File size: 14,570 Bytes
8f08de8
9c986ec
4a4dcbd
de1701c
9c986ec
8f08de8
 
 
 
9c986ec
8f08de8
120d220
8f08de8
0718fad
f79bf21
120d220
9c986ec
8f08de8
0718fad
de1701c
 
 
4a4dcbd
8f08de8
 
9c986ec
8f08de8
0718fad
8f08de8
de1701c
 
 
 
8f08de8
9c986ec
de1701c
7617f65
de1701c
9c986ec
8f08de8
0718fad
de1701c
9c986ec
f79bf21
9c986ec
120d220
 
de1701c
f79bf21
 
9c986ec
f79bf21
9c986ec
 
f79bf21
 
9c986ec
 
8f08de8
de1701c
 
7617f65
 
de1701c
9c986ec
de1701c
7617f65
de1701c
0718fad
 
9c986ec
de1701c
0718fad
de1701c
 
7617f65
de1701c
7617f65
0718fad
 
de1701c
 
 
4a4dcbd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
de1701c
7617f65
de1701c
 
 
 
7617f65
4a4dcbd
 
 
de1701c
 
 
 
4a4dcbd
 
 
 
 
 
de1701c
4a4dcbd
de1701c
4a4dcbd
 
 
 
 
de1701c
 
4a4dcbd
de1701c
 
4a4dcbd
de1701c
 
 
 
 
4a4dcbd
 
de1701c
 
 
 
4a4dcbd
de1701c
 
 
 
 
4a4dcbd
 
 
de1701c
 
 
 
4a4dcbd
de1701c
 
 
4a4dcbd
de1701c
 
 
 
4a4dcbd
 
de1701c
7617f65
de1701c
 
9c986ec
 
 
 
7617f65
 
9c986ec
4a4dcbd
de1701c
 
 
 
 
 
 
 
9c986ec
 
 
 
 
 
 
0718fad
9c986ec
 
 
de1701c
 
 
 
 
 
 
 
 
 
9c986ec
de1701c
 
 
9c986ec
 
de1701c
4a4dcbd
 
 
 
 
 
 
 
 
 
 
 
 
de1701c
4a4dcbd
de1701c
 
4a4dcbd
de1701c
 
 
 
4a4dcbd
de1701c
4a4dcbd
 
 
de1701c
 
 
 
 
 
 
 
 
0718fad
120d220
 
8f08de8
de1701c
8f08de8
de1701c
f79bf21
 
7617f65
 
de1701c
7617f65
f79bf21
 
7617f65
de1701c
7617f65
9c986ec
7617f65
 
9c986ec
 
de1701c
 
0718fad
9c986ec
de1701c
 
 
 
 
 
 
8f08de8
de1701c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
120d220
de1701c
9c986ec
 
 
de1701c
 
 
9c986ec
de1701c
 
9c986ec
de1701c
4a4dcbd
8f08de8
7617f65
f79bf21
 
de1701c
 
 
4a4dcbd
de1701c
8f08de8
 
de1701c
8f08de8
0718fad
de1701c
120d220
de1701c
 
9c986ec
de1701c
 
8f08de8
 
9c986ec
de1701c
7617f65
9c986ec
 
 
 
 
 
 
 
 
 
 
4a4dcbd
9c986ec
 
4a4dcbd
9c986ec
 
 
 
de1701c
9c986ec
 
 
 
 
 
7617f65
9c986ec
 
de1701c
 
4a4dcbd
 
9c986ec
de1701c
 
 
8f08de8
 
de1701c
8f08de8
9c986ec
 
de1701c
9c986ec
 
de1701c
8f08de8
 
120d220
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
import os
import time
import inspect
from typing import Any, Dict, List, Optional, Tuple

import numpy as np
import pandas as pd
import gradio as gr
import torch
import plotly.graph_objects as go

from chronos import Chronos2Pipeline


MODEL_ID_DEFAULT = os.getenv("CHRONOS_MODEL_ID", "amazon/chronos-2")
DATA_DIR = "data"
OUT_DIR = "/tmp"


# -------------------------
# Data
# -------------------------
def available_test_csv() -> List[str]:
    if not os.path.isdir(DATA_DIR):
        return []
    return sorted([f for f in os.listdir(DATA_DIR) if f.lower().endswith(".csv")])


def pick_device(ui_choice: str) -> str:
    return "cuda" if (ui_choice or "").startswith("cuda") and torch.cuda.is_available() else "cpu"


def make_sample_series(n: int, seed: int, trend: float, season_period: int, season_amp: float, noise: float) -> np.ndarray:
    rng = np.random.default_rng(int(seed))
    t = np.arange(int(n), dtype=np.float32)
    y = (trend * t + season_amp * np.sin(2 * np.pi * t / max(1, int(season_period))) + rng.normal(0, noise, size=int(n))).astype(np.float32)
    if float(np.min(y)) < 0:
        y -= float(np.min(y))
    return y


def load_series_from_csv(csv_path: str, column: Optional[str]) -> Tuple[np.ndarray, str]:
    df = pd.read_csv(csv_path)
    col = (column or "").strip()
    if not col:
        numeric_cols = [c for c in df.columns if pd.api.types.is_numeric_dtype(df[c])]
        if not numeric_cols:
            # try coercion
            for c in df.columns:
                coerced = pd.to_numeric(df[c], errors="coerce")
                if coerced.notna().sum() > 0:
                    numeric_cols.append(c)
            if not numeric_cols:
                raise ValueError("Non trovo colonne numeriche nel CSV.")
        col = numeric_cols[0]
    if col not in df.columns:
        raise ValueError(f"Colonna '{col}' non trovata. Disponibili: {list(df.columns)}")
    y = pd.to_numeric(df[col], errors="coerce").dropna().astype(np.float32).to_numpy()
    if len(y) < 10:
        raise ValueError("Serie troppo corta.")
    return y, col


# -------------------------
# Model cache
# -------------------------
_PIPE = None
_META = {"model_id": None, "device": None}


def get_pipeline(model_id: str, device: str) -> Chronos2Pipeline:
    global _PIPE, _META
    model_id = (model_id or MODEL_ID_DEFAULT).strip()
    device = "cuda" if device == "cuda" and torch.cuda.is_available() else "cpu"
    if _PIPE is None or _META["model_id"] != model_id or _META["device"] != device:
        _PIPE = Chronos2Pipeline.from_pretrained(model_id, device_map=device)
        _META = {"model_id": model_id, "device": device}
    return _PIPE


# -------------------------
# Predict (STABLE)
# -------------------------
def _to_numpy(x: Any) -> np.ndarray:
    if isinstance(x, np.ndarray):
        return x
    if torch.is_tensor(x):
        return x.detach().cpu().numpy()
    return np.asarray(x)


def _extract_samples(raw: Any) -> np.ndarray:
    if isinstance(raw, dict):
        for k in ["samples", "predictions", "prediction", "output"]:
            if k in raw:
                return _to_numpy(raw[k])
        if len(raw) > 0:
            return _to_numpy(next(iter(raw.values())))
        return np.asarray([], dtype=np.float32)
    return _to_numpy(raw)


def chronos2_predict(pipe: Chronos2Pipeline, y: np.ndarray, horizon: int, requested_samples: int) -> Tuple[np.ndarray, bool, str]:
    """
    Returns:
      samples: (S, H)
      multi: whether S>1 is real (not replicated)
      note: debug note
    """
    sig = inspect.signature(pipe.predict)
    params = sig.parameters

    # input format: ALWAYS batch = [series]
    inputs = [y.tolist()]

    # kw for horizon
    horizon_kw = None
    for cand in ["prediction_length", "horizon", "steps", "n_steps", "pred_len"]:
        if cand in params:
            horizon_kw = cand
            break

    # kw for samples count (many versions don't have it!)
    sample_kw = None
    for cand in ["n_samples", "num_return_sequences", "num_samples"]:
        if cand in params:
            sample_kw = cand
            break

    kwargs: Dict[str, Any] = {}
    if horizon_kw:
        kwargs[horizon_kw] = int(horizon)
    else:
        # worst case: try positional horizon if supported (rare)
        kwargs["prediction_length"] = int(horizon)

    if sample_kw:
        kwargs[sample_kw] = int(requested_samples)

    # call
    raw = pipe.predict(inputs=inputs, **kwargs) if "inputs" in params else pipe.predict(inputs, **kwargs)
    arr = _extract_samples(raw).astype(np.float32, copy=False)

    # normalize shape -> (S,H)
    arr = np.squeeze(arr)
    if arr.ndim == 1:
        # could be (H,) or (S,) - assume horizon if length == H
        arr = arr[None, :]

    # Sometimes output is (B,S,H) or (B,H). If batch dim exists, take first
    if arr.ndim == 3:
        # assume (B,S,H) or (S,B,H); safest: pick first on axis=0
        arr = arr[0]
        if arr.ndim == 1:
            arr = arr[None, :]

    # ensure horizon length
    if arr.shape[-1] != horizon:
        if arr.shape[-1] > horizon:
            arr = arr[..., :horizon]
        else:
            pad = horizon - arr.shape[-1]
            last = arr[..., -1:]
            arr = np.concatenate([arr, np.repeat(last, pad, axis=-1)], axis=-1)

    # If we got only 1 sample, we can still plot median but band is not meaningful
    real_multi = arr.shape[0] > 1
    note = f"predict_signature={sig} | used_horizon_kw={horizon_kw} | used_sample_kw={sample_kw} | got_shape={tuple(arr.shape)}"
    return arr, real_multi, note


# -------------------------
# Plotly
# -------------------------
def plot_forecast(y, median, low, high, title, show_band: bool, band_label: str) -> go.Figure:
    t_hist = np.arange(len(y))
    t_fcst = np.arange(len(y), len(y) + len(median))

    fig = go.Figure()
    fig.add_trace(go.Scatter(x=t_hist, y=y, mode="lines", name="History"))
    fig.add_trace(go.Scatter(x=t_fcst, y=median, mode="lines", name="Forecast (median)"))
    fig.add_vline(x=len(y) - 1, line_width=1, line_dash="dash", opacity=0.6)

    if show_band:
        fig.add_trace(go.Scatter(x=t_fcst, y=high, mode="lines", line=dict(width=0),
                                 showlegend=False, hoverinfo="skip"))
        fig.add_trace(go.Scatter(
            x=t_fcst, y=low, mode="lines", fill="tonexty",
            line=dict(width=0), name=band_label
        ))

    fig.update_layout(
        title=title,
        hovermode="x unified",
        margin=dict(l=10, r=10, t=55, b=10),
        legend=dict(orientation="h", yanchor="bottom", y=1.02, xanchor="left", x=0),
        xaxis_title="t",
        yaxis_title="value",
    )
    return fig


def kpi_card(label: str, value: str, hint: str = "") -> str:
    hint_html = f"<div style='opacity:.75;font-size:12px;margin-top:6px;'>{hint}</div>" if hint else ""
    return f"""
    <div style="border:1px solid rgba(255,255,255,.12); border-radius:16px; padding:14px 16px;
                background: rgba(255,255,255,.04);">
      <div style="font-size:12px;opacity:.8;">{label}</div>
      <div style="font-size:22px;font-weight:700;margin-top:4px;">{value}</div>
      {hint_html}
    </div>
    """


def kpi_grid(cards: List[str]) -> str:
    return f"<div style='display:grid; grid-template-columns: repeat(6, minmax(0, 1fr)); gap:12px;'>{''.join(cards)}</div>"


def explain(y, median, low, high, band_enabled: bool, q_low: float, q_high: float, extra: str) -> str:
    horizon = len(median)
    base = float(np.mean(y))
    delta = float(median[-1] - median[0])
    pct = (delta / max(1e-6, base)) * 100.0

    if abs(pct) < 2:
        trend_txt = "sostanzialmente stabile"
    elif pct > 0:
        trend_txt = "in crescita"
    else:
        trend_txt = "in calo"

    txt = f"""
### 🧠 Spiegazione

Nei prossimi **{horizon} step** la previsione mediana Γ¨ **{trend_txt}** (variazione β‰ˆ **{pct:+.1f}%** rispetto al livello medio storico).
- **Ultimo valore mediano previsto:** **{median[-1]:.2f}**
"""
    if band_enabled:
        txt += f"- **Banda [{q_low:.0%}–{q_high:.0%}] (ultimo step):** **[{low[-1]:.2f} – {high[-1]:.2f}]**\n"
    else:
        txt += "- **Banda di incertezza:** disattivata (questa versione di Chronos2 non restituisce campioni multipli con i parametri disponibili).\n"

    txt += f"\n<details><summary>Debug</summary>\n\n`{extra}`\n\n</details>\n"
    return txt


# -------------------------
# Run
# -------------------------
def run_all(
    input_mode, test_csv_name, upload_csv, csv_column,
    n, seed, trend, season_period, season_amp, noise,
    prediction_length, requested_samples, q_low, q_high,
    device_ui, model_id,
):
    if q_low >= q_high:
        raise gr.Error("Quantile low deve essere < quantile high.")

    device = pick_device(device_ui)
    pipe = get_pipeline(model_id, device)

    # data
    if input_mode == "Test CSV":
        if not test_csv_name:
            raise gr.Error("Seleziona un Test CSV.")
        path = os.path.join(DATA_DIR, test_csv_name)
        y, used_col = load_series_from_csv(path, csv_column)
        source = f"Test CSV: {test_csv_name} β€’ col={used_col}"
    elif input_mode == "Upload CSV":
        if upload_csv is None:
            raise gr.Error("Carica un CSV.")
        y, used_col = load_series_from_csv(upload_csv.name, csv_column)
        source = f"Upload CSV β€’ col={used_col}"
    else:
        y = make_sample_series(n, seed, trend, season_period, season_amp, noise)
        source = "Sample series"

    t0 = time.time()
    samples, real_multi, note = chronos2_predict(pipe, y, int(prediction_length), int(requested_samples))
    latency = time.time() - t0

    median = np.quantile(samples, 0.50, axis=0)
    band_enabled = real_multi and samples.shape[0] > 2
    if band_enabled:
        low = np.quantile(samples, float(q_low), axis=0)
        high = np.quantile(samples, float(q_high), axis=0)
    else:
        low = median.copy()
        high = median.copy()

    # KPI
    cards = [
        kpi_card("Device", device.upper(), f"cuda_available={torch.cuda.is_available()}"),
        kpi_card("Latency", f"{latency:.2f}s", "predict()"),
        kpi_card("Samples", str(samples.shape[0]), "returned by model"),
        kpi_card("Band", "ON" if band_enabled else "OFF", "needs multi-samples"),
        kpi_card("Horizon", str(prediction_length)),
        kpi_card("Model", (model_id or MODEL_ID_DEFAULT)),
    ]
    kpis_html = kpi_grid(cards)

    # Plot
    fig = plot_forecast(
        y=y,
        median=median,
        low=low,
        high=high,
        title=f"Forecast β€” {source}",
        show_band=band_enabled,
        band_label=f"Band [{q_low:.2f}, {q_high:.2f}]",
    )

    # Table + export
    t_fcst = np.arange(len(y), len(y) + int(prediction_length))
    out_df = pd.DataFrame({
        "t": t_fcst,
        "median": median,
    })
    if band_enabled:
        out_df[f"q{q_low:.2f}"] = low
        out_df[f"q{q_high:.2f}"] = high

    out_path = os.path.join(OUT_DIR, "chronos2_forecast.csv")
    out_df.to_csv(out_path, index=False)

    explanation_md = explain(y, median, low, high, band_enabled, q_low, q_high, note)

    info = {
        "source": source,
        "history_points": int(len(y)),
        "prediction_length": int(prediction_length),
        "requested_samples": int(requested_samples),
        "returned_samples": int(samples.shape[0]),
        "band_enabled": bool(band_enabled),
        "predict_signature": str(inspect.signature(pipe.predict)),
        "debug_note": note,
    }

    return kpis_html, explanation_md, fig, out_df, out_path, info


# -------------------------
# UI
# -------------------------
css = """.gradio-container { max-width: 1200px !important; }"""

with gr.Blocks(title="Chronos-2 β€’ Pro Dashboard (Stable)", css=css) as demo:
    gr.Markdown("# ⏱️ Chronos-2 Forecast Dashboard β€” Stable Edition")

    with gr.Row():
        with gr.Column(scale=1, min_width=360):
            input_mode = gr.Radio(["Sample", "Test CSV", "Upload CSV"], value="Sample", label="Input")
            test_csv_name = gr.Dropdown(choices=available_test_csv(), label="Test CSV (data/)")
            upload_csv = gr.File(label="Upload CSV", file_types=[".csv"])
            csv_column = gr.Textbox(label="Colonna numerica (opzionale)", placeholder="es: value")

            device_ui = gr.Dropdown(
                ["cpu", "cuda (se disponibile)"],
                value="cuda (se disponibile)" if torch.cuda.is_available() else "cpu",
                label="Device",
            )
            model_id = gr.Textbox(value=MODEL_ID_DEFAULT, label="Model ID")

            with gr.Accordion("Sample generator", open=False):
                n = gr.Slider(60, 2000, value=300, step=10, label="History length")
                seed = gr.Number(value=42, precision=0, label="Seed")
                trend = gr.Slider(0.0, 0.2, value=0.03, step=0.005, label="Trend")
                season_period = gr.Slider(2, 240, value=14, step=1, label="Season period")
                season_amp = gr.Slider(0.0, 12.0, value=3.0, step=0.1, label="Season amplitude")
                noise = gr.Slider(0.0, 6.0, value=0.8, step=0.05, label="Noise")

            prediction_length = gr.Slider(1, 365, value=30, step=1, label="Prediction length")
            requested_samples = gr.Slider(1, 800, value=200, step=25, label="Requested samples (best effort)")
            q_low = gr.Slider(0.01, 0.49, value=0.10, step=0.01, label="Quantile low")
            q_high = gr.Slider(0.51, 0.99, value=0.90, step=0.01, label="Quantile high")

            run_btn = gr.Button("Run", variant="primary")

        with gr.Column(scale=2):
            kpis = gr.HTML()
            with gr.Tabs():
                with gr.Tab("Forecast"):
                    forecast_plot = gr.Plot()
                    forecast_table = gr.Dataframe(interactive=False)
                with gr.Tab("Spiegazione"):
                    explanation = gr.Markdown()
                with gr.Tab("Export"):
                    download = gr.File()
                with gr.Tab("Info"):
                    info = gr.JSON()

    run_btn.click(
        fn=run_all,
        inputs=[
            input_mode, test_csv_name, upload_csv, csv_column,
            n, seed, trend, season_period, season_amp, noise,
            prediction_length, requested_samples, q_low, q_high,
            device_ui, model_id,
        ],
        outputs=[kpis, explanation, forecast_plot, forecast_table, download, info],
    )

demo.queue()
demo.launch(ssr_mode=False)