hexsha
stringlengths
40
40
size
int64
4
1.02M
ext
stringclasses
8 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
4
209
max_stars_repo_name
stringlengths
5
121
max_stars_repo_head_hexsha
stringlengths
40
40
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
4
209
max_issues_repo_name
stringlengths
5
121
max_issues_repo_head_hexsha
stringlengths
40
40
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
4
209
max_forks_repo_name
stringlengths
5
121
max_forks_repo_head_hexsha
stringlengths
40
40
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
4
1.02M
avg_line_length
float64
1.07
66.1k
max_line_length
int64
4
266k
alphanum_fraction
float64
0.01
1
c1dc89cefecc64ea21e3ae057486e59c08fdbc37
3,999
py
Python
zerver/webhooks/gogs/view.py
alexandraciobica/zulip
f3753504469070bfccc73f22f933c87bee7d1852
[ "Apache-2.0" ]
1
2019-10-01T14:04:07.000Z
2019-10-01T14:04:07.000Z
zerver/webhooks/gogs/view.py
991rajat/zulip
648a60baf63f9afade83148bd9ae1fc480510178
[ "Apache-2.0" ]
4
2020-06-06T00:51:42.000Z
2022-02-10T21:38:40.000Z
zerver/webhooks/gogs/view.py
991rajat/zulip
648a60baf63f9afade83148bd9ae1fc480510178
[ "Apache-2.0" ]
1
2020-01-06T15:12:36.000Z
2020-01-06T15:12:36.000Z
# -*- coding: utf-8 -*- # vim:fenc=utf-8 from typing import Any, Dict, Optional from django.http import HttpRequest, HttpResponse from zerver.decorator import api_key_only_webhook_view from zerver.lib.request import REQ, has_request_variables from zerver.lib.response import json_success from zerver.lib.webhooks.common import check_send_webhook_message, \ validate_extract_webhook_http_header, UnexpectedWebhookEventType, \ get_http_headers_from_filename from zerver.lib.webhooks.git import TOPIC_WITH_BRANCH_TEMPLATE, \ TOPIC_WITH_PR_OR_ISSUE_INFO_TEMPLATE, get_create_branch_event_message, \ get_pull_request_event_message, get_push_commits_event_message from zerver.models import UserProfile fixture_to_headers = get_http_headers_from_filename("HTTP_X_GOGS_EVENT") def format_push_event(payload: Dict[str, Any]) -> str: for commit in payload['commits']: commit['sha'] = commit['id'] commit['name'] = (commit['author']['username'] or commit['author']['name'].split()[0]) data = { 'user_name': payload['sender']['username'], 'compare_url': payload['compare_url'], 'branch_name': payload['ref'].replace('refs/heads/', ''), 'commits_data': payload['commits'] } return get_push_commits_event_message(**data) def format_new_branch_event(payload: Dict[str, Any]) -> str: branch_name = payload['ref'] url = '{}/src/{}'.format(payload['repository']['html_url'], branch_name) data = { 'user_name': payload['sender']['username'], 'url': url, 'branch_name': branch_name } return get_create_branch_event_message(**data) def format_pull_request_event(payload: Dict[str, Any], include_title: Optional[bool]=False) -> str: data = { 'user_name': payload['pull_request']['user']['username'], 'action': payload['action'], 'url': payload['pull_request']['html_url'], 'number': payload['pull_request']['number'], 'target_branch': payload['pull_request']['head_branch'], 'base_branch': payload['pull_request']['base_branch'], 'title': payload['pull_request']['title'] if include_title else None } if payload['pull_request']['merged']: data['user_name'] = payload['pull_request']['merged_by']['username'] data['action'] = 'merged' return get_pull_request_event_message(**data) @api_key_only_webhook_view('Gogs') @has_request_variables def api_gogs_webhook(request: HttpRequest, user_profile: UserProfile, payload: Dict[str, Any]=REQ(argument_type='body'), branches: Optional[str]=REQ(default=None), user_specified_topic: Optional[str]=REQ("topic", default=None)) -> HttpResponse: repo = payload['repository']['name'] event = validate_extract_webhook_http_header(request, 'X_GOGS_EVENT', 'Gogs') if event == 'push': branch = payload['ref'].replace('refs/heads/', '') if branches is not None and branches.find(branch) == -1: return json_success() body = format_push_event(payload) topic = TOPIC_WITH_BRANCH_TEMPLATE.format( repo=repo, branch=branch ) elif event == 'create': body = format_new_branch_event(payload) topic = TOPIC_WITH_BRANCH_TEMPLATE.format( repo=repo, branch=payload['ref'] ) elif event == 'pull_request': body = format_pull_request_event( payload, include_title=user_specified_topic is not None ) topic = TOPIC_WITH_PR_OR_ISSUE_INFO_TEMPLATE.format( repo=repo, type='PR', id=payload['pull_request']['id'], title=payload['pull_request']['title'] ) else: raise UnexpectedWebhookEventType('Gogs', event) check_send_webhook_message(request, user_profile, topic, body) return json_success()
37.373832
101
0.653163
0ab22662bd3300b595b3c2cf036579e35200f2d0
544
py
Python
froide/campaign/migrations/0006_auto_20190826_1451.py
xenein/froide
59bd3eeded3c3ed00fbc858fe20bfea99c8dbefa
[ "MIT" ]
198
2016-12-03T22:42:55.000Z
2022-03-25T15:08:36.000Z
froide/campaign/migrations/0006_auto_20190826_1451.py
xenein/froide
59bd3eeded3c3ed00fbc858fe20bfea99c8dbefa
[ "MIT" ]
264
2016-11-30T18:53:17.000Z
2022-03-17T11:34:18.000Z
froide/campaign/migrations/0006_auto_20190826_1451.py
xenein/froide
59bd3eeded3c3ed00fbc858fe20bfea99c8dbefa
[ "MIT" ]
42
2016-12-22T04:08:27.000Z
2022-02-26T08:30:38.000Z
# Generated by Django 2.1.11 on 2019-08-26 12:51 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ("campaign", "0005_campaign_group"), ] operations = [ migrations.AddField( model_name="campaign", name="request_hint", field=models.TextField(blank=True), ), migrations.AddField( model_name="campaign", name="request_match", field=models.TextField(blank=True), ), ]
22.666667
48
0.577206
098429470f168122a47b880313de231b6b9ead81
6,760
py
Python
code.py
arcsinY/DM_Project2
1775f1890a59d92aaed0d5ed08588712e659aeaf
[ "Apache-2.0" ]
2
2021-06-07T02:22:47.000Z
2021-09-02T08:06:54.000Z
code.py
arcsinY/DM_Project2
1775f1890a59d92aaed0d5ed08588712e659aeaf
[ "Apache-2.0" ]
null
null
null
code.py
arcsinY/DM_Project2
1775f1890a59d92aaed0d5ed08588712e659aeaf
[ "Apache-2.0" ]
null
null
null
import pandas as pd import orangecontrib.associate.fpgrowth as oaf import json as js import matplotlib.pyplot as plt import seaborn as sns data = pd.read_csv('USvideos.csv', sep = ',') # 转化category_id with open('US_category_id.json') as f: json_date = js.load(f) f.close() id2cat = {} for i in range(len(json_date['items'])): id2cat[json_date['items'][i]['id']] = json_date['items'][i]['snippet']['title'] for i in range(len(data)): id = data.loc[i, 'category_id'] data.loc[i, 'category_id'] = id2cat[str(id)] # 转化views arr = data['views'] one = arr.quantile(0.25) three = arr.quantile(0.75) view_level = [] for i in data['views']: if int(i) >= three: view_level.append('high view') elif int(i) <= one: view_level.append('low view') else: view_level.append('medium view') # 转化likes和dislikes like = [] for i in range(len(data)): if data.loc[i, 'likes'] >= data.loc[i, 'dislikes']: like.append('like') else: like.append('dislike') # 转化comment_count arr = data['comment_count'] one = arr.quantile(0.25) three = arr.quantile(0.75) comment_level = [] for i in data['comment_count']: if i >= three: comment_level.append('high comment') elif i <= one: comment_level.append('low comment') else: comment_level.append('medium comment') data = data.drop(['views', 'likes', 'dislikes', 'comment_count'], axis = 1) data.insert(0, 'views', view_level) data.insert(0, 'like', like) data.insert(0, 'comment_count', comment_level) data = data.drop(['video_id', 'trending_date', 'publish_time', 'video_error_or_removed', 'description', 'thumbnail_link', 'title', 'comments_disabled', 'ratings_disabled'], axis = 1) # 算法输入格式转换 id2str = {} # 整数编码 —> 字符串 str2id = {} # 字符串 -> 整数编码 id = 0 transaction = [] for i in range(len(data)): one = [] for j in data.columns: # 拆分tags if j == 'tags': str_arr = data.loc[i, j].split('|') for s in str_arr: if s in str2id: one.append(str2id[s]) else: id2str[id] = s str2id[s] = id one.append(id) id += 1 else: if data.loc[i, j] in str2id: one.append(str2id[data.loc[i, j]]) else: id2str[id] = data.loc[i, j] str2id[data.loc[i, j]] = id one.append(id) id += 1 transaction.append(one) # 频繁项集 items = list(oaf.frequent_itemsets(transaction)) for i in items: freq_set = [] abs_sup = i[1] for j in i[0]: freq_set.append(id2str[j]) print(freq_set, abs_sup, round(float(abs_sup) / len(data), 2)) # 关联规则 rules = list(oaf.association_rules(dict(items), 0.2)) for i in rules: antecedent = [] consequent = [] for j in i[0]: antecedent.append(id2str[j]) for j in i[1]: consequent.append(id2str[j]) print(antecedent, "->", consequent, i[2], round(i[3],2)) # lift measure = list(oaf.rules_stats(oaf.association_rules(dict(items), 0.2), dict(oaf.frequent_itemsets(transaction, 0.2)), len(data))) for i in measure: antecedent = [] consequent = [] for j in i[0]: antecedent.append(id2str[j]) for j in i[1]: consequent.append(id2str[j]) print(antecedent, "->", consequent, round(i[6], 2)) # 计算Kulc kulc = [] visit = [False for i in range(len(rules))] for i in range(len(rules)): if visit[i] == True: continue visit[i] = True for j in range(len(rules)): if visit[j] == True: continue if rules[j][0] == rules[i][1] and rules[j][1] == rules[i][0]: one = [] antecedent = [] consequent = [] for k in rules[i][0]: antecedent.append(id2str[k]) for k in rules[i][1]: consequent.append(id2str[k]) one.append(rules[i][0]) one.append(rules[i][1]) one.append((rules[i][3] + rules[j][3])/2) kulc.append(one) print('Kulc(', antecedent, consequent, ') = ', round((rules[i][3] + rules[j][3])/2, 2)) visit[j] = True # "like" 数量和 "low view" 数量 like_cnt = 0 low_view_cnt = 0 for i in data['like']: if i == 'like': like_cnt += 1 for i in data['views']: if i == 'low view': low_view_cnt += 1 print(like_cnt, low_view_cnt) # 可视化 conf_matrix = [] lift_matrix = [] kulc_matrix = [] rules_column = set() for i in range(len(measure)): rules_column.add(measure[i][0]) # 计算置信度矩阵 for i in rules_column: one = [] for j in rules_column: if i == j: one.append(1) else: flag = False for k in range(len(rules)): if rules[k][0] == i and rules[k][1] == j: one.append(rules[k][3]) flag = True if flag == False: one.append(0) conf_matrix.append(one) # 计算lift矩阵 for i in rules_column: one = [] for j in rules_column: if i == j: one.append(1) else: flag = False for k in range(len(measure)): if measure[k][0] == i and measure[k][1] == j: one.append(measure[k][6]) flag = True if flag == False: one.append(0) lift_matrix.append(one) # 计算kulc矩阵 for i in rules_column: one = [] for j in rules_column: if i == j: one.append(1) else: flag = False for k in range(len(kulc)): if kulc[k][0] == i and kulc[k][1] == j: one.append(kulc[k][2]) flag = True if flag == False: one.append(0) kulc_matrix.append(one) # 改columns名字 rules_column_list = [] for i in rules_column: one = "" for j in range(len(i)): one += id2str[j] if j < len(i) - 1: one += ", " rules_column_list.append(one) # 绘制热图的数据 rules_column = list(rules_column) rules_column_list = [] for i in rules_column: one = "" for j in range(len(i)): one += id2str[list(i)[j]] if j < len(i) - 1: one += ", " rules_column_list.append(one) lift_pd = pd.DataFrame(lift_matrix, columns = rules_column_list, index = rules_column_list) plt.figure(figsize=(11, 9),dpi=100) sns.heatmap(data = lift_pd, annot = True, fmt = ".2f") plt.show()
28.888889
183
0.522929
086157de2e4ae5eda2e9d15175dee84010a61cb3
628
py
Python
manage.py
chelocool/orbinweb
b52b12f335c076c8cf1f80d462d911f7c48c91f1
[ "Apache-2.0" ]
null
null
null
manage.py
chelocool/orbinweb
b52b12f335c076c8cf1f80d462d911f7c48c91f1
[ "Apache-2.0" ]
null
null
null
manage.py
chelocool/orbinweb
b52b12f335c076c8cf1f80d462d911f7c48c91f1
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python """Django's command-line utility for administrative tasks.""" import os import sys def main(): os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'OrbinWeb.settings') try: from django.core.management import execute_from_command_line except ImportError as exc: raise ImportError( "Couldn't import Django. Are you sure it's installed and " "available on your PYTHONPATH environment variable? Did you " "forget to activate a virtual environment?" ) from exc execute_from_command_line(sys.argv) if __name__ == '__main__': main()
28.545455
73
0.683121
495fa8b63cd6af479192db1f7d66a4f405bee29f
3,420
py
Python
ibis/pandas/execution/temporal.py
tswast/ibis
2f6d47e4c33cefd7ea1d679bb1d9253c2245993b
[ "Apache-2.0" ]
null
null
null
ibis/pandas/execution/temporal.py
tswast/ibis
2f6d47e4c33cefd7ea1d679bb1d9253c2245993b
[ "Apache-2.0" ]
null
null
null
ibis/pandas/execution/temporal.py
tswast/ibis
2f6d47e4c33cefd7ea1d679bb1d9253c2245993b
[ "Apache-2.0" ]
null
null
null
import six import datetime import numpy as np import pandas as pd import ibis.expr.operations as ops from ibis.pandas.dispatch import execute_node from ibis.pandas.core import numeric_types @execute_node.register(ops.Strftime, pd.Timestamp, six.string_types) def execute_strftime_timestamp_str(op, data, format_string, **kwargs): return data.strftime(format_string) @execute_node.register(ops.Strftime, pd.Series, six.string_types) def execute_strftime_series_str(op, data, format_string, **kwargs): return data.dt.strftime(format_string) @execute_node.register( (ops.ExtractTimestampField, ops.ExtractTemporalField), pd.Timestamp ) def execute_extract_timestamp_field_timestamp(op, data, **kwargs): field_name = type(op).__name__.lower().replace('extract', '') return getattr(data, field_name) @execute_node.register(ops.ExtractMillisecond, pd.Timestamp) def execute_extract_millisecond_timestamp(op, data, **kwargs): return int(data.microsecond // 1000.0) @execute_node.register( (ops.ExtractTimestampField, ops.ExtractTemporalField), pd.Series ) def execute_extract_timestamp_field_series(op, data, **kwargs): field_name = type(op).__name__.lower().replace('extract', '') return getattr(data.dt, field_name).astype(np.int32) @execute_node.register( ops.BetweenTime, pd.Series, (pd.Series, str, datetime.time), (pd.Series, str, datetime.time), ) def execute_between_time(op, data, lower, upper, **kwargs): indexer = pd.DatetimeIndex(data).indexer_between_time( lower, upper) result = np.zeros(len(data), dtype=np.bool_) result[indexer] = True return result @execute_node.register(ops.Date, pd.Series) def execute_timestamp_date(op, data, **kwargs): return data.dt.floor('d') @execute_node.register((ops.TimestampTruncate, ops.DateTruncate), pd.Series) def execute_timestamp_truncate(op, data, **kwargs): dtype = 'datetime64[{}]'.format(op.unit) array = data.values.astype(dtype) return pd.Series(array, name=data.name) @execute_node.register(ops.IntervalFromInteger, pd.Series) def execute_interval_from_integer_series(op, data, **kwargs): resolution = '{}s'.format(op.resolution) def convert_to_offset(n): return pd.offsets.DateOffset(**{resolution: n}) return data.apply(convert_to_offset) @execute_node.register( ops.TimestampAdd, (datetime.datetime, pd.Series), (datetime.timedelta, np.timedelta64, pd.Timedelta, pd.Series) ) @execute_node.register( ops.IntervalAdd, (pd.Timedelta, pd.Series), (pd.Timedelta, pd.Series) ) def execute_timestamp_add_delta(op, left, right, **kwargs): return left + right @execute_node.register( (ops.TimestampSub, ops.TimestampDiff), (datetime.datetime, pd.Series), ( datetime.datetime, np.datetime64, datetime.timedelta, np.timedelta64, pd.Timedelta, pd.Series ), ) def execute_timestamp_sub_diff(op, left, right, **kwargs): return left - right @execute_node.register( ops.IntervalMultiply, (pd.Timedelta, pd.Series), numeric_types + (pd.Series,) ) def execute_interval_multiply(op, left, right, **kwargs): return left * right @execute_node.register( ops.IntervalFloorDivide, (pd.Timedelta, pd.Series), numeric_types + (pd.Series,) ) def execute_interval_floor_divide(op, left, right, **kwargs): return left // right
27.804878
76
0.726608
9a2d387a2b3ae45e27bd138677e8b7e67c7398cf
2,447
py
Python
avm_client/models/wall_insulation.py
ENBISYS/avmPython
daa3686ea431e752687c915e2f5b6f65b6c77130
[ "Unlicense" ]
null
null
null
avm_client/models/wall_insulation.py
ENBISYS/avmPython
daa3686ea431e752687c915e2f5b6f65b6c77130
[ "Unlicense" ]
null
null
null
avm_client/models/wall_insulation.py
ENBISYS/avmPython
daa3686ea431e752687c915e2f5b6f65b6c77130
[ "Unlicense" ]
null
null
null
# coding: utf-8 """ AVM This is api for AVM (automated valuation machine) # noqa: E501 The version of the OpenAPI document: 1.0.0 Contact: info@enbisys.com Generated by: https://openapi-generator.tech """ import pprint import re # noqa: F401 import six class WallInsulation(object): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. """ """ allowed enum values """ NO = "no" PARTIAL = "partial" INSULATED = "insulated" ADDITIONAL = "additional" """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ openapi_types = { } attribute_map = { } def __init__(self): # noqa: E501 """WallInsulation - a model defined in OpenAPI""" # noqa: E501 self.discriminator = None def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, WallInsulation): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
26.031915
74
0.549244
deb3f7752649b74277824ee2117cfa1c06a52797
3,475
py
Python
management/serializer.py
tonythomas01/quarantine_backend
dea1c8a4838954fca531ae9c1c7763fc1d1a4fd8
[ "MIT" ]
3
2020-05-20T14:07:57.000Z
2020-12-18T22:01:59.000Z
management/serializer.py
tonythomas01/quarantine_backend
dea1c8a4838954fca531ae9c1c7763fc1d1a4fd8
[ "MIT" ]
22
2020-04-04T11:23:22.000Z
2021-12-13T20:37:18.000Z
management/serializer.py
Quarantine-Help/quarantined_backend
3cab95d0716bb914f8005075674aa7bbdccfdae4
[ "MIT" ]
2
2020-04-04T15:02:57.000Z
2020-05-02T18:10:41.000Z
from rest_framework import fields, serializers from rest_framework.serializers import ModelSerializer from authentication.serializer import ( UserSerializer, ParticipantSerializer, ParticipantAnonymizedSerializer, ) from crisis.models.crisis_request import Request from crisis.models.request_assignment import RequestAssignment from management.models import Ability class AbilitySerializer(ModelSerializer): class Meta: model = Ability fields = "__all__" class RequestAssignmentSerializer(ModelSerializer): class Meta: model = RequestAssignment fields = ("status", "id", "created_at", "did_complete", "assignee_id") class RequestSerializer(ModelSerializer): assignee = ParticipantSerializer(allow_null=True, required=False, read_only=True) assignmentHistory = RequestAssignmentSerializer( source="related_assignment", allow_null=True, required=False, read_only=True, many=True, ) bountyCurrency = fields.CharField(source="owner.currency", read_only=True) status = fields.CharField(required=False, allow_null=True) def validate(self, attrs): attrs = super().validate(attrs) # We do not allow people to set attribute to Transit through the API # view. al if not self.instance: return attrs if self.instance.status in Request.FINISHED_STATUSES: raise serializers.ValidationError("You cannot change this request anymore.") if self.instance.status == "T": if attrs["status"] not in Request.FINISHED_STATUSES: raise serializers.ValidationError( "You can only cancel or mark the request as finished" ) if attrs["description"] != self.instance.description: raise serializers.ValidationError( "You will have to cancel this request first." ) if not attrs["deadline"] >= self.instance.deadline: raise serializers.ValidationError( "You cannot shorten the deadline now. Please cancel" ) if attrs.get("status", None) == "T": # This should happen through assignment logic raise serializers.ValidationError("Cannot update the status to T") return attrs class Meta: model = Request fields = ( "id", "type", "deadline", "description", "assignee", "status", "assignmentHistory", "bountyCurrency", "bounty_amount_offered_to_volunteer", "created_at", ) class RequestAnonymizedSerializer(RequestSerializer): assignee = ParticipantAnonymizedSerializer( allow_null=True, required=False, read_only=True ) class AssigneeRequestUpdateSerializer(ModelSerializer): class Meta: model = Request fields = ("id", "status") def validate(self, attrs): attrs = super().validate(attrs) if "status" not in attrs: raise serializers.ValidationError("Status is mandatory") allowed_status = [Request.STATUS_FINISHED, Request.STATUS_TRANSIT] if attrs["status"] not in allowed_status: raise serializers.ValidationError( "Only the following status are allowed %s" % str(allowed_status) ) return attrs
32.783019
88
0.637698
28545b5de3dc843010b0c429623358c6cc38e6cf
41,479
py
Python
tests/unit/test_loader.py
johnj/salt
b23656fa5ee24047c43ac702d6796a700570f749
[ "Apache-2.0" ]
5
2017-02-07T05:39:29.000Z
2020-06-13T02:07:33.000Z
tests/unit/test_loader.py
johnj/salt
b23656fa5ee24047c43ac702d6796a700570f749
[ "Apache-2.0" ]
86
2017-01-27T11:54:46.000Z
2020-05-20T06:25:26.000Z
tests/unit/test_loader.py
johnj/salt
b23656fa5ee24047c43ac702d6796a700570f749
[ "Apache-2.0" ]
11
2017-01-26T19:36:29.000Z
2021-12-11T07:54:16.000Z
# -*- coding: utf-8 -*- ''' unit.loader ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Test Salt's loader ''' # Import Python libs from __future__ import absolute_import, print_function, unicode_literals import collections import compileall import copy import imp import inspect import logging import os import shutil import sys import tempfile import textwrap # Import Salt Testing libs from tests.support.case import ModuleCase from tests.support.unit import TestCase from tests.support.mock import patch from tests.support.paths import TMP # Import Salt libs import salt.config import salt.loader import salt.utils.files import salt.utils.stringutils # pylint: disable=import-error,no-name-in-module,redefined-builtin from salt.ext import six from salt.ext.six.moves import range # pylint: enable=no-name-in-module,redefined-builtin log = logging.getLogger(__name__) def remove_bytecode(module_path): paths = [module_path + 'c'] if hasattr(imp, 'get_tag'): modname, ext = os.path.splitext(module_path.split(os.sep)[-1]) paths.append( os.path.join(os.path.dirname(module_path), '__pycache__', '{}.{}.pyc'.format(modname, imp.get_tag()))) for path in paths: if os.path.exists(path): os.unlink(path) loader_template = ''' import os from salt.utils.decorators import depends @depends('os') def loaded(): return True @depends('non_existantmodulename') def not_loaded(): return True ''' class LazyLoaderTest(TestCase): ''' Test the loader ''' module_name = 'lazyloadertest' @classmethod def setUpClass(cls): cls.opts = salt.config.minion_config(None) cls.opts['grains'] = salt.loader.grains(cls.opts) if not os.path.isdir(TMP): os.makedirs(TMP) def setUp(self): # Setup the module self.module_dir = tempfile.mkdtemp(dir=TMP) self.module_file = os.path.join(self.module_dir, '{0}.py'.format(self.module_name)) with salt.utils.files.fopen(self.module_file, 'w') as fh: fh.write(salt.utils.stringutils.to_str(loader_template)) fh.flush() os.fsync(fh.fileno()) # Invoke the loader self.loader = salt.loader.LazyLoader([self.module_dir], copy.deepcopy(self.opts), tag='module') def tearDown(self): shutil.rmtree(self.module_dir) if os.path.isdir(self.module_dir): shutil.rmtree(self.module_dir) del self.module_dir del self.module_file del self.loader @classmethod def tearDownClass(cls): del cls.opts def test_depends(self): ''' Test that the depends decorator works properly ''' # Make sure depends correctly allowed a function to load. If this # results in a KeyError, the decorator is broken. self.assertTrue( inspect.isfunction( self.loader[self.module_name + '.loaded'] ) ) # Make sure depends correctly kept a function from loading self.assertTrue(self.module_name + '.not_loaded' not in self.loader) class LazyLoaderVirtualEnabledTest(TestCase): ''' Test the base loader of salt. ''' @classmethod def setUpClass(cls): cls.opts = salt.config.minion_config(None) cls.opts['disable_modules'] = ['pillar'] cls.opts['grains'] = salt.loader.grains(cls.opts) def setUp(self): self.loader = salt.loader.LazyLoader( salt.loader._module_dirs(copy.deepcopy(self.opts), 'modules', 'module'), copy.deepcopy(self.opts), tag='module') def tearDown(self): del self.loader @classmethod def tearDownClass(cls): del cls.opts def test_basic(self): ''' Ensure that it only loads stuff when needed ''' # make sure it starts empty self.assertEqual(self.loader._dict, {}) # get something, and make sure its a func self.assertTrue(inspect.isfunction(self.loader['test.ping'])) # make sure we only loaded "test" functions for key, val in six.iteritems(self.loader._dict): self.assertEqual(key.split('.', 1)[0], 'test') # make sure the depends thing worked (double check of the depends testing, # since the loader does the calling magically self.assertFalse('test.missing_func' in self.loader._dict) def test_badkey(self): with self.assertRaises(KeyError): self.loader[None] # pylint: disable=W0104 with self.assertRaises(KeyError): self.loader[1] # pylint: disable=W0104 def test_disable(self): self.assertNotIn('pillar.items', self.loader) def test_len_load(self): ''' Since LazyLoader is a MutableMapping, if someone asks for len() we have to load all ''' self.assertEqual(self.loader._dict, {}) len(self.loader) # force a load all self.assertNotEqual(self.loader._dict, {}) def test_iter_load(self): ''' Since LazyLoader is a MutableMapping, if someone asks to iterate we have to load all ''' self.assertEqual(self.loader._dict, {}) # force a load all for key, func in six.iteritems(self.loader): break self.assertNotEqual(self.loader._dict, {}) def test_context(self): ''' Make sure context is shared across modules ''' # make sure it starts empty self.assertEqual(self.loader._dict, {}) # get something, and make sure its a func func = self.loader['test.ping'] with patch.dict(func.__globals__['__context__'], {'foo': 'bar'}): self.assertEqual(self.loader['test.echo'].__globals__['__context__']['foo'], 'bar') self.assertEqual(self.loader['grains.get'].__globals__['__context__']['foo'], 'bar') def test_globals(self): func_globals = self.loader['test.ping'].__globals__ self.assertEqual(func_globals['__grains__'], self.opts.get('grains', {})) self.assertEqual(func_globals['__pillar__'], self.opts.get('pillar', {})) # the opts passed into modules is at least a subset of the whole opts for key, val in six.iteritems(func_globals['__opts__']): if key in salt.config.DEFAULT_MASTER_OPTS and key not in salt.config.DEFAULT_MINION_OPTS: # We loaded the minion opts, but somewhere in the code, the master options got pulled in # Let's just not check for equality since the option won't even exist in the loaded # minion options continue if key not in salt.config.DEFAULT_MASTER_OPTS and key not in salt.config.DEFAULT_MINION_OPTS: # This isn't even a default configuration setting, lets carry on continue self.assertEqual(self.opts[key], val) def test_pack(self): self.loader.pack['__foo__'] = 'bar' func_globals = self.loader['test.ping'].__globals__ self.assertEqual(func_globals['__foo__'], 'bar') def test_virtual(self): self.assertNotIn('test_virtual.ping', self.loader) class LazyLoaderVirtualDisabledTest(TestCase): ''' Test the loader of salt without __virtual__ ''' @classmethod def setUpClass(cls): cls.opts = salt.config.minion_config(None) cls.opts['grains'] = salt.loader.grains(cls.opts) def setUp(self): self.loader = salt.loader.LazyLoader( salt.loader._module_dirs(copy.deepcopy(self.opts), 'modules', 'module'), copy.deepcopy(self.opts), tag='module', virtual_enable=False) def tearDown(self): del self.loader @classmethod def tearDownClass(cls): del cls.opts def test_virtual(self): self.assertTrue(inspect.isfunction(self.loader['test_virtual.ping'])) class LazyLoaderWhitelistTest(TestCase): ''' Test the loader of salt with a whitelist ''' @classmethod def setUpClass(cls): cls.opts = salt.config.minion_config(None) cls.opts['grains'] = salt.loader.grains(cls.opts) def setUp(self): self.loader = salt.loader.LazyLoader( salt.loader._module_dirs(copy.deepcopy(self.opts), 'modules', 'module'), copy.deepcopy(self.opts), tag='module', whitelist=['test', 'pillar']) def tearDown(self): del self.loader @classmethod def tearDownClass(cls): del cls.opts def test_whitelist(self): self.assertTrue(inspect.isfunction(self.loader['test.ping'])) self.assertTrue(inspect.isfunction(self.loader['pillar.get'])) self.assertNotIn('grains.get', self.loader) class LazyLoaderGrainsBlacklistTest(TestCase): ''' Test the loader of grains with a blacklist ''' def setUp(self): self.opts = salt.config.minion_config(None) def tearDown(self): del self.opts def test_whitelist(self): opts = copy.deepcopy(self.opts) opts['grains_blacklist'] = [ 'master', 'os*', 'ipv[46]' ] grains = salt.loader.grains(opts) self.assertNotIn('master', grains) self.assertNotIn('os', set([g[:2] for g in list(grains)])) self.assertNotIn('ipv4', grains) self.assertNotIn('ipv6', grains) class LazyLoaderSingleItem(TestCase): ''' Test loading a single item via the _load() function ''' @classmethod def setUpClass(cls): cls.opts = salt.config.minion_config(None) cls.opts['grains'] = salt.loader.grains(cls.opts) def setUp(self): self.loader = salt.loader.LazyLoader( salt.loader._module_dirs(copy.deepcopy(self.opts), 'modules', 'module'), copy.deepcopy(self.opts), tag='module') def tearDown(self): del self.loader def test_single_item_no_dot(self): ''' Checks that a KeyError is raised when the function key does not contain a '.' ''' key = 'testing_no_dot' expected = "The key '{0}' should contain a '.'".format(key) with self.assertRaises(KeyError) as err: inspect.isfunction(self.loader['testing_no_dot']) result = err.exception.args[0] assert result == expected, result module_template = ''' __load__ = ['test', 'test_alias'] __func_alias__ = dict(test_alias='working_alias') from salt.utils.decorators import depends def test(): return {count} def test_alias(): return True def test2(): return True @depends('non_existantmodulename') def test3(): return True @depends('non_existantmodulename', fallback_function=test) def test4(): return True ''' class LazyLoaderReloadingTest(TestCase): ''' Test the loader of salt with changing modules ''' module_name = 'loadertest' module_key = 'loadertest.test' @classmethod def setUpClass(cls): cls.opts = salt.config.minion_config(None) cls.opts['grains'] = salt.loader.grains(cls.opts) if not os.path.isdir(TMP): os.makedirs(TMP) def setUp(self): self.tmp_dir = tempfile.mkdtemp(dir=TMP) self.count = 0 opts = copy.deepcopy(self.opts) dirs = salt.loader._module_dirs(opts, 'modules', 'module') dirs.append(self.tmp_dir) self.utils = salt.loader.utils(opts) self.proxy = salt.loader.proxy(opts) self.minion_mods = salt.loader.minion_mods(opts) self.loader = salt.loader.LazyLoader( dirs, opts, tag='module', pack={'__utils__': self.utils, '__proxy__': self.proxy, '__salt__': self.minion_mods}) def tearDown(self): shutil.rmtree(self.tmp_dir) for attrname in ('tmp_dir', 'utils', 'proxy', 'loader', 'minion_mods', 'utils'): try: delattr(self, attrname) except AttributeError: continue @classmethod def tearDownClass(cls): del cls.opts def update_module(self): self.count += 1 with salt.utils.files.fopen(self.module_path, 'wb') as fh: fh.write( salt.utils.stringutils.to_bytes( module_template.format(count=self.count) ) ) fh.flush() os.fsync(fh.fileno()) # flush to disk # pyc files don't like it when we change the original quickly # since the header bytes only contain the timestamp (granularity of seconds) # TODO: don't write them? Is *much* slower on re-load (~3x) # https://docs.python.org/2/library/sys.html#sys.dont_write_bytecode remove_bytecode(self.module_path) def rm_module(self): os.unlink(self.module_path) remove_bytecode(self.module_path) @property def module_path(self): return os.path.join(self.tmp_dir, '{0}.py'.format(self.module_name)) def test_alias(self): ''' Make sure that you can access alias-d modules ''' # ensure it doesn't exist self.assertNotIn(self.module_key, self.loader) self.update_module() self.assertNotIn('{0}.test_alias'.format(self.module_name), self.loader) self.assertTrue(inspect.isfunction(self.loader['{0}.working_alias'.format(self.module_name)])) def test_clear(self): self.assertTrue(inspect.isfunction(self.loader['test.ping'])) self.update_module() # write out out custom module self.loader.clear() # clear the loader dict # force a load of our module self.assertTrue(inspect.isfunction(self.loader[self.module_key])) # make sure we only loaded our custom module # which means that we did correctly refresh the file mapping for k, v in six.iteritems(self.loader._dict): self.assertTrue(k.startswith(self.module_name)) def test_load(self): # ensure it doesn't exist self.assertNotIn(self.module_key, self.loader) self.update_module() self.assertTrue(inspect.isfunction(self.loader[self.module_key])) def test__load__(self): ''' If a module specifies __load__ we should only load/expose those modules ''' self.update_module() # ensure it doesn't exist self.assertNotIn(self.module_key + '2', self.loader) def test__load__and_depends(self): ''' If a module specifies __load__ we should only load/expose those modules ''' self.update_module() # ensure it doesn't exist self.assertNotIn(self.module_key + '3', self.loader) self.assertNotIn(self.module_key + '4', self.loader) def test_reload(self): # ensure it doesn't exist self.assertNotIn(self.module_key, self.loader) # make sure it updates correctly for x in range(1, 3): self.update_module() self.loader.clear() self.assertEqual(self.loader[self.module_key](), self.count) self.rm_module() # make sure that even if we remove the module, its still loaded until a clear self.assertEqual(self.loader[self.module_key](), self.count) self.loader.clear() self.assertNotIn(self.module_key, self.loader) virtual_aliases = ('loadertest2', 'loadertest3') virtual_alias_module_template = ''' __virtual_aliases__ = {0} def test(): return True '''.format(virtual_aliases) class LazyLoaderVirtualAliasTest(TestCase): ''' Test the loader of salt with changing modules ''' module_name = 'loadertest' @classmethod def setUpClass(cls): cls.opts = salt.config.minion_config(None) cls.opts['grains'] = salt.loader.grains(cls.opts) if not os.path.isdir(TMP): os.makedirs(TMP) def setUp(self): self.tmp_dir = tempfile.mkdtemp(dir=TMP) opts = copy.deepcopy(self.opts) dirs = salt.loader._module_dirs(opts, 'modules', 'module') dirs.append(self.tmp_dir) self.utils = salt.loader.utils(opts) self.proxy = salt.loader.proxy(opts) self.minion_mods = salt.loader.minion_mods(opts) self.loader = salt.loader.LazyLoader( dirs, opts, tag='module', pack={'__utils__': self.utils, '__proxy__': self.proxy, '__salt__': self.minion_mods}) def tearDown(self): del self.tmp_dir del self.utils del self.proxy del self.minion_mods del self.loader @classmethod def tearDownClass(cls): del cls.opts def update_module(self): with salt.utils.files.fopen(self.module_path, 'wb') as fh: fh.write(salt.utils.stringutils.to_bytes(virtual_alias_module_template)) fh.flush() os.fsync(fh.fileno()) # flush to disk # pyc files don't like it when we change the original quickly # since the header bytes only contain the timestamp (granularity of seconds) # TODO: don't write them? Is *much* slower on re-load (~3x) # https://docs.python.org/2/library/sys.html#sys.dont_write_bytecode remove_bytecode(self.module_path) @property def module_path(self): return os.path.join(self.tmp_dir, '{0}.py'.format(self.module_name)) def test_virtual_alias(self): ''' Test the __virtual_alias__ feature ''' self.update_module() mod_names = [self.module_name] + list(virtual_aliases) for mod_name in mod_names: func_name = '.'.join((mod_name, 'test')) log.debug('Running %s (dict attribute)', func_name) self.assertTrue(self.loader[func_name]()) log.debug('Running %s (loader attribute)', func_name) self.assertTrue(getattr(self.loader, mod_name).test()) submodule_template = ''' from __future__ import absolute_import import {0}.lib def test(): return ({count}, {0}.lib.test()) ''' submodule_lib_template = ''' def test(): return {count} ''' class LazyLoaderSubmodReloadingTest(TestCase): ''' Test the loader of salt with changing modules ''' module_name = 'loadertestsubmod' module_key = 'loadertestsubmod.test' @classmethod def setUpClass(cls): cls.opts = salt.config.minion_config(None) cls.opts['grains'] = salt.loader.grains(cls.opts) if not os.path.isdir(TMP): os.makedirs(TMP) def setUp(self): self.tmp_dir = tempfile.mkdtemp(dir=TMP) os.makedirs(self.module_dir) self.count = 0 self.lib_count = 0 opts = copy.deepcopy(self.opts) dirs = salt.loader._module_dirs(opts, 'modules', 'module') dirs.append(self.tmp_dir) self.utils = salt.loader.utils(opts) self.proxy = salt.loader.proxy(opts) self.minion_mods = salt.loader.minion_mods(opts) self.loader = salt.loader.LazyLoader( dirs, opts, tag='module', pack={'__utils__': self.utils, '__proxy__': self.proxy, '__salt__': self.minion_mods}) def tearDown(self): shutil.rmtree(self.tmp_dir) del self.tmp_dir del self.utils del self.proxy del self.minion_mods del self.loader @classmethod def tearDownClass(cls): del cls.opts def update_module(self): self.count += 1 with salt.utils.files.fopen(self.module_path, 'wb') as fh: fh.write( salt.utils.stringutils.to_bytes( submodule_template.format(self.module_name, count=self.count) ) ) fh.flush() os.fsync(fh.fileno()) # flush to disk # pyc files don't like it when we change the original quickly # since the header bytes only contain the timestamp (granularity of seconds) # TODO: don't write them? Is *much* slower on re-load (~3x) # https://docs.python.org/2/library/sys.html#sys.dont_write_bytecode remove_bytecode(self.module_path) def rm_module(self): os.unlink(self.module_path) remove_bytecode(self.module_path) def update_lib(self): self.lib_count += 1 for modname in list(sys.modules): if modname.startswith(self.module_name): del sys.modules[modname] with salt.utils.files.fopen(self.lib_path, 'wb') as fh: fh.write( salt.utils.stringutils.to_bytes( submodule_lib_template.format(count=self.lib_count) ) ) fh.flush() os.fsync(fh.fileno()) # flush to disk # pyc files don't like it when we change the original quickly # since the header bytes only contain the timestamp (granularity of seconds) # TODO: don't write them? Is *much* slower on re-load (~3x) # https://docs.python.org/2/library/sys.html#sys.dont_write_bytecode remove_bytecode(self.lib_path) def rm_lib(self): for modname in list(sys.modules): if modname.startswith(self.module_name): del sys.modules[modname] os.unlink(self.lib_path) remove_bytecode(self.lib_path) @property def module_dir(self): return os.path.join(self.tmp_dir, self.module_name) @property def module_path(self): return os.path.join(self.module_dir, '__init__.py') @property def lib_path(self): return os.path.join(self.module_dir, 'lib.py') def test_basic(self): # ensure it doesn't exist self.assertNotIn(self.module_key, self.loader) self.update_module() self.update_lib() self.loader.clear() self.assertIn(self.module_key, self.loader) def test_reload(self): # ensure it doesn't exist self.assertNotIn(self.module_key, self.loader) # update both the module and the lib for x in range(1, 3): self.update_lib() self.update_module() self.loader.clear() self.assertNotIn(self.module_key, self.loader._dict) self.assertIn(self.module_key, self.loader) self.assertEqual(self.loader[self.module_key](), (self.count, self.lib_count)) # update just the module for x in range(1, 3): self.update_module() self.loader.clear() self.assertNotIn(self.module_key, self.loader._dict) self.assertIn(self.module_key, self.loader) self.assertEqual(self.loader[self.module_key](), (self.count, self.lib_count)) # update just the lib for x in range(1, 3): self.update_lib() self.loader.clear() self.assertNotIn(self.module_key, self.loader._dict) self.assertIn(self.module_key, self.loader) self.assertEqual(self.loader[self.module_key](), (self.count, self.lib_count)) self.rm_module() # make sure that even if we remove the module, its still loaded until a clear self.assertEqual(self.loader[self.module_key](), (self.count, self.lib_count)) self.loader.clear() self.assertNotIn(self.module_key, self.loader) def test_reload_missing_lib(self): # ensure it doesn't exist self.assertNotIn(self.module_key, self.loader) # update both the module and the lib self.update_module() self.update_lib() self.loader.clear() self.assertEqual(self.loader[self.module_key](), (self.count, self.lib_count)) # remove the lib, this means we should fail to load the module next time self.rm_lib() self.loader.clear() self.assertNotIn(self.module_key, self.loader) mod_template = ''' def test(): return ({val}) ''' class LazyLoaderModulePackageTest(TestCase): ''' Test the loader of salt with changing modules ''' module_name = 'loadertestmodpkg' module_key = 'loadertestmodpkg.test' @classmethod def setUpClass(cls): cls.opts = salt.config.minion_config(None) cls.opts['grains'] = salt.loader.grains(cls.opts) if not os.path.isdir(TMP): os.makedirs(TMP) def setUp(self): self.tmp_dir = tempfile.mkdtemp(dir=TMP) dirs = salt.loader._module_dirs(copy.deepcopy(self.opts), 'modules', 'module') dirs.append(self.tmp_dir) self.loader = salt.loader.LazyLoader( dirs, copy.deepcopy(self.opts), tag='module') def tearDown(self): shutil.rmtree(self.tmp_dir) del self.tmp_dir del self.loader @classmethod def tearDownClass(cls): del cls.opts def update_pyfile(self, pyfile, contents): dirname = os.path.dirname(pyfile) if not os.path.exists(dirname): os.makedirs(dirname) with salt.utils.files.fopen(pyfile, 'wb') as fh: fh.write(salt.utils.stringutils.to_bytes(contents)) fh.flush() os.fsync(fh.fileno()) # flush to disk # pyc files don't like it when we change the original quickly # since the header bytes only contain the timestamp (granularity of seconds) # TODO: don't write them? Is *much* slower on re-load (~3x) # https://docs.python.org/2/library/sys.html#sys.dont_write_bytecode remove_bytecode(pyfile) def rm_pyfile(self, pyfile): os.unlink(pyfile) remove_bytecode(pyfile) def update_module(self, relative_path, contents): self.update_pyfile(os.path.join(self.tmp_dir, relative_path), contents) def rm_module(self, relative_path): self.rm_pyfile(os.path.join(self.tmp_dir, relative_path)) def test_module(self): # ensure it doesn't exist self.assertNotIn('foo', self.loader) self.assertNotIn('foo.test', self.loader) self.update_module('foo.py', mod_template.format(val=1)) self.loader.clear() self.assertIn('foo.test', self.loader) self.assertEqual(self.loader['foo.test'](), 1) def test_package(self): # ensure it doesn't exist self.assertNotIn('foo', self.loader) self.assertNotIn('foo.test', self.loader) self.update_module('foo/__init__.py', mod_template.format(val=2)) self.loader.clear() self.assertIn('foo.test', self.loader) self.assertEqual(self.loader['foo.test'](), 2) def test_module_package_collision(self): # ensure it doesn't exist self.assertNotIn('foo', self.loader) self.assertNotIn('foo.test', self.loader) self.update_module('foo.py', mod_template.format(val=3)) self.loader.clear() self.assertIn('foo.test', self.loader) self.assertEqual(self.loader['foo.test'](), 3) self.update_module('foo/__init__.py', mod_template.format(val=4)) self.loader.clear() self.assertIn('foo.test', self.loader) self.assertEqual(self.loader['foo.test'](), 4) deep_init_base = ''' from __future__ import absolute_import import {0}.top_lib import {0}.top_lib.mid_lib import {0}.top_lib.mid_lib.bot_lib def top(): return {0}.top_lib.test() def mid(): return {0}.top_lib.mid_lib.test() def bot(): return {0}.top_lib.mid_lib.bot_lib.test() ''' class LazyLoaderDeepSubmodReloadingTest(TestCase): module_name = 'loadertestsubmoddeep' libs = ('top_lib', 'mid_lib', 'bot_lib') @classmethod def setUpClass(cls): cls.opts = salt.config.minion_config(None) cls.opts['grains'] = salt.loader.grains(cls.opts) if not os.path.isdir(TMP): os.makedirs(TMP) def setUp(self): self.tmp_dir = tempfile.mkdtemp(dir=TMP) os.makedirs(self.module_dir) self.lib_count = collections.defaultdict(int) # mapping of path -> count # bootstrap libs with salt.utils.files.fopen(os.path.join(self.module_dir, '__init__.py'), 'w') as fh: # No .decode() needed here as deep_init_base is defined as str and # not bytes. fh.write( salt.utils.stringutils.to_str( deep_init_base.format(self.module_name) ) ) fh.flush() os.fsync(fh.fileno()) # flush to disk self.lib_paths = {} dir_path = self.module_dir for lib_name in self.libs: dir_path = os.path.join(dir_path, lib_name) self.lib_paths[lib_name] = dir_path os.makedirs(dir_path) self.update_lib(lib_name) opts = copy.deepcopy(self.opts) dirs = salt.loader._module_dirs(opts, 'modules', 'module') dirs.append(self.tmp_dir) self.utils = salt.loader.utils(opts) self.proxy = salt.loader.proxy(opts) self.minion_mods = salt.loader.minion_mods(opts) self.loader = salt.loader.LazyLoader( dirs, copy.deepcopy(opts), tag='module', pack={'__utils__': self.utils, '__proxy__': self.proxy, '__salt__': self.minion_mods}) self.assertIn('{0}.top'.format(self.module_name), self.loader) def tearDown(self): shutil.rmtree(self.tmp_dir) del self.tmp_dir del self.lib_paths del self.utils del self.proxy del self.minion_mods del self.loader del self.lib_count @classmethod def tearDownClass(cls): del cls.opts @property def module_dir(self): return os.path.join(self.tmp_dir, self.module_name) def update_lib(self, lib_name): for modname in list(sys.modules): if modname.startswith(self.module_name): del sys.modules[modname] path = os.path.join(self.lib_paths[lib_name], '__init__.py') self.lib_count[lib_name] += 1 with salt.utils.files.fopen(path, 'wb') as fh: fh.write( salt.utils.stringutils.to_bytes( submodule_lib_template.format(count=self.lib_count[lib_name]) ) ) fh.flush() os.fsync(fh.fileno()) # flush to disk # pyc files don't like it when we change the original quickly # since the header bytes only contain the timestamp (granularity of seconds) # TODO: don't write them? Is *much* slower on re-load (~3x) # https://docs.python.org/2/library/sys.html#sys.dont_write_bytecode remove_bytecode(path) def test_basic(self): self.assertIn('{0}.top'.format(self.module_name), self.loader) def _verify_libs(self): for lib in self.libs: self.assertEqual(self.loader['{0}.{1}'.format(self.module_name, lib.replace('_lib', ''))](), self.lib_count[lib]) def test_reload(self): ''' Make sure that we can reload all libraries of arbitrary depth ''' self._verify_libs() # update them all for lib in self.libs: for x in range(5): self.update_lib(lib) self.loader.clear() self._verify_libs() class LoaderGlobalsTest(ModuleCase): ''' Test all of the globals that the loader is responsible for adding to modules This shouldn't be done here, but should rather be done per module type (in the cases where they are used) so they can check ALL globals that they have (or should have) access to. This is intended as a shorter term way of testing these so we don't break the loader ''' def _verify_globals(self, mod_dict): ''' Verify that the globals listed in the doc string (from the test) are in these modules ''' # find the globals global_vars = [] for val in six.itervalues(mod_dict): # only find salty globals if val.__module__.startswith('salt.loaded'): if hasattr(val, '__globals__'): if hasattr(val, '__wrapped__') or '__wrapped__' in val.__globals__: global_vars.append(sys.modules[val.__module__].__dict__) else: global_vars.append(val.__globals__) # if we couldn't find any, then we have no modules -- so something is broken self.assertNotEqual(global_vars, [], msg='No modules were loaded.') # get the names of the globals you should have func_name = inspect.stack()[1][3] names = next(six.itervalues(salt.utils.yaml.safe_load(getattr(self, func_name).__doc__))) # Now, test each module! for item in global_vars: for name in names: self.assertIn(name, list(item.keys())) def test_auth(self): ''' Test that auth mods have: - __pillar__ - __grains__ - __salt__ - __context__ ''' self._verify_globals(salt.loader.auth(self.master_opts)) def test_runners(self): ''' Test that runners have: - __pillar__ - __salt__ - __opts__ - __grains__ - __context__ ''' self._verify_globals(salt.loader.runner(self.master_opts)) def test_returners(self): ''' Test that returners have: - __salt__ - __opts__ - __pillar__ - __grains__ - __context__ ''' self._verify_globals(salt.loader.returners(self.master_opts, {})) def test_pillars(self): ''' Test that pillars have: - __salt__ - __opts__ - __pillar__ - __grains__ - __context__ ''' self._verify_globals(salt.loader.pillars(self.master_opts, {})) def test_tops(self): ''' Test that tops have: [] ''' self._verify_globals(salt.loader.tops(self.master_opts)) def test_outputters(self): ''' Test that outputters have: - __opts__ - __pillar__ - __grains__ - __context__ ''' self._verify_globals(salt.loader.outputters(self.master_opts)) def test_serializers(self): ''' Test that serializers have: [] ''' self._verify_globals(salt.loader.serializers(self.master_opts)) def test_states(self): ''' Test that states have: - __pillar__ - __salt__ - __opts__ - __grains__ - __context__ ''' self._verify_globals(salt.loader.states(self.master_opts, {}, {}, {})) def test_renderers(self): ''' Test that renderers have: - __salt__ # Execution functions (i.e. __salt__['test.echo']('foo')) - __grains__ # Grains (i.e. __grains__['os']) - __pillar__ # Pillar data (i.e. __pillar__['foo']) - __opts__ # Minion configuration options - __context__ # Context dict shared amongst all modules of the same type ''' self._verify_globals(salt.loader.render(self.master_opts, {})) class RawModTest(TestCase): ''' Test the interface of raw_mod ''' def setUp(self): self.opts = salt.config.minion_config(None) def tearDown(self): del self.opts def test_basic(self): testmod = salt.loader.raw_mod(self.opts, 'test', None) for k, v in six.iteritems(testmod): self.assertEqual(k.split('.')[0], 'test') def test_bad_name(self): testmod = salt.loader.raw_mod(self.opts, 'module_we_do_not_have', None) self.assertEqual(testmod, {}) class NetworkUtilsTestCase(ModuleCase): def test_is_private(self): mod = salt.loader.raw_mod(self.minion_opts, 'network', None) self.assertTrue(mod['network.is_private']('10.0.0.1'), True) def test_is_loopback(self): mod = salt.loader.raw_mod(self.minion_opts, 'network', None) self.assertTrue(mod['network.is_loopback']('127.0.0.1'), True) class LazyLoaderOptimizationOrderTest(TestCase): ''' Test the optimization order priority in the loader (PY3) ''' module_name = 'lazyloadertest' module_content = textwrap.dedent('''\ # -*- coding: utf-8 -*- from __future__ import absolute_import def test(): return True ''') @classmethod def setUpClass(cls): cls.opts = salt.config.minion_config(None) cls.opts['grains'] = salt.loader.grains(cls.opts) def setUp(self): # Setup the module self.module_dir = tempfile.mkdtemp(dir=TMP) self.module_file = os.path.join(self.module_dir, '{0}.py'.format(self.module_name)) def _get_loader(self, order=None): opts = copy.deepcopy(self.opts) if order is not None: opts['optimization_order'] = order # Return a loader return salt.loader.LazyLoader([self.module_dir], opts, tag='module') def _get_module_filename(self): # The act of referencing the loader entry forces the module to be # loaded by the LazyDict. mod_fullname = self.loader[next(iter(self.loader))].__module__ return sys.modules[mod_fullname].__file__ def _expected(self, optimize=0): if six.PY3: return 'lazyloadertest.cpython-{0}{1}{2}.pyc'.format( sys.version_info[0], sys.version_info[1], '' if not optimize else '.opt-{0}'.format(optimize) ) else: return 'lazyloadertest.pyc' def _write_module_file(self): with salt.utils.files.fopen(self.module_file, 'w') as fh: fh.write(self.module_content) fh.flush() os.fsync(fh.fileno()) def _byte_compile(self): if salt.loader.USE_IMPORTLIB: # Skip this check as "optimize" is unique to PY3's compileall # module, and this will be a false error when Pylint is run on # Python 2. # pylint: disable=unexpected-keyword-arg compileall.compile_file(self.module_file, quiet=1, optimize=0) compileall.compile_file(self.module_file, quiet=1, optimize=1) compileall.compile_file(self.module_file, quiet=1, optimize=2) # pylint: enable=unexpected-keyword-arg else: compileall.compile_file(self.module_file, quiet=1) def _test_optimization_order(self, order): self._write_module_file() self._byte_compile() # Clean up the original file so that we can be assured we're only # loading the byte-compiled files(s). os.remove(self.module_file) self.loader = self._get_loader(order) filename = self._get_module_filename() basename = os.path.basename(filename) assert basename == self._expected(order[0]), basename if not salt.loader.USE_IMPORTLIB: # We are only testing multiple optimization levels on Python 3.5+ return # Remove the file and make a new loader. We should now load the # byte-compiled file with an optimization level matching the 2nd # element of the order list. os.remove(filename) self.loader = self._get_loader(order) filename = self._get_module_filename() basename = os.path.basename(filename) assert basename == self._expected(order[1]), basename # Remove the file and make a new loader. We should now load the # byte-compiled file with an optimization level matching the 3rd # element of the order list. os.remove(filename) self.loader = self._get_loader(order) filename = self._get_module_filename() basename = os.path.basename(filename) assert basename == self._expected(order[2]), basename def test_optimization_order(self): ''' Test the optimization_order config param ''' self._test_optimization_order([0, 1, 2]) self._test_optimization_order([0, 2, 1]) if salt.loader.USE_IMPORTLIB: # optimization_order only supported on Python 3.5+, earlier # releases only support unoptimized .pyc files. self._test_optimization_order([1, 2, 0]) self._test_optimization_order([1, 0, 2]) self._test_optimization_order([2, 0, 1]) self._test_optimization_order([2, 1, 0]) def test_load_source_file(self): ''' Make sure that .py files are preferred over .pyc files ''' self._write_module_file() self._byte_compile() self.loader = self._get_loader() filename = self._get_module_filename() basename = os.path.basename(filename) expected = 'lazyloadertest.py' if six.PY3 else 'lazyloadertest.pyc' assert basename == expected, basename
32.66063
109
0.611587
564368bc3177eaef7dacff296611ee7e3a02cd2e
6,136
py
Python
Chimera/python3_scripts/test_dds_ramp.py
zzpwahaha/Chimera-Control-Trim
df1bbf6bea0b87b8c7c9a99dce213fdc249118f2
[ "MIT" ]
null
null
null
Chimera/python3_scripts/test_dds_ramp.py
zzpwahaha/Chimera-Control-Trim
df1bbf6bea0b87b8c7c9a99dce213fdc249118f2
[ "MIT" ]
null
null
null
Chimera/python3_scripts/test_dds_ramp.py
zzpwahaha/Chimera-Control-Trim
df1bbf6bea0b87b8c7c9a99dce213fdc249118f2
[ "MIT" ]
null
null
null
from axis_fifo import AXIS_FIFO from devices import fifo_devices from axi_gpio import AXI_GPIO from devices import gpio_devices from dac81416 import DAC81416 from ad9959 import AD9959 import struct import math from dds_lock_pll import writeToDDS from getSeqGPIOWords import getSeqGPIOWords class GPIO_seq_point: def __init__(self, address, time, outputA, outputB): self.address = address self.time = time self.outputA = outputA self.outputB = outputB class DDS_atw_seq_point: def __init__(self, address, time, start, steps, incr, chan): self.address = address self.time = time self.start = start self.steps = steps self.incr = incr self.chan = chan class DDS_ftw_seq_point: def __init__(self, address, time, start, steps, incr, chan): self.address = address self.time = time self.start = start self.steps = steps self.incr = incr self.chan = chan class DDS_ramp_tester: def __init__(self, device, device_atw_seq, device_ftw_seq, main_seq): #self.dds = AD9959(device) # initialize DDS -- not needed for now self.gpio2 = AXI_GPIO(gpio_devices['axi_gpio_2']) self.fifo_dds_atw_seq = AXIS_FIFO(device_atw_seq) self.fifo_dds_ftw_seq = AXIS_FIFO(device_ftw_seq) self.fifo_main_seq = AXIS_FIFO(main_seq) def write_atw_point(self, point): #01XXAAAA TTTTTTTT DDDDDDDD DDDDDDDD #phase acc shifts by 12 bit => 4096 #unused <= gpio_in(63 downto 58); #acc_start <= gpio_in(57 downto 48); #acc_steps <= gpio_in(47 downto 32); #unused <= gpio_in(31 downto 26); #acc_incr <= gpio_in(25 downto 4); #unused <= gpio_in( 3 downto 2); #acc_chan <= gpio_in( 1 downto 0); self.fifo_dds_atw_seq.write_axis_fifo("\x01\x00" + struct.pack('>H', point.address)) self.fifo_dds_atw_seq.write_axis_fifo(struct.pack('>I', point.time)) self.fifo_dds_atw_seq.write_axis_fifo(struct.pack('>I', point.start*256*256 + point.steps)) self.fifo_dds_atw_seq.write_axis_fifo(struct.pack('>I', point.incr*16+point.chan)) def write_ftw_point(self, point): #01XXAAAA TTTTTTTT DDDDDDDD DDDDDDDD DDDDDDDD #phase acc shifts by 12 bit => 4096 #acc_start <= gpio_in(95 downto 64); #acc_steps <= gpio_in(63 downto 48); #acc_incr <= gpio_in(47 downto 4); #acc_chan <= to_integer(unsigned(gpio_in( 3 downto 0))); incr_hi = int(math.floor(point.incr*1.0/2**28)) incr_lo = point.incr - incr_hi * 2**28 self.fifo_dds_ftw_seq.write_axis_fifo("\x01\x00" + struct.pack('>H', point.address)) self.fifo_dds_ftw_seq.write_axis_fifo(struct.pack('>I', point.time)) self.fifo_dds_ftw_seq.write_axis_fifo(struct.pack('>I', point.start)) self.fifo_dds_ftw_seq.write_axis_fifo(struct.pack('>I', point.steps*256*256 + incr_hi)) self.fifo_dds_ftw_seq.write_axis_fifo(struct.pack('>I', incr_lo*16+point.chan)) #def reset_DDS(self): #--not needed # self.dds = AD9959(device) # initialize DDS def mod_enable(self): self.gpio2.set_bit(0, channel=1) def mod_disable(self): self.gpio2.clear_bit(0, channel=1) def mod_report(self): print((self.gpio2.read_axi_gpio(channel=1))) def dds_seq_write_atw_points(self): points=[] #these ramps should complete in just under 64 ms points.append(DDS_atw_seq_point(address=0,time=10000,start=1023,steps=0,incr=0,chan=1)) #25% to 75% # points.append(DDS_atw_seq_point(address=1,time=1000,start=256,steps=1,incr=0,chan=3)) #25% to 75% points.append(DDS_atw_seq_point(address=1,time=0,start=0,steps= 0,incr= 0,chan=0)) for point in points: self.write_atw_point(point) def dds_seq_write_ftw_points(self): points=[] #these ramps should complete in just under 64 ms points.append(DDS_ftw_seq_point(address=0,time=0,start=472446000,steps=0,incr=0,chan=0)) #points.append(DDS_ftw_seq_point(address=1,time= 20000, start=4000000,steps=0,incr=0,chan=0)) # points.append(DDS_ftw_seq_point(address=1,time=1,start=1000000,steps=1,incr=0,chan=3)) points.append(DDS_ftw_seq_point(address=1,time= 0,start= 0,steps= 0,incr= 0,chan=0)) for point in points: self.write_ftw_point(point) def dio_seq_write_points(self): points=[] points.append(GPIO_seq_point(address=0,time=1,outputA=0x00000001,outputB=0x00000001)) points.append(GPIO_seq_point(address=1,time=20000,outputA=0x00000000,outputB=0x00000000)) points.append(GPIO_seq_point(address=2,time=40000,outputA=0x00000001,outputB=0x00000001)) points.append(GPIO_seq_point(address=3,time=6400000,outputA=0x00000000,outputB=0x00000000)) points.append(GPIO_seq_point(address=4,time=0,outputA=0x00000000,outputB=0x00000000)) for point in points: print("add: ", point.address) print("time: ", point.time) print("outputA: ", point.outputA) print("outputB: ", point.outputB) # with open("/dev/axis_fifo_0x0000000080004000", "wb") as character: for point in points: # writeToSeqGPIO(character, point) seqWords = getSeqGPIOWords(point) for word in seqWords: # print word self.fifo_main_seq.write_axis_fifo(word[0], MSB_first=False) def program(tester): #tester.dds_seq_write_atw_points() tester.dds_seq_write_ftw_points() tester.dio_seq_write_points() # ~ print('Next, we need to enable modulation') # ~ print(' tester.mod_enable()') # ~ print('Now, we can use the software trigger') # ~ print(' trigger()') # ~ print('All AXI peripherals can be reset, note this does not disable modulation') # ~ print(' reset()') # ~ print('Finally, don\'t forget to disable modulation again') # ~ print(' tester.mod_disable()') if __name__ == "__main__": from soft_trigger import trigger from reset_all import reset import sys import dds_lock_pll tester = DDS_ramp_tester(fifo_devices['AD9959_1'], fifo_devices['AD9959_1_seq_atw'], fifo_devices['AD9959_1_seq_ftw'], fifo_devices['GPIO_seq']) tester.mod_disable() reset() dds_lock_pll.dds_lock_pll() program(tester) tester.mod_enable() trigger()
36.963855
146
0.704205
fad23d784eb4b4f941e0451e5bbe922f12c23094
30,800
py
Python
sdk/network/azure-mgmt-network/azure/mgmt/network/v2018_12_01/operations/_service_endpoint_policies_operations.py
beltr0n/azure-sdk-for-python
2f7fb8bee881b0fc0386a0ad5385755ceedd0453
[ "MIT" ]
2
2021-03-24T06:26:11.000Z
2021-04-18T15:55:59.000Z
sdk/network/azure-mgmt-network/azure/mgmt/network/v2018_12_01/operations/_service_endpoint_policies_operations.py
beltr0n/azure-sdk-for-python
2f7fb8bee881b0fc0386a0ad5385755ceedd0453
[ "MIT" ]
4
2019-04-17T17:57:49.000Z
2020-04-24T21:11:22.000Z
sdk/network/azure-mgmt-network/azure/mgmt/network/v2018_12_01/operations/_service_endpoint_policies_operations.py
beltr0n/azure-sdk-for-python
2f7fb8bee881b0fc0386a0ad5385755ceedd0453
[ "MIT" ]
2
2021-05-23T16:46:31.000Z
2021-05-26T23:51:09.000Z
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from typing import TYPE_CHECKING import warnings from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error from azure.core.paging import ItemPaged from azure.core.pipeline import PipelineResponse from azure.core.pipeline.transport import HttpRequest, HttpResponse from azure.core.polling import LROPoller, NoPolling, PollingMethod from azure.mgmt.core.exceptions import ARMErrorFormat from azure.mgmt.core.polling.arm_polling import ARMPolling from .. import models as _models if TYPE_CHECKING: # pylint: disable=unused-import,ungrouped-imports from typing import Any, Callable, Dict, Generic, Iterable, Optional, TypeVar, Union T = TypeVar('T') ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]] class ServiceEndpointPoliciesOperations(object): """ServiceEndpointPoliciesOperations operations. You should not instantiate this class directly. Instead, you should create a Client instance that instantiates it for you and attaches it as an attribute. :ivar models: Alias to model classes used in this operation group. :type models: ~azure.mgmt.network.v2018_12_01.models :param client: Client for service requests. :param config: Configuration of service client. :param serializer: An object model serializer. :param deserializer: An object model deserializer. """ models = _models def __init__(self, client, config, serializer, deserializer): self._client = client self._serialize = serializer self._deserialize = deserializer self._config = config def _delete_initial( self, resource_group_name, # type: str service_endpoint_policy_name, # type: str **kwargs # type: Any ): # type: (...) -> None cls = kwargs.pop('cls', None) # type: ClsType[None] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2018-12-01" # Construct URL url = self._delete_initial.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'serviceEndpointPolicyName': self._serialize.url("service_endpoint_policy_name", service_endpoint_policy_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] request = self._client.delete(url, query_parameters, header_parameters) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 202, 204]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) if cls: return cls(pipeline_response, None, {}) _delete_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/serviceEndpointPolicies/{serviceEndpointPolicyName}'} # type: ignore def begin_delete( self, resource_group_name, # type: str service_endpoint_policy_name, # type: str **kwargs # type: Any ): # type: (...) -> LROPoller[None] """Deletes the specified service endpoint policy. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param service_endpoint_policy_name: The name of the service endpoint policy. :type service_endpoint_policy_name: str :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: True for ARMPolling, False for no polling, or a polling object for personal polling strategy :paramtype polling: bool or ~azure.core.polling.PollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of LROPoller that returns either None or the result of cls(response) :rtype: ~azure.core.polling.LROPoller[None] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, PollingMethod] cls = kwargs.pop('cls', None) # type: ClsType[None] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = self._delete_initial( resource_group_name=resource_group_name, service_endpoint_policy_name=service_endpoint_policy_name, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): if cls: return cls(pipeline_response, None, {}) path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'serviceEndpointPolicyName': self._serialize.url("service_endpoint_policy_name", service_endpoint_policy_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } if polling is True: polling_method = ARMPolling(lro_delay, path_format_arguments=path_format_arguments, **kwargs) elif polling is False: polling_method = NoPolling() else: polling_method = polling if cont_token: return LROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return LROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_delete.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/serviceEndpointPolicies/{serviceEndpointPolicyName}'} # type: ignore def get( self, resource_group_name, # type: str service_endpoint_policy_name, # type: str expand=None, # type: Optional[str] **kwargs # type: Any ): # type: (...) -> "_models.ServiceEndpointPolicy" """Gets the specified service Endpoint Policies in a specified resource group. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param service_endpoint_policy_name: The name of the service endpoint policy. :type service_endpoint_policy_name: str :param expand: Expands referenced resources. :type expand: str :keyword callable cls: A custom type or function that will be passed the direct response :return: ServiceEndpointPolicy, or the result of cls(response) :rtype: ~azure.mgmt.network.v2018_12_01.models.ServiceEndpointPolicy :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.ServiceEndpointPolicy"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2018-12-01" accept = "application/json" # Construct URL url = self.get.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'serviceEndpointPolicyName': self._serialize.url("service_endpoint_policy_name", service_endpoint_policy_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') if expand is not None: query_parameters['$expand'] = self._serialize.query("expand", expand, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.get(url, query_parameters, header_parameters) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = self._deserialize('ServiceEndpointPolicy', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized get.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/serviceEndpointPolicies/{serviceEndpointPolicyName}'} # type: ignore def _create_or_update_initial( self, resource_group_name, # type: str service_endpoint_policy_name, # type: str parameters, # type: "_models.ServiceEndpointPolicy" **kwargs # type: Any ): # type: (...) -> "_models.ServiceEndpointPolicy" cls = kwargs.pop('cls', None) # type: ClsType["_models.ServiceEndpointPolicy"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2018-12-01" content_type = kwargs.pop("content_type", "application/json") accept = "application/json" # Construct URL url = self._create_or_update_initial.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'serviceEndpointPolicyName': self._serialize.url("service_endpoint_policy_name", service_endpoint_policy_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') body_content_kwargs = {} # type: Dict[str, Any] body_content = self._serialize.body(parameters, 'ServiceEndpointPolicy') body_content_kwargs['content'] = body_content request = self._client.put(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 201]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) if response.status_code == 200: deserialized = self._deserialize('ServiceEndpointPolicy', pipeline_response) if response.status_code == 201: deserialized = self._deserialize('ServiceEndpointPolicy', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized _create_or_update_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/serviceEndpointPolicies/{serviceEndpointPolicyName}'} # type: ignore def begin_create_or_update( self, resource_group_name, # type: str service_endpoint_policy_name, # type: str parameters, # type: "_models.ServiceEndpointPolicy" **kwargs # type: Any ): # type: (...) -> LROPoller["_models.ServiceEndpointPolicy"] """Creates or updates a service Endpoint Policies. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param service_endpoint_policy_name: The name of the service endpoint policy. :type service_endpoint_policy_name: str :param parameters: Parameters supplied to the create or update service endpoint policy operation. :type parameters: ~azure.mgmt.network.v2018_12_01.models.ServiceEndpointPolicy :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: True for ARMPolling, False for no polling, or a polling object for personal polling strategy :paramtype polling: bool or ~azure.core.polling.PollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of LROPoller that returns either ServiceEndpointPolicy or the result of cls(response) :rtype: ~azure.core.polling.LROPoller[~azure.mgmt.network.v2018_12_01.models.ServiceEndpointPolicy] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, PollingMethod] cls = kwargs.pop('cls', None) # type: ClsType["_models.ServiceEndpointPolicy"] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = self._create_or_update_initial( resource_group_name=resource_group_name, service_endpoint_policy_name=service_endpoint_policy_name, parameters=parameters, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): deserialized = self._deserialize('ServiceEndpointPolicy', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'serviceEndpointPolicyName': self._serialize.url("service_endpoint_policy_name", service_endpoint_policy_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } if polling is True: polling_method = ARMPolling(lro_delay, path_format_arguments=path_format_arguments, **kwargs) elif polling is False: polling_method = NoPolling() else: polling_method = polling if cont_token: return LROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return LROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_create_or_update.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/serviceEndpointPolicies/{serviceEndpointPolicyName}'} # type: ignore def _update_initial( self, resource_group_name, # type: str service_endpoint_policy_name, # type: str parameters, # type: "_models.TagsObject" **kwargs # type: Any ): # type: (...) -> "_models.ServiceEndpointPolicy" cls = kwargs.pop('cls', None) # type: ClsType["_models.ServiceEndpointPolicy"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2018-12-01" content_type = kwargs.pop("content_type", "application/json") accept = "application/json" # Construct URL url = self._update_initial.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'serviceEndpointPolicyName': self._serialize.url("service_endpoint_policy_name", service_endpoint_policy_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') body_content_kwargs = {} # type: Dict[str, Any] body_content = self._serialize.body(parameters, 'TagsObject') body_content_kwargs['content'] = body_content request = self._client.patch(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = self._deserialize('ServiceEndpointPolicy', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized _update_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/serviceEndpointPolicies/{serviceEndpointPolicyName}'} # type: ignore def begin_update( self, resource_group_name, # type: str service_endpoint_policy_name, # type: str parameters, # type: "_models.TagsObject" **kwargs # type: Any ): # type: (...) -> LROPoller["_models.ServiceEndpointPolicy"] """Updates service Endpoint Policies. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param service_endpoint_policy_name: The name of the service endpoint policy. :type service_endpoint_policy_name: str :param parameters: Parameters supplied to update service endpoint policy tags. :type parameters: ~azure.mgmt.network.v2018_12_01.models.TagsObject :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: True for ARMPolling, False for no polling, or a polling object for personal polling strategy :paramtype polling: bool or ~azure.core.polling.PollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of LROPoller that returns either ServiceEndpointPolicy or the result of cls(response) :rtype: ~azure.core.polling.LROPoller[~azure.mgmt.network.v2018_12_01.models.ServiceEndpointPolicy] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, PollingMethod] cls = kwargs.pop('cls', None) # type: ClsType["_models.ServiceEndpointPolicy"] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = self._update_initial( resource_group_name=resource_group_name, service_endpoint_policy_name=service_endpoint_policy_name, parameters=parameters, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): deserialized = self._deserialize('ServiceEndpointPolicy', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'serviceEndpointPolicyName': self._serialize.url("service_endpoint_policy_name", service_endpoint_policy_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } if polling is True: polling_method = ARMPolling(lro_delay, path_format_arguments=path_format_arguments, **kwargs) elif polling is False: polling_method = NoPolling() else: polling_method = polling if cont_token: return LROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return LROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_update.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/serviceEndpointPolicies/{serviceEndpointPolicyName}'} # type: ignore def list( self, **kwargs # type: Any ): # type: (...) -> Iterable["_models.ServiceEndpointPolicyListResult"] """Gets all the service endpoint policies in a subscription. :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either ServiceEndpointPolicyListResult or the result of cls(response) :rtype: ~azure.core.paging.ItemPaged[~azure.mgmt.network.v2018_12_01.models.ServiceEndpointPolicyListResult] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.ServiceEndpointPolicyListResult"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2018-12-01" accept = "application/json" def prepare_request(next_link=None): # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') if not next_link: # Construct URL url = self.list.metadata['url'] # type: ignore path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') request = self._client.get(url, query_parameters, header_parameters) else: url = next_link query_parameters = {} # type: Dict[str, Any] request = self._client.get(url, query_parameters, header_parameters) return request def extract_data(pipeline_response): deserialized = self._deserialize('ServiceEndpointPolicyListResult', pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return deserialized.next_link or None, iter(list_of_elem) def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) return pipeline_response return ItemPaged( get_next, extract_data ) list.metadata = {'url': '/subscriptions/{subscriptionId}/providers/Microsoft.Network/ServiceEndpointPolicies'} # type: ignore def list_by_resource_group( self, resource_group_name, # type: str **kwargs # type: Any ): # type: (...) -> Iterable["_models.ServiceEndpointPolicyListResult"] """Gets all service endpoint Policies in a resource group. :param resource_group_name: The name of the resource group. :type resource_group_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either ServiceEndpointPolicyListResult or the result of cls(response) :rtype: ~azure.core.paging.ItemPaged[~azure.mgmt.network.v2018_12_01.models.ServiceEndpointPolicyListResult] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.ServiceEndpointPolicyListResult"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2018-12-01" accept = "application/json" def prepare_request(next_link=None): # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') if not next_link: # Construct URL url = self.list_by_resource_group.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') request = self._client.get(url, query_parameters, header_parameters) else: url = next_link query_parameters = {} # type: Dict[str, Any] request = self._client.get(url, query_parameters, header_parameters) return request def extract_data(pipeline_response): deserialized = self._deserialize('ServiceEndpointPolicyListResult', pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return deserialized.next_link or None, iter(list_of_elem) def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) return pipeline_response return ItemPaged( get_next, extract_data ) list_by_resource_group.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/serviceEndpointPolicies'} # type: ignore
50
214
0.670097
c4c1e2de7cbb47de7bb5f3c568afdd543bfd21d3
1,359
py
Python
rlbench/action_modes/action_mode.py
guhur/RLBench
e267f9eb036390109b24d9ace0b032407ac7f29d
[ "BSD-3-Clause" ]
null
null
null
rlbench/action_modes/action_mode.py
guhur/RLBench
e267f9eb036390109b24d9ace0b032407ac7f29d
[ "BSD-3-Clause" ]
null
null
null
rlbench/action_modes/action_mode.py
guhur/RLBench
e267f9eb036390109b24d9ace0b032407ac7f29d
[ "BSD-3-Clause" ]
null
null
null
from abc import abstractmethod import numpy as np from rlbench.action_modes.arm_action_modes import ArmActionMode from rlbench.action_modes.gripper_action_modes import GripperActionMode from rlbench.backend.scene import Scene class ActionMode(object): def __init__(self, arm_action_mode: 'ArmActionMode', gripper_action_mode: 'GripperActionMode'): self.arm_action_mode = arm_action_mode self.gripper_action_mode = gripper_action_mode @abstractmethod def action(self, scene: Scene, action: np.ndarray): pass @abstractmethod def action_shape(self, scene: Scene): pass class MoveArmThenGripper(ActionMode): """The arm action is first applied, followed by the gripper action. """ def action(self, scene: Scene, action: np.ndarray): arm_act_size = np.prod(self.arm_action_mode.action_shape(scene)) arm_action = np.array(action[:arm_act_size]) ee_action = np.array(action[arm_act_size:]) # DEBUG observations = self.arm_action_mode.action(scene, arm_action) self.gripper_action_mode.action(scene, ee_action) return observations def action_shape(self, scene: Scene): return np.prod(self.arm_action_mode.action_shape(scene)) + np.prod( self.gripper_action_mode.action_shape(scene))
32.357143
75
0.710817
d347723fa1401388e12e1942276240d7da3e31b9
210
py
Python
Q04/Q04.2.py
edisalvo/patterns
a56a49289c3a7de87713afc8923f44a229037dd1
[ "MIT" ]
8
2021-01-14T14:55:40.000Z
2021-03-01T13:55:56.000Z
Q04/Q04.2.py
edisalvo/patterns
a56a49289c3a7de87713afc8923f44a229037dd1
[ "MIT" ]
17
2021-01-12T15:42:16.000Z
2021-03-04T06:44:55.000Z
Q04/Q04.2.py
edisalvo/patterns
a56a49289c3a7de87713afc8923f44a229037dd1
[ "MIT" ]
22
2021-01-13T00:00:02.000Z
2021-03-22T18:54:11.000Z
def pattern(n): for i in range(n): j=n k=0 while j>i+1: print(" ",end='') j-=1 while k<i+1: print("*",end='') k+=1 print() print("give input for pattern") n=int(input()) pattern(n)
10
31
0.519048
c1eb220859aa5be4255e4c60d0eba6d4db5a30d0
120
py
Python
agent/lib/supervisor/__init__.py
OptimalBPM/optimalbpm
4c65cd43a36e3318a49de7cd598069ea0623dc69
[ "RSA-MD" ]
2
2016-05-02T14:16:07.000Z
2020-06-25T19:24:29.000Z
agent/lib/supervisor/__init__.py
OptimalBPM/optimalbpm
4c65cd43a36e3318a49de7cd598069ea0623dc69
[ "RSA-MD" ]
null
null
null
agent/lib/supervisor/__init__.py
OptimalBPM/optimalbpm
4c65cd43a36e3318a49de7cd598069ea0623dc69
[ "RSA-MD" ]
1
2020-06-25T19:24:31.000Z
2020-06-25T19:24:31.000Z
""" This package contains functionality that manages the job queue and the workers """ __author__ = 'Nicklas Börjesson'
24
78
0.775
5646b1aa082a0ae18c79651f5ae017bb9edc1152
4,040
py
Python
datalad/interface/tests/test_docs.py
yarikoptic/datalad
c0cd538de2ed9a30c0f58256c7afa6e18d325505
[ "MIT" ]
null
null
null
datalad/interface/tests/test_docs.py
yarikoptic/datalad
c0cd538de2ed9a30c0f58256c7afa6e18d325505
[ "MIT" ]
6
2015-11-20T21:41:13.000Z
2018-06-12T14:27:32.000Z
datalad/interface/tests/test_docs.py
yarikoptic/datalad
c0cd538de2ed9a30c0f58256c7afa6e18d325505
[ "MIT" ]
1
2017-03-28T14:44:16.000Z
2017-03-28T14:44:16.000Z
# emacs: -*- mode: python; py-indent-offset: 4; tab-width: 4; indent-tabs-mode: nil -*- # ex: set sts=4 ts=4 sw=4 noet: # ## ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the datalad package for the # copyright and license terms. # # ## ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """Tests for interface doc wranglers. """ __docformat__ = 'restructuredtext' from datalad.interface.base import dedent_docstring from datalad.interface.base import alter_interface_docs_for_api from datalad.interface.base import alter_interface_docs_for_cmdline from datalad.tests.utils import assert_true, assert_false, assert_in, \ assert_not_in, eq_ demo_doc = """\ Bla bla summary Generic intro blurb. Ping pong ping pong ping pong ping pong. Ping pong ping pong ping pong ping pong. Ping pong ping pong ping pong ping pong. Ping pong ping pong ping pong ping pong. Ping pong ping pong ping pong ping pong. Ping pong ping pong ping pong ping pong. || CMDLINE >> || REFLOW >> Something for the cmdline only Multiline! << REFLOW || << CMDLINE || || PYTHON >> || REFLOW >> Some Python-only bits Multiline! << REFLOW || << PYTHON || And an example for in-line markup: [PY: just for Python PY] and the other one [CMD: just for the command line CMD]. End of demo. Generic appendix. Ding dong ding dong ding dong. Ding dong ding dong ding dong. Ding dong ding dong ding dong. Ding dong ding dong ding dong. Ding dong ding dong ding dong. """ demo_paramdoc = """\ Parameters ---------- dataset : Dataset or None, optional something [PY: python only PY] inbetween [CMD: cmdline only CMD] appended [PY: more python PY] dataset is given, an attempt is made to identify the dataset based Dataset (e.g. a path), or value must be `None`. [Default: None] """ demo_argdoc = """\ specify the dataset to perform the install operation on. If no dataset is given, an attempt is made to identify the dataset based on the current working directory and/or the `path` given. Constraints: Value must be a Dataset or a valid identifier of a Dataset (e.g. a path), or value must be `None`. [Default: None] """ def test_dedent(): assert_false(dedent_docstring("one liner").endswith("\n")) def test_alter_interface_docs_for_api(): alt = alter_interface_docs_for_api(demo_doc) alt_l = alt.split('\n') # dedented assert_false(alt_l[0].startswith(' ')) assert_false(alt_l[-1].startswith(' ')) assert_not_in('CMD', alt) assert_not_in('PY', alt) assert_not_in('REFLOW', alt) assert_in("Some Python-only bits Multiline!", alt) altpd = alter_interface_docs_for_api(demo_paramdoc) assert_in('python', altpd) assert_in('inbetween', altpd) assert_in('appended', altpd) assert_not_in('cmdline', altpd) def test_alter_interface_docs_for_cmdline(): alt = alter_interface_docs_for_cmdline(demo_doc) alt_l = alt.split('\n') # dedented assert_false(alt_l[0].startswith(' ')) assert_false(alt_l[-1].startswith(' ')) assert_not_in('PY', alt) assert_not_in('CMD', alt) assert_not_in('REFLOW', alt) assert_in("Something for the cmdline only Multiline!", alt) # args altarg = alter_interface_docs_for_cmdline(demo_argdoc) # RST role markup eq_(alter_interface_docs_for_cmdline(':murks:`me and my buddies`'), 'me and my buddies') # spread across lines eq_(alter_interface_docs_for_cmdline(':term:`Barbara\nStreisand`'), 'Barbara\nStreisand') # multiple on one line eq_(alter_interface_docs_for_cmdline( ':term:`one` bla bla :term:`two` bla'), 'one bla bla two bla') altpd = alter_interface_docs_for_cmdline(demo_paramdoc) assert_not_in('python', altpd) assert_in('inbetween', altpd) assert_in('appended', altpd) assert_in('cmdline', altpd)
32.063492
100
0.659653
c85dd3ec6991d3f04dd19e64440042b2d4ea4667
7,631
py
Python
flax/plotters/madmax.py
ReadyNeutron/shitcoin-blockchain
80add4e545ad22a317244f7fd958d118a5a75c5d
[ "Apache-2.0" ]
174
2021-06-16T17:49:22.000Z
2022-03-17T03:03:17.000Z
flax/plotters/madmax.py
ReadyNeutron/shitcoin-blockchain
80add4e545ad22a317244f7fd958d118a5a75c5d
[ "Apache-2.0" ]
49
2021-06-17T14:10:53.000Z
2022-01-31T11:04:21.000Z
flax/plotters/madmax.py
ReadyNeutron/shitcoin-blockchain
80add4e545ad22a317244f7fd958d118a5a75c5d
[ "Apache-2.0" ]
80
2021-06-17T14:23:31.000Z
2022-02-24T05:52:47.000Z
import asyncio import traceback import os import logging import sys from pathlib import Path from typing import Any, Dict, Optional from flax.plotting.create_plots import resolve_plot_keys from flax.plotters.plotters_util import run_plotter, run_command log = logging.getLogger(__name__) MADMAX_PLOTTER_DIR = "madmax-plotter" def is_madmax_supported() -> bool: return sys.platform.startswith("linux") or sys.platform in ["darwin", "win32", "cygwin"] def get_madmax_install_path(plotters_root_path: Path) -> Path: return plotters_root_path / MADMAX_PLOTTER_DIR def get_madmax_package_path() -> Path: return Path(os.path.dirname(sys.executable)) / "madmax" def get_madmax_executable_path_for_ksize(plotters_root_path: Path, ksize: int = 32) -> Path: madmax_dir: Path = get_madmax_package_path() madmax_exec: str = "flax_plot" if ksize > 32: madmax_exec += "_k34" # Use the flax_plot_k34 executable for k-sizes > 32 if sys.platform in ["win32", "cygwin"]: madmax_exec += ".exe" if not madmax_dir.exists(): madmax_dir = get_madmax_install_path(plotters_root_path) / "build" return madmax_dir / madmax_exec def get_madmax_install_info(plotters_root_path: Path) -> Optional[Dict[str, Any]]: info: Dict[str, Any] = {"display_name": "madMAx Plotter"} installed: bool = False supported: bool = is_madmax_supported() if get_madmax_executable_path_for_ksize(plotters_root_path).exists(): try: proc = run_command( [os.fspath(get_madmax_executable_path_for_ksize(plotters_root_path)), "--version"], "Failed to call madmax with --version option", capture_output=True, text=True, ) version = proc.stdout.strip() except Exception as e: print(f"Failed to determine madmax version: {e}") if version is not None: installed = True info["version"] = version else: installed = False info["installed"] = installed if installed is False: info["can_install"] = supported return info def install_madmax(plotters_root_path: Path): if is_madmax_supported(): print("Installing dependencies.") if sys.platform.startswith("linux"): run_command( [ "sudo", "apt", "install", "-y", "libsodium-dev", "cmake", "g++", "git", "build-essential", ], "Could not install dependencies", ) if sys.platform.startswith("darwin"): run_command( [ "brew", "install", "libsodium", "cmake", "git", "autoconf", "automake", "libtool", "wget", ], "Could not install dependencies", ) run_command(["git", "--version"], "Error checking Git version.") print("Cloning git repository.") run_command( [ "git", "clone", "https://github.com/Chia-Network/chia-plotter-madmax.git", MADMAX_PLOTTER_DIR, ], "Could not clone madmax git repository", cwd=os.fspath(plotters_root_path), ) print("Installing git submodules.") madmax_path: str = os.fspath(get_madmax_install_path(plotters_root_path)) run_command( [ "git", "submodule", "update", "--init", "--recursive", ], "Could not initialize git submodules", cwd=madmax_path, ) print("Running install script.") run_command(["./make_devel.sh"], "Error while running install script", cwd=madmax_path) else: raise RuntimeError("Platform not supported yet for madmax plotter.") progress = { "[P1] Table 1 took": 0.01, "[P1] Table 2 took": 0.06, "[P1] Table 3 took": 0.12, "[P1] Table 4 took": 0.2, "[P1] Table 5 took": 0.28, "[P1] Table 6 took": 0.36, "[P1] Table 7 took": 0.42, "[P2] Table 7 rewrite took": 0.43, "[P2] Table 6 rewrite took": 0.48, "[P2] Table 5 rewrite took": 0.51, "[P2] Table 4 rewrite took": 0.55, "[P2] Table 3 rewrite took": 0.58, "[P2] Table 2 rewrite took": 0.61, "[P3-2] Table 2 took": 0.66, "[P3-2] Table 3 took": 0.73, "[P3-2] Table 4 took": 0.79, "[P3-2] Table 5 took": 0.85, "[P3-2] Table 6 took": 0.92, "[P3-2] Table 7 took": 0.98, } def dir_with_trailing_slash(dir: str) -> str: return dir if dir[-1] == os.path.sep else dir + os.path.sep def plot_madmax(args, flax_root_path: Path, plotters_root_path: Path): if sys.platform not in ["win32", "cygwin"]: import resource # madMAx has a ulimit -n requirement > 296: # "Cannot open at least 296 files, please raise maximum open file limit in OS." resource.setrlimit(resource.RLIMIT_NOFILE, (512, 512)) if not os.path.exists(get_madmax_executable_path_for_ksize(plotters_root_path, args.size)): print("Installing madmax plotter.") try: install_madmax(plotters_root_path) except Exception as e: print(f"Exception while installing madmax plotter: {e}") return plot_keys = asyncio.get_event_loop().run_until_complete( resolve_plot_keys( None if args.farmerkey == b"" else args.farmerkey.hex(), None, None if args.pool_key == b"" else args.pool_key.hex(), None if args.contract == "" else args.contract, flax_root_path, log, args.connect_to_daemon, ) ) call_args = [] call_args.append(os.fspath(get_madmax_executable_path_for_ksize(plotters_root_path, args.size))) call_args.append("-f") call_args.append(bytes(plot_keys.farmer_public_key).hex()) if plot_keys.pool_public_key is not None: call_args.append("-p") call_args.append(bytes(plot_keys.pool_public_key).hex()) call_args.append("-t") # s if s[-1] == os.path.sep else s + os.path.sep call_args.append(dir_with_trailing_slash(args.tmpdir)) call_args.append("-2") call_args.append(dir_with_trailing_slash(args.tmpdir2)) call_args.append("-d") call_args.append(dir_with_trailing_slash(args.finaldir)) if plot_keys.pool_contract_address is not None: call_args.append("-c") call_args.append(plot_keys.pool_contract_address) call_args.append("-n") call_args.append(str(args.count)) call_args.append("-r") call_args.append(str(args.threads)) call_args.append("-u") call_args.append(str(args.buckets)) call_args.append("-v") call_args.append(str(args.buckets3)) call_args.append("-w") call_args.append(str(int(args.waitforcopy))) call_args.append("-K") call_args.append(str(args.rmulti2)) if args.size != 32: call_args.append("-k") call_args.append(str(args.size)) try: loop = asyncio.get_event_loop() loop.run_until_complete(run_plotter(call_args, progress)) except Exception as e: print(f"Exception while plotting: {type(e)} {e}") print(f"Traceback: {traceback.format_exc()}")
33.178261
100
0.58721
d12b94978214bc265e37e6a9639e7d187a16534f
343
py
Python
security-bijective-functions.py
shreyakupadhyay/Hacks-py
d779e6eeca0a42dab68e599c1e48143338662a28
[ "MIT" ]
11
2015-07-12T09:06:58.000Z
2020-09-16T06:35:39.000Z
security-bijective-functions.py
shreyakupadhyay/Hacks-py
d779e6eeca0a42dab68e599c1e48143338662a28
[ "MIT" ]
null
null
null
security-bijective-functions.py
shreyakupadhyay/Hacks-py
d779e6eeca0a42dab68e599c1e48143338662a28
[ "MIT" ]
6
2017-06-07T01:16:39.000Z
2020-04-30T21:42:21.000Z
# Enter your code here. Read input from STDIN. Print output to STDOUT a=int(raw_input()) arr = [int(i) for i in raw_input().strip().split()] array=sorted(arr) c=1 for i in range(0,len(arr)): if(array[i]==i+1): continue else: c=0 break if(c==0): print "NO" if(c==1): print "YES"
16.333333
69
0.539359
2e969d11dcc683a40bf712de2801712b773bf1c1
1,566
py
Python
scripts/metrics.py
manas-avi/detection-2016-nipsws
b25669dbf1c5d3d1a79638f928c989aca1c32622
[ "MIT" ]
null
null
null
scripts/metrics.py
manas-avi/detection-2016-nipsws
b25669dbf1c5d3d1a79638f928c989aca1c32622
[ "MIT" ]
null
null
null
scripts/metrics.py
manas-avi/detection-2016-nipsws
b25669dbf1c5d3d1a79638f928c989aca1c32622
[ "MIT" ]
2
2018-12-02T08:39:24.000Z
2018-12-08T15:55:54.000Z
import numpy as np import cv2 import pdb import matplotlib.pyplot as plt def dimg(img): plt.imshow(img) plt.show() def calculate_iou(img_mask, gt_mask): gt_mask *= 1.0 img_mask *= 1.0 img_and = cv2.bitwise_and(img_mask, gt_mask) img_or = cv2.bitwise_or(img_mask, gt_mask) j = np.count_nonzero(img_and) i = np.count_nonzero(img_or) iou = float(float(j)/float(i)) return iou def calculate_overlapping(img_mask, gt_mask): img_mask = cv2.resize(img_mask , (32,32)) gt_mask = cv2.resize(gt_mask , (32,32)) _,img_mask = cv2.threshold(img_mask,127,255,cv2.THRESH_BINARY) _,gt_mask = cv2.threshold(gt_mask,127,255,cv2.THRESH_BINARY) img_and = cv2.bitwise_and(img_mask*1.0, gt_mask*1.0) j = np.count_nonzero(img_and) i = np.count_nonzero(gt_mask) overlap = float(float(j)/float(i)) return overlap def calculate_datsets_belonging( img , wgan): # since in the formulation of wgan # the real elements that belongs to dataset # are given a label of -1 thus we use the same method # to generate the reward and resize the rewards # to lie between 0 and 1 # with 1 being the rewards given the image lies perfectly # in the dataset distribution of the object img = cv2.resize(img , (128,128)) _,img = cv2.threshold(img,127,255,cv2.THRESH_BINARY) img = np.expand_dims(img, axis=0) img = np.expand_dims(img, axis=-1) valid = wgan.critic.predict(img)[0][0] # chaning the range from 1:-1 to 0:1 valid = (-valid + 1) / 2 return valid
27.473684
66
0.676884
12414801a524ec97eaa59cedddb7659e2c56ad33
8,343
py
Python
tests/components/media_player/test_async_helpers.py
erogleva/core
994ae09f69afe772150a698953c0d7386a745de2
[ "Apache-2.0" ]
6
2020-07-18T16:33:25.000Z
2021-09-26T09:52:04.000Z
tests/components/media_player/test_async_helpers.py
erogleva/core
994ae09f69afe772150a698953c0d7386a745de2
[ "Apache-2.0" ]
56
2020-08-03T07:30:54.000Z
2022-03-31T06:02:04.000Z
tests/components/media_player/test_async_helpers.py
erogleva/core
994ae09f69afe772150a698953c0d7386a745de2
[ "Apache-2.0" ]
14
2018-08-19T16:28:26.000Z
2021-09-02T18:26:53.000Z
"""The tests for the Async Media player helper functions.""" import asyncio import unittest import homeassistant.components.media_player as mp from homeassistant.const import ( STATE_IDLE, STATE_OFF, STATE_ON, STATE_PAUSED, STATE_PLAYING, ) from tests.common import get_test_home_assistant class AsyncMediaPlayer(mp.MediaPlayerEntity): """Async media player test class.""" def __init__(self, hass): """Initialize the test media player.""" self.hass = hass self._volume = 0 self._state = STATE_OFF @property def state(self): """State of the player.""" return self._state @property def volume_level(self): """Volume level of the media player (0..1).""" return self._volume @property def supported_features(self): """Flag media player features that are supported.""" return ( mp.const.SUPPORT_VOLUME_SET | mp.const.SUPPORT_PLAY | mp.const.SUPPORT_PAUSE | mp.const.SUPPORT_TURN_OFF | mp.const.SUPPORT_TURN_ON ) async def async_set_volume_level(self, volume): """Set volume level, range 0..1.""" self._volume = volume async def async_media_play(self): """Send play command.""" self._state = STATE_PLAYING async def async_media_pause(self): """Send pause command.""" self._state = STATE_PAUSED async def async_turn_on(self): """Turn the media player on.""" self._state = STATE_ON async def async_turn_off(self): """Turn the media player off.""" self._state = STATE_OFF class SyncMediaPlayer(mp.MediaPlayerEntity): """Sync media player test class.""" def __init__(self, hass): """Initialize the test media player.""" self.hass = hass self._volume = 0 self._state = STATE_OFF @property def state(self): """State of the player.""" return self._state @property def volume_level(self): """Volume level of the media player (0..1).""" return self._volume @property def supported_features(self): """Flag media player features that are supported.""" return ( mp.const.SUPPORT_VOLUME_SET | mp.const.SUPPORT_VOLUME_STEP | mp.const.SUPPORT_PLAY | mp.const.SUPPORT_PAUSE | mp.const.SUPPORT_TURN_OFF | mp.const.SUPPORT_TURN_ON ) def set_volume_level(self, volume): """Set volume level, range 0..1.""" self._volume = volume def volume_up(self): """Turn volume up for media player.""" if self.volume_level < 1: self.set_volume_level(min(1, self.volume_level + 0.2)) def volume_down(self): """Turn volume down for media player.""" if self.volume_level > 0: self.set_volume_level(max(0, self.volume_level - 0.2)) def media_play_pause(self): """Play or pause the media player.""" if self._state == STATE_PLAYING: self._state = STATE_PAUSED else: self._state = STATE_PLAYING def toggle(self): """Toggle the power on the media player.""" if self._state in [STATE_OFF, STATE_IDLE]: self._state = STATE_ON else: self._state = STATE_OFF async def async_media_play_pause(self): """Create a coroutine to wrap the future returned by ABC. This allows the run_coroutine_threadsafe helper to be used. """ await super().async_media_play_pause() async def async_toggle(self): """Create a coroutine to wrap the future returned by ABC. This allows the run_coroutine_threadsafe helper to be used. """ await super().async_toggle() class TestAsyncMediaPlayer(unittest.TestCase): """Test the media_player module.""" def setUp(self): # pylint: disable=invalid-name """Set up things to be run when tests are started.""" self.hass = get_test_home_assistant() self.player = AsyncMediaPlayer(self.hass) self.addCleanup(self.tear_down_cleanup) def tear_down_cleanup(self): """Shut down test instance.""" self.hass.stop() def test_volume_up(self): """Test the volume_up helper function.""" assert self.player.volume_level == 0 asyncio.run_coroutine_threadsafe( self.player.async_set_volume_level(0.5), self.hass.loop ).result() assert self.player.volume_level == 0.5 asyncio.run_coroutine_threadsafe( self.player.async_volume_up(), self.hass.loop ).result() assert self.player.volume_level == 0.6 def test_volume_down(self): """Test the volume_down helper function.""" assert self.player.volume_level == 0 asyncio.run_coroutine_threadsafe( self.player.async_set_volume_level(0.5), self.hass.loop ).result() assert self.player.volume_level == 0.5 asyncio.run_coroutine_threadsafe( self.player.async_volume_down(), self.hass.loop ).result() assert self.player.volume_level == 0.4 def test_media_play_pause(self): """Test the media_play_pause helper function.""" assert self.player.state == STATE_OFF asyncio.run_coroutine_threadsafe( self.player.async_media_play_pause(), self.hass.loop ).result() assert self.player.state == STATE_PLAYING asyncio.run_coroutine_threadsafe( self.player.async_media_play_pause(), self.hass.loop ).result() assert self.player.state == STATE_PAUSED def test_toggle(self): """Test the toggle helper function.""" assert self.player.state == STATE_OFF asyncio.run_coroutine_threadsafe( self.player.async_toggle(), self.hass.loop ).result() assert self.player.state == STATE_ON asyncio.run_coroutine_threadsafe( self.player.async_toggle(), self.hass.loop ).result() assert self.player.state == STATE_OFF class TestSyncMediaPlayer(unittest.TestCase): """Test the media_player module.""" def setUp(self): # pylint: disable=invalid-name """Set up things to be run when tests are started.""" self.hass = get_test_home_assistant() self.player = SyncMediaPlayer(self.hass) self.addCleanup(self.tear_down_cleanup) def tear_down_cleanup(self): """Shut down test instance.""" self.hass.stop() def test_volume_up(self): """Test the volume_up helper function.""" assert self.player.volume_level == 0 self.player.set_volume_level(0.5) assert self.player.volume_level == 0.5 asyncio.run_coroutine_threadsafe( self.player.async_volume_up(), self.hass.loop ).result() assert self.player.volume_level == 0.7 def test_volume_down(self): """Test the volume_down helper function.""" assert self.player.volume_level == 0 self.player.set_volume_level(0.5) assert self.player.volume_level == 0.5 asyncio.run_coroutine_threadsafe( self.player.async_volume_down(), self.hass.loop ).result() assert self.player.volume_level == 0.3 def test_media_play_pause(self): """Test the media_play_pause helper function.""" assert self.player.state == STATE_OFF asyncio.run_coroutine_threadsafe( self.player.async_media_play_pause(), self.hass.loop ).result() assert self.player.state == STATE_PLAYING asyncio.run_coroutine_threadsafe( self.player.async_media_play_pause(), self.hass.loop ).result() assert self.player.state == STATE_PAUSED def test_toggle(self): """Test the toggle helper function.""" assert self.player.state == STATE_OFF asyncio.run_coroutine_threadsafe( self.player.async_toggle(), self.hass.loop ).result() assert self.player.state == STATE_ON asyncio.run_coroutine_threadsafe( self.player.async_toggle(), self.hass.loop ).result() assert self.player.state == STATE_OFF
32.088462
67
0.627472
3122030b8107f629f26470fa4bcbd229fbb77f9c
9,019
py
Python
userFunc/myFunction.py
pchaos/quanttesting
98331670547e8a45ba93b49f3e9c660495645114
[ "MIT" ]
5
2020-04-08T14:14:05.000Z
2021-06-29T03:42:01.000Z
userFunc/myFunction.py
pchaos/quanttesting
98331670547e8a45ba93b49f3e9c660495645114
[ "MIT" ]
null
null
null
userFunc/myFunction.py
pchaos/quanttesting
98331670547e8a45ba93b49f3e9c660495645114
[ "MIT" ]
7
2020-04-15T15:07:39.000Z
2022-03-23T05:44:02.000Z
# -*- coding: utf-8 -*- import bz2 import pickle try: # 在python3.x上已从cPickle更改cPickle为_pickle import _pickle as cPickle except ImportError: import cpickle as cPickle import os import numpy as np import pandas as pd import QUANTAXIS as qa from QUANTAXIS.QAUtil.QACache import QA_util_cache as qacache def setdiff_sorted(array1, array2, assume_unique=False): """find elements in one list that are not in the other list_1 = ["a", "b", "c", "d", "e"] list_2 = ["a", "f", "c", "m"] main_list = setdiff_sorted(list_2,list_1) main_list = setdiff_sorted(list_2,list_1, assume_unique=True) """ ans = np.setdiff1d(array1, array2, assume_unique).tolist() if assume_unique: return sorted(ans) return ans def getCodeList(isTesting=True, count=5000): """ :param isTesting: 是否使用测试数据 :param count: 返回最多结果集数量 """ if isTesting: # 2018.8首板个股,测试用,减少调试时间 codelist = ['000023', '000068', '000407', '000561', '000590', '000593', '000608', '000610', '000626', '000638', '000657', '000659', '000663', '000669', '000677', '000705', '000759', '000766', '000780', '000792', '000815', '000852', '000885', '000909', '000913', '000921', '000928', '000931', '002006', '002012', '002034'] else: codelist = qa.QA_fetch_stock_list_adv().code.tolist() return codelist[:count] def read_zxg(filename='zxg.txt', length=6): """从文件filename读取自选股列表 返回每行前length(默认:6)个字符(自动去除行首、行尾空格); :param filename: 自选股文件名(默认:zxg.txt) """ filename = getRealFilename(filename) resultList = alist = [] if os.path.isfile(filename): with open(filename, 'r', encoding='UTF-8') as zxg: alist = zxg.readlines() for a in alist: resultList.append(a.strip()[0:length]) return resultList def xls2zxg(xlsfile, zxgFile): """xls转换成文本 """ xlsfile = getRealFilename(xlsfile) try: df = pd.read_excel(xlsfile) except Exception as e: df = pd.read_csv(xlsfile, sep="\t", encoding="gbk", dtype={'证券代码': str}) df.to_csv(zxgFile, index=False, sep=" ", header=None) def savexls(dataframe: pd.DataFrame, xlsfile: str, startrow=1, sheetName='Sheet1', index=True): """自动调整保存的列宽 Args: dataframe: xlsfile: startrow: sheetName: index: bool Returns: """ # Set destination directory to save excel. xlsfile = r'H:\my_project' + "\\" + 'my_file_name.xlsx' writer = pd.ExcelWriter(xlsfile, engine='xlsxwriter') # Write excel to file using pandas to_excel dataframe.to_excel(writer, startrow=startrow, sheet_name=sheetName, index=index) # Indicate workbook and worksheet for formatting workbook = writer.book worksheet = writer.sheets[sheetName] # Iterate through each column and set the width == the max length in that column. A padding length of 2 is also added. for i, col in enumerate(dataframe.columns): # find length of column i column_len = dataframe[col].astype(str).str.len().max() # Setting the length if the column header is larger # than the max column value length column_len = max(column_len, len(col)) + 2 # set the column length worksheet.set_column(i, i, column_len) writer.save() def xls2Code(xlsfile): """提取xlsfile文件中的股票代码 """ zxgfile = "/tmp/{}.txt".format(xlsfile) xls2zxg(xlsfile, zxgfile) return read_zxg(zxgfile, length=6) def codeInETF(codes=[], filterStartWith=['159', '510', '512', '515', '513', '161', '162']): """股票代码过滤 """ return [item for item in codes if item.startswith(tuple(filterStartWith))] def etfAmountGreater(code, startDate, endDate=None, amount=1000): """成交额大于等于amount(万元)""" df = qa.QA_fetch_index_day_adv(code, startDate, endDate) return df[df['amount'] >= amount * 10000] def codeInfo(codes): """返回指数或etf对应的股票信息""" index = qa.QA_fetch_index_list_adv() etf = qa.QA_fetch_etf_list() return pd.concat([index[index['code'].isin(codes)], etf[etf['code'].isin(codes)]], axis=0) def getRealFilename(filename): """返回第一个filename存在的文件名 """ try: # 当前目录 dir_path = os.path.dirname(os.path.realpath(__file__)) except: dir_path = os.path.dirname(os.path.realpath("./")) if not filename.find(os.sep) > -1: if os.path.exists(filename): # 当前目录优先 pass else: # 如果文件名(fname)没有目录,则加上当前目录 filename = os.path.join(dir_path, filename) return filename # def read_zxg_not_in_file(filename='zxg.txt', length=6): def full_pickle(title, data): """Saves the "data" with the "title" and adds the .pickle """ pikd = open(title, 'wb') pickle.dump(data, pikd) pikd.close() def loosen_pickle(file): """loads and returns a pickled objects """ pikd = open(file, 'rb') data = pickle.load(pikd) pikd.close() return data def compressed_pickle(title, data): """Pickle a file and then compress it into a file with extension """ with bz2.BZ2File(title + '.pbz2', 'w') as f: cPickle.dump(data, f) def decompress_pickle(file): """Load any compressed pickle file :param file: 文件名 """ if not os.path.exists(file): file = file + '.pbz2' data = bz2.BZ2File(file, 'rb') data = cPickle.load(data) return data def somefunc(cls): instances = {} def _wrapper(*args, **kwargs): if cls not in instances: instances[cls] = cls(*args, **kwargs) return instances[cls] return _wrapper def CMI(data: pd.DataFrame, n=100): """如何把市场划分为趋势行情和震荡行情,也就成了这个策略的关键,恒温器策略引入了市场波动指数(Choppy Market Index),简称CMI 它是一个用来判断市场走势类型的技术指标。通过计算当前收盘价与N周期前收盘价的差值与这段时间内价格波动的范围的比值,来判断目前的价格走势是趋势还是震荡。 CMI的计算公式为: CMI=(abs(Close-ref(close,(n-1)))*100/(HHV(high,n)-LLV(low,n)) 其中,abs是绝对值,n是周期数。 策略逻辑 一般来说CMI的值在0~100区间,值越大,趋势越强。当CMI的值小于20时,策略认为市场处于震荡模式;当CMI的值大于等于20时,策略认为市场处于趋势模式。 整个策略逻辑,可以简化的写成下面这样: 如果CMI < 20,执行震荡策略; 如果CMI ≥ 20,执行趋势策略; """ close = data.close dict = {"CMI": np.abs((close - qa.REF(close, n - 1))) * 100 / (qa.HHV(data.high, n) - qa.LLV(data.low, n))} return pd.DataFrame(dict) def RSV(data: pd.DataFrame, n=14): """RSV=(收盘价-最低价)/(最高价-最低价) RSV有何规律呢?很明显,在股价上涨趋势中,往往收盘价接近最高价,此时RSV值接近于1 """ dict = {"RSV": (data.close - data.low) / (data.high - data.low)} return pd.DataFrame(dict) def ifupMA(data, n=[20]): """收盘站上n均线上 """ if isinstance(n, int): # 传进来的参数为整数类型时 dict = {'MA{}'.format(n): (data.close - qa.MA(data.close, n)).dropna() > 0} elif isinstance(n, list): dict = {'MA{}'.format(i): data.close - qa.MA(data.close, i) for i in n} return pd.DataFrame(dict).dropna() > 0 def fourWeek(data, m=20, n=20): """四周规则   只要价格涨过前四个日历周内的最高价,则平回空头头寸,开立多头头寸。   只要价格跌过前四个周内(照日历算满)的最低价,则平回多头头寸,建立空头头寸。 """ def flag(x, preFlag): if x['close'] > x['hclose']: preFlag[0] = 1 elif x['close'] < x['lclose']: preFlag[0] = -1 return preFlag[0] def highLow(data, m=20, n=20): ''' 计算n周期最 fw.join(upma)高收盘价、最低收盘价 :param data: dataFrame :param n: 计算最高收盘价周期; 默认:20 :param n: 计算最低收盘价周期; 默认:20 :return: ''' high = qa.HHV(data['close'], m - 1) low = qa.LLV(data['close'], n - 1) return pd.DataFrame({'hclose': high.shift(1), 'lclose': low.shift(1), 'close': data.close}) df = highLow(data, m, n) preFlag = [0] df['flag'] = df.apply(lambda x: flag(x, preFlag), axis=1); return pd.DataFrame({'flag': df['flag']}) def TBSIndicator(data, m=20, n=20, maday=50): """陶博士中期信号 """ def flag(x, preFlag): if x['flag'] > 0 and x['MA{}'.format(maday)]: # 中期入场信号 preFlag[0] = 1 # elif x['flag'] < 0 or x['MA{}'.format(maday)]: elif x['flag'] < 0 and x['MA{}'.format(maday)]: # 中期出场信号 跌破20日收盘最低价或者ma50 preFlag[0] = -1 return preFlag[0] fw = fourWeek(data, m, n) maday = 50 upma = ifupMA(data, maday) preFlag = [0] result = fw.join(upma).apply(lambda x: flag(x, preFlag), axis=1) return pd.DataFrame({'flag': result}) def TBSMonthIndicator(data, m=10, n=20): """陶博士月线牛熊判断 10月交叉20月均线 """ def flag(x, preFlag): if x['jc']: # 金叉 preFlag[0] = 1 elif x['sc']: # 死叉 preFlag[0] = -1 return preFlag[0] close = data['close'] ma1 = qa.MA(close, m) ma2 = qa.MA(close, n) cross1 = qa.CROSS_STATUS(ma1, ma2) cross2 = qa.CROSS_STATUS(ma2, ma1) preFlag = [0] # 金叉 死叉 result = pd.DataFrame({'jc': cross1, 'sc': cross2}, index=ma1.index).apply(lambda x: flag(x, preFlag), axis=1) return pd.DataFrame({'flag': result})
27.922601
122
0.598625
29bb92bd9913967d580149ba14cbcf1269bb8414
9,007
py
Python
document_worker/templates/steps.py
ds-wizard/document-worker
09b1f1c29b47d8bd504aea86d0b5cff1a3bbb01b
[ "Apache-2.0" ]
2
2021-04-23T19:28:10.000Z
2021-04-27T05:30:07.000Z
document_worker/templates/steps.py
ds-wizard/document-worker
09b1f1c29b47d8bd504aea86d0b5cff1a3bbb01b
[ "Apache-2.0" ]
9
2021-04-07T16:48:34.000Z
2022-02-21T15:48:31.000Z
document_worker/templates/steps.py
ds-wizard/document-worker
09b1f1c29b47d8bd504aea86d0b5cff1a3bbb01b
[ "Apache-2.0" ]
6
2020-03-09T07:44:01.000Z
2020-12-02T18:26:37.000Z
import jinja2 # type: ignore import jinja2.exceptions # type: ignore import json from typing import Optional from document_worker.consts import DEFAULT_ENCODING from document_worker.context import Context from document_worker.conversions import Pandoc, WkHtmlToPdf, RdfLibConvert from document_worker.documents import DocumentFile, FileFormat, FileFormats class FormatStepException(Exception): def __init__(self, message): self.message = message def __str__(self): return self.message class Step: def __init__(self, template, options: dict): self.template = template self.options = options def execute_first(self, context: dict) -> Optional[DocumentFile]: return self.raise_exc('Called execute_follow on Step class') def execute_follow(self, document: DocumentFile) -> Optional[DocumentFile]: return self.raise_exc('Called execute_follow on Step class') def raise_exc(self, message: str): raise FormatStepException(message) class JSONStep(Step): NAME = 'json' OUTPUT_FORMAT = FileFormats.JSON def execute_first(self, context: dict) -> DocumentFile: return DocumentFile( self.OUTPUT_FORMAT, json.dumps(context, indent=2, sort_keys=True).encode(DEFAULT_ENCODING), DEFAULT_ENCODING ) def execute_follow(self, document: DocumentFile) -> Optional[DocumentFile]: return self.raise_exc(f'Step "{self.NAME}" cannot process other files') class Jinja2Step(Step): NAME = 'jinja' DEFAULT_FORMAT = FileFormats.HTML OPTION_ROOT_FILE = 'template' OPTION_CONTENT_TYPE = 'content-type' OPTION_EXTENSION = 'extension' def _jinja_exception_msg(self, e: jinja2.exceptions.TemplateSyntaxError): lines = [ 'Failed loading Jinja2 template due to syntax error:', f'- {e.message}', f'- Filename: {e.name}', f'- Line number: {e.lineno}', ] return '\n'.join(lines) def __init__(self, template, options: dict): super().__init__(template, options) self.root_file = self.options[self.OPTION_ROOT_FILE] self.content_type = self.options.get(self.OPTION_CONTENT_TYPE, self.DEFAULT_FORMAT.content_type) self.extension = self.options.get(self.OPTION_EXTENSION, self.DEFAULT_FORMAT.file_extension) self.output_format = FileFormat(self.extension, self.content_type, self.extension) try: self.j2_env = jinja2.Environment( loader=jinja2.FileSystemLoader(searchpath=template.template_dir), extensions=['jinja2.ext.do'], ) self._add_j2_enhancements() self.j2_root_template = self.j2_env.get_template(self.root_file) except jinja2.exceptions.TemplateSyntaxError as e: self.raise_exc(self._jinja_exception_msg(e)) except Exception as e: self.raise_exc(f'Failed loading Jinja2 template: {e}') def _add_j2_enhancements(self): from document_worker.templates.filters import filters from document_worker.templates.tests import tests self.j2_env.filters.update(filters) self.j2_env.tests.update(tests) def execute_first(self, context: dict) -> DocumentFile: def asset_fetcher(file_name): return self.template.fetch_asset(file_name) def asset_path(file_name): return self.template.asset_path(file_name) content = b'' try: content = self.j2_root_template.render( ctx=context, assets=asset_fetcher, asset_path=asset_path, ).encode(DEFAULT_ENCODING) except jinja2.exceptions.TemplateRuntimeError as e: self.raise_exc(f'Failed rendering Jinja2 template due to' f' {type(e).__name__}\n' f'- {str(e)}') return DocumentFile(self.output_format, content, DEFAULT_ENCODING) def execute_follow(self, document: DocumentFile) -> Optional[DocumentFile]: return self.raise_exc(f'Step "{self.NAME}" cannot process other files') class WkHtmlToPdfStep(Step): NAME = 'wkhtmltopdf' INPUT_FORMAT = FileFormats.HTML OUTPUT_FORMAT = FileFormats.PDF def __init__(self, template, options: dict): super().__init__(template, options) self.wkhtmltopdf = WkHtmlToPdf(config=Context.get().app.cfg) def execute_first(self, context: dict) -> Optional[DocumentFile]: return self.raise_exc(f'Step "{self.NAME}" cannot be first') def execute_follow(self, document: DocumentFile) -> DocumentFile: if document.file_format != FileFormats.HTML: self.raise_exc(f'WkHtmlToPdf does not support {document.file_format.name} format as input') data = self.wkhtmltopdf( source_format=self.INPUT_FORMAT, target_format=self.OUTPUT_FORMAT, data=document.content, metadata=self.options, workdir=str(self.template.template_dir), ) return DocumentFile(self.OUTPUT_FORMAT, data) class PandocStep(Step): NAME = 'pandoc' INPUT_FORMATS = frozenset([ FileFormats.DOCX, FileFormats.EPUB, FileFormats.HTML, FileFormats.LaTeX, FileFormats.Markdown, FileFormats.ODT, FileFormats.RST, ]) OUTPUT_FORMATS = frozenset([ FileFormats.ADoc, FileFormats.DocBook4, FileFormats.DocBook5, FileFormats.DOCX, FileFormats.EPUB, FileFormats.HTML, FileFormats.LaTeX, FileFormats.Markdown, FileFormats.ODT, FileFormats.RST, FileFormats.RTF, ]) OPTION_FROM = 'from' OPTION_TO = 'to' def __init__(self, template, options: dict): super().__init__(template, options) self.pandoc = Pandoc(config=Context.get().app.cfg) self.input_format = FileFormats.get(options[self.OPTION_FROM]) self.output_format = FileFormats.get(options[self.OPTION_TO]) if self.input_format not in self.INPUT_FORMATS: self.raise_exc(f'Unknown input format "{self.input_format.name}"') if self.output_format not in self.OUTPUT_FORMATS: self.raise_exc(f'Unknown output format "{self.output_format.name}"') def execute_first(self, context: dict) -> Optional[DocumentFile]: return self.raise_exc(f'Step "{self.NAME}" cannot be first') def execute_follow(self, document: DocumentFile) -> DocumentFile: if document.file_format != self.input_format: self.raise_exc(f'Unexpected input {document.file_format.name} as input for pandoc') data = self.pandoc( source_format=self.input_format, target_format=self.output_format, data=document.content, metadata=self.options, workdir=str(self.template.template_dir), ) return DocumentFile(self.output_format, data) class RdfLibConvertStep(Step): NAME = 'rdflib-convert' INPUT_FORMATS = [ FileFormats.RDF_XML, FileFormats.N3, FileFormats.NTRIPLES, FileFormats.TURTLE, FileFormats.TRIG, FileFormats.JSONLD, ] OUTPUT_FORMATS = INPUT_FORMATS OPTION_FROM = 'from' OPTION_TO = 'to' def __init__(self, template, options: dict): super().__init__(template, options) self.rdflib_convert = RdfLibConvert(config=Context.get().app.cfg) self.input_format = FileFormats.get(options[self.OPTION_FROM]) self.output_format = FileFormats.get(options[self.OPTION_TO]) if self.input_format not in self.INPUT_FORMATS: self.raise_exc(f'Unknown input format "{self.input_format.name}"') if self.output_format not in self.OUTPUT_FORMATS: self.raise_exc(f'Unknown output format "{self.output_format.name}"') def execute_first(self, context: dict) -> Optional[DocumentFile]: return self.raise_exc(f'Step "{self.NAME}" cannot be first') def execute_follow(self, document: DocumentFile) -> DocumentFile: if document.file_format != self.input_format: self.raise_exc(f'Unexpected input {document.file_format.name} ' f'as input for rdflib-convert ' f'(expecting {self.input_format.name})') data = self.rdflib_convert( self.input_format, self.output_format, document.content, self.options ) return DocumentFile(self.output_format, data) STEPS = { JSONStep.NAME: JSONStep, Jinja2Step.NAME: Jinja2Step, WkHtmlToPdfStep.NAME: WkHtmlToPdfStep, PandocStep.NAME: PandocStep, RdfLibConvertStep.NAME: RdfLibConvertStep, } def create_step(template, name: str, options: dict) -> Step: if name not in STEPS: raise KeyError(f'Unknown step name "{name}"') step = STEPS[name](template, options) return step
35.46063
104
0.661819
fb8a38d061f84ba12c33ad6178614316f8236b39
5,056
py
Python
c_01_intro_to_CV_and_Python/NumPy_tutorial.py
keissar3/AI_is_Math
ab82d37f23d9c87cc4dcdfbcbc04a127d8ca3408
[ "MIT" ]
null
null
null
c_01_intro_to_CV_and_Python/NumPy_tutorial.py
keissar3/AI_is_Math
ab82d37f23d9c87cc4dcdfbcbc04a127d8ca3408
[ "MIT" ]
null
null
null
c_01_intro_to_CV_and_Python/NumPy_tutorial.py
keissar3/AI_is_Math
ab82d37f23d9c87cc4dcdfbcbc04a127d8ca3408
[ "MIT" ]
null
null
null
# %% [markdown] # #Python Workshop: NumPy # [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/YoniChechik/AI_is_Math/blob/master/c_01_intro_to_CV_and_Python/NumPy_tutorial.ipynb) # # <hr> # # Based on: # # This [git](https://github.com/zhiyzuo/python-tutorial) of Zhiya Zuo # # <hr> # # NumPy is the fundamental package for scientific computing with Python. It contains among other things: # # - Powerful N-dimensional array object. # - Useful linear algebra, Fourier transform, and random number capabilities. # - And much more # # <img src="https://upload.wikimedia.org/wikipedia/commons/1/1a/NumPy_logo.svg" alt="numpy logo" width="200"/> # # ## NumPy installation # # in the cmd run: # # ```bash # pip install numpy # ``` # ## Arrays # %% # After you install numpy, load it import numpy as np # you can use np instead of numpy to call the functions in numpy package # %% x = np.array([1, 2, 3]) # create a numpy array object print(type(x)) # %% [markdown] # We can call `shape` function designed for `numpy.ndarray` class to check the dimension # %% x.shape # can be compared to 'len()' function that is used with list size # %% [markdown] # Unlike `list`, we have to use one single data type for all elements in an array # %% y = np.array([1, 'yes']) # automatic type conversion from int to str y # %% [markdown] # ### Multidimensional arrays # %% arr = np.array([[1, 2, 3, 8]]) arr.shape # %% arr # %% arr = np.array([[1, 2, 3, 8], [3, 2, 3, 2], [4, 5, 0, 8]]) arr.shape # %% arr # %% [markdown] # ### Special arrays # There are many special array initialization methods to call: # %% np.zeros([3, 5], dtype=int) # dtype can define the type of the array # %% np.ones([3, 5]) # %% np.eye(3) # %% [markdown] # ## Operations # The rules are very similar to R/Matlab: they are generally element wise # %% arr # %% arr - 5 # %% arr * 6 # element-vise multiplication # %% arr * arr # element-vise multiplication of two matrices # %% np.exp(arr) # %% [markdown] # More examples: # %% arr_2 = np.array([[1], [3], [2], [0]]) arr_2 # %% arr_2_T = arr_2.T # transpose arr_2_T # %% arr @ arr_2 # matrix multiplication # %% arr # %% arr.max() # %% arr.cumsum() # %% [markdown] # **Note:** element-by-element operations is done row-by-row, unlike in Matlab (column-by-column) # There are many class methods to calculate some statistics of the array itself along some axis: # - `axis=1` means row-wise # - `axis=0` means column-wise # %% arr.cumsum(axis=1) # %% [markdown] # ### Note about 1d arrays # 1d array is **not a column vector** & **not entirely a row vector** and hence should be treated carefully when used with vector/matrix manipulation # %% a = np.array([1, 2, 3]) a, a.shape # %% c = np.array([[1, 2, 3]]) c, c.shape # notice the shape diff # %% # can be multiply like a row vector b = np.array([[1, 2], [3, 4], [5, 6]]) b # %% a @ b # %% # can't be transformed! a.T, a.T.shape # %% [markdown] # A trick to transform 1d array into 2d row vector: # %% a_2d = a.reshape((1, -1)) # '-1' means to put all the rest of the elements in such a way that the reshape could fit print(a_2d) print(a_2d.T) # %% [markdown] # ## Indexing and slicing # The most important part is how to index and slice a `np.array`. It is actually very similar to `list`, except that we now may have more index elements because there are more than one dimension for most of the datasets in real life # ### 1 dimensional case # %% a1 = np.array([1, 2, 8, 100]) a1 # %% a1[0] # %% a1[-2] # %% a1[[0, 1, 3]] # %% a1[1:4] # %% [markdown] # We can also use boolean values to index # - `True` means we want this element # %% a1 > 3 # %% [markdown] # ### Masking # replacing values of array with another values according to a boolean mask # %% # this is the mask a1[a1 > 3] # %% # this is a use of the above mask a1[a1 > 3] = 100 a1 # %% [markdown] # ### 2 dimensional case # %% arr # %% [markdown] # Using only one number to index will lead to a subset of the original multidimensional array: also an array # %% arr[0] # %% type(arr[0]) # %% [markdown] # Since we have 2 dimensions now, there are 2 indices we can use for indexing the 2 dimensions respectively # %% arr[0, 0] # %% [markdown] # We can use `:` to indicate everything along that axis # %% arr[1] # %% arr[1, :] # %% arr[:, 1] # watch out! we've got a 1d array again instead of column vector as maybe expected # %% # 2D masking arr[arr > 3] = 55 # %% [markdown] # ### 3 dimensional case # As a final example, we look at a 3d array: # %% np.random.seed(1234) arr_3 = np.random.randint(low=0, high=100, size=24) arr_3 # %% [markdown] # We can use `reshape` to manipulate the shape of an array # %% arr_3 = arr_3.reshape(3, 4, 2) arr_3 # %% [markdown] # **Note**: Are the printed array not what you though it would be? Did they mixed the shape? No! # see [this for answers](https://stackoverflow.com/a/22982371/4879610) # %% arr_3[0] # %% arr_3[:, 3, 1] # %% arr_3[2, 3, 1]
18.385455
232
0.645174
a713fb8f5ad2f478cad25cd8c2d1c9b1d50e5b47
274
py
Python
authors/apps/articles/exceptions.py
andela/ah-backend-spaces-
58e031a96a6b9555f1a4133cf8cb688c236d3f3b
[ "BSD-3-Clause" ]
2
2018-08-17T15:47:36.000Z
2018-09-13T13:58:34.000Z
authors/apps/articles/exceptions.py
andela/ah-backend-spaces-
58e031a96a6b9555f1a4133cf8cb688c236d3f3b
[ "BSD-3-Clause" ]
35
2018-07-24T11:42:53.000Z
2021-06-10T20:34:41.000Z
authors/apps/articles/exceptions.py
andela/ah-backend-spaces-
58e031a96a6b9555f1a4133cf8cb688c236d3f3b
[ "BSD-3-Clause" ]
3
2018-07-17T13:05:35.000Z
2018-09-06T16:03:52.000Z
from rest_framework.exceptions import APIException class ArticlesNotExist(APIException): status_code = 400 default_detail = 'you have no articles' class NoResultsMatch(APIException): status_code = 400 default_detail = 'results matching search not found'
22.833333
56
0.773723
9732b60de28d488edad208ea773e608070c5100a
409
py
Python
tests/test_helpers.py
BenTopping/baracoda
873504c678d925a8174b7d76b26f540c149c9e17
[ "MIT" ]
null
null
null
tests/test_helpers.py
BenTopping/baracoda
873504c678d925a8174b7d76b26f540c149c9e17
[ "MIT" ]
1
2021-03-04T15:01:24.000Z
2021-03-04T15:01:24.000Z
tests/test_helpers.py
BenTopping/baracoda
873504c678d925a8174b7d76b26f540c149c9e17
[ "MIT" ]
null
null
null
from baracoda.helpers import get_prefix_item def test_correct_prefix_item_is_returned(app, prefixes): with app.app_context(): prefix_item = get_prefix_item("LEED") assert prefix_item == {"prefix": "LEED", "sequence_name": "heron", "convert": True} def test_none_is_returned_for_invalid_prefix(app): with app.app_context(): prefix_item = get_prefix_item("MOON") assert prefix_item is None
37.181818
87
0.760391
caa22032a4d0211121c6d945a0b050b76960e7d3
1,590
py
Python
backend/cw_backend/courses/helpers.py
Zuzanita/pyladies-courseware
0161a26ae318a919025fe6a2205c5948d151be37
[ "MIT" ]
null
null
null
backend/cw_backend/courses/helpers.py
Zuzanita/pyladies-courseware
0161a26ae318a919025fe6a2205c5948d151be37
[ "MIT" ]
null
null
null
backend/cw_backend/courses/helpers.py
Zuzanita/pyladies-courseware
0161a26ae318a919025fe6a2205c5948d151be37
[ "MIT" ]
null
null
null
from datetime import date import re class DataProperty: ''' Example: class C: def __init__(self): self.data = {'foo': 'bar'} foo = DataProperty('foo') # Now you can access C().data['foo'] via C().foo C().foo == 'bar' C().foo = 'baz' ''' def __init__(self, key): self.key = key def __get__(self, instance, owner): return instance.data[self.key] def __set__(self, instance, value): instance.data[self.key] = value def to_html(raw): if isinstance(raw, str): return raw elif raw.get('markdown'): return markdown_to_html(raw['markdown']) else: raise Exception(f'Unknown type (to_html): {smart_repr(raw)}') def parse_date(s): if not s: return None if not isinstance(s, str): raise TypeError(f'parse_date argument must be str: {smart_repr(s)}') m = re.match(r'^([0-9]{1,2})\. *([0-9]{1,2})\. *([0-9]{4})$', s) if m: day, month, year = m.groups() return date(int(year), int(month), int(day)) m = re.match(r'^([0-9]{4})-([0-9]{1,2})-([0-9]{1,2})$', s) if m: year, month, day = m.groups() return date(int(year), int(month), int(day)) raise Exception(f'Invalid date format: {s!r}') def markdown_to_html(src): from markdown import markdown return markdown( src, extensions=[ 'markdown.extensions.fenced_code', 'markdown.extensions.tables', 'mdx_linkify', ], output_format='html5')
24.84375
76
0.543396
fac5f2a684a0983d8ba26b4d90120d9e0879cf1d
3,112
py
Python
metrics/extract_tfms.py
edhowler/qmMath
aee6e6eecf667cb97cc825ba728d72cd3417ffc4
[ "MIT" ]
1
2017-09-06T02:49:13.000Z
2017-09-06T02:49:13.000Z
metrics/extract_tfms.py
sophiebits/KaTeX
1da8c8938bfb02ae049b92483fc317f68394e5fe
[ "MIT" ]
null
null
null
metrics/extract_tfms.py
sophiebits/KaTeX
1da8c8938bfb02ae049b92483fc317f68394e5fe
[ "MIT" ]
null
null
null
#!/usr/bin/env python import collections import json import parse_tfm import subprocess import sys def find_font_path(font_name): try: font_path = subprocess.check_output(['kpsewhich', font_name]) except OSError: raise RuntimeError("Couldn't find kpsewhich program, make sure you" + " have TeX installed") except subprocess.CalledProcessError: raise RuntimeError("Couldn't find font metrics: '%s'" % font_name) return font_path.strip() def main(): mapping = json.load(sys.stdin) fonts = [ 'cmbsy10.tfm', 'cmbx10.tfm', 'cmex10.tfm', 'cmmi10.tfm', 'cmmib10.tfm', 'cmr10.tfm', 'cmsy10.tfm', 'cmti10.tfm', 'msam10.tfm', 'msbm10.tfm', 'eufm10.tfm', 'cmtt10.tfm', 'rsfs10.tfm', 'cmss10.tfm', ] # Extracted by running `\font\a=<font>` and then `\showthe\skewchar\a` in # TeX, where `<font>` is the name of the font listed here. The skewchar # will be printed out in the output. If it outputs `-1`, that means there # is no skewchar, so we use `None` here. font_skewchar = { 'cmbsy10': None, 'cmbx10': None, 'cmex10': None, 'cmmi10': 127, 'cmmib10': None, 'cmr10': None, 'cmsy10': 48, 'cmti10': None, 'msam10': None, 'msbm10': None, 'eufm10': None, 'cmtt10': None, 'rsfs10': None, 'cmss10': None, } font_name_to_tfm = {} for font_name in fonts: font_basename = font_name.split('.')[0] font_path = find_font_path(font_name) font_name_to_tfm[font_basename] = parse_tfm.read_tfm_file(font_path) families = collections.defaultdict(dict) for family, chars in mapping.iteritems(): for char, char_data in chars.iteritems(): char_num = int(char) font = char_data['font'] tex_char_num = int(char_data['char']) yshift = float(char_data['yshift']) if family == "Script-Regular": tfm_char = font_name_to_tfm[font].get_char_metrics(tex_char_num, fix_rsfs=True) else: tfm_char = font_name_to_tfm[font].get_char_metrics(tex_char_num) height = round(tfm_char.height + yshift / 1000.0, 5) depth = round(tfm_char.depth - yshift / 1000.0, 5) italic = round(tfm_char.italic_correction, 5) skewkern = 0.0 if (font_skewchar[font] and font_skewchar[font] in tfm_char.kern_table): skewkern = round( tfm_char.kern_table[font_skewchar[font]], 5) families[family][char_num] = { 'height': height, 'depth': depth, 'italic': italic, 'skew': skewkern, } sys.stdout.write( json.dumps(families, separators=(',', ':'), sort_keys=True)) if __name__ == '__main__': main()
29.084112
81
0.546915
3bfd761fb1ef937fe388f79a0eab4c9dc0408ae0
10,371
py
Python
test/functional/rpc_listtransactions.py
XcelRProject/XcelR
991f0ca8b60078d5b8fe95c122fff0e95275009b
[ "MIT" ]
null
null
null
test/functional/rpc_listtransactions.py
XcelRProject/XcelR
991f0ca8b60078d5b8fe95c122fff0e95275009b
[ "MIT" ]
null
null
null
test/functional/rpc_listtransactions.py
XcelRProject/XcelR
991f0ca8b60078d5b8fe95c122fff0e95275009b
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # Copyright (c) 2014-2017 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Test the listtransactions API.""" from test_framework.test_framework import BitcoinTestFramework from test_framework.util import * from test_framework.mininode import CTransaction, COIN from io import BytesIO def txFromHex(hexstring): tx = CTransaction() f = BytesIO(hex_str_to_bytes(hexstring)) tx.deserialize(f) return tx class ListTransactionsTest(BitcoinTestFramework): def set_test_params(self): self.num_nodes = 2 self.enable_mocktime() def run_test(self): # Simple send, 0 to 1: txid = self.nodes[0].sendtoaddress(self.nodes[1].getnewaddress(), 0.1) self.sync_all() assert_array_result(self.nodes[0].listtransactions(), {"txid":txid}, {"category":"send","account":"","amount":Decimal("-0.1"),"confirmations":0}) assert_array_result(self.nodes[1].listtransactions(), {"txid":txid}, {"category":"receive","account":"","amount":Decimal("0.1"),"confirmations":0}) # mine a block, confirmations should change: self.nodes[0].generate(1) self.sync_all() assert_array_result(self.nodes[0].listtransactions(), {"txid":txid}, {"category":"send","account":"","amount":Decimal("-0.1"),"confirmations":1}) assert_array_result(self.nodes[1].listtransactions(), {"txid":txid}, {"category":"receive","account":"","amount":Decimal("0.1"),"confirmations":1}) # send-to-self: txid = self.nodes[0].sendtoaddress(self.nodes[0].getnewaddress(), 0.2) assert_array_result(self.nodes[0].listtransactions(), {"txid":txid, "category":"send"}, {"amount":Decimal("-0.2")}) assert_array_result(self.nodes[0].listtransactions(), {"txid":txid, "category":"receive"}, {"amount":Decimal("0.2")}) # sendmany from node1: twice to self, twice to node2: send_to = { self.nodes[0].getnewaddress() : 0.11, self.nodes[1].getnewaddress() : 0.22, self.nodes[0].getaccountaddress("from1") : 0.33, self.nodes[1].getaccountaddress("toself") : 0.44 } txid = self.nodes[1].sendmany("", send_to) self.sync_all() assert_array_result(self.nodes[1].listtransactions(), {"category":"send","amount":Decimal("-0.11")}, {"txid":txid} ) assert_array_result(self.nodes[0].listtransactions(), {"category":"receive","amount":Decimal("0.11")}, {"txid":txid} ) assert_array_result(self.nodes[1].listtransactions(), {"category":"send","amount":Decimal("-0.22")}, {"txid":txid} ) assert_array_result(self.nodes[1].listtransactions(), {"category":"receive","amount":Decimal("0.22")}, {"txid":txid} ) assert_array_result(self.nodes[1].listtransactions(), {"category":"send","amount":Decimal("-0.33")}, {"txid":txid} ) assert_array_result(self.nodes[0].listtransactions(), {"category":"receive","amount":Decimal("0.33")}, {"txid":txid, "account" : "from1"} ) assert_array_result(self.nodes[1].listtransactions(), {"category":"send","amount":Decimal("-0.44")}, {"txid":txid, "account" : ""} ) assert_array_result(self.nodes[1].listtransactions(), {"category":"receive","amount":Decimal("0.44")}, {"txid":txid, "account" : "toself"} ) pubkey = self.nodes[1].validateaddress(self.nodes[1].getnewaddress())['pubkey'] multisig = self.nodes[1].createmultisig(1, [pubkey]) self.nodes[0].importaddress(multisig["redeemScript"], "watchonly", False, True) txid = self.nodes[1].sendtoaddress(multisig["address"], 0.1) self.nodes[1].generate(1) self.sync_all() assert(len(self.nodes[0].listtransactions("watchonly", 100, 0, False)) == 0) assert_array_result(self.nodes[0].listtransactions("watchonly", 100, 0, True), {"category":"receive","amount":Decimal("0.1")}, {"txid":txid, "account" : "watchonly"} ) # XcelR has RBF disabled # self.run_rbf_opt_in_test() # Check that the opt-in-rbf flag works properly, for sent and received # transactions. def run_rbf_opt_in_test(self): # Check whether a transaction signals opt-in RBF itself def is_opt_in(node, txid): rawtx = node.getrawtransaction(txid, 1) for x in rawtx["vin"]: if x["sequence"] < 0xfffffffe: return True return False # Find an unconfirmed output matching a certain txid def get_unconfirmed_utxo_entry(node, txid_to_match): utxo = node.listunspent(0, 0) for i in utxo: if i["txid"] == txid_to_match: return i return None # 1. Chain a few transactions that don't opt-in. txid_1 = self.nodes[0].sendtoaddress(self.nodes[1].getnewaddress(), 1) assert(not is_opt_in(self.nodes[0], txid_1)) assert_array_result(self.nodes[0].listtransactions(), {"txid": txid_1}, {"bip125-replaceable":"no"}) sync_mempools(self.nodes) assert_array_result(self.nodes[1].listtransactions(), {"txid": txid_1}, {"bip125-replaceable":"no"}) # Tx2 will build off txid_1, still not opting in to RBF. utxo_to_use = get_unconfirmed_utxo_entry(self.nodes[0], txid_1) assert_equal(utxo_to_use["safe"], True) utxo_to_use = get_unconfirmed_utxo_entry(self.nodes[1], txid_1) utxo_to_use = get_unconfirmed_utxo_entry(self.nodes[1], txid_1) assert_equal(utxo_to_use["safe"], False) # Create tx2 using createrawtransaction inputs = [{"txid":utxo_to_use["txid"], "vout":utxo_to_use["vout"]}] outputs = {self.nodes[0].getnewaddress(): 0.999} tx2 = self.nodes[1].createrawtransaction(inputs, outputs) tx2_signed = self.nodes[1].signrawtransaction(tx2)["hex"] txid_2 = self.nodes[1].sendrawtransaction(tx2_signed) # ...and check the result assert(not is_opt_in(self.nodes[1], txid_2)) assert_array_result(self.nodes[1].listtransactions(), {"txid": txid_2}, {"bip125-replaceable":"no"}) sync_mempools(self.nodes) assert_array_result(self.nodes[0].listtransactions(), {"txid": txid_2}, {"bip125-replaceable":"no"}) # Tx3 will opt-in to RBF utxo_to_use = get_unconfirmed_utxo_entry(self.nodes[0], txid_2) inputs = [{"txid": txid_2, "vout":utxo_to_use["vout"]}] outputs = {self.nodes[1].getnewaddress(): 0.998} tx3 = self.nodes[0].createrawtransaction(inputs, outputs) tx3_modified = txFromHex(tx3) tx3_modified.vin[0].nSequence = 0 tx3 = bytes_to_hex_str(tx3_modified.serialize()) tx3_signed = self.nodes[0].signrawtransaction(tx3)['hex'] txid_3 = self.nodes[0].sendrawtransaction(tx3_signed) assert(is_opt_in(self.nodes[0], txid_3)) assert_array_result(self.nodes[0].listtransactions(), {"txid": txid_3}, {"bip125-replaceable":"yes"}) sync_mempools(self.nodes) assert_array_result(self.nodes[1].listtransactions(), {"txid": txid_3}, {"bip125-replaceable":"yes"}) # Tx4 will chain off tx3. Doesn't signal itself, but depends on one # that does. utxo_to_use = get_unconfirmed_utxo_entry(self.nodes[1], txid_3) inputs = [{"txid": txid_3, "vout":utxo_to_use["vout"]}] outputs = {self.nodes[0].getnewaddress(): 0.997} tx4 = self.nodes[1].createrawtransaction(inputs, outputs) tx4_signed = self.nodes[1].signrawtransaction(tx4)["hex"] txid_4 = self.nodes[1].sendrawtransaction(tx4_signed) assert(not is_opt_in(self.nodes[1], txid_4)) assert_array_result(self.nodes[1].listtransactions(), {"txid": txid_4}, {"bip125-replaceable":"yes"}) sync_mempools(self.nodes) assert_array_result(self.nodes[0].listtransactions(), {"txid": txid_4}, {"bip125-replaceable":"yes"}) # Replace tx3, and check that tx4 becomes unknown tx3_b = tx3_modified tx3_b.vout[0].nValue -= int(Decimal("0.004") * COIN) # bump the fee tx3_b = bytes_to_hex_str(tx3_b.serialize()) tx3_b_signed = self.nodes[0].signrawtransaction(tx3_b)['hex'] txid_3b = self.nodes[0].sendrawtransaction(tx3_b_signed, True) assert(is_opt_in(self.nodes[0], txid_3b)) assert_array_result(self.nodes[0].listtransactions(), {"txid": txid_4}, {"bip125-replaceable":"unknown"}) sync_mempools(self.nodes) assert_array_result(self.nodes[1].listtransactions(), {"txid": txid_4}, {"bip125-replaceable":"unknown"}) # Check gettransaction as well: for n in self.nodes[0:2]: assert_equal(n.gettransaction(txid_1)["bip125-replaceable"], "no") assert_equal(n.gettransaction(txid_2)["bip125-replaceable"], "no") assert_equal(n.gettransaction(txid_3)["bip125-replaceable"], "yes") assert_equal(n.gettransaction(txid_3b)["bip125-replaceable"], "yes") assert_equal(n.gettransaction(txid_4)["bip125-replaceable"], "unknown") # After mining a transaction, it's no longer BIP125-replaceable self.nodes[0].generate(1) assert(txid_3b not in self.nodes[0].getrawmempool()) assert_equal(self.nodes[0].gettransaction(txid_3b)["bip125-replaceable"], "no") assert_equal(self.nodes[0].gettransaction(txid_4)["bip125-replaceable"], "unknown") if __name__ == '__main__': ListTransactionsTest().main()
51.08867
113
0.600617
53a647a8e06abc47f22b7aa448176be17e775353
3,664
py
Python
flatpak_indexer/models.py
owtaylor/flatpak-indexer
6d4227677d2ff1a60735ecbaa10b241336f4b55b
[ "MIT" ]
6
2021-03-29T09:01:51.000Z
2021-11-29T15:28:13.000Z
flatpak_indexer/models.py
owtaylor/flatpak-indexer
6d4227677d2ff1a60735ecbaa10b241336f4b55b
[ "MIT" ]
4
2020-09-14T15:55:11.000Z
2022-01-06T15:56:26.000Z
flatpak_indexer/models.py
owtaylor/flatpak-indexer
6d4227677d2ff1a60735ecbaa10b241336f4b55b
[ "MIT" ]
1
2021-08-30T10:17:16.000Z
2021-08-30T10:17:16.000Z
from datetime import datetime from functools import cached_property from typing import Any, Dict, List, Optional from .json_model import BaseModel, field from .utils import parse_pull_spec class TagHistoryItemModel(BaseModel): architecture: str date: datetime digest: str class TagHistoryModel(BaseModel): name: str items: List[TagHistoryItemModel] class ImageModel(BaseModel): digest: str media_type: str os: str = field(json_name="OS") architecture: str labels: Dict[str, str] annotations: Dict[str, str] tags: List[str] diff_ids: List[str] # This is the place where the image was uploaded when built, which may differ # from the public location of the image. pull_spec: Optional[str] @property def nvr(self): name = self.labels.get("com.redhat.component") if name: version = self.labels["version"] release = self.labels["release"] return f"{name}-{version}-{release}" else: return None class ListModel(BaseModel): digest: str media_type: str images: List[ImageModel] tags: List[str] class RepositoryModel(BaseModel): name: str images: Dict[str, ImageModel] = field(index="digest") lists: Dict[str, ListModel] = field(index="digest") tag_histories: Dict[str, TagHistoryModel] = field(index="name") class RegistryModel(BaseModel): repositories: Dict[str, RepositoryModel] = field(index="name") def add_image(self, name: str, image: ImageModel): if name not in self.repositories: self.repositories[name] = RepositoryModel(name=name) self.repositories[name].images[image.digest] = image class KojiBuildModel(BaseModel): build_id: str nvr: str source: Optional[str] completion_time: datetime user_name: str class ImageBuildModel(KojiBuildModel): images: List[ImageModel] @classmethod def class_from_json(cls, data: Dict[str, Any]): if 'ModuleBuilds' in data: return FlatpakBuildModel else: return ImageBuildModel @cached_property def repository(self): _, repository, _ = parse_pull_spec(self.images[0].pull_spec) return repository class FlatpakBuildModel(ImageBuildModel): module_builds: List[str] package_builds: List[str] class ModuleBuildModel(KojiBuildModel): modulemd: str package_builds: List[str] class PackageBuildModel(KojiBuildModel): pass class TardiffImageModel(BaseModel): registry: str repository: str ref: str class TardiffSpecModel(BaseModel): from_image: TardiffImageModel from_diff_id: str to_image: TardiffImageModel to_diff_id: str class TardiffResultModel(BaseModel): status: str digest: str size: int message: str from_size: Optional[int] to_size: Optional[int] max_mem_kib: Optional[float] = field(json_name="MaxMemKiB") elapsed_time_s: Optional[float] user_time_s: Optional[float] system_time_s: Optional[float] class ModuleImageContentsModel(BaseModel): image_nvr: str module_nvr: str package_builds: List[str] class ModuleStreamContentsModel(BaseModel): images: Dict[str, ModuleImageContentsModel] = field(index="image_nvr") def add_package_build(self, image_nvr: str, module_nvr: str, package_nvr: str): if image_nvr not in self.images: self.images[image_nvr] = ModuleImageContentsModel(image_nvr=image_nvr, module_nvr=module_nvr) self.images[image_nvr].package_builds.append(package_nvr)
24.264901
84
0.682587
28878225da61a435d0a7d49dbd5449df09f7a68f
10,418
py
Python
anaconda_project/test/test_project_lock_file.py
vertingo/Anaconda_Videos_Tutos
f30f2a0549a7b81c17f4d5d249edc59eb3c05458
[ "BSD-3-Clause" ]
null
null
null
anaconda_project/test/test_project_lock_file.py
vertingo/Anaconda_Videos_Tutos
f30f2a0549a7b81c17f4d5d249edc59eb3c05458
[ "BSD-3-Clause" ]
null
null
null
anaconda_project/test/test_project_lock_file.py
vertingo/Anaconda_Videos_Tutos
f30f2a0549a7b81c17f4d5d249edc59eb3c05458
[ "BSD-3-Clause" ]
null
null
null
# -*- coding: utf-8 -*- # ----------------------------------------------------------------------------- # Copyright (c) 2016, Anaconda, Inc. All rights reserved. # # Licensed under the terms of the BSD 3-Clause License. # The full license is in the file LICENSE.txt, distributed with this software. # ----------------------------------------------------------------------------- import codecs import os from anaconda_project.internal.test.tmpfile_utils import with_directory_contents from anaconda_project.project_lock_file import (ProjectLockFile, DEFAULT_PROJECT_LOCK_FILENAME, possible_project_lock_file_names) from anaconda_project.conda_manager import CondaLockSet expected_default_file = """# This is an Anaconda project lock file. # The lock file locks down exact versions of all your dependencies. # # In most cases, this file is automatically maintained by the `anaconda-project` command or GUI tools. # It's best to keep this file in revision control (such as git or svn). # The file is in YAML format, please see http://www.yaml.org/start.html for more. # # # Set to false to ignore locked versions. locking_enabled: false # # A key goes in here for each env spec. # env_specs: {} """ def _get_locking_enabled(lock_file, env_spec_name): """Library-internal method.""" enabled = lock_file.get_value(['env_specs', env_spec_name, 'locked'], None) if enabled is not None: return enabled enabled = lock_file.get_value(['locking_enabled']) if enabled is not None: return enabled return True def _get_lock_set(lock_file, env_spec_name): """Library-internal method.""" # TODO no validation here, we'll do that by moving this # into project.py soon enabled = _get_locking_enabled(lock_file, env_spec_name) packages = lock_file.get_value(['env_specs', env_spec_name, 'packages'], {}) platforms = lock_file.get_value(['env_specs', env_spec_name, 'platforms'], []) env_spec_hash = lock_file.get_value(['env_specs', env_spec_name, 'env_spec_hash'], None) lock_set = CondaLockSet(packages, platforms, enabled=enabled) lock_set.env_spec_hash = env_spec_hash return lock_set def test_create_missing_lock_file_only_when_not_default(): def create_file(dirname): filename = os.path.join(dirname, DEFAULT_PROJECT_LOCK_FILENAME) assert not os.path.exists(filename) lock_file = ProjectLockFile.load_for_directory(dirname) assert lock_file is not None assert not os.path.exists(filename) assert _get_lock_set(lock_file, 'foo').disabled assert not _get_locking_enabled(lock_file, 'foo') lock_file.save() # should not have saved an unmodified (default) file) assert not os.path.exists(filename) # make a change, which should cause us to save lock_file.set_value(['something'], 42) lock_file.save() assert os.path.exists(filename) with codecs.open(filename, 'r', 'utf-8') as file: contents = file.read() expected = expected_default_file + "something: 42\n" assert expected == contents with_directory_contents(dict(), create_file) def _use_existing_lock_file(relative_name): def check_file(dirname): filename = os.path.join(dirname, relative_name) assert os.path.exists(filename) lock_file = ProjectLockFile.load_for_directory(dirname) assert lock_file.get_value(['env_specs', 'foo']) is not None assert lock_file.get_value(['locking_enabled']) is True with_directory_contents( {relative_name: """ locking_enabled: true env_specs: foo: locked: true platforms: [linux-32,linux-64,osx-64,win-32,win-64] packages: all: - foo=1.0=1 bar: locked: false platforms: [linux-32,linux-64,osx-64,win-32,win-64] packages: all: - bar=2.0=2 """}, check_file) def test_use_existing_lock_file_default_name(): _use_existing_lock_file(DEFAULT_PROJECT_LOCK_FILENAME) def test_use_existing_lock_file_all_names(): for name in possible_project_lock_file_names: _use_existing_lock_file(name) def test_get_lock_set(): def check_file(dirname): filename = os.path.join(dirname, DEFAULT_PROJECT_LOCK_FILENAME) assert os.path.exists(filename) lock_file = ProjectLockFile.load_for_directory(dirname) foo_lock_set = _get_lock_set(lock_file, 'foo') assert foo_lock_set.enabled assert ('foo=1.0=1', ) == foo_lock_set.package_specs_for_current_platform bar_lock_set = _get_lock_set(lock_file, 'bar') assert bar_lock_set.disabled with_directory_contents( {DEFAULT_PROJECT_LOCK_FILENAME: """ locking_enabled: true env_specs: foo: locked: true platforms: [linux-32,linux-64,osx-64,win-32,win-64] packages: all: - foo=1.0=1 bar: locked: false platforms: [linux-32,linux-64,osx-64,win-32,win-64] packages: all: - bar=2.0=2 """}, check_file) def test_disable_single_spec_locking(): def check_file(dirname): filename = os.path.join(dirname, DEFAULT_PROJECT_LOCK_FILENAME) assert os.path.exists(filename) lock_file = ProjectLockFile.load_for_directory(dirname) foo_lock_set = _get_lock_set(lock_file, 'foo') assert ('foo=1.0=1', ) == foo_lock_set.package_specs_for_current_platform lock_file._disable_locking('foo') foo_lock_set = _get_lock_set(lock_file, 'foo') assert foo_lock_set.disabled assert _get_locking_enabled(lock_file, 'foo') is False with_directory_contents( {DEFAULT_PROJECT_LOCK_FILENAME: """ locking_enabled: true env_specs: foo: locked: true platforms: [linux-32,linux-64,osx-64,win-32,win-64] packages: all: - foo=1.0=1 bar: locked: false platforms: [linux-32,linux-64,osx-64,win-32,win-64] packages: all: - bar=2.0=2 """}, check_file) def test_set_lock_set(): def check_file(dirname): filename = os.path.join(dirname, DEFAULT_PROJECT_LOCK_FILENAME) assert os.path.exists(filename) lock_file = ProjectLockFile.load_for_directory(dirname) # we have the global enabled flag off; individual # env spec settings override that; foo has no setting. foo_lock_set = _get_lock_set(lock_file, 'foo') assert lock_file.get_value(['env_specs', 'foo', 'locked'], None) is None assert foo_lock_set.disabled bar_lock_set = _get_lock_set(lock_file, 'bar') assert bar_lock_set.disabled all_names = ['foo', 'bar'] lock_set = CondaLockSet({'all': ['something=3.0=0']}, platforms=['linux-32', 'linux-64', 'osx-64', 'win-32', 'win-64']) lock_set.env_spec_hash = "hash-hash-hash" lock_file._set_lock_set('bar', lock_set, all_names=all_names) # "foo" should have been DISABLED since we had to # enable the global flag in order to enable "bar" foo_lock_set = _get_lock_set(lock_file, 'foo') assert lock_file.get_value(['env_specs', 'foo', 'locked']) is False assert foo_lock_set.disabled assert foo_lock_set.env_spec_hash is None bar_lock_set = _get_lock_set(lock_file, 'bar') assert bar_lock_set.enabled assert ('something=3.0=0', ) == bar_lock_set.package_specs_for_current_platform assert "hash-hash-hash" == bar_lock_set.env_spec_hash # and now we should enable "foo" when we set it to something lock_file._set_lock_set('foo', lock_set, all_names=all_names) foo_lock_set = _get_lock_set(lock_file, 'foo') assert foo_lock_set.enabled assert ('something=3.0=0', ) == foo_lock_set.package_specs_for_current_platform # be sure we can save lock_file.save() reloaded = ProjectLockFile.load_for_directory(dirname) assert ('something=3.0=0', ) == _get_lock_set(reloaded, 'bar').package_specs_for_current_platform assert ('something=3.0=0', ) == _get_lock_set(reloaded, 'foo').package_specs_for_current_platform # Check _set_lock_set_hash lock_file._set_lock_set_hash('bar', 'hash2.0') lock_file.save() reloaded = ProjectLockFile.load_for_directory(dirname) bar_lock_set = _get_lock_set(reloaded, 'bar') assert bar_lock_set.env_spec_hash == 'hash2.0' with_directory_contents( {DEFAULT_PROJECT_LOCK_FILENAME: """ locking_enabled: false env_specs: foo: platforms: [linux-32,linux-64,osx-64,win-32,win-64] packages: all: - foo=1.0=1 bar: locked: false platforms: [linux-32,linux-64,osx-64,win-32,win-64] packages: all: - bar=2.0=2 """}, check_file) def test_set_lock_set_has_to_create_env_specs_to_disable(): def check_file(dirname): filename = os.path.join(dirname, DEFAULT_PROJECT_LOCK_FILENAME) assert os.path.exists(filename) lock_file = ProjectLockFile.load_for_directory(dirname) all_names = ['foo', 'bar'] lock_set = CondaLockSet({'all': ['something=3.0=0']}, platforms=['linux-32', 'linux-64', 'osx-64', 'win-32', 'win-64']) # so the point of this test is that we need to create env_specs # dict and the 'foo' entry as a side effect of setting 'bar', # in order to mark 'foo' disabled. lock_file._set_lock_set('bar', lock_set, all_names=all_names) # "foo" should have been DISABLED since we had to # enable the global flag in order to enable "bar" foo_lock_set = _get_lock_set(lock_file, 'foo') assert lock_file.get_value(['env_specs', 'foo', 'locked']) is False assert foo_lock_set.disabled bar_lock_set = _get_lock_set(lock_file, 'bar') assert bar_lock_set.enabled assert ('something=3.0=0', ) == bar_lock_set.package_specs_for_current_platform # be sure we can save lock_file.save() reloaded = ProjectLockFile.load_for_directory(dirname) assert ('something=3.0=0', ) == _get_lock_set(reloaded, 'bar').package_specs_for_current_platform assert _get_lock_set(reloaded, 'foo').disabled with_directory_contents({DEFAULT_PROJECT_LOCK_FILENAME: """ locking_enabled: false """}, check_file)
34.611296
105
0.668362
e71ab575a47c483b76b6246e03cdc69757741f3c
924
py
Python
apps/platforms/linux/terminal.py
joshpearce/knausj_talon
44c49806c6e53b2e5fe90fc24fd06a1fc5125883
[ "MIT" ]
1
2020-11-13T18:02:12.000Z
2020-11-13T18:02:12.000Z
apps/platforms/linux/terminal.py
joshpearce/knausj_talon
44c49806c6e53b2e5fe90fc24fd06a1fc5125883
[ "MIT" ]
null
null
null
apps/platforms/linux/terminal.py
joshpearce/knausj_talon
44c49806c6e53b2e5fe90fc24fd06a1fc5125883
[ "MIT" ]
null
null
null
from talon import Context, actions ctx = Context() ctx.matches = r""" os: linux tag: terminal """ @ctx.action_class('edit') class EditActions: #todo: generic tab commands #tag(): tabs def page_down(): actions.key('shift-pagedown') def page_up(): actions.key('shift-pageup') def paste(): actions.key('ctrl-shift-v') def copy(): actions.key('ctrl-shift-c') def find(text: str=None): actions.key('ctrl-shift-f') def word_left(): actions.key('ctrl-w left') def word_right(): actions.key('ctrl-w right') @ctx.action_class('app') class AppActions: def tab_open(): actions.key('ctrl-shift-t') def tab_close(): actions.key('ctrl-shift-w') def tab_next(): actions.key('ctrl-pagedown') def tab_previous(): actions.key('ctrl-pageup') def window_open(): actions.key('ctrl-shift-n')
23.692308
37
0.598485
f3801e8ac51568f506874febf9c27aee04d6df03
337
py
Python
src/meetings/templatetags/letter_tag.py
ofirr/OpenCommunity
7786ac2996530af8f545f4398c071793c73634c8
[ "BSD-3-Clause" ]
1
2015-05-12T17:59:35.000Z
2015-05-12T17:59:35.000Z
src/meetings/templatetags/letter_tag.py
Niros/OpenCommunity
4c91136db6243a1cd65b55ecf5a44c2bce24a45a
[ "BSD-3-Clause" ]
null
null
null
src/meetings/templatetags/letter_tag.py
Niros/OpenCommunity
4c91136db6243a1cd65b55ecf5a44c2bce24a45a
[ "BSD-3-Clause" ]
null
null
null
from django import template from django.utils.translation import ugettext_lazy as _ LETTERS = [_("a"), _("b"), _("c"), _("d"), _("e"), _("f"), _("g"), _("h"), _("i"), _("j")] register = template.Library() @register.filter def to_char(value): if value > len(LETTERS): return value return LETTERS[value - 1]
22.466667
55
0.587537
10106ffc4e4db622eaab2a471d59e8165c72f8c7
3,258
py
Python
tests/test_R14.py
drunsinn/pyXSteam
8d1f178fa59ee99b269fd1d3b88d5cf4b8ad74af
[ "BSD-3-Clause" ]
27
2015-03-14T09:24:41.000Z
2022-03-19T16:39:48.000Z
tests/test_R14.py
drunsinn/pyXSteam
8d1f178fa59ee99b269fd1d3b88d5cf4b8ad74af
[ "BSD-3-Clause" ]
6
2017-10-11T15:13:02.000Z
2021-03-24T08:05:51.000Z
tests/test_R14.py
drunsinn/pyXSteam
8d1f178fa59ee99b269fd1d3b88d5cf4b8ad74af
[ "BSD-3-Clause" ]
13
2017-10-11T08:07:06.000Z
2021-07-25T01:28:46.000Z
# -*- coding: utf-8 -*- import unittest from pyXSteam import IAPWS_R14 class R14_FunctionTester(unittest.TestCase): def setUp(self): self.maxError = 1E-6 self.maxError_ice_III = 0.003 self.maxError_ice_V = 0.003 self.maxError_ice_VI = 0.003 self.maxError_ice_VII = 0.007 self.maxError_ice_Ih = 0.002 def tearDown(self): pass def test_R14_pmelt_T_function_Ih_1(self): error = IAPWS_R14.pmelt_T_iceIh(251.165) - 208.566 self.assertLess(error, self.maxError_ice_Ih, 'pmelt_T_iceIh not passed Error %(error)e allowed: %(max)e' % {'error': error, 'max': self.maxError_ice_Ih}) def test_R14_pmelt_T_function_Ih_2(self): error = IAPWS_R14.pmelt_T_iceIh(254) - 268.685 self.assertLess(error, self.maxError_ice_Ih, 'pmelt_T_iceIh not passed Error %(error)e allowed: %(max)e' % {'error': error, 'max': self.maxError_ice_Ih}) def test_R14_pmelt_T_function_III_1(self): error = IAPWS_R14.pmelt_T_iceIII(251.165) - 208.566 self.assertLess(error, self.maxError_ice_III, 'pmelt_T_iceIII not passed Error %(error)e allowed: %(max)e' % {'error': error, 'max': self.maxError_ice_III}) def test_R14_pmelt_T_function_III_2(self): error = IAPWS_R14.pmelt_T_iceIII(254.0) - 268.685 self.assertLess(error, self.maxError_ice_III, 'pmelt_T_iceIII not passed Error %(error)e allowed: %(max)e' % {'error': error, 'max': self.maxError_ice_III}) def test_R14_pmelt_T_function_V_1(self): error = IAPWS_R14.pmelt_T_iceV(256.164) - 350.1 self.assertLess(error, self.maxError_ice_V, 'pmelt_t not passed Error %(error)e allowed: %(max)e' % {'error': error, 'max': self.maxError_ice_V}) def test_R14_pmelt_T_function_V_2(self): error = IAPWS_R14.pmelt_T_iceV(265) - 479.640 self.assertLess(error, self.maxError_ice_V, 'pmelt_t not passed Error %(error)e allowed: %(max)e' % {'error': error, 'max': self.maxError_ice_V}) def test_R14_pmelt_T_function_VI_1(self): error = IAPWS_R14.pmelt_T_iceVI(273.31) - 632.4 self.assertLess(error, self.maxError_ice_VI, 'pmelt_t not passed Error %(error)e allowed: %(max)e' % {'error': error, 'max': self.maxError_ice_VI}) def test_R14_pmelt_T_function_VI_2(self): error = IAPWS_R14.pmelt_T_iceVI(320) - 1356.76 self.assertLess(error, self.maxError_ice_VI, 'pmelt_t not passed Error %(error)e allowed: %(max)e' % {'error': error, 'max': self.maxError_ice_VI}) def test_R14_pmelt_T_function_VII_1(self): error = IAPWS_R14.pmelt_T_iceVII(355.0) - 2216 self.assertLess(error, self.maxError_ice_VII, 'pmelt_t not passed Error %(error)e allowed: %(max)e' % {'error': error, 'max': self.maxError_ice_VII}) def test_R14_pmelt_T_function_VII_2(self): error = IAPWS_R14.pmelt_T_iceVII(550) - 6308.71 self.assertLess(error, self.maxError_ice_VII, 'pmelt_t not passed Error %(error)e allowed: %(max)e' % {'error': error, 'max': self.maxError_ice_VII}) def test_R14_psubl_T_function(self): error = IAPWS_R14.psubl_T(230.0) - 8.94735E-6 self.assertLess(error, self.maxError, 'psubl_t not passed Error %(error)e allowed: %(max)e' % {'error': error, 'max': self.maxError})
51.714286
164
0.694291
4b0ef688d72f3ff129c8e6de1afe6222c0b1fa26
14,885
py
Python
tests/execution/test_union_interface.py
corydolphin/graphql-core
cc303671559822d9c3991e04fee170dce0f23553
[ "MIT" ]
1
2021-07-27T20:47:34.000Z
2021-07-27T20:47:34.000Z
tests/execution/test_union_interface.py
vpetrovykh/graphql-core
7af97e22afb27861fc1b7d7ca0292095f8427ecb
[ "MIT" ]
null
null
null
tests/execution/test_union_interface.py
vpetrovykh/graphql-core
7af97e22afb27861fc1b7d7ca0292095f8427ecb
[ "MIT" ]
null
null
null
from typing import Optional, Union, List from graphql.execution import execute_sync from graphql.language import parse from graphql.type import ( GraphQLBoolean, GraphQLField, GraphQLInterfaceType, GraphQLList, GraphQLObjectType, GraphQLSchema, GraphQLString, GraphQLUnionType, ) class Dog: name: str barks: bool mother: Optional["Dog"] father: Optional["Dog"] progeny: List["Dog"] def __init__(self, name: str, barks: bool): self.name = name self.barks = barks self.mother = None self.father = None self.progeny = [] class Cat: name: str meows: bool mother: Optional["Cat"] father: Optional["Cat"] progeny: List["Cat"] def __init__(self, name: str, meows: bool): self.name = name self.meows = meows self.mother = None self.father = None self.progeny = [] class Person: name: str pets: Optional[List[Union[Dog, Cat]]] friends: Optional[List[Union[Dog, Cat, "Person"]]] def __init__( self, name: str, pets: Optional[List[Union[Dog, Cat]]] = None, friends: Optional[List[Union[Dog, Cat, "Person"]]] = None, ): self.name = name self.pets = pets self.friends = friends NamedType = GraphQLInterfaceType("Named", {"name": GraphQLField(GraphQLString)}) LifeType = GraphQLInterfaceType( "Life", lambda: {"progeny": GraphQLField(GraphQLList(LifeType))} # type: ignore ) MammalType = GraphQLInterfaceType( "Mammal", lambda: { "progeny": GraphQLField(GraphQLList(MammalType)), # type: ignore "mother": GraphQLField(MammalType), # type: ignore "father": GraphQLField(MammalType), # type: ignore }, interfaces=[LifeType], ) DogType = GraphQLObjectType( "Dog", lambda: { "name": GraphQLField(GraphQLString), "barks": GraphQLField(GraphQLBoolean), "progeny": GraphQLField(GraphQLList(DogType)), # type: ignore "mother": GraphQLField(DogType), # type: ignore "father": GraphQLField(DogType), # type: ignore }, interfaces=[MammalType, LifeType, NamedType], is_type_of=lambda value, info: isinstance(value, Dog), ) CatType = GraphQLObjectType( "Cat", lambda: { "name": GraphQLField(GraphQLString), "meows": GraphQLField(GraphQLBoolean), "progeny": GraphQLField(GraphQLList(CatType)), # type: ignore "mother": GraphQLField(CatType), # type: ignore "father": GraphQLField(CatType), # type: ignore }, interfaces=[MammalType, LifeType, NamedType], is_type_of=lambda value, info: isinstance(value, Cat), ) def resolve_pet_type(value, _info, _type): if isinstance(value, Dog): return DogType.name if isinstance(value, Cat): return CatType.name # Not reachable. All possible types have been considered. raise TypeError("Unexpected pet type") PetType = GraphQLUnionType("Pet", [DogType, CatType], resolve_type=resolve_pet_type) PersonType = GraphQLObjectType( "Person", lambda: { "name": GraphQLField(GraphQLString), "pets": GraphQLField(GraphQLList(PetType)), "friends": GraphQLField(GraphQLList(NamedType)), "progeny": GraphQLField(GraphQLList(PersonType)), # type: ignore "mother": GraphQLField(PersonType), # type: ignore "father": GraphQLField(PersonType), # type: ignore }, interfaces=[NamedType, MammalType, LifeType], is_type_of=lambda value, _info: isinstance(value, Person), ) schema = GraphQLSchema(PersonType, types=[PetType]) garfield = Cat("Garfield", False) garfield.mother = Cat("Garfield's Mom", False) garfield.mother.progeny = [garfield] odie = Dog("Odie", True) odie.mother = Dog("Odie's Mom", True) odie.mother.progeny = [odie] liz = Person("Liz", [], []) john = Person("John", [garfield, odie], [liz, odie]) def describe_execute_union_and_intersection_types(): def can_introspect_on_union_and_intersection_types(): document = parse( """ { Named: __type(name: "Named") { kind name fields { name } interfaces { name } possibleTypes { name } enumValues { name } inputFields { name } } Mammal: __type(name: "Mammal") { kind name fields { name } interfaces { name } possibleTypes { name } enumValues { name } inputFields { name } } Pet: __type(name: "Pet") { kind name fields { name } interfaces { name } possibleTypes { name } enumValues { name } inputFields { name } } } """ ) assert execute_sync(schema=schema, document=document) == ( { "Named": { "kind": "INTERFACE", "name": "Named", "fields": [{"name": "name"}], "interfaces": [], "possibleTypes": [ {"name": "Dog"}, {"name": "Cat"}, {"name": "Person"}, ], "enumValues": None, "inputFields": None, }, "Mammal": { "kind": "INTERFACE", "name": "Mammal", "fields": [ {"name": "progeny"}, {"name": "mother"}, {"name": "father"}, ], "interfaces": [{"name": "Life"}], "possibleTypes": [ {"name": "Dog"}, {"name": "Cat"}, {"name": "Person"}, ], "enumValues": None, "inputFields": None, }, "Pet": { "kind": "UNION", "name": "Pet", "fields": None, "interfaces": None, "possibleTypes": [{"name": "Dog"}, {"name": "Cat"}], "enumValues": None, "inputFields": None, }, }, None, ) def executes_using_union_types(): # NOTE: This is an *invalid* query, but it should be *executable*. document = parse( """ { __typename name pets { __typename name barks meows } } """ ) assert execute_sync(schema=schema, document=document, root_value=john) == ( { "__typename": "Person", "name": "John", "pets": [ {"__typename": "Cat", "name": "Garfield", "meows": False}, {"__typename": "Dog", "name": "Odie", "barks": True}, ], }, None, ) def executes_union_types_with_inline_fragment(): # This is the valid version of the query in the above test. document = parse( """ { __typename name pets { __typename ... on Dog { name barks } ... on Cat { name meows } } } """ ) assert execute_sync(schema=schema, document=document, root_value=john) == ( { "__typename": "Person", "name": "John", "pets": [ {"__typename": "Cat", "name": "Garfield", "meows": False}, {"__typename": "Dog", "name": "Odie", "barks": True}, ], }, None, ) def executes_using_interface_types(): # NOTE: This is an *invalid* query, but it should be a *executable*. document = parse( """ { __typename name friends { __typename name barks meows } } """ ) assert execute_sync(schema=schema, document=document, root_value=john) == ( { "__typename": "Person", "name": "John", "friends": [ {"__typename": "Person", "name": "Liz"}, {"__typename": "Dog", "name": "Odie", "barks": True}, ], }, None, ) def executes_interface_types_with_inline_fragment(): # This is the valid version of the query in the above test. document = parse( """ { __typename name friends { __typename name ... on Dog { barks } ... on Cat { meows } ... on Mammal { mother { __typename ... on Dog { name barks } ... on Cat { name meows } } } } } """ ) assert execute_sync(schema=schema, document=document, root_value=john) == ( { "__typename": "Person", "name": "John", "friends": [ {"__typename": "Person", "name": "Liz", "mother": None}, { "__typename": "Dog", "name": "Odie", "barks": True, "mother": { "__typename": "Dog", "name": "Odie's Mom", "barks": True, }, }, ], }, None, ) def executes_interface_types_with_named_fragments(): document = parse( """ { __typename name friends { __typename name ...DogBarks ...CatMeows } } fragment DogBarks on Dog { barks } fragment CatMeows on Cat { meows } """ ) assert execute_sync(schema=schema, document=document, root_value=john) == ( { "__typename": "Person", "name": "John", "friends": [ {"__typename": "Person", "name": "Liz"}, {"__typename": "Dog", "name": "Odie", "barks": True}, ], }, None, ) def allows_fragment_conditions_to_be_abstract_types(): document = parse( """ { __typename name pets { ...PetFields, ...on Mammal { mother { ...ProgenyFields } } } friends { ...FriendFields } } fragment PetFields on Pet { __typename ... on Dog { name barks } ... on Cat { name meows } } fragment FriendFields on Named { __typename name ... on Dog { barks } ... on Cat { meows } } fragment ProgenyFields on Life { progeny { __typename } } """ ) assert execute_sync(schema=schema, document=document, root_value=john) == ( { "__typename": "Person", "name": "John", "pets": [ { "__typename": "Cat", "name": "Garfield", "meows": False, "mother": {"progeny": [{"__typename": "Cat"}]}, }, { "__typename": "Dog", "name": "Odie", "barks": True, "mother": {"progeny": [{"__typename": "Dog"}]}, }, ], "friends": [ {"__typename": "Person", "name": "Liz"}, {"__typename": "Dog", "name": "Odie", "barks": True}, ], }, None, ) # noinspection PyPep8Naming def gets_execution_info_in_resolver(): encountered = {} def resolve_type(_source, info, _type): encountered["context"] = info.context encountered["schema"] = info.schema encountered["root_value"] = info.root_value return PersonType2.name NamedType2 = GraphQLInterfaceType( "Named", {"name": GraphQLField(GraphQLString)}, resolve_type=resolve_type ) PersonType2 = GraphQLObjectType( "Person", { "name": GraphQLField(GraphQLString), "friends": GraphQLField(GraphQLList(NamedType2)), }, interfaces=[NamedType2], ) schema2 = GraphQLSchema(PersonType2) document = parse("{ name, friends { name } }") root_value = Person("John", [], [liz]) context_value = {"authToken": "123abc"} assert execute_sync( schema=schema2, document=document, root_value=root_value, context_value=context_value, ) == ( {"name": "John", "friends": [{"name": "Liz"}]}, None, ) assert encountered == { "schema": schema2, "root_value": root_value, "context": context_value, }
28.032015
85
0.420961
8067862deaa2622ae7ba96e5b83fa72517582d2b
1,061
py
Python
libpaste/management/commands/cleanup_snippets.py
rbarrois/xelpaste
54ca4a60169245fb01b3b2ddae9473a706ea6ec1
[ "MIT" ]
null
null
null
libpaste/management/commands/cleanup_snippets.py
rbarrois/xelpaste
54ca4a60169245fb01b3b2ddae9473a706ea6ec1
[ "MIT" ]
null
null
null
libpaste/management/commands/cleanup_snippets.py
rbarrois/xelpaste
54ca4a60169245fb01b3b2ddae9473a706ea6ec1
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- from __future__ import unicode_literals import argparse from django.utils import timezone from django.core.management.base import BaseCommand from ...models import Snippet class Command(BaseCommand): help = "Purges snippets that are expired" def add_arguments(self, parser): parser.add_argument('--dry-run', '-n', action='store_true', dest='dry_run', help="Don't do anything", ) def handle(self, *args, **options): deleteable_snippets = Snippet.objects.filter( expires__isnull=False, expire_type=Snippet.EXPIRE_TIME, expires__lte=timezone.now() ) self.stdout.write(u"%s snippets gets deleted:\n" % deleteable_snippets.count()) for d in deleteable_snippets: self.stdout.write(u"- %s (%s)\n" % (d.secret_id, d.expires)) if options.get('dry_run'): self.stdout.write(u'Dry run - Not actually deleting snippets!\n') else: deleteable_snippets.delete()
30.314286
87
0.625825
542b1e7ead17adb7e295a15a58f45f995c7ab440
7,858
py
Python
plaso/parsers/mac_appfirewall.py
jeppetrost/plaso
b48008c6ea79950eeeef3a05b3a859086c8704b6
[ "Apache-2.0" ]
null
null
null
plaso/parsers/mac_appfirewall.py
jeppetrost/plaso
b48008c6ea79950eeeef3a05b3a859086c8704b6
[ "Apache-2.0" ]
null
null
null
plaso/parsers/mac_appfirewall.py
jeppetrost/plaso
b48008c6ea79950eeeef3a05b3a859086c8704b6
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- """This file contains a appfirewall.log (MacOS Firewall) parser.""" from __future__ import unicode_literals import pyparsing from dfdatetime import time_elements as dfdatetime_time_elements from plaso.containers import events from plaso.containers import time_events from plaso.lib import errors from plaso.lib import definitions from plaso.lib import timelib from plaso.parsers import logger from plaso.parsers import manager from plaso.parsers import text_parser class MacAppFirewallLogEventData(events.EventData): """MacOS Firewall log event data. Attributes: action (str): action. agent (str): agent that save the log. computer_name (str): name of the computer. process_name (str): name of the entity that tried do the action. status (str): saved status action. """ DATA_TYPE = 'mac:appfirewall:line' def __init__(self): """Initializes event data.""" super(MacAppFirewallLogEventData, self).__init__(data_type=self.DATA_TYPE) self.action = None self.agent = None self.computer_name = None self.process_name = None self.status = None class MacAppFirewallParser(text_parser.PyparsingSingleLineTextParser): """Parse text based on appfirewall.log file.""" NAME = 'mac_appfirewall_log' DESCRIPTION = 'Parser for appfirewall.log files.' _ENCODING = 'utf-8' # Define how a log line should look like. # Example: 'Nov 2 04:07:35 DarkTemplar-2.local socketfilterfw[112] ' # '<Info>: Dropbox: Allow (in:0 out:2)' # INFO: process_name is going to have a white space at the beginning. DATE_TIME = pyparsing.Group( text_parser.PyparsingConstants.THREE_LETTERS.setResultsName('month') + text_parser.PyparsingConstants.ONE_OR_TWO_DIGITS.setResultsName('day') + text_parser.PyparsingConstants.TIME_ELEMENTS) FIREWALL_LINE = ( DATE_TIME.setResultsName('date_time') + pyparsing.Word(pyparsing.printables).setResultsName('computer_name') + pyparsing.Word(pyparsing.printables).setResultsName('agent') + pyparsing.Literal('<').suppress() + pyparsing.CharsNotIn('>').setResultsName('status') + pyparsing.Literal('>:').suppress() + pyparsing.CharsNotIn(':').setResultsName('process_name') + pyparsing.Literal(':') + pyparsing.SkipTo(pyparsing.lineEnd).setResultsName('action')) # Repeated line. # Example: Nov 29 22:18:29 --- last message repeated 1 time --- REPEATED_LINE = ( DATE_TIME.setResultsName('date_time') + pyparsing.Literal('---').suppress() + pyparsing.CharsNotIn('---').setResultsName('process_name') + pyparsing.Literal('---').suppress()) LINE_STRUCTURES = [ ('logline', FIREWALL_LINE), ('repeated', REPEATED_LINE)] def __init__(self): """Initializes a parser object.""" super(MacAppFirewallParser, self).__init__() self._last_month = 0 self._previous_structure = None self._year_use = 0 def _GetTimeElementsTuple(self, structure): """Retrieves a time elements tuple from the structure. Args: structure (pyparsing.ParseResults): structure of tokens derived from a line of a text file. Returns: tuple: containing: year (int): year. month (int): month, where 1 represents January. day_of_month (int): day of month, where 1 is the first day of the month. hours (int): hours. minutes (int): minutes. seconds (int): seconds. """ month, day, hours, minutes, seconds = structure.date_time # Note that dfdatetime_time_elements.TimeElements will raise ValueError # for an invalid month. month = timelib.MONTH_DICT.get(month.lower(), 0) if month != 0 and month < self._last_month: # Gap detected between years. self._year_use += 1 return (self._year_use, month, day, hours, minutes, seconds) def _ParseLogLine(self, parser_mediator, structure, key): """Parse a single log line and produce an event object. Args: parser_mediator (ParserMediator): mediates interactions between parsers and other components, such as storage and dfvfs. key (str): identifier of the structure of tokens. structure (pyparsing.ParseResults): structure of tokens derived from a line of a text file. """ time_elements_tuple = self._GetTimeElementsTuple(structure) try: date_time = dfdatetime_time_elements.TimeElements( time_elements_tuple=time_elements_tuple) except ValueError: parser_mediator.ProduceExtractionWarning( 'invalid date time value: {0!s}'.format(structure.date_time)) return self._last_month = time_elements_tuple[1] # If the actual entry is a repeated entry, we take the basic information # from the previous entry, but use the timestamp from the actual entry. if key == 'logline': self._previous_structure = structure else: structure = self._previous_structure event_data = MacAppFirewallLogEventData() event_data.action = structure.action event_data.agent = structure.agent event_data.computer_name = structure.computer_name # Due to the use of CharsNotIn pyparsing structure contains whitespaces # that need to be removed. event_data.process_name = structure.process_name.strip() event_data.status = structure.status event = time_events.DateTimeValuesEvent( date_time, definitions.TIME_DESCRIPTION_ADDED) parser_mediator.ProduceEventWithEventData(event, event_data) def ParseRecord(self, parser_mediator, key, structure): """Parses a log record structure and produces events. Args: parser_mediator (ParserMediator): mediates interactions between parsers and other components, such as storage and dfvfs. key (str): identifier of the structure of tokens. structure (pyparsing.ParseResults): structure of tokens derived from a line of a text file. Raises: ParseError: when the structure type is unknown. """ if key not in ('logline', 'repeated'): raise errors.ParseError( 'Unable to parse record, unknown structure: {0:s}'.format(key)) self._ParseLogLine(parser_mediator, structure, key) def VerifyStructure(self, parser_mediator, line): """Verify that this file is a Mac AppFirewall log file. Args: parser_mediator (ParserMediator): mediates interactions between parsers and other components, such as storage and dfvfs. line (str): line from a text file. Returns: bool: True if the line is in the expected format, False if not. """ self._last_month = 0 self._year_use = parser_mediator.GetEstimatedYear() try: structure = self.FIREWALL_LINE.parseString(line) except pyparsing.ParseException as exception: logger.debug(( 'Unable to parse file as a Mac AppFirewall log file with error: ' '{0!s}').format(exception)) return False if structure.action != 'creating /var/log/appfirewall.log': logger.debug( 'Not a Mac AppFirewall log file, invalid action: {0!s}'.format( structure.action)) return False if structure.status != 'Error': logger.debug( 'Not a Mac AppFirewall log file, invalid status: {0!s}'.format( structure.status)) return False time_elements_tuple = self._GetTimeElementsTuple(structure) try: dfdatetime_time_elements.TimeElements( time_elements_tuple=time_elements_tuple) except ValueError: logger.debug(( 'Not a Mac AppFirewall log file, invalid date and time: ' '{0!s}').format(structure.date_time)) return False self._last_month = time_elements_tuple[1] return True manager.ParsersManager.RegisterParser(MacAppFirewallParser)
33.87069
80
0.696742
0a4f07f7bcb49e069ed8958be8c70d412f0514f2
1,917
py
Python
samples/level_3/candlestick.py
masayang/bokeh_bokeh
ddc8e61abc0992bbd3694461b6d108b7f09fad27
[ "BSD-3-Clause" ]
null
null
null
samples/level_3/candlestick.py
masayang/bokeh_bokeh
ddc8e61abc0992bbd3694461b6d108b7f09fad27
[ "BSD-3-Clause" ]
null
null
null
samples/level_3/candlestick.py
masayang/bokeh_bokeh
ddc8e61abc0992bbd3694461b6d108b7f09fad27
[ "BSD-3-Clause" ]
null
null
null
import pandas as pd from bokeh.plotting import figure, show, output_file from math import pi from bokeh.models import HoverTool from bokeh.layouts import gridplot def read_data(): return pd.read_csv( "SPY.csv", names=["Date", "Open", "High", "Low", "Close", "Volume"], parse_dates=[0] ) def candlestick(range=100): df = read_data() inc = df.Close >= df.Open dec = df.Close < df.Open w = 12*60*60*1000 # half day in ms plot = figure( plot_width=1000, x_axis_type="datetime", title="SPY Daily", x_range=(df.iloc[-1*range].Date, df.iloc[-1].Date), y_range=(df.iloc[-1*range:].Low.min(), df.iloc[-1*range:].High.max()) ) plot.segment(df.Date, df.High, df.Date, df.Low, color="black") plot.vbar(x='Date', width=w, bottom='Open', top='Close', fill_color="#D5E1DD", line_color="black", source=df[inc]) plot.vbar(x='Date', width=w, top='Open', bottom='Close', fill_color="#F2583E", line_color="black", source=df[dec]) plot.xaxis.visible = False plot2 = figure(plot_width=1000, plot_height=125, x_range=plot.x_range, y_range=(0, df.iloc[-1*range:].Volume.max()), title=None) plot2.vbar(x='Date', width=w, bottom=0, top='Volume', fill_color="#D5E1DD", line_color="black", source=df[inc]) plot2.vbar(x='Date', width=w, top='Volume', bottom=0, fill_color="#F2583E", line_color="black", source=df[dec]) hover_tools = HoverTool( tooltips=[ ("Date", "@Date{%F}"), ("Open", "@Open"), ("High", "@High"), ("Low", "@Low"), ("Close", "@Close"), ("Volume", "@Volume") ], formatters={"Date": "datetime"} ) plot.add_tools(hover_tools) output_file("bokeh.html", title="Candle Stick Example") return gridplot([[plot], [plot2]]) if __name__ == '__main__': show(candlestick())
30.919355
132
0.591549
82c5fb3fcf40fbfecf8f72b0ee93f737c99fcd64
531
py
Python
Chapter03/0301.py
0201shj/Python-OpenCV
249f8cc9404e547da0f5c68000f29f2e598562a5
[ "MIT" ]
null
null
null
Chapter03/0301.py
0201shj/Python-OpenCV
249f8cc9404e547da0f5c68000f29f2e598562a5
[ "MIT" ]
null
null
null
Chapter03/0301.py
0201shj/Python-OpenCV
249f8cc9404e547da0f5c68000f29f2e598562a5
[ "MIT" ]
null
null
null
#0301.py import cv2 import numpy as np #White 배경 생성 img = np.zeros(shape = (512, 512, 3), dtype = np.uint8) + 255 #img = np.ones((512, 512, 3), np.uint8) * 255 #img = np.full((512, 512, 3), (255, 255, 255), dtype = np.uint8) #img = np.zeros((512, 512, 3), np.uint8) # Black 배경 pt1 = 100, 100 pt2 = 400, 400 cv2.rectangle(img, pt1, pt2, (0, 255, 0), 2) cv2.line(img, (0, 0), (500, 0), (255, 0, 0), 5) cv2.line(img, (0, 0), (0, 500), (0, 0, 255), 5) cv2.imshow('img', img) cv2.waitKey() cv2.destroyAllWindows()
26.55
65
0.572505
b88b4db66bd29f0d2ec5e31f0618b1ba5fd7bd0b
452
py
Python
apps/classes/migrations/0003_alter_classes_id.py
Ev1dentSnow/ArtemisAPI_django
ca7ef0ccc97114f2c5439b7b1bbc0e635facf020
[ "MIT" ]
null
null
null
apps/classes/migrations/0003_alter_classes_id.py
Ev1dentSnow/ArtemisAPI_django
ca7ef0ccc97114f2c5439b7b1bbc0e635facf020
[ "MIT" ]
null
null
null
apps/classes/migrations/0003_alter_classes_id.py
Ev1dentSnow/ArtemisAPI_django
ca7ef0ccc97114f2c5439b7b1bbc0e635facf020
[ "MIT" ]
null
null
null
# Generated by Django 3.2.5 on 2021-08-14 21:57 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('classes', '0002_alter_studentclasses_table'), ] operations = [ migrations.AlterField( model_name='classes', name='id', field=models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID'), ), ]
23.789474
111
0.632743
176c35d135bfa077e0c58dc43daf16c99749e99d
2,186
py
Python
scrapyTest/spiders/xhsd.py
DeSireFire/scrapyTest
322a0a8bdff969d0506c9169890ef2bf794fd102
[ "MIT" ]
null
null
null
scrapyTest/spiders/xhsd.py
DeSireFire/scrapyTest
322a0a8bdff969d0506c9169890ef2bf794fd102
[ "MIT" ]
null
null
null
scrapyTest/spiders/xhsd.py
DeSireFire/scrapyTest
322a0a8bdff969d0506c9169890ef2bf794fd102
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- import scrapy,json class XhsdSpider(scrapy.Spider): name = 'xhsd' allowed_domains = ['search.xhsd.com'] start_urls = ['http://search.xhsd.com/'] def start_requests(self): url = 'https://search.xhsd.com/search?frontCategoryId=33&pageNo=' # for page in range(1,18580): for page in range(1,2): yield scrapy.Request( url=url+str(page), callback=self.parse_pages, meta={"page": str(page)} ) def parse_pages(self, response): print('正在获取第 %s 页'%response.meta["page"]) for book in range(1,73): book_info = { 'book_url':'', 'book_Img':'', 'book_Name':'', 'book_author':'', 'book_price':'', } book_info['book_url'] = response.xpath("//li[contains(@class, 'product')][%s]/div[contains(@class, 'product-image')]/a/@href"%book).extract()[0] book_info['book_Img'] = response.xpath("//li[contains(@class, 'product')][%s]/div[contains(@class, 'product-image')]/a/img/@src"%book).extract()[0] book_info['book_Name'] = response.xpath("//li[contains(@class, 'product')][%s]/p/a/text()"%book).extract()[0] book_info['book_author'] = response.xpath("//li[contains(@class, 'product')][%s]/p[contains(@class, 'product-author')]/span/text()"%book).extract() book_info['book_price'] = response.xpath("//li[contains(@class, 'product')][%s]/p[contains(@class, 'product-price')]/span/text()"%book).extract() yield scrapy.Request( url='https:'+book_info['book_url'], callback=self.parse, meta={"page": response.meta['page'],'book_info':book_info}, dont_filter=True ) def parse(self, response): book_info = response.meta page_date = json.loads(response.xpath("//div[@class='spu-tab-item-detail']/@data-detail").extract()[0]) book_info['content-detail'] = page_date print(response.url) if __name__ == '__main__': for book in range(1, 73): print(book)
39.745455
159
0.554437
adef3f00988e694924c25a6e01a7835ba15ba88f
3,437
py
Python
core/src/epicli/cli/engine/InitEngine.py
AnnaKlank/epiphany
2ec7ec1bb9d0ec1343a0937a496c50f90cf4b5b1
[ "Apache-2.0" ]
null
null
null
core/src/epicli/cli/engine/InitEngine.py
AnnaKlank/epiphany
2ec7ec1bb9d0ec1343a0937a496c50f90cf4b5b1
[ "Apache-2.0" ]
null
null
null
core/src/epicli/cli/engine/InitEngine.py
AnnaKlank/epiphany
2ec7ec1bb9d0ec1343a0937a496c50f90cf4b5b1
[ "Apache-2.0" ]
null
null
null
import os from cli.helpers.Step import Step from cli.helpers.build_saver import save_manifest, get_build_path from cli.helpers.data_loader import load_all_yaml_objs, types from cli.engine.ApplyEngine import ApplyEngine from cli.helpers.objdict_helpers import remove_value from cli.version import VERSION from cli.helpers.doc_list_helpers import select_all, select_single class InitEngine(Step): def __init__(self, input_data): super().__init__(__name__) self.provider = input_data.provider self.full_config = input_data.full_config self.name = input_data.name self.is_full_config = input_data.full_config def __enter__(self): super().__enter__() return self def __exit__(self, exc_type, exc_value, traceback): pass def init(self): input = load_all_yaml_objs(types.DEFAULT, self.provider, 'configuration/minimal-cluster-config') input[0].specification.name = self.name if self.is_full_config: config = self.get_config_docs(input) config_only = select_all(config, lambda x: not(x.kind.startswith('epiphany-cluster'))) if self.provider == 'any': # for any provider we want to use the default config from minimal-cluster-config cluster_model = select_single(input, lambda x: x.kind == 'epiphany-cluster') else: # for azure|aws provider we want to use the extended defaults cluster-config after dry run. # TODO: We probably wants this comming from seperate documents since Azure and AWS overlap now... cluster_model = select_single(config, lambda x: x.kind == 'epiphany-cluster') infra = self.get_infra_docs(input) docs = [cluster_model, *config_only, *infra] else: docs = [*input] # set the provider and version for all docs for doc in docs: doc['provider'] = self.provider doc['version'] = VERSION # remove SET_BY_AUTOMATION fields remove_value(docs, 'SET_BY_AUTOMATION') # save document save_manifest(docs, self.name, self.name+'.yml') self.logger.info('Initialized new configuration and saved it to "' + os.path.join(get_build_path(self.name), self.name + '.yml') + '"') return 0 def get_config_docs(self, input_docs): cluster_config_path = save_manifest(input_docs, self.name, self.name + '.yml') args = type('obj', (object,), {'file': cluster_config_path})() # generate the config documents with ApplyEngine(args) as build: config = build.dry_run() return config def get_infra_docs(self, input_docs): if self.provider == 'any': # For any we can include the machine documents from the minimal-cluster-config infra = select_all(input_docs, lambda x: x.kind.startswith('infrastructure/machine')) else: # VMs are curently the infrastructure documents the user might interact with for: # - type/size # - distro # - network security rules # ... # So we add the defaults here. # TODO: Check if we want to include possible other infrastructure documents. infra = load_all_yaml_objs(types.DEFAULT, self.provider, 'infrastructure/virtual-machine') return infra
40.435294
143
0.649985
cb72ae39b74ec235bacbf8d51619980602a51cc5
2,403
py
Python
contrib/opentimelineio_contrib/adapters/tests/test_kdenlive_adapter.py
michdolan/OpenTimelineIO
1ec6f07f1af525ba4ca0aa91e01e5939d6237f01
[ "Apache-2.0" ]
null
null
null
contrib/opentimelineio_contrib/adapters/tests/test_kdenlive_adapter.py
michdolan/OpenTimelineIO
1ec6f07f1af525ba4ca0aa91e01e5939d6237f01
[ "Apache-2.0" ]
4
2022-03-09T22:28:42.000Z
2022-03-14T15:16:50.000Z
contrib/opentimelineio_contrib/adapters/tests/test_kdenlive_adapter.py
michdolan/OpenTimelineIO
1ec6f07f1af525ba4ca0aa91e01e5939d6237f01
[ "Apache-2.0" ]
null
null
null
# SPDX-License-Identifier: Apache-2.0 # Copyright Contributors to the OpenTimelineIO project import unittest import opentimelineio as otio import opentimelineio.test_utils as otio_test_utils import os class AdaptersKdenliveTest(unittest.TestCase, otio_test_utils.OTIOAssertions): def __init__(self, *args, **kwargs): super(AdaptersKdenliveTest, self).__init__(*args, **kwargs) def test_library_roundtrip(self): timeline = otio.adapters.read_from_file( os.path.join(os.path.dirname(__file__), "sample_data", "kdenlive_example.kdenlive")) self.assertIsNotNone(timeline) self.assertEqual(len(timeline.tracks), 5) self.assertEqual(len(timeline.video_tracks()), 2) self.assertEqual(len(timeline.audio_tracks()), 3) clip_urls = (('AUD0002.OGG',), ('AUD0001.OGG', 'AUD0001.OGG'), ('VID0001.MKV', 'VID0001.MKV'), ('VID0001.MKV', 'VID0001.MKV'), ('VID0002.MKV', 'VID0003.MKV')) for n, track in enumerate(timeline.tracks): self.assertTupleEqual( clip_urls[n], tuple(c.media_reference.target_url for c in track if isinstance(c, otio.schema.Clip) and isinstance( c.media_reference, otio.schema.ExternalReference))) kdenlive_xml = otio.adapters.write_to_string(timeline, "kdenlive") self.assertIsNotNone(kdenlive_xml) new_timeline = otio.adapters.read_from_string(kdenlive_xml, "kdenlive") self.assertJsonEqual(timeline, new_timeline) def test_from_fcp_example(self): timeline = otio.adapters.read_from_file( os.path.join( os.path.dirname(__file__), "sample_data", "kdenlive_example_from_fcp.xml", ), ) kdenlive_xml = otio.adapters.write_to_string(timeline, "kdenlive") self.assertIsNotNone(kdenlive_xml) new_timeline = otio.adapters.read_from_string(kdenlive_xml, "kdenlive") troublesome_clip = new_timeline.video_tracks()[0][35] self.assertEqual( troublesome_clip.source_range.duration.value, 807, ) if __name__ == '__main__': unittest.main()
34.328571
79
0.608822
7a276408c92d94fe153dd402ba55b7b6b026f61a
3,762
py
Python
cogs/inactive/memelicense.py
MiningMark48/Tidal-Bot
8db6ecb220fd35930ffe1df5653af7a1ca03c8e9
[ "MIT" ]
6
2020-08-09T15:43:07.000Z
2022-03-11T15:12:21.000Z
cogs/inactive/memelicense.py
MiningMark48/Tidal-Bot
8db6ecb220fd35930ffe1df5653af7a1ca03c8e9
[ "MIT" ]
6
2020-10-29T02:32:40.000Z
2022-01-13T03:12:45.000Z
cogs/inactive/memelicense.py
MiningMark48/Tidal-Bot
8db6ecb220fd35930ffe1df5653af7a1ca03c8e9
[ "MIT" ]
1
2021-06-09T08:06:31.000Z
2021-06-09T08:06:31.000Z
import datetime import string from functools import partial from io import BytesIO from typing import Union import aiohttp import discord from PIL import Image, ImageDraw, ImageFont from discord.ext import commands class Memes(commands.Cog): def __init__(self, bot: commands.Bot): self.bot = bot self.session = aiohttp.ClientSession(loop=bot.loop) async def get_avatar(self, user: Union[discord.User, discord.Member]) -> bytes: avatar_url = str(user.avatar.with_format("png")) async with self.session.get(avatar_url) as response: avatar_bytes = await response.read() return avatar_bytes @staticmethod def processing(avatar_bytes: bytes, member: discord.Member) -> BytesIO: dt = datetime.date.today() year = dt.year with Image.open("./resources/images/memetemps/template_memelicense.png") as im: im = im.convert("RGBA") font = ImageFont.truetype(f'./resources/fonts/arial.ttf', size=18) font_sig = ImageFont.truetype(f'./resources/fonts/kunstler.ttf', size=48) draw = ImageDraw.Draw(im) # font_color = member.color.to_rgb() font_color = (0,79,74) draw.text((510, 135), str(member.id), fill=font_color, font=font) draw.text((510, 200), f'#{str(member.discriminator)}', fill=font_color, font=font) draw.text((510, 250), member.name, fill=font_color, font=font) if member.display_name != member.name and all(c in string.printable for c in member.display_name): draw.text((510, 270), member.display_name, fill=font_color, font=font) draw.text((820, 135), str(member.created_at.strftime("%m/%d/%Y")), fill=font_color, font=font) draw.text((820, 170), str(member.created_at.strftime(f"%m/%d/{int(year)+5}")), fill=font_color, font=font) draw.text((540, 445), "C", fill=font_color, font=font) draw.text((540, 468), ("NONE" if not member.is_on_mobile() else "MOBL"), fill=font_color, font=font) draw.text((505, 512), str(dt.strftime("%m/%d/%Y")), fill=font_color, font=font) draw.text((90, 495), str(member.name), fill=0x000000, font=font_sig) avatar = Image.open(BytesIO(avatar_bytes)).convert('RGB').resize((371, 371)) av_loc = (64, 118) im.paste(avatar, av_loc) alpha_layer = Image.new('RGBA', im.size, (0,0,0,0)) av1 = avatar.resize((150,150)) av1.putalpha(64) av2 = av1 av2.putalpha(128) av2 = av2.convert('LA') av1_loc = (725, 300) alpha_layer.paste(av1, av1_loc) offset = 75 av2_loc = (av1_loc[0]+offset, av1_loc[1]+offset) alpha_layer.paste(av2, av2_loc) im = Image.alpha_composite(im, alpha_layer) im = im.convert("RGB") final_buffer = BytesIO() im.save(final_buffer, "png") final_buffer.seek(0) return final_buffer @commands.command(aliases=["licensememe"]) @commands.cooldown(1, 30, commands.BucketType.user) @commands.guild_only() async def memelicense(self, ctx): """Create a meme license.""" member = ctx.author async with ctx.typing(): avatar_bytes = await self.get_avatar(member) fn = partial(self.processing, avatar_bytes, member) final_buffer = await self.bot.loop.run_in_executor(None, fn) file = discord.File(filename=f"memelicense_{member.display_name}.png", fp=final_buffer) await ctx.send(file=file) def setup(bot: commands.Bot): bot.add_cog(Memes(bot))
38
118
0.610314
4f9dd0b3161276864494239c35a29c918a77f350
9,633
py
Python
pandas/tools/tests/test_util.py
michaelaye/pandas
c6110e25b3eceb2f25022c2aa9ccea03c0b8b359
[ "PSF-2.0", "Apache-2.0", "BSD-2-Clause", "MIT", "BSD-3-Clause" ]
3
2017-02-25T14:06:43.000Z
2017-05-25T05:18:03.000Z
pandas/tools/tests/test_util.py
michaelaye/pandas
c6110e25b3eceb2f25022c2aa9ccea03c0b8b359
[ "PSF-2.0", "Apache-2.0", "BSD-2-Clause", "MIT", "BSD-3-Clause" ]
11
2020-06-05T17:24:17.000Z
2022-03-11T23:15:26.000Z
pandas/tools/tests/test_util.py
michaelaye/pandas
c6110e25b3eceb2f25022c2aa9ccea03c0b8b359
[ "PSF-2.0", "Apache-2.0", "BSD-2-Clause", "MIT", "BSD-3-Clause" ]
3
2017-02-25T15:26:47.000Z
2017-12-20T06:27:07.000Z
import os import locale import codecs import nose import numpy as np from numpy.testing import assert_equal import pandas as pd from pandas import date_range, Index import pandas.util.testing as tm from pandas.tools.util import cartesian_product, to_numeric CURRENT_LOCALE = locale.getlocale() LOCALE_OVERRIDE = os.environ.get('LOCALE_OVERRIDE', None) class TestCartesianProduct(tm.TestCase): def test_simple(self): x, y = list('ABC'), [1, 22] result = cartesian_product([x, y]) expected = [np.array(['A', 'A', 'B', 'B', 'C', 'C']), np.array([1, 22, 1, 22, 1, 22])] assert_equal(result, expected) def test_datetimeindex(self): # regression test for GitHub issue #6439 # make sure that the ordering on datetimeindex is consistent x = date_range('2000-01-01', periods=2) result = [Index(y).day for y in cartesian_product([x, x])] expected = [np.array([1, 1, 2, 2]), np.array([1, 2, 1, 2])] assert_equal(result, expected) class TestLocaleUtils(tm.TestCase): @classmethod def setUpClass(cls): super(TestLocaleUtils, cls).setUpClass() cls.locales = tm.get_locales() if not cls.locales: raise nose.SkipTest("No locales found") tm._skip_if_windows() @classmethod def tearDownClass(cls): super(TestLocaleUtils, cls).tearDownClass() del cls.locales def test_get_locales(self): # all systems should have at least a single locale assert len(tm.get_locales()) > 0 def test_get_locales_prefix(self): if len(self.locales) == 1: raise nose.SkipTest("Only a single locale found, no point in " "trying to test filtering locale prefixes") first_locale = self.locales[0] assert len(tm.get_locales(prefix=first_locale[:2])) > 0 def test_set_locale(self): if len(self.locales) == 1: raise nose.SkipTest("Only a single locale found, no point in " "trying to test setting another locale") if LOCALE_OVERRIDE is not None: lang, enc = LOCALE_OVERRIDE.split('.') else: lang, enc = 'it_CH', 'UTF-8' enc = codecs.lookup(enc).name new_locale = lang, enc if not tm._can_set_locale(new_locale): with tm.assertRaises(locale.Error): with tm.set_locale(new_locale): pass else: with tm.set_locale(new_locale) as normalized_locale: new_lang, new_enc = normalized_locale.split('.') new_enc = codecs.lookup(enc).name normalized_locale = new_lang, new_enc self.assertEqual(normalized_locale, new_locale) current_locale = locale.getlocale() self.assertEqual(current_locale, CURRENT_LOCALE) class TestToNumeric(tm.TestCase): def test_series(self): s = pd.Series(['1', '-3.14', '7']) res = to_numeric(s) expected = pd.Series([1, -3.14, 7]) tm.assert_series_equal(res, expected) s = pd.Series(['1', '-3.14', 7]) res = to_numeric(s) tm.assert_series_equal(res, expected) def test_series_numeric(self): s = pd.Series([1, 3, 4, 5], index=list('ABCD'), name='XXX') res = to_numeric(s) tm.assert_series_equal(res, s) s = pd.Series([1., 3., 4., 5.], index=list('ABCD'), name='XXX') res = to_numeric(s) tm.assert_series_equal(res, s) # bool is regarded as numeric s = pd.Series([True, False, True, True], index=list('ABCD'), name='XXX') res = to_numeric(s) tm.assert_series_equal(res, s) def test_error(self): s = pd.Series([1, -3.14, 'apple']) with tm.assertRaises(ValueError): to_numeric(s, errors='raise') res = to_numeric(s, errors='ignore') expected = pd.Series([1, -3.14, 'apple']) tm.assert_series_equal(res, expected) res = to_numeric(s, errors='coerce') expected = pd.Series([1, -3.14, np.nan]) tm.assert_series_equal(res, expected) def test_error_seen_bool(self): s = pd.Series([True, False, 'apple']) with tm.assertRaises(ValueError): to_numeric(s, errors='raise') res = to_numeric(s, errors='ignore') expected = pd.Series([True, False, 'apple']) tm.assert_series_equal(res, expected) # coerces to float res = to_numeric(s, errors='coerce') expected = pd.Series([1., 0., np.nan]) tm.assert_series_equal(res, expected) def test_list(self): s = ['1', '-3.14', '7'] res = to_numeric(s) expected = np.array([1, -3.14, 7]) tm.assert_numpy_array_equal(res, expected) def test_list_numeric(self): s = [1, 3, 4, 5] res = to_numeric(s) tm.assert_numpy_array_equal(res, np.array(s)) s = [1., 3., 4., 5.] res = to_numeric(s) tm.assert_numpy_array_equal(res, np.array(s)) # bool is regarded as numeric s = [True, False, True, True] res = to_numeric(s) tm.assert_numpy_array_equal(res, np.array(s)) def test_numeric(self): s = pd.Series([1, -3.14, 7], dtype='O') res = to_numeric(s) expected = pd.Series([1, -3.14, 7]) tm.assert_series_equal(res, expected) s = pd.Series([1, -3.14, 7]) res = to_numeric(s) tm.assert_series_equal(res, expected) def test_all_nan(self): s = pd.Series(['a', 'b', 'c']) res = to_numeric(s, errors='coerce') expected = pd.Series([np.nan, np.nan, np.nan]) tm.assert_series_equal(res, expected) def test_type_check(self): # GH 11776 df = pd.DataFrame({'a': [1, -3.14, 7], 'b': ['4', '5', '6']}) with tm.assertRaisesRegexp(TypeError, "1-d array"): to_numeric(df) for errors in ['ignore', 'raise', 'coerce']: with tm.assertRaisesRegexp(TypeError, "1-d array"): to_numeric(df, errors=errors) def test_scalar(self): self.assertEqual(pd.to_numeric(1), 1) self.assertEqual(pd.to_numeric(1.1), 1.1) self.assertEqual(pd.to_numeric('1'), 1) self.assertEqual(pd.to_numeric('1.1'), 1.1) with tm.assertRaises(ValueError): to_numeric('XX', errors='raise') self.assertEqual(to_numeric('XX', errors='ignore'), 'XX') self.assertTrue(np.isnan(to_numeric('XX', errors='coerce'))) def test_numeric_dtypes(self): idx = pd.Index([1, 2, 3], name='xxx') res = pd.to_numeric(idx) tm.assert_index_equal(res, idx) res = pd.to_numeric(pd.Series(idx, name='xxx')) tm.assert_series_equal(res, pd.Series(idx, name='xxx')) res = pd.to_numeric(idx.values) tm.assert_numpy_array_equal(res, idx.values) idx = pd.Index([1., np.nan, 3., np.nan], name='xxx') res = pd.to_numeric(idx) tm.assert_index_equal(res, idx) res = pd.to_numeric(pd.Series(idx, name='xxx')) tm.assert_series_equal(res, pd.Series(idx, name='xxx')) res = pd.to_numeric(idx.values) tm.assert_numpy_array_equal(res, idx.values) def test_str(self): idx = pd.Index(['1', '2', '3'], name='xxx') exp = np.array([1, 2, 3], dtype='int64') res = pd.to_numeric(idx) tm.assert_index_equal(res, pd.Index(exp, name='xxx')) res = pd.to_numeric(pd.Series(idx, name='xxx')) tm.assert_series_equal(res, pd.Series(exp, name='xxx')) res = pd.to_numeric(idx.values) tm.assert_numpy_array_equal(res, exp) idx = pd.Index(['1.5', '2.7', '3.4'], name='xxx') exp = np.array([1.5, 2.7, 3.4]) res = pd.to_numeric(idx) tm.assert_index_equal(res, pd.Index(exp, name='xxx')) res = pd.to_numeric(pd.Series(idx, name='xxx')) tm.assert_series_equal(res, pd.Series(exp, name='xxx')) res = pd.to_numeric(idx.values) tm.assert_numpy_array_equal(res, exp) def test_datetimelike(self): for tz in [None, 'US/Eastern', 'Asia/Tokyo']: idx = pd.date_range('20130101', periods=3, tz=tz, name='xxx') res = pd.to_numeric(idx) tm.assert_index_equal(res, pd.Index(idx.asi8, name='xxx')) res = pd.to_numeric(pd.Series(idx, name='xxx')) tm.assert_series_equal(res, pd.Series(idx.asi8, name='xxx')) res = pd.to_numeric(idx.values) tm.assert_numpy_array_equal(res, idx.asi8) def test_timedelta(self): idx = pd.timedelta_range('1 days', periods=3, freq='D', name='xxx') res = pd.to_numeric(idx) tm.assert_index_equal(res, pd.Index(idx.asi8, name='xxx')) res = pd.to_numeric(pd.Series(idx, name='xxx')) tm.assert_series_equal(res, pd.Series(idx.asi8, name='xxx')) res = pd.to_numeric(idx.values) tm.assert_numpy_array_equal(res, idx.asi8) def test_period(self): idx = pd.period_range('2011-01', periods=3, freq='M', name='xxx') res = pd.to_numeric(idx) tm.assert_index_equal(res, pd.Index(idx.asi8, name='xxx')) # ToDo: enable when we can support native PeriodDtype # res = pd.to_numeric(pd.Series(idx, name='xxx')) # tm.assert_series_equal(res, pd.Series(idx.asi8, name='xxx')) if __name__ == '__main__': nose.runmodule(argv=[__file__, '-vvs', '-x', '--pdb', '--pdb-failure'], exit=False)
33.919014
75
0.58746
9336b8c23bfe1937df465ef468130b1d81773ad4
2,327
py
Python
epac/tests/utils.py
ilgrad/pylearn-epac
bb1915ba999828f7fa1dd1523ebb18f38ff39b06
[ "BSD-3-Clause" ]
null
null
null
epac/tests/utils.py
ilgrad/pylearn-epac
bb1915ba999828f7fa1dd1523ebb18f38ff39b06
[ "BSD-3-Clause" ]
null
null
null
epac/tests/utils.py
ilgrad/pylearn-epac
bb1915ba999828f7fa1dd1523ebb18f38ff39b06
[ "BSD-3-Clause" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- """ Created on 20 June 2013 @author: jinpeng.li@cea.fr @author: edouard.duchesnay@cea.fr @author: benoit.da_mota@inria.fr """ import numpy as np import copy def _is_numeric(obj): return isinstance(obj, (int, float, complex)) def _is_dict_or_array_or_list(obj): if type(obj) is np.ndarray: return True if type(obj) is list: return True if type(obj) is dict: return True return False def _is_array_or_list(obj): if type(obj) is np.ndarray: return True if type(obj) is list: return True return False def isequal(obj1, obj2): _EPSILON = 0.00001 if _is_numeric(obj1): if (np.absolute(obj1 - obj2) > _EPSILON): return False else: return True elif (isinstance(obj1, dict)): for key in obj1.keys(): if not isequal(obj1[key], obj2[key]): return False return True elif (_is_array_or_list(obj1)): obj1 = np.asarray(list(obj1)) obj2 = np.asarray(list(obj2)) for index in range(len(obj1.flat)): if not isequal(obj1.flat[index], obj2.flat[index]): return False return True else: return obj1 == obj2 def compare_leaf_res(leaf_res1, leaf_res2): for i in range(len(leaf_res1)): for key in leaf_res1[i][leaf_res1[i].keys()[0]].keys(): return (np.all(leaf_res1[i][leaf_res1[i].keys()[0]][key] == leaf_res2[i][leaf_res2[i].keys()[0]][key])) def compare_two_node(node1, node2): leaf_res1 = [] for leaf1 in node1.walk_leaves(): res = copy.copy(leaf1.load_results()) leaf_res1.append(res) leaf_res2 = [] for leaf2 in node2.walk_leaves(): res = copy.copy(leaf2.load_results()) leaf_res2.append(res) return compare_leaf_res(leaf_res1, leaf_res2) def comp_2wf_reduce_res(wf1, wf2): res_wf1 = wf1.reduce() res_wf2 = wf2.reduce() return isequal(res_wf1, res_wf2) def displayres(d, indent=0): print(repr(d)) # for key, value in d.iteritems(): # print '\t' * indent + str(key) # if isinstance(value, dict): # displayres(value, indent + 1) # else: # print '\t' * (indent + 1) + str(value)
24.239583
68
0.594327
f2527f9b50b08f3395676d7a5c4440a528f4e4cf
2,753
py
Python
mayan/apps/converter/apps.py
edsonbin/maxacali
1fd3ac99543788f77f1a7795981179b2cc8c4421
[ "Apache-2.0" ]
1
2020-07-15T02:56:02.000Z
2020-07-15T02:56:02.000Z
mayan/apps/converter/apps.py
kyper999/mayan-edms
ca7b8301a1f68548e8e718d42a728a500d67286e
[ "Apache-2.0" ]
null
null
null
mayan/apps/converter/apps.py
kyper999/mayan-edms
ca7b8301a1f68548e8e718d42a728a500d67286e
[ "Apache-2.0" ]
2
2020-02-24T21:02:31.000Z
2021-01-05T23:52:01.000Z
from __future__ import unicode_literals from django.utils.translation import ugettext_lazy as _ from common import MayanAppConfig, menu_object, menu_sidebar from common.classes import Package from navigation import SourceColumn from .links import ( link_transformation_create, link_transformation_delete, link_transformation_edit ) class ConverterApp(MayanAppConfig): name = 'converter' verbose_name = _('Converter') def ready(self): super(ConverterApp, self).ready() Transformation = self.get_model('Transformation') Package(label='Pillow', license_text=''' The Python Imaging Library (PIL) is Copyright (c) 1997-2011 by Secret Labs AB Copyright (c) 1995-2011 by Fredrik Lundh By obtaining, using, and/or copying this software and/or its associated documentation, you agree that you have read, understood, and will comply with the following terms and conditions: Permission to use, copy, modify, and distribute this software and its associated documentation for any purpose and without fee is hereby granted, provided that the above copyright notice appears in all copies, and that both that copyright notice and this permission notice appear in supporting documentation, and that the name of Secret Labs AB or the author not be used in advertising or publicity pertaining to distribution of the software without specific, written prior permission. SECRET LABS AB AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL SECRET LABS AB OR THE AUTHOR BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. ''') SourceColumn(source=Transformation, label=_('Order'), attribute='order') SourceColumn( source=Transformation, label=_('Transformation'), func=lambda context: unicode(context['object']) ) SourceColumn( source=Transformation, label=_('Arguments'), attribute='arguments' ) menu_object.bind_links( links=(link_transformation_edit, link_transformation_delete), sources=(Transformation,) ) menu_sidebar.bind_links( links=(link_transformation_create,), sources=(Transformation,) ) menu_sidebar.bind_links( links=(link_transformation_create,), sources=( 'converter:transformation_create', 'converter:transformation_list' ) )
45.131148
485
0.72757
eaf37b73c02cbfeee10775ab71693715cb7e1652
2,127
py
Python
tests/nemo_text_processing/en/test_roman.py
gkucsko/NeMo
c1ae0a7744d9a0ac206f61b2883ce00c9b8339b9
[ "Apache-2.0" ]
null
null
null
tests/nemo_text_processing/en/test_roman.py
gkucsko/NeMo
c1ae0a7744d9a0ac206f61b2883ce00c9b8339b9
[ "Apache-2.0" ]
null
null
null
tests/nemo_text_processing/en/test_roman.py
gkucsko/NeMo
c1ae0a7744d9a0ac206f61b2883ce00c9b8339b9
[ "Apache-2.0" ]
null
null
null
# Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pytest from nemo_text_processing.text_normalization.normalize import Normalizer from nemo_text_processing.text_normalization.normalize_with_audio import NormalizerWithAudio from parameterized import parameterized from ..utils import CACHE_DIR, PYNINI_AVAILABLE, RUN_AUDIO_BASED_TESTS, parse_test_case_file class TestRoman: normalizer_en = ( Normalizer(input_case='cased', lang='en', cache_dir=CACHE_DIR, overwrite_cache=False) if PYNINI_AVAILABLE else None ) normalizer_with_audio_en = ( NormalizerWithAudio(input_case='cased', lang='en', cache_dir=CACHE_DIR, overwrite_cache=False) if PYNINI_AVAILABLE and RUN_AUDIO_BASED_TESTS else None ) # address is tagged by the measure class @parameterized.expand(parse_test_case_file('en/data_text_normalization/test_cases_roman.txt')) @pytest.mark.skipif( not PYNINI_AVAILABLE, reason="`pynini` not installed, please install via nemo_text_processing/setup.sh" ) @pytest.mark.run_only_on('CPU') @pytest.mark.unit def test_norm(self, test_input, expected): # pred = self.normalizer_en.normalize(test_input, verbose=False) # assert pred == expected # # if self.normalizer_with_audio_en: # pred_non_deterministic = self.normalizer_with_audio_en.normalize( # test_input, n_tagged=30, punct_post_process=False, # ) # assert expected in pred_non_deterministic pass
40.903846
111
0.735308
29238e503072468f324a14ee78bfdb30b601670a
3,532
py
Python
code.py
harsh199910/Movie-recommandation-
1dbd13d3eb7ae96428236c213a867f1bf8a2014f
[ "Apache-2.0" ]
1
2019-04-18T19:28:02.000Z
2019-04-18T19:28:02.000Z
code.py
harsh199910/Movie-recommandation-
1dbd13d3eb7ae96428236c213a867f1bf8a2014f
[ "Apache-2.0" ]
null
null
null
code.py
harsh199910/Movie-recommandation-
1dbd13d3eb7ae96428236c213a867f1bf8a2014f
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- """ Created on Thu Apr 18 18:01:19 2019 @author: HARSH """ import numpy as np import pandas as pd import torch import torch.nn as nn import torch.nn.parallel import torch.optim as optim import torch.utils.data from torch.autograd import Variable movies = pd.read_csv('ml-1m/movies.dat', sep ='::', header = None, engine = 'python', encoding = 'latin-1') users = pd.read_csv('ml-1m/users.dat', sep ='::', header = None, engine = 'python', encoding = 'latin-1') ratings = pd.read_csv('ml-1m/ratings.dat', sep ='::', header = None, engine = 'python', encoding = 'latin-1') training_set = pd.read_csv('ml-100k/u1.base', delimiter = '\t') training_set = np.array(training_set, dtype = 'int') test_set = pd.read_csv('ml-100k/u1.test', delimiter = '\t') test_set = np.array(test_set, dtype = 'int') nb_users = int(max(max(training_set[:,0]), max(test_set[:,0]))) nb_movies = int(max(max(training_set[:,1]), max(test_set[:,1]))) def convert(data): new_data = [] for id_users in range(1, nb_users + 1): id_movies = data[:,1][data[:,0] == id_users] id_ratings = data[:, 2][data[:, 0] == id_users] ratings = np.zeros(nb_movies) ratings[id_movies - 1] = id_ratings new_data.append(list(ratings)) return new_data training_set = convert(training_set) test_set = convert(test_set) training_set = torch.FloatTensor(training_set) test_set = torch.FloatTensor(test_set) training_set[training_set == 0] = -1 training_set[training_set == 1] = 0 training_set[training_set == 2] = 0 training_set[training_set >= 3] = 1 test_set[test_set == 0] = -1 test_set[test_set == 1] = 0 test_set[test_set == 2] = 0 test_set[test_set >= 3] = 1 class RBN(): def __init__(self, nv ,nh): self.w = torch.randn(nh, nv) self.a = torch.randn(1, nv) self.b = torch.randn(1, nh) def sample_h(self, x): wx = torch.mm(x, self.w.t()) activation = wx + self.a.expand_as(wx) p_h_given_v = torch.sigmoid(activation) return p_h_given_v, torch.bernoulli(p_h_given_v) def sample_v(self, y): wy = torch.mm(y, self.w) activation = wy + self.b.expand_as(wy) p_v_given_h = torch.sigmoid(activation) return p_v_given_h, torch.bernoulli(p_v_given_h) def train(self, v0, ph0, phk): self.w += torch.mm(v0.t(), ph0) - torch.mm(vk.t(), phk) self.b += torch.sum((v0 - vk), 0) self.a += torch.sum((ph0 - phk), 0) nv = len(training_set[0]) nh = 100 batch_size = 100 rbm = RBN(nv, nh) nb_epoch = 10 for epoch in range (1, nb_epoch + 1): train_loss = 0 s = 0. for id_user in range(0, nb_users - batch_size, batch_size): vk = training_set[id_user:id_user+batch_size] v0 = training_set[id_user:id_user+batch_size] ph0,_ = rbm.sample_h(v0) for k in range(10): _,hk = rbm.sample_h(vk) _,vk = rbm.sample_h(hk) vk[v0<0] = v0[v0<0] phk,_ = rbm.sample_h(vk) rbm.train(v0, vk, ph0, phk) train_loss += torch.mean(torch.abs(v0[v0>=0] - vk[v0>=0])) s += 1. print('epoch: ' +str(epoch)+' loss: '+str(train_loss/s)) test_loss = 0 s = 0. for id_user in range(nb_users): v = training_set[id_user:id_user+1] vt = test_set[id_user:id_user+1] if len(vt[vt>=0]) > 0: _,h = rbm.sample_h(v) _,v = rbm.sample_v(h) test_loss += torch.mean(torch.abs(vt[vt>=0] - v[vt>=0])) s += 1. print('test loss: '+str(test_loss/s))
32.109091
109
0.614666
0231da0d45578b0397a541f5ed68a97448fc4c23
1,842
py
Python
datasets/characters/download.py
mommothazaz123/mnist_gan
d5abb693dc3798f459053529d036a2a39a58bb78
[ "MIT" ]
null
null
null
datasets/characters/download.py
mommothazaz123/mnist_gan
d5abb693dc3798f459053529d036a2a39a58bb78
[ "MIT" ]
null
null
null
datasets/characters/download.py
mommothazaz123/mnist_gan
d5abb693dc3798f459053529d036a2a39a58bb78
[ "MIT" ]
null
null
null
import collections import json import re import shutil import time import requests HEADERS = { "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) " "Chrome/60.0.3112.113 Safari/537.36" } with open('characters.json') as f: characters = json.load(f) start = time.time() num_characters_with_image = 0 failed = 0 responses = collections.Counter() filetypes = collections.Counter() downloaded = set() duplicates = 0 for i, character in enumerate(characters): image = character['stats']['image'] match = re.match(r"(https?://)?([/.\w\s-]*)\.(jpg|gif|png|jpeg|bmp|webp)", image) if match: if image in downloaded: print(f"Skipping duplicate {image}...\n") duplicates += 1 continue else: downloaded.add(image) print(f"Getting {image}...") try: img = requests.get(image, stream=True, headers=HEADERS) except Exception as e: print(f"Failed: {e}") failed += 1 responses[None] += 1 print() continue print(img.status_code) responses[img.status_code] += 1 if img.status_code == 200: num_characters_with_image += 1 filetypes[match.group(3)] += 1 img.raw.decode_content = True with open(f'raw/{num_characters_with_image}.{match.group(3)}', 'wb') as out_file: shutil.copyfileobj(img.raw, out_file) else: failed += 1 print() elif image: print(f"Unknown image URL: {image}") print() end = time.time() print(f"Done! Downloaded {num_characters_with_image} images with {failed} failures and {duplicates} duplicates " f"in {end - start}s.") print(responses) print(filetypes)
28.78125
112
0.592834
de54e66bc3b2a932637420b79b039becefbd9abc
4,322
py
Python
tests/xbmcplugin.py
jelly/plugin.fosdem.org
6cbed96f9df3bb4165e5cc9eb26d8abb4bfc3f9e
[ "MIT" ]
7
2019-03-27T00:02:59.000Z
2022-02-07T20:29:49.000Z
tests/xbmcplugin.py
jelly/plugin.fosdem.org
6cbed96f9df3bb4165e5cc9eb26d8abb4bfc3f9e
[ "MIT" ]
12
2019-01-06T15:53:16.000Z
2022-02-13T00:59:22.000Z
tests/xbmcplugin.py
jelly/plugin.fosdem.org
6cbed96f9df3bb4165e5cc9eb26d8abb4bfc3f9e
[ "MIT" ]
3
2019-02-14T16:08:15.000Z
2019-05-05T17:06:37.000Z
# -*- coding: utf-8 -*- # Copyright: (c) 2019, Dag Wieers (@dagwieers) <dag@wieers.com> # GNU General Public License v3.0 (see COPYING or https://www.gnu.org/licenses/gpl-3.0.txt) """This file implements the Kodi xbmcplugin module, either using stubs or alternative functionality""" # pylint: disable=invalid-name,unused-argument from __future__ import absolute_import, division, print_function, unicode_literals from xbmc import LOGFATAL, LOGINFO, log from xbmcaddon import Addon from xbmcextra import kodi_to_ansi, uri_to_path try: # Python 3 from urllib.error import HTTPError from urllib.request import Request, urlopen except ImportError: # Python 2 from urllib2 import HTTPError, Request, urlopen SORT_METHOD_NONE = 0 SORT_METHOD_LABEL = 1 SORT_METHOD_LABEL_IGNORE_THE = 2 SORT_METHOD_DATE = 3 SORT_METHOD_SIZE = 4 SORT_METHOD_FILE = 5 SORT_METHOD_DRIVE_TYPE = 6 SORT_METHOD_TRACKNUM = 7 SORT_METHOD_DURATION = 8 SORT_METHOD_TITLE = 9 SORT_METHOD_TITLE_IGNORE_THE = 10 SORT_METHOD_ARTIST = 11 SORT_METHOD_ARTIST_AND_YEAR = 12 SORT_METHOD_ARTIST_IGNORE_THE = 13 SORT_METHOD_ALBUM = 14 SORT_METHOD_ALBUM_IGNORE_THE = 15 SORT_METHOD_GENRE = 16 SORT_METHOD_COUNTRY = 17 SORT_METHOD_VIDEO_YEAR = 18 # This is SORT_METHOD_YEAR in Kodi SORT_METHOD_VIDEO_RATING = 19 SORT_METHOD_VIDEO_USER_RATING = 20 SORT_METHOD_DATEADDED = 21 SORT_METHOD_PROGRAM_COUNT = 22 SORT_METHOD_PLAYLIST_ORDER = 23 SORT_METHOD_EPISODE = 24 SORT_METHOD_VIDEO_TITLE = 25 SORT_METHOD_VIDEO_SORT_TITLE = 26 SORT_METHOD_VIDEO_SORT_TITLE_IGNORE_THE = 27 SORT_METHOD_PRODUCTIONCODE = 28 SORT_METHOD_SONG_RATING = 29 SORT_METHOD_SONG_USER_RATING = 30 SORT_METHOD_MPAA_RATING = 31 SORT_METHOD_VIDEO_RUNTIME = 32 SORT_METHOD_STUDIO = 33 SORT_METHOD_STUDIO_IGNORE_THE = 34 SORT_METHOD_FULLPATH = 35 SORT_METHOD_LABEL_IGNORE_FOLDERS = 36 SORT_METHOD_LASTPLAYED = 37 SORT_METHOD_PLAYCOUNT = 38 SORT_METHOD_LISTENERS = 39 SORT_METHOD_UNSORTED = 40 SORT_METHOD_CHANNEL = 41 SORT_METHOD_CHANNEL_NUMBER = 42 SORT_METHOD_BITRATE = 43 SORT_METHOD_DATE_TAKEN = 44 def addDirectoryItem(handle, path, listitem, isFolder=False): """A reimplementation of the xbmcplugin addDirectoryItems() function""" label = kodi_to_ansi(listitem.label) path = uri_to_path(path) if path else '' # perma = kodi_to_ansi(listitem.label) # FIXME: Add permalink bullet = '»' if isFolder else '·' print('{bullet} {label}{path}'.format(bullet=bullet, label=label, path=path)) return True def addDirectoryItems(handle, listing, length): """A reimplementation of the xbmcplugin addDirectoryItems() function""" for item in listing: addDirectoryItem(handle, item[0], item[1], item[2]) return True def addSortMethod(handle, sortMethod): """A stub implementation of the xbmcplugin addSortMethod() function""" def endOfDirectory(handle, succeeded=True, updateListing=True, cacheToDisc=True): """A stub implementation of the xbmcplugin endOfDirectory() function""" # print(kodi_to_ansi('[B]-=( [COLOR=cyan]--------[/COLOR] )=-[/B]')) def getSetting(handle, key): """A stub implementation of the xbmcplugin getSetting() function""" return Addon().getSetting(key) def setContent(handle, content): """A stub implementation of the xbmcplugin setContent() function""" def setPluginFanart(handle, image, color1=None, color2=None, color3=None): """A stub implementation of the xbmcplugin setPluginFanart() function""" def setPluginCategory(handle, category): """A reimplementation of the xbmcplugin setPluginCategory() function""" print(kodi_to_ansi('[B]-=( [COLOR=cyan]%s[/COLOR] )=-[/B]' % category)) def setResolvedUrl(handle, succeeded, listitem): """A stub implementation of the xbmcplugin setResolvedUrl() function""" print(kodi_to_ansi('[B][COLOR=yellow]Title[/COLOR]: {label}[/B]'.format(label=listitem.label))) print(kodi_to_ansi('[COLOR=yellow]URL[/COLOR]:\n{url}'.format(url=listitem.path))) print(kodi_to_ansi('[COLOR=yellow]Plot[/COLOR]:\n{plot}'.format(**listitem.info))) request = Request(listitem.path) request.get_method = lambda: 'HEAD' try: response = urlopen(request) log('Stream playing successfully: %s' % response.code, LOGINFO) except HTTPError as exc: log('Playing stream returned: %s' % exc, LOGFATAL)
34.854839
102
0.758677
c1228489e96857d9f4a18f2a30971b3aae585ca1
2,626
py
Python
rasa/core/constants.py
YourThomasLee/rasa
501b1b312c158e19e54c67cbca8ed3728ea60ca3
[ "Apache-2.0" ]
1
2020-07-07T06:58:51.000Z
2020-07-07T06:58:51.000Z
rasa/core/constants.py
YourThomasLee/rasa
501b1b312c158e19e54c67cbca8ed3728ea60ca3
[ "Apache-2.0" ]
75
2020-08-06T08:55:42.000Z
2022-03-01T13:22:11.000Z
rasa/core/constants.py
YourThomasLee/rasa
501b1b312c158e19e54c67cbca8ed3728ea60ca3
[ "Apache-2.0" ]
null
null
null
from rasa.constants import DEFAULT_NLU_FALLBACK_INTENT_NAME DEFAULT_SERVER_PORT = 5005 DEFAULT_SERVER_FORMAT = "{}://localhost:{}" DEFAULT_SERVER_URL = DEFAULT_SERVER_FORMAT.format("http", DEFAULT_SERVER_PORT) DEFAULT_NLU_FALLBACK_THRESHOLD = 0.0 DEFAULT_CORE_FALLBACK_THRESHOLD = 0.0 DEFAULT_REQUEST_TIMEOUT = 60 * 5 # 5 minutes DEFAULT_RESPONSE_TIMEOUT = 60 * 60 # 1 hour DEFAULT_LOCK_LIFETIME = 60 # in seconds REQUESTED_SLOT = "requested_slot" # slots for knowledge base SLOT_LISTED_ITEMS = "knowledge_base_listed_objects" SLOT_LAST_OBJECT = "knowledge_base_last_object" SLOT_LAST_OBJECT_TYPE = "knowledge_base_last_object_type" DEFAULT_KNOWLEDGE_BASE_ACTION = "action_query_knowledge_base" # start of special user message section INTENT_MESSAGE_PREFIX = "/" EXTERNAL_MESSAGE_PREFIX = "EXTERNAL: " USER_INTENT_RESTART = "restart" USER_INTENT_SESSION_START = "session_start" USER_INTENT_BACK = "back" USER_INTENT_OUT_OF_SCOPE = "out_of_scope" DEFAULT_INTENTS = [ USER_INTENT_RESTART, USER_INTENT_BACK, USER_INTENT_OUT_OF_SCOPE, USER_INTENT_SESSION_START, DEFAULT_NLU_FALLBACK_INTENT_NAME, ] ACTION_NAME_SENDER_ID_CONNECTOR_STR = "__sender_id:" BEARER_TOKEN_PREFIX = "Bearer " # Key to access data in the event metadata # It specifies if an event was caused by an external entity (e.g. a sensor). IS_EXTERNAL = "is_external" # the lowest priority intended to be used by machine learning policies DEFAULT_POLICY_PRIORITY = 1 # the priority intended to be used by mapping policies MAPPING_POLICY_PRIORITY = 2 # the priority intended to be used by memoization policies # it is higher than default and mapping to prioritize training stories MEMOIZATION_POLICY_PRIORITY = 3 # the priority intended to be used by fallback policies # it is higher than memoization to prioritize fallback FALLBACK_POLICY_PRIORITY = 4 # the priority intended to be used by form policies # it is the highest to prioritize form to the rest of the policies FORM_POLICY_PRIORITY = 5 UTTER_PREFIX = "utter_" RESPOND_PREFIX = "respond_" DIALOGUE = "dialogue" DEFAULT_CATEGORICAL_SLOT_VALUE = "__other__" # RabbitMQ message property header added to events published using `rasa export` RASA_EXPORT_PROCESS_ID_HEADER_NAME = "rasa-export-process-id" # Name of the environment variable defining the PostgreSQL schema to access. See # https://www.postgresql.org/docs/9.1/ddl-schemas.html for more details. POSTGRESQL_SCHEMA = "POSTGRESQL_SCHEMA" # Names of the environment variables defining PostgreSQL pool size and max overflow POSTGRESQL_POOL_SIZE = "SQL_POOL_SIZE" POSTGRESQL_MAX_OVERFLOW = "SQL_MAX_OVERFLOW"
31.261905
83
0.809596
b0ffd5049752f66a25a8ba95907b8a2fadc63eb9
1,334
py
Python
tests/unit/test_imdb_title_page_parser.py
alexandrahably/imdb_scraper
e364c9cdccb42369fcc84de54c15621cfced9b5a
[ "Apache-2.0" ]
null
null
null
tests/unit/test_imdb_title_page_parser.py
alexandrahably/imdb_scraper
e364c9cdccb42369fcc84de54c15621cfced9b5a
[ "Apache-2.0" ]
null
null
null
tests/unit/test_imdb_title_page_parser.py
alexandrahably/imdb_scraper
e364c9cdccb42369fcc84de54c15621cfced9b5a
[ "Apache-2.0" ]
null
null
null
import pytest import os from pathlib import Path from unittest import TestCase from tests.unit.helpers.helpers import path_for_resource from src.imdb.parsers import IMDBTitlePageParser def movie_without_oscars_page_text(): movie_page_no_oscars_path = path_for_resource('movie_page_no_oscars.html') with open(movie_page_no_oscars_path, "r") as file: text = file.read() file.close() return text def movie_with_oscars_page_text(): movie_page_with_oscars_path = path_for_resource('movie_page_with_oscars.txt') with open(movie_page_with_oscars_path, "r") as file: text = file.read() file.close() return text class TestIMDBTitlePageParser(TestCase): def test_parse_num_of_won_oscars_from_movie_page_without_oscars(self): movie_title_page_no_oscars_text = movie_without_oscars_page_text() num_of_oscars = IMDBTitlePageParser.parse_num_of_won_oscars_from_movie_page(movie_title_page_no_oscars_text) self.assertEqual(num_of_oscars, 0) def test_parse_num_of_won_oscars_from_movie_page_with_oscars(self): movie_title_page_with_oscars_text = movie_with_oscars_page_text() num_of_oscars = IMDBTitlePageParser.parse_num_of_won_oscars_from_movie_page(movie_title_page_with_oscars_text) self.assertEqual(num_of_oscars, 3)
37.055556
118
0.788606
86d31c6d3ef64efa6c86f9a1e58733d3626cdced
8,610
py
Python
editor/views/generic.py
NabeelSait/editor
035c1a7ffdaa4a9557bec17f2d5a7ddb3b316fce
[ "Apache-2.0" ]
null
null
null
editor/views/generic.py
NabeelSait/editor
035c1a7ffdaa4a9557bec17f2d5a7ddb3b316fce
[ "Apache-2.0" ]
null
null
null
editor/views/generic.py
NabeelSait/editor
035c1a7ffdaa4a9557bec17f2d5a7ddb3b316fce
[ "Apache-2.0" ]
null
null
null
import json from django.shortcuts import redirect from django import http from django.views import generic from django.template.loader import get_template from django.template import RequestContext from django.template.response import TemplateResponse import reversion from editor.models import NewStampOfApproval, Comment, RestorePoint, EditorItem, Access from accounts.util import user_json def forbidden_response(request,message=None): return TemplateResponse( request=request, context={'message':message}, template='403.html', status=403 ) # from http://stackoverflow.com/questions/18172102/object-ownership-validation-in-django-updateview class AuthorRequiredMixin(object): def dispatch(self, request, *args, **kwargs): if self.get_object().author != self.request.user: template = get_template("403.html") return http.HttpResponseForbidden(template.render(RequestContext(self.request).flatten())) result = super(AuthorRequiredMixin, self).dispatch(request, *args, **kwargs) return result class CanEditMixin(object): def dispatch(self, request, *args, **kwargs): obj = self.get_object() if not obj.can_be_edited_by(request.user): template = get_template("403.html") return http.HttpResponseForbidden(template.render(RequestContext(self.request).flatten())) return super().dispatch(request, *args, **kwargs) class CanViewMixin(object): def dispatch(self, request, *args, **kwargs): obj = self.get_object() if not obj.can_be_viewed_by(request.user): template = get_template("403.html") return http.HttpResponseForbidden(template.render(RequestContext(self.request).flatten())) return super().dispatch(request, *args, **kwargs) class TimelineItemViewMixin(object): def response(self): data = { 'object_json': self.object_json(), 'html': self.object_html(), } return http.HttpResponse(json.dumps(data), content_type='application/json') def object_html(self): template = get_template(self.item.timelineitem_template) html = template.render(RequestContext(self.request, {'item': self.item.timelineitem, 'can_delete': self.item.can_be_deleted_by(self.request.user)}).flatten()) return html class StampView(generic.UpdateView, TimelineItemViewMixin): def post(self, request, *args, **kwargs): obj = self.get_object() status = request.POST.get('status') self.item = NewStampOfApproval.objects.create(user=request.user, object=obj.editoritem, status=status) return self.response() def object_json(self): return stamp_json(self.item) def get(self, request, *args, **kwargs): return http.HttpResponseNotAllowed(['POST'], 'GET requests are not allowed at this URL.') class CommentView(generic.UpdateView, TimelineItemViewMixin): def post(self, request, *args, **kwargs): obj = self.get_comment_object() text = request.POST.get('text') self.item = Comment.objects.create(user=request.user, object=obj, text=text) return self.response() def object_json(self): return comment_json(self.item) def get(self, request, *args, **kwargs): return http.HttpResponseNotAllowed(['POST'], 'GET requests are not allowed at this URL.') class SetRestorePointView(generic.UpdateView, TimelineItemViewMixin): def post(self, request, *args, **kwargs): obj = self.get_object() description = request.POST.get('text') if not reversion.models.Version.objects.get_for_object(obj).exists(): with reversion.create_revision(): obj.save() reversion.set_user(request.user) revision = reversion.models.Version.objects.get_for_object(obj).first().revision self.item = RestorePoint.objects.create(user=request.user, object=obj.editoritem, description=description, revision=revision) return self.response() def object_json(self): return restore_point_json(self.item) def get(self, request, *args, **kwargs): return http.HttpResponseNotAllowed(['POST'], 'GET requests are not allowed at this URL.') class RevertRestorePointView(generic.UpdateView): model = RestorePoint def get(self, request, *args, **kwargs): self.restore_point = self.get_object() if not self.restore_point.object.can_be_edited_by(request.user): return http.HttpResponseForbidden() oei = self.restore_point.object project = oei.project self.restore_point.revision.revert() ei = EditorItem.objects.get(pk=oei.pk) ei.project = project ei.save() return redirect(self.restore_point.object.get_absolute_url()) # JSON representation of a editor.models.StampOfApproval object def stamp_json(stamp, **kwargs): if stamp.pk is None: return { 'pk': None, 'status': 'draft', 'status_display': 'Draft', 'user': None, } else: return { 'pk': stamp.pk, 'date': stamp.timelineitem.date.strftime('%Y-%m-%d %H:%M:%S'), 'status': stamp.status, 'status_display': stamp.get_status_display(), 'user': user_json(stamp.user), } # JSON representation of a editor.models.Comment object def comment_json(comment, **kwargs): return { 'pk': comment.pk, 'date': comment.timelineitem.date.strftime('%Y-%m-%d %H:%M:%S'), 'text': comment.text, 'user': user_json(comment.user), } def restore_point_json(restore_point, **kwargs): return { 'pk': restore_point.pk, 'date': restore_point.timelineitem.date.strftime('%Y-%m-%d %H:%M:%S'), 'description': restore_point.description, 'user': user_json(restore_point.user), } def ability_framework_json(ability_framework): return { 'pk': ability_framework.pk, 'name': ability_framework.name, 'description': ability_framework.description, 'levels': [ability_level_json(l) for l in ability_framework.levels.all()], } def ability_level_json(ability_level): return { 'pk': ability_level.pk, 'name': ability_level.name, 'description': ability_level.description, 'framework': ability_level.framework.pk, 'start': float(ability_level.start), 'end': float(ability_level.end), } class DeleteStampView(generic.DeleteView): model = NewStampOfApproval def delete(self, request, *args, **kwargs): self.object = self.get_object() if self.object.can_be_deleted_by(self.request.user): self.object.delete() ei = self.object.object now_current_stamp = EditorItem.objects.get(pk=ei.pk).get_current_stamp() data = stamp_json(now_current_stamp) return http.HttpResponse(json.dumps({'current_stamp':data}), content_type='application/json') else: return http.HttpResponseForbidden('You don\'t have the necessary access rights.') class ShareLinkView(generic.RedirectView): permanent = False def get_redirect_url(self, *args, **kwargs): access = kwargs['access'] try: if access == 'edit': q = self.model.objects.get(editoritem__share_uuid_edit=kwargs['share_uuid']) elif access == 'view': q = self.model.objects.get(editoritem__share_uuid_view=kwargs['share_uuid']) except (ValueError, self.model.DoesNotExist): raise http.Http404 user = self.request.user if access == 'view': has_access = q.editoritem.can_be_viewed_by(user) elif access == 'edit': has_access = q.editoritem.can_be_edited_by(user) if not has_access: try: ea = Access.objects.get(item=q.editoritem, user=user) except Access.DoesNotExist: ea = Access(item=q.editoritem, user=user, access=access) ea.access = access ea.save() return q.get_absolute_url() class ProjectQuerysetMixin(object): """ Set the queryset for the form's project field to the projects available to the user """ def get_form(self): form = super(ProjectQuerysetMixin, self).get_form() form.fields['project'].queryset = self.request.user.userprofile.projects().order_by('name').distinct() return form
36.95279
166
0.655749
3506ffe2980142eda2755c1e36e516831344a27f
5,314
py
Python
sdk/compute/azure-mgmt-compute/azure/mgmt/compute/v2015_06_15/aio/operations/_virtual_machine_sizes_operations.py
rsdoherty/azure-sdk-for-python
6bba5326677468e6660845a703686327178bb7b1
[ "MIT" ]
2,728
2015-01-09T10:19:32.000Z
2022-03-31T14:50:33.000Z
sdk/compute/azure-mgmt-compute/azure/mgmt/compute/v2015_06_15/aio/operations/_virtual_machine_sizes_operations.py
rsdoherty/azure-sdk-for-python
6bba5326677468e6660845a703686327178bb7b1
[ "MIT" ]
17,773
2015-01-05T15:57:17.000Z
2022-03-31T23:50:25.000Z
sdk/compute/azure-mgmt-compute/azure/mgmt/compute/v2015_06_15/aio/operations/_virtual_machine_sizes_operations.py
rsdoherty/azure-sdk-for-python
6bba5326677468e6660845a703686327178bb7b1
[ "MIT" ]
1,916
2015-01-19T05:05:41.000Z
2022-03-31T19:36:44.000Z
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from typing import Any, AsyncIterable, Callable, Dict, Generic, Optional, TypeVar import warnings from azure.core.async_paging import AsyncItemPaged, AsyncList from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error from azure.core.pipeline import PipelineResponse from azure.core.pipeline.transport import AsyncHttpResponse, HttpRequest from azure.mgmt.core.exceptions import ARMErrorFormat from ... import models as _models T = TypeVar('T') ClsType = Optional[Callable[[PipelineResponse[HttpRequest, AsyncHttpResponse], T, Dict[str, Any]], Any]] class VirtualMachineSizesOperations: """VirtualMachineSizesOperations async operations. You should not instantiate this class directly. Instead, you should create a Client instance that instantiates it for you and attaches it as an attribute. :ivar models: Alias to model classes used in this operation group. :type models: ~azure.mgmt.compute.v2015_06_15.models :param client: Client for service requests. :param config: Configuration of service client. :param serializer: An object model serializer. :param deserializer: An object model deserializer. """ models = _models def __init__(self, client, config, serializer, deserializer) -> None: self._client = client self._serialize = serializer self._deserialize = deserializer self._config = config def list( self, location: str, **kwargs: Any ) -> AsyncIterable["_models.VirtualMachineSizeListResult"]: """Lists all available virtual machine sizes for a subscription in a location. :param location: The location upon which virtual-machine-sizes is queried. :type location: str :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either VirtualMachineSizeListResult or the result of cls(response) :rtype: ~azure.core.async_paging.AsyncItemPaged[~azure.mgmt.compute.v2015_06_15.models.VirtualMachineSizeListResult] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.VirtualMachineSizeListResult"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2015-06-15" accept = "application/json" def prepare_request(next_link=None): # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') if not next_link: # Construct URL url = self.list.metadata['url'] # type: ignore path_format_arguments = { 'location': self._serialize.url("location", location, 'str', pattern=r'^[-\w\._]+$'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') request = self._client.get(url, query_parameters, header_parameters) else: url = next_link query_parameters = {} # type: Dict[str, Any] request = self._client.get(url, query_parameters, header_parameters) return request async def extract_data(pipeline_response): deserialized = self._deserialize('VirtualMachineSizeListResult', pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return None, AsyncList(list_of_elem) async def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) return pipeline_response return AsyncItemPaged( get_next, extract_data ) list.metadata = {'url': '/subscriptions/{subscriptionId}/providers/Microsoft.Compute/locations/{location}/vmSizes'} # type: ignore
47.026549
135
0.660896
c4e8382ed32ac5f8b39890e227d726526ae55458
147
py
Python
text_nlp/apps.py
hamza-manssor/News-Category-Classification-using-ML-in-Django
8d8579e6010bee1451df5653eb6bc45b4a1072ef
[ "MIT" ]
null
null
null
text_nlp/apps.py
hamza-manssor/News-Category-Classification-using-ML-in-Django
8d8579e6010bee1451df5653eb6bc45b4a1072ef
[ "MIT" ]
null
null
null
text_nlp/apps.py
hamza-manssor/News-Category-Classification-using-ML-in-Django
8d8579e6010bee1451df5653eb6bc45b4a1072ef
[ "MIT" ]
null
null
null
from django.apps import AppConfig class TextNlpConfig(AppConfig): default_auto_field = 'django.db.models.BigAutoField' name = 'text_nlp'
21
56
0.761905
fee1aceef4f99873d3ac5fae941f37132b5d5d4a
364
py
Python
taobao-tianmao/top/api/rest/AlibabaWdkMarketingOpenHeartbeatRequest.py
ScottLeeF/python-example
0b230ba80fe5020d70329a9d73e058013f0ca111
[ "Apache-2.0" ]
null
null
null
taobao-tianmao/top/api/rest/AlibabaWdkMarketingOpenHeartbeatRequest.py
ScottLeeF/python-example
0b230ba80fe5020d70329a9d73e058013f0ca111
[ "Apache-2.0" ]
7
2021-03-19T02:12:42.000Z
2022-03-12T00:25:28.000Z
taobao-tianmao/top/api/rest/AlibabaWdkMarketingOpenHeartbeatRequest.py
ScottLeeF/python-example
0b230ba80fe5020d70329a9d73e058013f0ca111
[ "Apache-2.0" ]
null
null
null
''' Created by auto_sdk on 2019.03.26 ''' from top.api.base import RestApi class AlibabaWdkMarketingOpenHeartbeatRequest(RestApi): def __init__(self, domain='gw.api.taobao.com', port=80): RestApi.__init__(self, domain, port) self.heart_beat = None def getapiname(self): return 'alibaba.wdk.marketing.open.heartbeat'
26
61
0.681319
37ea2899cde8120df2cdbd0511e09986d0fbdaee
20,201
py
Python
SMPyBandits/Environment/EvaluatorSparseMultiPlayers.py
balbok0/SMPyBandits
c8ff765687989e0c20ab42c2e2e1d8440923225b
[ "MIT" ]
309
2018-03-03T22:07:59.000Z
2022-03-26T08:15:58.000Z
Environment/EvaluatorSparseMultiPlayers.py
98k-bot/SMPyBandits
35e675bde29dafbec68288fcfcd14ef3b0f058b2
[ "MIT" ]
125
2018-02-27T22:54:03.000Z
2021-11-05T10:50:15.000Z
Environment/EvaluatorSparseMultiPlayers.py
98k-bot/SMPyBandits
35e675bde29dafbec68288fcfcd14ef3b0f058b2
[ "MIT" ]
60
2018-04-30T20:54:24.000Z
2022-02-21T22:41:46.000Z
# -*- coding: utf-8 -*- """ EvaluatorSparseMultiPlayers class to wrap and run the simulations, for the multi-players case with sparse activated players. Lots of plotting methods, to have various visualizations. See documentation. .. warning:: FIXME this environment is not as up-to-date as :class:`Environment.EvaluatorMultiPlayers`. """ from __future__ import division, print_function # Python 2 compatibility __author__ = "Lilian Besson" __version__ = "0.9" # Generic imports from copy import deepcopy from re import search import random from random import random as uniform_in_zero_one # Scientific imports import numpy as np import matplotlib.pyplot as plt try: # Local imports, libraries from .usejoblib import USE_JOBLIB, Parallel, delayed from .usetqdm import USE_TQDM, tqdm # Local imports, tools and config from .plotsettings import BBOX_INCHES, signature, maximizeWindow, palette, makemarkers, add_percent_formatter, wraptext, wraplatex, legend, show_and_save, nrows_ncols from .sortedDistance import weightedDistance, manhattan, kendalltau, spearmanr, gestalt, meanDistance, sortedDistance from .fairnessMeasures import amplitude_fairness, std_fairness, rajjain_fairness, mean_fairness, fairnessMeasure, fairness_mapping # Local imports, objects and functions from .CollisionModels import onlyUniqUserGetsRewardSparse, full_lost_if_collision from .MAB import MAB, MarkovianMAB, ChangingAtEachRepMAB from .ResultMultiPlayers import ResultMultiPlayers # Inheritance from .EvaluatorMultiPlayers import EvaluatorMultiPlayers, _extract except ImportError: # Local imports, libraries from usejoblib import USE_JOBLIB, Parallel, delayed from usetqdm import USE_TQDM, tqdm # Local imports, tools and config from plotsettings import BBOX_INCHES, signature, maximizeWindow, palette, makemarkers, add_percent_formatter, wraptext, wraplatex, legend, show_and_save, nrows_ncols from sortedDistance import weightedDistance, manhattan, kendalltau, spearmanr, gestalt, meanDistance, sortedDistance from fairnessMeasures import amplitude_fairness, std_fairness, rajjain_fairness, mean_fairness, fairnessMeasure, fairness_mapping # Local imports, objects and functions from CollisionModels import onlyUniqUserGetsRewardSparse, full_lost_if_collision from MAB import MAB, MarkovianMAB, ChangingAtEachRepMAB from ResultMultiPlayers import ResultMultiPlayers # Inheritance from EvaluatorMultiPlayers import EvaluatorMultiPlayers, _extract REPETITIONS = 1 #: Default nb of repetitions ACTIVATION = 1 #: Default probability of activation DELTA_T_PLOT = 50 #: Default sampling rate for plotting MORE_ACCURATE = False #: Use the count of selections instead of rewards for a more accurate mean/std reward measure. MORE_ACCURATE = True #: Use the count of selections instead of rewards for a more accurate mean/std reward measure. FINAL_RANKS_ON_AVERAGE = True #: Default value for ``finalRanksOnAverage`` USE_JOBLIB_FOR_POLICIES = False #: Default value for ``useJoblibForPolicies``. Does not speed up to use it (too much overhead in using too much threads); so it should really be disabled. PICKLE_IT = True #: Default value for ``pickleit`` for saving the figures. If True, then all ``plt.figure`` object are saved (in pickle format). # --- Class EvaluatorSparseMultiPlayers class EvaluatorSparseMultiPlayers(EvaluatorMultiPlayers): """ Evaluator class to run the simulations, for the multi-players case. """ def __init__(self, configuration, moreAccurate=MORE_ACCURATE): super(EvaluatorSparseMultiPlayers, self).__init__(configuration, moreAccurate=moreAccurate) self.activations = self.cfg.get('activations', ACTIVATION) #: Probability of activations assert np.min(self.activations) > 0 and np.max(self.activations) <= 1, "Error: probability of activations = {} were not all in (0, 1] ...".format(self.activations) # DEBUG self.collisionModel = self.cfg.get('collisionModel', onlyUniqUserGetsRewardSparse) #: Which collision model should be used self.full_lost_if_collision = full_lost_if_collision.get(self.collisionModel.__name__, True) #: Is there a full loss of rewards if collision ? To compute the correct decomposition of regret print("Using collision model {} (function {}).\nMore details:\n{}".format(self.collisionModel.__name__, self.collisionModel, self.collisionModel.__doc__)) # --- Start computation def startOneEnv(self, envId, env): """Simulate that env.""" print("\n\nEvaluating environment:", repr(env)) # DEBUG self.players = [] self.__initPlayers__(env) # Get the position of the best arms means = env.means bestarm = env.maxArm indexes_bestarm = np.nonzero(np.isclose(means, bestarm))[0] def store(r, repeatId): """Store the result of the experiment r.""" self.rewards[envId] += np.cumsum(r.rewards, axis=1) # cumsum on time self.lastCumRewards[envId][repeatId] = np.sum(r.rewards) # sum on time and sum on policies self.pulls[envId] += r.pulls self.lastPulls[envId][:, :, repeatId] = r.pulls self.allPulls[envId] += r.allPulls self.collisions[envId] += r.collisions self.lastCumCollisions[envId][:, repeatId] = np.sum(r.collisions, axis=1) # sum on time for playerId in range(self.nbPlayers): self.nbSwitchs[envId][playerId, 1:] += (np.diff(r.choices[playerId, :]) != 0) self.bestArmPulls[envId][playerId, :] += np.cumsum(np.in1d(r.choices[playerId, :], indexes_bestarm)) # FIXME there is probably a bug in this computation self.freeTransmissions[envId][playerId, :] += np.array([r.choices[playerId, t] not in r.collisions[:, t] for t in range(self.horizon)]) # Start now if self.useJoblib: seeds = np.random.randint(low=0, high=100 * self.repetitions, size=self.repetitions) repeatIdout = 0 for r in Parallel(n_jobs=self.cfg['n_jobs'], verbose=self.cfg['verbosity'])( delayed(delayed_play)(env, self.players, self.horizon, self.collisionModel, self.activations, seed=seeds[repeatId], repeatId=repeatId) for repeatId in tqdm(range(self.repetitions), desc="Repeat||") ): store(r, repeatIdout) repeatIdout += 1 if env.isChangingAtEachRepetition: env._t += self.repetitions # new self.repetitions draw! else: for repeatId in tqdm(range(self.repetitions), desc="Repeat"): r = delayed_play(env, self.players, self.horizon, self.collisionModel, self.activations, repeatId=repeatId) store(r, repeatId) # --- Getter methods def getCentralizedRegret_LessAccurate(self, envId=0): """Compute the empirical centralized regret: cumsum on time of the mean rewards of the M best arms - cumsum on time of the empirical rewards obtained by the players, based on accumulated rewards.""" meansArms = np.sort(self.envs[envId].means) sumBestMeans = self.envs[envId].sumBestMeans(min(self.envs[envId].nbArms, self.nbPlayers)) # FIXED how to count it when there is more players than arms ? # FIXME it depends on the collision model ! if self.envs[envId].nbArms < self.nbPlayers: # sure to have collisions, then the best strategy is to put all the collisions in the worse arm worseArm = np.min(meansArms) sumBestMeans -= worseArm # This count the collisions averageBestRewards = self._times * sumBestMeans # And for the actual rewards, the collisions are counted in the rewards logged in self.getRewards actualRewards = np.sum(self.rewards[envId][:, :], axis=0) / float(self.repetitions) return averageBestRewards - actualRewards # --- Three terms in the regret def getFirstRegretTerm(self, envId=0): """Extract and compute the first term :math:`(a)` in the centralized regret: losses due to pulling suboptimal arms.""" means = self.envs[envId].means sortingIndex = np.argsort(means) means = np.sort(means) deltaMeansWorstArms = means[-min(self.envs[envId].nbArms, self.nbPlayers)] - means[:-min(self.envs[envId].nbArms, self.nbPlayers)] allPulls = self.allPulls[envId] / float(self.repetitions) # Shape: (nbPlayers, nbArms, duration) allWorstPulls = allPulls[:, sortingIndex[:-min(self.envs[envId].nbArms, self.nbPlayers)], :] worstPulls = np.sum(allWorstPulls, axis=0) # sum for all players losses = np.dot(deltaMeansWorstArms, worstPulls) # Count and sum on k in Mworst firstRegretTerm = np.cumsum(losses) # Accumulate losses return firstRegretTerm def getSecondRegretTerm(self, envId=0): """Extract and compute the second term :math:`(b)` in the centralized regret: losses due to not pulling optimal arms.""" means = self.envs[envId].means sortingIndex = np.argsort(means) means = np.sort(means) deltaMeansBestArms = means[-min(self.envs[envId].nbArms, self.nbPlayers):] - means[-min(self.envs[envId].nbArms, self.nbPlayers)] allPulls = self.allPulls[envId] / float(self.repetitions) # Shape: (nbPlayers, nbArms, duration) allBestPulls = allPulls[:, sortingIndex[-min(self.envs[envId].nbArms, self.nbPlayers):], :] bestMisses = 1 - np.sum(allBestPulls, axis=0) # sum for all players losses = np.dot(deltaMeansBestArms, bestMisses) # Count and sum on k in Mbest secondRegretTerm = np.cumsum(losses) # Accumulate losses return secondRegretTerm def getThirdRegretTerm(self, envId=0): """Extract and compute the third term :math:`(c)` in the centralized regret: losses due to collisions.""" means = self.envs[envId].means countCollisions = self.collisions[envId] # Shape: (nbArms, duration) if not self.full_lost_if_collision: print("Warning: the collision model ({}) does *not* yield a loss in communication when colliding (one user can communicate, or in average one user can communicate), so countCollisions -= 1 for the 3rd regret term ...".format(self.collisionModel.__name__)) # DEBUG countCollisions = np.maximum(0, countCollisions - 1) losses = np.dot(means, countCollisions / float(self.repetitions)) # Count and sum on k in 1...K thirdRegretTerm = np.cumsum(losses) # Accumulate losses return thirdRegretTerm def getCentralizedRegret_MoreAccurate(self, envId=0): """Compute the empirical centralized regret, based on counts of selections and not actual rewards.""" return self.getFirstRegretTerm(envId=envId) + self.getSecondRegretTerm(envId=envId) + self.getThirdRegretTerm(envId=envId) def getCentralizedRegret(self, envId=0, moreAccurate=None): """Using either the more accurate or the less accurate regret count.""" moreAccurate = moreAccurate if moreAccurate is not None else self.moreAccurate # print("Computing the vector of mean cumulated regret with '{}' accurate method...".format("more" if moreAccurate else "less")) # DEBUG if moreAccurate: return self.getCentralizedRegret_MoreAccurate(envId=envId) else: return self.getCentralizedRegret_LessAccurate(envId=envId) # --- Last regrets def getLastRegrets_LessAccurate(self, envId=0): """Extract last regrets, based on accumulated rewards.""" meansArms = np.sort(self.envs[envId].means) sumBestMeans = self.envs[envId].sumBestMeans(self.nbPlayers) # FIXED how to count it when there is more players than arms ? # FIXME it depends on the collision model ! if self.envs[envId].nbArms < self.nbPlayers: # sure to have collisions, then the best strategy is to put all the collisions in the worse arm worseArm = np.min(meansArms) sumBestMeans -= worseArm # This count the collisions return self.horizon * sumBestMeans - self.lastCumRewards[envId] def getAllLastWeightedSelections(self, envId=0): """Extract weighted count of selections.""" all_last_weighted_selections = np.zeros(self.repetitions) lastCumCollisions = self.lastCumCollisions[envId] for armId, mean in enumerate(self.envs[envId].means): last_selections = np.sum(self.lastPulls[envId][:, armId, :], axis=0) # sum on players all_last_weighted_selections += mean * (last_selections - lastCumCollisions[armId, :]) return all_last_weighted_selections def getLastRegrets_MoreAccurate(self, envId=0): """Extract last regrets, based on counts of selections and not actual rewards.""" meansArms = np.sort(self.envs[envId].means) sumBestMeans = self.envs[envId].sumBestMeans(self.nbPlayers) # FIXED how to count it when there is more players than arms ? # FIXME it depends on the collision model ! if self.envs[envId].nbArms < self.nbPlayers: # sure to have collisions, then the best strategy is to put all the collisions in the worse arm worseArm = np.min(meansArms) sumBestMeans -= worseArm # This count the collisions return self.horizon * sumBestMeans - self.getAllLastWeightedSelections(envId=envId) def getLastRegrets(self, envId=0, moreAccurate=None): """Using either the more accurate or the less accurate regret count.""" moreAccurate = moreAccurate if moreAccurate is not None else self.moreAccurate # print("Computing the vector of last cumulated regrets (on repetitions) with '{}' accurate method...".format("more" if moreAccurate else "less")) # DEBUG if moreAccurate: return self.getLastRegrets_MoreAccurate(envId=envId) else: return self.getLastRegrets_LessAccurate(envId=envId) def strPlayers(self, short=False, latex=True): """Get a string of the players and their activations probability for this environment.""" listStrPlayersActivations = [("%s, $p=%s$" if latex else "%s, p=%s") % (_extract(str(player)), str(activation)) for (player, activation) in zip(self.players, self.activations)] if len(set(listStrPlayersActivations)) == 1: # Unique user and unique activation if latex: text = r'${} \times$ {}'.format(self.nbPlayers, listStrPlayersActivations[0]) else: text = r'{} x {}'.format(self.nbPlayers, listStrPlayersActivations[0]) else: text = ', '.join(listStrPlayersActivations) text = wraptext(text) if not short: text = '{} players: {}'.format(self.nbPlayers, text) return text def delayed_play(env, players, horizon, collisionModel, activations, seed=None, repeatId=0): """Helper function for the parallelization.""" # Give a unique seed to random & numpy.random for each call of this function try: if seed is not None: np.random.seed(seed) random.seed(seed) except (ValueError, SystemError): print("Warning: setting random.seed and np.random.seed seems to not be available. Are you using Windows?") # XXX means = env.means if env.isChangingAtEachRepetition: means = env.newRandomArms() players = deepcopy(players) nbArms = env.nbArms nbPlayers = len(players) # Start game for player in players: player.startGame() # Store results result = ResultMultiPlayers(env.nbArms, horizon, nbPlayers, means=means) rewards = np.zeros(nbPlayers) choices = np.zeros(nbPlayers, dtype=int) pulls = np.zeros((nbPlayers, nbArms), dtype=int) collisions = np.zeros(nbArms, dtype=int) nbActivations = np.zeros(nbPlayers, dtype=int) prettyRange = tqdm(range(horizon), desc="Time t") if repeatId == 0 else range(horizon) for t in prettyRange: # Reset the array, faster than reallocating them! rewards.fill(0) choices.fill(-100000) pulls.fill(0) collisions.fill(0) # Decide who gets activated # # 1. pure iid Bernoulli activations, so sum(random_activations) == np.random.binomial(nbPlayers, activation) if activations are all the same # random_activations = np.random.random_sample(nbPlayers) <= activations # FIXME finish these experiments # 2. maybe first decide how many players from [0, nbArms] or [0, nbPlayers] are activated, then who # nb_activated_players = np.random.binomial(nbArms, np.mean(activations)) nb_activated_players = np.random.binomial(nbPlayers, np.mean(activations)) # who_is_activated = np.random.choice(nbPlayers, size=nb_activated_players, replace=False) who_is_activated = np.random.choice(nbPlayers, size=nb_activated_players, replace=False, p=np.asarray(activations)/np.sum(activations)) random_activations = np.in1d(np.arange(nbPlayers), who_is_activated) # Every player decides which arm to pull for playerId, player in enumerate(players): # if with_proba(activations[playerId]): if random_activations[playerId]: nbActivations[playerId] += 1 choices[playerId] = player.choice() # print(" Round t = \t{}, player \t#{:>2}/{} ({}) \tgot activated and chose : {} ...".format(t, playerId + 1, len(players), player, choices[playerId])) # DEBUG # else: # print(" Round t = \t{}, player \t#{:>2}/{} ({}) \tdid not get activated ...".format(t, playerId + 1, len(players), player)) # DEBUG # Then we decide if there is collisions and what to do why them # XXX It is here that the player may receive a reward, if there is no collisions collisionModel(t, env.arms, players, choices, rewards, pulls, collisions) # Finally we store the results result.store(t, choices, rewards, pulls, collisions) # Print the quality of estimation of arm ranking for this policy, just for 1st repetition if repeatId == 0: print("\nNumber of activations by players:") for playerId, player in enumerate(players): try: print("\nThe policy {} was activated {} times after {} steps...".format(player, nbActivations[playerId], horizon)) order = player.estimatedOrder() print("Estimated order by the policy {} after {} steps: {} ...".format(player, horizon, order)) print(" ==> Optimal arm identification: {:.2%} (relative success)...".format(weightedDistance(order, env.means, n=nbPlayers))) # print(" ==> Manhattan distance from optimal ordering: {:.2%} (relative success)...".format(manhattan(order))) # print(" ==> Spearman distance from optimal ordering: {:.2%} (relative success)...".format(spearmanr(order))) # print(" ==> Gestalt distance from optimal ordering: {:.2%} (relative success)...".format(gestalt(order))) print(" ==> Mean distance from optimal ordering: {:.2%} (relative success)...".format(meanDistance(order))) except AttributeError: print("Unable to print the estimated ordering, no method estimatedOrder was found!") return result def with_proba(proba): """`True` with probability = `proba`, `False` with probability = `1 - proba`. Examples: >>> import random; random.seed(0) >>> tosses = [with_proba(0.6) for _ in range(10000)]; sum(tosses) 5977 >>> tosses = [with_proba(0.111) for _ in range(100000)]; sum(tosses) 11158 """ return uniform_in_zero_one() <= proba # --- Debugging if __name__ == "__main__": # Code for debugging purposes. from doctest import testmod print("\nTesting automatically all the docstring written in each functions of this module :") testmod(verbose=True)
57.389205
276
0.681501
3df92b04a84daad85b4a4bd4386d6c188902c278
3,495
py
Python
chaingreen/timelord/timelord_launcher.py
WaitWha/chaingreen-blockchain
959443f03420b80f66028c2183525712aa933465
[ "Apache-2.0" ]
103
2021-05-30T02:09:28.000Z
2022-03-17T20:45:49.000Z
chaingreen/timelord/timelord_launcher.py
WaitWha/chaingreen-blockchain
959443f03420b80f66028c2183525712aa933465
[ "Apache-2.0" ]
107
2021-05-23T02:20:26.000Z
2022-03-29T17:07:43.000Z
chaingreen/timelord/timelord_launcher.py
WaitWha/chaingreen-blockchain
959443f03420b80f66028c2183525712aa933465
[ "Apache-2.0" ]
50
2021-05-23T02:19:06.000Z
2022-01-24T07:32:50.000Z
import asyncio import logging import pathlib import signal import socket import time from typing import Dict, List import pkg_resources from chaingreen.util.chaingreen_logging import initialize_logging from chaingreen.util.config import load_config from chaingreen.util.default_root import DEFAULT_ROOT_PATH from chaingreen.util.setproctitle import setproctitle active_processes: List = [] stopped = False lock = asyncio.Lock() log = logging.getLogger(__name__) async def kill_processes(): global stopped global active_processes async with lock: stopped = True for process in active_processes: try: process.kill() except ProcessLookupError: pass def find_vdf_client() -> pathlib.Path: p = pathlib.Path(pkg_resources.get_distribution("chiavdf").location) / "vdf_client" if p.is_file(): return p raise FileNotFoundError("can't find vdf_client binary") async def spawn_process(host: str, port: int, counter: int): global stopped global active_processes path_to_vdf_client = find_vdf_client() first_10_seconds = True start_time = time.time() while not stopped: try: dirname = path_to_vdf_client.parent basename = path_to_vdf_client.name resolved = socket.gethostbyname(host) proc = await asyncio.create_subprocess_shell( f"{basename} {resolved} {port} {counter}", stdout=asyncio.subprocess.PIPE, stderr=asyncio.subprocess.PIPE, env={"PATH": dirname}, ) except Exception as e: log.warning(f"Exception while spawning process {counter}: {(e)}") continue async with lock: active_processes.append(proc) stdout, stderr = await proc.communicate() if stdout: log.info(f"VDF client {counter}: {stdout.decode().rstrip()}") if stderr: if first_10_seconds: if time.time() - start_time > 10: first_10_seconds = False else: log.error(f"VDF client {counter}: {stderr.decode().rstrip()}") log.info(f"Process number {counter} ended.") async with lock: if proc in active_processes: active_processes.remove(proc) await asyncio.sleep(0.1) async def spawn_all_processes(config: Dict, net_config: Dict): await asyncio.sleep(5) port = config["port"] process_count = config["process_count"] awaitables = [spawn_process(net_config["self_hostname"], port, i) for i in range(process_count)] await asyncio.gather(*awaitables) def main(): root_path = DEFAULT_ROOT_PATH setproctitle("chaingreen_timelord_launcher") net_config = load_config(root_path, "config.yaml") config = net_config["timelord_launcher"] initialize_logging("TLauncher", config["logging"], root_path) def signal_received(): asyncio.create_task(kill_processes()) loop = asyncio.get_event_loop() try: loop.add_signal_handler(signal.SIGINT, signal_received) loop.add_signal_handler(signal.SIGTERM, signal_received) except NotImplementedError: log.info("signal handlers unsupported") try: loop.run_until_complete(spawn_all_processes(config, net_config)) finally: log.info("Launcher fully closed.") loop.close() if __name__ == "__main__": main()
30.391304
100
0.656366
8d67a183619a90f435572dc5c386f70dc3005c6c
23,161
py
Python
statsmodels/tsa/tests/test_deterministic.py
CCHiggins/statsmodels
300b6fba90c65c8e94b4f83e04f7ae1b0ceeac2e
[ "BSD-3-Clause" ]
1
2022-01-16T01:33:03.000Z
2022-01-16T01:33:03.000Z
statsmodels/tsa/tests/test_deterministic.py
CCHiggins/statsmodels
300b6fba90c65c8e94b4f83e04f7ae1b0ceeac2e
[ "BSD-3-Clause" ]
5
2022-02-13T14:38:04.000Z
2022-02-15T00:13:07.000Z
statsmodels/tsa/tests/test_deterministic.py
CCHiggins/statsmodels
300b6fba90c65c8e94b4f83e04f7ae1b0ceeac2e
[ "BSD-3-Clause" ]
4
2022-02-04T22:58:27.000Z
2022-02-14T19:29:18.000Z
from statsmodels.compat.pandas import PD_LT_1_0_0, is_int_index from statsmodels.compat.pytest import pytest_warns from typing import Hashable, Tuple import numpy as np import pandas as pd import pytest from statsmodels.tsa.deterministic import ( CalendarFourier, CalendarSeasonality, CalendarTimeTrend, DeterministicProcess, DeterministicTerm, Fourier, Seasonality, TimeTrend, ) @pytest.fixture(scope="module", params=[True, False]) def time_index(request): idx = pd.date_range("2000-01-01", periods=833, freq="B") if request.param: return idx.to_period("B") return idx @pytest.fixture( scope="module", params=["range", "period", "datetime", "fib", "int64"] ) def index(request): param = request.param if param in ("period", "datetime"): idx = pd.date_range("2000-01-01", periods=137, freq="M") if param == "period": idx = idx.to_period("M") elif param == "range": idx = pd.RangeIndex(0, 123) elif param == "int64": idx = pd.Index(np.arange(123)) elif param == "fib": fib = [0, 1] for _ in range(113): fib.append(fib[-2] + fib[-1]) idx = pd.Index(fib) else: raise NotImplementedError() return idx @pytest.fixture(scope="module", params=[None, "period", False, "list"]) def forecast_index(request): idx = pd.date_range("2000-01-01", periods=400, freq="B") if request.param is None: return None elif request.param == "period": return idx.to_period("B") elif request.param == "list": return list(idx) return idx @pytest.mark.smoke def test_time_trend_smoke(index, forecast_index): tt = TimeTrend(True, 2) tt.in_sample(index) steps = 83 if forecast_index is None else len(forecast_index) warn = None if ( is_int_index(index) and np.any(np.diff(index) != 1) or ( type(index) is pd.Index and max(index) > 2 ** 63 and forecast_index is None ) ): warn = UserWarning with pytest_warns(warn): tt.out_of_sample(steps, index, forecast_index) str(tt) hash(tt) assert isinstance(tt.order, int) assert isinstance(tt._constant, bool) assert TimeTrend.from_string("ctt") == tt assert TimeTrend.from_string("ct") != tt assert TimeTrend.from_string("t") != tt assert TimeTrend.from_string("n") != tt assert Seasonality(12) != tt tt0 = TimeTrend(False, 0) tt0.in_sample(index) str(tt0) @pytest.mark.smoke def test_seasonality_smoke(index, forecast_index): s = Seasonality(12) s.in_sample(index) steps = 83 if forecast_index is None else len(forecast_index) warn = None if ( is_int_index(index) and np.any(np.diff(index) != 1) or ( type(index) is pd.Index and max(index) > 2 ** 63 and forecast_index is None ) ): warn = UserWarning with pytest_warns(warn): s.out_of_sample(steps, index, forecast_index) assert isinstance(s.period, int) str(s) hash(s) if isinstance(index, (pd.DatetimeIndex, pd.PeriodIndex)) and index.freq: s = Seasonality.from_index(index) s.in_sample(index) s.out_of_sample(steps, index, forecast_index) Seasonality.from_index(list(index)) @pytest.mark.smoke def test_fourier_smoke(index, forecast_index): f = Fourier(12, 2) f.in_sample(index) steps = 83 if forecast_index is None else len(forecast_index) warn = None if ( is_int_index(index) and np.any(np.diff(index) != 1) or ( type(index) is pd.Index and max(index) > 2 ** 63 and forecast_index is None ) ): warn = UserWarning with pytest_warns(warn): f.out_of_sample(steps, index, forecast_index) assert isinstance(f.period, float) assert isinstance(f.order, int) str(f) hash(f) with pytest.raises(ValueError, match=r"2 \* order must be <= period"): Fourier(12, 7) @pytest.mark.smoke def test_calendar_time_trend_smoke(time_index, forecast_index): ct = CalendarTimeTrend("A", order=2) ct.in_sample(time_index) steps = 83 if forecast_index is None else len(forecast_index) ct.out_of_sample(steps, time_index, forecast_index) str(ct) hash(ct) assert isinstance(ct.order, int) assert isinstance(ct.constant, bool) assert isinstance(ct.freq, str) assert ct.base_period is None @pytest.mark.smoke def test_calendar_fourier_smoke(time_index, forecast_index): cf = CalendarFourier("A", 2) cf.in_sample(time_index) steps = 83 if forecast_index is None else len(forecast_index) cf.out_of_sample(steps, time_index, forecast_index) assert isinstance(cf.order, int) assert isinstance(cf.freq, str) str(cf) repr(cf) hash(cf) params = CalendarSeasonality._supported cs_params = [(k, k2) for k, v in params.items() for k2 in v.keys()] @pytest.mark.parametrize("freq_period", cs_params) def test_calendar_seasonality(time_index, forecast_index, freq_period): freq, period = freq_period cs = CalendarSeasonality(period, freq) cs.in_sample(time_index) steps = 83 if forecast_index is None else len(forecast_index) cs.out_of_sample(steps, time_index, forecast_index) assert isinstance(cs.period, str) assert isinstance(cs.freq, str) str(cs) repr(cs) hash(cs) cs2 = CalendarSeasonality(period, freq) assert cs == cs2 def test_forbidden_index(): index = pd.RangeIndex(0, 10) ct = CalendarTimeTrend("A", order=2) with pytest.raises(TypeError, match="CalendarTimeTrend terms can only"): ct.in_sample(index) def test_calendar_time_trend_base(time_index): ct = CalendarTimeTrend("M", True, order=3, base_period="1960-1-1") ct2 = CalendarTimeTrend("M", True, order=3) assert ct != ct2 str(ct) str(ct2) assert ct.base_period is not None assert ct2.base_period is None def test_invalid_freq_period(time_index): with pytest.raises(ValueError, match="The combination of freq="): CalendarSeasonality("H", "A") cs = CalendarSeasonality("B", "W") with pytest.raises(ValueError, match="freq is B but index contains"): cs.in_sample(pd.date_range("2000-1-1", periods=10, freq="D")) def test_check_index_type(): ct = CalendarTimeTrend("A", True, order=3) idx = pd.RangeIndex(0, 20) with pytest.raises(TypeError, match="CalendarTimeTrend terms can only"): ct._check_index_type(idx, pd.DatetimeIndex) with pytest.raises(TypeError, match="CalendarTimeTrend terms can only"): ct._check_index_type(idx, (pd.DatetimeIndex,)) with pytest.raises(TypeError, match="CalendarTimeTrend terms can only"): ct._check_index_type(idx, (pd.DatetimeIndex, pd.PeriodIndex)) idx = pd.Index([0, 1, 1, 2, 3, 5, 8, 13]) with pytest.raises(TypeError, match="CalendarTimeTrend terms can only"): types = (pd.DatetimeIndex, pd.PeriodIndex, pd.RangeIndex) ct._check_index_type(idx, types) def test_unknown_freq(): with pytest.raises(ValueError, match="freq is not understood by pandas"): CalendarTimeTrend("unknown", True, order=3) def test_invalid_formcast_index(index): tt = TimeTrend(order=4) with pytest.raises(ValueError, match="The number of values in forecast_"): tt.out_of_sample(10, index, pd.RangeIndex(11)) def test_seasonal_from_index_err(): index = pd.Index([0, 1, 1, 2, 3, 5, 8, 12]) with pytest.raises(TypeError): Seasonality.from_index(index) index = pd.date_range("2000-1-1", periods=10)[[0, 1, 2, 3, 5, 8]] with pytest.raises(ValueError): Seasonality.from_index(index) def test_time_trend(index): tt = TimeTrend(constant=True) const = tt.in_sample(index) assert const.shape == (index.shape[0], 1) assert np.all(const == 1) pd.testing.assert_index_equal(const.index, index) warn = None if (is_int_index(index) and np.any(np.diff(index) != 1)) or ( type(index) is pd.Index and max(index) > 2 ** 63 ): warn = UserWarning with pytest_warns(warn): const_fcast = tt.out_of_sample(23, index) assert np.all(const_fcast == 1) tt = TimeTrend(constant=False) empty = tt.in_sample(index) assert empty.shape == (index.shape[0], 0) tt = TimeTrend(constant=False, order=2) t2 = tt.in_sample(index) assert t2.shape == (index.shape[0], 2) assert list(t2.columns) == ["trend", "trend_squared"] tt = TimeTrend(constant=True, order=2) final = tt.in_sample(index) expected = pd.concat([const, t2], axis=1) pd.testing.assert_frame_equal(final, expected) tt = TimeTrend(constant=True, order=2) short = tt.in_sample(index[:-50]) with pytest_warns(warn): remainder = tt.out_of_sample(50, index[:-50]) direct = tt.out_of_sample( steps=50, index=index[:-50], forecast_index=index[-50:] ) combined = pd.concat([short, remainder], axis=0) if isinstance(index, (pd.DatetimeIndex, pd.RangeIndex)): pd.testing.assert_frame_equal(combined, final) combined = pd.concat([short, direct], axis=0) pd.testing.assert_frame_equal(combined, final, check_index_type=False) def test_seasonality(index): s = Seasonality(period=12) exog = s.in_sample(index) assert s.is_dummy assert exog.shape == (index.shape[0], 12) pd.testing.assert_index_equal(exog.index, index) assert np.all(exog.sum(1) == 1.0) assert list(exog.columns) == [f"s({i},12)" for i in range(1, 13)] expected = np.zeros((index.shape[0], 12)) for i in range(12): expected[i::12, i] = 1.0 np.testing.assert_equal(expected, np.asarray(exog)) warn = None if (is_int_index(index) and np.any(np.diff(index) != 1)) or ( type(index) is pd.Index and max(index) > 2 ** 63 ): warn = UserWarning with pytest_warns(warn): fcast = s.out_of_sample(steps=12, index=index) assert fcast.iloc[0, len(index) % 12] == 1.0 assert np.all(fcast.sum(1) == 1) s = Seasonality(period=7, initial_period=3) exog = s.in_sample(index) assert exog.iloc[0, 2] == 1.0 assert exog.iloc[0].sum() == 1.0 assert s.initial_period == 3 with pytest.raises(ValueError, match="initial_period must be in"): Seasonality(period=12, initial_period=-3) with pytest.raises(ValueError, match="period must be >= 2"): Seasonality(period=1) def test_seasonality_time_index(time_index): tt = Seasonality.from_index(time_index) assert tt.period == 5 fcast = tt.out_of_sample(steps=12, index=time_index) new_idx = DeterministicTerm._extend_index(time_index, 12) pd.testing.assert_index_equal(fcast.index, new_idx) def test_fourier(index): f = Fourier(period=12, order=3) terms = f.in_sample(index) assert f.order == 3 assert terms.shape == (index.shape[0], 2 * f.order) loc = np.arange(index.shape[0]) / 12 for i, col in enumerate(terms): j = i // 2 + 1 fn = np.cos if (i % 2) else np.sin expected = fn(2 * np.pi * j * loc) np.testing.assert_allclose(terms[col], expected, atol=1e-8) cols = [] for i in range(2 * f.order): fn = "cos" if (i % 2) else "sin" cols.append(f"{fn}({(i // 2) + 1},12)") assert list(terms.columns) == cols @pytest.mark.skipif(PD_LT_1_0_0, reason="bug in old pandas") def test_index_like(): idx = np.empty((100, 2)) with pytest.raises(TypeError, match="index must be a pandas"): DeterministicTerm._index_like(idx) def test_calendar_fourier(reset_randomstate): inc = np.abs(np.random.standard_normal(1000)) inc = np.cumsum(inc) inc = 10 * inc / inc[-1] offset = (24 * 3600 * inc).astype(np.int64) base = pd.Timestamp("2000-1-1") index = [base + pd.Timedelta(val, unit="s") for val in offset] index = pd.Index(index) cf = CalendarFourier("D", 2) assert cf.order == 2 terms = cf.in_sample(index) cols = [] for i in range(2 * cf.order): fn = "cos" if (i % 2) else "sin" cols.append(f"{fn}({(i // 2) + 1},freq=D)") assert list(terms.columns) == cols inc = offset / (24 * 3600) loc = 2 * np.pi * (inc - np.floor(inc)) expected = [] for i in range(4): scale = i // 2 + 1 fn = np.cos if (i % 2) else np.sin expected.append(fn(scale * loc)) expected = np.column_stack(expected) np.testing.assert_allclose(expected, terms.values) def test_calendar_time_trend(reset_randomstate): inc = np.abs(np.random.standard_normal(1000)) inc = np.cumsum(inc) inc = 10 * inc / inc[-1] offset = (24 * 3600 * inc).astype(np.int64) base = pd.Timestamp("2000-1-1") index = [base + pd.Timedelta(val, "s") for val in offset] index = pd.Index(index) ctt = CalendarTimeTrend("D", True, order=3, base_period=base) assert ctt.order == 3 terms = ctt.in_sample(index) cols = ["const", "trend", "trend_squared", "trend_cubed"] assert list(terms.columns) == cols inc = 1 + offset / (24 * 3600) expected = [] for i in range(4): expected.append(inc ** i) expected = np.column_stack(expected) np.testing.assert_allclose(expected, terms.values) ctt = CalendarTimeTrend("D", True, order=2, base_period=base) ctt2 = CalendarTimeTrend.from_string("D", trend="ctt", base_period=base) pd.testing.assert_frame_equal(ctt.in_sample(index), ctt2.in_sample(index)) ct = CalendarTimeTrend("D", True, order=1, base_period=base) ct2 = CalendarTimeTrend.from_string("D", trend="ct", base_period=base) pd.testing.assert_frame_equal(ct.in_sample(index), ct2.in_sample(index)) ctttt = CalendarTimeTrend("D", True, order=4, base_period=base) assert ctttt.order == 4 terms = ctttt.in_sample(index) cols = ["const", "trend", "trend_squared", "trend_cubed", "trend**4"] assert list(terms.columns) == cols def test_calendar_seasonal_period_w(): period = "W" index = pd.date_range("2000-01-03", freq="H", periods=600) cs = CalendarSeasonality("H", period=period) terms = cs.in_sample(index) assert np.all(terms.sum(1) == 1.0) for i in range(index.shape[0]): assert terms.iloc[i, i % 168] == 1.0 index = pd.date_range("2000-01-03", freq="B", periods=600) cs = CalendarSeasonality("B", period=period) terms = cs.in_sample(index) assert np.all(terms.sum(1) == 1.0) for i in range(index.shape[0]): assert terms.iloc[i, i % 5] == 1.0 index = pd.date_range("2000-01-03", freq="D", periods=600) cs = CalendarSeasonality("D", period=period) terms = cs.in_sample(index) assert np.all(terms.sum(1) == 1.0) for i in range(index.shape[0]): assert terms.iloc[i, i % 7] == 1.0 def test_calendar_seasonal_period_d(): period = "D" index = pd.date_range("2000-01-03", freq="H", periods=600) cs = CalendarSeasonality("H", period=period) terms = cs.in_sample(index) assert np.all(terms.sum(1) == 1.0) for i in range(index.shape[0]): assert terms.iloc[i, i % 24] == 1.0 def test_calendar_seasonal_period_q(): period = "Q" index = pd.date_range("2000-01-01", freq="M", periods=600) cs = CalendarSeasonality("M", period=period) terms = cs.in_sample(index) assert np.all(terms.sum(1) == 1.0) for i in range(index.shape[0]): assert terms.iloc[i, i % 3] == 1.0 def test_calendar_seasonal_period_a(): period = "A" index = pd.date_range("2000-01-01", freq="M", periods=600) cs = CalendarSeasonality("M", period=period) terms = cs.in_sample(index) assert np.all(terms.sum(1) == 1.0) for i in range(index.shape[0]): assert terms.iloc[i, i % 12] == 1.0 cs = CalendarSeasonality("Q", period=period) terms = cs.in_sample(index) assert np.all(terms.sum(1) == 1.0) for i in range(index.shape[0]): assert terms.iloc[i, (i % 12) // 3] == 1.0 @pytest.mark.parametrize("constant", [True, False]) @pytest.mark.parametrize("order", [0, 1]) @pytest.mark.parametrize("seasonal", [True, False]) @pytest.mark.parametrize("fourier", [0, 1]) @pytest.mark.parametrize("period", [None, 10]) @pytest.mark.parametrize("drop", [True, False]) def test_deterministic_process( time_index, constant, order, seasonal, fourier, period, drop ): if seasonal and fourier: return dp = DeterministicProcess( time_index, constant=constant, order=order, seasonal=seasonal, fourier=fourier, period=period, drop=drop, ) terms = dp.in_sample() pd.testing.assert_index_equal(terms.index, time_index) terms = dp.out_of_sample(23) assert isinstance(terms, pd.DataFrame) def test_deterministic_process_errors(time_index): with pytest.raises(ValueError, match="seasonal and fourier"): DeterministicProcess(time_index, seasonal=True, fourier=2, period=5) with pytest.raises(TypeError, match="All additional terms"): DeterministicProcess(time_index, seasonal=True, additional_terms=[1]) def test_range_error(): idx = pd.Index([0, 1, 1, 2, 3, 5, 8, 13]) dp = DeterministicProcess( idx, constant=True, order=2, seasonal=True, period=2 ) with pytest.raises(TypeError, match="The index in the deterministic"): dp.range(0, 12) def test_range_index_basic(): idx = pd.date_range("2000-1-1", freq="M", periods=120) dp = DeterministicProcess(idx, constant=True, order=1, seasonal=True) dp.range("2001-1-1", "2008-1-1") dp.range("2001-1-1", "2015-1-1") dp.range("2013-1-1", "2008-1-1") dp.range(0, 100) dp.range(100, 150) dp.range(130, 150) with pytest.raises(ValueError): dp.range("1990-1-1", "2010-1-1") idx = pd.period_range("2000-1-1", freq="M", periods=120) dp = DeterministicProcess(idx, constant=True, order=1, seasonal=True) dp.range("2001-1-1", "2008-1-1") dp.range("2001-1-1", "2015-1-1") dp.range("2013-1-1", "2008-1-1") with pytest.raises(ValueError, match="start must be non-negative"): dp.range(-7, 200) dp.range(0, 100) dp.range(100, 150) dp.range(130, 150) idx = pd.RangeIndex(0, 120) dp = DeterministicProcess( idx, constant=True, order=1, seasonal=True, period=12 ) dp.range(0, 100) dp.range(100, 150) dp.range(120, 150) dp.range(130, 150) with pytest.raises(ValueError): dp.range(-10, 0) def test_range_casting(): idx = np.arange(120) dp = DeterministicProcess( idx, constant=True, order=1, seasonal=True, period=12 ) idx = pd.RangeIndex(0, 120) dp2 = DeterministicProcess( idx, constant=True, order=1, seasonal=True, period=12 ) pd.testing.assert_frame_equal(dp.in_sample(), dp2.in_sample()) pd.testing.assert_frame_equal(dp.range(100, 150), dp2.range(100, 150)) def test_non_unit_range(): idx = pd.RangeIndex(0, 700, 7) dp = DeterministicProcess(idx, constant=True) with pytest.raises(ValueError, match="The step of the index is not 1"): dp.range(11, 900) def test_additional_terms(time_index): add_terms = [TimeTrend(True, order=1)] dp = DeterministicProcess(time_index, additional_terms=add_terms) dp2 = DeterministicProcess(time_index, constant=True, order=1) pd.testing.assert_frame_equal(dp.in_sample(), dp2.in_sample()) with pytest.raises( ValueError, match="One or more terms in additional_terms" ): DeterministicProcess( time_index, additional_terms=add_terms + add_terms ) with pytest.raises( ValueError, match="One or more terms in additional_terms" ): DeterministicProcess( time_index, constant=True, order=1, additional_terms=add_terms ) def test_drop_two_consants(time_index): tt = TimeTrend(constant=True, order=1) dp = DeterministicProcess( time_index, constant=True, additional_terms=[tt], drop=True ) assert dp.in_sample().shape[1] == 2 dp2 = DeterministicProcess(time_index, additional_terms=[tt], drop=True) pd.testing.assert_frame_equal(dp.in_sample(), dp2.in_sample()) @pytest.mark.parametrize( "index", [ pd.RangeIndex(0, 200), pd.Index(np.arange(200)), pd.date_range("2000-1-1", freq="M", periods=200), pd.period_range("2000-1-1", freq="M", periods=200), ], ) def test_determintic_term_equiv(index): base = DeterministicProcess(pd.RangeIndex(0, 200), constant=True, order=2) dp = DeterministicProcess(index, constant=True, order=2) np.testing.assert_array_equal(base.in_sample(), dp.in_sample()) np.testing.assert_array_equal(base.out_of_sample(37), dp.out_of_sample(37)) np.testing.assert_array_equal(base.range(200, 237), dp.range(200, 237)) np.testing.assert_array_equal(base.range(50, 150), dp.range(50, 150)) np.testing.assert_array_equal(base.range(50, 250), dp.range(50, 250)) class DummyTerm(DeterministicTerm): @property def _eq_attr(self) -> Tuple[Hashable, ...]: return ("Dummy",) def __str__(self) -> str: return "Dummy" columns = [ "const1", "const2", "trend1", "trend2", "normal1", "normal2", "dummy1_1", "dummy1_2", "always_drop1", "always_drop2", "dummy2_1", "dummy2_2", ] def in_sample(self, index: pd.Index) -> pd.DataFrame: nobs = index.shape[0] terms = np.empty((index.shape[0], 12)) for i in range(0, 12, 2): if i == 0: value = 1 elif i == 2: value = np.arange(nobs) elif i == 4: value = np.random.standard_normal(nobs) elif i == 6: value = np.zeros(nobs) value[::2] = 1 elif i == 8: value = 0 else: # elif i == 8: value = np.zeros(nobs) value[1::2] = 1 terms[:, i] = terms[:, i + 1] = value return pd.DataFrame(terms, columns=self.columns, index=index) def out_of_sample( self, steps: int, index: pd.Index, forecast_index: pd.Index = None, ) -> pd.DataFrame: fcast_index = self._extend_index(index, steps, forecast_index) terms = np.random.standard_normal((steps, 12)) return pd.DataFrame(terms, columns=self.columns, index=fcast_index) def test_drop(): index = pd.RangeIndex(0, 200) dummy = DummyTerm() str(dummy) assert dummy != TimeTrend() dp = DeterministicProcess(index, additional_terms=[dummy], drop=True) in_samp = dp.in_sample() assert in_samp.shape == (200, 4) oos = dp.out_of_sample(37) assert oos.shape == (37, 4) assert list(oos.columns) == list(in_samp.columns) valid = ("const", "trend", "dummy", "normal") for valid_col in valid: assert sum([1 for col in oos if valid_col in col]) == 1
32.575246
79
0.638358
49fed8d661e55df92e6ec66e045b6d92cad4271d
1,315
py
Python
app/core/tests/test_admin.py
shravands/django-restapi-recipe
c21d01ab3b0d92d249e638a1b503ea54dd6d69bd
[ "MIT" ]
null
null
null
app/core/tests/test_admin.py
shravands/django-restapi-recipe
c21d01ab3b0d92d249e638a1b503ea54dd6d69bd
[ "MIT" ]
null
null
null
app/core/tests/test_admin.py
shravands/django-restapi-recipe
c21d01ab3b0d92d249e638a1b503ea54dd6d69bd
[ "MIT" ]
null
null
null
from django.test import TestCase, Client from django.contrib.auth import get_user_model from django.urls import reverse class AdminSiteTests(TestCase): def setUp(self): self.client = Client() self.admin_user = get_user_model().objects.create_superuser( email='admin@app.com', password='password@123' ) self.client.force_login(self.admin_user) self.user = get_user_model().objects.create_user( email='test@app.com', password='password@123', name='Test full user name' ) def test_users_listed(self): """Test that users are listed on user page""" url = reverse('admin:core_user_changelist') res = self.client.get(url) self.assertContains(res, self.user.name) self.assertContains(res, self.user.email) def test_user_change_page(self): """Test that the users edit page works""" url = reverse('admin:core_user_change', args=[self.user.id]) res = self.client.get(url) self.assertEqual(res.status_code, 200) def test_create_user_page(self): """Test that the create user page works""" url = reverse('admin:core_user_add') res = self.client.get(url) self.assertEqual(res.status_code, 200)
32.073171
68
0.638023
3411a4a3bb630e8042bfdf1c4f5c16218df48540
1,100
py
Python
salsa_env/lib/python3.7/site-packages/openai/api_resources/file.py
shahjaidev/Salsa-GPT3
41ecf0d7268300a2435a8eb8f4f4c68139de6e79
[ "MIT" ]
1
2020-11-26T10:28:31.000Z
2020-11-26T10:28:31.000Z
salsa_env/lib/python3.7/site-packages/openai/api_resources/file.py
shahjaidev/Salsa-GPT3
41ecf0d7268300a2435a8eb8f4f4c68139de6e79
[ "MIT" ]
null
null
null
salsa_env/lib/python3.7/site-packages/openai/api_resources/file.py
shahjaidev/Salsa-GPT3
41ecf0d7268300a2435a8eb8f4f4c68139de6e79
[ "MIT" ]
null
null
null
from __future__ import absolute_import, division, print_function import json import os import tempfile import openai from openai import api_requestor, util from openai.api_resources.abstract import ( APIResource, CreateableAPIResource, DeletableAPIResource, ListableAPIResource, UpdateableAPIResource, ) from openai.util import log_info class File(ListableAPIResource): OBJECT_NAME = "file" @classmethod def create( cls, api_key=None, api_base=None, api_version=None, organization=None, **params ): requestor = api_requestor.APIRequestor( api_key, api_base=openai.file_api_base or openai.api_base, api_version=api_version, organization=organization, ) url = cls.class_url() supplied_headers = {"Content-Type": "multipart/form-data"} response, _, api_key = requestor.request( "post", url, params=params, headers=supplied_headers ) return util.convert_to_openai_object( response, api_key, api_version, organization )
27.5
87
0.683636
04152833046b319516ecf8c22d871a14f9a6d4d2
3,010
py
Python
linetools/lists/tests/test_init_linelist.py
marijana777/linetools
73720a2f6df42b7dde1f35055cd40ad970200f7f
[ "BSD-3-Clause" ]
null
null
null
linetools/lists/tests/test_init_linelist.py
marijana777/linetools
73720a2f6df42b7dde1f35055cd40ad970200f7f
[ "BSD-3-Clause" ]
null
null
null
linetools/lists/tests/test_init_linelist.py
marijana777/linetools
73720a2f6df42b7dde1f35055cd40ad970200f7f
[ "BSD-3-Clause" ]
null
null
null
# Module to run tests on Generating a LineList # Also tests some simple functionality from __future__ import print_function, absolute_import, division, unicode_literals # TEST_UNICODE_LITERALS import pdb import pytest from astropy import units as u import numpy as np from linetools.lists.linelist import LineList from linetools.lists import mk_sets as llmk def test_ism_read_source_catalogues(): ism = LineList('ISM', use_ISM_table=False) np.testing.assert_allclose(ism['HI 1215']['wrest'], 1215.6700*u.AA, rtol=1e-7) # ISM LineList def test_ism(): ism = LineList('ISM') # np.testing.assert_allclose(ism['HI 1215']['wrest'], 1215.6700*u.AA, rtol=1e-7) # Test update_fval def test_updfval(): ism = LineList('ISM') # np.testing.assert_allclose(ism['FeII 1133']['f'], 0.0055) # Test update_gamma def test_updgamma(): ism = LineList('ISM') # np.testing.assert_allclose(ism['HI 1215']['gamma'], 626500000.0/u.s) # Strong ISM LineList def test_strong(): strng = LineList('Strong') # assert len(strng._data) < 200 # Strong ISM LineList def test_euv(): euv = LineList('EUV') # assert np.max(euv._data['wrest']) < 1000. # Test for X-ray lines ovii = euv['OVII 21'] assert np.isclose(ovii['wrest'].value, 21.6019) # HI LineList def test_h1(): HI = LineList('HI') # for name in HI.name: assert name[0:2] == 'HI' # H2 LineList def test_h2(): h2 = LineList('H2') # np.testing.assert_allclose(h2[911.967*u.AA]['f'], 0.001315, rtol=1e-5) # CO LineList def test_co(): CO = LineList('CO') # np.testing.assert_allclose(CO[1322.133*u.AA]['f'], 0.0006683439, rtol=1e-5) # Galactic LineList def test_galx(): galx = LineList('Galaxy') # np.testing.assert_allclose(galx["Halpha"]['wrest'], 6564.613*u.AA, rtol=1e-5) # Unknown lines def test_unknown(): ism = LineList('ISM') unknown = ism.unknown_line() assert unknown['name'] == 'unknown', 'There is a problem in the LineList.unknown_line()' assert unknown['wrest'] == 0.*u.AA, 'There is a problem in the LineList.unknown_line()' print(ism['unknown']) def test_mk_sets(): import imp llmk.mk_hi(outfil='tmp.lst', stop=False) lt_path = imp.find_module('linetools')[1] llmk.add_galaxy_lines('tmp.lst', infil=lt_path+'/lists/sets/llist_v0.1.ascii', stop=False) def test_set_extra_columns_to_datatable(): ism = LineList('ISM') # bad calls try: ism.set_extra_columns_to_datatable(abundance_type='incorrect_one') except ValueError: pass try: ism.set_extra_columns_to_datatable(ion_correction='incorrect_one') except ValueError: pass # test expected strongest value ism.set_extra_columns_to_datatable(ion_correction='none', abundance_type='solar') np.testing.assert_allclose(ism['HI 1215']['rel_strength'], 14.704326420257642) tab = ism._data np.testing.assert_allclose(np.max(tab['rel_strength']), 14.704326420257642)
26.875
94
0.680731
31c91875c9c182f5229edf1ed446c63b4652f90f
7,923
py
Python
task_geo/data_sources/covid/spain/es_covid_formatter.py
Brian-V/task-geo
f03776b63d9dd60f7fd5795023d36370c70a63b0
[ "MIT" ]
null
null
null
task_geo/data_sources/covid/spain/es_covid_formatter.py
Brian-V/task-geo
f03776b63d9dd60f7fd5795023d36370c70a63b0
[ "MIT" ]
null
null
null
task_geo/data_sources/covid/spain/es_covid_formatter.py
Brian-V/task-geo
f03776b63d9dd60f7fd5795023d36370c70a63b0
[ "MIT" ]
null
null
null
import pandas as pd def es_covid_formatter(df): """Formats data retrieved from https://covid19.isciii.es Arguments: raw(pandas.DataFrame): Returns: pandas.DataFrame """ assert df[pd.isnull(df['CCAA Codigo ISO'])].empty df.rename(columns={'CCAA Codigo ISO': 'autonomous_community_iso', 'Fecha': 'date', 'Casos ': 'cases', 'Hospitalizados': 'hospitalized', 'UCI': 'icu', 'Fallecidos': 'deceased', 'Recuperados': 'recovered'}, inplace=True) print(df.head()) # ### Replace NaN with 0 df['cases'].fillna(value=0, inplace=True) df['hospitalized'].fillna(value=0, inplace=True) df['icu'].fillna(value=0, inplace=True) df['deceased'].fillna(value=0, inplace=True) df['recovered'].fillna(value=0, inplace=True) # Update date # Transform to compliance with https://coronawhy.github.io/task-geo/data_model.html df['date'] = pd.to_datetime(df['date']) # Undo cumulative sums # create a copy of the dataframe, without date unrolled_df = df.copy() unrolled_df.drop(['date'], axis=1, inplace=True) # unroll (i.e. undo the cumulative values) unrolled_df = unrolled_df.groupby('autonomous_community_iso').diff().fillna(unrolled_df) # add back autonomous_community_iso, date columns unrolled_df = pd.concat([df[['autonomous_community_iso', 'date']], unrolled_df], axis=1) # Insert Country unrolled_df.insert(0, 'country', 'Spain') # Remove rows that are not a region. This is significant because the last row includes # some text unrolled_df = unrolled_df[unrolled_df['autonomous_community_iso'].isin( ["CE", "AR", "CM", "PV", "MC", "AS", "AN", "CL", "CT", "MD", "IB", "GA", "CN", "VC", "RI", "NC", "EX", "ME", "CB"])] # Add Area, Population, Density, GDP unrolled_df['area_km_squared'] = unrolled_df['autonomous_community_iso'].map({"CE": 18.5, "AR": 47719, "CM": 79463, "PV": 7234, "MC": 11313, "AS": 10604, "AN": 87268, "CL": 94223, "CT": 32114, "MD": 8028, "IB": 4992, "GA": 29574, "CN": 7447, "VC": 23255, "RI": 5045, "NC": 10391, "EX": 41634, "ME": 12.3, "CB": 5321 }) unrolled_df['population'] = unrolled_df['autonomous_community_iso'].map({"CE": 84777, "AR": 1319291, "CM": 2032863, "PV": 2207776, "MC": 1493898, "AS": 1022800, "AN": 8414240, "CL": 2399548, "CT": 7675217, "MD": 6663394, "IB": 1149460, "GA": 2699499, "CN": 2153389, "VC": 5003769, "RI": 316798, "NC": 654214, "EX": 1067710, "ME": 86487, "CB": 581078 }) unrolled_df['density_pop_per_km_squared'] = unrolled_df['population'] / unrolled_df[ 'area_km_squared'] unrolled_df['gdp_per_capita_euros'] = unrolled_df['autonomous_community_iso'].map({"CE": 19335, "AR": 25540, "CM": 17698, "PV": 30829, "MC": 18520, "AS": 21035, "AN": 16960, "CL": 22289, "CT": 27248, "MD": 29385, "IB": 24393, "GA": 20723, "CN": 19568, "VC": 19964, "RI": 25508, "NC": 29071, "EX": 15394, "ME": 16981, "CB": 22341 }) # Reorder Columns return unrolled_df[ ['country', 'autonomous_community_iso', 'area_km_squared', 'population', 'gdp_per_capita_euros', 'density_pop_per_km_squared', 'date', 'cases', 'hospitalized', 'icu', 'deceased', 'recovered']]
65.479339
99
0.258109
f08e9dd3539677ad16d77417e0706cbe93871bd0
693
py
Python
wavencoder/models/baseline.py
shangeth/wavencoder
cd1a277c2cc44075c9f4506e344b3a725ad5b9fe
[ "MIT" ]
56
2020-10-10T18:11:28.000Z
2022-03-05T03:06:27.000Z
wavencoder/models/baseline.py
shangeth/wavencoder
cd1a277c2cc44075c9f4506e344b3a725ad5b9fe
[ "MIT" ]
9
2020-12-04T07:49:25.000Z
2021-11-26T13:16:31.000Z
wavencoder/models/baseline.py
shangeth/wavencoder
cd1a277c2cc44075c9f4506e344b3a725ad5b9fe
[ "MIT" ]
10
2020-10-10T18:06:47.000Z
2022-03-28T20:40:40.000Z
import torch import torch.nn as nn import torch.functional as F class CNN1d(nn.Module): def __init__(self, conv_layers): super(CNN1d, self).__init__() self.conv_layers = nn.ModuleList() in_d = 1 for dim, k, s in conv_layers: self.conv_layers.append(self.cnn_block(in_d, dim, k, s)) in_d = dim def cnn_block(self, n_in, n_out, k, s): block = nn.Sequential( nn.Conv1d(n_in, n_out, kernel_size=k, stride=s), nn.BatchNorm1d(n_out), nn.LeakyReLU() ) return block def forward(self, x): for conv in self.conv_layers: x = conv(x) return x
23.896552
68
0.5671
13ed024deec5372eaab4637d53e63c831a150651
7,297
py
Python
hummingbot/connector/budget_checker.py
BGTCapital/hummingbot
2c50f50d67cedccf0ef4d8e3f4c8cdce3dc87242
[ "Apache-2.0" ]
2
2022-03-03T10:00:27.000Z
2022-03-08T13:57:56.000Z
hummingbot/connector/budget_checker.py
BGTCapital/hummingbot
2c50f50d67cedccf0ef4d8e3f4c8cdce3dc87242
[ "Apache-2.0" ]
6
2022-01-31T15:44:54.000Z
2022-03-06T04:27:12.000Z
hummingbot/connector/budget_checker.py
BGTCapital/hummingbot
2c50f50d67cedccf0ef4d8e3f4c8cdce3dc87242
[ "Apache-2.0" ]
1
2022-03-28T09:28:40.000Z
2022-03-28T09:28:40.000Z
import typing from collections import defaultdict from copy import copy from decimal import Decimal from typing import Dict, List from hummingbot.core.data_type.order_candidate import OrderCandidate if typing.TYPE_CHECKING: # avoid circular import problems from hummingbot.connector.exchange_base import ExchangeBase class BudgetChecker: def __init__(self, exchange: "ExchangeBase"): """ Provides utilities for strategies to check the potential impact of order proposals on the user account balances. Mainly used to determine if sufficient balance is available to place a set of strategy-proposed orders. The strategy can size a list of proposed order candidates by calling the `adjust_candidates` method. For a more fine-grained control, the strategy can call `adjust_candidate_and_lock_available_collateral` for each one of the orders it intends to place. On each call, the `BudgetChecker` locks in the collateral amount needed for that order and makes it unavailable for the following hypothetical orders. Once the orders are sent to the exchange, the strategy must call `reset_locked_collateral` to free the hypothetically locked assets for the next set of checks. :param exchange: The exchange against which available collateral assets will be checked. """ self._exchange = exchange self._locked_collateral: Dict[str, Decimal] = defaultdict(lambda: Decimal("0")) def reset_locked_collateral(self): """ Frees collateral assets locked for hypothetical orders. """ self._locked_collateral.clear() def adjust_candidates( self, order_candidates: List[OrderCandidate], all_or_none: bool = True ) -> List[OrderCandidate]: """ Fills in the collateral and returns fields of the order candidates. If there is insufficient assets to cover the collateral requirements, the order amount is adjusted. See the doc string for `adjust_candidate` to learn more about how the adjusted order amount is derived. :param order_candidates: A list of candidate orders to check and adjust. :param all_or_none: Should the order amount be set to zero on insufficient balance. :return: The list of adjusted order candidates. """ self.reset_locked_collateral() adjusted_candidates = [ self.adjust_candidate_and_lock_available_collateral(order_candidate, all_or_none) for order_candidate in order_candidates ] self.reset_locked_collateral() return adjusted_candidates def adjust_candidate_and_lock_available_collateral( self, order_candidate: OrderCandidate, all_or_none: bool = True ) -> OrderCandidate: """ Fills in the collateral and returns fields of the order candidates. If there is insufficient assets to cover the collateral requirements, the order amount is adjusted. See the doc string for `adjust_candidate` to learn more about how the adjusted order amount is derived. This method also locks in the collateral amount for the given collateral token and makes it unavailable on subsequent calls to this method until the `reset_locked_collateral` method is called. :param order_candidate: The candidate order to check and adjust. :param all_or_none: Should the order amount be set to zero on insufficient balance. :return: The adjusted order candidate. """ adjusted_candidate = self.adjust_candidate(order_candidate, all_or_none) self._lock_available_collateral(adjusted_candidate) return adjusted_candidate def adjust_candidate( self, order_candidate: OrderCandidate, all_or_none: bool = True ) -> OrderCandidate: """ Fills in the collateral and returns fields of the order candidates. If there is insufficient collateral to cover the proposed order amount and the `all_or_none` parameter is set to `False`, the order amount will be adjusted to the greatest amount that the remaining collateral can provide for. If the parameter is set to `True`, the order amount is set to zero. :param order_candidate: The candidate order to be checked and adjusted. :param all_or_none: Should the order amount be set to zero on insufficient balance. :return: The adjusted order candidate. """ order_candidate = self.populate_collateral_entries(order_candidate) available_balances = self._get_available_balances(order_candidate) order_candidate.adjust_from_balances(available_balances) if order_candidate.resized: if all_or_none: order_candidate.set_to_zero() else: order_candidate = self._quantize_adjusted_order(order_candidate) return order_candidate def populate_collateral_entries(self, order_candidate: OrderCandidate) -> OrderCandidate: """ Populates the collateral and returns fields of the order candidates. This implementation assumes a spot-specific configuration for collaterals (i.e. the quote token for buy orders, and base token for sell orders). It can be overridden to provide other configurations. :param order_candidate: The candidate order to check and adjust. :return: The adjusted order candidate. """ order_candidate = copy(order_candidate) order_candidate.populate_collateral_entries(self._exchange) return order_candidate def _get_available_balances(self, order_candidate: OrderCandidate) -> Dict[str, Decimal]: available_balances = {} if order_candidate.order_collateral is not None: token, _ = order_candidate.order_collateral available_balances[token] = ( self._exchange.get_available_balance(token) - self._locked_collateral[token] ) if order_candidate.percent_fee_collateral is not None: token, _ = order_candidate.percent_fee_collateral available_balances[token] = ( self._exchange.get_available_balance(token) - self._locked_collateral[token] ) for entry in order_candidate.fixed_fee_collaterals: token, _ = entry available_balances[token] = ( self._exchange.get_available_balance(token) - self._locked_collateral[token] ) return available_balances def _quantize_adjusted_order(self, order_candidate: OrderCandidate) -> OrderCandidate: trading_pair = order_candidate.trading_pair adjusted_amount = order_candidate.amount quantized_amount = self._exchange.quantize_order_amount(trading_pair, adjusted_amount) if adjusted_amount != quantized_amount: order_candidate.amount = quantized_amount order_candidate = self.populate_collateral_entries(order_candidate) return order_candidate def _lock_available_collateral(self, order_candidate: OrderCandidate): for token, amount in order_candidate.collateral_dict.items(): self._locked_collateral[token] += amount
46.477707
120
0.711388
49dc4e9535355ec9753e36daf84aaaa21e272ed4
594
py
Python
test_api.py
CoffeeStraw/CapsNet-Knowledge-Extractor
99dc665bcce394e4dfa0b8a6deda28d1e3713509
[ "MIT" ]
5
2020-09-29T13:34:23.000Z
2021-12-01T15:27:53.000Z
test_api.py
CoffeeStraw/CapsNet-Knowledge-Extractor
99dc665bcce394e4dfa0b8a6deda28d1e3713509
[ "MIT" ]
null
null
null
test_api.py
CoffeeStraw/CapsNet-Knowledge-Extractor
99dc665bcce394e4dfa0b8a6deda28d1e3713509
[ "MIT" ]
null
null
null
""" Simple test file that performs some requests to the API """ import requests # API / getModels response = requests.get("http://127.0.0.1:5000/api/getModels") print(response.text) # API / computeTrainingStep response = requests.post( "http://127.0.0.1:5000/api/computeStep", json={"model": "Simple", "step": "trained", "dataset": "MNIST", "index": 0}, ) print(response.text) # API / computeTrainingStep response = requests.post( "http://127.0.0.1:5000/api/computeStep", json={"model": "Original", "step": "trained", "dataset": "MNIST", "index": 42}, ) print(response.text)
25.826087
83
0.671717
9aaf01c44d0a02ebd701c23944224c9c3a9e35db
7,242
py
Python
sarpy/processing/fft_base.py
khavernathy/sarpy
e0c2bb1a55f153628162ef7be89e9b7de34602df
[ "MIT" ]
null
null
null
sarpy/processing/fft_base.py
khavernathy/sarpy
e0c2bb1a55f153628162ef7be89e9b7de34602df
[ "MIT" ]
null
null
null
sarpy/processing/fft_base.py
khavernathy/sarpy
e0c2bb1a55f153628162ef7be89e9b7de34602df
[ "MIT" ]
null
null
null
""" Helper classes and methods for Fourier processing schemes. """ __classification__ = "UNCLASSIFIED" __author__ = 'Thomas McCullough' import logging from sarpy.compliance import int_func from sarpy.io.general.base import BaseReader from sarpy.io.complex.sicd_elements.SICD import SICDType from sarpy.processing.ortho_rectify import FullResolutionFetcher # NB: the below are intended as common imports from other locations # leave them here, even if unused import numpy import scipy if scipy.__version__ < '1.4': # noinspection PyUnresolvedReferences from scipy.fftpack import fft, ifft, fftshift, ifftshift else: # noinspection PyUnresolvedReferences from scipy.fft import fft, ifft, fftshift, ifftshift class FFTCalculator(FullResolutionFetcher): """ Base Fourier processing calculator class. This is intended for processing schemes where full resolution is required along the processing dimension, so sub-sampling along the processing dimension does not decrease the amount of data which must be fetched. """ __slots__ = ( '_platform_direction', '_fill') def __init__(self, reader, dimension=0, index=0, block_size=10): """ Parameters ---------- reader : str|BaseReader Input file path or reader object, which must be of sicd type. dimension : int The dimension over which to split the sub-aperture. index : int The sicd index to use. block_size : int The approximate processing block size to fetch, given in MB. The minimum value for use here will be 1. """ self._platform_direction = None # set with the index setter self._fill = None # set implicitly with _set_fill() super(FFTCalculator, self).__init__(reader, dimension=dimension, index=index, block_size=block_size) @property def dimension(self): # type: () -> int """ int: The dimension along which to perform the color subaperture split. """ return self._dimension @dimension.setter def dimension(self, value): value = int_func(value) if value not in [0, 1]: raise ValueError('dimension must be 0 or 1, got {}'.format(value)) self._dimension = value self._set_fill() @property def index(self): # type: () -> int """ int: The index of the reader. """ return self._index @index.setter def index(self, value): super(FFTCalculator, self)._set_index(value) if self._sicd.SCPCOA is None or self._sicd.SCPCOA.SideOfTrack is None: logging.warning( 'The sicd object at index {} has unpopulated SCPCOA.SideOfTrack. ' 'Defaulting to "R", which may be incorrect.') self._platform_direction = 'R' else: self._platform_direction = self._sicd.SCPCOA.SideOfTrack self._set_fill() @property def fill(self): # type: () -> float """ float: The fill factor for the fourier processing. """ return self._fill def _set_fill(self): self._fill = None if self._dimension is None: return if self._index is None: return if self.dimension == 0: try: fill = 1.0/(self.sicd.Grid.Row.SS*self.sicd.Grid.Row.ImpRespBW) except (ValueError, AttributeError, TypeError): fill = 1.0 else: try: fill = 1.0/(self.sicd.Grid.Col.SS*self.sicd.Grid.Col.ImpRespBW) except (ValueError, AttributeError, TypeError): fill = 1.0 self._fill = max(1.0, float(fill)) def __getitem__(self, item): """ Fetches the processed data based on the input slice. Parameters ---------- item Returns ------- numpy.ndarray """ raise NotImplementedError def _validate_fft_input(array): """ Validate the fft input. Parameters ---------- array : numpy.ndarray Returns ------- None """ if not isinstance(array, numpy.ndarray): raise TypeError('array must be a numpy array') if not numpy.iscomplexobj(array): raise ValueError('array must have a complex data type') if array.ndim != 2: raise ValueError('array must be a two-dimensional array. Got shape {}'.format(array.shape)) def _determine_direction(sicd, dimension): """ Determine the default sign for the fft. Parameters ---------- sicd : SICDType dimension : int Returns ------- int """ sgn = None if dimension == 0: try: sgn = sicd.Grid.Row.Sgn except AttributeError: pass elif dimension == 1: try: sgn = sicd.Grid.Col.Sgn except AttributeError: pass else: raise ValueError('dimension must be one of 0 or 1.') return -1 if sgn is None else sgn def fft_sicd(array, dimension, sicd): """ Apply the forward one-dimensional forward fft to data associated with the given sicd along the given dimension/axis, in accordance with the sign populated in the SICD structure (default is -1). Parameters ---------- array : numpy.ndarray The data array, which must be two-dimensional and complex. dimension : int Must be one of 0, 1. sicd : SICDType The associated SICD structure. Returns ------- numpy.ndarray """ sgn = _determine_direction(sicd, dimension) return fft(array, axis=dimension) if sgn < 0 else ifft(array, axis=dimension) def ifft_sicd(array, dimension, sicd): """ Apply the inverse one-dimensional fft to data associated with the given sicd along the given dimension/axis. Parameters ---------- array : numpy.ndarray The data array, which must be two-dimensional and complex. dimension : int Must be one of 0, 1. sicd : SICDType The associated SICD structure. Returns ------- numpy.ndarray """ sgn = _determine_direction(sicd, dimension) return ifft(array, axis=dimension) if sgn < 0 else fft(array, axis=dimension) def fft2_sicd(array, sicd): """ Apply the forward two-dimensional fft (i.e. both axes) to data associated with the given sicd. Parameters ---------- array : numpy.ndarray The data array, which must be two-dimensional and complex. sicd : SICDType The associated SICD structure. Returns ------- numpy.ndarray """ return fft_sicd(fft_sicd(array, 0, sicd), 1, sicd) def ifft2_sicd(array, sicd): """ Apply the inverse two-dimensional fft (i.e. both axes) to data associated with the given sicd. Parameters ---------- array : numpy.ndarray The data array, which must be two-dimensional and complex. sicd : SICDType The associated SICD structure. Returns ------- numpy.ndarray """ return ifft_sicd(ifft_sicd(array, 0, sicd), 1, sicd)
26.05036
108
0.611571
49a600324f741b555b094c9c52d5934fa3e76cf2
16,914
py
Python
sdk/managedservices/azure-mgmt-managedservices/azure/mgmt/managedservices/aio/operations/_registration_definitions_operations.py
GoWang/azure-sdk-for-python
f241e3734a50953c2a37c10d2d84eb4c013b3ba0
[ "MIT" ]
2
2021-03-24T06:26:11.000Z
2021-04-18T15:55:59.000Z
sdk/managedservices/azure-mgmt-managedservices/azure/mgmt/managedservices/aio/operations/_registration_definitions_operations.py
GoWang/azure-sdk-for-python
f241e3734a50953c2a37c10d2d84eb4c013b3ba0
[ "MIT" ]
2
2021-11-03T06:10:36.000Z
2021-12-01T06:29:39.000Z
sdk/managedservices/azure-mgmt-managedservices/azure/mgmt/managedservices/aio/operations/_registration_definitions_operations.py
GoWang/azure-sdk-for-python
f241e3734a50953c2a37c10d2d84eb4c013b3ba0
[ "MIT" ]
1
2021-05-19T02:55:10.000Z
2021-05-19T02:55:10.000Z
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from typing import Any, AsyncIterable, Callable, Dict, Generic, Optional, TypeVar, Union import warnings from azure.core.async_paging import AsyncItemPaged, AsyncList from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error from azure.core.pipeline import PipelineResponse from azure.core.pipeline.transport import AsyncHttpResponse, HttpRequest from azure.core.polling import AsyncLROPoller, AsyncNoPolling, AsyncPollingMethod from azure.mgmt.core.exceptions import ARMErrorFormat from azure.mgmt.core.polling.async_arm_polling import AsyncARMPolling from ... import models as _models T = TypeVar('T') ClsType = Optional[Callable[[PipelineResponse[HttpRequest, AsyncHttpResponse], T, Dict[str, Any]], Any]] class RegistrationDefinitionsOperations: """RegistrationDefinitionsOperations async operations. You should not instantiate this class directly. Instead, you should create a Client instance that instantiates it for you and attaches it as an attribute. :ivar models: Alias to model classes used in this operation group. :type models: ~azure.mgmt.managedservices.models :param client: Client for service requests. :param config: Configuration of service client. :param serializer: An object model serializer. :param deserializer: An object model deserializer. """ models = _models def __init__(self, client, config, serializer, deserializer) -> None: self._client = client self._serialize = serializer self._deserialize = deserializer self._config = config async def get( self, scope: str, registration_definition_id: str, **kwargs ) -> "_models.RegistrationDefinition": """Gets the registration definition details. :param scope: Scope of the resource. :type scope: str :param registration_definition_id: Guid of the registration definition. :type registration_definition_id: str :keyword callable cls: A custom type or function that will be passed the direct response :return: RegistrationDefinition, or the result of cls(response) :rtype: ~azure.mgmt.managedservices.models.RegistrationDefinition :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.RegistrationDefinition"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-02-01-preview" accept = "application/json" # Construct URL url = self.get.metadata['url'] # type: ignore path_format_arguments = { 'scope': self._serialize.url("scope", scope, 'str', skip_quote=True), 'registrationDefinitionId': self._serialize.url("registration_definition_id", registration_definition_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.get(url, query_parameters, header_parameters) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize(_models.ErrorResponse, response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) deserialized = self._deserialize('RegistrationDefinition', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized get.metadata = {'url': '/{scope}/providers/Microsoft.ManagedServices/registrationDefinitions/{registrationDefinitionId}'} # type: ignore async def delete( self, registration_definition_id: str, scope: str, **kwargs ) -> None: """Deletes the registration definition. :param registration_definition_id: Guid of the registration definition. :type registration_definition_id: str :param scope: Scope of the resource. :type scope: str :keyword callable cls: A custom type or function that will be passed the direct response :return: None, or the result of cls(response) :rtype: None :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType[None] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-02-01-preview" accept = "application/json" # Construct URL url = self.delete.metadata['url'] # type: ignore path_format_arguments = { 'registrationDefinitionId': self._serialize.url("registration_definition_id", registration_definition_id, 'str'), 'scope': self._serialize.url("scope", scope, 'str', skip_quote=True), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.delete(url, query_parameters, header_parameters) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 204]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize(_models.ErrorResponse, response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) if cls: return cls(pipeline_response, None, {}) delete.metadata = {'url': '/{scope}/providers/Microsoft.ManagedServices/registrationDefinitions/{registrationDefinitionId}'} # type: ignore async def _create_or_update_initial( self, registration_definition_id: str, scope: str, request_body: "_models.RegistrationDefinition", **kwargs ) -> "_models.RegistrationDefinition": cls = kwargs.pop('cls', None) # type: ClsType["_models.RegistrationDefinition"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-02-01-preview" content_type = kwargs.pop("content_type", "application/json") accept = "application/json" # Construct URL url = self._create_or_update_initial.metadata['url'] # type: ignore path_format_arguments = { 'registrationDefinitionId': self._serialize.url("registration_definition_id", registration_definition_id, 'str'), 'scope': self._serialize.url("scope", scope, 'str', skip_quote=True), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') body_content_kwargs = {} # type: Dict[str, Any] body_content = self._serialize.body(request_body, 'RegistrationDefinition') body_content_kwargs['content'] = body_content request = self._client.put(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 201]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize(_models.ErrorResponse, response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) if response.status_code == 200: deserialized = self._deserialize('RegistrationDefinition', pipeline_response) if response.status_code == 201: deserialized = self._deserialize('RegistrationDefinition', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized _create_or_update_initial.metadata = {'url': '/{scope}/providers/Microsoft.ManagedServices/registrationDefinitions/{registrationDefinitionId}'} # type: ignore async def begin_create_or_update( self, registration_definition_id: str, scope: str, request_body: "_models.RegistrationDefinition", **kwargs ) -> AsyncLROPoller["_models.RegistrationDefinition"]: """Creates or updates a registration definition. :param registration_definition_id: Guid of the registration definition. :type registration_definition_id: str :param scope: Scope of the resource. :type scope: str :param request_body: The parameters required to create new registration definition. :type request_body: ~azure.mgmt.managedservices.models.RegistrationDefinition :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: True for ARMPolling, False for no polling, or a polling object for personal polling strategy :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of AsyncLROPoller that returns either RegistrationDefinition or the result of cls(response) :rtype: ~azure.core.polling.AsyncLROPoller[~azure.mgmt.managedservices.models.RegistrationDefinition] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, AsyncPollingMethod] cls = kwargs.pop('cls', None) # type: ClsType["_models.RegistrationDefinition"] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = await self._create_or_update_initial( registration_definition_id=registration_definition_id, scope=scope, request_body=request_body, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): deserialized = self._deserialize('RegistrationDefinition', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized path_format_arguments = { 'registrationDefinitionId': self._serialize.url("registration_definition_id", registration_definition_id, 'str'), 'scope': self._serialize.url("scope", scope, 'str', skip_quote=True), } if polling is True: polling_method = AsyncARMPolling(lro_delay, path_format_arguments=path_format_arguments, **kwargs) elif polling is False: polling_method = AsyncNoPolling() else: polling_method = polling if cont_token: return AsyncLROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return AsyncLROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_create_or_update.metadata = {'url': '/{scope}/providers/Microsoft.ManagedServices/registrationDefinitions/{registrationDefinitionId}'} # type: ignore def list( self, scope: str, **kwargs ) -> AsyncIterable["_models.RegistrationDefinitionList"]: """Gets a list of the registration definitions. :param scope: Scope of the resource. :type scope: str :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either RegistrationDefinitionList or the result of cls(response) :rtype: ~azure.core.async_paging.AsyncItemPaged[~azure.mgmt.managedservices.models.RegistrationDefinitionList] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.RegistrationDefinitionList"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-02-01-preview" accept = "application/json" def prepare_request(next_link=None): # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') if not next_link: # Construct URL url = self.list.metadata['url'] # type: ignore path_format_arguments = { 'scope': self._serialize.url("scope", scope, 'str', skip_quote=True), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') request = self._client.get(url, query_parameters, header_parameters) else: url = next_link query_parameters = {} # type: Dict[str, Any] request = self._client.get(url, query_parameters, header_parameters) return request async def extract_data(pipeline_response): deserialized = self._deserialize('RegistrationDefinitionList', pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return deserialized.next_link or None, AsyncList(list_of_elem) async def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: error = self._deserialize(_models.ErrorResponse, response) map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) return pipeline_response return AsyncItemPaged( get_next, extract_data ) list.metadata = {'url': '/{scope}/providers/Microsoft.ManagedServices/registrationDefinitions'} # type: ignore
47.64507
163
0.670273
0c6e008fa59f44a97c1b1a6796294c39e67e5ec4
3,170
py
Python
discord/backoff.py
Buster-2002/discord.py-self
83ab03aacac7571f1787220a3265e0697f6d374a
[ "MIT" ]
null
null
null
discord/backoff.py
Buster-2002/discord.py-self
83ab03aacac7571f1787220a3265e0697f6d374a
[ "MIT" ]
null
null
null
discord/backoff.py
Buster-2002/discord.py-self
83ab03aacac7571f1787220a3265e0697f6d374a
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """ The MIT License (MIT) Copyright (c) 2015-present Rapptz Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import random import time class ExponentialBackoff: """An implementation of the exponential backoff algorithm Provides a convenient interface to implement an exponential backoff for reconnecting or retrying transmissions in a distributed network. Once instantiated, the delay method will return the next interval to wait for when retrying a connection or transmission. The maximum delay increases exponentially with each retry up to a maximum of 2^10 * base, and is reset if no more attempts are needed in a period of 2^11 * base seconds. Parameters ---------- base: :class:`int` The base delay in seconds. The first retry-delay will be up to this many seconds. integral: :class:`bool` Set to ``True`` if whole periods of base is desirable, otherwise any number in between may be returned. """ def __init__(self, base=1, *, integral=False): self._base = base self._exp = 0 self._max = 10 self._reset_time = base * 2 ** 11 self._last_invocation = time.monotonic() # Use our own random instance to avoid messing with global one rand = random.Random() rand.seed() self._randfunc = rand.randrange if integral else rand.uniform def delay(self): """Compute the next delay Returns the next delay to wait according to the exponential backoff algorithm. This is a value between 0 and base * 2^exp where exponent starts off at 1 and is incremented at every invocation of this method up to a maximum of 10. If a period of more than base * 2^11 has passed since the last retry, the exponent is reset to 1. """ invocation = time.monotonic() interval = invocation - self._last_invocation self._last_invocation = invocation if interval > self._reset_time: self._exp = 0 self._exp = min(self._exp + 1, self._max) return self._randfunc(0, self._base * 2 ** self._exp)
36.436782
76
0.702839
2f891c789b98e1a97f0a9cd6198bac77e6d0a37e
6,382
py
Python
jiminy/utils/__init__.py
sibeshkar/jiminy
7754f86fb0f246e7d039ea0cbfd9950fcae4adfb
[ "MIT" ]
3
2020-03-16T13:50:40.000Z
2021-06-09T05:26:13.000Z
jiminy/utils/__init__.py
sibeshkar/jiminy
7754f86fb0f246e7d039ea0cbfd9950fcae4adfb
[ "MIT" ]
null
null
null
jiminy/utils/__init__.py
sibeshkar/jiminy
7754f86fb0f246e7d039ea0cbfd9950fcae4adfb
[ "MIT" ]
null
null
null
import logging import six import sys if six.PY2: import Queue as queue else: import queue import threading import signal from twisted.internet import defer from jiminy.twisty import reactor logger = logging.getLogger(__name__) class ErrorBuffer(object): def __init__(self): self.queue = queue.Queue() def __enter__(self): pass def __exit__(self, type, value, traceback): if value is not None: self.record(value) def __call__(self, error, wrap=True): self.record(error, wrap=True) def record(self, error, wrap=True): logger.debug('Error in thread %s: %s', threading.current_thread().name, error) if wrap: error = format_error(error) try: self.queue.put_nowait(error) except queue.Full: pass def check(self, timeout=None): if timeout is None: timeout = 0 try: error = self.queue.get(timeout=timeout) except queue.Empty: return else: raise error def blocking_check(self, timeout=None): # TODO: get rid of this method if timeout is None: while True: self.check(timeout=3600) else: self.check(timeout) from twisted.python import failure import traceback import threading from jiminy import error def format_error(e): # errback automatically wraps everything in a Twisted Failure if isinstance(e, failure.Failure): e = e.value if isinstance(e, str): err_string = e elif six.PY2: err_string = traceback.format_exc(e).rstrip() else: err_string = ''.join(traceback.format_exception(type(e), e, e.__traceback__)).rstrip() if err_string == 'None': # Reasonable heuristic for exceptions that were created by hand last = traceback.format_stack()[-2] err_string = '{}\n {}'.format(e, last) # Quick and dirty hack for now. err_string = err_string.replace('Connection to the other side was lost in a non-clean fashion', 'Connection to the other side was lost in a non-clean fashion (HINT: this generally actually means we got a connection refused error. Check that the remote is actually running.)') return error.Error(err_string) def queue_get(local_queue): while True: try: result = local_queue.get(timeout=1000) except queue.Empty: pass else: return result def blockingCallFromThread(f, *a, **kw): local_queue = queue.Queue() def _callFromThread(): result = defer.maybeDeferred(f, *a, **kw) result.addBoth(local_queue.put) reactor.callFromThread(_callFromThread) result = queue_get(local_queue) if isinstance(result, failure.Failure): if result.frames: e = error.Error(str(result)) else: e = result.value raise e return result from jiminy.gym import spaces def repeat_space(space, n): return spaces.Tuple([space] * n) import base64 import uuid def random_alphanumeric(length=14): buf = [] while len(buf) < length: entropy = base64.encodestring(uuid.uuid4().bytes).decode('ascii') bytes = [c for c in entropy if c.isalnum()] buf += bytes return ''.join(buf)[:length] def best_effort(function, *args, **kwargs): try: return function(*args, **kwargs) except: if six.PY2: logging.error('Error in %s:', function.__name__) traceback.print_exc() else: logging.error('Error in %s:', function.__name__) logger.error(traceback.format_exc()) return None import base64 def basic_auth_encode(username, password=''): fmt = '{}:{}'.format(username, password) return 'Basic ' + base64.encodestring(fmt.encode('utf-8')).rstrip().decode('utf-8') def basic_auth_decode(header): if header.startswith('Basic '): header = header[len('Basic '):] decoded = base64.decodestring(header.encode('utf-8')).decode('utf-8') username, password = decoded.split(':') return username, password else: return None import os def default_password(): if os.path.exists('/usr/local/boxware/privileged_state/password'): with open('/usr/local/boxware/privileged_state/password') as f: return f.read().strip() return 'boxware' import logging import time logger = logging.getLogger(__name__) class PeriodicLog(object): def log(self, obj, name, msg, *args, **kwargs): try: info = obj._periodic_log_info except AttributeError: info = obj._periodic_log_info = {} # Would be better to use a frequency=... arg after kwargs, but # that isn't py2 compatible. frequency = kwargs.pop('frequency', 1) delay = kwargs.pop('delay', 0) last_log = info.setdefault(name, time.time()-frequency+delay) if time.time() - last_log < frequency: return info[name] = time.time() logger.info('[{}] {}'.format(name, msg), *args) def log_debug(self, obj, name, msg, *args, **kwargs): try: info = obj._periodic_log_debug except AttributeError: info = obj._periodic_log_debug = {} frequency = kwargs.pop('frequency', 1) delay = kwargs.pop('delay', 0) last_log = info.setdefault(name, time.time()-frequency+delay) if time.time() - last_log < frequency: return info[name] = time.time() logger.debug('[{}] {}'.format(name, msg), *args) _periodic = PeriodicLog() periodic_log = _periodic.log periodic_log_debug = _periodic.log_debug import threading def thread_name(): return threading.current_thread().name def exit_on_signal(): """ Install a signal handler for HUP, INT, and TERM to call exit, allowing clean shutdown. When running a jiminy environment, it's important to shut down the container when the agent dies so you should either call this or otherwise arrange to exit on signals. """ def shutdown(signal, frame): logger.warn('Received signal %s: exiting', signal) sys.exit(128+signal) signal.signal(signal.SIGHUP, shutdown) signal.signal(signal.SIGINT, shutdown) signal.signal(signal.SIGTERM, shutdown)
30.390476
279
0.631777
ba4906813a5e95f39aa7dedcea6cf35078344326
5,417
py
Python
convs/dyres_conv.py
Nyquixt/DyConv
255193068424aaa83352bee258d34cb8b32b6ee6
[ "MIT" ]
null
null
null
convs/dyres_conv.py
Nyquixt/DyConv
255193068424aaa83352bee258d34cb8b32b6ee6
[ "MIT" ]
null
null
null
convs/dyres_conv.py
Nyquixt/DyConv
255193068424aaa83352bee258d34cb8b32b6ee6
[ "MIT" ]
null
null
null
import torch import torch.nn as nn import torch.nn.functional as F __all__ = ['DyResConv'] class route_func(nn.Module): def __init__(self, in_channels, num_experts=3, reduction=16, mode='A'): super().__init__() assert mode == 'A' or mode == 'B' or mode == 'S' self.mode = mode # Global Average Pool if mode == 'A' or mode == 'B': self.gap1 = nn.AdaptiveAvgPool2d(1) self.gap3 = nn.AdaptiveAvgPool2d(3) self.gap5 = nn.AdaptiveAvgPool2d(5) else: self.gap1 = nn.AdaptiveAvgPool2d(1) self.gap3 = nn.AdaptiveAvgPool2d(3) squeeze_channels = max(in_channels // reduction, reduction) if mode == 'A': # 1-3-3-1 self.dwise_separable = nn.Sequential( nn.Conv2d(3 * in_channels, squeeze_channels, kernel_size=1, stride=1, groups=1, bias=False), nn.ReLU(inplace=True), nn.Conv2d(squeeze_channels, squeeze_channels, kernel_size=3, stride=1, groups=squeeze_channels, bias=False), nn.ReLU(inplace=True), nn.Conv2d(squeeze_channels, squeeze_channels, kernel_size=3, stride=1, groups=squeeze_channels, bias=False), nn.ReLU(inplace=True), nn.Conv2d(squeeze_channels, num_experts * in_channels, kernel_size=1, stride=1, groups=1, bias=False) ) elif mode == 'B': # 3-1-1-3 self.dwise_separable = nn.Sequential( nn.Conv2d(3 * in_channels, in_channels, kernel_size=3, stride=1, groups=in_channels, bias=False), nn.ReLU(inplace=True), nn.Conv2d(in_channels, squeeze_channels, kernel_size=1, stride=1, groups=1, bias=False), nn.ReLU(inplace=True), nn.Conv2d(squeeze_channels, in_channels, kernel_size=1, stride=1, groups=1, bias=False), nn.ReLU(inplace=True), nn.Conv2d(in_channels, num_experts * in_channels, kernel_size=3, stride=1, groups=in_channels, bias=False) ) elif mode == 'S': # simplified mode self.dwise_separable = nn.Sequential( nn.Conv2d(2 * in_channels, squeeze_channels, kernel_size=1, stride=1, groups=1, bias=False), nn.ReLU(inplace=True), nn.Conv2d(squeeze_channels, squeeze_channels, kernel_size=3, stride=1, groups=squeeze_channels, bias=False), nn.ReLU(inplace=True), nn.Conv2d(squeeze_channels, num_experts * in_channels, kernel_size=1, stride=1, groups=1, bias=False) ) self.sigmoid = nn.Sigmoid() def forward(self, x): b, _, _, _ = x.size() a1 = self.gap1(x) if self.mode == 'A' or self.mode == 'B': a3 = F.interpolate(self.gap3(x), 5, mode='bicubic', align_corners=False) a5 = self.gap5(x) a1 = a1.expand_as(a5) attention = torch.cat([a1, a3, a5], dim=1) else: a3 = self.gap3(x) a1 = a1.expand_as(a3) attention = torch.cat([a1, a3], dim=1) attention = self.sigmoid(self.dwise_separable(attention)) return attention class DyResConv(nn.Module): def __init__(self, in_channels, out_channels, kernel_size, num_experts=3, stride=1, padding=0, groups=1, reduction=16, mode='A', deploy=False): super().__init__() assert mode == 'A' or mode == 'B' or mode == 'S' self.deploy = deploy self.num_experts = num_experts self.stride = stride self.padding = padding self.groups = groups # routing function self.routing_func = route_func(in_channels, num_experts, reduction, mode) # convs if deploy: self.convs = [nn.Parameter(torch.Tensor(out_channels, in_channels, kernel_size, kernel_size)) for i in range(num_experts)] else: self.convs = nn.ModuleList([nn.Conv2d(in_channels, out_channels, kernel_size, stride=stride, padding=padding, groups=groups) for i in range(num_experts)]) self.bns = nn.ModuleList([nn.BatchNorm2d(out_channels) for i in range(num_experts)]) def forward(self, x): _, c_in, _, _ = x.size() routing_weight = self.routing_func(x) # N x k x C if self.deploy: convs = [] for i in range(self.num_experts): route = routing_weight[:, i * c_in : (i+1) * c_in] weight = self.convs[i] weight = weight * route convs.append(weight) conv = sum(convs) output = F.conv2d(x, weight=conv, stride=self.stride, padding=self.padding, groups=self.groups) else: outputs = [] for i in range(self.num_experts): route = routing_weight[:, i*c_in:(i+1)*c_in] attention = x * route.expand_as(x) out = self.convs[i](attention) out = self.bns[i](out) outputs.append(out) output = sum(outputs) return output def test(): x = torch.randn(1, 16, 32, 32) conv = DyResConv(16, 64, 3, padding=1, mode='A') y = conv(x) print(y.shape) conv = DyResConv(16, 64, 3, padding=1, mode='B') y = conv(x) print(y.shape) conv = DyResConv(16, 64, 3, padding=1, mode='S') y = conv(x) print(y.shape) # test()
43.336
166
0.57818
ffc094997b99e67efa620c4daa1898abc5d851de
8,311
py
Python
mbrl/third_party/pytorch_sac_pranz24/sac.py
maxyang27896/mbrl-lib
4543fc929321fdd6e6522528c68e54d822ad2a6a
[ "MIT" ]
null
null
null
mbrl/third_party/pytorch_sac_pranz24/sac.py
maxyang27896/mbrl-lib
4543fc929321fdd6e6522528c68e54d822ad2a6a
[ "MIT" ]
null
null
null
mbrl/third_party/pytorch_sac_pranz24/sac.py
maxyang27896/mbrl-lib
4543fc929321fdd6e6522528c68e54d822ad2a6a
[ "MIT" ]
null
null
null
import os import torch import torch.nn.functional as F from torch.optim import Adam from mbrl.third_party.pytorch_sac_pranz24.model import ( DeterministicPolicy, GaussianPolicy, QNetwork, ) from mbrl.third_party.pytorch_sac_pranz24.utils import hard_update, soft_update class SAC(object): def __init__(self, num_inputs, action_space, args): self.args = args self.gamma = args.gamma self.tau = args.tau self.alpha = args.alpha self.policy_type = args.policy self.target_update_interval = args.target_update_interval self.automatic_entropy_tuning = args.automatic_entropy_tuning self.device = args.device self.critic = QNetwork(num_inputs, action_space.shape[0], args.hidden_size).to( device=self.device ) self.critic_optim = Adam(self.critic.parameters(), lr=args.lr) self.critic_target = QNetwork( num_inputs, action_space.shape[0], args.hidden_size ).to(self.device) hard_update(self.critic_target, self.critic) if self.policy_type == "Gaussian": # Target Entropy = −dim(A) (e.g. , -6 for HalfCheetah-v2) as given in the paper if self.automatic_entropy_tuning is True: if args.target_entropy is None: self.target_entropy = -torch.prod( torch.Tensor(action_space.shape).to(self.device) ).item() else: self.target_entropy = args.target_entropy self.log_alpha = torch.zeros(1, requires_grad=True, device=self.device) self.alpha_optim = Adam([self.log_alpha], lr=args.lr) self.policy = GaussianPolicy( num_inputs, action_space.shape[0], args.hidden_size, action_space ).to(self.device) self.policy_optim = Adam(self.policy.parameters(), lr=args.lr) else: self.alpha = 0 self.automatic_entropy_tuning = False self.policy = DeterministicPolicy( num_inputs, action_space.shape[0], args.hidden_size, action_space ).to(self.device) self.policy_optim = Adam(self.policy.parameters(), lr=args.lr) def select_action(self, state, batched=False, evaluate=False): state = torch.FloatTensor(state) if not batched: state = state.unsqueeze(0) state = state.to(self.device) if evaluate is False: action, _, _ = self.policy.sample(state) else: _, _, action = self.policy.sample(state) if batched: return action.detach().cpu().numpy() return action.detach().cpu().numpy()[0] def update_parameters( self, memory, batch_size, updates, logger=None, reverse_mask=False ): # Sample a batch from memory ( state_batch, action_batch, next_state_batch, reward_batch, mask_batch, ) = memory.sample(batch_size).astuple() state_batch = torch.FloatTensor(state_batch).to(self.device) next_state_batch = torch.FloatTensor(next_state_batch).to(self.device) action_batch = torch.FloatTensor(action_batch).to(self.device) reward_batch = torch.FloatTensor(reward_batch).to(self.device).unsqueeze(1) mask_batch = torch.FloatTensor(mask_batch).to(self.device).unsqueeze(1) if reverse_mask: mask_batch = mask_batch.logical_not() with torch.no_grad(): next_state_action, next_state_log_pi, _ = self.policy.sample( next_state_batch ) qf1_next_target, qf2_next_target = self.critic_target( next_state_batch, next_state_action ) min_qf_next_target = ( torch.min(qf1_next_target, qf2_next_target) - self.alpha * next_state_log_pi ) next_q_value = reward_batch + mask_batch * self.gamma * (min_qf_next_target) qf1, qf2 = self.critic( state_batch, action_batch ) # Two Q-functions to mitigate positive bias in the policy improvement step qf1_loss = F.mse_loss( qf1, next_q_value ) # JQ = 𝔼(st,at)~D[0.5(Q1(st,at) - r(st,at) - γ(𝔼st+1~p[V(st+1)]))^2] qf2_loss = F.mse_loss( qf2, next_q_value ) # JQ = 𝔼(st,at)~D[0.5(Q1(st,at) - r(st,at) - γ(𝔼st+1~p[V(st+1)]))^2] qf_loss = qf1_loss + qf2_loss self.critic_optim.zero_grad() qf_loss.backward() self.critic_optim.step() pi, log_pi, _ = self.policy.sample(state_batch) qf1_pi, qf2_pi = self.critic(state_batch, pi) min_qf_pi = torch.min(qf1_pi, qf2_pi) policy_loss = ( (self.alpha * log_pi) - min_qf_pi ).mean() # Jπ = 𝔼st∼D,εt∼N[α * logπ(f(εt;st)|st) − Q(st,f(εt;st))] self.policy_optim.zero_grad() policy_loss.backward() self.policy_optim.step() if self.automatic_entropy_tuning: alpha_loss = -( self.log_alpha * (log_pi + self.target_entropy).detach() ).mean() self.alpha_optim.zero_grad() alpha_loss.backward() self.alpha_optim.step() self.alpha = self.log_alpha.exp() alpha_tlogs = self.alpha.clone() # For TensorboardX logs else: alpha_loss = torch.tensor(0.0).to(self.device) alpha_tlogs = torch.tensor(self.alpha) # For TensorboardX logs if updates % self.target_update_interval == 0: soft_update(self.critic_target, self.critic, self.tau) if logger is not None: logger.log("train/batch_reward", reward_batch.mean(), updates) logger.log("train_critic/loss", qf_loss, updates) logger.log("train_actor/loss", policy_loss, updates) if self.automatic_entropy_tuning: logger.log("train_actor/target_entropy", self.target_entropy, updates) else: logger.log("train_actor/target_entropy", 0, updates) logger.log("train_actor/entropy", -log_pi.mean(), updates) logger.log("train_alpha/loss", alpha_loss, updates) logger.log("train_alpha/value", self.alpha, updates) return ( qf1_loss.item(), qf2_loss.item(), policy_loss.item(), alpha_loss.item(), alpha_tlogs.item(), ) # Save model parameters def save_checkpoint(self, env_name=None, suffix="", ckpt_path=None): if ckpt_path is None: assert env_name is not None if not os.path.exists("checkpoints/"): os.makedirs("checkpoints/") ckpt_path = "checkpoints/sac_checkpoint_{}_{}".format(env_name, suffix) print("Saving models to {}".format(ckpt_path)) torch.save( { "policy_state_dict": self.policy.state_dict(), "critic_state_dict": self.critic.state_dict(), "critic_target_state_dict": self.critic_target.state_dict(), "critic_optimizer_state_dict": self.critic_optim.state_dict(), "policy_optimizer_state_dict": self.policy_optim.state_dict(), }, ckpt_path, ) # Load model parameters def load_checkpoint(self, ckpt_path, evaluate=False): print("Loading models from {}".format(ckpt_path)) if ckpt_path is not None: checkpoint = torch.load(ckpt_path) self.policy.load_state_dict(checkpoint["policy_state_dict"]) self.critic.load_state_dict(checkpoint["critic_state_dict"]) self.critic_target.load_state_dict(checkpoint["critic_target_state_dict"]) self.critic_optim.load_state_dict(checkpoint["critic_optimizer_state_dict"]) self.policy_optim.load_state_dict(checkpoint["policy_optimizer_state_dict"]) if evaluate: self.policy.eval() self.critic.eval() self.critic_target.eval() else: self.policy.train() self.critic.train() self.critic_target.train()
39.20283
91
0.60089
cf6ef6036daf1b79be4a2dd64771287167822fb3
3,316
py
Python
src/maggma/api/resource/core.py
materialsproject/maggflow
9f8d7a0865ec13212a3fd00d5edebd3cb7b40e7d
[ "BSD-3-Clause-LBNL" ]
null
null
null
src/maggma/api/resource/core.py
materialsproject/maggflow
9f8d7a0865ec13212a3fd00d5edebd3cb7b40e7d
[ "BSD-3-Clause-LBNL" ]
null
null
null
src/maggma/api/resource/core.py
materialsproject/maggflow
9f8d7a0865ec13212a3fd00d5edebd3cb7b40e7d
[ "BSD-3-Clause-LBNL" ]
null
null
null
import logging from abc import ABCMeta, abstractmethod from typing import Dict, Type from fastapi import APIRouter, FastAPI, Response, Request from monty.json import MontyDecoder, MSONable from pydantic import BaseModel from starlette.responses import RedirectResponse from maggma.api.utils import STORE_PARAMS, api_sanitize from maggma.utils import dynamic_import class Resource(MSONable, metaclass=ABCMeta): """ Base class for a REST Compatible Resource """ def __init__( self, model: Type[BaseModel], ): """ Args: model: the pydantic model this Resource represents """ if not issubclass(model, BaseModel): raise ValueError("The resource model has to be a PyDantic Model") self.model = api_sanitize(model, allow_dict_msonable=True) self.logger = logging.getLogger(type(self).__name__) self.logger.addHandler(logging.NullHandler()) self.router = APIRouter() self.prepare_endpoint() self.setup_redirect() def on_startup(self): """ Callback to perform some work on resource initialization """ pass @abstractmethod def prepare_endpoint(self): """ Internal method to prepare the endpoint by setting up default handlers for routes. """ pass def setup_redirect(self): @self.router.get("$", include_in_schema=False) def redirect_unslashed(): """ Redirects unforward slashed url to resource url with the forward slash """ url = self.router.url_path_for("/") return RedirectResponse(url=url, status_code=301) def run(self): # pragma: no cover """ Runs the Endpoint cluster locally This is intended for testing not production """ import uvicorn app = FastAPI() app.include_router(self.router, prefix="") uvicorn.run(app) def as_dict(self) -> Dict: """ Special as_dict implemented to convert pydantic models into strings """ d = super().as_dict() # Ensures sub-classes serialize correctly d["model"] = f"{self.model.__module__}.{self.model.__name__}" return d @classmethod def from_dict(cls, d: Dict): if isinstance(d["model"], str): d["model"] = dynamic_import(d["model"]) d = {k: MontyDecoder().process_decoded(v) for k, v in d.items()} return cls(**d) class HintScheme(MSONable, metaclass=ABCMeta): """ Base class for generic hint schemes generation """ @abstractmethod def generate_hints(self, query: STORE_PARAMS) -> STORE_PARAMS: """ This method takes in a MongoDB query and returns hints """ class HeaderProcessor(MSONable, metaclass=ABCMeta): """ Base class for generic header processing """ @abstractmethod def process_header(self, response: Response, request: Request): """ This method takes in a FastAPI Response object and processes a new header for it in-place. It can use data in the upstream request to generate the header. (https://fastapi.tiangolo.com/advanced/response-headers/#use-a-response-parameter) """
29.087719
98
0.633896
2a495d6b63b5e22d176bd17569b0c05d76761bc1
800
py
Python
puzzle_editing/messaging.py
jwmclaren/puzzlord
a0420be33658bb88cd34dddf6364f4da76453253
[ "X11" ]
null
null
null
puzzle_editing/messaging.py
jwmclaren/puzzlord
a0420be33658bb88cd34dddf6364f4da76453253
[ "X11" ]
null
null
null
puzzle_editing/messaging.py
jwmclaren/puzzlord
a0420be33658bb88cd34dddf6364f4da76453253
[ "X11" ]
null
null
null
from django.conf import settings from django.core.mail.message import EmailMultiAlternatives from django.template.loader import render_to_string def send_mail_wrapper(subject, template, context, recipients): if recipients: mail = EmailMultiAlternatives( subject=settings.EMAIL_SUBJECT_PREFIX + subject, body=render_to_string(template + ".txt", context), from_email=settings.EMAIL_SENDER, to=recipients, alternatives=[(render_to_string(template + ".html", context), "text/html")], reply_to=[settings.EMAIL_REPLY_TO], ) send_res = mail.send() if send_res != 1: raise RuntimeError( "Unknown failure sending mail??? {} {}".format(recipients, send_res) )
38.095238
88
0.64625
d03e4d085323f4e2e5432f1094f91139c8f0f3f5
648
py
Python
please2/command/git/cmd_git_new_branch.py
jadnohra/please2
8654347b72758f8f6cd255ef97500da55839a62a
[ "MIT" ]
null
null
null
please2/command/git/cmd_git_new_branch.py
jadnohra/please2
8654347b72758f8f6cd255ef97500da55839a62a
[ "MIT" ]
null
null
null
please2/command/git/cmd_git_new_branch.py
jadnohra/please2
8654347b72758f8f6cd255ef97500da55839a62a
[ "MIT" ]
null
null
null
import please2.reg_cmd as reg_cmd from ..cmd_base import Command, Match from .cmd_git_util import make_error_result, run_git_get_lines from please2.util.args import get_positional_after class CommandGitNewBranch(Command): def help(self): return self.key() + ' <branch-name> [@ <dir>]' def opt_keys(self): return set(['@']) def key(self): return 'git new branch' def run_match(self, args, params): name = get_positional_after(args.args, self.key().split()[-1]) run_git_get_lines(args, params, ['branch', name]) return Match('') reg_cmd.register_command(CommandGitNewBranch())
24.923077
70
0.680556
d92c5e75218bd59c6e3054065483ca124ad43be6
179
py
Python
problem0642.py
kmarcini/Project-Euler-Python
d644e8e1ec4fac70a9ab407ad5e1f0a75547c8d3
[ "BSD-3-Clause" ]
null
null
null
problem0642.py
kmarcini/Project-Euler-Python
d644e8e1ec4fac70a9ab407ad5e1f0a75547c8d3
[ "BSD-3-Clause" ]
null
null
null
problem0642.py
kmarcini/Project-Euler-Python
d644e8e1ec4fac70a9ab407ad5e1f0a75547c8d3
[ "BSD-3-Clause" ]
null
null
null
########################### # # #642 Sum of largest prime factors - Project Euler # https://projecteuler.net/problem=642 # # Code by Kevin Marciniak # ###########################
19.888889
51
0.497207
78389bd0d69b5b7f89c349fa2f266a35b561142b
3,226
py
Python
bluegraph/downstream/data_structures.py
BlueBrain/BlueGraph
7a7df9c97d01d7ebfa77cf911f187b18e2d6dc02
[ "Apache-2.0" ]
25
2021-04-09T09:57:10.000Z
2022-02-09T14:26:55.000Z
bluegraph/downstream/data_structures.py
BlueBrain/BlueGraph
7a7df9c97d01d7ebfa77cf911f187b18e2d6dc02
[ "Apache-2.0" ]
39
2021-04-09T08:23:28.000Z
2021-11-10T08:35:59.000Z
bluegraph/downstream/data_structures.py
BlueBrain/BlueGraph
7a7df9c97d01d7ebfa77cf911f187b18e2d6dc02
[ "Apache-2.0" ]
3
2021-07-30T19:00:24.000Z
2022-03-16T21:01:48.000Z
# BlueGraph: unifying Python framework for graph analytics and co-occurrence analysis. # Copyright 2020-2021 Blue Brain Project / EPFL # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from abc import ABC, abstractmethod import numpy as np class ElementClassifier(ABC): """Interface for graph element classification models. It wraps a predictive classification model provided by the user and a set of configs that allow the user to fit the model and make predictions on the input PGFrames. Its main goal is to hide the details on converting element (node or edge) properties into data tables that can be provided to the predictive model. """ def __init__(self, model, feature_vector_prop=None, feature_props=None, **kwargs): """Initialize the classifier.""" self.model = model self.feature_vector_prop = feature_vector_prop self.feature_props = feature_props def _concatenate_feature_props(self, pgframe, nodes): if self.feature_props is None or len(self.feature_props) == 0: raise ValueError return pgframe.nodes( raw_frame=True).loc[nodes, self.feature_props].to_numpy() def _get_node_features(self, pgframe, nodes): if self.feature_vector_prop: features = pgframe.get_node_property_values( self.feature_vector_prop, nodes=nodes).tolist() else: features = self._concatenate_feature_props(pgframe, nodes) return np.array(features) @abstractmethod def _generate_train_elements(self, pgfame, elements=None): pass @abstractmethod def _generate_predict_elements(self, pgfame, elements=None): pass @abstractmethod def _generate_train_labels(self, pgframe, elements, label_prop=None): pass @abstractmethod def _generate_data_table(self, pgframe, elements): pass def fit(self, pgframe, train_elements=None, labels=None, label_prop=None, **kwargs): """Fit the classifier.""" train_elements = self._generate_train_elements( pgframe, train_elements, **kwargs) labels = self._generate_train_labels( pgframe, train_elements, label_prop) if labels is None else labels data = self._generate_data_table(pgframe, train_elements) self.model.fit(data, labels) def predict(self, pgframe, predict_elements=None): """Run prediction on the input graph.""" predict_elements = self._generate_predict_elements( pgframe, predict_elements) data = self._generate_data_table(pgframe, predict_elements) return self.model.predict(data)
38.404762
87
0.697458
95ff0faea82be8741f6ef17bf80c6fed00f81a11
5,226
py
Python
unforeseen/analysis/calibrate.py
petoor/unforeseen-client
bd068ddc4029cc66c76f96ce9fc90e4e29106379
[ "MIT" ]
null
null
null
unforeseen/analysis/calibrate.py
petoor/unforeseen-client
bd068ddc4029cc66c76f96ce9fc90e4e29106379
[ "MIT" ]
null
null
null
unforeseen/analysis/calibrate.py
petoor/unforeseen-client
bd068ddc4029cc66c76f96ce9fc90e4e29106379
[ "MIT" ]
null
null
null
# Standard python imports import sys, os, logging, threading, argparse import numpy as np # Gstreamer related import gi gi.require_version('Gst', '1.0') gi.require_version('GstBase', '1.0') gi.require_version('Gtk', '3.0') from gi.repository import GLib, Gst, Gtk from gstreamer import GstPipeline, Gst import gstreamer.utils as utils # AI Model #from unforeseen.analysis.models.people_torchvision import PeopleDetect #from models.people_jetson import PeopleDetect from unforeseen.config import setup_loader # Apply camera settings from unforeseen.cameras.camera_settings import apply_camera_settings class GstPipeline: """ https://github.com/google-coral/examples-camera/blob/master/gstreamer/gstreamer.py """ def __init__(self, pipeline, camera): self.running = False self.camera = camera self.gstsample = None self.frameid = 0 self.condition = threading.Condition() self.player = Gst.parse_launch(pipeline) # Fetch different pads from pipeline for manipulation appsink = self.player.get_by_name("appsink") appsink.connect("new-preroll", self.on_new_sample, True) appsink.connect("new_sample", self.on_new_sample, False) # Set up a pipeline bus watch to catch errors. bus = self.player.get_bus() bus.add_signal_watch() bus.connect('message', self.on_bus_message) def run(self): self.running = True worker = threading.Thread(target=self.inference_loop) worker.start() # State to start pipeline (player) self.player.set_state(Gst.State.PLAYING) try: Gtk.main() except Exception as e: print("Error: ", e) # Clean up. self.pipeline.set_state(Gst.State.NULL) while GLib.MainContext.default().iteration(False): pass with self.condition: self.running = False self.condition.notify_all() worker.join() def on_bus_message(self, bus, message): t = message.type if t == Gst.MessageType.EOS: Gtk.main_quit() elif t == Gst.MessageType.WARNING: err, debug = message.parse_warning() sys.stderr.write('Warning: %s: %s\n' % (err, debug)) elif t == Gst.MessageType.ERROR: err, debug = message.parse_error() sys.stderr.write('Error: %s: %s\n' % (err, debug)) Gtk.main_quit() return True def on_new_sample(self, sink, preroll): sample = sink.emit('pull-preroll' if preroll else 'pull-sample') with self.condition: self.gstsample = sample self.condition.notify_all() return Gst.FlowReturn.OK def inference_loop(self): while True: with self.condition: while not self.gstsample and self.running: self.condition.wait() if not self.running: break gstsample = self.gstsample self.frameid +=1 self.gstsample = None if self.frameid % 60 == 0: apply_camera_settings(self.camera) if __name__=="__main__": Gst.init(None) parser = argparse.ArgumentParser(description='Calibration script') parser.add_argument('--pipeline_path', default="analysis/pipelines/record-and-display-raw.txt", help='The path to the gstreamer pipeline you would like to use') parser.add_argument('--camera', default="/dev/video0", help='The camera used') args = parser.parse_args() pipeline_path = args.pipeline_path # Check if pipeline txt is found if os.path.isfile(pipeline_path): logging.info("Pipeline found") else: logging.critical("Pipeline file not found") setup = setup_loader() camera_used = None for camera in setup.get("cameras"): if camera.get(args.camera) is not None: camera_used = camera break if camera_used is None: logging.critical("Camera not found !") apply_camera_settings(args.camera) camera_settings = camera_used[f"{args.camera}"] camera_format = camera_settings.get("camera_format") height = camera_settings.get("height") width = camera_settings.get("width") framerate = camera_settings.get("framerate") bitrate = camera_settings.get("bitrate") udpsink_port = setup.get("server").get("udp_sink") ip = setup.get("device").get("ip") with open(pipeline_path, "r") as pipeline: pipeline = pipeline.read() pipeline = pipeline.replace("{camera}", str(args.camera)) pipeline = pipeline.replace("{camera_format}", str(camera_format)) pipeline = pipeline.replace("{width}", str(width)) pipeline = pipeline.replace("{height}", str(height)) pipeline = pipeline.replace("{framerate}", str(framerate)) pipeline = pipeline.replace("{bitrate}", str(bitrate)) pipeline = pipeline.replace("{udpsink_port}", str(udpsink_port)) pipeline = pipeline.replace("{ip}", str(ip)) GstPipeline(pipeline, args.camera).run()
33.5
99
0.628205
e731ffabf724e78f27f461f059e3bdf3b3c92720
12,642
py
Python
generated/python/gapic-google-cloud-speech-v1/google/cloud/gapic/speech/v1/speech_client.py
landrito/api-client-staging
140c312c9335af160efce5b37842c995308e0148
[ "BSD-3-Clause" ]
18
2016-12-08T20:47:57.000Z
2022-01-29T19:36:04.000Z
generated/python/gapic-google-cloud-speech-v1/google/cloud/gapic/speech/v1/speech_client.py
landrito/api-client-staging
140c312c9335af160efce5b37842c995308e0148
[ "BSD-3-Clause" ]
252
2016-09-21T20:51:36.000Z
2021-03-25T23:02:36.000Z
generated/python/gapic-google-cloud-speech-v1/google/cloud/gapic/speech/v1/speech_client.py
landrito/api-client-staging
140c312c9335af160efce5b37842c995308e0148
[ "BSD-3-Clause" ]
37
2016-09-19T21:13:16.000Z
2022-01-29T19:36:07.000Z
# Copyright 2017, Google Inc. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # EDITING INSTRUCTIONS # This file was generated from the file # https://github.com/google/googleapis/blob/master/google/cloud/speech/v1/cloud_speech.proto, # and updates to that file get reflected here through a refresh process. # For the short term, the refresh process will only be runnable by Google engineers. # # The only allowed edits are to method and file documentation. A 3-way # merge preserves those additions if the generated source changes. """Accesses the google.cloud.speech.v1 Speech API.""" import collections import json import os import pkg_resources import platform from google.gapic.longrunning import operations_client from google.gax import api_callable from google.gax import config from google.gax import path_template from google.gax.utils import oneof import google.gax from google.cloud.gapic.speech.v1 import enums from google.cloud.proto.speech.v1 import cloud_speech_pb2 class SpeechClient(object): """Service that implements Google Cloud Speech API.""" SERVICE_ADDRESS = 'speech.googleapis.com' """The default address of the service.""" DEFAULT_SERVICE_PORT = 443 """The default port of the service.""" # The scopes needed to make gRPC calls to all of the methods defined in # this service _ALL_SCOPES = ('https://www.googleapis.com/auth/cloud-platform', ) def __init__(self, service_path=SERVICE_ADDRESS, port=DEFAULT_SERVICE_PORT, channel=None, credentials=None, ssl_credentials=None, scopes=None, client_config=None, app_name=None, app_version='', lib_name=None, lib_version='', metrics_headers=()): """Constructor. Args: service_path (string): The domain name of the API remote host. port (int): The port on which to connect to the remote host. channel (:class:`grpc.Channel`): A ``Channel`` instance through which to make calls. credentials (object): The authorization credentials to attach to requests. These credentials identify this application to the service. ssl_credentials (:class:`grpc.ChannelCredentials`): A ``ChannelCredentials`` instance for use with an SSL-enabled channel. scopes (list[string]): A list of OAuth2 scopes to attach to requests. client_config (dict): A dictionary for call options for each method. See :func:`google.gax.construct_settings` for the structure of this data. Falls back to the default config if not specified or the specified config is missing data points. app_name (string): The name of the application calling the service. Recommended for analytics purposes. app_version (string): The version of the application calling the service. Recommended for analytics purposes. lib_name (string): The API library software used for calling the service. (Unless you are writing an API client itself, leave this as default.) lib_version (string): The API library software version used for calling the service. (Unless you are writing an API client itself, leave this as default.) metrics_headers (dict): A dictionary of values for tracking client library metrics. Ultimately serializes to a string (e.g. 'foo/1.2.3 bar/3.14.1'). This argument should be considered private. Returns: A SpeechClient object. """ # Unless the calling application specifically requested # OAuth scopes, request everything. if scopes is None: scopes = self._ALL_SCOPES # Initialize an empty client config, if none is set. if client_config is None: client_config = {} # Initialize metrics_headers as an ordered dictionary # (cuts down on cardinality of the resulting string slightly). metrics_headers = collections.OrderedDict(metrics_headers) metrics_headers['gl-python'] = platform.python_version() # The library may or may not be set, depending on what is # calling this client. Newer client libraries set the library name # and version. if lib_name: metrics_headers[lib_name] = lib_version # Finally, track the GAPIC package version. metrics_headers['gapic'] = pkg_resources.get_distribution( 'gapic-google-cloud-speech-v1', ).version # Load the configuration defaults. default_client_config = json.loads( pkg_resources.resource_string( __name__, 'speech_client_config.json').decode()) defaults = api_callable.construct_settings( 'google.cloud.speech.v1.Speech', default_client_config, client_config, config.STATUS_CODE_NAMES, metrics_headers=metrics_headers, ) self.speech_stub = config.create_stub( cloud_speech_pb2.SpeechStub, channel=channel, service_path=service_path, service_port=port, credentials=credentials, scopes=scopes, ssl_credentials=ssl_credentials) self.operations_client = operations_client.OperationsClient( service_path=service_path, port=port, channel=channel, credentials=credentials, ssl_credentials=ssl_credentials, scopes=scopes, client_config=client_config, metrics_headers=metrics_headers, ) self._recognize = api_callable.create_api_call( self.speech_stub.Recognize, settings=defaults['recognize']) self._long_running_recognize = api_callable.create_api_call( self.speech_stub.LongRunningRecognize, settings=defaults['long_running_recognize']) self._streaming_recognize = api_callable.create_api_call( self.speech_stub.StreamingRecognize, settings=defaults['streaming_recognize']) # Service calls def recognize(self, config, audio, options=None): """ Performs synchronous speech recognition: receive results after all audio has been sent and processed. Example: >>> from google.cloud.gapic.speech.v1 import speech_client >>> from google.cloud.gapic.speech.v1 import enums >>> from google.cloud.proto.speech.v1 import cloud_speech_pb2 >>> client = speech_client.SpeechClient() >>> encoding = enums.RecognitionConfig.AudioEncoding.FLAC >>> sample_rate_hertz = 44100 >>> language_code = 'en-US' >>> config = cloud_speech_pb2.RecognitionConfig(encoding=encoding, sample_rate_hertz=sample_rate_hertz, language_code=language_code) >>> uri = 'gs://bucket_name/file_name.flac' >>> audio = cloud_speech_pb2.RecognitionAudio(uri=uri) >>> response = client.recognize(config, audio) Args: config (:class:`google.cloud.proto.speech.v1.cloud_speech_pb2.RecognitionConfig`): *Required* Provides information to the recognizer that specifies how to process the request. audio (:class:`google.cloud.proto.speech.v1.cloud_speech_pb2.RecognitionAudio`): *Required* The audio data to be recognized. options (:class:`google.gax.CallOptions`): Overrides the default settings for this call, e.g, timeout, retries etc. Returns: A :class:`google.cloud.proto.speech.v1.cloud_speech_pb2.RecognizeResponse` instance. Raises: :exc:`google.gax.errors.GaxError` if the RPC is aborted. :exc:`ValueError` if the parameters are invalid. """ # Create the request object. request = cloud_speech_pb2.RecognizeRequest(config=config, audio=audio) return self._recognize(request, options) def long_running_recognize(self, config, audio, options=None): """ Performs asynchronous speech recognition: receive results via the google.longrunning.Operations interface. Returns either an ``Operation.error`` or an ``Operation.response`` which contains a ``LongRunningRecognizeResponse`` message. Example: >>> from google.cloud.gapic.speech.v1 import speech_client >>> from google.cloud.gapic.speech.v1 import enums >>> from google.cloud.proto.speech.v1 import cloud_speech_pb2 >>> client = speech_client.SpeechClient() >>> encoding = enums.RecognitionConfig.AudioEncoding.FLAC >>> sample_rate_hertz = 44100 >>> language_code = 'en-US' >>> config = cloud_speech_pb2.RecognitionConfig(encoding=encoding, sample_rate_hertz=sample_rate_hertz, language_code=language_code) >>> uri = 'gs://bucket_name/file_name.flac' >>> audio = cloud_speech_pb2.RecognitionAudio(uri=uri) >>> response = client.long_running_recognize(config, audio) >>> >>> def callback(operation_future): >>> # Handle result. >>> result = operation_future.result() >>> >>> response.add_done_callback(callback) >>> >>> # Handle metadata. >>> metadata = response.metadata() Args: config (:class:`google.cloud.proto.speech.v1.cloud_speech_pb2.RecognitionConfig`): *Required* Provides information to the recognizer that specifies how to process the request. audio (:class:`google.cloud.proto.speech.v1.cloud_speech_pb2.RecognitionAudio`): *Required* The audio data to be recognized. options (:class:`google.gax.CallOptions`): Overrides the default settings for this call, e.g, timeout, retries etc. Returns: A :class:`google.gax._OperationFuture` instance. Raises: :exc:`google.gax.errors.GaxError` if the RPC is aborted. :exc:`ValueError` if the parameters are invalid. """ # Create the request object. request = cloud_speech_pb2.LongRunningRecognizeRequest( config=config, audio=audio) return google.gax._OperationFuture( self._long_running_recognize(request, options), self.operations_client, cloud_speech_pb2.LongRunningRecognizeResponse, cloud_speech_pb2.LongRunningRecognizeMetadata, options) def streaming_recognize(self, requests, options=None): """ Performs bidirectional streaming speech recognition: receive results while sending audio. This method is only available via the gRPC API (not REST). EXPERIMENTAL: This method interface might change in the future. Example: >>> from google.cloud.gapic.speech.v1 import speech_client >>> from google.cloud.proto.speech.v1 import cloud_speech_pb2 >>> client = speech_client.SpeechClient() >>> request = cloud_speech_pb2.StreamingRecognizeRequest() >>> requests = [request] >>> for element in client.streaming_recognize(requests): >>> # process element >>> pass Args: requests (iterator[:class:`google.cloud.proto.speech.v1.cloud_speech_pb2.StreamingRecognizeRequest`]): The input objects. options (:class:`google.gax.CallOptions`): Overrides the default settings for this call, e.g, timeout, retries etc. Returns: iterator[:class:`google.cloud.proto.speech.v1.cloud_speech_pb2.StreamingRecognizeResponse`]. Raises: :exc:`google.gax.errors.GaxError` if the RPC is aborted. :exc:`ValueError` if the parameters are invalid. """ return self._streaming_recognize(requests, options)
44.202797
164
0.657174
90bb2395dfb8226545426e4203bbedb1d4d0b049
6,057
py
Python
src/conways.py
atonymartin20/Cellular-Automata
01e28eb593de8ab97d82ce045e449562fd5a5e31
[ "MIT" ]
null
null
null
src/conways.py
atonymartin20/Cellular-Automata
01e28eb593de8ab97d82ce045e449562fd5a5e31
[ "MIT" ]
null
null
null
src/conways.py
atonymartin20/Cellular-Automata
01e28eb593de8ab97d82ce045e449562fd5a5e31
[ "MIT" ]
null
null
null
import pygame, random, time # Define some colors and other constants BLACK = (0, 0, 0) BLUE = (0, 0, 255) WHITE = (255, 255, 255) GREEN = (49, 214, 0) MAGENTA = (206, 41, 255) GRAY = (154, 162, 151) fps = 5 WIN_SIZE = 505 # 1. Create a set of initial states with simple pattern (Ex. blinker) initial_states = [0] * 400 initial_states[10] = 1 initial_states[30] = 1 initial_states[50] = 1 current_states = initial_states generation = 0 is_paused = True # 1 v.2 Fill current_states with random states # current_states = [0] * 400 # for i in range( 0, len(current_states) ): # current_states[i] = random.randint(0,1) # 1 v.3 Allow users to choose between several predefined init states pygame.init() # Set the width and height of the screen [width, height] size = (WIN_SIZE, WIN_SIZE) screen = pygame.display.set_mode(size) # Add a title pygame.display.set_caption("Conway's Game of Life") # Buttons def button(text, xPOS, yPOS, width, height, color, fontColor, action=None): mouse = pygame.mouse.get_pos() click = pygame.mouse.get_pressed() pygame.draw.rect(screen, color, (xPOS, yPOS, width, height)) if xPOS + width > mouse[0] > xPOS and yPOS + height > mouse[1] > yPOS: if click[0] == 1 and action != None: action() font = pygame.font.Font('freesansbold.ttf', 14) textSurf, textRect = text_objects(text, font, fontColor) textRect.center = ( (xPOS + (width / 2)), (yPOS + (height / 2)) ) screen.blit(textSurf, textRect) # Actions def playAction(): global is_paused is_paused = False def pauseAction(): global is_paused is_paused = True def text_objects(text, font, fontColor): textSurface = font.render(text, True, fontColor) return textSurface, textSurface.get_rect() def FasterAction(): global fps fps += 5 def SlowerAction(): global fps fps -= 2 def RestartAction(): global generation global is_paused global current_states is_paused = True generation = 0 current_states = initial_states # Loop until the user clicks the close button. done = False # Used to manage how fast the screen updates clock = pygame.time.Clock() # -------- Main Program Loop ----------- while not done: # --- Main event loop for event in pygame.event.get(): if event.type == pygame.QUIT: done = True # --- Game logic should go here pygame.display.set_caption("Conway's Game of Life, Generation: " + str(generation)) # MAIN SIMULATION LOGIC if not is_paused: generation += 1 new_states = [0] * 400 for index in range(len(current_states)): width = 20 e = index + width w = index - width n = index - 1 s = index + 1 ne = n + width nw = n - width se = s + width sw = s - width live_neighbors = 0 if e < len(current_states) and current_states[e] == 1: live_neighbors += 1 if w > 0 and current_states[w] == 1: live_neighbors += 1 if n % width != width - 1 and current_states[n] == 1: live_neighbors += 1 if s % width != 0 and current_states[s] == 1: live_neighbors += 1 if ne < len(current_states) and ne % width != width - 1 and current_states[ne] == 1: live_neighbors += 1 if se < len(current_states) and se % width != 0 and current_states[se] == 1: live_neighbors += 1 if nw > 0 and nw % width != width - 1 and current_states[nw] == 1: live_neighbors += 1 if sw > 0 and sw % width != 0 and current_states[sw] == 1: live_neighbors += 1 if current_states[index] == 1: # Any live cell with fewer than two live neighbours dies, as if by underpopulation. if live_neighbors < 2: new_states[index] = 0 # Any live cell with more than three live neighbours dies, as if by overpopulation. if live_neighbors > 3: new_states[index] = 0 # Any live cell with two or three live neighbours lives on to the next generation. else: new_states[index] = 1 else: # Any dead cell with exactly three live neighbours becomes a live cell, as if by reproduction. if live_neighbors == 3: new_states[index] = 1 else: # Dead cell stays dead new_states[index] = 0 current_states = new_states # --- Screen-clearing code goes here # Here, we clear the screen to gray. Don't put other drawing commands # above this, or they will be erased with this command. screen.fill(GRAY) # --- Drawing code should go here current_index = 0 x = 5 while x < 500: y = 5 while y < 500: # 2. Draw based on values in current_states state = current_states[current_index] # 4. Draw based on values in next_states if state == 0: pygame.draw.rect(screen, GREEN, pygame.Rect(x, y, 20, 20) ) else: pygame.draw.rect(screen, MAGENTA, pygame.Rect(x, y, 20, 20) ) current_index += 1 y += 25 x += 25 # All Buttons: button('Play', 5, 450, 60, 50, BLUE, GRAY, playAction) button('Pause', 70, 450, 60, 50, MAGENTA, GRAY, pauseAction) button('Faster', 135, 450, 75, 50, BLACK, WHITE, FasterAction) button('Slower', 215, 450, 75, 50, GRAY, WHITE, SlowerAction) button('Restart', 295, 450, 75, 50, GRAY, WHITE, RestartAction) button(str(generation) + ' generations', 375, 450, 125, 50, BLACK, WHITE) # --- Go ahead and update the screen with what we've drawn. pygame.display.flip() # --- Limit to 5 frames per second clock.tick(fps) # Close the window and quit. pygame.quit()
31.546875
106
0.585273
b7cda316bb6b0a9e7c364ac2129c8602f2a7cf24
6,682
py
Python
stl10/train.py
EricElmoznino/OrthogonalLowrankEmbedding
cce12ca5cb34f7cb888b04739724bdbbd18b1e2d
[ "MIT" ]
null
null
null
stl10/train.py
EricElmoznino/OrthogonalLowrankEmbedding
cce12ca5cb34f7cb888b04739724bdbbd18b1e2d
[ "MIT" ]
null
null
null
stl10/train.py
EricElmoznino/OrthogonalLowrankEmbedding
cce12ca5cb34f7cb888b04739724bdbbd18b1e2d
[ "MIT" ]
null
null
null
""" OLE training script """ from __future__ import print_function import argparse import os, sys import time from utee import misc import torch import torch.nn as nn import torch.optim as optim from torch.autograd import Variable import dataset import model from IPython import embed # OLE Loss from OLE import * import uuid import sys from datetime import datetime parser = argparse.ArgumentParser(description='PyTorch STL10 with OLE') parser.add_argument('--channel', type=int, default=32, help='first conv channel (default: 32)') parser.add_argument('--wd', type=float, default=1e-3, help='weight decay') parser.add_argument('--batch_size', type=int, default=32, help='input batch size for training (default: 32)') parser.add_argument('--epochs', type=int, default=164, help='number of epochs to train (default: 10)') parser.add_argument('--lr', type=float, default=0.001, help='learning rate (default: 1e-3)') parser.add_argument('--lambda_', type=float, default=0.25, help='OLE loss weight \lambda (default: 0.25)') parser.add_argument('--gpu', default='0', help='index of gpus to use') parser.add_argument('--ngpu', type=int, default=2, help='number of gpus to use') parser.add_argument('--seed', type=int, default=117, help='random seed (default: 1)') parser.add_argument('--num_samples', type=int, default=500, help='number of training samples per class to use') parser.add_argument('--data_augment', type=int, default=1, help='use data augmentation, 1: yes (default), 0: no') parser.add_argument('--validation', type=int, default=0, help='run validation on 10%% of training set 0: no (default), 1: yes') parser.add_argument('--log_interval', type=int, default=125, help='how many batches to wait before logging training status') parser.add_argument('--test_interval', type=int, default=5, help='how many epochs to wait before another test') parser.add_argument('--logdir', default='log/default', help='folder to save to the log') parser.add_argument('--decreasing_lr', default='81,122', help='decreasing strategy') args = parser.parse_args() foldername = 'results/wd_%s_batch_%s_channel_%s_samples_%s/' % (str(args.wd), str(args.batch_size), str(args.channel), str(args.num_samples)) + str(uuid.uuid4()) args.logdir = os.path.join(os.path.dirname(__file__), foldername) misc.logger.init(args.logdir, 'train_log') print = misc.logger.info # select gpu args.gpu = misc.auto_select_gpu(utility_bound=0, num_gpu=args.ngpu, selected_gpus=args.gpu) args.ngpu = len(args.gpu) # logger misc.ensure_dir(args.logdir) print("=================FLAGS==================") for k, v in args.__dict__.items(): print('{}: {}'.format(k, v)) print("========================================") # seed args.cuda = torch.cuda.is_available() torch.manual_seed(args.seed) if args.cuda: torch.cuda.manual_seed(args.seed) # data loader and model train_loader, test_loader = dataset.get(batch_size=args.batch_size, num_workers=1, num_samples=args.num_samples, data_augment=args.data_augment, validation=args.validation) if args.validation or (args.num_samples!=500): Ntrain = len(train_loader.sampler.indices) else: Ntrain = len(train_loader.dataset) if args.validation: Ntest = len(test_loader.sampler.indices) else: Ntest = len(test_loader.dataset) model = model.stl10(n_channel=args.channel) model = torch.nn.DataParallel(model, device_ids= range(args.ngpu)) if args.cuda: print('USING CUDA') model.cuda() # optimizer optimizer = optim.Adam(model.parameters(), lr=args.lr, weight_decay=args.wd) decreasing_lr = list(map(int, args.decreasing_lr.split(','))) print('decreasing_lr: ' + str(decreasing_lr)) best_acc, old_file = 0, None t_begin = time.time() crit0 = nn.CrossEntropyLoss() crit1 = OLELoss(n_classes=10, lambda_=args.lambda_) # ready to go for epoch in range(args.epochs): model.train() if epoch in decreasing_lr: optimizer.param_groups[0]['lr'] *= 0.1 for batch_idx, (data, target) in enumerate(train_loader): indx_target = target.clone() if args.cuda: data, target = data.cuda(), target.cuda() optimizer.zero_grad() output = model(data) loss = crit0(output[0], target) OLE_loss = crit1(output[1], target) if args.lambda_ >0: loss += OLE_loss loss.backward() optimizer.step() if batch_idx % args.log_interval == 0 and batch_idx > 0: pred = output[0].data.max(1)[1] # get the index of the max log-probability correct = pred.cpu().eq(indx_target).sum() acc = correct * 1.0 / len(data) print('Train Epoch: {} [{}/{}] Loss: {:.6f} OLE Loss: {:.6f} Acc: {:.4f} lr: {:.2e}'.format( epoch, batch_idx * len(data), Ntrain, loss.item(), OLE_loss.item(), acc, optimizer.param_groups[0]['lr'])) elapse_time = time.time() - t_begin speed_epoch = elapse_time / (epoch + 1) speed_batch = speed_epoch / len(train_loader) eta = speed_epoch * args.epochs - elapse_time print("Elapsed {:.2f}s, {:.2f} s/epoch, {:.2f} s/batch, ets {:.2f}s".format( elapse_time, speed_epoch, speed_batch, eta)) misc.model_snapshot(model, os.path.join(args.logdir, 'latest.pth')) if epoch % args.test_interval == 0: model.eval() test_loss = 0 correct = 0 with torch.no_grad(): for data, target in test_loader: indx_target = target.clone() if args.cuda: data, target = data.cuda(), target.cuda().long().squeeze() output = model(data) test_loss += crit0(output[0], target) test_OLE_loss = crit1(output[1], target) if args.lambda_ >0: test_loss += test_OLE_loss # test_loss += F.cross_entropy(output, target).data[0] pred = output[0].data.max(1)[1] # get the index of the max log-probability correct += pred.cpu().eq(indx_target).sum() test_loss = test_loss.item() / len(test_loader) # average over number of mini-batch test_OLE_loss = test_OLE_loss.item() # already averaged over minibatch test_acc = 100. * correct / float(Ntest) print('\tTest set {}/{}: Average loss: {:.4f}, OLE loss: {:.4f} Accuracy: {}/{} ({:.2f}%)'.format( epoch, args.epochs, test_loss, test_OLE_loss, correct, Ntest, test_acc)) new_file = os.path.join(args.logdir, 'checkpoint-{}.pth'.format(epoch)) misc.model_snapshot(model, new_file, verbose=True) print("Total Elapse: {:.2f}, Final Test Result: {:.3f}%".format(time.time()-t_begin, test_acc))
36.917127
180
0.66088
1e073f9e35be8d230a5558148b3772b034c7c335
15,653
py
Python
simulate.py
nathancowieson/saxs_scripts
274472f28a630fe688ec00fd535c6679d7d7ef73
[ "MIT" ]
null
null
null
simulate.py
nathancowieson/saxs_scripts
274472f28a630fe688ec00fd535c6679d7d7ef73
[ "MIT" ]
null
null
null
simulate.py
nathancowieson/saxs_scripts
274472f28a630fe688ec00fd535c6679d7d7ef73
[ "MIT" ]
2
2021-03-03T10:29:04.000Z
2021-03-03T15:39:26.000Z
#!/anaconda/bin/python ''' Created on Apr 03, 2014 @author: nathan ''' import sys, logging, os, re, math, numpy, random from subprocess import check_output class Simulate(): """Simulate SAXS data from a PDB file The Simulate class contains various functions for calculating SAXS data from a pdb file. The script attempts to generate the kind of errors and noise that you would find in real, measured SAXS data as an aid to experimental design. """ ''' Constructor ''' def __init__(self, options): ###start a log file self.logger = logging.getLogger('Simulate') self.logger.setLevel(logging.DEBUG) formatter = logging.Formatter('%(asctime)s: %(levelname)s: %(module)s: %(message)s',"[%Y-%m-%d %H:%M:%S]") streamhandler = logging.StreamHandler() streamhandler.setFormatter(formatter) self.logger.addHandler(streamhandler) self.logger.info('Starting a new Simulate job') try: self._options = dict(options) except: self.logger.error('cound not read in the command line options') sys.exit() # try: # self.qmin = float(min(self._options['qrange'].split('-'))) # self.qmax = float(max(self._options['qrange'].split('-'))) # except: # self.logger.error('Q min and Q max were not defined correctly. Must# be in the format i.e. 0.01-0.55') # sys.exit() def RunCrysol(self): self.logger.info('Running Crysol') filelist_before = os.listdir(os.getcwd()) command = 'crysol -ns '+str(self._options['no_points'])+' -sm '+str(self.highq)+' '+str(self._options['file']) self.output = check_output(command, shell=True) filelist_after = os.listdir(os.getcwd()) self.crysol_files = list(set(filelist_after) - set(filelist_before)) def ParseIntFile(self): for file in self.crysol_files: if file[-4:] == '.int': intfile=open(file) intdata=intfile.readlines() self.qdata = [] self.idata = [] if self._options['vacuum']: self.logger.info('Outputting the in vacuum data') for row in intdata: try: q = float(row.split()[0]) if self._options['vacuum']: i = float(row.split()[2]) + ( self._options['background'] * 1E6 ) else: i = float(row.split()[1]) + ( self._options['background'] * 1E6 ) if q > self.lowq and q < self.highq: self.qdata.append(q) self.idata.append(i) if q == 0: self.izero = i except: pass self.logger.info('From crysol, min Q: '+str(min(self.qdata))+', max Q: '+str(max(self.qdata))) try: float(self.izero) except: self.logger.error('could not determine I(0) from int file') sys.exit() ###GET MW try: self.output = self.output.split('\n') pattern = re.compile('.*Molecular weight:.*') for line in self.output: if re.match(pattern, line): self.molwt = float(line.split()[2]) / 1000 except: self.logger.error('could not get MW from crysol output') sys.exit() def SFtoPhotons(self): pixel_size = 0.000172 # in meters camera_length = self._options['camera'] / 1000 # in meters solid_angle = (pixel_size / camera_length)**2 #steradians attenuation = self._options['attenuation'] full_flux = 2.00E+13 intensity = full_flux * attenuation exposure_time = self._options['time'] electron_radius = 2.82E-15 avogadros = 6.02E+23 path_length = self._options['pathlength']/1000 # in meters concentration = self._options['concentration'] mol_weight = self.molwt *1000 water_sf = 6.6 water_conc = 1000 water_mw = 18 self.proteinphotons = [] self.i_photons = [] for i in self.idata: protein = solid_angle * intensity * exposure_time * (electron_radius**2)*avogadros*1000*concentration*path_length/mol_weight*i water = solid_angle * intensity * exposure_time * (electron_radius**2)*avogadros*1000*water_conc*path_length/water_mw*water_sf self.i_photons.append(protein + water) self.proteinphotons.append(protein) def ScaleIntensities(self): ###CALCULATE EXPECTED I(0) BASED ON MW AND CONC avogadros = 6.022E+23 io_calc = ( self.molwt * (self._options['sld'] * self._options['vbar'])**2 * self._options['concentration'] ) / avogadros self.logger.info('calculated molecular weight at '+str(self.molwt)) try: scale_factor = self.izero / io_calc scaled_idata = [] for i in self.idata: i = (i / scale_factor) scaled_idata.append(i) self.idata = scaled_idata except: scaled_idata = [] for i in self.idata: scaled_idata.append(0) self.idata = scaled_idata def SimulateImage(self): self.logger.info('Simulating pilatus image') beamx = 559.94 beamy = 467.5 sizex = 981 sizey = 1043 pixelsize = 0.172 camera_length = self._options['camera'] energy = self._options['energy'] wavelength = 12.398521 / energy beamstop_radius = 15 #(pixels) beamstop_arm_gradient = -0.4673 beamstop_arm_width = 9 horizontal_module_boundaries = [ ( 195, 212 ), ( 407, 424 ), ( 619, 636 ), ( 831, 848 ) ] vertical_module_boundaries = [ ( 487, 494 ) ] ###A LIST OF ALL PIXEL COORDINATES pixel_array = [] for xcoord in range(1, sizex+1): for ycoord in range(1, sizey+1): pixel_array.append( ( xcoord, ycoord ) ) ###REMOVE PIXELS THAT ARE MASKED BY THE HORIZONTAL MODULE BOUNDARIES delete_list = [] for mask in horizontal_module_boundaries: for pixel in pixel_array: if pixel[1] > mask[0] and pixel[1] < mask[1]: delete_list.append(pixel) s = set(delete_list) new_array = [x for x in pixel_array if x not in s] pixel_array = new_array ###REMOVE PIXELS THAT ARE MASKED BY THE VERTICAL MODULE BOUNDARIES delete_list = [] for mask in vertical_module_boundaries: for pixel in pixel_array: if pixel[0] > mask[0] and pixel[0] < mask[1]: delete_list.append(pixel) s = set(delete_list) new_array = [x for x in pixel_array if x not in s] pixel_array = new_array ###DELETE ITEMS BEHIND BACKSTOP ARM delete_list = [] for pixel in pixel_array: if pixel[0] > beamx: lowerlimit = beamstop_arm_gradient * pixel[0] + ((beamy+262.3) - (beamstop_arm_width/2)) upperlimit = beamstop_arm_gradient * pixel[0] + ((beamy+262.3) + (beamstop_arm_width/2)) if pixel[1] > lowerlimit and pixel[1] < upperlimit: delete_list.append(pixel) s = set(delete_list) new_array = [x for x in pixel_array if x not in s] pixel_array = new_array ###DELETE ITEMS BEHIND THE BACKTOP SHADOW delete_list = [] for pixel in pixel_array: distance = math.sqrt(( pixel[0] - beamx )**2 + ( pixel[1] - beamy )**2 ) if distance < beamstop_radius: delete_list.append(pixel) s = set(delete_list) new_array = [x for x in pixel_array if x not in s] pixel_array = new_array self.q_array = [] for pixel in pixel_array: ###CALCULATE PIXEL DISTANCE FROM DIRECT BEAM distance_pixels = math.sqrt(( pixel[0] - beamx )**2 + ( pixel[1] - beamy )**2 ) distance_mm = distance_pixels * pixelsize angle_theta = math.asin( distance_mm / camera_length )/2#in rad angle_q = 4*math.pi*math.sin(angle_theta)/wavelength self.q_array.append(angle_q) self.lowq = min(self.q_array) self.highq = max(self.q_array) self.logger.info('From simulation, min Q: '+str(round(self.lowq, 6))+', max Q: '+str(round(self.highq, 6))) def GenerateErrors(self): self.logger.info('Generating errors and adding noise to data') bins = numpy.linspace(self.lowq, self.highq, len(self.qdata)) binned = numpy.histogram(self.q_array, bins=len(self.qdata)) self.binsizes = binned[0] self.noisy_i = [] self.edata = [] for q in self.qdata: index = self.qdata.index(q) i_inv_cm = self.idata[index] abs_cal_scale = 0.00072*2 #0.0142 i_photons = (i_inv_cm / abs_cal_scale)*self._options['time'] error = (2*(math.sqrt(i_photons)/math.sqrt(self.binsizes[index])) * abs_cal_scale) / self._options['time'] new_i = random.gauss(self.idata[index], error) self.noisy_i.append(new_i) self.edata.append(error) def GenerateErrors2(self): self.logger.info('Generating errors and adding noise to data') bins = numpy.linspace(self.lowq, self.highq, len(self.qdata)) binned = numpy.histogram(self.q_array, bins=len(self.qdata)) self.binsizes = binned[0] self.noisy_i = [] self.edata = [] for q in self.qdata: index = self.qdata.index(q) if q == 0.300068: print str(q)+','+str(self.binsizes[index]) i_inv_cm = self.idata[index] background_error = 10E-7 photons_per_bin = self.i_photons[index] * self.binsizes[index] proteinphotons_per_bin = self.proteinphotons[index] * self.binsizes[index] total_photons = 2* photons_per_bin - proteinphotons_per_bin error_in_photons = math.sqrt(total_photons + 0.0030**2*total_photons**2) try: photon_to_invcm_scale = (proteinphotons_per_bin / self.idata[index]) error = (error_in_photons / photon_to_invcm_scale) + background_error except: error = background_error # std_error = error / math.sqrt(self.binsize[index]-1) #error = (2*(math.sqrt(self.i_photons[index])/math.sqrt(self.binsizes[index]))) #scale = self.i_photons[index]/self.idata[index] #error = 64* error/scale + background_error #double it because of buffer subtraction new_i = random.gauss(self.idata[index], error/2) self.noisy_i.append(new_i) self.edata.append(error) def OutputDatFile(self): string_list = [] string_list.append("Simulated data from "+self._options['file']) string_list.append("%-15s %-18s %-15s" % ("Q(A-1)","I(au)","Error")) for q in self.qdata: index = self.qdata.index(q) q = self.qdata[index] i = self.noisy_i[index] e = self.edata[index] string_list.append("%-15s %-18s %-15s" % (q,i,e)) outfile = open(self._options['outfile'], 'w') outfile.write('\n'.join(string_list)) outfile.close() self.logger.info('Output file '+str(self._options['outfile'])) def CleanUpFiles(self): for file in self.crysol_files: os.remove(file) self.logger.info('Deleted all files made by Crysol for this run') if __name__ == '__main__': from optparse import OptionParser from optparse import OptionGroup if len(sys.argv) < 2: sys.argv.append('-h') ''' parse command line options ''' parser = OptionParser() required = OptionGroup(parser, "Required Arguments") required.add_option("-f", "--file", action="store", type="string", dest="file", help="The pdb file you want to use to simulate data") optional = OptionGroup(parser, "Optional Arguments") optional.add_option("-c", "--concentration", action="store", type="float", dest="concentration", default=1.0, help="The concentration in mg/ml of the protein (default 1 mg/ml)") optional.add_option("-t", "--time", action="store", type="float", dest="time", default=10.0, help="The exposure time for the sample, (default 10 secs)") optional.add_option("-s", "--sld", action="store", type="float", dest="sld", default=2.67E+10, help="The scattering length density of the protein (default is 2.67E+10)") optional.add_option("-v", "--vbar", action="store", type="float", dest="vbar", default=0.73, help="The partial specific volume of the protein (default is 0.73)") optional.add_option("-o", "--outfile", action="store", type="string", dest="outfile", help="The name of an output file, the default name is the rootname of your pdb file with .dat at the end.") optional.add_option("-n", "--number", action="store", type="int", dest="no_points", default=455, help="The number of points in the output file, (default 455)") optional.add_option("-l", "--length", action="store", type="float", dest="camera", default=1492, help="The length of the SAXS camera in mm, (default 1492)") optional.add_option("-p", "--pathlength", action="store", type="float", dest="pathlength", default=1.5, help="The pathlength, ie width of capillary in mm, (default 1.5)") optional.add_option("-e", "--energy", action="store", type="float", dest="energy", default=11, help="The wavelength in KeV, (default 11)") optional.add_option("-a", "--attenuation", action="store", type="float", dest="attenuation", default=0.3, help="The fractional percentage that the beam was attenuated (default 0.3)") optional.add_option("-q", "--quiet", action="store_false", dest="quiet", default=True, help="don't print to st. out or display graphics") optional.add_option("-d", "--dehydrated", action="store_true", dest="vacuum", default=False, help="Use the in vacuum column instead of the hydrated one. Default is hydrated") optional.add_option("-b", "--background", action="store", type="float", dest="background", default=0, help="simulate a % error in background, (default is 0). i.e. 1.01 would oversubtract a background and 0.99 would undersubtract by 1%") parser.add_option_group(required) parser.add_option_group(optional) (options, args) = parser.parse_args() ''' fail if you didn't choose a valid pdb file ''' if os.path.isfile(options.file): rootname = os.path.splitext(os.path.basename(options.file))[0] cwd = os.path.split(os.path.realpath(options.file))[0] os.chdir(cwd) if not options.outfile: options.outfile = rootname+'.dat' pass else: sys.exit('The pdb file you specified does not exist') options = eval(str(options)) job = Simulate(options) job.SimulateImage() job.RunCrysol() job.ParseIntFile() job.SFtoPhotons() job.ScaleIntensities() job.GenerateErrors2() job.OutputDatFile() job.CleanUpFiles()
43.969101
240
0.586788
818326d93ccc2f59b76103917c937749d6997e6b
4,595
py
Python
configs/body/2d_kpt_sview_rgb_img/topdown_heatmap/mpii/hrnet_w48_mpii_256x256.py
pallgeuer/mmpose
d3c17d5e6bdb9dbaca19f3bf53aa2802105355fd
[ "Apache-2.0" ]
null
null
null
configs/body/2d_kpt_sview_rgb_img/topdown_heatmap/mpii/hrnet_w48_mpii_256x256.py
pallgeuer/mmpose
d3c17d5e6bdb9dbaca19f3bf53aa2802105355fd
[ "Apache-2.0" ]
null
null
null
configs/body/2d_kpt_sview_rgb_img/topdown_heatmap/mpii/hrnet_w48_mpii_256x256.py
pallgeuer/mmpose
d3c17d5e6bdb9dbaca19f3bf53aa2802105355fd
[ "Apache-2.0" ]
null
null
null
_base_ = [ '../../../../_base_/default_runtime.py', '../../../../_base_/datasets/mpii.py' ] evaluation = dict(interval=10, metric='PCKh', save_best='PCKh') optimizer = dict( type='Adam', lr=5e-4, ) optimizer_config = dict(grad_clip=None) # learning policy lr_config = dict( policy='step', warmup='linear', warmup_iters=500, warmup_ratio=0.001, step=[170, 200]) total_epochs = 210 log_config = dict( interval=50, hooks=[ dict(type='TextLoggerHook'), ]) channel_cfg = dict( num_output_channels=16, dataset_joints=16, dataset_channel=list(range(16)), inference_channel=list(range(16))) # model settings model = dict( type='TopDown', pretrained='https://download.openmmlab.com/mmpose/' 'pretrain_models/hrnet_w48-8ef0771d.pth', backbone=dict( type='HRNet', in_channels=3, extra=dict( stage1=dict( num_modules=1, num_branches=1, block='BOTTLENECK', num_blocks=(4, ), num_channels=(64, )), stage2=dict( num_modules=1, num_branches=2, block='BASIC', num_blocks=(4, 4), num_channels=(48, 96)), stage3=dict( num_modules=4, num_branches=3, block='BASIC', num_blocks=(4, 4, 4), num_channels=(48, 96, 192)), stage4=dict( num_modules=3, num_branches=4, block='BASIC', num_blocks=(4, 4, 4, 4), num_channels=(48, 96, 192, 384))), ), keypoint_head=dict( type='TopdownHeatmapSimpleHead', in_channels=48, out_channels=channel_cfg['num_output_channels'], num_deconv_layers=0, extra=dict(final_conv_kernel=1, ), loss_keypoint=dict(type='JointsMSELoss', use_target_weight=True)), train_cfg=dict(), test_cfg=dict( flip_test=True, post_process='default', shift_heatmap=True, modulate_kernel=11)) data_cfg = dict( image_size=[256, 256], heatmap_size=[64, 64], num_output_channels=channel_cfg['num_output_channels'], num_joints=channel_cfg['dataset_joints'], dataset_channel=channel_cfg['dataset_channel'], inference_channel=channel_cfg['inference_channel'], use_gt_bbox=True, bbox_file=None, ) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='TopDownGetBboxCenterScale', padding=1.25), dict(type='TopDownRandomFlip', flip_prob=0.5), dict( type='TopDownGetRandomScaleRotation', rot_factor=40, scale_factor=0.5), dict(type='TopDownAffine'), dict(type='ToTensor'), dict( type='NormalizeTensor', mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), dict(type='TopDownGenerateTarget', sigma=2), dict( type='Collect', keys=['img', 'target', 'target_weight'], meta_keys=[ 'image_file', 'joints_3d', 'joints_3d_visible', 'center', 'scale', 'rotation', 'flip_pairs' ]), ] val_pipeline = [ dict(type='LoadImageFromFile'), dict(type='TopDownGetBboxCenterScale', padding=1.25), dict(type='TopDownAffine'), dict(type='ToTensor'), dict( type='NormalizeTensor', mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), dict( type='Collect', keys=['img'], meta_keys=['image_file', 'center', 'scale', 'rotation', 'flip_pairs']), ] test_pipeline = val_pipeline data_root = 'data/mpii' data = dict( samples_per_gpu=64, workers_per_gpu=2, val_dataloader=dict(samples_per_gpu=32), test_dataloader=dict(samples_per_gpu=32), train=dict( type='TopDownMpiiDataset', ann_file=f'{data_root}/annotations/mpii_train.json', img_prefix=f'{data_root}/images/', data_cfg=data_cfg, pipeline=train_pipeline, dataset_info={{_base_.dataset_info}}), val=dict( type='TopDownMpiiDataset', ann_file=f'{data_root}/annotations/mpii_val.json', img_prefix=f'{data_root}/images/', data_cfg=data_cfg, pipeline=val_pipeline, dataset_info={{_base_.dataset_info}}), test=dict( type='TopDownMpiiDataset', ann_file=f'{data_root}/annotations/mpii_val.json', img_prefix=f'{data_root}/images/', data_cfg=data_cfg, pipeline=test_pipeline, dataset_info={{_base_.dataset_info}}), )
29.267516
79
0.591513
df95beb71c633f86803037122e89db4234027c1f
3,718
py
Python
azure-mgmt-network/azure/mgmt/network/v2017_11_01/models/application_gateway_http_listener_py3.py
Christina-Kang/azure-sdk-for-python
bbf982eb06aab04b8151f69f1d230b7f5fb96ebf
[ "MIT" ]
1
2022-03-30T22:39:15.000Z
2022-03-30T22:39:15.000Z
azure-mgmt-network/azure/mgmt/network/v2017_11_01/models/application_gateway_http_listener_py3.py
Christina-Kang/azure-sdk-for-python
bbf982eb06aab04b8151f69f1d230b7f5fb96ebf
[ "MIT" ]
54
2016-03-25T17:25:01.000Z
2018-10-22T17:27:54.000Z
azure-mgmt-network/azure/mgmt/network/v2017_11_01/models/application_gateway_http_listener_py3.py
Christina-Kang/azure-sdk-for-python
bbf982eb06aab04b8151f69f1d230b7f5fb96ebf
[ "MIT" ]
2
2017-01-20T18:25:46.000Z
2017-05-12T21:31:47.000Z
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- from .sub_resource import SubResource class ApplicationGatewayHttpListener(SubResource): """Http listener of an application gateway. :param id: Resource ID. :type id: str :param frontend_ip_configuration: Frontend IP configuration resource of an application gateway. :type frontend_ip_configuration: ~azure.mgmt.network.v2017_11_01.models.SubResource :param frontend_port: Frontend port resource of an application gateway. :type frontend_port: ~azure.mgmt.network.v2017_11_01.models.SubResource :param protocol: Protocol. Possible values include: 'Http', 'Https' :type protocol: str or ~azure.mgmt.network.v2017_11_01.models.ApplicationGatewayProtocol :param host_name: Host name of HTTP listener. :type host_name: str :param ssl_certificate: SSL certificate resource of an application gateway. :type ssl_certificate: ~azure.mgmt.network.v2017_11_01.models.SubResource :param require_server_name_indication: Applicable only if protocol is https. Enables SNI for multi-hosting. :type require_server_name_indication: bool :param provisioning_state: Provisioning state of the HTTP listener resource. Possible values are: 'Updating', 'Deleting', and 'Failed'. :type provisioning_state: str :param name: Name of the resource that is unique within a resource group. This name can be used to access the resource. :type name: str :param etag: A unique read-only string that changes whenever the resource is updated. :type etag: str :param type: Type of the resource. :type type: str """ _attribute_map = { 'id': {'key': 'id', 'type': 'str'}, 'frontend_ip_configuration': {'key': 'properties.frontendIPConfiguration', 'type': 'SubResource'}, 'frontend_port': {'key': 'properties.frontendPort', 'type': 'SubResource'}, 'protocol': {'key': 'properties.protocol', 'type': 'str'}, 'host_name': {'key': 'properties.hostName', 'type': 'str'}, 'ssl_certificate': {'key': 'properties.sslCertificate', 'type': 'SubResource'}, 'require_server_name_indication': {'key': 'properties.requireServerNameIndication', 'type': 'bool'}, 'provisioning_state': {'key': 'properties.provisioningState', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, 'etag': {'key': 'etag', 'type': 'str'}, 'type': {'key': 'type', 'type': 'str'}, } def __init__(self, *, id: str=None, frontend_ip_configuration=None, frontend_port=None, protocol=None, host_name: str=None, ssl_certificate=None, require_server_name_indication: bool=None, provisioning_state: str=None, name: str=None, etag: str=None, type: str=None, **kwargs) -> None: super(ApplicationGatewayHttpListener, self).__init__(id=id, **kwargs) self.frontend_ip_configuration = frontend_ip_configuration self.frontend_port = frontend_port self.protocol = protocol self.host_name = host_name self.ssl_certificate = ssl_certificate self.require_server_name_indication = require_server_name_indication self.provisioning_state = provisioning_state self.name = name self.etag = etag self.type = type
48.921053
289
0.673749
5589b97ad49d1d4c965638dd8c5ea281caa83e20
22,832
py
Python
tools/interop_matrix/client_matrix.py
qstanczyk/grpc
34338e5798aa6756d66c1f9b64ba8e94a4aefbee
[ "Apache-2.0" ]
null
null
null
tools/interop_matrix/client_matrix.py
qstanczyk/grpc
34338e5798aa6756d66c1f9b64ba8e94a4aefbee
[ "Apache-2.0" ]
null
null
null
tools/interop_matrix/client_matrix.py
qstanczyk/grpc
34338e5798aa6756d66c1f9b64ba8e94a4aefbee
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python2.7 # Copyright 2017 gRPC authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Defines languages, runtimes and releases for backward compatibility testing from collections import OrderedDict def get_github_repo(lang): return { 'dart': 'https://github.com/grpc/grpc-dart.git', 'go': 'https://github.com/grpc/grpc-go.git', 'java': 'https://github.com/grpc/grpc-java.git', 'node': 'https://github.com/grpc/grpc-node.git', # all other languages use the grpc.git repo. }.get(lang, 'https://github.com/grpc/grpc.git') def get_release_tags(lang): """Returns list of known releases for given language.""" return list(LANG_RELEASE_MATRIX[lang].keys()) def get_runtimes_for_lang_release(lang, release): """Get list of valid runtimes for given release of lang.""" runtimes = list(LANG_RUNTIME_MATRIX[lang]) release_info = LANG_RELEASE_MATRIX[lang].get(release) if release_info and release_info.runtimes: runtimes = list(release_info.runtimes) return runtimes def should_build_docker_interop_image_from_release_tag(lang): # All dockerfile definitions live in grpc/grpc repository. # For language that have a separate repo, we need to use # dockerfile definitions from head of grpc/grpc. if lang in ['go', 'java', 'node']: return False return True # Dictionary of default runtimes per language LANG_RUNTIME_MATRIX = { 'cxx': ['cxx'], # This is actually debian8. 'go': ['go1.8', 'go1.11', 'go1.16'], 'java': ['java'], 'python': ['python', 'pythonasyncio'], 'node': ['node'], 'ruby': ['ruby'], 'php': ['php7'], 'csharp': ['csharp', 'csharpcoreclr'], } class ReleaseInfo: """Info about a single release of a language""" def __init__(self, patch=[], runtimes=[], testcases_file=None): self.patch = patch self.runtimes = runtimes self.testcases_file = testcases_file # Dictionary of known releases for given language. LANG_RELEASE_MATRIX = { 'cxx': OrderedDict([ ('v1.0.1', ReleaseInfo(testcases_file='cxx__v1.0.1')), ('v1.1.4', ReleaseInfo(testcases_file='cxx__v1.0.1')), ('v1.2.5', ReleaseInfo(testcases_file='cxx__v1.0.1')), ('v1.3.9', ReleaseInfo(testcases_file='cxx__v1.0.1')), ('v1.4.2', ReleaseInfo(testcases_file='cxx__v1.0.1')), ('v1.6.6', ReleaseInfo(testcases_file='cxx__v1.0.1')), ('v1.7.2', ReleaseInfo(testcases_file='cxx__v1.0.1')), ('v1.8.0', ReleaseInfo(testcases_file='cxx__v1.0.1')), ('v1.9.1', ReleaseInfo(testcases_file='cxx__v1.0.1')), ('v1.10.1', ReleaseInfo(testcases_file='cxx__v1.0.1')), ('v1.11.1', ReleaseInfo(testcases_file='cxx__v1.0.1')), ('v1.12.0', ReleaseInfo(testcases_file='cxx__v1.0.1')), ('v1.13.0', ReleaseInfo(testcases_file='cxx__v1.0.1')), ('v1.14.1', ReleaseInfo(testcases_file='cxx__v1.0.1')), ('v1.15.0', ReleaseInfo(testcases_file='cxx__v1.0.1')), ('v1.16.0', ReleaseInfo(testcases_file='cxx__v1.0.1')), ('v1.17.1', ReleaseInfo(testcases_file='cxx__v1.0.1')), ('v1.18.0', ReleaseInfo(testcases_file='cxx__v1.0.1')), ('v1.19.0', ReleaseInfo(testcases_file='cxx__v1.0.1')), ('v1.20.0', ReleaseInfo(testcases_file='cxx__v1.31.1')), ('v1.21.4', ReleaseInfo(testcases_file='cxx__v1.31.1')), ('v1.22.0', ReleaseInfo(testcases_file='cxx__v1.31.1')), ('v1.22.1', ReleaseInfo(testcases_file='cxx__v1.31.1')), ('v1.23.0', ReleaseInfo(testcases_file='cxx__v1.31.1')), ('v1.24.0', ReleaseInfo(testcases_file='cxx__v1.31.1')), ('v1.25.0', ReleaseInfo(testcases_file='cxx__v1.31.1')), ('v1.26.0', ReleaseInfo(testcases_file='cxx__v1.31.1')), ('v1.27.3', ReleaseInfo(testcases_file='cxx__v1.31.1')), ('v1.30.0', ReleaseInfo(testcases_file='cxx__v1.31.1')), ('v1.31.1', ReleaseInfo(testcases_file='cxx__v1.31.1')), ('v1.32.0', ReleaseInfo()), ('v1.33.2', ReleaseInfo()), ('v1.34.0', ReleaseInfo()), ('v1.35.0', ReleaseInfo()), ('v1.36.3', ReleaseInfo()), ('v1.37.0', ReleaseInfo()), ('v1.38.0', ReleaseInfo()), ]), 'go': OrderedDict([ ('v1.0.5', ReleaseInfo(runtimes=['go1.8'], testcases_file='go__v1.0.5')), ('v1.2.1', ReleaseInfo(runtimes=['go1.8'], testcases_file='go__v1.0.5')), ('v1.3.0', ReleaseInfo(runtimes=['go1.8'], testcases_file='go__v1.0.5')), ('v1.4.2', ReleaseInfo(runtimes=['go1.8'], testcases_file='go__v1.0.5')), ('v1.5.2', ReleaseInfo(runtimes=['go1.8'], testcases_file='go__v1.0.5')), ('v1.6.0', ReleaseInfo(runtimes=['go1.8'], testcases_file='go__v1.0.5')), ('v1.7.4', ReleaseInfo(runtimes=['go1.8'], testcases_file='go__v1.0.5')), ('v1.8.2', ReleaseInfo(runtimes=['go1.8'], testcases_file='go__v1.0.5')), ('v1.9.2', ReleaseInfo(runtimes=['go1.8'], testcases_file='go__v1.0.5')), ('v1.10.1', ReleaseInfo(runtimes=['go1.8'], testcases_file='go__v1.0.5')), ('v1.11.3', ReleaseInfo(runtimes=['go1.8'], testcases_file='go__v1.0.5')), ('v1.12.2', ReleaseInfo(runtimes=['go1.8'], testcases_file='go__v1.0.5')), ('v1.13.0', ReleaseInfo(runtimes=['go1.8'], testcases_file='go__v1.0.5')), ('v1.14.0', ReleaseInfo(runtimes=['go1.8'], testcases_file='go__v1.0.5')), ('v1.15.0', ReleaseInfo(runtimes=['go1.8'], testcases_file='go__v1.0.5')), ('v1.16.0', ReleaseInfo(runtimes=['go1.8'], testcases_file='go__v1.0.5')), ('v1.17.0', ReleaseInfo(runtimes=['go1.11'], testcases_file='go__v1.0.5')), ('v1.18.0', ReleaseInfo(runtimes=['go1.11'], testcases_file='go__v1.0.5')), ('v1.19.0', ReleaseInfo(runtimes=['go1.11'], testcases_file='go__v1.0.5')), ('v1.20.0', ReleaseInfo(runtimes=['go1.11'], testcases_file='go__v1.20.0')), ('v1.21.3', ReleaseInfo(runtimes=['go1.11'], testcases_file='go__v1.20.0')), ('v1.22.3', ReleaseInfo(runtimes=['go1.11'], testcases_file='go__v1.20.0')), ('v1.23.1', ReleaseInfo(runtimes=['go1.11'], testcases_file='go__v1.20.0')), ('v1.24.0', ReleaseInfo(runtimes=['go1.11'], testcases_file='go__v1.20.0')), ('v1.25.0', ReleaseInfo(runtimes=['go1.11'], testcases_file='go__v1.20.0')), ('v1.26.0', ReleaseInfo(runtimes=['go1.11'], testcases_file='go__v1.20.0')), ('v1.27.1', ReleaseInfo(runtimes=['go1.11'], testcases_file='go__v1.20.0')), ('v1.28.0', ReleaseInfo(runtimes=['go1.11'], testcases_file='go__v1.20.0')), ('v1.29.0', ReleaseInfo(runtimes=['go1.11'], testcases_file='go__v1.20.0')), ('v1.30.0', ReleaseInfo(runtimes=['go1.11'], testcases_file='go__v1.20.0')), ('v1.31.1', ReleaseInfo(runtimes=['go1.11'], testcases_file='go__v1.20.0')), ('v1.32.0', ReleaseInfo(runtimes=['go1.11'], testcases_file='go__v1.20.0')), ('v1.33.1', ReleaseInfo(runtimes=['go1.11'], testcases_file='go__v1.20.0')), ('v1.34.0', ReleaseInfo(runtimes=['go1.11'])), ('v1.35.0', ReleaseInfo(runtimes=['go1.11'])), ('v1.36.0', ReleaseInfo(runtimes=['go1.11'])), ('v1.37.0', ReleaseInfo(runtimes=['go1.11'])), # NOTE: starting from release v1.38.0, use runtimes=['go1.16'] ('v1.38.1', ReleaseInfo(runtimes=['go1.16'])), ('v1.39.1', ReleaseInfo(runtimes=['go1.16'])), ('v1.40.0', ReleaseInfo(runtimes=['go1.16'])), ]), 'java': OrderedDict([ ('v1.0.3', ReleaseInfo(runtimes=['java_oracle8'], testcases_file='java__v1.0.3')), ('v1.1.2', ReleaseInfo(runtimes=['java_oracle8'], testcases_file='java__v1.0.3')), ('v1.2.0', ReleaseInfo(runtimes=['java_oracle8'], testcases_file='java__v1.0.3')), ('v1.3.1', ReleaseInfo(runtimes=['java_oracle8'], testcases_file='java__v1.0.3')), ('v1.4.0', ReleaseInfo(runtimes=['java_oracle8'], testcases_file='java__v1.0.3')), ('v1.5.0', ReleaseInfo(runtimes=['java_oracle8'], testcases_file='java__v1.0.3')), ('v1.6.1', ReleaseInfo(runtimes=['java_oracle8'], testcases_file='java__v1.0.3')), ('v1.7.1', ReleaseInfo(testcases_file='java__v1.0.3')), ('v1.8.0', ReleaseInfo(runtimes=['java_oracle8'], testcases_file='java__v1.0.3')), ('v1.9.1', ReleaseInfo(runtimes=['java_oracle8'], testcases_file='java__v1.0.3')), ('v1.10.1', ReleaseInfo(runtimes=['java_oracle8'], testcases_file='java__v1.0.3')), ('v1.11.0', ReleaseInfo(runtimes=['java_oracle8'], testcases_file='java__v1.0.3')), ('v1.12.1', ReleaseInfo(testcases_file='java__v1.0.3')), ('v1.13.2', ReleaseInfo(testcases_file='java__v1.0.3')), ('v1.14.0', ReleaseInfo(runtimes=['java_oracle8'], testcases_file='java__v1.0.3')), ('v1.15.1', ReleaseInfo(testcases_file='java__v1.0.3')), ('v1.16.1', ReleaseInfo(runtimes=['java_oracle8'], testcases_file='java__v1.0.3')), ('v1.17.2', ReleaseInfo(testcases_file='java__v1.0.3')), ('v1.18.0', ReleaseInfo(runtimes=['java_oracle8'], testcases_file='java__v1.0.3')), ('v1.19.0', ReleaseInfo(runtimes=['java_oracle8'], testcases_file='java__v1.0.3')), ('v1.20.0', ReleaseInfo(runtimes=['java_oracle8'])), ('v1.21.1', ReleaseInfo()), ('v1.22.2', ReleaseInfo()), ('v1.23.0', ReleaseInfo()), ('v1.24.0', ReleaseInfo()), ('v1.25.0', ReleaseInfo()), ('v1.26.1', ReleaseInfo()), ('v1.27.2', ReleaseInfo()), ('v1.28.1', ReleaseInfo()), ('v1.29.0', ReleaseInfo()), ('v1.30.2', ReleaseInfo()), ('v1.31.2', ReleaseInfo()), ('v1.32.3', ReleaseInfo()), ('v1.33.1', ReleaseInfo()), ('v1.34.1', ReleaseInfo()), ('v1.35.1', ReleaseInfo()), ('v1.36.1', ReleaseInfo()), ('v1.37.1', ReleaseInfo()), ('v1.38.1', ReleaseInfo()), ('v1.39.0', ReleaseInfo()), ]), 'python': OrderedDict([ ('v1.0.x', ReleaseInfo(runtimes=['python'], testcases_file='python__v1.0.x')), ('v1.1.4', ReleaseInfo(runtimes=['python'], testcases_file='python__v1.0.x')), ('v1.2.5', ReleaseInfo(runtimes=['python'], testcases_file='python__v1.0.x')), ('v1.3.9', ReleaseInfo(runtimes=['python'], testcases_file='python__v1.0.x')), ('v1.4.2', ReleaseInfo(runtimes=['python'], testcases_file='python__v1.0.x')), ('v1.6.6', ReleaseInfo(runtimes=['python'], testcases_file='python__v1.0.x')), ('v1.7.2', ReleaseInfo(runtimes=['python'], testcases_file='python__v1.0.x')), ('v1.8.1', ReleaseInfo(runtimes=['python'], testcases_file='python__v1.0.x')), ('v1.9.1', ReleaseInfo(runtimes=['python'], testcases_file='python__v1.0.x')), ('v1.10.1', ReleaseInfo(runtimes=['python'], testcases_file='python__v1.0.x')), ('v1.11.1', ReleaseInfo(runtimes=['python'], testcases_file='python__v1.11.1')), ('v1.12.0', ReleaseInfo(runtimes=['python'], testcases_file='python__v1.11.1')), ('v1.13.0', ReleaseInfo(runtimes=['python'], testcases_file='python__v1.11.1')), ('v1.14.1', ReleaseInfo(runtimes=['python'], testcases_file='python__v1.11.1')), ('v1.15.0', ReleaseInfo(runtimes=['python'], testcases_file='python__v1.11.1')), ('v1.16.0', ReleaseInfo(runtimes=['python'], testcases_file='python__v1.11.1')), ('v1.17.1', ReleaseInfo(runtimes=['python'], testcases_file='python__v1.11.1')), ('v1.18.0', ReleaseInfo(runtimes=['python'])), ('v1.19.0', ReleaseInfo(runtimes=['python'])), ('v1.20.0', ReleaseInfo(runtimes=['python'])), ('v1.21.4', ReleaseInfo(runtimes=['python'])), ('v1.22.0', ReleaseInfo(runtimes=['python'])), ('v1.22.1', ReleaseInfo(runtimes=['python'])), ('v1.23.0', ReleaseInfo(runtimes=['python'])), ('v1.24.0', ReleaseInfo(runtimes=['python'])), ('v1.25.0', ReleaseInfo(runtimes=['python'])), ('v1.26.0', ReleaseInfo(runtimes=['python'])), ('v1.27.3', ReleaseInfo(runtimes=['python'])), ('v1.30.0', ReleaseInfo(runtimes=['python'])), ('v1.31.1', ReleaseInfo(runtimes=['python'])), ('v1.32.0', ReleaseInfo(runtimes=['python'])), ('v1.33.2', ReleaseInfo(runtimes=['python'])), ('v1.34.0', ReleaseInfo(runtimes=['python'])), ('v1.35.0', ReleaseInfo(runtimes=['python'])), ('v1.36.3', ReleaseInfo(runtimes=['python'])), ('v1.37.0', ReleaseInfo(runtimes=['python'])), ('v1.38.0', ReleaseInfo(runtimes=['python'])), ]), 'node': OrderedDict([ ('v1.0.1', ReleaseInfo(testcases_file='node__v1.0.1')), ('v1.1.4', ReleaseInfo(testcases_file='node__v1.1.4')), ('v1.2.5', ReleaseInfo(testcases_file='node__v1.1.4')), ('v1.3.9', ReleaseInfo(testcases_file='node__v1.1.4')), ('v1.4.2', ReleaseInfo(testcases_file='node__v1.1.4')), ('v1.6.6', ReleaseInfo(testcases_file='node__v1.1.4')), # TODO: https://github.com/grpc/grpc-node/issues/235. # ('v1.7.2', ReleaseInfo()), ('v1.8.4', ReleaseInfo()), ('v1.9.1', ReleaseInfo()), ('v1.10.0', ReleaseInfo()), ('v1.11.3', ReleaseInfo()), ('v1.12.4', ReleaseInfo()), ]), 'ruby': OrderedDict([ ('v1.0.1', ReleaseInfo(patch=[ 'tools/dockerfile/interoptest/grpc_interop_ruby/Dockerfile', 'tools/dockerfile/interoptest/grpc_interop_ruby/build_interop.sh', ], testcases_file='ruby__v1.0.1')), ('v1.1.4', ReleaseInfo(testcases_file='ruby__v1.1.4')), ('v1.2.5', ReleaseInfo(testcases_file='ruby__v1.1.4')), ('v1.3.9', ReleaseInfo(testcases_file='ruby__v1.1.4')), ('v1.4.2', ReleaseInfo(testcases_file='ruby__v1.1.4')), ('v1.6.6', ReleaseInfo(testcases_file='ruby__v1.1.4')), ('v1.7.2', ReleaseInfo(testcases_file='ruby__v1.1.4')), ('v1.8.0', ReleaseInfo(testcases_file='ruby__v1.1.4')), ('v1.9.1', ReleaseInfo(testcases_file='ruby__v1.1.4')), ('v1.10.1', ReleaseInfo(testcases_file='ruby__v1.1.4')), ('v1.11.1', ReleaseInfo(testcases_file='ruby__v1.1.4')), ('v1.12.0', ReleaseInfo(testcases_file='ruby__v1.1.4')), ('v1.13.0', ReleaseInfo(testcases_file='ruby__v1.1.4')), ('v1.14.1', ReleaseInfo(testcases_file='ruby__v1.1.4')), ('v1.15.0', ReleaseInfo(testcases_file='ruby__v1.1.4')), ('v1.16.0', ReleaseInfo(testcases_file='ruby__v1.1.4')), ('v1.17.1', ReleaseInfo(testcases_file='ruby__v1.1.4')), ('v1.18.0', ReleaseInfo(patch=[ 'tools/dockerfile/interoptest/grpc_interop_ruby/build_interop.sh', ])), ('v1.19.0', ReleaseInfo()), ('v1.20.0', ReleaseInfo()), ('v1.21.4', ReleaseInfo()), ('v1.22.0', ReleaseInfo()), ('v1.22.1', ReleaseInfo()), ('v1.23.0', ReleaseInfo()), ('v1.24.0', ReleaseInfo()), ('v1.25.0', ReleaseInfo()), # TODO: https://github.com/grpc/grpc/issues/18262. # If you are not encountering the error in above issue # go ahead and upload the docker image for new releases. ('v1.26.0', ReleaseInfo()), ('v1.27.3', ReleaseInfo()), ('v1.30.0', ReleaseInfo()), ('v1.31.1', ReleaseInfo()), ('v1.32.0', ReleaseInfo()), ('v1.33.2', ReleaseInfo()), ('v1.34.0', ReleaseInfo()), ('v1.35.0', ReleaseInfo()), ('v1.36.3', ReleaseInfo()), ('v1.37.0', ReleaseInfo()), ('v1.38.0', ReleaseInfo()), ]), 'php': OrderedDict([ ('v1.0.1', ReleaseInfo(testcases_file='php__v1.0.1')), ('v1.1.4', ReleaseInfo(testcases_file='php__v1.0.1')), ('v1.2.5', ReleaseInfo(testcases_file='php__v1.0.1')), ('v1.3.9', ReleaseInfo(testcases_file='php__v1.0.1')), ('v1.4.2', ReleaseInfo(testcases_file='php__v1.0.1')), ('v1.6.6', ReleaseInfo(testcases_file='php__v1.0.1')), ('v1.7.2', ReleaseInfo(testcases_file='php__v1.0.1')), ('v1.8.0', ReleaseInfo(testcases_file='php__v1.0.1')), ('v1.9.1', ReleaseInfo(testcases_file='php__v1.0.1')), ('v1.10.1', ReleaseInfo(testcases_file='php__v1.0.1')), ('v1.11.1', ReleaseInfo(testcases_file='php__v1.0.1')), ('v1.12.0', ReleaseInfo(testcases_file='php__v1.0.1')), ('v1.13.0', ReleaseInfo(testcases_file='php__v1.0.1')), ('v1.14.1', ReleaseInfo(testcases_file='php__v1.0.1')), ('v1.15.0', ReleaseInfo(testcases_file='php__v1.0.1')), ('v1.16.0', ReleaseInfo(testcases_file='php__v1.0.1')), ('v1.17.1', ReleaseInfo(testcases_file='php__v1.0.1')), ('v1.18.0', ReleaseInfo()), # v1.19 and v1.20 were deliberately omitted here because of an issue. # See https://github.com/grpc/grpc/issues/18264 ('v1.21.4', ReleaseInfo()), ('v1.22.0', ReleaseInfo()), ('v1.22.1', ReleaseInfo()), ('v1.23.0', ReleaseInfo()), ('v1.24.0', ReleaseInfo()), ('v1.25.0', ReleaseInfo()), ('v1.26.0', ReleaseInfo()), ('v1.27.3', ReleaseInfo()), ('v1.30.0', ReleaseInfo()), ('v1.31.1', ReleaseInfo()), ('v1.32.0', ReleaseInfo()), ('v1.33.2', ReleaseInfo()), ('v1.34.0', ReleaseInfo()), ('v1.35.0', ReleaseInfo()), ('v1.36.3', ReleaseInfo()), ('v1.37.0', ReleaseInfo()), ('v1.38.0', ReleaseInfo()), ]), 'csharp': OrderedDict([ ('v1.0.1', ReleaseInfo(patch=[ 'tools/dockerfile/interoptest/grpc_interop_csharp/Dockerfile', 'tools/dockerfile/interoptest/grpc_interop_csharpcoreclr/Dockerfile', ], testcases_file='csharp__v1.1.4')), ('v1.1.4', ReleaseInfo(testcases_file='csharp__v1.1.4')), ('v1.2.5', ReleaseInfo(testcases_file='csharp__v1.1.4')), ('v1.3.9', ReleaseInfo(testcases_file='csharp__v1.3.9')), ('v1.4.2', ReleaseInfo(testcases_file='csharp__v1.3.9')), ('v1.6.6', ReleaseInfo(testcases_file='csharp__v1.3.9')), ('v1.7.2', ReleaseInfo(testcases_file='csharp__v1.3.9')), ('v1.8.0', ReleaseInfo(testcases_file='csharp__v1.3.9')), ('v1.9.1', ReleaseInfo(testcases_file='csharp__v1.3.9')), ('v1.10.1', ReleaseInfo(testcases_file='csharp__v1.3.9')), ('v1.11.1', ReleaseInfo(testcases_file='csharp__v1.3.9')), ('v1.12.0', ReleaseInfo(testcases_file='csharp__v1.3.9')), ('v1.13.0', ReleaseInfo(testcases_file='csharp__v1.3.9')), ('v1.14.1', ReleaseInfo(testcases_file='csharp__v1.3.9')), ('v1.15.0', ReleaseInfo(testcases_file='csharp__v1.3.9')), ('v1.16.0', ReleaseInfo(testcases_file='csharp__v1.3.9')), ('v1.17.1', ReleaseInfo(testcases_file='csharp__v1.3.9')), ('v1.18.0', ReleaseInfo(testcases_file='csharp__v1.18.0')), ('v1.19.0', ReleaseInfo(testcases_file='csharp__v1.18.0')), ('v1.20.0', ReleaseInfo()), ('v1.21.4', ReleaseInfo()), ('v1.22.0', ReleaseInfo()), ('v1.22.1', ReleaseInfo()), ('v1.23.0', ReleaseInfo()), ('v1.24.0', ReleaseInfo()), ('v1.25.0', ReleaseInfo()), ('v1.26.0', ReleaseInfo()), ('v1.27.3', ReleaseInfo()), ('v1.30.0', ReleaseInfo()), ('v1.31.1', ReleaseInfo()), ('v1.32.0', ReleaseInfo()), ('v1.33.2', ReleaseInfo()), ('v1.34.0', ReleaseInfo()), ('v1.35.0', ReleaseInfo()), ('v1.36.3', ReleaseInfo()), ('v1.37.0', ReleaseInfo()), ]), }
47.173554
86
0.522819
ddf241f76afbd61aba466a59fd0facef6be69598
8,857
py
Python
controls.py
zhangenter/tetris
300c668d9732cd037bfc6f47c289bd5ee4a009b2
[ "Apache-2.0" ]
3
2019-05-08T14:49:10.000Z
2021-01-20T13:22:45.000Z
controls.py
zhangenter/tetris
300c668d9732cd037bfc6f47c289bd5ee4a009b2
[ "Apache-2.0" ]
null
null
null
controls.py
zhangenter/tetris
300c668d9732cd037bfc6f47c289bd5ee4a009b2
[ "Apache-2.0" ]
2
2020-01-28T14:37:06.000Z
2020-04-03T13:37:14.000Z
# -*- coding=utf-8 -*- import random import os,pickle import pygame from globals import * from matrix import Matrix class VirtualHintBox(object): pid = 0 block_manage=None next_block= None def __init__(self, pid, block_manage): #print pid self.pid = pid self.block_manage = block_manage def take_block(self): block = self.next_block if block is None: # make first block block = self.block_manage.get_block(self.pid) self.next_block = self.block_manage.get_block(self.pid) return block def paint(self): pass class HintBox(VirtualHintBox): def __init__(self, bg, block_size, position, block_manage): super(HintBox, self).__init__(0, block_manage) self._bg = bg; self._x, self._y, self._width, self._height = position self._block_size = block_size self._bgcolor = [0, 0, 0] self.block_manage = block_manage def paint(self): mid_x = self._x + self._width / 2 pygame.draw.line(self._bg, self._bgcolor, [mid_x, self._y], [mid_x, self._y + self._height], self._width) bz = self._block_size if self.next_block: arr = self.next_block.get_rect_arr() minx, miny = arr[0] maxx, maxy = arr[0] for x, y in arr: if x < minx: minx = x if x > maxx: maxx = x if y < miny: miny = y if y > maxy: maxy = y w = (maxx - minx) * bz h = (maxy - miny) * bz cx = self._width / 2 - w / 2 - minx * bz - bz / 2 cy = self._height / 2 - h / 2 - miny * bz - bz / 2 for rect in arr: x, y = rect pygame.draw.line(self._bg, self.next_block.color, [self._x + x * bz + cx + bz / 2, self._y + cy + y * bz], [self._x + x * bz + cx + bz / 2, self._y + cy + (y + 1) * bz], bz) pygame.draw.rect(self._bg, [255, 255, 255], [self._x + x * bz + cx, self._y + y * bz + cy, bz + 1, bz + 1], 1) class ScoreBox(object): total_score = 0 high_score = 0 db_file = 'tetris.db' def __init__(self, bg, block_size, position): self._bg = bg; self._x, self._y, self._width, self._height = position self._block_size = block_size self._bgcolor = [0, 0, 0] if os.path.exists(self.db_file): self.high_score = pickle.load(open(self.db_file, 'rb')) def paint(self): myfont = get_user_font(24) white = 255, 255, 255 textImage = myfont.render(LanguageLib.instance().get_text('high') + ': %06d' % (self.high_score), True, white) self._bg.blit(textImage, (self._x, self._y - 10)) textImage = myfont.render(LanguageLib.instance().get_text('score') + ':%06d' % (self.total_score), True, white) self._bg.blit(textImage, (self._x, self._y + 20)) def add_score(self, score): self.total_score += score if self.total_score > self.high_score: self.high_score = self.total_score pickle.dump(self.high_score, open(self.db_file, 'wb+')) class VirtualScoreBox(object): total_score = 0 def __init__(self, bg, position): self._bg = bg; self._x, self._y, self._width, self._height = position self._bgcolor = [0, 0, 0] def paint(self): myfont = get_user_font(16) white = 255, 255, 255 textImage = myfont.render(LanguageLib.instance().get_text('player2 score') + ':%06d' % (self.total_score), True, white) self._bg.blit(textImage, (self._x, self._y)) def add_score(self, score): self.total_score += score class Panel(object): attack_num = 0 block_id = 0 rect_arr = [] moving_block = None hint_box = None score_box = None def __init__(self, bg, block_size, position): self._bg = bg; self._x, self._y, self._width, self._height = position self._block_size = block_size self._bgcolor = [0, 0, 0] self.block_id = 0 self.rect_arr = [] self.moving_block = None def get_rect_matrix(self): matrix = Matrix(ROW_COUNT, COL_COUNT) for rect_info in self.rect_arr: matrix.set_val(rect_info.x, rect_info.y, 1) return matrix def add_block(self, block): #print block.get_rect_arr() for x, y in block.get_rect_arr(): self.rect_arr.append(RectInfo(x, y, block.color)) #print len(self.rect_arr) def create_move_block(self): self.block_id += 1 block = self.hint_box.take_block() # block = create_block() block.move(COL_COUNT / 2 - 2, -2) # move block to top center self.moving_block = block def check_overlap(self, diffx, diffy, check_arr=None): if check_arr is None: check_arr = self.moving_block.get_rect_arr() for x, y in check_arr: for rect_info in self.rect_arr: if x + diffx == rect_info.x and y + diffy == rect_info.y: return True return False def control_block(self, diffx, diffy): if self.moving_block.can_move(diffx, diffy) and not self.check_overlap(diffx, diffy): self.moving_block.move(diffx, diffy) def change_block(self): if self.moving_block: new_arr = self.moving_block.change() if new_arr and not self.check_overlap(0, 0, check_arr=new_arr): self.moving_block.rect_arr = new_arr def move_block(self): if self.moving_block is None: self.create_move_block() if self.moving_block.can_move(0, 1) and not self.check_overlap(0, 1): self.moving_block.move(0, 1) return 1 else: self.add_block(self.moving_block) self.check_clear() for rect_info in self.rect_arr: if rect_info.y < 0: return 9 # gameover self.create_move_block() return 2 def check_clear(self): tmp_arr = [[] for i in range(20)] for rect_info in self.rect_arr: if rect_info.y < 0: return tmp_arr[rect_info.y].append(rect_info) clear_num = 0 clear_lines = set([]) y_clear_diff_arr = [[] for i in range(20)] for y in range(19, -1, -1): if len(tmp_arr[y]) == 10: clear_lines.add(y) clear_num += 1 y_clear_diff_arr[y] = clear_num if clear_num > 0: new_arr = [] for y in range(19, -1, -1): if y in clear_lines: continue tmp_row = tmp_arr[y] y_clear_diff = y_clear_diff_arr[y] for rect_info in tmp_row: # new_arr.append([x,y+y_clear_diff]) new_arr.append(RectInfo(rect_info.x, rect_info.y + y_clear_diff, rect_info.color)) self.rect_arr = new_arr score = SCORE_MAP[clear_num - 1] self.score_box.add_score(score) def get_attach_num(self): if self.score_box.total_score / 1000 > self.attack_num: self.attack_num += 1 return 1 else: return 0 def add_hinder(self): hinder_lines = 2 for tmp in self.rect_arr: tmp.y -= hinder_lines for y in range(hinder_lines): arr = range(10) for i in range(5): n = random.randint(0, len(arr) - 1) arr.pop(n) for x in arr: self.rect_arr.append(RectInfo(x, 19 - y, [0, 0, 255])) def paint(self): mid_x = self._x + self._width / 2 pygame.draw.line(self._bg, self._bgcolor, [mid_x, self._y], [mid_x, self._y + self._height], self._width) bz = self._block_size for rect_info in self.rect_arr: x = rect_info.x y = rect_info.y pygame.draw.line(self._bg, rect_info.color, [self._x + x * bz + bz / 2, self._y + y * bz], [self._x + x * bz + bz / 2, self._y + (y + 1) * bz], bz) pygame.draw.rect(self._bg, [255, 255, 255], [self._x + x * bz, self._y + y * bz, bz + 1, bz + 1], 1) if self.moving_block: for rect in self.moving_block.get_rect_arr(): x, y = rect pygame.draw.line(self._bg, self.moving_block.color, [self._x + x * bz + bz / 2, self._y + y * bz], [self._x + x * bz + bz / 2, self._y + (y + 1) * bz], bz) pygame.draw.rect(self._bg, [255, 255, 255], [self._x + x * bz, self._y + y * bz, bz + 1, bz + 1], 1) self.score_box.paint() self.hint_box.paint()
35.007905
127
0.550525
aeae930842d50a4f37ab6f347a0debb42629a5d2
1,594
py
Python
Two Sum II.py
H-isaac23/LeetCode-Challenges
dcce6c2c45cccd39a45d4b9874561c12f2990cc6
[ "MIT" ]
null
null
null
Two Sum II.py
H-isaac23/LeetCode-Challenges
dcce6c2c45cccd39a45d4b9874561c12f2990cc6
[ "MIT" ]
null
null
null
Two Sum II.py
H-isaac23/LeetCode-Challenges
dcce6c2c45cccd39a45d4b9874561c12f2990cc6
[ "MIT" ]
null
null
null
# Given a 1-indexed array of integers numbers that is already sorted in non-decreasing order, find two numbers such that # they add up to a specific target number. Let these two numbers be numbers[index1] and numbers[index2] where # 1 <= index1 < index2 <= numbers.length. # # Return the indices of the two numbers, index1 and index2, added by one as an integer array [index1, index2] of length 2. # The tests are generated such that there is exactly one solution. You may not use the same element twice. # Your solution must use only constant extra space. # # Example 1: # Input: numbers = [2,7,11,15], target = 9 # Output: [1,2] # Explanation: The sum of 2 and 7 is 9. Therefore, index1 = 1, index2 = 2. We return [1, 2]. # # Example 2: # Input: numbers = [2,3,4], target = 6 # Output: [1,3] # Explanation: The sum of 2 and 4 is 6. Therefore index1 = 1, index2 = 3. We return [1, 3]. # # Example 3: # Input: numbers = [-1,0], target = -1 # Output: [1,2] # Explanation: The sum of -1 and 0 is -1. Therefore index1 = 1, index2 = 2. We return [1, 2]. # # Constraints: # # 2 <= numbers.length <= 3 * 104 # -1000 <= numbers[i] <= 1000 # numbers is sorted in non-decreasing order. # -1000 <= target <= 1000 # The tests are generated such that there is exactly one solution. class Solution: def twoSum(self, nums: List[int], target: int) -> List[int]: l, r = 0, len(nums) - 1 while l < r: if nums[l] + nums[r] == target: return [l + 1, r + 1] if nums[l] + nums[r] > target: r -= 1 else: l += 1
37.952381
122
0.624216
7292b0bfcd898e03486646fdada6580a8c41d0d8
3,093
py
Python
mmdet/models/roi_extractors/single_level.py
shaoqb/multi_scale_booster
8e5155c1ff3ba907966aa3971ce2057deafc27e7
[ "Apache-2.0" ]
24
2019-07-06T07:50:54.000Z
2021-12-12T03:38:24.000Z
mmdet/models/roi_extractors/single_level.py
shaoqb/multi_scale_booster
8e5155c1ff3ba907966aa3971ce2057deafc27e7
[ "Apache-2.0" ]
3
2019-07-29T11:38:30.000Z
2021-11-30T16:11:33.000Z
mmdet/models/roi_extractors/single_level.py
shaoqb/multi_scale_booster
8e5155c1ff3ba907966aa3971ce2057deafc27e7
[ "Apache-2.0" ]
7
2019-07-22T03:14:57.000Z
2021-06-26T01:11:50.000Z
from __future__ import division import torch import torch.nn as nn from mmdet import ops from ..registry import ROI_EXTRACTORS @ROI_EXTRACTORS.register_module class SingleRoIExtractor(nn.Module): """Extract RoI features from a single level feature map. If there are mulitple input feature levels, each RoI is mapped to a level according to its scale. Args: roi_layer (dict): Specify RoI layer type and arguments. out_channels (int): Output channels of RoI layers. featmap_strides (int): Strides of input feature maps. finest_scale (int): Scale threshold of mapping to level 0. """ def __init__(self, roi_layer, out_channels, featmap_strides, finest_scale=56, ): super(SingleRoIExtractor, self).__init__() self.roi_layers = self.build_roi_layers(roi_layer, featmap_strides) self.out_channels = out_channels self.featmap_strides = featmap_strides self.finest_scale = finest_scale @property def num_inputs(self): """int: Input feature map levels.""" return len(self.featmap_strides) def init_weights(self): pass def build_roi_layers(self, layer_cfg, featmap_strides): cfg = layer_cfg.copy() layer_type = cfg.pop('type') assert hasattr(ops, layer_type) layer_cls = getattr(ops, layer_type) roi_layers = nn.ModuleList( [layer_cls(spatial_scale=1 / s, **cfg) for s in featmap_strides]) return roi_layers def map_roi_levels(self, rois, num_levels): """Map rois to corresponding feature levels by scales. - scale < finest_scale: level 0 - finest_scale <= scale < finest_scale * 2: level 1 - finest_scale * 2 <= scale < finest_scale * 4: level 2 - scale >= finest_scale * 4: level 3 Args: rois (Tensor): Input RoIs, shape (k, 5). num_levels (int): Total level number. Returns: Tensor: Level index (0-based) of each RoI, shape (k, ) """ scale = torch.sqrt( (rois[:, 3] - rois[:, 1] + 1) * (rois[:, 4] - rois[:, 2] + 1)) target_lvls = torch.floor(torch.log2(scale / self.finest_scale + 1e-6)) target_lvls = target_lvls.clamp(min=0, max=num_levels - 1).long() return target_lvls def forward(self, feats, rois): if len(feats) == 1: return self.roi_layers[0](feats[0], rois) out_size = self.roi_layers[0].out_size num_levels = len(feats) target_lvls = self.map_roi_levels(rois, num_levels) roi_feats = torch.cuda.FloatTensor(rois.size()[0], self.out_channels, out_size, out_size).fill_(0) for i in range(num_levels): inds = target_lvls == i if inds.any(): rois_ = rois[inds, :] roi_feats_t = self.roi_layers[i](feats[i], rois_) roi_feats[inds] += roi_feats_t return roi_feats
34.366667
79
0.602005
2db38a2ef06e18adfced4fea42907f2bd434180a
1,400
py
Python
tests/token/conftest.py
isaac-philip/xyz-spaces-python
67b06efdc4a76934c54c1a828087a27cad26aa5d
[ "Apache-2.0" ]
1
2021-02-20T10:14:36.000Z
2021-02-20T10:14:36.000Z
tests/token/conftest.py
GhostUser/xyz-spaces-python
646aaa74a180871318f3e9aa12acc8e25a1f3b33
[ "Apache-2.0" ]
null
null
null
tests/token/conftest.py
GhostUser/xyz-spaces-python
646aaa74a180871318f3e9aa12acc8e25a1f3b33
[ "Apache-2.0" ]
null
null
null
# Copyright (C) 2019-2020 HERE Europe B.V. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # SPDX-License-Identifier: Apache-2.0 # License-Filename: LICENSE """Module for providing test fixtures for the Token API tests.""" import os import warnings import pytest from xyzspaces.apis import TokenApi from xyzspaces.exceptions import AuthenticationError HERE_USER = os.environ.get("HERE_USER") HERE_PASSWORD = os.environ.get("HERE_PASSWORD") @pytest.fixture() def api(): """Create shared XYZ Token API instance as a pytest fixture.""" credentials = {"username": HERE_USER, "password": HERE_PASSWORD} try: api = TokenApi(credentials=credentials) except AuthenticationError: api = TokenApi() warnings.warn( "Ignoring invalid credentials, creating TokenApi " "instance without. Access limitations may apply." ) return api
31.111111
74
0.726429
8dce6fde79d0090a247e0e9e6d6b896f2c57033c
3,643
py
Python
pajbot/modules/maxmsglength.py
jardg/pajbot
e1fca604fe25e12dd4761cb0bfc15c140e7cf012
[ "MIT" ]
null
null
null
pajbot/modules/maxmsglength.py
jardg/pajbot
e1fca604fe25e12dd4761cb0bfc15c140e7cf012
[ "MIT" ]
null
null
null
pajbot/modules/maxmsglength.py
jardg/pajbot
e1fca604fe25e12dd4761cb0bfc15c140e7cf012
[ "MIT" ]
null
null
null
import logging from pajbot.managers.handler import HandlerManager from pajbot.modules import BaseModule from pajbot.modules import ModuleSetting log = logging.getLogger(__name__) class MaxMsgLengthModule(BaseModule): ID = __name__.split('.')[-1] NAME = 'Maximum message length' DESCRIPTION = 'Times out users who post messages that contain too many characters.' CATEGORY = 'Filter' SETTINGS = [ ModuleSetting( key='max_msg_length', label='Max message length (Online chat)', type='number', required=True, placeholder='', default=400, constraints={ 'min_value': 40, 'max_value': 1000, }), ModuleSetting( key='max_msg_length_offline', label='Max message length (Offline chat)', type='number', required=True, placeholder='', default=400, constraints={ 'min_value': 40, 'max_value': 1000, }), ModuleSetting( key='timeout_length', label='Timeout length', type='number', required=True, placeholder='Timeout length in seconds', default=120, constraints={ 'min_value': 30, 'max_value': 3600, }), ModuleSetting( key='bypass_level', label='Level to bypass module', type='number', required=True, placeholder='', default=500, constraints={ 'min_value': 100, 'max_value': 1000, }) ] def __init__(self): super().__init__() self.bot = None def on_pubmsg(self, source, message): if self.bot.is_online: if len(message) > self.settings['max_msg_length'] and source.level < self.settings['bypass_level'] and source.moderator is False: duration, punishment = self.bot.timeout_warn(source, self.settings['timeout_length'], reason='Message too long') """ We only send a notification to the user if he has spent more than one hour watching the stream. """ if duration > 0 and source.minutes_in_chat_online > 60: self.bot.whisper(source.username, 'You have been {punishment} because your message was too long.'.format(punishment=punishment)) return False else: if len(message) > self.settings['max_msg_length_offline'] and source.level < self.settings['bypass_level'] and source.moderator is False: duration, punishment = self.bot.timeout_warn(source, self.settings['timeout_length'], reason='Message too long') """ We only send a notification to the user if he has spent more than one hour watching the stream. """ if duration > 0 and source.minutes_in_chat_online > 60: self.bot.whisper(source.username, 'You have been {punishment} because your message was too long.'.format(punishment=punishment)) return False def enable(self, bot): HandlerManager.add_handler('on_pubmsg', self.on_pubmsg) self.bot = bot def disable(self, bot): HandlerManager.remove_handler('on_pubmsg', self.on_pubmsg)
40.032967
149
0.540214
14dcefc12311b0db733e8d8426f4f41a2e91f475
532
py
Python
tests/fixtures/exceptions/solution.py
danieleades/cleo
76a4e64668670b4cbfe68ec3ec0ec592a3eadbbd
[ "MIT" ]
null
null
null
tests/fixtures/exceptions/solution.py
danieleades/cleo
76a4e64668670b4cbfe68ec3ec0ec592a3eadbbd
[ "MIT" ]
null
null
null
tests/fixtures/exceptions/solution.py
danieleades/cleo
76a4e64668670b4cbfe68ec3ec0ec592a3eadbbd
[ "MIT" ]
null
null
null
from crashtest.contracts.base_solution import BaseSolution from crashtest.contracts.provides_solution import ProvidesSolution class CustomError(ProvidesSolution, Exception): @property def solution(self) -> BaseSolution: solution = BaseSolution("Solution Title.", "Solution Description") solution.documentation_links.append("https://example.com") solution.documentation_links.append("https://example2.com") return solution def call() -> None: raise CustomError("Error with solution")
31.294118
74
0.746241
bcc57e73b9df081a4e6bb1a91731a0db8c3b1a56
1,169
py
Python
journyio/user_identified.py
journy-io/python-sdk
ef5a216680b754ec2ea184d03431cdc754462656
[ "MIT" ]
null
null
null
journyio/user_identified.py
journy-io/python-sdk
ef5a216680b754ec2ea184d03431cdc754462656
[ "MIT" ]
2
2021-04-09T10:38:09.000Z
2021-06-29T09:43:08.000Z
journyio/user_identified.py
journy-io/python-sdk
ef5a216680b754ec2ea184d03431cdc754462656
[ "MIT" ]
null
null
null
from .utils import assert_journy class UserIdentified(object): def __init__(self, user_id: str or None, email: str or None): assert_journy(user_id or email, "User id and email can not both be empty") if user_id: assert_journy(isinstance(user_id, str), "The user id is not a string.") if email: assert_journy(isinstance(email, str), "The email is not a string.") self.user_id = user_id self.email = email def format_identification(self): identification = {} if self.email: identification["email"] = self.email if self.user_id: identification["userId"] = self.user_id return identification @staticmethod def by_user_id(user_id: str): assert_journy(user_id, "User id can not be empty!") return UserIdentified(user_id, None) @staticmethod def by_email(email: str): assert_journy(email, "Email can not be empty!") return UserIdentified(None, email) def __str__(self): return f"UserIdentified({self.user_id}, {self.email})" def __repr__(self): return self.__str__()
29.974359
83
0.634731
34fbe440d4d41d09e19d3870247859f50a0ef4ea
3,349
py
Python
nexus_constructor/json/filewriter_json_reader.py
trnielsen/nexus-constructor
65efb6eedca30250b75f142dd29a46bc909958df
[ "BSD-2-Clause" ]
null
null
null
nexus_constructor/json/filewriter_json_reader.py
trnielsen/nexus-constructor
65efb6eedca30250b75f142dd29a46bc909958df
[ "BSD-2-Clause" ]
null
null
null
nexus_constructor/json/filewriter_json_reader.py
trnielsen/nexus-constructor
65efb6eedca30250b75f142dd29a46bc909958df
[ "BSD-2-Clause" ]
null
null
null
import json import h5py import numpy as np import uuid from typing import Union, List from nexus_constructor.common_attrs import CommonAttrs """ Read the JSON and construct an in-memory NeXus file from the nexus_structure field """ NexusObject = Union[h5py.Group, h5py.Dataset] _json_type_to_numpy = { "string": h5py.special_dtype(vlen=str), "float": np.float32, "double": np.float64, "int32": np.int32, "int64": np.int64, "uint32": np.uint32, "uint64": np.uint64, } TYPE = "type" def _add_to_nexus(children: List[dict], current_group: h5py.Group): """ Go top down through JSON description constructing NeXus file """ for child in children: if child[TYPE] == "group": _add_group(child, current_group) elif child[TYPE] == "dataset": _add_dataset(child, current_group) elif child[TYPE] == "stream": _add_stream(child, current_group) elif child[TYPE] == "link": _add_link(child, current_group) def _add_stream(json_object: dict, current_group: h5py.Group): current_group.attrs[CommonAttrs.NX_CLASS] = CommonAttrs.NC_STREAM add_datasets(json_object["stream"], current_group) def add_datasets(json_object: dict, stream_group: h5py.Group): for field_name, field_value in json_object.items(): if isinstance(field_value, dict): new_group = stream_group.create_group(field_name) add_datasets(field_value, new_group) else: stream_group.create_dataset(name=field_name, data=field_value) def _add_link(json_object: dict, current_group: h5py.Group): current_group[json_object["name"]] = h5py.SoftLink(json_object["target"]) def _add_dataset(json_object: dict, current_group: h5py.Group): numpy_type = _json_type_to_numpy[json_object["dataset"][TYPE]] values = json_object["values"] if json_object["dataset"][TYPE] == "string" and isinstance( json_object["values"], list ): values = [value.encode("utf8") for value in json_object["values"]] new_dataset = current_group.create_dataset( json_object["name"], dtype=numpy_type, data=values ) _add_attributes(json_object, new_dataset) def _add_group(json_object: dict, current_group: h5py.Group): new_group = current_group.create_group(json_object["name"]) _add_attributes(json_object, new_group) _add_to_nexus(json_object["children"], new_group) def _add_attributes(json_object: dict, nexus_object: NexusObject): if "attributes" in json_object: for attribute in json_object["attributes"]: nexus_object.attrs[attribute["name"]] = attribute["values"] def _create_in_memory_file(filename: str) -> h5py.File: return h5py.File(filename, mode="x", driver="core", backing_store=False) def json_to_nexus(json_input: str) -> h5py.File: """ Convert JSON to in-memory NeXus file :param json_input: :return: NeXus file and any warning messages produced from validating the JSON """ if not json_input: raise ValueError("Empty json string, nothing to load!") json_data = json.loads(json_input) nexus_file = _create_in_memory_file(str(uuid.uuid4())) nexus_structure = json_data["nexus_structure"] _add_to_nexus(nexus_structure["children"], nexus_file) return nexus_file
31.59434
82
0.701403
ee0f7a11047fe64fb853aa10eab43f5205523e36
3,785
py
Python
openstackclient/common/exceptions.py
ankur-gupta91/osc-ip-cap
9a64bbc31fcc0872f52ad2d92c550945eea5cc97
[ "Apache-2.0" ]
null
null
null
openstackclient/common/exceptions.py
ankur-gupta91/osc-ip-cap
9a64bbc31fcc0872f52ad2d92c550945eea5cc97
[ "Apache-2.0" ]
null
null
null
openstackclient/common/exceptions.py
ankur-gupta91/osc-ip-cap
9a64bbc31fcc0872f52ad2d92c550945eea5cc97
[ "Apache-2.0" ]
null
null
null
# Copyright 2012-2013 OpenStack, LLC. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. # """Exception definitions.""" class CommandError(Exception): pass class AuthorizationFailure(Exception): pass class NoTokenLookupException(Exception): """This does not support looking up endpoints from an existing token.""" pass class EndpointNotFound(Exception): """Could not find Service or Region in Service Catalog.""" pass class UnsupportedVersion(Exception): """The user is trying to use an unsupported version of the API""" pass class ClientException(Exception): """The base exception class for all exceptions this library raises.""" def __init__(self, code, message=None, details=None): self.code = code self.message = message or self.__class__.message self.details = details def __str__(self): return "%s (HTTP %s)" % (self.message, self.code) class BadRequest(ClientException): """HTTP 400 - Bad request: you sent some malformed data.""" http_status = 400 message = "Bad request" class Unauthorized(ClientException): """HTTP 401 - Unauthorized: bad credentials.""" http_status = 401 message = "Unauthorized" class Forbidden(ClientException): """HTTP 403 - Forbidden: not authorized to access to this resource.""" http_status = 403 message = "Forbidden" class NotFound(ClientException): """HTTP 404 - Not found""" http_status = 404 message = "Not found" class Conflict(ClientException): """HTTP 409 - Conflict""" http_status = 409 message = "Conflict" class OverLimit(ClientException): """HTTP 413 - Over limit: reached the API limits for this time period.""" http_status = 413 message = "Over limit" # NotImplemented is a python keyword. class HTTPNotImplemented(ClientException): """HTTP 501 - Not Implemented: server does not support this operation.""" http_status = 501 message = "Not Implemented" # In Python 2.4 Exception is old-style and thus doesn't have a __subclasses__() # so we can do this: # _code_map = dict((c.http_status, c) # for c in ClientException.__subclasses__()) # # Instead, we have to hardcode it: _code_map = dict((c.http_status, c) for c in [ BadRequest, Unauthorized, Forbidden, NotFound, OverLimit, HTTPNotImplemented ]) def from_response(response, body): """Return an instance of a ClientException based on an httplib2 response. Usage:: resp, body = http.request(...) if resp.status != 200: raise exception_from_response(resp, body) """ cls = _code_map.get(response.status, ClientException) if body: if hasattr(body, 'keys'): error = body[list(body.keys())[0]] message = error.get('message') details = error.get('details') else: # If we didn't get back a properly formed error message we # probably couldn't communicate with Keystone at all. message = "Unable to communicate with image service: %s." % body details = None return cls(code=response.status, message=message, details=details) else: return cls(code=response.status)
27.830882
79
0.670806
7519e5cf7d1cebc826756df3cab39c1c02663ffb
2,765
py
Python
Modules/ThirdParty/pygccxml/src/pygccxml/declarations/typedef.py
nalinimsingh/ITK_4D
95a2eacaeaffe572889832ef0894239f89e3f303
[ "Apache-2.0" ]
3
2018-10-01T20:46:17.000Z
2019-12-17T19:39:50.000Z
Modules/ThirdParty/pygccxml/src/pygccxml/declarations/typedef.py
nalinimsingh/ITK_4D
95a2eacaeaffe572889832ef0894239f89e3f303
[ "Apache-2.0" ]
null
null
null
Modules/ThirdParty/pygccxml/src/pygccxml/declarations/typedef.py
nalinimsingh/ITK_4D
95a2eacaeaffe572889832ef0894239f89e3f303
[ "Apache-2.0" ]
4
2018-05-17T16:34:54.000Z
2020-09-24T02:12:40.000Z
# Copyright 2014-2016 Insight Software Consortium. # Copyright 2004-2008 Roman Yakovenko. # Distributed under the Boost Software License, Version 1.0. # See http://www.boost.org/LICENSE_1_0.txt """ defines class that describes C++ typedef declaration """ import warnings from . import declaration from . import class_declaration class typedef_t(declaration.declaration_t): """describes C++ typedef declaration""" def __init__(self, name='', type=None, decl_type=None): """creates class that describes C++ typedef""" if type is not None: warnings.warn( "The type argument is deprecated. \n" + "Please use the decl_type argument instead.", DeprecationWarning) if decl_type is not None: raise ( "Please use only either the type or " + "decl_type argument.") # Still allow to use the old type for the moment. decl_type = type declaration.declaration_t.__init__(self, name) self._decl_type = decl_type def _get__cmp__items(self): """implementation details""" return [self.decl_type] def __eq__(self, other): if not declaration.declaration_t.__eq__(self, other): return False return self.decl_type == other.decl_type def __hash__(self): return super.__hash__(self) @property def type(self): """ Deprecated since v1.8.0. Will be removed in v1.9.0 """ warnings.warn( "typedef_t.type is deprecated.\n" + "Please use typedef_t.decl_type instead.", DeprecationWarning) return self._decl_type @type.setter def type(self, _decl_type): """ Deprecated since v1.8.0. Will be removed in v1.9.0 """ warnings.warn( "typedef_t.type is deprecated.\n" + "Please use typedef_t.decl_type instead.", DeprecationWarning) self._decl_type = _decl_type @property def decl_type(self): """reference to the original :class:`decl_type <type_t>`""" return self._decl_type @decl_type.setter def decl_type(self, decl_type): self._decl_type = decl_type def i_depend_on_them(self, recursive=True): return [class_declaration.dependency_info_t(self, self.decl_type)] @property def byte_size(self): """Size of this type in bytes @type: int""" return self._decl_type.byte_size @property def byte_align(self): """alignment of this type in bytes @type: int""" return self._decl_type.byte_align
29.414894
75
0.599638
0dc8d48e84f92512e56f3ad585afba37fa1b553e
14,659
py
Python
api/tests/test_organizations.py
amcquistan/project-time-tracker-api-django
da8a4129964fa4e330939178f12f24097527e77d
[ "MIT" ]
null
null
null
api/tests/test_organizations.py
amcquistan/project-time-tracker-api-django
da8a4129964fa4e330939178f12f24097527e77d
[ "MIT" ]
null
null
null
api/tests/test_organizations.py
amcquistan/project-time-tracker-api-django
da8a4129964fa4e330939178f12f24097527e77d
[ "MIT" ]
1
2021-01-01T14:58:11.000Z
2021-01-01T14:58:11.000Z
from copy import deepcopy from django.core.exceptions import ObjectDoesNotExist from django.shortcuts import reverse from django.test import TestCase from rest_framework import status from rest_framework.test import APIClient from api.tests.testing_utils import ( create_user, authenticate_jwt, admin_creds, johndoe_creds, janedoe_creds, batman_creds, ) from core.models import Organization class TestOrganizationAPI(TestCase): create_list_view_name = 'organization-list-create' detail_view_name = 'organization-detail' @classmethod def setUpTestData(cls): cls.admin_user = admin_creds.create_user( is_active=True, is_staff=True ) cls.johndoe_user = johndoe_creds.create_user(is_active=True) cls.janedoe_user = janedoe_creds.create_user(is_active=True) cls.batman_user = batman_creds.create_user(is_active=True) def test_create_organization_with_admin_user_succeeds(self): '''Tests that admin user (is_staff = True) can create organization''' client = APIClient() authenticate_jwt(admin_creds, client) url = reverse(self.create_list_view_name) payload = { 'name': 'Org1', 'contact': self.johndoe_user.id } response = client.post(url, payload, format='json') self.assertEqual(status.HTTP_201_CREATED, response.status_code) data = response.data self.assertIn('name', data) self.assertIn('slug', data) self.assertIn('created_at', data) self.assertIn('updated_at', data) self.assertIn('contact', data) self.assertEqual(payload['name'], data['name']) self.assertEqual(payload['contact'], data['contact']) self.assertEqual(1, len(data['members'])) def test_create_organization_with_non_admin_user_fails(self): '''Tests that non admin user (is_staff = False) cannot create organization''' client = APIClient() authenticate_jwt(johndoe_creds, client) url = reverse(self.create_list_view_name) payload = { 'name': 'Org1', 'contact': self.johndoe_user.id } response = client.post(url, payload, format='json') self.assertEqual(status.HTTP_403_FORBIDDEN, response.status_code) data = response.data self.assertNotIn('name', data) self.assertNotIn('slug', data) self.assertNotIn('created_at', data) self.assertNotIn('updated_at', data) self.assertNotIn('contact', data) def test_list_organization_with_admin_user_succeeds(self): '''Tests that admin user (is_staff = True) can view organization listing''' client = APIClient() authenticate_jwt(admin_creds, client) url = reverse(self.create_list_view_name) payload = { 'name': 'Org1', 'contact': self.johndoe_user.id } client.post(url, payload, format='json') payload2 = { 'name': 'Org2', 'contact': self.janedoe_user.id } client.post(url, payload2, format='json') response = client.get(url, format='json') self.assertEqual(status.HTTP_200_OK, response.status_code) data = response.data self.assertIsInstance(data, list) self.assertEqual(2, len(data)) def test_list_organization_with_org_contact_succeeds(self): '''Tests that an organization contact can view the listing API but, only their org's come back''' admin_client = APIClient() authenticate_jwt(admin_creds, admin_client) url = reverse(self.create_list_view_name) payload = { 'name': 'Org1', 'contact': self.johndoe_user.id } admin_client.post(url, payload, format='json') payload2 = { 'name': 'Org2', 'contact': self.janedoe_user.id } admin_client.post(url, payload2, format='json') johndoe_client = APIClient() authenticate_jwt(johndoe_creds, johndoe_client) response = johndoe_client.get(url, format='json') self.assertEqual(status.HTTP_200_OK, response.status_code) data = response.data self.assertIsInstance(data, list) self.assertEqual(1, len(data)) def test_list_organization_with_non_admin_user_fails(self): '''Tests that non admin user (is_staff = False) cannot view organization listing''' admin_client = APIClient() authenticate_jwt(admin_creds, admin_client) url = reverse(self.create_list_view_name) payload = { 'name': 'Org1', 'contact': self.johndoe_user.id } admin_client.post(url, payload, format='json') payload2 = { 'name': 'Org2', 'contact': self.johndoe_user.id } admin_client.post(url, payload2, format='json') janedoe_client = APIClient() authenticate_jwt(janedoe_creds, janedoe_client) response = janedoe_client.get(url, format='json') self.assertEqual(status.HTTP_403_FORBIDDEN, response.status_code) data = response.data self.assertFalse(isinstance(data, list)) def test_view_organization_with_admin_user_succeeds(self): '''Tests that admin user (is_staff = True) can view orgnaization details''' client = APIClient() authenticate_jwt(admin_creds, client) payload = { 'name': 'Org1', 'contact': self.johndoe_user.id } create_response = client.post(reverse(self.create_list_view_name), payload, format='json') slug = create_response.data['slug'] url = reverse(self.detail_view_name, kwargs={'org_slug': slug}) response = client.get(url, format='json') self.assertEqual(status.HTTP_200_OK, response.status_code) data = response.data self.assertIn('name', data) self.assertIn('slug', data) self.assertIn('created_at', data) self.assertIn('updated_at', data) self.assertIn('contact', data) self.assertEqual(payload['name'], data['name']) self.assertEqual(payload['contact'], data['contact']) def test_view_organization_with_org_contact_succeeds(self): '''Tests that organization contact can view the details of organization''' admin_client = APIClient() authenticate_jwt(admin_creds, admin_client) payload = { 'name': 'Org1', 'contact': self.johndoe_user.id } create_response = admin_client.post(reverse(self.create_list_view_name), payload, format='json') slug = create_response.data['slug'] url = reverse(self.detail_view_name, kwargs={'org_slug': slug}) johndoe_client = APIClient() authenticate_jwt(johndoe_creds, johndoe_client) response = johndoe_client.get(url, format='json') self.assertEqual(status.HTTP_200_OK, response.status_code) data = response.data self.assertIn('name', data) self.assertIn('slug', data) self.assertIn('created_at', data) self.assertIn('updated_at', data) self.assertIn('contact', data) self.assertEqual(payload['name'], data['name']) self.assertEqual(payload['contact'], data['contact']) def test_view_organization_with_non_admin_user_fails(self): '''Tests that non admin user (is_staff = False) cannot view organization details''' admin_client = APIClient() authenticate_jwt(admin_creds, admin_client) payload = { 'name': 'Org1', 'contact': self.johndoe_user.id } create_response = admin_client.post(reverse(self.create_list_view_name), payload, format='json') slug = create_response.data['slug'] url = reverse(self.detail_view_name, kwargs={'org_slug': slug}) janedoe_client = APIClient() authenticate_jwt(janedoe_creds, janedoe_client) response = janedoe_client.get(url, format='json') self.assertEqual(status.HTTP_403_FORBIDDEN, response.status_code) data = response.data self.assertNotIn('name', data) self.assertNotIn('slug', data) self.assertNotIn('created_at', data) self.assertNotIn('updated_at', data) self.assertNotIn('contact', data) def test_update_organization_with_admin_succeeds(self): '''Tests that admin (is_staff = True) can update organization''' client = APIClient() authenticate_jwt(admin_creds, client) payload = { 'name': 'Org1', 'contact': self.johndoe_user.id } create_response = client.post(reverse(self.create_list_view_name), payload, format='json') slug = create_response.data['slug'] url = reverse(self.detail_view_name, kwargs={'org_slug': slug}) updated_payload = deepcopy(payload) updated_payload['contact'] = self.janedoe_user.id updated_payload['name'] = 'Updated Org' response = client.put(url, updated_payload, format='json') self.assertEqual(status.HTTP_200_OK, response.status_code) data = response.data self.assertIn('name', data) self.assertIn('slug', data) self.assertIn('created_at', data) self.assertIn('updated_at', data) self.assertIn('contact', data) self.assertEqual(updated_payload['name'], data['name']) self.assertEqual(updated_payload['contact'], data['contact']) def test_update_organization_with_organization_contact_succeeds(self): '''Tests that an org contact can update their organization''' admin_client = APIClient() authenticate_jwt(admin_creds, admin_client) payload = { 'name': 'Org1', 'contact': self.johndoe_user.id } create_response = admin_client.post(reverse(self.create_list_view_name), payload, format='json') slug = create_response.data['slug'] url = reverse(self.detail_view_name, kwargs={'org_slug': slug}) johndoe_client = APIClient() authenticate_jwt(johndoe_creds, johndoe_client) updated_payload = deepcopy(payload) updated_payload['name'] = 'Updated Org' response = johndoe_client.put(url, updated_payload, format='json') self.assertEqual(status.HTTP_200_OK, response.status_code) data = response.data self.assertIn('name', data) self.assertIn('slug', data) self.assertIn('created_at', data) self.assertIn('updated_at', data) self.assertIn('contact', data) self.assertEqual(updated_payload['name'], data['name']) self.assertEqual(updated_payload['contact'], data['contact']) # def test_update_organization_with_org_contact_change_contact_fails(self): # '''Tests that an organization contact cannot udpate org's contact to someone else''' # admin_client = APIClient() # authenticate_jwt(admin_creds, admin_client) # payload = { 'name': 'Org1', 'contact': self.johndoe_user.id } # create_response = admin_client.post(reverse(self.create_list_view_name), payload, format='json') # slug = create_response.data['slug'] # url = reverse(self.detail_view_name, kwargs={'org_slug': slug}) # johndoe_client = APIClient() # authenticate_jwt(johndoe_creds, johndoe_client) # updated_payload = deepcopy(payload) # updated_payload['name'] = 'Updated Org' # updated_payload['contact'] = self.janedoe_user.id # response = johndoe_client.put(url, updated_payload, format='json') # self.assertEqual(status.HTTP_403_FORBIDDEN, response.status_code) # data = response.data # self.assertNotIn('name', data) # self.assertNotIn('slug', data) # self.assertNotIn('created_at', data) # self.assertNotIn('updated_at', data) # self.assertNotIn('contact', data) def test_update_organization_with_non_admin_non_contact_fails(self): '''Tests that a user who is not an admin (is_staff = False) and also not organization contact cannot update an organization''' admin_client = APIClient() authenticate_jwt(admin_creds, admin_client) payload = { 'name': 'Org1', 'contact': self.janedoe_user.id } create_response = admin_client.post(reverse(self.create_list_view_name), payload, format='json') slug = create_response.data['slug'] url = reverse(self.detail_view_name, kwargs={'org_slug': slug}) johndoe_client = APIClient() authenticate_jwt(johndoe_creds, johndoe_client) updated_payload = deepcopy(payload) updated_payload['name'] = 'Updated Org' updated_payload['contact'] = self.janedoe_user.id response = johndoe_client.put(url, updated_payload, format='json') self.assertEqual(status.HTTP_403_FORBIDDEN, response.status_code) data = response.data self.assertNotIn('name', data) self.assertNotIn('slug', data) self.assertNotIn('created_at', data) self.assertNotIn('updated_at', data) self.assertNotIn('contact', data) def test_delete_organization_with_admin_succeeds(self): '''Tests that a admin (is_staff = True) can delete an organization''' admin_client = APIClient() authenticate_jwt(admin_creds, admin_client) payload = { 'name': 'Org1', 'contact': self.janedoe_user.id } create_response = admin_client.post(reverse(self.create_list_view_name), payload, format='json') slug = create_response.data['slug'] url = reverse(self.detail_view_name, kwargs={'org_slug': slug}) response = admin_client.delete(url, format='json') self.assertEqual(status.HTTP_204_NO_CONTENT, response.status_code) with self.assertRaises(ObjectDoesNotExist): Organization.objects.get(slug=slug) def test_delete_organization_with_non_admin_fails(self): '''Tests that a non-admin (is_staff = False) cannot delete an organization, note that this is different from other mutations which allow organization contact to make changes''' admin_client = APIClient() authenticate_jwt(admin_creds, admin_client) payload = { 'name': 'Org1', 'contact': self.janedoe_user.id } create_response = admin_client.post(reverse(self.create_list_view_name), payload, format='json') slug = create_response.data['slug'] url = reverse(self.detail_view_name, kwargs={'org_slug': slug}) janedoe_client = APIClient() authenticate_jwt(janedoe_creds, janedoe_client) response = janedoe_client.delete(url, format='json') self.assertEqual(status.HTTP_403_FORBIDDEN, response.status_code) self.assertIsNotNone(Organization.objects.get(slug=slug))
40.832869
106
0.670987
5c343d13b7ec3463fbff70b8c8d18fe128ca81d3
260
py
Python
src/053. Combinatoric selections/053.py
yuhao600/project-euler
201fc68aa9cca63b751036bb61623c12939dcac4
[ "MIT" ]
15
2015-02-04T13:47:04.000Z
2021-12-22T08:40:13.000Z
src/053. Combinatoric selections/053.py
yuhao600/project-euler
201fc68aa9cca63b751036bb61623c12939dcac4
[ "MIT" ]
null
null
null
src/053. Combinatoric selections/053.py
yuhao600/project-euler
201fc68aa9cca63b751036bb61623c12939dcac4
[ "MIT" ]
3
2016-02-19T10:47:31.000Z
2017-03-03T16:44:15.000Z
factorials = [1] for n in range(1, 101): factorials.append(factorials[n - 1] * n) count = 0 for n in range(1, 101): for r in range(1, n + 1): if factorials[n] / factorials[r] / factorials[n - r] > 1000000: count += 1 print(count)
21.666667
71
0.573077
4cfbde17d4d4b6ea90e3fa11422b315b87c2ef86
45,119
py
Python
simple_demux_map/_bcs.py
Uditgulati/grocsvs
e7225b0e65e40138053a214130ebaeec1e1448d8
[ "MIT" ]
39
2016-09-11T03:11:09.000Z
2021-04-27T17:08:05.000Z
simple_demux_map/_bcs.py
Uditgulati/grocsvs
e7225b0e65e40138053a214130ebaeec1e1448d8
[ "MIT" ]
34
2016-10-24T22:24:49.000Z
2021-04-12T14:08:54.000Z
simple_demux_map/_bcs.py
Uditgulati/grocsvs
e7225b0e65e40138053a214130ebaeec1e1448d8
[ "MIT" ]
7
2017-10-26T00:55:47.000Z
2020-07-28T10:57:28.000Z
#!/usr/bin/env python # # Copyright (c) 2014 10X Genomics, Inc. All rights reserved. # # What is considered a high confidence mapped read pair HIGH_CONF_MAPQ = 60 # Distance to mate to ensure the MIN_MATE_OFFSET_DUP_FILTER = 20 # Sequencing settings ILLUMINA_MAX_QUAL = 50 # higher than possible right now ILLUMINA_QUAL_OFFSET = 33 DEFAULT_HIGH_MAPQ = 60 # Demultiplex settings DEMULTIPLEX_DEFAULT_SAMPLE_INDEX_LENGTH = 8 DEMULTIPLEX_BARCODE_LENGTH = 14 # Tail trim fraction when computing depth CV COVERAGE_TRIM_TAIL = 0.01 # Subsampling coverages for dup rate DUPLICATE_SUBSAMPLE_COVERAGES = [16.0, 8.0, 4.0, 2.0, 1.0, 0.5, 0.25, 0.125] # Phasing confidence required to call a fragment as phased FRAGMENT_PHASING_THRESHOLD = 0.995 # TAG names RAW_BARCODE_TAG = 'RX' PROCESSED_BARCODE_TAG = 'BX' RAW_BARCODE_QUAL_TAG = 'QX' SAMPLE_INDEX_TAG = 'BC' SAMPLE_INDEX_QUAL_TAG = 'QT' PHASE_SET_BAM_TAG = 'PS' HAPLOTYPE_BAM_TAG = 'HP' PHASING_CONF_BAM_TAG = 'PC' TRIM_TAG = 'TR' TRIM_QUAL_TAG = 'TQ' MOLECULE_ID_BAM_TAG = 'MI' # Parallelization settings PARALLEL_LOCUS_SIZE = int(4E7) PARALLEL_NUM_READS_SIZE = 1000000 # Single partition fragment calling FRAGMENT_LINK_DISTANCE = 30000 # # Settings for metrics computation # # Quality cutoffs for bcs BC_QUAL_CUTOFFS = [15, 20, 25, 30] # Map quality cutoffs for insert sizes INSERT_MAPQ_CUTOFFS = [0, 30, 60] # Map quality cutoffs for target distances TARGET_MAPQ_CUTOFFS = [0, 30, 60] # What is considered a high confidence mapped single read MODERATE_CONF_MAPQ = 29 # Longest insert size to tabulate MAX_INSERT_SIZE = 10000 # Longest target distance to tabulate MAX_TARGET_DIST = 10000 # Distance to consider reads far away for far chimeras READ_MATE_FAR_DIST = 5000 # Distance to exclude directions of reads as untrustworthy for outer and same-dir chimeras READ_MATE_CHIM_TOO_CLOSE_DIST = 20 # left coverage tail cutoff for customers CUSTOMER_LEFT_TAIL_COVERAGE = 5 # Bin size for fragment length histogram passed to loupe FRAG_LEN_HIST_BIN_SIZE = 100 # Variant Calling filter string QUAL_FILTER = '(%QUAL <= 15 || (AF[0] > 0.5 && %QUAL < 50))' LARIAT_RESCUE_FILTER = '(((RESCUED+NOT_RESCUED) > 0 & RESCUED/(RESCUED+NOT_RESCUED) > 0.1) & (MMD == -1 | MMD >= 3.0)) ' ALLELE_FRACTION_FILTER = '(AO[0] < 2 || AO[0]/(AO[0] + RO) < 0.15)' VARIANT_CALL_FILTER = {'10X_RESCUED_MOLECULE_HIGH_DIVERSITY':LARIAT_RESCUE_FILTER,'10X_QUAL_FILTER':QUAL_FILTER, '10X_ALLELE_FRACTION_FILTER': ALLELE_FRACTION_FILTER} VCF_WHITE_LIST_INFO_FIELDS = {'AA','AN','CIGAR','END','DB','H2', 'H3', '1000G','SOMATIC','VALIDATED', 'TENX'} # Preflight constants MIN_PROCESS_NOFILE = 1024 MIN_GLOBAL_NOFILE = 2**17 REQUIRED_NUM_READS = 3 GLOBAL_NOFILE_PATH = '/proc/sys/fs/file-max' BCL_PROCESSOR_FASTQ_MODE = 'BCL_PROCESSOR' ILMN_BCL2FASTQ_FASTQ_MODE = 'ILMN_BCL2FASTQ' PACKAGE_VERSION_CMDS = [ { 'name': 'mrc', 'cmd' : 'mrc --version', }, { 'name': 'mrp', 'cmd' : 'mrp --version', }, { 'name': 'Anaconda', 'cmd' : 'python --version 2>&1 | cat ', }, { 'name': 'numpy', 'cmd' : 'python -c "import numpy; print numpy.__version__"' }, { 'name': 'scipy', 'cmd' : 'python -c "import scipy; print scipy.__version__"' }, { 'name': 'pysam', 'cmd' : 'python -c "import pysam; print pysam.__version__"' }, { 'name': 'PyVCF', 'cmd' : 'python -c "import vcf; print vcf.VERSION"' }, { 'name': 'h5py', 'cmd' : 'python -c "import h5py; print h5py.__version__"' }, { 'name': 'pandas', 'cmd' : 'python -c "import pandas; print pandas.__version__"' }, { 'name': 'bwa', 'cmd' : 'bwa 2>&1 | grep "^ *Version"' }, { 'name': 'samtools', 'cmd' : 'samtools 2>&1 | grep "^ *Version"' }, { 'name': 'freebayes', 'cmd' : 'freebayes -h | grep ^version', }, ] # Product microfluidics settings FLUIDICS_PARAMS = { 'GemCode': { 'z2_vol_per_gem': 144e-12, # 144pL 'total_z2_vol_input': 65e-6, # 65uL }, 'Chromium': { 'z2_vol_per_gem': 24.5e-12, # 24.5pL 'total_z2_vol_input': 90e-6, # 90uL } } # Sample index map # GemCode Tubes SI_001 = ['TCGCCATA', 'GTATACAC', 'AATGGTGG', 'CGCATGCT'] SI_002 = ['TATCCTCG', 'GCGAGGTC', 'CGCTTCAA', 'ATAGAAGT'] SI_003 = ['TGACGTCG', 'CTTGTGTA', 'ACGACCGT', 'GACTAAAC'] SI_004 = ['ATCTAGCT', 'GAGCGTAC', 'TCAGCCTG', 'CGTATAGA'] SI_005 = ['CCGTTCCC', 'ATACAGTT', 'TGTAGTAA', 'GACGCAGG'] SI_006 = ['TCAATTGG', 'AGTTAGAA', 'GAGCGCTT', 'CTCGCACC'] SI_007 = ['CTGCCTTG', 'ACTAGCCC', 'GGCTAGAT', 'TAAGTAGA'] SI_008 = ['GGCAGAAA', 'ACGGTTCT', 'CATTCGTC', 'TTACACGG'] # GemCode Plate SI_P01_A1 = ['TTGTAAGA', 'GGCGTTTC', 'CCTACCAT', 'AAACGGCG'] SI_P01_B1 = ['CTAGCTGT', 'GCCAACAA', 'AGGCTACC', 'TATTGGTG'] SI_P01_C1 = ['GATGCAGT', 'AGACTTTC', 'TTCTACAG', 'CCGAGGCA'] SI_P01_D1 = ['AGCTGCGT', 'GTGGAGCA', 'TCTATTAG', 'CAACCATC'] SI_P01_E1 = ['CGCCCGTA', 'GTTTGCCT', 'TAAGTTAG', 'ACGAAAGC'] SI_P01_F1 = ['TGACTAGT', 'GATAGGTA', 'CCGTACAG', 'ATCGCTCC'] SI_P01_G1 = ['CATATGCG', 'ATGCGATT', 'TCCGCTAC', 'GGATACGA'] SI_P01_H1 = ['TCTTGTCC', 'CGGGAGTA', 'GTCACAGG', 'AAACTCAT'] SI_P01_A2 = ['AGCCCTTT', 'TCTTAGGC', 'GTGAGAAG', 'CAAGTCCA'] SI_P01_B2 = ['GGTCGAGC', 'TTAGATTG', 'CCCACCCA', 'AAGTTGAT'] SI_P01_C2 = ['CCGAGAAC', 'TGCTCTGT', 'GTAGTGCG', 'AATCACTA'] SI_P01_D2 = ['ACATTCCG', 'GACACAAT', 'CTGCGGTA', 'TGTGATGC'] SI_P01_E2 = ['TCATCAAG', 'GTTGGTCC', 'AGGCTGGT', 'CACAACTA'] SI_P01_F2 = ['TGCCCGCT', 'GCAAACGC', 'CATTGATA', 'ATGGTTAG'] SI_P01_G2 = ['CGGTGAGC', 'ATAACCTA', 'TCCGAGCG', 'GATCTTAT'] SI_P01_H2 = ['CCGAACTC', 'AACGGTCA', 'TTATTGGT', 'GGTCCAAG'] SI_P01_A3 = ['AAAGCATA', 'GCCTTTAT', 'CTGCAGCC', 'TGTAGCGG'] SI_P01_B3 = ['TCATCCTT', 'ATTGGACG', 'CAGCTTAC', 'GGCAAGGA'] SI_P01_C3 = ['ACGTTACA', 'TTACCTAC', 'GACGACGG', 'CGTAGGTT'] SI_P01_D3 = ['GAGCACGC', 'CGAAGTTG', 'TTCGTGAA', 'ACTTCACT'] SI_P01_E3 = ['TCTGCAGG', 'CGGCTCCA', 'AACAAGTC', 'GTATGTAT'] SI_P01_F3 = ['TTAGGACC', 'AGTCTGTA', 'GCCTCCGT', 'CAGAATAG'] SI_P01_G3 = ['TACGAGTT', 'ATGTCCAG', 'GCTATAGC', 'CGACGTCA'] SI_P01_H3 = ['TTGGGCTT', 'GACAAACC', 'ACACCTAA', 'CGTTTGGG'] SI_P01_A4 = ['CATGGCAG', 'AGAACGCC', 'GTCTTTGA', 'TCGCAATT'] SI_P01_B4 = ['GACAGGCT', 'CCTCTAAC', 'AGGGACTG', 'TTATCTGA'] SI_P01_C4 = ['ACATTGGC', 'GAGCCCAT', 'CTTAGTCA', 'TGCGAATG'] SI_P01_D4 = ['AAATCGTC', 'GCGATCGG', 'CTTCGAAT', 'TGCGATCA'] SI_P01_E4 = ['GTAAACAT', 'TATCCTGA', 'AGCTGACG', 'CCGGTGTC'] SI_P01_F4 = ['GCATGATA', 'CGTCCTCT', 'AACGACAC', 'TTGATGGG'] SI_P01_G4 = ['CCTGCGGT', 'GTACAACG', 'AGCTTCTC', 'TAGAGTAA'] SI_P01_H4 = ['TTCCATCT', 'ACTGGAGC', 'CGGTCGTG', 'GAAATCAA'] SI_P01_A5 = ['CAGTCTGG', 'TCACACTC', 'ATTGGGAA', 'GGCATACT'] SI_P01_B5 = ['TCATGCGA', 'ATCGTACT', 'CATCAGTG', 'GGGACTAC'] SI_P01_C5 = ['TCAGTCAA', 'CACTGACT', 'ATGCATTC', 'GGTACGGG'] SI_P01_D5 = ['GTCGACTC', 'AGACGGAT', 'CCTTTAGA', 'TAGACTCG'] SI_P01_E5 = ['CCGTTGAA', 'TATGCTCT', 'ATCCAAGG', 'GGAAGCTC'] SI_P01_F5 = ['TCTGACTA', 'GTACGGCT', 'CGGTTTAG', 'AACACAGC'] SI_P01_G5 = ['ATGAAGTA', 'GAAGCTCG', 'TCTTTCGT', 'CGCCGAAC'] SI_P01_H5 = ['ATAGTATG', 'TATAAGGA', 'GGCTCCAC', 'CCGCGTCT'] SI_P01_A6 = ['CTTTCGAC', 'ACGGGACT', 'TGCATCTG', 'GAACATGA'] SI_P01_B6 = ['GCGCACCT', 'AACGCGAA', 'CTATTTGG', 'TGTAGATC'] SI_P01_C6 = ['CGCTCAGG', 'GAGGTTTA', 'ACTCAGAC', 'TTAAGCCT'] SI_P01_D6 = ['GAAGTCTT', 'TGCAGGGC', 'ATGCCAAA', 'CCTTATCG'] SI_P01_E6 = ['TGATGGCT', 'GCCATTTG', 'ATTGAAAC', 'CAGCCCGA'] SI_P01_F6 = ['GACTTCCT', 'TGAGGAAG', 'ATGCCGGC', 'CCTAATTA'] SI_P01_G6 = ['GTGCGACA', 'TCAGTGTT', 'AGCACTGG', 'CATTACAC'] SI_P01_H6 = ['AAGCATAA', 'CCCATCGC', 'TTAGCGCT', 'GGTTGATG'] SI_P01_A7 = ['CTCATCAT', 'TAACGTCC', 'AGGTCATA', 'GCTGAGGG'] SI_P01_B7 = ['TCCACACG', 'CTTCTGTT', 'GAATGCAC', 'AGGGATGA'] SI_P01_C7 = ['GGCGGAAT', 'ACACCGGG', 'CATAATCC', 'TTGTTCTA'] SI_P01_D7 = ['CCGGATCC', 'GGTCGCAT', 'TTAACGTG', 'AACTTAGA'] SI_P01_E7 = ['AAGACGTG', 'CCATGTGT', 'GTTCACAA', 'TGCGTACC'] SI_P01_F7 = ['GGTTAGAC', 'CAAACTTT', 'ACCCGAGA', 'TTGGTCCG'] SI_P01_G7 = ['GCCGGTAA', 'TGACTGCC', 'ATTACCGG', 'CAGTAATT'] SI_P01_H7 = ['TGGCACGA', 'AACGGGTG', 'CTAATTCT', 'GCTTCAAC'] SI_P01_A8 = ['GACTGTTC', 'ATGATACG', 'CCACAGAA', 'TGTGCCGT'] SI_P01_B8 = ['ACGTTCAC', 'TGCCCAGA', 'CAAGGTCT', 'GTTAAGTG'] SI_P01_C8 = ['TTTATCCC', 'GCACGTTT', 'CAGGAAGA', 'AGCTCGAG'] SI_P01_D8 = ['AATCTTTG', 'GGATGAGT', 'CTCAAGAC', 'TCGGCCCA'] SI_P01_E8 = ['GCTTACAT', 'TAGGGTGC', 'AGCCTATG', 'CTAACGCA'] SI_P01_F8 = ['AGTTGGGA', 'TACATTCT', 'CCAGAAAG', 'GTGCCCTC'] SI_P01_G8 = ['AAGTACTC', 'GGAACTCT', 'TCCCTGAG', 'CTTGGAGA'] SI_P01_H8 = ['AAGAGCGG', 'TCATAGCA', 'GGCCCATC', 'CTTGTTAT'] SI_P01_A9 = ['GAGTGCGT', 'CTCCAACA', 'ACAACTTG', 'TGTGTGAC'] SI_P01_B9 = ['AAGCGTGT', 'CTTGACCG', 'TGATTAAC', 'GCCACGTA'] SI_P01_C9 = ['AGATCGGT', 'CATCGTCG', 'GTCATATA', 'TCGGACAC'] SI_P01_D9 = ['CAAGGGAC', 'ACCTACTG', 'GGGACACA', 'TTTCTTGT'] SI_P01_E9 = ['AGTAAGCA', 'TACCGCGG', 'CCGGTAAT', 'GTATCTTC'] SI_P01_F9 = ['AGTTAGTT', 'GTACTTAA', 'CACGCACG', 'TCGAGCGC'] SI_P01_G9 = ['TTGACTTC', 'GCCGAAGT', 'CAATGGCA', 'AGTCTCAG'] SI_P01_H9 = ['GGAATATG', 'ACCTGCCA', 'CTTCATAC', 'TAGGCGGT'] SI_P01_A10 = ['ACAGCAAC', 'TTTCGCGA', 'CGCAATTT', 'GAGTTGCG'] SI_P01_B10 = ['ACCATTAA', 'CTGGACGT', 'GAACGGTC', 'TGTTCACG'] SI_P01_C10 = ['CGTGCTAA', 'TCACTCCT', 'ATCTGATC', 'GAGAAGGG'] SI_P01_D10 = ['CTTATTTG', 'GCGGGCAT', 'AGATAACA', 'TACCCGGC'] SI_P01_E10 = ['GCACCAGT', 'CGCAGGAG', 'TAGTACCA', 'ATTGTTTC'] SI_P01_F10 = ['TCGACAAT', 'GAATACTG', 'ATTCGTGC', 'CGCGTGCA'] SI_P01_G10 = ['CGGAGACT', 'TCCTATGA', 'ATACTGAG', 'GATGCCTC'] SI_P01_H10 = ['GACCGCCA', 'TCGAATTG', 'ATTTCAGC', 'CGAGTGAT'] SI_P01_A11 = ['CTTTCCTT', 'TAGGTAAA', 'ACCAGTCC', 'GGACAGGG'] SI_P01_B11 = ['TCCAGATA', 'GATTCGCT', 'CGACATAG', 'ATGGTCGC'] SI_P01_C11 = ['GTTTGTGG', 'ACCGAACA', 'TAGACGAC', 'CGACTCTT'] SI_P01_D11 = ['GCTACTTC', 'CACCTCAG', 'ATATGAGA', 'TGGGAGCT'] SI_P01_E11 = ['ATCGCCAT', 'TCACGGTA', 'GGGTTTCC', 'CATAAAGG'] SI_P01_F11 = ['GAACCCGG', 'AGCAGTTA', 'TCGTAGAT', 'CTTGTACC'] SI_P01_G11 = ['AGGGCGTT', 'CTATACGC', 'TACATAAG', 'GCTCGTCA'] SI_P01_H11 = ['TCTCGACT', 'AGGATCGA', 'CACGATTC', 'GTATCGAG'] SI_P01_A12 = ['TTATGGAA', 'ACTACTGT', 'CGGGAACG', 'GACCTCTC'] SI_P01_B12 = ['GAAAGACA', 'CGCTACAT', 'ACGCTTGG', 'TTTGCGTC'] SI_P01_C12 = ['TAAGCCAC', 'CCGTTATG', 'GGTAATGT', 'ATCCGGCA'] SI_P01_D12 = ['GCTGTGTA', 'AGAAACGT', 'CACTCAAC', 'TTGCGTCG'] SI_P01_E12 = ['CGCTATCC', 'ACGCGGAA', 'TAAATCGT', 'GTTGCATG'] SI_P01_F12 = ['AATTGAAC', 'TGGACCCT', 'CCAGTGGA', 'GTCCATTG'] SI_P01_G12 = ['CATGCGTA', 'ACCCGCAC', 'TGATATCG', 'GTGATAGT'] SI_P01_H12 = ['TGTGTATA', 'GTCCAGGC', 'CAATCCCT', 'ACGAGTAG'] SI_3A_A1 = SI_P03_A1 = ['AAACGGCG', 'CCTACCAT', 'GGCGTTTC', 'TTGTAAGA'] SI_3A_B1 = SI_P03_B1 = ['AGGCTACC', 'CTAGCTGT', 'GCCAACAA', 'TATTGGTG'] SI_3A_C1 = SI_P03_C1 = ['AGACTTTC', 'CCGAGGCA', 'GATGCAGT', 'TTCTACAG'] SI_3A_D1 = SI_P03_D1 = ['AGCTGCGT', 'CAACCATC', 'GTGGAGCA', 'TCTATTAG'] SI_3A_E1 = SI_P03_E1 = ['ACGAAAGC', 'CGCCCGTA', 'GTTTGCCT', 'TAAGTTAG'] SI_3A_F1 = SI_P03_F1 = ['ATCGCTCC', 'CCGTACAG', 'GATAGGTA', 'TGACTAGT'] SI_3A_G1 = SI_P03_G1 = ['ATGCGATT', 'CATATGCG', 'GGATACGA', 'TCCGCTAC'] SI_3A_H1 = SI_P03_H1 = ['AAACTCAT', 'CGGGAGTA', 'GTCACAGG', 'TCTTGTCC'] SI_3A_A2 = SI_P03_A2 = ['AGCCCTTT', 'CAAGTCCA', 'GTGAGAAG', 'TCTTAGGC'] SI_3A_B2 = SI_P03_B2 = ['AAGTTGAT', 'CCCACCCA', 'GGTCGAGC', 'TTAGATTG'] SI_3A_C2 = SI_P03_C2 = ['AATCACTA', 'CCGAGAAC', 'GTAGTGCG', 'TGCTCTGT'] SI_3A_D2 = SI_P03_D2 = ['ACATTCCG', 'CTGCGGTA', 'GACACAAT', 'TGTGATGC'] SI_3A_E2 = SI_P03_E2 = ['AGGCTGGT', 'CACAACTA', 'GTTGGTCC', 'TCATCAAG'] SI_3A_F2 = SI_P03_F2 = ['ATGGTTAG', 'CATTGATA', 'GCAAACGC', 'TGCCCGCT'] SI_3A_G2 = SI_P03_G2 = ['ATAACCTA', 'CGGTGAGC', 'GATCTTAT', 'TCCGAGCG'] SI_3A_H2 = SI_P03_H2 = ['AACGGTCA', 'CCGAACTC', 'GGTCCAAG', 'TTATTGGT'] SI_3A_A3 = SI_P03_A3 = ['AAAGCATA', 'CTGCAGCC', 'GCCTTTAT', 'TGTAGCGG'] SI_3A_B3 = SI_P03_B3 = ['ATTGGACG', 'CAGCTTAC', 'GGCAAGGA', 'TCATCCTT'] SI_3A_C3 = SI_P03_C3 = ['ACGTTACA', 'CGTAGGTT', 'GACGACGG', 'TTACCTAC'] SI_3A_D3 = SI_P03_D3 = ['ACTTCACT', 'CGAAGTTG', 'GAGCACGC', 'TTCGTGAA'] SI_3A_E3 = SI_P03_E3 = ['AACAAGTC', 'CGGCTCCA', 'GTATGTAT', 'TCTGCAGG'] SI_3A_F3 = SI_P03_F3 = ['AGTCTGTA', 'CAGAATAG', 'GCCTCCGT', 'TTAGGACC'] SI_3A_G3 = SI_P03_G3 = ['ATGTCCAG', 'CGACGTCA', 'GCTATAGC', 'TACGAGTT'] SI_3A_H3 = SI_P03_H3 = ['ACACCTAA', 'CGTTTGGG', 'GACAAACC', 'TTGGGCTT'] SI_3A_A4 = SI_P03_A4 = ['AGAACGCC', 'CATGGCAG', 'GTCTTTGA', 'TCGCAATT'] SI_3A_B4 = SI_P03_B4 = ['AGGGACTG', 'CCTCTAAC', 'GACAGGCT', 'TTATCTGA'] SI_3A_C4 = SI_P03_C4 = ['ACATTGGC', 'CTTAGTCA', 'GAGCCCAT', 'TGCGAATG'] SI_3A_D4 = SI_P03_D4 = ['AAATCGTC', 'CTTCGAAT', 'GCGATCGG', 'TGCGATCA'] SI_3A_E4 = SI_P03_E4 = ['AGCTGACG', 'CCGGTGTC', 'GTAAACAT', 'TATCCTGA'] SI_3A_F4 = SI_P03_F4 = ['AACGACAC', 'CGTCCTCT', 'GCATGATA', 'TTGATGGG'] SI_3A_G4 = SI_P03_G4 = ['AGCTTCTC', 'CCTGCGGT', 'GTACAACG', 'TAGAGTAA'] SI_3A_H4 = SI_P03_H4 = ['ACTGGAGC', 'CGGTCGTG', 'GAAATCAA', 'TTCCATCT'] SI_3A_A5 = SI_P03_A5 = ['ATTGGGAA', 'CAGTCTGG', 'GGCATACT', 'TCACACTC'] SI_3A_B5 = SI_P03_B5 = ['ATCGTACT', 'CATCAGTG', 'GGGACTAC', 'TCATGCGA'] SI_3A_C5 = SI_P03_C5 = ['ATGCATTC', 'CACTGACT', 'GGTACGGG', 'TCAGTCAA'] SI_3A_D5 = SI_P03_D5 = ['AGACGGAT', 'CCTTTAGA', 'GTCGACTC', 'TAGACTCG'] SI_3A_E5 = SI_P03_E5 = ['ATCCAAGG', 'CCGTTGAA', 'GGAAGCTC', 'TATGCTCT'] SI_3A_F5 = SI_P03_F5 = ['AACACAGC', 'CGGTTTAG', 'GTACGGCT', 'TCTGACTA'] SI_3A_G5 = SI_P03_G5 = ['ATGAAGTA', 'CGCCGAAC', 'GAAGCTCG', 'TCTTTCGT'] SI_3A_H5 = SI_P03_H5 = ['ATAGTATG', 'CCGCGTCT', 'GGCTCCAC', 'TATAAGGA'] SI_3A_A6 = SI_P03_A6 = ['ACGGGACT', 'CTTTCGAC', 'GAACATGA', 'TGCATCTG'] SI_3A_B6 = SI_P03_B6 = ['AACGCGAA', 'CTATTTGG', 'GCGCACCT', 'TGTAGATC'] SI_3A_C6 = SI_P03_C6 = ['ACTCAGAC', 'CGCTCAGG', 'GAGGTTTA', 'TTAAGCCT'] SI_3A_D6 = SI_P03_D6 = ['ATGCCAAA', 'CCTTATCG', 'GAAGTCTT', 'TGCAGGGC'] SI_3A_E6 = SI_P03_E6 = ['ATTGAAAC', 'CAGCCCGA', 'GCCATTTG', 'TGATGGCT'] SI_3A_F6 = SI_P03_F6 = ['ATGCCGGC', 'CCTAATTA', 'GACTTCCT', 'TGAGGAAG'] SI_3A_G6 = SI_P03_G6 = ['AGCACTGG', 'CATTACAC', 'GTGCGACA', 'TCAGTGTT'] SI_3A_H6 = SI_P03_H6 = ['AAGCATAA', 'CCCATCGC', 'GGTTGATG', 'TTAGCGCT'] SI_3A_A7 = SI_P03_A7 = ['AGGTCATA', 'CTCATCAT', 'GCTGAGGG', 'TAACGTCC'] SI_3A_B7 = SI_P03_B7 = ['AGGGATGA', 'CTTCTGTT', 'GAATGCAC', 'TCCACACG'] SI_3A_C7 = SI_P03_C7 = ['ACACCGGG', 'CATAATCC', 'GGCGGAAT', 'TTGTTCTA'] SI_3A_D7 = SI_P03_D7 = ['AACTTAGA', 'CCGGATCC', 'GGTCGCAT', 'TTAACGTG'] SI_3A_E7 = SI_P03_E7 = ['AAGACGTG', 'CCATGTGT', 'GTTCACAA', 'TGCGTACC'] SI_3A_F7 = SI_P03_F7 = ['ACCCGAGA', 'CAAACTTT', 'GGTTAGAC', 'TTGGTCCG'] SI_3A_G7 = SI_P03_G7 = ['ATTACCGG', 'CAGTAATT', 'GCCGGTAA', 'TGACTGCC'] SI_3A_H7 = SI_P03_H7 = ['AACGGGTG', 'CTAATTCT', 'GCTTCAAC', 'TGGCACGA'] SI_3A_A8 = SI_P03_A8 = ['ATGATACG', 'CCACAGAA', 'GACTGTTC', 'TGTGCCGT'] SI_3A_B8 = SI_P03_B8 = ['ACGTTCAC', 'CAAGGTCT', 'GTTAAGTG', 'TGCCCAGA'] SI_3A_C8 = SI_P03_C8 = ['AGCTCGAG', 'CAGGAAGA', 'GCACGTTT', 'TTTATCCC'] SI_3A_D8 = SI_P03_D8 = ['AATCTTTG', 'CTCAAGAC', 'GGATGAGT', 'TCGGCCCA'] SI_3A_E8 = SI_P03_E8 = ['AGCCTATG', 'CTAACGCA', 'GCTTACAT', 'TAGGGTGC'] SI_3A_F8 = SI_P03_F8 = ['AGTTGGGA', 'CCAGAAAG', 'GTGCCCTC', 'TACATTCT'] SI_3A_G8 = SI_P03_G8 = ['AAGTACTC', 'CTTGGAGA', 'GGAACTCT', 'TCCCTGAG'] SI_3A_H8 = SI_P03_H8 = ['AAGAGCGG', 'CTTGTTAT', 'GGCCCATC', 'TCATAGCA'] SI_3A_A9 = SI_P03_A9 = ['ACAACTTG', 'CTCCAACA', 'GAGTGCGT', 'TGTGTGAC'] SI_3A_B9 = SI_P03_B9 = ['AAGCGTGT', 'CTTGACCG', 'GCCACGTA', 'TGATTAAC'] SI_3A_C9 = SI_P03_C9 = ['AGATCGGT', 'CATCGTCG', 'GTCATATA', 'TCGGACAC'] SI_3A_D9 = SI_P03_D9 = ['ACCTACTG', 'CAAGGGAC', 'GGGACACA', 'TTTCTTGT'] SI_3A_E9 = SI_P03_E9 = ['AGTAAGCA', 'CCGGTAAT', 'GTATCTTC', 'TACCGCGG'] SI_3A_F9 = SI_P03_F9 = ['AGTTAGTT', 'CACGCACG', 'GTACTTAA', 'TCGAGCGC'] SI_3A_G9 = SI_P03_G9 = ['AGTCTCAG', 'CAATGGCA', 'GCCGAAGT', 'TTGACTTC'] SI_3A_H9 = SI_P03_H9 = ['ACCTGCCA', 'CTTCATAC', 'GGAATATG', 'TAGGCGGT'] SI_3A_A10 = SI_P03_A10 = ['ACAGCAAC', 'CGCAATTT', 'GAGTTGCG', 'TTTCGCGA'] SI_3A_B10 = SI_P03_B10 = ['ACCATTAA', 'CTGGACGT', 'GAACGGTC', 'TGTTCACG'] SI_3A_C10 = SI_P03_C10 = ['ATCTGATC', 'CGTGCTAA', 'GAGAAGGG', 'TCACTCCT'] SI_3A_D10 = SI_P03_D10 = ['AGATAACA', 'CTTATTTG', 'GCGGGCAT', 'TACCCGGC'] SI_3A_E10 = SI_P03_E10 = ['ATTGTTTC', 'CGCAGGAG', 'GCACCAGT', 'TAGTACCA'] SI_3A_F10 = SI_P03_F10 = ['ATTCGTGC', 'CGCGTGCA', 'GAATACTG', 'TCGACAAT'] SI_3A_G10 = SI_P03_G10 = ['ATACTGAG', 'CGGAGACT', 'GATGCCTC', 'TCCTATGA'] SI_3A_H10 = SI_P03_H10 = ['ATTTCAGC', 'CGAGTGAT', 'GACCGCCA', 'TCGAATTG'] SI_3A_A11 = SI_P03_A11 = ['ACCAGTCC', 'CTTTCCTT', 'GGACAGGG', 'TAGGTAAA'] SI_3A_B11 = SI_P03_B11 = ['ATGGTCGC', 'CGACATAG', 'GATTCGCT', 'TCCAGATA'] SI_3A_C11 = SI_P03_C11 = ['ACCGAACA', 'CGACTCTT', 'GTTTGTGG', 'TAGACGAC'] SI_3A_D11 = SI_P03_D11 = ['ATATGAGA', 'CACCTCAG', 'GCTACTTC', 'TGGGAGCT'] SI_3A_E11 = SI_P03_E11 = ['ATCGCCAT', 'CATAAAGG', 'GGGTTTCC', 'TCACGGTA'] SI_3A_F11 = SI_P03_F11 = ['AGCAGTTA', 'CTTGTACC', 'GAACCCGG', 'TCGTAGAT'] SI_3A_G11 = SI_P03_G11 = ['AGGGCGTT', 'CTATACGC', 'GCTCGTCA', 'TACATAAG'] SI_3A_H11 = SI_P03_H11 = ['AGGATCGA', 'CACGATTC', 'GTATCGAG', 'TCTCGACT'] SI_3A_A12 = SI_P03_A12 = ['ACTACTGT', 'CGGGAACG', 'GACCTCTC', 'TTATGGAA'] SI_3A_B12 = SI_P03_B12 = ['ACGCTTGG', 'CGCTACAT', 'GAAAGACA', 'TTTGCGTC'] SI_3A_C12 = SI_P03_C12 = ['ATCCGGCA', 'CCGTTATG', 'GGTAATGT', 'TAAGCCAC'] SI_3A_D12 = SI_P03_D12 = ['AGAAACGT', 'CACTCAAC', 'GCTGTGTA', 'TTGCGTCG'] SI_3A_E12 = SI_P03_E12 = ['ACGCGGAA', 'CGCTATCC', 'GTTGCATG', 'TAAATCGT'] SI_3A_F12 = SI_P03_F12 = ['AATTGAAC', 'CCAGTGGA', 'GTCCATTG', 'TGGACCCT'] SI_3A_G12 = SI_P03_G12 = ['ACCCGCAC', 'CATGCGTA', 'GTGATAGT', 'TGATATCG'] SI_3A_H12 = SI_P03_H12 = ['ACGAGTAG', 'CAATCCCT', 'GTCCAGGC', 'TGTGTATA'] # WGS+ Tubes SI_T2_1 = ['GGGTGATC', 'TTACCGAT', 'AATGACGA', 'CCCATTCG'] SI_T2_2 = ['GGGTCGAA', 'ATCCGCCC', 'TCTATAGT', 'CAAGATTG'] SI_T2_3 = ['GCTGATAT', 'TGCCGAGC', 'AAATTGCG', 'CTGACCTA'] SI_T2_4 = ['ACTTCTGA', 'TTCATCTT', 'CGACGACG', 'GAGGAGAC'] SI_T2_5 = ['GAATACAA', 'AGCATACC', 'TCGGGTTT', 'CTTCCGGG'] SI_T2_6 = ['TATTGAGA', 'GTAGTCAG', 'CGCCATTC', 'ACGACGCT'] SI_T2_7 = ['AAATCTGT', 'GTCCAACC', 'TCTGGCTG', 'CGGATGAA'] SI_T2_8 = ['CCTTGAAC', 'GAAATCGG', 'TGGCCTCT', 'ATCGAGTA'] # Chromium WGS Plate SI_GA_A1 = SI_P2_A1 = ['GGTTTACT', 'CTAAACGG', 'TCGGCGTC', 'AACCGTAA'] SI_GA_A2 = SI_P2_A2 = ['TTTCATGA', 'ACGTCCCT', 'CGCATGTG', 'GAAGGAAC'] SI_GA_A3 = SI_P2_A3 = ['CAGTACTG', 'AGTAGTCT', 'GCAGTAGA', 'TTCCCGAC'] SI_GA_A4 = SI_P2_A4 = ['TATGATTC', 'CCCACAGT', 'ATGCTGAA', 'GGATGCCG'] SI_GA_A5 = SI_P2_A5 = ['CTAGGTGA', 'TCGTTCAG', 'AGCCAATT', 'GATACGCC'] SI_GA_A6 = SI_P2_A6 = ['CGCTATGT', 'GCTGTCCA', 'TTGAGATC', 'AAACCGAG'] SI_GA_A7 = SI_P2_A7 = ['ACAGAGGT', 'TATAGTTG', 'CGGTCCCA', 'GTCCTAAC'] SI_GA_A8 = SI_P2_A8 = ['GCATCTCC', 'TGTAAGGT', 'CTGCGATG', 'AACGTCAA'] SI_GA_A9 = SI_P2_A9 = ['TCTTAAAG', 'CGAGGCTC', 'GTCCTTCT', 'AAGACGGA'] SI_GA_A10 = SI_P2_A10 = ['GAAACCCT', 'TTTCTGTC', 'CCGTGTGA', 'AGCGAAAG'] SI_GA_A11 = SI_P2_A11 = ['GTCCGGTC', 'AAGATCAT', 'CCTGAAGG', 'TGATCTCA'] SI_GA_A12 = SI_P2_A12 = ['AGTGGAAC', 'GTCTCCTT', 'TCACATCA', 'CAGATGGG'] SI_GA_B1 = SI_P2_B1 = ['GTAATCTT', 'TCCGGAAG', 'AGTTCGGC', 'CAGCATCA'] SI_GA_B2 = SI_P2_B2 = ['TACTCTTC', 'CCTGTGCG', 'GGACACGT', 'ATGAGAAA'] SI_GA_B3 = SI_P2_B3 = ['GTGTATTA', 'TGTGCGGG', 'ACCATAAC', 'CAACGCCT'] SI_GA_B4 = SI_P2_B4 = ['ACTTCATA', 'GAGATGAC', 'TGCCGTGG', 'CTAGACCT'] SI_GA_B5 = SI_P2_B5 = ['AATAATGG', 'CCAGGGCA', 'TGCCTCAT', 'GTGTCATC'] SI_GA_B6 = SI_P2_B6 = ['CGTTAATC', 'GCCACGCT', 'TTACTCAG', 'AAGGGTGA'] SI_GA_B7 = SI_P2_B7 = ['AAACCTCA', 'GCCTTGGT', 'CTGGACTC', 'TGTAGAAG'] SI_GA_B8 = SI_P2_B8 = ['AAAGTGCT', 'GCTACCTG', 'TGCTGTAA', 'CTGCAAGC'] SI_GA_B9 = SI_P2_B9 = ['CTGTAACT', 'TCTAGCGA', 'AGAGTGTG', 'GACCCTAC'] SI_GA_B10 = SI_P2_B10 = ['ACCGTATG', 'GATTAGAT', 'CTGACTGA', 'TGACGCCC'] SI_GA_B11 = SI_P2_B11 = ['GTTCCTCA', 'AGGTACGC', 'TAAGTATG', 'CCCAGGAT'] SI_GA_B12 = SI_P2_B12 = ['TACCACCA', 'CTAAGTTT', 'GGGTCAAG', 'ACTGTGGC'] SI_GA_C1 = SI_P2_C1 = ['CCACTTAT', 'AACTGGCG', 'TTGGCATA', 'GGTAACGC'] SI_GA_C2 = SI_P2_C2 = ['CCTAGACC', 'ATCTCTGT', 'TAGCTCTA', 'GGAGAGAG'] SI_GA_C3 = SI_P2_C3 = ['TCAGCCGT', 'CAGAGGCC', 'GGTCAATA', 'ATCTTTAG'] SI_GA_C4 = SI_P2_C4 = ['ACAATTCA', 'TGCGCAGC', 'CATCACTT', 'GTGTGGAG'] SI_GA_C5 = SI_P2_C5 = ['CGACTTGA', 'TACAGACT', 'ATTGCGTG', 'GCGTACAC'] SI_GA_C6 = SI_P2_C6 = ['ATTACTTC', 'TGCGAACT', 'GCATTCGG', 'CAGCGGAA'] SI_GA_C7 = SI_P2_C7 = ['GTCTCTCG', 'AATCTCTC', 'CGGAGGGA', 'TCAGAAAT'] SI_GA_C8 = SI_P2_C8 = ['GTTGAGAA', 'AGATCTGG', 'TCGATACT', 'CACCGCTC'] SI_GA_C9 = SI_P2_C9 = ['GCGCAGAA', 'ATCTTACC', 'TATGGTGT', 'CGAACCTG'] SI_GA_C10 = SI_P2_C10 = ['TCTCAGTG', 'GAGACTAT', 'CGCTTAGC', 'ATAGGCCA'] SI_GA_C11 = SI_P2_C11 = ['GAGGATCT', 'AGACCATA', 'TCCTGCGC', 'CTTATGAG'] SI_GA_C12 = SI_P2_C12 = ['TCTCGTTT', 'GGCTAGCG', 'ATGACCGC', 'CAAGTAAA'] SI_GA_D1 = SI_P2_D1 = ['CACTCGGA', 'GCTGAATT', 'TGAAGTAC', 'ATGCTCCG'] SI_GA_D2 = SI_P2_D2 = ['TAACAAGG', 'GGTTCCTC', 'ATCATGCA', 'CCGGGTAT'] SI_GA_D3 = SI_P2_D3 = ['ACATTACT', 'TTTGGGTA', 'CAGCCCAC', 'GGCAATGG'] SI_GA_D4 = SI_P2_D4 = ['CCCTAACA', 'ATTCCGAT', 'TGGATTGC', 'GAAGGCTG'] SI_GA_D5 = SI_P2_D5 = ['CTCGTCAC', 'GATCAGCA', 'ACAACAGG', 'TGGTGTTT'] SI_GA_D6 = SI_P2_D6 = ['CATGCGAT', 'TGATATTC', 'GTGATCGA', 'ACCCGACG'] SI_GA_D7 = SI_P2_D7 = ['ATTTGCTA', 'TAGACACC', 'CCACAGGG', 'GGCGTTAT'] SI_GA_D8 = SI_P2_D8 = ['GCAACAAA', 'TAGTTGTC', 'CGCCATCG', 'ATTGGCGT'] SI_GA_D9 = SI_P2_D9 = ['AGGAGATG', 'GATGTGGT', 'CTACATCC', 'TCCTCCAA'] SI_GA_D10 = SI_P2_D10 = ['CAATACCC', 'TGTCTATG', 'ACCACGAA', 'GTGGGTGT'] SI_GA_D11 = SI_P2_D11 = ['CTTTGCGG', 'TGCACAAA', 'AAGCAGTC', 'GCAGTTCT'] SI_GA_D12 = SI_P2_D12 = ['GCACAATG', 'CTTGGTAC', 'TGCACCGT', 'AAGTTGCA'] SI_GA_E1 = SI_P2_E1 = ['TGGTAAAC', 'GAAAGGGT', 'ACTGCTCG', 'CTCCTCTA'] SI_GA_E2 = SI_P2_E2 = ['GTGGTACC', 'TACTATAG', 'ACAAGGTA', 'CGTCCCGT'] SI_GA_E3 = SI_P2_E3 = ['AGGTATTG', 'CTCCTAGT', 'TCAAGGCC', 'GATGCCAA'] SI_GA_E4 = SI_P2_E4 = ['TTCGCCCT', 'GGATGGGC', 'AATCAATG', 'CCGATTAA'] SI_GA_E5 = SI_P2_E5 = ['CATTAGCG', 'TTCGCTGA', 'ACAAGAAT', 'GGGCTCTC'] SI_GA_E6 = SI_P2_E6 = ['CTGCGGCT', 'GACTCAAA', 'AGAAACTC', 'TCTGTTGG'] SI_GA_E7 = SI_P2_E7 = ['CACGCCTT', 'GTATATAG', 'TCTCGGGC', 'AGGATACA'] SI_GA_E8 = SI_P2_E8 = ['ATAGTTAC', 'TGCTGAGT', 'CCTACGTA', 'GAGCACCG'] SI_GA_E9 = SI_P2_E9 = ['TTGTTTCC', 'GGAGGAGG', 'CCTAACAA', 'AACCCGTT'] SI_GA_E10 = SI_P2_E10 = ['AAATGTGC', 'GGGCAAAT', 'TCTATCCG', 'CTCGCGTA'] SI_GA_E11 = SI_P2_E11 = ['AAGCGCTG', 'CGTTTGAT', 'GTAGCACA', 'TCCAATGC'] SI_GA_E12 = SI_P2_E12 = ['ACCGGCTC', 'GAGTTAGT', 'CGTCCTAG', 'TTAAAGCA'] SI_GA_F1 = SI_P2_F1 = ['GTTGCAGC', 'TGGAATTA', 'CAATGGAG', 'ACCCTCCT'] SI_GA_F2 = SI_P2_F2 = ['TTTACATG', 'CGCGATAC', 'ACGCGGGT', 'GAATTCCA'] SI_GA_F3 = SI_P2_F3 = ['TTCAGGTG', 'ACGGACAT', 'GATCTTGA', 'CGATCACC'] SI_GA_F4 = SI_P2_F4 = ['CCCAATAG', 'GTGTCGCT', 'AGAGTCGC', 'TATCGATA'] SI_GA_F5 = SI_P2_F5 = ['GACTACGT', 'CTAGCGAG', 'TCTATATC', 'AGGCGTCA'] SI_GA_F6 = SI_P2_F6 = ['CGGAGCAC', 'GACCTATT', 'ACTTAGGA', 'TTAGCTCG'] SI_GA_F7 = SI_P2_F7 = ['CGTGCAGA', 'AACAAGAT', 'TCGCTTCG', 'GTATGCTC'] SI_GA_F8 = SI_P2_F8 = ['CATGAACA', 'TCACTCGC', 'AGCTGGAT', 'GTGACTTG'] SI_GA_F9 = SI_P2_F9 = ['CAAGCTCC', 'GTTCACTG', 'TCGTGAAA', 'AGCATGGT'] SI_GA_F10 = SI_P2_F10 = ['GCTTGGCT', 'AAACAAAC', 'CGGGCTTA', 'TTCATCGG'] SI_GA_F11 = SI_P2_F11 = ['GCGAGAGT', 'TACGTTCA', 'AGTCCCAC', 'CTATAGTG'] SI_GA_F12 = SI_P2_F12 = ['TGATGCAT', 'GCTACTGA', 'CACCTGCC', 'ATGGAATG'] SI_GA_G1 = SI_P2_G1 = ['ATGAATCT', 'GATCTCAG', 'CCAGGAGC', 'TGCTCGTA'] SI_GA_G2 = SI_P2_G2 = ['TGATTCTA', 'ACTAGGAG', 'CAGCCACT', 'GTCGATGC'] SI_GA_G3 = SI_P2_G3 = ['CCTCATTC', 'AGCATCCG', 'GTGGCAAT', 'TAATGGGA'] SI_GA_G4 = SI_P2_G4 = ['GCGATGTG', 'AGATACAA', 'TTTCCACT', 'CACGGTGC'] SI_GA_G5 = SI_P2_G5 = ['GAGCAAGA', 'TCTGTGAT', 'CGCAGTTC', 'ATATCCCG'] SI_GA_G6 = SI_P2_G6 = ['CTGACGCG', 'GGTCGTAC', 'TCCTTCTT', 'AAAGAAGA'] SI_GA_G7 = SI_P2_G7 = ['GGTATGCA', 'CTCGAAAT', 'ACACCTTC', 'TAGTGCGG'] SI_GA_G8 = SI_P2_G8 = ['TATGAGCT', 'CCGATAGC', 'ATACCCAA', 'GGCTGTTG'] SI_GA_G9 = SI_P2_G9 = ['TAGGACGT', 'ATCCCACA', 'GGAATGTC', 'CCTTGTAG'] SI_GA_G10 = SI_P2_G10 = ['TCGCCAGC', 'AATGTTAG', 'CGATAGCT', 'GTCAGCTA'] SI_GA_G11 = SI_P2_G11 = ['TTATCGTT', 'AGCAGAGC', 'CATCTCCA', 'GCGGATAG'] SI_GA_G12 = SI_P2_G12 = ['ATTCTAAG', 'CCCGATTA', 'TGGAGGCT', 'GAATCCGC'] SI_GA_H1 = SI_P2_H1 = ['GTATGTCA', 'TGTCAGAC', 'CACGTCGG', 'ACGACATT'] SI_GA_H2 = SI_P2_H2 = ['TAATGACC', 'ATGCCTTA', 'GCCGAGAT', 'CGTATCGG'] SI_GA_H3 = SI_P2_H3 = ['CCAAGATG', 'AGGCCCGA', 'TACGTGAC', 'GTTTATCT'] SI_GA_H4 = SI_P2_H4 = ['GCCATTCC', 'CAAGAATT', 'TTGCCGGA', 'AGTTGCAG'] SI_GA_H5 = SI_P2_H5 = ['CCACTACA', 'GATTCTGG', 'TGCGGCTT', 'ATGAAGAC'] SI_GA_H6 = SI_P2_H6 = ['TAGGATAA', 'CCTTTGTC', 'GTACGCGG', 'AGCACACT'] SI_GA_H7 = SI_P2_H7 = ['AGCTATCA', 'CATATAAC', 'TCAGGGTG', 'GTGCCCGT'] SI_GA_H8 = SI_P2_H8 = ['TTGTTGAT', 'GCTCAACC', 'CAAAGTGG', 'AGCGCCTA'] SI_GA_H9 = SI_P2_H9 = ['ACACTGTT', 'CAGGATGG', 'GGCTGAAC', 'TTTACCCA'] SI_GA_H10 = SI_P2_H10 = ['GTAATTGC', 'AGTCGCTT', 'CACGAGAA', 'TCGTCACG'] SI_GA_H11 = SI_P2_H11 = ['GGCGAGTA', 'ACTTCTAT', 'CAAATACG', 'TTGCGCGC'] SI_GA_H12 = SI_P2_H12 = ['GACAGCAT', 'TTTGTACA', 'AGGCCGTG', 'CCATATGC'] SAMPLE_INDEX_MAP = { # GemCode Tube labels 'SI-001': SI_001, 'SI-002': SI_002, 'SI-003': SI_003, 'SI-004': SI_004, 'SI-005': SI_005, 'SI-006': SI_006, 'SI-007': SI_007, 'SI-008': SI_008, # GemCode Plate labels 'SI-P01-A1': SI_P01_A1, 'SI-P01-B1': SI_P01_B1, 'SI-P01-C1': SI_P01_C1, 'SI-P01-D1': SI_P01_D1, 'SI-P01-E1': SI_P01_E1, 'SI-P01-F1': SI_P01_F1, 'SI-P01-G1': SI_P01_G1, 'SI-P01-H1': SI_P01_H1, 'SI-P01-A2': SI_P01_A2, 'SI-P01-B2': SI_P01_B2, 'SI-P01-C2': SI_P01_C2, 'SI-P01-D2': SI_P01_D2, 'SI-P01-E2': SI_P01_E2, 'SI-P01-F2': SI_P01_F2, 'SI-P01-G2': SI_P01_G2, 'SI-P01-H2': SI_P01_H2, 'SI-P01-A3': SI_P01_A3, 'SI-P01-B3': SI_P01_B3, 'SI-P01-C3': SI_P01_C3, 'SI-P01-D3': SI_P01_D3, 'SI-P01-E3': SI_P01_E3, 'SI-P01-F3': SI_P01_F3, 'SI-P01-G3': SI_P01_G3, 'SI-P01-H3': SI_P01_H3, 'SI-P01-A4': SI_P01_A4, 'SI-P01-B4': SI_P01_B4, 'SI-P01-C4': SI_P01_C4, 'SI-P01-D4': SI_P01_D4, 'SI-P01-E4': SI_P01_E4, 'SI-P01-F4': SI_P01_F4, 'SI-P01-G4': SI_P01_G4, 'SI-P01-H4': SI_P01_H4, 'SI-P01-A5': SI_P01_A5, 'SI-P01-B5': SI_P01_B5, 'SI-P01-C5': SI_P01_C5, 'SI-P01-D5': SI_P01_D5, 'SI-P01-E5': SI_P01_E5, 'SI-P01-F5': SI_P01_F5, 'SI-P01-G5': SI_P01_G5, 'SI-P01-H5': SI_P01_H5, 'SI-P01-A6': SI_P01_A6, 'SI-P01-B6': SI_P01_B6, 'SI-P01-C6': SI_P01_C6, 'SI-P01-D6': SI_P01_D6, 'SI-P01-E6': SI_P01_E6, 'SI-P01-F6': SI_P01_F6, 'SI-P01-G6': SI_P01_G6, 'SI-P01-H6': SI_P01_H6, 'SI-P01-A7': SI_P01_A7, 'SI-P01-B7': SI_P01_B7, 'SI-P01-C7': SI_P01_C7, 'SI-P01-D7': SI_P01_D7, 'SI-P01-E7': SI_P01_E7, 'SI-P01-F7': SI_P01_F7, 'SI-P01-G7': SI_P01_G7, 'SI-P01-H7': SI_P01_H7, 'SI-P01-A8': SI_P01_A8, 'SI-P01-B8': SI_P01_B8, 'SI-P01-C8': SI_P01_C8, 'SI-P01-D8': SI_P01_D8, 'SI-P01-E8': SI_P01_E8, 'SI-P01-F8': SI_P01_F8, 'SI-P01-G8': SI_P01_G8, 'SI-P01-H8': SI_P01_H8, 'SI-P01-A9': SI_P01_A9, 'SI-P01-B9': SI_P01_B9, 'SI-P01-C9': SI_P01_C9, 'SI-P01-D9': SI_P01_D9, 'SI-P01-E9': SI_P01_E9, 'SI-P01-F9': SI_P01_F9, 'SI-P01-G9': SI_P01_G9, 'SI-P01-H9': SI_P01_H9, 'SI-P01-A10': SI_P01_A10, 'SI-P01-B10': SI_P01_B10, 'SI-P01-C10': SI_P01_C10, 'SI-P01-D10': SI_P01_D10, 'SI-P01-E10': SI_P01_E10, 'SI-P01-F10': SI_P01_F10, 'SI-P01-G10': SI_P01_G10, 'SI-P01-H10': SI_P01_H10, 'SI-P01-A11': SI_P01_A11, 'SI-P01-B11': SI_P01_B11, 'SI-P01-C11': SI_P01_C11, 'SI-P01-D11': SI_P01_D11, 'SI-P01-E11': SI_P01_E11, 'SI-P01-F11': SI_P01_F11, 'SI-P01-G11': SI_P01_G11, 'SI-P01-H11': SI_P01_H11, 'SI-P01-A12': SI_P01_A12, 'SI-P01-B12': SI_P01_B12, 'SI-P01-C12': SI_P01_C12, 'SI-P01-D12': SI_P01_D12, 'SI-P01-E12': SI_P01_E12, 'SI-P01-F12': SI_P01_F12, 'SI-P01-G12': SI_P01_G12, 'SI-P01-H12': SI_P01_H12, 'SI-P03-A1': SI_P03_A1, 'SI-P03-B1': SI_P03_B1, 'SI-P03-C1': SI_P03_C1, 'SI-P03-D1': SI_P03_D1, 'SI-P03-E1': SI_P03_E1, 'SI-P03-F1': SI_P03_F1, 'SI-P03-G1': SI_P03_G1, 'SI-P03-H1': SI_P03_H1, 'SI-P03-A2': SI_P03_A2, 'SI-P03-B2': SI_P03_B2, 'SI-P03-C2': SI_P03_C2, 'SI-P03-D2': SI_P03_D2, 'SI-P03-E2': SI_P03_E2, 'SI-P03-F2': SI_P03_F2, 'SI-P03-G2': SI_P03_G2, 'SI-P03-H2': SI_P03_H2, 'SI-P03-A3': SI_P03_A3, 'SI-P03-B3': SI_P03_B3, 'SI-P03-C3': SI_P03_C3, 'SI-P03-D3': SI_P03_D3, 'SI-P03-E3': SI_P03_E3, 'SI-P03-F3': SI_P03_F3, 'SI-P03-G3': SI_P03_G3, 'SI-P03-H3': SI_P03_H3, 'SI-P03-A4': SI_P03_A4, 'SI-P03-B4': SI_P03_B4, 'SI-P03-C4': SI_P03_C4, 'SI-P03-D4': SI_P03_D4, 'SI-P03-E4': SI_P03_E4, 'SI-P03-F4': SI_P03_F4, 'SI-P03-G4': SI_P03_G4, 'SI-P03-H4': SI_P03_H4, 'SI-P03-A5': SI_P03_A5, 'SI-P03-B5': SI_P03_B5, 'SI-P03-C5': SI_P03_C5, 'SI-P03-D5': SI_P03_D5, 'SI-P03-E5': SI_P03_E5, 'SI-P03-F5': SI_P03_F5, 'SI-P03-G5': SI_P03_G5, 'SI-P03-H5': SI_P03_H5, 'SI-P03-A6': SI_P03_A6, 'SI-P03-B6': SI_P03_B6, 'SI-P03-C6': SI_P03_C6, 'SI-P03-D6': SI_P03_D6, 'SI-P03-E6': SI_P03_E6, 'SI-P03-F6': SI_P03_F6, 'SI-P03-G6': SI_P03_G6, 'SI-P03-H6': SI_P03_H6, 'SI-P03-A7': SI_P03_A7, 'SI-P03-B7': SI_P03_B7, 'SI-P03-C7': SI_P03_C7, 'SI-P03-D7': SI_P03_D7, 'SI-P03-E7': SI_P03_E7, 'SI-P03-F7': SI_P03_F7, 'SI-P03-G7': SI_P03_G7, 'SI-P03-H7': SI_P03_H7, 'SI-P03-A8': SI_P03_A8, 'SI-P03-B8': SI_P03_B8, 'SI-P03-C8': SI_P03_C8, 'SI-P03-D8': SI_P03_D8, 'SI-P03-E8': SI_P03_E8, 'SI-P03-F8': SI_P03_F8, 'SI-P03-G8': SI_P03_G8, 'SI-P03-H8': SI_P03_H8, 'SI-P03-A9': SI_P03_A9, 'SI-P03-B9': SI_P03_B9, 'SI-P03-C9': SI_P03_C9, 'SI-P03-D9': SI_P03_D9, 'SI-P03-E9': SI_P03_E9, 'SI-P03-F9': SI_P03_F9, 'SI-P03-G9': SI_P03_G9, 'SI-P03-H9': SI_P03_H9, 'SI-P03-A10': SI_P03_A10, 'SI-P03-B10': SI_P03_B10, 'SI-P03-C10': SI_P03_C10, 'SI-P03-D10': SI_P03_D10, 'SI-P03-E10': SI_P03_E10, 'SI-P03-F10': SI_P03_F10, 'SI-P03-G10': SI_P03_G10, 'SI-P03-H10': SI_P03_H10, 'SI-P03-A11': SI_P03_A11, 'SI-P03-B11': SI_P03_B11, 'SI-P03-C11': SI_P03_C11, 'SI-P03-D11': SI_P03_D11, 'SI-P03-E11': SI_P03_E11, 'SI-P03-F11': SI_P03_F11, 'SI-P03-G11': SI_P03_G11, 'SI-P03-H11': SI_P03_H11, 'SI-P03-A12': SI_P03_A12, 'SI-P03-B12': SI_P03_B12, 'SI-P03-C12': SI_P03_C12, 'SI-P03-D12': SI_P03_D12, 'SI-P03-E12': SI_P03_E12, 'SI-P03-F12': SI_P03_F12, 'SI-P03-G12': SI_P03_G12, 'SI-P03-H12': SI_P03_H12, 'SI-3A-A1': SI_3A_A1, 'SI-3A-B1': SI_3A_B1, 'SI-3A-C1': SI_3A_C1, 'SI-3A-D1': SI_3A_D1, 'SI-3A-E1': SI_3A_E1, 'SI-3A-F1': SI_3A_F1, 'SI-3A-G1': SI_3A_G1, 'SI-3A-H1': SI_3A_H1, 'SI-3A-A2': SI_3A_A2, 'SI-3A-B2': SI_3A_B2, 'SI-3A-C2': SI_3A_C2, 'SI-3A-D2': SI_3A_D2, 'SI-3A-E2': SI_3A_E2, 'SI-3A-F2': SI_3A_F2, 'SI-3A-G2': SI_3A_G2, 'SI-3A-H2': SI_3A_H2, 'SI-3A-A3': SI_3A_A3, 'SI-3A-B3': SI_3A_B3, 'SI-3A-C3': SI_3A_C3, 'SI-3A-D3': SI_3A_D3, 'SI-3A-E3': SI_3A_E3, 'SI-3A-F3': SI_3A_F3, 'SI-3A-G3': SI_3A_G3, 'SI-3A-H3': SI_3A_H3, 'SI-3A-A4': SI_3A_A4, 'SI-3A-B4': SI_3A_B4, 'SI-3A-C4': SI_3A_C4, 'SI-3A-D4': SI_3A_D4, 'SI-3A-E4': SI_3A_E4, 'SI-3A-F4': SI_3A_F4, 'SI-3A-G4': SI_3A_G4, 'SI-3A-H4': SI_3A_H4, 'SI-3A-A5': SI_3A_A5, 'SI-3A-B5': SI_3A_B5, 'SI-3A-C5': SI_3A_C5, 'SI-3A-D5': SI_3A_D5, 'SI-3A-E5': SI_3A_E5, 'SI-3A-F5': SI_3A_F5, 'SI-3A-G5': SI_3A_G5, 'SI-3A-H5': SI_3A_H5, 'SI-3A-A6': SI_3A_A6, 'SI-3A-B6': SI_3A_B6, 'SI-3A-C6': SI_3A_C6, 'SI-3A-D6': SI_3A_D6, 'SI-3A-E6': SI_3A_E6, 'SI-3A-F6': SI_3A_F6, 'SI-3A-G6': SI_3A_G6, 'SI-3A-H6': SI_3A_H6, 'SI-3A-A7': SI_3A_A7, 'SI-3A-B7': SI_3A_B7, 'SI-3A-C7': SI_3A_C7, 'SI-3A-D7': SI_3A_D7, 'SI-3A-E7': SI_3A_E7, 'SI-3A-F7': SI_3A_F7, 'SI-3A-G7': SI_3A_G7, 'SI-3A-H7': SI_3A_H7, 'SI-3A-A8': SI_3A_A8, 'SI-3A-B8': SI_3A_B8, 'SI-3A-C8': SI_3A_C8, 'SI-3A-D8': SI_3A_D8, 'SI-3A-E8': SI_3A_E8, 'SI-3A-F8': SI_3A_F8, 'SI-3A-G8': SI_3A_G8, 'SI-3A-H8': SI_3A_H8, 'SI-3A-A9': SI_3A_A9, 'SI-3A-B9': SI_3A_B9, 'SI-3A-C9': SI_3A_C9, 'SI-3A-D9': SI_3A_D9, 'SI-3A-E9': SI_3A_E9, 'SI-3A-F9': SI_3A_F9, 'SI-3A-G9': SI_3A_G9, 'SI-3A-H9': SI_3A_H9, 'SI-3A-A10': SI_3A_A10, 'SI-3A-B10': SI_3A_B10, 'SI-3A-C10': SI_3A_C10, 'SI-3A-D10': SI_3A_D10, 'SI-3A-E10': SI_3A_E10, 'SI-3A-F10': SI_3A_F10, 'SI-3A-G10': SI_3A_G10, 'SI-3A-H10': SI_3A_H10, 'SI-3A-A11': SI_3A_A11, 'SI-3A-B11': SI_3A_B11, 'SI-3A-C11': SI_3A_C11, 'SI-3A-D11': SI_3A_D11, 'SI-3A-E11': SI_3A_E11, 'SI-3A-F11': SI_3A_F11, 'SI-3A-G11': SI_3A_G11, 'SI-3A-H11': SI_3A_H11, 'SI-3A-A12': SI_3A_A12, 'SI-3A-B12': SI_3A_B12, 'SI-3A-C12': SI_3A_C12, 'SI-3A-D12': SI_3A_D12, 'SI-3A-E12': SI_3A_E12, 'SI-3A-F12': SI_3A_F12, 'SI-3A-G12': SI_3A_G12, 'SI-3A-H12': SI_3A_H12, 'SI-GA-A1': SI_GA_A1, 'SI-GA-B1': SI_GA_B1, 'SI-GA-C1': SI_GA_C1, 'SI-GA-D1': SI_GA_D1, 'SI-GA-E1': SI_GA_E1, 'SI-GA-F1': SI_GA_F1, 'SI-GA-G1': SI_GA_G1, 'SI-GA-H1': SI_GA_H1, 'SI-GA-A2': SI_GA_A2, 'SI-GA-B2': SI_GA_B2, 'SI-GA-C2': SI_GA_C2, 'SI-GA-D2': SI_GA_D2, 'SI-GA-E2': SI_GA_E2, 'SI-GA-F2': SI_GA_F2, 'SI-GA-G2': SI_GA_G2, 'SI-GA-H2': SI_GA_H2, 'SI-GA-A3': SI_GA_A3, 'SI-GA-B3': SI_GA_B3, 'SI-GA-C3': SI_GA_C3, 'SI-GA-D3': SI_GA_D3, 'SI-GA-E3': SI_GA_E3, 'SI-GA-F3': SI_GA_F3, 'SI-GA-G3': SI_GA_G3, 'SI-GA-H3': SI_GA_H3, 'SI-GA-A4': SI_GA_A4, 'SI-GA-B4': SI_GA_B4, 'SI-GA-C4': SI_GA_C4, 'SI-GA-D4': SI_GA_D4, 'SI-GA-E4': SI_GA_E4, 'SI-GA-F4': SI_GA_F4, 'SI-GA-G4': SI_GA_G4, 'SI-GA-H4': SI_GA_H4, 'SI-GA-A5': SI_GA_A5, 'SI-GA-B5': SI_GA_B5, 'SI-GA-C5': SI_GA_C5, 'SI-GA-D5': SI_GA_D5, 'SI-GA-E5': SI_GA_E5, 'SI-GA-F5': SI_GA_F5, 'SI-GA-G5': SI_GA_G5, 'SI-GA-H5': SI_GA_H5, 'SI-GA-A6': SI_GA_A6, 'SI-GA-B6': SI_GA_B6, 'SI-GA-C6': SI_GA_C6, 'SI-GA-D6': SI_GA_D6, 'SI-GA-E6': SI_GA_E6, 'SI-GA-F6': SI_GA_F6, 'SI-GA-G6': SI_GA_G6, 'SI-GA-H6': SI_GA_H6, 'SI-GA-A7': SI_GA_A7, 'SI-GA-B7': SI_GA_B7, 'SI-GA-C7': SI_GA_C7, 'SI-GA-D7': SI_GA_D7, 'SI-GA-E7': SI_GA_E7, 'SI-GA-F7': SI_GA_F7, 'SI-GA-G7': SI_GA_G7, 'SI-GA-H7': SI_GA_H7, 'SI-GA-A8': SI_GA_A8, 'SI-GA-B8': SI_GA_B8, 'SI-GA-C8': SI_GA_C8, 'SI-GA-D8': SI_GA_D8, 'SI-GA-E8': SI_GA_E8, 'SI-GA-F8': SI_GA_F8, 'SI-GA-G8': SI_GA_G8, 'SI-GA-H8': SI_GA_H8, 'SI-GA-A9': SI_GA_A9, 'SI-GA-B9': SI_GA_B9, 'SI-GA-C9': SI_GA_C9, 'SI-GA-D9': SI_GA_D9, 'SI-GA-E9': SI_GA_E9, 'SI-GA-F9': SI_GA_F9, 'SI-GA-G9': SI_GA_G9, 'SI-GA-H9': SI_GA_H9, 'SI-GA-A10': SI_GA_A10, 'SI-GA-B10': SI_GA_B10, 'SI-GA-C10': SI_GA_C10, 'SI-GA-D10': SI_GA_D10, 'SI-GA-E10': SI_GA_E10, 'SI-GA-F10': SI_GA_F10, 'SI-GA-G10': SI_GA_G10, 'SI-GA-H10': SI_GA_H10, 'SI-GA-A11': SI_GA_A11, 'SI-GA-B11': SI_GA_B11, 'SI-GA-C11': SI_GA_C11, 'SI-GA-D11': SI_GA_D11, 'SI-GA-E11': SI_GA_E11, 'SI-GA-F11': SI_GA_F11, 'SI-GA-G11': SI_GA_G11, 'SI-GA-H11': SI_GA_H11, 'SI-GA-A12': SI_GA_A12, 'SI-GA-B12': SI_GA_B12, 'SI-GA-C12': SI_GA_C12, 'SI-GA-D12': SI_GA_D12, 'SI-GA-E12': SI_GA_E12, 'SI-GA-F12': SI_GA_F12, 'SI-GA-G12': SI_GA_G12, 'SI-GA-H12': SI_GA_H12, # GemCode Part numbers '220027': SI_001, '220028': SI_002, '220029': SI_003, '220030': SI_004, '220031': SI_005, '220032': SI_006, '220033': SI_007, '220034': SI_008, # WGS+ Tube labels 'SI-T2-1': SI_T2_1, 'SI-T2-2': SI_T2_2, 'SI-T2-3': SI_T2_3, 'SI-T2-4': SI_T2_4, 'SI-T2-5': SI_T2_5, 'SI-T2-6': SI_T2_6, 'SI-T2-7': SI_T2_7, 'SI-T2-8': SI_T2_8, # WGS+ Plate labels 'SI-P2-A1': SI_P2_A1, 'SI-P2-A2': SI_P2_A2, 'SI-P2-A3': SI_P2_A3, 'SI-P2-A4': SI_P2_A4, 'SI-P2-A5': SI_P2_A5, 'SI-P2-A6': SI_P2_A6, 'SI-P2-A7': SI_P2_A7, 'SI-P2-A8': SI_P2_A8, 'SI-P2-A9': SI_P2_A9, 'SI-P2-A10': SI_P2_A10, 'SI-P2-A11': SI_P2_A11, 'SI-P2-A12': SI_P2_A12, 'SI-P2-B1': SI_P2_B1, 'SI-P2-B2': SI_P2_B2, 'SI-P2-B3': SI_P2_B3, 'SI-P2-B4': SI_P2_B4, 'SI-P2-B5': SI_P2_B5, 'SI-P2-B6': SI_P2_B6, 'SI-P2-B7': SI_P2_B7, 'SI-P2-B8': SI_P2_B8, 'SI-P2-B9': SI_P2_B9, 'SI-P2-B10': SI_P2_B10, 'SI-P2-B11': SI_P2_B11, 'SI-P2-B12': SI_P2_B12, 'SI-P2-C1': SI_P2_C1, 'SI-P2-C2': SI_P2_C2, 'SI-P2-C3': SI_P2_C3, 'SI-P2-C4': SI_P2_C4, 'SI-P2-C5': SI_P2_C5, 'SI-P2-C6': SI_P2_C6, 'SI-P2-C7': SI_P2_C7, 'SI-P2-C8': SI_P2_C8, 'SI-P2-C9': SI_P2_C9, 'SI-P2-C10': SI_P2_C10, 'SI-P2-C11': SI_P2_C11, 'SI-P2-C12': SI_P2_C12, 'SI-P2-D1': SI_P2_D1, 'SI-P2-D2': SI_P2_D2, 'SI-P2-D3': SI_P2_D3, 'SI-P2-D4': SI_P2_D4, 'SI-P2-D5': SI_P2_D5, 'SI-P2-D6': SI_P2_D6, 'SI-P2-D7': SI_P2_D7, 'SI-P2-D8': SI_P2_D8, 'SI-P2-D9': SI_P2_D9, 'SI-P2-D10': SI_P2_D10, 'SI-P2-D11': SI_P2_D11, 'SI-P2-D12': SI_P2_D12, 'SI-P2-E1': SI_P2_E1, 'SI-P2-E2': SI_P2_E2, 'SI-P2-E3': SI_P2_E3, 'SI-P2-E4': SI_P2_E4, 'SI-P2-E5': SI_P2_E5, 'SI-P2-E6': SI_P2_E6, 'SI-P2-E7': SI_P2_E7, 'SI-P2-E8': SI_P2_E8, 'SI-P2-E9': SI_P2_E9, 'SI-P2-E10': SI_P2_E10, 'SI-P2-E11': SI_P2_E11, 'SI-P2-E12': SI_P2_E12, 'SI-P2-F1': SI_P2_F1, 'SI-P2-F2': SI_P2_F2, 'SI-P2-F3': SI_P2_F3, 'SI-P2-F4': SI_P2_F4, 'SI-P2-F5': SI_P2_F5, 'SI-P2-F6': SI_P2_F6, 'SI-P2-F7': SI_P2_F7, 'SI-P2-F8': SI_P2_F8, 'SI-P2-F9': SI_P2_F9, 'SI-P2-F10': SI_P2_F10, 'SI-P2-F11': SI_P2_F11, 'SI-P2-F12': SI_P2_F12, 'SI-P2-G1': SI_P2_G1, 'SI-P2-G2': SI_P2_G2, 'SI-P2-G3': SI_P2_G3, 'SI-P2-G4': SI_P2_G4, 'SI-P2-G5': SI_P2_G5, 'SI-P2-G6': SI_P2_G6, 'SI-P2-G7': SI_P2_G7, 'SI-P2-G8': SI_P2_G8, 'SI-P2-G9': SI_P2_G9, 'SI-P2-G10': SI_P2_G10, 'SI-P2-G11': SI_P2_G11, 'SI-P2-G12': SI_P2_G12, 'SI-P2-H1': SI_P2_H1, 'SI-P2-H2': SI_P2_H2, 'SI-P2-H3': SI_P2_H3, 'SI-P2-H4': SI_P2_H4, 'SI-P2-H5': SI_P2_H5, 'SI-P2-H6': SI_P2_H6, 'SI-P2-H7': SI_P2_H7, 'SI-P2-H8': SI_P2_H8, 'SI-P2-H9': SI_P2_H9, 'SI-P2-H10': SI_P2_H10, 'SI-P2-H11': SI_P2_H11, 'SI-P2-H12': SI_P2_H12, # WGS+ Plate Label alternate 'SI-P02-A1': SI_P2_A1, 'SI-P02-A2': SI_P2_A2, 'SI-P02-A3': SI_P2_A3, 'SI-P02-A4': SI_P2_A4, 'SI-P02-A5': SI_P2_A5, 'SI-P02-A6': SI_P2_A6, 'SI-P02-A7': SI_P2_A7, 'SI-P02-A8': SI_P2_A8, 'SI-P02-A9': SI_P2_A9, 'SI-P02-A10': SI_P2_A10, 'SI-P02-A11': SI_P2_A11, 'SI-P02-A12': SI_P2_A12, 'SI-P02-B1': SI_P2_B1, 'SI-P02-B2': SI_P2_B2, 'SI-P02-B3': SI_P2_B3, 'SI-P02-B4': SI_P2_B4, 'SI-P02-B5': SI_P2_B5, 'SI-P02-B6': SI_P2_B6, 'SI-P02-B7': SI_P2_B7, 'SI-P02-B8': SI_P2_B8, 'SI-P02-B9': SI_P2_B9, 'SI-P02-B10': SI_P2_B10, 'SI-P02-B11': SI_P2_B11, 'SI-P02-B12': SI_P2_B12, 'SI-P02-C1': SI_P2_C1, 'SI-P02-C2': SI_P2_C2, 'SI-P02-C3': SI_P2_C3, 'SI-P02-C4': SI_P2_C4, 'SI-P02-C5': SI_P2_C5, 'SI-P02-C6': SI_P2_C6, 'SI-P02-C7': SI_P2_C7, 'SI-P02-C8': SI_P2_C8, 'SI-P02-C9': SI_P2_C9, 'SI-P02-C10': SI_P2_C10, 'SI-P02-C11': SI_P2_C11, 'SI-P02-C12': SI_P2_C12, 'SI-P02-D1': SI_P2_D1, 'SI-P02-D2': SI_P2_D2, 'SI-P02-D3': SI_P2_D3, 'SI-P02-D4': SI_P2_D4, 'SI-P02-D5': SI_P2_D5, 'SI-P02-D6': SI_P2_D6, 'SI-P02-D7': SI_P2_D7, 'SI-P02-D8': SI_P2_D8, 'SI-P02-D9': SI_P2_D9, 'SI-P02-D10': SI_P2_D10, 'SI-P02-D11': SI_P2_D11, 'SI-P02-D12': SI_P2_D12, 'SI-P02-E1': SI_P2_E1, 'SI-P02-E2': SI_P2_E2, 'SI-P02-E3': SI_P2_E3, 'SI-P02-E4': SI_P2_E4, 'SI-P02-E5': SI_P2_E5, 'SI-P02-E6': SI_P2_E6, 'SI-P02-E7': SI_P2_E7, 'SI-P02-E8': SI_P2_E8, 'SI-P02-E9': SI_P2_E9, 'SI-P02-E10': SI_P2_E10, 'SI-P02-E11': SI_P2_E11, 'SI-P02-E12': SI_P2_E12, 'SI-P02-F1': SI_P2_F1, 'SI-P02-F2': SI_P2_F2, 'SI-P02-F3': SI_P2_F3, 'SI-P02-F4': SI_P2_F4, 'SI-P02-F5': SI_P2_F5, 'SI-P02-F6': SI_P2_F6, 'SI-P02-F7': SI_P2_F7, 'SI-P02-F8': SI_P2_F8, 'SI-P02-F9': SI_P2_F9, 'SI-P02-F10': SI_P2_F10, 'SI-P02-F11': SI_P2_F11, 'SI-P02-F12': SI_P2_F12, 'SI-P02-G1': SI_P2_G1, 'SI-P02-G2': SI_P2_G2, 'SI-P02-G3': SI_P2_G3, 'SI-P02-G4': SI_P2_G4, 'SI-P02-G5': SI_P2_G5, 'SI-P02-G6': SI_P2_G6, 'SI-P02-G7': SI_P2_G7, 'SI-P02-G8': SI_P2_G8, 'SI-P02-G9': SI_P2_G9, 'SI-P02-G10': SI_P2_G10, 'SI-P02-G11': SI_P2_G11, 'SI-P02-G12': SI_P2_G12, 'SI-P02-H1': SI_P2_H1, 'SI-P02-H2': SI_P2_H2, 'SI-P02-H3': SI_P2_H3, 'SI-P02-H4': SI_P2_H4, 'SI-P02-H5': SI_P2_H5, 'SI-P02-H6': SI_P2_H6, 'SI-P02-H7': SI_P2_H7, 'SI-P02-H8': SI_P2_H8, 'SI-P02-H9': SI_P2_H9, 'SI-P02-H10': SI_P2_H10, 'SI-P02-H11': SI_P2_H11, 'SI-P02-H12': SI_P2_H12, } # Chromium lot-specific oligos CHROMIUM_LOT1_PART_A = ['AGAGCGA', 'CGATTGA', 'TAGACCA', 'AAATGCC', 'CTTTGCG', 'TCAGCAA', 'CTCCTAG', 'ATTATCC'] CHROMIUM_LOT2_PART_A = ['GACACTA', 'CCCTCTC', 'ATCGCGG', 'CTGGCAG', 'CCAGCTT', 'CATAGCA', 'CGTGTTC', 'GCACCAG'] CHROMIUM_LOT3_PART_A = ['ATGTGAC', 'GACGTCG', 'ACTGGCG', 'TGGCAAT', 'GAGGGTA', 'GTTTCGC', 'CAAGTGT', 'TTGAAGC'] CHROMIUM_LOT4_PART_A = ['CGATCCT', 'TGTTGCC', 'ACCTATT', 'ACAACTG', 'CTGTGTC', 'CTGGAAT', 'CAGAGTT', 'GGGCTGT'] CHROMIUM_LOT5_PART_A = ['TAGCTCC', 'CAATTTC', 'GCTCGAG', 'GAAGGCA', 'CGGCATG', 'TATTCCA', 'TCTCTGG', 'AGGTACT'] CHROMIUM_LOT6_PART_A = ['ACTTGCC', 'GTGAGTT', 'GTTGTCC', 'CATAACG', 'TCGTAAG', 'TTATCCA', 'GTGGAGA', 'TCCTGCA'] CHROMIUM_LOT7_PART_A = ['TAAGCCA', 'TCGGTGG', 'AAGGTAA', 'GGAACAG', 'GTGGAAG', 'TTAGACG', 'ATCCTAT', 'TTCCGTG'] CHROMIUM_LOT8_PART_A = ['GGTTTAG', 'CGTATAG', 'ATAGGCT', 'CTCTCGA', 'GTCTTAT', 'GATTGCA', 'TGAGCTA', 'ACGCGTG'] CHROMIUM_LOT9_PART_A = ['CGACACG', 'TCTCGTG', 'TGATGAC', 'TGCGTAA', 'TACCCTG', 'AGGTGCC', 'CTTGTGC', 'GCATGGC'] CHROMIUM_LOT10_PART_A = ['CAGCACG', 'CATGATG', 'ATCAACG', 'GATAAGA', 'CTGGTTC', 'CGATTCC', 'AGGTGAG', 'GGCCTGA'] CHROMIUM_LOT11_PART_A = ['ACAGTTG', 'TAAGCAC', 'ATCTTTG', 'TCTTGCG', 'TACATGG', 'CAAGGTT', 'AGGCTGC', 'GGTCGTG'] CHROMIUM_LOT12_PART_A = ['CCATTAT', 'GTTGCGG', 'AGGGTAG', 'GCCCAAG', 'TGTGCCT', 'ATTCTTG', 'GGTGCCA', 'GTATAGC'] CHROMIUM_LOT13_PART_A = ['GGCATCG', 'GACTGAT', 'TGGTGTA', 'TCCGTTG', 'CCTTCAG', 'CAGGCCA', 'GCACCGA', 'AGATCCA'] CHROMIUM_LOT_MAP = { 'Chromium Lot 1': CHROMIUM_LOT1_PART_A, 'Chromium Lot 2': CHROMIUM_LOT2_PART_A, 'Chromium Lot 3': CHROMIUM_LOT3_PART_A, 'Chromium Lot 4': CHROMIUM_LOT4_PART_A, 'Chromium Lot 5': CHROMIUM_LOT5_PART_A, 'Chromium Lot 6': CHROMIUM_LOT6_PART_A, 'Chromium Lot 7': CHROMIUM_LOT7_PART_A, 'Chromium Lot 8': CHROMIUM_LOT8_PART_A, 'Chromium Lot 9': CHROMIUM_LOT9_PART_A, 'Chromium Lot 10': CHROMIUM_LOT10_PART_A, 'Chromium Lot 11': CHROMIUM_LOT11_PART_A, 'Chromium Lot 12': CHROMIUM_LOT12_PART_A, 'Chromium Lot 13': CHROMIUM_LOT13_PART_A, } # GemCode lot-specific oligos # note: lots 1-15 all use the same part As GEMCODE_LOT1_PART_A = ['GGGTGA', 'TTCATC', 'CACAAC', 'GAAGAT', 'CAGCAT', 'CGTCAA', 'GAAACA', 'TGTTTC'] GEMCODE_LOT16_PART_A = ['CAAGTC', 'ACAAAG', 'CTGGAT', 'TTGTCT', 'AGCCTA', 'GGGAAC', 'TTCCTA', 'CCGTAA'] GEMCODE_LOT17_PART_A = ['AGTCCA', 'CAGGAG', 'CAATGC', 'CAATCG', 'AACAGA', 'TTACTC', 'ACTGAC', 'TAAGCC'] GEMCODE_LOT18_PART_A = ['GCATGT', 'CCAACA', 'TCGGTA', 'ATCGTG', 'ATTCTC', 'CGTTAG', 'TTCACT', 'GGTTTG'] GEMCODE_LOT19_PART_A = ['CTTTCA', 'TTGTTC', 'TAGCCA', 'GCGTAT', 'CGTACA', 'CCTTCG', 'CACACA', 'TACTTC'] GEMCODE_LOT20_PART_A = ['CTTCAT', 'ATTCCT', 'GTCTCC', 'CAGGGA', 'ATCCGA', 'CGAATC', 'AAACCC', 'CGCTAA'] GEMCODE_LOT21_PART_A = ['CAGATC', 'AATCCG', 'TACGTG', 'GAACAA', 'AGAGCG', 'CCAGAT', 'CGCTTC', 'TTATCC'] GEMCODE_LOT_MAP = { 'GemCode Lots 1-15': GEMCODE_LOT1_PART_A, 'GemCode Lot 16': GEMCODE_LOT16_PART_A, 'GemCode Lot 17': GEMCODE_LOT17_PART_A, 'GemCode Lot 18': GEMCODE_LOT18_PART_A, 'GemCode Lot 19': GEMCODE_LOT19_PART_A, 'GemCode Lot 20': GEMCODE_LOT20_PART_A, 'GemCode Lot 21': GEMCODE_LOT21_PART_A, } # if a whitelist isn't in this map, then assume it doesn't contain the alts and don't try to do lot detection WHITELIST_TO_LOT_MAP = { "884K-november-2015": GEMCODE_LOT_MAP, "4M-with-alts-february-2016": CHROMIUM_LOT_MAP, }
39.199826
166
0.631286
220a10ae4f94037f2fc5716fb1f0d5f4baeedfd5
820
py
Python
artikel/migrations/0001_initial.py
almaaqila/tugas-tengah-semester-pbp
7b7bc72ea19cedd61c77c26ed503efd9eb42bc0b
[ "MIT" ]
null
null
null
artikel/migrations/0001_initial.py
almaaqila/tugas-tengah-semester-pbp
7b7bc72ea19cedd61c77c26ed503efd9eb42bc0b
[ "MIT" ]
null
null
null
artikel/migrations/0001_initial.py
almaaqila/tugas-tengah-semester-pbp
7b7bc72ea19cedd61c77c26ed503efd9eb42bc0b
[ "MIT" ]
5
2021-10-14T15:22:52.000Z
2021-12-29T12:22:43.000Z
# Generated by Django 3.2.8 on 2021-10-26 06:25 from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Artikel', fields=[ ('id', models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('title', models.CharField(max_length=255)), ('body', models.TextField()), ('pub_date', models.DateField(auto_now_add=True)), ('image_file', models.ImageField(blank=True, upload_to='images')), ('image_url', models.URLField(blank=True)), ('slug', models.SlugField(max_length=255, unique=True)), ], ), ]
30.37037
117
0.568293
3dd16e259ad940bf592d1ae6981fa9f729ae6a7f
4,063
py
Python
utils/nbtoc.py
mmxsrup/fuzzingbook
a57d1ac940c6bec78ba70f2e1ed04fd87aeeb49e
[ "MIT" ]
1
2021-11-02T18:40:46.000Z
2021-11-02T18:40:46.000Z
utils/nbtoc.py
mmxsrup/fuzzingbook
a57d1ac940c6bec78ba70f2e1ed04fd87aeeb49e
[ "MIT" ]
null
null
null
utils/nbtoc.py
mmxsrup/fuzzingbook
a57d1ac940c6bec78ba70f2e1ed04fd87aeeb49e
[ "MIT" ]
2
2019-12-28T16:53:57.000Z
2021-11-02T18:40:51.000Z
#!/usr/bin/env python # Create table of contents for given notebook(s) """ usage: python nbtoc.py A.ipynb B.ipynb C.ipynb """ import io, os, sys, types, re import nbformat import argparse def get_text_contents(notebook): with io.open(notebook, 'r', encoding='utf-8') as f: nb = nbformat.read(f, as_version=4) contents = "" for cell in nb.cells: if cell.cell_type == 'markdown': contents += "".join(cell.source) + "\n\n" # print("Contents of", notebook, ": ", repr(contents[:100])) return contents def get_title(notebook): """Return the title from a notebook file""" contents = get_text_contents(notebook) match = re.search(r'^# (.*)', contents, re.MULTILINE) title = match.group(1).replace(r'\n', '') # print("Title", title.encode('utf-8')) return title def notebook_toc_entry(notebook_name, prefix, path=None): # notebook_path = import_notebooks.find_notebook(notebook_name, path) notebook_path = notebook_name notebook_title = get_title(notebook_path) notebook_base = os.path.basename(notebook_path) return prefix + " [" + notebook_title + "](" + notebook_base + ")\n" def notebook_toc(public_chapters, appendices): title = "# The Fuzzing Book" chapter_toc = "## [Table of Contents](index.ipynb)\n\n" counter = 1 for notebook in public_chapters + appendices: notebook_title = get_title(notebook) if (notebook_title.startswith("Part ") or notebook_title.startswith("Appendices")): # chapter_toc += "\n### " + notebook_title + "\n\n" chapter_toc += "\n" + notebook_toc_entry(notebook, "###") + "\n" else: chapter_toc += notebook_toc_entry(notebook, "*") # repr(counter) + ".") counter += 1 # appendix_toc = "### [Appendices](99_Appendices.ipynb)\n\n" # for notebook in appendices: # appendix_toc += notebook_toc_entry(notebook, "*") sitemap = r"""## Sitemap This sitemap shows possible paths through the book chapters. An arrow $A \rightarrow B$ means that chapter $A$ is a prerequisite for chapter $B$.""" sitemap_code_1 = "from IPython.display import SVG" sitemap_code_2 = "SVG(filename='PICS/Sitemap.svg')" toc_notebook = nbformat.v4.new_notebook( cells=[ nbformat.v4.new_markdown_cell(source=title), nbformat.v4.new_markdown_cell(source=sitemap), nbformat.v4.new_code_cell(source=sitemap_code_1), nbformat.v4.new_code_cell(source=sitemap_code_2), nbformat.v4.new_markdown_cell(source=chapter_toc) # nbformat.v4.new_markdown_cell(source=appendix_toc), ]) # Get along with TOC extension toc_notebook.metadata['toc'] = { "base_numbering": 1, "nav_menu": {}, "number_sections": False, "sideBar": False, "skip_h1_title": False, "title_cell": "", "title_sidebar": "Contents", "toc_cell": False, "toc_position": {}, "toc_section_display": False, "toc_window_display": False } # Add general metadata toc_notebook.metadata["kernelspec"] = { "display_name": "Python 3", "language": "python", "name": "python3" } toc_notebook.metadata["language_info"] = { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.6" } return toc_notebook if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--chapters", help="List of public chapters") parser.add_argument("--appendices", help="List of appendices") args = parser.parse_args() public_chapters = args.chapters.split() appendices = args.appendices.split() toc_notebook = notebook_toc(public_chapters, appendices) sys.stdout.buffer.write(nbformat.writes(toc_notebook).encode("utf-8"))
31.742188
149
0.634014
17e7278792a8cb8490f89df78b4e1172773c8be4
245
py
Python
app/loader.py
xandrade/alpha-api
03a6a43d1a9dd4c8f1d072b8af11751b17dc35d8
[ "MIT" ]
1
2021-12-20T16:08:37.000Z
2021-12-20T16:08:37.000Z
app/loader.py
xandrade/alpha-api
03a6a43d1a9dd4c8f1d072b8af11751b17dc35d8
[ "MIT" ]
null
null
null
app/loader.py
xandrade/alpha-api
03a6a43d1a9dd4c8f1d072b8af11751b17dc35d8
[ "MIT" ]
1
2022-01-11T21:50:57.000Z
2022-01-11T21:50:57.000Z
from dotenv import load_dotenv, find_dotenv def load_enviroment() -> None: """Load enviroment variables from .env file.""" path = find_dotenv() if path: load_dotenv(path) if __name__ == "__main__": load_enviroment()
17.5
51
0.665306
40f4bb126ed11d7b72dd904c3997c66a58264cc9
2,040
py
Python
source/participant/main.py
netzahdzc/mat-dashboard
b7ada2a6b1fcfca9b375417da1504b1894508719
[ "MIT" ]
null
null
null
source/participant/main.py
netzahdzc/mat-dashboard
b7ada2a6b1fcfca9b375417da1504b1894508719
[ "MIT" ]
null
null
null
source/participant/main.py
netzahdzc/mat-dashboard
b7ada2a6b1fcfca9b375417da1504b1894508719
[ "MIT" ]
null
null
null
# Copyright (c) 2017 CICESE # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Flask dependencies from flask import Flask from flask import render_template from flask import make_response from flask import request, Response # Internal dependencies from lib.NGSIData import NGSIData # Format dependencies import pprint # Start listening through port 8001 app = Flask(__name__); """ Null route (/) This route might be used for testing purposes. """ @app.route("/") def hello(): return "Hello LocalServer"; """ queryContext route (/v1/queryContext) This method allows to retrieve NGSI v1 entities by triggering a POST call from which a contextResponses structure. For more reference, please visit NGSI v1 official documentation: http://telefonicaid.github.io/fiware-orion/api/v1/ """ @app.route("/v1/queryContext", methods = ['POST']) def getData(): # Data handler. _contextResponses = NGSIData(); # Remote access data. username = str(request.headers["Referer"]).split("/")[3]; service = str(request.headers["Fiware-Service"]); servicePath = str(request.headers["Fiware-ServicePath"]); token = "";#str(request.headers["X-Auth-Token"]); # Header settled. response = Response(response = _contextResponses.post(username, service, servicePath, request.args, token)); response.headers["Accept"] = "application/json"; response.headers["Fiware-Service"] = service; response.headers["Fiware-ServicePath"] = servicePath; return response; if __name__ == "__main__": app.run(host = "0.0.0.0", port=8001, debug = False);
32.380952
115
0.743137