before
stringlengths
0
955k
after
stringlengths
0
877k
repo
stringlengths
1
74
type
stringclasses
1 value
def _initialize_pytorch(self): if self.layer_config_file: <DeepExtract> if isinstance(self.layer_config_file, list): self.layers = self.layer_config_file </DeepExtract> self.nneurons = None self.activations = None else: self.layers = [] self.nneurons = [self.nfeatures] + self.nneurons + [self.noutputs] self.activations = ['None'] + self.activations + ['None'] for i in range(len(self.nneurons)): self.layers.append(('Linear', {'units': self.nneurons[i], 'activation': self.activations[i]})) self.model = pytorch_Net(self.layers, self.layer_config_file).base_model if self.loss == 'mean_squared_error': self.loss = nn.MSELoss() if isinstance(self.opt_config, list) or isinstance(self.opt_config, tuple): <DeepExtract> (opt_name, opt_params) = (self.opt_config[0], self.opt_config[1]) if self.engine == 'pytorch': opt_params['params'] = self.model.parameters() opt_params['weight_decay'] = self.alpha pytorch_opt_module = import_module('torch.optim') try: opt = getattr(pytorch_opt_module, opt_name)(**opt_params) self.opt = opt except: raise ValueError('incorrect optimizer name or parameter for opt_config') elif self.engine == 'tensorflow': keras_opt_module = import_module('tensorflow.keras.optimizers') try: opt = getattr(keras_opt_module, opt_name)(**opt_params) self.opt = opt except: raise ValueError('incorrect optimizer name or parameter for opt_config') </DeepExtract> elif self.opt_config.lower() == 'sgd': self.opt = torch.optim.SGD(self.model.parameters(), lr=self.learning_rate, momentum=0.9, weight_decay=self.alpha) elif self.opt_config.lower() == 'adam': self.opt = torch.optim.Adam(self.model.parameters(), lr=self.learning_rate, weight_decay=self.alpha) else: raise TypeError('opt_config should be a list/tuple or a str. If str, should either be "sgd" or "adam". If list, should provide exact configurations and parameters corresponding to the respective engines')
def _initialize_pytorch(self): if self.layer_config_file: if isinstance(self.layer_config_file, list): self.layers = self.layer_config_file self.nneurons = None self.activations = None else: self.layers = [] self.nneurons = [self.nfeatures] + self.nneurons + [self.noutputs] self.activations = ['None'] + self.activations + ['None'] for i in range(len(self.nneurons)): self.layers.append(('Linear', {'units': self.nneurons[i], 'activation': self.activations[i]})) self.model = pytorch_Net(self.layers, self.layer_config_file).base_model if self.loss == 'mean_squared_error': self.loss = nn.MSELoss() if isinstance(self.opt_config, list) or isinstance(self.opt_config, tuple): (opt_name, opt_params) = (self.opt_config[0], self.opt_config[1]) if self.engine == 'pytorch': opt_params['params'] = self.model.parameters() opt_params['weight_decay'] = self.alpha pytorch_opt_module = import_module('torch.optim') try: opt = getattr(pytorch_opt_module, opt_name)(**opt_params) self.opt = opt except: raise ValueError('incorrect optimizer name or parameter for opt_config') elif self.engine == 'tensorflow': keras_opt_module = import_module('tensorflow.keras.optimizers') try: opt = getattr(keras_opt_module, opt_name)(**opt_params) self.opt = opt except: raise ValueError('incorrect optimizer name or parameter for opt_config') elif self.opt_config.lower() == 'sgd': self.opt = torch.optim.SGD(self.model.parameters(), lr=self.learning_rate, momentum=0.9, weight_decay=self.alpha) elif self.opt_config.lower() == 'adam': self.opt = torch.optim.Adam(self.model.parameters(), lr=self.learning_rate, weight_decay=self.alpha) else: raise TypeError('opt_config should be a list/tuple or a str. If str, should either be "sgd" or "adam". If list, should provide exact configurations and parameters corresponding to the respective engines')
chemml
positive
def application(environ, start_response): if environ['PATH_INFO'] not in URL_2_HANDLERS: response = json.dumps({'ec': 0, 'error': 'invalid uri'}) start_response('200 OK', [('Content-Type', 'application/json')]) return [response.encode()] handler = URL_2_HANDLERS[environ['PATH_INFO']] <DeepExtract> post_data = {} content_type = environ['CONTENT_TYPE'] if 'CONTENT_TYPE' in environ else None if content_type is not None: (mimetype, options) = cgi.parse_header(content_type) if mimetype == 'application/json' and environ['REQUEST_METHOD'] == 'POST': storage = environ['wsgi.input'].read() if storage: post_data = json.loads(storage) storage = FieldStorage(environ['wsgi.input'], environ=environ, keep_blank_values=True) if not False: for k in storage.keys(): post_data[k] = storage.getvalue(k) post_data = post_data </DeepExtract> response = handler(post_data) start_response('200 OK', [('Content-Type', 'application/json')]) return [str(response).encode()]
def application(environ, start_response): if environ['PATH_INFO'] not in URL_2_HANDLERS: response = json.dumps({'ec': 0, 'error': 'invalid uri'}) start_response('200 OK', [('Content-Type', 'application/json')]) return [response.encode()] handler = URL_2_HANDLERS[environ['PATH_INFO']] post_data = {} content_type = environ['CONTENT_TYPE'] if 'CONTENT_TYPE' in environ else None if content_type is not None: (mimetype, options) = cgi.parse_header(content_type) if mimetype == 'application/json' and environ['REQUEST_METHOD'] == 'POST': storage = environ['wsgi.input'].read() if storage: post_data = json.loads(storage) storage = FieldStorage(environ['wsgi.input'], environ=environ, keep_blank_values=True) if not False: for k in storage.keys(): post_data[k] = storage.getvalue(k) post_data = post_data response = handler(post_data) start_response('200 OK', [('Content-Type', 'application/json')]) return [str(response).encode()]
aswan
positive
def main(argv=None): if argv is None: argv = sys.argv[1:] args = parser.parse_args(argv) log.info('start parameters: ' + str(args)) log.info('loading embeddings') vocab = read_vocabulary_id_file(args.vocabulary) embs = np.loadtxt(args.embeddings) log.info('loading documents') <DeepExtract> pos_docs = os.listdir(os.path.join(args.corpus_dir, u'pos')) num_pos_docs = len(pos_docs) pos_docs = [os.path.join(args.corpus_dir, u'pos/', d) for d in pos_docs] neg_docs = os.listdir(os.path.join(args.corpus_dir, u'neg')) neg_docs = [os.path.join(args.corpus_dir, u'neg/', d) for d in neg_docs] docs = pos_docs + neg_docs features = dict() labels = dict() for (count, d) in enumerate(docs): basename = os.path.basename(d) features[basename] = convert_doc(d, vocab, embs) labels[basename] = 1 if count < num_pos_docs else 0 (features, labels) = (features, labels) </DeepExtract> log.info('performing cross validation') <DeepExtract> single_predictions = [] weight_vectors = np.zeros((NO_OF_FOLDS, len(features.values()[0]))) classification_result = np.zeros((NO_OF_FOLDS + 1, 5)) for (cur_fold, (train_names, test_names)) in enumerate(imdb_cross_folds(features.keys())): train_data = [features[n] for n in train_names] train_labels = [labels[n] for n in train_names] model = train_model(train_data, train_labels) test_data = [features[n] for n in test_names] pred_labels = model.predict(test_data) true_labels = [] for i in xrange(len(test_data)): single_predictions.append([cur_fold, test_names[i], labels[test_names[i]], pred_labels[i]]) true_labels.append(labels[test_names[i]]) classification_result[cur_fold, :] = get_classification_result(cur_fold, true_labels, pred_labels) weight_vectors[cur_fold, :] = model.coef_ (single_predictions, classification_result, weight_vectors) = (single_predictions, classification_result, weight_vectors) </DeepExtract> log.info('storing results') np.savetxt(os.path.join(args.output_dir, 'svm-weights.csv'), weight_vectors, '%f', ';', '\n') with utf8_file_open(os.path.join(args.output_dir, 'predictions.csv'), 'w') as pred_file: pred_file.write(u'fold_no;doc;true_label;pred_label\n') for sp in single_predictions: pred_file.write(u';'.join(map(unicode, sp)) + u'\n') all_true_labels = [sp[2] for sp in single_predictions] all_pred_labels = [sp[3] for sp in single_predictions] confusion = confusion_matrix(all_true_labels, all_pred_labels) np.savetxt(os.path.join(args.output_dir, 'confusion_matrix.csv'), confusion, '%d', ';', '\n') <DeepExtract> res = calc_metrics(all_true_labels, all_pred_labels) classification_result[NO_OF_FOLDS, :] = np.asarray([-1] + [r for r in res]) </DeepExtract> header = u'fold_no;accuracy;precision;recall;f1' np.savetxt(os.path.join(args.output_dir, 'metrics.csv'), classification_result, '%f', u';', u'\n', header=header) log.info(classification_result) log.info('finished')
def main(argv=None): if argv is None: argv = sys.argv[1:] args = parser.parse_args(argv) log.info('start parameters: ' + str(args)) log.info('loading embeddings') vocab = read_vocabulary_id_file(args.vocabulary) embs = np.loadtxt(args.embeddings) log.info('loading documents') pos_docs = os.listdir(os.path.join(args.corpus_dir, u'pos')) num_pos_docs = len(pos_docs) pos_docs = [os.path.join(args.corpus_dir, u'pos/', d) for d in pos_docs] neg_docs = os.listdir(os.path.join(args.corpus_dir, u'neg')) neg_docs = [os.path.join(args.corpus_dir, u'neg/', d) for d in neg_docs] docs = pos_docs + neg_docs features = dict() labels = dict() for (count, d) in enumerate(docs): basename = os.path.basename(d) features[basename] = convert_doc(d, vocab, embs) labels[basename] = 1 if count < num_pos_docs else 0 (features, labels) = (features, labels) log.info('performing cross validation') single_predictions = [] weight_vectors = np.zeros((NO_OF_FOLDS, len(features.values()[0]))) classification_result = np.zeros((NO_OF_FOLDS + 1, 5)) for (cur_fold, (train_names, test_names)) in enumerate(imdb_cross_folds(features.keys())): train_data = [features[n] for n in train_names] train_labels = [labels[n] for n in train_names] model = train_model(train_data, train_labels) test_data = [features[n] for n in test_names] pred_labels = model.predict(test_data) true_labels = [] for i in xrange(len(test_data)): single_predictions.append([cur_fold, test_names[i], labels[test_names[i]], pred_labels[i]]) true_labels.append(labels[test_names[i]]) classification_result[cur_fold, :] = get_classification_result(cur_fold, true_labels, pred_labels) weight_vectors[cur_fold, :] = model.coef_ (single_predictions, classification_result, weight_vectors) = (single_predictions, classification_result, weight_vectors) log.info('storing results') np.savetxt(os.path.join(args.output_dir, 'svm-weights.csv'), weight_vectors, '%f', ';', '\n') with utf8_file_open(os.path.join(args.output_dir, 'predictions.csv'), 'w') as pred_file: pred_file.write(u'fold_no;doc;true_label;pred_label\n') for sp in single_predictions: pred_file.write(u';'.join(map(unicode, sp)) + u'\n') all_true_labels = [sp[2] for sp in single_predictions] all_pred_labels = [sp[3] for sp in single_predictions] confusion = confusion_matrix(all_true_labels, all_pred_labels) np.savetxt(os.path.join(args.output_dir, 'confusion_matrix.csv'), confusion, '%d', ';', '\n') res = calc_metrics(all_true_labels, all_pred_labels) classification_result[NO_OF_FOLDS, :] = np.asarray([-1] + [r for r in res]) header = u'fold_no;accuracy;precision;recall;f1' np.savetxt(os.path.join(args.output_dir, 'metrics.csv'), classification_result, '%f', u';', u'\n', header=header) log.info(classification_result) log.info('finished')
Attentive_Convolution
positive
def addClass(self, className): """ addClass - append a class name to the end of the "class" attribute, if not present @param className <str> - The name of the class to add """ className = stripWordsOnly(className) if not className: return None if ' ' in className: for oneClassName in className.split(' '): <DeepExtract> oneClassName = stripWordsOnly(oneClassName) if not oneClassName: return None if ' ' in oneClassName: for oneClassName in oneClassName.split(' '): self.addClass(oneClassName) return myClassNames = self._classNames if oneClassName in myClassNames: return myClassNames.append(oneClassName) return None </DeepExtract> return myClassNames = self._classNames if className in myClassNames: return myClassNames.append(className) return None
def addClass(self, className): """ addClass - append a class name to the end of the "class" attribute, if not present @param className <str> - The name of the class to add """ className = stripWordsOnly(className) if not className: return None if ' ' in className: for oneClassName in className.split(' '): oneClassName = stripWordsOnly(oneClassName) if not oneClassName: return None if ' ' in oneClassName: for oneClassName in oneClassName.split(' '): self.addClass(oneClassName) return myClassNames = self._classNames if oneClassName in myClassNames: return myClassNames.append(oneClassName) return None return myClassNames = self._classNames if className in myClassNames: return myClassNames.append(className) return None
AdvancedHTMLParser
positive
def train(args, trainer, task, epoch_itr): """Train the model for one epoch.""" itr = epoch_itr.next_epoch_itr() progress = progress_bar.build_progress_bar(args, itr, epoch_itr.epoch, no_progress_bar='simple') if epoch_itr.epoch <= len(args.update_freq): update_freq = args.update_freq[epoch_itr.epoch - 1] else: update_freq = args.update_freq[-1] extra_meters = collections.defaultdict(lambda : AverageMeter()) first_valid = args.valid_subset.split(',')[0] max_update = args.max_update or math.inf num_batches = len(epoch_itr) for (i, sample) in enumerate(progress, start=epoch_itr.iterations_in_epoch): if i < num_batches - 1 and (i + 1) % update_freq > 0: trainer.train_step(sample, update_params=False) continue else: log_output = trainer.train_step(sample, update_params=True) <DeepExtract> stats = collections.OrderedDict() stats['loss'] = '{:.3f}'.format(trainer.get_meter('train_loss').avg) if trainer.get_meter('train_nll_loss').count > 0: nll_loss = trainer.get_meter('train_nll_loss').avg stats['nll_loss'] = '{:.3f}'.format(nll_loss) else: nll_loss = trainer.get_meter('train_loss').avg stats['ppl'] = get_perplexity(nll_loss) stats['wps'] = round(trainer.get_meter('wps').avg) stats['ups'] = '{:.1f}'.format(trainer.get_meter('ups').avg) stats['wpb'] = round(trainer.get_meter('wpb').avg) stats['bsz'] = round(trainer.get_meter('bsz').avg) stats['num_updates'] = trainer.get_num_updates() stats['lr'] = trainer.get_lr() stats['gnorm'] = '{:.3f}'.format(trainer.get_meter('gnorm').avg) stats['clip'] = '{:.0%}'.format(trainer.get_meter('clip').avg) stats['oom'] = trainer.get_meter('oom').avg if trainer.get_meter('loss_scale') is not None: stats['loss_scale'] = '{:.3f}'.format(trainer.get_meter('loss_scale').avg) stats['wall'] = round(trainer.get_meter('wall').elapsed_time) stats['train_wall'] = round(trainer.get_meter('train_wall').sum) stats = stats </DeepExtract> for (k, v) in log_output.items(): if k in ['loss', 'nll_loss', 'sample_size']: continue if 'loss' in k: extra_meters[k].update(v, log_output['sample_size']) else: extra_meters[k].update(v) stats[k] = extra_meters[k].avg progress.log(stats) if i == 0: trainer.get_meter('wps').reset() num_updates = trainer.get_num_updates() if args.save_interval_updates > 0 and num_updates % args.save_interval_updates == 0 and (num_updates > 0): <DeepExtract> valid_losses = [] for subset in [first_valid]: itr = task.get_batch_iterator(dataset=task.dataset(subset), max_tokens=args.max_tokens, max_sentences=args.max_sentences_valid, max_positions=utils.resolve_max_positions(task.max_positions(), trainer.get_model().max_positions()), ignore_invalid_inputs=args.skip_invalid_size_inputs_valid_test, required_batch_size_multiple=8, seed=args.seed, num_shards=args.distributed_world_size, shard_id=args.distributed_rank).next_epoch_itr(shuffle=False) progress = progress_bar.build_progress_bar(args, itr, epoch_itr.epoch, prefix="valid on '{}' subset".format(subset), no_progress_bar='simple') for k in ['valid_loss', 'valid_nll_loss']: meter = trainer.get_meter(k) if meter is not None: meter.reset() extra_meters = collections.defaultdict(lambda : AverageMeter()) for sample in progress: log_output = trainer.valid_step(sample) for (k, v) in log_output.items(): if k in ['loss', 'nll_loss', 'sample_size']: continue extra_meters[k].update(v) stats = get_valid_stats(trainer) for (k, meter) in extra_meters.items(): stats[k] = meter.avg progress.print(stats) valid_losses.append(stats['valid_loss']) valid_losses = valid_losses </DeepExtract> <DeepExtract> if args.no_save or not distributed_utils.is_master(args): return epoch = epoch_itr.epoch end_of_epoch = epoch_itr.end_of_epoch() updates = trainer.get_num_updates() checkpoint_conds = collections.OrderedDict() checkpoint_conds['checkpoint{}.pt'.format(epoch)] = end_of_epoch and (not args.no_epoch_checkpoints) and (epoch % args.save_interval == 0) checkpoint_conds['checkpoint_{}_{}.pt'.format(epoch, updates)] = not end_of_epoch and args.save_interval_updates > 0 and (updates % args.save_interval_updates == 0) checkpoint_conds['checkpoint_best.pt'] = valid_losses[0] is not None and (not hasattr(save_checkpoint, 'best') or valid_losses[0] < save_checkpoint.best) checkpoint_conds['checkpoint_last.pt'] = True prev_best = getattr(save_checkpoint, 'best', valid_losses[0]) if valid_losses[0] is not None: save_checkpoint.best = min(valid_losses[0], prev_best) extra_state = {'best': save_checkpoint.best, 'train_iterator': epoch_itr.state_dict(), 'val_loss': valid_losses[0]} checkpoints = [os.path.join(args.save_dir, fn) for (fn, cond) in checkpoint_conds.items() if cond] if len(checkpoints) > 0: for cp in checkpoints: trainer.save_checkpoint(cp, extra_state) if not end_of_epoch and args.keep_interval_updates > 0: checkpoints = utils.checkpoint_paths(args.save_dir, pattern='checkpoint_\\d+_(\\d+)\\.pt') for old_chk in checkpoints[args.keep_interval_updates:]: os.remove(old_chk) </DeepExtract> if num_updates >= max_update: break <DeepExtract> stats = collections.OrderedDict() stats['loss'] = '{:.3f}'.format(trainer.get_meter('train_loss').avg) if trainer.get_meter('train_nll_loss').count > 0: nll_loss = trainer.get_meter('train_nll_loss').avg stats['nll_loss'] = '{:.3f}'.format(nll_loss) else: nll_loss = trainer.get_meter('train_loss').avg stats['ppl'] = get_perplexity(nll_loss) stats['wps'] = round(trainer.get_meter('wps').avg) stats['ups'] = '{:.1f}'.format(trainer.get_meter('ups').avg) stats['wpb'] = round(trainer.get_meter('wpb').avg) stats['bsz'] = round(trainer.get_meter('bsz').avg) stats['num_updates'] = trainer.get_num_updates() stats['lr'] = trainer.get_lr() stats['gnorm'] = '{:.3f}'.format(trainer.get_meter('gnorm').avg) stats['clip'] = '{:.0%}'.format(trainer.get_meter('clip').avg) stats['oom'] = trainer.get_meter('oom').avg if trainer.get_meter('loss_scale') is not None: stats['loss_scale'] = '{:.3f}'.format(trainer.get_meter('loss_scale').avg) stats['wall'] = round(trainer.get_meter('wall').elapsed_time) stats['train_wall'] = round(trainer.get_meter('train_wall').sum) stats = stats </DeepExtract> for (k, meter) in extra_meters.items(): stats[k] = meter.avg progress.print(stats) for k in ['train_loss', 'train_nll_loss', 'wps', 'ups', 'wpb', 'bsz', 'clip', 'gnorm']: meter = trainer.get_meter(k) if meter is not None: meter.reset()
def train(args, trainer, task, epoch_itr): """Train the model for one epoch.""" itr = epoch_itr.next_epoch_itr() progress = progress_bar.build_progress_bar(args, itr, epoch_itr.epoch, no_progress_bar='simple') if epoch_itr.epoch <= len(args.update_freq): update_freq = args.update_freq[epoch_itr.epoch - 1] else: update_freq = args.update_freq[-1] extra_meters = collections.defaultdict(lambda : AverageMeter()) first_valid = args.valid_subset.split(',')[0] max_update = args.max_update or math.inf num_batches = len(epoch_itr) for (i, sample) in enumerate(progress, start=epoch_itr.iterations_in_epoch): if i < num_batches - 1 and (i + 1) % update_freq > 0: trainer.train_step(sample, update_params=False) continue else: log_output = trainer.train_step(sample, update_params=True) stats = collections.OrderedDict() stats['loss'] = '{:.3f}'.format(trainer.get_meter('train_loss').avg) if trainer.get_meter('train_nll_loss').count > 0: nll_loss = trainer.get_meter('train_nll_loss').avg stats['nll_loss'] = '{:.3f}'.format(nll_loss) else: nll_loss = trainer.get_meter('train_loss').avg stats['ppl'] = get_perplexity(nll_loss) stats['wps'] = round(trainer.get_meter('wps').avg) stats['ups'] = '{:.1f}'.format(trainer.get_meter('ups').avg) stats['wpb'] = round(trainer.get_meter('wpb').avg) stats['bsz'] = round(trainer.get_meter('bsz').avg) stats['num_updates'] = trainer.get_num_updates() stats['lr'] = trainer.get_lr() stats['gnorm'] = '{:.3f}'.format(trainer.get_meter('gnorm').avg) stats['clip'] = '{:.0%}'.format(trainer.get_meter('clip').avg) stats['oom'] = trainer.get_meter('oom').avg if trainer.get_meter('loss_scale') is not None: stats['loss_scale'] = '{:.3f}'.format(trainer.get_meter('loss_scale').avg) stats['wall'] = round(trainer.get_meter('wall').elapsed_time) stats['train_wall'] = round(trainer.get_meter('train_wall').sum) stats = stats for (k, v) in log_output.items(): if k in ['loss', 'nll_loss', 'sample_size']: continue if 'loss' in k: extra_meters[k].update(v, log_output['sample_size']) else: extra_meters[k].update(v) stats[k] = extra_meters[k].avg progress.log(stats) if i == 0: trainer.get_meter('wps').reset() num_updates = trainer.get_num_updates() if args.save_interval_updates > 0 and num_updates % args.save_interval_updates == 0 and (num_updates > 0): valid_losses = [] for subset in [first_valid]: itr = task.get_batch_iterator(dataset=task.dataset(subset), max_tokens=args.max_tokens, max_sentences=args.max_sentences_valid, max_positions=utils.resolve_max_positions(task.max_positions(), trainer.get_model().max_positions()), ignore_invalid_inputs=args.skip_invalid_size_inputs_valid_test, required_batch_size_multiple=8, seed=args.seed, num_shards=args.distributed_world_size, shard_id=args.distributed_rank).next_epoch_itr(shuffle=False) progress = progress_bar.build_progress_bar(args, itr, epoch_itr.epoch, prefix="valid on '{}' subset".format(subset), no_progress_bar='simple') for k in ['valid_loss', 'valid_nll_loss']: meter = trainer.get_meter(k) if meter is not None: meter.reset() extra_meters = collections.defaultdict(lambda : AverageMeter()) for sample in progress: log_output = trainer.valid_step(sample) for (k, v) in log_output.items(): if k in ['loss', 'nll_loss', 'sample_size']: continue extra_meters[k].update(v) stats = get_valid_stats(trainer) for (k, meter) in extra_meters.items(): stats[k] = meter.avg progress.print(stats) valid_losses.append(stats['valid_loss']) valid_losses = valid_losses if args.no_save or not distributed_utils.is_master(args): return epoch = epoch_itr.epoch end_of_epoch = epoch_itr.end_of_epoch() updates = trainer.get_num_updates() checkpoint_conds = collections.OrderedDict() checkpoint_conds['checkpoint{}.pt'.format(epoch)] = end_of_epoch and (not args.no_epoch_checkpoints) and (epoch % args.save_interval == 0) checkpoint_conds['checkpoint_{}_{}.pt'.format(epoch, updates)] = not end_of_epoch and args.save_interval_updates > 0 and (updates % args.save_interval_updates == 0) checkpoint_conds['checkpoint_best.pt'] = valid_losses[0] is not None and (not hasattr(save_checkpoint, 'best') or valid_losses[0] < save_checkpoint.best) checkpoint_conds['checkpoint_last.pt'] = True prev_best = getattr(save_checkpoint, 'best', valid_losses[0]) if valid_losses[0] is not None: save_checkpoint.best = min(valid_losses[0], prev_best) extra_state = {'best': save_checkpoint.best, 'train_iterator': epoch_itr.state_dict(), 'val_loss': valid_losses[0]} checkpoints = [os.path.join(args.save_dir, fn) for (fn, cond) in checkpoint_conds.items() if cond] if len(checkpoints) > 0: for cp in checkpoints: trainer.save_checkpoint(cp, extra_state) if not end_of_epoch and args.keep_interval_updates > 0: checkpoints = utils.checkpoint_paths(args.save_dir, pattern='checkpoint_\\d+_(\\d+)\\.pt') for old_chk in checkpoints[args.keep_interval_updates:]: os.remove(old_chk) if num_updates >= max_update: break stats = collections.OrderedDict() stats['loss'] = '{:.3f}'.format(trainer.get_meter('train_loss').avg) if trainer.get_meter('train_nll_loss').count > 0: nll_loss = trainer.get_meter('train_nll_loss').avg stats['nll_loss'] = '{:.3f}'.format(nll_loss) else: nll_loss = trainer.get_meter('train_loss').avg stats['ppl'] = get_perplexity(nll_loss) stats['wps'] = round(trainer.get_meter('wps').avg) stats['ups'] = '{:.1f}'.format(trainer.get_meter('ups').avg) stats['wpb'] = round(trainer.get_meter('wpb').avg) stats['bsz'] = round(trainer.get_meter('bsz').avg) stats['num_updates'] = trainer.get_num_updates() stats['lr'] = trainer.get_lr() stats['gnorm'] = '{:.3f}'.format(trainer.get_meter('gnorm').avg) stats['clip'] = '{:.0%}'.format(trainer.get_meter('clip').avg) stats['oom'] = trainer.get_meter('oom').avg if trainer.get_meter('loss_scale') is not None: stats['loss_scale'] = '{:.3f}'.format(trainer.get_meter('loss_scale').avg) stats['wall'] = round(trainer.get_meter('wall').elapsed_time) stats['train_wall'] = round(trainer.get_meter('train_wall').sum) stats = stats for (k, meter) in extra_meters.items(): stats[k] = meter.avg progress.print(stats) for k in ['train_loss', 'train_nll_loss', 'wps', 'ups', 'wpb', 'bsz', 'clip', 'gnorm']: meter = trainer.get_meter(k) if meter is not None: meter.reset()
Abstractive-Text-Summarization
positive
def __repr__(self): <DeepExtract> attrs = self.scraper.scrape(self) </DeepExtract> <DeepExtract> cl_name = self.__class__.__name__ attrs['_TITLE_'] = format_title(cl_name, name_prefix=self.name_prefix) </DeepExtract> return attrs
def __repr__(self): attrs = self.scraper.scrape(self) cl_name = self.__class__.__name__ attrs['_TITLE_'] = format_title(cl_name, name_prefix=self.name_prefix) return attrs
Copycat-abstractive-opinion-summarizer
positive
def test_predict_with_target(self): series_long = self.series1 series_short = series_long[:25] <DeepExtract> lags = [-1, -2, -5] ensemble_model = NaiveEnsembleModel(models=[LinearRegressionModel(lags=lags, lags_past_covariates=lags, output_chunk_length=output_chunk_length), LinearRegressionModel(lags=lags, lags_past_covariates=lags, output_chunk_length=output_chunk_length)]) </DeepExtract> ensemble_model.fit(series_short, past_covariates=series_long) preds = ensemble_model.predict(n=5, past_covariates=series_long) self.assertTrue(isinstance(preds, TimeSeries)) preds = ensemble_model.predict(n=5, series=series_long, past_covariates=series_long) self.assertTrue(isinstance(preds, TimeSeries)) preds = ensemble_model.predict(n=5, series=[series_long] * 2, past_covariates=[series_long] * 2) self.assertTrue(isinstance(preds, list) and len(preds) == 2) preds = ensemble_model.predict(n=5, series=[series_long], past_covariates=[series_long]) self.assertTrue(isinstance(preds, list) and len(preds) == 1) <DeepExtract> lags = [-1, -2, -5] ensemble_model = NaiveEnsembleModel(models=[LinearRegressionModel(lags=lags, lags_past_covariates=lags, output_chunk_length=output_chunk_length), LinearRegressionModel(lags=lags, lags_past_covariates=lags, output_chunk_length=output_chunk_length)]) </DeepExtract> ensemble_model.fit([series_short] * 2, past_covariates=[series_long] * 2) with self.assertRaises(ValueError): ensemble_model.predict(n=5, past_covariates=series_long) preds = ensemble_model.predict(n=5, series=series_long, past_covariates=series_long) self.assertTrue(isinstance(preds, TimeSeries)) preds = ensemble_model.predict(n=5, series=[series_long] * 2, past_covariates=[series_long] * 2) self.assertTrue(isinstance(preds, list) and len(preds) == 2) preds = ensemble_model.predict(n=5, series=[series_long], past_covariates=[series_long]) self.assertTrue(isinstance(preds, list) and len(preds) == 1)
def test_predict_with_target(self): series_long = self.series1 series_short = series_long[:25] lags = [-1, -2, -5] ensemble_model = NaiveEnsembleModel(models=[LinearRegressionModel(lags=lags, lags_past_covariates=lags, output_chunk_length=output_chunk_length), LinearRegressionModel(lags=lags, lags_past_covariates=lags, output_chunk_length=output_chunk_length)]) ensemble_model.fit(series_short, past_covariates=series_long) preds = ensemble_model.predict(n=5, past_covariates=series_long) self.assertTrue(isinstance(preds, TimeSeries)) preds = ensemble_model.predict(n=5, series=series_long, past_covariates=series_long) self.assertTrue(isinstance(preds, TimeSeries)) preds = ensemble_model.predict(n=5, series=[series_long] * 2, past_covariates=[series_long] * 2) self.assertTrue(isinstance(preds, list) and len(preds) == 2) preds = ensemble_model.predict(n=5, series=[series_long], past_covariates=[series_long]) self.assertTrue(isinstance(preds, list) and len(preds) == 1) lags = [-1, -2, -5] ensemble_model = NaiveEnsembleModel(models=[LinearRegressionModel(lags=lags, lags_past_covariates=lags, output_chunk_length=output_chunk_length), LinearRegressionModel(lags=lags, lags_past_covariates=lags, output_chunk_length=output_chunk_length)]) ensemble_model.fit([series_short] * 2, past_covariates=[series_long] * 2) with self.assertRaises(ValueError): ensemble_model.predict(n=5, past_covariates=series_long) preds = ensemble_model.predict(n=5, series=series_long, past_covariates=series_long) self.assertTrue(isinstance(preds, TimeSeries)) preds = ensemble_model.predict(n=5, series=[series_long] * 2, past_covariates=[series_long] * 2) self.assertTrue(isinstance(preds, list) and len(preds) == 2) preds = ensemble_model.predict(n=5, series=[series_long], past_covariates=[series_long]) self.assertTrue(isinstance(preds, list) and len(preds) == 1)
darts
positive
def first(self, or_fail=False, **kwargs): if kwargs: <DeepExtract> self._query = self.query().filter_by(**kwargs) return self </DeepExtract> <DeepExtract> if int(environ.get('API_REPO_DEBUG', 0)) == 1: logger.debug(f'first@repos.py: executing first query {self.compiled()} in {self.__class__.__name__}') </DeepExtract> results = self.final().first() if or_fail: if not results: abort(404, f'Item not found: {self.__class__.__name__}') self._results = results return self
def first(self, or_fail=False, **kwargs): if kwargs: self._query = self.query().filter_by(**kwargs) return self if int(environ.get('API_REPO_DEBUG', 0)) == 1: logger.debug(f'first@repos.py: executing first query {self.compiled()} in {self.__class__.__name__}') results = self.final().first() if or_fail: if not results: abort(404, f'Item not found: {self.__class__.__name__}') self._results = results return self
boucanpy
positive
def main(): <DeepExtract> size = int(input()) tree = [Vertex(w) for w in map(int, input().split())] for i in range(1, size): (a, b) = list(map(int, input().split())) tree[a - 1].children.append(b - 1) tree[b - 1].children.append(a - 1) tree = tree </DeepExtract> <DeepExtract> size = len(tree) if size == 0: weight = 0 dfs(tree, 0, -1) weight = 0 </DeepExtract> print(weight)
def main(): size = int(input()) tree = [Vertex(w) for w in map(int, input().split())] for i in range(1, size): (a, b) = list(map(int, input().split())) tree[a - 1].children.append(b - 1) tree[b - 1].children.append(a - 1) tree = tree size = len(tree) if size == 0: weight = 0 dfs(tree, 0, -1) weight = 0 print(weight)
Coursera_Data_Structures_and_Algorithms_Specialization
positive
def validate_dataset(self) -> None: if not self._data_is_a_list(): raise TypeError('The dataset is not a list.') if self.is_training_container: data_to_validate = [data[0] for data in self.data] else: data_to_validate = self.data if validate_if_any_none(string_elements=data_to_validate): raise DataError('Some addresses data points are None value.') if self.is_training_container: <DeepExtract> if not self._data_is_list_of_tuple(): raise TypeError('The pickled dataset data are not in a tuple format. Datais expected to be a list of tuples where the first element isthe address, and the second is the address tag.') if self._empty_tags(): raise DataError('Some tags data points are empty.') if not self._data_tags_is_same_len_then_address(): print(f'Some addresses (whitespace-split) and the tags associated with them are not the same len. If you are using a CSVDatasetContainer, consider using the tag_seperator_reformat_fn argument.Here is the report of those cases where len differ to help you out:\n{self._data_tags_not_the_same_len_diff()}') raise DataError('Some addresses (whitespace-split) and the tags associated with them are not the same len.') </DeepExtract> if validate_if_any_empty(string_elements=data_to_validate): raise DataError('Some addresses data points are empty.') if validate_if_any_whitespace_only(string_elements=data_to_validate): raise DataError('Some addresses only include whitespace thus cannot be parsed.')
def validate_dataset(self) -> None: if not self._data_is_a_list(): raise TypeError('The dataset is not a list.') if self.is_training_container: data_to_validate = [data[0] for data in self.data] else: data_to_validate = self.data if validate_if_any_none(string_elements=data_to_validate): raise DataError('Some addresses data points are None value.') if self.is_training_container: if not self._data_is_list_of_tuple(): raise TypeError('The pickled dataset data are not in a tuple format. Datais expected to be a list of tuples where the first element isthe address, and the second is the address tag.') if self._empty_tags(): raise DataError('Some tags data points are empty.') if not self._data_tags_is_same_len_then_address(): print(f'Some addresses (whitespace-split) and the tags associated with them are not the same len. If you are using a CSVDatasetContainer, consider using the tag_seperator_reformat_fn argument.Here is the report of those cases where len differ to help you out:\n{self._data_tags_not_the_same_len_diff()}') raise DataError('Some addresses (whitespace-split) and the tags associated with them are not the same len.') if validate_if_any_empty(string_elements=data_to_validate): raise DataError('Some addresses data points are empty.') if validate_if_any_whitespace_only(string_elements=data_to_validate): raise DataError('Some addresses only include whitespace thus cannot be parsed.')
deepparse
positive
def test_entities_converted_on_the_way_out(self): text = '<p>&lt;&lt;sacr&eacute;&#32;bleu!&gt;&gt;</p>' expected = u'<p>&lt;&lt;sacré bleu!&gt;&gt;</p>'.encode('utf-8') <DeepExtract> builder = kwargs.pop('builder', self.default_builder) soup = BeautifulSoup(text, builder=builder, **kwargs) </DeepExtract> self.assertEqual(soup.p.encode('utf-8'), expected)
def test_entities_converted_on_the_way_out(self): text = '<p>&lt;&lt;sacr&eacute;&#32;bleu!&gt;&gt;</p>' expected = u'<p>&lt;&lt;sacré bleu!&gt;&gt;</p>'.encode('utf-8') builder = kwargs.pop('builder', self.default_builder) soup = BeautifulSoup(text, builder=builder, **kwargs) self.assertEqual(soup.p.encode('utf-8'), expected)
alfred_pandoctor
positive
def UpdateEntityFromJsonDict(entity, json_dict): """Update a db or ndb Model entity from a dict. Only attributes that are present in both the entity and the json_dict will be updated in the entity. Args: entity: the model entity to get the values from (db.Model or ndb.Model). json_dict: a dict containing key/values to be updated in the entity. """ if hasattr(entity, 'ExtractFromJsonDict'): entity.ExtractFromJsonDict(json_dict) for (key, value) in json_dict.items(): if key not in ('id', 'created', 'key', 'last_updated'): if hasattr(entity, key): <DeepExtract> if hasattr(entity, 'properties'): prop_type = entity.properties().get(key, None).__class__.__name__ else: entity_properties = entity._properties prop_type = entity_properties.get(key, None).__class__.__name__ </DeepExtract> if prop_type == 'IntegerProperty': if value: if isinstance(value, collections.Iterable) and (not isinstance(value, basestring)): value = map(int, value) else: value = int(value) elif prop_type == 'DateTimeProperty': if value: if isinstance(value, collections.Iterable) and (not isinstance(value, basestring)): value = map(dateutil.parser.parse, value) else: value = dateutil.parser.parse(value) setattr(entity, key, value)
def UpdateEntityFromJsonDict(entity, json_dict): """Update a db or ndb Model entity from a dict. Only attributes that are present in both the entity and the json_dict will be updated in the entity. Args: entity: the model entity to get the values from (db.Model or ndb.Model). json_dict: a dict containing key/values to be updated in the entity. """ if hasattr(entity, 'ExtractFromJsonDict'): entity.ExtractFromJsonDict(json_dict) for (key, value) in json_dict.items(): if key not in ('id', 'created', 'key', 'last_updated'): if hasattr(entity, key): if hasattr(entity, 'properties'): prop_type = entity.properties().get(key, None).__class__.__name__ else: entity_properties = entity._properties prop_type = entity_properties.get(key, None).__class__.__name__ if prop_type == 'IntegerProperty': if value: if isinstance(value, collections.Iterable) and (not isinstance(value, basestring)): value = map(int, value) else: value = int(value) elif prop_type == 'DateTimeProperty': if value: if isinstance(value, collections.Iterable) and (not isinstance(value, basestring)): value = map(dateutil.parser.parse, value) else: value = dateutil.parser.parse(value) setattr(entity, key, value)
Data-Pipeline
positive
def run_iperf(self, client, target=None, opts=''): if target is None: <DeepExtract> target = '192.168.0.1' </DeepExtract> client.sendline('iperf %s -c %s %s | grep -v SUM' % (self.client_opts(), target, opts)) client.expect('Client connecting to')
def run_iperf(self, client, target=None, opts=''): if target is None: target = '192.168.0.1' client.sendline('iperf %s -c %s %s | grep -v SUM' % (self.client_opts(), target, opts)) client.expect('Client connecting to')
boardfarm
positive
def crop(self, box): """ Cropss a rectangular region from this bounding box. The box is a 4-tuple defining the left, upper, right, and lower pixel coordinate. """ <DeepExtract> if self.mode == 'xyxy': (xmin, ymin, xmax, ymax) = self.bbox.split(1, dim=-1) (xmin, ymin, xmax, ymax) = (xmin, ymin, xmax, ymax) elif self.mode == 'xywh': TO_REMOVE = 1 (xmin, ymin, w, h) = self.bbox.split(1, dim=-1) (xmin, ymin, xmax, ymax) = (xmin, ymin, xmin + (w - TO_REMOVE).clamp(min=0), ymin + (h - TO_REMOVE).clamp(min=0)) else: raise RuntimeError('Should not be here') </DeepExtract> (w, h) = (box[2] - box[0], box[3] - box[1]) cropped_xmin = (xmin - box[0]).clamp(min=0, max=w) cropped_ymin = (ymin - box[1]).clamp(min=0, max=h) cropped_xmax = (xmax - box[0]).clamp(min=0, max=w) cropped_ymax = (ymax - box[1]).clamp(min=0, max=h) if False: is_empty = (cropped_xmin == cropped_xmax) | (cropped_ymin == cropped_ymax) cropped_box = torch.cat((cropped_xmin, cropped_ymin, cropped_xmax, cropped_ymax), dim=-1) bbox = BoxList(cropped_box, (w, h), mode='xyxy') for (k, v) in self.extra_fields.items(): if not isinstance(v, torch.Tensor): v = v.crop(box) bbox.add_field(k, v) return bbox.convert(self.mode)
def crop(self, box): """ Cropss a rectangular region from this bounding box. The box is a 4-tuple defining the left, upper, right, and lower pixel coordinate. """ if self.mode == 'xyxy': (xmin, ymin, xmax, ymax) = self.bbox.split(1, dim=-1) (xmin, ymin, xmax, ymax) = (xmin, ymin, xmax, ymax) elif self.mode == 'xywh': TO_REMOVE = 1 (xmin, ymin, w, h) = self.bbox.split(1, dim=-1) (xmin, ymin, xmax, ymax) = (xmin, ymin, xmin + (w - TO_REMOVE).clamp(min=0), ymin + (h - TO_REMOVE).clamp(min=0)) else: raise RuntimeError('Should not be here') (w, h) = (box[2] - box[0], box[3] - box[1]) cropped_xmin = (xmin - box[0]).clamp(min=0, max=w) cropped_ymin = (ymin - box[1]).clamp(min=0, max=h) cropped_xmax = (xmax - box[0]).clamp(min=0, max=w) cropped_ymax = (ymax - box[1]).clamp(min=0, max=h) if False: is_empty = (cropped_xmin == cropped_xmax) | (cropped_ymin == cropped_ymax) cropped_box = torch.cat((cropped_xmin, cropped_ymin, cropped_xmax, cropped_ymax), dim=-1) bbox = BoxList(cropped_box, (w, h), mode='xyxy') for (k, v) in self.extra_fields.items(): if not isinstance(v, torch.Tensor): v = v.crop(box) bbox.add_field(k, v) return bbox.convert(self.mode)
EveryPixelMatters
positive
def run(self): <DeepExtract> root = os.path.realpath(os.path.abspath(os.getcwd())) setup_py = os.path.join(root, 'setup.py') versioneer_py = os.path.join(root, 'versioneer.py') if not (os.path.exists(setup_py) or os.path.exists(versioneer_py)): root = os.path.dirname(os.path.realpath(os.path.abspath(sys.argv[0]))) setup_py = os.path.join(root, 'setup.py') versioneer_py = os.path.join(root, 'versioneer.py') if not (os.path.exists(setup_py) or os.path.exists(versioneer_py)): err = "Versioneer was unable to run the project root directory. Versioneer requires setup.py to be executed from its immediate directory (like 'python setup.py COMMAND'), or in a way that lets it use sys.argv[0] to find the root (like 'python path/to/setup.py COMMAND')." raise VersioneerBadRootError(err) try: me = os.path.realpath(os.path.abspath(__file__)) me_dir = os.path.normcase(os.path.splitext(me)[0]) vsr_dir = os.path.normcase(os.path.splitext(versioneer_py)[0]) if me_dir != vsr_dir: print('Warning: build in %s is using versioneer.py from %s' % (os.path.dirname(me), versioneer_py)) except NameError: pass root = root </DeepExtract> <DeepExtract> setup_cfg = os.path.join(root, 'setup.cfg') parser = configparser.SafeConfigParser() with open(setup_cfg, 'r') as f: parser.readfp(f) VCS = parser.get('versioneer', 'VCS') def get(parser, name): if parser.has_option('versioneer', name): cfg = parser.get('versioneer', name) cfg = None cfg = VersioneerConfig() cfg.VCS = VCS cfg.style = get(parser, 'style') or '' cfg.versionfile_source = get(parser, 'versionfile_source') cfg.versionfile_build = get(parser, 'versionfile_build') cfg.tag_prefix = get(parser, 'tag_prefix') if cfg.tag_prefix in ("''", '""'): cfg.tag_prefix = '' cfg.parentdir_prefix = get(parser, 'parentdir_prefix') cfg.verbose = get(parser, 'verbose') cfg = cfg </DeepExtract> <DeepExtract> if 'versioneer' in sys.modules: del sys.modules['versioneer'] root = get_root() cfg = get_config_from_root(root) assert cfg.VCS is not None, 'please set [versioneer]VCS= in setup.cfg' handlers = HANDLERS.get(cfg.VCS) assert handlers, "unrecognized VCS '%s'" % cfg.VCS verbose = verbose or cfg.verbose assert cfg.versionfile_source is not None, 'please set versioneer.versionfile_source' assert cfg.tag_prefix is not None, 'please set versioneer.tag_prefix' versionfile_abs = os.path.join(root, cfg.versionfile_source) get_keywords_f = handlers.get('get_keywords') from_keywords_f = handlers.get('keywords') if get_keywords_f and from_keywords_f: try: keywords = get_keywords_f(versionfile_abs) ver = from_keywords_f(keywords, cfg.tag_prefix, verbose) if verbose: print('got version from expanded keyword %s' % ver) versions = ver except NotThisMethod: pass try: ver = versions_from_file(versionfile_abs) if verbose: print('got version from file %s %s' % (versionfile_abs, ver)) versions = ver except NotThisMethod: pass from_vcs_f = handlers.get('pieces_from_vcs') if from_vcs_f: try: pieces = from_vcs_f(cfg.tag_prefix, root, verbose) ver = render(pieces, cfg.style) if verbose: print('got version from VCS %s' % ver) versions = ver except NotThisMethod: pass try: if cfg.parentdir_prefix: ver = versions_from_parentdir(cfg.parentdir_prefix, root, verbose) if verbose: print('got version from parentdir %s' % ver) versions = ver except NotThisMethod: pass if verbose: print('unable to compute version') versions = {'version': '0+unknown', 'full-revisionid': None, 'dirty': None, 'error': 'unable to compute version', 'date': None} </DeepExtract> _build_py.run(self) if cfg.versionfile_build: target_versionfile = os.path.join(self.build_lib, cfg.versionfile_build) print('UPDATING %s' % target_versionfile) <DeepExtract> os.unlink(target_versionfile) contents = json.dumps(versions, sort_keys=True, indent=1, separators=(',', ': ')) with open(target_versionfile, 'w') as f: f.write(SHORT_VERSION_PY % contents) print("set %s to '%s'" % (target_versionfile, versions['version'])) </DeepExtract>
def run(self): root = os.path.realpath(os.path.abspath(os.getcwd())) setup_py = os.path.join(root, 'setup.py') versioneer_py = os.path.join(root, 'versioneer.py') if not (os.path.exists(setup_py) or os.path.exists(versioneer_py)): root = os.path.dirname(os.path.realpath(os.path.abspath(sys.argv[0]))) setup_py = os.path.join(root, 'setup.py') versioneer_py = os.path.join(root, 'versioneer.py') if not (os.path.exists(setup_py) or os.path.exists(versioneer_py)): err = "Versioneer was unable to run the project root directory. Versioneer requires setup.py to be executed from its immediate directory (like 'python setup.py COMMAND'), or in a way that lets it use sys.argv[0] to find the root (like 'python path/to/setup.py COMMAND')." raise VersioneerBadRootError(err) try: me = os.path.realpath(os.path.abspath(__file__)) me_dir = os.path.normcase(os.path.splitext(me)[0]) vsr_dir = os.path.normcase(os.path.splitext(versioneer_py)[0]) if me_dir != vsr_dir: print('Warning: build in %s is using versioneer.py from %s' % (os.path.dirname(me), versioneer_py)) except NameError: pass root = root setup_cfg = os.path.join(root, 'setup.cfg') parser = configparser.SafeConfigParser() with open(setup_cfg, 'r') as f: parser.readfp(f) VCS = parser.get('versioneer', 'VCS') def get(parser, name): if parser.has_option('versioneer', name): cfg = parser.get('versioneer', name) cfg = None cfg = VersioneerConfig() cfg.VCS = VCS cfg.style = get(parser, 'style') or '' cfg.versionfile_source = get(parser, 'versionfile_source') cfg.versionfile_build = get(parser, 'versionfile_build') cfg.tag_prefix = get(parser, 'tag_prefix') if cfg.tag_prefix in ("''", '""'): cfg.tag_prefix = '' cfg.parentdir_prefix = get(parser, 'parentdir_prefix') cfg.verbose = get(parser, 'verbose') cfg = cfg if 'versioneer' in sys.modules: del sys.modules['versioneer'] root = get_root() cfg = get_config_from_root(root) assert cfg.VCS is not None, 'please set [versioneer]VCS= in setup.cfg' handlers = HANDLERS.get(cfg.VCS) assert handlers, "unrecognized VCS '%s'" % cfg.VCS verbose = verbose or cfg.verbose assert cfg.versionfile_source is not None, 'please set versioneer.versionfile_source' assert cfg.tag_prefix is not None, 'please set versioneer.tag_prefix' versionfile_abs = os.path.join(root, cfg.versionfile_source) get_keywords_f = handlers.get('get_keywords') from_keywords_f = handlers.get('keywords') if get_keywords_f and from_keywords_f: try: keywords = get_keywords_f(versionfile_abs) ver = from_keywords_f(keywords, cfg.tag_prefix, verbose) if verbose: print('got version from expanded keyword %s' % ver) versions = ver except NotThisMethod: pass try: ver = versions_from_file(versionfile_abs) if verbose: print('got version from file %s %s' % (versionfile_abs, ver)) versions = ver except NotThisMethod: pass from_vcs_f = handlers.get('pieces_from_vcs') if from_vcs_f: try: pieces = from_vcs_f(cfg.tag_prefix, root, verbose) ver = render(pieces, cfg.style) if verbose: print('got version from VCS %s' % ver) versions = ver except NotThisMethod: pass try: if cfg.parentdir_prefix: ver = versions_from_parentdir(cfg.parentdir_prefix, root, verbose) if verbose: print('got version from parentdir %s' % ver) versions = ver except NotThisMethod: pass if verbose: print('unable to compute version') versions = {'version': '0+unknown', 'full-revisionid': None, 'dirty': None, 'error': 'unable to compute version', 'date': None} _build_py.run(self) if cfg.versionfile_build: target_versionfile = os.path.join(self.build_lib, cfg.versionfile_build) print('UPDATING %s' % target_versionfile) os.unlink(target_versionfile) contents = json.dumps(versions, sort_keys=True, indent=1, separators=(',', ': ')) with open(target_versionfile, 'w') as f: f.write(SHORT_VERSION_PY % contents) print("set %s to '%s'" % (target_versionfile, versions['version'])) </DeepExtract>
Ensembler
positive
def get_url_path(self): if hasattr(self.get_url, 'dont_recurse'): raise NotImplemented try: <DeepExtract> if hasattr(self.get_url_path, 'dont_recurse'): raise NotImplemented try: path = self.get_url_path() except NotImplemented: raise website_url = getattr(settings, 'DEFAULT_WEBSITE_URL', 'http://127.0.0.1:8000') url = website_url + path </DeepExtract> except NotImplemented: raise bits = urlparse.urlparse(url) return urlparse.urlunparse(('', '') + bits[2:])
def get_url_path(self): if hasattr(self.get_url, 'dont_recurse'): raise NotImplemented try: if hasattr(self.get_url_path, 'dont_recurse'): raise NotImplemented try: path = self.get_url_path() except NotImplemented: raise website_url = getattr(settings, 'DEFAULT_WEBSITE_URL', 'http://127.0.0.1:8000') url = website_url + path except NotImplemented: raise bits = urlparse.urlparse(url) return urlparse.urlunparse(('', '') + bits[2:])
Django-Web-Development-with-Python
positive
@pyqtSlot() def call_dialog(self): <DeepExtract> presets = config.table_presets for key in presets[HeaderEditWidget.default]: if key not in presets[current] and (not header_dict[key][0]): header_dict.pop(key) presets[current] = header_dict </DeepExtract> self.save = False HeaderEditDialog(self.source, self.config).exec()
@pyqtSlot() def call_dialog(self): presets = config.table_presets for key in presets[HeaderEditWidget.default]: if key not in presets[current] and (not header_dict[key][0]): header_dict.pop(key) presets[current] = header_dict self.save = False HeaderEditDialog(self.source, self.config).exec()
clever-show
positive
def read(system, file): """ Read PSS/E RAW file v32/v33 formats. """ blocks = ['bus', 'load', 'fshunt', 'gen', 'branch', 'transf', 'area', 'twotermdc', 'vscdc', 'impedcorr', 'mtdc', 'msline', 'zone', 'interarea', 'owner', 'facts', 'swshunt', 'gne', 'Q'] rawd = re.compile('rawd\\d\\d') ret = True block_idx = 0 mva = 100 raw = {} for item in blocks: raw[item] = [] data = [] mdata = [] dev_line = 0 line_list = andes.io.read_file_like(file) for (num, line) in enumerate(line_list): line = line.strip() if num == 0: data = line.split('/')[0] data = data.split(',') mva = float(data[1]) system.config.mva = mva try: system.config.freq = float(data[5]) except IndexError: logger.warning('System frequency is set to 60 Hz.\nConsider using a higher version PSS/E raw file.') system.config.freq = 60.0 version = 0 if len(data) >= 3: version = int(data[2]) elif rawd.search(line): version = int(rawd.search(line).group(0).strip('rawd')) continue elif num == 1 or num == 2: if len(line) > 0: logger.info(' ' + line) continue elif num >= 3: if line[0:2] == '0 ' or line[0:3] == ' 0 ': block_idx += 1 continue elif line[0] == 'Q': break data = line.split(',') data = [to_number(item) for item in data] mdata.append(data) dev_line += 1 <DeepExtract> line_counts = [1, 1, 1, 1, 1, 4, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0] if block_idx == 5: if mdata[0][2] == 0: block_lines = 4 else: block_lines = 5 block_lines = line_counts[block_idx] </DeepExtract> if dev_line >= block_lines: if block_lines == 1: mdata = mdata[0] raw[blocks[block_idx]].append(mdata) mdata = [] dev_line = 0 <DeepExtract> out = defaultdict(list) bus_idx_list = list() sw = dict() for data in raw['bus']: idx = data[0] bus_idx_list.append(idx) ty = data[3] a0 = data[8] * deg2rad if ty == 3: sw[idx] = a0 param = {'idx': idx, 'name': data[1], 'Vn': data[2], 'v0': data[7], 'a0': a0, 'area': data[4], 'zone': data[5], 'owner': data[6]} out['Bus'].append(param) _add_devices_from_dict(out, system) (bus_params, bus_idx_list, sw) = (out, bus_idx_list, sw) </DeepExtract> max_bus = max(bus_idx_list) <DeepExtract> mva = system.config.mva out = defaultdict(list) for data in raw['load']: bus = data[0] vn = system.Bus.get(src='Vn', idx=bus, attr='v') v0 = system.Bus.get(src='v0', idx=bus, attr='v') param = {'bus': bus, 'u': data[2], 'Vn': vn, 'p0': (data[5] + data[7] * v0 + data[9] * v0 ** 2) / mva, 'q0': (data[6] + data[8] * v0 - data[10] * v0 ** 2) / mva, 'owner': data[11]} out['PQ'].append(param) _add_devices_from_dict(out, system) return out </DeepExtract> <DeepExtract> mva = system.config.mva out = defaultdict(list) for data in raw['fshunt']: bus = data[0] vn = system.Bus.get(src='Vn', idx=bus, attr='v') param = {'bus': bus, 'Vn': vn, 'u': data[2], 'Sn': mva, 'g': data[3] / mva, 'b': data[4] / mva} out['Shunt'].append(param) _add_devices_from_dict(out, system) return out </DeepExtract> <DeepExtract> mva = system.config.mva out = defaultdict(list) gen_idx = 0 for data in raw['gen']: bus = data[0] subidx = data[1] vn = system.Bus.get(src='Vn', idx=bus, attr='v') gen_mva = data[8] gen_idx += 1 status = data[14] param = {'Sn': gen_mva, 'Vn': vn, 'u': status, 'bus': bus, 'subidx': subidx, 'idx': gen_idx, 'p0': data[2] / mva, 'q0': data[3] / mva, 'pmax': data[16] / mva, 'pmin': data[17] / mva, 'qmax': data[4] / mva, 'qmin': data[5] / mva, 'v0': data[6], 'ra': data[9], 'xs': data[10]} if data[0] in sw.keys(): param.update({'a0': sw[data[0]]}) out['Slack'].append(param) else: out['PV'].append(param) _add_devices_from_dict(out, system) return out </DeepExtract> <DeepExtract> out = defaultdict(list) for data in raw['branch']: param = {'bus1': data[0], 'bus2': data[1], 'r': data[3], 'x': data[4], 'b': data[5], 'rate_a': data[6], 'rate_b': data[7], 'rate_c': data[8], 'Vn1': system.Bus.get(src='Vn', idx=data[0], attr='v'), 'Vn2': system.Bus.get(src='Vn', idx=data[1], attr='v')} out['Line'].append(param) _add_devices_from_dict(out, system) return out </DeepExtract> <DeepExtract> out = defaultdict(list) xf_3_count = 1 for data in raw['transf']: if len(data) == 4: Sn = system.config.mva bus_Vn1 = system.Bus.get(src='Vn', idx=data[0][0], attr='v') bus_Vn2 = system.Bus.get(src='Vn', idx=data[0][1], attr='v') Vn1 = data[2][1] if data[2][1] != 0.0 else bus_Vn1 Vn2 = data[3][1] if data[3][1] != 0.0 else bus_Vn2 transf = True tap = data[2][0] phi = data[2][2] * deg2rad rate_a = data[2][3] rate_b = data[2][4] rate_c = data[2][5] if data[0][4] == 2: tap = data[2][0] / bus_Vn1 / (data[3][0] / bus_Vn2) elif data[0][4] == 3: tap = tap * (Vn1 / bus_Vn1) / (Vn2 / bus_Vn2) if data[0][5] == 1: Sn = system.config.mva elif data[0][5] == 2: Sn = data[1][2] else: logger.warning('Impedance code 3 not implemented') if data[0][6] == 2: logger.warning('Admittance code 2 not implemented') param = {'bus1': data[0][0], 'bus2': data[0][1], 'u': data[0][11], 'b': data[0][8], 'r': data[1][0], 'x': data[1][1], 'trans': transf, 'tap': tap, 'phi': phi, 'Sn': Sn, 'Vn1': Vn1, 'Vn2': Vn2, 'rate_a': rate_a, 'rate_b': rate_b, 'rate_c': rate_c} out['Line'].append(param) else: new_bus = data[0][2] + 1 if new_bus in system.Bus.idx.v: new_bus = max_bus + xf_3_count logger.warning('Added bus <%s> for 3-winding transformer <%s-%s-%s>', new_bus, data[0][0], data[0][1], data[0][2]) param = {'idx': new_bus, 'name': '_'.join([str(i) for i in data[0][:3]]), 'Vn': 1.0, 'v0': data[1][-2], 'a0': data[1][-1] * deg2rad} out['Bus'].append(param) r = [] x = [] r.append((data[1][0] + data[1][6] - data[1][3]) / 2) r.append((data[1][3] + data[1][0] - data[1][6]) / 2) r.append((data[1][6] + data[1][3] - data[1][0]) / 2) x.append((data[1][1] + data[1][7] - data[1][4]) / 2) x.append((data[1][4] + data[1][1] - data[1][7]) / 2) x.append((data[1][7] + data[1][4] - data[1][1]) / 2) for i in range(0, 3): param = {'trans': True, 'bus1': data[0][i], 'bus2': new_bus, 'u': data[0][11], 'b': data[0][8], 'r': r[i], 'x': x[i], 'tap': data[2 + i][0], 'phi': data[2 + i][2] * deg2rad, 'Vn1': system.Bus.get(src='Vn', idx=data[0][i], attr='v'), 'Vn2': 1.0} out['Line'].append(param) xf_3_count += 1 _add_devices_from_dict(out, system) return (out, xf_3_count) </DeepExtract> <DeepExtract> out = defaultdict(list) mva = system.config.mva for data in raw['swshunt']: bus = data[0] vn = system.Bus.get(src='Vn', idx=bus, attr='v') param = {'bus': bus, 'Vn': vn, 'Sn': mva, 'u': data[3], 'b': data[9] / mva} out['Shunt'].append(param) _add_devices_from_dict(out, system) return out </DeepExtract> <DeepExtract> out = defaultdict(list) for data in raw['area']: param = {'idx': data[0], 'name': data[4]} out['Area'].append(param) for data in raw['zone']: param = {'idx': data[0], 'name': data[1]} _add_devices_from_dict(out, system) return out </DeepExtract> return ret
def read(system, file): """ Read PSS/E RAW file v32/v33 formats. """ blocks = ['bus', 'load', 'fshunt', 'gen', 'branch', 'transf', 'area', 'twotermdc', 'vscdc', 'impedcorr', 'mtdc', 'msline', 'zone', 'interarea', 'owner', 'facts', 'swshunt', 'gne', 'Q'] rawd = re.compile('rawd\\d\\d') ret = True block_idx = 0 mva = 100 raw = {} for item in blocks: raw[item] = [] data = [] mdata = [] dev_line = 0 line_list = andes.io.read_file_like(file) for (num, line) in enumerate(line_list): line = line.strip() if num == 0: data = line.split('/')[0] data = data.split(',') mva = float(data[1]) system.config.mva = mva try: system.config.freq = float(data[5]) except IndexError: logger.warning('System frequency is set to 60 Hz.\nConsider using a higher version PSS/E raw file.') system.config.freq = 60.0 version = 0 if len(data) >= 3: version = int(data[2]) elif rawd.search(line): version = int(rawd.search(line).group(0).strip('rawd')) continue elif num == 1 or num == 2: if len(line) > 0: logger.info(' ' + line) continue elif num >= 3: if line[0:2] == '0 ' or line[0:3] == ' 0 ': block_idx += 1 continue elif line[0] == 'Q': break data = line.split(',') data = [to_number(item) for item in data] mdata.append(data) dev_line += 1 line_counts = [1, 1, 1, 1, 1, 4, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0] if block_idx == 5: if mdata[0][2] == 0: block_lines = 4 else: block_lines = 5 block_lines = line_counts[block_idx] if dev_line >= block_lines: if block_lines == 1: mdata = mdata[0] raw[blocks[block_idx]].append(mdata) mdata = [] dev_line = 0 out = defaultdict(list) bus_idx_list = list() sw = dict() for data in raw['bus']: idx = data[0] bus_idx_list.append(idx) ty = data[3] a0 = data[8] * deg2rad if ty == 3: sw[idx] = a0 param = {'idx': idx, 'name': data[1], 'Vn': data[2], 'v0': data[7], 'a0': a0, 'area': data[4], 'zone': data[5], 'owner': data[6]} out['Bus'].append(param) _add_devices_from_dict(out, system) (bus_params, bus_idx_list, sw) = (out, bus_idx_list, sw) max_bus = max(bus_idx_list) mva = system.config.mva out = defaultdict(list) for data in raw['load']: bus = data[0] vn = system.Bus.get(src='Vn', idx=bus, attr='v') v0 = system.Bus.get(src='v0', idx=bus, attr='v') param = {'bus': bus, 'u': data[2], 'Vn': vn, 'p0': (data[5] + data[7] * v0 + data[9] * v0 ** 2) / mva, 'q0': (data[6] + data[8] * v0 - data[10] * v0 ** 2) / mva, 'owner': data[11]} out['PQ'].append(param) _add_devices_from_dict(out, system) return out mva = system.config.mva out = defaultdict(list) for data in raw['fshunt']: bus = data[0] vn = system.Bus.get(src='Vn', idx=bus, attr='v') param = {'bus': bus, 'Vn': vn, 'u': data[2], 'Sn': mva, 'g': data[3] / mva, 'b': data[4] / mva} out['Shunt'].append(param) _add_devices_from_dict(out, system) return out mva = system.config.mva out = defaultdict(list) gen_idx = 0 for data in raw['gen']: bus = data[0] subidx = data[1] vn = system.Bus.get(src='Vn', idx=bus, attr='v') gen_mva = data[8] gen_idx += 1 status = data[14] param = {'Sn': gen_mva, 'Vn': vn, 'u': status, 'bus': bus, 'subidx': subidx, 'idx': gen_idx, 'p0': data[2] / mva, 'q0': data[3] / mva, 'pmax': data[16] / mva, 'pmin': data[17] / mva, 'qmax': data[4] / mva, 'qmin': data[5] / mva, 'v0': data[6], 'ra': data[9], 'xs': data[10]} if data[0] in sw.keys(): param.update({'a0': sw[data[0]]}) out['Slack'].append(param) else: out['PV'].append(param) _add_devices_from_dict(out, system) return out out = defaultdict(list) for data in raw['branch']: param = {'bus1': data[0], 'bus2': data[1], 'r': data[3], 'x': data[4], 'b': data[5], 'rate_a': data[6], 'rate_b': data[7], 'rate_c': data[8], 'Vn1': system.Bus.get(src='Vn', idx=data[0], attr='v'), 'Vn2': system.Bus.get(src='Vn', idx=data[1], attr='v')} out['Line'].append(param) _add_devices_from_dict(out, system) return out out = defaultdict(list) xf_3_count = 1 for data in raw['transf']: if len(data) == 4: Sn = system.config.mva bus_Vn1 = system.Bus.get(src='Vn', idx=data[0][0], attr='v') bus_Vn2 = system.Bus.get(src='Vn', idx=data[0][1], attr='v') Vn1 = data[2][1] if data[2][1] != 0.0 else bus_Vn1 Vn2 = data[3][1] if data[3][1] != 0.0 else bus_Vn2 transf = True tap = data[2][0] phi = data[2][2] * deg2rad rate_a = data[2][3] rate_b = data[2][4] rate_c = data[2][5] if data[0][4] == 2: tap = data[2][0] / bus_Vn1 / (data[3][0] / bus_Vn2) elif data[0][4] == 3: tap = tap * (Vn1 / bus_Vn1) / (Vn2 / bus_Vn2) if data[0][5] == 1: Sn = system.config.mva elif data[0][5] == 2: Sn = data[1][2] else: logger.warning('Impedance code 3 not implemented') if data[0][6] == 2: logger.warning('Admittance code 2 not implemented') param = {'bus1': data[0][0], 'bus2': data[0][1], 'u': data[0][11], 'b': data[0][8], 'r': data[1][0], 'x': data[1][1], 'trans': transf, 'tap': tap, 'phi': phi, 'Sn': Sn, 'Vn1': Vn1, 'Vn2': Vn2, 'rate_a': rate_a, 'rate_b': rate_b, 'rate_c': rate_c} out['Line'].append(param) else: new_bus = data[0][2] + 1 if new_bus in system.Bus.idx.v: new_bus = max_bus + xf_3_count logger.warning('Added bus <%s> for 3-winding transformer <%s-%s-%s>', new_bus, data[0][0], data[0][1], data[0][2]) param = {'idx': new_bus, 'name': '_'.join([str(i) for i in data[0][:3]]), 'Vn': 1.0, 'v0': data[1][-2], 'a0': data[1][-1] * deg2rad} out['Bus'].append(param) r = [] x = [] r.append((data[1][0] + data[1][6] - data[1][3]) / 2) r.append((data[1][3] + data[1][0] - data[1][6]) / 2) r.append((data[1][6] + data[1][3] - data[1][0]) / 2) x.append((data[1][1] + data[1][7] - data[1][4]) / 2) x.append((data[1][4] + data[1][1] - data[1][7]) / 2) x.append((data[1][7] + data[1][4] - data[1][1]) / 2) for i in range(0, 3): param = {'trans': True, 'bus1': data[0][i], 'bus2': new_bus, 'u': data[0][11], 'b': data[0][8], 'r': r[i], 'x': x[i], 'tap': data[2 + i][0], 'phi': data[2 + i][2] * deg2rad, 'Vn1': system.Bus.get(src='Vn', idx=data[0][i], attr='v'), 'Vn2': 1.0} out['Line'].append(param) xf_3_count += 1 _add_devices_from_dict(out, system) return (out, xf_3_count) out = defaultdict(list) mva = system.config.mva for data in raw['swshunt']: bus = data[0] vn = system.Bus.get(src='Vn', idx=bus, attr='v') param = {'bus': bus, 'Vn': vn, 'Sn': mva, 'u': data[3], 'b': data[9] / mva} out['Shunt'].append(param) _add_devices_from_dict(out, system) return out out = defaultdict(list) for data in raw['area']: param = {'idx': data[0], 'name': data[4]} out['Area'].append(param) for data in raw['zone']: param = {'idx': data[0], 'name': data[1]} _add_devices_from_dict(out, system) return out return ret
andes
positive
def __call__(self, *args): with errors.SetUserErrorContext(cli=self, pname=args[0]): <DeepExtract> ba = self.signature.read_arguments(args[1:], args[0]) (func, post, posargs, kwargs) = ba name = ' '.join([args[0]] + post) (func, name, posargs, kwargs) = (func or self.func, name, posargs, kwargs) </DeepExtract> return func(*posargs, **kwargs)
def __call__(self, *args): with errors.SetUserErrorContext(cli=self, pname=args[0]): ba = self.signature.read_arguments(args[1:], args[0]) (func, post, posargs, kwargs) = ba name = ' '.join([args[0]] + post) (func, name, posargs, kwargs) = (func or self.func, name, posargs, kwargs) return func(*posargs, **kwargs)
clize
positive
def test_key_isnt_unicode_bydefault(self): <DeepExtract> canary = [] def decorate(fn): canary.append(util.function_key_generator('mynamespace', fn, **kw)) (decorate, canary) = fn (decorate, canary) = (decorate, canary) </DeepExtract> @decorate def one(a, b): pass gen = canary[0] assert isinstance(gen('foo'), str)
def test_key_isnt_unicode_bydefault(self): canary = [] def decorate(fn): canary.append(util.function_key_generator('mynamespace', fn, **kw)) (decorate, canary) = fn (decorate, canary) = (decorate, canary) @decorate def one(a, b): pass gen = canary[0] assert isinstance(gen('foo'), str)
dogpile.cache
positive
def advice(parent_object, *args, **kw): request = parent_object.request audit_manager = request.data_managers['audit_manager'] if 'scheme_id' not in request.matchdict.keys(): log.error('Misuse of the audit decorator. The url must at least contain a {scheme_id} parameter') return fn(parent_object, *args, **kw) provider = request.skos_registry.get_provider(request.matchdict['scheme_id']) if not provider or 'external' in provider.get_metadata()['subject']: return fn(parent_object, *args, **kw) else: if 'c_id' in request.matchdict.keys(): visit_log = ConceptVisitLog(concept_id=request.matchdict['c_id'], conceptscheme_id=request.matchdict['scheme_id']) else: visit_log = ConceptschemeVisitLog(conceptscheme_id=request.matchdict['scheme_id']) response = fn(parent_object, *args, **kw) if isinstance(response, Response): <DeepExtract> if response.content_type == 'application/rdf+xml' or response.content_type == 'application/ld+json' or response.content_type == 'text/turtle' or (response.content_type == 'application/x-turtle'): visit_log.origin = 'RDF' else: visit_log.origin = None </DeepExtract> else: <DeepExtract> if '.csv' in request.url: visit_log.origin = 'CSV' elif 'text/html' in request.accept: visit_log.origin = 'HTML' elif 'application/json' in request.accept: visit_log.origin = 'REST' elif 'application/ld+json' in request.accept: visit_log.origin = 'RDF' else: visit_log.origin = None </DeepExtract> audit_manager.save(visit_log) return response
def advice(parent_object, *args, **kw): request = parent_object.request audit_manager = request.data_managers['audit_manager'] if 'scheme_id' not in request.matchdict.keys(): log.error('Misuse of the audit decorator. The url must at least contain a {scheme_id} parameter') return fn(parent_object, *args, **kw) provider = request.skos_registry.get_provider(request.matchdict['scheme_id']) if not provider or 'external' in provider.get_metadata()['subject']: return fn(parent_object, *args, **kw) else: if 'c_id' in request.matchdict.keys(): visit_log = ConceptVisitLog(concept_id=request.matchdict['c_id'], conceptscheme_id=request.matchdict['scheme_id']) else: visit_log = ConceptschemeVisitLog(conceptscheme_id=request.matchdict['scheme_id']) response = fn(parent_object, *args, **kw) if isinstance(response, Response): if response.content_type == 'application/rdf+xml' or response.content_type == 'application/ld+json' or response.content_type == 'text/turtle' or (response.content_type == 'application/x-turtle'): visit_log.origin = 'RDF' else: visit_log.origin = None else: if '.csv' in request.url: visit_log.origin = 'CSV' elif 'text/html' in request.accept: visit_log.origin = 'HTML' elif 'application/json' in request.accept: visit_log.origin = 'REST' elif 'application/ld+json' in request.accept: visit_log.origin = 'RDF' else: visit_log.origin = None audit_manager.save(visit_log) return response
atramhasis
positive
def FindCheckMacro(line): """Find a replaceable CHECK-like macro. Args: line: line to search on. Returns: (macro name, start position), or (None, -1) if no replaceable macro is found. """ for macro in _CHECK_MACROS: i = line.find(macro) if i >= 0: <DeepExtract> if '^(.*\\b' + macro + '\\s*)\\(' not in _regexp_compile_cache: _regexp_compile_cache['^(.*\\b' + macro + '\\s*)\\('] = sre_compile.compile('^(.*\\b' + macro + '\\s*)\\(') matched = _regexp_compile_cache['^(.*\\b' + macro + '\\s*)\\('].match(line) </DeepExtract> if not matched: continue return (macro, len(matched.group(1))) return (None, -1)
def FindCheckMacro(line): """Find a replaceable CHECK-like macro. Args: line: line to search on. Returns: (macro name, start position), or (None, -1) if no replaceable macro is found. """ for macro in _CHECK_MACROS: i = line.find(macro) if i >= 0: if '^(.*\\b' + macro + '\\s*)\\(' not in _regexp_compile_cache: _regexp_compile_cache['^(.*\\b' + macro + '\\s*)\\('] = sre_compile.compile('^(.*\\b' + macro + '\\s*)\\(') matched = _regexp_compile_cache['^(.*\\b' + macro + '\\s*)\\('].match(line) if not matched: continue return (macro, len(matched.group(1))) return (None, -1)
cowry
positive
def _compute_loss(self, batch, output_decoder, output_lm, target): <DeepExtract> bottled_output_decoder = output_decoder.view(-1, output_decoder.size(2)) </DeepExtract> <DeepExtract> bottled_output_lm = output_lm.view(-1, output_lm.size(2)) </DeepExtract> scores = self.generator(bottled_output_decoder, bottled_output_lm) gtruth = target.view(-1) loss = self.criterion(scores, gtruth) <DeepExtract> pred = scores.max(1)[1] non_padding = gtruth.ne(self.padding_idx) num_correct = pred.eq(gtruth).masked_select(non_padding).sum().item() num_non_padding = non_padding.sum().item() stats = onmt.utils.Statistics(loss.clone().item(), num_non_padding, num_correct) </DeepExtract> return (loss, stats)
def _compute_loss(self, batch, output_decoder, output_lm, target): bottled_output_decoder = output_decoder.view(-1, output_decoder.size(2)) bottled_output_lm = output_lm.view(-1, output_lm.size(2)) scores = self.generator(bottled_output_decoder, bottled_output_lm) gtruth = target.view(-1) loss = self.criterion(scores, gtruth) pred = scores.max(1)[1] non_padding = gtruth.ne(self.padding_idx) num_correct = pred.eq(gtruth).masked_select(non_padding).sum().item() num_non_padding = non_padding.sum().item() stats = onmt.utils.Statistics(loss.clone().item(), num_non_padding, num_correct) return (loss, stats)
encoder-agnostic-adaptation
positive
def test_tanh(self): <DeepExtract> self = Mpfr_t() mpfr_init2(self, 53) x = self </DeepExtract> <DeepExtract> self = Mpfr_t() mpfr_init2(self, 53) y = self </DeepExtract> mpfr_set_d(x, 7.3, MPFR_RNDN) mpfr_tanh(y, x, MPFR_RNDN) self.assertEqual(mpfr_get_d(y, MPFR_RNDN), 0.999999087295143)
def test_tanh(self): self = Mpfr_t() mpfr_init2(self, 53) x = self self = Mpfr_t() mpfr_init2(self, 53) y = self mpfr_set_d(x, 7.3, MPFR_RNDN) mpfr_tanh(y, x, MPFR_RNDN) self.assertEqual(mpfr_get_d(y, MPFR_RNDN), 0.999999087295143)
bigfloat
positive
def main(_): if FLAGS.input_dir[-1] != '/': FLAGS.input_dir = FLAGS.input_dir + '/' if FLAGS.output_dir[-1] != '/': FLAGS.output_dir = FLAGS.output_dir + '/' tf.logging.set_verbosity(tf.logging.INFO) tokenizer = tokenization.FullTokenizer(vocab_file=FLAGS.vocab_file, do_lower_case=FLAGS.do_lower_case) rng = random.Random(FLAGS.random_seed) for (dex, fname) in enumerate(os.listdir(FLAGS.input_dir)): input_files = tf.gfile.Glob(FLAGS.input_dir + fname) tf.logging.info('*** Reading from input files ***') for input_file in input_files: tf.logging.info(' %s', input_file) <DeepExtract> all_documents = [[]] for input_file in input_files: with tf.gfile.GFile(input_file, 'r') as reader: while True: line = tokenization.convert_to_unicode(reader.readline()) if not line: break line = line.strip() if not line: all_documents.append([]) tokens = tokenizer.tokenize(line) if tokens: all_documents[-1].append(tokens) all_documents = [x for x in all_documents if x] rng.shuffle(all_documents) vocab_words = list(tokenizer.vocab.keys()) instances = [] for _ in range(FLAGS.dupe_factor): for document_index in range(len(all_documents)): instances.extend(create_instances_from_document(all_documents, document_index, FLAGS.max_seq_length, FLAGS.short_seq_prob, FLAGS.masked_lm_prob, FLAGS.max_predictions_per_seq, vocab_words, rng)) rng.shuffle(instances) instances = instances </DeepExtract> output_files = [FLAGS.output_dir + FLAGS.output_base_name + '_' + str(dex) + '.tfrecord'] tf.logging.info('*** Writing to output files ***') for output_file in output_files: tf.logging.info(' %s', output_file) <DeepExtract> writers = [] for output_file in output_files: writers.append(tf.python_io.TFRecordWriter(output_file)) writer_index = 0 total_written = 0 for (inst_index, instance) in enumerate(instances): input_ids = tokenizer.convert_tokens_to_ids(instance.tokens) input_mask = [1] * len(input_ids) segment_ids = list(instance.segment_ids) assert len(input_ids) <= FLAGS.max_seq_length while len(input_ids) < FLAGS.max_seq_length: input_ids.append(0) input_mask.append(0) segment_ids.append(0) assert len(input_ids) == FLAGS.max_seq_length assert len(input_mask) == FLAGS.max_seq_length assert len(segment_ids) == FLAGS.max_seq_length masked_lm_positions = list(instance.masked_lm_positions) masked_lm_ids = tokenizer.convert_tokens_to_ids(instance.masked_lm_labels) masked_lm_weights = [1.0] * len(masked_lm_ids) while len(masked_lm_positions) < FLAGS.max_predictions_per_seq: masked_lm_positions.append(0) masked_lm_ids.append(0) masked_lm_weights.append(0.0) next_sentence_label = 1 if instance.is_random_next else 0 features = collections.OrderedDict() features['input_ids'] = create_int_feature(input_ids) features['input_mask'] = create_int_feature(input_mask) features['segment_ids'] = create_int_feature(segment_ids) features['masked_lm_positions'] = create_int_feature(masked_lm_positions) features['masked_lm_ids'] = create_int_feature(masked_lm_ids) features['masked_lm_weights'] = create_float_feature(masked_lm_weights) features['next_sentence_labels'] = create_int_feature([next_sentence_label]) tf_example = tf.train.Example(features=tf.train.Features(feature=features)) writers[writer_index].write(tf_example.SerializeToString()) writer_index = (writer_index + 1) % len(writers) total_written += 1 if inst_index < 20: tf.logging.info('*** Example ***') tf.logging.info('tokens: %s' % ' '.join([tokenization.printable_text(x) for x in instance.tokens])) for feature_name in features.keys(): feature = features[feature_name] values = [] if feature.int64_list.value: values = feature.int64_list.value elif feature.float_list.value: values = feature.float_list.value tf.logging.info('%s: %s' % (feature_name, ' '.join([str(x) for x in values]))) for writer in writers: writer.close() tf.logging.info('Wrote %d total instances', total_written) </DeepExtract>
def main(_): if FLAGS.input_dir[-1] != '/': FLAGS.input_dir = FLAGS.input_dir + '/' if FLAGS.output_dir[-1] != '/': FLAGS.output_dir = FLAGS.output_dir + '/' tf.logging.set_verbosity(tf.logging.INFO) tokenizer = tokenization.FullTokenizer(vocab_file=FLAGS.vocab_file, do_lower_case=FLAGS.do_lower_case) rng = random.Random(FLAGS.random_seed) for (dex, fname) in enumerate(os.listdir(FLAGS.input_dir)): input_files = tf.gfile.Glob(FLAGS.input_dir + fname) tf.logging.info('*** Reading from input files ***') for input_file in input_files: tf.logging.info(' %s', input_file) all_documents = [[]] for input_file in input_files: with tf.gfile.GFile(input_file, 'r') as reader: while True: line = tokenization.convert_to_unicode(reader.readline()) if not line: break line = line.strip() if not line: all_documents.append([]) tokens = tokenizer.tokenize(line) if tokens: all_documents[-1].append(tokens) all_documents = [x for x in all_documents if x] rng.shuffle(all_documents) vocab_words = list(tokenizer.vocab.keys()) instances = [] for _ in range(FLAGS.dupe_factor): for document_index in range(len(all_documents)): instances.extend(create_instances_from_document(all_documents, document_index, FLAGS.max_seq_length, FLAGS.short_seq_prob, FLAGS.masked_lm_prob, FLAGS.max_predictions_per_seq, vocab_words, rng)) rng.shuffle(instances) instances = instances output_files = [FLAGS.output_dir + FLAGS.output_base_name + '_' + str(dex) + '.tfrecord'] tf.logging.info('*** Writing to output files ***') for output_file in output_files: tf.logging.info(' %s', output_file) writers = [] for output_file in output_files: writers.append(tf.python_io.TFRecordWriter(output_file)) writer_index = 0 total_written = 0 for (inst_index, instance) in enumerate(instances): input_ids = tokenizer.convert_tokens_to_ids(instance.tokens) input_mask = [1] * len(input_ids) segment_ids = list(instance.segment_ids) assert len(input_ids) <= FLAGS.max_seq_length while len(input_ids) < FLAGS.max_seq_length: input_ids.append(0) input_mask.append(0) segment_ids.append(0) assert len(input_ids) == FLAGS.max_seq_length assert len(input_mask) == FLAGS.max_seq_length assert len(segment_ids) == FLAGS.max_seq_length masked_lm_positions = list(instance.masked_lm_positions) masked_lm_ids = tokenizer.convert_tokens_to_ids(instance.masked_lm_labels) masked_lm_weights = [1.0] * len(masked_lm_ids) while len(masked_lm_positions) < FLAGS.max_predictions_per_seq: masked_lm_positions.append(0) masked_lm_ids.append(0) masked_lm_weights.append(0.0) next_sentence_label = 1 if instance.is_random_next else 0 features = collections.OrderedDict() features['input_ids'] = create_int_feature(input_ids) features['input_mask'] = create_int_feature(input_mask) features['segment_ids'] = create_int_feature(segment_ids) features['masked_lm_positions'] = create_int_feature(masked_lm_positions) features['masked_lm_ids'] = create_int_feature(masked_lm_ids) features['masked_lm_weights'] = create_float_feature(masked_lm_weights) features['next_sentence_labels'] = create_int_feature([next_sentence_label]) tf_example = tf.train.Example(features=tf.train.Features(feature=features)) writers[writer_index].write(tf_example.SerializeToString()) writer_index = (writer_index + 1) % len(writers) total_written += 1 if inst_index < 20: tf.logging.info('*** Example ***') tf.logging.info('tokens: %s' % ' '.join([tokenization.printable_text(x) for x in instance.tokens])) for feature_name in features.keys(): feature = features[feature_name] values = [] if feature.int64_list.value: values = feature.int64_list.value elif feature.float_list.value: values = feature.float_list.value tf.logging.info('%s: %s' % (feature_name, ' '.join([str(x) for x in values]))) for writer in writers: writer.close() tf.logging.info('Wrote %d total instances', total_written) </DeepExtract>
DistillBERT
positive
def showreply(self) -> None: ms = 40 + random.random() * 10 self.write('64 bytes from {} ({}): icmp_seq={} ttl=50 time={:.1f} ms\n'.format(self.host, self.ip, self.count + 1, ms)) self.count += 1 if self.count == self.max: self.running = False self.write('\n') <DeepExtract> self.write(f'--- {self.host} ping statistics ---\n') self.write('%d packets transmitted, %d received, 0%% packet loss, time 907ms\n' % (self.count, self.count)) self.write('rtt min/avg/max/mdev = 48.264/50.352/52.441/2.100 ms\n') </DeepExtract> self.exit() else: self.scheduled = reactor.callLater(1, self.showreply)
def showreply(self) -> None: ms = 40 + random.random() * 10 self.write('64 bytes from {} ({}): icmp_seq={} ttl=50 time={:.1f} ms\n'.format(self.host, self.ip, self.count + 1, ms)) self.count += 1 if self.count == self.max: self.running = False self.write('\n') self.write(f'--- {self.host} ping statistics ---\n') self.write('%d packets transmitted, %d received, 0%% packet loss, time 907ms\n' % (self.count, self.count)) self.write('rtt min/avg/max/mdev = 48.264/50.352/52.441/2.100 ms\n') self.exit() else: self.scheduled = reactor.callLater(1, self.showreply)
cowrie
positive
def main(_): seed = 0 (in_dev_accs, dev_accs, test_accs) = ([], [], []) for seed in range(3): FLAGS.seed = seed np.random.seed(seed) if FLAGS.simple: FLAGS.lmbda = 0 <DeepExtract> SEED = FLAGS.seed np.random.seed(SEED) emb_dim = FLAGS.emb_dim num_domains = max([np.max(train[2]), np.max(dev[2]), np.max(test[2])]) + 1 tf.reset_default_graph() with tf.Graph().as_default(): tf.set_random_seed(SEED) ph_lr = tf.placeholder(tf.float32, name='learning_rate', shape=[]) (images_placeholder, labels_placeholder, domain_placeholder) = placeholder_inputs(FLAGS.batch_size) LN = tf.keras.layers.LayerNormalization(axis=1) with tf.variable_scope(''): reprs = lipitk.get_reprs(images_placeholder, image_size=IMAGE_SIZE, network=NETWORK, is_training=True) reprs = LN(reprs) (logits1, logits2, reg_loss, common_var, specialized_common_wt, _e) = lipitk.inference_bottleneckv2(reprs, domain_placeholder, num_domains=num_domains, emb_dim=emb_dim, num_classes=NUM_CLASSES) with tf.variable_scope('', reuse=True): reprs = lipitk.get_reprs(images_placeholder, image_size=IMAGE_SIZE, network=NETWORK, is_training=False) reprs = LN(reprs) (_, logits_for_eval, _, _, _, _) = lipitk.inference_bottleneckv2(reprs, domain_placeholder, num_domains=num_domains, emb_dim=emb_dim, num_classes=NUM_CLASSES) loss1 = lipitk.loss(logits1, labels_placeholder, num_classes=NUM_CLASSES) loss2 = lipitk.loss(logits2, labels_placeholder, num_classes=NUM_CLASSES) loss = FLAGS.lmbda * loss1 + loss2 if FLAGS.lmbda > 0: loss = FLAGS.lmbda * loss1 + (1 - FLAGS.lmbda) * loss2 loss += FLAGS.alpha * reg_loss if FLAGS.lmbda > 1: loss /= FLAGS.lmbda global_step = tf.contrib.framework.get_or_create_global_step() increment_global_step = tf.assign(global_step, global_step + 1) train_op = lipitk.training(loss, ph_lr) eval_correct = lipitk.evaluation(logits_for_eval, labels_placeholder) init = tf.global_variables_initializer() _vars = tf.global_variables() saver = tf.train.Saver(var_list=_vars, max_to_keep=20) sess = tf.Session(config=config) sess.run(init) (best_acc, best_test) = (-1, -1) nepochs = FLAGS.nepochs nsteps = nepochs * len(train[0]) // FLAGS.batch_size nsteps_per_epoch = len(train[0]) / FLAGS.batch_size start_lr = FLAGS.learning_rate for step in tqdm.tqdm(xrange(nsteps)): start_time = time.time() feed_dict = fill_feed_dict(train, images_placeholder, labels_placeholder, domain_placeholder) np_lr = start_lr feed_dict[ph_lr] = np_lr (_, np_loss, _) = sess.run([train_op, loss, increment_global_step], feed_dict=feed_dict) all_losses = sess.run([loss1, loss2, reg_loss], feed_dict=feed_dict) if (step + 1) % 1000 == 0 or step + 1 == nsteps: print('Loss: ', np_loss) print('Losses: ', all_losses) print('Common wt: ', sess.run(common_var)) print('Specialized common wt: ', sess.run(specialized_common_wt)) print('Emb matrix: ', sess.run(_e)[:5]) eprint('Training Data Eval:') do_eval(sess, eval_correct, images_placeholder, labels_placeholder, domain_placeholder, train) (in_dev_acc, _) = do_eval(sess, eval_correct, images_placeholder, labels_placeholder, domain_placeholder, in_dev) (dev_acc, _) = do_eval(sess, eval_correct, images_placeholder, labels_placeholder, domain_placeholder, dev) (test_acc, _) = do_eval(sess, eval_correct, images_placeholder, labels_placeholder, domain_placeholder, test) if dev_acc >= best_acc: best_acc = dev_acc best_test = test_acc checkpoint_file = os.path.join(FLAGS.log_dir, 'model.ckpt') saver.save(sess, checkpoint_file, global_step=step) print('Best in-domain dev acc: %f test: %f' % (best_acc, best_test)) (in_dev_acc, dev_acc, test_acc) = (in_dev_acc, best_acc, best_test) </DeepExtract> elif FLAGS.cg: <DeepExtract> SEED = FLAGS.seed np.random.seed(SEED) emb_dim = FLAGS.emb_dim num_domains = np.max(train[2]) + 1 tf.reset_default_graph() with tf.Graph().as_default(): tf.set_random_seed(SEED) (images_placeholder, labels_placeholder, domain_placeholder) = placeholder_inputs(FLAGS.batch_size) ph_lr = tf.placeholder(tf.float32, name='learning_rate') if not cgpp: cg_fn = lipitk.cg else: cg_fn = lipitk.cgpp with tf.variable_scope(''): (loss, _, debug_print) = cg_fn(images_placeholder, labels_placeholder, domain_placeholder, image_size=IMAGE_SIZE, is_training=True, network=NETWORK, num_classes=NUM_CLASSES, num_domains=num_domains, FLAGS=FLAGS) with tf.variable_scope('', reuse=True): (_, logits_for_eval, __) = cg_fn(images_placeholder, labels_placeholder, domain_placeholder, image_size=IMAGE_SIZE, is_training=False, network=NETWORK, num_classes=NUM_CLASSES, num_domains=num_domains, FLAGS=FLAGS) train_op = lipitk.training(loss, ph_lr) eval_correct = lipitk.evaluation(logits_for_eval, labels_placeholder) init = tf.global_variables_initializer() _vars = tf.all_variables() saver = tf.train.Saver(var_list=_vars, max_to_keep=20) sess = tf.Session(config=config) sess.run(init) (best_acc, best_test) = (-1, -1) nepochs = FLAGS.nepochs nsteps = nepochs * len(train[0]) // FLAGS.batch_size for step in tqdm.tqdm(xrange(nsteps)): start_time = time.time() feed_dict = fill_feed_dict(train, images_placeholder, labels_placeholder, domain_placeholder) lr = FLAGS.learning_rate feed_dict[ph_lr] = lr (_, np_loss) = sess.run([train_op, loss], feed_dict=feed_dict) if (step + 1) % 1000 == 0 or step + 1 == nsteps: print('Loss: ', np_loss) if debug_print is not None: np_dp = sess.run(debug_print, feed_dict=feed_dict) print('****Debug:****') print(np_dp) eprint('Training Data Eval:') do_eval(sess, eval_correct, images_placeholder, labels_placeholder, domain_placeholder, train) (in_dev_acc, _) = do_eval(sess, eval_correct, images_placeholder, labels_placeholder, domain_placeholder, in_dev) (dev_acc, _) = do_eval(sess, eval_correct, images_placeholder, labels_placeholder, domain_placeholder, dev) (test_acc, _) = do_eval(sess, eval_correct, images_placeholder, labels_placeholder, domain_placeholder, test) if dev_acc >= best_acc: best_acc = dev_acc best_test = test_acc checkpoint_file = os.path.join(FLAGS.log_dir, 'model.ckpt') saver.save(sess, checkpoint_file, global_step=step) print('Best in-domain ind dev acc: %f dev acc: %f test: %f' % (in_dev_acc, best_acc, best_test)) (in_dev_acc, dev_acc, test_acc) = (in_dev_acc, best_acc, best_test) </DeepExtract> else: <DeepExtract> SEED = FLAGS.seed np.random.seed(SEED) emb_dim = FLAGS.emb_dim num_domains = max([np.max(train[2]), np.max(dev[2]), np.max(test[2])]) + 1 tf.reset_default_graph() with tf.Graph().as_default(): tf.set_random_seed(SEED) ph_lr = tf.placeholder(tf.float32, name='learning_rate', shape=[]) (images_placeholder, labels_placeholder, domain_placeholder) = placeholder_inputs(FLAGS.batch_size) LN = tf.keras.layers.LayerNormalization(axis=1) with tf.variable_scope(''): reprs = lipitk.get_reprs(images_placeholder, image_size=IMAGE_SIZE, network=NETWORK, is_training=True) reprs = LN(reprs) (logits1, logits2, reg_loss, common_var, specialized_common_wt, _e) = lipitk.inference_bottleneckv2(reprs, domain_placeholder, num_domains=num_domains, emb_dim=emb_dim, num_classes=NUM_CLASSES) with tf.variable_scope('', reuse=True): reprs = lipitk.get_reprs(images_placeholder, image_size=IMAGE_SIZE, network=NETWORK, is_training=False) reprs = LN(reprs) (_, logits_for_eval, _, _, _, _) = lipitk.inference_bottleneckv2(reprs, domain_placeholder, num_domains=num_domains, emb_dim=emb_dim, num_classes=NUM_CLASSES) loss1 = lipitk.loss(logits1, labels_placeholder, num_classes=NUM_CLASSES) loss2 = lipitk.loss(logits2, labels_placeholder, num_classes=NUM_CLASSES) loss = FLAGS.lmbda * loss1 + loss2 if FLAGS.lmbda > 0: loss = FLAGS.lmbda * loss1 + (1 - FLAGS.lmbda) * loss2 loss += FLAGS.alpha * reg_loss if FLAGS.lmbda > 1: loss /= FLAGS.lmbda global_step = tf.contrib.framework.get_or_create_global_step() increment_global_step = tf.assign(global_step, global_step + 1) train_op = lipitk.training(loss, ph_lr) eval_correct = lipitk.evaluation(logits_for_eval, labels_placeholder) init = tf.global_variables_initializer() _vars = tf.global_variables() saver = tf.train.Saver(var_list=_vars, max_to_keep=20) sess = tf.Session(config=config) sess.run(init) (best_acc, best_test) = (-1, -1) nepochs = FLAGS.nepochs nsteps = nepochs * len(train[0]) // FLAGS.batch_size nsteps_per_epoch = len(train[0]) / FLAGS.batch_size start_lr = FLAGS.learning_rate for step in tqdm.tqdm(xrange(nsteps)): start_time = time.time() feed_dict = fill_feed_dict(train, images_placeholder, labels_placeholder, domain_placeholder) np_lr = start_lr feed_dict[ph_lr] = np_lr (_, np_loss, _) = sess.run([train_op, loss, increment_global_step], feed_dict=feed_dict) all_losses = sess.run([loss1, loss2, reg_loss], feed_dict=feed_dict) if (step + 1) % 1000 == 0 or step + 1 == nsteps: print('Loss: ', np_loss) print('Losses: ', all_losses) print('Common wt: ', sess.run(common_var)) print('Specialized common wt: ', sess.run(specialized_common_wt)) print('Emb matrix: ', sess.run(_e)[:5]) eprint('Training Data Eval:') do_eval(sess, eval_correct, images_placeholder, labels_placeholder, domain_placeholder, train) (in_dev_acc, _) = do_eval(sess, eval_correct, images_placeholder, labels_placeholder, domain_placeholder, in_dev) (dev_acc, _) = do_eval(sess, eval_correct, images_placeholder, labels_placeholder, domain_placeholder, dev) (test_acc, _) = do_eval(sess, eval_correct, images_placeholder, labels_placeholder, domain_placeholder, test) if dev_acc >= best_acc: best_acc = dev_acc best_test = test_acc checkpoint_file = os.path.join(FLAGS.log_dir, 'model.ckpt') saver.save(sess, checkpoint_file, global_step=step) print('Best in-domain dev acc: %f test: %f' % (best_acc, best_test)) (in_dev_acc, dev_acc, test_acc) = (in_dev_acc, best_acc, best_test) </DeepExtract> in_dev_accs.append(in_dev_acc) dev_accs.append(dev_acc) test_accs.append(test_acc) print('InD Val, Val, test acc: %0.4f (%0.4f), %0.4f (%0.4f), %0.4f (%0.4f)' % (np.mean(in_dev_accs), np.std(in_dev_accs), np.mean(dev_accs), np.std(dev_accs), np.mean(test_accs), np.std(test_accs)))
def main(_): seed = 0 (in_dev_accs, dev_accs, test_accs) = ([], [], []) for seed in range(3): FLAGS.seed = seed np.random.seed(seed) if FLAGS.simple: FLAGS.lmbda = 0 SEED = FLAGS.seed np.random.seed(SEED) emb_dim = FLAGS.emb_dim num_domains = max([np.max(train[2]), np.max(dev[2]), np.max(test[2])]) + 1 tf.reset_default_graph() with tf.Graph().as_default(): tf.set_random_seed(SEED) ph_lr = tf.placeholder(tf.float32, name='learning_rate', shape=[]) (images_placeholder, labels_placeholder, domain_placeholder) = placeholder_inputs(FLAGS.batch_size) LN = tf.keras.layers.LayerNormalization(axis=1) with tf.variable_scope(''): reprs = lipitk.get_reprs(images_placeholder, image_size=IMAGE_SIZE, network=NETWORK, is_training=True) reprs = LN(reprs) (logits1, logits2, reg_loss, common_var, specialized_common_wt, _e) = lipitk.inference_bottleneckv2(reprs, domain_placeholder, num_domains=num_domains, emb_dim=emb_dim, num_classes=NUM_CLASSES) with tf.variable_scope('', reuse=True): reprs = lipitk.get_reprs(images_placeholder, image_size=IMAGE_SIZE, network=NETWORK, is_training=False) reprs = LN(reprs) (_, logits_for_eval, _, _, _, _) = lipitk.inference_bottleneckv2(reprs, domain_placeholder, num_domains=num_domains, emb_dim=emb_dim, num_classes=NUM_CLASSES) loss1 = lipitk.loss(logits1, labels_placeholder, num_classes=NUM_CLASSES) loss2 = lipitk.loss(logits2, labels_placeholder, num_classes=NUM_CLASSES) loss = FLAGS.lmbda * loss1 + loss2 if FLAGS.lmbda > 0: loss = FLAGS.lmbda * loss1 + (1 - FLAGS.lmbda) * loss2 loss += FLAGS.alpha * reg_loss if FLAGS.lmbda > 1: loss /= FLAGS.lmbda global_step = tf.contrib.framework.get_or_create_global_step() increment_global_step = tf.assign(global_step, global_step + 1) train_op = lipitk.training(loss, ph_lr) eval_correct = lipitk.evaluation(logits_for_eval, labels_placeholder) init = tf.global_variables_initializer() _vars = tf.global_variables() saver = tf.train.Saver(var_list=_vars, max_to_keep=20) sess = tf.Session(config=config) sess.run(init) (best_acc, best_test) = (-1, -1) nepochs = FLAGS.nepochs nsteps = nepochs * len(train[0]) // FLAGS.batch_size nsteps_per_epoch = len(train[0]) / FLAGS.batch_size start_lr = FLAGS.learning_rate for step in tqdm.tqdm(xrange(nsteps)): start_time = time.time() feed_dict = fill_feed_dict(train, images_placeholder, labels_placeholder, domain_placeholder) np_lr = start_lr feed_dict[ph_lr] = np_lr (_, np_loss, _) = sess.run([train_op, loss, increment_global_step], feed_dict=feed_dict) all_losses = sess.run([loss1, loss2, reg_loss], feed_dict=feed_dict) if (step + 1) % 1000 == 0 or step + 1 == nsteps: print('Loss: ', np_loss) print('Losses: ', all_losses) print('Common wt: ', sess.run(common_var)) print('Specialized common wt: ', sess.run(specialized_common_wt)) print('Emb matrix: ', sess.run(_e)[:5]) eprint('Training Data Eval:') do_eval(sess, eval_correct, images_placeholder, labels_placeholder, domain_placeholder, train) (in_dev_acc, _) = do_eval(sess, eval_correct, images_placeholder, labels_placeholder, domain_placeholder, in_dev) (dev_acc, _) = do_eval(sess, eval_correct, images_placeholder, labels_placeholder, domain_placeholder, dev) (test_acc, _) = do_eval(sess, eval_correct, images_placeholder, labels_placeholder, domain_placeholder, test) if dev_acc >= best_acc: best_acc = dev_acc best_test = test_acc checkpoint_file = os.path.join(FLAGS.log_dir, 'model.ckpt') saver.save(sess, checkpoint_file, global_step=step) print('Best in-domain dev acc: %f test: %f' % (best_acc, best_test)) (in_dev_acc, dev_acc, test_acc) = (in_dev_acc, best_acc, best_test) elif FLAGS.cg: SEED = FLAGS.seed np.random.seed(SEED) emb_dim = FLAGS.emb_dim num_domains = np.max(train[2]) + 1 tf.reset_default_graph() with tf.Graph().as_default(): tf.set_random_seed(SEED) (images_placeholder, labels_placeholder, domain_placeholder) = placeholder_inputs(FLAGS.batch_size) ph_lr = tf.placeholder(tf.float32, name='learning_rate') if not cgpp: cg_fn = lipitk.cg else: cg_fn = lipitk.cgpp with tf.variable_scope(''): (loss, _, debug_print) = cg_fn(images_placeholder, labels_placeholder, domain_placeholder, image_size=IMAGE_SIZE, is_training=True, network=NETWORK, num_classes=NUM_CLASSES, num_domains=num_domains, FLAGS=FLAGS) with tf.variable_scope('', reuse=True): (_, logits_for_eval, __) = cg_fn(images_placeholder, labels_placeholder, domain_placeholder, image_size=IMAGE_SIZE, is_training=False, network=NETWORK, num_classes=NUM_CLASSES, num_domains=num_domains, FLAGS=FLAGS) train_op = lipitk.training(loss, ph_lr) eval_correct = lipitk.evaluation(logits_for_eval, labels_placeholder) init = tf.global_variables_initializer() _vars = tf.all_variables() saver = tf.train.Saver(var_list=_vars, max_to_keep=20) sess = tf.Session(config=config) sess.run(init) (best_acc, best_test) = (-1, -1) nepochs = FLAGS.nepochs nsteps = nepochs * len(train[0]) // FLAGS.batch_size for step in tqdm.tqdm(xrange(nsteps)): start_time = time.time() feed_dict = fill_feed_dict(train, images_placeholder, labels_placeholder, domain_placeholder) lr = FLAGS.learning_rate feed_dict[ph_lr] = lr (_, np_loss) = sess.run([train_op, loss], feed_dict=feed_dict) if (step + 1) % 1000 == 0 or step + 1 == nsteps: print('Loss: ', np_loss) if debug_print is not None: np_dp = sess.run(debug_print, feed_dict=feed_dict) print('****Debug:****') print(np_dp) eprint('Training Data Eval:') do_eval(sess, eval_correct, images_placeholder, labels_placeholder, domain_placeholder, train) (in_dev_acc, _) = do_eval(sess, eval_correct, images_placeholder, labels_placeholder, domain_placeholder, in_dev) (dev_acc, _) = do_eval(sess, eval_correct, images_placeholder, labels_placeholder, domain_placeholder, dev) (test_acc, _) = do_eval(sess, eval_correct, images_placeholder, labels_placeholder, domain_placeholder, test) if dev_acc >= best_acc: best_acc = dev_acc best_test = test_acc checkpoint_file = os.path.join(FLAGS.log_dir, 'model.ckpt') saver.save(sess, checkpoint_file, global_step=step) print('Best in-domain ind dev acc: %f dev acc: %f test: %f' % (in_dev_acc, best_acc, best_test)) (in_dev_acc, dev_acc, test_acc) = (in_dev_acc, best_acc, best_test) else: SEED = FLAGS.seed np.random.seed(SEED) emb_dim = FLAGS.emb_dim num_domains = max([np.max(train[2]), np.max(dev[2]), np.max(test[2])]) + 1 tf.reset_default_graph() with tf.Graph().as_default(): tf.set_random_seed(SEED) ph_lr = tf.placeholder(tf.float32, name='learning_rate', shape=[]) (images_placeholder, labels_placeholder, domain_placeholder) = placeholder_inputs(FLAGS.batch_size) LN = tf.keras.layers.LayerNormalization(axis=1) with tf.variable_scope(''): reprs = lipitk.get_reprs(images_placeholder, image_size=IMAGE_SIZE, network=NETWORK, is_training=True) reprs = LN(reprs) (logits1, logits2, reg_loss, common_var, specialized_common_wt, _e) = lipitk.inference_bottleneckv2(reprs, domain_placeholder, num_domains=num_domains, emb_dim=emb_dim, num_classes=NUM_CLASSES) with tf.variable_scope('', reuse=True): reprs = lipitk.get_reprs(images_placeholder, image_size=IMAGE_SIZE, network=NETWORK, is_training=False) reprs = LN(reprs) (_, logits_for_eval, _, _, _, _) = lipitk.inference_bottleneckv2(reprs, domain_placeholder, num_domains=num_domains, emb_dim=emb_dim, num_classes=NUM_CLASSES) loss1 = lipitk.loss(logits1, labels_placeholder, num_classes=NUM_CLASSES) loss2 = lipitk.loss(logits2, labels_placeholder, num_classes=NUM_CLASSES) loss = FLAGS.lmbda * loss1 + loss2 if FLAGS.lmbda > 0: loss = FLAGS.lmbda * loss1 + (1 - FLAGS.lmbda) * loss2 loss += FLAGS.alpha * reg_loss if FLAGS.lmbda > 1: loss /= FLAGS.lmbda global_step = tf.contrib.framework.get_or_create_global_step() increment_global_step = tf.assign(global_step, global_step + 1) train_op = lipitk.training(loss, ph_lr) eval_correct = lipitk.evaluation(logits_for_eval, labels_placeholder) init = tf.global_variables_initializer() _vars = tf.global_variables() saver = tf.train.Saver(var_list=_vars, max_to_keep=20) sess = tf.Session(config=config) sess.run(init) (best_acc, best_test) = (-1, -1) nepochs = FLAGS.nepochs nsteps = nepochs * len(train[0]) // FLAGS.batch_size nsteps_per_epoch = len(train[0]) / FLAGS.batch_size start_lr = FLAGS.learning_rate for step in tqdm.tqdm(xrange(nsteps)): start_time = time.time() feed_dict = fill_feed_dict(train, images_placeholder, labels_placeholder, domain_placeholder) np_lr = start_lr feed_dict[ph_lr] = np_lr (_, np_loss, _) = sess.run([train_op, loss, increment_global_step], feed_dict=feed_dict) all_losses = sess.run([loss1, loss2, reg_loss], feed_dict=feed_dict) if (step + 1) % 1000 == 0 or step + 1 == nsteps: print('Loss: ', np_loss) print('Losses: ', all_losses) print('Common wt: ', sess.run(common_var)) print('Specialized common wt: ', sess.run(specialized_common_wt)) print('Emb matrix: ', sess.run(_e)[:5]) eprint('Training Data Eval:') do_eval(sess, eval_correct, images_placeholder, labels_placeholder, domain_placeholder, train) (in_dev_acc, _) = do_eval(sess, eval_correct, images_placeholder, labels_placeholder, domain_placeholder, in_dev) (dev_acc, _) = do_eval(sess, eval_correct, images_placeholder, labels_placeholder, domain_placeholder, dev) (test_acc, _) = do_eval(sess, eval_correct, images_placeholder, labels_placeholder, domain_placeholder, test) if dev_acc >= best_acc: best_acc = dev_acc best_test = test_acc checkpoint_file = os.path.join(FLAGS.log_dir, 'model.ckpt') saver.save(sess, checkpoint_file, global_step=step) print('Best in-domain dev acc: %f test: %f' % (best_acc, best_test)) (in_dev_acc, dev_acc, test_acc) = (in_dev_acc, best_acc, best_test) in_dev_accs.append(in_dev_acc) dev_accs.append(dev_acc) test_accs.append(test_acc) print('InD Val, Val, test acc: %0.4f (%0.4f), %0.4f (%0.4f), %0.4f (%0.4f)' % (np.mean(in_dev_accs), np.std(in_dev_accs), np.mean(dev_accs), np.std(dev_accs), np.mean(test_accs), np.std(test_accs)))
CSD
positive
def get_avg_ans_prob(data): <DeepExtract> paired = {} for (keys, ex) in data.items(): keys = keys.lower().split('|') spair = (keys[2], keys[3]) tid = keys[4] acluster = keys[5] opair = (keys[6], keys[7]) assert spair[0] != spair[1] key = (tuple(sorted([spair[0], spair[1]])), tid, acluster, opair[0], opair[1]) if key not in paired: paired[key] = [None, None] if key[0][0] == spair[0]: paired[key][0] = ex elif key[0][1] == spair[0]: paired[key][1] = ex else: raise Exception('Something weird happend to this example: ', keys, ex) paired = paired </DeepExtract> all_ans_p = [] for (keys, ex_pair) in paired.items(): <DeepExtract> if 0 == 0: (ex1_p00, ex1_p01) = (ex_pair[0][0], ex_pair[0][1]) else: (ex1_p00, ex1_p01) = (ex_pair[0][2], ex_pair[0][3]) </DeepExtract> <DeepExtract> if 0 == 0: (ex2_p00, ex2_p01) = (ex_pair[1][0], ex_pair[1][1]) else: (ex2_p00, ex2_p01) = (ex_pair[1][2], ex_pair[1][3]) </DeepExtract> <DeepExtract> if 1 == 0: (ex1_p10, ex1_p11) = (ex_pair[0][0], ex_pair[0][1]) else: (ex1_p10, ex1_p11) = (ex_pair[0][2], ex_pair[0][3]) </DeepExtract> <DeepExtract> if 1 == 0: (ex2_p10, ex2_p11) = (ex_pair[1][0], ex_pair[1][1]) else: (ex2_p10, ex2_p11) = (ex_pair[1][2], ex_pair[1][3]) </DeepExtract> all_ans_p.extend([ex1_p00, ex1_p01, ex2_p00, ex2_p01, ex1_p10, ex1_p11, ex2_p10, ex2_p11]) avg_p = sum(all_ans_p) / len(all_ans_p) return avg_p
def get_avg_ans_prob(data): paired = {} for (keys, ex) in data.items(): keys = keys.lower().split('|') spair = (keys[2], keys[3]) tid = keys[4] acluster = keys[5] opair = (keys[6], keys[7]) assert spair[0] != spair[1] key = (tuple(sorted([spair[0], spair[1]])), tid, acluster, opair[0], opair[1]) if key not in paired: paired[key] = [None, None] if key[0][0] == spair[0]: paired[key][0] = ex elif key[0][1] == spair[0]: paired[key][1] = ex else: raise Exception('Something weird happend to this example: ', keys, ex) paired = paired all_ans_p = [] for (keys, ex_pair) in paired.items(): if 0 == 0: (ex1_p00, ex1_p01) = (ex_pair[0][0], ex_pair[0][1]) else: (ex1_p00, ex1_p01) = (ex_pair[0][2], ex_pair[0][3]) if 0 == 0: (ex2_p00, ex2_p01) = (ex_pair[1][0], ex_pair[1][1]) else: (ex2_p00, ex2_p01) = (ex_pair[1][2], ex_pair[1][3]) if 1 == 0: (ex1_p10, ex1_p11) = (ex_pair[0][0], ex_pair[0][1]) else: (ex1_p10, ex1_p11) = (ex_pair[0][2], ex_pair[0][3]) if 1 == 0: (ex2_p10, ex2_p11) = (ex_pair[1][0], ex_pair[1][1]) else: (ex2_p10, ex2_p11) = (ex_pair[1][2], ex_pair[1][3]) all_ans_p.extend([ex1_p00, ex1_p01, ex2_p00, ex2_p01, ex1_p10, ex1_p11, ex2_p10, ex2_p11]) avg_p = sum(all_ans_p) / len(all_ans_p) return avg_p
BIG-bench
positive
def test_dbj032_check_nohydrogens(dash_duo): <DeepExtract> app = dash.Dash(__name__) app.layout = html.Div(simple_app_layout(dash_bio.Jsme(id=_COMPONENT_ID, height='400px', width='400px', options='NOhydrogens oldLook', smiles='CO'))) dash_duo.start_server(app, dev_tools_props_check=True) dash_duo.wait_for_element('#' + _COMPONENT_ID) if hasattr(dash_bio.Jsme(id=_COMPONENT_ID, height='400px', width='400px', options='NOhydrogens oldLook', smiles='CO'), 'smiles'): if hasattr(dash_bio.Jsme(id=_COMPONENT_ID, height='400px', width='400px', options='NOhydrogens oldLook', smiles='CO'), 'options') and 'NOuseOpenChemLib' in dash_bio.Jsme(id=_COMPONENT_ID, height='400px', width='400px', options='NOhydrogens oldLook', smiles='CO').options: return app dash_duo.wait_for_element(_FIRST_LINE_SELECTOR) return app </DeepExtract> text = dash_duo.wait_for_element('div > div > div:nth-child(2) > svg > g > text') assert text.get_attribute('innerHTML') == 'O'
def test_dbj032_check_nohydrogens(dash_duo): app = dash.Dash(__name__) app.layout = html.Div(simple_app_layout(dash_bio.Jsme(id=_COMPONENT_ID, height='400px', width='400px', options='NOhydrogens oldLook', smiles='CO'))) dash_duo.start_server(app, dev_tools_props_check=True) dash_duo.wait_for_element('#' + _COMPONENT_ID) if hasattr(dash_bio.Jsme(id=_COMPONENT_ID, height='400px', width='400px', options='NOhydrogens oldLook', smiles='CO'), 'smiles'): if hasattr(dash_bio.Jsme(id=_COMPONENT_ID, height='400px', width='400px', options='NOhydrogens oldLook', smiles='CO'), 'options') and 'NOuseOpenChemLib' in dash_bio.Jsme(id=_COMPONENT_ID, height='400px', width='400px', options='NOhydrogens oldLook', smiles='CO').options: return app dash_duo.wait_for_element(_FIRST_LINE_SELECTOR) return app text = dash_duo.wait_for_element('div > div > div:nth-child(2) > svg > g > text') assert text.get_attribute('innerHTML') == 'O'
dash-bio
positive
def add_value(self, signal, x, y): if not self.is_displayed_signal(signal): return if signal not in self.values: graph = Graph() self.values[signal] = graph else: graph = self.values[signal] last_x = graph.x[-1] if self.break_time_uninit: <DeepExtract> if self.break_time <= 0: self.break_time = None elif type(x) == datetime.datetime: self.half_break_time = datetime.timedelta(seconds=self.break_time / 2) self.break_time = datetime.timedelta(seconds=self.break_time) else: self.half_break_time = self.break_time / 2 self.break_time_uninit = False </DeepExtract> if self.break_time and last_x + self.break_time < x: x_break = last_x + self.half_break_time graph.x.append(x_break) graph.y.append(None) graph.x.append(x) graph.y.append(y)
def add_value(self, signal, x, y): if not self.is_displayed_signal(signal): return if signal not in self.values: graph = Graph() self.values[signal] = graph else: graph = self.values[signal] last_x = graph.x[-1] if self.break_time_uninit: if self.break_time <= 0: self.break_time = None elif type(x) == datetime.datetime: self.half_break_time = datetime.timedelta(seconds=self.break_time / 2) self.break_time = datetime.timedelta(seconds=self.break_time) else: self.half_break_time = self.break_time / 2 self.break_time_uninit = False if self.break_time and last_x + self.break_time < x: x_break = last_x + self.half_break_time graph.x.append(x_break) graph.y.append(None) graph.x.append(x) graph.y.append(y)
cantools
positive
def __iter__(self): try: it = super(NamedTupleCursor, self).__iter__() t = next(it) nt = self.Record if nt is None: <DeepExtract> key = tuple((d[0] for d in self.description)) if self.description else () nt = self.Record = self._cached_make_nt(key) </DeepExtract> yield nt._make(t) while True: yield nt._make(next(it)) except StopIteration: return
def __iter__(self): try: it = super(NamedTupleCursor, self).__iter__() t = next(it) nt = self.Record if nt is None: key = tuple((d[0] for d in self.description)) if self.description else () nt = self.Record = self._cached_make_nt(key) yield nt._make(t) while True: yield nt._make(next(it)) except StopIteration: return
CaseHarvester
positive
def segment_hmm(cnarr, method, window=None, variants=None, processes=1): """Segment bins by Hidden Markov Model. Use Viterbi method to infer copy number segments from sequential data. With b-allele frequencies ('baf' column in `cnarr`), jointly segment log-ratios and b-allele frequencies across a chromosome. Parameters ---------- cnarr : CopyNumArray The bin-level data to segment. method : string One of 'hmm' (3 states, flexible means), 'hmm-tumor' (5 states, flexible means), 'hmm-germline' (3 states, fixed means). Results ------- segarr : CopyNumArray The segmented data. """ orig_log2 = cnarr['log2'].values.copy() cnarr['log2'] = cnarr.smooth_log2() logging.info('Building model from observations') <DeepExtract> assert method in ('hmm-tumor', 'hmm-germline', 'hmm') observations = as_observation_matrix(cnarr.autosomes()) stdev = biweight_midvariance(np.concatenate(observations), initial=0) if method == 'hmm-germline': state_names = ['loss', 'neutral', 'gain'] distributions = [pom.NormalDistribution(-1.0, stdev, frozen=True), pom.NormalDistribution(0.0, stdev, frozen=True), pom.NormalDistribution(0.585, stdev, frozen=True)] elif method == 'hmm-tumor': state_names = ['del', 'loss', 'neutral', 'gain', 'amp'] distributions = [pom.NormalDistribution(-2.0, stdev, frozen=False), pom.NormalDistribution(-0.5, stdev, frozen=False), pom.NormalDistribution(0.0, stdev, frozen=True), pom.NormalDistribution(0.3, stdev, frozen=False), pom.NormalDistribution(1.0, stdev, frozen=False)] else: state_names = ['loss', 'neutral', 'gain'] distributions = [pom.NormalDistribution(-1.0, stdev, frozen=False), pom.NormalDistribution(0.0, stdev, frozen=False), pom.NormalDistribution(0.585, stdev, frozen=False)] n_states = len(distributions) binom_coefs = scipy.special.binom(n_states - 1, range(n_states)) start_probabilities = binom_coefs / binom_coefs.sum() transition_matrix = np.identity(n_states) * 100 + np.ones((n_states, n_states)) / n_states model = pom.HiddenMarkovModel.from_matrix(transition_matrix, distributions, start_probabilities, state_names=state_names, name=method) model.fit(sequences=observations, weights=[len(obs) for obs in observations], distribution_inertia=0.8, edge_inertia=0.1, pseudocount=5, use_pseudocount=True, max_iterations=100000, n_jobs=processes, verbose=False) model = model </DeepExtract> logging.info('Predicting states from model') <DeepExtract> observations = [arm.log2.values for (_c, arm) in cnarr.by_arm()] observations = observations </DeepExtract> states = np.concatenate([np.array(model.predict(obs, algorithm='map')) for obs in observations]) logging.info('Done, now finalizing') logging.debug('Model states: %s', model.states) logging.debug('Predicted states: %s', states[:100]) logging.debug(str(collections.Counter(states))) logging.debug('Observations: %s', observations[0][:100]) logging.debug('Edges: %s', model.edges) cnarr['log2'] = orig_log2 cnarr['probes'] = 1 segarr = squash_by_groups(cnarr, pd.Series(states, index=cnarr.data.index), by_arm=True) if not (segarr.start < segarr.end).all(): bad_segs = segarr[segarr.start >= segarr.end] logging.warning('Bad segments:\n%s', bad_segs.data) return segarr
def segment_hmm(cnarr, method, window=None, variants=None, processes=1): """Segment bins by Hidden Markov Model. Use Viterbi method to infer copy number segments from sequential data. With b-allele frequencies ('baf' column in `cnarr`), jointly segment log-ratios and b-allele frequencies across a chromosome. Parameters ---------- cnarr : CopyNumArray The bin-level data to segment. method : string One of 'hmm' (3 states, flexible means), 'hmm-tumor' (5 states, flexible means), 'hmm-germline' (3 states, fixed means). Results ------- segarr : CopyNumArray The segmented data. """ orig_log2 = cnarr['log2'].values.copy() cnarr['log2'] = cnarr.smooth_log2() logging.info('Building model from observations') assert method in ('hmm-tumor', 'hmm-germline', 'hmm') observations = as_observation_matrix(cnarr.autosomes()) stdev = biweight_midvariance(np.concatenate(observations), initial=0) if method == 'hmm-germline': state_names = ['loss', 'neutral', 'gain'] distributions = [pom.NormalDistribution(-1.0, stdev, frozen=True), pom.NormalDistribution(0.0, stdev, frozen=True), pom.NormalDistribution(0.585, stdev, frozen=True)] elif method == 'hmm-tumor': state_names = ['del', 'loss', 'neutral', 'gain', 'amp'] distributions = [pom.NormalDistribution(-2.0, stdev, frozen=False), pom.NormalDistribution(-0.5, stdev, frozen=False), pom.NormalDistribution(0.0, stdev, frozen=True), pom.NormalDistribution(0.3, stdev, frozen=False), pom.NormalDistribution(1.0, stdev, frozen=False)] else: state_names = ['loss', 'neutral', 'gain'] distributions = [pom.NormalDistribution(-1.0, stdev, frozen=False), pom.NormalDistribution(0.0, stdev, frozen=False), pom.NormalDistribution(0.585, stdev, frozen=False)] n_states = len(distributions) binom_coefs = scipy.special.binom(n_states - 1, range(n_states)) start_probabilities = binom_coefs / binom_coefs.sum() transition_matrix = np.identity(n_states) * 100 + np.ones((n_states, n_states)) / n_states model = pom.HiddenMarkovModel.from_matrix(transition_matrix, distributions, start_probabilities, state_names=state_names, name=method) model.fit(sequences=observations, weights=[len(obs) for obs in observations], distribution_inertia=0.8, edge_inertia=0.1, pseudocount=5, use_pseudocount=True, max_iterations=100000, n_jobs=processes, verbose=False) model = model logging.info('Predicting states from model') observations = [arm.log2.values for (_c, arm) in cnarr.by_arm()] observations = observations states = np.concatenate([np.array(model.predict(obs, algorithm='map')) for obs in observations]) logging.info('Done, now finalizing') logging.debug('Model states: %s', model.states) logging.debug('Predicted states: %s', states[:100]) logging.debug(str(collections.Counter(states))) logging.debug('Observations: %s', observations[0][:100]) logging.debug('Edges: %s', model.edges) cnarr['log2'] = orig_log2 cnarr['probes'] = 1 segarr = squash_by_groups(cnarr, pd.Series(states, index=cnarr.data.index), by_arm=True) if not (segarr.start < segarr.end).all(): bad_segs = segarr[segarr.start >= segarr.end] logging.warning('Bad segments:\n%s', bad_segs.data) return segarr
cnvkit
positive
def _get_sources(self): ret = helpers.get(self.url + '&s=hydrax', sel=True).text <DeepExtract> regex = 'iframe.*src="(https://.*?)"' url = re.search(regex, ret).group(1) data = [('hydrax', url)] </DeepExtract> return data
def _get_sources(self): ret = helpers.get(self.url + '&s=hydrax', sel=True).text regex = 'iframe.*src="(https://.*?)"' url = re.search(regex, ret).group(1) data = [('hydrax', url)] return data
anime-downloader
positive
def test_train_with_val(self): <DeepExtract> p = CalamariTestScenario.default_trainer_params() train = PageXML(images=[os.path.join(this_dir, 'data', 'avicanon_pagexml', f'006.{img_suffix}'), os.path.join(this_dir, 'data', 'avicanon_pagexml', f'007.{img_suffix}')], preload=preload) if with_split: p.gen = CalamariSplitTrainerPipelineParams(validation_split_ratio=0.5, train=train) elif True: p.gen.val = PageXML(images=[os.path.join(this_dir, 'data', 'avicanon_pagexml', f'008.{img_suffix}')], preload=preload) p.gen.train = train p.gen.__post_init__() else: p.gen = CalamariTrainOnlyPipelineParams(train=train) p.gen.setup.val.batch_size = 1 p.gen.setup.val.num_processes = 1 p.gen.setup.train.batch_size = 1 p.gen.setup.train.num_processes = 1 p.epochs = 1 p.samples_per_epoch = 2 p.scenario.data.pre_proc.run_parallel = False p.scenario.data.input_channels = channels p.scenario.data.__post_init__() p.scenario.__post_init__() p.__post_init__() trainer_params = p </DeepExtract> with tempfile.TemporaryDirectory() as d: trainer_params.output_dir = d main(trainer_params)
def test_train_with_val(self): p = CalamariTestScenario.default_trainer_params() train = PageXML(images=[os.path.join(this_dir, 'data', 'avicanon_pagexml', f'006.{img_suffix}'), os.path.join(this_dir, 'data', 'avicanon_pagexml', f'007.{img_suffix}')], preload=preload) if with_split: p.gen = CalamariSplitTrainerPipelineParams(validation_split_ratio=0.5, train=train) elif True: p.gen.val = PageXML(images=[os.path.join(this_dir, 'data', 'avicanon_pagexml', f'008.{img_suffix}')], preload=preload) p.gen.train = train p.gen.__post_init__() else: p.gen = CalamariTrainOnlyPipelineParams(train=train) p.gen.setup.val.batch_size = 1 p.gen.setup.val.num_processes = 1 p.gen.setup.train.batch_size = 1 p.gen.setup.train.num_processes = 1 p.epochs = 1 p.samples_per_epoch = 2 p.scenario.data.pre_proc.run_parallel = False p.scenario.data.input_channels = channels p.scenario.data.__post_init__() p.scenario.__post_init__() p.__post_init__() trainer_params = p with tempfile.TemporaryDirectory() as d: trainer_params.output_dir = d main(trainer_params)
calamari
positive
def create_dataflow(self): import nipype.interfaces.io as nio import nipype.pipeline.engine as pe self._wk = pe.Workflow(name='custom_datagrabber') self._dg = pe.Node(nio.DataGrabber(outfields=self.outfields, infields=self._get_infields(), sort_filelist=self.sort), name='datagrabber') <DeepExtract> self._node_added = False set_dict = {} for f in self.fields: if not f.iterable: set_dict[f.name] = f.values else: it = self._add_iterable(f) self._node_added = True self._wk.connect(it, f.name, self._dg, f.name) self._dg.inputs.trait_set(**set_dict) </DeepExtract> self._dg.inputs.base_directory = self.base_directory self._dg.inputs.field_template = self.field_template self._dg.inputs.template_args = self.template_args self._dg.inputs.template = self.template if not self._node_added: self._wk.add_nodes([self._dg]) return self._wk
def create_dataflow(self): import nipype.interfaces.io as nio import nipype.pipeline.engine as pe self._wk = pe.Workflow(name='custom_datagrabber') self._dg = pe.Node(nio.DataGrabber(outfields=self.outfields, infields=self._get_infields(), sort_filelist=self.sort), name='datagrabber') self._node_added = False set_dict = {} for f in self.fields: if not f.iterable: set_dict[f.name] = f.values else: it = self._add_iterable(f) self._node_added = True self._wk.connect(it, f.name, self._dg, f.name) self._dg.inputs.trait_set(**set_dict) self._dg.inputs.base_directory = self.base_directory self._dg.inputs.field_template = self.field_template self._dg.inputs.template_args = self.template_args self._dg.inputs.template = self.template if not self._node_added: self._wk.add_nodes([self._dg]) return self._wk
BrainImagingPipelines
positive
def restrict_representation(self, id, repr: e2cnn.group.Representation) -> e2cnn.group.Representation: """ Restrict the input :class:`~e2cnn.group.Representation` to the subgroup identified by ``id``. Any representation :math:`\\rho : G \\to \\GL{\\R^n}` can be uniquely restricted to a representation of a subgroup :math:`H < G` by restricting its domain of definition: .. math :: \\Res{H}{G}(\\rho): H \\to \\GL{{\\R}^n},\\ h \\mapsto \\rho\\big|_H(h) .. seealso :: Check the documentation of the method :meth:`~e2cnn.group.Group.subgroup()` of the group used to see the available subgroups and accepted ids. Args: id: identifier of the subgroup repr (Representation): the representation to restrict Returns: the restricted representation """ assert repr.group == self <DeepExtract> pass </DeepExtract> irreps_changes_of_basis = [] irreps = [] for irr in repr.irreps: <DeepExtract> pass </DeepExtract> size = self.irreps[irr].size assert irrep_cob.shape == (size, size) irreps_changes_of_basis.append(irrep_cob) irreps += reduced_irreps irreps_changes_of_basis = sparse.block_diag(irreps_changes_of_basis, format='csc') change_of_basis = repr.change_of_basis @ irreps_changes_of_basis name = f'{self.name}:{repr.name}' resr = e2cnn.group.Representation(sg, name, irreps, change_of_basis, repr.supported_nonlinearities) if resr.is_trivial() and 'pointwise' not in repr.supported_nonlinearities: resr.supported_nonlinearities.add('pointwise') return resr
def restrict_representation(self, id, repr: e2cnn.group.Representation) -> e2cnn.group.Representation: """ Restrict the input :class:`~e2cnn.group.Representation` to the subgroup identified by ``id``. Any representation :math:`\\rho : G \\to \\GL{\\R^n}` can be uniquely restricted to a representation of a subgroup :math:`H < G` by restricting its domain of definition: .. math :: \\Res{H}{G}(\\rho): H \\to \\GL{{\\R}^n},\\ h \\mapsto \\rho\\big|_H(h) .. seealso :: Check the documentation of the method :meth:`~e2cnn.group.Group.subgroup()` of the group used to see the available subgroups and accepted ids. Args: id: identifier of the subgroup repr (Representation): the representation to restrict Returns: the restricted representation """ assert repr.group == self pass irreps_changes_of_basis = [] irreps = [] for irr in repr.irreps: pass size = self.irreps[irr].size assert irrep_cob.shape == (size, size) irreps_changes_of_basis.append(irrep_cob) irreps += reduced_irreps irreps_changes_of_basis = sparse.block_diag(irreps_changes_of_basis, format='csc') change_of_basis = repr.change_of_basis @ irreps_changes_of_basis name = f'{self.name}:{repr.name}' resr = e2cnn.group.Representation(sg, name, irreps, change_of_basis, repr.supported_nonlinearities) if resr.is_trivial() and 'pointwise' not in repr.supported_nonlinearities: resr.supported_nonlinearities.add('pointwise') return resr
e2cnn
positive
def update_rule_definition(self, component: DefinedComponent, rule_set: str, name: str, value: str, ns: str, class_: str) -> None: """Update rule definition.""" if value is not None and len(value): <DeepExtract> rval = None for prop in component.props: if prop.remarks == rule_set and prop.name == name: rval = prop break prop = rval </DeepExtract> if prop: if prop.value == value: return logger.debug(f'update-rule: {rule_set} {name} {prop.value} -> {value}') prop.value = value else: <DeepExtract> prop_add = Property(name=name, value=value, ns=ns, class_=class_, remarks=rule_set) last = 0 for (index, prop) in enumerate(component.props): if prop.remarks == rule_set: last = index props = [] for (index, prop) in enumerate(component.props): if prop_add: if index > last: props.append(prop_add) prop_add = None logger.debug(f'add-prop (last): {rule_set} {name} {prop.value} ->> {value}') elif prop_add.remarks == prop.remarks: if CsvColumn.get_order(prop.name) > CsvColumn.get_order(prop_add.name): props.append(prop_add) prop_add = None logger.debug(f'add-prop (order): {rule_set} {name} {prop.value} ->> {value}') props.append(prop) component.props = props </DeepExtract> else: <DeepExtract> props = [] for prop in component.props: if prop.remarks == rule_set and prop.name == name: logger.debug(f'delete-prop: {rule_set} {name} {prop.value}') else: props.append(prop) component.props = props </DeepExtract>
def update_rule_definition(self, component: DefinedComponent, rule_set: str, name: str, value: str, ns: str, class_: str) -> None: """Update rule definition.""" if value is not None and len(value): rval = None for prop in component.props: if prop.remarks == rule_set and prop.name == name: rval = prop break prop = rval if prop: if prop.value == value: return logger.debug(f'update-rule: {rule_set} {name} {prop.value} -> {value}') prop.value = value else: prop_add = Property(name=name, value=value, ns=ns, class_=class_, remarks=rule_set) last = 0 for (index, prop) in enumerate(component.props): if prop.remarks == rule_set: last = index props = [] for (index, prop) in enumerate(component.props): if prop_add: if index > last: props.append(prop_add) prop_add = None logger.debug(f'add-prop (last): {rule_set} {name} {prop.value} ->> {value}') elif prop_add.remarks == prop.remarks: if CsvColumn.get_order(prop.name) > CsvColumn.get_order(prop_add.name): props.append(prop_add) prop_add = None logger.debug(f'add-prop (order): {rule_set} {name} {prop.value} ->> {value}') props.append(prop) component.props = props else: props = [] for prop in component.props: if prop.remarks == rule_set and prop.name == name: logger.debug(f'delete-prop: {rule_set} {name} {prop.value}') else: props.append(prop) component.props = props </DeepExtract>
compliance-trestle
positive
def verify_lane_tangent_vector() -> None: """Debug low confidence lane tangent predictions. I noticed that the confidence score of lane direction is pretty low (almost zero) in some logs """ POSE_FILE_DIR = '../debug_lane_tangent' log_ids = ['033669d3-3d6b-3d3d-bd93-7985d86653ea', '028d5cb1-f74d-366c-85ad-84fde69b0fd3'] avm = ArgoverseMap() city_name = 'PIT' for log_id in log_ids: print(f'On {log_id}') pose_fpaths = glob.glob(f'{POSE_FILE_DIR}/{log_id}/poses/city_SE3_egovehicle_*.json') num_poses = len(pose_fpaths) egovehicle_xy_arr = np.zeros((num_poses, 2)) for (i, pose_fpath) in enumerate(pose_fpaths): json_data = read_json_file(pose_fpath) egovehicle_xy_arr[i, 0] = json_data['translation'][0] egovehicle_xy_arr[i, 1] = json_data['translation'][1] for (i, query_xy_city_coords) in enumerate(egovehicle_xy_arr[::10, :]): query_xy_city_coords = np.array([3116.8282170094944, 1817.1269613456188]) query_xy_city_coords = np.array([3304.7072308190845, 1993.1670162837597]) (lane_dir_vector, confidence) = avm.get_lane_direction(query_xy_city_coords, city_name, visualize=False) print(f'\t{i}: {confidence}') visualize = True if visualize: fig = plt.figure(figsize=(22.5, 8)) ax = fig.add_subplot(111) dx = lane_dir_vector[0] * 20 dy = lane_dir_vector[1] * 20 plt.arrow(query_xy_city_coords[0], query_xy_city_coords[1], dx, dy, color='r', width=0.3, zorder=2) (query_x, query_y) = query_xy_city_coords ax.scatter([query_x], [query_y], 100, color='k', marker='.') <DeepExtract> nearby_lane_ids = avm.get_lane_ids_in_xy_bbox(query_x, query_y, city_name, radius) for nearby_lane_id in nearby_lane_ids: halluc_lane_polygon = avm.get_lane_segment_polygon(nearby_lane_id, city_name) plot_lane_segment_patch(halluc_lane_polygon, ax, color=patch_color, alpha=0.3) plt.text(halluc_lane_polygon[:, 0].mean(), halluc_lane_polygon[:, 1].mean(), str(nearby_lane_id)) </DeepExtract> ax.axis('equal') plt.show() plt.close('all')
def verify_lane_tangent_vector() -> None: """Debug low confidence lane tangent predictions. I noticed that the confidence score of lane direction is pretty low (almost zero) in some logs """ POSE_FILE_DIR = '../debug_lane_tangent' log_ids = ['033669d3-3d6b-3d3d-bd93-7985d86653ea', '028d5cb1-f74d-366c-85ad-84fde69b0fd3'] avm = ArgoverseMap() city_name = 'PIT' for log_id in log_ids: print(f'On {log_id}') pose_fpaths = glob.glob(f'{POSE_FILE_DIR}/{log_id}/poses/city_SE3_egovehicle_*.json') num_poses = len(pose_fpaths) egovehicle_xy_arr = np.zeros((num_poses, 2)) for (i, pose_fpath) in enumerate(pose_fpaths): json_data = read_json_file(pose_fpath) egovehicle_xy_arr[i, 0] = json_data['translation'][0] egovehicle_xy_arr[i, 1] = json_data['translation'][1] for (i, query_xy_city_coords) in enumerate(egovehicle_xy_arr[::10, :]): query_xy_city_coords = np.array([3116.8282170094944, 1817.1269613456188]) query_xy_city_coords = np.array([3304.7072308190845, 1993.1670162837597]) (lane_dir_vector, confidence) = avm.get_lane_direction(query_xy_city_coords, city_name, visualize=False) print(f'\t{i}: {confidence}') visualize = True if visualize: fig = plt.figure(figsize=(22.5, 8)) ax = fig.add_subplot(111) dx = lane_dir_vector[0] * 20 dy = lane_dir_vector[1] * 20 plt.arrow(query_xy_city_coords[0], query_xy_city_coords[1], dx, dy, color='r', width=0.3, zorder=2) (query_x, query_y) = query_xy_city_coords ax.scatter([query_x], [query_y], 100, color='k', marker='.') nearby_lane_ids = avm.get_lane_ids_in_xy_bbox(query_x, query_y, city_name, radius) for nearby_lane_id in nearby_lane_ids: halluc_lane_polygon = avm.get_lane_segment_polygon(nearby_lane_id, city_name) plot_lane_segment_patch(halluc_lane_polygon, ax, color=patch_color, alpha=0.3) plt.text(halluc_lane_polygon[:, 0].mean(), halluc_lane_polygon[:, 1].mean(), str(nearby_lane_id)) ax.axis('equal') plt.show() plt.close('all')
argoverse-api
positive
def fetch_callback(channel, method, header, body): try: id = json.loads(body)['harvest_object_id'] log.info('Received harvest object id: %s' % id) except KeyError: log.error('No harvest object id received') channel.basic_ack(method.delivery_tag) return False try: obj = HarvestObject.get(id) except sqlalchemy.exc.DatabaseError: log.exception('Connection Error during fetch of job %s', id) model.Session.remove() return if not obj: log.error('Harvest object does not exist: %s' % id) channel.basic_ack(method.delivery_tag) return False obj.retry_times += 1 obj.save() if obj.retry_times >= 5: obj.state = 'ERROR' obj.save() log.error('Too many consecutive retries for object {0}'.format(obj.id)) channel.basic_ack(method.delivery_tag) return False job = HarvestJob.get(obj.harvest_job_id) if job.status == 'Finished': obj.state = 'ERROR' obj.report_status = 'errored' obj.save() log.error('Job {0} was aborted or timed out, object {1} set to error'.format(job.id, obj.id)) channel.basic_ack(method.delivery_tag) return False for harvester in PluginImplementations(IHarvester): if harvester.info()['name'] == obj.source.type: <DeepExtract> obj.fetch_started = datetime.datetime.utcnow() obj.state = 'FETCH' obj.save() success_fetch = harvester.fetch_stage(obj) obj.fetch_finished = datetime.datetime.utcnow() obj.save() if success_fetch is True: obj.import_started = datetime.datetime.utcnow() obj.state = 'IMPORT' obj.save() success_import = harvester.import_stage(obj) obj.import_finished = datetime.datetime.utcnow() if success_import: obj.state = 'COMPLETE' if success_import == 'unchanged': obj.report_status = 'not modified' obj.save() return else: obj.state = 'ERROR' obj.save() elif success_fetch == 'unchanged': obj.state = 'COMPLETE' obj.report_status = 'not modified' obj.save() return else: obj.state = 'ERROR' obj.save() if obj.state == 'ERROR': obj.report_status = 'errored' elif obj.current is False: obj.report_status = 'deleted' elif len(model.Session.query(HarvestObject).filter_by(package_id=obj.package_id).limit(2).all()) == 2: obj.report_status = 'updated' else: obj.report_status = 'added' obj.save() </DeepExtract> model.Session.remove() channel.basic_ack(method.delivery_tag)
def fetch_callback(channel, method, header, body): try: id = json.loads(body)['harvest_object_id'] log.info('Received harvest object id: %s' % id) except KeyError: log.error('No harvest object id received') channel.basic_ack(method.delivery_tag) return False try: obj = HarvestObject.get(id) except sqlalchemy.exc.DatabaseError: log.exception('Connection Error during fetch of job %s', id) model.Session.remove() return if not obj: log.error('Harvest object does not exist: %s' % id) channel.basic_ack(method.delivery_tag) return False obj.retry_times += 1 obj.save() if obj.retry_times >= 5: obj.state = 'ERROR' obj.save() log.error('Too many consecutive retries for object {0}'.format(obj.id)) channel.basic_ack(method.delivery_tag) return False job = HarvestJob.get(obj.harvest_job_id) if job.status == 'Finished': obj.state = 'ERROR' obj.report_status = 'errored' obj.save() log.error('Job {0} was aborted or timed out, object {1} set to error'.format(job.id, obj.id)) channel.basic_ack(method.delivery_tag) return False for harvester in PluginImplementations(IHarvester): if harvester.info()['name'] == obj.source.type: obj.fetch_started = datetime.datetime.utcnow() obj.state = 'FETCH' obj.save() success_fetch = harvester.fetch_stage(obj) obj.fetch_finished = datetime.datetime.utcnow() obj.save() if success_fetch is True: obj.import_started = datetime.datetime.utcnow() obj.state = 'IMPORT' obj.save() success_import = harvester.import_stage(obj) obj.import_finished = datetime.datetime.utcnow() if success_import: obj.state = 'COMPLETE' if success_import == 'unchanged': obj.report_status = 'not modified' obj.save() return else: obj.state = 'ERROR' obj.save() elif success_fetch == 'unchanged': obj.state = 'COMPLETE' obj.report_status = 'not modified' obj.save() return else: obj.state = 'ERROR' obj.save() if obj.state == 'ERROR': obj.report_status = 'errored' elif obj.current is False: obj.report_status = 'deleted' elif len(model.Session.query(HarvestObject).filter_by(package_id=obj.package_id).limit(2).all()) == 2: obj.report_status = 'updated' else: obj.report_status = 'added' obj.save() model.Session.remove() channel.basic_ack(method.delivery_tag)
ckanext-harvest
positive
def build_toc_etree(self, div, toc_list): if self.config['title']: header = etree.SubElement(div, 'span') header.attrib['class'] = 'toctitle' header.text = self.config['title'] def build_etree_ul(toc_list, parent): ul = etree.SubElement(parent, 'ul') for item in toc_list: li = etree.SubElement(ul, 'li') link = etree.SubElement(li, 'a') link.text = item.get('name', '') link.attrib['href'] = '#' + item.get('id', '') if item['children']: <DeepExtract> ul = etree.SubElement(li, 'ul') for item in item['children']: li = etree.SubElement(ul, 'li') link = etree.SubElement(li, 'a') link.text = item.get('name', '') link.attrib['href'] = '#' + item.get('id', '') if item['children']: build_etree_ul(item['children'], li) return ul </DeepExtract> return ul return build_etree_ul(toc_list, div)
def build_toc_etree(self, div, toc_list): if self.config['title']: header = etree.SubElement(div, 'span') header.attrib['class'] = 'toctitle' header.text = self.config['title'] def build_etree_ul(toc_list, parent): ul = etree.SubElement(parent, 'ul') for item in toc_list: li = etree.SubElement(ul, 'li') link = etree.SubElement(li, 'a') link.text = item.get('name', '') link.attrib['href'] = '#' + item.get('id', '') if item['children']: ul = etree.SubElement(li, 'ul') for item in item['children']: li = etree.SubElement(ul, 'li') link = etree.SubElement(li, 'a') link.text = item.get('name', '') link.attrib['href'] = '#' + item.get('id', '') if item['children']: build_etree_ul(item['children'], li) return ul return ul return build_etree_ul(toc_list, div)
appengine-gcs-blobstore-python
positive
def test_allo(self): <DeepExtract> self.client_connect() self.client.login(user='nobody', passwd='nobody') </DeepExtract> self.assertEqual(self.client.sendcmd('allo 250'), '202 No storage allocation necessary.')
def test_allo(self): self.client_connect() self.client.login(user='nobody', passwd='nobody') self.assertEqual(self.client.sendcmd('allo 250'), '202 No storage allocation necessary.')
conpot
positive
def test_getitem(self): """ Colr.__getitem__ should grab escape codes before and after. """ <DeepExtract> exampleargs = {'fore': {'fore': self.random_color()}, 'fore-back': {'fore': self.random_color(), 'back': self.random_color()}, 'fore-back-style': {'fore': self.random_color(), 'back': self.random_color(), 'style': self.random_style()}, 'hex-fore': {'fore': self.random_hex(with_hash=False)}, 'hex-fore-back': {'fore': self.random_hex(with_hash=False), 'back': self.random_hex(with_hash=False)}, 'hex-fore-back-style': {'fore': self.random_hex(with_hash=False), 'back': self.random_hex(with_hash=False), 'style': self.random_style()}, 'hex-hash-fore': {'fore': self.random_hex(with_hash=True)}, 'hex-hash-fore-back': {'fore': self.random_hex(with_hash=True), 'back': self.random_hex(with_hash=True)}, 'hex-hash-fore-back-style': {'fore': self.random_hex(with_hash=True), 'back': self.random_hex(with_hash=True), 'style': self.random_style()}, 'rgb-fore': {'fore': self.random_rgb()}, 'rgb-fore-back': {'fore': self.random_rgb(), 'back': self.random_rgb()}, 'rgb-fore-back-style': {'fore': self.random_rgb(), 'back': self.random_rgb(), 'style': self.random_style()}} </DeepExtract> for stylename in codes['style']: exampleargs['style_{}'.format(stylename)] = {'fore': self.random_color(), 'back': self.random_color(), 'style': stylename} for (argtype, kwargs) in exampleargs.items(): index = random.randint(0, len(argtype) - 1) clr = Colr(argtype, **kwargs) clr_s = clr[index] self.assertCallEqual(clr_s, Colr(argtype[index], **kwargs), func=Colr.__getitem__, args=(clr, index), kwargs=kwargs, msg='Failed to keep color codes for __getitem__.')
def test_getitem(self): """ Colr.__getitem__ should grab escape codes before and after. """ exampleargs = {'fore': {'fore': self.random_color()}, 'fore-back': {'fore': self.random_color(), 'back': self.random_color()}, 'fore-back-style': {'fore': self.random_color(), 'back': self.random_color(), 'style': self.random_style()}, 'hex-fore': {'fore': self.random_hex(with_hash=False)}, 'hex-fore-back': {'fore': self.random_hex(with_hash=False), 'back': self.random_hex(with_hash=False)}, 'hex-fore-back-style': {'fore': self.random_hex(with_hash=False), 'back': self.random_hex(with_hash=False), 'style': self.random_style()}, 'hex-hash-fore': {'fore': self.random_hex(with_hash=True)}, 'hex-hash-fore-back': {'fore': self.random_hex(with_hash=True), 'back': self.random_hex(with_hash=True)}, 'hex-hash-fore-back-style': {'fore': self.random_hex(with_hash=True), 'back': self.random_hex(with_hash=True), 'style': self.random_style()}, 'rgb-fore': {'fore': self.random_rgb()}, 'rgb-fore-back': {'fore': self.random_rgb(), 'back': self.random_rgb()}, 'rgb-fore-back-style': {'fore': self.random_rgb(), 'back': self.random_rgb(), 'style': self.random_style()}} for stylename in codes['style']: exampleargs['style_{}'.format(stylename)] = {'fore': self.random_color(), 'back': self.random_color(), 'style': stylename} for (argtype, kwargs) in exampleargs.items(): index = random.randint(0, len(argtype) - 1) clr = Colr(argtype, **kwargs) clr_s = clr[index] self.assertCallEqual(clr_s, Colr(argtype[index], **kwargs), func=Colr.__getitem__, args=(clr, index), kwargs=kwargs, msg='Failed to keep color codes for __getitem__.')
colr
positive
def flash_erase_block(addr=0): <DeepExtract> sir(2) send_tms(1) send_tms(0) send_tms(0) jtag.swspi.write(none) jtag.swspi.write(wrenable[:-1]) send_data_byte_reverse(wrenable[-1], 1, 8) send_tms(0) send_tms(1) send_tms(1) send_tms(0) </DeepExtract> <DeepExtract> retry = 1001 while retry > 0: user1_send(none, read_status) user1_send_recv(none, status) if int(status[1]) & 1 == 0: break sleep_ms(1) retry -= 1 if retry <= 0: print('error %d flash status 0x%02X & 1 != 0' % (1001, status[1])) </DeepExtract> req = magic + bytearray([0, 32, flash_erase_cmd, addr >> 16, addr >> 8, addr]) <DeepExtract> sir(2) send_tms(1) send_tms(0) send_tms(0) jtag.swspi.write(none) jtag.swspi.write(req[:-1]) send_data_byte_reverse(req[-1], 1, 8) send_tms(0) send_tms(1) send_tms(1) send_tms(0) </DeepExtract> <DeepExtract> retry = 2002 while retry > 0: user1_send(none, read_status) user1_send_recv(none, status) if int(status[1]) & 1 == 0: break sleep_ms(1) retry -= 1 if retry <= 0: print('error %d flash status 0x%02X & 1 != 0' % (2002, status[1])) </DeepExtract>
def flash_erase_block(addr=0): sir(2) send_tms(1) send_tms(0) send_tms(0) jtag.swspi.write(none) jtag.swspi.write(wrenable[:-1]) send_data_byte_reverse(wrenable[-1], 1, 8) send_tms(0) send_tms(1) send_tms(1) send_tms(0) retry = 1001 while retry > 0: user1_send(none, read_status) user1_send_recv(none, status) if int(status[1]) & 1 == 0: break sleep_ms(1) retry -= 1 if retry <= 0: print('error %d flash status 0x%02X & 1 != 0' % (1001, status[1])) req = magic + bytearray([0, 32, flash_erase_cmd, addr >> 16, addr >> 8, addr]) sir(2) send_tms(1) send_tms(0) send_tms(0) jtag.swspi.write(none) jtag.swspi.write(req[:-1]) send_data_byte_reverse(req[-1], 1, 8) send_tms(0) send_tms(1) send_tms(1) send_tms(0) retry = 2002 while retry > 0: user1_send(none, read_status) user1_send_recv(none, status) if int(status[1]) & 1 == 0: break sleep_ms(1) retry -= 1 if retry <= 0: print('error %d flash status 0x%02X & 1 != 0' % (2002, status[1])) </DeepExtract>
esp32ecp5
positive
def test_more_intricate_hierarchy(self): recon = BottomUpReconciliator() <DeepExtract> reconciled = recon.transform(self.series_complex) def _assert_comps(comp, comps): np.testing.assert_almost_equal(reconciled[comp].values(copy=False), sum((reconciled[c] for c in comps)).values(copy=False)) _assert_comps('a', ['ax', 'ay']) _assert_comps('b', ['bx', 'by']) _assert_comps('x', ['ax', 'bx']) _assert_comps('y', ['ay', 'by']) _assert_comps('total', ['ax', 'ay', 'bx', 'by']) _assert_comps('total', ['a', 'b']) _assert_comps('total', ['x', 'y']) </DeepExtract> recon = TopDownReconciliator() recon.fit(self.series_complex) <DeepExtract> reconciled = recon.transform(self.series_complex) def _assert_comps(comp, comps): np.testing.assert_almost_equal(reconciled[comp].values(copy=False), sum((reconciled[c] for c in comps)).values(copy=False)) _assert_comps('a', ['ax', 'ay']) _assert_comps('b', ['bx', 'by']) _assert_comps('x', ['ax', 'bx']) _assert_comps('y', ['ay', 'by']) _assert_comps('total', ['ax', 'ay', 'bx', 'by']) _assert_comps('total', ['a', 'b']) _assert_comps('total', ['x', 'y']) </DeepExtract> recon = MinTReconciliator('ols') recon.fit(self.series_complex) <DeepExtract> reconciled = recon.transform(self.series_complex) def _assert_comps(comp, comps): np.testing.assert_almost_equal(reconciled[comp].values(copy=False), sum((reconciled[c] for c in comps)).values(copy=False)) _assert_comps('a', ['ax', 'ay']) _assert_comps('b', ['bx', 'by']) _assert_comps('x', ['ax', 'bx']) _assert_comps('y', ['ay', 'by']) _assert_comps('total', ['ax', 'ay', 'bx', 'by']) _assert_comps('total', ['a', 'b']) _assert_comps('total', ['x', 'y']) </DeepExtract> recon = MinTReconciliator('wls_struct') recon.fit(self.series_complex) <DeepExtract> reconciled = recon.transform(self.series_complex) def _assert_comps(comp, comps): np.testing.assert_almost_equal(reconciled[comp].values(copy=False), sum((reconciled[c] for c in comps)).values(copy=False)) _assert_comps('a', ['ax', 'ay']) _assert_comps('b', ['bx', 'by']) _assert_comps('x', ['ax', 'bx']) _assert_comps('y', ['ay', 'by']) _assert_comps('total', ['ax', 'ay', 'bx', 'by']) _assert_comps('total', ['a', 'b']) _assert_comps('total', ['x', 'y']) </DeepExtract> recon = MinTReconciliator('wls_val') recon.fit(self.series_complex) <DeepExtract> reconciled = recon.transform(self.series_complex) def _assert_comps(comp, comps): np.testing.assert_almost_equal(reconciled[comp].values(copy=False), sum((reconciled[c] for c in comps)).values(copy=False)) _assert_comps('a', ['ax', 'ay']) _assert_comps('b', ['bx', 'by']) _assert_comps('x', ['ax', 'bx']) _assert_comps('y', ['ay', 'by']) _assert_comps('total', ['ax', 'ay', 'bx', 'by']) _assert_comps('total', ['a', 'b']) _assert_comps('total', ['x', 'y']) </DeepExtract>
def test_more_intricate_hierarchy(self): recon = BottomUpReconciliator() reconciled = recon.transform(self.series_complex) def _assert_comps(comp, comps): np.testing.assert_almost_equal(reconciled[comp].values(copy=False), sum((reconciled[c] for c in comps)).values(copy=False)) _assert_comps('a', ['ax', 'ay']) _assert_comps('b', ['bx', 'by']) _assert_comps('x', ['ax', 'bx']) _assert_comps('y', ['ay', 'by']) _assert_comps('total', ['ax', 'ay', 'bx', 'by']) _assert_comps('total', ['a', 'b']) _assert_comps('total', ['x', 'y']) recon = TopDownReconciliator() recon.fit(self.series_complex) reconciled = recon.transform(self.series_complex) def _assert_comps(comp, comps): np.testing.assert_almost_equal(reconciled[comp].values(copy=False), sum((reconciled[c] for c in comps)).values(copy=False)) _assert_comps('a', ['ax', 'ay']) _assert_comps('b', ['bx', 'by']) _assert_comps('x', ['ax', 'bx']) _assert_comps('y', ['ay', 'by']) _assert_comps('total', ['ax', 'ay', 'bx', 'by']) _assert_comps('total', ['a', 'b']) _assert_comps('total', ['x', 'y']) recon = MinTReconciliator('ols') recon.fit(self.series_complex) reconciled = recon.transform(self.series_complex) def _assert_comps(comp, comps): np.testing.assert_almost_equal(reconciled[comp].values(copy=False), sum((reconciled[c] for c in comps)).values(copy=False)) _assert_comps('a', ['ax', 'ay']) _assert_comps('b', ['bx', 'by']) _assert_comps('x', ['ax', 'bx']) _assert_comps('y', ['ay', 'by']) _assert_comps('total', ['ax', 'ay', 'bx', 'by']) _assert_comps('total', ['a', 'b']) _assert_comps('total', ['x', 'y']) recon = MinTReconciliator('wls_struct') recon.fit(self.series_complex) reconciled = recon.transform(self.series_complex) def _assert_comps(comp, comps): np.testing.assert_almost_equal(reconciled[comp].values(copy=False), sum((reconciled[c] for c in comps)).values(copy=False)) _assert_comps('a', ['ax', 'ay']) _assert_comps('b', ['bx', 'by']) _assert_comps('x', ['ax', 'bx']) _assert_comps('y', ['ay', 'by']) _assert_comps('total', ['ax', 'ay', 'bx', 'by']) _assert_comps('total', ['a', 'b']) _assert_comps('total', ['x', 'y']) recon = MinTReconciliator('wls_val') recon.fit(self.series_complex) reconciled = recon.transform(self.series_complex) def _assert_comps(comp, comps): np.testing.assert_almost_equal(reconciled[comp].values(copy=False), sum((reconciled[c] for c in comps)).values(copy=False)) _assert_comps('a', ['ax', 'ay']) _assert_comps('b', ['bx', 'by']) _assert_comps('x', ['ax', 'bx']) _assert_comps('y', ['ay', 'by']) _assert_comps('total', ['ax', 'ay', 'bx', 'by']) _assert_comps('total', ['a', 'b']) _assert_comps('total', ['x', 'y']) </DeepExtract>
darts
positive
def environment_of_unit(self, unit): """ [UNIT]. -- show environment parts """ <DeepExtract> try: conf = self.load_sysd_unit_conf(unit) if conf is not None: conf = conf conf = self.load_sysd_template_conf(unit) if conf is not None: conf = conf conf = self.load_sysv_unit_conf(unit) if conf is not None: conf = conf except Exception as e: logg.warning('%s not loaded: %s', unit, e) conf = None </DeepExtract> if conf is None: logg.error('Unit %s could not be found.', unit) self.error |= NOT_FOUND return None return self.get_env(conf)
def environment_of_unit(self, unit): """ [UNIT]. -- show environment parts """ try: conf = self.load_sysd_unit_conf(unit) if conf is not None: conf = conf conf = self.load_sysd_template_conf(unit) if conf is not None: conf = conf conf = self.load_sysv_unit_conf(unit) if conf is not None: conf = conf except Exception as e: logg.warning('%s not loaded: %s', unit, e) conf = None if conf is None: logg.error('Unit %s could not be found.', unit) self.error |= NOT_FOUND return None return self.get_env(conf)
docker-systemctl-images
positive
def __init__(self, arguments): WorkFlowSettings.__init__(self, arguments) <DeepExtract> subject_id = arguments['<subject>'] self.subject = Subject(self.work_dir, subject_id) </DeepExtract> self.fmri_label = arguments['<task_label>'] <DeepExtract> results_dir = os.path.join(self.subject.atlas_space_dir, 'Results', self.fmri_label) log = os.path.join(results_dir, 'ciftify_subject_fmri.log') if os.path.exists(log): logger.error('Subject output already exits.\n To force rerun, delete or rename the logfile:\n\t{}'.format(log)) sys.exit(1) if not os.path.exists(results_dir): ciftify.utils.make_dir(results_dir) (self.results_dir, self.log) = (results_dir, log) </DeepExtract> <DeepExtract> if not os.path.isfile(arguments['<func.nii.gz>']): logger.error('fMRI input {} does not exist :(..Exiting'.format(arguments['<func.nii.gz>'])) sys.exit(1) num_TR = first_word(get_stdout(['fslval', arguments['<func.nii.gz>'], 'dim4'])) TR_in_ms = first_word(get_stdout(['fslval', arguments['<func.nii.gz>'], 'pixdim4'])) (self.func_4D, self.num_TR, self.TR_in_ms) = (arguments['<func.nii.gz>'], num_TR, TR_in_ms) </DeepExtract> <DeepExtract> self.func_ref = ReferenceVolume(arguments['--func-ref']) </DeepExtract> <DeepExtract> if arguments['--T1w-anat']: anat_input = ciftify.meants.NibInput(arguments['--T1w-anat']) if not anat_input.type == 'nifti': logger.critical('--T1w-anat input {} is not a readable nifti file.'.format(arguments['--T1w-anat'])) sys.exit(1) self.registered_to_this_T1w = anat_input.path else: self.registered_to_this_T1w = None </DeepExtract> <DeepExtract> self.smoothing = Smoothing(arguments['--SmoothingFWHM']) </DeepExtract> self.dilate_percent_below = arguments['--DilateBelowPct'] self.dilate_factor = 10 <DeepExtract> self.diagnostics = DiagnosticSettings(self.results_dir, arguments['--OutputSurfDiagnostics']) </DeepExtract> self.already_atlas_transformed = arguments['--already-in-MNI'] self.run_flirt = arguments['--FLIRT-to-T1w'] <DeepExtract> registration_config = WorkFlowSettings.get_config_entry(self, 'registration') for key in ['src_dir', 'dest_dir', 'xfms_dir']: try: subfolders = registration_config[key] except KeyError: logger.critical('registration config does not contain expectedkey {}'.format(key)) sys.exit(1) registration_config[key] = os.path.join(self.subject.path, subfolders) resolution_config = WorkFlowSettings.get_resolution_config(self, method, standard_res) registration_config.update(resolution_config) self.vol_reg = registration_config </DeepExtract> <DeepExtract> surf_mode = ciftify.utils.get_registration_mode(arguments) if surf_mode == 'MSMSulc': RegName = 'MSMSulc' elif surf_mode == 'FS': RegName = 'reg.reg_LR' else: logger.critical('--reg-name argument must be "FS" or "MSMSulc"') sys.exit(1) L_sphere = os.path.join(self.subject.atlas_native_dir, '{}.L.sphere.{}.native.surf.gii'.format(self.subject.id, RegName)) if not os.path.exists(L_sphere): logger.critical('Registration Sphere {} not found'.format(L_sphere)) sys.exit(1) self.surf_reg = RegName </DeepExtract> self.grayord_res = self.grayord_res[0]
def __init__(self, arguments): WorkFlowSettings.__init__(self, arguments) subject_id = arguments['<subject>'] self.subject = Subject(self.work_dir, subject_id) self.fmri_label = arguments['<task_label>'] results_dir = os.path.join(self.subject.atlas_space_dir, 'Results', self.fmri_label) log = os.path.join(results_dir, 'ciftify_subject_fmri.log') if os.path.exists(log): logger.error('Subject output already exits.\n To force rerun, delete or rename the logfile:\n\t{}'.format(log)) sys.exit(1) if not os.path.exists(results_dir): ciftify.utils.make_dir(results_dir) (self.results_dir, self.log) = (results_dir, log) if not os.path.isfile(arguments['<func.nii.gz>']): logger.error('fMRI input {} does not exist :(..Exiting'.format(arguments['<func.nii.gz>'])) sys.exit(1) num_TR = first_word(get_stdout(['fslval', arguments['<func.nii.gz>'], 'dim4'])) TR_in_ms = first_word(get_stdout(['fslval', arguments['<func.nii.gz>'], 'pixdim4'])) (self.func_4D, self.num_TR, self.TR_in_ms) = (arguments['<func.nii.gz>'], num_TR, TR_in_ms) self.func_ref = ReferenceVolume(arguments['--func-ref']) if arguments['--T1w-anat']: anat_input = ciftify.meants.NibInput(arguments['--T1w-anat']) if not anat_input.type == 'nifti': logger.critical('--T1w-anat input {} is not a readable nifti file.'.format(arguments['--T1w-anat'])) sys.exit(1) self.registered_to_this_T1w = anat_input.path else: self.registered_to_this_T1w = None self.smoothing = Smoothing(arguments['--SmoothingFWHM']) self.dilate_percent_below = arguments['--DilateBelowPct'] self.dilate_factor = 10 self.diagnostics = DiagnosticSettings(self.results_dir, arguments['--OutputSurfDiagnostics']) self.already_atlas_transformed = arguments['--already-in-MNI'] self.run_flirt = arguments['--FLIRT-to-T1w'] registration_config = WorkFlowSettings.get_config_entry(self, 'registration') for key in ['src_dir', 'dest_dir', 'xfms_dir']: try: subfolders = registration_config[key] except KeyError: logger.critical('registration config does not contain expectedkey {}'.format(key)) sys.exit(1) registration_config[key] = os.path.join(self.subject.path, subfolders) resolution_config = WorkFlowSettings.get_resolution_config(self, method, standard_res) registration_config.update(resolution_config) self.vol_reg = registration_config surf_mode = ciftify.utils.get_registration_mode(arguments) if surf_mode == 'MSMSulc': RegName = 'MSMSulc' elif surf_mode == 'FS': RegName = 'reg.reg_LR' else: logger.critical('--reg-name argument must be "FS" or "MSMSulc"') sys.exit(1) L_sphere = os.path.join(self.subject.atlas_native_dir, '{}.L.sphere.{}.native.surf.gii'.format(self.subject.id, RegName)) if not os.path.exists(L_sphere): logger.critical('Registration Sphere {} not found'.format(L_sphere)) sys.exit(1) self.surf_reg = RegName self.grayord_res = self.grayord_res[0]
ciftify
positive
def insert(self, node, data, ch): if node is None: return self.createNode(data) if ch == 'L': <DeepExtract> if node.left is None: node.left.left = self.createNode(data) if ch == 'L': node.left.left = self.insert(node.left.left, data, ch) node.left.left = node.left.left else: node.left.right = self.insert(node.left.right, data, ch) node.left.left = node.left.right </DeepExtract> return node.left else: <DeepExtract> if node.right is None: node.right.right = self.createNode(data) if ch == 'L': node.right.left = self.insert(node.right.left, data, ch) node.right.right = node.right.left else: node.right.right = self.insert(node.right.right, data, ch) node.right.right = node.right.right </DeepExtract> return node.right
def insert(self, node, data, ch): if node is None: return self.createNode(data) if ch == 'L': if node.left is None: node.left.left = self.createNode(data) if ch == 'L': node.left.left = self.insert(node.left.left, data, ch) node.left.left = node.left.left else: node.left.right = self.insert(node.left.right, data, ch) node.left.left = node.left.right return node.left else: if node.right is None: node.right.right = self.createNode(data) if ch == 'L': node.right.left = self.insert(node.right.left, data, ch) node.right.right = node.right.left else: node.right.right = self.insert(node.right.right, data, ch) node.right.right = node.right.right return node.right
Competitive-Coding-Platforms
positive
def format_and_wrap_text(self): """ """ blf.size(0, self.text_size, self.text_dpi) self.raw_text = self.raw_text.replace('\r', '') useful_width = self.width - 2 * self.border if '\n' not in self.raw_text and self.txt_width(self.raw_text) < useful_width: self.text_lines = [self.raw_text] return def split_word(line): """ splits off first word, including any leading spaces """ if not line: return (None, None) sp = line[0] == ' ' for (i, c) in enumerate(line): if c == ' ': if not sp: return (line[:i], line[i:]) continue sp = False return (line, '') def wrap_line(line): """ takes a string, returns a list of strings, corresponding to wrapped text of the specified pixel width, given current BLF settings """ line = line.rstrip() if self.txt_width(line) < useful_width: lines = [line] return lines lines = [] working = '' while line: <DeepExtract> if not line: (word, line) = (None, None) sp = line[0] == ' ' for (i, c) in enumerate(line): if c == ' ': if not sp: (word, line) = (line[:i], line[i:]) continue sp = False (word, line) = (line, '') </DeepExtract> if self.txt_width(working + word) < useful_width: working += word else: lines += [working] working = ' ' + word.strip() lines += [working] return lines self.text_lines = [] for line in self.raw_text.split('\n'): self.text_lines += wrap_line(line) <DeepExtract> blf.size(0, self.text_size, self.text_dpi) line_height = self.txt_height('A') line_count = len(self.text_lines) self.height = line_count * (line_height + self.spacer) + 2 * self.border </DeepExtract> <DeepExtract> blf.size(0, self.text_size, self.text_dpi) max_width = max((self.txt_width(line) for line in self.text_lines)) self.width = max_width + 2 * self.border </DeepExtract>
def format_and_wrap_text(self): """ """ blf.size(0, self.text_size, self.text_dpi) self.raw_text = self.raw_text.replace('\r', '') useful_width = self.width - 2 * self.border if '\n' not in self.raw_text and self.txt_width(self.raw_text) < useful_width: self.text_lines = [self.raw_text] return def split_word(line): """ splits off first word, including any leading spaces """ if not line: return (None, None) sp = line[0] == ' ' for (i, c) in enumerate(line): if c == ' ': if not sp: return (line[:i], line[i:]) continue sp = False return (line, '') def wrap_line(line): """ takes a string, returns a list of strings, corresponding to wrapped text of the specified pixel width, given current BLF settings """ line = line.rstrip() if self.txt_width(line) < useful_width: lines = [line] return lines lines = [] working = '' while line: if not line: (word, line) = (None, None) sp = line[0] == ' ' for (i, c) in enumerate(line): if c == ' ': if not sp: (word, line) = (line[:i], line[i:]) continue sp = False (word, line) = (line, '') if self.txt_width(working + word) < useful_width: working += word else: lines += [working] working = ' ' + word.strip() lines += [working] return lines self.text_lines = [] for line in self.raw_text.split('\n'): self.text_lines += wrap_line(line) blf.size(0, self.text_size, self.text_dpi) line_height = self.txt_height('A') line_count = len(self.text_lines) self.height = line_count * (line_height + self.spacer) + 2 * self.border blf.size(0, self.text_size, self.text_dpi) max_width = max((self.txt_width(line) for line in self.text_lines)) self.width = max_width + 2 * self.border </DeepExtract>
BlenderPro
positive
def test_non_gold_aliases(self): """ Test non-gold aliases. ENTITY SYMBOLS { "multi word alias2":[["Q2",5.0],["Q1",3.0],["Q4",2.0]], "alias1":[["Q1",10.0],["Q4",6.0]], "alias3":[["Q1",30.0]], "alias4":[["Q4",20.0],["Q3",15.0],["Q2",1.0]] } """ max_seq_len = 50 max_window_len = 10 max_aliases = 1 self.args.data_config.max_aliases = max_aliases self.args.data_config.max_seq_len = max_seq_len self.args.data_config.max_seq_window_len = max_window_len input_data = [{'aliases': ['alias3', 'alias4', 'alias3'], 'qids': ['Q1', 'Q4', 'Q1'], 'sent_idx_unq': 0, 'sentence': 'alias3 alias4 alias3', 'char_spans': [[0, 6], [7, 13], [14, 20]], 'gold': [True, False, False]}] gold_cand_idx_train = [[0, 0, 0]] gold_cand_idx = [[0, 0, 0]] use_weak_label = True <DeepExtract> (X_dict, Y_dict) = (defaultdict(list), defaultdict(list)) for (i, inp) in enumerate(input_data): guids = get_uniq_ids(i, len(inp['aliases']), self.guid_dtype) for j in range(len(inp['aliases'])): if use_weak_label is False and inp['gold'][j] is False: continue X_dict['guids'].append(guids[j]) (tok_sent, new_span) = adjust_sentence(inp['sentence'], max_seq_len, max_window_len, inp['char_spans'][j], self.tokenizer) for k in tok_sent: X_dict[k].append(tok_sent[k]) X_dict['sent_idx'].append(i) X_dict['subsent_idx'].append(j) if inp['aliases'][j] not in self.entity_symbols.get_all_aliases(): alias_idx = -2 else: alias_idx = self.entity_symbols.get_alias_idx(inp['aliases'][j]) X_dict['alias_idx'].append(alias_idx) X_dict['alias_orig_list_pos'].append(j) if gold_cand_idx[i][j] != -1: gold_eid = self.entity_symbols.get_eid(inp['qids'][j]) else: gold_eid = -1 if gold_cand_idx[i][j] == 0 and (not self.args.data_config.train_in_candidates): gold_eid = 0 X_dict['gold_eid'].append(gold_eid) X_dict['for_dump_gold_eid'].append(self.entity_symbols.get_eid(inp['qids'][j])) word_mask_scores = [-1 for _ in range(len(tok_sent['input_ids']))] new_span_start = tok_sent.char_to_token(new_span[0]) + 1 if tok_sent.char_to_token(new_span[1] - 1) is None: new_span_end = len(tok_sent['input_ids']) else: new_span_end = tok_sent.char_to_token(new_span[1] - 1) word_mask_scores[new_span_start:new_span_end] = [1 for _ in range(new_span_start, new_span_end)] X_dict['word_qid_cnt_mask_score'].append(word_mask_scores) X_dict['for_dump_gold_cand_K_idx_train'].append(gold_cand_idx_train[i][j]) Y_dict['gold_cand_K_idx'].append(gold_cand_idx[i][j]) for k in X_dict: if k == 'guids': X_dict[k] = np.array(X_dict[k]) else: X_dict[k] = torch.tensor(X_dict[k]) for k in Y_dict: Y_dict[k] = torch.tensor(Y_dict[k]) (X_dict, Y_dict) = (X_dict, Y_dict) </DeepExtract> utils.write_jsonl(self.temp_file_name, input_data) dataset = BootlegDataset(self.args, name='Bootleg_test', dataset=self.temp_file_name, use_weak_label=use_weak_label, load_entity_data=False, tokenizer=self.tokenizer, entity_symbols=self.entity_symbols, dataset_threads=1, split='train', is_bert=True) <DeepExtract> for k in X_dict: assert k in dataset.X_dict, f'Key is {k}' if type(X_dict[k]) is torch.Tensor: assert torch.allclose(X_dict[k].float(), dataset.X_dict[k].float()), f'Key is {k}' elif type(X_dict[k]) is np.ndarray: np.testing.assert_array_equal(X_dict[k], dataset.X_dict[k]) elif type(X_dict[k]) is list: assert len(X_dict[k]) == len(dataset.X_dict[k]), f'Key is {k}' for (item_l, item_r) in zip(X_dict[k], dataset.X_dict[k]): if type(item_l) is np.ndarray: for (subitem_l, subitem_r) in zip(item_l.tolist()[0], item_r.tolist()): if type(subitem_l) is np.ndarray: assert all(subitem_l == subitem_r), f'Key is {k}' else: assert subitem_l == subitem_r, f'Key is {k}' else: assert item_l == item_r, f'Key is {k}' else: assert X_dict[k] == dataset.X_dict[k], f'Key is {k}' for k in dataset.X_dict: assert k in X_dict, f'Key is {k}' </DeepExtract> <DeepExtract> for k in Y_dict: assert k in dataset.Y_dict, f'Key is {k}' if type(Y_dict[k]) is torch.Tensor: assert torch.allclose(Y_dict[k].float(), dataset.Y_dict[k].float()), f'Key is {k}' elif type(Y_dict[k]) is np.ndarray: np.testing.assert_array_equal(Y_dict[k], dataset.Y_dict[k]) elif type(Y_dict[k]) is list: assert len(Y_dict[k]) == len(dataset.Y_dict[k]), f'Key is {k}' for (item_l, item_r) in zip(Y_dict[k], dataset.Y_dict[k]): if type(item_l) is np.ndarray: for (subitem_l, subitem_r) in zip(item_l.tolist()[0], item_r.tolist()): if type(subitem_l) is np.ndarray: assert all(subitem_l == subitem_r), f'Key is {k}' else: assert subitem_l == subitem_r, f'Key is {k}' else: assert item_l == item_r, f'Key is {k}' else: assert Y_dict[k] == dataset.Y_dict[k], f'Key is {k}' for k in dataset.Y_dict: assert k in Y_dict, f'Key is {k}' </DeepExtract> max_seq_len = 50 max_window_len = 10 max_aliases = 1 self.args.data_config.max_aliases = max_aliases self.args.data_config.max_seq_len = max_seq_len self.args.data_config.max_seq_window_len = max_window_len input_data = [{'aliases': ['alias3', 'alias4', 'alias3'], 'qids': ['Q1', 'Q4', 'Q1'], 'sent_idx_unq': 0, 'sentence': 'alias3 alias4 alias3', 'char_spans': [[0, 6], [7, 13], [14, 20]], 'gold': [False, False, False]}] gold_cand_idx_train = [[0, 0, 0]] gold_cand_idx = [[0, 0, 0]] use_weak_label = True <DeepExtract> (X_dict, Y_dict) = (defaultdict(list), defaultdict(list)) for (i, inp) in enumerate(input_data): guids = get_uniq_ids(i, len(inp['aliases']), self.guid_dtype) for j in range(len(inp['aliases'])): if use_weak_label is False and inp['gold'][j] is False: continue X_dict['guids'].append(guids[j]) (tok_sent, new_span) = adjust_sentence(inp['sentence'], max_seq_len, max_window_len, inp['char_spans'][j], self.tokenizer) for k in tok_sent: X_dict[k].append(tok_sent[k]) X_dict['sent_idx'].append(i) X_dict['subsent_idx'].append(j) if inp['aliases'][j] not in self.entity_symbols.get_all_aliases(): alias_idx = -2 else: alias_idx = self.entity_symbols.get_alias_idx(inp['aliases'][j]) X_dict['alias_idx'].append(alias_idx) X_dict['alias_orig_list_pos'].append(j) if gold_cand_idx[i][j] != -1: gold_eid = self.entity_symbols.get_eid(inp['qids'][j]) else: gold_eid = -1 if gold_cand_idx[i][j] == 0 and (not self.args.data_config.train_in_candidates): gold_eid = 0 X_dict['gold_eid'].append(gold_eid) X_dict['for_dump_gold_eid'].append(self.entity_symbols.get_eid(inp['qids'][j])) word_mask_scores = [-1 for _ in range(len(tok_sent['input_ids']))] new_span_start = tok_sent.char_to_token(new_span[0]) + 1 if tok_sent.char_to_token(new_span[1] - 1) is None: new_span_end = len(tok_sent['input_ids']) else: new_span_end = tok_sent.char_to_token(new_span[1] - 1) word_mask_scores[new_span_start:new_span_end] = [1 for _ in range(new_span_start, new_span_end)] X_dict['word_qid_cnt_mask_score'].append(word_mask_scores) X_dict['for_dump_gold_cand_K_idx_train'].append(gold_cand_idx_train[i][j]) Y_dict['gold_cand_K_idx'].append(gold_cand_idx[i][j]) for k in X_dict: if k == 'guids': X_dict[k] = np.array(X_dict[k]) else: X_dict[k] = torch.tensor(X_dict[k]) for k in Y_dict: Y_dict[k] = torch.tensor(Y_dict[k]) (X_dict, Y_dict) = (X_dict, Y_dict) </DeepExtract> utils.write_jsonl(self.temp_file_name, input_data) dataset = BootlegDataset(self.args, name='Bootleg_test', dataset=self.temp_file_name, use_weak_label=use_weak_label, load_entity_data=False, tokenizer=self.tokenizer, entity_symbols=self.entity_symbols, dataset_threads=1, split='train', is_bert=True) <DeepExtract> for k in X_dict: assert k in dataset.X_dict, f'Key is {k}' if type(X_dict[k]) is torch.Tensor: assert torch.allclose(X_dict[k].float(), dataset.X_dict[k].float()), f'Key is {k}' elif type(X_dict[k]) is np.ndarray: np.testing.assert_array_equal(X_dict[k], dataset.X_dict[k]) elif type(X_dict[k]) is list: assert len(X_dict[k]) == len(dataset.X_dict[k]), f'Key is {k}' for (item_l, item_r) in zip(X_dict[k], dataset.X_dict[k]): if type(item_l) is np.ndarray: for (subitem_l, subitem_r) in zip(item_l.tolist()[0], item_r.tolist()): if type(subitem_l) is np.ndarray: assert all(subitem_l == subitem_r), f'Key is {k}' else: assert subitem_l == subitem_r, f'Key is {k}' else: assert item_l == item_r, f'Key is {k}' else: assert X_dict[k] == dataset.X_dict[k], f'Key is {k}' for k in dataset.X_dict: assert k in X_dict, f'Key is {k}' </DeepExtract> <DeepExtract> for k in Y_dict: assert k in dataset.Y_dict, f'Key is {k}' if type(Y_dict[k]) is torch.Tensor: assert torch.allclose(Y_dict[k].float(), dataset.Y_dict[k].float()), f'Key is {k}' elif type(Y_dict[k]) is np.ndarray: np.testing.assert_array_equal(Y_dict[k], dataset.Y_dict[k]) elif type(Y_dict[k]) is list: assert len(Y_dict[k]) == len(dataset.Y_dict[k]), f'Key is {k}' for (item_l, item_r) in zip(Y_dict[k], dataset.Y_dict[k]): if type(item_l) is np.ndarray: for (subitem_l, subitem_r) in zip(item_l.tolist()[0], item_r.tolist()): if type(subitem_l) is np.ndarray: assert all(subitem_l == subitem_r), f'Key is {k}' else: assert subitem_l == subitem_r, f'Key is {k}' else: assert item_l == item_r, f'Key is {k}' else: assert Y_dict[k] == dataset.Y_dict[k], f'Key is {k}' for k in dataset.Y_dict: assert k in Y_dict, f'Key is {k}' </DeepExtract> max_seq_len = 50 max_window_len = 10 max_aliases = 1 split = 'dev' self.args.data_config.max_aliases = max_aliases self.args.data_config.max_seq_len = max_seq_len self.args.data_config.max_seq_window_len = max_window_len input_data = [{'aliases': ['alias3', 'alias4', 'alias3'], 'qids': ['Q1', 'Q4', 'Q1'], 'sent_idx_unq': 0, 'sentence': 'alias3 alias4 alias3', 'char_spans': [[0, 6], [7, 13], [14, 20]], 'gold': [True, False, False]}] gold_cand_idx_train = [[0, 0, 0]] gold_cand_idx = [[0, -1, -1]] use_weak_label = True <DeepExtract> (X_dict, Y_dict) = (defaultdict(list), defaultdict(list)) for (i, inp) in enumerate(input_data): guids = get_uniq_ids(i, len(inp['aliases']), self.guid_dtype) for j in range(len(inp['aliases'])): if use_weak_label is False and inp['gold'][j] is False: continue X_dict['guids'].append(guids[j]) (tok_sent, new_span) = adjust_sentence(inp['sentence'], max_seq_len, max_window_len, inp['char_spans'][j], self.tokenizer) for k in tok_sent: X_dict[k].append(tok_sent[k]) X_dict['sent_idx'].append(i) X_dict['subsent_idx'].append(j) if inp['aliases'][j] not in self.entity_symbols.get_all_aliases(): alias_idx = -2 else: alias_idx = self.entity_symbols.get_alias_idx(inp['aliases'][j]) X_dict['alias_idx'].append(alias_idx) X_dict['alias_orig_list_pos'].append(j) if gold_cand_idx[i][j] != -1: gold_eid = self.entity_symbols.get_eid(inp['qids'][j]) else: gold_eid = -1 if gold_cand_idx[i][j] == 0 and (not self.args.data_config.train_in_candidates): gold_eid = 0 X_dict['gold_eid'].append(gold_eid) X_dict['for_dump_gold_eid'].append(self.entity_symbols.get_eid(inp['qids'][j])) word_mask_scores = [-1 for _ in range(len(tok_sent['input_ids']))] new_span_start = tok_sent.char_to_token(new_span[0]) + 1 if tok_sent.char_to_token(new_span[1] - 1) is None: new_span_end = len(tok_sent['input_ids']) else: new_span_end = tok_sent.char_to_token(new_span[1] - 1) word_mask_scores[new_span_start:new_span_end] = [1 for _ in range(new_span_start, new_span_end)] X_dict['word_qid_cnt_mask_score'].append(word_mask_scores) X_dict['for_dump_gold_cand_K_idx_train'].append(gold_cand_idx_train[i][j]) Y_dict['gold_cand_K_idx'].append(gold_cand_idx[i][j]) for k in X_dict: if k == 'guids': X_dict[k] = np.array(X_dict[k]) else: X_dict[k] = torch.tensor(X_dict[k]) for k in Y_dict: Y_dict[k] = torch.tensor(Y_dict[k]) (X_dict, Y_dict) = (X_dict, Y_dict) </DeepExtract> utils.write_jsonl(self.temp_file_name, input_data) dataset = BootlegDataset(self.args, name='Bootleg_test', dataset=self.temp_file_name, use_weak_label=use_weak_label, load_entity_data=False, tokenizer=self.tokenizer, entity_symbols=self.entity_symbols, dataset_threads=1, split=split, is_bert=True) <DeepExtract> for k in X_dict: assert k in dataset.X_dict, f'Key is {k}' if type(X_dict[k]) is torch.Tensor: assert torch.allclose(X_dict[k].float(), dataset.X_dict[k].float()), f'Key is {k}' elif type(X_dict[k]) is np.ndarray: np.testing.assert_array_equal(X_dict[k], dataset.X_dict[k]) elif type(X_dict[k]) is list: assert len(X_dict[k]) == len(dataset.X_dict[k]), f'Key is {k}' for (item_l, item_r) in zip(X_dict[k], dataset.X_dict[k]): if type(item_l) is np.ndarray: for (subitem_l, subitem_r) in zip(item_l.tolist()[0], item_r.tolist()): if type(subitem_l) is np.ndarray: assert all(subitem_l == subitem_r), f'Key is {k}' else: assert subitem_l == subitem_r, f'Key is {k}' else: assert item_l == item_r, f'Key is {k}' else: assert X_dict[k] == dataset.X_dict[k], f'Key is {k}' for k in dataset.X_dict: assert k in X_dict, f'Key is {k}' </DeepExtract> <DeepExtract> for k in Y_dict: assert k in dataset.Y_dict, f'Key is {k}' if type(Y_dict[k]) is torch.Tensor: assert torch.allclose(Y_dict[k].float(), dataset.Y_dict[k].float()), f'Key is {k}' elif type(Y_dict[k]) is np.ndarray: np.testing.assert_array_equal(Y_dict[k], dataset.Y_dict[k]) elif type(Y_dict[k]) is list: assert len(Y_dict[k]) == len(dataset.Y_dict[k]), f'Key is {k}' for (item_l, item_r) in zip(Y_dict[k], dataset.Y_dict[k]): if type(item_l) is np.ndarray: for (subitem_l, subitem_r) in zip(item_l.tolist()[0], item_r.tolist()): if type(subitem_l) is np.ndarray: assert all(subitem_l == subitem_r), f'Key is {k}' else: assert subitem_l == subitem_r, f'Key is {k}' else: assert item_l == item_r, f'Key is {k}' else: assert Y_dict[k] == dataset.Y_dict[k], f'Key is {k}' for k in dataset.Y_dict: assert k in Y_dict, f'Key is {k}' </DeepExtract> max_seq_len = 50 max_window_len = 10 max_aliases = 1 split = 'dev' self.args.data_config.max_aliases = max_aliases self.args.data_config.max_seq_len = max_seq_len self.args.data_config.max_seq_window_len = max_window_len input_data = [{'aliases': ['alias3', 'alias4', 'alias3'], 'qids': ['Q1', 'Q4', 'Q1'], 'sent_idx_unq': 0, 'sentence': 'alias3 alias4 alias3', 'char_spans': [[0, 6], [7, 13], [14, 20]], 'gold': [False, False, False]}] gold_cand_idx_train = [[0, 0, 0]] gold_cand_idx = [[-1, -1, -1]] use_weak_label = True <DeepExtract> (X_dict, Y_dict) = (defaultdict(list), defaultdict(list)) for (i, inp) in enumerate(input_data): guids = get_uniq_ids(i, len(inp['aliases']), self.guid_dtype) for j in range(len(inp['aliases'])): if use_weak_label is False and inp['gold'][j] is False: continue X_dict['guids'].append(guids[j]) (tok_sent, new_span) = adjust_sentence(inp['sentence'], max_seq_len, max_window_len, inp['char_spans'][j], self.tokenizer) for k in tok_sent: X_dict[k].append(tok_sent[k]) X_dict['sent_idx'].append(i) X_dict['subsent_idx'].append(j) if inp['aliases'][j] not in self.entity_symbols.get_all_aliases(): alias_idx = -2 else: alias_idx = self.entity_symbols.get_alias_idx(inp['aliases'][j]) X_dict['alias_idx'].append(alias_idx) X_dict['alias_orig_list_pos'].append(j) if gold_cand_idx[i][j] != -1: gold_eid = self.entity_symbols.get_eid(inp['qids'][j]) else: gold_eid = -1 if gold_cand_idx[i][j] == 0 and (not self.args.data_config.train_in_candidates): gold_eid = 0 X_dict['gold_eid'].append(gold_eid) X_dict['for_dump_gold_eid'].append(self.entity_symbols.get_eid(inp['qids'][j])) word_mask_scores = [-1 for _ in range(len(tok_sent['input_ids']))] new_span_start = tok_sent.char_to_token(new_span[0]) + 1 if tok_sent.char_to_token(new_span[1] - 1) is None: new_span_end = len(tok_sent['input_ids']) else: new_span_end = tok_sent.char_to_token(new_span[1] - 1) word_mask_scores[new_span_start:new_span_end] = [1 for _ in range(new_span_start, new_span_end)] X_dict['word_qid_cnt_mask_score'].append(word_mask_scores) X_dict['for_dump_gold_cand_K_idx_train'].append(gold_cand_idx_train[i][j]) Y_dict['gold_cand_K_idx'].append(gold_cand_idx[i][j]) for k in X_dict: if k == 'guids': X_dict[k] = np.array(X_dict[k]) else: X_dict[k] = torch.tensor(X_dict[k]) for k in Y_dict: Y_dict[k] = torch.tensor(Y_dict[k]) (X_dict, Y_dict) = (X_dict, Y_dict) </DeepExtract> utils.write_jsonl(self.temp_file_name, input_data) dataset = BootlegDataset(self.args, name='Bootleg_test', dataset=self.temp_file_name, use_weak_label=use_weak_label, load_entity_data=False, tokenizer=self.tokenizer, entity_symbols=self.entity_symbols, dataset_threads=1, split=split, is_bert=True) <DeepExtract> for k in X_dict: assert k in dataset.X_dict, f'Key is {k}' if type(X_dict[k]) is torch.Tensor: assert torch.allclose(X_dict[k].float(), dataset.X_dict[k].float()), f'Key is {k}' elif type(X_dict[k]) is np.ndarray: np.testing.assert_array_equal(X_dict[k], dataset.X_dict[k]) elif type(X_dict[k]) is list: assert len(X_dict[k]) == len(dataset.X_dict[k]), f'Key is {k}' for (item_l, item_r) in zip(X_dict[k], dataset.X_dict[k]): if type(item_l) is np.ndarray: for (subitem_l, subitem_r) in zip(item_l.tolist()[0], item_r.tolist()): if type(subitem_l) is np.ndarray: assert all(subitem_l == subitem_r), f'Key is {k}' else: assert subitem_l == subitem_r, f'Key is {k}' else: assert item_l == item_r, f'Key is {k}' else: assert X_dict[k] == dataset.X_dict[k], f'Key is {k}' for k in dataset.X_dict: assert k in X_dict, f'Key is {k}' </DeepExtract> <DeepExtract> for k in Y_dict: assert k in dataset.Y_dict, f'Key is {k}' if type(Y_dict[k]) is torch.Tensor: assert torch.allclose(Y_dict[k].float(), dataset.Y_dict[k].float()), f'Key is {k}' elif type(Y_dict[k]) is np.ndarray: np.testing.assert_array_equal(Y_dict[k], dataset.Y_dict[k]) elif type(Y_dict[k]) is list: assert len(Y_dict[k]) == len(dataset.Y_dict[k]), f'Key is {k}' for (item_l, item_r) in zip(Y_dict[k], dataset.Y_dict[k]): if type(item_l) is np.ndarray: for (subitem_l, subitem_r) in zip(item_l.tolist()[0], item_r.tolist()): if type(subitem_l) is np.ndarray: assert all(subitem_l == subitem_r), f'Key is {k}' else: assert subitem_l == subitem_r, f'Key is {k}' else: assert item_l == item_r, f'Key is {k}' else: assert Y_dict[k] == dataset.Y_dict[k], f'Key is {k}' for k in dataset.Y_dict: assert k in Y_dict, f'Key is {k}' </DeepExtract>
def test_non_gold_aliases(self): """ Test non-gold aliases. ENTITY SYMBOLS { "multi word alias2":[["Q2",5.0],["Q1",3.0],["Q4",2.0]], "alias1":[["Q1",10.0],["Q4",6.0]], "alias3":[["Q1",30.0]], "alias4":[["Q4",20.0],["Q3",15.0],["Q2",1.0]] } """ max_seq_len = 50 max_window_len = 10 max_aliases = 1 self.args.data_config.max_aliases = max_aliases self.args.data_config.max_seq_len = max_seq_len self.args.data_config.max_seq_window_len = max_window_len input_data = [{'aliases': ['alias3', 'alias4', 'alias3'], 'qids': ['Q1', 'Q4', 'Q1'], 'sent_idx_unq': 0, 'sentence': 'alias3 alias4 alias3', 'char_spans': [[0, 6], [7, 13], [14, 20]], 'gold': [True, False, False]}] gold_cand_idx_train = [[0, 0, 0]] gold_cand_idx = [[0, 0, 0]] use_weak_label = True (X_dict, Y_dict) = (defaultdict(list), defaultdict(list)) for (i, inp) in enumerate(input_data): guids = get_uniq_ids(i, len(inp['aliases']), self.guid_dtype) for j in range(len(inp['aliases'])): if use_weak_label is False and inp['gold'][j] is False: continue X_dict['guids'].append(guids[j]) (tok_sent, new_span) = adjust_sentence(inp['sentence'], max_seq_len, max_window_len, inp['char_spans'][j], self.tokenizer) for k in tok_sent: X_dict[k].append(tok_sent[k]) X_dict['sent_idx'].append(i) X_dict['subsent_idx'].append(j) if inp['aliases'][j] not in self.entity_symbols.get_all_aliases(): alias_idx = -2 else: alias_idx = self.entity_symbols.get_alias_idx(inp['aliases'][j]) X_dict['alias_idx'].append(alias_idx) X_dict['alias_orig_list_pos'].append(j) if gold_cand_idx[i][j] != -1: gold_eid = self.entity_symbols.get_eid(inp['qids'][j]) else: gold_eid = -1 if gold_cand_idx[i][j] == 0 and (not self.args.data_config.train_in_candidates): gold_eid = 0 X_dict['gold_eid'].append(gold_eid) X_dict['for_dump_gold_eid'].append(self.entity_symbols.get_eid(inp['qids'][j])) word_mask_scores = [-1 for _ in range(len(tok_sent['input_ids']))] new_span_start = tok_sent.char_to_token(new_span[0]) + 1 if tok_sent.char_to_token(new_span[1] - 1) is None: new_span_end = len(tok_sent['input_ids']) else: new_span_end = tok_sent.char_to_token(new_span[1] - 1) word_mask_scores[new_span_start:new_span_end] = [1 for _ in range(new_span_start, new_span_end)] X_dict['word_qid_cnt_mask_score'].append(word_mask_scores) X_dict['for_dump_gold_cand_K_idx_train'].append(gold_cand_idx_train[i][j]) Y_dict['gold_cand_K_idx'].append(gold_cand_idx[i][j]) for k in X_dict: if k == 'guids': X_dict[k] = np.array(X_dict[k]) else: X_dict[k] = torch.tensor(X_dict[k]) for k in Y_dict: Y_dict[k] = torch.tensor(Y_dict[k]) (X_dict, Y_dict) = (X_dict, Y_dict) utils.write_jsonl(self.temp_file_name, input_data) dataset = BootlegDataset(self.args, name='Bootleg_test', dataset=self.temp_file_name, use_weak_label=use_weak_label, load_entity_data=False, tokenizer=self.tokenizer, entity_symbols=self.entity_symbols, dataset_threads=1, split='train', is_bert=True) for k in X_dict: assert k in dataset.X_dict, f'Key is {k}' if type(X_dict[k]) is torch.Tensor: assert torch.allclose(X_dict[k].float(), dataset.X_dict[k].float()), f'Key is {k}' elif type(X_dict[k]) is np.ndarray: np.testing.assert_array_equal(X_dict[k], dataset.X_dict[k]) elif type(X_dict[k]) is list: assert len(X_dict[k]) == len(dataset.X_dict[k]), f'Key is {k}' for (item_l, item_r) in zip(X_dict[k], dataset.X_dict[k]): if type(item_l) is np.ndarray: for (subitem_l, subitem_r) in zip(item_l.tolist()[0], item_r.tolist()): if type(subitem_l) is np.ndarray: assert all(subitem_l == subitem_r), f'Key is {k}' else: assert subitem_l == subitem_r, f'Key is {k}' else: assert item_l == item_r, f'Key is {k}' else: assert X_dict[k] == dataset.X_dict[k], f'Key is {k}' for k in dataset.X_dict: assert k in X_dict, f'Key is {k}' for k in Y_dict: assert k in dataset.Y_dict, f'Key is {k}' if type(Y_dict[k]) is torch.Tensor: assert torch.allclose(Y_dict[k].float(), dataset.Y_dict[k].float()), f'Key is {k}' elif type(Y_dict[k]) is np.ndarray: np.testing.assert_array_equal(Y_dict[k], dataset.Y_dict[k]) elif type(Y_dict[k]) is list: assert len(Y_dict[k]) == len(dataset.Y_dict[k]), f'Key is {k}' for (item_l, item_r) in zip(Y_dict[k], dataset.Y_dict[k]): if type(item_l) is np.ndarray: for (subitem_l, subitem_r) in zip(item_l.tolist()[0], item_r.tolist()): if type(subitem_l) is np.ndarray: assert all(subitem_l == subitem_r), f'Key is {k}' else: assert subitem_l == subitem_r, f'Key is {k}' else: assert item_l == item_r, f'Key is {k}' else: assert Y_dict[k] == dataset.Y_dict[k], f'Key is {k}' for k in dataset.Y_dict: assert k in Y_dict, f'Key is {k}' max_seq_len = 50 max_window_len = 10 max_aliases = 1 self.args.data_config.max_aliases = max_aliases self.args.data_config.max_seq_len = max_seq_len self.args.data_config.max_seq_window_len = max_window_len input_data = [{'aliases': ['alias3', 'alias4', 'alias3'], 'qids': ['Q1', 'Q4', 'Q1'], 'sent_idx_unq': 0, 'sentence': 'alias3 alias4 alias3', 'char_spans': [[0, 6], [7, 13], [14, 20]], 'gold': [False, False, False]}] gold_cand_idx_train = [[0, 0, 0]] gold_cand_idx = [[0, 0, 0]] use_weak_label = True (X_dict, Y_dict) = (defaultdict(list), defaultdict(list)) for (i, inp) in enumerate(input_data): guids = get_uniq_ids(i, len(inp['aliases']), self.guid_dtype) for j in range(len(inp['aliases'])): if use_weak_label is False and inp['gold'][j] is False: continue X_dict['guids'].append(guids[j]) (tok_sent, new_span) = adjust_sentence(inp['sentence'], max_seq_len, max_window_len, inp['char_spans'][j], self.tokenizer) for k in tok_sent: X_dict[k].append(tok_sent[k]) X_dict['sent_idx'].append(i) X_dict['subsent_idx'].append(j) if inp['aliases'][j] not in self.entity_symbols.get_all_aliases(): alias_idx = -2 else: alias_idx = self.entity_symbols.get_alias_idx(inp['aliases'][j]) X_dict['alias_idx'].append(alias_idx) X_dict['alias_orig_list_pos'].append(j) if gold_cand_idx[i][j] != -1: gold_eid = self.entity_symbols.get_eid(inp['qids'][j]) else: gold_eid = -1 if gold_cand_idx[i][j] == 0 and (not self.args.data_config.train_in_candidates): gold_eid = 0 X_dict['gold_eid'].append(gold_eid) X_dict['for_dump_gold_eid'].append(self.entity_symbols.get_eid(inp['qids'][j])) word_mask_scores = [-1 for _ in range(len(tok_sent['input_ids']))] new_span_start = tok_sent.char_to_token(new_span[0]) + 1 if tok_sent.char_to_token(new_span[1] - 1) is None: new_span_end = len(tok_sent['input_ids']) else: new_span_end = tok_sent.char_to_token(new_span[1] - 1) word_mask_scores[new_span_start:new_span_end] = [1 for _ in range(new_span_start, new_span_end)] X_dict['word_qid_cnt_mask_score'].append(word_mask_scores) X_dict['for_dump_gold_cand_K_idx_train'].append(gold_cand_idx_train[i][j]) Y_dict['gold_cand_K_idx'].append(gold_cand_idx[i][j]) for k in X_dict: if k == 'guids': X_dict[k] = np.array(X_dict[k]) else: X_dict[k] = torch.tensor(X_dict[k]) for k in Y_dict: Y_dict[k] = torch.tensor(Y_dict[k]) (X_dict, Y_dict) = (X_dict, Y_dict) utils.write_jsonl(self.temp_file_name, input_data) dataset = BootlegDataset(self.args, name='Bootleg_test', dataset=self.temp_file_name, use_weak_label=use_weak_label, load_entity_data=False, tokenizer=self.tokenizer, entity_symbols=self.entity_symbols, dataset_threads=1, split='train', is_bert=True) for k in X_dict: assert k in dataset.X_dict, f'Key is {k}' if type(X_dict[k]) is torch.Tensor: assert torch.allclose(X_dict[k].float(), dataset.X_dict[k].float()), f'Key is {k}' elif type(X_dict[k]) is np.ndarray: np.testing.assert_array_equal(X_dict[k], dataset.X_dict[k]) elif type(X_dict[k]) is list: assert len(X_dict[k]) == len(dataset.X_dict[k]), f'Key is {k}' for (item_l, item_r) in zip(X_dict[k], dataset.X_dict[k]): if type(item_l) is np.ndarray: for (subitem_l, subitem_r) in zip(item_l.tolist()[0], item_r.tolist()): if type(subitem_l) is np.ndarray: assert all(subitem_l == subitem_r), f'Key is {k}' else: assert subitem_l == subitem_r, f'Key is {k}' else: assert item_l == item_r, f'Key is {k}' else: assert X_dict[k] == dataset.X_dict[k], f'Key is {k}' for k in dataset.X_dict: assert k in X_dict, f'Key is {k}' for k in Y_dict: assert k in dataset.Y_dict, f'Key is {k}' if type(Y_dict[k]) is torch.Tensor: assert torch.allclose(Y_dict[k].float(), dataset.Y_dict[k].float()), f'Key is {k}' elif type(Y_dict[k]) is np.ndarray: np.testing.assert_array_equal(Y_dict[k], dataset.Y_dict[k]) elif type(Y_dict[k]) is list: assert len(Y_dict[k]) == len(dataset.Y_dict[k]), f'Key is {k}' for (item_l, item_r) in zip(Y_dict[k], dataset.Y_dict[k]): if type(item_l) is np.ndarray: for (subitem_l, subitem_r) in zip(item_l.tolist()[0], item_r.tolist()): if type(subitem_l) is np.ndarray: assert all(subitem_l == subitem_r), f'Key is {k}' else: assert subitem_l == subitem_r, f'Key is {k}' else: assert item_l == item_r, f'Key is {k}' else: assert Y_dict[k] == dataset.Y_dict[k], f'Key is {k}' for k in dataset.Y_dict: assert k in Y_dict, f'Key is {k}' max_seq_len = 50 max_window_len = 10 max_aliases = 1 split = 'dev' self.args.data_config.max_aliases = max_aliases self.args.data_config.max_seq_len = max_seq_len self.args.data_config.max_seq_window_len = max_window_len input_data = [{'aliases': ['alias3', 'alias4', 'alias3'], 'qids': ['Q1', 'Q4', 'Q1'], 'sent_idx_unq': 0, 'sentence': 'alias3 alias4 alias3', 'char_spans': [[0, 6], [7, 13], [14, 20]], 'gold': [True, False, False]}] gold_cand_idx_train = [[0, 0, 0]] gold_cand_idx = [[0, -1, -1]] use_weak_label = True (X_dict, Y_dict) = (defaultdict(list), defaultdict(list)) for (i, inp) in enumerate(input_data): guids = get_uniq_ids(i, len(inp['aliases']), self.guid_dtype) for j in range(len(inp['aliases'])): if use_weak_label is False and inp['gold'][j] is False: continue X_dict['guids'].append(guids[j]) (tok_sent, new_span) = adjust_sentence(inp['sentence'], max_seq_len, max_window_len, inp['char_spans'][j], self.tokenizer) for k in tok_sent: X_dict[k].append(tok_sent[k]) X_dict['sent_idx'].append(i) X_dict['subsent_idx'].append(j) if inp['aliases'][j] not in self.entity_symbols.get_all_aliases(): alias_idx = -2 else: alias_idx = self.entity_symbols.get_alias_idx(inp['aliases'][j]) X_dict['alias_idx'].append(alias_idx) X_dict['alias_orig_list_pos'].append(j) if gold_cand_idx[i][j] != -1: gold_eid = self.entity_symbols.get_eid(inp['qids'][j]) else: gold_eid = -1 if gold_cand_idx[i][j] == 0 and (not self.args.data_config.train_in_candidates): gold_eid = 0 X_dict['gold_eid'].append(gold_eid) X_dict['for_dump_gold_eid'].append(self.entity_symbols.get_eid(inp['qids'][j])) word_mask_scores = [-1 for _ in range(len(tok_sent['input_ids']))] new_span_start = tok_sent.char_to_token(new_span[0]) + 1 if tok_sent.char_to_token(new_span[1] - 1) is None: new_span_end = len(tok_sent['input_ids']) else: new_span_end = tok_sent.char_to_token(new_span[1] - 1) word_mask_scores[new_span_start:new_span_end] = [1 for _ in range(new_span_start, new_span_end)] X_dict['word_qid_cnt_mask_score'].append(word_mask_scores) X_dict['for_dump_gold_cand_K_idx_train'].append(gold_cand_idx_train[i][j]) Y_dict['gold_cand_K_idx'].append(gold_cand_idx[i][j]) for k in X_dict: if k == 'guids': X_dict[k] = np.array(X_dict[k]) else: X_dict[k] = torch.tensor(X_dict[k]) for k in Y_dict: Y_dict[k] = torch.tensor(Y_dict[k]) (X_dict, Y_dict) = (X_dict, Y_dict) utils.write_jsonl(self.temp_file_name, input_data) dataset = BootlegDataset(self.args, name='Bootleg_test', dataset=self.temp_file_name, use_weak_label=use_weak_label, load_entity_data=False, tokenizer=self.tokenizer, entity_symbols=self.entity_symbols, dataset_threads=1, split=split, is_bert=True) for k in X_dict: assert k in dataset.X_dict, f'Key is {k}' if type(X_dict[k]) is torch.Tensor: assert torch.allclose(X_dict[k].float(), dataset.X_dict[k].float()), f'Key is {k}' elif type(X_dict[k]) is np.ndarray: np.testing.assert_array_equal(X_dict[k], dataset.X_dict[k]) elif type(X_dict[k]) is list: assert len(X_dict[k]) == len(dataset.X_dict[k]), f'Key is {k}' for (item_l, item_r) in zip(X_dict[k], dataset.X_dict[k]): if type(item_l) is np.ndarray: for (subitem_l, subitem_r) in zip(item_l.tolist()[0], item_r.tolist()): if type(subitem_l) is np.ndarray: assert all(subitem_l == subitem_r), f'Key is {k}' else: assert subitem_l == subitem_r, f'Key is {k}' else: assert item_l == item_r, f'Key is {k}' else: assert X_dict[k] == dataset.X_dict[k], f'Key is {k}' for k in dataset.X_dict: assert k in X_dict, f'Key is {k}' for k in Y_dict: assert k in dataset.Y_dict, f'Key is {k}' if type(Y_dict[k]) is torch.Tensor: assert torch.allclose(Y_dict[k].float(), dataset.Y_dict[k].float()), f'Key is {k}' elif type(Y_dict[k]) is np.ndarray: np.testing.assert_array_equal(Y_dict[k], dataset.Y_dict[k]) elif type(Y_dict[k]) is list: assert len(Y_dict[k]) == len(dataset.Y_dict[k]), f'Key is {k}' for (item_l, item_r) in zip(Y_dict[k], dataset.Y_dict[k]): if type(item_l) is np.ndarray: for (subitem_l, subitem_r) in zip(item_l.tolist()[0], item_r.tolist()): if type(subitem_l) is np.ndarray: assert all(subitem_l == subitem_r), f'Key is {k}' else: assert subitem_l == subitem_r, f'Key is {k}' else: assert item_l == item_r, f'Key is {k}' else: assert Y_dict[k] == dataset.Y_dict[k], f'Key is {k}' for k in dataset.Y_dict: assert k in Y_dict, f'Key is {k}' max_seq_len = 50 max_window_len = 10 max_aliases = 1 split = 'dev' self.args.data_config.max_aliases = max_aliases self.args.data_config.max_seq_len = max_seq_len self.args.data_config.max_seq_window_len = max_window_len input_data = [{'aliases': ['alias3', 'alias4', 'alias3'], 'qids': ['Q1', 'Q4', 'Q1'], 'sent_idx_unq': 0, 'sentence': 'alias3 alias4 alias3', 'char_spans': [[0, 6], [7, 13], [14, 20]], 'gold': [False, False, False]}] gold_cand_idx_train = [[0, 0, 0]] gold_cand_idx = [[-1, -1, -1]] use_weak_label = True (X_dict, Y_dict) = (defaultdict(list), defaultdict(list)) for (i, inp) in enumerate(input_data): guids = get_uniq_ids(i, len(inp['aliases']), self.guid_dtype) for j in range(len(inp['aliases'])): if use_weak_label is False and inp['gold'][j] is False: continue X_dict['guids'].append(guids[j]) (tok_sent, new_span) = adjust_sentence(inp['sentence'], max_seq_len, max_window_len, inp['char_spans'][j], self.tokenizer) for k in tok_sent: X_dict[k].append(tok_sent[k]) X_dict['sent_idx'].append(i) X_dict['subsent_idx'].append(j) if inp['aliases'][j] not in self.entity_symbols.get_all_aliases(): alias_idx = -2 else: alias_idx = self.entity_symbols.get_alias_idx(inp['aliases'][j]) X_dict['alias_idx'].append(alias_idx) X_dict['alias_orig_list_pos'].append(j) if gold_cand_idx[i][j] != -1: gold_eid = self.entity_symbols.get_eid(inp['qids'][j]) else: gold_eid = -1 if gold_cand_idx[i][j] == 0 and (not self.args.data_config.train_in_candidates): gold_eid = 0 X_dict['gold_eid'].append(gold_eid) X_dict['for_dump_gold_eid'].append(self.entity_symbols.get_eid(inp['qids'][j])) word_mask_scores = [-1 for _ in range(len(tok_sent['input_ids']))] new_span_start = tok_sent.char_to_token(new_span[0]) + 1 if tok_sent.char_to_token(new_span[1] - 1) is None: new_span_end = len(tok_sent['input_ids']) else: new_span_end = tok_sent.char_to_token(new_span[1] - 1) word_mask_scores[new_span_start:new_span_end] = [1 for _ in range(new_span_start, new_span_end)] X_dict['word_qid_cnt_mask_score'].append(word_mask_scores) X_dict['for_dump_gold_cand_K_idx_train'].append(gold_cand_idx_train[i][j]) Y_dict['gold_cand_K_idx'].append(gold_cand_idx[i][j]) for k in X_dict: if k == 'guids': X_dict[k] = np.array(X_dict[k]) else: X_dict[k] = torch.tensor(X_dict[k]) for k in Y_dict: Y_dict[k] = torch.tensor(Y_dict[k]) (X_dict, Y_dict) = (X_dict, Y_dict) utils.write_jsonl(self.temp_file_name, input_data) dataset = BootlegDataset(self.args, name='Bootleg_test', dataset=self.temp_file_name, use_weak_label=use_weak_label, load_entity_data=False, tokenizer=self.tokenizer, entity_symbols=self.entity_symbols, dataset_threads=1, split=split, is_bert=True) for k in X_dict: assert k in dataset.X_dict, f'Key is {k}' if type(X_dict[k]) is torch.Tensor: assert torch.allclose(X_dict[k].float(), dataset.X_dict[k].float()), f'Key is {k}' elif type(X_dict[k]) is np.ndarray: np.testing.assert_array_equal(X_dict[k], dataset.X_dict[k]) elif type(X_dict[k]) is list: assert len(X_dict[k]) == len(dataset.X_dict[k]), f'Key is {k}' for (item_l, item_r) in zip(X_dict[k], dataset.X_dict[k]): if type(item_l) is np.ndarray: for (subitem_l, subitem_r) in zip(item_l.tolist()[0], item_r.tolist()): if type(subitem_l) is np.ndarray: assert all(subitem_l == subitem_r), f'Key is {k}' else: assert subitem_l == subitem_r, f'Key is {k}' else: assert item_l == item_r, f'Key is {k}' else: assert X_dict[k] == dataset.X_dict[k], f'Key is {k}' for k in dataset.X_dict: assert k in X_dict, f'Key is {k}' for k in Y_dict: assert k in dataset.Y_dict, f'Key is {k}' if type(Y_dict[k]) is torch.Tensor: assert torch.allclose(Y_dict[k].float(), dataset.Y_dict[k].float()), f'Key is {k}' elif type(Y_dict[k]) is np.ndarray: np.testing.assert_array_equal(Y_dict[k], dataset.Y_dict[k]) elif type(Y_dict[k]) is list: assert len(Y_dict[k]) == len(dataset.Y_dict[k]), f'Key is {k}' for (item_l, item_r) in zip(Y_dict[k], dataset.Y_dict[k]): if type(item_l) is np.ndarray: for (subitem_l, subitem_r) in zip(item_l.tolist()[0], item_r.tolist()): if type(subitem_l) is np.ndarray: assert all(subitem_l == subitem_r), f'Key is {k}' else: assert subitem_l == subitem_r, f'Key is {k}' else: assert item_l == item_r, f'Key is {k}' else: assert Y_dict[k] == dataset.Y_dict[k], f'Key is {k}' for k in dataset.Y_dict: assert k in Y_dict, f'Key is {k}' </DeepExtract>
bootleg
positive
def _sock_recv(self, bufsize): try: return self._sock.recv(bufsize) except ssl.SSLWantReadError: raise BlockingIOError except ssl.SSLWantWriteError: <DeepExtract> if not self._sock or self._registered_write: return self._registered_write = True with self._callback_mutex: on_socket_register_write = self.on_socket_register_write if on_socket_register_write: try: on_socket_register_write(self, self._userdata, self._sock) except Exception as err: self._easy_log(MQTT_LOG_ERR, 'Caught exception in on_socket_register_write: %s', err) if not self.suppress_exceptions: raise </DeepExtract> raise BlockingIOError
def _sock_recv(self, bufsize): try: return self._sock.recv(bufsize) except ssl.SSLWantReadError: raise BlockingIOError except ssl.SSLWantWriteError: if not self._sock or self._registered_write: return self._registered_write = True with self._callback_mutex: on_socket_register_write = self.on_socket_register_write if on_socket_register_write: try: on_socket_register_write(self, self._userdata, self._sock) except Exception as err: self._easy_log(MQTT_LOG_ERR, 'Caught exception in on_socket_register_write: %s', err) if not self.suppress_exceptions: raise raise BlockingIOError
depthai-experiments
positive
def load_test_model(opt, model_path=None): if model_path is None: model_path = opt.models[0] checkpoint = torch.load(model_path, map_location=lambda storage, loc: storage) model_opt = ArgumentParser.ckpt_model_opts(checkpoint['opt']) ArgumentParser.update_model_opts(model_opt) ArgumentParser.validate_model_opts(model_opt) vocab = checkpoint['vocab'] if inputters.old_style_vocab(vocab): fields = inputters.load_old_vocab(vocab, opt.data_type, dynamic_dict=model_opt.copy_attn) else: fields = vocab <DeepExtract> if model_opt.model_type == 'text': src_field = fields['src'] src_emb = build_embeddings(model_opt, src_field) else: src_emb = None encoder = build_encoder(model_opt, src_emb) tgt_field = fields['tgt'] tgt_emb = build_embeddings(model_opt, tgt_field, for_encoder=False) if model_opt.share_embeddings: assert src_field.base_field.vocab == tgt_field.base_field.vocab, 'preprocess with -share_vocab if you use share_embeddings' tgt_emb.word_lut.weight = src_emb.word_lut.weight if model_opt.share_position_embeddings: tgt_emb.make_embedding.pe.pe.weight = src_emb.make_embedding.pe.pe.weight decoder = build_decoder(model_opt, tgt_emb) if use_gpu(opt) and opt.gpu is not None: device = torch.device('cuda', opt.gpu) elif use_gpu(opt) and (not opt.gpu): device = torch.device('cuda') elif not use_gpu(opt): device = torch.device('cpu') if model_opt.simple_fusion: layers = 12 size = 768 heads = 12 lm_decoder_opt = copy.deepcopy(model_opt) lm_decoder_opt.dec_layers = layers lm_decoder_opt.use_GPT_version_ctxattn = False lm_decoder_opt.use_GPT_version_psa = False lm_decoder_opt.use_GPT_version_unconditional = True lm_decoder_opt.tgt_word_vec_size = size lm_decoder_opt.rnn_size = size lm_decoder_opt.dec_rnn_size = size lm_decoder_opt.transformer_ff = size * 4 lm_decoder_opt.dec_heads = heads lm_decoder_opt.position_encoding_learned_dec = True lm_decoder_opt.share_decoder_embeddings = True lm_decoder_opt.dropout = 0 lm_decoder_emb = build_embeddings(lm_decoder_opt, tgt_field, for_encoder=False) logger.info(lm_decoder_emb) lm_decoder = build_decoder(lm_decoder_opt, lm_decoder_emb) load_decoder = lm_decoder model = onmt.models.SimpleFusionModel(encoder, decoder, lm_decoder) generator = SimpleFusionGenerator(model_opt.dec_rnn_size, lm_decoder_opt.dec_rnn_size, len(fields['tgt'].base_field.vocab)) generator.lm_linear.weight = lm_decoder.embeddings.word_lut.weight if model_opt.share_decoder_embeddings: generator.decoder_linear.weight = decoder.embeddings.word_lut.weight gen_linear = generator.lm_linear else: load_decoder = decoder if model_opt.unconditional: model = onmt.models.UncondModel(decoder) else: model = onmt.models.NMTModel(encoder, decoder) if not model_opt.copy_attn: if model_opt.generator_function == 'sparsemax': gen_func = onmt.modules.sparse_activations.LogSparsemax(dim=-1) else: gen_func = nn.LogSoftmax(dim=-1) if model_opt.padded_vocab_fix_me_later: gen_func = nn.Sequential(PadGen(), gen_func) generator = nn.Sequential(nn.Linear(model_opt.dec_rnn_size, len(fields['tgt'].base_field.vocab)), Cast(torch.float32), gen_func) if model_opt.share_decoder_embeddings: generator[0].weight = decoder.embeddings.word_lut.weight gen_linear = generator[0] else: tgt_base_field = fields['tgt'].base_field vocab_size = len(tgt_base_field.vocab) pad_idx = tgt_base_field.vocab.stoi[tgt_base_field.pad_token] generator = CopyGenerator(model_opt.dec_rnn_size, vocab_size, pad_idx) if model_opt.share_decoder_embeddings: generator.linear.weight = decoder.embeddings.word_lut.weight gen_linear = generator.linear if model_opt.encdec_share_params: for (name, p) in decoder.named_parameters(): if 'ctx' in name or 'context' in name: continue pointer = encoder attrs = name.split('.') for attr_name in attrs[:-1]: pointer = getattr(pointer, attr_name) setattr(pointer, attrs[-1], p) if checkpoint is not None: if 'gpt2_params' not in checkpoint and 'enc_model' not in checkpoint: def fix_key(s): s = re.sub('(.*)\\.layer_norm((_\\d+)?)\\.b_2', '\\1.layer_norm\\2.bias', s) s = re.sub('(.*)\\.layer_norm((_\\d+)?)\\.a_2', '\\1.layer_norm\\2.weight', s) model = s checkpoint['model'] = {fix_key(k): v for (k, v) in checkpoint['model'].items()} if hasattr(model_opt, 'load_uncond_from') and model_opt.load_uncond_from: for p in decoder.parameters(): if p.dim() > 1: xavier_uniform_(p) for p in encoder.parameters(): if p.dim() > 1: xavier_uniform_(p) if model_opt.ctx_weight_param: for (name, p) in decoder.named_parameters(): if 'ctx_weight' in name: p.data.zero_() if 'ctx_bias' in name: p.data.fill_(-10) model.load_state_dict(checkpoint['model'], strict=False) generator.load_state_dict(checkpoint['generator'], strict=False) else: if 'gpt2_params' in checkpoint: init_something = model_opt.gpt2_init_embanddec or model_opt.simple_fusion or model_opt.gpt2_init_embandenc or (model_opt.GPT_representation_mode != 'none') if init_something: if model_opt.gpt2_init_zero: for p in decoder.parameters(): p.data.zero_() if model_opt.simple_fusion: generator.decoder_linear.weight.data.zero_() generator.decoder_linear.bias.data.zero_() else: for p in decoder.parameters(): if p.dim() > 1: xavier_uniform_(p) if encoder is not None: for p in encoder.parameters(): if p.dim() > 1: xavier_uniform_(p) for p in generator.parameters(): if p.dim() > 1: xavier_uniform_(p) if model_opt.zero_bias_init: gen_linear.bias.data.zero_() if model_opt.ctx_weight_param: for (name, p) in decoder.named_parameters(): if 'ctx_weight' in name: p.data.zero_() if 'ctx_bias' in name: p.data.fill_(-10) gen_linear.bias.data.zero_() load_models = [] if model_opt.GPT_representation_mode != 'none': load_embs = [] if model_opt.GPT_representation_loc in ['both', 'src']: load_models.append(src_emb.gpt_model) load_embs.append(src_emb) if model_opt.GPT_representation_loc in ['both', 'tgt']: load_models.append(tgt_emb.gpt_model) load_embs.append(tgt_emb) elif model_opt.gpt2_init_embanddec or model_opt.simple_fusion: load_models = [load_decoder] elif model_opt.gpt2_init_embandenc: load_models = [encoder] it_list = list(checkpoint['gpt2_params']) for (lm_idx, load_model) in enumerate(load_models): for (name, array) in it_list: name = name[6:] name = name.split('/') assigned = False if name[0] == 'wpe': if model_opt.GPT_representation_mode != 'none': pointer = load_embs[lm_idx].make_embedding.pe.pe.weight else: pointer = load_model.embeddings.make_embedding.pe.pe.weight elif name[0] == 'wte': if model_opt.GPT_representation_mode != 'none': pointer = [load_embs[lm_idx].make_embedding.emb_luts[0].weight, gen_linear.weight] else: pointer = [load_model.embeddings.make_embedding.emb_luts[0].weight] if not model_opt.nopretrain_decemb: pointer.append(gen_linear.weight) if model_opt.simple_fusion and model_opt.sf_pretrain_dec_emb: pointer.append(decoder.embeddings.make_embedding.emb_luts[0].weight) elif name[0] == 'ln_f': if name[1] == 'g': pointer = load_model.layer_norm.weight elif name[1] == 'b': pointer = load_model.layer_norm.bias else: raise ValueError('I am missing something here!') elif name[0][0] == 'h': layer_num = name[0][1:] pointer = getattr(load_model.transformer_layers, layer_num) if name[1] == 'attn': assigned = True pointer = pointer.self_attn full_data = torch.from_numpy(array) if name[2] == 'c_attn': end_size = full_data.shape[-1] // 3 assert full_data.shape[-1] % 3 == 0 if name[3] == 'b': if init_something: pointer.linear_query.bias.data = full_data[:end_size] pointer.linear_keys.bias.data = full_data[end_size:end_size * 2] pointer.linear_values.bias.data = full_data[end_size * 2:] if model_opt.gpt2_params_std > 0: pointer.linear_query.bias.orig = full_data[:end_size].clone() pointer.linear_keys.bias.orig = full_data[end_size:end_size * 2].clone() pointer.linear_values.bias.orig = full_data[end_size * 2:].clone() elif name[3] == 'w': if init_something: pointer.linear_query.weight.data = full_data[:, :end_size].t().contiguous() pointer.linear_keys.weight.data = full_data[:, end_size:end_size * 2].t().contiguous() pointer.linear_values.weight.data = full_data[:, end_size * 2:].t().contiguous() if model_opt.gpt2_params_std > 0: pointer.linear_query.weight.orig = full_data[:, :end_size].t().contiguous().clone() pointer.linear_keys.weight.orig = full_data[:, end_size:end_size * 2].t().contiguous().clone() pointer.linear_values.weight.orig = full_data[:, end_size * 2:].t().contiguous().clone() else: raise ValueError('I am missing something here!') elif name[2] == 'c_proj': if name[3] == 'b': if init_something: pointer.final_linear.bias.data = full_data if model_opt.gpt2_params_std > 0: pointer.final_linear.bias.orig = full_data.clone() elif name[3] == 'w': if init_something: pointer.final_linear.weight.data = full_data.t().contiguous() if model_opt.gpt2_params_std > 0: pointer.final_linear.weight.orig = full_data.t().contiguous().clone() else: raise ValueError('I am missing something here!') elif name[1] == 'ln_1' or name[1] == 'ln_2': num = name[1][3] pointer = getattr(pointer, 'layer_norm_' + num) if name[2] == 'b': pointer = pointer.bias elif name[2] == 'g': pointer = pointer.weight else: raise ValueError('I am missing something here!') elif name[1] == 'mlp': pointer = pointer.feed_forward pointer = getattr(pointer, name[2]) if name[3] == 'b': pointer = pointer.bias elif name[3] == 'w': pointer = pointer.weight else: raise ValueError('I am missing something here!') else: raise ValueError('I am missing something here!') else: raise ValueError('I am missing something here!') if not assigned: if name[-1] == 'w' or name[-1] == 'g': array = array.T if not isinstance(pointer, list): pointer = [pointer] for pointer_i in pointer: target_size = int(math.ceil(array.shape[0] / 8)) * 8 padded_vocab = name[0] == 'wte' and pointer_i.shape[0] == target_size padded_vocab = padded_vocab and pointer_i.shape[1:] == array.shape[1:] try: assert pointer_i.shape == array.shape or padded_vocab except AssertionError as e: e.args += (pointer_i.shape, array.shape) raise if init_something: print('Initialize PyTorch weight {}'.format(name)) if padded_vocab: pointer_i.data[:array.shape[0]] = torch.from_numpy(array) else: pointer_i.data = torch.from_numpy(array) if model_opt.gpt2_params_std > 0: if padded_vocab: raise NotImplementedError else: pointer_i.orig = torch.from_numpy(array).clone() if 'enc_model' in checkpoint: load_dict = {k[8:]: v for (k, v) in checkpoint['enc_model'] if 'encoder' in k} encoder.load_state_dict(load_dict, strict=True) else: if model_opt.param_init != 0.0: for p in model.parameters(): p.data.uniform_(-model_opt.param_init, model_opt.param_init) for p in generator.parameters(): p.data.uniform_(-model_opt.param_init, model_opt.param_init) if model_opt.param_init_glorot: for p in model.parameters(): if p.dim() > 1: xavier_uniform_(p) for p in generator.parameters(): if p.dim() > 1: xavier_uniform_(p) if not model_opt.unconditional and hasattr(model.encoder, 'embeddings') and (model.encoder.embeddings is not None): model.encoder.embeddings.load_pretrained_vectors(model_opt.pre_word_vecs_enc) if hasattr(model.decoder, 'embeddings'): model.decoder.embeddings.load_pretrained_vectors(model_opt.pre_word_vecs_dec) if model_opt.notrain_emb or model_opt.notrain_embanddec: if model_opt.position_encoding_learned_enc and model_opt.share_position_embeddings: model.encoder.embeddings.make_embedding.pe.pe.weight.requires_grad = False if model_opt.share_embeddings: model.encoder.embeddings.make_embedding.emb_luts[0].weight.requires_grad = False model.decoder.embeddings.make_embedding.pe.pe.weight.requires_grad = False model.decoder.embeddings.make_embedding.emb_luts[0].weight.requires_grad = False generator[0].weight.requires_grad = False if model_opt.notrain_genbias: generator[0].bias.requires_grad = False if model_opt.notrain_embanddec: for (name, p) in load_decoder.layer_norm.named_parameters(): p.requires_grad = False for (name, p) in load_decoder.transformer_layers.named_parameters(): if 'context' not in name and 'ctx' not in name: p.requires_grad = False if model_opt.onlytrainln: for (name, p) in model.decoder.named_parameters(): if 'layer_norm' not in name: p.requires_grad = False for p in generator.parameters(): p.requires_grad = False if model_opt.onlytrainoutp: if model_opt.share_decoder_embeddings: raise ValueError for p in model.decoder.parameters(): p.requires_grad = False if model_opt.simple_fusion: for p in lm_decoder.parameters(): p.requires_grad = False for p in generator.lm_linear.parameters(): p.requires_grad = False model.generator = generator model.to(device) if model_opt.model_dtype == 'fp16': model.half() for p in model.parameters(): if hasattr(p, 'orig'): p.orig = p.orig.to(device) if model_opt.model_dtype == 'fp16': p.orig = p.orig.half() model = model </DeepExtract> if opt.fp32: model.float() model.eval() model.generator.eval() return (fields, model, model_opt)
def load_test_model(opt, model_path=None): if model_path is None: model_path = opt.models[0] checkpoint = torch.load(model_path, map_location=lambda storage, loc: storage) model_opt = ArgumentParser.ckpt_model_opts(checkpoint['opt']) ArgumentParser.update_model_opts(model_opt) ArgumentParser.validate_model_opts(model_opt) vocab = checkpoint['vocab'] if inputters.old_style_vocab(vocab): fields = inputters.load_old_vocab(vocab, opt.data_type, dynamic_dict=model_opt.copy_attn) else: fields = vocab if model_opt.model_type == 'text': src_field = fields['src'] src_emb = build_embeddings(model_opt, src_field) else: src_emb = None encoder = build_encoder(model_opt, src_emb) tgt_field = fields['tgt'] tgt_emb = build_embeddings(model_opt, tgt_field, for_encoder=False) if model_opt.share_embeddings: assert src_field.base_field.vocab == tgt_field.base_field.vocab, 'preprocess with -share_vocab if you use share_embeddings' tgt_emb.word_lut.weight = src_emb.word_lut.weight if model_opt.share_position_embeddings: tgt_emb.make_embedding.pe.pe.weight = src_emb.make_embedding.pe.pe.weight decoder = build_decoder(model_opt, tgt_emb) if use_gpu(opt) and opt.gpu is not None: device = torch.device('cuda', opt.gpu) elif use_gpu(opt) and (not opt.gpu): device = torch.device('cuda') elif not use_gpu(opt): device = torch.device('cpu') if model_opt.simple_fusion: layers = 12 size = 768 heads = 12 lm_decoder_opt = copy.deepcopy(model_opt) lm_decoder_opt.dec_layers = layers lm_decoder_opt.use_GPT_version_ctxattn = False lm_decoder_opt.use_GPT_version_psa = False lm_decoder_opt.use_GPT_version_unconditional = True lm_decoder_opt.tgt_word_vec_size = size lm_decoder_opt.rnn_size = size lm_decoder_opt.dec_rnn_size = size lm_decoder_opt.transformer_ff = size * 4 lm_decoder_opt.dec_heads = heads lm_decoder_opt.position_encoding_learned_dec = True lm_decoder_opt.share_decoder_embeddings = True lm_decoder_opt.dropout = 0 lm_decoder_emb = build_embeddings(lm_decoder_opt, tgt_field, for_encoder=False) logger.info(lm_decoder_emb) lm_decoder = build_decoder(lm_decoder_opt, lm_decoder_emb) load_decoder = lm_decoder model = onmt.models.SimpleFusionModel(encoder, decoder, lm_decoder) generator = SimpleFusionGenerator(model_opt.dec_rnn_size, lm_decoder_opt.dec_rnn_size, len(fields['tgt'].base_field.vocab)) generator.lm_linear.weight = lm_decoder.embeddings.word_lut.weight if model_opt.share_decoder_embeddings: generator.decoder_linear.weight = decoder.embeddings.word_lut.weight gen_linear = generator.lm_linear else: load_decoder = decoder if model_opt.unconditional: model = onmt.models.UncondModel(decoder) else: model = onmt.models.NMTModel(encoder, decoder) if not model_opt.copy_attn: if model_opt.generator_function == 'sparsemax': gen_func = onmt.modules.sparse_activations.LogSparsemax(dim=-1) else: gen_func = nn.LogSoftmax(dim=-1) if model_opt.padded_vocab_fix_me_later: gen_func = nn.Sequential(PadGen(), gen_func) generator = nn.Sequential(nn.Linear(model_opt.dec_rnn_size, len(fields['tgt'].base_field.vocab)), Cast(torch.float32), gen_func) if model_opt.share_decoder_embeddings: generator[0].weight = decoder.embeddings.word_lut.weight gen_linear = generator[0] else: tgt_base_field = fields['tgt'].base_field vocab_size = len(tgt_base_field.vocab) pad_idx = tgt_base_field.vocab.stoi[tgt_base_field.pad_token] generator = CopyGenerator(model_opt.dec_rnn_size, vocab_size, pad_idx) if model_opt.share_decoder_embeddings: generator.linear.weight = decoder.embeddings.word_lut.weight gen_linear = generator.linear if model_opt.encdec_share_params: for (name, p) in decoder.named_parameters(): if 'ctx' in name or 'context' in name: continue pointer = encoder attrs = name.split('.') for attr_name in attrs[:-1]: pointer = getattr(pointer, attr_name) setattr(pointer, attrs[-1], p) if checkpoint is not None: if 'gpt2_params' not in checkpoint and 'enc_model' not in checkpoint: def fix_key(s): s = re.sub('(.*)\\.layer_norm((_\\d+)?)\\.b_2', '\\1.layer_norm\\2.bias', s) s = re.sub('(.*)\\.layer_norm((_\\d+)?)\\.a_2', '\\1.layer_norm\\2.weight', s) model = s checkpoint['model'] = {fix_key(k): v for (k, v) in checkpoint['model'].items()} if hasattr(model_opt, 'load_uncond_from') and model_opt.load_uncond_from: for p in decoder.parameters(): if p.dim() > 1: xavier_uniform_(p) for p in encoder.parameters(): if p.dim() > 1: xavier_uniform_(p) if model_opt.ctx_weight_param: for (name, p) in decoder.named_parameters(): if 'ctx_weight' in name: p.data.zero_() if 'ctx_bias' in name: p.data.fill_(-10) model.load_state_dict(checkpoint['model'], strict=False) generator.load_state_dict(checkpoint['generator'], strict=False) else: if 'gpt2_params' in checkpoint: init_something = model_opt.gpt2_init_embanddec or model_opt.simple_fusion or model_opt.gpt2_init_embandenc or (model_opt.GPT_representation_mode != 'none') if init_something: if model_opt.gpt2_init_zero: for p in decoder.parameters(): p.data.zero_() if model_opt.simple_fusion: generator.decoder_linear.weight.data.zero_() generator.decoder_linear.bias.data.zero_() else: for p in decoder.parameters(): if p.dim() > 1: xavier_uniform_(p) if encoder is not None: for p in encoder.parameters(): if p.dim() > 1: xavier_uniform_(p) for p in generator.parameters(): if p.dim() > 1: xavier_uniform_(p) if model_opt.zero_bias_init: gen_linear.bias.data.zero_() if model_opt.ctx_weight_param: for (name, p) in decoder.named_parameters(): if 'ctx_weight' in name: p.data.zero_() if 'ctx_bias' in name: p.data.fill_(-10) gen_linear.bias.data.zero_() load_models = [] if model_opt.GPT_representation_mode != 'none': load_embs = [] if model_opt.GPT_representation_loc in ['both', 'src']: load_models.append(src_emb.gpt_model) load_embs.append(src_emb) if model_opt.GPT_representation_loc in ['both', 'tgt']: load_models.append(tgt_emb.gpt_model) load_embs.append(tgt_emb) elif model_opt.gpt2_init_embanddec or model_opt.simple_fusion: load_models = [load_decoder] elif model_opt.gpt2_init_embandenc: load_models = [encoder] it_list = list(checkpoint['gpt2_params']) for (lm_idx, load_model) in enumerate(load_models): for (name, array) in it_list: name = name[6:] name = name.split('/') assigned = False if name[0] == 'wpe': if model_opt.GPT_representation_mode != 'none': pointer = load_embs[lm_idx].make_embedding.pe.pe.weight else: pointer = load_model.embeddings.make_embedding.pe.pe.weight elif name[0] == 'wte': if model_opt.GPT_representation_mode != 'none': pointer = [load_embs[lm_idx].make_embedding.emb_luts[0].weight, gen_linear.weight] else: pointer = [load_model.embeddings.make_embedding.emb_luts[0].weight] if not model_opt.nopretrain_decemb: pointer.append(gen_linear.weight) if model_opt.simple_fusion and model_opt.sf_pretrain_dec_emb: pointer.append(decoder.embeddings.make_embedding.emb_luts[0].weight) elif name[0] == 'ln_f': if name[1] == 'g': pointer = load_model.layer_norm.weight elif name[1] == 'b': pointer = load_model.layer_norm.bias else: raise ValueError('I am missing something here!') elif name[0][0] == 'h': layer_num = name[0][1:] pointer = getattr(load_model.transformer_layers, layer_num) if name[1] == 'attn': assigned = True pointer = pointer.self_attn full_data = torch.from_numpy(array) if name[2] == 'c_attn': end_size = full_data.shape[-1] // 3 assert full_data.shape[-1] % 3 == 0 if name[3] == 'b': if init_something: pointer.linear_query.bias.data = full_data[:end_size] pointer.linear_keys.bias.data = full_data[end_size:end_size * 2] pointer.linear_values.bias.data = full_data[end_size * 2:] if model_opt.gpt2_params_std > 0: pointer.linear_query.bias.orig = full_data[:end_size].clone() pointer.linear_keys.bias.orig = full_data[end_size:end_size * 2].clone() pointer.linear_values.bias.orig = full_data[end_size * 2:].clone() elif name[3] == 'w': if init_something: pointer.linear_query.weight.data = full_data[:, :end_size].t().contiguous() pointer.linear_keys.weight.data = full_data[:, end_size:end_size * 2].t().contiguous() pointer.linear_values.weight.data = full_data[:, end_size * 2:].t().contiguous() if model_opt.gpt2_params_std > 0: pointer.linear_query.weight.orig = full_data[:, :end_size].t().contiguous().clone() pointer.linear_keys.weight.orig = full_data[:, end_size:end_size * 2].t().contiguous().clone() pointer.linear_values.weight.orig = full_data[:, end_size * 2:].t().contiguous().clone() else: raise ValueError('I am missing something here!') elif name[2] == 'c_proj': if name[3] == 'b': if init_something: pointer.final_linear.bias.data = full_data if model_opt.gpt2_params_std > 0: pointer.final_linear.bias.orig = full_data.clone() elif name[3] == 'w': if init_something: pointer.final_linear.weight.data = full_data.t().contiguous() if model_opt.gpt2_params_std > 0: pointer.final_linear.weight.orig = full_data.t().contiguous().clone() else: raise ValueError('I am missing something here!') elif name[1] == 'ln_1' or name[1] == 'ln_2': num = name[1][3] pointer = getattr(pointer, 'layer_norm_' + num) if name[2] == 'b': pointer = pointer.bias elif name[2] == 'g': pointer = pointer.weight else: raise ValueError('I am missing something here!') elif name[1] == 'mlp': pointer = pointer.feed_forward pointer = getattr(pointer, name[2]) if name[3] == 'b': pointer = pointer.bias elif name[3] == 'w': pointer = pointer.weight else: raise ValueError('I am missing something here!') else: raise ValueError('I am missing something here!') else: raise ValueError('I am missing something here!') if not assigned: if name[-1] == 'w' or name[-1] == 'g': array = array.T if not isinstance(pointer, list): pointer = [pointer] for pointer_i in pointer: target_size = int(math.ceil(array.shape[0] / 8)) * 8 padded_vocab = name[0] == 'wte' and pointer_i.shape[0] == target_size padded_vocab = padded_vocab and pointer_i.shape[1:] == array.shape[1:] try: assert pointer_i.shape == array.shape or padded_vocab except AssertionError as e: e.args += (pointer_i.shape, array.shape) raise if init_something: print('Initialize PyTorch weight {}'.format(name)) if padded_vocab: pointer_i.data[:array.shape[0]] = torch.from_numpy(array) else: pointer_i.data = torch.from_numpy(array) if model_opt.gpt2_params_std > 0: if padded_vocab: raise NotImplementedError else: pointer_i.orig = torch.from_numpy(array).clone() if 'enc_model' in checkpoint: load_dict = {k[8:]: v for (k, v) in checkpoint['enc_model'] if 'encoder' in k} encoder.load_state_dict(load_dict, strict=True) else: if model_opt.param_init != 0.0: for p in model.parameters(): p.data.uniform_(-model_opt.param_init, model_opt.param_init) for p in generator.parameters(): p.data.uniform_(-model_opt.param_init, model_opt.param_init) if model_opt.param_init_glorot: for p in model.parameters(): if p.dim() > 1: xavier_uniform_(p) for p in generator.parameters(): if p.dim() > 1: xavier_uniform_(p) if not model_opt.unconditional and hasattr(model.encoder, 'embeddings') and (model.encoder.embeddings is not None): model.encoder.embeddings.load_pretrained_vectors(model_opt.pre_word_vecs_enc) if hasattr(model.decoder, 'embeddings'): model.decoder.embeddings.load_pretrained_vectors(model_opt.pre_word_vecs_dec) if model_opt.notrain_emb or model_opt.notrain_embanddec: if model_opt.position_encoding_learned_enc and model_opt.share_position_embeddings: model.encoder.embeddings.make_embedding.pe.pe.weight.requires_grad = False if model_opt.share_embeddings: model.encoder.embeddings.make_embedding.emb_luts[0].weight.requires_grad = False model.decoder.embeddings.make_embedding.pe.pe.weight.requires_grad = False model.decoder.embeddings.make_embedding.emb_luts[0].weight.requires_grad = False generator[0].weight.requires_grad = False if model_opt.notrain_genbias: generator[0].bias.requires_grad = False if model_opt.notrain_embanddec: for (name, p) in load_decoder.layer_norm.named_parameters(): p.requires_grad = False for (name, p) in load_decoder.transformer_layers.named_parameters(): if 'context' not in name and 'ctx' not in name: p.requires_grad = False if model_opt.onlytrainln: for (name, p) in model.decoder.named_parameters(): if 'layer_norm' not in name: p.requires_grad = False for p in generator.parameters(): p.requires_grad = False if model_opt.onlytrainoutp: if model_opt.share_decoder_embeddings: raise ValueError for p in model.decoder.parameters(): p.requires_grad = False if model_opt.simple_fusion: for p in lm_decoder.parameters(): p.requires_grad = False for p in generator.lm_linear.parameters(): p.requires_grad = False model.generator = generator model.to(device) if model_opt.model_dtype == 'fp16': model.half() for p in model.parameters(): if hasattr(p, 'orig'): p.orig = p.orig.to(device) if model_opt.model_dtype == 'fp16': p.orig = p.orig.half() model = model if opt.fp32: model.float() model.eval() model.generator.eval() return (fields, model, model_opt)
encoder-agnostic-adaptation
positive
def test_register_with_features_makes_lookup_succeed(self): <DeepExtract> cls = type('Builder_' + '_'.join(feature_list), (object,), {'features': feature_list}) self.registry.register(cls) builder = cls </DeepExtract> self.assertEqual(self.registry.lookup('foo'), builder) self.assertEqual(self.registry.lookup('bar'), builder)
def test_register_with_features_makes_lookup_succeed(self): cls = type('Builder_' + '_'.join(feature_list), (object,), {'features': feature_list}) self.registry.register(cls) builder = cls self.assertEqual(self.registry.lookup('foo'), builder) self.assertEqual(self.registry.lookup('bar'), builder)
BeautifulSoup4
positive
def visitFrom(self, node): <DeepExtract> self.s.write('from ') </DeepExtract> <DeepExtract> self.s.write(node.modname) </DeepExtract> <DeepExtract> self.s.write(' import ') </DeepExtract> for (mod, as_word) in node.names: <DeepExtract> self.s.write(mod) </DeepExtract> if as_word is not None: <DeepExtract> self.s.write(' as ') </DeepExtract> <DeepExtract> self.s.write(as_word) </DeepExtract> <DeepExtract> self.s.write(', ') </DeepExtract> <DeepExtract> self.s.write('\n') self.s.write(' ' * 4 * self._i) </DeepExtract>
def visitFrom(self, node): self.s.write('from ') self.s.write(node.modname) self.s.write(' import ') for (mod, as_word) in node.names: self.s.write(mod) if as_word is not None: self.s.write(' as ') self.s.write(as_word) self.s.write(', ') self.s.write('\n') self.s.write(' ' * 4 * self._i) </DeepExtract>
cheesecake
positive
def log_prob(self, x): <DeepExtract> (x, ldj) = LogisticDistribution.unshift_x(x, self.mu, self.sigma, self.log_sigma) </DeepExtract> logp = -ldj assert torch.isnan(logp).sum() == 0, '[!] ERROR: Found NaN values in log-prob of distribution.\n' + 'NaN logp: ' + str(torch.isnan(logp).sum().item()) + '\n' + 'NaN x: ' + str(torch.isnan(x).sum().item()) + ', X(abs) max: ' + str(x.abs().max()) return logp
def log_prob(self, x): (x, ldj) = LogisticDistribution.unshift_x(x, self.mu, self.sigma, self.log_sigma) logp = -ldj assert torch.isnan(logp).sum() == 0, '[!] ERROR: Found NaN values in log-prob of distribution.\n' + 'NaN logp: ' + str(torch.isnan(logp).sum().item()) + '\n' + 'NaN x: ' + str(torch.isnan(x).sum().item()) + ', X(abs) max: ' + str(x.abs().max()) return logp
CategoricalNF
positive
def save_checkpoint_and_serving_model(self, algorithm=None, env_string=None, config=None): <DeepExtract> with open(os.path.join(MODEL_OUTPUT_DIR, 'params.json'), 'w') as f: json.dump(config, f, indent=2) print('Saved model configuration.') </DeepExtract> <DeepExtract> checkpoints = [] count = 0 while not checkpoints: count += 1 for (root, directories, filenames) in os.walk(INTERMEDIATE_DIR): for filename in filenames: if filename.startswith('checkpoint'): checkpoints.append(os.path.join(root, filename)) time.sleep(5) if count >= 6: raise RuntimeError('Failed to find checkpoint files') checkpoints.sort(key=natural_keys) latest_checkpoints = checkpoints[-2:] validation = sum((1 if x.endswith('tune_metadata') or x.endswith('extra_data') else 0 for x in latest_checkpoints)) if ray.__version__ >= '0.6.5': if validation is not 1: raise RuntimeError('Failed to save checkpoint files - .tune_metadata') elif validation is not 2: raise RuntimeError('Failed to save checkpoint files - .tune_metadata or .extra_data') for source_path in latest_checkpoints: (_, ext) = os.path.splitext(source_path) destination_path = os.path.join(MODEL_OUTPUT_DIR, 'checkpoint%s' % ext) copyfile(source_path, destination_path) print('Saved the checkpoint file %s as %s' % (source_path, destination_path)) </DeepExtract> <DeepExtract> self.register_env_creator() if ray.__version__ >= '0.6.5': from ray.rllib.agents.registry import get_agent_class else: from ray.rllib.agents.agent import get_agent_class cls = get_agent_class(algorithm) config['monitor'] = False config['num_workers'] = 1 config['num_gpus'] = 0 agent = cls(env=env_string, config=config) checkpoint = os.path.join(MODEL_OUTPUT_DIR, 'checkpoint') agent.restore(checkpoint) export_tf_serving(agent, MODEL_OUTPUT_DIR) </DeepExtract> change_permissions_recursive(INTERMEDIATE_DIR, 511) change_permissions_recursive(MODEL_OUTPUT_DIR, 511)
def save_checkpoint_and_serving_model(self, algorithm=None, env_string=None, config=None): with open(os.path.join(MODEL_OUTPUT_DIR, 'params.json'), 'w') as f: json.dump(config, f, indent=2) print('Saved model configuration.') checkpoints = [] count = 0 while not checkpoints: count += 1 for (root, directories, filenames) in os.walk(INTERMEDIATE_DIR): for filename in filenames: if filename.startswith('checkpoint'): checkpoints.append(os.path.join(root, filename)) time.sleep(5) if count >= 6: raise RuntimeError('Failed to find checkpoint files') checkpoints.sort(key=natural_keys) latest_checkpoints = checkpoints[-2:] validation = sum((1 if x.endswith('tune_metadata') or x.endswith('extra_data') else 0 for x in latest_checkpoints)) if ray.__version__ >= '0.6.5': if validation is not 1: raise RuntimeError('Failed to save checkpoint files - .tune_metadata') elif validation is not 2: raise RuntimeError('Failed to save checkpoint files - .tune_metadata or .extra_data') for source_path in latest_checkpoints: (_, ext) = os.path.splitext(source_path) destination_path = os.path.join(MODEL_OUTPUT_DIR, 'checkpoint%s' % ext) copyfile(source_path, destination_path) print('Saved the checkpoint file %s as %s' % (source_path, destination_path)) self.register_env_creator() if ray.__version__ >= '0.6.5': from ray.rllib.agents.registry import get_agent_class else: from ray.rllib.agents.agent import get_agent_class cls = get_agent_class(algorithm) config['monitor'] = False config['num_workers'] = 1 config['num_gpus'] = 0 agent = cls(env=env_string, config=config) checkpoint = os.path.join(MODEL_OUTPUT_DIR, 'checkpoint') agent.restore(checkpoint) export_tf_serving(agent, MODEL_OUTPUT_DIR) change_permissions_recursive(INTERMEDIATE_DIR, 511) change_permissions_recursive(MODEL_OUTPUT_DIR, 511)
deepracer-local
positive
def __init__(self, path, type): self.datapath = path self.type = type self.slash = '/' if self.slash != self.datapath[-1]: self.datapath = self.datapath + self.slash self.dic_wavlist_thchs30 = {} self.dic_symbollist_thchs30 = {} self.symbolnum = 0 self.datanum = 0 self.wavs_data = [] self.list_wavnum_thchs30 = [] self.list_symbolnum_thchs30 = [] <DeepExtract> if self.type == 'train': filename_wavlist_thchs30 = 'thchs30' + self.slash + 'train.wav.lst' filename_symbollist_thchs30 = 'thchs30' + self.slash + 'train.syllable.txt' elif self.type == 'dev': filename_wavlist_thchs30 = 'thchs30' + self.slash + 'cv.wav.lst' filename_symbollist_thchs30 = 'thchs30' + self.slash + 'cv.syllable.txt' elif self.type == 'test': filename_wavlist_thchs30 = 'thchs30' + self.slash + 'test.wav.lst' filename_symbollist_thchs30 = 'thchs30' + self.slash + 'test.syllable.txt' else: pass (self.dic_wavlist_thchs30, self.list_wavnum_thchs30) = get_wav_list(self.datapath + filename_wavlist_thchs30) (self.dic_symbollist_thchs30, self.list_symbolnum_thchs30) = get_wav_symbol(self.datapath + filename_symbollist_thchs30) self.datanum = self.get_datanum() </DeepExtract> <DeepExtract> list_symbol = [] with open('dict.txt', 'r') as fr: lines = fr.readlines() for line in lines: res = line.split() list_symbol.append(res[0]) list_symbol.append('_') self.symbolnum = len(list_symbol) self.list_symbol = list_symbol </DeepExtract> pass
def __init__(self, path, type): self.datapath = path self.type = type self.slash = '/' if self.slash != self.datapath[-1]: self.datapath = self.datapath + self.slash self.dic_wavlist_thchs30 = {} self.dic_symbollist_thchs30 = {} self.symbolnum = 0 self.datanum = 0 self.wavs_data = [] self.list_wavnum_thchs30 = [] self.list_symbolnum_thchs30 = [] if self.type == 'train': filename_wavlist_thchs30 = 'thchs30' + self.slash + 'train.wav.lst' filename_symbollist_thchs30 = 'thchs30' + self.slash + 'train.syllable.txt' elif self.type == 'dev': filename_wavlist_thchs30 = 'thchs30' + self.slash + 'cv.wav.lst' filename_symbollist_thchs30 = 'thchs30' + self.slash + 'cv.syllable.txt' elif self.type == 'test': filename_wavlist_thchs30 = 'thchs30' + self.slash + 'test.wav.lst' filename_symbollist_thchs30 = 'thchs30' + self.slash + 'test.syllable.txt' else: pass (self.dic_wavlist_thchs30, self.list_wavnum_thchs30) = get_wav_list(self.datapath + filename_wavlist_thchs30) (self.dic_symbollist_thchs30, self.list_symbolnum_thchs30) = get_wav_symbol(self.datapath + filename_symbollist_thchs30) self.datanum = self.get_datanum() list_symbol = [] with open('dict.txt', 'r') as fr: lines = fr.readlines() for line in lines: res = line.split() list_symbol.append(res[0]) list_symbol.append('_') self.symbolnum = len(list_symbol) self.list_symbol = list_symbol pass
ASR_Syllable
positive
def forward_x8(self, x, forward_function): def _transform(v, op): if self.precision != 'single': v = v.float() v2np = v.data.cpu().numpy() if op == 'v': tfnp = v2np[:, :, :, ::-1].copy() elif op == 'h': tfnp = v2np[:, :, ::-1, :].copy() elif op == 't': tfnp = v2np.transpose((0, 1, 3, 2)).copy() ret = torch.Tensor(tfnp).to(self.device) if self.precision == 'half': ret = ret.half() return ret lr_list = [x] for tf in ('v', 'h', 't'): lr_list.extend([_transform(t, tf) for t in lr_list]) sr_list = [forward_function(aug) for aug in lr_list] for i in range(len(sr_list)): if i > 3: <DeepExtract> if self.precision != 'single': sr_list[i] = sr_list[i].float() v2np = sr_list[i].data.cpu().numpy() if 't' == 'v': tfnp = v2np[:, :, :, ::-1].copy() elif 't' == 'h': tfnp = v2np[:, :, ::-1, :].copy() elif 't' == 't': tfnp = v2np.transpose((0, 1, 3, 2)).copy() ret = torch.Tensor(tfnp).to(self.device) if self.precision == 'half': ret = ret.half() sr_list[i] = ret </DeepExtract> if i % 4 > 1: <DeepExtract> if self.precision != 'single': sr_list[i] = sr_list[i].float() v2np = sr_list[i].data.cpu().numpy() if 'h' == 'v': tfnp = v2np[:, :, :, ::-1].copy() elif 'h' == 'h': tfnp = v2np[:, :, ::-1, :].copy() elif 'h' == 't': tfnp = v2np.transpose((0, 1, 3, 2)).copy() ret = torch.Tensor(tfnp).to(self.device) if self.precision == 'half': ret = ret.half() sr_list[i] = ret </DeepExtract> if i % 4 % 2 == 1: <DeepExtract> if self.precision != 'single': sr_list[i] = sr_list[i].float() v2np = sr_list[i].data.cpu().numpy() if 'v' == 'v': tfnp = v2np[:, :, :, ::-1].copy() elif 'v' == 'h': tfnp = v2np[:, :, ::-1, :].copy() elif 'v' == 't': tfnp = v2np.transpose((0, 1, 3, 2)).copy() ret = torch.Tensor(tfnp).to(self.device) if self.precision == 'half': ret = ret.half() sr_list[i] = ret </DeepExtract> output_cat = torch.cat(sr_list, dim=0) output = output_cat.mean(dim=0, keepdim=True) return output
def forward_x8(self, x, forward_function): def _transform(v, op): if self.precision != 'single': v = v.float() v2np = v.data.cpu().numpy() if op == 'v': tfnp = v2np[:, :, :, ::-1].copy() elif op == 'h': tfnp = v2np[:, :, ::-1, :].copy() elif op == 't': tfnp = v2np.transpose((0, 1, 3, 2)).copy() ret = torch.Tensor(tfnp).to(self.device) if self.precision == 'half': ret = ret.half() return ret lr_list = [x] for tf in ('v', 'h', 't'): lr_list.extend([_transform(t, tf) for t in lr_list]) sr_list = [forward_function(aug) for aug in lr_list] for i in range(len(sr_list)): if i > 3: if self.precision != 'single': sr_list[i] = sr_list[i].float() v2np = sr_list[i].data.cpu().numpy() if 't' == 'v': tfnp = v2np[:, :, :, ::-1].copy() elif 't' == 'h': tfnp = v2np[:, :, ::-1, :].copy() elif 't' == 't': tfnp = v2np.transpose((0, 1, 3, 2)).copy() ret = torch.Tensor(tfnp).to(self.device) if self.precision == 'half': ret = ret.half() sr_list[i] = ret if i % 4 > 1: if self.precision != 'single': sr_list[i] = sr_list[i].float() v2np = sr_list[i].data.cpu().numpy() if 'h' == 'v': tfnp = v2np[:, :, :, ::-1].copy() elif 'h' == 'h': tfnp = v2np[:, :, ::-1, :].copy() elif 'h' == 't': tfnp = v2np.transpose((0, 1, 3, 2)).copy() ret = torch.Tensor(tfnp).to(self.device) if self.precision == 'half': ret = ret.half() sr_list[i] = ret if i % 4 % 2 == 1: if self.precision != 'single': sr_list[i] = sr_list[i].float() v2np = sr_list[i].data.cpu().numpy() if 'v' == 'v': tfnp = v2np[:, :, :, ::-1].copy() elif 'v' == 'h': tfnp = v2np[:, :, ::-1, :].copy() elif 'v' == 't': tfnp = v2np.transpose((0, 1, 3, 2)).copy() ret = torch.Tensor(tfnp).to(self.device) if self.precision == 'half': ret = ret.half() sr_list[i] = ret output_cat = torch.cat(sr_list, dim=0) output = output_cat.mean(dim=0, keepdim=True) return output
CVPR-2020-Semi-Low-Light
positive
def calculate_schedule_usage_for_period(schedule_name, start_dt, stop_dt=None, logger=None): result = {} def running_seconds(startdt, stopdt): return max(int((stopdt - startdt).total_seconds()), 60) def running_hours(startdt, stopdt): return int(((stopdt - startdt).total_seconds() - 1) / 3600) + 1 def make_period(started_dt, stopped_dt): running_period = {'begin': started_dt, 'end': stopped_dt, 'billing_hours': running_hours(started_dt, stopped_dt), 'billing_seconds': running_seconds(started_dt, stopped_dt)} return running_period self._logger = logger stop = stop_dt or start_dt if start_dt > stop: raise ValueError(ERR_STOP_MUST_BE_LATER_OR_EQUAL_TO_START) dt = start_dt if isinstance(start_dt, datetime) else datetime(start_dt.year, start_dt.month, start_dt.day) config_data = ConfigDynamodbAdapter(self._table.name).config while dt <= stop: self._configuration = SchedulerConfigBuilder(logger=self._logger).build(config_data) conf = configuration.SchedulerConfigBuilder(self._logger).build(config=config_data, dt=dt) schedule = conf.get_schedule(schedule_name) timeline = {dt.replace(hour=0, minute=0)} for p in schedule.periods: begintime = p['period'].begintime endtime = p['period'].endtime if begintime is None and endtime is None: timeline.add(dt.replace(hour=0, minute=0)) timeline.add(dt.replace(hour=23, minute=59)) else: if begintime: timeline.add(dt.replace(hour=begintime.hour, minute=begintime.minute)) if endtime: timeline.add(dt.replace(hour=endtime.hour, minute=endtime.minute)) running_periods = {} started = None starting_period = None current_state = None inst = as_namedtuple('Instance', {'instance_str': 'instance', 'allow_resize': False}) for tm in sorted(list(timeline)): (desired_state, instance_type, period) = schedule.get_desired_state(inst, self._logger, tm, False) if current_state != desired_state: if desired_state == InstanceSchedule.STATE_RUNNING: started = tm current_state = InstanceSchedule.STATE_RUNNING starting_period = period elif desired_state == InstanceSchedule.STATE_STOPPED: stopped = tm (desired_state_with_adj_check, _, __) = schedule.get_desired_state(inst, self._logger, tm, True) if desired_state_with_adj_check == InstanceSchedule.STATE_RUNNING: stopped += timedelta(minutes=1) if current_state == InstanceSchedule.STATE_RUNNING: current_state = InstanceSchedule.STATE_STOPPED <DeepExtract> running_period = {'begin': started, 'end': stopped, 'billing_hours': running_hours(started, stopped), 'billing_seconds': running_seconds(started, stopped)} running_periods[starting_period] = running_period </DeepExtract> if current_state == InstanceSchedule.STATE_RUNNING: stopped = dt.replace(hour=23, minute=59) + timedelta(minutes=1) <DeepExtract> running_period = {'begin': started, 'end': stopped, 'billing_hours': running_hours(started, stopped), 'billing_seconds': running_seconds(started, stopped)} running_periods[starting_period] = running_period </DeepExtract> result[str(dt.date())] = {'running_periods': running_periods, 'billing_seconds': sum([running_periods[ps]['billing_seconds'] for ps in running_periods]), 'billing_hours': sum([running_periods[ph]['billing_hours'] for ph in running_periods])} dt += timedelta(days=1) return {'schedule': schedule_name, 'usage': result}
def calculate_schedule_usage_for_period(schedule_name, start_dt, stop_dt=None, logger=None): result = {} def running_seconds(startdt, stopdt): return max(int((stopdt - startdt).total_seconds()), 60) def running_hours(startdt, stopdt): return int(((stopdt - startdt).total_seconds() - 1) / 3600) + 1 def make_period(started_dt, stopped_dt): running_period = {'begin': started_dt, 'end': stopped_dt, 'billing_hours': running_hours(started_dt, stopped_dt), 'billing_seconds': running_seconds(started_dt, stopped_dt)} return running_period self._logger = logger stop = stop_dt or start_dt if start_dt > stop: raise ValueError(ERR_STOP_MUST_BE_LATER_OR_EQUAL_TO_START) dt = start_dt if isinstance(start_dt, datetime) else datetime(start_dt.year, start_dt.month, start_dt.day) config_data = ConfigDynamodbAdapter(self._table.name).config while dt <= stop: self._configuration = SchedulerConfigBuilder(logger=self._logger).build(config_data) conf = configuration.SchedulerConfigBuilder(self._logger).build(config=config_data, dt=dt) schedule = conf.get_schedule(schedule_name) timeline = {dt.replace(hour=0, minute=0)} for p in schedule.periods: begintime = p['period'].begintime endtime = p['period'].endtime if begintime is None and endtime is None: timeline.add(dt.replace(hour=0, minute=0)) timeline.add(dt.replace(hour=23, minute=59)) else: if begintime: timeline.add(dt.replace(hour=begintime.hour, minute=begintime.minute)) if endtime: timeline.add(dt.replace(hour=endtime.hour, minute=endtime.minute)) running_periods = {} started = None starting_period = None current_state = None inst = as_namedtuple('Instance', {'instance_str': 'instance', 'allow_resize': False}) for tm in sorted(list(timeline)): (desired_state, instance_type, period) = schedule.get_desired_state(inst, self._logger, tm, False) if current_state != desired_state: if desired_state == InstanceSchedule.STATE_RUNNING: started = tm current_state = InstanceSchedule.STATE_RUNNING starting_period = period elif desired_state == InstanceSchedule.STATE_STOPPED: stopped = tm (desired_state_with_adj_check, _, __) = schedule.get_desired_state(inst, self._logger, tm, True) if desired_state_with_adj_check == InstanceSchedule.STATE_RUNNING: stopped += timedelta(minutes=1) if current_state == InstanceSchedule.STATE_RUNNING: current_state = InstanceSchedule.STATE_STOPPED running_period = {'begin': started, 'end': stopped, 'billing_hours': running_hours(started, stopped), 'billing_seconds': running_seconds(started, stopped)} running_periods[starting_period] = running_period if current_state == InstanceSchedule.STATE_RUNNING: stopped = dt.replace(hour=23, minute=59) + timedelta(minutes=1) running_period = {'begin': started, 'end': stopped, 'billing_hours': running_hours(started, stopped), 'billing_seconds': running_seconds(started, stopped)} running_periods[starting_period] = running_period result[str(dt.date())] = {'running_periods': running_periods, 'billing_seconds': sum([running_periods[ps]['billing_seconds'] for ps in running_periods]), 'billing_hours': sum([running_periods[ph]['billing_hours'] for ph in running_periods])} dt += timedelta(days=1) return {'schedule': schedule_name, 'usage': result}
aws-instance-scheduler
positive
def is_file_exists(self, bucket_name, key): """ Check if file exists. :type bucket_name: str :type key: str """ <DeepExtract> bucket = self.resource.Bucket(bucket_name) result = [obj.key for obj in bucket.objects.all()] keys = result </DeepExtract> if key in keys: return True
def is_file_exists(self, bucket_name, key): """ Check if file exists. :type bucket_name: str :type key: str """ bucket = self.resource.Bucket(bucket_name) result = [obj.key for obj in bucket.objects.all()] keys = result if key in keys: return True
aws-syndicate
positive
def enrich_model(base_model, pooling, dropout, reg, n_classes, params, verbose): params = {} if params is None else params <DeepExtract> params['pooling'] = pooling if pooling is not None else params['pooling'] </DeepExtract> <DeepExtract> params['n_classes'] = n_classes if n_classes is not None else params['n_classes'] </DeepExtract> x = base_model.layers[-1].output if params['pooling'] == 'None': x = Flatten()(x) elif params['pooling'] == 'avg': x = GlobalAveragePooling2D()(x) elif params['pooling'] == 'max': x = GlobalMaxPooling2D()(x) if dropout is not None and dropout != 0.0: x = Dropout(dropout)(x) if verbose: print('Adding dropout to model with rate: {}'.format(dropout)) regularizer = None if reg is not None: reg_l2 = reg['l2'] reg_l1 = reg['l1'] if reg_l1 != 0.0 and reg_l2 != 0.0: regularizer = regularizers.l1_l2(l1=reg_l1, l2=reg_l2) if reg_l1 == 0.0 and reg_l2 != 0.0: regularizer = regularizers.l2(reg_l2) if reg_l1 != 0.0 and reg_l2 == 0.0: regularizer = regularizers.l1(reg_l1) if verbose: print('Using regularizer for model: {}'.format(reg)) predictions = Dense(params['n_classes'], activation='softmax', name='predictions', kernel_regularizer=regularizer)(x) model = Model(input=base_model.input, output=predictions) return (model, params)
def enrich_model(base_model, pooling, dropout, reg, n_classes, params, verbose): params = {} if params is None else params params['pooling'] = pooling if pooling is not None else params['pooling'] params['n_classes'] = n_classes if n_classes is not None else params['n_classes'] x = base_model.layers[-1].output if params['pooling'] == 'None': x = Flatten()(x) elif params['pooling'] == 'avg': x = GlobalAveragePooling2D()(x) elif params['pooling'] == 'max': x = GlobalMaxPooling2D()(x) if dropout is not None and dropout != 0.0: x = Dropout(dropout)(x) if verbose: print('Adding dropout to model with rate: {}'.format(dropout)) regularizer = None if reg is not None: reg_l2 = reg['l2'] reg_l1 = reg['l1'] if reg_l1 != 0.0 and reg_l2 != 0.0: regularizer = regularizers.l1_l2(l1=reg_l1, l2=reg_l2) if reg_l1 == 0.0 and reg_l2 != 0.0: regularizer = regularizers.l2(reg_l2) if reg_l1 != 0.0 and reg_l2 == 0.0: regularizer = regularizers.l1(reg_l1) if verbose: print('Using regularizer for model: {}'.format(reg)) predictions = Dense(params['n_classes'], activation='softmax', name='predictions', kernel_regularizer=regularizer)(x) model = Model(input=base_model.input, output=predictions) return (model, params)
dataiku-contrib
positive
def test_match_device_correct_descriptors_cname_dns_suffix_override_region(mocker): get_dns_name_mock = mocker.patch('mount_efs.get_dns_name_and_fallback_mount_target_ip_address', return_value=('fs-deadbeef.efs.cn-north-1.amazonaws.com.cn', None)) gethostbyname_ex_mock = mocker.patch('socket.gethostbyname_ex', return_value=('fs-deadbeef.efs.cn-north-1.amazonaws.com.cn', [], None)) <DeepExtract> try: config = ConfigParser.SafeConfigParser() except AttributeError: config = ConfigParser() config.add_section(mount_efs.CONFIG_SECTION) config.add_section(mount_efs.CLOUDWATCH_LOG_SECTION) config.set(mount_efs.CONFIG_SECTION, 'dns_name_format', dns_name_format) config.set(mount_efs.CONFIG_SECTION, 'dns_name_suffix', dns_name_suffix) config.set(mount_efs.CLOUDWATCH_LOG_SECTION, 'enabled', cloudwatch_enabled) if has_fallback_to_mount_target_ip_address_item: config.set(mount_efs.CONFIG_SECTION, mount_efs.FALLBACK_TO_MOUNT_TARGET_IP_ADDRESS_ITEM, str(fallback_to_mount_target_ip_address)) config = config </DeepExtract> for (device, (fs_id, path, az)) in CORRECT_DEVICE_DESCRIPTORS_CNAME_DNS: assert (fs_id, path, az) == mount_efs.match_device(config, device, DEFAULT_NFS_OPTIONS) utils.assert_called(get_dns_name_mock) utils.assert_called(gethostbyname_ex_mock)
def test_match_device_correct_descriptors_cname_dns_suffix_override_region(mocker): get_dns_name_mock = mocker.patch('mount_efs.get_dns_name_and_fallback_mount_target_ip_address', return_value=('fs-deadbeef.efs.cn-north-1.amazonaws.com.cn', None)) gethostbyname_ex_mock = mocker.patch('socket.gethostbyname_ex', return_value=('fs-deadbeef.efs.cn-north-1.amazonaws.com.cn', [], None)) try: config = ConfigParser.SafeConfigParser() except AttributeError: config = ConfigParser() config.add_section(mount_efs.CONFIG_SECTION) config.add_section(mount_efs.CLOUDWATCH_LOG_SECTION) config.set(mount_efs.CONFIG_SECTION, 'dns_name_format', dns_name_format) config.set(mount_efs.CONFIG_SECTION, 'dns_name_suffix', dns_name_suffix) config.set(mount_efs.CLOUDWATCH_LOG_SECTION, 'enabled', cloudwatch_enabled) if has_fallback_to_mount_target_ip_address_item: config.set(mount_efs.CONFIG_SECTION, mount_efs.FALLBACK_TO_MOUNT_TARGET_IP_ADDRESS_ITEM, str(fallback_to_mount_target_ip_address)) config = config for (device, (fs_id, path, az)) in CORRECT_DEVICE_DESCRIPTORS_CNAME_DNS: assert (fs_id, path, az) == mount_efs.match_device(config, device, DEFAULT_NFS_OPTIONS) utils.assert_called(get_dns_name_mock) utils.assert_called(gethostbyname_ex_mock)
efs-utils
positive
def print_info(self): import h5py def h5_tree(h5, depth=0): for (k, v) in h5.items(): if isinstance(v, h5py._hl.group.Group): <DeepExtract> for (k, v) in v.items(): if isinstance(v, h5py._hl.group.Group): h5_tree(v, depth + 1 + 1) else: print(' ' * (depth + 1 * 3), k, v) for (p, q) in v.attrs.items(): print(' ' * (depth + 1 * 3 + 3), p, q) </DeepExtract> else: print(' ' * (depth * 3), k, v) for (p, q) in v.attrs.items(): print(' ' * (depth * 3 + 3), p, q) size = os.path.getsize(self.path) print(f'HDF5 file {self.path}: {size:,} ({bytes(size)})') with h5py.File(self.path, mode='r') as f: print('Content:') <DeepExtract> for (k, v) in f.items(): if isinstance(v, h5py._hl.group.Group): h5_tree(v, 1 + 1) else: print(' ' * (1 * 3), k, v) for (p, q) in v.attrs.items(): print(' ' * (1 * 3 + 3), p, q) </DeepExtract>
def print_info(self): import h5py def h5_tree(h5, depth=0): for (k, v) in h5.items(): if isinstance(v, h5py._hl.group.Group): for (k, v) in v.items(): if isinstance(v, h5py._hl.group.Group): h5_tree(v, depth + 1 + 1) else: print(' ' * (depth + 1 * 3), k, v) for (p, q) in v.attrs.items(): print(' ' * (depth + 1 * 3 + 3), p, q) else: print(' ' * (depth * 3), k, v) for (p, q) in v.attrs.items(): print(' ' * (depth * 3 + 3), p, q) size = os.path.getsize(self.path) print(f'HDF5 file {self.path}: {size:,} ({bytes(size)})') with h5py.File(self.path, mode='r') as f: print('Content:') for (k, v) in f.items(): if isinstance(v, h5py._hl.group.Group): h5_tree(v, 1 + 1) else: print(' ' * (1 * 3), k, v) for (p, q) in v.attrs.items(): print(' ' * (1 * 3 + 3), p, q) </DeepExtract>
climetlab
positive
def build_time_series_hidden_layers(self): """Builds hidden layers for the time series features. Inputs: self.time_series_features Outputs: self.time_series_hidden_layers """ time_series_hidden_layers = {} for (name, time_series) in self.time_series_features.items(): <DeepExtract> with tf.name_scope(name + '_hidden'): net = time_series if net.shape.rank == 2: net = tf.expand_dims(net, -1) if net.shape.rank != 3: raise ValueError('Expected inputs to have rank 2 or 3. Got: {}'.format(time_series)) for i in range(self.hparams.time_series_hidden[name].cnn_num_blocks): num_filters = int(self.hparams.time_series_hidden[name].cnn_initial_num_filters * self.hparams.time_series_hidden[name].cnn_block_filter_factor ** i) with tf.name_scope('block_{}'.format(i + 1)): for j in range(self.hparams.time_series_hidden[name].cnn_block_size): conv_op = tf.keras.layers.Conv1D(filters=num_filters, kernel_size=int(self.hparams.time_series_hidden[name].cnn_kernel_size), padding=self.hparams.time_series_hidden[name].convolution_padding, activation=tf.nn.relu, name='conv_{}'.format(j + 1)) net = conv_op(net) if self.hparams.time_series_hidden[name].pool_size > 1: pool_op = tf.keras.layers.MaxPool1D(pool_size=int(self.hparams.time_series_hidden[name].pool_size), strides=int(self.hparams.time_series_hidden[name].pool_strides), name='pool') net = pool_op(net) net.shape.assert_has_rank(3) net_shape = net.shape.as_list() output_dim = net_shape[1] * net_shape[2] net = tf.reshape(net, [-1, output_dim], name='flatten') time_series_hidden_layers[name] = net </DeepExtract> self.time_series_hidden_layers = time_series_hidden_layers
def build_time_series_hidden_layers(self): """Builds hidden layers for the time series features. Inputs: self.time_series_features Outputs: self.time_series_hidden_layers """ time_series_hidden_layers = {} for (name, time_series) in self.time_series_features.items(): with tf.name_scope(name + '_hidden'): net = time_series if net.shape.rank == 2: net = tf.expand_dims(net, -1) if net.shape.rank != 3: raise ValueError('Expected inputs to have rank 2 or 3. Got: {}'.format(time_series)) for i in range(self.hparams.time_series_hidden[name].cnn_num_blocks): num_filters = int(self.hparams.time_series_hidden[name].cnn_initial_num_filters * self.hparams.time_series_hidden[name].cnn_block_filter_factor ** i) with tf.name_scope('block_{}'.format(i + 1)): for j in range(self.hparams.time_series_hidden[name].cnn_block_size): conv_op = tf.keras.layers.Conv1D(filters=num_filters, kernel_size=int(self.hparams.time_series_hidden[name].cnn_kernel_size), padding=self.hparams.time_series_hidden[name].convolution_padding, activation=tf.nn.relu, name='conv_{}'.format(j + 1)) net = conv_op(net) if self.hparams.time_series_hidden[name].pool_size > 1: pool_op = tf.keras.layers.MaxPool1D(pool_size=int(self.hparams.time_series_hidden[name].pool_size), strides=int(self.hparams.time_series_hidden[name].pool_strides), name='pool') net = pool_op(net) net.shape.assert_has_rank(3) net_shape = net.shape.as_list() output_dim = net_shape[1] * net_shape[2] net = tf.reshape(net, [-1, output_dim], name='flatten') time_series_hidden_layers[name] = net self.time_series_hidden_layers = time_series_hidden_layers
exoplanet-ml
positive
def forward(self, x, init=False): if init is True: self.V.data.copy_(torch.randn(self.V.data.size()).type_as(self.V.data) * 0.05) v_norm = self.V.data / self.V.data.transpose(0, 1).contiguous().view(self.out_channels, -1).norm(2, 1).view(self.in_channels, self.out_channels, *[1] * len(self.kernel_size)).expand_as(self.V.data) x_init = F.conv_transpose2d(x, v_norm, None, self.stride, self.padding, self.output_padding, self.groups).data t_x_init = x_init.tranpose(0, 1).contiguous().view(self.out_channels, -1) (m_init, v_init) = (t_x_init.mean(1).squeeze(1), t_x_init.var(1).squeeze(1)) scale_init = self.init_scale / torch.sqrt(v_init + 1e-10) self.g.data.copy_(scale_init) self.b.data.copy_(-m_init * scale_init) scale_init_shape = scale_init.view(1, self.out_channels, *[1] * (len(x_init.size()) - 2)) m_init_shape = m_init.view(1, self.out_channels, *[1] * (len(x_init.size()) - 2)) x_init = scale_init_shape.expand_as(x_init) * (x_init - m_init_shape.expand_as(x_init)) self.V_avg.copy_(self.V.data) self.g_avg.copy_(self.g.data) self.b_avg.copy_(self.b.data) return x_init else: <DeepExtract> vars = [] for vn in ['V', 'g', 'b']: vars.append(get_var_maybe_avg(self, vn, self.training, self.polyak_decay)) (v, g, b) = vars </DeepExtract> scalar = g / torch.norm(v.transpose(0, 1).contiguous().view(self.out_channels, -1), 2, 1).squeeze(1) w = scalar.view(self.in_channels, self.out_channels, *[1] * (len(v.size()) - 2)).expand_as(v) * v x = F.conv_transpose2d(x, w, b, self.stride, self.padding, self.output_padding, self.groups) return x
def forward(self, x, init=False): if init is True: self.V.data.copy_(torch.randn(self.V.data.size()).type_as(self.V.data) * 0.05) v_norm = self.V.data / self.V.data.transpose(0, 1).contiguous().view(self.out_channels, -1).norm(2, 1).view(self.in_channels, self.out_channels, *[1] * len(self.kernel_size)).expand_as(self.V.data) x_init = F.conv_transpose2d(x, v_norm, None, self.stride, self.padding, self.output_padding, self.groups).data t_x_init = x_init.tranpose(0, 1).contiguous().view(self.out_channels, -1) (m_init, v_init) = (t_x_init.mean(1).squeeze(1), t_x_init.var(1).squeeze(1)) scale_init = self.init_scale / torch.sqrt(v_init + 1e-10) self.g.data.copy_(scale_init) self.b.data.copy_(-m_init * scale_init) scale_init_shape = scale_init.view(1, self.out_channels, *[1] * (len(x_init.size()) - 2)) m_init_shape = m_init.view(1, self.out_channels, *[1] * (len(x_init.size()) - 2)) x_init = scale_init_shape.expand_as(x_init) * (x_init - m_init_shape.expand_as(x_init)) self.V_avg.copy_(self.V.data) self.g_avg.copy_(self.g.data) self.b_avg.copy_(self.b.data) return x_init else: vars = [] for vn in ['V', 'g', 'b']: vars.append(get_var_maybe_avg(self, vn, self.training, self.polyak_decay)) (v, g, b) = vars scalar = g / torch.norm(v.transpose(0, 1).contiguous().view(self.out_channels, -1), 2, 1).squeeze(1) w = scalar.view(self.in_channels, self.out_channels, *[1] * (len(v.size()) - 2)).expand_as(v) * v x = F.conv_transpose2d(x, w, b, self.stride, self.padding, self.output_padding, self.groups) return x
encoder-agnostic-adaptation
positive
def test_credentials_file_helper_awsprofile_found_with_token(tmpdir): <DeepExtract> fake_file = os.path.join(str(tmpdir), AWS_CONFIG_FILE) </DeepExtract> <DeepExtract> try: config = ConfigParser.SafeConfigParser() except AttributeError: config = ConfigParser() if True: config.add_section(AWSPROFILE) config = config </DeepExtract> config.set(DEFAULT_PROFILE, ACCESS_KEY_ID_KEY, WRONG_ACCESS_KEY_ID_VAL) config.set(DEFAULT_PROFILE, SECRET_ACCESS_KEY_KEY, WRONG_SECRET_ACCESS_KEY_VAL) config.set(DEFAULT_PROFILE, SESSION_TOKEN_KEY, WRONG_SESSION_TOKEN_VAL) config.set(AWSPROFILE, ACCESS_KEY_ID_KEY, ACCESS_KEY_ID_VAL) config.set(AWSPROFILE, SECRET_ACCESS_KEY_KEY, SECRET_ACCESS_KEY_VAL) config.set(AWSPROFILE, SESSION_TOKEN_KEY, SESSION_TOKEN_VAL) with open(fake_file, 'w') as f: config.write(f) credentials = mount_efs.credentials_file_helper(fake_file, AWSPROFILE) assert credentials['AccessKeyId'] == ACCESS_KEY_ID_VAL assert credentials['SecretAccessKey'] == SECRET_ACCESS_KEY_VAL assert credentials['Token'] == SESSION_TOKEN_VAL
def test_credentials_file_helper_awsprofile_found_with_token(tmpdir): fake_file = os.path.join(str(tmpdir), AWS_CONFIG_FILE) try: config = ConfigParser.SafeConfigParser() except AttributeError: config = ConfigParser() if True: config.add_section(AWSPROFILE) config = config config.set(DEFAULT_PROFILE, ACCESS_KEY_ID_KEY, WRONG_ACCESS_KEY_ID_VAL) config.set(DEFAULT_PROFILE, SECRET_ACCESS_KEY_KEY, WRONG_SECRET_ACCESS_KEY_VAL) config.set(DEFAULT_PROFILE, SESSION_TOKEN_KEY, WRONG_SESSION_TOKEN_VAL) config.set(AWSPROFILE, ACCESS_KEY_ID_KEY, ACCESS_KEY_ID_VAL) config.set(AWSPROFILE, SECRET_ACCESS_KEY_KEY, SECRET_ACCESS_KEY_VAL) config.set(AWSPROFILE, SESSION_TOKEN_KEY, SESSION_TOKEN_VAL) with open(fake_file, 'w') as f: config.write(f) credentials = mount_efs.credentials_file_helper(fake_file, AWSPROFILE) assert credentials['AccessKeyId'] == ACCESS_KEY_ID_VAL assert credentials['SecretAccessKey'] == SECRET_ACCESS_KEY_VAL assert credentials['Token'] == SESSION_TOKEN_VAL
efs-utils
positive
def local_previous_frame_nearest_neighbor_features_per_object(prev_frame_embedding, query_embedding, prev_frame_labels, gt_ids, max_distance=15): """Computes nearest neighbor features while only allowing local matches. Args: prev_frame_embedding: Tensor of shape [height, width, embedding_dim], the embedding vectors for the last frame. query_embedding: Tensor of shape [height, width, embedding_dim], the embedding vectors for the query frames. prev_frame_labels: Tensor of shape [height, width, 1], the class labels of the previous frame. gt_ids: Int Tensor of shape [n_objs] of the sorted unique ground truth ids in the first frame. max_distance: Integer, the maximum distance allowed for local matching. Returns: nn_features: A float32 np.array of nearest neighbor features of shape [1, height, width, n_objects, 1]. """ if USE_CORRELATION_COST: <DeepExtract> if cfg.MODEL_LOCAL_DOWNSAMPLE: (ori_h, ori_w, _) = query_embedding.size() query_embedding = query_embedding.permute(2, 0, 1).unsqueeze(0) query_embedding = F.avg_pool2d(query_embedding, (2, 2), (2, 2)) prev_frame_embedding = prev_frame_embedding.permute(2, 0, 1).unsqueeze(0) prev_frame_embedding = F.avg_pool2d(prev_frame_embedding, (2, 2), (2, 2)) query_embedding = query_embedding.squeeze(0).permute(1, 2, 0) prev_frame_embedding = prev_frame_embedding.squeeze(0).permute(1, 2, 0) corr = cross_correlate(query_embedding, prev_frame_embedding, max_distance=max_distance) xs = torch.sum(query_embedding * query_embedding, 2, keepdim=True) ys = torch.sum(prev_frame_embedding * prev_frame_embedding, 2, keepdim=True) ones_ys = torch.ones_like(ys) ys = cross_correlate(ones_ys, ys, max_distance=max_distance) d = xs + ys - 2 * corr tmp = torch.zeros_like(d) boundary = torch.eq(cross_correlate(ones_ys, ones_ys, max_distance=max_distance), 0) d = torch.where(boundary, tmp.fill_(float('inf')), d) d = (torch.sigmoid(d) - 0.5) * 2 d = d.permute(2, 0, 1).unsqueeze(0) d = F.interpolate(d, size=(ori_h, ori_w), mode='bilinear', align_corners=True) d = d.squeeze(0).permute(1, 2, 0) else: corr = cross_correlate(query_embedding, prev_frame_embedding, max_distance=max_distance) xs = torch.sum(query_embedding * query_embedding, 2, keepdim=True) ys = torch.sum(prev_frame_embedding * prev_frame_embedding, 2, keepdim=True) ones_ys = torch.ones_like(ys) ys = cross_correlate(ones_ys, ys, max_distance=max_distance) d = xs + ys - 2 * corr tmp = torch.zeros_like(d) boundary = torch.eq(cross_correlate(ones_ys, ones_ys, max_distance=max_distance), 0) d = torch.where(boundary, tmp.fill_(float('inf')), d) d = d </DeepExtract> else: <DeepExtract> if cfg.MODEL_LOCAL_DOWNSAMPLE: (ori_h, ori_w, _) = query_embedding.size() query_embedding = query_embedding.permute(2, 0, 1).unsqueeze(0) query_embedding = F.avg_pool2d(query_embedding, (2, 2), (2, 2)) prev_frame_embedding = prev_frame_embedding.permute(2, 0, 1).unsqueeze(0) prev_frame_embedding = F.avg_pool2d(prev_frame_embedding, (2, 2), (2, 2)) (_, channels, height, width) = query_embedding.size() padding_val = 1e+20 padded_y = F.pad(prev_frame_embedding, (max_distance, max_distance, max_distance, max_distance), mode='constant', value=padding_val) offset_y = F.unfold(padded_y, kernel_size=(height, width)).view(1, channels, height, width, -1) query_embedding = query_embedding.view(1, channels, height, width, 1) minus = query_embedding - offset_y dists = torch.sum(torch.mul(minus, minus), dim=1).view(1, height, width, -1).permute(0, 3, 1, 2) dists = (torch.sigmoid(dists) - 0.5) * 2 dists = F.interpolate(dists, size=(ori_h, ori_w), mode='bilinear', align_corners=True) dists = dists.squeeze(0).permute(1, 2, 0) else: padding_val = 1e+20 padded_y = nn.functional.pad(prev_frame_embedding, (0, 0, max_distance, max_distance, max_distance, max_distance), mode='constant', value=padding_val) (height, width, _) = query_embedding.size() dists = [] for y_start in range(2 * max_distance + 1): y_end = y_start + height y_slice = padded_y[y_start:y_end] for x_start in range(2 * max_distance + 1): x_end = x_start + width offset_y = y_slice[:, x_start:x_end] dist = torch.sum(torch.pow(query_embedding - offset_y, 2), dim=2) dists.append(dist) dists = torch.stack(dists, dim=2) d = dists </DeepExtract> (height, width) = prev_frame_embedding.size()[:2] if USE_CORRELATION_COST: corr_op = SpatialCorrelationSampler(kernel_size=1, patch_size=2 * max_distance + 1, stride=1, dilation_patch=1, padding=0) tmp_prev_frame_labels = (prev_frame_labels + 1).float().permute(2, 0, 1) tmp_prev_frame_labels = torch.unsqueeze(tmp_prev_frame_labels, 0) ones_ = torch.ones_like(tmp_prev_frame_labels) offset_labels = corr_op(ones_, tmp_prev_frame_labels) (bs, _, _, hh, ww) = offset_labels.size() offset_labels = offset_labels.view(bs, -1, hh, ww) offset_labels = torch.squeeze(offset_labels, 0) offset_labels = offset_labels.permute(1, 2, 0) offset_labels = torch.unsqueeze(offset_labels, 3) offset_labels = torch.round(offset_labels - 1) offset_masks = torch.eq(offset_labels, gt_ids.float().unsqueeze(0).unsqueeze(0).unsqueeze(0)) else: masks = torch.eq(prev_frame_labels, gt_ids.unsqueeze(0).unsqueeze(0)) padded_masks = nn.functional.pad(masks, (0, 0, max_distance, max_distance, max_distance, max_distance)) offset_masks = [] for y_start in range(2 * max_distance + 1): y_end = y_start + height masks_slice = padded_masks[y_start:y_end] for x_start in range(2 * max_distance + 1): x_end = x_start + width offset_mask = masks_slice[:, x_start:x_end] offset_masks.append(offset_mask) offset_masks = torch.stack(offset_masks, dim=2) d_tiled = d.unsqueeze(-1).repeat((1, 1, 1, gt_ids.size(0))) pad = torch.ones_like(d_tiled) d_masked = torch.where(offset_masks, d_tiled, pad) (dists, _) = torch.min(d_masked, dim=2) dists = dists.view(1, height, width, gt_ids.size(0), 1) return dists
def local_previous_frame_nearest_neighbor_features_per_object(prev_frame_embedding, query_embedding, prev_frame_labels, gt_ids, max_distance=15): """Computes nearest neighbor features while only allowing local matches. Args: prev_frame_embedding: Tensor of shape [height, width, embedding_dim], the embedding vectors for the last frame. query_embedding: Tensor of shape [height, width, embedding_dim], the embedding vectors for the query frames. prev_frame_labels: Tensor of shape [height, width, 1], the class labels of the previous frame. gt_ids: Int Tensor of shape [n_objs] of the sorted unique ground truth ids in the first frame. max_distance: Integer, the maximum distance allowed for local matching. Returns: nn_features: A float32 np.array of nearest neighbor features of shape [1, height, width, n_objects, 1]. """ if USE_CORRELATION_COST: if cfg.MODEL_LOCAL_DOWNSAMPLE: (ori_h, ori_w, _) = query_embedding.size() query_embedding = query_embedding.permute(2, 0, 1).unsqueeze(0) query_embedding = F.avg_pool2d(query_embedding, (2, 2), (2, 2)) prev_frame_embedding = prev_frame_embedding.permute(2, 0, 1).unsqueeze(0) prev_frame_embedding = F.avg_pool2d(prev_frame_embedding, (2, 2), (2, 2)) query_embedding = query_embedding.squeeze(0).permute(1, 2, 0) prev_frame_embedding = prev_frame_embedding.squeeze(0).permute(1, 2, 0) corr = cross_correlate(query_embedding, prev_frame_embedding, max_distance=max_distance) xs = torch.sum(query_embedding * query_embedding, 2, keepdim=True) ys = torch.sum(prev_frame_embedding * prev_frame_embedding, 2, keepdim=True) ones_ys = torch.ones_like(ys) ys = cross_correlate(ones_ys, ys, max_distance=max_distance) d = xs + ys - 2 * corr tmp = torch.zeros_like(d) boundary = torch.eq(cross_correlate(ones_ys, ones_ys, max_distance=max_distance), 0) d = torch.where(boundary, tmp.fill_(float('inf')), d) d = (torch.sigmoid(d) - 0.5) * 2 d = d.permute(2, 0, 1).unsqueeze(0) d = F.interpolate(d, size=(ori_h, ori_w), mode='bilinear', align_corners=True) d = d.squeeze(0).permute(1, 2, 0) else: corr = cross_correlate(query_embedding, prev_frame_embedding, max_distance=max_distance) xs = torch.sum(query_embedding * query_embedding, 2, keepdim=True) ys = torch.sum(prev_frame_embedding * prev_frame_embedding, 2, keepdim=True) ones_ys = torch.ones_like(ys) ys = cross_correlate(ones_ys, ys, max_distance=max_distance) d = xs + ys - 2 * corr tmp = torch.zeros_like(d) boundary = torch.eq(cross_correlate(ones_ys, ones_ys, max_distance=max_distance), 0) d = torch.where(boundary, tmp.fill_(float('inf')), d) d = d else: if cfg.MODEL_LOCAL_DOWNSAMPLE: (ori_h, ori_w, _) = query_embedding.size() query_embedding = query_embedding.permute(2, 0, 1).unsqueeze(0) query_embedding = F.avg_pool2d(query_embedding, (2, 2), (2, 2)) prev_frame_embedding = prev_frame_embedding.permute(2, 0, 1).unsqueeze(0) prev_frame_embedding = F.avg_pool2d(prev_frame_embedding, (2, 2), (2, 2)) (_, channels, height, width) = query_embedding.size() padding_val = 1e+20 padded_y = F.pad(prev_frame_embedding, (max_distance, max_distance, max_distance, max_distance), mode='constant', value=padding_val) offset_y = F.unfold(padded_y, kernel_size=(height, width)).view(1, channels, height, width, -1) query_embedding = query_embedding.view(1, channels, height, width, 1) minus = query_embedding - offset_y dists = torch.sum(torch.mul(minus, minus), dim=1).view(1, height, width, -1).permute(0, 3, 1, 2) dists = (torch.sigmoid(dists) - 0.5) * 2 dists = F.interpolate(dists, size=(ori_h, ori_w), mode='bilinear', align_corners=True) dists = dists.squeeze(0).permute(1, 2, 0) else: padding_val = 1e+20 padded_y = nn.functional.pad(prev_frame_embedding, (0, 0, max_distance, max_distance, max_distance, max_distance), mode='constant', value=padding_val) (height, width, _) = query_embedding.size() dists = [] for y_start in range(2 * max_distance + 1): y_end = y_start + height y_slice = padded_y[y_start:y_end] for x_start in range(2 * max_distance + 1): x_end = x_start + width offset_y = y_slice[:, x_start:x_end] dist = torch.sum(torch.pow(query_embedding - offset_y, 2), dim=2) dists.append(dist) dists = torch.stack(dists, dim=2) d = dists (height, width) = prev_frame_embedding.size()[:2] if USE_CORRELATION_COST: corr_op = SpatialCorrelationSampler(kernel_size=1, patch_size=2 * max_distance + 1, stride=1, dilation_patch=1, padding=0) tmp_prev_frame_labels = (prev_frame_labels + 1).float().permute(2, 0, 1) tmp_prev_frame_labels = torch.unsqueeze(tmp_prev_frame_labels, 0) ones_ = torch.ones_like(tmp_prev_frame_labels) offset_labels = corr_op(ones_, tmp_prev_frame_labels) (bs, _, _, hh, ww) = offset_labels.size() offset_labels = offset_labels.view(bs, -1, hh, ww) offset_labels = torch.squeeze(offset_labels, 0) offset_labels = offset_labels.permute(1, 2, 0) offset_labels = torch.unsqueeze(offset_labels, 3) offset_labels = torch.round(offset_labels - 1) offset_masks = torch.eq(offset_labels, gt_ids.float().unsqueeze(0).unsqueeze(0).unsqueeze(0)) else: masks = torch.eq(prev_frame_labels, gt_ids.unsqueeze(0).unsqueeze(0)) padded_masks = nn.functional.pad(masks, (0, 0, max_distance, max_distance, max_distance, max_distance)) offset_masks = [] for y_start in range(2 * max_distance + 1): y_end = y_start + height masks_slice = padded_masks[y_start:y_end] for x_start in range(2 * max_distance + 1): x_end = x_start + width offset_mask = masks_slice[:, x_start:x_end] offset_masks.append(offset_mask) offset_masks = torch.stack(offset_masks, dim=2) d_tiled = d.unsqueeze(-1).repeat((1, 1, 1, gt_ids.size(0))) pad = torch.ones_like(d_tiled) d_masked = torch.where(offset_masks, d_tiled, pad) (dists, _) = torch.min(d_masked, dim=2) dists = dists.view(1, height, width, gt_ids.size(0), 1) return dists
CVPR2020_MANet
positive
def test_response(self): def run(): bottle.response.bind() bottle.response.content_type = 'test/thread' self.assertEqual(bottle.response.headers['Content-Type'], 'test/thread') bottle.response.bind() bottle.response.content_type = 'test/main' self.assertEqual(bottle.response.headers['Content-Type'], 'test/main') <DeepExtract> t = threading.Thread(target=run) t.start() t.join() </DeepExtract> self.assertEqual(bottle.response.headers['Content-Type'], 'test/main')
def test_response(self): def run(): bottle.response.bind() bottle.response.content_type = 'test/thread' self.assertEqual(bottle.response.headers['Content-Type'], 'test/thread') bottle.response.bind() bottle.response.content_type = 'test/main' self.assertEqual(bottle.response.headers['Content-Type'], 'test/main') t = threading.Thread(target=run) t.start() t.join() self.assertEqual(bottle.response.headers['Content-Type'], 'test/main')
bottle-doc-zh-cn
positive
@functools.wraps(func) def func_with_args(*args, **kwargs): <DeepExtract> stack = _get_arg_stack() current_scope = stack[-1] </DeepExtract> current_args = kwargs key_func = (func.__module__, func.__name__) if key_func in current_scope: current_args = current_scope[key_func].copy() current_args.update(kwargs) return func(*args, **current_args)
@functools.wraps(func) def func_with_args(*args, **kwargs): stack = _get_arg_stack() current_scope = stack[-1] current_args = kwargs key_func = (func.__module__, func.__name__) if key_func in current_scope: current_args = current_scope[key_func].copy() current_args.update(kwargs) return func(*args, **current_args)
deeplearning-benchmark
positive
def _generate_efs_driver_manifest(output_path: str, context: 'Context') -> str: output_path = os.path.join(output_path, 'efs_driver') os.makedirs(output_path, exist_ok=True) <DeepExtract> files = os.listdir(output_path) for file in files: if file.endswith('.yaml'): os.remove(os.path.join(output_path, file)) </DeepExtract> if context.account_id is None: raise RuntimeError('context.account_id is None!') if context.region is None: raise RuntimeError('context.region is None!') <DeepExtract> os.makedirs(os.path.join(output_path, 'base'), exist_ok=True) filenames = ('csidriver.yaml', 'kustomization.yaml', 'node.yaml') for filename in filenames: input = os.path.join(MODELS_PATH, 'kube-system', 'efs_driver', 'base', filename) output = os.path.join(output_path, 'base', filename) _logger.debug('Copying efs driver base file: %s -> %s', input, output) shutil.copyfile(src=input, dst=output) </DeepExtract> overlays_path = os.path.join(output_path, 'overlays') os.makedirs(overlays_path, exist_ok=True) shutil.copyfile(src=os.path.join(MODELS_PATH, 'kube-system', 'efs_driver', 'overlays', 'kustomization.yaml'), dst=os.path.join(overlays_path, 'kustomization.yaml')) return overlays_path
def _generate_efs_driver_manifest(output_path: str, context: 'Context') -> str: output_path = os.path.join(output_path, 'efs_driver') os.makedirs(output_path, exist_ok=True) files = os.listdir(output_path) for file in files: if file.endswith('.yaml'): os.remove(os.path.join(output_path, file)) if context.account_id is None: raise RuntimeError('context.account_id is None!') if context.region is None: raise RuntimeError('context.region is None!') os.makedirs(os.path.join(output_path, 'base'), exist_ok=True) filenames = ('csidriver.yaml', 'kustomization.yaml', 'node.yaml') for filename in filenames: input = os.path.join(MODELS_PATH, 'kube-system', 'efs_driver', 'base', filename) output = os.path.join(output_path, 'base', filename) _logger.debug('Copying efs driver base file: %s -> %s', input, output) shutil.copyfile(src=input, dst=output) overlays_path = os.path.join(output_path, 'overlays') os.makedirs(overlays_path, exist_ok=True) shutil.copyfile(src=os.path.join(MODELS_PATH, 'kube-system', 'efs_driver', 'overlays', 'kustomization.yaml'), dst=os.path.join(overlays_path, 'kustomization.yaml')) return overlays_path
aws-orbit-workbench
positive
def bpe(self, token): if token in self.cache: return self.cache[token] word = tuple(token) <DeepExtract> pairs = set() prev_char = word[0] for char in word[1:]: pairs.add((prev_char, char)) prev_char = char pairs = pairs </DeepExtract> if not pairs: return token while True: bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float('inf'))) if bigram not in self.bpe_ranks: break (first, second) = bigram new_word = [] i = 0 while i < len(word): try: j = word.index(first, i) new_word.extend(word[i:j]) i = j except: new_word.extend(word[i:]) break if word[i] == first and i < len(word) - 1 and (word[i + 1] == second): new_word.append(first + second) i += 2 else: new_word.append(word[i]) i += 1 new_word = tuple(new_word) word = new_word if len(word) == 1: break else: <DeepExtract> pairs = set() prev_char = word[0] for char in word[1:]: pairs.add((prev_char, char)) prev_char = char pairs = pairs </DeepExtract> word = ' '.join(word) self.cache[token] = word return word
def bpe(self, token): if token in self.cache: return self.cache[token] word = tuple(token) pairs = set() prev_char = word[0] for char in word[1:]: pairs.add((prev_char, char)) prev_char = char pairs = pairs if not pairs: return token while True: bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float('inf'))) if bigram not in self.bpe_ranks: break (first, second) = bigram new_word = [] i = 0 while i < len(word): try: j = word.index(first, i) new_word.extend(word[i:j]) i = j except: new_word.extend(word[i:]) break if word[i] == first and i < len(word) - 1 and (word[i + 1] == second): new_word.append(first + second) i += 2 else: new_word.append(word[i]) i += 1 new_word = tuple(new_word) word = new_word if len(word) == 1: break else: pairs = set() prev_char = word[0] for char in word[1:]: pairs.add((prev_char, char)) prev_char = char pairs = pairs word = ' '.join(word) self.cache[token] = word return word
DeBERTa
positive
def test(self): print('Testing copycat with input file: {}'.format(TestCopycat.Filename)) try: with open(TestCopycat.Filename, 'rb') as infile: problems = pickle.load(infile) except Exception as e: print('Generating due to error:') print(e) <DeepExtract> print('Generating distributions for new file') iterations = 30 problems = [Problem('abc', 'abd', 'efg', iterations), Problem('abc', 'abd', 'ijk', iterations), Problem('abc', 'abd', 'xyz', iterations), Problem('abc', 'abd', 'ijkk', iterations), Problem('abc', 'abd', 'mrrjjj', iterations)] with open(TestCopycat.Filename, 'wb') as outfile: pickle.dump(problems, outfile) problems = problems </DeepExtract> for problem in problems: problem.test(iso_chi_squared)
def test(self): print('Testing copycat with input file: {}'.format(TestCopycat.Filename)) try: with open(TestCopycat.Filename, 'rb') as infile: problems = pickle.load(infile) except Exception as e: print('Generating due to error:') print(e) print('Generating distributions for new file') iterations = 30 problems = [Problem('abc', 'abd', 'efg', iterations), Problem('abc', 'abd', 'ijk', iterations), Problem('abc', 'abd', 'xyz', iterations), Problem('abc', 'abd', 'ijkk', iterations), Problem('abc', 'abd', 'mrrjjj', iterations)] with open(TestCopycat.Filename, 'wb') as outfile: pickle.dump(problems, outfile) problems = problems for problem in problems: problem.test(iso_chi_squared)
copycat
positive
def cont(self): """Continues the execution of the target :returns: True on success""" try: <DeepExtract> try: self.cmd_lock.acquire() self.in_queue.put('resume') ret = self.out_queue.get() if 'FAILED' in ret: raise RuntimeError("Command '%s' failed!" % 'resume') resp = ret except: raise finally: self.cmd_lock.release() </DeepExtract> except: self.log.exception('Error halting target') return False return True
def cont(self): """Continues the execution of the target :returns: True on success""" try: try: self.cmd_lock.acquire() self.in_queue.put('resume') ret = self.out_queue.get() if 'FAILED' in ret: raise RuntimeError("Command '%s' failed!" % 'resume') resp = ret except: raise finally: self.cmd_lock.release() except: self.log.exception('Error halting target') return False return True
avatar2
positive
def parse_dataframes(self, dataframes: Dict[Any, DataFrame], aux: Dict[str, DataFrame], **parse_opts) -> DataFrame: data = table_rename(dataframes[0], _column_adapter, remove_regex='[^\\w]', drop=True) <DeepExtract> data = data.copy() data['date'] = data['date'].str.slice(0, 10) if 'new_persons_fully_vaccinated' not in data.columns: data['new_persons_fully_vaccinated'] = None if 'total_persons_fully_vaccinated' not in data.columns: data['total_persons_fully_vaccinated'] = None data['new_vaccine_doses_administered'] = data['new_persons_vaccinated'] + data['new_persons_fully_vaccinated'] data['total_vaccine_doses_administered'] = data['total_persons_vaccinated'] + data['total_persons_fully_vaccinated'] data = data </DeepExtract> data['key'] = 'FR' return data
def parse_dataframes(self, dataframes: Dict[Any, DataFrame], aux: Dict[str, DataFrame], **parse_opts) -> DataFrame: data = table_rename(dataframes[0], _column_adapter, remove_regex='[^\\w]', drop=True) data = data.copy() data['date'] = data['date'].str.slice(0, 10) if 'new_persons_fully_vaccinated' not in data.columns: data['new_persons_fully_vaccinated'] = None if 'total_persons_fully_vaccinated' not in data.columns: data['total_persons_fully_vaccinated'] = None data['new_vaccine_doses_administered'] = data['new_persons_vaccinated'] + data['new_persons_fully_vaccinated'] data['total_vaccine_doses_administered'] = data['total_persons_vaccinated'] + data['total_persons_fully_vaccinated'] data = data data['key'] = 'FR' return data
covid-19-open-data
positive
def test_loaded_dataset(self): <DeepExtract> dataset_directory = os.path.join(ydf_test_data_path(), 'dataset') train_path = os.path.join(dataset_directory, 'adult_train.csv') test_path = os.path.join(dataset_directory, 'adult_test.csv') train = pd.read_csv(train_path) test = pd.read_csv(test_path) label = 'income' def clean(ds): ds[label] = np.where(ds[label] == '>50K', 1, 0) dataset = ds train = clean(train) test = clean(test) dataset = prepare_dataset(train, test, label, num_classes=2) </DeepExtract> <DeepExtract> def df_to_ds(df): (tf_train, _) = tf.data.Dataset.from_tensor_slices((dict(df.drop(dataset.label, axis=1)), df[dataset.label].values)) train_ds = df_to_ds(dataset.train).batch(1024) test_ds = df_to_ds(dataset.test).batch(1024) (tf_train, _) = (train_ds, test_ds) </DeepExtract> saved_dataset_path = os.path.join(tmp_path(), 'saved_model') tf_train.save(saved_dataset_path) tf_train_loaded = tf.data.Dataset.load(saved_dataset_path) model = keras.RandomForestModel() model.fit(tf_train_loaded) <DeepExtract> (tf_train, tf_test) = dataset_to_tf_dataset(dataset) model.compile(metrics=['accuracy']) evaluation = model.evaluate(tf_test) logging.info('Pre-training evaluation: %s', evaluation) predictions = model.predict(tf_test) logging.info('Pre-training predictions: %s', predictions) model.fit(x=tf_train) logging.info('Trained model:') model.summary() plot = model_plotter.plot_model(model) plot_path = os.path.join(self.get_temp_dir(), 'plot.html') logging.info('Plot to %s', plot_path) with open(plot_path, 'w') as f: f.write(plot) evaluation = model.evaluate(tf_test) logging.info('Evaluation: %s', evaluation) self.assertGreaterEqual(evaluation[1], 0.864) predictions = model.predict(tf_test) logging.info('Predictions: %s', predictions) if True: tf.keras.backend.clear_session() saved_model_path = os.path.join(self.get_temp_dir(), 'saved_model') new_saved_model_path = os.path.join(self.get_temp_dir(), 'saved_model_copy') logging.info('Saving model to %s', saved_model_path) model.save(saved_model_path) tf.keras.backend.clear_session() logging.info('Run model in separate binary') process = subprocess.Popen([os.path.join(data_root_path(), 'tensorflow_decision_forests/keras/test_runner'), '--model_path', saved_model_path, '--dataset_path', os.path.join(ydf_test_data_path(), 'dataset', 'adult_test.csv')], stdout=subprocess.PIPE, stderr=subprocess.PIPE) (stdout, stderr) = process.communicate() logging.info('stdout:\n%s', stdout.decode('utf-8')) logging.info('stderr:\n%s', stderr.decode('utf-8')) logging.info('Copying model from %s to %s', saved_model_path, new_saved_model_path) shutil.copytree(saved_model_path, new_saved_model_path) shutil.rmtree(saved_model_path) logging.info('Loading model from %s', new_saved_model_path) loaded_model = models.load_model(new_saved_model_path) loaded_model.summary() evaluation = loaded_model.evaluate(tf_test) logging.info('Loaded model evaluation: %s', evaluation) self.assertGreaterEqual(evaluation[1], 0.864) predictions = loaded_model.predict(tf_test) logging.info('Loaded model predictions: %s', predictions) </DeepExtract>
def test_loaded_dataset(self): dataset_directory = os.path.join(ydf_test_data_path(), 'dataset') train_path = os.path.join(dataset_directory, 'adult_train.csv') test_path = os.path.join(dataset_directory, 'adult_test.csv') train = pd.read_csv(train_path) test = pd.read_csv(test_path) label = 'income' def clean(ds): ds[label] = np.where(ds[label] == '>50K', 1, 0) dataset = ds train = clean(train) test = clean(test) dataset = prepare_dataset(train, test, label, num_classes=2) def df_to_ds(df): (tf_train, _) = tf.data.Dataset.from_tensor_slices((dict(df.drop(dataset.label, axis=1)), df[dataset.label].values)) train_ds = df_to_ds(dataset.train).batch(1024) test_ds = df_to_ds(dataset.test).batch(1024) (tf_train, _) = (train_ds, test_ds) saved_dataset_path = os.path.join(tmp_path(), 'saved_model') tf_train.save(saved_dataset_path) tf_train_loaded = tf.data.Dataset.load(saved_dataset_path) model = keras.RandomForestModel() model.fit(tf_train_loaded) (tf_train, tf_test) = dataset_to_tf_dataset(dataset) model.compile(metrics=['accuracy']) evaluation = model.evaluate(tf_test) logging.info('Pre-training evaluation: %s', evaluation) predictions = model.predict(tf_test) logging.info('Pre-training predictions: %s', predictions) model.fit(x=tf_train) logging.info('Trained model:') model.summary() plot = model_plotter.plot_model(model) plot_path = os.path.join(self.get_temp_dir(), 'plot.html') logging.info('Plot to %s', plot_path) with open(plot_path, 'w') as f: f.write(plot) evaluation = model.evaluate(tf_test) logging.info('Evaluation: %s', evaluation) self.assertGreaterEqual(evaluation[1], 0.864) predictions = model.predict(tf_test) logging.info('Predictions: %s', predictions) if True: tf.keras.backend.clear_session() saved_model_path = os.path.join(self.get_temp_dir(), 'saved_model') new_saved_model_path = os.path.join(self.get_temp_dir(), 'saved_model_copy') logging.info('Saving model to %s', saved_model_path) model.save(saved_model_path) tf.keras.backend.clear_session() logging.info('Run model in separate binary') process = subprocess.Popen([os.path.join(data_root_path(), 'tensorflow_decision_forests/keras/test_runner'), '--model_path', saved_model_path, '--dataset_path', os.path.join(ydf_test_data_path(), 'dataset', 'adult_test.csv')], stdout=subprocess.PIPE, stderr=subprocess.PIPE) (stdout, stderr) = process.communicate() logging.info('stdout:\n%s', stdout.decode('utf-8')) logging.info('stderr:\n%s', stderr.decode('utf-8')) logging.info('Copying model from %s to %s', saved_model_path, new_saved_model_path) shutil.copytree(saved_model_path, new_saved_model_path) shutil.rmtree(saved_model_path) logging.info('Loading model from %s', new_saved_model_path) loaded_model = models.load_model(new_saved_model_path) loaded_model.summary() evaluation = loaded_model.evaluate(tf_test) logging.info('Loaded model evaluation: %s', evaluation) self.assertGreaterEqual(evaluation[1], 0.864) predictions = loaded_model.predict(tf_test) logging.info('Loaded model predictions: %s', predictions) </DeepExtract>
decision-forests
positive
def _create_matrix_of_two_qubit_gate(self, n_qubits, gate, control, target, subs=None): matrix_of_target_gate = self.SYMPY_GATE[gate.uppername[1:]] if subs: matrix_of_target_gate = matrix_of_target_gate.subs(subs, simultaneous=True) <DeepExtract> [control] = [idx for idx in [control]] gates = [] for idx in range(n_qubits): if idx in [control]: gates.append(self.SYMPY_GATE['_C0']) else: gates.append(eye(2)) c0 = reduce(TensorProduct, reversed(gates)) </DeepExtract> <DeepExtract> [control] = [idx for idx in [control]] gates = [] for idx in range(n_qubits): if idx in [control]: gates.append(self.SYMPY_GATE['_C1']) else: gates.append(eye(2)) c1 = reduce(TensorProduct, reversed(gates)) </DeepExtract> <DeepExtract> [target] = [idx for idx in [target]] gates = [] for idx in range(n_qubits): if idx in [target]: gates.append(matrix_of_target_gate) else: gates.append(eye(2)) tgt = reduce(TensorProduct, reversed(gates)) </DeepExtract> return c0 + tgt * c1
def _create_matrix_of_two_qubit_gate(self, n_qubits, gate, control, target, subs=None): matrix_of_target_gate = self.SYMPY_GATE[gate.uppername[1:]] if subs: matrix_of_target_gate = matrix_of_target_gate.subs(subs, simultaneous=True) [control] = [idx for idx in [control]] gates = [] for idx in range(n_qubits): if idx in [control]: gates.append(self.SYMPY_GATE['_C0']) else: gates.append(eye(2)) c0 = reduce(TensorProduct, reversed(gates)) [control] = [idx for idx in [control]] gates = [] for idx in range(n_qubits): if idx in [control]: gates.append(self.SYMPY_GATE['_C1']) else: gates.append(eye(2)) c1 = reduce(TensorProduct, reversed(gates)) [target] = [idx for idx in [target]] gates = [] for idx in range(n_qubits): if idx in [target]: gates.append(matrix_of_target_gate) else: gates.append(eye(2)) tgt = reduce(TensorProduct, reversed(gates)) return c0 + tgt * c1
Blueqat
positive
def __init__(self, C_in, C_out, expansion, stride): assert stride in [1, 2] self.res_connect = stride == 1 and C_in == C_out <DeepExtract> ret = int(C_in * expansion) if 8 > 0 and C_in * expansion % 8 != 0: ret = int((_py2_round(C_in * expansion / 8) or 8) * 8) C_mid = ret </DeepExtract> ops = [Conv2d(C_in, C_mid, 1, 1, 0, bias=False), BatchNorm2d(C_mid), nn.ReLU(inplace=True), Shift(C_mid, 5, stride, 2), Conv2d(C_mid, C_out, 1, 1, 0, bias=False), BatchNorm2d(C_out)] super(ShiftBlock5x5, self).__init__(*ops)
def __init__(self, C_in, C_out, expansion, stride): assert stride in [1, 2] self.res_connect = stride == 1 and C_in == C_out ret = int(C_in * expansion) if 8 > 0 and C_in * expansion % 8 != 0: ret = int((_py2_round(C_in * expansion / 8) or 8) * 8) C_mid = ret ops = [Conv2d(C_in, C_mid, 1, 1, 0, bias=False), BatchNorm2d(C_mid), nn.ReLU(inplace=True), Shift(C_mid, 5, stride, 2), Conv2d(C_mid, C_out, 1, 1, 0, bias=False), BatchNorm2d(C_out)] super(ShiftBlock5x5, self).__init__(*ops)
APNet
positive
def _initialize(self, first_init): if not first_init: return <DeepExtract> env.log('info', 'Starting Migration Import') (status, models) = ('Import successful.', kwargs['import_export_types']) empty_database = kwargs.get('empty_database_before_import', False) if empty_database: db.delete_all(*models) fetch_instance = {'user': [current_user.name] if current_user else [], 'service': ['[Shared] Start', '[Shared] End', '[Shared] Placeholder']} relations = defaultdict(lambda : defaultdict(dict)) for model in models: path = vs.path / 'files' / folder / kwargs['name'] / f'{model}.yaml' if not path.exists(): if kwargs.get('service_import') and model == 'service': raise Exception('Invalid archive provided in service import.') continue with open(path, 'r') as migration_file: instances = yaml.load(migration_file) for instance in instances: (type, relation_dict) = (instance.pop('type', model), {}) for (related_model, relation) in vs.relationships[type].items(): relation_dict[related_model] = instance.pop(related_model, []) instance_private_properties = {property: env.get_password(instance.pop(property)) for property in list(instance) if property in vs.private_properties_set} try: existing_instance = instance['name'] in fetch_instance.get(model, []) instance = db.factory(type, migration_import=True, no_fetch=empty_database and (not existing_instance), update_pools=kwargs.get('update_pools', False), import_mechanism=True, **instance) if kwargs.get('service_import') and instance.type == 'workflow': instance.edges = [] relations[type][instance.name] = relation_dict for property in instance_private_properties.items(): setattr(instance, *property) except Exception: info(f'{str(instance)} could not be imported:\n{format_exc()}') status = 'Partial import (see logs).' db.session.commit() for (model, instances) in relations.items(): for (instance_name, related_models) in instances.items(): for (property, value) in related_models.items(): if not value: continue relation = vs.relationships[model][property] if relation['list']: related_instances = (db.fetch(relation['model'], name=vs.settings['app'].get('startup_migration', 'default'), allow_none=True) for vs.settings['app'].get('startup_migration', 'default') in value) value = list(filter(None, related_instances)) else: value = db.fetch(relation['model'], name=value, allow_none=True) try: setattr(db.fetch(model, name=instance_name), property, value) except Exception: info('\n'.join(format_exc().splitlines())) status = 'Partial import (see logs).' db.session.commit() if not kwargs.get('skip_model_update'): for model in ('user', 'service', 'network'): for instance in db.fetch_all(model): instance.post_update() if not kwargs.get('skip_pool_update'): for pool in db.fetch_all('pool'): pool.compute_pool() db.session.commit() env.log('info', status) return status </DeepExtract> <DeepExtract> env.log('info', 'Starting Git Content Update') repo = vs.settings['app']['git_repository'] if not repo: return local_path = vs.path / 'network_data' try: if exists(local_path): Repo(local_path).remotes.origin.pull() else: local_path.mkdir(parents=True, exist_ok=True) Repo.clone_from(repo, local_path) except Exception as exc: env.log('error', f'Git pull failed ({str(exc)})') try: self.update_database_configurations_from_git() except Exception as exc: env.log('error', f'Update of device configurations failed ({str(exc)})') env.log('info', 'Git Content Update Successful') </DeepExtract> <DeepExtract> env.log('info', 'Starting Scan of Files') path = env.file_path if not path else path.replace('>', '/') folders = {Path(path)} while folders: folder = folders.pop() for file in folder.iterdir(): if file.suffix in vs.settings['files']['ignored_types']: continue if file.is_dir(): folders.add(file) if db.fetch('file', path=str(file), allow_none=True): continue db.factory('folder' if file.is_dir() else 'file', path=str(file)) db.session.commit() env.log('info', 'Scan of Files Successful') </DeepExtract>
def _initialize(self, first_init): if not first_init: return env.log('info', 'Starting Migration Import') (status, models) = ('Import successful.', kwargs['import_export_types']) empty_database = kwargs.get('empty_database_before_import', False) if empty_database: db.delete_all(*models) fetch_instance = {'user': [current_user.name] if current_user else [], 'service': ['[Shared] Start', '[Shared] End', '[Shared] Placeholder']} relations = defaultdict(lambda : defaultdict(dict)) for model in models: path = vs.path / 'files' / folder / kwargs['name'] / f'{model}.yaml' if not path.exists(): if kwargs.get('service_import') and model == 'service': raise Exception('Invalid archive provided in service import.') continue with open(path, 'r') as migration_file: instances = yaml.load(migration_file) for instance in instances: (type, relation_dict) = (instance.pop('type', model), {}) for (related_model, relation) in vs.relationships[type].items(): relation_dict[related_model] = instance.pop(related_model, []) instance_private_properties = {property: env.get_password(instance.pop(property)) for property in list(instance) if property in vs.private_properties_set} try: existing_instance = instance['name'] in fetch_instance.get(model, []) instance = db.factory(type, migration_import=True, no_fetch=empty_database and (not existing_instance), update_pools=kwargs.get('update_pools', False), import_mechanism=True, **instance) if kwargs.get('service_import') and instance.type == 'workflow': instance.edges = [] relations[type][instance.name] = relation_dict for property in instance_private_properties.items(): setattr(instance, *property) except Exception: info(f'{str(instance)} could not be imported:\n{format_exc()}') status = 'Partial import (see logs).' db.session.commit() for (model, instances) in relations.items(): for (instance_name, related_models) in instances.items(): for (property, value) in related_models.items(): if not value: continue relation = vs.relationships[model][property] if relation['list']: related_instances = (db.fetch(relation['model'], name=vs.settings['app'].get('startup_migration', 'default'), allow_none=True) for vs.settings['app'].get('startup_migration', 'default') in value) value = list(filter(None, related_instances)) else: value = db.fetch(relation['model'], name=value, allow_none=True) try: setattr(db.fetch(model, name=instance_name), property, value) except Exception: info('\n'.join(format_exc().splitlines())) status = 'Partial import (see logs).' db.session.commit() if not kwargs.get('skip_model_update'): for model in ('user', 'service', 'network'): for instance in db.fetch_all(model): instance.post_update() if not kwargs.get('skip_pool_update'): for pool in db.fetch_all('pool'): pool.compute_pool() db.session.commit() env.log('info', status) return status env.log('info', 'Starting Git Content Update') repo = vs.settings['app']['git_repository'] if not repo: return local_path = vs.path / 'network_data' try: if exists(local_path): Repo(local_path).remotes.origin.pull() else: local_path.mkdir(parents=True, exist_ok=True) Repo.clone_from(repo, local_path) except Exception as exc: env.log('error', f'Git pull failed ({str(exc)})') try: self.update_database_configurations_from_git() except Exception as exc: env.log('error', f'Update of device configurations failed ({str(exc)})') env.log('info', 'Git Content Update Successful') env.log('info', 'Starting Scan of Files') path = env.file_path if not path else path.replace('>', '/') folders = {Path(path)} while folders: folder = folders.pop() for file in folder.iterdir(): if file.suffix in vs.settings['files']['ignored_types']: continue if file.is_dir(): folders.add(file) if db.fetch('file', path=str(file), allow_none=True): continue db.factory('folder' if file.is_dir() else 'file', path=str(file)) db.session.commit() env.log('info', 'Scan of Files Successful') </DeepExtract>
eNMS
positive
def test(self): self.update_exchange = Exchange('bgp-update', type='direct', durable=False, delivery_mode=1) self.pg_amq_bridge = Exchange('amq.direct', type='direct', durable=True, delivery_mode=1) self.update_queue = Queue('detection-testing', exchange=self.pg_amq_bridge, routing_key='update-update', durable=False, auto_delete=True, max_priority=1, consumer_arguments={'x-priority': 1}) self.hijack_db_queue = Queue('hijack-db-testing', exchange=self.pg_amq_bridge, routing_key='hijack-update', durable=False, auto_delete=True, max_priority=1, consumer_arguments={'x-priority': 1}) with Connection(RABBITMQ_URI) as connection: <DeepExtract> while True: met_deps = set() unmet_deps = set() for service in DATA_WORKER_DEPENDENCIES: try: r = requests.get('http://{}:{}/health'.format(service, REST_PORT)) status = True if r.json()['status'] == 'running' else False if not status: unmet_deps.add(service) else: met_deps.add(service) except Exception: print("exception while waiting for service '{}'. Will retry".format(service)) if len(unmet_deps) == 0: print('all needed data workers started: {}'.format(DATA_WORKER_DEPENDENCIES)) break else: print("'{}' data workers started, waiting for: '{}'".format(met_deps, unmet_deps)) time.sleep(1) </DeepExtract> while True: try: r = requests.get('http://{}:{}/config'.format(CONFIGURATION_HOST, REST_PORT)) result = r.json() assert len(result) > 0 break except Exception: print('exception') time.sleep(1) time.sleep(1) for testfile in os.listdir('testfiles/'): <DeepExtract> db_con = self.getDbConnection() db_cur = db_con.cursor() query = 'delete from bgp_updates; delete from hijacks;' db_cur.execute(query) db_con.commit() db_cur.close() db_con.close() self.redis.flushall() self.curr_idx = 0 self.send_cnt = 0 self.expected_messages = 0 </DeepExtract> self.curr_test = testfile self.messages = {} with open('testfiles/{}'.format(testfile), 'r') as f: self.messages = json.load(f) send_len = len(self.messages) with nested(connection.Consumer(self.hijack_db_queue, callbacks=[self.validate_message], accept=['ujson', 'txtjson'])): send_cnt = 0 while send_cnt < send_len: self.curr_idx = send_cnt <DeepExtract> with connection.Producer() as producer: self.expected_messages = 0 for key in self.messages[self.curr_idx]: if key != 'send': if isinstance(self.messages[self.curr_idx][key], dict): self.expected_messages += 1 else: self.expected_messages += len(self.messages[self.curr_idx][key]) for key in self.messages[self.curr_idx]['send']: if 'time' in key: self.messages[self.curr_idx]['send'][key] += self.time_now producer.publish(self.messages[self.curr_idx]['send'], exchange=self.update_exchange, routing_key='update', serializer='ujson') </DeepExtract> send_cnt += 1 while self.curr_idx != send_cnt: time.sleep(0.1) try: connection.drain_events(timeout=60) except socket.timeout: assert False, 'Consumer timeout' if send_cnt < send_len: print('[+] Sleeping for 20 seconds to ensure auto-ignore works correctly') time.sleep(20) connection.close() print('[+] Sleeping for 5 seconds...') time.sleep(5)
def test(self): self.update_exchange = Exchange('bgp-update', type='direct', durable=False, delivery_mode=1) self.pg_amq_bridge = Exchange('amq.direct', type='direct', durable=True, delivery_mode=1) self.update_queue = Queue('detection-testing', exchange=self.pg_amq_bridge, routing_key='update-update', durable=False, auto_delete=True, max_priority=1, consumer_arguments={'x-priority': 1}) self.hijack_db_queue = Queue('hijack-db-testing', exchange=self.pg_amq_bridge, routing_key='hijack-update', durable=False, auto_delete=True, max_priority=1, consumer_arguments={'x-priority': 1}) with Connection(RABBITMQ_URI) as connection: while True: met_deps = set() unmet_deps = set() for service in DATA_WORKER_DEPENDENCIES: try: r = requests.get('http://{}:{}/health'.format(service, REST_PORT)) status = True if r.json()['status'] == 'running' else False if not status: unmet_deps.add(service) else: met_deps.add(service) except Exception: print("exception while waiting for service '{}'. Will retry".format(service)) if len(unmet_deps) == 0: print('all needed data workers started: {}'.format(DATA_WORKER_DEPENDENCIES)) break else: print("'{}' data workers started, waiting for: '{}'".format(met_deps, unmet_deps)) time.sleep(1) while True: try: r = requests.get('http://{}:{}/config'.format(CONFIGURATION_HOST, REST_PORT)) result = r.json() assert len(result) > 0 break except Exception: print('exception') time.sleep(1) time.sleep(1) for testfile in os.listdir('testfiles/'): db_con = self.getDbConnection() db_cur = db_con.cursor() query = 'delete from bgp_updates; delete from hijacks;' db_cur.execute(query) db_con.commit() db_cur.close() db_con.close() self.redis.flushall() self.curr_idx = 0 self.send_cnt = 0 self.expected_messages = 0 self.curr_test = testfile self.messages = {} with open('testfiles/{}'.format(testfile), 'r') as f: self.messages = json.load(f) send_len = len(self.messages) with nested(connection.Consumer(self.hijack_db_queue, callbacks=[self.validate_message], accept=['ujson', 'txtjson'])): send_cnt = 0 while send_cnt < send_len: self.curr_idx = send_cnt with connection.Producer() as producer: self.expected_messages = 0 for key in self.messages[self.curr_idx]: if key != 'send': if isinstance(self.messages[self.curr_idx][key], dict): self.expected_messages += 1 else: self.expected_messages += len(self.messages[self.curr_idx][key]) for key in self.messages[self.curr_idx]['send']: if 'time' in key: self.messages[self.curr_idx]['send'][key] += self.time_now producer.publish(self.messages[self.curr_idx]['send'], exchange=self.update_exchange, routing_key='update', serializer='ujson') send_cnt += 1 while self.curr_idx != send_cnt: time.sleep(0.1) try: connection.drain_events(timeout=60) except socket.timeout: assert False, 'Consumer timeout' if send_cnt < send_len: print('[+] Sleeping for 20 seconds to ensure auto-ignore works correctly') time.sleep(20) connection.close() print('[+] Sleeping for 5 seconds...') time.sleep(5)
artemis
positive
def _extend(self, obj): stream = getattr(obj, 'stream', None) if stream is not None: d = {'__streamdata__': stream, '/Length': len(stream)} d.update(obj) dct = pdf.StreamObject.initializeFromDictionary(d) if '/Filter' in obj and obj['/Filter'] == '/FlatDecode': del dct['/Filter'] dct = dct.flateEncode() else: dct = pdf.DictionaryObject() for (k, v) in obj.items(): if isinstance(v, pdf.DictionaryObject): if v.indirect: <DeepExtract> stream = getattr(v, 'stream', None) if stream is not None: d = {'__streamdata__': stream, '/Length': len(stream)} d.update(v) dct = pdf.StreamObject.initializeFromDictionary(d) if '/Filter' in v and v['/Filter'] == '/FlatDecode': del dct['/Filter'] dct = dct.flateEncode() else: dct = pdf.DictionaryObject() for (k, v) in v.items(): if isinstance(v, pdf.DictionaryObject): if v.indirect: v = self._extend(v) v = self._addObject(v) else: v = self._extend(v) elif isinstance(v, list): result = pdf.ArrayObject() for va in v: if isinstance(va, pdf.DictionaryObject): if va.indirect: va = self._extend(va) va = self._addObject(va) else: va = self._extend(va) result.append(va) v = result dct[k] = v v = dct </DeepExtract> v = self._addObject(v) else: <DeepExtract> stream = getattr(v, 'stream', None) if stream is not None: d = {'__streamdata__': stream, '/Length': len(stream)} d.update(v) dct = pdf.StreamObject.initializeFromDictionary(d) if '/Filter' in v and v['/Filter'] == '/FlatDecode': del dct['/Filter'] dct = dct.flateEncode() else: dct = pdf.DictionaryObject() for (k, v) in v.items(): if isinstance(v, pdf.DictionaryObject): if v.indirect: v = self._extend(v) v = self._addObject(v) else: v = self._extend(v) elif isinstance(v, list): result = pdf.ArrayObject() for va in v: if isinstance(va, pdf.DictionaryObject): if va.indirect: va = self._extend(va) va = self._addObject(va) else: va = self._extend(va) result.append(va) v = result dct[k] = v v = dct </DeepExtract> elif isinstance(v, list): result = pdf.ArrayObject() for va in v: if isinstance(va, pdf.DictionaryObject): if va.indirect: <DeepExtract> stream = getattr(va, 'stream', None) if stream is not None: d = {'__streamdata__': stream, '/Length': len(stream)} d.update(va) dct = pdf.StreamObject.initializeFromDictionary(d) if '/Filter' in va and va['/Filter'] == '/FlatDecode': del dct['/Filter'] dct = dct.flateEncode() else: dct = pdf.DictionaryObject() for (k, v) in va.items(): if isinstance(v, pdf.DictionaryObject): if v.indirect: v = self._extend(v) v = self._addObject(v) else: v = self._extend(v) elif isinstance(v, list): result = pdf.ArrayObject() for va in v: if isinstance(va, pdf.DictionaryObject): if va.indirect: va = self._extend(va) va = self._addObject(va) else: va = self._extend(va) result.append(va) v = result dct[k] = v va = dct </DeepExtract> va = self._addObject(va) else: <DeepExtract> stream = getattr(va, 'stream', None) if stream is not None: d = {'__streamdata__': stream, '/Length': len(stream)} d.update(va) dct = pdf.StreamObject.initializeFromDictionary(d) if '/Filter' in va and va['/Filter'] == '/FlatDecode': del dct['/Filter'] dct = dct.flateEncode() else: dct = pdf.DictionaryObject() for (k, v) in va.items(): if isinstance(v, pdf.DictionaryObject): if v.indirect: v = self._extend(v) v = self._addObject(v) else: v = self._extend(v) elif isinstance(v, list): result = pdf.ArrayObject() for va in v: if isinstance(va, pdf.DictionaryObject): if va.indirect: va = self._extend(va) va = self._addObject(va) else: va = self._extend(va) result.append(va) v = result dct[k] = v va = dct </DeepExtract> result.append(va) v = result dct[k] = v return dct
def _extend(self, obj): stream = getattr(obj, 'stream', None) if stream is not None: d = {'__streamdata__': stream, '/Length': len(stream)} d.update(obj) dct = pdf.StreamObject.initializeFromDictionary(d) if '/Filter' in obj and obj['/Filter'] == '/FlatDecode': del dct['/Filter'] dct = dct.flateEncode() else: dct = pdf.DictionaryObject() for (k, v) in obj.items(): if isinstance(v, pdf.DictionaryObject): if v.indirect: stream = getattr(v, 'stream', None) if stream is not None: d = {'__streamdata__': stream, '/Length': len(stream)} d.update(v) dct = pdf.StreamObject.initializeFromDictionary(d) if '/Filter' in v and v['/Filter'] == '/FlatDecode': del dct['/Filter'] dct = dct.flateEncode() else: dct = pdf.DictionaryObject() for (k, v) in v.items(): if isinstance(v, pdf.DictionaryObject): if v.indirect: v = self._extend(v) v = self._addObject(v) else: v = self._extend(v) elif isinstance(v, list): result = pdf.ArrayObject() for va in v: if isinstance(va, pdf.DictionaryObject): if va.indirect: va = self._extend(va) va = self._addObject(va) else: va = self._extend(va) result.append(va) v = result dct[k] = v v = dct v = self._addObject(v) else: stream = getattr(v, 'stream', None) if stream is not None: d = {'__streamdata__': stream, '/Length': len(stream)} d.update(v) dct = pdf.StreamObject.initializeFromDictionary(d) if '/Filter' in v and v['/Filter'] == '/FlatDecode': del dct['/Filter'] dct = dct.flateEncode() else: dct = pdf.DictionaryObject() for (k, v) in v.items(): if isinstance(v, pdf.DictionaryObject): if v.indirect: v = self._extend(v) v = self._addObject(v) else: v = self._extend(v) elif isinstance(v, list): result = pdf.ArrayObject() for va in v: if isinstance(va, pdf.DictionaryObject): if va.indirect: va = self._extend(va) va = self._addObject(va) else: va = self._extend(va) result.append(va) v = result dct[k] = v v = dct elif isinstance(v, list): result = pdf.ArrayObject() for va in v: if isinstance(va, pdf.DictionaryObject): if va.indirect: stream = getattr(va, 'stream', None) if stream is not None: d = {'__streamdata__': stream, '/Length': len(stream)} d.update(va) dct = pdf.StreamObject.initializeFromDictionary(d) if '/Filter' in va and va['/Filter'] == '/FlatDecode': del dct['/Filter'] dct = dct.flateEncode() else: dct = pdf.DictionaryObject() for (k, v) in va.items(): if isinstance(v, pdf.DictionaryObject): if v.indirect: v = self._extend(v) v = self._addObject(v) else: v = self._extend(v) elif isinstance(v, list): result = pdf.ArrayObject() for va in v: if isinstance(va, pdf.DictionaryObject): if va.indirect: va = self._extend(va) va = self._addObject(va) else: va = self._extend(va) result.append(va) v = result dct[k] = v va = dct va = self._addObject(va) else: stream = getattr(va, 'stream', None) if stream is not None: d = {'__streamdata__': stream, '/Length': len(stream)} d.update(va) dct = pdf.StreamObject.initializeFromDictionary(d) if '/Filter' in va and va['/Filter'] == '/FlatDecode': del dct['/Filter'] dct = dct.flateEncode() else: dct = pdf.DictionaryObject() for (k, v) in va.items(): if isinstance(v, pdf.DictionaryObject): if v.indirect: v = self._extend(v) v = self._addObject(v) else: v = self._extend(v) elif isinstance(v, list): result = pdf.ArrayObject() for va in v: if isinstance(va, pdf.DictionaryObject): if va.indirect: va = self._extend(va) va = self._addObject(va) else: va = self._extend(va) result.append(va) v = result dct[k] = v va = dct result.append(va) v = result dct[k] = v return dct
endesive
positive
def execute(self, args, timeout): (file, *rest) = args cmd = [sys.executable, example_path(file)] + rest print(cmd) process = subprocess.Popen(cmd, shell=False, env=ENV) <DeepExtract> start = time.monotonic() while time.monotonic() - start < timeout: code = process.poll() if code is not None: code = code time.sleep(poll_interval) code = None </DeepExtract> if code is not None: self.assertEqual(0, code) return print('Interrupting process (Control-C)') os.kill(process.pid, signal.SIGINT) if wait_terminated(process, timeout=5.0) is None: print('Terminating process') os.kill(process.pid, signal.SIGTERM) if wait_terminated(process, timeout=5.0) is None: print('Killing process') os.kill(process.pid, signal.SIGKILL) process.wait() self.fail('Process did not finish in time: %s' % timeout)
def execute(self, args, timeout): (file, *rest) = args cmd = [sys.executable, example_path(file)] + rest print(cmd) process = subprocess.Popen(cmd, shell=False, env=ENV) start = time.monotonic() while time.monotonic() - start < timeout: code = process.poll() if code is not None: code = code time.sleep(poll_interval) code = None if code is not None: self.assertEqual(0, code) return print('Interrupting process (Control-C)') os.kill(process.pid, signal.SIGINT) if wait_terminated(process, timeout=5.0) is None: print('Terminating process') os.kill(process.pid, signal.SIGTERM) if wait_terminated(process, timeout=5.0) is None: print('Killing process') os.kill(process.pid, signal.SIGKILL) process.wait() self.fail('Process did not finish in time: %s' % timeout)
aiyprojects-raspbian
positive
def _split_node(self, split_types: List[str], split_ratio: float, shuffle: bool=True): """ Split the graph into len(split_ratio) graphs for node prediction. Internally this splits node indices, and the model will only compute loss for the embedding of nodes in each split graph. In node classification, the whole graph is observed in train/val/test Only split over node_label_index """ if isinstance(split_types, list): for split_type in split_types: if split_type not in self.node_types: raise TypeError(f'all split_type in split_types need to be in {self.node_types}, however split type: {{split_type}} is in split_types.') elif split_types is None: split_types = self.node_types elif split_types not in self.node_types: raise TypeError(f'split_types need to be in {self.node_types}, however split_types is: {split_types}.') else: split_types = [split_types] for (split_type, num_node_type) in self.num_nodes(split_types).items(): if num_node_type < len(split_ratio): raise ValueError(f'In _split_node num of nodes of node_type: {split_type} are smaller than number of splitted parts.') split_graphs = [] for _ in range(len(split_ratio)): graph_new = copy.copy(self) graph_new.node_label_index = {} graph_new.node_label = {} split_graphs.append(graph_new) for split_type in self.node_types: if split_type in split_types: <DeepExtract> if split_type is None: split_type = self.node_types if isinstance(split_type, str) or isinstance(split_type, int) or isinstance(split_type, float): if split_type in self[self._node_related_key]: split_type_nodes_length = len(self[self._node_related_key][split_type]) else: raise ValueError('Node type does not exist in stored node feature.') if isinstance(split_type, list): if not all((node_type_i in self[self._node_related_key] for node_type_i in split_type)): raise ValueError('Some node types do not exist in stored node feature.') else: num_nodes_dict = {} for node_type_i in split_type: num_nodes_dict[node_type_i] = len(self[self._node_related_key][node_type_i]) split_type_nodes_length = num_nodes_dict else: raise TypeError('Node types have unexpected type.') </DeepExtract> if shuffle: split_type_node = self.node_label_index[split_type][torch.randperm(split_type_nodes_length)] else: split_type_node = self.node_label_index[split_type] split_empty_flag = False nodes_split_list = [] split_offset = 0 for (i, split_ratio_i) in enumerate(split_ratio): if i != len(split_ratio) - 1: num_split_i = int(split_ratio_i * split_type_nodes_length) nodes_split_i = split_type_node[split_offset:split_offset + num_split_i] split_offset += num_split_i else: nodes_split_i = split_type_node[split_offset:] if nodes_split_i.numel() == 0: split_empty_flag = True split_offset = 0 nodes_split_list = [] break nodes_split_list.append(nodes_split_i) if split_empty_flag: for (i, split_ratio_i) in enumerate(split_ratio): if i != len(split_ratio) - 1: num_split_i = 1 + int(split_ratio_i * (split_type_nodes_length - len(split_ratio))) nodes_split_i = split_type_node[split_offset:split_offset + num_split_i] split_offset += num_split_i else: nodes_split_i = split_type_node[split_offset:] nodes_split_list.append(nodes_split_i) for (idx, nodes_split_i) in enumerate(nodes_split_list): split_graphs[idx].node_label_index[split_type] = nodes_split_i split_graphs[idx].node_label[split_type] = self.node_label[split_type][nodes_split_i] else: for (idx, graph) in enumerate(split_graphs): graph.node_label_index[split_type] = self.node_label_index[split_type] graph.node_label[split_type] = self.node_label[split_type] split_graphs[idx] = graph return split_graphs
def _split_node(self, split_types: List[str], split_ratio: float, shuffle: bool=True): """ Split the graph into len(split_ratio) graphs for node prediction. Internally this splits node indices, and the model will only compute loss for the embedding of nodes in each split graph. In node classification, the whole graph is observed in train/val/test Only split over node_label_index """ if isinstance(split_types, list): for split_type in split_types: if split_type not in self.node_types: raise TypeError(f'all split_type in split_types need to be in {self.node_types}, however split type: {{split_type}} is in split_types.') elif split_types is None: split_types = self.node_types elif split_types not in self.node_types: raise TypeError(f'split_types need to be in {self.node_types}, however split_types is: {split_types}.') else: split_types = [split_types] for (split_type, num_node_type) in self.num_nodes(split_types).items(): if num_node_type < len(split_ratio): raise ValueError(f'In _split_node num of nodes of node_type: {split_type} are smaller than number of splitted parts.') split_graphs = [] for _ in range(len(split_ratio)): graph_new = copy.copy(self) graph_new.node_label_index = {} graph_new.node_label = {} split_graphs.append(graph_new) for split_type in self.node_types: if split_type in split_types: if split_type is None: split_type = self.node_types if isinstance(split_type, str) or isinstance(split_type, int) or isinstance(split_type, float): if split_type in self[self._node_related_key]: split_type_nodes_length = len(self[self._node_related_key][split_type]) else: raise ValueError('Node type does not exist in stored node feature.') if isinstance(split_type, list): if not all((node_type_i in self[self._node_related_key] for node_type_i in split_type)): raise ValueError('Some node types do not exist in stored node feature.') else: num_nodes_dict = {} for node_type_i in split_type: num_nodes_dict[node_type_i] = len(self[self._node_related_key][node_type_i]) split_type_nodes_length = num_nodes_dict else: raise TypeError('Node types have unexpected type.') if shuffle: split_type_node = self.node_label_index[split_type][torch.randperm(split_type_nodes_length)] else: split_type_node = self.node_label_index[split_type] split_empty_flag = False nodes_split_list = [] split_offset = 0 for (i, split_ratio_i) in enumerate(split_ratio): if i != len(split_ratio) - 1: num_split_i = int(split_ratio_i * split_type_nodes_length) nodes_split_i = split_type_node[split_offset:split_offset + num_split_i] split_offset += num_split_i else: nodes_split_i = split_type_node[split_offset:] if nodes_split_i.numel() == 0: split_empty_flag = True split_offset = 0 nodes_split_list = [] break nodes_split_list.append(nodes_split_i) if split_empty_flag: for (i, split_ratio_i) in enumerate(split_ratio): if i != len(split_ratio) - 1: num_split_i = 1 + int(split_ratio_i * (split_type_nodes_length - len(split_ratio))) nodes_split_i = split_type_node[split_offset:split_offset + num_split_i] split_offset += num_split_i else: nodes_split_i = split_type_node[split_offset:] nodes_split_list.append(nodes_split_i) for (idx, nodes_split_i) in enumerate(nodes_split_list): split_graphs[idx].node_label_index[split_type] = nodes_split_i split_graphs[idx].node_label[split_type] = self.node_label[split_type][nodes_split_i] else: for (idx, graph) in enumerate(split_graphs): graph.node_label_index[split_type] = self.node_label_index[split_type] graph.node_label[split_type] = self.node_label[split_type] split_graphs[idx] = graph return split_graphs
deepsnap
positive
def apply(self, x): <DeepExtract> x = self.preprocess_core(x) x = x </DeepExtract> <DeepExtract> raise NotImplementedError() </DeepExtract> <DeepExtract> x = self.postprocess_core(x) x = x </DeepExtract> return x
def apply(self, x): x = self.preprocess_core(x) x = x raise NotImplementedError() x = self.postprocess_core(x) x = x return x
bayesian_unet
positive
def assert_block(value, expected): assert value is not None assert value['type'] == expected['type'] assert value['name'] == expected['name'] if value['type'] == 'airspace': assert value['class'] == expected['class'] assert value['floor'] == expected['floor'] assert value['ceiling'] == expected['ceiling'] for x in zip(value['labels'], expected['labels']): <DeepExtract> if not isinstance(expected, list): expected = coordinate(expected) assert isinstance(*x, list) assert len(*x) == 2 assert_float(*x[0], expected[0], 0.0001) assert_float(*x[1], expected[1], 0.0001) </DeepExtract> elif value['type'] == 'terrain': assert value['open'] == expected['open'] assert value['fill'] == expected['fill'] assert value['outline'] == expected['outline'] assert value['zoom'] == expected['zoom'] for (v, e) in zip(value['elements'], expected['elements']): <DeepExtract> assert v['type'] == e['type'] if v['type'] == 'point': assert_location(v['location'], e['location']) elif v['type'] == 'circle': assert_location(v['center'], e['center']) assert v['radius'] == e['radius'] elif v['type'] == 'arc': assert_location(v['center'], e['center']) assert v['clockwise'] == e['clockwise'] if 'radius' in v: assert v['radius'] == e['radius'] assert v['start'] == e['start'] assert v['end'] == e['end'] else: assert_location(v['start'], e['start']) assert_location(v['end'], e['end']) </DeepExtract>
def assert_block(value, expected): assert value is not None assert value['type'] == expected['type'] assert value['name'] == expected['name'] if value['type'] == 'airspace': assert value['class'] == expected['class'] assert value['floor'] == expected['floor'] assert value['ceiling'] == expected['ceiling'] for x in zip(value['labels'], expected['labels']): if not isinstance(expected, list): expected = coordinate(expected) assert isinstance(*x, list) assert len(*x) == 2 assert_float(*x[0], expected[0], 0.0001) assert_float(*x[1], expected[1], 0.0001) elif value['type'] == 'terrain': assert value['open'] == expected['open'] assert value['fill'] == expected['fill'] assert value['outline'] == expected['outline'] assert value['zoom'] == expected['zoom'] for (v, e) in zip(value['elements'], expected['elements']): assert v['type'] == e['type'] if v['type'] == 'point': assert_location(v['location'], e['location']) elif v['type'] == 'circle': assert_location(v['center'], e['center']) assert v['radius'] == e['radius'] elif v['type'] == 'arc': assert_location(v['center'], e['center']) assert v['clockwise'] == e['clockwise'] if 'radius' in v: assert v['radius'] == e['radius'] assert v['start'] == e['start'] assert v['end'] == e['end'] else: assert_location(v['start'], e['start']) assert_location(v['end'], e['end']) </DeepExtract>
aerofiles
positive
def compute_dr_wrt(self, wrt): if wrt is self.a: if False: from scipy.sparse.linalg.interface import LinearOperator return LinearOperator((self.size, wrt.size), lambda x: self.reorder(x.reshape(self.a.shape)).ravel()) else: a = self.a asz = a.size ashape = a.shape <DeepExtract> key = None </DeepExtract> if key not in self.dr_lookup or key is None: <DeepExtract> JS = np.sort(np.arange(asz).reshape(ashape), self.axis, self.kind, self.order) </DeepExtract> IS = np.arange(JS.size) data = np.ones_like(IS) shape = JS.shape self.dr_lookup[key] = sp.csc_matrix((data, (IS, JS.ravel())), shape=(self.r.size, wrt.r.size)) return self.dr_lookup[key]
def compute_dr_wrt(self, wrt): if wrt is self.a: if False: from scipy.sparse.linalg.interface import LinearOperator return LinearOperator((self.size, wrt.size), lambda x: self.reorder(x.reshape(self.a.shape)).ravel()) else: a = self.a asz = a.size ashape = a.shape key = None if key not in self.dr_lookup or key is None: JS = np.sort(np.arange(asz).reshape(ashape), self.axis, self.kind, self.order) IS = np.arange(JS.size) data = np.ones_like(IS) shape = JS.shape self.dr_lookup[key] = sp.csc_matrix((data, (IS, JS.ravel())), shape=(self.r.size, wrt.r.size)) return self.dr_lookup[key]
chumpy
positive
def strongly_connected_components(self): """ Compute the vertices in the strongly connected components :return list of lists, one for each component's vertices: """ <DeepExtract> stack = [] visited = set() for v in self.get_vertex(): self.dfs_forward(v, stack, visited) stack = stack </DeepExtract> <DeepExtract> components = [] visited = set() while stack: v = stack.pop() if v not in visited: component = [] self.dfs_reverse(v, component, visited) component.reverse() components.append(component) components = components </DeepExtract> return components
def strongly_connected_components(self): """ Compute the vertices in the strongly connected components :return list of lists, one for each component's vertices: """ stack = [] visited = set() for v in self.get_vertex(): self.dfs_forward(v, stack, visited) stack = stack components = [] visited = set() while stack: v = stack.pop() if v not in visited: component = [] self.dfs_reverse(v, component, visited) component.reverse() components.append(component) components = components return components
code-catalog-python
positive
def read(self): """Loads all lines in memory""" <DeepExtract> lines = list(iter(self)) </DeepExtract> if self.metadata and 'encoding' in self.metadata: encoding = self.metadata['encoding'] else: encoding = 'utf-8' return '\n'.join((str(line, 'utf-8') if isinstance(line, bytes) else line for line in lines))
def read(self): """Loads all lines in memory""" lines = list(iter(self)) if self.metadata and 'encoding' in self.metadata: encoding = self.metadata['encoding'] else: encoding = 'utf-8' return '\n'.join((str(line, 'utf-8') if isinstance(line, bytes) else line for line in lines))
clam
positive
def _run_navigation_episode(agent, client, time_out, target, episode_name): """ Run one episode of the benchmark (Pose) for a certain agent. Args: agent: the agent object client: an object of the carla client to communicate with the CARLA simulator time_out: the time limit to complete this episode target: the target to reach episode_name: The name for saving images of this episode """ (measurements, sensor_data) = client.read_data() client.send_control(VehicleControl()) initial_timestamp = measurements.game_timestamp current_timestamp = initial_timestamp measurement_vec = [] control_vec = [] frame = 0 distance = 10000 success = False while current_timestamp - initial_timestamp < time_out * 1000 and (not success): (measurements, sensor_data) = client.read_data() <DeepExtract> directions = self._planner.get_next_command((measurements.player_measurements.transform.location.x, measurements.player_measurements.transform.location.y, 0.22), (measurements.player_measurements.transform.orientation.x, measurements.player_measurements.transform.orientation.y, measurements.player_measurements.transform.orientation.z), (target.location.x, target.location.y, 0.22), (target.orientation.x, target.orientation.y, target.orientation.z)) directions = directions </DeepExtract> control = agent.run_step(measurements, sensor_data, directions, target) client.send_control(control) self._recording.save_images(sensor_data, episode_name, frame) current_x = measurements.player_measurements.transform.location.x current_y = measurements.player_measurements.transform.location.y logging.info('Controller is Inputting:') logging.info('Steer = %f Throttle = %f Brake = %f ', control.steer, control.throttle, control.brake) current_timestamp = measurements.game_timestamp <DeepExtract> distance = math.sqrt(([target.location.x, target.location.y][0] - [current_x, current_y][0]) ** 2 + ([target.location.x, target.location.y][1] - [current_x, current_y][1]) ** 2) </DeepExtract> logging.info('Status:') logging.info('[d=%f] c_x = %f, c_y = %f ---> t_x = %f, t_y = %f', float(distance), current_x, current_y, target.location.x, target.location.y) if distance < self._distance_for_success: success = True frame += 1 measurement_vec.append(measurements.player_measurements) control_vec.append(control) if success: return (1, measurement_vec, control_vec, float(current_timestamp - initial_timestamp) / 1000.0, distance) return (0, measurement_vec, control_vec, time_out, distance)
def _run_navigation_episode(agent, client, time_out, target, episode_name): """ Run one episode of the benchmark (Pose) for a certain agent. Args: agent: the agent object client: an object of the carla client to communicate with the CARLA simulator time_out: the time limit to complete this episode target: the target to reach episode_name: The name for saving images of this episode """ (measurements, sensor_data) = client.read_data() client.send_control(VehicleControl()) initial_timestamp = measurements.game_timestamp current_timestamp = initial_timestamp measurement_vec = [] control_vec = [] frame = 0 distance = 10000 success = False while current_timestamp - initial_timestamp < time_out * 1000 and (not success): (measurements, sensor_data) = client.read_data() directions = self._planner.get_next_command((measurements.player_measurements.transform.location.x, measurements.player_measurements.transform.location.y, 0.22), (measurements.player_measurements.transform.orientation.x, measurements.player_measurements.transform.orientation.y, measurements.player_measurements.transform.orientation.z), (target.location.x, target.location.y, 0.22), (target.orientation.x, target.orientation.y, target.orientation.z)) directions = directions control = agent.run_step(measurements, sensor_data, directions, target) client.send_control(control) self._recording.save_images(sensor_data, episode_name, frame) current_x = measurements.player_measurements.transform.location.x current_y = measurements.player_measurements.transform.location.y logging.info('Controller is Inputting:') logging.info('Steer = %f Throttle = %f Brake = %f ', control.steer, control.throttle, control.brake) current_timestamp = measurements.game_timestamp distance = math.sqrt(([target.location.x, target.location.y][0] - [current_x, current_y][0]) ** 2 + ([target.location.x, target.location.y][1] - [current_x, current_y][1]) ** 2) logging.info('Status:') logging.info('[d=%f] c_x = %f, c_y = %f ---> t_x = %f, t_y = %f', float(distance), current_x, current_y, target.location.x, target.location.y) if distance < self._distance_for_success: success = True frame += 1 measurement_vec.append(measurements.player_measurements) control_vec.append(control) if success: return (1, measurement_vec, control_vec, float(current_timestamp - initial_timestamp) / 1000.0, distance) return (0, measurement_vec, control_vec, time_out, distance)
carla-rl
positive
def post(self, path, payload, callback=None, timeout=None, no_response=False, **kwargs): """ Perform a POST on a certain path. :param path: the path :param payload: the request payload :param callback: the callback function to invoke upon response :param timeout: the timeout of the request :return: the response """ <DeepExtract> request = Request() request.destination = self.server request.code = defines.Codes.POST.number request.uri_path = path request = request </DeepExtract> request.token = generate_random_token(2) request.payload = payload if no_response: request.add_no_response() request.type = defines.Types['NON'] for (k, v) in kwargs.items(): if hasattr(request, k): setattr(request, k, v) return self.send_request(request, callback, timeout, no_response=no_response)
def post(self, path, payload, callback=None, timeout=None, no_response=False, **kwargs): """ Perform a POST on a certain path. :param path: the path :param payload: the request payload :param callback: the callback function to invoke upon response :param timeout: the timeout of the request :return: the response """ request = Request() request.destination = self.server request.code = defines.Codes.POST.number request.uri_path = path request = request request.token = generate_random_token(2) request.payload = payload if no_response: request.add_no_response() request.type = defines.Types['NON'] for (k, v) in kwargs.items(): if hasattr(request, k): setattr(request, k, v) return self.send_request(request, callback, timeout, no_response=no_response)
CoAPthon3
positive
def do_config(self): <DeepExtract> loginfile = os.path.expanduser(LOGINFILE) configfile = os.path.expanduser(DATAFILE) configdir = os.path.dirname(configfile) values = {'configdir': configdir, 'value': configfile, 'loginfile': loginfile} values = values </DeepExtract> <DeepExtract> format = format or VAULT_FORMAT field = field or VAULT_FIELD if field: if field not in values: logg.error('no such field %s/%s %s', section, name, field) raise VaultError('requested field not found') sys.stdout.write(values[field]) elif format in ['table', '']: for name in sorted(values): print(name, values[name]) elif format in ['json', '']: print(json.dumps({'data': values})) else: print(values['value']) </DeepExtract>
def do_config(self): loginfile = os.path.expanduser(LOGINFILE) configfile = os.path.expanduser(DATAFILE) configdir = os.path.dirname(configfile) values = {'configdir': configdir, 'value': configfile, 'loginfile': loginfile} values = values format = format or VAULT_FORMAT field = field or VAULT_FIELD if field: if field not in values: logg.error('no such field %s/%s %s', section, name, field) raise VaultError('requested field not found') sys.stdout.write(values[field]) elif format in ['table', '']: for name in sorted(values): print(name, values[name]) elif format in ['json', '']: print(json.dumps({'data': values})) else: print(values['value']) </DeepExtract>
docker-systemctl-images
positive
def _save(self, state_vec, other_vecs=[]): self.state_vec = state_vec <DeepExtract> (inner_low, inner_high) = low_high(self.inner_diameters) (outer_low, outer_high) = low_high(self.outer_diameters) (inner_angle_low, inner_angle_high) = low_high(self.inner_angles) (outer_angle_low, outer_angle_high) = low_high(self.outer_angles) inst = self.instrument_class() scale = self.scale p = 0 inst.length = state_vec[0] * self.initial_length * scale p += 1 inst.hole_positions = [item * inst.length for item in state_vec[p:p + self.n_holes]] p += self.n_holes signed_sqrt = lambda x: math.sqrt(abs(x)) * (1 if x >= 0 else -1) inst.hole_diameters = [self.min_hole_diameters[i] + signed_sqrt(item) * (self.max_hole_diameters[i] - self.min_hole_diameters[i]) for (i, item) in enumerate(state_vec[p:p + self.n_holes])] p += self.n_holes inner_kinks = [item * inst.length for item in state_vec[p:p + len(self.inner_diameters) - 2]] p += len(self.inner_diameters) - 2 outer_kinks = [item * inst.length for item in state_vec[p:p + len(self.outer_diameters) - 2]] p += len(self.outer_diameters) - 2 assert p == len(state_vec) inst.inner = profile.curved_profile([0.0] + inner_kinks + [inst.length], inner_low, inner_high, inner_angle_low, inner_angle_high) inst.outer = profile.curved_profile([0.0] + outer_kinks + [inst.length], outer_low, outer_high, outer_angle_low, outer_angle_high) if self.outer_add: inst.outer = inst.outer + inst.inner inst.hole_angles = self.hole_angles inst.inner_hole_positions = [None] * self.n_holes inst.hole_lengths = [None] * self.n_holes for i in range(self.n_holes): radians = inst.hole_angles[i] * math.pi / 180.0 thickness = (inst.outer(inst.hole_positions[i]) - inst.inner(inst.hole_positions[i])) * 0.5 shift = math.sin(radians) * thickness inst.inner_hole_positions[i] = inst.hole_positions[i] + shift inst.hole_lengths[i] = math.sqrt(thickness * thickness + shift * shift) inst.inner_kinks = inner_kinks inst.outer_kinks = outer_kinks inst.cone_step = self.cone_step inst.closed_top = self.closed_top self.instrument = inst </DeepExtract> with open(os.path.join(self.output_dir, 'data.pickle'), 'wb') as f: if sys.version_info.major == 3: pickle.dump(self, f, fix_imports=True) else: pickle.dump(self, f) <DeepExtract> patched_instrument = self.instrument </DeepExtract> patched_instrument.prepare() patched_instrument.prepare_phase() diagram = svg.SVG() for vec in random.sample(other_vecs, min(20, len(other_vecs))): <DeepExtract> instrument = self.unpack(vec) instrument.prepare() for i in range(self.n_holes): diagram.circle(0.0, -instrument.inner_hole_positions[i], instrument.hole_diameters[i], '#ffaaaa') diagram.circle(0.0, -instrument.hole_positions[i], instrument.hole_diameters[i], '#aaaaaa') diagram.profile(instrument.outer, '#aaaaaa') diagram.profile(instrument.stepped_inner, '#aaaaaa') if self.closed_top: d = instrument.stepped_inner(instrument.length) diagram.line([(-0.5 * d, -instrument.length), (0.5 * d, -instrument.length)], '#aaaaaa') tick_x = instrument.outer.maximum() * -0.625 for pos in instrument.inner_kinks: diagram.line([(tick_x, -pos), (tick_x - 5, -pos)], '#aaaaaa') for pos in instrument.inner.pos[1:-1]: diagram.line([(tick_x - 2, -pos), (tick_x - 3, -pos)], '#aaaaaa') for pos in instrument.outer_kinks: diagram.line([(tick_x - 10, -pos), (tick_x - 15, -pos)], '#aaaaaa') for pos in instrument.outer.pos[1:-1]: diagram.line([(tick_x - 12, -pos), (tick_x - 13, -pos)], '#aaaaaa') </DeepExtract> <DeepExtract> instrument = self.unpack(state_vec) instrument.prepare() for i in range(self.n_holes): diagram.circle(0.0, -instrument.inner_hole_positions[i], instrument.hole_diameters[i], red_color) diagram.circle(0.0, -instrument.hole_positions[i], instrument.hole_diameters[i], color) diagram.profile(instrument.outer, color) diagram.profile(instrument.stepped_inner, color) if self.closed_top: d = instrument.stepped_inner(instrument.length) diagram.line([(-0.5 * d, -instrument.length), (0.5 * d, -instrument.length)], color) tick_x = instrument.outer.maximum() * -0.625 for pos in instrument.inner_kinks: diagram.line([(tick_x, -pos), (tick_x - 5, -pos)], color) for pos in instrument.inner.pos[1:-1]: diagram.line([(tick_x - 2, -pos), (tick_x - 3, -pos)], color) for pos in instrument.outer_kinks: diagram.line([(tick_x - 10, -pos), (tick_x - 15, -pos)], color) for pos in instrument.outer.pos[1:-1]: diagram.line([(tick_x - 12, -pos), (tick_x - 13, -pos)], color) </DeepExtract> text_x = diagram.max_x * 1.25 text_y = 0 for i in range(self.n_holes): this_y = min(text_y, -self.instrument.hole_positions[i]) text_y = diagram.text(text_x, this_y, '%.1fmm' % self.instrument.hole_diameters[i]) diagram.text(text_x + 90.0, this_y, 'at %.1fmm' % self.instrument.hole_positions[i]) if i < self.n_holes - 1: this_y = min(text_y, -0.5 * (self.instrument.hole_positions[i] + self.instrument.hole_positions[i + 1])) diagram.text(text_x + 45.0, this_y, '%.1fmm' % (self.instrument.hole_positions[i + 1] - self.instrument.hole_positions[i])) diagram.text(text_x + 90.0, min(text_y, -self.instrument.length), '%.1fmm' % self.instrument.length) text_x = diagram.max_x graph_x = text_x + 200 emit_x = graph_x + 220 text_y = 0 for item in self.fingerings: note = item[0] fingers = item[1] <DeepExtract> if isinstance(note, str): note = SPEED_OF_SOUND / fqc(note) w1 = note / 2 ** (self.transpose / 12.0) </DeepExtract> if len(item) < 3: w2 = patched_instrument.true_wavelength_near(w1, fingers) else: w2 = patched_instrument.true_nth_wavelength_near(w1, fingers, item[2]) cents = int(round(log2(w2 / w1) * 1200.0)) n_probes = 301 max_cents = 2400.0 width = 200.0 step = pow(0.5, max_cents / ((n_probes - 1) * 0.5 * 1200.0)) low = w1 * pow(step, -(n_probes - 1) / 2.0) probes = [low * pow(step, i) for i in range(n_probes)] scores = [patched_instrument.resonance_phase(probe, fingers) for probe in probes] points = [(graph_x + i * width / n_probes, text_y - ((score + 0.5) % 1.0 - 0.5) * 14.0) for (i, score) in enumerate(scores)] for i in range(len(probes) - 1): c = math.floor(scores[i] + 0.5) if c != math.floor(scores[i + 1] + 0.5): continue (r, g, b) = [int((math.cos((c / 5.0 + offset) * math.pi * 2.0) * 0.5 + 0.5) * 200) for offset in [0.0, 1.0 / 3, 2.0 / 3]] diagram.line(points[i:i + 2], '#%02x%02x%02x' % (r, g, b), 0.2) diagram.line([(graph_x + width * 0.5, text_y + 7), (graph_x + width * 0.5, text_y - 7)], '#0000ff', 0.2) diagram.line([(graph_x, text_y), (graph_x + width, text_y)], '#0000ff', 0.2) diagram.text(text_x, text_y, '%5s %s %-4d cents' % (describe(w1), ' ' if cents == 0 else ' flat' if cents > 0 else 'sharp', abs(cents))) phase = patched_instrument.resonance_phase(w2, fingers) diagram.text(emit_x, text_y, '%f' % phase) text_y -= 25 diagram.text(graph_x, text_y - 10, 'Nearby resonances:', color='#000000') text_y -= 50.0 + 10.0 * max(len(self.inner_diameters), len(self.outer_diameters)) diagram.text(graph_x - 150.0, text_y, 'Outer diameters:', color='#000000') kinks = [0.0] + self.instrument.outer_kinks + [self.instrument.length] for (i, item) in enumerate(self.outer_diameters): diagram.text(graph_x - 150.0, text_y + 10.0 + (len(self.outer_diameters) - i) * 10.0, describe_low_high(item) + 'mm at %.1fmm' % kinks[i]) diagram.text(graph_x, text_y, 'Inner diameters:', color='#000000') kinks = [0.0] + self.instrument.inner_kinks + [self.instrument.length] for (i, item) in enumerate(self.inner_diameters): diagram.text(graph_x, text_y + 10.0 + (len(self.inner_diameters) - i) * 10.0, describe_low_high(item) + 'mm at %.1fmm' % kinks[i]) diagram.save(os.path.join(self.output_dir, 'diagram.svg')) del self.instrument
def _save(self, state_vec, other_vecs=[]): self.state_vec = state_vec (inner_low, inner_high) = low_high(self.inner_diameters) (outer_low, outer_high) = low_high(self.outer_diameters) (inner_angle_low, inner_angle_high) = low_high(self.inner_angles) (outer_angle_low, outer_angle_high) = low_high(self.outer_angles) inst = self.instrument_class() scale = self.scale p = 0 inst.length = state_vec[0] * self.initial_length * scale p += 1 inst.hole_positions = [item * inst.length for item in state_vec[p:p + self.n_holes]] p += self.n_holes signed_sqrt = lambda x: math.sqrt(abs(x)) * (1 if x >= 0 else -1) inst.hole_diameters = [self.min_hole_diameters[i] + signed_sqrt(item) * (self.max_hole_diameters[i] - self.min_hole_diameters[i]) for (i, item) in enumerate(state_vec[p:p + self.n_holes])] p += self.n_holes inner_kinks = [item * inst.length for item in state_vec[p:p + len(self.inner_diameters) - 2]] p += len(self.inner_diameters) - 2 outer_kinks = [item * inst.length for item in state_vec[p:p + len(self.outer_diameters) - 2]] p += len(self.outer_diameters) - 2 assert p == len(state_vec) inst.inner = profile.curved_profile([0.0] + inner_kinks + [inst.length], inner_low, inner_high, inner_angle_low, inner_angle_high) inst.outer = profile.curved_profile([0.0] + outer_kinks + [inst.length], outer_low, outer_high, outer_angle_low, outer_angle_high) if self.outer_add: inst.outer = inst.outer + inst.inner inst.hole_angles = self.hole_angles inst.inner_hole_positions = [None] * self.n_holes inst.hole_lengths = [None] * self.n_holes for i in range(self.n_holes): radians = inst.hole_angles[i] * math.pi / 180.0 thickness = (inst.outer(inst.hole_positions[i]) - inst.inner(inst.hole_positions[i])) * 0.5 shift = math.sin(radians) * thickness inst.inner_hole_positions[i] = inst.hole_positions[i] + shift inst.hole_lengths[i] = math.sqrt(thickness * thickness + shift * shift) inst.inner_kinks = inner_kinks inst.outer_kinks = outer_kinks inst.cone_step = self.cone_step inst.closed_top = self.closed_top self.instrument = inst with open(os.path.join(self.output_dir, 'data.pickle'), 'wb') as f: if sys.version_info.major == 3: pickle.dump(self, f, fix_imports=True) else: pickle.dump(self, f) patched_instrument = self.instrument patched_instrument.prepare() patched_instrument.prepare_phase() diagram = svg.SVG() for vec in random.sample(other_vecs, min(20, len(other_vecs))): instrument = self.unpack(vec) instrument.prepare() for i in range(self.n_holes): diagram.circle(0.0, -instrument.inner_hole_positions[i], instrument.hole_diameters[i], '#ffaaaa') diagram.circle(0.0, -instrument.hole_positions[i], instrument.hole_diameters[i], '#aaaaaa') diagram.profile(instrument.outer, '#aaaaaa') diagram.profile(instrument.stepped_inner, '#aaaaaa') if self.closed_top: d = instrument.stepped_inner(instrument.length) diagram.line([(-0.5 * d, -instrument.length), (0.5 * d, -instrument.length)], '#aaaaaa') tick_x = instrument.outer.maximum() * -0.625 for pos in instrument.inner_kinks: diagram.line([(tick_x, -pos), (tick_x - 5, -pos)], '#aaaaaa') for pos in instrument.inner.pos[1:-1]: diagram.line([(tick_x - 2, -pos), (tick_x - 3, -pos)], '#aaaaaa') for pos in instrument.outer_kinks: diagram.line([(tick_x - 10, -pos), (tick_x - 15, -pos)], '#aaaaaa') for pos in instrument.outer.pos[1:-1]: diagram.line([(tick_x - 12, -pos), (tick_x - 13, -pos)], '#aaaaaa') instrument = self.unpack(state_vec) instrument.prepare() for i in range(self.n_holes): diagram.circle(0.0, -instrument.inner_hole_positions[i], instrument.hole_diameters[i], red_color) diagram.circle(0.0, -instrument.hole_positions[i], instrument.hole_diameters[i], color) diagram.profile(instrument.outer, color) diagram.profile(instrument.stepped_inner, color) if self.closed_top: d = instrument.stepped_inner(instrument.length) diagram.line([(-0.5 * d, -instrument.length), (0.5 * d, -instrument.length)], color) tick_x = instrument.outer.maximum() * -0.625 for pos in instrument.inner_kinks: diagram.line([(tick_x, -pos), (tick_x - 5, -pos)], color) for pos in instrument.inner.pos[1:-1]: diagram.line([(tick_x - 2, -pos), (tick_x - 3, -pos)], color) for pos in instrument.outer_kinks: diagram.line([(tick_x - 10, -pos), (tick_x - 15, -pos)], color) for pos in instrument.outer.pos[1:-1]: diagram.line([(tick_x - 12, -pos), (tick_x - 13, -pos)], color) text_x = diagram.max_x * 1.25 text_y = 0 for i in range(self.n_holes): this_y = min(text_y, -self.instrument.hole_positions[i]) text_y = diagram.text(text_x, this_y, '%.1fmm' % self.instrument.hole_diameters[i]) diagram.text(text_x + 90.0, this_y, 'at %.1fmm' % self.instrument.hole_positions[i]) if i < self.n_holes - 1: this_y = min(text_y, -0.5 * (self.instrument.hole_positions[i] + self.instrument.hole_positions[i + 1])) diagram.text(text_x + 45.0, this_y, '%.1fmm' % (self.instrument.hole_positions[i + 1] - self.instrument.hole_positions[i])) diagram.text(text_x + 90.0, min(text_y, -self.instrument.length), '%.1fmm' % self.instrument.length) text_x = diagram.max_x graph_x = text_x + 200 emit_x = graph_x + 220 text_y = 0 for item in self.fingerings: note = item[0] fingers = item[1] if isinstance(note, str): note = SPEED_OF_SOUND / fqc(note) w1 = note / 2 ** (self.transpose / 12.0) if len(item) < 3: w2 = patched_instrument.true_wavelength_near(w1, fingers) else: w2 = patched_instrument.true_nth_wavelength_near(w1, fingers, item[2]) cents = int(round(log2(w2 / w1) * 1200.0)) n_probes = 301 max_cents = 2400.0 width = 200.0 step = pow(0.5, max_cents / ((n_probes - 1) * 0.5 * 1200.0)) low = w1 * pow(step, -(n_probes - 1) / 2.0) probes = [low * pow(step, i) for i in range(n_probes)] scores = [patched_instrument.resonance_phase(probe, fingers) for probe in probes] points = [(graph_x + i * width / n_probes, text_y - ((score + 0.5) % 1.0 - 0.5) * 14.0) for (i, score) in enumerate(scores)] for i in range(len(probes) - 1): c = math.floor(scores[i] + 0.5) if c != math.floor(scores[i + 1] + 0.5): continue (r, g, b) = [int((math.cos((c / 5.0 + offset) * math.pi * 2.0) * 0.5 + 0.5) * 200) for offset in [0.0, 1.0 / 3, 2.0 / 3]] diagram.line(points[i:i + 2], '#%02x%02x%02x' % (r, g, b), 0.2) diagram.line([(graph_x + width * 0.5, text_y + 7), (graph_x + width * 0.5, text_y - 7)], '#0000ff', 0.2) diagram.line([(graph_x, text_y), (graph_x + width, text_y)], '#0000ff', 0.2) diagram.text(text_x, text_y, '%5s %s %-4d cents' % (describe(w1), ' ' if cents == 0 else ' flat' if cents > 0 else 'sharp', abs(cents))) phase = patched_instrument.resonance_phase(w2, fingers) diagram.text(emit_x, text_y, '%f' % phase) text_y -= 25 diagram.text(graph_x, text_y - 10, 'Nearby resonances:', color='#000000') text_y -= 50.0 + 10.0 * max(len(self.inner_diameters), len(self.outer_diameters)) diagram.text(graph_x - 150.0, text_y, 'Outer diameters:', color='#000000') kinks = [0.0] + self.instrument.outer_kinks + [self.instrument.length] for (i, item) in enumerate(self.outer_diameters): diagram.text(graph_x - 150.0, text_y + 10.0 + (len(self.outer_diameters) - i) * 10.0, describe_low_high(item) + 'mm at %.1fmm' % kinks[i]) diagram.text(graph_x, text_y, 'Inner diameters:', color='#000000') kinks = [0.0] + self.instrument.inner_kinks + [self.instrument.length] for (i, item) in enumerate(self.inner_diameters): diagram.text(graph_x, text_y + 10.0 + (len(self.inner_diameters) - i) * 10.0, describe_low_high(item) + 'mm at %.1fmm' % kinks[i]) diagram.save(os.path.join(self.output_dir, 'diagram.svg')) del self.instrument
demakein
positive
def _load_data(self, normalise=True): data = [] for (field, label) in self._fields: if normalise: <DeepExtract> array = (field.to_numpy() - np.amin(field.to_numpy())) / (np.amax(field.to_numpy()) - np.amin(field.to_numpy())) </DeepExtract> else: array = field.to_numpy() data.append((array, label, field)) return data
def _load_data(self, normalise=True): data = [] for (field, label) in self._fields: if normalise: array = (field.to_numpy() - np.amin(field.to_numpy())) / (np.amax(field.to_numpy()) - np.amin(field.to_numpy())) else: array = field.to_numpy() data.append((array, label, field)) return data
climetlab
positive
def increment(self, method=None, url=None, response=None, error=None, _pool=None, _stacktrace=None): """ Return a new Retry object with incremented retry counters. :param response: A response object, or None, if the server did not return a response. :type response: :class:`~urllib3.response.HTTPResponse` :param Exception error: An error encountered during the request, or None if the response was received successfully. :return: A new ``Retry`` object. """ if self.total is False and error: raise six.reraise(type(error), error, _stacktrace) total = self.total if total is not None: total -= 1 _observed_errors = self._observed_errors connect = self.connect read = self.read redirect = self.redirect if error and self._is_connection_error(error): if connect is False: raise six.reraise(type(error), error, _stacktrace) elif connect is not None: connect -= 1 _observed_errors += 1 elif error and self._is_read_error(error): if read is False: raise six.reraise(type(error), error, _stacktrace) elif read is not None: read -= 1 _observed_errors += 1 elif response and response.get_redirect_location(): if redirect is not None: redirect -= 1 else: _observed_errors += 1 <DeepExtract> params = dict(total=self.total, connect=self.connect, read=self.read, redirect=self.redirect, method_whitelist=self.method_whitelist, status_forcelist=self.status_forcelist, backoff_factor=self.backoff_factor, raise_on_redirect=self.raise_on_redirect, _observed_errors=self._observed_errors) params.update(kw) new_retry = type(self)(**params) </DeepExtract> if new_retry.is_exhausted(): raise MaxRetryError(_pool, url, error) log.debug("Incremented Retry for (url='%s'): %r" % (url, new_retry)) return new_retry
def increment(self, method=None, url=None, response=None, error=None, _pool=None, _stacktrace=None): """ Return a new Retry object with incremented retry counters. :param response: A response object, or None, if the server did not return a response. :type response: :class:`~urllib3.response.HTTPResponse` :param Exception error: An error encountered during the request, or None if the response was received successfully. :return: A new ``Retry`` object. """ if self.total is False and error: raise six.reraise(type(error), error, _stacktrace) total = self.total if total is not None: total -= 1 _observed_errors = self._observed_errors connect = self.connect read = self.read redirect = self.redirect if error and self._is_connection_error(error): if connect is False: raise six.reraise(type(error), error, _stacktrace) elif connect is not None: connect -= 1 _observed_errors += 1 elif error and self._is_read_error(error): if read is False: raise six.reraise(type(error), error, _stacktrace) elif read is not None: read -= 1 _observed_errors += 1 elif response and response.get_redirect_location(): if redirect is not None: redirect -= 1 else: _observed_errors += 1 params = dict(total=self.total, connect=self.connect, read=self.read, redirect=self.redirect, method_whitelist=self.method_whitelist, status_forcelist=self.status_forcelist, backoff_factor=self.backoff_factor, raise_on_redirect=self.raise_on_redirect, _observed_errors=self._observed_errors) params.update(kw) new_retry = type(self)(**params) if new_retry.is_exhausted(): raise MaxRetryError(_pool, url, error) log.debug("Incremented Retry for (url='%s'): %r" % (url, new_retry)) return new_retry
crunchy-xml-decoder
positive
def test_valid_data(self): <DeepExtract> form = ProfileForm(user=self.standard_user, data={'full_name': name, 'bio': 'My bio', 'roles': [self.mentor.id, self.mentee.id]}) </DeepExtract> self.assertTrue(form.is_valid())
def test_valid_data(self): form = ProfileForm(user=self.standard_user, data={'full_name': name, 'bio': 'My bio', 'roles': [self.mentor.id, self.mentee.id]}) self.assertTrue(form.is_valid())
connect
positive
def _Bitand(self, t): """ Bit and operation. """ for (i, node) in enumerate(t.nodes): <DeepExtract> self.f.write('(') </DeepExtract> <DeepExtract> if isinstance(node, list): for t in node: self._dispatch(t) return meth = getattr(self, '_' + node.__class__.__name__) if node.__class__.__name__ == 'NoneType' and (not self._do_indent): return meth(node) </DeepExtract> <DeepExtract> self.f.write(')') </DeepExtract> if i != len(t.nodes) - 1: <DeepExtract> self.f.write(' & ') </DeepExtract>
def _Bitand(self, t): """ Bit and operation. """ for (i, node) in enumerate(t.nodes): self.f.write('(') if isinstance(node, list): for t in node: self._dispatch(t) return meth = getattr(self, '_' + node.__class__.__name__) if node.__class__.__name__ == 'NoneType' and (not self._do_indent): return meth(node) self.f.write(')') if i != len(t.nodes) - 1: self.f.write(' & ') </DeepExtract>
biom-format
positive
def startmonitoring(self, onoff): if onoff: if self.oktostart: <DeepExtract> self.framecombo.setEnabled(False) self.stopthread() self.snifferthread = snifferThread(self.ecu_filter, self.ecurequests.baudrate) self.snifferthread.dataready.connect(self.callback) self.snifferthread.start() </DeepExtract> else: <DeepExtract> if self.snifferthread: self.snifferthread.stop() self.snifferthread.dataready.disconnect() self.snifferthread.quit() self.snifferthread = None self.framecombo.setEnabled(True) </DeepExtract>
def startmonitoring(self, onoff): if onoff: if self.oktostart: self.framecombo.setEnabled(False) self.stopthread() self.snifferthread = snifferThread(self.ecu_filter, self.ecurequests.baudrate) self.snifferthread.dataready.connect(self.callback) self.snifferthread.start() else: if self.snifferthread: self.snifferthread.stop() self.snifferthread.dataready.disconnect() self.snifferthread.quit() self.snifferthread = None self.framecombo.setEnabled(True) </DeepExtract>
ddt4all
positive
def __init__(self, parent): super().__init__(parent) self.mp3s = [] drop_target = DropTarget(self) self.SetDropTarget(drop_target) main_sizer = wx.BoxSizer(wx.VERTICAL) self.mp3_olv = ObjectListView(self, style=wx.LC_REPORT | wx.SUNKEN_BORDER) self.mp3_olv.SetEmptyListMsg('No Mp3s Found') <DeepExtract> self.mp3_olv.SetColumns([ColumnDefn('Artist', 'left', 100, 'artist'), ColumnDefn('Album', 'left', 100, 'album'), ColumnDefn('Title', 'left', 150, 'title'), ColumnDefn('Year', 'left', 100, 'year')]) self.mp3_olv.SetObjects(self.mp3s) </DeepExtract> main_sizer.Add(self.mp3_olv, 1, wx.ALL | wx.EXPAND, 5) edit_btn = wx.Button(self, label='Edit Mp3') edit_btn.Bind(wx.EVT_BUTTON, self.edit_mp3) main_sizer.Add(edit_btn, 0, wx.ALL | wx.CENTER, 5) self.SetSizer(main_sizer)
def __init__(self, parent): super().__init__(parent) self.mp3s = [] drop_target = DropTarget(self) self.SetDropTarget(drop_target) main_sizer = wx.BoxSizer(wx.VERTICAL) self.mp3_olv = ObjectListView(self, style=wx.LC_REPORT | wx.SUNKEN_BORDER) self.mp3_olv.SetEmptyListMsg('No Mp3s Found') self.mp3_olv.SetColumns([ColumnDefn('Artist', 'left', 100, 'artist'), ColumnDefn('Album', 'left', 100, 'album'), ColumnDefn('Title', 'left', 150, 'title'), ColumnDefn('Year', 'left', 100, 'year')]) self.mp3_olv.SetObjects(self.mp3s) main_sizer.Add(self.mp3_olv, 1, wx.ALL | wx.EXPAND, 5) edit_btn = wx.Button(self, label='Edit Mp3') edit_btn.Bind(wx.EVT_BUTTON, self.edit_mp3) main_sizer.Add(edit_btn, 0, wx.ALL | wx.CENTER, 5) self.SetSizer(main_sizer)
applications_with_wxpython
positive
def __init__(self, objectType, instance, objectName, properties=None, description='', presentValue=None, is_commandable=False, relinquish_default=None): self._properties = ObjectFactory.default_properties(objectType, properties, is_commandable, relinquish_default) pv_datatype = ObjectFactory.get_pv_datatype(objectType) if not isinstance(presentValue, pv_datatype): try: presentValue = pv_datatype(presentValue) except: raise ValueError('Wrong datatype provided for presentValue') @bacnet_properties(self._properties) @make_commandable() def _create_commandable(objectType, instance, objectName, presentValue, description): return create(objectType, instance, objectName, presentValue, description) @bacnet_properties(self._properties) def _create(objectType, instance, objectName, presentValue, description): return create(objectType, instance, objectName, presentValue, description) <DeepExtract> name_must_be_changed = False if objectName in self.objects.keys(): name_must_be_changed = True instance = self.validate_instance(objectType, instance) if name_must_be_changed: objectName = '{}-{}'.format(objectName, instance) self._log.warning('Name already taken, using {} instead'.format(objectName)) (objectName, instance) = (objectName, instance) </DeepExtract> if is_commandable: <DeepExtract> self.objects[objectName] = create(objectType, instance, objectName, presentValue, description) </DeepExtract> else: <DeepExtract> self.objects[objectName] = create(objectType, instance, objectName, presentValue, description) </DeepExtract>
def __init__(self, objectType, instance, objectName, properties=None, description='', presentValue=None, is_commandable=False, relinquish_default=None): self._properties = ObjectFactory.default_properties(objectType, properties, is_commandable, relinquish_default) pv_datatype = ObjectFactory.get_pv_datatype(objectType) if not isinstance(presentValue, pv_datatype): try: presentValue = pv_datatype(presentValue) except: raise ValueError('Wrong datatype provided for presentValue') @bacnet_properties(self._properties) @make_commandable() def _create_commandable(objectType, instance, objectName, presentValue, description): return create(objectType, instance, objectName, presentValue, description) @bacnet_properties(self._properties) def _create(objectType, instance, objectName, presentValue, description): return create(objectType, instance, objectName, presentValue, description) name_must_be_changed = False if objectName in self.objects.keys(): name_must_be_changed = True instance = self.validate_instance(objectType, instance) if name_must_be_changed: objectName = '{}-{}'.format(objectName, instance) self._log.warning('Name already taken, using {} instead'.format(objectName)) (objectName, instance) = (objectName, instance) if is_commandable: self.objects[objectName] = create(objectType, instance, objectName, presentValue, description) else: self.objects[objectName] = create(objectType, instance, objectName, presentValue, description) </DeepExtract>
BAC0
positive
@bp_core.route('/<uuid(strict=False):mbid>/high-level', methods=['GET']) @crossdomain() @ratelimit() def get_high_level(mbid): """Get high-level data for recording with a given MBID. This endpoint returns one document at a time. If there are many submissions for an MBID, you can browse through them by specifying an offset parameter ``n``. Documents are sorted by the submission time of their associated low-level documents. You can get the total number of low-level submissions using ``/<mbid>/count`` endpoint. :query n: *Optional.* Integer specifying an offset for a document. :query map_classes: *Optional.* If set to 'true', map class names to human-readable values TODO: provide a link to what these mappings are :resheader Content-Type: *application/json* """ offset = request.args.get('n') <DeepExtract> try: normalised_mbid = str(uuid.UUID(str(mbid))) except ValueError: raise webserver.views.api.exceptions.APIBadRequest("'%s' is not a valid UUID" % str(mbid)) if offset: try: offset = int(offset) offset = max(offset, 0) except ValueError: offset = 0 else: offset = 0 (_, str(mbid), offset) = (str(mbid), normalised_mbid, offset) </DeepExtract> <DeepExtract> request.args.get('map_classes') = request.args.get('map_classes') is not None and request.args.get('map_classes').lower() == 'true' </DeepExtract> try: return jsonify(db.data.load_high_level(mbid, offset, map_classes)) except NoDataFoundException: raise webserver.views.api.exceptions.APINotFound('Not found')
@bp_core.route('/<uuid(strict=False):mbid>/high-level', methods=['GET']) @crossdomain() @ratelimit() def get_high_level(mbid): """Get high-level data for recording with a given MBID. This endpoint returns one document at a time. If there are many submissions for an MBID, you can browse through them by specifying an offset parameter ``n``. Documents are sorted by the submission time of their associated low-level documents. You can get the total number of low-level submissions using ``/<mbid>/count`` endpoint. :query n: *Optional.* Integer specifying an offset for a document. :query map_classes: *Optional.* If set to 'true', map class names to human-readable values TODO: provide a link to what these mappings are :resheader Content-Type: *application/json* """ offset = request.args.get('n') try: normalised_mbid = str(uuid.UUID(str(mbid))) except ValueError: raise webserver.views.api.exceptions.APIBadRequest("'%s' is not a valid UUID" % str(mbid)) if offset: try: offset = int(offset) offset = max(offset, 0) except ValueError: offset = 0 else: offset = 0 (_, str(mbid), offset) = (str(mbid), normalised_mbid, offset) request.args.get('map_classes') = request.args.get('map_classes') is not None and request.args.get('map_classes').lower() == 'true' try: return jsonify(db.data.load_high_level(mbid, offset, map_classes)) except NoDataFoundException: raise webserver.views.api.exceptions.APINotFound('Not found')
acousticbrainz-server
positive
def render(self, defaults, errors, error_wrapper, stag_end=' />'): lst = [] attrs = dict(self.attrs) error = errors and self.name in errors if error: <DeepExtract> classes = attrs.get('class', '').split() if 'error' not in classes: attrs['class'] = ' '.join(classes + ['error']) </DeepExtract> lst.append(error_wrapper[0]) lst.append(html_escape(errors[self.name])) lst.append(error_wrapper[1]) if self.name in defaults: attrs['value'] = str(defaults[self.name]) attrs['name'] = self.name lst.append('<input type="%s" %s%s' % (self.tpe, dict_to_attrs(attrs), stag_end)) return ''.join(lst)
def render(self, defaults, errors, error_wrapper, stag_end=' />'): lst = [] attrs = dict(self.attrs) error = errors and self.name in errors if error: classes = attrs.get('class', '').split() if 'error' not in classes: attrs['class'] = ' '.join(classes + ['error']) lst.append(error_wrapper[0]) lst.append(html_escape(errors[self.name])) lst.append(error_wrapper[1]) if self.name in defaults: attrs['value'] = str(defaults[self.name]) attrs['name'] = self.name lst.append('<input type="%s" %s%s' % (self.tpe, dict_to_attrs(attrs), stag_end)) return ''.join(lst)
aws-serverless-workshop-greater-china-region
positive
@retry(**RETRY_POLICY) def delete_version(self, project_id, service_id, version_id): """ Deletes a version. Args: project_id: A string specifying the project ID. service_id: A string specifying the service ID. version_id: A string specifying the version ID. Returns: A dictionary containing the delete version operation details. Raises: AdminError if the response is formatted incorrectly. """ version_url = '{prefix}/{project}/services/{service}/versions/{version}'.format(prefix=self.prefix, project=project_id, service=service_id, version=version_id) headers = {'AppScale-Secret': self.secret} response = requests.delete(version_url, headers=headers, verify=False) <DeepExtract> try: content = response.json() except ValueError: raise AdminError('Invalid response: {}'.format(response.content)) try: response.raise_for_status() except requests.exceptions.HTTPError: try: message = content['error']['message'] except KeyError: message = 'AdminServer returned: {}'.format(response.status_code) raise AdminError(message) operation = content </DeepExtract> try: operation_id = operation['name'].split('/')[-1] except (KeyError, IndexError): raise AdminError('Invalid operation: {}'.format(operation)) return operation_id
@retry(**RETRY_POLICY) def delete_version(self, project_id, service_id, version_id): """ Deletes a version. Args: project_id: A string specifying the project ID. service_id: A string specifying the service ID. version_id: A string specifying the version ID. Returns: A dictionary containing the delete version operation details. Raises: AdminError if the response is formatted incorrectly. """ version_url = '{prefix}/{project}/services/{service}/versions/{version}'.format(prefix=self.prefix, project=project_id, service=service_id, version=version_id) headers = {'AppScale-Secret': self.secret} response = requests.delete(version_url, headers=headers, verify=False) try: content = response.json() except ValueError: raise AdminError('Invalid response: {}'.format(response.content)) try: response.raise_for_status() except requests.exceptions.HTTPError: try: message = content['error']['message'] except KeyError: message = 'AdminServer returned: {}'.format(response.status_code) raise AdminError(message) operation = content try: operation_id = operation['name'].split('/')[-1] except (KeyError, IndexError): raise AdminError('Invalid operation: {}'.format(operation)) return operation_id
appscale-tools
positive