Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,8 +1,7 @@
|
|
| 1 |
import os
|
| 2 |
import time
|
| 3 |
import inspect
|
| 4 |
-
from
|
| 5 |
-
from typing import Optional, Tuple, Any, Dict, List
|
| 6 |
|
| 7 |
import numpy as np
|
| 8 |
import pandas as pd
|
|
@@ -13,17 +12,14 @@ import plotly.graph_objects as go
|
|
| 13 |
from chronos import Chronos2Pipeline
|
| 14 |
|
| 15 |
|
| 16 |
-
# =========================
|
| 17 |
-
# Config
|
| 18 |
-
# =========================
|
| 19 |
MODEL_ID_DEFAULT = os.getenv("CHRONOS_MODEL_ID", "amazon/chronos-2")
|
| 20 |
DATA_DIR = "data"
|
| 21 |
OUT_DIR = "/tmp"
|
| 22 |
|
| 23 |
|
| 24 |
-
#
|
| 25 |
-
# Data
|
| 26 |
-
#
|
| 27 |
def available_test_csv() -> List[str]:
|
| 28 |
if not os.path.isdir(DATA_DIR):
|
| 29 |
return []
|
|
@@ -31,42 +27,25 @@ def available_test_csv() -> List[str]:
|
|
| 31 |
|
| 32 |
|
| 33 |
def pick_device(ui_choice: str) -> str:
|
| 34 |
-
if (ui_choice or "").startswith("cuda") and torch.cuda.is_available()
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
def make_sample_series(
|
| 40 |
-
n: int,
|
| 41 |
-
seed: int,
|
| 42 |
-
trend: float,
|
| 43 |
-
season_period: int,
|
| 44 |
-
season_amp: float,
|
| 45 |
-
noise: float,
|
| 46 |
-
) -> np.ndarray:
|
| 47 |
rng = np.random.default_rng(int(seed))
|
| 48 |
t = np.arange(int(n), dtype=np.float32)
|
| 49 |
-
y = (
|
| 50 |
-
float(trend) * t
|
| 51 |
-
+ float(season_amp) * np.sin(2 * np.pi * t / max(1, int(season_period)))
|
| 52 |
-
+ rng.normal(0.0, float(noise), size=int(n))
|
| 53 |
-
).astype(np.float32)
|
| 54 |
if float(np.min(y)) < 0:
|
| 55 |
-
y
|
| 56 |
return y
|
| 57 |
|
| 58 |
|
| 59 |
-
def load_series_from_csv(csv_path: str, column: Optional[str]) -> Tuple[np.ndarray, str
|
| 60 |
df = pd.read_csv(csv_path)
|
| 61 |
-
if df.shape[1] == 0:
|
| 62 |
-
raise ValueError("CSV vuoto o non leggibile.")
|
| 63 |
-
|
| 64 |
col = (column or "").strip()
|
| 65 |
if not col:
|
| 66 |
-
# numeric columns first
|
| 67 |
numeric_cols = [c for c in df.columns if pd.api.types.is_numeric_dtype(df[c])]
|
| 68 |
if not numeric_cols:
|
| 69 |
-
# try coercion
|
| 70 |
for c in df.columns:
|
| 71 |
coerced = pd.to_numeric(df[c], errors="coerce")
|
| 72 |
if coerced.notna().sum() > 0:
|
|
@@ -74,62 +53,34 @@ def load_series_from_csv(csv_path: str, column: Optional[str]) -> Tuple[np.ndarr
|
|
| 74 |
if not numeric_cols:
|
| 75 |
raise ValueError("Non trovo colonne numeriche nel CSV.")
|
| 76 |
col = numeric_cols[0]
|
| 77 |
-
|
| 78 |
if col not in df.columns:
|
| 79 |
raise ValueError(f"Colonna '{col}' non trovata. Disponibili: {list(df.columns)}")
|
| 80 |
-
|
| 81 |
y = pd.to_numeric(df[col], errors="coerce").dropna().astype(np.float32).to_numpy()
|
| 82 |
if len(y) < 10:
|
| 83 |
-
raise ValueError("Serie troppo corta
|
| 84 |
-
return y, col
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
# =========================
|
| 88 |
-
# Metrics
|
| 89 |
-
# =========================
|
| 90 |
-
def mae(y_true: np.ndarray, y_pred: np.ndarray) -> float:
|
| 91 |
-
return float(np.mean(np.abs(y_true - y_pred)))
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
def rmse(y_true: np.ndarray, y_pred: np.ndarray) -> float:
|
| 95 |
-
return float(np.sqrt(np.mean((y_true - y_pred) ** 2)))
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
def mape(y_true: np.ndarray, y_pred: np.ndarray) -> float:
|
| 99 |
-
denom = np.maximum(1e-8, np.abs(y_true))
|
| 100 |
-
return float(np.mean(np.abs((y_true - y_pred) / denom)) * 100.0)
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
def coverage(y_true: np.ndarray, low: np.ndarray, high: np.ndarray) -> float:
|
| 104 |
-
return float(np.mean((y_true >= low) & (y_true <= high)) * 100.0)
|
| 105 |
-
|
| 106 |
|
| 107 |
-
def avg_width(low: np.ndarray, high: np.ndarray) -> float:
|
| 108 |
-
return float(np.mean(high - low))
|
| 109 |
|
| 110 |
-
|
| 111 |
-
# =========================
|
| 112 |
# Model cache
|
| 113 |
-
#
|
| 114 |
_PIPE = None
|
| 115 |
-
|
| 116 |
|
| 117 |
|
| 118 |
def get_pipeline(model_id: str, device: str) -> Chronos2Pipeline:
|
| 119 |
-
global _PIPE,
|
| 120 |
model_id = (model_id or MODEL_ID_DEFAULT).strip()
|
| 121 |
-
device = "cuda" if
|
| 122 |
-
|
| 123 |
-
if _PIPE is None or _PIPE_META["model_id"] != model_id or _PIPE_META["device"] != device:
|
| 124 |
_PIPE = Chronos2Pipeline.from_pretrained(model_id, device_map=device)
|
| 125 |
-
|
| 126 |
-
|
| 127 |
return _PIPE
|
| 128 |
|
| 129 |
|
| 130 |
-
#
|
| 131 |
-
#
|
| 132 |
-
#
|
| 133 |
def _to_numpy(x: Any) -> np.ndarray:
|
| 134 |
if isinstance(x, np.ndarray):
|
| 135 |
return x
|
|
@@ -139,126 +90,105 @@ def _to_numpy(x: Any) -> np.ndarray:
|
|
| 139 |
|
| 140 |
|
| 141 |
def _extract_samples(raw: Any) -> np.ndarray:
|
| 142 |
-
"""
|
| 143 |
-
Normalizza l’output in np.ndarray.
|
| 144 |
-
Possibili output visti in librerie “young”:
|
| 145 |
-
- list[list[float]] (samples x horizon)
|
| 146 |
-
- list[float] (horizon) -> 1 sample
|
| 147 |
-
- np.ndarray / torch.Tensor (horizon) o (samples, horizon)
|
| 148 |
-
- dict con chiavi tipo 'samples', 'predictions'
|
| 149 |
-
"""
|
| 150 |
if isinstance(raw, dict):
|
| 151 |
for k in ["samples", "predictions", "prediction", "output"]:
|
| 152 |
if k in raw:
|
| 153 |
return _to_numpy(raw[k])
|
| 154 |
-
# fallback: prova primo valore
|
| 155 |
if len(raw) > 0:
|
| 156 |
return _to_numpy(next(iter(raw.values())))
|
| 157 |
return np.asarray([], dtype=np.float32)
|
| 158 |
-
|
| 159 |
return _to_numpy(raw)
|
| 160 |
|
| 161 |
|
| 162 |
-
def
|
| 163 |
-
pipe: Chronos2Pipeline,
|
| 164 |
-
y: np.ndarray,
|
| 165 |
-
prediction_length: int,
|
| 166 |
-
num_samples_ui: int,
|
| 167 |
-
) -> np.ndarray:
|
| 168 |
"""
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
- oppure non esiste: allora torna 1 sample e noi facciamo broadcast
|
| 174 |
"""
|
| 175 |
-
ctx = y.tolist()
|
| 176 |
-
|
| 177 |
sig = inspect.signature(pipe.predict)
|
| 178 |
params = sig.parameters
|
| 179 |
|
| 180 |
-
#
|
|
|
|
|
|
|
|
|
|
| 181 |
horizon_kw = None
|
| 182 |
for cand in ["prediction_length", "horizon", "steps", "n_steps", "pred_len"]:
|
| 183 |
if cand in params:
|
| 184 |
horizon_kw = cand
|
| 185 |
break
|
| 186 |
|
| 187 |
-
#
|
| 188 |
sample_kw = None
|
| 189 |
-
for cand in ["n_samples", "
|
| 190 |
if cand in params:
|
| 191 |
sample_kw = cand
|
| 192 |
break
|
| 193 |
|
| 194 |
-
# build kwargs
|
| 195 |
kwargs: Dict[str, Any] = {}
|
| 196 |
-
if horizon_kw
|
| 197 |
-
kwargs[horizon_kw] = int(
|
| 198 |
-
|
| 199 |
-
# include sample kw only if supported
|
| 200 |
-
if sample_kw is not None:
|
| 201 |
-
kwargs[sample_kw] = int(num_samples_ui)
|
| 202 |
-
|
| 203 |
-
# inputs handling
|
| 204 |
-
if "inputs" in params:
|
| 205 |
-
raw = pipe.predict(inputs=ctx, **kwargs)
|
| 206 |
else:
|
| 207 |
-
#
|
| 208 |
-
|
| 209 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 210 |
arr = _extract_samples(raw).astype(np.float32, copy=False)
|
| 211 |
|
| 212 |
-
# normalize shape -> (
|
| 213 |
-
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
elif arr.ndim == 1:
|
| 217 |
-
# (horizon,) -> (1, horizon)
|
| 218 |
arr = arr[None, :]
|
| 219 |
-
|
| 220 |
-
|
| 221 |
-
|
|
|
|
|
|
|
| 222 |
if arr.ndim == 1:
|
| 223 |
arr = arr[None, :]
|
| 224 |
|
| 225 |
-
# ensure horizon
|
| 226 |
-
if arr.shape[1] !=
|
| 227 |
-
|
| 228 |
-
|
| 229 |
-
if arr.shape[1] > h:
|
| 230 |
-
arr = arr[:, :h]
|
| 231 |
else:
|
| 232 |
-
pad =
|
| 233 |
-
last = arr[
|
| 234 |
-
arr = np.concatenate([arr, np.repeat(last, pad, axis
|
| 235 |
-
|
| 236 |
-
# if API didn’t support sample count, we may only have 1 sample: replicate to compute quantiles smoothly
|
| 237 |
-
if arr.shape[0] == 1 and num_samples_ui > 1:
|
| 238 |
-
arr = np.repeat(arr, repeats=int(num_samples_ui), axis=0)
|
| 239 |
|
| 240 |
-
|
|
|
|
|
|
|
|
|
|
| 241 |
|
| 242 |
|
| 243 |
-
#
|
| 244 |
# Plotly
|
| 245 |
-
#
|
| 246 |
-
def plot_forecast(y, median, low, high, title,
|
| 247 |
t_hist = np.arange(len(y))
|
| 248 |
t_fcst = np.arange(len(y), len(y) + len(median))
|
| 249 |
|
| 250 |
fig = go.Figure()
|
| 251 |
fig.add_trace(go.Scatter(x=t_hist, y=y, mode="lines", name="History"))
|
| 252 |
-
|
| 253 |
-
fig.add_trace(go.Scatter(x=t_fcst, y=high, mode="lines", line=dict(width=0),
|
| 254 |
-
showlegend=False, hoverinfo="skip"))
|
| 255 |
-
fig.add_trace(go.Scatter(
|
| 256 |
-
x=t_fcst, y=low, mode="lines", fill="tonexty",
|
| 257 |
-
line=dict(width=0), name=f"Band [{q_low:.2f}, {q_high:.2f}]"
|
| 258 |
-
))
|
| 259 |
fig.add_trace(go.Scatter(x=t_fcst, y=median, mode="lines", name="Forecast (median)"))
|
| 260 |
fig.add_vline(x=len(y) - 1, line_width=1, line_dash="dash", opacity=0.6)
|
| 261 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 262 |
fig.update_layout(
|
| 263 |
title=title,
|
| 264 |
hovermode="x unified",
|
|
@@ -270,46 +200,23 @@ def plot_forecast(y, median, low, high, title, q_low, q_high) -> go.Figure:
|
|
| 270 |
return fig
|
| 271 |
|
| 272 |
|
| 273 |
-
def
|
| 274 |
-
|
| 275 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 276 |
|
| 277 |
-
|
| 278 |
-
|
| 279 |
-
|
| 280 |
-
|
| 281 |
-
fig.add_trace(go.Scatter(x=t_test, y=high, mode="lines", line=dict(width=0),
|
| 282 |
-
showlegend=False, hoverinfo="skip"))
|
| 283 |
-
fig.add_trace(go.Scatter(
|
| 284 |
-
x=t_test, y=low, mode="lines", fill="tonexty",
|
| 285 |
-
line=dict(width=0), name=f"Band [{q_low:.2f}, {q_high:.2f}]"
|
| 286 |
-
))
|
| 287 |
-
fig.add_trace(go.Scatter(x=t_test, y=pred, mode="lines", name="Pred (median)"))
|
| 288 |
-
|
| 289 |
-
fig.add_vline(x=len(y_train) - 1, line_width=1, line_dash="dash", opacity=0.6)
|
| 290 |
-
fig.update_layout(
|
| 291 |
-
title="Backtest (holdout) — interactive",
|
| 292 |
-
hovermode="x unified",
|
| 293 |
-
margin=dict(l=10, r=10, t=55, b=10),
|
| 294 |
-
legend=dict(orientation="h", yanchor="bottom", y=1.02, xanchor="left", x=0),
|
| 295 |
-
xaxis_title="t",
|
| 296 |
-
yaxis_title="value",
|
| 297 |
-
)
|
| 298 |
-
return fig
|
| 299 |
|
| 300 |
|
| 301 |
-
|
| 302 |
-
# Natural language explanation
|
| 303 |
-
# =========================
|
| 304 |
-
def explain_output(
|
| 305 |
-
y: np.ndarray,
|
| 306 |
-
median: np.ndarray,
|
| 307 |
-
low: np.ndarray,
|
| 308 |
-
high: np.ndarray,
|
| 309 |
-
q_low: float,
|
| 310 |
-
q_high: float,
|
| 311 |
-
backtest: Optional[Dict[str, float]],
|
| 312 |
-
) -> str:
|
| 313 |
horizon = len(median)
|
| 314 |
base = float(np.mean(y))
|
| 315 |
delta = float(median[-1] - median[0])
|
|
@@ -322,280 +229,131 @@ def explain_output(
|
|
| 322 |
else:
|
| 323 |
trend_txt = "in calo"
|
| 324 |
|
| 325 |
-
w = float(np.mean(high - low))
|
| 326 |
-
rel_w = (w / max(1e-6, float(np.mean(median)))) * 100.0
|
| 327 |
-
if rel_w < 10:
|
| 328 |
-
uncert_txt = "bassa"
|
| 329 |
-
elif rel_w < 25:
|
| 330 |
-
uncert_txt = "moderata"
|
| 331 |
-
else:
|
| 332 |
-
uncert_txt = "alta"
|
| 333 |
-
|
| 334 |
txt = f"""
|
| 335 |
-
### 🧠 Spiegazione
|
| 336 |
-
|
| 337 |
-
**Cosa sta dicendo il modello:** nei prossimi **{horizon} step** la serie è **{trend_txt}** (variazione mediana complessiva ≈ **{pct:+.1f}%** rispetto al livello medio storico).
|
| 338 |
|
| 339 |
-
|
| 340 |
-
- **
|
| 341 |
-
- **Incertezza:** **{uncert_txt}** (larghezza media banda ≈ **{w:.2f}**, ~**{rel_w:.1f}%** della mediana)
|
| 342 |
-
|
| 343 |
-
**Come usarlo:** usa la **mediana** come previsione “baseline”; usa il **quantile alto** per scenari prudenziali (es. scorte/capacità) e il **quantile basso** per scenari conservativi (es. budget).
|
| 344 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
| 345 |
|
| 346 |
-
|
| 347 |
-
target_cov = (q_high - q_low) * 100.0
|
| 348 |
-
cov = backtest["coverage"]
|
| 349 |
-
calib = "buona" if abs(cov - target_cov) <= 10 else "migliorabile"
|
| 350 |
-
txt += f"""
|
| 351 |
-
|
| 352 |
-
### 🧪 Affidabilità (backtest)
|
| 353 |
-
|
| 354 |
-
Sul tratto holdout:
|
| 355 |
-
- **MAE:** {backtest["mae"]:.3f}
|
| 356 |
-
- **RMSE:** {backtest["rmse"]:.3f}
|
| 357 |
-
- **MAPE:** {backtest["mape"]:.2f}%
|
| 358 |
-
- **Coverage:** {cov:.1f}% (target atteso ≈ {target_cov:.1f}%)
|
| 359 |
-
|
| 360 |
-
Interpretazione: la banda di incertezza ha una calibrazione **{calib}** sul passato recente.
|
| 361 |
-
"""
|
| 362 |
return txt
|
| 363 |
|
| 364 |
|
| 365 |
-
#
|
| 366 |
-
#
|
| 367 |
-
#
|
| 368 |
-
def
|
| 369 |
-
|
| 370 |
-
|
| 371 |
-
|
| 372 |
-
|
| 373 |
-
|
| 374 |
-
<div style="font-size:22px;font-weight:700;margin-top:4px;">{value}</div>
|
| 375 |
-
{hint_html}
|
| 376 |
-
</div>
|
| 377 |
-
"""
|
| 378 |
-
|
| 379 |
-
|
| 380 |
-
def kpi_grid(cards: List[str]) -> str:
|
| 381 |
-
return f"<div style='display:grid; grid-template-columns: repeat(6, minmax(0, 1fr)); gap:12px;'>{''.join(cards)}</div>"
|
| 382 |
-
|
| 383 |
-
|
| 384 |
-
@dataclass
|
| 385 |
-
class Outputs:
|
| 386 |
-
kpis_html: str
|
| 387 |
-
explanation_md: str
|
| 388 |
-
forecast_fig: go.Figure
|
| 389 |
-
backtest_fig: go.Figure
|
| 390 |
-
forecast_table: pd.DataFrame
|
| 391 |
-
backtest_table: pd.DataFrame
|
| 392 |
-
forecast_csv_path: str
|
| 393 |
-
backtest_csv_path: Optional[str]
|
| 394 |
-
info: dict
|
| 395 |
-
|
| 396 |
-
|
| 397 |
-
# =========================
|
| 398 |
-
# Core run
|
| 399 |
-
# =========================
|
| 400 |
-
def run_dashboard(
|
| 401 |
-
input_mode: str,
|
| 402 |
-
test_csv_name: str,
|
| 403 |
-
upload_csv,
|
| 404 |
-
csv_column: str,
|
| 405 |
-
|
| 406 |
-
n: int,
|
| 407 |
-
seed: int,
|
| 408 |
-
trend: float,
|
| 409 |
-
season_period: int,
|
| 410 |
-
season_amp: float,
|
| 411 |
-
noise: float,
|
| 412 |
-
|
| 413 |
-
prediction_length: int,
|
| 414 |
-
num_samples: int,
|
| 415 |
-
q_low: float,
|
| 416 |
-
q_high: float,
|
| 417 |
-
|
| 418 |
-
do_backtest: bool,
|
| 419 |
-
holdout: int,
|
| 420 |
-
|
| 421 |
-
device_ui: str,
|
| 422 |
-
model_id: str,
|
| 423 |
-
) -> Outputs:
|
| 424 |
if q_low >= q_high:
|
| 425 |
raise gr.Error("Quantile low deve essere < quantile high.")
|
| 426 |
|
| 427 |
device = pick_device(device_ui)
|
|
|
|
| 428 |
|
| 429 |
-
#
|
| 430 |
if input_mode == "Test CSV":
|
| 431 |
if not test_csv_name:
|
| 432 |
raise gr.Error("Seleziona un Test CSV.")
|
| 433 |
path = os.path.join(DATA_DIR, test_csv_name)
|
| 434 |
-
|
| 435 |
-
raise gr.Error(f"File non trovato: {path}")
|
| 436 |
-
y, used_col, _ = load_series_from_csv(path, csv_column)
|
| 437 |
source = f"Test CSV: {test_csv_name} • col={used_col}"
|
| 438 |
-
|
| 439 |
elif input_mode == "Upload CSV":
|
| 440 |
if upload_csv is None:
|
| 441 |
raise gr.Error("Carica un CSV.")
|
| 442 |
-
y, used_col
|
| 443 |
source = f"Upload CSV • col={used_col}"
|
| 444 |
-
|
| 445 |
else:
|
| 446 |
y = make_sample_series(n, seed, trend, season_period, season_amp, noise)
|
| 447 |
source = "Sample series"
|
| 448 |
|
| 449 |
-
if do_backtest and holdout >= len(y):
|
| 450 |
-
raise gr.Error("Holdout deve essere più piccolo della lunghezza dello storico.")
|
| 451 |
-
|
| 452 |
t0 = time.time()
|
| 453 |
-
|
|
|
|
| 454 |
|
| 455 |
-
# Forecast (samples x horizon)
|
| 456 |
-
samples = chronos2_predict_samples(pipe, y, int(prediction_length), int(num_samples))
|
| 457 |
median = np.quantile(samples, 0.50, axis=0)
|
| 458 |
-
|
| 459 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 460 |
|
| 461 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 462 |
t_fcst = np.arange(len(y), len(y) + int(prediction_length))
|
| 463 |
-
|
| 464 |
"t": t_fcst,
|
| 465 |
"median": median,
|
| 466 |
-
f"q{q_low:.2f}": low,
|
| 467 |
-
f"q{q_high:.2f}": high,
|
| 468 |
})
|
| 469 |
-
|
| 470 |
-
|
|
|
|
| 471 |
|
| 472 |
-
|
|
|
|
| 473 |
|
| 474 |
-
|
| 475 |
-
empty_backtest_fig = go.Figure().update_layout(
|
| 476 |
-
title="Backtest disabled",
|
| 477 |
-
margin=dict(l=10, r=10, t=55, b=10),
|
| 478 |
-
)
|
| 479 |
-
backtest_fig = empty_backtest_fig
|
| 480 |
-
backtest_df = pd.DataFrame()
|
| 481 |
-
backtest_csv_path = None
|
| 482 |
-
backtest_metrics = None
|
| 483 |
-
|
| 484 |
-
# KPIs base
|
| 485 |
-
elapsed = time.time() - t0
|
| 486 |
-
cards = [
|
| 487 |
-
kpi_card("Device", device.upper(), f"cuda_available={torch.cuda.is_available()}"),
|
| 488 |
-
kpi_card("Model", (model_id or MODEL_ID_DEFAULT), "Chronos-2"),
|
| 489 |
-
kpi_card("Latency", f"{elapsed:.2f}s", "cached after first run"),
|
| 490 |
-
kpi_card("Samples (req)", f"{int(num_samples)}", "requested"),
|
| 491 |
-
kpi_card("Interval", f"[{q_low:.2f}, {q_high:.2f}]", "uncertainty band"),
|
| 492 |
-
kpi_card("Band width", f"{avg_width(low, high):.3f}", "forecast band"),
|
| 493 |
-
]
|
| 494 |
-
|
| 495 |
-
if do_backtest:
|
| 496 |
-
y_train = y[:-int(holdout)]
|
| 497 |
-
y_true = y[-int(holdout):]
|
| 498 |
-
|
| 499 |
-
bt_samples = chronos2_predict_samples(pipe, y_train, int(holdout), int(num_samples))
|
| 500 |
-
bt_med = np.quantile(bt_samples, 0.50, axis=0)
|
| 501 |
-
bt_low = np.quantile(bt_samples, float(q_low), axis=0)
|
| 502 |
-
bt_high = np.quantile(bt_samples, float(q_high), axis=0)
|
| 503 |
-
|
| 504 |
-
bt_mae = mae(y_true, bt_med)
|
| 505 |
-
bt_rmse = rmse(y_true, bt_med)
|
| 506 |
-
bt_mape = mape(y_true, bt_med)
|
| 507 |
-
bt_cov = coverage(y_true, bt_low, bt_high)
|
| 508 |
-
bt_w = avg_width(bt_low, bt_high)
|
| 509 |
-
|
| 510 |
-
backtest_metrics = {"mae": bt_mae, "rmse": bt_rmse, "mape": bt_mape, "coverage": bt_cov}
|
| 511 |
-
|
| 512 |
-
cards += [
|
| 513 |
-
kpi_card("BT MAE", f"{bt_mae:.3f}", f"holdout={holdout}"),
|
| 514 |
-
kpi_card("BT RMSE", f"{bt_rmse:.3f}"),
|
| 515 |
-
kpi_card("BT MAPE", f"{bt_mape:.2f}%"),
|
| 516 |
-
kpi_card("Coverage", f"{bt_cov:.1f}%", "inside band"),
|
| 517 |
-
kpi_card("BT width", f"{bt_w:.3f}", "avg band"),
|
| 518 |
-
]
|
| 519 |
-
|
| 520 |
-
backtest_fig = plot_backtest(y_train, y_true, bt_med, bt_low, bt_high, q_low, q_high)
|
| 521 |
-
|
| 522 |
-
t_test = np.arange(len(y_train), len(y_train) + int(holdout))
|
| 523 |
-
backtest_df = pd.DataFrame({
|
| 524 |
-
"t": t_test,
|
| 525 |
-
"true": y_true,
|
| 526 |
-
"pred_median": bt_med,
|
| 527 |
-
f"q{q_low:.2f}": bt_low,
|
| 528 |
-
f"q{q_high:.2f}": bt_high,
|
| 529 |
-
})
|
| 530 |
-
backtest_csv_path = os.path.join(OUT_DIR, "chronos2_backtest.csv")
|
| 531 |
-
backtest_df.to_csv(backtest_csv_path, index=False)
|
| 532 |
-
|
| 533 |
-
explanation_md = explain_output(y, median, low, high, q_low, q_high, backtest_metrics)
|
| 534 |
|
| 535 |
info = {
|
| 536 |
"source": source,
|
| 537 |
"history_points": int(len(y)),
|
| 538 |
"prediction_length": int(prediction_length),
|
| 539 |
-
"
|
| 540 |
-
"
|
| 541 |
-
"
|
| 542 |
-
"backtest": bool(do_backtest),
|
| 543 |
-
"holdout": int(holdout) if do_backtest else None,
|
| 544 |
"predict_signature": str(inspect.signature(pipe.predict)),
|
|
|
|
| 545 |
}
|
| 546 |
|
| 547 |
-
return
|
| 548 |
-
kpis_html=kpi_grid(cards),
|
| 549 |
-
explanation_md=explanation_md,
|
| 550 |
-
forecast_fig=forecast_fig,
|
| 551 |
-
backtest_fig=backtest_fig,
|
| 552 |
-
forecast_table=forecast_df,
|
| 553 |
-
backtest_table=backtest_df,
|
| 554 |
-
forecast_csv_path=forecast_csv_path,
|
| 555 |
-
backtest_csv_path=backtest_csv_path,
|
| 556 |
-
info=info,
|
| 557 |
-
)
|
| 558 |
-
|
| 559 |
-
|
| 560 |
-
def run_wrapped(*args):
|
| 561 |
-
out = run_dashboard(*args)
|
| 562 |
-
return (
|
| 563 |
-
out.kpis_html,
|
| 564 |
-
out.explanation_md,
|
| 565 |
-
out.forecast_fig,
|
| 566 |
-
out.backtest_fig,
|
| 567 |
-
out.forecast_table,
|
| 568 |
-
out.backtest_table,
|
| 569 |
-
out.forecast_csv_path,
|
| 570 |
-
out.backtest_csv_path,
|
| 571 |
-
out.info,
|
| 572 |
-
)
|
| 573 |
|
| 574 |
|
| 575 |
-
#
|
| 576 |
# UI
|
| 577 |
-
#
|
| 578 |
-
css = """
|
| 579 |
-
.gradio-container { max-width: 1200px !important; }
|
| 580 |
-
"""
|
| 581 |
|
| 582 |
-
with gr.Blocks(title="Chronos-2 •
|
| 583 |
-
gr.Markdown(
|
| 584 |
-
"""
|
| 585 |
-
# ⏱️ Chronos-2 Forecast Dashboard (Bulletproof)
|
| 586 |
-
Plotly interattivo + KPI + backtest + export + spiegazione in linguaggio naturale.
|
| 587 |
-
"""
|
| 588 |
-
)
|
| 589 |
|
| 590 |
with gr.Row():
|
| 591 |
with gr.Column(scale=1, min_width=360):
|
| 592 |
-
gr.
|
| 593 |
-
input_mode = gr.Radio(["Sample", "Test CSV", "Upload CSV"], value="Sample", label="Sorgente dati")
|
| 594 |
test_csv_name = gr.Dropdown(choices=available_test_csv(), label="Test CSV (data/)")
|
| 595 |
upload_csv = gr.File(label="Upload CSV", file_types=[".csv"])
|
| 596 |
csv_column = gr.Textbox(label="Colonna numerica (opzionale)", placeholder="es: value")
|
| 597 |
|
| 598 |
-
gr.Markdown("## Sistema")
|
| 599 |
device_ui = gr.Dropdown(
|
| 600 |
["cpu", "cuda (se disponibile)"],
|
| 601 |
value="cuda (se disponibile)" if torch.cuda.is_available() else "cpu",
|
|
@@ -611,61 +369,35 @@ Plotly interattivo + KPI + backtest + export + spiegazione in linguaggio natural
|
|
| 611 |
season_amp = gr.Slider(0.0, 12.0, value=3.0, step=0.1, label="Season amplitude")
|
| 612 |
noise = gr.Slider(0.0, 6.0, value=0.8, step=0.05, label="Noise")
|
| 613 |
|
| 614 |
-
gr.Markdown("## Forecast")
|
| 615 |
prediction_length = gr.Slider(1, 365, value=30, step=1, label="Prediction length")
|
| 616 |
-
|
| 617 |
q_low = gr.Slider(0.01, 0.49, value=0.10, step=0.01, label="Quantile low")
|
| 618 |
q_high = gr.Slider(0.51, 0.99, value=0.90, step=0.01, label="Quantile high")
|
| 619 |
|
| 620 |
-
gr.Markdown("## Backtest")
|
| 621 |
-
do_backtest = gr.Checkbox(value=True, label="Esegui backtest holdout")
|
| 622 |
-
holdout = gr.Slider(5, 365, value=30, step=1, label="Holdout points")
|
| 623 |
-
|
| 624 |
run_btn = gr.Button("Run", variant="primary")
|
| 625 |
|
| 626 |
with gr.Column(scale=2):
|
| 627 |
-
gr.Markdown("## KPI")
|
| 628 |
kpis = gr.HTML()
|
| 629 |
-
|
| 630 |
with gr.Tabs():
|
| 631 |
with gr.Tab("Forecast"):
|
| 632 |
-
forecast_plot = gr.Plot(
|
| 633 |
-
forecast_table = gr.Dataframe(
|
| 634 |
-
|
| 635 |
-
with gr.Tab("Backtest"):
|
| 636 |
-
backtest_plot = gr.Plot(label="Backtest (interactive)")
|
| 637 |
-
backtest_table = gr.Dataframe(label="Backtest table", interactive=False)
|
| 638 |
-
|
| 639 |
with gr.Tab("Spiegazione"):
|
| 640 |
explanation = gr.Markdown()
|
| 641 |
-
|
| 642 |
with gr.Tab("Export"):
|
| 643 |
-
|
| 644 |
-
|
| 645 |
-
|
| 646 |
-
with gr.Tab("Run info"):
|
| 647 |
-
run_info = gr.JSON(label="Info")
|
| 648 |
|
| 649 |
run_btn.click(
|
| 650 |
-
fn=
|
| 651 |
inputs=[
|
| 652 |
input_mode, test_csv_name, upload_csv, csv_column,
|
| 653 |
n, seed, trend, season_period, season_amp, noise,
|
| 654 |
-
prediction_length,
|
| 655 |
-
do_backtest, holdout,
|
| 656 |
device_ui, model_id,
|
| 657 |
],
|
| 658 |
-
outputs=[
|
| 659 |
-
kpis,
|
| 660 |
-
explanation,
|
| 661 |
-
forecast_plot,
|
| 662 |
-
backtest_plot,
|
| 663 |
-
forecast_table,
|
| 664 |
-
backtest_table,
|
| 665 |
-
forecast_download,
|
| 666 |
-
backtest_download,
|
| 667 |
-
run_info,
|
| 668 |
-
],
|
| 669 |
)
|
| 670 |
|
| 671 |
demo.queue()
|
|
|
|
| 1 |
import os
|
| 2 |
import time
|
| 3 |
import inspect
|
| 4 |
+
from typing import Any, Dict, List, Optional, Tuple
|
|
|
|
| 5 |
|
| 6 |
import numpy as np
|
| 7 |
import pandas as pd
|
|
|
|
| 12 |
from chronos import Chronos2Pipeline
|
| 13 |
|
| 14 |
|
|
|
|
|
|
|
|
|
|
| 15 |
MODEL_ID_DEFAULT = os.getenv("CHRONOS_MODEL_ID", "amazon/chronos-2")
|
| 16 |
DATA_DIR = "data"
|
| 17 |
OUT_DIR = "/tmp"
|
| 18 |
|
| 19 |
|
| 20 |
+
# -------------------------
|
| 21 |
+
# Data
|
| 22 |
+
# -------------------------
|
| 23 |
def available_test_csv() -> List[str]:
|
| 24 |
if not os.path.isdir(DATA_DIR):
|
| 25 |
return []
|
|
|
|
| 27 |
|
| 28 |
|
| 29 |
def pick_device(ui_choice: str) -> str:
|
| 30 |
+
return "cuda" if (ui_choice or "").startswith("cuda") and torch.cuda.is_available() else "cpu"
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
def make_sample_series(n: int, seed: int, trend: float, season_period: int, season_amp: float, noise: float) -> np.ndarray:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 34 |
rng = np.random.default_rng(int(seed))
|
| 35 |
t = np.arange(int(n), dtype=np.float32)
|
| 36 |
+
y = (trend * t + season_amp * np.sin(2 * np.pi * t / max(1, int(season_period))) + rng.normal(0, noise, size=int(n))).astype(np.float32)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
if float(np.min(y)) < 0:
|
| 38 |
+
y -= float(np.min(y))
|
| 39 |
return y
|
| 40 |
|
| 41 |
|
| 42 |
+
def load_series_from_csv(csv_path: str, column: Optional[str]) -> Tuple[np.ndarray, str]:
|
| 43 |
df = pd.read_csv(csv_path)
|
|
|
|
|
|
|
|
|
|
| 44 |
col = (column or "").strip()
|
| 45 |
if not col:
|
|
|
|
| 46 |
numeric_cols = [c for c in df.columns if pd.api.types.is_numeric_dtype(df[c])]
|
| 47 |
if not numeric_cols:
|
| 48 |
+
# try coercion
|
| 49 |
for c in df.columns:
|
| 50 |
coerced = pd.to_numeric(df[c], errors="coerce")
|
| 51 |
if coerced.notna().sum() > 0:
|
|
|
|
| 53 |
if not numeric_cols:
|
| 54 |
raise ValueError("Non trovo colonne numeriche nel CSV.")
|
| 55 |
col = numeric_cols[0]
|
|
|
|
| 56 |
if col not in df.columns:
|
| 57 |
raise ValueError(f"Colonna '{col}' non trovata. Disponibili: {list(df.columns)}")
|
|
|
|
| 58 |
y = pd.to_numeric(df[col], errors="coerce").dropna().astype(np.float32).to_numpy()
|
| 59 |
if len(y) < 10:
|
| 60 |
+
raise ValueError("Serie troppo corta.")
|
| 61 |
+
return y, col
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 62 |
|
|
|
|
|
|
|
| 63 |
|
| 64 |
+
# -------------------------
|
|
|
|
| 65 |
# Model cache
|
| 66 |
+
# -------------------------
|
| 67 |
_PIPE = None
|
| 68 |
+
_META = {"model_id": None, "device": None}
|
| 69 |
|
| 70 |
|
| 71 |
def get_pipeline(model_id: str, device: str) -> Chronos2Pipeline:
|
| 72 |
+
global _PIPE, _META
|
| 73 |
model_id = (model_id or MODEL_ID_DEFAULT).strip()
|
| 74 |
+
device = "cuda" if device == "cuda" and torch.cuda.is_available() else "cpu"
|
| 75 |
+
if _PIPE is None or _META["model_id"] != model_id or _META["device"] != device:
|
|
|
|
| 76 |
_PIPE = Chronos2Pipeline.from_pretrained(model_id, device_map=device)
|
| 77 |
+
_META = {"model_id": model_id, "device": device}
|
|
|
|
| 78 |
return _PIPE
|
| 79 |
|
| 80 |
|
| 81 |
+
# -------------------------
|
| 82 |
+
# Predict (STABLE)
|
| 83 |
+
# -------------------------
|
| 84 |
def _to_numpy(x: Any) -> np.ndarray:
|
| 85 |
if isinstance(x, np.ndarray):
|
| 86 |
return x
|
|
|
|
| 90 |
|
| 91 |
|
| 92 |
def _extract_samples(raw: Any) -> np.ndarray:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 93 |
if isinstance(raw, dict):
|
| 94 |
for k in ["samples", "predictions", "prediction", "output"]:
|
| 95 |
if k in raw:
|
| 96 |
return _to_numpy(raw[k])
|
|
|
|
| 97 |
if len(raw) > 0:
|
| 98 |
return _to_numpy(next(iter(raw.values())))
|
| 99 |
return np.asarray([], dtype=np.float32)
|
|
|
|
| 100 |
return _to_numpy(raw)
|
| 101 |
|
| 102 |
|
| 103 |
+
def chronos2_predict(pipe: Chronos2Pipeline, y: np.ndarray, horizon: int, requested_samples: int) -> Tuple[np.ndarray, bool, str]:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 104 |
"""
|
| 105 |
+
Returns:
|
| 106 |
+
samples: (S, H)
|
| 107 |
+
multi: whether S>1 is real (not replicated)
|
| 108 |
+
note: debug note
|
|
|
|
| 109 |
"""
|
|
|
|
|
|
|
| 110 |
sig = inspect.signature(pipe.predict)
|
| 111 |
params = sig.parameters
|
| 112 |
|
| 113 |
+
# input format: ALWAYS batch = [series]
|
| 114 |
+
inputs = [y.tolist()]
|
| 115 |
+
|
| 116 |
+
# kw for horizon
|
| 117 |
horizon_kw = None
|
| 118 |
for cand in ["prediction_length", "horizon", "steps", "n_steps", "pred_len"]:
|
| 119 |
if cand in params:
|
| 120 |
horizon_kw = cand
|
| 121 |
break
|
| 122 |
|
| 123 |
+
# kw for samples count (many versions don't have it!)
|
| 124 |
sample_kw = None
|
| 125 |
+
for cand in ["n_samples", "num_return_sequences", "num_samples"]:
|
| 126 |
if cand in params:
|
| 127 |
sample_kw = cand
|
| 128 |
break
|
| 129 |
|
|
|
|
| 130 |
kwargs: Dict[str, Any] = {}
|
| 131 |
+
if horizon_kw:
|
| 132 |
+
kwargs[horizon_kw] = int(horizon)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 133 |
else:
|
| 134 |
+
# worst case: try positional horizon if supported (rare)
|
| 135 |
+
kwargs["prediction_length"] = int(horizon)
|
| 136 |
|
| 137 |
+
if sample_kw:
|
| 138 |
+
kwargs[sample_kw] = int(requested_samples)
|
| 139 |
+
|
| 140 |
+
# call
|
| 141 |
+
raw = pipe.predict(inputs=inputs, **kwargs) if "inputs" in params else pipe.predict(inputs, **kwargs)
|
| 142 |
arr = _extract_samples(raw).astype(np.float32, copy=False)
|
| 143 |
|
| 144 |
+
# normalize shape -> (S,H)
|
| 145 |
+
arr = np.squeeze(arr)
|
| 146 |
+
if arr.ndim == 1:
|
| 147 |
+
# could be (H,) or (S,) - assume horizon if length == H
|
|
|
|
|
|
|
| 148 |
arr = arr[None, :]
|
| 149 |
+
|
| 150 |
+
# Sometimes output is (B,S,H) or (B,H). If batch dim exists, take first
|
| 151 |
+
if arr.ndim == 3:
|
| 152 |
+
# assume (B,S,H) or (S,B,H); safest: pick first on axis=0
|
| 153 |
+
arr = arr[0]
|
| 154 |
if arr.ndim == 1:
|
| 155 |
arr = arr[None, :]
|
| 156 |
|
| 157 |
+
# ensure horizon length
|
| 158 |
+
if arr.shape[-1] != horizon:
|
| 159 |
+
if arr.shape[-1] > horizon:
|
| 160 |
+
arr = arr[..., :horizon]
|
|
|
|
|
|
|
| 161 |
else:
|
| 162 |
+
pad = horizon - arr.shape[-1]
|
| 163 |
+
last = arr[..., -1:]
|
| 164 |
+
arr = np.concatenate([arr, np.repeat(last, pad, axis=-1)], axis=-1)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 165 |
|
| 166 |
+
# If we got only 1 sample, we can still plot median but band is not meaningful
|
| 167 |
+
real_multi = arr.shape[0] > 1
|
| 168 |
+
note = f"predict_signature={sig} | used_horizon_kw={horizon_kw} | used_sample_kw={sample_kw} | got_shape={tuple(arr.shape)}"
|
| 169 |
+
return arr, real_multi, note
|
| 170 |
|
| 171 |
|
| 172 |
+
# -------------------------
|
| 173 |
# Plotly
|
| 174 |
+
# -------------------------
|
| 175 |
+
def plot_forecast(y, median, low, high, title, show_band: bool, band_label: str) -> go.Figure:
|
| 176 |
t_hist = np.arange(len(y))
|
| 177 |
t_fcst = np.arange(len(y), len(y) + len(median))
|
| 178 |
|
| 179 |
fig = go.Figure()
|
| 180 |
fig.add_trace(go.Scatter(x=t_hist, y=y, mode="lines", name="History"))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 181 |
fig.add_trace(go.Scatter(x=t_fcst, y=median, mode="lines", name="Forecast (median)"))
|
| 182 |
fig.add_vline(x=len(y) - 1, line_width=1, line_dash="dash", opacity=0.6)
|
| 183 |
|
| 184 |
+
if show_band:
|
| 185 |
+
fig.add_trace(go.Scatter(x=t_fcst, y=high, mode="lines", line=dict(width=0),
|
| 186 |
+
showlegend=False, hoverinfo="skip"))
|
| 187 |
+
fig.add_trace(go.Scatter(
|
| 188 |
+
x=t_fcst, y=low, mode="lines", fill="tonexty",
|
| 189 |
+
line=dict(width=0), name=band_label
|
| 190 |
+
))
|
| 191 |
+
|
| 192 |
fig.update_layout(
|
| 193 |
title=title,
|
| 194 |
hovermode="x unified",
|
|
|
|
| 200 |
return fig
|
| 201 |
|
| 202 |
|
| 203 |
+
def kpi_card(label: str, value: str, hint: str = "") -> str:
|
| 204 |
+
hint_html = f"<div style='opacity:.75;font-size:12px;margin-top:6px;'>{hint}</div>" if hint else ""
|
| 205 |
+
return f"""
|
| 206 |
+
<div style="border:1px solid rgba(255,255,255,.12); border-radius:16px; padding:14px 16px;
|
| 207 |
+
background: rgba(255,255,255,.04);">
|
| 208 |
+
<div style="font-size:12px;opacity:.8;">{label}</div>
|
| 209 |
+
<div style="font-size:22px;font-weight:700;margin-top:4px;">{value}</div>
|
| 210 |
+
{hint_html}
|
| 211 |
+
</div>
|
| 212 |
+
"""
|
| 213 |
|
| 214 |
+
|
| 215 |
+
def kpi_grid(cards: List[str]) -> str:
|
| 216 |
+
return f"<div style='display:grid; grid-template-columns: repeat(6, minmax(0, 1fr)); gap:12px;'>{''.join(cards)}</div>"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 217 |
|
| 218 |
|
| 219 |
+
def explain(y, median, low, high, band_enabled: bool, q_low: float, q_high: float, extra: str) -> str:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 220 |
horizon = len(median)
|
| 221 |
base = float(np.mean(y))
|
| 222 |
delta = float(median[-1] - median[0])
|
|
|
|
| 229 |
else:
|
| 230 |
trend_txt = "in calo"
|
| 231 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 232 |
txt = f"""
|
| 233 |
+
### 🧠 Spiegazione
|
|
|
|
|
|
|
| 234 |
|
| 235 |
+
Nei prossimi **{horizon} step** la previsione mediana è **{trend_txt}** (variazione ≈ **{pct:+.1f}%** rispetto al livello medio storico).
|
| 236 |
+
- **Ultimo valore mediano previsto:** **{median[-1]:.2f}**
|
|
|
|
|
|
|
|
|
|
| 237 |
"""
|
| 238 |
+
if band_enabled:
|
| 239 |
+
txt += f"- **Banda [{q_low:.0%}–{q_high:.0%}] (ultimo step):** **[{low[-1]:.2f} – {high[-1]:.2f}]**\n"
|
| 240 |
+
else:
|
| 241 |
+
txt += "- **Banda di incertezza:** disattivata (questa versione di Chronos2 non restituisce campioni multipli con i parametri disponibili).\n"
|
| 242 |
|
| 243 |
+
txt += f"\n<details><summary>Debug</summary>\n\n`{extra}`\n\n</details>\n"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 244 |
return txt
|
| 245 |
|
| 246 |
|
| 247 |
+
# -------------------------
|
| 248 |
+
# Run
|
| 249 |
+
# -------------------------
|
| 250 |
+
def run_all(
|
| 251 |
+
input_mode, test_csv_name, upload_csv, csv_column,
|
| 252 |
+
n, seed, trend, season_period, season_amp, noise,
|
| 253 |
+
prediction_length, requested_samples, q_low, q_high,
|
| 254 |
+
device_ui, model_id,
|
| 255 |
+
):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 256 |
if q_low >= q_high:
|
| 257 |
raise gr.Error("Quantile low deve essere < quantile high.")
|
| 258 |
|
| 259 |
device = pick_device(device_ui)
|
| 260 |
+
pipe = get_pipeline(model_id, device)
|
| 261 |
|
| 262 |
+
# data
|
| 263 |
if input_mode == "Test CSV":
|
| 264 |
if not test_csv_name:
|
| 265 |
raise gr.Error("Seleziona un Test CSV.")
|
| 266 |
path = os.path.join(DATA_DIR, test_csv_name)
|
| 267 |
+
y, used_col = load_series_from_csv(path, csv_column)
|
|
|
|
|
|
|
| 268 |
source = f"Test CSV: {test_csv_name} • col={used_col}"
|
|
|
|
| 269 |
elif input_mode == "Upload CSV":
|
| 270 |
if upload_csv is None:
|
| 271 |
raise gr.Error("Carica un CSV.")
|
| 272 |
+
y, used_col = load_series_from_csv(upload_csv.name, csv_column)
|
| 273 |
source = f"Upload CSV • col={used_col}"
|
|
|
|
| 274 |
else:
|
| 275 |
y = make_sample_series(n, seed, trend, season_period, season_amp, noise)
|
| 276 |
source = "Sample series"
|
| 277 |
|
|
|
|
|
|
|
|
|
|
| 278 |
t0 = time.time()
|
| 279 |
+
samples, real_multi, note = chronos2_predict(pipe, y, int(prediction_length), int(requested_samples))
|
| 280 |
+
latency = time.time() - t0
|
| 281 |
|
|
|
|
|
|
|
| 282 |
median = np.quantile(samples, 0.50, axis=0)
|
| 283 |
+
band_enabled = real_multi and samples.shape[0] > 2
|
| 284 |
+
if band_enabled:
|
| 285 |
+
low = np.quantile(samples, float(q_low), axis=0)
|
| 286 |
+
high = np.quantile(samples, float(q_high), axis=0)
|
| 287 |
+
else:
|
| 288 |
+
low = median.copy()
|
| 289 |
+
high = median.copy()
|
| 290 |
|
| 291 |
+
# KPI
|
| 292 |
+
cards = [
|
| 293 |
+
kpi_card("Device", device.upper(), f"cuda_available={torch.cuda.is_available()}"),
|
| 294 |
+
kpi_card("Latency", f"{latency:.2f}s", "predict()"),
|
| 295 |
+
kpi_card("Samples", str(samples.shape[0]), "returned by model"),
|
| 296 |
+
kpi_card("Band", "ON" if band_enabled else "OFF", "needs multi-samples"),
|
| 297 |
+
kpi_card("Horizon", str(prediction_length)),
|
| 298 |
+
kpi_card("Model", (model_id or MODEL_ID_DEFAULT)),
|
| 299 |
+
]
|
| 300 |
+
kpis_html = kpi_grid(cards)
|
| 301 |
+
|
| 302 |
+
# Plot
|
| 303 |
+
fig = plot_forecast(
|
| 304 |
+
y=y,
|
| 305 |
+
median=median,
|
| 306 |
+
low=low,
|
| 307 |
+
high=high,
|
| 308 |
+
title=f"Forecast — {source}",
|
| 309 |
+
show_band=band_enabled,
|
| 310 |
+
band_label=f"Band [{q_low:.2f}, {q_high:.2f}]",
|
| 311 |
+
)
|
| 312 |
+
|
| 313 |
+
# Table + export
|
| 314 |
t_fcst = np.arange(len(y), len(y) + int(prediction_length))
|
| 315 |
+
out_df = pd.DataFrame({
|
| 316 |
"t": t_fcst,
|
| 317 |
"median": median,
|
|
|
|
|
|
|
| 318 |
})
|
| 319 |
+
if band_enabled:
|
| 320 |
+
out_df[f"q{q_low:.2f}"] = low
|
| 321 |
+
out_df[f"q{q_high:.2f}"] = high
|
| 322 |
|
| 323 |
+
out_path = os.path.join(OUT_DIR, "chronos2_forecast.csv")
|
| 324 |
+
out_df.to_csv(out_path, index=False)
|
| 325 |
|
| 326 |
+
explanation_md = explain(y, median, low, high, band_enabled, q_low, q_high, note)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 327 |
|
| 328 |
info = {
|
| 329 |
"source": source,
|
| 330 |
"history_points": int(len(y)),
|
| 331 |
"prediction_length": int(prediction_length),
|
| 332 |
+
"requested_samples": int(requested_samples),
|
| 333 |
+
"returned_samples": int(samples.shape[0]),
|
| 334 |
+
"band_enabled": bool(band_enabled),
|
|
|
|
|
|
|
| 335 |
"predict_signature": str(inspect.signature(pipe.predict)),
|
| 336 |
+
"debug_note": note,
|
| 337 |
}
|
| 338 |
|
| 339 |
+
return kpis_html, explanation_md, fig, out_df, out_path, info
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 340 |
|
| 341 |
|
| 342 |
+
# -------------------------
|
| 343 |
# UI
|
| 344 |
+
# -------------------------
|
| 345 |
+
css = """.gradio-container { max-width: 1200px !important; }"""
|
|
|
|
|
|
|
| 346 |
|
| 347 |
+
with gr.Blocks(title="Chronos-2 • Pro Dashboard (Stable)", css=css) as demo:
|
| 348 |
+
gr.Markdown("# ⏱️ Chronos-2 Forecast Dashboard — Stable Edition")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 349 |
|
| 350 |
with gr.Row():
|
| 351 |
with gr.Column(scale=1, min_width=360):
|
| 352 |
+
input_mode = gr.Radio(["Sample", "Test CSV", "Upload CSV"], value="Sample", label="Input")
|
|
|
|
| 353 |
test_csv_name = gr.Dropdown(choices=available_test_csv(), label="Test CSV (data/)")
|
| 354 |
upload_csv = gr.File(label="Upload CSV", file_types=[".csv"])
|
| 355 |
csv_column = gr.Textbox(label="Colonna numerica (opzionale)", placeholder="es: value")
|
| 356 |
|
|
|
|
| 357 |
device_ui = gr.Dropdown(
|
| 358 |
["cpu", "cuda (se disponibile)"],
|
| 359 |
value="cuda (se disponibile)" if torch.cuda.is_available() else "cpu",
|
|
|
|
| 369 |
season_amp = gr.Slider(0.0, 12.0, value=3.0, step=0.1, label="Season amplitude")
|
| 370 |
noise = gr.Slider(0.0, 6.0, value=0.8, step=0.05, label="Noise")
|
| 371 |
|
|
|
|
| 372 |
prediction_length = gr.Slider(1, 365, value=30, step=1, label="Prediction length")
|
| 373 |
+
requested_samples = gr.Slider(1, 800, value=200, step=25, label="Requested samples (best effort)")
|
| 374 |
q_low = gr.Slider(0.01, 0.49, value=0.10, step=0.01, label="Quantile low")
|
| 375 |
q_high = gr.Slider(0.51, 0.99, value=0.90, step=0.01, label="Quantile high")
|
| 376 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 377 |
run_btn = gr.Button("Run", variant="primary")
|
| 378 |
|
| 379 |
with gr.Column(scale=2):
|
|
|
|
| 380 |
kpis = gr.HTML()
|
|
|
|
| 381 |
with gr.Tabs():
|
| 382 |
with gr.Tab("Forecast"):
|
| 383 |
+
forecast_plot = gr.Plot()
|
| 384 |
+
forecast_table = gr.Dataframe(interactive=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 385 |
with gr.Tab("Spiegazione"):
|
| 386 |
explanation = gr.Markdown()
|
|
|
|
| 387 |
with gr.Tab("Export"):
|
| 388 |
+
download = gr.File()
|
| 389 |
+
with gr.Tab("Info"):
|
| 390 |
+
info = gr.JSON()
|
|
|
|
|
|
|
| 391 |
|
| 392 |
run_btn.click(
|
| 393 |
+
fn=run_all,
|
| 394 |
inputs=[
|
| 395 |
input_mode, test_csv_name, upload_csv, csv_column,
|
| 396 |
n, seed, trend, season_period, season_amp, noise,
|
| 397 |
+
prediction_length, requested_samples, q_low, q_high,
|
|
|
|
| 398 |
device_ui, model_id,
|
| 399 |
],
|
| 400 |
+
outputs=[kpis, explanation, forecast_plot, forecast_table, download, info],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 401 |
)
|
| 402 |
|
| 403 |
demo.queue()
|