAULTS_TOOL = "my_print_defaults" _MYLOGIN_FILE = ".mylogin.cnf" def my_login_config_path(): """Return the default path of the mylogin file (.mylogin.cnf). """ if os.name == 'posix': # File located in $HOME for non-Windows systems return os.path.expanduser('~') else: # File located in %APPDATA%\MySQL for Windows systems return r'{0}\MySQL'.format(os.environ['APPDATA']) def my_login_config_exists(): """Check if the mylogin file (.mylogin.cnf) exists. """ my_login_fullpath = os.path.normpath(my_login_config_path() + "/" + _MYLOGIN_FILE) return os.path.isfile(my_login_fullpath) class MyDefaultsReader(object): """The MyDefaultsReader class is used to read the data stored from a MySQL configuration file. This class provide methods to read the options data stored in configurations files, using the my_print_defaults tool. To learn more about my_print_defaults see: http://dev.mysql.com/doc/en/my-print-defaults.html """ def __init__(self, options=None, find_my_print_defaults_tool=True): """Constructor options[in] dictionary of options (e.g. basedir). Note, allows options values from optparse to be passed directly to this parameter. find_my_print_defaults[in] boolean value indicating if the tool my_print_defaults should be located upon initialization of the object. """ if options is None: options = {} # _config_data is a dictionary of option groups containing a dictionary # of the options data read from the configuration file. self._config_data = {} # Options values from optparse can be directly passed, check if it is # the case and handle them correctly. if isinstance(options, optparse.Values): try: self._basedir = options.basedir # pylint: disable=E1103 except AttributeError: # if the attribute is not found, then set it to None (default). self._basedir = None try: # if the attribute is not found, then set it to 0 (default). self._verbosity = options.verbosity # pylint: disable=E1103 except AttributeError: self._verbosity = 0 else: self._basedir = options.get("basedir", None) self._verbosity = options.get("verbosity", 0) if find_my_print_defaults_tool: self.search_my_print_defaults_tool() else: self._tool_path = None @property def tool_path(self): """Sets tool_path property """ return self._tool_path def search_my_print_defaults_tool(self, search_paths=None): """Search for the tool my_print_defaults. """ if not search_paths: search_paths = [] # Set the default search paths (i.e., default location of the # .mylogin.cnf file). default_paths = [my_login_config_path()] # Extend the list of path to search with the ones specified. if search_paths: default_paths.extend(search_paths) # Search for the tool my_print_defaults. try: self._tool_path = get_tool_path(self._basedir, _MY_PRINT_DEFAULTS_TOOL, defaults_paths=default_paths, search_PATH=True) except UtilError as err: raise UtilError("Unable to locate MySQL Client tools. " "Please confirm that the path to the MySQL client " "tools are included in the PATH. Error: %s" % err.errmsg) def check_tool_version(self, major_version, minor_version): """Check the version of the my_print_defaults tool. Returns True if the version of the tool is equal or above the one that is specified, otherwise False. """ # The path to the tool must have been previously found. assert self._tool_path, ("First, the required MySQL tool must be " "found. E.g., use method " "search_my_print_defaults_tool.") # Create a temporary file to redirect stdout out_file = tempfile.TemporaryFile() if self._verbosity > 0: subprocess.call([self._tool_path, "--version"], stdout=out_file) else: # Redirect stderr to null null_file = open(os.devnull, "w+b") subprocess.call([self._tool_path, "--version"], stdout=out_file, stderr=null_file) # Read --version output out_file.seek(0) line = out_file.readline() out_file.close() # Parse the version value match = re.search(r'(?:Ver )(\d)\.(\d)', line) if match: major, minor = match.groups() if (major_version < int(major)) or \ (major_version == int(major) and minor_version <= int(minor)): return True else: return False else: raise UtilError("Unable to determine tool version - %s" % self._tool_path) def check_login_path_support(self): """Checks if the used my_print_defaults tool supports login-paths. """ # The path to the tool must have been previously found. assert self._tool_path, ("First, the required MySQL tool must be " "found. E.g., use method " "search_my_print_defaults_tool.") # Create a temporary file to redirect stdout out_file = tempfile.TemporaryFile() if self._verbosity > 0: subprocess.call([self._tool_path, "--help"], stdout=out_file) else: # Redirect stderr to null null_file = open(os.devnull, "w+b") subprocess.call([self._tool_path, "--help"], stdout=out_file, stderr=null_file) # Read --help output out_file.seek(0) help_output = out_file.read() out_file.close() # Check the existence of a "login-path" option if 'login-path' in help_output: return True else: return False def _read_group_data(self, group): """Read group options data using my_print_defaults tool. """ # The path to the tool must have been previously found. assert self._tool_path, ("First, the required MySQL tool must be " "found. E.g., use method " "search_my_print_defaults_tool.") # Group not found; use my_print_defaults to get group data. out_file = tempfile.TemporaryFile() if self._verbosity > 0: subprocess.call([self._tool_path, group], stdout=out_file) else: # Redirect stderr to null null_file = open(os.devnull, "w+b") subprocess.call([self._tool_path, group], stdout=out_file, stderr=null_file) # Read and parse group options values. out_file.seek(0) results = [] for line in out_file: # Parse option value; ignore starting "--" key_value = line[2:].split("=", 1) if len(key_value) == 2: # Handle option format: --key=value and --key= results.append((key_value[0], key_value[1].strip())) elif len(key_value) == 1: # Handle option format: --key results.append((key_value[0], True)) else: raise UtilError("Invalid option value format for " "group %s: %s" % (group, line)) out_file.close() if len(results): self._config_data[group] = dict(results) else: self._config_data[group] = None return self._config_data[group] def get_group_data(self, group): """Retrieve the data associated to the given group. """ # Returns group's data locally stored, if available. try: return self._config_data[group] except KeyError: # Otherwise, get it using my_print_defaults. return self._read_group_data(group) def get_option_value(self, group, opt_name): """Retrieve the value associated to the given opt_name in the group. """ # Get option value, if group's data is available. grp_options = self.get_group_data(group) if grp_options: return grp_options.get(opt_name, None) else: return None
38.477099
79
0.587938
d6e06f81661d07232a619729c3e4935b6c5ade3e
2,420
py
Python
FV3.py
RupakMukherjee/FiniteVolumeTensorFlow
64745990e856b4e172cc2b0b246970985adbcbdb
[ "MIT" ]
null
null
null
FV3.py
RupakMukherjee/FiniteVolumeTensorFlow
64745990e856b4e172cc2b0b246970985adbcbdb
[ "MIT" ]
null
null
null
FV3.py
RupakMukherjee/FiniteVolumeTensorFlow
64745990e856b4e172cc2b0b246970985adbcbdb
[ "MIT" ]
null
null
null
import numpy as np from matplotlib import pyplot as plt def set_params(): global xmin, xmax, c, t_end, nx, cfl, n_ghost xmin=0.0 xmax=1.0 c = 1.0 t_end = 1.0 nx = 100 cfl = 0.1 n_ghost = 3 def set_init(): global time, dx, dt, js, je, nt, x, xb, u, u_init, flux time = 0.0 dx = (xmax-xmin)/(nx) dt = cfl*dx/abs(c) js = n_ghost je = nx + n_ghost nt = int(round(t_end/dt)) if(nt*dt < t_end): nt=nt+1 x = np.linspace(xmin-(n_ghost-0.5)*dx,xmax+(n_ghost-0.5)*dx,nx+2*n_ghost) xb = np.linspace(xmin-(n_ghost-1)*dx,xmax+(n_ghost)*dx,nx+2*n_ghost) sigma = 0.05 u = np.exp(-(x-0.3)**2/(2*sigma**2)) for j in range(js,je+1): if(0.5 < x[j]): u[j] = 0.0 if((0.6 <= x[j]) and (x[j]<=0.8)): u[j]=1.0 elif(0.8<x[j]): u[j]=0.0 apply_bc(u) u_init = u.copy() flux = np.zeros_like(u) def apply_bc(u): for j in range(0,n_ghost): u[je+j]=u[js+j] u[j]=u[je-n_ghost+j] def plot_it(): plt.plot(x[js:je], u[js:je], "-+",label="density"); plt.plot(x[js:je], u_init[js:je], label="density(t=0)"); plt.xlim(0.0,1.0); plt.ylim(-0.5,1.5) plt.xlabel("x") plt.legend(prop={'size': 10}) plt.show() def advance(): global time, u, t_end, dt, u_old while (time < t_end): dt1 = min(dt, t_end - time) u_old = u.copy() f_step1(u,dt1) f_step1(u,dt1) u=3./4.*u_old + 1./4.*u f_step1(u,dt1) u=1./3.*u_old + 2./3.*u time = time + dt1 def f_step1(u,dt): global xb ubL = np.zeros_like(u) ubR = np.zeros_like(u) ubL[js-1:je] = ((1.0-1.0/6.)*u[js-1:je] -(1./4.-1./12.0)*u[js-1-1:je-1] +(1./4.+1./12.)*u[js-1+1:je+1]) ubR[js-1:je] = ((1.0-1.0/6.)*u[js-1+1:je+1] -(1./4.-1./12.0)*u[js-1+2:je+2] +(1./4.+1./12.)*u[js-1:je]) flux_common(flux, ubL, ubR) u[js:je] = u[js:je] - dt/dx*(flux[js:je] - flux[js-1:je-1]) apply_bc(u) def flux_func(ub): global c return c*ub def flux_common(flux, ubL, ubR): flux_L = flux_func(ubL) flux_R = flux_func(ubR) flux[js-1:je] = (1/2) * (flux_L[js-1:je] + flux_R[js-1:je]) \ - (np.abs(c)/2)*(ubR[js-1:je]-ubL[js-1:je]) set_params() set_init() advance() plot_it()
21.22807
77
0.489669
992aca5f808ab0d5db7f4b7a08610648ec6a3648
7,094
py
Python
ehr_prediction_modeling/eval/metrics_coordinator.py
google/ehr-predictions
811d3087ced4f92d28f98161478ff0ad6b571ad4
[ "Apache-2.0" ]
67
2021-02-19T08:01:48.000Z
2022-03-31T15:05:18.000Z
ehr_prediction_modeling/eval/metrics_coordinator.py
higuseonhye/ehr-predictions
811d3087ced4f92d28f98161478ff0ad6b571ad4
[ "Apache-2.0" ]
null
null
null
ehr_prediction_modeling/eval/metrics_coordinator.py
higuseonhye/ehr-predictions
811d3087ced4f92d28f98161478ff0ad6b571ad4
[ "Apache-2.0" ]
8
2021-06-29T10:57:57.000Z
2022-03-03T10:33:06.000Z
# coding=utf-8 # Copyright 2021 Google Health Research. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 """Coordinator for metrics of various targets in evaluation.""" import collections import os from typing import List, Mapping, Optional, Tuple, Type from absl import logging import dataclasses from ehr_prediction_modeling.eval import metrics_data import numpy as np import tensorflow.compat.v1 as tf @dataclasses.dataclass(frozen=True) class MetricsTarget(object): """Describes a target metrics will be computed for.""" target_name: str split_name: str mask_name: Optional[str] = None def to_string(self) -> str: """Returns a string description of this target.""" return (f"Target: {self.target_name}, Split: {self.split_name}, Mask: " f"{self.mask_name}") class MetricsCoordinator(object): """Base class for accumulating data used to calculate metrics.""" def __init__(self): """Initializes metrics coordinator.""" self._data_dict = {} def add_data(self, metrics_data_type: Type[metrics_data.MetricsTypes], data: Tuple[float], target_name: str, split_name: str, mask_name: Optional[str] = None): """Extends object's lists of data. Args: metrics_data_type: The subclass of MetricsData that will be used to store this data. data: A batch of data to add. Tuple should contain data listed in the order required by the relevant MetricsData add_data method. For example, For RegressionMetricsData, data should be (predictions, targets, weights). target_name: Name of the target the data descibes. split_name: Name of the split the data is from. mask_name: Name of the mask used with the data given. Raises: ValueError if the data given is found invalid by the MetricsData class. """ metrics_target = MetricsTarget(target_name, split_name, mask_name) if metrics_target not in self._data_dict: self._data_dict[metrics_target] = metrics_data_type() self._data_dict[metrics_target].add_data(*data) def _clear_data(self): """Clears any data in _data_dict.""" self._data_dict = {} def log_metrics(self, current_step: int, clear_data: bool = False) -> None: """Logs all metrics, then may clear stored metrics data. Args: current_step: Current step we are evaluating. clear_data: If true, all stored data will be cleared. """ for metrics_target, data in self._data_dict.items(): data.log_metrics(metrics_target.to_string(), current_step) if clear_data: # Clear any data after it is logged. self._clear_data() def add_batch_to_binary_metrics_data(metrics_coordinator, target_names, predictions, binary_targets, eval_mask_dict, split_name): """Adds binary tasks predictions to BinaryMetricsData objects. Args: metrics_coordinator: MetricsCoordinator, used to accumulate metrics for each target. target_names: list of str, the names of the targets in the task. predictions: array of predictions in time-major shape wnct [num_unroll, batch_size, channels, num_targets]. binary_targets: array of binary targets in time-major shape wnct [ num_unroll, batch_size, channels, num_targets]. eval_mask_dict: dict of string mask name to array, the loss masks to be used in evaluation, in time-major shape wnct [num_unroll, batch_size, channels, num_targets]. split_name: str, name of the data split this batch is from. """ num_targets = len(target_names) # Split predictions by target into a list of length num_targets. predictions_per_target = np.split( predictions, indices_or_sections=num_targets, axis=3) for mask_name, mask in eval_mask_dict.items(): positive_filter_and_mask = (mask * binary_targets).astype(bool) negative_filter_and_mask = ( mask * (np.ones_like(binary_targets) - binary_targets)).astype(bool) positive_masks_per_target = np.split( positive_filter_and_mask, indices_or_sections=num_targets, axis=3) negative_masks_per_target = np.split( negative_filter_and_mask, indices_or_sections=num_targets, axis=3) for idx, target_name in enumerate(target_names): positives = predictions_per_target[idx][positive_masks_per_target[idx]] positive_weights = np.ones_like(positives) negatives = predictions_per_target[idx][negative_masks_per_target[idx]] negative_weights = np.ones_like(negatives) metrics_coordinator.add_data( metrics_data.BinaryMetricsData, (positives, negatives, positive_weights, negative_weights), target_name, split_name, mask_name=mask_name) def add_batch_to_regression_metrics_data(metrics_coordinator, target_names, predictions, targets, eval_mask_dict, split_name): """Adds regression tasks predictions to RegressionMetricsData objects. Args: metrics_coordinator: MetricsCoordinator, used to accumulate metrics for each target. target_names: list of str, the names of the targets in the task. predictions: array of predictions in time-major shape wnct [num_unroll, batch_size, channels, num_targets]. targets: array of float targets in time-major shape wnct [ num_unroll, batch_size, channels, num_targets]. eval_mask_dict: dict of string mask name to array, the loss masks to be used in evaluation, in time-major shape wnct [num_unroll, batch_size, channels, num_targets]. split_name: str, name of the data split this batch is from. """ num_targets = len(target_names) predictions_per_target = np.split( predictions, indices_or_sections=num_targets, axis=3) target_list = np.split( targets, indices_or_sections=num_targets, axis=3) for mask_name, mask in eval_mask_dict.items(): masks_per_target = np.split( mask, indices_or_sections=num_targets, axis=3) for idx, target_name in enumerate(target_names): predictions = predictions_per_target[idx][masks_per_target[idx].astype( bool)] targets = target_list[idx][masks_per_target[idx].astype(bool)] weights = np.ones_like(predictions) metrics_coordinator.add_data( metrics_data.RegressionMetricsData, (predictions, targets, weights), target_name, split_name, mask_name=mask_name)
39.411111
80
0.708204
485e4a1231e7aa20721872c9bae63348056a91f4
10,456
py
Python
netbox/ipam/tables/ip.py
salvapinyol/netbox
c9c537a1b9b4cadb9c29579f984e1f96c2583792
[ "Apache-2.0" ]
null
null
null
netbox/ipam/tables/ip.py
salvapinyol/netbox
c9c537a1b9b4cadb9c29579f984e1f96c2583792
[ "Apache-2.0" ]
null
null
null
netbox/ipam/tables/ip.py
salvapinyol/netbox
c9c537a1b9b4cadb9c29579f984e1f96c2583792
[ "Apache-2.0" ]
null
null
null
import django_tables2 as tables from django.utils.safestring import mark_safe from django_tables2.utils import Accessor from tenancy.tables import TenantColumn from utilities.tables import ( BaseTable, BooleanColumn, ButtonsColumn, ChoiceFieldColumn, LinkedCountColumn, TagColumn, ToggleColumn, UtilizationColumn, ) from ipam.models import * __all__ = ( 'AggregateTable', 'InterfaceIPAddressTable', 'IPAddressAssignTable', 'IPAddressTable', 'IPRangeTable', 'PrefixTable', 'RIRTable', 'RoleTable', ) AVAILABLE_LABEL = mark_safe('<span class="badge bg-success">Available</span>') PREFIX_LINK = """ {% load helpers %} {% if record.depth %} <div class="record-depth"> {% for i in record.depth|as_range %} <span>•</span> {% endfor %} </div> {% endif %} <a href="{% if record.pk %}{% url 'ipam:prefix' pk=record.pk %}{% else %}{% url 'ipam:prefix_add' %}?prefix={{ record }}{% if object.vrf %}&vrf={{ object.vrf.pk }}{% endif %}{% if object.site %}&site={{ object.site.pk }}{% endif %}{% if object.tenant %}&tenant_group={{ object.tenant.group.pk }}&tenant={{ object.tenant.pk }}{% endif %}{% endif %}">{{ record.prefix }}</a> """ PREFIXFLAT_LINK = """ {% load helpers %} {% if record.pk %} <a href="{% url 'ipam:prefix' pk=record.pk %}">{{ record.prefix }}</a> {% else %} {{ record.prefix }} {% endif %} """ IPADDRESS_LINK = """ {% if record.pk %} <a href="{{ record.get_absolute_url }}">{{ record.address }}</a> {% elif perms.ipam.add_ipaddress %} <a href="{% url 'ipam:ipaddress_add' %}?address={{ record.1 }}{% if object.vrf %}&vrf={{ object.vrf.pk }}{% endif %}{% if object.tenant %}&tenant={{ object.tenant.pk }}{% endif %}" class="btn btn-sm btn-success">{% if record.0 <= 65536 %}{{ record.0 }}{% else %}Many{% endif %} IP{{ record.0|pluralize }} available</a> {% else %} {% if record.0 <= 65536 %}{{ record.0 }}{% else %}Many{% endif %} IP{{ record.0|pluralize }} available {% endif %} """ IPADDRESS_ASSIGN_LINK = """ <a href="{% url 'ipam:ipaddress_edit' pk=record.pk %}?{% if request.GET.interface %}interface={{ request.GET.interface }}{% elif request.GET.vminterface %}vminterface={{ request.GET.vminterface }}{% endif %}&return_url={{ request.GET.return_url }}">{{ record }}</a> """ VRF_LINK = """ {% if record.vrf %} <a href="{{ record.vrf.get_absolute_url }}">{{ record.vrf }}</a> {% elif object.vrf %} <a href="{{ object.vrf.get_absolute_url }}">{{ object.vrf }}</a> {% else %} Global {% endif %} """ # # RIRs # class RIRTable(BaseTable): pk = ToggleColumn() name = tables.Column( linkify=True ) is_private = BooleanColumn( verbose_name='Private' ) aggregate_count = LinkedCountColumn( viewname='ipam:aggregate_list', url_params={'rir_id': 'pk'}, verbose_name='Aggregates' ) actions = ButtonsColumn(RIR) class Meta(BaseTable.Meta): model = RIR fields = ('pk', 'name', 'slug', 'is_private', 'aggregate_count', 'description', 'actions') default_columns = ('pk', 'name', 'is_private', 'aggregate_count', 'description', 'actions') # # Aggregates # class AggregateTable(BaseTable): pk = ToggleColumn() prefix = tables.Column( linkify=True, verbose_name='Aggregate' ) tenant = TenantColumn() date_added = tables.DateColumn( format="Y-m-d", verbose_name='Added' ) child_count = tables.Column( verbose_name='Prefixes' ) utilization = UtilizationColumn( accessor='get_utilization', orderable=False ) tags = TagColumn( url_name='ipam:aggregate_list' ) class Meta(BaseTable.Meta): model = Aggregate fields = ('pk', 'prefix', 'rir', 'tenant', 'child_count', 'utilization', 'date_added', 'description', 'tags') default_columns = ('pk', 'prefix', 'rir', 'tenant', 'child_count', 'utilization', 'date_added', 'description') # # Roles # class RoleTable(BaseTable): pk = ToggleColumn() name = tables.Column( linkify=True ) prefix_count = LinkedCountColumn( viewname='ipam:prefix_list', url_params={'role_id': 'pk'}, verbose_name='Prefixes' ) vlan_count = LinkedCountColumn( viewname='ipam:vlan_list', url_params={'role_id': 'pk'}, verbose_name='VLANs' ) actions = ButtonsColumn(Role) class Meta(BaseTable.Meta): model = Role fields = ('pk', 'name', 'slug', 'prefix_count', 'vlan_count', 'description', 'weight', 'actions') default_columns = ('pk', 'name', 'prefix_count', 'vlan_count', 'description', 'actions') # # Prefixes # class PrefixUtilizationColumn(UtilizationColumn): """ Extend UtilizationColumn to allow disabling the warning & danger thresholds for prefixes marked as fully utilized. """ template_code = """ {% load helpers %} {% if record.pk and record.mark_utilized %} {% utilization_graph value warning_threshold=0 danger_threshold=0 %} {% elif record.pk %} {% utilization_graph value %} {% endif %} """ class PrefixTable(BaseTable): pk = ToggleColumn() prefix = tables.TemplateColumn( template_code=PREFIX_LINK, attrs={'td': {'class': 'text-nowrap'}} ) prefix_flat = tables.TemplateColumn( template_code=PREFIXFLAT_LINK, attrs={'td': {'class': 'text-nowrap'}}, verbose_name='Prefix (Flat)', ) depth = tables.Column( accessor=Accessor('_depth'), verbose_name='Depth' ) children = LinkedCountColumn( accessor=Accessor('_children'), viewname='ipam:prefix_list', url_params={ 'vrf_id': 'vrf_id', 'within': 'prefix', }, verbose_name='Children' ) status = ChoiceFieldColumn( default=AVAILABLE_LABEL ) vrf = tables.TemplateColumn( template_code=VRF_LINK, verbose_name='VRF' ) tenant = TenantColumn() site = tables.Column( linkify=True ) vlan = tables.Column( linkify=True, verbose_name='VLAN' ) role = tables.Column( linkify=True ) is_pool = BooleanColumn( verbose_name='Pool' ) mark_utilized = BooleanColumn( verbose_name='Marked Utilized' ) utilization = PrefixUtilizationColumn( accessor='get_utilization', orderable=False ) tags = TagColumn( url_name='ipam:prefix_list' ) class Meta(BaseTable.Meta): model = Prefix fields = ( 'pk', 'prefix', 'prefix_flat', 'status', 'children', 'vrf', 'utilization', 'tenant', 'site', 'vlan', 'role', 'is_pool', 'mark_utilized', 'description', 'tags', ) default_columns = ( 'pk', 'prefix', 'status', 'children', 'vrf', 'utilization', 'tenant', 'site', 'vlan', 'role', 'description', ) row_attrs = { 'class': lambda record: 'success' if not record.pk else '', } # # IP ranges # class IPRangeTable(BaseTable): pk = ToggleColumn() start_address = tables.Column( linkify=True ) vrf = tables.TemplateColumn( template_code=VRF_LINK, verbose_name='VRF' ) status = ChoiceFieldColumn( default=AVAILABLE_LABEL ) role = tables.Column( linkify=True ) tenant = TenantColumn() class Meta(BaseTable.Meta): model = IPRange fields = ( 'pk', 'start_address', 'end_address', 'size', 'vrf', 'status', 'role', 'tenant', 'description', ) default_columns = ( 'pk', 'start_address', 'end_address', 'size', 'vrf', 'status', 'role', 'tenant', 'description', ) row_attrs = { 'class': lambda record: 'success' if not record.pk else '', } # # IPAddresses # class IPAddressTable(BaseTable): pk = ToggleColumn() address = tables.TemplateColumn( template_code=IPADDRESS_LINK, verbose_name='IP Address' ) vrf = tables.TemplateColumn( template_code=VRF_LINK, verbose_name='VRF' ) status = ChoiceFieldColumn( default=AVAILABLE_LABEL ) role = ChoiceFieldColumn() tenant = TenantColumn() assigned_object = tables.Column( linkify=True, orderable=False, verbose_name='Interface' ) assigned_object_parent = tables.Column( accessor='assigned_object.parent_object', linkify=True, orderable=False, verbose_name='Device/VM' ) nat_inside = tables.Column( linkify=True, orderable=False, verbose_name='NAT (Inside)' ) assigned = BooleanColumn( accessor='assigned_object', linkify=True, verbose_name='Assigned' ) tags = TagColumn( url_name='ipam:ipaddress_list' ) class Meta(BaseTable.Meta): model = IPAddress fields = ( 'pk', 'address', 'vrf', 'status', 'role', 'tenant', 'nat_inside', 'assigned', 'dns_name', 'description', 'tags', ) default_columns = ( 'pk', 'address', 'vrf', 'status', 'role', 'tenant', 'assigned', 'dns_name', 'description', ) row_attrs = { 'class': lambda record: 'success' if not isinstance(record, IPAddress) else '', } class IPAddressAssignTable(BaseTable): address = tables.TemplateColumn( template_code=IPADDRESS_ASSIGN_LINK, verbose_name='IP Address' ) status = ChoiceFieldColumn() assigned_object = tables.Column( orderable=False ) class Meta(BaseTable.Meta): model = IPAddress fields = ('address', 'dns_name', 'vrf', 'status', 'role', 'tenant', 'assigned_object', 'description') orderable = False class InterfaceIPAddressTable(BaseTable): """ List IP addresses assigned to a specific Interface. """ address = tables.Column( linkify=True, verbose_name='IP Address' ) vrf = tables.TemplateColumn( template_code=VRF_LINK, verbose_name='VRF' ) status = ChoiceFieldColumn() tenant = TenantColumn() actions = ButtonsColumn( model=IPAddress ) class Meta(BaseTable.Meta): model = IPAddress fields = ('address', 'vrf', 'status', 'role', 'tenant', 'description')
28.107527
372
0.597839
7a2126241d8aac84b8e65cd834cdb92e6dc4cfeb
5,401
py
Python
tests/python/pants_test/backend/jvm/tasks/test_scalafmt.py
ghthor/pants
450de702414f87f563081ddefaefd8a554de07a3
[ "Apache-2.0" ]
null
null
null
tests/python/pants_test/backend/jvm/tasks/test_scalafmt.py
ghthor/pants
450de702414f87f563081ddefaefd8a554de07a3
[ "Apache-2.0" ]
null
null
null
tests/python/pants_test/backend/jvm/tasks/test_scalafmt.py
ghthor/pants
450de702414f87f563081ddefaefd8a554de07a3
[ "Apache-2.0" ]
null
null
null
# coding=utf-8 # Copyright 2016 Pants project contributors (see CONTRIBUTORS.md). # Licensed under the Apache License, Version 2.0 (see LICENSE). from __future__ import absolute_import, division, print_function, unicode_literals import os from textwrap import dedent from pants.backend.jvm.subsystems.scala_platform import ScalaPlatform from pants.backend.jvm.targets.junit_tests import JUnitTests from pants.backend.jvm.targets.scala_library import ScalaLibrary from pants.backend.jvm.tasks.scalafmt import ScalaFmtCheckFormat, ScalaFmtFormat from pants.base.exceptions import TaskError from pants.build_graph.build_file_aliases import BuildFileAliases from pants.build_graph.resources import Resources from pants.source.source_root import SourceRootConfig from pants_test.jvm.nailgun_task_test_base import NailgunTaskTestBase from pants_test.subsystem.subsystem_util import init_subsystem class ScalaFmtTestBase(NailgunTaskTestBase): @classmethod def alias_groups(cls): return super(ScalaFmtTestBase, cls).alias_groups().merge( BuildFileAliases(targets={'java_tests': JUnitTests, 'junit_tests': JUnitTests, 'scala_library': ScalaLibrary})) def setUp(self): super(ScalaFmtTestBase, self).setUp() init_subsystem(ScalaPlatform) init_subsystem(SourceRootConfig) self.configuration = self.create_file( relpath='build-support/scalafmt/config', contents=dedent(""" align.arrowEnumeratorGenerator = true align.openParenCallSite = false align.openParenDefnSite = false assumeStandardLibraryStripMargin = false binPack.parentConstructors = false continuationIndent.callSite = 4 continuationIndent.defnSite = 4 maxColumn = 100 newlines.sometimesBeforeColonInMethodReturnType = true spaces.afterTripleEquals = true spaces.inImportCurlyBraces = false """) ) self.test_file_contents = dedent( b""" package org.pantsbuild.badscalastyle /** * These comments are formatted incorrectly * and the parameter list is too long for one line */ case class ScalaStyle(one: String,two: String,three: String,four: String, five: String,six: String,seven: String,eight: String, nine: String) class Person(name: String,age: Int,astrologicalSign: String, shoeSize: Int, favoriteColor: java.awt.Color) { def getAge:Int={return age} def sum(longvariablename: List[String]): Int = { longvariablename.map(_.toInt).foldLeft(0)(_ + _) } } """ ) self.test_file = self.create_file( relpath='src/scala/org/pantsbuild/badscalastyle/BadScalaStyle.scala', contents=self.test_file_contents ) self.library = self.make_target(spec='src/scala/org/pantsbuild/badscalastyle', sources=['BadScalaStyle.scala'], target_type=ScalaLibrary) self.as_resources = self.make_target(spec='src/scala/org/pantsbuild/badscalastyle:as_resources', target_type=Resources, sources=['BadScalaStyle.scala'], description='Depends on the same sources as the target ' 'above, but as resources.') class ScalaFmtCheckFormatTest(ScalaFmtTestBase): @classmethod def task_type(cls): return ScalaFmtCheckFormat def test_scalafmt_fail_default_config(self): self.set_options(skip=False) context = self.context(target_roots=self.library) with self.assertRaises(TaskError): self.execute(context) def test_scalafmt_fail(self): self.set_options(skip=False, configuration=self.configuration) context = self.context(target_roots=self.library) with self.assertRaises(TaskError): self.execute(context) def test_scalafmt_disabled(self): self.set_options(skip=True) self.execute(self.context(target_roots=self.library)) def test_scalafmt_ignore_resources(self): self.set_options(skip=False, configuration=self.configuration) context = self.context(target_roots=self.as_resources) self.execute(context) class ScalaFmtFormatTest(ScalaFmtTestBase): @classmethod def task_type(cls): return ScalaFmtFormat def test_scalafmt_format_default_config(self): self.format_file_and_verify_fmt(skip=False) def test_scalafmt_format(self): self.format_file_and_verify_fmt(skip=False, configuration=self.configuration) def format_file_and_verify_fmt(self, **options): self.set_options(**options) lint_options_scope = 'sfcf' check_fmt_task_type = self.synthesize_task_subtype(ScalaFmtCheckFormat, lint_options_scope) self.set_options_for_scope(lint_options_scope, **options) # format an incorrectly formatted file. context = self.context(for_task_types=[check_fmt_task_type], target_roots=self.library) self.execute(context) with open(self.test_file, 'rb') as fp: self.assertNotEqual(self.test_file_contents, fp.read()) # verify that the lint check passes. check_fmt_workdir = os.path.join(self.pants_workdir, check_fmt_task_type.stable_name()) check_fmt_task = check_fmt_task_type(context, check_fmt_workdir) check_fmt_task.execute()
36.993151
100
0.71172
f4173f5d05b709238ff6014e3c5c9daa00214d82
16,020
py
Python
tensorflow/contrib/distributions/python/kernel_tests/shape_test.py
danielgordon10/tensorflow
395cfc42ee3c5842f5383f4049674c012998b133
[ "Apache-2.0" ]
101
2016-12-03T11:40:52.000Z
2017-12-23T02:02:03.000Z
tensorflow/contrib/distributions/python/kernel_tests/shape_test.py
danielgordon10/tensorflow
395cfc42ee3c5842f5383f4049674c012998b133
[ "Apache-2.0" ]
9
2016-12-14T03:27:46.000Z
2017-09-13T02:29:07.000Z
tensorflow/contrib/distributions/python/kernel_tests/shape_test.py
danielgordon10/tensorflow
395cfc42ee3c5842f5383f4049674c012998b133
[ "Apache-2.0" ]
47
2016-12-04T12:37:24.000Z
2018-01-14T18:13:07.000Z
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for ShapeUtil.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import tensorflow as tf from tensorflow.contrib.distributions.python.ops.shape import _DistributionShape from tensorflow.python.framework import tensor_util _empty_shape = np.array([], dtype=np.int32) def _eval(x): if hasattr(x, "__iter__"): return [x.eval() for x in x] return x.eval() def _constant(x): if hasattr(x, "__iter__"): return [tensor_util.constant_value(x) for x in x] return tensor_util.constant_value(x) class DistributionShapeTest(tf.test.TestCase): def setUp(self): self._rng = np.random.RandomState(42) def _random_sample(self, sample_shape, dtype=tf.float64): return self._rng.random_sample(sample_shape).astype(dtype.as_numpy_dtype()) def _assertNdArrayEqual(self, expected, actual): """Helper which properly compares two np.ndarray-like objects. This function checks for exact equality so is probably only suitable for integers or powers of 2. Args: expected: np.ndarray. Ground-truth value. actual: np.ndarray. Observed value. """ expected = np.asarray(expected) actual = np.asarray(actual) self.assertEqual( expected.shape, actual.shape, "Shape mismatch: expected %s, got %s." % (expected.shape, actual.shape)) actual_item = actual.flat for expected_item in expected.flat: self.assertAllEqual(expected_item, next(actual_item)) def testDistributionShapeGetNdimsStatic(self): with self.test_session(): shaper = _DistributionShape(batch_ndims=0, event_ndims=0) x = 1 self.assertEqual(0, shaper.get_sample_ndims(x).eval()) self.assertEqual(0, shaper.batch_ndims.eval()) self.assertEqual(0, shaper.event_ndims.eval()) shaper = _DistributionShape(batch_ndims=1, event_ndims=1) x = self._random_sample((1, 2, 3)) self.assertAllEqual(3, shaper.get_ndims(x).eval()) self.assertEqual(1, shaper.get_sample_ndims(x).eval()) self.assertEqual(1, shaper.batch_ndims.eval()) self.assertEqual(1, shaper.event_ndims.eval()) x += self._random_sample((1, 2, 3)) self.assertAllEqual(3, shaper.get_ndims(x).eval()) self.assertEqual(1, shaper.get_sample_ndims(x).eval()) self.assertEqual(1, shaper.batch_ndims.eval()) self.assertEqual(1, shaper.event_ndims.eval()) # Test ndims functions work, even despite unfed Tensors. y = tf.placeholder(tf.float32, shape=(1024, None, 1024)) self.assertEqual(3, shaper.get_ndims(y).eval()) self.assertEqual(1, shaper.get_sample_ndims(y).eval()) self.assertEqual(1, shaper.batch_ndims.eval()) self.assertEqual(1, shaper.event_ndims.eval()) def testDistributionShapeGetNdimsDynamic(self): with self.test_session() as sess: batch_ndims = tf.placeholder(tf.int32) event_ndims = tf.placeholder(tf.int32) shaper = _DistributionShape(batch_ndims=batch_ndims, event_ndims=event_ndims) y = tf.placeholder(tf.float32) y_value = np.ones((4, 2), dtype=y.dtype.as_numpy_dtype()) feed_dict = {y: y_value, batch_ndims: 1, event_ndims: 1} self.assertEqual(2, sess.run(shaper.get_ndims(y), feed_dict=feed_dict)) def testDistributionShapeGetDimsStatic(self): with self.test_session(): shaper = _DistributionShape(batch_ndims=0, event_ndims=0) shaper = _DistributionShape(batch_ndims=0, event_ndims=0) x = 1 self.assertAllEqual((_empty_shape, _empty_shape, _empty_shape), _constant(shaper.get_dims(x))) shaper = _DistributionShape(batch_ndims=1, event_ndims=2) x += self._random_sample((1, 1, 2, 2)) self._assertNdArrayEqual( ([0], [1], [2, 3]), _constant(shaper.get_dims(x))) x += x self._assertNdArrayEqual( ([0], [1], [2, 3]), _constant(shaper.get_dims(x))) def testDistributionShapeGetDimsDynamic(self): with self.test_session() as sess: # Works for static {batch,event}_ndims despite unfed input. shaper = _DistributionShape(batch_ndims=1, event_ndims=2) y = tf.placeholder(tf.float32, shape=(10, None, 5, 5)) self._assertNdArrayEqual([[0], [1], [2, 3]], _eval(shaper.get_dims(y))) # Works for deferred {batch,event}_ndims. batch_ndims = tf.placeholder(tf.int32) event_ndims = tf.placeholder(tf.int32) shaper = _DistributionShape(batch_ndims=batch_ndims, event_ndims=event_ndims) y = tf.placeholder(tf.float32) y_value = self._random_sample((10, 3, 5, 5), dtype=y.dtype) feed_dict = {y: y_value, batch_ndims: 1, event_ndims: 2} self._assertNdArrayEqual( ([0], [1], [2, 3]), sess.run(shaper.get_dims(y), feed_dict=feed_dict)) def testDistributionShapeGetShapeStatic(self): with self.test_session(): shaper = _DistributionShape(batch_ndims=0, event_ndims=0) self.assertAllEqual((_empty_shape, _empty_shape, _empty_shape), _constant(shaper.get_shape(1.))) self._assertNdArrayEqual(([1], _empty_shape, _empty_shape), _constant(shaper.get_shape(np.ones(1)))) self._assertNdArrayEqual(([2, 2], _empty_shape, _empty_shape), _constant(shaper.get_shape(np.ones((2, 2))))) self._assertNdArrayEqual(([3, 2, 1], _empty_shape, _empty_shape), _constant(shaper.get_shape(np.ones((3, 2, 1))))) shaper = _DistributionShape(batch_ndims=0, event_ndims=1) with self.assertRaisesRegexp(ValueError, "expected .* <= ndims"): shaper.get_shape(1.) self._assertNdArrayEqual((_empty_shape, _empty_shape, [1]), _constant(shaper.get_shape(np.ones(1)))) self._assertNdArrayEqual(([2], _empty_shape, [2]), _constant(shaper.get_shape(np.ones((2, 2))))) self._assertNdArrayEqual(([3, 2], _empty_shape, [1]), _constant(shaper.get_shape(np.ones((3, 2, 1))))) shaper = _DistributionShape(batch_ndims=1, event_ndims=0) with self.assertRaisesRegexp(ValueError, "expected .* <= ndims"): shaper.get_shape(1.) self._assertNdArrayEqual((_empty_shape, [1], _empty_shape), _constant(shaper.get_shape(np.ones(1)))) self._assertNdArrayEqual(([2], [2], _empty_shape), _constant(shaper.get_shape(np.ones((2, 2))))) self._assertNdArrayEqual(([3, 2], [1], _empty_shape), _constant(shaper.get_shape(np.ones((3, 2, 1))))) shaper = _DistributionShape(batch_ndims=1, event_ndims=1) with self.assertRaisesRegexp(ValueError, "expected .* <= ndims"): shaper.get_shape(1.) with self.assertRaisesRegexp(ValueError, "expected .* <= ndims"): shaper.get_shape(np.ones(1)) self._assertNdArrayEqual((_empty_shape, [2], [2]), _constant(shaper.get_shape(np.ones((2, 2))))) self._assertNdArrayEqual(([3], [2], [1]), _constant(shaper.get_shape(np.ones((3, 2, 1))))) def testDistributionShapeGetShapeDynamic(self): with self.test_session() as sess: # Works for static ndims despite unknown static shape. shaper = _DistributionShape(batch_ndims=1, event_ndims=1) y = tf.placeholder(tf.int32, shape=(None, None, 2)) y_value = np.ones((3, 4, 2), dtype=y.dtype.as_numpy_dtype()) self._assertNdArrayEqual( ([3], [4], [2]), sess.run(shaper.get_shape(y), feed_dict={y: y_value})) shaper = _DistributionShape(batch_ndims=0, event_ndims=1) y = tf.placeholder(tf.int32, shape=(None, None)) y_value = np.ones((3, 2), dtype=y.dtype.as_numpy_dtype()) self._assertNdArrayEqual( ([3], _empty_shape, [2]), sess.run(shaper.get_shape(y), feed_dict={y: y_value})) # Works for deferred {batch,event}_ndims. batch_ndims = tf.placeholder(tf.int32) event_ndims = tf.placeholder(tf.int32) shaper = _DistributionShape(batch_ndims=batch_ndims, event_ndims=event_ndims) y = tf.placeholder(tf.float32) y_value = self._random_sample((3, 4, 2), dtype=y.dtype) feed_dict = {y: y_value, batch_ndims: 1, event_ndims: 1} self._assertNdArrayEqual( ([3], [4], [2]), sess.run(shaper.get_shape(y), feed_dict=feed_dict)) y_value = self._random_sample((3, 2), dtype=y.dtype) feed_dict = {y: y_value, batch_ndims: 0, event_ndims: 1} self._assertNdArrayEqual( ([3], _empty_shape, [2]), sess.run(shaper.get_shape(y), feed_dict=feed_dict)) def testDistributionShapeMakeBatchReadyStatic(self): with self.test_session() as sess: x = self._random_sample((1, 2, 3)) shaper = _DistributionShape(batch_ndims=1, event_ndims=1) y, sample_shape = shaper.make_batch_of_event_sample_matrices(x) self.assertAllEqual(np.transpose(x, axes=(1, 2, 0)), y.eval()) self.assertAllEqual((1,), sample_shape.eval()) should_be_x_value = shaper.undo_make_batch_of_event_sample_matrices( y, sample_shape) self.assertAllEqual(x, should_be_x_value.eval()) shaper = _DistributionShape(batch_ndims=1, event_ndims=1) x = tf.placeholder(tf.float32) x_value = self._random_sample((3, 4, 2), dtype=x.dtype) feed_dict = {x: x_value} y, sample_shape = shaper.make_batch_of_event_sample_matrices(x) self.assertAllEqual( (3,), sess.run(sample_shape, feed_dict=feed_dict)) self.assertAllClose( np.transpose(np.reshape(x_value, (-1, 4, 2)), (1, 2, 0)), sess.run(y, feed_dict=feed_dict), rtol=1e-3) should_be_x_value = shaper.undo_make_batch_of_event_sample_matrices( y, sample_shape) self.assertAllEqual(x_value, sess.run(should_be_x_value, feed_dict=feed_dict)) shaper = _DistributionShape(batch_ndims=0, event_ndims=0) x = tf.placeholder(tf.float32) x_value = np.ones((3,), dtype=x.dtype.as_numpy_dtype()) feed_dict = {x: x_value} y, sample_shape = shaper.make_batch_of_event_sample_matrices(x) self.assertAllEqual( (3,), sess.run(sample_shape, feed_dict=feed_dict)) # The following check shows we don't need to manually set_shape in the # ShapeUtil. self.assertAllEqual((1, 1, None), y.get_shape().ndims and y.get_shape().as_list()) self.assertAllEqual( np.ones((1, 1, 3), dtype=x.dtype.as_numpy_dtype()), sess.run(y, feed_dict=feed_dict)) should_be_x_value = shaper.undo_make_batch_of_event_sample_matrices( y, sample_shape) self.assertAllEqual(x_value, sess.run(should_be_x_value, feed_dict=feed_dict)) def testDistributionShapeMakeBatchReadyDynamic(self): with self.test_session() as sess: shaper = _DistributionShape(batch_ndims=1, event_ndims=1) x = tf.placeholder(tf.float32, shape=(1, 2, 3)) x_value = self._random_sample(x.get_shape().as_list(), dtype=x.dtype) y, sample_shape = sess.run( shaper.make_batch_of_event_sample_matrices(x), feed_dict={x: x_value}) self.assertAllEqual(np.transpose(x_value, (1, 2, 0)), y) self.assertAllEqual((1,), sample_shape) feed_dict = {x: x_value} y, sample_shape = shaper.make_batch_of_event_sample_matrices(x) self.assertAllEqual( (1,), sess.run(sample_shape, feed_dict=feed_dict)) self.assertAllEqual( np.transpose(x_value, (1, 2, 0)), sess.run(y, feed_dict=feed_dict)) should_be_x_value = shaper.undo_make_batch_of_event_sample_matrices( y, sample_shape) self.assertAllEqual(x_value, sess.run(should_be_x_value, feed_dict=feed_dict)) batch_ndims = tf.placeholder(tf.int32) event_ndims = tf.placeholder(tf.int32) shaper = _DistributionShape(batch_ndims=batch_ndims, event_ndims=event_ndims) # batch_ndims = 1, event_ndims = 1. x = tf.placeholder(tf.float32) x_value = np.ones((3, 4, 2), dtype=x.dtype.as_numpy_dtype()) feed_dict = {x: x_value, batch_ndims: 1, event_ndims: 1} y, sample_shape = shaper.make_batch_of_event_sample_matrices(x) self.assertAllEqual( (3,), sess.run(sample_shape, feed_dict=feed_dict)) self.assertAllEqual( np.ones((4, 2, 3), dtype=x.dtype.as_numpy_dtype()), sess.run(y, feed_dict=feed_dict)) should_be_x_value = shaper.undo_make_batch_of_event_sample_matrices( y, sample_shape) self.assertAllEqual(x_value, sess.run(should_be_x_value, feed_dict=feed_dict)) # batch_ndims = 0, event_ndims = 0. x_value = np.ones((3,), dtype=x.dtype.as_numpy_dtype()) feed_dict = {x: x_value, batch_ndims: 0, event_ndims: 0} y, sample_shape = shaper.make_batch_of_event_sample_matrices(x) self.assertAllEqual( (3,), sess.run(sample_shape, feed_dict=feed_dict)) self.assertAllEqual( np.ones((1, 1, 3), dtype=x.dtype.as_numpy_dtype()), sess.run(y, feed_dict=feed_dict)) should_be_x_value = shaper.undo_make_batch_of_event_sample_matrices( y, sample_shape) self.assertAllEqual(x_value, sess.run(should_be_x_value, feed_dict=feed_dict)) # batch_ndims = 0, event_ndims = 1. x_value = np.ones((1, 2,), dtype=x.dtype.as_numpy_dtype()) feed_dict = {x: x_value, batch_ndims: 0, event_ndims: 1} y, sample_shape = shaper.make_batch_of_event_sample_matrices(x) self.assertAllEqual( (1,), sess.run(sample_shape, feed_dict=feed_dict)) self.assertAllEqual( np.ones((1, 2, 1), dtype=x.dtype.as_numpy_dtype()), sess.run(y, feed_dict=feed_dict)) should_be_x_value = shaper.undo_make_batch_of_event_sample_matrices( y, sample_shape) self.assertAllEqual(x_value, sess.run(should_be_x_value, feed_dict=feed_dict)) # batch_ndims = 1, event_ndims = 0. x_value = np.ones((1, 2), dtype=x.dtype.as_numpy_dtype()) feed_dict = {x: x_value, batch_ndims: 1, event_ndims: 0} y, sample_shape = shaper.make_batch_of_event_sample_matrices(x) self.assertAllEqual( (1,), sess.run(sample_shape, feed_dict=feed_dict)) self.assertAllEqual( np.ones((2, 1, 1), dtype=x.dtype.as_numpy_dtype()), sess.run(y, feed_dict=feed_dict)) should_be_x_value = shaper.undo_make_batch_of_event_sample_matrices( y, sample_shape) self.assertAllEqual(x_value, sess.run(should_be_x_value, feed_dict=feed_dict)) if __name__ == "__main__": tf.test.main()
44.010989
80
0.640762
787530f9fb6cac8866eb3f59725d22d9e52b2ade
6,330
py
Python
magenta/models/image_stylization/image_stylization_train.py
sandutsar/magenta
77ed668af96edea7c993d38973b9da342bd31e82
[ "Apache-2.0" ]
16,143
2016-05-14T04:44:54.000Z
2020-06-04T06:48:38.000Z
magenta/models/image_stylization/image_stylization_train.py
sandutsar/magenta
77ed668af96edea7c993d38973b9da342bd31e82
[ "Apache-2.0" ]
1,076
2016-05-19T14:13:43.000Z
2020-06-04T16:36:51.000Z
magenta/models/image_stylization/image_stylization_train.py
sandutsar/magenta
77ed668af96edea7c993d38973b9da342bd31e82
[ "Apache-2.0" ]
3,584
2016-05-14T05:55:19.000Z
2020-06-04T17:53:50.000Z
# Copyright 2022 The Magenta Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Trains the N-styles style transfer model.""" import ast import os from magenta.models.image_stylization import image_utils from magenta.models.image_stylization import learning from magenta.models.image_stylization import model from magenta.models.image_stylization import vgg import tensorflow.compat.v1 as tf import tf_slim as slim DEFAULT_CONTENT_WEIGHTS = '{"vgg_16/conv3": 1.0}' DEFAULT_STYLE_WEIGHTS = ('{"vgg_16/conv1": 1e-4, "vgg_16/conv2": 1e-4,' ' "vgg_16/conv3": 1e-4, "vgg_16/conv4": 1e-4}') flags = tf.app.flags flags.DEFINE_float('clip_gradient_norm', 0, 'Clip gradients to this norm') flags.DEFINE_float('learning_rate', 1e-3, 'Learning rate') flags.DEFINE_integer('batch_size', 16, 'Batch size.') flags.DEFINE_integer('image_size', 256, 'Image size.') flags.DEFINE_integer('ps_tasks', 0, 'Number of parameter servers. If 0, parameters ' 'are handled locally by the worker.') flags.DEFINE_integer('num_styles', None, 'Number of styles.') flags.DEFINE_float('alpha', 1.0, 'Width multiplier') flags.DEFINE_integer('save_summaries_secs', 15, 'Frequency at which summaries are saved, in seconds.') flags.DEFINE_integer('save_interval_secs', 15, 'Frequency at which the model is saved, in seconds.') flags.DEFINE_integer('task', 0, 'Task ID. Used when training with multiple ' 'workers to identify each worker.') flags.DEFINE_integer('train_steps', 40000, 'Number of training steps.') flags.DEFINE_string('content_weights', DEFAULT_CONTENT_WEIGHTS, 'Content weights') flags.DEFINE_string('master', '', 'Name of the TensorFlow master to use.') flags.DEFINE_string('style_coefficients', None, 'Scales the style weights conditioned on the style image.') flags.DEFINE_string('style_dataset_file', None, 'Style dataset file.') flags.DEFINE_string('style_weights', DEFAULT_STYLE_WEIGHTS, 'Style weights') flags.DEFINE_string('train_dir', None, 'Directory for checkpoints and summaries.') FLAGS = flags.FLAGS def main(unused_argv=None): with tf.Graph().as_default(): # Force all input processing onto CPU in order to reserve the GPU for the # forward inference and back-propagation. device = '/cpu:0' if not FLAGS.ps_tasks else '/job:worker/cpu:0' with tf.device(tf.train.replica_device_setter(FLAGS.ps_tasks, worker_device=device)): inputs, _ = image_utils.imagenet_inputs(FLAGS.batch_size, FLAGS.image_size) # Load style images and select one at random (for each graph execution, a # new random selection occurs) style_images, style_labels, \ style_gram_matrices = image_utils.style_image_inputs( os.path.expanduser(FLAGS.style_dataset_file), batch_size=FLAGS.batch_size, image_size=FLAGS.image_size, square_crop=True, shuffle=True) with tf.device(tf.train.replica_device_setter(FLAGS.ps_tasks)): # Process style and weight flags num_styles = FLAGS.num_styles if FLAGS.style_coefficients is None: style_coefficients = [1.0 for _ in range(num_styles)] else: style_coefficients = ast.literal_eval(FLAGS.style_coefficients) if len(style_coefficients) != num_styles: raise ValueError( 'number of style coefficients differs from number of styles') content_weights = ast.literal_eval(FLAGS.content_weights) style_weights = ast.literal_eval(FLAGS.style_weights) # Rescale style weights dynamically based on the current style image style_coefficient = tf.gather( tf.constant(style_coefficients), style_labels) style_weights = dict((key, style_coefficient * style_weights[key]) for key in style_weights) # Define the model stylized_inputs = model.transform( inputs, alpha=FLAGS.alpha, normalizer_params={ 'labels': style_labels, 'num_categories': num_styles, 'center': True, 'scale': True }) # Compute losses. total_loss, loss_dict = learning.total_loss( inputs, stylized_inputs, style_gram_matrices, content_weights, style_weights) for key, value in loss_dict.items(): tf.summary.scalar(key, value) # Adding Image summaries to the tensorboard. tf.summary.image('image/0_inputs', inputs, 3) tf.summary.image('image/1_styles', style_images, 3) tf.summary.image('image/2_styled_inputs', stylized_inputs, 3) # Set up training optimizer = tf.train.AdamOptimizer(FLAGS.learning_rate) train_op = slim.learning.create_train_op( total_loss, optimizer, clip_gradient_norm=FLAGS.clip_gradient_norm, summarize_gradients=False) # Function to restore VGG16 parameters. init_fn_vgg = slim.assign_from_checkpoint_fn(vgg.checkpoint_file(), slim.get_variables('vgg_16')) # Run training slim.learning.train( train_op=train_op, logdir=os.path.expanduser(FLAGS.train_dir), master=FLAGS.master, is_chief=FLAGS.task == 0, number_of_steps=FLAGS.train_steps, init_fn=init_fn_vgg, save_summaries_secs=FLAGS.save_summaries_secs, save_interval_secs=FLAGS.save_interval_secs) def console_entry_point(): tf.disable_v2_behavior() tf.app.run(main) if __name__ == '__main__': console_entry_point()
41.92053
80
0.67109
645ecf8a5894f3c76b76ec6bd283c345481ab69d
15,247
py
Python
corehq/apps/users/bulk_download.py
omari-funzone/commcare-hq
5edb462c891fc08e51c4babd7acdf12c0006a602
[ "BSD-3-Clause" ]
null
null
null
corehq/apps/users/bulk_download.py
omari-funzone/commcare-hq
5edb462c891fc08e51c4babd7acdf12c0006a602
[ "BSD-3-Clause" ]
null
null
null
corehq/apps/users/bulk_download.py
omari-funzone/commcare-hq
5edb462c891fc08e51c4babd7acdf12c0006a602
[ "BSD-3-Clause" ]
null
null
null
import uuid from django.conf import settings from django.utils.translation import ugettext from couchexport.writers import Excel2007ExportWriter from soil import DownloadBase from soil.util import expose_download, get_download_file_path from corehq import privileges from corehq import toggles from corehq.apps.accounting.utils import domain_has_privilege from corehq.apps.custom_data_fields.models import ( PROFILE_SLUG, CustomDataFieldsDefinition, CustomDataFieldsProfile, ) from corehq.apps.groups.models import Group from corehq.apps.locations.models import SQLLocation from corehq.apps.user_importer.importer import BulkCacheBase, GroupMemoizer from corehq.apps.users.dbaccessors.all_commcare_users import ( get_commcare_users_by_filters, get_mobile_usernames_by_filters, get_all_user_rows, get_web_user_count, ) from corehq.apps.users.models import CouchUser, UserRole, Invitation from corehq.util.workbook_json.excel import ( alphanumeric_sort_key, flatten_json, json_to_headers, ) from couchdbkit import ResourceNotFound class LocationIdToSiteCodeCache(BulkCacheBase): def lookup(self, location_id): return SQLLocation.objects.get( domain=self.domain, # this is only for safety location_id=location_id ).site_code def build_data_headers(keys, header_prefix='data'): return json_to_headers( {header_prefix: {key: None for key in keys}} ) def get_devices(user): """ Returns a comma-separated list of IMEI numbers of the user's devices, sorted with most-recently-used first """ return ', '.join([device.device_id for device in sorted( user.devices, key=lambda d: d.last_used, reverse=True )]) def get_location_codes(location_cache, loc_id, assigned_loc_ids): location_codes = [] try: location_codes.append(location_cache.get(loc_id)) except SQLLocation.DoesNotExist: pass for location_id in assigned_loc_ids: # skip if primary location_id, as it is already added to the start of list above if location_id != loc_id: try: location_codes.append(location_cache.get(location_id)) except SQLLocation.DoesNotExist: pass return location_codes def make_mobile_user_dict(user, group_names, location_cache, domain, fields_definition): model_data = {} uncategorized_data = {} model_data, uncategorized_data = ( fields_definition.get_model_and_uncategorized(user.metadata) ) role = user.get_role(domain) profile = None if PROFILE_SLUG in user.metadata and domain_has_privilege(domain, privileges.APP_USER_PROFILES): try: profile = CustomDataFieldsProfile.objects.get(id=user.metadata[PROFILE_SLUG]) except CustomDataFieldsProfile.DoesNotExist: profile = None activity = user.reporting_metadata location_codes = get_location_codes(location_cache, user.location_id, user.assigned_location_ids) def _format_date(date): return date.strftime('%Y-%m-%d %H:%M:%S') if date else '' return { 'data': model_data, 'uncategorized_data': uncategorized_data, 'group': group_names, 'name': user.full_name, 'password': "********", # dummy display string for passwords 'phone-number': user.phone_number, 'email': user.email, 'username': user.raw_username, 'language': user.language, 'user_id': user._id, 'is_active': str(user.is_active), 'User IMEIs (read only)': get_devices(user), 'location_code': location_codes, 'role': role.name if role else '', 'domain': domain, 'user_profile': profile.name if profile else '', 'registered_on (read only)': _format_date(user.created_on), 'last_submission (read only)': _format_date(activity.last_submission_for_user.submission_date), 'last_sync (read only)': activity.last_sync_for_user.sync_date, } def get_user_role_name(domain_membership): if domain_membership.is_admin: return ugettext('Admin') else: role_name = '' if domain_membership.role_id: try: role_name = UserRole.get(domain_membership.role_id).name except ResourceNotFound: role_name = ugettext('Unknown Role') return role_name def make_web_user_dict(user, location_cache, domain): user = CouchUser.wrap_correctly(user['doc']) domain_membership = user.get_domain_membership(domain) role_name = get_user_role_name(domain_membership) location_codes = get_location_codes(location_cache, domain_membership.location_id, domain_membership.assigned_location_ids) return { 'username': user.username, 'first_name': user.first_name, 'last_name': user.last_name, 'email': user.email, 'role': role_name, 'location_code': location_codes, 'status': ugettext('Active User'), 'last_access_date (read only)': domain_membership.last_accessed, 'last_login (read only)': user.last_login, 'remove': '', } def make_invited_web_user_dict(invite, location_cache): location_codes = [] try: location_codes.append(location_cache.get(invite.supply_point)) except SQLLocation.DoesNotExist: pass return { 'username': invite.email, 'first_name': 'N/A', 'last_name': 'N/A', 'email': invite.email, 'role': invite.get_role_name(), 'location_code': location_codes, 'status': ugettext('Invited'), 'last_access_date (read only)': 'N/A', 'last_login (read only)': 'N/A', 'remove': '', } def get_user_rows(user_dicts, user_headers): for user_dict in user_dicts: row = dict(flatten_json(user_dict)) yield [row.get(header, '') for header in user_headers] def parse_mobile_users(domain, user_filters, task=None, total_count=None): from corehq.apps.users.views.mobile.custom_data_fields import UserFieldsView fields_definition = CustomDataFieldsDefinition.get_or_create( domain, UserFieldsView.field_type ) unrecognized_user_data_keys = set() user_groups_length = 0 max_location_length = 0 user_dicts = [] domains_list = [domain] is_multi_domain_download = False if 'domains' in user_filters: domains_list = user_filters['domains'] if domains_list != [domain]: is_multi_domain_download = True current_user_downloaded_count = 0 for current_domain in domains_list: location_cache = LocationIdToSiteCodeCache(current_domain) for n, user in enumerate(get_commcare_users_by_filters(current_domain, user_filters)): group_memoizer = load_memoizer(current_domain) group_names = sorted([ group_memoizer.get(id).name for id in Group.by_user_id(user.user_id, wrap=False) ], key=alphanumeric_sort_key) user_dict = make_mobile_user_dict(user, group_names, location_cache, current_domain, fields_definition) user_dicts.append(user_dict) unrecognized_user_data_keys.update(user_dict['uncategorized_data']) user_groups_length = max(user_groups_length, len(group_names)) max_location_length = max(max_location_length, len(user_dict["location_code"])) if task: DownloadBase.set_progress(task, n + current_user_downloaded_count, total_count) current_user_downloaded_count += n + 1 user_headers = [ 'username', 'password', 'name', 'phone-number', 'email', 'language', 'role', 'user_id', 'is_active', 'User IMEIs (read only)', 'registered_on (read only)', 'last_submission (read only)', 'last_sync (read only)' ] if domain_has_privilege(domain, privileges.APP_USER_PROFILES): user_headers += ['user_profile'] user_data_fields = [f.slug for f in fields_definition.get_fields(include_system=False)] user_headers.extend(build_data_headers(user_data_fields)) user_headers.extend(build_data_headers( unrecognized_user_data_keys, header_prefix='uncategorized_data' )) user_headers.extend(json_to_headers( {'group': list(range(1, user_groups_length + 1))} )) if domain_has_privilege(domain, privileges.LOCATIONS): user_headers.extend(json_to_headers( {'location_code': list(range(1, max_location_length + 1))} )) if is_multi_domain_download: user_headers += ['domain'] return user_headers, get_user_rows(user_dicts, user_headers) def parse_web_users(domain, task=None, total_count=None): user_dicts = [] max_location_length = 0 location_cache = LocationIdToSiteCodeCache(domain) for n, user in enumerate(get_all_user_rows(domain, include_web_users=True, include_mobile_users=False, include_inactive=False, include_docs=True)): user_dict = make_web_user_dict(user, location_cache, domain) user_dicts.append(user_dict) max_location_length = max(max_location_length, len(user_dict["location_code"])) if task: DownloadBase.set_progress(task, n, total_count) for m, invite in enumerate(Invitation.by_domain(domain)): user_dict = make_invited_web_user_dict(invite, location_cache) user_dicts.append(user_dict) if task: DownloadBase.set_progress(task, n + m, total_count) user_headers = [ 'username', 'first_name', 'last_name', 'email', 'role', 'last_access_date (read only)', 'last_login (read only)', 'status', 'remove' ] if domain_has_privilege(domain, privileges.LOCATIONS): user_headers.extend(json_to_headers( {'location_code': list(range(1, max_location_length + 1))} )) return user_headers, get_user_rows(user_dicts, user_headers) def parse_groups(groups): def _make_group_dict(group): return { 'id': group.get_id, 'name': group.name, 'case-sharing': group.case_sharing, 'reporting': group.reporting, 'data': group.metadata, } group_data_keys = set() group_dicts = [] sorted_groups = sorted( groups, key=lambda group: alphanumeric_sort_key(group.name) ) for group in sorted_groups: group_dicts.append(_make_group_dict(group)) group_data_keys.update(group.metadata if group.metadata else []) group_headers = ['id', 'name', 'case-sharing?', 'reporting?'] group_headers.extend(build_data_headers(group_data_keys)) def _get_group_rows(): for group_dict in group_dicts: row = dict(flatten_json(group_dict)) yield [row.get(header, '') for header in group_headers] return group_headers, _get_group_rows() def count_users_and_groups(domain, user_filters, group_memoizer): users_count = get_commcare_users_by_filters(domain, user_filters, count_only=True) groups_count = len(group_memoizer.groups) return users_count + groups_count def dump_usernames(domain, download_id, user_filters, task, owner_id): domains_list = [domain] if 'domains' in user_filters: domains_list = user_filters['domains'] # for instances of multi-domain download users_count = 0 for download_domain in domains_list: users_count += get_commcare_users_by_filters(download_domain, user_filters, count_only=True) DownloadBase.set_progress(task, 0, users_count) usernames = [] for download_domain in domains_list: usernames += get_mobile_usernames_by_filters(download_domain, user_filters) headers = [('users', [['username']])] rows = [('users', [[username] for username in usernames])] location_id = user_filters.get('location_id') location_name = "" if location_id: location = SQLLocation.active_objects.get_or_None(location_id=location_id) location_name = location.name if location else "" filename_prefix = "_".join([a for a in [domain, location_name] if bool(a)]) filename = "{}_users.xlsx".format(filename_prefix) _dump_xlsx_and_expose_download(filename, headers, rows, download_id, task, users_count, owner_id) def _dump_xlsx_and_expose_download(filename, headers, rows, download_id, task, total_count, owner_id): writer = Excel2007ExportWriter(format_as_text=True) use_transfer = settings.SHARED_DRIVE_CONF.transfer_enabled file_path = get_download_file_path(use_transfer, filename) writer.open( header_table=headers, file=file_path, ) writer.write(rows) writer.close() expose_download(use_transfer, file_path, filename, download_id, 'xlsx', owner_ids=[owner_id]) DownloadBase.set_progress(task, total_count, total_count) def load_memoizer(domain): group_memoizer = GroupMemoizer(domain=domain) # load groups manually instead of calling group_memoizer.load_all() # so that we can detect blank groups blank_groups = set() for group in Group.by_domain(domain): if group.name: group_memoizer.add_group(group) else: blank_groups.add(group) if blank_groups: raise GroupNameError(blank_groups=blank_groups) return group_memoizer def dump_users_and_groups(domain, download_id, user_filters, task, owner_id): domains_list = user_filters['domains'] users_groups_count = 0 groups = set() for current_domain in domains_list: group_memoizer = load_memoizer(current_domain) users_groups_count += count_users_and_groups(current_domain, user_filters, group_memoizer) groups.update(group_memoizer.groups) DownloadBase.set_progress(task, 0, users_groups_count) user_headers, user_rows = parse_mobile_users( domain, user_filters, task, users_groups_count, ) group_headers, group_rows = parse_groups(groups) headers = [ ('users', [user_headers]), ('groups', [group_headers]), ] rows = [ ('users', user_rows), ('groups', group_rows), ] filename = "{}_users_{}.xlsx".format(domain, uuid.uuid4().hex) _dump_xlsx_and_expose_download(filename, headers, rows, download_id, task, users_groups_count, owner_id) def dump_web_users(domain, download_id, task, owner_id): users_count = get_web_user_count(domain, include_inactive=False) DownloadBase.set_progress(task, 0, users_count) user_headers, user_rows = parse_web_users(domain, task, users_count) headers = [('users', [user_headers])] rows = [('users', user_rows)] filename = "{}_users_{}.xlsx".format(domain, uuid.uuid4().hex) _dump_xlsx_and_expose_download(filename, headers, rows, download_id, task, users_count, owner_id) class GroupNameError(Exception): def __init__(self, blank_groups): self.blank_groups = blank_groups @property def message(self): return "The following group ids have a blank name: %s." % ( ', '.join([group.get_id for group in self.blank_groups]) )
36.651442
115
0.690496
ea2c86963330133a50d012a86f2b2e6356f949e6
3,163
py
Python
Sensor_python_code/homework_and_develop/a12_sensor_read.py
Eric-IoT-2019-summer/QI_D_team
c317c9302ee843223c5d9387db3b3ad67dc78ce2
[ "MIT" ]
1
2021-03-28T15:54:13.000Z
2021-03-28T15:54:13.000Z
Sensor_python_code/homework_and_develop/a12_sensor_read.py
Eric-IoT-2019-summer/QI_D_team
c317c9302ee843223c5d9387db3b3ad67dc78ce2
[ "MIT" ]
2
2021-03-28T15:49:07.000Z
2021-05-10T03:37:02.000Z
Sensor_python_code/homework_and_develop/a12_sensor_read.py
Eric-IoT-2019-summer/QI_D_team
c317c9302ee843223c5d9387db3b3ad67dc78ce2
[ "MIT" ]
null
null
null
import time WE0, AE0 = [295,391,347,345], [282, 390, 296, 255] select_pin, Sen = [24, 25, 26, 27], [0.228, 0.399, 0.267, 0.318] n, en_bit, mode, delay= [1.18, 0.18, 0.03, 1.15], 28, 0, 1 for i in range(0, 5): pin_direction = open("/gpio/pin" + str(i + 24) + "/direction", 'w') pin_direction.write("out") pin_direction.close() def pin_mask(bit): if bit == 0: return 1 if bit == 1: return 2 if bit == 2: return 4 if bit == 3: return 8 def write_bit_to_gpio_pin(pin_num, value): if value == 1: filename = "/gpio/pin" + str(pin_num) + "/value" file = open(filename, 'w') file.write("1") file.close() #print "pin{0} is HIGH".format(pin_num) elif value == 0: filename = "/gpio/pin" + str(pin_num) + "/value" file = open(filename, 'w') file.write("0") file.close() #print "pin{0} is LOW".format(pin_num) else: return 0 def map_select_gpio_pin(bit): if bit == 0: return 24 if bit == 1: return 25 if bit == 2: return 26 if bit == 3: return 27 def mux(channel, en=True): write_bit_to_gpio_pin(en_bit, ~en) s = [0, 0, 0, 0] for i in range(0, 4): s[i] = (channel & pin_mask(i)) >> i write_bit_to_gpio_pin(map_select_gpio_pin(i), s[i]) return s def input_analog_value(): raw = int(open("/sys/bus/iio/devices/iio:device0/in_voltage0_raw").read()) scale = float(open("/sys/bus/iio/devices/iio:device0/in_voltage_scale").read()) result = raw * scale real_value = ((result - 3122.2)/1041.2) + 3 #return result return real_value def cal_temp36(ADC_value): temp = (ADC_value-0.76)/0.010 + 22 # unit => V return temp def cal_gas(WE, AE, state): for i in range(0,4): if state == i: ppb = ((WE - WE0[i]) - (n[i]*(AE - AE0[i]))) / Sen[i] return ppb def cal_pm(voltage): hppcf = 50.0 + (2433.0*voltage) + 1386.0*(voltage**2) pm = 0.518 + (0.00274*hppcf) return pm def main_process(): for i in range(0,5): #alpha_sensor mux(2*i) sn_WE = input_analog_value() mux(2*i+1) sn_AE = input_analog_value() alpha_sn = cal_gas(sn_WE, sn_AE, i) if i == 0: print "\nNO2 value is {0}".format(alpha_sn)#no2 elif i == 1: print "O3 value is {0}".format(alpha_sn)#o3 elif i == 2: print "CO value is {0}".format(alpha_sn)#CO elif i == 3: print "SO2 value is {0}".format(alpha_sn)#So2 elif i == 4: temperature = cal_temp36(sn_WE) # C8, TMP36 Sensor pm_value = cal_pm(sn_AE) # C9, PM2.5 Sensor print "Temperature value is {0}".format(temperature) time.sleep(delay) print "PM2.5 value is {0}\n".format(pm_value) print "\n" time.sleep(delay) Running = True while Running: main_process()
27.745614
84
0.516914
7889b7f2c73639b128a1ae3532293e2fbe31c47f
2,557
py
Python
bot/database.py
mawanda-jun/tnt-village-bot
f1246bf97bca369ce0a196a75ef763da74c44c17
[ "MIT" ]
null
null
null
bot/database.py
mawanda-jun/tnt-village-bot
f1246bf97bca369ce0a196a75ef763da74c44c17
[ "MIT" ]
null
null
null
bot/database.py
mawanda-jun/tnt-village-bot
f1246bf97bca369ce0a196a75ef763da74c44c17
[ "MIT" ]
null
null
null
import logging import simplesqlitewrap as ssw from bot import sql from .utils import utils logger = logging.getLogger(__name__) CATEGORIE = { 1: 'Film TV e programmi', 2: 'Musica', 3: 'E Books', 4: 'Film', 6: 'Linux', 7: 'Anime', 8: 'Cartoni', 9: 'Macintosh', 10: 'Windows Software', 11: 'Pc Game', 12: 'Playstation', 13: 'Students Releases', 14: 'Documentari', 21: 'Video Musicali', 22: 'Sport', 23: 'Teatro', 24: 'Wrestling', 25: 'Varie', 26: 'Xbox', 27: 'Immagini sfondi', 28: 'Altri Giochi', 29: 'Serie TV', 30: 'Fumetteria', 31: 'Trash', 32: 'Nintendo', 34: 'A Book', 35: 'Podc: st', 36: 'Edicola', 37: 'Mobile' } DICT_FORMATTING = { 'titolo': lambda release: utils.escape(release['titolo']), 'descrizione': lambda release: utils.escape(release['descrizione']), 'dimensione': lambda release: utils.human_readable_size(release['dimensione']), 'autore': lambda release: utils.html_escape(release['autore']), 'categoria': lambda release: CATEGORIE[release['categoria']], 'magnet': lambda release: 'magnet:?xt=urn:btih:{}'.format(release['hash']), 'forum_url': lambda release: 'http://forum.tntvillage.scambioetico.org/index.php?showtopic={}'.format(release['topic']), 'data': lambda release: release['data'], 'topic': lambda release: release['topic'], 'id': lambda release: release['id'], 'hash': lambda release: release['hash'], 'webarchive_url': lambda release: 'https://web.archive.org/web/http://forum.tntvillage.scambioetico.org/index.php?showtopic={}'.format(release['topic']), } class Database(ssw.Database): def __init__(self, filename): logger.debug('initing Database module') ssw.Database.__init__(self, filename) self._init_db() def _init_db(self): logger.debug('creating tables') self._execute(sql.CREATE_TABLE_RELEASES) def search(self, query, **kwargs): query = query.strip('%') query = '%{}%'.format(query) return self._execute(sql.SELECT_RELEASE, (query, query), fetchall=True, **kwargs) def release_by_id(self, release_id, format_release=True): release_id = int(release_id) release = self._execute(sql.SELECT_RELEASE_ID, (release_id,), fetchone=True, as_dict=True) if not format_release: return release else: return {k: DICT_FORMATTING.get(k, lambda x: x[k])(release) for k, v in DICT_FORMATTING.items()}
29.390805
157
0.62808
56a0f08f2d3f48d36de7dce577fa0e2dd11d1fad
815
py
Python
src/griddlers/cells_section.py
saroad2/griddlers
7b90b777c7a22db3511d462cefe78ada29e4512e
[ "Apache-2.0" ]
1
2021-03-31T08:44:54.000Z
2021-03-31T08:44:54.000Z
src/griddlers/cells_section.py
saroad2/griddlers
7b90b777c7a22db3511d462cefe78ada29e4512e
[ "Apache-2.0" ]
null
null
null
src/griddlers/cells_section.py
saroad2/griddlers
7b90b777c7a22db3511d462cefe78ada29e4512e
[ "Apache-2.0" ]
null
null
null
from dataclasses import dataclass, field from griddlers.cell_mark import CellMark @dataclass class CellsSection: start: int end: int mark: CellMark blocked_below: bool = field(default=False) blocked_above: bool = field(default=False) def __post_init__(self): if self.start > self.end: raise ValueError( "Cannot create section with end smaller than start " f"({self.end} < {self.start}" ) @property def length(self): return self.end - self.start + 1 @property def blocked(self): return self.blocked_below and self.blocked_above def __contains__(self, index): return self.start <= index <= self.end def __iter__(self): return iter(range(self.start, self.end + 1))
23.285714
68
0.625767
9a2f81d45c372b577249566a0bf3054f18692a29
389
py
Python
tests/admin_docs/views.py
fizista/django
16f3a6a4c7bab11644d11c2be029374e5095cb56
[ "BSD-3-Clause" ]
2
2016-07-23T18:08:37.000Z
2016-07-24T09:54:34.000Z
tests/admin_docs/views.py
fizista/django
16f3a6a4c7bab11644d11c2be029374e5095cb56
[ "BSD-3-Clause" ]
null
null
null
tests/admin_docs/views.py
fizista/django
16f3a6a4c7bab11644d11c2be029374e5095cb56
[ "BSD-3-Clause" ]
1
2020-10-01T08:23:34.000Z
2020-10-01T08:23:34.000Z
from django.http import HttpResponse from django.utils.decorators import decorator_from_middleware from django.views.generic import View from django.contrib.admindocs.middleware import XViewMiddleware xview_dec = decorator_from_middleware(XViewMiddleware) def xview(request): return HttpResponse() class XViewClass(View): def get(self, request): return HttpResponse()
24.3125
63
0.804627
e836d3af16e1f7a2ffe47c2f96d05b2bcc450457
16
py
Python
metrics/__init__.py
ElementAI/wise_ils
f0897b4aae042c2085eeb13b38c2a26b43cb8eaf
[ "Apache-2.0" ]
24
2019-08-08T22:00:14.000Z
2021-01-28T01:45:51.000Z
metrics/__init__.py
JaringAu/wise_ils
4e8bca05d834a80a5aff5e7c6e84dd3a283b399b
[ "Apache-2.0" ]
6
2019-08-12T03:05:23.000Z
2020-07-27T21:26:12.000Z
metrics/__init__.py
JaringAu/wise_ils
4e8bca05d834a80a5aff5e7c6e84dd3a283b399b
[ "Apache-2.0" ]
8
2019-08-08T22:15:02.000Z
2021-01-28T01:45:52.000Z
from . import ap
16
16
0.75
c5693d0e05dc66524803afad5039c32f95313edd
5,994
py
Python
examples/characterization/active-reset/configuration.py
qua-platform/qua-libs
805a3b1a69980b939b370b3ba09434bc26dc45ec
[ "BSD-3-Clause" ]
21
2021-05-21T08:23:34.000Z
2022-03-25T11:30:55.000Z
examples/characterization/active-reset/configuration.py
qua-platform/qua-libs
805a3b1a69980b939b370b3ba09434bc26dc45ec
[ "BSD-3-Clause" ]
9
2021-05-13T19:56:00.000Z
2021-12-21T05:11:04.000Z
examples/characterization/active-reset/configuration.py
qua-platform/qua-libs
805a3b1a69980b939b370b3ba09434bc26dc45ec
[ "BSD-3-Clause" ]
2
2021-06-21T10:56:40.000Z
2021-12-19T14:21:33.000Z
import numpy as np ###################### # AUXILIARY FUNCTIONS: ###################### def gauss(amplitude, mu, sigma, length): t = np.linspace(-length / 2, length / 2, length) gauss_wave = amplitude * np.exp(-((t - mu) ** 2) / (2 * sigma ** 2)) return [float(x) for x in gauss_wave] def IQ_imbalance(g, phi): c = np.cos(phi) s = np.sin(phi) N = 1 / ((1 - g ** 2) * (2 * c ** 2 - 1)) return [float(N * x) for x in [(1 - g) * c, (1 + g) * s, (1 - g) * s, (1 + g) * c]] ################ # CONFIGURATION: ################ long_readout_len = 3600 readout_len = 400 qubit_IF = 50e6 rr_IF = 50e6 qubit_LO = 6.345e9 rr_LO = 4.755e9 config = { "version": 1, "controllers": { "con1": { "type": "opx1", "analog_outputs": { 1: {"offset": 0.0}, # qubit I 2: {"offset": 0.0}, # qubit Q 3: {"offset": 0.0}, # RR I 4: {"offset": 0.0}, # RR Q }, "digital_outputs": {}, "analog_inputs": {1: {"offset": 0.0}}, } }, "elements": { "qubit": { "mixInputs": { "I": ("con1", 1), "Q": ("con1", 2), "lo_frequency": qubit_LO, "mixer": "mixer_qubit", }, "intermediate_frequency": qubit_IF, "operations": { "CW": "CW", "saturation": "saturation_pulse", "gaussian": "gaussian_pulse", "pi": "pi_pulse", "pi2": "pi2_pulse", "minus_pi2": "minus_pi2_pulse", }, }, "rr": { "mixInputs": { "I": ("con1", 3), "Q": ("con1", 4), "lo_frequency": rr_LO, "mixer": "mixer_RR", }, "intermediate_frequency": rr_IF, "operations": { "CW": "CW", "long_readout": "long_readout_pulse", "readout": "readout_pulse", }, "outputs": {"out1": ("con1", 1)}, "time_of_flight": 28, "smearing": 0, }, }, "pulses": { "CW": { "operation": "control", "length": 60000, "waveforms": {"I": "const_wf", "Q": "zero_wf"}, }, "saturation_pulse": { "operation": "control", "length": 20000, # several T1s "waveforms": {"I": "saturation_wf", "Q": "zero_wf"}, }, "gaussian_pulse": { "operation": "control", "length": 60, "waveforms": {"I": "gauss_wf", "Q": "zero_wf"}, }, "pi_pulse": { "operation": "control", "length": 60, "waveforms": {"I": "pi_wf", "Q": "zero_wf"}, }, "pi2_pulse": { "operation": "control", "length": 60, "waveforms": {"I": "pi2_wf", "Q": "zero_wf"}, }, "minus_pi2_pulse": { "operation": "control", "length": 60, "waveforms": {"I": "minus_pi2_wf", "Q": "zero_wf"}, }, "long_readout_pulse": { "operation": "measurement", "length": long_readout_len, "waveforms": {"I": "long_readout_wf", "Q": "zero_wf"}, "integration_weights": { "long_integW1": "long_integW1", "long_integW2": "long_integW2", }, "digital_marker": "ON", }, "readout_pulse": { "operation": "measurement", "length": readout_len, "waveforms": {"I": "readout_wf", "Q": "zero_wf"}, "integration_weights": { "integW1": "integW1", "integW2": "integW2", "optW1": "optW1", "optW2": "optW2", }, "digital_marker": "ON", }, }, "waveforms": { "const_wf": {"type": "constant", "sample": 0.4}, "zero_wf": {"type": "constant", "sample": 0.0}, "saturation_wf": {"type": "constant", "sample": 0.211}, "gauss_wf": {"type": "arbitrary", "samples": gauss(0.4, 0.0, 6.0, 60)}, "pi_wf": {"type": "arbitrary", "samples": gauss(0.3, 0.0, 6.0, 60)}, "pi2_wf": {"type": "arbitrary", "samples": gauss(0.15, 0.0, 6.0, 60)}, "minus_pi2_wf": {"type": "arbitrary", "samples": gauss(-0.15, 0.0, 6.0, 60)}, "long_readout_wf": {"type": "constant", "sample": 0.32}, "readout_wf": {"type": "constant", "sample": 0.34}, }, "digital_waveforms": {"ON": {"samples": [(1, 0)]}}, "integration_weights": { "long_integW1": { "cosine": [1.0] * int(long_readout_len / 4), "sine": [0.0] * int(long_readout_len / 4), }, "long_integW2": { "cosine": [0.0] * int(long_readout_len / 4), "sine": [1.0] * int(long_readout_len / 4), }, "integW1": { "cosine": [1.0] * int(readout_len / 4), "sine": [0.0] * int(readout_len / 4), }, "integW2": { "cosine": [0.0] * int(readout_len / 4), "sine": [1.0] * int(readout_len / 4), }, "optW1": { "cosine": [1.0] * int(readout_len / 4), "sine": [0.0] * int(readout_len / 4), }, "optW2": { "cosine": [0.0] * int(readout_len / 4), "sine": [1.0] * int(readout_len / 4), }, }, "mixers": { "mixer_qubit": [ { "intermediate_frequency": qubit_IF, "lo_frequency": qubit_LO, "correction": IQ_imbalance(0.0, 0.0), } ], "mixer_RR": [ { "intermediate_frequency": rr_IF, "lo_frequency": rr_LO, "correction": IQ_imbalance(0.0, 0.0), } ], }, }
30.896907
87
0.412079
aa8df3c54204b59f64e82bd3007dddef5e13adb6
2,127
py
Python
models.py
tensorway/self-supervised-vision
824e9e66841f98f0b84d2f89e05f72ffd115b32b
[ "MIT" ]
null
null
null
models.py
tensorway/self-supervised-vision
824e9e66841f98f0b84d2f89e05f72ffd115b32b
[ "MIT" ]
null
null
null
models.py
tensorway/self-supervised-vision
824e9e66841f98f0b84d2f89e05f72ffd115b32b
[ "MIT" ]
null
null
null
#%% import timm import torch as th import torch from torch import nn from mini_resnet import get_mini_resnet import torch.nn.functional as F class BenchmarkModel(nn.Module): def __init__( self, projector_mlp_arch, model_name='mini_resnet20', n_classes = 10, ): ''' simple embedding based model used as a benchmark Args: - projector_mlp_arch: List[int] architecture of the mlp that will be appended to the backbone does not include the backbone last layer - model_name: string the name of the pretrained model ''' super().__init__() th.hub._validate_not_a_forked_repo=lambda a,b,c: True if 'mini_resnet' in model_name: n_layers = int(model_name.split('mini_resnet')[-1]) self.backbone = get_mini_resnet(n_layers) nfeatures = 64 else: raise Exception('select mini resnet') self.projector = MLP(net_arch=[nfeatures]+projector_mlp_arch) self.classifier = nn.Linear(nfeatures, n_classes) def embed(self, x): x = self.backbone(x) return self.projector(x) def forward(self, x): x = self.backbone(x) x = self.classifier(x) return th.softmax(x, dim=-1) class MLP(nn.Module): ''' accepts layer sizes and creates a MLP model out of it Args: net_arch: list of integers denoting layer sizes (input, hidden0, hidden1, ... hiddenn, out) ''' def __init__(self, net_arch, last_activation= lambda x:x): super().__init__() self.layers = nn.ModuleList([nn.Linear(a, b) for a, b in zip(net_arch[:-1], net_arch[1:])]) self.last_activation = last_activation def forward(self, x): h = x for lay in self.layers[:-1]: h = F.relu(lay(h)) h = self.layers[-1](h) return h # %% if __name__ == '__main__': model = BenchmarkModel([1000, 1000], 'mini_resnet20') batch = th.rand(3, 3, 32, 32) print(model(batch).shape) print(model(batch)) # %%
28.743243
99
0.598025
71f54a048a9fda118bfd535a9cd0ccad55d7dc00
6,696
py
Python
regulations/tests/layers_appliers_test.py
navigo/regulations-site
910c24e46f4e921210a40da452dff69feae692d4
[ "CC0-1.0" ]
18
2016-09-22T05:05:16.000Z
2021-07-28T18:13:48.000Z
regulations/tests/layers_appliers_test.py
navigo/regulations-site
910c24e46f4e921210a40da452dff69feae692d4
[ "CC0-1.0" ]
260
2016-04-05T22:06:10.000Z
2021-01-07T22:08:15.000Z
regulations/tests/layers_appliers_test.py
navigo/regulations-site
910c24e46f4e921210a40da452dff69feae692d4
[ "CC0-1.0" ]
25
2016-04-06T03:26:42.000Z
2020-10-19T16:49:23.000Z
from unittest import TestCase from regulations.generator.layers import layers_applier from regulations.generator.layers import location_replace class LayersApplierTest(TestCase): def test_enqueue(self): applier = layers_applier.LayersApplier() element = ('abcd', 'ABCD', []) applier.enqueue(element) priority, retrieved = applier.queue.get() self.assertEquals(priority, -4) self.assertEquals(retrieved, element) def test_list_enqueue(self): applier = layers_applier.LayersApplier() elements = [('abcd', 'ABCD', []), ('efghi', 'EFG', [12])] applier.enqueue_from_list(elements) priority, retrieved = applier.queue.get() self.assertEquals(priority, -5) self.assertEqual(elements[1], retrieved) priority, retrieved = applier.queue.get() self.assertEquals(priority, -4) self.assertEqual(elements[0], retrieved) def test_replace_all(self): applier = layers_applier.LayersApplier() applier.text = ('Prefix test <a \nhref="url" data="test">link ' '\ntest</a> postfix text') applier.replace_all('test', 'linksecondword') replaced = ('Prefix linksecondword <a \nhref="url" data="test">link ' '\nlinksecondword</a> postfix text') self.assertEquals(applier.text, replaced) def test_find_all_offsets(self): pattern = 'ABCD' text = 'The grey fox ABCD jumped over the fence ABCD' offsets = location_replace.LocationReplace.find_all_offsets(pattern, text) self.assertEquals(offsets, [(13, 17), (40, 44)]) def test_find_offsets_no_pattern(self): pattern = 'ABCD' text = 'The grey fox jumped over the fence' offsets = location_replace.LocationReplace.find_all_offsets(pattern, text) self.assertEquals(offsets, []) def test_replace_at(self): text = 'The grey fox ABCD jumped ABCD over the fence ABCD' applier = layers_applier.LayersApplier() applier.text = text applier.replace_at('ABCD', '<a>ABCD</a>', [0, 2]) self.assertEquals( applier.text, 'The grey fox <a>ABCD</a> jumped ABCD over the fence <a>ABCD</a>') def test_update_offsets(self): lr = location_replace.LocationReplace() lr.offset_starter = 5 pattern = 'ABCD' text = ('The grey <a href="link">ABCD</a> jumped over the ABCD fence ' 'on a ABCD day') lr.update_offsets(pattern, text) self.assertEqual(lr.offset_starter, 5) self.assertEqual(lr.offset_counters, [5, 6, 7]) self.assertEqual(list(lr.offsets.keys()), [5, 6, 7]) self.assertEqual(lr.offsets[5], (24, 28)) def test_update_offset_starter(self): lr = location_replace.LocationReplace() lr.offset_counters = [5, 6, 7] lr.update_offset_starter() self.assertEqual(lr.offset_starter, 8) def test_replace_at_case_sensitive(self): original = 'state' replacement = '<a href="link_url">state</a>' locations = [0, 1, 2] applier = layers_applier.LayersApplier() applier.text = "<em>(6)</em> <dfn> Under state law. </dfn> State law." applier.replace_at(original, replacement, locations) result = (u"<em>(6)</em> <dfn> Under <a href=\"link_url\">state</a> " u"law. </dfn> State law.") self.assertEquals(applier.text, result) def test_replace_no_original(self): original = 'federal' replacement = '<a href="link_url">state</a>' locations = [0, 1, 2] applier = layers_applier.LayersApplier() applier.text = "<em>(6)</em> <dfn> Under state law. </dfn> State law." applier.replace_at(original, replacement, locations) result = "<em>(6)</em> <dfn> Under state law. </dfn> State law." self.assertEquals(applier.text, result) def test_replace_skip_location(self): original = 'state' replacement = '<a href="link_url">state</a>' locations = [0, 2] applier = layers_applier.LayersApplier() applier.text = ("<em>(6)</em> <dfn> Under state law. </dfn> state " "law. <dfn> state liability. </dfn>") applier.replace_at(original, replacement, locations) result = ("<em>(6)</em> <dfn> Under <a href=\"link_url\">state</a> " "law. </dfn> state law. <dfn> <a href=\"link_url\">state" "</a> liability. </dfn>") self.assertEquals(applier.text, result) def test_apply_layers(self): # Tests same as above but from one level out. original = 'state' replacement = '<a href="link_url">state</a>' locations = [0, 2] text = ("<em>(6)</em> <dfn> Under state law. </dfn> state " "law. <dfn> state liability. </dfn>") applier = layers_applier.LayersApplier() applier.enqueue((original, replacement, locations)) applier.apply_layers(text) result = ("<em>(6)</em> <dfn> Under <a href=\"link_url\">state</a> " "law. </dfn> state law. <dfn> <a href=\"link_url\">state" "</a> liability. </dfn>") self.assertEquals(applier.text, result) def test_apply_layers_escaping(self): # See https://github.com/eregs/regulations-site/issues/514 and # https://github.com/fecgov/fec-eregs/issues/382 # # It appears that we had a holdover step of unescaping that, thanks to # looser interpretations in Python 3.6 (specifically, ``&sec`` was # treated as a valid escape even without a trailing semicolon) started # breaking links that have a ``&section`` parameter. original = 'state' replacement = '<a href="link_url">state</a>' locations = [0, 2] text = ("<em>(6)</em> <dfn> Under state law. </dfn> state " "law. <dfn> state liability. </dfn>" "<a href='http://example.org?one=1&section2'>test</a>") applier = layers_applier.LayersApplier() applier.enqueue((original, replacement, locations)) applier.apply_layers(text) result = ("<em>(6)</em> <dfn> Under <a href=\"link_url\">state</a> " "law. </dfn> state law. <dfn> <a href=\"link_url\">state" "</a> liability. </dfn>" "<a href='http://example.org?one=1&section2'>test</a>") self.assertEquals(applier.text, result)
40.095808
78
0.586619
26eb9412f376c37bcb5585de67cd77a21f42d589
14,038
py
Python
mopidy/mpd/protocol/current_playlist.py
stekern/mopidy
94509cf70f2bd35ebb13e746dde135bfbe35ce0e
[ "Apache-2.0" ]
null
null
null
mopidy/mpd/protocol/current_playlist.py
stekern/mopidy
94509cf70f2bd35ebb13e746dde135bfbe35ce0e
[ "Apache-2.0" ]
null
null
null
mopidy/mpd/protocol/current_playlist.py
stekern/mopidy
94509cf70f2bd35ebb13e746dde135bfbe35ce0e
[ "Apache-2.0" ]
null
null
null
from __future__ import absolute_import, unicode_literals from mopidy.compat import urllib from mopidy.internal import deprecation from mopidy.mpd import exceptions, protocol, translator @protocol.commands.add('add') def add(context, uri): """ *musicpd.org, current playlist section:* ``add {URI}`` Adds the file ``URI`` to the playlist (directories add recursively). ``URI`` can also be a single file. *Clarifications:* - ``add ""`` should add all tracks in the library to the current playlist. """ if not uri.strip('/'): return # If we have an URI just try and add it directly without bothering with # jumping through browse... if urllib.parse.urlparse(uri).scheme != '': if context.core.tracklist.add(uris=[uri]).get(): return try: uris = [] for path, ref in context.browse(uri, lookup=False): if ref: uris.append(ref.uri) except exceptions.MpdNoExistError as e: e.message = 'directory or file not found' raise if not uris: raise exceptions.MpdNoExistError('directory or file not found') context.core.tracklist.add(uris=uris).get() @protocol.commands.add('addid', songpos=protocol.UINT) def addid(context, uri, songpos=None): """ *musicpd.org, current playlist section:* ``addid {URI} [POSITION]`` Adds a song to the playlist (non-recursive) and returns the song id. ``URI`` is always a single file or URL. For example:: addid "foo.mp3" Id: 999 OK *Clarifications:* - ``addid ""`` should return an error. """ if not uri: raise exceptions.MpdNoExistError('No such song') length = context.core.tracklist.get_length() if songpos is not None and songpos > length.get(): raise exceptions.MpdArgError('Bad song index') tl_tracks = context.core.tracklist.add( uris=[uri], at_position=songpos).get() if not tl_tracks: raise exceptions.MpdNoExistError('No such song') return ('Id', tl_tracks[0].tlid) @protocol.commands.add('delete', songrange=protocol.RANGE) def delete(context, songrange): """ *musicpd.org, current playlist section:* ``delete [{POS} | {START:END}]`` Deletes a song from the playlist. """ start = songrange.start end = songrange.stop if end is None: end = context.core.tracklist.get_length().get() tl_tracks = context.core.tracklist.slice(start, end).get() if not tl_tracks: raise exceptions.MpdArgError('Bad song index', command='delete') for (tlid, _) in tl_tracks: context.core.tracklist.remove({'tlid': [tlid]}) @protocol.commands.add('deleteid', tlid=protocol.UINT) def deleteid(context, tlid): """ *musicpd.org, current playlist section:* ``deleteid {SONGID}`` Deletes the song ``SONGID`` from the playlist """ tl_tracks = context.core.tracklist.remove({'tlid': [tlid]}).get() if not tl_tracks: raise exceptions.MpdNoExistError('No such song') @protocol.commands.add('clear') def clear(context): """ *musicpd.org, current playlist section:* ``clear`` Clears the current playlist. """ context.core.tracklist.clear() @protocol.commands.add('move', songrange=protocol.RANGE, to=protocol.UINT) def move_range(context, songrange, to): """ *musicpd.org, current playlist section:* ``move [{FROM} | {START:END}] {TO}`` Moves the song at ``FROM`` or range of songs at ``START:END`` to ``TO`` in the playlist. """ start = songrange.start end = songrange.stop if end is None: end = context.core.tracklist.get_length().get() context.core.tracklist.move(start, end, to) @protocol.commands.add('moveid', tlid=protocol.UINT, to=protocol.UINT) def moveid(context, tlid, to): """ *musicpd.org, current playlist section:* ``moveid {FROM} {TO}`` Moves the song with ``FROM`` (songid) to ``TO`` (playlist index) in the playlist. If ``TO`` is negative, it is relative to the current song in the playlist (if there is one). """ tl_tracks = context.core.tracklist.filter({'tlid': [tlid]}).get() if not tl_tracks: raise exceptions.MpdNoExistError('No such song') position = context.core.tracklist.index(tl_tracks[0]).get() context.core.tracklist.move(position, position + 1, to) @protocol.commands.add('playlist') def playlist(context): """ *musicpd.org, current playlist section:* ``playlist`` Displays the current playlist. .. note:: Do not use this, instead use ``playlistinfo``. """ deprecation.warn('mpd.protocol.current_playlist.playlist') return playlistinfo(context) @protocol.commands.add('playlistfind') def playlistfind(context, tag, needle): """ *musicpd.org, current playlist section:* ``playlistfind {TAG} {NEEDLE}`` Finds songs in the current playlist with strict matching. """ if tag == 'filename': tl_tracks = context.core.tracklist.filter({'uri': [needle]}).get() if not tl_tracks: return None position = context.core.tracklist.index(tl_tracks[0]).get() return translator.track_to_mpd_format(tl_tracks[0], position=position) raise exceptions.MpdNotImplemented # TODO @protocol.commands.add('playlistid', tlid=protocol.UINT) def playlistid(context, tlid=None): """ *musicpd.org, current playlist section:* ``playlistid {SONGID}`` Displays a list of songs in the playlist. ``SONGID`` is optional and specifies a single song to display info for. """ if tlid is not None: tl_tracks = context.core.tracklist.filter({'tlid': [tlid]}).get() if not tl_tracks: raise exceptions.MpdNoExistError('No such song') position = context.core.tracklist.index(tl_tracks[0]).get() return translator.track_to_mpd_format(tl_tracks[0], position=position) else: return translator.tracks_to_mpd_format( context.core.tracklist.get_tl_tracks().get()) @protocol.commands.add('playlistinfo') def playlistinfo(context, parameter=None): """ *musicpd.org, current playlist section:* ``playlistinfo [[SONGPOS] | [START:END]]`` Displays a list of all songs in the playlist, or if the optional argument is given, displays information only for the song ``SONGPOS`` or the range of songs ``START:END``. *ncmpc and mpc:* - uses negative indexes, like ``playlistinfo "-1"``, to request the entire playlist """ if parameter is None or parameter == '-1': start, end = 0, None else: tracklist_slice = protocol.RANGE(parameter) start, end = tracklist_slice.start, tracklist_slice.stop tl_tracks = context.core.tracklist.get_tl_tracks().get() if start and start > len(tl_tracks): raise exceptions.MpdArgError('Bad song index') if end and end > len(tl_tracks): end = None return translator.tracks_to_mpd_format(tl_tracks, start, end) @protocol.commands.add('playlistsearch') def playlistsearch(context, tag, needle): """ *musicpd.org, current playlist section:* ``playlistsearch {TAG} {NEEDLE}`` Searches case-sensitively for partial matches in the current playlist. *GMPC:* - uses ``filename`` and ``any`` as tags """ raise exceptions.MpdNotImplemented # TODO @protocol.commands.add('plchanges', version=protocol.INT) def plchanges(context, version): """ *musicpd.org, current playlist section:* ``plchanges {VERSION}`` Displays changed songs currently in the playlist since ``VERSION``. To detect songs that were deleted at the end of the playlist, use ``playlistlength`` returned by status command. *MPDroid:* - Calls ``plchanges "-1"`` two times per second to get the entire playlist. """ # XXX Naive implementation that returns all tracks as changed tracklist_version = context.core.tracklist.get_version().get() if version < tracklist_version: return translator.tracks_to_mpd_format( context.core.tracklist.get_tl_tracks().get()) elif version == tracklist_version: # A version match could indicate this is just a metadata update, so # check for a stream ref and let the client know about the change. stream_title = context.core.playback.get_stream_title().get() if stream_title is None: return None tl_track = context.core.playback.get_current_tl_track().get() position = context.core.tracklist.index(tl_track).get() return translator.track_to_mpd_format( tl_track, position=position, stream_title=stream_title) @protocol.commands.add('plchangesposid', version=protocol.INT) def plchangesposid(context, version): """ *musicpd.org, current playlist section:* ``plchangesposid {VERSION}`` Displays changed songs currently in the playlist since ``VERSION``. This function only returns the position and the id of the changed song, not the complete metadata. This is more bandwidth efficient. To detect songs that were deleted at the end of the playlist, use ``playlistlength`` returned by status command. """ # XXX Naive implementation that returns all tracks as changed if int(version) != context.core.tracklist.get_version().get(): result = [] for (position, (tlid, _)) in enumerate( context.core.tracklist.get_tl_tracks().get()): result.append(('cpos', position)) result.append(('Id', tlid)) return result @protocol.commands.add( 'prio', priority=protocol.UINT, position=protocol.RANGE) def prio(context, priority, position): """ *musicpd.org, current playlist section:* ``prio {PRIORITY} {START:END...}`` Set the priority of the specified songs. A higher priority means that it will be played first when "random" mode is enabled. A priority is an integer between 0 and 255. The default priority of new songs is 0. """ raise exceptions.MpdNotImplemented # TODO @protocol.commands.add('prioid') def prioid(context, *args): """ *musicpd.org, current playlist section:* ``prioid {PRIORITY} {ID...}`` Same as prio, but address the songs with their id. """ raise exceptions.MpdNotImplemented # TODO @protocol.commands.add('rangeid', tlid=protocol.UINT, songrange=protocol.RANGE) def rangeid(context, tlid, songrange): """ *musicpd.org, current playlist section:* ``rangeid {ID} {START:END}`` Specifies the portion of the song that shall be played. START and END are offsets in seconds (fractional seconds allowed); both are optional. Omitting both (i.e. sending just ":") means "remove the range, play everything". A song that is currently playing cannot be manipulated this way. .. versionadded:: 0.19 New in MPD protocol version 0.19 """ raise exceptions.MpdNotImplemented # TODO @protocol.commands.add('shuffle', songrange=protocol.RANGE) def shuffle(context, songrange=None): """ *musicpd.org, current playlist section:* ``shuffle [START:END]`` Shuffles the current playlist. ``START:END`` is optional and specifies a range of songs. """ if songrange is None: start, end = None, None else: start, end = songrange.start, songrange.stop context.core.tracklist.shuffle(start, end) @protocol.commands.add('swap', songpos1=protocol.UINT, songpos2=protocol.UINT) def swap(context, songpos1, songpos2): """ *musicpd.org, current playlist section:* ``swap {SONG1} {SONG2}`` Swaps the positions of ``SONG1`` and ``SONG2``. """ if songpos2 < songpos1: songpos1, songpos2 = songpos2, songpos1 context.core.tracklist.move(songpos1, songpos1 + 1, songpos2) context.core.tracklist.move(songpos2 - 1, songpos2, songpos1) @protocol.commands.add('swapid', tlid1=protocol.UINT, tlid2=protocol.UINT) def swapid(context, tlid1, tlid2): """ *musicpd.org, current playlist section:* ``swapid {SONG1} {SONG2}`` Swaps the positions of ``SONG1`` and ``SONG2`` (both song ids). """ tl_tracks1 = context.core.tracklist.filter({'tlid': [tlid1]}).get() tl_tracks2 = context.core.tracklist.filter({'tlid': [tlid2]}).get() if not tl_tracks1 or not tl_tracks2: raise exceptions.MpdNoExistError('No such song') position1 = context.core.tracklist.index(tl_tracks1[0]).get() position2 = context.core.tracklist.index(tl_tracks2[0]).get() swap(context, position1, position2) @protocol.commands.add('addtagid', tlid=protocol.UINT) def addtagid(context, tlid, tag, value): """ *musicpd.org, current playlist section:* ``addtagid {SONGID} {TAG} {VALUE}`` Adds a tag to the specified song. Editing song tags is only possible for remote songs. This change is volatile: it may be overwritten by tags received from the server, and the data is gone when the song gets removed from the queue. .. versionadded:: 0.19 New in MPD protocol version 0.19 """ raise exceptions.MpdNotImplemented # TODO @protocol.commands.add('cleartagid', tlid=protocol.UINT) def cleartagid(context, tlid, tag): """ *musicpd.org, current playlist section:* ``cleartagid {SONGID} [TAG]`` Removes tags from the specified song. If TAG is not specified, then all tag values will be removed. Editing song tags is only possible for remote songs. .. versionadded:: 0.19 New in MPD protocol version 0.19 """ raise exceptions.MpdNotImplemented # TODO
31.057522
79
0.651375
c78072131bafa478fff617e72c364ee9f6380944
80,434
py
Python
salt/modules/state.py
waynegemmell/salt
88056db3589cccab8956c2ae4f9b733acce89461
[ "Apache-2.0" ]
9,425
2015-01-01T05:59:24.000Z
2022-03-31T20:44:05.000Z
salt/modules/state.py
waynegemmell/salt
88056db3589cccab8956c2ae4f9b733acce89461
[ "Apache-2.0" ]
33,507
2015-01-01T00:19:56.000Z
2022-03-31T23:48:20.000Z
salt/modules/state.py
waynegemmell/salt
88056db3589cccab8956c2ae4f9b733acce89461
[ "Apache-2.0" ]
5,810
2015-01-01T19:11:45.000Z
2022-03-31T02:37:20.000Z
""" Control the state system on the minion. State Caching ------------- When a highstate is called, the minion automatically caches a copy of the last high data. If you then run a highstate with cache=True it will use that cached highdata and won't hit the fileserver except for ``salt://`` links in the states themselves. """ import logging import os import shutil import sys import tarfile import tempfile import time import salt.config import salt.defaults.exitcodes import salt.payload import salt.state import salt.utils.args import salt.utils.data import salt.utils.event import salt.utils.files import salt.utils.functools import salt.utils.hashutils import salt.utils.jid import salt.utils.json import salt.utils.msgpack import salt.utils.platform import salt.utils.state import salt.utils.stringutils import salt.utils.url import salt.utils.versions from salt.exceptions import CommandExecutionError, SaltInvocationError from salt.loader import _format_cached_grains from salt.runners.state import orchestrate as _orchestrate from salt.utils.odict import OrderedDict __proxyenabled__ = ["*"] __outputter__ = { "sls": "highstate", "sls_id": "highstate", "pkg": "highstate", "top": "highstate", "single": "highstate", "highstate": "highstate", "template": "highstate", "template_str": "highstate", "apply_": "highstate", "test": "highstate", "request": "highstate", "check_request": "highstate", "run_request": "highstate", } __func_alias__ = {"apply_": "apply"} log = logging.getLogger(__name__) # Define the module's virtual name __virtualname__ = "state" def __virtual__(): """ Set the virtualname """ # Update global namespace with functions that are cloned in this module global _orchestrate _orchestrate = salt.utils.functools.namespaced_function(_orchestrate, globals()) return __virtualname__ def _filter_running(runnings): """ Filter out the result: True + no changes data """ ret = { tag: value for tag, value in runnings.items() if not value["result"] or value["changes"] } return ret def _set_retcode(ret, highstate=None): """ Set the return code based on the data back from the state system """ # Set default retcode to 0 __context__["retcode"] = salt.defaults.exitcodes.EX_OK if isinstance(ret, list): __context__["retcode"] = salt.defaults.exitcodes.EX_STATE_COMPILER_ERROR return if not __utils__["state.check_result"](ret, highstate=highstate): __context__["retcode"] = salt.defaults.exitcodes.EX_STATE_FAILURE def _get_pillar_errors(kwargs, pillar=None): """ Checks all pillars (external and internal) for errors. Return an error message, if anywhere or None. :param kwargs: dictionary of options :param pillar: external pillar :return: None or an error message """ return ( None if kwargs.get("force") else (pillar or {}).get("_errors", __pillar__.get("_errors")) or None ) def _wait(jid): """ Wait for all previously started state jobs to finish running """ if jid is None: jid = salt.utils.jid.gen_jid(__opts__) states = _prior_running_states(jid) while states: time.sleep(1) states = _prior_running_states(jid) def _snapper_pre(opts, jid): """ Create a snapper pre snapshot """ snapper_pre = None try: if not opts["test"] and __opts__.get("snapper_states"): # Run the snapper pre snapshot snapper_pre = __salt__["snapper.create_snapshot"]( config=__opts__.get("snapper_states_config", "root"), snapshot_type="pre", description="Salt State run for jid {}".format(jid), __pub_jid=jid, ) except Exception: # pylint: disable=broad-except log.error("Failed to create snapper pre snapshot for jid: %s", jid) return snapper_pre def _snapper_post(opts, jid, pre_num): """ Create the post states snapshot """ try: if not opts["test"] and __opts__.get("snapper_states") and pre_num: # Run the snapper pre snapshot __salt__["snapper.create_snapshot"]( config=__opts__.get("snapper_states_config", "root"), snapshot_type="post", pre_number=pre_num, description="Salt State run for jid {}".format(jid), __pub_jid=jid, ) except Exception: # pylint: disable=broad-except log.error("Failed to create snapper pre snapshot for jid: %s", jid) def _get_pause(jid, state_id=None): """ Return the pause information for a given jid """ pause_dir = os.path.join(__opts__["cachedir"], "state_pause") pause_path = os.path.join(pause_dir, jid) if not os.path.exists(pause_dir): try: os.makedirs(pause_dir) except OSError: # File created in the gap pass data = {} if state_id is not None: if state_id not in data: data[state_id] = {} if os.path.exists(pause_path): with salt.utils.files.fopen(pause_path, "rb") as fp_: data = salt.utils.msgpack.loads(fp_.read()) return data, pause_path def get_pauses(jid=None): """ Get a report on all of the currently paused state runs and pause run settings. Optionally send in a jid if you only desire to see a single pause data set. """ ret = {} active = __salt__["saltutil.is_running"]("state.*") pause_dir = os.path.join(__opts__["cachedir"], "state_pause") if not os.path.exists(pause_dir): return ret if jid is None: jids = os.listdir(pause_dir) elif isinstance(jid, list): jids = salt.utils.data.stringify(jid) else: jids = [str(jid)] for scan_jid in jids: is_active = False for active_data in active: if active_data["jid"] == scan_jid: is_active = True if not is_active: try: pause_path = os.path.join(pause_dir, scan_jid) os.remove(pause_path) except OSError: # Already gone pass continue data, pause_path = _get_pause(scan_jid) ret[scan_jid] = data return ret def soft_kill(jid, state_id=None): """ Set up a state run to die before executing the given state id, this instructs a running state to safely exit at a given state id. This needs to pass in the jid of the running state. If a state_id is not passed then the jid referenced will be safely exited at the beginning of the next state run. The given state id is the id got a given state execution, so given a state that looks like this: .. code-block:: yaml vim: pkg.installed: [] The state_id to pass to `soft_kill` is `vim` CLI Examples: .. code-block:: bash salt '*' state.soft_kill 20171130110407769519 salt '*' state.soft_kill 20171130110407769519 vim """ jid = str(jid) if state_id is None: state_id = "__all__" data, pause_path = _get_pause(jid, state_id) data[state_id]["kill"] = True with salt.utils.files.fopen(pause_path, "wb") as fp_: fp_.write(salt.utils.msgpack.dumps(data)) def pause(jid, state_id=None, duration=None): """ Set up a state id pause, this instructs a running state to pause at a given state id. This needs to pass in the jid of the running state and can optionally pass in a duration in seconds. If a state_id is not passed then the jid referenced will be paused at the beginning of the next state run. The given state id is the id got a given state execution, so given a state that looks like this: .. code-block:: yaml vim: pkg.installed: [] The state_id to pass to `pause` is `vim` CLI Examples: .. code-block:: bash salt '*' state.pause 20171130110407769519 salt '*' state.pause 20171130110407769519 vim salt '*' state.pause 20171130110407769519 vim 20 """ jid = str(jid) if state_id is None: state_id = "__all__" data, pause_path = _get_pause(jid, state_id) if duration: data[state_id]["duration"] = int(duration) with salt.utils.files.fopen(pause_path, "wb") as fp_: fp_.write(salt.utils.msgpack.dumps(data)) def resume(jid, state_id=None): """ Remove a pause from a jid, allowing it to continue. If the state_id is not specified then the a general pause will be resumed. The given state_id is the id got a given state execution, so given a state that looks like this: .. code-block:: yaml vim: pkg.installed: [] The state_id to pass to `rm_pause` is `vim` CLI Examples: .. code-block:: bash salt '*' state.resume 20171130110407769519 salt '*' state.resume 20171130110407769519 vim """ jid = str(jid) if state_id is None: state_id = "__all__" data, pause_path = _get_pause(jid, state_id) if state_id in data: data.pop(state_id) if state_id == "__all__": data = {} with salt.utils.files.fopen(pause_path, "wb") as fp_: fp_.write(salt.utils.msgpack.dumps(data)) def orchestrate( mods, saltenv="base", test=None, exclude=None, pillar=None, pillarenv=None ): """ .. versionadded:: 2016.11.0 Execute the orchestrate runner from a masterless minion. .. seealso:: More Orchestrate documentation * :ref:`Full Orchestrate Tutorial <orchestrate-runner>` * Docs for the salt state module :py:mod:`salt.states.saltmod` CLI Examples: .. code-block:: bash salt-call --local state.orchestrate webserver salt-call --local state.orchestrate webserver saltenv=dev test=True salt-call --local state.orchestrate webserver saltenv=dev pillarenv=aws """ return _orchestrate( mods=mods, saltenv=saltenv, test=test, exclude=exclude, pillar=pillar, pillarenv=pillarenv, ) def running(concurrent=False): """ Return a list of strings that contain state return data if a state function is already running. This function is used to prevent multiple state calls from being run at the same time. CLI Example: .. code-block:: bash salt '*' state.running """ ret = [] if concurrent: return ret active = __salt__["saltutil.is_running"]("state.*") for data in active: err = ( 'The function "{}" is running as PID {} and was started at {} ' "with jid {}".format( data["fun"], data["pid"], salt.utils.jid.jid_to_time(data["jid"]), data["jid"], ) ) ret.append(err) return ret def _prior_running_states(jid): """ Return a list of dicts of prior calls to state functions. This function is used to queue state calls so only one is run at a time. """ ret = [] active = __salt__["saltutil.is_running"]("state.*") for data in active: try: data_jid = int(data["jid"]) except ValueError: continue if data_jid < int(jid): ret.append(data) return ret def _check_queue(queue, kwargs): """ Utility function to queue the state run if requested and to check for conflicts in currently running states """ if queue: _wait(kwargs.get("__pub_jid")) else: conflict = running(concurrent=kwargs.get("concurrent", False)) if conflict: __context__["retcode"] = salt.defaults.exitcodes.EX_STATE_COMPILER_ERROR return conflict def _get_initial_pillar(opts): return ( __pillar__.value() if __opts__.get("__cli", None) == "salt-call" and opts["pillarenv"] == __opts__["pillarenv"] else None ) def low(data, queue=False, **kwargs): """ Execute a single low data call This function is mostly intended for testing the state system and is not likely to be needed in everyday usage. CLI Example: .. code-block:: bash salt '*' state.low '{"state": "pkg", "fun": "installed", "name": "vi"}' """ conflict = _check_queue(queue, kwargs) if conflict is not None: return conflict try: st_ = salt.state.State(__opts__, proxy=__proxy__) except NameError: st_ = salt.state.State(__opts__) err = st_.verify_data(data) if err: __context__["retcode"] = salt.defaults.exitcodes.EX_STATE_COMPILER_ERROR return err ret = st_.call(data) if isinstance(ret, list): __context__["retcode"] = salt.defaults.exitcodes.EX_STATE_COMPILER_ERROR if __utils__["state.check_result"](ret): __context__["retcode"] = salt.defaults.exitcodes.EX_STATE_FAILURE return ret def _get_test_value(test=None, **kwargs): """ Determine the correct value for the test flag. """ ret = True if test is None: if salt.utils.args.test_mode(test=test, **kwargs): ret = True elif __salt__["config.get"]("test", omit_opts=True) is True: ret = True else: ret = __opts__.get("test", None) else: ret = test return ret def high(data, test=None, queue=False, **kwargs): """ Execute the compound calls stored in a single set of high data This function is mostly intended for testing the state system and is not likely to be needed in everyday usage. CLI Example: .. code-block:: bash salt '*' state.high '{"vim": {"pkg": ["installed"]}}' """ conflict = _check_queue(queue, kwargs) if conflict is not None: return conflict opts = salt.utils.state.get_sls_opts(__opts__, **kwargs) opts["test"] = _get_test_value(test, **kwargs) pillar_override = kwargs.get("pillar") pillar_enc = kwargs.get("pillar_enc") if ( pillar_enc is None and pillar_override is not None and not isinstance(pillar_override, dict) ): raise SaltInvocationError( "Pillar data must be formatted as a dictionary, unless pillar_enc " "is specified." ) try: st_ = salt.state.State( opts, pillar_override, pillar_enc=pillar_enc, proxy=dict(__proxy__), context=dict(__context__), initial_pillar=_get_initial_pillar(opts), ) except NameError: st_ = salt.state.State( opts, pillar_override, pillar_enc=pillar_enc, initial_pillar=_get_initial_pillar(opts), ) ret = st_.call_high(data) _set_retcode(ret, highstate=data) return ret def template(tem, queue=False, **kwargs): """ Execute the information stored in a template file on the minion. This function does not ask a master for a SLS file to render but instead directly processes the file at the provided path on the minion. CLI Example: .. code-block:: bash salt '*' state.template '<Path to template on the minion>' """ if "env" in kwargs: # "env" is not supported; Use "saltenv". kwargs.pop("env") conflict = _check_queue(queue, kwargs) if conflict is not None: return conflict opts = salt.utils.state.get_sls_opts(__opts__, **kwargs) try: st_ = salt.state.HighState( opts, context=dict(__context__), proxy=dict(__proxy__), initial_pillar=_get_initial_pillar(opts), ) except NameError: st_ = salt.state.HighState( opts, context=dict(__context__), initial_pillar=_get_initial_pillar(opts) ) with st_: errors = _get_pillar_errors(kwargs, pillar=st_.opts["pillar"]) if errors: __context__["retcode"] = salt.defaults.exitcodes.EX_PILLAR_FAILURE raise CommandExecutionError("Pillar failed to render", info=errors) if not tem.endswith(".sls"): tem = "{sls}.sls".format(sls=tem) high_state, errors = st_.render_state( tem, kwargs.get("saltenv", ""), "", None, local=True ) if errors: __context__["retcode"] = salt.defaults.exitcodes.EX_STATE_COMPILER_ERROR return errors ret = st_.state.call_high(high_state) _set_retcode(ret, highstate=high_state) return ret def template_str(tem, queue=False, **kwargs): """ Execute the information stored in a string from an sls template CLI Example: .. code-block:: bash salt '*' state.template_str '<Template String>' """ conflict = _check_queue(queue, kwargs) if conflict is not None: return conflict opts = salt.utils.state.get_sls_opts(__opts__, **kwargs) try: st_ = salt.state.State( opts, proxy=__proxy__, initial_pillar=_get_initial_pillar(opts) ) except NameError: st_ = salt.state.State(opts, initial_pillar=_get_initial_pillar(opts)) ret = st_.call_template_str(tem) _set_retcode(ret) return ret def apply_(mods=None, **kwargs): """ .. versionadded:: 2015.5.0 This function will call :mod:`state.highstate <salt.modules.state.highstate>` or :mod:`state.sls <salt.modules.state.sls>` based on the arguments passed to this function. It exists as a more intuitive way of applying states. .. rubric:: APPLYING ALL STATES CONFIGURED IN TOP.SLS (A.K.A. :ref:`HIGHSTATE <running-highstate>`) To apply all configured states, simply run ``state.apply``: .. code-block:: bash salt '*' state.apply The following additional arguments are also accepted when applying all states configured in top.sls: test Run states in test-only (dry-run) mode mock The mock option allows for the state run to execute without actually calling any states. This then returns a mocked return which will show the requisite ordering as well as fully validate the state run. .. versionadded:: 2015.8.4 pillar Custom Pillar values, passed as a dictionary of key-value pairs .. code-block:: bash salt '*' state.apply stuff pillar='{"foo": "bar"}' .. note:: Values passed this way will override Pillar values set via ``pillar_roots`` or an external Pillar source. exclude Exclude specific states from execution. Accepts a list of sls names, a comma-separated string of sls names, or a list of dictionaries containing ``sls`` or ``id`` keys. Glob-patterns may be used to match multiple states. .. code-block:: bash salt '*' state.apply exclude=bar,baz salt '*' state.apply exclude=foo* salt '*' state.apply exclude="[{'id': 'id_to_exclude'}, {'sls': 'sls_to_exclude'}]" queue : False Instead of failing immediately when another state run is in progress, queue the new state run to begin running once the other has finished. This option starts a new thread for each queued state run, so use this option sparingly. localconfig Optionally, instead of using the minion config, load minion opts from the file specified by this argument, and then merge them with the options from the minion config. This functionality allows for specific states to be run with their own custom minion configuration, including different pillars, file_roots, etc. .. code-block:: bash salt '*' state.apply localconfig=/path/to/minion.yml .. rubric:: APPLYING INDIVIDUAL SLS FILES (A.K.A. :py:func:`STATE.SLS <salt.modules.state.sls>`) To apply individual SLS files, pass them as a comma-separated list: .. code-block:: bash # Run the states configured in salt://stuff.sls (or salt://stuff/init.sls) salt '*' state.apply stuff # Run the states configured in salt://stuff.sls (or salt://stuff/init.sls) # and salt://pkgs.sls (or salt://pkgs/init.sls). salt '*' state.apply stuff,pkgs # Run the states configured in a more deeply nested directory such as salt://my/organized/stuff.sls (or salt://my/organized/stuff/init.sls) salt '*' state.apply my.organized.stuff The following additional arguments are also accepted when applying individual SLS files: test Run states in test-only (dry-run) mode mock The mock option allows for the state run to execute without actually calling any states. This then returns a mocked return which will show the requisite ordering as well as fully validate the state run. .. versionadded:: 2015.8.4 pillar Custom Pillar values, passed as a dictionary of key-value pairs .. code-block:: bash salt '*' state.apply stuff pillar='{"foo": "bar"}' .. note:: Values passed this way will override Pillar values set via ``pillar_roots`` or an external Pillar source. queue : False Instead of failing immediately when another state run is in progress, queue the new state run to begin running once the other has finished. This option starts a new thread for each queued state run, so use this option sparingly. concurrent : False Execute state runs concurrently instead of serially .. warning:: This flag is potentially dangerous. It is designed for use when multiple state runs can safely be run at the same time. Do *not* use this flag for performance optimization. saltenv Specify a salt fileserver environment to be used when applying states .. versionchanged:: 0.17.0 Argument name changed from ``env`` to ``saltenv`` .. versionchanged:: 2014.7.0 If no saltenv is specified, the minion config will be checked for an ``environment`` parameter and if found, it will be used. If none is found, ``base`` will be used. In prior releases, the minion config was not checked and ``base`` would always be assumed when the saltenv was not explicitly set. pillarenv Specify a Pillar environment to be used when applying states. This can also be set in the minion config file using the :conf_minion:`pillarenv` option. When neither the :conf_minion:`pillarenv` minion config option nor this CLI argument is used, all Pillar environments will be merged together. localconfig Optionally, instead of using the minion config, load minion opts from the file specified by this argument, and then merge them with the options from the minion config. This functionality allows for specific states to be run with their own custom minion configuration, including different pillars, file_roots, etc. .. code-block:: bash salt '*' state.apply stuff localconfig=/path/to/minion.yml sync_mods If specified, the desired custom module types will be synced prior to running the SLS files: .. code-block:: bash salt '*' state.apply stuff sync_mods=states,modules salt '*' state.apply stuff sync_mods=all .. note:: This option is ignored when no SLS files are specified, as a :ref:`highstate <running-highstate>` automatically syncs all custom module types. .. versionadded:: 2017.7.8,2018.3.3,2019.2.0 """ if mods: return sls(mods, **kwargs) return highstate(**kwargs) def test(*args, **kwargs): """ .. versionadded:: 3001 Alias for `state.apply` with the kwarg `test` forced to `True`. This is a nicety to avoid the need to type out `test=True` and the possibility of a typo causing changes you do not intend. """ kwargs["test"] = True ret = apply_(*args, **kwargs) return ret def request(mods=None, **kwargs): """ .. versionadded:: 2015.5.0 Request that the local admin execute a state run via `salt-call state.run_request`. All arguments match those of state.apply. CLI Example: .. code-block:: bash salt '*' state.request salt '*' state.request stuff salt '*' state.request stuff,pkgs """ kwargs["test"] = True ret = apply_(mods, **kwargs) notify_path = os.path.join(__opts__["cachedir"], "req_state.p") req = check_request() req.update( { kwargs.get("name", "default"): { "test_run": ret, "mods": mods, "kwargs": kwargs, } } ) with salt.utils.files.set_umask(0o077): try: if salt.utils.platform.is_windows(): # Make sure cache file isn't read-only __salt__["cmd.run"]('attrib -R "{}"'.format(notify_path)) with salt.utils.files.fopen(notify_path, "w+b") as fp_: salt.payload.dump(req, fp_) except OSError: log.error( "Unable to write state request file %s. Check permission.", notify_path ) return ret def check_request(name=None): """ .. versionadded:: 2015.5.0 Return the state request information, if any CLI Example: .. code-block:: bash salt '*' state.check_request """ notify_path = os.path.join(__opts__["cachedir"], "req_state.p") if os.path.isfile(notify_path): with salt.utils.files.fopen(notify_path, "rb") as fp_: req = salt.payload.load(fp_) if name: return req[name] return req return {} def clear_request(name=None): """ .. versionadded:: 2015.5.0 Clear out the state execution request without executing it CLI Example: .. code-block:: bash salt '*' state.clear_request """ notify_path = os.path.join(__opts__["cachedir"], "req_state.p") if not os.path.isfile(notify_path): return True if not name: try: os.remove(notify_path) except OSError: pass else: req = check_request() if name in req: req.pop(name) else: return False with salt.utils.files.set_umask(0o077): try: if salt.utils.platform.is_windows(): # Make sure cache file isn't read-only __salt__["cmd.run"]('attrib -R "{}"'.format(notify_path)) with salt.utils.files.fopen(notify_path, "w+b") as fp_: salt.payload.dump(req, fp_) except OSError: log.error( "Unable to write state request file %s. Check permission.", notify_path, ) return True def run_request(name="default", **kwargs): """ .. versionadded:: 2015.5.0 Execute the pending state request CLI Example: .. code-block:: bash salt '*' state.run_request """ req = check_request() if name not in req: return {} n_req = req[name] if "mods" not in n_req or "kwargs" not in n_req: return {} req[name]["kwargs"].update(kwargs) if "test" in n_req["kwargs"]: n_req["kwargs"].pop("test") if req: ret = apply_(n_req["mods"], **n_req["kwargs"]) try: os.remove(os.path.join(__opts__["cachedir"], "req_state.p")) except OSError: pass return ret return {} def highstate(test=None, queue=False, **kwargs): """ Retrieve the state data from the salt master for this minion and execute it test Run states in test-only (dry-run) mode pillar Custom Pillar values, passed as a dictionary of key-value pairs .. code-block:: bash salt '*' state.highstate stuff pillar='{"foo": "bar"}' .. note:: Values passed this way will override Pillar values set via ``pillar_roots`` or an external Pillar source. .. versionchanged:: 2016.3.0 GPG-encrypted CLI Pillar data is now supported via the GPG renderer. See :ref:`here <encrypted-cli-pillar-data>` for details. pillar_enc Specify which renderer to use to decrypt encrypted data located within the ``pillar`` value. Currently, only ``gpg`` is supported. .. versionadded:: 2016.3.0 exclude Exclude specific states from execution. Accepts a list of sls names, a comma-separated string of sls names, or a list of dictionaries containing ``sls`` or ``id`` keys. Glob-patterns may be used to match multiple states. .. code-block:: bash salt '*' state.highstate exclude=bar,baz salt '*' state.highstate exclude=foo* salt '*' state.highstate exclude="[{'id': 'id_to_exclude'}, {'sls': 'sls_to_exclude'}]" saltenv Specify a salt fileserver environment to be used when applying states .. versionchanged:: 0.17.0 Argument name changed from ``env`` to ``saltenv``. .. versionchanged:: 2014.7.0 If no saltenv is specified, the minion config will be checked for a ``saltenv`` parameter and if found, it will be used. If none is found, ``base`` will be used. In prior releases, the minion config was not checked and ``base`` would always be assumed when the saltenv was not explicitly set. pillarenv Specify a Pillar environment to be used when applying states. This can also be set in the minion config file using the :conf_minion:`pillarenv` option. When neither the :conf_minion:`pillarenv` minion config option nor this CLI argument is used, all Pillar environments will be merged together. queue : False Instead of failing immediately when another state run is in progress, queue the new state run to begin running once the other has finished. This option starts a new thread for each queued state run, so use this option sparingly. localconfig Optionally, instead of using the minion config, load minion opts from the file specified by this argument, and then merge them with the options from the minion config. This functionality allows for specific states to be run with their own custom minion configuration, including different pillars, file_roots, etc. mock The mock option allows for the state run to execute without actually calling any states. This then returns a mocked return which will show the requisite ordering as well as fully validate the state run. .. versionadded:: 2015.8.4 CLI Examples: .. code-block:: bash salt '*' state.highstate salt '*' state.highstate whitelist=sls1_to_run,sls2_to_run salt '*' state.highstate exclude=sls_to_exclude salt '*' state.highstate exclude="[{'id': 'id_to_exclude'}, {'sls': 'sls_to_exclude'}]" salt '*' state.highstate pillar="{foo: 'Foo!', bar: 'Bar!'}" """ if _disabled(["highstate"]): log.debug( "Salt highstate run is disabled. To re-enable, run state.enable highstate" ) ret = { "name": ( "Salt highstate run is disabled. To re-enable, run state.enable" " highstate" ), "result": "False", "comment": "Disabled", } return ret conflict = _check_queue(queue, kwargs) if conflict is not None: return conflict orig_test = __opts__.get("test", None) opts = salt.utils.state.get_sls_opts(__opts__, **kwargs) opts["test"] = _get_test_value(test, **kwargs) if "env" in kwargs: # "env" is not supported; Use "saltenv". kwargs.pop("env") if "saltenv" in kwargs: opts["saltenv"] = kwargs["saltenv"] if "pillarenv" in kwargs: opts["pillarenv"] = kwargs["pillarenv"] pillar_override = kwargs.get("pillar") pillar_enc = kwargs.get("pillar_enc") if ( pillar_enc is None and pillar_override is not None and not isinstance(pillar_override, dict) ): raise SaltInvocationError( "Pillar data must be formatted as a dictionary, unless pillar_enc " "is specified." ) try: st_ = salt.state.HighState( opts, pillar_override, kwargs.get("__pub_jid"), pillar_enc=pillar_enc, proxy=dict(__proxy__), context=dict(__context__), mocked=kwargs.get("mock", False), initial_pillar=_get_initial_pillar(opts), ) except NameError: st_ = salt.state.HighState( opts, pillar_override, kwargs.get("__pub_jid"), pillar_enc=pillar_enc, mocked=kwargs.get("mock", False), initial_pillar=_get_initial_pillar(opts), ) with st_: errors = _get_pillar_errors(kwargs, st_.opts["pillar"]) if errors: __context__["retcode"] = salt.defaults.exitcodes.EX_PILLAR_FAILURE return ["Pillar failed to render with the following messages:"] + errors st_.push_active() orchestration_jid = kwargs.get("orchestration_jid") snapper_pre = _snapper_pre(opts, kwargs.get("__pub_jid", "called localy")) try: ret = st_.call_highstate( exclude=kwargs.get("exclude", []), cache=kwargs.get("cache", None), cache_name=kwargs.get("cache_name", "highstate"), force=kwargs.get("force", False), whitelist=kwargs.get("whitelist"), orchestration_jid=orchestration_jid, ) finally: st_.pop_active() if isinstance(ret, dict) and ( __salt__["config.option"]("state_data", "") == "terse" or kwargs.get("terse") ): ret = _filter_running(ret) _set_retcode(ret, highstate=st_.building_highstate) _snapper_post(opts, kwargs.get("__pub_jid", "called localy"), snapper_pre) # Work around Windows multiprocessing bug, set __opts__['test'] back to # value from before this function was run. __opts__["test"] = orig_test return ret def sls(mods, test=None, exclude=None, queue=False, sync_mods=None, **kwargs): """ Execute the states in one or more SLS files test Run states in test-only (dry-run) mode pillar Custom Pillar values, passed as a dictionary of key-value pairs .. code-block:: bash salt '*' state.sls stuff pillar='{"foo": "bar"}' .. note:: Values passed this way will override existing Pillar values set via ``pillar_roots`` or an external Pillar source. Pillar values that are not included in the kwarg will not be overwritten. .. versionchanged:: 2016.3.0 GPG-encrypted CLI Pillar data is now supported via the GPG renderer. See :ref:`here <encrypted-cli-pillar-data>` for details. pillar_enc Specify which renderer to use to decrypt encrypted data located within the ``pillar`` value. Currently, only ``gpg`` is supported. .. versionadded:: 2016.3.0 exclude Exclude specific states from execution. Accepts a list of sls names, a comma-separated string of sls names, or a list of dictionaries containing ``sls`` or ``id`` keys. Glob-patterns may be used to match multiple states. .. code-block:: bash salt '*' state.sls foo,bar,baz exclude=bar,baz salt '*' state.sls foo,bar,baz exclude=ba* salt '*' state.sls foo,bar,baz exclude="[{'id': 'id_to_exclude'}, {'sls': 'sls_to_exclude'}]" queue : False Instead of failing immediately when another state run is in progress, queue the new state run to begin running once the other has finished. This option starts a new thread for each queued state run, so use this option sparingly. concurrent : False Execute state runs concurrently instead of serially .. warning:: This flag is potentially dangerous. It is designed for use when multiple state runs can safely be run at the same time. Do *not* use this flag for performance optimization. saltenv Specify a salt fileserver environment to be used when applying states .. versionchanged:: 0.17.0 Argument name changed from ``env`` to ``saltenv``. .. versionchanged:: 2014.7.0 If no saltenv is specified, the minion config will be checked for an ``environment`` parameter and if found, it will be used. If none is found, ``base`` will be used. In prior releases, the minion config was not checked and ``base`` would always be assumed when the saltenv was not explicitly set. pillarenv Specify a Pillar environment to be used when applying states. This can also be set in the minion config file using the :conf_minion:`pillarenv` option. When neither the :conf_minion:`pillarenv` minion config option nor this CLI argument is used, all Pillar environments will be merged together. localconfig Optionally, instead of using the minion config, load minion opts from the file specified by this argument, and then merge them with the options from the minion config. This functionality allows for specific states to be run with their own custom minion configuration, including different pillars, file_roots, etc. mock The mock option allows for the state run to execute without actually calling any states. This then returns a mocked return which will show the requisite ordering as well as fully validate the state run. .. versionadded:: 2015.8.4 sync_mods If specified, the desired custom module types will be synced prior to running the SLS files: .. code-block:: bash salt '*' state.sls stuff sync_mods=states,modules salt '*' state.sls stuff sync_mods=all .. versionadded:: 2017.7.8,2018.3.3,2019.2.0 CLI Example: .. code-block:: bash # Run the states configured in salt://example.sls (or salt://example/init.sls) salt '*' state.apply example # Run the states configured in salt://core.sls (or salt://core/init.sls) # and salt://edit/vim.sls (or salt://edit/vim/init.sls) salt '*' state.sls core,edit.vim # Run the states configured in a more deeply nested directory such as salt://my/nested/state.sls (or salt://my/nested/state/init.sls) salt '*' state.sls my.nested.state salt '*' state.sls core exclude="[{'id': 'id_to_exclude'}, {'sls': 'sls_to_exclude'}]" salt '*' state.sls myslsfile pillar="{foo: 'Foo!', bar: 'Bar!'}" """ concurrent = kwargs.get("concurrent", False) if "env" in kwargs: # "env" is not supported; Use "saltenv". kwargs.pop("env") # Modification to __opts__ lost after this if-else if queue: _wait(kwargs.get("__pub_jid")) else: conflict = running(concurrent) if conflict: __context__["retcode"] = salt.defaults.exitcodes.EX_STATE_COMPILER_ERROR return conflict if isinstance(mods, list): disabled = _disabled(mods) else: disabled = _disabled([mods]) if disabled: for state in disabled: log.debug( "Salt state %s is disabled. To re-enable, run state.enable %s", state, state, ) __context__["retcode"] = salt.defaults.exitcodes.EX_STATE_COMPILER_ERROR return disabled orig_test = __opts__.get("test", None) opts = salt.utils.state.get_sls_opts(__opts__, **kwargs) opts["test"] = _get_test_value(test, **kwargs) # Since this is running a specific SLS file (or files), fall back to the # 'base' saltenv if none is configured and none was passed. if opts["saltenv"] is None: opts["saltenv"] = "base" pillar_override = kwargs.get("pillar") pillar_enc = kwargs.get("pillar_enc") if ( pillar_enc is None and pillar_override is not None and not isinstance(pillar_override, dict) ): raise SaltInvocationError( "Pillar data must be formatted as a dictionary, unless pillar_enc " "is specified." ) cfn = os.path.join( __opts__["cachedir"], "{}.cache.p".format(kwargs.get("cache_name", "highstate")), ) if sync_mods is True: sync_mods = ["all"] if sync_mods is not None: sync_mods = salt.utils.args.split_input(sync_mods) else: sync_mods = [] if "all" in sync_mods and sync_mods != ["all"]: # Prevent unnecessary extra syncing sync_mods = ["all"] for module_type in sync_mods: try: __salt__["saltutil.sync_{}".format(module_type)](saltenv=opts["saltenv"]) except KeyError: log.warning("Invalid custom module type '%s', ignoring", module_type) try: st_ = salt.state.HighState( opts, pillar_override, kwargs.get("__pub_jid"), pillar_enc=pillar_enc, proxy=dict(__proxy__), context=dict(__context__), mocked=kwargs.get("mock", False), initial_pillar=_get_initial_pillar(opts), ) except NameError: st_ = salt.state.HighState( opts, pillar_override, kwargs.get("__pub_jid"), pillar_enc=pillar_enc, mocked=kwargs.get("mock", False), initial_pillar=_get_initial_pillar(opts), ) with st_: errors = _get_pillar_errors(kwargs, pillar=st_.opts["pillar"]) if errors: __context__["retcode"] = salt.defaults.exitcodes.EX_PILLAR_FAILURE return ["Pillar failed to render with the following messages:"] + errors orchestration_jid = kwargs.get("orchestration_jid") with salt.utils.files.set_umask(0o077): if kwargs.get("cache"): if os.path.isfile(cfn): with salt.utils.files.fopen(cfn, "rb") as fp_: high_ = salt.payload.load(fp_) return st_.state.call_high(high_, orchestration_jid) # If the state file is an integer, convert to a string then to unicode if isinstance(mods, int): mods = salt.utils.stringutils.to_unicode(str(mods)) mods = salt.utils.args.split_input(mods) st_.push_active() try: high_, errors = st_.render_highstate({opts["saltenv"]: mods}) if errors: __context__["retcode"] = salt.defaults.exitcodes.EX_STATE_COMPILER_ERROR return errors if exclude: exclude = salt.utils.args.split_input(exclude) if "__exclude__" in high_: high_["__exclude__"].extend(exclude) else: high_["__exclude__"] = exclude snapper_pre = _snapper_pre(opts, kwargs.get("__pub_jid", "called localy")) ret = st_.state.call_high(high_, orchestration_jid) finally: st_.pop_active() if __salt__["config.option"]("state_data", "") == "terse" or kwargs.get("terse"): ret = _filter_running(ret) cache_file = os.path.join(__opts__["cachedir"], "sls.p") with salt.utils.files.set_umask(0o077): try: if salt.utils.platform.is_windows(): # Make sure cache file isn't read-only __salt__["cmd.run"](["attrib", "-R", cache_file], python_shell=False) with salt.utils.files.fopen(cache_file, "w+b") as fp_: salt.payload.dump(ret, fp_) except OSError: log.error( "Unable to write to SLS cache file %s. Check permission.", cache_file ) _set_retcode(ret, high_) # Work around Windows multiprocessing bug, set __opts__['test'] back to # value from before this function was run. __opts__["test"] = orig_test try: with salt.utils.files.fopen(cfn, "w+b") as fp_: try: salt.payload.dump(high_, fp_) except TypeError: # Can't serialize pydsl pass except OSError: log.error( "Unable to write to highstate cache file %s. Do you have permissions?", cfn, ) _snapper_post(opts, kwargs.get("__pub_jid", "called localy"), snapper_pre) return ret def top(topfn, test=None, queue=False, **kwargs): """ Execute a specific top file instead of the default. This is useful to apply configurations from a different environment (for example, dev or prod), without modifying the default top file. queue : False Instead of failing immediately when another state run is in progress, queue the new state run to begin running once the other has finished. This option starts a new thread for each queued state run, so use this option sparingly. saltenv Specify a salt fileserver environment to be used when applying states pillarenv Specify a Pillar environment to be used when applying states. This can also be set in the minion config file using the :conf_minion:`pillarenv` option. When neither the :conf_minion:`pillarenv` minion config option nor this CLI argument is used, all Pillar environments will be merged together. .. versionadded:: 2017.7.0 CLI Example: .. code-block:: bash salt '*' state.top reverse_top.sls salt '*' state.top prod_top.sls exclude=sls_to_exclude salt '*' state.top dev_top.sls exclude="[{'id': 'id_to_exclude'}, {'sls': 'sls_to_exclude'}]" """ conflict = _check_queue(queue, kwargs) if conflict is not None: return conflict orig_test = __opts__.get("test", None) opts = salt.utils.state.get_sls_opts(__opts__, **kwargs) opts["test"] = _get_test_value(test, **kwargs) pillar_override = kwargs.get("pillar") pillar_enc = kwargs.get("pillar_enc") if ( pillar_enc is None and pillar_override is not None and not isinstance(pillar_override, dict) ): raise SaltInvocationError( "Pillar data must be formatted as a dictionary, unless pillar_enc " "is specified." ) try: st_ = salt.state.HighState( opts, pillar_override, pillar_enc=pillar_enc, context=dict(__context__), proxy=dict(__proxy__), initial_pillar=_get_initial_pillar(opts), ) except NameError: st_ = salt.state.HighState( opts, pillar_override, pillar_enc=pillar_enc, context=dict(__context__), initial_pillar=_get_initial_pillar(opts), ) with st_: errors = _get_pillar_errors(kwargs, pillar=st_.opts["pillar"]) if errors: __context__["retcode"] = salt.defaults.exitcodes.EX_PILLAR_FAILURE return ["Pillar failed to render with the following messages:"] + errors st_.push_active() st_.opts["state_top"] = salt.utils.url.create(topfn) ret = {} orchestration_jid = kwargs.get("orchestration_jid") if "saltenv" in kwargs: st_.opts["state_top_saltenv"] = kwargs["saltenv"] try: snapper_pre = _snapper_pre(opts, kwargs.get("__pub_jid", "called localy")) ret = st_.call_highstate( exclude=kwargs.get("exclude", []), cache=kwargs.get("cache", None), cache_name=kwargs.get("cache_name", "highstate"), orchestration_jid=orchestration_jid, ) finally: st_.pop_active() _set_retcode(ret, highstate=st_.building_highstate) # Work around Windows multiprocessing bug, set __opts__['test'] back to # value from before this function was run. _snapper_post(opts, kwargs.get("__pub_jid", "called localy"), snapper_pre) __opts__["test"] = orig_test return ret def show_highstate(queue=False, **kwargs): """ Retrieve the highstate data from the salt master and display it Custom Pillar data can be passed with the ``pillar`` kwarg. CLI Example: .. code-block:: bash salt '*' state.show_highstate """ conflict = _check_queue(queue, kwargs) if conflict is not None: return conflict pillar_override = kwargs.get("pillar") pillar_enc = kwargs.get("pillar_enc") if ( pillar_enc is None and pillar_override is not None and not isinstance(pillar_override, dict) ): raise SaltInvocationError( "Pillar data must be formatted as a dictionary, unless pillar_enc " "is specified." ) opts = salt.utils.state.get_sls_opts(__opts__, **kwargs) try: st_ = salt.state.HighState( opts, pillar_override, pillar_enc=pillar_enc, proxy=__proxy__, initial_pillar=_get_initial_pillar(opts), ) except NameError: st_ = salt.state.HighState( opts, pillar_override, pillar_enc=pillar_enc, initial_pillar=_get_initial_pillar(opts), ) with st_: errors = _get_pillar_errors(kwargs, pillar=st_.opts["pillar"]) if errors: __context__["retcode"] = salt.defaults.exitcodes.EX_PILLAR_FAILURE raise CommandExecutionError("Pillar failed to render", info=errors) st_.push_active() try: ret = st_.compile_highstate() finally: st_.pop_active() _set_retcode(ret) return ret def show_lowstate(queue=False, **kwargs): """ List out the low data that will be applied to this minion CLI Example: .. code-block:: bash salt '*' state.show_lowstate """ conflict = _check_queue(queue, kwargs) if conflict is not None: assert False return conflict opts = salt.utils.state.get_sls_opts(__opts__, **kwargs) try: st_ = salt.state.HighState( opts, proxy=__proxy__, initial_pillar=_get_initial_pillar(opts) ) except NameError: st_ = salt.state.HighState(opts, initial_pillar=_get_initial_pillar(opts)) with st_: errors = _get_pillar_errors(kwargs, pillar=st_.opts["pillar"]) if errors: __context__["retcode"] = salt.defaults.exitcodes.EX_PILLAR_FAILURE raise CommandExecutionError("Pillar failed to render", info=errors) st_.push_active() try: ret = st_.compile_low_chunks() finally: st_.pop_active() return ret def show_state_usage(queue=False, **kwargs): """ Retrieve the highstate data from the salt master to analyse used and unused states Custom Pillar data can be passed with the ``pillar`` kwarg. CLI Example: .. code-block:: bash salt '*' state.show_state_usage """ conflict = _check_queue(queue, kwargs) if conflict is not None: return conflict pillar = kwargs.get("pillar") pillar_enc = kwargs.get("pillar_enc") if pillar_enc is None and pillar is not None and not isinstance(pillar, dict): raise SaltInvocationError( "Pillar data must be formatted as a dictionary, unless pillar_enc " "is specified." ) with salt.state.HighState(__opts__, pillar, pillar_enc=pillar_enc) as st_: st_.push_active() try: ret = st_.compile_state_usage() finally: st_.pop_active() _set_retcode(ret) return ret def show_states(queue=False, **kwargs): """ Returns the list of states that will be applied on highstate. CLI Example: .. code-block:: bash salt '*' state.show_states .. versionadded:: 2019.2.0 """ conflict = _check_queue(queue, kwargs) if conflict is not None: assert False return conflict opts = salt.utils.state.get_sls_opts(__opts__, **kwargs) try: st_ = salt.state.HighState( opts, proxy=__proxy__, initial_pillar=_get_initial_pillar(opts) ) except NameError: st_ = salt.state.HighState(opts, initial_pillar=_get_initial_pillar(opts)) with st_: errors = _get_pillar_errors(kwargs, pillar=st_.opts["pillar"]) if errors: __context__["retcode"] = salt.defaults.exitcodes.EX_PILLAR_FAILURE raise CommandExecutionError("Pillar failed to render", info=errors) st_.push_active() states = OrderedDict() try: result = st_.compile_low_chunks() if not isinstance(result, list): raise Exception(result) for s in result: if not isinstance(s, dict): _set_retcode(result) return result states[s["__sls__"]] = True finally: st_.pop_active() return list(states.keys()) def sls_id(id_, mods, test=None, queue=False, **kwargs): """ Call a single ID from the named module(s) and handle all requisites The state ID comes *before* the module ID(s) on the command line. id ID to call mods Comma-delimited list of modules to search for given id and its requisites .. versionadded:: 2014.7.0 saltenv : base Specify a salt fileserver environment to be used when applying states pillarenv Specify a Pillar environment to be used when applying states. This can also be set in the minion config file using the :conf_minion:`pillarenv` option. When neither the :conf_minion:`pillarenv` minion config option nor this CLI argument is used, all Pillar environments will be merged together. pillar Custom Pillar values, passed as a dictionary of key-value pairs .. code-block:: bash salt '*' state.sls_id my_state my_module pillar='{"foo": "bar"}' .. note:: Values passed this way will override existing Pillar values set via ``pillar_roots`` or an external Pillar source. Pillar values that are not included in the kwarg will not be overwritten. .. versionadded:: 2018.3.0 CLI Example: .. code-block:: bash salt '*' state.sls_id my_state my_module salt '*' state.sls_id my_state my_module,a_common_module """ conflict = _check_queue(queue, kwargs) if conflict is not None: return conflict orig_test = __opts__.get("test", None) opts = salt.utils.state.get_sls_opts(__opts__, **kwargs) opts["test"] = _get_test_value(test, **kwargs) # Since this is running a specific ID within a specific SLS file, fall back # to the 'base' saltenv if none is configured and none was passed. if opts["saltenv"] is None: opts["saltenv"] = "base" pillar_override = kwargs.get("pillar") pillar_enc = kwargs.get("pillar_enc") if ( pillar_enc is None and pillar_override is not None and not isinstance(pillar_override, dict) ): raise SaltInvocationError( "Pillar data must be formatted as a dictionary, unless pillar_enc " "is specified." ) try: st_ = salt.state.HighState( opts, pillar_override, pillar_enc=pillar_enc, proxy=__proxy__, initial_pillar=_get_initial_pillar(opts), ) except NameError: st_ = salt.state.HighState( opts, pillar_override, pillar_enc=pillar_enc, initial_pillar=_get_initial_pillar(opts), ) with st_: errors = _get_pillar_errors(kwargs, pillar=st_.opts["pillar"]) if errors: __context__["retcode"] = salt.defaults.exitcodes.EX_PILLAR_FAILURE return ["Pillar failed to render with the following messages:"] + errors split_mods = salt.utils.args.split_input(mods) st_.push_active() try: high_, errors = st_.render_highstate({opts["saltenv"]: split_mods}) finally: st_.pop_active() errors += st_.state.verify_high(high_) # Apply requisites to high data high_, req_in_errors = st_.state.requisite_in(high_) if req_in_errors: # This if statement should not be necessary if there were no errors, # but it is required to get the unit tests to pass. errors.extend(req_in_errors) if errors: __context__["retcode"] = salt.defaults.exitcodes.EX_STATE_COMPILER_ERROR return errors chunks = st_.state.compile_high_data(high_) ret = {} for chunk in chunks: if chunk.get("__id__", "") == id_: ret.update(st_.state.call_chunk(chunk, {}, chunks)) _set_retcode(ret, highstate=highstate) # Work around Windows multiprocessing bug, set __opts__['test'] back to # value from before this function was run. __opts__["test"] = orig_test if not ret: raise SaltInvocationError( "No matches for ID '{}' found in SLS '{}' within saltenv '{}'".format( id_, mods, opts["saltenv"] ) ) return ret def show_low_sls(mods, test=None, queue=False, **kwargs): """ Display the low data from a specific sls. The default environment is ``base``, use ``saltenv`` to specify a different environment. saltenv Specify a salt fileserver environment to be used when applying states pillar Custom Pillar values, passed as a dictionary of key-value pairs .. code-block:: bash salt '*' state.show_low_sls stuff pillar='{"foo": "bar"}' .. note:: Values passed this way will override Pillar values set via ``pillar_roots`` or an external Pillar source. pillarenv Specify a Pillar environment to be used when applying states. This can also be set in the minion config file using the :conf_minion:`pillarenv` option. When neither the :conf_minion:`pillarenv` minion config option nor this CLI argument is used, all Pillar environments will be merged together. CLI Example: .. code-block:: bash salt '*' state.show_low_sls foo salt '*' state.show_low_sls foo saltenv=dev """ if "env" in kwargs: # "env" is not supported; Use "saltenv". kwargs.pop("env") conflict = _check_queue(queue, kwargs) if conflict is not None: return conflict orig_test = __opts__.get("test", None) opts = salt.utils.state.get_sls_opts(__opts__, **kwargs) opts["test"] = _get_test_value(test, **kwargs) # Since this is dealing with a specific SLS file (or files), fall back to # the 'base' saltenv if none is configured and none was passed. if opts["saltenv"] is None: opts["saltenv"] = "base" pillar_override = kwargs.get("pillar") pillar_enc = kwargs.get("pillar_enc") if ( pillar_enc is None and pillar_override is not None and not isinstance(pillar_override, dict) ): raise SaltInvocationError( "Pillar data must be formatted as a dictionary, unless pillar_enc " "is specified." ) try: st_ = salt.state.HighState( opts, pillar_override, proxy=__proxy__, initial_pillar=_get_initial_pillar(opts), ) except NameError: st_ = salt.state.HighState( opts, pillar_override, initial_pillar=_get_initial_pillar(opts) ) with st_: errors = _get_pillar_errors(kwargs, pillar=st_.opts["pillar"]) if errors: __context__["retcode"] = salt.defaults.exitcodes.EX_PILLAR_FAILURE raise CommandExecutionError("Pillar failed to render", info=errors) mods = salt.utils.args.split_input(mods) st_.push_active() try: high_, errors = st_.render_highstate({opts["saltenv"]: mods}) finally: st_.pop_active() errors += st_.state.verify_high(high_) if errors: __context__["retcode"] = salt.defaults.exitcodes.EX_STATE_COMPILER_ERROR return errors ret = st_.state.compile_high_data(high_) # Work around Windows multiprocessing bug, set __opts__['test'] back to # value from before this function was run. __opts__["test"] = orig_test return ret def show_sls(mods, test=None, queue=False, **kwargs): """ Display the state data from a specific sls or list of sls files on the master. The default environment is ``base``, use ``saltenv`` to specify a different environment. This function does not support topfiles. For ``top.sls`` please use ``show_top`` instead. Custom Pillar data can be passed with the ``pillar`` kwarg. saltenv Specify a salt fileserver environment to be used when applying states pillarenv Specify a Pillar environment to be used when applying states. This can also be set in the minion config file using the :conf_minion:`pillarenv` option. When neither the :conf_minion:`pillarenv` minion config option nor this CLI argument is used, all Pillar environments will be merged together. CLI Example: .. code-block:: bash salt '*' state.show_sls core,edit.vim saltenv=dev """ if "env" in kwargs: # "env" is not supported; Use "saltenv". kwargs.pop("env") conflict = _check_queue(queue, kwargs) if conflict is not None: return conflict orig_test = __opts__.get("test", None) opts = salt.utils.state.get_sls_opts(__opts__, **kwargs) opts["test"] = _get_test_value(test, **kwargs) # Since this is dealing with a specific SLS file (or files), fall back to # the 'base' saltenv if none is configured and none was passed. if opts["saltenv"] is None: opts["saltenv"] = "base" pillar_override = kwargs.get("pillar") pillar_enc = kwargs.get("pillar_enc") if ( pillar_enc is None and pillar_override is not None and not isinstance(pillar_override, dict) ): raise SaltInvocationError( "Pillar data must be formatted as a dictionary, unless pillar_enc " "is specified." ) try: st_ = salt.state.HighState( opts, pillar_override, pillar_enc=pillar_enc, proxy=__proxy__, initial_pillar=_get_initial_pillar(opts), ) except NameError: st_ = salt.state.HighState( opts, pillar_override, pillar_enc=pillar_enc, initial_pillar=_get_initial_pillar(opts), ) with st_: errors = _get_pillar_errors(kwargs, pillar=st_.opts["pillar"]) if errors: __context__["retcode"] = salt.defaults.exitcodes.EX_PILLAR_FAILURE raise CommandExecutionError("Pillar failed to render", info=errors) mods = salt.utils.args.split_input(mods) st_.push_active() try: high_, errors = st_.render_highstate({opts["saltenv"]: mods}) finally: st_.pop_active() errors += st_.state.verify_high(high_) # Work around Windows multiprocessing bug, set __opts__['test'] back to # value from before this function was run. __opts__["test"] = orig_test if errors: __context__["retcode"] = salt.defaults.exitcodes.EX_STATE_COMPILER_ERROR return errors return high_ def sls_exists(mods, test=None, queue=False, **kwargs): """ Tests for the existence the of a specific SLS or list of SLS files on the master. Similar to :py:func:`state.show_sls <salt.modules.state.show_sls>`, rather than returning state details, returns True or False. The default environment is ``base``, use ``saltenv`` to specify a different environment. .. versionadded:: 2019.2.0 saltenv Specify a salt fileserver environment from which to look for the SLS files specified in the ``mods`` argument CLI Example: .. code-block:: bash salt '*' state.sls_exists core,edit.vim saltenv=dev """ return isinstance(show_sls(mods, test=test, queue=queue, **kwargs), dict) def id_exists(ids, mods, test=None, queue=False, **kwargs): """ Tests for the existence of a specific ID or list of IDs within the specified SLS file(s). Similar to :py:func:`state.sls_exists <salt.modules.state.sls_exists>`, returns True or False. The default environment is base``, use ``saltenv`` to specify a different environment. .. versionadded:: 2019.2.0 saltenv Specify a salt fileserver environment from which to look for the SLS files specified in the ``mods`` argument CLI Example: .. code-block:: bash salt '*' state.id_exists create_myfile,update_template filestate saltenv=dev """ ids = salt.utils.args.split_input(ids) ids = set(ids) sls_ids = { x["__id__"] for x in show_low_sls(mods, test=test, queue=queue, **kwargs) } return ids.issubset(sls_ids) def show_top(queue=False, **kwargs): """ Return the top data that the minion will use for a highstate CLI Example: .. code-block:: bash salt '*' state.show_top """ if "env" in kwargs: # "env" is not supported; Use "saltenv". kwargs.pop("env") conflict = _check_queue(queue, kwargs) if conflict is not None: return conflict opts = salt.utils.state.get_sls_opts(__opts__, **kwargs) try: st_ = salt.state.HighState( opts, proxy=__proxy__, initial_pillar=_get_initial_pillar(opts) ) except NameError: st_ = salt.state.HighState(opts, initial_pillar=_get_initial_pillar(opts)) with st_: errors = _get_pillar_errors(kwargs, pillar=st_.opts["pillar"]) if errors: __context__["retcode"] = salt.defaults.exitcodes.EX_PILLAR_FAILURE raise CommandExecutionError("Pillar failed to render", info=errors) errors = [] top_ = st_.get_top() errors += st_.verify_tops(top_) if errors: __context__["retcode"] = salt.defaults.exitcodes.EX_STATE_COMPILER_ERROR return errors matches = st_.top_matches(top_) return matches def single(fun, name, test=None, queue=False, **kwargs): """ Execute a single state function with the named kwargs, returns False if insufficient data is sent to the command By default, the values of the kwargs will be parsed as YAML. So, you can specify lists values, or lists of single entry key-value maps, as you would in a YAML salt file. Alternatively, JSON format of keyword values is also supported. CLI Example: .. code-block:: bash salt '*' state.single pkg.installed name=vim """ conflict = _check_queue(queue, kwargs) if conflict is not None: return conflict comps = fun.split(".") if len(comps) < 2: __context__["retcode"] = salt.defaults.exitcodes.EX_STATE_COMPILER_ERROR return "Invalid function passed" kwargs.update({"state": comps[0], "fun": comps[1], "__id__": name, "name": name}) orig_test = __opts__.get("test", None) opts = salt.utils.state.get_sls_opts(__opts__, **kwargs) opts["test"] = _get_test_value(test, **kwargs) pillar_override = kwargs.get("pillar") pillar_enc = kwargs.get("pillar_enc") if ( pillar_enc is None and pillar_override is not None and not isinstance(pillar_override, dict) ): raise SaltInvocationError( "Pillar data must be formatted as a dictionary, unless pillar_enc " "is specified." ) try: st_ = salt.state.State( opts, pillar_override, pillar_enc=pillar_enc, proxy=__proxy__, initial_pillar=_get_initial_pillar(opts), ) except NameError: st_ = salt.state.State( opts, pillar_override, pillar_enc=pillar_enc, initial_pillar=_get_initial_pillar(opts), ) err = st_.verify_data(kwargs) if err: __context__["retcode"] = salt.defaults.exitcodes.EX_STATE_COMPILER_ERROR return err st_._mod_init(kwargs) snapper_pre = _snapper_pre(opts, kwargs.get("__pub_jid", "called localy")) ret = { "{0[state]}_|-{0[__id__]}_|-{0[name]}_|-{0[fun]}".format(kwargs): st_.call( kwargs ) } _set_retcode(ret) # Work around Windows multiprocessing bug, set __opts__['test'] back to # value from before this function was run. _snapper_post(opts, kwargs.get("__pub_jid", "called localy"), snapper_pre) __opts__["test"] = orig_test return ret def clear_cache(): """ Clear out cached state files, forcing even cache runs to refresh the cache on the next state execution. Remember that the state cache is completely disabled by default, this execution only applies if cache=True is used in states CLI Example: .. code-block:: bash salt '*' state.clear_cache """ ret = [] for fn_ in os.listdir(__opts__["cachedir"]): if fn_.endswith(".cache.p"): path = os.path.join(__opts__["cachedir"], fn_) if not os.path.isfile(path): continue os.remove(path) ret.append(fn_) return ret def pkg(pkg_path, pkg_sum, hash_type, test=None, **kwargs): """ Execute a packaged state run, the packaged state run will exist in a tarball available locally. This packaged state can be generated using salt-ssh. CLI Example: .. code-block:: bash salt '*' state.pkg /tmp/salt_state.tgz 760a9353810e36f6d81416366fc426dc md5 """ # TODO - Add ability to download from salt master or other source popts = salt.utils.state.get_sls_opts(__opts__, **kwargs) if not os.path.isfile(pkg_path): return {} if not salt.utils.hashutils.get_hash(pkg_path, hash_type) == pkg_sum: return {} root = tempfile.mkdtemp() s_pkg = tarfile.open(pkg_path, "r:gz") # Verify that the tarball does not extract outside of the intended root members = s_pkg.getmembers() for member in members: if salt.utils.stringutils.to_unicode(member.path).startswith( (os.sep, "..{}".format(os.sep)) ): return {} elif "..{}".format(os.sep) in salt.utils.stringutils.to_unicode(member.path): return {} s_pkg.extractall(root) s_pkg.close() lowstate_json = os.path.join(root, "lowstate.json") with salt.utils.files.fopen(lowstate_json, "r") as fp_: lowstate = salt.utils.json.load(fp_) # Check for errors in the lowstate for chunk in lowstate: if not isinstance(chunk, dict): return lowstate pillar_json = os.path.join(root, "pillar.json") if os.path.isfile(pillar_json): with salt.utils.files.fopen(pillar_json, "r") as fp_: pillar_override = salt.utils.json.load(fp_) else: pillar_override = None roster_grains_json = os.path.join(root, "roster_grains.json") if os.path.isfile(roster_grains_json): with salt.utils.files.fopen(roster_grains_json, "r") as fp_: roster_grains = _format_cached_grains(salt.utils.json.load(fp_)) if os.path.isfile(roster_grains_json): popts["grains"] = roster_grains popts["fileclient"] = "local" popts["file_roots"] = {} popts["test"] = _get_test_value(test, **kwargs) envs = os.listdir(root) for fn_ in envs: full = os.path.join(root, fn_) if not os.path.isdir(full): continue popts["file_roots"][fn_] = [full] st_ = salt.state.State(popts, pillar_override=pillar_override) snapper_pre = _snapper_pre(popts, kwargs.get("__pub_jid", "called localy")) ret = st_.call_chunks(lowstate) ret = st_.call_listen(lowstate, ret) try: shutil.rmtree(root) except OSError: pass _set_retcode(ret) _snapper_post(popts, kwargs.get("__pub_jid", "called localy"), snapper_pre) return ret def disable(states): """ Disable state runs. CLI Example: .. code-block:: bash salt '*' state.disable highstate salt '*' state.disable highstate,test.succeed_without_changes .. note:: To disable a state file from running provide the same name that would be passed in a state.sls call. salt '*' state.disable bind.config """ ret = {"res": True, "msg": ""} states = salt.utils.args.split_input(states) msg = [] _disabled_state_runs = __salt__["grains.get"]("state_runs_disabled") if not isinstance(_disabled_state_runs, list): _disabled_state_runs = [] _changed = False for _state in states: if _state in _disabled_state_runs: msg.append("Info: {} state already disabled.".format(_state)) else: msg.append("Info: {} state disabled.".format(_state)) _disabled_state_runs.append(_state) _changed = True if _changed: __salt__["grains.setval"]("state_runs_disabled", _disabled_state_runs) ret["msg"] = "\n".join(msg) # refresh the grains __salt__["saltutil.refresh_modules"]() return ret def enable(states): """ Enable state function or sls run CLI Example: .. code-block:: bash salt '*' state.enable highstate salt '*' state.enable test.succeed_without_changes .. note:: To enable a state file from running provide the same name that would be passed in a state.sls call. salt '*' state.disable bind.config """ ret = {"res": True, "msg": ""} states = salt.utils.args.split_input(states) log.debug("states %s", states) msg = [] _disabled_state_runs = __salt__["grains.get"]("state_runs_disabled") if not isinstance(_disabled_state_runs, list): _disabled_state_runs = [] _changed = False for _state in states: log.debug("_state %s", _state) if _state not in _disabled_state_runs: msg.append("Info: {} state already enabled.".format(_state)) else: msg.append("Info: {} state enabled.".format(_state)) _disabled_state_runs.remove(_state) _changed = True if _changed: __salt__["grains.setval"]("state_runs_disabled", _disabled_state_runs) ret["msg"] = "\n".join(msg) # refresh the grains __salt__["saltutil.refresh_modules"]() return ret def list_disabled(): """ List the states which are currently disabled CLI Example: .. code-block:: bash salt '*' state.list_disabled """ return __salt__["grains.get"]("state_runs_disabled") def _disabled(funs): """ Return messages for disabled states that match state functions in funs. """ ret = [] _disabled_state_runs = __salt__["grains.get"]("state_runs_disabled") if not isinstance(_disabled_state_runs, list): _disabled_state_runs = [] for state in funs: for _state in _disabled_state_runs: if ".*" in _state: target_state = _state.split(".")[0] target_state = ( target_state + "." if not target_state.endswith(".") else target_state ) if state.startswith(target_state): err = ( 'The state file "{0}" is currently disabled by "{1}", ' "to re-enable, run state.enable {1}.".format( state, _state, ) ) ret.append(err) continue else: if _state == state: err = ( 'The state file "{0}" is currently disabled, ' "to re-enable, run state.enable {0}.".format( _state, ) ) ret.append(err) continue return ret def event( tagmatch="*", count=-1, quiet=False, sock_dir=None, pretty=False, node="minion" ): r""" Watch Salt's event bus and block until the given tag is matched .. versionadded:: 2016.3.0 .. versionchanged:: 2019.2.0 ``tagmatch`` can now be either a glob or regular expression. This is useful for utilizing Salt's event bus from shell scripts or for taking simple actions directly from the CLI. Enable debug logging to see ignored events. :param tagmatch: the event is written to stdout for each tag that matches this glob or regular expression. :param count: this number is decremented for each event that matches the ``tagmatch`` parameter; pass ``-1`` to listen forever. :param quiet: do not print to stdout; just block :param sock_dir: path to the Salt master's event socket file. :param pretty: Output the JSON all on a single line if ``False`` (useful for shell tools); pretty-print the JSON output if ``True``. :param node: Watch the minion-side or master-side event bus. CLI Example: .. code-block:: bash salt-call --local state.event pretty=True """ with salt.utils.event.get_event( node, sock_dir or __opts__["sock_dir"], __opts__["transport"], opts=__opts__, listen=True, ) as sevent: while True: ret = sevent.get_event(full=True, auto_reconnect=True) if ret is None: continue if salt.utils.stringutils.expr_match(ret["tag"], tagmatch): if not quiet: salt.utils.stringutils.print_cli( "{}\t{}".format( salt.utils.stringutils.to_str(ret["tag"]), salt.utils.json.dumps( salt.utils.data.decode(ret["data"]), sort_keys=pretty, indent=None if not pretty else 4, ), ) ) sys.stdout.flush() if count > 0: count -= 1 log.debug("Remaining event matches: %s", count) if count == 0: break else: log.debug("Skipping event tag: %s", ret["tag"]) continue
31.994431
147
0.613808
d669123a9292d3bf1da68d1ae90f3abe98538e95
6,891
py
Python
register/forms.py
cds-snc/covid-alert-portal
e7d56fa9fa4a2ad2d60f056eae063713661bd260
[ "MIT" ]
43
2020-07-31T14:38:06.000Z
2022-03-07T11:28:28.000Z
register/forms.py
cds-snc/covid-alert-portal
e7d56fa9fa4a2ad2d60f056eae063713661bd260
[ "MIT" ]
322
2020-07-23T19:38:26.000Z
2022-03-31T19:15:45.000Z
register/forms.py
cds-snc/covid-alert-portal
e7d56fa9fa4a2ad2d60f056eae063713661bd260
[ "MIT" ]
6
2020-11-28T19:30:20.000Z
2021-07-29T18:06:55.000Z
import re from django import forms from django.core.validators import RegexValidator from portal.forms import HealthcareBaseForm from django.utils.translation import gettext_lazy as _ from portal.widgets import CDSRadioWidget from phonenumber_field.formfields import PhoneNumberField from dependency_injector.wiring import inject, Provide from portal.containers import Container from portal.services import NotifyService from .widgets import AutocompleteWidget from localflavor.ca.forms import CAPostalCodeField from django.core.exceptions import ValidationError type_event = 1 type_place = 2 type_event_or_place = 3 location_restaurant_bar_coffee = "restaurant_bar_coffee" location_fitness_recreation = "fitness_recreation" location_arts_entertainment = "arts_entertainment" location_grooming_wellness = "grooming_wellness" location_religious_space = "religious_space" location_events = "events" location_retail = "retail" location_medical = "medical" location_centres = "centres" location_other = "other" location_category_type_map = { location_restaurant_bar_coffee: type_place, location_fitness_recreation: type_place, location_arts_entertainment: type_place, location_grooming_wellness: type_place, location_religious_space: type_place, location_events: type_event, location_retail: type_place, location_medical: type_place, location_centres: type_place, location_other: type_event_or_place, } location_choices = [ ("", _("Select a type of place or event")), (location_restaurant_bar_coffee, _("Restaurant, bar, coffee shop")), (location_fitness_recreation, _("Fitness, sports, recreation")), (location_arts_entertainment, _("Arts, entertainment")), (location_grooming_wellness, _("Grooming and wellness")), (location_religious_space, _("Places of worship")), (location_events, _("Events such as festivals, weddings, conferences")), (location_retail, _("Retail such as grocery stores, liquor stores, pharmacies")), (location_medical, _("Medical centres, such as doctor or dentist offices")), (location_centres, _("Community centres, libraries, government service centres")), (location_other, _("Other")), ] @inject def send_email( to_email, payload, template_id, notify_service: NotifyService = Provide[Container.notify_service], ): notify_service.send_email( address=to_email, template_id=template_id, details=payload ) class EmailForm(HealthcareBaseForm, forms.Form): email = forms.EmailField(label=_("Email address"), max_length=255) class LocationCategoryForm(HealthcareBaseForm, forms.Form): category = forms.ChoiceField( label="", choices=location_choices, ) category_description = forms.CharField( label=_("Tell us the type of place."), required=False, max_length=200 ) def clean(self): cleaned_data = super().clean() other_selected = cleaned_data.get("category") == "other" category_description = cleaned_data.get("category_description") if other_selected and not category_description: raise forms.ValidationError(_("Tell us the type of place.")) alphanum_validator = RegexValidator( r'^[0-9A-zÀ-ÿ-_\s,.!?"\'\(\):;«»@$&]*$', _("Only enter letters or numbers.") ) class LocationNameForm(HealthcareBaseForm, forms.Form): name = forms.CharField( label="", max_length=65, validators=[alphanum_validator], error_messages={ "max_length": _( "Your name is longer than the %(limit_value)d character limit." ) }, ) provinces = [ ("", _("Select a province or territory")), ("AB", _("Alberta")), ("BC", _("British Columbia")), ("MB", _("Manitoba")), ("NB", _("New Brunswick")), ("NL", _("Newfoundland and Labrador")), ("NS", _("Nova Scotia")), ("NT", _("Northwest Territories")), ("NU", _("Nunavut")), ("ON", _("Ontario")), ("PE", _("Prince Edward Island")), ("QC", _("Quebec")), ("SK", _("Saskatchewan")), ("YT", _("Yukon")), ] class LocationAddressForm(HealthcareBaseForm, forms.Form): address = forms.CharField( label=_("Address line 1"), widget=AutocompleteWidget(), max_length=200, validators=[alphanum_validator], ) address_2 = forms.CharField( label=_("Address line 2"), required=False, max_length=200, validators=[alphanum_validator], ) city = forms.CharField( label=_("City"), max_length=100, validators=[alphanum_validator], ) province = forms.ChoiceField(label=_("Province or territory"), choices=provinces) postal_code = CAPostalCodeField( label=_("Postal code"), max_length=10, error_messages={"invalid": _("Enter a valid Canadian postal code.")}, ) class LocationContactForm(HealthcareBaseForm, forms.Form): contact_name = forms.CharField( label=_("Name of contact"), max_length=200, validators=[alphanum_validator], ) contact_email = forms.EmailField( label=_("Contact email"), max_length=255, ) invalid_phone_error = _("Your phone number must be valid.") contact_phone = PhoneNumberField( label=_("Contact phone number"), error_messages={"invalid": invalid_phone_error}, ) contact_phone_ext = forms.CharField( label=_("Extension"), required=False, max_length=20, validators=[alphanum_validator], ) def clean_contact_phone(self): phone_number = self.data["contact-contact_phone"] cleaned_phone_number = self.cleaned_data["contact_phone"] # Search for an alpha characters m = re.search("[A-Za-z]+", phone_number) # By default the PhoneNumberField will convert chars to #s # Raise a validation error if alpha chars found if m: raise ValidationError(self.invalid_phone_error) return cleaned_phone_number class RegisterSummaryForm(HealthcareBaseForm, forms.Form): """ A form to show an information panel. """ pass class ContactUsForm(HealthcareBaseForm, forms.Form): help_category = forms.ChoiceField( label="", choices=[ ("get_help", _("Get help.")), ("give_feedback", _("Give feedback.")), ("something_else", _("Something else.")), ], widget=CDSRadioWidget(attrs={"class": "multichoice-radio"}), ) more_info = forms.CharField( label=_("Tell us more about the issue"), widget=forms.Textarea, ) contact_email = forms.EmailField( label=_("Your email address"), help_text=_( "We'll use this if we need to contact you. We will not use your email address for anything else." ), )
31.040541
109
0.674358