File size: 5,332 Bytes
4484246
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
#!/usr/bin/env python3
"""
Helper functions for analyzing kernelbot submissions.

Usage:
    from analyze_submissions import load_submissions, author_progression, top_contestants
"""

import pandas as pd
from pathlib import Path


def format_score(score, unit='us'):
    """
    Format score with appropriate units.

    Args:
        score: Score in seconds
        unit: 'us' for microseconds, 'ms' for milliseconds, 'auto' for automatic

    Returns:
        Formatted string with units
    """
    if pd.isna(score):
        return 'N/A'

    if unit == 'auto':
        if score < 0.001:  # Less than 1ms, show in microseconds
            return f"{score * 1_000_000:.2f} µs"
        elif score < 1:  # Less than 1s, show in milliseconds
            return f"{score * 1_000:.3f} ms"
        else:
            return f"{score:.4f} s"
    elif unit == 'us':
        return f"{score * 1_000_000:.2f} µs"
    elif unit == 'ms':
        return f"{score * 1_000:.3f} ms"
    else:
        return f"{score:.6f} s"


def load_submissions(parquet_path: str = None) -> pd.DataFrame:
    """Load deduplicated submissions from parquet file."""
    if parquet_path is None:
        parquet_path = Path(__file__).parent.parent.parent / "nvidia_nvfp4_submissions.parquet"
    return pd.read_parquet(parquet_path)


def author_progression(df: pd.DataFrame, user_id: str = None, user_name: str = None,
                       problem_name: str = None) -> pd.DataFrame:
    """
    Get submissions from an author sorted by time to see their progression.

    Args:
        df: DataFrame of submissions
        user_id: Filter by user ID (Discord ID)
        user_name: Filter by username (partial match, case-insensitive)
        problem_name: Filter by problem name

    Returns:
        DataFrame sorted by submission_time showing the author's journey
    """
    result = df.copy()

    if user_id:
        result = result[result['user_id'] == user_id]

    if user_name:
        result = result[result['user_name'].str.contains(user_name, case=False, na=False)]

    if problem_name:
        result = result[result['problem_name'] == problem_name]

    return result.sort_values('submission_time')


def top_contestants(df: pd.DataFrame, problem_name: str = None, n: int = 20,
                    passing_only: bool = True) -> pd.DataFrame:
    """
    Get top contestants sorted by their best score (fastest time).

    Args:
        df: DataFrame of submissions
        problem_name: Filter by problem name (required for meaningful results)
        n: Number of top contestants to return
        passing_only: Only include passing submissions

    Returns:
        DataFrame with top contestants and their best scores
    """
    result = df.copy()

    if problem_name:
        result = result[result['problem_name'] == problem_name]

    if passing_only:
        result = result[result['passed'] == True]

    # Filter out rows with NA scores
    result = result.dropna(subset=['score'])

    if result.empty:
        return pd.DataFrame(columns=['user_name', 'user_id', 'score', 'submission_time', 'problem_name'])

    # Get best score per user
    best_scores = result.loc[result.groupby('user_id')['score'].idxmin()]

    return best_scores.sort_values('score').head(n)[
        ['user_name', 'user_id', 'score', 'submission_time', 'problem_name']
    ]


def leaderboard_summary(df: pd.DataFrame, score_unit='us') -> pd.DataFrame:
    """
    Get summary statistics for each problem.

    Args:
        df: DataFrame of submissions
        score_unit: 'us' for microseconds, 'ms' for milliseconds, 's' for seconds

    Returns:
        DataFrame with submission counts, unique users, score ranges
    """
    summary = df.groupby('problem_name').agg({
        'submission_id': 'count',
        'user_id': 'nunique',
        'score': ['min', 'median', 'max'],
        'passed': 'sum'
    })

    summary.columns = ['submissions', 'unique_users', 'best_score', 'median_score',
                       'worst_score', 'passing_count']

    # Convert scores to specified unit
    if score_unit == 'us':
        multiplier = 1_000_000
        summary['best_score'] = (summary['best_score'] * multiplier).round(2)
        summary['median_score'] = (summary['median_score'] * multiplier).round(2)
        summary['worst_score'] = (summary['worst_score'] * multiplier).round(2)
    elif score_unit == 'ms':
        multiplier = 1_000
        summary['best_score'] = (summary['best_score'] * multiplier).round(3)
        summary['median_score'] = (summary['median_score'] * multiplier).round(3)
        summary['worst_score'] = (summary['worst_score'] * multiplier).round(3)

    return summary


def user_stats(df: pd.DataFrame, user_id: str = None, user_name: str = None) -> pd.DataFrame:
    """
    Get statistics for a specific user across all problems.
    """
    result = df.copy()

    if user_id:
        result = result[result['user_id'] == user_id]
    elif user_name:
        result = result[result['user_name'].str.contains(user_name, case=False, na=False)]

    return result.groupby('problem_name').agg({
        'submission_id': 'count',
        'score': 'min',
        'passed': 'sum'
    }).rename(columns={
        'submission_id': 'num_submissions',
        'score': 'best_score',
        'passed': 'passing_count'
    })