#!/usr/bin/env python3 """ Helper functions for analyzing kernelbot submissions. Usage: from analyze_submissions import load_submissions, author_progression, top_contestants """ import pandas as pd from pathlib import Path def format_score(score, unit='us'): """ Format score with appropriate units. Args: score: Score in seconds unit: 'us' for microseconds, 'ms' for milliseconds, 'auto' for automatic Returns: Formatted string with units """ if pd.isna(score): return 'N/A' if unit == 'auto': if score < 0.001: # Less than 1ms, show in microseconds return f"{score * 1_000_000:.2f} µs" elif score < 1: # Less than 1s, show in milliseconds return f"{score * 1_000:.3f} ms" else: return f"{score:.4f} s" elif unit == 'us': return f"{score * 1_000_000:.2f} µs" elif unit == 'ms': return f"{score * 1_000:.3f} ms" else: return f"{score:.6f} s" def load_submissions(parquet_path: str = None) -> pd.DataFrame: """Load deduplicated submissions from parquet file.""" if parquet_path is None: parquet_path = Path(__file__).parent.parent.parent / "nvidia_nvfp4_submissions.parquet" return pd.read_parquet(parquet_path) def author_progression(df: pd.DataFrame, user_id: str = None, user_name: str = None, problem_name: str = None) -> pd.DataFrame: """ Get submissions from an author sorted by time to see their progression. Args: df: DataFrame of submissions user_id: Filter by user ID (Discord ID) user_name: Filter by username (partial match, case-insensitive) problem_name: Filter by problem name Returns: DataFrame sorted by submission_time showing the author's journey """ result = df.copy() if user_id: result = result[result['user_id'] == user_id] if user_name: result = result[result['user_name'].str.contains(user_name, case=False, na=False)] if problem_name: result = result[result['problem_name'] == problem_name] return result.sort_values('submission_time') def top_contestants(df: pd.DataFrame, problem_name: str = None, n: int = 20, passing_only: bool = True) -> pd.DataFrame: """ Get top contestants sorted by their best score (fastest time). Args: df: DataFrame of submissions problem_name: Filter by problem name (required for meaningful results) n: Number of top contestants to return passing_only: Only include passing submissions Returns: DataFrame with top contestants and their best scores """ result = df.copy() if problem_name: result = result[result['problem_name'] == problem_name] if passing_only: result = result[result['passed'] == True] # Filter out rows with NA scores result = result.dropna(subset=['score']) if result.empty: return pd.DataFrame(columns=['user_name', 'user_id', 'score', 'submission_time', 'problem_name']) # Get best score per user best_scores = result.loc[result.groupby('user_id')['score'].idxmin()] return best_scores.sort_values('score').head(n)[ ['user_name', 'user_id', 'score', 'submission_time', 'problem_name'] ] def leaderboard_summary(df: pd.DataFrame, score_unit='us') -> pd.DataFrame: """ Get summary statistics for each problem. Args: df: DataFrame of submissions score_unit: 'us' for microseconds, 'ms' for milliseconds, 's' for seconds Returns: DataFrame with submission counts, unique users, score ranges """ summary = df.groupby('problem_name').agg({ 'submission_id': 'count', 'user_id': 'nunique', 'score': ['min', 'median', 'max'], 'passed': 'sum' }) summary.columns = ['submissions', 'unique_users', 'best_score', 'median_score', 'worst_score', 'passing_count'] # Convert scores to specified unit if score_unit == 'us': multiplier = 1_000_000 summary['best_score'] = (summary['best_score'] * multiplier).round(2) summary['median_score'] = (summary['median_score'] * multiplier).round(2) summary['worst_score'] = (summary['worst_score'] * multiplier).round(2) elif score_unit == 'ms': multiplier = 1_000 summary['best_score'] = (summary['best_score'] * multiplier).round(3) summary['median_score'] = (summary['median_score'] * multiplier).round(3) summary['worst_score'] = (summary['worst_score'] * multiplier).round(3) return summary def user_stats(df: pd.DataFrame, user_id: str = None, user_name: str = None) -> pd.DataFrame: """ Get statistics for a specific user across all problems. """ result = df.copy() if user_id: result = result[result['user_id'] == user_id] elif user_name: result = result[result['user_name'].str.contains(user_name, case=False, na=False)] return result.groupby('problem_name').agg({ 'submission_id': 'count', 'score': 'min', 'passed': 'sum' }).rename(columns={ 'submission_id': 'num_submissions', 'score': 'best_score', 'passed': 'passing_count' })