hexsha
stringlengths
40
40
size
int64
4
1.02M
ext
stringclasses
8 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
4
209
max_stars_repo_name
stringlengths
5
121
max_stars_repo_head_hexsha
stringlengths
40
40
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
4
209
max_issues_repo_name
stringlengths
5
121
max_issues_repo_head_hexsha
stringlengths
40
40
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
4
209
max_forks_repo_name
stringlengths
5
121
max_forks_repo_head_hexsha
stringlengths
40
40
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
4
1.02M
avg_line_length
float64
1.07
66.1k
max_line_length
int64
4
266k
alphanum_fraction
float64
0.01
1
1bb125fc740d034c7426baf1e225b7c858e4ea41
356
py
Python
euphro_auth/api_urls.py
betagouv/euphrosyne
a67857a8716b5060cd9a2c6fa5f3d45c3fff435a
[ "MIT" ]
1
2022-02-21T19:46:20.000Z
2022-02-21T19:46:20.000Z
euphro_auth/api_urls.py
betagouv/euphrosyne
a67857a8716b5060cd9a2c6fa5f3d45c3fff435a
[ "MIT" ]
37
2021-10-18T18:33:26.000Z
2022-03-31T12:38:38.000Z
euphro_auth/api_urls.py
betagouv/euphrosyne
a67857a8716b5060cd9a2c6fa5f3d45c3fff435a
[ "MIT" ]
2
2022-03-03T15:41:30.000Z
2022-03-07T14:20:26.000Z
from django.urls import path from rest_framework_simplejwt.views import TokenRefreshView from .jwt.api_views import SessionTokenObtainPairView urlpatterns = [ path( "token/", SessionTokenObtainPairView.as_view(), name="token_obtain_pair", ), path("token/refresh/", TokenRefreshView.as_view(), name="token_refresh"), ]
25.428571
77
0.72191
9b99fb38e6942d8d563c80dbf7ebda6ad4640cd3
2,374
py
Python
judge.py
shin-sforzando/PAC2020-RPS
ccc65ee95c0d0e0ffce34f07d667f1fd0306d7c5
[ "MIT" ]
null
null
null
judge.py
shin-sforzando/PAC2020-RPS
ccc65ee95c0d0e0ffce34f07d667f1fd0306d7c5
[ "MIT" ]
8
2020-08-18T11:51:19.000Z
2020-08-18T21:42:45.000Z
judge.py
shin-sforzando/PAC2020-RPS
ccc65ee95c0d0e0ffce34f07d667f1fd0306d7c5
[ "MIT" ]
null
null
null
from typing import Dict from typing import TypeVar from consequence import Consequence from hand import Hand from player import Player from players.doraemon import Doraemon from players.dorami import Dorami from players.nobita import Nobita from players.shizuka import Shizuka from players.suneo import Suneo TypePlayer = TypeVar("TypePlayer", bound=Player) player_dictionary: Dict[str, TypePlayer] = { "源静香": Shizuka, "ドラえもん": Doraemon, "骨川スネ夫": Suneo, "野比のび太": Nobita, "ドラミ": Dorami, } class Judge: def __init__(self, first_player: str, second_player: str): self.first_player: TypePlayer = player_dictionary[first_player](is_first=True) self.second_player: TypePlayer = player_dictionary[second_player](is_first=False) self.history = [] def game(self): first_hand = self.first_player.next_hand() second_hand = self.second_player.next_hand() consequence = self.judge(first_hand=first_hand, second_hand=second_hand) result = (first_hand, second_hand, consequence) self.history.append(result) if consequence is consequence.Win: self.first_player.is_won = True self.second_player.is_won = False if consequence is consequence.Lose: self.first_player.is_won = False self.second_player.is_won = True return first_hand, second_hand, consequence def get_converted_history(self): return [(h[0].value, h[1].value, h[2].value) for h in self.history] def get_result(self): wins = [h for h in self.history if h[-1] == Consequence.Win] return len(wins) / len(self.history) @staticmethod def judge(first_hand: Hand, second_hand: Hand): if first_hand is second_hand: return Consequence.Draw if first_hand is Hand.G: if second_hand is Hand.C: return Consequence.Win if second_hand is Hand.P: return Consequence.Lose if first_hand is Hand.C: if second_hand is Hand.P: return Consequence.Win if second_hand is Hand.G: return Consequence.Lose if first_hand is Hand.P: if second_hand is Hand.G: return Consequence.Win if second_hand is Hand.C: return Consequence.Lose
33.43662
89
0.655013
678c48f7c508dcd90c175c1cbe345f7e3c5ed0ff
5,101
py
Python
recipes/zlib/1.2.8/conanfile.py
cqjjjzr/conan-center-index
1e1ecf6e0032ce3d341d49a10737f70d9bdb45dd
[ "MIT" ]
null
null
null
recipes/zlib/1.2.8/conanfile.py
cqjjjzr/conan-center-index
1e1ecf6e0032ce3d341d49a10737f70d9bdb45dd
[ "MIT" ]
null
null
null
recipes/zlib/1.2.8/conanfile.py
cqjjjzr/conan-center-index
1e1ecf6e0032ce3d341d49a10737f70d9bdb45dd
[ "MIT" ]
null
null
null
import os import stat import shutil from conans import ConanFile, tools, CMake, AutoToolsBuildEnvironment from conans.errors import ConanException, NotFoundException class ZlibConan(ConanFile): name = "zlib" version = "1.2.8" url = "https://github.com/conan-io/conan-center-index" homepage = "https://zlib.net" license = "Zlib" description = ("A Massively Spiffy Yet Delicately Unobtrusive Compression Library " "(Also Free, Not to Mention Unencumbered by Patents)") settings = "os", "arch", "compiler", "build_type" options = {"shared": [True, False], "fPIC": [True, False]} default_options = "shared=False", "fPIC=True" exports_sources = ["CMakeLists.txt"] generators = "cmake" _source_subfolder = "source_subfolder" _build_subfolder = "build_subfolder" def config_options(self): if self.settings.os == "Windows": del self.options.fPIC def configure(self): del self.settings.compiler.libcxx del self.settings.compiler.cppstd def source(self): tools.get(**self.conan_data["sources"][self.version]) os.rename("{}-{}".format(self.name, self.version), self._source_subfolder) tools.rmdir(os.path.join(self._source_subfolder, "contrib")) if not tools.os_info.is_windows: configure_file = os.path.join(self._source_subfolder, "configure") st = os.stat(configure_file) os.chmod(configure_file, st.st_mode | stat.S_IEXEC) def build(self): if self.settings.os != "Windows": with tools.chdir(self._source_subfolder): env_build = AutoToolsBuildEnvironment(self) if self.settings.arch == "x86" or self.settings.arch == "x86_64": env_build.flags.append('-mstackrealign') if self.settings.os == "Macos": old_str = '-install_name $libdir/$SHAREDLIBM' new_str = '-install_name $SHAREDLIBM' tools.replace_in_file("./configure", old_str, new_str) # Zlib configure doesnt allow this parameters (in 1.2.8) env_build.configure("./", build=False, host=False, target=False) env_build.make() else: cmake = CMake(self) cmake.configure(build_dir=self._build_subfolder) cmake.build() def package(self): # Extract the License/s from the header to a file with tools.chdir(self._source_subfolder): tmp = tools.load("zlib.h") license_contents = tmp[2:tmp.find("*/", 1)] tools.save("LICENSE", license_contents) # Copy the license files self.copy("LICENSE", src=self._source_subfolder, dst="licenses") # Copying zlib.h, zutil.h, zconf.h self.copy("*.h", "include", "%s" % self._source_subfolder, keep_path=False) # Copying static and dynamic libs if self.settings.os == "Windows": suffix = "d" if self.settings.build_type == "Debug" else "" self.copy(pattern="*.h", dst="include", src=self._build_subfolder, keep_path=False) if self.options.shared: self.copy(pattern="*.dll", dst="bin", src=self._build_subfolder, keep_path=False) self.copy(pattern="libzlib.dll.a", dst="lib", src=os.path.join(self._build_subfolder, "lib")) self.copy(pattern="zlib%s.lib" % suffix, dst="lib", src=os.path.join(self._build_subfolder, "lib")) else: self.copy(pattern="zlibstatic%s.lib" % suffix, dst="lib", src=os.path.join(self._build_subfolder, "lib")) self.copy(pattern="libzlibstatic.a", dst="lib", src=os.path.join(self._build_subfolder, "lib")) lib_path = os.path.join(self.package_folder, "lib") if self.settings.compiler == "Visual Studio": current_lib = os.path.join(lib_path, "zlibstatic%s.lib" % suffix) shutil.move(current_lib, os.path.join(lib_path, "zlib%s.lib" % suffix)) elif self.settings.compiler == "gcc": current_lib = os.path.join(lib_path, "libzlibstatic.a") shutil.move(current_lib, os.path.join(lib_path, "libzlib.a")) else: if self.options.shared: if self.settings.os == "Macos": self.copy(pattern="*.dylib", dst="lib", src=self._source_subfolder, keep_path=False) else: self.copy(pattern="*.so*", dst="lib", src=self._source_subfolder, keep_path=False) else: self.copy(pattern="*.a", dst="lib", src=self._source_subfolder, keep_path=False) def package_info(self): self.cpp_info.names["pkg_config"] = "zlib" if self.settings.os == "Windows": self.cpp_info.libs = ['zlib'] if self.settings.build_type == "Debug" and self.settings.compiler == "Visual Studio": self.cpp_info.libs[0] += "d" else: self.cpp_info.libs = ['z']
45.954955
121
0.598902
bc029681620d289812865f87585a1f85faf6f5da
24,030
py
Python
graphik/solvers/trust_region.py
utiasSTARS/GraphIK
c2d05386bf9f9baf8ad146125bfebc3b73fccd14
[ "MIT" ]
1
2020-11-08T23:26:03.000Z
2020-11-08T23:26:03.000Z
graphik/solvers/trust_region.py
utiasSTARS/GraphIK
c2d05386bf9f9baf8ad146125bfebc3b73fccd14
[ "MIT" ]
null
null
null
graphik/solvers/trust_region.py
utiasSTARS/GraphIK
c2d05386bf9f9baf8ad146125bfebc3b73fccd14
[ "MIT" ]
null
null
null
# References, taken from trustregions.m in manopt: # Please cite the Manopt paper as well as the research paper: # @Article{genrtr, # Title = {Trust-region methods on {Riemannian} manifolds}, # Author = {Absil, P.-A. and Baker, C. G. and Gallivan, K. A.}, # Journal = {Foundations of Computational Mathematics}, # Year = {2007}, # Number = {3}, # Pages = {303--330}, # Volume = {7}, # Doi = {10.1007/s10208-005-0179-9} # } # # See also: steepestdescent conjugategradient manopt/examples # An explicit, general listing of this algorithm, with preconditioning, # can be found in the following paper: # @Article{boumal2015lowrank, # Title = {Low-rank matrix completion via preconditioned optimization # on the {G}rassmann manifold}, # Author = {Boumal, N. and Absil, P.-A.}, # Journal = {Linear Algebra and its Applications}, # Year = {2015}, # Pages = {200--239}, # Volume = {475}, # Doi = {10.1016/j.laa.2015.02.027}, # } # When the Hessian is not specified, it is approximated with # finite-differences of the gradient. The resulting method is called # RTR-FD. Some convergence theory for it is available in this paper: # @incollection{boumal2015rtrfd # author={Boumal, N.}, # title={Riemannian trust regions with finite-difference Hessian # approximations are globally convergent}, # year={2015}, # booktitle={Geometric Science of Information} # } # This file is part of Manopt: www.manopt.org. # This code is an adaptation to Manopt of the original GenRTR code: # RTR - Riemannian Trust-Region # (c) 2004-2007, P.-A. Absil, C. G. Baker, K. A. Gallivan # Florida State University # School of Computational Science # (http://www.math.fsu.edu/~cbaker/GenRTR/?page=download) # See accompanying license file. # The adaptation was executed by Nicolas Boumal. # Ported to pymanopt by Jamie Townsend. January 2016. from __future__ import print_function, division import time import numpy as np # from numba import jit from pymanopt.solvers.solver import Solver if not hasattr(__builtins__, "xrange"): xrange = range class TrustRegions(Solver): ( NEGATIVE_CURVATURE, EXCEEDED_TR, REACHED_TARGET_LINEAR, REACHED_TARGET_SUPERLINEAR, MAX_INNER_ITER, MODEL_INCREASED, ) = range(6) TCG_STOP_REASONS = { NEGATIVE_CURVATURE: "negative curvature", EXCEEDED_TR: "exceeded trust region", REACHED_TARGET_LINEAR: "reached target residual-kappa (linear)", REACHED_TARGET_SUPERLINEAR: "reached target residual-theta " "(superlinear)", MAX_INNER_ITER: "maximum inner iterations", MODEL_INCREASED: "model increased", } def __init__( self, miniter=3, kappa=0.1, theta=1.0, rho_prime=0.1, use_rand=False, rho_regularization=1e3, # increasing reduces accuracy and comp. time *args, **kwargs ): """ Trust regions algorithm based on trustregions.m from the Manopt MATLAB package. Also included is the Truncated (Steihaug-Toint) Conjugate-Gradient algorithm, based on tCG.m from the Manopt MATLAB package. """ super(TrustRegions, self).__init__(*args, **kwargs) self.miniter = miniter self.kappa = kappa self.theta = theta self.rho_prime = rho_prime self.use_rand = use_rand self.rho_regularization = rho_regularization def solve( self, problem, x=None, mininner=1, # maxinner=None, maxinner=10000, Delta_bar=None, Delta0=None, mincost=1e-12, ): man = problem.manifold verbosity = problem.verbosity if maxinner is None: maxinner = man.dim # Set default Delta_bar and Delta0 separately to deal with additional # logic: if Delta_bar is provided but not Delta0, let Delta0 # automatically be some fraction of the provided Delta_bar. if Delta_bar is None: try: Delta_bar = man.typicaldist except NotImplementedError: Delta_bar = np.sqrt(man.dim) if Delta0 is None: Delta0 = Delta_bar / 8 cost = problem.cost grad = problem.grad hess = problem.hess norm = man.norm inner = man.inner retr = man.retr # If no starting point is specified, generate one at random. if x is None: x = man.rand() # Initializations time0 = time.time() # k counts the outer (TR) iterations. The semantic is that k counts the # number of iterations fully executed so far. k = 0 # Initialize solution and companion measures: f(x), fgrad(x) fx = cost(x) fgradx = grad(x) norm_grad = man.norm(x, fgradx) # Initialize the trust region radius Delta = Delta0 # To keep track of consecutive radius changes, so that we can warn the # user if it appears necessary. consecutive_TRplus = 0 consecutive_TRminus = 0 # ** Display: if verbosity >= 1: print("Optimizing...") if verbosity >= 2: print("{:44s}f: {:+.6e} |grad|: {:.6e}".format(" ", float(fx), norm_grad)) self._start_optlog() while True: # ************************* # ** Begin TR Subproblem ** # ************************* # Determine eta0 if not self.use_rand: # Pick the zero vector eta = man.zerovec(x) else: # Random vector in T_x M (this has to be very small) eta = 1e-6 * man.randvec(x) # Must be inside trust region while norm(x, eta) > Delta: eta = np.sqrt(np.sqrt(np.spacing(1))) # Solve TR subproblem approximately eta, Heta, numit, stop_inner = self._truncated_conjugate_gradient( problem, x, fgradx, eta, Delta, self.theta, self.kappa, mininner, maxinner, ) srstr = self.TCG_STOP_REASONS[stop_inner] # If using randomized approach, compare result with the Cauchy # point. Convergence proofs assume that we achieve at least (a # fraction of) the reduction of the Cauchy point. After this # if-block, either all eta-related quantities have been changed # consistently, or none of them have. if self.use_rand: used_cauchy = False # Check the curvature Hg = hess(x, fgradx) g_Hg = man.inner(x, fgradx, Hg) if g_Hg <= 0: tau_c = 1 else: tau_c = min(norm_grad ** 3 / (Delta * g_Hg), 1) # and generate the Cauchy point. eta_c = -tau_c * Delta / norm_grad * fgradx Heta_c = -tau_c * Delta / norm_grad * Hg # Now that we have computed the Cauchy point in addition to the # returned eta, we might as well keep the best of them. mdle = fx + inner(x, fgradx, eta) + 0.5 * inner(x, Heta, eta) mdlec = ( fx + inner(x, fgradx, eta_c) + 0.5 * inner(x, Heta_c, eta_c) ) if mdlec < mdle: eta = eta_c Heta = Heta_c used_cauchy = True # This is only computed for logging purposes, because it may be # useful for some user-defined stopping criteria. If this is not # cheap for specific applications (compared to evaluating the # cost), we should reconsider this. # norm_eta = man.norm(x, eta) # Compute the tentative next iterate (the proposal) x_prop = retr(x, eta) # Compute the function value of the proposal fx_prop = cost(x_prop) # Will we accept the proposal or not? Check the performance of the # quadratic model against the actual cost. rhonum = fx - fx_prop rhoden = -inner(x, fgradx, eta) - 0.5 * inner(x, eta, Heta) # rhonum could be anything. # rhoden should be nonnegative, as guaranteed by tCG, baring # numerical errors. # Heuristic -- added Dec. 2, 2013 (NB) to replace the former # heuristic. This heuristic is documented in the book by Conn Gould # and Toint on trust-region methods, section 17.4.2. rhonum # measures the difference between two numbers. Close to # convergence, these two numbers are very close to each other, so # that computing their difference is numerically challenging: there # may be a significant loss in accuracy. Since the acceptance or # rejection of the step is conditioned on the ratio between rhonum # and rhoden, large errors in rhonum result in a very large error # in rho, hence in erratic acceptance / rejection. Meanwhile, close # to convergence, steps are usually trustworthy and we should # transition to a Newton- like method, with rho=1 consistently. The # heuristic thus shifts both rhonum and rhoden by a small amount # such that far from convergence, the shift is irrelevant and close # to convergence, the ratio rho goes to 1, effectively promoting # acceptance of the step. The rationale is that close to # convergence, both rhonum and rhoden are quadratic in the distance # between x and x_prop. Thus, when this distance is on the order of # sqrt(eps), the value of rhonum and rhoden is on the order of eps, # which is indistinguishable from the numerical error, resulting in # badly estimated rho's. # For abs(fx) < 1, this heuristic is invariant under offsets of f # but not under scaling of f. For abs(fx) > 1, the opposite holds. # This should not alarm us, as this heuristic only triggers at the # very last iterations if very fine convergence is demanded. rho_reg = max(1, abs(fx)) * np.spacing(1) * self.rho_regularization rhonum = rhonum + rho_reg rhoden = rhoden + rho_reg # This is always true if a linear, symmetric operator is used for # the Hessian (approximation) and if we had infinite numerical # precision. In practice, nonlinear approximations of the Hessian # such as the built-in finite difference approximation and finite # numerical accuracy can cause the model to increase. In such # scenarios, we decide to force a rejection of the step and a # reduction of the trust-region radius. We test the sign of the # regularized rhoden since the regularization is supposed to # capture the accuracy to which rhoden is computed: if rhoden were # negative before regularization but not after, that should not be # (and is not) detected as a failure. # # Note (Feb. 17, 2015, NB): the most recent version of tCG already # includes a mechanism to ensure model decrease if the Cauchy step # attained a decrease (which is theoretically the case under very # lax assumptions). This being said, it is always possible that # numerical errors will prevent this, so that it is good to keep a # safeguard. # # The current strategy is that, if this should happen, then we # reject the step and reduce the trust region radius. This also # ensures that the actual cost values are monotonically decreasing. model_decreased = rhoden >= 0 if not model_decreased: srstr = srstr + ", model did not decrease" try: rho = rhonum / rhoden except ZeroDivisionError: # Added June 30, 2015 following observation by BM. With this # modification, it is guaranteed that a step rejection is # always accompanied by a TR reduction. This prevents # stagnation in this "corner case" (NaN's really aren't # supposed to occur, but it's nice if we can handle them # nonetheless). print( "rho is NaN! Forcing a radius decrease. This should " "not happen." ) rho = np.nan # Choose the new TR radius based on the model performance trstr = " " # If the actual decrease is smaller than 1/4 of the predicted # decrease, then reduce the TR radius. if rho < 1.0 / 4 or not model_decreased or np.isnan(rho): trstr = "TR-" Delta = Delta / 4 consecutive_TRplus = 0 consecutive_TRminus = consecutive_TRminus + 1 if consecutive_TRminus >= 5 and verbosity >= 1: consecutive_TRminus = -np.inf print(" +++ Detected many consecutive TR- (radius " "decreases).") print( " +++ Consider decreasing options.Delta_bar " "by an order of magnitude." ) print( " +++ Current values: Delta_bar = {:g} and " "Delta0 = {:g}".format(Delta_bar, Delta0) ) # If the actual decrease is at least 3/4 of the precicted decrease # and the tCG (inner solve) hit the TR boundary, increase the TR # radius. We also keep track of the number of consecutive # trust-region radius increases. If there are many, this may # indicate the need to adapt the initial and maximum radii. elif rho > 3.0 / 4 and ( stop_inner == self.NEGATIVE_CURVATURE or stop_inner == self.EXCEEDED_TR ): trstr = "TR+" Delta = min(2 * Delta, Delta_bar) consecutive_TRminus = 0 consecutive_TRplus = consecutive_TRplus + 1 if consecutive_TRplus >= 5 and verbosity >= 1: consecutive_TRplus = -np.inf print(" +++ Detected many consecutive TR+ (radius " "increases).") print( " +++ Consider increasing options.Delta_bar " "by an order of magnitude." ) print( " +++ Current values: Delta_bar = {:g} and " "Delta0 = {:g}.".format(Delta_bar, Delta0) ) else: # Otherwise, keep the TR radius constant. consecutive_TRplus = 0 consecutive_TRminus = 0 # Choose to accept or reject the proposed step based on the model # performance. Note the strict inequality. if model_decreased and rho > self.rho_prime: # accept = True accstr = "acc" x = x_prop fx = fx_prop fgradx = grad(x) norm_grad = norm(x, fgradx) else: # accept = False accstr = "REJ" # k is the number of iterations we have accomplished. k = k + 1 # ** Display: if verbosity == 2: print( "{:.3s} {:.3s} k: {:5d} num_inner: " "{:5d} f: {:+e} |grad|: {:e} " "{:s}".format(accstr, trstr, k, numit, float(fx), norm_grad, srstr) ) elif verbosity > 2: if self.use_rand and used_cauchy: print("USED CAUCHY POINT") print( "{:.3s} {:.3s} k: {:5d} num_inner: " "{:5d} {:s}".format(accstr, trstr, k, numit, srstr) ) print(" f(x) : {:+e} |grad| : " "{:e}".format(fx, norm_grad)) print(" rho : {:e}".format(rho)) # ** CHECK STOPPING criteria stop_reason = self._check_stopping_criterion( time0, gradnorm=norm_grad, iter=k ) if stop_reason: if verbosity >= 1: print(stop_reason) print("") break # if fx <= mincost: # # if verbosity >= 1: # # print("Reached acceptable cost!") # self._stop_optlog(x, fx, stop_reason, time0, gradnorm=norm_grad, iter=k) # return x, self._optlog if self._logverbosity <= 0: return x else: self._stop_optlog(x, fx, stop_reason, time0, gradnorm=norm_grad, iter=k) return x, self._optlog def _truncated_conjugate_gradient( self, problem, x, fgradx, eta, Delta, theta, kappa, mininner, maxinner ): man = problem.manifold inner = man.inner hess = problem.hess precon = problem.precon if not self.use_rand: # and therefore, eta == 0 Heta = man.zerovec(x) r = fgradx e_Pe = 0 else: # and therefore, no preconditioner # eta (presumably) ~= 0 was provided by the caller. Heta = hess(x, eta) r = fgradx + Heta e_Pe = inner(x, eta, eta) r_r = inner(x, r, r) norm_r = np.sqrt(r_r) norm_r0 = norm_r # Precondition the residual if not self.use_rand: z = precon(x, r) else: z = r # Compute z'*r z_r = inner(x, z, r) d_Pd = z_r # Initial search direction delta = -z if not self.use_rand: e_Pd = 0 else: e_Pd = inner(x, eta, delta) # If the Hessian or a linear Hessian approximation is in use, it is # theoretically guaranteed that the model value decreases strictly with # each iteration of tCG. Hence, there is no need to monitor the model # value. But, when a nonlinear Hessian approximation is used (such as # the built-in finite-difference approximation for example), the model # may increase. It is then important to terminate the tCG iterations # and return the previous (the best-so-far) iterate. The variable below # will hold the model value. if not self.use_rand: model_value = 0 else: # model_value = model_fun(eta, Heta) model_value = inner(x, eta, fgradx) + 0.5 * inner(x, eta, Heta) # Pre-assume termination because j == end. stop_tCG = self.MAX_INNER_ITER # Begin inner/tCG loop. # for j in xrange(0, int(maxinner)): for j in range(int(maxinner)): # This call is the computationally intensive step Hdelta = hess(x, delta) # Compute curvature (often called kappa) d_Hd = inner(x, delta, Hdelta) # Note that if d_Hd == 0, we will exit at the next "if" anyway. alpha = z_r / d_Hd # <neweta,neweta>_P = # <eta,eta>_P + 2*alpha*<eta,delta>_P + alpha*alpha*<delta,delta>_P e_Pe_new = e_Pe + 2 * alpha * e_Pd + alpha ** 2 * d_Pd # Check against negative curvature and trust-region radius # violation. If either condition triggers, we bail out. if d_Hd <= 0 or e_Pe_new >= Delta ** 2: # want # ee = <eta,eta>_prec,x # ed = <eta,delta>_prec,x # dd = <delta,delta>_prec,x tau = (-e_Pd + np.sqrt(e_Pd * e_Pd + d_Pd * (Delta ** 2 - e_Pe))) / d_Pd eta = eta + tau * delta # If only a nonlinear Hessian approximation is available, this # is only approximately correct, but saves an additional # Hessian call. Heta = Heta + tau * Hdelta # Technically, we may want to verify that this new eta is # indeed better than the previous eta before returning it (this # is always the case if the Hessian approximation is linear, # but I am unsure whether it is the case or not for nonlinear # approximations.) At any rate, the impact should be limited, # so in the interest of code conciseness (if we can still hope # for that), we omit this. if d_Hd <= 0: stop_tCG = self.NEGATIVE_CURVATURE else: stop_tCG = self.EXCEEDED_TR break # No negative curvature and eta_prop inside TR: accept it. e_Pe = e_Pe_new new_eta = eta + alpha * delta # If only a nonlinear Hessian approximation is available, this is # only approximately correct, but saves an additional Hessian call. new_Heta = Heta + alpha * Hdelta # Verify that the model cost decreased in going from eta to # new_eta. If it did not (which can only occur if the Hessian # approximation is nonlinear or because of numerical errors), then # we return the previous eta (which necessarily is the best reached # so far, according to the model cost). Otherwise, we accept the # new eta and go on. # new_model_value = model_fun(new_eta, new_Heta) new_model_value = inner(x, new_eta, fgradx) + 0.5 * inner(x, new_eta, new_Heta) if new_model_value >= model_value: stop_tCG = self.MODEL_INCREASED break eta = new_eta Heta = new_Heta model_value = new_model_value # Update the residual. r = r + alpha * Hdelta # Compute new norm of r. r_r = inner(x, r, r) norm_r = np.sqrt(r_r) # Check kappa/theta stopping criterion. # Note that it is somewhat arbitrary whether to check this stopping # criterion on the r's (the gradients) or on the z's (the # preconditioned gradients). [CGT2000], page 206, mentions both as # acceptable criteria. if j >= mininner and norm_r <= norm_r0 * min(norm_r0 ** theta, kappa): # Residual is small enough to quit if kappa < norm_r0 ** theta: stop_tCG = self.REACHED_TARGET_LINEAR else: stop_tCG = self.REACHED_TARGET_SUPERLINEAR break # Precondition the residual. if not self.use_rand: z = precon(x, r) else: z = r # Save the old z'*r. zold_rold = z_r # Compute new z'*r. z_r = inner(x, z, r) # Compute new search direction beta = z_r / zold_rold delta = -z + beta * delta # Update new P-norms and P-dots [CGT2000, eq. 7.5.6 & 7.5.7]. e_Pd = beta * (e_Pd + alpha * d_Pd) d_Pd = z_r + beta * beta * d_Pd return eta, Heta, j, stop_tCG
40.05
91
0.546983
bcd5fdd6a249159d8e14cf58167b31c3685453b8
801
py
Python
archivebox/cli/archivebox_shell.py
sarvex/ArchiveBox
2427e6d3dc377c665f785f1d845da4e5a20b50a0
[ "MIT" ]
6,340
2018-12-20T21:12:13.000Z
2020-11-23T02:39:32.000Z
archivebox/cli/archivebox_shell.py
sarvex/ArchiveBox
2427e6d3dc377c665f785f1d845da4e5a20b50a0
[ "MIT" ]
388
2018-12-20T07:58:08.000Z
2020-11-23T03:20:36.000Z
archivebox/cli/archivebox_shell.py
sarvex/ArchiveBox
2427e6d3dc377c665f785f1d845da4e5a20b50a0
[ "MIT" ]
439
2018-12-21T21:51:47.000Z
2020-11-21T21:21:35.000Z
#!/usr/bin/env python3 __package__ = 'archivebox.cli' __command__ = 'archivebox shell' import sys import argparse from typing import Optional, List, IO from ..main import shell from ..util import docstring from ..config import OUTPUT_DIR from ..logging_util import SmartFormatter, reject_stdin @docstring(shell.__doc__) def main(args: Optional[List[str]]=None, stdin: Optional[IO]=None, pwd: Optional[str]=None) -> None: parser = argparse.ArgumentParser( prog=__command__, description=shell.__doc__, add_help=True, formatter_class=SmartFormatter, ) parser.parse_args(args or ()) reject_stdin(__command__, stdin) shell( out_dir=pwd or OUTPUT_DIR, ) if __name__ == '__main__': main(args=sys.argv[1:], stdin=sys.stdin)
22.885714
100
0.696629
cf6b4ec2b16b5f226561359b41f748e0eb9850f2
2,837
py
Python
Morphology/diameter_closing.py
Joevaen/Scikit-image_On_CT
e3bf0eeadc50691041b4b7c44a19d07546a85001
[ "Apache-2.0" ]
null
null
null
Morphology/diameter_closing.py
Joevaen/Scikit-image_On_CT
e3bf0eeadc50691041b4b7c44a19d07546a85001
[ "Apache-2.0" ]
null
null
null
Morphology/diameter_closing.py
Joevaen/Scikit-image_On_CT
e3bf0eeadc50691041b4b7c44a19d07546a85001
[ "Apache-2.0" ]
null
null
null
# 执行图像的直径封闭。 # # 直径关闭会删除图像的所有深色结构,最大扩展长度小于diameter_threshold。 最大扩展定义为边界框的最大扩展。 该运算符也称为边界框关闭。 在实践中,结果类似于形态学上的闭合,但是长而薄的结构没有被去除。 # # 从技术上讲,此运算符基于图像的最大树表示。 import numpy as np import matplotlib.pyplot as plt from skimage.morphology import diameter_closing from skimage import data from skimage.morphology import closing from skimage.morphology import square datasets = { 'retina': {'image': data.microaneurysms(), 'figsize': (15, 9), 'diameter': 10, 'vis_factor': 3, 'title': 'Detection of microaneurysm'}, 'page': {'image': data.page(), 'figsize': (15, 7), 'diameter': 23, 'vis_factor': 1, 'title': 'Text detection'} } for dataset in datasets.values(): # image with printed letters image = dataset['image'] figsize = dataset['figsize'] diameter = dataset['diameter'] fig, ax = plt.subplots(2, 3, figsize=figsize) # Original image ax[0, 0].imshow(image, cmap='gray', aspect='equal', vmin=0, vmax=255) ax[0, 0].set_title('Original', fontsize=16) ax[0, 0].axis('off') ax[1, 0].imshow(image, cmap='gray', aspect='equal', vmin=0, vmax=255) ax[1, 0].set_title('Original', fontsize=16) ax[1, 0].axis('off') # Diameter closing : we remove all dark structures with a maximal # extension of less than <diameter> (12 or 23). I.e. in closed_attr, all # local minima have at least a maximal extension of <diameter>. closed_attr = diameter_closing(image, diameter, connectivity=2) # We then calculate the difference to the original image. tophat_attr = closed_attr - image ax[0, 1].imshow(closed_attr, cmap='gray', aspect='equal', vmin=0, vmax=255) ax[0, 1].set_title('Diameter Closing', fontsize=16) ax[0, 1].axis('off') ax[0, 2].imshow(dataset['vis_factor'] * tophat_attr, cmap='gray', aspect='equal', vmin=0, vmax=255) ax[0, 2].set_title('Tophat (Difference)', fontsize=16) ax[0, 2].axis('off') # A morphological closing removes all dark structures that cannot # contain a structuring element of a certain size. closed = closing(image, square(diameter)) # Again we calculate the difference to the original image. tophat = closed - image ax[1, 1].imshow(closed, cmap='gray', aspect='equal', vmin=0, vmax=255) ax[1, 1].set_title('Morphological Closing', fontsize=16) ax[1, 1].axis('off') ax[1, 2].imshow(dataset['vis_factor'] * tophat, cmap='gray', aspect='equal', vmin=0, vmax=255) ax[1, 2].set_title('Tophat (Difference)', fontsize=16) ax[1, 2].axis('off') fig.suptitle(dataset['title'], fontsize=18) fig.tight_layout(rect=(0, 0, 1, 0.88)) plt.show()
34.597561
110
0.621079
e08cac015225889b41a64cea277cdf893c53fbaa
346
py
Python
awsfabrictasks/ubuntu.py
newgene/awsfabrictasks
7e0d014f9fd6f83ef24e9913eba8c1c17d67e4a4
[ "BSD-3-Clause" ]
37
2015-01-25T19:27:37.000Z
2018-02-22T04:00:00.000Z
awsfabrictasks/ubuntu.py
newgene/awsfabrictasks
7e0d014f9fd6f83ef24e9913eba8c1c17d67e4a4
[ "BSD-3-Clause" ]
4
2015-01-24T23:54:04.000Z
2016-01-13T17:36:17.000Z
awsfabrictasks/ubuntu.py
newgene/awsfabrictasks
7e0d014f9fd6f83ef24e9913eba8c1c17d67e4a4
[ "BSD-3-Clause" ]
13
2015-01-24T23:44:46.000Z
2016-06-05T03:55:32.000Z
""" Ubuntu utilities. """ from fabric.api import sudo def set_locale(locale='en_US'): """ Set locale to avoid the warnings from perl and others about locale failures. """ sudo('locale-gen {locale}.UTF-8'.format(**vars())) sudo('update-locale LANG={locale}.UTF-8 LC_ALL={locale}.UTF-8 LC_MESSAGES=POSIX'.format(**vars()))
26.615385
102
0.66474
f344b6d80e98e78e9bc3f04a5a41f74729d7087e
16,063
py
Python
pytransform3d/rotations/_utils.py
alek5k/pytransform3d
c6fb10b1d17713bd8a2d6becb928c4f6dcf611f9
[ "BSD-3-Clause" ]
304
2019-01-16T15:14:31.000Z
2022-03-31T16:14:37.000Z
pytransform3d/rotations/_utils.py
alek5k/pytransform3d
c6fb10b1d17713bd8a2d6becb928c4f6dcf611f9
[ "BSD-3-Clause" ]
94
2018-12-07T14:54:05.000Z
2022-03-19T22:38:20.000Z
pytransform3d/rotations/_utils.py
alek5k/pytransform3d
c6fb10b1d17713bd8a2d6becb928c4f6dcf611f9
[ "BSD-3-Clause" ]
37
2018-12-09T23:58:40.000Z
2022-03-16T02:29:53.000Z
"""Utility functions for rotations.""" import warnings import math import numpy as np from ._constants import unitz, eps def norm_vector(v): """Normalize vector. Parameters ---------- v : array-like, shape (n,) nd vector Returns ------- u : array, shape (n,) nd unit vector with norm 1 or the zero vector """ norm = np.linalg.norm(v) if norm == 0.0: return v return np.asarray(v) / norm def norm_matrix(R): """Normalize rotation matrix. Parameters ---------- R : array-like, shape (3, 3) Rotation matrix with small numerical errors Returns ------- R : array, shape (3, 3) Normalized rotation matrix """ R = np.asarray(R) c2 = R[:, 1] c3 = norm_vector(R[:, 2]) c1 = norm_vector(np.cross(c2, c3)) c2 = norm_vector(np.cross(c3, c1)) return np.column_stack((c1, c2, c3)) def norm_angle(a): """Normalize angle to (-pi, pi]. Parameters ---------- a : float or array-like, shape (n,) Angle(s) in radians Returns ------- a_norm : float or array-like, shape (n,) Normalized angle(s) in radians """ # Source of the solution: http://stackoverflow.com/a/32266181 return -((np.pi - np.asarray(a)) % (2.0 * np.pi) - np.pi) def norm_axis_angle(a): """Normalize axis-angle representation. Parameters ---------- a : array-like, shape (4,) Axis of rotation and rotation angle: (x, y, z, angle) Returns ------- a : array-like, shape (4,) Axis of rotation and rotation angle: (x, y, z, angle). The length of the axis vector is 1 and the angle is in [0, pi). No rotation is represented by [1, 0, 0, 0]. """ angle = a[3] norm = np.linalg.norm(a[:3]) if angle == 0.0 or norm == 0.0: return np.array([1.0, 0.0, 0.0, 0.0]) res = np.empty(4) res[:3] = a[:3] / norm angle = norm_angle(angle) if angle < 0.0: angle *= -1.0 res[:3] *= -1.0 res[3] = angle return res def norm_compact_axis_angle(a): """Normalize compact axis-angle representation. Parameters ---------- a : array-like, shape (3,) Axis of rotation and rotation angle: angle * (x, y, z) Returns ------- a : array-like, shape (3,) Axis of rotation and rotation angle: angle * (x, y, z). The angle is in [0, pi). No rotation is represented by [0, 0, 0]. """ angle = np.linalg.norm(a) if angle == 0.0: return np.zeros(3) axis = a / angle return axis * norm_angle(angle) def perpendicular_to_vectors(a, b): """Compute perpendicular vector to two other vectors. Parameters ---------- a : array-like, shape (3,) 3d vector b : array-like, shape (3,) 3d vector Returns ------- c : array-like, shape (3,) 3d vector that is orthogonal to a and b """ return np.cross(a, b) def perpendicular_to_vector(a): """Compute perpendicular vector to one other vector. There is an infinite number of solutions to this problem. Thus, we restrict the solutions to [1, 0, z] and return [0, 0, 1] if the z component of a is 0. Parameters ---------- a : array-like, shape (3,) 3d vector Returns ------- b : array-like, shape (3,) A 3d vector that is orthogonal to a. It does not necessarily have unit length. """ if abs(a[2]) < eps: return np.copy(unitz) # Now that we solved the problem for [x, y, 0], we can solve it for all # other vectors by restricting solutions to [1, 0, z] and find z. # The dot product of orthogonal vectors is 0, thus # a[0] * 1 + a[1] * 0 + a[2] * z == 0 or -a[0] / a[2] = z return np.array([1.0, 0.0, -a[0] / a[2]]) def angle_between_vectors(a, b, fast=False): """Compute angle between two vectors. Parameters ---------- a : array-like, shape (n,) nd vector b : array-like, shape (n,) nd vector fast : bool, optional (default: False) Use fast implementation instead of numerically stable solution Returns ------- angle : float Angle between a and b """ if len(a) != 3 or fast: return np.arccos( np.clip(np.dot(a, b) / (np.linalg.norm(a) * np.linalg.norm(b)), -1.0, 1.0)) else: return np.arctan2(np.linalg.norm(np.cross(a, b)), np.dot(a, b)) def vector_projection(a, b): """Orthogonal projection of vector a on vector b. Parameters ---------- a : array-like, shape (3,) Vector a that will be projected on vector b b : array-like, shape (3,) Vector b on which vector a will be projected Returns ------- a_on_b : array, shape (3,) Vector a """ b_norm_squared = np.dot(b, b) if b_norm_squared == 0.0: return np.zeros(3) return np.dot(a, b) * b / b_norm_squared def plane_basis_from_normal(plane_normal): """Compute two basis vectors of a plane from the plane's normal vector. Note that there are infinitely many solutions because any rotation of the basis vectors about the normal is also a solution. This function deterministically picks one of the solutions. The two basis vectors of the plane together with the normal form an orthonormal basis in 3D space and could be used as columns to form a rotation matrix. Parameters ---------- plane_normal : array-like, shape (3,) Plane normal of unit length. Returns ------- x_axis : array, shape (3,) x-axis of the plane. y_axis : array, shape (3,) y-axis of the plane. """ if abs(plane_normal[0]) >= abs(plane_normal[1]): # x or z is the largest magnitude component, swap them length = math.sqrt( plane_normal[0] * plane_normal[0] + plane_normal[2] * plane_normal[2]) x_axis = np.array([-plane_normal[2] / length, 0.0, plane_normal[0] / length]) y_axis = np.array([ plane_normal[1] * x_axis[2], plane_normal[2] * x_axis[0] - plane_normal[0] * x_axis[2], -plane_normal[1] * x_axis[0]]) else: # y or z is the largest magnitude component, swap them length = math.sqrt(plane_normal[1] * plane_normal[1] + plane_normal[2] * plane_normal[2]) x_axis = np.array([0.0, plane_normal[2] / length, -plane_normal[1] / length]) y_axis = np.array([ plane_normal[1] * x_axis[2] - plane_normal[2] * x_axis[1], -plane_normal[0] * x_axis[2], plane_normal[0] * x_axis[1]]) return x_axis, y_axis def random_vector(random_state=np.random.RandomState(0), n=3): r"""Generate an nd vector with normally distributed components. Each component will be sampled from :math:`\mathcal{N}(\mu=0, \sigma=1)`. Parameters ---------- random_state : np.random.RandomState, optional (default: random seed 0) Random number generator n : int, optional (default: 3) Number of vector components Returns ------- v : array, shape (n,) Random vector """ return random_state.randn(n) def random_axis_angle(random_state=np.random.RandomState(0)): r"""Generate random axis-angle. The angle will be sampled uniformly from the interval :math:`[0, \pi)` and each component of the rotation axis will be sampled from :math:`\mathcal{N}(\mu=0, \sigma=1)` and than the axis will be normalized to length 1. Parameters ---------- random_state : np.random.RandomState, optional (default: random seed 0) Random number generator Returns ------- a : array, shape (4,) Axis of rotation and rotation angle: (x, y, z, angle) """ angle = np.pi * random_state.rand() a = np.array([0, 0, 0, angle]) a[:3] = norm_vector(random_state.randn(3)) return a def random_compact_axis_angle(random_state=np.random.RandomState(0)): r"""Generate random compact axis-angle. The angle will be sampled uniformly from the interval :math:`[0, \pi)` and each component of the rotation axis will be sampled from :math:`\mathcal{N}(\mu=0, \sigma=1)` and than the axis will be normalized to length 1. Parameters ---------- random_state : np.random.RandomState, optional (default: random seed 0) Random number generator Returns ------- a : array, shape (3,) Axis of rotation and rotation angle: angle * (x, y, z) """ a = random_axis_angle(random_state) return a[:3] * a[3] def random_quaternion(random_state=np.random.RandomState(0)): """Generate random quaternion. Parameters ---------- random_state : np.random.RandomState, optional (default: random seed 0) Random number generator Returns ------- q : array, shape (4,) Unit quaternion to represent rotation: (w, x, y, z) """ return norm_vector(random_state.randn(4)) def check_skew_symmetric_matrix(V, tolerance=1e-6, strict_check=True): """Input validation of a skew-symmetric matrix. Check whether the transpose of the matrix is its negative: .. math:: V^T = -V Parameters ---------- V : array-like, shape (3, 3) Cross-product matrix tolerance : float, optional (default: 1e-6) Tolerance threshold for checks. strict_check : bool, optional (default: True) Raise a ValueError if V.T is not numerically close enough to -V. Otherwise we print a warning. Returns ------- V : array, shape (3, 3) Validated cross-product matrix Raises ------ ValueError If input is invalid """ V = np.asarray(V, dtype=np.float64) if V.ndim != 2 or V.shape[0] != 3 or V.shape[1] != 3: raise ValueError("Expected skew-symmetric matrix with shape (3, 3), " "got array-like object with shape %s" % (V.shape,)) if not np.allclose(V.T, -V, atol=tolerance): error_msg = ("Expected skew-symmetric matrix, but it failed the test " "V.T = %r\n-V = %r" % (V.T, -V)) if strict_check: raise ValueError(error_msg) else: warnings.warn(error_msg) return V def check_matrix(R, tolerance=1e-6, strict_check=True): """Input validation of a rotation matrix. We check whether R multiplied by its inverse is approximately the identity matrix and the determinant is approximately 1. Parameters ---------- R : array-like, shape (3, 3) Rotation matrix tolerance : float, optional (default: 1e-6) Tolerance threshold for checks. Default tolerance is the same as in assert_rotation_matrix(R). strict_check : bool, optional (default: True) Raise a ValueError if the rotation matrix is not numerically close enough to a real rotation matrix. Otherwise we print a warning. Returns ------- R : array, shape (3, 3) Validated rotation matrix Raises ------ ValueError If input is invalid """ R = np.asarray(R, dtype=np.float64) if R.ndim != 2 or R.shape[0] != 3 or R.shape[1] != 3: raise ValueError("Expected rotation matrix with shape (3, 3), got " "array-like object with shape %s" % (R.shape,)) RRT = np.dot(R, R.T) if not np.allclose(RRT, np.eye(3), atol=tolerance): error_msg = ("Expected rotation matrix, but it failed the test " "for inversion by transposition. np.dot(R, R.T) " "gives %r" % RRT) if strict_check: raise ValueError(error_msg) else: warnings.warn(error_msg) R_det = np.linalg.det(R) if abs(R_det - 1) > tolerance: error_msg = ("Expected rotation matrix, but it failed the test " "for the determinant, which should be 1 but is %g; " "that is, it probably represents a rotoreflection" % R_det) if strict_check: raise ValueError(error_msg) else: warnings.warn(error_msg) return R def check_axis_angle(a): """Input validation of axis-angle representation. Parameters ---------- a : array-like, shape (4,) Axis of rotation and rotation angle: (x, y, z, angle) Returns ------- a : array, shape (4,) Validated axis of rotation and rotation angle: (x, y, z, angle) Raises ------ ValueError If input is invalid """ a = np.asarray(a, dtype=np.float64) if a.ndim != 1 or a.shape[0] != 4: raise ValueError("Expected axis and angle in array with shape (4,), " "got array-like object with shape %s" % (a.shape,)) return norm_axis_angle(a) def check_compact_axis_angle(a): """Input validation of compact axis-angle representation. Parameters ---------- a : array-like, shape (3,) Axis of rotation and rotation angle: angle * (x, y, z) Returns ------- a : array, shape (3,) Validated axis of rotation and rotation angle: angle * (x, y, z) Raises ------ ValueError If input is invalid """ a = np.asarray(a, dtype=np.float64) if a.ndim != 1 or a.shape[0] != 3: raise ValueError("Expected axis and angle in array with shape (3,), " "got array-like object with shape %s" % (a.shape,)) return norm_compact_axis_angle(a) def check_quaternion(q, unit=True): """Input validation of quaternion representation. Parameters ---------- q : array-like, shape (4,) Quaternion to represent rotation: (w, x, y, z) unit : bool, optional (default: True) Normalize the quaternion so that it is a unit quaternion Returns ------- q : array-like, shape (4,) Validated quaternion to represent rotation: (w, x, y, z) Raises ------ ValueError If input is invalid """ q = np.asarray(q, dtype=np.float64) if q.ndim != 1 or q.shape[0] != 4: raise ValueError("Expected quaternion with shape (4,), got " "array-like object with shape %s" % (q.shape,)) if unit: return norm_vector(q) else: return q def check_quaternions(Q, unit=True): """Input validation of quaternion representation. Parameters ---------- Q : array-like, shape (n_steps, 4) Quaternions to represent rotations: (w, x, y, z) unit : bool, optional (default: True) Normalize the quaternions so that they are unit quaternions Returns ------- Q : array-like, shape (n_steps, 4) Validated quaternions to represent rotations: (w, x, y, z) Raises ------ ValueError If input is invalid """ Q_checked = np.asarray(Q, dtype=np.float64) if Q_checked.ndim != 2 or Q_checked.shape[1] != 4: raise ValueError( "Expected quaternion array with shape (n_steps, 4), got " "array-like object with shape %s" % (Q_checked.shape,)) if unit: for i in range(len(Q)): Q_checked[i] = norm_vector(Q_checked[i]) return Q_checked def check_rotor(rotor): """Input validation of rotor. Parameters ---------- rotor : array-like, shape (4,) Rotor: (a, b_yz, b_zx, b_xy) Returns ------- rotor : array, shape (4,) Validated rotor (with unit norm): (a, b_yz, b_zx, b_xy) Raises ------ ValueError If input is invalid """ rotor = np.asarray(rotor, dtype=np.float64) if rotor.ndim != 1 or rotor.shape[0] != 4: raise ValueError("Expected rotor with shape (4,), got " "array-like object with shape %s" % (rotor.shape,)) return norm_vector(rotor)
27.64716
78
0.580776
83188cf5b40fb1fc1ae77bc96e7cc09bc2d41101
2,828
py
Python
backend/signals.py
lucasmgana/Pharmacy-Light-weight
9d6efe714d60b3a04f78f174e1e6c2a2ab98bd9a
[ "MIT" ]
192
2020-08-14T22:17:34.000Z
2022-03-29T05:56:26.000Z
backend/signals.py
lucasmgana/Pharmacy-Light-weight
9d6efe714d60b3a04f78f174e1e6c2a2ab98bd9a
[ "MIT" ]
9
2021-03-30T14:29:00.000Z
2022-02-27T11:06:35.000Z
backend/signals.py
lucasmgana/Pharmacy-Light-weight
9d6efe714d60b3a04f78f174e1e6c2a2ab98bd9a
[ "MIT" ]
28
2020-08-15T08:26:34.000Z
2022-03-17T01:15:52.000Z
from .models.publications import Publication from .models.subscribers import Subscriber from .utils import unique_slug_generator, smart_truncate, format_wpp_number from django.db.models.signals import pre_save, post_save from django.dispatch import receiver from django.core.mail import EmailMultiAlternatives from django.template.loader import render_to_string from core.settings.base import EMAIL_HOST_USER, TWILIO_ACCOUNT_SID, TWILIO_AUTH_TOKEN, TWILIO_WPP_NUMBER from string import Template from twilio.rest import Client USE_TWILIO = TWILIO_ACCOUNT_SID and TWILIO_AUTH_TOKEN if USE_TWILIO: twilio_client = Client(TWILIO_ACCOUNT_SID, TWILIO_AUTH_TOKEN) def send_wpp_message(body, to): twilio_client.messages.create( body=body, from_='whatsapp:{}'.format(TWILIO_WPP_NUMBER), to='whatsapp:{}'.format(to) ) @receiver(pre_save, sender=Publication) def populate_slug_field(sender, instance, **kwargs): if not instance.slug: instance.slug = unique_slug_generator(instance) @receiver(post_save, sender=Publication) def send_newsletter(sender, instance, created, **kwargs): if created: subscribers_emails = list(Subscriber.objects.filter(contact_method='EMAIL').values_list('contact_info', flat=True)) html_content = render_to_string('backend/email.html', { 'title': instance.title, 'description': instance.description, 'body': smart_truncate(instance.body), 'slug': instance.slug }) sent = [] for subscriber_email in subscribers_emails: if subscriber_email not in sent: sent.append(subscriber_email) email = EmailMultiAlternatives( 'News from Django-React-Typescript: {}'.format(instance.title), None, EMAIL_HOST_USER, [subscriber_email] ) email.attach_alternative(html_content, "text/html") email.send() if USE_TWILIO: for wpp_number in list(Subscriber.objects.filter(contact_method='WHATSAPP').values_list('contact_info', flat=True)): if wpp_number not in sent_wpps: def get_message_body(): if instance.description: return instance.description return smart_truncate(instance.body) body = Template('News from Django-React-Typescript: $title\n$body\nLearn more at $link') body.substitute(title=instance.title, body=get_message_body(), link='https://www.example.com/blog/{}'.format(instance.slug)) send_wpp_message( body, format_wpp_number(wpp_number) )
36.727273
140
0.649929
b5d53046bd57bc7b4de62b8f94bb4b0e8cc5d5ed
15,019
py
Python
disnake/components.py
Enegg/disnake
1d48cbf4e0dfec82fdfb65d7f58396767ce7c009
[ "MIT" ]
290
2021-11-03T12:33:16.000Z
2022-03-31T19:30:19.000Z
disnake/components.py
Enegg/disnake
1d48cbf4e0dfec82fdfb65d7f58396767ce7c009
[ "MIT" ]
200
2021-11-03T10:41:41.000Z
2022-03-31T08:13:11.000Z
disnake/components.py
Enegg/disnake
1d48cbf4e0dfec82fdfb65d7f58396767ce7c009
[ "MIT" ]
118
2021-11-03T18:27:09.000Z
2022-03-25T22:00:45.000Z
""" The MIT License (MIT) Copyright (c) 2015-2021 Rapptz Copyright (c) 2021-present Disnake Development Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ from __future__ import annotations from typing import ( TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Tuple, Type, TypeVar, Union, cast, ) from .enums import ButtonStyle, ComponentType, TextInputStyle, try_enum from .partial_emoji import PartialEmoji, _EmojiTag from .utils import MISSING, get_slots if TYPE_CHECKING: from .emoji import Emoji from .types.components import ( ActionRow as ActionRowPayload, ButtonComponent as ButtonComponentPayload, Component as ComponentPayload, SelectMenu as SelectMenuPayload, SelectOption as SelectOptionPayload, TextInput as TextInputPayload, ) __all__ = ( "Component", "ActionRow", "Button", "SelectMenu", "SelectOption", "TextInput", ) C = TypeVar("C", bound="Component") NestedComponent = Union["Button", "SelectMenu", "TextInput"] class Component: """Represents a Discord Bot UI Kit Component. Currently, the only components supported by Discord are: - :class:`ActionRow` - :class:`Button` - :class:`SelectMenu` - :class:`TextInput` This class is abstract and cannot be instantiated. .. versionadded:: 2.0 Attributes ---------- type: :class:`ComponentType` The type of component. """ __slots__: Tuple[str, ...] = ("type",) __repr_info__: ClassVar[Tuple[str, ...]] type: ComponentType def __repr__(self) -> str: attrs = " ".join(f"{key}={getattr(self, key)!r}" for key in self.__repr_info__) return f"<{self.__class__.__name__} {attrs}>" @classmethod def _raw_construct(cls: Type[C], **kwargs) -> C: self: C = cls.__new__(cls) for slot in get_slots(cls): try: value = kwargs[slot] except KeyError: pass else: setattr(self, slot, value) return self def to_dict(self) -> Dict[str, Any]: raise NotImplementedError class ActionRow(Component): """Represents an action row. This is a component that holds up to 5 children components in a row. This inherits from :class:`Component`. .. versionadded:: 2.0 Attributes ---------- type: :class:`ComponentType` The type of component. children: List[Union[:class:`Button`, :class:`SelectMenu`, :class:`TextInput`]] The children components that this holds, if any. """ __slots__: Tuple[str, ...] = ("children",) __repr_info__: ClassVar[Tuple[str, ...]] = __slots__ def __init__(self, data: ComponentPayload): self.type: ComponentType = try_enum(ComponentType, data["type"]) self.children: List[NestedComponent] = [ # type: ignore _component_factory(d) for d in data.get("components", []) ] def to_dict(self) -> ActionRowPayload: return { "type": int(self.type), "components": [child.to_dict() for child in self.children], } # type: ignore class Button(Component): """Represents a button from the Discord Bot UI Kit. This inherits from :class:`Component`. .. note:: The user constructible and usable type to create a button is :class:`disnake.ui.Button` not this one. .. versionadded:: 2.0 Attributes ---------- style: :class:`.ButtonStyle` The style of the button. custom_id: Optional[:class:`str`] The ID of the button that gets received during an interaction. If this button is for a URL, it does not have a custom ID. url: Optional[:class:`str`] The URL this button sends you to. disabled: :class:`bool` Whether the button is disabled or not. label: Optional[:class:`str`] The label of the button, if any. emoji: Optional[:class:`PartialEmoji`] The emoji of the button, if available. """ __slots__: Tuple[str, ...] = ( "style", "custom_id", "url", "disabled", "label", "emoji", ) __repr_info__: ClassVar[Tuple[str, ...]] = __slots__ def __init__(self, data: ButtonComponentPayload): self.type: ComponentType = try_enum(ComponentType, data["type"]) self.style: ButtonStyle = try_enum(ButtonStyle, data["style"]) self.custom_id: Optional[str] = data.get("custom_id") self.url: Optional[str] = data.get("url") self.disabled: bool = data.get("disabled", False) self.label: Optional[str] = data.get("label") self.emoji: Optional[PartialEmoji] try: self.emoji = PartialEmoji.from_dict(data["emoji"]) except KeyError: self.emoji = None def to_dict(self) -> ButtonComponentPayload: payload = { "type": 2, "style": int(self.style), "label": self.label, "disabled": self.disabled, } if self.custom_id: payload["custom_id"] = self.custom_id if self.url: payload["url"] = self.url if self.emoji: payload["emoji"] = self.emoji.to_dict() return payload # type: ignore class SelectMenu(Component): """Represents a select menu from the Discord Bot UI Kit. A select menu is functionally the same as a dropdown, however on mobile it renders a bit differently. .. note:: The user constructible and usable type to create a select menu is :class:`disnake.ui.Select` not this one. .. versionadded:: 2.0 Attributes ---------- custom_id: Optional[:class:`str`] The ID of the select menu that gets received during an interaction. placeholder: Optional[:class:`str`] The placeholder text that is shown if nothing is selected, if any. min_values: :class:`int` The minimum number of items that must be chosen for this select menu. Defaults to 1 and must be between 1 and 25. max_values: :class:`int` The maximum number of items that must be chosen for this select menu. Defaults to 1 and must be between 1 and 25. options: List[:class:`SelectOption`] A list of options that can be selected in this select menu. disabled: :class:`bool` Whether the select menu is disabled or not. """ __slots__: Tuple[str, ...] = ( "custom_id", "placeholder", "min_values", "max_values", "options", "disabled", ) __repr_info__: ClassVar[Tuple[str, ...]] = __slots__ def __init__(self, data: SelectMenuPayload): self.type = ComponentType.select self.custom_id: str = data["custom_id"] self.placeholder: Optional[str] = data.get("placeholder") self.min_values: int = data.get("min_values", 1) self.max_values: int = data.get("max_values", 1) self.options: List[SelectOption] = [ SelectOption.from_dict(option) for option in data.get("options", []) ] self.disabled: bool = data.get("disabled", False) def to_dict(self) -> SelectMenuPayload: payload: SelectMenuPayload = { "type": self.type.value, "custom_id": self.custom_id, "min_values": self.min_values, "max_values": self.max_values, "options": [op.to_dict() for op in self.options], "disabled": self.disabled, } if self.placeholder: payload["placeholder"] = self.placeholder return payload class SelectOption: """Represents a select menu's option. These can be created by users. .. versionadded:: 2.0 Attributes ---------- label: :class:`str` The label of the option. This is displayed to users. Can only be up to 100 characters. value: :class:`str` The value of the option. This is not displayed to users. If not provided when constructed then it defaults to the label. Can only be up to 100 characters. description: Optional[:class:`str`] An additional description of the option, if any. Can only be up to 100 characters. emoji: Optional[Union[:class:`str`, :class:`Emoji`, :class:`PartialEmoji`]] The emoji of the option, if available. default: :class:`bool` Whether this option is selected by default. """ __slots__: Tuple[str, ...] = ( "label", "value", "description", "emoji", "default", ) def __init__( self, *, label: str, value: str = MISSING, description: Optional[str] = None, emoji: Optional[Union[str, Emoji, PartialEmoji]] = None, default: bool = False, ) -> None: self.label = label self.value = label if value is MISSING else value self.description = description if emoji is not None: if isinstance(emoji, str): emoji = PartialEmoji.from_str(emoji) elif isinstance(emoji, _EmojiTag): emoji = emoji._to_partial() else: raise TypeError( f"expected emoji to be str, Emoji, or PartialEmoji not {emoji.__class__}" ) self.emoji = emoji self.default = default def __repr__(self) -> str: return ( f"<SelectOption label={self.label!r} value={self.value!r} description={self.description!r} " f"emoji={self.emoji!r} default={self.default!r}>" ) def __str__(self) -> str: if self.emoji: base = f"{self.emoji} {self.label}" else: base = self.label if self.description: return f"{base}\n{self.description}" return base @classmethod def from_dict(cls, data: SelectOptionPayload) -> SelectOption: try: emoji = PartialEmoji.from_dict(data["emoji"]) except KeyError: emoji = None return cls( label=data["label"], value=data["value"], description=data.get("description"), emoji=emoji, default=data.get("default", False), ) def to_dict(self) -> SelectOptionPayload: payload: SelectOptionPayload = { "label": self.label, "value": self.value, "default": self.default, } if self.emoji: payload["emoji"] = self.emoji.to_dict() # type: ignore if self.description: payload["description"] = self.description return payload class TextInput(Component): """Represents a text input from the Discord Bot UI Kit. .. versionadded:: 2.4 .. note:: The user constructible and usable type to create a text input is :class:`disnake.ui.TextInput`, not this one. Attributes ---------- style: :class:`TextInputStyle` The style of the text input. label: Optional[:class:`str`] The label of the text input. custom_id: :class:`str` The ID of the text input that gets received during an interaction. placeholder: Optional[:class:`str`] The placeholder text that is shown if nothing is entered. value: Optional[:class:`str`] The pre-filled text of the text input. required: :class:`bool` Whether the text input is required. Defaults to ``True``. min_length: Optional[:class:`int`] The minimum length of the text input. max_length: Optional[:class:`int`] The maximum length of the text input. """ __slots__: Tuple[str, ...] = ( "style", "custom_id", "label", "placeholder", "value", "required", "max_length", "min_length", ) __repr_info__: ClassVar[Tuple[str, ...]] = __slots__ def __init__(self, data: TextInputPayload) -> None: style = data.get("style", TextInputStyle.short.value) self.type: ComponentType = try_enum(ComponentType, data["type"]) self.custom_id: str = data["custom_id"] self.style: TextInputStyle = try_enum(TextInputStyle, style) self.label: Optional[str] = data.get("label") self.placeholder: Optional[str] = data.get("placeholder") self.value: Optional[str] = data.get("value") self.required: bool = data.get("required", True) self.min_length: Optional[int] = data.get("min_length") self.max_length: Optional[int] = data.get("max_length") def to_dict(self) -> TextInputPayload: payload: TextInputPayload = { "type": self.type.value, "style": self.style.value, "label": cast(str, self.label), "custom_id": self.custom_id, "required": self.required, } if self.placeholder is not None: payload["placeholder"] = self.placeholder if self.value is not None: payload["value"] = self.value if self.min_length is not None: payload["min_length"] = self.min_length if self.max_length is not None: payload["max_length"] = self.max_length return payload def _component_factory(data: ComponentPayload) -> Component: # NOTE: due to speed, this method does not use the ComponentType enum # as this runs every single time a component is received from the api component_type = data["type"] if component_type == 1: return ActionRow(data) elif component_type == 2: return Button(data) # type: ignore elif component_type == 3: return SelectMenu(data) # type: ignore elif component_type == 4: return TextInput(data) # type: ignore else: as_enum = try_enum(ComponentType, component_type) return Component._raw_construct(type=as_enum)
30.526423
104
0.612025
af2741cc6daf24b94a2227c3007a70a1a18d73ea
358
py
Python
pjproject_android/tests/pjsua/scripts-call/150_srtp_3_0.py
WachterJud/qaul.net_legacy
9c2be0a38ad6e90fadc0d1150340e37d220997ae
[ "MIT", "BSD-2-Clause", "BSD-3-Clause" ]
4
2019-11-11T08:16:08.000Z
2020-08-25T03:08:44.000Z
pjproject_android/tests/pjsua/scripts-call/150_srtp_3_0.py
WachterJud/qaul.net_legacy
9c2be0a38ad6e90fadc0d1150340e37d220997ae
[ "MIT", "BSD-2-Clause", "BSD-3-Clause" ]
1
2020-02-20T06:58:16.000Z
2020-02-20T07:08:07.000Z
my_softphone/pjproject-2.9/tests/pjsua/scripts-call/150_srtp_3_0.py
sashkaseltsov1/reposCpp
3ff5ce2a14a368a36b1758099ce4f3e8c4cdf11d
[ "Unlicense" ]
5
2019-07-02T02:03:24.000Z
2022-03-30T09:58:52.000Z
# $Id: 150_srtp_3_0.py 3334 2010-10-05 16:32:04Z nanang $ # from inc_cfg import * test_param = TestParam( "Callee=optional (with duplicated offer) SRTP, caller=no SRTP", [ InstanceParam("callee", "--null-audio --use-srtp=3 --srtp-secure=0 --max-calls=1"), InstanceParam("caller", "--null-audio --use-srtp=0 --srtp-secure=0 --max-calls=1") ] )
29.833333
86
0.664804
8b01a0d91f93e82d9f69bee032db33e32409e5cf
2,320
py
Python
selfdrive/test/update_ci_routes.py
otaku/openpilot
09283f4d6af839756e7ff49035d0b2251859aebe
[ "MIT" ]
1
2021-04-10T09:14:43.000Z
2021-04-10T09:14:43.000Z
selfdrive/test/update_ci_routes.py
otaku/openpilot
09283f4d6af839756e7ff49035d0b2251859aebe
[ "MIT" ]
null
null
null
selfdrive/test/update_ci_routes.py
otaku/openpilot
09283f4d6af839756e7ff49035d0b2251859aebe
[ "MIT" ]
1
2021-04-10T09:14:45.000Z
2021-04-10T09:14:45.000Z
#!/usr/bin/env python3 import tempfile import shutil import subprocess from common.basedir import BASEDIR from azure.storage.blob import BlockBlobService from selfdrive.test.test_car_models import routes as test_car_models_routes, non_public_routes from selfdrive.test.process_replay.test_processes import segments as replay_segments from xx.chffr.lib import azureutil from xx.chffr.lib.storage import upload_dir_serial, download_dir_tpe from xx.chffr.lib.storage import _DATA_ACCOUNT_PRODUCTION, _DATA_ACCOUNT_CI, _DATA_BUCKET_PRODUCTION, _DATA_BUCKET_CI SOURCES = [ (_DATA_ACCOUNT_PRODUCTION, _DATA_BUCKET_PRODUCTION), (_DATA_ACCOUNT_PRODUCTION, "preserve"), ] DEST_KEY = azureutil.get_user_token(_DATA_ACCOUNT_CI, "openpilotci") SOURCE_KEYS = [azureutil.get_user_token(account, bucket) for account, bucket in SOURCES] SERVICE = BlockBlobService(_DATA_ACCOUNT_CI, sas_token=DEST_KEY) def sync_to_ci_public(route): print(f"Uploading {route}") key_prefix = route.replace('|', '/') if next(azureutil.list_all_blobs(SERVICE, "openpilotci", prefix=key_prefix), None) is not None: print("Already synced") return True for (source_account, source_bucket), source_key in zip(SOURCES, SOURCE_KEYS): print(f"Trying {source_account}/{source_bucket}") cmd = [ f"{BASEDIR}/external/bin/azcopy", "copy", "https://{}.blob.core.windows.net/{}/{}?{}".format(source_account, source_bucket, key_prefix, source_key), "https://{}.blob.core.windows.net/{}?{}".format(_DATA_ACCOUNT_CI, "openpilotci", DEST_KEY), "--recursive=true", "--overwrite=false", ] try: result = subprocess.call(cmd, stdout=subprocess.DEVNULL) if result == 0: print("Success") return True except subprocess.CalledProcessError: print("Failed") return False if __name__ == "__main__": failed_routes = [] # sync process replay routes for s in replay_segments: route_name, _ = s.rsplit('--', 1) if not sync_to_ci_public(route_name): failed_routes.append(route_name) # sync test_car_models routes for r in list(test_car_models_routes.keys()): if r not in non_public_routes: if not sync_to_ci_public(r): failed_routes.append(r) if len(failed_routes): print("failed routes:") print(failed_routes)
31.780822
117
0.733621
883cb609785ee91af2548b8fbc67db5d621d7111
30,846
py
Python
pyvaspflow/io/vasp_input.py
Zhiwei-Lu/pyvaspflow
b80eab3e8bfc52aed6a2459dd32655f1075d9058
[ "MIT" ]
1
2021-11-23T12:42:56.000Z
2021-11-23T12:42:56.000Z
pyvaspflow/io/vasp_input.py
Zhiwei-Lu/pyvaspflow
b80eab3e8bfc52aed6a2459dd32655f1075d9058
[ "MIT" ]
null
null
null
pyvaspflow/io/vasp_input.py
Zhiwei-Lu/pyvaspflow
b80eab3e8bfc52aed6a2459dd32655f1075d9058
[ "MIT" ]
1
2021-09-10T14:19:14.000Z
2021-09-10T14:19:14.000Z
#!/usr/bin/env python3.6 # -*- coding: utf-8 -*- from pyvaspflow.utils import str_delimited, clean_lines,zread,read_json import re,math,json,seekpath from os import path import numpy as np from enum import Enum from pyvaspflow.utils import is_2d_structure import itertools class Incar(dict): def __init__(self, params=None): self.update({'ISIF':3,'ISTART':0,'ICHARG':2,'NSW':50,'IBRION':2, 'EDIFF':1E-5,'EDIFFG':-0.01,'ISMEAR':0,'NPAR':4,'LREAL':'Auto', 'LWAVE':'F','LCHARG':'F'}) if params: if (params.get("MAGMOM") and isinstance(params["MAGMOM"][0], (int, float))) \ and (params.get("LSORBIT") or params.get("LNONCOLLINEAR")): val = [] for i in range(len(params["MAGMOM"])//3): val.append(params["MAGMOM"][i*3:(i+1)*3]) params["MAGMOM"] = val self.update(params) def __setitem__(self, key, val): key = key.strip() val = Incar.proc_val(key.strip(), str(val).strip()) super().__setitem__(key, val) def as_dict(self): d = dict(self) d["@module"] = self.__class__.__module__ d["@class"] = self.__class__.__name__ return d @classmethod def from_dict(cls, d): if d.get("MAGMOM") and isinstance(d["MAGMOM"][0], dict): d["MAGMOM"] = [Magmom.from_dict(m) for m in d["MAGMOM"]] return Incar({k: v for k, v in d.items() if k not in ("@module", "@class")}) def get_string(self, sort_keys=False, pretty=True): keys = self.keys() if sort_keys: keys = sorted(keys) lines = [] for k in keys: if k == "MAGMOM" and isinstance(self[k], list): value = [] if (isinstance(self[k][0], list) ) and \ (self.get("LSORBIT") or self.get("LNONCOLLINEAR")): value.append(" ".join(str(i) for j in self[k] for i in j)) elif self.get("LSORBIT") or self.get("LNONCOLLINEAR"): for m, g in itertools.groupby(self[k]): value.append("3*{}*{}".format(len(tuple(g)), m)) else: # float() to ensure backwards compatibility between # float magmoms and Magmom objects for m, g in itertools.groupby(self[k], lambda x: float(x)): value.append("{}*{}".format(len(tuple(g)), m)) lines.append([k, " ".join(value)]) elif isinstance(self[k], list): lines.append([k, " ".join([str(i) for i in self[k]])]) else: lines.append([k, self[k]]) if pretty: return str(tabulate([[l[0], "=", l[1]] for l in lines], tablefmt="plain")) else: return str_delimited(lines, None, " = ") + "\n" def __str__(self): return self.get_string(sort_keys=True, pretty=False) def write_file(self, filename='INCAR'): with open(filename, "wt") as f: f.write(self.__str__()) def from_file(self,filename): with open(filename, "r") as f: self.update(Incar.from_string(f.read())) @staticmethod def from_string(string): lines = list(clean_lines(string.splitlines())) params = {} for line in lines: for sline in line.split(';'): m = re.match(r'(\w+)\s*=\s*(.*)', sline.strip()) if m: key = m.group(1).strip() val = m.group(2).strip() val = Incar.proc_val(key, val) params[key] = val return params @staticmethod def proc_val(key, val): """ Static helper method to convert INCAR parameters to proper types, e.g., integers, floats, lists, etc. Args: key: INCAR parameter key val: Actual value of INCAR parameter. """ list_keys = ("LDAUU", "LDAUL", "LDAUJ", "MAGMOM", "DIPOL", "LANGEVIN_GAMMA", "QUAD_EFG", "EINT") bool_keys = ("LDAU", "LWAVE", "LSCALU", "LCHARG", "LPLANE", "LUSE_VDW", "LHFCALC", "ADDGRID", "LSORBIT", "LNONCOLLINEAR") float_keys = ("EDIFF", "SIGMA", "TIME", "ENCUTFOCK", "HFSCREEN", "POTIM", "EDIFFG", "AGGAC", "PARAM1", "PARAM2") int_keys = ("NSW", "NBANDS", "NELMIN", "ISIF", "IBRION", "ISPIN", "ICHARG", "NELM", "ISMEAR", "NPAR", "LDAUPRINT", "LMAXMIX", "ENCUT", "NSIM", "NKRED", "NUPDOWN", "ISPIND", "LDAUTYPE", "IVDW") def smart_int_or_float(numstr): import pdb; pdb.set_trace() if numstr.find(".") != -1 or numstr.lower().find("e") != -1: return float(numstr) else: return int(numstr) try: if key in list_keys: output = [] toks = re.findall( r"(-?\d+\.?\d*)\*?(-?\d+\.?\d*)?\*?(-?\d+\.?\d*)?", val) for tok in toks: if tok[2] and "3" in tok[0]: output.extend( [smart_int_or_float(tok[2])] * int(tok[0]) * int(tok[1])) elif tok[1]: output.extend([smart_int_or_float(tok[1])] * int(tok[0])) else: output.append(smart_int_or_float(tok[0])) return output if key in bool_keys: m = re.match(r"^\.?([T|F|t|f])[A-Za-z]*\.?", val) if m: if m.group(1) == "T" or m.group(1) == "t": return True else: return False raise ValueError(key + " should be a boolean type!") if key in float_keys: return float(re.search(r"^-?\d*\.?\d*[e|E]?-?\d*", val).group(0)) if key in int_keys: return int(re.match(r"^-?[0-9]+", val).group(0)) except ValueError: pass # Not in standard keys. We will try a hierarchy of conversions. try: val = int(val) return val except ValueError: pass try: val = float(val) return val except ValueError: pass if "true" in val.lower(): return True if "false" in val.lower(): return False return val.strip().capitalize() def diff(self, other): similar_param = {} different_param = {} for k1, v1 in self.items(): if k1 not in other: different_param[k1] = {"INCAR1": v1, "INCAR2": None} elif v1 != other[k1]: different_param[k1] = {"INCAR1": v1, "INCAR2": other[k1]} else: similar_param[k1] = v1 for k2, v2 in other.items(): if k2 not in similar_param and k2 not in different_param: if k2 not in self: different_param[k2] = {"INCAR1": None, "INCAR2": v2} return {"Same": similar_param, "Different": different_param} def __add__(self, other): params = {k: v for k, v in self.items()} for k, v in other.items(): if k in self and v != self[k]: raise ValueError("Incars have conflicting values!") else: params[k] = v return Incar(params) class Potcar(list): """ This class can generate POTCAR file from POSCAR and you can specify some functional potcar you want to choose """ def __init__(self,poscar='POSCAR',functional='paw_PBE',sym_potcar_map=None): with open(poscar,'r') as f: lines = f.readlines() atom_type = lines[5].strip() if len(atom_type) != 1: atom_type = re.split(pattern=r"\s+",string=atom_type) else: atom_type = list(atom_type) self.atom_type = atom_type new_sym_potcar_map = [] if not sym_potcar_map: sym_potcar_map = [] elif isinstance(sym_potcar_map,str): sym_potcar_map = [sym_potcar_map] for atom in self.atom_type: add_map = False for map in sym_potcar_map: if atom in map: new_sym_potcar_map.append(map) add_map = True break if not add_map: new_sym_potcar_map.append(atom) self.sym_potcar_map = new_sym_potcar_map self.functional = functional def __repr__(self): return self.__str__() def __str__(self): res = 'The functional is : ' + self.functional + '\n' for i in range(len(self.atom_type)): res += 'Atom '+self.atom_type[i]+'using '+self.sym_potcar_map[i]+' type'+'\n' return res def write_file(self,filename='POTCAR'): json_f = read_json() potcar_main_dir_path = json_f['potcar_path'][self.functional] all_pot_file = [] for map in self.sym_potcar_map: pot_path = path.join(potcar_main_dir_path,map) if path.isfile(path.join(pot_path,'POTCAR')): all_pot_file.append(path.join(pot_path,'POTCAR')) elif path.isfile(path.join(pot_path,'POTCAR.Z')): all_pot_file.append(path.join(pot_path,'POTCAR.Z')) else: from os import listdir from os.path import isfile, join possible = [dir for dir in listdir(json_f['potcar_path'][self.functional]) if map.split('_')[0] in dir] raise FileNotFoundError('Not found supported POTCAR file' +' you can set sym_potcar_map='+ ','.join(possible)) with open(filename, 'w') as outfile: for fname in all_pot_file: outfile.write(zread(fname)) class Kpoints_supported_modes(Enum): Automatic = 0 Gamma = 1 Monkhorst = 2 Line_mode = 3 Cartesian = 4 Reciprocal = 5 def __str__(self): return self.name @staticmethod def from_string(s): c = s.lower()[0] for m in Kpoints_supported_modes: if m.name.lower()[0] == c: return m raise ValueError("Can't interprete Kpoint mode %s" % s) class Kpoints: supported_modes = Kpoints_supported_modes def __init__(self, comment="Default gamma", num_kpts=0, style=supported_modes.Gamma, kpts=((1, 1, 1),), kpts_shift=(0, 0, 0), kpts_weights=None, coord_type=None, labels=None, tet_number=0, tet_weight=0, tet_connections=None): """ Highly flexible constructor for Kpoints object. The flexibility comes at the cost of usability and in general, it is recommended that you use the default constructor only if you know exactly what you are doing and requires the flexibility. For most usage cases, the three automatic schemes can be constructed far more easily using the convenience static constructors (automatic, gamma_automatic, monkhorst_automatic) and it is recommended that you use those. Args: comment (str): String comment for Kpoints num_kpts: Following VASP method of defining the KPOINTS file, this parameter is the number of kpoints specified. If set to 0 (or negative), VASP automatically generates the KPOINTS. style: Style for generating KPOINTS. Use one of the Kpoints.supported_modes enum types. kpts (2D array): 2D array of kpoints. Even when only a single specification is required, e.g. in the automatic scheme, the kpts should still be specified as a 2D array. e.g., [[20]] or [[2,2,2]]. kpts_shift (3x1 array): Shift for Kpoints. kpts_weights: Optional weights for kpoints. Weights should be integers. For explicit kpoints. coord_type: In line-mode, this variable specifies whether the Kpoints were given in Cartesian or Reciprocal coordinates. labels: In line-mode, this should provide a list of labels for each kpt. It is optional in explicit kpoint mode as comments for k-points. tet_number: For explicit kpoints, specifies the number of tetrahedrons for the tetrahedron method. tet_weight: For explicit kpoints, specifies the weight for each tetrahedron for the tetrahedron method. tet_connections: For explicit kpoints, specifies the connections of the tetrahedrons for the tetrahedron method. Format is a list of tuples, [ (sym_weight, [tet_vertices]), ...] The default behavior of the constructor is for a Gamma centered, 1x1x1 KPOINTS with no shift. """ if num_kpts > 0 and (not labels) and (not kpts_weights): raise ValueError("For explicit or line-mode kpoints, either the " "labels or kpts_weights must be specified.") self.comment = comment self.num_kpts = num_kpts self.kpts = kpts self.style = style self.coord_type = coord_type self.kpts_weights = kpts_weights self.kpts_shift = kpts_shift self.labels = labels self.tet_number = tet_number self.tet_weight = tet_weight self.tet_connections = tet_connections @property def style(self): return self._style @style.setter def style(self, style): if isinstance(style, str): style = Kpoints.supported_modes.from_string(style) if style in (Kpoints.supported_modes.Automatic, Kpoints.supported_modes.Gamma, Kpoints.supported_modes.Monkhorst) and len(self.kpts) > 1: raise ValueError("For fully automatic or automatic gamma or monk " "kpoints, only a single line for the number of " "divisions is allowed.") self._style = style def automatic(self,subdivisions): """ Convenient static constructor for a fully automatic Kpoint grid, with gamma centered Monkhorst-Pack grids and the number of subdivisions along each reciprocal lattice vector determined by the scheme in the VASP manual. Args: subdivisions: Parameter determining number of subdivisions along each reciprocal lattice vector. """ self.comment = "Fully automatic kpoint scheme" self.num_kpts = 0 self._style=Kpoints.supported_modes.Automatic self.kpts=[[subdivisions]] def gamma_automatic(self, kpts=(1, 1, 1), shift=(0, 0, 0)): """ Convenient static constructor for an automatic Gamma centered Kpoint grid. Args: kpts: Subdivisions N_1, N_2 and N_3 along reciprocal lattice vectors. Defaults to (1,1,1) shift: Shift to be applied to the kpoints. Defaults to (0,0,0). """ self.comment = "Fully automatic kpoint scheme" self.num_kpts = 0 self._style = Kpoints.supported_modes.Gamma self.kpts = [kpts] self.kpts_shift = shift def monkhorst_automatic(self, kpts=(2, 2, 2), shift=(0, 0, 0)): """ Convenient static constructor for an automatic Monkhorst pack Kpoint grid. Args: kpts: Subdivisions N_1, N_2 and N_3 along reciprocal lattice vectors. Defaults to (2,2,2) shift: Shift to be applied to the kpoints. Defaults to (0,0,0). """ self.comment = "Automatic kpoint scheme" self.num_kpts = 0 self._style = Kpoints.supported_modes.Monkhorst self.kpts = [kpts] self.kpts_shift = shift def automatic_density(self, structure, kppa, force_gamma=False): """ Returns an automatic Kpoint object based on a structure and a kpoint density. Uses Gamma centered meshes for hexagonal cells and Monkhorst-Pack grids otherwise. Algorithm: Uses a simple approach scaling the number of divisions along each reciprocal lattice vector proportional to its length. Args: structure (Structure): Input structure kppa (int): Grid density force_gamma (bool): Force a gamma centered mesh (default is to use gamma only for hexagonal cells or odd meshes) """ comment = "grid density = %.0f / atom"%kppa if math.fabs((math.floor(kppa ** (1 / 3) + 0.5)) ** 3 - kppa) < 1: kppa += kppa * 0.01 ngrid = kppa / len(structure.atoms) latt = structure.lattice lengths = np.linalg.norm(latt,axis=1) is_2d = is_2d_structure(structure) if type(is_2d) is tuple: print('This structure will be treated as a two dimensional structure here', 'so the mesh of one direction will be set to 1') vac_idx = is_2d[1] atom_idx = np.setdiff1d(range(3),vac_idx) mult = (ngrid * lengths[atom_idx[0]] * lengths[atom_idx[1]]) ** (1 / 2) num_div = np.zeros((3,)) num_div[atom_idx[0]] = int(math.floor(max(mult / lengths[atom_idx[0]], 1))) num_div[atom_idx[1]] = int(math.floor(max(mult / lengths[atom_idx[1]], 1))) num_div[vac_idx] = 1 num_div = num_div.astype(int).tolist() elif not is_2d : mult = (ngrid * lengths[0] * lengths[1] * lengths[2]) ** (1 / 3) num_div = [int(math.floor(max(mult / l, 1))) for l in lengths] spg = structure.get_spacegroup() if int(spg.split('(')[1].split(')')[0]) in range(168,195): is_hexagonal = True# latt.is_hexagonal() else: is_hexagonal = False has_odd = any([i % 2 == 1 for i in num_div]) if has_odd or is_hexagonal or force_gamma: style = Kpoints.supported_modes.Gamma else: style = Kpoints.supported_modes.Monkhorst self.comment = comment self.num_kpts = 0 self._style = style self.kpts = [num_div] self.kpts_shift = [0,0,0] def automatic_gamma_density(self,structure, kppa): """ Returns an automatic Kpoint object based on a structure and a kpoint density. Uses Gamma centered meshes always. For GW. """ latt = structure.lattice ngrid = kppa / len(structure.atoms) lengths = np.linalg.norm(latt,axis=1) is_2d = is_2d_structure(structure) if type(is_2d) is tuple: print('This structure will be treated as a two dimensional structure here', 'so the mesh of one direction will be set to 1 or 2') vac_idx = is_2d[1] atom_idx = np.setdiff1d(range(3),vac_idx) mult = (ngrid * lengths[atom_idx[0]] * lengths[atom_idx[1]]) ** (1 / 2) num_div = np.zeros((3,)) num_div[atom_idx[0]] = int(math.floor(max(mult / lengths[atom_idx[0]], 1))) num_div[atom_idx[1]] = int(math.floor(max(mult / lengths[atom_idx[1]], 1))) num_div[vac_idx] = 1 num_div = num_div.astype(int).tolist() elif not is_2d : mult = (ngrid * lengths[0] * lengths[1] * lengths[2]) ** (1 / 3) num_div = [int(math.floor(max(mult / l, 1))) for l in lengths] # ensure that numDiv[i] > 0 num_div = [i if i > 0 else 1 for i in num_div] # VASP documentation recommends to use even grids for n <= 8 and odd # grids for n > 8. # num_div = [i + i % 2 if i <= 8 else i - i % 2 + 1 for i in num_div] style = Kpoints.supported_modes.Gamma comment = "KPOINTS with grid density = " +"{} / atom".format(kppa) self.comment = comment self.num_kpts = 0 self._style = style self.kpts = [num_div] self.kpts_shift = [0,0,0] def automatic_density_by_vol(self,structure, kppvol, force_gamma=False): """ Returns an automatic Kpoint object based on a structure and a kpoint density per inverse Angstrom^3 of reciprocal cell. Algorithm: Same as automatic_density() Args: structure (Structure): Input structure kppvol (int): Grid density per Angstrom^(-3) of reciprocal cell force_gamma (bool): Force a gamma centered mesh """ # vol = structure.lattice.reciprocal_lattice.volume latt = structure.lattice latt_vol = np.linalg.det(latt) r_x = np.cross(latt[1],latt[2])/latt_vol r_y = np.cross(latt[2],latt[0])/latt_vol r_z = np.cross(latt[0],latt[1])/latt_vol vol = 2*np.pi*np.linalg.det([r_x,r_y,r_z]) kppa = kppvol * vol * len(structure.atoms) self.comment = "KPOINTS with grid density = " +"{} / atom".format(kppa) self.num_kpts = 0 if force_gamma: self._style = Kpoints.supported_modes.Gamma else: self._style = Kpoints.supported_modes.Monkhorst lengths = np.linalg.norm(latt,axis=1) ngrid = kppa / len(structure.atoms) mult = (ngrid * lengths[0] * lengths[1] * lengths[2]) ** (1 / 3) num_div = [int(math.floor(max(mult / l, 1))) for l in lengths] spg = structure.get_spacegroup() if int(spg.split('(')[1].split(')')[0]) in range(168,195): is_hexagonal = True# latt.is_hexagonal() else: is_hexagonal = False has_odd = any([i % 2 == 1 for i in num_div]) self.kpts = [num_div] self.kpts_shift = [0,0,0] def automatic_linemode(self, structure,num_kpts=16): all_kpath = seekpath.get_explicit_k_path((structure.lattice, structure.positions,structure.atoms)) points = all_kpath['point_coords'] path = all_kpath['path'] kpoints,labels = [],[] for p in path: kpoints.append(points[p[0]]) kpoints.append(points[p[1]]) labels.append(p[0]) labels.append(p[1]) comment = 'Line_mode KPOINTS file, '+'num_kpts: '+str(num_kpts) self.comment = comment self._style = Kpoints.supported_modes.Line_mode self.coord_type = 'Reciprocal' self.kpts = kpoints self.labels = labels self.num_kpts = num_kpts @staticmethod def from_file(filename): """ Reads a Kpoints object from a KPOINTS file. Args: filename (str): filename to read from. Returns: Kpoints object """ with open(filename, "rt") as f: return Kpoints.from_string(f.read()) @staticmethod def from_string(string): """ Reads a Kpoints object from a KPOINTS string. Args: string (str): KPOINTS string. Returns: Kpoints object """ lines = [line.strip() for line in string.splitlines()] comment = lines[0] num_kpts = int(lines[1].split()[0].strip()) style = lines[2].lower()[0] # Fully automatic KPOINTS if style == "a": return Kpoints.automatic(int(lines[3])) coord_pattern = re.compile(r'^\s*([\d+.\-Ee]+)\s+([\d+.\-Ee]+)\s+' r'([\d+.\-Ee]+)') # Automatic gamma and Monk KPOINTS, with optional shift if style == "g" or style == "m": kpts = [int(i) for i in lines[3].split()] kpts_shift = (0, 0, 0) if len(lines) > 4 and coord_pattern.match(lines[4]): try: kpts_shift = [float(i) for i in lines[4].split()] except ValueError: pass return Kpoints.gamma_automatic(kpts, kpts_shift) if style == "g" \ else Kpoints.monkhorst_automatic(kpts, kpts_shift) # Automatic kpoints with basis if num_kpts <= 0: style = Kpoints.supported_modes.Cartesian if style in "ck" \ else Kpoints.supported_modes.Reciprocal kpts = [[float(j) for j in lines[i].split()] for i in range(3, 6)] kpts_shift = [float(i) for i in lines[6].split()] return Kpoints(comment=comment, num_kpts=num_kpts, style=style, kpts=kpts, kpts_shift=kpts_shift) # Line-mode KPOINTS, usually used with band structures if style == "l": coord_type = "Cartesian" if lines[3].lower()[0] in "ck" \ else "Reciprocal" style = Kpoints.supported_modes.Line_mode kpts = [] labels = [] patt = re.compile(r'([e0-9.\-]+)\s+([e0-9.\-]+)\s+([e0-9.\-]+)' r'\s*!*\s*(.*)') for i in range(4, len(lines)): line = lines[i] m = patt.match(line) if m: kpts.append([float(m.group(1)), float(m.group(2)), float(m.group(3))]) labels.append(m.group(4).strip()) return Kpoints(comment=comment, num_kpts=num_kpts, style=style, kpts=kpts, coord_type=coord_type, labels=labels) # Assume explicit KPOINTS if all else fails. style = Kpoints.supported_modes.Cartesian if style in "ck" \ else Kpoints.supported_modes.Reciprocal kpts = [] kpts_weights = [] labels = [] tet_number = 0 tet_weight = 0 tet_connections = None for i in range(3, 3 + num_kpts): toks = lines[i].split() kpts.append([float(j) for j in toks[0:3]]) kpts_weights.append(float(toks[3])) if len(toks) > 4: labels.append(toks[4]) else: labels.append(None) try: # Deal with tetrahedron method if lines[3 + num_kpts].strip().lower()[0] == "t": toks = lines[4 + num_kpts].split() tet_number = int(toks[0]) tet_weight = float(toks[1]) tet_connections = [] for i in range(5 + num_kpts, 5 + num_kpts + tet_number): toks = lines[i].split() tet_connections.append((int(toks[0]), [int(toks[j]) for j in range(1, 5)])) except IndexError: pass return Kpoints(comment=comment, num_kpts=num_kpts, style=Kpoints.supported_modes[str(style)], kpts=kpts, kpts_weights=kpts_weights, tet_number=tet_number, tet_weight=tet_weight, tet_connections=tet_connections, labels=labels) def write_file(self, filename='KPOINTS'): with open(filename, "wt") as f: f.write(self.__str__()) def __repr__(self): return self.__str__() def __str__(self): lines = [self.comment, str(self.num_kpts), self.style.name] style = self.style.name.lower()[0] if style == "l": lines.append(self.coord_type) for i in range(len(self.kpts)): lines.append(" ".join([str(x) for x in self.kpts[i]])) if style == "l": lines[-1] += " ! " + self.labels[i] if i % 2 == 1: lines[-1] += "\n" elif self.num_kpts > 0: if self.labels is not None: lines[-1] += " %i %s" % (self.kpts_weights[i], self.labels[i]) else: lines[-1] += " %i" % (self.kpts_weights[i]) # Print tetrahedron parameters if the number of tetrahedrons > 0 if style not in "lagm" and self.tet_number > 0: lines.append("Tetrahedron") lines.append("%d %f" % (self.tet_number, self.tet_weight)) for sym_weight, vertices in self.tet_connections: lines.append("%d %d %d %d %d" % (sym_weight, vertices[0], vertices[1], vertices[2], vertices[3])) # Print shifts for automatic kpoints types if not zero. if self.num_kpts <= 0 and tuple(self.kpts_shift) != (0, 0, 0): lines.append(" ".join([str(x) for x in self.kpts_shift])) return "\n".join(lines) + "\n" def as_dict(self): """json friendly dict representation of Kpoints""" d = {"comment": self.comment, "nkpoints": self.num_kpts, "generation_style": self.style.name, "kpoints": self.kpts, "usershift": self.kpts_shift, "kpts_weights": self.kpts_weights, "coord_type": self.coord_type, "labels": self.labels, "tet_number": self.tet_number, "tet_weight": self.tet_weight, "tet_connections": self.tet_connections} optional_paras = ["genvec1", "genvec2", "genvec3", "shift"] for para in optional_paras: if para in self.__dict__: d[para] = self.__dict__[para] d["@module"] = self.__class__.__module__ d["@class"] = self.__class__.__name__ return d @classmethod def from_dict(cls, d): comment = d.get("comment", "") generation_style = d.get("generation_style") kpts = d.get("kpoints", [[1, 1, 1]]) kpts_shift = d.get("usershift", [0, 0, 0]) num_kpts = d.get("nkpoints", 0) return cls(comment=comment, kpts=kpts, style=generation_style, kpts_shift=kpts_shift, num_kpts=num_kpts, kpts_weights=d.get("kpts_weights"), coord_type=d.get("coord_type"), labels=d.get("labels"), tet_number=d.get("tet_number", 0), tet_weight=d.get("tet_weight", 0), tet_connections=d.get("tet_connections")) if __name__ == '__main__': from sagar.io.vasp import read_vasp c = read_vasp('/home/hecc/Documents/python-package/Defect-Formation-Calculation/pyvaspflow/examples/POSCAR') kpoints = Kpoints() kpoints.automatic_density(structure=c,kppa=3000) kpoints.write_file()
40.964143
120
0.543377
719e9714bb7fc9d805ca413112bf15b410d9612b
456
py
Python
pdappend/gui.py
cnpls/pdappend
9f00fea5d9df072ab90d74c96ebaffe8033eb572
[ "MIT" ]
null
null
null
pdappend/gui.py
cnpls/pdappend
9f00fea5d9df072ab90d74c96ebaffe8033eb572
[ "MIT" ]
10
2021-03-29T02:34:05.000Z
2021-03-30T00:24:37.000Z
pdappend/gui.py
cnpls/pdappend
9f00fea5d9df072ab90d74c96ebaffe8033eb572
[ "MIT" ]
1
2020-11-11T23:29:41.000Z
2020-11-11T23:29:41.000Z
import os from pdappend import pdappend, cli from tkinter import filedialog from tkinter import * def main(): root = Tk() root.withdraw() # TODO: from pdappend.pdappend.FILE_TYPES files = filedialog.askopenfilenames( initialdir=os.getcwd(), filetypes=[(".xlsx .xls .csv", ".xlsx .xls .csv")] ) args = pdappend.Args( targets=pdappend.Targets(values=files), flags=pdappend.DEFAULT_CONFIG ) cli.main(args)
21.714286
82
0.66886
053715207de03dc7c72267367b804107ae464caa
5,776
py
Python
sdk/python/pulumi_azure_nextgen/web/v20201001/get_web_app_swift_virtual_network_connection_slot.py
pulumi/pulumi-azure-nextgen
452736b0a1cf584c2d4c04666e017af6e9b2c15c
[ "Apache-2.0" ]
31
2020-09-21T09:41:01.000Z
2021-02-26T13:21:59.000Z
sdk/python/pulumi_azure_nextgen/web/v20201001/get_web_app_swift_virtual_network_connection_slot.py
pulumi/pulumi-azure-nextgen
452736b0a1cf584c2d4c04666e017af6e9b2c15c
[ "Apache-2.0" ]
231
2020-09-21T09:38:45.000Z
2021-03-01T11:16:03.000Z
sdk/python/pulumi_azure_nextgen/web/v20201001/get_web_app_swift_virtual_network_connection_slot.py
pulumi/pulumi-azure-nextgen
452736b0a1cf584c2d4c04666e017af6e9b2c15c
[ "Apache-2.0" ]
4
2020-09-29T14:14:59.000Z
2021-02-10T20:38:16.000Z
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi SDK Generator. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union from ... import _utilities, _tables from . import outputs __all__ = [ 'GetWebAppSwiftVirtualNetworkConnectionSlotResult', 'AwaitableGetWebAppSwiftVirtualNetworkConnectionSlotResult', 'get_web_app_swift_virtual_network_connection_slot', ] @pulumi.output_type class GetWebAppSwiftVirtualNetworkConnectionSlotResult: """ Swift Virtual Network Contract. This is used to enable the new Swift way of doing virtual network integration. """ def __init__(__self__, id=None, kind=None, name=None, subnet_resource_id=None, swift_supported=None, system_data=None, type=None): if id and not isinstance(id, str): raise TypeError("Expected argument 'id' to be a str") pulumi.set(__self__, "id", id) if kind and not isinstance(kind, str): raise TypeError("Expected argument 'kind' to be a str") pulumi.set(__self__, "kind", kind) if name and not isinstance(name, str): raise TypeError("Expected argument 'name' to be a str") pulumi.set(__self__, "name", name) if subnet_resource_id and not isinstance(subnet_resource_id, str): raise TypeError("Expected argument 'subnet_resource_id' to be a str") pulumi.set(__self__, "subnet_resource_id", subnet_resource_id) if swift_supported and not isinstance(swift_supported, bool): raise TypeError("Expected argument 'swift_supported' to be a bool") pulumi.set(__self__, "swift_supported", swift_supported) if system_data and not isinstance(system_data, dict): raise TypeError("Expected argument 'system_data' to be a dict") pulumi.set(__self__, "system_data", system_data) if type and not isinstance(type, str): raise TypeError("Expected argument 'type' to be a str") pulumi.set(__self__, "type", type) @property @pulumi.getter def id(self) -> str: """ Resource Id. """ return pulumi.get(self, "id") @property @pulumi.getter def kind(self) -> Optional[str]: """ Kind of resource. """ return pulumi.get(self, "kind") @property @pulumi.getter def name(self) -> str: """ Resource Name. """ return pulumi.get(self, "name") @property @pulumi.getter(name="subnetResourceId") def subnet_resource_id(self) -> Optional[str]: """ The Virtual Network subnet's resource ID. This is the subnet that this Web App will join. This subnet must have a delegation to Microsoft.Web/serverFarms defined first. """ return pulumi.get(self, "subnet_resource_id") @property @pulumi.getter(name="swiftSupported") def swift_supported(self) -> Optional[bool]: """ A flag that specifies if the scale unit this Web App is on supports Swift integration. """ return pulumi.get(self, "swift_supported") @property @pulumi.getter(name="systemData") def system_data(self) -> 'outputs.SystemDataResponse': """ The system metadata relating to this resource. """ return pulumi.get(self, "system_data") @property @pulumi.getter def type(self) -> str: """ Resource type. """ return pulumi.get(self, "type") class AwaitableGetWebAppSwiftVirtualNetworkConnectionSlotResult(GetWebAppSwiftVirtualNetworkConnectionSlotResult): # pylint: disable=using-constant-test def __await__(self): if False: yield self return GetWebAppSwiftVirtualNetworkConnectionSlotResult( id=self.id, kind=self.kind, name=self.name, subnet_resource_id=self.subnet_resource_id, swift_supported=self.swift_supported, system_data=self.system_data, type=self.type) def get_web_app_swift_virtual_network_connection_slot(name: Optional[str] = None, resource_group_name: Optional[str] = None, slot: Optional[str] = None, opts: Optional[pulumi.InvokeOptions] = None) -> AwaitableGetWebAppSwiftVirtualNetworkConnectionSlotResult: """ Swift Virtual Network Contract. This is used to enable the new Swift way of doing virtual network integration. :param str name: Name of the app. :param str resource_group_name: Name of the resource group to which the resource belongs. :param str slot: Name of the deployment slot. If a slot is not specified, the API will get a gateway for the production slot's Virtual Network. """ __args__ = dict() __args__['name'] = name __args__['resourceGroupName'] = resource_group_name __args__['slot'] = slot if opts is None: opts = pulumi.InvokeOptions() if opts.version is None: opts.version = _utilities.get_version() __ret__ = pulumi.runtime.invoke('azure-nextgen:web/v20201001:getWebAppSwiftVirtualNetworkConnectionSlot', __args__, opts=opts, typ=GetWebAppSwiftVirtualNetworkConnectionSlotResult).value return AwaitableGetWebAppSwiftVirtualNetworkConnectionSlotResult( id=__ret__.id, kind=__ret__.kind, name=__ret__.name, subnet_resource_id=__ret__.subnet_resource_id, swift_supported=__ret__.swift_supported, system_data=__ret__.system_data, type=__ret__.type)
39.027027
190
0.659453
8c9a653f2c96ebe2d5b9571ad132429bd4b7e5d3
7,351
py
Python
test/unit/tasks/test_forecasting.py
Kwentar/FEDOT
97a561698c0aa006aa627fc56965a0bc251a4ed8
[ "BSD-3-Clause" ]
null
null
null
test/unit/tasks/test_forecasting.py
Kwentar/FEDOT
97a561698c0aa006aa627fc56965a0bc251a4ed8
[ "BSD-3-Clause" ]
null
null
null
test/unit/tasks/test_forecasting.py
Kwentar/FEDOT
97a561698c0aa006aa627fc56965a0bc251a4ed8
[ "BSD-3-Clause" ]
null
null
null
from random import seed import numpy as np import pytest from sklearn.metrics import mean_squared_error, mean_absolute_error from statsmodels.tsa.arima_process import ArmaProcess from fedot.core.chains.chain import Chain from fedot.core.chains.chain_ts_wrappers import out_of_sample_ts_forecast, \ in_sample_ts_forecast from fedot.core.chains.node import PrimaryNode, SecondaryNode from fedot.core.data.data import InputData from fedot.core.data.data_split import train_test_data_setup from fedot.core.repository.dataset_types import DataTypesEnum from fedot.core.repository.tasks import Task, TaskTypesEnum, TsForecastingParams from fedot.utilities.synth_dataset_generator import generate_synthetic_data np.random.seed(42) seed(42) def _max_rmse_threshold_by_std(values, is_strict=True): tolerance_coeff = 3.0 if is_strict else 5.0 return np.std(values) * tolerance_coeff def get_synthetic_ts_data_period(n_steps=1000, forecast_length=5): simulated_data = ArmaProcess().generate_sample(nsample=n_steps) x1 = np.arange(0, n_steps) x2 = np.arange(0, n_steps) + 1 simulated_data = simulated_data + x1 * 0.0005 - x2 * 0.0001 periodicity = np.sin(x1 / 50) simulated_data = simulated_data + periodicity task = Task(TaskTypesEnum.ts_forecasting, TsForecastingParams(forecast_length=forecast_length)) data = InputData(idx=np.arange(0, n_steps), features=simulated_data, target=simulated_data, task=task, data_type=DataTypesEnum.ts) return train_test_data_setup(data) def get_multiscale_chain(): # First branch node_lagged_1 = PrimaryNode('lagged') node_lagged_1.custom_params = {'window_size': 20} node_ridge_1 = SecondaryNode('ridge', nodes_from=[node_lagged_1]) # Second branch, which will try to make prediction based on smoothed ts node_filtering = PrimaryNode('gaussian_filter') node_filtering.custom_params = {'sigma': 3} node_lagged_2 = SecondaryNode('lagged', nodes_from=[node_filtering]) node_lagged_2.custom_params = {'window_size': 100} node_ridge_2 = SecondaryNode('ridge', nodes_from=[node_lagged_2]) node_final = SecondaryNode('linear', nodes_from=[node_ridge_1, node_ridge_2]) chain = Chain(node_final) return chain def get_simple_ts_chain(model_root: str = 'ridge', window_size: int = 20): node_lagged = PrimaryNode('lagged') node_lagged.custom_params = {'window_size': window_size} node_root = SecondaryNode(model_root, nodes_from=[node_lagged]) chain = Chain(node_root) return chain def get_statsmodels_chain(): node_ar = PrimaryNode('ar') node_ar.custom_params = {'lag_1': 20, 'lag_2': 100} chain = Chain(node_ar) return chain def test_arima_chain_fit_correct(): train_data, test_data = get_synthetic_ts_data_period(forecast_length=12) chain = get_statsmodels_chain() chain.fit(input_data=train_data) test_pred = chain.predict(input_data=test_data) # Calculate metric test_pred = np.ravel(np.array(test_pred.predict)) test_target = np.ravel(np.array(test_data.target)) rmse_test = mean_squared_error(test_target, test_pred, squared=False) rmse_threshold = _max_rmse_threshold_by_std(test_data.target) assert rmse_test < rmse_threshold def test_simple_chain_forecast_correct(): train_data, test_data = get_synthetic_ts_data_period(forecast_length=5) chain = get_simple_ts_chain() chain.fit(input_data=train_data) test_pred = chain.predict(input_data=test_data) # Calculate metric test_pred = np.ravel(np.array(test_pred.predict)) test_target = np.ravel(np.array(test_data.target)) rmse_test = mean_squared_error(test_target, test_pred, squared=False) rmse_threshold = _max_rmse_threshold_by_std(test_data.target, is_strict=True) assert rmse_test < rmse_threshold def test_regression_multiscale_chain_forecast_correct(): train_data, test_data = get_synthetic_ts_data_period(forecast_length=5) chain = get_multiscale_chain() chain.fit(input_data=train_data) test_pred = chain.predict(input_data=test_data) # Calculate metric test_pred = np.ravel(np.array(test_pred.predict)) test_target = np.ravel(np.array(test_data.target)) rmse_test = mean_squared_error(test_target, test_pred, squared=False) rmse_threshold = _max_rmse_threshold_by_std(test_data.target, is_strict=True) assert rmse_test < rmse_threshold def test_ts_single_chain_model_without_multiotput_support(): time_series = generate_synthetic_data(20) len_forecast = 2 train_part = time_series[:-len_forecast] test_part = time_series[-len_forecast:] task = Task(TaskTypesEnum.ts_forecasting, TsForecastingParams(forecast_length=len_forecast)) train_data = InputData(idx=np.arange(0, len(train_part)), features=train_part, target=train_part, task=task, data_type=DataTypesEnum.ts) start_forecast = len(train_part) end_forecast = start_forecast + len_forecast idx_for_predict = np.arange(start_forecast, end_forecast) # Data for making prediction for a specific length test_data = InputData(idx=idx_for_predict, features=train_part, target=test_part, task=task, data_type=DataTypesEnum.ts) for model_id in ['xgbreg', 'gbr', 'adareg', 'svr', 'sgdr']: chain = get_simple_ts_chain(model_root=model_id, window_size=2) # making predictions for the missing part in the time series chain.fit_from_scratch(train_data) predicted_values = chain.predict(test_data) chain_forecast = np.ravel(np.array(predicted_values.predict)) test_part = np.ravel(np.array(test_part)) mae = mean_absolute_error(test_part, chain_forecast) assert mae < 50 def test_exception_if_incorrect_forecast_length(): with pytest.raises(ValueError) as exc: _, _ = get_synthetic_ts_data_period(forecast_length=0) assert str(exc.value) == f'Forecast length should be more then 0' def test_multistep_out_of_sample_forecasting(): horizon = 12 train_data, test_data = get_synthetic_ts_data_period(forecast_length=5) chain = get_multiscale_chain() # Fit chain to make forecasts 5 elements above chain.fit(input_data=train_data) # Make prediction for 12 elements predicted = out_of_sample_ts_forecast(chain=chain, input_data=test_data, horizon=horizon) assert len(predicted) == horizon def test_multistep_in_sample_forecasting(): horizon = 12 train_data, test_data = get_synthetic_ts_data_period(forecast_length=5) chain = get_multiscale_chain() # Fit chain to make forecasts 5 elements above chain.fit(input_data=train_data) # Make prediction for 12 elements predicted = in_sample_ts_forecast(chain=chain, input_data=test_data, horizon=horizon) assert len(predicted) == horizon
33.56621
81
0.706162
344e90432f18f9807af80121018c3a4f92271304
36,969
py
Python
scraper/expand/get_genbank_sequences.py
HobnobMancer/cazy_webscraper
3f74492f46db2093f7e6cd91fffcb8347694e54e
[ "MIT" ]
3
2020-10-22T08:31:29.000Z
2021-05-19T13:13:12.000Z
scraper/expand/get_genbank_sequences.py
HobnobMancer/cazy_webscraper
3f74492f46db2093f7e6cd91fffcb8347694e54e
[ "MIT" ]
62
2020-11-30T11:29:20.000Z
2022-03-28T13:50:30.000Z
scraper/expand/get_genbank_sequences.py
HobnobMancer/cazy_webscraper
3f74492f46db2093f7e6cd91fffcb8347694e54e
[ "MIT" ]
1
2021-03-10T16:30:11.000Z
2021-03-10T16:30:11.000Z
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # (c) University of St Andrews 2020-2021 # (c) University of Strathclyde 2020-2021 # Author: # Emma E. M. Hobbs # Contact # eemh1@st-andrews.ac.uk # Emma E. M. Hobbs, # Biomolecular Sciences Building, # University of St Andrews, # North Haugh Campus, # St Andrews, # KY16 9ST # Scotland, # UK # The MIT License # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. """Retrieve proteins sequences from GenBank and populate the local database and write to FASTA""" import logging import os import re import sys import time import pandas as pd from datetime import datetime from typing import List, Optional from Bio import Entrez, SeqIO from tqdm import tqdm from scraper.sql.sql_orm import ( Cazyme, CazyFamily, Cazymes_Genbanks, Genbank, Kingdom, Taxonomy, get_db_session, ) from scraper.utilities import config_logger, file_io, parse_configuration from scraper.utilities.parsers import build_genbank_sequences_parser def main(argv: Optional[List[str]] = None, logger: Optional[logging.Logger] = None): """Set up programme and initate run.""" start_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S") # used in terminating message start_time = pd.to_datetime(start_time) date_today = datetime.now().strftime("%Y/%m/%d") # used as seq_update_date in the db # parse cmd-line arguments if argv is None: parser = build_genbank_sequences_parser() args = parser.parse_args() else: args = build_genbank_sequences_parser(argv).parse_args() if logger is None: logger = logging.getLogger(__name__) config_logger(args) # check database was passed if os.path.isfile(args.database) is False: logger.error( "Could not find local CAZy database. Check path is correct. Terminating programme." ) sys.exit(1) Entrez.email = args.email # create session to local database session = get_db_session(args) # retrieve configuration data file_io_path = file_io.__file__ config_dict, taxonomy_filters, kingdoms = parse_configuration.get_configuration( args, ) if config_dict is None: if args.update: # get sequence for everything without a sequence and those with newer remote sequence add_and_update_all_sequences(date_today, taxonomy_filters, kingdoms, session, args) else: # get sequences for everything without a sequence get_missing_sequences_for_everything( date_today, taxonomy_filters, kingdoms, session, args, ) else: # get sequences for only specified classes/families if args.update: update_sequences_for_specific_records( date_today, config_dict, taxonomy_filters, kingdoms, session, args, ) else: get_missing_sequences_for_specific_records( date_today, config_dict, taxonomy_filters, kingdoms, session, args, ) if args.blastdb is not None: file_io.build_blast_db(args) end_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S") # used in terminating message end_time = pd.to_datetime(start_time) end_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S") end_time = pd.to_datetime(end_time) total_time = end_time - start_time logger.info( "Finished populating local CAZy database with GenBank protein sequences. " "Terminating program.\n" f"Scrape initated at {start_time}\n" f"Scrape finished at {end_time}\n" f"Total run time: {total_time}" ) print( "=====================cazy_webscraper-expand-genank_sequences=====================\n" "Finished populating local CAZy database with GenBank protein sequences. " "Terminating program.\n" f"Scrape initated at {start_time}\n" f"Scrape finished at {end_time}\n" f"Total run time: {total_time}\n" ) # The folowing functions are for querying the local database to get GenBank accessions def get_missing_sequences_for_everything(date_today, taxonomy_filters, kingdoms, session, args): """Retrieve protein sequences for all CAZymes in the local CAZy database that don't have seq. :param date_today: str, today's date, used for logging the date the seq is retrieved in the db :param taxonomy_filters: set of genera, species and strains to restrict sequence retrieval :param kingdoms: set of taxonomy Kingdoms to retrieve sequences for :param session: open SQLite db session :param args: cmd-line argument parser Return nothing. """ logger = logging.getLogger(__name__) # retrieve only sequences for primary GenBank accessions, and those without sequences if args.primary is True: logger.warning( "Retrieving sequences for all primary GenBank accessions that do not have sequences" ) genbank_query = session.query(Genbank, Cazymes_Genbanks, Cazyme, Taxonomy, Kingdom).\ join(Taxonomy, (Taxonomy.kingdom_id == Kingdom.kingdom_id)).\ join(Cazyme, (Cazyme.taxonomy_id == Taxonomy.taxonomy_id)).\ join(Cazymes_Genbanks, (Cazymes_Genbanks.cazyme_id == Cazyme.cazyme_id)).\ join(Genbank, (Genbank.genbank_id == Cazymes_Genbanks.genbank_id)).\ filter(Cazymes_Genbanks.primary == True).\ filter(Genbank.sequence == None).\ all() # retrieve sequences for all GenBank accessions without sequences else: logger.warning( "Retrieving sequences for all GenBank accessions that do not have sequences" ) genbank_query = session.query(Genbank, Cazymes_Genbanks, Cazyme, Taxonomy, Kingdom).\ join(Taxonomy, (Taxonomy.kingdom_id == Kingdom.kingdom_id)).\ join(Cazyme, (Cazyme.taxonomy_id == Taxonomy.taxonomy_id)).\ join(Cazymes_Genbanks, (Cazymes_Genbanks.cazyme_id == Cazyme.cazyme_id)).\ join(Genbank, (Genbank.genbank_id == Cazymes_Genbanks.genbank_id)).\ filter(Genbank.sequence == None).\ all() # retrieve the genbank_accessions accessions = extract_accessions(genbank_query, taxonomy_filters) if len(accessions) == 0: logger.warning( "Did not retrieve any GenBank accessions from the local database\n" "that have sequences missing. Not adding sequences to the local database." ) return # separate accesions in to separate lists of length args.epost, epost doesn't like more than 200 accessions = get_accession_chunks(accessions, args.epost) # args.epost = number per chunk for lst in accessions: get_sequences_add_to_db(lst, date_today, session, args) return def add_and_update_all_sequences(date_today, taxonomy_filters, kingdoms, session, args): """Retrieve sequences for all proteins in the database. For records with no sequences, add the retrieved sequence. For records with a sequence, check if the remove sequence is more recent than the existing sequence. It it is, update the local sequence. :param date_today: str, today's date, used for logging the date the seq is retrieved in the db :param taxonomy_filters: set of genera, species and strains to retrieve sequences for :param kingdoms: set of taxonomy Kingdoms to retrieve sequences for :param session: open SQLite db session :param args: cmd-line argument parser Return nothing. """ logger = logging.getLogger(__name__) # retrieve only sequences for primary GenBank accessions, and those without sequences if args.primary is True: logger.warning( "Retrieving sequences for all primary GenBank accessions that do not have sequences\n" "and those whose sequences have been updated in NCBI " "since they were retrieved previously" ) genbank_query = session.query(Genbank, Cazymes_Genbanks, Cazyme, Taxonomy, Kingdom).\ join(Taxonomy, (Taxonomy.kingdom_id == Kingdom.kingdom_id)).\ join(Cazyme, (Cazyme.taxonomy_id == Taxonomy.taxonomy_id)).\ join(Cazymes_Genbanks, (Cazymes_Genbanks.cazyme_id == Cazyme.cazyme_id)).\ join(Genbank, (Genbank.genbank_id == Cazymes_Genbanks.genbank_id)).\ filter(Cazymes_Genbanks.primary == True).\ all() # retrieve sequences for all GenBank accessions else: logger.warning( "Retrieving sequences for all GenBank accessions that do not have sequences\n" "and those whose sequences have been updated in NCBI " "since they were retrieved previously" ) genbank_query = session.query(Genbank, Cazymes_Genbanks, Cazyme, Taxonomy, Kingdom).\ join(Taxonomy, (Taxonomy.kingdom_id == Kingdom.kingdom_id)).\ join(Cazyme, (Cazyme.taxonomy_id == Taxonomy.taxonomy_id)).\ join(Cazymes_Genbanks, (Cazymes_Genbanks.cazyme_id == Cazyme.cazyme_id)).\ join(Genbank, (Genbank.genbank_id == Cazymes_Genbanks.genbank_id)).\ all() # create dictionary of {genbank_accession: 'sequence update date' (str)} accessions = extract_accessions_and_dates(genbank_query, taxonomy_filters) if len(accessions.keys()) == 0: logger.warning( "Did not retrieve any GenBank accessions from the local database.\n" "Not adding sequences to the local database." ) return accessions = get_accessions_for_new_sequences(accessions) # list of genkbank_accession if len(accessions) == 0: logger.warning( "Did not retrieve any GenBank accessions whose sequences need updating.\n" "Not adding sequences to the local database." ) return # separate accesions in to separate lists of length args.epost, epost doesn't like more than 200 accessions = get_accession_chunks(accessions, args.epost) # args.epost = number per chunk for lst in accessions: get_sequences_add_to_db(lst, date_today, session, args) return def get_missing_sequences_for_specific_records( date_today, config_dict, taxonomy_filters, kingdoms, session, args, ): """Coordinate getting the sequences for specific CAZymes, not with seqs in the db. :param date_today: str, today's date, used for logging the date the seq is retrieved in the db :param config_dict: dict, defines CAZy classes and families to get sequences for :param taxonomy_filters: set of genera, species and strains to restrict sequence retrieval :param kingdoms: set of taxonomy Kingdoms to retrieve sequences for :param session: open SQL database session :param args: cmd-line args parser Return nothing. """ logger = logging.getLogger(__name__) logger.warning( "Retrieving sequences for GenBank accessions that do not have a sequence in the database" ) # start with the classes if len(config_dict["classes"]) != 0: # retrieve list of CAZy classes to get sequences for cazy_classes = config_dict["classes"] for cazy_class in tqdm(cazy_classes, desc="Parsing CAZy classes"): # retrieve class name abbreviation cazy_class = cazy_class[((cazy_class.find("(")) + 1):((cazy_class.find(")")) - 1)] # get the CAZymes within the CAZy class class_subquery = session.query(Cazyme.cazyme_id).\ join(CazyFamily, Cazyme.families).\ filter(CazyFamily.family.regexp(rf"{cazy_class}\d+")).\ subquery() # retrieve the GenBank accessions of the CAZymes in the CAZy class without seqs if args.primary: genbank_query = session.query(Genbank, Cazymes_Genbanks, Cazyme, Taxonomy, Kingdom).\ join(Taxonomy, (Taxonomy.kingdom_id == Kingdom.kingdom_id)).\ join(Cazyme, (Cazyme.taxonomy_id == Taxonomy.taxonomy_id)).\ join(Cazymes_Genbanks, (Cazymes_Genbanks.cazyme_id == Cazyme.cazyme_id)).\ join(Genbank, (Genbank.genbank_id == Cazymes_Genbanks.genbank_id)).\ filter(Cazyme.cazyme_id.in_(class_subquery)).\ filter(Cazymes_Genbanks.primary == True).\ filter(Genbank.sequence == None).\ all() else: genbank_query = session.query(Genbank, Cazymes_Genbanks, Cazyme, Taxonomy, Kingdom).\ join(Taxonomy, (Taxonomy.kingdom_id == Kingdom.kingdom_id)).\ join(Cazyme, (Cazyme.taxonomy_id == Taxonomy.taxonomy_id)).\ join(Cazymes_Genbanks, (Cazymes_Genbanks.cazyme_id == Cazyme.cazyme_id)).\ join(Genbank, (Genbank.genbank_id == Cazymes_Genbanks.genbank_id)).\ filter(Cazyme.cazyme_id.in_(class_subquery)).\ filter(Genbank.sequence == None).\ all() # retrieve the genbank_accessions from the sql collection object returned by the query accessions = extract_accessions(genbank_query, taxonomy_filters) if len(accessions) == 0: logger.warning( f"Did not retrieve any GenBank accessions for the CAZy class {cazy_class}\n" "that have missing sequences. Not adding sequences to the local database." ) continue # separate accesions in to separate lists of length args.epost # epost doesn't like posting more than 200 at once accessions = get_accession_chunks(accessions, args.epost) # args.epost = number/chunk for lst in accessions: get_sequences_add_to_db(lst, date_today, session, args) continue # Retrieve protein sequences for specified families for key in config_dict: if key == "classes": continue if config_dict[key] is None: continue # no families to parse for family in tqdm(config_dict[key], desc=f"Parsing families in {key}"): if family.find("_") != -1: # subfamily # Retrieve GenBank accessions catalogued under the subfamily family_subquery = session.query(Cazyme.cazyme_id).\ join(CazyFamily, Cazyme.families).\ filter(CazyFamily.subfamily == family).\ subquery() else: # family # Retrieve GenBank accessions catalogued under the family family_subquery = session.query(Cazyme.cazyme_id).\ join(CazyFamily, Cazyme.families).\ filter(CazyFamily.family == family).\ subquery() # get the GenBank accessions of thes CAZymes, without sequences if args.primary: genbank_query = session.query(Genbank, Cazymes_Genbanks, Cazyme, Taxonomy, Kingdom).\ join(Taxonomy, (Taxonomy.kingdom_id == Kingdom.kingdom_id)).\ join(Cazyme, (Cazyme.taxonomy_id == Taxonomy.taxonomy_id)).\ join(Cazymes_Genbanks, (Cazymes_Genbanks.cazyme_id == Cazyme.cazyme_id)).\ join(Genbank, (Genbank.genbank_id == Cazymes_Genbanks.genbank_id)).\ filter(Cazyme.cazyme_id.in_(family_subquery)).\ filter(Cazymes_Genbanks.primary == True).\ filter(Genbank.sequence == None).\ all() else: genbank_query = session.query(Genbank, Cazymes_Genbanks, Cazyme, Taxonomy, Kingdom).\ join(Taxonomy, (Taxonomy.kingdom_id == Kingdom.kingdom_id)).\ join(Cazyme, (Cazyme.taxonomy_id == Taxonomy.taxonomy_id)).\ join(Cazymes_Genbanks, (Cazymes_Genbanks.cazyme_id == Cazyme.cazyme_id)).\ join(Genbank, (Genbank.genbank_id == Cazymes_Genbanks.genbank_id)).\ filter(Cazyme.cazyme_id.in_(family_subquery)).\ filter(Genbank.sequence == None).\ all() # retrieve a list of GenBank accessions from the sql collection returned from the query accessions = extract_accessions(genbank_query, taxonomy_filters) if len(accessions) == 0: logger.warning( f"Did not retrieve any GenBank accessions for the CAZy class {family}\n" "that have missing sequences. Not adding sequences to the local database." ) continue # separate accesions in to separate lists of length args.epost # epost doesn't like posting more than 200 at once accessions = get_accession_chunks(accessions, args.epost) # args.epost = acc/chunk for lst in accessions: get_sequences_add_to_db(lst, date_today, session, args) return def update_sequences_for_specific_records( date_today, config_dict, taxonomy_filters, kingdoms, session, args, ): """Coordinate getting the sequences for specific CAZymes, not with seqs in the db nad those whose seq in NCBI has been updated since the last retrieval. For records with no sequences, add the retrieved sequence. For records with a sequence, check if the remove sequence is more recent than the existing sequence. It it is, update the local sequence. :param date_today: str, today's date, used for logging the date the seq is retrieved in the db :param config_dict: dict, defines CAZy classes and families to get sequences for :param taxonomy_filters: set of genera, species and strains to restrict sequence retrieval :param kingdoms: set of taxonomy Kingdoms to retrieve sequences for :param session: open SQL database session :param args: cmd-line args parser Return nothing. """ logger = logging.getLogger(__name__) logger.warning( "Retrieving sequences for GenBank accessions that do not have a sequence in the database,\n" "and those whose sequence in NCBI has been updated since they were previously retrieved." ) # start with the classes if len(config_dict["classes"]) != 0: # retrieve list of CAZy classes to get sequences for cazy_classes = config_dict["classes"] for cazy_class in tqdm(cazy_classes, desc="Parsing CAZy classes"): # retrieve class name abbreviation cazy_class = cazy_class[((cazy_class.find("(")) + 1):((cazy_class.find(")")) - 1)] # get the CAZymes within the CAZy class class_subquery = session.query(Cazyme.cazyme_id).\ join(CazyFamily, Cazyme.families).\ filter(CazyFamily.family.regexp(rf"{cazy_class}\d+")).\ subquery() # retrieve the GenBank accessions of the CAZymes in the CAZy class without seqs if args.primary: genbank_query = session.query(Genbank, Cazymes_Genbanks, Cazyme, Taxonomy, Kingdom).\ join(Taxonomy, (Taxonomy.kingdom_id == Kingdom.kingdom_id)).\ join(Cazyme, (Cazyme.taxonomy_id == Taxonomy.taxonomy_id)).\ join(Cazymes_Genbanks, (Cazymes_Genbanks.cazyme_id == Cazyme.cazyme_id)).\ join(Genbank, (Genbank.genbank_id == Cazymes_Genbanks.genbank_id)).\ filter(Cazyme.cazyme_id.in_(class_subquery)).\ filter(Cazymes_Genbanks.primary == True).\ all() else: genbank_query = session.query(Genbank, Cazymes_Genbanks, Cazyme, Taxonomy, Kingdom).\ join(Taxonomy, (Taxonomy.kingdom_id == Kingdom.kingdom_id)).\ join(Cazyme, (Cazyme.taxonomy_id == Taxonomy.taxonomy_id)).\ join(Cazymes_Genbanks, (Cazymes_Genbanks.cazyme_id == Cazyme.cazyme_id)).\ join(Genbank, (Genbank.genbank_id == Cazymes_Genbanks.genbank_id)).\ filter(Cazyme.cazyme_id.in_(class_subquery)).\ all() # create dictionary of genbank_accession: 'sequence update date' (str) accessions = extract_accessions_and_dates(genbank_query, taxonomy_filters) if len(accessions.keys()) == 0: logger.warning( f"Did not retrieve any GenBank accessions for the CAZy class {cazy_class}.\n" "Not adding sequences to the local database." ) continue accessions = get_accessions_for_new_sequences(accessions) # list of genkbank_accession if len(accessions) == 0: logger.warning( "Did not retrieve any GenBank accessions whose sequences need updating for " f"the CAZy class {cazy_class}.\n" "Not adding sequences to the local database." ) continue # separate accesions in to separate lists of length args.epost # epost doesn't like posting more than 200 at once accessions = get_accession_chunks(accessions, args.epost) # args.epost = acc/chunk for lst in accessions: get_sequences_add_to_db(lst, date_today, session, args) # Retrieve protein sequences for specified families for key in config_dict: if key == "classes": continue if config_dict[key] is None: continue # no families to parse for family in tqdm(config_dict[key], desc=f"Parsing families in {key}"): if family.find("_") != -1: # subfamily # Retrieve GenBank accessions catalogued under the subfamily family_subquery = session.query(Cazyme.cazyme_id).\ join(CazyFamily, Cazyme.families).\ filter(CazyFamily.subfamily == family).\ subquery() else: # family # Retrieve GenBank accessions catalogued under the family family_subquery = session.query(Cazyme.cazyme_id).\ join(CazyFamily, Cazyme.families).\ filter(CazyFamily.family == family).\ subquery() # get the GenBank accessions of thes CAZymes, without sequences if args.primary: genbank_query = session.query(Genbank, Cazymes_Genbanks, Cazyme, Taxonomy, Kingdom).\ join(Taxonomy, (Taxonomy.kingdom_id == Kingdom.kingdom_id)).\ join(Cazyme, (Cazyme.taxonomy_id == Taxonomy.taxonomy_id)).\ join(Cazymes_Genbanks, (Cazymes_Genbanks.cazyme_id == Cazyme.cazyme_id)).\ join(Genbank, (Genbank.genbank_id == Cazymes_Genbanks.genbank_id)).\ filter(Cazyme.cazyme_id.in_(family_subquery)).\ filter(Cazymes_Genbanks.primary == True).\ filter(Genbank.sequence == None).\ all() else: genbank_query = session.query(Genbank, Cazymes_Genbanks, Cazyme, Taxonomy, Kingdom).\ join(Taxonomy, (Taxonomy.kingdom_id == Kingdom.kingdom_id)).\ join(Cazyme, (Cazyme.taxonomy_id == Taxonomy.taxonomy_id)).\ join(Cazymes_Genbanks, (Cazymes_Genbanks.cazyme_id == Cazyme.cazyme_id)).\ join(Genbank, (Genbank.genbank_id == Cazymes_Genbanks.genbank_id)).\ filter(Cazyme.cazyme_id.in_(family_subquery)).\ filter(Genbank.sequence == None).\ all() # create dictionary of {genbank_accession: 'sequence update date' (str)} accessions = extract_accessions_and_dates(genbank_query, taxonomy_filters) if len(accessions.keys()) == 0: logger.warning( f"Did not retrieve any GenBank accessions for the CAZy class {family}.\n" "Not adding sequences to the local database." ) continue accessions = get_accessions_for_new_sequences(accessions) # list of genkbank_accession if len(accessions) == 0: logger.warning( "Did not retrieve any GenBank accessions whose sequences need updating for " f"the CAZy class {family}.\n" "Not adding sequences to the local database." ) continue # separate accesions in to separate lists of length args.epost # epost doesn't like posting more than 200 at once accessions = get_accession_chunks(accessions, args.epost) # args.epost = acc/chunk for lst in accessions: get_sequences_add_to_db(lst, date_today, session, args) return # The following functions are retrieving the list of Genbank accessions to retrieve sequences for # def extract_accessions(genbank_query, taxonomy_filters): """The query contains GenBank accessions and Cazymes_Genbanks records, retrieve the accessions. :param genbank_query: sql collection :param taxonomy_filters: set of genera, species and strains to restrict retrieval of sequences Return a list of GenBank accessions. Each element is a string of a unique accession. """ if taxonomy_filters is None: accessions = [item[0] for item in genbank_query] return [x for x in accessions if "NA" != x] else: accessions = [] for item in genbank_query: if item[0] != "NA": # if GenBank accession not stored as 'NA' source_organism = item[-1].genus + item[-1].species if any(filter in source_organism for filter in taxonomy_filters): accessions.append(item[0]) return accessions def extract_accessions_and_dates(genbank_query, taxonomy_filters): """Retrieve the GenBank accessions and retrieval dates of existing sequences from the db query. :param genbank_query: sql collection :param taxonomy_filters: set of genera, species and strains to restrict retrieval of sequences Return a dict {GenBank_accession: retrieval_date} """ accessions = {} if taxonomy_filters is None: for item in genbank_query: if item[0].genbank_accession == "NA": # no GenBank accession stored in CAZy continue accessions[item[0].genbank_accession] = item[0].seq_update_date else: for item in genbank_query: if item[0].genbank_accession == "NA": # no GenBank accession stored in CAZy continue source_organism = item[-1].genus + item[-1].species if any(filter in source_organism for filter in taxonomy_filters): accessions[item[0].genbank_accession] = item[0].seq_update_date return accessions def get_accessions_for_new_sequences(accessions): """Get the GenBank accessions of sequences to be added to the local database. For records currently with no protein sequence, the retrieved protein sequence will be added to the record. For records with a sequence, the 'UpdateDate' for the sequence from NCBI will be compared against the 'seq_update_date' in the local database. The 'seq_update_date' is the 'UpdateDate' previosuly retrieved from NCBI. If the NCBI sequence is newer, the local database will be updated with the new sequence. :param accessions: dict, {GenBank accessions (str):sequence retrieval data (str)} :param session: open SQL database session Return nothing. """ logger = logging.getLogger(__name__) accessions_list = list(accessions.keys()) accessions_string = ",".join(accessions_list) # perform batch query of Entrez epost_result = Entrez.read( entrez_retry( Entrez.epost, "Protein", id=accessions_string, retmode="text", ) ) # retrieve the web environment and query key from the Entrez post epost_webenv = epost_result["WebEnv"] epost_query_key = epost_result["QueryKey"] # retrieve summary docs to check the sequence 'UpdateDates' in NCBI with entrez_retry( Entrez.efetch, db="Protein", query_key=epost_query_key, WebEnv=epost_webenv, rettype="docsum", retmode="xml", ) as handle: summary_docs = Entrez.read(handle) for doc in summary_docs: try: temp_accession = doc["AccessionVersion"] # accession of the current working protein except KeyError: logger.warning( f"Retrieved protein with accession {temp_accession} but this accession is not in " "the local database.\n" "Not retrieving a sequence for this accession." ) continue previous_data = accessions[temp_accession] if previous_data is not None: # sequence retrieved previosuly, thus check if the NCBI seq has been updated since previous_data = previous_data.split("/") # Y=[0], M=[1], D=[] update_date = doc["UpdateDate"] update_date = update_date.split("/") # Y=[0], M=[1], D=[] if datetime.date( previous_data[0], previous_data[1], previous_data[2], ) < datetime.data( update_date[0], update_date[1], update_date[2], ) is False: # the sequence at NCBI has not been updated since the seq was retrieved # thus no need to retrieve it again accessions_list.remove(temp_accession) return accessions_list def get_accession_chunks(lst, chunk_length): """Separate the long list into separate chunks. :param lst: list to be separated into smaller lists (or chunks) :param chunk_length: int, the length of the lists the longer list is to be split up into Return a generator object containing lists. """ for i in range(0, len(lst), chunk_length): yield lst[i:i + chunk_length] # The following functions are for retrieving sequences, adding to the db and writing fasta files def get_sequences_add_to_db(accessions, date_today, session, args): """Retrieve protein sequences from Entrez and add to the local database. :param accessions: list, GenBank accessions :param date_today: str, YYYY/MM/DD :param session: open SQL database session :param args: cmb-line args parser Return nothing. """ logger = logging.getLogger(__name__) # perform batch query of Entrez accessions_string = ",".join(accessions) epost_result = Entrez.read( entrez_retry( Entrez.epost, "Protein", id=accessions_string, ) ) # retrieve the web environment and query key from the Entrez post epost_webenv = epost_result["WebEnv"] epost_query_key = epost_result["QueryKey"] # retrieve the protein sequences with entrez_retry( Entrez.efetch, db="Protein", query_key=epost_query_key, WebEnv=epost_webenv, rettype="fasta", retmode="text", ) as seq_handle: for record in SeqIO.parse(seq_handle, "fasta"): # retrieve the accession of the record temp_accession = record.id # accession of the current working protein record if temp_accession.find("|") != -1: # sometimes multiple items are listed success = False # will be true if finds protein accession temp_accession = temp_accession.split("|") for item in temp_accession: # check if a accession number try: re.match( ( r"(\D{3}\d{5,7}\.\d+)|(\D\d(\D|\d){3}\d)|" r"(\D\d(\D|\d){3}\d\D(\D|\d){2}\d)" ), item, ).group() temp_accession = item success = True break except AttributeError: # raised if not an accession continue else: success = True # have protein accession number if success is False: logger.error( f"Could not retrieve accession from {record.id}, therefore, " "protein sequence not added to the database,\n" "because cannot retrieve the necessary CAZyme record" ) continue # check the retrieve protein accession is in the list of retrieved accession if temp_accession not in accessions: logger.warning( f"Retrieved the accession {temp_accession} from the record id={record.id}, " "but this accession is not in the database.\n" "Therefore, not adding this protein seqence to the local database" ) continue # retrieve the GenBank record from the local data base to add the seq to genbank_record = session.query(Genbank).\ filter(Genbank.genbank_accession == temp_accession).first() retrieved_sequence = str(record.seq) # convert to a string becuase SQL expects a string genbank_record.sequence = retrieved_sequence genbank_record.seq_update_date = date_today session.commit() if args.fasta is not None: file_io.write_out_fasta(record, temp_accession, args) if args.blastdb is not None: file_io.write_fasta_for_db(record, temp_accession, args) # remove the accession from the list accessions.remove(temp_accession) if len(accessions) != 0: logger.warning( "Protein sequences were not retrieved for the following CAZyme in the local database" ) for acc in accessions: logger.warning(f"GenBank accession: {acc}") return def entrez_retry(entrez_func, *func_args, **func_kwargs): """Call to NCBI using Entrez. Maximum number of retries is 10, retry initated when network error encountered. :param logger: logger object :param retries: parser argument, maximum number of retries excepted if network error encountered :param entrez_func: function, call method to NCBI :param *func_args: tuple, arguments passed to Entrez function :param ** func_kwargs: dictionary, keyword arguments passed to Entrez function Returns record. """ logger = logging.getLogger(__name__) record, retries, tries = None, 10, 0 while record is None and tries < retries: try: record = entrez_func(*func_args, **func_kwargs) except IOError: # log retry attempt if tries < retries: logger.warning( f"Network error encountered during try no.{tries}.\nRetrying in 10s", exc_info=1, ) time.sleep(10) tries += 1 if record is None: logger.error( "Network error encountered too many times. Exiting attempt to call to NCBI" ) return return record if __name__ == "__main__": main()
42.250286
101
0.629068
e5038b2d43307a9172356d58f8b0bd022b7ddde0
6,527
py
Python
04 - Classes-inheritance-oops/53-classes-pickling-magic-methods.py
python-demo-codes/basics
2a151bbff4b528cefd52978829c632fd087c8f20
[ "DOC" ]
2
2019-08-23T06:05:55.000Z
2019-08-26T03:56:07.000Z
04 - Classes-inheritance-oops/53-classes-pickling-magic-methods.py
python-lang-codes/basics
2a151bbff4b528cefd52978829c632fd087c8f20
[ "DOC" ]
null
null
null
04 - Classes-inheritance-oops/53-classes-pickling-magic-methods.py
python-lang-codes/basics
2a151bbff4b528cefd52978829c632fd087c8f20
[ "DOC" ]
4
2020-10-01T07:16:07.000Z
2021-07-17T07:55:08.000Z
# HEAD # Classes - Pickling Concept # DESCRIPTION # Describes the magic methods of classes # getinitargs, getnewargs, # getstate, setstate, # reduce, reduce_ex # RESOURCES # # https://rszalski.github.io/magicmethods/ # Pickling your own Objects # Pickling isn't just for built-in types. # It's for any class that follows the pickle protocol. # The pickle protocol has four optional methods for Python # objects to customize how they act (it's a bit # different for C extensions, but that's not in our scope): # __getinitargs__(self) # If you'd like for __init__ to be called when your class is unpickled, you can define __getinitargs__, which should return a tuple of the arguments that you'd like to be passed to __init__. Note that this method will only work for old-style classes. # __getnewargs__(self) # For new-style classes, you can influence what arguments get passed to __new__ upon unpickling. This method should also return a tuple of arguments that will then be passed to __new__. # __getstate__(self) # Instead of the object's __dict__ attribute being stored, you can return a custom state to be stored when the object is pickled. That state will be used by __setstate__ when the object is unpickled. # __setstate__(self, state) # When the object is unpickled, if __setstate__ is defined the object's state will be passed to it instead of directly applied to the object's __dict__. This goes hand in hand with __getstate__: when both are defined, you can represent the object's pickled state however you want with whatever you want. # __reduce__(self) # When defining extension types (i.e., types implemented using Python's C API), you have to tell Python how to pickle them if you want them to pickle them. __reduce__() is called when an object defining it is pickled. It can either return a string representing a global name that Python will look up and pickle, or a tuple. The tuple contains between 2 and 5 elements: a callable object that is called to recreate the object, a tuple of arguments for that callable object, state to be passed to __setstate__ (optional), an iterator yielding list items to be pickled (optional), and an iterator yielding dictionary items to be pickled (optional). # __reduce_ex__(self) # __reduce_ex__ exists for compatibility. If it is defined, __reduce_ex__ will be called over __reduce__ on pickling. __reduce__ can be defined as well for older versions of the pickling API that did not support __reduce_ex__. # An Example # Our example is a Slate, which remembers what its values # have been and when those values were written to it. # However, this particular slate goes blank each time # it is pickled: the current value will not be saved. # import time # class Slate: # '''Class to store a string and a changelog, and forget its value when # pickled.''' # def __init__(self, value): # self.value = value # self.last_change = time.asctime() # self.history = {} # def change(self, new_value): # # Change the value. Commit last value to history # self.history[self.last_change] = self.value # self.value = new_value # self.last_change = time.asctime() # def print_changes(self): # print 'Changelog for Slate object:' # for k, v in self.history.items(): # print '%s\t %s' % (k, v) # def __getstate__(self): # # Deliberately do not return self.value or self.last_change. # # We want to have a "blank slate" when we unpickle. # return self.history # def __setstate__(self, state): # # Make self.history = state and last_change and value undefined # self.history = state # self.value, self.last_change = None, None # Conclusion # The goal of this guide is to bring something to anyone that reads it, regardless of their experience with Python or object-oriented programming. If you're just getting started with Python, you've gained valuable knowledge of the basics of writing feature-rich, elegant, and easy-to-use classes. If you're an intermediate Python programmer, you've probably picked up some slick new concepts and strategies and some good ways to reduce the amount of code written by you and clients. If you're an expert Pythonista, you've been refreshed on some of the stuff you might have forgotten about and maybe picked up a few new tricks along the way. Whatever your experience level, I hope that this trip through Python's special methods has been truly magical. (I couldn't resist the final pun!) # Appendix 1: How to Call Magic Methods # Some of the magic methods in Python directly map to built-in functions; in this case, how to invoke them is fairly obvious. However, in other cases, the invocation is far less obvious. This appendix is devoted to exposing non-obvious syntax that leads to magic methods getting called. # Magic Method When it gets invoked (example) Explanation # __new__(cls [,...]) instance = MyClass(arg1, arg2) __new__ is called on instance creation # __init__(self [,...]) instance = MyClass(arg1, arg2) __init__ is called on instance creation # __cmp__(self, other) self == other, self > other, etc. Called for any comparison # __pos__(self) +self Unary plus sign # __neg__(self) -self Unary minus sign # __invert__(self) ~self Bitwise inversion # __index__(self) x[self] Conversion when object is used as index # __nonzero__(self) bool(self) Boolean value of the object # __getattr__(self, name) self.name # name doesn't exist Accessing nonexistent attribute # __setattr__(self, name, val) self.name = val Assigning to an attribute # __delattr__(self, name) del self.name Deleting an attribute # __getattribute__(self, name) self.name Accessing any attribute # __getitem__(self, key) self[key] Accessing an item using an index # __setitem__(self, key, val) self[key] = val Assigning to an item using an index # __delitem__(self, key) del self[key] Deleting an item using an index # __iter__(self) for x in self Iteration # __contains__(self, value) value in self, value not in self Membership tests using in # __call__(self [,...]) self(args) "Calling" an instance # __enter__(self) with self as x: with statement context managers # __exit__(self, exc, val, trace) with self as x: with statement context managers # __getstate__(self) pickle.dump(pkl_file, self) Pickling # __setstate__(self) data = pickle.load(pkl_file) Pickling
63.368932
786
0.735254
51c8073449214e02e876fec13f4eafe26e17ae37
7,161
py
Python
digits/dataset/generic/views.py
Linda-liugongzi/DIGITS-digits-py3
6df5eb6972574a628b9544934518ec8dfa9c7439
[ "BSD-3-Clause" ]
null
null
null
digits/dataset/generic/views.py
Linda-liugongzi/DIGITS-digits-py3
6df5eb6972574a628b9544934518ec8dfa9c7439
[ "BSD-3-Clause" ]
null
null
null
digits/dataset/generic/views.py
Linda-liugongzi/DIGITS-digits-py3
6df5eb6972574a628b9544934518ec8dfa9c7439
[ "BSD-3-Clause" ]
null
null
null
# Copyright (c) 2016-2017, NVIDIA CORPORATION. All rights reserved. import os # Find the best implementation available try: from io import StringIO, BytesIO except ImportError: from io import StringIO, BytesIO from caffe.proto import caffe_pb2 import flask import matplotlib as mpl import matplotlib.pyplot as plt import numpy as np import PIL.Image from .forms import GenericDatasetForm from .job import GenericDatasetJob from digits import extensions, utils from digits.utils.constants import COLOR_PALETTE_ATTRIBUTE from digits.utils.routing import request_wants_json, job_from_request from digits.utils.lmdbreader import DbReader from digits.webapp import scheduler from flask_babel import lazy_gettext as _ blueprint = flask.Blueprint(__name__, __name__) @blueprint.route('/new/<extension_id>', methods=['GET']) @utils.auth.requires_login def new(extension_id): """ Returns a form for a new GenericDatasetJob """ form = GenericDatasetForm() # Is there a request to clone a job with ?clone=<job_id> utils.forms.fill_form_if_cloned(form) extension = extensions.data.get_extension(extension_id) if extension is None: raise ValueError("Unknown extension '%s'" % extension_id) extension_form = extension.get_dataset_form() # Is there a request to clone a job with ?clone=<job_id> utils.forms.fill_form_if_cloned(extension_form) template, context = extension.get_dataset_template(extension_form) rendered_extension = flask.render_template_string(template, **context) return flask.render_template( 'datasets/generic/new.html', extension_title=extension.get_title(), extension_id=extension_id, extension_html=rendered_extension, form=form ) @blueprint.route('/create/<extension_id>.json', methods=['POST']) @blueprint.route('/create/<extension_id>', methods=['POST'], strict_slashes=False) @utils.auth.requires_login(redirect=False) def create(extension_id): """ Creates a new GenericDatasetJob Returns JSON when requested: {job_id,name,status} or {errors:[]} """ form = GenericDatasetForm() form_valid = form.validate_on_submit() extension_class = extensions.data.get_extension(extension_id) extension_form = extension_class.get_dataset_form() extension_form_valid = extension_form.validate_on_submit() if not (extension_form_valid and form_valid): # merge errors errors = form.errors.copy() errors.update(extension_form.errors) template, context = extension_class.get_dataset_template( extension_form) rendered_extension = flask.render_template_string( template, **context) if request_wants_json(): return flask.jsonify({'errors': errors}), 400 else: return flask.render_template( 'datasets/generic/new.html', extension_title=extension_class.get_title(), extension_id=extension_id, extension_html=rendered_extension, form=form, errors=errors), 400 # create instance of extension class extension = extension_class(**extension_form.data) job = None try: # create job job = GenericDatasetJob( username=utils.auth.get_username(), name=form.dataset_name.data, group=form.group_name.data, backend=form.dsopts_backend.data, feature_encoding=form.dsopts_feature_encoding.data, label_encoding=form.dsopts_label_encoding.data, batch_size=int(form.dsopts_batch_size.data), num_threads=int(form.dsopts_num_threads.data), force_same_shape=form.dsopts_force_same_shape.data, extension_id=extension_id, extension_userdata=extension.get_user_data(), ) # Save form data with the job so we can easily clone it later. utils.forms.save_form_to_job(job, form) utils.forms.save_form_to_job(job, extension_form) # schedule tasks scheduler.add_job(job) if request_wants_json(): return flask.jsonify(job.json_dict()) else: return flask.redirect(flask.url_for( 'digits.dataset.views.show', job_id=job.id())) except: if job: scheduler.delete_job(job) raise @blueprint.route('/explore', methods=['GET']) @utils.auth.requires_login def explore(): """ Returns a gallery consisting of the images of one of the dbs """ job = job_from_request() # Get LMDB db = job.path(flask.request.args.get('db')) db_path = job.path(db) if (os.path.basename(db_path) == 'labels' and COLOR_PALETTE_ATTRIBUTE in job.extension_userdata and job.extension_userdata[COLOR_PALETTE_ATTRIBUTE]): # assume single-channel 8-bit palette palette = job.extension_userdata[COLOR_PALETTE_ATTRIBUTE] palette = np.array(palette).reshape((len(palette) / 3, 3)) / 255. # normalize input pixels to [0,1] norm = mpl.colors.Normalize(vmin=0, vmax=255) # create map cmap = plt.cm.ScalarMappable(norm=norm, cmap=mpl.colors.ListedColormap(palette)) else: cmap = None page = int(flask.request.args.get('page', 0)) size = int(flask.request.args.get('size', 25)) reader = DbReader(db_path) count = 0 imgs = [] min_page = max(0, page - 5) total_entries = reader.total_entries max_page = min((total_entries - 1) / size, page + 5) pages = list(range(min_page, max_page + 1)) for key, value in reader.entries(): if count >= page * size: datum = caffe_pb2.Datum() datum.ParseFromString(value) if not datum.encoded: raise RuntimeError(_("Expected encoded database")) s = BytesIO() s.write(datum.data) s.seek(0) img = PIL.Image.open(s) if cmap and img.mode in ['L', '1']: data = np.array(img) data = cmap.to_rgba(data) * 255 data = data.astype('uint8') # keep RGB values only, remove alpha channel data = data[:, :, 0:3] img = PIL.Image.fromarray(data) imgs.append({"label": None, "b64": utils.image.embed_image_html(img)}) count += 1 if len(imgs) >= size: break return flask.render_template( 'datasets/images/explore.html', page=page, size=size, job=job, imgs=imgs, labels=None, pages=pages, label=None, total_entries=total_entries, db=db) def show(job, related_jobs=None): """ Called from digits.dataset.views.show() """ return flask.render_template('datasets/generic/show.html', job=job, related_jobs=related_jobs) def summary(job): """ Return a short HTML summary of a GenericDatasetJob """ return flask.render_template('datasets/generic/summary.html', dataset=job)
32.55
98
0.647256
e0728e26e0dfda931a10a9fdb2417adf4af9bb16
15,775
py
Python
FeatureExtraction/BroExtraction/ConnectionFeatures.py
frenky-strasak/HTTPSDetector
2b0c8d171b345ec0051603fc3c2730b6e62a295e
[ "MIT" ]
9
2020-02-06T18:39:58.000Z
2022-02-04T12:14:20.000Z
FeatureExtraction/BroExtraction/ConnectionFeatures.py
frenky-strasak/HTTPSDetector
2b0c8d171b345ec0051603fc3c2730b6e62a295e
[ "MIT" ]
1
2018-03-30T08:47:27.000Z
2019-04-30T09:08:23.000Z
FeatureExtraction/BroExtraction/ConnectionFeatures.py
frenky-strasak/HTTPSDetector
2b0c8d171b345ec0051603fc3c2730b6e62a295e
[ "MIT" ]
4
2018-07-13T16:31:11.000Z
2021-01-07T07:58:05.000Z
import numpy from Connection4tuple import Connection4tuple class ConnectionFeatures(Connection4tuple): def __init__(self, tuple_index): super(ConnectionFeatures, self).__init__(tuple_index) """ ---------- Get Feature ------------------- """ # --------------------------------------------------- # 01. ---------- Number of flows -------------------- def get_number_of_flows(self): return self.get_number_of_ssl_flows() + self.get_number_of_not_ssl_flows() # --------------------------------------------------- # ---------- Duration of flows ---------------------- # 02. Average def get_average_of_duration(self): # self.check_zero_dividing(self.flow_which_has_duration_number, "flow_which_has_duration_number is 0 !!!") if self.flow_which_has_duration_number != 0: return self.average_duration / float(self.flow_which_has_duration_number) return -1 # 03. Standard deviation def get_standard_deviation_duration(self): # self.check_zero_dividing(self.flow_which_has_duration_number, "flow_which_has_duration_number is 0 !!!") # EX = self.average_duration / float(self.flow_which_has_duration_number) # EX2 = self.average_duration_power / float(self.flow_which_has_duration_number) # E(X^2) # DX = EX2 - EX*EX # return pow(DX, 0.5) if len(self.duration_list) != 0: return numpy.std(self.duration_list) return -1 # 04. Percent of flows which are bigger or less than standard deviation with average def get_percent_of_standard_deviation_duration(self): # self.check_zero_dividing(self.flow_which_has_duration_number, "flow_which_has_duration_number is 0 !!!") if len(self.duration_list) != 0: out_of_bounds = 0 lower_level = self.get_average_of_duration() - self.get_standard_deviation_duration() upper_level = self.get_average_of_duration() + self.get_standard_deviation_duration() for i in range(len(self.duration_list)): if self.duration_list[i] < lower_level: out_of_bounds += 1 elif self.duration_list[i] > upper_level: out_of_bounds += 1 return out_of_bounds / float(self.flow_which_has_duration_number) return -1 # ------------------------------------------------------------------- # 05 -------- Total payload size of flows the originator sent -------- def get_total_size_of_flows_orig(self): return self.total_size_of_flows_orig # ------------------------------------------------------------------ # 06 -------- Total payload size of flows the responder sent -------- def get_total_size_of_flows_resp(self): return self.total_size_of_flows_resp # --------------------------------------------------------------------------- # 07 ------ Ratio of responder payload sizes and originator payload sizes ---- def get_ratio_of_sizes(self): # self.check_zero_dividing(self.total_size_of_flows_orig, "Original size is 0 !!!") if self.total_size_of_flows_orig != 0: return self.total_size_of_flows_resp / float(self.total_size_of_flows_orig) return -1 # -------------------------------------------------------------------- # ------ State of connection ----------------------------------------- # 08 Percent of established connection def get_percent_of_established_states(self): establihed_states = 0 total_value_states = 0 for key in self.state_of_connection_dict.keys(): total_value_states += self.state_of_connection_dict[key] if total_value_states != 0: establihed_states += self.state_of_connection_dict.get('SF', 0) establihed_states += self.state_of_connection_dict.get('S1', 0) establihed_states += self.state_of_connection_dict.get('S2', 0) establihed_states += self.state_of_connection_dict.get('S3', 0) establihed_states += self.state_of_connection_dict.get('RSTO', 0) # delete this establihed_states += self.state_of_connection_dict.get('RSTR', 0) # delete this return (establihed_states / float(total_value_states)) return -1 """ These functions are not used. """ # 09 - return 4 items # def get_based_states_ratio(self): # SF_S1 = self.state_of_connection_dict['SF'] + self.state_of_connection_dict['S1'] # S0 = self.state_of_connection_dict['S0'] # OTH = self.state_of_connection_dict['OTH'] # REJ = self.state_of_connection_dict['REJ'] # biggest = max(SF_S1, S0, OTH, REJ) / 100.0 # return SF_S1 / float(biggest), S0 / float(biggest), OTH / float(biggest), REJ / float(biggest) # # # 10 - return 6 items # def get_extended_states_ratio(self): # SF_S1 = self.state_of_connection_dict['SF'] + self.state_of_connection_dict['S1'] # S0 = self.state_of_connection_dict['S0'] # OTH = self.state_of_connection_dict['OTH'] # REJ = self.state_of_connection_dict['REJ'] # RSTO_1 = self.state_of_connection_dict['RSTO'] + self.state_of_connection_dict['RSTR'] + self.state_of_connection_dict['S2'] + self.state_of_connection_dict['S3'] # RSTO_2 = self.state_of_connection_dict['RSTOS0'] + self.state_of_connection_dict['RSTRH'] + self.state_of_connection_dict['SH'] + self.state_of_connection_dict['SHR'] # biggest = max(SF_S1, S0, OTH, REJ, RSTO_1, RSTO_2) / 100.0 # return SF_S1 / float(biggest), S0 / float(biggest), OTH / float(biggest), REJ / float(biggest), RSTO_1 / float(biggest), RSTO_2 / float(biggest) # 11 inbound packets == resp_pkts (18) # Number of packets that the responder sent. def get_inbound_pckts(self): return self.inbound_packtes # 12 outbound packets == orig_pkts (16) def get_outbound_pckts(self): return self.outbound_packtes # Periodicity # 13 Average of periodicity def get_periodicity_average(self): per_list = self.get_periodicity_list() sum = 0 for i in range(len(per_list)): sum += per_list[i] if len(per_list) != 0: return sum / float(len(per_list)) # print "periodicity list is zero. Number of flows:", self.get_number_of_flows() return -1 # 14 def get_periodicity_standart_deviation(self): per_list = self.get_periodicity_list() if len(per_list) != 0: # sum = 0 # for i in range(len(per_list)): # sum += pow(per_list[i], 2) # EX2 = sum / float(len(per_list)) # DX = EX2 - EX * EX # return pow(DX, 0.5) return numpy.std(self.get_periodicity_list()) return -1 # ----------------------------------------------------- # 15 ------ Ratio of not ssl flows and ssl flows ------- def get_ssl_ratio(self): self.check_zero_dividing(len(self.ssl_flow_list), "Original size is 0 !!!") return len(self.not_ssl_flow_list) / float(len(self.ssl_flow_list)) # 16 Average Public key lenghts # certificate feature def get_average_public_key(self): total = 0 index = 0 for key in self.certificate_key_length_dict.keys(): total += self.certificate_key_length_dict[key] * int(key) index += 1 if index != 0: return total / float(index) return -1 # ------------------------------------------------------ # 17 Version of ssl ratio def get_tls_version_ratio(self): tls = 0 ssl = 0 total = 0 for key in self.version_of_ssl_dict.keys(): if 'tls' in key.lower(): tls += self.version_of_ssl_dict[key] elif 'ssl' in key.lower(): ssl += self.version_of_ssl_dict[key] total += self.version_of_ssl_dict[key] if total != 0: return tls / float(total) return -1 # ---------------------------------------------- # Certificate validation length # 18 Average of certificate length # certificate_valid_length = sum of certificate valid length in days # certificate_valid_number = number of certificate* def get_average_of_certificate_length(self): # self.check_zero_dividing(self.certificate_valid_number, "certificate_valid_number is 0 !!!") if self.certificate_valid_number != 0: if numpy.mean(self.temp_list) != self.certificate_valid_length / float(self.certificate_valid_number): print "Error: numpy mean and mean by hand are not same." return self.certificate_valid_length / float(self.certificate_valid_number) return -1 # 19 def get_standart_deviation_cert_length(self): # self.check_zero_dividing(self.certificate_valid_number, "certificate_valid_number is 0 !!!") if self.certificate_valid_number != 0: EX = self.certificate_valid_length / self.certificate_valid_number EX2 = self.certificate_valid_length_pow / self.certificate_valid_number DX = EX2 - (EX * EX) # if DX < 0: # print "EX:", (EX*EX) # print "EX2:", EX2 # print "DX:", DX # print self.temp_list # print "std:", numpy.std(self.temp_list) # print len(self.x509_list) return pow(DX, 0.5) return -1 # --------------------------------------------- # 20 Validity of the certificate during the capture # certificate feature # 0 == no certficate was out of validity range def is_valid_certificate_during_capture(self): if len(self.cert_percent_validity) != 0: return self.not_valid_certificate_number return -1 # 21 Amount of different certificates # certificate feature def get_amount_diff_certificates(self): return len(self.certificate_serial_dict.keys()) # ------------------------------------------------------- # 22 Number of domains in certificate # certificate feature def get_number_of_domains_in_certificate(self): if self.number_san_domains_index != 0: return self.number_san_domains / float(self.number_san_domains_index) return -1 # 23 Certificate ratio # certificate feature # List of length of certificate validity length. def get_certificate_ratio(self): if len(self.cert_percent_validity) != 0: temp = 0 for value in self.cert_percent_validity: temp += value return temp / float(len(self.cert_percent_validity)) else: return -1 # 24 Certificate path # number of signed certificate in our first certificate # It is EX (vazeny prumer) def get_number_of_certificate_path(self): up = 0 down = 0 for key in self.certificate_path.keys(): up += int(key) * self.certificate_path[key] down += self.certificate_path[key] if down != 0: return up/float(down) return -1 # 25 x509/ssl ratio # ratio about how many ssl log has x509 information in this connection def x509_ssl_ratio(self): if len(self.ssl_logs_list) == 0: return -1 return len(self.x509_list) / float(len(self.ssl_logs_list)) # 26 SNI and SSL ratio # ratio, how many ssl flows have SNI (server name) def SNI_ssl_ratio(self): return self.ssl_with_SNI / float(len(self.ssl_logs_list)) # 27 Self_signed cert and all cert ratio def self_signed_ratio(self): # number_of_certificate = len(self.certificate_serial_dict.keys()) if len(self.ssl_logs_list) != 0: return self.self_signed_cert / float(len(self.ssl_logs_list)) return -1 # 28 Is there any SNI, which not in san.dns ? def is_SNIs_in_SNA_dns(self): if len(self.is_SNI_in_san_dns) != 0: for a in self.is_SNI_in_san_dns: if a == 0: return 0 return 1 return -1 # 29 if SNI is IP, so dst is same ip? def get_SNI_equal_DstIP(self): return self.SNI_equal_DstIP # 30 Is there any CN, which not in san.dns ? def is_CNs_in_SNA_dns(self): if len(self.is_CN_in_SAN_list) != 0: for a in self.is_CN_in_SAN_list: if a == 0: return 0 return 1 return -1 """ ----------------- New Features ------------------ """ # 31 How many ssl lines has different SNI ? def ratio_of_differ_SNI_in_ssl_log(self): # Delete stars. for i in range(0, len(self.SNI_list)): if '*' in self.SNI_list[i]: self.SNI_list[i] = self.SNI_list[i].replace('*', '') return compute_differents_in_lines(self.SNI_list) # 32 How many ssl lines has different subject def ratio_of_differ_subject_in_ssl_log(self): return compute_differents_in_lines(self.subject_ssl_list) # 33 How many ssl lines has differ issuer def ratio_of_differ_issuer_in_ssl_log(self): return compute_differents_in_lines(self.issuer_ssl_list) # 34 How many cert has differ subject def ratio_of_differ_subject_in_cert(self): return compute_differents_in_lines(self.subject_x509_list) # 35 How many cert has differ issuer def ratio_of_differ_issuer_in_cert(self): return compute_differents_in_lines(self.issuer_x509_list) # 36 How many cert has differ san dns def ratio_of_differ_sandns_in_cert(self): return compute_differents_in_lines(self.san_x509_list) # 37 Do ssl and x509 lines have same subjects? def ratio_of_same_subjects(self): if len(self.x509_list) == 0: return -1 return self.subject_diff / float(len(self.x509_list)) # 38 Do ssl and x509 lines have same issuer? def ratio_of_same_issuer(self): if len(self.x509_list) == 0: return -1 return self.issuer_diff / float(len(self.x509_list)) # 39 Is SNI and CN same? def ratio_is_same_CN_and_SNI(self): if len(self.x509_list) == 0: return -1 return self.SNI_is_in_CN / float(len(self.x509_list)) # 40 Certificate exponent average def average_certificate_exponent(self): if len(self.certificate_serial_dict.keys()) == 0: return -1 return self.certificate_exponent / float(len(self.certificate_serial_dict.keys())) # 41 Is server name in top-level-domain ? def is_SNI_in_top_level_domain(self): if self.ssl_with_SNI == 0: return -1 return self.top_level_domain_error / float(self.ssl_with_SNI) # 42 Is certificate path right ? (issuer of first certificate is subject in second cert...) def ratio_certificate_path_error(self): if len(self.ssl_logs_list): return -1 return self.certificate_path_error / float(len(self.ssl_logs_list)) # 43 Missing certificate in certificate path. def ratio_missing_cert_in_cert_path(self): if len(self.ssl_logs_list): return -1 return self.missing_cert_in_cert_path / float(len(self.ssl_logs_list)) """ ------- Computation method --------- """ def compute_differents_in_lines(array): _dict = dict() for item in array: try: _dict[item] += 1 except: _dict[item] = 1 if len(array) == 0: return -1.0 if len(_dict.keys()) == 1: return 0.0 return len(_dict.keys()) / float(len(array))
40.448718
176
0.607163
299d55f7ac04b9ef653d4f4d4d2251a531a84c51
11,688
py
Python
evaluation/evalCorr/getResults.py
tim885/RANSAC-Flow
4a10c204fbb8a1ea92826263661761f91c91839c
[ "MIT" ]
1
2020-11-20T19:35:01.000Z
2020-11-20T19:35:01.000Z
evaluation/evalCorr/getResults.py
ducha-aiki/RANSAC-Flow
1cfa2707ac695ca29dab4011eca81e0e24807221
[ "MIT" ]
null
null
null
evaluation/evalCorr/getResults.py
ducha-aiki/RANSAC-Flow
1cfa2707ac695ca29dab4011eca81e0e24807221
[ "MIT" ]
1
2021-01-28T12:24:46.000Z
2021-01-28T12:24:46.000Z
import numpy as np import torch import kornia.geometry as tgm import pickle import os from PIL import Image from torchvision import transforms from torch.nn import functional as F import cv2 from pathlib import Path from tqdm import tqdm import argparse import pandas as pd def alignmentError(wB, hB, wA, hA, XA, YA, XB, YB, flow, match2, pixelGrid) : estimX = flow.narrow(3, 1, 1).view(1, 1, hB, wB) estimY = flow.narrow(3, 0, 1).view(1, 1, hB, wB) estimY = ((estimY + 1) * 0.5 * (wA - 1)) estimX = ((estimX + 1) * 0.5 * (hA - 1)) match = match2.squeeze().numpy() estimY = estimY.squeeze().numpy() estimX = estimX.squeeze().numpy() xa, ya, xb, yb = XA.astype(np.int64), YA.astype(np.int64), XB.astype(np.int64), YB.astype(np.int64) index = np.where(match[yb, xb] > 0.5)[0] nbAlign = len(index) if nbAlign > 0 : xa, ya, xb, yb = xa[index], ya[index], xb[index], yb[index] xaH = estimY[yb, xb] yaH = estimX[yb, xb] pixelDiff = ((xaH - xa) ** 2 + (yaH - ya) ** 2)**0.5 pixelDiffT = pixelDiff.reshape((-1, 1)) pixelDiffT = np.sum(pixelDiffT <= pixelGrid, axis = 0) else : pixelDiffT = np.zeros(pixelGrid.shape[1]) return pixelDiffT, nbAlign ## resize image according to the minsize, at the same time resize the x,y coordinate def ResizeMinResolution(minSize, I, x, y, strideNet) : x = np.array(list(map(float, x.split(';')))).astype(np.float32) y = np.array(list(map(float, y.split(';')))).astype(np.float32) w, h = I.size ratio = min(w / float(minSize), h / float(minSize)) new_w, new_h = round(w/ ratio), round(h / ratio) new_w, new_h = new_w // strideNet * strideNet , new_h // strideNet * strideNet ratioW, ratioH = new_w / float(w), new_h / float(h) I = I.resize((new_w, new_h), resample=Image.LANCZOS) x, y = x * ratioW, y * ratioH return I, x, y ## resize image according to the minsize, at the same time resize the x,y coordinate ## if it is megadepth dataset, remove the point that are outside the image (errors of 3D points) def ResizeMinResolution_megadepth(minSize, I, x, y, strideNet) : x = np.array(list(map(float, x.split(';')))).astype(np.float32) y = np.array(list(map(float, y.split(';')))).astype(np.float32) w, h = I.size ratio = min(w / float(minSize), h / float(minSize)) new_w, new_h = round(w/ ratio), round(h / ratio) new_w, new_h = new_w // strideNet * strideNet , new_h // strideNet * strideNet ratioW, ratioH = new_w / float(w), new_h / float(h) I = I.resize((new_w, new_h), resample=Image.LANCZOS) x, y = x * ratioW, y * ratioH index_valid = (x > 0) * (x < new_w) * (y > 0) * (y < new_h) return I, x, y, index_valid def getFlow(pairID, finePath, flowList, coarsePath, maskPath, multiH, th) : find = False for flowName in flowList : if flowName.split('_')[1] == str(pairID) : nbH = flowName.split('_')[2].split('H')[0] find = True break if not find : return [], [] flow = torch.from_numpy ( np.load(os.path.join(finePath, 'flow_{:d}_{}H.npy'.format(pairID, nbH))).astype(np.float32) ) param = torch.from_numpy ( np.load(os.path.join(coarsePath, 'flow_{:d}_{}H.npy'.format(pairID, nbH))).astype(np.float32) ) match = np.load(os.path.join(finePath, 'mask_{:d}_{}H.npy'.format(pairID, nbH))) matchBG = np.load(os.path.join(maskPath, 'maskBG_{:d}_{}H.npy'.format(pairID, nbH))) h, w = flow.size()[2], flow.size()[3] #### -- grid gridY = torch.linspace(-1, 1, steps = h * 8).view(1, -1, 1, 1).expand(1, h * 8, w * 8, 1) gridX = torch.linspace(-1, 1, steps = w * 8).view(1, 1, -1, 1).expand(1, h * 8, w * 8, 1) grid = torch.cat((gridX, gridY), dim=3) warper = tgm.HomographyWarper(h * 8, w * 8) coarse = warper.warp_grid(param) flow = F.interpolate(input = flow, scale_factor = 8, mode='bilinear') flow = flow.permute(0, 2, 3, 1) flowUp = torch.clamp(flow + grid, min=-1, max=1) flow = F.grid_sample(coarse.permute(0, 3, 1, 2), flowUp).permute(0, 2, 3, 1).contiguous() match = torch.from_numpy(match) match = F.interpolate(input = match, scale_factor = 8, mode='bilinear') match = match.narrow(1, 0, 1) * F.grid_sample(match.narrow(1, 1, 1), flowUp) * (((flow.narrow(3, 0, 1) >= -1) * ( flow.narrow(3, 0, 1) <= 1)).type(torch.FloatTensor) * ((flow.narrow(3, 1, 1) >= -1) * ( flow.narrow(3, 1, 1) <= 1)).type(torch.FloatTensor)).permute(0, 3, 1, 2) #match = match.narrow(1, 0, 1) * (((flow.narrow(3, 0, 1) >= -1) * ( flow.narrow(3, 0, 1) <= 1)).type(torch.FloatTensor) * ((flow.narrow(3, 1, 1) >= -1) * ( flow.narrow(3, 1, 1) <= 1)).type(torch.FloatTensor)).permute(0, 3, 1, 2) match = match.permute(0, 2, 3, 1) flow = torch.clamp(flow, min=-1, max=1) flowGlobal = flow[:1] match_binary = match[:1] >= th matchGlobal = match[:1] ## aggregate mask if multiH : for i in range(1, len(match)) : tmp_match = (match.narrow(0, i, 1) >= th) * (~ match_binary) matchGlobal[tmp_match] = match.narrow(0, i, 1)[tmp_match] match_binary = match_binary + tmp_match tmp_match = tmp_match.expand_as(flowGlobal) flowGlobal[tmp_match] = flow.narrow(0, i, 1)[tmp_match] return flowGlobal, matchGlobal def getFlow_Coarse(pairID, flowList, finePath, coarsePath) : find = False for flowName in flowList : if flowName.split('_')[1] == str(pairID) : nbH = flowName.split('_')[2].split('H')[0] find = True break if not find : return [], [] flow = torch.from_numpy ( np.load(os.path.join(finePath, 'flow_{:d}_{}H.npy'.format(pairID, nbH))).astype(np.float32) ) param = torch.from_numpy ( np.load(os.path.join(coarsePath, 'flow_{:d}_{}H.npy'.format(pairID, nbH))).astype(np.float32) ) h, w = flow.size()[2], flow.size()[3] #### -- grid gridY = torch.linspace(-1, 1, steps = h * 8).view(1, -1, 1, 1).expand(1, h * 8, w * 8, 1) gridX = torch.linspace(-1, 1, steps = w * 8).view(1, 1, -1, 1).expand(1, h * 8, w * 8, 1) grid = torch.cat((gridX, gridY), dim=3) warper = tgm.HomographyWarper(h * 8, w * 8) coarse = warper.warp_grid(param.narrow(0, 0, 1)) return coarse, torch.ones(1, h * 8, w * 8, 1) parser = argparse.ArgumentParser() ## model parameters parser.add_argument('--multiH', action='store_true', help='multiple homograhy or not') parser.add_argument('--onlyCoarse', action='store_true', help='only Coarse') parser.add_argument('--minSize', type=int, default = 480, help='min size') parser.add_argument('--matchabilityTH',type=float, nargs='+', default = [0], help='matchability threshold list') parser.add_argument('--coarsePth', type=str, help='prediction file coarse flow ') parser.add_argument('--finePth', type=str, help='prediction file fine flow') parser.add_argument('--maskPth', type=str, help='prediction file mask') parser.add_argument('--th', type=float, default=0.95, help='threshold') parser.add_argument('--dataset', type=str, default='MegaDepth', help='RobotCar or megadepth') subparsers = parser.add_subparsers(title="test dataset", dest="subcommand") robotCar = subparsers.add_parser("RobotCar", help="parser for training arguments") ## test file robotCar.add_argument('--testDir', type=str, default = '../../data/RobotCar/imgs/', help='RGB image directory') robotCar.add_argument('--testCSV', type=str, default = '../../data/RobotCar/test6511.csv', help='RGB image directory') megaDepth1600 = subparsers.add_parser("MegaDepth", help="parser for training arguments") ## test file megaDepth1600.add_argument('--testDir', type=str, default = '../../data/MegaDepth/Test/test1600Pairs', help='RGB image directory') megaDepth1600.add_argument('--testCSV', type=str, default = '../../data/MegaDepth/Test/test1600Pairs.csv', help='RGB image directory') megaDepth1600.add_argument('--beginIndex', type=int, default = 0, help='begin index') megaDepth1600.add_argument('--endIndex', type=int, default = 1600, help='end index') args = parser.parse_args() args = parser.parse_args() print (args) minSize = args.minSize strideNet = 16 ## Loading data # Set up for real validation df = pd.read_csv(args.testCSV, dtype=str) precAllAlign = {} validAlign = {} for th in args.matchabilityTH : precAllAlign[th] = np.zeros(8) validAlign[th] = 0 pixelGrid = np.around(np.logspace(0, np.log10(36), 8).reshape(-1, 8)) print ('Evaluation for pixel grid : \n') print ('--> ', pixelGrid, '\n') nbImg = len(df) flowList = os.listdir(args.finePth) for i in tqdm(range(nbImg)) : scene = df['scene'][i] #### -- Source Image feature Is = Image.open( os.path.join( os.path.join(args.testDir, scene), df['source_image'][i]) ).convert('RGB') if scene != '/' else Image.open( os.path.join( args.testDir, df['source_image'][i]) ).convert('RGB') if args.dataset == 'RobotCar' : Is, Xs, Ys = ResizeMinResolution(args.minSize, Is, df['XA'][i], df['YA'][i], strideNet) Isw, Ish = Is.size #### -- Target Image feature It = Image.open( os.path.join( os.path.join(args.testDir, scene), df['target_image'][i]) ).convert('RGB') if scene != '/' else Image.open( os.path.join( args.testDir, df['target_image'][i]) ).convert('RGB') It, Xt, Yt = ResizeMinResolution(args.minSize, It, df['XB'][i], df['YB'][i], strideNet) else : Is, Xs, Ys, valids = ResizeMinResolution_megadepth(args.minSize, Is, df['XA'][i], df['YA'][i], strideNet) Isw, Ish = Is.size #### -- Target Image feature It = Image.open( os.path.join( os.path.join(args.testDir, scene), df['target_image'][i]) ).convert('RGB') if scene != '/' else Image.open( os.path.join( args.testDir, df['target_image'][i]) ).convert('RGB') It, Xt, Yt, validt = ResizeMinResolution_megadepth(args.minSize, It, df['XB'][i], df['YB'][i], strideNet) index_valid = valids * validt Xs, Ys, Xt, Yt = Xs[index_valid], Ys[index_valid], Xt[index_valid], Yt[index_valid] Itw, Ith = It.size flow, match = getFlow_Coarse(i, flowList, args.finePth, args.coarsePth) if args.onlyCoarse else getFlow(i, args.finePth, flowList, args.coarsePth, args.maskPth, args.multiH, args.th) if len(flow) == 0 : precAllAlign[0] = precAllAlign[th] + np.zeros(8) validAlign[0] += len(Xs) continue for th in args.matchabilityTH : matchTH = (match >= th ).type(torch.FloatTensor) matchabilityBinary = matchTH * (((flow.narrow(3, 0, 1) >= -1) * ( flow.narrow(3, 0, 1) <= 1)).type(torch.FloatTensor) * ((flow.narrow(3, 1, 1) >= -1) * ( flow.narrow(3, 1, 1) <= 1))).permute(0, 3, 1, 2).type(torch.FloatTensor) if th > 0 else torch.ones(match.size()) pixelDiffT, nbAlign = alignmentError(Itw, Ith, Isw, Ish, Xs, Ys, Xt, Yt, flow, matchabilityBinary, pixelGrid) precAllAlign[th] = precAllAlign[th] + pixelDiffT validAlign[th] += nbAlign for th in args.matchabilityTH : msg = '\nthreshold {:.1f}, precision '.format(th) print (msg, precAllAlign[th] / validAlign[th], validAlign[th])
39.620339
279
0.603183
7e323ef2bc2fa5d513d1a7e7d08266b2e7b533ac
9,862
py
Python
lib/reaction/direction.py
avcopan/mechdriver
63069cfb21d6fdb6d0b091dfe204b1e09c8e10a1
[ "Apache-2.0" ]
null
null
null
lib/reaction/direction.py
avcopan/mechdriver
63069cfb21d6fdb6d0b091dfe204b1e09c8e10a1
[ "Apache-2.0" ]
null
null
null
lib/reaction/direction.py
avcopan/mechdriver
63069cfb21d6fdb6d0b091dfe204b1e09c8e10a1
[ "Apache-2.0" ]
null
null
null
""" Functions to handle direction of a reaction """ import os import automol import autofile import chemkin_io from ioformat import remove_whitespace # from routines.es._routines import geom from lib.phydat import phycon from lib.filesys.mincnf import min_energy_conformer_locators from lib.filesys.inf import modify_orb_restrict from lib.amech_io.parser import ptt CLA_INP = 'inp/class.csv' # Main direction function def set_reaction_direction(reacs, prods, spc_dct, cla_dct, thy_info, ini_thy_info, save_prefix, direction='forw'): """ Set the reaction of a direction """ # Check if reaction is present in the class direction if cla_dct: given_class, flip_rxn = set_class_with_dct( cla_dct, reacs, prods) if flip_rxn: reacs, prods = prods, reacs else: given_class = None # If no class, given set direction to requested direction if given_class is not None: print(' Reaction present in class dct, Setting direction to that.') else: if direction == 'forw': print(' User requested forward direction.') elif direction == 'back': print(' User requested reverse direction, flipping reaction.') reacs, prods = prods, reacs elif direction == 'exo': print(' User requested exothermic direction.', 'Checking energies...') reacs, prods = assess_rxn_ene( reacs, prods, spc_dct, thy_info, ini_thy_info, save_prefix) print(' Running reaction as:') print(' {} = {}'.format('+'.join(reacs), '+'.join(prods))) return reacs, prods, given_class # Handle setting reaction directions with the class dictionary def set_class_with_dct(cla_dct, reacs, prods): """ set the class using the class dictionary """ rxn = (reacs, prods) rxn_rev = (prods, reacs) if rxn in cla_dct: given_class = cla_dct[rxn] flip_rxn = False elif rxn_rev in cla_dct: given_class = cla_dct[rxn_rev] flip_rxn = True else: given_class = None flip_rxn = False return given_class, flip_rxn def parse_rxn_class_file(job_path): """ Read the class dictionary """ if os.path.exists(os.path.join(job_path, CLA_INP)): print(' class.dat found. Reading contents...') cla_str = ptt.read_inp_str(job_path, CLA_INP, remove_comments='#') cla_dct = _build_cla_dct(cla_str) else: print(' No class.dat found.') cla_dct = {} return cla_dct def _build_cla_dct(cla_str): """ read file """ cla_dct = {} cla_str = remove_whitespace(cla_str) for line in cla_str.splitlines(): # try: [rxn_line, rclass] = line.split('||') reacs = chemkin_io.parser.reaction.reactant_names(rxn_line) prods = chemkin_io.parser.reaction.product_names(rxn_line) cla_dct[(reacs, prods)] = rclass # except: # print('*ERROR: Error in formatting line') # print(line) # sys.exit() return cla_dct # Functions for the exothermicity check def assess_rxn_ene(reacs, prods, spc_dct, thy_info, ini_thy_info, save_prefix): """ Check the directionality of the reaction """ rxn_ichs = [[], []] rxn_chgs = [[], []] rxn_muls = [[], []] for spc in reacs: rxn_ichs[0].append(spc_dct[spc]['inchi']) rxn_chgs[0].append(spc_dct[spc]['charge']) rxn_muls[0].append(spc_dct[spc]['mult']) for spc in prods: rxn_ichs[1].append(spc_dct[spc]['inchi']) rxn_chgs[1].append(spc_dct[spc]['charge']) rxn_muls[1].append(spc_dct[spc]['mult']) rxn_ene = reaction_energy( save_prefix, rxn_ichs, rxn_chgs, rxn_muls, thy_info, ini_thy_info) method1, method2 = thy_info, ini_thy_info if rxn_ene is None: rxn_ene = reaction_energy( save_prefix, rxn_ichs, rxn_chgs, rxn_muls, ini_thy_info, ini_thy_info) method1, method2 = ini_thy_info, ini_thy_info # except AssertionError: # rxn_ene = reaction_energy( # save_prefix, rxn_ichs, rxn_chgs, rxn_muls, ini_thy_info) # method = ini_thy_info # except IOError: # rxn_ene = reaction_energy( # save_prefix, rxn_ichs, rxn_chgs, rxn_muls, ini_thy_info) # method = ini_thy_info print(' Reaction energy is {:.2f} at {}//{} level'.format( rxn_ene*phycon.EH2KCAL, method1[1], method2[1])) if rxn_ene > 0: reacs, prods = prods, reacs print(' Reaction is endothermic, flipping reaction.') return reacs, prods def reaction_energy(save_prefix, rxn_ich, rxn_chg, rxn_mul, sp_thy_info, geo_thy_info): """ reaction energy """ rct_ichs, prd_ichs = rxn_ich rct_chgs, prd_chgs = rxn_chg rct_muls, prd_muls = rxn_mul rct_enes = reagent_energies( save_prefix, rct_ichs, rct_chgs, rct_muls, sp_thy_info, geo_thy_info) prd_enes = reagent_energies( save_prefix, prd_ichs, prd_chgs, prd_muls, sp_thy_info, geo_thy_info) if rct_enes is not None and prd_enes is not None: rxn_ene = sum(prd_enes) - sum(rct_enes) else: rxn_ene = None return rxn_ene def reagent_energies(save_prefix, rgt_ichs, rgt_chgs, rgt_muls, sp_thy_info, geo_thy_info): """ reagent energies """ enes = [] for rgt_ich, rgt_chg, rgt_mul in zip(rgt_ichs, rgt_chgs, rgt_muls): # Set filesys spc_save_fs = autofile.fs.species(save_prefix) rgt_info = [rgt_ich, rgt_chg, rgt_mul] spc_save_path = spc_save_fs[-1].path(rgt_info) mod_geo_thy_info = modify_orb_restrict(rgt_info, geo_thy_info) mod_sp_thy_info = modify_orb_restrict(rgt_info, sp_thy_info) thy_save_fs = autofile.fs.theory(spc_save_path) thy_save_path = thy_save_fs[-1].path(mod_geo_thy_info[1:4]) cnf_save_fs = autofile.fs.conformer(thy_save_path) min_cnf_locs, _ = min_energy_conformer_locators( cnf_save_fs, mod_geo_thy_info) # Read energy ene = None if min_cnf_locs: cnf_path = cnf_save_fs[-1].path(min_cnf_locs) sp_fs = autofile.fs.single_point(cnf_path) if sp_fs[-1].file.energy.exists(mod_sp_thy_info[1:4]): ene = sp_fs[-1].file.energy.read(mod_sp_thy_info[1:4]) enes.append(ene) if any(ene is None for ene in enes): enes = None return enes def get_zmas( reacs, prods, spc_dct, ini_thy_info, save_prefix, run_prefix, kickoff_size, kickoff_backward): """get the zmats for reactants and products using the initial level of theory """ if len(reacs) > 2: ich = spc_dct[reacs[-1]]['inchi'] ichgeo = automol.inchi.geometry(ich) ichzma = automol.geom.zmatrix(ichgeo) reacs = reacs[:-1] elif len(prods) > 2: ich = spc_dct[prods[-1]]['inchi'] ichgeo = automol.inchi.geometry(ich) ichzma = automol.geom.zmatrix(ichgeo) prods = prods[:-1] rct_geos, rct_cnf_save_fs_lst = get_geos( reacs, spc_dct, ini_thy_info, save_prefix, run_prefix, kickoff_size, kickoff_backward) prd_geos, prd_cnf_save_fs_lst = get_geos( prods, spc_dct, ini_thy_info, save_prefix, run_prefix, kickoff_size, kickoff_backward) rct_zmas = list(map(automol.geom.zmatrix, rct_geos)) prd_zmas = list(map(automol.geom.zmatrix, prd_geos)) if len(rct_zmas) > 2: rct_zmas.append(ichzma) if len(prd_zmas) > 2: prd_zmas.append(ichzma) return rct_zmas, prd_zmas, rct_cnf_save_fs_lst, prd_cnf_save_fs_lst def get_geos( spcs, spc_dct, ini_thy_info, save_prefix, run_prefix, kickoff_size, kickoff_backward): """get geos for reactants and products using the initial level of theory """ spc_geos = [] cnf_save_fs_lst = [] for spc in spcs: spc_info = [spc_dct[spc]['inchi'], spc_dct[spc]['charge'], spc_dct[spc]['mult']] ini_thy_lvl = modify_orb_restrict(spc_info, ini_thy_info) spc_save_fs = autofile.fs.species(save_prefix) spc_save_fs[-1].create(spc_info) spc_save_path = spc_save_fs[-1].path(spc_info) ini_thy_save_fs = autofile.fs.theory(spc_save_path) ini_thy_save_path = ini_thy_save_fs[-1].path(ini_thy_lvl[1:4]) cnf_save_fs = autofile.fs.conformer(ini_thy_save_path) cnf_save_fs_lst.append(cnf_save_fs) min_cnf_locs, _ = min_energy_conformer_locators( cnf_save_fs, ini_thy_lvl) # print('min_cnf_locs test:', min_cnf_locs) if min_cnf_locs: geo = cnf_save_fs[-1].file.geometry.read(min_cnf_locs) # else: # spc_run_fs = autofile.fs.species(run_prefix) # spc_run_fs[-1].create(spc_info) # spc_run_path = spc_run_fs[-1].path(spc_info) # ini_thy_run_fs = autofile.fs.theory(spc_run_path) # ini_thy_run_path = ini_thy_run_fs[-1].path(ini_thy_lvl[1:4]) # cnf_run_fs = autofile.fs.conformer(ini_thy_run_path) # run_fs = autofile.fs.run(ini_thy_run_path) # run_fs[0].create() # geo = geom.reference_geometry( # spc_dct[spc], spc_info, # ini_thy_lvl, ini_thy_lvl, # ini_thy_run_fs, ini_thy_save_fs, # ini_thy_save_fs, # cnf_run_fs, cnf_save_fs, # run_fs, # opt_script_str, overwrite, # kickoff_size=kickoff_size, # kickoff_backward=kickoff_backward) spc_geos.append(geo) return spc_geos, cnf_save_fs_lst
34.725352
81
0.630298
f3efa8e8929c876d53708b87f1cb69958fc6633d
4,311
py
Python
vendor/tornado/tornado/win32_support.py
bopopescu/cc-2
37444fb16b36743c439b0d6c3cac2347e0cc0a94
[ "Apache-2.0" ]
12
2017-03-09T07:06:07.000Z
2020-10-21T02:20:36.000Z
vendor/tornado/tornado/win32_support.py
bopopescu/cc-2
37444fb16b36743c439b0d6c3cac2347e0cc0a94
[ "Apache-2.0" ]
1
2020-08-02T15:40:49.000Z
2020-08-02T15:40:49.000Z
vendor/tornado/tornado/win32_support.py
bopopescu/cc-2
37444fb16b36743c439b0d6c3cac2347e0cc0a94
[ "Apache-2.0" ]
8
2017-05-22T06:41:36.000Z
2019-09-26T02:29:23.000Z
# NOTE: win32 support is currently experimental, and not recommended # for production use. import ctypes import ctypes.wintypes import os import socket import errno # See: http://msdn.microsoft.com/en-us/library/ms738573(VS.85).aspx ioctlsocket = ctypes.windll.ws2_32.ioctlsocket ioctlsocket.argtypes = (ctypes.wintypes.HANDLE, ctypes.wintypes.LONG, ctypes.wintypes.ULONG) ioctlsocket.restype = ctypes.c_int # See: http://msdn.microsoft.com/en-us/library/ms724935(VS.85).aspx SetHandleInformation = ctypes.windll.kernel32.SetHandleInformation SetHandleInformation.argtypes = (ctypes.wintypes.HANDLE, ctypes.wintypes.DWORD, ctypes.wintypes.DWORD) SetHandleInformation.restype = ctypes.wintypes.BOOL HANDLE_FLAG_INHERIT = 0x00000001 F_GETFD = 1 F_SETFD = 2 F_GETFL = 3 F_SETFL = 4 FD_CLOEXEC = 1 os.O_NONBLOCK = 2048 FIONBIO = 126 def fcntl(fd, op, arg=0): if op == F_GETFD or op == F_GETFL: return 0 elif op == F_SETFD: # Check that the flag is CLOEXEC and translate if arg == FD_CLOEXEC: success = SetHandleInformation(fd, HANDLE_FLAG_INHERIT, arg) if not success: raise ctypes.GetLastError() else: raise ValueError("Unsupported arg") #elif op == F_SETFL: ## Check that the flag is NONBLOCK and translate #if arg == os.O_NONBLOCK: ##pass #result = ioctlsocket(fd, FIONBIO, 1) #if result != 0: #raise ctypes.GetLastError() #else: #raise ValueError("Unsupported arg") else: raise ValueError("Unsupported op") class Pipe(object): """Create an OS independent asynchronous pipe""" def __init__(self): # Based on Zope async.py: http://svn.zope.org/zc.ngi/trunk/src/zc/ngi/async.py self.writer = socket.socket() # Disable buffering -- pulling the trigger sends 1 byte, # and we want that sent immediately, to wake up ASAP. self.writer.setsockopt(socket.IPPROTO_TCP, socket.TCP_NODELAY, 1) count = 0 while 1: count += 1 # Bind to a local port; for efficiency, let the OS pick # a free port for us. # Unfortunately, stress tests showed that we may not # be able to connect to that port ("Address already in # use") despite that the OS picked it. This appears # to be a race bug in the Windows socket implementation. # So we loop until a connect() succeeds (almost always # on the first try). See the long thread at # http://mail.zope.org/pipermail/zope/2005-July/160433.html # for hideous details. a = socket.socket() a.bind(("127.0.0.1", 0)) connect_address = a.getsockname() # assigned (host, port) pair a.listen(1) try: self.writer.connect(connect_address) break # success except socket.error, detail: if detail[0] != errno.WSAEADDRINUSE: # "Address already in use" is the only error # I've seen on two WinXP Pro SP2 boxes, under # Pythons 2.3.5 and 2.4.1. raise # (10048, 'Address already in use') # assert count <= 2 # never triggered in Tim's tests if count >= 10: # I've never seen it go above 2 a.close() self.writer.close() raise socket.error("Cannot bind trigger!") # Close `a` and try again. Note: I originally put a short # sleep() here, but it didn't appear to help or hurt. a.close() self.reader, addr = a.accept() self.reader.setblocking(0) self.writer.setblocking(0) a.close() self.reader_fd = self.reader.fileno() def read(self): """Emulate a file descriptors read method""" try: return self.reader.recv(1) except socket.error, ex: if ex.args[0] == errno.EWOULDBLOCK: raise IOError raise def write(self, data): """Emulate a file descriptors write method""" return self.writer.send(data)
34.766129
102
0.591046
29adcdadcc22f94d2caaee26d7818362d3e56f3c
2,401
py
Python
drain-service/drain3/template_miner_config.py
jameson-mcghee/opni-drain-service
3f0a5bb962a740b7d78113f95c5e5db57e85180e
[ "Apache-2.0" ]
3
2021-07-29T19:46:25.000Z
2021-11-08T10:26:42.000Z
drain-service/drain3/template_miner_config.py
jameson-mcghee/opni-drain-service
3f0a5bb962a740b7d78113f95c5e5db57e85180e
[ "Apache-2.0" ]
null
null
null
drain-service/drain3/template_miner_config.py
jameson-mcghee/opni-drain-service
3f0a5bb962a740b7d78113f95c5e5db57e85180e
[ "Apache-2.0" ]
3
2021-05-21T20:25:51.000Z
2021-10-06T15:06:52.000Z
""" Adopted from https://github.com/IBM/Drain3 """ # Standard Library import ast import configparser import logging logger = logging.getLogger(__name__) class TemplateMinerConfig: def __init__(self): self.profiling_enabled = False self.profiling_report_sec = 60 self.snapshot_interval_minutes = 5 self.snapshot_compress_state = True self.drain_extra_delimiters = [] self.drain_sim_th = 0.4 self.drain_depth = 4 self.drain_max_children = 100 self.drain_max_clusters = None self.masking_instructions = [] self.mask_prefix = "<" self.mask_suffix = ">" def load(self, config_filename: str): parser = configparser.ConfigParser() read_files = parser.read(config_filename) if len(read_files) == 0: logger.warning(f"config file not found: {config_filename}") section_profiling = "PROFILING" section_snapshot = "SNAPSHOT" section_drain = "DRAIN" section_masking = "MASKING" self.profiling_enabled = parser.getboolean( section_profiling, "enabled", fallback=self.profiling_enabled ) self.profiling_report_sec = parser.getint( section_profiling, "report_sec", fallback=self.profiling_report_sec ) self.snapshot_interval_minutes = parser.getint( section_snapshot, "snapshot_interval_minutes", fallback=self.snapshot_interval_minutes, ) self.snapshot_compress_state = parser.getboolean( section_snapshot, "compress_state", fallback=self.snapshot_compress_state ) drain_extra_delimiters_str = parser.get( section_drain, "extra_delimiters", fallback=str(self.drain_extra_delimiters) ) self.drain_extra_delimiters = ast.literal_eval(drain_extra_delimiters_str) self.drain_sim_th = parser.getfloat( section_drain, "sim_th", fallback=self.drain_sim_th ) self.drain_depth = parser.getint( section_drain, "depth", fallback=self.drain_depth ) self.drain_max_children = parser.getint( section_drain, "max_children", fallback=self.drain_max_children ) self.drain_max_clusters = parser.getint( section_drain, "max_clusters", fallback=self.drain_max_clusters )
33.816901
88
0.658892
01b7a1151dc091d9fc61daa71926c13883309816
4,438
py
Python
app/customer/common_util/image.py
B-ROY/TESTGIT
40221cf254c90d37d21afb981635740aebf11949
[ "Apache-2.0" ]
2
2017-12-02T13:58:30.000Z
2018-08-02T17:07:59.000Z
app/customer/common_util/image.py
B-ROY/TESTGIT
40221cf254c90d37d21afb981635740aebf11949
[ "Apache-2.0" ]
null
null
null
app/customer/common_util/image.py
B-ROY/TESTGIT
40221cf254c90d37d21afb981635740aebf11949
[ "Apache-2.0" ]
null
null
null
import re import os import tencentyun import hmac import urllib2 import random import time import binascii import base64 import hashlib import json __author__ = 'zen' APPID = '10048692' BUCKET = 'heydopic' SECRET_ID = 'AKIDgknyBYkNKnpONeweTRwK9t6Nn0jn78yG' SECRET_KEY = 'fBCXVJK1PpWPtYizb7vIGVMIJFm90GBa' UPLOAD_TYPE_FILE = 1 UPLOAD_TYPE_BIN = 2 class UploadImage(object): def __init__(self, file_handler, save_path=''): self.file_handler = file_handler self.save_path = save_path filename = self.file_handler.name.replace(" ",'') file_name_t = re.sub(u'[\u4e00-\u9fa5]', 'X', filename) file_name_t = re.sub(u'[\uFF00-\uFFFF]', 'X', file_name_t) self.out_file_name = "%s_%s" % (int(time.time()), file_name_t) self.file_id = "%s_%s" % (int(time.time()), hashlib.md5(filename).hexdigest()) def save_to_local(self): local_file_path = os.path.join(self.save_path, self.out_file_name) temp_file = local_file_path + '.tmp' output_file = open(temp_file, 'wb') # Finally write the data to a temporary file self.file_handler.incoming_file.seek(0) h = hashlib.md5() while True: data = self.file_handler.incoming_file.read(2 << 16) if not data: break output_file.write(data) h.update(data) output_file.close() os.rename(temp_file, local_file_path) def push_to_qclude(self): image = tencentyun.ImageV2( APPID, SECRET_ID, SECRET_KEY) return image.upload_binary( self.file_handler, bucket=BUCKET, fileid=self.file_id) @classmethod def push_binary_to_qclude(cls,binary,price=0): image = tencentyun.ImageV2( APPID, SECRET_ID, SECRET_KEY) if price == 0: pic_bucket = "hdlive" else: pic_bucket = "heydopic" return image.upload_binary( binary, bucket=pic_bucket, fileid= hashlib.md5("logo"+str(int(time.time()) ) ).hexdigest() ) def delete_pic(file_id): secret_key = "fBCXVJK1PpWPtYizb7vIGVMIJFm90GBa" appid = "10048692" bucket = "hdlive" secret_id = "AKIDgknyBYkNKnpONeweTRwK9t6Nn0jn78yG" expiredTime = int(time.time()) + 999 currentTime = time.time() rand = random.randint(0, 9999999) userid = "0" delete_url = "http://web.image.myqcloud.com/photos/v2/%s/%s/%s/%s/del" % (appid, bucket, userid, file_id) plain_text = "a=%s&b=%s&k=%s&e=%s&t=%s&r=%s&u=%s&f=%s" % \ (appid, bucket, secret_id, expiredTime, currentTime, rand, userid, file_id) b = hmac.new(secret_key, plain_text, hashlib.sha1) s = b.hexdigest() s = binascii.unhexlify(s) s += plain_text signature = base64.b64encode(s).rstrip() headers = { "Host": "web.image.myqcloud.com", "Authorization": signature, "Content-Length": 0 } print delete_url req = urllib2.Request(delete_url, data="", headers=headers) return json.loads(urllib2.urlopen(req).read()) def porncheck(pic_url): porncheck_url = "http://service.image.myqcloud.com/detection/porn_detect" secret_key = "fBCXVJK1PpWPtYizb7vIGVMIJFm90GBa" appid = "10048692" bucket = "hdlive" secret_id = "AKIDgknyBYkNKnpONeweTRwK9t6Nn0jn78yG" expiredTime = int(time.time()) + 999 currentTime = time.time() rand = random.randint(0, 9999999) userid = "0" plain_text = "a=%s&b=%s&k=%s&e=%s&t=%s&r=%s&u=%s" % \ (appid, bucket, secret_id, expiredTime, currentTime, rand, userid) b = hmac.new(secret_key, plain_text, hashlib.sha1) s = b.hexdigest() s = binascii.unhexlify(s) s += plain_text signature = base64.b64encode(s).rstrip() body = { "appid": appid, "bucket": bucket, "url_list": [ pic_url ] } headers = { "Host": "service.image.myqcloud.com", "Content-Type": "Application/json", "Authorization": signature, "Content_lenth": len(json.dumps(body)) } req = urllib2.Request(porncheck_url, data=json.dumps(body), headers=headers) return json.loads(urllib2.urlopen(req).read()) if __name__ == "__main__": f = open('/Users/yinxing/e857d628a6e213558dd18a67bf9d666a.gif','rb') print dir(f) up = UploadImage(f) print up.push_to_qclude()
28.818182
109
0.624606
ced017199ecd3464859f5bc89b3b52389b595aa0
335
py
Python
tests/unit/ssg/test_checks.py
dhanushkar-wso2/scap-security-guide
e4134011d3274f828a0d2119e1fa24396ef73a1b
[ "BSD-3-Clause" ]
null
null
null
tests/unit/ssg/test_checks.py
dhanushkar-wso2/scap-security-guide
e4134011d3274f828a0d2119e1fa24396ef73a1b
[ "BSD-3-Clause" ]
null
null
null
tests/unit/ssg/test_checks.py
dhanushkar-wso2/scap-security-guide
e4134011d3274f828a0d2119e1fa24396ef73a1b
[ "BSD-3-Clause" ]
null
null
null
import pytest import ssg.checks def test_is_cce_valid(): icv = ssg.checks.is_cce_valid assert icv("CCE-27191-6") assert icv("CCE-7223-7") assert not icv("not-valid") assert not icv("1234-5") assert not icv("12345-6") assert not icv("TBD") assert not icv("CCE-TBD") assert not icv("CCE-abcde-f")
19.705882
33
0.641791
9d2a9c8e1690393903392dc689fc40ec06516364
900
py
Python
tests/unit/conftest.py
sshink/testrail-api
18bc28a0b76ae475974e5f9ed6f7f9d9da58f5bc
[ "MIT" ]
null
null
null
tests/unit/conftest.py
sshink/testrail-api
18bc28a0b76ae475974e5f9ed6f7f9d9da58f5bc
[ "MIT" ]
null
null
null
tests/unit/conftest.py
sshink/testrail-api
18bc28a0b76ae475974e5f9ed6f7f9d9da58f5bc
[ "MIT" ]
null
null
null
import os from pathlib import Path import pytest import responses from testrail_api import TestRailAPI @pytest.fixture(scope='session') def host(): yield 'https://example.testrail.com/' @pytest.fixture(scope='session') def base_path(): path = Path(__file__).absolute().parent yield str(path) @pytest.fixture(scope='session') def auth_data(host): yield host, 'example@mail.com', 'password' @pytest.fixture def mock(): with responses.RequestsMock() as resp: yield resp @pytest.fixture def api(auth_data): api = TestRailAPI(*auth_data) yield api @pytest.fixture def environ(auth_data): os.environ['TESTRAIL_URL'] = auth_data[0] os.environ['TESTRAIL_EMAIL'] = auth_data[1] os.environ['TESTRAIL_PASSWORD'] = auth_data[2] yield del os.environ['TESTRAIL_URL'] del os.environ['TESTRAIL_EMAIL'] del os.environ['TESTRAIL_PASSWORD']
19.148936
50
0.705556
5e9f7ff994fc157adc06bfc9e7d69d0c59d2e26f
1,663
py
Python
Game23/Game23.py
ttkaixin1998/pikachupythongames
609a3a5a2be3f5a187c332c7980bb5bb14548f02
[ "MIT" ]
4,013
2018-06-16T08:00:02.000Z
2022-03-30T11:48:14.000Z
Game23/Game23.py
pigbearcat/Games
b8c47ef1bcce9a9db3f3730c162e6e8e08b508a2
[ "MIT" ]
22
2018-10-18T00:15:50.000Z
2022-01-13T08:16:15.000Z
Game23/Game23.py
pigbearcat/Games
b8c47ef1bcce9a9db3f3730c162e6e8e08b508a2
[ "MIT" ]
2,172
2018-07-20T04:03:14.000Z
2022-03-31T14:18:29.000Z
''' Function: 2048小游戏 Author: Charles 微信公众号: Charles的皮卡丘 ''' import cfg import sys import pygame from modules import * '''主程序''' def main(cfg): # 游戏初始化 pygame.init() screen = pygame.display.set_mode(cfg.SCREENSIZE) pygame.display.set_caption('2048 —— Charles的皮卡丘') # 播放背景音乐 pygame.mixer.music.load(cfg.BGMPATH) pygame.mixer.music.play(-1) # 实例化2048游戏 game_2048 = Game2048(matrix_size=cfg.GAME_MATRIX_SIZE, max_score_filepath=cfg.MAX_SCORE_FILEPATH) # 游戏主循环 clock = pygame.time.Clock() is_running = True while is_running: screen.fill(pygame.Color(cfg.BG_COLOR)) # --按键检测 for event in pygame.event.get(): if event.type == pygame.QUIT: pygame.quit() sys.exit() elif event.type == pygame.KEYDOWN: if event.key in [pygame.K_UP, pygame.K_DOWN, pygame.K_LEFT, pygame.K_RIGHT]: game_2048.setDirection({pygame.K_UP: 'up', pygame.K_DOWN: 'down', pygame.K_LEFT: 'left', pygame.K_RIGHT: 'right'}[event.key]) # --更新游戏状态 game_2048.update() if game_2048.isgameover: game_2048.saveMaxScore() is_running = False # --将必要的游戏元素画到屏幕上 drawGameMatrix(screen, game_2048.game_matrix, cfg) start_x, start_y = drawScore(screen, game_2048.score, game_2048.max_score, cfg) drawGameIntro(screen, start_x, start_y, cfg) # --屏幕更新 pygame.display.update() clock.tick(cfg.FPS) return endInterface(screen, cfg) '''run''' if __name__ == '__main__': while True: if not main(cfg): break
28.672414
145
0.615755
1f8f9e391109c41227336b2bb762cb77a40123c1
6,413
py
Python
src/harvester.py
bmoxon/azfinsim
3e203855410abd6c9636377b93ed5d33ac896c41
[ "MIT" ]
5
2021-02-24T19:10:34.000Z
2022-02-24T21:11:24.000Z
src/harvester.py
bmoxon/azfinsim
3e203855410abd6c9636377b93ed5d33ac896c41
[ "MIT" ]
null
null
null
src/harvester.py
bmoxon/azfinsim
3e203855410abd6c9636377b93ed5d33ac896c41
[ "MIT" ]
2
2021-05-03T11:57:31.000Z
2021-12-09T10:24:29.000Z
#! /usr/bin/env python3 #-- harvest scheduler that runs on the compute pool nodes import argparse import time import sys import logging import os import psutil from applicationinsights import TelemetryClient from applicationinsights.logging import LoggingHandler from getargs import getargs import azlog azlog.color=False #-- Timeout between polling the harvest #cores api/file HARVESTPOLLTIMEOUT = 30 #-- Executable to launch per cpu slot #ENGINE="burn.sh" # (for testing) ENGINE="/azfinsim/azfinsim.py" #KVP_MONITOR="/var/lib/hyperv/.kvp_pool_0" #-- mounted via: sudo docker run -v /var/lib/hyperv:/kvp -it mkharvestazcr.azurecr.io/azfinsim/azfinsimub1804 KVP_MONITOR="/kvp/.kvp_pool_0" def read_harvest_cores() : vcores = psutil.cpu_count(logical=True) pcores = psutil.cpu_count(logical=False) log.info("Polling Harvester: Physical Cores: %d Logical Cores: %d" % (pcores,vcores)) kvp=KVP_MONITOR try: f = open(kvp, "r") str=f.read() if (len(str) > 0): str = str.replace("CurrentCoreCount","") str = str.replace('\0','') ncores = int(str.split('.')[0]) log.info("Harvest file %s has current physical core count: %d" % (kvp,ncores)) else: ncores = vcores log.warn("Harvest file %s is empty; using static vcore count: %d" % (kvp,ncores)) except OSError: ncores = vcores log.warn("Harvest file %s doesn't exist; using static vcore count: %d" % (kvp,ncores)) tc.track_metric('HARVESTCORES', ncores) tc.flush() return ncores def spawn(ncores) : env = {"PATH":"."} args = ("null","null") log.info("spawning %d processes" % ncores) for i in range(ncores): pid = os.fork() if not pid: try: os.execvpe("burn.sh", args, env) except OSError as e: log.error("Exec failed: %s\n" % (e.strerror)) os._exit(1) else: pid = os.waitpid(pid,0) def spawn_one(start_trade,trade_window,inputargs): #path = os.environ['PATH'] argtup = tuple(inputargs) pid = os.fork() if not pid: #-- child process log.info("spawning new process %s: pid %d: start_trade=%d, ntrades=%d" % (ENGINE,os.getpid(),start_trade,trade_window)) #logging.info(argtup) try: os.execve(ENGINE, argtup, os.environ.copy()) except OSError as e: log.error("Exec failed: %s\n" % (e.strerror)) os._exit(1) #else: #pid = os.waitpid(pid,0) def replace_args(start_trade,trade_window,inputargs): result = [] skip=False for i in range(len(inputargs)): if (skip==True): skip=False continue if (inputargs[i]=='start_trade'): result.append('start_trade') result.append(str(start_trade)) skip=True elif (inputargs[i]=='trade_window'): result.append('trade_window') result.append(str(trade_window)) skip=True else: result.append(inputargs[i]) skip=False return(result) #-- register the absolute start time #launch=time.time_ns() #-- python3.8 only launch=time.time() log = azlog.getLogger(__name__) if __name__ == "__main__": #-- grab cli args: will be passed through to child processes args = getargs("harvester") #-- reformat args into a list of strings for execvpe inputargs = [] inputargs.append(ENGINE) #-- first arg to execvpe() should be progname for arg in vars(args): #print(arg, getattr(args,arg)) val = str(getattr(args,arg)) arg=arg.replace("_","-") inputargs.append(str("--" + arg)) #-- re-add the stripped "--" prefix inputargs.append(val) #print(inputargs) #-- setup azure application insights handle for telemetry tc = TelemetryClient("%s" % args.appinsights_key) # set up logging - STDOUT & Azure AppInsights EventLog #handler = LoggingHandler(args.appinsights_key) #logging.basicConfig( # format="%(asctime)s harvester: %(name)s %(threadName)-10.10s %(levelname)-5.5s %(message)s", # handlers=[ # LoggingHandler(args.appinsights_key), #-- send to AZURE # logging.StreamHandler(stream=sys.stdout) #-- send to STDOUT # ],level=args.loglevel) #-- log start time log.info("TRADE %10d: LAUNCH : %d" % (args.start_trade,launch)) tc.track_metric('STARTTIME', launch) tc.flush() #-- get initial harvest core count slots = read_harvest_cores() log.info("%d x Cores available." % slots) #-- calculate number of trades per process/batch/cpu max_batch_size = 10 total_trades = args.trade_window lastbatch = total_trades % max_batch_size nbatchesfl = total_trades / max_batch_size nbatches = int(nbatchesfl) offset = args.start_trade log.info("%d trades to process in this task (%.2f batches of %d)" % (total_trades,nbatchesfl,max_batch_size)) #-- Main loop: monitor harvest api/file & dispatch processes to available cores batchesdone=0 trades_processed=0 while (batchesdone <= nbatches): procs = psutil.Process().children() gone, alive = psutil.wait_procs(procs,timeout=1,callback=None) nprocs = len(alive) freeslots = slots - nprocs log.info("%d processes running on %d total slots: %d slots available." % (nprocs,slots,freeslots)) if (nprocs < slots): for i in range(freeslots): if (batchesdone == nbatches): batch_size = lastbatch else: batch_size = max_batch_size inputargs = replace_args(offset,batch_size,inputargs) # substitute the command line args spawn_one(offset,batch_size,inputargs) trades_processed += batch_size offset += batch_size batchesdone+=1 if (batch_size == lastbatch): break time.sleep(HARVESTPOLLTIMEOUT) #-- re-read the harvest file - check if #slots has changed slots = read_harvest_cores() log.info("%d trades processed. No trades left to process; relinquishing cores" % trades_processed) # flush all un-sent telemetry items tc.flush() #logging.shutdown() #-- when all work done, exit and allow orchestration to recover node. exit(0)
34.478495
127
0.626072
088eb78bf81aa3056a55d7e3bfc584ab417cace2
746
py
Python
generated-libraries/python/netapp/ntdtest/ntdtest_get_iter_key_td.py
radekg/netapp-ontap-lib-get
6445ebb071ec147ea82a486fbe9f094c56c5c40d
[ "MIT" ]
2
2017-03-28T15:31:26.000Z
2018-08-16T22:15:18.000Z
generated-libraries/python/netapp/ntdtest/ntdtest_get_iter_key_td.py
radekg/netapp-ontap-lib-get
6445ebb071ec147ea82a486fbe9f094c56c5c40d
[ "MIT" ]
null
null
null
generated-libraries/python/netapp/ntdtest/ntdtest_get_iter_key_td.py
radekg/netapp-ontap-lib-get
6445ebb071ec147ea82a486fbe9f094c56c5c40d
[ "MIT" ]
null
null
null
from netapp.netapp_object import NetAppObject class NtdtestGetIterKeyTd(NetAppObject): """ Key typedef for table ntdtest """ _key_0 = None @property def key_0(self): """ Field group """ return self._key_0 @key_0.setter def key_0(self, val): if val != None: self.validate('key_0', val) self._key_0 = val @staticmethod def get_api_name(): return "ntdtest-get-iter-key-td" @staticmethod def get_desired_attrs(): return [ 'key-0', ] def describe_properties(self): return { 'key_0': { 'class': basestring, 'is_list': False, 'required': 'optional' }, }
21.314286
87
0.536193
1c92be83eaadbc03a9d34c152a5679ffff17e3c7
1,140
py
Python
exercises/0780-ReachingPoints/reaching_points_test.py
tqa236/leetcode-solutions
556147981c43509a6e8a7f59f138d1ab027ebfd1
[ "MIT" ]
1
2020-09-26T15:09:25.000Z
2020-09-26T15:09:25.000Z
exercises/0780-ReachingPoints/reaching_points_test.py
tqa236/leetcode-solutions
556147981c43509a6e8a7f59f138d1ab027ebfd1
[ "MIT" ]
null
null
null
exercises/0780-ReachingPoints/reaching_points_test.py
tqa236/leetcode-solutions
556147981c43509a6e8a7f59f138d1ab027ebfd1
[ "MIT" ]
null
null
null
import unittest import hypothesis.strategies as st from hypothesis import given from reaching_points import Solution class Test(unittest.TestCase): def test_1(self): solution = Solution() self.assertEqual(solution.reachingPoints(1, 1, 3, 5), True) def test_2(self): solution = Solution() self.assertEqual(solution.reachingPoints(1, 1, 2, 2), False) def test_3(self): solution = Solution() self.assertEqual(solution.reachingPoints(1, 1, 1, 1), True) def test_4(self): solution = Solution() self.assertEqual(solution.reachingPoints(1, 1, 10 ** 9, 1), True) def test_5(self): solution = Solution() self.assertEqual(solution.reachingPoints(9, 5, 12, 8), False) @given(st.lists(st.integers(min_value=1, max_value=100), min_size=4, max_size=4)) def test_random(self, array): sx, sy, tx, ty = array solution = Solution() self.assertEqual( solution.reachingPoints(sx, sy, tx, ty), solution.reachingPointsNaive(sx, sy, tx, ty), ) if __name__ == "__main__": unittest.main()
29.230769
85
0.636842
92dc1d67ee82c4dfcd1c585c9e3788f2ed9aa0cf
2,216
py
Python
benchmark/startPyquil1179.py
UCLA-SEAL/QDiff
d968cbc47fe926b7f88b4adf10490f1edd6f8819
[ "BSD-3-Clause" ]
null
null
null
benchmark/startPyquil1179.py
UCLA-SEAL/QDiff
d968cbc47fe926b7f88b4adf10490f1edd6f8819
[ "BSD-3-Clause" ]
null
null
null
benchmark/startPyquil1179.py
UCLA-SEAL/QDiff
d968cbc47fe926b7f88b4adf10490f1edd6f8819
[ "BSD-3-Clause" ]
null
null
null
# qubit number=5 # total number=51 import pyquil from pyquil.api import local_forest_runtime, QVMConnection from pyquil import Program, get_qc from pyquil.gates import * import numpy as np conn = QVMConnection() def make_circuit()-> Program: prog = Program() # circuit begin prog += H(0) # number=3 prog += H(0) # number=48 prog += CZ(2,0) # number=49 prog += H(0) # number=50 prog += Z(2) # number=46 prog += CNOT(2,0) # number=47 prog += H(1) # number=4 prog += RX(2.664070570244145,1) # number=39 prog += H(2) # number=5 prog += H(3) # number=6 prog += H(4) # number=21 prog += H(0) # number=1 prog += H(3) # number=40 prog += Y(4) # number=35 prog += H(1) # number=2 prog += H(2) # number=7 prog += H(3) # number=8 prog += H(0) # number=25 prog += CZ(1,0) # number=26 prog += H(0) # number=27 prog += H(0) # number=36 prog += CZ(1,0) # number=37 prog += H(0) # number=38 prog += CNOT(1,0) # number=41 prog += X(0) # number=42 prog += CNOT(1,0) # number=43 prog += CNOT(1,0) # number=34 prog += CNOT(1,0) # number=24 prog += CNOT(0,1) # number=29 prog += CNOT(2,3) # number=44 prog += X(1) # number=30 prog += CNOT(0,1) # number=31 prog += X(2) # number=11 prog += X(3) # number=12 prog += X(0) # number=13 prog += X(1) # number=14 prog += X(2) # number=15 prog += X(3) # number=16 prog += H(0) # number=17 prog += H(1) # number=18 prog += H(2) # number=19 prog += H(3) # number=20 # circuit end return prog def summrise_results(bitstrings) -> dict: d = {} for l in bitstrings: if d.get(l) is None: d[l] = 1 else: d[l] = d[l] + 1 return d if __name__ == '__main__': prog = make_circuit() qvm = get_qc('5q-qvm') results = qvm.run_and_measure(prog,1024) bitstrings = np.vstack([results[i] for i in qvm.qubits()]).T bitstrings = [''.join(map(str, l)) for l in bitstrings] writefile = open("../data/startPyquil1179.csv","w") print(summrise_results(bitstrings),file=writefile) writefile.close()
25.181818
64
0.544675
d1c7845cd68849fc528d3d6b1d983d996daa50d0
819
py
Python
learn/django/tutorial01/first_site/first_site/urls.py
zhmz90/Daily
25e13f6334c58d3a075b3fc502ecb34832392be7
[ "MIT" ]
null
null
null
learn/django/tutorial01/first_site/first_site/urls.py
zhmz90/Daily
25e13f6334c58d3a075b3fc502ecb34832392be7
[ "MIT" ]
25
2016-01-03T14:23:44.000Z
2016-03-05T07:34:40.000Z
learn/django/tutorial01/first_site/first_site/urls.py
zhmz90/Daily
25e13f6334c58d3a075b3fc502ecb34832392be7
[ "MIT" ]
null
null
null
"""first_site URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/1.10/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: url(r'^$', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: url(r'^$', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.conf.urls import url, include 2. Add a URL to urlpatterns: url(r'^blog/', include('blog.urls')) """ from django.conf.urls import url,include from django.contrib import admin urlpatterns = [ url(r'^polls/', include('polls.urls')), url(r'^admin/', admin.site.urls), ]
35.608696
79
0.699634
9e946d668fbac592a07601f97d6fb5a207ec5d83
236
py
Python
src/pycamara/django_camara/management/commands/import_legislatures.py
msfernandes/pycamara
01648ba95aa5ce780dd1aed32b4347684204e327
[ "MIT" ]
null
null
null
src/pycamara/django_camara/management/commands/import_legislatures.py
msfernandes/pycamara
01648ba95aa5ce780dd1aed32b4347684204e327
[ "MIT" ]
1
2017-07-24T19:35:48.000Z
2017-07-25T20:21:13.000Z
src/pycamara/django_camara/management/commands/import_legislatures.py
msfernandes/pycamara
01648ba95aa5ce780dd1aed32b4347684204e327
[ "MIT" ]
null
null
null
from django.core.management.base import BaseCommand from pycamara.django_camara.importers import legislatures class Command(BaseCommand): def handle(self, *args, **options): legislatures.LegislatureImporter().save_data()
26.222222
57
0.779661
52a886b58bdc36a565dcc126a4bebd02475f0a3d
7,265
py
Python
util/pyclient/test_client.py
big-data-lab-umbc/concord-bft
7061695406885604471a8a7bd5944e8d16d7280f
[ "Apache-2.0" ]
null
null
null
util/pyclient/test_client.py
big-data-lab-umbc/concord-bft
7061695406885604471a8a7bd5944e8d16d7280f
[ "Apache-2.0" ]
null
null
null
util/pyclient/test_client.py
big-data-lab-umbc/concord-bft
7061695406885604471a8a7bd5944e8d16d7280f
[ "Apache-2.0" ]
null
null
null
# Concord # # Copyright (c) 2019 VMware, Inc. All Rights Reserved. # # This product is licensed to you under the Apache 2.0 license (the "License"). # You may not use this product except in compliance with the Apache 2.0 License. # # This product may include a number of subcomponents with separate copyright # notices and license terms. Your use of these subcomponents is subject to the # terms and conditions of the subcomponent's license, as noted in the LICENSE # file. import unittest import struct import tempfile import shutil import os import os.path import subprocess import trio import bft_client import bft_config # This requires python 3.5 for subprocess.run class SimpleTest(unittest.TestCase): """ Test a UDP client against simpleTest servers Use n=4, f=1, c=0 """ @classmethod def setUpClass(cls): cls.origdir = os.getcwd() cls.testdir = tempfile.mkdtemp() cls.builddir = os.path.abspath("../../build") cls.toolsdir = os.path.join(cls.builddir, "tools") cls.serverbin = os.path.join(cls.builddir,"tests/simpleTest/server") os.chdir(cls.testdir) cls.generateKeys() cls.config = bft_config.Config(4, 1, 0, 4096, 1000, 50, "") cls.replicas = [bft_config.Replica(id=i, ip="127.0.0.1", port=bft_config.bft_msg_port_from_node_id(i), metrics_port=bft_config.metrics_port_from_node_id(i)) for i in range(0,4)] print("Running tests in {}".format(cls.testdir)) @classmethod def tearDownClass(self): shutil.rmtree(self.testdir) os.chdir(self.origdir) @classmethod def generateKeys(cls): """Create keys expected by SimpleTest server for 4 nodes""" keygen = os.path.join(cls.toolsdir, "GenerateConcordKeys") args = [keygen, "-n", "4", "-f", "1", "-o", "private_replica_"] subprocess.run(args, check=True) def readRequest(self): """Serialize a read request""" return struct.pack("<Q", 100) def writeRequest(self, val): """Serialize a write request""" return struct.pack("<QQ", 200, val) def read_val(self, val): """Return a deserialized read value""" return struct.unpack("<Q", val)[0] def testTimeout(self): """Client requests will timeout since no servers are running""" read = self.readRequest() write = self.writeRequest(1) trio.run(self._testTimeout, read, True) trio.run(self._testTimeout, write, False) async def _testTimeout(self, msg, read_only): config = self.config._replace(req_timeout_milli=100) with bft_client.UdpClient(config, self.replicas, None) as udp_client: with self.assertRaises(trio.TooSlowError): await udp_client.sendSync(msg, read_only) def startServers(self): """Start all 4 simpleTestServers""" self.procs = [subprocess.Popen([self.serverbin, str(i)], close_fds=True) for i in range(0, 4)] def stopServers(self): """Stop all processes in self.procs""" for p in self.procs: p.kill() p.wait() def testReadWrittenValue(self): """Write a value and then read it""" self.startServers() try: trio.run(self._testReadWrittenValue) except: raise finally: self.stopServers() async def _testReadWrittenValue(self): val = 999 with bft_client.UdpClient(self.config, self.replicas, None) as udp_client: await udp_client.sendSync(self.writeRequest(val), False) read = await udp_client.sendSync(self.readRequest(), True) self.assertEqual(val, self.read_val(read)) def testRetry(self): """ Start servers after client has already made an attempt to send and ensure request succeeds. """ trio.run(self._testRetry) async def _testRetry(self): """Start servers after a delay in parallel with a write request""" try: async with trio.open_nursery() as nursery: nursery.start_soon(self.startServersWithDelay) nursery.start_soon(self.writeWithRetryAssert) except: raise finally: self.stopServers() async def writeWithRetryAssert(self): """Issue a write and ensure that a retry occurs""" config = self.config._replace(req_timeout_milli=5000) val = 1 with bft_client.UdpClient(config, self.replicas, None) as udp_client: self.assertEqual(udp_client.retries, 0) await udp_client.sendSync(self.writeRequest(val), False) self.assertTrue(udp_client.retries > 0) async def startServersWithDelay(self): # Retry timeout is 50ms # This guarantees we wait at least one retry with high probability await trio.sleep(.250) self.startServers() def testPrimaryWrite(self): """Test that we learn the primary and using it succeeds.""" self.startServers() try: trio.run(self._testPrimaryWrite) except: raise finally: self.stopServers() async def _testPrimaryWrite(self): # Try to guarantee we don't retry accidentally config = self.config._replace(retry_timeout_milli=500) with bft_client.UdpClient(self.config, self.replicas, None) as udp_client: self.assertEqual(None, udp_client.primary) await udp_client.sendSync(self.writeRequest(1), False) # We know the servers are up once the write completes self.assertNotEqual(None, udp_client.primary) sent = udp_client.msgs_sent read = await udp_client.sendSync(self.readRequest(), True) sent += 4 self.assertEqual(sent, udp_client.msgs_sent) self.assertEqual(1, self.read_val(read)) self.assertNotEqual(None, udp_client.primary) await udp_client.sendSync(self.writeRequest(2), False) sent += 1 # Only send to the primary self.assertEqual(sent, udp_client.msgs_sent) read = await udp_client.sendSync(self.readRequest(), True) sent += 4 self.assertEqual(sent, udp_client.msgs_sent) self.assertEqual(2, self.read_val(read)) self.assertNotEqual(None, udp_client.primary) async def _testMofNQuorum(self): config = self.config._replace(retry_timeout_milli=500) with bft_client.UdpClient(self.config, self.replicas, None) as udp_client: await udp_client.sendSync(self.writeRequest(1), False) single_read_q = bft_client.MofNQuorum([0], 1) read = await udp_client.sendSync(self.readRequest(), True, m_of_n_quorum=single_read_q) self.assertEqual(1, self.read_val(read)) def testMonNQuorum(self): self.startServers() try: trio.run(self._testMofNQuorum) except: raise finally: self.stopServers() if __name__ == '__main__': unittest.main()
35.965347
99
0.626428
881a3235e1cfc4f6d5a5bd15fa74442aa2d8ee8e
2,307
py
Python
messaging_script.py
fletchapin/camping-bot
967cbacdba198b293720994d4a70ee085b296a73
[ "MIT" ]
null
null
null
messaging_script.py
fletchapin/camping-bot
967cbacdba198b293720994d4a70ee085b296a73
[ "MIT" ]
null
null
null
messaging_script.py
fletchapin/camping-bot
967cbacdba198b293720994d4a70ee085b296a73
[ "MIT" ]
null
null
null
import time import smtplib import argparse from email.message import EmailMessage import camping_scraper as cs def msg_alert( subject, body, to=None, email_addr=None, app_pwd=None, ): """Send text message alerts to phone. Check README for configuration instructions. Parameters ---------- subject : str body : str to : str Phone number appended with the mobile carrier's SMS Gateway Address email_addr : str this code only works with a Gmail address app_pwd : str """ if not to or not email_addr or not app_pwd: raise ValueError("Please check README and overwrite keyword args with personal info") msg = EmailMessage() msg.set_content(body) msg["subject"] = subject msg["to"] = to msg["from"] = email_addr server = smtplib.SMTP("smtp.gmail.com", 587) server.starttls() server.login(str(email_addr), str(app_pwd)) server.send_message(msg) server.quit() parser = argparse.ArgumentParser(description="Find available campsites.") parser.add_argument("--park", "-p") parser.add_argument("--campground", "-c") parser.add_argument("--year", "-y") parser.add_argument("--months", "-m", nargs='+', default=[]) parser.add_argument("--sleep", "-s", default=86400) parser.add_argument("--verbose", "-v", action="store_true") args = parser.parse_args() while True: availability = cs.find_availability_by_year(args.park, args.campground, args.year, args.months) if availability: msg = "Availability found at " + args.park + " " + args.campground + ":\n" for available in availability: msg += available.strftime("%Y-%m-%d") + "\n" # split up texts before they go over newline limit if len(msg) > 125: msg_alert("Campsite Availability", msg) if args.verbose: print(msg) msg = "" if len(msg) > 0: msg_alert("Campsite Availability", msg) else: msg = ("No available sites found for " + args.park + " " + args.campground + ". Will try to search again in " + str(args.sleep / 3600) + " hours.") msg_alert("Campsite Availability", msg) if args.verbose: print(msg) time.sleep(args.sleep)
28.481481
99
0.622453
7490430ec98adb51cfe07d13f6ff83665c9c4ff4
511
py
Python
tests/client/test_helpers.py
geffy/ebonite
2d85eeca44ac1799e743bafe333887712e325060
[ "Apache-2.0" ]
1
2019-11-27T14:33:45.000Z
2019-11-27T14:33:45.000Z
tests/client/test_helpers.py
geffy/ebonite
2d85eeca44ac1799e743bafe333887712e325060
[ "Apache-2.0" ]
null
null
null
tests/client/test_helpers.py
geffy/ebonite
2d85eeca44ac1799e743bafe333887712e325060
[ "Apache-2.0" ]
null
null
null
import numpy as np from ebonite.client.helpers import create_model from ebonite.ext.sklearn import SklearnModelWrapper def test_create_model(sklearn_model_obj, pandas_data): model = create_model(sklearn_model_obj, pandas_data) assert model is not None assert isinstance(model.wrapper, SklearnModelWrapper) assert model.input_meta.columns == list(pandas_data) assert model.output_meta.real_type == np.ndarray assert {'numpy', 'sklearn', 'pandas'}.issubset(model.requirements.modules)
34.066667
78
0.786693
e93a910728d33f89c7bee2f991a37e99013a46f4
9,837
py
Python
depthai_helpers/config_manager.py
wirthual/depthai
9b3e987796b70fce3d4112f295cf64661d7986a0
[ "MIT" ]
null
null
null
depthai_helpers/config_manager.py
wirthual/depthai
9b3e987796b70fce3d4112f295cf64661d7986a0
[ "MIT" ]
null
null
null
depthai_helpers/config_manager.py
wirthual/depthai
9b3e987796b70fce3d4112f295cf64661d7986a0
[ "MIT" ]
null
null
null
import os import platform import subprocess from pathlib import Path import cv2 import depthai as dai import numpy as np from depthai_helpers.cli_utils import cliPrint, PrintColors from depthai_sdk.previews import Previews DEPTHAI_ZOO = Path(__file__).parent.parent / Path(f"resources/nn/") DEPTHAI_VIDEOS = Path(__file__).parent.parent / Path(f"videos/") DEPTHAI_VIDEOS.mkdir(exist_ok=True) class ConfigManager: labels = "" customFwCommit = '' def __init__(self, args): self.args = args self.args.encode = dict(self.args.encode) self.args.cameraOrientation = dict(self.args.cameraOrientation) if self.args.scale is None: self.args.scale = {"color": 0.37} else: self.args.scale = dict(self.args.scale) if (Previews.left.name in self.args.cameraOrientation or Previews.right.name in self.args.cameraOrientation) and self.useDepth: print("[WARNING] Changing mono cameras orientation may result in incorrect depth/disparity maps") @property def debug(self): return not self.args.noDebug @property def useCamera(self): return not self.args.video @property def useNN(self): return not self.args.disableNeuralNetwork @property def useDepth(self): return not self.args.disableDepth and self.useCamera @property def maxDisparity(self): maxDisparity = 95 if (self.args.extendedDisparity): maxDisparity *= 2 if (self.args.subpixel): maxDisparity *= 32 return maxDisparity def getModelSource(self): if not self.useCamera: return "host" if self.args.camera == "left": if self.useDepth: return "rectifiedLeft" return "left" if self.args.camera == "right": if self.useDepth: return "rectifiedRight" return "right" if self.args.camera == "color": return "color" def getModelName(self): if self.args.cnnModel: return self.args.cnnModel modelDir = self.getModelDir() if modelDir is not None: return Path(modelDir).stem def getModelDir(self): if self.args.cnnPath: return self.args.cnnPath if self.args.cnnModel is not None and (DEPTHAI_ZOO / self.args.cnnModel).exists(): return DEPTHAI_ZOO / self.args.cnnModel def getAvailableZooModels(self): def verify(path: Path): return path.parent.name == path.stem def convert(path: Path): return path.stem return list(map(convert, filter(verify, DEPTHAI_ZOO.rglob("**/*.json")))) def getColorMap(self): cvColorMap = cv2.applyColorMap(np.arange(256, dtype=np.uint8), getattr(cv2, "COLORMAP_{}".format(self.args.colorMap))) cvColorMap[0] = [0, 0, 0] return cvColorMap def getRgbResolution(self): if self.args.rgbResolution == 2160: return dai.ColorCameraProperties.SensorResolution.THE_4_K elif self.args.rgbResolution == 3040: return dai.ColorCameraProperties.SensorResolution.THE_12_MP else: return dai.ColorCameraProperties.SensorResolution.THE_1080_P def getMonoResolution(self): if self.args.monoResolution == 720: return dai.MonoCameraProperties.SensorResolution.THE_720_P elif self.args.monoResolution == 800: return dai.MonoCameraProperties.SensorResolution.THE_800_P else: return dai.MonoCameraProperties.SensorResolution.THE_400_P def getMedianFilter(self): if self.args.stereoMedianSize == 3: return dai.MedianFilter.KERNEL_3x3 elif self.args.stereoMedianSize == 5: return dai.MedianFilter.KERNEL_5x5 elif self.args.stereoMedianSize == 7: return dai.MedianFilter.KERNEL_7x7 else: return dai.MedianFilter.MEDIAN_OFF def getUsb2Mode(self): if self.args['forceUsb2']: cliPrint("FORCE USB2 MODE", PrintColors.WARNING) usb2Mode = True else: usb2Mode = False return usb2Mode def adjustPreviewToOptions(self): if len(self.args.show) != 0: return self.args.show.append(Previews.color.name) if self.useDepth: if self.lowBandwidth: self.args.show.append(Previews.disparityColor.name) else: self.args.show.append(Previews.depth.name) if self.args.guiType == "qt": if self.useNN: self.args.show.append(Previews.nnInput.name) if self.useDepth: if self.lowBandwidth: self.args.show.append(Previews.disparityColor.name) else: self.args.show.append(Previews.depthRaw.name) self.args.show.append(Previews.rectifiedLeft.name) self.args.show.append(Previews.rectifiedRight.name) else: self.args.show.append(Previews.left.name) self.args.show.append(Previews.right.name) def adjustParamsToDevice(self, device): deviceInfo = device.getDeviceInfo() cams = device.getConnectedCameras() depthEnabled = dai.CameraBoardSocket.LEFT in cams and dai.CameraBoardSocket.RIGHT in cams if depthEnabled: self.args.disableDepth = False else: if not self.args.disableDepth: print("Disabling depth...") self.args.disableDepth = True if self.args.spatialBoundingBox: print("Disabling spatial bounding boxes...") self.args.spatialBoundingBox = False if self.args.camera != 'color': print("Switching source to RGB camera...") self.args.camera = 'color' updatedShowArg = [] for name in self.args.show: if name in ("nnInput", "color"): updatedShowArg.append(name) else: print("Disabling {} preview...".format(name)) if len(updatedShowArg) == 0: print("No previews available, adding color and nnInput...") updatedShowArg.append("color") if self.useNN: updatedShowArg.append("nnInput") self.args.show = updatedShowArg if self.args.bandwidth == "auto": if deviceInfo.desc.protocol != dai.XLinkProtocol.X_LINK_USB_VSC: print("Enabling low-bandwidth mode due to connection mode... (protocol: {})".format(deviceInfo.desc.protocol)) self.args.bandwidth = "low" print("Setting PoE video quality to 50 to reduce latency...") self.args.poeQuality = 50 elif device.getUsbSpeed() not in [dai.UsbSpeed.SUPER, dai.UsbSpeed.SUPER_PLUS]: print("Enabling low-bandwidth mode due to low USB speed... (speed: {})".format(device.getUsbSpeed())) self.args.bandwidth = "low" else: self.args.bandwidth = "high" def linuxCheckApplyUsbRules(self): if platform.system() == 'Linux': ret = subprocess.call(['grep', '-irn', 'ATTRS{idVendor}=="03e7"', '/etc/udev/rules.d'], stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL) if(ret != 0): cliPrint("\nWARNING: Usb rules not found", PrintColors.WARNING) cliPrint("\nSet rules: \n" """echo 'SUBSYSTEM=="usb", ATTRS{idVendor}=="03e7", MODE="0666"' | sudo tee /etc/udev/rules.d/80-movidius.rules \n""" "sudo udevadm control --reload-rules && sudo udevadm trigger \n" "Disconnect/connect usb cable on host! \n", PrintColors.RED) os._exit(1) def getCountLabel(self, nnetManager): if self.args.countLabel is None: return None if self.args.countLabel.isdigit(): obj = nnetManager.getLabelText(int(self.args.countLabel)).lower() print(f"Counting number of {obj} in the frame") return obj else: return self.args.countLabel.lower() @property def leftCameraEnabled(self): return (self.args.camera == Previews.left.name and self.useNN) or \ Previews.left.name in self.args.show or \ Previews.rectifiedLeft.name in self.args.show or \ self.useDepth @property def rightCameraEnabled(self): return (self.args.camera == Previews.right.name and self.useNN) or \ Previews.right.name in self.args.show or \ Previews.rectifiedRight.name in self.args.show or \ self.useDepth @property def rgbCameraEnabled(self): return (self.args.camera == Previews.color.name and self.useNN) or \ Previews.color.name in self.args.show @property def inputSize(self): return tuple(map(int, self.args.cnnInputSize.split('x'))) if self.args.cnnInputSize else None @property def previewSize(self): return (576, 320) @property def lowBandwidth(self): return self.args.bandwidth == "low" @property def lowCapabilities(self): return platform.machine().startswith("arm") or platform.machine().startswith("aarch") @property def shaves(self): if self.args.shaves is not None: return self.args.shaves if not self.useCamera: return 8 if self.args.rgbResolution > 1080: return 5 return 6 @property def dispMultiplier(self): val = 255 / self.maxDisparity return val
35.90146
153
0.605063
699043b73562bfe2fc09b8729625b24696260628
7,215
py
Python
beatbrain/models_old/cvae_keras.py
tasercake/BeatBrain
2d84e1021c509f6564223858c051394c6c8504bb
[ "MIT" ]
5
2019-09-10T22:34:34.000Z
2019-11-19T07:07:03.000Z
beatbrain/models_old/cvae_keras.py
tasercake/BeatBrain
2d84e1021c509f6564223858c051394c6c8504bb
[ "MIT" ]
35
2019-11-12T03:18:43.000Z
2019-12-16T14:03:24.000Z
beatbrain/models_old/cvae_keras.py
tasercake/Beatbrain
2d84e1021c509f6564223858c051394c6c8504bb
[ "MIT" ]
3
2019-09-04T10:07:57.000Z
2019-11-17T10:14:28.000Z
import os import time import numpy as np import tensorflow as tf from operator import mul from functools import reduce from pathlib import Path from datetime import datetime from tqdm import tqdm from PIL import Image from beatbrain.generator import data_utils from beatbrain import default_config tf.compat.v1.enable_eager_execution() def log_normal_pdf(sample, mean, logvar, raxis=1): log2pi = tf.math.log(2.0 * np.pi) return tf.reduce_sum( -0.5 * ((sample - mean) ** 2.0 * tf.exp(-logvar) + logvar + log2pi), axis=raxis ) @tf.function def compute_loss(model, x): mean, logvar = model.encode(x) z = model.reparameterize(mean, logvar) x_logit = model.decode(z) cross_ent = tf.nn.sigmoid_cross_entropy_with_logits(logits=x_logit, labels=x) logpx_z = -tf.reduce_sum(cross_ent, axis=[1, 2, 3]) logpz = log_normal_pdf(z, 0.0, 0.0) logqz_x = log_normal_pdf(z, mean, logvar) return -tf.reduce_mean(logpx_z + logpz - logqz_x) @tf.function def compute_apply_gradients(mdl, x, opt): with tf.GradientTape() as tape: loss = compute_loss(mdl, x) gradients = tape.gradient(loss, mdl.trainable_variables) opt.apply_gradients(zip(gradients, mdl.trainable_variables)) def visualize_model_outputs(mdl, epoch, test_input, output): output = Path(output) predictions = mdl.sample(eps=test_input) print(f"Saving Samples Images to {output}") for i, pred in enumerate(predictions): progress_dir = ( Path( default_config.MODEL_WEIGHTS or datetime.now().strftime("%Y%m%d-%H%M%S") ) .resolve() .stem ) out_dir = output.joinpath(progress_dir).joinpath(str(i + 1)) os.makedirs(out_dir, exist_ok=True) image = Image.fromarray(pred[:, :, 0].numpy(), mode="F") image.save(os.path.join(out_dir, f"epoch_{epoch}.tiff")) def reparameterize(args): mean, logvar = args batch = tf.keras.backend.shape(mean)[0] dim = tf.keras.backend.int_shape(mean)[1] eps = tf.random.normal(shape=(batch, dim)) return eps * tf.keras.backend.exp(logvar * 0.5) + mean def vae_loss(mean, logvar, img_dims): def loss_fn(y_pred, y_true): reconstruction_loss = tf.keras.losses.binary_crossentropy(y_pred, y_true) reconstruction_loss *= reduce(mul, img_dims) kl_loss = ( 1 + logvar - tf.keras.backend.square(mean) - tf.keras.backend.exp(logvar) ) kl_loss = -0.5 * tf.keras.backend.sum(kl_loss, axis=-1) return tf.keras.backend.mean(reconstruction_loss + kl_loss) return loss_fn # region Model hyperparameters window_size = default_config.WINDOW_SIZE image_dims = [default_config.CHUNK_SIZE, default_config.N_MELS] input_shape = [*image_dims, window_size] latent_dims = default_config.LATENT_DIMS num_conv = 2 num_filters = 32 max_filters = 64 kernel_size = 3 # endregion # region Training hyperparameters num_epochs = default_config.EPOCHS batch_size = default_config.BATCH_SIZE # endregion # region Model definition inputs = tf.keras.layers.Input(shape=input_shape, name="encoder_input") x = inputs for i in range(num_conv): x = tf.keras.layers.Conv2D( filters=min(num_filters * (i + 1), max_filters), kernel_size=kernel_size, activation="relu", strides=2, padding="same", activity_regularizer=tf.keras.regularizers.l1(0.01), )(x) latent_shape = x.shape x = tf.keras.layers.Flatten()(x) z_mean = tf.keras.layers.Dense(latent_dims, name="z_mean")(x) z_log_var = tf.keras.layers.Dense(latent_dims, name="z_log_var")(x) z = tf.keras.layers.Lambda(reparameterize, output_shape=[latent_dims], name="z")( [z_mean, z_log_var] ) encoder = tf.keras.Model(inputs, [z_mean, z_log_var, z], name="encoder") encoder.summary() latent_inputs = tf.keras.layers.Input(shape=(latent_dims,), name="z_sampled") x = tf.keras.layers.Dense(reduce(mul, latent_shape[1:]), activation="relu")( latent_inputs ) x = tf.keras.layers.Reshape(latent_shape[1:])(x) for i in range(num_conv): x = tf.keras.layers.Conv2DTranspose( filters=min(num_filters * (num_conv - i), max_filters), kernel_size=kernel_size, strides=2, activation="relu", padding="same", activity_regularizer=tf.keras.regularizers.l1(0.01), )(x) reconstructed = tf.keras.layers.Conv2DTranspose( filters=window_size, kernel_size=3, strides=1, padding="SAME", activation="sigmoid" )(x) decoder = tf.keras.Model(latent_inputs, reconstructed, name="decoder") decoder.summary() outputs = decoder(encoder(inputs)[2]) vae = tf.keras.Model(inputs, outputs, name="vae") vae.compile( optimizer=tf.keras.optimizers.Adam(1e-4), loss=vae_loss(z_mean, z_log_var, image_dims), experimental_run_tf_function=False, ) vae.summary() # endregion # region Train and evaluate train_dataset, test_dataset = data_utils.load_numpy_dataset( default_config.TRAIN_DATA_DIR, return_tuples=True ) start = time.time() num_samples = 2000 with tqdm(train_dataset.take(num_samples), total=num_samples) as pbar: for i, element in enumerate(pbar): # pbar.write(f"{i + 1}: {element[0].shape}") pass print("----------------FINISHED----------------") print(time.time() - start) # if Path(settings.MODEL_WEIGHTS).is_file(): # vae.load_weights(settings.MODEL_WEIGHTS) # vae.fit(train_dataset, epochs=num_epochs, validation_data=(test_dataset, None)) # endregion # optimizer = tf.keras.optimizers.Adam(1e-4) # model = CVAE(num_conv=4) # model.compile(optimizer=optimizer) # if os.path.exists(settings.MODEL_WEIGHTS): # print(f"Loading weights from '{settings.MODEL_WEIGHTS}'") # model.load_weights(settings.MODEL_WEIGHTS) # num_train = num_test = 0 # generation_vector = tf.random.normal(shape=[settings.EXAMPLES_TO_GENERATE, model.latent_dims]) # visualiziation_output_dir = os.path.join(settings.OUTPUT_DIR, 'progress') # visualize_model_outputs(model, 0, generation_vector, visualiziation_output_dir) # # for epoch in range(1, settings.EPOCHS + 1): # start = time.time() # print(f"Training | Epoch {epoch} / {settings.EPOCHS}...") # for train_x in tqdm(train_dataset, total=num_train or None): # compute_apply_gradients(model, train_x, optimizer) # if epoch == 1: # num_train += 1 # print(f"Finished Train Step | Epoch {epoch} Train Step took {time.time() - start:.2f} seconds") # # if epoch % 1 == 0: # # Evaluate Model # print(f"Evaluation | Epoch {epoch}...") # loss = tf.keras.metrics.Mean() # for test_x in tqdm(test_dataset, total=num_test): # loss(compute_loss(model, test_x)) # if epoch == 1: # num_test += 1 # elbo = -loss.result() # print(f"Epoch {epoch} took {time.time() - start:.2f} seconds | Test Set ELBO: {elbo}") # # Save Model Weights # os.makedirs(os.path.dirname(settings.MODEL_WEIGHTS), exist_ok=True) # Create dir if it doesn't exist # model.save_weights(settings.MODEL_WEIGHTS) # # Save Generated Samples # visualize_model_outputs(model, epoch, generation_vector, visualiziation_output_dir)
34.6875
111
0.685793
60448573d04556a655c31902f3df64a63b4700ab
692
py
Python
uwsgi_sloth/tests/test_structures.py
365moods/uwsgi
8097c08b1090aa08a0a241cb8772a803486e0759
[ "Apache-2.0" ]
127
2015-01-02T11:57:22.000Z
2022-03-03T02:23:54.000Z
uwsgi_sloth/tests/test_structures.py
365moods/uwsgi
8097c08b1090aa08a0a241cb8772a803486e0759
[ "Apache-2.0" ]
8
2015-06-15T12:10:13.000Z
2019-07-21T23:01:18.000Z
uwsgi_sloth/tests/test_structures.py
365moods/uwsgi
8097c08b1090aa08a0a241cb8772a803486e0759
[ "Apache-2.0" ]
20
2015-01-06T03:27:25.000Z
2020-09-04T03:53:46.000Z
# -*- coding: utf-8 -*- from uwsgi_sloth.structures import ValuesAggregation def test_ValuesAggregation(): agr = ValuesAggregation() agr.add_values(range(1, 101)) assert agr.get_result() == {'max': 100, 'avg': 50.5, 'min': 1} assert agr.avg == 50.5 # Test merge with agr1 = ValuesAggregation(values=range(1, 11)) agr2 = ValuesAggregation(values=range(-10, 0)) agr3 = ValuesAggregation(values=range(100, 201)) assert agr1.merge_with(agr2).get_result() == {'max': 10, 'avg': 0.0, 'min': -10} assert agr1.merge_with(agr3).get_result() == { 'max': 200, 'avg': (sum(range(1, 11)) + sum(range(100, 201))) / 111.0, 'min': 1 }
32.952381
84
0.608382
32965b39fcb4b17b66cabd633652335a19b431f6
30,226
py
Python
dumpflash/dumpjffs2.py
dmikushin/nandflasher
f5d99449c488d6a37955d84e40b1226ae90e3ac1
[ "Unlicense" ]
null
null
null
dumpflash/dumpjffs2.py
dmikushin/nandflasher
f5d99449c488d6a37955d84e40b1226ae90e3ac1
[ "Unlicense" ]
null
null
null
dumpflash/dumpjffs2.py
dmikushin/nandflasher
f5d99449c488d6a37955d84e40b1226ae90e3ac1
[ "Unlicense" ]
null
null
null
# pylint: disable=invalid-name # pylint: disable=line-too-long import struct import pprint import os import zlib import shutil from . import crc32 def main(): JFFS2_COMPR_NONE = 0x00 JFFS2_COMPR_ZERO = 0x01 JFFS2_COMPR_RTIME = 0x02 JFFS2_COMPR_RUBINMIPS = 0x03 JFFS2_COMPR_COPY = 0x04 JFFS2_COMPR_DYNRUBIN = 0x05 JFFS2_COMPR_ZLIB = 0x06 JFFS2_COMPR_LZO = 0x07 # Compatibility flags. JFFS2_COMPAT_MASK = 0xc000 JFFS2_NODE_ACCURATE = 0x2000 # INCOMPAT: Fail to mount the filesystem JFFS2_FEATURE_INCOMPAT = 0xc000 # ROCOMPAT: Mount read-only JFFS2_FEATURE_ROCOMPAT = 0x8000 # RWCOMPAT_COPY: Mount read/write, and copy the node when it's GC'd JFFS2_FEATURE_RWCOMPAT_COPY = 0x4000 # RWCOMPAT_DELETE: Mount read/write, and delete the node when it's GC'd JFFS2_FEATURE_RWCOMPAT_DELETE = 0x0000 JFFS2_NODETYPE_DIRENT = (JFFS2_FEATURE_INCOMPAT | JFFS2_NODE_ACCURATE | 1) JFFS2_NODETYPE_INODE = (JFFS2_FEATURE_INCOMPAT | JFFS2_NODE_ACCURATE | 2) JFFS2_NODETYPE_CLEANMARKER = (JFFS2_FEATURE_RWCOMPAT_DELETE | JFFS2_NODE_ACCURATE | 3) JFFS2_NODETYPE_PADDING = (JFFS2_FEATURE_RWCOMPAT_DELETE | JFFS2_NODE_ACCURATE | 4) JFFS2_NODETYPE_SUMMARY = (JFFS2_FEATURE_RWCOMPAT_DELETE | JFFS2_NODE_ACCURATE | 6) JFFS2_NODETYPE_XATTR = (JFFS2_FEATURE_INCOMPAT | JFFS2_NODE_ACCURATE | 8) JFFS2_NODETYPE_XREF = (JFFS2_FEATURE_INCOMPAT | JFFS2_NODE_ACCURATE | 9) # XATTR Related JFFS2_XPREFIX_USER = 1 # for 'user.' JFFS2_XPREFIX_SECURITY = 2 # for 'security.' JFFS2_XPREFIX_ACL_ACCESS = 3 # for 'system.posix_acl_access' JFFS2_XPREFIX_ACL_DEFAULT = 4 # for 'system.posix_acl_default' JFFS2_XPREFIX_TRUSTED = 5 # for 'trusted.*' JFFS2_ACL_VERSION = 0x0001 JFFS2_NODETYPE_CHECKPOINT = (JFFS2_FEATURE_RWCOMPAT_DELETE | JFFS2_NODE_ACCURATE | 3) JFFS2_NODETYPE_OPTIONS = (JFFS2_FEATURE_RWCOMPAT_COPY | JFFS2_NODE_ACCURATE | 4) JFFS2_INO_FLAG_PREREAD = 1 # Do read_inode() for this one at JFFS2_INO_FLAG_USERCOMPR = 2 # User has requested a specific header_unpack_fmt = '<HHL' header_struct_size = struct.calcsize(header_unpack_fmt) inode_unpack_fmt = '<LLLLHHLLLLLLLBBHLL' inode_struct_size = struct.calcsize(inode_unpack_fmt) dirent_unpack_fmt = '<LLLLLBBBLL' dirent_struct_size = struct.calcsize(dirent_unpack_fmt) class JFFS: DebugLevel = 0 DumpMagicError = False def __init__(self): self.INodeMap = {} self.DirentMap = {} self.OrigFilename = None def parse(self, filename, target_filename = ''): self.OrigFilename = filename fd = open(filename, 'rb') data = fd.read() fd.close() data_offset = 0 total_count = 0 last_magic = 0 last_nodetype = 0 last_totlen = 0 last_data_offset = 0 while 1: error = False hdr = data[data_offset:data_offset+header_struct_size] try: (magic, nodetype, totlen) = struct.unpack(header_unpack_fmt, hdr) except: break # magci_header_offset = data_offset if magic != 0x1985: if self.DumpMagicError: print('* Magic Error:', hex(data_offset), '(', hex(magic), ', ', hex(nodetype), ')') print('\tLast record:', hex(last_data_offset), '(', hex(last_magic), ', ', hex(last_nodetype), ', ', hex(last_totlen), ')') while data_offset < len(data): tag = data[data_offset:data_offset+4] if tag == b'\x85\x19\x02\xe0': if self.DumpMagicError: print('\tFound next inode at 0x%x' % data_offset) print('') break data_offset += 0x4 if data_offset < len(data): (magic, nodetype, totlen) = struct.unpack(header_unpack_fmt, data[data_offset:data_offset+header_struct_size]) if magic != 0x1985: break if nodetype == JFFS2_NODETYPE_INODE: node_data = data[data_offset+header_struct_size:data_offset+header_struct_size+inode_struct_size] (hdr_crc, ino, version, mode, uid, gid, isize, atime, mtime, ctime, offset, csize, dsize, compr, usercompr, flags, data_crc, node_crc) = struct.unpack(inode_unpack_fmt, node_data) payload = data[data_offset+0x44: data_offset+0x44+csize] if compr == 0x6: try: payload = decompress(payload) except: if self.DebugLevel > 0: print('* Uncompress error') error = True if self.DebugLevel > 0: print('payload length:', len(payload)) if self.DebugLevel > 1: pprint.pprint(payload) if ino not in self.INodeMap: self.INodeMap[ino] = [] self.INodeMap[ino].append({ 'data_offset': data_offset, 'ino': ino, 'hdr_crc': hdr_crc, 'version': version, 'mode': mode, 'uid': uid, 'gid': gid, 'isize': isize, 'atime': atime, 'mtime': mtime, 'ctime': ctime, 'offset': offset, 'csize': csize, 'dsize': dsize, 'compr': compr, 'usercompr': usercompr, 'flags': flags, 'data_crc': data_crc, 'node_crc': node_crc, 'totlen': totlen, 'payload': payload }) if error or (target_filename != '' and ino in self.DirentMap and self.DirentMap[ino]['payload'].find(target_filename) >= 0): #if self.DebugLevel>0: if True: print(' = '*79) print('* JFFS2_NODETYPE_INODE:') print('magic: %x nodetype: %x totlen: %x' % (magic, nodetype, totlen)) print('data_offset: %x offset: %x csize: %x dsize: %x next_offset: %x' % (data_offset, offset, csize, dsize, data_offset + 44 + csize)) print('ino: %x version: %x mode: %x' % (ino, version, mode)) print('uid: %x gid: %x' % (uid, gid)) print('atime: %x mtime: %x ctime: %x' % (atime, mtime, ctime)) print('compr: %x usercompr: %x' % (compr, usercompr)) print('flags: %x isize: %x' % (flags, isize)) print('hdr_crc: %x data_crc: %x node_crc: %x' % (hdr_crc, data_crc, node_crc)) print('') elif nodetype == JFFS2_NODETYPE_DIRENT: (hdr_crc, pino, version, ino, mctime, nsize, ent_type, _, node_crc, name_crc) = struct.unpack(dirent_unpack_fmt, data[data_offset+header_struct_size:data_offset+header_struct_size+dirent_struct_size]) payload = data[data_offset+header_struct_size+dirent_struct_size+1: data_offset+header_struct_size+dirent_struct_size+1+nsize] if ino not in self.DirentMap or self.DirentMap[ino]['version'] < version: self.DirentMap[ino] = { 'hdr_crc': hdr_crc, 'pino': pino, 'version': version, 'mctime': mctime, 'nsize': nsize, 'ent_type': ent_type, 'node_crc': node_crc, 'name_crc': name_crc, 'payload': payload } if target_filename != '' and payload.find(target_filename) >= 0: print(' = '*79) print('* JFFS2_NODETYPE_DIRENT:') print('data_offset:\t', hex(data_offset)) print('magic:\t\t%x' % magic) print('nodetype:\t%x' % nodetype) print('totlen:\t\t%x' % totlen) print('hdr_crc:\t%x' % hdr_crc) print('pino:\t\t%x' % pino) print('version:\t%x' % version) print('ino:\t\t%x' % ino) print('node_crc:\t%x' % node_crc) parent_node = '' if pino in self.DirentMap: parent_node = self.DirentMap[pino]['payload'] print('Payload:\t%s' % (parent_node + '\\' + payload)) print('') elif nodetype == 0x2004: pass else: print(' = '*79) print('data_offset:\t', hex(data_offset)) print('magic:\t\t%x' % magic) print('nodetype:\t%x' % nodetype) print('totlen:\t\t%x' % totlen) (last_magic, last_nodetype, last_totlen) = (magic, nodetype, totlen) last_data_offset = data_offset if totlen%4 != 0: totlen += 4-(totlen%4) data_offset += totlen current_page_data_len = data_offset % 0x200 if (0x200-current_page_data_len) < 0x8: data_offset += 0x200-current_page_data_len if self.DebugLevel > 0: print('* Record (@%x):\tMagic: %x\tType: %x\tTotlen %x\tPadded Totlen: %x' % (last_data_offset, last_magic, last_nodetype, last_totlen, totlen)) total_count += 1 print('Total Count:', total_count) if self.DebugLevel > 0: pprint.pprint(self.DirentMap) def get_path(self, ino): path = '' while ino != 0 and ino in self.DirentMap: path = '/' + self.DirentMap[ino]['payload'] + path ino = self.DirentMap[ino]['pino'] return path def read_file_data(self, inode_map_record, dump = False): data = [] for record in inode_map_record: if dump: print('offset: %x dsize: %x data offset: %x length: %x (ver: %x) totlen: %x' % (record['offset'], record['dsize'], record['data_offset'], len(record['payload']), record['version'], record['totlen'])) offset = record['offset'] dsize = record['dsize'] new_data_len = offset+dsize-len(data) if new_data_len > 0: try: data += [b'\x00'] * new_data_len except: print('offset: %x dsize: %x data offset: %x length: %x (ver: %x) totlen: %x' % (record['offset'], record['dsize'], record['data_offset'], len(record['payload']), record['version'], record['totlen'])) data[offset:offset+dsize] = record['payload'] return ''.join(data) def read_file_seq_data(self, inode_map_record, dump = False): next_offset = 0 data = '' for record in inode_map_record: if dump: print(len(inode_map_record)) print('Version: %x Offset: %x DSize: %x Data Offset: %x Payload Length: %x' % (record['version'], record['offset'], record['dsize'], record['data_offset'], len(record['payload']))) offset = record['offset'] if offset == next_offset: next_offset = offset + record['dsize'] # found_record = True data += record['payload'] return data def write_data(self, output_filename, inode_map_record, data): shutil.copy(self.OrigFilename, output_filename) next_offset = 0 while 1: found_record = False for record in inode_map_record: offset = record['offset'] if offset == next_offset: orig_data = data if record['compr'] == 0x6: try: data = compress(data) except: print('* Compress error') print('data_offset: %x offset: %x dsize: %x csize: %x' % (record['data_offset'], record['offset'], record['dsize'], record['csize'])) print('Trying to write: %x' % len(data)) if record['csize'] > len(data): fd = open(output_filename, 'r+') fd.seek(record['data_offset']) record['csize'] = len(data) record['dsize'] = len(orig_data) fd.write(struct.pack(inode_unpack_fmt, record['hdr_crc'], record['ino'], record['version'], record['mode'], record['uid'], record['gid'], record['isize'], record['atime'], record['mtime'], record['ctime'], record['offset'], record['csize'], record['dsize'], record['compr'], record['usercompr'], record['flags'], record['data_crc'], record['node_crc'] ) + data + (record['csize'] - len(data)) * b'\xff') fd.close() next_offset = offset + record['dsize'] if next_offset != offset: found_record = True break if not found_record: break return data def dump_file(self, filename, mod = '', out = ''): print('dump_file') for ino in list(self.DirentMap.keys()): if ino in self.INodeMap: path = self.get_path(ino) if path == filename: print('') print(' = '*80) print(ino, self.get_path(ino), len(self.DirentMap[ino]['payload'])) pprint.pprint(self.DirentMap[ino]) data = self.read_file_data(self.INodeMap[ino]) print(data) if mod != '': fd = open(mod, 'rb') self.write_data(out, self.INodeMap[ino], fd.read()) fd.close() def dump_info(self, output_dir, ino, target_filename = ''): path = self.get_path(ino) directory = os.path.dirname(path) basename = os.path.basename(path) local_dir = os.path.join(output_dir, directory[1:]) local_path = os.path.join(local_dir, basename) write_file = True dump = False if target_filename != '': write_file = False if path.find(target_filename) >= 0: dump = True write_file = True else: write_file = True if dump: print('File %s (ino: %d)' % (path, ino)) data = self.read_file_data(self.INodeMap[ino], dump = dump) if dump: print('\tFile length: %d' % (len(data))) print('') if len(data) == 0: return if write_file: if not os.path.isdir(local_dir): os.makedirs(local_dir) try: fd = open(local_path, 'wb') fd.write(data) fd.close() except: print('Failed to create file: %s' % (local_path)) def dump(self, output_dir, target_filename = ''): if not os.path.isdir(output_dir): os.makedirs(output_dir) processed_ino = {} for ino in list(self.DirentMap.keys()): if ino in self.INodeMap: processed_ino[ino] = True self.dump_info(output_dir, ino, target_filename) for ino in list(self.INodeMap.keys()): if ino not in processed_ino: self.dump_info(output_dir, ino, target_filename) def list_data(self, inode_map_record): for record in inode_map_record: print('version: 0x%x' % record['version']) print('\toffset: 0x%x' % record['offset']) print('\tpayload: 0x%x' % len(record['payload'])) print('\tdata_offset: 0x%x' % record['data_offset']) print('\tctime: 0x%x' % record['ctime']) print('\tmtime: 0x%x' % record['mtime']) print('\tatime: 0x%x' % record['atime']) def list_file(self, filename): print('Path\tInode\tNumber of records') for ino in list(self.DirentMap.keys()): if ino in self.INodeMap: if filename == '': print(self.get_path(ino)) print('\tInode:', ino) print('\tRecords:', len(self.INodeMap[ino])) else: path = self.get_path(ino) if path == filename: print(self.get_path(ino)) print('\tInode:', ino) print('\tRecords:', len(self.INodeMap[ino])) self.list_data(self.INodeMap[ino]) def make_inode( self, ino = 0x683, version = 0x1da, mode = 0x81ed, uid = 0x0, gid = 0x0, isize = 0x1bcb8, atime = 0x498351be, mtime = 0x498351be, ctime = 0x31, offset = 0, dsize = 0x1000, compr = 6, usercompr = 0, flags = 0, payload = '' ): crc32_inst = crc32.CRC32() crc32_inst.set_sarwate() magic = 0x1985 nodetype = JFFS2_NODETYPE_INODE totlen = len(payload)+0x44 header = struct.pack(header_unpack_fmt, magic, nodetype, totlen) csize = len(payload) hdr_crc = 0 data_crc = crc32_inst.calc(payload) #0x4d8bd458 node_crc = 0x0 #0x6d423d5a inode = struct.pack(inode_unpack_fmt, hdr_crc, ino, version, mode, uid, gid, isize, atime, mtime, ctime, offset, csize, dsize, compr, usercompr, flags, data_crc, node_crc) hdr_crc = crc32_inst.calc(header) #0xca1c1cba inode = struct.pack(inode_unpack_fmt, hdr_crc, ino, version, mode, uid, gid, isize, atime, mtime, ctime, offset, csize, dsize, compr, usercompr, flags, data_crc, node_crc) ri = header+inode ri = ri[0:header_struct_size+inode_struct_size-8] node_crc = crc32_inst.calc(ri) inode = struct.pack(inode_unpack_fmt, hdr_crc, ino, version, mode, uid, gid, isize, atime, mtime, ctime, offset, csize, dsize, compr, usercompr, flags, data_crc, node_crc) data = header data += inode data += payload debug = 0 if debug > 0: print('') print('header: %08X' % ((crc32_inst.calc(header)) & 0xFFFFFFFF)) print('inode: %08X' % ((crc32_inst.calc(inode)) & 0xFFFFFFFF)) print('header+inode: %08X' % ((crc32_inst.calc(ri)) & 0xFFFFFFFF)) print('payload: %08X' % ((crc32_inst.calc(payload)) & 0xFFFFFFFF)) print('data: %08X' % ((crc32_inst.calc(data)) & 0xFFFFFFFF)) return data def make_inode_with_header(self, header, payload): (magic, nodetype, totlen) = struct.unpack(header_unpack_fmt, header[0:header_struct_size]) print('magic: %X' % (magic)) print('nodetype: %X' % (nodetype)) print('totlen: %X' % (totlen)) (hdr_crc, ino, version, mode, uid, gid, isize, atime, mtime, ctime, offset, csize, dsize, compr, usercompr, flags, data_crc, node_crc) = struct.unpack(inode_unpack_fmt, header[header_struct_size:header_struct_size+inode_struct_size]) print('hdr_crc: %X' % (hdr_crc)) print('ino: %X' % (ino)) print('version: %X' % (version)) print('mode: %X' % (mode)) print('uid: %X' % (uid)) print('gid: %X' % (gid)) print('isize: %X' % (isize)) print('atime: %X' % (atime)) print('mtime: %X' % (mtime)) print('ctime: %X' % (ctime)) print('offset: %X' % (offset)) print('csize: %X' % (csize)) print('dsize: %X' % (dsize)) print('compr: %X' % (compr)) print('usercompr: %X' % (usercompr)) print('flags: %X' % (flags)) print('data_crc: %X' % (data_crc)) print('node_crc: %X' % (node_crc)) return self.make_inode( ino = ino, version = version, mode = mode, uid = uid, gid = gid, isize = isize, atime = atime, mtime = mtime, ctime = ctime, offset = offset, dsize = dsize, compr = compr, usercompr = usercompr, flags = flags, payload = payload ) def make_inode_with_header_file(self, header_file, payload_file): fd = open(header_file, 'rb') header = fd.read()[0:header_struct_size+inode_struct_size] fd.close() fd = open(payload_file, 'rb') payload = fd.read() fd.close() return self.make_inode_with_header(header, payload) def write_ino(self, ino, target_filename, offset, size, new_data_filename, output_filename): path = self.get_path(ino) # directory = os.path.dirname(path) # basename = os.path.basename(path) if path == target_filename: print('File %s (ino: %d)' % (path, ino)) print('%x %x' % (offset, size)) data = [] for record in self.INodeMap[ino]: record_offset = record['offset'] record_dsize = record['dsize'] if record_offset <= offset and offset <= record_offset+record_dsize: record_data_offset = record['data_offset'] totlen = record['totlen'] print('%x (%x) -> file offset: %x (%x) totlen = %x' % (record_offset, record_dsize, record_data_offset, record['csize'], totlen)) fd = open(new_data_filename, 'rb') fd.seek(record_offset) data = fd.read(record_dsize) fd.close() new_data = zlib.compress(data) new_inode = self.make_inode( ino = record['ino'], version = record['version'], mode = record['mode'], uid = record['uid'], gid = record['gid'], isize = record['isize'], atime = record['atime'], mtime = record['mtime'], ctime = record['ctime'], offset = record['offset'], dsize = record['dsize'], compr = record['compr'], usercompr = record['usercompr'], flags = record['flags'], payload = new_data ) new_inode_len = len(new_inode) print(' new_inode: %x' % (len(new_inode))) if totlen > new_inode_len: new_inode += (totlen-new_inode_len) * b'\xff' if output_filename != '': #print 'Writing to %s at 0x%x (0x%x)' % (output_filename, record_data_offset, len(new_inode)) fd = open(output_filename, 'wb') orig_fd = open(self.OrigFilename, 'rb') old_data = orig_fd.read() orig_fd.close() #Save ofd = open('old.bin', 'wb') ofd.write(old_data[record_data_offset:record_data_offset+len(new_inode)]) ofd.close() nfd = open('new.bin', 'wb') nfd.write(new_inode) nfd.close() fd.write(old_data) fd.seek(record_data_offset) fd.write(new_inode) fd.close() def write_file(self, target_filename, new_data_filename, offset, size, output_filename): processed_ino = {} for ino in list(self.DirentMap.keys()): if ino in self.INodeMap: processed_ino[ino] = True self.write_ino(ino, target_filename, offset, size, new_data_filename, output_filename) for ino in list(self.INodeMap.keys()): if ino not in processed_ino: self.write_ino(ino, target_filename, offset, size, new_data_filename, output_filename) if __name__ == '__main__': from optparse import OptionParser parser = OptionParser() parser.add_option( '-o', '--output_dir', dest = 'output_dir', help = 'Set output directory name', default = '', metavar = 'OUTPUT_DIR') parser.add_option( '-O', '--output_filename', dest = 'output_filename', help = 'Set output filename', default = '', metavar = 'OUTPUT_FILENAME') parser.add_option( '-f', '--target_filename', dest = 'target_filename', help = 'Set target filename', default = '', metavar = 'TARGET_FILENAME') parser.add_option( '-n', '--new_data_filename', dest = 'new_data_filename', help = 'Set new data file name', default = '', metavar = 'NEW_DATA_FILENAME') parser.add_option('-l', action = 'store_true', dest = 'list') parser.add_option('-d', type = 'int', default = 0, dest = 'debug') parser.add_option('-t', type = 'int', default = 0, dest = 'offset') parser.add_option('-s', type = 'int', default = 0, dest = 'size') (options, args) = parser.parse_args() jffs2_filename = args[0] jffs = JFFS() jffs.parse(jffs2_filename, target_filename = options.target_filename) jffs.DebugLevel = options.debug if options.list: jffs.list_file(options.file) elif options.new_data_filename != '': jffs.write_file(options.target_filename, options.new_data_filename, options.offset, options.size, options.output_filename) elif options.output_dir != '': print('Dumping files to a folder: %s' % (options.output_dir)) jffs.dump(options.output_dir, target_filename = options.target_filename) elif options.file != '' and options.output_filename != '': jffs.dump_file(options.target_filename, options.new_data_filename, options.output_filename) if __name__ == "__main__": sys.exit(main())
42.873759
245
0.464071
d0332e9ed9f67052f52254b7869af388df1c5dfa
372
py
Python
orchestration/models/integration_type.py
dave-read/vdc
0a331c0d4cde2a87df11e9ff4304a539f0a56692
[ "MIT" ]
1
2019-06-12T23:48:30.000Z
2019-06-12T23:48:30.000Z
orchestration/models/integration_type.py
dave-read/vdc
0a331c0d4cde2a87df11e9ff4304a539f0a56692
[ "MIT" ]
1
2019-04-17T00:11:59.000Z
2019-04-17T00:11:59.000Z
orchestration/models/integration_type.py
dave-read/vdc
0a331c0d4cde2a87df11e9ff4304a539f0a56692
[ "MIT" ]
2
2019-04-16T16:09:44.000Z
2019-05-31T19:54:12.000Z
from enum import Enum class IntegrationType(Enum): BILLING_CLIENT_SDK=1 MANAGEMENT_GROUP_CLIENT_SDK=2 MANAGEMENT_LOCK_CLIENT_SDK=3 POLICY_CLIENT_SDK=4 RESOURCE_MANAGEMENT_CLIENT_SDK=5 SUBSCRIPTION_CLIENT_SDK=6 AAD_CLIENT_CLI=7 KEYVAULT_CLIENT_CLI=8 RBAC_CLIENT_CLI=9 RESOURCE_MANAGEMENT_CLIENT_CLI=10 SUBSCRIPTION_CLIENT_CLI=11
26.571429
37
0.798387
ce29b5e528b41c3d63927feb10d0d426bb2b5600
8,071
py
Python
dss/video.py
terabit-software/dynamic-stream-server
55988f8af7b49b28f446c61aeae8ecae40c7ade2
[ "BSD-3-Clause" ]
9
2015-08-06T20:36:21.000Z
2021-09-08T19:49:46.000Z
dss/video.py
terabit-software/dynamic-stream-server
55988f8af7b49b28f446c61aeae8ecae40c7ade2
[ "BSD-3-Clause" ]
null
null
null
dss/video.py
terabit-software/dynamic-stream-server
55988f8af7b49b28f446c61aeae8ecae40c7ade2
[ "BSD-3-Clause" ]
4
2015-08-21T22:00:11.000Z
2019-10-26T15:31:15.000Z
from __future__ import division import time import warnings try: # Python 3 from urllib.request import urlopen except ImportError: from urllib2 import urlopen from .config import config from .providers import Providers from .tools import process, thread, noxml from .tools.show import Show from .stats import StreamStats show = Show('Video') class StreamHTTPClient(object): """ Emulate the behaviour of a RTMP client when there's an HTTP access for a certain Stream. If no other HTTP access is made within the timeout period, the `Stream` instance will be decremented. """ def __init__(self, parent): self.lock = thread.Condition() self.timeout = None self.parent = parent self._stop() def wait(self, timeout): self.timeout = timeout if not self._stopped: with self.lock: self._stop(restart=True) self.lock.notify_all() else: self.thread = thread.Thread(self._wait_worker).start() return self def _wait_worker(self): with self.lock: while self._stopped: self._start() self.lock.wait(self.timeout) self._stop() self.parent.dec(http=True) def _stop(self, restart=False, data=True): self._stopped = data if not restart: self._stopped_info = data def _start(self): self._stop(data=False) def __bool__(self): return not self._stopped_info __nonzero__ = __bool__ class Stream(object): _ffmpeg = config['ffmpeg'] run_timeout = _ffmpeg.getint('timeout') reload_timeout = _ffmpeg.getint('reload') def __init__(self, id, timeout=run_timeout): self.lock = thread.Lock() self.id = id provider = Providers.select(id) try: provider.get_stream(id) except Exception: # The prefix match but the id is not real raise KeyError('Invalid id for {0.identifier!r} ({0.name}) provider'.format(provider)) self.fn = lambda self=self: process.run_proc( self.id, provider.make_cmd(self.id), 'fetch' ) self.cnt = 0 self._proc_run = False self.proc = None self.thread = None self.timeout = timeout self.http_client = StreamHTTPClient(self) self.stats = StreamStats() def __repr__(self): pid = self.proc.pid if self.proc else None return '<{0}: Users={1} Pid={2}>'.format(self.id, self.clients, pid) @property def clients(self): return self.cnt + bool(self.http_client) @property def alive(self): return self.proc or self.proc_run @property def proc_run(self): return self._proc_run @proc_run.setter def proc_run(self, value): with self.lock: self._proc_run = value def inc(self, k=1, http_wait=None): """ Increment user count unless it is a http user (then http_wait must be set). If so, it should wait a period of time on another thread and the clients property will be indirectly incremented. If there is no process running and it should be, a new process will be started. """ if http_wait: self.http_client.wait(http_wait) else: self.cnt += k if not self.proc and not self.proc_run: self.proc_start() show(self) return self def dec(self, http=False): """ Decrement the user count unless it is a http user. If there are no new clients, the process is scheduled to shutdown. """ if not http: if self.cnt: self.cnt -= 1 if not self.clients: self.proc_stop() show(self) return self def _proc_msg(self, pid, msg): return '{0} - FFmpeg[{1}] {2}'.format(self.id, pid, msg) def proc_start(self): """ Process starter on another thread. """ def worker(): self.proc_run = True start_msg = 'started' while True: with self.fn() as self.proc: self.stats.timed.started() pid = self.proc and self.proc.pid show(self._proc_msg(pid, start_msg)) self.proc.wait() self.proc = None if self.proc_run: # Should be running, but isn't self.stats.timed.died() show.warn(self._proc_msg(pid, 'died')) time.sleep(self.reload_timeout) if self.proc_run: # It might have been stopped after waiting start_msg = 'restarted' continue show(self._proc_msg(pid, 'stopped')) break self.thread = thread.Thread(worker).start() def _kill(self): """ Kill the FFmpeg process. Don't call this function directly, otherwise the process may be restarted. Call `proc_stop` instead. """ try: self.proc.kill() self.proc.wait() except (OSError, AttributeError): pass finally: self.proc = None def proc_stop(self, now=False): if now: self.proc_run = False self._kill() return if not self.proc_run: return self.proc_run = False def stop_worker(): time.sleep(self.timeout) if not self.clients: self._kill() else: self.proc_run = True thread.Thread(stop_worker).start() class Video(object): _data = {} _data_lock = thread.Lock() run = True @classmethod def start(cls, id, increment=1, http_wait=None): if cls.run: cls.get_stream(id).inc(increment, http_wait=http_wait) @classmethod def stop(cls, id): cls.get_stream(id).dec() @classmethod def get_stream(cls, id): with cls._data_lock: stream = cls._data.get(id) if stream is None: stream = Stream(id) cls._data[id] = stream return stream @classmethod def get_stats(cls): http = config['http-server'] addr = http['addr'] stat = http['stat_url'] data = urlopen(addr + stat).read() return noxml.load(data, ('stream', 'application')) @classmethod def initialize_from_stats(cls): try: stats = cls.get_stats()['server']['application'] except IOError: return app = config['rtmp-server']['app'] try: app = next(x['live'] for x in stats if x['name'] == app) except StopIteration: raise RuntimeError('No app named %r' % app) # App clients stream_list = app.get('stream') if stream_list is None: return for stream in stream_list: # Stream clients nclients = int(stream['nclients']) if 'publishing' in stream: nclients -= 1 if nclients <= 0: continue try: cls.start(stream['name'], nclients) except KeyError: warnings.warn('Invalid stream name: %r' % stream['name']) @classmethod def auto_start(cls): for id in config['video_start'].get_list('auto_start'): cls.start(id) for p in config['video_start'].get_list('auto_start_provider'): streams = Providers.select(p).streams() for id in streams: cls.start(id) @classmethod def terminate_streams(cls): with cls._data_lock: cls.run = False for strm in cls._data.values(): strm.proc_stop(now=True)
28.72242
98
0.548755
0727a525625498b9ae4721d04aff0d2cf52d1505
9,104
py
Python
serial/serialcli.py
jabdoa2/pyserial
92d101613be41ecb2f2054c3f43a006fbe6f9966
[ "BSD-3-Clause" ]
1,118
2015-01-02T04:31:39.000Z
2022-03-23T18:46:48.000Z
Thonny/Lib/site-packages/serial/serialcli.py
Pydiderot/pydiderotIDE
a42fcde3ea837ae40c957469f5d87427e8ce46d3
[ "MIT" ]
330
2015-01-03T04:38:18.000Z
2022-02-14T12:47:51.000Z
Thonny/Lib/site-packages/serial/serialcli.py
Pydiderot/pydiderotIDE
a42fcde3ea837ae40c957469f5d87427e8ce46d3
[ "MIT" ]
296
2015-05-13T15:03:32.000Z
2022-03-22T20:51:25.000Z
#! python # # Backend for .NET/Mono (IronPython), .NET >= 2 # # This file is part of pySerial. https://github.com/pyserial/pyserial # (C) 2008-2015 Chris Liechti <cliechti@gmx.net> # # SPDX-License-Identifier: BSD-3-Clause import System import System.IO.Ports from serial.serialutil import * # must invoke function with byte array, make a helper to convert strings # to byte arrays sab = System.Array[System.Byte] def as_byte_array(string): return sab([ord(x) for x in string]) # XXX will require adaption when run with a 3.x compatible IronPython class Serial(SerialBase): """Serial port implementation for .NET/Mono.""" BAUDRATES = (50, 75, 110, 134, 150, 200, 300, 600, 1200, 1800, 2400, 4800, 9600, 19200, 38400, 57600, 115200) def open(self): """\ Open port with current settings. This may throw a SerialException if the port cannot be opened. """ if self._port is None: raise SerialException("Port must be configured before it can be used.") if self.is_open: raise SerialException("Port is already open.") try: self._port_handle = System.IO.Ports.SerialPort(self.portstr) except Exception as msg: self._port_handle = None raise SerialException("could not open port %s: %s" % (self.portstr, msg)) # if RTS and/or DTR are not set before open, they default to True if self._rts_state is None: self._rts_state = True if self._dtr_state is None: self._dtr_state = True self._reconfigure_port() self._port_handle.Open() self.is_open = True if not self._dsrdtr: self._update_dtr_state() if not self._rtscts: self._update_rts_state() self.reset_input_buffer() def _reconfigure_port(self): """Set communication parameters on opened port.""" if not self._port_handle: raise SerialException("Can only operate on a valid port handle") #~ self._port_handle.ReceivedBytesThreshold = 1 if self._timeout is None: self._port_handle.ReadTimeout = System.IO.Ports.SerialPort.InfiniteTimeout else: self._port_handle.ReadTimeout = int(self._timeout * 1000) # if self._timeout != 0 and self._interCharTimeout is not None: # timeouts = (int(self._interCharTimeout * 1000),) + timeouts[1:] if self._write_timeout is None: self._port_handle.WriteTimeout = System.IO.Ports.SerialPort.InfiniteTimeout else: self._port_handle.WriteTimeout = int(self._write_timeout * 1000) # Setup the connection info. try: self._port_handle.BaudRate = self._baudrate except IOError as e: # catch errors from illegal baudrate settings raise ValueError(str(e)) if self._bytesize == FIVEBITS: self._port_handle.DataBits = 5 elif self._bytesize == SIXBITS: self._port_handle.DataBits = 6 elif self._bytesize == SEVENBITS: self._port_handle.DataBits = 7 elif self._bytesize == EIGHTBITS: self._port_handle.DataBits = 8 else: raise ValueError("Unsupported number of data bits: %r" % self._bytesize) if self._parity == PARITY_NONE: self._port_handle.Parity = getattr(System.IO.Ports.Parity, 'None') # reserved keyword in Py3k elif self._parity == PARITY_EVEN: self._port_handle.Parity = System.IO.Ports.Parity.Even elif self._parity == PARITY_ODD: self._port_handle.Parity = System.IO.Ports.Parity.Odd elif self._parity == PARITY_MARK: self._port_handle.Parity = System.IO.Ports.Parity.Mark elif self._parity == PARITY_SPACE: self._port_handle.Parity = System.IO.Ports.Parity.Space else: raise ValueError("Unsupported parity mode: %r" % self._parity) if self._stopbits == STOPBITS_ONE: self._port_handle.StopBits = System.IO.Ports.StopBits.One elif self._stopbits == STOPBITS_ONE_POINT_FIVE: self._port_handle.StopBits = System.IO.Ports.StopBits.OnePointFive elif self._stopbits == STOPBITS_TWO: self._port_handle.StopBits = System.IO.Ports.StopBits.Two else: raise ValueError("Unsupported number of stop bits: %r" % self._stopbits) if self._rtscts and self._xonxoff: self._port_handle.Handshake = System.IO.Ports.Handshake.RequestToSendXOnXOff elif self._rtscts: self._port_handle.Handshake = System.IO.Ports.Handshake.RequestToSend elif self._xonxoff: self._port_handle.Handshake = System.IO.Ports.Handshake.XOnXOff else: self._port_handle.Handshake = getattr(System.IO.Ports.Handshake, 'None') # reserved keyword in Py3k #~ def __del__(self): #~ self.close() def close(self): """Close port""" if self.is_open: if self._port_handle: try: self._port_handle.Close() except System.IO.Ports.InvalidOperationException: # ignore errors. can happen for unplugged USB serial devices pass self._port_handle = None self.is_open = False # - - - - - - - - - - - - - - - - - - - - - - - - @property def in_waiting(self): """Return the number of characters currently in the input buffer.""" if not self.is_open: raise portNotOpenError return self._port_handle.BytesToRead def read(self, size=1): """\ Read size bytes from the serial port. If a timeout is set it may return less characters as requested. With no timeout it will block until the requested number of bytes is read. """ if not self.is_open: raise portNotOpenError # must use single byte reads as this is the only way to read # without applying encodings data = bytearray() while size: try: data.append(self._port_handle.ReadByte()) except System.TimeoutException: break else: size -= 1 return bytes(data) def write(self, data): """Output the given string over the serial port.""" if not self.is_open: raise portNotOpenError #~ if not isinstance(data, (bytes, bytearray)): #~ raise TypeError('expected %s or bytearray, got %s' % (bytes, type(data))) try: # must call overloaded method with byte array argument # as this is the only one not applying encodings self._port_handle.Write(as_byte_array(data), 0, len(data)) except System.TimeoutException: raise writeTimeoutError return len(data) def reset_input_buffer(self): """Clear input buffer, discarding all that is in the buffer.""" if not self.is_open: raise portNotOpenError self._port_handle.DiscardInBuffer() def reset_output_buffer(self): """\ Clear output buffer, aborting the current output and discarding all that is in the buffer. """ if not self.is_open: raise portNotOpenError self._port_handle.DiscardOutBuffer() def _update_break_state(self): """ Set break: Controls TXD. When active, to transmitting is possible. """ if not self.is_open: raise portNotOpenError self._port_handle.BreakState = bool(self._break_state) def _update_rts_state(self): """Set terminal status line: Request To Send""" if not self.is_open: raise portNotOpenError self._port_handle.RtsEnable = bool(self._rts_state) def _update_dtr_state(self): """Set terminal status line: Data Terminal Ready""" if not self.is_open: raise portNotOpenError self._port_handle.DtrEnable = bool(self._dtr_state) @property def cts(self): """Read terminal status line: Clear To Send""" if not self.is_open: raise portNotOpenError return self._port_handle.CtsHolding @property def dsr(self): """Read terminal status line: Data Set Ready""" if not self.is_open: raise portNotOpenError return self._port_handle.DsrHolding @property def ri(self): """Read terminal status line: Ring Indicator""" if not self.is_open: raise portNotOpenError #~ return self._port_handle.XXX return False # XXX an error would be better @property def cd(self): """Read terminal status line: Carrier Detect""" if not self.is_open: raise portNotOpenError return self._port_handle.CDHolding # - - platform specific - - - - # none
36.126984
113
0.614455
45841e82593effcfc8fffbae5192ae95e20c3ae4
3,743
py
Python
custom_components/wyzeapi/binary_sensor.py
morozsm/ha-wyzeapi
9973c2bf81405bef097653542dfebf1cc2974de2
[ "Apache-2.0" ]
null
null
null
custom_components/wyzeapi/binary_sensor.py
morozsm/ha-wyzeapi
9973c2bf81405bef097653542dfebf1cc2974de2
[ "Apache-2.0" ]
null
null
null
custom_components/wyzeapi/binary_sensor.py
morozsm/ha-wyzeapi
9973c2bf81405bef097653542dfebf1cc2974de2
[ "Apache-2.0" ]
null
null
null
import logging import time from datetime import timedelta from typing import List from homeassistant.const import ATTR_ATTRIBUTION from wyzeapy.base_client import DeviceTypes, Device, AccessTokenError, PropertyIDs from wyzeapy.client import Client from homeassistant.components.binary_sensor import ( BinarySensorEntity, DEVICE_CLASS_MOTION ) from .const import DOMAIN from homeassistant.config_entries import ConfigEntry from homeassistant.core import HomeAssistant _LOGGER = logging.getLogger(__name__) ATTRIBUTION = "Data provided by Wyze" SCAN_INTERVAL = timedelta(seconds=10) async def async_setup_entry(hass: HomeAssistant, config_entry: ConfigEntry, async_add_entities): _LOGGER.debug("""Creating new WyzeApi binary sensor component""") client = hass.data[DOMAIN][config_entry.entry_id] def get_devices() -> List[Device]: try: devices = client.get_devices() except AccessTokenError as e: _LOGGER.warning(e) client.reauthenticate() devices = client.get_devices() return devices devices = await hass.async_add_executor_job(get_devices) cameras = [] for device in devices: try: device_type = DeviceTypes(device.product_type) if device_type == DeviceTypes.CAMERA: cameras.append(WyzeCameraMotion(client, device)) except ValueError as e: _LOGGER.warning("{}: Please report this error to https://github.com/JoshuaMulliken/ha-wyzeapi".format(e)) async_add_entities(cameras, True) class WyzeCameraMotion(BinarySensorEntity): _on: bool _available: bool def __init__(self, wyzeapi_client: Client, device: Device): self._client = wyzeapi_client self._device = device self._last_event = int(str(int(time.time())) + "000") @property def device_info(self): return { "identifiers": { (DOMAIN, self._device.mac) }, "name": self.name, "manufacturer": "WyzeLabs", "model": self._device.product_model } @property def available(self) -> bool: return self._available @property def name(self): """Return the display name of this switch.""" return self._device.nickname @property def is_on(self): """Return true if switch is on.""" return self._on @property def unique_id(self): return "{}-motion".format(self._device.mac) @property def device_state_attributes(self): """Return device attributes of the entity.""" return { ATTR_ATTRIBUTION: ATTRIBUTION, "state": self.is_on, "available": self.available, "device model": self._device.product_model, "mac": self.unique_id } @property def device_class(self): return DEVICE_CLASS_MOTION def update(self): try: device_info = self._client.get_info(self._device) except AccessTokenError: self._client.reauthenticate() device_info = self._client.get_info(self._device) for property_id, value in device_info: if property_id == PropertyIDs.AVAILABLE: self._available = True if value == "1" else False latest_event = self._client.get_latest_event(self._device) if latest_event is not None: if latest_event.event_ts > self._last_event: self._on = True self._last_event = latest_event.event_ts else: self._on = False self._last_event = latest_event.event_ts else: self._on = False
29.472441
117
0.638792
71d7ae9081343c0ce11418130c73838282a12812
753
py
Python
test/feature_extraction/character_length_test.py
tmhatton/MLinPractice
759706e13181cec864d6aa8ece9ae7042f083e4c
[ "MIT" ]
null
null
null
test/feature_extraction/character_length_test.py
tmhatton/MLinPractice
759706e13181cec864d6aa8ece9ae7042f083e4c
[ "MIT" ]
1
2021-10-19T08:09:44.000Z
2021-10-19T08:09:44.000Z
test/feature_extraction/character_length_test.py
tmhatton/MLinPractice
759706e13181cec864d6aa8ece9ae7042f083e4c
[ "MIT" ]
null
null
null
import unittest import pandas as pd from code.util import COLUMN_TWEET from code.feature_extraction.character_length import CharacterLength class MyTestCase(unittest.TestCase): def setUp(self) -> None: self.INPUT_COLUM = COLUMN_TWEET self.extractor = CharacterLength(self.INPUT_COLUM) def test_character_length(self): input_text = "Hallo, das ist ein Text mit 40 Zeichen." output = [[40]] input_df = pd.DataFrame() input_df[self.INPUT_COLUM] = [input_text] char_length = self.extractor.fit_transform(input_df) print(self.extractor.fit_transform(input_df)) self.assertEqual(char_length, output) # add assertion here if __name__ == '__main__': unittest.main()
26.892857
68
0.703851
f7c5a0f69494c901201d1d8cda9e65d10ffe2215
342
py
Python
ycash_cli.py
nultinator/python_ycash
d0cd4753e2e00dc734896e82aeb31ca02c5cb543
[ "Unlicense" ]
null
null
null
ycash_cli.py
nultinator/python_ycash
d0cd4753e2e00dc734896e82aeb31ca02c5cb543
[ "Unlicense" ]
null
null
null
ycash_cli.py
nultinator/python_ycash
d0cd4753e2e00dc734896e82aeb31ca02c5cb543
[ "Unlicense" ]
null
null
null
from bitcoinrpc.authproxy import AuthServiceProxy user = input("user: ") password = input("password: ") port = input("port: ") access = AuthServiceProxy("http://" + user + ":" + password + "@127.0.0.1:" + port) getblockchaininfo = access.getblockchaininfo() getnewaddress = access.getnewaddress() getbestblockhash = access.getbestblockhash()
38
83
0.730994
5cf20d57761f03df8fc82b22670e7c3211b380b8
652
py
Python
model/config.py
mateusap1/athenas
f48df6e05452be39c87479279be7eb378291c404
[ "MIT" ]
null
null
null
model/config.py
mateusap1/athenas
f48df6e05452be39c87479279be7eb378291c404
[ "MIT" ]
null
null
null
model/config.py
mateusap1/athenas
f48df6e05452be39c87479279be7eb378291c404
[ "MIT" ]
null
null
null
path_files = { "node_path": "/home/mateusap1/Documents/athena_core/node", "account_path": "/home/mateusap1/Documents/athena_core/account" } id_config = { "username_char_limit": 64, "nonce_limit": 10**6, "date_format": "%Y-%m-%d %H:%M:%S.%f", "hash_difficulty": 2 } contract_config = { "minimum_judges": 1, "maximum_judges": 256, "minimum_rules": 1, "maximum_rules": 1024, "allow_sender_to_judge": False } verdict_config = { "sentence_char_limit": 4096, "description_char_limit": 8192 } node_config = { "transactions_limit": 10, "transactions_expire_days": 2, "max_transactions": 100 }
21.733333
67
0.656442
5a7f5fef9b23e069982151a367ca2c9ca5402fb2
3,619
py
Python
viewer/settings.py
ThinkDone/viewer
24afd5b7d246ca779f1a4a49ce5a0ef2021e85d2
[ "Apache-2.0" ]
null
null
null
viewer/settings.py
ThinkDone/viewer
24afd5b7d246ca779f1a4a49ce5a0ef2021e85d2
[ "Apache-2.0" ]
null
null
null
viewer/settings.py
ThinkDone/viewer
24afd5b7d246ca779f1a4a49ce5a0ef2021e85d2
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # Scrapy settings for viewer project # # For simplicity, this file contains only settings considered important or # commonly used. You can find more settings consulting the documentation: # # http://doc.scrapy.org/en/latest/topics/settings.html # http://scrapy.readthedocs.org/en/latest/topics/downloader-middleware.html # http://scrapy.readthedocs.org/en/latest/topics/spider-middleware.html BOT_NAME = 'viewer' SPIDER_MODULES = ['viewer.spiders'] NEWSPIDER_MODULE = 'viewer.spiders' # Crawl responsibly by identifying yourself (and your website) on the user-agent #USER_AGENT = 'Mozilla/5.0 (iPhone; CPU iPhone OS 8_0 like Mac OS X) AppleWebKit/600.1.3 (KHTML, like Gecko) Version/8.0 Mobile/12A4345d Safari/600.1.4' USER_AGENT = 'Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/45.0.2454.101 Safari/537.36' # Obey robots.txt rules ROBOTSTXT_OBEY = False # Configure maximum concurrent requests performed by Scrapy (default: 16) #CONCURRENT_REQUESTS = 32 # Configure a delay for requests for the same website (default: 0) # See http://scrapy.readthedocs.org/en/latest/topics/settings.html#download-delay # See also autothrottle settings and docs #DOWNLOAD_DELAY = 3 # The download delay setting will honor only one of: #CONCURRENT_REQUESTS_PER_DOMAIN = 16 #CONCURRENT_REQUESTS_PER_IP = 16 # Disable cookies (enabled by default) #COOKIES_ENABLED = False # Disable Telnet Console (enabled by default) #TELNETCONSOLE_ENABLED = False # Override the default request headers: #DEFAULT_REQUEST_HEADERS = { # 'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8', # 'Accept-Language': 'en', #} # Enable or disable spider middlewares # See http://scrapy.readthedocs.org/en/latest/topics/spider-middleware.html #SPIDER_MIDDLEWARES = { # 'viewer.middlewares.ViewerSpiderMiddleware': 543, #} # Enable or disable downloader middlewares # See http://scrapy.readthedocs.org/en/latest/topics/downloader-middleware.html #DOWNLOADER_MIDDLEWARES = { # 'viewer.middlewares.MyCustomDownloaderMiddleware': 543, #} # Enable or disable extensions # See http://scrapy.readthedocs.org/en/latest/topics/extensions.html #EXTENSIONS = { # 'scrapy.extensions.telnet.TelnetConsole': None, #} # Configure item pipelines # See http://scrapy.readthedocs.org/en/latest/topics/item-pipeline.html ITEM_PIPELINES = { #'scrapy.pipelines.images.ImagesPipeline': 1, 'viewer.pipelines.MyImagesPipeline': 1, } #-- Attent this is an absolute path IMAGES_STORE = '..' IMAGES_URLS_FIELD = 'image_urls' IMAGES_RESULT_FIELD = 'images' IMAGES_THUMBS = { 'small': (128, 128), } IMAGES_MIN_HEIGHT = 513 IMAGES_MIN_WIDTH = 513 # Enable and configure the AutoThrottle extension (disabled by default) # See http://doc.scrapy.org/en/latest/topics/autothrottle.html #AUTOTHROTTLE_ENABLED = True # The initial download delay #AUTOTHROTTLE_START_DELAY = 5 # The maximum download delay to be set in case of high latencies #AUTOTHROTTLE_MAX_DELAY = 60 # The average number of requests Scrapy should be sending in parallel to # each remote server #AUTOTHROTTLE_TARGET_CONCURRENCY = 1.0 # Enable showing throttling stats for every response received: #AUTOTHROTTLE_DEBUG = False # Enable and configure HTTP caching (disabled by default) # See http://scrapy.readthedocs.org/en/latest/topics/downloader-middleware.html#httpcache-middleware-settings #HTTPCACHE_ENABLED = True #HTTPCACHE_EXPIRATION_SECS = 60 #HTTPCACHE_DIR = 'httpcache' #HTTPCACHE_IGNORE_HTTP_CODES = [] #HTTPCACHE_STORAGE = 'scrapy.extensions.httpcache.FilesystemCacheStorage'
34.141509
152
0.770655
0ed0ce6532629e75d27261e5eb3a6c278a37a737
3,559
py
Python
model-optimizer/mo/utils/import_extensions.py
zhoub/dldt
e42c01cf6e1d3aefa55e2c5df91f1054daddc575
[ "Apache-2.0" ]
1
2021-02-20T21:48:36.000Z
2021-02-20T21:48:36.000Z
model-optimizer/mo/utils/import_extensions.py
zhoub/dldt
e42c01cf6e1d3aefa55e2c5df91f1054daddc575
[ "Apache-2.0" ]
null
null
null
model-optimizer/mo/utils/import_extensions.py
zhoub/dldt
e42c01cf6e1d3aefa55e2c5df91f1054daddc575
[ "Apache-2.0" ]
1
2021-02-19T01:06:12.000Z
2021-02-19T01:06:12.000Z
""" Copyright (c) 2018-2019 Intel Corporation Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import importlib import logging as log import os import pkgutil import sys from mo.back.replacement import BackReplacementPattern from mo.middle.replacement import MiddleReplacementPattern from mo.ops.op import Op from mo.utils.class_registration import _check_unique_ids, update_registration, get_enabled_and_disabled_transforms def import_by_path(path: str, middle_names: list = ()): for module_loader, name, ispkg in pkgutil.iter_modules([path]): importlib.import_module('{}.{}'.format('.'.join(middle_names), name)) def default_path(): EXT_DIR_NAME = 'extensions' return os.path.abspath(os.path.join(os.path.dirname(__file__), os.pardir, os.pardir, EXT_DIR_NAME)) def load_dir(framework: str, path: str, get_front_classes: callable): """ Assuming the following sub-directory structure for path: front/ <framework>/ <other_files>.py <other_directories>/ <other_files>.py ops/ <ops_files>.py middle/ <other_files>.py back/ <other_files>.py This function loads modules in the following order: 1. ops/<ops_files>.py 2. front/<other_files>.py 3. front/<framework>/<other_files>.py 4. middle/<other_files>.py 5. back/<other_files>.py Handlers loaded later override earlier registered handlers for an op. 1, 2, 3 can concur for the same op, but 4 registers a transformation pass and it shouldn't conflict with any stuff loaded by 1, 2 or 3. It doesn't load files from front/<other_directories> """ log.info("Importing extensions from: {}".format(path)) root_dir, ext = os.path.split(path) sys.path.insert(0, root_dir) enabled_transforms, disabled_transforms = get_enabled_and_disabled_transforms() front_classes = get_front_classes() internal_dirs = { ('ops', ): [Op], ('front', ): front_classes, ('front', framework): front_classes, ('middle', ): [MiddleReplacementPattern], ('back', ): [BackReplacementPattern]} if ext == 'mo': internal_dirs[('front', framework, 'extractors')] = front_classes for p in internal_dirs.keys(): import_by_path(os.path.join(path, *p), [ext, *p]) update_registration(internal_dirs[p], enabled_transforms, disabled_transforms) sys.path.remove(root_dir) def load_dirs(framework: str, dirs: list, get_front_classes: callable): if dirs is None: return mo_inner_extensions = os.path.abspath(os.path.join(os.path.dirname(__file__), os.pardir, os.pardir, 'mo')) dirs.insert(0, mo_inner_extensions) dirs = [os.path.abspath(e) for e in dirs] if default_path() not in dirs: dirs.insert(0, default_path()) for path in dirs: load_dir(framework, path, get_front_classes) _check_unique_ids()
34.553398
115
0.671818
82e26ba01763c708ef98f3b5588267759807ac19
22,886
py
Python
src/ip-group/azext_ip_group/vendored_sdks/v2019_09_01/operations/_load_balancers_operations.py
Mannan2812/azure-cli-extensions
e2b34efe23795f6db9c59100534a40f0813c3d95
[ "MIT" ]
207
2017-11-29T06:59:41.000Z
2022-03-31T10:00:53.000Z
src/ip-group/azext_ip_group/vendored_sdks/v2019_09_01/operations/_load_balancers_operations.py
Mannan2812/azure-cli-extensions
e2b34efe23795f6db9c59100534a40f0813c3d95
[ "MIT" ]
4,061
2017-10-27T23:19:56.000Z
2022-03-31T23:18:30.000Z
src/ip-group/azext_ip_group/vendored_sdks/v2019_09_01/operations/_load_balancers_operations.py
Mannan2812/azure-cli-extensions
e2b34efe23795f6db9c59100534a40f0813c3d95
[ "MIT" ]
802
2017-10-11T17:36:26.000Z
2022-03-31T22:24:32.000Z
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- import uuid from msrest.pipeline import ClientRawResponse from msrestazure.azure_exceptions import CloudError from msrest.polling import LROPoller, NoPolling from msrestazure.polling.arm_polling import ARMPolling from .. import models class LoadBalancersOperations(object): """LoadBalancersOperations operations. You should not instantiate directly this class, but create a Client instance that will create it for you and attach it as attribute. :param client: Client for service requests. :param config: Configuration of service client. :param serializer: An object model serializer. :param deserializer: An object model deserializer. :ivar api_version: Client API version. Constant value: "2019-09-01". """ models = models def __init__(self, client, config, serializer, deserializer): self._client = client self._serialize = serializer self._deserialize = deserializer self.api_version = "2019-09-01" self.config = config def _delete_initial( self, resource_group_name, load_balancer_name, custom_headers=None, raw=False, **operation_config): # Construct URL url = self.delete.metadata['url'] path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'loadBalancerName': self._serialize.url("load_balancer_name", load_balancer_name, 'str'), 'subscriptionId': self._serialize.url("self.config.subscription_id", self.config.subscription_id, 'str') } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} query_parameters['api-version'] = self._serialize.query("self.api_version", self.api_version, 'str') # Construct headers header_parameters = {} if self.config.generate_client_request_id: header_parameters['x-ms-client-request-id'] = str(uuid.uuid1()) if custom_headers: header_parameters.update(custom_headers) if self.config.accept_language is not None: header_parameters['accept-language'] = self._serialize.header("self.config.accept_language", self.config.accept_language, 'str') # Construct and send request request = self._client.delete(url, query_parameters, header_parameters) response = self._client.send(request, stream=False, **operation_config) if response.status_code not in [200, 202, 204]: exp = CloudError(response) exp.request_id = response.headers.get('x-ms-request-id') raise exp if raw: client_raw_response = ClientRawResponse(None, response) return client_raw_response def delete( self, resource_group_name, load_balancer_name, custom_headers=None, raw=False, polling=True, **operation_config): """Deletes the specified load balancer. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param load_balancer_name: The name of the load balancer. :type load_balancer_name: str :param dict custom_headers: headers that will be added to the request :param bool raw: The poller return type is ClientRawResponse, the direct response alongside the deserialized response :param polling: True for ARMPolling, False for no polling, or a polling object for personal polling strategy :return: An instance of LROPoller that returns None or ClientRawResponse<None> if raw==True :rtype: ~msrestazure.azure_operation.AzureOperationPoller[None] or ~msrestazure.azure_operation.AzureOperationPoller[~msrest.pipeline.ClientRawResponse[None]] :raises: :class:`CloudError<msrestazure.azure_exceptions.CloudError>` """ raw_result = self._delete_initial( resource_group_name=resource_group_name, load_balancer_name=load_balancer_name, custom_headers=custom_headers, raw=True, **operation_config ) def get_long_running_output(response): if raw: client_raw_response = ClientRawResponse(None, response) return client_raw_response lro_delay = operation_config.get( 'long_running_operation_timeout', self.config.long_running_operation_timeout) if polling is True: polling_method = ARMPolling(lro_delay, **operation_config) elif polling is False: polling_method = NoPolling() else: polling_method = polling return LROPoller(self._client, raw_result, get_long_running_output, polling_method) delete.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/loadBalancers/{loadBalancerName}'} def get( self, resource_group_name, load_balancer_name, expand=None, custom_headers=None, raw=False, **operation_config): """Gets the specified load balancer. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param load_balancer_name: The name of the load balancer. :type load_balancer_name: str :param expand: Expands referenced resources. :type expand: str :param dict custom_headers: headers that will be added to the request :param bool raw: returns the direct response alongside the deserialized response :param operation_config: :ref:`Operation configuration overrides<msrest:optionsforoperations>`. :return: LoadBalancer or ClientRawResponse if raw=true :rtype: ~azure.mgmt.network.v2019_09_01.models.LoadBalancer or ~msrest.pipeline.ClientRawResponse :raises: :class:`CloudError<msrestazure.azure_exceptions.CloudError>` """ # Construct URL url = self.get.metadata['url'] path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'loadBalancerName': self._serialize.url("load_balancer_name", load_balancer_name, 'str'), 'subscriptionId': self._serialize.url("self.config.subscription_id", self.config.subscription_id, 'str') } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} query_parameters['api-version'] = self._serialize.query("self.api_version", self.api_version, 'str') if expand is not None: query_parameters['$expand'] = self._serialize.query("expand", expand, 'str') # Construct headers header_parameters = {} header_parameters['Accept'] = 'application/json' if self.config.generate_client_request_id: header_parameters['x-ms-client-request-id'] = str(uuid.uuid1()) if custom_headers: header_parameters.update(custom_headers) if self.config.accept_language is not None: header_parameters['accept-language'] = self._serialize.header("self.config.accept_language", self.config.accept_language, 'str') # Construct and send request request = self._client.get(url, query_parameters, header_parameters) response = self._client.send(request, stream=False, **operation_config) if response.status_code not in [200]: exp = CloudError(response) exp.request_id = response.headers.get('x-ms-request-id') raise exp deserialized = None if response.status_code == 200: deserialized = self._deserialize('LoadBalancer', response) if raw: client_raw_response = ClientRawResponse(deserialized, response) return client_raw_response return deserialized get.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/loadBalancers/{loadBalancerName}'} def _create_or_update_initial( self, resource_group_name, load_balancer_name, parameters, custom_headers=None, raw=False, **operation_config): # Construct URL url = self.create_or_update.metadata['url'] path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'loadBalancerName': self._serialize.url("load_balancer_name", load_balancer_name, 'str'), 'subscriptionId': self._serialize.url("self.config.subscription_id", self.config.subscription_id, 'str') } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} query_parameters['api-version'] = self._serialize.query("self.api_version", self.api_version, 'str') # Construct headers header_parameters = {} header_parameters['Accept'] = 'application/json' header_parameters['Content-Type'] = 'application/json; charset=utf-8' if self.config.generate_client_request_id: header_parameters['x-ms-client-request-id'] = str(uuid.uuid1()) if custom_headers: header_parameters.update(custom_headers) if self.config.accept_language is not None: header_parameters['accept-language'] = self._serialize.header("self.config.accept_language", self.config.accept_language, 'str') # Construct body body_content = self._serialize.body(parameters, 'LoadBalancer') # Construct and send request request = self._client.put(url, query_parameters, header_parameters, body_content) response = self._client.send(request, stream=False, **operation_config) if response.status_code not in [200, 201]: exp = CloudError(response) exp.request_id = response.headers.get('x-ms-request-id') raise exp deserialized = None if response.status_code == 200: deserialized = self._deserialize('LoadBalancer', response) if response.status_code == 201: deserialized = self._deserialize('LoadBalancer', response) if raw: client_raw_response = ClientRawResponse(deserialized, response) return client_raw_response return deserialized def create_or_update( self, resource_group_name, load_balancer_name, parameters, custom_headers=None, raw=False, polling=True, **operation_config): """Creates or updates a load balancer. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param load_balancer_name: The name of the load balancer. :type load_balancer_name: str :param parameters: Parameters supplied to the create or update load balancer operation. :type parameters: ~azure.mgmt.network.v2019_09_01.models.LoadBalancer :param dict custom_headers: headers that will be added to the request :param bool raw: The poller return type is ClientRawResponse, the direct response alongside the deserialized response :param polling: True for ARMPolling, False for no polling, or a polling object for personal polling strategy :return: An instance of LROPoller that returns LoadBalancer or ClientRawResponse<LoadBalancer> if raw==True :rtype: ~msrestazure.azure_operation.AzureOperationPoller[~azure.mgmt.network.v2019_09_01.models.LoadBalancer] or ~msrestazure.azure_operation.AzureOperationPoller[~msrest.pipeline.ClientRawResponse[~azure.mgmt.network.v2019_09_01.models.LoadBalancer]] :raises: :class:`CloudError<msrestazure.azure_exceptions.CloudError>` """ raw_result = self._create_or_update_initial( resource_group_name=resource_group_name, load_balancer_name=load_balancer_name, parameters=parameters, custom_headers=custom_headers, raw=True, **operation_config ) def get_long_running_output(response): deserialized = self._deserialize('LoadBalancer', response) if raw: client_raw_response = ClientRawResponse(deserialized, response) return client_raw_response return deserialized lro_delay = operation_config.get( 'long_running_operation_timeout', self.config.long_running_operation_timeout) if polling is True: polling_method = ARMPolling(lro_delay, **operation_config) elif polling is False: polling_method = NoPolling() else: polling_method = polling return LROPoller(self._client, raw_result, get_long_running_output, polling_method) create_or_update.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/loadBalancers/{loadBalancerName}'} def update_tags( self, resource_group_name, load_balancer_name, tags=None, custom_headers=None, raw=False, **operation_config): """Updates a load balancer tags. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param load_balancer_name: The name of the load balancer. :type load_balancer_name: str :param tags: Resource tags. :type tags: dict[str, str] :param dict custom_headers: headers that will be added to the request :param bool raw: returns the direct response alongside the deserialized response :param operation_config: :ref:`Operation configuration overrides<msrest:optionsforoperations>`. :return: LoadBalancer or ClientRawResponse if raw=true :rtype: ~azure.mgmt.network.v2019_09_01.models.LoadBalancer or ~msrest.pipeline.ClientRawResponse :raises: :class:`CloudError<msrestazure.azure_exceptions.CloudError>` """ parameters = models.TagsObject(tags=tags) # Construct URL url = self.update_tags.metadata['url'] path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'loadBalancerName': self._serialize.url("load_balancer_name", load_balancer_name, 'str'), 'subscriptionId': self._serialize.url("self.config.subscription_id", self.config.subscription_id, 'str') } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} query_parameters['api-version'] = self._serialize.query("self.api_version", self.api_version, 'str') # Construct headers header_parameters = {} header_parameters['Accept'] = 'application/json' header_parameters['Content-Type'] = 'application/json; charset=utf-8' if self.config.generate_client_request_id: header_parameters['x-ms-client-request-id'] = str(uuid.uuid1()) if custom_headers: header_parameters.update(custom_headers) if self.config.accept_language is not None: header_parameters['accept-language'] = self._serialize.header("self.config.accept_language", self.config.accept_language, 'str') # Construct body body_content = self._serialize.body(parameters, 'TagsObject') # Construct and send request request = self._client.patch(url, query_parameters, header_parameters, body_content) response = self._client.send(request, stream=False, **operation_config) if response.status_code not in [200]: exp = CloudError(response) exp.request_id = response.headers.get('x-ms-request-id') raise exp deserialized = None if response.status_code == 200: deserialized = self._deserialize('LoadBalancer', response) if raw: client_raw_response = ClientRawResponse(deserialized, response) return client_raw_response return deserialized update_tags.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/loadBalancers/{loadBalancerName}'} def list_all( self, custom_headers=None, raw=False, **operation_config): """Gets all the load balancers in a subscription. :param dict custom_headers: headers that will be added to the request :param bool raw: returns the direct response alongside the deserialized response :param operation_config: :ref:`Operation configuration overrides<msrest:optionsforoperations>`. :return: An iterator like instance of LoadBalancer :rtype: ~azure.mgmt.network.v2019_09_01.models.LoadBalancerPaged[~azure.mgmt.network.v2019_09_01.models.LoadBalancer] :raises: :class:`CloudError<msrestazure.azure_exceptions.CloudError>` """ def prepare_request(next_link=None): if not next_link: # Construct URL url = self.list_all.metadata['url'] path_format_arguments = { 'subscriptionId': self._serialize.url("self.config.subscription_id", self.config.subscription_id, 'str') } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} query_parameters['api-version'] = self._serialize.query("self.api_version", self.api_version, 'str') else: url = next_link query_parameters = {} # Construct headers header_parameters = {} header_parameters['Accept'] = 'application/json' if self.config.generate_client_request_id: header_parameters['x-ms-client-request-id'] = str(uuid.uuid1()) if custom_headers: header_parameters.update(custom_headers) if self.config.accept_language is not None: header_parameters['accept-language'] = self._serialize.header("self.config.accept_language", self.config.accept_language, 'str') # Construct and send request request = self._client.get(url, query_parameters, header_parameters) return request def internal_paging(next_link=None): request = prepare_request(next_link) response = self._client.send(request, stream=False, **operation_config) if response.status_code not in [200]: exp = CloudError(response) exp.request_id = response.headers.get('x-ms-request-id') raise exp return response # Deserialize response header_dict = None if raw: header_dict = {} deserialized = models.LoadBalancerPaged(internal_paging, self._deserialize.dependencies, header_dict) return deserialized list_all.metadata = {'url': '/subscriptions/{subscriptionId}/providers/Microsoft.Network/loadBalancers'} def list( self, resource_group_name, custom_headers=None, raw=False, **operation_config): """Gets all the load balancers in a resource group. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param dict custom_headers: headers that will be added to the request :param bool raw: returns the direct response alongside the deserialized response :param operation_config: :ref:`Operation configuration overrides<msrest:optionsforoperations>`. :return: An iterator like instance of LoadBalancer :rtype: ~azure.mgmt.network.v2019_09_01.models.LoadBalancerPaged[~azure.mgmt.network.v2019_09_01.models.LoadBalancer] :raises: :class:`CloudError<msrestazure.azure_exceptions.CloudError>` """ def prepare_request(next_link=None): if not next_link: # Construct URL url = self.list.metadata['url'] path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'subscriptionId': self._serialize.url("self.config.subscription_id", self.config.subscription_id, 'str') } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} query_parameters['api-version'] = self._serialize.query("self.api_version", self.api_version, 'str') else: url = next_link query_parameters = {} # Construct headers header_parameters = {} header_parameters['Accept'] = 'application/json' if self.config.generate_client_request_id: header_parameters['x-ms-client-request-id'] = str(uuid.uuid1()) if custom_headers: header_parameters.update(custom_headers) if self.config.accept_language is not None: header_parameters['accept-language'] = self._serialize.header("self.config.accept_language", self.config.accept_language, 'str') # Construct and send request request = self._client.get(url, query_parameters, header_parameters) return request def internal_paging(next_link=None): request = prepare_request(next_link) response = self._client.send(request, stream=False, **operation_config) if response.status_code not in [200]: exp = CloudError(response) exp.request_id = response.headers.get('x-ms-request-id') raise exp return response # Deserialize response header_dict = None if raw: header_dict = {} deserialized = models.LoadBalancerPaged(internal_paging, self._deserialize.dependencies, header_dict) return deserialized list.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/loadBalancers'}
46.327935
170
0.666914
090a1b1a7063321309c06ecbcf28a1f3b1fa5183
6,442
py
Python
tests/unit/test_anonymize_files.py
colgate-cs-research/netconan
310a9afcb0a3e6fdec39a3bd62cccdcb2069de49
[ "Apache-2.0" ]
1
2021-11-13T10:43:32.000Z
2021-11-13T10:43:32.000Z
tests/unit/test_anonymize_files.py
colgate-cs-research/netconan
310a9afcb0a3e6fdec39a3bd62cccdcb2069de49
[ "Apache-2.0" ]
null
null
null
tests/unit/test_anonymize_files.py
colgate-cs-research/netconan
310a9afcb0a3e6fdec39a3bd62cccdcb2069de49
[ "Apache-2.0" ]
null
null
null
"""Test file anonymization.""" # Copyright 2018 Intentionet # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import pytest from testfixtures import LogCapture from netconan.anonymize_files import anonymize_file, anonymize_files _INPUT_CONTENTS = """ # Intentionet's sensitive test file ip address 192.168.2.1 255.255.255.255 my hash is $1$salt$ABCDEFGHIJKLMNOPQRS password foobar """ _REF_CONTENTS = """ # 1cbbc2's fd8607 test file ip address 192.168.139.13 255.255.255.255 my hash is $1$0000$CxUUGIrqPb7GaB5midrQZ. password netconanRemoved1 """ _SALT = "TESTSALT" _SENSITIVE_WORDS = [ "intentionet", "sensitive", ] def test_anonymize_files_bad_input_empty(tmpdir): """Test anonymize_files with empty input dir.""" input_dir = tmpdir.mkdir("input") output_dir = tmpdir.mkdir("output") with pytest.raises(ValueError, match='Input directory is empty'): anonymize_files(str(input_dir), str(output_dir), True, True, salt=_SALT, sensitive_words=_SENSITIVE_WORDS) def test_anonymize_files_bad_input_missing(tmpdir): """Test anonymize_files with non-existent input.""" filename = "test.txt" input_file = tmpdir.join(filename) output_file = tmpdir.mkdir("out").join(filename) with pytest.raises(ValueError, match='Input does not exist'): anonymize_files(str(input_file), str(output_file), True, True, salt=_SALT, sensitive_words=_SENSITIVE_WORDS) def test_anonymize_files_bad_output_file(tmpdir): """Test anonymize_files when output 'file' already exists but is a dir.""" filename = "test.txt" input_file = tmpdir.join(filename) input_file.write(_INPUT_CONTENTS) output_file = tmpdir.mkdir("out").mkdir(filename) with pytest.raises(ValueError, match='Cannot write output file.*'): anonymize_file(str(input_file), str(output_file)) # Anonymizing files should complete okay, because it skips the errored file with LogCapture() as log_capture: anonymize_files(str(input_file), str(output_file), True, True, salt=_SALT, sensitive_words=_SENSITIVE_WORDS) # Confirm the correct message is logged log_capture.check_present( ('root', 'ERROR', 'Failed to anonymize file {}'.format(str(input_file))) ) # Confirm the exception info was also logged assert ('Cannot write output file; output file is a directory' in str(log_capture.records[-1].exc_info[1])) def test_anonymize_files_bad_output_dir(tmpdir): """Test anonymize_files when output 'dir' already exists but is a file.""" filename = "test.txt" input_dir = tmpdir.mkdir("input") input_dir.join(filename).write(_INPUT_CONTENTS) output_file = tmpdir.join("out") output_file.write('blah') with pytest.raises(ValueError, match='Output path must be a directory.*'): anonymize_files(str(input_dir), str(output_file), True, True, salt=_SALT, sensitive_words=_SENSITIVE_WORDS) def test_anonymize_files_dir(tmpdir): """Test anonymize_files with a file in root of input dir.""" filename = "test.txt" input_dir = tmpdir.mkdir("input") input_dir.join(filename).write(_INPUT_CONTENTS) output_dir = tmpdir.mkdir("output") output_file = output_dir.join(filename) anonymize_files(str(input_dir), str(output_dir), True, True, salt=_SALT, sensitive_words=_SENSITIVE_WORDS) # Make sure output file exists and matches the ref assert(os.path.isfile(str(output_file))) assert(read_file(str(output_file)) == _REF_CONTENTS) def test_anonymize_files_dir_skip_hidden(tmpdir): """Test that file starting with '.' is skipped.""" filename = ".test.txt" input_dir = tmpdir.mkdir("input") input_file = input_dir.join(filename) input_file.write(_INPUT_CONTENTS) output_dir = tmpdir.mkdir("output") output_file = output_dir.join(filename) anonymize_files(str(input_dir), str(output_dir), True, True, salt=_SALT, sensitive_words=_SENSITIVE_WORDS) # Make sure output file does not exist assert(not os.path.exists(str(output_file))) def test_anonymize_files_dir_nested(tmpdir): """Test anonymize_files with files in nested dirs i.e. not at root of input dir.""" filename = "test.txt" input_dir = tmpdir.mkdir("input") input_dir.mkdir("subdir1").join(filename).write(_INPUT_CONTENTS) input_dir.mkdir("subdir2").mkdir("subsubdir").join(filename).write(_INPUT_CONTENTS) output_dir = tmpdir.mkdir("output") output_file_1 = output_dir.join("subdir1").join(filename) output_file_2 = output_dir.join("subdir2").join("subsubdir").join(filename) anonymize_files(str(input_dir), str(output_dir), True, True, salt=_SALT, sensitive_words=_SENSITIVE_WORDS) # Make sure both output files exists and match the ref assert(os.path.isfile(str(output_file_1))) assert(read_file(str(output_file_1)) == _REF_CONTENTS) assert(os.path.isfile(str(output_file_2))) assert(read_file(str(output_file_2)) == _REF_CONTENTS) def test_anonymize_files_file(tmpdir): """Test anonymize_files with input file instead of dir.""" filename = "test.txt" input_file = tmpdir.join(filename) input_file.write(_INPUT_CONTENTS) output_file = tmpdir.mkdir("out").join(filename) anonymize_files(str(input_file), str(output_file), True, True, salt=_SALT, sensitive_words=_SENSITIVE_WORDS) # Make sure output file exists and matches the ref assert(os.path.isfile(str(output_file))) assert(read_file(str(output_file)) == _REF_CONTENTS) def read_file(file_path): """Read and return contents of file at specified path.""" with open(file_path, 'r') as f: return f.read()
35.01087
87
0.698386
53efb15e8f5384652a362dc6aab507dd0dafd0d3
3,111
py
Python
tumn/utils/database.py
hatsu-koi/tumn-server
d425a1d3d59ca016e0424487ffa8fddb16b79e1c
[ "MIT" ]
null
null
null
tumn/utils/database.py
hatsu-koi/tumn-server
d425a1d3d59ca016e0424487ffa8fddb16b79e1c
[ "MIT" ]
null
null
null
tumn/utils/database.py
hatsu-koi/tumn-server
d425a1d3d59ca016e0424487ffa8fddb16b79e1c
[ "MIT" ]
null
null
null
class Database: """ A dictionary that allows multiple keys for one value """ def __init__(self): self.keys = {} self.values = {} def __getitem__(self, item): # <---SQL SELECT statement values = self.keys[item] if len(values) > 1: return sorted(list(values)) elif len(values) == 1: return list(values)[0] def __setitem__(self, key, value): if key not in self.keys: # it's a new key <---SQL INSERT statement if value not in self.values: # it's a new value self.keys[key] = set() # a new set self.keys[key].add(value) self.values[value] = set() # a new set self.values[value].add(key) elif value in self.values: self.keys[key] = set() # a new set self.keys[key].add(value) # a new key self.values[value].add(key) # but just an update to the values elif key in self.keys: # it's a new relationships self.keys[key].add(value) if value not in self.values: self.values[value] = set() self.values[value].add(key) elif value in self.values: self.values[value].add(key) def update(self, key, old_value, new_value): """update is a special case because __setitem__ can't see that you want to propagate your update onto multiple values. """ if old_value in self.keys[key]: affected_keys = self.values[old_value] for key in affected_keys: self.__setitem__(key, new_value) self.keys[key].remove(old_value) del self.values[old_value] else: raise KeyError("key: {} does not have value: {}".format(key,old_value)) def __delitem__(self, key, value=None): # <---SQL DELETE statement if value is None: # All the keys relations are to be deleted. try: value_set = self.keys[key] for value in value_set: self.values[value].remove(key) if not self.values[value]: del self.values[value] del self.keys[key] # then we delete the key. except KeyError: raise KeyError("key not found") else: # then only a single relationships is being removed. try: if value in self.keys[key]: # this is a set. self.keys[key].remove(value) self.values[value].remove(key) if not self.keys[key]: # if the set is empty, we remove the key del self.keys[key] if not self.values[value]: # if the set is empty, we remove the value del self.values[value] except KeyError: raise KeyError("key not found") def iterload(self, key_list, value_list): for key in key_list: for value in value_list: self.__setitem__(key, value)
42.040541
86
0.535198
6a56095a85938df327f205cc35e6fc97d4b5c424
9,790
py
Python
data/user_params.py
JulianoGianlupi/iu399sp19p017
89594c3a5ad5d84301772802a14d8905fad15cdc
[ "BSD-3-Clause" ]
null
null
null
data/user_params.py
JulianoGianlupi/iu399sp19p017
89594c3a5ad5d84301772802a14d8905fad15cdc
[ "BSD-3-Clause" ]
null
null
null
data/user_params.py
JulianoGianlupi/iu399sp19p017
89594c3a5ad5d84301772802a14d8905fad15cdc
[ "BSD-3-Clause" ]
null
null
null
# This file is auto-generated from a Python script that parses a PhysiCell configuration (.xml) file. # # Edit at your own risk. # import os from ipywidgets import Label,Text,Checkbox,Button,HBox,VBox,FloatText,IntText,BoundedIntText,BoundedFloatText,Layout,Box class UserTab(object): def __init__(self): micron_units = Label('micron') # use "option m" (Mac, for micro symbol) constWidth = '180px' tab_height = '500px' stepsize = 10 #style = {'description_width': '250px'} style = {'description_width': '25%'} layout = {'width': '400px'} name_button_layout={'width':'25%'} widget_layout = {'width': '15%'} units_button_layout ={'width':'15%'} desc_button_layout={'width':'45%'} param_name1 = Button(description='random_seed', disabled=True, layout=name_button_layout) param_name1.style.button_color = 'tan' self.random_seed = IntText( value=0, step=1, style=style, layout=widget_layout) param_name2 = Button(description='motile_cell_persistence_time', disabled=True, layout=name_button_layout) param_name2.style.button_color = 'tan' self.motile_cell_persistence_time = FloatText( value=15, step=1, style=style, layout=widget_layout) param_name3 = Button(description='motile_cell_migration_speed', disabled=True, layout=name_button_layout) param_name3.style.button_color = 'tan' self.motile_cell_migration_speed = FloatText( value=0.5, step=0.1, style=style, layout=widget_layout) param_name4 = Button(description='motile_cell_relative_adhesion', disabled=True, layout=name_button_layout) param_name4.style.button_color = 'tan' self.motile_cell_relative_adhesion = FloatText( value=0.05, step=0.01, style=style, layout=widget_layout) param_name5 = Button(description='motile_cell_apoptosis_rate', disabled=True, layout=name_button_layout) param_name5.style.button_color = 'tan' self.motile_cell_apoptosis_rate = FloatText( value=0.0, step=0.01, style=style, layout=widget_layout) param_name6 = Button(description='motile_cell_relative_cycle_entry_rate', disabled=True, layout=name_button_layout) param_name6.style.button_color = 'tan' self.motile_cell_relative_cycle_entry_rate = FloatText( value=0.1, step=0.01, style=style, layout=widget_layout) param_name7 = Button(description='birth_interval', disabled=True, layout=name_button_layout) param_name7.style.button_color = 'tan' self.birth_interval = FloatText( value=60, step=1, style=style, layout=widget_layout) param_name8 = Button(description='volume_total', disabled=True, layout=name_button_layout) param_name8.style.button_color = 'tan' self.volume_total = FloatText( value=1, step=0.1, style=style, layout=widget_layout) param_name9 = Button(description='target_fluid_frac', disabled=True, layout=name_button_layout) param_name9.style.button_color = 'tan' self.target_fluid_frac = FloatText( value=0.75, step=0.1, style=style, layout=widget_layout) param_name10 = Button(description='fluid_change_rate', disabled=True, layout=name_button_layout) param_name10.style.button_color = 'tan' self.fluid_change_rate = FloatText( value=0.15, step=0.01, style=style, layout=widget_layout) param_name11 = Button(description='cytoplasmic_biomass_change_rate', disabled=True, layout=name_button_layout) param_name11.style.button_color = 'tan' self.cytoplasmic_biomass_change_rate = FloatText( value=0.15, step=0.01, style=style, layout=widget_layout) units_button1 = Button(description='', disabled=True, layout=units_button_layout) units_button1.style.button_color = 'tan' units_button2 = Button(description='min', disabled=True, layout=units_button_layout) units_button2.style.button_color = 'tan' units_button3 = Button(description='micron/min', disabled=True, layout=units_button_layout) units_button3.style.button_color = 'tan' units_button4 = Button(description='', disabled=True, layout=units_button_layout) units_button4.style.button_color = 'tan' units_button5 = Button(description='1/min', disabled=True, layout=units_button_layout) units_button5.style.button_color = 'tan' units_button6 = Button(description='', disabled=True, layout=units_button_layout) units_button6.style.button_color = 'tan' units_button7 = Button(description='min', disabled=True, layout=units_button_layout) units_button7.style.button_color = 'tan' units_button8 = Button(description='micron^3', disabled=True, layout=units_button_layout) units_button8.style.button_color = 'tan' units_button9 = Button(description='', disabled=True, layout=units_button_layout) units_button9.style.button_color = 'tan' units_button10 = Button(description='1/min', disabled=True, layout=units_button_layout) units_button10.style.button_color = 'tan' units_button11 = Button(description='1/min', disabled=True, layout=units_button_layout) units_button11.style.button_color = 'tan' row0 = [param_name1, self.random_seed, units_button1, ] row0 = [param_name2, self.motile_cell_persistence_time, units_button2, ] row0 = [param_name3, self.motile_cell_migration_speed, units_button3, ] row0 = [param_name4, self.motile_cell_relative_adhesion, units_button4, ] row0 = [param_name5, self.motile_cell_apoptosis_rate, units_button5, ] row0 = [param_name6, self.motile_cell_relative_cycle_entry_rate, units_button6, ] row0 = [param_name7, self.birth_interval, units_button7, ] row0 = [param_name8, self.volume_total, units_button8, ] row0 = [param_name9, self.target_fluid_frac, units_button9, ] row0 = [param_name10, self.fluid_change_rate, units_button10, ] row0 = [param_name11, self.cytoplasmic_biomass_change_rate, units_button11, ] box_layout = Layout(display='flex', flex_flow='row', align_items='stretch', width='100%') box0 = Box(children=row0, layout=box_layout) box0 = Box(children=row0, layout=box_layout) box0 = Box(children=row0, layout=box_layout) box0 = Box(children=row0, layout=box_layout) box0 = Box(children=row0, layout=box_layout) box0 = Box(children=row0, layout=box_layout) box0 = Box(children=row0, layout=box_layout) box0 = Box(children=row0, layout=box_layout) box0 = Box(children=row0, layout=box_layout) box0 = Box(children=row0, layout=box_layout) box0 = Box(children=row0, layout=box_layout) self.tab = VBox([ box0, box0, box0, box0, box0, box0, box0, box0, box0, box0, box0, ]) # Populate the GUI widgets with values from the XML def fill_gui(self, xml_root): uep = xml_root.find('.//user_parameters') # find unique entry point into XML self.random_seed.value = int(uep.find('.//random_seed').text) self.motile_cell_persistence_time.value = float(uep.find('.//motile_cell_persistence_time').text) self.motile_cell_migration_speed.value = float(uep.find('.//motile_cell_migration_speed').text) self.motile_cell_relative_adhesion.value = float(uep.find('.//motile_cell_relative_adhesion').text) self.motile_cell_apoptosis_rate.value = float(uep.find('.//motile_cell_apoptosis_rate').text) self.motile_cell_relative_cycle_entry_rate.value = float(uep.find('.//motile_cell_relative_cycle_entry_rate').text) self.birth_interval.value = float(uep.find('.//birth_interval').text) self.volume_total.value = float(uep.find('.//volume_total').text) self.target_fluid_frac.value = float(uep.find('.//target_fluid_frac').text) self.fluid_change_rate.value = float(uep.find('.//fluid_change_rate').text) self.cytoplasmic_biomass_change_rate.value = float(uep.find('.//cytoplasmic_biomass_change_rate').text) # Read values from the GUI widgets to enable editing XML def fill_xml(self, xml_root): uep = xml_root.find('.//user_parameters') # find unique entry point into XML uep.find('.//random_seed').text = str(self.random_seed.value) uep.find('.//motile_cell_persistence_time').text = str(self.motile_cell_persistence_time.value) uep.find('.//motile_cell_migration_speed').text = str(self.motile_cell_migration_speed.value) uep.find('.//motile_cell_relative_adhesion').text = str(self.motile_cell_relative_adhesion.value) uep.find('.//motile_cell_apoptosis_rate').text = str(self.motile_cell_apoptosis_rate.value) uep.find('.//motile_cell_relative_cycle_entry_rate').text = str(self.motile_cell_relative_cycle_entry_rate.value) uep.find('.//birth_interval').text = str(self.birth_interval.value) uep.find('.//volume_total').text = str(self.volume_total.value) uep.find('.//target_fluid_frac').text = str(self.target_fluid_frac.value) uep.find('.//fluid_change_rate').text = str(self.fluid_change_rate.value) uep.find('.//cytoplasmic_biomass_change_rate').text = str(self.cytoplasmic_biomass_change_rate.value)
46.842105
123
0.681001
36500818cca8fdf195f0801af57962e54e36489e
4,281
py
Python
reagent/samplers/frechet.py
JiayingClaireWu/ReAgent
3f2365c5bab396b3e965f77cd8d4f0ac15ae2f7b
[ "BSD-3-Clause" ]
null
null
null
reagent/samplers/frechet.py
JiayingClaireWu/ReAgent
3f2365c5bab396b3e965f77cd8d4f0ac15ae2f7b
[ "BSD-3-Clause" ]
null
null
null
reagent/samplers/frechet.py
JiayingClaireWu/ReAgent
3f2365c5bab396b3e965f77cd8d4f0ac15ae2f7b
[ "BSD-3-Clause" ]
null
null
null
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. from typing import Optional import reagent.types as rlt import torch from reagent.core.configuration import resolve_defaults from reagent.gym.types import Sampler from torch.distributions import Gumbel class FrechetSort(Sampler): @resolve_defaults def __init__( self, shape: float = 1.0, topk: Optional[int] = None, equiv_len: Optional[int] = None, log_scores: bool = False, ): """FréchetSort is a softer version of descending sort which samples all possible orderings of items favoring orderings which resemble descending sort. This can be used to convert descending sort by rank score into a differentiable, stochastic policy amenable to policy gradient algorithms. :param shape: parameter of Frechet Distribution. Lower values correspond to aggressive deviations from descending sort. :param topk: If specified, only the first topk actions are specified. :param equiv_len: Orders are considered equivalent if the top equiv_len match. Used in probability computations :param log_scores Scores passed in are already log-transformed. In this case, we would simply add Gumbel noise. Example: Consider the sampler: sampler = FrechetSort(shape=3, topk=5, equiv_len=3) Given a set of scores, this sampler will produce indices of items roughly resembling a argsort by scores in descending order. The higher the shape, the more it would resemble a descending argsort. `topk=5` means only the top 5 ranks will be output. The `equiv_len` determines what orders are considered equivalent for probability computation. In this example, the sampler will produce probability for the top 3 items appearing in a given order for the `log_prob` call. """ self.shape = shape self.topk = topk self.upto = equiv_len if topk is not None: if equiv_len is None: self.upto = topk # pyre-fixme[58]: `>` is not supported for operand types `Optional[int]` # and `Optional[int]`. if self.upto > self.topk: raise ValueError(f"Equiv length {equiv_len} cannot exceed topk={topk}.") self.gumbel_noise = Gumbel(0, 1.0 / shape) self.log_scores = log_scores @staticmethod def select_indices(scores: torch.Tensor, actions: torch.Tensor) -> torch.Tensor: """Helper for scores[actions] that are also works for batched tensors""" if len(actions.shape) > 1: num_rows = scores.size(0) row_indices = torch.arange(num_rows).unsqueeze(0).T # pyre-ignore[ 16 ] return scores[row_indices, actions].T else: return scores[actions] def sample_action(self, scores: torch.Tensor) -> rlt.ActorOutput: """Sample a ranking according to Frechet sort. Note that possible_actions_mask is ignored as the list of rankings scales exponentially with slate size and number of items and it can be difficult to enumerate them.""" assert scores.dim() == 2, "sample_action only accepts batches" log_scores = scores if self.log_scores else torch.log(scores) perturbed = log_scores + self.gumbel_noise.sample((scores.shape[1],)) action = torch.argsort(perturbed.detach(), descending=True) if self.topk is not None: action = action[: self.topk] log_prob = self.log_prob(scores, action) return rlt.ActorOutput(action, log_prob) def log_prob(self, scores: torch.Tensor, action) -> torch.Tensor: """What is the probability of a given set of scores producing the given list of permutations only considering the top `equiv_len` ranks?""" log_scores = scores if self.log_scores else torch.log(scores) s = self.select_indices(log_scores, action) n = len(log_scores) p = self.upto if self.upto is not None else n return -sum( torch.log(torch.exp((s[k:] - s[k]) * self.shape).sum(dim=0)) for k in range(p) # pyre-ignore )
45.063158
94
0.662228
3e6415337fbd44a89c93eb73f8a20055bf50f994
344
py
Python
metatransform/datawrapper.py
analyticsdept/py-metatransform
fa28cb25e85275563eef6a54ab409e46289fbaab
[ "MIT" ]
null
null
null
metatransform/datawrapper.py
analyticsdept/py-metatransform
fa28cb25e85275563eef6a54ab409e46289fbaab
[ "MIT" ]
null
null
null
metatransform/datawrapper.py
analyticsdept/py-metatransform
fa28cb25e85275563eef6a54ab409e46289fbaab
[ "MIT" ]
null
null
null
class MetaTransformDataWrapper(): def __init__(self, data=None, target=None): self.data = data self.target = target self._dict = { 'data': self.data, 'target': self.target } def __repr__(self) -> dict: return self.to_dict def to_dict(self): return self._dict
24.571429
47
0.55814
6b2151d2de62f96a90e178c3fe27a05d9af628f6
7,888
py
Python
src/scenic/simulators/carla/controller.py
shalinmehtalgsvl/Scenic
7b90d0181e99870c8cade9004b8280ff6b03c49a
[ "BSD-3-Clause" ]
null
null
null
src/scenic/simulators/carla/controller.py
shalinmehtalgsvl/Scenic
7b90d0181e99870c8cade9004b8280ff6b03c49a
[ "BSD-3-Clause" ]
null
null
null
src/scenic/simulators/carla/controller.py
shalinmehtalgsvl/Scenic
7b90d0181e99870c8cade9004b8280ff6b03c49a
[ "BSD-3-Clause" ]
null
null
null
# Copyright (c) # Copyright (c) 2018-2020 CVC. # # This work is licensed under the terms of the MIT license. # For a copy, see <https://opensource.org/licenses/MIT>. """ This module contains PID controllers to perform lateral and longitudinal control. """ from collections import deque import math import numpy as np import carla from scenic.simulators.carla.misc import get_speed class VehiclePIDController(): """ VehiclePIDController is the combination of two PID controllers (lateral and longitudinal) to perform the low level control a vehicle from client side """ def __init__(self, vehicle, args_lateral=None, args_longitudinal=None, max_throttle=0.75, max_brake=0.3, max_steering=0.8): """ Constructor method. :param vehicle: actor to apply to local planner logic onto :param args_lateral: dictionary of arguments to set the lateral PID controller using the following semantics: K_P -- Proportional term K_D -- Differential term K_I -- Integral term :param args_longitudinal: dictionary of arguments to set the longitudinal PID controller using the following semantics: K_P -- Proportional term K_D -- Differential term K_I -- Integral term """ self.max_brake = max_brake self.max_throt = max_throttle self.max_steer = max_steering self._vehicle = vehicle self._world = self._vehicle.get_world() self.past_steering = self._vehicle.get_control().steer if args_longitudinal!=None: self._lon_controller = PIDLongitudinalController(self._vehicle, **args_longitudinal) else: self._lon_controller = PIDLongitudinalController(self._vehicle) if args_lateral!=None: self._lat_controller = PIDLateralController(self._vehicle, **args_lateral) else: self._lat_controller = PIDLateralController(self._vehicle) def run_step(self, target_speed, waypoint): """ Execute one step of control invoking both lateral and longitudinal PID controllers to reach a target waypoint at a given target_speed. :param target_speed: desired vehicle speed :param waypoint: target location encoded as a waypoint :return: distance (in meters) to the waypoint """ acceleration = self._lon_controller.run_step(target_speed) current_steering = self._lat_controller.run_step(waypoint) control = carla.VehicleControl() if acceleration >= 0.0: control.throttle = min(acceleration, self.max_throt) control.brake = 0.0 else: control.throttle = 0.0 control.brake = min(abs(acceleration), self.max_brake) # Steering regulation: changes cannot happen abruptly, can't steer too much. if current_steering > self.past_steering + 0.1: current_steering = self.past_steering + 0.1 elif current_steering < self.past_steering - 0.1: current_steering = self.past_steering - 0.1 if current_steering >= 0: steering = min(self.max_steer, current_steering) else: steering = max(-self.max_steer, current_steering) control.steer = steering control.hand_brake = False control.manual_gear_shift = False self.past_steering = steering return control class PIDLongitudinalController(): """ PIDLongitudinalController implements longitudinal control using a PID. """ def __init__(self, vehicle, K_P=1.0, K_D=0.0, K_I=0.0, dt=0.03): """ Constructor method. :param vehicle: actor to apply to local planner logic onto :param K_P: Proportional term :param K_D: Differential term :param K_I: Integral term :param dt: time differential in seconds """ self._vehicle = vehicle self._k_p = K_P self._k_d = K_D self._k_i = K_I self._dt = dt self._error_buffer = deque(maxlen=10) def run_step(self, target_speed, debug=False): """ Execute one step of longitudinal control to reach a given target speed. :param target_speed: target speed in Km/h :param debug: boolean for debugging :return: throttle control """ current_speed = get_speed(self._vehicle) if debug: print('Current speed = {}'.format(current_speed)) return self._pid_control(target_speed, current_speed) def _pid_control(self, target_speed, current_speed): """ Estimate the throttle/brake of the vehicle based on the PID equations :param target_speed: target speed in Km/h :param current_speed: current speed of the vehicle in Km/h :return: throttle/brake control """ error = target_speed - current_speed self._error_buffer.append(error) if len(self._error_buffer) >= 2: _de = (self._error_buffer[-1] - self._error_buffer[-2]) / self._dt _ie = sum(self._error_buffer) * self._dt else: _de = 0.0 _ie = 0.0 return np.clip((self._k_p * error) + (self._k_d * _de) + (self._k_i * _ie), -1.0, 1.0) class PIDLateralController(): """ PIDLateralController implements lateral control using a PID. """ def __init__(self, vehicle, K_P=1.0, K_D=0.0, K_I=0.0, dt=0.03): """ Constructor method. :param vehicle: actor to apply to local planner logic onto :param K_P: Proportional term :param K_D: Differential term :param K_I: Integral term :param dt: time differential in seconds """ self._vehicle = vehicle self._k_p = K_P self._k_d = K_D self._k_i = K_I self._dt = dt self._e_buffer = deque(maxlen=10) def run_step(self, waypoint): """ Execute one step of lateral control to steer the vehicle towards a certain waypoin. :param waypoint: target waypoint :return: steering control in the range [-1, 1] where: -1 maximum steering to left +1 maximum steering to right """ return self._pid_control(waypoint, self._vehicle.get_transform()) def _pid_control(self, waypoint, vehicle_transform): """ Estimate the steering angle of the vehicle based on the PID equations :param waypoint: target waypoint :param vehicle_transform: current transform of the vehicle :return: steering control in the range [-1, 1] """ v_begin = vehicle_transform.location v_end = v_begin + carla.Location(x=math.cos(math.radians(vehicle_transform.rotation.yaw)), y=math.sin(math.radians(vehicle_transform.rotation.yaw))) v_vec = np.array([v_end.x - v_begin.x, v_end.y - v_begin.y, 0.0]) w_vec = np.array([waypoint.transform.location.x - v_begin.x, waypoint.transform.location.y - v_begin.y, 0.0]) _dot = math.acos(np.clip(np.dot(w_vec, v_vec) / (np.linalg.norm(w_vec) * np.linalg.norm(v_vec)), -1.0, 1.0)) _cross = np.cross(v_vec, w_vec) if _cross[2] < 0: _dot *= -1.0 self._e_buffer.append(_dot) if len(self._e_buffer) >= 2: _de = (self._e_buffer[-1] - self._e_buffer[-2]) / self._dt _ie = sum(self._e_buffer) * self._dt else: _de = 0.0 _ie = 0.0 return np.clip((self._k_p * _dot) + (self._k_d * _de) + (self._k_i * _ie), -1.0, 1.0)
35.214286
127
0.612576
f9bc39a5bee669c860a21fc2dd49a59b022c5826
23,479
py
Python
ai4good/webapp/cm_model_report_utils.py
macapakaz/model-server
db2451da7dfbe33f3e9cf481122b11551589b7c0
[ "MIT" ]
null
null
null
ai4good/webapp/cm_model_report_utils.py
macapakaz/model-server
db2451da7dfbe33f3e9cf481122b11551589b7c0
[ "MIT" ]
null
null
null
ai4good/webapp/cm_model_report_utils.py
macapakaz/model-server
db2451da7dfbe33f3e9cf481122b11551589b7c0
[ "MIT" ]
null
null
null
import time import numpy as np import pandas as pd from ai4good.models.cm.simulator import AGE_SEP DIGIT_SEP = ' to ' # em dash to separate from minus sign def timing(f): def wrap(*args): time1 = time.time() ret = f(*args) time2 = time.time() print('%s function took %0.1f s' % (f.__name__, (time2-time1))) return ret return wrap def load_report(mr, params) -> pd.DataFrame: return normalize_report(mr.get('report'), params) def normalize_report(df, params): df = df.copy() df.R0 = df.R0.apply(lambda x: round(complex(x).real, 1)) df_temp = df.drop(['Time', 'R0', 'latentRate', 'removalRate', 'hospRate', 'deathRateICU', 'deathRateNoIcu'], axis=1) df_temp = df_temp * params.population df.update(df_temp) return df @timing def prevalence_all_table(df): # calculate Peak Day IQR and Peak Number IQR for each of the 'incident' variables to table table_params = ['Infected (symptomatic)', 'Hospitalised', 'Critical', 'Change in Deaths'] grouped = df.groupby(['R0', 'latentRate', 'removalRate', 'hospRate', 'deathRateICU', 'deathRateNoIcu']) incident_rs = {} for index, group in grouped: # for each RO value find out the peak days for each table params group = group.set_index('Time') incident = {} for param in table_params: incident[param] = (group.loc[:, param].idxmax(), group.loc[:, param].max()) incident_rs[index] = incident iqr_table = {} for param in table_params: day = [] number = [] for elem in incident_rs.values(): day.append(elem[param][0]) number.append(elem[param][1]) q75_day, q25_day = np.percentile(day, [75, 25]) q75_number, q25_number = np.percentile(number, [75, 25]) iqr_table[param] = ( (int(round(q25_day)), int(round(q75_day))), (int(round(q25_number)), int(round(q75_number)))) table_columns = {'Infected (symptomatic)': 'Prevalence of Symptomatic Cases', 'Hospitalised': 'Hospitalisation Demand', 'Critical': 'Critical Care Demand', 'Change in Deaths': 'Prevalence of Deaths'} outcome = [] peak_day = [] peak_number = [] for param in table_params: outcome.append(table_columns[param]) peak_day.append(f'{iqr_table[param][0][0]}{DIGIT_SEP}{iqr_table[param][0][1]}') peak_number.append(f'{iqr_table[param][1][0]}{DIGIT_SEP}{iqr_table[param][1][1]}') data = {'Outcome': outcome, 'Peak Day IQR': peak_day, 'Peak Number IQR': peak_number} return pd.DataFrame.from_dict(data) @timing def prevalence_age_table(df): # calculate age specific Peak Day IQR and Peak Number IQR for each of the 'prevalent' variables to contruct table table_params = ['Infected (symptomatic)', 'Hospitalised', 'Critical'] grouped = df.groupby(['R0', 'latentRate', 'removalRate', 'hospRate', 'deathRateICU', 'deathRateNoIcu']) prevalent_age = {} params_age = [] for index, group in grouped: # for each RO value find out the peak days for each table params group = group.set_index('Time') prevalent = {} for param in table_params: for column in df.columns: if column.startswith(param): prevalent[column] = (group.loc[:, column].idxmax(), group.loc[:, column].max()) params_age.append(column) prevalent_age[index] = prevalent params_age_dedup = list(set(params_age)) prevalent_age_bucket = {} for elem in prevalent_age.values(): for key, value in elem.items(): if key in prevalent_age_bucket: prevalent_age_bucket[key].append(value) else: prevalent_age_bucket[key] = [value] iqr_table_age = {} for key, value in prevalent_age_bucket.items(): day = [x[0] for x in value] number = [x[1] for x in value] q75_day, q25_day = np.percentile(day, [75, 25]) q75_number, q25_number = np.percentile(number, [75, 25]) iqr_table_age[key] = ( (int(round(q25_day)), int(round(q75_day))), (int(round(q25_number)), int(round(q75_number)))) arrays = [np.array(['Incident Cases']*9 + ['Hospital Demand']*9 + ['Critical Demand']*9), np.array( ['all ages', '<9 years', '10-19 years', '20-29 years', '30-39 years', '40-49 years', '50-59 years', '60-69 years', '70+ years']*3)] peak_day = np.empty(27, dtype="S10") peak_number = np.empty(27, dtype="S10") for key, item in iqr_table_age.items(): if key == 'Infected (symptomatic)': peak_day[0] = f'{iqr_table_age[key][0][0]}{DIGIT_SEP}{iqr_table_age[key][0][1]}' peak_number[0] = f'{iqr_table_age[key][1][0]}{DIGIT_SEP}{iqr_table_age[key][1][1]}' elif key == 'Hospitalised': peak_day[9] = f'{iqr_table_age[key][0][0]}{DIGIT_SEP}{iqr_table_age[key][0][1]}' peak_number[9] = f'{iqr_table_age[key][1][0]}{DIGIT_SEP}{iqr_table_age[key][1][1]}' elif key == 'Critical': peak_day[18] = f'{iqr_table_age[key][0][0]}{DIGIT_SEP}{iqr_table_age[key][0][1]}' peak_number[18] = f'{iqr_table_age[key][1][0]}{DIGIT_SEP}{iqr_table_age[key][1][1]}' elif '0-9' in key: if key.startswith('Infected (symptomatic)'): peak_day[1] = f'{iqr_table_age[key][0][0]}{DIGIT_SEP}{iqr_table_age[key][0][1]}' peak_number[1] = f'{iqr_table_age[key][1][0]}{DIGIT_SEP}{iqr_table_age[key][1][1]}' elif key.startswith('Hospitalised'): peak_day[10] = f'{iqr_table_age[key][0][0]}{DIGIT_SEP}{iqr_table_age[key][0][1]}' peak_number[10] = f'{iqr_table_age[key][1][0]}{DIGIT_SEP}{iqr_table_age[key][1][1]}' elif key.startswith('Critical'): peak_day[19] = f'{iqr_table_age[key][0][0]}{DIGIT_SEP}{iqr_table_age[key][0][1]}' peak_number[19] = f'{iqr_table_age[key][1][0]}{DIGIT_SEP}{iqr_table_age[key][1][1]}' elif '10-19' in key: if key.startswith('Infected (symptomatic)'): peak_day[2] = f'{iqr_table_age[key][0][0]}{DIGIT_SEP}{iqr_table_age[key][0][1]}' peak_number[2] = f'{iqr_table_age[key][1][0]}{DIGIT_SEP}{iqr_table_age[key][1][1]}' elif key.startswith('Hospitalised'): peak_day[11] = f'{iqr_table_age[key][0][0]}{DIGIT_SEP}{iqr_table_age[key][0][1]}' peak_number[11] = f'{iqr_table_age[key][1][0]}{DIGIT_SEP}{iqr_table_age[key][1][1]}' elif key.startswith('Critical'): peak_day[20] = f'{iqr_table_age[key][0][0]}{DIGIT_SEP}{iqr_table_age[key][0][1]}' peak_number[20] = f'{iqr_table_age[key][1][0]}{DIGIT_SEP}{iqr_table_age[key][1][1]}' elif '20-29' in key: if key.startswith('Infected (symptomatic)'): peak_day[3] = f'{iqr_table_age[key][0][0]}{DIGIT_SEP}{iqr_table_age[key][0][1]}' peak_number[3] = f'{iqr_table_age[key][1][0]}{DIGIT_SEP}{iqr_table_age[key][1][1]}' elif key.startswith('Hospitalised'): peak_day[12] = f'{iqr_table_age[key][0][0]}{DIGIT_SEP}{iqr_table_age[key][0][1]}' peak_number[12] = f'{iqr_table_age[key][1][0]}{DIGIT_SEP}{iqr_table_age[key][1][1]}' elif key.startswith('Critical'): peak_day[21] = f'{iqr_table_age[key][0][0]}{DIGIT_SEP}{iqr_table_age[key][0][1]}' peak_number[21] = f'{iqr_table_age[key][1][0]}{DIGIT_SEP}{iqr_table_age[key][1][1]}' elif '30-39' in key: if key.startswith('Infected (symptomatic)'): peak_day[4] = f'{iqr_table_age[key][0][0]}{DIGIT_SEP}{iqr_table_age[key][0][1]}' peak_number[4] = f'{iqr_table_age[key][1][0]}{DIGIT_SEP}{iqr_table_age[key][1][1]}' elif key.startswith('Hospitalised'): peak_day[13] = f'{iqr_table_age[key][0][0]}{DIGIT_SEP}{iqr_table_age[key][0][1]}' peak_number[13] = f'{iqr_table_age[key][1][0]}{DIGIT_SEP}{iqr_table_age[key][1][1]}' elif key.startswith('Critical'): peak_day[22] = f'{iqr_table_age[key][0][0]}{DIGIT_SEP}{iqr_table_age[key][0][1]}' peak_number[22] = f'{iqr_table_age[key][1][0]}{DIGIT_SEP}{iqr_table_age[key][1][1]}' elif '40-49' in key: if key.startswith('Infected (symptomatic)'): peak_day[5] = f'{iqr_table_age[key][0][0]}{DIGIT_SEP}{iqr_table_age[key][0][1]}' peak_number[5] = f'{iqr_table_age[key][1][0]}{DIGIT_SEP}{iqr_table_age[key][1][1]}' elif key.startswith('Hospitalised'): peak_day[14] = f'{iqr_table_age[key][0][0]}{DIGIT_SEP}{iqr_table_age[key][0][1]}' peak_number[14] = f'{iqr_table_age[key][1][0]}{DIGIT_SEP}{iqr_table_age[key][1][1]}' elif key.startswith('Critical'): peak_day[23] = f'{iqr_table_age[key][0][0]}{DIGIT_SEP}{iqr_table_age[key][0][1]}' peak_number[23] = f'{iqr_table_age[key][1][0]}{DIGIT_SEP}{iqr_table_age[key][1][1]}' elif '50-59' in key: if key.startswith('Infected (symptomatic)'): peak_day[6] = f'{iqr_table_age[key][0][0]}{DIGIT_SEP}{iqr_table_age[key][0][1]}' peak_number[6] = f'{iqr_table_age[key][1][0]}{DIGIT_SEP}{iqr_table_age[key][1][1]}' elif key.startswith('Hospitalised'): peak_day[15] = f'{iqr_table_age[key][0][0]}{DIGIT_SEP}{iqr_table_age[key][0][1]}' peak_number[15] = f'{iqr_table_age[key][1][0]}{DIGIT_SEP}{iqr_table_age[key][1][1]}' elif key.startswith('Critical'): peak_day[24] = f'{iqr_table_age[key][0][0]}{DIGIT_SEP}{iqr_table_age[key][0][1]}' peak_number[24] = f'{iqr_table_age[key][1][0]}{DIGIT_SEP}{iqr_table_age[key][1][1]}' elif '60-69' in key: if key.startswith('Infected (symptomatic)'): peak_day[7] = f'{iqr_table_age[key][0][0]}{DIGIT_SEP}{iqr_table_age[key][0][1]}' peak_number[7] = f'{iqr_table_age[key][1][0]}{DIGIT_SEP}{iqr_table_age[key][1][1]}' elif key.startswith('Hospitalised'): peak_day[16] = f'{iqr_table_age[key][0][0]}{DIGIT_SEP}{iqr_table_age[key][0][1]}' peak_number[16] = f'{iqr_table_age[key][1][0]}{DIGIT_SEP}{iqr_table_age[key][1][1]}' elif key.startswith('Critical'): peak_day[25] = f'{iqr_table_age[key][0][0]}{DIGIT_SEP}{iqr_table_age[key][0][1]}' peak_number[25] = f'{iqr_table_age[key][1][0]}{DIGIT_SEP}{iqr_table_age[key][1][1]}' elif '70+' in key: if key.startswith('Infected (symptomatic)'): peak_day[8] = f'{iqr_table_age[key][0][0]}{DIGIT_SEP}{iqr_table_age[key][0][1]}' peak_number[8] = f'{iqr_table_age[key][1][0]}{DIGIT_SEP}{iqr_table_age[key][1][1]}' elif key.startswith('Hospitalised'): peak_day[17] = f'{iqr_table_age[key][0][0]}{DIGIT_SEP}{iqr_table_age[key][0][1]}' peak_number[17] = f'{iqr_table_age[key][1][0]}{DIGIT_SEP}{iqr_table_age[key][1][1]}' elif key.startswith('Critical'): peak_day[26] = f'{iqr_table_age[key][0][0]}{DIGIT_SEP}{iqr_table_age[key][0][1]}' peak_number[26] = f'{iqr_table_age[key][1][0]}{DIGIT_SEP}{iqr_table_age[key][1][1]}' d = {'Peak Day, IQR': peak_day.astype(str), 'Peak Number, IQR': peak_number.astype(str)} return pd.DataFrame(data=d, index=arrays) @timing def cumulative_all_table(df, population, camp_params): # now we try to calculate the total count # cases: (N-exposed)*0.5 since the asymptomatic rate is 0.5 # hopistal days: cumulative count of hospitalisation bucket # critical days: cumulative count of critical days # deaths: we already have that from the frame df = df.filter(regex='^Time$|^R0$|^latentRate$|^removalRate$|^hospRate$|^deathRateICU$|^deathRateNoIcu$|Susceptible'+AGE_SEP+'|^Deaths$|^Hospitalised$|^Critical$|^Deaths$') groups = df.groupby(['R0', 'latentRate', 'removalRate', 'hospRate', 'deathRateICU', 'deathRateNoIcu']) groups_tails = groups.apply(lambda x: x.set_index('Time').tail(1)) susceptible = groups_tails.filter(like='Susceptible'+AGE_SEP).rename(columns=lambda x: x.split(AGE_SEP)[1])[camp_params['Age']] susceptible = ((population * camp_params['Population_structure'].values / 100 - susceptible) * camp_params['p_symptomatic'].values).sum(axis=1) susceptible.index = susceptible.index.droplevel('Time') deaths = groups_tails['Deaths'] deaths.index = deaths.index.droplevel('Time') cumulative = { 'Susceptible': susceptible, 'Hospitalised': groups['Hospitalised'].sum(), 'Critical': groups['Critical'].sum(), 'Deaths': deaths } cumulative_all = pd.DataFrame(cumulative) cumulative_count = cumulative_all.quantile([.25, .75]).apply(round).astype(int).astype(str).apply(lambda x: DIGIT_SEP.join(x.values), axis=0).values data = {'Totals': ['Symptomatic Cases', 'Hospital Person-Days', 'Critical Person-days', 'Deaths'], 'Counts': cumulative_count} return pd.DataFrame.from_dict(data) @timing def cumulative_age_table(df, camp_params): # need to have an age break down for this as well # 1 month 3 month and 6 month breakdown arrays = [np.array( ['Symptomatic Cases'] * 9 + ['Hospital Person-Days'] * 9 + ['Critical Person-days'] * 9 + ['Deaths'] * 9), np.array( ['all ages', '<9 years', '10-19 years', '20-29 years', '30-39 years', '40-49 years', '50-59 years', '60-69 years', '70+ years'] * 4)] params_select = ['Susceptible:', 'Deaths'] params_accu = ['Hospitalised', 'Critical'] columns_to_acc, columns_to_select, multipliers = collect_columns(df.columns, params_accu, params_select, camp_params) first_month_diff = df.groupby(['R0', 'latentRate', 'removalRate', 'hospRate', 'deathRateICU', 'deathRateNoIcu'])[ columns_to_select + ['Time']].apply(find_first_month_diff) third_month_diff = df.groupby(['R0', 'latentRate', 'removalRate', 'hospRate', 'deathRateICU', 'deathRateNoIcu'])[ columns_to_select + ['Time']].apply(find_third_month_diff) sixth_month_diff = df.groupby(['R0', 'latentRate', 'removalRate', 'hospRate', 'deathRateICU', 'deathRateNoIcu'])[ columns_to_select + ['Time']].apply(find_sixth_month_diff) first_month_select = first_month_diff[columns_to_select].mul(multipliers).quantile([.25, .75]) three_month_select = third_month_diff[columns_to_select].mul(multipliers).quantile([.25, .75]) six_month_select = sixth_month_diff[columns_to_select].mul(multipliers).quantile([.25, .75]) first_month_select['Susceptible'] = first_month_select.filter(like='Susceptible:').sum(axis=1) three_month_select['Susceptible'] = three_month_select.filter(like='Susceptible:').sum(axis=1) six_month_select['Susceptible'] = six_month_select.filter(like='Susceptible:').sum(axis=1) one_month_cumsum = df.groupby(['R0', 'latentRate', 'removalRate', 'hospRate', 'deathRateICU', 'deathRateNoIcu'])[ columns_to_acc + ['Time']].apply(find_one_month) three_month_cumsum = df.groupby(['R0', 'latentRate', 'removalRate', 'hospRate', 'deathRateICU', 'deathRateNoIcu'])[ columns_to_acc + ['Time']].apply(find_three_months) six_month_cumsum = df.groupby(['R0', 'latentRate', 'removalRate', 'hospRate', 'deathRateICU', 'deathRateNoIcu'])[ columns_to_acc + ['Time']].apply(find_six_months) first_month_accu = one_month_cumsum[columns_to_acc].quantile([.25, .75]) three_month_accu = three_month_cumsum[columns_to_acc].quantile([.25, .75]) six_month_accu = six_month_cumsum[columns_to_acc].quantile([.25, .75]) first_month = pd.concat([first_month_select, first_month_accu], axis=1) third_month = pd.concat([three_month_select, three_month_accu], axis=1) sixth_month = pd.concat([six_month_select, six_month_accu], axis=1) sorted_columns = first_month.columns.sort_values() my_comp_order = ['Susceptible', 'Hospitalised', 'Critical', 'Deaths'] my_sorted_columns = sum([list(filter(lambda column: comp in column, sorted_columns)) for comp in my_comp_order], []) first_month_count = first_month[my_sorted_columns]\ .apply(round).astype(int).astype(str) \ .apply(lambda x: DIGIT_SEP.join(x.values), axis=0).values three_month_count = third_month[my_sorted_columns]\ .apply(round).astype(int).astype(str) \ .apply(lambda x: DIGIT_SEP.join(x.values), axis=0).values six_month_count = sixth_month[my_sorted_columns]\ .apply(round).astype(int).astype(str) \ .apply(lambda x: DIGIT_SEP.join(x.values), axis=0).values d = {'First month': first_month_count, 'First three months': three_month_count, 'First six months': six_month_count} return pd.DataFrame(data=d, index=arrays) def collect_columns(columns, params_accu, params_select, camp_params): columns_to_select = list(filter(lambda column: any(column.startswith(s) for s in params_select), columns)) columns_to_acc = list(filter(lambda column: any(column.startswith(s) for s in params_accu), columns)) multipliers = list( map(lambda column: -camp_params[camp_params['Age'].apply(lambda x: x in column)]['p_symptomatic'].values[0] if 'Susceptible:' in column else 1, columns_to_select)) return columns_to_acc, columns_to_select, multipliers def diff_table(baseline, intervention, N): t1 = effectiveness_cum_table(baseline, intervention, N) t2 = effectiveness_peak_table(baseline, intervention) r1 = [ 'Symptomatic Cases', t1.loc['Symptomatic Cases']['Reduction'], t2.loc['Prevalence of Symptomatic Cases']['Delay in Peak Day'], t2.loc['Prevalence of Symptomatic Cases']['Reduction in Peak Number'] ] r2 = [ 'Hospital Person-Days', t1.loc['Hospital Person-Days']['Reduction'], t2.loc['Hospitalisation Demand']['Delay in Peak Day'], t2.loc['Hospitalisation Demand']['Reduction in Peak Number'] ] r3 = [ 'Critical Person-days', t1.loc['Critical Person-days']['Reduction'], t2.loc['Critical Care Demand']['Delay in Peak Day'], t2.loc['Critical Care Demand']['Reduction in Peak Number'] ] r4 = [ 'Deaths', t1.loc['Deaths']['Reduction'], t2.loc['Prevalence of Deaths']['Delay in Peak Day'], t2.loc['Prevalence of Deaths']['Reduction in Peak Number'] ] df = pd.DataFrame([r1, r2, r3, r4], columns=['Outcome', 'Overall reduction', 'Delay in Peak Day', 'Reduction in Peak Number']) return df def effectiveness_cum_table(baseline, intervention, N): table_params = ['Symptomatic Cases', 'Hospital Person-Days', 'Critical Person-days', 'Deaths'] cum_table_baseline = cumulative_all_table(baseline, N) # print("CUM: "+str(cum_table_baseline.loc[:, 'Counts'])) baseline_numbers = cum_table_baseline.loc[:, 'Counts'].apply(lambda x: [int(i) for i in x.split(DIGIT_SEP)]) baseline_numbers_separate = pd.DataFrame(baseline_numbers.tolist(), columns=['25%', '75%']) comparisonTable = {} cumTable = cumulative_all_table(intervention, N) # print("Counts: \n"+str(cumTable.loc[:, 'Counts'])) intervention_numbers = pd.DataFrame( cumTable.loc[:, 'Counts'].apply(lambda x: [int(i) for i in x.split(DIGIT_SEP)]).tolist(), columns=['25%', '75%']) differencePercentage = (baseline_numbers_separate - intervention_numbers) / baseline_numbers_separate * 100 prettyOutput = [] for _, row in differencePercentage.round(0).astype(int).iterrows(): output1, output2 = row['25%'], row['75%'] prettyOutput.append(format_diff_row(output1, output2)) comparisonTable['Reduction'] = prettyOutput comparisonTable['Total'] = table_params return pd.DataFrame.from_dict(comparisonTable).set_index('Total') def format_diff_row(o1, o2, unit='%'): if o1 == o2: return f'{o1} {unit}' elif o2 > o1: return f'{o1} to {o2} {unit}' else: return f'{o2} to {o1} {unit}' def effectiveness_peak_table(baseline, intervention): # the calcuation here is a little bit hand wavy and flimsy, the correct way of implementing should be to compare each intervention # with the baseline with the same set up parameters and then in that range pick 25% to 75% data or else it is not correct. interventionPeak_baseline = prevalence_all_table(baseline) table_columns = interventionPeak_baseline.Outcome.tolist() peakDay_baseline = pd.DataFrame( interventionPeak_baseline.loc[:, 'Peak Day IQR'].apply(lambda x: [int(i) for i in x.split(DIGIT_SEP)]).tolist(), columns=['25%', '75%']) peakNumber_baseline = pd.DataFrame( interventionPeak_baseline.loc[:, 'Peak Number IQR'].apply( lambda x: [int(i) for i in x.split(DIGIT_SEP)]).tolist(), columns=['25%', '75%']) comparisonSubdict = {} interventionPeak = prevalence_all_table(intervention) peakDay = pd.DataFrame( interventionPeak.loc[:, 'Peak Day IQR'].apply(lambda x: [int(i) for i in x.split(DIGIT_SEP)]).tolist(), columns=['25%', '75%']) peakNumber = pd.DataFrame( interventionPeak.loc[:, 'Peak Number IQR'].apply(lambda x: [int(i) for i in x.split(DIGIT_SEP)]).tolist(), columns=['25%', '75%']) differenceDay = (peakDay - peakDay_baseline) peakNumber_baseline = peakNumber_baseline + 0.01 # Shift to avoid div/0 peakNumber = peakNumber + 0.01 differenceNumberPercentage = (peakNumber_baseline - peakNumber) / peakNumber_baseline * 100 # differenceNumberPercentage = differenceNumberPercentage.replace([np.inf, -np.inf], 100.0) prettyOutputDay = [] prettyOutputNumber = [] for _, row in differenceDay.round(0).astype(int).iterrows(): output1, output2 = row['25%'], row['75%'] prettyOutputDay.append(format_diff_row(output1, output2, 'days')) for _, row in differenceNumberPercentage.round(0).astype(int).iterrows(): output1, output2 = row['25%'], row['75%'] prettyOutputNumber.append(format_diff_row(output1, output2)) comparisonSubdict['Delay in Peak Day'] = prettyOutputDay comparisonSubdict['Reduction in Peak Number'] = prettyOutputNumber comparisondf = pd.DataFrame(comparisonSubdict).set_index(pd.Index(table_columns), 'States') return comparisondf def find_first_month(df): return df[df['Time'] == 30] def find_third_month(df): return df[df['Time'] == 90] def find_sixth_month(df): return df[df['Time'] == 180] def find_first_month_diff(df): return df[df['Time'] <= 30].diff(periods=30).tail(1) def find_third_month_diff(df): return df[df['Time'] <= 90].diff(periods=90).tail(1) def find_sixth_month_diff(df): return df[df['Time'] <= 180].diff(periods=180).tail(1) def find_one_month(df): return df[df['Time'] <= 30].cumsum().tail(1) def find_three_months(df): return df[df['Time'] <= 90].cumsum().tail(1) def find_six_months(df): return df[df['Time'] <= 180].cumsum().tail(1) def _merge(dict1, dict2): res = {**dict1, **dict2} return res
52.059867
176
0.636824
38d30593c68c7fab10ef5b262d796a2da2cfcd4c
14,401
py
Python
session-4/libs/dataset_utils.py
itamaro/CADL
b5de17485962577fc51156cd12da1b16d66dbb26
[ "Apache-2.0" ]
1,628
2016-07-19T22:21:56.000Z
2022-02-27T15:19:45.000Z
session-4/libs/dataset_utils.py
itamaro/CADL
b5de17485962577fc51156cd12da1b16d66dbb26
[ "Apache-2.0" ]
75
2016-07-22T02:05:05.000Z
2019-05-20T21:00:34.000Z
session-4/libs/dataset_utils.py
itamaro/CADL
b5de17485962577fc51156cd12da1b16d66dbb26
[ "Apache-2.0" ]
955
2016-07-22T00:10:52.000Z
2022-02-24T15:06:09.000Z
"""Utils for dataset creation. Creative Applications of Deep Learning w/ Tensorflow. Kadenze, Inc. Copyright Parag K. Mital, June 2016. """ import os import pickle import numpy as np import tensorflow as tf from . import dft from .utils import download_and_extract_tar def create_input_pipeline(files, batch_size, n_epochs, shape, crop_shape=None, crop_factor=1.0, n_threads=4): """Creates a pipefile from a list of image files. Includes batch generator/central crop/resizing options. The resulting generator will dequeue the images batch_size at a time until it throws tf.errors.OutOfRangeError when there are no more images left in the queue. Parameters ---------- files : list List of paths to image files. batch_size : int Number of image files to load at a time. n_epochs : int Number of epochs to run before raising tf.errors.OutOfRangeError shape : list [height, width, channels] crop_shape : list [height, width] to crop image to. crop_factor : float Percentage of image to take starting from center. n_threads : int, optional Number of threads to use for batch shuffling """ # We first create a "producer" queue. It creates a production line which # will queue up the file names and allow another queue to deque the file # names all using a tf queue runner. # Put simply, this is the entry point of the computational graph. # It will generate the list of file names. # We also specify it's capacity beforehand. producer = tf.train.string_input_producer( files, capacity=len(files)) # We need something which can open the files and read its contents. reader = tf.WholeFileReader() # We pass the filenames to this object which can read the file's contents. # This will create another queue running which dequeues the previous queue. keys, vals = reader.read(producer) # And then have to decode its contents as we know it is a jpeg image imgs = tf.image.decode_jpeg( vals, channels=3 if len(shape) > 2 and shape[2] == 3 else 0) # We have to explicitly define the shape of the tensor. # This is because the decode_jpeg operation is still a node in the graph # and doesn't yet know the shape of the image. Future operations however # need explicit knowledge of the image's shape in order to be created. imgs.set_shape(shape) # Next we'll centrally crop the image to the size of 100x100. # This operation required explicit knowledge of the image's shape. if shape[0] > shape[1]: rsz_shape = [int(shape[0] / shape[1] * crop_shape[0] / crop_factor), int(crop_shape[1] / crop_factor)] else: rsz_shape = [int(crop_shape[0] / crop_factor), int(shape[1] / shape[0] * crop_shape[1] / crop_factor)] rszs = tf.image.resize_images(imgs, rsz_shape) crops = (tf.image.resize_image_with_crop_or_pad( rszs, crop_shape[0], crop_shape[1]) if crop_shape is not None else imgs) # Now we'll create a batch generator that will also shuffle our examples. # We tell it how many it should have in its buffer when it randomly # permutes the order. min_after_dequeue = len(files) // 10 # The capacity should be larger than min_after_dequeue, and determines how # many examples are prefetched. TF docs recommend setting this value to: # min_after_dequeue + (num_threads + a small safety margin) * batch_size capacity = min_after_dequeue + (n_threads + 1) * batch_size # Randomize the order and output batches of batch_size. batch = tf.train.shuffle_batch([crops], enqueue_many=False, batch_size=batch_size, capacity=capacity, min_after_dequeue=min_after_dequeue, num_threads=n_threads) # alternatively, we could use shuffle_batch_join to use multiple reader # instances, or set shuffle_batch's n_threads to higher than 1. return batch def gtzan_music_speech_download(dst='gtzan_music_speech'): """Download the GTZAN music and speech dataset. Parameters ---------- dst : str, optional Location to put the GTZAN music and speech datset. """ path = 'http://opihi.cs.uvic.ca/sound/music_speech.tar.gz' download_and_extract_tar(path, dst) def gtzan_music_speech_load(dst='gtzan_music_speech'): """Load the GTZAN Music and Speech dataset. Downloads the dataset if it does not exist into the dst directory. Parameters ---------- dst : str, optional Location of GTZAN Music and Speech dataset. Returns ------- Xs, ys : np.ndarray, np.ndarray Array of data, Array of labels """ from scipy.io import wavfile if not os.path.exists(dst): gtzan_music_speech_download(dst) music_dir = os.path.join(os.path.join(dst, 'music_speech'), 'music_wav') music = [os.path.join(music_dir, file_i) for file_i in os.listdir(music_dir) if file_i.endswith('.wav')] speech_dir = os.path.join(os.path.join(dst, 'music_speech'), 'speech_wav') speech = [os.path.join(speech_dir, file_i) for file_i in os.listdir(speech_dir) if file_i.endswith('.wav')] Xs = [] ys = [] for i in music: sr, s = wavfile.read(i) s = s / 16384.0 - 1.0 re, im = dft.dft_np(s) mag, phs = dft.ztoc(re, im) Xs.append((mag, phs)) ys.append(0) for i in speech: sr, s = wavfile.read(i) s = s / 16384.0 - 1.0 re, im = dft.dft_np(s) mag, phs = dft.ztoc(re, im) Xs.append((mag, phs)) ys.append(1) Xs = np.array(Xs) Xs = np.transpose(Xs, [0, 2, 3, 1]) ys = np.array(ys) return Xs, ys def cifar10_download(dst='cifar10'): """Download the CIFAR10 dataset. Parameters ---------- dst : str, optional Directory to download into. """ path = 'http://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz' download_and_extract_tar(path, dst) def cifar10_load(dst='cifar10'): """Load the CIFAR10 dataset. Downloads the dataset if it does not exist into the dst directory. Parameters ---------- dst : str, optional Location of CIFAR10 dataset. Returns ------- Xs, ys : np.ndarray, np.ndarray Array of data, Array of labels """ if not os.path.exists(dst): cifar10_download(dst) Xs = None ys = None for f in range(1, 6): cf = pickle.load(open( '%s/cifar-10-batches-py/data_batch_%d' % (dst, f), 'rb'), encoding='LATIN') if Xs is not None: Xs = np.r_[Xs, cf['data']] ys = np.r_[ys, np.array(cf['labels'])] else: Xs = cf['data'] ys = cf['labels'] Xs = np.swapaxes(np.swapaxes(Xs.reshape(-1, 3, 32, 32), 1, 3), 1, 2) return Xs, ys def dense_to_one_hot(labels, n_classes=2): """Convert class labels from scalars to one-hot vectors. Parameters ---------- labels : array Input labels to convert to one-hot representation. n_classes : int, optional Number of possible one-hot. Returns ------- one_hot : array One hot representation of input. """ return np.eye(n_classes).astype(np.float32)[labels] class DatasetSplit(object): """Utility class for batching data and handling multiple splits. Attributes ---------- current_batch_idx : int Description images : np.ndarray Xs of the dataset. Not necessarily images. labels : np.ndarray ys of the dataset. n_labels : int Number of possible labels num_examples : int Number of total observations """ def __init__(self, images, labels): """Initialize a DatasetSplit object. Parameters ---------- images : np.ndarray Xs/inputs labels : np.ndarray ys/outputs """ self.images = np.array(images).astype(np.float32) if labels is not None: self.labels = np.array(labels).astype(np.int32) self.n_labels = len(np.unique(labels)) else: self.labels = None self.num_examples = len(self.images) def next_batch(self, batch_size=100): """Batch generator with randomization. Parameters ---------- batch_size : int, optional Size of each minibatch. Returns ------- Xs, ys : np.ndarray, np.ndarray Next batch of inputs and labels (if no labels, then None). """ # Shuffle each epoch current_permutation = np.random.permutation(range(len(self.images))) epoch_images = self.images[current_permutation, ...] if self.labels is not None: epoch_labels = self.labels[current_permutation, ...] # Then iterate over the epoch self.current_batch_idx = 0 while self.current_batch_idx < len(self.images): end_idx = min( self.current_batch_idx + batch_size, len(self.images)) this_batch = { 'images': epoch_images[self.current_batch_idx:end_idx], 'labels': epoch_labels[self.current_batch_idx:end_idx] if self.labels is not None else None } self.current_batch_idx += batch_size yield this_batch['images'], this_batch['labels'] class Dataset(object): """Create a dataset from data and their labels. Allows easy use of train/valid/test splits; Batch generator. Attributes ---------- all_idxs : list All indexes across all splits. all_inputs : list All inputs across all splits. all_labels : list All labels across all splits. n_labels : int Number of labels. split : list Percentage split of train, valid, test sets. test_idxs : list Indexes of the test split. train_idxs : list Indexes of the train split. valid_idxs : list Indexes of the valid split. """ def __init__(self, Xs, ys=None, split=[1.0, 0.0, 0.0], one_hot=False): """Initialize a Dataset object. Parameters ---------- Xs : np.ndarray Images/inputs to a network ys : np.ndarray Labels/outputs to a network split : list, optional Percentage of train, valid, and test sets. one_hot : bool, optional Whether or not to use one-hot encoding of labels (ys). """ self.all_idxs = [] self.all_labels = [] self.all_inputs = [] self.train_idxs = [] self.valid_idxs = [] self.test_idxs = [] self.n_labels = 0 self.split = split # Now mix all the labels that are currently stored as blocks self.all_inputs = Xs n_idxs = len(self.all_inputs) idxs = range(n_idxs) rand_idxs = np.random.permutation(idxs) self.all_inputs = self.all_inputs[rand_idxs, ...] if ys is not None: self.all_labels = ys if not one_hot else dense_to_one_hot(ys) self.all_labels = self.all_labels[rand_idxs, ...] else: self.all_labels = None # Get splits self.train_idxs = idxs[:round(split[0] * n_idxs)] self.valid_idxs = idxs[len(self.train_idxs): len(self.train_idxs) + round(split[1] * n_idxs)] self.test_idxs = idxs[ (len(self.valid_idxs) + len(self.train_idxs)): (len(self.valid_idxs) + len(self.train_idxs)) + round(split[2] * n_idxs)] @property def X(self): """Inputs/Xs/Images. Returns ------- all_inputs : np.ndarray Original Inputs/Xs. """ return self.all_inputs @property def Y(self): """Outputs/ys/Labels. Returns ------- all_labels : np.ndarray Original Outputs/ys. """ return self.all_labels @property def train(self): """Train split. Returns ------- split : DatasetSplit Split of the train dataset. """ if len(self.train_idxs): inputs = self.all_inputs[self.train_idxs, ...] if self.all_labels is not None: labels = self.all_labels[self.train_idxs, ...] else: labels = None else: inputs, labels = [], [] return DatasetSplit(inputs, labels) @property def valid(self): """Validation split. Returns ------- split : DatasetSplit Split of the validation dataset. """ if len(self.valid_idxs): inputs = self.all_inputs[self.valid_idxs, ...] if self.all_labels is not None: labels = self.all_labels[self.valid_idxs, ...] else: labels = None else: inputs, labels = [], [] return DatasetSplit(inputs, labels) @property def test(self): """Test split. Returns ------- split : DatasetSplit Split of the test dataset. """ if len(self.test_idxs): inputs = self.all_inputs[self.test_idxs, ...] if self.all_labels is not None: labels = self.all_labels[self.test_idxs, ...] else: labels = None else: inputs, labels = [], [] return DatasetSplit(inputs, labels) def mean(self): """Mean of the inputs/Xs. Returns ------- mean : np.ndarray Calculates mean across 0th (batch) dimension. """ return np.mean(self.all_inputs, axis=0) def std(self): """Standard deviation of the inputs/Xs. Returns ------- std : np.ndarray Calculates std across 0th (batch) dimension. """ return np.std(self.all_inputs, axis=0)
30.903433
79
0.586418
2db8e065217e8b802b1ec79fb86c015062335f3e
3,742
py
Python
src/reviews/utils.py
Talengi/phase
60ff6f37778971ae356c5b2b20e0d174a8288bfe
[ "MIT" ]
8
2016-01-29T11:53:40.000Z
2020-03-02T22:42:02.000Z
src/reviews/utils.py
Talengi/phase
60ff6f37778971ae356c5b2b20e0d174a8288bfe
[ "MIT" ]
289
2015-03-23T07:42:52.000Z
2022-03-11T23:26:10.000Z
src/reviews/utils.py
Talengi/phase
60ff6f37778971ae356c5b2b20e0d174a8288bfe
[ "MIT" ]
7
2015-12-08T09:03:20.000Z
2020-05-11T15:36:51.000Z
from itertools import groupby from django.core.cache import cache from django.contrib.contenttypes.models import ContentType from reviews.models import Review, ReviewMixin def get_cached_reviews(revision): """Get all reviews for the given revision. This method is intended to be used when one want to fetch all reviews for all the document's revisions successively. All the reviews will be fetched in a single query and cached. Also, for revision which review was never started, there is no review objects to fetch, so we need to create some dummy ones for display purpose. See https://trello.com/c/CdZF9eAG/174-afficher-la-liste-de-distribution-d-un-document Note that this cache is cleared in a signal of the same module. """ reviews = get_all_reviews(revision.document) if revision.revision in reviews: revision_reviews = reviews[revision.revision] else: dummy_reviews = get_dummy_reviews(revision) if revision.revision in dummy_reviews: revision_reviews = dummy_reviews[revision.revision] else: revision_reviews = [] return revision_reviews def get_all_reviews(document): """Return a dictionnary of revision indexed reviews.""" cache_key = 'all_reviews_{}'.format(document.id) all_reviews = cache.get(cache_key, None) if all_reviews is None: qs = Review.objects \ .filter(document=document) \ .order_by('revision', 'id') \ .select_related('reviewer') all_reviews = {} for revision_id, reviews in groupby(qs, lambda obj: obj.revision): all_reviews[revision_id] = list(reviews) cache.set(cache_key, all_reviews, 5) return all_reviews def get_dummy_reviews(revision): """Return a dictionary of Review objects for.""" cache_key = 'dummy_reviews_{}'.format(revision.metadata.document_id) dummy_reviews = cache.get(cache_key, None) if dummy_reviews is None: revisions = revision.__class__.objects \ .filter(metadata__document=revision.document) \ .filter(review_start_date=None) \ .select_related('leader', 'approver') \ .prefetch_related('reviewers') dummy_reviews = {} for revision in revisions: revision_reviews = [] for reviewer in revision.reviewers.all(): revision_reviews.append(Review( role='reviewer', status=Review.STATUSES.void, reviewer=reviewer, document_id=revision.metadata.document_id)) if revision.leader: revision_reviews.append(Review( role='leader', status=Review.STATUSES.void, reviewer=revision.leader, document_id=revision.metadata.document_id)) if revision.approver: revision_reviews.append(Review( role='approver', status=Review.STATUSES.void, reviewer=revision.approver, document_id=revision.metadata.document_id)) dummy_reviews[revision.revision] = revision_reviews cache.set(cache_key, dummy_reviews, 5) return dummy_reviews def get_all_reviewable_types(): """Return all inheriting ReviewMixin classes content types.""" qs = ContentType.objects.all() types = (ct for ct in qs if issubclass(ct.model_class(), ReviewMixin)) return types def get_all_reviewable_classes(): """Return all available ReviewMixin subclasses.""" classes = [ct.model_class() for ct in get_all_reviewable_types()] return classes
33.115044
89
0.649118
d14743a84a11d66435ff7c7f43426c4c5111c668
1,801
py
Python
weblog/urls.py
mmohajer9/Resumo
625c279e71e98f0d461679d75c6c464f6afcf437
[ "MIT" ]
1
2019-07-28T10:09:26.000Z
2019-07-28T10:09:26.000Z
weblog/urls.py
mmohajer9/Resumo
625c279e71e98f0d461679d75c6c464f6afcf437
[ "MIT" ]
8
2021-04-08T22:03:32.000Z
2022-02-10T09:35:46.000Z
weblog/urls.py
mmohajer9/resumo
625c279e71e98f0d461679d75c6c464f6afcf437
[ "MIT" ]
null
null
null
from django.urls import path , include from . import views app_name = 'weblog' urlpatterns = [ path('' , views.home , name = 'home'), path('register/' , views.register_form_view , name = 'register'), path('register/additional/<str:username>/' , views.additional_info_form_view , name = 'additional_info'), path('signin/' , views.signin , name = 'signin'), path('aboutus/',views.aboutus , name = 'aboutus'), path('signout/' , views.signout , name = 'signout'), path('profile/' , views.profile , name = 'profile'), path('profile/<str:username>/' , views.user_profile , name = 'user_profile'), path('profile/<str:username>/edit_profile' , views.edit_profile , name = 'edit_profile'), path('profile/<str:username>/wall' , views.UserWallView.as_view() , name = 'wall'), path('profile/<str:username>/post/<int:pk>' , views.PostDetailView.as_view() , name = 'post'), path('profile/<str:username>/post/<int:pk>/likes' , views.PostLikeListView.as_view() , name = 'postlikes'), path('profile/<str:username>/newpost' , views.PostCreateView.as_view() , name = 'newpost'), path('profile/<str:username>/post/<int:post_id>/likeThePost' , views.likeThePost , name = 'likeThePost'), path('profile/<str:username>/post/<int:post_id>/dislikeThePost' , views.dislikeThePost , name = 'dislikeThePost'), path('profile/<str:username>/post/<int:post_id>/deleteLikeOrDislike/<int:pk>' , views.LikeOrDislikeDeleteView.as_view() , name = 'deleteLikeOrDislike'), path('profile/<str:username>/post/<int:post_id>/deleteComment/<int:pk>' , views.deleteCommentDeleteView.as_view() , name = 'deleteComment'), # path('profile/<str:username>/edit_user' , views.edit_user , name = 'edit_user'), <-- ziad mohem nis age nazadish # -- I Should Think ! -- # ]
64.321429
156
0.679622
7228dd445c0440e0a7a4f9fc414fc3002175d6c6
18,271
py
Python
site/app/metroui.py
hehaoslj/globalhealth
6df3ae643392c93eb2c380c25339c15e9a3e804c
[ "MIT" ]
null
null
null
site/app/metroui.py
hehaoslj/globalhealth
6df3ae643392c93eb2c380c25339c15e9a3e804c
[ "MIT" ]
null
null
null
site/app/metroui.py
hehaoslj/globalhealth
6df3ae643392c93eb2c380c25339c15e9a3e804c
[ "MIT" ]
null
null
null
#!/usr/bin/env python #-*- coding: utf-8 -*- import random color_templ="""black white lime green emerald teal blue cyan cobalt indigo violet pink magenta crimson red orange amber yellow brown olive steel mauve taupe gray dark darker darkBrown darkCrimson darkMagenta darkIndigo darkCyan darkCobalt darkTeal darkEmerald darkGreen darkOrange darkRed darkPink darkViolet darkBlue lightBlue lightRed lightGreen lighterBlue lightTeal lightOlive lightOrange lightPink grayDark grayDarker grayLight grayLighter""" color_prefix_templ="bg fg ribbed" colors = color_templ.split(" ") color_prefixs = color_prefix_templ.split(' ') random.seed(1) def rand_color(): pos = random.randint(0, len(colors)-1) px = random.randint(0, len(color_prefixs)-1) return '-'.join((color_prefixs[px], colors[pos]) ) class HTMLElement(object): default_attributes={} tag = "unknown_tag" nullable = False def __init__(self, *args, **kwargs): self.attributes = kwargs self.attributes.update(self.default_attributes) if 'cls' in self.attributes: self.attributes['class'] = self.attributes['cls'] del self.attributes['cls'] if 'attrs' in self.attributes: self.attributes.update( self.attributes['attrs'] ) del self.attributes['attrs'] if 'ctx' in self.attributes: self.children = self.attributes['ctx'] del self.attributes['ctx'] else: self.children = args def tostr(self, o): if o == None: return '' if type(o) == str: return o elif type(o) == unicode: return o.encode('utf-8') elif type(o) in (tuple, list): return ''.join([self.tostr(child) for child in o]) else: return str(o) def __str__(self): attr = ' '.join(['{}="{}"'.format(name, value) for name, value in self.attributes.items()]) ctx = '' ctx = self.tostr(self.children) #if type(self.children) ==str: # ctx = self.children #elif type(self.children) == unicode: # ctx = self.children.encode('utf-8') #elif type(self.children) in (tuple, list): # ctx = ''.join([str(child) for child in self.children]) if ctx == '' and self.nullable == True: return '' return '\n<{} {}>{}</{}>\n'.format(self.tag, attr, ctx, self.tag) class div(HTMLElement): tag = "div" class ndiv(div): nullable = True class anchor(HTMLElement): tag = 'a' class nanchor(anchor): nullable = True class h1(HTMLElement): tag = 'h1' class image(HTMLElement): tag='img' class tile(div): default_attributes={'cls' : 'col-sm-6 col-md-3'} label = 'Tile' href='#' color='tile-red' def __init__(self, *args, **kwargs): div.__init__(self, **kwargs) if len(args) > 0: self.label = str(args[0]) if len(args)>1: self.href=str(args[1]) if len(args)>2: self.color = str(args[2]) for k,v in kwargs.items(): self.__setattr__(k, v) self.update() def __setattr__(self, key, value): if not self.__dict__.has_key(key): self.__dict__[key] = value else: self.__dict__[key] = value #print key, value self.update() def update(self): htitle = h1(self.label) ha = anchor(htitle, href=self.href) thumb = div(ha, cls='thumbnail tile tile-medium ' + self.color) self.__dict__['children'] = str( thumb ) class span(HTMLElement): tag = 'span' class nspan(span): nullable = True class button(HTMLElement): tag = 'button' class topnav(HTMLElement): default_attributes={'cls':'navbar navbar-inverse navbar-fixed-top'} tag = 'nav' title = 'Project' toggle = 'Toggle Navigation' """<nav class="navbar navbar-inverse navbar-fixed-top"> <div class="container"> <div class="navbar-header"> <button type="button" class="navbar-toggle collapsed" data-toggle="collapse" data-target="#navbar" aria-expanded="false" aria-controls="navbar"> <span class="sr-only">$tr('Toggle navigation')</span> <span class="icon-bar"></span> <span class="icon-bar"></span> <span class="icon-bar"></span> </button> <a class="navbar-brand" href="#">$tr('Project name')</a> </div> <div id="navbar" class="navbar-collapse collapse"> <form class="navbar-form navbar-right"> <div class="form-group"> <input type="text" placeholder="$tr('Email')" class="form-control"> </div> <div class="form-group"> <input type="password" placeholder="$tr('Password')" class="form-control"> </div> <button type="submit" class="btn btn-success">Sign in</button> </form> </div><!--/.navbar-collapse --> </div> </nav>""" def __init__(self, *args, **kwargs): HTMLElement.__init__(self, **kwargs) if(len(args) > 1): self.title = args[0] if(len(args) >2): self.toggle = args[1] for k,v in kwargs.items(): self.__setattr__(k, v) self.update() def update(self): eng = None chs = None if conf.lang == 'en': eng=anchor('English', cls='btn btn-default active', role='button', href='/en/') chs=anchor('Chinese', cls='btn btn-success', role='button', href='/zh-CN/') else: eng=anchor('English', cls='btn btn-success', href='/en/') chs=anchor('Chinese', cls='btn btn-default active', href='/zh-CN/') frm = div(chs, eng, cls="navbar-right") bar = div(frm, attrs={'id':"navbar", 'class':"navbar-collapse collapse"}) sr = span(self.toggle, cls="sr-only") ic = span(cls="icon-bar") btn = button(sr, ic, ic, ic, attrs={'type':"button", 'class':"navbar-toggle collapsed", 'data-toggle':"collapse", 'data-target':"#navbar", 'aria-expanded':"false", 'aria-controls':"navbar"}) a = anchor(self.title, cls="navbar-brand", href="#") hd = div(btn, a, cls="navbar-header") ctx = div(hd, bar, cls="container") self.__dict__['children'] = str(ctx) def __setattr__(self, key, value): if not self.__dict__.has_key(key): self.__dict__[key] = value else: self.__dict__[key] = value #print key, value self.update() class menubar(div): """ <header class="app-bar fixed-top navy" data-role="appbar"> <div class="container"> <a href="/" class="app-bar-element branding"><img src="images/wn8.png" style="height: 28px; display: inline-block; margin-right: 10px;"> Metro UI CSS</a> <ul class="app-bar-menu small-dropdown"> <li data-flexorderorigin="0" data-flexorder="1" class=""> <a href="#" class="dropdown-toggle">Base CSS</a> <ul class="d-menu" data-role="dropdown" data-no-close="true" style="display: none;"> <li class="disabled"><a href="overview.html">Overview</a></li> <li class="divider"></li> <li> <a href="" class="dropdown-toggle">Grid system</a> <ul class="d-menu" data-role="dropdown"> <li><a href="grid.html">Simple grid</a></li> <li><a href="flexgrid.html">Flex grid</a></li> </ul> </li> <li><a href="typography.html">Typography</a></li> <li><a href="tables.html">Tables</a></li> <li><a href="inputs.html">Forms &amp; Inputs</a></li> <li><a href="buttons.html">Buttons</a></li> <li><a href="images.html">Images</a></li> <li><a href="font.html">Metro Icon Font</a></li> <li class="divider"></li> <li><a href="colors.html">Colors</a></li> <li><a href="helpers.html">Helpers classes</a></li> <li class="divider"></li> <li><a href="rtl.html">RTL Support</a></li> <li class="disabled"><a href="responsive.html">Responsive</a></li> </ul> </li> </ul> <span class="app-bar-pull"></span> <div class="app-bar-pullbutton automatic" style="display: none;"></div> <div class="clearfix" style="width: 0;"></div> <nav class="app-bar-pullmenu hidden flexstyle-app-bar-menu" style="display: none;"> <ul class="app-bar-pullmenubar hidden app-bar-menu"></ul> </nav> </div> </header> """ tag = 'header' default_attributes={'cls':"app-bar fixed-top navy no-flexible", 'data-role':"appbar"} def __init__(self, config, obj): div.__init__(self) ctx = div(self.branding(config, obj), self.menu(config, obj), self.menutail(config, obj), cls="container") self.children=str(ctx) def options(self, config): class _O(object): pass o = _O() o.name="Options" o.href="options" o.menu=list() e=_O() e.name="en" e.href=config.url(lang="en") o.menu.append(e) e=_O() e.name="zh-CN" e.href=config.url(lang="zh-CN") o.menu.append(e) rt='<li class="navbar-right">'+self.submenu(o, config=config)[4:] return rt def submenu(self, o, config, prefix=""): obj = o order = 0 if type(o) == tuple: obj, order = o if obj.name=='--': return '<li class="divider"></li>\n' nm = config.tr(obj.name) href = obj.href if href[0] != '/': href = '/'.join((prefix, obj.href)) if obj.href == "#": href = "#" prefix = "" if hasattr(obj, "menu") == False: rt = u'<li><a href="{href}"> {name} </a></li>\n'.format(href=href, name=nm, order=order, order1=order+1) return rt else: rt=u'''<li><a href="#" class="dropdown-toggle"> {name} </a> <ul class="d-menu" data-role="dropdown" data-no-close="true" style="display: none;"> <li class="active"><a href="{href}">{name}</a></li> <li class="divider"></li> '''.format(href=href, name=nm, order=order, order1=order+1)+ '\n'.join([self.submenu(o,config=config, prefix=href) for o in obj.menu ])+ '</ul></li>\n' return rt def menu(self, config, obj): self.order = 0 s = u'''<ul class="app-bar-menu small-dropdown">'''+ '\n'.join([self.submenu(o, config=config, prefix='/'+config.lang) for o in zip(obj, range(len(obj)) ) ])+ self.options(config) + '</ul>\n' return s.encode('utf-8') def branding(self, config, obj): title = config.tr(config.site.start) s = u'\n<a href="{url}" class="app-bar-element branding"><i class="icon icon-windows icon-2x"></i></a>\n\n'.format(title=title, url=config.url('start')) return s.encode('utf-8') def menutail(self, c, o): return """ <span class="app-bar-pull"></span> <div class="app-bar-pullbutton automatic" style="display: none;"></div> <div class="clearfix" style="width: 0;"></div> <nav class="app-bar-pullmenu hidden flexstyle-app-bar-menu" style="display: none;"> <ul class="app-bar-pullmenubar hidden app-bar-menu"></ul> </nav> """ def parse_cls(fn, *args, **kw): def wrapped(*args, **kw): bg = kw['bg'] if kw.has_key('bg') else rand_color() fg = kw['fg'] if kw.has_key('fg') else "fg-white" cls = kw['cls'] if kw.has_key('cls') else 'tile' url = kw['url'] if kw.has_key('url') else None cls=' '.join((bg, fg, cls)) lcls = "tile-label" if kw.has_key('label_cls'): lcls += ' ' + kw['label_cls'] s1=nspan(kw['text'], cls=lcls) if url: o=anchor(fn(*args, tile_label=s1, **kw), href=url, cls=cls, attrs={'data-role':"tile"}) return o else: o = div(fn(*args, tile_label=s1, **kw), cls=cls, attrs={'data-role':"tile"}) return o return wrapped @parse_cls def tile1(icon="", **kw): """<!-- Tile with icon, icon can be font icon or image -->""" ctx=[kw['tile_label']] s = span(cls="icon %s" % icon) ctx.append(s) d2 = div(ctx=ctx, cls="tile-content iconic") return d2 @parse_cls def tile_image(img="", **kw): ctx=[kw['tile_label']] s=image(src=img) ctx.append(s) if kw['text']: s=nspan(kw['text'], cls="tile-label") ctx.append(s) d2 = div(ctx=ctx, cls="tile-content") return d2 @parse_cls def tile2(label="",badge="", **kw): """<!-- Tile with label and badge --> <div class="tile"> <div class="tile-content "> <span class="tile-label">Label</span> <span class="tile-badge">5</span> </div> </div>""" ctx=[kw['tile_label']] s1=nspan(kw['text'], cls="tile-label") s2 = span(badge, cls="tile-badge") ctx.append(s1) ctx.append(s2) d2=None if kw.has_key('icon'): s3 = span(cls="icon %s" % kw['icon']) ctx.append(s3) d2 = div(ctx=ctx, cls="tile-content iconic") elif kw.has_key('image'): s3 = image(src=kw['image']) ctx.append(s3) d2 = div(ctx=ctx, cls="tile-content iconic") else: d2 = div(ctx=ctx, cls="tile-content") return d2 @parse_cls def tile3(imgset=[], **kw): """<!-- Tile with image set (max 5 images) --> <div class="tile"> <div class="tile-content image-set"> <img src="..."> <img src="..."> <img src="..."> <img src="..."> <img src="..."> </div> </div>""" ctx=[] ims = "" for img in imgset: i = image(src=img) ctx.append(i) ctx.append(kw['tile_label']) d2 = div(ctx=ctx, cls="tile-content image-set") return d2 @parse_cls def tile4(imgctn="", overlay="", **kw): """<!-- Tile with image container --> <div class="tile"> <div class="tile-content"> <div class="image-container"> <div class="frame"> <img src="..."> </div> <div class="image-overlay"> Overlay text </div> </div> </div> </div>""" i=image(src=imgctn) d1 = div(i, cls="frame") d2 = div(overlay, cls="image-overlay") dic = div(d1, d2,kw['tile_label'], cls="image-container") dtc = div(dic, cls="tile-content") return dtc @parse_cls def tile_carousel(carousel=[], **kw): """<!-- Tile with carousel --> <div class="tile"> <div class="tile-content"> <div class="carousel" data-role="carousel"> <div class="slide"><img src="..."></div> ... <div class="slide"><img src="..."></div> </div> </div> </div>""" ctx=[] for k in carousel: img=image(src=k, attrs={'data-role':"fitImage", 'data-format':"fill"}) d1 = div(img, cls="slide") ctx.append(d1) ctx.append(kw['tile_label']) d2 = div(ctx=ctx, cls="carousel", attrs={'data-role':"carousel", 'data-controls':"false",'data-height':"100%", 'data-width':"100%"}) dtc = div(d2, cls="tile-content") return dtc @parse_cls def tile_slide(slide="", over="", direction='slide-up', **kw): """<!-- Tile with slide-up effect --> <div class="tile"> <div class="tile-content slide-up"> <div class="slide"> ... Main slide content ... </div> <div class="slide-over"> ... Over slide content here ... </div> </div> </div>""" img = image(src=slide) s = div(img, cls="slide") o = div(over, cls="slide-over") dtc = div(s, o,kw['tile_label'], cls="tile-content %s" % direction) return dtc @parse_cls def tile_panel(panel="", header="", **kw): """<div class="tile-big tile-wide-y bg-white" data-role="tile"> <div class="tile-content"> <div class="panel" style="height: 100%"> <div class="heading bg-darkRed fg-white"><span class="title text-light">Meeting</span></div> <div class="content fg-dark clear-float" style="height: 100%"> ... </div> </div> </div> </div>""" ctx = div(panel, cls="content fg-dark clear-float", style="height: 100%") s = kw['tile_label'] hdr = div(s, cls="heading bg-darkOrange fg-white") pnl = div(hdr, ctx, cls="panel", style="height: 100%") dtc = div(pnl, cls="tile-content") return dtc def Tile(*args, **kw): if kw.has_key('imgset'): return tile3(*args, **kw) elif kw.has_key('imgctn'): return tile4(*args, **kw) elif kw.has_key('carousel'): return tile_carousel(*args, **kw) elif kw.has_key('slide'): return tile_slide(*args, **kw) elif kw.has_key('img'): return tile_image(*args, **kw) elif kw.has_key('panel'): return tile_panel(*args, **kw) elif kw.has_key('label'): return tile2(*args, **kw) elif kw.has_key('icon'): return tile1(*args, **kw)
35.47767
448
0.516283
f44c960b1c38d32187f7e51a2041748216a95b94
1,370
py
Python
_unittests/ut_onnx_conv/test_rt_valid_model_lightgbm.py
xadupre/mlprodict
f82c8a26a60104948c67849b1c4af95ca812c153
[ "MIT" ]
1
2020-12-18T03:49:53.000Z
2020-12-18T03:49:53.000Z
_unittests/ut_onnx_conv/test_rt_valid_model_lightgbm.py
xadupre/mlprodict
f82c8a26a60104948c67849b1c4af95ca812c153
[ "MIT" ]
null
null
null
_unittests/ut_onnx_conv/test_rt_valid_model_lightgbm.py
xadupre/mlprodict
f82c8a26a60104948c67849b1c4af95ca812c153
[ "MIT" ]
null
null
null
""" @brief test log(time=9s) """ import unittest from logging import getLogger from pyquickhelper.loghelper import fLOG from pyquickhelper.pycode import ExtTestCase, skipif_circleci from sklearn.exceptions import ConvergenceWarning try: from sklearn.utils._testing import ignore_warnings except ImportError: from sklearn.utils.testing import ignore_warnings from skl2onnx import __version__ as skl2onnx_version from mlprodict.onnxrt.validate import enumerate_validated_operator_opsets class TestRtValidateLightGbm(ExtTestCase): @skipif_circleci('too long') @ignore_warnings(category=(UserWarning, ConvergenceWarning, RuntimeWarning)) def test_rt_LGBMClassifier_onnxruntime1(self): fLOG(__file__, self._testMethodName, OutputPrint=__name__ == "__main__") logger = getLogger('skl2onnx') logger.disabled = True verbose = 1 if __name__ == "__main__" else 0 debug = True buffer = [] def myprint(*args, **kwargs): buffer.append(" ".join(map(str, args))) rows = list(enumerate_validated_operator_opsets( verbose, models={"LGBMClassifier"}, fLOG=myprint, runtime='onnxruntime1', debug=debug, filter_exp=lambda m, p: '-64' not in p)) self.assertGreater(len(rows), 1) if __name__ == "__main__": unittest.main()
31.860465
80
0.706569
a374b7206d02f2d0845b999a66b499151fa619f3
385
py
Python
stubs/micropython-v1_11-esp32/ussl.py
mattytrentini/micropython-stubs
4d596273823b69e9e5bcf5fa67f249c374ee0bbc
[ "MIT" ]
null
null
null
stubs/micropython-v1_11-esp32/ussl.py
mattytrentini/micropython-stubs
4d596273823b69e9e5bcf5fa67f249c374ee0bbc
[ "MIT" ]
null
null
null
stubs/micropython-v1_11-esp32/ussl.py
mattytrentini/micropython-stubs
4d596273823b69e9e5bcf5fa67f249c374ee0bbc
[ "MIT" ]
null
null
null
""" Module: 'ussl' on micropython-v1.11-esp32 """ # MCU: {'ver': 'v1.11', 'build': '', 'platform': 'esp32', 'port': 'esp32', 'machine': 'ESP32 module with ESP32', 'release': '1.11.0', 'nodename': 'esp32', 'name': 'micropython', 'family': 'micropython', 'sysname': 'esp32', 'version': '1.11.0'} # Stubber: 1.5.4 from typing import Any def wrap_socket(*args, **kwargs) -> Any: ...
35
243
0.6
50254deb8a36e240167f07b2c131880e856a6d52
40
py
Python
start/Working with numbers/add/num2.py
codermoji-contrib/python
764bffaf0e92270be196aa5728f255aaaf5b8150
[ "MIT" ]
null
null
null
start/Working with numbers/add/num2.py
codermoji-contrib/python
764bffaf0e92270be196aa5728f255aaaf5b8150
[ "MIT" ]
null
null
null
start/Working with numbers/add/num2.py
codermoji-contrib/python
764bffaf0e92270be196aa5728f255aaaf5b8150
[ "MIT" ]
null
null
null
print(12345 + 98765) print(12345 * 99)
10
20
0.675
4a725d86d40821b305677375c76f76c6f7bcf114
325
py
Python
build/lib/pyggi/utils/helpers.py
s-marta/pyggi-bloa
aefe15eda32e713dc8402c9b8d4bcb7cb05b31c8
[ "MIT" ]
26
2018-01-30T13:07:51.000Z
2021-08-01T13:41:48.000Z
build/lib/pyggi/utils/helpers.py
s-marta/pyggi-bloa
aefe15eda32e713dc8402c9b8d4bcb7cb05b31c8
[ "MIT" ]
9
2018-01-10T02:22:10.000Z
2021-12-08T06:28:19.000Z
build/lib/pyggi/utils/helpers.py
s-marta/pyggi-bloa
aefe15eda32e713dc8402c9b8d4bcb7cb05b31c8
[ "MIT" ]
9
2019-02-11T19:00:52.000Z
2021-12-30T07:48:52.000Z
import os weighted_choice = lambda s : random.choice(sum(([v] * wt for v,wt in s),[])) def get_file_extension(file_path): """ :param file_path: The path of file :type file_path: str :return: file extension :rtype: str """ _, file_extension = os.path.splitext(file_path) return file_extension
25
76
0.661538
d927eaefc5004586674b02e4c433d6bf0b7a695f
1,235
py
Python
playlist/inventories/json_inventory.py
hugoprudente/playlist-manager
51ae833e717c8a814c6b86726c8b099ba2afce6a
[ "Apache-2.0" ]
1
2020-12-28T15:50:41.000Z
2020-12-28T15:50:41.000Z
playlist/inventories/json_inventory.py
hugoprudente/playlist-manager
51ae833e717c8a814c6b86726c8b099ba2afce6a
[ "Apache-2.0" ]
1
2021-06-13T15:02:51.000Z
2021-06-13T15:02:51.000Z
playlist/inventories/json_inventory.py
hugoprudente/playlist-manager
51ae833e717c8a814c6b86726c8b099ba2afce6a
[ "Apache-2.0" ]
null
null
null
import io import json import sys from pathlib import Path import jmespath class JSONInventory: def write_file( self, file_path, data, extra_data=None, fields=None, format=None, merge=True, ): # raw data local_data = data file_path = Path(file_path) if file_path.exists() and merge: # pragma: no cover with io.open(str(file_path)) as open_file: sys.stdout.write("merge") sys.stdout.write("\n") # object_merge(json.load(open_file), file_data) with io.open( str(file_path), "w", ) as open_file: json.dump(local_data, open_file) def stdout(self, data, extra_data=None, fields=None, format=None): if fields is not None and fields: expression = jmespath.compile(fields) sys.stdout.write(json.dumps(expression.search(data))) sys.stdout.write("\n") else: if extra_data is not None: sys.stdout.write(json.dumps(extra_data)) sys.stdout.write("\n") sys.stdout.write(json.dumps(data)) sys.stdout.write("\n")
26.847826
70
0.551417
60ed140be06ba7dd780f2d62692ba60ea17b68f7
3,304
py
Python
eval.py
mehdidc/keras-yolo3
459b08438b13b6aacd1464960b1ad7d816a601d6
[ "MIT" ]
null
null
null
eval.py
mehdidc/keras-yolo3
459b08438b13b6aacd1464960b1ad7d816a601d6
[ "MIT" ]
null
null
null
eval.py
mehdidc/keras-yolo3
459b08438b13b6aacd1464960b1ad7d816a601d6
[ "MIT" ]
null
null
null
from PIL import Image import numpy as np from collections import defaultdict from skimage.transform import resize from skimage.io import imread from yolo3.yolo import YOLO from clize import run from joblib import dump eps = 1e-12 iou_threshold = 0.45 def evaluate(data, model_path, anchors_path, classes_path): yolo = YOLO( model_path=model_path, anchors_path=anchors_path, classes_path=classes_path, score_threshold=0.0, iou=iou_threshold, max_boxes=10000, ) lines = open(data).readlines() B_list = [] BP_list = [] for i, l in enumerate(lines): toks = l.strip().split(' ') image_filename = toks[0] boxes = toks[1:] x = imread(image_filename) x = Image.fromarray(x) B = [list(map(int, b.split(','))) for b in boxes] out_boxes, out_scores, out_classes = yolo.predict_image(x) BP = [list(tuple(b) + (c, s)) for b, s, c in zip(out_boxes, out_scores, out_classes)] B_list.extend(B) BP_list.extend(BP) if i % 10 == 0: print('[{:05d}]/[{:05d}]'.format(i, len(lines))) break stats = get_stats(B_list, BP_list) for k in sorted(stats.keys()): v = stats[k] print('{}: {:.2f}'.format(k, v)) def get_stats(B, BP): precs, recs = PR(B, BP) d = {} for th in (0.5, 0.6, 0.8, 0.9, 0.95, 0.99): vals = [p for p, r in zip(precs, recs) if r >= th] if len(vals): p = max(vals) else: p = 0 vals = [r for p, r in zip(precs, recs) if p >= th] if len(vals): r = max(vals) else: r = 0 d['prec({:.2f})'.format(th)] = p d['rec({:.2f})'.format(th)] = r bmax = max(B, key=lambda b:(b[2]-b[0]) * (b[3]-b[1])) detected = 0 for i, p in enumerate(BP): *bp, pred_class_id, score = p *bt, class_id = bmax if iou(bp, bt) >= iou_threshold and class_id == pred_class_id: detected = 1 break d['detected'] = detected return d def PR(B, BP, iou_threshold=0.45): R = np.zeros(len(B)) P = np.zeros(len(BP)) nb_precision = 0 nb_recall = 0 precisions = [] recalls = [] BP = sorted(BP, key=lambda p:p[-1], reverse=True) for i, p in enumerate(BP): *bp, pred_class_id, score = p for j, t in enumerate(B): *bt, class_id = t if iou(bp, bt) >= iou_threshold and class_id == pred_class_id: if R[j] == 0: R[j] = 1 nb_recall += 1 if P[i] == 0: P[i] = 1 nb_precision += 1 p = nb_precision / (i + 1) r = nb_recall / len(B) precisions.append(p) recalls.append(r) return precisions, recalls def iou(bbox1, bbox2): x, y, xm, ym = bbox1 w = xm - x h = ym - y xx, yy, xxm, yym = bbox2 ww = xxm - xx hh = yym - yy winter = min(x + w, xx + ww) - max(x, xx) hinter = min(y + h, yy + hh) - max(y, yy) if winter < 0 or hinter < 0: inter = 0 else: inter = winter * hinter union = w * h + ww * hh - inter return inter / (union + eps) if __name__ == '__main__': run(evaluate)
27.533333
93
0.517857
cb3c2781d56de0cd4998f91aa98ff7dd70fd8283
916
py
Python
apps/home/quickstart.py
Fayzan-Bhatti/MY_Product
e7a2f3b64b3f3fb421f95bb779fa8e480c3c23a8
[ "MIT" ]
null
null
null
apps/home/quickstart.py
Fayzan-Bhatti/MY_Product
e7a2f3b64b3f3fb421f95bb779fa8e480c3c23a8
[ "MIT" ]
null
null
null
apps/home/quickstart.py
Fayzan-Bhatti/MY_Product
e7a2f3b64b3f3fb421f95bb779fa8e480c3c23a8
[ "MIT" ]
null
null
null
from google.analytics.data_v1beta import BetaAnalyticsDataClient from google.analytics.data_v1beta.types import DateRange from google.analytics.data_v1beta.types import Dimension from google.analytics.data_v1beta.types import Metric from google.analytics.data_v1beta.types import RunReportRequest def sample_run_report(property_id="82468401"): client = BetaAnalyticsDataClient() request = RunReportRequest( property=f"properties/{property_id}", dimensions=[Dimension(name="city")], metrics=[Metric(name="activeUsers")], date_ranges=[DateRange(start_date="2019-03-26", end_date="today")], ) print(property) response = client.run_report(request) print("Report result:") for row in response.rows: print(row.dimension_values[0].value, row.metric_values[0].value) if __name__ == "__main__": sample_run_report() print('main function calling')
36.64
75
0.744541
b89e9d33f72c30fa423ca1e71dcb171264f899c3
227
py
Python
src/0121.best-time-to-buy-and-sell-stock/best-time-to-buy-and-sell-stock.py
lyphui/Just-Code
e0c3c3ecb67cb805080ff686e88522b2bffe7741
[ "MIT" ]
782
2019-11-19T08:20:49.000Z
2022-03-25T06:59:09.000Z
src/0121.best-time-to-buy-and-sell-stock/best-time-to-buy-and-sell-stock.py
Heitao5200/Just-Code
5bb3ee485a103418e693b7ec8e26dc84f3691c79
[ "MIT" ]
1
2021-03-04T12:21:01.000Z
2021-03-05T01:23:54.000Z
src/0121.best-time-to-buy-and-sell-stock/best-time-to-buy-and-sell-stock.py
Heitao5200/Just-Code
5bb3ee485a103418e693b7ec8e26dc84f3691c79
[ "MIT" ]
155
2019-11-20T08:20:42.000Z
2022-03-19T07:28:09.000Z
class Solution: def maxProfit(self, prices: List[int]) -> int: min_p, max_v = float('inf'), 0 for p in prices: min_p = min(min_p, p) max_v = max(max_v, p - min_p) return max_v
32.428571
50
0.528634
e4b82e231c5c28a3b546edaf8076ea55fc30483a
220
py
Python
core/commands/owner/__init__.py
salvatorecalo/nebula8
b63c0a1a98ccc955320449eb260b62f70ab5ce0a
[ "Apache-2.0" ]
1
2021-09-28T00:37:36.000Z
2021-09-28T00:37:36.000Z
core/commands/owner/__init__.py
salvatorecalo/nebula8
b63c0a1a98ccc955320449eb260b62f70ab5ce0a
[ "Apache-2.0" ]
null
null
null
core/commands/owner/__init__.py
salvatorecalo/nebula8
b63c0a1a98ccc955320449eb260b62f70ab5ce0a
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- # Copyright SquirrelNetwork """Import Files""" __all__ = ["add_community","exit","broadcast","server_info","superban","test","whitelist"] from core.commands.owner import *
24.444444
90
0.690909
13baf448bca8776a5cbed486295710b7747f537d
7,613
py
Python
shellsploit/disassembly/Syscalls/linux_64.py
riusksk/shellsploit-library
9c0e1fec2d510cc1195194ce18f5b6f0aeface9f
[ "MIT" ]
10
2016-10-09T10:21:43.000Z
2020-04-20T05:28:50.000Z
shellsploit/disassembly/Syscalls/linux_64.py
riusksk/shellsploit-library
9c0e1fec2d510cc1195194ce18f5b6f0aeface9f
[ "MIT" ]
null
null
null
shellsploit/disassembly/Syscalls/linux_64.py
riusksk/shellsploit-library
9c0e1fec2d510cc1195194ce18f5b6f0aeface9f
[ "MIT" ]
7
2017-03-22T18:21:34.000Z
2019-12-02T20:22:47.000Z
#------------------Bombermans Team------------------------------------------# # Author : B3mB4m # Concat : b3mb4m@protonmail.com # Project : https://github.com/b3mb4m/shellsploit-library # LICENSE : https://github.com/b3mb4m/shellsploit-library/blob/master/LICENSE #----------------------------------------------------------------------------# list = { "read":"0", "write":"1", "open":"2", "close":"3", "stat":"4", "fstat":"5", "lstat":"6", "poll":"7", "lseek":"8", "mmap":"9", "mprotect":"10", "munmap":"11", "brk":"12", "rt_sigaction":"13", "rt_sigprocmask":"14", "rt_sigreturn":"15", "ioctl":"16", "pread64":"17", "pwrite64":"18", "readv":"19", "writev":"20", "access":"21", "pipe":"22", "select":"23", "sched_yield":"24", "mremap":"25", "msync":"26", "mincore":"27", "madvise":"28", "shmget":"29", "shmat":"30", "shmctl":"31", "dup":"32", "dup2":"33", "pause":"34", "nanosleep":"35", "getitimer":"36", "alarm":"37", "setitimer":"38", "getpid":"39", "sendfile":"40", "socket":"41", "connect":"42", "accept":"43", "sendto":"44", "recvfrom":"45", "sendmsg":"46", "recvmsg":"47", "shutdown":"48", "bind":"49", "listen":"50", "getsockname":"51", "getpeername":"52", "socketpair":"53", "setsockopt":"54", "getsockopt":"55", "clone":"56", "fork":"57", "vfork":"58", "execve":"59", "exit":"60", "wait4":"61", "kill":"62", "uname":"63", "semget":"64", "semop":"65", "semctl":"66", "shmdt":"67", "msgget":"68", "msgsnd":"69", "msgrcv":"70", "msgctl":"71", "fcntl":"72", "flock":"73", "fsync":"74", "fdatasync":"75", "truncate":"76", "ftruncate":"77", "getdents":"78", "getcwd":"79", "chdir":"80", "fchdir":"81", "rename":"82", "mkdir":"83", "rmdir":"84", "creat":"85", "link":"86", "unlink":"87", "symlink":"88", "readlink":"89", "chmod":"90", "fchmod":"91", "chown":"92", "fchown":"93", "lchown":"94", "umask":"95", "gettimeofday":"96", "getrlimit":"97", "getrusage":"98", "sysinfo":"99", "times":"100", "ptrace":"101", "getuid":"102", "syslog":"103", "getgid":"104", "setuid":"105", "setgid":"106", "geteuid":"107", "getegid":"108", "setpgid":"109", "getppid":"110", "getpgrp":"111", "setsid":"112", "setreuid":"113", "setregid":"114", "getgroups":"115", "setgroups":"116", "setresuid":"117", "getresuid":"118", "setresgid":"119", "getresgid":"120", "getpgid":"121", "setfsuid":"122", "setfsgid":"123", "getsid":"124", "capget":"125", "capset":"126", "rt_sigpending":"127", "rt_sigtimedwait":"128", "rt_sigqueueinfo":"129", "rt_sigsuspend":"130", "sigaltstack":"131", "utime":"132", "mknod":"133", "uselib":"134", "personality":"135", "ustat":"136", "statfs":"137", "fstatfs":"138", "sysfs":"139", "getpriority":"140", "setpriority":"141", "sched_setparam":"142", "sched_getparam":"143", "sched_setscheduler":"144", "sched_getscheduler":"145", "sched_get_priority_max":"146", "sched_get_priority_min":"147", "sched_rr_get_interval":"148", "mlock":"149", "munlock":"150", "mlockall":"151", "munlockall":"152", "vhangup":"153", "modify_ldt":"154", "pivot_root":"155", "_sysctl":"156", "prctl":"157", "arch_prctl":"158", "adjtimex":"159", "setrlimit":"160", "chroot":"161", "sync":"162", "acct":"163", "settimeofday":"164", "mount":"165", "umount2":"166", "swapon":"167", "swapoff":"168", "reboot":"169", "sethostname":"170", "setdomainname":"171", "iopl":"172", "ioperm":"173", "create_module":"174", "init_module":"175", "delete_module":"176", "get_kernel_syms":"177", "query_module":"178", "quotactl":"179", "nfsservctl":"180", "getpmsg":"181", "putpmsg":"182", "afs_syscall":"183", "tuxcall":"184", "security":"185", "gettid":"186", "readahead":"187", "setxattr":"188", "lsetxattr":"189", "fsetxattr":"190", "getxattr":"191", "lgetxattr":"192", "fgetxattr":"193", "listxattr":"194", "llistxattr":"195", "flistxattr":"196", "removexattr":"197", "lremovexattr":"198", "fremovexattr":"199", "tkill":"200", "time":"201", "futex":"202", "sched_setaffinity":"203", "sched_getaffinity":"204", "set_thread_area":"205", "io_setup":"206", "io_destroy":"207", "io_getevents":"208", "io_submit":"209", "io_cancel":"210", "get_thread_area":"211", "lookup_dcookie":"212", "epoll_create":"213", "epoll_ctl_old":"214", "epoll_wait_old":"215", "remap_file_pages":"216", "getdents64":"217", "set_tid_address":"218", "restart_syscall":"219", "semtimedop":"220", "fadvise64":"221", "timer_create":"222", "timer_settime":"223", "timer_gettime":"224", "timer_getoverrun":"225", "timer_delete":"226", "clock_settime":"227", "clock_gettime":"228", "clock_getres":"229", "clock_nanosleep":"230", "exit_group":"231", "epoll_wait":"232", "epoll_ctl":"233", "tgkill":"234", "utimes":"235", "vserver":"236", "mbind":"237", "set_mempolicy":"238", "get_mempolicy":"239", "mq_open":"240", "mq_unlink":"241", "mq_timedsend":"242", "mq_timedreceive":"243", "mq_notify":"244", "mq_getsetattr":"245", "kexec_load":"246", "waitid":"247", "add_key":"248", "request_key":"249", "keyctl":"250", "ioprio_set":"251", "ioprio_get":"252", "inotify_init":"253", "inotify_add_watch":"254", "inotify_rm_watch":"255", "migrate_pages":"256", "openat":"257", "mkdirat":"258", "mknodat":"259", "fchownat":"260", "futimesat":"261", "newfstatat":"262", "unlinkat":"263", "renameat":"264", "linkat":"265", "symlinkat":"266", "readlinkat":"267", "fchmodat":"268", "faccessat":"269", "pselect6":"270", "ppoll":"271", "unshare":"272", "set_robust_list":"273", "get_robust_list":"274", "splice":"275", "tee":"276", "sync_file_range":"277", "vmsplice":"278", "move_pages":"279", "utimensat":"280", "epoll_pwait":"281", "signalfd":"282", "timerfd_create":"283", "eventfd":"284", "fallocate":"285", "timerfd_settime":"286", "timerfd_gettime":"287", "accept4":"288", "signalfd4":"289", "eventfd2":"290", "epoll_create1":"291", "dup3":"292", "pipe2":"293", "inotify_init1":"294", "preadv":"295", "pwritev":"296", "rt_tgsigqueueinfo":"297", "perf_event_open":"298", "recvmmsg":"299", "fanotify_init":"300", "fanotify_mark":"301", "prlimit64":"302", "name_to_handle_at":"303", "open_by_handle_at":"304", "clock_adjtime":"305", "syncfs":"306", "sendmmsg":"307", "setns":"308", "getcpu":"309", "process_vm_readv":"310", "process_vm_writev":"311", "kcmp":"312", "finit_module":"313", "sched_setattr":"314", "sched_getattr":"315", "renameat2":"316", "seccomp":"317", "getrandom":"318", "memfd_create":"319", "kexec_file_load":"320", "bpf":"321", "execveat":"322" } #print list["execve"]
22.657738
78
0.506371
a390c5a40a9be6efc34936ffbee9adbf36ba21bf
3,652
py
Python
tests/annotation/general/test_line_path.py
saltastroops/imephu
0c302a73d01fe3ad018e7adf4b91e0beaecc6709
[ "MIT" ]
null
null
null
tests/annotation/general/test_line_path.py
saltastroops/imephu
0c302a73d01fe3ad018e7adf4b91e0beaecc6709
[ "MIT" ]
3
2022-02-02T20:51:05.000Z
2022-02-03T21:13:27.000Z
tests/annotation/general/test_line_path.py
saltastroops/imephu
0c302a73d01fe3ad018e7adf4b91e0beaecc6709
[ "MIT" ]
null
null
null
import pytest from astropy import units as u from astropy.coordinates import SkyCoord from imephu.annotation.general import CircleAnnotation, LinePathAnnotation from imephu.finder_chart import FinderChart def test_line_path_annotation(fits_file, check_finder): """Test line path annotations.""" finder_chart = FinderChart(fits_file) closed_path_vertices = [ SkyCoord(ra="00h40m40s", dec="-59d56m00s"), SkyCoord(ra="00h40m20s", dec="-59d55m00s"), SkyCoord(ra="00h40m00s", dec="-60d00m00s"), ] closed_path_annotation = LinePathAnnotation( closed_path_vertices, wcs=finder_chart.wcs, edgecolor="none", facecolor="green", alpha=0.2, ) open_path_vertices = [ SkyCoord(ra="00h39m20s", dec="-60d04m00s"), SkyCoord(ra="00h39m40s", dec="-60d05m00s"), SkyCoord(ra="00h40m00s", dec="-60d00m00s"), ] open_path_annotation = LinePathAnnotation( open_path_vertices, wcs=finder_chart.wcs, closed=False, edgecolor="orange" ) finder_chart.add_annotation(closed_path_annotation) finder_chart.add_annotation(open_path_annotation) check_finder(finder_chart) @pytest.mark.parametrize( "pivot,angle", [ (SkyCoord(ra="00h39m40s", dec=-60 * u.deg), 0 * u.deg), (SkyCoord(ra="00h39m40s", dec=-60 * u.deg), -90 * u.deg), ], ) def test_line_path_annotation_rotated(pivot, angle, fits_file, check_finder, legend): """Test rotated circle annotations.""" finder_chart = FinderChart(fits_file) line_path_annotation = LinePathAnnotation( [ SkyCoord(ra="00h39m50s", dec="-60d00m00s"), SkyCoord(ra="00h39m50s", dec="-60d01m00s"), SkyCoord(ra="00h40m00s", dec="-60d00m00s"), ], wcs=finder_chart.wcs, edgecolor="none", facecolor="gray", alpha=0.2, ) rotated_circle_annotation = line_path_annotation.rotate(pivot, angle) rotated_circle_annotation._kwargs["edgecolor"] = "blue" rotated_circle_annotation._kwargs["facecolor"] = "blue" pivot_marker = CircleAnnotation( pivot, 12 * u.arcsec, wcs=finder_chart.wcs, edgecolor="none", facecolor="orange", alpha=0.7, ) finder_chart.add_annotation(pivot_marker) finder_chart.add_annotation(line_path_annotation) finder_chart.add_annotation(rotated_circle_annotation) finder_chart.add_annotation( legend(f"Rotated by {angle.to_value(u.deg)} deg", wcs=finder_chart.wcs) ) check_finder(finder_chart) @pytest.mark.parametrize("displacement", [(0, 0) * u.arcmin, (2.5, -4) * u.arcmin]) def test_line_path_annotation_translated( displacement, fits_file, fits_center, check_finder, legend ): """Test translated circle annotations.""" finder_chart = FinderChart(fits_file) line_path_annotation = LinePathAnnotation( [ SkyCoord(ra="00h39m40s", dec="-59d58m00s"), SkyCoord(ra="00h39m50s", dec="-59d58m00s"), SkyCoord(ra="00h39m40s", dec="-59d59m00s"), ], wcs=finder_chart.wcs, edgecolor="none", facecolor="gray", ) translated_line_path_annotation = line_path_annotation.translate(displacement) translated_line_path_annotation._kwargs["color"] = "blue" finder_chart.add_annotation(line_path_annotation) finder_chart.add_annotation(translated_line_path_annotation) finder_chart.add_annotation( legend( f"Translated by {displacement.to_value(u.arcmin)} arcmin", wcs=finder_chart.wcs, ) ) check_finder(finder_chart)
34.780952
85
0.672508
30c7f000491fb9e814029756fff40525a3ff2fe5
1,261
py
Python
hood_app/migrations/0002_auto_20180807_1654.py
ephantuskaranja/hood_watch
3d91e90d1a9c8c7b73d5dcea17cb7bb83e5b71ea
[ "MIT" ]
null
null
null
hood_app/migrations/0002_auto_20180807_1654.py
ephantuskaranja/hood_watch
3d91e90d1a9c8c7b73d5dcea17cb7bb83e5b71ea
[ "MIT" ]
null
null
null
hood_app/migrations/0002_auto_20180807_1654.py
ephantuskaranja/hood_watch
3d91e90d1a9c8c7b73d5dcea17cb7bb83e5b71ea
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # Generated by Django 1.11 on 2018-08-07 13:54 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('hood_app', '0001_initial'), ] operations = [ migrations.AlterModelOptions( name='recommendation', options={'verbose_name_plural': 'Recommendations'}, ), migrations.AddField( model_name='recommendation', name='desc', field=models.TextField(blank=True, max_length=250), ), migrations.AddField( model_name='reports', name='desc', field=models.TextField(blank=True, max_length=250), ), migrations.AddField( model_name='reports', name='outstanding', field=models.CharField(choices=[('RACISM', 'racism'), ('BAD-SERVICES', 'Bad-Services'), ('BRIBERY', 'Bribery')], max_length=60, null=True), ), migrations.AlterField( model_name='reports', name='institution_category', field=models.CharField(blank=True, choices=[('PUBLIC', 'public'), ('PRIVATE', 'private')], max_length=60), ), ]
31.525
151
0.580492
0990598171fe0d2ddc13b1b9d7c83a6b984de51f
3,675
py
Python
scripts/AnEn_CNN/DATA03_supplemental_refine.py
yingkaisha/rainbow
cee707e8fe29a6606041f0e26b33720793fe129b
[ "MIT" ]
6
2021-02-17T20:47:51.000Z
2021-03-20T05:27:38.000Z
scripts/AnEn_CNN/DATA03_supplemental_refine.py
yingkaisha/rainbow
cee707e8fe29a6606041f0e26b33720793fe129b
[ "MIT" ]
null
null
null
scripts/AnEn_CNN/DATA03_supplemental_refine.py
yingkaisha/rainbow
cee707e8fe29a6606041f0e26b33720793fe129b
[ "MIT" ]
1
2021-03-10T06:08:05.000Z
2021-03-10T06:08:05.000Z
import sys import time import os.path from glob import glob from datetime import datetime, timedelta # data tools import h5py import numpy as np # custom tools sys.path.insert(0, '/glade/u/home/ksha/WORKSPACE/utils/') sys.path.insert(0, '/glade/u/home/ksha/WORKSPACE/Analog_BC/') sys.path.insert(0, '/glade/u/home/ksha/WORKSPACE/Analog_BC/utils/') import data_utils as du from namelist import * # importing domain information with h5py.File(save_dir+'BC_domain_info.hdf', 'r') as h5io: base_lon = h5io['base_lon'][...] base_lat = h5io['base_lat'][...] etopo_025 = h5io['etopo_base'][...] land_mask = h5io['land_mask_base'][...] land_mask_bc = h5io['land_mask_bc'][...] bc_in_base = np.ones(land_mask.shape).astype(bool) bc_in_base[bc_inds[0]:bc_inds[1], bc_inds[2]:bc_inds[3]] = land_mask_bc grid_shape = land_mask.shape # subsetting by land mask IND = [] for i in range(grid_shape[0]): for j in range(grid_shape[1]): if ~bc_in_base[i, j]: IND.append([i, j]) IND = np.array(IND, dtype=np.int) N_grids = len(IND) # -------------------------------------- # # Combine and save N_S = 41 SL_xy = np.zeros((12,)+grid_shape+(N_S, 3,))*np.nan for month in range(12): with h5py.File(save_dir+'S40_mon{}.hdf'.format(month), 'r') as h5io: sl_ind = h5io['IND'][...] # place the current month into allocation SL_xy[month, ...] = sl_ind tuple_save = (SL_xy,) label_save = ['SL_xy'] du.save_hdf5(tuple_save, label_save, save_dir, 'SL40_d4.hdf') # -------------------------------------- # # remove duplicates N_range = np.array([20, 40]) for N_S in N_range: with h5py.File(save_dir+'SL40_d4.hdf', 'r') as h5io: SL_xy = h5io['SL_xy'][..., :N_S, :] inds_to_inds = {} # flattening for preserving unique (ix, iy) pairs SL_xy_mask = SL_xy[:, ~bc_in_base, :, :] Ix = SL_xy_mask[..., 0] Iy = SL_xy_mask[..., 1] # get unique pairs Ix_flat = Ix.reshape(12*N_grids*N_S) Iy_flat = Iy.reshape(12*N_grids*N_S) IxIy = np.concatenate((Ix_flat[:, None], Iy_flat[:, None]), axis=1) IxIy_unique = np.unique(IxIy, axis=0) # indx encoding for np.searchsorted IxIy_1d = np.sort(IxIy_unique[:, 0]*9.99+IxIy_unique[:, 1]*0.01) # map each pair to the unqiue pairs for mon in range(12): ind_to_ind = np.empty((N_grids, N_S), dtype=np.int) for i in range(N_grids): ix = Ix[mon, i, :] iy = Iy[mon, i, :] # applying the same encoding rule ixiy_1d = ix*9.99+iy*0.01 # reverse select inds for s in range(N_S): ind_to_ind[i, s] = (np.searchsorted(IxIy_1d, ixiy_1d[s])) inds_to_inds['{}'.format(mon)] = ind_to_ind # applying int IxIy_unique = IxIy_unique.astype(np.int) # verifing the reverse mapping of inds for mon in range(12): for i in range(N_grids): for s in range(N_S): ix = Ix[mon, i, s] iy = Iy[mon, i, s] ind_to_ind = inds_to_inds['{}'.format(mon)] ix_mapped, iy_mapped = IxIy_unique[int(ind_to_ind[i, s]), :] # if not matched, then raise a msg if (np.abs(ix - ix_mapped) + np.abs(iy - iy_mapped)) > 0: print("no...........") errorerrorerrorerror IxIy_maps = tuple(inds_to_inds.values()) tuple_save = IxIy_maps + (IxIy_unique,) label_save = [] for i in range(12): label_save.append('mon_{}_inds'.format(i)) label_save.append('unique_inds') # save du.save_hdf5(tuple_save, label_save, save_dir, 'SL{}_d4_unique.hdf'.format(N_S))
31.410256
84
0.595918
e04a3410ed2a786cff0271a02e36df3e7e901b38
52,147
py
Python
sympy/core/mul.py
smichr/sympy
eda86926d98ab6cb7ec73e3cb8ea78ac15bddea3
[ "BSD-3-Clause" ]
7
2015-01-14T06:55:33.000Z
2018-08-11T14:43:52.000Z
sympy/core/mul.py
smichr/sympy
eda86926d98ab6cb7ec73e3cb8ea78ac15bddea3
[ "BSD-3-Clause" ]
1
2018-02-19T04:56:04.000Z
2018-02-19T04:56:04.000Z
sympy/core/mul.py
smichr/sympy
eda86926d98ab6cb7ec73e3cb8ea78ac15bddea3
[ "BSD-3-Clause" ]
1
2016-04-24T14:39:22.000Z
2016-04-24T14:39:22.000Z
from collections import defaultdict import operator from sympy.core.sympify import sympify from sympy.core.basic import Basic, C from sympy.core.singleton import S from sympy.core.operations import AssocOp from sympy.core.cache import cacheit from sympy.core.logic import fuzzy_not from sympy.core.compatibility import cmp_to_key from sympy.core.expr import Expr # internal marker to indicate: # "there are still non-commutative objects -- don't forget to process them" class NC_Marker: is_Order = False is_Mul = False is_Number = False is_Poly = False is_commutative = False # Key for sorting commutative args in canonical order _args_sortkey = cmp_to_key(Basic.compare) def _mulsort(args): # in-place sorting of args args.sort(key=_args_sortkey) def _unevaluated_Mul(*args): """Return a well-formed unevaluated Mul: Numbers are collected and put in slot 0 and args are sorted. Use this when args have changed but you still want to return an unevaluated Mul. Examples ======== >>> from sympy.core.mul import _unevaluated_Mul as uMul >>> from sympy import S, sqrt, Mul >>> from sympy.abc import x, y >>> a = uMul(*[S(3.0), x, S(2)]) >>> a.args[0] 6.00000000000000 >>> a.args[1] x Beyond the Number being in slot 0, there is no other flattening of arguments, but two unevaluated Muls with the same arguments will always compare as equal during testing: >>> m = uMul(sqrt(2), sqrt(3)) >>> m == uMul(sqrt(3), sqrt(2)) True >>> m == Mul(*m.args) False """ args = list(args) newargs = [] ncargs = [] co = S.One while args: a = args.pop() if a.is_Mul: c, nc = a.args_cnc() args.extend(c) if nc: ncargs.append(Mul._from_args(nc)) elif a.is_Number: co *= a else: newargs.append(a) _mulsort(newargs) if co is not S.One: newargs.insert(0, co) if ncargs: newargs.append(Mul._from_args(ncargs)) return Mul._from_args(newargs) class Mul(Expr, AssocOp): __slots__ = [] is_Mul = True #identity = S.One # cyclic import, so defined in numbers.py @classmethod def flatten(cls, seq): """Return commutative, noncommutative and order arguments by combining related terms. Notes ===== * In an expression like ``a*b*c``, python process this through sympy as ``Mul(Mul(a, b), c)``. This can have undesirable consequences. - Sometimes terms are not combined as one would like: {c.f. http://code.google.com/p/sympy/issues/detail?id=1497} >>> from sympy import Mul, sqrt >>> from sympy.abc import x, y, z >>> 2*(x + 1) # this is the 2-arg Mul behavior 2*x + 2 >>> y*(x + 1)*2 2*y*(x + 1) >>> 2*(x + 1)*y # 2-arg result will be obtained first y*(2*x + 2) >>> Mul(2, x + 1, y) # all 3 args simultaneously processed 2*y*(x + 1) >>> 2*((x + 1)*y) # parentheses can control this behavior 2*y*(x + 1) Powers with compound bases may not find a single base to combine with unless all arguments are processed at once. Post-processing may be necessary in such cases. {c.f. http://code.google.com/p/sympy/issues/detail?id=2629} >>> a = sqrt(x*sqrt(y)) >>> a**3 (x*sqrt(y))**(3/2) >>> Mul(a,a,a) (x*sqrt(y))**(3/2) >>> a*a*a x*sqrt(y)*sqrt(x*sqrt(y)) >>> _.subs(a.base, z).subs(z, a.base) (x*sqrt(y))**(3/2) - If more than two terms are being multiplied then all the previous terms will be re-processed for each new argument. So if each of ``a``, ``b`` and ``c`` were :class:`Mul` expression, then ``a*b*c`` (or building up the product with ``*=``) will process all the arguments of ``a`` and ``b`` twice: once when ``a*b`` is computed and again when ``c`` is multiplied. Using ``Mul(a, b, c)`` will process all arguments once. * The results of Mul are cached according to arguments, so flatten will only be called once for ``Mul(a, b, c)``. If you can structure a calculation so the arguments are most likely to be repeats then this can save time in computing the answer. For example, say you had a Mul, M, that you wished to divide by ``d[i]`` and multiply by ``n[i]`` and you suspect there are many repeats in ``n``. It would be better to compute ``M*n[i]/d[i]`` rather than ``M/d[i]*n[i]`` since every time n[i] is a repeat, the product, ``M*n[i]`` will be returned without flattening -- the cached value will be returned. If you divide by the ``d[i]`` first (and those are more unique than the ``n[i]``) then that will create a new Mul, ``M/d[i]`` the args of which will be traversed again when it is multiplied by ``n[i]``. {c.f. http://code.google.com/p/sympy/issues/detail?id=2607} This consideration is moot if the cache is turned off. NB -- The validity of the above notes depends on the implementation details of Mul and flatten which may change at any time. Therefore, you should only consider them when your code is highly performance sensitive. Removal of 1 from the sequence is already handled by AssocOp.__new__. """ rv = None if len(seq) == 2: a, b = seq if b.is_Rational: a, b = b, a assert not a is S.One if a and a.is_Rational: r, b = b.as_coeff_Mul() a *= r if b.is_Mul: bargs, nc = b.args_cnc() rv = bargs, nc, None if a is not S.One: bargs.insert(0, a) elif b.is_Add and b.is_commutative: if a is S.One: rv = [b], [], None else: r, b = b.as_coeff_Add() bargs = [_keep_coeff(a, bi) for bi in Add.make_args(b)] _addsort(bargs) ar = a*r if ar: bargs.insert(0, ar) bargs = [Add._from_args(bargs)] rv = bargs, [], None if rv: return rv # apply associativity, separate commutative part of seq c_part = [] # out: commutative factors nc_part = [] # out: non-commutative factors nc_seq = [] coeff = S.One # standalone term # e.g. 3 * ... c_powers = [] # (base,exp) n # e.g. (x,n) for x num_exp = [] # (num-base, exp) y # e.g. (3, y) for ... * 3 * ... neg1e = S.Zero # exponent on -1 extracted from Number-based Pow and I pnum_rat = {} # (num-base, Rat-exp) 1/2 # e.g. (3, 1/2) for ... * 3 * ... order_symbols = None # --- PART 1 --- # # "collect powers and coeff": # # o coeff # o c_powers # o num_exp # o neg1e # o pnum_rat # # NOTE: this is optimized for all-objects-are-commutative case for o in seq: # O(x) if o.is_Order: o, order_symbols = o.as_expr_variables(order_symbols) # Mul([...]) if o.is_Mul: if o.is_commutative: seq.extend(o.args) # XXX zerocopy? else: # NCMul can have commutative parts as well for q in o.args: if q.is_commutative: seq.append(q) else: nc_seq.append(q) # append non-commutative marker, so we don't forget to # process scheduled non-commutative objects seq.append(NC_Marker) continue # 3 elif o.is_Number: if o is S.NaN or coeff is S.ComplexInfinity and o is S.Zero: # we know for sure the result will be nan return [S.NaN], [], None elif coeff.is_Number: # it could be zoo coeff *= o if coeff is S.NaN: # we know for sure the result will be nan return [S.NaN], [], None continue elif o is S.ComplexInfinity: if not coeff: # 0 * zoo = NaN return [S.NaN], [], None if coeff is S.ComplexInfinity: # zoo * zoo = zoo return [S.ComplexInfinity], [], None coeff = S.ComplexInfinity continue elif o is S.ImaginaryUnit: neg1e += S.Half continue elif o.is_commutative: # e # o = b b, e = o.as_base_exp() # y # 3 if o.is_Pow: if b.is_Number: # get all the factors with numeric base so they can be # combined below, but don't combine negatives unless # the exponent is an integer if e.is_Rational: if e.is_Integer: coeff *= Pow(b, e) # it is an unevaluated power continue elif e.is_negative: # also a sign of an unevaluated power seq.append(Pow(b, e)) continue elif b.is_negative: neg1e += e b = -b if b is not S.One: pnum_rat.setdefault(b, []).append(e) continue elif b.is_positive or e.is_integer: num_exp.append((b, e)) continue elif b is S.ImaginaryUnit and e.is_Rational: # it is unevaluated neg1e += e/2 continue c_powers.append((b, e)) # NON-COMMUTATIVE # TODO: Make non-commutative exponents not combine automatically else: if o is not NC_Marker: nc_seq.append(o) # process nc_seq (if any) while nc_seq: o = nc_seq.pop(0) if not nc_part: nc_part.append(o) continue # b c b+c # try to combine last terms: a * a -> a o1 = nc_part.pop() b1, e1 = o1.as_base_exp() b2, e2 = o.as_base_exp() new_exp = e1 + e2 # Only allow powers to combine if the new exponent is # not an Add. This allow things like a**2*b**3 == a**5 # if a.is_commutative == False, but prohibits # a**x*a**y and x**a*x**b from combining (x,y commute). if b1 == b2 and (not new_exp.is_Add): o12 = b1 ** new_exp # now o12 could be a commutative object if o12.is_commutative: seq.append(o12) continue else: nc_seq.insert(0, o12) else: nc_part.append(o1) nc_part.append(o) # We do want a combined exponent if it would not be an Add, such as # y 2y 3y # x * x -> x # We determine if two exponents have the same term by using # as_coeff_Mul. # # Unfortunately, this isn't smart enough to consider combining into # exponents that might already be adds, so things like: # z - y y # x * x will be left alone. This is because checking every possible # combination can slow things down. # gather exponents of common bases... def _gather(c_powers): new_c_powers = [] common_b = {} # b:e for b, e in c_powers: co = e.as_coeff_Mul() common_b.setdefault(b, {}).setdefault(co[1], []).append(co[0]) for b, d in common_b.items(): for di, li in d.items(): d[di] = Add(*li) for b, e in common_b.items(): for t, c in e.items(): new_c_powers.append((b, c*t)) return new_c_powers # in c_powers c_powers = _gather(c_powers) # and in num_exp num_exp = _gather(num_exp) # --- PART 2 --- # # o process collected powers (x**0 -> 1; x**1 -> x; otherwise Pow) # o combine collected powers (2**x * 3**x -> 6**x) # with numeric base # ................................ # now we have: # - coeff: # - c_powers: (b, e) # - num_exp: (2, e) # - pnum_rat: {(1/3, [1/3, 2/3, 1/4])} # 0 1 # x -> 1 x -> x for b, e in c_powers: if e is S.One: if b.is_Number: coeff *= b else: c_part.append(b) elif e is not S.Zero: c_part.append(Pow(b, e)) # x x x # 2 * 3 -> 6 inv_exp_dict = {} # exp:Mul(num-bases) x x # e.g. x:6 for ... * 2 * 3 * ... for b, e in num_exp: inv_exp_dict.setdefault(e, []).append(b) for e, b in inv_exp_dict.items(): inv_exp_dict[e] = Mul(*b) c_part.extend([Pow(b, e) for e, b in inv_exp_dict.iteritems() if e]) # b, e -> e' = sum(e), b # {(1/5, [1/3]), (1/2, [1/12, 1/4]} -> {(1/3, [1/5, 1/2])} comb_e = {} for b, e in pnum_rat.iteritems(): comb_e.setdefault(Add(*e), []).append(b) del pnum_rat # process them, reducing exponents to values less than 1 # and updating coeff if necessary else adding them to # num_rat for further processing num_rat = [] for e, b in comb_e.iteritems(): b = Mul(*b) if e.q == 1: coeff *= Pow(b, e) continue if e.p > e.q: e_i, ep = divmod(e.p, e.q) coeff *= Pow(b, e_i) e = Rational(ep, e.q) num_rat.append((b, e)) del comb_e # extract gcd of bases in num_rat # 2**(1/3)*6**(1/4) -> 2**(1/3+1/4)*3**(1/4) pnew = defaultdict(list) i = 0 # steps through num_rat which may grow while i < len(num_rat): bi, ei = num_rat[i] grow = [] for j in range(i + 1, len(num_rat)): bj, ej = num_rat[j] g = bi.gcd(bj) if g is not S.One: # 4**r1*6**r2 -> 2**(r1+r2) * 2**r1 * 3**r2 # this might have a gcd with something else e = ei + ej if e.q == 1: coeff *= Pow(g, e) else: if e.p > e.q: e_i, ep = divmod(e.p, e.q) # change e in place coeff *= Pow(g, e_i) e = Rational(ep, e.q) grow.append((g, e)) # update the jth item num_rat[j] = (bj/g, ej) # update bi that we are checking with bi = bi/g if bi is S.One: break if bi is not S.One: obj = Pow(bi, ei) if obj.is_Number: coeff *= obj else: # changes like sqrt(12) -> 2*sqrt(3) for obj in Mul.make_args(obj): if obj.is_Number: coeff *= obj else: assert obj.is_Pow bi, ei = obj.args pnew[ei].append(bi) num_rat.extend(grow) i += 1 # combine bases of the new powers for e, b in pnew.iteritems(): pnew[e] = Mul(*b) # handle -1 and I if neg1e: # treat I as (-1)**(1/2) and compute -1's total exponent p, q = neg1e.as_numer_denom() # if the integer part is odd, extract -1 n, p = divmod(p, q) if n % 2: coeff = -coeff # if it's a multiple of 1/2 extract I if q == 2: c_part.append(S.ImaginaryUnit) elif p: # see if there is any positive base this power of # -1 can join neg1e = Rational(p, q) for e, b in pnew.iteritems(): if e == neg1e and b.is_positive: pnew[e] = -b break else: # keep it separate; we've already evaluated it as # much as possible so evaluate=False c_part.append(Pow(S.NegativeOne, neg1e, evaluate=False)) # add all the pnew powers c_part.extend([Pow(b, e) for e, b in pnew.iteritems()]) # oo, -oo if (coeff is S.Infinity) or (coeff is S.NegativeInfinity): def _handle_for_oo(c_part, coeff_sign): new_c_part = [] for t in c_part: if t.is_positive: continue if t.is_negative: coeff_sign *= -1 continue new_c_part.append(t) return new_c_part, coeff_sign c_part, coeff_sign = _handle_for_oo(c_part, 1) nc_part, coeff_sign = _handle_for_oo(nc_part, coeff_sign) coeff *= coeff_sign # zoo if coeff is S.ComplexInfinity: # zoo might be # unbounded_real + bounded_im # bounded_real + unbounded_im # unbounded_real + unbounded_im # and non-zero real or imaginary will not change that status. c_part = [c for c in c_part if not (c.is_nonzero and c.is_real is not None)] nc_part = [c for c in nc_part if not (c.is_nonzero and c.is_real is not None)] # 0 elif coeff is S.Zero: # we know for sure the result will be 0 return [coeff], [], order_symbols # order commutative part canonically _mulsort(c_part) # current code expects coeff to be always in slot-0 if coeff is not S.One: c_part.insert(0, coeff) # we are done if len(c_part) == 2 and c_part[0].is_Number and c_part[1].is_Add: # 2*(1+a) -> 2 + 2 * a coeff = c_part[0] c_part = [Add(*[coeff*f for f in c_part[1].args])] return c_part, nc_part, order_symbols def _eval_power(b, e): # don't break up NC terms: (A*B)**3 != A**3*B**3, it is A*B*A*B*A*B cargs, nc = b.args_cnc(split_1=False) if e.is_Integer: return Mul(*[Pow(b, e, evaluate=False) for b in cargs]) * \ Pow(Mul._from_args(nc), e, evaluate=False) p = Pow(b, e, evaluate=False) if e.is_Rational or e.is_Float: return p._eval_expand_power_base() return p @classmethod def class_key(cls): return 3, 0, cls.__name__ def _eval_evalf(self, prec): c, m = self.as_coeff_Mul() if c is S.NegativeOne: if m.is_Mul: rv = -AssocOp._eval_evalf(m, prec) else: mnew = m._eval_evalf(prec) if mnew is not None: m = mnew rv = -m else: rv = AssocOp._eval_evalf(self, prec) if rv.is_number: return rv.expand() return rv @cacheit def as_two_terms(self): """Return head and tail of self. This is the most efficient way to get the head and tail of an expression. - if you want only the head, use self.args[0]; - if you want to process the arguments of the tail then use self.as_coef_mul() which gives the head and a tuple containing the arguments of the tail when treated as a Mul. - if you want the coefficient when self is treated as an Add then use self.as_coeff_add()[0] >>> from sympy.abc import x, y >>> (3*x*y).as_two_terms() (3, x*y) """ args = self.args if len(args) == 1: return S.One, self elif len(args) == 2: return args else: return args[0], self._new_rawargs(*args[1:]) @cacheit def as_coeff_mul(self, *deps): if deps: l1 = [] l2 = [] for f in self.args: if f.has(*deps): l2.append(f) else: l1.append(f) return self._new_rawargs(*l1), tuple(l2) args = self.args if args[0].is_Rational: return args[0], args[1:] elif args[0] is S.NegativeInfinity: return S.NegativeOne, (-args[0],) + args[1:] return S.One, args def as_coeff_Mul(self, rational=False): """Efficiently extract the coefficient of a product. """ coeff, args = self.args[0], self.args[1:] if coeff.is_Number and not (rational and not coeff.is_Rational): if len(args) == 1: return coeff, args[0] else: return coeff, self._new_rawargs(*args) else: return S.One, self def as_real_imag(self, deep=True, **hints): other = [] coeff = S(1) for a in self.args: if a.is_real: coeff *= a elif a.is_commutative: # search for complex conjugate pairs: for i, x in enumerate(other): if x == a.conjugate(): coeff *= C.Abs(x)**2 del other[i] break else: other.append(a) else: other.append(a) m = Mul(*other) if hints.get('ignore') == m: return None else: return (coeff*C.re(m), coeff*C.im(m)) @staticmethod def _expandsums(sums): """ Helper function for _eval_expand_mul. sums must be a list of instances of Basic. """ L = len(sums) if L == 1: return sums[0].args terms = [] left = Mul._expandsums(sums[:L//2]) right = Mul._expandsums(sums[L//2:]) terms = [Mul(a, b) for a in left for b in right] added = Add(*terms) return Add.make_args(added) # it may have collapsed down to one term def _eval_expand_mul(self, **hints): from sympy import fraction, expand_mul, expand_multinomial # Handle things like 1/(x*(x + 1)), which are automatically converted # to 1/x*1/(x + 1) expr = self n, d = fraction(expr) if d.is_Mul: n, d = [i._eval_expand_mul(**hints) if i.is_Mul else i for i in (n, d)] expr = n/d if not expr.is_Mul: return expr plain, sums, rewrite = [], [], False for factor in expr.args: if factor.is_Add: sums.append(factor) rewrite = True else: if factor.is_commutative: plain.append(factor) else: sums.append(Basic(factor)) # Wrapper if not rewrite: return expr else: plain = Mul(*plain) if sums: terms = Mul._expandsums(sums) args = [] for term in terms: t = Mul(plain, term) if t.is_Mul and any(a.is_Add for a in t.args): t = t._eval_expand_mul() args.append(t) return Add(*args) else: return plain def _eval_derivative(self, s): terms = list(self.args) factors = [] for i in xrange(len(terms)): t = terms[i].diff(s) if t is S.Zero: continue factors.append(Mul(*(terms[:i] + [t] + terms[i + 1:]))) return Add(*factors) def _matches_simple(self, expr, repl_dict): # handle (w*3).matches('x*5') -> {w: x*5/3} coeff, terms = self.as_coeff_Mul() terms = Mul.make_args(terms) if len(terms) == 1: newexpr = self.__class__._combine_inverse(expr, coeff) return terms[0].matches(newexpr, repl_dict) return def matches(self, expr, repl_dict={}, old=False): expr = sympify(expr) if self.is_commutative and expr.is_commutative: return AssocOp._matches_commutative(self, expr, repl_dict, old) elif self.is_commutative is not expr.is_commutative: return None c1, nc1 = self.args_cnc() c2, nc2 = expr.args_cnc() repl_dict = repl_dict.copy() if c1: if not c2: c2 = [1] a = Mul(*c1) if isinstance(a, AssocOp): repl_dict = a._matches_commutative(Mul(*c2), repl_dict, old) else: repl_dict = a.matches(Mul(*c2), repl_dict) if repl_dict: a = Mul(*nc1) if isinstance(a, Mul): repl_dict = a._matches(Mul(*nc2), repl_dict) else: repl_dict = a.matches(Mul(*nc2), repl_dict) return repl_dict or None def _matches(self, expr, repl_dict={}): # weed out negative one prefixes sign = 1 a, b = self.as_two_terms() if a is S.NegativeOne: if b.is_Mul: sign = -sign else: # the remainder, b, is not a Mul anymore return b.matches(-expr, repl_dict) expr = sympify(expr) if expr.is_Mul and expr.args[0] is S.NegativeOne: expr = -expr sign = -sign if not expr.is_Mul: # expr can only match if it matches b and a matches +/- 1 if len(self.args) == 2: # quickly test for equality if b == expr: return a.matches(Rational(sign), repl_dict) # do more expensive match dd = b.matches(expr, repl_dict) if dd is None: return None dd = a.matches(Rational(sign), dd) return dd return None d = repl_dict.copy() # weed out identical terms pp = list(self.args) ee = list(expr.args) for p in self.args: if p in expr.args: ee.remove(p) pp.remove(p) # only one symbol left in pattern -> match the remaining expression if len(pp) == 1 and isinstance(pp[0], C.Wild): if len(ee) == 1: d[pp[0]] = sign * ee[0] else: d[pp[0]] = sign * expr.func(*ee) return d if len(ee) != len(pp): return None for p, e in zip(pp, ee): d = p.xreplace(d).matches(e, d) if d is None: return None return d @staticmethod def _combine_inverse(lhs, rhs): """ Returns lhs/rhs, but treats arguments like symbols, so things like oo/oo return 1, instead of a nan. """ if lhs == rhs: return S.One def check(l, r): if l.is_Float and r.is_comparable: # if both objects are added to 0 they will share the same "normalization" # and are more likely to compare the same. Since Add(foo, 0) will not allow # the 0 to pass, we use __add__ directly. return l.__add__(0) == r.evalf().__add__(0) return False if check(lhs, rhs) or check(rhs, lhs): return S.One if lhs.is_Mul and rhs.is_Mul: a = list(lhs.args) b = [1] for x in rhs.args: if x in a: a.remove(x) elif -x in a: a.remove(-x) b.append(-1) else: b.append(x) return Mul(*a)/Mul(*b) return lhs/rhs def as_powers_dict(self): d = defaultdict(int) for term in self.args: b, e = term.as_base_exp() d[b] += e return d def as_numer_denom(self): # don't use _from_args to rebuild the numerators and denominators # as the order is not guaranteed to be the same once they have # been separated from each other numers, denoms = zip(*[f.as_numer_denom() for f in self.args]) return Mul(*numers), Mul(*denoms) def as_base_exp(self): e1 = None bases = [] nc = 0 for m in self.args: b, e = m.as_base_exp() if not b.is_commutative: nc += 1 if e1 is None: e1 = e elif e != e1 or nc > 1: return self, S.One bases.append(b) return Mul(*bases), e1 def _eval_is_polynomial(self, syms): return all(term._eval_is_polynomial(syms) for term in self.args) def _eval_is_rational_function(self, syms): return all(term._eval_is_rational_function(syms) for term in self.args) _eval_is_bounded = lambda self: self._eval_template_is_attr('is_bounded') _eval_is_commutative = lambda self: self._eval_template_is_attr( 'is_commutative') _eval_is_rational = lambda self: self._eval_template_is_attr('is_rational', when_multiple=None) def _eval_is_integer(self): is_rational = self.is_rational if is_rational: n, d = self.as_numer_denom() if d is S.One: return True elif d is S(2): return n.is_even elif is_rational is False: return False def _eval_is_polar(self): has_polar = any(arg.is_polar for arg in self.args) return has_polar and \ all(arg.is_polar or arg.is_positive for arg in self.args) # I*I -> R, I*I*I -> -I def _eval_is_real(self): im_count = 0 is_neither = False for t in self.args: if t.is_imaginary: im_count += 1 continue t_real = t.is_real if t_real: continue elif t_real is False: if is_neither: return None else: is_neither = True else: return None if is_neither: return False return (im_count % 2 == 0) def _eval_is_imaginary(self): im_count = 0 is_neither = False for t in self.args: if t.is_imaginary: im_count += 1 continue t_real = t.is_real if t_real: continue elif t_real is False: if is_neither: return None else: is_neither = True else: return None if is_neither: return False return (im_count % 2 == 1) def _eval_is_hermitian(self): nc_count = 0 im_count = 0 is_neither = False for t in self.args: if not t.is_commutative: nc_count += 1 if nc_count > 1: return None if t.is_antihermitian: im_count += 1 continue t_real = t.is_hermitian if t_real: continue elif t_real is False: if is_neither: return None else: is_neither = True else: return None if is_neither: return False return (im_count % 2 == 0) def _eval_is_antihermitian(self): nc_count = 0 im_count = 0 is_neither = False for t in self.args: if not t.is_commutative: nc_count += 1 if nc_count > 1: return None if t.is_antihermitian: im_count += 1 continue t_real = t.is_hermitian if t_real: continue elif t_real is False: if is_neither: return None else: is_neither = True else: return None if is_neither: return False return (im_count % 2 == 1) def _eval_is_irrational(self): for t in self.args: a = t.is_irrational if a: others = list(self.args) others.remove(t) if all(x.is_rational is True for x in others): return True return None if a is None: return return False def _eval_is_zero(self): zero = None for a in self.args: if a.is_zero: zero = True continue bound = a.is_bounded if not bound: return bound if zero: return True def _eval_is_positive(self): """Return True if self is positive, False if not, and None if it cannot be determined. This algorithm is non-recursive and works by keeping track of the sign which changes when a negative or nonpositive is encountered. Whether a nonpositive or nonnegative is seen is also tracked since the presence of these makes it impossible to return True, but possible to return False if the end result is nonpositive. e.g. pos * neg * nonpositive -> pos or zero -> None is returned pos * neg * nonnegative -> neg or zero -> False is returned """ sign = 1 saw_NON = False for t in self.args: if t.is_positive: continue elif t.is_negative: sign = -sign elif t.is_zero: return False elif t.is_nonpositive: sign = -sign saw_NON = True elif t.is_nonnegative: saw_NON = True else: return if sign == 1 and saw_NON is False: return True if sign < 0: return False def _eval_is_negative(self): """Return True if self is negative, False if not, and None if it cannot be determined. This algorithm is non-recursive and works by keeping track of the sign which changes when a negative or nonpositive is encountered. Whether a nonpositive or nonnegative is seen is also tracked since the presence of these makes it impossible to return True, but possible to return False if the end result is nonnegative. e.g. pos * neg * nonpositive -> pos or zero -> False is returned pos * neg * nonnegative -> neg or zero -> None is returned """ sign = 1 saw_NON = False for t in self.args: if t.is_positive: continue elif t.is_negative: sign = -sign elif t.is_zero: return False elif t.is_nonpositive: sign = -sign saw_NON = True elif t.is_nonnegative: saw_NON = True else: return if sign == -1 and saw_NON is False: return True if sign > 0: return False def _eval_is_odd(self): is_integer = self.is_integer if is_integer: r = True for t in self.args: if not t.is_integer: return None elif t.is_even: r = False elif t.is_integer: if r is False: pass elif t.is_odd is None: r = None return r # !integer -> !odd elif is_integer is False: return False def _eval_is_even(self): is_integer = self.is_integer if is_integer: return fuzzy_not(self._eval_is_odd()) elif is_integer is False: return False def _eval_subs(self, old, new): from sympy import sign, multiplicity from sympy.simplify.simplify import powdenest, fraction if not old.is_Mul: return None if old.args[0] == -1: return self._subs(-old, -new) def base_exp(a): # if I and -1 are in a Mul, they get both end up with # a -1 base (see issue 3322); all we want here are the # true Pow or exp separated into base and exponent if a.is_Pow or a.func is C.exp: return a.as_base_exp() return a, S.One def breakup(eq): """break up powers of eq when treated as a Mul: b**(Rational*e) -> b**e, Rational commutatives come back as a dictionary {b**e: Rational} noncommutatives come back as a list [(b**e, Rational)] """ (c, nc) = (defaultdict(int), list()) for a in Mul.make_args(eq): a = powdenest(a) (b, e) = base_exp(a) if e is not S.One: (co, _) = e.as_coeff_mul() b = Pow(b, e/co) e = co if a.is_commutative: c[b] += e else: nc.append([b, e]) return (c, nc) def rejoin(b, co): """ Put rational back with exponent; in general this is not ok, but since we took it from the exponent for analysis, it's ok to put it back. """ (b, e) = base_exp(b) return Pow(b, e*co) def ndiv(a, b): """if b divides a in an extractive way (like 1/4 divides 1/2 but not vice versa, and 2/5 does not divide 1/3) then return the integer number of times it divides, else return 0. """ if not b.q % a.q or not a.q % b.q: return int(a/b) return 0 # give Muls in the denominator a chance to be changed (see issue 2552) # rv will be the default return value rv = None n, d = fraction(self) if d is not S.One: self2 = n._subs(old, new)/d._subs(old, new) if not self2.is_Mul: return self2._subs(old, new) if self2 != self: self = rv = self2 # Now continue with regular substitution. # handle the leading coefficient and use it to decide if anything # should even be started; we always know where to find the Rational # so it's a quick test co_self = self.args[0] co_old = old.args[0] co_xmul = None if co_old.is_Rational and co_self.is_Rational: # if coeffs are the same there will be no updating to do # below after breakup() step; so skip (and keep co_xmul=None) if co_old != co_self: co_xmul = co_self.extract_multiplicatively(co_old) elif co_old.is_Rational: return rv # break self and old into factors (c, nc) = breakup(self) (old_c, old_nc) = breakup(old) # update the coefficients if we had an extraction # e.g. if co_self were 2*(3/35*x)**2 and co_old = 3/5 # then co_self in c is replaced by (3/5)**2 and co_residual # is 2*(1/7)**2 if co_xmul and co_xmul.is_Rational: n_old, d_old = co_old.as_numer_denom() n_self, d_self = co_self.as_numer_denom() def _multiplicity(p, n): p = abs(p) if p is S.One: return S.Infinity return multiplicity(p, abs(n)) mult = S(min(_multiplicity(n_old, n_self), _multiplicity(d_old, d_self))) c.pop(co_self) c[co_old] = mult co_residual = co_self/co_old**mult else: co_residual = 1 # do quick tests to see if we can't succeed ok = True if len(old_nc) > len(nc): # more non-commutative terms ok = False elif len(old_c) > len(c): # more commutative terms ok = False elif set(i[0] for i in old_nc).difference(set(i[0] for i in nc)): # unmatched non-commutative bases ok = False elif set(old_c).difference(set(c)): # unmatched commutative terms ok = False elif any(sign(c[b]) != sign(old_c[b]) for b in old_c): # differences in sign ok = False if not ok: return rv if not old_c: cdid = None else: rat = [] for (b, old_e) in old_c.items(): c_e = c[b] rat.append(ndiv(c_e, old_e)) if not rat[-1]: return rv cdid = min(rat) if not old_nc: ncdid = None for i in range(len(nc)): nc[i] = rejoin(*nc[i]) else: ncdid = 0 # number of nc replacements we did take = len(old_nc) # how much to look at each time limit = cdid or S.Infinity # max number that we can take failed = [] # failed terms will need subs if other terms pass i = 0 while limit and i + take <= len(nc): hit = False # the bases must be equivalent in succession, and # the powers must be extractively compatible on the # first and last factor but equal inbetween. rat = [] for j in range(take): if nc[i + j][0] != old_nc[j][0]: break elif j == 0: rat.append(ndiv(nc[i + j][1], old_nc[j][1])) elif j == take - 1: rat.append(ndiv(nc[i + j][1], old_nc[j][1])) elif nc[i + j][1] != old_nc[j][1]: break else: rat.append(1) j += 1 else: ndo = min(rat) if ndo: if take == 1: if cdid: ndo = min(cdid, ndo) nc[i] = Pow(new, ndo)*rejoin(nc[i][0], nc[i][1] - ndo*old_nc[0][1]) else: ndo = 1 # the left residual l = rejoin(nc[i][0], nc[i][1] - ndo* old_nc[0][1]) # eliminate all middle terms mid = new # the right residual (which may be the same as the middle if take == 2) ir = i + take - 1 r = (nc[ir][0], nc[ir][1] - ndo* old_nc[-1][1]) if r[1]: if i + take < len(nc): nc[i:i + take] = [l*mid, r] else: r = rejoin(*r) nc[i:i + take] = [l*mid*r] else: # there was nothing left on the right nc[i:i + take] = [l*mid] limit -= ndo ncdid += ndo hit = True if not hit: # do the subs on this failing factor failed.append(i) i += 1 else: if not ncdid: return rv # although we didn't fail, certain nc terms may have # failed so we rebuild them after attempting a partial # subs on them failed.extend(range(i, len(nc))) for i in failed: nc[i] = rejoin(*nc[i]).subs(old, new) # rebuild the expression if cdid is None: do = ncdid elif ncdid is None: do = cdid else: do = min(ncdid, cdid) margs = [] for b in c: if b in old_c: # calculate the new exponent e = c[b] - old_c[b]*do margs.append(rejoin(b, e)) else: margs.append(rejoin(b.subs(old, new), c[b])) if cdid and not ncdid: # in case we are replacing commutative with non-commutative, # we want the new term to come at the front just like the # rest of this routine margs = [Pow(new, cdid)] + margs return co_residual*Mul(*margs)*Mul(*nc) def _eval_nseries(self, x, n, logx): from sympy import powsimp terms = [t.nseries(x, n=n, logx=logx) for t in self.args] return powsimp(Mul(*terms).expand(), combine='exp', deep=True) def _eval_as_leading_term(self, x): return Mul(*[t.as_leading_term(x) for t in self.args]) def _eval_conjugate(self): return Mul(*[t.conjugate() for t in self.args]) def _eval_transpose(self): return Mul(*[t.transpose() for t in self.args[::-1]]) def _eval_adjoint(self): return Mul(*[t.adjoint() for t in self.args[::-1]]) def _sage_(self): s = 1 for x in self.args: s *= x._sage_() return s def as_content_primitive(self, radical=False): """Return the tuple (R, self/R) where R is the positive Rational extracted from self. Examples ======== >>> from sympy import sqrt >>> (-3*sqrt(2)*(2 - 2*sqrt(2))).as_content_primitive() (6, -sqrt(2)*(-sqrt(2) + 1)) See docstring of Expr.as_content_primitive for more examples. """ coef = S.One args = [] for i, a in enumerate(self.args): c, p = a.as_content_primitive(radical=radical) coef *= c if p is not S.One: args.append(p) # don't use self._from_args here to reconstruct args # since there may be identical args now that should be combined # e.g. (2+2*x)*(3+3*x) should be (6, (1 + x)**2) not (6, (1+x)*(1+x)) return coef, Mul(*args) def as_ordered_factors(self, order=None): """Transform an expression into an ordered list of factors. Examples ======== >>> from sympy import sin, cos >>> from sympy.abc import x, y >>> (2*x*y*sin(x)*cos(x)).as_ordered_factors() [2, x, y, sin(x), cos(x)] """ cpart, ncpart = self.args_cnc() cpart.sort(key=lambda expr: expr.sort_key(order=order)) return cpart + ncpart @property def _sorted_args(self): return self.as_ordered_factors() def prod(a, start=1): """Return product of elements of a. Start with int 1 so if only ints are included then an int result is returned. Examples ======== >>> from sympy import prod, S >>> prod(range(3)) 0 >>> type(_) is int True >>> prod([S(2), 3]) 6 >>> _.is_Integer True You can start the product at something other than 1: >>> prod([1, 2], 3) 6 """ return reduce(operator.mul, a, start) def _keep_coeff(coeff, factors, clear=True, sign=False): """Return ``coeff*factors`` unevaluated if necessary. If ``clear`` is False, do not keep the coefficient as a factor if it can be distributed on a single factor such that one or more terms will still have integer coefficients. If ``sign`` is True, allow a coefficient of -1 to remain factored out. Examples ======== >>> from sympy.core.mul import _keep_coeff >>> from sympy.abc import x, y >>> from sympy import S >>> _keep_coeff(S.Half, x + 2) (x + 2)/2 >>> _keep_coeff(S.Half, x + 2, clear=False) x/2 + 1 >>> _keep_coeff(S.Half, (x + 2)*y, clear=False) y*(x + 2)/2 >>> _keep_coeff(S(-1), x + y) -x - y >>> _keep_coeff(S(-1), x + y, sign=True) -(x + y) """ if not coeff.is_Number: if factors.is_Number: factors, coeff = coeff, factors else: return coeff*factors if coeff is S.One: return factors elif coeff is S.NegativeOne and not sign: return -factors elif factors.is_Add: if not clear and coeff.is_Rational and coeff.q != 1: q = S(coeff.q) for i in factors.args: c, t = i.as_coeff_Mul() r = c/q if r == int(r): return coeff*factors return Mul._from_args((coeff, factors)) elif factors.is_Mul: margs = list(factors.args) if margs[0].is_Number: margs[0] *= coeff if margs[0] == 1: margs.pop(0) else: margs.insert(0, coeff) return Mul._from_args(margs) else: return coeff*factors from numbers import Rational from power import Pow from add import Add, _addsort
32.962705
99
0.469576
aece8ed4851cf834f72d71cc94df55873fe590f3
4,362
py
Python
watersheds/ws_anisotropic_distance_transform.py
constantinpape/watersheds
9fde72b2df5aa0e3531969361b3a6c37be77ba8a
[ "BSD-3-Clause" ]
null
null
null
watersheds/ws_anisotropic_distance_transform.py
constantinpape/watersheds
9fde72b2df5aa0e3531969361b3a6c37be77ba8a
[ "BSD-3-Clause" ]
null
null
null
watersheds/ws_anisotropic_distance_transform.py
constantinpape/watersheds
9fde72b2df5aa0e3531969361b3a6c37be77ba8a
[ "BSD-3-Clause" ]
null
null
null
import vigra import numpy as np from wsdt import group_seeds_by_distance, iterative_inplace_watershed def signed_anisotropic_dt( pmap, threshold, anisotropy, preserve_membrane_pmaps ): binary_membranes = (pmap >= threshold).astype('uint32') distance_to_membrane = vigra.filters.distanceTransform( binary_membranes, pixel_pitch = [anisotropy, 1., 1.]) if preserve_membrane_pmaps: # Instead of computing a negative distance transform within the thresholded membrane areas, # Use the original probabilities (but inverted) membrane_mask = binary_membranes.astype(np.bool) distance_to_membrane[membrane_mask] = -pmap[membrane_mask] else: # Save RAM with a sneaky trick: # Use distanceTransform in-place, despite the fact that the input and output don't have the same types! # (We can just cast labeled as a float32, since uint32 and float32 are the same size.) distance_to_nonmembrane = binary_membranes.view('float32') vigra.filters.distanceTransform( binary_membranes, background=False, out=distance_to_nonmembrane, pixel_pitch = [anisotropy, 1., 1.]) # Combine the inner/outer distance transforms distance_to_nonmembrane[distance_to_nonmembrane>0] -= 1 distance_to_membrane[:] -= distance_to_nonmembrane return distance_to_membrane def anisotropic_seeds( distance_to_membrane, anisotropy, sigma_seeds, group_seeds ): seeds = np.zeros_like(distance_to_membrane, dtype = 'uint32') seed_map = vigra.filters.gaussianSmoothing(distance_to_membrane, (1. / anisotropy, 1., 1.) ) for z in xrange(distance_to_membrane.shape[0]): seeds_z = vigra.analysis.localMaxima(seed_map[z], allowPlateaus=True, allowAtBorder=True, marker=np.nan) if group_seeds: seeds_z = group_seeds_by_distance( seeds_z, distance_to_membrane[z]) else: seeds_z = vigra.analysis.labelMultiArrayWithBackground(seeds_z) seeds[z] = seeds_z return seeds def ws_anisotropic_distance_transform( pmap, threshold, anisotropy, sigma_seeds, sigma_weights = 0., min_segment_size = 0, preserve_membrane_pmaps = True, grow_on_pmap = True, group_seeds = False ): """ Watershed on anisotropic distance transform on 3d probabiity map. @params: pmap: probability map, 3d numpy.ndarray of type float32. threshold: threshold for pixels that are considered in distance transform. anisotropy: anisotropy factor along the z axis. sigma_seeds: smoothing factor for distance transform used for finding seeds. sigma_weights: smoothing factor for heiht map used for the watershed (default 0.). min_segment_size: size filter for resulting segments (default 0 -> no size filtering). preserve_membrane: preserve membrane seeds (default: False). grow_on_pmap: grow on the probability map instead of distance transform (default: True). group_seeds: use heuristics to group adjacent seeds (default: False). @returns: fragments: numpy.ndarray of type uint32 n_labels: number of labels """ # make sure we are in 3d and that first axis is z assert pmap.ndim == 3 shape = pmap.shape assert shape[0] < shape[1] and shape[0] < shape[2] distance_to_membrane = signed_anisotropic_dt(pmap, threshold, anisotropy, preserve_membrane_pmaps) seeds = anisotropic_seeds(distance_to_membrane, anisotropy, sigma_seeds, group_seeds) if grow_on_pmap: hmap = pmap else: hmap = distance_to_membrane # Invert the DT: Watershed code requires seeds to be at minimums, not maximums hmap[:] *= -1 if sigma_weights != 0.: hmap = vigra.filters.gaussianSmoothing(hmap, ( 1. / sigma_weights ) ) offset = 0 for z in xrange(shape[0]): max_z = iterative_inplace_watershed(hmap[z], seeds[z], min_segment_size, None) seeds[z] -= 1 seeds[z] += offset # TODO make sure that this does not cause a label overlap by one between adjacent slices offset += max_z return seeds, offset
36.049587
113
0.672627
fd2a67a4ec743ae51df4379da0bbae628be51ef7
860
py
Python
util.py
hchang18/non-parametric-methods
4e1eb168d0b0604dd0e84e0033916fa22cda05c6
[ "MIT" ]
1
2021-07-07T22:49:43.000Z
2021-07-07T22:49:43.000Z
util.py
hchang18/non-parametric-methods
4e1eb168d0b0604dd0e84e0033916fa22cda05c6
[ "MIT" ]
12
2021-06-06T06:41:25.000Z
2021-07-06T23:59:05.000Z
util.py
hchang18/nonparametric-methods
4e1eb168d0b0604dd0e84e0033916fa22cda05c6
[ "MIT" ]
null
null
null
# util.py import matplotlib.pyplot as plt import matplotlib.patches as mpatches import numpy as np def read_data(filename): file = open(filename) file_content = file.readlines() # clean up to make it into list file_content = [row.rstrip('\n').lstrip(' ').replace(' ', ' ').split(' ') for row in file_content] # change into array (float) raw_data = np.array(file_content) data = raw_data[1:].astype(np.float) y = data[:, 0] x = data[:, 1] return data, x, y def plot_2darray(X, Y): fig = plt.figure() ax = fig.add_subplot(1, 1, 1) ax.set_title('Scatter Plot of X and Y') ax.scatter(X, Y) ax.grid(True) leg = mpatches.Patch(color=None, label='original data plots') ax.legend(handles=[leg]) plt.xlabel('X') plt.ylabel('Y') plt.tight_layout() plt.show()
24.571429
78
0.612791
6ede55b4a8fefe9b97e10dfece9b5feeb76102a3
6,803
py
Python
param_stamp.py
i-supermario/Cifar100_CL
6c22151ea2c4c3014a569112fdf8a549331b27c4
[ "MIT" ]
164
2020-08-13T08:24:59.000Z
2022-03-29T07:09:10.000Z
param_stamp.py
i-supermario/Cifar100_CL
6c22151ea2c4c3014a569112fdf8a549331b27c4
[ "MIT" ]
11
2020-09-21T11:28:13.000Z
2021-07-17T11:36:13.000Z
param_stamp.py
i-supermario/Cifar100_CL
6c22151ea2c4c3014a569112fdf8a549331b27c4
[ "MIT" ]
51
2020-08-17T05:40:27.000Z
2022-03-29T07:09:28.000Z
from data.load import get_multitask_experiment from utils import checkattr def get_param_stamp_from_args(args): '''To get param-stamp a bit quicker.''' from define_models import define_autoencoder, define_classifier # -get configurations of experiment config = get_multitask_experiment( name=args.experiment, scenario=args.scenario, tasks=args.tasks, data_dir=args.d_dir, only_config=True, normalize=args.normalize if hasattr(args, "normalize") else False, verbose=False, ) # -get model architectures model = define_autoencoder(args=args, config=config, device='cpu') if checkattr( args,'feedback' ) else define_classifier(args=args, config=config, device='cpu') if checkattr(args, 'feedback'): model.lamda_pl = 1. if not hasattr(args, 'pl') else args.pl train_gen = (hasattr(args, 'replay') and args.replay=="generative" and not checkattr(args, 'feedback')) if train_gen: generator = define_autoencoder(args=args, config=config, device='cpu', generator=True, convE=model.convE if hasattr(args, "hidden") and args.hidden else None) # -extract and return param-stamp model_name = model.name replay_model_name = generator.name if train_gen else None param_stamp = get_param_stamp(args, model_name, replay=(hasattr(args, "replay") and not args.replay=="none"), replay_model_name=replay_model_name, verbose=False) return param_stamp def get_param_stamp(args, model_name, verbose=True, replay=False, replay_model_name=None): '''Based on the input-arguments, produce a "parameter-stamp".''' # -for task multi_n_stamp = "{n}-{set}{of}".format( n=args.tasks, set=args.scenario, of="OL" if checkattr(args, 'only_last') else "" ) if hasattr(args, "tasks") else "" task_stamp = "{exp}{norm}{aug}{multi_n}".format( exp=args.experiment, norm="-N" if hasattr(args, 'normalize') and args.normalize else "", aug="+" if hasattr(args, "augment") and args.augment else "", multi_n=multi_n_stamp ) if verbose: print(" --> task: "+task_stamp) # -for model model_stamp = model_name if verbose: print(" --> model: "+model_stamp) # -for hyper-parameters pre_conv = "" if (checkattr(args, "pre_convE") or checkattr(args, "pre_convD")) and (hasattr(args, 'depth') and args.depth>0): ltag = "" if not hasattr(args, "convE_ltag") or args.convE_ltag=="none" else "-{}".format(args.convE_ltag) pre_conv = "-pCvE{}".format(ltag) if args.pre_convE else "-pCvD" pre_conv = "-pConv{}".format(ltag) if args.pre_convE and checkattr(args, "pre_convD") else pre_conv freeze_conv = "" if (checkattr(args, "freeze_convD") or checkattr(args, "freeze_convE")) and hasattr(args, 'depth') and args.depth>0: freeze_conv = "-fCvE" if checkattr(args, "freeze_convE") else "-fCvD" freeze_conv = "-fConv" if checkattr(args, "freeze_convE") and checkattr(args, "freeze_convD") else freeze_conv hyper_stamp = "{i_e}{num}-lr{lr}{lrg}-b{bsz}{pretr}{freeze}{reinit}".format( i_e="e" if args.iters is None else "i", num=args.epochs if args.iters is None else args.iters, lr=args.lr, lrg=("" if args.lr==args.lr_gen else "-lrG{}".format(args.lr_gen)) if ( hasattr(args, "lr_gen") and hasattr(args, "replay") and args.replay=="generative" and (not checkattr(args, "feedback")) ) else "", bsz=args.batch, pretr=pre_conv, freeze=freeze_conv, reinit="-R" if checkattr(args, 'reinit') else "" ) if verbose: print(" --> hyper-params: " + hyper_stamp) # -for EWC / SI if (checkattr(args, 'ewc') and args.ewc_lambda>0) or (checkattr(args, 'si') and args.si_c>0): ewc_stamp = "EWC{l}-{fi}{o}".format( l=args.ewc_lambda, fi="{}".format("N" if args.fisher_n is None else args.fisher_n), o="-O{}".format(args.gamma) if checkattr(args, 'online') else "", ) if (checkattr(args, 'ewc') and args.ewc_lambda>0) else "" si_stamp = "SI{c}-{eps}".format(c=args.si_c, eps=args.epsilon) if (checkattr(args,'si') and args.si_c>0) else "" both = "--" if (checkattr(args,'ewc') and args.ewc_lambda>0) and (checkattr(args,'si') and args.si_c>0) else "" if verbose and checkattr(args, 'ewc') and args.ewc_lambda>0: print(" --> EWC: " + ewc_stamp) if verbose and checkattr(args, 'si') and args.si_c>0: print(" --> SI: " + si_stamp) ewc_stamp = "--{}{}{}".format(ewc_stamp, both, si_stamp) if ( (checkattr(args, 'ewc') and args.ewc_lambda>0) or (checkattr(args, 'si') and args.si_c>0) ) else "" # -for XdG xdg_stamp = "" if (checkattr(args, "xdg") and args.xdg_prop > 0): xdg_stamp = "--XdG{}".format(args.xdg_prop) if verbose: print(" --> XdG: " + "gating = {}".format(args.xdg_prop)) # -for replay if replay: replay_stamp = "{H}{rep}{bat}{distil}{model}{gi}".format( H="" if not args.replay=="generative" else ( "H" if (checkattr(args, "hidden") and hasattr(args, 'depth') and args.depth>0) else "" ), rep="gen" if args.replay=="generative" else args.replay, bat="" if ( (not hasattr(args, 'batch_replay')) or (args.batch_replay is None) or args.batch_replay==args.batch ) else "-br{}".format(args.batch_replay), distil="-Di{}".format(args.temp) if args.distill else "", model="" if (replay_model_name is None) else "-{}".format(replay_model_name), gi="-gi{}".format(args.g_iters) if ( hasattr(args, "g_iters") and (replay_model_name is not None) and (not args.iters==args.g_iters) ) else "", ) if verbose: print(" --> replay: " + replay_stamp) replay_stamp = "--{}".format(replay_stamp) if replay else "" # -for choices regarding reconstruction loss if checkattr(args, "feedback"): recon_stamp = "--{}{}".format( "H_" if checkattr(args, "hidden") and hasattr(args, 'depth') and args.depth>0 else "", args.recon_loss ) elif hasattr(args, "replay") and args.replay=="generative": recon_stamp = "--{}".format(args.recon_loss) else: recon_stamp = "" # --> combine param_stamp = "{}--{}--{}{}{}{}{}{}".format( task_stamp, model_stamp, hyper_stamp, ewc_stamp, xdg_stamp, replay_stamp, recon_stamp, "-s{}".format(args.seed) if not args.seed==0 else "", ) ## Print param-stamp on screen and return if verbose: print(param_stamp) return param_stamp
49.656934
120
0.6137
a0ea958af62a88ceff2a8aa47526e06685de4a3a
11,562
py
Python
synapse/appservice/api.py
mlakkadshaw/synapse
74a2365bd5066955567cc551e72632d6cece94b9
[ "Apache-2.0" ]
null
null
null
synapse/appservice/api.py
mlakkadshaw/synapse
74a2365bd5066955567cc551e72632d6cece94b9
[ "Apache-2.0" ]
2
2022-03-01T08:22:45.000Z
2022-03-11T08:13:55.000Z
synapse/appservice/api.py
mlakkadshaw/synapse
74a2365bd5066955567cc551e72632d6cece94b9
[ "Apache-2.0" ]
null
null
null
# Copyright 2015, 2016 OpenMarket Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import urllib.parse from typing import TYPE_CHECKING, Dict, Iterable, List, Optional, Tuple from prometheus_client import Counter from synapse.api.constants import EventTypes, Membership, ThirdPartyEntityKind from synapse.api.errors import CodeMessageException from synapse.appservice import ( ApplicationService, TransactionOneTimeKeyCounts, TransactionUnusedFallbackKeys, ) from synapse.events import EventBase from synapse.events.utils import serialize_event from synapse.http.client import SimpleHttpClient from synapse.types import JsonDict, ThirdPartyInstanceID from synapse.util.caches.response_cache import ResponseCache if TYPE_CHECKING: from synapse.server import HomeServer logger = logging.getLogger(__name__) sent_transactions_counter = Counter( "synapse_appservice_api_sent_transactions", "Number of /transactions/ requests sent", ["service"], ) failed_transactions_counter = Counter( "synapse_appservice_api_failed_transactions", "Number of /transactions/ requests that failed to send", ["service"], ) sent_events_counter = Counter( "synapse_appservice_api_sent_events", "Number of events sent to the AS", ["service"] ) HOUR_IN_MS = 60 * 60 * 1000 APP_SERVICE_PREFIX = "/_matrix/app/unstable" def _is_valid_3pe_metadata(info: JsonDict) -> bool: if "instances" not in info: return False if not isinstance(info["instances"], list): return False return True def _is_valid_3pe_result(r: JsonDict, field: str) -> bool: if not isinstance(r, dict): return False for k in (field, "protocol"): if k not in r: return False if not isinstance(r[k], str): return False if "fields" not in r: return False fields = r["fields"] if not isinstance(fields, dict): return False return True class ApplicationServiceApi(SimpleHttpClient): """This class manages HS -> AS communications, including querying and pushing. """ def __init__(self, hs: "HomeServer"): super().__init__(hs) self.clock = hs.get_clock() self.protocol_meta_cache: ResponseCache[Tuple[str, str]] = ResponseCache( hs.get_clock(), "as_protocol_meta", timeout_ms=HOUR_IN_MS ) async def query_user(self, service: "ApplicationService", user_id: str) -> bool: if service.url is None: return False # This is required by the configuration. assert service.hs_token is not None uri = service.url + ("/users/%s" % urllib.parse.quote(user_id)) try: response = await self.get_json(uri, {"access_token": service.hs_token}) if response is not None: # just an empty json object return True except CodeMessageException as e: if e.code == 404: return False logger.warning("query_user to %s received %s", uri, e.code) except Exception as ex: logger.warning("query_user to %s threw exception %s", uri, ex) return False async def query_alias(self, service: "ApplicationService", alias: str) -> bool: if service.url is None: return False # This is required by the configuration. assert service.hs_token is not None uri = service.url + ("/rooms/%s" % urllib.parse.quote(alias)) try: response = await self.get_json(uri, {"access_token": service.hs_token}) if response is not None: # just an empty json object return True except CodeMessageException as e: logger.warning("query_alias to %s received %s", uri, e.code) if e.code == 404: return False except Exception as ex: logger.warning("query_alias to %s threw exception %s", uri, ex) return False async def query_3pe( self, service: "ApplicationService", kind: str, protocol: str, fields: Dict[bytes, List[bytes]], ) -> List[JsonDict]: if kind == ThirdPartyEntityKind.USER: required_field = "userid" elif kind == ThirdPartyEntityKind.LOCATION: required_field = "alias" else: raise ValueError("Unrecognised 'kind' argument %r to query_3pe()", kind) if service.url is None: return [] uri = "%s%s/thirdparty/%s/%s" % ( service.url, APP_SERVICE_PREFIX, kind, urllib.parse.quote(protocol), ) try: response = await self.get_json(uri, fields) if not isinstance(response, list): logger.warning( "query_3pe to %s returned an invalid response %r", uri, response ) return [] ret = [] for r in response: if _is_valid_3pe_result(r, field=required_field): ret.append(r) else: logger.warning( "query_3pe to %s returned an invalid result %r", uri, r ) return ret except Exception as ex: logger.warning("query_3pe to %s threw exception %s", uri, ex) return [] async def get_3pe_protocol( self, service: "ApplicationService", protocol: str ) -> Optional[JsonDict]: if service.url is None: return {} async def _get() -> Optional[JsonDict]: uri = "%s%s/thirdparty/protocol/%s" % ( service.url, APP_SERVICE_PREFIX, urllib.parse.quote(protocol), ) try: info = await self.get_json(uri) if not _is_valid_3pe_metadata(info): logger.warning( "query_3pe_protocol to %s did not return a valid result", uri ) return None for instance in info.get("instances", []): network_id = instance.get("network_id", None) if network_id is not None: instance["instance_id"] = ThirdPartyInstanceID( service.id, network_id ).to_string() return info except Exception as ex: logger.warning("query_3pe_protocol to %s threw exception %s", uri, ex) return None key = (service.id, protocol) return await self.protocol_meta_cache.wrap(key, _get) async def push_bulk( self, service: "ApplicationService", events: List[EventBase], ephemeral: List[JsonDict], to_device_messages: List[JsonDict], one_time_key_counts: TransactionOneTimeKeyCounts, unused_fallback_keys: TransactionUnusedFallbackKeys, txn_id: Optional[int] = None, ) -> bool: """ Push data to an application service. Args: service: The application service to send to. events: The persistent events to send. ephemeral: The ephemeral events to send. to_device_messages: The to-device messages to send. txn_id: An unique ID to assign to this transaction. Application services should deduplicate transactions received with identitical IDs. Returns: True if the task succeeded, False if it failed. """ if service.url is None: return True # This is required by the configuration. assert service.hs_token is not None serialized_events = self._serialize(service, events) if txn_id is None: logger.warning( "push_bulk: Missing txn ID sending events to %s", service.url ) txn_id = 0 uri = service.url + ("/transactions/%s" % urllib.parse.quote(str(txn_id))) # Never send ephemeral events to appservices that do not support it body: JsonDict = {"events": serialized_events} if service.supports_ephemeral: body.update( { # TODO: Update to stable prefixes once MSC2409 completes FCP merge. "de.sorunome.msc2409.ephemeral": ephemeral, "de.sorunome.msc2409.to_device": to_device_messages, } ) if service.msc3202_transaction_extensions: if one_time_key_counts: body[ "org.matrix.msc3202.device_one_time_key_counts" ] = one_time_key_counts if unused_fallback_keys: body[ "org.matrix.msc3202.device_unused_fallback_keys" ] = unused_fallback_keys try: await self.put_json( uri=uri, json_body=body, args={"access_token": service.hs_token}, ) if logger.isEnabledFor(logging.DEBUG): logger.debug( "push_bulk to %s succeeded! events=%s", uri, [event.get("event_id") for event in events], ) sent_transactions_counter.labels(service.id).inc() sent_events_counter.labels(service.id).inc(len(serialized_events)) return True except CodeMessageException as e: logger.warning( "push_bulk to %s received code=%s msg=%s", uri, e.code, e.msg, exc_info=logger.isEnabledFor(logging.DEBUG), ) except Exception as ex: logger.warning( "push_bulk to %s threw exception(%s) %s args=%s", uri, type(ex).__name__, ex, ex.args, exc_info=logger.isEnabledFor(logging.DEBUG), ) failed_transactions_counter.labels(service.id).inc() return False def _serialize( self, service: "ApplicationService", events: Iterable[EventBase] ) -> List[JsonDict]: time_now = self.clock.time_msec() return [ serialize_event( e, time_now, as_client_event=True, # If this is an invite or a knock membership event, and we're interested # in this user, then include any stripped state alongside the event. include_stripped_room_state=( e.type == EventTypes.Member and ( e.membership == Membership.INVITE or e.membership == Membership.KNOCK ) and service.is_interested_in_user(e.state_key) ), ) for e in events ]
34.207101
91
0.57983
f7df5d9b0da8331a950bc49f23485c845f42b370
1,559
py
Python
keylime/migrations/versions/f35cdd35eb83_move_v_tpm_policy_to_jsonpickletype.py
kkaarreell/keylime
e12658bb6dc945b694e298b8ac337a204ab86ed2
[ "Apache-2.0" ]
18
2016-10-19T13:57:32.000Z
2019-01-12T21:35:43.000Z
keylime/migrations/versions/f35cdd35eb83_move_v_tpm_policy_to_jsonpickletype.py
kkaarreell/keylime
e12658bb6dc945b694e298b8ac337a204ab86ed2
[ "Apache-2.0" ]
72
2019-01-24T10:12:59.000Z
2019-04-17T11:07:16.000Z
keylime/migrations/versions/f35cdd35eb83_move_v_tpm_policy_to_jsonpickletype.py
kkaarreell/keylime
e12658bb6dc945b694e298b8ac337a204ab86ed2
[ "Apache-2.0" ]
10
2017-03-27T20:58:08.000Z
2018-07-30T12:59:27.000Z
"""Move (v)tpm_policy to JSONPickleType Revision ID: f35cdd35eb83 Revises: 7d5db1a6ffb0 Create Date: 2021-08-02 15:26:34.427156 """ import sqlalchemy as sa from alembic import op import keylime # revision identifiers, used by Alembic. revision = "f35cdd35eb83" down_revision = "7d5db1a6ffb0" branch_labels = None depends_on = None def upgrade(engine_name): globals()[f"upgrade_{engine_name}"]() def downgrade(engine_name): globals()[f"downgrade_{engine_name}"]() def upgrade_registrar(): pass def downgrade_registrar(): pass def upgrade_cloud_verifier(): with op.batch_alter_table("verifiermain") as batch_op: batch_op.alter_column( "tpm_policy", existing_type=sa.String(1000), type_=keylime.db.verifier_db.JSONPickleType(), existing_nullable=True, ) batch_op.alter_column( "vtpm_policy", existing_type=sa.String(1000), type_=keylime.db.verifier_db.JSONPickleType(), existing_nullable=True, ) def downgrade_cloud_verifier(): with op.batch_alter_table("verifiermain") as batch_op: batch_op.alter_column( "tpm_policy", type_=sa.String(1000), existing_type=keylime.db.verifier_db.JSONPickleType(), existing_nullable=True, ) batch_op.alter_column( "vtpm_policy", type_=sa.String(1000), existing_type=keylime.db.verifier_db.JSONPickleType(), existing_nullable=True, )
23.621212
66
0.6517
203ea37759d1a16ce67bbbfd8bf746634463f5f9
723
py
Python
root/scripts/set_share_list.py
DragonCrafted87/docker-alpine-nfs-server
bbe7da1779fea99e15091474d875304b419ebbc7
[ "MIT" ]
null
null
null
root/scripts/set_share_list.py
DragonCrafted87/docker-alpine-nfs-server
bbe7da1779fea99e15091474d875304b419ebbc7
[ "MIT" ]
null
null
null
root/scripts/set_share_list.py
DragonCrafted87/docker-alpine-nfs-server
bbe7da1779fea99e15091474d875304b419ebbc7
[ "MIT" ]
null
null
null
#!/usr/bin/python3 from pathlib import Path from os import listdir # Local Imports from python_logger import create_logger #pylint: disable=import-error def main(): logger = create_logger(Path(__file__).stem) logger.info(f'{listdir("/nfs_share/")}') base_directory = Path('/nfs_share') nfs_permisions = '*(rw,sync,no_subtree_check,no_auth_nlm,insecure,no_root_squash,crossmnt)' exports_file_path = Path('/etc/exports') with exports_file_path.open('a') as exports_file: for nfs_share_dir in base_directory.glob('*'): if nfs_share_dir.is_dir(): logger.info(f'{str(nfs_share_dir)}') exports_file.write(f'{str(nfs_share_dir)} {nfs_permisions}\n') if __name__ == "__main__": main()
28.92
93
0.724758
c90f3c18d4ea5c85b9611e03496dad8ee36a2ea9
2,247
py
Python
bcs-ui/backend/templatesets/legacy_apps/instance/migrations/0002_instanceconfig.py
laodiu/bk-bcs
2a956a42101ff6487ff521fb3ef429805bfa7e26
[ "Apache-2.0" ]
599
2019-06-25T03:20:46.000Z
2022-03-31T12:14:33.000Z
bcs-ui/backend/templatesets/legacy_apps/instance/migrations/0002_instanceconfig.py
laodiu/bk-bcs
2a956a42101ff6487ff521fb3ef429805bfa7e26
[ "Apache-2.0" ]
537
2019-06-27T06:03:44.000Z
2022-03-31T12:10:01.000Z
bcs-ui/backend/templatesets/legacy_apps/instance/migrations/0002_instanceconfig.py
laodiu/bk-bcs
2a956a42101ff6487ff521fb3ef429805bfa7e26
[ "Apache-2.0" ]
214
2019-06-25T03:26:05.000Z
2022-03-31T07:52:03.000Z
# -*- coding: utf-8 -*- """ Tencent is pleased to support the open source community by making 蓝鲸智云PaaS平台社区版 (BlueKing PaaS Community Edition) available. Copyright (C) 2017-2021 THL A29 Limited, a Tencent company. All rights reserved. Licensed under the MIT License (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://opensource.org/licenses/MIT Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ # Generated by Django 1.11.5 on 2017-11-01 07:10 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('instance', '0001_initial'), ] operations = [ migrations.CreateModel( name='InstanceConfig', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('creator', models.CharField(max_length=32, verbose_name='创建者')), ('updator', models.CharField(max_length=32, verbose_name='创建者')), ('created', models.DateTimeField(auto_now_add=True)), ('updated', models.DateTimeField(auto_now=True)), ('is_deleted', models.BooleanField(default=False)), ('deleted_time', models.DateTimeField(blank=True, null=True)), ('instance_id', models.IntegerField(verbose_name='关联的 VersionInstance ID')), ('namespace', models.CharField(max_length=32, verbose_name='命名空间')), ('category', models.CharField(choices=[('application', 'Application'), ('deplpyment', 'Deplpyment'), ('service', 'service'), ('configmap', 'configmap'), ('secret', 'secret')], max_length=10, verbose_name='资源类型')), ('config', models.TextField(help_text='json格式数据', verbose_name='配置文件')), ], options={ 'abstract': False, }, ), ]
46.8125
229
0.656431
6cb86a13deef32111663812ad4fb00eb3b14e702
60
py
Python
uproot_tree_utils/__init__.py
masonproffitt/uproot_tree_utils
c51203dcd55d39c247e74d08be5d1ed38e338e68
[ "MIT" ]
6
2020-07-16T23:02:02.000Z
2021-08-31T06:28:18.000Z
uproot_tree_utils/__init__.py
masonproffitt/uproot_tree_utils
c51203dcd55d39c247e74d08be5d1ed38e338e68
[ "MIT" ]
32
2020-07-11T10:01:43.000Z
2020-10-06T18:48:34.000Z
uproot_tree_utils/__init__.py
masonproffitt/uproot_tree_utils
c51203dcd55d39c247e74d08be5d1ed38e338e68
[ "MIT" ]
null
null
null
from .clone import clone_tree from .write import write_tree
20
29
0.833333
fa5076b532b067e8c7d9014401bb4b16c8f2f018
2,589
py
Python
app/app/api/endpoints/download.py
keegan337/ineth-music-share-api
414c395271c68e64aa88f4ed87efc6d92b89b5d2
[ "MIT" ]
1
2021-01-11T09:31:35.000Z
2021-01-11T09:31:35.000Z
app/app/api/endpoints/download.py
keegan337/inethi-music-share
414c395271c68e64aa88f4ed87efc6d92b89b5d2
[ "MIT" ]
null
null
null
app/app/api/endpoints/download.py
keegan337/inethi-music-share
414c395271c68e64aa88f4ed87efc6d92b89b5d2
[ "MIT" ]
null
null
null
#!/usr/bin/python3 from flask import request, json from ...core import downloads from ...models import database as db_model from ...main import app from ...core import database as db_methods from flask_cors import CORS, cross_origin from ...models import user as user_model from ...models import store as store_model cors = CORS(app) @cross_origin("http://localhost") @app.route("/api/update-downloads/", methods=["POST"]) def update_downloads(): """ Update the download counter for the current time :return: a normal post request status code and message explaining the status code """ username = request.json.get('username') song_name = request.json.get('songname') user = user_model.User(username) db = db_model.MusicDbModel() local_store_model = store_model.WooModel("LOCAL") global_store_model = store_model.WooModel("GLOBAL") download_methods = downloads.DownloadsAPI() result = download_methods.update_downloads(username, song_name, db, global_store_model, local_store_model) if result == -1: response = app.response_class( response=json.dumps("could not write to db"), status=400, mimetype="application/json" ) return response elif not isinstance(result, str) and result >= 0: response = app.response_class( response=json.dumps(result), status=200, mimetype="application/json" ) return response else: response = app.response_class( response=json.dumps("It has been less than 30 minutes since the last update"), status=200, mimetype="application/json" ) return response @cross_origin("http://localhost") @app.route("/api/initiate-download/", methods=["POST"]) def initiate_download_counter(): song_name = request.json.get('songname') username = request.json.get('username') local_id = request.json.get('localID') aws_id = request.json.get('awsID') db = db_model.MusicDbModel() db_methods_object = db_methods.MusicShareDbAPI() response_from_db = db_methods_object.initiate_download(db, song_name, username, local_id, aws_id) if response_from_db: response = app.response_class( response=json.dumps("data written to db"), status=200, mimetype="application/json" ) else: response = app.response_class( response=json.dumps("could not write to the db"), status=400, mimetype="application/json" ) return response
34.986486
110
0.665508
3f8bc9e8980fa62c48a8048e1a3cb76c4c75d7e7
2,060
py
Python
src/agstoolbox/core/cmdline.py
ericoporto/agstoolbox
2a689e3c653a0c48211c55c59e03ced3c6a07d43
[ "MIT" ]
2
2022-02-06T16:00:00.000Z
2022-03-11T18:58:36.000Z
src/agstoolbox/core/cmdline.py
ericoporto/agstoolbox
2a689e3c653a0c48211c55c59e03ced3c6a07d43
[ "MIT" ]
17
2022-01-24T11:21:21.000Z
2022-03-20T18:04:41.000Z
src/agstoolbox/core/cmdline.py
ericoporto/agstoolbox
2a689e3c653a0c48211c55c59e03ced3c6a07d43
[ "MIT" ]
null
null
null
from __future__ import annotations # for python 3.8 from sys import exit import argparse from agstoolbox import __title__, __version__, __copyright__, __license__ from agstoolbox.core.ags.get_game_projects import list_game_projects_in_dir def at_cmd_list(args): projects = list_game_projects_in_dir(args.Path) for p in projects: print(p.name + ', ' + p.ags_editor_version.as_str + ', ' + p.path) pass def at_cmd_install(args): print('Install: Not implemented yet!') print(args) pass def at_cmd_run(args): print('Run: Not implemented yet!') print(args) pass def cmdline(show_help_when_empty: bool): parser = argparse.ArgumentParser( prog=__title__, description=__title__ + ' is an application to help manage AGS Editor versions.', epilog=__copyright__ + ", " + __license__ + ".") parser.add_argument( '-v', '--version', action='store_true', default=False, help='get software version.') subparsers = parser.add_subparsers(help='command') # create the parser for the "command_a" command parser_list = subparsers.add_parser('list', help='command_a help') parser_list.set_defaults(func=at_cmd_list) parser_list.add_argument('Path', metavar='path', type=str, help='the path to list') parser_install = subparsers.add_parser('install', help='install thing help') parser_install.set_defaults(func=at_cmd_install) parser_run = subparsers.add_parser('run', help='install thing help') parser_run.set_defaults(func=at_cmd_run) parser_list.add_argument('-p', '--proj', action='store_true', default=False, help='list AGS Projects') parser_list.add_argument('-e', '--editors', action='store_true', default=False, help='list AGS Editors') args = parser.parse_args() if 'func' in args.__dict__: args.func(args) if args.version: print(__title__ + " v " + __version__) exit() if any(vars(args).values()): exit() if show_help_when_empty: parser.print_usage() return []
31.212121
108
0.691748
57330ca1f97beaee98a6ec5f3dd12812dd129623
224
py
Python
tests/test_commands.py
stactools-packages/gnatsgo
8e57e29bd4a5687866f6be0320e5e4a2fa89187b
[ "Apache-2.0" ]
null
null
null
tests/test_commands.py
stactools-packages/gnatsgo
8e57e29bd4a5687866f6be0320e5e4a2fa89187b
[ "Apache-2.0" ]
2
2022-02-24T16:28:52.000Z
2022-02-24T16:29:03.000Z
tests/test_commands.py
stactools-packages/gnatsgo
8e57e29bd4a5687866f6be0320e5e4a2fa89187b
[ "Apache-2.0" ]
null
null
null
from stactools.testing import CliTestCase from stactools.gnatsgo.commands import create_gnatsgo_command class CommandsTest(CliTestCase): def create_subcommand_functions(self): return [create_gnatsgo_command]
22.4
61
0.816964
9cdb62940ccfd8bc11a1aaa75da09e0ebb528eae
2,836
py
Python
tests/python/pants_test/integration/remote_cache_integration_test.py
rcuza/pants
0429258b181986eed856ae45af93b776727774a0
[ "Apache-2.0" ]
null
null
null
tests/python/pants_test/integration/remote_cache_integration_test.py
rcuza/pants
0429258b181986eed856ae45af93b776727774a0
[ "Apache-2.0" ]
null
null
null
tests/python/pants_test/integration/remote_cache_integration_test.py
rcuza/pants
0429258b181986eed856ae45af93b776727774a0
[ "Apache-2.0" ]
null
null
null
# Copyright 2021 Pants project contributors (see CONTRIBUTORS.md). # Licensed under the Apache License, Version 2.0 (see LICENSE). from pants.engine.internals.native_engine_pyo3 import PyExecutor, PyStubCAS from pants.option.global_options import RemoteCacheWarningsBehavior from pants.option.scope import GLOBAL_SCOPE_CONFIG_SECTION from pants.testutil.pants_integration_test import run_pants def test_warns_on_remote_cache_errors(): executor = PyExecutor(core_threads=2, max_threads=4) cas = PyStubCAS.builder().always_errors().build(executor) def run(behavior: RemoteCacheWarningsBehavior) -> str: pants_run = run_pants( [ "--backend-packages=['pants.backend.python']", "--no-dynamic-ui", "package", "testprojects/src/python/hello/main:main", ], use_pantsd=False, config={ GLOBAL_SCOPE_CONFIG_SECTION: { "remote_cache_read": True, "remote_cache_write": True, "remote_cache_warnings": behavior.value, # NB: Our options code expects `grpc://`, which it will then convert back to # `http://` before sending over FFI. "remote_store_address": cas.address.replace("http://", "grpc://"), } }, ) pants_run.assert_success() return pants_run.stderr def read_err(i: int) -> str: return f"Failed to read from remote cache ({i} occurrences so far): Unimplemented" def write_err(i: int) -> str: return ( f'Failed to write to remote cache ({i} occurrences so far): Internal: "StubCAS is ' f'configured to always fail"' ) first_read_err = read_err(1) first_write_err = write_err(1) third_read_err = read_err(3) third_write_err = write_err(3) fourth_read_err = read_err(4) fourth_write_err = write_err(4) ignore_result = run(RemoteCacheWarningsBehavior.ignore) for err in [ first_read_err, first_write_err, third_read_err, third_write_err, fourth_read_err, fourth_write_err, ]: assert err not in ignore_result first_only_result = run(RemoteCacheWarningsBehavior.first_only) for err in [first_read_err, first_write_err]: assert err in first_only_result for err in [third_read_err, third_write_err, fourth_read_err, fourth_write_err]: assert err not in first_only_result backoff_result = run(RemoteCacheWarningsBehavior.backoff) for err in [first_read_err, first_write_err, fourth_read_err, fourth_write_err]: assert err in backoff_result for err in [third_read_err, third_write_err]: assert err not in backoff_result
37.813333
96
0.649506
ec15bd8814f8f28000018e0aaa9144a07d0bc5e8
97,731
py
Python
hacker_python.py
SinaDashti/Hacker_Rank
4aefd711379c9a5c6c7141bcdef1426e1bd86b33
[ "MIT" ]
null
null
null
hacker_python.py
SinaDashti/Hacker_Rank
4aefd711379c9a5c6c7141bcdef1426e1bd86b33
[ "MIT" ]
null
null
null
hacker_python.py
SinaDashti/Hacker_Rank
4aefd711379c9a5c6c7141bcdef1426e1bd86b33
[ "MIT" ]
null
null
null
################################################################################ #Q ################################################################################ # Read an integer N. # Without using any string methods, try to print the following: # 123...N # Note that "..." represents the values in between. # Input Format # The first line contains an integer N. # Output Format # Output the answer as explained in the task. # Sample Input # 3 # Sample Output # 123 ################################################################################ #A ################################################################################ # if __name__ == '__main__': # n = int(input()) # i = 1 # while i<=n: # print(i,end='') # i+=1 ################################################################################ # print(*range(1, int(input())+1), sep='') ################################################################################ #Q ################################################################################ # Let's learn about list comprehensions! You are given three integers X, Y and Z # representing the dimensions of a cuboid along with an integer N. # You have to print a list of all possible coordinates given by (i, j, k) on a 3D # grid where the sum of i + j+ k is not equal to N. Here, 0<=i<=X;0<=j<=Y;0<=k<=Z # # Input Format # Four integers X,Y,Z and N each on four separate lines, respectively. # Constraints # Print the list in lexicographic increasing order. # Sample Input # 1 # 1 # 1 # 2 # Sample Output # [[0, 0, 0], [0, 0, 1], [0, 1, 0], [1, 0, 0], [1, 1, 1]] # Explanation 0 # Concept # You have already used lists in previous hacks. List comprehensions are an elegant way to build a list without having to use different for loops to append values one by one. This example might help. # Example: You are given two integers x and y . You need to find out the ordered pairs ( i , j ) , such that ( i + j ) is not equal to n and print them in lexicographic order.( 0 <= i <= x ) and ( 0 <= j <= y) This is the code if we dont use list comprehensions in Python. # python x = int ( raw_input()) y = int ( raw_input()) n = int ( raw_input()) ar = [] p = 0 for i in range ( x + 1 ) : for j in range( y + 1): if i+j != n: ar.append([]) ar[p] = [ i , j ] p+=1 print ar # Other smaller codes may also exist, but using list comprehensions is always a good option. Code using list comprehensions: # python x = int ( raw_input()) y = int ( raw_input()) n = int ( raw_input()) print [ [ i, j] for i in range( x + 1) for j in range( y + 1) if ( ( i + j ) != n )] # Sample Input # 2 # 2 # 2 # 2 # Sample Output # [[0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 2], [0, 2, 1], [0, 2, 2], [1, 0, 0], # [1, 0, 2], [1, 1, 1], [1, 1, 2], [1, 2, 0], [1, 2, 1], [1, 2, 2], [2, 0, 1], # [2, 0, 2], [2, 1, 0], [2, 1, 1], [2, 1, 2], [2, 2, 0], [2, 2, 1], [2, 2, 2]] ################################################################################ #A ################################################################################ # if __name__ == '__main__': # x = int(input()) # y = int(input()) # z = int(input()) # n = int(input()) # print ( # [ [ i, j, k] for i in range( x + 1) # for j in range( y + 1) # for k in range( z + 1) # if ( ( i + j + k) != n )] # ) # other way of getting input # x,y,z,n = [input() for i in range(4)] # x, y, z, n = (int(input()) for _ in range(4)) ################################################################################ #Q ################################################################################ # Given the participants' score sheet for your University Sports Day, you are # required to find the runner-up score. You are given n scores. Store them in a # list and find the score of the runner-up. # Input Format # The first line contains n. The second line contains an array A[] of n integers # each separated by a space. # Constraints: # 2<=n<=10 # -100<=A[]<=-100 # Output Format # Print the runner-up score. # Sample Input # 5 # 2 3 6 6 5 # Sample Output # 5 # Explanation # Given list is [2,3,6,6,5] . The maximum score is 6, , second maximum is 5. # Hence, we print 5 as the runner-up score. ################################################################################ #A ################################################################################ # if __name__ == '__main__': # n = int(input()) # arr = map(int, input().split()) # arr = list(set(arr)) # arr.pop(arr.index(max(arr))) # print(max(arr)) ################################################################################ # i = int(input()) # lis = list(map(int,raw_input().strip().split()))[:i] # z = max(lis) # while max(lis) == z: # lis.remove(max(lis)) # # print max(lis) ################################################################################ #Q ################################################################################ # nested-list-English ################################################################################ #A ################################################################################ # if __name__ == '__main__': # li = [] # out = [] # for _ in range(int(input())): # name = input() # score = float(input()) # li.append([name, score]) # # li.sort(key=lambda li:li[1]) # first_min = li[0][1] # new = li[1:] # for student, mark in new: # if mark == first_min: # continue # elif mark > first_min: # idx = new.index([student,mark]) # out.append(student) # if idx < len(new) - 1: # if new[idx][1] < new[idx + 1][1]: # break # out.sort() # for item in out: # print(item) # print('\n'.join(a for a in sorted(out))) ################################################################################ # out.sort() # # sorted(out) # ['a','b','c'] ################################################################################ # n = int(input()) # marksheet = [[input(), float(input())] for _ in range(n)] # second_highest = sorted(list(set([marks for name, marks in marksheet])))[1] # print('\n'.join([a for a,b in sorted(marksheet) if b == second_highest])) ################################################################################ ################################################################################ #Q ################################################################################ # finding-the-percentage-English ################################################################################ #A ################################################################################ # if __name__ == '__main__': # n = int(input()) # student_marks = {} # for _ in range(n): # name, *line = input().split() # scores = list(map(float, line)) # student_marks[name] = scores # query_name = input() # # print('%.2f' %(sum(student_marks[query_name])/3)) ################################################################################ # query_scores = student_marks[query_name] # print('{0:.2}'.format(sum(student_marks[query_name])/(len(query_scores)))) ################################################################################ #Q ################################################################################ # python-lists-English ################################################################################ #A ################################################################################ # if __name__ == '__main__': # N = int(input()) # li = [] # for _ in range(N): # name, *elm = input().split() # if name != "print" : # name += "("+ ",".join(elm) +")" # eval("li."+name) # else: # print(li) # # if __name__ == '__main__': # N = int(input()) # li = [] # for _ in range(N): # name, *elm = input().split() # if name != "print" : # eval('li.{0}{1}'.format(name,tuple(map(int,elm)))) # else: # print(li) ################################################################################ #Q ################################################################################ # python-tuples-English ################################################################################ #A ################################################################################ # if __name__ == '__main__': # n = int(input()) # integer_list = tuple(map(int, input().split())) # print(hash(integer_list)) ################################################################################ #Q ################################################################################ # decorators-2-name-directory-English ################################################################################ #A ################################################################################ # def person_lister(f): # def inner(people): # # complete the function # return map(f, sorted(people, key=lambda x: int(x[2]))) # return inner # # @person_lister # def name_format(person): # return ("Mr. " if person[3] == "M" else "Ms. ") + person[0] + " " + person[1] # # if __name__ == '__main__': # people = [input().split() for i in range(int(input()))] # print(*name_format(people), sep='\n') ################################################################################ # decorators example # def my_decorator(func): # def wrapper(): # print("before function") # func() # print("after function") # return wrapper # # def hi_arash(): # print("hi Arash!") # # the decoration happend here, passing an existing function and reassigning it # to itself. decorator wrap a function and allow other functional code around it. # hi_arash = my_decorator(hi_arash) # # >>> hi_arash # <function __main__.my_decorator.<locals>.wrapper()> # # >>> hi_arash() # before function # hi Arash! # after function ################################################################################ #Q ################################################################################ # itertools-permutations-English ################################################################################ #A ################################################################################ # from itertools import permutations # p = input().split() # print('\n'.join(map(lambda i: ''.join(i),permutations(sorted(p[0]),int(p[1]))))) # print(*[''.join(i) for i in permutations(sorted(p[0]),int(p[1]))],sep='\n') ################################################################################ #Q ################################################################################ # itertools-combinations-English ################################################################################ #A ################################################################################ # from itertools import combinations # p = input().split() # print(*[''.join(item) for lis in [combinations(sorted(p[0]),i) # for i in range(1,int(p[1])+1)] # for item in lis],sep='\n') # more readable # l = [combinations(sorted(p[0]),i) for i in range(1,int(p[1])+1)] # print(*[''.join(item) for lis in l for item in lis],sep='\n') ################################################################################ #Q ################################################################################ # itertools-combinations-with-replacement-English ################################################################################ #A ################################################################################ # from itertools import combinations_with_replacement # p = input().split() # print(*[''.join(i) for i in combinations_with_replacement(sorted(p[0]),int(p[1]))],sep = '\n') ################################################################################ #Q ################################################################################ # compress-the-string-English ################################################################################ #A ################################################################################ # from itertools import groupby # p = input() # groups = [list(g) for k, g in groupby(p)] # keys = [k for k, g in groupby(p)] # gr_len = [len(i) for i in groups] # print(*tuple(zip(gr_len,map(int,keys)))) # # print(*tuple(zip(list(map(len,(list(g) for k, g in groupby(p)))),map(int,[k for k, g in groupby(p)])))) ################################################################################ # print(*[(len(list(g)), int(k)) for k, g in groupby(input())]) # print(' '.join(('({}, {})'.format(len(list(g)), x) for x,g in groupby(input())))) ################################################################################ ################################################################################ #Q ################################################################################ # iterables-and-iterators-English ################################################################################ ################################################################################ #A ################################################################################ # import itertools as it # N = int(input()) # li = input().split() # K = int(input()) # C = list(it.combinations(li, K)) # print('%.3f' % float(len([i for i in C if 'a' in i])/len(C))) ################################################################################ # from itertools import combinations # N = int(input()) # L = input().split() # K = int(input()) # C = list(combinations(L, K)) # F = filter(lambda c: 'a' in c, C) # print("{0:.3}".format(len(list(F))/len(C))) ################################################################################ #Q ################################################################################ # swap-case-English ################################################################################ ################################################################################ #A ################################################################################ # def swap_case(s): # return (''.join([i.lower() if i.isupper() else i.upper() for i in s])) # # if __name__ == '__main__': # s = input() # result = swap_case(s) # print(result) # # print(*map(lambda ch : ch.lower() if ch.isupper() else ch.upper(), input()), sep="") ################################################################################ #Q ################################################################################ # python-string-split-and-join-English ################################################################################ ################################################################################ #A ################################################################################ # def split_and_join(line): # # write your code here # return ('-'.join(line.split(' '))) # # if __name__ == '__main__': # line = input() # result = split_and_join(line) # print(result) ################################################################################ #Q ################################################################################ # find-a-string-English ################################################################################ ################################################################################ #A ################################################################################ # def count_substring(string, sub_string): # return len([i for i in range(len(string)) if string.startswith(sub_string, i)]) # # if __name__ == '__main__': # string = input().strip() # sub_string = input().strip() # # count = count_substring(string, sub_string) # print(count) ################################################################################ # string, substring = (input().strip(), input().strip()) # print(sum([ 1 for i in range(len(string)-len(substring)+1) \ # if string[i:i+len(substring)] == substring])) ################################################################################ # def count_substring(string, sub_string): # count=0 # #print(len(string),len(sub_string)) # for i in range(0, len(string)-len(sub_string)+1): # if string[i] == sub_string[0]: # flag=1 # for j in range (0, len(sub_string)): # if string[i+j] != sub_string[j]: # flag=0 # break # if flag==1: # count += 1 # return count ################################################################################ #Q ################################################################################ # string-validators-English ################################################################################ ################################################################################ #A ################################################################################ # if __name__ == '__main__': # s = input() # print(*list(map(lambda x: eval('any(ch.{0} for ch in list(s))'.format(x)), # ['isalnum()', 'isalpha()', 'isdigit()', 'islower()', 'isupper()'])), sep='\n') ################################################################################ #Q ################################################################################ # designer-door-mat-English ################################################################################ ################################################################################ #A ################################################################################ # N, M = map(int,input().split()) # top = [('.|.'*(2*i - 1)).center(M,'-') for i in range(1,N//2 + 1)] # print('\n'.join(top)+ '\n' +'WELCOME'.center(M ,'-')+ '\n' + '\n'.join(top[::-1])) ################################################################################ #Q ################################################################################ # python-string-formatting-English ################################################################################ ################################################################################ #A ################################################################################ # def print_formatted(n): # width = len("{0:b}".format(n)) # for num in range(1,n+1): # for base in 'dXob': # print('{0:{width}{base}}'.format(num, base=base, width=width),end = ' ') # print('\n', end='') # # if __name__ == '__main__': # n = int(input()) # print_formatted(n) ################################################################################ # def print_formatted(n): # width = len("{0:b}".format(n)) # for i in range(1,n+1): # print ("{0:{width}d} {0:{width}o} {0:{width}X} {0:{width}b}".format(i,width=width)) ################################################################################ #Q ################################################################################ # alphabet-rangoli-English ################################################################################ ################################################################################ #A ################################################################################ # def print_rangoli(size): # # your code goes here # l = [str(chr(i + 97)) for i in range(size)] # down = [l[-1:-(len(l)-i):-1] + l[i:(len(l))] for i in range(len(l))] # for line in down[:-(len(down)):-1]: # print('-'.join(line).center(2 * len(down[0]) -1, '-')) # for line in down: # print('-'.join(line).center(2 * len(down[0]) -1, '-')) # # if __name__ == '__main__': # n = int(input()) # print_rangoli(n) ################################################################################ #Q ################################################################################ # capitalize-English ################################################################################ ################################################################################ #A ################################################################################ # def solve(s): # return ' '.join(list(map(lambda x:x.capitalize(),s.split(' ')))) # # # ' '.join(map(str.capitalize, s.split(' '))) # # if __name__ == '__main__': # fptr = open(os.environ['OUTPUT_PATH'], 'w') # # s = input() # # result = solve(s) # # fptr.write(result + '\n') # # fptr.close() ################################################################################ #Q ################################################################################ # itertools-product-English ################################################################################ ################################################################################ #A ################################################################################ # import itertools as it # # print(*(it.product(map(int,input().split()),map(int,input().split())))) # # A, B = [list(map(int, input().split())) for _ in range(2)] # print(*(it.product(A,B))) ################################################################################ #Q ################################################################################ # collections-counter-English ################################################################################ ################################################################################ #A ################################################################################ # from collections import Counter # # _, c = input(), Counter(input().split()) # tot = 0 # for _ in range(int(input())): # temp = input().split() # if c[temp[0]]: # tot+= int(temp[1]) # c[temp[0]]-=1 # print(tot) # ################################################################################ # from collections import Counter # # _, stock = input(), Counter(list(map(int,input().split()))) # money = 0 # for size, cost in [map(int, input().split()) for _ in range(int(input()))]: # if stock[size] > 0: # stock[size] -= 1 # money += cost # print(money) ################################################################################ #Q ################################################################################ # defaultdict-tutorial-English ################################################################################ ################################################################################ #A ################################################################################ # from collections import defaultdict # # d = defaultdict(list) # n, m = map(int, input().split()) # A, B = [input() for _ in range(n)], [input() for _ in range(m)] # for idx, val in enumerate(A, start = 1): # d[val].append(idx) # for key in B: # if key in d.keys(): # print(*d[key]) # else: # print('-1') ################################################################################ # or for the last for # for key in B: # print(*d[key] or -1) ################################################################################ # without enuemarte and creating A and B # for i in range(n): # d[input()].append(i + 1) # # for _ in range(m): # print(' '.join(map(str, d[input()])) or -1) ################################################################################ ################################################################################ #Q ################################################################################ # py-collections-namedtuple-English ################################################################################ ################################################################################ #A ################################################################################ # from collections import namedtuple # N, Student =int(input()), namedtuple('Student',input().split()) # print('%.2f' %float(sum(list(map(int,[Student._make(input().split()).MARKS for _ in range(N)])))/N)) ################################################################################ ################################################################################ #Q ################################################################################ # py-collections-ordereddict-English ################################################################################ ################################################################################ #A ################################################################################ # from collections import OrderedDict # # od = OrderedDict() # for _ in range(int(input())): # temp = input().split() # if ' '.join(temp[0:-1]) not in od.keys(): # od[' '.join(temp[0:-1])] = int(temp[-1]) # else: # od[' '.join(temp[0:-1])] += int(temp[-1]) # print('\n'.join([k + ' ' + str(v) for k,v in od.items()])) ################################################################################ # d = OrderedDict() # for _ in range(int(input())): # item, space, quantity = input().rpartition(' ') # d[item] = d.get(item, 0) + int(quantity) # for item, quantity in d.items(): # print(item, quantity) ################################################################################ # dct = OrderedDict() # for _ in range(int(input())): # i = input().rpartition(" ") # dct[i[0]] = int(i[-1]) + dct[i[0]] if i[0] in dct else int(i[-1]) # for l in dct: # print(l, dct[l]) ################################################################################ ################################################################################ #Q ################################################################################ # py-collections-deque-English ################################################################################ ################################################################################ #A ################################################################################ # from collections import deque # d = deque() # for _ in range(int(input())): # temp = input().split() # if 'append' in temp[0]: # eval('d.{}({})'.format(temp[0], temp[1])) # else: # eval('d.{}()'.format(temp[0])) # # # eval('d.{}({})'.format(temp[0], temp[1])) if 'append' in temp[0] else eval('d.{}()'.format(temp[0])) # print(*d) ################################################################################ # from collections import deque # d = deque() # for _ in range(int(input())): # cmd, *args = input().split() # getattr(d, cmd)(*args) # # getattr(d, command)(*map(int, args)) # [print(x, end=' ') for x in d] ################################################################################ ################################################################################ ################################################################################ #Q ################################################################################ # symmetric-difference-English ################################################################################ ################################################################################ #A ################################################################################ # _, M = input(), set(map(int, input().split())) # _, N = input(), set(map(int, input().split())) # for i in map(str,sorted(N.difference(M).union(M.difference(N)))): # print(i) # ################################################################################ # a,b = [set(input().split()) for _ in range(4)][1::2] # print(*sorted(a^b, key=int), sep='\n') ################################################################################ ################################################################################ ################################################################################ #Q ################################################################################ # py-set-add-English ################################################################################ ################################################################################ #A ################################################################################ # print(len(set([input() for _ in range(int(input()))]))) ################################################################################ #Q ################################################################################ # py-set-discard-remove-pop-English ################################################################################ ################################################################################ #A ################################################################################ # n = int(input()) # s = set(map(int, input().split())) # for _ in range(int(input())): # cmd, *arg = input().split() # eval('s.{}({})'.format(cmd, *arg)) if 'pop' not in cmd else eval('s.{}()'.format(cmd)) # print(sum(s)) ################################################################################ # n = int(input()) # s = set(map(int, input().split())) # for i in range(int(input())): # eval('s.{0}({1})'.format(*input().split()+[''])) # # print(sum(s)) ################################################################################ # n = int(input()) # s = set(map(int, input().split())) # for _ in range(int(input())): # method, *args = input().split() # getattr(s, method)(*map(int,args)) # print(sum(s)) ################################################################################ ################################################################################ #Q ################################################################################ # py-set-union-English ################################################################################ ################################################################################ #A ################################################################################ # a,b = [list(map(int,set(input().split()))) for _ in range(4)][1::2] # print(len(set(b).union(set(a)))) ################################################################################ # _,a,_,b=[set(input().split()) for _ in '1234']; print(len(a|b)) ################################################################################ ################################################################################ #Q ################################################################################ # py-set-intersection-operation-English ################################################################################ ################################################################################ #A ################################################################################ # _,a,_,b=[set(input().split()) for _ in '1234']; print(len(a&b)) ################################################################################ #Q ################################################################################ # py-set-difference-operation-English ################################################################################ ################################################################################ #A ################################################################################ # _,a,_,b=[set(input().split()) for _ in '1234']; print(len(a-b)) ################################################################################ #Q ################################################################################ # py-set-mutations-English ################################################################################ ################################################################################ #A ################################################################################ # _, a = input(), set(map(int, input().split())) # for i in range(int(input())): # eval('a.{}({})'.format(input().split()[0], set(map(int, input().split())))) # print(sum(a)) ################################################################################ #Q ################################################################################ # py-the-captains-room-English ################################################################################ ################################################################################ #A ################################################################################ # _, args = input(), input().split() # print(*[i for i in set(sorted(args)) if args.count(i) == 1]) ################################################################################ # members = input().split() # rooms = set() # Contains all the rooms. # room_more_mem = set() # Contains only the rooms with families. # # for m in members: # if m not in room_more_mem: # target = room_more_mem if m in rooms else rooms # target.add(m) # print(rooms.difference(room_more_mem).pop()) ################################################################################ #Q ################################################################################ # py-check-subset-English ################################################################################ ################################################################################ #A ################################################################################ # for _ in range(int(input())): # _, A, _, B = input(), set(input().split()), input(), set(input().split()) # print(A.issubset(B)) ################################################################################ #Q ################################################################################ # py-check-strict-superset-English ################################################################################ ################################################################################ #A ################################################################################ # A = set(input().split()) # print(all([A.issuperset(input().split()) for _ in range(int(input()))])) ################################################################################ # a = set(input().split()) # print(all(a > set(input().split()) for _ in range(int(input())))) ################################################################################ #Q ################################################################################ # Polar-Coordinates ################################################################################ ################################################################################ #A ################################################################################ # from cmath import polar # z = input() # print('{:.3f}\n{:.3f}'.format(abs(complex(z)),phase(complex(z)))) ################################################################################ # from cmath import polar # print '{}\n{}'.format(*polar(complex(input()))) ################################################################################ # import cmath # print(*cmath.polar(complex(input())), sep='\n') ################################################################################ #Q ################################################################################ # mod-divmod ################################################################################ ################################################################################ #A ################################################################################ # a = divmod(int(input()),int(input())) # print(a[0],a[1],a,sep='\n') ################################################################################ # print('{0}\n{1}\n({0},{1})'.format(*divmod(int(input()), int(input())))) ################################################################################ #Q ################################################################################ # power-mod-power ################################################################################ ################################################################################ #A ################################################################################ # from math import pow # a,b,m = [int(input()) for _ in range(3)] # print('{:.0f}\n{:.0f}'.format(pow(a,b),pow(a,b)%m)) ################################################################################ #Q ################################################################################ # triangle-quest ################################################################################ ################################################################################ #A ################################################################################ # for i in range(1,int(input())): # print((10**(i)//9)*i) # print([0, 1, 22, 333, 4444, 55555, 666666, 7777777, 88888888, 999999999][i]) ################################################################################ #Q ################################################################################ # ################################################################################ ################################################################################ #A ################################################################################ # import calendar # m,d,y = map(int,input().split()) # print(calendar.day_name[calendar.weekday(y, m, d)].upper()) ################################################################################ #Q ################################################################################ # exceptions ################################################################################ ################################################################################ #A ################################################################################ # for i in [input().split() for i in range(int(input()))]: # try: # print(int(i[0])//int(i[1])) # except Exception as e: # print("Error Code:",e) ################################################################################ #Q ################################################################################ # incorrect-regex ################################################################################ ################################################################################ #A ################################################################################ # import re # for i in [input() for i in range(int(input()))]: # try: # re.compile(i) # print(True) # except Exception: # print(False) # # cube = lambda x: x**3 ################################################################################ #Q ################################################################################ # map-and-lambda-expression ################################################################################ ################################################################################ #A ################################################################################ # cube = lambda x: x**3 # def fibonacci(n): # # return a list of fibonacci numbers # lis = [0,1] # for i in range(2,n): # lis.append(lis[i-2] + lis[i-1]) # return(lis[0:n]) # # if __name__ == '__main__': # n = int(input()) # print(list(map(cube, fibonacci(n)))) ################################################################################ #Q ################################################################################ # zipped-English ################################################################################ ################################################################################ #A ################################################################################ # N, X = map(int,input().split()) # l = [list(zip([i+1 for i in range(N)],input().split())) for mark in range(X)] # for student in range(N): # s = 0 # for subject in range(X): # s += float(l[subject][student][1]) # print('{:.1f}'.format(s/X)) ################################################################################ # n, x = map(int, input().split()) # sheet = [] # for _ in range(x): # sheet.append( map(float, input().split()) ) # for i in zip(*sheet): # print( sum(i)/len(i) ) ################################################################################ # _, X = map(int,input().split()) # sheet = [map(float, input().split()) for _ in range(X)] # print(*[sum(i)/len(i) for i in zip(*sheet)], sep = '\n') ################################################################################ # [print(sum(i) / len(i)) for i in zip(*[map(float, input().split()) for _ in range(int(input().split()[1]))])] ################################################################################ ################################################################################ #Q ################################################################################ # input ################################################################################ ################################################################################ #A ################################################################################ # x, k = map(int,input().split()) # print(eval(input()) == k) ################################################################################ #Q ################################################################################ # any-or-all-English ################################################################################ ################################################################################ #A ################################################################################ # _, L = input(), input().split() # print(all([any(map(lambda x: x == x[::-1],L)),all(map(lambda x: int(x) >= 0,L))])) ################################################################################ # N,n = int(input()),input().split() # print(all([int(i) > 0 for i in n]) and any([j == j[::-1] for j in n])) ################################################################################ ################################################################################ #Q ################################################################################ # class-2-find-the-torsional-angle ################################################################################ ################################################################################ #A ################################################################################ # import math # # class Points(object): # def __init__(self, x, y, z): # self.x = x # self.y = y # self.z = z # # def __sub__(self, no): # return Points((self.x - no.x), (self.y - no.y), (self.z - no.z)) # # def dot(self, no): # return (self.x * no.x) + (self.y * no.y) + (self.z * no.z) # # def cross(self, no): # return Points((self.y * no.z - self.z * no.y), # (self.z * no.x - self.x * no.z), # (self.x * no.y - self.y * no.x)) # # def absolute(self): # return pow((self.x ** 2 + self.y ** 2 + self.z ** 2), 0.5) # # if __name__ == '__main__': # points = list() # for i in range(4): # a = list(map(float, input().split())) # points.append(a) # # a, b, c, d = Points(*points[0]), Points(*points[1]), Points(*points[2]), Points(*points[3]) # x = (b - a).cross(c - b) # y = (c - b).cross(d - c) # angle = math.acos(x.dot(y) / (x.absolute() * y.absolute())) # # print("%.2f" % math.degrees(angle)) ################################################################################ ################################################################################ #Q ################################################################################ # introduction-to-regex-English ################################################################################ ################################################################################ #A ################################################################################ # import re # print(*[bool(re.match('[+|-]?\d*\.\d*$', input())) for _ in range(int(input()))], sep = '\n') # bool(re.match(r'^[-+]?[0-9]*\.[0-9]+$', input())) ################################################################################ ################################################################################ #Q ################################################################################ # re-group-groups-English ################################################################################ ################################################################################ #A ################################################################################ # import re # r = re.search(r"([a-zA-Z0-9])\1+",input()) # print(r.group(1) if r else -1) ################################################################################ ################################################################################ #Q ################################################################################ # re-findall-re-finditer-English ################################################################################ ################################################################################ #A ################################################################################ # import re # s = '[qwrtypsdfghjklzxcvbnm]' # a = re.findall('(?<=' + s +')([aeiou]{2,})' + s, input(), re.I) # print('\n'.join(a or ['-1'])) ################################################################################ #Q ################################################################################ # re-start-re-end-English ################################################################################ ################################################################################ #A ################################################################################ # from re import compile # data, pattern = input(), compile( input() ) # m = pattern.search(data) # if not m : print("(-1, -1)") # while m: # print(f"({m.start()}, {m.end() - 1})") # m = pattern.search( data, m.start() + 1) ################################################################################ #Q ################################################################################ # validate-a-roman-number-English ################################################################################ ################################################################################ #A ################################################################################ # import re # regex_pattern = r"^M{0,3}(CM|CD|D?C{0,3})(XC|XL|L?X{0,3})(IX|IV|V?I{0,3})$" # print(str(bool(re.match(regex_pattern, input())))) ################################################################################ #Q ################################################################################ # validating-the-phone-number-English ################################################################################ ################################################################################ #A ################################################################################ # import re # l = [bool(re.match(r"^[7-9]\d{9}$", input())) for _ in range(int(input()))] # print(*['YES' if i else 'NO' for i in l], sep= '\n') ################################################################################ # [print('YES' if re.match(r'[789]\d{9}$',input()) else 'NO') for _ in range(int(input()))] ################################################################################ # it is better to save pattern and do not loop through it. # the seconf solution is better because it uses one loop. ################################################################################ ################################################################################ #Q ################################################################################ # validating-named-email-addresses-English ################################################################################ ################################################################################ #A ################################################################################ # import re # p = '<[a-zA-Z][\w.-]+@[a-zA-Z]+\.[a-zA-Z]{1,3}>' # for _ in range(int(input())): # n, e = input().split(' ') # m = re.match(p, e, re.I) # if m: # print(n, e) ################################################################################ ################################################################################ #Q ################################################################################ # hex-color-code ################################################################################ ################################################################################ #A ################################################################################ # import re # reg = re.compile(r"(:|,| +)(#[abcdefABCDEF1234567890]{3}|#[abcdefABCDEF1234567890]{6})\b") # n = int(input()) # for i in range(n): # line = input() # items = reg.findall(line) # if items: # for item in items: # print( item[1] ) # (?<=[:\s])#[a-f0-9A-F]{3,}(?!\s) # (?<!^)(#(?:[\da-f]{3}){1,2}) ################################################################################ ################################################################################ #Q ################################################################################ # html-parser-part-1-English ################################################################################ ################################################################################ #A ################################################################################ # from html.parser import HTMLParser # # class MyHTMLParser(HTMLParser): # def handle_starttag(self, tag, attrs): # print ('{:6}: {}'.format('Start', tag)) # temp = dict(attrs) # for k, v in temp.items(): # print ("-> " + k + " > " + str(v)) # # def handle_endtag(self, tag): # print ('{:6}: {}'.format('End', tag)) # # def handle_startendtag(self, tag, attrs): # print ('{:6}: {}'.format('Empty', tag)) # temp = dict(attrs) # for k, v in temp.items(): # print ("-> " + k + " > " + str(v)) # # MyParser = MyHTMLParser() # MyParser.feed(''.join([input().strip() for _ in range(int(input()))])) # for ele in attrs: # print ('->',ele[0],'>',ele[1]) ################################################################################ ################################################################################ #Q ################################################################################ # html-parser-part-2-English ################################################################################ ################################################################################ #A ################################################################################ # from html.parser import HTMLParser # # class MyHTMLParser(HTMLParser): # # def handle_data(self, data): # if data != '\n': # print (">>> Data\n" + data) # # def handle_comment(self, data): # if '\n' in data: # print('>>> Multi-line Comment\n' + data) # else: # print (">>> Single-line Comment\n" + data) # # html = "" # for i in range(int(input())): # html += input().rstrip() # html += '\n' # # parser = MyHTMLParser() # parser.feed(html) # parser.close() ################################################################################ ################################################################################ #Q ################################################################################ # detect-html-tags-attributes-and-attribute-values-English ################################################################################ ################################################################################ #A ################################################################################ # from html.parser import HTMLParser # class MyHTMLParser(HTMLParser): # def handle_starttag(self, tag, attrs): # print(tag) # [print('-> {} > {}'.format(*attr)) for attr in attrs] # # html = '\n'.join([input() for _ in range(int(input()))]) # parser = MyHTMLParser() # parser.feed(html) # parser.close() ################################################################################ ################################################################################ #Q ################################################################################ # validating-uid-English ################################################################################ ################################################################################ #A ################################################################################ # import re # for _ in range(int(input())): # s = input() # print('Valid' if all([re.search(r, s) # for r in [r'[A-Za-z0-9]{10}', r'([A-Z].*){2}', r'([0-9].*){3}']]) # and not re.search(r'(.).*\1', s) # else 'Invalid') ################################################################################ # def is_valid(uid): # has_2_or_more_upper = bool(re.search(r'[A-Z]{2,}', uid)) # has_3_or_more_digits = bool(re.search(r'\d{3,}', uid)) # has_10_proper_elements = bool(re.match(r'^[a-zA-Z0-9]{10}$', uid)) # no_repeats = not bool(re.search(r'(.)\1', uid)) # # if has_2_or_more_upper and has_3_or_more_digits and has_10_proper_elements and no_repeats: # return "Valid" # else: # return "Invalid" # # for _ in range(int(input())): # print is_valid(input()) ################################################################################ ################################################################################ ################################################################################ #Q ################################################################################ # xml-1-find-the-score-English ################################################################################ ################################################################################ #A ################################################################################ # import sys # import xml.etree.ElementTree as etree # # def get_attr_number(node): # # your code goes here # s = 0 # for child in root.iter(): # s += len(child.attrib) # return s # # if __name__ == '__main__': # sys.stdin.readline() # xml = sys.stdin.read() # tree = etree.ElementTree(etree.fromstring(xml)) # root = tree.getroot() # print(get_attr_number(root)) ################################################################################ # return sum([len(elem.items()) for elem in tree.iter()) ################################################################################ ################################################################################ ################################################################################ #Q ################################################################################ # xml2-find-the-maximum-depth-English ################################################################################ ################################################################################ #A ################################################################################ # import xml.etree.ElementTree as etree # # maxdepth = 0 # def depth(elem, level): # global maxdepth # if (level == maxdepth): # maxdepth += 1 # # recursive call to function to get the depth # for child in elem: # depth(child, level + 1) # # if __name__ == '__main__': # n = int(input()) # xml = "" # for i in range(n): # xml = xml + input() + "\n" # tree = etree.ElementTree(etree.fromstring(xml)) # depth(tree.getroot(), -1) # print(maxdepth) ################################################################################ #Q ################################################################################ # np-shape-reshape-English ################################################################################ ################################################################################ #A ################################################################################ # import numpy as np # print(np.reshape(np.array(list(map(int, input().split()))), (3, 3))) # print(np.array(input().split(),int).reshape(3,3)) # print (numpy.fromstring(input(), dtype=int, sep=" ").reshape(3,3)) ################################################################################ #Q ################################################################################ # np-transpose-and-flatten-English ################################################################################ ################################################################################ #A ################################################################################ # import numpy as np # N, M = map(int,input().split()) # arr = [list(map(int,input().split()[:M])) for r in range(N)] # print(np.array(arr).transpose() , np.array(arr).flatten() , sep = '\n') ################################################################################ #Q ################################################################################ # np-concatenate-English ################################################################################ ################################################################################ #A ################################################################################ # import numpy as np # N, M, P = map(int,input().split()) # print(np.array([input().split()[:P] for _ in range(N + M)], int))]] # # NxP = np.array([input().split()[:P] for _ in range(N)], int) # MxP = np.array([input().split()[:P] for _ in range(M)], int) # print(np.concatenate((NxP, MxP), axis = 0)) ################################################################################ #Q ################################################################################ # np-zeros-and-ones-English ################################################################################ ################################################################################ #A ################################################################################ # nums = tuple(map(int, input().split())) # print (numpy.zeros(nums, dtype = numpy.int), numpy.ones(nums, dtype = numpy.int), sep = '\n') ################################################################################ #Q ################################################################################ # np-array-mathematics-English ################################################################################ ################################################################################ #A ################################################################################ # import numpy as np # N, M = map(int,input().split()) # A = np.array([input().split()[:M] for _ in range(N)], int) # B = np.array([input().split()[:M] for _ in range(N)], int) # print(A + B, A - B, A * B, A // B, A % B, A ** B, sep = '\n') ################################################################################ #Q ################################################################################ # np-sum-and-prod-English ################################################################################ ################################################################################ #A ################################################################################ # import numpy as np # N, M = map(int,input().split()) # print(np.prod(np.sum([np.array(input().split()[:M], int) for _ in range(N)], axis = 0), axis = None)) ################################################################################ #Q ################################################################################ # np-min-and-max-English ################################################################################ ################################################################################ #A ################################################################################ # import numpy as np # N, M = map(int,input().split()) # NxM = np.array([input().split()[:M] for _ in range(N)], int) # print(np.max(np.min(NxM, axis = 1))) ################################################################################ #Q ################################################################################ # np-mean-var-and-std-English ################################################################################ ################################################################################ #A ################################################################################ # import numpy as np # np.set_printoptions(legacy='1.13') # N, M = map(int,input().split()) # NxM = np.array([input().split()[:M] for _ in range(N)], int) # print(np.mean(NxM, axis = 1), np.var(NxM, axis = 0), np.std(NxM), sep = '\n') ################################################################################ #Q ################################################################################ # np-dot-and-cross-English ################################################################################ ################################################################################ #A ################################################################################ # import numpy as np # N = int(input()) # A = np.array([input().split()[:N] for _ in range(N)], int) # B = np.array([input().split()[:N] for _ in range(N)], int) # print(A.dot(B)) # print(np.dot(A, B)) ################################################################################ #Q ################################################################################ # np-inner-and-outter-English ################################################################################ ################################################################################ #A ################################################################################ # import numpy as np # A = np.array(input().split(), int) # B = np.array(input().split(), int) # print(np.inner(A, B), np.outer(A, B),sep = '\n') ################################################################################ #Q ################################################################################ # np-polynomials-English ################################################################################ ################################################################################ #A ################################################################################ # import numpy as np # P = np.array(input().split(), float) # X = float(input()) # print(np.polyval(P, X)) ################################################################################ # print(np.polyval(list(map(float,input().split())), float(input()))) ################################################################################ #Q ################################################################################ # np-linear-algebra-English ################################################################################ ################################################################################ #A ################################################################################ # import numpy as np # N = int(input()) # A = np.array([input().split() for _ in range(N)], float) # print(round(np.linalg.det(A), 2)) ################################################################################ #Q ################################################################################ # standardize-mobile-number-using-decorators-English ################################################################################ ################################################################################ #A ################################################################################ # def wrapper(f): # def fun(l): # f([f'+91 {i[-10:-5]} {i[-5:]}' for i in l]) # return fun # # @wrapper # def sort_phone(l): # print(*sorted(l), sep='\n') # # if __name__ == '__main__': # l = [input() for _ in range(int(input()))] # sort_phone(l) ################################################################################ #Q ################################################################################ # the-minion-game-English ################################################################################ ################################################################################ #A ################################################################################ # def minion_game(string): # s = string.upper() # S, K = 0, 0 # text_length = len(s) # for idx, element in enumerate(s): # if element[0] in 'AEIOU': # K += text_length - idx # else: # S += text_length - idx # if S > K: # print('Stuart {}'.format(S)) # elif S < K: # print('Kevin {}'.format(K)) # elif S == K: # print('Draw') # if __name__ == '__main__': # s = input() # minion_game(s) # https://codereview.stackexchange.com/questions/106238/the-minion-game-challenge ################################################################################ #Q ################################################################################ # time-delta ################################################################################ #A ################################################################################ # from datetime import datetime, timedelta # def time_delta(t1, t2): # d1 = datetime.strptime(t1, "%a %d %b %Y %H:%M:%S %z") # d2 = datetime.strptime(t2, "%a %d %b %Y %H:%M:%S %z") # return str(round((abs(d1 -d2)).total_seconds())) ################################################################################ #Q ################################################################################ # validating-credit-card-number ################################################################################ #A ################################################################################ # import re # def valid_card_num(card_num): # return ( # "Invalid" # if not re.search("^[456]\d{3}(-?\d{4}){3}$", card_num) # or re.search(r"(\d)\1{3,}", card_num.replace("-", "")) # else "Valid" # ) # print(*[valid_card_num(input()) for _ in range(int(input()))], sep="\n") ################################################################################ #Q ################################################################################ # re-sub-regex-substitution-important ################################################################################ #A ################################################################################ # import re # # not efficient # def and_or_replacement(match): # return ( # match.replace(" && ", " and ") # .replace(" && ", " and ") # .replace(" || ", " or ") # .replace(" || ", " or ") # ) # for i in range(int(input())): # print( # re.sub( # r"(?<= )(&&|\|\|)(?= )", # lambda x: "and" if x.group() == "&&" else "or", # input(), # ) # ) # https://docs.python.org/3/library/re.html#regular-expression-syntax # (?=...) lookahead assertion # (?<=...) positive lookbehind assertion # When two groups go consecutively with only one space in between (e.g., " && ||"), # they should produce two successful matches. If you do not use lookbackward and lookforward, # you end up picking up only the first group in the pair. # n && && && && && &&n ################################################################################ #Q ################################################################################ # validate-list-of-email-address-with-filter ################################################################################ #A ################################################################################ # def fun(s): # import re # # return True if s is a valid email, else return False # return re.match(r"^[a-zA-Z0-9_-]+@[a-zA-Z0-9]+\.[a-zA-Z]{1,3}$", s) # def filter_mail(emails): # return list(filter(fun, emails)) # if __name__ == '__main__': # n = int(input()) # emails = [] # for _ in range(n): # emails.append(input()) # filtered_emails = filter_mail(emails) # filtered_emails.sort() # print(filtered_emails) # ^ because if there is an email like learn.point@learningpoint.net # without it, still it is a match. # $ because if at the end we have net1, it is a match # pay attention to r before pattern ################################################################################ #Q ################################################################################ # ginorts ################################################################################ #A ################################################################################ # lower_case = [] # upper_case = [] # odd_num = [] # even_num = [] # num = [] # s = input() # for c in s: # if 48 <= ord(c) <= 57: # if int(ord(c)%2 == 0): # even_num.append(c) # else: # odd_num.append(c) # elif 65 <= ord(c) <= 90: # upper_case.append(c) # elif 97 <= ord(c) <= 122: # lower_case.append(c) # num = sorted(odd_num) + sorted(even_num) # print("".join(sorted(lower_case)+sorted(upper_case)+num)) # # # # import re # s = input() # print( # "".join( # sorted(re.findall(r"[a-z]", s)) # + sorted(re.findall(r"[A-Z]", s)) # + sorted(re.findall(r"[13579]", s)) # + sorted(re.findall(r"[02468]", s)) # ) # ) # # other nice solutions # print(*sorted(s, key=lambda c: (c.isdigit() - c.islower(), c in "02468", c)), sep="") # >>> False - True # -1 # s = "Sorting1234" # [ # (0, False, 'S'), (-1, False, 'o'), # (-1, False, 'r'), (-1, False, 't'), # (-1, False, 'i'), (-1, False, 'n'), # (-1, False, 'g'), (1, False, '1'), # (1, True, '2'), (1, False, '3'), # (1, True, '4') # ] # first it checks the index 0, if it -1, it is lower # and must come first, but if both tuples first value is -1, # then it compares True and False, Flase is smaller, so it comes before, # if both index 0 and one of tuple are equal, ther are going to be compared # based on their value i.e 'a' and 'b'. # >>> (False, False, False, True, 's') < (False, False, True, False, 'G') # True # Tuples can be compared with one another one the basis of # their index positions. In this case, the first two elements # in both of the tuples were False and since the second index # position on the tuple to the right side had a True while # the left one had a False at the same position, therefore # the right one was greater than the left one and so the output was True # print(*sorted(input(), key=lambda c: (-ord(c) >> 5, c in "02468", c)), sep="") # 1) Understanding RIGHT SHIFT >> First let's understand whats right shift by 5 (>>5) means, right shifting # a number by 5 is like dividing the number by 2^5 and rounds it to the nearest lower # number (floor) e.g # 64>>5 ==> 2 because 64 / 32 is 2 # 63>>5 ==> 1 # 65>>5 ==> 2 # 2)Understanding ord(): # ord gives the ascii values of the specified character # Ascii value of: # a-z ==> 97-122 # A-Z ==> 65-90 # 0-9 ==> 48-57 # e.g ord('d') ==> 100 # 3) ord(c) >> 5 # i)a-z ascii value when right shifted by 5 always gives 3 # (97 to 122) when divided by 2^5 (i.e 32) and floored always gives 3 # ii)A-Z ascii value when right shifted by 5 always gives 2 # (65 to 90) when divided by 2^5 (i.e 32) and floored always gives 2 # iii)0-9 ascii values when right shifted by 5 always gives 1 # (48 to 57) when divided by 2^5 (i.e 32) and floored always gives 1 # 4) ** minus ord(c) >>5 ** 5) # Since we are sorting the list in descending order # i.e a-z has the highest value 3 so it needs to come first # order = "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ1357902468" # print(*sorted(input(), key=order.index), sep="") # import string # print(*sorted(input(), key=(string.ascii_letters + "1357902468").index), sep="") ################################################################################ #Q ################################################################################ # python-sort-sort-athlete-sort ################################################################################ #A ################################################################################ # if __name__ == "__main__": # nm = input().split() # n = int(nm[0]) # m = int(nm[1]) # arr = [] # for _ in range(n): # arr.append(list(map(int, input().rstrip().split()))) # k = int(input()) # for el in sorted(arr, key=lambda c: c[k]): # print(*el) ################################################################################ #Q ################################################################################ # class-1-dealing-with-complex-numbers ################################################################################ #A ################################################################################ # class Complex(object): # def __init__(self, real, imaginary): # self.real = real # self.imaginary = imaginary # def __add__(self, no): # return Complex((self.real + no.real), (self.imaginary + no.imaginary)) # def __sub__(self, no): # return Complex((self.real - no.real), (self.imaginary - no.imaginary)) # def __mul__(self, no): # return Complex( # (self.real * no.real) - (self.imaginary * no.imaginary), # (self.real * no.imaginary) + (self.imaginary * no.real), # ) # def __truediv__(self, no): # x = self.__mul__(no.conjugate()) # y = no.__mul__(no.conjugate()) # return Complex( # x.real / (y.real + y.imaginary), x.imaginary / (y.real + y.imaginary) # ) # def conjugate(self): # return Complex(self.real, -self.imaginary) # def mod(self): # return Complex(((self.real ** 2) + (self.imaginary ** 2)) ** 0.5, 0) # def __str__(self): # if self.imaginary == 0: # result = "%.2f+0.00i" % (self.real) # elif self.real == 0: # if self.imaginary >= 0: # result = "0.00+%.2fi" % (self.imaginary) # else: # result = "0.00-%.2fi" % (abs(self.imaginary)) # elif self.imaginary > 0: # result = "%.2f+%.2fi" % (self.real, self.imaginary) # else: # result = "%.2f-%.2fi" % (self.real, abs(self.imaginary)) # return result # if __name__ == "__main__": # c = map(float, input().split()) # d = map(float, input().split()) # x = Complex(*c) # y = Complex(*d) # print(*map(str, [x + y, x - y, x * y, x / y, x.mod(), y.mod()]), sep="\n") ################################################################################ #Q ################################################################################ # triangle-quest-2 ################################################################################ #A ################################################################################ # More than 2 lines will result in 0 score. Do not leave a blank line also # for i in range(1,int(input())+1): # print(sum(map(lambda x:10**x, range(0,i)))**2) # better solution # The output requires the sequence of Demlo numbers. For n<=9, # the squares of the first few repunits are precisely the Demlo numbers. # Example: 1^2=1, 11^2=121, 111^2=12321 and so on. # for i in range(1,int(input())+1): # print(((10**i)//9)**2) ################################################################################ #Q ################################################################################ # piling-up ################################################################################ #A ################################################################################ # def check(l): # biggest = None # for _ in l: # if biggest and (l[0]> biggest or l[-1]> biggest): # return "No" # elif l[0] >= l[-1]: # biggest = l[0] # l.pop(0) # # l = l[1:] # elif l[0]<l[-1]: # biggest = l[-1] # l.pop() # # l = l[:-1] # return "Yes" # l = [] # for _ in range(int(input())): # input() # l.append(check(list(map(int, input().split())))) # print(*l, sep="\n") # pay attention: if except pop I use the comments part, # I cannot pass the test cases! # other solutions # possible inputs: # https://hr-testcases-us-east-1.s3.amazonaws.com/8380/input04.txt?AWSAccessKeyId=AKIAR6O7GJNX5DNFO3PV&Expires=1644617360&Signature=4%2BeOi7YA43ddCbPAHtDq6rYLEk8%3D&response-content-type=text%2Fplain # for t in range(input()): # input() # lst = map(int, raw_input().split()) # l = len(lst) # i = 0 # while i < l - 1 and lst[i] >= lst[i+1]: # i += 1 # while i < l - 1 and lst[i] <= lst[i+1]: # i += 1 # print "Yes" if i == l - 1 else "No" # faster # from collections import deque # for _ in range(int(input())): # _, queue =input(), deque(map(int, input().split())) # for cube in reversed(sorted(queue)): # if queue[-1] == cube: queue.pop() # elif queue[0] == cube: queue.popleft() # else: # print('No') # break # else: print('Yes') ################################################################################ #Q ################################################################################ # word-order ################################################################################ #A ################################################################################ # from collections import Counter # z = Counter([input() for _ in range(int(input()))]) # print(len(z)) # print(*z.values()) ################################################################################ #Q ################################################################################ # no-idea ################################################################################ #A ################################################################################ # from collections import Counter # n, m = input().split() # arr = input().split() # a = input().split() # b = input().split() # # The reason I use count -1 is, set_arr at least has one, so in the repeated_arr # # we should not consider those that are going to be calculated inside the # # len(set_arr.intersection(set(a))) # repeated_arr = [(item, count - 1) for item, count in Counter(arr).items() if count > 1] # set_arr = set(arr) # # here we get just the random numbers and not their counts # # we should convert it to set, that let us use the intersection # set_repeated_arr = set([el[0] for el in repeated_arr]) # # without xa and xb, the below for loop will run longer than # # I can pass the test. actually, we just search for the values # # the are common between them not all of them. # xa = set_repeated_arr.intersection(set(a)) # xb = set_repeated_arr.intersection(set(b)) # ha = [] # hb = [] # for el, rep in repeated_arr: # if el in xa: # ha.append(rep) # elif el in xb: # hb.append(rep) # print( # len(set_arr.intersection(set(a))) # + sum(ha) # - (len(set_arr.intersection(set(b))) + sum(hb)) # ) # example links # https://hr-testcases-us-east-1.s3.amazonaws.com/8382/input07.txt?AWSAccessKeyId=AKIAR6O7GJNX5DNFO3PV&Expires=1645184229&Signature=BbdhIxhg0zm2L2DHUFKIaZcNh00%3D&response-content-type=text%2Fplain # https://hr-testcases-us-east-1.s3.amazonaws.com/8382/input03.txt?AWSAccessKeyId=AKIAR6O7GJNX5DNFO3PV&Expires=1645184415&Signature=zF3F8e25iF6LEiNo3n0ex0SWuwo%3D&response-content-type=text%2Fplain # other solution # n, m = input().split() # sc_ar = input().split() # A = set(input.split()) # B = set(input().split()) # print sum([(i in A) - (i in B) for i in sc_ar]) ################################################################################ #Q ################################################################################ # find-angle ################################################################################ #A ################################################################################ # import math # AB, BC = int(input()) , int(input()) # M = (AB ** 2 + BC ** 2) ** 0.5 # MBC = math.acos(BC / M) * 180 / math.pi # print(f"{round(MBC)}\N{DEGREE SIGN}") # print(str(int(round(math.degrees(math.atan(AB/BC)),0)))+'°') # hypotenuse = math.hypot(AB,BC) # degree = chr(176) ################################################################################ #Q ################################################################################ # default-arguments ################################################################################ #A ################################################################################ # class EvenStream(object): # def __init__(self): # self.current = 0 # def get_next(self): # to_return = self.current # self.current += 2 # return to_return # class OddStream(object): # def __init__(self): # self.current = 1 # def get_next(self): # to_return = self.current # self.current += 2 # return to_return # # here # def print_from_stream(n, stream=None): # stream = stream or EvenStream() # here # for _ in range(n): # print(stream.get_next()) # queries = int(input()) # for _ in range(queries): # stream_name, n = input().split() # n = int(n) # if stream_name == "even": # print_from_stream(n) # else: # print_from_stream(n, OddStream()) # This is a somewhat contrived example of a subtle but important # aspect of python that leads to bugs: # Default argument values are initialized once, # not every time the function is called. # This doesn't matter for immutable objects, # but for mutable objects the object retains # its state between function calls. # In the example problem, the initial configuration has # the EvenStream object as a default parameter, # so if multiple print_from_stream(n) calls are made, # the latter calls will use the same object, # and pick the stream where the previous call finished ################################################################################ #Q ################################################################################ # words-score ################################################################################ #A ################################################################################ # def is_vowel(letter): # return letter in ['a', 'e', 'i', 'o', 'u', 'y'] # def score_words(words): # score = 0 # for word in words: # num_vowels = 0 # for letter in word: # if is_vowel(letter): # num_vowels += 1 # if num_vowels % 2 == 0: # score += 2 # else: # score+=1 # return score # n = int(input()) # words = input().split() # print(score_words(words)) # I just changed ++score to score += 1 # in python we do not have ++ operator ################################################################################ #Q ################################################################################ # reduce-function ################################################################################ #A ################################################################################ # from fractions import Fraction # from functools import reduce # def product(fracs): # t = reduce(lambda x, y : x * y,fracs, 1) # return t.numerator, t.denominator # if __name__ == '__main__': # fracs = [] # for _ in range(int(input())): # fracs.append(Fraction(*map(int, input().split()))) # result = product(fracs) # print(*result) ################################################################################ #Q ################################################################################ # most-commons ################################################################################ #A ################################################################################ # import math # import os # import random # import re # import sys # from collections import Counter # if __name__ == '__main__': # s = input() # for x,y in sorted(Counter(s).most_common(), key=lambda tup:(-tup[1], tup[0]))[:3]: # print(x,y) # # other solutions # class OrderedCounter(Counter): # pass # [print(*c) for c in OrderedCounter(sorted(input())).most_common(3)] # Dict={} # for x in sorted(s): # Dict[x]=Dict.get(x,0)+1 # #Sorting Dict by value & storing sorted keys in Dict_keys. # Dict_keys=sorted(Dict, key=Dict.get, reverse=True) # for key in Dict_keys[:3]: # print(key,Dict[key]) ################################################################################ #Q ################################################################################ # merge-the-tools ################################################################################ #A ################################################################################ # def merge_the_tools(string, k): # z = {} # for i in range(len(string)): # if i%k == 0: # z[i] = [] # for el in string[i:i+k]: # if el not in z[i]: # z[i].append(el) # for v in z.values(): # print("".join(v)) # if __name__ == '__main__': # string, k = input(), int(input()) # merge_the_tools(string, k) # other solutions # def merge_the_tools(string, k): # for i in range(0, len(string), k): # uniq = '' # for c in string[i : i+k]: # if (c not in uniq): # uniq+=c # print(uniq) # S, N = input(), int(input()) # for part in zip(*[iter(S)] * N): # d = dict() # print(''.join([ d.setdefault(c, c) for c in part if c not in d ])) # setdefault method returns the key value available in the dictionary and if # given key is not available then it will provided default value and adds it to the dictionary. # [iter(s)]*n makes a list of n times the same iterator for s. # Example: [[iter(s)]*3] = ([iter(s), iter(s), iter(s)]) # for part in zip(*[iter(S)] * N): # It is equivalent to: # it = iter(s) # for part in zip(it, it, it): ################################################################################ #Q ################################################################################ # matrix-script ################################################################################ #A ################################################################################ # import math # import os # import random # import re # import sys # from collections import defaultdict # first_multiple_input = input().rstrip().split() # n = int(first_multiple_input[0]) # m = int(first_multiple_input[1]) # matrix = [] # y = [] # for _ in range(n): # matrix_item = input() # matrix.append(matrix_item) # for el in matrix: # y.append(list(iter(el))) # zz = defaultdict(list) # for idx, val in enumerate(y): # for i in range(len(val)): # zz[i].append(y[idx][i]) # sss = '' # for k, v in zz.items(): # sss+= "".join(v) # print(re.sub(r'(\w)(\W)+(\w)', r'\1 \3', sss)) # other solution # print(re.sub(r"(?<=\w)([^\w]+)(?=\w)", " ", sss)) # print(re.sub(r"(\w)(\W)+(\w)", r"\1 \3", "".join([u for t in zip(*matrix) for u in t]))) ################################################################################ #Q ################################################################################ # validating-postalcode ################################################################################ #A ################################################################################ # regex_integer_in_range = r"^[1-9]\d{5}$" # regex_alternating_repetitive_digit_pair = r"(\d)(?=\d\1)" # import re # P = input() # print (bool(re.match(regex_integer_in_range, P)) # and len(re.findall(regex_alternating_repetitive_digit_pair, P)) < 2) ################################################################################ #Q ################################################################################ # maximize-it ################################################################################ #A ################################################################################ from itertools import product K, M = list(map(int, input().split())) ll = [list(map(lambda x: int(x) ** 2, input().split()))[1:] for i in range(K)] print(max(map(lambda x: sum(x) % M, product(*ll)))) # why [1:] ? # because after the first line, # the first number is just the count of input # i.e. 3 > 7, 8, 9 # 3 1000 # 2 5 4 # 3 7 8 9 # 5 5 7 8 9 10 # product(*ll) ? # * makes the list flat for preparing product # Initially, I did not try the product (product math operation, # not product function) when I was blocked on this question. # I thought the algorithm complexity was high, thus, # my answer would not be accepted, so I did not try it. # When I couldn't find any solution, # I chose the one I thought was the worst. However, it worked! # First, solve the problem, then improve it! # It took me a long time, but I finally figured it out! # Wed 19 May 2022 00:12 ################################################################################ # THE END ################################################################################
44.810179
272
0.285682
cd5a52bde50b515d4303f750ecfba5bad979a355
11,815
py
Python
nislmigrate/facades/file_system_facade.py
ni/NI-SystemLink-Migration
dbce27627a2ea9b0121478ef64d9acfa2940a20d
[ "MIT" ]
null
null
null
nislmigrate/facades/file_system_facade.py
ni/NI-SystemLink-Migration
dbce27627a2ea9b0121478ef64d9acfa2940a20d
[ "MIT" ]
9
2021-11-08T21:47:50.000Z
2022-03-30T20:06:52.000Z
nislmigrate/facades/file_system_facade.py
ni/NI-SystemLink-Migration
dbce27627a2ea9b0121478ef64d9acfa2940a20d
[ "MIT" ]
null
null
null
"""Handle file and directory operations.""" import json import os import shutil import stat import base64 from nislmigrate.logs.migration_error import MigrationError from nislmigrate.migration_action import MigrationAction from cryptography.fernet import Fernet from cryptography.hazmat.primitives import hashes from cryptography.hazmat.primitives.kdf.pbkdf2 import PBKDF2HMAC COMPRESSION_FORMAT = 'tar' class FileSystemFacade: """ Handles operations that act on the real file system. """ def determine_migration_directory_for_service(self, migration_directory_root: str, service_name: str) -> str: """ Generates the migration directory for a particular service. :param service_name: The name of the service to determine the migration directory for. :return: The migration directory for the service. """ return os.path.join(migration_directory_root, service_name) def does_directory_exist(self, directory: str) -> bool: """ Determines whether a directory exists. :param dir_: The directory path to check. :return: True if the given directory path is a directory and exists. """ return os.path.isdir(directory) def does_file_exist_in_directory(self, directory: str, file_name: str) -> bool: """ Determines whether a file with the given name exists in a directory :param directory: The directory to check. :param file_name: The file to check. :return: True if the file exists in the given directory. """ path = os.path.join(directory, file_name) return self.does_file_exist(path) def does_file_exist(self, file_path: str) -> bool: """ Determines whether a file exists on disk. :param file_path: The path to check. :return: True if the file exists. """ return os.path.isfile(file_path) def remove_directory(self, directory: str): """ Deletes the given directory and its children. :param dir_: The directory to remove. :return: None. """ if os.path.isdir(directory): shutil.rmtree(directory, onerror=self.__on_error_remove_readonly_and_retry) def migrate_singlefile(self, migration_directory_root: str, service_name: str, single_file_source_directory: str, single_file_name: str, action: MigrationAction): """ Perform a capture or restore the given service. :param migration_directory_root: The root directory migration is taking place from. :param action: Whether to capture or restore. :return: None. """ root = migration_directory_root migration_dir = self.determine_migration_directory_for_service(root, service_name) if action == MigrationAction.CAPTURE: self.remove_directory(migration_dir) os.mkdir(migration_dir) singlefile_full_path = os.path.join( single_file_source_directory, single_file_name, ) shutil.copy(singlefile_full_path, migration_dir) elif action == MigrationAction.RESTORE: singlefile_full_path = os.path.join(migration_dir, single_file_name) shutil.copy(singlefile_full_path, single_file_source_directory) def capture_single_file(self, migration_directory_root: str, service_name: str, restore_directory: str, file: str): root = migration_directory_root migration_dir = self.determine_migration_directory_for_service(root, service_name) self.remove_directory(migration_dir) os.mkdir(migration_dir) singlefile_full_path = os.path.join( restore_directory, file, ) shutil.copy(singlefile_full_path, migration_dir) def restore_single_file(self, migration_directory_root: str, service_name: str, restore_directory: str, file: str): root = migration_directory_root migration_dir = self.determine_migration_directory_for_service(root, service_name) singlefile_full_path = os.path.join(migration_dir, file) shutil.copy(singlefile_full_path, restore_directory) def read_json_file(self, path: str) -> dict: """ Reads json from a file. :param path: The path to the json file to read. :return: The parsed json from the file. """ with open(path, encoding='utf-8-sig') as json_file: return json.load(json_file) @staticmethod def copy_file(from_directory: str, to_directory: str, file_name: str): """ Copy an entire directory from one location to another. :param from_directory: The directory the file to copy exists in. :param to_directory: The directory to copy the file into. :param file_name: The name of the file to copy. """ if not os.path.exists(to_directory): os.mkdir(to_directory) file_path = os.path.join(from_directory, file_name) shutil.copy(file_path, to_directory) def copy_directory(self, from_directory: str, to_directory: str, force: bool): """ Copy an entire directory from one location to another. :param from_directory: The directory whose contents to copy. :param to_directory: The directory to put the copied contents. :param force: Whether to delete existing content in to_directory before copying. """ if os.path.exists(to_directory) and os.listdir(to_directory) and not force: error = "The tool can not copy to the non empty directory: '%s'" % to_directory raise MigrationError(error) if not os.path.exists(from_directory): raise MigrationError("No data found at: '%s'" % from_directory) self.remove_directory(to_directory) shutil.copytree(from_directory, to_directory) def copy_directory_to_encrypted_file(self, from_directory: str, encrypted_file_path: str, secret: str): """ Copy an entire directory from one location to another and encrypts it. :param from_directory: The directory whose contents to copy. :param encrypted_file_path: The directory to put the copied contents. :param secret: A password to use when encrypting the directory. """ if self.does_file_exist(encrypted_file_path): raise FileExistsError("Captured data already exists: '%s'" % encrypted_file_path) if not self.does_directory_exist(from_directory): raise FileExistsError("No data found at: '%s'" % from_directory) extension = f'.{COMPRESSION_FORMAT}' if self.does_file_exist(from_directory + extension): raise FileExistsError(f'Data not cleaned up from previous migration: {from_directory + extension}') # shutil.make_archive automatically appends the compression formats file extension to the output path. shutil.make_archive(from_directory, COMPRESSION_FORMAT, from_directory) self.__encrypt_tar(secret, from_directory + extension, encrypted_file_path) os.remove(from_directory + extension) def copy_directory_from_encrypted_file(self, encrypted_file_path: str, to_directory: str, secret: str): """ Copy an entire directory from one location to another and encrypts it. :param encrypted_file_path: The directory whose contents to copy. :param to_directory: The directory to put the copied contents. :param secret: A password to use when encrypting the directory. """ if not self.does_file_exist(encrypted_file_path): raise MigrationError("No data found at: '%s'" % encrypted_file_path) extension = f'.{COMPRESSION_FORMAT}' if self.does_file_exist(encrypted_file_path + extension): raise MigrationError(f'Data not cleaned up from previous migration: {encrypted_file_path + extension}') self.__decrypt_tar(secret, encrypted_file_path, encrypted_file_path + extension) shutil.unpack_archive(encrypted_file_path + extension, to_directory, COMPRESSION_FORMAT) os.remove(encrypted_file_path + extension) def write_file(self, path: str, content: str) -> None: """ Writes a file to the indicated path with the given content. :param path: The path to the file to write. :param content: The contents to write in the file. """ with open(path, 'w') as file: file.write(content) def read_file(self, path: str) -> str: """ Reads the contents from a file at the indicated path. :param path: The path to the file to read. """ if not self.does_file_exist(path): raise MigrationError(f'Unable to read file at {path} because it does not exist.') with open(path, 'r') as file: return file.read() def __encrypt_tar(self, secret: str, tar_path: str, encrypted_path: str): with open(tar_path, 'rb') as file: text = file.read() encrypter = self.__get_encrypter(secret) encrypted_text = encrypter.encrypt(text) with open(encrypted_path, 'wb') as file: file.write(encrypted_text) def __decrypt_tar(self, secret: str, encrypted_path: str, tar_path: str): with open(encrypted_path, 'rb') as file: encrypted_text = file.read() encrypter = self.__get_encrypter(secret) text = encrypter.decrypt(encrypted_text) with open(tar_path, 'wb') as file: file.write(text) @staticmethod def __get_encrypter(secret: str): password = bytes(secret, 'utf-8') if not password: raise MigrationError('Secret not provided via the --secret flag for encryption.') key_derivation_function = PBKDF2HMAC(algorithm=hashes.SHA256(), length=32, iterations=320000, salt=b'0'*16) key = base64.urlsafe_b64encode(key_derivation_function.derive(password)) return Fernet(key) def copy_directory_if_exists(self, from_directory: str, to_directory: str, force: bool) -> bool: """ Calls copy_directory only if the source directory exists. See copy_directory for parameter descriptions. :return True if a copy happened, otherwise false. """ if os.path.exists(from_directory): self.copy_directory(from_directory, to_directory, force) return True else: return False def __on_error_remove_readonly_and_retry(self, func, path, execinfo): """ Error handler that removes the readonly attribute from a file path and then retries the previous operation. :param func: A continuation to run with the path. :param path: The path to remove the readonly attribute from. :param execinfo: Will be the exception information returned by sys.exc_info() :return: None. """ self.__remove_readonly(path) func(path) def __remove_readonly(self, path): """ Removes the read-only attribute from a file or directory. :param path: The path to remove the readonly attribute from. """ os.chmod(path, stat.S_IWRITE)
41.311189
115
0.644943
1fbf8e54a4f2000d696e17d5779e175fefa293ef
82
py
Python
ros_catkin_ws/src/causalrobot/scripts/NREM_cortex.py
Hockey86/causalrobot
3871fe4431b3eaa79f7a1d1540334b99cb8ec769
[ "MIT" ]
null
null
null
ros_catkin_ws/src/causalrobot/scripts/NREM_cortex.py
Hockey86/causalrobot
3871fe4431b3eaa79f7a1d1540334b99cb8ec769
[ "MIT" ]
null
null
null
ros_catkin_ws/src/causalrobot/scripts/NREM_cortex.py
Hockey86/causalrobot
3871fe4431b3eaa79f7a1d1540334b99cb8ec769
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # MIT License ## Causal discovery and inference # red LED
13.666667
33
0.719512
489ce9bff9e6b9188a02965614cecd92a42d88a0
204
py
Python
apps/product/admin.py
phdevs1/CyberCaffe
bee989a6d8d59205ee2645e986b4b0f16d00bf05
[ "Apache-2.0" ]
null
null
null
apps/product/admin.py
phdevs1/CyberCaffe
bee989a6d8d59205ee2645e986b4b0f16d00bf05
[ "Apache-2.0" ]
7
2021-03-19T08:39:34.000Z
2022-03-12T00:15:38.000Z
apps/product/admin.py
pioh123/CyberCaffe
bee989a6d8d59205ee2645e986b4b0f16d00bf05
[ "Apache-2.0" ]
null
null
null
from django.contrib import admin from .models import Product, Advertise, Promotion # Register your models here. admin.site.register(Product) admin.site.register(Advertise) admin.site.register(Promotion)
25.5
49
0.818627
8422ebe1532c7d8c1b412eb97914d35baad5815f
2,985
py
Python
integration/test/__main__.py
dianarg/geopm
846604c164e3f8fc50551e888297843701dec087
[ "BSD-3-Clause" ]
null
null
null
integration/test/__main__.py
dianarg/geopm
846604c164e3f8fc50551e888297843701dec087
[ "BSD-3-Clause" ]
null
null
null
integration/test/__main__.py
dianarg/geopm
846604c164e3f8fc50551e888297843701dec087
[ "BSD-3-Clause" ]
null
null
null
#!/usr/bin/env python # # Copyright (c) 2015 - 2021, Intel Corporation # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in # the documentation and/or other materials provided with the # distribution. # # * Neither the name of Intel Corporation nor the names of its # contributors may be used to endorse or promote products derived # from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY LOG OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # from __future__ import absolute_import import sys import os import unittest from test_omp_outer_loop import * from test_enforce_policy import * from test_profile_policy import * from test_plugin_static_policy import * from test_tutorial_base import * from test_frequency_hint_usage import * from test_profile_overflow import * from test_trace import * from test_monitor import * from test_geopmio import * from test_ompt import * from test_launch_application import * from test_launch_pthread import * from test_geopmagent import * from test_environment import * from test_frequency_map import * from test_hint_time import * from test_progress import * if 'GEOPM_RUN_LONG_TESTS' in os.environ: from test_ee_timed_scaling_mix import * from test_power_balancer import * from test_power_governor import * from test_scaling_region import * from test_timed_scaling_region import * else: skipped_modules = ['test_ee_timed_scaling_mix', 'test_power_balancer', 'test_power_governor', 'test_scaling_region', 'test_timed_scaling_region', ] for sm in skipped_modules: sys.stderr.write("* ({}.*) ... skipped 'Requires GEOPM_RUN_LONG_TESTS environment variable'\n".format(sm)) if __name__ == '__main__': unittest.main()
38.766234
114
0.740704
8f46fb8862eaa7d772baf1916d0707016f47397c
5,842
py
Python
tuna_service_sdk/model/ops_automation/jobs_pb2.py
easyopsapis/easyops-api-python
adf6e3bad33fa6266b5fa0a449dd4ac42f8447d0
[ "Apache-2.0" ]
5
2019-07-31T04:11:05.000Z
2021-01-07T03:23:20.000Z
tuna_service_sdk/model/ops_automation/jobs_pb2.py
easyopsapis/easyops-api-python
adf6e3bad33fa6266b5fa0a449dd4ac42f8447d0
[ "Apache-2.0" ]
null
null
null
tuna_service_sdk/model/ops_automation/jobs_pb2.py
easyopsapis/easyops-api-python
adf6e3bad33fa6266b5fa0a449dd4ac42f8447d0
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # Generated by the protocol buffer compiler. DO NOT EDIT! # source: jobs.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() from tuna_service_sdk.model.ops_automation import bind_resource_pb2 as tuna__service__sdk_dot_model_dot_ops__automation_dot_bind__resource__pb2 from tuna_service_sdk.model.ops_automation import mail_info_pb2 as tuna__service__sdk_dot_model_dot_ops__automation_dot_mail__info__pb2 DESCRIPTOR = _descriptor.FileDescriptor( name='jobs.proto', package='ops_automation', syntax='proto3', serialized_options=_b('ZHgo.easyops.local/contracts/protorepo-models/easyops/model/ops_automation'), serialized_pb=_b('\n\njobs.proto\x12\x0eops_automation\x1a\x39tuna_service_sdk/model/ops_automation/bind_resource.proto\x1a\x35tuna_service_sdk/model/ops_automation/mail_info.proto\"\xc1\x01\n\x04Jobs\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x10\n\x08\x63\x61tegory\x18\x02 \x01(\t\x12\x0e\n\x06menuId\x18\x03 \x01(\t\x12\x32\n\x0c\x62indResource\x18\x04 \x01(\x0b\x32\x1c.ops_automation.BindResource\x12\x0c\n\x04\x64\x65sc\x18\x05 \x01(\t\x12\x13\n\x0b\x61llowModify\x18\x06 \x01(\x08\x12&\n\x04mail\x18\x07 \x01(\x0b\x32\x18.ops_automation.MailInfo\x12\n\n\x02id\x18\x08 \x01(\tBJZHgo.easyops.local/contracts/protorepo-models/easyops/model/ops_automationb\x06proto3') , dependencies=[tuna__service__sdk_dot_model_dot_ops__automation_dot_bind__resource__pb2.DESCRIPTOR,tuna__service__sdk_dot_model_dot_ops__automation_dot_mail__info__pb2.DESCRIPTOR,]) _JOBS = _descriptor.Descriptor( name='Jobs', full_name='ops_automation.Jobs', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='name', full_name='ops_automation.Jobs.name', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='category', full_name='ops_automation.Jobs.category', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='menuId', full_name='ops_automation.Jobs.menuId', index=2, number=3, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='bindResource', full_name='ops_automation.Jobs.bindResource', index=3, number=4, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='desc', full_name='ops_automation.Jobs.desc', index=4, number=5, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='allowModify', full_name='ops_automation.Jobs.allowModify', index=5, number=6, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='mail', full_name='ops_automation.Jobs.mail', index=6, number=7, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='id', full_name='ops_automation.Jobs.id', index=7, number=8, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=145, serialized_end=338, ) _JOBS.fields_by_name['bindResource'].message_type = tuna__service__sdk_dot_model_dot_ops__automation_dot_bind__resource__pb2._BINDRESOURCE _JOBS.fields_by_name['mail'].message_type = tuna__service__sdk_dot_model_dot_ops__automation_dot_mail__info__pb2._MAILINFO DESCRIPTOR.message_types_by_name['Jobs'] = _JOBS _sym_db.RegisterFileDescriptor(DESCRIPTOR) Jobs = _reflection.GeneratedProtocolMessageType('Jobs', (_message.Message,), { 'DESCRIPTOR' : _JOBS, '__module__' : 'jobs_pb2' # @@protoc_insertion_point(class_scope:ops_automation.Jobs) }) _sym_db.RegisterMessage(Jobs) DESCRIPTOR._options = None # @@protoc_insertion_point(module_scope)
46.365079
669
0.763608
82cf4a09b0f60b8e05747db36b0d8255c97ebe55
51,619
py
Python
python/ccxt/vcc.py
bifot/ccxt
ad4ae3cf79c315719b5b362443059782e0903152
[ "MIT" ]
1
2021-08-02T08:08:52.000Z
2021-08-02T08:08:52.000Z
python/ccxt/vcc.py
bifot/ccxt
ad4ae3cf79c315719b5b362443059782e0903152
[ "MIT" ]
null
null
null
python/ccxt/vcc.py
bifot/ccxt
ad4ae3cf79c315719b5b362443059782e0903152
[ "MIT" ]
1
2021-07-23T05:45:00.000Z
2021-07-23T05:45:00.000Z
# -*- coding: utf-8 -*- # PLEASE DO NOT EDIT THIS FILE, IT IS GENERATED AND WILL BE OVERWRITTEN: # https://github.com/ccxt/ccxt/blob/master/CONTRIBUTING.md#how-to-contribute-code from ccxt.base.exchange import Exchange import hashlib from ccxt.base.errors import ExchangeError from ccxt.base.errors import AuthenticationError from ccxt.base.errors import PermissionDenied from ccxt.base.errors import BadRequest from ccxt.base.errors import BadSymbol from ccxt.base.errors import InsufficientFunds from ccxt.base.errors import AddressPending from ccxt.base.errors import InvalidOrder from ccxt.base.errors import OrderNotFound from ccxt.base.errors import RateLimitExceeded from ccxt.base.errors import RequestTimeout from ccxt.base.decimal_to_precision import ROUND from ccxt.base.precise import Precise class vcc(Exchange): def describe(self): return self.deep_extend(super(vcc, self).describe(), { 'id': 'vcc', 'name': 'VCC Exchange', 'countries': ['VN'], # Vietnam 'rateLimit': 1000, 'version': 'v3', 'has': { 'cancelAllOrders': True, 'cancelOrder': True, 'createOrder': True, 'editOrder': False, 'fetchBalance': True, 'fetchClosedOrders': True, 'fetchCurrencies': True, 'fetchDepositAddress': True, 'fetchDeposits': True, 'fetchMarkets': True, 'fetchMyTrades': True, 'fetchOHLCV': True, 'fetchOpenOrders': True, 'fetchOrder': True, 'fetchOrderBook': True, 'fetchOrders': False, 'fetchTicker': 'emulated', 'fetchTickers': True, 'fetchTrades': True, 'fetchTradingFees': False, 'fetchTransactions': True, 'fetchWithdrawals': True, }, 'timeframes': { '1m': '60000', '5m': '300000', '15m': '900000', '30m': '1800000', '1h': '3600000', '2h': '7200000', '4h': '14400000', '6h': '21600000', '12h': '43200000', '1d': '86400000', '1w': '604800000', }, 'urls': { 'logo': 'https://user-images.githubusercontent.com/1294454/100545356-8427f500-326c-11eb-9539-7d338242d61b.jpg', 'api': { 'public': 'https://api.vcc.exchange', 'private': 'https://api.vcc.exchange', }, 'www': 'https://vcc.exchange', 'doc': [ 'https://vcc.exchange/api', ], 'fees': 'https://support.vcc.exchange/hc/en-us/articles/360016401754', 'referral': 'https://vcc.exchange?ref=l4xhrH', }, 'api': { 'public': { 'get': [ 'summary', 'exchange_info', 'assets', # Available Currencies 'ticker', # Ticker list for all symbols 'trades/{market_pair}', # Recent trades 'orderbook/{market_pair}', # Orderbook 'chart/bars', # Candles 'tick_sizes', ], }, 'private': { 'get': [ 'user', 'balance', # Get trading balance 'orders/{order_id}', # Get a single order by order_id 'orders/open', # Get open orders 'orders', # Get closed orders 'orders/trades', # Get trades history 'deposit-address', # Generate or get deposit address 'transactions', # Get deposit/withdrawal history ], 'post': [ 'orders', # Create new order ], 'put': [ 'orders/{order_id}/cancel', # Cancel order 'orders/cancel-by-type', 'orders/cancel-all', ], }, }, 'fees': { 'trading': { 'tierBased': False, 'percentage': True, 'maker': 0.2 / 100, 'taker': 0.2 / 100, }, }, 'exceptions': { 'exact': {}, 'broad': { 'limit may not be greater than': BadRequest, # {"message":"The given data was invalid.","errors":{"limit":["The limit may not be greater than 1000."]}} 'Insufficient balance': InsufficientFunds, # {"message":"Insufficient balance."} 'Unauthenticated': AuthenticationError, # {"message":"Unauthenticated."} # wrong api key 'signature is invalid': AuthenticationError, # {"message":"The given data was invalid.","errors":{"signature":["HMAC signature is invalid"]}} 'Timeout': RequestTimeout, # {"code":504,"message":"Gateway Timeout","description":""} 'Too many requests': RateLimitExceeded, # {"code":429,"message":"Too many requests","description":"Too many requests"} 'quantity field is required': InvalidOrder, # {"message":"The given data was invalid.","errors":{"quantity":["The quantity field is required when type is market."]}} 'price field is required': InvalidOrder, # {"message":"The given data was invalid.","errors":{"price":["The price field is required when type is limit."]}} 'error_security_level': PermissionDenied, # {"message":"error_security_level"} 'pair is invalid': BadSymbol, # {"message":"The given data was invalid.","errors":{"coin":["Trading pair is invalid","Trading pair is offline"]}} # {"message":"The given data was invalid.","errors":{"type":["The selected type is invalid."]}} # {"message":"The given data was invalid.","errors":{"trade_type":["The selected trade type is invalid."]}} 'type is invalid': InvalidOrder, 'Data not found': OrderNotFound, # {"message":"Data not found"} }, }, }) def fetch_markets(self, params={}): response = self.publicGetExchangeInfo(params) # # { # "message":null, # "dataVersion":"4677e56a42f0c29872f3a6e75f5d39d2f07c748c", # "data":{ # "timezone":"UTC", # "serverTime":1605821914333, # "symbols":[ # { # "id":"btcvnd", # "symbol":"BTC\/VND", # "coin":"btc", # "currency":"vnd", # "baseId":1, # "quoteId":0, # "active":true, # "base_precision":"0.0000010000", # "quote_precision":"1.0000000000", # "minimum_quantity":"0.0000010000", # "minimum_amount":"250000.0000000000", # "precision":{"price":0,"amount":6,"cost":6}, # "limits":{ # "amount":{"min":"0.0000010000"}, # "price":{"min":"1.0000000000"}, # "cost":{"min":"250000.0000000000"}, # }, # }, # ], # }, # } # data = self.safe_value(response, 'data') markets = self.safe_value(data, 'symbols') result = [] for i in range(0, len(markets)): market = self.safe_value(markets, i) symbol = self.safe_string(market, 'symbol') id = symbol.replace('/', '_') baseId = self.safe_string(market, 'coin') quoteId = self.safe_string(market, 'currency') base = self.safe_currency_code(baseId) quote = self.safe_currency_code(quoteId) active = self.safe_value(market, 'active') precision = self.safe_value(market, 'precision', {}) limits = self.safe_value(market, 'limits', {}) amountLimits = self.safe_value(limits, 'amount', {}) priceLimits = self.safe_value(limits, 'price', {}) costLimits = self.safe_value(limits, 'cost', {}) entry = { 'info': market, 'id': id, 'symbol': symbol, 'base': base, 'quote': quote, 'baseId': baseId, 'quoteId': quoteId, 'active': active, 'precision': { 'price': self.safe_integer(precision, 'price'), 'amount': self.safe_integer(precision, 'amount'), 'cost': self.safe_integer(precision, 'cost'), }, 'limits': { 'amount': { 'min': self.safe_number(amountLimits, 'min'), 'max': None, }, 'price': { 'min': self.safe_number(priceLimits, 'min'), 'max': None, }, 'cost': { 'min': self.safe_number(costLimits, 'min'), 'max': None, }, }, } result.append(entry) return result def fetch_currencies(self, params={}): response = self.publicGetAssets(params) # # { # "message":null, # "dataVersion":"2514c8012d94ea375018fc13e0b5d4d896e435df", # "data":{ # "BTC":{ # "name":"Bitcoin", # "unified_cryptoasset_id":1, # "can_withdraw":1, # "can_deposit":1, # "min_withdraw":"0.0011250000", # "max_withdraw":"100.0000000000", # "maker_fee":"0.002", # "taker_fee":"0.002", # "decimal":8, # "withdrawal_fee":"0.0006250000", # }, # }, # } # result = {} data = self.safe_value(response, 'data') ids = list(data.keys()) for i in range(0, len(ids)): id = self.safe_string_lower(ids, i) currency = self.safe_value(data, ids[i]) code = self.safe_currency_code(id) canDeposit = self.safe_value(currency, 'can_deposit') canWithdraw = self.safe_value(currency, 'can_withdraw') active = (canDeposit and canWithdraw) result[code] = { 'id': id, 'code': code, 'name': self.safe_string(currency, 'name'), 'active': active, 'fee': self.safe_number(currency, 'withdrawal_fee'), 'precision': self.safe_integer(currency, 'decimal'), 'limits': { 'withdraw': { 'min': self.safe_number(currency, 'min_withdraw'), 'max': self.safe_number(currency, 'max_withdraw'), }, }, } return result def fetch_trading_fee(self, symbol, params={}): self.load_markets() market = self.market(symbol) request = self.extend({ 'symbol': market['id'], }, self.omit(params, 'symbol')) response = self.privateGetTradingFeeSymbol(request) # # { # takeLiquidityRate: '0.001', # provideLiquidityRate: '-0.0001' # } # return { 'info': response, 'maker': self.safe_number(response, 'provideLiquidityRate'), 'taker': self.safe_number(response, 'takeLiquidityRate'), } def fetch_balance(self, params={}): self.load_markets() response = self.privateGetBalance(params) # # { # "message":null, # "dataVersion":"7168e6c99e90f60673070944d987988eef7d91fa", # "data":{ # "vnd":{"balance":0,"available_balance":0}, # "btc":{"balance":0,"available_balance":0}, # "eth":{"balance":0,"available_balance":0}, # }, # } # data = self.safe_value(response, 'data') result = { 'info': response, 'timestamp': None, 'datetime': None, } currencyIds = list(data.keys()) for i in range(0, len(currencyIds)): currencyId = currencyIds[i] code = self.safe_currency_code(currencyId) balance = self.safe_value(data, currencyId) account = self.account() account['free'] = self.safe_string(balance, 'available_balance') account['total'] = self.safe_string(balance, 'balance') result[code] = account return self.parse_balance(result) def parse_ohlcv(self, ohlcv, market=None): # # { # "low":"415805323.0000000000", # "high":"415805323.0000000000", # "open":"415805323.0000000000", # "close":"415805323.0000000000", # "time":"1605845940000", # "volume":"0.0065930000", # "opening_time":1605845963263, # "closing_time":1605845963263 # } # return [ self.safe_integer(ohlcv, 'time'), self.safe_number(ohlcv, 'open'), self.safe_number(ohlcv, 'high'), self.safe_number(ohlcv, 'low'), self.safe_number(ohlcv, 'close'), self.safe_number(ohlcv, 'volume'), ] def fetch_ohlcv(self, symbol, timeframe='1m', since=None, limit=None, params={}): self.load_markets() market = self.market(symbol) request = { 'coin': market['baseId'], 'currency': market['quoteId'], 'resolution': self.timeframes[timeframe], } limit = 100 if (limit is None) else limit limit = min(100, limit) duration = self.parse_timeframe(timeframe) if since is None: end = self.seconds() request['to'] = end request['from'] = end - limit * duration else: start = int(since / 1000) request['from'] = start request['to'] = self.sum(start, limit * duration) response = self.publicGetChartBars(self.extend(request, params)) # # [ # {"low":"415805323.0000000000","high":"415805323.0000000000","open":"415805323.0000000000","close":"415805323.0000000000","time":"1605845940000","volume":"0.0065930000","opening_time":1605845963263,"closing_time":1605845963263}, # {"low":"416344148.0000000000","high":"416344148.0000000000","open":"415805323.0000000000","close":"416344148.0000000000","time":"1605846000000","volume":"0.0052810000","opening_time":1605846011490,"closing_time":1605846011490}, # {"low":"416299269.0000000000","high":"417278376.0000000000","open":"416344148.0000000000","close":"417278376.0000000000","time":"1605846060000","volume":"0.0136750000","opening_time":1605846070727,"closing_time":1605846102282}, # ] # return self.parse_ohlcvs(response, market, timeframe, since, limit) def fetch_order_book(self, symbol, limit=None, params={}): self.load_markets() market = self.market(symbol) request = { 'market_pair': market['id'], # 'depth': 0, # 0 = full orderbook, 5, 10, 20, 50, 100, 500 'level': 2, # 1 = best bidask, 2 = aggregated by price, 3 = no aggregation } if limit is not None: if (limit != 0) and (limit != 5) and (limit != 10) and (limit != 20) and (limit != 50) and (limit != 100) and (limit != 500): raise BadRequest(self.id + ' fetchOrderBook limit must be 0, 5, 10, 20, 50, 100, 500 if specified') request['depth'] = limit response = self.publicGetOrderbookMarketPair(self.extend(request, params)) # # { # "message":null, # "dataVersion":"376cee43af26deabcd3762ab11a876b6e7a71e82", # "data":{ # "bids":[ # ["413342637.0000000000","0.165089"], # ["413274576.0000000000","0.03"], # ["413274574.0000000000","0.03"], # ], # "asks":[ # ["416979125.0000000000","0.122835"], # ["417248934.0000000000","0.030006"], # ["417458879.0000000000","0.1517"], # ], # "timestamp":"1605841619147" # } # } # data = self.safe_value(response, 'data') timestamp = self.safe_value(data, 'timestamp') return self.parse_order_book(data, symbol, timestamp, 'bids', 'asks', 0, 1) def parse_ticker(self, ticker, market=None): # # { # "base_id":1, # "quote_id":0, # "last_price":"411119457", # "max_price":"419893173.0000000000", # "min_price":"401292577.0000000000", # "open_price":null, # "base_volume":"10.5915050000", # "quote_volume":"4367495977.4484430060", # "isFrozen":0 # } # timestamp = self.milliseconds() baseVolume = self.safe_number(ticker, 'base_volume') quoteVolume = self.safe_number(ticker, 'quote_volume') open = self.safe_number(ticker, 'open_price') last = self.safe_number(ticker, 'last_price') change = None percentage = None average = None if last is not None and open is not None: change = last - open average = self.sum(last, open) / 2 if open > 0: percentage = change / open * 100 vwap = self.vwap(baseVolume, quoteVolume) symbol = None if (market is None) else market['symbol'] return { 'symbol': symbol, 'timestamp': timestamp, 'datetime': self.iso8601(timestamp), 'high': self.safe_number(ticker, 'max_price'), 'low': self.safe_number(ticker, 'min_price'), 'bid': self.safe_number(ticker, 'bid'), 'bidVolume': None, 'ask': self.safe_number(ticker, 'ask'), 'askVolume': None, 'vwap': vwap, 'open': open, 'close': last, 'last': last, 'previousClose': None, 'change': change, 'percentage': percentage, 'average': average, 'baseVolume': baseVolume, 'quoteVolume': quoteVolume, 'info': ticker, } def fetch_tickers(self, symbols=None, params={}): self.load_markets() response = self.publicGetTicker(params) # # { # "message":null, # "dataVersion":"fc521161aebe506178b8588cd2adb598eaf1018e", # "data":{ # "BTC_VND":{ # "base_id":1, # "quote_id":0, # "last_price":"411119457", # "max_price":"419893173.0000000000", # "min_price":"401292577.0000000000", # "open_price":null, # "base_volume":"10.5915050000", # "quote_volume":"4367495977.4484430060", # "isFrozen":0 # }, # } # } # result = {} data = self.safe_value(response, 'data') marketIds = list(data.keys()) for i in range(0, len(marketIds)): marketId = marketIds[i] market = self.safe_market(marketId, None, '_') symbol = market['symbol'] result[symbol] = self.parse_ticker(data[marketId], market) return self.filter_by_array(result, 'symbol', symbols) def parse_trade(self, trade, market=None): # # public fetchTrades # # { # "trade_id":181509285, # "price":"415933022.0000000000", # "base_volume":"0.0022080000", # "quote_volume":"918380.1125760000", # "trade_timestamp":1605842150357, # "type":"buy", # } # # private fetchMyTrades # # { # "trade_type":"sell", # "fee":"0.0610578086", # "id":1483372, # "created_at":1606581578368, # "currency":"usdt", # "coin":"btc", # "price":"17667.1900000000", # "quantity":"0.0017280000", # "amount":"30.5289043200", # } # timestamp = self.safe_integer_2(trade, 'trade_timestamp', 'created_at') baseId = self.safe_string_upper(trade, 'coin') quoteId = self.safe_string_upper(trade, 'currency') marketId = None if (baseId is not None) and (quoteId is not None): marketId = baseId + '_' + quoteId market = self.safe_market(marketId, market, '_') symbol = market['symbol'] priceString = self.safe_string(trade, 'price') amountString = self.safe_string_2(trade, 'base_volume', 'quantity') price = self.parse_number(priceString) amount = self.parse_number(amountString) cost = self.safe_number_2(trade, 'quote_volume', 'amount') if cost is None: cost = self.parse_number(Precise.string_mul(priceString, amountString)) side = self.safe_string_2(trade, 'type', 'trade_type') id = self.safe_string_2(trade, 'trade_id', 'id') feeCost = self.safe_number(trade, 'fee') fee = None if feeCost is not None: fee = { 'cost': feeCost, 'currency': market['quote'], } return { 'info': trade, 'id': id, 'order': None, 'timestamp': timestamp, 'datetime': self.iso8601(timestamp), 'symbol': symbol, 'type': None, 'side': side, 'takerOrMaker': None, 'price': price, 'amount': amount, 'cost': cost, 'fee': fee, } def fetch_trades(self, symbol, since=None, limit=None, params={}): self.load_markets() market = self.market(symbol) request = { 'market_pair': market['id'], # 'type': 'buy', # 'sell' # 'count': limit, # default 500, max 1000 } if limit is not None: request['count'] = min(1000, limit) response = self.publicGetTradesMarketPair(self.extend(request, params)) # # { # "message":null, # "dataVersion":"1f811b533143f739008a3e4ecaaab2ec82ea50d4", # "data":[ # { # "trade_id":181509285, # "price":"415933022.0000000000", # "base_volume":"0.0022080000", # "quote_volume":"918380.1125760000", # "trade_timestamp":1605842150357, # "type":"buy", # }, # ], # } # data = self.safe_value(response, 'data') return self.parse_trades(data, market, since, limit) def fetch_transactions(self, code=None, since=None, limit=None, params={}): self.load_markets() request = { # 'type': type, # 'deposit', 'withdraw' # 'start': int(since / 1000), # 'end': self.seconds(), } currency = None if code is not None: currency = self.currency(code) request['currency'] = currency['id'] if limit is not None: request['limit'] = min(1000, limit) if since is not None: request['start'] = since response = self.privateGetTransactions(self.extend(request, params)) # # { # "message":null, # "dataVersion":"1fdfb0ec85b666871d62fe59d098d01839b05e97", # "data":{ # "current_page":1, # "data":[ # { # "id":85391, # "user_id":253063, # "transaction_id":"0x885719cee5910ca509a223d208797510e80eb27a2f1d51a71bb4ccb82d538131", # "internal_transaction_id":null, # "temp_transaction_id":"2367", # "currency":"usdt", # "amount":"30.0000000000", # "btc_amount":"0.0000000000", # "usdt_amount":"0.0000000000", # "fee":"0.0000000000", # "tx_cost":"0.0000000000", # "confirmation":0, # "deposit_code":null, # "status":"success", # "bank_name":null, # "foreign_bank_account":null, # "foreign_bank_account_holder":null, # "blockchain_address":"0xd54b84AD27E4c4a8C9E0b2b53701DeFc728f6E44", # "destination_tag":null, # "error_detail":null, # "refunded":"0.0000000000", # "transaction_date":"2020-11-28", # "transaction_timestamp":"1606563143.959", # "created_at":1606563143959, # "updated_at":1606563143959, # "transaction_email_timestamp":0, # "network":null, # "collect_tx_id":null, # "collect_id":null # } # ], # "first_page_url":"http:\/\/api.vcc.exchange\/v3\/transactions?page=1", # "from":1, # "last_page":1, # "last_page_url":"http:\/\/api.vcc.exchange\/v3\/transactions?page=1", # "next_page_url":null, # "path":"http:\/\/api.vcc.exchange\/v3\/transactions", # "per_page":10, # "prev_page_url":null, # "to":1, # "total":1 # } # } # data = self.safe_value(response, 'data', {}) data = self.safe_value(data, 'data', []) return self.parse_transactions(data, currency, since, limit) def fetch_deposits(self, code=None, since=None, limit=None, params={}): request = {'type': 'deposit'} return self.fetch_transactions(code, since, limit, self.extend(request, params)) def fetch_withdrawals(self, code=None, since=None, limit=None, params={}): request = {'type': 'withdraw'} return self.fetch_transactions(code, since, limit, self.extend(request, params)) def parse_transaction(self, transaction, currency=None): # # fetchTransactions, fetchDeposits, fetchWithdrawals # # { # "id":85391, # "user_id":253063, # "transaction_id":"0x885719cee5910ca509a223d208797510e80eb27a2f1d51a71bb4ccb82d538131", # "internal_transaction_id":null, # "temp_transaction_id":"2367", # "currency":"usdt", # "amount":"30.0000000000", # "btc_amount":"0.0000000000", # "usdt_amount":"0.0000000000", # "fee":"0.0000000000", # "tx_cost":"0.0000000000", # "confirmation":0, # "deposit_code":null, # "status":"success", # "bank_name":null, # "foreign_bank_account":null, # "foreign_bank_account_holder":null, # "blockchain_address":"0xd54b84AD27E4c4a8C9E0b2b53701DeFc728f6E44", # "destination_tag":null, # "error_detail":null, # "refunded":"0.0000000000", # "transaction_date":"2020-11-28", # "transaction_timestamp":"1606563143.959", # "created_at":1606563143959, # "updated_at":1606563143959, # "transaction_email_timestamp":0, # "network":null, # "collect_tx_id":null, # "collect_id":null # } # id = self.safe_string(transaction, 'id') timestamp = self.safe_integer(transaction, 'created_at') updated = self.safe_integer(transaction, 'updated_at') currencyId = self.safe_string(transaction, 'currency') code = self.safe_currency_code(currencyId, currency) status = self.parse_transaction_status(self.safe_string(transaction, 'status')) amount = self.safe_number(transaction, 'amount') if amount is not None: amount = abs(amount) address = self.safe_string(transaction, 'blockchain_address') txid = self.safe_string(transaction, 'transaction_id') tag = self.safe_string(transaction, 'destination_tag') fee = None feeCost = self.safe_number(transaction, 'fee') if feeCost is not None: fee = { 'cost': feeCost, 'currency': code, } type = amount > 'deposit' if 0 else 'withdrawal' return { 'info': transaction, 'id': id, 'txid': txid, 'timestamp': timestamp, 'datetime': self.iso8601(timestamp), 'address': address, 'addressTo': address, 'addressFrom': None, 'tag': tag, 'tagTo': tag, 'tagFrom': None, 'type': type, 'amount': amount, 'currency': code, 'status': status, 'updated': updated, 'fee': fee, } def parse_transaction_status(self, status): statuses = { 'pending': 'pending', 'error': 'failed', 'success': 'ok', 'cancel': 'canceled', } return self.safe_string(statuses, status, status) def parse_transaction_type(self, type): types = { 'deposit': 'deposit', 'withdraw': 'withdrawal', } return self.safe_string(types, type, type) def cost_to_precision(self, symbol, cost): return self.decimal_to_precision(cost, ROUND, self.markets[symbol]['precision']['cost'], self.precisionMode, self.paddingMode) def create_order(self, symbol, type, side, amount, price=None, params={}): self.load_markets() market = self.market(symbol) request = { 'coin': market['baseId'], 'currency': market['quoteId'], 'trade_type': side, 'type': type, } if type == 'ceiling_market': ceiling = self.safe_value(params, 'ceiling') if ceiling is not None: request['ceiling'] = self.cost_to_precision(symbol, ceiling) elif price is not None: request['ceiling'] = self.cost_to_precision(symbol, amount * price) else: raise InvalidOrder(self.id + ' createOrder() requires a price argument or a ceiling parameter for ' + type + ' orders') else: request['quantity'] = self.amount_to_precision(symbol, amount) if type == 'limit': request['price'] = self.price_to_precision(symbol, price) stopPrice = self.safe_value_2(params, 'stop_price', 'stopPrice') if stopPrice is not None: request['is_stop'] = 1 request['stop_condition'] = 'le' if (side == 'buy') else 'ge' # ge = greater than or equal, le = less than or equal request['stop_price'] = self.price_to_precision(symbol, price) params = self.omit(params, ['stop_price', 'stopPrice']) response = self.privatePostOrders(self.extend(request, params)) # # ceiling_market order # # { # "message":null, # "dataVersion":"213fc0d433f38307f736cae1cbda4cc310469b7a", # "data":{ # "coin":"btc", # "currency":"usdt", # "trade_type":"buy", # "type":"ceiling_market", # "ceiling":"30", # "user_id":253063, # "email":"igor.kroitor@gmail.com", # "side":"buy", # "quantity":"0.00172800", # "status":"pending", # "fee":0, # "created_at":1606571333035, # "updated_at":1606571333035, # "instrument_symbol":"BTCUSDT", # "remaining":"0.00172800", # "fee_rate":"0.002", # "id":88214435 # } # } # # limit order # # { # "message":null, # "dataVersion":"d9b1159d2bcefa2388be156e32ddc7cc324400ee", # "data":{ # "id":41230, # "trade_type":"sell", # "type":"limit", # "quantity":"1", # "price":"14.99", # "currency":"usdt", # "coin":"neo", # "status":"pending", # "is_stop": "1", # "stop_price": "13", # "stop_condition": "ge", # "fee":0, # "created_at":1560244052168, # "updated_at":1560244052168 # } # } # data = self.safe_value(response, 'data') return self.parse_order(data, market) def cancel_order(self, id, symbol=None, params={}): self.load_markets() request = { 'order_id': id, } response = self.privatePutOrdersOrderIdCancel(self.extend(request, params)) return self.parse_order(response) def cancel_all_orders(self, symbol=None, params={}): type = self.safe_string(params, 'type') method = 'privatePutOrdersCancelAll' if (type is None) else 'privatePutOrdersCancelByType' request = {} if type is not None: request['type'] = type self.load_markets() response = getattr(self, method)(self.extend(request, params)) # # { # "dataVersion":"6d72fb82a9c613c8166581a887e1723ce5a937ff", # "data":{ # "data":[ # { # "id":410, # "trade_type":"sell", # "currency":"usdt", # "coin":"neo", # "type":"limit", # "quantity":"1.0000000000", # "price":"14.9900000000", # "executed_quantity":"0.0000000000", # "executed_price":"0.0000000000", # "fee":"0.0000000000", # "status":"canceled", # "created_at":1560244052168, # "updated_at":1560244052168, # }, # ], # }, # } # data = self.safe_value(response, 'data', {}) data = self.safe_value(response, 'data', []) return self.parse_orders(data) def parse_order_status(self, status): statuses = { 'pending': 'open', 'stopping': 'open', 'executing': 'open', 'executed': 'closed', 'canceled': 'canceled', } return self.safe_string(statuses, status, status) def parse_order(self, order, market=None): # # ceiling_market # # { # "coin":"btc", # "currency":"usdt", # "trade_type":"buy", # "type":"ceiling_market", # "ceiling":"30", # "user_id":253063, # "email":"igor.kroitor@gmail.com", # "side":"buy", # "quantity":"0.00172800", # "status":"pending", # "fee":0, # "created_at":1606571333035, # "updated_at":1606571333035, # "instrument_symbol":"BTCUSDT", # "remaining":"0.00172800", # "fee_rate":"0.002", # "id":88214435 # } # # limit order # # { # "id":41230, # "trade_type":"sell", # "type":"limit", # "quantity":"1", # "price":"14.99", # "currency":"usdt", # "coin":"neo", # "status":"pending", # "is_stop": "1", # "stop_price": "13", # "stop_condition": "ge", # "fee":0, # "created_at":1560244052168, # "updated_at":1560244052168 # } # created = self.safe_value(order, 'created_at') updated = self.safe_value(order, 'updated_at') baseId = self.safe_string_upper(order, 'coin') quoteId = self.safe_string_upper(order, 'currency') marketId = baseId + '_' + quoteId market = self.safe_market(marketId, market, '_') symbol = market['symbol'] amount = self.safe_number(order, 'quantity') filled = self.safe_number(order, 'executed_quantity') status = self.parse_order_status(self.safe_string(order, 'status')) cost = self.safe_number(order, 'ceiling') id = self.safe_string(order, 'id') price = self.safe_number(order, 'price') average = self.safe_number(order, 'executed_price') remaining = self.safe_number(order, 'remaining') type = self.safe_string(order, 'type') side = self.safe_string(order, 'trade_type') fee = { 'currency': market['quote'], 'cost': self.safe_number(order, 'fee'), 'rate': self.safe_number(order, 'fee_rate'), } lastTradeTimestamp = None if updated != created: lastTradeTimestamp = updated stopPrice = self.safe_number(order, 'stopPrice') return self.safe_order({ 'id': id, 'clientOrderId': id, 'timestamp': created, 'datetime': self.iso8601(created), 'lastTradeTimestamp': lastTradeTimestamp, 'status': status, 'symbol': symbol, 'type': type, 'timeInForce': None, 'postOnly': None, 'side': side, 'price': price, 'stopPrice': stopPrice, 'average': average, 'amount': amount, 'cost': cost, 'filled': filled, 'remaining': remaining, 'fee': fee, 'trades': None, 'info': order, }) def fetch_order(self, id, symbol=None, params={}): self.load_markets() request = { 'order_id': id, } response = self.privateGetOrdersOrderId(self.extend(request, params)) # # { # "message":null, # "dataVersion":"57448aa1fb8f227254e8e2e925b3ade8e1e5bbef", # "data":{ # "id":88265741, # "user_id":253063, # "email":"igor.kroitor@gmail.com", # "updated_at":1606581578141, # "created_at":1606581578141, # "coin":"btc", # "currency":"usdt", # "type":"market", # "trade_type":"sell", # "executed_price":"17667.1900000000", # "price":null, # "executed_quantity":"0.0017280000", # "quantity":"0.0017280000", # "fee":"0.0610578086", # "status":"executed", # "is_stop":0, # "stop_condition":null, # "stop_price":null, # "ceiling":null # } # } # data = self.safe_value(response, 'data') return self.parse_order(data) def fetch_orders_with_method(self, method, symbol=None, since=None, limit=None, params={}): self.load_markets() request = { # 'page': 1, # 'limit': limit, # max 1000 # 'start_date': since, # 'end_date': self.milliseconds(), # 'currency': market['quoteId'], # 'coin': market['baseId'], # 'trade_type': 'buy', # or 'sell' # 'hide_canceled': 0, # 1 to exclude canceled orders } market = None if symbol is not None: market = self.market(symbol) request['coin'] = market['baseId'] request['currency'] = market['quoteId'] if since is not None: request['start_date'] = since if limit is not None: request['limit'] = min(1000, limit) # max 1000 response = getattr(self, method)(self.extend(request, params)) # # { # "message":null, # "dataVersion":"89aa11497f23fdd34cf9de9c55acfad863c78780", # "data":{ # "current_page":1, # "data":[ # { # "id":88489678, # "email":"igor.kroitor@gmail.com", # "updated_at":1606628593567, # "created_at":1606628593567, # "coin":"btc", # "currency":"usdt", # "type":"limit", # "trade_type":"buy", # "executed_price":"0.0000000000", # "price":"10000.0000000000", # "executed_quantity":"0.0000000000", # "quantity":"0.0010000000", # "fee":"0.0000000000", # "status":"pending", # "is_stop":0, # "stop_condition":null, # "stop_price":null, # "ceiling":null, # }, # ], # "first_page_url":"http:\/\/api.vcc.exchange\/v3\/orders\/open?page=1", # "from":1, # "last_page":1, # "last_page_url":"http:\/\/api.vcc.exchange\/v3\/orders\/open?page=1", # "next_page_url":null, # "path":"http:\/\/api.vcc.exchange\/v3\/orders\/open", # "per_page":10, # "prev_page_url":null, # "to":1, # "total":1, # }, # } # data = self.safe_value(response, 'data', {}) data = self.safe_value(data, 'data', []) return self.parse_orders(data, market, since, limit) def fetch_open_orders(self, symbol=None, since=None, limit=None, params={}): return self.fetch_orders_with_method('privateGetOrdersOpen', symbol, since, limit, params) def fetch_closed_orders(self, symbol=None, since=None, limit=None, params={}): return self.fetch_orders_with_method('privateGetOrders', symbol, since, limit, params) def fetch_my_trades(self, symbol=None, since=None, limit=None, params={}): self.load_markets() request = { # 'page': 1, # 'limit': limit, # max 1000 # 'start_date': since, # 'end_date': self.milliseconds(), # 'currency': market['quoteId'], # 'coin': market['baseId'], # 'trade_type': 'buy', # or 'sell' } market = None if symbol is not None: market = self.market(symbol) request['coin'] = market['baseId'] request['currency'] = market['quoteId'] if since is not None: request['start_date'] = since if limit is not None: request['limit'] = min(1000, limit) # max 1000 response = self.privateGetOrdersTrades(self.extend(request, params)) # # { # "message":null, # "dataVersion":"eb890af684cf84e20044e9a9771b96302e7b8dec", # "data":{ # "current_page":1, # "data":[ # { # "trade_type":"sell", # "fee":"0.0610578086", # "id":1483372, # "created_at":1606581578368, # "currency":"usdt", # "coin":"btc", # "price":"17667.1900000000", # "quantity":"0.0017280000", # "amount":"30.5289043200", # }, # ], # "first_page_url":"http:\/\/api.vcc.exchange\/v3\/orders\/trades?page=1", # "from":1, # "last_page":1, # "last_page_url":"http:\/\/api.vcc.exchange\/v3\/orders\/trades?page=1", # "next_page_url":null, # "path":"http:\/\/api.vcc.exchange\/v3\/orders\/trades", # "per_page":10, # "prev_page_url":null, # "to":2, # "total":2, # }, # } # data = self.safe_value(response, 'data', {}) data = self.safe_value(data, 'data', []) return self.parse_trades(data, market, since, limit) def fetch_deposit_address(self, code, params={}): self.load_markets() currency = self.currency(code) request = { 'currency': currency['id'], } response = self.privateGetDepositAddress(self.extend(request, params)) # # { # "dataVersion":"6d72fb82a9c613c8166581a887e1723ce5a937ff", # "data":{ # "status": "REQUESTED", # "blockchain_address": "", # "currency": "btc" # } # } # # { # "dataVersion":"6d72fb82a9c613c8166581a887e1723ce5a937ff", # "data":{ # "status": "PROVISIONED", # "blockchain_address": "rPVMhWBsfF9iMXYj3aAzJVkPDTFNSyWdKy", # "blockchain_tag": "920396135", # "currency": "xrp" # } # } # data = self.safe_value(response, 'data') status = self.safe_string(data, 'status') if status == 'REQUESTED': raise AddressPending(self.id + ' is generating ' + code + ' deposit address, call fetchDepositAddress one more time later to retrieve the generated address') address = self.safe_string(data, 'blockchain_address') self.check_address(address) tag = self.safe_string(data, 'blockchain_tag') currencyId = self.safe_string(data, 'currency') return { 'currency': self.safe_currency_code(currencyId), 'address': address, 'tag': tag, 'info': data, } def sign(self, path, api='public', method='GET', params={}, headers=None, body=None): url = self.version + '/' + self.implode_params(path, params) query = self.omit(params, self.extract_params(path)) if query: url += '?' + self.urlencode(query) if api == 'private': self.check_required_credentials() timestamp = str(self.milliseconds()) if method != 'GET': body = self.json(query) auth = method + ' ' + url signature = self.hmac(self.encode(auth), self.encode(self.secret), hashlib.sha256) headers = { 'Authorization': 'Bearer ' + self.apiKey, 'Content-Type': 'application/json', 'timestamp': timestamp, 'signature': signature, } url = self.urls['api'][api] + '/' + url return {'url': url, 'method': method, 'body': body, 'headers': headers} def handle_errors(self, code, reason, url, method, headers, body, response, requestHeaders, requestBody): if response is None: return # # {"message":"Insufficient balance."} # {"message":"Unauthenticated."} # wrong api key # {"message":"The given data was invalid.","errors":{"signature":["HMAC signature is invalid"]}} # {"code":504,"message":"Gateway Timeout","description":""} # {"code":429,"message":"Too many requests","description":"Too many requests"} # message = self.safe_string(response, 'message') if message is not None: feedback = self.id + ' ' + body self.throw_exactly_matched_exception(self.exceptions['exact'], message, feedback) self.throw_broadly_matched_exception(self.exceptions['broad'], body, feedback) raise ExchangeError(feedback)
41.594682
245
0.465759
47a8543b438944ff8edf4d9866bd563805a2a7db
1,307
py
Python
toThingspeak.py
ichsankurnia/BAMS.BBTA3
2c7aed514b66d8700f7f33a4b959a0aaf897868d
[ "MIT" ]
null
null
null
toThingspeak.py
ichsankurnia/BAMS.BBTA3
2c7aed514b66d8700f7f33a4b959a0aaf897868d
[ "MIT" ]
null
null
null
toThingspeak.py
ichsankurnia/BAMS.BBTA3
2c7aed514b66d8700f7f33a4b959a0aaf897868d
[ "MIT" ]
null
null
null
import time import os import sys import urllib # URL functions import urllib2 # URL functions import random ################# Default Constants ################# # These can be changed if required THINGSPEAKKEY = 'HCRR3NJG1RWYZ6CY' THINGSPEAKURL = 'https://api.thingspeak.com/update' def sendData(url,key,field1,field2,temp,pres): """ Send event to internet site """ values = {'api_key' : key,'field1' : temp,'field2' : pres} postdata = urllib.urlencode(values) req = urllib2.Request(url, postdata) response = urllib2.urlopen(req, None, 5) html_string = response.read() response.close() try: # Send data to Thingspeak response = urllib2.urlopen(req, None, 5) html_string = response.read() response.close() log = log + 'Update ' + html_string except urllib2.HTTPError, e: log = log + 'Server could not fulfill the request. Error code: ' + e.code except urllib2.URLError, e: log = log + 'Failed to reach server. Reason: ' + e.reason except: log = log + 'Unknown error' print log def main(): while True: temperature = random.randint(0,100) pressure = random.randint(0,1000) sendData(THINGSPEAKURL,THINGSPEAKKEY,'field1','field2',temperature,pressure) sys.stdout.flush() if __name__=="__main__": main()
25.134615
82
0.664116
ff4bb5601f14c3fa833a1bb836cfdcc459c7375a
1,178
py
Python
wallet/mywallet/forms.py
Shpilevskiy/automatic-couscous
e0ebbe9338884f017fbeae495a083bd27f6c9354
[ "MIT" ]
null
null
null
wallet/mywallet/forms.py
Shpilevskiy/automatic-couscous
e0ebbe9338884f017fbeae495a083bd27f6c9354
[ "MIT" ]
null
null
null
wallet/mywallet/forms.py
Shpilevskiy/automatic-couscous
e0ebbe9338884f017fbeae495a083bd27f6c9354
[ "MIT" ]
null
null
null
from django import forms from .models import Wallet from crispy_forms.helper import FormHelper from crispy_forms.layout import Layout, Button from crispy_forms.bootstrap import Field, FormActions class AddOperationForm(forms.Form): title = forms.CharField(label='Title', required=True) sum = forms.FloatField(label='Sum', required=True) wallets = forms.ChoiceField(label='Wallets', required=True) code = forms.ChoiceField(label='Codes', required=True) date = forms.DateField(widget=forms.TextInput(attrs={'type': 'date'})) helper = FormHelper() helper.form_id = 'id-add-operation-form' helper.form_method = 'POST' helper.form_class = 'form-horizontal, form-group' helper.form_show_labels = False # helper.form_action = '/add-operation/' helper.layout = Layout( Field('title', placeholder='Title', css_class='form-control'), Field('sum', placeholder='Sum', css_class='form-control'), Field('wallets', css_class='form-control'), Field('code', css_class='form-control'), Field('date', css_class='form-control'), FormActions(Button('Add', 'add', css_class='btn, btn-primary')) )
40.62069
74
0.696944
d8bfe09d7b0185aebd009c98380c574651bc8ad3
1,098
py
Python
bootstrapvz/providers/ec2/tasks/host.py
null0000/bootstrap-vz
003cdd9808bac90383b4c46738507bd7e1daa268
[ "Apache-2.0" ]
null
null
null
bootstrapvz/providers/ec2/tasks/host.py
null0000/bootstrap-vz
003cdd9808bac90383b4c46738507bd7e1daa268
[ "Apache-2.0" ]
null
null
null
bootstrapvz/providers/ec2/tasks/host.py
null0000/bootstrap-vz
003cdd9808bac90383b4c46738507bd7e1daa268
[ "Apache-2.0" ]
null
null
null
from bootstrapvz.base import Task from bootstrapvz.common import phases from bootstrapvz.common.tasks import host class AddExternalCommands(Task): description = 'Determining required external commands for EC2 bootstrapping' phase = phases.preparation successors = [host.CheckExternalCommands] @classmethod def run(cls, info): if info.manifest.volume['backing'] == 's3': info.host_dependencies['euca-bundle-image'] = 'euca2ools' info.host_dependencies['euca-upload-bundle'] = 'euca2ools' class GetInstanceMetadata(Task): description = 'Retrieving instance metadata' phase = phases.preparation @classmethod def run(cls, info): import urllib2 import json metadata_url = 'http://169.254.169.254/latest/dynamic/instance-identity/document' response = urllib2.urlopen(url=metadata_url, timeout=5) info._ec2['host'] = json.load(response) info._ec2['region'] = info._ec2['host']['region'] class SetRegion(Task): description = 'Setting the AWS region' phase = phases.preparation @classmethod def run(cls, info): info._ec2['region'] = info.manifest.image['region']
28.153846
83
0.753188
f65842ddc7191f645c3ba495f2af225ae1296db1
1,006
py
Python
model/base/enc_dec_network.py
tiagopms/fast-conversational-banking
b9d3ddfe3adb78522fafab91c2d20495db063dda
[ "MIT" ]
2
2018-03-06T13:00:33.000Z
2018-05-29T00:27:01.000Z
model/base/enc_dec_network.py
tiagopms/fast-conversational-banking
b9d3ddfe3adb78522fafab91c2d20495db063dda
[ "MIT" ]
null
null
null
model/base/enc_dec_network.py
tiagopms/fast-conversational-banking
b9d3ddfe3adb78522fafab91c2d20495db063dda
[ "MIT" ]
null
null
null
import random import pickle import torch from torch import nn class EncDecNetwork(nn.Module): def __init__(self, encoder, decoder): super(EncDecNetwork, self).__init__() self.encoder = encoder self.decoder = decoder self._cuda = False def full_forward(self): raise NotImplementedError def translate(self): raise NotImplementedError def cuda(self): super(EncDecNetwork, self).cuda() self.encoder.cuda() self.decoder.cuda() self._cuda = True def initialize_params(self, init_range): for p in self.parameters(): p.data.uniform_(-init_range, init_range) def save_config_data(self, path): checkpoint_data = self.get_checkpoint_data() with open(path, 'wb') as f: pickle.dump(checkpoint_data, f, -1) def get_checkpoint_data(self): raise NotImplementedError('get_checkpoint_data should be implemented by class that inherits EncDecNetwork')
25.794872
115
0.662028
c602888b73b2a998d5762c4a47995b91cebfc2b5
802
py
Python
tests/test_status.py
whalebot-helmsman/pykt-64
ee5e0413cd850876d3abc438480fffea4f7b7517
[ "BSD-3-Clause" ]
null
null
null
tests/test_status.py
whalebot-helmsman/pykt-64
ee5e0413cd850876d3abc438480fffea4f7b7517
[ "BSD-3-Clause" ]
null
null
null
tests/test_status.py
whalebot-helmsman/pykt-64
ee5e0413cd850876d3abc438480fffea4f7b7517
[ "BSD-3-Clause" ]
null
null
null
# -*- coding: utf-8 -*- from setup_teardown import start_db, stop_db from nose.tools import * from pykt import KyotoTycoon, KTException @raises(IOError) def test_err_status(): db = KyotoTycoon() db.status() @with_setup(setup=start_db,teardown=stop_db) def test_status(): db = KyotoTycoon() db = db.open() ret = db.status() ok_(ret) ok_(isinstance(ret, dict)) db.close() @with_setup(setup=start_db,teardown=stop_db) def test_status_with_db(): db = KyotoTycoon("test") db = db.open() ret = db.status() ok_(ret) ok_(isinstance(ret, dict)) db.close() @with_setup(setup=start_db,teardown=stop_db) def test_status_loop(): db = KyotoTycoon() db = db.open() for i in xrange(100): ret = db.status() ok_(ret) db.close()
21.675676
44
0.647132