Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,4 +1,5 @@
|
|
| 1 |
import os
|
|
|
|
| 2 |
import numpy as np
|
| 3 |
import pandas as pd
|
| 4 |
import gradio as gr
|
|
@@ -7,34 +8,35 @@ import torch
|
|
| 7 |
|
| 8 |
from chronos import Chronos2Pipeline
|
| 9 |
|
| 10 |
-
|
| 11 |
# =========================
|
| 12 |
# Config
|
| 13 |
# =========================
|
| 14 |
-
MODEL_ID_DEFAULT = "amazon/chronos-2"
|
| 15 |
DATA_DIR = "data"
|
| 16 |
|
| 17 |
-
|
| 18 |
# =========================
|
| 19 |
-
#
|
| 20 |
# =========================
|
| 21 |
def available_test_csv():
|
| 22 |
if not os.path.isdir(DATA_DIR):
|
| 23 |
return []
|
| 24 |
-
return sorted(f for f in os.listdir(DATA_DIR) if f.endswith(".csv"))
|
| 25 |
-
|
| 26 |
|
| 27 |
def pick_device(ui_choice: str) -> str:
|
| 28 |
-
if ui_choice.startswith("cuda") and torch.cuda.is_available():
|
| 29 |
return "cuda"
|
| 30 |
return "cpu"
|
| 31 |
|
| 32 |
-
|
|
|
|
|
|
|
| 33 |
_PIPELINE = None
|
| 34 |
_PIPELINE_META = {}
|
| 35 |
|
| 36 |
-
|
| 37 |
def get_pipeline(model_id: str, device: str):
|
|
|
|
|
|
|
|
|
|
| 38 |
global _PIPELINE, _PIPELINE_META
|
| 39 |
|
| 40 |
model_id = (model_id or MODEL_ID_DEFAULT).strip()
|
|
@@ -45,44 +47,128 @@ def get_pipeline(model_id: str, device: str):
|
|
| 45 |
or _PIPELINE_META.get("model_id") != model_id
|
| 46 |
or _PIPELINE_META.get("device") != device
|
| 47 |
):
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
device_map=device,
|
| 51 |
-
)
|
| 52 |
-
_PIPELINE = pipe
|
| 53 |
_PIPELINE_META = {"model_id": model_id, "device": device}
|
| 54 |
|
| 55 |
return _PIPELINE
|
| 56 |
|
| 57 |
-
|
|
|
|
|
|
|
| 58 |
def make_sample_series(n, seed, trend, season_period, season_amp, noise):
|
| 59 |
rng = np.random.default_rng(int(seed))
|
| 60 |
t = np.arange(int(n))
|
| 61 |
y = (
|
| 62 |
-
trend * t
|
| 63 |
-
+ season_amp * np.sin(2 * np.pi * t / max(1, int(season_period)))
|
| 64 |
-
+ rng.normal(0, noise, size=len(t))
|
| 65 |
)
|
| 66 |
-
if
|
| 67 |
-
|
|
|
|
|
|
|
| 68 |
return y.astype(np.float32)
|
| 69 |
|
| 70 |
-
|
| 71 |
def load_series_from_csv(path_or_file, column=None):
|
| 72 |
df = pd.read_csv(path_or_file)
|
| 73 |
|
| 74 |
-
if
|
|
|
|
|
|
|
|
|
|
|
|
|
| 75 |
numeric_cols = [c for c in df.columns if pd.api.types.is_numeric_dtype(df[c])]
|
| 76 |
if not numeric_cols:
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 81 |
if len(y) < 10:
|
| 82 |
-
raise ValueError("Serie troppo corta (minimo ~10 punti).")
|
| 83 |
|
| 84 |
-
return y.astype(np.float32),
|
| 85 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 86 |
|
| 87 |
# =========================
|
| 88 |
# Forecast core
|
|
@@ -99,59 +185,61 @@ def run_forecast(
|
|
| 99 |
season_amp,
|
| 100 |
noise,
|
| 101 |
prediction_length,
|
| 102 |
-
|
| 103 |
q_low,
|
| 104 |
q_high,
|
| 105 |
device_ui,
|
| 106 |
model_id,
|
| 107 |
):
|
| 108 |
-
|
|
|
|
| 109 |
raise gr.Error("Quantile low deve essere < quantile high.")
|
| 110 |
|
|
|
|
| 111 |
device = pick_device(device_ui)
|
| 112 |
pipe = get_pipeline(model_id, device)
|
| 113 |
|
| 114 |
-
#
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
|
|
|
|
|
|
| 120 |
source = f"Test CSV: {test_csv_name} ({used_col})"
|
| 121 |
|
| 122 |
-
elif input_mode == "Upload CSV"
|
|
|
|
|
|
|
| 123 |
y, used_col = load_series_from_csv(upload_csv.name, csv_column)
|
| 124 |
source = f"Upload CSV ({used_col})"
|
| 125 |
|
| 126 |
-
else:
|
| 127 |
y = make_sample_series(n, seed, trend, season_period, season_amp, noise)
|
| 128 |
source = "Sample data"
|
| 129 |
|
| 130 |
-
#
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
inputs=y.tolist(),
|
| 135 |
prediction_length=int(prediction_length),
|
| 136 |
-
|
| 137 |
)
|
| 138 |
-
samples = np.asarray(samples, dtype=np.float32)
|
| 139 |
-
|
| 140 |
|
|
|
|
| 141 |
median = np.quantile(samples, 0.50, axis=0)
|
| 142 |
-
low = np.quantile(samples, q_low, axis=0)
|
| 143 |
-
high = np.quantile(samples, q_high, axis=0)
|
| 144 |
|
| 145 |
-
# -------------------------
|
| 146 |
# Plot
|
| 147 |
-
# -------------------------
|
| 148 |
t_hist = np.arange(len(y))
|
| 149 |
t_fcst = np.arange(len(y), len(y) + int(prediction_length))
|
| 150 |
|
| 151 |
fig, ax = plt.subplots(figsize=(10, 4))
|
| 152 |
ax.plot(t_hist, y, label="history")
|
| 153 |
ax.plot(t_fcst, median, label="forecast (median)")
|
| 154 |
-
ax.fill_between(t_fcst, low, high, alpha=0.25, label="
|
| 155 |
ax.axvline(len(y) - 1, linestyle="--", linewidth=1)
|
| 156 |
ax.set_title(source)
|
| 157 |
ax.set_xlabel("t")
|
|
@@ -159,15 +247,13 @@ def run_forecast(
|
|
| 159 |
ax.grid(True, alpha=0.3)
|
| 160 |
ax.legend()
|
| 161 |
|
| 162 |
-
#
|
| 163 |
-
# Output
|
| 164 |
-
# -------------------------
|
| 165 |
out_df = pd.DataFrame(
|
| 166 |
{
|
| 167 |
"t": t_fcst,
|
| 168 |
"median": median,
|
| 169 |
-
f"q{q_low:.2f}": low,
|
| 170 |
-
f"q{q_high:.2f}": high,
|
| 171 |
}
|
| 172 |
)
|
| 173 |
|
|
@@ -175,22 +261,23 @@ def run_forecast(
|
|
| 175 |
out_df.to_csv(out_path, index=False)
|
| 176 |
|
| 177 |
info = {
|
| 178 |
-
"model_id": model_id,
|
| 179 |
"device": device,
|
| 180 |
"source": source,
|
| 181 |
-
"history_points": len(y),
|
| 182 |
-
"prediction_length": prediction_length,
|
| 183 |
-
"
|
|
|
|
| 184 |
}
|
| 185 |
|
| 186 |
return fig, out_df, out_path, info
|
| 187 |
|
| 188 |
-
|
| 189 |
# =========================
|
| 190 |
# UI
|
| 191 |
# =========================
|
| 192 |
with gr.Blocks(title="Chronos-2 • HF Spaces Demo") as demo:
|
| 193 |
-
gr.Markdown("# ⏱️ Chronos-2 Forecast Demo"
|
|
|
|
| 194 |
|
| 195 |
with gr.Row():
|
| 196 |
input_mode = gr.Radio(
|
|
@@ -208,10 +295,10 @@ with gr.Blocks(title="Chronos-2 • HF Spaces Demo") as demo:
|
|
| 208 |
with gr.Row():
|
| 209 |
test_csv_name = gr.Dropdown(
|
| 210 |
choices=available_test_csv(),
|
| 211 |
-
label="Test CSV disponibili",
|
| 212 |
)
|
| 213 |
upload_csv = gr.File(label="Upload CSV", file_types=[".csv"])
|
| 214 |
-
csv_column = gr.Textbox(label="Colonna numerica (opzionale)")
|
| 215 |
|
| 216 |
with gr.Accordion("Sample data settings", open=False):
|
| 217 |
n = gr.Slider(60, 600, 220, step=10, label="History length")
|
|
@@ -223,7 +310,8 @@ with gr.Blocks(title="Chronos-2 • HF Spaces Demo") as demo:
|
|
| 223 |
|
| 224 |
with gr.Accordion("Forecast settings", open=True):
|
| 225 |
prediction_length = gr.Slider(1, 180, 30, step=1, label="Prediction length")
|
| 226 |
-
|
|
|
|
| 227 |
q_low = gr.Slider(0.01, 0.49, 0.10, step=0.01, label="Quantile low")
|
| 228 |
q_high = gr.Slider(0.51, 0.99, 0.90, step=0.01, label="Quantile high")
|
| 229 |
|
|
@@ -248,7 +336,7 @@ with gr.Blocks(title="Chronos-2 • HF Spaces Demo") as demo:
|
|
| 248 |
season_amp,
|
| 249 |
noise,
|
| 250 |
prediction_length,
|
| 251 |
-
|
| 252 |
q_low,
|
| 253 |
q_high,
|
| 254 |
device_ui,
|
|
|
|
| 1 |
import os
|
| 2 |
+
import inspect
|
| 3 |
import numpy as np
|
| 4 |
import pandas as pd
|
| 5 |
import gradio as gr
|
|
|
|
| 8 |
|
| 9 |
from chronos import Chronos2Pipeline
|
| 10 |
|
|
|
|
| 11 |
# =========================
|
| 12 |
# Config
|
| 13 |
# =========================
|
| 14 |
+
MODEL_ID_DEFAULT = os.getenv("CHRONOS_MODEL_ID", "amazon/chronos-2")
|
| 15 |
DATA_DIR = "data"
|
| 16 |
|
|
|
|
| 17 |
# =========================
|
| 18 |
+
# Helpers: files & device
|
| 19 |
# =========================
|
| 20 |
def available_test_csv():
|
| 21 |
if not os.path.isdir(DATA_DIR):
|
| 22 |
return []
|
| 23 |
+
return sorted(f for f in os.listdir(DATA_DIR) if f.lower().endswith(".csv"))
|
|
|
|
| 24 |
|
| 25 |
def pick_device(ui_choice: str) -> str:
|
| 26 |
+
if (ui_choice or "").startswith("cuda") and torch.cuda.is_available():
|
| 27 |
return "cuda"
|
| 28 |
return "cpu"
|
| 29 |
|
| 30 |
+
# =========================
|
| 31 |
+
# Model cache
|
| 32 |
+
# =========================
|
| 33 |
_PIPELINE = None
|
| 34 |
_PIPELINE_META = {}
|
| 35 |
|
|
|
|
| 36 |
def get_pipeline(model_id: str, device: str):
|
| 37 |
+
"""
|
| 38 |
+
Caches the pipeline across calls to avoid re-downloading and re-loading.
|
| 39 |
+
"""
|
| 40 |
global _PIPELINE, _PIPELINE_META
|
| 41 |
|
| 42 |
model_id = (model_id or MODEL_ID_DEFAULT).strip()
|
|
|
|
| 47 |
or _PIPELINE_META.get("model_id") != model_id
|
| 48 |
or _PIPELINE_META.get("device") != device
|
| 49 |
):
|
| 50 |
+
# Chronos-2 pipeline
|
| 51 |
+
_PIPELINE = Chronos2Pipeline.from_pretrained(model_id, device_map=device)
|
|
|
|
|
|
|
|
|
|
| 52 |
_PIPELINE_META = {"model_id": model_id, "device": device}
|
| 53 |
|
| 54 |
return _PIPELINE
|
| 55 |
|
| 56 |
+
# =========================
|
| 57 |
+
# Data generation/loading
|
| 58 |
+
# =========================
|
| 59 |
def make_sample_series(n, seed, trend, season_period, season_amp, noise):
|
| 60 |
rng = np.random.default_rng(int(seed))
|
| 61 |
t = np.arange(int(n))
|
| 62 |
y = (
|
| 63 |
+
float(trend) * t
|
| 64 |
+
+ float(season_amp) * np.sin(2 * np.pi * t / max(1, int(season_period)))
|
| 65 |
+
+ rng.normal(0.0, float(noise), size=len(t))
|
| 66 |
)
|
| 67 |
+
# shift up if negative (not required, but keeps nice plots)
|
| 68 |
+
mn = float(np.min(y))
|
| 69 |
+
if mn < 0:
|
| 70 |
+
y = y - mn
|
| 71 |
return y.astype(np.float32)
|
| 72 |
|
|
|
|
| 73 |
def load_series_from_csv(path_or_file, column=None):
|
| 74 |
df = pd.read_csv(path_or_file)
|
| 75 |
|
| 76 |
+
if df.shape[1] == 0:
|
| 77 |
+
raise ValueError("CSV vuoto o non leggibile.")
|
| 78 |
+
|
| 79 |
+
col = (column or "").strip()
|
| 80 |
+
if col == "":
|
| 81 |
numeric_cols = [c for c in df.columns if pd.api.types.is_numeric_dtype(df[c])]
|
| 82 |
if not numeric_cols:
|
| 83 |
+
# try coercion to numeric on all columns (sometimes dtype is object)
|
| 84 |
+
numeric_cols = []
|
| 85 |
+
for c in df.columns:
|
| 86 |
+
coerced = pd.to_numeric(df[c], errors="coerce")
|
| 87 |
+
if coerced.notna().sum() >= 10:
|
| 88 |
+
numeric_cols.append(c)
|
| 89 |
+
if not numeric_cols:
|
| 90 |
+
raise ValueError("Nessuna colonna numerica nel CSV. Specifica una colonna con numeri.")
|
| 91 |
+
col = numeric_cols[0]
|
| 92 |
+
|
| 93 |
+
if col not in df.columns:
|
| 94 |
+
raise ValueError(f"Colonna '{col}' non trovata. Colonne: {list(df.columns)}")
|
| 95 |
+
|
| 96 |
+
y = pd.to_numeric(df[col], errors="coerce").dropna().to_numpy()
|
| 97 |
if len(y) < 10:
|
| 98 |
+
raise ValueError("Serie troppo corta (minimo ~10 punti dopo dropna).")
|
| 99 |
|
| 100 |
+
return y.astype(np.float32), col
|
| 101 |
|
| 102 |
+
# =========================
|
| 103 |
+
# Chronos2 predict normalization
|
| 104 |
+
# =========================
|
| 105 |
+
def _extract_samples(pred_out):
|
| 106 |
+
"""
|
| 107 |
+
Chronos2Pipeline.predict may return:
|
| 108 |
+
- numpy array / list -> samples
|
| 109 |
+
- dict with 'samples'
|
| 110 |
+
- object with attribute 'samples'
|
| 111 |
+
This returns np.ndarray of shape (n_draws, pred_len) or (pred_len,) if only one draw.
|
| 112 |
+
"""
|
| 113 |
+
if isinstance(pred_out, np.ndarray):
|
| 114 |
+
return pred_out
|
| 115 |
+
if isinstance(pred_out, list):
|
| 116 |
+
return np.asarray(pred_out)
|
| 117 |
+
if isinstance(pred_out, dict):
|
| 118 |
+
if "samples" in pred_out:
|
| 119 |
+
return np.asarray(pred_out["samples"])
|
| 120 |
+
# sometimes "forecast" keys etc.
|
| 121 |
+
for k in ("predictions", "prediction", "outputs"):
|
| 122 |
+
if k in pred_out:
|
| 123 |
+
return np.asarray(pred_out[k])
|
| 124 |
+
return np.asarray(pred_out)
|
| 125 |
+
# object with samples attribute
|
| 126 |
+
if hasattr(pred_out, "samples"):
|
| 127 |
+
return np.asarray(getattr(pred_out, "samples"))
|
| 128 |
+
# last resort
|
| 129 |
+
return np.asarray(pred_out)
|
| 130 |
+
|
| 131 |
+
def chronos2_predict_samples(pipe, y, prediction_length: int, n_draws: int):
|
| 132 |
+
"""
|
| 133 |
+
Calls pipe.predict in a robust way across Chronos versions:
|
| 134 |
+
- Uses `inputs=` (required)
|
| 135 |
+
- Uses `num_predictions=` if supported
|
| 136 |
+
- If not supported, falls back to a single prediction and returns shape (1, pred_len)
|
| 137 |
+
"""
|
| 138 |
+
sig = inspect.signature(pipe.predict)
|
| 139 |
+
params = sig.parameters
|
| 140 |
+
|
| 141 |
+
kwargs = {"inputs": y.tolist(), "prediction_length": int(prediction_length)}
|
| 142 |
+
|
| 143 |
+
# API differences: some versions accept num_predictions, others not
|
| 144 |
+
if "num_predictions" in params:
|
| 145 |
+
kwargs["num_predictions"] = int(n_draws)
|
| 146 |
+
|
| 147 |
+
# Some versions might have different names; try a couple safe fallbacks
|
| 148 |
+
try:
|
| 149 |
+
out = pipe.predict(**kwargs)
|
| 150 |
+
except TypeError as e:
|
| 151 |
+
# If num_predictions was rejected, retry without it
|
| 152 |
+
if "num_predictions" in kwargs:
|
| 153 |
+
kwargs.pop("num_predictions", None)
|
| 154 |
+
out = pipe.predict(**kwargs)
|
| 155 |
+
else:
|
| 156 |
+
raise e
|
| 157 |
+
|
| 158 |
+
samples = _extract_samples(out).astype(np.float32)
|
| 159 |
+
|
| 160 |
+
# Normalize shape: expected (n_draws, pred_len)
|
| 161 |
+
if samples.ndim == 1:
|
| 162 |
+
samples = samples[None, :]
|
| 163 |
+
elif samples.ndim == 2:
|
| 164 |
+
pass
|
| 165 |
+
else:
|
| 166 |
+
# If extra dims, squeeze conservatively
|
| 167 |
+
samples = np.squeeze(samples)
|
| 168 |
+
if samples.ndim == 1:
|
| 169 |
+
samples = samples[None, :]
|
| 170 |
+
|
| 171 |
+
return samples
|
| 172 |
|
| 173 |
# =========================
|
| 174 |
# Forecast core
|
|
|
|
| 185 |
season_amp,
|
| 186 |
noise,
|
| 187 |
prediction_length,
|
| 188 |
+
num_draws,
|
| 189 |
q_low,
|
| 190 |
q_high,
|
| 191 |
device_ui,
|
| 192 |
model_id,
|
| 193 |
):
|
| 194 |
+
# Validate quantiles
|
| 195 |
+
if float(q_low) >= float(q_high):
|
| 196 |
raise gr.Error("Quantile low deve essere < quantile high.")
|
| 197 |
|
| 198 |
+
# Device + pipeline
|
| 199 |
device = pick_device(device_ui)
|
| 200 |
pipe = get_pipeline(model_id, device)
|
| 201 |
|
| 202 |
+
# Choose input series
|
| 203 |
+
if input_mode == "Test CSV":
|
| 204 |
+
if not test_csv_name:
|
| 205 |
+
raise gr.Error("Seleziona un file nella dropdown dei Test CSV oppure usa Sample/Upload.")
|
| 206 |
+
csv_path = os.path.join(DATA_DIR, test_csv_name)
|
| 207 |
+
if not os.path.exists(csv_path):
|
| 208 |
+
raise gr.Error(f"Non trovo {csv_path}. Assicurati che esista nel repo dello Space.")
|
| 209 |
+
y, used_col = load_series_from_csv(csv_path, csv_column)
|
| 210 |
source = f"Test CSV: {test_csv_name} ({used_col})"
|
| 211 |
|
| 212 |
+
elif input_mode == "Upload CSV":
|
| 213 |
+
if upload_csv is None:
|
| 214 |
+
raise gr.Error("Carica un CSV oppure scegli Sample/Test CSV.")
|
| 215 |
y, used_col = load_series_from_csv(upload_csv.name, csv_column)
|
| 216 |
source = f"Upload CSV ({used_col})"
|
| 217 |
|
| 218 |
+
else: # Sample
|
| 219 |
y = make_sample_series(n, seed, trend, season_period, season_amp, noise)
|
| 220 |
source = "Sample data"
|
| 221 |
|
| 222 |
+
# Forecast samples
|
| 223 |
+
samples = chronos2_predict_samples(
|
| 224 |
+
pipe=pipe,
|
| 225 |
+
y=y,
|
|
|
|
| 226 |
prediction_length=int(prediction_length),
|
| 227 |
+
n_draws=int(num_draws),
|
| 228 |
)
|
|
|
|
|
|
|
| 229 |
|
| 230 |
+
# Quantiles
|
| 231 |
median = np.quantile(samples, 0.50, axis=0)
|
| 232 |
+
low = np.quantile(samples, float(q_low), axis=0)
|
| 233 |
+
high = np.quantile(samples, float(q_high), axis=0)
|
| 234 |
|
|
|
|
| 235 |
# Plot
|
|
|
|
| 236 |
t_hist = np.arange(len(y))
|
| 237 |
t_fcst = np.arange(len(y), len(y) + int(prediction_length))
|
| 238 |
|
| 239 |
fig, ax = plt.subplots(figsize=(10, 4))
|
| 240 |
ax.plot(t_hist, y, label="history")
|
| 241 |
ax.plot(t_fcst, median, label="forecast (median)")
|
| 242 |
+
ax.fill_between(t_fcst, low, high, alpha=0.25, label=f"band [{float(q_low):.2f}, {float(q_high):.2f}]")
|
| 243 |
ax.axvline(len(y) - 1, linestyle="--", linewidth=1)
|
| 244 |
ax.set_title(source)
|
| 245 |
ax.set_xlabel("t")
|
|
|
|
| 247 |
ax.grid(True, alpha=0.3)
|
| 248 |
ax.legend()
|
| 249 |
|
| 250 |
+
# Output table + CSV
|
|
|
|
|
|
|
| 251 |
out_df = pd.DataFrame(
|
| 252 |
{
|
| 253 |
"t": t_fcst,
|
| 254 |
"median": median,
|
| 255 |
+
f"q{float(q_low):.2f}": low,
|
| 256 |
+
f"q{float(q_high):.2f}": high,
|
| 257 |
}
|
| 258 |
)
|
| 259 |
|
|
|
|
| 261 |
out_df.to_csv(out_path, index=False)
|
| 262 |
|
| 263 |
info = {
|
| 264 |
+
"model_id": (model_id or MODEL_ID_DEFAULT),
|
| 265 |
"device": device,
|
| 266 |
"source": source,
|
| 267 |
+
"history_points": int(len(y)),
|
| 268 |
+
"prediction_length": int(prediction_length),
|
| 269 |
+
"requested_draws": int(num_draws),
|
| 270 |
+
"returned_draws": int(samples.shape[0]),
|
| 271 |
}
|
| 272 |
|
| 273 |
return fig, out_df, out_path, info
|
| 274 |
|
|
|
|
| 275 |
# =========================
|
| 276 |
# UI
|
| 277 |
# =========================
|
| 278 |
with gr.Blocks(title="Chronos-2 • HF Spaces Demo") as demo:
|
| 279 |
+
gr.Markdown("# ⏱️ Chronos-2 Forecast Demo (HF Spaces)\n\n"
|
| 280 |
+
"Supporta **Sample**, **Test CSV** (da cartella `data/`) e **Upload CSV**.")
|
| 281 |
|
| 282 |
with gr.Row():
|
| 283 |
input_mode = gr.Radio(
|
|
|
|
| 295 |
with gr.Row():
|
| 296 |
test_csv_name = gr.Dropdown(
|
| 297 |
choices=available_test_csv(),
|
| 298 |
+
label="Test CSV disponibili (cartella data/)",
|
| 299 |
)
|
| 300 |
upload_csv = gr.File(label="Upload CSV", file_types=[".csv"])
|
| 301 |
+
csv_column = gr.Textbox(label="Colonna numerica (opzionale)", placeholder="es: value")
|
| 302 |
|
| 303 |
with gr.Accordion("Sample data settings", open=False):
|
| 304 |
n = gr.Slider(60, 600, 220, step=10, label="History length")
|
|
|
|
| 310 |
|
| 311 |
with gr.Accordion("Forecast settings", open=True):
|
| 312 |
prediction_length = gr.Slider(1, 180, 30, step=1, label="Prediction length")
|
| 313 |
+
# UI label stays "Num samples", internally treated as number of prediction draws if supported
|
| 314 |
+
num_draws = gr.Slider(1, 400, 200, step=10, label="Num samples (draws)")
|
| 315 |
q_low = gr.Slider(0.01, 0.49, 0.10, step=0.01, label="Quantile low")
|
| 316 |
q_high = gr.Slider(0.51, 0.99, 0.90, step=0.01, label="Quantile high")
|
| 317 |
|
|
|
|
| 336 |
season_amp,
|
| 337 |
noise,
|
| 338 |
prediction_length,
|
| 339 |
+
num_draws,
|
| 340 |
q_low,
|
| 341 |
q_high,
|
| 342 |
device_ui,
|