|
|
|
|
|
""" |
|
|
Helper functions for analyzing kernelbot submissions. |
|
|
|
|
|
Usage: |
|
|
from analyze_submissions import load_submissions, author_progression, top_contestants |
|
|
""" |
|
|
|
|
|
import pandas as pd |
|
|
from pathlib import Path |
|
|
|
|
|
|
|
|
def format_score(score, unit='us'): |
|
|
""" |
|
|
Format score with appropriate units. |
|
|
|
|
|
Args: |
|
|
score: Score in seconds |
|
|
unit: 'us' for microseconds, 'ms' for milliseconds, 'auto' for automatic |
|
|
|
|
|
Returns: |
|
|
Formatted string with units |
|
|
""" |
|
|
if pd.isna(score): |
|
|
return 'N/A' |
|
|
|
|
|
if unit == 'auto': |
|
|
if score < 0.001: |
|
|
return f"{score * 1_000_000:.2f} µs" |
|
|
elif score < 1: |
|
|
return f"{score * 1_000:.3f} ms" |
|
|
else: |
|
|
return f"{score:.4f} s" |
|
|
elif unit == 'us': |
|
|
return f"{score * 1_000_000:.2f} µs" |
|
|
elif unit == 'ms': |
|
|
return f"{score * 1_000:.3f} ms" |
|
|
else: |
|
|
return f"{score:.6f} s" |
|
|
|
|
|
|
|
|
def load_submissions(parquet_path: str = None) -> pd.DataFrame: |
|
|
"""Load deduplicated submissions from parquet file.""" |
|
|
if parquet_path is None: |
|
|
parquet_path = Path(__file__).parent.parent.parent / "nvidia_nvfp4_submissions.parquet" |
|
|
return pd.read_parquet(parquet_path) |
|
|
|
|
|
|
|
|
def author_progression(df: pd.DataFrame, user_id: str = None, user_name: str = None, |
|
|
problem_name: str = None) -> pd.DataFrame: |
|
|
""" |
|
|
Get submissions from an author sorted by time to see their progression. |
|
|
|
|
|
Args: |
|
|
df: DataFrame of submissions |
|
|
user_id: Filter by user ID (Discord ID) |
|
|
user_name: Filter by username (partial match, case-insensitive) |
|
|
problem_name: Filter by problem name |
|
|
|
|
|
Returns: |
|
|
DataFrame sorted by submission_time showing the author's journey |
|
|
""" |
|
|
result = df.copy() |
|
|
|
|
|
if user_id: |
|
|
result = result[result['user_id'] == user_id] |
|
|
|
|
|
if user_name: |
|
|
result = result[result['user_name'].str.contains(user_name, case=False, na=False)] |
|
|
|
|
|
if problem_name: |
|
|
result = result[result['problem_name'] == problem_name] |
|
|
|
|
|
return result.sort_values('submission_time') |
|
|
|
|
|
|
|
|
def top_contestants(df: pd.DataFrame, problem_name: str = None, n: int = 20, |
|
|
passing_only: bool = True) -> pd.DataFrame: |
|
|
""" |
|
|
Get top contestants sorted by their best score (fastest time). |
|
|
|
|
|
Args: |
|
|
df: DataFrame of submissions |
|
|
problem_name: Filter by problem name (required for meaningful results) |
|
|
n: Number of top contestants to return |
|
|
passing_only: Only include passing submissions |
|
|
|
|
|
Returns: |
|
|
DataFrame with top contestants and their best scores |
|
|
""" |
|
|
result = df.copy() |
|
|
|
|
|
if problem_name: |
|
|
result = result[result['problem_name'] == problem_name] |
|
|
|
|
|
if passing_only: |
|
|
result = result[result['passed'] == True] |
|
|
|
|
|
|
|
|
result = result.dropna(subset=['score']) |
|
|
|
|
|
if result.empty: |
|
|
return pd.DataFrame(columns=['user_name', 'user_id', 'score', 'submission_time', 'problem_name']) |
|
|
|
|
|
|
|
|
best_scores = result.loc[result.groupby('user_id')['score'].idxmin()] |
|
|
|
|
|
return best_scores.sort_values('score').head(n)[ |
|
|
['user_name', 'user_id', 'score', 'submission_time', 'problem_name'] |
|
|
] |
|
|
|
|
|
|
|
|
def leaderboard_summary(df: pd.DataFrame, score_unit='us') -> pd.DataFrame: |
|
|
""" |
|
|
Get summary statistics for each problem. |
|
|
|
|
|
Args: |
|
|
df: DataFrame of submissions |
|
|
score_unit: 'us' for microseconds, 'ms' for milliseconds, 's' for seconds |
|
|
|
|
|
Returns: |
|
|
DataFrame with submission counts, unique users, score ranges |
|
|
""" |
|
|
summary = df.groupby('problem_name').agg({ |
|
|
'submission_id': 'count', |
|
|
'user_id': 'nunique', |
|
|
'score': ['min', 'median', 'max'], |
|
|
'passed': 'sum' |
|
|
}) |
|
|
|
|
|
summary.columns = ['submissions', 'unique_users', 'best_score', 'median_score', |
|
|
'worst_score', 'passing_count'] |
|
|
|
|
|
|
|
|
if score_unit == 'us': |
|
|
multiplier = 1_000_000 |
|
|
summary['best_score'] = (summary['best_score'] * multiplier).round(2) |
|
|
summary['median_score'] = (summary['median_score'] * multiplier).round(2) |
|
|
summary['worst_score'] = (summary['worst_score'] * multiplier).round(2) |
|
|
elif score_unit == 'ms': |
|
|
multiplier = 1_000 |
|
|
summary['best_score'] = (summary['best_score'] * multiplier).round(3) |
|
|
summary['median_score'] = (summary['median_score'] * multiplier).round(3) |
|
|
summary['worst_score'] = (summary['worst_score'] * multiplier).round(3) |
|
|
|
|
|
return summary |
|
|
|
|
|
|
|
|
def user_stats(df: pd.DataFrame, user_id: str = None, user_name: str = None) -> pd.DataFrame: |
|
|
""" |
|
|
Get statistics for a specific user across all problems. |
|
|
""" |
|
|
result = df.copy() |
|
|
|
|
|
if user_id: |
|
|
result = result[result['user_id'] == user_id] |
|
|
elif user_name: |
|
|
result = result[result['user_name'].str.contains(user_name, case=False, na=False)] |
|
|
|
|
|
return result.groupby('problem_name').agg({ |
|
|
'submission_id': 'count', |
|
|
'score': 'min', |
|
|
'passed': 'sum' |
|
|
}).rename(columns={ |
|
|
'submission_id': 'num_submissions', |
|
|
'score': 'best_score', |
|
|
'passed': 'passing_count' |
|
|
}) |
|
|
|