before
stringlengths
0
955k
after
stringlengths
0
877k
repo
stringlengths
1
74
type
stringclasses
1 value
def get_at(self, element_path: ElementPath=None, check_parent: bool=True) -> Union[OscalBaseModel, List[OscalBaseModel]]: """Get the element at the specified element path. it will return the sub-model object at the path. Sub-model object can be of type OscalBaseModel or List """ if element_path is None: return self._elem <DeepExtract> path_parts = element_path.get() root_model = path_parts[0] path_parts = path_parts[1:] (_, path_parts) = (root_model, path_parts) </DeepExtract> elm = self._elem if hasattr(elm, '__root__') and (isinstance(elm.__root__, dict) or isinstance(elm.__root__, list)): elm = elm.__root__ if check_parent and element_path.get_parent() is not None and (element_path.get_parent().get_last() != ElementPath.WILDCARD): <DeepExtract> if element_path.get_parent() is None: elm_at = self._elem (_, path_parts) = self._split_element_path(element_path.get_parent()) elm = self._elem if hasattr(elm, '__root__') and (isinstance(elm.__root__, dict) or isinstance(elm.__root__, list)): elm = elm.__root__ if check_parent and element_path.get_parent().get_parent() is not None and (element_path.get_parent().get_parent().get_last() != ElementPath.WILDCARD): elm_at = self.get_at(element_path.get_parent().get_parent()) if elm_at is None: raise TrestleNotFoundError(f'Invalid parent path {element_path.get_parent().get_parent()}') elm = elm_at for attr in path_parts: if elm is None: break if attr == ElementPath.WILDCARD: break elif attr.isnumeric(): if isinstance(elm, list): elm = elm[int(attr)] else: elm_at = None else: elm = elm.get_field_value_by_alias(attr) elm_at = elm </DeepExtract> if elm_at is None: raise TrestleNotFoundError(f'Invalid parent path {element_path.get_parent()}') elm = elm_at for attr in path_parts: if elm is None: break if attr == ElementPath.WILDCARD: break elif attr.isnumeric(): if isinstance(elm, list): elm = elm[int(attr)] else: return None else: elm = elm.get_field_value_by_alias(attr) return elm
def get_at(self, element_path: ElementPath=None, check_parent: bool=True) -> Union[OscalBaseModel, List[OscalBaseModel]]: """Get the element at the specified element path. it will return the sub-model object at the path. Sub-model object can be of type OscalBaseModel or List """ if element_path is None: return self._elem path_parts = element_path.get() root_model = path_parts[0] path_parts = path_parts[1:] (_, path_parts) = (root_model, path_parts) elm = self._elem if hasattr(elm, '__root__') and (isinstance(elm.__root__, dict) or isinstance(elm.__root__, list)): elm = elm.__root__ if check_parent and element_path.get_parent() is not None and (element_path.get_parent().get_last() != ElementPath.WILDCARD): if element_path.get_parent() is None: elm_at = self._elem (_, path_parts) = self._split_element_path(element_path.get_parent()) elm = self._elem if hasattr(elm, '__root__') and (isinstance(elm.__root__, dict) or isinstance(elm.__root__, list)): elm = elm.__root__ if check_parent and element_path.get_parent().get_parent() is not None and (element_path.get_parent().get_parent().get_last() != ElementPath.WILDCARD): elm_at = self.get_at(element_path.get_parent().get_parent()) if elm_at is None: raise TrestleNotFoundError(f'Invalid parent path {element_path.get_parent().get_parent()}') elm = elm_at for attr in path_parts: if elm is None: break if attr == ElementPath.WILDCARD: break elif attr.isnumeric(): if isinstance(elm, list): elm = elm[int(attr)] else: elm_at = None else: elm = elm.get_field_value_by_alias(attr) elm_at = elm if elm_at is None: raise TrestleNotFoundError(f'Invalid parent path {element_path.get_parent()}') elm = elm_at for attr in path_parts: if elm is None: break if attr == ElementPath.WILDCARD: break elif attr.isnumeric(): if isinstance(elm, list): elm = elm[int(attr)] else: return None else: elm = elm.get_field_value_by_alias(attr) return elm
compliance-trestle
positive
def _paraminsert(cur): <DeepExtract> cur.execute(xddl1) cur.execute(ddl1) </DeepExtract> cur.execute("insert into %sbooze values ('Victoria Bitter')" % table_prefix) assert cur.rowcount in (-1, 1) if driver.paramstyle == 'qmark': cur.execute('insert into %sbooze values (?)' % table_prefix, ("Cooper's",)) elif driver.paramstyle == 'numeric': cur.execute('insert into %sbooze values (:1)' % table_prefix, ("Cooper's",)) elif driver.paramstyle == 'named': cur.execute('insert into %sbooze values (:beer)' % table_prefix, {'beer': "Cooper's"}) elif driver.paramstyle == 'format': cur.execute('insert into %sbooze values (%%s)' % table_prefix, ("Cooper's",)) elif driver.paramstyle == 'pyformat': cur.execute('insert into %sbooze values (%%(beer)s)' % table_prefix, {'beer': "Cooper's"}) else: assert False, 'Invalid paramstyle' assert cur.rowcount in (-1, 1) cur.execute('select name from %sbooze' % table_prefix) res: typing.Tuple = cur.fetchall() assert len(res) == 2, 'cursor.fetchall returned too few rows' beers: typing.List = [res[0][0], res[1][0]] beers.sort() assert beers[0] == "Cooper's", 'cursor.fetchall retrieved incorrect data, or data inserted incorrectly' assert beers[1] == 'Victoria Bitter', 'cursor.fetchall retrieved incorrect data, or data inserted incorrectly'
def _paraminsert(cur): cur.execute(xddl1) cur.execute(ddl1) cur.execute("insert into %sbooze values ('Victoria Bitter')" % table_prefix) assert cur.rowcount in (-1, 1) if driver.paramstyle == 'qmark': cur.execute('insert into %sbooze values (?)' % table_prefix, ("Cooper's",)) elif driver.paramstyle == 'numeric': cur.execute('insert into %sbooze values (:1)' % table_prefix, ("Cooper's",)) elif driver.paramstyle == 'named': cur.execute('insert into %sbooze values (:beer)' % table_prefix, {'beer': "Cooper's"}) elif driver.paramstyle == 'format': cur.execute('insert into %sbooze values (%%s)' % table_prefix, ("Cooper's",)) elif driver.paramstyle == 'pyformat': cur.execute('insert into %sbooze values (%%(beer)s)' % table_prefix, {'beer': "Cooper's"}) else: assert False, 'Invalid paramstyle' assert cur.rowcount in (-1, 1) cur.execute('select name from %sbooze' % table_prefix) res: typing.Tuple = cur.fetchall() assert len(res) == 2, 'cursor.fetchall returned too few rows' beers: typing.List = [res[0][0], res[1][0]] beers.sort() assert beers[0] == "Cooper's", 'cursor.fetchall retrieved incorrect data, or data inserted incorrectly' assert beers[1] == 'Victoria Bitter', 'cursor.fetchall retrieved incorrect data, or data inserted incorrectly'
amazon-redshift-python-driver
positive
def CreateAndPlaceObjectOnFloorAtLocation(self, action): object_mask = action['object_mask'] object_type = action['objectType'] force_action = False if 'forceAction' not in action else action['forceAction'] rot = 90 * (round(action['rotation']['y'] / 90) % 4) mask = np.rot90(object_mask, k=-(rot // 90)) <DeepExtract> (x, z) = (action['x'], action['z']) row = round((self._max_z - z) / self.grid_size) col = round((x - self._min_x) / self.grid_size) (row, col) = (int(row), int(col)) </DeepExtract> (row_rad, col_rad) = (mask.shape[0] // 2, mask.shape[1] // 2) reachable_subset = self.agent_reachable_positions_mask[row - row_rad:row + row_rad + 1, col - col_rad:col + col_rad + 1] if force_action or (np.logical_and(reachable_subset, mask) == mask).all(): if not force_action and np.any([self.agent_inside_range(agent_id, row - row_rad, row + row_rad, col - col_rad, col + col_rad) for agent_id in range(len(self.agents))]): return (False, None) self.agent_reachable_positions_mask[row - row_rad:row + row_rad + 1, col - col_rad:col + col_rad + 1] &= np.logical_not(mask) <DeepExtract> (row, col) = (row, col) x = col * self.grid_size + self._min_x z = -row * self.grid_size + self._max_z xz = (x, z) </DeepExtract> object_id = object_type + '|{}'.format(len(self.tracked_objects) + 1) floor_object = TrackedObject(self, object_id, object_type) floor_object.row = row floor_object.col = col floor_object.rot = rot floor_object.object_mask = mask self.tracked_objects[object_id] = floor_object return (True, {'position': {'x': xz[0], 'y': math.nan, 'z': xz[1]}, 'row': floor_object.row, 'col': floor_object.col, 'rotation': floor_object.rot, 'objectId': object_id}) return (False, None)
def CreateAndPlaceObjectOnFloorAtLocation(self, action): object_mask = action['object_mask'] object_type = action['objectType'] force_action = False if 'forceAction' not in action else action['forceAction'] rot = 90 * (round(action['rotation']['y'] / 90) % 4) mask = np.rot90(object_mask, k=-(rot // 90)) (x, z) = (action['x'], action['z']) row = round((self._max_z - z) / self.grid_size) col = round((x - self._min_x) / self.grid_size) (row, col) = (int(row), int(col)) (row_rad, col_rad) = (mask.shape[0] // 2, mask.shape[1] // 2) reachable_subset = self.agent_reachable_positions_mask[row - row_rad:row + row_rad + 1, col - col_rad:col + col_rad + 1] if force_action or (np.logical_and(reachable_subset, mask) == mask).all(): if not force_action and np.any([self.agent_inside_range(agent_id, row - row_rad, row + row_rad, col - col_rad, col + col_rad) for agent_id in range(len(self.agents))]): return (False, None) self.agent_reachable_positions_mask[row - row_rad:row + row_rad + 1, col - col_rad:col + col_rad + 1] &= np.logical_not(mask) (row, col) = (row, col) x = col * self.grid_size + self._min_x z = -row * self.grid_size + self._max_z xz = (x, z) object_id = object_type + '|{}'.format(len(self.tracked_objects) + 1) floor_object = TrackedObject(self, object_id, object_type) floor_object.row = row floor_object.col = col floor_object.rot = rot floor_object.object_mask = mask self.tracked_objects[object_id] = floor_object return (True, {'position': {'x': xz[0], 'y': math.nan, 'z': xz[1]}, 'row': floor_object.row, 'col': floor_object.col, 'rotation': floor_object.rot, 'objectId': object_id}) return (False, None)
cordial-sync
positive
def train(self, ob_no, ac_na, re_n, next_ob_no, terminal_n): for _ in range(self.agent_params['num_critic_updates_per_agent_update']): cr_loss = self.critic.update(ob_no, next_ob_no, re_n, terminal_n) <DeepExtract> v_s = self.sess.run([self.critic.critic_prediction], feed_dict={self.critic.sy_ob_no: ob_no})[0] v_sprime = self.sess.run([self.critic.critic_prediction], feed_dict={self.critic.sy_ob_no: next_ob_no})[0] adv_n = re_n + self.gamma * v_sprime * (1 - terminal_n) - v_s if self.standardize_advantages: adv_n = (adv_n - np.mean(adv_n)) / (np.std(adv_n) + 1e-08) advantage = adv_n </DeepExtract> for _ in range(self.agent_params['num_actor_updates_per_agent_update']): ac_loss = self.actor.update(ob_no, ac_na, advantage) loss = OrderedDict() loss['Critic_Loss'] = cr_loss loss['Actor_Loss'] = ac_loss return loss
def train(self, ob_no, ac_na, re_n, next_ob_no, terminal_n): for _ in range(self.agent_params['num_critic_updates_per_agent_update']): cr_loss = self.critic.update(ob_no, next_ob_no, re_n, terminal_n) v_s = self.sess.run([self.critic.critic_prediction], feed_dict={self.critic.sy_ob_no: ob_no})[0] v_sprime = self.sess.run([self.critic.critic_prediction], feed_dict={self.critic.sy_ob_no: next_ob_no})[0] adv_n = re_n + self.gamma * v_sprime * (1 - terminal_n) - v_s if self.standardize_advantages: adv_n = (adv_n - np.mean(adv_n)) / (np.std(adv_n) + 1e-08) advantage = adv_n for _ in range(self.agent_params['num_actor_updates_per_agent_update']): ac_loss = self.actor.update(ob_no, ac_na, advantage) loss = OrderedDict() loss['Critic_Loss'] = cr_loss loss['Actor_Loss'] = ac_loss return loss
CS285_Fa19_Deep_Reinforcement_Learning
positive
def test_mastodon(self): <DeepExtract> trigger = self.create_triggerservice(consumer_name='ServiceMastodon') ServicesActivated.objects.get(name='ServiceMastodon') resu = Mastodon.objects.create(tooter=tooter, timeline=timeline, tag=tag, fav=fav, since_id=since_id, max_id=max_id, trigger=trigger, status=True) m = resu </DeepExtract> self.assertTrue(isinstance(m, Mastodon)) self.assertEqual(m.show(), 'My Mastodon %s %s' % (m.timeline, m.trigger)) self.assertEqual(m.__str__(), '{}'.format(m.timeline))
def test_mastodon(self): trigger = self.create_triggerservice(consumer_name='ServiceMastodon') ServicesActivated.objects.get(name='ServiceMastodon') resu = Mastodon.objects.create(tooter=tooter, timeline=timeline, tag=tag, fav=fav, since_id=since_id, max_id=max_id, trigger=trigger, status=True) m = resu self.assertTrue(isinstance(m, Mastodon)) self.assertEqual(m.show(), 'My Mastodon %s %s' % (m.timeline, m.trigger)) self.assertEqual(m.__str__(), '{}'.format(m.timeline))
django-th
positive
def __init__(self, do_device_discovery=True): self._input_device = None self._mux = [NoMux(self), TakeOverSelectiveMux(self), TakeOverMux(self)] self._selected_mux = self._mux[0] self.min_thrust = 0 self.max_thrust = 0 self._thrust_slew_rate = 0 self.thrust_slew_enabled = False self.thrust_slew_limit = 0 self.has_pressure_sensor = False self._hover_max_height = MAX_TARGET_HEIGHT self.max_rp_angle = 0 self.max_yaw_rate = 0 try: <DeepExtract> self._assisted_control = Config().get('assistedControl') </DeepExtract> except KeyError: <DeepExtract> self._assisted_control = JoystickReader.ASSISTED_CONTROL_ALTHOLD </DeepExtract> self._old_thrust = 0 self._old_raw_thrust = 0 self.springy_throttle = True self._target_height = INITAL_TAGET_HEIGHT self.trim_roll = Config().get('trim_roll') self.trim_pitch = Config().get('trim_pitch') self._rp_dead_band = 0.1 self._input_map = None if Config().get('flightmode') == 'Normal': self.max_yaw_rate = Config().get('normal_max_yaw') self.max_rp_angle = Config().get('normal_max_rp') self.min_thrust = Config().get('normal_min_thrust') self.max_thrust = Config().get('normal_max_thrust') self.thrust_slew_limit = Config().get('normal_slew_limit') self.thrust_slew_rate = Config().get('normal_slew_rate') else: self.max_yaw_rate = Config().get('max_yaw') self.max_rp_angle = Config().get('max_rp') self.min_thrust = Config().get('min_thrust') self.max_thrust = Config().get('max_thrust') self.thrust_slew_limit = Config().get('slew_limit') self.thrust_slew_rate = Config().get('slew_rate') self._dev_blacklist = None if len(Config().get('input_device_blacklist')) > 0: self._dev_blacklist = re.compile(Config().get('input_device_blacklist')) logger.info('Using device blacklist [{}]'.format(Config().get('input_device_blacklist'))) self._available_devices = {} self._read_timer = PeriodicTimer(INPUT_READ_PERIOD, self.read_input) if do_device_discovery: self._discovery_timer = PeriodicTimer(1.0, self._do_device_discovery) self._discovery_timer.start() if not os.path.exists(ConfigManager().configs_dir): logger.info('No user config found, copying dist files') os.makedirs(ConfigManager().configs_dir) for f in glob.glob(cfclient.module_path + '/configs/input/[A-Za-z]*.json'): dest = os.path.join(ConfigManager().configs_dir, os.path.basename(f)) if not os.path.isfile(dest): logger.debug('Copying %s', f) shutil.copy2(f, ConfigManager().configs_dir) ConfigManager().get_list_of_configs() self.input_updated = Caller() self.assisted_input_updated = Caller() self.heighthold_input_updated = Caller() self.hover_input_updated = Caller() self.rp_trim_updated = Caller() self.emergency_stop_updated = Caller() self.device_discovery = Caller() self.device_error = Caller() self.assisted_control_updated = Caller() self.alt1_updated = Caller() self.alt2_updated = Caller() self.limiting_updated = Caller()
def __init__(self, do_device_discovery=True): self._input_device = None self._mux = [NoMux(self), TakeOverSelectiveMux(self), TakeOverMux(self)] self._selected_mux = self._mux[0] self.min_thrust = 0 self.max_thrust = 0 self._thrust_slew_rate = 0 self.thrust_slew_enabled = False self.thrust_slew_limit = 0 self.has_pressure_sensor = False self._hover_max_height = MAX_TARGET_HEIGHT self.max_rp_angle = 0 self.max_yaw_rate = 0 try: self._assisted_control = Config().get('assistedControl') except KeyError: self._assisted_control = JoystickReader.ASSISTED_CONTROL_ALTHOLD self._old_thrust = 0 self._old_raw_thrust = 0 self.springy_throttle = True self._target_height = INITAL_TAGET_HEIGHT self.trim_roll = Config().get('trim_roll') self.trim_pitch = Config().get('trim_pitch') self._rp_dead_band = 0.1 self._input_map = None if Config().get('flightmode') == 'Normal': self.max_yaw_rate = Config().get('normal_max_yaw') self.max_rp_angle = Config().get('normal_max_rp') self.min_thrust = Config().get('normal_min_thrust') self.max_thrust = Config().get('normal_max_thrust') self.thrust_slew_limit = Config().get('normal_slew_limit') self.thrust_slew_rate = Config().get('normal_slew_rate') else: self.max_yaw_rate = Config().get('max_yaw') self.max_rp_angle = Config().get('max_rp') self.min_thrust = Config().get('min_thrust') self.max_thrust = Config().get('max_thrust') self.thrust_slew_limit = Config().get('slew_limit') self.thrust_slew_rate = Config().get('slew_rate') self._dev_blacklist = None if len(Config().get('input_device_blacklist')) > 0: self._dev_blacklist = re.compile(Config().get('input_device_blacklist')) logger.info('Using device blacklist [{}]'.format(Config().get('input_device_blacklist'))) self._available_devices = {} self._read_timer = PeriodicTimer(INPUT_READ_PERIOD, self.read_input) if do_device_discovery: self._discovery_timer = PeriodicTimer(1.0, self._do_device_discovery) self._discovery_timer.start() if not os.path.exists(ConfigManager().configs_dir): logger.info('No user config found, copying dist files') os.makedirs(ConfigManager().configs_dir) for f in glob.glob(cfclient.module_path + '/configs/input/[A-Za-z]*.json'): dest = os.path.join(ConfigManager().configs_dir, os.path.basename(f)) if not os.path.isfile(dest): logger.debug('Copying %s', f) shutil.copy2(f, ConfigManager().configs_dir) ConfigManager().get_list_of_configs() self.input_updated = Caller() self.assisted_input_updated = Caller() self.heighthold_input_updated = Caller() self.hover_input_updated = Caller() self.rp_trim_updated = Caller() self.emergency_stop_updated = Caller() self.device_discovery = Caller() self.device_error = Caller() self.assisted_control_updated = Caller() self.alt1_updated = Caller() self.alt2_updated = Caller() self.limiting_updated = Caller()
crazyflie-clients-python
positive
def gen_postinit(self, cls: ClassDefinition, slot: SlotDefinition) -> Optional[str]: """ Generate python post init rules for slot in class """ rlines: List[str] = [] aliased_slot_name = self.slot_name(slot.name) <DeepExtract> rangelist = self.class_identifier_path(cls, False) if slot.key or slot.identifier else self.slot_range_path(slot) prox_type = self.slot_range_path(slot)[-1].rsplit('.')[-1] prox_type_name = rangelist[-1] if slot.range in self.schema.enums or (cls and slot.inlined and (slot.range in self.schema.classes) and self.forward_reference(slot.range, cls.name)): rangelist[-1] = f'"{rangelist[-1]}"' (range_type, base_type, base_type_name) = (str(self.gen_class_reference(rangelist)), prox_type, prox_type_name) </DeepExtract> slot_identifier = self.class_identifier(slot.range) if slot.required: rlines.append(f'if self.{aliased_slot_name} is None:') rlines.append(f'\traise ValueError("{aliased_slot_name} must be supplied")') if slot.multivalued: if slot.inlined and slot_identifier: rlines.append(f'elif not isinstance(self.{aliased_slot_name}, (list, dict)):') rlines.append(f'\tself.{aliased_slot_name} = [self.{aliased_slot_name}]') rlines.append(f'if len(self.{aliased_slot_name}) == 0:') rlines.append(f'\traise ValueError(f"{aliased_slot_name} must be a non-empty list, dictionary, or class")') else: rlines.append(f'elif not isinstance(self.{aliased_slot_name}, list):') rlines.append(f'\tself.{aliased_slot_name} = [self.{aliased_slot_name}]') rlines.append(f'elif len(self.{aliased_slot_name}) == 0:') rlines.append(f'\traise ValueError(f"{aliased_slot_name} must be a non-empty list")') elif slot.multivalued: rlines.append(f'if self.{aliased_slot_name} is None:') rlines.append(f'\tself.{aliased_slot_name} = []') if slot.inlined and slot_identifier: rlines.append(f'if not isinstance(self.{aliased_slot_name}, (list, dict)):') rlines.append(f'\tself.{aliased_slot_name} = [self.{aliased_slot_name}]') else: rlines.append(f'if not isinstance(self.{aliased_slot_name}, list):') rlines.append(f'\tself.{aliased_slot_name} = [self.{aliased_slot_name}]') indent = len(f'self.{aliased_slot_name} = [') * ' ' if not slot.multivalued: if slot.required: rlines.append(f'if not isinstance(self.{aliased_slot_name}, {base_type_name}):') else: rlines.append(f'if self.{aliased_slot_name} is not None and not isinstance(self.{aliased_slot_name}, {base_type_name}):') if slot.range in self.schema.classes and (not self.schema.classes[slot.range].slots): rlines.append(f'\tself.{aliased_slot_name} = {base_type_name}()') elif self.class_identifier(slot.range) or slot.range in self.schema.types or slot.range in self.schema.enums: rlines.append(f'\tself.{aliased_slot_name} = {base_type_name}(self.{aliased_slot_name})') else: rlines.append(f'\tself.{aliased_slot_name} = {base_type_name}(**self.{aliased_slot_name})') elif slot.inlined: slot_range_cls = self.schema.classes[slot.range] identifier = self.class_identifier(slot_range_cls) if not identifier: for range_slot_name in slot_range_cls.slots: range_slot = self.schema.slots[range_slot_name] if range_slot.required: inlined_as_list = True keyed = False identifier = range_slot.name break else: inlined_as_list = slot.inlined_as_list keyed = True if identifier: rlines.append(f'self._normalize_inlined_slot(slot_name="{aliased_slot_name}", slot_type={base_type_name}, key_name="{self.aliased_slot_name(identifier)}", inlined_as_list={inlined_as_list}, keyed={keyed})') else: sn = f'self.{aliased_slot_name}' rlines.append(f'{sn} = [v if isinstance(v, {base_type_name}) else {base_type_name}(**v) for v in {sn}]') else: rlines.append(f'self.{aliased_slot_name} = [v if isinstance(v, {base_type_name}) else {base_type_name}(v) for v in self.{aliased_slot_name}]') if rlines: rlines.append('') return '\n\t\t'.join(rlines)
def gen_postinit(self, cls: ClassDefinition, slot: SlotDefinition) -> Optional[str]: """ Generate python post init rules for slot in class """ rlines: List[str] = [] aliased_slot_name = self.slot_name(slot.name) rangelist = self.class_identifier_path(cls, False) if slot.key or slot.identifier else self.slot_range_path(slot) prox_type = self.slot_range_path(slot)[-1].rsplit('.')[-1] prox_type_name = rangelist[-1] if slot.range in self.schema.enums or (cls and slot.inlined and (slot.range in self.schema.classes) and self.forward_reference(slot.range, cls.name)): rangelist[-1] = f'"{rangelist[-1]}"' (range_type, base_type, base_type_name) = (str(self.gen_class_reference(rangelist)), prox_type, prox_type_name) slot_identifier = self.class_identifier(slot.range) if slot.required: rlines.append(f'if self.{aliased_slot_name} is None:') rlines.append(f'\traise ValueError("{aliased_slot_name} must be supplied")') if slot.multivalued: if slot.inlined and slot_identifier: rlines.append(f'elif not isinstance(self.{aliased_slot_name}, (list, dict)):') rlines.append(f'\tself.{aliased_slot_name} = [self.{aliased_slot_name}]') rlines.append(f'if len(self.{aliased_slot_name}) == 0:') rlines.append(f'\traise ValueError(f"{aliased_slot_name} must be a non-empty list, dictionary, or class")') else: rlines.append(f'elif not isinstance(self.{aliased_slot_name}, list):') rlines.append(f'\tself.{aliased_slot_name} = [self.{aliased_slot_name}]') rlines.append(f'elif len(self.{aliased_slot_name}) == 0:') rlines.append(f'\traise ValueError(f"{aliased_slot_name} must be a non-empty list")') elif slot.multivalued: rlines.append(f'if self.{aliased_slot_name} is None:') rlines.append(f'\tself.{aliased_slot_name} = []') if slot.inlined and slot_identifier: rlines.append(f'if not isinstance(self.{aliased_slot_name}, (list, dict)):') rlines.append(f'\tself.{aliased_slot_name} = [self.{aliased_slot_name}]') else: rlines.append(f'if not isinstance(self.{aliased_slot_name}, list):') rlines.append(f'\tself.{aliased_slot_name} = [self.{aliased_slot_name}]') indent = len(f'self.{aliased_slot_name} = [') * ' ' if not slot.multivalued: if slot.required: rlines.append(f'if not isinstance(self.{aliased_slot_name}, {base_type_name}):') else: rlines.append(f'if self.{aliased_slot_name} is not None and not isinstance(self.{aliased_slot_name}, {base_type_name}):') if slot.range in self.schema.classes and (not self.schema.classes[slot.range].slots): rlines.append(f'\tself.{aliased_slot_name} = {base_type_name}()') elif self.class_identifier(slot.range) or slot.range in self.schema.types or slot.range in self.schema.enums: rlines.append(f'\tself.{aliased_slot_name} = {base_type_name}(self.{aliased_slot_name})') else: rlines.append(f'\tself.{aliased_slot_name} = {base_type_name}(**self.{aliased_slot_name})') elif slot.inlined: slot_range_cls = self.schema.classes[slot.range] identifier = self.class_identifier(slot_range_cls) if not identifier: for range_slot_name in slot_range_cls.slots: range_slot = self.schema.slots[range_slot_name] if range_slot.required: inlined_as_list = True keyed = False identifier = range_slot.name break else: inlined_as_list = slot.inlined_as_list keyed = True if identifier: rlines.append(f'self._normalize_inlined_slot(slot_name="{aliased_slot_name}", slot_type={base_type_name}, key_name="{self.aliased_slot_name(identifier)}", inlined_as_list={inlined_as_list}, keyed={keyed})') else: sn = f'self.{aliased_slot_name}' rlines.append(f'{sn} = [v if isinstance(v, {base_type_name}) else {base_type_name}(**v) for v in {sn}]') else: rlines.append(f'self.{aliased_slot_name} = [v if isinstance(v, {base_type_name}) else {base_type_name}(v) for v in self.{aliased_slot_name}]') if rlines: rlines.append('') return '\n\t\t'.join(rlines)
biolinkml
positive
def print_tree(spacer, root, dir): spacer = spacer + ' ' if root == None: return <DeepExtract> spacer = spacer + ' ' if root.right == None: return print_tree(spacer, root.right.right, 'right') if 'right' == 'right': print(spacer, '/ ', root.right.value) if 'right' == 'center': print(spacer + ' ', root.right.value) if 'right' == 'left': print(spacer, '\\ ', root.right.value) print_tree(spacer, root.right.left, 'left') </DeepExtract> if dir == 'right': print(spacer, '/ ', root.value) if dir == 'center': print(spacer + ' ', root.value) if dir == 'left': print(spacer, '\\ ', root.value) <DeepExtract> spacer = spacer + ' ' if root.left == None: return print_tree(spacer, root.left.right, 'right') if 'left' == 'right': print(spacer, '/ ', root.left.value) if 'left' == 'center': print(spacer + ' ', root.left.value) if 'left' == 'left': print(spacer, '\\ ', root.left.value) print_tree(spacer, root.left.left, 'left') </DeepExtract>
def print_tree(spacer, root, dir): spacer = spacer + ' ' if root == None: return spacer = spacer + ' ' if root.right == None: return print_tree(spacer, root.right.right, 'right') if 'right' == 'right': print(spacer, '/ ', root.right.value) if 'right' == 'center': print(spacer + ' ', root.right.value) if 'right' == 'left': print(spacer, '\\ ', root.right.value) print_tree(spacer, root.right.left, 'left') if dir == 'right': print(spacer, '/ ', root.value) if dir == 'center': print(spacer + ' ', root.value) if dir == 'left': print(spacer, '\\ ', root.value) spacer = spacer + ' ' if root.left == None: return print_tree(spacer, root.left.right, 'right') if 'left' == 'right': print(spacer, '/ ', root.left.value) if 'left' == 'center': print(spacer + ' ', root.left.value) if 'left' == 'left': print(spacer, '\\ ', root.left.value) print_tree(spacer, root.left.left, 'left') </DeepExtract>
2017Challenges
positive
def __init__(self, options=None): <DeepExtract> self.__pos = position_marker() self.__saved_pos = [] self.__bom = helpers.make_raw_bytes([]) self.__codec = None self.__encoding = None self.__input_is_bytes = False self.__rawbuf = None self.__raw_bytes = None self.__cmax = 0 self.num_ws_skipped = 0 </DeepExtract> self.options = options
def __init__(self, options=None): self.__pos = position_marker() self.__saved_pos = [] self.__bom = helpers.make_raw_bytes([]) self.__codec = None self.__encoding = None self.__input_is_bytes = False self.__rawbuf = None self.__raw_bytes = None self.__cmax = 0 self.num_ws_skipped = 0 self.options = options
akshare
positive
def on_opt_change(self, config): if 'taglist' in config and ('border' in config['taglist'] or 'wrap' in config['taglist']): <DeepExtract> self.changed = True self.callbacks['set_var']('needs_redraw', True) </DeepExtract> if 'color' in config or 'style' in config: <DeepExtract> self.changed = True self.callbacks['set_var']('needs_redraw', True) </DeepExtract> if 'story' not in config: return if 'format_attrs' in config['story']: needed_attrs = [] for attr in config['story']['format_attrs']: if attr not in self.content: needed_attrs.append(attr) if needed_attrs: log.debug('%s needs: %s', self.id, needed_attrs) tag_updater.need_attributes(self.id, needed_attrs) <DeepExtract> self.changed = True self.callbacks['set_var']('needs_redraw', True) </DeepExtract>
def on_opt_change(self, config): if 'taglist' in config and ('border' in config['taglist'] or 'wrap' in config['taglist']): self.changed = True self.callbacks['set_var']('needs_redraw', True) if 'color' in config or 'style' in config: self.changed = True self.callbacks['set_var']('needs_redraw', True) if 'story' not in config: return if 'format_attrs' in config['story']: needed_attrs = [] for attr in config['story']['format_attrs']: if attr not in self.content: needed_attrs.append(attr) if needed_attrs: log.debug('%s needs: %s', self.id, needed_attrs) tag_updater.need_attributes(self.id, needed_attrs) self.changed = True self.callbacks['set_var']('needs_redraw', True) </DeepExtract>
canto-curses
positive
def test_invalid_enum_field_value(): <DeepExtract> for (field, value) in {'command.payment.sender.status.status': 'invalid'}.items(): path = field.split('.') dic = sample_request_json() for f in path[0:len(path) - 1]: if f not in dic: dic[f] = {} dic = dic[f] dic[path[len(path) - 1]] = value request_json = sample_request_json() </DeepExtract> <DeepExtract> with pytest.raises(offchain.FieldError, match="expect one of \\['none', 'needs_kyc_data', 'ready_for_settlement', 'abort', 'soft_match'\\], but got: invalid") as e: req = offchain.from_json(json.dumps(request_json)) offchain.from_dict(req.command, field_path='command') assert e.value.code == 'invalid_field_value' assert e.value.field == 'command.payment.sender.status.status' </DeepExtract>
def test_invalid_enum_field_value(): for (field, value) in {'command.payment.sender.status.status': 'invalid'}.items(): path = field.split('.') dic = sample_request_json() for f in path[0:len(path) - 1]: if f not in dic: dic[f] = {} dic = dic[f] dic[path[len(path) - 1]] = value request_json = sample_request_json() with pytest.raises(offchain.FieldError, match="expect one of \\['none', 'needs_kyc_data', 'ready_for_settlement', 'abort', 'soft_match'\\], but got: invalid") as e: req = offchain.from_json(json.dumps(request_json)) offchain.from_dict(req.command, field_path='command') assert e.value.code == 'invalid_field_value' assert e.value.field == 'command.payment.sender.status.status' </DeepExtract>
client-sdk-python
positive
def combined_roidb(imdb_names, training=True): """ Combine multiple roidbs """ def get_training_roidb(imdb): """Returns a roidb (Region of Interest database) for use in training.""" if cfg.TRAIN.USE_FLIPPED: print('Appending horizontally-flipped training examples...') imdb.append_flipped_images() print('done') print('Preparing training data...') <DeepExtract> roidb = imdb.roidb if not imdb.name.startswith('coco'): sizes = [PIL.Image.open(imdb.image_path_at(i)).size for i in range(imdb.num_images)] for i in range(len(imdb.image_index)): roidb[i]['img_id'] = imdb.image_id_at(i) roidb[i]['image'] = imdb.image_path_at(i) if not imdb.name.startswith('coco'): roidb[i]['width'] = sizes[i][0] roidb[i]['height'] = sizes[i][1] gt_overlaps = roidb[i]['gt_overlaps'].toarray() max_overlaps = gt_overlaps.max(axis=1) max_classes = gt_overlaps.argmax(axis=1) roidb[i]['max_classes'] = max_classes roidb[i]['max_overlaps'] = max_overlaps zero_inds = np.where(max_overlaps == 0)[0] assert all(max_classes[zero_inds] == 0) nonzero_inds = np.where(max_overlaps > 0)[0] assert all(max_classes[nonzero_inds] != 0) </DeepExtract> print('done') return imdb.roidb def get_roidb(imdb_name): imdb = get_imdb(imdb_name) print('Loaded dataset `{:s}` for training'.format(imdb.name)) imdb.set_proposal_method(cfg.TRAIN.PROPOSAL_METHOD) print('Set proposal method: {:s}'.format(cfg.TRAIN.PROPOSAL_METHOD)) <DeepExtract> if cfg.TRAIN.USE_FLIPPED: print('Appending horizontally-flipped training examples...') imdb.append_flipped_images() print('done') print('Preparing training data...') prepare_roidb(imdb) print('done') roidb = imdb.roidb </DeepExtract> return roidb roidbs = [get_roidb(s) for s in imdb_names.split('+')] roidb = roidbs[0] if len(roidbs) > 1: for r in roidbs[1:]: roidb.extend(r) tmp = get_imdb(imdb_names.split('+')[1]) imdb = datasets.imdb.imdb(imdb_names, tmp.classes) else: imdb = get_imdb(imdb_names) if training: <DeepExtract> print('before filtering, there are %d images...' % len(roidb)) i = 0 while i < len(roidb): if len(roidb[i]['boxes']) == 0: del roidb[i] i -= 1 i += 1 print('after filtering, there are %d images...' % len(roidb)) roidb = roidb </DeepExtract> <DeepExtract> ratio_large = 2 ratio_small = 0.5 ratio_list = [] for i in range(len(roidb)): width = roidb[i]['width'] height = roidb[i]['height'] ratio = width / float(height) if ratio > ratio_large: roidb[i]['need_crop'] = 1 ratio = ratio_large elif ratio < ratio_small: roidb[i]['need_crop'] = 1 ratio = ratio_small else: roidb[i]['need_crop'] = 0 ratio_list.append(ratio) ratio_list = np.array(ratio_list) ratio_index = np.argsort(ratio_list) (ratio_list, ratio_index) = (ratio_list[ratio_index], ratio_index) </DeepExtract> return (imdb, roidb, ratio_list, ratio_index)
def combined_roidb(imdb_names, training=True): """ Combine multiple roidbs """ def get_training_roidb(imdb): """Returns a roidb (Region of Interest database) for use in training.""" if cfg.TRAIN.USE_FLIPPED: print('Appending horizontally-flipped training examples...') imdb.append_flipped_images() print('done') print('Preparing training data...') roidb = imdb.roidb if not imdb.name.startswith('coco'): sizes = [PIL.Image.open(imdb.image_path_at(i)).size for i in range(imdb.num_images)] for i in range(len(imdb.image_index)): roidb[i]['img_id'] = imdb.image_id_at(i) roidb[i]['image'] = imdb.image_path_at(i) if not imdb.name.startswith('coco'): roidb[i]['width'] = sizes[i][0] roidb[i]['height'] = sizes[i][1] gt_overlaps = roidb[i]['gt_overlaps'].toarray() max_overlaps = gt_overlaps.max(axis=1) max_classes = gt_overlaps.argmax(axis=1) roidb[i]['max_classes'] = max_classes roidb[i]['max_overlaps'] = max_overlaps zero_inds = np.where(max_overlaps == 0)[0] assert all(max_classes[zero_inds] == 0) nonzero_inds = np.where(max_overlaps > 0)[0] assert all(max_classes[nonzero_inds] != 0) print('done') return imdb.roidb def get_roidb(imdb_name): imdb = get_imdb(imdb_name) print('Loaded dataset `{:s}` for training'.format(imdb.name)) imdb.set_proposal_method(cfg.TRAIN.PROPOSAL_METHOD) print('Set proposal method: {:s}'.format(cfg.TRAIN.PROPOSAL_METHOD)) if cfg.TRAIN.USE_FLIPPED: print('Appending horizontally-flipped training examples...') imdb.append_flipped_images() print('done') print('Preparing training data...') prepare_roidb(imdb) print('done') roidb = imdb.roidb return roidb roidbs = [get_roidb(s) for s in imdb_names.split('+')] roidb = roidbs[0] if len(roidbs) > 1: for r in roidbs[1:]: roidb.extend(r) tmp = get_imdb(imdb_names.split('+')[1]) imdb = datasets.imdb.imdb(imdb_names, tmp.classes) else: imdb = get_imdb(imdb_names) if training: print('before filtering, there are %d images...' % len(roidb)) i = 0 while i < len(roidb): if len(roidb[i]['boxes']) == 0: del roidb[i] i -= 1 i += 1 print('after filtering, there are %d images...' % len(roidb)) roidb = roidb ratio_large = 2 ratio_small = 0.5 ratio_list = [] for i in range(len(roidb)): width = roidb[i]['width'] height = roidb[i]['height'] ratio = width / float(height) if ratio > ratio_large: roidb[i]['need_crop'] = 1 ratio = ratio_large elif ratio < ratio_small: roidb[i]['need_crop'] = 1 ratio = ratio_small else: roidb[i]['need_crop'] = 0 ratio_list.append(ratio) ratio_list = np.array(ratio_list) ratio_index = np.argsort(ratio_list) (ratio_list, ratio_index) = (ratio_list[ratio_index], ratio_index) return (imdb, roidb, ratio_list, ratio_index)
cascade-rcnn-fpn-faster_rcnn-pytorch1.0
positive
def update(self, iterable, **kwargs): """ This update is a bit different from the usual dict update method. It works recursively and will parse a variety of Python containers, creating menus as necessary. Keys of corresponding MenuItems in the Menu dictionary are the title of those MenuItems at the time of parsing. """ def parse_menu(iterable, menu, depth): if isinstance(iterable, MenuItem): menu.add(iterable) return for (n, ele) in enumerate(iterable.iteritems() if isinstance(iterable, Mapping) else iterable): if not isinstance(ele, MenuItem) and isinstance(ele, Mapping): <DeepExtract> if isinstance(ele, MenuItem): menu.add(ele) return for (n, ele) in enumerate(ele.iteritems() if isinstance(ele, Mapping) else ele): if not isinstance(ele, MenuItem) and isinstance(ele, Mapping): parse_menu(ele, menu, depth) elif not isinstance(ele, (basestring, MenuItem)) and isinstance(ele, Iterable): try: (menuitem, submenu) = ele except TypeError: raise ValueError('menu iterable element #{} at depth {} has length {}; must be a single menu item or a pair consisting of a menu item and its submenu'.format(n, depth, len(tuple(ele)))) menuitem = MenuItem(menuitem) menu.add(menuitem) parse_menu(submenu, menuitem, depth + 1) else: menu.add(ele) </DeepExtract> elif not isinstance(ele, (basestring, MenuItem)) and isinstance(ele, Iterable): try: (menuitem, submenu) = ele except TypeError: raise ValueError('menu iterable element #{} at depth {} has length {}; must be a single menu item or a pair consisting of a menu item and its submenu'.format(n, depth, len(tuple(ele)))) menuitem = MenuItem(menuitem) menu.add(menuitem) <DeepExtract> if isinstance(submenu, MenuItem): menuitem.add(submenu) return for (n, ele) in enumerate(submenu.iteritems() if isinstance(submenu, Mapping) else submenu): if not isinstance(ele, MenuItem) and isinstance(ele, Mapping): parse_menu(ele, menuitem, depth + 1) elif not isinstance(ele, (basestring, MenuItem)) and isinstance(ele, Iterable): try: (menuitem, submenu) = ele except TypeError: raise ValueError('menu iterable element #{} at depth {} has length {}; must be a single menu item or a pair consisting of a menu item and its submenu'.format(n, depth + 1, len(tuple(ele)))) menuitem = MenuItem(menuitem) menuitem.add(menuitem) parse_menu(submenu, menuitem, depth + 1 + 1) else: menuitem.add(ele) </DeepExtract> else: menu.add(ele) <DeepExtract> if isinstance(iterable, MenuItem): self.add(iterable) return for (n, ele) in enumerate(iterable.iteritems() if isinstance(iterable, Mapping) else iterable): if not isinstance(ele, MenuItem) and isinstance(ele, Mapping): parse_menu(ele, self, 0) elif not isinstance(ele, (basestring, MenuItem)) and isinstance(ele, Iterable): try: (menuitem, submenu) = ele except TypeError: raise ValueError('menu iterable element #{} at depth {} has length {}; must be a single menu item or a pair consisting of a menu item and its submenu'.format(n, 0, len(tuple(ele)))) menuitem = MenuItem(menuitem) self.add(menuitem) parse_menu(submenu, menuitem, 0 + 1) else: self.add(ele) </DeepExtract> <DeepExtract> if isinstance(kwargs, MenuItem): self.add(kwargs) return for (n, ele) in enumerate(kwargs.iteritems() if isinstance(kwargs, Mapping) else kwargs): if not isinstance(ele, MenuItem) and isinstance(ele, Mapping): parse_menu(ele, self, 0) elif not isinstance(ele, (basestring, MenuItem)) and isinstance(ele, Iterable): try: (menuitem, submenu) = ele except TypeError: raise ValueError('menu iterable element #{} at depth {} has length {}; must be a single menu item or a pair consisting of a menu item and its submenu'.format(n, 0, len(tuple(ele)))) menuitem = MenuItem(menuitem) self.add(menuitem) parse_menu(submenu, menuitem, 0 + 1) else: self.add(ele) </DeepExtract>
def update(self, iterable, **kwargs): """ This update is a bit different from the usual dict update method. It works recursively and will parse a variety of Python containers, creating menus as necessary. Keys of corresponding MenuItems in the Menu dictionary are the title of those MenuItems at the time of parsing. """ def parse_menu(iterable, menu, depth): if isinstance(iterable, MenuItem): menu.add(iterable) return for (n, ele) in enumerate(iterable.iteritems() if isinstance(iterable, Mapping) else iterable): if not isinstance(ele, MenuItem) and isinstance(ele, Mapping): if isinstance(ele, MenuItem): menu.add(ele) return for (n, ele) in enumerate(ele.iteritems() if isinstance(ele, Mapping) else ele): if not isinstance(ele, MenuItem) and isinstance(ele, Mapping): parse_menu(ele, menu, depth) elif not isinstance(ele, (basestring, MenuItem)) and isinstance(ele, Iterable): try: (menuitem, submenu) = ele except TypeError: raise ValueError('menu iterable element #{} at depth {} has length {}; must be a single menu item or a pair consisting of a menu item and its submenu'.format(n, depth, len(tuple(ele)))) menuitem = MenuItem(menuitem) menu.add(menuitem) parse_menu(submenu, menuitem, depth + 1) else: menu.add(ele) elif not isinstance(ele, (basestring, MenuItem)) and isinstance(ele, Iterable): try: (menuitem, submenu) = ele except TypeError: raise ValueError('menu iterable element #{} at depth {} has length {}; must be a single menu item or a pair consisting of a menu item and its submenu'.format(n, depth, len(tuple(ele)))) menuitem = MenuItem(menuitem) menu.add(menuitem) if isinstance(submenu, MenuItem): menuitem.add(submenu) return for (n, ele) in enumerate(submenu.iteritems() if isinstance(submenu, Mapping) else submenu): if not isinstance(ele, MenuItem) and isinstance(ele, Mapping): parse_menu(ele, menuitem, depth + 1) elif not isinstance(ele, (basestring, MenuItem)) and isinstance(ele, Iterable): try: (menuitem, submenu) = ele except TypeError: raise ValueError('menu iterable element #{} at depth {} has length {}; must be a single menu item or a pair consisting of a menu item and its submenu'.format(n, depth + 1, len(tuple(ele)))) menuitem = MenuItem(menuitem) menuitem.add(menuitem) parse_menu(submenu, menuitem, depth + 1 + 1) else: menuitem.add(ele) else: menu.add(ele) if isinstance(iterable, MenuItem): self.add(iterable) return for (n, ele) in enumerate(iterable.iteritems() if isinstance(iterable, Mapping) else iterable): if not isinstance(ele, MenuItem) and isinstance(ele, Mapping): parse_menu(ele, self, 0) elif not isinstance(ele, (basestring, MenuItem)) and isinstance(ele, Iterable): try: (menuitem, submenu) = ele except TypeError: raise ValueError('menu iterable element #{} at depth {} has length {}; must be a single menu item or a pair consisting of a menu item and its submenu'.format(n, 0, len(tuple(ele)))) menuitem = MenuItem(menuitem) self.add(menuitem) parse_menu(submenu, menuitem, 0 + 1) else: self.add(ele) if isinstance(kwargs, MenuItem): self.add(kwargs) return for (n, ele) in enumerate(kwargs.iteritems() if isinstance(kwargs, Mapping) else kwargs): if not isinstance(ele, MenuItem) and isinstance(ele, Mapping): parse_menu(ele, self, 0) elif not isinstance(ele, (basestring, MenuItem)) and isinstance(ele, Iterable): try: (menuitem, submenu) = ele except TypeError: raise ValueError('menu iterable element #{} at depth {} has length {}; must be a single menu item or a pair consisting of a menu item and its submenu'.format(n, 0, len(tuple(ele)))) menuitem = MenuItem(menuitem) self.add(menuitem) parse_menu(submenu, menuitem, 0 + 1) else: self.add(ele) </DeepExtract>
ComicStreamer
positive
def inLine(self, string): <DeepExtract> if platform.system() == 'Windows': csbi = GetConsoleScreenBufferInfo() line = '\x08' * int(csbi.dwCursorPosition.X) sys.stdout.write(line) width = csbi.dwCursorPosition.X csbi.dwCursorPosition.X = 0 FillConsoleOutputCharacter(STDOUT, ' ', width, csbi.dwCursorPosition) sys.stdout.write(line) sys.stdout.flush() else: sys.stdout.write('\x1b[1K') sys.stdout.write('\x1b[0G') </DeepExtract> sys.stdout.write(string) sys.stdout.flush() self.lastInLine = True
def inLine(self, string): if platform.system() == 'Windows': csbi = GetConsoleScreenBufferInfo() line = '\x08' * int(csbi.dwCursorPosition.X) sys.stdout.write(line) width = csbi.dwCursorPosition.X csbi.dwCursorPosition.X = 0 FillConsoleOutputCharacter(STDOUT, ' ', width, csbi.dwCursorPosition) sys.stdout.write(line) sys.stdout.flush() else: sys.stdout.write('\x1b[1K') sys.stdout.write('\x1b[0G') sys.stdout.write(string) sys.stdout.flush() self.lastInLine = True
BruteSploit
positive
def __init__(self): self._default = win32.GetConsoleScreenBufferInfo(win32.STDOUT).wAttributes <DeepExtract> self._fore = self._default & 7 self._back = self._default >> 4 & 7 self._style = self._default & (WinStyle.BRIGHT | WinStyle.BRIGHT_BACKGROUND) </DeepExtract> self._default_fore = self._fore self._default_back = self._back self._default_style = self._style self._light = 0
def __init__(self): self._default = win32.GetConsoleScreenBufferInfo(win32.STDOUT).wAttributes self._fore = self._default & 7 self._back = self._default >> 4 & 7 self._style = self._default & (WinStyle.BRIGHT | WinStyle.BRIGHT_BACKGROUND) self._default_fore = self._fore self._default_back = self._back self._default_style = self._style self._light = 0
BruteSploit
positive
def merge_sort(self, data): if len(data) > 1: mid = len(data) // 2 left = data[:mid] right = data[mid:] <DeepExtract> if len(left) > 1: mid = len(left) // 2 left = left[:mid] right = left[mid:] self.merge_sort(left) self.merge_sort(right) i = 0 j = 0 k = 0 while i < len(left) and j < len(right): if left[i] < right[j]: left[k] = left[i] i += 1 else: left[k] = right[j] j += 1 k += 1 while i < len(left): left[k] = left[i] i += 1 k += 1 while j < len(right): left[k] = right[j] j += 1 k += 1 </DeepExtract> <DeepExtract> if len(right) > 1: mid = len(right) // 2 left = right[:mid] right = right[mid:] self.merge_sort(left) self.merge_sort(right) i = 0 j = 0 k = 0 while i < len(left) and j < len(right): if left[i] < right[j]: right[k] = left[i] i += 1 else: right[k] = right[j] j += 1 k += 1 while i < len(left): right[k] = left[i] i += 1 k += 1 while j < len(right): right[k] = right[j] j += 1 k += 1 </DeepExtract> i = 0 j = 0 k = 0 while i < len(left) and j < len(right): if left[i] < right[j]: data[k] = left[i] i += 1 else: data[k] = right[j] j += 1 k += 1 while i < len(left): data[k] = left[i] i += 1 k += 1 while j < len(right): data[k] = right[j] j += 1 k += 1
def merge_sort(self, data): if len(data) > 1: mid = len(data) // 2 left = data[:mid] right = data[mid:] if len(left) > 1: mid = len(left) // 2 left = left[:mid] right = left[mid:] self.merge_sort(left) self.merge_sort(right) i = 0 j = 0 k = 0 while i < len(left) and j < len(right): if left[i] < right[j]: left[k] = left[i] i += 1 else: left[k] = right[j] j += 1 k += 1 while i < len(left): left[k] = left[i] i += 1 k += 1 while j < len(right): left[k] = right[j] j += 1 k += 1 if len(right) > 1: mid = len(right) // 2 left = right[:mid] right = right[mid:] self.merge_sort(left) self.merge_sort(right) i = 0 j = 0 k = 0 while i < len(left) and j < len(right): if left[i] < right[j]: right[k] = left[i] i += 1 else: right[k] = right[j] j += 1 k += 1 while i < len(left): right[k] = left[i] i += 1 k += 1 while j < len(right): right[k] = right[j] j += 1 k += 1 i = 0 j = 0 k = 0 while i < len(left) and j < len(right): if left[i] < right[j]: data[k] = left[i] i += 1 else: data[k] = right[j] j += 1 k += 1 while i < len(left): data[k] = left[i] i += 1 k += 1 while j < len(right): data[k] = right[j] j += 1 k += 1
data-structure-and-algorithms
positive
def read(context): <DeepExtract> parsed_dacl = [] context.log.debug('Parsing DACL') i = 0 for ace in self.principal_security_descriptor['Dacl']['Data']: parsed_ace = self.parseACE(context, ace) parsed_dacl.append(parsed_ace) i += 1 parsed_dacl = parsed_dacl </DeepExtract> <DeepExtract> context.log.debug('Printing parsed DACL') i = 0 for parsed_ace in parsed_dacl: print_ace = True if self.rights is not None: try: if self.rights == 'FullControl' and self.rights not in parsed_ace['Access mask']: print_ace = False if self.rights == 'DCSync' and ('Object type (GUID)' not in parsed_ace or RIGHTS_GUID.DS_Replication_Get_Changes_All.value not in parsed_ace['Object type (GUID)']): print_ace = False if self.rights == 'WriteMembers' and ('Object type (GUID)' not in parsed_ace or RIGHTS_GUID.WriteMembers.value not in parsed_ace['Object type (GUID)']): print_ace = False if self.rights == 'ResetPassword' and ('Object type (GUID)' not in parsed_ace or RIGHTS_GUID.ResetPassword.value not in parsed_ace['Object type (GUID)']): print_ace = False except Exception as e: context.log.error('Error filtering ACE, probably because of ACE type unsupported for parsing yet (%s)' % e) if self.rights_guid is not None: try: if 'Object type (GUID)' not in parsed_ace or self.rights_guid not in parsed_ace['Object type (GUID)']: print_ace = False except Exception as e: context.log.error('Error filtering ACE, probably because of ACE type unsupported for parsing yet (%s)' % e) if self.ace_type == 'allowed': try: if 'ACCESS_ALLOWED_OBJECT_ACE' not in parsed_ace['ACE Type'] and 'ACCESS_ALLOWED_ACE' not in parsed_ace['ACE Type']: print_ace = False except Exception as e: context.log.error('Error filtering ACE, probably because of ACE type unsupported for parsing yet (%s)' % e) else: try: if 'ACCESS_DENIED_OBJECT_ACE' not in parsed_ace['ACE Type'] and 'ACCESS_DENIED_ACE' not in parsed_ace['ACE Type']: print_ace = False except Exception as e: context.log.error('Error filtering ACE, probably because of ACE type unsupported for parsing yet (%s)' % e) if self.principal_SID is not None: try: if self.principal_SID not in parsed_ace['Trustee (SID)']: print_ace = False except Exception as e: context.log.error('Error filtering ACE, probably because of ACE type unsupported for parsing yet (%s)' % e) if print_ace: print('[*] %-28s' % 'ACE[%d] info' % i) self.printparsedACE(parsed_ace) i += 1 </DeepExtract> return
def read(context): parsed_dacl = [] context.log.debug('Parsing DACL') i = 0 for ace in self.principal_security_descriptor['Dacl']['Data']: parsed_ace = self.parseACE(context, ace) parsed_dacl.append(parsed_ace) i += 1 parsed_dacl = parsed_dacl context.log.debug('Printing parsed DACL') i = 0 for parsed_ace in parsed_dacl: print_ace = True if self.rights is not None: try: if self.rights == 'FullControl' and self.rights not in parsed_ace['Access mask']: print_ace = False if self.rights == 'DCSync' and ('Object type (GUID)' not in parsed_ace or RIGHTS_GUID.DS_Replication_Get_Changes_All.value not in parsed_ace['Object type (GUID)']): print_ace = False if self.rights == 'WriteMembers' and ('Object type (GUID)' not in parsed_ace or RIGHTS_GUID.WriteMembers.value not in parsed_ace['Object type (GUID)']): print_ace = False if self.rights == 'ResetPassword' and ('Object type (GUID)' not in parsed_ace or RIGHTS_GUID.ResetPassword.value not in parsed_ace['Object type (GUID)']): print_ace = False except Exception as e: context.log.error('Error filtering ACE, probably because of ACE type unsupported for parsing yet (%s)' % e) if self.rights_guid is not None: try: if 'Object type (GUID)' not in parsed_ace or self.rights_guid not in parsed_ace['Object type (GUID)']: print_ace = False except Exception as e: context.log.error('Error filtering ACE, probably because of ACE type unsupported for parsing yet (%s)' % e) if self.ace_type == 'allowed': try: if 'ACCESS_ALLOWED_OBJECT_ACE' not in parsed_ace['ACE Type'] and 'ACCESS_ALLOWED_ACE' not in parsed_ace['ACE Type']: print_ace = False except Exception as e: context.log.error('Error filtering ACE, probably because of ACE type unsupported for parsing yet (%s)' % e) else: try: if 'ACCESS_DENIED_OBJECT_ACE' not in parsed_ace['ACE Type'] and 'ACCESS_DENIED_ACE' not in parsed_ace['ACE Type']: print_ace = False except Exception as e: context.log.error('Error filtering ACE, probably because of ACE type unsupported for parsing yet (%s)' % e) if self.principal_SID is not None: try: if self.principal_SID not in parsed_ace['Trustee (SID)']: print_ace = False except Exception as e: context.log.error('Error filtering ACE, probably because of ACE type unsupported for parsing yet (%s)' % e) if print_ace: print('[*] %-28s' % 'ACE[%d] info' % i) self.printparsedACE(parsed_ace) i += 1 return
CrackMapExec
positive
def predict(self, x_test): """ Predictive mean and variance at x_test. Args: x_test (Tensor): [N, *], test input """ <DeepExtract> output = self.model(x_test) y = output </DeepExtract> y_pred_mean = y.mean(0) EyyT = (y ** 2).mean(0) EyEyT = y_pred_mean ** 2 beta_inv = -self.c0 * self.dt ** self.k0 y_pred_var = beta_inv.mean() + EyyT - EyEyT return (y_pred_mean, y_pred_var)
def predict(self, x_test): """ Predictive mean and variance at x_test. Args: x_test (Tensor): [N, *], test input """ output = self.model(x_test) y = output y_pred_mean = y.mean(0) EyyT = (y ** 2).mean(0) EyEyT = y_pred_mean ** 2 beta_inv = -self.c0 * self.dt ** self.k0 y_pred_var = beta_inv.mean() + EyyT - EyEyT return (y_pred_mean, y_pred_var)
ar-pde-cnn
positive
@pytest.mark.parametrize('explanation', ['average'], indirect=True) def test__plot_two_pd_num_num(explanation): """ Test the `_plot_two_pd_num_num` function. """ (feature, target_idx) = (4, 0) (_, ax) = plt.subplots() (ax, _) = _plot_two_pd_num_num(exp=explanation, feature=feature, target_idx=target_idx, ax=ax) assert np.allclose(ax.get_xlim(), explanation.data['feature_values'][feature][0]) assert np.allclose(ax.get_ylim(), explanation.data['feature_values'][feature][1]) <DeepExtract> if ax.collections[-2].get_segments() is not None and explanation.data['feature_deciles'][feature][0] is not None: xdeciles = np.array([segment[0, 0] for segment in ax.collections[-2].get_segments()]) assert np.allclose(xdeciles, explanation.data['feature_deciles'][feature][0][1:-1]) if ax.collections[-1].get_segments() is not None and explanation.data['feature_deciles'][feature][1] is not None: ydeciles = np.array([segment[0, 1] for segment in ax.collections[-1].get_segments()]) assert np.allclose(ydeciles, explanation.data['feature_deciles'][feature][1][1:-1]) </DeepExtract> assert ax.get_xlabel() == explanation.data['feature_names'][feature][0] assert ax.get_ylabel() == explanation.data['feature_names'][feature][1]
@pytest.mark.parametrize('explanation', ['average'], indirect=True) def test__plot_two_pd_num_num(explanation): """ Test the `_plot_two_pd_num_num` function. """ (feature, target_idx) = (4, 0) (_, ax) = plt.subplots() (ax, _) = _plot_two_pd_num_num(exp=explanation, feature=feature, target_idx=target_idx, ax=ax) assert np.allclose(ax.get_xlim(), explanation.data['feature_values'][feature][0]) assert np.allclose(ax.get_ylim(), explanation.data['feature_values'][feature][1]) if ax.collections[-2].get_segments() is not None and explanation.data['feature_deciles'][feature][0] is not None: xdeciles = np.array([segment[0, 0] for segment in ax.collections[-2].get_segments()]) assert np.allclose(xdeciles, explanation.data['feature_deciles'][feature][0][1:-1]) if ax.collections[-1].get_segments() is not None and explanation.data['feature_deciles'][feature][1] is not None: ydeciles = np.array([segment[0, 1] for segment in ax.collections[-1].get_segments()]) assert np.allclose(ydeciles, explanation.data['feature_deciles'][feature][1][1:-1]) assert ax.get_xlabel() == explanation.data['feature_names'][feature][0] assert ax.get_ylabel() == explanation.data['feature_names'][feature][1]
alibi
positive
def sample(self, sample_type=0, broadcast_message=None, **kwargs): """ Overrides base method by employing single underlying stochastic process to generate two tragectories Args: sample_type: bool, train/test **kwargs: Returns: sample as PairWaveModelGenerator instance """ if self.metadata['type'] is not None: if self.metadata['type'] != sample_type: self.log.warning('Attempt to sample type {} given current sample type {}, overriden.'.format(sample_type, self.metadata['type'])) sample_type = self.metadata['type'] sample = PairWaveModelGenerator(data_names=self.data_names, generator_parameters_config=self.generator_parameters_config, data_class_ref=self.data_class_ref, name='sub_' + self.name, _top_level=False, **self.nested_kwargs) sample.names = self.names if self.get_new_sample: params = self.generator_parameters_fn(**self.generator_parameters_config) <DeepExtract> data = self.generator_fn(num_points=self.data[self.a1_name].episode_num_records, **params) p1_dict = {'mean': data[0, 0, :], 'maximum': data[0, 1, :], 'minimum': data[0, 2, :], 'last': data[0, 3, :]} p2_dict = {'mean': data[1, 0, :], 'maximum': data[1, 1, :], 'minimum': data[1, 2, :], 'last': data[1, 3, :]} if sample_type: index = self.data[self.a1_name].test_index else: index = self.data[self.a1_name].train_index df1 = pd.DataFrame(data={name: p1_dict[self.columns_map[name]] for name in self.names}, index=index) df2 = pd.DataFrame(data={name: p2_dict[self.columns_map[name]] for name in self.names}, index=index) (data1, data2) = (df1, df2) </DeepExtract> metadata = {'generator': params} else: data1 = None data2 = None metadata = {} metadata.update({'type': sample_type, 'sample_num': self.sample_num, 'parent_sample_type': self.metadata['type'], 'parent_sample_num': self.sample_num, 'first_row': 0, 'last_row': self.data[self.a1_name].episode_num_records}) sample.metadata = copy.deepcopy(metadata) sample.data[self.a1_name].data = data1 sample.data[self.a2_name].data = data2 sample.filename = {key: stream.filename for (key, stream) in self.data.items()} self.sample_num += 1 return sample
def sample(self, sample_type=0, broadcast_message=None, **kwargs): """ Overrides base method by employing single underlying stochastic process to generate two tragectories Args: sample_type: bool, train/test **kwargs: Returns: sample as PairWaveModelGenerator instance """ if self.metadata['type'] is not None: if self.metadata['type'] != sample_type: self.log.warning('Attempt to sample type {} given current sample type {}, overriden.'.format(sample_type, self.metadata['type'])) sample_type = self.metadata['type'] sample = PairWaveModelGenerator(data_names=self.data_names, generator_parameters_config=self.generator_parameters_config, data_class_ref=self.data_class_ref, name='sub_' + self.name, _top_level=False, **self.nested_kwargs) sample.names = self.names if self.get_new_sample: params = self.generator_parameters_fn(**self.generator_parameters_config) data = self.generator_fn(num_points=self.data[self.a1_name].episode_num_records, **params) p1_dict = {'mean': data[0, 0, :], 'maximum': data[0, 1, :], 'minimum': data[0, 2, :], 'last': data[0, 3, :]} p2_dict = {'mean': data[1, 0, :], 'maximum': data[1, 1, :], 'minimum': data[1, 2, :], 'last': data[1, 3, :]} if sample_type: index = self.data[self.a1_name].test_index else: index = self.data[self.a1_name].train_index df1 = pd.DataFrame(data={name: p1_dict[self.columns_map[name]] for name in self.names}, index=index) df2 = pd.DataFrame(data={name: p2_dict[self.columns_map[name]] for name in self.names}, index=index) (data1, data2) = (df1, df2) metadata = {'generator': params} else: data1 = None data2 = None metadata = {} metadata.update({'type': sample_type, 'sample_num': self.sample_num, 'parent_sample_type': self.metadata['type'], 'parent_sample_num': self.sample_num, 'first_row': 0, 'last_row': self.data[self.a1_name].episode_num_records}) sample.metadata = copy.deepcopy(metadata) sample.data[self.a1_name].data = data1 sample.data[self.a2_name].data = data2 sample.filename = {key: stream.filename for (key, stream) in self.data.items()} self.sample_num += 1 return sample
btgym
positive
def correct_carries(carry_data: CarryData, player_carry_data: CarryData, player: Player, proto_game: game_pb2.Game) -> CarryData: """ This modifies carries to correct for certain situations at a better granularity. """ <DeepExtract> hit_index = 0 previous_end_frame = 0 valid_frame_index = 0 for frame_index in range(len(player_carry_data.start_frames)): starting_frame = player_carry_data.start_frames[frame_index] while valid_frame_index < len(carry_data.end_frames) and carry_data.end_frames[valid_frame_index] < starting_frame: valid_frame_index += 1 valid_start_frame = carry_data.start_frames[valid_frame_index] if hit_index >= len(proto_game.game_stats.hits): continue while proto_game.game_stats.hits[hit_index].frame_number < starting_frame: if hit_index == len(proto_game.game_stats.hits) - 1: break hit_index += 1 last_valid_hit = None while hit_index >= 0 and proto_game.game_stats.hits[hit_index].player_id.id == player.id.id and (proto_game.game_stats.hits[hit_index].frame_number >= valid_start_frame) and (proto_game.game_stats.hits[hit_index].frame_number > previous_end_frame): last_valid_hit = proto_game.game_stats.hits[hit_index] hit_index -= 1 if last_valid_hit is not None: hit_index += 1 if last_valid_hit is not None and last_valid_hit.frame_number < starting_frame: player_carry_data.start_frames[frame_index] = last_valid_hit.frame_number previous_end_frame = player_carry_data.end_frames[frame_index] </DeepExtract> <DeepExtract> start_frames = player_carry_data.start_frames end_frames = player_carry_data.end_frames merged_start = [] merged_end = [] if len(start_frames) == 0: return if len(start_frames) == 1: player_carry_data.start_frames = [player_carry_data.start_frames[0]] player_carry_data.end_frames = [player_carry_data.end_frames[0]] return player_frame_index = 0 for frame_index in range(len(carry_data.end_frames)): end_frame = carry_data.end_frames[frame_index] start_frame = carry_data.start_frames[frame_index] carry_end = None if player_frame_index >= len(start_frames): break if start_frames[player_frame_index] > end_frame: continue while player_frame_index < len(start_frames) and start_frames[player_frame_index] < start_frame: player_frame_index += 1 if player_frame_index >= len(start_frames): break if start_frames[player_frame_index] > end_frame: continue carry_start = start_frames[player_frame_index] entered = False while player_frame_index < len(start_frames) and end_frames[player_frame_index] < end_frame: player_frame_index += 1 entered = True if entered: player_frame_index -= 1 carry_end = end_frames[player_frame_index] if carry_end is not None: merged_start.append(carry_start) merged_end.append(carry_end) player_carry_data.start_frames = merged_start player_carry_data.end_frames = merged_end </DeepExtract> <DeepExtract> start_frames = player_carry_data.start_frames end_frames = player_carry_data.end_frames def valid_hit_number(hit_index, carry_index): return proto_game.game_stats.hits[hit_index].frame_number < end_frames[carry_index] and hit_index < len(proto_game.game_stats.hits) - 1 hit_index = 0 for carry_index in range(len(start_frames)): while hit_index < len(proto_game.game_stats.hits) - 1: if proto_game.game_stats.hits[hit_index].frame_number < start_frames[carry_index]: hit_index += 1 continue if proto_game.game_stats.hits[hit_index].frame_number >= end_frames[carry_index]: break invalid_hit = None last_player_hit = None while valid_hit_number(hit_index, carry_index): if proto_game.game_stats.hits[hit_index].player_id.id != player.id.id: if invalid_hit is None: invalid_hit = proto_game.game_stats.hits[hit_index] while proto_game.game_stats.hits[hit_index].player_id.id != player.id.id and valid_hit_number(hit_index, carry_index): hit_index += 1 if proto_game.game_stats.hits[hit_index].frame_number >= end_frames[carry_index]: player_carry_data.end_frames[carry_index] = invalid_hit.frame_number else: hit_index += 1 if valid_hit_number(hit_index - 1, carry_index) and proto_game.game_stats.hits[hit_index - 1].player_id.id == player.id.id: last_player_hit = proto_game.game_stats.hits[hit_index - 1] if last_player_hit is None: logger.error('The player never hit the ball during the "carry"') end_frames[carry_index] = start_frames[carry_index] else: most_recent_frame = max(last_player_hit.previous_hit_frame_number, start_frames[carry_index]) carry_frames = player_carry_data.carry_frames dodge_data = carry_frames[player.name].dodge_active dodge_data = dodge_data.loc[most_recent_frame:last_player_hit.frame_number] has_flicked = dodge_data.where(dodge_data % 2 == 1).last_valid_index() if has_flicked is not None: ending = min(max(last_player_hit.frame_number + 10, end_frames[carry_index]), has_flicked + 20) is_going_up = carry_frames.ball.pos_z[last_player_hit.frame_number:ending].is_monotonic end_frames[carry_index] = has_flicked if is_going_up: player_carry_data.add_flick(carry_index, True) else: player_carry_data.add_flick(carry_index, False) elif last_player_hit.frame_number > start_frames[carry_index]: end_frames[carry_index] = last_player_hit.frame_number if hit_index >= len(proto_game.game_stats.hits) - 1: break </DeepExtract> return player_carry_data
def correct_carries(carry_data: CarryData, player_carry_data: CarryData, player: Player, proto_game: game_pb2.Game) -> CarryData: """ This modifies carries to correct for certain situations at a better granularity. """ hit_index = 0 previous_end_frame = 0 valid_frame_index = 0 for frame_index in range(len(player_carry_data.start_frames)): starting_frame = player_carry_data.start_frames[frame_index] while valid_frame_index < len(carry_data.end_frames) and carry_data.end_frames[valid_frame_index] < starting_frame: valid_frame_index += 1 valid_start_frame = carry_data.start_frames[valid_frame_index] if hit_index >= len(proto_game.game_stats.hits): continue while proto_game.game_stats.hits[hit_index].frame_number < starting_frame: if hit_index == len(proto_game.game_stats.hits) - 1: break hit_index += 1 last_valid_hit = None while hit_index >= 0 and proto_game.game_stats.hits[hit_index].player_id.id == player.id.id and (proto_game.game_stats.hits[hit_index].frame_number >= valid_start_frame) and (proto_game.game_stats.hits[hit_index].frame_number > previous_end_frame): last_valid_hit = proto_game.game_stats.hits[hit_index] hit_index -= 1 if last_valid_hit is not None: hit_index += 1 if last_valid_hit is not None and last_valid_hit.frame_number < starting_frame: player_carry_data.start_frames[frame_index] = last_valid_hit.frame_number previous_end_frame = player_carry_data.end_frames[frame_index] start_frames = player_carry_data.start_frames end_frames = player_carry_data.end_frames merged_start = [] merged_end = [] if len(start_frames) == 0: return if len(start_frames) == 1: player_carry_data.start_frames = [player_carry_data.start_frames[0]] player_carry_data.end_frames = [player_carry_data.end_frames[0]] return player_frame_index = 0 for frame_index in range(len(carry_data.end_frames)): end_frame = carry_data.end_frames[frame_index] start_frame = carry_data.start_frames[frame_index] carry_end = None if player_frame_index >= len(start_frames): break if start_frames[player_frame_index] > end_frame: continue while player_frame_index < len(start_frames) and start_frames[player_frame_index] < start_frame: player_frame_index += 1 if player_frame_index >= len(start_frames): break if start_frames[player_frame_index] > end_frame: continue carry_start = start_frames[player_frame_index] entered = False while player_frame_index < len(start_frames) and end_frames[player_frame_index] < end_frame: player_frame_index += 1 entered = True if entered: player_frame_index -= 1 carry_end = end_frames[player_frame_index] if carry_end is not None: merged_start.append(carry_start) merged_end.append(carry_end) player_carry_data.start_frames = merged_start player_carry_data.end_frames = merged_end start_frames = player_carry_data.start_frames end_frames = player_carry_data.end_frames def valid_hit_number(hit_index, carry_index): return proto_game.game_stats.hits[hit_index].frame_number < end_frames[carry_index] and hit_index < len(proto_game.game_stats.hits) - 1 hit_index = 0 for carry_index in range(len(start_frames)): while hit_index < len(proto_game.game_stats.hits) - 1: if proto_game.game_stats.hits[hit_index].frame_number < start_frames[carry_index]: hit_index += 1 continue if proto_game.game_stats.hits[hit_index].frame_number >= end_frames[carry_index]: break invalid_hit = None last_player_hit = None while valid_hit_number(hit_index, carry_index): if proto_game.game_stats.hits[hit_index].player_id.id != player.id.id: if invalid_hit is None: invalid_hit = proto_game.game_stats.hits[hit_index] while proto_game.game_stats.hits[hit_index].player_id.id != player.id.id and valid_hit_number(hit_index, carry_index): hit_index += 1 if proto_game.game_stats.hits[hit_index].frame_number >= end_frames[carry_index]: player_carry_data.end_frames[carry_index] = invalid_hit.frame_number else: hit_index += 1 if valid_hit_number(hit_index - 1, carry_index) and proto_game.game_stats.hits[hit_index - 1].player_id.id == player.id.id: last_player_hit = proto_game.game_stats.hits[hit_index - 1] if last_player_hit is None: logger.error('The player never hit the ball during the "carry"') end_frames[carry_index] = start_frames[carry_index] else: most_recent_frame = max(last_player_hit.previous_hit_frame_number, start_frames[carry_index]) carry_frames = player_carry_data.carry_frames dodge_data = carry_frames[player.name].dodge_active dodge_data = dodge_data.loc[most_recent_frame:last_player_hit.frame_number] has_flicked = dodge_data.where(dodge_data % 2 == 1).last_valid_index() if has_flicked is not None: ending = min(max(last_player_hit.frame_number + 10, end_frames[carry_index]), has_flicked + 20) is_going_up = carry_frames.ball.pos_z[last_player_hit.frame_number:ending].is_monotonic end_frames[carry_index] = has_flicked if is_going_up: player_carry_data.add_flick(carry_index, True) else: player_carry_data.add_flick(carry_index, False) elif last_player_hit.frame_number > start_frames[carry_index]: end_frames[carry_index] = last_player_hit.frame_number if hit_index >= len(proto_game.game_stats.hits) - 1: break return player_carry_data
carball
positive
def update(self, b, x): last_x = x[-1, :] self.r_hat = self.beta * self.r_hat + (1 - self.beta) * last_x (R, Z) = risk.polar_returns(-x, self.k) <DeepExtract> alpha = safe_div(R.shape[0] - 1, np.log(safe_div(R[:-1], R[-1])).sum()) </DeepExtract> for i in range(self.score.shape[0]): self.score[i] = self.score[i] * self.beta + (1 - self.beta) * np.dot(last_x, self.w[i]) cons = self.cons + [{'type': 'eq', 'fun': lambda w: np.dot(w, self.r_hat) - np.clip(0.001, 0.0, self.r_hat.max())}] best_w = self.w[np.argmax(self.score)] if np.allclose(b, best_w, 0.01, 0.01): action = 'follow' else: action = 'pursuit' leader = np.zeros_like(last_x) leader[np.argmax(last_x)] = -1 self.w[0] = minimize(self.loss_tf, self.opt.optimize(leader, self.w[0]), args=(alpha, Z, last_x), constraints=self.cons, options={'maxiter': 666}, tol=1e-07, bounds=tuple(((0, 1) for _ in range(b.shape[0]))))['x'] self.w[1] = minimize(self.loss_eri, self.w[1], args=(alpha, Z, self.w[1]), constraints=cons, options={'maxiter': 666}, tol=1e-07, bounds=tuple(((0, 1) for _ in range(b.shape[0]))))['x'] if action == 'follow': b = simplex_proj(self.w[np.argmax(self.score)]) elif action == 'pursuit': b = simplex_proj(self.pe.optimize(self.w[np.argmax(self.score)], b)) self.log['score'] = 'tf: %.4f, mr: %.4f' % (self.score[0], self.score[1]) self.log['ERI'] = '%.8f' % risk.ERI(*risk.polar_returns(-x, self.k), b) self.log['TCVaR'] = '%.2f' % risk.TCVaR(*risk.fit_t(np.dot(x, b))) self.log['alpha'] = '%.2f' % alpha self.log['CC'] = '%.2f' % np.power(b, 2).sum() ** (-1) self.log['action'] = action self.log['lr'] = '%.2f' % self.opt.lr self.log['beta'] = '%.2f' % self.beta self.log['mpc'] = '%.2f' % self.mpc return b
def update(self, b, x): last_x = x[-1, :] self.r_hat = self.beta * self.r_hat + (1 - self.beta) * last_x (R, Z) = risk.polar_returns(-x, self.k) alpha = safe_div(R.shape[0] - 1, np.log(safe_div(R[:-1], R[-1])).sum()) for i in range(self.score.shape[0]): self.score[i] = self.score[i] * self.beta + (1 - self.beta) * np.dot(last_x, self.w[i]) cons = self.cons + [{'type': 'eq', 'fun': lambda w: np.dot(w, self.r_hat) - np.clip(0.001, 0.0, self.r_hat.max())}] best_w = self.w[np.argmax(self.score)] if np.allclose(b, best_w, 0.01, 0.01): action = 'follow' else: action = 'pursuit' leader = np.zeros_like(last_x) leader[np.argmax(last_x)] = -1 self.w[0] = minimize(self.loss_tf, self.opt.optimize(leader, self.w[0]), args=(alpha, Z, last_x), constraints=self.cons, options={'maxiter': 666}, tol=1e-07, bounds=tuple(((0, 1) for _ in range(b.shape[0]))))['x'] self.w[1] = minimize(self.loss_eri, self.w[1], args=(alpha, Z, self.w[1]), constraints=cons, options={'maxiter': 666}, tol=1e-07, bounds=tuple(((0, 1) for _ in range(b.shape[0]))))['x'] if action == 'follow': b = simplex_proj(self.w[np.argmax(self.score)]) elif action == 'pursuit': b = simplex_proj(self.pe.optimize(self.w[np.argmax(self.score)], b)) self.log['score'] = 'tf: %.4f, mr: %.4f' % (self.score[0], self.score[1]) self.log['ERI'] = '%.8f' % risk.ERI(*risk.polar_returns(-x, self.k), b) self.log['TCVaR'] = '%.2f' % risk.TCVaR(*risk.fit_t(np.dot(x, b))) self.log['alpha'] = '%.2f' % alpha self.log['CC'] = '%.2f' % np.power(b, 2).sum() ** (-1) self.log['action'] = action self.log['lr'] = '%.2f' % self.opt.lr self.log['beta'] = '%.2f' % self.beta self.log['mpc'] = '%.2f' % self.mpc return b
cryptotrader
positive
def __init__(self, goal_dict, game: 'Game'): self.player_name = goal_dict['PlayerName'] self.player_team = goal_dict['PlayerTeam'] <DeepExtract> for player in game.players: if player.name == self.player_name: self.player = player </DeepExtract> self.frame_number = goal_dict['frame'] logger.debug('Created Goal: %s', self)
def __init__(self, goal_dict, game: 'Game'): self.player_name = goal_dict['PlayerName'] self.player_team = goal_dict['PlayerTeam'] for player in game.players: if player.name == self.player_name: self.player = player self.frame_number = goal_dict['frame'] logger.debug('Created Goal: %s', self)
carball
positive
@pytest.mark.django_db def test_tag_delete_403_if_not_authorized(client, django_user_model): """Tests for 403 error for tag delete if inadequate permissions.""" <DeepExtract> tag = models.PlanTag.objects.create(tag=tag_text) </DeepExtract> django_user_model.objects.create_user(username='user', password='password') client.login(username='user', password='password') response = client.get(reverse('dfs_tag_delete', kwargs={'tag_id': tag.id})) assert response.status_code == 403
@pytest.mark.django_db def test_tag_delete_403_if_not_authorized(client, django_user_model): """Tests for 403 error for tag delete if inadequate permissions.""" tag = models.PlanTag.objects.create(tag=tag_text) django_user_model.objects.create_user(username='user', password='password') client.login(username='user', password='password') response = client.get(reverse('dfs_tag_delete', kwargs={'tag_id': tag.id})) assert response.status_code == 403
django-flexible-subscriptions
positive
def validateURL(self, url): """ Validates a URL against this trust root. @param url: The URL to check @type url: C{str} @return: Whether the given URL is within this trust root. @rtype: C{bool} """ <DeepExtract> (proto, netloc, path, params, query, frag) = urlparse(url) path = urlunparse(('', '', path, params, query, frag)) if ':' in netloc: try: (host, port) = netloc.split(':') except ValueError: url_parts = None else: host = netloc port = '' host = host.lower() if not path: path = '/' url_parts = (proto, host, port, path) </DeepExtract> if url_parts is None: return False (proto, host, port, path) = url_parts if proto != self.proto: return False if port != self.port: return False if '*' in host: return False if not self.wildcard: if host != self.host: return False elif not host.endswith(self.host) and '.' + host != self.host: return False if path != self.path: path_len = len(self.path) trust_prefix = self.path[:path_len] url_prefix = path[:path_len] if trust_prefix != url_prefix: return False if '?' in self.path: allowed = '&' else: allowed = '?/' return self.path[-1] in allowed or path[path_len] in allowed return True
def validateURL(self, url): """ Validates a URL against this trust root. @param url: The URL to check @type url: C{str} @return: Whether the given URL is within this trust root. @rtype: C{bool} """ (proto, netloc, path, params, query, frag) = urlparse(url) path = urlunparse(('', '', path, params, query, frag)) if ':' in netloc: try: (host, port) = netloc.split(':') except ValueError: url_parts = None else: host = netloc port = '' host = host.lower() if not path: path = '/' url_parts = (proto, host, port, path) if url_parts is None: return False (proto, host, port, path) = url_parts if proto != self.proto: return False if port != self.port: return False if '*' in host: return False if not self.wildcard: if host != self.host: return False elif not host.endswith(self.host) and '.' + host != self.host: return False if path != self.path: path_len = len(self.path) trust_prefix = self.path[:path_len] url_prefix = path[:path_len] if trust_prefix != url_prefix: return False if '?' in self.path: allowed = '&' else: allowed = '?/' return self.path[-1] in allowed or path[path_len] in allowed return True
djangopeople.net
positive
def check_version(self): self.client_id = self.connection_props['client_id'] server_version_str = self.connection_props['server_protocol_version'] if not server_version_str: log.warn('Server version not reported. Can not check version compatibility.') else: server_version = semvar(server_version_str).version if c.MAJOR_MINOR_VERSION != server_version[:2]: <DeepExtract> self.close_sim() log.error('Server client version mismatch server@%s client@%s - closed sim' % (server_version_str, self.client_version)) sim_url = util.ensure_sim.get_latest_sim_url() if sim_url: answer = input("We've found a version of the sim which matches your client. Would you like to download it now? [y/n] ") if answer.lower().strip() == 'y': backup_dir = os.path.join(c.DEEPDRIVE_DIR, '%s-%s' % (c.SIM_PREFIX, server_version_str)) log.warn('Backing up old sim to %s', backup_dir) shutil.move(util.ensure_sim.get_sim_path(), backup_dir) util.ensure_sim.ensure_sim() self.open_sim() </DeepExtract> return False return True
def check_version(self): self.client_id = self.connection_props['client_id'] server_version_str = self.connection_props['server_protocol_version'] if not server_version_str: log.warn('Server version not reported. Can not check version compatibility.') else: server_version = semvar(server_version_str).version if c.MAJOR_MINOR_VERSION != server_version[:2]: self.close_sim() log.error('Server client version mismatch server@%s client@%s - closed sim' % (server_version_str, self.client_version)) sim_url = util.ensure_sim.get_latest_sim_url() if sim_url: answer = input("We've found a version of the sim which matches your client. Would you like to download it now? [y/n] ") if answer.lower().strip() == 'y': backup_dir = os.path.join(c.DEEPDRIVE_DIR, '%s-%s' % (c.SIM_PREFIX, server_version_str)) log.warn('Backing up old sim to %s', backup_dir) shutil.move(util.ensure_sim.get_sim_path(), backup_dir) util.ensure_sim.ensure_sim() self.open_sim() return False return True
deepdrive
positive
def get_multi_batches(self, batch_size, num_batches_per_step, num_steps=None, shuffle=False, cluster=False): batch_size_per_step = batch_size * num_batches_per_step <DeepExtract> num_batches_per_epoch = int(math.ceil(self.num_examples / batch_size_per_step)) if num_steps is None: num_steps = num_batches_per_epoch num_epochs = int(math.ceil(num_steps / num_batches_per_epoch)) if shuffle: random_idxs = random.sample(self.valid_idxs, len(self.valid_idxs)) if cluster: sorted_idxs = sorted(random_idxs, key=self._sort_key) sorted_grouped = lambda : list(grouper(sorted_idxs, batch_size_per_step)) grouped = lambda : random.sample(sorted_grouped(), num_batches_per_epoch) else: random_grouped = lambda : list(grouper(random_idxs, batch_size_per_step)) grouped = random_grouped else: raw_grouped = lambda : list(grouper(self.valid_idxs, batch_size_per_step)) grouped = raw_grouped batch_idx_tuples = itertools.chain.from_iterable((grouped() for _ in range(num_epochs))) for _ in range(num_steps): batch_idxs = tuple((i for i in next(batch_idx_tuples) if i is not None)) batch_data = self.get_by_idxs(batch_idxs) shared_batch_data = {} for (key, val) in batch_data.items(): if key.startswith('*'): assert self.shared is not None shared_key = key[1:] shared_batch_data[shared_key] = [index(self.shared[shared_key], each) for each in val] batch_data.update(shared_batch_data) batch_ds = DataSet(batch_data, self.data_type, shared=self.shared) yield (batch_idxs, batch_ds) </DeepExtract> multi_batches = (tuple(zip(grouper(idxs, batch_size, shorten=True, num_groups=num_batches_per_step), data_set.divide(num_batches_per_step))) for (idxs, data_set) in batches) return multi_batches
def get_multi_batches(self, batch_size, num_batches_per_step, num_steps=None, shuffle=False, cluster=False): batch_size_per_step = batch_size * num_batches_per_step num_batches_per_epoch = int(math.ceil(self.num_examples / batch_size_per_step)) if num_steps is None: num_steps = num_batches_per_epoch num_epochs = int(math.ceil(num_steps / num_batches_per_epoch)) if shuffle: random_idxs = random.sample(self.valid_idxs, len(self.valid_idxs)) if cluster: sorted_idxs = sorted(random_idxs, key=self._sort_key) sorted_grouped = lambda : list(grouper(sorted_idxs, batch_size_per_step)) grouped = lambda : random.sample(sorted_grouped(), num_batches_per_epoch) else: random_grouped = lambda : list(grouper(random_idxs, batch_size_per_step)) grouped = random_grouped else: raw_grouped = lambda : list(grouper(self.valid_idxs, batch_size_per_step)) grouped = raw_grouped batch_idx_tuples = itertools.chain.from_iterable((grouped() for _ in range(num_epochs))) for _ in range(num_steps): batch_idxs = tuple((i for i in next(batch_idx_tuples) if i is not None)) batch_data = self.get_by_idxs(batch_idxs) shared_batch_data = {} for (key, val) in batch_data.items(): if key.startswith('*'): assert self.shared is not None shared_key = key[1:] shared_batch_data[shared_key] = [index(self.shared[shared_key], each) for each in val] batch_data.update(shared_batch_data) batch_ds = DataSet(batch_data, self.data_type, shared=self.shared) yield (batch_idxs, batch_ds) multi_batches = (tuple(zip(grouper(idxs, batch_size, shorten=True, num_groups=num_batches_per_step), data_set.divide(num_batches_per_step))) for (idxs, data_set) in batches) return multi_batches
convai-bot-1337
positive
def delete_temp_dirs(checkpoint: str, dir_to_del: list, base_dir: str) -> None: """This function deletes the directories of the given list". Parameters ---------- checkpoint: str Path to a file. Used to ensure, that the temporary directories we want to delete are not useful anymore, and to verify that the subject and session are right. dir_to_del: list Names of the directories we want to delete. base_dir: str Path to the working directory. """ import shutil from pathlib import Path from clinica.utils.stream import cprint <DeepExtract> from pathlib import Path subject_session_folder_name = Path(Path(checkpoint).parent).parent.name </DeepExtract> for a in dir_to_del: for z in Path(base_dir).rglob(f'*{a}*'): if Path(z).parent.name == subject_session_folder_name: shutil.rmtree(z) cprint(msg=f'Temporary folder {z} deleted', lvl='info')
def delete_temp_dirs(checkpoint: str, dir_to_del: list, base_dir: str) -> None: """This function deletes the directories of the given list". Parameters ---------- checkpoint: str Path to a file. Used to ensure, that the temporary directories we want to delete are not useful anymore, and to verify that the subject and session are right. dir_to_del: list Names of the directories we want to delete. base_dir: str Path to the working directory. """ import shutil from pathlib import Path from clinica.utils.stream import cprint from pathlib import Path subject_session_folder_name = Path(Path(checkpoint).parent).parent.name for a in dir_to_del: for z in Path(base_dir).rglob(f'*{a}*'): if Path(z).parent.name == subject_session_folder_name: shutil.rmtree(z) cprint(msg=f'Temporary folder {z} deleted', lvl='info')
clinica
positive
def enum_to_string(attr, val): <DeepExtract> attr_name = attr.name if attr_name.startswith('User'): attr_name = attr_name[4:] attr_enum = getattr(ua, attr_name) </DeepExtract> string = ', '.join([e.name for e in attr_enum.parse_bitfield(val)]) return string
def enum_to_string(attr, val): attr_name = attr.name if attr_name.startswith('User'): attr_name = attr_name[4:] attr_enum = getattr(ua, attr_name) string = ', '.join([e.name for e in attr_enum.parse_bitfield(val)]) return string
Converter-for-OPCUA
positive
def mujoco_arg_parser(): """ Create an argparse.ArgumentParser for run_mujoco.py. """ <DeepExtract> import argparse parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter) </DeepExtract> parser.add_argument('--env', help='environment ID', type=str, default='Reacher-v2') parser.add_argument('--seed', help='RNG seed', type=int, default=0) parser.add_argument('--num-timesteps', type=int, default=int(1000000.0)) return parser
def mujoco_arg_parser(): """ Create an argparse.ArgumentParser for run_mujoco.py. """ import argparse parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('--env', help='environment ID', type=str, default='Reacher-v2') parser.add_argument('--seed', help='RNG seed', type=int, default=0) parser.add_argument('--num-timesteps', type=int, default=int(1000000.0)) return parser
deepdrive
positive
def NewClearDisplay(self, pos, time): <DeepExtract> if pos == 0: self.i2c.writeReg(0, 128 | 0) elif pos == 1: self.i2c.writeReg(0, 128 | 32 | 0) </DeepExtract> <DeepExtract> for c in ' ': self.i2c.writeReg(64, ord(c)) time.sleep(time / 200.0) </DeepExtract>
def NewClearDisplay(self, pos, time): if pos == 0: self.i2c.writeReg(0, 128 | 0) elif pos == 1: self.i2c.writeReg(0, 128 | 32 | 0) for c in ' ': self.i2c.writeReg(64, ord(c)) time.sleep(time / 200.0) </DeepExtract>
akilib
positive
def show(self, scrollToTop=True): """Show application view.""" utils.containerRemoveAll(self.box) self.itemDict.clear() utils.containerRemoveAll(self.eventbox) self.eventbox.add(self.box) if self.appNum != 0: appList = self.getListFunc((self.pageIndex - 1) * self.defaultRows, min(self.pageIndex * self.defaultRows, self.appNum)) self.box.pack_start(self.createAppList(appList)) <DeepExtract> paddingX = 5 paddingY = 10 if self.appNum > self.defaultRows * self.pageSize: box = gtk.HBox() align = gtk.Alignment() align.set(0.5, 1.0, 0.0, 0.0) align.set_padding(paddingY, paddingY, paddingX, paddingX) align.add(box) if self.pageIndex % self.pageSize == 0: (startIndex, endIndex) = (max(1, (self.pageIndex - 1) / self.pageSize * self.pageSize + 1), min(self.pageIndex + 1, self.maxPageIndex + 1)) else: (startIndex, endIndex) = (int(self.pageIndex / self.pageSize) * self.pageSize + 1, min((int(self.pageIndex / self.pageSize) + 1) * self.pageSize + 1, self.maxPageIndex + 1)) if startIndex != 1: prevButton = setHoverButton(appTheme.getDynamicPixbuf('index/backward_normal.png'), appTheme.getDynamicPixbuf('index/backward_hover.png')) prevButton.connect('button-press-event', lambda widget, event: self.jumpPage(max(1, (self.pageIndex - 1) / self.pageSize * self.pageSize))) prevAlign = gtk.Alignment() prevAlign.set(0.5, 0.5, 0.0, 0.0) prevAlign.add(prevButton) box.pack_start(prevAlign, False, False, paddingX) firstBox = self.createNumIcon(1) firstLabel = gtk.Label() firstLabel.set_markup("<span foreground='%s' size='%s'> ... </span>" % (appTheme.getDynamicColor('index').getColor(), LABEL_FONT_MEDIUM_SIZE)) box.pack_start(firstBox) box.pack_start(firstLabel) for i in range(startIndex, endIndex): box.pack_start(self.createNumIcon(i), False, False, paddingX) if endIndex - 1 != self.maxPageIndex: lastBox = self.createNumIcon(self.maxPageIndex) lastLabel = gtk.Label() lastLabel.set_markup("<span foreground='%s' size='%s'> ... </span>" % (appTheme.getDynamicColor('index').getColor(), LABEL_FONT_MEDIUM_SIZE)) box.pack_start(lastLabel) box.pack_start(lastBox) nextButton = setHoverButton(appTheme.getDynamicPixbuf('index/forward_normal.png'), appTheme.getDynamicPixbuf('index/forward_hover.png')) nextButton.connect('button-press-event', lambda widget, event: self.jumpPage(min(self.maxPageIndex, ((self.pageIndex - 1) / self.pageSize + 1) * self.pageSize + 1))) nextAlign = gtk.Alignment() nextAlign.set(0.5, 0.5, 0.0, 0.0) nextAlign.add(nextButton) box.pack_start(nextAlign, False, False, paddingX) spinButton = gtk.SpinButton() spinButton.set_digits(0) spinButton.set_increments(1, self.defaultRows) spinButton.set_range(1, self.maxPageIndex) spinButton.set_value(self.pageIndex) self.jumpButton = spinButton jumpBeforeLabel = gtk.Label() jumpBeforeLabel.set_markup("<span size='%s'>%s</span>" % (LABEL_FONT_MEDIUM_SIZE, __('Jump To'))) jumpAfterLabel = gtk.Label() jumpAfterLabel.set_markup("<span size='%s'>%s</span>" % (LABEL_FONT_MEDIUM_SIZE, __('Page'))) jumpButton = utils.newButtonWithoutPadding() jumpButton.connect('button-release-event', lambda widget, event: self.jumpPage(int(self.jumpButton.get_text()))) drawButton(jumpButton, 'confirm', 'index', False, __('Jump'), BUTTON_FONT_SIZE_SMALL, 'buttonFont') box.pack_start(jumpBeforeLabel, False, False, paddingX) box.pack_start(spinButton, False, False, paddingX) box.pack_start(jumpAfterLabel, False, False, paddingX) box.pack_start(jumpButton, False, False, paddingX) indexbar = align elif self.appNum > self.defaultRows: box = gtk.HBox() align = gtk.Alignment() align.set(0.5, 1.0, 0.0, 0.0) align.set_padding(paddingY, paddingY, paddingX, paddingX) align.add(box) for i in range(1, self.maxPageIndex + 1): box.pack_start(self.createNumIcon(i), False, False, paddingX) indexbar = align else: indexbar = None </DeepExtract> if not indexbar == None: self.box.pack_start(indexbar) self.box.show_all() self.fetchVoteCallback(self.pageId, map(lambda appInfo: utils.getPkgName(appInfo.pkg), appList), self.isSearchPage) if scrollToTop: utils.scrollToTop(self.scrolledwindow)
def show(self, scrollToTop=True): """Show application view.""" utils.containerRemoveAll(self.box) self.itemDict.clear() utils.containerRemoveAll(self.eventbox) self.eventbox.add(self.box) if self.appNum != 0: appList = self.getListFunc((self.pageIndex - 1) * self.defaultRows, min(self.pageIndex * self.defaultRows, self.appNum)) self.box.pack_start(self.createAppList(appList)) paddingX = 5 paddingY = 10 if self.appNum > self.defaultRows * self.pageSize: box = gtk.HBox() align = gtk.Alignment() align.set(0.5, 1.0, 0.0, 0.0) align.set_padding(paddingY, paddingY, paddingX, paddingX) align.add(box) if self.pageIndex % self.pageSize == 0: (startIndex, endIndex) = (max(1, (self.pageIndex - 1) / self.pageSize * self.pageSize + 1), min(self.pageIndex + 1, self.maxPageIndex + 1)) else: (startIndex, endIndex) = (int(self.pageIndex / self.pageSize) * self.pageSize + 1, min((int(self.pageIndex / self.pageSize) + 1) * self.pageSize + 1, self.maxPageIndex + 1)) if startIndex != 1: prevButton = setHoverButton(appTheme.getDynamicPixbuf('index/backward_normal.png'), appTheme.getDynamicPixbuf('index/backward_hover.png')) prevButton.connect('button-press-event', lambda widget, event: self.jumpPage(max(1, (self.pageIndex - 1) / self.pageSize * self.pageSize))) prevAlign = gtk.Alignment() prevAlign.set(0.5, 0.5, 0.0, 0.0) prevAlign.add(prevButton) box.pack_start(prevAlign, False, False, paddingX) firstBox = self.createNumIcon(1) firstLabel = gtk.Label() firstLabel.set_markup("<span foreground='%s' size='%s'> ... </span>" % (appTheme.getDynamicColor('index').getColor(), LABEL_FONT_MEDIUM_SIZE)) box.pack_start(firstBox) box.pack_start(firstLabel) for i in range(startIndex, endIndex): box.pack_start(self.createNumIcon(i), False, False, paddingX) if endIndex - 1 != self.maxPageIndex: lastBox = self.createNumIcon(self.maxPageIndex) lastLabel = gtk.Label() lastLabel.set_markup("<span foreground='%s' size='%s'> ... </span>" % (appTheme.getDynamicColor('index').getColor(), LABEL_FONT_MEDIUM_SIZE)) box.pack_start(lastLabel) box.pack_start(lastBox) nextButton = setHoverButton(appTheme.getDynamicPixbuf('index/forward_normal.png'), appTheme.getDynamicPixbuf('index/forward_hover.png')) nextButton.connect('button-press-event', lambda widget, event: self.jumpPage(min(self.maxPageIndex, ((self.pageIndex - 1) / self.pageSize + 1) * self.pageSize + 1))) nextAlign = gtk.Alignment() nextAlign.set(0.5, 0.5, 0.0, 0.0) nextAlign.add(nextButton) box.pack_start(nextAlign, False, False, paddingX) spinButton = gtk.SpinButton() spinButton.set_digits(0) spinButton.set_increments(1, self.defaultRows) spinButton.set_range(1, self.maxPageIndex) spinButton.set_value(self.pageIndex) self.jumpButton = spinButton jumpBeforeLabel = gtk.Label() jumpBeforeLabel.set_markup("<span size='%s'>%s</span>" % (LABEL_FONT_MEDIUM_SIZE, __('Jump To'))) jumpAfterLabel = gtk.Label() jumpAfterLabel.set_markup("<span size='%s'>%s</span>" % (LABEL_FONT_MEDIUM_SIZE, __('Page'))) jumpButton = utils.newButtonWithoutPadding() jumpButton.connect('button-release-event', lambda widget, event: self.jumpPage(int(self.jumpButton.get_text()))) drawButton(jumpButton, 'confirm', 'index', False, __('Jump'), BUTTON_FONT_SIZE_SMALL, 'buttonFont') box.pack_start(jumpBeforeLabel, False, False, paddingX) box.pack_start(spinButton, False, False, paddingX) box.pack_start(jumpAfterLabel, False, False, paddingX) box.pack_start(jumpButton, False, False, paddingX) indexbar = align elif self.appNum > self.defaultRows: box = gtk.HBox() align = gtk.Alignment() align.set(0.5, 1.0, 0.0, 0.0) align.set_padding(paddingY, paddingY, paddingX, paddingX) align.add(box) for i in range(1, self.maxPageIndex + 1): box.pack_start(self.createNumIcon(i), False, False, paddingX) indexbar = align else: indexbar = None if not indexbar == None: self.box.pack_start(indexbar) self.box.show_all() self.fetchVoteCallback(self.pageId, map(lambda appInfo: utils.getPkgName(appInfo.pkg), appList), self.isSearchPage) if scrollToTop: utils.scrollToTop(self.scrolledwindow)
deepin-software-center
positive
def run(self, interactive=False, jupyter=False, host_port=None, command=None, check_run=False, num_eval_batches=None, skip_benign=None, skip_attack=None, skip_misclassified=None, validate_config=None) -> int: exit_code = 0 if self.no_docker: if jupyter or interactive or command: raise ValueError('jupyter, interactive, or bash commands only supported when running Docker containers.') runner = self.manager.start_armory_instance(envs=self.extra_env_vars) try: <DeepExtract> log.info(bold(red('Running evaluation script'))) b64_config = self._b64_encode_config() options = self._build_options(check_run=check_run, num_eval_batches=num_eval_batches, skip_benign=skip_benign, skip_attack=skip_attack, skip_misclassified=skip_misclassified, validate_config=validate_config) if self.no_docker: kwargs = {} python = sys.executable else: kwargs = {'user': self.get_id()} python = 'python' cmd = f'{python} -m armory.scenarios.main {b64_config}{options} --base64' exit_code = runner.exec_cmd(cmd, **kwargs) </DeepExtract> except KeyboardInterrupt: log.warning('Keyboard interrupt caught') finally: log.info('cleaning up...') <DeepExtract> log.info(f'deleting tmp_dir {self.tmp_dir}') try: shutil.rmtree(self.tmp_dir) except OSError as e: if not isinstance(e, FileNotFoundError): log.exception(f'Error removing tmp_dir {self.tmp_dir}') try: os.rmdir(self.output_dir) log.warning(f'removed output_dir {self.output_dir} because it was empty') except FileNotFoundError: log.warning(f'output_dir {self.output_dir} was deleted or never created') except OSError: jsons = [x for x in os.listdir(self.output_dir) if x.endswith('.json')] if len(jsons) == 1: json = jsons[0] else: json = '' output_path = os.path.join(self.output_dir, json) log.info(f'results output written to:\n{output_path}') </DeepExtract> return exit_code if check_run and (jupyter or interactive or command): raise ValueError('check_run incompatible with interactive, jupyter, or command') if jupyter or host_port: if host_port: ports = {host_port: host_port} else: ports = {8888: 8888} else: ports = None try: runner = self.manager.start_armory_instance(envs=self.extra_env_vars, ports=ports, user=self.get_id()) try: if jupyter: <DeepExtract> if not self.root: log.warning('Running Jupyter Lab as root inside the container.') user_group_id = self.get_id() port = list(ports.keys())[0] tmp_dir = os.path.join(self.host_paths.tmp_dir, self.config['eval_id']) os.makedirs(tmp_dir) self.tmp_config = os.path.join(tmp_dir, 'interactive-config.json') docker_config_path = os.path.join(paths.runtime_paths().tmp_dir, self.config['eval_id'], 'interactive-config.json') with open(self.tmp_config, 'w') as f: f.write(json.dumps(self.config, sort_keys=True, indent=4) + '\n') init_options = self._constructor_options(check_run=check_run, num_eval_batches=num_eval_batches, skip_benign=skip_benign, skip_attack=skip_attack, skip_misclassified=skip_misclassified) lines = ['About to launch jupyter.', bold('# To connect on the command line as well, in a new terminal, run:'), bold(red(f'docker exec -it -u {user_group_id} {runner.docker_container.short_id} bash')), ''] if 'scenario' in self.config: lines.extend([bold('# To run, inside of a notebook:'), bold(red(f'from armory.scenarios.main import get as get_scenario\ns = get_scenario("{docker_config_path}"{init_options}).load()\ns.evaluate()')), '']) lines.extend([bold('# To gracefully shut down container, press: Ctrl-C'), '', 'Jupyter notebook log:']) log.info('\n'.join(lines)) runner.exec_cmd(f'jupyter lab --ip=0.0.0.0 --port {port} --no-browser', user=user_group_id, expect_sentinel=False) </DeepExtract> elif interactive: <DeepExtract> user_group_id = self.get_id() lines = ['Container ready for interactive use.', bold('# In a new terminal, run the following to attach to the container:'), bold(red(f'docker exec -it -u {user_group_id} {runner.docker_container.short_id} bash')), ''] if self.config.get('scenario'): options = self._build_options(check_run=check_run, num_eval_batches=num_eval_batches, skip_benign=skip_benign, skip_attack=skip_attack, skip_misclassified=skip_misclassified, validate_config=validate_config) init_options = self._constructor_options(check_run=check_run, num_eval_batches=num_eval_batches, skip_benign=skip_benign, skip_attack=skip_attack, skip_misclassified=skip_misclassified) tmp_dir = os.path.join(self.host_paths.tmp_dir, self.config['eval_id']) os.makedirs(tmp_dir) self.tmp_config = os.path.join(tmp_dir, 'interactive-config.json') docker_config_path = os.path.join(paths.runtime_paths().tmp_dir, self.config['eval_id'], 'interactive-config.json') with open(self.tmp_config, 'w') as f: f.write(json.dumps(self.config, sort_keys=True, indent=4) + '\n') lines.extend([bold('# To run your scenario in the container:'), bold(red(f'python -m armory.scenarios.main {docker_config_path}{options}')), '', bold('# To run your scenario interactively:'), bold(red(f'python\nfrom armory.scenarios.main import get as get_scenario\ns = get_scenario("{docker_config_path}"{init_options}).load()\ns.evaluate()')), '', bold('# To gracefully shut down container, press: Ctrl-C'), '']) log.info('\n'.join(lines)) while True: time.sleep(1) </DeepExtract> elif command: <DeepExtract> log.info(bold(red(f'Running bash command: {command}'))) exit_code = runner.exec_cmd(command, user=self.get_id(), expect_sentinel=False) </DeepExtract> else: <DeepExtract> log.info(bold(red('Running evaluation script'))) b64_config = self._b64_encode_config() options = self._build_options(check_run=check_run, num_eval_batches=num_eval_batches, skip_benign=skip_benign, skip_attack=skip_attack, skip_misclassified=skip_misclassified, validate_config=validate_config) if self.no_docker: kwargs = {} python = sys.executable else: kwargs = {'user': self.get_id()} python = 'python' cmd = f'{python} -m armory.scenarios.main {b64_config}{options} --base64' exit_code = runner.exec_cmd(cmd, **kwargs) </DeepExtract> except KeyboardInterrupt: log.warning('keyboard interrupt caught') finally: log.trace('Shutting down container {self.manager.instances.keys()}') self.manager.stop_armory_instance(runner) except requests.exceptions.RequestException as e: log.exception('Starting instance failed.') if str(e).endswith(f'Bind for 0.0.0.0:{host_port} failed: port is already allocated")'): log.error(f"Port {host_port} already in use. Try a different one with '--port <port>'") elif str(e) == '400 Client Error: Bad Request ("Unknown runtime specified nvidia")': log.error('NVIDIA runtime failed. Either install nvidia-docker or set config "use_gpu" to false') else: log.error('Is Docker Daemon running?') <DeepExtract> log.info(f'deleting tmp_dir {self.tmp_dir}') try: shutil.rmtree(self.tmp_dir) except OSError as e: if not isinstance(e, FileNotFoundError): log.exception(f'Error removing tmp_dir {self.tmp_dir}') try: os.rmdir(self.output_dir) log.warning(f'removed output_dir {self.output_dir} because it was empty') except FileNotFoundError: log.warning(f'output_dir {self.output_dir} was deleted or never created') except OSError: jsons = [x for x in os.listdir(self.output_dir) if x.endswith('.json')] if len(jsons) == 1: json = jsons[0] else: json = '' output_path = os.path.join(self.output_dir, json) log.info(f'results output written to:\n{output_path}') </DeepExtract> return exit_code
def run(self, interactive=False, jupyter=False, host_port=None, command=None, check_run=False, num_eval_batches=None, skip_benign=None, skip_attack=None, skip_misclassified=None, validate_config=None) -> int: exit_code = 0 if self.no_docker: if jupyter or interactive or command: raise ValueError('jupyter, interactive, or bash commands only supported when running Docker containers.') runner = self.manager.start_armory_instance(envs=self.extra_env_vars) try: log.info(bold(red('Running evaluation script'))) b64_config = self._b64_encode_config() options = self._build_options(check_run=check_run, num_eval_batches=num_eval_batches, skip_benign=skip_benign, skip_attack=skip_attack, skip_misclassified=skip_misclassified, validate_config=validate_config) if self.no_docker: kwargs = {} python = sys.executable else: kwargs = {'user': self.get_id()} python = 'python' cmd = f'{python} -m armory.scenarios.main {b64_config}{options} --base64' exit_code = runner.exec_cmd(cmd, **kwargs) except KeyboardInterrupt: log.warning('Keyboard interrupt caught') finally: log.info('cleaning up...') log.info(f'deleting tmp_dir {self.tmp_dir}') try: shutil.rmtree(self.tmp_dir) except OSError as e: if not isinstance(e, FileNotFoundError): log.exception(f'Error removing tmp_dir {self.tmp_dir}') try: os.rmdir(self.output_dir) log.warning(f'removed output_dir {self.output_dir} because it was empty') except FileNotFoundError: log.warning(f'output_dir {self.output_dir} was deleted or never created') except OSError: jsons = [x for x in os.listdir(self.output_dir) if x.endswith('.json')] if len(jsons) == 1: json = jsons[0] else: json = '' output_path = os.path.join(self.output_dir, json) log.info(f'results output written to:\n{output_path}') return exit_code if check_run and (jupyter or interactive or command): raise ValueError('check_run incompatible with interactive, jupyter, or command') if jupyter or host_port: if host_port: ports = {host_port: host_port} else: ports = {8888: 8888} else: ports = None try: runner = self.manager.start_armory_instance(envs=self.extra_env_vars, ports=ports, user=self.get_id()) try: if jupyter: if not self.root: log.warning('Running Jupyter Lab as root inside the container.') user_group_id = self.get_id() port = list(ports.keys())[0] tmp_dir = os.path.join(self.host_paths.tmp_dir, self.config['eval_id']) os.makedirs(tmp_dir) self.tmp_config = os.path.join(tmp_dir, 'interactive-config.json') docker_config_path = os.path.join(paths.runtime_paths().tmp_dir, self.config['eval_id'], 'interactive-config.json') with open(self.tmp_config, 'w') as f: f.write(json.dumps(self.config, sort_keys=True, indent=4) + '\n') init_options = self._constructor_options(check_run=check_run, num_eval_batches=num_eval_batches, skip_benign=skip_benign, skip_attack=skip_attack, skip_misclassified=skip_misclassified) lines = ['About to launch jupyter.', bold('# To connect on the command line as well, in a new terminal, run:'), bold(red(f'docker exec -it -u {user_group_id} {runner.docker_container.short_id} bash')), ''] if 'scenario' in self.config: lines.extend([bold('# To run, inside of a notebook:'), bold(red(f'from armory.scenarios.main import get as get_scenario\ns = get_scenario("{docker_config_path}"{init_options}).load()\ns.evaluate()')), '']) lines.extend([bold('# To gracefully shut down container, press: Ctrl-C'), '', 'Jupyter notebook log:']) log.info('\n'.join(lines)) runner.exec_cmd(f'jupyter lab --ip=0.0.0.0 --port {port} --no-browser', user=user_group_id, expect_sentinel=False) elif interactive: user_group_id = self.get_id() lines = ['Container ready for interactive use.', bold('# In a new terminal, run the following to attach to the container:'), bold(red(f'docker exec -it -u {user_group_id} {runner.docker_container.short_id} bash')), ''] if self.config.get('scenario'): options = self._build_options(check_run=check_run, num_eval_batches=num_eval_batches, skip_benign=skip_benign, skip_attack=skip_attack, skip_misclassified=skip_misclassified, validate_config=validate_config) init_options = self._constructor_options(check_run=check_run, num_eval_batches=num_eval_batches, skip_benign=skip_benign, skip_attack=skip_attack, skip_misclassified=skip_misclassified) tmp_dir = os.path.join(self.host_paths.tmp_dir, self.config['eval_id']) os.makedirs(tmp_dir) self.tmp_config = os.path.join(tmp_dir, 'interactive-config.json') docker_config_path = os.path.join(paths.runtime_paths().tmp_dir, self.config['eval_id'], 'interactive-config.json') with open(self.tmp_config, 'w') as f: f.write(json.dumps(self.config, sort_keys=True, indent=4) + '\n') lines.extend([bold('# To run your scenario in the container:'), bold(red(f'python -m armory.scenarios.main {docker_config_path}{options}')), '', bold('# To run your scenario interactively:'), bold(red(f'python\nfrom armory.scenarios.main import get as get_scenario\ns = get_scenario("{docker_config_path}"{init_options}).load()\ns.evaluate()')), '', bold('# To gracefully shut down container, press: Ctrl-C'), '']) log.info('\n'.join(lines)) while True: time.sleep(1) elif command: log.info(bold(red(f'Running bash command: {command}'))) exit_code = runner.exec_cmd(command, user=self.get_id(), expect_sentinel=False) else: log.info(bold(red('Running evaluation script'))) b64_config = self._b64_encode_config() options = self._build_options(check_run=check_run, num_eval_batches=num_eval_batches, skip_benign=skip_benign, skip_attack=skip_attack, skip_misclassified=skip_misclassified, validate_config=validate_config) if self.no_docker: kwargs = {} python = sys.executable else: kwargs = {'user': self.get_id()} python = 'python' cmd = f'{python} -m armory.scenarios.main {b64_config}{options} --base64' exit_code = runner.exec_cmd(cmd, **kwargs) except KeyboardInterrupt: log.warning('keyboard interrupt caught') finally: log.trace('Shutting down container {self.manager.instances.keys()}') self.manager.stop_armory_instance(runner) except requests.exceptions.RequestException as e: log.exception('Starting instance failed.') if str(e).endswith(f'Bind for 0.0.0.0:{host_port} failed: port is already allocated")'): log.error(f"Port {host_port} already in use. Try a different one with '--port <port>'") elif str(e) == '400 Client Error: Bad Request ("Unknown runtime specified nvidia")': log.error('NVIDIA runtime failed. Either install nvidia-docker or set config "use_gpu" to false') else: log.error('Is Docker Daemon running?') log.info(f'deleting tmp_dir {self.tmp_dir}') try: shutil.rmtree(self.tmp_dir) except OSError as e: if not isinstance(e, FileNotFoundError): log.exception(f'Error removing tmp_dir {self.tmp_dir}') try: os.rmdir(self.output_dir) log.warning(f'removed output_dir {self.output_dir} because it was empty') except FileNotFoundError: log.warning(f'output_dir {self.output_dir} was deleted or never created') except OSError: jsons = [x for x in os.listdir(self.output_dir) if x.endswith('.json')] if len(jsons) == 1: json = jsons[0] else: json = '' output_path = os.path.join(self.output_dir, json) log.info(f'results output written to:\n{output_path}') return exit_code
armory
positive
def add_field(name, field): if isinstance(field, REFERENCING_FIELD_TYPES): <DeepExtract> references[name] = RelationInfo(model_field=field, related_model=getattr(field, 'document_type', None)) </DeepExtract> elif isinstance(field, EMBEDDING_FIELD_TYPES): <DeepExtract> embedded[name] = RelationInfo(model_field=field, related_model=getattr(field, 'document_type', None)) </DeepExtract> elif isinstance(field, COMPOUND_FIELD_TYPES): fields[name] = field if field.field: <DeepExtract> if isinstance(field.field, REFERENCING_FIELD_TYPES): references[name + '.child'] = get_relation_info(field.field) elif isinstance(field.field, EMBEDDING_FIELD_TYPES): embedded[name + '.child'] = get_relation_info(field.field) elif isinstance(field.field, COMPOUND_FIELD_TYPES): fields[name + '.child'] = field.field if field.field.field: add_field(name + '.child' + '.child', field.field.field) elif field.field is pk: return else: fields[name + '.child'] = field.field </DeepExtract> elif field is pk: return else: fields[name] = field
def add_field(name, field): if isinstance(field, REFERENCING_FIELD_TYPES): references[name] = RelationInfo(model_field=field, related_model=getattr(field, 'document_type', None)) elif isinstance(field, EMBEDDING_FIELD_TYPES): embedded[name] = RelationInfo(model_field=field, related_model=getattr(field, 'document_type', None)) elif isinstance(field, COMPOUND_FIELD_TYPES): fields[name] = field if field.field: if isinstance(field.field, REFERENCING_FIELD_TYPES): references[name + '.child'] = get_relation_info(field.field) elif isinstance(field.field, EMBEDDING_FIELD_TYPES): embedded[name + '.child'] = get_relation_info(field.field) elif isinstance(field.field, COMPOUND_FIELD_TYPES): fields[name + '.child'] = field.field if field.field.field: add_field(name + '.child' + '.child', field.field.field) elif field.field is pk: return else: fields[name + '.child'] = field.field elif field is pk: return else: fields[name] = field
django-rest-framework-mongoengine
positive
def generate_ros_distro_diff(track, repository, distro, override_release_repository_url): def convert_unicode_dict_to_str(d): for (key, value) in d.items(): if type(key) == unicode: del d[key] key = key.encode('utf-8') if type(value) == unicode: value = value.encode('utf-8') if type(value) == dict: <DeepExtract> for (key, value) in value.items(): if type(key) == unicode: del value[key] key = key.encode('utf-8') if type(value) == unicode: value = value.encode('utf-8') if type(value) == dict: convert_unicode_dict_to_str(value) value[key] = value </DeepExtract> d[key] = value global _user_provided_release_url distribution_dict = get_distribution_file(distro).get_data() <DeepExtract> with inbranch('upstream'): (_, _, packages) = get_package_data('upstream') packages = packages </DeepExtract> if len(packages) == 0: warning("No packages found, will not generate 'package: path' entries for rosdistro.") track_dict = get_tracks_dict_raw()['tracks'][track] last_version = track_dict['last_version'] release_inc = track_dict['release_inc'] version = '{0}-{1}'.format(last_version, release_inc) if repository not in distribution_dict['repositories']: distribution_dict['repositories'][repository] = {} if 'release' not in distribution_dict['repositories'][repository]: distribution_dict['repositories'][repository]['release'] = {'url': override_release_repository_url or _user_provided_release_url} repo = distribution_dict['repositories'][repository]['release'] if override_release_repository_url is not None: repo['url'] = override_release_repository_url if 'tags' not in repo: repo['tags'] = {} <DeepExtract> tag = 'release/%s/{package}/{version}' % distro if sys.version_info[0] < 3: tag == tag.encode('utf-8') repo['tags']['release'] = tag </DeepExtract> repo['version'] = version if 'last_release' in track_dict: repo['upstream_tag'] = track_dict['last_release'] if 'packages' not in repo: repo['packages'] = [] for (path, pkg) in packages.items(): if pkg.name not in repo['packages']: repo['packages'].append(pkg.name) packages_being_released = [p.name for p in packages.values()] for pkg_name in list(repo['packages']): if pkg_name not in packages_being_released: repo['packages'].remove(pkg_name) repo['packages'].sort() if sys.version_info[0] < 3: <DeepExtract> for (key, value) in repo.items(): if type(key) == unicode: del repo[key] key = key.encode('utf-8') if type(value) == unicode: value = value.encode('utf-8') if type(value) == dict: convert_unicode_dict_to_str(value) repo[key] = value </DeepExtract> def get_repository_info_from_user(url_type, defaults=None): data = {} defaults = defaults or {} while True: info('VCS Type must be one of git, svn, hg, or bzr.') default = defaults.get('type', track_dict.get('vcs_type')) insert = '' if default is None else ' [{0}]'.format(default) vcs_type = safe_input('VCS type{0}: '.format(insert)) if not vcs_type: vcs_type = default if vcs_type in ['git', 'svn', 'hg', 'bzr']: break error("'{0}' is not a valid vcs type.".format(vcs_type)) if not maybe_continue(msg='Try again'): return {} data['type'] = vcs_type while True: default = defaults.get('url', track_dict.get('vcs_uri')) insert = '' if default is None else ' [{0}]'.format(default) url = safe_input('VCS url{0}: '.format(insert)) if not url: url = default if url: if not validate_github_url(url, url_type): continue break error('Nothing entered for url.') if not maybe_continue(msg='Try again'): return {} data['url'] = url while True: info('VCS version must be a branch, tag, or commit, e.g. master or 0.1.0') default = defaults.get('version', track_dict.get('devel_branch')) insert = '' if default is None else ' [{0}]'.format(default) version = safe_input('VCS version{0}: '.format(insert)) if not version: version = default if version: break error('Nothing entered for version.') if not maybe_continue(msg='Try again'): return {} data['version'] = version return data if 'BLOOM_DONT_ASK_FOR_DOCS' not in os.environ: docs = distribution_dict['repositories'][repository].get('doc', {}) if not docs and maybe_continue(msg='Would you like to add documentation information for this repository?'): defaults = None info(fmt('@{gf}@!==> @|') + 'Looking for a doc entry for this repository in a different distribution...') (default_distro, default_doc) = get_most_recent('doc', repository, distro) if default_distro is None: warning('No existing doc entries found for use as defaults.') else: warning("Using defaults from the doc entry of distribution '{0}'.".format(default_distro)) if default_doc is not None: defaults = {'type': default_doc.type or None, 'url': default_doc.url or None, 'version': default_doc.version or None} info('Please enter your repository information for the doc generation job.') info('This information should point to the repository from which documentation should be generated.') <DeepExtract> data = {} defaults = defaults or {} while True: info('VCS Type must be one of git, svn, hg, or bzr.') default = defaults.get('type', track_dict.get('vcs_type')) insert = '' if default is None else ' [{0}]'.format(default) vcs_type = safe_input('VCS type{0}: '.format(insert)) if not vcs_type: vcs_type = default if vcs_type in ['git', 'svn', 'hg', 'bzr']: break error("'{0}' is not a valid vcs type.".format(vcs_type)) if not maybe_continue(msg='Try again'): docs = {} data['type'] = vcs_type while True: default = defaults.get('url', track_dict.get('vcs_uri')) insert = '' if default is None else ' [{0}]'.format(default) url = safe_input('VCS url{0}: '.format(insert)) if not url: url = default if url: if not validate_github_url(url, 'doc'): continue break error('Nothing entered for url.') if not maybe_continue(msg='Try again'): docs = {} data['url'] = url while True: info('VCS version must be a branch, tag, or commit, e.g. master or 0.1.0') default = defaults.get('version', track_dict.get('devel_branch')) insert = '' if default is None else ' [{0}]'.format(default) version = safe_input('VCS version{0}: '.format(insert)) if not version: version = default if version: break error('Nothing entered for version.') if not maybe_continue(msg='Try again'): docs = {} data['version'] = version docs = data </DeepExtract> distribution_dict['repositories'][repository]['doc'] = docs if 'BLOOM_DONT_ASK_FOR_SOURCE' not in os.environ: source = distribution_dict['repositories'][repository].get('source', {}) if not source and maybe_continue(msg='Would you like to add source information for this repository?'): defaults = None info(fmt('@{gf}@!==> @|') + 'Looking for a source entry for this repository in a different distribution...') (default_distro, default_source) = get_most_recent('source', repository, distro) if default_distro is None: warning('No existing source entries found for use as defaults.') else: warning("Using defaults from the source entry of distribution '{0}'.".format(default_distro)) if default_source is not None: defaults = {'type': default_source.type or None, 'url': default_source.url or None, 'version': default_source.version or None} info('Please enter information which points to the active development branch for this repository.') info('This information is used to run continuous integration jobs and for developers to checkout from.') <DeepExtract> data = {} defaults = defaults or {} while True: info('VCS Type must be one of git, svn, hg, or bzr.') default = defaults.get('type', track_dict.get('vcs_type')) insert = '' if default is None else ' [{0}]'.format(default) vcs_type = safe_input('VCS type{0}: '.format(insert)) if not vcs_type: vcs_type = default if vcs_type in ['git', 'svn', 'hg', 'bzr']: break error("'{0}' is not a valid vcs type.".format(vcs_type)) if not maybe_continue(msg='Try again'): source = {} data['type'] = vcs_type while True: default = defaults.get('url', track_dict.get('vcs_uri')) insert = '' if default is None else ' [{0}]'.format(default) url = safe_input('VCS url{0}: '.format(insert)) if not url: url = default if url: if not validate_github_url(url, 'source'): continue break error('Nothing entered for url.') if not maybe_continue(msg='Try again'): source = {} data['url'] = url while True: info('VCS version must be a branch, tag, or commit, e.g. master or 0.1.0') default = defaults.get('version', track_dict.get('devel_branch')) insert = '' if default is None else ' [{0}]'.format(default) version = safe_input('VCS version{0}: '.format(insert)) if not version: version = default if version: break error('Nothing entered for version.') if not maybe_continue(msg='Try again'): source = {} data['version'] = version source = data </DeepExtract> if validate_github_url(source['url'], 'source'): info('Since you are on github we can add a job to run your tests on each pull request.If you would like to turn this on please see http://wiki.ros.org/buildfarm/Pull%20request%20testing for more information. There is more setup required to setup the hooks correctly. ') if maybe_continue(msg='Would you like to turn on pull request testing?', default='n'): source['test_pull_requests'] = 'true' distribution_dict['repositories'][repository]['source'] = source if 'BLOOM_DONT_ASK_FOR_MAINTENANCE_STATUS' not in os.environ: status = distribution_dict['repositories'][repository].get('status', None) description = distribution_dict['repositories'][repository].get('status_description', None) if status is None and maybe_continue(msg='Would you like to add a maintenance status for this repository?'): info('Please enter a maintenance status.') info('Valid maintenance statuses:') info('- developed: active development is in progress') info('- maintained: no new development, but bug fixes and pull requests are addressed') info('- unmaintained: looking for new maintainer, bug fixes and pull requests will not be addressed') info('- end-of-life: should not be used, will disappear at some point') while True: status = safe_input('Status: ') if status in ['developed', 'maintained', 'unmaintained', 'end-of-life']: break error("'{0}' is not a valid status.".format(status)) if not maybe_continue(msg='Try again'): status = None break if status is not None: info('You can also enter a status description.') info("This is usually reserved for giving a reason when a status is 'end-of-life'.") if description is not None: info('Current status description: {0}'.format(description)) description_in = safe_input('Status Description [press Enter for no change]: ') if description_in: description = description_in if status is not None: distribution_dict['repositories'][repository]['status'] = status if description is not None: distribution_dict['repositories'][repository]['status_description'] = description <DeepExtract> distribution_file_url = urlparse(get_distribution_file_url(distro)) index_file_url = urlparse(get_index_url()) distro_file_name = os.path.relpath(distribution_file_url.path, os.path.commonprefix([index_file_url.path, distribution_file_url.path])) </DeepExtract> updated_distribution_file = DistributionFile(distro, distribution_dict) distro_dump = yaml_from_distribution_file(updated_distribution_file) distro_file_raw = load_url_to_file_handle(get_distribution_file_url(distro)).read().decode('utf-8') if distro_file_raw != distro_dump: udiff = difflib.unified_diff(distro_file_raw.splitlines(), distro_dump.splitlines(), fromfile=distro_file_name, tofile=distro_file_name) temp_dir = tempfile.mkdtemp() udiff_file = os.path.join(temp_dir, repository + '-' + version + '.patch') udiff_raw = '' info("Unified diff for the ROS distro file located at '{0}':".format(udiff_file)) for line in udiff: if line.startswith('@@'): udiff_raw += line line = fmt('@{cf}' + sanitize(line)) if line.startswith('+'): if not line.startswith('+++'): line += '\n' udiff_raw += line line = fmt('@{gf}' + sanitize(line)) if line.startswith('-'): if not line.startswith('---'): line += '\n' udiff_raw += line line = fmt('@{rf}' + sanitize(line)) if line.startswith(' '): line += '\n' udiff_raw += line info(line, use_prefix=False, end='') distro_file_yaml = yaml.safe_load(distro_file_raw) distro_yaml = yaml.safe_load(distro_dump) if 'repositories' in distro_file_yaml: distro_file_repos = distro_file_yaml['repositories'] for repo in distro_yaml['repositories']: if repo == repository: continue if repo not in distro_file_repos or distro_file_repos[repo] != distro_yaml['repositories'][repo]: error('This generated pull request modifies a repository entry other than the one being released.') error('This likely occurred because the upstream rosdistro changed during this release.') error('This pull request will abort, please re-run this command with the -p option to try again.', exit=True) with open(udiff_file, 'w+') as f: f.write(udiff_raw) return updated_distribution_file else: warning('This release resulted in no changes to the ROS distro file...') return None
def generate_ros_distro_diff(track, repository, distro, override_release_repository_url): def convert_unicode_dict_to_str(d): for (key, value) in d.items(): if type(key) == unicode: del d[key] key = key.encode('utf-8') if type(value) == unicode: value = value.encode('utf-8') if type(value) == dict: for (key, value) in value.items(): if type(key) == unicode: del value[key] key = key.encode('utf-8') if type(value) == unicode: value = value.encode('utf-8') if type(value) == dict: convert_unicode_dict_to_str(value) value[key] = value d[key] = value global _user_provided_release_url distribution_dict = get_distribution_file(distro).get_data() with inbranch('upstream'): (_, _, packages) = get_package_data('upstream') packages = packages if len(packages) == 0: warning("No packages found, will not generate 'package: path' entries for rosdistro.") track_dict = get_tracks_dict_raw()['tracks'][track] last_version = track_dict['last_version'] release_inc = track_dict['release_inc'] version = '{0}-{1}'.format(last_version, release_inc) if repository not in distribution_dict['repositories']: distribution_dict['repositories'][repository] = {} if 'release' not in distribution_dict['repositories'][repository]: distribution_dict['repositories'][repository]['release'] = {'url': override_release_repository_url or _user_provided_release_url} repo = distribution_dict['repositories'][repository]['release'] if override_release_repository_url is not None: repo['url'] = override_release_repository_url if 'tags' not in repo: repo['tags'] = {} tag = 'release/%s/{package}/{version}' % distro if sys.version_info[0] < 3: tag == tag.encode('utf-8') repo['tags']['release'] = tag repo['version'] = version if 'last_release' in track_dict: repo['upstream_tag'] = track_dict['last_release'] if 'packages' not in repo: repo['packages'] = [] for (path, pkg) in packages.items(): if pkg.name not in repo['packages']: repo['packages'].append(pkg.name) packages_being_released = [p.name for p in packages.values()] for pkg_name in list(repo['packages']): if pkg_name not in packages_being_released: repo['packages'].remove(pkg_name) repo['packages'].sort() if sys.version_info[0] < 3: for (key, value) in repo.items(): if type(key) == unicode: del repo[key] key = key.encode('utf-8') if type(value) == unicode: value = value.encode('utf-8') if type(value) == dict: convert_unicode_dict_to_str(value) repo[key] = value def get_repository_info_from_user(url_type, defaults=None): data = {} defaults = defaults or {} while True: info('VCS Type must be one of git, svn, hg, or bzr.') default = defaults.get('type', track_dict.get('vcs_type')) insert = '' if default is None else ' [{0}]'.format(default) vcs_type = safe_input('VCS type{0}: '.format(insert)) if not vcs_type: vcs_type = default if vcs_type in ['git', 'svn', 'hg', 'bzr']: break error("'{0}' is not a valid vcs type.".format(vcs_type)) if not maybe_continue(msg='Try again'): return {} data['type'] = vcs_type while True: default = defaults.get('url', track_dict.get('vcs_uri')) insert = '' if default is None else ' [{0}]'.format(default) url = safe_input('VCS url{0}: '.format(insert)) if not url: url = default if url: if not validate_github_url(url, url_type): continue break error('Nothing entered for url.') if not maybe_continue(msg='Try again'): return {} data['url'] = url while True: info('VCS version must be a branch, tag, or commit, e.g. master or 0.1.0') default = defaults.get('version', track_dict.get('devel_branch')) insert = '' if default is None else ' [{0}]'.format(default) version = safe_input('VCS version{0}: '.format(insert)) if not version: version = default if version: break error('Nothing entered for version.') if not maybe_continue(msg='Try again'): return {} data['version'] = version return data if 'BLOOM_DONT_ASK_FOR_DOCS' not in os.environ: docs = distribution_dict['repositories'][repository].get('doc', {}) if not docs and maybe_continue(msg='Would you like to add documentation information for this repository?'): defaults = None info(fmt('@{gf}@!==> @|') + 'Looking for a doc entry for this repository in a different distribution...') (default_distro, default_doc) = get_most_recent('doc', repository, distro) if default_distro is None: warning('No existing doc entries found for use as defaults.') else: warning("Using defaults from the doc entry of distribution '{0}'.".format(default_distro)) if default_doc is not None: defaults = {'type': default_doc.type or None, 'url': default_doc.url or None, 'version': default_doc.version or None} info('Please enter your repository information for the doc generation job.') info('This information should point to the repository from which documentation should be generated.') data = {} defaults = defaults or {} while True: info('VCS Type must be one of git, svn, hg, or bzr.') default = defaults.get('type', track_dict.get('vcs_type')) insert = '' if default is None else ' [{0}]'.format(default) vcs_type = safe_input('VCS type{0}: '.format(insert)) if not vcs_type: vcs_type = default if vcs_type in ['git', 'svn', 'hg', 'bzr']: break error("'{0}' is not a valid vcs type.".format(vcs_type)) if not maybe_continue(msg='Try again'): docs = {} data['type'] = vcs_type while True: default = defaults.get('url', track_dict.get('vcs_uri')) insert = '' if default is None else ' [{0}]'.format(default) url = safe_input('VCS url{0}: '.format(insert)) if not url: url = default if url: if not validate_github_url(url, 'doc'): continue break error('Nothing entered for url.') if not maybe_continue(msg='Try again'): docs = {} data['url'] = url while True: info('VCS version must be a branch, tag, or commit, e.g. master or 0.1.0') default = defaults.get('version', track_dict.get('devel_branch')) insert = '' if default is None else ' [{0}]'.format(default) version = safe_input('VCS version{0}: '.format(insert)) if not version: version = default if version: break error('Nothing entered for version.') if not maybe_continue(msg='Try again'): docs = {} data['version'] = version docs = data distribution_dict['repositories'][repository]['doc'] = docs if 'BLOOM_DONT_ASK_FOR_SOURCE' not in os.environ: source = distribution_dict['repositories'][repository].get('source', {}) if not source and maybe_continue(msg='Would you like to add source information for this repository?'): defaults = None info(fmt('@{gf}@!==> @|') + 'Looking for a source entry for this repository in a different distribution...') (default_distro, default_source) = get_most_recent('source', repository, distro) if default_distro is None: warning('No existing source entries found for use as defaults.') else: warning("Using defaults from the source entry of distribution '{0}'.".format(default_distro)) if default_source is not None: defaults = {'type': default_source.type or None, 'url': default_source.url or None, 'version': default_source.version or None} info('Please enter information which points to the active development branch for this repository.') info('This information is used to run continuous integration jobs and for developers to checkout from.') data = {} defaults = defaults or {} while True: info('VCS Type must be one of git, svn, hg, or bzr.') default = defaults.get('type', track_dict.get('vcs_type')) insert = '' if default is None else ' [{0}]'.format(default) vcs_type = safe_input('VCS type{0}: '.format(insert)) if not vcs_type: vcs_type = default if vcs_type in ['git', 'svn', 'hg', 'bzr']: break error("'{0}' is not a valid vcs type.".format(vcs_type)) if not maybe_continue(msg='Try again'): source = {} data['type'] = vcs_type while True: default = defaults.get('url', track_dict.get('vcs_uri')) insert = '' if default is None else ' [{0}]'.format(default) url = safe_input('VCS url{0}: '.format(insert)) if not url: url = default if url: if not validate_github_url(url, 'source'): continue break error('Nothing entered for url.') if not maybe_continue(msg='Try again'): source = {} data['url'] = url while True: info('VCS version must be a branch, tag, or commit, e.g. master or 0.1.0') default = defaults.get('version', track_dict.get('devel_branch')) insert = '' if default is None else ' [{0}]'.format(default) version = safe_input('VCS version{0}: '.format(insert)) if not version: version = default if version: break error('Nothing entered for version.') if not maybe_continue(msg='Try again'): source = {} data['version'] = version source = data if validate_github_url(source['url'], 'source'): info('Since you are on github we can add a job to run your tests on each pull request.If you would like to turn this on please see http://wiki.ros.org/buildfarm/Pull%20request%20testing for more information. There is more setup required to setup the hooks correctly. ') if maybe_continue(msg='Would you like to turn on pull request testing?', default='n'): source['test_pull_requests'] = 'true' distribution_dict['repositories'][repository]['source'] = source if 'BLOOM_DONT_ASK_FOR_MAINTENANCE_STATUS' not in os.environ: status = distribution_dict['repositories'][repository].get('status', None) description = distribution_dict['repositories'][repository].get('status_description', None) if status is None and maybe_continue(msg='Would you like to add a maintenance status for this repository?'): info('Please enter a maintenance status.') info('Valid maintenance statuses:') info('- developed: active development is in progress') info('- maintained: no new development, but bug fixes and pull requests are addressed') info('- unmaintained: looking for new maintainer, bug fixes and pull requests will not be addressed') info('- end-of-life: should not be used, will disappear at some point') while True: status = safe_input('Status: ') if status in ['developed', 'maintained', 'unmaintained', 'end-of-life']: break error("'{0}' is not a valid status.".format(status)) if not maybe_continue(msg='Try again'): status = None break if status is not None: info('You can also enter a status description.') info("This is usually reserved for giving a reason when a status is 'end-of-life'.") if description is not None: info('Current status description: {0}'.format(description)) description_in = safe_input('Status Description [press Enter for no change]: ') if description_in: description = description_in if status is not None: distribution_dict['repositories'][repository]['status'] = status if description is not None: distribution_dict['repositories'][repository]['status_description'] = description distribution_file_url = urlparse(get_distribution_file_url(distro)) index_file_url = urlparse(get_index_url()) distro_file_name = os.path.relpath(distribution_file_url.path, os.path.commonprefix([index_file_url.path, distribution_file_url.path])) updated_distribution_file = DistributionFile(distro, distribution_dict) distro_dump = yaml_from_distribution_file(updated_distribution_file) distro_file_raw = load_url_to_file_handle(get_distribution_file_url(distro)).read().decode('utf-8') if distro_file_raw != distro_dump: udiff = difflib.unified_diff(distro_file_raw.splitlines(), distro_dump.splitlines(), fromfile=distro_file_name, tofile=distro_file_name) temp_dir = tempfile.mkdtemp() udiff_file = os.path.join(temp_dir, repository + '-' + version + '.patch') udiff_raw = '' info("Unified diff for the ROS distro file located at '{0}':".format(udiff_file)) for line in udiff: if line.startswith('@@'): udiff_raw += line line = fmt('@{cf}' + sanitize(line)) if line.startswith('+'): if not line.startswith('+++'): line += '\n' udiff_raw += line line = fmt('@{gf}' + sanitize(line)) if line.startswith('-'): if not line.startswith('---'): line += '\n' udiff_raw += line line = fmt('@{rf}' + sanitize(line)) if line.startswith(' '): line += '\n' udiff_raw += line info(line, use_prefix=False, end='') distro_file_yaml = yaml.safe_load(distro_file_raw) distro_yaml = yaml.safe_load(distro_dump) if 'repositories' in distro_file_yaml: distro_file_repos = distro_file_yaml['repositories'] for repo in distro_yaml['repositories']: if repo == repository: continue if repo not in distro_file_repos or distro_file_repos[repo] != distro_yaml['repositories'][repo]: error('This generated pull request modifies a repository entry other than the one being released.') error('This likely occurred because the upstream rosdistro changed during this release.') error('This pull request will abort, please re-run this command with the -p option to try again.', exit=True) with open(udiff_file, 'w+') as f: f.write(udiff_raw) return updated_distribution_file else: warning('This release resulted in no changes to the ROS distro file...') return None
bloom
positive
def from_tf_parameters(parameters): """ Instantiate from tensorflow variables. """ <DeepExtract> def torch_from_tf(data): state_dict = torch.from_numpy(data.eval()) params = dict(parameters) result = {} sizes = [] for i in itertools.count(): resolution = 4 * 2 ** (i // 2) tf_layername = '%dx%d/%s' % (resolution, resolution, 'Dense' if i == 0 else 'Conv' if i == 1 else 'Conv0_up' if i % 2 == 0 else 'Conv1') pt_layername = 'layer%d' % (i + 1) try: weight = torch_from_tf(params['%s/weight' % tf_layername]) except KeyError: break if i == 0: weight = weight.view(weight.shape[0], weight.shape[1] // 16, 4, 4).permute(1, 0, 2, 3).flip(2, 3) sizes.append(weight.shape[0]) elif i % 2 == 0: weight = weight.permute(2, 3, 0, 1).flip(2, 3) else: weight = weight.permute(3, 2, 0, 1) sizes.append(weight.shape[1]) result['%s.conv.weight' % pt_layername] = weight bias = torch_from_tf(params['%s/bias' % tf_layername]) result['%s.wscale.b' % pt_layername] = bias i -= 1 resolution = 4 * 2 ** (i // 2) tf_layername = 'ToRGB_lod0' pt_layername = 'output_%dx%d' % (resolution, resolution) result['%s.conv.weight' % pt_layername] = torch_from_tf(params['%s/weight' % tf_layername]).permute(3, 2, 0, 1) result['%s.wscale.b' % pt_layername] = torch_from_tf(params['%s/bias' % tf_layername]) state_dict = result </DeepExtract> <DeepExtract> sizes = [] for i in itertools.count(): pt_layername = 'layer%d' % (i + 1) try: weight = state_dict['%s.conv.weight' % pt_layername] except KeyError: break if i == 0: sizes.append(weight.shape[1]) if i % 2 == 0: sizes.append(weight.shape[0]) sizes = sizes </DeepExtract> result = ProgressiveGenerator(sizes=sizes) result.load_state_dict(state_dict) return result
def from_tf_parameters(parameters): """ Instantiate from tensorflow variables. """ def torch_from_tf(data): state_dict = torch.from_numpy(data.eval()) params = dict(parameters) result = {} sizes = [] for i in itertools.count(): resolution = 4 * 2 ** (i // 2) tf_layername = '%dx%d/%s' % (resolution, resolution, 'Dense' if i == 0 else 'Conv' if i == 1 else 'Conv0_up' if i % 2 == 0 else 'Conv1') pt_layername = 'layer%d' % (i + 1) try: weight = torch_from_tf(params['%s/weight' % tf_layername]) except KeyError: break if i == 0: weight = weight.view(weight.shape[0], weight.shape[1] // 16, 4, 4).permute(1, 0, 2, 3).flip(2, 3) sizes.append(weight.shape[0]) elif i % 2 == 0: weight = weight.permute(2, 3, 0, 1).flip(2, 3) else: weight = weight.permute(3, 2, 0, 1) sizes.append(weight.shape[1]) result['%s.conv.weight' % pt_layername] = weight bias = torch_from_tf(params['%s/bias' % tf_layername]) result['%s.wscale.b' % pt_layername] = bias i -= 1 resolution = 4 * 2 ** (i // 2) tf_layername = 'ToRGB_lod0' pt_layername = 'output_%dx%d' % (resolution, resolution) result['%s.conv.weight' % pt_layername] = torch_from_tf(params['%s/weight' % tf_layername]).permute(3, 2, 0, 1) result['%s.wscale.b' % pt_layername] = torch_from_tf(params['%s/bias' % tf_layername]) state_dict = result sizes = [] for i in itertools.count(): pt_layername = 'layer%d' % (i + 1) try: weight = state_dict['%s.conv.weight' % pt_layername] except KeyError: break if i == 0: sizes.append(weight.shape[1]) if i % 2 == 0: sizes.append(weight.shape[0]) sizes = sizes result = ProgressiveGenerator(sizes=sizes) result.load_state_dict(state_dict) return result
dissect
positive
def _merge_a_into_b(a, b): """Merge config dictionary a into config dictionary b, clobbering the options in b whenever they are also specified in a. """ if type(a) is not edict: return for (k, v) in a.items(): if k not in b: raise KeyError('{} is not a valid config key'.format(k)) old_type = type(b[k]) if old_type is not type(v): if isinstance(b[k], np.ndarray): v = np.array(v, dtype=b[k].dtype) else: raise ValueError('Type mismatch ({} vs. {}) for config key: {}'.format(type(b[k]), type(v), k)) if type(v) is edict: try: <DeepExtract> if type(a[k]) is not edict: return for (k, v) in a[k].items(): if k not in b[k]: raise KeyError('{} is not a valid config key'.format(k)) old_type = type(b[k][k]) if old_type is not type(v): if isinstance(b[k][k], np.ndarray): v = np.array(v, dtype=b[k][k].dtype) else: raise ValueError('Type mismatch ({} vs. {}) for config key: {}'.format(type(b[k][k]), type(v), k)) if type(v) is edict: try: _merge_a_into_b(a[k][k], b[k][k]) except: print('Error under config key: {}'.format(k)) raise else: b[k][k] = v </DeepExtract> except: print('Error under config key: {}'.format(k)) raise else: b[k] = v
def _merge_a_into_b(a, b): """Merge config dictionary a into config dictionary b, clobbering the options in b whenever they are also specified in a. """ if type(a) is not edict: return for (k, v) in a.items(): if k not in b: raise KeyError('{} is not a valid config key'.format(k)) old_type = type(b[k]) if old_type is not type(v): if isinstance(b[k], np.ndarray): v = np.array(v, dtype=b[k].dtype) else: raise ValueError('Type mismatch ({} vs. {}) for config key: {}'.format(type(b[k]), type(v), k)) if type(v) is edict: try: if type(a[k]) is not edict: return for (k, v) in a[k].items(): if k not in b[k]: raise KeyError('{} is not a valid config key'.format(k)) old_type = type(b[k][k]) if old_type is not type(v): if isinstance(b[k][k], np.ndarray): v = np.array(v, dtype=b[k][k].dtype) else: raise ValueError('Type mismatch ({} vs. {}) for config key: {}'.format(type(b[k][k]), type(v), k)) if type(v) is edict: try: _merge_a_into_b(a[k][k], b[k][k]) except: print('Error under config key: {}'.format(k)) raise else: b[k][k] = v except: print('Error under config key: {}'.format(k)) raise else: b[k] = v
3D_adapt_auto_driving
positive
def objfunc(x): Frames = np.zeros((N_frame, N_pixel, N_pixel)) log_Frames = np.zeros((N_frame, N_pixel, N_pixel)) init_i = 0 for i in range(N_frame): cur_len = np.sum(embed_mask_List[i]) log_Frames[i] = embed(x[init_i:init_i + cur_len], embed_mask_List[i]).reshape((N_pixel, N_pixel)) Frames[i] = np.exp(log_Frames[i]) * embed_mask_List[i].reshape((N_pixel, N_pixel)) init_i += cur_len if R_flow['alpha'] != 0.0: cur_len = np.sum(embed_mask_List[0]) Flow_x = embed(x[init_i:init_i + 2 * cur_len - 1:2], embed_mask_List[i]).reshape((N_pixel, N_pixel)) Flow_y = embed(x[init_i + 1:init_i + 2 * cur_len:2], embed_mask_List[i]).reshape((N_pixel, N_pixel)) Flow = np.transpose([Flow_x.ravel(), Flow_y.ravel()]).reshape((N_pixel, N_pixel, 2)) init_i += 2 * cur_len if stochastic_optics == True: EpsilonList = x[init_i:init_i + N ** 2 - 1] im_List = [image.Image(Frames[j], Prior.psize, Prior.ra, Prior.dec, rf=Obsdata_List[j].rf, source=Prior.source, mjd=Prior.mjd) for j in range(N_frame)] scatt_im_List = [scattering_model.Scatter(im_List[j], Epsilon_Screen=so.MakeEpsilonScreenFromList(EpsilonList, N), ea_ker=ea_ker[j], sqrtQ=sqrtQ, Linearized_Approximation=True).imvec for j in range(N_frame)] init_i += len(EpsilonList) s1 = s2 = 0.0 if alpha_s1 != 0.0: s1 = static_regularizer(Frames, nprior_embed_List, embed_mask_List, Prior.total_flux(), Prior.psize, entropy1, norm_reg=norm_reg, beam_size=beam_size, alpha_A=alpha_A, **kwargs) * alpha_s1 if alpha_s2 != 0.0: s2 = static_regularizer(Frames, nprior_embed_List, embed_mask_List, Prior.total_flux(), Prior.psize, entropy2, norm_reg=norm_reg, beam_size=beam_size, alpha_A=alpha_A, **kwargs) * alpha_s2 s_dynamic = cm = flux = s_dS = s_dF = 0.0 if R_dI['alpha'] != 0.0: s_dynamic += RdI(Frames, **R_dI) * R_dI['alpha'] if R_dt['alpha'] != 0.0: s_dynamic += Rdt(Frames, B_dt, **R_dt) * R_dt['alpha'] if alpha_dS1 != 0.0: s_dS += RdS(Frames, nprior_embed_List, embed_mask_List, entropy1, norm_reg, beam_size=beam_size, alpha_A=alpha_A) * alpha_dS1 if alpha_dS2 != 0.0: s_dS += RdS(Frames, nprior_embed_List, embed_mask_List, entropy2, norm_reg, beam_size=beam_size, alpha_A=alpha_A) * alpha_dS2 if alpha_dF != 0.0: s_dF += RdF_clip(Frames, embed_mask_List) * alpha_dF if alpha_centroid != 0.0: cm = centroid(Frames, coord) * alpha_centroid if alpha_flux > 0.0: flux = alpha_flux * movie_flux_constraint(Frames, flux_List) if stochastic_optics == False: if processes > 0: chisq = np.array(pool.map(get_chisq_wrap, [[j, Frames[j].ravel()[embed_mask_List[j]], d1, d2, d3, ttype, embed_mask_List[j]] for j in range(N_frame)])) else: chisq = np.array([get_chisq(j, Frames[j].ravel()[embed_mask_List[j]], d1, d2, d3, ttype, embed_mask_List[j]) for j in range(N_frame)]) elif processes > 0: chisq = np.array(pool.map(get_chisq_wrap, [[j, scatt_im_List[j][embed_mask_List[j]], d1, d2, d3, ttype, embed_mask_List[j]] for j in range(N_frame)])) else: chisq = np.array([get_chisq(j, scatt_im_List[j][embed_mask_List[j]], d1, d2, d3, ttype, embed_mask_List[j]) for j in range(N_frame)]) chisq = (np.sum(chisq[:, 0]) / N_frame - 1.0) * alpha_d1 + (np.sum(chisq[:, 1]) / N_frame - 1.0) * alpha_d2 + (np.sum(chisq[:, 2]) / N_frame - 1.0) * alpha_d3 if R_flow['alpha'] != 0.0: <DeepExtract> flow_tv = np.sum(np.array(Wrapped_Gradient(Flow[:, :, 0])) ** 2 + np.array(Wrapped_Gradient(Flow[:, :, 1])) ** 2) </DeepExtract> s_dynamic += flow_tv * R_flow['alpha_flow_tv'] s_dynamic += Rflow(Frames, Flow, **R_flow) * R_flow['alpha'] regterm_scattering = 0.0 if stochastic_optics == True: chisq_epsilon = sum(EpsilonList * EpsilonList) / ((N * N - 1.0) / 2.0) regterm_scattering = alpha_phi * (chisq_epsilon - 1.0) return (s1 + s2 + s_dF + s_dS + s_dynamic + chisq + cm + flux + regterm_scattering) * J_factor
def objfunc(x): Frames = np.zeros((N_frame, N_pixel, N_pixel)) log_Frames = np.zeros((N_frame, N_pixel, N_pixel)) init_i = 0 for i in range(N_frame): cur_len = np.sum(embed_mask_List[i]) log_Frames[i] = embed(x[init_i:init_i + cur_len], embed_mask_List[i]).reshape((N_pixel, N_pixel)) Frames[i] = np.exp(log_Frames[i]) * embed_mask_List[i].reshape((N_pixel, N_pixel)) init_i += cur_len if R_flow['alpha'] != 0.0: cur_len = np.sum(embed_mask_List[0]) Flow_x = embed(x[init_i:init_i + 2 * cur_len - 1:2], embed_mask_List[i]).reshape((N_pixel, N_pixel)) Flow_y = embed(x[init_i + 1:init_i + 2 * cur_len:2], embed_mask_List[i]).reshape((N_pixel, N_pixel)) Flow = np.transpose([Flow_x.ravel(), Flow_y.ravel()]).reshape((N_pixel, N_pixel, 2)) init_i += 2 * cur_len if stochastic_optics == True: EpsilonList = x[init_i:init_i + N ** 2 - 1] im_List = [image.Image(Frames[j], Prior.psize, Prior.ra, Prior.dec, rf=Obsdata_List[j].rf, source=Prior.source, mjd=Prior.mjd) for j in range(N_frame)] scatt_im_List = [scattering_model.Scatter(im_List[j], Epsilon_Screen=so.MakeEpsilonScreenFromList(EpsilonList, N), ea_ker=ea_ker[j], sqrtQ=sqrtQ, Linearized_Approximation=True).imvec for j in range(N_frame)] init_i += len(EpsilonList) s1 = s2 = 0.0 if alpha_s1 != 0.0: s1 = static_regularizer(Frames, nprior_embed_List, embed_mask_List, Prior.total_flux(), Prior.psize, entropy1, norm_reg=norm_reg, beam_size=beam_size, alpha_A=alpha_A, **kwargs) * alpha_s1 if alpha_s2 != 0.0: s2 = static_regularizer(Frames, nprior_embed_List, embed_mask_List, Prior.total_flux(), Prior.psize, entropy2, norm_reg=norm_reg, beam_size=beam_size, alpha_A=alpha_A, **kwargs) * alpha_s2 s_dynamic = cm = flux = s_dS = s_dF = 0.0 if R_dI['alpha'] != 0.0: s_dynamic += RdI(Frames, **R_dI) * R_dI['alpha'] if R_dt['alpha'] != 0.0: s_dynamic += Rdt(Frames, B_dt, **R_dt) * R_dt['alpha'] if alpha_dS1 != 0.0: s_dS += RdS(Frames, nprior_embed_List, embed_mask_List, entropy1, norm_reg, beam_size=beam_size, alpha_A=alpha_A) * alpha_dS1 if alpha_dS2 != 0.0: s_dS += RdS(Frames, nprior_embed_List, embed_mask_List, entropy2, norm_reg, beam_size=beam_size, alpha_A=alpha_A) * alpha_dS2 if alpha_dF != 0.0: s_dF += RdF_clip(Frames, embed_mask_List) * alpha_dF if alpha_centroid != 0.0: cm = centroid(Frames, coord) * alpha_centroid if alpha_flux > 0.0: flux = alpha_flux * movie_flux_constraint(Frames, flux_List) if stochastic_optics == False: if processes > 0: chisq = np.array(pool.map(get_chisq_wrap, [[j, Frames[j].ravel()[embed_mask_List[j]], d1, d2, d3, ttype, embed_mask_List[j]] for j in range(N_frame)])) else: chisq = np.array([get_chisq(j, Frames[j].ravel()[embed_mask_List[j]], d1, d2, d3, ttype, embed_mask_List[j]) for j in range(N_frame)]) elif processes > 0: chisq = np.array(pool.map(get_chisq_wrap, [[j, scatt_im_List[j][embed_mask_List[j]], d1, d2, d3, ttype, embed_mask_List[j]] for j in range(N_frame)])) else: chisq = np.array([get_chisq(j, scatt_im_List[j][embed_mask_List[j]], d1, d2, d3, ttype, embed_mask_List[j]) for j in range(N_frame)]) chisq = (np.sum(chisq[:, 0]) / N_frame - 1.0) * alpha_d1 + (np.sum(chisq[:, 1]) / N_frame - 1.0) * alpha_d2 + (np.sum(chisq[:, 2]) / N_frame - 1.0) * alpha_d3 if R_flow['alpha'] != 0.0: flow_tv = np.sum(np.array(Wrapped_Gradient(Flow[:, :, 0])) ** 2 + np.array(Wrapped_Gradient(Flow[:, :, 1])) ** 2) s_dynamic += flow_tv * R_flow['alpha_flow_tv'] s_dynamic += Rflow(Frames, Flow, **R_flow) * R_flow['alpha'] regterm_scattering = 0.0 if stochastic_optics == True: chisq_epsilon = sum(EpsilonList * EpsilonList) / ((N * N - 1.0) / 2.0) regterm_scattering = alpha_phi * (chisq_epsilon - 1.0) return (s1 + s2 + s_dF + s_dS + s_dynamic + chisq + cm + flux + regterm_scattering) * J_factor
eht-imaging
positive
def get_image(self) -> Tuple[float, np.ndarray]: """Reads a single image from the camera. Returns: The dict containing the metadata, and the captured image """ count = 0 while True: t = time() <DeepExtract> self._write_data(Seek_thermal_pro_commands['Start get image transfer'], b'X[\x01\x00') to_read = 2 * Seek_thermal_pro_dimensions['Raw width'] * Seek_thermal_pro_dimensions['Raw height'] ret = bytearray() while to_read - len(ret) > 512: ret += self._dev.read(endpoint=Seek_therm_usb_req['Read_img'], size_or_buffer=int(to_read / (Seek_thermal_pro_dimensions['Raw height'] / 20)), timeout=1000) status = ret[4] if len(ret) == to_read: (status, img) = (status, np.frombuffer(ret, dtype=np.uint16).reshape(Seek_thermal_pro_dimensions['Raw height'], Seek_thermal_pro_dimensions['Raw width'])) else: (status, img) = (status, None) </DeepExtract> if status == 1: self._calib = self._crop(img) - 1600 elif status == 3 and self._calib is not None: return (t, self._correct_dead_pixels(self._crop(img) - self._calib)) elif count == 5: raise TimeoutError('Unable to read image') count += 1
def get_image(self) -> Tuple[float, np.ndarray]: """Reads a single image from the camera. Returns: The dict containing the metadata, and the captured image """ count = 0 while True: t = time() self._write_data(Seek_thermal_pro_commands['Start get image transfer'], b'X[\x01\x00') to_read = 2 * Seek_thermal_pro_dimensions['Raw width'] * Seek_thermal_pro_dimensions['Raw height'] ret = bytearray() while to_read - len(ret) > 512: ret += self._dev.read(endpoint=Seek_therm_usb_req['Read_img'], size_or_buffer=int(to_read / (Seek_thermal_pro_dimensions['Raw height'] / 20)), timeout=1000) status = ret[4] if len(ret) == to_read: (status, img) = (status, np.frombuffer(ret, dtype=np.uint16).reshape(Seek_thermal_pro_dimensions['Raw height'], Seek_thermal_pro_dimensions['Raw width'])) else: (status, img) = (status, None) if status == 1: self._calib = self._crop(img) - 1600 elif status == 3 and self._calib is not None: return (t, self._correct_dead_pixels(self._crop(img) - self._calib)) elif count == 5: raise TimeoutError('Unable to read image') count += 1
crappy
positive
def make_image(relative_image): absolute_image = os.path.join(settings.MEDIA_ROOT, relative_image) <DeepExtract> if not os.path.dirname(relative_image): return absolute_path = os.path.join(settings.MEDIA_ROOT, os.path.dirname(relative_image)) if os.path.isdir(absolute_path): return if absolute_path not in dirs_to_delete: dirs_to_delete.append(absolute_path) make_dirs(os.path.dirname(os.path.dirname(relative_image))) os.mkdir(absolute_path) </DeepExtract> open(absolute_image, 'w').close() images_to_delete.add(absolute_image)
def make_image(relative_image): absolute_image = os.path.join(settings.MEDIA_ROOT, relative_image) if not os.path.dirname(relative_image): return absolute_path = os.path.join(settings.MEDIA_ROOT, os.path.dirname(relative_image)) if os.path.isdir(absolute_path): return if absolute_path not in dirs_to_delete: dirs_to_delete.append(absolute_path) make_dirs(os.path.dirname(os.path.dirname(relative_image))) os.mkdir(absolute_path) open(absolute_image, 'w').close() images_to_delete.add(absolute_image)
djangopeople.net
positive
def __new__(cls, name, bases, attrs): new_class = super().__new__(cls, name, bases, attrs) opts = new_class._meta if not opts.instance_loader_class: opts.instance_loader_class = ModelInstanceLoader if opts.model: model_opts = opts.model._meta declared_fields = new_class.fields field_list = [] for f in sorted(model_opts.fields + model_opts.many_to_many): if opts.fields is not None and (not f.name in opts.fields): continue if opts.exclude and f.name in opts.exclude: continue if f.name in declared_fields: continue field = new_class.field_from_django_field(f.name, f, readonly=False) field_list.append((f.name, field)) new_class.fields.update(OrderedDict(field_list)) if opts.fields is not None: field_list = [] for field_name in opts.fields: if field_name in declared_fields: continue if field_name.find('__') == -1: continue model = opts.model attrs = field_name.split('__') for (i, attr) in enumerate(attrs): verbose_path = '.'.join([opts.model.__name__] + attrs[0:i + 1]) try: f = model._meta.get_field(attr) except FieldDoesNotExist as e: logger.debug(e, exc_info=e) raise FieldDoesNotExist("%s: %s has no field named '%s'" % (verbose_path, model.__name__, attr)) if i < len(attrs) - 1: if isinstance(f, ForeignObjectRel): <DeepExtract> if hasattr(f, 'related_model'): model = f.related_model </DeepExtract> else: if get_related_model(f) is None: raise KeyError('%s is not a relation' % verbose_path) <DeepExtract> if hasattr(f, 'related_model'): model = f.related_model </DeepExtract> if isinstance(f, ForeignObjectRel): f = f.field field = new_class.field_from_django_field(field_name, f, readonly=True) field_list.append((field_name, field)) new_class.fields.update(OrderedDict(field_list)) return new_class
def __new__(cls, name, bases, attrs): new_class = super().__new__(cls, name, bases, attrs) opts = new_class._meta if not opts.instance_loader_class: opts.instance_loader_class = ModelInstanceLoader if opts.model: model_opts = opts.model._meta declared_fields = new_class.fields field_list = [] for f in sorted(model_opts.fields + model_opts.many_to_many): if opts.fields is not None and (not f.name in opts.fields): continue if opts.exclude and f.name in opts.exclude: continue if f.name in declared_fields: continue field = new_class.field_from_django_field(f.name, f, readonly=False) field_list.append((f.name, field)) new_class.fields.update(OrderedDict(field_list)) if opts.fields is not None: field_list = [] for field_name in opts.fields: if field_name in declared_fields: continue if field_name.find('__') == -1: continue model = opts.model attrs = field_name.split('__') for (i, attr) in enumerate(attrs): verbose_path = '.'.join([opts.model.__name__] + attrs[0:i + 1]) try: f = model._meta.get_field(attr) except FieldDoesNotExist as e: logger.debug(e, exc_info=e) raise FieldDoesNotExist("%s: %s has no field named '%s'" % (verbose_path, model.__name__, attr)) if i < len(attrs) - 1: if isinstance(f, ForeignObjectRel): if hasattr(f, 'related_model'): model = f.related_model else: if get_related_model(f) is None: raise KeyError('%s is not a relation' % verbose_path) if hasattr(f, 'related_model'): model = f.related_model if isinstance(f, ForeignObjectRel): f = f.field field = new_class.field_from_django_field(field_name, f, readonly=True) field_list.append((field_name, field)) new_class.fields.update(OrderedDict(field_list)) return new_class
django-import-export
positive
def test_dsm_check_good(self): <DeepExtract> parser = get_parser() ['check', '-type', 'dsm', self.get_dsm_path('DSM_PKG/MINI_DSM1')] = parser.parse_args(['check', '-type', 'dsm', self.get_dsm_path('DSM_PKG/MINI_DSM1')]) (status, msg) = ['check', '-type', 'dsm', self.get_dsm_path('DSM_PKG/MINI_DSM1')].func(['check', '-type', 'dsm', self.get_dsm_path('DSM_PKG/MINI_DSM1')]) </DeepExtract> self.assertTrue(status)
def test_dsm_check_good(self): parser = get_parser() ['check', '-type', 'dsm', self.get_dsm_path('DSM_PKG/MINI_DSM1')] = parser.parse_args(['check', '-type', 'dsm', self.get_dsm_path('DSM_PKG/MINI_DSM1')]) (status, msg) = ['check', '-type', 'dsm', self.get_dsm_path('DSM_PKG/MINI_DSM1')].func(['check', '-type', 'dsm', self.get_dsm_path('DSM_PKG/MINI_DSM1')]) self.assertTrue(status)
ClairMeta
positive
def __build_dockmanager_menu(dockmanager): dm_menu_items = dockmanager.get_menu_items() if dm_menu_items: <DeepExtract> separator = gtk.SeparatorMenuItem() separator.show() if self.gtk_menu: if submenu: self.submenus[submenu].append(separator) else: self.menu.append(separator) elif submenu: self.submenus[submenu].add_item(separator) else: self.menu.pack_start(separator) if identifier is not None: self.items[identifier] = separator return separator </DeepExtract> for (identifier, item) in dm_menu_items.items(): submenu = item.get('container-title', None) if submenu and (not self.has_submenu(submenu)): <DeepExtract> if self.gtk_menu: item = gtk.MenuItem(submenu) item.show() if submenu: self.submenus[submenu].append(item) else: self.menu.append(item) menu = gtk.Menu() item.set_submenu(menu) else: item = None menu = CairoToggleMenu(submenu) if submenu: self.submenus[submenu].add_item(menu) else: self.menu.pack_start(menu) menu.show() menu.connect('toggled', self.__on_submenu_toggled) if identifier is not None: self.items[identifier] = item or menu self.submenus[identifier or submenu] = menu return item or menu </DeepExtract> if item['label']: identifier = 'dockmanager_%s' % identifier <DeepExtract> item['label'].set_show_preview(self.show_previews) item['label'].update_preview() self.window_box.pack_start(item['label'], True, True) </DeepExtract>
def __build_dockmanager_menu(dockmanager): dm_menu_items = dockmanager.get_menu_items() if dm_menu_items: separator = gtk.SeparatorMenuItem() separator.show() if self.gtk_menu: if submenu: self.submenus[submenu].append(separator) else: self.menu.append(separator) elif submenu: self.submenus[submenu].add_item(separator) else: self.menu.pack_start(separator) if identifier is not None: self.items[identifier] = separator return separator for (identifier, item) in dm_menu_items.items(): submenu = item.get('container-title', None) if submenu and (not self.has_submenu(submenu)): if self.gtk_menu: item = gtk.MenuItem(submenu) item.show() if submenu: self.submenus[submenu].append(item) else: self.menu.append(item) menu = gtk.Menu() item.set_submenu(menu) else: item = None menu = CairoToggleMenu(submenu) if submenu: self.submenus[submenu].add_item(menu) else: self.menu.pack_start(menu) menu.show() menu.connect('toggled', self.__on_submenu_toggled) if identifier is not None: self.items[identifier] = item or menu self.submenus[identifier or submenu] = menu return item or menu if item['label']: identifier = 'dockmanager_%s' % identifier item['label'].set_show_preview(self.show_previews) item['label'].update_preview() self.window_box.pack_start(item['label'], True, True) </DeepExtract>
dockbarx
positive
def train(train_loader, model_and_loss, optimizer, lr_scheduler, fp16, logger, epoch, use_amp=False, prof=-1, batch_size_multiplier=1, register_metrics=True): if register_metrics and logger is not None: logger.register_metric('train.top1', log.AverageMeter(), log_level=0) logger.register_metric('train.top5', log.AverageMeter(), log_level=0) logger.register_metric('train.loss', log.AverageMeter(), log_level=0) logger.register_metric('train.compute_ips', log.AverageMeter(), log_level=1) logger.register_metric('train.total_ips', log.AverageMeter(), log_level=0) logger.register_metric('train.data_time', log.AverageMeter(), log_level=1) logger.register_metric('train.compute_time', log.AverageMeter(), log_level=1) if config.debug_memory_model: print('========== Model Only ===========') usage = get_memory_usage(True) exp_recorder.record('network', model_and_loss.arch[0]) exp_recorder.record('algorithm', 'quantize' if model_and_loss.arch[1] == 'quantize' else 'exact') exp_recorder.record('model_only', usage / GB, 2) <DeepExtract> def _step(input, target, optimizer_step=True): input_var = Variable(input) target_var = Variable(target) if config.debug_memory_model: print('========== Init Data Loader ===========') init_mem = get_memory_usage(True) exp_recorder.record('data_loader', init_mem / GB - exp_recorder.val_dict['model_only'], 2) (loss, output) = model_and_loss(input_var, target_var) (prec1, prec5) = (torch.zeros(1), torch.zeros(1)) if torch.distributed.is_initialized(): reduced_loss = utils.reduce_tensor(loss.data) else: reduced_loss = loss.data if config.debug_memory_model: print('========== Before Backward ===========') before_backward = get_memory_usage(True) act_mem = get_memory_usage() - init_mem - compute_tensor_bytes([loss, output]) res = 'Batch size: %d\tTotal Mem: %.2f MB\tAct Mem: %.2f MB' % (len(output), before_backward / MB, act_mem / MB) loss.backward() optimizer.step() del loss print('========== After Backward ===========') after_backward = get_memory_usage(True) total_mem = before_backward + (after_backward - init_mem) res = 'Batch size: %d\tTotal Mem: %.2f MB\tAct Mem: %.2f MB' % (len(output), total_mem / MB, act_mem / MB) print(res) exp_recorder.record('batch_size', len(output)) exp_recorder.record('total', total_mem / GB, 2) exp_recorder.record('activation', act_mem / GB, 2) exp_recorder.dump('mem_results.tsv') exit() if fp16: optimizer.backward(loss) elif use_amp: with amp.scale_loss(loss, optimizer) as scaled_loss: scaled_loss.backward() else: loss.backward() if optimizer_step: opt = optimizer.optimizer if isinstance(optimizer, FP16_Optimizer) else optimizer for param_group in opt.param_groups: for param in param_group['params']: param.grad /= batch_size_multiplier optimizer.step() optimizer.zero_grad() torch.cuda.synchronize() step = (reduced_loss, output, prec1, prec5) step = _step </DeepExtract> model_and_loss.train() print('Training mode ', config.training) end = time.time() optimizer.zero_grad() data_iter = enumerate(train_loader) if logger is not None: data_iter = logger.iteration_generator_wrapper(data_iter) for (i, (input, target, index)) in data_iter: QScheme.batch = index bs = input.size(0) lr_scheduler(optimizer, i, epoch) data_time = time.time() - end if prof > 0: if i >= prof: break optimizer_step = (i + 1) % batch_size_multiplier == 0 (loss, _, prec1, prec5) = step(input, target, optimizer_step=optimizer_step) it_time = time.time() - end if config.debug_speed: global train_step_ct, train_max_ips, train_max_batch train_max_ips = max(train_max_ips, calc_ips(bs, it_time)) train_max_batch = max(train_max_batch, len(input)) if train_step_ct >= 3: res = 'BatchSize: %d\tIPS: %.2f\t,Cost: %.2f ms' % (bs, train_max_ips, 1000.0 / train_max_ips) print(res, flush=True) exp_recorder.record('network', model_and_loss.arch[0]) exp_recorder.record('algorithm', 'quantize' if model_and_loss.arch[1] == 'quantize' else 'exact') exp_recorder.record('batch_size', train_max_batch) exp_recorder.record('ips', train_max_ips, 1) exp_recorder.dump('speed_results.tsv') exit(0) train_step_ct += 1 if logger is not None: logger.log_metric('train.top1', to_python_float(prec1)) logger.log_metric('train.top5', to_python_float(prec5)) logger.log_metric('train.loss', to_python_float(loss)) logger.log_metric('train.compute_ips', calc_ips(bs, it_time - data_time)) logger.log_metric('train.total_ips', calc_ips(bs, it_time)) logger.log_metric('train.data_time', data_time) logger.log_metric('train.compute_time', it_time - data_time) end = time.time()
def train(train_loader, model_and_loss, optimizer, lr_scheduler, fp16, logger, epoch, use_amp=False, prof=-1, batch_size_multiplier=1, register_metrics=True): if register_metrics and logger is not None: logger.register_metric('train.top1', log.AverageMeter(), log_level=0) logger.register_metric('train.top5', log.AverageMeter(), log_level=0) logger.register_metric('train.loss', log.AverageMeter(), log_level=0) logger.register_metric('train.compute_ips', log.AverageMeter(), log_level=1) logger.register_metric('train.total_ips', log.AverageMeter(), log_level=0) logger.register_metric('train.data_time', log.AverageMeter(), log_level=1) logger.register_metric('train.compute_time', log.AverageMeter(), log_level=1) if config.debug_memory_model: print('========== Model Only ===========') usage = get_memory_usage(True) exp_recorder.record('network', model_and_loss.arch[0]) exp_recorder.record('algorithm', 'quantize' if model_and_loss.arch[1] == 'quantize' else 'exact') exp_recorder.record('model_only', usage / GB, 2) def _step(input, target, optimizer_step=True): input_var = Variable(input) target_var = Variable(target) if config.debug_memory_model: print('========== Init Data Loader ===========') init_mem = get_memory_usage(True) exp_recorder.record('data_loader', init_mem / GB - exp_recorder.val_dict['model_only'], 2) (loss, output) = model_and_loss(input_var, target_var) (prec1, prec5) = (torch.zeros(1), torch.zeros(1)) if torch.distributed.is_initialized(): reduced_loss = utils.reduce_tensor(loss.data) else: reduced_loss = loss.data if config.debug_memory_model: print('========== Before Backward ===========') before_backward = get_memory_usage(True) act_mem = get_memory_usage() - init_mem - compute_tensor_bytes([loss, output]) res = 'Batch size: %d\tTotal Mem: %.2f MB\tAct Mem: %.2f MB' % (len(output), before_backward / MB, act_mem / MB) loss.backward() optimizer.step() del loss print('========== After Backward ===========') after_backward = get_memory_usage(True) total_mem = before_backward + (after_backward - init_mem) res = 'Batch size: %d\tTotal Mem: %.2f MB\tAct Mem: %.2f MB' % (len(output), total_mem / MB, act_mem / MB) print(res) exp_recorder.record('batch_size', len(output)) exp_recorder.record('total', total_mem / GB, 2) exp_recorder.record('activation', act_mem / GB, 2) exp_recorder.dump('mem_results.tsv') exit() if fp16: optimizer.backward(loss) elif use_amp: with amp.scale_loss(loss, optimizer) as scaled_loss: scaled_loss.backward() else: loss.backward() if optimizer_step: opt = optimizer.optimizer if isinstance(optimizer, FP16_Optimizer) else optimizer for param_group in opt.param_groups: for param in param_group['params']: param.grad /= batch_size_multiplier optimizer.step() optimizer.zero_grad() torch.cuda.synchronize() step = (reduced_loss, output, prec1, prec5) step = _step model_and_loss.train() print('Training mode ', config.training) end = time.time() optimizer.zero_grad() data_iter = enumerate(train_loader) if logger is not None: data_iter = logger.iteration_generator_wrapper(data_iter) for (i, (input, target, index)) in data_iter: QScheme.batch = index bs = input.size(0) lr_scheduler(optimizer, i, epoch) data_time = time.time() - end if prof > 0: if i >= prof: break optimizer_step = (i + 1) % batch_size_multiplier == 0 (loss, _, prec1, prec5) = step(input, target, optimizer_step=optimizer_step) it_time = time.time() - end if config.debug_speed: global train_step_ct, train_max_ips, train_max_batch train_max_ips = max(train_max_ips, calc_ips(bs, it_time)) train_max_batch = max(train_max_batch, len(input)) if train_step_ct >= 3: res = 'BatchSize: %d\tIPS: %.2f\t,Cost: %.2f ms' % (bs, train_max_ips, 1000.0 / train_max_ips) print(res, flush=True) exp_recorder.record('network', model_and_loss.arch[0]) exp_recorder.record('algorithm', 'quantize' if model_and_loss.arch[1] == 'quantize' else 'exact') exp_recorder.record('batch_size', train_max_batch) exp_recorder.record('ips', train_max_ips, 1) exp_recorder.dump('speed_results.tsv') exit(0) train_step_ct += 1 if logger is not None: logger.log_metric('train.top1', to_python_float(prec1)) logger.log_metric('train.top5', to_python_float(prec5)) logger.log_metric('train.loss', to_python_float(loss)) logger.log_metric('train.compute_ips', calc_ips(bs, it_time - data_time)) logger.log_metric('train.total_ips', calc_ips(bs, it_time)) logger.log_metric('train.data_time', data_time) logger.log_metric('train.compute_time', it_time - data_time) end = time.time()
actnn
positive
def all(self): """ Return everything, without restrictions """ <DeepExtract> if not isinstance(self.q, (type(None), Q)): raise ValueError("self.q value '%s' must be None or a Q instance" % self.q) if not isinstance(self.only_fields, (type(None), tuple)): raise ValueError("self.only_fields value '%s' must be None or a tuple" % self.only_fields) if not isinstance(self.order_fields, (type(None), tuple)): raise ValueError("self.order_fields value '%s' must be None or a tuple" % self.order_fields) if self.return_format not in self.RETURN_TYPES: raise ValueError("self.return_value '%s' must be one of %s" % (self.return_format, self.RETURN_TYPES)) new_qs = self.__class__(self.folder_collection, request_type=self.request_type) new_qs.q = None if self.q is None else deepcopy(self.q) new_qs.only_fields = self.only_fields new_qs.order_fields = None if self.order_fields is None else deepcopy(self.order_fields) new_qs.return_format = self.return_format new_qs.calendar_view = self.calendar_view new_qs.page_size = self.page_size new_qs.max_items = self.max_items new_qs._depth = self._depth new_qs = new_qs </DeepExtract> return new_qs
def all(self): """ Return everything, without restrictions """ if not isinstance(self.q, (type(None), Q)): raise ValueError("self.q value '%s' must be None or a Q instance" % self.q) if not isinstance(self.only_fields, (type(None), tuple)): raise ValueError("self.only_fields value '%s' must be None or a tuple" % self.only_fields) if not isinstance(self.order_fields, (type(None), tuple)): raise ValueError("self.order_fields value '%s' must be None or a tuple" % self.order_fields) if self.return_format not in self.RETURN_TYPES: raise ValueError("self.return_value '%s' must be one of %s" % (self.return_format, self.RETURN_TYPES)) new_qs = self.__class__(self.folder_collection, request_type=self.request_type) new_qs.q = None if self.q is None else deepcopy(self.q) new_qs.only_fields = self.only_fields new_qs.order_fields = None if self.order_fields is None else deepcopy(self.order_fields) new_qs.return_format = self.return_format new_qs.calendar_view = self.calendar_view new_qs.page_size = self.page_size new_qs.max_items = self.max_items new_qs._depth = self._depth new_qs = new_qs return new_qs
exchangelib
positive
@hook.command('note', 'notes', 'todo') def note(text, conn, nick, db, notice): """<add|list|get|del|clear> args - manipulates your list of notes""" parts = text.split() if len(parts) == 1 and text.isdigit(): cmd = 'get' args = parts else: cmd = parts[0].lower() args = parts[1:] if cmd in ['add', 'new']: if not len(args): return 'No text provided!' note_text = ' '.join(args) <DeepExtract> id_query = select([sqlalchemy.sql.expression.func.max(table.c.note_id).label('maxid')]).where(table.c.user == nick.lower()) max_id = db.execute(id_query).scalar() if max_id is None: note_id = 1 else: note_id = max_id + 1 query = table.insert().values(note_id=note_id, connection=conn.name, user=nick.lower(), text=note_text, deleted=False, added=datetime.today()) db.execute(query) db.commit() </DeepExtract> notice('Note added!') return elif cmd in ['del', 'delete', 'remove']: if not len(args): return 'No note ID provided!' note_id = args[0] <DeepExtract> query = select([table.c.note_id, table.c.text, table.c.added]).where(table.c.connection == conn.name).where(table.c.user == nick.lower()).where(table.c.note_id == note_id) n = db.execute(query).fetchone() </DeepExtract> if not n: notice('#{} is not a valid note ID.'.format(note_id)) return <DeepExtract> query = table.update().where(table.c.connection == conn.name).where(table.c.user == nick.lower()).where(table.c.note_id == note_id).values(deleted=1) db.execute(query) db.commit() </DeepExtract> notice('Note #{} deleted!'.format(note_id)) return elif cmd == 'clear': <DeepExtract> query = table.update().where(table.c.connection == conn.name).where(table.c.user == nick.lower()).values(deleted=1) db.execute(query) db.commit() </DeepExtract> notice('All notes deleted!') return elif cmd == 'get': if not len(args): return 'No note ID provided!' note_id = args[0] <DeepExtract> query = select([table.c.note_id, table.c.text, table.c.added]).where(table.c.connection == conn.name).where(table.c.user == nick.lower()).where(table.c.note_id == note_id) n = db.execute(query).fetchone() </DeepExtract> if not n: notice('{} is not a valid note ID.'.format(nick)) return <DeepExtract> (note_id, note_text, added) = n added_string = added.strftime('%d %b, %Y') text = '\x02Note #{}:\x02 {} - \x02{}\x02'.format(note_id, note_text, added_string) </DeepExtract> notice(text) return elif cmd in ['share', 'show']: if not len(args): return 'No note ID provided!' note_id = args[0] <DeepExtract> query = select([table.c.note_id, table.c.text, table.c.added]).where(table.c.connection == conn.name).where(table.c.user == nick.lower()).where(table.c.note_id == note_id) n = db.execute(query).fetchone() </DeepExtract> if not n: notice('{} is not a valid note ID.'.format(nick)) return <DeepExtract> (note_id, note_text, added) = n added_string = added.strftime('%d %b, %Y') text = '\x02Note #{}:\x02 {} - \x02{}\x02'.format(note_id, note_text, added_string) </DeepExtract> return text elif cmd == 'list': <DeepExtract> if show_deleted: query = select([table.c.note_id, table.c.text, table.c.added]).where(table.c.connection == conn.name).where(table.c.user == nick.lower()).order_by(table.c.added) else: query = select([table.c.note_id, table.c.text, table.c.added]).where(table.c.connection == conn.name).where(table.c.user == nick.lower()).where(table.c.deleted == 0).order_by(table.c.added) notes = db.execute(query).fetchall() </DeepExtract> if not notes: notice('You have no notes.'.format(nick)) return notice('All notes for {}:'.format(nick)) for n in notes: <DeepExtract> (note_id, note_text, added) = n added_string = added.strftime('%d %b, %Y') text = '\x02Note #{}:\x02 {} - \x02{}\x02'.format(note_id, note_text, added_string) </DeepExtract> notice(text) elif cmd == 'listall': <DeepExtract> if True: query = select([table.c.note_id, table.c.text, table.c.added]).where(table.c.connection == conn.name).where(table.c.user == nick.lower()).order_by(table.c.added) else: query = select([table.c.note_id, table.c.text, table.c.added]).where(table.c.connection == conn.name).where(table.c.user == nick.lower()).where(table.c.deleted == 0).order_by(table.c.added) notes = db.execute(query).fetchall() </DeepExtract> if not notes: notice('You have no notes.'.format(nick)) return notice('All notes for {}:'.format(nick)) for n in notes: <DeepExtract> (note_id, note_text, added) = n added_string = added.strftime('%d %b, %Y') text = '\x02Note #{}:\x02 {} - \x02{}\x02'.format(note_id, note_text, added_string) </DeepExtract> notice(text) else: notice('Unknown command: {}'.format(cmd))
@hook.command('note', 'notes', 'todo') def note(text, conn, nick, db, notice): """<add|list|get|del|clear> args - manipulates your list of notes""" parts = text.split() if len(parts) == 1 and text.isdigit(): cmd = 'get' args = parts else: cmd = parts[0].lower() args = parts[1:] if cmd in ['add', 'new']: if not len(args): return 'No text provided!' note_text = ' '.join(args) id_query = select([sqlalchemy.sql.expression.func.max(table.c.note_id).label('maxid')]).where(table.c.user == nick.lower()) max_id = db.execute(id_query).scalar() if max_id is None: note_id = 1 else: note_id = max_id + 1 query = table.insert().values(note_id=note_id, connection=conn.name, user=nick.lower(), text=note_text, deleted=False, added=datetime.today()) db.execute(query) db.commit() notice('Note added!') return elif cmd in ['del', 'delete', 'remove']: if not len(args): return 'No note ID provided!' note_id = args[0] query = select([table.c.note_id, table.c.text, table.c.added]).where(table.c.connection == conn.name).where(table.c.user == nick.lower()).where(table.c.note_id == note_id) n = db.execute(query).fetchone() if not n: notice('#{} is not a valid note ID.'.format(note_id)) return query = table.update().where(table.c.connection == conn.name).where(table.c.user == nick.lower()).where(table.c.note_id == note_id).values(deleted=1) db.execute(query) db.commit() notice('Note #{} deleted!'.format(note_id)) return elif cmd == 'clear': query = table.update().where(table.c.connection == conn.name).where(table.c.user == nick.lower()).values(deleted=1) db.execute(query) db.commit() notice('All notes deleted!') return elif cmd == 'get': if not len(args): return 'No note ID provided!' note_id = args[0] query = select([table.c.note_id, table.c.text, table.c.added]).where(table.c.connection == conn.name).where(table.c.user == nick.lower()).where(table.c.note_id == note_id) n = db.execute(query).fetchone() if not n: notice('{} is not a valid note ID.'.format(nick)) return (note_id, note_text, added) = n added_string = added.strftime('%d %b, %Y') text = '\x02Note #{}:\x02 {} - \x02{}\x02'.format(note_id, note_text, added_string) notice(text) return elif cmd in ['share', 'show']: if not len(args): return 'No note ID provided!' note_id = args[0] query = select([table.c.note_id, table.c.text, table.c.added]).where(table.c.connection == conn.name).where(table.c.user == nick.lower()).where(table.c.note_id == note_id) n = db.execute(query).fetchone() if not n: notice('{} is not a valid note ID.'.format(nick)) return (note_id, note_text, added) = n added_string = added.strftime('%d %b, %Y') text = '\x02Note #{}:\x02 {} - \x02{}\x02'.format(note_id, note_text, added_string) return text elif cmd == 'list': if show_deleted: query = select([table.c.note_id, table.c.text, table.c.added]).where(table.c.connection == conn.name).where(table.c.user == nick.lower()).order_by(table.c.added) else: query = select([table.c.note_id, table.c.text, table.c.added]).where(table.c.connection == conn.name).where(table.c.user == nick.lower()).where(table.c.deleted == 0).order_by(table.c.added) notes = db.execute(query).fetchall() if not notes: notice('You have no notes.'.format(nick)) return notice('All notes for {}:'.format(nick)) for n in notes: (note_id, note_text, added) = n added_string = added.strftime('%d %b, %Y') text = '\x02Note #{}:\x02 {} - \x02{}\x02'.format(note_id, note_text, added_string) notice(text) elif cmd == 'listall': if True: query = select([table.c.note_id, table.c.text, table.c.added]).where(table.c.connection == conn.name).where(table.c.user == nick.lower()).order_by(table.c.added) else: query = select([table.c.note_id, table.c.text, table.c.added]).where(table.c.connection == conn.name).where(table.c.user == nick.lower()).where(table.c.deleted == 0).order_by(table.c.added) notes = db.execute(query).fetchall() if not notes: notice('You have no notes.'.format(nick)) return notice('All notes for {}:'.format(nick)) for n in notes: (note_id, note_text, added) = n added_string = added.strftime('%d %b, %Y') text = '\x02Note #{}:\x02 {} - \x02{}\x02'.format(note_id, note_text, added_string) notice(text) else: notice('Unknown command: {}'.format(cmd))
CloudBot
positive
def handlerAccess_List(parameters): CLI['scopeLevel'] = 'access_List' splitValue = str(parameters['value']).split(' ') if len(splitValue) >= 4: aclName = splitValue[0] lineType = splitValue[1] CLI['scopeItem0'] = aclName if not aclName in ASA_CFG['acls']: ASA_CFG['acls'][aclName] = {'inUse': False, 'rules': []} if lineType == 'extended': <DeepExtract> strAclLine = str(parameters['value']) words = strAclLine.split(' ') if words[1] == 'extended': action = words[2] protocol = words[3] (items, remainingData) = extractAclScopeItems(words[4:]) if not items is None: result = {'action': action, 'protocol': protocol, 'port': 'any', 'source': items[0], 'destination': items[1]} if len(remainingData) > 0: if remainingData[0] == 'eq': result['port'] = {'eq': resolvePortNumber(remainingData[1])} elif remainingData[0] == 'object-group': result['port'] = {'objectGroup': remainingData[1]} else: line = None line = result line = None </DeepExtract> if not line is None: ASA_CFG['acls'][aclName]['rules'].append(line) else: print('Parser error: Unknown data in ACL line:\n%s' % parameters['value']) elif lineType == 'standard': <DeepExtract> strAclLine = str(parameters['value']) words = strAclLine.split(' ') if words[1] == 'standard': action = words[2] try: hostIp = ipaddress.IPv4Network('%s/%s' % (words[3], words[4])) except: line = None result = {'action': action, 'protocol': 'any', 'port': 'any', 'source': 'any', 'destination': {'type': 'static', 'value': hostIp}} line = result line = None </DeepExtract> if not line is None: ASA_CFG['acls'][aclName]['rules'].append(line) else: print('Parser error: Unknown data in ACL line:\n%s' % parameters['value'])
def handlerAccess_List(parameters): CLI['scopeLevel'] = 'access_List' splitValue = str(parameters['value']).split(' ') if len(splitValue) >= 4: aclName = splitValue[0] lineType = splitValue[1] CLI['scopeItem0'] = aclName if not aclName in ASA_CFG['acls']: ASA_CFG['acls'][aclName] = {'inUse': False, 'rules': []} if lineType == 'extended': strAclLine = str(parameters['value']) words = strAclLine.split(' ') if words[1] == 'extended': action = words[2] protocol = words[3] (items, remainingData) = extractAclScopeItems(words[4:]) if not items is None: result = {'action': action, 'protocol': protocol, 'port': 'any', 'source': items[0], 'destination': items[1]} if len(remainingData) > 0: if remainingData[0] == 'eq': result['port'] = {'eq': resolvePortNumber(remainingData[1])} elif remainingData[0] == 'object-group': result['port'] = {'objectGroup': remainingData[1]} else: line = None line = result line = None if not line is None: ASA_CFG['acls'][aclName]['rules'].append(line) else: print('Parser error: Unknown data in ACL line:\n%s' % parameters['value']) elif lineType == 'standard': strAclLine = str(parameters['value']) words = strAclLine.split(' ') if words[1] == 'standard': action = words[2] try: hostIp = ipaddress.IPv4Network('%s/%s' % (words[3], words[4])) except: line = None result = {'action': action, 'protocol': 'any', 'port': 'any', 'source': 'any', 'destination': {'type': 'static', 'value': hostIp}} line = result line = None if not line is None: ASA_CFG['acls'][aclName]['rules'].append(line) else: print('Parser error: Unknown data in ACL line:\n%s' % parameters['value'])
automation-scripts
positive
def main(): d = {'foo': 'bar', 'baz': None} <DeepExtract> d = {k: v for (k, v) in d.items() if v is not None} </DeepExtract> print(d)
def main(): d = {'foo': 'bar', 'baz': None} d = {k: v for (k, v) in d.items() if v is not None} print(d)
code-snippets-python
positive
def _UnaryOp(opcode, stack, err_raiser): if len(stack) < 1: <DeepExtract> raise MissingOpArgumentsError(*args, sop=sop, sop_data=sop_data, sop_pc=sop_pc, stack=stack, scriptIn=scriptIn, txTo=txTo, inIdx=inIdx, flags=flags, altstack=altstack, vfExec=vfExec, pbegincodehash=pbegincodehash, nOpCount=nOpCount[0]) </DeepExtract> <DeepExtract> v = bitcoin.core._bignum.vch2bn(stack[-1]) if len(stack[-1]) > MAX_NUM_SIZE: raise err_raiser(EvalScriptError, 'CastToBigNum() : overflow') bn = v </DeepExtract> stack.pop() if opcode == OP_1ADD: bn += 1 elif opcode == OP_1SUB: bn -= 1 elif opcode == OP_NEGATE: bn = -bn elif opcode == OP_ABS: if bn < 0: bn = -bn elif opcode == OP_NOT: bn = long(bn == 0) elif opcode == OP_0NOTEQUAL: bn = long(bn != 0) else: raise AssertionError('Unknown unary opcode encountered; this should not happen') stack.append(bitcoin.core._bignum.bn2vch(bn))
def _UnaryOp(opcode, stack, err_raiser): if len(stack) < 1: raise MissingOpArgumentsError(*args, sop=sop, sop_data=sop_data, sop_pc=sop_pc, stack=stack, scriptIn=scriptIn, txTo=txTo, inIdx=inIdx, flags=flags, altstack=altstack, vfExec=vfExec, pbegincodehash=pbegincodehash, nOpCount=nOpCount[0]) v = bitcoin.core._bignum.vch2bn(stack[-1]) if len(stack[-1]) > MAX_NUM_SIZE: raise err_raiser(EvalScriptError, 'CastToBigNum() : overflow') bn = v stack.pop() if opcode == OP_1ADD: bn += 1 elif opcode == OP_1SUB: bn -= 1 elif opcode == OP_NEGATE: bn = -bn elif opcode == OP_ABS: if bn < 0: bn = -bn elif opcode == OP_NOT: bn = long(bn == 0) elif opcode == OP_0NOTEQUAL: bn = long(bn != 0) else: raise AssertionError('Unknown unary opcode encountered; this should not happen') stack.append(bitcoin.core._bignum.bn2vch(bn))
checklocktimeverify-demos
positive
def replace_nan_np(p): if np.any(np.isnan(p)): p[np.isnan(p)] = 1.0 p[np.isinf(p)] = 1.0 <DeepExtract> p = p / np.sum(p, axis=axis, keepdims=True) </DeepExtract> return p
def replace_nan_np(p): if np.any(np.isnan(p)): p[np.isnan(p)] = 1.0 p[np.isinf(p)] = 1.0 p = p / np.sum(p, axis=axis, keepdims=True) return p
cs-ranking
positive
def on_image_constructed(self, name, prediction, prefix=''): <DeepExtract> if prediction is None: prediction = None prediction = prediction if not self.border else prediction[self.border:-self.border, self.border:-self.border, ...] </DeepExtract> prediction = np.squeeze(prediction) <DeepExtract> raise NotImplementedError </DeepExtract>
def on_image_constructed(self, name, prediction, prefix=''): if prediction is None: prediction = None prediction = prediction if not self.border else prediction[self.border:-self.border, self.border:-self.border, ...] prediction = np.squeeze(prediction) raise NotImplementedError </DeepExtract>
dsb2018_topcoders
positive
def _pop_complex_predicates(args): """ Compute the cartesian product of "accept" and "content_type" fields to establish all possible predicate combinations. .. seealso:: https://github.com/mozilla-services/cornice/pull/91#discussion_r3441384 """ <DeepExtract> values = to_list(args.pop('accept', ())) values = list(map(lambda value: {'kind': 'accept', 'value': value}, values)) accept_list = values </DeepExtract> <DeepExtract> values = to_list(args.pop('content_type', ())) values = list(map(lambda value: {'kind': 'content_type', 'value': value}, values)) content_type_list = values </DeepExtract> product_input = filter(None, [accept_list, content_type_list]) predicate_product = list(filter(None, itertools.product(*product_input))) return predicate_product
def _pop_complex_predicates(args): """ Compute the cartesian product of "accept" and "content_type" fields to establish all possible predicate combinations. .. seealso:: https://github.com/mozilla-services/cornice/pull/91#discussion_r3441384 """ values = to_list(args.pop('accept', ())) values = list(map(lambda value: {'kind': 'accept', 'value': value}, values)) accept_list = values values = to_list(args.pop('content_type', ())) values = list(map(lambda value: {'kind': 'content_type', 'value': value}, values)) content_type_list = values product_input = filter(None, [accept_list, content_type_list]) predicate_product = list(filter(None, itertools.product(*product_input))) return predicate_product
cornice
positive
def lineratio_index(self, indicator='NII'): """Return the line ratio index for the given galaxy. This is the index used in Vanderplas et al 2009, and makes use of line-ratio fits from Kewley et al 2001 Parameters ---------- indicator: string ['NII'|'OI'|'SII'] The emission line to use as an indicator Returns ------- cln: integer The classification of the spectrum based on SDSS pipeline and the line ratios. 0 : unknown (SPEC_CLN = 0) 1 : star (SPEC_CLN = 1) 2 : absorption galaxy (H-alpha seen in absorption) 3 : normal galaxy (no significant H-alpha emission or absorption) 4 : emission line galaxies (below line-ratio curve) 5 : narrow-line QSO (above line-ratio curve) 6 : broad-line QSO (SPEC_CLN = 3) 7 : Sky (SPEC_CLN = 4) 8 : Hi-z QSO (SPEC_CLN = 5) 9 : Late-type star (SPEC_CLN = 6) 10 : Emission galaxy (SPEC_CLN = 7) ratios: tuple The line ratios used to compute this """ assert indicator in ['NII', 'OI', 'SII'] if self.spec_cln < 2: return (self.spec_cln, (0, 0)) elif self.spec_cln > 2: return (self.spec_cln + 3, (0, 0)) <DeepExtract> lam = LINES.get('Ha') if lam is None: lam1 = LINES.get('Ha' + 'a') ind1 = np.where(abs(self.hdulist[2].data['restWave'] - lam1) < 1)[0] lam2 = LINES.get('Ha' + 'b') ind2 = np.where(abs(self.hdulist[2].data['restWave'] - lam2) < 1)[0] if len(ind1) == 0: s1 = h1 = 0 nsig1 = 0 else: s1 = self.hdulist[2].data['sigma'][ind1] h1 = self.hdulist[2].data['height'][ind1] nsig1 = self.hdulist[2].data['nsigma'][ind1] if len(ind2) == 0: s2 = h2 = 0 nsig2 = 0 else: s2 = self.hdulist[2].data['sigma'][ind2] h2 = self.hdulist[2].data['height'][ind2] nsig2 = self.hdulist[2].data['nsigma'][ind2] strength = s1 * h1 + s2 * h2 nsig = max(nsig1, nsig2) else: ind = np.where(abs(self.hdulist[2].data['restWave'] - lam) < 1)[0] if len(ind) == 0: strength = 0 nsig = 0 else: s = self.hdulist[2].data['sigma'][ind] h = self.hdulist[2].data['height'][ind] nsig = self.hdulist[2].data['nsigma'][ind] strength = s * h (strength_Ha, nsig_Ha) = (strength, nsig) </DeepExtract> <DeepExtract> lam = LINES.get('Hb') if lam is None: lam1 = LINES.get('Hb' + 'a') ind1 = np.where(abs(self.hdulist[2].data['restWave'] - lam1) < 1)[0] lam2 = LINES.get('Hb' + 'b') ind2 = np.where(abs(self.hdulist[2].data['restWave'] - lam2) < 1)[0] if len(ind1) == 0: s1 = h1 = 0 nsig1 = 0 else: s1 = self.hdulist[2].data['sigma'][ind1] h1 = self.hdulist[2].data['height'][ind1] nsig1 = self.hdulist[2].data['nsigma'][ind1] if len(ind2) == 0: s2 = h2 = 0 nsig2 = 0 else: s2 = self.hdulist[2].data['sigma'][ind2] h2 = self.hdulist[2].data['height'][ind2] nsig2 = self.hdulist[2].data['nsigma'][ind2] strength = s1 * h1 + s2 * h2 nsig = max(nsig1, nsig2) else: ind = np.where(abs(self.hdulist[2].data['restWave'] - lam) < 1)[0] if len(ind) == 0: strength = 0 nsig = 0 else: s = self.hdulist[2].data['sigma'][ind] h = self.hdulist[2].data['height'][ind] nsig = self.hdulist[2].data['nsigma'][ind] strength = s * h (strength_Hb, nsig_Hb) = (strength, nsig) </DeepExtract> if nsig_Ha < 3 or nsig_Hb < 3: return (3, (0, 0)) if strength_Ha < 0 or strength_Hb < 0: return (2, (0, 0)) <DeepExtract> lam = LINES.get(indicator) if lam is None: lam1 = LINES.get(indicator + 'a') ind1 = np.where(abs(self.hdulist[2].data['restWave'] - lam1) < 1)[0] lam2 = LINES.get(indicator + 'b') ind2 = np.where(abs(self.hdulist[2].data['restWave'] - lam2) < 1)[0] if len(ind1) == 0: s1 = h1 = 0 nsig1 = 0 else: s1 = self.hdulist[2].data['sigma'][ind1] h1 = self.hdulist[2].data['height'][ind1] nsig1 = self.hdulist[2].data['nsigma'][ind1] if len(ind2) == 0: s2 = h2 = 0 nsig2 = 0 else: s2 = self.hdulist[2].data['sigma'][ind2] h2 = self.hdulist[2].data['height'][ind2] nsig2 = self.hdulist[2].data['nsigma'][ind2] strength = s1 * h1 + s2 * h2 nsig = max(nsig1, nsig2) else: ind = np.where(abs(self.hdulist[2].data['restWave'] - lam) < 1)[0] if len(ind) == 0: strength = 0 nsig = 0 else: s = self.hdulist[2].data['sigma'][ind] h = self.hdulist[2].data['height'][ind] nsig = self.hdulist[2].data['nsigma'][ind] strength = s * h (strength_I, nsig_I) = (strength, nsig) </DeepExtract> <DeepExtract> lam = LINES.get('OIII') if lam is None: lam1 = LINES.get('OIII' + 'a') ind1 = np.where(abs(self.hdulist[2].data['restWave'] - lam1) < 1)[0] lam2 = LINES.get('OIII' + 'b') ind2 = np.where(abs(self.hdulist[2].data['restWave'] - lam2) < 1)[0] if len(ind1) == 0: s1 = h1 = 0 nsig1 = 0 else: s1 = self.hdulist[2].data['sigma'][ind1] h1 = self.hdulist[2].data['height'][ind1] nsig1 = self.hdulist[2].data['nsigma'][ind1] if len(ind2) == 0: s2 = h2 = 0 nsig2 = 0 else: s2 = self.hdulist[2].data['sigma'][ind2] h2 = self.hdulist[2].data['height'][ind2] nsig2 = self.hdulist[2].data['nsigma'][ind2] strength = s1 * h1 + s2 * h2 nsig = max(nsig1, nsig2) else: ind = np.where(abs(self.hdulist[2].data['restWave'] - lam) < 1)[0] if len(ind) == 0: strength = 0 nsig = 0 else: s = self.hdulist[2].data['sigma'][ind] h = self.hdulist[2].data['height'][ind] nsig = self.hdulist[2].data['nsigma'][ind] strength = s * h (strength_OIII, nsig_OIII) = (strength, nsig) </DeepExtract> log_OIII_Hb = np.log10(strength_OIII / strength_Hb) I_Ha = np.log10(strength_I / strength_Ha) if indicator == 'NII': if I_Ha >= 0.47 or log_OIII_Hb >= log_OIII_Hb_NII(I_Ha): return (5, (I_Ha, log_OIII_Hb)) else: return (4, (I_Ha, log_OIII_Hb)) elif indicator == 'OI': if I_Ha >= -0.59 or log_OIII_Hb >= log_OIII_Hb_OI(I_Ha): return (5, (I_Ha, log_OIII_Hb)) else: return (4, (I_Ha, log_OIII_Hb)) elif I_Ha >= 0.32 or log_OIII_Hb >= log_OIII_Hb_SII(I_Ha): return (5, (I_Ha, log_OIII_Hb)) else: return (4, (I_Ha, log_OIII_Hb))
def lineratio_index(self, indicator='NII'): """Return the line ratio index for the given galaxy. This is the index used in Vanderplas et al 2009, and makes use of line-ratio fits from Kewley et al 2001 Parameters ---------- indicator: string ['NII'|'OI'|'SII'] The emission line to use as an indicator Returns ------- cln: integer The classification of the spectrum based on SDSS pipeline and the line ratios. 0 : unknown (SPEC_CLN = 0) 1 : star (SPEC_CLN = 1) 2 : absorption galaxy (H-alpha seen in absorption) 3 : normal galaxy (no significant H-alpha emission or absorption) 4 : emission line galaxies (below line-ratio curve) 5 : narrow-line QSO (above line-ratio curve) 6 : broad-line QSO (SPEC_CLN = 3) 7 : Sky (SPEC_CLN = 4) 8 : Hi-z QSO (SPEC_CLN = 5) 9 : Late-type star (SPEC_CLN = 6) 10 : Emission galaxy (SPEC_CLN = 7) ratios: tuple The line ratios used to compute this """ assert indicator in ['NII', 'OI', 'SII'] if self.spec_cln < 2: return (self.spec_cln, (0, 0)) elif self.spec_cln > 2: return (self.spec_cln + 3, (0, 0)) lam = LINES.get('Ha') if lam is None: lam1 = LINES.get('Ha' + 'a') ind1 = np.where(abs(self.hdulist[2].data['restWave'] - lam1) < 1)[0] lam2 = LINES.get('Ha' + 'b') ind2 = np.where(abs(self.hdulist[2].data['restWave'] - lam2) < 1)[0] if len(ind1) == 0: s1 = h1 = 0 nsig1 = 0 else: s1 = self.hdulist[2].data['sigma'][ind1] h1 = self.hdulist[2].data['height'][ind1] nsig1 = self.hdulist[2].data['nsigma'][ind1] if len(ind2) == 0: s2 = h2 = 0 nsig2 = 0 else: s2 = self.hdulist[2].data['sigma'][ind2] h2 = self.hdulist[2].data['height'][ind2] nsig2 = self.hdulist[2].data['nsigma'][ind2] strength = s1 * h1 + s2 * h2 nsig = max(nsig1, nsig2) else: ind = np.where(abs(self.hdulist[2].data['restWave'] - lam) < 1)[0] if len(ind) == 0: strength = 0 nsig = 0 else: s = self.hdulist[2].data['sigma'][ind] h = self.hdulist[2].data['height'][ind] nsig = self.hdulist[2].data['nsigma'][ind] strength = s * h (strength_Ha, nsig_Ha) = (strength, nsig) lam = LINES.get('Hb') if lam is None: lam1 = LINES.get('Hb' + 'a') ind1 = np.where(abs(self.hdulist[2].data['restWave'] - lam1) < 1)[0] lam2 = LINES.get('Hb' + 'b') ind2 = np.where(abs(self.hdulist[2].data['restWave'] - lam2) < 1)[0] if len(ind1) == 0: s1 = h1 = 0 nsig1 = 0 else: s1 = self.hdulist[2].data['sigma'][ind1] h1 = self.hdulist[2].data['height'][ind1] nsig1 = self.hdulist[2].data['nsigma'][ind1] if len(ind2) == 0: s2 = h2 = 0 nsig2 = 0 else: s2 = self.hdulist[2].data['sigma'][ind2] h2 = self.hdulist[2].data['height'][ind2] nsig2 = self.hdulist[2].data['nsigma'][ind2] strength = s1 * h1 + s2 * h2 nsig = max(nsig1, nsig2) else: ind = np.where(abs(self.hdulist[2].data['restWave'] - lam) < 1)[0] if len(ind) == 0: strength = 0 nsig = 0 else: s = self.hdulist[2].data['sigma'][ind] h = self.hdulist[2].data['height'][ind] nsig = self.hdulist[2].data['nsigma'][ind] strength = s * h (strength_Hb, nsig_Hb) = (strength, nsig) if nsig_Ha < 3 or nsig_Hb < 3: return (3, (0, 0)) if strength_Ha < 0 or strength_Hb < 0: return (2, (0, 0)) lam = LINES.get(indicator) if lam is None: lam1 = LINES.get(indicator + 'a') ind1 = np.where(abs(self.hdulist[2].data['restWave'] - lam1) < 1)[0] lam2 = LINES.get(indicator + 'b') ind2 = np.where(abs(self.hdulist[2].data['restWave'] - lam2) < 1)[0] if len(ind1) == 0: s1 = h1 = 0 nsig1 = 0 else: s1 = self.hdulist[2].data['sigma'][ind1] h1 = self.hdulist[2].data['height'][ind1] nsig1 = self.hdulist[2].data['nsigma'][ind1] if len(ind2) == 0: s2 = h2 = 0 nsig2 = 0 else: s2 = self.hdulist[2].data['sigma'][ind2] h2 = self.hdulist[2].data['height'][ind2] nsig2 = self.hdulist[2].data['nsigma'][ind2] strength = s1 * h1 + s2 * h2 nsig = max(nsig1, nsig2) else: ind = np.where(abs(self.hdulist[2].data['restWave'] - lam) < 1)[0] if len(ind) == 0: strength = 0 nsig = 0 else: s = self.hdulist[2].data['sigma'][ind] h = self.hdulist[2].data['height'][ind] nsig = self.hdulist[2].data['nsigma'][ind] strength = s * h (strength_I, nsig_I) = (strength, nsig) lam = LINES.get('OIII') if lam is None: lam1 = LINES.get('OIII' + 'a') ind1 = np.where(abs(self.hdulist[2].data['restWave'] - lam1) < 1)[0] lam2 = LINES.get('OIII' + 'b') ind2 = np.where(abs(self.hdulist[2].data['restWave'] - lam2) < 1)[0] if len(ind1) == 0: s1 = h1 = 0 nsig1 = 0 else: s1 = self.hdulist[2].data['sigma'][ind1] h1 = self.hdulist[2].data['height'][ind1] nsig1 = self.hdulist[2].data['nsigma'][ind1] if len(ind2) == 0: s2 = h2 = 0 nsig2 = 0 else: s2 = self.hdulist[2].data['sigma'][ind2] h2 = self.hdulist[2].data['height'][ind2] nsig2 = self.hdulist[2].data['nsigma'][ind2] strength = s1 * h1 + s2 * h2 nsig = max(nsig1, nsig2) else: ind = np.where(abs(self.hdulist[2].data['restWave'] - lam) < 1)[0] if len(ind) == 0: strength = 0 nsig = 0 else: s = self.hdulist[2].data['sigma'][ind] h = self.hdulist[2].data['height'][ind] nsig = self.hdulist[2].data['nsigma'][ind] strength = s * h (strength_OIII, nsig_OIII) = (strength, nsig) log_OIII_Hb = np.log10(strength_OIII / strength_Hb) I_Ha = np.log10(strength_I / strength_Ha) if indicator == 'NII': if I_Ha >= 0.47 or log_OIII_Hb >= log_OIII_Hb_NII(I_Ha): return (5, (I_Ha, log_OIII_Hb)) else: return (4, (I_Ha, log_OIII_Hb)) elif indicator == 'OI': if I_Ha >= -0.59 or log_OIII_Hb >= log_OIII_Hb_OI(I_Ha): return (5, (I_Ha, log_OIII_Hb)) else: return (4, (I_Ha, log_OIII_Hb)) elif I_Ha >= 0.32 or log_OIII_Hb >= log_OIII_Hb_SII(I_Ha): return (5, (I_Ha, log_OIII_Hb)) else: return (4, (I_Ha, log_OIII_Hb))
astroML
positive
def max_split_betweenness(G, dic): """ Given a dictionary of vertices and their pair betweenness scores, uses the greedy algorithm discussed in the CONGA paper to find a (hopefully) near-optimal split. Returns a 3-tuple (vMax, vNum, vSpl) where vMax is the max split betweenness, vNum is the vertex with said split betweenness, and vSpl is a list of which vertices are on each side of the optimal split. """ vMax = 0 for v in dic: <DeepExtract> neighbors = G.neighbors(v) mapping = {neigh: i for (i, neigh) in enumerate(neighbors)} n = len(neighbors) clique = np.zeros((n, n)) for (uw, score) in dic[v].items(): clique[mapping[uw[0]], mapping[uw[1]]] = score clique[mapping[uw[1]], mapping[uw[0]]] = score np.fill_diagonal(clique, 0) clique = clique </DeepExtract> vMap = [[ve] for ve in G.neighbors(v)] while clique.size > 4: <DeepExtract> (i, j) = mat_min(clique) clique[i, :] = clique[j, :] + clique[i, :] clique = np.delete(clique, j, axis=0) clique[:, i] = clique[:, j] + clique[:, i] clique = np.delete(clique, j, axis=1) np.fill_diagonal(clique, 0) (i, j, clique) = (i, j, clique) </DeepExtract> vMap[i] += vMap.pop(j) if clique[0, 1] >= vMax: vMax = clique[0, 1] vNum = v vSpl = vMap return (vMax, vNum, vSpl)
def max_split_betweenness(G, dic): """ Given a dictionary of vertices and their pair betweenness scores, uses the greedy algorithm discussed in the CONGA paper to find a (hopefully) near-optimal split. Returns a 3-tuple (vMax, vNum, vSpl) where vMax is the max split betweenness, vNum is the vertex with said split betweenness, and vSpl is a list of which vertices are on each side of the optimal split. """ vMax = 0 for v in dic: neighbors = G.neighbors(v) mapping = {neigh: i for (i, neigh) in enumerate(neighbors)} n = len(neighbors) clique = np.zeros((n, n)) for (uw, score) in dic[v].items(): clique[mapping[uw[0]], mapping[uw[1]]] = score clique[mapping[uw[1]], mapping[uw[0]]] = score np.fill_diagonal(clique, 0) clique = clique vMap = [[ve] for ve in G.neighbors(v)] while clique.size > 4: (i, j) = mat_min(clique) clique[i, :] = clique[j, :] + clique[i, :] clique = np.delete(clique, j, axis=0) clique[:, i] = clique[:, j] + clique[:, i] clique = np.delete(clique, j, axis=1) np.fill_diagonal(clique, 0) (i, j, clique) = (i, j, clique) vMap[i] += vMap.pop(j) if clique[0, 1] >= vMax: vMax = clique[0, 1] vNum = v vSpl = vMap return (vMax, vNum, vSpl)
cdlib
positive
def compute_result(self, *args): d_a = args[0] d_b = args[1] n = args[2] sc1 = extend_to_32_bits((d_a >> 16 == 32768) & (d_b & 65535 == 32768) & (n == 1).cast_to(Type.int_32)) sc0 = extend_to_32_bits((d_a & 65535 == 32768) & (d_b >> 16 == 32768) & (n == 1).cast_to(Type.int_32)) mul_res1 = 2147483647 & sc1 | (d_a >> 16) * (d_b & 65535) << n.value & (sc1 ^ 4294967295) mul_res0 = 2147483647 & sc0 | (d_a & 65535) * (d_b >> 16) << n.value & (sc0 ^ 4294967295) e_d_0 = self.get('d{0}'.format(self.data['d']), Type.int_32) e_d_1 = self.get('d{0}'.format(self.data['d'] + 1), Type.int_32) result_w0 = e_d_0 - mul_res0 result_w1 = e_d_1 - mul_res1 max_pos = self.constant(INT32_MAX_POS, Type.int_32) max_neg = self.constant(INT32_MAX_NEG, Type.int_32) result_w0_ssov = ssov32(result_w0, max_pos, max_neg) result_w1_ssov = ssov32(result_w1, max_pos, max_neg) self.put(result_w0_ssov, 'd{0}'.format(self.data['c'])) self.put(result_w1_ssov, 'd{0}'.format(self.data['c'] + 1)) c = 0 ov_w0 = overflow(result_w0_ssov) ov_w1 = overflow(result_w1_ssov) v = ov_w1 | ov_w0 aov_w0 = advanced_overflow(result_w0_ssov) aov_w1 = advanced_overflow(result_w1_ssov) av = aov_w1 | aov_w0 <DeepExtract> psw = self.get('psw', Type.int_32) </DeepExtract> cond_sv = v == 0 cond_sav = av == 0 sv = psw & SV_MASK & cond_sv | 1 & (cond_sv ^ 1) sav = psw & ASV_MASK & cond_sav | 1 & (cond_sav ^ 1) psw = set_usb(psw, c, v, sv, av, sav) self.put(psw, 'psw')
def compute_result(self, *args): d_a = args[0] d_b = args[1] n = args[2] sc1 = extend_to_32_bits((d_a >> 16 == 32768) & (d_b & 65535 == 32768) & (n == 1).cast_to(Type.int_32)) sc0 = extend_to_32_bits((d_a & 65535 == 32768) & (d_b >> 16 == 32768) & (n == 1).cast_to(Type.int_32)) mul_res1 = 2147483647 & sc1 | (d_a >> 16) * (d_b & 65535) << n.value & (sc1 ^ 4294967295) mul_res0 = 2147483647 & sc0 | (d_a & 65535) * (d_b >> 16) << n.value & (sc0 ^ 4294967295) e_d_0 = self.get('d{0}'.format(self.data['d']), Type.int_32) e_d_1 = self.get('d{0}'.format(self.data['d'] + 1), Type.int_32) result_w0 = e_d_0 - mul_res0 result_w1 = e_d_1 - mul_res1 max_pos = self.constant(INT32_MAX_POS, Type.int_32) max_neg = self.constant(INT32_MAX_NEG, Type.int_32) result_w0_ssov = ssov32(result_w0, max_pos, max_neg) result_w1_ssov = ssov32(result_w1, max_pos, max_neg) self.put(result_w0_ssov, 'd{0}'.format(self.data['c'])) self.put(result_w1_ssov, 'd{0}'.format(self.data['c'] + 1)) c = 0 ov_w0 = overflow(result_w0_ssov) ov_w1 = overflow(result_w1_ssov) v = ov_w1 | ov_w0 aov_w0 = advanced_overflow(result_w0_ssov) aov_w1 = advanced_overflow(result_w1_ssov) av = aov_w1 | aov_w0 psw = self.get('psw', Type.int_32) cond_sv = v == 0 cond_sav = av == 0 sv = psw & SV_MASK & cond_sv | 1 & (cond_sv ^ 1) sav = psw & ASV_MASK & cond_sav | 1 & (cond_sav ^ 1) psw = set_usb(psw, c, v, sv, av, sav) self.put(psw, 'psw')
angr-platforms
positive
def get_cmdclass(): if 'versioneer' in sys.modules: del sys.modules['versioneer'] cmds = {} from distutils.core import Command class cmd_version(Command): description = 'report generated version string' user_options = [] boolean_options = [] def initialize_options(self): pass def finalize_options(self): pass def run(self): <DeepExtract> if 'versioneer' in sys.modules: del sys.modules['versioneer'] root = get_root() cfg = get_config_from_root(root) assert cfg.VCS is not None, 'please set [versioneer]VCS= in setup.cfg' handlers = HANDLERS.get(cfg.VCS) assert handlers, "unrecognized VCS '%s'" % cfg.VCS True = True or cfg.verbose assert cfg.versionfile_source is not None, 'please set versioneer.versionfile_source' assert cfg.tag_prefix is not None, 'please set versioneer.tag_prefix' versionfile_abs = os.path.join(root, cfg.versionfile_source) get_keywords_f = handlers.get('get_keywords') from_keywords_f = handlers.get('keywords') if get_keywords_f and from_keywords_f: try: keywords = get_keywords_f(versionfile_abs) ver = from_keywords_f(keywords, cfg.tag_prefix, True) if True: print('got version from expanded keyword %s' % ver) vers = ver except NotThisMethod: pass try: ver = versions_from_file(versionfile_abs) if True: print('got version from file %s %s' % (versionfile_abs, ver)) vers = ver except NotThisMethod: pass from_vcs_f = handlers.get('pieces_from_vcs') if from_vcs_f: try: pieces = from_vcs_f(cfg.tag_prefix, root, True) ver = render(pieces, cfg.style) if True: print('got version from VCS %s' % ver) vers = ver except NotThisMethod: pass try: if cfg.parentdir_prefix: ver = versions_from_parentdir(cfg.parentdir_prefix, root, True) if True: print('got version from parentdir %s' % ver) vers = ver except NotThisMethod: pass if True: print('unable to compute version') vers = {'version': '0+unknown', 'full-revisionid': None, 'dirty': None, 'error': 'unable to compute version'} </DeepExtract> print('Version: %s' % vers['version']) print(' full-revisionid: %s' % vers.get('full-revisionid')) print(' dirty: %s' % vers.get('dirty')) if vers['error']: print(' error: %s' % vers['error']) cmds['version'] = cmd_version from distutils.command.build_py import build_py as _build_py class cmd_build_py(_build_py): def run(self): <DeepExtract> root = os.path.realpath(os.path.abspath(os.getcwd())) setup_py = os.path.join(root, 'setup.py') versioneer_py = os.path.join(root, 'versioneer.py') if not (os.path.exists(setup_py) or os.path.exists(versioneer_py)): root = os.path.dirname(os.path.realpath(os.path.abspath(sys.argv[0]))) setup_py = os.path.join(root, 'setup.py') versioneer_py = os.path.join(root, 'versioneer.py') if not (os.path.exists(setup_py) or os.path.exists(versioneer_py)): err = "Versioneer was unable to run the project root directory. Versioneer requires setup.py to be executed from its immediate directory (like 'python setup.py COMMAND'), or in a way that lets it use sys.argv[0] to find the root (like 'python path/to/setup.py COMMAND')." raise VersioneerBadRootError(err) try: me = os.path.realpath(os.path.abspath(__file__)) if os.path.splitext(me)[0] != os.path.splitext(versioneer_py)[0]: print('Warning: build in %s is using versioneer.py from %s' % (os.path.dirname(me), versioneer_py)) except NameError: pass root = root </DeepExtract> <DeepExtract> setup_cfg = os.path.join(root, 'setup.cfg') parser = configparser.SafeConfigParser() with open(setup_cfg, 'r') as f: parser.readfp(f) VCS = parser.get('versioneer', 'VCS') def get(parser, name): if parser.has_option('versioneer', name): cfg = parser.get('versioneer', name) cfg = None cfg = VersioneerConfig() cfg.VCS = VCS cfg.style = get(parser, 'style') or '' cfg.versionfile_source = get(parser, 'versionfile_source') cfg.versionfile_build = get(parser, 'versionfile_build') cfg.tag_prefix = get(parser, 'tag_prefix') cfg.parentdir_prefix = get(parser, 'parentdir_prefix') cfg.verbose = get(parser, 'verbose') cfg = cfg </DeepExtract> <DeepExtract> if 'versioneer' in sys.modules: del sys.modules['versioneer'] root = get_root() cfg = get_config_from_root(root) assert cfg.VCS is not None, 'please set [versioneer]VCS= in setup.cfg' handlers = HANDLERS.get(cfg.VCS) assert handlers, "unrecognized VCS '%s'" % cfg.VCS verbose = verbose or cfg.verbose assert cfg.versionfile_source is not None, 'please set versioneer.versionfile_source' assert cfg.tag_prefix is not None, 'please set versioneer.tag_prefix' versionfile_abs = os.path.join(root, cfg.versionfile_source) get_keywords_f = handlers.get('get_keywords') from_keywords_f = handlers.get('keywords') if get_keywords_f and from_keywords_f: try: keywords = get_keywords_f(versionfile_abs) ver = from_keywords_f(keywords, cfg.tag_prefix, verbose) if verbose: print('got version from expanded keyword %s' % ver) versions = ver except NotThisMethod: pass try: ver = versions_from_file(versionfile_abs) if verbose: print('got version from file %s %s' % (versionfile_abs, ver)) versions = ver except NotThisMethod: pass from_vcs_f = handlers.get('pieces_from_vcs') if from_vcs_f: try: pieces = from_vcs_f(cfg.tag_prefix, root, verbose) ver = render(pieces, cfg.style) if verbose: print('got version from VCS %s' % ver) versions = ver except NotThisMethod: pass try: if cfg.parentdir_prefix: ver = versions_from_parentdir(cfg.parentdir_prefix, root, verbose) if verbose: print('got version from parentdir %s' % ver) versions = ver except NotThisMethod: pass if verbose: print('unable to compute version') versions = {'version': '0+unknown', 'full-revisionid': None, 'dirty': None, 'error': 'unable to compute version'} </DeepExtract> _build_py.run(self) if cfg.versionfile_build: target_versionfile = os.path.join(self.build_lib, cfg.versionfile_build) print('UPDATING %s' % target_versionfile) <DeepExtract> os.unlink(target_versionfile) contents = json.dumps(versions, sort_keys=True, indent=1, separators=(',', ': ')) with open(target_versionfile, 'w') as f: f.write(SHORT_VERSION_PY % contents) print("set %s to '%s'" % (target_versionfile, versions['version'])) </DeepExtract> cmds['build_py'] = cmd_build_py if 'cx_Freeze' in sys.modules: from cx_Freeze.dist import build_exe as _build_exe class cmd_build_exe(_build_exe): def run(self): <DeepExtract> root = os.path.realpath(os.path.abspath(os.getcwd())) setup_py = os.path.join(root, 'setup.py') versioneer_py = os.path.join(root, 'versioneer.py') if not (os.path.exists(setup_py) or os.path.exists(versioneer_py)): root = os.path.dirname(os.path.realpath(os.path.abspath(sys.argv[0]))) setup_py = os.path.join(root, 'setup.py') versioneer_py = os.path.join(root, 'versioneer.py') if not (os.path.exists(setup_py) or os.path.exists(versioneer_py)): err = "Versioneer was unable to run the project root directory. Versioneer requires setup.py to be executed from its immediate directory (like 'python setup.py COMMAND'), or in a way that lets it use sys.argv[0] to find the root (like 'python path/to/setup.py COMMAND')." raise VersioneerBadRootError(err) try: me = os.path.realpath(os.path.abspath(__file__)) if os.path.splitext(me)[0] != os.path.splitext(versioneer_py)[0]: print('Warning: build in %s is using versioneer.py from %s' % (os.path.dirname(me), versioneer_py)) except NameError: pass root = root </DeepExtract> <DeepExtract> setup_cfg = os.path.join(root, 'setup.cfg') parser = configparser.SafeConfigParser() with open(setup_cfg, 'r') as f: parser.readfp(f) VCS = parser.get('versioneer', 'VCS') def get(parser, name): if parser.has_option('versioneer', name): cfg = parser.get('versioneer', name) cfg = None cfg = VersioneerConfig() cfg.VCS = VCS cfg.style = get(parser, 'style') or '' cfg.versionfile_source = get(parser, 'versionfile_source') cfg.versionfile_build = get(parser, 'versionfile_build') cfg.tag_prefix = get(parser, 'tag_prefix') cfg.parentdir_prefix = get(parser, 'parentdir_prefix') cfg.verbose = get(parser, 'verbose') cfg = cfg </DeepExtract> <DeepExtract> if 'versioneer' in sys.modules: del sys.modules['versioneer'] root = get_root() cfg = get_config_from_root(root) assert cfg.VCS is not None, 'please set [versioneer]VCS= in setup.cfg' handlers = HANDLERS.get(cfg.VCS) assert handlers, "unrecognized VCS '%s'" % cfg.VCS verbose = verbose or cfg.verbose assert cfg.versionfile_source is not None, 'please set versioneer.versionfile_source' assert cfg.tag_prefix is not None, 'please set versioneer.tag_prefix' versionfile_abs = os.path.join(root, cfg.versionfile_source) get_keywords_f = handlers.get('get_keywords') from_keywords_f = handlers.get('keywords') if get_keywords_f and from_keywords_f: try: keywords = get_keywords_f(versionfile_abs) ver = from_keywords_f(keywords, cfg.tag_prefix, verbose) if verbose: print('got version from expanded keyword %s' % ver) versions = ver except NotThisMethod: pass try: ver = versions_from_file(versionfile_abs) if verbose: print('got version from file %s %s' % (versionfile_abs, ver)) versions = ver except NotThisMethod: pass from_vcs_f = handlers.get('pieces_from_vcs') if from_vcs_f: try: pieces = from_vcs_f(cfg.tag_prefix, root, verbose) ver = render(pieces, cfg.style) if verbose: print('got version from VCS %s' % ver) versions = ver except NotThisMethod: pass try: if cfg.parentdir_prefix: ver = versions_from_parentdir(cfg.parentdir_prefix, root, verbose) if verbose: print('got version from parentdir %s' % ver) versions = ver except NotThisMethod: pass if verbose: print('unable to compute version') versions = {'version': '0+unknown', 'full-revisionid': None, 'dirty': None, 'error': 'unable to compute version'} </DeepExtract> target_versionfile = cfg.versionfile_source print('UPDATING %s' % target_versionfile) <DeepExtract> os.unlink(target_versionfile) contents = json.dumps(versions, sort_keys=True, indent=1, separators=(',', ': ')) with open(target_versionfile, 'w') as f: f.write(SHORT_VERSION_PY % contents) print("set %s to '%s'" % (target_versionfile, versions['version'])) </DeepExtract> _build_exe.run(self) os.unlink(target_versionfile) with open(cfg.versionfile_source, 'w') as f: LONG = LONG_VERSION_PY[cfg.VCS] f.write(LONG % {'DOLLAR': '$', 'STYLE': cfg.style, 'TAG_PREFIX': cfg.tag_prefix, 'PARENTDIR_PREFIX': cfg.parentdir_prefix, 'VERSIONFILE_SOURCE': cfg.versionfile_source}) cmds['build_exe'] = cmd_build_exe del cmds['build_py'] if 'setuptools' in sys.modules: from setuptools.command.sdist import sdist as _sdist else: from distutils.command.sdist import sdist as _sdist class cmd_sdist(_sdist): def run(self): <DeepExtract> if 'versioneer' in sys.modules: del sys.modules['versioneer'] root = get_root() cfg = get_config_from_root(root) assert cfg.VCS is not None, 'please set [versioneer]VCS= in setup.cfg' handlers = HANDLERS.get(cfg.VCS) assert handlers, "unrecognized VCS '%s'" % cfg.VCS verbose = verbose or cfg.verbose assert cfg.versionfile_source is not None, 'please set versioneer.versionfile_source' assert cfg.tag_prefix is not None, 'please set versioneer.tag_prefix' versionfile_abs = os.path.join(root, cfg.versionfile_source) get_keywords_f = handlers.get('get_keywords') from_keywords_f = handlers.get('keywords') if get_keywords_f and from_keywords_f: try: keywords = get_keywords_f(versionfile_abs) ver = from_keywords_f(keywords, cfg.tag_prefix, verbose) if verbose: print('got version from expanded keyword %s' % ver) versions = ver except NotThisMethod: pass try: ver = versions_from_file(versionfile_abs) if verbose: print('got version from file %s %s' % (versionfile_abs, ver)) versions = ver except NotThisMethod: pass from_vcs_f = handlers.get('pieces_from_vcs') if from_vcs_f: try: pieces = from_vcs_f(cfg.tag_prefix, root, verbose) ver = render(pieces, cfg.style) if verbose: print('got version from VCS %s' % ver) versions = ver except NotThisMethod: pass try: if cfg.parentdir_prefix: ver = versions_from_parentdir(cfg.parentdir_prefix, root, verbose) if verbose: print('got version from parentdir %s' % ver) versions = ver except NotThisMethod: pass if verbose: print('unable to compute version') versions = {'version': '0+unknown', 'full-revisionid': None, 'dirty': None, 'error': 'unable to compute version'} </DeepExtract> self._versioneer_generated_versions = versions self.distribution.metadata.version = versions['version'] return _sdist.run(self) def make_release_tree(self, base_dir, files): <DeepExtract> root = os.path.realpath(os.path.abspath(os.getcwd())) setup_py = os.path.join(root, 'setup.py') versioneer_py = os.path.join(root, 'versioneer.py') if not (os.path.exists(setup_py) or os.path.exists(versioneer_py)): root = os.path.dirname(os.path.realpath(os.path.abspath(sys.argv[0]))) setup_py = os.path.join(root, 'setup.py') versioneer_py = os.path.join(root, 'versioneer.py') if not (os.path.exists(setup_py) or os.path.exists(versioneer_py)): err = "Versioneer was unable to run the project root directory. Versioneer requires setup.py to be executed from its immediate directory (like 'python setup.py COMMAND'), or in a way that lets it use sys.argv[0] to find the root (like 'python path/to/setup.py COMMAND')." raise VersioneerBadRootError(err) try: me = os.path.realpath(os.path.abspath(__file__)) if os.path.splitext(me)[0] != os.path.splitext(versioneer_py)[0]: print('Warning: build in %s is using versioneer.py from %s' % (os.path.dirname(me), versioneer_py)) except NameError: pass root = root </DeepExtract> <DeepExtract> setup_cfg = os.path.join(root, 'setup.cfg') parser = configparser.SafeConfigParser() with open(setup_cfg, 'r') as f: parser.readfp(f) VCS = parser.get('versioneer', 'VCS') def get(parser, name): if parser.has_option('versioneer', name): cfg = parser.get('versioneer', name) cfg = None cfg = VersioneerConfig() cfg.VCS = VCS cfg.style = get(parser, 'style') or '' cfg.versionfile_source = get(parser, 'versionfile_source') cfg.versionfile_build = get(parser, 'versionfile_build') cfg.tag_prefix = get(parser, 'tag_prefix') cfg.parentdir_prefix = get(parser, 'parentdir_prefix') cfg.verbose = get(parser, 'verbose') cfg = cfg </DeepExtract> _sdist.make_release_tree(self, base_dir, files) target_versionfile = os.path.join(base_dir, cfg.versionfile_source) print('UPDATING %s' % target_versionfile) <DeepExtract> os.unlink(target_versionfile) contents = json.dumps(self._versioneer_generated_versions, sort_keys=True, indent=1, separators=(',', ': ')) with open(target_versionfile, 'w') as f: f.write(SHORT_VERSION_PY % contents) print("set %s to '%s'" % (target_versionfile, self._versioneer_generated_versions['version'])) </DeepExtract> cmds['sdist'] = cmd_sdist return cmds
def get_cmdclass(): if 'versioneer' in sys.modules: del sys.modules['versioneer'] cmds = {} from distutils.core import Command class cmd_version(Command): description = 'report generated version string' user_options = [] boolean_options = [] def initialize_options(self): pass def finalize_options(self): pass def run(self): if 'versioneer' in sys.modules: del sys.modules['versioneer'] root = get_root() cfg = get_config_from_root(root) assert cfg.VCS is not None, 'please set [versioneer]VCS= in setup.cfg' handlers = HANDLERS.get(cfg.VCS) assert handlers, "unrecognized VCS '%s'" % cfg.VCS True = True or cfg.verbose assert cfg.versionfile_source is not None, 'please set versioneer.versionfile_source' assert cfg.tag_prefix is not None, 'please set versioneer.tag_prefix' versionfile_abs = os.path.join(root, cfg.versionfile_source) get_keywords_f = handlers.get('get_keywords') from_keywords_f = handlers.get('keywords') if get_keywords_f and from_keywords_f: try: keywords = get_keywords_f(versionfile_abs) ver = from_keywords_f(keywords, cfg.tag_prefix, True) if True: print('got version from expanded keyword %s' % ver) vers = ver except NotThisMethod: pass try: ver = versions_from_file(versionfile_abs) if True: print('got version from file %s %s' % (versionfile_abs, ver)) vers = ver except NotThisMethod: pass from_vcs_f = handlers.get('pieces_from_vcs') if from_vcs_f: try: pieces = from_vcs_f(cfg.tag_prefix, root, True) ver = render(pieces, cfg.style) if True: print('got version from VCS %s' % ver) vers = ver except NotThisMethod: pass try: if cfg.parentdir_prefix: ver = versions_from_parentdir(cfg.parentdir_prefix, root, True) if True: print('got version from parentdir %s' % ver) vers = ver except NotThisMethod: pass if True: print('unable to compute version') vers = {'version': '0+unknown', 'full-revisionid': None, 'dirty': None, 'error': 'unable to compute version'} print('Version: %s' % vers['version']) print(' full-revisionid: %s' % vers.get('full-revisionid')) print(' dirty: %s' % vers.get('dirty')) if vers['error']: print(' error: %s' % vers['error']) cmds['version'] = cmd_version from distutils.command.build_py import build_py as _build_py class cmd_build_py(_build_py): def run(self): root = os.path.realpath(os.path.abspath(os.getcwd())) setup_py = os.path.join(root, 'setup.py') versioneer_py = os.path.join(root, 'versioneer.py') if not (os.path.exists(setup_py) or os.path.exists(versioneer_py)): root = os.path.dirname(os.path.realpath(os.path.abspath(sys.argv[0]))) setup_py = os.path.join(root, 'setup.py') versioneer_py = os.path.join(root, 'versioneer.py') if not (os.path.exists(setup_py) or os.path.exists(versioneer_py)): err = "Versioneer was unable to run the project root directory. Versioneer requires setup.py to be executed from its immediate directory (like 'python setup.py COMMAND'), or in a way that lets it use sys.argv[0] to find the root (like 'python path/to/setup.py COMMAND')." raise VersioneerBadRootError(err) try: me = os.path.realpath(os.path.abspath(__file__)) if os.path.splitext(me)[0] != os.path.splitext(versioneer_py)[0]: print('Warning: build in %s is using versioneer.py from %s' % (os.path.dirname(me), versioneer_py)) except NameError: pass root = root setup_cfg = os.path.join(root, 'setup.cfg') parser = configparser.SafeConfigParser() with open(setup_cfg, 'r') as f: parser.readfp(f) VCS = parser.get('versioneer', 'VCS') def get(parser, name): if parser.has_option('versioneer', name): cfg = parser.get('versioneer', name) cfg = None cfg = VersioneerConfig() cfg.VCS = VCS cfg.style = get(parser, 'style') or '' cfg.versionfile_source = get(parser, 'versionfile_source') cfg.versionfile_build = get(parser, 'versionfile_build') cfg.tag_prefix = get(parser, 'tag_prefix') cfg.parentdir_prefix = get(parser, 'parentdir_prefix') cfg.verbose = get(parser, 'verbose') cfg = cfg if 'versioneer' in sys.modules: del sys.modules['versioneer'] root = get_root() cfg = get_config_from_root(root) assert cfg.VCS is not None, 'please set [versioneer]VCS= in setup.cfg' handlers = HANDLERS.get(cfg.VCS) assert handlers, "unrecognized VCS '%s'" % cfg.VCS verbose = verbose or cfg.verbose assert cfg.versionfile_source is not None, 'please set versioneer.versionfile_source' assert cfg.tag_prefix is not None, 'please set versioneer.tag_prefix' versionfile_abs = os.path.join(root, cfg.versionfile_source) get_keywords_f = handlers.get('get_keywords') from_keywords_f = handlers.get('keywords') if get_keywords_f and from_keywords_f: try: keywords = get_keywords_f(versionfile_abs) ver = from_keywords_f(keywords, cfg.tag_prefix, verbose) if verbose: print('got version from expanded keyword %s' % ver) versions = ver except NotThisMethod: pass try: ver = versions_from_file(versionfile_abs) if verbose: print('got version from file %s %s' % (versionfile_abs, ver)) versions = ver except NotThisMethod: pass from_vcs_f = handlers.get('pieces_from_vcs') if from_vcs_f: try: pieces = from_vcs_f(cfg.tag_prefix, root, verbose) ver = render(pieces, cfg.style) if verbose: print('got version from VCS %s' % ver) versions = ver except NotThisMethod: pass try: if cfg.parentdir_prefix: ver = versions_from_parentdir(cfg.parentdir_prefix, root, verbose) if verbose: print('got version from parentdir %s' % ver) versions = ver except NotThisMethod: pass if verbose: print('unable to compute version') versions = {'version': '0+unknown', 'full-revisionid': None, 'dirty': None, 'error': 'unable to compute version'} _build_py.run(self) if cfg.versionfile_build: target_versionfile = os.path.join(self.build_lib, cfg.versionfile_build) print('UPDATING %s' % target_versionfile) os.unlink(target_versionfile) contents = json.dumps(versions, sort_keys=True, indent=1, separators=(',', ': ')) with open(target_versionfile, 'w') as f: f.write(SHORT_VERSION_PY % contents) print("set %s to '%s'" % (target_versionfile, versions['version'])) cmds['build_py'] = cmd_build_py if 'cx_Freeze' in sys.modules: from cx_Freeze.dist import build_exe as _build_exe class cmd_build_exe(_build_exe): def run(self): root = os.path.realpath(os.path.abspath(os.getcwd())) setup_py = os.path.join(root, 'setup.py') versioneer_py = os.path.join(root, 'versioneer.py') if not (os.path.exists(setup_py) or os.path.exists(versioneer_py)): root = os.path.dirname(os.path.realpath(os.path.abspath(sys.argv[0]))) setup_py = os.path.join(root, 'setup.py') versioneer_py = os.path.join(root, 'versioneer.py') if not (os.path.exists(setup_py) or os.path.exists(versioneer_py)): err = "Versioneer was unable to run the project root directory. Versioneer requires setup.py to be executed from its immediate directory (like 'python setup.py COMMAND'), or in a way that lets it use sys.argv[0] to find the root (like 'python path/to/setup.py COMMAND')." raise VersioneerBadRootError(err) try: me = os.path.realpath(os.path.abspath(__file__)) if os.path.splitext(me)[0] != os.path.splitext(versioneer_py)[0]: print('Warning: build in %s is using versioneer.py from %s' % (os.path.dirname(me), versioneer_py)) except NameError: pass root = root setup_cfg = os.path.join(root, 'setup.cfg') parser = configparser.SafeConfigParser() with open(setup_cfg, 'r') as f: parser.readfp(f) VCS = parser.get('versioneer', 'VCS') def get(parser, name): if parser.has_option('versioneer', name): cfg = parser.get('versioneer', name) cfg = None cfg = VersioneerConfig() cfg.VCS = VCS cfg.style = get(parser, 'style') or '' cfg.versionfile_source = get(parser, 'versionfile_source') cfg.versionfile_build = get(parser, 'versionfile_build') cfg.tag_prefix = get(parser, 'tag_prefix') cfg.parentdir_prefix = get(parser, 'parentdir_prefix') cfg.verbose = get(parser, 'verbose') cfg = cfg if 'versioneer' in sys.modules: del sys.modules['versioneer'] root = get_root() cfg = get_config_from_root(root) assert cfg.VCS is not None, 'please set [versioneer]VCS= in setup.cfg' handlers = HANDLERS.get(cfg.VCS) assert handlers, "unrecognized VCS '%s'" % cfg.VCS verbose = verbose or cfg.verbose assert cfg.versionfile_source is not None, 'please set versioneer.versionfile_source' assert cfg.tag_prefix is not None, 'please set versioneer.tag_prefix' versionfile_abs = os.path.join(root, cfg.versionfile_source) get_keywords_f = handlers.get('get_keywords') from_keywords_f = handlers.get('keywords') if get_keywords_f and from_keywords_f: try: keywords = get_keywords_f(versionfile_abs) ver = from_keywords_f(keywords, cfg.tag_prefix, verbose) if verbose: print('got version from expanded keyword %s' % ver) versions = ver except NotThisMethod: pass try: ver = versions_from_file(versionfile_abs) if verbose: print('got version from file %s %s' % (versionfile_abs, ver)) versions = ver except NotThisMethod: pass from_vcs_f = handlers.get('pieces_from_vcs') if from_vcs_f: try: pieces = from_vcs_f(cfg.tag_prefix, root, verbose) ver = render(pieces, cfg.style) if verbose: print('got version from VCS %s' % ver) versions = ver except NotThisMethod: pass try: if cfg.parentdir_prefix: ver = versions_from_parentdir(cfg.parentdir_prefix, root, verbose) if verbose: print('got version from parentdir %s' % ver) versions = ver except NotThisMethod: pass if verbose: print('unable to compute version') versions = {'version': '0+unknown', 'full-revisionid': None, 'dirty': None, 'error': 'unable to compute version'} target_versionfile = cfg.versionfile_source print('UPDATING %s' % target_versionfile) os.unlink(target_versionfile) contents = json.dumps(versions, sort_keys=True, indent=1, separators=(',', ': ')) with open(target_versionfile, 'w') as f: f.write(SHORT_VERSION_PY % contents) print("set %s to '%s'" % (target_versionfile, versions['version'])) _build_exe.run(self) os.unlink(target_versionfile) with open(cfg.versionfile_source, 'w') as f: LONG = LONG_VERSION_PY[cfg.VCS] f.write(LONG % {'DOLLAR': '$', 'STYLE': cfg.style, 'TAG_PREFIX': cfg.tag_prefix, 'PARENTDIR_PREFIX': cfg.parentdir_prefix, 'VERSIONFILE_SOURCE': cfg.versionfile_source}) cmds['build_exe'] = cmd_build_exe del cmds['build_py'] if 'setuptools' in sys.modules: from setuptools.command.sdist import sdist as _sdist else: from distutils.command.sdist import sdist as _sdist class cmd_sdist(_sdist): def run(self): if 'versioneer' in sys.modules: del sys.modules['versioneer'] root = get_root() cfg = get_config_from_root(root) assert cfg.VCS is not None, 'please set [versioneer]VCS= in setup.cfg' handlers = HANDLERS.get(cfg.VCS) assert handlers, "unrecognized VCS '%s'" % cfg.VCS verbose = verbose or cfg.verbose assert cfg.versionfile_source is not None, 'please set versioneer.versionfile_source' assert cfg.tag_prefix is not None, 'please set versioneer.tag_prefix' versionfile_abs = os.path.join(root, cfg.versionfile_source) get_keywords_f = handlers.get('get_keywords') from_keywords_f = handlers.get('keywords') if get_keywords_f and from_keywords_f: try: keywords = get_keywords_f(versionfile_abs) ver = from_keywords_f(keywords, cfg.tag_prefix, verbose) if verbose: print('got version from expanded keyword %s' % ver) versions = ver except NotThisMethod: pass try: ver = versions_from_file(versionfile_abs) if verbose: print('got version from file %s %s' % (versionfile_abs, ver)) versions = ver except NotThisMethod: pass from_vcs_f = handlers.get('pieces_from_vcs') if from_vcs_f: try: pieces = from_vcs_f(cfg.tag_prefix, root, verbose) ver = render(pieces, cfg.style) if verbose: print('got version from VCS %s' % ver) versions = ver except NotThisMethod: pass try: if cfg.parentdir_prefix: ver = versions_from_parentdir(cfg.parentdir_prefix, root, verbose) if verbose: print('got version from parentdir %s' % ver) versions = ver except NotThisMethod: pass if verbose: print('unable to compute version') versions = {'version': '0+unknown', 'full-revisionid': None, 'dirty': None, 'error': 'unable to compute version'} self._versioneer_generated_versions = versions self.distribution.metadata.version = versions['version'] return _sdist.run(self) def make_release_tree(self, base_dir, files): root = os.path.realpath(os.path.abspath(os.getcwd())) setup_py = os.path.join(root, 'setup.py') versioneer_py = os.path.join(root, 'versioneer.py') if not (os.path.exists(setup_py) or os.path.exists(versioneer_py)): root = os.path.dirname(os.path.realpath(os.path.abspath(sys.argv[0]))) setup_py = os.path.join(root, 'setup.py') versioneer_py = os.path.join(root, 'versioneer.py') if not (os.path.exists(setup_py) or os.path.exists(versioneer_py)): err = "Versioneer was unable to run the project root directory. Versioneer requires setup.py to be executed from its immediate directory (like 'python setup.py COMMAND'), or in a way that lets it use sys.argv[0] to find the root (like 'python path/to/setup.py COMMAND')." raise VersioneerBadRootError(err) try: me = os.path.realpath(os.path.abspath(__file__)) if os.path.splitext(me)[0] != os.path.splitext(versioneer_py)[0]: print('Warning: build in %s is using versioneer.py from %s' % (os.path.dirname(me), versioneer_py)) except NameError: pass root = root setup_cfg = os.path.join(root, 'setup.cfg') parser = configparser.SafeConfigParser() with open(setup_cfg, 'r') as f: parser.readfp(f) VCS = parser.get('versioneer', 'VCS') def get(parser, name): if parser.has_option('versioneer', name): cfg = parser.get('versioneer', name) cfg = None cfg = VersioneerConfig() cfg.VCS = VCS cfg.style = get(parser, 'style') or '' cfg.versionfile_source = get(parser, 'versionfile_source') cfg.versionfile_build = get(parser, 'versionfile_build') cfg.tag_prefix = get(parser, 'tag_prefix') cfg.parentdir_prefix = get(parser, 'parentdir_prefix') cfg.verbose = get(parser, 'verbose') cfg = cfg _sdist.make_release_tree(self, base_dir, files) target_versionfile = os.path.join(base_dir, cfg.versionfile_source) print('UPDATING %s' % target_versionfile) os.unlink(target_versionfile) contents = json.dumps(self._versioneer_generated_versions, sort_keys=True, indent=1, separators=(',', ': ')) with open(target_versionfile, 'w') as f: f.write(SHORT_VERSION_PY % contents) print("set %s to '%s'" % (target_versionfile, self._versioneer_generated_versions['version'])) cmds['sdist'] = cmd_sdist return cmds
bhmm
positive
def test_fail_on_first() -> None: <DeepExtract> (work_done, ex) = check_executor_work([('same_key', i) for i in range(10)], 1, 1, True) </DeepExtract> assert work_done == [0, 1, 2, 3, 4] assert ex is not None assert ex.args[0] == 'Abort 5'
def test_fail_on_first() -> None: (work_done, ex) = check_executor_work([('same_key', i) for i in range(10)], 1, 1, True) assert work_done == [0, 1, 2, 3, 4] assert ex is not None assert ex.args[0] == 'Abort 5'
cloudkeeper
positive
def read_item_id(): <DeepExtract> crawled_id_filename = os.path.join(PATH, 'log', crawled_id_in_log) if not os.path.isfile(crawled_id_filename): open(crawled_id_filename, mode='w') with codecs.open(crawled_id_filename, encoding='utf-8') as f: try: last_crawled_id_str = f.readlines()[-1] last_crawled_id = pattern.search(last_crawled_id_str).group() except: last_crawled_id = '000000' items_id_filename = os.path.join(PATH, 'sys', '%s_item_id' % SPIDER_NAME) with codecs.open(items_id_filename, encoding='utf-8') as idf: whole_item_id_list = [item.strip() for item in idf.readlines()] try: break_point_index = whole_item_id_list.index(last_crawled_id) except: break_point_index = 0 whole_item_id_list = whole_item_id_list[break_point_index:] </DeepExtract> failed_id_filename = os.path.join(PATH, 'log', failed_id_in_log) crawled_id_filename = os.path.join(PATH, 'log', crawled_id_in_log) http_hanlder = urllib2.ProxyHandler({'http': 'http://%s' % ip_port}) opener = urllib2.build_opener(http_hanlder) urllib2.install_opener(opener) with codecs.open(failed_id_filename, mode='a', encoding='utf-8') as failed_id_wf, codecs.open(crawled_id_filename, mode='a', encoding='utf-8') as crawled_id_wf: for item_id in whole_item_id_list: item_msg_list = [] url = root_url_pattern % item_id try: html = urllib2.urlopen(url, timeout=15).read() except BaseException: time.sleep(30) try: html = urllib2.urlopen(url, timeout=15).read() except BaseException: time.sleep(30) try: html = urllib2.urlopen(url, timeout=15).read() except BaseException: failed_id_wf.write('request timed item_id in url;%s\n' % url) continue try: soup = BeautifulSoup(html, 'html5lib') name_str = soup.find('div', id='name') except: continue if not name_str: failed_id_wf.write('not match name_str in url;%s\n' % url) continue try: item_name = name_str.text.strip() item_msg_list.append(item_name + '\n') except: pass detail_info = soup.find('div', id='product-detail-1') item_info = '' if not detail_info: failed_id_wf.write('not match detail-list-1 in url;%s\n' % url) else: try: item_info = detail_info.text.strip() except: <DeepExtract> timestamp = time.strftime('%Y_%m_%d_%H_{}'.format(SPIDER_NAME)) filename = os.path.join(PATH, 'out', timestamp) with codecs.open(filename, 'a', encoding='utf-8') as wf: wf.writelines(item_msg_list) </DeepExtract> crawled_id_wf.write(url + '\n') continue item_msg_list.append(item_info + '\n') <DeepExtract> timestamp = time.strftime('%Y_%m_%d_%H_{}'.format(SPIDER_NAME)) filename = os.path.join(PATH, 'out', timestamp) with codecs.open(filename, 'a', encoding='utf-8') as wf: wf.writelines(item_msg_list) </DeepExtract> crawled_id_wf.write(url + '\n')
def read_item_id(): crawled_id_filename = os.path.join(PATH, 'log', crawled_id_in_log) if not os.path.isfile(crawled_id_filename): open(crawled_id_filename, mode='w') with codecs.open(crawled_id_filename, encoding='utf-8') as f: try: last_crawled_id_str = f.readlines()[-1] last_crawled_id = pattern.search(last_crawled_id_str).group() except: last_crawled_id = '000000' items_id_filename = os.path.join(PATH, 'sys', '%s_item_id' % SPIDER_NAME) with codecs.open(items_id_filename, encoding='utf-8') as idf: whole_item_id_list = [item.strip() for item in idf.readlines()] try: break_point_index = whole_item_id_list.index(last_crawled_id) except: break_point_index = 0 whole_item_id_list = whole_item_id_list[break_point_index:] failed_id_filename = os.path.join(PATH, 'log', failed_id_in_log) crawled_id_filename = os.path.join(PATH, 'log', crawled_id_in_log) http_hanlder = urllib2.ProxyHandler({'http': 'http://%s' % ip_port}) opener = urllib2.build_opener(http_hanlder) urllib2.install_opener(opener) with codecs.open(failed_id_filename, mode='a', encoding='utf-8') as failed_id_wf, codecs.open(crawled_id_filename, mode='a', encoding='utf-8') as crawled_id_wf: for item_id in whole_item_id_list: item_msg_list = [] url = root_url_pattern % item_id try: html = urllib2.urlopen(url, timeout=15).read() except BaseException: time.sleep(30) try: html = urllib2.urlopen(url, timeout=15).read() except BaseException: time.sleep(30) try: html = urllib2.urlopen(url, timeout=15).read() except BaseException: failed_id_wf.write('request timed item_id in url;%s\n' % url) continue try: soup = BeautifulSoup(html, 'html5lib') name_str = soup.find('div', id='name') except: continue if not name_str: failed_id_wf.write('not match name_str in url;%s\n' % url) continue try: item_name = name_str.text.strip() item_msg_list.append(item_name + '\n') except: pass detail_info = soup.find('div', id='product-detail-1') item_info = '' if not detail_info: failed_id_wf.write('not match detail-list-1 in url;%s\n' % url) else: try: item_info = detail_info.text.strip() except: timestamp = time.strftime('%Y_%m_%d_%H_{}'.format(SPIDER_NAME)) filename = os.path.join(PATH, 'out', timestamp) with codecs.open(filename, 'a', encoding='utf-8') as wf: wf.writelines(item_msg_list) crawled_id_wf.write(url + '\n') continue item_msg_list.append(item_info + '\n') timestamp = time.strftime('%Y_%m_%d_%H_{}'.format(SPIDER_NAME)) filename = os.path.join(PATH, 'out', timestamp) with codecs.open(filename, 'a', encoding='utf-8') as wf: wf.writelines(item_msg_list) crawled_id_wf.write(url + '\n')
e-business
positive
@unittest.skipIf(DJANGO_VERSION >= (3, 0) and 'mysql' in os.environ.get('DATABASE_URL', ''), 'Negative ids no longer work in Django 3.0+ with MySQL.') def test_view_manage_negative_group_form(self): <DeepExtract> self.client.login(username='admin', password='admin') </DeepExtract> url = reverse('admin:%s_%s_permissions' % self.obj_info, args=[self.obj.pk]) self.group = Group.objects.create(name='neagive_id_group', id=-2010) data = {'group': self.group.name, 'submit_manage_group': 'submit'} response = self.client.post(url, data, follow=True) self.assertEqual(len(response.redirect_chain), 1) self.assertEqual(response.redirect_chain[0][1], 302) redirect_url = reverse('admin:%s_%s_permissions_manage_group' % self.obj_info, args=[self.obj.pk, self.group.id]) self.assertEqual(response.request['PATH_INFO'], redirect_url)
@unittest.skipIf(DJANGO_VERSION >= (3, 0) and 'mysql' in os.environ.get('DATABASE_URL', ''), 'Negative ids no longer work in Django 3.0+ with MySQL.') def test_view_manage_negative_group_form(self): self.client.login(username='admin', password='admin') url = reverse('admin:%s_%s_permissions' % self.obj_info, args=[self.obj.pk]) self.group = Group.objects.create(name='neagive_id_group', id=-2010) data = {'group': self.group.name, 'submit_manage_group': 'submit'} response = self.client.post(url, data, follow=True) self.assertEqual(len(response.redirect_chain), 1) self.assertEqual(response.redirect_chain[0][1], 302) redirect_url = reverse('admin:%s_%s_permissions_manage_group' % self.obj_info, args=[self.obj.pk, self.group.id]) self.assertEqual(response.request['PATH_INFO'], redirect_url)
django-guardian
positive
def __iter__(self): if self._can_reuse_batches: batches = self._batches self._can_reuse_batches = False else: <DeepExtract> dataset_size = len(self.group_ids) sampled_ids = torch.as_tensor(list(self.sampler)) order = torch.full((dataset_size,), -1, dtype=torch.int64) order[sampled_ids] = torch.arange(len(sampled_ids)) mask = order >= 0 clusters = [(self.group_ids == i) & mask for i in self.groups] relative_order = [order[cluster] for cluster in clusters] permutation_ids = [s[s.sort()[1]] for s in relative_order] permuted_clusters = [sampled_ids[idx] for idx in permutation_ids] splits = [c.split(self.batch_size) for c in permuted_clusters] merged = tuple(itertools.chain.from_iterable(splits)) first_element_of_batch = [t[0].item() for t in merged] inv_sampled_ids_map = {v: k for (k, v) in enumerate(sampled_ids.tolist())} first_index_of_batch = torch.as_tensor([inv_sampled_ids_map[s] for s in first_element_of_batch]) permutation_order = first_index_of_batch.sort(0)[1].tolist() batches = [merged[i].tolist() for i in permutation_order] if self.drop_uneven: kept = [] for batch in batches: if len(batch) == self.batch_size: kept.append(batch) batches = kept batches = batches </DeepExtract> self._batches = batches return iter(batches)
def __iter__(self): if self._can_reuse_batches: batches = self._batches self._can_reuse_batches = False else: dataset_size = len(self.group_ids) sampled_ids = torch.as_tensor(list(self.sampler)) order = torch.full((dataset_size,), -1, dtype=torch.int64) order[sampled_ids] = torch.arange(len(sampled_ids)) mask = order >= 0 clusters = [(self.group_ids == i) & mask for i in self.groups] relative_order = [order[cluster] for cluster in clusters] permutation_ids = [s[s.sort()[1]] for s in relative_order] permuted_clusters = [sampled_ids[idx] for idx in permutation_ids] splits = [c.split(self.batch_size) for c in permuted_clusters] merged = tuple(itertools.chain.from_iterable(splits)) first_element_of_batch = [t[0].item() for t in merged] inv_sampled_ids_map = {v: k for (k, v) in enumerate(sampled_ids.tolist())} first_index_of_batch = torch.as_tensor([inv_sampled_ids_map[s] for s in first_element_of_batch]) permutation_order = first_index_of_batch.sort(0)[1].tolist() batches = [merged[i].tolist() for i in permutation_order] if self.drop_uneven: kept = [] for batch in batches: if len(batch) == self.batch_size: kept.append(batch) batches = kept batches = batches self._batches = batches return iter(batches)
bezier_curve_text_spotting
positive
def get_paho_data(offset=0, dir='downloads'): opts = Options() opts.set_headless() assert opts.headless fp = FirefoxProfile() fp.set_preference('browser.download.folderList', 2) fp.set_preference('browser.download.manager.showWhenStarting', False) fp.set_preference('browser.download.dir', os.path.abspath(dir)) fp.set_preference('browser.helperApps.neverAsk.saveToDisk', 'text/csv') browser = Firefox(options=opts, firefox_profile=fp) browser.get('http://www.paho.org/data/index.php/en/mnu-topics/indicadores-dengue-en/dengue-nacional-en/252-dengue-pais-ano-en.html?showall=&start=1') tab1 = browser.window_handles[0] browser.execute_script('window.open("","_blank");') tab2 = browser.window_handles[1] browser.switch_to.window(tab1) curr_offset = offset <DeepExtract> try: WebDriverWait(browser, 30).until(EC.presence_of_element_located((By.CSS_SELECTOR, 'div.rt-top-inner'))) WebDriverWait(browser, 30).until(EC.element_to_be_clickable((By.CSS_SELECTOR, 'div.rt-top-inner'))) print('Success Loading %s' % 'div.rt-top-inner') except TimeoutException: print('Loading %s took too much time!' % 'div.rt-top-inner') </DeepExtract> header = browser.find_element_by_css_selector('div.rt-top-inner') global headerheight headerheight = header.rect['height'] browser.switch_to.frame(browser.find_element_by_tag_name('iframe')) browser.switch_to.frame(browser.find_element_by_tag_name('iframe')) downloadoption = browser.find_elements_by_css_selector('div.tabToolbarButton.tab-widget.download')[0] <DeepExtract> downloadoption.location_once_scrolled_into_view browser.switch_to.default_content() browser.execute_script('window.scrollBy(0,-%d)' % headerheight) browser.switch_to.frame(browser.find_element_by_tag_name('iframe')) browser.switch_to.frame(browser.find_element_by_tag_name('iframe')) downloadoption.click() </DeepExtract> <DeepExtract> try: WebDriverWait(browser, delay).until(EC.presence_of_element_located((By.CSS_SELECTOR, "div[data-tb-test-id='DownloadImage-Button']"))) WebDriverWait(browser, delay).until(EC.element_to_be_clickable((By.CSS_SELECTOR, "div[data-tb-test-id='DownloadImage-Button']"))) print('Success Loading %s' % "div[data-tb-test-id='DownloadImage-Button']") except TimeoutException: print('Loading %s took too much time!' % "div[data-tb-test-id='DownloadImage-Button']") </DeepExtract> imagebutton = browser.find_elements_by_css_selector("div[data-tb-test-id='DownloadImage-Button']")[0] <DeepExtract> imagebutton.location_once_scrolled_into_view browser.switch_to.default_content() browser.execute_script('window.scrollBy(0,-%d)' % headerheight) browser.switch_to.frame(browser.find_element_by_tag_name('iframe')) browser.switch_to.frame(browser.find_element_by_tag_name('iframe')) imagebutton.click() </DeepExtract> <DeepExtract> try: WebDriverWait(browser, delay).until(EC.presence_of_element_located((By.CSS_SELECTOR, ".tabDownloadFileButton[data-test-id='DownloadLink']"))) WebDriverWait(browser, delay).until(EC.element_to_be_clickable((By.CSS_SELECTOR, ".tabDownloadFileButton[data-test-id='DownloadLink']"))) print('Success Loading %s' % ".tabDownloadFileButton[data-test-id='DownloadLink']") except TimeoutException: print('Loading %s took too much time!' % ".tabDownloadFileButton[data-test-id='DownloadLink']") </DeepExtract> downloadbutton = browser.find_elements_by_css_selector(".tabDownloadFileButton[data-test-id='DownloadLink']")[0] href = downloadbutton.get_attribute('href') startidx = href.index('sessions/') + len('sessions/') endidx = href.index('/', startidx) sessionid = href[startidx:endidx] dataurl = 'http://phip.paho.org/vizql/w/Casosdedengue_tben/v/ByLastAvailableEpiWeek/viewData/sessions/%s/views/18076444178507886853_9530488980060483892?maxrows=200&viz=%%7B%%22worksheet%%22:%%22W%%20By%%20Last%%20Available%%20EpiWeek%%22,%%22dashboard%%22:%%22By%%20Last%%20Available%%20Epi%%20Week%%22%%7D' % sessionid <DeepExtract> try: WebDriverWait(browser, delay).until(EC.presence_of_element_located((By.CSS_SELECTOR, "div[data-tb-test-id='CancelBtn-Button']"))) WebDriverWait(browser, delay).until(EC.element_to_be_clickable((By.CSS_SELECTOR, "div[data-tb-test-id='CancelBtn-Button']"))) print('Success Loading %s' % "div[data-tb-test-id='CancelBtn-Button']") except TimeoutException: print('Loading %s took too much time!' % "div[data-tb-test-id='CancelBtn-Button']") </DeepExtract> cancelbutton = browser.find_elements_by_css_selector("div[data-tb-test-id='CancelBtn-Button']")[0] <DeepExtract> cancelbutton.location_once_scrolled_into_view browser.switch_to.default_content() browser.execute_script('window.scrollBy(0,-%d)' % headerheight) browser.switch_to.frame(browser.find_element_by_tag_name('iframe')) browser.switch_to.frame(browser.find_element_by_tag_name('iframe')) cancelbutton.click() </DeepExtract> <DeepExtract> try: WebDriverWait(browser, delay).until(EC.presence_of_element_located((By.CSS_SELECTOR, "div[id='tableau_base_widget_FilterPanel_0']"))) WebDriverWait(browser, delay).until(EC.element_to_be_clickable((By.CSS_SELECTOR, "div[id='tableau_base_widget_FilterPanel_0']"))) print('Success Loading %s' % "div[id='tableau_base_widget_FilterPanel_0']") except TimeoutException: print('Loading %s took too much time!' % "div[id='tableau_base_widget_FilterPanel_0']") </DeepExtract> yearselector = browser.find_elements_by_css_selector("div[id='tableau_base_widget_FilterPanel_0']")[0] <DeepExtract> yearselector.location_once_scrolled_into_view browser.switch_to.default_content() browser.execute_script('window.scrollBy(0,-%d)' % headerheight) browser.switch_to.frame(browser.find_element_by_tag_name('iframe')) browser.switch_to.frame(browser.find_element_by_tag_name('iframe')) yearselector.click() </DeepExtract> <DeepExtract> try: WebDriverWait(browser, delay).until(EC.presence_of_element_located((By.CSS_SELECTOR, 'div.facetOverflow'))) WebDriverWait(browser, delay).until(EC.element_to_be_clickable((By.CSS_SELECTOR, 'div.facetOverflow'))) print('Success Loading %s' % 'div.facetOverflow') except TimeoutException: print('Loading %s took too much time!' % 'div.facetOverflow') </DeepExtract> y = None for i in browser.find_elements_by_css_selector('div.facetOverflow'): if i.text == '(All)': y = i <DeepExtract> y.location_once_scrolled_into_view browser.switch_to.default_content() browser.execute_script('window.scrollBy(0,-%d)' % headerheight) browser.switch_to.frame(browser.find_element_by_tag_name('iframe')) browser.switch_to.frame(browser.find_element_by_tag_name('iframe')) y.click() </DeepExtract> for i in range(offset): gp = browser.find_element_by_css_selector('div.wcGlassPane') try: WebDriverWait(browser, 10).until(EC.staleness_of(gp)) print('Loaded next week % d' % (53 - offset)) except TimeoutException: print('Loading next week %d took too much time!' % (53 - offset)) gp = browser.find_element_by_css_selector('div.wcGlassPane') x = browser.find_elements_by_css_selector('div.dijitReset.dijitSliderButtonContainer.dijitSliderButtonContainerH.tableauArrowDec')[0] <DeepExtract> x.location_once_scrolled_into_view browser.switch_to.default_content() browser.execute_script('window.scrollBy(0,-%d)' % headerheight) browser.switch_to.frame(browser.find_element_by_tag_name('iframe')) browser.switch_to.frame(browser.find_element_by_tag_name('iframe')) x.click() </DeepExtract> for i in range(54 - offset): try: print('Loading week %d' % (53 - i)) browser.switch_to.window(tab2) browser.get(dataurl) <DeepExtract> try: WebDriverWait(browser, delay).until(EC.presence_of_element_located((By.CSS_SELECTOR, "li[id='tab-view-full-data']"))) WebDriverWait(browser, delay).until(EC.element_to_be_clickable((By.CSS_SELECTOR, "li[id='tab-view-full-data']"))) print('Success Loading %s' % "li[id='tab-view-full-data']") except TimeoutException: print('Loading %s took too much time!' % "li[id='tab-view-full-data']") </DeepExtract> full_data_tab = browser.find_elements_by_css_selector("li[id='tab-view-full-data']")[0] full_data_tab.click() <DeepExtract> try: WebDriverWait(browser, delay).until(EC.presence_of_element_located((By.CSS_SELECTOR, 'a.csvLink'))) WebDriverWait(browser, delay).until(EC.element_to_be_clickable((By.CSS_SELECTOR, 'a.csvLink'))) print('Success Loading %s' % 'a.csvLink') except TimeoutException: print('Loading %s took too much time!' % 'a.csvLink') </DeepExtract> data_links = browser.find_elements_by_css_selector('a.csvLink') data_link = None for i in data_links: if i.get_property('href') != '': data_link = i break data_link.click() browser.switch_to.window(tab1) <DeepExtract> try: WebDriverWait(browser, delay).until(EC.presence_of_element_located((By.CSS_SELECTOR, 'div.dijitReset.dijitSliderButtonContainer.dijitSliderButtonContainerH.tableauArrowDec'))) WebDriverWait(browser, delay).until(EC.element_to_be_clickable((By.CSS_SELECTOR, 'div.dijitReset.dijitSliderButtonContainer.dijitSliderButtonContainerH.tableauArrowDec'))) print('Success Loading %s' % 'div.dijitReset.dijitSliderButtonContainer.dijitSliderButtonContainerH.tableauArrowDec') except TimeoutException: print('Loading %s took too much time!' % 'div.dijitReset.dijitSliderButtonContainer.dijitSliderButtonContainerH.tableauArrowDec') </DeepExtract> x = browser.find_elements_by_css_selector('div.dijitReset.dijitSliderButtonContainer.dijitSliderButtonContainerH.tableauArrowDec')[0] <DeepExtract> x.location_once_scrolled_into_view browser.switch_to.default_content() browser.execute_script('window.scrollBy(0,-%d)' % headerheight) browser.switch_to.frame(browser.find_element_by_tag_name('iframe')) browser.switch_to.frame(browser.find_element_by_tag_name('iframe')) x.click() </DeepExtract> curr_offset += 1 except Exception as e: print('Got exception %s\nTrying again from week %d' % (e, 53 - offset)) browser.quit() <DeepExtract> opts = Options() opts.set_headless() assert opts.headless fp = FirefoxProfile() fp.set_preference('browser.download.folderList', 2) fp.set_preference('browser.download.manager.showWhenStarting', False) fp.set_preference('browser.download.dir', os.path.abspath(dir)) fp.set_preference('browser.helperApps.neverAsk.saveToDisk', 'text/csv') browser = Firefox(options=opts, firefox_profile=fp) browser.get('http://www.paho.org/data/index.php/en/mnu-topics/indicadores-dengue-en/dengue-nacional-en/252-dengue-pais-ano-en.html?showall=&start=1') tab1 = browser.window_handles[0] browser.execute_script('window.open("","_blank");') tab2 = browser.window_handles[1] browser.switch_to.window(tab1) curr_offset = curr_offset wait_for(browser, 'div.rt-top-inner', delay=30) header = browser.find_element_by_css_selector('div.rt-top-inner') global headerheight headerheight = header.rect['height'] browser.switch_to.frame(browser.find_element_by_tag_name('iframe')) browser.switch_to.frame(browser.find_element_by_tag_name('iframe')) downloadoption = browser.find_elements_by_css_selector('div.tabToolbarButton.tab-widget.download')[0] find_and_click(browser, downloadoption) wait_for(browser, "div[data-tb-test-id='DownloadImage-Button']") imagebutton = browser.find_elements_by_css_selector("div[data-tb-test-id='DownloadImage-Button']")[0] find_and_click(browser, imagebutton) wait_for(browser, ".tabDownloadFileButton[data-test-id='DownloadLink']") downloadbutton = browser.find_elements_by_css_selector(".tabDownloadFileButton[data-test-id='DownloadLink']")[0] href = downloadbutton.get_attribute('href') startidx = href.index('sessions/') + len('sessions/') endidx = href.index('/', startidx) sessionid = href[startidx:endidx] dataurl = 'http://phip.paho.org/vizql/w/Casosdedengue_tben/v/ByLastAvailableEpiWeek/viewData/sessions/%s/views/18076444178507886853_9530488980060483892?maxrows=200&viz=%%7B%%22worksheet%%22:%%22W%%20By%%20Last%%20Available%%20EpiWeek%%22,%%22dashboard%%22:%%22By%%20Last%%20Available%%20Epi%%20Week%%22%%7D' % sessionid wait_for(browser, "div[data-tb-test-id='CancelBtn-Button']") cancelbutton = browser.find_elements_by_css_selector("div[data-tb-test-id='CancelBtn-Button']")[0] find_and_click(browser, cancelbutton) wait_for(browser, "div[id='tableau_base_widget_FilterPanel_0']") yearselector = browser.find_elements_by_css_selector("div[id='tableau_base_widget_FilterPanel_0']")[0] find_and_click(browser, yearselector) wait_for(browser, 'div.facetOverflow') y = None for i in browser.find_elements_by_css_selector('div.facetOverflow'): if i.text == '(All)': y = i find_and_click(browser, y) for i in range(curr_offset): gp = browser.find_element_by_css_selector('div.wcGlassPane') try: WebDriverWait(browser, 10).until(EC.staleness_of(gp)) print('Loaded next week % d' % (53 - curr_offset)) except TimeoutException: print('Loading next week %d took too much time!' % (53 - curr_offset)) gp = browser.find_element_by_css_selector('div.wcGlassPane') x = browser.find_elements_by_css_selector('div.dijitReset.dijitSliderButtonContainer.dijitSliderButtonContainerH.tableauArrowDec')[0] find_and_click(browser, x) for i in range(54 - curr_offset): try: print('Loading week %d' % (53 - i)) browser.switch_to.window(tab2) browser.get(dataurl) wait_for(browser, "li[id='tab-view-full-data']") full_data_tab = browser.find_elements_by_css_selector("li[id='tab-view-full-data']")[0] full_data_tab.click() wait_for(browser, 'a.csvLink') data_links = browser.find_elements_by_css_selector('a.csvLink') data_link = None for i in data_links: if i.get_property('href') != '': data_link = i break data_link.click() browser.switch_to.window(tab1) wait_for(browser, 'div.dijitReset.dijitSliderButtonContainer.dijitSliderButtonContainerH.tableauArrowDec') x = browser.find_elements_by_css_selector('div.dijitReset.dijitSliderButtonContainer.dijitSliderButtonContainerH.tableauArrowDec')[0] find_and_click(browser, x) curr_offset += 1 except Exception as e: print('Got exception %s\nTrying again from week %d' % (e, 53 - curr_offset)) browser.quit() get_paho_data(offset=curr_offset) browser.quit() </DeepExtract> browser.quit()
def get_paho_data(offset=0, dir='downloads'): opts = Options() opts.set_headless() assert opts.headless fp = FirefoxProfile() fp.set_preference('browser.download.folderList', 2) fp.set_preference('browser.download.manager.showWhenStarting', False) fp.set_preference('browser.download.dir', os.path.abspath(dir)) fp.set_preference('browser.helperApps.neverAsk.saveToDisk', 'text/csv') browser = Firefox(options=opts, firefox_profile=fp) browser.get('http://www.paho.org/data/index.php/en/mnu-topics/indicadores-dengue-en/dengue-nacional-en/252-dengue-pais-ano-en.html?showall=&start=1') tab1 = browser.window_handles[0] browser.execute_script('window.open("","_blank");') tab2 = browser.window_handles[1] browser.switch_to.window(tab1) curr_offset = offset try: WebDriverWait(browser, 30).until(EC.presence_of_element_located((By.CSS_SELECTOR, 'div.rt-top-inner'))) WebDriverWait(browser, 30).until(EC.element_to_be_clickable((By.CSS_SELECTOR, 'div.rt-top-inner'))) print('Success Loading %s' % 'div.rt-top-inner') except TimeoutException: print('Loading %s took too much time!' % 'div.rt-top-inner') header = browser.find_element_by_css_selector('div.rt-top-inner') global headerheight headerheight = header.rect['height'] browser.switch_to.frame(browser.find_element_by_tag_name('iframe')) browser.switch_to.frame(browser.find_element_by_tag_name('iframe')) downloadoption = browser.find_elements_by_css_selector('div.tabToolbarButton.tab-widget.download')[0] downloadoption.location_once_scrolled_into_view browser.switch_to.default_content() browser.execute_script('window.scrollBy(0,-%d)' % headerheight) browser.switch_to.frame(browser.find_element_by_tag_name('iframe')) browser.switch_to.frame(browser.find_element_by_tag_name('iframe')) downloadoption.click() try: WebDriverWait(browser, delay).until(EC.presence_of_element_located((By.CSS_SELECTOR, "div[data-tb-test-id='DownloadImage-Button']"))) WebDriverWait(browser, delay).until(EC.element_to_be_clickable((By.CSS_SELECTOR, "div[data-tb-test-id='DownloadImage-Button']"))) print('Success Loading %s' % "div[data-tb-test-id='DownloadImage-Button']") except TimeoutException: print('Loading %s took too much time!' % "div[data-tb-test-id='DownloadImage-Button']") imagebutton = browser.find_elements_by_css_selector("div[data-tb-test-id='DownloadImage-Button']")[0] imagebutton.location_once_scrolled_into_view browser.switch_to.default_content() browser.execute_script('window.scrollBy(0,-%d)' % headerheight) browser.switch_to.frame(browser.find_element_by_tag_name('iframe')) browser.switch_to.frame(browser.find_element_by_tag_name('iframe')) imagebutton.click() try: WebDriverWait(browser, delay).until(EC.presence_of_element_located((By.CSS_SELECTOR, ".tabDownloadFileButton[data-test-id='DownloadLink']"))) WebDriverWait(browser, delay).until(EC.element_to_be_clickable((By.CSS_SELECTOR, ".tabDownloadFileButton[data-test-id='DownloadLink']"))) print('Success Loading %s' % ".tabDownloadFileButton[data-test-id='DownloadLink']") except TimeoutException: print('Loading %s took too much time!' % ".tabDownloadFileButton[data-test-id='DownloadLink']") downloadbutton = browser.find_elements_by_css_selector(".tabDownloadFileButton[data-test-id='DownloadLink']")[0] href = downloadbutton.get_attribute('href') startidx = href.index('sessions/') + len('sessions/') endidx = href.index('/', startidx) sessionid = href[startidx:endidx] dataurl = 'http://phip.paho.org/vizql/w/Casosdedengue_tben/v/ByLastAvailableEpiWeek/viewData/sessions/%s/views/18076444178507886853_9530488980060483892?maxrows=200&viz=%%7B%%22worksheet%%22:%%22W%%20By%%20Last%%20Available%%20EpiWeek%%22,%%22dashboard%%22:%%22By%%20Last%%20Available%%20Epi%%20Week%%22%%7D' % sessionid try: WebDriverWait(browser, delay).until(EC.presence_of_element_located((By.CSS_SELECTOR, "div[data-tb-test-id='CancelBtn-Button']"))) WebDriverWait(browser, delay).until(EC.element_to_be_clickable((By.CSS_SELECTOR, "div[data-tb-test-id='CancelBtn-Button']"))) print('Success Loading %s' % "div[data-tb-test-id='CancelBtn-Button']") except TimeoutException: print('Loading %s took too much time!' % "div[data-tb-test-id='CancelBtn-Button']") cancelbutton = browser.find_elements_by_css_selector("div[data-tb-test-id='CancelBtn-Button']")[0] cancelbutton.location_once_scrolled_into_view browser.switch_to.default_content() browser.execute_script('window.scrollBy(0,-%d)' % headerheight) browser.switch_to.frame(browser.find_element_by_tag_name('iframe')) browser.switch_to.frame(browser.find_element_by_tag_name('iframe')) cancelbutton.click() try: WebDriverWait(browser, delay).until(EC.presence_of_element_located((By.CSS_SELECTOR, "div[id='tableau_base_widget_FilterPanel_0']"))) WebDriverWait(browser, delay).until(EC.element_to_be_clickable((By.CSS_SELECTOR, "div[id='tableau_base_widget_FilterPanel_0']"))) print('Success Loading %s' % "div[id='tableau_base_widget_FilterPanel_0']") except TimeoutException: print('Loading %s took too much time!' % "div[id='tableau_base_widget_FilterPanel_0']") yearselector = browser.find_elements_by_css_selector("div[id='tableau_base_widget_FilterPanel_0']")[0] yearselector.location_once_scrolled_into_view browser.switch_to.default_content() browser.execute_script('window.scrollBy(0,-%d)' % headerheight) browser.switch_to.frame(browser.find_element_by_tag_name('iframe')) browser.switch_to.frame(browser.find_element_by_tag_name('iframe')) yearselector.click() try: WebDriverWait(browser, delay).until(EC.presence_of_element_located((By.CSS_SELECTOR, 'div.facetOverflow'))) WebDriverWait(browser, delay).until(EC.element_to_be_clickable((By.CSS_SELECTOR, 'div.facetOverflow'))) print('Success Loading %s' % 'div.facetOverflow') except TimeoutException: print('Loading %s took too much time!' % 'div.facetOverflow') y = None for i in browser.find_elements_by_css_selector('div.facetOverflow'): if i.text == '(All)': y = i y.location_once_scrolled_into_view browser.switch_to.default_content() browser.execute_script('window.scrollBy(0,-%d)' % headerheight) browser.switch_to.frame(browser.find_element_by_tag_name('iframe')) browser.switch_to.frame(browser.find_element_by_tag_name('iframe')) y.click() for i in range(offset): gp = browser.find_element_by_css_selector('div.wcGlassPane') try: WebDriverWait(browser, 10).until(EC.staleness_of(gp)) print('Loaded next week % d' % (53 - offset)) except TimeoutException: print('Loading next week %d took too much time!' % (53 - offset)) gp = browser.find_element_by_css_selector('div.wcGlassPane') x = browser.find_elements_by_css_selector('div.dijitReset.dijitSliderButtonContainer.dijitSliderButtonContainerH.tableauArrowDec')[0] x.location_once_scrolled_into_view browser.switch_to.default_content() browser.execute_script('window.scrollBy(0,-%d)' % headerheight) browser.switch_to.frame(browser.find_element_by_tag_name('iframe')) browser.switch_to.frame(browser.find_element_by_tag_name('iframe')) x.click() for i in range(54 - offset): try: print('Loading week %d' % (53 - i)) browser.switch_to.window(tab2) browser.get(dataurl) try: WebDriverWait(browser, delay).until(EC.presence_of_element_located((By.CSS_SELECTOR, "li[id='tab-view-full-data']"))) WebDriverWait(browser, delay).until(EC.element_to_be_clickable((By.CSS_SELECTOR, "li[id='tab-view-full-data']"))) print('Success Loading %s' % "li[id='tab-view-full-data']") except TimeoutException: print('Loading %s took too much time!' % "li[id='tab-view-full-data']") full_data_tab = browser.find_elements_by_css_selector("li[id='tab-view-full-data']")[0] full_data_tab.click() try: WebDriverWait(browser, delay).until(EC.presence_of_element_located((By.CSS_SELECTOR, 'a.csvLink'))) WebDriverWait(browser, delay).until(EC.element_to_be_clickable((By.CSS_SELECTOR, 'a.csvLink'))) print('Success Loading %s' % 'a.csvLink') except TimeoutException: print('Loading %s took too much time!' % 'a.csvLink') data_links = browser.find_elements_by_css_selector('a.csvLink') data_link = None for i in data_links: if i.get_property('href') != '': data_link = i break data_link.click() browser.switch_to.window(tab1) try: WebDriverWait(browser, delay).until(EC.presence_of_element_located((By.CSS_SELECTOR, 'div.dijitReset.dijitSliderButtonContainer.dijitSliderButtonContainerH.tableauArrowDec'))) WebDriverWait(browser, delay).until(EC.element_to_be_clickable((By.CSS_SELECTOR, 'div.dijitReset.dijitSliderButtonContainer.dijitSliderButtonContainerH.tableauArrowDec'))) print('Success Loading %s' % 'div.dijitReset.dijitSliderButtonContainer.dijitSliderButtonContainerH.tableauArrowDec') except TimeoutException: print('Loading %s took too much time!' % 'div.dijitReset.dijitSliderButtonContainer.dijitSliderButtonContainerH.tableauArrowDec') x = browser.find_elements_by_css_selector('div.dijitReset.dijitSliderButtonContainer.dijitSliderButtonContainerH.tableauArrowDec')[0] x.location_once_scrolled_into_view browser.switch_to.default_content() browser.execute_script('window.scrollBy(0,-%d)' % headerheight) browser.switch_to.frame(browser.find_element_by_tag_name('iframe')) browser.switch_to.frame(browser.find_element_by_tag_name('iframe')) x.click() curr_offset += 1 except Exception as e: print('Got exception %s\nTrying again from week %d' % (e, 53 - offset)) browser.quit() opts = Options() opts.set_headless() assert opts.headless fp = FirefoxProfile() fp.set_preference('browser.download.folderList', 2) fp.set_preference('browser.download.manager.showWhenStarting', False) fp.set_preference('browser.download.dir', os.path.abspath(dir)) fp.set_preference('browser.helperApps.neverAsk.saveToDisk', 'text/csv') browser = Firefox(options=opts, firefox_profile=fp) browser.get('http://www.paho.org/data/index.php/en/mnu-topics/indicadores-dengue-en/dengue-nacional-en/252-dengue-pais-ano-en.html?showall=&start=1') tab1 = browser.window_handles[0] browser.execute_script('window.open("","_blank");') tab2 = browser.window_handles[1] browser.switch_to.window(tab1) curr_offset = curr_offset wait_for(browser, 'div.rt-top-inner', delay=30) header = browser.find_element_by_css_selector('div.rt-top-inner') global headerheight headerheight = header.rect['height'] browser.switch_to.frame(browser.find_element_by_tag_name('iframe')) browser.switch_to.frame(browser.find_element_by_tag_name('iframe')) downloadoption = browser.find_elements_by_css_selector('div.tabToolbarButton.tab-widget.download')[0] find_and_click(browser, downloadoption) wait_for(browser, "div[data-tb-test-id='DownloadImage-Button']") imagebutton = browser.find_elements_by_css_selector("div[data-tb-test-id='DownloadImage-Button']")[0] find_and_click(browser, imagebutton) wait_for(browser, ".tabDownloadFileButton[data-test-id='DownloadLink']") downloadbutton = browser.find_elements_by_css_selector(".tabDownloadFileButton[data-test-id='DownloadLink']")[0] href = downloadbutton.get_attribute('href') startidx = href.index('sessions/') + len('sessions/') endidx = href.index('/', startidx) sessionid = href[startidx:endidx] dataurl = 'http://phip.paho.org/vizql/w/Casosdedengue_tben/v/ByLastAvailableEpiWeek/viewData/sessions/%s/views/18076444178507886853_9530488980060483892?maxrows=200&viz=%%7B%%22worksheet%%22:%%22W%%20By%%20Last%%20Available%%20EpiWeek%%22,%%22dashboard%%22:%%22By%%20Last%%20Available%%20Epi%%20Week%%22%%7D' % sessionid wait_for(browser, "div[data-tb-test-id='CancelBtn-Button']") cancelbutton = browser.find_elements_by_css_selector("div[data-tb-test-id='CancelBtn-Button']")[0] find_and_click(browser, cancelbutton) wait_for(browser, "div[id='tableau_base_widget_FilterPanel_0']") yearselector = browser.find_elements_by_css_selector("div[id='tableau_base_widget_FilterPanel_0']")[0] find_and_click(browser, yearselector) wait_for(browser, 'div.facetOverflow') y = None for i in browser.find_elements_by_css_selector('div.facetOverflow'): if i.text == '(All)': y = i find_and_click(browser, y) for i in range(curr_offset): gp = browser.find_element_by_css_selector('div.wcGlassPane') try: WebDriverWait(browser, 10).until(EC.staleness_of(gp)) print('Loaded next week % d' % (53 - curr_offset)) except TimeoutException: print('Loading next week %d took too much time!' % (53 - curr_offset)) gp = browser.find_element_by_css_selector('div.wcGlassPane') x = browser.find_elements_by_css_selector('div.dijitReset.dijitSliderButtonContainer.dijitSliderButtonContainerH.tableauArrowDec')[0] find_and_click(browser, x) for i in range(54 - curr_offset): try: print('Loading week %d' % (53 - i)) browser.switch_to.window(tab2) browser.get(dataurl) wait_for(browser, "li[id='tab-view-full-data']") full_data_tab = browser.find_elements_by_css_selector("li[id='tab-view-full-data']")[0] full_data_tab.click() wait_for(browser, 'a.csvLink') data_links = browser.find_elements_by_css_selector('a.csvLink') data_link = None for i in data_links: if i.get_property('href') != '': data_link = i break data_link.click() browser.switch_to.window(tab1) wait_for(browser, 'div.dijitReset.dijitSliderButtonContainer.dijitSliderButtonContainerH.tableauArrowDec') x = browser.find_elements_by_css_selector('div.dijitReset.dijitSliderButtonContainer.dijitSliderButtonContainerH.tableauArrowDec')[0] find_and_click(browser, x) curr_offset += 1 except Exception as e: print('Got exception %s\nTrying again from week %d' % (e, 53 - curr_offset)) browser.quit() get_paho_data(offset=curr_offset) browser.quit() browser.quit()
delphi-epidata
positive
def save_prediction_results(task_dir, results, model_hparams, sample_start_ind=0, only_metrics=False): context_frames = model_hparams.context_frames sequence_length = model_hparams.sequence_length context_images = results['context'] images = results['images'] gen_images = results['gen_images'] mse = metrics.mean_squared_error_np(images, gen_images, keep_axis=(0, 1)) <DeepExtract> (head, tail) = os.path.split(os.path.join(task_dir, 'metrics', 'mse')) if head and (not os.path.exists(head)): os.makedirs(head) assert mse.ndim == 2 file_mode = 'wb' if sample_start_ind == 0 else 'ab' with io.open('%s.csv' % os.path.join(task_dir, 'metrics', 'mse'), file_mode) as csvfile: writer = csv.writer(csvfile, delimiter='\t', quotechar='|', quoting=csv.QUOTE_MINIMAL) if sample_start_ind == 0: writer.writerow(map(str, ['sample_ind'] + list(range(mse.shape[1])) + ['mean'])) for (i, metrics_row) in enumerate(mse): writer.writerow(map(unicode, map(str, [sample_start_ind + i] + list(metrics_row) + [np.mean(metrics_row)]))) </DeepExtract> if only_metrics: return <DeepExtract> (head, tail) = os.path.split(os.path.join(task_dir, 'inputs', 'context_image')) if head and (not os.path.exists(head)): os.makedirs(head) if overlaid_images is None: overlaid_images = [None] * len(context_images) if centers is None: centers = [None] * len(context_images) for (i, (images_, overlaid_images_, centers_)) in enumerate(zip(context_images, overlaid_images, centers)): images_fname = '%s_%05d' % (os.path.join(task_dir, 'inputs', 'context_image'), sample_start_ind + i) save_image_sequence(images_fname, images_, overlaid_images_, centers_, radius=radius, alpha=alpha, time_start_ind=time_start_ind) </DeepExtract> <DeepExtract> (head, tail) = os.path.split(os.path.join(task_dir, 'inputs', 'gt')) if head and (not os.path.exists(head)): os.makedirs(head) if overlaid_images is None: overlaid_images = [None] * len(images) if centers is None: centers = [None] * len(images) for (i, (images_, overlaid_images_, centers_)) in enumerate(zip(images, overlaid_images, centers)): images_fname = '%s_%05d' % (os.path.join(task_dir, 'inputs', 'gt'), sample_start_ind + i) save_image_sequence(images_fname, images_, overlaid_images_, centers_, radius=radius, alpha=alpha, time_start_ind=time_start_ind) </DeepExtract> <DeepExtract> (head, tail) = os.path.split(os.path.join(task_dir, 'outputs', 'gen_image')) if head and (not os.path.exists(head)): os.makedirs(head) if overlaid_images is None: overlaid_images = [None] * len(gen_images) if centers is None: centers = [None] * len(gen_images) for (i, (images_, overlaid_images_, centers_)) in enumerate(zip(gen_images, overlaid_images, centers)): images_fname = '%s_%05d' % (os.path.join(task_dir, 'outputs', 'gen_image'), sample_start_ind + i) save_image_sequence(images_fname, images_, overlaid_images_, centers_, radius=radius, alpha=alpha, time_start_ind=time_start_ind) </DeepExtract>
def save_prediction_results(task_dir, results, model_hparams, sample_start_ind=0, only_metrics=False): context_frames = model_hparams.context_frames sequence_length = model_hparams.sequence_length context_images = results['context'] images = results['images'] gen_images = results['gen_images'] mse = metrics.mean_squared_error_np(images, gen_images, keep_axis=(0, 1)) (head, tail) = os.path.split(os.path.join(task_dir, 'metrics', 'mse')) if head and (not os.path.exists(head)): os.makedirs(head) assert mse.ndim == 2 file_mode = 'wb' if sample_start_ind == 0 else 'ab' with io.open('%s.csv' % os.path.join(task_dir, 'metrics', 'mse'), file_mode) as csvfile: writer = csv.writer(csvfile, delimiter='\t', quotechar='|', quoting=csv.QUOTE_MINIMAL) if sample_start_ind == 0: writer.writerow(map(str, ['sample_ind'] + list(range(mse.shape[1])) + ['mean'])) for (i, metrics_row) in enumerate(mse): writer.writerow(map(unicode, map(str, [sample_start_ind + i] + list(metrics_row) + [np.mean(metrics_row)]))) if only_metrics: return (head, tail) = os.path.split(os.path.join(task_dir, 'inputs', 'context_image')) if head and (not os.path.exists(head)): os.makedirs(head) if overlaid_images is None: overlaid_images = [None] * len(context_images) if centers is None: centers = [None] * len(context_images) for (i, (images_, overlaid_images_, centers_)) in enumerate(zip(context_images, overlaid_images, centers)): images_fname = '%s_%05d' % (os.path.join(task_dir, 'inputs', 'context_image'), sample_start_ind + i) save_image_sequence(images_fname, images_, overlaid_images_, centers_, radius=radius, alpha=alpha, time_start_ind=time_start_ind) (head, tail) = os.path.split(os.path.join(task_dir, 'inputs', 'gt')) if head and (not os.path.exists(head)): os.makedirs(head) if overlaid_images is None: overlaid_images = [None] * len(images) if centers is None: centers = [None] * len(images) for (i, (images_, overlaid_images_, centers_)) in enumerate(zip(images, overlaid_images, centers)): images_fname = '%s_%05d' % (os.path.join(task_dir, 'inputs', 'gt'), sample_start_ind + i) save_image_sequence(images_fname, images_, overlaid_images_, centers_, radius=radius, alpha=alpha, time_start_ind=time_start_ind) (head, tail) = os.path.split(os.path.join(task_dir, 'outputs', 'gen_image')) if head and (not os.path.exists(head)): os.makedirs(head) if overlaid_images is None: overlaid_images = [None] * len(gen_images) if centers is None: centers = [None] * len(gen_images) for (i, (images_, overlaid_images_, centers_)) in enumerate(zip(gen_images, overlaid_images, centers)): images_fname = '%s_%05d' % (os.path.join(task_dir, 'outputs', 'gen_image'), sample_start_ind + i) save_image_sequence(images_fname, images_, overlaid_images_, centers_, radius=radius, alpha=alpha, time_start_ind=time_start_ind) </DeepExtract>
DSGAN
positive
def get_fallback_mount_target_ip_address(config, options, fs_id, dns_name): <DeepExtract> fall_back_to_ip_address_enabled = get_boolean_config_item_value(config, CONFIG_SECTION, FALLBACK_TO_MOUNT_TARGET_IP_ADDRESS_ITEM, default_value=DEFAULT_FALLBACK_ENABLED) </DeepExtract> if not fall_back_to_ip_address_enabled: fallback_message = 'Fallback to mount target ip address feature is not enabled in config file %s.' % CONFIG_FILE raise FallbackException(fallback_message) if not BOTOCORE_PRESENT: fallback_message = 'Failed to import necessary dependency botocore, please install botocore first.' raise FallbackException(fallback_message) mount_target_ip_address = None try: <DeepExtract> az_name = get_target_az(config, options) ec2_client = get_botocore_client(config, 'ec2', options) efs_client = get_botocore_client(config, 'efs', options) mount_target = get_mount_target_in_az(efs_client, ec2_client, fs_id, az_name) mount_target_ip = mount_target.get('IpAddress') logging.debug('Found mount target ip address %s in AZ %s', mount_target_ip, az_name) mount_target_ip_address = mount_target_ip </DeepExtract> <DeepExtract> tries = 3 for attempt in range(tries): try: if not options.get('netns') if 'netns' in options else None: s = socket.create_connection((mount_target_ip_address, 2049), timeout=2) else: with NetNS(nspath=options.get('netns') if 'netns' in options else None): s = socket.create_connection((mount_target_ip_address, 2049), timeout=2) s.close() return True except socket.timeout: if attempt < tries - 1: message = 'The ip address %s cannot be connected yet, sleep 0.5s, %s retry time(s) left' % (mount_target_ip_address, tries - attempt - 1) logging.warning(message) time.sleep(0.5) continue else: raise FallbackException('Connection to the mount target IP address %s timeout. Please retry in 5 minutes if the mount target is newly created. Otherwise check your VPC and security group configuration to ensure your file system is reachable via TCP port 2049 from your instance.' % mount_target_ip_address) except Exception as e: hint_message = ' Please check if the mount target ip address passed via mount option is correct.' if passed_via_options else '' raise FallbackException('Unknown error when connecting to mount target IP address %s, %s.%s' % (mount_target_ip_address, e, hint_message)) </DeepExtract> return mount_target_ip_address except FallbackException as e: <DeepExtract> dns_message = 'Failed to resolve "%s". ' % dns_name if dns_name else '' if not mount_target_ip_address: ip_address_message = 'The file system mount target ip address cannot be found, please pass mount target ip address via mount options. ' else: ip_address_message = 'Cannot connect to file system mount target ip address %s. ' % mount_target_ip_address e.message = '\n%s' % e.message if e.message else '' fatal_error('%s%s%s' % (dns_message, ip_address_message, e.message)) </DeepExtract>
def get_fallback_mount_target_ip_address(config, options, fs_id, dns_name): fall_back_to_ip_address_enabled = get_boolean_config_item_value(config, CONFIG_SECTION, FALLBACK_TO_MOUNT_TARGET_IP_ADDRESS_ITEM, default_value=DEFAULT_FALLBACK_ENABLED) if not fall_back_to_ip_address_enabled: fallback_message = 'Fallback to mount target ip address feature is not enabled in config file %s.' % CONFIG_FILE raise FallbackException(fallback_message) if not BOTOCORE_PRESENT: fallback_message = 'Failed to import necessary dependency botocore, please install botocore first.' raise FallbackException(fallback_message) mount_target_ip_address = None try: az_name = get_target_az(config, options) ec2_client = get_botocore_client(config, 'ec2', options) efs_client = get_botocore_client(config, 'efs', options) mount_target = get_mount_target_in_az(efs_client, ec2_client, fs_id, az_name) mount_target_ip = mount_target.get('IpAddress') logging.debug('Found mount target ip address %s in AZ %s', mount_target_ip, az_name) mount_target_ip_address = mount_target_ip tries = 3 for attempt in range(tries): try: if not options.get('netns') if 'netns' in options else None: s = socket.create_connection((mount_target_ip_address, 2049), timeout=2) else: with NetNS(nspath=options.get('netns') if 'netns' in options else None): s = socket.create_connection((mount_target_ip_address, 2049), timeout=2) s.close() return True except socket.timeout: if attempt < tries - 1: message = 'The ip address %s cannot be connected yet, sleep 0.5s, %s retry time(s) left' % (mount_target_ip_address, tries - attempt - 1) logging.warning(message) time.sleep(0.5) continue else: raise FallbackException('Connection to the mount target IP address %s timeout. Please retry in 5 minutes if the mount target is newly created. Otherwise check your VPC and security group configuration to ensure your file system is reachable via TCP port 2049 from your instance.' % mount_target_ip_address) except Exception as e: hint_message = ' Please check if the mount target ip address passed via mount option is correct.' if passed_via_options else '' raise FallbackException('Unknown error when connecting to mount target IP address %s, %s.%s' % (mount_target_ip_address, e, hint_message)) return mount_target_ip_address except FallbackException as e: dns_message = 'Failed to resolve "%s". ' % dns_name if dns_name else '' if not mount_target_ip_address: ip_address_message = 'The file system mount target ip address cannot be found, please pass mount target ip address via mount options. ' else: ip_address_message = 'Cannot connect to file system mount target ip address %s. ' % mount_target_ip_address e.message = '\n%s' % e.message if e.message else '' fatal_error('%s%s%s' % (dns_message, ip_address_message, e.message)) </DeepExtract>
efs-utils
positive
def call(self, targets, inputs, outputs=None): <DeepExtract> if bm.as_jax(inputs).ndim < 2: raise ValueError(f'Data must be a 2d tensor. But we got {bm.as_jax(inputs).ndim}d: {bm.as_jax(inputs).shape}.') if bm.as_jax(inputs).ndim != 2: inputs = bm.flatten(bm.as_jax(inputs), end_dim=-2) else: inputs = bm.as_jax(inputs) </DeepExtract> <DeepExtract> if bm.as_jax(targets).ndim < 2: raise ValueError(f'Data must be a 2d tensor. But we got {bm.as_jax(targets).ndim}d: {bm.as_jax(targets).shape}.') if bm.as_jax(targets).ndim != 2: targets = bm.flatten(bm.as_jax(targets), end_dim=-2) else: targets = bm.as_jax(targets) </DeepExtract> inputs = normalize(polynomial_features(inputs, degree=self.degree, add_bias=self.add_bias)) return super(LassoRegression, self).gradient_descent_solve(targets, inputs)
def call(self, targets, inputs, outputs=None): if bm.as_jax(inputs).ndim < 2: raise ValueError(f'Data must be a 2d tensor. But we got {bm.as_jax(inputs).ndim}d: {bm.as_jax(inputs).shape}.') if bm.as_jax(inputs).ndim != 2: inputs = bm.flatten(bm.as_jax(inputs), end_dim=-2) else: inputs = bm.as_jax(inputs) if bm.as_jax(targets).ndim < 2: raise ValueError(f'Data must be a 2d tensor. But we got {bm.as_jax(targets).ndim}d: {bm.as_jax(targets).shape}.') if bm.as_jax(targets).ndim != 2: targets = bm.flatten(bm.as_jax(targets), end_dim=-2) else: targets = bm.as_jax(targets) inputs = normalize(polynomial_features(inputs, degree=self.degree, add_bias=self.add_bias)) return super(LassoRegression, self).gradient_descent_solve(targets, inputs)
BrainPy
positive
def _search_for_pattern(self, s, pat): p = s.find(pat) if p < 0: self._max_search -= len(s) + 1 - len(pat) if self._max_search < 0: <DeepExtract> if not self.closed: self.connection.close() self.closed = True </DeepExtract> return False <DeepExtract> self.buffer = s[1 - len(pat):] + self.buffer </DeepExtract> return False <DeepExtract> self.buffer = s[p + len(pat):] + self.buffer </DeepExtract> return True
def _search_for_pattern(self, s, pat): p = s.find(pat) if p < 0: self._max_search -= len(s) + 1 - len(pat) if self._max_search < 0: if not self.closed: self.connection.close() self.closed = True return False self.buffer = s[1 - len(pat):] + self.buffer return False self.buffer = s[p + len(pat):] + self.buffer return True
BitTornado
positive
def sendto(self, data, addr, endpoint): print('sendto ' + str(endpoint)) <DeepExtract> packet = OnionPacket() packet.createOnionPacket(self.keypair, endpoint, data, self.keys.entropy) packet = packet </DeepExtract> print('Sending') print(packet) self.sock.sendto(packet.packet, 0, addr)
def sendto(self, data, addr, endpoint): print('sendto ' + str(endpoint)) packet = OnionPacket() packet.createOnionPacket(self.keypair, endpoint, data, self.keys.entropy) packet = packet print('Sending') print(packet) self.sock.sendto(packet.packet, 0, addr)
Dust
positive
def main(): if not torch.cuda.is_available(): logging.info('no gpu device available') sys.exit(1) np.random.seed(args.seed) torch.manual_seed(args.seed) torch.cuda.manual_seed(args.seed) torch.cuda.manual_seed_all(args.seed) cudnn.enabled = True cudnn.benchmark = False cudnn.deterministic = True args.steps = int(np.ceil(45000 / args.child_batch_size)) * args.child_epochs logging.info('args = %s', args) if args.child_arch_pool is not None: logging.info('Architecture pool is provided, loading') with open(args.child_arch_pool) as f: archs = f.read().splitlines() archs = list(map(utils.build_dag, archs)) child_arch_pool = archs elif os.path.exists(os.path.join(args.output_dir, 'arch_pool')): logging.info('Architecture pool is founded, loading') with open(os.path.join(args.output_dir, 'arch_pool')) as f: archs = f.read().splitlines() archs = list(map(utils.build_dag, archs)) child_arch_pool = archs else: child_arch_pool = None child_eval_epochs = eval(args.child_eval_epochs) <DeepExtract> if args.dataset == 'cifar10': build_fn = build_cifar10 elif args.dataset == 'cifar100': build_fn = build_cifar100 else: build_fn = build_imagenet </DeepExtract> (train_queue, valid_queue, model, train_criterion, eval_criterion, optimizer, scheduler) = build_fn(ratio=0.9, epoch=-1) nao = NAO(args.controller_encoder_layers, args.controller_encoder_vocab_size, args.controller_encoder_hidden_size, args.controller_encoder_dropout, args.controller_encoder_length, args.controller_source_length, args.controller_encoder_emb_size, args.controller_mlp_layers, args.controller_mlp_hidden_size, args.controller_mlp_dropout, args.controller_decoder_layers, args.controller_decoder_vocab_size, args.controller_decoder_hidden_size, args.controller_decoder_dropout, args.controller_decoder_length) nao = nao.cuda() logging.info('Encoder-Predictor-Decoder param size = %fMB', utils.count_parameters_in_MB(nao)) if child_arch_pool is None: logging.info('Architecture pool is not provided, randomly generating now') child_arch_pool = utils.generate_arch(args.controller_seed_arch, args.child_nodes, 5) if args.child_sample_policy == 'params': child_arch_pool_prob = [] for arch in child_arch_pool: if args.dataset == 'cifar10': tmp_model = NASNetworkCIFAR(args, 10, args.child_layers, args.child_nodes, args.child_channels, args.child_keep_prob, args.child_drop_path_keep_prob, args.child_use_aux_head, args.steps, arch) elif args.dataset == 'cifar100': tmp_model = NASNetworkCIFAR(args, 100, args.child_layers, args.child_nodes, args.child_channels, args.child_keep_prob, args.child_drop_path_keep_prob, args.child_use_aux_head, args.steps, arch) else: tmp_model = NASNetworkImageNet(args, 1000, args.child_layers, args.child_nodes, args.child_channels, args.child_keep_prob, args.child_drop_path_keep_prob, args.child_use_aux_head, args.steps, arch) child_arch_pool_prob.append(utils.count_parameters_in_MB(tmp_model)) del tmp_model else: child_arch_pool_prob = None eval_points = utils.generate_eval_points(child_eval_epochs, 0, args.child_epochs) step = 0 for epoch in range(1, args.child_epochs + 1): scheduler.step() lr = scheduler.get_lr()[0] logging.info('epoch %d lr %e', epoch, lr) <DeepExtract> objs = utils.AvgrageMeter() top1 = utils.AvgrageMeter() top5 = utils.AvgrageMeter() model.train() for (step, (input, target)) in enumerate(train_queue): input = input.cuda().requires_grad_() target = target.cuda() optimizer.zero_grad() arch = utils.sample_arch(child_arch_pool, child_arch_pool_prob) (logits, aux_logits) = model(input, arch, step) step += 1 loss = train_criterion(logits, target) if aux_logits is not None: aux_loss = train_criterion(aux_logits, target) loss += 0.4 * aux_loss loss.backward() nn.utils.clip_grad_norm_(model.parameters(), args.child_grad_bound) optimizer.step() (prec1, prec5) = utils.accuracy(logits, target, topk=(1, 5)) n = input.size(0) objs.update(loss.data, n) top1.update(prec1.data, n) top5.update(prec5.data, n) if (step + 1) % 100 == 0: logging.info('Train %03d loss %e top1 %f top5 %f', step + 1, objs.avg, top1.avg, top5.avg) logging.info('Arch: %s', ' '.join(map(str, arch[0] + arch[1]))) (train_acc, train_obj, step) = (top1.avg, objs.avg, step) </DeepExtract> logging.info('train_acc %f', train_acc) if epoch not in eval_points: continue <DeepExtract> valid_acc_list = [] with torch.no_grad(): model.eval() for (i, arch) in enumerate(child_arch_pool): (inputs, targets) = next(iter(valid_queue)) inputs = inputs.cuda() targets = targets.cuda() (logits, _) = model(inputs, arch, bn_train=True) loss = eval_criterion(logits, targets) (prec1, prec5) = utils.accuracy(logits, targets, topk=(1, 5)) valid_acc_list.append(prec1.data / 100) if (i + 1) % 100 == 0: logging.info('Valid arch %s\n loss %.2f top1 %f top5 %f', ' '.join(map(str, arch[0] + arch[1])), loss, prec1, prec5) valid_accuracy_list = valid_acc_list </DeepExtract> old_archs = child_arch_pool old_archs_perf = valid_accuracy_list old_archs_sorted_indices = np.argsort(old_archs_perf)[::-1] old_archs = [old_archs[i] for i in old_archs_sorted_indices] old_archs_perf = [old_archs_perf[i] for i in old_archs_sorted_indices] with open(os.path.join(args.output_dir, 'arch_pool.{}'.format(epoch)), 'w') as fa: with open(os.path.join(args.output_dir, 'arch_pool.perf.{}'.format(epoch)), 'w') as fp: with open(os.path.join(args.output_dir, 'arch_pool'), 'w') as fa_latest: with open(os.path.join(args.output_dir, 'arch_pool.perf'), 'w') as fp_latest: for (arch, perf) in zip(old_archs, old_archs_perf): arch = ' '.join(map(str, arch[0] + arch[1])) fa.write('{}\n'.format(arch)) fa_latest.write('{}\n'.format(arch)) fp.write('{}\n'.format(perf)) fp_latest.write('{}\n'.format(perf)) if epoch == args.child_epochs: break logging.info('Training Encoder-Predictor-Decoder') encoder_input = list(map(lambda x: utils.parse_arch_to_seq(x[0], 2) + utils.parse_arch_to_seq(x[1], 2), old_archs)) min_val = min(old_archs_perf) max_val = max(old_archs_perf) encoder_target = [(i - min_val) / (max_val - min_val) for i in old_archs_perf] if args.controller_expand is not None: dataset = list(zip(encoder_input, encoder_target)) n = len(dataset) ratio = 0.9 split = int(n * ratio) np.random.shuffle(dataset) (encoder_input, encoder_target) = list(zip(*dataset)) train_encoder_input = list(encoder_input[:split]) train_encoder_target = list(encoder_target[:split]) valid_encoder_input = list(encoder_input[split:]) valid_encoder_target = list(encoder_target[split:]) for _ in range(args.controller_expand - 1): for (src, tgt) in zip(encoder_input[:split], encoder_target[:split]): a = np.random.randint(0, args.child_nodes) b = np.random.randint(0, args.child_nodes) src = src[:4 * a] + src[4 * a + 2:4 * a + 4] + src[4 * a:4 * a + 2] + src[4 * (a + 1):20 + 4 * b] + src[20 + 4 * b + 2:20 + 4 * b + 4] + src[20 + 4 * b:20 + 4 * b + 2] + src[20 + 4 * (b + 1):] train_encoder_input.append(src) train_encoder_target.append(tgt) else: train_encoder_input = encoder_input train_encoder_target = encoder_target valid_encoder_input = encoder_input valid_encoder_target = encoder_target logging.info('Train data: {}\tValid data: {}'.format(len(train_encoder_input), len(valid_encoder_input))) nao_train_dataset = utils.NAODataset(train_encoder_input, train_encoder_target, True, swap=True if args.controller_expand is None else False) nao_valid_dataset = utils.NAODataset(valid_encoder_input, valid_encoder_target, False) nao_train_queue = torch.utils.data.DataLoader(nao_train_dataset, batch_size=args.controller_batch_size, shuffle=True, pin_memory=True) nao_valid_queue = torch.utils.data.DataLoader(nao_valid_dataset, batch_size=args.controller_batch_size, shuffle=False, pin_memory=True) nao_optimizer = torch.optim.Adam(nao.parameters(), lr=args.controller_lr, weight_decay=args.controller_l2_reg) for nao_epoch in range(1, args.controller_epochs + 1): <DeepExtract> objs = utils.AvgrageMeter() mse = utils.AvgrageMeter() nll = utils.AvgrageMeter() nao.train() for (step, sample) in enumerate(nao_train_queue): encoder_input = sample['encoder_input'] encoder_target = sample['encoder_target'] decoder_input = sample['decoder_input'] decoder_target = sample['decoder_target'] encoder_input = encoder_input.cuda() encoder_target = encoder_target.cuda().requires_grad_() decoder_input = decoder_input.cuda() decoder_target = decoder_target.cuda() nao_optimizer.zero_grad() (predict_value, log_prob, arch) = nao(encoder_input, decoder_input) loss_1 = F.mse_loss(predict_value.squeeze(), encoder_target.squeeze()) loss_2 = F.nll_loss(log_prob.contiguous().view(-1, log_prob.size(-1)), decoder_target.view(-1)) loss = args.controller_trade_off * loss_1 + (1 - args.controller_trade_off) * loss_2 loss.backward() torch.nn.utils.clip_grad_norm_(nao.parameters(), args.controller_grad_bound) nao_optimizer.step() n = encoder_input.size(0) objs.update(loss.data, n) mse.update(loss_1.data, n) nll.update(loss_2.data, n) (nao_loss, nao_mse, nao_ce) = (objs.avg, mse.avg, nll.avg) </DeepExtract> logging.info('epoch %04d train loss %.6f mse %.6f ce %.6f', nao_epoch, nao_loss, nao_mse, nao_ce) if nao_epoch % 100 == 0: <DeepExtract> pa = utils.AvgrageMeter() hs = utils.AvgrageMeter() with torch.no_grad(): nao.eval() for (step, sample) in enumerate(nao_valid_queue): encoder_input = sample['encoder_input'] encoder_target = sample['encoder_target'] decoder_target = sample['decoder_target'] encoder_input = encoder_input.cuda() encoder_target = encoder_target.cuda() decoder_target = decoder_target.cuda() (predict_value, logits, arch) = nao(encoder_input) n = encoder_input.size(0) pairwise_acc = utils.pairwise_accuracy(encoder_target.data.squeeze().tolist(), predict_value.data.squeeze().tolist()) hamming_dis = utils.hamming_distance(decoder_target.data.squeeze().tolist(), arch.data.squeeze().tolist()) pa.update(pairwise_acc, n) hs.update(hamming_dis, n) (pa, hs) = (pa.avg, hs.avg) </DeepExtract> logging.info('Evaluation on valid data') logging.info('epoch %04d pairwise accuracy %.6f hamming distance %.6f', epoch, pa, hs) new_archs = [] max_step_size = 50 predict_step_size = 0 top100_archs = list(map(lambda x: utils.parse_arch_to_seq(x[0], 2) + utils.parse_arch_to_seq(x[1], 2), old_archs[:100])) nao_infer_dataset = utils.NAODataset(top100_archs, None, False) nao_infer_queue = torch.utils.data.DataLoader(nao_infer_dataset, batch_size=len(nao_infer_dataset), shuffle=False, pin_memory=True) while len(new_archs) < args.controller_new_arch: predict_step_size += 1 logging.info('Generate new architectures with step size %d', predict_step_size) <DeepExtract> new_arch_list = [] nao.eval() for (i, sample) in enumerate(nao_infer_queue): encoder_input = sample['encoder_input'] encoder_input = encoder_input.cuda() nao.zero_grad() new_arch = nao.generate_new_arch(encoder_input, predict_step_size, direction='+') new_arch_list.extend(new_arch.data.squeeze().tolist()) new_arch = new_arch_list </DeepExtract> for arch in new_arch: if arch not in encoder_input and arch not in new_archs: new_archs.append(arch) if len(new_archs) >= args.controller_new_arch: break logging.info('%d new archs generated now', len(new_archs)) if predict_step_size > max_step_size: break new_archs = list(map(lambda x: utils.parse_seq_to_arch(x, 2), new_archs)) num_new_archs = len(new_archs) logging.info('Generate %d new archs', num_new_archs) if args.controller_replace: new_arch_pool = old_archs[:len(old_archs) - (num_new_archs + args.controller_random_arch)] + new_archs + utils.generate_arch(args.controller_random_arch, 5, 5) elif args.controller_discard: new_arch_pool = old_archs[:100] + new_archs + utils.generate_arch(args.controller_random_arch, 5, 5) else: new_arch_pool = old_archs + new_archs + utils.generate_arch(args.controller_random_arch, 5, 5) logging.info('Totally %d architectures now to train', len(new_arch_pool)) child_arch_pool = new_arch_pool with open(os.path.join(args.output_dir, 'arch_pool'), 'w') as f: for arch in new_arch_pool: arch = ' '.join(map(str, arch[0] + arch[1])) f.write('{}\n'.format(arch)) if args.child_sample_policy == 'params': child_arch_pool_prob = [] for arch in child_arch_pool: if args.dataset == 'cifar10': tmp_model = NASNetworkCIFAR(args, 10, args.child_layers, args.child_nodes, args.child_channels, args.child_keep_prob, args.child_drop_path_keep_prob, args.child_use_aux_head, args.steps, arch) elif args.dataset == 'cifar100': tmp_model = NASNetworkCIFAR(args, 100, args.child_layers, args.child_nodes, args.child_channels, args.child_keep_prob, args.child_drop_path_keep_prob, args.child_use_aux_head, args.steps, arch) else: tmp_model = NASNetworkImageNet(args, 1000, args.child_layers, args.child_nodes, args.child_channels, args.child_keep_prob, args.child_drop_path_keep_prob, args.child_use_aux_head, args.steps, arch) child_arch_pool_prob.append(utils.count_parameters_in_MB(tmp_model)) del tmp_model else: child_arch_pool_prob = None
def main(): if not torch.cuda.is_available(): logging.info('no gpu device available') sys.exit(1) np.random.seed(args.seed) torch.manual_seed(args.seed) torch.cuda.manual_seed(args.seed) torch.cuda.manual_seed_all(args.seed) cudnn.enabled = True cudnn.benchmark = False cudnn.deterministic = True args.steps = int(np.ceil(45000 / args.child_batch_size)) * args.child_epochs logging.info('args = %s', args) if args.child_arch_pool is not None: logging.info('Architecture pool is provided, loading') with open(args.child_arch_pool) as f: archs = f.read().splitlines() archs = list(map(utils.build_dag, archs)) child_arch_pool = archs elif os.path.exists(os.path.join(args.output_dir, 'arch_pool')): logging.info('Architecture pool is founded, loading') with open(os.path.join(args.output_dir, 'arch_pool')) as f: archs = f.read().splitlines() archs = list(map(utils.build_dag, archs)) child_arch_pool = archs else: child_arch_pool = None child_eval_epochs = eval(args.child_eval_epochs) if args.dataset == 'cifar10': build_fn = build_cifar10 elif args.dataset == 'cifar100': build_fn = build_cifar100 else: build_fn = build_imagenet (train_queue, valid_queue, model, train_criterion, eval_criterion, optimizer, scheduler) = build_fn(ratio=0.9, epoch=-1) nao = NAO(args.controller_encoder_layers, args.controller_encoder_vocab_size, args.controller_encoder_hidden_size, args.controller_encoder_dropout, args.controller_encoder_length, args.controller_source_length, args.controller_encoder_emb_size, args.controller_mlp_layers, args.controller_mlp_hidden_size, args.controller_mlp_dropout, args.controller_decoder_layers, args.controller_decoder_vocab_size, args.controller_decoder_hidden_size, args.controller_decoder_dropout, args.controller_decoder_length) nao = nao.cuda() logging.info('Encoder-Predictor-Decoder param size = %fMB', utils.count_parameters_in_MB(nao)) if child_arch_pool is None: logging.info('Architecture pool is not provided, randomly generating now') child_arch_pool = utils.generate_arch(args.controller_seed_arch, args.child_nodes, 5) if args.child_sample_policy == 'params': child_arch_pool_prob = [] for arch in child_arch_pool: if args.dataset == 'cifar10': tmp_model = NASNetworkCIFAR(args, 10, args.child_layers, args.child_nodes, args.child_channels, args.child_keep_prob, args.child_drop_path_keep_prob, args.child_use_aux_head, args.steps, arch) elif args.dataset == 'cifar100': tmp_model = NASNetworkCIFAR(args, 100, args.child_layers, args.child_nodes, args.child_channels, args.child_keep_prob, args.child_drop_path_keep_prob, args.child_use_aux_head, args.steps, arch) else: tmp_model = NASNetworkImageNet(args, 1000, args.child_layers, args.child_nodes, args.child_channels, args.child_keep_prob, args.child_drop_path_keep_prob, args.child_use_aux_head, args.steps, arch) child_arch_pool_prob.append(utils.count_parameters_in_MB(tmp_model)) del tmp_model else: child_arch_pool_prob = None eval_points = utils.generate_eval_points(child_eval_epochs, 0, args.child_epochs) step = 0 for epoch in range(1, args.child_epochs + 1): scheduler.step() lr = scheduler.get_lr()[0] logging.info('epoch %d lr %e', epoch, lr) objs = utils.AvgrageMeter() top1 = utils.AvgrageMeter() top5 = utils.AvgrageMeter() model.train() for (step, (input, target)) in enumerate(train_queue): input = input.cuda().requires_grad_() target = target.cuda() optimizer.zero_grad() arch = utils.sample_arch(child_arch_pool, child_arch_pool_prob) (logits, aux_logits) = model(input, arch, step) step += 1 loss = train_criterion(logits, target) if aux_logits is not None: aux_loss = train_criterion(aux_logits, target) loss += 0.4 * aux_loss loss.backward() nn.utils.clip_grad_norm_(model.parameters(), args.child_grad_bound) optimizer.step() (prec1, prec5) = utils.accuracy(logits, target, topk=(1, 5)) n = input.size(0) objs.update(loss.data, n) top1.update(prec1.data, n) top5.update(prec5.data, n) if (step + 1) % 100 == 0: logging.info('Train %03d loss %e top1 %f top5 %f', step + 1, objs.avg, top1.avg, top5.avg) logging.info('Arch: %s', ' '.join(map(str, arch[0] + arch[1]))) (train_acc, train_obj, step) = (top1.avg, objs.avg, step) logging.info('train_acc %f', train_acc) if epoch not in eval_points: continue valid_acc_list = [] with torch.no_grad(): model.eval() for (i, arch) in enumerate(child_arch_pool): (inputs, targets) = next(iter(valid_queue)) inputs = inputs.cuda() targets = targets.cuda() (logits, _) = model(inputs, arch, bn_train=True) loss = eval_criterion(logits, targets) (prec1, prec5) = utils.accuracy(logits, targets, topk=(1, 5)) valid_acc_list.append(prec1.data / 100) if (i + 1) % 100 == 0: logging.info('Valid arch %s\n loss %.2f top1 %f top5 %f', ' '.join(map(str, arch[0] + arch[1])), loss, prec1, prec5) valid_accuracy_list = valid_acc_list old_archs = child_arch_pool old_archs_perf = valid_accuracy_list old_archs_sorted_indices = np.argsort(old_archs_perf)[::-1] old_archs = [old_archs[i] for i in old_archs_sorted_indices] old_archs_perf = [old_archs_perf[i] for i in old_archs_sorted_indices] with open(os.path.join(args.output_dir, 'arch_pool.{}'.format(epoch)), 'w') as fa: with open(os.path.join(args.output_dir, 'arch_pool.perf.{}'.format(epoch)), 'w') as fp: with open(os.path.join(args.output_dir, 'arch_pool'), 'w') as fa_latest: with open(os.path.join(args.output_dir, 'arch_pool.perf'), 'w') as fp_latest: for (arch, perf) in zip(old_archs, old_archs_perf): arch = ' '.join(map(str, arch[0] + arch[1])) fa.write('{}\n'.format(arch)) fa_latest.write('{}\n'.format(arch)) fp.write('{}\n'.format(perf)) fp_latest.write('{}\n'.format(perf)) if epoch == args.child_epochs: break logging.info('Training Encoder-Predictor-Decoder') encoder_input = list(map(lambda x: utils.parse_arch_to_seq(x[0], 2) + utils.parse_arch_to_seq(x[1], 2), old_archs)) min_val = min(old_archs_perf) max_val = max(old_archs_perf) encoder_target = [(i - min_val) / (max_val - min_val) for i in old_archs_perf] if args.controller_expand is not None: dataset = list(zip(encoder_input, encoder_target)) n = len(dataset) ratio = 0.9 split = int(n * ratio) np.random.shuffle(dataset) (encoder_input, encoder_target) = list(zip(*dataset)) train_encoder_input = list(encoder_input[:split]) train_encoder_target = list(encoder_target[:split]) valid_encoder_input = list(encoder_input[split:]) valid_encoder_target = list(encoder_target[split:]) for _ in range(args.controller_expand - 1): for (src, tgt) in zip(encoder_input[:split], encoder_target[:split]): a = np.random.randint(0, args.child_nodes) b = np.random.randint(0, args.child_nodes) src = src[:4 * a] + src[4 * a + 2:4 * a + 4] + src[4 * a:4 * a + 2] + src[4 * (a + 1):20 + 4 * b] + src[20 + 4 * b + 2:20 + 4 * b + 4] + src[20 + 4 * b:20 + 4 * b + 2] + src[20 + 4 * (b + 1):] train_encoder_input.append(src) train_encoder_target.append(tgt) else: train_encoder_input = encoder_input train_encoder_target = encoder_target valid_encoder_input = encoder_input valid_encoder_target = encoder_target logging.info('Train data: {}\tValid data: {}'.format(len(train_encoder_input), len(valid_encoder_input))) nao_train_dataset = utils.NAODataset(train_encoder_input, train_encoder_target, True, swap=True if args.controller_expand is None else False) nao_valid_dataset = utils.NAODataset(valid_encoder_input, valid_encoder_target, False) nao_train_queue = torch.utils.data.DataLoader(nao_train_dataset, batch_size=args.controller_batch_size, shuffle=True, pin_memory=True) nao_valid_queue = torch.utils.data.DataLoader(nao_valid_dataset, batch_size=args.controller_batch_size, shuffle=False, pin_memory=True) nao_optimizer = torch.optim.Adam(nao.parameters(), lr=args.controller_lr, weight_decay=args.controller_l2_reg) for nao_epoch in range(1, args.controller_epochs + 1): objs = utils.AvgrageMeter() mse = utils.AvgrageMeter() nll = utils.AvgrageMeter() nao.train() for (step, sample) in enumerate(nao_train_queue): encoder_input = sample['encoder_input'] encoder_target = sample['encoder_target'] decoder_input = sample['decoder_input'] decoder_target = sample['decoder_target'] encoder_input = encoder_input.cuda() encoder_target = encoder_target.cuda().requires_grad_() decoder_input = decoder_input.cuda() decoder_target = decoder_target.cuda() nao_optimizer.zero_grad() (predict_value, log_prob, arch) = nao(encoder_input, decoder_input) loss_1 = F.mse_loss(predict_value.squeeze(), encoder_target.squeeze()) loss_2 = F.nll_loss(log_prob.contiguous().view(-1, log_prob.size(-1)), decoder_target.view(-1)) loss = args.controller_trade_off * loss_1 + (1 - args.controller_trade_off) * loss_2 loss.backward() torch.nn.utils.clip_grad_norm_(nao.parameters(), args.controller_grad_bound) nao_optimizer.step() n = encoder_input.size(0) objs.update(loss.data, n) mse.update(loss_1.data, n) nll.update(loss_2.data, n) (nao_loss, nao_mse, nao_ce) = (objs.avg, mse.avg, nll.avg) logging.info('epoch %04d train loss %.6f mse %.6f ce %.6f', nao_epoch, nao_loss, nao_mse, nao_ce) if nao_epoch % 100 == 0: pa = utils.AvgrageMeter() hs = utils.AvgrageMeter() with torch.no_grad(): nao.eval() for (step, sample) in enumerate(nao_valid_queue): encoder_input = sample['encoder_input'] encoder_target = sample['encoder_target'] decoder_target = sample['decoder_target'] encoder_input = encoder_input.cuda() encoder_target = encoder_target.cuda() decoder_target = decoder_target.cuda() (predict_value, logits, arch) = nao(encoder_input) n = encoder_input.size(0) pairwise_acc = utils.pairwise_accuracy(encoder_target.data.squeeze().tolist(), predict_value.data.squeeze().tolist()) hamming_dis = utils.hamming_distance(decoder_target.data.squeeze().tolist(), arch.data.squeeze().tolist()) pa.update(pairwise_acc, n) hs.update(hamming_dis, n) (pa, hs) = (pa.avg, hs.avg) logging.info('Evaluation on valid data') logging.info('epoch %04d pairwise accuracy %.6f hamming distance %.6f', epoch, pa, hs) new_archs = [] max_step_size = 50 predict_step_size = 0 top100_archs = list(map(lambda x: utils.parse_arch_to_seq(x[0], 2) + utils.parse_arch_to_seq(x[1], 2), old_archs[:100])) nao_infer_dataset = utils.NAODataset(top100_archs, None, False) nao_infer_queue = torch.utils.data.DataLoader(nao_infer_dataset, batch_size=len(nao_infer_dataset), shuffle=False, pin_memory=True) while len(new_archs) < args.controller_new_arch: predict_step_size += 1 logging.info('Generate new architectures with step size %d', predict_step_size) new_arch_list = [] nao.eval() for (i, sample) in enumerate(nao_infer_queue): encoder_input = sample['encoder_input'] encoder_input = encoder_input.cuda() nao.zero_grad() new_arch = nao.generate_new_arch(encoder_input, predict_step_size, direction='+') new_arch_list.extend(new_arch.data.squeeze().tolist()) new_arch = new_arch_list for arch in new_arch: if arch not in encoder_input and arch not in new_archs: new_archs.append(arch) if len(new_archs) >= args.controller_new_arch: break logging.info('%d new archs generated now', len(new_archs)) if predict_step_size > max_step_size: break new_archs = list(map(lambda x: utils.parse_seq_to_arch(x, 2), new_archs)) num_new_archs = len(new_archs) logging.info('Generate %d new archs', num_new_archs) if args.controller_replace: new_arch_pool = old_archs[:len(old_archs) - (num_new_archs + args.controller_random_arch)] + new_archs + utils.generate_arch(args.controller_random_arch, 5, 5) elif args.controller_discard: new_arch_pool = old_archs[:100] + new_archs + utils.generate_arch(args.controller_random_arch, 5, 5) else: new_arch_pool = old_archs + new_archs + utils.generate_arch(args.controller_random_arch, 5, 5) logging.info('Totally %d architectures now to train', len(new_arch_pool)) child_arch_pool = new_arch_pool with open(os.path.join(args.output_dir, 'arch_pool'), 'w') as f: for arch in new_arch_pool: arch = ' '.join(map(str, arch[0] + arch[1])) f.write('{}\n'.format(arch)) if args.child_sample_policy == 'params': child_arch_pool_prob = [] for arch in child_arch_pool: if args.dataset == 'cifar10': tmp_model = NASNetworkCIFAR(args, 10, args.child_layers, args.child_nodes, args.child_channels, args.child_keep_prob, args.child_drop_path_keep_prob, args.child_use_aux_head, args.steps, arch) elif args.dataset == 'cifar100': tmp_model = NASNetworkCIFAR(args, 100, args.child_layers, args.child_nodes, args.child_channels, args.child_keep_prob, args.child_drop_path_keep_prob, args.child_use_aux_head, args.steps, arch) else: tmp_model = NASNetworkImageNet(args, 1000, args.child_layers, args.child_nodes, args.child_channels, args.child_keep_prob, args.child_drop_path_keep_prob, args.child_use_aux_head, args.steps, arch) child_arch_pool_prob.append(utils.count_parameters_in_MB(tmp_model)) del tmp_model else: child_arch_pool_prob = None
eval-nas
positive
def on_pause(self): if self.state == GameState.paused: <DeepExtract> self.state = GameState.running self.status_text.setText('Playing') self.pause_button.setText('Pause') self.timer.start(self.timer_interval) </DeepExtract> elif self.state == GameState.running: <DeepExtract> self.state = GameState.paused self.status_text.setText('Paused') self.pause_button.setText('Resume') self.timer.stop() </DeepExtract>
def on_pause(self): if self.state == GameState.paused: self.state = GameState.running self.status_text.setText('Playing') self.pause_button.setText('Pause') self.timer.start(self.timer_interval) elif self.state == GameState.running: self.state = GameState.paused self.status_text.setText('Paused') self.pause_button.setText('Resume') self.timer.stop() </DeepExtract>
code-for-blog
positive
def get_versions(verbose=False): """Get the project version from whatever source is available. Returns dict with two keys: 'version' and 'full'. """ if 'versioneer' in sys.modules: del sys.modules['versioneer'] <DeepExtract> root = os.path.realpath(os.path.abspath(os.getcwd())) setup_py = os.path.join(root, 'setup.py') versioneer_py = os.path.join(root, 'versioneer.py') if not (os.path.exists(setup_py) or os.path.exists(versioneer_py)): root = os.path.dirname(os.path.realpath(os.path.abspath(sys.argv[0]))) setup_py = os.path.join(root, 'setup.py') versioneer_py = os.path.join(root, 'versioneer.py') if not (os.path.exists(setup_py) or os.path.exists(versioneer_py)): err = "Versioneer was unable to run the project root directory. Versioneer requires setup.py to be executed from its immediate directory (like 'python setup.py COMMAND'), or in a way that lets it use sys.argv[0] to find the root (like 'python path/to/setup.py COMMAND')." raise VersioneerBadRootError(err) try: me = os.path.realpath(os.path.abspath(__file__)) me_dir = os.path.normcase(os.path.splitext(me)[0]) vsr_dir = os.path.normcase(os.path.splitext(versioneer_py)[0]) if me_dir != vsr_dir: print('Warning: build in %s is using versioneer.py from %s' % (os.path.dirname(me), versioneer_py)) except NameError: pass root = root </DeepExtract> <DeepExtract> setup_cfg = os.path.join(root, 'setup.cfg') parser = configparser.SafeConfigParser() with open(setup_cfg, 'r') as f: parser.readfp(f) VCS = parser.get('versioneer', 'VCS') def get(parser, name): if parser.has_option('versioneer', name): cfg = parser.get('versioneer', name) cfg = None cfg = VersioneerConfig() cfg.VCS = VCS cfg.style = get(parser, 'style') or '' cfg.versionfile_source = get(parser, 'versionfile_source') cfg.versionfile_build = get(parser, 'versionfile_build') cfg.tag_prefix = get(parser, 'tag_prefix') if cfg.tag_prefix in ("''", '""'): cfg.tag_prefix = '' cfg.parentdir_prefix = get(parser, 'parentdir_prefix') cfg.verbose = get(parser, 'verbose') cfg = cfg </DeepExtract> assert cfg.VCS is not None, 'please set [versioneer]VCS= in setup.cfg' handlers = HANDLERS.get(cfg.VCS) assert handlers, "unrecognized VCS '%s'" % cfg.VCS verbose = verbose or cfg.verbose assert cfg.versionfile_source is not None, 'please set versioneer.versionfile_source' assert cfg.tag_prefix is not None, 'please set versioneer.tag_prefix' versionfile_abs = os.path.join(root, cfg.versionfile_source) get_keywords_f = handlers.get('get_keywords') from_keywords_f = handlers.get('keywords') if get_keywords_f and from_keywords_f: try: keywords = get_keywords_f(versionfile_abs) ver = from_keywords_f(keywords, cfg.tag_prefix, verbose) if verbose: print('got version from expanded keyword %s' % ver) return ver except NotThisMethod: pass try: <DeepExtract> try: with open(versionfile_abs) as f: contents = f.read() except EnvironmentError: raise NotThisMethod('unable to read _version.py') mo = re.search("version_json = '''\\n(.*)''' # END VERSION_JSON", contents, re.M | re.S) if not mo: mo = re.search("version_json = '''\\r\\n(.*)''' # END VERSION_JSON", contents, re.M | re.S) if not mo: raise NotThisMethod('no version_json in _version.py') ver = json.loads(mo.group(1)) </DeepExtract> if verbose: print('got version from file %s %s' % (versionfile_abs, ver)) return ver except NotThisMethod: pass from_vcs_f = handlers.get('pieces_from_vcs') if from_vcs_f: try: pieces = from_vcs_f(cfg.tag_prefix, root, verbose) <DeepExtract> if pieces['error']: ver = {'version': 'unknown', 'full-revisionid': pieces.get('long'), 'dirty': None, 'error': pieces['error'], 'date': None} if not cfg.style or cfg.style == 'default': cfg.style = 'pep440' if cfg.style == 'pep440': rendered = render_pep440(pieces) elif cfg.style == 'pep440-pre': rendered = render_pep440_pre(pieces) elif cfg.style == 'pep440-post': rendered = render_pep440_post(pieces) elif cfg.style == 'pep440-old': rendered = render_pep440_old(pieces) elif cfg.style == 'git-describe': rendered = render_git_describe(pieces) elif cfg.style == 'git-describe-long': rendered = render_git_describe_long(pieces) else: raise ValueError("unknown style '%s'" % cfg.style) ver = {'version': rendered, 'full-revisionid': pieces['long'], 'dirty': pieces['dirty'], 'error': None, 'date': pieces.get('date')} </DeepExtract> if verbose: print('got version from VCS %s' % ver) return ver except NotThisMethod: pass try: if cfg.parentdir_prefix: <DeepExtract> rootdirs = [] for i in range(3): dirname = os.path.basename(root) if dirname.startswith(cfg.parentdir_prefix): ver = {'version': dirname[len(cfg.parentdir_prefix):], 'full-revisionid': None, 'dirty': False, 'error': None, 'date': None} else: rootdirs.append(root) root = os.path.dirname(root) if verbose: print('Tried directories %s but none started with prefix %s' % (str(rootdirs), cfg.parentdir_prefix)) raise NotThisMethod("rootdir doesn't start with parentdir_prefix") </DeepExtract> if verbose: print('got version from parentdir %s' % ver) return ver except NotThisMethod: pass if verbose: print('unable to compute version') return {'version': '0+unknown', 'full-revisionid': None, 'dirty': None, 'error': 'unable to compute version', 'date': None}
def get_versions(verbose=False): """Get the project version from whatever source is available. Returns dict with two keys: 'version' and 'full'. """ if 'versioneer' in sys.modules: del sys.modules['versioneer'] root = os.path.realpath(os.path.abspath(os.getcwd())) setup_py = os.path.join(root, 'setup.py') versioneer_py = os.path.join(root, 'versioneer.py') if not (os.path.exists(setup_py) or os.path.exists(versioneer_py)): root = os.path.dirname(os.path.realpath(os.path.abspath(sys.argv[0]))) setup_py = os.path.join(root, 'setup.py') versioneer_py = os.path.join(root, 'versioneer.py') if not (os.path.exists(setup_py) or os.path.exists(versioneer_py)): err = "Versioneer was unable to run the project root directory. Versioneer requires setup.py to be executed from its immediate directory (like 'python setup.py COMMAND'), or in a way that lets it use sys.argv[0] to find the root (like 'python path/to/setup.py COMMAND')." raise VersioneerBadRootError(err) try: me = os.path.realpath(os.path.abspath(__file__)) me_dir = os.path.normcase(os.path.splitext(me)[0]) vsr_dir = os.path.normcase(os.path.splitext(versioneer_py)[0]) if me_dir != vsr_dir: print('Warning: build in %s is using versioneer.py from %s' % (os.path.dirname(me), versioneer_py)) except NameError: pass root = root setup_cfg = os.path.join(root, 'setup.cfg') parser = configparser.SafeConfigParser() with open(setup_cfg, 'r') as f: parser.readfp(f) VCS = parser.get('versioneer', 'VCS') def get(parser, name): if parser.has_option('versioneer', name): cfg = parser.get('versioneer', name) cfg = None cfg = VersioneerConfig() cfg.VCS = VCS cfg.style = get(parser, 'style') or '' cfg.versionfile_source = get(parser, 'versionfile_source') cfg.versionfile_build = get(parser, 'versionfile_build') cfg.tag_prefix = get(parser, 'tag_prefix') if cfg.tag_prefix in ("''", '""'): cfg.tag_prefix = '' cfg.parentdir_prefix = get(parser, 'parentdir_prefix') cfg.verbose = get(parser, 'verbose') cfg = cfg assert cfg.VCS is not None, 'please set [versioneer]VCS= in setup.cfg' handlers = HANDLERS.get(cfg.VCS) assert handlers, "unrecognized VCS '%s'" % cfg.VCS verbose = verbose or cfg.verbose assert cfg.versionfile_source is not None, 'please set versioneer.versionfile_source' assert cfg.tag_prefix is not None, 'please set versioneer.tag_prefix' versionfile_abs = os.path.join(root, cfg.versionfile_source) get_keywords_f = handlers.get('get_keywords') from_keywords_f = handlers.get('keywords') if get_keywords_f and from_keywords_f: try: keywords = get_keywords_f(versionfile_abs) ver = from_keywords_f(keywords, cfg.tag_prefix, verbose) if verbose: print('got version from expanded keyword %s' % ver) return ver except NotThisMethod: pass try: try: with open(versionfile_abs) as f: contents = f.read() except EnvironmentError: raise NotThisMethod('unable to read _version.py') mo = re.search("version_json = '''\\n(.*)''' # END VERSION_JSON", contents, re.M | re.S) if not mo: mo = re.search("version_json = '''\\r\\n(.*)''' # END VERSION_JSON", contents, re.M | re.S) if not mo: raise NotThisMethod('no version_json in _version.py') ver = json.loads(mo.group(1)) if verbose: print('got version from file %s %s' % (versionfile_abs, ver)) return ver except NotThisMethod: pass from_vcs_f = handlers.get('pieces_from_vcs') if from_vcs_f: try: pieces = from_vcs_f(cfg.tag_prefix, root, verbose) if pieces['error']: ver = {'version': 'unknown', 'full-revisionid': pieces.get('long'), 'dirty': None, 'error': pieces['error'], 'date': None} if not cfg.style or cfg.style == 'default': cfg.style = 'pep440' if cfg.style == 'pep440': rendered = render_pep440(pieces) elif cfg.style == 'pep440-pre': rendered = render_pep440_pre(pieces) elif cfg.style == 'pep440-post': rendered = render_pep440_post(pieces) elif cfg.style == 'pep440-old': rendered = render_pep440_old(pieces) elif cfg.style == 'git-describe': rendered = render_git_describe(pieces) elif cfg.style == 'git-describe-long': rendered = render_git_describe_long(pieces) else: raise ValueError("unknown style '%s'" % cfg.style) ver = {'version': rendered, 'full-revisionid': pieces['long'], 'dirty': pieces['dirty'], 'error': None, 'date': pieces.get('date')} if verbose: print('got version from VCS %s' % ver) return ver except NotThisMethod: pass try: if cfg.parentdir_prefix: rootdirs = [] for i in range(3): dirname = os.path.basename(root) if dirname.startswith(cfg.parentdir_prefix): ver = {'version': dirname[len(cfg.parentdir_prefix):], 'full-revisionid': None, 'dirty': False, 'error': None, 'date': None} else: rootdirs.append(root) root = os.path.dirname(root) if verbose: print('Tried directories %s but none started with prefix %s' % (str(rootdirs), cfg.parentdir_prefix)) raise NotThisMethod("rootdir doesn't start with parentdir_prefix") if verbose: print('got version from parentdir %s' % ver) return ver except NotThisMethod: pass if verbose: print('unable to compute version') return {'version': '0+unknown', 'full-revisionid': None, 'dirty': None, 'error': 'unable to compute version', 'date': None}
cusignal
positive
def __init__(self, group: Group, in_irrep: Union[str, IrreducibleRepresentation, Tuple[int]], out_irrep: Union[str, IrreducibleRepresentation, Tuple[int, int]], axis: float=0.0, discretization: DiscretizationArgs=DiscretizationArgs()): assert isinstance(group, O2) assert isinstance(axis, float) self.axis = axis if isinstance(in_irrep, tuple): in_irrep = group.irrep(in_irrep[0], in_irrep[1]) elif isinstance(in_irrep, str): in_irrep = group.irreps[in_irrep] elif not isinstance(in_irrep, IrreducibleRepresentation): raise ValueError(f"'in_irrep' should be a non-negative integer, a string or an instance of IrreducibleRepresentation but {in_irrep} found") if isinstance(out_irrep, tuple): out_irrep = group.irrep(out_irrep[0], out_irrep[1]) elif isinstance(out_irrep, str): out_irrep = group.irreps[out_irrep] elif not isinstance(out_irrep, IrreducibleRepresentation): raise ValueError(f"'out_irrep' should be a non-negative integer, a string or an instance of IrreducibleRepresentation but {in_irrep} found") self.m = out_irrep.attributes['frequency'] self.n = in_irrep.attributes['frequency'] self.fi = in_irrep.attributes['flip_frequency'] self.fo = out_irrep.attributes['flip_frequency'] self.mu = [] if in_irrep.size == 2 and out_irrep.size == 2: assert self.m > 0 and self.n > 0 and (self.fi == 1) and (self.fo == 1) self.s = [] self.invert = 0 for s in [0, 1]: mu = self.m - self.n * (-1) ** s self.mu.append(mu) self.s.append(s) elif in_irrep.size == 2 and out_irrep.size == 1: assert self.m == 0 and self.fi == 1 self.invert = self.fo mu = self.n + self.m self.mu.append(mu) elif in_irrep.size == 1 and out_irrep.size == 2: assert self.n == 0 and self.fo == 1 self.invert = self.fi mu = self.n + self.m self.mu.append(mu) elif in_irrep.size == 1 and out_irrep.size == 1: assert self.n == 0 and self.m == 0 self.invert = (self.fi + self.fo) % 2 mu = self.m - self.n if mu > 0 or self.invert == 0: self.mu.append(mu) self.dim = len(self.mu) self.group = group self.in_irrep = in_irrep self.out_irrep = out_irrep self.shape = (out_irrep.size, in_irrep.size) coefficients = [] if self.shape[0] == 2 and self.shape[1] == 2: for i in range(self.dim): s = self.s[i] mu = self.mu[i] out = np.empty(self.shape + (abs(mu) + 1,)) <DeepExtract> inverter = {'u': 't', 't': 'u'} if 't' == 't' and self.invert: sign = -1 else: sign = 1 out[0, 0, :] = sign * homogenized_cheby(mu, inverter['t'] if self.invert else 't') </DeepExtract> out[0, 1, :] = -(-1) ** s * cheby('u', mu, self.invert) <DeepExtract> inverter = {'u': 't', 't': 'u'} if 'u' == 't' and self.invert: sign = -1 else: sign = 1 out[1, 0, :] = sign * homogenized_cheby(mu, inverter['u'] if self.invert else 'u') </DeepExtract> out[1, 1, :] = (-1) ** s * cheby('t', mu, self.invert) coefficients.append(out) elif self.shape[0] == 1 and self.shape[1] == 2: for i in range(self.dim): mu = self.mu[i] out = np.empty(self.shape + (abs(mu) + 1,)) out[0, 0, :] = (-1) ** self.invert * homogenized_cheby(mu, 'u' if self.invert else 't') out[0, 1, :] = homogenized_cheby(mu, 't' if self.invert else 'u') coefficients.append(out) elif self.shape[0] == 2 and self.shape[1] == 1: for i in range(self.dim): mu = self.mu[i] out = np.empty(self.shape + (abs(mu) + 1,)) out[0, 0, :] = (-1) ** self.invert * homogenized_cheby(mu, 'u' if self.invert else 't') out[1, 0, :] = homogenized_cheby(mu, 't' if self.invert else 'u') coefficients.append(out) elif self.shape[0] == 1 and self.shape[1] == 1: for i in range(self.dim): mu = self.mu[i] out = homogenized_cheby(mu, 'u' if self.invert else 't').reshape(1, 1, -1) coefficients.append(out) else: raise ValueError(f'Shape {self.shape} not recognized!') if axis != 0: so2 = SO2(1) matrix = so2.irrep(1)(axis) coefficients = [transform_polynomial(element, matrix) for element in coefficients] super().__init__(coefficients, discretization)
def __init__(self, group: Group, in_irrep: Union[str, IrreducibleRepresentation, Tuple[int]], out_irrep: Union[str, IrreducibleRepresentation, Tuple[int, int]], axis: float=0.0, discretization: DiscretizationArgs=DiscretizationArgs()): assert isinstance(group, O2) assert isinstance(axis, float) self.axis = axis if isinstance(in_irrep, tuple): in_irrep = group.irrep(in_irrep[0], in_irrep[1]) elif isinstance(in_irrep, str): in_irrep = group.irreps[in_irrep] elif not isinstance(in_irrep, IrreducibleRepresentation): raise ValueError(f"'in_irrep' should be a non-negative integer, a string or an instance of IrreducibleRepresentation but {in_irrep} found") if isinstance(out_irrep, tuple): out_irrep = group.irrep(out_irrep[0], out_irrep[1]) elif isinstance(out_irrep, str): out_irrep = group.irreps[out_irrep] elif not isinstance(out_irrep, IrreducibleRepresentation): raise ValueError(f"'out_irrep' should be a non-negative integer, a string or an instance of IrreducibleRepresentation but {in_irrep} found") self.m = out_irrep.attributes['frequency'] self.n = in_irrep.attributes['frequency'] self.fi = in_irrep.attributes['flip_frequency'] self.fo = out_irrep.attributes['flip_frequency'] self.mu = [] if in_irrep.size == 2 and out_irrep.size == 2: assert self.m > 0 and self.n > 0 and (self.fi == 1) and (self.fo == 1) self.s = [] self.invert = 0 for s in [0, 1]: mu = self.m - self.n * (-1) ** s self.mu.append(mu) self.s.append(s) elif in_irrep.size == 2 and out_irrep.size == 1: assert self.m == 0 and self.fi == 1 self.invert = self.fo mu = self.n + self.m self.mu.append(mu) elif in_irrep.size == 1 and out_irrep.size == 2: assert self.n == 0 and self.fo == 1 self.invert = self.fi mu = self.n + self.m self.mu.append(mu) elif in_irrep.size == 1 and out_irrep.size == 1: assert self.n == 0 and self.m == 0 self.invert = (self.fi + self.fo) % 2 mu = self.m - self.n if mu > 0 or self.invert == 0: self.mu.append(mu) self.dim = len(self.mu) self.group = group self.in_irrep = in_irrep self.out_irrep = out_irrep self.shape = (out_irrep.size, in_irrep.size) coefficients = [] if self.shape[0] == 2 and self.shape[1] == 2: for i in range(self.dim): s = self.s[i] mu = self.mu[i] out = np.empty(self.shape + (abs(mu) + 1,)) inverter = {'u': 't', 't': 'u'} if 't' == 't' and self.invert: sign = -1 else: sign = 1 out[0, 0, :] = sign * homogenized_cheby(mu, inverter['t'] if self.invert else 't') out[0, 1, :] = -(-1) ** s * cheby('u', mu, self.invert) inverter = {'u': 't', 't': 'u'} if 'u' == 't' and self.invert: sign = -1 else: sign = 1 out[1, 0, :] = sign * homogenized_cheby(mu, inverter['u'] if self.invert else 'u') out[1, 1, :] = (-1) ** s * cheby('t', mu, self.invert) coefficients.append(out) elif self.shape[0] == 1 and self.shape[1] == 2: for i in range(self.dim): mu = self.mu[i] out = np.empty(self.shape + (abs(mu) + 1,)) out[0, 0, :] = (-1) ** self.invert * homogenized_cheby(mu, 'u' if self.invert else 't') out[0, 1, :] = homogenized_cheby(mu, 't' if self.invert else 'u') coefficients.append(out) elif self.shape[0] == 2 and self.shape[1] == 1: for i in range(self.dim): mu = self.mu[i] out = np.empty(self.shape + (abs(mu) + 1,)) out[0, 0, :] = (-1) ** self.invert * homogenized_cheby(mu, 'u' if self.invert else 't') out[1, 0, :] = homogenized_cheby(mu, 't' if self.invert else 'u') coefficients.append(out) elif self.shape[0] == 1 and self.shape[1] == 1: for i in range(self.dim): mu = self.mu[i] out = homogenized_cheby(mu, 'u' if self.invert else 't').reshape(1, 1, -1) coefficients.append(out) else: raise ValueError(f'Shape {self.shape} not recognized!') if axis != 0: so2 = SO2(1) matrix = so2.irrep(1)(axis) coefficients = [transform_polynomial(element, matrix) for element in coefficients] super().__init__(coefficients, discretization)
e2cnn
positive
def UTCUsecToWeek(seconds, day_of_week): """Converts UTC seconds to last <day_of_week>. Args: seconds: Date and time in UTC seconds. day_of_week: Last <day_of_week> to go back to. Sunday is 0. Returns: UTC seconds of last <day_of_week>. """ seconds = float(seconds) / 1000000 <DeepExtract> try: if utc: date = datetime.datetime.utcfromtimestamp(seconds + _TIME_DIFFERENCE_UTC_PST) else: date = datetime.datetime.fromtimestamp(seconds + _TIME_DIFFERENCE_UTC_PST) except ValueError as e: raise bigquery_client.BigqueryInvalidQueryError(e, None, None, None) </DeepExtract> date = date.replace(hour=0, minute=0, second=0, microsecond=0) current_day_of_week = (date.weekday() + 1) % 7 if current_day_of_week >= day_of_week: date += datetime.timedelta(days=day_of_week - current_day_of_week) else: days_back = 7 - (day_of_week - current_day_of_week) date += datetime.timedelta(days=-days_back) return (time.mktime(date.timetuple()) - _TIME_DIFFERENCE_UTC_PST) * 1000000
def UTCUsecToWeek(seconds, day_of_week): """Converts UTC seconds to last <day_of_week>. Args: seconds: Date and time in UTC seconds. day_of_week: Last <day_of_week> to go back to. Sunday is 0. Returns: UTC seconds of last <day_of_week>. """ seconds = float(seconds) / 1000000 try: if utc: date = datetime.datetime.utcfromtimestamp(seconds + _TIME_DIFFERENCE_UTC_PST) else: date = datetime.datetime.fromtimestamp(seconds + _TIME_DIFFERENCE_UTC_PST) except ValueError as e: raise bigquery_client.BigqueryInvalidQueryError(e, None, None, None) date = date.replace(hour=0, minute=0, second=0, microsecond=0) current_day_of_week = (date.weekday() + 1) % 7 if current_day_of_week >= day_of_week: date += datetime.timedelta(days=day_of_week - current_day_of_week) else: days_back = 7 - (day_of_week - current_day_of_week) date += datetime.timedelta(days=-days_back) return (time.mktime(date.timetuple()) - _TIME_DIFFERENCE_UTC_PST) * 1000000
encrypted-bigquery-client
positive
@recipe_folder_and_config(allow_missing_for=['list_checks']) @arg('--packages', nargs='+', help='Glob for package[s] to build. Default is to build all packages. Can be specified more than once') @arg('--cache', help='To speed up debugging, use repodata cached locally in\n the provided filename. If the file does not exist, it will be created the\n first time.') @arg('--list-checks', help='List the linting functions to be used and then\n exit') @arg('--exclude', nargs='+', help='Exclude this linting function. Can be used\n multiple times.') @arg('--push-status', action='store_true', help='If set, the lint status will\n be sent to the current commit on github. Also needs --user and --repo to\n be set. Requires the env var GITHUB_TOKEN to be set. Note that pull\n requests from forks will not have access to encrypted variables on\n ci, so this feature may be of limited use.') @arg('--commit', help='Commit on github on which to update status') @arg('--push-comment', action='store_true', help='If set, the lint status\n will be posted as a comment in the corresponding pull request (given by\n --pull-request). Also needs --user and --repo to be set. Requires the env\n var GITHUB_TOKEN to be set.') @arg('--pull-request', type=int, help='Pull request id on github on which to\n post a comment.') @arg('--user', help='Github user') @arg('--repo', help='Github repo') @arg('--git-range', nargs='+', help='Git range (e.g. commits or something like\n "master HEAD" to check commits in HEAD vs master, or just "HEAD" to\n include uncommitted changes). All recipes modified within this range will\n be built if not present in the channel.') @arg('--full-report', action='store_true', help='Default behavior is to\n summarize the linting results; use this argument to get the full\n results as a TSV printed to stdout.') @arg('--try-fix', help='Attempt to fix problems where found') @enable_logging() @enable_debugging() @named('lint') def do_lint(recipe_folder, config, packages='*', cache=None, list_checks=False, exclude=None, push_status=False, user='bioconda', commit=None, push_comment=False, pull_request=None, repo='bioconda-recipes', git_range=None, full_report=False, try_fix=False): """ Lint recipes If --push-status is not set, reports a TSV of linting results to stdout. Otherwise pushes a commit status to the specified commit on github. """ if list_checks: print('\n'.join((str(check) for check in lint.get_checks()))) sys.exit(0) config = utils.load_config(config) if cache is not None: utils.RepoData().set_cache(cache) <DeepExtract> recipes = list(utils.get_recipes(recipe_folder, packages)) logger.info('Considering total of %s recipes%s.', len(recipes), utils.ellipsize_recipes(recipes, recipe_folder)) if git_range: changed_recipes = get_recipes_to_build(git_range, recipe_folder) logger.info('Constraining to %s git modified recipes%s.', len(changed_recipes), utils.ellipsize_recipes(changed_recipes, recipe_folder)) recipes = [recipe for recipe in recipes if recipe in set(changed_recipes)] if len(recipes) != len(changed_recipes): logger.info('Overlap was %s recipes%s.', len(recipes), utils.ellipsize_recipes(recipes, recipe_folder)) if not True: blacklist = utils.get_blacklist(config, recipe_folder) blacklisted = [] for recipe in recipes: if os.path.relpath(recipe, recipe_folder) in blacklist: blacklisted.append(recipe) if blacklisted: logger.info('Ignoring %s blacklisted recipes%s.', len(blacklisted), utils.ellipsize_recipes(blacklisted, recipe_folder)) recipes = [recipe for recipe in recipes if recipe not in set(blacklisted)] logger.info('Processing %s recipes%s.', len(recipes), utils.ellipsize_recipes(recipes, recipe_folder)) recipes = recipes </DeepExtract> linter = lint.Linter(config, recipe_folder, exclude) result = linter.lint(recipes, fix=try_fix) messages = linter.get_messages() if messages: print('The following problems have been found:\n') print(linter.get_report()) if not result: print('All checks OK') else: sys.exit('Errors were found')
@recipe_folder_and_config(allow_missing_for=['list_checks']) @arg('--packages', nargs='+', help='Glob for package[s] to build. Default is to build all packages. Can be specified more than once') @arg('--cache', help='To speed up debugging, use repodata cached locally in\n the provided filename. If the file does not exist, it will be created the\n first time.') @arg('--list-checks', help='List the linting functions to be used and then\n exit') @arg('--exclude', nargs='+', help='Exclude this linting function. Can be used\n multiple times.') @arg('--push-status', action='store_true', help='If set, the lint status will\n be sent to the current commit on github. Also needs --user and --repo to\n be set. Requires the env var GITHUB_TOKEN to be set. Note that pull\n requests from forks will not have access to encrypted variables on\n ci, so this feature may be of limited use.') @arg('--commit', help='Commit on github on which to update status') @arg('--push-comment', action='store_true', help='If set, the lint status\n will be posted as a comment in the corresponding pull request (given by\n --pull-request). Also needs --user and --repo to be set. Requires the env\n var GITHUB_TOKEN to be set.') @arg('--pull-request', type=int, help='Pull request id on github on which to\n post a comment.') @arg('--user', help='Github user') @arg('--repo', help='Github repo') @arg('--git-range', nargs='+', help='Git range (e.g. commits or something like\n "master HEAD" to check commits in HEAD vs master, or just "HEAD" to\n include uncommitted changes). All recipes modified within this range will\n be built if not present in the channel.') @arg('--full-report', action='store_true', help='Default behavior is to\n summarize the linting results; use this argument to get the full\n results as a TSV printed to stdout.') @arg('--try-fix', help='Attempt to fix problems where found') @enable_logging() @enable_debugging() @named('lint') def do_lint(recipe_folder, config, packages='*', cache=None, list_checks=False, exclude=None, push_status=False, user='bioconda', commit=None, push_comment=False, pull_request=None, repo='bioconda-recipes', git_range=None, full_report=False, try_fix=False): """ Lint recipes If --push-status is not set, reports a TSV of linting results to stdout. Otherwise pushes a commit status to the specified commit on github. """ if list_checks: print('\n'.join((str(check) for check in lint.get_checks()))) sys.exit(0) config = utils.load_config(config) if cache is not None: utils.RepoData().set_cache(cache) recipes = list(utils.get_recipes(recipe_folder, packages)) logger.info('Considering total of %s recipes%s.', len(recipes), utils.ellipsize_recipes(recipes, recipe_folder)) if git_range: changed_recipes = get_recipes_to_build(git_range, recipe_folder) logger.info('Constraining to %s git modified recipes%s.', len(changed_recipes), utils.ellipsize_recipes(changed_recipes, recipe_folder)) recipes = [recipe for recipe in recipes if recipe in set(changed_recipes)] if len(recipes) != len(changed_recipes): logger.info('Overlap was %s recipes%s.', len(recipes), utils.ellipsize_recipes(recipes, recipe_folder)) if not True: blacklist = utils.get_blacklist(config, recipe_folder) blacklisted = [] for recipe in recipes: if os.path.relpath(recipe, recipe_folder) in blacklist: blacklisted.append(recipe) if blacklisted: logger.info('Ignoring %s blacklisted recipes%s.', len(blacklisted), utils.ellipsize_recipes(blacklisted, recipe_folder)) recipes = [recipe for recipe in recipes if recipe not in set(blacklisted)] logger.info('Processing %s recipes%s.', len(recipes), utils.ellipsize_recipes(recipes, recipe_folder)) recipes = recipes linter = lint.Linter(config, recipe_folder, exclude) result = linter.lint(recipes, fix=try_fix) messages = linter.get_messages() if messages: print('The following problems have been found:\n') print(linter.get_report()) if not result: print('All checks OK') else: sys.exit('Errors were found')
bioconda-utils
positive
def _aipscc(self, threshold=None, relative=True, istokes=0, ifreq=0): """ Make AIPS CC table Arguments: istokes (integer): index for Stokes Parameter at which the image will be saved ifreq (integer): index for Frequency at which the image will be saved threshold (float): pixels with the absolute intensity smaller than this value will be ignored. relative (boolean): If true, theshold value will be normalized with the peak intensity of the image. """ Nx = self.header['nx'] Ny = self.header['ny'] <DeepExtract> if 'deg' is None: 'deg' = self.angunit dx = self.header['dx'] dy = self.header['dy'] Nx = self.header['nx'] Ny = self.header['ny'] Nxref = self.header['nxref'] Nyref = self.header['nyref'] xg = dx * (np.arange(Nx) - Nxref + 1) * self.angconv('deg', 'deg') yg = dy * (np.arange(Ny) - Nyref + 1) * self.angconv('deg', 'deg') if twodim: (xg, yg) = np.meshgrid(xg, yg) (xg, yg) = (xg, yg) </DeepExtract> (X, Y) = np.meshgrid(xg, yg) X = X.reshape(Nx * Ny) Y = Y.reshape(Nx * Ny) flux = self.data[istokes, ifreq] flux = flux.reshape(Nx * Ny) if threshold is None: thres = np.finfo(np.float32).eps elif relative: thres = self.peak(istokes=istokes, ifreq=ifreq) * threshold else: thres = threshold thres = np.abs(thres) X = X[flux >= thres] Y = Y[flux >= thres] flux = flux[flux >= thres] c1 = pyfits.Column(name='FLUX', array=flux, format='1E', unit='JY') c2 = pyfits.Column(name='DELTAX', array=X, format='1E', unit='DEGREES') c3 = pyfits.Column(name='DELTAY', array=Y, format='1E', unit='DEGREES') c4 = pyfits.Column(name='MAJOR AX', array=np.zeros(len(flux)), format='1E', unit='DEGREES') c5 = pyfits.Column(name='MINOR AX', array=np.zeros(len(flux)), format='1E', unit='DEGREES') c6 = pyfits.Column(name='POSANGLE', array=np.zeros(len(flux)), format='1E', unit='DEGREES') c7 = pyfits.Column(name='TYPE OBJ', array=np.zeros(len(flux)), format='1E', unit='CODE') tab = pyfits.BinTableHDU.from_columns([c1, c2, c3, c4, c5, c6, c7]) return tab
def _aipscc(self, threshold=None, relative=True, istokes=0, ifreq=0): """ Make AIPS CC table Arguments: istokes (integer): index for Stokes Parameter at which the image will be saved ifreq (integer): index for Frequency at which the image will be saved threshold (float): pixels with the absolute intensity smaller than this value will be ignored. relative (boolean): If true, theshold value will be normalized with the peak intensity of the image. """ Nx = self.header['nx'] Ny = self.header['ny'] if 'deg' is None: 'deg' = self.angunit dx = self.header['dx'] dy = self.header['dy'] Nx = self.header['nx'] Ny = self.header['ny'] Nxref = self.header['nxref'] Nyref = self.header['nyref'] xg = dx * (np.arange(Nx) - Nxref + 1) * self.angconv('deg', 'deg') yg = dy * (np.arange(Ny) - Nyref + 1) * self.angconv('deg', 'deg') if twodim: (xg, yg) = np.meshgrid(xg, yg) (xg, yg) = (xg, yg) (X, Y) = np.meshgrid(xg, yg) X = X.reshape(Nx * Ny) Y = Y.reshape(Nx * Ny) flux = self.data[istokes, ifreq] flux = flux.reshape(Nx * Ny) if threshold is None: thres = np.finfo(np.float32).eps elif relative: thres = self.peak(istokes=istokes, ifreq=ifreq) * threshold else: thres = threshold thres = np.abs(thres) X = X[flux >= thres] Y = Y[flux >= thres] flux = flux[flux >= thres] c1 = pyfits.Column(name='FLUX', array=flux, format='1E', unit='JY') c2 = pyfits.Column(name='DELTAX', array=X, format='1E', unit='DEGREES') c3 = pyfits.Column(name='DELTAY', array=Y, format='1E', unit='DEGREES') c4 = pyfits.Column(name='MAJOR AX', array=np.zeros(len(flux)), format='1E', unit='DEGREES') c5 = pyfits.Column(name='MINOR AX', array=np.zeros(len(flux)), format='1E', unit='DEGREES') c6 = pyfits.Column(name='POSANGLE', array=np.zeros(len(flux)), format='1E', unit='DEGREES') c7 = pyfits.Column(name='TYPE OBJ', array=np.zeros(len(flux)), format='1E', unit='CODE') tab = pyfits.BinTableHDU.from_columns([c1, c2, c3, c4, c5, c6, c7]) return tab
eat
positive
def main(argv): del argv bsuite_id = FLAGS.bsuite_id if bsuite_id in sweep.SWEEP: print(f'Running single experiment: bsuite_id={bsuite_id}.') <DeepExtract> def _load_env(): raw_env = bsuite.load_and_record(bsuite_id=bsuite_id, save_path=FLAGS.save_path, logging_mode=FLAGS.logging_mode, overwrite=FLAGS.overwrite) if FLAGS.verbose: raw_env = terminal_logging.wrap_environment(raw_env, log_every=True) return gym_wrapper.GymFromDMEnv(raw_env) env = dummy_vec_env.DummyVecEnv([_load_env]) ppo2.learn(env=env, network=FLAGS.network, lr=FLAGS.learning_rate, total_timesteps=FLAGS.total_timesteps, nsteps=FLAGS.nsteps, gamma=FLAGS.agent_discount) return bsuite_id </DeepExtract> elif hasattr(sweep, bsuite_id): bsuite_sweep = getattr(sweep, bsuite_id) print(f'Running sweep over bsuite_id in sweep.{bsuite_sweep}') FLAGS.verbose = False pool.map_mpi(run, bsuite_sweep) else: raise ValueError(f'Invalid flag: bsuite_id={bsuite_id}.')
def main(argv): del argv bsuite_id = FLAGS.bsuite_id if bsuite_id in sweep.SWEEP: print(f'Running single experiment: bsuite_id={bsuite_id}.') def _load_env(): raw_env = bsuite.load_and_record(bsuite_id=bsuite_id, save_path=FLAGS.save_path, logging_mode=FLAGS.logging_mode, overwrite=FLAGS.overwrite) if FLAGS.verbose: raw_env = terminal_logging.wrap_environment(raw_env, log_every=True) return gym_wrapper.GymFromDMEnv(raw_env) env = dummy_vec_env.DummyVecEnv([_load_env]) ppo2.learn(env=env, network=FLAGS.network, lr=FLAGS.learning_rate, total_timesteps=FLAGS.total_timesteps, nsteps=FLAGS.nsteps, gamma=FLAGS.agent_discount) return bsuite_id elif hasattr(sweep, bsuite_id): bsuite_sweep = getattr(sweep, bsuite_id) print(f'Running sweep over bsuite_id in sweep.{bsuite_sweep}') FLAGS.verbose = False pool.map_mpi(run, bsuite_sweep) else: raise ValueError(f'Invalid flag: bsuite_id={bsuite_id}.')
bsuite
positive
def call_method(self, method, *args, **kwargs): """Call a method.""" if len(self._method_calls) > 5: raise RuntimeError('recursion level too deep') message = jsonrpc.create_request(method, args) <DeepExtract> if self._socket is None: raise RuntimeError('not connected') if not jsonrpc.check_message(message): raise ValueError('invalid JSON-RPC message') self._outgoing.append(message) if not self._write_notifier.isEnabled(): self._write_notifier.setEnabled(True) </DeepExtract> replies = [] def method_response(message, client): replies.append(message) def method_timeout(): reply = jsonrpc.create_error(message, jsonrpc.SERVER_ERROR, 'Method call timed out') replies.append(reply) timeout = kwargs.pop('timeout', self.timeout) if timeout: timer = QTimer(self) timer.setInterval(timeout * 1000) timer.setSingleShot(True) timer.timeout.connect(method_timeout) timer.start() self._method_calls[message['id']] = method_response loop = QEventLoop() mask = QEventLoop.ExcludeUserInputEvents | QEventLoop.WaitForMoreEvents while True: loop.processEvents(mask) if replies: break if timeout: timer.stop() reply = replies[0] del self._method_calls[message['id']] if reply.get('error'): raise QJsonRpcError(reply['error']) self.message = reply return reply.get('result')
def call_method(self, method, *args, **kwargs): """Call a method.""" if len(self._method_calls) > 5: raise RuntimeError('recursion level too deep') message = jsonrpc.create_request(method, args) if self._socket is None: raise RuntimeError('not connected') if not jsonrpc.check_message(message): raise ValueError('invalid JSON-RPC message') self._outgoing.append(message) if not self._write_notifier.isEnabled(): self._write_notifier.setEnabled(True) replies = [] def method_response(message, client): replies.append(message) def method_timeout(): reply = jsonrpc.create_error(message, jsonrpc.SERVER_ERROR, 'Method call timed out') replies.append(reply) timeout = kwargs.pop('timeout', self.timeout) if timeout: timer = QTimer(self) timer.setInterval(timeout * 1000) timer.setSingleShot(True) timer.timeout.connect(method_timeout) timer.start() self._method_calls[message['id']] = method_response loop = QEventLoop() mask = QEventLoop.ExcludeUserInputEvents | QEventLoop.WaitForMoreEvents while True: loop.processEvents(mask) if replies: break if timeout: timer.stop() reply = replies[0] del self._method_calls[message['id']] if reply.get('error'): raise QJsonRpcError(reply['error']) self.message = reply return reply.get('result')
bluepass
positive
def __call__(self, img, points=None, labels=None): if isinstance(img, list): for i in range(len(img)): if random.random() < self.p_h: <DeepExtract> img[i] = F.hflip(img[i]) if points[i] is not None and len(labels[i]): points[i][:, 0] = img[i].size[0] - points[i][:, 0] (img[i][i], points[i][i], labels[i][i]) = (img[i], points[i], labels[i]) </DeepExtract> if random.random() < self.p_v: <DeepExtract> img[i] = F.vflip(img[i]) if points[i] is not None and len(labels[i]): points[i][:, 1] = img[i].size[1] - points[i][:, 1] (img[i][i], points[i][i], labels[i][i]) = (img[i], points[i], labels[i]) </DeepExtract> else: if random.random() < self.p_h: <DeepExtract> img = F.hflip(img) if points is not None and len(labels): points[:, 0] = img.size[0] - points[:, 0] (img, points, labels) = (img, points, labels) </DeepExtract> if random.random() < self.p_v: <DeepExtract> img = F.vflip(img) if points is not None and len(labels): points[:, 1] = img.size[1] - points[:, 1] (img, points, labels) = (img, points, labels) </DeepExtract> return (img, points, labels)
def __call__(self, img, points=None, labels=None): if isinstance(img, list): for i in range(len(img)): if random.random() < self.p_h: img[i] = F.hflip(img[i]) if points[i] is not None and len(labels[i]): points[i][:, 0] = img[i].size[0] - points[i][:, 0] (img[i][i], points[i][i], labels[i][i]) = (img[i], points[i], labels[i]) if random.random() < self.p_v: img[i] = F.vflip(img[i]) if points[i] is not None and len(labels[i]): points[i][:, 1] = img[i].size[1] - points[i][:, 1] (img[i][i], points[i][i], labels[i][i]) = (img[i], points[i], labels[i]) else: if random.random() < self.p_h: img = F.hflip(img) if points is not None and len(labels): points[:, 0] = img.size[0] - points[:, 0] (img, points, labels) = (img, points, labels) if random.random() < self.p_v: img = F.vflip(img) if points is not None and len(labels): points[:, 1] = img.size[1] - points[:, 1] (img, points, labels) = (img, points, labels) return (img, points, labels)
aerial_wildlife_detection
positive
def get_server_info(self): """Gets a ServerInfo and sends os_info + client version to server""" os_info = OSInfo.capture() from biicode.common import __version__ data = (os_info, str(__version__)) serialized_data = Serializer().build(('data', data)) <DeepExtract> logger.debug('JWT Call %s' % str('get_server_info')) auth = JWTAuth(self.token) if self.token else None headers = headers or {} headers.update(self.custom_headers) headers['Content-Type'] = 'application/bson' if serialized_data is not None: serialized_data = str(encode_bson(serialized_data)) info = self.call('get_server_info', url_params=url_params, data=serialized_data, headers=headers, auth=auth, deserializer=ServerInfo, response=response, timeout=1) </DeepExtract> return info
def get_server_info(self): """Gets a ServerInfo and sends os_info + client version to server""" os_info = OSInfo.capture() from biicode.common import __version__ data = (os_info, str(__version__)) serialized_data = Serializer().build(('data', data)) logger.debug('JWT Call %s' % str('get_server_info')) auth = JWTAuth(self.token) if self.token else None headers = headers or {} headers.update(self.custom_headers) headers['Content-Type'] = 'application/bson' if serialized_data is not None: serialized_data = str(encode_bson(serialized_data)) info = self.call('get_server_info', url_params=url_params, data=serialized_data, headers=headers, auth=auth, deserializer=ServerInfo, response=response, timeout=1) return info
client
positive
def traverse_polyline_by_specific_dist(polyline_to_walk: np.ndarray, l2_dist_to_walk: float) -> Tuple[np.ndarray, bool]: """ Walk a distance along a polyline, and return the points along which you walked. Assumption: polyline is much longer than the distance to walk. Args: polyline_to_walk: Numpy array of shape (N,2) l2_dist_to_walk: Distance to traverse Returns: Tuple of (polyline, success flag) """ MAX_NUM_PTS_TO_WALK = 100 dense_polyline_to_walk = interp_arc(MAX_NUM_PTS_TO_WALK, polyline_to_walk[:, 0], polyline_to_walk[:, 1]) for i in range(MAX_NUM_PTS_TO_WALK): <DeepExtract> assert dense_polyline_to_walk[:i].shape[1] == 2 l2 = float(np.linalg.norm(np.diff(dense_polyline_to_walk[:i], axis=0), axis=1).sum()) </DeepExtract> if l2 > l2_dist_to_walk: return (dense_polyline_to_walk[:i], True) return (dense_polyline_to_walk, False)
def traverse_polyline_by_specific_dist(polyline_to_walk: np.ndarray, l2_dist_to_walk: float) -> Tuple[np.ndarray, bool]: """ Walk a distance along a polyline, and return the points along which you walked. Assumption: polyline is much longer than the distance to walk. Args: polyline_to_walk: Numpy array of shape (N,2) l2_dist_to_walk: Distance to traverse Returns: Tuple of (polyline, success flag) """ MAX_NUM_PTS_TO_WALK = 100 dense_polyline_to_walk = interp_arc(MAX_NUM_PTS_TO_WALK, polyline_to_walk[:, 0], polyline_to_walk[:, 1]) for i in range(MAX_NUM_PTS_TO_WALK): assert dense_polyline_to_walk[:i].shape[1] == 2 l2 = float(np.linalg.norm(np.diff(dense_polyline_to_walk[:i], axis=0), axis=1).sum()) if l2 > l2_dist_to_walk: return (dense_polyline_to_walk[:i], True) return (dense_polyline_to_walk, False)
argoverse-api
positive
def InterpretHexInteger(token): if token[0] != STATE_IDENTIFIER: return None if not token[1].startswith('0x'): return None <DeepExtract> if len(token[1][2:]) % 2 == 1: token[1][2:] = '0' + token[1][2:] try: bytes = binascii.a2b_hex(token[1][2:]) except: bytes = None </DeepExtract> if bytes == None: return None integer = 0 for byte in bytes: integer = integer * 256 + C2IIP2(byte) return integer
def InterpretHexInteger(token): if token[0] != STATE_IDENTIFIER: return None if not token[1].startswith('0x'): return None if len(token[1][2:]) % 2 == 1: token[1][2:] = '0' + token[1][2:] try: bytes = binascii.a2b_hex(token[1][2:]) except: bytes = None if bytes == None: return None integer = 0 for byte in bytes: integer = integer * 256 + C2IIP2(byte) return integer
Beta
positive
def test_restrict_access_audit_board_wrong_org(client: FlaskClient, election_id: str, jurisdiction_id: str, round_id: str, audit_board_id: str): (org_id_2, _) = create_org_and_admin('Org 3', 'aa3@example.com') set_logged_in_user(client, UserType.AUDIT_ADMIN, 'aa3@example.com') election_id_2 = create_election(client, organization_id=org_id_2) (jurisdiction_id_2, _) = create_jurisdiction_and_admin(election_id_2, 'Test Jurisdiction', 'ja3@example.com') <DeepExtract> round = Round(id=str(uuid.uuid4()), election_id=election_id_2, round_num=round_num) db_session.add(round) db_session.commit() round_id_2 = str(round.id) </DeepExtract> <DeepExtract> audit_board_id = str(uuid.uuid4()) audit_board = AuditBoard(id=audit_board_id, jurisdiction_id=jurisdiction_id_2, round_id=round_id_2, passphrase=f'passphrase-{audit_board_id}') db_session.add(audit_board) db_session.commit() audit_board_id_2 = str(audit_board.id) </DeepExtract> set_logged_in_user(client, UserType.AUDIT_BOARD, audit_board_id_2) rv = client.get(f'/api/election/{election_id}/jurisdiction/{jurisdiction_id}/round/{round_id}/audit-board/{audit_board_id}/test_auth') assert rv.status_code == 403 assert json.loads(rv.data) == {'errors': [{'errorType': 'Forbidden', 'message': f'User does not have access to audit board {audit_board_id}'}]}
def test_restrict_access_audit_board_wrong_org(client: FlaskClient, election_id: str, jurisdiction_id: str, round_id: str, audit_board_id: str): (org_id_2, _) = create_org_and_admin('Org 3', 'aa3@example.com') set_logged_in_user(client, UserType.AUDIT_ADMIN, 'aa3@example.com') election_id_2 = create_election(client, organization_id=org_id_2) (jurisdiction_id_2, _) = create_jurisdiction_and_admin(election_id_2, 'Test Jurisdiction', 'ja3@example.com') round = Round(id=str(uuid.uuid4()), election_id=election_id_2, round_num=round_num) db_session.add(round) db_session.commit() round_id_2 = str(round.id) audit_board_id = str(uuid.uuid4()) audit_board = AuditBoard(id=audit_board_id, jurisdiction_id=jurisdiction_id_2, round_id=round_id_2, passphrase=f'passphrase-{audit_board_id}') db_session.add(audit_board) db_session.commit() audit_board_id_2 = str(audit_board.id) set_logged_in_user(client, UserType.AUDIT_BOARD, audit_board_id_2) rv = client.get(f'/api/election/{election_id}/jurisdiction/{jurisdiction_id}/round/{round_id}/audit-board/{audit_board_id}/test_auth') assert rv.status_code == 403 assert json.loads(rv.data) == {'errors': [{'errorType': 'Forbidden', 'message': f'User does not have access to audit board {audit_board_id}'}]}
arlo
positive
def visit(obj: CWLObjectType, stagedir: str, basedir: str, copy: bool=False, staged: bool=False) -> None: stagedir = cast(Optional[str], obj.get('dirname')) or stagedir tgt = os.path.join(stagedir, cast(str, obj['basename'])) if obj['location'] in self._pathmap: return if obj['class'] == 'Directory': location = cast(str, obj['location']) if location.startswith('file://'): resolved = uri_file_path(location) else: resolved = location self._pathmap[location] = MapperEnt(resolved, tgt, 'WritableDirectory' if copy else 'Directory', staged) if location.startswith('file://'): staged = False <DeepExtract> for ld in cast(List[CWLObjectType], obj.get('listing', [])): self.visit(ld, tgt, basedir, copy=cast(bool, ld.get('writable', copy)), staged=staged) </DeepExtract> elif obj['class'] == 'File': path = cast(str, obj['location']) ab = abspath(path, basedir) if 'contents' in obj and path.startswith('_:'): self._pathmap[path] = MapperEnt(obj['contents'], tgt, 'CreateWritableFile' if copy else 'CreateFile', staged) else: with SourceLine(obj, 'location', ValidationException, _logger.isEnabledFor(logging.DEBUG)): deref = ab if urllib.parse.urlsplit(deref).scheme in ['http', 'https']: (deref, _last_modified) = downloadHttpFile(path) else: st = os.lstat(deref) while stat.S_ISLNK(st.st_mode): rl = os.readlink(deref) deref = rl if os.path.isabs(rl) else os.path.join(os.path.dirname(deref), rl) st = os.lstat(deref) self._pathmap[path] = MapperEnt(deref, tgt, 'WritableFile' if copy else 'File', staged) <DeepExtract> for ld in cast(List[CWLObjectType], obj.get('secondaryFiles', [])): self.visit(ld, stagedir, basedir, copy=cast(bool, ld.get('writable', copy)), staged=staged) </DeepExtract>
def visit(obj: CWLObjectType, stagedir: str, basedir: str, copy: bool=False, staged: bool=False) -> None: stagedir = cast(Optional[str], obj.get('dirname')) or stagedir tgt = os.path.join(stagedir, cast(str, obj['basename'])) if obj['location'] in self._pathmap: return if obj['class'] == 'Directory': location = cast(str, obj['location']) if location.startswith('file://'): resolved = uri_file_path(location) else: resolved = location self._pathmap[location] = MapperEnt(resolved, tgt, 'WritableDirectory' if copy else 'Directory', staged) if location.startswith('file://'): staged = False for ld in cast(List[CWLObjectType], obj.get('listing', [])): self.visit(ld, tgt, basedir, copy=cast(bool, ld.get('writable', copy)), staged=staged) elif obj['class'] == 'File': path = cast(str, obj['location']) ab = abspath(path, basedir) if 'contents' in obj and path.startswith('_:'): self._pathmap[path] = MapperEnt(obj['contents'], tgt, 'CreateWritableFile' if copy else 'CreateFile', staged) else: with SourceLine(obj, 'location', ValidationException, _logger.isEnabledFor(logging.DEBUG)): deref = ab if urllib.parse.urlsplit(deref).scheme in ['http', 'https']: (deref, _last_modified) = downloadHttpFile(path) else: st = os.lstat(deref) while stat.S_ISLNK(st.st_mode): rl = os.readlink(deref) deref = rl if os.path.isabs(rl) else os.path.join(os.path.dirname(deref), rl) st = os.lstat(deref) self._pathmap[path] = MapperEnt(deref, tgt, 'WritableFile' if copy else 'File', staged) for ld in cast(List[CWLObjectType], obj.get('secondaryFiles', [])): self.visit(ld, stagedir, basedir, copy=cast(bool, ld.get('writable', copy)), staged=staged) </DeepExtract>
cwltool
positive
def ssim(images1: np.ndarray, images2: np.ndarray): <DeepExtract> assert len(images1.shape) == 4 assert images1.shape == images2.shape assert images1.dtype == np.float32 assert images2.dtype == np.float32 assert images1.max() <= 1 and images1.min() >= 0 assert images2.max() <= 1 and images2.min() >= 0 </DeepExtract> mean_ssim = 0 with multiprocessing.Pool(multiprocessing.cpu_count()) as pool: jobs = [] for (img1, img2) in zip(images1, images2): s = pool.apply_async(compare_ssim, (img1, img2), dict(data_range=1, multichannel=True, win_size=11, gaussian_weights=True, sigma=1.5, use_sample_covariance=False, K1=0.01 ** 2, K2=0.03 ** 2)) jobs.append(s) for job in tqdm.tqdm(jobs): mean_ssim += job.get() return mean_ssim / images1.shape[0]
def ssim(images1: np.ndarray, images2: np.ndarray): assert len(images1.shape) == 4 assert images1.shape == images2.shape assert images1.dtype == np.float32 assert images2.dtype == np.float32 assert images1.max() <= 1 and images1.min() >= 0 assert images2.max() <= 1 and images2.min() >= 0 mean_ssim = 0 with multiprocessing.Pool(multiprocessing.cpu_count()) as pool: jobs = [] for (img1, img2) in zip(images1, images2): s = pool.apply_async(compare_ssim, (img1, img2), dict(data_range=1, multichannel=True, win_size=11, gaussian_weights=True, sigma=1.5, use_sample_covariance=False, K1=0.01 ** 2, K2=0.03 ** 2)) jobs.append(s) for job in tqdm.tqdm(jobs): mean_ssim += job.get() return mean_ssim / images1.shape[0]
DeepPrivacy
positive
def delete(config): saved_err = None if self.target is None: <DeepExtract> try: self.target = Target(ISCSIFabricModule(), self.iqn, 'lookup') if self.tpg_list: del self.tpg_list[:] if self.tpg_tag_by_gateway_name: self.tpg_tag_by_gateway_name = {} for tpg in self.target.tpgs: self.tpg_list.append(tpg) network_portals = list(tpg.network_portals) if network_portals: ip_address = network_portals[0].ip_address gateway_name = self._get_gateway_name(ip_address) if gateway_name: self.tpg_tag_by_gateway_name[gateway_name] = tpg.tag else: self.logger.info("No available network portal for target with iqn of '{}'".format(self.iqn)) except RTSLibError as err: self.error_msg = err self.error = True self.logger.info('(Gateway.load_config) successfully loaded existing target definition') </DeepExtract> if self.target: try: self.target.delete() except RTSLibError as err: self.logger.error('lio target deletion failed {}'.format(err)) saved_err = err for disk in config.config['targets'][self.iqn]['disks'].keys(): so = lookup_storage_object_by_disk(config, disk) if so is None: self.logger.debug('lio disk lookup failed {}') continue if so.status == 'activated': continue try: so.delete() except RTSLibError as err: self.logger.error('lio disk deletion failed {}'.format(err)) if saved_err is None: saved_err = err if saved_err: raise RTSLibError(saved_err)
def delete(config): saved_err = None if self.target is None: try: self.target = Target(ISCSIFabricModule(), self.iqn, 'lookup') if self.tpg_list: del self.tpg_list[:] if self.tpg_tag_by_gateway_name: self.tpg_tag_by_gateway_name = {} for tpg in self.target.tpgs: self.tpg_list.append(tpg) network_portals = list(tpg.network_portals) if network_portals: ip_address = network_portals[0].ip_address gateway_name = self._get_gateway_name(ip_address) if gateway_name: self.tpg_tag_by_gateway_name[gateway_name] = tpg.tag else: self.logger.info("No available network portal for target with iqn of '{}'".format(self.iqn)) except RTSLibError as err: self.error_msg = err self.error = True self.logger.info('(Gateway.load_config) successfully loaded existing target definition') if self.target: try: self.target.delete() except RTSLibError as err: self.logger.error('lio target deletion failed {}'.format(err)) saved_err = err for disk in config.config['targets'][self.iqn]['disks'].keys(): so = lookup_storage_object_by_disk(config, disk) if so is None: self.logger.debug('lio disk lookup failed {}') continue if so.status == 'activated': continue try: so.delete() except RTSLibError as err: self.logger.error('lio disk deletion failed {}'.format(err)) if saved_err is None: saved_err = err if saved_err: raise RTSLibError(saved_err)
ceph-iscsi
positive
def non_local_block(x, name, use_sn): """Self-attention (non-local) block. This method is used to exactly reproduce SAGAN and ignores Gin settings on weight initialization and spectral normalization. Args: x: Input tensor of shape [batch, h, w, c]. name: Name of the variable scope. use_sn: Apply spectral norm to the weights. Returns: A tensor of the same shape after self-attention was applied. """ def _spatial_flatten(inputs): shape = inputs.shape return tf.reshape(inputs, (-1, shape[1] * shape[2], shape[3])) with tf.variable_scope(name): (h, w, num_channels) = x.get_shape().as_list()[1:] num_channels_attn = num_channels // 8 num_channels_g = num_channels // 2 theta = conv1x1(x, num_channels_attn, name='conv2d_theta', use_sn=use_sn, use_bias=False) <DeepExtract> shape = theta.shape theta = tf.reshape(theta, (-1, shape[1] * shape[2], shape[3])) </DeepExtract> phi = conv1x1(x, num_channels_attn, name='conv2d_phi', use_sn=use_sn, use_bias=False) phi = tf.layers.max_pooling2d(inputs=phi, pool_size=[2, 2], strides=2) <DeepExtract> shape = phi.shape phi = tf.reshape(phi, (-1, shape[1] * shape[2], shape[3])) </DeepExtract> attn = tf.matmul(theta, phi, transpose_b=True) attn = tf.nn.softmax(attn) g = conv1x1(x, num_channels_g, name='conv2d_g', use_sn=use_sn, use_bias=False) g = tf.layers.max_pooling2d(inputs=g, pool_size=[2, 2], strides=2) <DeepExtract> shape = g.shape g = tf.reshape(g, (-1, shape[1] * shape[2], shape[3])) </DeepExtract> attn_g = tf.matmul(attn, g) attn_g = tf.reshape(attn_g, [-1, h, w, num_channels_g]) sigma = tf.get_variable('sigma', [], initializer=tf.zeros_initializer()) attn_g = conv1x1(attn_g, num_channels, name='conv2d_attn_g', use_sn=use_sn, use_bias=False) return x + sigma * attn_g
def non_local_block(x, name, use_sn): """Self-attention (non-local) block. This method is used to exactly reproduce SAGAN and ignores Gin settings on weight initialization and spectral normalization. Args: x: Input tensor of shape [batch, h, w, c]. name: Name of the variable scope. use_sn: Apply spectral norm to the weights. Returns: A tensor of the same shape after self-attention was applied. """ def _spatial_flatten(inputs): shape = inputs.shape return tf.reshape(inputs, (-1, shape[1] * shape[2], shape[3])) with tf.variable_scope(name): (h, w, num_channels) = x.get_shape().as_list()[1:] num_channels_attn = num_channels // 8 num_channels_g = num_channels // 2 theta = conv1x1(x, num_channels_attn, name='conv2d_theta', use_sn=use_sn, use_bias=False) shape = theta.shape theta = tf.reshape(theta, (-1, shape[1] * shape[2], shape[3])) phi = conv1x1(x, num_channels_attn, name='conv2d_phi', use_sn=use_sn, use_bias=False) phi = tf.layers.max_pooling2d(inputs=phi, pool_size=[2, 2], strides=2) shape = phi.shape phi = tf.reshape(phi, (-1, shape[1] * shape[2], shape[3])) attn = tf.matmul(theta, phi, transpose_b=True) attn = tf.nn.softmax(attn) g = conv1x1(x, num_channels_g, name='conv2d_g', use_sn=use_sn, use_bias=False) g = tf.layers.max_pooling2d(inputs=g, pool_size=[2, 2], strides=2) shape = g.shape g = tf.reshape(g, (-1, shape[1] * shape[2], shape[3])) attn_g = tf.matmul(attn, g) attn_g = tf.reshape(attn_g, [-1, h, w, num_channels_g]) sigma = tf.get_variable('sigma', [], initializer=tf.zeros_initializer()) attn_g = conv1x1(attn_g, num_channels, name='conv2d_attn_g', use_sn=use_sn, use_bias=False) return x + sigma * attn_g
compare_gan
positive
def get_vm_info_pretty(self): """Header + VM info formatted output.""" <DeepExtract> output = '%-6s %-25s %-20s %-10s %-12s %-23s\n' % ('ID', 'HOSTNAME', 'VMTYPE', 'USER', 'STATUS', 'CLUSTER') </DeepExtract> output += self.get_vm_info() return output
def get_vm_info_pretty(self): """Header + VM info formatted output.""" output = '%-6s %-25s %-20s %-10s %-12s %-23s\n' % ('ID', 'HOSTNAME', 'VMTYPE', 'USER', 'STATUS', 'CLUSTER') output += self.get_vm_info() return output
cloud-scheduler
positive
def setup(self): if self.config.container_mode: <DeepExtract> ppa_commands = self.get_ppa_adding_commands() if ppa_commands: self.run_command(' && '.join(ppa_commands)) dependencies = self.get_dependency_packages() if dependencies: self.run_command('apt-get update', use_build_dir=False) run = False for dep in dependencies: exists = '' try: exists = self.run_command('dpkg -s {} | grep Status'.format(dep), get_output=True, use_build_dir=False) except subprocess.CalledProcessError: exists = '' if exists.strip() != 'Status: install ok installed': run = True break if run: self.run_command(self.get_apt_install_cmd(dependencies), use_build_dir=False) else: logger.debug('Dependencies already installed') if self.config.image_setup: for command in self.config.image_setup.get('run', []): self.run_command(command, use_build_dir=False) </DeepExtract> if self.config.needs_clickable_image(): <DeepExtract> if not self.minimum_version: return if not image_exists(self.docker_image): return version = 0 try: format_string = '{{ index .Config.Labels "image_version"}}' command = "docker inspect --format '{}' {}".format(format_string, self.docker_image) logger.debug('Checking docker image version via: {}'.format(command)) version_string = run_subprocess_check_output(command) version = int(version_string) except (ValueError, subprocess.CalledProcessError): logger.warn('Could not read the image version from the container') if version < self.minimum_version: raise ClickableException('This version of Clickable requires Clickable docker image {} in version {} or higher (found version {}). Please run "clickable update" to update your local images.'.format(self.docker_image, self.minimum_version, version)) </DeepExtract> if self.needs_customized_container(): <DeepExtract> logger.debug('Checking dependencies and container setup') self.check_docker() commands = [] env_vars = self.config.image_setup.get('env', {}) commands += self.get_ppa_adding_commands() dependencies = self.get_dependency_packages() if dependencies: commands.append('echo set debconf/frontend Noninteractive | debconf-communicate && echo set debconf/priority critical | debconf-communicate') commands.append('apt-get update && {} && apt-get clean'.format(self.get_apt_install_cmd(dependencies))) if self.config.image_setup: commands.extend(self.config.image_setup.get('run', [])) dockerfile_content = self.construct_dockerfile_content(commands, env_vars) if self.is_dockerfile_outdated(dockerfile_content): self.create_custom_container(dockerfile_content) else: logger.debug('Image already setup') </DeepExtract>
def setup(self): if self.config.container_mode: ppa_commands = self.get_ppa_adding_commands() if ppa_commands: self.run_command(' && '.join(ppa_commands)) dependencies = self.get_dependency_packages() if dependencies: self.run_command('apt-get update', use_build_dir=False) run = False for dep in dependencies: exists = '' try: exists = self.run_command('dpkg -s {} | grep Status'.format(dep), get_output=True, use_build_dir=False) except subprocess.CalledProcessError: exists = '' if exists.strip() != 'Status: install ok installed': run = True break if run: self.run_command(self.get_apt_install_cmd(dependencies), use_build_dir=False) else: logger.debug('Dependencies already installed') if self.config.image_setup: for command in self.config.image_setup.get('run', []): self.run_command(command, use_build_dir=False) if self.config.needs_clickable_image(): if not self.minimum_version: return if not image_exists(self.docker_image): return version = 0 try: format_string = '{{ index .Config.Labels "image_version"}}' command = "docker inspect --format '{}' {}".format(format_string, self.docker_image) logger.debug('Checking docker image version via: {}'.format(command)) version_string = run_subprocess_check_output(command) version = int(version_string) except (ValueError, subprocess.CalledProcessError): logger.warn('Could not read the image version from the container') if version < self.minimum_version: raise ClickableException('This version of Clickable requires Clickable docker image {} in version {} or higher (found version {}). Please run "clickable update" to update your local images.'.format(self.docker_image, self.minimum_version, version)) if self.needs_customized_container(): logger.debug('Checking dependencies and container setup') self.check_docker() commands = [] env_vars = self.config.image_setup.get('env', {}) commands += self.get_ppa_adding_commands() dependencies = self.get_dependency_packages() if dependencies: commands.append('echo set debconf/frontend Noninteractive | debconf-communicate && echo set debconf/priority critical | debconf-communicate') commands.append('apt-get update && {} && apt-get clean'.format(self.get_apt_install_cmd(dependencies))) if self.config.image_setup: commands.extend(self.config.image_setup.get('run', [])) dockerfile_content = self.construct_dockerfile_content(commands, env_vars) if self.is_dockerfile_outdated(dockerfile_content): self.create_custom_container(dockerfile_content) else: logger.debug('Image already setup') </DeepExtract>
clickable
positive
def GetFont(self): """ Return Font that should be used to draw text in this block """ font = None if self.engine.reportFormat.UseListCtrlTextFormat and self.GetListCtrl(): <DeepExtract> listCtrl = None </DeepExtract> if listCtrl.IsVirtual(): attr = listCtrl.OnGetItemAttr(self.rowIndex) if attr and attr.HasFont(): font = attr.GetFont() else: font = listCtrl.GetItemFont(self.rowIndex) if font and font.IsOk(): return font else: return self.GetFormat().GetFont()
def GetFont(self): """ Return Font that should be used to draw text in this block """ font = None if self.engine.reportFormat.UseListCtrlTextFormat and self.GetListCtrl(): listCtrl = None if listCtrl.IsVirtual(): attr = listCtrl.OnGetItemAttr(self.rowIndex) if attr and attr.HasFont(): font = attr.GetFont() else: font = listCtrl.GetItemFont(self.rowIndex) if font and font.IsOk(): return font else: return self.GetFormat().GetFont()
bookhub
positive
def test_reporting_reset(self): <DeepExtract> argv = ('configure', 'slack', 'https://slack.url', '#test-channel', '--name', 'test-name') args = self.parser.parse(argv) data = {'Slack': {'URL': args.URL, 'channel': args.channel, 'name': args.name}} self.resources.reporting(data) result = self.resources.preferences.read() self.assertItemsEqual(result['Reporting'], data) </DeepExtract> default = resources.DEFAULT.reporting self.resources.reporting(default) result = self.resources.preferences.read() self.assertItemsEqual(result['Reporting'], default)
def test_reporting_reset(self): argv = ('configure', 'slack', 'https://slack.url', '#test-channel', '--name', 'test-name') args = self.parser.parse(argv) data = {'Slack': {'URL': args.URL, 'channel': args.channel, 'name': args.name}} self.resources.reporting(data) result = self.resources.preferences.read() self.assertItemsEqual(result['Reporting'], data) default = resources.DEFAULT.reporting self.resources.reporting(default) result = self.resources.preferences.read() self.assertItemsEqual(result['Reporting'], default)
aeios
positive
def get_binary_stdout() -> t.BinaryIO: <DeepExtract> if _is_binary_writer(sys.stdout, False): writer = t.cast(t.BinaryIO, sys.stdout) buf = getattr(sys.stdout, 'buffer', None) if buf is not None and _is_binary_writer(buf, True): writer = t.cast(t.BinaryIO, buf) writer = None </DeepExtract> if writer is None: raise RuntimeError('Was not able to determine binary stream for sys.stdout.') return writer
def get_binary_stdout() -> t.BinaryIO: if _is_binary_writer(sys.stdout, False): writer = t.cast(t.BinaryIO, sys.stdout) buf = getattr(sys.stdout, 'buffer', None) if buf is not None and _is_binary_writer(buf, True): writer = t.cast(t.BinaryIO, buf) writer = None if writer is None: raise RuntimeError('Was not able to determine binary stream for sys.stdout.') return writer
click
positive
def run(self): self.prepareQueries() <DeepExtract> for (i, query) in self.query_files.items(): result_file = os.path.join(self.workDir, 'alignment{0}.out'.format(i)) cmd = self.aligner.get_command(query, self.database, result_file) self.commands.append(cmd) </DeepExtract> self.executeCommands(shell=True) <DeepExtract> result_files = os.path.join(self.workDir, 'alignment*.out') entry_file = os.path.join(self.workDir, 'sid_list.txt') cmd = ['cut -f2 {0} | cut -f1 -d" " > {1}'.format(result_files, entry_file)] self.commands = [cmd] self.executeCommands(shell=True, process_name='collecting seqids') reference_fasta = os.path.join(self.workDir, 'reference.fasta') error_log_file = os.path.join(self.workDir, 'blastdbcmd.err') cmd = self.blastdbcmd.get_command(entry_file, self.database, reference_fasta, error_log_file) self.commands = [cmd] self.executeCommands(shell=True, process_name='BLASTDBCMD') if os.path.exists(reference_fasta) and os.path.getsize(reference_fasta) > 0: self.references = MBGD_fasta_reader(reference_fasta, self.mbgd_definition_file) self.logger.debug('{} sequences were added to the reference.'.format(len(self.references))) else: self.logger.warning('Fasta file for hit proteins does not exist or is empty. blastdbcmd might have failed.') </DeepExtract> <DeepExtract> for i in range(len(self.query_files)): result_file = os.path.join(self.workDir, 'alignment{0}.out'.format(i)) self.parse_result(result_file) </DeepExtract>
def run(self): self.prepareQueries() for (i, query) in self.query_files.items(): result_file = os.path.join(self.workDir, 'alignment{0}.out'.format(i)) cmd = self.aligner.get_command(query, self.database, result_file) self.commands.append(cmd) self.executeCommands(shell=True) result_files = os.path.join(self.workDir, 'alignment*.out') entry_file = os.path.join(self.workDir, 'sid_list.txt') cmd = ['cut -f2 {0} | cut -f1 -d" " > {1}'.format(result_files, entry_file)] self.commands = [cmd] self.executeCommands(shell=True, process_name='collecting seqids') reference_fasta = os.path.join(self.workDir, 'reference.fasta') error_log_file = os.path.join(self.workDir, 'blastdbcmd.err') cmd = self.blastdbcmd.get_command(entry_file, self.database, reference_fasta, error_log_file) self.commands = [cmd] self.executeCommands(shell=True, process_name='BLASTDBCMD') if os.path.exists(reference_fasta) and os.path.getsize(reference_fasta) > 0: self.references = MBGD_fasta_reader(reference_fasta, self.mbgd_definition_file) self.logger.debug('{} sequences were added to the reference.'.format(len(self.references))) else: self.logger.warning('Fasta file for hit proteins does not exist or is empty. blastdbcmd might have failed.') for i in range(len(self.query_files)): result_file = os.path.join(self.workDir, 'alignment{0}.out'.format(i)) self.parse_result(result_file) </DeepExtract>
dfast_core
positive
def Parse(expression): <DeepExtract> result = [] token = '' state = STATE_START while expression != '': char = expression[0] expression = expression[1:] if char == "'": if state == STATE_START: state = STATE_STRING elif state == STATE_IDENTIFIER: result.append([STATE_IDENTIFIER, token]) state = STATE_STRING token = '' elif state == STATE_STRING: result.append([STATE_STRING, token]) state = STATE_START token = '' elif char >= '0' and char <= '9' or (char.lower() >= 'a' and char.lower() <= 'z'): if state == STATE_START: token = char state = STATE_IDENTIFIER else: token += char elif char == ' ': if state == STATE_IDENTIFIER: result.append([STATE_IDENTIFIER, token]) token = '' state = STATE_START elif state == STATE_STRING: token += char elif state == STATE_IDENTIFIER: result.append([STATE_IDENTIFIER, token]) token = '' state = STATE_START result.append([STATE_SPECIAL_CHAR, char]) elif state == STATE_STRING: token += char else: result.append([STATE_SPECIAL_CHAR, char]) token = '' if state == STATE_IDENTIFIER: result.append([state, token]) elif state == STATE_STRING: result = [[STATE_ERROR, 'Error: string not closed', token]] tokens = result </DeepExtract> if len(tokens) == 0: print('Parsing error') return None if tokens[0][0] == STATE_ERROR: print(tokens[0][1]) print(tokens[0][2]) print(expression) return None functioncalls = [] while True: <DeepExtract> if len(tokens) == 0: print('Parsing error') (functioncall, tokens) = (None, tokens) if tokens[0][0] == STATE_STRING or (tokens[0][0] == STATE_IDENTIFIER and tokens[0][1].startswith('0x')): (functioncall, tokens) = [[FUNCTIONNAME_REPEAT, [[STATE_IDENTIFIER, '1'], tokens[0]]], tokens[1:]] if tokens[0][0] != STATE_IDENTIFIER: print('Parsing error') (functioncall, tokens) = (None, tokens) function = tokens[0][1] tokens = tokens[1:] if len(tokens) == 0: print('Parsing error') (functioncall, tokens) = (None, tokens) if tokens[0][0] != STATE_SPECIAL_CHAR or tokens[0][1] != '(': print('Parsing error') (functioncall, tokens) = (None, tokens) tokens = tokens[1:] if len(tokens) == 0: print('Parsing error') (functioncall, tokens) = (None, tokens) arguments = [] while True: if tokens[0][0] != STATE_IDENTIFIER and tokens[0][0] != STATE_STRING: print('Parsing error') (functioncall, tokens) = (None, tokens) arguments.append(tokens[0]) tokens = tokens[1:] if len(tokens) == 0: print('Parsing error') (functioncall, tokens) = (None, tokens) if tokens[0][0] != STATE_SPECIAL_CHAR or (tokens[0][1] != ',' and tokens[0][1] != ')'): print('Parsing error') (functioncall, tokens) = (None, tokens) if tokens[0][0] == STATE_SPECIAL_CHAR and tokens[0][1] == ')': tokens = tokens[1:] break tokens = tokens[1:] if len(tokens) == 0: print('Parsing error') (functioncall, tokens) = (None, tokens) (functioncall, tokens) = [[function, arguments], tokens] </DeepExtract> if functioncall == None: return None functioncalls.append(functioncall) if len(tokens) == 0: return functioncalls if tokens[0][0] != STATE_SPECIAL_CHAR or tokens[0][1] != '+': print('Parsing error') return None tokens = tokens[1:]
def Parse(expression): result = [] token = '' state = STATE_START while expression != '': char = expression[0] expression = expression[1:] if char == "'": if state == STATE_START: state = STATE_STRING elif state == STATE_IDENTIFIER: result.append([STATE_IDENTIFIER, token]) state = STATE_STRING token = '' elif state == STATE_STRING: result.append([STATE_STRING, token]) state = STATE_START token = '' elif char >= '0' and char <= '9' or (char.lower() >= 'a' and char.lower() <= 'z'): if state == STATE_START: token = char state = STATE_IDENTIFIER else: token += char elif char == ' ': if state == STATE_IDENTIFIER: result.append([STATE_IDENTIFIER, token]) token = '' state = STATE_START elif state == STATE_STRING: token += char elif state == STATE_IDENTIFIER: result.append([STATE_IDENTIFIER, token]) token = '' state = STATE_START result.append([STATE_SPECIAL_CHAR, char]) elif state == STATE_STRING: token += char else: result.append([STATE_SPECIAL_CHAR, char]) token = '' if state == STATE_IDENTIFIER: result.append([state, token]) elif state == STATE_STRING: result = [[STATE_ERROR, 'Error: string not closed', token]] tokens = result if len(tokens) == 0: print('Parsing error') return None if tokens[0][0] == STATE_ERROR: print(tokens[0][1]) print(tokens[0][2]) print(expression) return None functioncalls = [] while True: if len(tokens) == 0: print('Parsing error') (functioncall, tokens) = (None, tokens) if tokens[0][0] == STATE_STRING or (tokens[0][0] == STATE_IDENTIFIER and tokens[0][1].startswith('0x')): (functioncall, tokens) = [[FUNCTIONNAME_REPEAT, [[STATE_IDENTIFIER, '1'], tokens[0]]], tokens[1:]] if tokens[0][0] != STATE_IDENTIFIER: print('Parsing error') (functioncall, tokens) = (None, tokens) function = tokens[0][1] tokens = tokens[1:] if len(tokens) == 0: print('Parsing error') (functioncall, tokens) = (None, tokens) if tokens[0][0] != STATE_SPECIAL_CHAR or tokens[0][1] != '(': print('Parsing error') (functioncall, tokens) = (None, tokens) tokens = tokens[1:] if len(tokens) == 0: print('Parsing error') (functioncall, tokens) = (None, tokens) arguments = [] while True: if tokens[0][0] != STATE_IDENTIFIER and tokens[0][0] != STATE_STRING: print('Parsing error') (functioncall, tokens) = (None, tokens) arguments.append(tokens[0]) tokens = tokens[1:] if len(tokens) == 0: print('Parsing error') (functioncall, tokens) = (None, tokens) if tokens[0][0] != STATE_SPECIAL_CHAR or (tokens[0][1] != ',' and tokens[0][1] != ')'): print('Parsing error') (functioncall, tokens) = (None, tokens) if tokens[0][0] == STATE_SPECIAL_CHAR and tokens[0][1] == ')': tokens = tokens[1:] break tokens = tokens[1:] if len(tokens) == 0: print('Parsing error') (functioncall, tokens) = (None, tokens) (functioncall, tokens) = [[function, arguments], tokens] if functioncall == None: return None functioncalls.append(functioncall) if len(tokens) == 0: return functioncalls if tokens[0][0] != STATE_SPECIAL_CHAR or tokens[0][1] != '+': print('Parsing error') return None tokens = tokens[1:]
Beta
positive
def add_first(self, stage_info, dim_in=3, pad=True): assert len(stage_info) >= 2 channel = stage_info[0] stride = stage_info[1] <DeepExtract> ret = _get_divisible_by(int(int(channel * self.width_ratio)), self.width_divisor, self.width_divisor) out_depth = ret </DeepExtract> kernel = 3 if len(stage_info) > 2: kernel = stage_info[2] out = ConvBNRelu(dim_in, out_depth, kernel=kernel, stride=stride, pad=kernel // 2 if pad else 0, no_bias=1, use_relu='relu', bn_type=self.bn_type) self.last_depth = out_depth return out
def add_first(self, stage_info, dim_in=3, pad=True): assert len(stage_info) >= 2 channel = stage_info[0] stride = stage_info[1] ret = _get_divisible_by(int(int(channel * self.width_ratio)), self.width_divisor, self.width_divisor) out_depth = ret kernel = 3 if len(stage_info) > 2: kernel = stage_info[2] out = ConvBNRelu(dim_in, out_depth, kernel=kernel, stride=stride, pad=kernel // 2 if pad else 0, no_bias=1, use_relu='relu', bn_type=self.bn_type) self.last_depth = out_depth return out
bezier_curve_text_spotting
positive
def get(self, key): <DeepExtract> if self.root is None: self.root = None if key < self.root.key: self.root = self._get(self.root.left, key) elif key > self.root.key: self.root = self._get(self.root.right, key) else: self.root = self.root </DeepExtract> if x is None: return None else: return x.val
def get(self, key): if self.root is None: self.root = None if key < self.root.key: self.root = self._get(self.root.left, key) elif key > self.root.key: self.root = self._get(self.root.right, key) else: self.root = self.root if x is None: return None else: return x.val
CtCI-6th-Edition
positive
def test_bitarray_random(self): for a in self.randombitarrays(): sa = a.to01() for b in self.randombitarrays(): bb = b.copy() c = bitarray(a) c.extend(b) self.assertEqual(c.to01(), sa + bb.to01()) self.assertEqual(c.endian(), a.endian()) self.assertEqual(len(c), len(a) + len(b)) <DeepExtract> self.assertIsInstance(c, bitarray) (ptr, size, endian, padbits, alloc, readonly, buf, exports) = c.buffer_info() self.assertEqual(size, bits2bytes(len(c))) self.assertEqual(padbits, 8 * size - len(c)) self.assertTrue(0 <= padbits < 8) self.assertEqual(endian, c.endian()) self.assertTrue(endian in ('little', 'big')) self.assertEqual(c.nbytes, size) self.assertEqual(c.padbits, padbits) self.assertEqual(c.readonly, readonly) self.assertEqual(len(c) + c.padbits, 8 * c.nbytes) if buf: self.assertEqual(alloc, 0) self.assertEqual(len(c) % 8, 0) self.assertEqual(len(c), 8 * size) self.assertEqual(padbits, 0) else: self.assertTrue(alloc >= size) if ptr == 0: self.assertEqual(size, 0) self.assertEqual(alloc, 0) if type(c).__name__ == 'frozenbitarray': self.assertEqual(readonly, 1) if padbits: b = bitarray(endian=endian) b.frombytes(c.tobytes()[-1:]) self.assertFalse(b[-padbits:].any()) elif not buf: self.assertEqual(readonly, 0) </DeepExtract> <DeepExtract> self.assertEqual(b, bb) self.assertEqual(b.endian(), bb.endian()) </DeepExtract> <DeepExtract> self.assertIsInstance(b, bitarray) (ptr, size, endian, padbits, alloc, readonly, buf, exports) = b.buffer_info() self.assertEqual(size, bits2bytes(len(b))) self.assertEqual(padbits, 8 * size - len(b)) self.assertTrue(0 <= padbits < 8) self.assertEqual(endian, b.endian()) self.assertTrue(endian in ('little', 'big')) self.assertEqual(b.nbytes, size) self.assertEqual(b.padbits, padbits) self.assertEqual(b.readonly, readonly) self.assertEqual(len(b) + b.padbits, 8 * b.nbytes) if buf: self.assertEqual(alloc, 0) self.assertEqual(len(b) % 8, 0) self.assertEqual(len(b), 8 * size) self.assertEqual(padbits, 0) else: self.assertTrue(alloc >= size) if ptr == 0: self.assertEqual(size, 0) self.assertEqual(alloc, 0) if type(b).__name__ == 'frozenbitarray': self.assertEqual(readonly, 1) if padbits: b = bitarray(endian=endian) b.frombytes(b.tobytes()[-1:]) self.assertFalse(b[-padbits:].any()) elif not buf: self.assertEqual(readonly, 0) </DeepExtract>
def test_bitarray_random(self): for a in self.randombitarrays(): sa = a.to01() for b in self.randombitarrays(): bb = b.copy() c = bitarray(a) c.extend(b) self.assertEqual(c.to01(), sa + bb.to01()) self.assertEqual(c.endian(), a.endian()) self.assertEqual(len(c), len(a) + len(b)) self.assertIsInstance(c, bitarray) (ptr, size, endian, padbits, alloc, readonly, buf, exports) = c.buffer_info() self.assertEqual(size, bits2bytes(len(c))) self.assertEqual(padbits, 8 * size - len(c)) self.assertTrue(0 <= padbits < 8) self.assertEqual(endian, c.endian()) self.assertTrue(endian in ('little', 'big')) self.assertEqual(c.nbytes, size) self.assertEqual(c.padbits, padbits) self.assertEqual(c.readonly, readonly) self.assertEqual(len(c) + c.padbits, 8 * c.nbytes) if buf: self.assertEqual(alloc, 0) self.assertEqual(len(c) % 8, 0) self.assertEqual(len(c), 8 * size) self.assertEqual(padbits, 0) else: self.assertTrue(alloc >= size) if ptr == 0: self.assertEqual(size, 0) self.assertEqual(alloc, 0) if type(c).__name__ == 'frozenbitarray': self.assertEqual(readonly, 1) if padbits: b = bitarray(endian=endian) b.frombytes(c.tobytes()[-1:]) self.assertFalse(b[-padbits:].any()) elif not buf: self.assertEqual(readonly, 0) self.assertEqual(b, bb) self.assertEqual(b.endian(), bb.endian()) self.assertIsInstance(b, bitarray) (ptr, size, endian, padbits, alloc, readonly, buf, exports) = b.buffer_info() self.assertEqual(size, bits2bytes(len(b))) self.assertEqual(padbits, 8 * size - len(b)) self.assertTrue(0 <= padbits < 8) self.assertEqual(endian, b.endian()) self.assertTrue(endian in ('little', 'big')) self.assertEqual(b.nbytes, size) self.assertEqual(b.padbits, padbits) self.assertEqual(b.readonly, readonly) self.assertEqual(len(b) + b.padbits, 8 * b.nbytes) if buf: self.assertEqual(alloc, 0) self.assertEqual(len(b) % 8, 0) self.assertEqual(len(b), 8 * size) self.assertEqual(padbits, 0) else: self.assertTrue(alloc >= size) if ptr == 0: self.assertEqual(size, 0) self.assertEqual(alloc, 0) if type(b).__name__ == 'frozenbitarray': self.assertEqual(readonly, 1) if padbits: b = bitarray(endian=endian) b.frombytes(b.tobytes()[-1:]) self.assertFalse(b[-padbits:].any()) elif not buf: self.assertEqual(readonly, 0) </DeepExtract>
bitarray
positive
def rebalance(self, obs): if not self.init: n_pairs = obs.columns.levels[0].shape[0] action = np.ones(n_pairs) action[-1] = 0 self.crp = array_normalize(action) self.gti = np.ones_like(self.crp) self.init = True if self.step: prev_posit = self.get_portfolio_vector(obs, index=-1) <DeepExtract> raise NotImplementedError() </DeepExtract> return self.update(prev_posit, price_relative) else: return self.crp
def rebalance(self, obs): if not self.init: n_pairs = obs.columns.levels[0].shape[0] action = np.ones(n_pairs) action[-1] = 0 self.crp = array_normalize(action) self.gti = np.ones_like(self.crp) self.init = True if self.step: prev_posit = self.get_portfolio_vector(obs, index=-1) raise NotImplementedError() return self.update(prev_posit, price_relative) else: return self.crp
cryptotrader
positive
def get_circle_cos(origin, res, size, close_end=False): if close_end: res += 1 orgs = np.tile(np.array(origin, dtype=np.float32), res).reshape(-1, 2) pos = orgs + np.array([0.0, size], dtype=np.float32) if close_end: angs = np.arange(res, dtype=np.float32) / (res - 1) * np.radians(360) else: angs = np.arange(res, dtype=np.float32) / res * np.radians(360) <DeepExtract> x = (np.cos(angs) * (pos[:, 0] - orgs[:, 0]) - np.sin(angs) * (pos[:, 1] - orgs[:, 1])).reshape(-1, 1) y = (np.sin(angs) * (pos[:, 0] - orgs[:, 0]) + np.cos(angs) * (pos[:, 1] - orgs[:, 1])).reshape(-1, 1) vecs = np.hstack((x, y)) vecs += np.array(orgs) circ_pos = vecs </DeepExtract> return circ_pos
def get_circle_cos(origin, res, size, close_end=False): if close_end: res += 1 orgs = np.tile(np.array(origin, dtype=np.float32), res).reshape(-1, 2) pos = orgs + np.array([0.0, size], dtype=np.float32) if close_end: angs = np.arange(res, dtype=np.float32) / (res - 1) * np.radians(360) else: angs = np.arange(res, dtype=np.float32) / res * np.radians(360) x = (np.cos(angs) * (pos[:, 0] - orgs[:, 0]) - np.sin(angs) * (pos[:, 1] - orgs[:, 1])).reshape(-1, 1) y = (np.sin(angs) * (pos[:, 0] - orgs[:, 0]) + np.cos(angs) * (pos[:, 1] - orgs[:, 1])).reshape(-1, 1) vecs = np.hstack((x, y)) vecs += np.array(orgs) circ_pos = vecs return circ_pos
Abnormal
positive
def remove_item(self, table_name, key_name, key_value, sort_name=None, sort_value=None): """ Remove item from specified table by pk. :type table_name: str :type key_name: str :param key_value: value of attribute :type sort_name: str :param sort_value: value of attribute """ <DeepExtract> table = self.conn.Table(table_name) </DeepExtract> key = {key_name: key_value} if sort_value and sort_name: key[sort_name] = sort_value table.delete_item(Key=key)
def remove_item(self, table_name, key_name, key_value, sort_name=None, sort_value=None): """ Remove item from specified table by pk. :type table_name: str :type key_name: str :param key_value: value of attribute :type sort_name: str :param sort_value: value of attribute """ table = self.conn.Table(table_name) key = {key_name: key_value} if sort_value and sort_name: key[sort_name] = sort_value table.delete_item(Key=key)
aws-syndicate
positive
@property def graph(self): if self.scene_name not in self._CACHED_GRAPHS: g = nx.DiGraph() <DeepExtract> self.controller.step({'action': 'GetReachablePositions'}) assert self.last_action_success points_slim = self.last_event.metadata['actionReturn'] points = [] for r in [0, 90, 180, 270]: for horizon in [-30, 0, 30, 60]: for p in points_slim: p = copy.copy(p) p['rotation'] = r p['horizon'] = horizon points.append(p) points = points </DeepExtract> for p in points: <DeepExtract> if self.get_key(p) in g: return existing_nodes = set(g.nodes()) g.add_node(self.get_key(p)) for o in self.possible_neighbor_offsets(): t = (self.get_key(p)[0] + o[0], self.get_key(p)[1] + o[1], self.get_key(p)[2] + o[2], self.get_key(p)[3] + o[3]) if t in existing_nodes: self._add_from_to_edge(g, self.get_key(p), t) self._add_from_to_edge(g, t, self.get_key(p)) </DeepExtract> self._CACHED_GRAPHS[self.scene_name] = g return self._CACHED_GRAPHS[self.scene_name]
@property def graph(self): if self.scene_name not in self._CACHED_GRAPHS: g = nx.DiGraph() self.controller.step({'action': 'GetReachablePositions'}) assert self.last_action_success points_slim = self.last_event.metadata['actionReturn'] points = [] for r in [0, 90, 180, 270]: for horizon in [-30, 0, 30, 60]: for p in points_slim: p = copy.copy(p) p['rotation'] = r p['horizon'] = horizon points.append(p) points = points for p in points: if self.get_key(p) in g: return existing_nodes = set(g.nodes()) g.add_node(self.get_key(p)) for o in self.possible_neighbor_offsets(): t = (self.get_key(p)[0] + o[0], self.get_key(p)[1] + o[1], self.get_key(p)[2] + o[2], self.get_key(p)[3] + o[3]) if t in existing_nodes: self._add_from_to_edge(g, self.get_key(p), t) self._add_from_to_edge(g, t, self.get_key(p)) self._CACHED_GRAPHS[self.scene_name] = g return self._CACHED_GRAPHS[self.scene_name]
allenact
positive
def test_save_question_with_update_multiple_choice_question(self): MultipleChoiceQuestion.objects.create(question_id=2, assignment=Assignment.objects.get(assignment_id=1), title='Hideauze', description='Who where the Hideauze?', a='Former Humans', a_is_correct=True, b='Aliens', b_is_correct=False, c='Magical or Supernatural Creatures', c_is_correct=False, d='Transhumanists', d_is_correct=True, e='Heavenly Creatures', e_is_correct=True) kwargs = {'HTTP_X_REQUESTED_WITH': 'XMLHttpRequest'} <DeepExtract> client = Client() client.login(username=TEST_USER_USERNAME, password=TEST_USER_PASSWORD) client = client </DeepExtract> response = client.post('/teacher/course/1/assignment/1/save_question', {'question_id': 2, 'question_type': settings.MULTIPLECHOICE_QUESTION_TYPE, 'question_num': 1, 'title': 'Sun', 'description': 'Why did humanity leave Earth?', 'a': 'Global Cooling', 'b': 'Abnormal Solar Hibernation', 'c': 'Global Warming', 'd': 'World Peace', 'a_is_correct': True, 'b_is_correct': True, 'marks': 1}, **kwargs) self.assertEqual(response.status_code, 200) json_string = response.content.decode(encoding='UTF-8') array = json.loads(json_string) self.assertEqual(array['message'], 'question was saved') self.assertEqual(array['status'], 'success')
def test_save_question_with_update_multiple_choice_question(self): MultipleChoiceQuestion.objects.create(question_id=2, assignment=Assignment.objects.get(assignment_id=1), title='Hideauze', description='Who where the Hideauze?', a='Former Humans', a_is_correct=True, b='Aliens', b_is_correct=False, c='Magical or Supernatural Creatures', c_is_correct=False, d='Transhumanists', d_is_correct=True, e='Heavenly Creatures', e_is_correct=True) kwargs = {'HTTP_X_REQUESTED_WITH': 'XMLHttpRequest'} client = Client() client.login(username=TEST_USER_USERNAME, password=TEST_USER_PASSWORD) client = client response = client.post('/teacher/course/1/assignment/1/save_question', {'question_id': 2, 'question_type': settings.MULTIPLECHOICE_QUESTION_TYPE, 'question_num': 1, 'title': 'Sun', 'description': 'Why did humanity leave Earth?', 'a': 'Global Cooling', 'b': 'Abnormal Solar Hibernation', 'c': 'Global Warming', 'd': 'World Peace', 'a_is_correct': True, 'b_is_correct': True, 'marks': 1}, **kwargs) self.assertEqual(response.status_code, 200) json_string = response.content.decode(encoding='UTF-8') array = json.loads(json_string) self.assertEqual(array['message'], 'question was saved') self.assertEqual(array['status'], 'success')
academicstoday-django
positive
def read_odoo_setup(self): """Ugly method to extract requirements & version from ugly setup.py. Primarily designed for 6.0, but works with 6.1 as well. """ old_setup = setuptools.setup old_distutils_setup = distutils.core.setup def new_setup(*args, **kw): self.requirements.extend(kw.get('install_requires', ())) self.version_detected = kw['version'] setuptools.setup = new_setup distutils.core.setup = new_setup sys.path.insert(0, '.') with open(join(self.odoo_dir, 'setup.py'), 'rb') as f: saved_argv = sys.argv sys.argv = ['setup.py', 'develop'] try: imp.load_module('setup', f, 'setup.py', ('.py', 'r', imp.PY_SOURCE)) except SystemExit as exception: if 'dsextras' in unicode(exception): raise EnvironmentError('Please first install PyGObject and PyGTK !') else: try: <DeepExtract> with open(join(self.odoo_dir, 'bin', 'release.py'), 'rb') as f: mod = imp.load_module('release', f, 'release.py', ('.py', 'r', imp.PY_SOURCE)) self.version_detected = mod.version </DeepExtract> except Exception as exc: raise EnvironmentError('Problem while reading Odoo release.py: %s' % exc) except ImportError as exception: if 'babel' in unicode(exception): raise EnvironmentError('OpenERP setup.py has an unwanted import Babel.\n=> First install Babel on your system or virtualenv :(\n(sudo aptitude install python-babel, or pip install babel)') else: raise exception except Exception as exception: raise EnvironmentError('Problem while reading Odoo setup.py: %s' % exception) finally: sys.argv = saved_argv sys.path.pop(0) setuptools.setup = old_setup distutils.core.setup = old_distutils_setup <DeepExtract> pass </DeepExtract>
def read_odoo_setup(self): """Ugly method to extract requirements & version from ugly setup.py. Primarily designed for 6.0, but works with 6.1 as well. """ old_setup = setuptools.setup old_distutils_setup = distutils.core.setup def new_setup(*args, **kw): self.requirements.extend(kw.get('install_requires', ())) self.version_detected = kw['version'] setuptools.setup = new_setup distutils.core.setup = new_setup sys.path.insert(0, '.') with open(join(self.odoo_dir, 'setup.py'), 'rb') as f: saved_argv = sys.argv sys.argv = ['setup.py', 'develop'] try: imp.load_module('setup', f, 'setup.py', ('.py', 'r', imp.PY_SOURCE)) except SystemExit as exception: if 'dsextras' in unicode(exception): raise EnvironmentError('Please first install PyGObject and PyGTK !') else: try: with open(join(self.odoo_dir, 'bin', 'release.py'), 'rb') as f: mod = imp.load_module('release', f, 'release.py', ('.py', 'r', imp.PY_SOURCE)) self.version_detected = mod.version except Exception as exc: raise EnvironmentError('Problem while reading Odoo release.py: %s' % exc) except ImportError as exception: if 'babel' in unicode(exception): raise EnvironmentError('OpenERP setup.py has an unwanted import Babel.\n=> First install Babel on your system or virtualenv :(\n(sudo aptitude install python-babel, or pip install babel)') else: raise exception except Exception as exception: raise EnvironmentError('Problem while reading Odoo setup.py: %s' % exception) finally: sys.argv = saved_argv sys.path.pop(0) setuptools.setup = old_setup distutils.core.setup = old_distutils_setup pass </DeepExtract>
anybox.recipe.odoo
positive