before
stringlengths
0
955k
after
stringlengths
0
877k
repo
stringlengths
1
74
type
stringclasses
1 value
@unittest.expectedFailure def test_673_centos8_cntlm_dockerfile(self): """ WHEN using a dockerfile for systemd-enabled CentOS 8, THEN we can create an image with an cntlm service being installed and enabled. Addtionally we do check an example application""" if not os.path.exists(DOCKER_SOCKET): self.skipTest('docker-based test') if not os.path.exists(PSQL_TOOL): self.skipTest('postgres tools missing on host') docker = _docker curl = _curl max4 = _curl_timeout4 python = _python or _python2 if python.endswith('python3'): self.skipTest('no python3 on centos:7') <DeepExtract> name = self.caller_testname() if suffix: testname = name + '_' + suffix testname = name </DeepExtract> <DeepExtract> testname = testname or self.caller_testname() newdir = 'tmp/tmp.' + testname if os.path.isdir(newdir): shutil.rmtree(newdir) os.makedirs(newdir) testdir = newdir </DeepExtract> dockerfile = 'centos8-cntlm.dockerfile' <DeepExtract> image = '' for line in open(dockerfile): m = re.match('[Ff][Rr][Oo][Mm] *"([^"]*)"', line) if m: image = m.group(1) break m = re.match('[Ff][Rr][Oo][Mm] *(\\w[^ ]*)', line) if m: image = m.group(1).strip() break logg.debug("--\n-- '%s' FROM '%s'", dockerfile, image) if image: addhosts = self.start_mirror(image, extras) addhosts = '' </DeepExtract> <DeepExtract> savename = os.path.splitext(os.path.basename(dockerfile))[0] </DeepExtract> saveto = SAVETO images = IMAGES psql = PSQL_TOOL cmd = '{docker} build . -f {dockerfile} {addhosts} --tag {images}:{testname}' <DeepExtract> if isinstance(cmd.format(**locals()), basestring): logg.info(': %s', cmd.format(**locals())) else: logg.info(': %s', ' '.join(["'%s'" % item for item in cmd.format(**locals())])) return subprocess.check_call(cmd.format(**locals()), shell=shell) </DeepExtract> cmd = '{docker} rm --force {testname}' <DeepExtract> if isinstance(cmd.format(**locals()), basestring): logg.info(': %s', cmd.format(**locals())) else: logg.info(': %s', ' '.join(["'%s'" % item for item in cmd.format(**locals())])) return subprocess.call(cmd.format(**locals()), shell=shell) </DeepExtract> cmd = '{docker} run -d --name {testname} {images}:{testname}' <DeepExtract> if isinstance(cmd.format(**locals()), basestring): logg.info(': %s', cmd.format(**locals())) else: logg.info(': %s', ' '.join(["'%s'" % item for item in cmd.format(**locals())])) return subprocess.check_call(cmd.format(**locals()), shell=shell) </DeepExtract> <DeepExtract> docker = _docker cmd = '{docker} inspect {name}' values = output(cmd.format(**locals())) values = json.loads(values) if not values or 'NetworkSettings' not in values[0]: logg.critical(' docker inspect %s => %s ', testname, values) container = values[0]['NetworkSettings']['IPAddress'] </DeepExtract> for attempt in xrange(9): cmd = '{docker} exec {testname} /usr/bin/systemctl is-active cntlm' <DeepExtract> if isinstance(cmd.format(**locals()), basestring): logg.info(': %s', cmd.format(**locals())) else: logg.info(': %s', ' '.join(["'%s'" % item for item in cmd.format(**locals())])) run = subprocess.Popen(cmd.format(**locals()), shell=shell, stdout=subprocess.PIPE) (out, err) = run.communicate() (out, end) = (decodes(out), run.returncode) </DeepExtract> logg.info('is-active => %s', out) time.sleep(1) if not end: break cmd = 'http_proxy={container}:3128 {curl} {max4} -o {testdir}/{testname}.txt http://www.google.com' <DeepExtract> if isinstance(cmd.format(**locals()), basestring): logg.info(': %s', cmd.format(**locals())) else: logg.info(': %s', ' '.join(["'%s'" % item for item in cmd.format(**locals())])) return subprocess.check_call(cmd.format(**locals()), shell=shell) </DeepExtract> cmd = "grep '<img alt=.Google.' {testdir}/{testname}.txt" <DeepExtract> if isinstance(cmd.format(**locals()), basestring): logg.info(': %s', cmd.format(**locals())) else: logg.info(': %s', ' '.join(["'%s'" % item for item in cmd.format(**locals())])) return subprocess.check_call(cmd.format(**locals()), shell=shell) </DeepExtract> cmd = '{docker} stop {testname}' <DeepExtract> if isinstance(cmd.format(**locals()), basestring): logg.info(': %s', cmd.format(**locals())) else: logg.info(': %s', ' '.join(["'%s'" % item for item in cmd.format(**locals())])) return subprocess.check_call(cmd.format(**locals()), shell=shell) </DeepExtract> cmd = '{docker} rm --force {testname}' <DeepExtract> if isinstance(cmd.format(**locals()), basestring): logg.info(': %s', cmd.format(**locals())) else: logg.info(': %s', ' '.join(["'%s'" % item for item in cmd.format(**locals())])) return subprocess.check_call(cmd.format(**locals()), shell=shell) </DeepExtract> cmd = '{docker} rmi {saveto}/{savename}:latest' <DeepExtract> if isinstance(cmd.format(**locals()), basestring): logg.info(': %s', cmd.format(**locals())) else: logg.info(': %s', ' '.join(["'%s'" % item for item in cmd.format(**locals())])) return subprocess.call(cmd.format(**locals()), shell=shell) </DeepExtract> cmd = '{docker} tag {images}:{testname} {saveto}/{savename}:latest' <DeepExtract> if isinstance(cmd.format(**locals()), basestring): logg.info(': %s', cmd.format(**locals())) else: logg.info(': %s', ' '.join(["'%s'" % item for item in cmd.format(**locals())])) return subprocess.check_call(cmd.format(**locals()), shell=shell) </DeepExtract> cmd = '{docker} rmi {images}:{testname}' <DeepExtract> if isinstance(cmd.format(**locals()), basestring): logg.info(': %s', cmd.format(**locals())) else: logg.info(': %s', ' '.join(["'%s'" % item for item in cmd.format(**locals())])) return subprocess.call(cmd.format(**locals()), shell=shell) </DeepExtract> <DeepExtract> testname = testname or self.caller_testname() newdir = 'tmp/tmp.' + testname if os.path.isdir(newdir): shutil.rmtree(newdir) return newdir </DeepExtract>
@unittest.expectedFailure def test_673_centos8_cntlm_dockerfile(self): """ WHEN using a dockerfile for systemd-enabled CentOS 8, THEN we can create an image with an cntlm service being installed and enabled. Addtionally we do check an example application""" if not os.path.exists(DOCKER_SOCKET): self.skipTest('docker-based test') if not os.path.exists(PSQL_TOOL): self.skipTest('postgres tools missing on host') docker = _docker curl = _curl max4 = _curl_timeout4 python = _python or _python2 if python.endswith('python3'): self.skipTest('no python3 on centos:7') name = self.caller_testname() if suffix: testname = name + '_' + suffix testname = name testname = testname or self.caller_testname() newdir = 'tmp/tmp.' + testname if os.path.isdir(newdir): shutil.rmtree(newdir) os.makedirs(newdir) testdir = newdir dockerfile = 'centos8-cntlm.dockerfile' image = '' for line in open(dockerfile): m = re.match('[Ff][Rr][Oo][Mm] *"([^"]*)"', line) if m: image = m.group(1) break m = re.match('[Ff][Rr][Oo][Mm] *(\\w[^ ]*)', line) if m: image = m.group(1).strip() break logg.debug("--\n-- '%s' FROM '%s'", dockerfile, image) if image: addhosts = self.start_mirror(image, extras) addhosts = '' savename = os.path.splitext(os.path.basename(dockerfile))[0] saveto = SAVETO images = IMAGES psql = PSQL_TOOL cmd = '{docker} build . -f {dockerfile} {addhosts} --tag {images}:{testname}' if isinstance(cmd.format(**locals()), basestring): logg.info(': %s', cmd.format(**locals())) else: logg.info(': %s', ' '.join(["'%s'" % item for item in cmd.format(**locals())])) return subprocess.check_call(cmd.format(**locals()), shell=shell) cmd = '{docker} rm --force {testname}' if isinstance(cmd.format(**locals()), basestring): logg.info(': %s', cmd.format(**locals())) else: logg.info(': %s', ' '.join(["'%s'" % item for item in cmd.format(**locals())])) return subprocess.call(cmd.format(**locals()), shell=shell) cmd = '{docker} run -d --name {testname} {images}:{testname}' if isinstance(cmd.format(**locals()), basestring): logg.info(': %s', cmd.format(**locals())) else: logg.info(': %s', ' '.join(["'%s'" % item for item in cmd.format(**locals())])) return subprocess.check_call(cmd.format(**locals()), shell=shell) docker = _docker cmd = '{docker} inspect {name}' values = output(cmd.format(**locals())) values = json.loads(values) if not values or 'NetworkSettings' not in values[0]: logg.critical(' docker inspect %s => %s ', testname, values) container = values[0]['NetworkSettings']['IPAddress'] for attempt in xrange(9): cmd = '{docker} exec {testname} /usr/bin/systemctl is-active cntlm' if isinstance(cmd.format(**locals()), basestring): logg.info(': %s', cmd.format(**locals())) else: logg.info(': %s', ' '.join(["'%s'" % item for item in cmd.format(**locals())])) run = subprocess.Popen(cmd.format(**locals()), shell=shell, stdout=subprocess.PIPE) (out, err) = run.communicate() (out, end) = (decodes(out), run.returncode) logg.info('is-active => %s', out) time.sleep(1) if not end: break cmd = 'http_proxy={container}:3128 {curl} {max4} -o {testdir}/{testname}.txt http://www.google.com' if isinstance(cmd.format(**locals()), basestring): logg.info(': %s', cmd.format(**locals())) else: logg.info(': %s', ' '.join(["'%s'" % item for item in cmd.format(**locals())])) return subprocess.check_call(cmd.format(**locals()), shell=shell) cmd = "grep '<img alt=.Google.' {testdir}/{testname}.txt" if isinstance(cmd.format(**locals()), basestring): logg.info(': %s', cmd.format(**locals())) else: logg.info(': %s', ' '.join(["'%s'" % item for item in cmd.format(**locals())])) return subprocess.check_call(cmd.format(**locals()), shell=shell) cmd = '{docker} stop {testname}' if isinstance(cmd.format(**locals()), basestring): logg.info(': %s', cmd.format(**locals())) else: logg.info(': %s', ' '.join(["'%s'" % item for item in cmd.format(**locals())])) return subprocess.check_call(cmd.format(**locals()), shell=shell) cmd = '{docker} rm --force {testname}' if isinstance(cmd.format(**locals()), basestring): logg.info(': %s', cmd.format(**locals())) else: logg.info(': %s', ' '.join(["'%s'" % item for item in cmd.format(**locals())])) return subprocess.check_call(cmd.format(**locals()), shell=shell) cmd = '{docker} rmi {saveto}/{savename}:latest' if isinstance(cmd.format(**locals()), basestring): logg.info(': %s', cmd.format(**locals())) else: logg.info(': %s', ' '.join(["'%s'" % item for item in cmd.format(**locals())])) return subprocess.call(cmd.format(**locals()), shell=shell) cmd = '{docker} tag {images}:{testname} {saveto}/{savename}:latest' if isinstance(cmd.format(**locals()), basestring): logg.info(': %s', cmd.format(**locals())) else: logg.info(': %s', ' '.join(["'%s'" % item for item in cmd.format(**locals())])) return subprocess.check_call(cmd.format(**locals()), shell=shell) cmd = '{docker} rmi {images}:{testname}' if isinstance(cmd.format(**locals()), basestring): logg.info(': %s', cmd.format(**locals())) else: logg.info(': %s', ' '.join(["'%s'" % item for item in cmd.format(**locals())])) return subprocess.call(cmd.format(**locals()), shell=shell) testname = testname or self.caller_testname() newdir = 'tmp/tmp.' + testname if os.path.isdir(newdir): shutil.rmtree(newdir) return newdir </DeepExtract>
docker-systemctl-images
positive
def im_detect_mask_aspect_ratio(model, im, aspect_ratio, boxes, hflip=False): """Computes mask detections at the given width-relative aspect ratio""" im_ar = image_utils.aspect_ratio_rel(im, aspect_ratio) boxes_ar = box_utils.aspect_ratio(boxes, aspect_ratio) if hflip: <DeepExtract> im_hf = im_ar[:, ::-1, :] boxes_hf = box_utils.flip_boxes(boxes_ar, im_ar.shape[1]) (blob_conv_hf, im_scale_hf) = im_conv_body_only(model, im_hf, cfg.TEST.SCALE, cfg.TEST.MAX_SIZE) masks_hf = im_detect_mask(model, im_scale_hf, boxes_hf, blob_conv_hf) masks_inv = masks_hf[:, :, :, ::-1] masks_ar = masks_inv </DeepExtract> else: <DeepExtract> boxes = None (inputs, im_scale) = _get_blobs(im, boxes, target_scale, target_max_size) conv_body_only = np.ones(1, dtype=np.int) if cfg.PYTORCH_VERSION_LESS_THAN_040: inputs['data'] = [Variable(torch.from_numpy(inputs['data']), volatile=True)] inputs['im_info'] = [Variable(torch.from_numpy(inputs['im_info']), volatile=True)] inputs['conv_body_only'] = [Variable(torch.from_numpy(conv_body_only), volatile=True)] else: inputs['data'] = [Variable(torch.from_numpy(inputs['data']))] inputs['im_info'] = [Variable(torch.from_numpy(inputs['im_info']))] inputs['conv_body_only'] = [Variable(torch.from_numpy(conv_body_only))] blob_conv = model(**inputs) (blob_conv_ar, im_scale_ar) = (blob_conv, im_scale) </DeepExtract> <DeepExtract> M = cfg.MRCNN.RESOLUTION if boxes_ar.shape[0] == 0: pred_masks = np.zeros((0, M, M), np.float32) masks_ar = pred_masks inputs = {'mask_rois': _get_rois_blob(boxes_ar, im_scale_ar)} if cfg.FPN.MULTILEVEL_ROIS: _add_multilevel_rois_for_test(inputs, 'mask_rois') if not cfg.MODEL.INMODAL_ON: pred_masks = model.module.mask_net(blob_conv_ar, inputs) pred_masks = pred_masks.data.cpu().numpy().squeeze() if cfg.MRCNN.CLS_SPECIFIC_MASK: pred_masks = pred_masks.reshape([-1, cfg.MODEL.NUM_CLASSES, M, M]) else: pred_masks = pred_masks.reshape([-1, 1, M, M]) masks_ar = pred_masks else: (pred_amodals, pred_inmodals) = model.module.mask_net(blob_conv_ar, inputs) pred_amodals = pred_amodals.data.cpu().numpy().squeeze() pred_inmodals = pred_inmodals.data.cpu().numpy().squeeze() if cfg.MRCNN.CLS_SPECIFIC_MASK: pred_amodals = pred_amodals.reshape([-1, cfg.MODEL.NUM_CLASSES, M, M]) pred_inmodals = pred_inmodals.reshape([-1, cfg.MODEL.NUM_CLASSES, M, M]) else: pred_amodals = pred_amodals.reshape([-1, 1, M, M]) pred_inmodals = pred_inmodals.reshape([-1, 1, M, M]) masks_ar = (pred_amodals, pred_inmodals) </DeepExtract> return masks_ar
def im_detect_mask_aspect_ratio(model, im, aspect_ratio, boxes, hflip=False): """Computes mask detections at the given width-relative aspect ratio""" im_ar = image_utils.aspect_ratio_rel(im, aspect_ratio) boxes_ar = box_utils.aspect_ratio(boxes, aspect_ratio) if hflip: im_hf = im_ar[:, ::-1, :] boxes_hf = box_utils.flip_boxes(boxes_ar, im_ar.shape[1]) (blob_conv_hf, im_scale_hf) = im_conv_body_only(model, im_hf, cfg.TEST.SCALE, cfg.TEST.MAX_SIZE) masks_hf = im_detect_mask(model, im_scale_hf, boxes_hf, blob_conv_hf) masks_inv = masks_hf[:, :, :, ::-1] masks_ar = masks_inv else: boxes = None (inputs, im_scale) = _get_blobs(im, boxes, target_scale, target_max_size) conv_body_only = np.ones(1, dtype=np.int) if cfg.PYTORCH_VERSION_LESS_THAN_040: inputs['data'] = [Variable(torch.from_numpy(inputs['data']), volatile=True)] inputs['im_info'] = [Variable(torch.from_numpy(inputs['im_info']), volatile=True)] inputs['conv_body_only'] = [Variable(torch.from_numpy(conv_body_only), volatile=True)] else: inputs['data'] = [Variable(torch.from_numpy(inputs['data']))] inputs['im_info'] = [Variable(torch.from_numpy(inputs['im_info']))] inputs['conv_body_only'] = [Variable(torch.from_numpy(conv_body_only))] blob_conv = model(**inputs) (blob_conv_ar, im_scale_ar) = (blob_conv, im_scale) M = cfg.MRCNN.RESOLUTION if boxes_ar.shape[0] == 0: pred_masks = np.zeros((0, M, M), np.float32) masks_ar = pred_masks inputs = {'mask_rois': _get_rois_blob(boxes_ar, im_scale_ar)} if cfg.FPN.MULTILEVEL_ROIS: _add_multilevel_rois_for_test(inputs, 'mask_rois') if not cfg.MODEL.INMODAL_ON: pred_masks = model.module.mask_net(blob_conv_ar, inputs) pred_masks = pred_masks.data.cpu().numpy().squeeze() if cfg.MRCNN.CLS_SPECIFIC_MASK: pred_masks = pred_masks.reshape([-1, cfg.MODEL.NUM_CLASSES, M, M]) else: pred_masks = pred_masks.reshape([-1, 1, M, M]) masks_ar = pred_masks else: (pred_amodals, pred_inmodals) = model.module.mask_net(blob_conv_ar, inputs) pred_amodals = pred_amodals.data.cpu().numpy().squeeze() pred_inmodals = pred_inmodals.data.cpu().numpy().squeeze() if cfg.MRCNN.CLS_SPECIFIC_MASK: pred_amodals = pred_amodals.reshape([-1, cfg.MODEL.NUM_CLASSES, M, M]) pred_inmodals = pred_inmodals.reshape([-1, cfg.MODEL.NUM_CLASSES, M, M]) else: pred_amodals = pred_amodals.reshape([-1, 1, M, M]) pred_inmodals = pred_inmodals.reshape([-1, 1, M, M]) masks_ar = (pred_amodals, pred_inmodals) return masks_ar
Amodal-Instance-Segmentation-through-KINS-Dataset
positive
def batch_encode_plus(self, batch_text_or_text_pairs=None, add_special_tokens=False, max_length=None, stride=0, truncation_strategy='longest_first', return_tensors=None, return_input_lengths=False, return_attention_masks=False, **kwargs): """ Returns a dictionary containing the encoded sequence or sequence pair and additional information: the mask for sequence classification and the overflowing elements if a ``max_length`` is specified. Args: batch_text_or_text_pairs: Batch of sequences or pair of sequences to be encoded. This can be a list of string/string-sequences/int-sequences or a list of pair of string/string-sequences/int-sequence (see details in encode_plus) add_special_tokens: if set to ``True``, the sequences will be encoded with the special tokens relative to their model. max_length: if set to a number, will limit the total sequence returned so that it has a maximum length. If there are overflowing tokens, those will be added to the returned dictionary` stride: if set to a number along with max_length, the overflowing tokens returned will contain some tokens from the main sequence returned. The value of this argument defines the number of additional tokens. truncation_strategy: string selected in the following options: - 'longest_first' (default) Iteratively reduce the inputs sequence until the input is under max_length starting from the longest one at each token (when there is a pair of input sequences) - 'only_first': Only truncate the first sequence - 'only_second': Only truncate the second sequence - 'do_not_truncate': Does not truncate (raise an error if the input sequence is longer than max_length) return_tensors: (optional) can be set to 'tf' or 'pt' to return respectively TensorFlow tf.constant or PyTorch torch.Tensor instead of a list of python integers. **kwargs: passed to the `self.tokenize()` method """ batch_outputs = {} for ids_or_pair_ids in batch_text_or_text_pairs: if isinstance(ids_or_pair_ids, (list, tuple)): assert len(ids_or_pair_ids) == 2 (ids, pair_ids) = ids_or_pair_ids else: (ids, pair_ids) = (ids_or_pair_ids, None) <DeepExtract> def get_input_ids(text): if isinstance(ids, str): outputs = self.convert_tokens_to_ids(self.tokenize(ids, **kwargs)) elif isinstance(ids, (list, tuple)) and len(ids) > 0 and isinstance(ids[0], str): outputs = self.convert_tokens_to_ids(ids) elif isinstance(ids, (list, tuple)) and len(ids) > 0 and isinstance(ids[0], int): outputs = ids else: raise ValueError('Input is not valid. Should be a string, a list/tuple of strings or a list/tuple of integers.') first_ids = get_input_ids(ids) second_ids = get_input_ids(pair_ids) if pair_ids is not None else None outputs = self.prepare_for_model(first_ids, pair_ids=second_ids, max_length=max_length, pad_to_max_length=pad_to_max_length, add_special_tokens=add_special_tokens, stride=stride, truncation_strategy=truncation_strategy, return_tensors=None, return_attention_mask=return_attention_mask, return_token_type_ids=return_token_type_ids, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask) </DeepExtract> if return_input_lengths: outputs['input_len'] = len(outputs['input_ids']) for (key, value) in outputs.items(): if key not in batch_outputs: batch_outputs[key] = [] batch_outputs[key].append(value) max_seq_len = max(map(len, batch_outputs['input_ids'])) if return_attention_masks: batch_outputs['attention_mask'] = [[0] * len(v) for v in batch_outputs['input_ids']] if return_tensors is not None: for (key, value) in batch_outputs.items(): padded_value = value if key != 'input_len' and self._pad_token is not None: padded_value = [v + [self.pad_token_id if key == 'input_ids' else 1] * (max_seq_len - len(v)) for v in padded_value] if return_tensors == 'tf' and is_tf_available(): batch_outputs[key] = tf.constant(padded_value) elif return_tensors == 'pt' and is_torch_available(): batch_outputs[key] = torch.tensor(padded_value) elif return_tensors is not None: logger.warning('Unable to convert output to tensors format {}, PyTorch or TensorFlow is not available.'.format(return_tensors)) if return_attention_masks: if is_tf_available(): batch_outputs['attention_mask'] = tf.abs(batch_outputs['attention_mask'] - 1) else: batch_outputs['attention_mask'] = torch.abs(batch_outputs['attention_mask'] - 1) return batch_outputs
def batch_encode_plus(self, batch_text_or_text_pairs=None, add_special_tokens=False, max_length=None, stride=0, truncation_strategy='longest_first', return_tensors=None, return_input_lengths=False, return_attention_masks=False, **kwargs): """ Returns a dictionary containing the encoded sequence or sequence pair and additional information: the mask for sequence classification and the overflowing elements if a ``max_length`` is specified. Args: batch_text_or_text_pairs: Batch of sequences or pair of sequences to be encoded. This can be a list of string/string-sequences/int-sequences or a list of pair of string/string-sequences/int-sequence (see details in encode_plus) add_special_tokens: if set to ``True``, the sequences will be encoded with the special tokens relative to their model. max_length: if set to a number, will limit the total sequence returned so that it has a maximum length. If there are overflowing tokens, those will be added to the returned dictionary` stride: if set to a number along with max_length, the overflowing tokens returned will contain some tokens from the main sequence returned. The value of this argument defines the number of additional tokens. truncation_strategy: string selected in the following options: - 'longest_first' (default) Iteratively reduce the inputs sequence until the input is under max_length starting from the longest one at each token (when there is a pair of input sequences) - 'only_first': Only truncate the first sequence - 'only_second': Only truncate the second sequence - 'do_not_truncate': Does not truncate (raise an error if the input sequence is longer than max_length) return_tensors: (optional) can be set to 'tf' or 'pt' to return respectively TensorFlow tf.constant or PyTorch torch.Tensor instead of a list of python integers. **kwargs: passed to the `self.tokenize()` method """ batch_outputs = {} for ids_or_pair_ids in batch_text_or_text_pairs: if isinstance(ids_or_pair_ids, (list, tuple)): assert len(ids_or_pair_ids) == 2 (ids, pair_ids) = ids_or_pair_ids else: (ids, pair_ids) = (ids_or_pair_ids, None) def get_input_ids(text): if isinstance(ids, str): outputs = self.convert_tokens_to_ids(self.tokenize(ids, **kwargs)) elif isinstance(ids, (list, tuple)) and len(ids) > 0 and isinstance(ids[0], str): outputs = self.convert_tokens_to_ids(ids) elif isinstance(ids, (list, tuple)) and len(ids) > 0 and isinstance(ids[0], int): outputs = ids else: raise ValueError('Input is not valid. Should be a string, a list/tuple of strings or a list/tuple of integers.') first_ids = get_input_ids(ids) second_ids = get_input_ids(pair_ids) if pair_ids is not None else None outputs = self.prepare_for_model(first_ids, pair_ids=second_ids, max_length=max_length, pad_to_max_length=pad_to_max_length, add_special_tokens=add_special_tokens, stride=stride, truncation_strategy=truncation_strategy, return_tensors=None, return_attention_mask=return_attention_mask, return_token_type_ids=return_token_type_ids, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask) if return_input_lengths: outputs['input_len'] = len(outputs['input_ids']) for (key, value) in outputs.items(): if key not in batch_outputs: batch_outputs[key] = [] batch_outputs[key].append(value) max_seq_len = max(map(len, batch_outputs['input_ids'])) if return_attention_masks: batch_outputs['attention_mask'] = [[0] * len(v) for v in batch_outputs['input_ids']] if return_tensors is not None: for (key, value) in batch_outputs.items(): padded_value = value if key != 'input_len' and self._pad_token is not None: padded_value = [v + [self.pad_token_id if key == 'input_ids' else 1] * (max_seq_len - len(v)) for v in padded_value] if return_tensors == 'tf' and is_tf_available(): batch_outputs[key] = tf.constant(padded_value) elif return_tensors == 'pt' and is_torch_available(): batch_outputs[key] = torch.tensor(padded_value) elif return_tensors is not None: logger.warning('Unable to convert output to tensors format {}, PyTorch or TensorFlow is not available.'.format(return_tensors)) if return_attention_masks: if is_tf_available(): batch_outputs['attention_mask'] = tf.abs(batch_outputs['attention_mask'] - 1) else: batch_outputs['attention_mask'] = torch.abs(batch_outputs['attention_mask'] - 1) return batch_outputs
BERT-Relation-Extraction
positive
def generate_ring_pattern(image_size, mask=False, mask_radius=10, scale=100, amplitude=1000, spread=2, direct_beam_amplitude=500, asymmetry=1, rotation=0): """Calculate a set of rings to model a polycrystalline gold diffraction pattern for use in fitting for diffraction pattern calibration. It is suggested that the function generate_ring_pattern is used to find initial values (initial guess) for the parameters used in the function fit_ring_pattern. This function is written expecting a single 2D diffraction pattern with equal dimensions (e.g. 256x256). Parameters ---------- mask : bool Choice of whether to use mask or not (mask=True will return a specified circular mask setting a region around the direct beam to zero) mask_radius : int The radius in pixels for a mask over the direct beam disc (the direct beam disc within given radius will be excluded from the fit) scale : float An initial guess for the diffraction calibration in 1/Angstrom units image_size : int Size of the diffraction pattern to be generated in pixels. amplitude : float An initial guess for the amplitude of the polycrystalline rings in arbitrary units spread : float An initial guess for the spread within each ring (Gaussian width) direct_beam_amplitude : float An initial guess for the background intensity from the direct beam disc in arbitrary units asymmetry : float An initial guess for any elliptical asymmetry in the pattern (for a perfectly circular pattern asymmetry=1) rotation : float An initial guess for the rotation of the (elliptical) pattern in radians. Returns ------- image : np.array() Simulated ring pattern with the same dimensions as self.data """ xi = np.linspace(0, image_size - 1, image_size) yi = np.linspace(0, image_size - 1, image_size) (x, y) = np.meshgrid(xi, yi) pts = np.array([x.ravel(), y.ravel()]).ravel() xcenter = (image_size - 1) / 2 ycenter = (image_size - 1) / 2 <DeepExtract> def ring_pattern(pts, scale, amplitude, spread, direct_beam_amplitude, asymmetry, rotation): """Calculates a polycrystalline gold diffraction pattern given a set of pixel coordinates (points). It uses tabulated values of the spacings (in reciprocal Angstroms) and relative intensities of rings derived from X-ray scattering factors. Parameters ----------- pts : 1D array One-dimensional array of points (first half as first-dimension coordinates, second half as second-dimension coordinates) scale : float An initial guess for the diffraction calibration in 1/Angstrom units amplitude : float An initial guess for the amplitude of the polycrystalline rings in arbitrary units spread : float An initial guess for the spread within each ring (Gaussian width) direct_beam_amplitude : float An initial guess for the background intensity from the direct beam disc in arbitrary units asymmetry : float An initial guess for any elliptical asymmetry in the pattern (for a perfectly circular pattern asymmetry=1) rotation : float An initial guess for the rotation of the (elliptical) pattern in radians. Returns ------- ring_pattern : np.array() A one-dimensional array of the intensities of the ring pattern at the supplied points. """ rings = [0.4247, 0.4904, 0.6935, 0.8132, 0.8494, 0.9808, 1.0688, 1.0966] rings = np.multiply(rings, scale) amps = [1, 0.44, 0.19, 0.16, 0.04, 0.014, 0.038, 0.036] x = pts[:round(np.size(pts, 0) / 2)] y = pts[round(np.size(pts, 0) / 2):] Ri = calc_radius_with_distortion(x, y, xcenter, ycenter, asymmetry, rotation) v = [] denom = 2 * spread ** 2 v.append(direct_beam_amplitude * Ri ** (-2)) for i in [0, 1, 2, 3, 4, 5, 6, 7]: v.append(amps[i] * np.exp(-1 * (Ri - rings[i]) * (Ri - rings[i]) / denom)) ring_pattern = amplitude * (v[0] + v[1] + v[2] + v[3] + v[4] + v[5] + v[6] + v[7] + v[8]).ravel() ring_pattern = ring_pattern </DeepExtract> <DeepExtract> rings = [0.4247, 0.4904, 0.6935, 0.8132, 0.8494, 0.9808, 1.0688, 1.0966] rings = np.multiply(rings, scale) amps = [1, 0.44, 0.19, 0.16, 0.04, 0.014, 0.038, 0.036] x = pts[:round(np.size(pts, 0) / 2)] y = pts[round(np.size(pts, 0) / 2):] Ri = calc_radius_with_distortion(x, y, xcenter, ycenter, asymmetry, rotation) v = [] denom = 2 * spread ** 2 v.append(direct_beam_amplitude * Ri ** (-2)) for i in [0, 1, 2, 3, 4, 5, 6, 7]: v.append(amps[i] * np.exp(-1 * (Ri - rings[i]) * (Ri - rings[i]) / denom)) generated_pattern = amplitude * (v[0] + v[1] + v[2] + v[3] + v[4] + v[5] + v[6] + v[7] + v[8]).ravel() </DeepExtract> generated_pattern = np.reshape(generated_pattern, (image_size, image_size)) if mask == True: <DeepExtract> xp = x * np.cos(0) - y * np.sin(0) yp = x * np.sin(0) + y * np.cos(0) xcp = (image_size - 1) / 2 * np.cos(0) - (image_size - 1) / 2 * np.sin(0) ycp = (image_size - 1) / 2 * np.sin(0) + (image_size - 1) / 2 * np.cos(0) maskROI = np.sqrt((xp - xcp) ** 2 + 1 * (yp - ycp) ** 2) </DeepExtract> maskROI[maskROI > mask_radius] = 0 generated_pattern[maskROI > 0] *= 0 return generated_pattern
def generate_ring_pattern(image_size, mask=False, mask_radius=10, scale=100, amplitude=1000, spread=2, direct_beam_amplitude=500, asymmetry=1, rotation=0): """Calculate a set of rings to model a polycrystalline gold diffraction pattern for use in fitting for diffraction pattern calibration. It is suggested that the function generate_ring_pattern is used to find initial values (initial guess) for the parameters used in the function fit_ring_pattern. This function is written expecting a single 2D diffraction pattern with equal dimensions (e.g. 256x256). Parameters ---------- mask : bool Choice of whether to use mask or not (mask=True will return a specified circular mask setting a region around the direct beam to zero) mask_radius : int The radius in pixels for a mask over the direct beam disc (the direct beam disc within given radius will be excluded from the fit) scale : float An initial guess for the diffraction calibration in 1/Angstrom units image_size : int Size of the diffraction pattern to be generated in pixels. amplitude : float An initial guess for the amplitude of the polycrystalline rings in arbitrary units spread : float An initial guess for the spread within each ring (Gaussian width) direct_beam_amplitude : float An initial guess for the background intensity from the direct beam disc in arbitrary units asymmetry : float An initial guess for any elliptical asymmetry in the pattern (for a perfectly circular pattern asymmetry=1) rotation : float An initial guess for the rotation of the (elliptical) pattern in radians. Returns ------- image : np.array() Simulated ring pattern with the same dimensions as self.data """ xi = np.linspace(0, image_size - 1, image_size) yi = np.linspace(0, image_size - 1, image_size) (x, y) = np.meshgrid(xi, yi) pts = np.array([x.ravel(), y.ravel()]).ravel() xcenter = (image_size - 1) / 2 ycenter = (image_size - 1) / 2 def ring_pattern(pts, scale, amplitude, spread, direct_beam_amplitude, asymmetry, rotation): """Calculates a polycrystalline gold diffraction pattern given a set of pixel coordinates (points). It uses tabulated values of the spacings (in reciprocal Angstroms) and relative intensities of rings derived from X-ray scattering factors. Parameters ----------- pts : 1D array One-dimensional array of points (first half as first-dimension coordinates, second half as second-dimension coordinates) scale : float An initial guess for the diffraction calibration in 1/Angstrom units amplitude : float An initial guess for the amplitude of the polycrystalline rings in arbitrary units spread : float An initial guess for the spread within each ring (Gaussian width) direct_beam_amplitude : float An initial guess for the background intensity from the direct beam disc in arbitrary units asymmetry : float An initial guess for any elliptical asymmetry in the pattern (for a perfectly circular pattern asymmetry=1) rotation : float An initial guess for the rotation of the (elliptical) pattern in radians. Returns ------- ring_pattern : np.array() A one-dimensional array of the intensities of the ring pattern at the supplied points. """ rings = [0.4247, 0.4904, 0.6935, 0.8132, 0.8494, 0.9808, 1.0688, 1.0966] rings = np.multiply(rings, scale) amps = [1, 0.44, 0.19, 0.16, 0.04, 0.014, 0.038, 0.036] x = pts[:round(np.size(pts, 0) / 2)] y = pts[round(np.size(pts, 0) / 2):] Ri = calc_radius_with_distortion(x, y, xcenter, ycenter, asymmetry, rotation) v = [] denom = 2 * spread ** 2 v.append(direct_beam_amplitude * Ri ** (-2)) for i in [0, 1, 2, 3, 4, 5, 6, 7]: v.append(amps[i] * np.exp(-1 * (Ri - rings[i]) * (Ri - rings[i]) / denom)) ring_pattern = amplitude * (v[0] + v[1] + v[2] + v[3] + v[4] + v[5] + v[6] + v[7] + v[8]).ravel() ring_pattern = ring_pattern rings = [0.4247, 0.4904, 0.6935, 0.8132, 0.8494, 0.9808, 1.0688, 1.0966] rings = np.multiply(rings, scale) amps = [1, 0.44, 0.19, 0.16, 0.04, 0.014, 0.038, 0.036] x = pts[:round(np.size(pts, 0) / 2)] y = pts[round(np.size(pts, 0) / 2):] Ri = calc_radius_with_distortion(x, y, xcenter, ycenter, asymmetry, rotation) v = [] denom = 2 * spread ** 2 v.append(direct_beam_amplitude * Ri ** (-2)) for i in [0, 1, 2, 3, 4, 5, 6, 7]: v.append(amps[i] * np.exp(-1 * (Ri - rings[i]) * (Ri - rings[i]) / denom)) generated_pattern = amplitude * (v[0] + v[1] + v[2] + v[3] + v[4] + v[5] + v[6] + v[7] + v[8]).ravel() generated_pattern = np.reshape(generated_pattern, (image_size, image_size)) if mask == True: xp = x * np.cos(0) - y * np.sin(0) yp = x * np.sin(0) + y * np.cos(0) xcp = (image_size - 1) / 2 * np.cos(0) - (image_size - 1) / 2 * np.sin(0) ycp = (image_size - 1) / 2 * np.sin(0) + (image_size - 1) / 2 * np.cos(0) maskROI = np.sqrt((xp - xcp) ** 2 + 1 * (yp - ycp) ** 2) maskROI[maskROI > mask_radius] = 0 generated_pattern[maskROI > 0] *= 0 return generated_pattern
diffsims
positive
@multi_score_ex.named_config def noise_adversary_actions(score): score = dict(score) <DeepExtract> score['index_keys'] = ['noisy_agent_magnitude', 'noisy_agent_index'] spec = {'num_samples': 25, 'config': {'noisy_agent_magnitude': tune.sample_from(lambda spec: np.random.lognormal(mean=0.5, sigma=1.5))}} </DeepExtract> spec['config']['noisy_agent_index'] = tune.sample_from(lambda spec: 1 - VICTIM_INDEX[spec.config[PATHS_AND_TYPES][0]]) exp_prefix = {'adversary_action_noise': None}
@multi_score_ex.named_config def noise_adversary_actions(score): score = dict(score) score['index_keys'] = ['noisy_agent_magnitude', 'noisy_agent_index'] spec = {'num_samples': 25, 'config': {'noisy_agent_magnitude': tune.sample_from(lambda spec: np.random.lognormal(mean=0.5, sigma=1.5))}} spec['config']['noisy_agent_index'] = tune.sample_from(lambda spec: 1 - VICTIM_INDEX[spec.config[PATHS_AND_TYPES][0]]) exp_prefix = {'adversary_action_noise': None}
adversarial-policies
positive
def _get_data(self): """Load frame paths and annotations. """ list_filenames = [os.path.join(cfg.EPIC.FRAME_LIST_DIR, filename) for filename in (cfg.EPIC.TRAIN_LISTS if self._is_train or cfg.GET_TRAIN_LFB else cfg.EPIC.TEST_LISTS)] (self._image_paths, self._image_labels, self._video_idx_to_name, self._video_name_to_idx) = dataset_helper.load_image_lists(list_filenames, return_dict=True) if self._lfb_infer_only: <DeepExtract> annotations = [] sample_freq = FPS // cfg.EPIC.VERB_LFB_CLIPS_PER_SECOND for video_name in self._image_paths.keys(): for img_path in self._image_paths[video_name]: frame = filename_to_frame_id(img_path) if frame % sample_freq == 0: annotations.append((video_name[:3], video_name, frame, frame, 0, 0)) self._annotations = annotations </DeepExtract> logger.info('Inferring LFB from %d clips in %d videos.' % (len(self._annotations), len(self._image_paths))) else: <DeepExtract> annotations = [] verb_set = set() noun_set = set() filename = os.path.join(cfg.EPIC.ANNOTATION_DIR, cfg.EPIC.ANNOTATIONS) with open(filename, 'rb') as f: f.readline() reader = csv.reader(f) for row in reader: person = row[1] if self._is_train: if int(person[1:]) not in TRAIN_PERSON_INDICES: continue elif int(person[1:]) in TRAIN_PERSON_INDICES: continue video_name = row[2] start_frame = sec_to_frame(time_to_sec(row[4])) stop_frame = sec_to_frame(time_to_sec(row[5])) verb = int(row[-5]) noun = int(row[-3]) assert verb < NUM_CLASSES_VERB, verb assert verb >= 0, verb assert noun < NUM_CLASSES_NOUN, noun assert noun >= 0, noun annotations.append((person, video_name, start_frame, stop_frame, verb, noun)) verb_set.add(verb) noun_set.add(noun) logger.info('See %d verbs and %d nouns in the dataset loaded.' % (len(verb_set), len(noun_set))) cur_label_set = verb_set if cfg.EPIC.CLASS_TYPE == 'verb' else noun_set if len(cur_label_set) != cfg.MODEL.NUM_CLASSES: logger.warn('# classes seen (%d) != MODEL.NUM_CLASSES' % len(cur_label_set)) assert len(annotations) == (cfg.TRAIN.DATASET_SIZE if self._is_train else cfg.TEST.DATASET_SIZE) self._annotations = annotations </DeepExtract> <DeepExtract> logger.info('=== EPIC Kitchens dataset summary ===') logger.info('Split: {}'.format(self._split)) logger.info('Use LFB? {}'.format(self._lfb_enabled)) logger.info('Spatial shift position: {}'.format(self._shift)) logger.info('Number of videos: {}'.format(len(self._image_paths))) total_frames = sum((len(video_img_paths) for video_img_paths in self._image_paths.values())) logger.info('Number of frames: {}'.format(total_frames)) logger.info('Number of annotations: {}'.format(len(self._annotations))) </DeepExtract>
def _get_data(self): """Load frame paths and annotations. """ list_filenames = [os.path.join(cfg.EPIC.FRAME_LIST_DIR, filename) for filename in (cfg.EPIC.TRAIN_LISTS if self._is_train or cfg.GET_TRAIN_LFB else cfg.EPIC.TEST_LISTS)] (self._image_paths, self._image_labels, self._video_idx_to_name, self._video_name_to_idx) = dataset_helper.load_image_lists(list_filenames, return_dict=True) if self._lfb_infer_only: annotations = [] sample_freq = FPS // cfg.EPIC.VERB_LFB_CLIPS_PER_SECOND for video_name in self._image_paths.keys(): for img_path in self._image_paths[video_name]: frame = filename_to_frame_id(img_path) if frame % sample_freq == 0: annotations.append((video_name[:3], video_name, frame, frame, 0, 0)) self._annotations = annotations logger.info('Inferring LFB from %d clips in %d videos.' % (len(self._annotations), len(self._image_paths))) else: annotations = [] verb_set = set() noun_set = set() filename = os.path.join(cfg.EPIC.ANNOTATION_DIR, cfg.EPIC.ANNOTATIONS) with open(filename, 'rb') as f: f.readline() reader = csv.reader(f) for row in reader: person = row[1] if self._is_train: if int(person[1:]) not in TRAIN_PERSON_INDICES: continue elif int(person[1:]) in TRAIN_PERSON_INDICES: continue video_name = row[2] start_frame = sec_to_frame(time_to_sec(row[4])) stop_frame = sec_to_frame(time_to_sec(row[5])) verb = int(row[-5]) noun = int(row[-3]) assert verb < NUM_CLASSES_VERB, verb assert verb >= 0, verb assert noun < NUM_CLASSES_NOUN, noun assert noun >= 0, noun annotations.append((person, video_name, start_frame, stop_frame, verb, noun)) verb_set.add(verb) noun_set.add(noun) logger.info('See %d verbs and %d nouns in the dataset loaded.' % (len(verb_set), len(noun_set))) cur_label_set = verb_set if cfg.EPIC.CLASS_TYPE == 'verb' else noun_set if len(cur_label_set) != cfg.MODEL.NUM_CLASSES: logger.warn('# classes seen (%d) != MODEL.NUM_CLASSES' % len(cur_label_set)) assert len(annotations) == (cfg.TRAIN.DATASET_SIZE if self._is_train else cfg.TEST.DATASET_SIZE) self._annotations = annotations logger.info('=== EPIC Kitchens dataset summary ===') logger.info('Split: {}'.format(self._split)) logger.info('Use LFB? {}'.format(self._lfb_enabled)) logger.info('Spatial shift position: {}'.format(self._shift)) logger.info('Number of videos: {}'.format(len(self._image_paths))) total_frames = sum((len(video_img_paths) for video_img_paths in self._image_paths.values())) logger.info('Number of frames: {}'.format(total_frames)) logger.info('Number of annotations: {}'.format(len(self._annotations))) </DeepExtract>
CRCNN-Action
positive
def forward(self, x=None, ref_scribble_label=None, previous_frame_mask=None, normalize_nearest_neighbor_distances=True, use_local_map=True, seq_names=None, gt_ids=None, k_nearest_neighbors=1, global_map_tmp_dic=None, local_map_dics=None, interaction_num=None, start_annotated_frame=None, frame_num=None): <DeepExtract> x = self.feature_extracter(x) x = self.semantic_embedding(x) x = x </DeepExtract> (ref_frame_embedding, previous_frame_embedding, current_frame_embedding) = torch.split(x, split_size_or_sections=int(x.size(0) / 3), dim=0) <DeepExtract> global_map_tmp_dic = global_map_tmp_dic dic_tmp = {} (bs, c, h, w) = current_frame_embedding.size() scale_ref_scribble_label = torch.nn.functional.interpolate(ref_scribble_label.float(), size=(h, w), mode='nearest') scale_ref_scribble_label = scale_ref_scribble_label.int() scale_previous_frame_label = torch.nn.functional.interpolate(previous_frame_mask.float(), size=(h, w), mode='nearest') scale_previous_frame_label = scale_previous_frame_label.int() if USE_CORRELATION_COST: n_chunks = 20 else: n_chunks = 500 for n in range(bs): seq_current_frame_embedding = current_frame_embedding[n] seq_ref_frame_embedding = ref_frame_embedding[n] seq_prev_frame_embedding = previous_frame_embedding[n] seq_ref_frame_embedding = seq_ref_frame_embedding.permute(1, 2, 0) seq_current_frame_embedding = seq_current_frame_embedding.permute(1, 2, 0) seq_ref_scribble_label = scale_ref_scribble_label[n].permute(1, 2, 0) (nn_features_n, ref_obj_ids) = nearest_neighbor_features_per_object(reference_embeddings=seq_ref_frame_embedding, query_embeddings=seq_current_frame_embedding, reference_labels=seq_ref_scribble_label, k_nearest_neighbors=k_nearest_neighbors, gt_ids=gt_ids[n], n_chunks=20) if normalize_nearest_neighbor_distances: nn_features_n = (torch.sigmoid(nn_features_n) - 0.5) * 2 if seq_names[n] not in global_map_tmp_dic: global_map_tmp_dic[seq_names[n]] = torch.ones_like(nn_features_n).repeat(104, 1, 1, 1, 1) if torch.cuda.is_available(): global_map_tmp_dic[seq_names[n]] = global_map_tmp_dic[seq_names[n]].cuda() nn_features_n = torch.where(nn_features_n <= global_map_tmp_dic[seq_names[n]][frame_num[n]].unsqueeze(0), nn_features_n, global_map_tmp_dic[seq_names[n]][frame_num[n]].unsqueeze(0)) global_map_tmp_dic[seq_names[n]][frame_num[n]] = nn_features_n.detach() seq_prev_frame_embedding = seq_prev_frame_embedding.permute(1, 2, 0) seq_previous_frame_label = scale_previous_frame_label[n].permute(1, 2, 0) if use_local_map: prev_frame_nn_features_n = local_previous_frame_nearest_neighbor_features_per_object(prev_frame_embedding=seq_prev_frame_embedding, query_embedding=seq_current_frame_embedding, prev_frame_labels=seq_previous_frame_label, gt_ids=ref_obj_ids, max_distance=15) else: (prev_frame_nn_features_n, _) = nearest_neighbor_features_per_object(reference_embeddings=seq_prev_frame_embedding, query_embeddings=seq_current_frame_embedding, reference_labels=seq_previous_frame_label, k_nearest_neighbors=k_nearest_neighbors, gt_ids=gt_ids[n], n_chunks=20) prev_frame_nn_features_n = (torch.sigmoid(prev_frame_nn_features_n) - 0.5) * 2 if local_map_dics is not None: (local_map_tmp_dic, local_map_dist_dic) = local_map_dics if seq_names[n] not in local_map_dist_dic: local_map_dist_dic[seq_names[n]] = torch.zeros(104, 9) if torch.cuda.is_available(): local_map_dist_dic[seq_names[n]] = local_map_dist_dic[seq_names[n]].cuda() if seq_names[n] not in local_map_tmp_dic: local_map_tmp_dic[seq_names[n]] = torch.zeros_like(prev_frame_nn_features_n).unsqueeze(0).repeat(104, 9, 1, 1, 1, 1) if torch.cuda.is_available(): local_map_tmp_dic[seq_names[n]] = local_map_tmp_dic[seq_names[n]].cuda() local_map_dist_dic[seq_names[n]][frame_num[n]][interaction_num - 1] = 1.0 / abs(frame_num[n] - start_annotated_frame) local_map_tmp_dic[seq_names[n]][frame_num[n]][interaction_num - 1] = prev_frame_nn_features_n.squeeze(0).detach() if interaction_num == 1: prev_frame_nn_features_n = local_map_tmp_dic[seq_names[n]][frame_num[n]][interaction_num - 1] prev_frame_nn_features_n = prev_frame_nn_features_n.unsqueeze(0) elif local_map_dist_dic[seq_names[n]][frame_num[n]][interaction_num - 1] > local_map_dist_dic[seq_names[n]][frame_num[n]][interaction_num - 2]: prev_frame_nn_features_n = local_map_tmp_dic[seq_names[n]][frame_num[n]][interaction_num - 1] prev_frame_nn_features_n = prev_frame_nn_features_n.unsqueeze(0) else: prev_frame_nn_features_n = local_map_tmp_dic[seq_names[n]][frame_num[n]][interaction_num - 2] prev_frame_nn_features_n = prev_frame_nn_features_n.unsqueeze(0) local_map_dics = (local_map_tmp_dic, local_map_dist_dic) previous_frame_to_cat = seq_previous_frame_label.float() == ref_obj_ids.float() to_cat_current_frame_embedding = current_frame_embedding[n].unsqueeze(0).repeat((ref_obj_ids.size(0), 1, 1, 1)) to_cat_nn_feature_n = nn_features_n.squeeze(0).permute(2, 3, 0, 1) to_cat_previous_frame = previous_frame_to_cat.unsqueeze(-1).permute(2, 3, 0, 1).float() to_cat_prev_frame_nn_feature_n = prev_frame_nn_features_n.squeeze(0).permute(2, 3, 0, 1) to_cat = torch.cat((to_cat_current_frame_embedding, to_cat_nn_feature_n, to_cat_prev_frame_nn_feature_n, to_cat_previous_frame), 1) pred_ = self.dynamic_seghead(to_cat) pred_ = pred_.permute(1, 0, 2, 3) dic_tmp[seq_names[n]] = pred_ if local_map_dics is None: (dic, global_map_tmp_dic) = (dic_tmp, global_map_tmp_dic) else: (dic, global_map_tmp_dic) = (dic_tmp, global_map_tmp_dic, local_map_dics) </DeepExtract> return (dic, global_map_tmp_dic)
def forward(self, x=None, ref_scribble_label=None, previous_frame_mask=None, normalize_nearest_neighbor_distances=True, use_local_map=True, seq_names=None, gt_ids=None, k_nearest_neighbors=1, global_map_tmp_dic=None, local_map_dics=None, interaction_num=None, start_annotated_frame=None, frame_num=None): x = self.feature_extracter(x) x = self.semantic_embedding(x) x = x (ref_frame_embedding, previous_frame_embedding, current_frame_embedding) = torch.split(x, split_size_or_sections=int(x.size(0) / 3), dim=0) global_map_tmp_dic = global_map_tmp_dic dic_tmp = {} (bs, c, h, w) = current_frame_embedding.size() scale_ref_scribble_label = torch.nn.functional.interpolate(ref_scribble_label.float(), size=(h, w), mode='nearest') scale_ref_scribble_label = scale_ref_scribble_label.int() scale_previous_frame_label = torch.nn.functional.interpolate(previous_frame_mask.float(), size=(h, w), mode='nearest') scale_previous_frame_label = scale_previous_frame_label.int() if USE_CORRELATION_COST: n_chunks = 20 else: n_chunks = 500 for n in range(bs): seq_current_frame_embedding = current_frame_embedding[n] seq_ref_frame_embedding = ref_frame_embedding[n] seq_prev_frame_embedding = previous_frame_embedding[n] seq_ref_frame_embedding = seq_ref_frame_embedding.permute(1, 2, 0) seq_current_frame_embedding = seq_current_frame_embedding.permute(1, 2, 0) seq_ref_scribble_label = scale_ref_scribble_label[n].permute(1, 2, 0) (nn_features_n, ref_obj_ids) = nearest_neighbor_features_per_object(reference_embeddings=seq_ref_frame_embedding, query_embeddings=seq_current_frame_embedding, reference_labels=seq_ref_scribble_label, k_nearest_neighbors=k_nearest_neighbors, gt_ids=gt_ids[n], n_chunks=20) if normalize_nearest_neighbor_distances: nn_features_n = (torch.sigmoid(nn_features_n) - 0.5) * 2 if seq_names[n] not in global_map_tmp_dic: global_map_tmp_dic[seq_names[n]] = torch.ones_like(nn_features_n).repeat(104, 1, 1, 1, 1) if torch.cuda.is_available(): global_map_tmp_dic[seq_names[n]] = global_map_tmp_dic[seq_names[n]].cuda() nn_features_n = torch.where(nn_features_n <= global_map_tmp_dic[seq_names[n]][frame_num[n]].unsqueeze(0), nn_features_n, global_map_tmp_dic[seq_names[n]][frame_num[n]].unsqueeze(0)) global_map_tmp_dic[seq_names[n]][frame_num[n]] = nn_features_n.detach() seq_prev_frame_embedding = seq_prev_frame_embedding.permute(1, 2, 0) seq_previous_frame_label = scale_previous_frame_label[n].permute(1, 2, 0) if use_local_map: prev_frame_nn_features_n = local_previous_frame_nearest_neighbor_features_per_object(prev_frame_embedding=seq_prev_frame_embedding, query_embedding=seq_current_frame_embedding, prev_frame_labels=seq_previous_frame_label, gt_ids=ref_obj_ids, max_distance=15) else: (prev_frame_nn_features_n, _) = nearest_neighbor_features_per_object(reference_embeddings=seq_prev_frame_embedding, query_embeddings=seq_current_frame_embedding, reference_labels=seq_previous_frame_label, k_nearest_neighbors=k_nearest_neighbors, gt_ids=gt_ids[n], n_chunks=20) prev_frame_nn_features_n = (torch.sigmoid(prev_frame_nn_features_n) - 0.5) * 2 if local_map_dics is not None: (local_map_tmp_dic, local_map_dist_dic) = local_map_dics if seq_names[n] not in local_map_dist_dic: local_map_dist_dic[seq_names[n]] = torch.zeros(104, 9) if torch.cuda.is_available(): local_map_dist_dic[seq_names[n]] = local_map_dist_dic[seq_names[n]].cuda() if seq_names[n] not in local_map_tmp_dic: local_map_tmp_dic[seq_names[n]] = torch.zeros_like(prev_frame_nn_features_n).unsqueeze(0).repeat(104, 9, 1, 1, 1, 1) if torch.cuda.is_available(): local_map_tmp_dic[seq_names[n]] = local_map_tmp_dic[seq_names[n]].cuda() local_map_dist_dic[seq_names[n]][frame_num[n]][interaction_num - 1] = 1.0 / abs(frame_num[n] - start_annotated_frame) local_map_tmp_dic[seq_names[n]][frame_num[n]][interaction_num - 1] = prev_frame_nn_features_n.squeeze(0).detach() if interaction_num == 1: prev_frame_nn_features_n = local_map_tmp_dic[seq_names[n]][frame_num[n]][interaction_num - 1] prev_frame_nn_features_n = prev_frame_nn_features_n.unsqueeze(0) elif local_map_dist_dic[seq_names[n]][frame_num[n]][interaction_num - 1] > local_map_dist_dic[seq_names[n]][frame_num[n]][interaction_num - 2]: prev_frame_nn_features_n = local_map_tmp_dic[seq_names[n]][frame_num[n]][interaction_num - 1] prev_frame_nn_features_n = prev_frame_nn_features_n.unsqueeze(0) else: prev_frame_nn_features_n = local_map_tmp_dic[seq_names[n]][frame_num[n]][interaction_num - 2] prev_frame_nn_features_n = prev_frame_nn_features_n.unsqueeze(0) local_map_dics = (local_map_tmp_dic, local_map_dist_dic) previous_frame_to_cat = seq_previous_frame_label.float() == ref_obj_ids.float() to_cat_current_frame_embedding = current_frame_embedding[n].unsqueeze(0).repeat((ref_obj_ids.size(0), 1, 1, 1)) to_cat_nn_feature_n = nn_features_n.squeeze(0).permute(2, 3, 0, 1) to_cat_previous_frame = previous_frame_to_cat.unsqueeze(-1).permute(2, 3, 0, 1).float() to_cat_prev_frame_nn_feature_n = prev_frame_nn_features_n.squeeze(0).permute(2, 3, 0, 1) to_cat = torch.cat((to_cat_current_frame_embedding, to_cat_nn_feature_n, to_cat_prev_frame_nn_feature_n, to_cat_previous_frame), 1) pred_ = self.dynamic_seghead(to_cat) pred_ = pred_.permute(1, 0, 2, 3) dic_tmp[seq_names[n]] = pred_ if local_map_dics is None: (dic, global_map_tmp_dic) = (dic_tmp, global_map_tmp_dic) else: (dic, global_map_tmp_dic) = (dic_tmp, global_map_tmp_dic, local_map_dics) return (dic, global_map_tmp_dic)
CVPR2020_MANet
positive
def link_objects_to_collection(ref, col): <DeepExtract> objref = [] if ref is None: objref = so() elif isinstance(ref, list): if len(ref) > 0: if isinstance(ref[0], bpy.types.Object): objref = ref elif isinstance(ref[0], str): for ob_name in ref: if object_exists(ob_name): objref.append(bpy.data.objects[ob_name]) elif is_string(ref): if object_exists(ref): objref.append(bpy.data.objects[ref]) elif isinstance(ref, bpy.types.Object): objref.append(ref) objs = objref </DeepExtract> if is_string(col): for o in objs: bpy.data.collections[col].objects.link(o) else: for o in objs: col.objects.link(o)
def link_objects_to_collection(ref, col): objref = [] if ref is None: objref = so() elif isinstance(ref, list): if len(ref) > 0: if isinstance(ref[0], bpy.types.Object): objref = ref elif isinstance(ref[0], str): for ob_name in ref: if object_exists(ob_name): objref.append(bpy.data.objects[ob_name]) elif is_string(ref): if object_exists(ref): objref.append(bpy.data.objects[ref]) elif isinstance(ref, bpy.types.Object): objref.append(ref) objs = objref if is_string(col): for o in objs: bpy.data.collections[col].objects.link(o) else: for o in objs: col.objects.link(o)
EasyBPY
positive
def validate(self, bug: Bug, verbose: bool=True) -> bool: """ Checks that a given bug successfully builds, and that it produces an expected set of test suite outcomes. Parameters: verbose: toggles verbosity of output. If set to `True`, the outcomes of each test will be printed to the standard output. Returns: `True` if bug behaves as expected, else `False`. """ try: <DeepExtract> self.__installation.build.build(bug.image, force=True, quiet=True) </DeepExtract> except docker.errors.BuildError: print('failed to build bug: {}'.format(self.identifier)) return False validated = True try: c = None c = self.__installation.containers.provision(bug) print_task_start('Compiling') self.__installation.containers.compile(c) print_task_end('Compiling', 'OK') for t in bug.tests: if t.expected_outcome is True: task = 'Running test: {}'.format(t.name) print_task_start(task) outcome = self.__installation.containers.execute(c, t, verbose=verbose) if not outcome.passed: validated = False print_task_end(task, 'UNEXPECTED: FAIL') response = textwrap.indent(outcome.response.output, ' ' * 4) print('\n' + response) else: print_task_end(task, 'OK') if t.expected_outcome is False: task = 'Running test: {}'.format(t.name) print_task_start(task) outcome = self.__installation.containers.execute(c, t, verbose=verbose) if outcome.passed: validated = False print_task_end(task, 'UNEXPECTED: PASS') response = textwrap.indent(outcome.response.output, ' ' * 4) print('\n' + response) else: print_task_end(task, 'OK') finally: if c: del self.__installation.containers[c.uid] return validated
def validate(self, bug: Bug, verbose: bool=True) -> bool: """ Checks that a given bug successfully builds, and that it produces an expected set of test suite outcomes. Parameters: verbose: toggles verbosity of output. If set to `True`, the outcomes of each test will be printed to the standard output. Returns: `True` if bug behaves as expected, else `False`. """ try: self.__installation.build.build(bug.image, force=True, quiet=True) except docker.errors.BuildError: print('failed to build bug: {}'.format(self.identifier)) return False validated = True try: c = None c = self.__installation.containers.provision(bug) print_task_start('Compiling') self.__installation.containers.compile(c) print_task_end('Compiling', 'OK') for t in bug.tests: if t.expected_outcome is True: task = 'Running test: {}'.format(t.name) print_task_start(task) outcome = self.__installation.containers.execute(c, t, verbose=verbose) if not outcome.passed: validated = False print_task_end(task, 'UNEXPECTED: FAIL') response = textwrap.indent(outcome.response.output, ' ' * 4) print('\n' + response) else: print_task_end(task, 'OK') if t.expected_outcome is False: task = 'Running test: {}'.format(t.name) print_task_start(task) outcome = self.__installation.containers.execute(c, t, verbose=verbose) if outcome.passed: validated = False print_task_end(task, 'UNEXPECTED: PASS') response = textwrap.indent(outcome.response.output, ' ' * 4) print('\n' + response) else: print_task_end(task, 'OK') finally: if c: del self.__installation.containers[c.uid] return validated
BugZoo
positive
def die_unless_type_or_types_issubclassable(type_or_types: TypeOrTupleTypes, exception_cls: TypeException=BeartypeDecorHintPep3119Exception, exception_prefix: str='') -> None: """ Raise an exception of the passed type unless the passed object is either an **issubclassable class** (i.e., class whose metaclass does *not* define an ``__subclasscheck__()`` dunder method that raises a :exc:`TypeError` exception) *or* tuple of one or more issubclassable classes. Parameters ---------- type_or_types : object Object to be validated. exception_cls : TypeException, optional Type of exception to be raised. Defaults to :exc:`BeartypeDecorHintPep3119Exception`. exception_prefix : str, optional Human-readable label prefixing the representation of this object in the exception message. Defaults to the empty string. Raises ---------- :exc:`BeartypeDecorHintPep3119Exception` If this object is neither: * An issubclassable class. * A tuple containing only issubclassable classes. """ from beartype._util.cls.utilclstest import die_unless_type_or_types die_unless_type_or_types(type_or_types=type_or_types, exception_cls=exception_cls, exception_prefix=exception_prefix) if isinstance(type_or_types, type): <DeepExtract> from beartype._util.cls.utilclstest import die_unless_type die_unless_type(cls=type_or_types, exception_cls=exception_cls, exception_prefix=exception_prefix) try: issubclass(type, type_or_types) except TypeError as exception: assert isinstance(exception_cls, type), f'{repr(exception_cls)} not exception class.' assert isinstance(exception_prefix, str), f'{repr(exception_prefix)} not string.' exception_message = f'{exception_prefix}{repr(type_or_types)} uncheckable at runtime (i.e., not passable as second parameter to issubclass(), due to raising "{exception.__class__.__name__}: {exception}" from metaclass __subclasscheck__() method).' raise exception_cls(exception_message) from exception except Exception: pass </DeepExtract> else: try: issubclass(type, type_or_types) except TypeError as exception: assert isinstance(exception_cls, type), f'{repr(exception_cls)} not exception class.' assert isinstance(exception_prefix, str), f'{repr(exception_prefix)} not string.' exception_message = f'{exception_prefix}{repr(type_or_types)} uncheckable at runtime' for (cls_index, cls) in enumerate(type_or_types): <DeepExtract> from beartype._util.cls.utilclstest import die_unless_type die_unless_type(cls=cls, exception_cls=exception_cls, exception_prefix=f'{exception_message}, as tuple item {cls_index} ') try: issubclass(type, cls) except TypeError as exception: assert isinstance(exception_cls, type), f'{repr(exception_cls)} not exception class.' assert isinstance(f'{exception_message}, as tuple item {cls_index} ', str), f"{repr(f'{exception_message}, as tuple item {cls_index} ')} not string." exception_message = f'''{f'{exception_message}, as tuple item {cls_index} '}{repr(cls)} uncheckable at runtime (i.e., not passable as second parameter to issubclass(), due to raising "{exception.__class__.__name__}: {exception}" from metaclass __subclasscheck__() method).''' raise exception_cls(exception_message) from exception except Exception: pass </DeepExtract> raise exception_cls(f'{exception_message}.') from exception except Exception: pass
def die_unless_type_or_types_issubclassable(type_or_types: TypeOrTupleTypes, exception_cls: TypeException=BeartypeDecorHintPep3119Exception, exception_prefix: str='') -> None: """ Raise an exception of the passed type unless the passed object is either an **issubclassable class** (i.e., class whose metaclass does *not* define an ``__subclasscheck__()`` dunder method that raises a :exc:`TypeError` exception) *or* tuple of one or more issubclassable classes. Parameters ---------- type_or_types : object Object to be validated. exception_cls : TypeException, optional Type of exception to be raised. Defaults to :exc:`BeartypeDecorHintPep3119Exception`. exception_prefix : str, optional Human-readable label prefixing the representation of this object in the exception message. Defaults to the empty string. Raises ---------- :exc:`BeartypeDecorHintPep3119Exception` If this object is neither: * An issubclassable class. * A tuple containing only issubclassable classes. """ from beartype._util.cls.utilclstest import die_unless_type_or_types die_unless_type_or_types(type_or_types=type_or_types, exception_cls=exception_cls, exception_prefix=exception_prefix) if isinstance(type_or_types, type): from beartype._util.cls.utilclstest import die_unless_type die_unless_type(cls=type_or_types, exception_cls=exception_cls, exception_prefix=exception_prefix) try: issubclass(type, type_or_types) except TypeError as exception: assert isinstance(exception_cls, type), f'{repr(exception_cls)} not exception class.' assert isinstance(exception_prefix, str), f'{repr(exception_prefix)} not string.' exception_message = f'{exception_prefix}{repr(type_or_types)} uncheckable at runtime (i.e., not passable as second parameter to issubclass(), due to raising "{exception.__class__.__name__}: {exception}" from metaclass __subclasscheck__() method).' raise exception_cls(exception_message) from exception except Exception: pass else: try: issubclass(type, type_or_types) except TypeError as exception: assert isinstance(exception_cls, type), f'{repr(exception_cls)} not exception class.' assert isinstance(exception_prefix, str), f'{repr(exception_prefix)} not string.' exception_message = f'{exception_prefix}{repr(type_or_types)} uncheckable at runtime' for (cls_index, cls) in enumerate(type_or_types): from beartype._util.cls.utilclstest import die_unless_type die_unless_type(cls=cls, exception_cls=exception_cls, exception_prefix=f'{exception_message}, as tuple item {cls_index} ') try: issubclass(type, cls) except TypeError as exception: assert isinstance(exception_cls, type), f'{repr(exception_cls)} not exception class.' assert isinstance(f'{exception_message}, as tuple item {cls_index} ', str), f"{repr(f'{exception_message}, as tuple item {cls_index} ')} not string." exception_message = f'''{f'{exception_message}, as tuple item {cls_index} '}{repr(cls)} uncheckable at runtime (i.e., not passable as second parameter to issubclass(), due to raising "{exception.__class__.__name__}: {exception}" from metaclass __subclasscheck__() method).''' raise exception_cls(exception_message) from exception except Exception: pass raise exception_cls(f'{exception_message}.') from exception except Exception: pass
beartype
positive
def set_config(self, data): """ Describes the specifics of the sensing implementation """ <DeepExtract> if 16 <= 8: data = data if 16 <= 16: data = (data & 65280) >> 8 | (data & 255) << 8 if 16 <= 32: data = (data & 4278190080) >> 24 | (data & 16711680) >> 8 | (data & 65280) << 8 | (data & 255) << 24 raise Exception('Cannot swap endianness for length ' + 16) </DeepExtract> buffer = [] buffer[0] = data >> 8 & 255 buffer[1] = data >> 0 & 255 self.i2c.writeto_mem(self.device_address, self.REGISTER_CONFIG, buffer, addrsize=16)
def set_config(self, data): """ Describes the specifics of the sensing implementation """ if 16 <= 8: data = data if 16 <= 16: data = (data & 65280) >> 8 | (data & 255) << 8 if 16 <= 32: data = (data & 4278190080) >> 24 | (data & 16711680) >> 8 | (data & 65280) << 8 | (data & 255) << 24 raise Exception('Cannot swap endianness for length ' + 16) buffer = [] buffer[0] = data >> 8 & 255 buffer[1] = data >> 0 & 255 self.i2c.writeto_mem(self.device_address, self.REGISTER_CONFIG, buffer, addrsize=16)
cyanobyte
positive
def _post(url, data, codes): """Mockable version of the user agent post. """ headers = dict(Accept='application/json') body = dumps(data) if data else '' <DeepExtract> slumber_local = get_slumber_local_url_prefix() if url.startswith(slumber_local): logging.debug('Using local fake HTTP due to %s starting with %s', url, slumber_local) url_fragment = url[len(slumber_local) - 1:] elif url.startswith('/'): logging.debug('Using local fake HTTP due to %s starting with /', url) url_fragment = url logging.debug('Using real HTTP for %s', url) </DeepExtract> if url_fragment: headers.update(_sign_request('POST', url_fragment, body)) response = FakeClient().post(url_fragment, body, content_type='application/json', HTTP_HOST='localhost:8000', **_fake_http_headers(headers)) assert response.status_code in (codes or [200]), (url_fragment, response, response.content) content = response.content else: headers.update(_sign_request('POST', urlparse(url).path, body)) headers['Content-Type'] = 'application/json' (response, content) = _real().request(url, 'POST', body=body, headers=headers) assert response.status in (codes or [200]), (url, response, content) try: return (response, loads(content)) except JSONDecodeError: return (response, {})
def _post(url, data, codes): """Mockable version of the user agent post. """ headers = dict(Accept='application/json') body = dumps(data) if data else '' slumber_local = get_slumber_local_url_prefix() if url.startswith(slumber_local): logging.debug('Using local fake HTTP due to %s starting with %s', url, slumber_local) url_fragment = url[len(slumber_local) - 1:] elif url.startswith('/'): logging.debug('Using local fake HTTP due to %s starting with /', url) url_fragment = url logging.debug('Using real HTTP for %s', url) if url_fragment: headers.update(_sign_request('POST', url_fragment, body)) response = FakeClient().post(url_fragment, body, content_type='application/json', HTTP_HOST='localhost:8000', **_fake_http_headers(headers)) assert response.status_code in (codes or [200]), (url_fragment, response, response.content) content = response.content else: headers.update(_sign_request('POST', urlparse(url).path, body)) headers['Content-Type'] = 'application/json' (response, content) = _real().request(url, 'POST', body=body, headers=headers) assert response.status in (codes or [200]), (url, response, content) try: return (response, loads(content)) except JSONDecodeError: return (response, {})
django-slumber
positive
def install_vicvb_cleanall(env): try: <DeepExtract> if 'vicvb' == 'viral': env.VIRAL_ROOT_DIR = '/usr/local/VHTNGS' if not _path_exists(env.VIRAL_ROOT_DIR): sudo('mkdir -p %s' % env.VIRAL_ROOT_DIR) elif 'vicvb' == 'vigor': env.VIGOR_ROOT_DIR = '/usr/local/VIGOR' if not _path_exists(env.VIGOR_ROOT_DIR): sudo('mkdir -p %s' % env.VIGOR_ROOT_DIR) env.VIGOR_SCRATCH_DIR = '/usr/local/scratch/vigor' if not _path_exists(env.VIGOR_SCRATCH_DIR): sudo('mkdir -p %s' % env.VIGOR_SCRATCH_DIR) sudo('find %s -type f -exec chmod 666 {} \\;' % env.VIGOR_SCRATCH_DIR) sudo('find %s -type d -exec chmod 777 {} \\;' % env.VIGOR_SCRATCH_DIR) else: env.VICVB_LOCAL_DIR = '/usr/local/VICVB' env.VICVB_GALAXY_DIR = '/mnt/galaxyTools/galaxy-central/static/vicvb' </DeepExtract> <DeepExtract> if _path_is_dir(env.VICVB_LOCAL_DIR): _unlock_dir(env.VICVB_LOCAL_DIR) sudo('rm -rf %s' % env.VICVB_LOCAL_DIR) else: print('DEBUG: _remove_dir[%s] -- NOT FOUND' % env.VICVB_LOCAL_DIR) </DeepExtract> <DeepExtract> if _path_is_dir(env.VICVB_GALAXY_DIR): _unlock_dir(env.VICVB_GALAXY_DIR) sudo('rm -rf %s' % env.VICVB_GALAXY_DIR) else: print('DEBUG: _remove_dir[%s] -- NOT FOUND' % env.VICVB_GALAXY_DIR) </DeepExtract> with cd('~'): sudo('rm -fr ~/VICVB') print('VICVB Removed\n') finally: disconnect_all()
def install_vicvb_cleanall(env): try: if 'vicvb' == 'viral': env.VIRAL_ROOT_DIR = '/usr/local/VHTNGS' if not _path_exists(env.VIRAL_ROOT_DIR): sudo('mkdir -p %s' % env.VIRAL_ROOT_DIR) elif 'vicvb' == 'vigor': env.VIGOR_ROOT_DIR = '/usr/local/VIGOR' if not _path_exists(env.VIGOR_ROOT_DIR): sudo('mkdir -p %s' % env.VIGOR_ROOT_DIR) env.VIGOR_SCRATCH_DIR = '/usr/local/scratch/vigor' if not _path_exists(env.VIGOR_SCRATCH_DIR): sudo('mkdir -p %s' % env.VIGOR_SCRATCH_DIR) sudo('find %s -type f -exec chmod 666 {} \\;' % env.VIGOR_SCRATCH_DIR) sudo('find %s -type d -exec chmod 777 {} \\;' % env.VIGOR_SCRATCH_DIR) else: env.VICVB_LOCAL_DIR = '/usr/local/VICVB' env.VICVB_GALAXY_DIR = '/mnt/galaxyTools/galaxy-central/static/vicvb' if _path_is_dir(env.VICVB_LOCAL_DIR): _unlock_dir(env.VICVB_LOCAL_DIR) sudo('rm -rf %s' % env.VICVB_LOCAL_DIR) else: print('DEBUG: _remove_dir[%s] -- NOT FOUND' % env.VICVB_LOCAL_DIR) if _path_is_dir(env.VICVB_GALAXY_DIR): _unlock_dir(env.VICVB_GALAXY_DIR) sudo('rm -rf %s' % env.VICVB_GALAXY_DIR) else: print('DEBUG: _remove_dir[%s] -- NOT FOUND' % env.VICVB_GALAXY_DIR) with cd('~'): sudo('rm -fr ~/VICVB') print('VICVB Removed\n') finally: disconnect_all()
cloudbiolinux
positive
def q_explained_variance(q_pred, q_true): """ Calculates the explained variance of the Q value :param q_pred: (TensorFlow Tensor) The predicted Q value :param q_true: (TensorFlow Tensor) The expected Q value :return: (TensorFlow Tensor) the explained variance of the Q value """ (_, var_y) = tf.nn.moments(q_true, axes=[0, 1]) (_, var_pred) = tf.nn.moments(q_true - q_pred, axes=[0, 1]) <DeepExtract> i = 0 for (tensor, shape) in zip([var_y, var_pred], [[]] * 2): assert tensor.get_shape().as_list() == shape, 'id ' + str(i) + ' shape ' + str(tensor.get_shape()) + str(shape) i += 1 </DeepExtract> return 1.0 - var_pred / var_y
def q_explained_variance(q_pred, q_true): """ Calculates the explained variance of the Q value :param q_pred: (TensorFlow Tensor) The predicted Q value :param q_true: (TensorFlow Tensor) The expected Q value :return: (TensorFlow Tensor) the explained variance of the Q value """ (_, var_y) = tf.nn.moments(q_true, axes=[0, 1]) (_, var_pred) = tf.nn.moments(q_true - q_pred, axes=[0, 1]) i = 0 for (tensor, shape) in zip([var_y, var_pred], [[]] * 2): assert tensor.get_shape().as_list() == shape, 'id ' + str(i) + ' shape ' + str(tensor.get_shape()) + str(shape) i += 1 return 1.0 - var_pred / var_y
ai_supermario
positive
def handle(self, handler_input): speak_output = 'Goodbye!' + getRandomFact() + '. New adventures to Egypt, England, and Greece coming soon!' response_builder = handler_input.response_builder <DeepExtract> if supports_apl(handler_input): handler_input.response_builder.add_directive(RenderDocumentDirective(document=load_apl_document('main.json'), datasources=load_apl_document('datasources.json'))) </DeepExtract> return response_builder.speak(speak_output).response
def handle(self, handler_input): speak_output = 'Goodbye!' + getRandomFact() + '. New adventures to Egypt, England, and Greece coming soon!' response_builder = handler_input.response_builder if supports_apl(handler_input): handler_input.response_builder.add_directive(RenderDocumentDirective(document=load_apl_document('main.json'), datasources=load_apl_document('datasources.json'))) return response_builder.speak(speak_output).response
Course_Alexa_Skill_Builder
positive
def rule_test(self, entries: List[TestEntry]) -> None: def test_it(e: TestEntry, accept_header: str) -> bool: expected = github_io + e.expected_url resp = requests.head(e.input_url, headers={'accept': accept_header}, verify=False) if resp.status_code == 301 and 'location' in resp.headers: resp = requests.head(resp.headers['location'], headers={'accept': accept_header}, verify=False) actual = resp.headers['location'] if resp.status_code == 302 and 'location' in resp.headers else f'Error: {resp.status_code}' if FAIL_ON_ERROR: self.assertEqual(expected, actual, f'redirect for: {resp.url}') <DeepExtract> self.results.add((e.input_url, actual, accept_header.split(',')[0])) </DeepExtract> return True elif expected != actual: print(f'{e.input_url} ({accept_header}):\n expected {expected} - got {actual}') return False <DeepExtract> self.results.add((e.input_url, actual, accept_header.split(',')[0])) </DeepExtract> return True def ev_al(entry: TestEntry) -> bool: if not entry.accept_header: return test_it(entry, default_header) else: <DeepExtract> expected = github_io + entry.expected_url resp = requests.head(entry.input_url, headers={'accept': entry.accept_header}, verify=False) if resp.status_code == 301 and 'location' in resp.headers: resp = requests.head(resp.headers['location'], headers={'accept': entry.accept_header}, verify=False) actual = resp.headers['location'] if resp.status_code == 302 and 'location' in resp.headers else f'Error: {resp.status_code}' if FAIL_ON_ERROR: self.assertEqual(expected, actual, f'redirect for: {resp.url}') self.record_results(entry.input_url, entry.accept_header, actual) r1 = True elif expected != actual: print(f'{entry.input_url} ({entry.accept_header}):\n expected {expected} - got {actual}') r1 = False self.record_results(entry.input_url, entry.accept_header, actual) r1 = True </DeepExtract> return test_it(entry, entry.accept_header + ',' + default_header) and r1 self.assertTrue(all([ev_al(entry) for entry in entries]))
def rule_test(self, entries: List[TestEntry]) -> None: def test_it(e: TestEntry, accept_header: str) -> bool: expected = github_io + e.expected_url resp = requests.head(e.input_url, headers={'accept': accept_header}, verify=False) if resp.status_code == 301 and 'location' in resp.headers: resp = requests.head(resp.headers['location'], headers={'accept': accept_header}, verify=False) actual = resp.headers['location'] if resp.status_code == 302 and 'location' in resp.headers else f'Error: {resp.status_code}' if FAIL_ON_ERROR: self.assertEqual(expected, actual, f'redirect for: {resp.url}') self.results.add((e.input_url, actual, accept_header.split(',')[0])) return True elif expected != actual: print(f'{e.input_url} ({accept_header}):\n expected {expected} - got {actual}') return False self.results.add((e.input_url, actual, accept_header.split(',')[0])) return True def ev_al(entry: TestEntry) -> bool: if not entry.accept_header: return test_it(entry, default_header) else: expected = github_io + entry.expected_url resp = requests.head(entry.input_url, headers={'accept': entry.accept_header}, verify=False) if resp.status_code == 301 and 'location' in resp.headers: resp = requests.head(resp.headers['location'], headers={'accept': entry.accept_header}, verify=False) actual = resp.headers['location'] if resp.status_code == 302 and 'location' in resp.headers else f'Error: {resp.status_code}' if FAIL_ON_ERROR: self.assertEqual(expected, actual, f'redirect for: {resp.url}') self.record_results(entry.input_url, entry.accept_header, actual) r1 = True elif expected != actual: print(f'{entry.input_url} ({entry.accept_header}):\n expected {expected} - got {actual}') r1 = False self.record_results(entry.input_url, entry.accept_header, actual) r1 = True return test_it(entry, entry.accept_header + ',' + default_header) and r1 self.assertTrue(all([ev_al(entry) for entry in entries]))
biolinkml
positive
def alert(self, matches): <DeepExtract> body = self.get_aggregation_summary_text(matches) if self.rule.get('alert_text_type') != 'aggregation_summary_only': for match in matches: body += str(BasicMatchString(self.rule, match)) if len(matches) > 1: body += '\n----------------------------------------\n' body = body </DeepExtract> headers = {'content-type': 'application/json'} proxies = {'https': self.victorops_proxy} if self.victorops_proxy else None payload = {'message_type': self.victorops_message_type, 'entity_display_name': self.victorops_entity_display_name, 'monitoring_tool': 'ElastAlert', 'state_message': body} if self.victorops_entity_id: payload['entity_id'] = self.victorops_entity_id try: response = requests.post(self.url, data=json.dumps(payload, cls=DateTimeEncoder), headers=headers, proxies=proxies) response.raise_for_status() except RequestException as e: raise EAException('Error posting to VictorOps: %s' % e) elastalert_logger.info('Trigger sent to VictorOps')
def alert(self, matches): body = self.get_aggregation_summary_text(matches) if self.rule.get('alert_text_type') != 'aggregation_summary_only': for match in matches: body += str(BasicMatchString(self.rule, match)) if len(matches) > 1: body += '\n----------------------------------------\n' body = body headers = {'content-type': 'application/json'} proxies = {'https': self.victorops_proxy} if self.victorops_proxy else None payload = {'message_type': self.victorops_message_type, 'entity_display_name': self.victorops_entity_display_name, 'monitoring_tool': 'ElastAlert', 'state_message': body} if self.victorops_entity_id: payload['entity_id'] = self.victorops_entity_id try: response = requests.post(self.url, data=json.dumps(payload, cls=DateTimeEncoder), headers=headers, proxies=proxies) response.raise_for_status() except RequestException as e: raise EAException('Error posting to VictorOps: %s' % e) elastalert_logger.info('Trigger sent to VictorOps')
elastalert
positive
def unbind_from_fs(self, cpe_fs: str): <DeepExtract> cpe_fs = cpe_fs.replace('\\-', '-') cpe_fs = cpe_fs.replace('\\.', '.') cpe_fs = re.compile('\\\\(.)', re.M).sub(lambda m: '%' + hex(ord(m.group(1)))[2:], cpe_fs) </DeepExtract> cpe_components = cpe_fs.split(':') for (i, comp) in enumerate(cpe_components): if i == 2: self.part = comp elif i == 3: self.vendor = comp elif i == 4: self.product = comp elif i == 5: self.version = comp elif i == 6: self.update = comp elif i == 7: self.edition = comp elif i == 8: self.language = comp elif i == 9: self.sw_edition = comp elif i == 10: self.target_sw = comp elif i == 11: self.target_hw = comp elif i == 12: self.other = comp
def unbind_from_fs(self, cpe_fs: str): cpe_fs = cpe_fs.replace('\\-', '-') cpe_fs = cpe_fs.replace('\\.', '.') cpe_fs = re.compile('\\\\(.)', re.M).sub(lambda m: '%' + hex(ord(m.group(1)))[2:], cpe_fs) cpe_components = cpe_fs.split(':') for (i, comp) in enumerate(cpe_components): if i == 2: self.part = comp elif i == 3: self.vendor = comp elif i == 4: self.product = comp elif i == 5: self.version = comp elif i == 6: self.update = comp elif i == 7: self.edition = comp elif i == 8: self.language = comp elif i == 9: self.sw_edition = comp elif i == 10: self.target_sw = comp elif i == 11: self.target_hw = comp elif i == 12: self.other = comp
cve-search
positive
def get_similar_dictionary(self, entity_name, texts, fuzziness_threshold='auto:4,7', search_language_script=None, **kwargs): """ Args: entity_name: the name of the entity to lookup in the datastore for getting entity values and their variants texts(list of strings): the text for which variants need to be find out fuzziness_threshold: fuzziness allowed for search results on entity value variants search_language_script: language of elasticsearch documents which are eligible for match kwargs: For Elasticsearch: Refer https://elasticsearch-py.readthedocs.io/en/master/api.html#elasticsearch.Elasticsearch.search Returns: list of collections.OrderedDict: dictionary mapping entity value variants to their entity value Example: db = DataStore() ngrams_list = ['Pune', 'Mumbai', 'Goa', 'Bangalore'] db.get_similar_ngrams_dictionary(entity_name='city', ngrams_list=ngrams_list, fuzziness_threshold=2) Output: [ {u'Bangalore': u'Bangalore', u'Mulbagal': u'Mulbagal', u'Multai': u'Multai', u'Mumbai': u'Mumbai', u'Pune': u'Pune', u'Puri': u'Puri', u'bangalore': u'bengaluru', u'goa': u'goa', u'mumbai': u'mumbai', u'pune': u'pune'} ] """ results_list = [] if self._client_or_connection is None: <DeepExtract> if self._engine == ELASTICSEARCH: self._store_name = self._connection_settings[ELASTICSEARCH_ALIAS] self._client_or_connection = elastic_search.connect.connect(**self._connection_settings) else: self._client_or_connection = None raise EngineNotImplementedException() if self._client_or_connection is None: raise EngineConnectionException(engine=self._engine) </DeepExtract> if self._engine == ELASTICSEARCH: <DeepExtract> if ELASTICSEARCH_DOC_TYPE not in self._connection_settings: raise DataStoreSettingsImproperlyConfiguredException('Elasticsearch needs doc_type. Please configure ES_DOC_TYPE in your environment') </DeepExtract> request_timeout = self._connection_settings.get('request_timeout', 20) results_list = elastic_search.query.full_text_query(connection=self._client_or_connection, index_name=self._store_name, doc_type=self._connection_settings[ELASTICSEARCH_DOC_TYPE], entity_name=entity_name, sentences=texts, fuzziness_threshold=fuzziness_threshold, search_language_script=search_language_script, request_timeout=request_timeout, **kwargs) return results_list
def get_similar_dictionary(self, entity_name, texts, fuzziness_threshold='auto:4,7', search_language_script=None, **kwargs): """ Args: entity_name: the name of the entity to lookup in the datastore for getting entity values and their variants texts(list of strings): the text for which variants need to be find out fuzziness_threshold: fuzziness allowed for search results on entity value variants search_language_script: language of elasticsearch documents which are eligible for match kwargs: For Elasticsearch: Refer https://elasticsearch-py.readthedocs.io/en/master/api.html#elasticsearch.Elasticsearch.search Returns: list of collections.OrderedDict: dictionary mapping entity value variants to their entity value Example: db = DataStore() ngrams_list = ['Pune', 'Mumbai', 'Goa', 'Bangalore'] db.get_similar_ngrams_dictionary(entity_name='city', ngrams_list=ngrams_list, fuzziness_threshold=2) Output: [ {u'Bangalore': u'Bangalore', u'Mulbagal': u'Mulbagal', u'Multai': u'Multai', u'Mumbai': u'Mumbai', u'Pune': u'Pune', u'Puri': u'Puri', u'bangalore': u'bengaluru', u'goa': u'goa', u'mumbai': u'mumbai', u'pune': u'pune'} ] """ results_list = [] if self._client_or_connection is None: if self._engine == ELASTICSEARCH: self._store_name = self._connection_settings[ELASTICSEARCH_ALIAS] self._client_or_connection = elastic_search.connect.connect(**self._connection_settings) else: self._client_or_connection = None raise EngineNotImplementedException() if self._client_or_connection is None: raise EngineConnectionException(engine=self._engine) if self._engine == ELASTICSEARCH: if ELASTICSEARCH_DOC_TYPE not in self._connection_settings: raise DataStoreSettingsImproperlyConfiguredException('Elasticsearch needs doc_type. Please configure ES_DOC_TYPE in your environment') request_timeout = self._connection_settings.get('request_timeout', 20) results_list = elastic_search.query.full_text_query(connection=self._client_or_connection, index_name=self._store_name, doc_type=self._connection_settings[ELASTICSEARCH_DOC_TYPE], entity_name=entity_name, sentences=texts, fuzziness_threshold=fuzziness_threshold, search_language_script=search_language_script, request_timeout=request_timeout, **kwargs) return results_list
chatbot_ner
positive
def visit_Reshape(self, operation: operations.Reshape) -> onnx.NodeProto: idx = self.op_counts['Reshape'] = self.op_counts['Reshape'] + 1 opname = f'Reshape_{idx}' <DeepExtract> if isinstance(operation.x, Operation): x = self.visit(operation.x) if isinstance(operation.x, np.ndarray): tensor_proto = onnx.numpy_helper.from_array(operation.x, name=f'{opname}.x') self.initializer.append(tensor_proto) x = tensor_proto if isinstance(operation.x, bool): tensor_proto = onnx.numpy_helper.from_array(np.asarray(operation.x), name=f'{opname}.x') self.initializer.append(tensor_proto) x = tensor_proto if isinstance(operation.x, (int, float)): tensor_proto = onnx.numpy_helper.from_array(np.array(operation.x, dtype=f'{type(operation.x).__name__}32'), name=f'{opname}.x') self.initializer.append(tensor_proto) x = tensor_proto raise ValueError(f"Unknown type for operand of {f'{opname}.x'}: {type(operation.x)}") </DeepExtract> <DeepExtract> if isinstance(operation.shape, Operation): shape = self.visit(operation.shape) if isinstance(operation.shape, np.ndarray): tensor_proto = onnx.numpy_helper.from_array(operation.shape, name=f'{opname}.shape') self.initializer.append(tensor_proto) shape = tensor_proto if isinstance(operation.shape, bool): tensor_proto = onnx.numpy_helper.from_array(np.asarray(operation.shape), name=f'{opname}.shape') self.initializer.append(tensor_proto) shape = tensor_proto if isinstance(operation.shape, (int, float)): tensor_proto = onnx.numpy_helper.from_array(np.array(operation.shape, dtype=f'{type(operation.shape).__name__}32'), name=f'{opname}.shape') self.initializer.append(tensor_proto) shape = tensor_proto raise ValueError(f"Unknown type for operand of {f'{opname}.shape'}: {type(operation.shape)}") </DeepExtract> if operation.allowzero: raise ValueError('Reshape allowzero is not yet supported') node = onnx.helper.make_node('Reshape', inputs=[x.name, shape.name], outputs=[opname], name=opname) return node
def visit_Reshape(self, operation: operations.Reshape) -> onnx.NodeProto: idx = self.op_counts['Reshape'] = self.op_counts['Reshape'] + 1 opname = f'Reshape_{idx}' if isinstance(operation.x, Operation): x = self.visit(operation.x) if isinstance(operation.x, np.ndarray): tensor_proto = onnx.numpy_helper.from_array(operation.x, name=f'{opname}.x') self.initializer.append(tensor_proto) x = tensor_proto if isinstance(operation.x, bool): tensor_proto = onnx.numpy_helper.from_array(np.asarray(operation.x), name=f'{opname}.x') self.initializer.append(tensor_proto) x = tensor_proto if isinstance(operation.x, (int, float)): tensor_proto = onnx.numpy_helper.from_array(np.array(operation.x, dtype=f'{type(operation.x).__name__}32'), name=f'{opname}.x') self.initializer.append(tensor_proto) x = tensor_proto raise ValueError(f"Unknown type for operand of {f'{opname}.x'}: {type(operation.x)}") if isinstance(operation.shape, Operation): shape = self.visit(operation.shape) if isinstance(operation.shape, np.ndarray): tensor_proto = onnx.numpy_helper.from_array(operation.shape, name=f'{opname}.shape') self.initializer.append(tensor_proto) shape = tensor_proto if isinstance(operation.shape, bool): tensor_proto = onnx.numpy_helper.from_array(np.asarray(operation.shape), name=f'{opname}.shape') self.initializer.append(tensor_proto) shape = tensor_proto if isinstance(operation.shape, (int, float)): tensor_proto = onnx.numpy_helper.from_array(np.array(operation.shape, dtype=f'{type(operation.shape).__name__}32'), name=f'{opname}.shape') self.initializer.append(tensor_proto) shape = tensor_proto raise ValueError(f"Unknown type for operand of {f'{opname}.shape'}: {type(operation.shape)}") if operation.allowzero: raise ValueError('Reshape allowzero is not yet supported') node = onnx.helper.make_node('Reshape', inputs=[x.name, shape.name], outputs=[opname], name=opname) return node
DNNV
positive
def run(self): """ Process the input queues in lock-step, and push any results to the registered output queues. """ try: while True: input_chunks = [input.get() for input in self.input_queues] for input in self.input_queues: input.task_done() if any((chunk is QUEUE_ABORT for chunk in input_chunks)): <DeepExtract> for queue in self.output_queues: queue.put(QUEUE_ABORT) </DeepExtract> return if any((chunk is QUEUE_FINISHED for chunk in input_chunks)): break <DeepExtract> if self.process_chunks(input_chunks) is not None: for queue in self.output_queues: queue.put(self.process_chunks(input_chunks)) </DeepExtract> <DeepExtract> if self.finalise() is not None: for queue in self.output_queues: queue.put(self.finalise()) </DeepExtract> except: <DeepExtract> for queue in self.output_queues: queue.put(QUEUE_ABORT) </DeepExtract> raise else: for queue in self.output_queues: queue.put(QUEUE_FINISHED)
def run(self): """ Process the input queues in lock-step, and push any results to the registered output queues. """ try: while True: input_chunks = [input.get() for input in self.input_queues] for input in self.input_queues: input.task_done() if any((chunk is QUEUE_ABORT for chunk in input_chunks)): for queue in self.output_queues: queue.put(QUEUE_ABORT) return if any((chunk is QUEUE_FINISHED for chunk in input_chunks)): break if self.process_chunks(input_chunks) is not None: for queue in self.output_queues: queue.put(self.process_chunks(input_chunks)) if self.finalise() is not None: for queue in self.output_queues: queue.put(self.finalise()) except: for queue in self.output_queues: queue.put(QUEUE_ABORT) raise else: for queue in self.output_queues: queue.put(QUEUE_FINISHED)
biggus
positive
def parse_dataframes(self, dataframes: List[DataFrame], aux: Dict[str, DataFrame], **parse_opts) -> DataFrame: data = dataframes[0].rename(columns={'iso_code': '3166-1-alpha-3', 'new_cases': 'new_confirmed', 'new_deaths': 'new_deceased', 'new_tests': 'new_tested', 'total_cases': 'total_confirmed', 'total_deaths': 'total_deceased', 'total_tests': 'total_tested'}).merge(aux['country_codes']) <DeepExtract> data_columns = data.columns data = data.merge(aux['metadata'], suffixes=('', 'aux_'), how='left') data.aggregate_report_offset = data.aggregate_report_offset.apply(safe_int_cast) data['date'] = data.apply(lambda x: date_offset(x['date'], get_or_default(x, 'aggregate_report_offset', 0)), axis=1) data = data[data_columns] </DeepExtract> return data
def parse_dataframes(self, dataframes: List[DataFrame], aux: Dict[str, DataFrame], **parse_opts) -> DataFrame: data = dataframes[0].rename(columns={'iso_code': '3166-1-alpha-3', 'new_cases': 'new_confirmed', 'new_deaths': 'new_deceased', 'new_tests': 'new_tested', 'total_cases': 'total_confirmed', 'total_deaths': 'total_deceased', 'total_tests': 'total_tested'}).merge(aux['country_codes']) data_columns = data.columns data = data.merge(aux['metadata'], suffixes=('', 'aux_'), how='left') data.aggregate_report_offset = data.aggregate_report_offset.apply(safe_int_cast) data['date'] = data.apply(lambda x: date_offset(x['date'], get_or_default(x, 'aggregate_report_offset', 0)), axis=1) data = data[data_columns] return data
covid-19-open-data
positive
def _generate_detections(cls_outputs, box_outputs, anchor_boxes, indices, classes, image_id, image_scale, num_classes): """Generates detections with RetinaNet model outputs and anchors. Args: cls_outputs: a numpy array with shape [N, 1], which has the highest class scores on all feature levels. The N is the number of selected top-K total anchors on all levels. (k being MAX_DETECTION_POINTS) box_outputs: a numpy array with shape [N, 4], which stacks box regression outputs on all feature levels. The N is the number of selected top-k total anchors on all levels. (k being MAX_DETECTION_POINTS) anchor_boxes: a numpy array with shape [N, 4], which stacks anchors on all feature levels. The N is the number of selected top-k total anchors on all levels. indices: a numpy array with shape [N], which is the indices from top-k selection. classes: a numpy array with shape [N], which represents the class prediction on all selected anchors from top-k selection. image_id: an integer number to specify the image id. image_scale: a float tensor representing the scale between original image and input image for the detector. It is used to rescale detections for evaluating with the original groundtruth annotations. num_classes: a integer that indicates the number of classes. Returns: detections: detection results in a tensor with each row representing [image_id, x, y, width, height, score, class] """ anchor_boxes = anchor_boxes[indices, :] <DeepExtract> scores = 1 / (1 + np.exp(-cls_outputs)) </DeepExtract> <DeepExtract> ycenter_a = (anchor_boxes.swapaxes(0, 1)[0] + anchor_boxes.swapaxes(0, 1)[2]) / 2 xcenter_a = (anchor_boxes.swapaxes(0, 1)[1] + anchor_boxes.swapaxes(0, 1)[3]) / 2 ha = anchor_boxes.swapaxes(0, 1)[2] - anchor_boxes.swapaxes(0, 1)[0] wa = anchor_boxes.swapaxes(0, 1)[3] - anchor_boxes.swapaxes(0, 1)[1] (ty, tx, th, tw) = box_outputs.swapaxes(0, 1) w = np.exp(tw) * wa h = np.exp(th) * ha ycenter = ty * ha + ycenter_a xcenter = tx * wa + xcenter_a ymin = ycenter - h / 2.0 xmin = xcenter - w / 2.0 ymax = ycenter + h / 2.0 xmax = xcenter + w / 2.0 boxes = np.column_stack([ymin, xmin, ymax, xmax]) </DeepExtract> boxes = boxes[:, [1, 0, 3, 2]] detections = [] for c in range(num_classes): indices = np.where(classes == c)[0] if indices.shape[0] == 0: continue boxes_cls = boxes[indices, :] scores_cls = scores[indices] all_detections_cls = np.column_stack((boxes_cls, scores_cls)) <DeepExtract> x1 = all_detections_cls[:, 0] y1 = all_detections_cls[:, 1] x2 = all_detections_cls[:, 2] y2 = all_detections_cls[:, 3] scores = all_detections_cls[:, 4] areas = (x2 - x1 + 1) * (y2 - y1 + 1) order = scores.argsort()[::-1] keep = [] while order.size > 0: i = order[0] keep.append(i) xx1 = np.maximum(x1[i], x1[order[1:]]) yy1 = np.maximum(y1[i], y1[order[1:]]) xx2 = np.minimum(x2[i], x2[order[1:]]) yy2 = np.minimum(y2[i], y2[order[1:]]) w = np.maximum(0.0, xx2 - xx1 + 1) h = np.maximum(0.0, yy2 - yy1 + 1) intersection = w * h overlap = intersection / (areas[i] + areas[order[1:]] - intersection) inds = np.where(overlap <= 0.5)[0] order = order[inds + 1] top_detection_idx = keep </DeepExtract> top_detections_cls = all_detections_cls[top_detection_idx] top_detections_cls[:, 2] -= top_detections_cls[:, 0] top_detections_cls[:, 3] -= top_detections_cls[:, 1] top_detections_cls = np.column_stack((np.repeat(image_id, len(top_detection_idx)), top_detections_cls, np.repeat(c + 1, len(top_detection_idx)))) detections.append(top_detections_cls) def _generate_dummy_detections(number): detections_dummy = np.zeros((number, 7), dtype=np.float32) detections_dummy[:, 0] = image_id[0] detections_dummy[:, 5] = _DUMMY_DETECTION_SCORE return detections_dummy if detections: detections = np.vstack(detections) indices = np.argsort(-detections[:, -2]) detections = np.array(detections[indices[0:MAX_DETECTIONS_PER_IMAGE]], dtype=np.float32) n = max(MAX_DETECTIONS_PER_IMAGE - len(detections), 0) <DeepExtract> detections_dummy = np.zeros((n, 7), dtype=np.float32) detections_dummy[:, 0] = image_id[0] detections_dummy[:, 5] = _DUMMY_DETECTION_SCORE detections_dummy = detections_dummy </DeepExtract> detections = np.vstack([detections, detections_dummy]) detections[:, 1:5] *= image_scale else: <DeepExtract> detections_dummy = np.zeros((MAX_DETECTIONS_PER_IMAGE, 7), dtype=np.float32) detections_dummy[:, 0] = image_id[0] detections_dummy[:, 5] = _DUMMY_DETECTION_SCORE detections = detections_dummy </DeepExtract> detections[:, 1:5] *= image_scale return detections
def _generate_detections(cls_outputs, box_outputs, anchor_boxes, indices, classes, image_id, image_scale, num_classes): """Generates detections with RetinaNet model outputs and anchors. Args: cls_outputs: a numpy array with shape [N, 1], which has the highest class scores on all feature levels. The N is the number of selected top-K total anchors on all levels. (k being MAX_DETECTION_POINTS) box_outputs: a numpy array with shape [N, 4], which stacks box regression outputs on all feature levels. The N is the number of selected top-k total anchors on all levels. (k being MAX_DETECTION_POINTS) anchor_boxes: a numpy array with shape [N, 4], which stacks anchors on all feature levels. The N is the number of selected top-k total anchors on all levels. indices: a numpy array with shape [N], which is the indices from top-k selection. classes: a numpy array with shape [N], which represents the class prediction on all selected anchors from top-k selection. image_id: an integer number to specify the image id. image_scale: a float tensor representing the scale between original image and input image for the detector. It is used to rescale detections for evaluating with the original groundtruth annotations. num_classes: a integer that indicates the number of classes. Returns: detections: detection results in a tensor with each row representing [image_id, x, y, width, height, score, class] """ anchor_boxes = anchor_boxes[indices, :] scores = 1 / (1 + np.exp(-cls_outputs)) ycenter_a = (anchor_boxes.swapaxes(0, 1)[0] + anchor_boxes.swapaxes(0, 1)[2]) / 2 xcenter_a = (anchor_boxes.swapaxes(0, 1)[1] + anchor_boxes.swapaxes(0, 1)[3]) / 2 ha = anchor_boxes.swapaxes(0, 1)[2] - anchor_boxes.swapaxes(0, 1)[0] wa = anchor_boxes.swapaxes(0, 1)[3] - anchor_boxes.swapaxes(0, 1)[1] (ty, tx, th, tw) = box_outputs.swapaxes(0, 1) w = np.exp(tw) * wa h = np.exp(th) * ha ycenter = ty * ha + ycenter_a xcenter = tx * wa + xcenter_a ymin = ycenter - h / 2.0 xmin = xcenter - w / 2.0 ymax = ycenter + h / 2.0 xmax = xcenter + w / 2.0 boxes = np.column_stack([ymin, xmin, ymax, xmax]) boxes = boxes[:, [1, 0, 3, 2]] detections = [] for c in range(num_classes): indices = np.where(classes == c)[0] if indices.shape[0] == 0: continue boxes_cls = boxes[indices, :] scores_cls = scores[indices] all_detections_cls = np.column_stack((boxes_cls, scores_cls)) x1 = all_detections_cls[:, 0] y1 = all_detections_cls[:, 1] x2 = all_detections_cls[:, 2] y2 = all_detections_cls[:, 3] scores = all_detections_cls[:, 4] areas = (x2 - x1 + 1) * (y2 - y1 + 1) order = scores.argsort()[::-1] keep = [] while order.size > 0: i = order[0] keep.append(i) xx1 = np.maximum(x1[i], x1[order[1:]]) yy1 = np.maximum(y1[i], y1[order[1:]]) xx2 = np.minimum(x2[i], x2[order[1:]]) yy2 = np.minimum(y2[i], y2[order[1:]]) w = np.maximum(0.0, xx2 - xx1 + 1) h = np.maximum(0.0, yy2 - yy1 + 1) intersection = w * h overlap = intersection / (areas[i] + areas[order[1:]] - intersection) inds = np.where(overlap <= 0.5)[0] order = order[inds + 1] top_detection_idx = keep top_detections_cls = all_detections_cls[top_detection_idx] top_detections_cls[:, 2] -= top_detections_cls[:, 0] top_detections_cls[:, 3] -= top_detections_cls[:, 1] top_detections_cls = np.column_stack((np.repeat(image_id, len(top_detection_idx)), top_detections_cls, np.repeat(c + 1, len(top_detection_idx)))) detections.append(top_detections_cls) def _generate_dummy_detections(number): detections_dummy = np.zeros((number, 7), dtype=np.float32) detections_dummy[:, 0] = image_id[0] detections_dummy[:, 5] = _DUMMY_DETECTION_SCORE return detections_dummy if detections: detections = np.vstack(detections) indices = np.argsort(-detections[:, -2]) detections = np.array(detections[indices[0:MAX_DETECTIONS_PER_IMAGE]], dtype=np.float32) n = max(MAX_DETECTIONS_PER_IMAGE - len(detections), 0) detections_dummy = np.zeros((n, 7), dtype=np.float32) detections_dummy[:, 0] = image_id[0] detections_dummy[:, 5] = _DUMMY_DETECTION_SCORE detections_dummy = detections_dummy detections = np.vstack([detections, detections_dummy]) detections[:, 1:5] *= image_scale else: detections_dummy = np.zeros((MAX_DETECTIONS_PER_IMAGE, 7), dtype=np.float32) detections_dummy[:, 0] = image_id[0] detections_dummy[:, 5] = _DUMMY_DETECTION_SCORE detections = detections_dummy detections[:, 1:5] *= image_scale return detections
class-balanced-loss
positive
def forward(self, rpn_cls_prob, rpn_bbox_pred, im_info): """Op for generating RPN porposals. blobs_in: - 'rpn_cls_probs': 4D tensor of shape (N, A, H, W), where N is the number of minibatch images, A is the number of anchors per locations, and (H, W) is the spatial size of the prediction grid. Each value represents a "probability of object" rating in [0, 1]. - 'rpn_bbox_pred': 4D tensor of shape (N, 4 * A, H, W) of predicted deltas for transformation anchor boxes into RPN proposals. - 'im_info': 2D tensor of shape (N, 3) where the three columns encode the input image's [height, width, scale]. Height and width are for the input to the network, not the original image; scale is the scale factor used to scale the original image to the network input size. blobs_out: - 'rpn_rois': 2D tensor of shape (R, 5), for R RPN proposals where the five columns encode [batch ind, x1, y1, x2, y2]. The boxes are w.r.t. the network input, which is a *scaled* version of the original image; these proposals must be scaled by 1 / scale (where scale comes from im_info; see above) to transform it back to the original input image coordinate system. - 'rpn_roi_probs': 1D tensor of objectness probability scores (extracted from rpn_cls_probs; see above). """ 'Type conversion' scores = rpn_cls_prob.data.cpu().numpy() bbox_deltas = rpn_bbox_pred.data.cpu().numpy() im_info = im_info.data.cpu().numpy() (height, width) = scores.shape[-2:] shift_x = np.arange(0, width) * self._feat_stride shift_y = np.arange(0, height) * self._feat_stride (shift_x, shift_y) = np.meshgrid(shift_x, shift_y, copy=False) shifts = np.vstack((shift_x.ravel(), shift_y.ravel(), shift_x.ravel(), shift_y.ravel())).transpose() num_images = scores.shape[0] A = self._num_anchors K = shifts.shape[0] all_anchors = self._anchors[np.newaxis, :, :] + shifts[:, np.newaxis, :] all_anchors = all_anchors.reshape((K * A, 4)) rois = np.empty((0, 5), dtype=np.float32) roi_probs = np.empty((0, 1), dtype=np.float32) for im_i in range(num_images): <DeepExtract> cfg_key = 'TRAIN' if self.training else 'TEST' pre_nms_topN = cfg[cfg_key].RPN_PRE_NMS_TOP_N post_nms_topN = cfg[cfg_key].RPN_POST_NMS_TOP_N nms_thresh = cfg[cfg_key].RPN_NMS_THRESH min_size = cfg[cfg_key].RPN_MIN_SIZE bbox_deltas[im_i, :, :, :] = bbox_deltas[im_i, :, :, :].transpose((1, 2, 0)).reshape((-1, 4)) scores[im_i, :, :, :] = scores[im_i, :, :, :].transpose((1, 2, 0)).reshape((-1, 1)) if pre_nms_topN <= 0 or pre_nms_topN >= len(scores[im_i, :, :, :]): order = np.argsort(-scores[im_i, :, :, :].squeeze()) else: inds = np.argpartition(-scores[im_i, :, :, :].squeeze(), pre_nms_topN)[:pre_nms_topN] order = np.argsort(-scores[im_i, :, :, :][inds].squeeze()) order = inds[order] bbox_deltas[im_i, :, :, :] = bbox_deltas[im_i, :, :, :][order, :] all_anchors = all_anchors[order, :] scores[im_i, :, :, :] = scores[im_i, :, :, :][order] proposals = box_utils.bbox_transform(all_anchors, bbox_deltas[im_i, :, :, :], (1.0, 1.0, 1.0, 1.0)) proposals = box_utils.clip_tiled_boxes(proposals, im_info[im_i, :][:2]) keep = _filter_boxes(proposals, min_size, im_info[im_i, :]) proposals = proposals[keep, :] scores[im_i, :, :, :] = scores[im_i, :, :, :][keep] if nms_thresh > 0: keep = box_utils.nms(np.hstack((proposals, scores[im_i, :, :, :])), nms_thresh) if post_nms_topN > 0: keep = keep[:post_nms_topN] proposals = proposals[keep, :] scores[im_i, :, :, :] = scores[im_i, :, :, :][keep] (im_i_boxes, im_i_probs) = (proposals, scores[im_i, :, :, :]) </DeepExtract> batch_inds = im_i * np.ones((im_i_boxes.shape[0], 1), dtype=np.float32) im_i_rois = np.hstack((batch_inds, im_i_boxes)) rois = np.append(rois, im_i_rois, axis=0) roi_probs = np.append(roi_probs, im_i_probs, axis=0) return (rois, roi_probs)
def forward(self, rpn_cls_prob, rpn_bbox_pred, im_info): """Op for generating RPN porposals. blobs_in: - 'rpn_cls_probs': 4D tensor of shape (N, A, H, W), where N is the number of minibatch images, A is the number of anchors per locations, and (H, W) is the spatial size of the prediction grid. Each value represents a "probability of object" rating in [0, 1]. - 'rpn_bbox_pred': 4D tensor of shape (N, 4 * A, H, W) of predicted deltas for transformation anchor boxes into RPN proposals. - 'im_info': 2D tensor of shape (N, 3) where the three columns encode the input image's [height, width, scale]. Height and width are for the input to the network, not the original image; scale is the scale factor used to scale the original image to the network input size. blobs_out: - 'rpn_rois': 2D tensor of shape (R, 5), for R RPN proposals where the five columns encode [batch ind, x1, y1, x2, y2]. The boxes are w.r.t. the network input, which is a *scaled* version of the original image; these proposals must be scaled by 1 / scale (where scale comes from im_info; see above) to transform it back to the original input image coordinate system. - 'rpn_roi_probs': 1D tensor of objectness probability scores (extracted from rpn_cls_probs; see above). """ 'Type conversion' scores = rpn_cls_prob.data.cpu().numpy() bbox_deltas = rpn_bbox_pred.data.cpu().numpy() im_info = im_info.data.cpu().numpy() (height, width) = scores.shape[-2:] shift_x = np.arange(0, width) * self._feat_stride shift_y = np.arange(0, height) * self._feat_stride (shift_x, shift_y) = np.meshgrid(shift_x, shift_y, copy=False) shifts = np.vstack((shift_x.ravel(), shift_y.ravel(), shift_x.ravel(), shift_y.ravel())).transpose() num_images = scores.shape[0] A = self._num_anchors K = shifts.shape[0] all_anchors = self._anchors[np.newaxis, :, :] + shifts[:, np.newaxis, :] all_anchors = all_anchors.reshape((K * A, 4)) rois = np.empty((0, 5), dtype=np.float32) roi_probs = np.empty((0, 1), dtype=np.float32) for im_i in range(num_images): cfg_key = 'TRAIN' if self.training else 'TEST' pre_nms_topN = cfg[cfg_key].RPN_PRE_NMS_TOP_N post_nms_topN = cfg[cfg_key].RPN_POST_NMS_TOP_N nms_thresh = cfg[cfg_key].RPN_NMS_THRESH min_size = cfg[cfg_key].RPN_MIN_SIZE bbox_deltas[im_i, :, :, :] = bbox_deltas[im_i, :, :, :].transpose((1, 2, 0)).reshape((-1, 4)) scores[im_i, :, :, :] = scores[im_i, :, :, :].transpose((1, 2, 0)).reshape((-1, 1)) if pre_nms_topN <= 0 or pre_nms_topN >= len(scores[im_i, :, :, :]): order = np.argsort(-scores[im_i, :, :, :].squeeze()) else: inds = np.argpartition(-scores[im_i, :, :, :].squeeze(), pre_nms_topN)[:pre_nms_topN] order = np.argsort(-scores[im_i, :, :, :][inds].squeeze()) order = inds[order] bbox_deltas[im_i, :, :, :] = bbox_deltas[im_i, :, :, :][order, :] all_anchors = all_anchors[order, :] scores[im_i, :, :, :] = scores[im_i, :, :, :][order] proposals = box_utils.bbox_transform(all_anchors, bbox_deltas[im_i, :, :, :], (1.0, 1.0, 1.0, 1.0)) proposals = box_utils.clip_tiled_boxes(proposals, im_info[im_i, :][:2]) keep = _filter_boxes(proposals, min_size, im_info[im_i, :]) proposals = proposals[keep, :] scores[im_i, :, :, :] = scores[im_i, :, :, :][keep] if nms_thresh > 0: keep = box_utils.nms(np.hstack((proposals, scores[im_i, :, :, :])), nms_thresh) if post_nms_topN > 0: keep = keep[:post_nms_topN] proposals = proposals[keep, :] scores[im_i, :, :, :] = scores[im_i, :, :, :][keep] (im_i_boxes, im_i_probs) = (proposals, scores[im_i, :, :, :]) batch_inds = im_i * np.ones((im_i_boxes.shape[0], 1), dtype=np.float32) im_i_rois = np.hstack((batch_inds, im_i_boxes)) rois = np.append(rois, im_i_rois, axis=0) roi_probs = np.append(roi_probs, im_i_probs, axis=0) return (rois, roi_probs)
Detectron.pytorch
positive
def try_setting_up_bot(self) -> bool: """ This function will try to setup the main bot for trading. :return: Boolean whether setup was successful or not. """ try: <DeepExtract> self.create_trader(self.caller) self.set_parameters(self.caller) if self.gui.configuration.enableTelegramTrading.isChecked() and self.gui.telegram_bot is None: self.initialize_telegram_bot() if self.gui.configuration.schedulingStatisticsCheckBox.isChecked(): self.initialize_scheduler() if self.caller == LIVE: self.gui.running_live = True elif self.caller == SIMULATION: self.gui.simulation_running_live = True else: raise RuntimeError('Invalid type of caller specified.') </DeepExtract> self.signals.started.emit(self.caller) return True except Exception as e: error_message = traceback.format_exc() trader: SimulationTrader = self.gui.get_trader(self.caller) self.logger.critical(error_message) if trader: trader.output_message(f'Bot has crashed because of :{e}') trader.output_message(error_message) if self.gui.telegram_bot and self.gui.configuration.chat_pass: self.gui.telegram_bot.send_message(self.telegram_chat_id, f'Bot has crashed because of :{e}.') self.gui.telegram_bot.send_message(self.telegram_chat_id, error_message) self.fail_error = str(e) return False
def try_setting_up_bot(self) -> bool: """ This function will try to setup the main bot for trading. :return: Boolean whether setup was successful or not. """ try: self.create_trader(self.caller) self.set_parameters(self.caller) if self.gui.configuration.enableTelegramTrading.isChecked() and self.gui.telegram_bot is None: self.initialize_telegram_bot() if self.gui.configuration.schedulingStatisticsCheckBox.isChecked(): self.initialize_scheduler() if self.caller == LIVE: self.gui.running_live = True elif self.caller == SIMULATION: self.gui.simulation_running_live = True else: raise RuntimeError('Invalid type of caller specified.') self.signals.started.emit(self.caller) return True except Exception as e: error_message = traceback.format_exc() trader: SimulationTrader = self.gui.get_trader(self.caller) self.logger.critical(error_message) if trader: trader.output_message(f'Bot has crashed because of :{e}') trader.output_message(error_message) if self.gui.telegram_bot and self.gui.configuration.chat_pass: self.gui.telegram_bot.send_message(self.telegram_chat_id, f'Bot has crashed because of :{e}.') self.gui.telegram_bot.send_message(self.telegram_chat_id, error_message) self.fail_error = str(e) return False
algobot
positive
def chunk(data, duration, trex_box): """Decode data into a segment and chunk it given duration and trex_box data.""" root = mp4(data) mfhd = root.find(b'moof.mfhd') tfhd = root.find(b'moof.traf.tfhd') seqno = mfhd.seqno track_id = tfhd.track_id <DeepExtract> for chunk_samples in partition(decode_fragment(data, trex_box), duration): yield (create_moof(seqno, track_id, chunk_samples, None), create_mdat(chunk_samples)) </DeepExtract> chunks = [] for (moof, mdat) in fragments: chunks.append(moof.serialize() + mdat.serialize()) return chunks
def chunk(data, duration, trex_box): """Decode data into a segment and chunk it given duration and trex_box data.""" root = mp4(data) mfhd = root.find(b'moof.mfhd') tfhd = root.find(b'moof.traf.tfhd') seqno = mfhd.seqno track_id = tfhd.track_id for chunk_samples in partition(decode_fragment(data, trex_box), duration): yield (create_moof(seqno, track_id, chunk_samples, None), create_mdat(chunk_samples)) chunks = [] for (moof, mdat) in fragments: chunks.append(moof.serialize() + mdat.serialize()) return chunks
dash-live-source-simulator
positive
def test_extraction_add_location_file(self): self.dist.message_extractors = {'project': [('**/ignored/**.*', 'ignore', None), ('**.py', 'python', None)]} self.cmd.output_file = 'project/i18n/temp.pot' self.cmd.add_location = 'file' self.cmd.omit_header = True self.cmd.finalize_options() self.cmd.run() <DeepExtract> assert os.path.isfile(pot_file) </DeepExtract> expected_content = '#: project/file1.py\nmsgid "bar"\nmsgstr ""\n\n#: project/file2.py\nmsgid "foobar"\nmsgid_plural "foobars"\nmsgstr[0] ""\nmsgstr[1] ""\n\n' with open(pot_file) as f: actual_content = f.read() assert expected_content == actual_content
def test_extraction_add_location_file(self): self.dist.message_extractors = {'project': [('**/ignored/**.*', 'ignore', None), ('**.py', 'python', None)]} self.cmd.output_file = 'project/i18n/temp.pot' self.cmd.add_location = 'file' self.cmd.omit_header = True self.cmd.finalize_options() self.cmd.run() assert os.path.isfile(pot_file) expected_content = '#: project/file1.py\nmsgid "bar"\nmsgstr ""\n\n#: project/file2.py\nmsgid "foobar"\nmsgid_plural "foobars"\nmsgstr[0] ""\nmsgstr[1] ""\n\n' with open(pot_file) as f: actual_content = f.read() assert expected_content == actual_content
babel
positive
def forward(self, input: torch.Tensor, target: torch.Tensor, weights: torch.Tensor): """ Args: input: (B, #anchors, #classes) float tensor. Predicted logits for each class target: (B, #anchors, #classes) float tensor. One-hot encoded classification targets weights: (B, #anchors) float tensor. Anchor-wise weights. Returns: weighted_loss: (B, #anchors, #classes) float tensor after weighting. """ pred_sigmoid = torch.sigmoid(input) alpha_weight = target * self.alpha + (1 - target) * (1 - self.alpha) pt = target * (1.0 - pred_sigmoid) + (1.0 - target) * pred_sigmoid focal_weight = alpha_weight * torch.pow(pt, self.gamma) <DeepExtract> loss = torch.clamp(input, min=0) - input * target + torch.log1p(torch.exp(-torch.abs(input))) bce_loss = loss </DeepExtract> loss = focal_weight * bce_loss if weights.shape.__len__() == 2 or (weights.shape.__len__() == 1 and target.shape.__len__() == 2): weights = weights.unsqueeze(-1) assert weights.shape.__len__() == loss.shape.__len__() return loss * weights
def forward(self, input: torch.Tensor, target: torch.Tensor, weights: torch.Tensor): """ Args: input: (B, #anchors, #classes) float tensor. Predicted logits for each class target: (B, #anchors, #classes) float tensor. One-hot encoded classification targets weights: (B, #anchors) float tensor. Anchor-wise weights. Returns: weighted_loss: (B, #anchors, #classes) float tensor after weighting. """ pred_sigmoid = torch.sigmoid(input) alpha_weight = target * self.alpha + (1 - target) * (1 - self.alpha) pt = target * (1.0 - pred_sigmoid) + (1.0 - target) * pred_sigmoid focal_weight = alpha_weight * torch.pow(pt, self.gamma) loss = torch.clamp(input, min=0) - input * target + torch.log1p(torch.exp(-torch.abs(input))) bce_loss = loss loss = focal_weight * bce_loss if weights.shape.__len__() == 2 or (weights.shape.__len__() == 1 and target.shape.__len__() == 2): weights = weights.unsqueeze(-1) assert weights.shape.__len__() == loss.shape.__len__() return loss * weights
3DIoUMatch
positive
def opts_entry(frame): """ Add the options entry boxes """ for item in ('avgiterations',): if item == 'avgiterations': text = 'Iterations to Average:' default = '10' entframe = ttk.Frame(frame) entframe.pack(fill=tk.X, pady=5, padx=5, side=tk.TOP) lbl = ttk.Label(entframe, text=text, anchor=tk.W) lbl.pack(padx=(0, 2), side=tk.LEFT) ctl = ttk.Entry(entframe, width=4, justify=tk.RIGHT) ctl.pack(side=tk.RIGHT, anchor=tk.W) ctl.insert(0, default) <DeepExtract> hlp = '' if item == 'reset': hlp = 'Load/Refresh stats for the currently training session' elif item == 'clear': hlp = 'Clear currently displayed session stats' elif item == 'save': hlp = 'Save session stats to csv' elif item == 'load': hlp = 'Load saved session stats' hlp = hlp </DeepExtract> Tooltip(entframe, text=hlp, wraplength=200) self.vars[item] = ctl
def opts_entry(frame): """ Add the options entry boxes """ for item in ('avgiterations',): if item == 'avgiterations': text = 'Iterations to Average:' default = '10' entframe = ttk.Frame(frame) entframe.pack(fill=tk.X, pady=5, padx=5, side=tk.TOP) lbl = ttk.Label(entframe, text=text, anchor=tk.W) lbl.pack(padx=(0, 2), side=tk.LEFT) ctl = ttk.Entry(entframe, width=4, justify=tk.RIGHT) ctl.pack(side=tk.RIGHT, anchor=tk.W) ctl.insert(0, default) hlp = '' if item == 'reset': hlp = 'Load/Refresh stats for the currently training session' elif item == 'clear': hlp = 'Clear currently displayed session stats' elif item == 'save': hlp = 'Save session stats to csv' elif item == 'load': hlp = 'Load saved session stats' hlp = hlp Tooltip(entframe, text=hlp, wraplength=200) self.vars[item] = ctl
DeepFakeTutorial
positive
def call(self, inputs): """Forward pass.""" if self.conditional: (x, z) = inputs <DeepExtract> if len(x.shape) == 2: x = x[:, tf.newaxis, tf.newaxis, :] elif len(x.shape) == 3: x = x[:, :, tf.newaxis, :] else: x = x </DeepExtract> <DeepExtract> if len(z.shape) == 2: z = z[:, tf.newaxis, tf.newaxis, :] elif len(z.shape) == 3: z = z[:, :, tf.newaxis, :] else: z = z </DeepExtract> else: x = inputs <DeepExtract> if len(x.shape) == 2: x = x[:, tf.newaxis, tf.newaxis, :] elif len(x.shape) == 3: x = x[:, :, tf.newaxis, :] else: x = x </DeepExtract> x = self.conv_in(x) for (i, (layer, norm)) in enumerate(zip(self.layers, self.norms)): if self.resample_layers and (not self.resample_after_convolve) and (i % self.layers_per_resample == 0): x = self.resample_layers[i // self.layers_per_resample](x) if self.conditional: y = layer(x) x += norm([y, z]) else: x += norm(layer(x)) if self.resample_layers and self.resample_after_convolve and ((i + 1) % self.layers_per_resample == 0): x = self.resample_layers[i // self.layers_per_resample](x) return x[:, :, 0, :]
def call(self, inputs): """Forward pass.""" if self.conditional: (x, z) = inputs if len(x.shape) == 2: x = x[:, tf.newaxis, tf.newaxis, :] elif len(x.shape) == 3: x = x[:, :, tf.newaxis, :] else: x = x if len(z.shape) == 2: z = z[:, tf.newaxis, tf.newaxis, :] elif len(z.shape) == 3: z = z[:, :, tf.newaxis, :] else: z = z else: x = inputs if len(x.shape) == 2: x = x[:, tf.newaxis, tf.newaxis, :] elif len(x.shape) == 3: x = x[:, :, tf.newaxis, :] else: x = x x = self.conv_in(x) for (i, (layer, norm)) in enumerate(zip(self.layers, self.norms)): if self.resample_layers and (not self.resample_after_convolve) and (i % self.layers_per_resample == 0): x = self.resample_layers[i // self.layers_per_resample](x) if self.conditional: y = layer(x) x += norm([y, z]) else: x += norm(layer(x)) if self.resample_layers and self.resample_after_convolve and ((i + 1) % self.layers_per_resample == 0): x = self.resample_layers[i // self.layers_per_resample](x) return x[:, :, 0, :]
ddsp
positive
def MF_knapsack(i, wt, val, j): """ This code involves the concept of memory functions. Here we solve the subproblems which are needed unlike the below example F is a 2D array with -1s filled up """ global F if F[i][j] < 0: if j < wt[i - 1]: <DeepExtract> global F if F[i - 1][j] < 0: if j < wt[i - 1 - 1]: val = MF_knapsack(i - 1 - 1, wt, val, j) else: val = max(MF_knapsack(i - 1 - 1, wt, val, j), MF_knapsack(i - 1 - 1, wt, val, j - wt[i - 1 - 1]) + val[i - 1 - 1]) F[i - 1][j] = val val = F[i - 1][j] </DeepExtract> else: val = max(MF_knapsack(i - 1, wt, val, j), MF_knapsack(i - 1, wt, val, j - wt[i - 1]) + val[i - 1]) F[i][j] = val return F[i][j]
def MF_knapsack(i, wt, val, j): """ This code involves the concept of memory functions. Here we solve the subproblems which are needed unlike the below example F is a 2D array with -1s filled up """ global F if F[i][j] < 0: if j < wt[i - 1]: global F if F[i - 1][j] < 0: if j < wt[i - 1 - 1]: val = MF_knapsack(i - 1 - 1, wt, val, j) else: val = max(MF_knapsack(i - 1 - 1, wt, val, j), MF_knapsack(i - 1 - 1, wt, val, j - wt[i - 1 - 1]) + val[i - 1 - 1]) F[i - 1][j] = val val = F[i - 1][j] else: val = max(MF_knapsack(i - 1, wt, val, j), MF_knapsack(i - 1, wt, val, j - wt[i - 1]) + val[i - 1]) F[i][j] = val return F[i][j]
-
positive
def train(model, data_gen, train_path, valid_path, start_epoch, num_epoches, save_path, device, batch_size=32, decay_rate=0.1, learning_rate=0.001, momentum=0.9, update_lr_epoches=[], shuffle=True): model.train() optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate, momentum=0.9) loss_history = [[], [], []] for epoch in range(start_epoch, num_epoches + start_epoch): step = 0 train_gen = data_gen.get_generator(train_path, batch_size, is_shuffle=shuffle) if epoch in update_lr_epoches: learning_rate = learning_rate * decay_rate for param_group in optimizer.param_groups: param_group['lr'] = learning_rate print('Updating the learning rate at epoch: ' + str(epoch) + ', value: ' + str(learning_rate)) train_loss = [] for (batch_input_ids, batch_mask_ids, batch_input_type_ids, batch_label_types, batch_rel_matrix) in train_gen: model.zero_grad() loss = model.score([batch_input_ids.to(device), batch_mask_ids.to(device), batch_input_type_ids.to(device), batch_label_types.to(device), batch_rel_matrix.to(device)]) loss.backward() optimizer.step() optimizer.zero_grad() loss = loss.data.cpu().tolist() train_loss.append(loss) print('Training: Epoch %d, step %5d / %d loss: %.3f' % (epoch + 1, step + 1, data_gen.num_samples / batch_size + 1, loss)) step += 1 valid_gen = data_gen.get_generator(valid_path, batch_size, is_shuffle=shuffle) <DeepExtract> num_valid = 0 num_correct = total_loss = 0 batch_size = 0 idx = 0 for (batch_input_ids, batch_mask_ids, batch_input_type_ids, batch_label_ids, batch_rel_matrix) in valid_gen: loss = model.score([batch_input_ids.to(device), batch_mask_ids.to(device), batch_input_type_ids.to(device), batch_label_ids.to(device), batch_rel_matrix.to(device)]) idx += 1 total_loss += loss.mean().item() loss = total_loss / idx print('\nValidation : Loss: {:.6f} Accuracy: {}/{} ({:.4f}%)\n'.format(loss, 0, 0, 0)) (valid_loss, valid_accuracy) = (loss, 0) </DeepExtract> train_loss_value = np.mean(train_loss) valid_loss_value = np.mean(valid_loss) loss_history[0].append(epoch + 1) loss_history[1].append(train_loss_value) loss_history[2].append(valid_loss_value) <DeepExtract> plt.plot(loss_history[0], loss_history[1], '-b') plt.plot(loss_history[0], loss_history[2], '--r') plt.xlabel('Epoch') plt.ylabel('Loss') plt.legend(['Training Loss', 'Validation Loss']) plt.title(title) plt.savefig(save_path) </DeepExtract> model.train() save_data = {'model': model, 'history': loss_history} with open(save_path + 'bert_ner_epoches=' + str(epoch + 1) + '_valid_loss=' + str(valid_loss) + '.pickle', 'wb') as handle: pickle.dump(save_data, handle, protocol=2)
def train(model, data_gen, train_path, valid_path, start_epoch, num_epoches, save_path, device, batch_size=32, decay_rate=0.1, learning_rate=0.001, momentum=0.9, update_lr_epoches=[], shuffle=True): model.train() optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate, momentum=0.9) loss_history = [[], [], []] for epoch in range(start_epoch, num_epoches + start_epoch): step = 0 train_gen = data_gen.get_generator(train_path, batch_size, is_shuffle=shuffle) if epoch in update_lr_epoches: learning_rate = learning_rate * decay_rate for param_group in optimizer.param_groups: param_group['lr'] = learning_rate print('Updating the learning rate at epoch: ' + str(epoch) + ', value: ' + str(learning_rate)) train_loss = [] for (batch_input_ids, batch_mask_ids, batch_input_type_ids, batch_label_types, batch_rel_matrix) in train_gen: model.zero_grad() loss = model.score([batch_input_ids.to(device), batch_mask_ids.to(device), batch_input_type_ids.to(device), batch_label_types.to(device), batch_rel_matrix.to(device)]) loss.backward() optimizer.step() optimizer.zero_grad() loss = loss.data.cpu().tolist() train_loss.append(loss) print('Training: Epoch %d, step %5d / %d loss: %.3f' % (epoch + 1, step + 1, data_gen.num_samples / batch_size + 1, loss)) step += 1 valid_gen = data_gen.get_generator(valid_path, batch_size, is_shuffle=shuffle) num_valid = 0 num_correct = total_loss = 0 batch_size = 0 idx = 0 for (batch_input_ids, batch_mask_ids, batch_input_type_ids, batch_label_ids, batch_rel_matrix) in valid_gen: loss = model.score([batch_input_ids.to(device), batch_mask_ids.to(device), batch_input_type_ids.to(device), batch_label_ids.to(device), batch_rel_matrix.to(device)]) idx += 1 total_loss += loss.mean().item() loss = total_loss / idx print('\nValidation : Loss: {:.6f} Accuracy: {}/{} ({:.4f}%)\n'.format(loss, 0, 0, 0)) (valid_loss, valid_accuracy) = (loss, 0) train_loss_value = np.mean(train_loss) valid_loss_value = np.mean(valid_loss) loss_history[0].append(epoch + 1) loss_history[1].append(train_loss_value) loss_history[2].append(valid_loss_value) plt.plot(loss_history[0], loss_history[1], '-b') plt.plot(loss_history[0], loss_history[2], '--r') plt.xlabel('Epoch') plt.ylabel('Loss') plt.legend(['Training Loss', 'Validation Loss']) plt.title(title) plt.savefig(save_path) model.train() save_data = {'model': model, 'history': loss_history} with open(save_path + 'bert_ner_epoches=' + str(epoch + 1) + '_valid_loss=' + str(valid_loss) + '.pickle', 'wb') as handle: pickle.dump(save_data, handle, protocol=2)
bert-jointly-relation-entity-extraciton
positive
def get(self, request, *args, **kwargs): query_params = self.request.query_params programs = split_query_argument(query_params.get('programs')) if not programs: self.always_exclude = self.always_exclude + ['programs'] recent = query_params.get('recent_date') try: <DeepExtract> if not recent: return self.recent_date = datetime.strptime(recent, '%Y-%m-%d') if (datetime.now() - self.recent_date).days <= 0: raise ValueError(f'"{self.recent_date}" is not in the past') </DeepExtract> except ValueError as err: return HttpResponseBadRequest(content='Error in recent_date: {}\n'.format(str(err))) response = super().get(request, *args, **kwargs) return response
def get(self, request, *args, **kwargs): query_params = self.request.query_params programs = split_query_argument(query_params.get('programs')) if not programs: self.always_exclude = self.always_exclude + ['programs'] recent = query_params.get('recent_date') try: if not recent: return self.recent_date = datetime.strptime(recent, '%Y-%m-%d') if (datetime.now() - self.recent_date).days <= 0: raise ValueError(f'"{self.recent_date}" is not in the past') except ValueError as err: return HttpResponseBadRequest(content='Error in recent_date: {}\n'.format(str(err))) response = super().get(request, *args, **kwargs) return response
edx-analytics-data-api
positive
def test_match_report_created(self): self.assertEqual(MatchReport.objects.count(), 0) <DeepExtract> return self.client_post_report_prep() </DeepExtract> self.assertEqual(MatchReport.objects.count(), 1)
def test_match_report_created(self): self.assertEqual(MatchReport.objects.count(), 0) return self.client_post_report_prep() self.assertEqual(MatchReport.objects.count(), 1)
callisto-core
positive
@urlpatterns.route('endorse-comments/', perms=['ej.can_edit_conversation']) def endorse(request, conversation, slug, check=check_promoted): check(conversation, request) user = request.user comments = list(conversation.comments.approved().exclude(endorsements__is_global=True, endorsements__end__gte=timezone.now())) if request.method == 'POST': <DeepExtract> comment_ids = set() for (k, v) in request.POST.items(): if k.startswith('endorse-') and v == 'on': k = int(k.partition('-')[2]) comment_ids.add(k) comment_ids = comment_ids </DeepExtract> <DeepExtract> id_map = {comment.id: comment for comment in comments} for comment_id in comment_ids: try: comment = id_map[comment_id] except KeyError: raise PermissionError() endorse_comment(comment, author=request.user) </DeepExtract> return {'user': user, 'conversation': conversation, 'comments': comments}
@urlpatterns.route('endorse-comments/', perms=['ej.can_edit_conversation']) def endorse(request, conversation, slug, check=check_promoted): check(conversation, request) user = request.user comments = list(conversation.comments.approved().exclude(endorsements__is_global=True, endorsements__end__gte=timezone.now())) if request.method == 'POST': comment_ids = set() for (k, v) in request.POST.items(): if k.startswith('endorse-') and v == 'on': k = int(k.partition('-')[2]) comment_ids.add(k) comment_ids = comment_ids id_map = {comment.id: comment for comment in comments} for comment_id in comment_ids: try: comment = id_map[comment_id] except KeyError: raise PermissionError() endorse_comment(comment, author=request.user) return {'user': user, 'conversation': conversation, 'comments': comments}
ej-server
positive
def run(self): """ Processes defined conditions and compiles a list of materials. :return: List of materials that met the conditional requirement. Type: list. """ conditions = self.config.get_raw_dict('conditions') if isinstance(conditions, list): materials = [] for and_condition in conditions: materials.extend(self.perform_and_condition_check(and_condition, materials)) else: <DeepExtract> new_materials = [] if used_materials_to_check is None: used_materials_to_check = get_all_materials() for material in used_materials_to_check: if material in new_materials or material in [] or material is None: continue select_material = True for (key, value) in conditions.items(): requested_custom_property = False requested_custom_function = False if key.startswith('cp_'): requested_custom_property = True key = key[3:] if key.startswith('cf_'): requested_custom_function = True key = key[3:] if hasattr(material, key) and (not requested_custom_property) and (not requested_custom_function): if isinstance(getattr(material, key), type(value)): new_value = value elif isinstance(getattr(material, key), mathutils.Vector): new_value = mathutils.Vector(value) elif isinstance(getattr(material, key), mathutils.Euler): new_value = mathutils.Euler(value) elif isinstance(getattr(material, key), mathutils.Color): new_value = mathutils.Color(value) else: raise Exception('Types are not matching: %s and %s !' % (type(getattr(material, key)), type(value))) if not (isinstance(getattr(material, key), str) and re.fullmatch(value, getattr(material, key)) is not None or getattr(material, key) == new_value): select_material = False break elif key in material and requested_custom_property: if isinstance(material[key], type(value)) or (isinstance(material[key], int) and isinstance(value, bool)): if not (isinstance(material[key], str) and re.fullmatch(value, material[key]) is not None or material[key] == value): select_material = False break else: raise Exception('Types are not matching: {} and {} !'.format(type(material[key]), type(value))) elif requested_custom_function: if key.startswith('texture_amount_'): if material.use_nodes: value = int(value) nodes = material.node_tree.nodes texture_nodes = Utility.get_nodes_with_type(nodes, 'TexImage') amount_of_texture_nodes = len(texture_nodes) if texture_nodes is not None else 0 if 'min' in key: if not amount_of_texture_nodes >= value: select_material = False break elif 'max' in key: if not amount_of_texture_nodes <= value: select_material = False break elif 'eq' in key: if not amount_of_texture_nodes == value: select_material = False break else: raise Exception('This type of key is unknown: {}'.format(key)) else: select_material = False break elif key.startswith('principled_bsdf_amount_'): if material.use_nodes: value = int(value) nodes = material.node_tree.nodes principled = Utility.get_nodes_with_type(nodes, 'BsdfPrincipled') amount_of_principled_bsdf_nodes = len(principled) if principled is not None else 0 if 'min' in key: if not amount_of_principled_bsdf_nodes >= value: select_material = False break elif 'max' in key: if not amount_of_principled_bsdf_nodes <= value: select_material = False break elif 'eq' in key: if not amount_of_principled_bsdf_nodes == value: select_material = False break else: raise Exception('This type of key is unknown: {}'.format(key)) else: select_material = False break elif key.startswith('principled_bsdf_'): if material.use_nodes: value = float(value) nodes = material.node_tree.nodes principled = Utility.get_nodes_with_type(nodes, 'BsdfPrincipled') amount_of_principled_bsdf_nodes = len(principled) if principled is not None else 0 if amount_of_principled_bsdf_nodes != 1: select_material = False break principled = principled[0] extracted_input_name = key[len('principled_bsdf_'):key.rfind('_')] if extracted_input_name not in principled.inputs: raise Exception('Only valid inputs of a principled node are allowed: {} in: {}'.format(extracted_input_name, key)) used_value = principled.inputs[extracted_input_name] if len(used_value.links) > 0: select_material = False break used_value = used_value.default_value if key.endswith('min'): if not used_value >= value: select_material = False break elif key.endswith('max'): if not used_value <= value: select_material = False break elif key.endswith('eq'): if not used_value == value: select_material = False break else: raise Exception('This type of key is unknown: {}'.format(key)) else: select_material = False break elif key == 'use_materials_of_objects': objects = Utility.build_provider_based_on_config(value).run() found_material = False for obj in objects: if hasattr(obj, 'material_slots'): for mat_slot in obj.material_slots: if mat_slot.material == material: found_material = True break if found_material: break if not found_material: select_material = False break else: select_material = False break else: select_material = False break if select_material: new_materials.append(material) [] = new_materials </DeepExtract> random_samples = self.config.get_int('random_samples', 0) has_index = self.config.has_param('index') if has_index and (not random_samples): materials = [materials[self.config.get_int('index')]] elif random_samples and (not has_index): materials = sample(materials, k=min(random_samples, len(materials))) elif has_index and random_samples: raise RuntimeError('Please, define only one of two: `index` or `random_samples`.') check_if_return_is_empty = self.config.get_bool('check_empty', False) if check_if_return_is_empty and (not materials): raise Exception(f'There were no materials selected with the following condition: \n{self._get_conditions_as_string()}') return materials
def run(self): """ Processes defined conditions and compiles a list of materials. :return: List of materials that met the conditional requirement. Type: list. """ conditions = self.config.get_raw_dict('conditions') if isinstance(conditions, list): materials = [] for and_condition in conditions: materials.extend(self.perform_and_condition_check(and_condition, materials)) else: new_materials = [] if used_materials_to_check is None: used_materials_to_check = get_all_materials() for material in used_materials_to_check: if material in new_materials or material in [] or material is None: continue select_material = True for (key, value) in conditions.items(): requested_custom_property = False requested_custom_function = False if key.startswith('cp_'): requested_custom_property = True key = key[3:] if key.startswith('cf_'): requested_custom_function = True key = key[3:] if hasattr(material, key) and (not requested_custom_property) and (not requested_custom_function): if isinstance(getattr(material, key), type(value)): new_value = value elif isinstance(getattr(material, key), mathutils.Vector): new_value = mathutils.Vector(value) elif isinstance(getattr(material, key), mathutils.Euler): new_value = mathutils.Euler(value) elif isinstance(getattr(material, key), mathutils.Color): new_value = mathutils.Color(value) else: raise Exception('Types are not matching: %s and %s !' % (type(getattr(material, key)), type(value))) if not (isinstance(getattr(material, key), str) and re.fullmatch(value, getattr(material, key)) is not None or getattr(material, key) == new_value): select_material = False break elif key in material and requested_custom_property: if isinstance(material[key], type(value)) or (isinstance(material[key], int) and isinstance(value, bool)): if not (isinstance(material[key], str) and re.fullmatch(value, material[key]) is not None or material[key] == value): select_material = False break else: raise Exception('Types are not matching: {} and {} !'.format(type(material[key]), type(value))) elif requested_custom_function: if key.startswith('texture_amount_'): if material.use_nodes: value = int(value) nodes = material.node_tree.nodes texture_nodes = Utility.get_nodes_with_type(nodes, 'TexImage') amount_of_texture_nodes = len(texture_nodes) if texture_nodes is not None else 0 if 'min' in key: if not amount_of_texture_nodes >= value: select_material = False break elif 'max' in key: if not amount_of_texture_nodes <= value: select_material = False break elif 'eq' in key: if not amount_of_texture_nodes == value: select_material = False break else: raise Exception('This type of key is unknown: {}'.format(key)) else: select_material = False break elif key.startswith('principled_bsdf_amount_'): if material.use_nodes: value = int(value) nodes = material.node_tree.nodes principled = Utility.get_nodes_with_type(nodes, 'BsdfPrincipled') amount_of_principled_bsdf_nodes = len(principled) if principled is not None else 0 if 'min' in key: if not amount_of_principled_bsdf_nodes >= value: select_material = False break elif 'max' in key: if not amount_of_principled_bsdf_nodes <= value: select_material = False break elif 'eq' in key: if not amount_of_principled_bsdf_nodes == value: select_material = False break else: raise Exception('This type of key is unknown: {}'.format(key)) else: select_material = False break elif key.startswith('principled_bsdf_'): if material.use_nodes: value = float(value) nodes = material.node_tree.nodes principled = Utility.get_nodes_with_type(nodes, 'BsdfPrincipled') amount_of_principled_bsdf_nodes = len(principled) if principled is not None else 0 if amount_of_principled_bsdf_nodes != 1: select_material = False break principled = principled[0] extracted_input_name = key[len('principled_bsdf_'):key.rfind('_')] if extracted_input_name not in principled.inputs: raise Exception('Only valid inputs of a principled node are allowed: {} in: {}'.format(extracted_input_name, key)) used_value = principled.inputs[extracted_input_name] if len(used_value.links) > 0: select_material = False break used_value = used_value.default_value if key.endswith('min'): if not used_value >= value: select_material = False break elif key.endswith('max'): if not used_value <= value: select_material = False break elif key.endswith('eq'): if not used_value == value: select_material = False break else: raise Exception('This type of key is unknown: {}'.format(key)) else: select_material = False break elif key == 'use_materials_of_objects': objects = Utility.build_provider_based_on_config(value).run() found_material = False for obj in objects: if hasattr(obj, 'material_slots'): for mat_slot in obj.material_slots: if mat_slot.material == material: found_material = True break if found_material: break if not found_material: select_material = False break else: select_material = False break else: select_material = False break if select_material: new_materials.append(material) [] = new_materials random_samples = self.config.get_int('random_samples', 0) has_index = self.config.has_param('index') if has_index and (not random_samples): materials = [materials[self.config.get_int('index')]] elif random_samples and (not has_index): materials = sample(materials, k=min(random_samples, len(materials))) elif has_index and random_samples: raise RuntimeError('Please, define only one of two: `index` or `random_samples`.') check_if_return_is_empty = self.config.get_bool('check_empty', False) if check_if_return_is_empty and (not materials): raise Exception(f'There were no materials selected with the following condition: \n{self._get_conditions_as_string()}') return materials
BlenderProc
positive
def call(self, inputs): """Implements call() for the layer.""" unpacked_inputs = tf_utils.unpack_inputs(inputs) lm_output = unpacked_inputs[0] sentence_output = unpacked_inputs[1] lm_label_ids = unpacked_inputs[2] lm_label_weights = tf.keras.backend.cast(unpacked_inputs[3], tf.float32) sentence_labels = unpacked_inputs[4] mask_label_loss = losses.weighted_sparse_categorical_crossentropy_loss(labels=lm_label_ids, predictions=lm_output, weights=lm_label_weights) sentence_loss = losses.weighted_sparse_categorical_crossentropy_loss(labels=sentence_labels, predictions=sentence_output) loss = mask_label_loss + sentence_loss batch_shape = tf.slice(tf.keras.backend.shape(sentence_labels), [0], [1]) final_loss = tf.fill(batch_shape, loss) <DeepExtract> masked_lm_accuracy = tf.keras.metrics.sparse_categorical_accuracy(lm_label_ids, lm_output) numerator = tf.reduce_sum(masked_lm_accuracy * lm_label_weights) denominator = tf.reduce_sum(lm_label_weights) + 1e-05 masked_lm_accuracy = numerator / denominator self.add_metric(masked_lm_accuracy, name='masked_lm_accuracy', aggregation='mean') self.add_metric(mask_label_loss, name='lm_example_loss', aggregation='mean') next_sentence_accuracy = tf.keras.metrics.sparse_categorical_accuracy(sentence_labels, sentence_output) self.add_metric(next_sentence_accuracy, name='next_sentence_accuracy', aggregation='mean') self.add_metric(sentence_loss, name='next_sentence_loss', aggregation='mean') </DeepExtract> return final_loss
def call(self, inputs): """Implements call() for the layer.""" unpacked_inputs = tf_utils.unpack_inputs(inputs) lm_output = unpacked_inputs[0] sentence_output = unpacked_inputs[1] lm_label_ids = unpacked_inputs[2] lm_label_weights = tf.keras.backend.cast(unpacked_inputs[3], tf.float32) sentence_labels = unpacked_inputs[4] mask_label_loss = losses.weighted_sparse_categorical_crossentropy_loss(labels=lm_label_ids, predictions=lm_output, weights=lm_label_weights) sentence_loss = losses.weighted_sparse_categorical_crossentropy_loss(labels=sentence_labels, predictions=sentence_output) loss = mask_label_loss + sentence_loss batch_shape = tf.slice(tf.keras.backend.shape(sentence_labels), [0], [1]) final_loss = tf.fill(batch_shape, loss) masked_lm_accuracy = tf.keras.metrics.sparse_categorical_accuracy(lm_label_ids, lm_output) numerator = tf.reduce_sum(masked_lm_accuracy * lm_label_weights) denominator = tf.reduce_sum(lm_label_weights) + 1e-05 masked_lm_accuracy = numerator / denominator self.add_metric(masked_lm_accuracy, name='masked_lm_accuracy', aggregation='mean') self.add_metric(mask_label_loss, name='lm_example_loss', aggregation='mean') next_sentence_accuracy = tf.keras.metrics.sparse_categorical_accuracy(sentence_labels, sentence_output) self.add_metric(next_sentence_accuracy, name='next_sentence_accuracy', aggregation='mean') self.add_metric(sentence_loss, name='next_sentence_loss', aggregation='mean') return final_loss
autodist
positive
def eval_recalls(gts, proposals, proposal_nums=None, iou_thrs=None, print_summary=True): """Calculate recalls. Args: gts(list or ndarray): a list of arrays of shape (n, 4) proposals(list or ndarray): a list of arrays of shape (k, 4) or (k, 5) proposal_nums(int or list of int or ndarray): top N proposals thrs(float or list or ndarray): iou thresholds Returns: ndarray: recalls of different ious and proposal nums """ img_num = len(gts) assert img_num == len(proposals) <DeepExtract> if isinstance(proposal_nums, list): _proposal_nums = np.array(proposal_nums) elif isinstance(proposal_nums, int): _proposal_nums = np.array([proposal_nums]) else: _proposal_nums = proposal_nums if iou_thrs is None: _iou_thrs = np.array([0.5]) elif isinstance(iou_thrs, list): _iou_thrs = np.array(iou_thrs) elif isinstance(iou_thrs, float): _iou_thrs = np.array([iou_thrs]) else: _iou_thrs = iou_thrs (proposal_nums, iou_thrs) = (_proposal_nums, _iou_thrs) </DeepExtract> all_ious = [] for i in range(img_num): if proposals[i].ndim == 2 and proposals[i].shape[1] == 5: scores = proposals[i][:, 4] sort_idx = np.argsort(scores)[::-1] img_proposal = proposals[i][sort_idx, :] else: img_proposal = proposals[i] prop_num = min(img_proposal.shape[0], proposal_nums[-1]) if gts[i] is None or gts[i].shape[0] == 0: ious = np.zeros((0, img_proposal.shape[0]), dtype=np.float32) else: ious = bbox_overlaps(gts[i], img_proposal[:prop_num, :4]) all_ious.append(ious) all_ious = np.array(all_ious) <DeepExtract> img_num = all_ious.shape[0] total_gt_num = sum([ious.shape[0] for ious in all_ious]) _ious = np.zeros((proposal_nums.size, total_gt_num), dtype=np.float32) for (k, proposal_num) in enumerate(proposal_nums): tmp_ious = np.zeros(0) for i in range(img_num): ious = all_ious[i][:, :proposal_num].copy() gt_ious = np.zeros(ious.shape[0]) if ious.size == 0: tmp_ious = np.hstack((tmp_ious, gt_ious)) continue for j in range(ious.shape[0]): gt_max_overlaps = ious.argmax(axis=1) max_ious = ious[np.arange(0, ious.shape[0]), gt_max_overlaps] gt_idx = max_ious.argmax() gt_ious[j] = max_ious[gt_idx] box_idx = gt_max_overlaps[gt_idx] ious[gt_idx, :] = -1 ious[:, box_idx] = -1 tmp_ious = np.hstack((tmp_ious, gt_ious)) _ious[k, :] = tmp_ious _ious = np.fliplr(np.sort(_ious, axis=1)) recalls = np.zeros((proposal_nums.size, iou_thrs.size)) for (i, thr) in enumerate(iou_thrs): recalls[:, i] = (_ious >= thr).sum(axis=1) / float(total_gt_num) recalls = recalls </DeepExtract> if print_summary: <DeepExtract> proposal_nums = np.array(proposal_nums, dtype=np.int32) iou_thrs = np.array(iou_thrs) if row_idxs is None: row_idxs = np.arange(proposal_nums.size) if col_idxs is None: col_idxs = np.arange(iou_thrs.size) row_header = [''] + iou_thrs[col_idxs].tolist() table_data = [row_header] for (i, num) in enumerate(proposal_nums[row_idxs]): row = ['{:.3f}'.format(val) for val in recalls[row_idxs[i], col_idxs].tolist()] row.insert(0, num) table_data.append(row) table = AsciiTable(table_data) print(table.table) </DeepExtract> return recalls
def eval_recalls(gts, proposals, proposal_nums=None, iou_thrs=None, print_summary=True): """Calculate recalls. Args: gts(list or ndarray): a list of arrays of shape (n, 4) proposals(list or ndarray): a list of arrays of shape (k, 4) or (k, 5) proposal_nums(int or list of int or ndarray): top N proposals thrs(float or list or ndarray): iou thresholds Returns: ndarray: recalls of different ious and proposal nums """ img_num = len(gts) assert img_num == len(proposals) if isinstance(proposal_nums, list): _proposal_nums = np.array(proposal_nums) elif isinstance(proposal_nums, int): _proposal_nums = np.array([proposal_nums]) else: _proposal_nums = proposal_nums if iou_thrs is None: _iou_thrs = np.array([0.5]) elif isinstance(iou_thrs, list): _iou_thrs = np.array(iou_thrs) elif isinstance(iou_thrs, float): _iou_thrs = np.array([iou_thrs]) else: _iou_thrs = iou_thrs (proposal_nums, iou_thrs) = (_proposal_nums, _iou_thrs) all_ious = [] for i in range(img_num): if proposals[i].ndim == 2 and proposals[i].shape[1] == 5: scores = proposals[i][:, 4] sort_idx = np.argsort(scores)[::-1] img_proposal = proposals[i][sort_idx, :] else: img_proposal = proposals[i] prop_num = min(img_proposal.shape[0], proposal_nums[-1]) if gts[i] is None or gts[i].shape[0] == 0: ious = np.zeros((0, img_proposal.shape[0]), dtype=np.float32) else: ious = bbox_overlaps(gts[i], img_proposal[:prop_num, :4]) all_ious.append(ious) all_ious = np.array(all_ious) img_num = all_ious.shape[0] total_gt_num = sum([ious.shape[0] for ious in all_ious]) _ious = np.zeros((proposal_nums.size, total_gt_num), dtype=np.float32) for (k, proposal_num) in enumerate(proposal_nums): tmp_ious = np.zeros(0) for i in range(img_num): ious = all_ious[i][:, :proposal_num].copy() gt_ious = np.zeros(ious.shape[0]) if ious.size == 0: tmp_ious = np.hstack((tmp_ious, gt_ious)) continue for j in range(ious.shape[0]): gt_max_overlaps = ious.argmax(axis=1) max_ious = ious[np.arange(0, ious.shape[0]), gt_max_overlaps] gt_idx = max_ious.argmax() gt_ious[j] = max_ious[gt_idx] box_idx = gt_max_overlaps[gt_idx] ious[gt_idx, :] = -1 ious[:, box_idx] = -1 tmp_ious = np.hstack((tmp_ious, gt_ious)) _ious[k, :] = tmp_ious _ious = np.fliplr(np.sort(_ious, axis=1)) recalls = np.zeros((proposal_nums.size, iou_thrs.size)) for (i, thr) in enumerate(iou_thrs): recalls[:, i] = (_ious >= thr).sum(axis=1) / float(total_gt_num) recalls = recalls if print_summary: proposal_nums = np.array(proposal_nums, dtype=np.int32) iou_thrs = np.array(iou_thrs) if row_idxs is None: row_idxs = np.arange(proposal_nums.size) if col_idxs is None: col_idxs = np.arange(iou_thrs.size) row_header = [''] + iou_thrs[col_idxs].tolist() table_data = [row_header] for (i, num) in enumerate(proposal_nums[row_idxs]): row = ['{:.3f}'.format(val) for val in recalls[row_idxs[i], col_idxs].tolist()] row.insert(0, num) table_data.append(row) table = AsciiTable(table_data) print(table.table) return recalls
Cascade-RPN
positive
def test_fluid(self): if ig is not None: <DeepExtract> g = nx.karate_club_graph() node_map = {} for n in g.nodes(): node_map[n] = '$%s$' % n nx.relabel_nodes(g, node_map, False) g = g </DeepExtract> coms = algorithms.async_fluid(g, 3) self.assertEqual(type(coms.communities), list) if len(coms.communities) > 0: self.assertEqual(type(coms.communities[0]), list) self.assertEqual(type(coms.communities[0][0]), str)
def test_fluid(self): if ig is not None: g = nx.karate_club_graph() node_map = {} for n in g.nodes(): node_map[n] = '$%s$' % n nx.relabel_nodes(g, node_map, False) g = g coms = algorithms.async_fluid(g, 3) self.assertEqual(type(coms.communities), list) if len(coms.communities) > 0: self.assertEqual(type(coms.communities[0]), list) self.assertEqual(type(coms.communities[0][0]), str)
cdlib
positive
def fermat_little_theorem(p): """Returns 1 if p may be prime, and something else if p definitely is not prime""" <DeepExtract> min_nbits = 32 range = p - 1 - 1 rangebytes = ceil(math.log(range, 2) / 8.0) rangebits = max(rangebytes * 8, min_nbits * 2) nbits = random.randint(min_nbits, rangebits) a = read_random_int(nbits) % range + 1 </DeepExtract> return fast_exponentiation(a, p - 1, p)
def fermat_little_theorem(p): """Returns 1 if p may be prime, and something else if p definitely is not prime""" min_nbits = 32 range = p - 1 - 1 rangebytes = ceil(math.log(range, 2) / 8.0) rangebits = max(rangebytes * 8, min_nbits * 2) nbits = random.randint(min_nbits, rangebits) a = read_random_int(nbits) % range + 1 return fast_exponentiation(a, p - 1, p)
baidupan_shell
positive
@force_fp32(apply_to=('cls_scores', 'bbox_preds')) def get_bboxes(self, cls_scores, bbox_preds, img_metas, cfg, rescale=False): """ Transform network output for a batch into labeled boxes. Args: cls_scores (list[Tensor]): Box scores for each scale level Has shape (N, num_anchors * num_classes, H, W) bbox_preds (list[Tensor]): Box energies / deltas for each scale level with shape (N, num_anchors * 4, H, W) img_metas (list[dict]): size / scale info for each image cfg (mmcv.Config): test / postprocessing configuration rescale (bool): if True, return boxes in original image space Returns: list[tuple[Tensor, Tensor]]: each item in result_list is 2-tuple. The first item is an (n, 5) tensor, where the first 4 columns are bounding box positions (tl_x, tl_y, br_x, br_y) and the 5-th column is a score between 0 and 1. The second item is a (n,) tensor where each item is the class index of the corresponding box. Example: >>> import mmcv >>> self = AnchorHead(num_classes=9, in_channels=1) >>> img_metas = [{'img_shape': (32, 32, 3), 'scale_factor': 1}] >>> cfg = mmcv.Config(dict( >>> score_thr=0.00, >>> nms=dict(type='nms', iou_thr=1.0), >>> max_per_img=10)) >>> feat = torch.rand(1, 1, 3, 3) >>> cls_score, bbox_pred = self.forward_single(feat) >>> # note the input lists are over different levels, not images >>> cls_scores, bbox_preds = [cls_score], [bbox_pred] >>> result_list = self.get_bboxes(cls_scores, bbox_preds, >>> img_metas, cfg) >>> det_bboxes, det_labels = result_list[0] >>> assert len(result_list) == 1 >>> assert det_bboxes.shape[1] == 5 >>> assert len(det_bboxes) == len(det_labels) == cfg.max_per_img """ assert len(cls_scores) == len(bbox_preds) num_levels = len(cls_scores) device = cls_scores[0].device mlvl_anchors = [self.anchor_generators[i].grid_anchors(cls_scores[i].size()[-2:], self.anchor_strides[i], device=device) for i in range(num_levels)] result_list = [] for img_id in range(len(img_metas)): cls_score_list = [cls_scores[i][img_id].detach() for i in range(num_levels)] bbox_pred_list = [bbox_preds[i][img_id].detach() for i in range(num_levels)] img_shape = img_metas[img_id]['img_shape'] scale_factor = img_metas[img_id]['scale_factor'] <DeepExtract> assert len(cls_score_list) == len(bbox_pred_list) == len(mlvl_anchors) mlvl_bboxes = [] mlvl_scores = [] for (cls_score, bbox_pred, anchors) in zip(cls_score_list, bbox_pred_list, mlvl_anchors): assert cls_score.size()[-2:] == bbox_pred.size()[-2:] cls_score = cls_score.permute(1, 2, 0).reshape(-1, self.cls_out_channels) if self.use_sigmoid_cls: scores = cls_score.sigmoid() else: scores = cls_score.softmax(-1) bbox_pred = bbox_pred.permute(1, 2, 0).reshape(-1, 4) nms_pre = cfg.get('nms_pre', -1) if nms_pre > 0 and scores.shape[0] > nms_pre: if self.use_sigmoid_cls: (max_scores, _) = scores.max(dim=1) else: (max_scores, _) = scores[:, 1:].max(dim=1) (_, topk_inds) = max_scores.topk(nms_pre) anchors = anchors[topk_inds, :] bbox_pred = bbox_pred[topk_inds, :] scores = scores[topk_inds, :] bboxes = delta2bbox(anchors, bbox_pred, self.target_means, self.target_stds, img_shape) mlvl_bboxes.append(bboxes) mlvl_scores.append(scores) mlvl_bboxes = torch.cat(mlvl_bboxes) if rescale: mlvl_bboxes /= mlvl_bboxes.new_tensor(scale_factor) mlvl_scores = torch.cat(mlvl_scores) if self.use_sigmoid_cls: padding = mlvl_scores.new_zeros(mlvl_scores.shape[0], 1) mlvl_scores = torch.cat([padding, mlvl_scores], dim=1) (det_bboxes, det_labels) = multiclass_nms(mlvl_bboxes, mlvl_scores, cfg.score_thr, cfg.nms, cfg.max_per_img) proposals = (det_bboxes, det_labels) </DeepExtract> result_list.append(proposals) return result_list
@force_fp32(apply_to=('cls_scores', 'bbox_preds')) def get_bboxes(self, cls_scores, bbox_preds, img_metas, cfg, rescale=False): """ Transform network output for a batch into labeled boxes. Args: cls_scores (list[Tensor]): Box scores for each scale level Has shape (N, num_anchors * num_classes, H, W) bbox_preds (list[Tensor]): Box energies / deltas for each scale level with shape (N, num_anchors * 4, H, W) img_metas (list[dict]): size / scale info for each image cfg (mmcv.Config): test / postprocessing configuration rescale (bool): if True, return boxes in original image space Returns: list[tuple[Tensor, Tensor]]: each item in result_list is 2-tuple. The first item is an (n, 5) tensor, where the first 4 columns are bounding box positions (tl_x, tl_y, br_x, br_y) and the 5-th column is a score between 0 and 1. The second item is a (n,) tensor where each item is the class index of the corresponding box. Example: >>> import mmcv >>> self = AnchorHead(num_classes=9, in_channels=1) >>> img_metas = [{'img_shape': (32, 32, 3), 'scale_factor': 1}] >>> cfg = mmcv.Config(dict( >>> score_thr=0.00, >>> nms=dict(type='nms', iou_thr=1.0), >>> max_per_img=10)) >>> feat = torch.rand(1, 1, 3, 3) >>> cls_score, bbox_pred = self.forward_single(feat) >>> # note the input lists are over different levels, not images >>> cls_scores, bbox_preds = [cls_score], [bbox_pred] >>> result_list = self.get_bboxes(cls_scores, bbox_preds, >>> img_metas, cfg) >>> det_bboxes, det_labels = result_list[0] >>> assert len(result_list) == 1 >>> assert det_bboxes.shape[1] == 5 >>> assert len(det_bboxes) == len(det_labels) == cfg.max_per_img """ assert len(cls_scores) == len(bbox_preds) num_levels = len(cls_scores) device = cls_scores[0].device mlvl_anchors = [self.anchor_generators[i].grid_anchors(cls_scores[i].size()[-2:], self.anchor_strides[i], device=device) for i in range(num_levels)] result_list = [] for img_id in range(len(img_metas)): cls_score_list = [cls_scores[i][img_id].detach() for i in range(num_levels)] bbox_pred_list = [bbox_preds[i][img_id].detach() for i in range(num_levels)] img_shape = img_metas[img_id]['img_shape'] scale_factor = img_metas[img_id]['scale_factor'] assert len(cls_score_list) == len(bbox_pred_list) == len(mlvl_anchors) mlvl_bboxes = [] mlvl_scores = [] for (cls_score, bbox_pred, anchors) in zip(cls_score_list, bbox_pred_list, mlvl_anchors): assert cls_score.size()[-2:] == bbox_pred.size()[-2:] cls_score = cls_score.permute(1, 2, 0).reshape(-1, self.cls_out_channels) if self.use_sigmoid_cls: scores = cls_score.sigmoid() else: scores = cls_score.softmax(-1) bbox_pred = bbox_pred.permute(1, 2, 0).reshape(-1, 4) nms_pre = cfg.get('nms_pre', -1) if nms_pre > 0 and scores.shape[0] > nms_pre: if self.use_sigmoid_cls: (max_scores, _) = scores.max(dim=1) else: (max_scores, _) = scores[:, 1:].max(dim=1) (_, topk_inds) = max_scores.topk(nms_pre) anchors = anchors[topk_inds, :] bbox_pred = bbox_pred[topk_inds, :] scores = scores[topk_inds, :] bboxes = delta2bbox(anchors, bbox_pred, self.target_means, self.target_stds, img_shape) mlvl_bboxes.append(bboxes) mlvl_scores.append(scores) mlvl_bboxes = torch.cat(mlvl_bboxes) if rescale: mlvl_bboxes /= mlvl_bboxes.new_tensor(scale_factor) mlvl_scores = torch.cat(mlvl_scores) if self.use_sigmoid_cls: padding = mlvl_scores.new_zeros(mlvl_scores.shape[0], 1) mlvl_scores = torch.cat([padding, mlvl_scores], dim=1) (det_bboxes, det_labels) = multiclass_nms(mlvl_bboxes, mlvl_scores, cfg.score_thr, cfg.nms, cfg.max_per_img) proposals = (det_bboxes, det_labels) result_list.append(proposals) return result_list
AE_TextSpotter
positive
def test_about(self): """Opens the about dialog and closes it""" about = self.app.get_about_dialog() about.show_all() <DeepExtract> while Gtk.events_pending(): Gtk.main_iteration_do(blocking=False) time.sleep(delay) </DeepExtract> about.destroy()
def test_about(self): """Opens the about dialog and closes it""" about = self.app.get_about_dialog() about.show_all() while Gtk.events_pending(): Gtk.main_iteration_do(blocking=False) time.sleep(delay) about.destroy()
bleachbit
positive
def init_iou_net(self): self.iou_predictor = self.params.features.get_unique_attribute('iou_predictor') for p in self.iou_predictor.parameters(): p.requires_grad = False <DeepExtract> box_center = (self.pos - self.pos.round()) / self.target_scale + (self.iou_img_sample_sz - 1) / 2 box_sz = self.target_sz / self.target_scale target_ul = box_center - (box_sz - 1) / 2 self.classifier_target_box = torch.cat([target_ul.flip((0,)), box_sz.flip((0,))]) </DeepExtract> target_boxes = TensorList() if self.params.iounet_augmentation: for T in self.transforms: if not isinstance(T, (augmentation.Identity, augmentation.Translation, augmentation.FlipHorizontal, augmentation.FlipVertical, augmentation.Blur)): break target_boxes.append(self.classifier_target_box + torch.Tensor([T.shift[1], T.shift[0], 0, 0])) else: target_boxes.append(self.classifier_target_box.clone()) target_boxes = torch.cat(target_boxes.view(1, 4), 0).to(self.params.device) <DeepExtract> feat = self.params.features.get_unique_attribute('iounet_backbone_features') iou_res_features = feat </DeepExtract> iou_res_features = TensorList([x[:target_boxes.shape[0], ...] for x in iou_res_features]) with torch.no_grad(): target_feat = self.iou_predictor.get_filter(iou_res_features, target_boxes) self.iou_filter = TensorList([x.detach().mean(0) for x in target_feat]) if getattr(self.params, 'iounet_not_use_reference', False): self.iou_filter = TensorList([torch.full_like(tf, tf.norm() / tf.numel()) for tf in self.iou_filter])
def init_iou_net(self): self.iou_predictor = self.params.features.get_unique_attribute('iou_predictor') for p in self.iou_predictor.parameters(): p.requires_grad = False box_center = (self.pos - self.pos.round()) / self.target_scale + (self.iou_img_sample_sz - 1) / 2 box_sz = self.target_sz / self.target_scale target_ul = box_center - (box_sz - 1) / 2 self.classifier_target_box = torch.cat([target_ul.flip((0,)), box_sz.flip((0,))]) target_boxes = TensorList() if self.params.iounet_augmentation: for T in self.transforms: if not isinstance(T, (augmentation.Identity, augmentation.Translation, augmentation.FlipHorizontal, augmentation.FlipVertical, augmentation.Blur)): break target_boxes.append(self.classifier_target_box + torch.Tensor([T.shift[1], T.shift[0], 0, 0])) else: target_boxes.append(self.classifier_target_box.clone()) target_boxes = torch.cat(target_boxes.view(1, 4), 0).to(self.params.device) feat = self.params.features.get_unique_attribute('iounet_backbone_features') iou_res_features = feat iou_res_features = TensorList([x[:target_boxes.shape[0], ...] for x in iou_res_features]) with torch.no_grad(): target_feat = self.iou_predictor.get_filter(iou_res_features, target_boxes) self.iou_filter = TensorList([x.detach().mean(0) for x in target_feat]) if getattr(self.params, 'iounet_not_use_reference', False): self.iou_filter = TensorList([torch.full_like(tf, tf.norm() / tf.numel()) for tf in self.iou_filter])
end2end_rgbt_tracking
positive
def get_bib_info(*infos, logger=None): """ Gathers and returns the descriptions and bibliographic sources for the components mentioned in ``infos``. ``infos`` can be input dictionaries or single component names. """ if not logger: logger_setup() logger = get_logger('bib') (used_components, component_infos) = get_used_components(*infos, return_infos=True) descs: InfoDict = {} bibs: InfoDict = {} used_components = get_used_components(*infos) for (kind, components) in used_components.items(): if kind is None: continue (descs[kind], bibs[kind]) = ({}, {}) for component in components: try: <DeepExtract> cls = get_component_class(component, kind) descs[kind][component] = cleandoc(cls.get_desc(component_infos[component]) or '') + '\n' </DeepExtract> <DeepExtract> cls = get_component_class(component, kind) lines = (cls.get_bibtex() or '').lstrip('\n').rstrip('\n') or '# [no bibliography information found]' bibs[kind][component] = lines + '\n' </DeepExtract> except ComponentNotFoundError: sugg = similar_internal_class_names(component) logger.error(f"Could not identify component '{component}'. Did you mean any of the following? {sugg} (mind capitalization!)") continue for component in used_components.get(None, []): try: cls = get_component_class(component) except ComponentNotFoundError: sugg = similar_internal_class_names(component) logger.error(f"Could not identify component '{component}'. Did you mean any of the following? {sugg} (mind capitalization!)") continue kind = cls.get_kind() if kind not in descs: (descs[kind], bibs[kind]) = ({}, {}) if kind in descs and component in descs[kind]: continue <DeepExtract> cls = get_component_class(cls, kind) descs[kind][cls] = cleandoc(cls.get_desc(info) or '') + '\n' </DeepExtract> <DeepExtract> cls = get_component_class(cls, kind) lines = (cls.get_bibtex() or '').lstrip('\n').rstrip('\n') or '# [no bibliography information found]' bibs[kind][cls] = lines + '\n' </DeepExtract> descs['cobaya'] = {'cobaya': cobaya_desc} bibs['cobaya'] = {'cobaya': cobaya_bib} return (descs, bibs)
def get_bib_info(*infos, logger=None): """ Gathers and returns the descriptions and bibliographic sources for the components mentioned in ``infos``. ``infos`` can be input dictionaries or single component names. """ if not logger: logger_setup() logger = get_logger('bib') (used_components, component_infos) = get_used_components(*infos, return_infos=True) descs: InfoDict = {} bibs: InfoDict = {} used_components = get_used_components(*infos) for (kind, components) in used_components.items(): if kind is None: continue (descs[kind], bibs[kind]) = ({}, {}) for component in components: try: cls = get_component_class(component, kind) descs[kind][component] = cleandoc(cls.get_desc(component_infos[component]) or '') + '\n' cls = get_component_class(component, kind) lines = (cls.get_bibtex() or '').lstrip('\n').rstrip('\n') or '# [no bibliography information found]' bibs[kind][component] = lines + '\n' except ComponentNotFoundError: sugg = similar_internal_class_names(component) logger.error(f"Could not identify component '{component}'. Did you mean any of the following? {sugg} (mind capitalization!)") continue for component in used_components.get(None, []): try: cls = get_component_class(component) except ComponentNotFoundError: sugg = similar_internal_class_names(component) logger.error(f"Could not identify component '{component}'. Did you mean any of the following? {sugg} (mind capitalization!)") continue kind = cls.get_kind() if kind not in descs: (descs[kind], bibs[kind]) = ({}, {}) if kind in descs and component in descs[kind]: continue cls = get_component_class(cls, kind) descs[kind][cls] = cleandoc(cls.get_desc(info) or '') + '\n' cls = get_component_class(cls, kind) lines = (cls.get_bibtex() or '').lstrip('\n').rstrip('\n') or '# [no bibliography information found]' bibs[kind][cls] = lines + '\n' descs['cobaya'] = {'cobaya': cobaya_desc} bibs['cobaya'] = {'cobaya': cobaya_bib} return (descs, bibs)
cobaya
positive
def can_heal(self, healer_id, target_robot_id): """Whether the healer can heal the given robot, without taking into account the healer's attack heat. Takes into account only the healer's attack range, and the location of the robot. :type self: GameController :type healer_id: int :type target_robot_id: int :rtype: bool """ assert type(healer_id) is int, 'incorrect type of arg healer_id: should be int, is {}'.format(type(healer_id)) assert type(target_robot_id) is int, 'incorrect type of arg target_robot_id: should be int, is {}'.format(type(target_robot_id)) result = _lib.bc_GameController_can_heal(self._ptr, healer_id, target_robot_id) <DeepExtract> if _lib.bc_has_err(): _lasterror = _ffi.new('char**') err = _lib.bc_get_last_err(_lasterror) errtext = _ffi.string(_lasterror[0]) _lib.bc_free_string(_lasterror[0]) raise Exception(errtext) </DeepExtract> result = bool(result) return result
def can_heal(self, healer_id, target_robot_id): """Whether the healer can heal the given robot, without taking into account the healer's attack heat. Takes into account only the healer's attack range, and the location of the robot. :type self: GameController :type healer_id: int :type target_robot_id: int :rtype: bool """ assert type(healer_id) is int, 'incorrect type of arg healer_id: should be int, is {}'.format(type(healer_id)) assert type(target_robot_id) is int, 'incorrect type of arg target_robot_id: should be int, is {}'.format(type(target_robot_id)) result = _lib.bc_GameController_can_heal(self._ptr, healer_id, target_robot_id) if _lib.bc_has_err(): _lasterror = _ffi.new('char**') err = _lib.bc_get_last_err(_lasterror) errtext = _ffi.string(_lasterror[0]) _lib.bc_free_string(_lasterror[0]) raise Exception(errtext) result = bool(result) return result
bc18-scaffold
positive
def test_just_partner(self): <DeepExtract> self.user.is_superuser = False self.user.role = ROLE_PARTNER self.user.save() self.assertTrue(self.user.is_just_partner()) </DeepExtract> user2 = CtsUserFactory() self.shipment.partner = user2 self.shipment.save() rsp = self.client.get(self.url) self.assertEqual(404, rsp.status_code)
def test_just_partner(self): self.user.is_superuser = False self.user.role = ROLE_PARTNER self.user.save() self.assertTrue(self.user.is_just_partner()) user2 = CtsUserFactory() self.shipment.partner = user2 self.shipment.save() rsp = self.client.get(self.url) self.assertEqual(404, rsp.status_code)
CTS
positive
def change(self, number): if number != None: number = str(number) else: number = '' if self.edit == 'Y': self.text = self.font.render(number, 1, (0, 0, 0)) <DeepExtract> screen = pygame.display.get_surface() AAfilledRoundedRect(screen, (self.offsetX, self.offsetY, 45, 40), self.color) screen.blit(self.text, self.textpos) </DeepExtract> return 0 else: return 1
def change(self, number): if number != None: number = str(number) else: number = '' if self.edit == 'Y': self.text = self.font.render(number, 1, (0, 0, 0)) screen = pygame.display.get_surface() AAfilledRoundedRect(screen, (self.offsetX, self.offsetY, 45, 40), self.color) screen.blit(self.text, self.textpos) return 0 else: return 1
artificial-intelligence
positive
def dog(pix, a, b, threshold): """Difference of Gaussians with a threshold""" size = max(a, b) <DeepExtract> out = cl_builder.new_image(pix.shape[1], pix.shape[0]) cl_nodes['grayscale'].run([], [cl_builder.new_image_from_ndarray(pix)], [out]) gpix = out.to_numpy() </DeepExtract> res = (gaussian_repeat(gpix, a) - gaussian_repeat(gpix, b))[..., :3] tt = threshold / size pix[..., :3] = np.where(tt >= res, 1.0, 1.0 + np.tanh(40.0 * (tt - res))) return pix
def dog(pix, a, b, threshold): """Difference of Gaussians with a threshold""" size = max(a, b) out = cl_builder.new_image(pix.shape[1], pix.shape[0]) cl_nodes['grayscale'].run([], [cl_builder.new_image_from_ndarray(pix)], [out]) gpix = out.to_numpy() res = (gaussian_repeat(gpix, a) - gaussian_repeat(gpix, b))[..., :3] tt = threshold / size pix[..., :3] = np.where(tt >= res, 1.0, 1.0 + np.tanh(40.0 * (tt - res))) return pix
blender-texture-tools
positive
def __init__(self, result, args): self.args = {argname: ChHandle(x=arg) for (argname, arg) in list(args.items())} for (argname, arg) in list(self.args.items()): setattr(result, argname, arg) if result.is_dr_wrt(arg.x): <DeepExtract> self.dterms = list(set(list(self.dterms) + [argname])) setattr(self, argname, arg.x) </DeepExtract> else: self.terms.append(argname) setattr(self, argname, arg.x) self._result = result
def __init__(self, result, args): self.args = {argname: ChHandle(x=arg) for (argname, arg) in list(args.items())} for (argname, arg) in list(self.args.items()): setattr(result, argname, arg) if result.is_dr_wrt(arg.x): self.dterms = list(set(list(self.dterms) + [argname])) setattr(self, argname, arg.x) else: self.terms.append(argname) setattr(self, argname, arg.x) self._result = result
chumpy
positive
def get_result_dict(self, image): <DeepExtract> image = self.transforms(image) image_list = to_image_list(image, self.cfg.DATALOADER.SIZE_DIVISIBILITY) image_list = image_list.to(self.device) with torch.no_grad(): predictions = self.model(image_list) predictions = [o.to(self.cpu_device) for o in predictions] prediction = predictions[0] (height, width) = image.shape[:-1] prediction = prediction.resize((width, height)) if prediction.has_field('mask'): masks = prediction.get_field('mask') masks = self.masker([masks], [prediction])[0] prediction.add_field('mask', masks) predictions = prediction </DeepExtract> <DeepExtract> scores = predictions.get_field('scores') keep = torch.nonzero(scores > self.confidence_threshold).squeeze(1) predictions = predictions[keep] scores = predictions.get_field('scores') (_, idx) = scores.sort(0, descending=True) top_predictions = predictions[idx] </DeepExtract> result_dict = {i: [] for i in range(len(self.CATEGORIES))} labels = top_predictions.get_field('labels').numpy() scores = top_predictions.get_field('scores').numpy() bbox = top_predictions.bbox.numpy() for (idx, l) in enumerate(labels): result_dict[l].append(np.concatenate([bbox[idx, :], scores[idx:idx + 1]])) return result_dict
def get_result_dict(self, image): image = self.transforms(image) image_list = to_image_list(image, self.cfg.DATALOADER.SIZE_DIVISIBILITY) image_list = image_list.to(self.device) with torch.no_grad(): predictions = self.model(image_list) predictions = [o.to(self.cpu_device) for o in predictions] prediction = predictions[0] (height, width) = image.shape[:-1] prediction = prediction.resize((width, height)) if prediction.has_field('mask'): masks = prediction.get_field('mask') masks = self.masker([masks], [prediction])[0] prediction.add_field('mask', masks) predictions = prediction scores = predictions.get_field('scores') keep = torch.nonzero(scores > self.confidence_threshold).squeeze(1) predictions = predictions[keep] scores = predictions.get_field('scores') (_, idx) = scores.sort(0, descending=True) top_predictions = predictions[idx] result_dict = {i: [] for i in range(len(self.CATEGORIES))} labels = top_predictions.get_field('labels').numpy() scores = top_predictions.get_field('scores').numpy() bbox = top_predictions.bbox.numpy() for (idx, l) in enumerate(labels): result_dict[l].append(np.concatenate([bbox[idx, :], scores[idx:idx + 1]])) return result_dict
DRG
positive
def test_deleted_user(db): <DeepExtract> with auth_api_session() as (auth_api, metadata_interceptor): res = auth_api.SignupFlow(auth_pb2.SignupFlowReq(basic=auth_pb2.SignupBasic(name='testing', email='email@couchers.org.invalid'), account=auth_pb2.SignupAccount(username='frodo', password='a very insecure password', birthdate='1970-01-01', gender='Bot', hosting_status=api_pb2.HOSTING_STATUS_CAN_HOST, city='New York City', lat=40.7331, lng=-73.9778, radius=500, accept_tos=True), feedback=auth_pb2.ContributorForm(), accept_community_guidelines=wrappers_pb2.BoolValue(value=True))) flow_token = res.flow_token assert res.flow_token assert not res.HasField('auth_res') assert not res.need_basic assert not res.need_account assert not res.need_feedback assert res.need_verify_email with session_scope() as session: flow = session.execute(select(SignupFlow).where(SignupFlow.flow_token == flow_token)).scalar_one() assert flow.email_sent assert not flow.email_verified email_token = flow.email_token with auth_api_session() as (auth_api, metadata_interceptor): res = auth_api.SignupFlow(auth_pb2.SignupFlowReq(email_token=email_token)) assert not res.flow_token assert res.HasField('auth_res') assert res.auth_res.user_id assert not res.auth_res.jailed assert not res.need_basic assert not res.need_account assert not res.need_feedback assert not res.need_verify_email user_id = res.auth_res.user_id with session_scope() as session: token = session.execute(select(UserSession).join(User, UserSession.user_id == User.id).where(User.username == 'frodo')).scalar_one().token assert get_session_cookie_token(metadata_interceptor) == token </DeepExtract> with session_scope() as session: session.execute(select(User)).scalar_one().is_deleted = True with auth_api_session() as (auth_api, metadata_interceptor): with pytest.raises(grpc.RpcError) as e: reply = auth_api.Login(auth_pb2.LoginReq(user='frodo')) assert e.value.code() == grpc.StatusCode.NOT_FOUND assert e.value.details() == errors.USER_NOT_FOUND
def test_deleted_user(db): with auth_api_session() as (auth_api, metadata_interceptor): res = auth_api.SignupFlow(auth_pb2.SignupFlowReq(basic=auth_pb2.SignupBasic(name='testing', email='email@couchers.org.invalid'), account=auth_pb2.SignupAccount(username='frodo', password='a very insecure password', birthdate='1970-01-01', gender='Bot', hosting_status=api_pb2.HOSTING_STATUS_CAN_HOST, city='New York City', lat=40.7331, lng=-73.9778, radius=500, accept_tos=True), feedback=auth_pb2.ContributorForm(), accept_community_guidelines=wrappers_pb2.BoolValue(value=True))) flow_token = res.flow_token assert res.flow_token assert not res.HasField('auth_res') assert not res.need_basic assert not res.need_account assert not res.need_feedback assert res.need_verify_email with session_scope() as session: flow = session.execute(select(SignupFlow).where(SignupFlow.flow_token == flow_token)).scalar_one() assert flow.email_sent assert not flow.email_verified email_token = flow.email_token with auth_api_session() as (auth_api, metadata_interceptor): res = auth_api.SignupFlow(auth_pb2.SignupFlowReq(email_token=email_token)) assert not res.flow_token assert res.HasField('auth_res') assert res.auth_res.user_id assert not res.auth_res.jailed assert not res.need_basic assert not res.need_account assert not res.need_feedback assert not res.need_verify_email user_id = res.auth_res.user_id with session_scope() as session: token = session.execute(select(UserSession).join(User, UserSession.user_id == User.id).where(User.username == 'frodo')).scalar_one().token assert get_session_cookie_token(metadata_interceptor) == token with session_scope() as session: session.execute(select(User)).scalar_one().is_deleted = True with auth_api_session() as (auth_api, metadata_interceptor): with pytest.raises(grpc.RpcError) as e: reply = auth_api.Login(auth_pb2.LoginReq(user='frodo')) assert e.value.code() == grpc.StatusCode.NOT_FOUND assert e.value.details() == errors.USER_NOT_FOUND
couchers
positive
def velocity(self, ix, mytime): force = self.force damper = self.damper (x, y, z) = self.ptslix[ix] xy = ix % (self.obj2.dimU * self.obj2.dimV) xp = xy // self.obj2.dimV yp = xy % self.obj2.dimV self.pvs[xp, yp] += force(x, y, z, self.pvs[xp, yp], mytime) print(ix, xy, xp, yp, force(x, y, z, self.pvs[xp, yp], mytime)) tt = self.pvs[xp, yp] (dx, dy, dz) = damper(x, y, z, self.pvs[xp, yp], mytime) self.pvs[xp, yp] *= damper(x, y, z, self.pvs[xp, yp], mytime) (xn, yn, zn) = (x + tt[0], y + tt[1], z + tt[2]) (ddx, ddy, ddz) = (self.obj2.damperWall.x, self.obj2.damperWall.y, self.obj2.damperWall.z) if self.obj2.boundMode == 'Bound Box': if zn <= 0: if xn > self.xmax: xn = self.xmax - ddx * (xn - self.xmax) self.pvs[xp, yp][0] *= -1 if xn < self.xmin: xn = self.xmin - ddx * (xn - self.xmin) self.pvs[xp, yp][0] *= -1 if yn > self.ymax: yn = self.ymax - ddy * (yn - self.ymax) self.pvs[xp, yp][1] *= -1 if yn < self.ymin: yn = self.ymin - ddy * (yn - self.ymin) self.pvs[xp, yp][1] *= -1 if zn > self.zmax: zn = self.zmax - ddz * (zn - self.zmax) self.pvs[xp, yp][2] *= -1 if zn < self.zmin: zn = self.zmin - ddz * (zn - self.zmin) self.pvs[xp, yp][2] *= -1 elif self.obj2.boundMode == 'Bound Cylinder': r = 40 r = max(self.xmax, self.ymax) if xn ** 2 + yn ** 2 > r ** 2: try: <DeepExtract> v1 = xn - x v2 = yn - y rv2 = v1 ** 2 + v2 ** 2 zz = -(x * v1 + y * v2) / rv2 D = zz ** 2 - (x ** 2 + y ** 2 - r ** 2) / rv2 if D < 0: if D > -20: D = 0 t = zz + np.sqrt(D) x2 = x + v1 * t y2 = y + v2 * t x2 = 0.95 * x2 y2 = 0.95 * y2 (x2, y2) = (x2, y2) </DeepExtract> try: <DeepExtract> dir = FreeCAD.Vector(x2, y2, 0) pnt = FreeCAD.Vector(x, y, 0) diff = FreeCAD.Vector() diff.projectToLine(pnt, dir) proj = pnt + diff mirr = proj + diff (x2, y2) = (mirr.x, mirr.y) </DeepExtract> except: sayexc('') (xn, yn) = (x2, y2) self.pvs[xp, yp][0] = -0.5 * xn self.pvs[xp, yp][1] = -0.5 * yn except: pass if zn < self.zmin: zn = self.zmin - ddz * (zn - self.zmin) self.pvs[xp, yp][2] *= -1 elif self.obj2.boundMode == 'no Bounds': pass else: sayErr('nont implemented mode' + self.obj2.boundMode) rr = 1 rr = self.obj2.noise if zn < -5: (xn, yn, zn) = (xn + rr * (0.5 - random.random()), yn + rr * (0.5 - random.random()), zn + rr * (0.5 - random.random())) self.ptslix[ix + self.obj2.dimU * self.obj2.dimV] = [xn, yn, zn] return self.ptslix[ix + self.obj2.dimU * self.obj2.dimV]
def velocity(self, ix, mytime): force = self.force damper = self.damper (x, y, z) = self.ptslix[ix] xy = ix % (self.obj2.dimU * self.obj2.dimV) xp = xy // self.obj2.dimV yp = xy % self.obj2.dimV self.pvs[xp, yp] += force(x, y, z, self.pvs[xp, yp], mytime) print(ix, xy, xp, yp, force(x, y, z, self.pvs[xp, yp], mytime)) tt = self.pvs[xp, yp] (dx, dy, dz) = damper(x, y, z, self.pvs[xp, yp], mytime) self.pvs[xp, yp] *= damper(x, y, z, self.pvs[xp, yp], mytime) (xn, yn, zn) = (x + tt[0], y + tt[1], z + tt[2]) (ddx, ddy, ddz) = (self.obj2.damperWall.x, self.obj2.damperWall.y, self.obj2.damperWall.z) if self.obj2.boundMode == 'Bound Box': if zn <= 0: if xn > self.xmax: xn = self.xmax - ddx * (xn - self.xmax) self.pvs[xp, yp][0] *= -1 if xn < self.xmin: xn = self.xmin - ddx * (xn - self.xmin) self.pvs[xp, yp][0] *= -1 if yn > self.ymax: yn = self.ymax - ddy * (yn - self.ymax) self.pvs[xp, yp][1] *= -1 if yn < self.ymin: yn = self.ymin - ddy * (yn - self.ymin) self.pvs[xp, yp][1] *= -1 if zn > self.zmax: zn = self.zmax - ddz * (zn - self.zmax) self.pvs[xp, yp][2] *= -1 if zn < self.zmin: zn = self.zmin - ddz * (zn - self.zmin) self.pvs[xp, yp][2] *= -1 elif self.obj2.boundMode == 'Bound Cylinder': r = 40 r = max(self.xmax, self.ymax) if xn ** 2 + yn ** 2 > r ** 2: try: v1 = xn - x v2 = yn - y rv2 = v1 ** 2 + v2 ** 2 zz = -(x * v1 + y * v2) / rv2 D = zz ** 2 - (x ** 2 + y ** 2 - r ** 2) / rv2 if D < 0: if D > -20: D = 0 t = zz + np.sqrt(D) x2 = x + v1 * t y2 = y + v2 * t x2 = 0.95 * x2 y2 = 0.95 * y2 (x2, y2) = (x2, y2) try: dir = FreeCAD.Vector(x2, y2, 0) pnt = FreeCAD.Vector(x, y, 0) diff = FreeCAD.Vector() diff.projectToLine(pnt, dir) proj = pnt + diff mirr = proj + diff (x2, y2) = (mirr.x, mirr.y) except: sayexc('') (xn, yn) = (x2, y2) self.pvs[xp, yp][0] = -0.5 * xn self.pvs[xp, yp][1] = -0.5 * yn except: pass if zn < self.zmin: zn = self.zmin - ddz * (zn - self.zmin) self.pvs[xp, yp][2] *= -1 elif self.obj2.boundMode == 'no Bounds': pass else: sayErr('nont implemented mode' + self.obj2.boundMode) rr = 1 rr = self.obj2.noise if zn < -5: (xn, yn, zn) = (xn + rr * (0.5 - random.random()), yn + rr * (0.5 - random.random()), zn + rr * (0.5 - random.random())) self.ptslix[ix + self.obj2.dimU * self.obj2.dimV] = [xn, yn, zn] return self.ptslix[ix + self.obj2.dimU * self.obj2.dimV]
Animation
positive
def publish(self, path, handler): """ Add a handler for a specific path. :param path: Path to be handled. :param handler: Content to return, either a bytestring or a function that returns one. """ <DeepExtract> if path.startswith('/'): path = path path = '/' + path </DeepExtract> self.handlers[path] = handler
def publish(self, path, handler): """ Add a handler for a specific path. :param path: Path to be handled. :param handler: Content to return, either a bytestring or a function that returns one. """ if path.startswith('/'): path = path path = '/' + path self.handlers[path] = handler
agraph-python
positive
def expression(_p: int=0): _parentctx = self._ctx _parentState = self.state localctx = BasisParser.ExpressionContext(self, self._ctx, _parentState) _prevctx = localctx _startState = 46 self.enterRecursionRule(localctx, 46, self.RULE_expression, _p) try: self.enterOuterAlt(localctx, 1) self.state = 368 self._errHandler.sync(self) token = self._input.LA(1) if token in [BasisParser.Return]: self.state = 364 <DeepExtract> localctx = BasisParser.ControlFlowContext(self, self._ctx, self.state) self.enterRule(localctx, 44, self.RULE_controlFlow) try: self.enterOuterAlt(localctx, 1) self.state = 361 self.match(BasisParser.Return) except RecognitionException as re: localctx.exception = re self._errHandler.reportError(self, re) self._errHandler.recover(self, re) finally: self.exitRule() return localctx </DeepExtract> self.state = 365 <DeepExtract> _parentctx = self._ctx _parentState = self.state localctx = BasisParser.ExpressionContext(self, self._ctx, _parentState) _prevctx = localctx _startState = 46 self.enterRecursionRule(localctx, 46, self.RULE_expression, 2) try: self.enterOuterAlt(localctx, 1) self.state = 368 self._errHandler.sync(self) token = self._input.LA(1) if token in [BasisParser.Return]: self.state = 364 self.controlFlow() self.state = 365 self.expression(2) pass elif token in [BasisParser.StringEscapeBlock, BasisParser.StringEscapeSingle, BasisParser.StringLiteralBlock, BasisParser.StringLiteralSingle, BasisParser.StringEmpty, BasisParser.Decimal, BasisParser.DecimalBad, BasisParser.Binary, BasisParser.Octal, BasisParser.Hexadecimal, BasisParser.Integer, BasisParser.Identifier]: self.state = 367 self.data() pass else: raise NoViableAltException(self) self._ctx.stop = self._input.LT(-1) self.state = 384 self._errHandler.sync(self) _alt = self._interp.adaptivePredict(self._input, 50, self._ctx) while _alt != 2 and _alt != ATN.INVALID_ALT_NUMBER: if _alt == 1: if self._parseListeners is not None: self.triggerExitRuleEvent() _prevctx = localctx self.state = 382 self._errHandler.sync(self) la_ = self._interp.adaptivePredict(self._input, 49, self._ctx) if la_ == 1: localctx = BasisParser.ExpressionContext(self, _parentctx, _parentState) self.pushNewRecursionContext(localctx, _startState, self.RULE_expression) self.state = 370 if not self.precpred(self._ctx, 5): from antlr4.error.Errors import FailedPredicateException raise FailedPredicateException(self, 'self.precpred(self._ctx, 5)') self.state = 371 self.level1() self.state = 372 self.expression(6) pass elif la_ == 2: localctx = BasisParser.ExpressionContext(self, _parentctx, _parentState) self.pushNewRecursionContext(localctx, _startState, self.RULE_expression) self.state = 374 if not self.precpred(self._ctx, 4): from antlr4.error.Errors import FailedPredicateException raise FailedPredicateException(self, 'self.precpred(self._ctx, 4)') self.state = 375 self.level2() self.state = 376 self.expression(5) pass elif la_ == 3: localctx = BasisParser.ExpressionContext(self, _parentctx, _parentState) self.pushNewRecursionContext(localctx, _startState, self.RULE_expression) self.state = 378 if not self.precpred(self._ctx, 3): from antlr4.error.Errors import FailedPredicateException raise FailedPredicateException(self, 'self.precpred(self._ctx, 3)') self.state = 379 self.level3() self.state = 380 self.expression(4) pass self.state = 386 self._errHandler.sync(self) _alt = self._interp.adaptivePredict(self._input, 50, self._ctx) except RecognitionException as re: localctx.exception = re self._errHandler.reportError(self, re) self._errHandler.recover(self, re) finally: self.unrollRecursionContexts(_parentctx) return localctx </DeepExtract> pass elif token in [BasisParser.StringEscapeBlock, BasisParser.StringEscapeSingle, BasisParser.StringLiteralBlock, BasisParser.StringLiteralSingle, BasisParser.StringEmpty, BasisParser.Decimal, BasisParser.DecimalBad, BasisParser.Binary, BasisParser.Octal, BasisParser.Hexadecimal, BasisParser.Integer, BasisParser.Identifier]: self.state = 367 <DeepExtract> localctx = BasisParser.DataContext(self, self._ctx, self.state) self.enterRule(localctx, 48, self.RULE_data) try: self.state = 390 self._errHandler.sync(self) token = self._input.LA(1) if token in [BasisParser.StringEscapeBlock, BasisParser.StringEscapeSingle, BasisParser.StringLiteralBlock, BasisParser.StringLiteralSingle, BasisParser.StringEmpty]: self.enterOuterAlt(localctx, 1) self.state = 387 self.string() pass elif token in [BasisParser.Decimal, BasisParser.DecimalBad, BasisParser.Binary, BasisParser.Octal, BasisParser.Hexadecimal, BasisParser.Integer]: self.enterOuterAlt(localctx, 2) self.state = 388 self.number() pass elif token in [BasisParser.Identifier]: self.enterOuterAlt(localctx, 3) self.state = 389 self.symbol() pass else: raise NoViableAltException(self) except RecognitionException as re: localctx.exception = re self._errHandler.reportError(self, re) self._errHandler.recover(self, re) finally: self.exitRule() return localctx </DeepExtract> pass else: raise NoViableAltException(self) self._ctx.stop = self._input.LT(-1) self.state = 384 self._errHandler.sync(self) _alt = self._interp.adaptivePredict(self._input, 50, self._ctx) while _alt != 2 and _alt != ATN.INVALID_ALT_NUMBER: if _alt == 1: if self._parseListeners is not None: self.triggerExitRuleEvent() _prevctx = localctx self.state = 382 self._errHandler.sync(self) la_ = self._interp.adaptivePredict(self._input, 49, self._ctx) if la_ == 1: localctx = BasisParser.ExpressionContext(self, _parentctx, _parentState) self.pushNewRecursionContext(localctx, _startState, self.RULE_expression) self.state = 370 if not self.precpred(self._ctx, 5): from antlr4.error.Errors import FailedPredicateException raise FailedPredicateException(self, 'self.precpred(self._ctx, 5)') self.state = 371 <DeepExtract> localctx = BasisParser.Level1Context(self, self._ctx, self.state) self.enterRule(localctx, 66, self.RULE_level1) try: self.enterOuterAlt(localctx, 1) self.state = 423 self.match(BasisParser.Equal) except RecognitionException as re: localctx.exception = re self._errHandler.reportError(self, re) self._errHandler.recover(self, re) finally: self.exitRule() return localctx </DeepExtract> self.state = 372 <DeepExtract> _parentctx = self._ctx _parentState = self.state localctx = BasisParser.ExpressionContext(self, self._ctx, _parentState) _prevctx = localctx _startState = 46 self.enterRecursionRule(localctx, 46, self.RULE_expression, 6) try: self.enterOuterAlt(localctx, 1) self.state = 368 self._errHandler.sync(self) token = self._input.LA(1) if token in [BasisParser.Return]: self.state = 364 self.controlFlow() self.state = 365 self.expression(2) pass elif token in [BasisParser.StringEscapeBlock, BasisParser.StringEscapeSingle, BasisParser.StringLiteralBlock, BasisParser.StringLiteralSingle, BasisParser.StringEmpty, BasisParser.Decimal, BasisParser.DecimalBad, BasisParser.Binary, BasisParser.Octal, BasisParser.Hexadecimal, BasisParser.Integer, BasisParser.Identifier]: self.state = 367 self.data() pass else: raise NoViableAltException(self) self._ctx.stop = self._input.LT(-1) self.state = 384 self._errHandler.sync(self) _alt = self._interp.adaptivePredict(self._input, 50, self._ctx) while _alt != 2 and _alt != ATN.INVALID_ALT_NUMBER: if _alt == 1: if self._parseListeners is not None: self.triggerExitRuleEvent() _prevctx = localctx self.state = 382 self._errHandler.sync(self) la_ = self._interp.adaptivePredict(self._input, 49, self._ctx) if la_ == 1: localctx = BasisParser.ExpressionContext(self, _parentctx, _parentState) self.pushNewRecursionContext(localctx, _startState, self.RULE_expression) self.state = 370 if not self.precpred(self._ctx, 5): from antlr4.error.Errors import FailedPredicateException raise FailedPredicateException(self, 'self.precpred(self._ctx, 5)') self.state = 371 self.level1() self.state = 372 self.expression(6) pass elif la_ == 2: localctx = BasisParser.ExpressionContext(self, _parentctx, _parentState) self.pushNewRecursionContext(localctx, _startState, self.RULE_expression) self.state = 374 if not self.precpred(self._ctx, 4): from antlr4.error.Errors import FailedPredicateException raise FailedPredicateException(self, 'self.precpred(self._ctx, 4)') self.state = 375 self.level2() self.state = 376 self.expression(5) pass elif la_ == 3: localctx = BasisParser.ExpressionContext(self, _parentctx, _parentState) self.pushNewRecursionContext(localctx, _startState, self.RULE_expression) self.state = 378 if not self.precpred(self._ctx, 3): from antlr4.error.Errors import FailedPredicateException raise FailedPredicateException(self, 'self.precpred(self._ctx, 3)') self.state = 379 self.level3() self.state = 380 self.expression(4) pass self.state = 386 self._errHandler.sync(self) _alt = self._interp.adaptivePredict(self._input, 50, self._ctx) except RecognitionException as re: localctx.exception = re self._errHandler.reportError(self, re) self._errHandler.recover(self, re) finally: self.unrollRecursionContexts(_parentctx) return localctx </DeepExtract> pass elif la_ == 2: localctx = BasisParser.ExpressionContext(self, _parentctx, _parentState) self.pushNewRecursionContext(localctx, _startState, self.RULE_expression) self.state = 374 if not self.precpred(self._ctx, 4): from antlr4.error.Errors import FailedPredicateException raise FailedPredicateException(self, 'self.precpred(self._ctx, 4)') self.state = 375 <DeepExtract> localctx = BasisParser.Level2Context(self, self._ctx, self.state) self.enterRule(localctx, 68, self.RULE_level2) try: self.enterOuterAlt(localctx, 1) self.state = 425 self.match(BasisParser.Modulo) except RecognitionException as re: localctx.exception = re self._errHandler.reportError(self, re) self._errHandler.recover(self, re) finally: self.exitRule() return localctx </DeepExtract> self.state = 376 <DeepExtract> _parentctx = self._ctx _parentState = self.state localctx = BasisParser.ExpressionContext(self, self._ctx, _parentState) _prevctx = localctx _startState = 46 self.enterRecursionRule(localctx, 46, self.RULE_expression, 5) try: self.enterOuterAlt(localctx, 1) self.state = 368 self._errHandler.sync(self) token = self._input.LA(1) if token in [BasisParser.Return]: self.state = 364 self.controlFlow() self.state = 365 self.expression(2) pass elif token in [BasisParser.StringEscapeBlock, BasisParser.StringEscapeSingle, BasisParser.StringLiteralBlock, BasisParser.StringLiteralSingle, BasisParser.StringEmpty, BasisParser.Decimal, BasisParser.DecimalBad, BasisParser.Binary, BasisParser.Octal, BasisParser.Hexadecimal, BasisParser.Integer, BasisParser.Identifier]: self.state = 367 self.data() pass else: raise NoViableAltException(self) self._ctx.stop = self._input.LT(-1) self.state = 384 self._errHandler.sync(self) _alt = self._interp.adaptivePredict(self._input, 50, self._ctx) while _alt != 2 and _alt != ATN.INVALID_ALT_NUMBER: if _alt == 1: if self._parseListeners is not None: self.triggerExitRuleEvent() _prevctx = localctx self.state = 382 self._errHandler.sync(self) la_ = self._interp.adaptivePredict(self._input, 49, self._ctx) if la_ == 1: localctx = BasisParser.ExpressionContext(self, _parentctx, _parentState) self.pushNewRecursionContext(localctx, _startState, self.RULE_expression) self.state = 370 if not self.precpred(self._ctx, 5): from antlr4.error.Errors import FailedPredicateException raise FailedPredicateException(self, 'self.precpred(self._ctx, 5)') self.state = 371 self.level1() self.state = 372 self.expression(6) pass elif la_ == 2: localctx = BasisParser.ExpressionContext(self, _parentctx, _parentState) self.pushNewRecursionContext(localctx, _startState, self.RULE_expression) self.state = 374 if not self.precpred(self._ctx, 4): from antlr4.error.Errors import FailedPredicateException raise FailedPredicateException(self, 'self.precpred(self._ctx, 4)') self.state = 375 self.level2() self.state = 376 self.expression(5) pass elif la_ == 3: localctx = BasisParser.ExpressionContext(self, _parentctx, _parentState) self.pushNewRecursionContext(localctx, _startState, self.RULE_expression) self.state = 378 if not self.precpred(self._ctx, 3): from antlr4.error.Errors import FailedPredicateException raise FailedPredicateException(self, 'self.precpred(self._ctx, 3)') self.state = 379 self.level3() self.state = 380 self.expression(4) pass self.state = 386 self._errHandler.sync(self) _alt = self._interp.adaptivePredict(self._input, 50, self._ctx) except RecognitionException as re: localctx.exception = re self._errHandler.reportError(self, re) self._errHandler.recover(self, re) finally: self.unrollRecursionContexts(_parentctx) return localctx </DeepExtract> pass elif la_ == 3: localctx = BasisParser.ExpressionContext(self, _parentctx, _parentState) self.pushNewRecursionContext(localctx, _startState, self.RULE_expression) self.state = 378 if not self.precpred(self._ctx, 3): from antlr4.error.Errors import FailedPredicateException raise FailedPredicateException(self, 'self.precpred(self._ctx, 3)') self.state = 379 <DeepExtract> localctx = BasisParser.Level3Context(self, self._ctx, self.state) self.enterRule(localctx, 70, self.RULE_level3) self._la = 0 try: self.enterOuterAlt(localctx, 1) self.state = 427 _la = self._input.LA(1) if not (_la == BasisParser.Plus or _la == BasisParser.Minus): self._errHandler.recoverInline(self) else: self._errHandler.reportMatch(self) self.consume() except RecognitionException as re: localctx.exception = re self._errHandler.reportError(self, re) self._errHandler.recover(self, re) finally: self.exitRule() return localctx </DeepExtract> self.state = 380 <DeepExtract> _parentctx = self._ctx _parentState = self.state localctx = BasisParser.ExpressionContext(self, self._ctx, _parentState) _prevctx = localctx _startState = 46 self.enterRecursionRule(localctx, 46, self.RULE_expression, 4) try: self.enterOuterAlt(localctx, 1) self.state = 368 self._errHandler.sync(self) token = self._input.LA(1) if token in [BasisParser.Return]: self.state = 364 self.controlFlow() self.state = 365 self.expression(2) pass elif token in [BasisParser.StringEscapeBlock, BasisParser.StringEscapeSingle, BasisParser.StringLiteralBlock, BasisParser.StringLiteralSingle, BasisParser.StringEmpty, BasisParser.Decimal, BasisParser.DecimalBad, BasisParser.Binary, BasisParser.Octal, BasisParser.Hexadecimal, BasisParser.Integer, BasisParser.Identifier]: self.state = 367 self.data() pass else: raise NoViableAltException(self) self._ctx.stop = self._input.LT(-1) self.state = 384 self._errHandler.sync(self) _alt = self._interp.adaptivePredict(self._input, 50, self._ctx) while _alt != 2 and _alt != ATN.INVALID_ALT_NUMBER: if _alt == 1: if self._parseListeners is not None: self.triggerExitRuleEvent() _prevctx = localctx self.state = 382 self._errHandler.sync(self) la_ = self._interp.adaptivePredict(self._input, 49, self._ctx) if la_ == 1: localctx = BasisParser.ExpressionContext(self, _parentctx, _parentState) self.pushNewRecursionContext(localctx, _startState, self.RULE_expression) self.state = 370 if not self.precpred(self._ctx, 5): from antlr4.error.Errors import FailedPredicateException raise FailedPredicateException(self, 'self.precpred(self._ctx, 5)') self.state = 371 self.level1() self.state = 372 self.expression(6) pass elif la_ == 2: localctx = BasisParser.ExpressionContext(self, _parentctx, _parentState) self.pushNewRecursionContext(localctx, _startState, self.RULE_expression) self.state = 374 if not self.precpred(self._ctx, 4): from antlr4.error.Errors import FailedPredicateException raise FailedPredicateException(self, 'self.precpred(self._ctx, 4)') self.state = 375 self.level2() self.state = 376 self.expression(5) pass elif la_ == 3: localctx = BasisParser.ExpressionContext(self, _parentctx, _parentState) self.pushNewRecursionContext(localctx, _startState, self.RULE_expression) self.state = 378 if not self.precpred(self._ctx, 3): from antlr4.error.Errors import FailedPredicateException raise FailedPredicateException(self, 'self.precpred(self._ctx, 3)') self.state = 379 self.level3() self.state = 380 self.expression(4) pass self.state = 386 self._errHandler.sync(self) _alt = self._interp.adaptivePredict(self._input, 50, self._ctx) except RecognitionException as re: localctx.exception = re self._errHandler.reportError(self, re) self._errHandler.recover(self, re) finally: self.unrollRecursionContexts(_parentctx) return localctx </DeepExtract> pass self.state = 386 self._errHandler.sync(self) _alt = self._interp.adaptivePredict(self._input, 50, self._ctx) except RecognitionException as re: localctx.exception = re self._errHandler.reportError(self, re) self._errHandler.recover(self, re) finally: self.unrollRecursionContexts(_parentctx) return localctx
def expression(_p: int=0): _parentctx = self._ctx _parentState = self.state localctx = BasisParser.ExpressionContext(self, self._ctx, _parentState) _prevctx = localctx _startState = 46 self.enterRecursionRule(localctx, 46, self.RULE_expression, _p) try: self.enterOuterAlt(localctx, 1) self.state = 368 self._errHandler.sync(self) token = self._input.LA(1) if token in [BasisParser.Return]: self.state = 364 localctx = BasisParser.ControlFlowContext(self, self._ctx, self.state) self.enterRule(localctx, 44, self.RULE_controlFlow) try: self.enterOuterAlt(localctx, 1) self.state = 361 self.match(BasisParser.Return) except RecognitionException as re: localctx.exception = re self._errHandler.reportError(self, re) self._errHandler.recover(self, re) finally: self.exitRule() return localctx self.state = 365 _parentctx = self._ctx _parentState = self.state localctx = BasisParser.ExpressionContext(self, self._ctx, _parentState) _prevctx = localctx _startState = 46 self.enterRecursionRule(localctx, 46, self.RULE_expression, 2) try: self.enterOuterAlt(localctx, 1) self.state = 368 self._errHandler.sync(self) token = self._input.LA(1) if token in [BasisParser.Return]: self.state = 364 self.controlFlow() self.state = 365 self.expression(2) pass elif token in [BasisParser.StringEscapeBlock, BasisParser.StringEscapeSingle, BasisParser.StringLiteralBlock, BasisParser.StringLiteralSingle, BasisParser.StringEmpty, BasisParser.Decimal, BasisParser.DecimalBad, BasisParser.Binary, BasisParser.Octal, BasisParser.Hexadecimal, BasisParser.Integer, BasisParser.Identifier]: self.state = 367 self.data() pass else: raise NoViableAltException(self) self._ctx.stop = self._input.LT(-1) self.state = 384 self._errHandler.sync(self) _alt = self._interp.adaptivePredict(self._input, 50, self._ctx) while _alt != 2 and _alt != ATN.INVALID_ALT_NUMBER: if _alt == 1: if self._parseListeners is not None: self.triggerExitRuleEvent() _prevctx = localctx self.state = 382 self._errHandler.sync(self) la_ = self._interp.adaptivePredict(self._input, 49, self._ctx) if la_ == 1: localctx = BasisParser.ExpressionContext(self, _parentctx, _parentState) self.pushNewRecursionContext(localctx, _startState, self.RULE_expression) self.state = 370 if not self.precpred(self._ctx, 5): from antlr4.error.Errors import FailedPredicateException raise FailedPredicateException(self, 'self.precpred(self._ctx, 5)') self.state = 371 self.level1() self.state = 372 self.expression(6) pass elif la_ == 2: localctx = BasisParser.ExpressionContext(self, _parentctx, _parentState) self.pushNewRecursionContext(localctx, _startState, self.RULE_expression) self.state = 374 if not self.precpred(self._ctx, 4): from antlr4.error.Errors import FailedPredicateException raise FailedPredicateException(self, 'self.precpred(self._ctx, 4)') self.state = 375 self.level2() self.state = 376 self.expression(5) pass elif la_ == 3: localctx = BasisParser.ExpressionContext(self, _parentctx, _parentState) self.pushNewRecursionContext(localctx, _startState, self.RULE_expression) self.state = 378 if not self.precpred(self._ctx, 3): from antlr4.error.Errors import FailedPredicateException raise FailedPredicateException(self, 'self.precpred(self._ctx, 3)') self.state = 379 self.level3() self.state = 380 self.expression(4) pass self.state = 386 self._errHandler.sync(self) _alt = self._interp.adaptivePredict(self._input, 50, self._ctx) except RecognitionException as re: localctx.exception = re self._errHandler.reportError(self, re) self._errHandler.recover(self, re) finally: self.unrollRecursionContexts(_parentctx) return localctx pass elif token in [BasisParser.StringEscapeBlock, BasisParser.StringEscapeSingle, BasisParser.StringLiteralBlock, BasisParser.StringLiteralSingle, BasisParser.StringEmpty, BasisParser.Decimal, BasisParser.DecimalBad, BasisParser.Binary, BasisParser.Octal, BasisParser.Hexadecimal, BasisParser.Integer, BasisParser.Identifier]: self.state = 367 localctx = BasisParser.DataContext(self, self._ctx, self.state) self.enterRule(localctx, 48, self.RULE_data) try: self.state = 390 self._errHandler.sync(self) token = self._input.LA(1) if token in [BasisParser.StringEscapeBlock, BasisParser.StringEscapeSingle, BasisParser.StringLiteralBlock, BasisParser.StringLiteralSingle, BasisParser.StringEmpty]: self.enterOuterAlt(localctx, 1) self.state = 387 self.string() pass elif token in [BasisParser.Decimal, BasisParser.DecimalBad, BasisParser.Binary, BasisParser.Octal, BasisParser.Hexadecimal, BasisParser.Integer]: self.enterOuterAlt(localctx, 2) self.state = 388 self.number() pass elif token in [BasisParser.Identifier]: self.enterOuterAlt(localctx, 3) self.state = 389 self.symbol() pass else: raise NoViableAltException(self) except RecognitionException as re: localctx.exception = re self._errHandler.reportError(self, re) self._errHandler.recover(self, re) finally: self.exitRule() return localctx pass else: raise NoViableAltException(self) self._ctx.stop = self._input.LT(-1) self.state = 384 self._errHandler.sync(self) _alt = self._interp.adaptivePredict(self._input, 50, self._ctx) while _alt != 2 and _alt != ATN.INVALID_ALT_NUMBER: if _alt == 1: if self._parseListeners is not None: self.triggerExitRuleEvent() _prevctx = localctx self.state = 382 self._errHandler.sync(self) la_ = self._interp.adaptivePredict(self._input, 49, self._ctx) if la_ == 1: localctx = BasisParser.ExpressionContext(self, _parentctx, _parentState) self.pushNewRecursionContext(localctx, _startState, self.RULE_expression) self.state = 370 if not self.precpred(self._ctx, 5): from antlr4.error.Errors import FailedPredicateException raise FailedPredicateException(self, 'self.precpred(self._ctx, 5)') self.state = 371 localctx = BasisParser.Level1Context(self, self._ctx, self.state) self.enterRule(localctx, 66, self.RULE_level1) try: self.enterOuterAlt(localctx, 1) self.state = 423 self.match(BasisParser.Equal) except RecognitionException as re: localctx.exception = re self._errHandler.reportError(self, re) self._errHandler.recover(self, re) finally: self.exitRule() return localctx self.state = 372 _parentctx = self._ctx _parentState = self.state localctx = BasisParser.ExpressionContext(self, self._ctx, _parentState) _prevctx = localctx _startState = 46 self.enterRecursionRule(localctx, 46, self.RULE_expression, 6) try: self.enterOuterAlt(localctx, 1) self.state = 368 self._errHandler.sync(self) token = self._input.LA(1) if token in [BasisParser.Return]: self.state = 364 self.controlFlow() self.state = 365 self.expression(2) pass elif token in [BasisParser.StringEscapeBlock, BasisParser.StringEscapeSingle, BasisParser.StringLiteralBlock, BasisParser.StringLiteralSingle, BasisParser.StringEmpty, BasisParser.Decimal, BasisParser.DecimalBad, BasisParser.Binary, BasisParser.Octal, BasisParser.Hexadecimal, BasisParser.Integer, BasisParser.Identifier]: self.state = 367 self.data() pass else: raise NoViableAltException(self) self._ctx.stop = self._input.LT(-1) self.state = 384 self._errHandler.sync(self) _alt = self._interp.adaptivePredict(self._input, 50, self._ctx) while _alt != 2 and _alt != ATN.INVALID_ALT_NUMBER: if _alt == 1: if self._parseListeners is not None: self.triggerExitRuleEvent() _prevctx = localctx self.state = 382 self._errHandler.sync(self) la_ = self._interp.adaptivePredict(self._input, 49, self._ctx) if la_ == 1: localctx = BasisParser.ExpressionContext(self, _parentctx, _parentState) self.pushNewRecursionContext(localctx, _startState, self.RULE_expression) self.state = 370 if not self.precpred(self._ctx, 5): from antlr4.error.Errors import FailedPredicateException raise FailedPredicateException(self, 'self.precpred(self._ctx, 5)') self.state = 371 self.level1() self.state = 372 self.expression(6) pass elif la_ == 2: localctx = BasisParser.ExpressionContext(self, _parentctx, _parentState) self.pushNewRecursionContext(localctx, _startState, self.RULE_expression) self.state = 374 if not self.precpred(self._ctx, 4): from antlr4.error.Errors import FailedPredicateException raise FailedPredicateException(self, 'self.precpred(self._ctx, 4)') self.state = 375 self.level2() self.state = 376 self.expression(5) pass elif la_ == 3: localctx = BasisParser.ExpressionContext(self, _parentctx, _parentState) self.pushNewRecursionContext(localctx, _startState, self.RULE_expression) self.state = 378 if not self.precpred(self._ctx, 3): from antlr4.error.Errors import FailedPredicateException raise FailedPredicateException(self, 'self.precpred(self._ctx, 3)') self.state = 379 self.level3() self.state = 380 self.expression(4) pass self.state = 386 self._errHandler.sync(self) _alt = self._interp.adaptivePredict(self._input, 50, self._ctx) except RecognitionException as re: localctx.exception = re self._errHandler.reportError(self, re) self._errHandler.recover(self, re) finally: self.unrollRecursionContexts(_parentctx) return localctx pass elif la_ == 2: localctx = BasisParser.ExpressionContext(self, _parentctx, _parentState) self.pushNewRecursionContext(localctx, _startState, self.RULE_expression) self.state = 374 if not self.precpred(self._ctx, 4): from antlr4.error.Errors import FailedPredicateException raise FailedPredicateException(self, 'self.precpred(self._ctx, 4)') self.state = 375 localctx = BasisParser.Level2Context(self, self._ctx, self.state) self.enterRule(localctx, 68, self.RULE_level2) try: self.enterOuterAlt(localctx, 1) self.state = 425 self.match(BasisParser.Modulo) except RecognitionException as re: localctx.exception = re self._errHandler.reportError(self, re) self._errHandler.recover(self, re) finally: self.exitRule() return localctx self.state = 376 _parentctx = self._ctx _parentState = self.state localctx = BasisParser.ExpressionContext(self, self._ctx, _parentState) _prevctx = localctx _startState = 46 self.enterRecursionRule(localctx, 46, self.RULE_expression, 5) try: self.enterOuterAlt(localctx, 1) self.state = 368 self._errHandler.sync(self) token = self._input.LA(1) if token in [BasisParser.Return]: self.state = 364 self.controlFlow() self.state = 365 self.expression(2) pass elif token in [BasisParser.StringEscapeBlock, BasisParser.StringEscapeSingle, BasisParser.StringLiteralBlock, BasisParser.StringLiteralSingle, BasisParser.StringEmpty, BasisParser.Decimal, BasisParser.DecimalBad, BasisParser.Binary, BasisParser.Octal, BasisParser.Hexadecimal, BasisParser.Integer, BasisParser.Identifier]: self.state = 367 self.data() pass else: raise NoViableAltException(self) self._ctx.stop = self._input.LT(-1) self.state = 384 self._errHandler.sync(self) _alt = self._interp.adaptivePredict(self._input, 50, self._ctx) while _alt != 2 and _alt != ATN.INVALID_ALT_NUMBER: if _alt == 1: if self._parseListeners is not None: self.triggerExitRuleEvent() _prevctx = localctx self.state = 382 self._errHandler.sync(self) la_ = self._interp.adaptivePredict(self._input, 49, self._ctx) if la_ == 1: localctx = BasisParser.ExpressionContext(self, _parentctx, _parentState) self.pushNewRecursionContext(localctx, _startState, self.RULE_expression) self.state = 370 if not self.precpred(self._ctx, 5): from antlr4.error.Errors import FailedPredicateException raise FailedPredicateException(self, 'self.precpred(self._ctx, 5)') self.state = 371 self.level1() self.state = 372 self.expression(6) pass elif la_ == 2: localctx = BasisParser.ExpressionContext(self, _parentctx, _parentState) self.pushNewRecursionContext(localctx, _startState, self.RULE_expression) self.state = 374 if not self.precpred(self._ctx, 4): from antlr4.error.Errors import FailedPredicateException raise FailedPredicateException(self, 'self.precpred(self._ctx, 4)') self.state = 375 self.level2() self.state = 376 self.expression(5) pass elif la_ == 3: localctx = BasisParser.ExpressionContext(self, _parentctx, _parentState) self.pushNewRecursionContext(localctx, _startState, self.RULE_expression) self.state = 378 if not self.precpred(self._ctx, 3): from antlr4.error.Errors import FailedPredicateException raise FailedPredicateException(self, 'self.precpred(self._ctx, 3)') self.state = 379 self.level3() self.state = 380 self.expression(4) pass self.state = 386 self._errHandler.sync(self) _alt = self._interp.adaptivePredict(self._input, 50, self._ctx) except RecognitionException as re: localctx.exception = re self._errHandler.reportError(self, re) self._errHandler.recover(self, re) finally: self.unrollRecursionContexts(_parentctx) return localctx pass elif la_ == 3: localctx = BasisParser.ExpressionContext(self, _parentctx, _parentState) self.pushNewRecursionContext(localctx, _startState, self.RULE_expression) self.state = 378 if not self.precpred(self._ctx, 3): from antlr4.error.Errors import FailedPredicateException raise FailedPredicateException(self, 'self.precpred(self._ctx, 3)') self.state = 379 localctx = BasisParser.Level3Context(self, self._ctx, self.state) self.enterRule(localctx, 70, self.RULE_level3) self._la = 0 try: self.enterOuterAlt(localctx, 1) self.state = 427 _la = self._input.LA(1) if not (_la == BasisParser.Plus or _la == BasisParser.Minus): self._errHandler.recoverInline(self) else: self._errHandler.reportMatch(self) self.consume() except RecognitionException as re: localctx.exception = re self._errHandler.reportError(self, re) self._errHandler.recover(self, re) finally: self.exitRule() return localctx self.state = 380 _parentctx = self._ctx _parentState = self.state localctx = BasisParser.ExpressionContext(self, self._ctx, _parentState) _prevctx = localctx _startState = 46 self.enterRecursionRule(localctx, 46, self.RULE_expression, 4) try: self.enterOuterAlt(localctx, 1) self.state = 368 self._errHandler.sync(self) token = self._input.LA(1) if token in [BasisParser.Return]: self.state = 364 self.controlFlow() self.state = 365 self.expression(2) pass elif token in [BasisParser.StringEscapeBlock, BasisParser.StringEscapeSingle, BasisParser.StringLiteralBlock, BasisParser.StringLiteralSingle, BasisParser.StringEmpty, BasisParser.Decimal, BasisParser.DecimalBad, BasisParser.Binary, BasisParser.Octal, BasisParser.Hexadecimal, BasisParser.Integer, BasisParser.Identifier]: self.state = 367 self.data() pass else: raise NoViableAltException(self) self._ctx.stop = self._input.LT(-1) self.state = 384 self._errHandler.sync(self) _alt = self._interp.adaptivePredict(self._input, 50, self._ctx) while _alt != 2 and _alt != ATN.INVALID_ALT_NUMBER: if _alt == 1: if self._parseListeners is not None: self.triggerExitRuleEvent() _prevctx = localctx self.state = 382 self._errHandler.sync(self) la_ = self._interp.adaptivePredict(self._input, 49, self._ctx) if la_ == 1: localctx = BasisParser.ExpressionContext(self, _parentctx, _parentState) self.pushNewRecursionContext(localctx, _startState, self.RULE_expression) self.state = 370 if not self.precpred(self._ctx, 5): from antlr4.error.Errors import FailedPredicateException raise FailedPredicateException(self, 'self.precpred(self._ctx, 5)') self.state = 371 self.level1() self.state = 372 self.expression(6) pass elif la_ == 2: localctx = BasisParser.ExpressionContext(self, _parentctx, _parentState) self.pushNewRecursionContext(localctx, _startState, self.RULE_expression) self.state = 374 if not self.precpred(self._ctx, 4): from antlr4.error.Errors import FailedPredicateException raise FailedPredicateException(self, 'self.precpred(self._ctx, 4)') self.state = 375 self.level2() self.state = 376 self.expression(5) pass elif la_ == 3: localctx = BasisParser.ExpressionContext(self, _parentctx, _parentState) self.pushNewRecursionContext(localctx, _startState, self.RULE_expression) self.state = 378 if not self.precpred(self._ctx, 3): from antlr4.error.Errors import FailedPredicateException raise FailedPredicateException(self, 'self.precpred(self._ctx, 3)') self.state = 379 self.level3() self.state = 380 self.expression(4) pass self.state = 386 self._errHandler.sync(self) _alt = self._interp.adaptivePredict(self._input, 50, self._ctx) except RecognitionException as re: localctx.exception = re self._errHandler.reportError(self, re) self._errHandler.recover(self, re) finally: self.unrollRecursionContexts(_parentctx) return localctx pass self.state = 386 self._errHandler.sync(self) _alt = self._interp.adaptivePredict(self._input, 50, self._ctx) except RecognitionException as re: localctx.exception = re self._errHandler.reportError(self, re) self._errHandler.recover(self, re) finally: self.unrollRecursionContexts(_parentctx) return localctx
Basis
positive
def anchor_target(anchor_list, valid_flag_list, gt_bboxes_list, img_metas, target_means, target_stds, cfg, gt_bboxes_ignore_list=None, gt_labels_list=None, label_channels=1, sampling=True, unmap_outputs=True): """Compute regression and classification targets for anchors. Args: anchor_list (list[list]): Multi level anchors of each image. valid_flag_list (list[list]): Multi level valid flags of each image. gt_bboxes_list (list[Tensor]): Ground truth bboxes of each image. img_metas (list[dict]): Meta info of each image. target_means (Iterable): Mean value of regression targets. target_stds (Iterable): Std value of regression targets. cfg (dict): RPN train configs. Returns: tuple """ num_imgs = len(img_metas) assert len(anchor_list) == len(valid_flag_list) == num_imgs num_level_anchors = [anchors.size(0) for anchors in anchor_list[0]] for i in range(num_imgs): assert len(anchor_list[i]) == len(valid_flag_list[i]) anchor_list[i] = torch.cat(anchor_list[i]) valid_flag_list[i] = torch.cat(valid_flag_list[i]) if gt_bboxes_ignore_list is None: gt_bboxes_ignore_list = [None for _ in range(num_imgs)] if gt_labels_list is None: gt_labels_list = [None for _ in range(num_imgs)] (all_labels, all_label_weights, all_bbox_targets, all_bbox_weights, pos_inds_list, neg_inds_list) = multi_apply(anchor_target_single, anchor_list, valid_flag_list, gt_bboxes_list, gt_bboxes_ignore_list, gt_labels_list, img_metas, target_means=target_means, target_stds=target_stds, cfg=cfg, label_channels=label_channels, sampling=sampling, unmap_outputs=unmap_outputs) if any([labels is None for labels in all_labels]): return None num_total_pos = sum([max(inds.numel(), 1) for inds in pos_inds_list]) num_total_neg = sum([max(inds.numel(), 1) for inds in neg_inds_list]) <DeepExtract> all_labels = torch.stack(all_labels, 0) level_targets = [] start = 0 for n in num_level_anchors: end = start + n level_targets.append(all_labels[:, start:end].squeeze(0)) start = end labels_list = level_targets </DeepExtract> <DeepExtract> all_label_weights = torch.stack(all_label_weights, 0) level_targets = [] start = 0 for n in num_level_anchors: end = start + n level_targets.append(all_label_weights[:, start:end].squeeze(0)) start = end label_weights_list = level_targets </DeepExtract> <DeepExtract> all_bbox_targets = torch.stack(all_bbox_targets, 0) level_targets = [] start = 0 for n in num_level_anchors: end = start + n level_targets.append(all_bbox_targets[:, start:end].squeeze(0)) start = end bbox_targets_list = level_targets </DeepExtract> <DeepExtract> all_bbox_weights = torch.stack(all_bbox_weights, 0) level_targets = [] start = 0 for n in num_level_anchors: end = start + n level_targets.append(all_bbox_weights[:, start:end].squeeze(0)) start = end bbox_weights_list = level_targets </DeepExtract> return (labels_list, label_weights_list, bbox_targets_list, bbox_weights_list, num_total_pos, num_total_neg)
def anchor_target(anchor_list, valid_flag_list, gt_bboxes_list, img_metas, target_means, target_stds, cfg, gt_bboxes_ignore_list=None, gt_labels_list=None, label_channels=1, sampling=True, unmap_outputs=True): """Compute regression and classification targets for anchors. Args: anchor_list (list[list]): Multi level anchors of each image. valid_flag_list (list[list]): Multi level valid flags of each image. gt_bboxes_list (list[Tensor]): Ground truth bboxes of each image. img_metas (list[dict]): Meta info of each image. target_means (Iterable): Mean value of regression targets. target_stds (Iterable): Std value of regression targets. cfg (dict): RPN train configs. Returns: tuple """ num_imgs = len(img_metas) assert len(anchor_list) == len(valid_flag_list) == num_imgs num_level_anchors = [anchors.size(0) for anchors in anchor_list[0]] for i in range(num_imgs): assert len(anchor_list[i]) == len(valid_flag_list[i]) anchor_list[i] = torch.cat(anchor_list[i]) valid_flag_list[i] = torch.cat(valid_flag_list[i]) if gt_bboxes_ignore_list is None: gt_bboxes_ignore_list = [None for _ in range(num_imgs)] if gt_labels_list is None: gt_labels_list = [None for _ in range(num_imgs)] (all_labels, all_label_weights, all_bbox_targets, all_bbox_weights, pos_inds_list, neg_inds_list) = multi_apply(anchor_target_single, anchor_list, valid_flag_list, gt_bboxes_list, gt_bboxes_ignore_list, gt_labels_list, img_metas, target_means=target_means, target_stds=target_stds, cfg=cfg, label_channels=label_channels, sampling=sampling, unmap_outputs=unmap_outputs) if any([labels is None for labels in all_labels]): return None num_total_pos = sum([max(inds.numel(), 1) for inds in pos_inds_list]) num_total_neg = sum([max(inds.numel(), 1) for inds in neg_inds_list]) all_labels = torch.stack(all_labels, 0) level_targets = [] start = 0 for n in num_level_anchors: end = start + n level_targets.append(all_labels[:, start:end].squeeze(0)) start = end labels_list = level_targets all_label_weights = torch.stack(all_label_weights, 0) level_targets = [] start = 0 for n in num_level_anchors: end = start + n level_targets.append(all_label_weights[:, start:end].squeeze(0)) start = end label_weights_list = level_targets all_bbox_targets = torch.stack(all_bbox_targets, 0) level_targets = [] start = 0 for n in num_level_anchors: end = start + n level_targets.append(all_bbox_targets[:, start:end].squeeze(0)) start = end bbox_targets_list = level_targets all_bbox_weights = torch.stack(all_bbox_weights, 0) level_targets = [] start = 0 for n in num_level_anchors: end = start + n level_targets.append(all_bbox_weights[:, start:end].squeeze(0)) start = end bbox_weights_list = level_targets return (labels_list, label_weights_list, bbox_targets_list, bbox_weights_list, num_total_pos, num_total_neg)
C-HOI
positive
def start_flops_count(self): """ A method that will be available after add_flops_counting_methods() is called on a desired net object. Activates the computation of mean flops consumption per image. Call it before you run the network. """ <DeepExtract> if hasattr(self, '__batch_counter_handle__'): return handle = self.register_forward_hook(batch_counter_hook) self.__batch_counter_handle__ = handle </DeepExtract> self.apply(add_flops_counter_hook_function)
def start_flops_count(self): """ A method that will be available after add_flops_counting_methods() is called on a desired net object. Activates the computation of mean flops consumption per image. Call it before you run the network. """ if hasattr(self, '__batch_counter_handle__'): return handle = self.register_forward_hook(batch_counter_hook) self.__batch_counter_handle__ = handle self.apply(add_flops_counter_hook_function)
ATSS-EfficientDet-PyTorch
positive
def get_options_label(self): <DeepExtract> state_as_string = self.get_option_value('experiment_operator') self.operator2 = self._operators_dict[state_as_string] self._operator_label = state_as_string </DeepExtract> <DeepExtract> state_as_string = self.get_option_value('experiment_mode') self._selected_mode = state_as_string </DeepExtract> if self._selected_mode == 'simple': return self._operator_label else: return self._selected_mode
def get_options_label(self): state_as_string = self.get_option_value('experiment_operator') self.operator2 = self._operators_dict[state_as_string] self._operator_label = state_as_string state_as_string = self.get_option_value('experiment_mode') self._selected_mode = state_as_string if self._selected_mode == 'simple': return self._operator_label else: return self._selected_mode
drawing
positive
def format_currency(self, value, international=False): """Returns the provided value in the proper currency format. Parameters: value (dec): The decimal to represent as a currency. international (bool): Whether this should follow international formatting or not. Returns: str: The formatted currency value. """ self.international = international value = Decimal(value) <DeepExtract> digits = self._determine_frac_digits() decimal_str = abs(value).quantize(Decimal(10) ** (-digits), rounding=ROUND_HALF_UP) try: (num_whole, num_frac) = str(decimal_str).split('.') except ValueError: (num_whole, num_frac) = (str(decimal_str), '') (num_whole, num_frac) = (num_whole, num_frac) </DeepExtract> <DeepExtract> remaining = num_whole groups = [] while remaining: groups.append(remaining[-self.conventions['mon_grouping']:]) remaining = remaining[:-self.conventions['mon_grouping']] groups.reverse() grouped_num_whole = self.conventions['mon_thousands_sep'].join(groups) grouped_num_whole = grouped_num_whole </DeepExtract> <DeepExtract> frac_digits = self._determine_frac_digits() if frac_digits > 0: dec_separator = self.conventions['mon_decimal_point'] else: dec_separator = '' formatted_value = '{}{}{}'.format(grouped_num_whole, dec_separator, num_frac) </DeepExtract> <DeepExtract> placeholder_value = '<{}>'.format(formatted_value) symbol = self._determine_symbol_details(bool(value < 0)) if symbol['precedes']: placeholder_value = '{}{}{}'.format(symbol['symbol'], symbol['separated'], placeholder_value) else: placeholder_value = '{}{}{}'.format(placeholder_value, symbol['separated'], symbol['symbol']) if symbol['sign_position'] == 0: placeholder_value = '({})'.format(placeholder_value) elif symbol['sign_position'] == 1: placeholder_value = '{}{}'.format(symbol['sign'], placeholder_value) elif symbol['sign_position'] == 2: placeholder_value = '{}{}'.format(placeholder_value, symbol['sign']) elif symbol['sign_position'] == 3: placeholder_value = placeholder_value.replace('<', symbol['sign']) elif symbol['sign_position'] == 4: placeholder_value = placeholder_value.replace('>', symbol['sign']) else: placeholder_value = '{}{}'.format(symbol['sign'], placeholder_value) formatted_currency = placeholder_value.replace('<', '').replace('>', '') formatted_currency = formatted_currency </DeepExtract> return formatted_currency
def format_currency(self, value, international=False): """Returns the provided value in the proper currency format. Parameters: value (dec): The decimal to represent as a currency. international (bool): Whether this should follow international formatting or not. Returns: str: The formatted currency value. """ self.international = international value = Decimal(value) digits = self._determine_frac_digits() decimal_str = abs(value).quantize(Decimal(10) ** (-digits), rounding=ROUND_HALF_UP) try: (num_whole, num_frac) = str(decimal_str).split('.') except ValueError: (num_whole, num_frac) = (str(decimal_str), '') (num_whole, num_frac) = (num_whole, num_frac) remaining = num_whole groups = [] while remaining: groups.append(remaining[-self.conventions['mon_grouping']:]) remaining = remaining[:-self.conventions['mon_grouping']] groups.reverse() grouped_num_whole = self.conventions['mon_thousands_sep'].join(groups) grouped_num_whole = grouped_num_whole frac_digits = self._determine_frac_digits() if frac_digits > 0: dec_separator = self.conventions['mon_decimal_point'] else: dec_separator = '' formatted_value = '{}{}{}'.format(grouped_num_whole, dec_separator, num_frac) placeholder_value = '<{}>'.format(formatted_value) symbol = self._determine_symbol_details(bool(value < 0)) if symbol['precedes']: placeholder_value = '{}{}{}'.format(symbol['symbol'], symbol['separated'], placeholder_value) else: placeholder_value = '{}{}{}'.format(placeholder_value, symbol['separated'], symbol['symbol']) if symbol['sign_position'] == 0: placeholder_value = '({})'.format(placeholder_value) elif symbol['sign_position'] == 1: placeholder_value = '{}{}'.format(symbol['sign'], placeholder_value) elif symbol['sign_position'] == 2: placeholder_value = '{}{}'.format(placeholder_value, symbol['sign']) elif symbol['sign_position'] == 3: placeholder_value = placeholder_value.replace('<', symbol['sign']) elif symbol['sign_position'] == 4: placeholder_value = placeholder_value.replace('>', symbol['sign']) else: placeholder_value = '{}{}'.format(symbol['sign'], placeholder_value) formatted_currency = placeholder_value.replace('<', '').replace('>', '') formatted_currency = formatted_currency return formatted_currency
django-flexible-subscriptions
positive
def from_json(self, note): """Converts to STIX Bundle from JSON objects""" attr = note['attributes'] self.name = attr['title'] self.text = attr['text'] self.published = attr['published'] <DeepExtract> refs = [] for url in attr.get('validation_urls', []): external_url = url['name'] source_name = external_url.split('/')[2].split('.')[-2] refs.append({'source_name': source_name, 'url': external_url}) self.external_references = refs </DeepExtract> <DeepExtract> ret = set() for topic in attr.get('topic', []): name = topic['name'] if name not in self.report_type_mapper: self.helper.log_warning('Could not map a report type for type {}'.format(name)) continue ret.add(self.report_type_mapper[name]) self.report_types = list(ret) </DeepExtract> self.labels = [topic['name'] for topic in attr.get('topic', [])] for entity in attr.get('note_entities', []): type_ = entity['type'] name = entity['name'] if self.person_to_ta and type_ == 'Person': stix_objs = ThreatActor(name, type_, self.author).to_stix_objects() elif entity['id'] in self.tas: if self.ta_to_intrusion_set and type_ != 'Person': stix_objs = IntrusionSet(name, type_, self.author).to_stix_objects() else: stix_objs = ThreatActor(name, type_, self.author).to_stix_objects() elif type_ not in ENTITY_TYPE_MAPPER: msg = f'Cannot convert entity {name} to STIX2 because it is of type {type_}' self.helper.log_warning(msg) continue else: stix_objs = ENTITY_TYPE_MAPPER[type_](name, type_, self.author).to_stix_objects() self.objects.extend(stix_objs) if 'attachment_content' in attr: rule = DetectionRule(attr['attachment'], attr['attachment_type'], attr['attachment_content']) self.objects.extend(rule.to_stix_objects())
def from_json(self, note): """Converts to STIX Bundle from JSON objects""" attr = note['attributes'] self.name = attr['title'] self.text = attr['text'] self.published = attr['published'] refs = [] for url in attr.get('validation_urls', []): external_url = url['name'] source_name = external_url.split('/')[2].split('.')[-2] refs.append({'source_name': source_name, 'url': external_url}) self.external_references = refs ret = set() for topic in attr.get('topic', []): name = topic['name'] if name not in self.report_type_mapper: self.helper.log_warning('Could not map a report type for type {}'.format(name)) continue ret.add(self.report_type_mapper[name]) self.report_types = list(ret) self.labels = [topic['name'] for topic in attr.get('topic', [])] for entity in attr.get('note_entities', []): type_ = entity['type'] name = entity['name'] if self.person_to_ta and type_ == 'Person': stix_objs = ThreatActor(name, type_, self.author).to_stix_objects() elif entity['id'] in self.tas: if self.ta_to_intrusion_set and type_ != 'Person': stix_objs = IntrusionSet(name, type_, self.author).to_stix_objects() else: stix_objs = ThreatActor(name, type_, self.author).to_stix_objects() elif type_ not in ENTITY_TYPE_MAPPER: msg = f'Cannot convert entity {name} to STIX2 because it is of type {type_}' self.helper.log_warning(msg) continue else: stix_objs = ENTITY_TYPE_MAPPER[type_](name, type_, self.author).to_stix_objects() self.objects.extend(stix_objs) if 'attachment_content' in attr: rule = DetectionRule(attr['attachment'], attr['attachment_type'], attr['attachment_content']) self.objects.extend(rule.to_stix_objects())
connectors
positive
def test_incorrect_reaction(self): """Test response when incorrect reaction is passed""" <DeepExtract> _url = reverse('comment:react', kwargs={'pk': self.comment.id, 'reaction': 'likes'}) </DeepExtract> response = self.client.post(_url) self.assertEqual(response.status_code, status.HTTP_400_BAD_REQUEST) <DeepExtract> _url = reverse('comment:react', kwargs={'pk': self.comment.id, 'reaction': 1}) </DeepExtract> response = self.client.post(_url) self.assertEqual(response.status_code, status.HTTP_400_BAD_REQUEST)
def test_incorrect_reaction(self): """Test response when incorrect reaction is passed""" _url = reverse('comment:react', kwargs={'pk': self.comment.id, 'reaction': 'likes'}) response = self.client.post(_url) self.assertEqual(response.status_code, status.HTTP_400_BAD_REQUEST) _url = reverse('comment:react', kwargs={'pk': self.comment.id, 'reaction': 1}) response = self.client.post(_url) self.assertEqual(response.status_code, status.HTTP_400_BAD_REQUEST)
Comment
positive
def main(argv): """ The main function for smoke recognition (using the trained model) """ if len(argv) < 2: print('Usage:') print('python recognize_smoke.py check_and_fix_urls') print('python recognize_smoke.py process_all_urls') print('python recognize_smoke.py process_events') print('python recognize_smoke.py init_data_upload') print('python recognize_smoke.py upload_data') print('python recognize_smoke.py scan_urls') return program_start_time = time.time() nf = 36 if argv[1] == 'check_and_fix_urls': <DeepExtract> p = '../data/production_url_list/' for fn in get_all_file_names_in_folder(p): if '.json' not in fn: continue date_in_fn = re.findall('[\\d]{4}-[\\d]{2}-[\\d]{2}', fn) if len(date_in_fn) != 1: print("ERROR: file name is not a date, need to fix '%s' manually" % fn) continue date_in_fn = date_in_fn[0] urls = load_json(p + fn) has_problem = False for i in range(len(urls)): date_in_url = get_datetime_str_from_url(urls[i]['url']) if date_in_fn != date_in_url: print('PROBLEM: date mismatch (file name has %s but url has %s)' % (date_in_fn, date_in_url)) has_problem = True print('Fix the date mismatch problem automatically...') urls[i]['url'] = urls[i]['url'].replace(date_in_url, date_in_fn) if has_problem: print('Replace file with the fixed version: %s' % fn) save_json(urls, p + fn) </DeepExtract> elif argv[1] == 'process_all_urls': <DeepExtract> learner = I3dLearner(mode='rgb', use_cuda=True, parallel=True) if learner.use_cuda: print('Enable GPU computing...') if torch.cuda.device_count() == 1: print('Only one GPU...disable parallel computing...') True = False else: print('No GPU or do not want to use GPU...disable parallel computing...') True = False transform = learner.get_transform(learner.mode, image_size=learner.image_size) p_dates = '../data/production/processed_dates.json' if is_file_here(p_dates): processed_dates = load_json(p_dates) else: processed_dates = [] p = '../data/production_url_list/' for fn in get_all_file_names_in_folder(p): if '.json' not in fn: continue date_tr = fn.split('.json')[0] if date_tr in processed_dates: print('Date %s is already processed...skip...' % date_tr) continue if test_mode and '2019-02-03' not in fn and ('2019-02-04' not in fn): continue m = load_json(p + fn) c = 0 for m in load_json(p + fn): c += 1 if test_mode and c > 2: break if 'url' not in m or 'cam_id' not in m or 'view_id' not in m: continue flag = process_url(learner, transform, m['url'], m['cam_id'], m['view_id'], nf, True, test_mode=test_mode) if flag is True and fn not in processed_dates: processed_dates.append(date_tr) save_json(list(np.unique(processed_dates)), p_dates) </DeepExtract> elif argv[1] == 'process_events': <DeepExtract> p = '../data/production/' p_out = '../data/event/' check_and_create_dir(p_out) if is_file_here(p_out + 'event_metadata.json'): e_metadata = load_json(p_out + 'event_metadata.json') else: e_metadata = {} processed_dates = [fn.split('.')[0] for fn in get_all_file_names_in_folder(p_out)] for ds in get_all_dir_names_in_folder(p): if ds in processed_dates: print('Date %s was processed...skip...' % ds) continue print('Process date %s' % ds) event_json = defaultdict(lambda : {'url': defaultdict(dict)}) t_to_f = {} f_to_t = {} e_metadata[ds] = {'cam_list': defaultdict(dict)} df_events = defaultdict(list) for vn in get_all_dir_names_in_folder(p + ds + '/'): print('\tProcess view %s' % vn) cam_id = int(vn.split('-')[0]) cam_name = cam_id_to_name(cam_id) if cam_id not in t_to_f: t_to_f[cam_id] = {} f_to_t[cam_id] = {} tm_json = request_json(get_tm_json_url(cam_name=cam_name, ds=ds)) ct = tm_json['capture-times'] for i in range(len(ct)): t = int(str_to_time(ct[i]).timestamp()) t_to_f[cam_id][t] = i f_to_t[cam_id][i] = t for fn in get_all_file_names_in_folder(p + ds + '/' + vn + '/'): if '.json' not in fn: continue print('\t\tProcess file %s' % fn) s = fn.split('-') b = {'L': int(s[5]), 'T': int(s[6]), 'R': int(s[7]), 'B': int(s[8])} fp = p + ds + '/' + vn + '/' + fn esdr_json = load_json(fp) esdr_json = add_smoke_events(esdr_json) df_event = pd.DataFrame(data=esdr_json['data'], columns=['epochtime'] + esdr_json['channel_names']) df_event = df_event.sort_values(by=['epochtime']).reset_index(drop=True) e_frame = get_event_frame_list(df_event, t_to_f[cam_id], nf, max_f=72, min_f=36) event_urls = get_smoke_event_urls(e_frame, f_to_t[cam_id], cam_name, ds, b, vn) (e_times, e_duration) = get_event_time_list(e_frame, f_to_t[cam_id]) df_events[cam_id].append(df_event) event_json[cam_id]['url'][vn]['url'] = event_urls event_json[cam_id]['url'][vn]['event'] = e_times event_json[cam_id]['url'][vn]['total_event_duration_in_secs'] = e_duration save_json(esdr_json, fp) for cam_id in df_events: df_aggr_event = df_events[cam_id][0]['event'] for df in df_events[cam_id][1:]: df_aggr_event = df_aggr_event | df['event'] df_aggr_event = df_aggr_event.to_frame() df_aggr_event['epochtime'] = df_events[cam_id][0]['epochtime'] e_frame = get_event_frame_list(df_aggr_event, t_to_f[cam_id], nf, max_f=72, min_f=36) (e_times, e_duration) = get_event_time_list(e_frame, f_to_t[cam_id]) event_json[cam_id]['event'] = e_times event_json[cam_id]['total_event_duration_in_secs'] = e_duration e_metadata[ds]['cam_list'][cam_id]['total_event_duration_in_secs'] = e_duration for cam_id in event_json: event_json[cam_id]['url'] = OrderedDict(sort_by_camera_view(event_json[cam_id]['url'].items(), 0)) save_json(event_json, p_out + ds + '.json') e_metadata = OrderedDict(sorted(e_metadata.items())) save_json(e_metadata, p_out + 'event_metadata.json') </DeepExtract> elif argv[1] == 'init_data_upload': <DeepExtract> product_json = {'name': 'RISE_smoke_recognition_v3', 'prettyName': 'Recognizing Industrial Smoke Emissions', 'vendor': 'CMU CREATE Lab', 'description': 'Recognizing Industrial Smoke Emissions', 'defaultChannelSpecs': {'version': 1, 'channels': {'smoke_probability': {'prettyName': 'the probability of having smoke', 'units': 'probability', 'range': {'min': 0, 'max': 1}}, 'activation_ratio': {'prettyName': 'the ratio of activation region', 'units': 'ratio', 'range': {'min': 0, 'max': 1}}, 'event': {'prettyName': 'the smoke event', 'units': 'no/yes', 'range': {'min': 0, 'max': 1}}}}} (access_token, _) = get_esdr_access_token(load_json('../data/auth.json')) if access_token is not None: register_esdr_product(product_json, access_token) else: print('ERROR! No access token.') </DeepExtract> elif argv[1] == 'upload_data': <DeepExtract> product_id = 97 (access_token, _) = get_esdr_access_token(load_json('../data/auth.json')) if access_token is None: print('ERROR! No access token.') return p = '../data/production/' for ds in get_all_dir_names_in_folder(p): for vn in get_all_dir_names_in_folder(p + ds + '/'): for fn in get_all_file_names_in_folder(p + ds + '/' + vn + '/'): if '.json' not in fn: continue data = load_json(p + ds + '/' + vn + '/' + fn) if 'channel_names' not in data or 'data' not in data: continue s = vn.split('-') (lat, lng) = get_cam_location_by_id(int(s[0])) name = 'RISE_smoke_recognition_v3_camera_%s_view_%s' % (s[0], s[1]) upload_data_to_esdr(name, data, product_id, access_token, isPublic=1, latitude=lat, longitude=lng) </DeepExtract> elif argv[1] == 'scan_urls': <DeepExtract> p = '../data/event/' event_metadata = load_json(p + 'event_metadata.json') pool = Pool(num_workers) for date_str in event_metadata: event_json = load_json(p + date_str + '.json') url_list = [] for cam_id in event_json: for view_id in event_json[cam_id]['url']: url_list += event_json[cam_id]['url'][view_id]['url'] pool.starmap(url_open_worker, url_list) pool.close() pool.join() </DeepExtract> else: print("Wrong usage. Run 'python recognize_smoke.py' for details.") program_run_time = (time.time() - program_start_time) / 60 print('Took %.2f minutes to run the program' % program_run_time) print('END')
def main(argv): """ The main function for smoke recognition (using the trained model) """ if len(argv) < 2: print('Usage:') print('python recognize_smoke.py check_and_fix_urls') print('python recognize_smoke.py process_all_urls') print('python recognize_smoke.py process_events') print('python recognize_smoke.py init_data_upload') print('python recognize_smoke.py upload_data') print('python recognize_smoke.py scan_urls') return program_start_time = time.time() nf = 36 if argv[1] == 'check_and_fix_urls': p = '../data/production_url_list/' for fn in get_all_file_names_in_folder(p): if '.json' not in fn: continue date_in_fn = re.findall('[\\d]{4}-[\\d]{2}-[\\d]{2}', fn) if len(date_in_fn) != 1: print("ERROR: file name is not a date, need to fix '%s' manually" % fn) continue date_in_fn = date_in_fn[0] urls = load_json(p + fn) has_problem = False for i in range(len(urls)): date_in_url = get_datetime_str_from_url(urls[i]['url']) if date_in_fn != date_in_url: print('PROBLEM: date mismatch (file name has %s but url has %s)' % (date_in_fn, date_in_url)) has_problem = True print('Fix the date mismatch problem automatically...') urls[i]['url'] = urls[i]['url'].replace(date_in_url, date_in_fn) if has_problem: print('Replace file with the fixed version: %s' % fn) save_json(urls, p + fn) elif argv[1] == 'process_all_urls': learner = I3dLearner(mode='rgb', use_cuda=True, parallel=True) if learner.use_cuda: print('Enable GPU computing...') if torch.cuda.device_count() == 1: print('Only one GPU...disable parallel computing...') True = False else: print('No GPU or do not want to use GPU...disable parallel computing...') True = False transform = learner.get_transform(learner.mode, image_size=learner.image_size) p_dates = '../data/production/processed_dates.json' if is_file_here(p_dates): processed_dates = load_json(p_dates) else: processed_dates = [] p = '../data/production_url_list/' for fn in get_all_file_names_in_folder(p): if '.json' not in fn: continue date_tr = fn.split('.json')[0] if date_tr in processed_dates: print('Date %s is already processed...skip...' % date_tr) continue if test_mode and '2019-02-03' not in fn and ('2019-02-04' not in fn): continue m = load_json(p + fn) c = 0 for m in load_json(p + fn): c += 1 if test_mode and c > 2: break if 'url' not in m or 'cam_id' not in m or 'view_id' not in m: continue flag = process_url(learner, transform, m['url'], m['cam_id'], m['view_id'], nf, True, test_mode=test_mode) if flag is True and fn not in processed_dates: processed_dates.append(date_tr) save_json(list(np.unique(processed_dates)), p_dates) elif argv[1] == 'process_events': p = '../data/production/' p_out = '../data/event/' check_and_create_dir(p_out) if is_file_here(p_out + 'event_metadata.json'): e_metadata = load_json(p_out + 'event_metadata.json') else: e_metadata = {} processed_dates = [fn.split('.')[0] for fn in get_all_file_names_in_folder(p_out)] for ds in get_all_dir_names_in_folder(p): if ds in processed_dates: print('Date %s was processed...skip...' % ds) continue print('Process date %s' % ds) event_json = defaultdict(lambda : {'url': defaultdict(dict)}) t_to_f = {} f_to_t = {} e_metadata[ds] = {'cam_list': defaultdict(dict)} df_events = defaultdict(list) for vn in get_all_dir_names_in_folder(p + ds + '/'): print('\tProcess view %s' % vn) cam_id = int(vn.split('-')[0]) cam_name = cam_id_to_name(cam_id) if cam_id not in t_to_f: t_to_f[cam_id] = {} f_to_t[cam_id] = {} tm_json = request_json(get_tm_json_url(cam_name=cam_name, ds=ds)) ct = tm_json['capture-times'] for i in range(len(ct)): t = int(str_to_time(ct[i]).timestamp()) t_to_f[cam_id][t] = i f_to_t[cam_id][i] = t for fn in get_all_file_names_in_folder(p + ds + '/' + vn + '/'): if '.json' not in fn: continue print('\t\tProcess file %s' % fn) s = fn.split('-') b = {'L': int(s[5]), 'T': int(s[6]), 'R': int(s[7]), 'B': int(s[8])} fp = p + ds + '/' + vn + '/' + fn esdr_json = load_json(fp) esdr_json = add_smoke_events(esdr_json) df_event = pd.DataFrame(data=esdr_json['data'], columns=['epochtime'] + esdr_json['channel_names']) df_event = df_event.sort_values(by=['epochtime']).reset_index(drop=True) e_frame = get_event_frame_list(df_event, t_to_f[cam_id], nf, max_f=72, min_f=36) event_urls = get_smoke_event_urls(e_frame, f_to_t[cam_id], cam_name, ds, b, vn) (e_times, e_duration) = get_event_time_list(e_frame, f_to_t[cam_id]) df_events[cam_id].append(df_event) event_json[cam_id]['url'][vn]['url'] = event_urls event_json[cam_id]['url'][vn]['event'] = e_times event_json[cam_id]['url'][vn]['total_event_duration_in_secs'] = e_duration save_json(esdr_json, fp) for cam_id in df_events: df_aggr_event = df_events[cam_id][0]['event'] for df in df_events[cam_id][1:]: df_aggr_event = df_aggr_event | df['event'] df_aggr_event = df_aggr_event.to_frame() df_aggr_event['epochtime'] = df_events[cam_id][0]['epochtime'] e_frame = get_event_frame_list(df_aggr_event, t_to_f[cam_id], nf, max_f=72, min_f=36) (e_times, e_duration) = get_event_time_list(e_frame, f_to_t[cam_id]) event_json[cam_id]['event'] = e_times event_json[cam_id]['total_event_duration_in_secs'] = e_duration e_metadata[ds]['cam_list'][cam_id]['total_event_duration_in_secs'] = e_duration for cam_id in event_json: event_json[cam_id]['url'] = OrderedDict(sort_by_camera_view(event_json[cam_id]['url'].items(), 0)) save_json(event_json, p_out + ds + '.json') e_metadata = OrderedDict(sorted(e_metadata.items())) save_json(e_metadata, p_out + 'event_metadata.json') elif argv[1] == 'init_data_upload': product_json = {'name': 'RISE_smoke_recognition_v3', 'prettyName': 'Recognizing Industrial Smoke Emissions', 'vendor': 'CMU CREATE Lab', 'description': 'Recognizing Industrial Smoke Emissions', 'defaultChannelSpecs': {'version': 1, 'channels': {'smoke_probability': {'prettyName': 'the probability of having smoke', 'units': 'probability', 'range': {'min': 0, 'max': 1}}, 'activation_ratio': {'prettyName': 'the ratio of activation region', 'units': 'ratio', 'range': {'min': 0, 'max': 1}}, 'event': {'prettyName': 'the smoke event', 'units': 'no/yes', 'range': {'min': 0, 'max': 1}}}}} (access_token, _) = get_esdr_access_token(load_json('../data/auth.json')) if access_token is not None: register_esdr_product(product_json, access_token) else: print('ERROR! No access token.') elif argv[1] == 'upload_data': product_id = 97 (access_token, _) = get_esdr_access_token(load_json('../data/auth.json')) if access_token is None: print('ERROR! No access token.') return p = '../data/production/' for ds in get_all_dir_names_in_folder(p): for vn in get_all_dir_names_in_folder(p + ds + '/'): for fn in get_all_file_names_in_folder(p + ds + '/' + vn + '/'): if '.json' not in fn: continue data = load_json(p + ds + '/' + vn + '/' + fn) if 'channel_names' not in data or 'data' not in data: continue s = vn.split('-') (lat, lng) = get_cam_location_by_id(int(s[0])) name = 'RISE_smoke_recognition_v3_camera_%s_view_%s' % (s[0], s[1]) upload_data_to_esdr(name, data, product_id, access_token, isPublic=1, latitude=lat, longitude=lng) elif argv[1] == 'scan_urls': p = '../data/event/' event_metadata = load_json(p + 'event_metadata.json') pool = Pool(num_workers) for date_str in event_metadata: event_json = load_json(p + date_str + '.json') url_list = [] for cam_id in event_json: for view_id in event_json[cam_id]['url']: url_list += event_json[cam_id]['url'][view_id]['url'] pool.starmap(url_open_worker, url_list) pool.close() pool.join() else: print("Wrong usage. Run 'python recognize_smoke.py' for details.") program_run_time = (time.time() - program_start_time) / 60 print('Took %.2f minutes to run the program' % program_run_time) print('END')
deep-smoke-machine
positive
def _merge_attrs(self, dest: Union[OBT, List[OBT]], src: Union[OBT, List[OBT]], attr: str, merge_method: Optional[prof.Method]) -> None: """Merge this attr of src into the attr of dest.""" src_attr = getattr(src, attr, None) if src_attr is None: return item_type = type(src).__name__ if attr in ITEM_EXCLUDE_MAP.get(item_type, []): return dest_attr = getattr(dest, attr, None) if dest_attr and isinstance(dest_attr, list): <DeepExtract> added_items = [] if merge_method == prof.Method.keep: dest_attr.extend(src_attr) return for item in src_attr: if item not in dest_attr: merged = False item_id = self._get_id(item) if item_id is not None: for other in dest_attr: other_id = self._get_id(other) if other_id == item_id: if merge_method == prof.Method.merge: self._merge_items(other, item, merge_method) merged = True break if not merged: added_items.append(item) dest_attr.extend(added_items) </DeepExtract> setattr(dest, attr, dest_attr) return if dest_attr and merge_method == prof.Method.use_first: return if dest_attr == src_attr and merge_method not in [None, prof.Method.keep]: return setattr(dest, attr, src_attr)
def _merge_attrs(self, dest: Union[OBT, List[OBT]], src: Union[OBT, List[OBT]], attr: str, merge_method: Optional[prof.Method]) -> None: """Merge this attr of src into the attr of dest.""" src_attr = getattr(src, attr, None) if src_attr is None: return item_type = type(src).__name__ if attr in ITEM_EXCLUDE_MAP.get(item_type, []): return dest_attr = getattr(dest, attr, None) if dest_attr and isinstance(dest_attr, list): added_items = [] if merge_method == prof.Method.keep: dest_attr.extend(src_attr) return for item in src_attr: if item not in dest_attr: merged = False item_id = self._get_id(item) if item_id is not None: for other in dest_attr: other_id = self._get_id(other) if other_id == item_id: if merge_method == prof.Method.merge: self._merge_items(other, item, merge_method) merged = True break if not merged: added_items.append(item) dest_attr.extend(added_items) setattr(dest, attr, dest_attr) return if dest_attr and merge_method == prof.Method.use_first: return if dest_attr == src_attr and merge_method not in [None, prof.Method.keep]: return setattr(dest, attr, src_attr)
compliance-trestle
positive
@provide_session def _run_raw_task(self, mark_success=False, test_mode=False, job_id=None, pool=None, session=None): """ Immediately runs the task (without checking or changing db state before execution) and then sets the appropriate final state after completion and runs any post-execute callbacks. Meant to be called only after another function changes the state to running. :param mark_success: Don't run the task, mark its state as success :type mark_success: boolean :param test_mode: Doesn't record success or failure in the DB :type test_mode: boolean :param pool: specifies the pool to use to run the task instance :type pool: str """ task = self.task self.pool = pool or task.pool self.test_mode = test_mode <DeepExtract> TI = TaskInstance qry = session.query(TI).filter(TI.dag_id == self.dag_id, TI.task_id == self.task_id, TI.execution_date == self.execution_date) if lock_for_update: ti = qry.with_for_update().first() else: ti = qry.first() if ti: self.state = ti.state self.start_date = ti.start_date self.end_date = ti.end_date self.try_number = ti._try_number self.max_tries = ti.max_tries self.hostname = ti.hostname self.pid = ti.pid self.executor_config = ti.executor_config else: self.state = None </DeepExtract> self.job_id = job_id self.hostname = get_hostname() self.operator = task.__class__.__name__ context = {} try: if not mark_success: <DeepExtract> task = self.task from airflow import macros tables = None if 'tables' in task.params: tables = task.params['tables'] ds = self.execution_date.strftime('%Y-%m-%d') ts = self.execution_date.isoformat() yesterday_ds = (self.execution_date - timedelta(1)).strftime('%Y-%m-%d') tomorrow_ds = (self.execution_date + timedelta(1)).strftime('%Y-%m-%d') prev_execution_date = task.dag.previous_schedule(self.execution_date) next_execution_date = task.dag.following_schedule(self.execution_date) next_ds = None if next_execution_date: next_ds = next_execution_date.strftime('%Y-%m-%d') prev_ds = None if prev_execution_date: prev_ds = prev_execution_date.strftime('%Y-%m-%d') ds_nodash = ds.replace('-', '') ts_nodash = ts.replace('-', '').replace(':', '') yesterday_ds_nodash = yesterday_ds.replace('-', '') tomorrow_ds_nodash = tomorrow_ds.replace('-', '') ti_key_str = '{task.dag_id}__{task.task_id}__{ds_nodash}' ti_key_str = ti_key_str.format(**locals()) params = {} run_id = '' dag_run = None if hasattr(task, 'dag'): if task.dag.params: params.update(task.dag.params) dag_run = session.query(DagRun).filter_by(dag_id=task.dag.dag_id, execution_date=self.execution_date).first() run_id = dag_run.run_id if dag_run else None session.expunge_all() session.commit() if task.params: params.update(task.params) if configuration.getboolean('core', 'dag_run_conf_overrides_params'): self.overwrite_params_with_dag_run_conf(params=params, dag_run=dag_run) class VariableAccessor: """ Wrapper around Variable. This way you can get variables in templates by using {var.value.your_variable_name}. """ def __init__(self): self.var = None def __getattr__(self, item): self.var = Variable.get(item) context = self.var def __repr__(self): context = str(self.var) class VariableJsonAccessor: """ Wrapper around deserialized Variables. This way you can get variables in templates by using {var.json.your_variable_name}. """ def __init__(self): self.var = None def __getattr__(self, item): self.var = Variable.get(item, deserialize_json=True) context = self.var def __repr__(self): context = str(self.var) context = {'dag': task.dag, 'ds': ds, 'next_ds': next_ds, 'prev_ds': prev_ds, 'ds_nodash': ds_nodash, 'ts': ts, 'ts_nodash': ts_nodash, 'yesterday_ds': yesterday_ds, 'yesterday_ds_nodash': yesterday_ds_nodash, 'tomorrow_ds': tomorrow_ds, 'tomorrow_ds_nodash': tomorrow_ds_nodash, 'END_DATE': ds, 'end_date': ds, 'dag_run': dag_run, 'run_id': run_id, 'execution_date': self.execution_date, 'prev_execution_date': prev_execution_date, 'next_execution_date': next_execution_date, 'latest_date': ds, 'macros': macros, 'params': params, 'tables': tables, 'task': task, 'task_instance': self, 'ti': self, 'task_instance_key_str': ti_key_str, 'conf': configuration, 'test_mode': self.test_mode, 'var': {'value': VariableAccessor(), 'json': VariableJsonAccessor()}, 'inlets': task.inlets, 'outlets': task.outlets} </DeepExtract> task_copy = copy.copy(task) self.task = task_copy def signal_handler(signum, frame): self.log.error('Received SIGTERM. Terminating subprocesses.') task_copy.on_kill() raise AirflowException('Task received SIGTERM signal') signal.signal(signal.SIGTERM, signal_handler) <DeepExtract> session.query(XCom).filter(XCom.dag_id == self.dag_id, XCom.task_id == self.task_id, XCom.execution_date == self.execution_date).delete() session.commit() </DeepExtract> <DeepExtract> task = self.task jinja_context = self.get_template_context() if hasattr(self, 'task') and hasattr(self.task, 'dag'): if self.task.dag.user_defined_macros: jinja_context.update(self.task.dag.user_defined_macros) rt = self.task.render_template for attr in task.__class__.template_fields: content = getattr(task, attr) if content: rendered_content = rt(attr, content, jinja_context) setattr(task, attr, rendered_content) </DeepExtract> task_copy.pre_execute(context=context) result = None if task_copy.execution_timeout: try: with timeout(int(task_copy.execution_timeout.total_seconds())): result = task_copy.execute(context=context) except AirflowTaskTimeout: task_copy.on_kill() raise else: result = task_copy.execute(context=context) if result is not None: <DeepExtract> if execution_date and execution_date < self.execution_date: raise ValueError('execution_date can not be in the past (current execution_date is {}; received {})'.format(self.execution_date, execution_date)) XCom.set(key=XCOM_RETURN_KEY, value=result, task_id=self.task_id, dag_id=self.dag_id, execution_date=execution_date or self.execution_date) </DeepExtract> try: task_copy.post_execute(context=context, result=result) except TypeError as e: if 'unexpected keyword argument' in str(e): warnings.warn('BaseOperator.post_execute() now takes two arguments, `context` and `result`, but "{}" only expected one. This behavior is deprecated and will be removed in a future version of Airflow.'.format(self.task_id), category=DeprecationWarning) task_copy.post_execute(context=context) else: raise Stats.incr('operator_successes_{}'.format(self.task.__class__.__name__), 1, 1) Stats.incr('ti_successes') <DeepExtract> TI = TaskInstance qry = session.query(TI).filter(TI.dag_id == self.dag_id, TI.task_id == self.task_id, TI.execution_date == self.execution_date) if True: ti = qry.with_for_update().first() else: ti = qry.first() if ti: self.state = ti.state self.start_date = ti.start_date self.end_date = ti.end_date self.try_number = ti._try_number self.max_tries = ti.max_tries self.hostname = ti.hostname self.pid = ti.pid self.executor_config = ti.executor_config else: self.state = None </DeepExtract> self.state = State.SUCCESS except AirflowSkipException: <DeepExtract> TI = TaskInstance qry = session.query(TI).filter(TI.dag_id == self.dag_id, TI.task_id == self.task_id, TI.execution_date == self.execution_date) if True: ti = qry.with_for_update().first() else: ti = qry.first() if ti: self.state = ti.state self.start_date = ti.start_date self.end_date = ti.end_date self.try_number = ti._try_number self.max_tries = ti.max_tries self.hostname = ti.hostname self.pid = ti.pid self.executor_config = ti.executor_config else: self.state = None </DeepExtract> self.state = State.SKIPPED except AirflowException as e: <DeepExtract> TI = TaskInstance qry = session.query(TI).filter(TI.dag_id == self.dag_id, TI.task_id == self.task_id, TI.execution_date == self.execution_date) if lock_for_update: ti = qry.with_for_update().first() else: ti = qry.first() if ti: self.state = ti.state self.start_date = ti.start_date self.end_date = ti.end_date self.try_number = ti._try_number self.max_tries = ti.max_tries self.hostname = ti.hostname self.pid = ti.pid self.executor_config = ti.executor_config else: self.state = None </DeepExtract> if self.state == State.SUCCESS: return else: <DeepExtract> self.log.exception(e) task = self.task self.end_date = timezone.utcnow() self.set_duration() Stats.incr('operator_failures_{}'.format(task.__class__.__name__), 1, 1) Stats.incr('ti_failures') if not test_mode: session.add(Log(State.FAILED, self)) session.add(TaskFail(task, self.execution_date, self.start_date, self.end_date)) try: if self.is_eligible_to_retry(): self.state = State.UP_FOR_RETRY self.log.info('Marking task as UP_FOR_RETRY') if task.email_on_retry and task.email: self.email_alert(e, is_retry=True) else: self.state = State.FAILED if task.retries: self.log.info('All retries failed; marking task as FAILED') else: self.log.info('Marking task as FAILED.') if task.email_on_failure and task.email: self.email_alert(e, is_retry=False) except Exception as e2: self.log.error('Failed to send email to: %s', task.email) self.log.exception(e2) try: if self.state == State.UP_FOR_RETRY and task.on_retry_callback: task.on_retry_callback(context) if self.state == State.FAILED and task.on_failure_callback: task.on_failure_callback(context) except Exception as e3: self.log.error('Failed at executing callback') self.log.exception(e3) if not test_mode: session.merge(self) session.commit() </DeepExtract> raise except (Exception, KeyboardInterrupt) as e: <DeepExtract> self.log.exception(e) task = self.task self.end_date = timezone.utcnow() self.set_duration() Stats.incr('operator_failures_{}'.format(task.__class__.__name__), 1, 1) Stats.incr('ti_failures') if not test_mode: session.add(Log(State.FAILED, self)) session.add(TaskFail(task, self.execution_date, self.start_date, self.end_date)) try: if self.is_eligible_to_retry(): self.state = State.UP_FOR_RETRY self.log.info('Marking task as UP_FOR_RETRY') if task.email_on_retry and task.email: self.email_alert(e, is_retry=True) else: self.state = State.FAILED if task.retries: self.log.info('All retries failed; marking task as FAILED') else: self.log.info('Marking task as FAILED.') if task.email_on_failure and task.email: self.email_alert(e, is_retry=False) except Exception as e2: self.log.error('Failed to send email to: %s', task.email) self.log.exception(e2) try: if self.state == State.UP_FOR_RETRY and task.on_retry_callback: task.on_retry_callback(context) if self.state == State.FAILED and task.on_failure_callback: task.on_failure_callback(context) except Exception as e3: self.log.error('Failed at executing callback') self.log.exception(e3) if not test_mode: session.merge(self) session.commit() </DeepExtract> raise self.end_date = timezone.utcnow() <DeepExtract> if self.end_date and self.start_date: self.duration = (self.end_date - self.start_date).total_seconds() else: self.duration = None </DeepExtract> if not test_mode: session.add(Log(self.state, self)) session.merge(self) session.commit() try: if task.on_success_callback: task.on_success_callback(context) except Exception as e3: self.log.error('Failed when executing success callback') self.log.exception(e3) session.commit()
@provide_session def _run_raw_task(self, mark_success=False, test_mode=False, job_id=None, pool=None, session=None): """ Immediately runs the task (without checking or changing db state before execution) and then sets the appropriate final state after completion and runs any post-execute callbacks. Meant to be called only after another function changes the state to running. :param mark_success: Don't run the task, mark its state as success :type mark_success: boolean :param test_mode: Doesn't record success or failure in the DB :type test_mode: boolean :param pool: specifies the pool to use to run the task instance :type pool: str """ task = self.task self.pool = pool or task.pool self.test_mode = test_mode TI = TaskInstance qry = session.query(TI).filter(TI.dag_id == self.dag_id, TI.task_id == self.task_id, TI.execution_date == self.execution_date) if lock_for_update: ti = qry.with_for_update().first() else: ti = qry.first() if ti: self.state = ti.state self.start_date = ti.start_date self.end_date = ti.end_date self.try_number = ti._try_number self.max_tries = ti.max_tries self.hostname = ti.hostname self.pid = ti.pid self.executor_config = ti.executor_config else: self.state = None self.job_id = job_id self.hostname = get_hostname() self.operator = task.__class__.__name__ context = {} try: if not mark_success: task = self.task from airflow import macros tables = None if 'tables' in task.params: tables = task.params['tables'] ds = self.execution_date.strftime('%Y-%m-%d') ts = self.execution_date.isoformat() yesterday_ds = (self.execution_date - timedelta(1)).strftime('%Y-%m-%d') tomorrow_ds = (self.execution_date + timedelta(1)).strftime('%Y-%m-%d') prev_execution_date = task.dag.previous_schedule(self.execution_date) next_execution_date = task.dag.following_schedule(self.execution_date) next_ds = None if next_execution_date: next_ds = next_execution_date.strftime('%Y-%m-%d') prev_ds = None if prev_execution_date: prev_ds = prev_execution_date.strftime('%Y-%m-%d') ds_nodash = ds.replace('-', '') ts_nodash = ts.replace('-', '').replace(':', '') yesterday_ds_nodash = yesterday_ds.replace('-', '') tomorrow_ds_nodash = tomorrow_ds.replace('-', '') ti_key_str = '{task.dag_id}__{task.task_id}__{ds_nodash}' ti_key_str = ti_key_str.format(**locals()) params = {} run_id = '' dag_run = None if hasattr(task, 'dag'): if task.dag.params: params.update(task.dag.params) dag_run = session.query(DagRun).filter_by(dag_id=task.dag.dag_id, execution_date=self.execution_date).first() run_id = dag_run.run_id if dag_run else None session.expunge_all() session.commit() if task.params: params.update(task.params) if configuration.getboolean('core', 'dag_run_conf_overrides_params'): self.overwrite_params_with_dag_run_conf(params=params, dag_run=dag_run) class VariableAccessor: """ Wrapper around Variable. This way you can get variables in templates by using {var.value.your_variable_name}. """ def __init__(self): self.var = None def __getattr__(self, item): self.var = Variable.get(item) context = self.var def __repr__(self): context = str(self.var) class VariableJsonAccessor: """ Wrapper around deserialized Variables. This way you can get variables in templates by using {var.json.your_variable_name}. """ def __init__(self): self.var = None def __getattr__(self, item): self.var = Variable.get(item, deserialize_json=True) context = self.var def __repr__(self): context = str(self.var) context = {'dag': task.dag, 'ds': ds, 'next_ds': next_ds, 'prev_ds': prev_ds, 'ds_nodash': ds_nodash, 'ts': ts, 'ts_nodash': ts_nodash, 'yesterday_ds': yesterday_ds, 'yesterday_ds_nodash': yesterday_ds_nodash, 'tomorrow_ds': tomorrow_ds, 'tomorrow_ds_nodash': tomorrow_ds_nodash, 'END_DATE': ds, 'end_date': ds, 'dag_run': dag_run, 'run_id': run_id, 'execution_date': self.execution_date, 'prev_execution_date': prev_execution_date, 'next_execution_date': next_execution_date, 'latest_date': ds, 'macros': macros, 'params': params, 'tables': tables, 'task': task, 'task_instance': self, 'ti': self, 'task_instance_key_str': ti_key_str, 'conf': configuration, 'test_mode': self.test_mode, 'var': {'value': VariableAccessor(), 'json': VariableJsonAccessor()}, 'inlets': task.inlets, 'outlets': task.outlets} task_copy = copy.copy(task) self.task = task_copy def signal_handler(signum, frame): self.log.error('Received SIGTERM. Terminating subprocesses.') task_copy.on_kill() raise AirflowException('Task received SIGTERM signal') signal.signal(signal.SIGTERM, signal_handler) session.query(XCom).filter(XCom.dag_id == self.dag_id, XCom.task_id == self.task_id, XCom.execution_date == self.execution_date).delete() session.commit() task = self.task jinja_context = self.get_template_context() if hasattr(self, 'task') and hasattr(self.task, 'dag'): if self.task.dag.user_defined_macros: jinja_context.update(self.task.dag.user_defined_macros) rt = self.task.render_template for attr in task.__class__.template_fields: content = getattr(task, attr) if content: rendered_content = rt(attr, content, jinja_context) setattr(task, attr, rendered_content) task_copy.pre_execute(context=context) result = None if task_copy.execution_timeout: try: with timeout(int(task_copy.execution_timeout.total_seconds())): result = task_copy.execute(context=context) except AirflowTaskTimeout: task_copy.on_kill() raise else: result = task_copy.execute(context=context) if result is not None: if execution_date and execution_date < self.execution_date: raise ValueError('execution_date can not be in the past (current execution_date is {}; received {})'.format(self.execution_date, execution_date)) XCom.set(key=XCOM_RETURN_KEY, value=result, task_id=self.task_id, dag_id=self.dag_id, execution_date=execution_date or self.execution_date) try: task_copy.post_execute(context=context, result=result) except TypeError as e: if 'unexpected keyword argument' in str(e): warnings.warn('BaseOperator.post_execute() now takes two arguments, `context` and `result`, but "{}" only expected one. This behavior is deprecated and will be removed in a future version of Airflow.'.format(self.task_id), category=DeprecationWarning) task_copy.post_execute(context=context) else: raise Stats.incr('operator_successes_{}'.format(self.task.__class__.__name__), 1, 1) Stats.incr('ti_successes') TI = TaskInstance qry = session.query(TI).filter(TI.dag_id == self.dag_id, TI.task_id == self.task_id, TI.execution_date == self.execution_date) if True: ti = qry.with_for_update().first() else: ti = qry.first() if ti: self.state = ti.state self.start_date = ti.start_date self.end_date = ti.end_date self.try_number = ti._try_number self.max_tries = ti.max_tries self.hostname = ti.hostname self.pid = ti.pid self.executor_config = ti.executor_config else: self.state = None self.state = State.SUCCESS except AirflowSkipException: TI = TaskInstance qry = session.query(TI).filter(TI.dag_id == self.dag_id, TI.task_id == self.task_id, TI.execution_date == self.execution_date) if True: ti = qry.with_for_update().first() else: ti = qry.first() if ti: self.state = ti.state self.start_date = ti.start_date self.end_date = ti.end_date self.try_number = ti._try_number self.max_tries = ti.max_tries self.hostname = ti.hostname self.pid = ti.pid self.executor_config = ti.executor_config else: self.state = None self.state = State.SKIPPED except AirflowException as e: TI = TaskInstance qry = session.query(TI).filter(TI.dag_id == self.dag_id, TI.task_id == self.task_id, TI.execution_date == self.execution_date) if lock_for_update: ti = qry.with_for_update().first() else: ti = qry.first() if ti: self.state = ti.state self.start_date = ti.start_date self.end_date = ti.end_date self.try_number = ti._try_number self.max_tries = ti.max_tries self.hostname = ti.hostname self.pid = ti.pid self.executor_config = ti.executor_config else: self.state = None if self.state == State.SUCCESS: return else: self.log.exception(e) task = self.task self.end_date = timezone.utcnow() self.set_duration() Stats.incr('operator_failures_{}'.format(task.__class__.__name__), 1, 1) Stats.incr('ti_failures') if not test_mode: session.add(Log(State.FAILED, self)) session.add(TaskFail(task, self.execution_date, self.start_date, self.end_date)) try: if self.is_eligible_to_retry(): self.state = State.UP_FOR_RETRY self.log.info('Marking task as UP_FOR_RETRY') if task.email_on_retry and task.email: self.email_alert(e, is_retry=True) else: self.state = State.FAILED if task.retries: self.log.info('All retries failed; marking task as FAILED') else: self.log.info('Marking task as FAILED.') if task.email_on_failure and task.email: self.email_alert(e, is_retry=False) except Exception as e2: self.log.error('Failed to send email to: %s', task.email) self.log.exception(e2) try: if self.state == State.UP_FOR_RETRY and task.on_retry_callback: task.on_retry_callback(context) if self.state == State.FAILED and task.on_failure_callback: task.on_failure_callback(context) except Exception as e3: self.log.error('Failed at executing callback') self.log.exception(e3) if not test_mode: session.merge(self) session.commit() raise except (Exception, KeyboardInterrupt) as e: self.log.exception(e) task = self.task self.end_date = timezone.utcnow() self.set_duration() Stats.incr('operator_failures_{}'.format(task.__class__.__name__), 1, 1) Stats.incr('ti_failures') if not test_mode: session.add(Log(State.FAILED, self)) session.add(TaskFail(task, self.execution_date, self.start_date, self.end_date)) try: if self.is_eligible_to_retry(): self.state = State.UP_FOR_RETRY self.log.info('Marking task as UP_FOR_RETRY') if task.email_on_retry and task.email: self.email_alert(e, is_retry=True) else: self.state = State.FAILED if task.retries: self.log.info('All retries failed; marking task as FAILED') else: self.log.info('Marking task as FAILED.') if task.email_on_failure and task.email: self.email_alert(e, is_retry=False) except Exception as e2: self.log.error('Failed to send email to: %s', task.email) self.log.exception(e2) try: if self.state == State.UP_FOR_RETRY and task.on_retry_callback: task.on_retry_callback(context) if self.state == State.FAILED and task.on_failure_callback: task.on_failure_callback(context) except Exception as e3: self.log.error('Failed at executing callback') self.log.exception(e3) if not test_mode: session.merge(self) session.commit() raise self.end_date = timezone.utcnow() if self.end_date and self.start_date: self.duration = (self.end_date - self.start_date).total_seconds() else: self.duration = None if not test_mode: session.add(Log(self.state, self)) session.merge(self) session.commit() try: if task.on_success_callback: task.on_success_callback(context) except Exception as e3: self.log.error('Failed when executing success callback') self.log.exception(e3) session.commit()
docker-airflow
positive
def add(self, m): proto = ctypes.WINFUNCTYPE(m.restype, *m.argtypes) vidx = self._member_index + self._vtbl_offset iid = self._iid if m.restype == ctypes.HRESULT else None raw_func = proto(vidx, m.name, None, iid) <DeepExtract> if m.paramflags: dirflags = [p[0] & 3 for p in m.paramflags] if 3 in dirflags: proto(vidx, m.name, m.paramflags, iid) = _fix_inout_args(proto(vidx, m.name, m.paramflags, iid), m.argtypes, m.paramflags) proto(vidx, m.name, m.paramflags, iid) = proto(vidx, m.name, m.paramflags, iid) </DeepExtract> func.__doc__ = m.doc func.__name__ = m.name is_prop = m.is_prop() if is_prop: self._props.add(m, func) self._mths.append((m.name, func, raw_func, is_prop)) self._member_index += 1
def add(self, m): proto = ctypes.WINFUNCTYPE(m.restype, *m.argtypes) vidx = self._member_index + self._vtbl_offset iid = self._iid if m.restype == ctypes.HRESULT else None raw_func = proto(vidx, m.name, None, iid) if m.paramflags: dirflags = [p[0] & 3 for p in m.paramflags] if 3 in dirflags: proto(vidx, m.name, m.paramflags, iid) = _fix_inout_args(proto(vidx, m.name, m.paramflags, iid), m.argtypes, m.paramflags) proto(vidx, m.name, m.paramflags, iid) = proto(vidx, m.name, m.paramflags, iid) func.__doc__ = m.doc func.__name__ = m.name is_prop = m.is_prop() if is_prop: self._props.add(m, func) self._mths.append((m.name, func, raw_func, is_prop)) self._member_index += 1
comtypes
positive
def five_digit_codes(codes: Codes) -> Tuple[Codes, FiveDigitCodes]: """Returns a 5-digit min/max temperature code""" values = FiveDigitCodes() for (i, code) in reversed(list(enumerate(codes))): if len(code) == 5 and code.isdigit(): key = int(code[0]) if key == 1: <DeepExtract> if not code[1:]: values.maximum_temperature_6 = None number = f"{('-' if code[1:][0] == '1' else '')}{int(code[1:][1:3])}.{code[1:][3]}" values.maximum_temperature_6 = core.make_number(number, code or code[1:]) </DeepExtract> elif key == 2: <DeepExtract> if not code[1:]: values.minimum_temperature_6 = None number = f"{('-' if code[1:][0] == '1' else '')}{int(code[1:][1:3])}.{code[1:][3]}" values.minimum_temperature_6 = core.make_number(number, code or code[1:]) </DeepExtract> elif key == 5: <DeepExtract> values.pressure_tendency = PressureTendency(repr=code, tendency=PRESSURE_TENDENCIES[code[1]], change=float(f'{code[2:4]}.{code[4]}')) </DeepExtract> elif key == 6: <DeepExtract> values.precip_36_hours = core.make_number(f'{code[1:3]}.{code[3:]}', code) </DeepExtract> elif key == 7: <DeepExtract> values.precip_24_hours = core.make_number(f'{code[1:3]}.{code[3:]}', code) </DeepExtract> elif key == 9: values.sunshine_minutes = core.make_number(code[2:], code) else: continue codes.pop(i) return (codes, values)
def five_digit_codes(codes: Codes) -> Tuple[Codes, FiveDigitCodes]: """Returns a 5-digit min/max temperature code""" values = FiveDigitCodes() for (i, code) in reversed(list(enumerate(codes))): if len(code) == 5 and code.isdigit(): key = int(code[0]) if key == 1: if not code[1:]: values.maximum_temperature_6 = None number = f"{('-' if code[1:][0] == '1' else '')}{int(code[1:][1:3])}.{code[1:][3]}" values.maximum_temperature_6 = core.make_number(number, code or code[1:]) elif key == 2: if not code[1:]: values.minimum_temperature_6 = None number = f"{('-' if code[1:][0] == '1' else '')}{int(code[1:][1:3])}.{code[1:][3]}" values.minimum_temperature_6 = core.make_number(number, code or code[1:]) elif key == 5: values.pressure_tendency = PressureTendency(repr=code, tendency=PRESSURE_TENDENCIES[code[1]], change=float(f'{code[2:4]}.{code[4]}')) elif key == 6: values.precip_36_hours = core.make_number(f'{code[1:3]}.{code[3:]}', code) elif key == 7: values.precip_24_hours = core.make_number(f'{code[1:3]}.{code[3:]}', code) elif key == 9: values.sunshine_minutes = core.make_number(code[2:], code) else: continue codes.pop(i) return (codes, values)
avwx-engine
positive
def train(self, mode=True): super(ResNet, self).train(mode) <DeepExtract> if self.frozen_stages >= 0: self.norm1.eval() for m in [self.conv1, self.norm1]: for param in m.parameters(): param.requires_grad = False for i in range(1, self.frozen_stages + 1): m = getattr(self, 'layer{}'.format(i)) m.eval() for param in m.parameters(): param.requires_grad = False </DeepExtract> if mode and self.norm_eval: for m in self.modules(): if isinstance(m, _BatchNorm): m.eval()
def train(self, mode=True): super(ResNet, self).train(mode) if self.frozen_stages >= 0: self.norm1.eval() for m in [self.conv1, self.norm1]: for param in m.parameters(): param.requires_grad = False for i in range(1, self.frozen_stages + 1): m = getattr(self, 'layer{}'.format(i)) m.eval() for param in m.parameters(): param.requires_grad = False if mode and self.norm_eval: for m in self.modules(): if isinstance(m, _BatchNorm): m.eval()
DNL-Object-Detection
positive
def modify_forward(model): for child in model.children(): if should_measure(child): def new_forward(m): def lambda_forward(*args): <DeepExtract> global count_ops, count_params for x in args: delta_ops = 0 delta_params = 0 multi_add = 1 type_name = get_layer_info(m) if type_name in ['Conv2d']: out_h = int((x.size()[2] + 2 * m.padding[0] / m.dilation[0] - m.kernel_size[0]) / m.stride[0] + 1) out_w = int((x.size()[3] + 2 * m.padding[1] / m.dilation[1] - m.kernel_size[1]) / m.stride[1] + 1) delta_ops = m.in_channels * m.out_channels * m.kernel_size[0] * m.kernel_size[1] * out_h * out_w / m.groups * multi_add delta_params = get_layer_param(m) elif type_name in ['ConvTranspose2d']: (_, _, in_h, in_w) = x.size() out_h = int((in_h - 1) * m.stride[0] - 2 * m.padding[0] + m.kernel_size[0] + m.output_padding[0]) out_w = int((in_w - 1) * m.stride[1] - 2 * m.padding[1] + m.kernel_size[1] + m.output_padding[1]) delta_ops = m.in_channels * m.out_channels * m.kernel_size[0] * m.kernel_size[1] * out_h * out_w / m.groups * multi_add delta_params = get_layer_param(m) elif type_name in ['LearnedGroupConv']: measure_layer(m.relu, x) measure_layer(m.norm, x) conv = m.conv out_h = int((x.size()[2] + 2 * conv.padding[0] - conv.kernel_size[0]) / conv.stride[0] + 1) out_w = int((x.size()[3] + 2 * conv.padding[1] - conv.kernel_size[1]) / conv.stride[1] + 1) delta_ops = conv.in_channels * conv.out_channels * conv.kernel_size[0] * conv.kernel_size[1] * out_h * out_w / m.condense_factor * multi_add delta_params = get_layer_param(conv) / m.condense_factor elif type_name in ['ReLU', 'ReLU6']: delta_ops = x.numel() delta_params = get_layer_param(m) elif type_name in ['AvgPool2d', 'MaxPool2d']: in_w = x.size()[2] kernel_ops = m.kernel_size * m.kernel_size out_w = int((in_w + 2 * m.padding - m.kernel_size) / m.stride + 1) out_h = int((in_w + 2 * m.padding - m.kernel_size) / m.stride + 1) delta_ops = x.size()[0] * x.size()[1] * out_w * out_h * kernel_ops delta_params = get_layer_param(m) elif type_name in ['LastLevelMaxPool']: pass elif type_name in ['AdaptiveAvgPool2d']: delta_ops = x.size()[0] * x.size()[1] * x.size()[2] * x.size()[3] delta_params = get_layer_param(m) elif type_name in ['ZeroPad2d', 'RetinaNetPostProcessor']: pass elif type_name in ['Linear']: weight_ops = m.weight.numel() * multi_add bias_ops = m.bias.numel() delta_ops = x.size()[0] * (weight_ops + bias_ops) delta_params = get_layer_param(m) elif type_name in ['BatchNorm2d', 'Dropout2d', 'DropChannel', 'Dropout', 'FrozenBatchNorm2d', 'GroupNorm']: delta_params = get_layer_param(m) elif type_name in ['SumTwo']: delta_ops = x.numel() elif type_name in ['AggregateCell']: if not m.pre_transform: delta_ops = 2 * x.numel() else: measure_layer(m.branch_1, x) measure_layer(m.branch_2, x) delta_params = get_layer_param(m) elif type_name in ['Identity', 'Zero']: pass elif type_name in ['Scale']: delta_params = get_layer_param(m) delta_ops = x.numel() elif type_name in ['FCOSPostProcessor', 'RPNPostProcessor', 'KeypointPostProcessor', 'ROIAlign', 'PostProcessor', 'KeypointRCNNPredictor']: pass elif type_name in ['DeformConv']: offset_conv = list(m.parameters())[0] delta_ops = reduce(operator.mul, offset_conv.size(), x.size()[2] * x.size()[3]) out_h = int((x.size()[2] + 2 * m.padding[0] / m.dilation[0] - m.kernel_size[0]) / m.stride[0] + 1) out_w = int((x.size()[3] + 2 * m.padding[1] / m.dilation[1] - m.kernel_size[1]) / m.stride[1] + 1) delta_ops += m.in_channels * m.out_channels * m.kernel_size[0] * m.kernel_size[1] * out_h * out_w / m.groups * multi_add delta_params = get_layer_param(m) else: raise TypeError('unknown layer type: %s' % type_name) count_ops += delta_ops count_params += delta_params return </DeepExtract> return m.old_forward(*args) return lambda_forward child.old_forward = child.forward <DeepExtract> def lambda_forward(*args): measure_layer(child, *args) child.forward = child.old_forward(*args) child.forward = lambda_forward </DeepExtract> else: <DeepExtract> for child in child.children(): if should_measure(child): def new_forward(m): def lambda_forward(*args): measure_layer(m, *args) return m.old_forward(*args) return lambda_forward child.old_forward = child.forward child.forward = new_forward(child) else: modify_forward(child) </DeepExtract>
def modify_forward(model): for child in model.children(): if should_measure(child): def new_forward(m): def lambda_forward(*args): global count_ops, count_params for x in args: delta_ops = 0 delta_params = 0 multi_add = 1 type_name = get_layer_info(m) if type_name in ['Conv2d']: out_h = int((x.size()[2] + 2 * m.padding[0] / m.dilation[0] - m.kernel_size[0]) / m.stride[0] + 1) out_w = int((x.size()[3] + 2 * m.padding[1] / m.dilation[1] - m.kernel_size[1]) / m.stride[1] + 1) delta_ops = m.in_channels * m.out_channels * m.kernel_size[0] * m.kernel_size[1] * out_h * out_w / m.groups * multi_add delta_params = get_layer_param(m) elif type_name in ['ConvTranspose2d']: (_, _, in_h, in_w) = x.size() out_h = int((in_h - 1) * m.stride[0] - 2 * m.padding[0] + m.kernel_size[0] + m.output_padding[0]) out_w = int((in_w - 1) * m.stride[1] - 2 * m.padding[1] + m.kernel_size[1] + m.output_padding[1]) delta_ops = m.in_channels * m.out_channels * m.kernel_size[0] * m.kernel_size[1] * out_h * out_w / m.groups * multi_add delta_params = get_layer_param(m) elif type_name in ['LearnedGroupConv']: measure_layer(m.relu, x) measure_layer(m.norm, x) conv = m.conv out_h = int((x.size()[2] + 2 * conv.padding[0] - conv.kernel_size[0]) / conv.stride[0] + 1) out_w = int((x.size()[3] + 2 * conv.padding[1] - conv.kernel_size[1]) / conv.stride[1] + 1) delta_ops = conv.in_channels * conv.out_channels * conv.kernel_size[0] * conv.kernel_size[1] * out_h * out_w / m.condense_factor * multi_add delta_params = get_layer_param(conv) / m.condense_factor elif type_name in ['ReLU', 'ReLU6']: delta_ops = x.numel() delta_params = get_layer_param(m) elif type_name in ['AvgPool2d', 'MaxPool2d']: in_w = x.size()[2] kernel_ops = m.kernel_size * m.kernel_size out_w = int((in_w + 2 * m.padding - m.kernel_size) / m.stride + 1) out_h = int((in_w + 2 * m.padding - m.kernel_size) / m.stride + 1) delta_ops = x.size()[0] * x.size()[1] * out_w * out_h * kernel_ops delta_params = get_layer_param(m) elif type_name in ['LastLevelMaxPool']: pass elif type_name in ['AdaptiveAvgPool2d']: delta_ops = x.size()[0] * x.size()[1] * x.size()[2] * x.size()[3] delta_params = get_layer_param(m) elif type_name in ['ZeroPad2d', 'RetinaNetPostProcessor']: pass elif type_name in ['Linear']: weight_ops = m.weight.numel() * multi_add bias_ops = m.bias.numel() delta_ops = x.size()[0] * (weight_ops + bias_ops) delta_params = get_layer_param(m) elif type_name in ['BatchNorm2d', 'Dropout2d', 'DropChannel', 'Dropout', 'FrozenBatchNorm2d', 'GroupNorm']: delta_params = get_layer_param(m) elif type_name in ['SumTwo']: delta_ops = x.numel() elif type_name in ['AggregateCell']: if not m.pre_transform: delta_ops = 2 * x.numel() else: measure_layer(m.branch_1, x) measure_layer(m.branch_2, x) delta_params = get_layer_param(m) elif type_name in ['Identity', 'Zero']: pass elif type_name in ['Scale']: delta_params = get_layer_param(m) delta_ops = x.numel() elif type_name in ['FCOSPostProcessor', 'RPNPostProcessor', 'KeypointPostProcessor', 'ROIAlign', 'PostProcessor', 'KeypointRCNNPredictor']: pass elif type_name in ['DeformConv']: offset_conv = list(m.parameters())[0] delta_ops = reduce(operator.mul, offset_conv.size(), x.size()[2] * x.size()[3]) out_h = int((x.size()[2] + 2 * m.padding[0] / m.dilation[0] - m.kernel_size[0]) / m.stride[0] + 1) out_w = int((x.size()[3] + 2 * m.padding[1] / m.dilation[1] - m.kernel_size[1]) / m.stride[1] + 1) delta_ops += m.in_channels * m.out_channels * m.kernel_size[0] * m.kernel_size[1] * out_h * out_w / m.groups * multi_add delta_params = get_layer_param(m) else: raise TypeError('unknown layer type: %s' % type_name) count_ops += delta_ops count_params += delta_params return return m.old_forward(*args) return lambda_forward child.old_forward = child.forward def lambda_forward(*args): measure_layer(child, *args) child.forward = child.old_forward(*args) child.forward = lambda_forward else: for child in child.children(): if should_measure(child): def new_forward(m): def lambda_forward(*args): measure_layer(m, *args) return m.old_forward(*args) return lambda_forward child.old_forward = child.forward child.forward = new_forward(child) else: modify_forward(child) </DeepExtract>
bezier_curve_text_spotting
positive
def add_event_handler(self, full_usage_id, handler_function, event_kind=HID_EVT_ALL, aux_data=None): """Add event handler for usage value/button changes, returns True if the handler function was updated""" <DeepExtract> for (report_id, report_obj) in self.__input_report_templates.items(): if full_usage_id in report_obj: report_id = report_id report_id = None </DeepExtract> if report_id != None: self.__input_report_templates[report_id][full_usage_id].__value = None if report_id == None or not handler_function: return False assert isinstance(handler_function, collections.Callable) top_map_handler = self.__evt_handlers.get(full_usage_id, dict()) event_handler_set = top_map_handler.get(event_kind, dict()) event_handler_set[handler_function] = aux_data if event_kind not in top_map_handler: top_map_handler[event_kind] = event_handler_set if full_usage_id not in self.__evt_handlers: self.__evt_handlers[full_usage_id] = top_map_handler return True
def add_event_handler(self, full_usage_id, handler_function, event_kind=HID_EVT_ALL, aux_data=None): """Add event handler for usage value/button changes, returns True if the handler function was updated""" for (report_id, report_obj) in self.__input_report_templates.items(): if full_usage_id in report_obj: report_id = report_id report_id = None if report_id != None: self.__input_report_templates[report_id][full_usage_id].__value = None if report_id == None or not handler_function: return False assert isinstance(handler_function, collections.Callable) top_map_handler = self.__evt_handlers.get(full_usage_id, dict()) event_handler_set = top_map_handler.get(event_kind, dict()) event_handler_set[handler_function] = aux_data if event_kind not in top_map_handler: top_map_handler[event_kind] = event_handler_set if full_usage_id not in self.__evt_handlers: self.__evt_handlers[full_usage_id] = top_map_handler return True
CyKit
positive
def get_aggregate_expression(other_columns, column_type, column_names, aggregate_function): """Return an expression that is used to find the maximum or minimum value across a number of other given columns. We cannot use Table Value Constructors as in the TPP backend (this gives a cryptic error message: "Given correlated subquery is not supported"). Instead, we use GREATEST() or LEAST(), but we have to be careful to handle correctly any arguments to GREATEST/LEAST that have replaced NULLs. To do this, we replace any occurences of the default value for the given column_type with the most extreme value possible for the column_type. (So when finding the maximum, we replace the default value with a small value, and when finding the minimum, with a large value.) If all the arguments to GREATEST/LEAST have replaced NULLs, GREATEST/LEAST will return the extreme value, so when that happens, we have to replace this with the default value for the column type. This gives us the result we want but it does mean we can't distinguish e.g. a recorded value of 0.0 from a missing value. This, however, is a general problem with the way we handle NULLs in our system, and so we're not introducing any new difficulty here. (It's also unlikely to be a problem in practice.) """ <DeepExtract> if column_type == 'date': default_value = '' elif column_type == 'str': default_value = '' elif column_type == 'bool': default_value = 0 elif column_type == 'int': default_value = 0 elif column_type == 'float': default_value = 0.0 else: raise ValueError(f'Unhandled column type: {column_type}') </DeepExtract> function = {'MAX': 'GREATEST', 'MIN': 'LEAST'}[aggregate_function] if column_type in ['int', 'float']: extreme_value_lookup = {'MAX': -2 ** 63, 'MIN': 2 ** (63 - 1)} extreme_value = [aggregate_function] elif column_type == 'date': extreme_value_lookup = {'MAX': "'0001-01-01'", 'MIN': "'9999-12-31'"} else: assert False, column_type extreme_value = extreme_value_lookup[aggregate_function] components = ', '.join((f'\n CASE WHEN {other_columns[name]} = {quote(default_value)}\n THEN {extreme_value}\n ELSE {other_columns[name]} END' for name in column_names)) tables_used = set() for name in column_names: tables_used.update(other_columns[name].source_tables) return ColumnExpression(f'\n CASE WHEN {function}({components}) = {extreme_value}\n THEN {quote(default_value)}\n ELSE {function}({components}) END', type=column_type, default_value=default_value, source_tables=list(tables_used), date_format=other_columns[column_names[0]].date_format)
def get_aggregate_expression(other_columns, column_type, column_names, aggregate_function): """Return an expression that is used to find the maximum or minimum value across a number of other given columns. We cannot use Table Value Constructors as in the TPP backend (this gives a cryptic error message: "Given correlated subquery is not supported"). Instead, we use GREATEST() or LEAST(), but we have to be careful to handle correctly any arguments to GREATEST/LEAST that have replaced NULLs. To do this, we replace any occurences of the default value for the given column_type with the most extreme value possible for the column_type. (So when finding the maximum, we replace the default value with a small value, and when finding the minimum, with a large value.) If all the arguments to GREATEST/LEAST have replaced NULLs, GREATEST/LEAST will return the extreme value, so when that happens, we have to replace this with the default value for the column type. This gives us the result we want but it does mean we can't distinguish e.g. a recorded value of 0.0 from a missing value. This, however, is a general problem with the way we handle NULLs in our system, and so we're not introducing any new difficulty here. (It's also unlikely to be a problem in practice.) """ if column_type == 'date': default_value = '' elif column_type == 'str': default_value = '' elif column_type == 'bool': default_value = 0 elif column_type == 'int': default_value = 0 elif column_type == 'float': default_value = 0.0 else: raise ValueError(f'Unhandled column type: {column_type}') function = {'MAX': 'GREATEST', 'MIN': 'LEAST'}[aggregate_function] if column_type in ['int', 'float']: extreme_value_lookup = {'MAX': -2 ** 63, 'MIN': 2 ** (63 - 1)} extreme_value = [aggregate_function] elif column_type == 'date': extreme_value_lookup = {'MAX': "'0001-01-01'", 'MIN': "'9999-12-31'"} else: assert False, column_type extreme_value = extreme_value_lookup[aggregate_function] components = ', '.join((f'\n CASE WHEN {other_columns[name]} = {quote(default_value)}\n THEN {extreme_value}\n ELSE {other_columns[name]} END' for name in column_names)) tables_used = set() for name in column_names: tables_used.update(other_columns[name].source_tables) return ColumnExpression(f'\n CASE WHEN {function}({components}) = {extreme_value}\n THEN {quote(default_value)}\n ELSE {function}({components}) END', type=column_type, default_value=default_value, source_tables=list(tables_used), date_format=other_columns[column_names[0]].date_format)
cohort-extractor
positive
def handle_socket_error(exception, team, caller_name): if not (isinstance(exception, WebSocketConnectionClosedException) or exception.errno in (errno.EPIPE, errno.ECONNRESET, errno.ETIMEDOUT)): raise w.prnt(team.channel_buffer, 'Lost connection to slack team {} (on {}), reconnecting.'.format(team.domain, caller_name)) <DeepExtract> if 5 >= config.debug_level: global debug_string 'Socket failed on {} with exception:\n{}'.format(caller_name, format_exc_tb()) = 'DEBUG: {}'.format('Socket failed on {} with exception:\n{}'.format(caller_name, format_exc_tb())) if fout: with open('/tmp/debug.log', 'a+') as log_file: log_file.writelines('Socket failed on {} with exception:\n{}'.format(caller_name, format_exc_tb()) + '\n') if main_buffer: w.prnt('', 'slack: ' + 'Socket failed on {} with exception:\n{}'.format(caller_name, format_exc_tb())) elif slack_debug and (not debug_string or debug_string in 'Socket failed on {} with exception:\n{}'.format(caller_name, format_exc_tb())): w.prnt(slack_debug, 'Socket failed on {} with exception:\n{}'.format(caller_name, format_exc_tb())) </DeepExtract> team.set_disconnected()
def handle_socket_error(exception, team, caller_name): if not (isinstance(exception, WebSocketConnectionClosedException) or exception.errno in (errno.EPIPE, errno.ECONNRESET, errno.ETIMEDOUT)): raise w.prnt(team.channel_buffer, 'Lost connection to slack team {} (on {}), reconnecting.'.format(team.domain, caller_name)) if 5 >= config.debug_level: global debug_string 'Socket failed on {} with exception:\n{}'.format(caller_name, format_exc_tb()) = 'DEBUG: {}'.format('Socket failed on {} with exception:\n{}'.format(caller_name, format_exc_tb())) if fout: with open('/tmp/debug.log', 'a+') as log_file: log_file.writelines('Socket failed on {} with exception:\n{}'.format(caller_name, format_exc_tb()) + '\n') if main_buffer: w.prnt('', 'slack: ' + 'Socket failed on {} with exception:\n{}'.format(caller_name, format_exc_tb())) elif slack_debug and (not debug_string or debug_string in 'Socket failed on {} with exception:\n{}'.format(caller_name, format_exc_tb())): w.prnt(slack_debug, 'Socket failed on {} with exception:\n{}'.format(caller_name, format_exc_tb())) team.set_disconnected()
dotfiles
positive
def measurements_collection_config(collection_config_json, **kwargs): <DeepExtract> try: schema = json.loads(resource_string(__package__, os.path.join('data', 'schema-measurements-collection-config.json'))) except json.JSONDecodeError as err: raise ValidateError('Schema {} is not a valid JSON file. Error: {}'.format('schema-measurements-collection-config.json', err)) Validator = jsonschema.validators.validator_for(schema) try: Validator.check_schema(schema) except jsonschema.exceptions.SchemaError as err: raise ValidateError(f"Schema {'schema-measurements-collection-config.json'} is not a valid JSON Schema ({Validator.META_SCHEMA['$schema']}). Error: {err}") schema = Validator(schema) </DeepExtract> <DeepExtract> with open(collection_config_json, 'rb') as fh: try: jsonToValidate = json.load(fh) except json.JSONDecodeError: raise ValidateError('Supplied JSON to validate ({}) is not a valid JSON'.format(collection_config_json)) collection_config = jsonToValidate </DeepExtract> <DeepExtract> print('Validating schema of {!r}...'.format(collection_config_json)) errors = list(schema.iter_errors(collection_config)) def print_errors(errors, level=1): prefix = ' ' for error in sorted(errors, key=jsonschema.exceptions.relevance): path = elide_path(error.absolute_path) value = shorten_as_json(error.instance, 50, '…') validator = error.validator validator_value = shorten_as_json(error.validator_value, 100, '…') print_err(indent(f'{path} {value} failed {validator} validation for {validator_value}', prefix * level)) if error.context: if error.validator in {'oneOf', 'anyOf'}: validator_value_idx = lambda e: e.schema_path[0] for (idx, ctx) in grouped(error.context, key=validator_value_idx): validator_subvalue = shorten_as_json(error.validator_value[idx], 100, '…') print_err(indent(f'validation for arm {idx}: {validator_subvalue}', prefix * (level + 1))) print_errors(ctx, level + 2) else: print_errors(error.context, level + 1) print_errors(errors) if errors: raise ValidateError('Validation of {!r} failed.'.format(collection_config_json)) </DeepExtract> if not validate_collection_display_defaults(collection_config): raise ValidateError('Validation of the collection config display defaults failed.') return collection_config
def measurements_collection_config(collection_config_json, **kwargs): try: schema = json.loads(resource_string(__package__, os.path.join('data', 'schema-measurements-collection-config.json'))) except json.JSONDecodeError as err: raise ValidateError('Schema {} is not a valid JSON file. Error: {}'.format('schema-measurements-collection-config.json', err)) Validator = jsonschema.validators.validator_for(schema) try: Validator.check_schema(schema) except jsonschema.exceptions.SchemaError as err: raise ValidateError(f"Schema {'schema-measurements-collection-config.json'} is not a valid JSON Schema ({Validator.META_SCHEMA['$schema']}). Error: {err}") schema = Validator(schema) with open(collection_config_json, 'rb') as fh: try: jsonToValidate = json.load(fh) except json.JSONDecodeError: raise ValidateError('Supplied JSON to validate ({}) is not a valid JSON'.format(collection_config_json)) collection_config = jsonToValidate print('Validating schema of {!r}...'.format(collection_config_json)) errors = list(schema.iter_errors(collection_config)) def print_errors(errors, level=1): prefix = ' ' for error in sorted(errors, key=jsonschema.exceptions.relevance): path = elide_path(error.absolute_path) value = shorten_as_json(error.instance, 50, '…') validator = error.validator validator_value = shorten_as_json(error.validator_value, 100, '…') print_err(indent(f'{path} {value} failed {validator} validation for {validator_value}', prefix * level)) if error.context: if error.validator in {'oneOf', 'anyOf'}: validator_value_idx = lambda e: e.schema_path[0] for (idx, ctx) in grouped(error.context, key=validator_value_idx): validator_subvalue = shorten_as_json(error.validator_value[idx], 100, '…') print_err(indent(f'validation for arm {idx}: {validator_subvalue}', prefix * (level + 1))) print_errors(ctx, level + 2) else: print_errors(error.context, level + 1) print_errors(errors) if errors: raise ValidateError('Validation of {!r} failed.'.format(collection_config_json)) if not validate_collection_display_defaults(collection_config): raise ValidateError('Validation of the collection config display defaults failed.') return collection_config
augur
positive
def __call__(self, proposals, mask_logits, targets): """ Arguments: proposals (list[BoxList]) mask_logits (Tensor) targets (list[BoxList]) Return: mask_loss (Tensor): scalar tensor containing the loss """ <DeepExtract> labels = [] masks = [] for (proposals_per_image, targets_per_image) in zip(proposals, targets): matched_targets = self.match_targets_to_proposals(proposals_per_image, targets_per_image) matched_idxs = matched_targets.get_field('matched_idxs') labels_per_image = matched_targets.get_field('labels') labels_per_image = labels_per_image.to(dtype=torch.int64) neg_inds = matched_idxs == Matcher.BELOW_LOW_THRESHOLD labels_per_image[neg_inds] = 0 positive_inds = torch.nonzero(labels_per_image > 0).squeeze(1) segmentation_masks = matched_targets.get_field('masks') segmentation_masks = segmentation_masks[positive_inds] positive_proposals = proposals_per_image[positive_inds] masks_per_image = project_masks_on_boxes(segmentation_masks, positive_proposals, self.discretization_size) labels.append(labels_per_image) masks.append(masks_per_image) (labels, mask_targets) = (labels, masks) </DeepExtract> labels = cat(labels, dim=0) mask_targets = cat(mask_targets, dim=0) positive_inds = torch.nonzero(labels > 0).squeeze(1) labels_pos = labels[positive_inds] if mask_targets.numel() == 0: return mask_logits.sum() * 0 mask_loss = F.binary_cross_entropy_with_logits(mask_logits[positive_inds, labels_pos], mask_targets) return mask_loss
def __call__(self, proposals, mask_logits, targets): """ Arguments: proposals (list[BoxList]) mask_logits (Tensor) targets (list[BoxList]) Return: mask_loss (Tensor): scalar tensor containing the loss """ labels = [] masks = [] for (proposals_per_image, targets_per_image) in zip(proposals, targets): matched_targets = self.match_targets_to_proposals(proposals_per_image, targets_per_image) matched_idxs = matched_targets.get_field('matched_idxs') labels_per_image = matched_targets.get_field('labels') labels_per_image = labels_per_image.to(dtype=torch.int64) neg_inds = matched_idxs == Matcher.BELOW_LOW_THRESHOLD labels_per_image[neg_inds] = 0 positive_inds = torch.nonzero(labels_per_image > 0).squeeze(1) segmentation_masks = matched_targets.get_field('masks') segmentation_masks = segmentation_masks[positive_inds] positive_proposals = proposals_per_image[positive_inds] masks_per_image = project_masks_on_boxes(segmentation_masks, positive_proposals, self.discretization_size) labels.append(labels_per_image) masks.append(masks_per_image) (labels, mask_targets) = (labels, masks) labels = cat(labels, dim=0) mask_targets = cat(mask_targets, dim=0) positive_inds = torch.nonzero(labels > 0).squeeze(1) labels_pos = labels[positive_inds] if mask_targets.numel() == 0: return mask_logits.sum() * 0 mask_loss = F.binary_cross_entropy_with_logits(mask_logits[positive_inds, labels_pos], mask_targets) return mask_loss
APNet
positive
def _got_rakp1(self, data): clienttag = data[0] self.Rm = data[8:24] self.rolem = data[24] self.maxpriv = self.rolem & 7 namepresent = data[27] if namepresent == 0: <DeepExtract> logger.info('IPMI Session closed %s', self.session.sockaddr[0]) del self.sessions[self.session.sockaddr[0]] del self.session </DeepExtract> return usernamebytes = data[28:] self.username = struct.pack('%dB' % len(usernamebytes), *usernamebytes) if self.username not in self.authdata: logger.info('User {} supplied by client not in user_db.'.format(self.username)) <DeepExtract> logger.info('IPMI Session closed %s', self.session.sockaddr[0]) del self.sessions[self.session.sockaddr[0]] del self.session </DeepExtract> return uuidbytes = self.uuid.bytes uuidbytes = list(struct.unpack('%dB' % len(uuidbytes), uuidbytes)) self.uuiddata = uuidbytes self.Rc = list(struct.unpack('16B', os.urandom(16))) hmacdata = self.clientsessionid + self.managedsessionid + self.Rm + self.Rc + uuidbytes + [self.rolem, len(self.username)] hmacdata = struct.pack('%dB' % len(hmacdata), *hmacdata) hmacdata += self.username self.kuid = self.authdata[self.username] if self.kg is None: self.kg = self.kuid authcode = hmac.new(self.kuid, hmacdata, hashlib.sha1).digest() authcode = list(struct.unpack('%dB' % len(authcode), authcode)) newmessage = [clienttag, 0, 0, 0] + self.clientsessionid + self.Rc + uuidbytes + authcode logger.info('IPMI rakp1 request') self.session.send_payload(newmessage, constants.payload_types['rakp2'], retry=False)
def _got_rakp1(self, data): clienttag = data[0] self.Rm = data[8:24] self.rolem = data[24] self.maxpriv = self.rolem & 7 namepresent = data[27] if namepresent == 0: logger.info('IPMI Session closed %s', self.session.sockaddr[0]) del self.sessions[self.session.sockaddr[0]] del self.session return usernamebytes = data[28:] self.username = struct.pack('%dB' % len(usernamebytes), *usernamebytes) if self.username not in self.authdata: logger.info('User {} supplied by client not in user_db.'.format(self.username)) logger.info('IPMI Session closed %s', self.session.sockaddr[0]) del self.sessions[self.session.sockaddr[0]] del self.session return uuidbytes = self.uuid.bytes uuidbytes = list(struct.unpack('%dB' % len(uuidbytes), uuidbytes)) self.uuiddata = uuidbytes self.Rc = list(struct.unpack('16B', os.urandom(16))) hmacdata = self.clientsessionid + self.managedsessionid + self.Rm + self.Rc + uuidbytes + [self.rolem, len(self.username)] hmacdata = struct.pack('%dB' % len(hmacdata), *hmacdata) hmacdata += self.username self.kuid = self.authdata[self.username] if self.kg is None: self.kg = self.kuid authcode = hmac.new(self.kuid, hmacdata, hashlib.sha1).digest() authcode = list(struct.unpack('%dB' % len(authcode), authcode)) newmessage = [clienttag, 0, 0, 0] + self.clientsessionid + self.Rc + uuidbytes + authcode logger.info('IPMI rakp1 request') self.session.send_payload(newmessage, constants.payload_types['rakp2'], retry=False)
conpot
positive
def test_dos_with_bare_lf_2(self): reader = self.create_instance_and_load_single_file(FileReader, 'test.conf', b'[context]\r\nvariable=value\r\nother=value\n') <DeepExtract> out = [i for i in reader] self.assertEqual(len(out), 3) self.assertEqual(out[0][1], '[context]') self.assertEqual(out[1][1], 'variable=value') self.assertEqual(out[2][1], 'other=value') </DeepExtract> self.assertLinted({'W_FILE_DOS_BARELF': 1, 'W_FILE_DOS_EOFCRLF': 1})
def test_dos_with_bare_lf_2(self): reader = self.create_instance_and_load_single_file(FileReader, 'test.conf', b'[context]\r\nvariable=value\r\nother=value\n') out = [i for i in reader] self.assertEqual(len(out), 3) self.assertEqual(out[0][1], '[context]') self.assertEqual(out[1][1], 'variable=value') self.assertEqual(out[2][1], 'other=value') self.assertLinted({'W_FILE_DOS_BARELF': 1, 'W_FILE_DOS_EOFCRLF': 1})
asterisklint
positive
def get_NN_prediction(image): with tf.device('/cpu:0'): image = image / 255.0 print(CHANNEL) dummy_channels = TARGET_CHANNELS - CHANNEL image = tf.concat([image, tf.zeros((tf.shape(image)[0], 84, 84, dummy_channels))], 3) input_sum = tf.reduce_sum(tf.abs(image)) <DeepExtract> in_shape = image.get_shape().as_list() in_channel = in_shape[-1] 5 = [5, 5] 'VALID' = 'VALID'.upper() filter_shape = 5 + [in_channel, 32] stride = [1, stride, stride, 1] W = tf.get_variable('conv0' + '/W', filter_shape) image = tf.to_float(image) W = tf.to_float(W) conv = tf.nn.conv2d(image, W, stride, 'VALID') l = nl(conv, name='output') </DeepExtract> <DeepExtract> padding = padding.upper() 2 = [1, 2, 2, 1] if stride is None: stride = 2 else: stride = [1, stride, stride, 1] l = tf.to_float(l) l = tf.nn.max_pool(l, ksize=2, strides=stride, padding=padding) </DeepExtract> <DeepExtract> in_shape = l.get_shape().as_list() in_channel = in_shape[-1] 5 = [5, 5] 'VALID' = 'VALID'.upper() filter_shape = 5 + [in_channel, 32] stride = [1, stride, stride, 1] W = tf.get_variable('conv1' + '/W', filter_shape) l = tf.to_float(l) W = tf.to_float(W) conv = tf.nn.conv2d(l, W, stride, 'VALID') l = nl(conv, name='output') </DeepExtract> <DeepExtract> padding = padding.upper() 2 = [1, 2, 2, 1] if stride is None: stride = 2 else: stride = [1, stride, stride, 1] l = tf.to_float(l) l = tf.nn.max_pool(l, ksize=2, strides=stride, padding=padding) </DeepExtract> <DeepExtract> in_shape = l.get_shape().as_list() in_channel = in_shape[-1] 5 = [5, 5] 'VALID' = 'VALID'.upper() filter_shape = 5 + [in_channel, 64] stride = [1, stride, stride, 1] W = tf.get_variable('conv2' + '/W', filter_shape) l = tf.to_float(l) W = tf.to_float(W) conv = tf.nn.conv2d(l, W, stride, 'VALID') l = nl(conv, name='output') </DeepExtract> <DeepExtract> padding = padding.upper() 2 = [1, 2, 2, 1] if stride is None: stride = 2 else: stride = [1, stride, stride, 1] l = tf.to_float(l) l = tf.nn.max_pool(l, ksize=2, strides=stride, padding=padding) </DeepExtract> <DeepExtract> in_shape = l.get_shape().as_list() in_channel = in_shape[-1] 3 = [3, 3] 'VALID' = 'VALID'.upper() filter_shape = 3 + [in_channel, 64] stride = [1, stride, stride, 1] W = tf.get_variable('conv3' + '/W', filter_shape) l = tf.to_float(l) W = tf.to_float(W) conv = tf.nn.conv2d(l, W, stride, 'VALID') l = nl(conv, name='output') </DeepExtract> if args.replace_with_conv: fc_splits = [] neurons = args.fc_neurons / args.fc_splits for i in range(args.fc_splits): <DeepExtract> in_shape = l.get_shape().as_list() in_channel = in_shape[-1] 5 = [5, 5] 'VALID' = 'VALID'.upper() filter_shape = 5 + [in_channel, neurons] stride = [1, stride, stride, 1] W = tf.get_variable('fc1_{}'.format(i) + '/W', filter_shape) l = tf.to_float(l) W = tf.to_float(W) conv = tf.nn.conv2d(l, W, stride, 'VALID') fc = tf.identity(conv, name='output') </DeepExtract> fc = tf.reshape(tensor=fc, shape=[-1, neurons]) fc_splits.append(fc) l = tf.concat(fc_splits, axis=1) else: fc_splits = [] neurons = args.fc_neurons / args.fc_splits for i in range(args.fc_splits): <DeepExtract> l = batch_flatten(l) in_dim = l.get_shape().as_list()[1] W = tf.get_variable('fc1_{}'.format(i) + '/W', [in_dim, out_dim]) if use_bias: b = tf.get_variable('fc1_{}'.format(i) + '/b', [out_dim]) prod = tf.nn.xw_plus_b(l, W, b) if use_bias else tf.matmul(l, W) fc = tf.identity(prod, name='output') </DeepExtract> fc = tf.nn.relu(fc_part, 'relu1') fc_splits.append(fc) l = tf.concat(fc_splits, axis=1) <DeepExtract> l = batch_flatten(l) in_dim = l.get_shape().as_list()[1] W = tf.get_variable('fc-pi' + '/W', [in_dim, NUM_ACTIONS]) if use_bias: b = tf.get_variable('fc-pi' + '/b', [NUM_ACTIONS]) prod = tf.nn.xw_plus_b(l, W, b) if use_bias else tf.matmul(l, W) policy = tf.identity(prod, name='output') </DeepExtract> <DeepExtract> l = batch_flatten(l) in_dim = l.get_shape().as_list()[1] W = tf.get_variable('fc-v' + '/W', [in_dim, 1]) if use_bias: b = tf.get_variable('fc-v' + '/b', [1]) prod = tf.nn.xw_plus_b(l, W, b) if use_bias else tf.matmul(l, W) value = tf.identity(prod, name='output') </DeepExtract> return (policy, value)
def get_NN_prediction(image): with tf.device('/cpu:0'): image = image / 255.0 print(CHANNEL) dummy_channels = TARGET_CHANNELS - CHANNEL image = tf.concat([image, tf.zeros((tf.shape(image)[0], 84, 84, dummy_channels))], 3) input_sum = tf.reduce_sum(tf.abs(image)) in_shape = image.get_shape().as_list() in_channel = in_shape[-1] 5 = [5, 5] 'VALID' = 'VALID'.upper() filter_shape = 5 + [in_channel, 32] stride = [1, stride, stride, 1] W = tf.get_variable('conv0' + '/W', filter_shape) image = tf.to_float(image) W = tf.to_float(W) conv = tf.nn.conv2d(image, W, stride, 'VALID') l = nl(conv, name='output') padding = padding.upper() 2 = [1, 2, 2, 1] if stride is None: stride = 2 else: stride = [1, stride, stride, 1] l = tf.to_float(l) l = tf.nn.max_pool(l, ksize=2, strides=stride, padding=padding) in_shape = l.get_shape().as_list() in_channel = in_shape[-1] 5 = [5, 5] 'VALID' = 'VALID'.upper() filter_shape = 5 + [in_channel, 32] stride = [1, stride, stride, 1] W = tf.get_variable('conv1' + '/W', filter_shape) l = tf.to_float(l) W = tf.to_float(W) conv = tf.nn.conv2d(l, W, stride, 'VALID') l = nl(conv, name='output') padding = padding.upper() 2 = [1, 2, 2, 1] if stride is None: stride = 2 else: stride = [1, stride, stride, 1] l = tf.to_float(l) l = tf.nn.max_pool(l, ksize=2, strides=stride, padding=padding) in_shape = l.get_shape().as_list() in_channel = in_shape[-1] 5 = [5, 5] 'VALID' = 'VALID'.upper() filter_shape = 5 + [in_channel, 64] stride = [1, stride, stride, 1] W = tf.get_variable('conv2' + '/W', filter_shape) l = tf.to_float(l) W = tf.to_float(W) conv = tf.nn.conv2d(l, W, stride, 'VALID') l = nl(conv, name='output') padding = padding.upper() 2 = [1, 2, 2, 1] if stride is None: stride = 2 else: stride = [1, stride, stride, 1] l = tf.to_float(l) l = tf.nn.max_pool(l, ksize=2, strides=stride, padding=padding) in_shape = l.get_shape().as_list() in_channel = in_shape[-1] 3 = [3, 3] 'VALID' = 'VALID'.upper() filter_shape = 3 + [in_channel, 64] stride = [1, stride, stride, 1] W = tf.get_variable('conv3' + '/W', filter_shape) l = tf.to_float(l) W = tf.to_float(W) conv = tf.nn.conv2d(l, W, stride, 'VALID') l = nl(conv, name='output') if args.replace_with_conv: fc_splits = [] neurons = args.fc_neurons / args.fc_splits for i in range(args.fc_splits): in_shape = l.get_shape().as_list() in_channel = in_shape[-1] 5 = [5, 5] 'VALID' = 'VALID'.upper() filter_shape = 5 + [in_channel, neurons] stride = [1, stride, stride, 1] W = tf.get_variable('fc1_{}'.format(i) + '/W', filter_shape) l = tf.to_float(l) W = tf.to_float(W) conv = tf.nn.conv2d(l, W, stride, 'VALID') fc = tf.identity(conv, name='output') fc = tf.reshape(tensor=fc, shape=[-1, neurons]) fc_splits.append(fc) l = tf.concat(fc_splits, axis=1) else: fc_splits = [] neurons = args.fc_neurons / args.fc_splits for i in range(args.fc_splits): l = batch_flatten(l) in_dim = l.get_shape().as_list()[1] W = tf.get_variable('fc1_{}'.format(i) + '/W', [in_dim, out_dim]) if use_bias: b = tf.get_variable('fc1_{}'.format(i) + '/b', [out_dim]) prod = tf.nn.xw_plus_b(l, W, b) if use_bias else tf.matmul(l, W) fc = tf.identity(prod, name='output') fc = tf.nn.relu(fc_part, 'relu1') fc_splits.append(fc) l = tf.concat(fc_splits, axis=1) l = batch_flatten(l) in_dim = l.get_shape().as_list()[1] W = tf.get_variable('fc-pi' + '/W', [in_dim, NUM_ACTIONS]) if use_bias: b = tf.get_variable('fc-pi' + '/b', [NUM_ACTIONS]) prod = tf.nn.xw_plus_b(l, W, b) if use_bias else tf.matmul(l, W) policy = tf.identity(prod, name='output') l = batch_flatten(l) in_dim = l.get_shape().as_list()[1] W = tf.get_variable('fc-v' + '/W', [in_dim, 1]) if use_bias: b = tf.get_variable('fc-v' + '/b', [1]) prod = tf.nn.xw_plus_b(l, W, b) if use_bias else tf.matmul(l, W) value = tf.identity(prod, name='output') return (policy, value)
Distributed-BA3C
positive
def __or__(self, other): """Perform a union between two sets for boolean OR.""" if isinstance(other, InSet) and self.expression == other.expression: if self.is_literal() and other.is_literal(): <DeepExtract> values = OrderedDict() for literal in self.container: if not isinstance(literal, Literal): continue k = literal.value if isinstance(literal, String): values.setdefault(fold_case(k), literal) else: values[k] = literal container = values </DeepExtract> for (k, v) in other.get_literals().items(): container.setdefault(k, v) union = [v for v in container.values()] return InSet(self.expression, union).optimize() elif isinstance(other, Comparison) and self.expression == other.left: if self.is_literal() and isinstance(other.right, Literal): return self.__or__(InSet(other.left, [other.right])) return super(InSet, self).__or__(other)
def __or__(self, other): """Perform a union between two sets for boolean OR.""" if isinstance(other, InSet) and self.expression == other.expression: if self.is_literal() and other.is_literal(): values = OrderedDict() for literal in self.container: if not isinstance(literal, Literal): continue k = literal.value if isinstance(literal, String): values.setdefault(fold_case(k), literal) else: values[k] = literal container = values for (k, v) in other.get_literals().items(): container.setdefault(k, v) union = [v for v in container.values()] return InSet(self.expression, union).optimize() elif isinstance(other, Comparison) and self.expression == other.left: if self.is_literal() and isinstance(other.right, Literal): return self.__or__(InSet(other.left, [other.right])) return super(InSet, self).__or__(other)
eql
positive
def FindMiddleEdge(s, t, replace_score=BLOSUM62(), indel_cost=5): """ FindMiddleEdge BA5K Find a Middle Edge in an Alignment Graph in Linear Space Inputs: s an amino acid string t an amino acid string replace_score scoring matrix indel_cost linear indel penalty Returns: A middle edge in the alignment graph for s and t, in the form ((i, j) (k, l)), where (i, j) connects to (k, l). """ def update(j, previous, current, s, t): """ update Calculate scores in current column using values from previous column parameters: j Index of column that is being updated previous Data from previous coulumn current Data in current column s First protein string. t Second protein string. """ current[0] = -j * indel_cost for i in range(1, len(current)): scores = [previous[i - 1] + replace_score.get_score(s[i - 1], t[j - 1]), current[i - 1] - indel_cost, previous[i] - indel_cost] best = np.argmax(scores) current[i] = scores[best] return (current, previous) def explore(s, t, limit): """ Find lengths of all paths from source that end at specified column Parameters: s First protein string. This is an explicit parameter because FindMiddleEdge reverse the string during the second call to calculate lengths from sink t Second protein string. limit Last column to be explored """ column_A = [-(i * indel_cost) for i in range(len(s) + 1)] column_B = [0 for i in range(len(s) + 1)] for j in range(1, limit + 1): (scores, previous) = update(j, column_A, column_B, s, t) if j % 2 == 1 else update(j, column_B, column_A, s, t) return (scores, previous) middle_column = len(t) // 2 <DeepExtract> column_A = [-(i * indel_cost) for i in range(len(s) + 1)] column_B = [0 for i in range(len(s) + 1)] for j in range(1, middle_column + 1): (scores, previous) = update(j, column_A, column_B, s, t) if j % 2 == 1 else update(j, column_B, column_A, s, t) (from_source, _) = (scores, previous) </DeepExtract> <DeepExtract> column_A = [-(i * indel_cost) for i in range(len(s[::-1]) + 1)] column_B = [0 for i in range(len(s[::-1]) + 1)] for j in range(1, len(t) - middle_column + 1): (scores, previous) = update(j, column_A, column_B, s[::-1], t[::-1]) if j % 2 == 1 else update(j, column_B, column_A, s[::-1], t[::-1]) (to_sink, _) = (scores, previous) </DeepExtract> length = [a + b for (a, b) in zip(from_source, to_sink[::-1])] return ((np.argmax(length), middle_column), (np.argmax(length) + 1, middle_column + 1))
def FindMiddleEdge(s, t, replace_score=BLOSUM62(), indel_cost=5): """ FindMiddleEdge BA5K Find a Middle Edge in an Alignment Graph in Linear Space Inputs: s an amino acid string t an amino acid string replace_score scoring matrix indel_cost linear indel penalty Returns: A middle edge in the alignment graph for s and t, in the form ((i, j) (k, l)), where (i, j) connects to (k, l). """ def update(j, previous, current, s, t): """ update Calculate scores in current column using values from previous column parameters: j Index of column that is being updated previous Data from previous coulumn current Data in current column s First protein string. t Second protein string. """ current[0] = -j * indel_cost for i in range(1, len(current)): scores = [previous[i - 1] + replace_score.get_score(s[i - 1], t[j - 1]), current[i - 1] - indel_cost, previous[i] - indel_cost] best = np.argmax(scores) current[i] = scores[best] return (current, previous) def explore(s, t, limit): """ Find lengths of all paths from source that end at specified column Parameters: s First protein string. This is an explicit parameter because FindMiddleEdge reverse the string during the second call to calculate lengths from sink t Second protein string. limit Last column to be explored """ column_A = [-(i * indel_cost) for i in range(len(s) + 1)] column_B = [0 for i in range(len(s) + 1)] for j in range(1, limit + 1): (scores, previous) = update(j, column_A, column_B, s, t) if j % 2 == 1 else update(j, column_B, column_A, s, t) return (scores, previous) middle_column = len(t) // 2 column_A = [-(i * indel_cost) for i in range(len(s) + 1)] column_B = [0 for i in range(len(s) + 1)] for j in range(1, middle_column + 1): (scores, previous) = update(j, column_A, column_B, s, t) if j % 2 == 1 else update(j, column_B, column_A, s, t) (from_source, _) = (scores, previous) column_A = [-(i * indel_cost) for i in range(len(s[::-1]) + 1)] column_B = [0 for i in range(len(s[::-1]) + 1)] for j in range(1, len(t) - middle_column + 1): (scores, previous) = update(j, column_A, column_B, s[::-1], t[::-1]) if j % 2 == 1 else update(j, column_B, column_A, s[::-1], t[::-1]) (to_sink, _) = (scores, previous) length = [a + b for (a, b) in zip(from_source, to_sink[::-1])] return ((np.argmax(length), middle_column), (np.argmax(length) + 1, middle_column + 1))
bioinformatics
positive
def nearest_neighbor_features_per_object(reference_embeddings, query_embeddings, reference_labels, k_nearest_neighbors, gt_ids=None, n_chunks=100): """Calculates the distance to the nearest neighbor per object. For every pixel of query_embeddings calculate the distance to the nearest neighbor in the (possibly subsampled) reference_embeddings per object. Args: reference_embeddings: Tensor of shape [height, width, embedding_dim], the embedding vectors for the reference frame. query_embeddings: Tensor of shape [n_query_images, height, width, embedding_dim], the embedding vectors for the query frames. reference_labels: Tensor of shape [height, width, 1], the class labels of the reference frame. max_neighbors_per_object: Integer, the maximum number of candidates for the nearest neighbor query per object after subsampling, or 0 for no subsampling. k_nearest_neighbors: Integer, the number of nearest neighbors to use. gt_ids: Int tensor of shape [n_objs] of the sorted unique ground truth ids in the first frame. If None, it will be derived from reference_labels. n_chunks: Integer, the number of chunks to use to save memory (set to 1 for no chunking). Returns: nn_features: A float32 tensor of nearest neighbor features of shape [n_query_images, height, width, n_objects, feature_dim]. gt_ids: An int32 tensor of the unique sorted object ids present in the reference labels. """ assert reference_embeddings.size()[:2] == reference_labels.size()[:2] (h, w, _) = query_embeddings.size() reference_labels_flat = reference_labels.view(-1) if gt_ids is None: ref_obj_ids = torch.unique(reference_labels_flat)[-1] ref_obj_ids = np.arange(0, ref_obj_ids.cpu() + 1) gt_ids = torch.from_numpy(ref_obj_ids) gt_ids = gt_ids.int() if torch.cuda.is_available(): gt_ids = gt_ids.cuda() else: gt_ids = torch.arange(0, gt_ids + 1).int() if torch.cuda.is_available(): gt_ids = gt_ids.cuda() embedding_dim = query_embeddings.size()[-1] query_embeddings_flat = query_embeddings.view(-1, embedding_dim) reference_embeddings_flat = reference_embeddings.view(-1, embedding_dim) <DeepExtract> chunk_size = int(np.ceil(float(query_embeddings_flat.size()[0]) / n_chunks)) wrong_label_mask = reference_labels_flat != torch.unsqueeze(gt_ids, 1) all_features = [] for n in range(n_chunks): if n_chunks == 1: query_embeddings_flat_chunk = query_embeddings_flat else: chunk_start = n * chunk_size chunk_end = (n + 1) * chunk_size query_embeddings_flat_chunk = query_embeddings_flat[chunk_start:chunk_end] features = _nn_features_per_object_for_chunk(reference_embeddings_flat, query_embeddings_flat_chunk, wrong_label_mask, k_nearest_neighbors) all_features.append(features) if n_chunks == 1: nn_features = all_features[0] else: nn_features = torch.cat(all_features, dim=0) nn_features = nn_features </DeepExtract> nn_features_dim = nn_features.size()[-1] nn_features_reshape = nn_features.view(1, h, w, gt_ids.size(0), nn_features_dim) return (nn_features_reshape, gt_ids)
def nearest_neighbor_features_per_object(reference_embeddings, query_embeddings, reference_labels, k_nearest_neighbors, gt_ids=None, n_chunks=100): """Calculates the distance to the nearest neighbor per object. For every pixel of query_embeddings calculate the distance to the nearest neighbor in the (possibly subsampled) reference_embeddings per object. Args: reference_embeddings: Tensor of shape [height, width, embedding_dim], the embedding vectors for the reference frame. query_embeddings: Tensor of shape [n_query_images, height, width, embedding_dim], the embedding vectors for the query frames. reference_labels: Tensor of shape [height, width, 1], the class labels of the reference frame. max_neighbors_per_object: Integer, the maximum number of candidates for the nearest neighbor query per object after subsampling, or 0 for no subsampling. k_nearest_neighbors: Integer, the number of nearest neighbors to use. gt_ids: Int tensor of shape [n_objs] of the sorted unique ground truth ids in the first frame. If None, it will be derived from reference_labels. n_chunks: Integer, the number of chunks to use to save memory (set to 1 for no chunking). Returns: nn_features: A float32 tensor of nearest neighbor features of shape [n_query_images, height, width, n_objects, feature_dim]. gt_ids: An int32 tensor of the unique sorted object ids present in the reference labels. """ assert reference_embeddings.size()[:2] == reference_labels.size()[:2] (h, w, _) = query_embeddings.size() reference_labels_flat = reference_labels.view(-1) if gt_ids is None: ref_obj_ids = torch.unique(reference_labels_flat)[-1] ref_obj_ids = np.arange(0, ref_obj_ids.cpu() + 1) gt_ids = torch.from_numpy(ref_obj_ids) gt_ids = gt_ids.int() if torch.cuda.is_available(): gt_ids = gt_ids.cuda() else: gt_ids = torch.arange(0, gt_ids + 1).int() if torch.cuda.is_available(): gt_ids = gt_ids.cuda() embedding_dim = query_embeddings.size()[-1] query_embeddings_flat = query_embeddings.view(-1, embedding_dim) reference_embeddings_flat = reference_embeddings.view(-1, embedding_dim) chunk_size = int(np.ceil(float(query_embeddings_flat.size()[0]) / n_chunks)) wrong_label_mask = reference_labels_flat != torch.unsqueeze(gt_ids, 1) all_features = [] for n in range(n_chunks): if n_chunks == 1: query_embeddings_flat_chunk = query_embeddings_flat else: chunk_start = n * chunk_size chunk_end = (n + 1) * chunk_size query_embeddings_flat_chunk = query_embeddings_flat[chunk_start:chunk_end] features = _nn_features_per_object_for_chunk(reference_embeddings_flat, query_embeddings_flat_chunk, wrong_label_mask, k_nearest_neighbors) all_features.append(features) if n_chunks == 1: nn_features = all_features[0] else: nn_features = torch.cat(all_features, dim=0) nn_features = nn_features nn_features_dim = nn_features.size()[-1] nn_features_reshape = nn_features.view(1, h, w, gt_ids.size(0), nn_features_dim) return (nn_features_reshape, gt_ids)
CVPR2020_MANet
positive
def copy_file_into_container(client, container, managed_path, container_path, follow_links, local_follow_links, owner_id, group_id, mode, force=False, diff=False, max_file_size_for_diff=1): if diff: diff = {} else: diff = None <DeepExtract> try: file_stat = os.stat(managed_path) if local_follow_links else os.lstat(managed_path) except OSError as exc: if exc.errno == 2: raise DockerFileNotFound('Cannot find local file {managed_path}'.format(managed_path=managed_path)) raise if mode is None: mode = stat.S_IMODE(file_stat.st_mode) if not stat.S_ISLNK(file_stat.st_mode) and (not stat.S_ISREG(file_stat.st_mode)): raise DockerFileCopyError('Local path {managed_path} is not a symbolic link or file') if diff is not None: if file_stat.st_size > max_file_size_for_diff > 0: diff['src_larger'] = max_file_size_for_diff elif stat.S_ISLNK(file_stat.st_mode): diff['after_header'] = managed_path diff['after'] = os.readlink(managed_path) else: with open(managed_path, 'rb') as f: content = f.read() if is_binary(content): diff['src_binary'] = 1 else: diff['after_header'] = managed_path diff['after'] = to_text(content) if force and (not follow_links): retrieve_diff(client, container, container_path, follow_links, diff, max_file_size_for_diff) (container_path, mode, idempotent) = (container_path, mode, False) (real_container_path, regular_stat, link_target) = stat_file(client, container, in_path=container_path, follow_links=follow_links) if follow_links: container_path = real_container_path if regular_stat is None: if diff is not None: diff['before_header'] = container_path diff['before'] = '' (container_path, mode, idempotent) = (container_path, mode, False) if force: retrieve_diff(client, container, container_path, follow_links, diff, max_file_size_for_diff, regular_stat, link_target) (container_path, mode, idempotent) = (container_path, mode, False) if force is False: retrieve_diff(client, container, container_path, follow_links, diff, max_file_size_for_diff, regular_stat, link_target) copy_dst_to_src(diff) (container_path, mode, idempotent) = (container_path, mode, True) if stat.S_ISLNK(file_stat.st_mode): if link_target is None: retrieve_diff(client, container, container_path, follow_links, diff, max_file_size_for_diff, regular_stat, link_target) (container_path, mode, idempotent) = (container_path, mode, False) local_link_target = os.readlink(managed_path) retrieve_diff(client, container, container_path, follow_links, diff, max_file_size_for_diff, regular_stat, link_target) (container_path, mode, idempotent) = (container_path, mode, local_link_target == link_target) if link_target is not None: retrieve_diff(client, container, container_path, follow_links, diff, max_file_size_for_diff, regular_stat, link_target) (container_path, mode, idempotent) = (container_path, mode, False) if is_container_file_not_regular_file(regular_stat): retrieve_diff(client, container, container_path, follow_links, diff, max_file_size_for_diff, regular_stat, link_target) (container_path, mode, idempotent) = (container_path, mode, False) if file_stat.st_size != regular_stat['size']: retrieve_diff(client, container, container_path, follow_links, diff, max_file_size_for_diff, regular_stat, link_target) (container_path, mode, idempotent) = (container_path, mode, False) if mode != get_container_file_mode(regular_stat): retrieve_diff(client, container, container_path, follow_links, diff, max_file_size_for_diff, regular_stat, link_target) (container_path, mode, idempotent) = (container_path, mode, False) def process_none(in_path): (container_path, mode, idempotent) = (container_path, mode, False) def process_regular(in_path, tar, member): if any([member.mode & 4095 != mode, member.uid != owner_id, member.gid != group_id, not stat.S_ISREG(file_stat.st_mode), member.size != file_stat.st_size]): add_diff_dst_from_regular_member(diff, max_file_size_for_diff, in_path, tar, member) (container_path, mode, idempotent) = (container_path, mode, False) tar_f = tar.extractfile(member) with open(managed_path, 'rb') as local_f: is_equal = are_fileobjs_equal_with_diff_of_first(tar_f, local_f, member.size, diff, max_file_size_for_diff, in_path) (container_path, mode, idempotent) = (container_path, mode, is_equal) def process_symlink(in_path, member): if diff is not None: diff['before_header'] = in_path diff['before'] = member.linkname if member.mode & 4095 != mode: (container_path, mode, idempotent) = (container_path, mode, False) if member.uid != owner_id: (container_path, mode, idempotent) = (container_path, mode, False) if member.gid != group_id: (container_path, mode, idempotent) = (container_path, mode, False) if not stat.S_ISLNK(file_stat.st_mode): (container_path, mode, idempotent) = (container_path, mode, False) local_link_target = os.readlink(managed_path) (container_path, mode, idempotent) = (container_path, mode, member.linkname == local_link_target) def process_other(in_path, member): add_other_diff(diff, in_path, member) (container_path, mode, idempotent) = (container_path, mode, False) (container_path, mode, idempotent) = fetch_file_ex(client, container, in_path=container_path, process_none=process_none, process_regular=process_regular, process_symlink=process_symlink, process_other=process_other, follow_links=follow_links) </DeepExtract> changed = not idempotent if changed and (not client.module.check_mode): put_file(client, container, in_path=managed_path, out_path=container_path, user_id=owner_id, group_id=group_id, mode=mode, follow_links=local_follow_links) result = dict(container_path=container_path, changed=changed) if diff: result['diff'] = diff client.module.exit_json(**result)
def copy_file_into_container(client, container, managed_path, container_path, follow_links, local_follow_links, owner_id, group_id, mode, force=False, diff=False, max_file_size_for_diff=1): if diff: diff = {} else: diff = None try: file_stat = os.stat(managed_path) if local_follow_links else os.lstat(managed_path) except OSError as exc: if exc.errno == 2: raise DockerFileNotFound('Cannot find local file {managed_path}'.format(managed_path=managed_path)) raise if mode is None: mode = stat.S_IMODE(file_stat.st_mode) if not stat.S_ISLNK(file_stat.st_mode) and (not stat.S_ISREG(file_stat.st_mode)): raise DockerFileCopyError('Local path {managed_path} is not a symbolic link or file') if diff is not None: if file_stat.st_size > max_file_size_for_diff > 0: diff['src_larger'] = max_file_size_for_diff elif stat.S_ISLNK(file_stat.st_mode): diff['after_header'] = managed_path diff['after'] = os.readlink(managed_path) else: with open(managed_path, 'rb') as f: content = f.read() if is_binary(content): diff['src_binary'] = 1 else: diff['after_header'] = managed_path diff['after'] = to_text(content) if force and (not follow_links): retrieve_diff(client, container, container_path, follow_links, diff, max_file_size_for_diff) (container_path, mode, idempotent) = (container_path, mode, False) (real_container_path, regular_stat, link_target) = stat_file(client, container, in_path=container_path, follow_links=follow_links) if follow_links: container_path = real_container_path if regular_stat is None: if diff is not None: diff['before_header'] = container_path diff['before'] = '' (container_path, mode, idempotent) = (container_path, mode, False) if force: retrieve_diff(client, container, container_path, follow_links, diff, max_file_size_for_diff, regular_stat, link_target) (container_path, mode, idempotent) = (container_path, mode, False) if force is False: retrieve_diff(client, container, container_path, follow_links, diff, max_file_size_for_diff, regular_stat, link_target) copy_dst_to_src(diff) (container_path, mode, idempotent) = (container_path, mode, True) if stat.S_ISLNK(file_stat.st_mode): if link_target is None: retrieve_diff(client, container, container_path, follow_links, diff, max_file_size_for_diff, regular_stat, link_target) (container_path, mode, idempotent) = (container_path, mode, False) local_link_target = os.readlink(managed_path) retrieve_diff(client, container, container_path, follow_links, diff, max_file_size_for_diff, regular_stat, link_target) (container_path, mode, idempotent) = (container_path, mode, local_link_target == link_target) if link_target is not None: retrieve_diff(client, container, container_path, follow_links, diff, max_file_size_for_diff, regular_stat, link_target) (container_path, mode, idempotent) = (container_path, mode, False) if is_container_file_not_regular_file(regular_stat): retrieve_diff(client, container, container_path, follow_links, diff, max_file_size_for_diff, regular_stat, link_target) (container_path, mode, idempotent) = (container_path, mode, False) if file_stat.st_size != regular_stat['size']: retrieve_diff(client, container, container_path, follow_links, diff, max_file_size_for_diff, regular_stat, link_target) (container_path, mode, idempotent) = (container_path, mode, False) if mode != get_container_file_mode(regular_stat): retrieve_diff(client, container, container_path, follow_links, diff, max_file_size_for_diff, regular_stat, link_target) (container_path, mode, idempotent) = (container_path, mode, False) def process_none(in_path): (container_path, mode, idempotent) = (container_path, mode, False) def process_regular(in_path, tar, member): if any([member.mode & 4095 != mode, member.uid != owner_id, member.gid != group_id, not stat.S_ISREG(file_stat.st_mode), member.size != file_stat.st_size]): add_diff_dst_from_regular_member(diff, max_file_size_for_diff, in_path, tar, member) (container_path, mode, idempotent) = (container_path, mode, False) tar_f = tar.extractfile(member) with open(managed_path, 'rb') as local_f: is_equal = are_fileobjs_equal_with_diff_of_first(tar_f, local_f, member.size, diff, max_file_size_for_diff, in_path) (container_path, mode, idempotent) = (container_path, mode, is_equal) def process_symlink(in_path, member): if diff is not None: diff['before_header'] = in_path diff['before'] = member.linkname if member.mode & 4095 != mode: (container_path, mode, idempotent) = (container_path, mode, False) if member.uid != owner_id: (container_path, mode, idempotent) = (container_path, mode, False) if member.gid != group_id: (container_path, mode, idempotent) = (container_path, mode, False) if not stat.S_ISLNK(file_stat.st_mode): (container_path, mode, idempotent) = (container_path, mode, False) local_link_target = os.readlink(managed_path) (container_path, mode, idempotent) = (container_path, mode, member.linkname == local_link_target) def process_other(in_path, member): add_other_diff(diff, in_path, member) (container_path, mode, idempotent) = (container_path, mode, False) (container_path, mode, idempotent) = fetch_file_ex(client, container, in_path=container_path, process_none=process_none, process_regular=process_regular, process_symlink=process_symlink, process_other=process_other, follow_links=follow_links) changed = not idempotent if changed and (not client.module.check_mode): put_file(client, container, in_path=managed_path, out_path=container_path, user_id=owner_id, group_id=group_id, mode=mode, follow_links=local_follow_links) result = dict(container_path=container_path, changed=changed) if diff: result['diff'] = diff client.module.exit_json(**result)
community.docker
positive
def vLineTo(self, yCoord, forConstruction=False): """ Make a vertical line from the current point to the provided y coordinate. Useful if it is more convenient to specify the end location rather than distance, as in :py:meth:`vLine` :param float yCoord: y coordinate for the end of the line :return: the Workplane object with the current point at the end of the new line """ <DeepExtract> obj = self.objects[-1] if isinstance(obj, Edge): p = obj.endPoint() elif isinstance(obj, Vector): p = obj else: raise RuntimeError("Cannot convert object type '%s' to vector " % type(obj)) if True: p = self.plane.toLocalCoords(p) else: p = p </DeepExtract> return self.lineTo(p.x, yCoord, forConstruction)
def vLineTo(self, yCoord, forConstruction=False): """ Make a vertical line from the current point to the provided y coordinate. Useful if it is more convenient to specify the end location rather than distance, as in :py:meth:`vLine` :param float yCoord: y coordinate for the end of the line :return: the Workplane object with the current point at the end of the new line """ obj = self.objects[-1] if isinstance(obj, Edge): p = obj.endPoint() elif isinstance(obj, Vector): p = obj else: raise RuntimeError("Cannot convert object type '%s' to vector " % type(obj)) if True: p = self.plane.toLocalCoords(p) else: p = p return self.lineTo(p.x, yCoord, forConstruction)
cadquery
positive
def _find_augmenting_path(assignment, adj_matrix): """Finds an augmenting path given an assignment and an adjacency matrix. The augmenting path search starts from the unassigned workers, then goes on to find jobs (via an unassigned pairing), then back again to workers (via an existing pairing), and so on. The path alternates between unassigned and existing pairings. Returns the state after the search. Note: In the state the worker and job, indices are 1-indexed so that we can use 0 to represent unreachable nodes. State contains the following keys: - jobs: A [batch_size, 1, num_elems] tensor containing the highest index unassigned worker that can reach this job through a path. - jobs_from_worker: A [batch_size, num_elems] tensor containing the worker reached immediately before this job. - workers: A [batch_size, num_elems, 1] tensor containing the highest index unassigned worker that can reach this worker through a path. - workers_from_job: A [batch_size, num_elems] tensor containing the job reached immediately before this worker. - new_jobs: A bool [batch_size, num_elems] tensor containing True if the unassigned job can be reached via a path. State can be used to recover the path via backtracking. Args: assignment: A bool [batch_size, num_elems, num_elems] tensor, where each element of the inner matrix represents whether the worker has been matched to the job. This may be a partial assignment. adj_matrix: A bool [batch_size, num_elems, num_elems] tensor, where each element of the inner matrix represents whether the worker (row) can be matched to the job (column). Returns: A state dict, which represents the outcome of running an augmenting path search on the graph given the assignment. """ <DeepExtract> actual_rank = assignment.shape.ndims if 3 and actual_rank != 3: raise ValueError('The tensor has rank %d which is not equal to the expected rank %d' % (actual_rank, 3)) shape = assignment.shape.as_list() dynamic = tf.shape(assignment) output = [dim if dim else dynamic[ind] for (ind, dim) in enumerate(shape)] (batch_size, num_elems, _) = output </DeepExtract> unassigned_workers = ~tf.reduce_any(assignment, axis=2, keepdims=True) unassigned_jobs = ~tf.reduce_any(assignment, axis=1, keepdims=True) unassigned_pairings = tf.cast(adj_matrix & ~assignment, tf.int32) existing_pairings = tf.cast(assignment, tf.int32) worker_indices = tf.range(1, num_elems + 1, dtype=tf.int32) init_workers = tf.tile(worker_indices[tf.newaxis, :, tf.newaxis], [batch_size, 1, 1]) init_workers *= tf.cast(unassigned_workers, tf.int32) state = {'jobs': tf.zeros((batch_size, 1, num_elems), dtype=tf.int32), 'jobs_from_worker': tf.zeros((batch_size, num_elems), dtype=tf.int32), 'workers': init_workers, 'workers_from_job': tf.zeros((batch_size, num_elems), dtype=tf.int32)} def _has_active_workers(state, curr_workers): """Check if there are still active workers.""" del state return tf.reduce_sum(curr_workers) > 0 def _augment_step(state, curr_workers): """Performs one search step.""" potential_jobs = curr_workers * unassigned_pairings curr_jobs = tf.reduce_max(potential_jobs, axis=1, keepdims=True) curr_jobs_from_worker = 1 + tf.argmax(potential_jobs, axis=1, output_type=tf.int32) default_jobs = tf.zeros_like(state['jobs'], dtype=state['jobs'].dtype) curr_jobs = tf.where(state['jobs'] > 0, default_jobs, curr_jobs) curr_jobs_from_worker *= tf.cast(curr_jobs > 0, tf.int32)[:, 0, :] potential_workers = curr_jobs * existing_pairings curr_workers = tf.reduce_max(potential_workers, axis=2, keepdims=True) curr_workers_from_job = 1 + tf.argmax(potential_workers, axis=2, output_type=tf.int32) default_workers = tf.zeros_like(state['workers']) curr_workers = tf.where(state['workers'] > 0, default_workers, curr_workers) curr_workers_from_job *= tf.cast(curr_workers > 0, tf.int32)[:, :, 0] state = state.copy() state['jobs'] = tf.maximum(state['jobs'], curr_jobs) state['jobs_from_worker'] = tf.maximum(state['jobs_from_worker'], curr_jobs_from_worker) state['workers'] = tf.maximum(state['workers'], curr_workers) state['workers_from_job'] = tf.maximum(state['workers_from_job'], curr_workers_from_job) return (state, curr_workers) with tf.name_scope('find_augmenting_path'): (state, _) = tf.while_loop(_has_active_workers, _augment_step, (state, init_workers), back_prop=False) new_jobs = (state['jobs'] > 0) & unassigned_jobs state['new_jobs'] = new_jobs[:, 0, :] return state
def _find_augmenting_path(assignment, adj_matrix): """Finds an augmenting path given an assignment and an adjacency matrix. The augmenting path search starts from the unassigned workers, then goes on to find jobs (via an unassigned pairing), then back again to workers (via an existing pairing), and so on. The path alternates between unassigned and existing pairings. Returns the state after the search. Note: In the state the worker and job, indices are 1-indexed so that we can use 0 to represent unreachable nodes. State contains the following keys: - jobs: A [batch_size, 1, num_elems] tensor containing the highest index unassigned worker that can reach this job through a path. - jobs_from_worker: A [batch_size, num_elems] tensor containing the worker reached immediately before this job. - workers: A [batch_size, num_elems, 1] tensor containing the highest index unassigned worker that can reach this worker through a path. - workers_from_job: A [batch_size, num_elems] tensor containing the job reached immediately before this worker. - new_jobs: A bool [batch_size, num_elems] tensor containing True if the unassigned job can be reached via a path. State can be used to recover the path via backtracking. Args: assignment: A bool [batch_size, num_elems, num_elems] tensor, where each element of the inner matrix represents whether the worker has been matched to the job. This may be a partial assignment. adj_matrix: A bool [batch_size, num_elems, num_elems] tensor, where each element of the inner matrix represents whether the worker (row) can be matched to the job (column). Returns: A state dict, which represents the outcome of running an augmenting path search on the graph given the assignment. """ actual_rank = assignment.shape.ndims if 3 and actual_rank != 3: raise ValueError('The tensor has rank %d which is not equal to the expected rank %d' % (actual_rank, 3)) shape = assignment.shape.as_list() dynamic = tf.shape(assignment) output = [dim if dim else dynamic[ind] for (ind, dim) in enumerate(shape)] (batch_size, num_elems, _) = output unassigned_workers = ~tf.reduce_any(assignment, axis=2, keepdims=True) unassigned_jobs = ~tf.reduce_any(assignment, axis=1, keepdims=True) unassigned_pairings = tf.cast(adj_matrix & ~assignment, tf.int32) existing_pairings = tf.cast(assignment, tf.int32) worker_indices = tf.range(1, num_elems + 1, dtype=tf.int32) init_workers = tf.tile(worker_indices[tf.newaxis, :, tf.newaxis], [batch_size, 1, 1]) init_workers *= tf.cast(unassigned_workers, tf.int32) state = {'jobs': tf.zeros((batch_size, 1, num_elems), dtype=tf.int32), 'jobs_from_worker': tf.zeros((batch_size, num_elems), dtype=tf.int32), 'workers': init_workers, 'workers_from_job': tf.zeros((batch_size, num_elems), dtype=tf.int32)} def _has_active_workers(state, curr_workers): """Check if there are still active workers.""" del state return tf.reduce_sum(curr_workers) > 0 def _augment_step(state, curr_workers): """Performs one search step.""" potential_jobs = curr_workers * unassigned_pairings curr_jobs = tf.reduce_max(potential_jobs, axis=1, keepdims=True) curr_jobs_from_worker = 1 + tf.argmax(potential_jobs, axis=1, output_type=tf.int32) default_jobs = tf.zeros_like(state['jobs'], dtype=state['jobs'].dtype) curr_jobs = tf.where(state['jobs'] > 0, default_jobs, curr_jobs) curr_jobs_from_worker *= tf.cast(curr_jobs > 0, tf.int32)[:, 0, :] potential_workers = curr_jobs * existing_pairings curr_workers = tf.reduce_max(potential_workers, axis=2, keepdims=True) curr_workers_from_job = 1 + tf.argmax(potential_workers, axis=2, output_type=tf.int32) default_workers = tf.zeros_like(state['workers']) curr_workers = tf.where(state['workers'] > 0, default_workers, curr_workers) curr_workers_from_job *= tf.cast(curr_workers > 0, tf.int32)[:, :, 0] state = state.copy() state['jobs'] = tf.maximum(state['jobs'], curr_jobs) state['jobs_from_worker'] = tf.maximum(state['jobs_from_worker'], curr_jobs_from_worker) state['workers'] = tf.maximum(state['workers'], curr_workers) state['workers_from_job'] = tf.maximum(state['workers_from_job'], curr_workers_from_job) return (state, curr_workers) with tf.name_scope('find_augmenting_path'): (state, _) = tf.while_loop(_has_active_workers, _augment_step, (state, init_workers), back_prop=False) new_jobs = (state['jobs'] > 0) & unassigned_jobs state['new_jobs'] = new_jobs[:, 0, :] return state
deeplab2
positive
def _initprop_(self, name, value): if not hasattr(self, '_viewcount'): raise ValueError('base Model __init__ must be called') super()._initprop_(name, value) def notify_js(event): <DeepExtract> if self._viewcount > 0: if WIDGET_ENV == 'colab': colab_output.eval_js(minify(f'\n (window.send_{id(self)} = window.send_{id(self)} ||\n new BroadcastChannel("channel_{id(self)}")\n ).postMessage({json.dumps(args)});\n '), ignore_result=True) elif WIDGET_ENV == 'jupyter': if not self._comms: self._queue.append(args) return for comm in self._comms: comm.send(args) </DeepExtract> if isinstance(value, Trigger): value.on(notify_js, internal=True)
def _initprop_(self, name, value): if not hasattr(self, '_viewcount'): raise ValueError('base Model __init__ must be called') super()._initprop_(name, value) def notify_js(event): if self._viewcount > 0: if WIDGET_ENV == 'colab': colab_output.eval_js(minify(f'\n (window.send_{id(self)} = window.send_{id(self)} ||\n new BroadcastChannel("channel_{id(self)}")\n ).postMessage({json.dumps(args)});\n '), ignore_result=True) elif WIDGET_ENV == 'jupyter': if not self._comms: self._queue.append(args) return for comm in self._comms: comm.send(args) if isinstance(value, Trigger): value.on(notify_js, internal=True)
dissect
positive
def main(): parser = argparse.ArgumentParser() subparsers = parser.add_subparsers() index_parser = subparsers.add_parser('index', help='Build an index for a corpus.') index_parser.set_defaults(command='index') index_parser.add_argument('--output', '-o', required=True, help='Path to store the index.') index_parser.add_argument('--data', '-d', required=True, help='Directory or archive containing SGF files.') index_parser.add_argument('--chunk-size', '-c', type=int, default=20000, help='Number of examples per training chunk.') show_parser = subparsers.add_parser('show', help='Show a summary of an index.') show_parser.set_defaults(command='show') show_parser.add_argument('--file', '-f', required=True, help='Index file.') init_parser = subparsers.add_parser('init', help='Start training.') init_parser.set_defaults(command='init') init_parser.add_argument('--index', '-i', required=True, help='Index file.') init_parser.add_argument('--progress', '-p', required=True, help='Progress file.') init_parser.add_argument('--network', '-n', required=True, help='Python module that defines the network architecture, e.g. "networks.small"') train_parser = subparsers.add_parser('train', help='Do some training.') train_parser.set_defaults(command='train') train_parser.add_argument('--index', '-i', required=True, help='Index file.') train_parser.add_argument('--progress', '-p', required=True, help='Progress file.') train_parser.add_argument('--workers', '-w', type=int, default=1, help='Number of workers to use for preprocessing boards.') export_parser = subparsers.add_parser('export', help='Export a bot from a training run.') export_parser.set_defaults(command='export') export_parser.add_argument('--progress', '-p', required=True, help='Progress file.') export_parser.add_argument('--bot', '-b', help='Bot file name.') args = parser.parse_args() if args.command == 'index': <DeepExtract> corpus_index = build_index(args.data, args.chunk_size) store_index(corpus_index, open(args.output, 'w')) </DeepExtract> elif args.command == 'show': <DeepExtract> corpus_index = load_index(open(args.file)) print('Index contains %d chunks in %d physical files' % (corpus_index.num_chunks, len(corpus_index.physical_files))) </DeepExtract> elif args.command == 'init': <DeepExtract> corpus_index = load_index(open(args.index)) layer_fn = _load_network_by_name(args.network) TrainingRun.create(args.progress, corpus_index, layer_fn) </DeepExtract> elif args.command == 'train': <DeepExtract> corpus_index = load_index(open(args.index)) print('Index contains %d chunks in %d physical files' % (corpus_index.num_chunks, len(corpus_index.physical_files))) if not os.path.exists(args.progress): print('%s does not exist. Run train.py init first.' % (args.progress,)) else: run = TrainingRun.load(args.progress) q = multiprocessing.Queue(maxsize=2 * args.workers) stop_q = multiprocessing.Queue() p = multiprocessing.Process(target=prepare_training_data, args=(args.workers, run.chunks_completed, corpus_index, q, stop_q)) p.start() try: while True: print('Waiting for prepared training chunk...') wait_start_ts = time.time() (X, Y) = q.get() wait_end_ts = time.time() print('Idle %.1f seconds' % (wait_end_ts - wait_start_ts,)) print('Training epoch %d chunk %d/%d...' % (run.epochs_completed + 1, run.chunks_completed + 1, run.num_chunks)) run.model.fit(X, Y, epochs=1) run.complete_chunk() finally: while not q.empty(): q.get() q.close() q.join_thread() print('Shutting down workers, please wait...') stop_q.put(1) stop_q.close() p.join() </DeepExtract> elif args.command == 'export': <DeepExtract> run = TrainingRun.load(args.progress) model_file = args.bot + '_bot.yml' weight_file = args.bot + '_weights.hd5' run.model.save_weights(weight_file, overwrite=True) with open(model_file, 'w') as yml: yml.write(run.model.to_yaml()) </DeepExtract>
def main(): parser = argparse.ArgumentParser() subparsers = parser.add_subparsers() index_parser = subparsers.add_parser('index', help='Build an index for a corpus.') index_parser.set_defaults(command='index') index_parser.add_argument('--output', '-o', required=True, help='Path to store the index.') index_parser.add_argument('--data', '-d', required=True, help='Directory or archive containing SGF files.') index_parser.add_argument('--chunk-size', '-c', type=int, default=20000, help='Number of examples per training chunk.') show_parser = subparsers.add_parser('show', help='Show a summary of an index.') show_parser.set_defaults(command='show') show_parser.add_argument('--file', '-f', required=True, help='Index file.') init_parser = subparsers.add_parser('init', help='Start training.') init_parser.set_defaults(command='init') init_parser.add_argument('--index', '-i', required=True, help='Index file.') init_parser.add_argument('--progress', '-p', required=True, help='Progress file.') init_parser.add_argument('--network', '-n', required=True, help='Python module that defines the network architecture, e.g. "networks.small"') train_parser = subparsers.add_parser('train', help='Do some training.') train_parser.set_defaults(command='train') train_parser.add_argument('--index', '-i', required=True, help='Index file.') train_parser.add_argument('--progress', '-p', required=True, help='Progress file.') train_parser.add_argument('--workers', '-w', type=int, default=1, help='Number of workers to use for preprocessing boards.') export_parser = subparsers.add_parser('export', help='Export a bot from a training run.') export_parser.set_defaults(command='export') export_parser.add_argument('--progress', '-p', required=True, help='Progress file.') export_parser.add_argument('--bot', '-b', help='Bot file name.') args = parser.parse_args() if args.command == 'index': corpus_index = build_index(args.data, args.chunk_size) store_index(corpus_index, open(args.output, 'w')) elif args.command == 'show': corpus_index = load_index(open(args.file)) print('Index contains %d chunks in %d physical files' % (corpus_index.num_chunks, len(corpus_index.physical_files))) elif args.command == 'init': corpus_index = load_index(open(args.index)) layer_fn = _load_network_by_name(args.network) TrainingRun.create(args.progress, corpus_index, layer_fn) elif args.command == 'train': corpus_index = load_index(open(args.index)) print('Index contains %d chunks in %d physical files' % (corpus_index.num_chunks, len(corpus_index.physical_files))) if not os.path.exists(args.progress): print('%s does not exist. Run train.py init first.' % (args.progress,)) else: run = TrainingRun.load(args.progress) q = multiprocessing.Queue(maxsize=2 * args.workers) stop_q = multiprocessing.Queue() p = multiprocessing.Process(target=prepare_training_data, args=(args.workers, run.chunks_completed, corpus_index, q, stop_q)) p.start() try: while True: print('Waiting for prepared training chunk...') wait_start_ts = time.time() (X, Y) = q.get() wait_end_ts = time.time() print('Idle %.1f seconds' % (wait_end_ts - wait_start_ts,)) print('Training epoch %d chunk %d/%d...' % (run.epochs_completed + 1, run.chunks_completed + 1, run.num_chunks)) run.model.fit(X, Y, epochs=1) run.complete_chunk() finally: while not q.empty(): q.get() q.close() q.join_thread() print('Shutting down workers, please wait...') stop_q.put(1) stop_q.close() p.join() elif args.command == 'export': run = TrainingRun.load(args.progress) model_file = args.bot + '_bot.yml' weight_file = args.bot + '_weights.hd5' run.model.save_weights(weight_file, overwrite=True) with open(model_file, 'w') as yml: yml.write(run.model.to_yaml()) </DeepExtract>
deep_learning_and_the_game_of_go
positive
def update_observation_count(self, count): if count and self.handle is None: print('Starting the clock') <DeepExtract> self.handle = asyncio.get_event_loop().call_later(5, self.notify) </DeepExtract> if count == 0 and self.handle: print('Stopping the clock') self.handle.cancel() self.handle = None
def update_observation_count(self, count): if count and self.handle is None: print('Starting the clock') self.handle = asyncio.get_event_loop().call_later(5, self.notify) if count == 0 and self.handle: print('Stopping the clock') self.handle.cancel() self.handle = None
aiocoap
positive
def test_view_manage_wrong_user(self): <DeepExtract> self.client.login(username='admin', password='admin') </DeepExtract> url = reverse('admin:%s_%s_permissions_manage_user' % self.obj_info, kwargs={'object_pk': self.obj.pk, 'user_id': -10}) response = self.client.get(url) self.assertEqual(response.status_code, 404)
def test_view_manage_wrong_user(self): self.client.login(username='admin', password='admin') url = reverse('admin:%s_%s_permissions_manage_user' % self.obj_info, kwargs={'object_pk': self.obj.pk, 'user_id': -10}) response = self.client.get(url) self.assertEqual(response.status_code, 404)
django-guardian
positive
def _atrousValues(self, bottleneck): """Verify the values of dense feature extraction by atrous convolution. Make sure that dense feature extraction by stack_blocks_dense() followed by subsampling gives identical results to feature extraction at the nominal network output stride using the simple self._stack_blocks_nondense() above. Args: bottleneck: The bottleneck function. """ blocks = [resnet_utils.Block('block1', bottleneck, [(4, 1, 1), (4, 1, 2)]), resnet_utils.Block('block2', bottleneck, [(8, 2, 1), (8, 2, 2)]), resnet_utils.Block('block3', bottleneck, [(16, 4, 1), (16, 4, 2)]), resnet_utils.Block('block4', bottleneck, [(32, 8, 1), (32, 8, 1)])] nominal_stride = 8 height = 30 width = 31 with slim.arg_scope(resnet_utils.resnet_arg_scope()): with slim.arg_scope([slim.batch_norm], is_training=False): for output_stride in [1, 2, 4, 8, None]: with tf.Graph().as_default(): with self.test_session() as sess: tf.set_random_seed(0) <DeepExtract> if None in [1, height, width, 3]: inputs = tf.placeholder(tf.float32, (1, height, width, 3)) else: inputs = tf.to_float(np.tile(np.reshape(np.reshape(np.arange(height), [height, 1]) + np.reshape(np.arange(width), [1, width]), [1, height, width, 1]), [1, 1, 1, 3])) </DeepExtract> output = resnet_utils.stack_blocks_dense(inputs, blocks, output_stride) if output_stride is None: factor = 1 else: factor = nominal_stride // output_stride output = resnet_utils.subsample(output, factor) tf.get_variable_scope().reuse_variables() <DeepExtract> for block in blocks: with tf.variable_scope(block.scope, 'block', [inputs]): for (i, unit) in enumerate(block.args): (depth, depth_bottleneck, stride) = unit with tf.variable_scope('unit_%d' % (i + 1), values=[inputs]): inputs = block.unit_fn(inputs, depth=depth, depth_bottleneck=depth_bottleneck, stride=stride, rate=1) expected = inputs </DeepExtract> sess.run(tf.global_variables_initializer()) (output, expected) = sess.run([output, expected]) self.assertAllClose(output, expected, atol=0.0001, rtol=0.0001)
def _atrousValues(self, bottleneck): """Verify the values of dense feature extraction by atrous convolution. Make sure that dense feature extraction by stack_blocks_dense() followed by subsampling gives identical results to feature extraction at the nominal network output stride using the simple self._stack_blocks_nondense() above. Args: bottleneck: The bottleneck function. """ blocks = [resnet_utils.Block('block1', bottleneck, [(4, 1, 1), (4, 1, 2)]), resnet_utils.Block('block2', bottleneck, [(8, 2, 1), (8, 2, 2)]), resnet_utils.Block('block3', bottleneck, [(16, 4, 1), (16, 4, 2)]), resnet_utils.Block('block4', bottleneck, [(32, 8, 1), (32, 8, 1)])] nominal_stride = 8 height = 30 width = 31 with slim.arg_scope(resnet_utils.resnet_arg_scope()): with slim.arg_scope([slim.batch_norm], is_training=False): for output_stride in [1, 2, 4, 8, None]: with tf.Graph().as_default(): with self.test_session() as sess: tf.set_random_seed(0) if None in [1, height, width, 3]: inputs = tf.placeholder(tf.float32, (1, height, width, 3)) else: inputs = tf.to_float(np.tile(np.reshape(np.reshape(np.arange(height), [height, 1]) + np.reshape(np.arange(width), [1, width]), [1, height, width, 1]), [1, 1, 1, 3])) output = resnet_utils.stack_blocks_dense(inputs, blocks, output_stride) if output_stride is None: factor = 1 else: factor = nominal_stride // output_stride output = resnet_utils.subsample(output, factor) tf.get_variable_scope().reuse_variables() for block in blocks: with tf.variable_scope(block.scope, 'block', [inputs]): for (i, unit) in enumerate(block.args): (depth, depth_bottleneck, stride) = unit with tf.variable_scope('unit_%d' % (i + 1), values=[inputs]): inputs = block.unit_fn(inputs, depth=depth, depth_bottleneck=depth_bottleneck, stride=stride, rate=1) expected = inputs sess.run(tf.global_variables_initializer()) (output, expected) = sess.run([output, expected]) self.assertAllClose(output, expected, atol=0.0001, rtol=0.0001)
ARNet
positive
def connection_from_host(self, host, port=None, scheme='http'): """ Get a :class:`ConnectionPool` based on the host, port, and scheme. If ``port`` isn't given, it will be derived from the ``scheme`` using ``urllib3.connectionpool.port_by_scheme``. """ scheme = scheme or 'http' port = port or port_by_scheme.get(scheme, 80) pool_key = (scheme, host, port) pool = self.pools.get(pool_key) if pool: return pool <DeepExtract> pool_cls = pool_classes_by_scheme[scheme] kwargs = self.connection_pool_kw if scheme == 'http': kwargs = self.connection_pool_kw.copy() for kw in SSL_KEYWORDS: kwargs.pop(kw, None) pool = pool_cls(host, port, **kwargs) </DeepExtract> self.pools[pool_key] = pool return pool
def connection_from_host(self, host, port=None, scheme='http'): """ Get a :class:`ConnectionPool` based on the host, port, and scheme. If ``port`` isn't given, it will be derived from the ``scheme`` using ``urllib3.connectionpool.port_by_scheme``. """ scheme = scheme or 'http' port = port or port_by_scheme.get(scheme, 80) pool_key = (scheme, host, port) pool = self.pools.get(pool_key) if pool: return pool pool_cls = pool_classes_by_scheme[scheme] kwargs = self.connection_pool_kw if scheme == 'http': kwargs = self.connection_pool_kw.copy() for kw in SSL_KEYWORDS: kwargs.pop(kw, None) pool = pool_cls(host, port, **kwargs) self.pools[pool_key] = pool return pool
alp
positive
def extract_headers(mail, headers=None): """ returns subset of this messages headers as human-readable format: all header values are decoded, the resulting string has one line "KEY: VALUE" for each requested header present in the mail. :param mail: the mail to use :type mail: :class:`email.message.EmailMessage` :param headers: headers to extract :type headers: list of str """ headertext = '' if headers is None: headers = mail.keys() for key in headers: value = '' if key in mail: <DeepExtract> logging.debug('unquoted header: |%s|', mail.get(key, '')) valuelist = email.header.decode_header(mail.get(key, '')) decoded_list = [] for (v, enc) in valuelist: v = string_decode(v, enc) decoded_list.append(string_sanitize(v)) value = ''.join(decoded_list) if normalize: value = re.sub('\\n\\s+', ' ', value) value = value </DeepExtract> headertext += '%s: %s\n' % (key, value) return headertext
def extract_headers(mail, headers=None): """ returns subset of this messages headers as human-readable format: all header values are decoded, the resulting string has one line "KEY: VALUE" for each requested header present in the mail. :param mail: the mail to use :type mail: :class:`email.message.EmailMessage` :param headers: headers to extract :type headers: list of str """ headertext = '' if headers is None: headers = mail.keys() for key in headers: value = '' if key in mail: logging.debug('unquoted header: |%s|', mail.get(key, '')) valuelist = email.header.decode_header(mail.get(key, '')) decoded_list = [] for (v, enc) in valuelist: v = string_decode(v, enc) decoded_list.append(string_sanitize(v)) value = ''.join(decoded_list) if normalize: value = re.sub('\\n\\s+', ' ', value) value = value headertext += '%s: %s\n' % (key, value) return headertext
alot
positive
def setMode(self, dom, wId, mode): id = 'Value.' + str(wId) <DeepExtract> set(wId, Setting.MODE, mode) GPIOq.pinMode(wId, 1 if mode > 1 else mode) if mode == Mode.PWM: GPIOq.softPWMCreate(wId) set(wId, Setting.VALUE, GPIOq.digitalRead(wId)) </DeepExtract> dom.setValue('Value.' + str(wId), self._getValue(wId)) dom.setAttribute(id, 'value', self._getValue(wId)) if mode == Mode.IN: dom.disableElement(id) dom.setAttribute(id, 'step', '100') elif mode == Mode.OUT: dom.enableElement(id) dom.setAttribute(id, 'step', '100') elif mode == Mode.PWM: dom.enableElement(id) dom.setAttribute(id, 'step', '1') else: sys.exit('???')
def setMode(self, dom, wId, mode): id = 'Value.' + str(wId) set(wId, Setting.MODE, mode) GPIOq.pinMode(wId, 1 if mode > 1 else mode) if mode == Mode.PWM: GPIOq.softPWMCreate(wId) set(wId, Setting.VALUE, GPIOq.digitalRead(wId)) dom.setValue('Value.' + str(wId), self._getValue(wId)) dom.setAttribute(id, 'value', self._getValue(wId)) if mode == Mode.IN: dom.disableElement(id) dom.setAttribute(id, 'step', '100') elif mode == Mode.OUT: dom.enableElement(id) dom.setAttribute(id, 'step', '100') elif mode == Mode.PWM: dom.enableElement(id) dom.setAttribute(id, 'step', '1') else: sys.exit('???')
atlas-python
positive
@moto.mock_s3 def test_bundle_push_delocalize(): """ Test Bundle.push(delocalize) Test if we can push individually, and see that the files actualize to s3 paths. """ <DeepExtract> api.delete_context(TEST_CONTEXT) api.context(context_name=TEST_CONTEXT) s3_client = boto3.client('s3') s3_resource = boto3.resource('s3', region_name='us-east-1') s3_resource.create_bucket(Bucket=TEST_BUCKET) objects = s3_client.list_objects(Bucket=TEST_BUCKET) assert 'Contents' not in objects, 'Bucket should be empty' if remote: api.remote(TEST_CONTEXT, TEST_REMOTE, TEST_BUCKET_URL) s3_client = s3_client </DeepExtract> bundles = {} for i in range(3): name = 'shark{}'.format(i) <DeepExtract> local_fp = tempfile.NamedTemporaryFile() local_fp.write(b'an external local file in bundle') local_fp.flush() with api.Bundle(TEST_CONTEXT, name=name) as b: f1 = b.get_file('file_1.txt') f2 = b.get_file('file_2.txt') f3 = os.path.join(b.get_directory('vince/klartho'), 'file_3.txt') with open(f1, mode='w') as f: f.write('This is our first file! {}'.format(name)) with open(f2, mode='w') as f: f.write('This is our second file! {}'.format(name)) with open(f3, mode='w') as f: f.write('This is our third file! {}'.format(name)) b.add_data([local_fp.name, f1, f2, f3]) hashes = {'f{}'.format(i): md5_file(f) for (i, f) in enumerate([local_fp.name, f1, f2, f3])} b.add_tags(hashes) local_fp.close() saved_uuid = b.uuid b = api.get(TEST_CONTEXT, None, uuid=saved_uuid) b.commit() for (i, f) in enumerate(b.data): assert md5_file(f) == hashes['f{}'.format(i)] bundles[name] = b </DeepExtract> bundles[name].push(delocalize=True) objects = s3_client.list_objects(Bucket=TEST_BUCKET) assert 'Contents' in objects, 'Bucket should not be empty' assert len(objects['Contents']) > 0, 'Bucket should not be empty' for b in bundles.values(): for (i, f) in enumerate(b.data): assert f.startswith('s3://') api.rm(TEST_CONTEXT, rm_all=True) api.pull(TEST_CONTEXT, localize=True) found_bundles = {b.name: b for b in api.search(TEST_CONTEXT)} for (n, b) in found_bundles.items(): for (i, f) in enumerate(b.data): assert md5_file(f) == b.tags['f{}'.format(i)] api.delete_context(TEST_CONTEXT)
@moto.mock_s3 def test_bundle_push_delocalize(): """ Test Bundle.push(delocalize) Test if we can push individually, and see that the files actualize to s3 paths. """ api.delete_context(TEST_CONTEXT) api.context(context_name=TEST_CONTEXT) s3_client = boto3.client('s3') s3_resource = boto3.resource('s3', region_name='us-east-1') s3_resource.create_bucket(Bucket=TEST_BUCKET) objects = s3_client.list_objects(Bucket=TEST_BUCKET) assert 'Contents' not in objects, 'Bucket should be empty' if remote: api.remote(TEST_CONTEXT, TEST_REMOTE, TEST_BUCKET_URL) s3_client = s3_client bundles = {} for i in range(3): name = 'shark{}'.format(i) local_fp = tempfile.NamedTemporaryFile() local_fp.write(b'an external local file in bundle') local_fp.flush() with api.Bundle(TEST_CONTEXT, name=name) as b: f1 = b.get_file('file_1.txt') f2 = b.get_file('file_2.txt') f3 = os.path.join(b.get_directory('vince/klartho'), 'file_3.txt') with open(f1, mode='w') as f: f.write('This is our first file! {}'.format(name)) with open(f2, mode='w') as f: f.write('This is our second file! {}'.format(name)) with open(f3, mode='w') as f: f.write('This is our third file! {}'.format(name)) b.add_data([local_fp.name, f1, f2, f3]) hashes = {'f{}'.format(i): md5_file(f) for (i, f) in enumerate([local_fp.name, f1, f2, f3])} b.add_tags(hashes) local_fp.close() saved_uuid = b.uuid b = api.get(TEST_CONTEXT, None, uuid=saved_uuid) b.commit() for (i, f) in enumerate(b.data): assert md5_file(f) == hashes['f{}'.format(i)] bundles[name] = b bundles[name].push(delocalize=True) objects = s3_client.list_objects(Bucket=TEST_BUCKET) assert 'Contents' in objects, 'Bucket should not be empty' assert len(objects['Contents']) > 0, 'Bucket should not be empty' for b in bundles.values(): for (i, f) in enumerate(b.data): assert f.startswith('s3://') api.rm(TEST_CONTEXT, rm_all=True) api.pull(TEST_CONTEXT, localize=True) found_bundles = {b.name: b for b in api.search(TEST_CONTEXT)} for (n, b) in found_bundles.items(): for (i, f) in enumerate(b.data): assert md5_file(f) == b.tags['f{}'.format(i)] api.delete_context(TEST_CONTEXT)
disdat
positive
def discard(self, value): """Remove `value` from sorted-key list if it is a member. If `value` is not a member, do nothing. Runtime complexity: `O(log(n))` -- approximate. >>> from operator import neg >>> skl = SortedKeyList([5, 4, 3, 2, 1], key=neg) >>> skl.discard(1) >>> skl.discard(0) >>> skl == [5, 4, 3, 2] True :param value: `value` to discard from sorted-key list """ _maxes = self._maxes if not _maxes: return key = self._key(value) <DeepExtract> _maxes = self._maxes if not _maxes: pos = 0 pos = bisect_left(_maxes, _maxes) if pos == len(_maxes): pos = self._len idx = bisect_left(self._lists[pos], _maxes) pos = self._loc(pos, idx) </DeepExtract> if pos == len(_maxes): return _lists = self._lists _keys = self._keys <DeepExtract> _maxes = self._maxes if not _maxes: idx = 0 pos = bisect_left(_maxes, _keys[pos]) if pos == len(_maxes): idx = self._len idx = bisect_left(self._lists[pos], _keys[pos]) idx = self._loc(pos, idx) </DeepExtract> len_keys = len(_keys) len_sublist = len(_keys[pos]) while True: if _keys[pos][idx] != key: return if _lists[pos][idx] == value: <DeepExtract> _lists = self._lists _maxes = self._maxes _index = self._index _lists_pos = _lists[pos] del _lists_pos[idx] self._len -= 1 len_lists_pos = len(_lists_pos) if len_lists_pos > self._load >> 1: _maxes[pos] = _lists_pos[-1] if _index: child = self._offset + pos while child > 0: _index[child] -= 1 child = child - 1 >> 1 _index[0] -= 1 elif len(_lists) > 1: if not pos: pos += 1 prev = pos - 1 _lists[prev].extend(_lists[pos]) _maxes[prev] = _lists[prev][-1] del _lists[pos] del _maxes[pos] del _index[:] self._expand(prev) elif len_lists_pos: _maxes[pos] = _lists_pos[-1] else: del _lists[pos] del _maxes[pos] del _index[:] </DeepExtract> return idx += 1 if idx == len_sublist: pos += 1 if pos == len_keys: return len_sublist = len(_keys[pos]) idx = 0
def discard(self, value): """Remove `value` from sorted-key list if it is a member. If `value` is not a member, do nothing. Runtime complexity: `O(log(n))` -- approximate. >>> from operator import neg >>> skl = SortedKeyList([5, 4, 3, 2, 1], key=neg) >>> skl.discard(1) >>> skl.discard(0) >>> skl == [5, 4, 3, 2] True :param value: `value` to discard from sorted-key list """ _maxes = self._maxes if not _maxes: return key = self._key(value) _maxes = self._maxes if not _maxes: pos = 0 pos = bisect_left(_maxes, _maxes) if pos == len(_maxes): pos = self._len idx = bisect_left(self._lists[pos], _maxes) pos = self._loc(pos, idx) if pos == len(_maxes): return _lists = self._lists _keys = self._keys _maxes = self._maxes if not _maxes: idx = 0 pos = bisect_left(_maxes, _keys[pos]) if pos == len(_maxes): idx = self._len idx = bisect_left(self._lists[pos], _keys[pos]) idx = self._loc(pos, idx) len_keys = len(_keys) len_sublist = len(_keys[pos]) while True: if _keys[pos][idx] != key: return if _lists[pos][idx] == value: _lists = self._lists _maxes = self._maxes _index = self._index _lists_pos = _lists[pos] del _lists_pos[idx] self._len -= 1 len_lists_pos = len(_lists_pos) if len_lists_pos > self._load >> 1: _maxes[pos] = _lists_pos[-1] if _index: child = self._offset + pos while child > 0: _index[child] -= 1 child = child - 1 >> 1 _index[0] -= 1 elif len(_lists) > 1: if not pos: pos += 1 prev = pos - 1 _lists[prev].extend(_lists[pos]) _maxes[prev] = _lists[prev][-1] del _lists[pos] del _maxes[pos] del _index[:] self._expand(prev) elif len_lists_pos: _maxes[pos] = _lists_pos[-1] else: del _lists[pos] del _maxes[pos] del _index[:] return idx += 1 if idx == len_sublist: pos += 1 if pos == len_keys: return len_sublist = len(_keys[pos]) idx = 0
Clair3
positive
def __getitem__(self, index): img_id = self.ids[index] path = img_id['file_name'] iid = img_id['image_id'] img = Image.open(os.path.join(self.detail.img_folder, path)).convert('RGB') if self.mode == 'test': if self.transform is not None: img = self.transform(img) return (img, os.path.basename(path)) mask = self.masks[iid] if self.mode == 'train': (img, mask) = self._sync_transform(img, mask) elif self.mode == 'val': (img, mask) = self._val_sync_transform(img, mask) else: assert self.mode == 'testval' <DeepExtract> target = np.array(mask).astype('int32') - 1 mask = torch.from_numpy(target).long() </DeepExtract> if self.transform is not None: img = self.transform(img) if self.target_transform is not None: mask = self.target_transform(mask) return (img, mask)
def __getitem__(self, index): img_id = self.ids[index] path = img_id['file_name'] iid = img_id['image_id'] img = Image.open(os.path.join(self.detail.img_folder, path)).convert('RGB') if self.mode == 'test': if self.transform is not None: img = self.transform(img) return (img, os.path.basename(path)) mask = self.masks[iid] if self.mode == 'train': (img, mask) = self._sync_transform(img, mask) elif self.mode == 'val': (img, mask) = self._val_sync_transform(img, mask) else: assert self.mode == 'testval' target = np.array(mask).astype('int32') - 1 mask = torch.from_numpy(target).long() if self.transform is not None: img = self.transform(img) if self.target_transform is not None: mask = self.target_transform(mask) return (img, mask)
CariFaceParsing
positive
def _score_round(self, attempt: str) -> int: """Extract words, score and add to correct and incorrect lists.""" <DeepExtract> words = [x for x in re.split('[^a-z]', attempt.lower()) if len(x) > 0] words = words </DeepExtract> for word in words: <DeepExtract> if word in self.word_list: score = _valid_scorer(word) else: score = 0 </DeepExtract> if score > 0: self.score += score self.correct_words.append(word) else: self.incorrect_words.append(word)
def _score_round(self, attempt: str) -> int: """Extract words, score and add to correct and incorrect lists.""" words = [x for x in re.split('[^a-z]', attempt.lower()) if len(x) > 0] words = words for word in words: if word in self.word_list: score = _valid_scorer(word) else: score = 0 if score > 0: self.score += score self.correct_words.append(word) else: self.incorrect_words.append(word)
BIG-bench
positive
def _worker_manager_loop(in_queue, out_queue, done_event, pin_memory, device_id): if pin_memory: torch.cuda.set_device(device_id) while True: try: r = in_queue.get() except Exception: if done_event.is_set(): return raise if r is None: break if isinstance(r[1], ExceptionWrapper): out_queue.put(r) continue (idx, batch) = r try: if pin_memory: <DeepExtract> if torch.is_tensor(batch): batch = batch.pin_memory() elif isinstance(batch, string_classes): batch = batch elif isinstance(batch, collections.Mapping): batch = {k: pin_memory_batch(sample) for (k, sample) in batch.items()} elif isinstance(batch, collections.Sequence): batch = [pin_memory_batch(sample) for sample in batch] else: batch = batch </DeepExtract> except Exception: out_queue.put((idx, ExceptionWrapper(sys.exc_info()))) else: out_queue.put((idx, batch))
def _worker_manager_loop(in_queue, out_queue, done_event, pin_memory, device_id): if pin_memory: torch.cuda.set_device(device_id) while True: try: r = in_queue.get() except Exception: if done_event.is_set(): return raise if r is None: break if isinstance(r[1], ExceptionWrapper): out_queue.put(r) continue (idx, batch) = r try: if pin_memory: if torch.is_tensor(batch): batch = batch.pin_memory() elif isinstance(batch, string_classes): batch = batch elif isinstance(batch, collections.Mapping): batch = {k: pin_memory_batch(sample) for (k, sample) in batch.items()} elif isinstance(batch, collections.Sequence): batch = [pin_memory_batch(sample) for sample in batch] else: batch = batch except Exception: out_queue.put((idx, ExceptionWrapper(sys.exc_info()))) else: out_queue.put((idx, batch))
EnlightenGAN
positive
@filter_hook def get_response(self): <DeepExtract> add = self.org_obj is None change = self.org_obj is not None new_context = {'form': self.form_obj, 'original': self.org_obj, 'show_delete': self.org_obj is not None, 'add': add, 'change': change, 'errors': self.get_error_list(), 'has_add_permission': self.has_add_permission(), 'has_view_permission': self.has_view_permission(), 'has_change_permission': self.has_change_permission(self.org_obj), 'has_delete_permission': self.has_delete_permission(self.org_obj), 'has_file_field': True, 'has_absolute_url': hasattr(self.model, 'get_absolute_url'), 'form_url': '', 'content_type_id': ContentType.objects.get_for_model(self.model).id, 'save_as': self.save_as, 'save_on_top': self.save_on_top} new_context.update({'onclick_attrib': '', 'show_delete_link': new_context['has_delete_permission'] and (change or new_context['show_delete']), 'show_save_as_new': change and self.save_as, 'show_save_and_add_another': new_context['has_add_permission'] and (not self.save_as or add), 'show_save_and_continue': new_context['has_change_permission'], 'show_save': True}) if self.org_obj and new_context['show_delete_link']: new_context['delete_url'] = self.model_admin_url('delete', self.org_obj.pk) context = super(ModelFormAdminView, self).get_context() context.update(new_context) context = context </DeepExtract> context.update(self.kwargs or {}) return TemplateResponse(self.request, self.add_form_template or self.get_template_list('views/model_form.html'), context)
@filter_hook def get_response(self): add = self.org_obj is None change = self.org_obj is not None new_context = {'form': self.form_obj, 'original': self.org_obj, 'show_delete': self.org_obj is not None, 'add': add, 'change': change, 'errors': self.get_error_list(), 'has_add_permission': self.has_add_permission(), 'has_view_permission': self.has_view_permission(), 'has_change_permission': self.has_change_permission(self.org_obj), 'has_delete_permission': self.has_delete_permission(self.org_obj), 'has_file_field': True, 'has_absolute_url': hasattr(self.model, 'get_absolute_url'), 'form_url': '', 'content_type_id': ContentType.objects.get_for_model(self.model).id, 'save_as': self.save_as, 'save_on_top': self.save_on_top} new_context.update({'onclick_attrib': '', 'show_delete_link': new_context['has_delete_permission'] and (change or new_context['show_delete']), 'show_save_as_new': change and self.save_as, 'show_save_and_add_another': new_context['has_add_permission'] and (not self.save_as or add), 'show_save_and_continue': new_context['has_change_permission'], 'show_save': True}) if self.org_obj and new_context['show_delete_link']: new_context['delete_url'] = self.model_admin_url('delete', self.org_obj.pk) context = super(ModelFormAdminView, self).get_context() context.update(new_context) context = context context.update(self.kwargs or {}) return TemplateResponse(self.request, self.add_form_template or self.get_template_list('views/model_form.html'), context)
book
positive
def convert_annots_freq(spath, sfreq, dpath, dfreq): """ Converts the frequency of an annotations file. Parameters ---------- spath: Path of the input annotations file. sfreq: Frequency in Hz used in the input annotations timing. dpath: Path where the new annotations will be stored. dfreq: Frequency in Hz used in the output annotations timing. """ <DeepExtract> result = [] f = open(spath, 'rb') num = 0 chan = 0 displ = 0 while True: bann = f.read(2) if not bann: break (b0, b1) = struct.unpack('bb', bann) A = (b1 & 255) >> 2 I = (b1 & 3) << 8 | 255 & b0 if A == SKIP_CODE and I == 0: (b0, b1, b2, b3) = struct.unpack('4b', f.read(4)) displ = b1 << 24 | (b0 & 255) << 16 | (b3 & 255) << 8 | b2 & 255 elif A is NUM_CODE: num = I result[-1].num = num elif A is SUB_CODE: result[-1].subtype = I elif A is CHN_CODE: chan = I result[-1].chan = chan elif A is AUX_CODE: result[-1].aux = f.read(I) if I % 2 != 0: f.read(1) elif A == I == 0: break else: result.append(MITAnnotation(code=A, time=I + displ, chan=chan, num=num)) displ = 0 f.close() abs_time = 0 for annot in result: abs_time += annot.time annot.time = max(0, abs_time) annots = result </DeepExtract> for ann in annots: ann.time = int(ann.time / float(sfreq) * float(dfreq)) <DeepExtract> annots = sorted(annots) f = open(dpath, 'wb') prev_time = 0 prev_num = 0 prev_chn = 0 for anot in annots: rel_time = anot.time - prev_time if rel_time > SKIP_TIME: f.write(struct.pack('>H', SKIP_CODE << 2)) f.write(struct.pack('<H', rel_time >> 16)) f.write(struct.pack('<H', rel_time & 65535)) rel_time = 0 f.write(struct.pack('<H', anot.code << 10 | rel_time)) prev_time = anot.time if anot.num != prev_num: f.write(struct.pack('<H', NUM_CODE << 10 | anot.num)) prev_num = anot.num if anot.subtype != 0: f.write(struct.pack('<H', SUB_CODE << 10 | anot.subtype)) if anot.chan != prev_chn: f.write(struct.pack('<H', CHN_CODE << 10 | anot.chan)) prev_chn = anot.chan if anot.aux != None: f.write(struct.pack('<H', AUX_CODE << 10 | len(anot.aux))) aux = anot.aux if isinstance(anot.aux, bytes) else bytes(anot.aux, encoding='utf-8') f.write(aux) if len(anot.aux) % 2 != 0: f.write(struct.pack('<b', 0)) f.write(struct.pack('<h', 0)) f.close() </DeepExtract>
def convert_annots_freq(spath, sfreq, dpath, dfreq): """ Converts the frequency of an annotations file. Parameters ---------- spath: Path of the input annotations file. sfreq: Frequency in Hz used in the input annotations timing. dpath: Path where the new annotations will be stored. dfreq: Frequency in Hz used in the output annotations timing. """ result = [] f = open(spath, 'rb') num = 0 chan = 0 displ = 0 while True: bann = f.read(2) if not bann: break (b0, b1) = struct.unpack('bb', bann) A = (b1 & 255) >> 2 I = (b1 & 3) << 8 | 255 & b0 if A == SKIP_CODE and I == 0: (b0, b1, b2, b3) = struct.unpack('4b', f.read(4)) displ = b1 << 24 | (b0 & 255) << 16 | (b3 & 255) << 8 | b2 & 255 elif A is NUM_CODE: num = I result[-1].num = num elif A is SUB_CODE: result[-1].subtype = I elif A is CHN_CODE: chan = I result[-1].chan = chan elif A is AUX_CODE: result[-1].aux = f.read(I) if I % 2 != 0: f.read(1) elif A == I == 0: break else: result.append(MITAnnotation(code=A, time=I + displ, chan=chan, num=num)) displ = 0 f.close() abs_time = 0 for annot in result: abs_time += annot.time annot.time = max(0, abs_time) annots = result for ann in annots: ann.time = int(ann.time / float(sfreq) * float(dfreq)) annots = sorted(annots) f = open(dpath, 'wb') prev_time = 0 prev_num = 0 prev_chn = 0 for anot in annots: rel_time = anot.time - prev_time if rel_time > SKIP_TIME: f.write(struct.pack('>H', SKIP_CODE << 2)) f.write(struct.pack('<H', rel_time >> 16)) f.write(struct.pack('<H', rel_time & 65535)) rel_time = 0 f.write(struct.pack('<H', anot.code << 10 | rel_time)) prev_time = anot.time if anot.num != prev_num: f.write(struct.pack('<H', NUM_CODE << 10 | anot.num)) prev_num = anot.num if anot.subtype != 0: f.write(struct.pack('<H', SUB_CODE << 10 | anot.subtype)) if anot.chan != prev_chn: f.write(struct.pack('<H', CHN_CODE << 10 | anot.chan)) prev_chn = anot.chan if anot.aux != None: f.write(struct.pack('<H', AUX_CODE << 10 | len(anot.aux))) aux = anot.aux if isinstance(anot.aux, bytes) else bytes(anot.aux, encoding='utf-8') f.write(aux) if len(anot.aux) % 2 != 0: f.write(struct.pack('<b', 0)) f.write(struct.pack('<h', 0)) f.close() </DeepExtract>
construe
positive
def test_call_closed_rpc_cancelled(self): <DeepExtract> async def create(): port = find_unused_port() server = await aiozmq.rpc.serve_rpc(MyHandler(self.loop), bind='tcp://127.0.0.1:{}'.format(port), loop=self.loop if use_loop else None, log_exceptions=log_exceptions, exclude_log_exceptions=exclude_log_exceptions) client = await aiozmq.rpc.connect_rpc(connect='tcp://127.0.0.1:{}'.format(port), loop=self.loop if use_loop else None, error_table=error_table, timeout=timeout) (client, server) = (client, server) (self.client, self.server) = self.loop.run_until_complete(create()) (client, server) = (self.client, self.server) </DeepExtract> async def communicate(): server.close() waiter = client.call.func() server.close() await server.wait_closed() client.close() await client.wait_closed() with self.assertRaises(asyncio.CancelledError): await waiter self.loop.run_until_complete(communicate())
def test_call_closed_rpc_cancelled(self): async def create(): port = find_unused_port() server = await aiozmq.rpc.serve_rpc(MyHandler(self.loop), bind='tcp://127.0.0.1:{}'.format(port), loop=self.loop if use_loop else None, log_exceptions=log_exceptions, exclude_log_exceptions=exclude_log_exceptions) client = await aiozmq.rpc.connect_rpc(connect='tcp://127.0.0.1:{}'.format(port), loop=self.loop if use_loop else None, error_table=error_table, timeout=timeout) (client, server) = (client, server) (self.client, self.server) = self.loop.run_until_complete(create()) (client, server) = (self.client, self.server) async def communicate(): server.close() waiter = client.call.func() server.close() await server.wait_closed() client.close() await client.wait_closed() with self.assertRaises(asyncio.CancelledError): await waiter self.loop.run_until_complete(communicate())
aiozmq
positive
def load_detector_legacy(filepath: Union[str, os.PathLike], suffix: str, **kwargs) -> Detector: """ Legacy function to load outlier, drift or adversarial detectors stored dill or pickle files. Warning ------- This function will be removed in a future version. Parameters ---------- filepath Load directory. suffix File suffix for meta and state files. Either `'.dill'` or `'.pickle'`. Returns ------- Loaded outlier or adversarial detector object. """ warnings.warn('Loading of meta.dill and meta.pickle files will be removed in a future version.', DeprecationWarning) if kwargs: k = list(kwargs.keys()) else: k = [] filepath = Path(filepath) if not filepath.is_dir(): raise FileNotFoundError(f'{filepath} does not exist.') meta_dict = dill.load(open(filepath.joinpath('meta' + suffix), 'rb')) try: if meta_dict['version'] != __version__: warnings.warn(f"Trying to load detector from version {meta_dict['version']} when using version {__version__}. This may lead to breaking code or invalid results.") except KeyError: warnings.warn('Trying to load detector from an older version.This may lead to breaking code or invalid results.') if 'backend' in list(meta_dict.keys()) and meta_dict['backend'] == Framework.PYTORCH: raise NotImplementedError('Detectors with PyTorch backend are not yet supported.') detector_name = meta_dict['name'] if detector_name not in [detector for detector in VALID_DETECTORS]: raise NotImplementedError(f'{detector_name} is not supported by `load_detector`.') state_dict = dill.load(open(filepath.joinpath(detector_name + suffix), 'rb')) if 'kwargs' in state_dict and 'other' in state_dict: if 'x_ref_preprocessed' not in state_dict['kwargs']: state_dict['kwargs']['x_ref_preprocessed'] = True state_dict['kwargs']['preprocess_x_ref'] = state_dict['other']['preprocess_x_ref'] model_dir = filepath.joinpath('model') detector: Optional[Detector] = None if detector_name == 'OutlierAE': <DeepExtract> model_dir = Path(filepath).joinpath('model') if not [f.name for f in model_dir.glob('[!.]*.h5')]: logger.warning('No encoder, decoder or ae found in {}.'.format(model_dir)) ae = None encoder_net = tf.keras.models.load_model(model_dir.joinpath('encoder_net.h5')) decoder_net = tf.keras.models.load_model(model_dir.joinpath('decoder_net.h5')) ae = AE(encoder_net, decoder_net) ae.load_weights(model_dir.joinpath('ae.ckpt')) ae = ae </DeepExtract> <DeepExtract> od = OutlierAE(threshold=state_dict['threshold'], ae=ae) detector = od </DeepExtract> elif detector_name == 'OutlierVAE': <DeepExtract> model_dir = Path(filepath).joinpath('model') if not [f.name for f in model_dir.glob('[!.]*.h5')]: logger.warning('No encoder, decoder or vae found in {}.'.format(model_dir)) vae = None encoder_net = tf.keras.models.load_model(model_dir.joinpath('encoder_net.h5')) decoder_net = tf.keras.models.load_model(model_dir.joinpath('decoder_net.h5')) vae = VAE(encoder_net, decoder_net, state_dict['latent_dim'], beta=state_dict['beta']) vae.load_weights(model_dir.joinpath('vae.ckpt')) vae = vae </DeepExtract> <DeepExtract> od = OutlierVAE(threshold=state_dict['threshold'], score_type=state_dict['score_type'], vae=vae, samples=state_dict['samples']) detector = od </DeepExtract> elif detector_name == 'Mahalanobis': <DeepExtract> od = Mahalanobis(threshold=state_dict['threshold'], n_components=state_dict['n_components'], std_clip=state_dict['std_clip'], start_clip=state_dict['start_clip'], max_n=state_dict['max_n'], cat_vars=state_dict['cat_vars'], ohe=state_dict['ohe']) od.d_abs = state_dict['d_abs'] od.clip = state_dict['clip'] od.mean = state_dict['mean'] od.C = state_dict['C'] od.n = state_dict['n'] detector = od </DeepExtract> elif detector_name == 'IForest': <DeepExtract> od = IForest(threshold=state_dict['threshold']) od.isolationforest = state_dict['isolationforest'] detector = od </DeepExtract> elif detector_name == 'OutlierAEGMM': <DeepExtract> model_dir = Path(filepath).joinpath('model') if not [f.name for f in model_dir.glob('[!.]*.h5')]: logger.warning('No encoder, decoder, gmm density net or aegmm found in {}.'.format(model_dir)) aegmm = None encoder_net = tf.keras.models.load_model(model_dir.joinpath('encoder_net.h5')) decoder_net = tf.keras.models.load_model(model_dir.joinpath('decoder_net.h5')) gmm_density_net = tf.keras.models.load_model(model_dir.joinpath('gmm_density_net.h5')) aegmm = AEGMM(encoder_net, decoder_net, gmm_density_net, state_dict['n_gmm'], state_dict['recon_features']) aegmm.load_weights(model_dir.joinpath('aegmm.ckpt')) aegmm = aegmm </DeepExtract> <DeepExtract> od = OutlierAEGMM(threshold=state_dict['threshold'], aegmm=aegmm) od.phi = state_dict['phi'] od.mu = state_dict['mu'] od.cov = state_dict['cov'] od.L = state_dict['L'] od.log_det_cov = state_dict['log_det_cov'] if not all((tf.is_tensor(_) for _ in [od.phi, od.mu, od.cov, od.L, od.log_det_cov])): logger.warning('Loaded AEGMM detector has not been fit.') detector = od </DeepExtract> elif detector_name == 'OutlierVAEGMM': <DeepExtract> model_dir = Path(filepath).joinpath('model') if not [f.name for f in model_dir.glob('[!.]*.h5')]: logger.warning('No encoder, decoder, gmm density net or vaegmm found in {}.'.format(model_dir)) vaegmm = None encoder_net = tf.keras.models.load_model(model_dir.joinpath('encoder_net.h5')) decoder_net = tf.keras.models.load_model(model_dir.joinpath('decoder_net.h5')) gmm_density_net = tf.keras.models.load_model(model_dir.joinpath('gmm_density_net.h5')) vaegmm = VAEGMM(encoder_net, decoder_net, gmm_density_net, state_dict['n_gmm'], state_dict['latent_dim'], state_dict['recon_features'], state_dict['beta']) vaegmm.load_weights(model_dir.joinpath('vaegmm.ckpt')) vaegmm = vaegmm </DeepExtract> <DeepExtract> od = OutlierVAEGMM(threshold=state_dict['threshold'], vaegmm=vaegmm, samples=state_dict['samples']) od.phi = state_dict['phi'] od.mu = state_dict['mu'] od.cov = state_dict['cov'] od.L = state_dict['L'] od.log_det_cov = state_dict['log_det_cov'] if not all((tf.is_tensor(_) for _ in [od.phi, od.mu, od.cov, od.L, od.log_det_cov])): logger.warning('Loaded VAEGMM detector has not been fit.') detector = od </DeepExtract> elif detector_name == 'AdversarialAE': <DeepExtract> model_dir = Path(filepath).joinpath('model') if not [f.name for f in model_dir.glob('[!.]*.h5')]: logger.warning('No encoder, decoder or ae found in {}.'.format(model_dir)) ae = None encoder_net = tf.keras.models.load_model(model_dir.joinpath('encoder_net.h5')) decoder_net = tf.keras.models.load_model(model_dir.joinpath('decoder_net.h5')) ae = AE(encoder_net, decoder_net) ae.load_weights(model_dir.joinpath('ae.ckpt')) ae = ae </DeepExtract> custom_objects = kwargs['custom_objects'] if 'custom_objects' in k else None <DeepExtract> model_dir = Path(model_dir) model_name = filename + '.h5' if model_name not in [f.name for f in model_dir.glob('[!.]*.h5')]: raise FileNotFoundError(f'{model_name} not found in {model_dir.resolve()}.') model = tf.keras.models.load_model(model_dir.joinpath(model_name), custom_objects=custom_objects) if isinstance(layer, int): model = HiddenOutput(model, layer=layer) model = model </DeepExtract> <DeepExtract> model_dir = Path(filepath).joinpath('model') hidden_layer_kld = state_dict['hidden_layer_kld'] if not hidden_layer_kld: model_hl = [] model_hl = [] for (i, (hidden_layer, output_dim)) in enumerate(hidden_layer_kld.items()): m = DenseHidden(model, hidden_layer, output_dim) m.load_weights(model_dir.joinpath('model_hl_' + str(i) + '.ckpt')) model_hl.append(m) model_hl = model_hl </DeepExtract> <DeepExtract> ad = AdversarialAE(threshold=state_dict['threshold'], ae=ae, model=model, model_hl=model_hl, w_model_hl=state_dict['w_model_hl'], temperature=state_dict['temperature']) detector = ad </DeepExtract> elif detector_name == 'ModelDistillation': <DeepExtract> model_dir = Path(model_dir) model_name = 'distilled_model' + '.h5' if model_name not in [f.name for f in model_dir.glob('[!.]*.h5')]: raise FileNotFoundError(f'{model_name} not found in {model_dir.resolve()}.') model = tf.keras.models.load_model(model_dir.joinpath(model_name), custom_objects=custom_objects) if isinstance(layer, int): model = HiddenOutput(model, layer=layer) md = model </DeepExtract> custom_objects = kwargs['custom_objects'] if 'custom_objects' in k else None <DeepExtract> model_dir = Path(model_dir) model_name = filename + '.h5' if model_name not in [f.name for f in model_dir.glob('[!.]*.h5')]: raise FileNotFoundError(f'{model_name} not found in {model_dir.resolve()}.') model = tf.keras.models.load_model(model_dir.joinpath(model_name), custom_objects=custom_objects) if isinstance(layer, int): model = HiddenOutput(model, layer=layer) model = model </DeepExtract> <DeepExtract> ad = ModelDistillation(threshold=state_dict['threshold'], distilled_model=md, model=model, temperature=state_dict['temperature'], loss_type=state_dict['loss_type']) detector = ad </DeepExtract> elif detector_name == 'OutlierProphet': <DeepExtract> od = OutlierProphet(cap=state_dict['cap']) od.model = state_dict['model'] detector = od </DeepExtract> elif detector_name == 'SpectralResidual': <DeepExtract> od = SpectralResidual(threshold=state_dict['threshold'], window_amp=state_dict['window_amp'], window_local=state_dict['window_local'], n_est_points=state_dict['n_est_points'], n_grad_points=state_dict['n_grad_points']) detector = od </DeepExtract> elif detector_name == 'OutlierSeq2Seq': <DeepExtract> model_dir = Path(filepath).joinpath('model') if not [f.name for f in model_dir.glob('[!.]*.h5')]: logger.warning('No seq2seq or threshold estimation net found in {}.'.format(model_dir)) seq2seq = None threshold_net = tf.keras.models.load_model(model_dir.joinpath('threshold_net.h5'), compile=False) latent_dim = state_dict['latent_dim'] n_features = state_dict['shape'][-1] encoder_net = EncoderLSTM(latent_dim) decoder_net = DecoderLSTM(latent_dim, n_features, state_dict['output_activation']) seq2seq = Seq2Seq(encoder_net, decoder_net, threshold_net, n_features, beta=state_dict['beta']) seq2seq.load_weights(model_dir.joinpath('seq2seq.ckpt')) seq2seq = seq2seq </DeepExtract> <DeepExtract> (seq_len, n_features) = state_dict['shape'][1:] od = OutlierSeq2Seq(n_features, seq_len, threshold=state_dict['threshold'], seq2seq=seq2seq, latent_dim=state_dict['latent_dim'], output_activation=state_dict['output_activation']) detector = od </DeepExtract> elif detector_name in ['ChiSquareDrift', 'ClassifierDriftTF', 'KSDrift', 'MMDDriftTF', 'TabularDrift']: (emb, tokenizer) = (None, None) if state_dict['other']['load_text_embedding']: <DeepExtract> model_dir = Path(filepath).joinpath(load_dir) tokenizer = AutoTokenizer.from_pretrained(str(model_dir.resolve())) args = dill.load(open(model_dir.joinpath('embedding.dill'), 'rb')) emb = TransformerEmbedding(str(model_dir.resolve()), embedding_type=args['embedding_type'], layers=args['layers']) (emb, tokenizer) = (emb, tokenizer) </DeepExtract> try: <DeepExtract> model_dir = Path(model_dir) model_name = 'encoder' + '.h5' if model_name not in [f.name for f in model_dir.glob('[!.]*.h5')]: raise FileNotFoundError(f'{model_name} not found in {model_dir.resolve()}.') model = tf.keras.models.load_model(model_dir.joinpath(model_name), custom_objects=custom_objects) if isinstance(layer, int): model = HiddenOutput(model, layer=layer) model = model </DeepExtract> except FileNotFoundError: logger.warning('No model found in {}, setting `model` to `None`.'.format(model_dir)) model = None if detector_name == 'KSDrift': load_fn = init_cd_ksdrift elif detector_name == 'MMDDriftTF': load_fn = init_cd_mmddrift elif detector_name == 'ChiSquareDrift': load_fn = init_cd_chisquaredrift elif detector_name == 'TabularDrift': load_fn = init_cd_tabulardrift elif detector_name == 'ClassifierDriftTF': <DeepExtract> model_dir = Path(model_dir) model_name = 'clf_drift' + '.h5' if model_name not in [f.name for f in model_dir.glob('[!.]*.h5')]: raise FileNotFoundError(f'{model_name} not found in {model_dir.resolve()}.') model = tf.keras.models.load_model(model_dir.joinpath(model_name), custom_objects=custom_objects) if isinstance(layer, int): model = HiddenOutput(model, layer=layer) clf_drift = model </DeepExtract> load_fn = partial(init_cd_classifierdrift, clf_drift) else: raise NotImplementedError detector = load_fn(state_dict, model, emb, tokenizer, **kwargs) elif detector_name == 'LLR': <DeepExtract> model_dir = Path(filepath).joinpath('model') h5files = [f.name for f in model_dir.glob('[!.]*.h5')] if 'model_s.h5' in h5files and 'model_b.h5' in h5files: (model_s, dist_s) = build_model(dist_s, input_shape, str(model_dir.joinpath('model_s.h5').resolve())) (model_b, dist_b) = build_model(dist_b, input_shape, str(model_dir.joinpath('model_b.h5').resolve())) models = (dist_s, dist_b, model_s, model_b) else: dist_s = tf.keras.models.load_model(model_dir.joinpath('model.h5'), compile=False) if 'model_background.h5' in h5files: dist_b = tf.keras.models.load_model(model_dir.joinpath('model_background.h5'), compile=False) else: dist_b = None models = (dist_s, dist_b, None, None) </DeepExtract> <DeepExtract> od = LLR(threshold=state_dict['threshold'], model=models[0], model_background=models[1], log_prob=state_dict['log_prob'], sequential=state_dict['sequential']) if models[2] is not None and models[3] is not None: od.model_s = models[2] od.model_b = models[3] detector = od </DeepExtract> else: raise NotImplementedError detector.meta = meta_dict logger.info('Finished loading detector.') return detector
def load_detector_legacy(filepath: Union[str, os.PathLike], suffix: str, **kwargs) -> Detector: """ Legacy function to load outlier, drift or adversarial detectors stored dill or pickle files. Warning ------- This function will be removed in a future version. Parameters ---------- filepath Load directory. suffix File suffix for meta and state files. Either `'.dill'` or `'.pickle'`. Returns ------- Loaded outlier or adversarial detector object. """ warnings.warn('Loading of meta.dill and meta.pickle files will be removed in a future version.', DeprecationWarning) if kwargs: k = list(kwargs.keys()) else: k = [] filepath = Path(filepath) if not filepath.is_dir(): raise FileNotFoundError(f'{filepath} does not exist.') meta_dict = dill.load(open(filepath.joinpath('meta' + suffix), 'rb')) try: if meta_dict['version'] != __version__: warnings.warn(f"Trying to load detector from version {meta_dict['version']} when using version {__version__}. This may lead to breaking code or invalid results.") except KeyError: warnings.warn('Trying to load detector from an older version.This may lead to breaking code or invalid results.') if 'backend' in list(meta_dict.keys()) and meta_dict['backend'] == Framework.PYTORCH: raise NotImplementedError('Detectors with PyTorch backend are not yet supported.') detector_name = meta_dict['name'] if detector_name not in [detector for detector in VALID_DETECTORS]: raise NotImplementedError(f'{detector_name} is not supported by `load_detector`.') state_dict = dill.load(open(filepath.joinpath(detector_name + suffix), 'rb')) if 'kwargs' in state_dict and 'other' in state_dict: if 'x_ref_preprocessed' not in state_dict['kwargs']: state_dict['kwargs']['x_ref_preprocessed'] = True state_dict['kwargs']['preprocess_x_ref'] = state_dict['other']['preprocess_x_ref'] model_dir = filepath.joinpath('model') detector: Optional[Detector] = None if detector_name == 'OutlierAE': model_dir = Path(filepath).joinpath('model') if not [f.name for f in model_dir.glob('[!.]*.h5')]: logger.warning('No encoder, decoder or ae found in {}.'.format(model_dir)) ae = None encoder_net = tf.keras.models.load_model(model_dir.joinpath('encoder_net.h5')) decoder_net = tf.keras.models.load_model(model_dir.joinpath('decoder_net.h5')) ae = AE(encoder_net, decoder_net) ae.load_weights(model_dir.joinpath('ae.ckpt')) ae = ae od = OutlierAE(threshold=state_dict['threshold'], ae=ae) detector = od elif detector_name == 'OutlierVAE': model_dir = Path(filepath).joinpath('model') if not [f.name for f in model_dir.glob('[!.]*.h5')]: logger.warning('No encoder, decoder or vae found in {}.'.format(model_dir)) vae = None encoder_net = tf.keras.models.load_model(model_dir.joinpath('encoder_net.h5')) decoder_net = tf.keras.models.load_model(model_dir.joinpath('decoder_net.h5')) vae = VAE(encoder_net, decoder_net, state_dict['latent_dim'], beta=state_dict['beta']) vae.load_weights(model_dir.joinpath('vae.ckpt')) vae = vae od = OutlierVAE(threshold=state_dict['threshold'], score_type=state_dict['score_type'], vae=vae, samples=state_dict['samples']) detector = od elif detector_name == 'Mahalanobis': od = Mahalanobis(threshold=state_dict['threshold'], n_components=state_dict['n_components'], std_clip=state_dict['std_clip'], start_clip=state_dict['start_clip'], max_n=state_dict['max_n'], cat_vars=state_dict['cat_vars'], ohe=state_dict['ohe']) od.d_abs = state_dict['d_abs'] od.clip = state_dict['clip'] od.mean = state_dict['mean'] od.C = state_dict['C'] od.n = state_dict['n'] detector = od elif detector_name == 'IForest': od = IForest(threshold=state_dict['threshold']) od.isolationforest = state_dict['isolationforest'] detector = od elif detector_name == 'OutlierAEGMM': model_dir = Path(filepath).joinpath('model') if not [f.name for f in model_dir.glob('[!.]*.h5')]: logger.warning('No encoder, decoder, gmm density net or aegmm found in {}.'.format(model_dir)) aegmm = None encoder_net = tf.keras.models.load_model(model_dir.joinpath('encoder_net.h5')) decoder_net = tf.keras.models.load_model(model_dir.joinpath('decoder_net.h5')) gmm_density_net = tf.keras.models.load_model(model_dir.joinpath('gmm_density_net.h5')) aegmm = AEGMM(encoder_net, decoder_net, gmm_density_net, state_dict['n_gmm'], state_dict['recon_features']) aegmm.load_weights(model_dir.joinpath('aegmm.ckpt')) aegmm = aegmm od = OutlierAEGMM(threshold=state_dict['threshold'], aegmm=aegmm) od.phi = state_dict['phi'] od.mu = state_dict['mu'] od.cov = state_dict['cov'] od.L = state_dict['L'] od.log_det_cov = state_dict['log_det_cov'] if not all((tf.is_tensor(_) for _ in [od.phi, od.mu, od.cov, od.L, od.log_det_cov])): logger.warning('Loaded AEGMM detector has not been fit.') detector = od elif detector_name == 'OutlierVAEGMM': model_dir = Path(filepath).joinpath('model') if not [f.name for f in model_dir.glob('[!.]*.h5')]: logger.warning('No encoder, decoder, gmm density net or vaegmm found in {}.'.format(model_dir)) vaegmm = None encoder_net = tf.keras.models.load_model(model_dir.joinpath('encoder_net.h5')) decoder_net = tf.keras.models.load_model(model_dir.joinpath('decoder_net.h5')) gmm_density_net = tf.keras.models.load_model(model_dir.joinpath('gmm_density_net.h5')) vaegmm = VAEGMM(encoder_net, decoder_net, gmm_density_net, state_dict['n_gmm'], state_dict['latent_dim'], state_dict['recon_features'], state_dict['beta']) vaegmm.load_weights(model_dir.joinpath('vaegmm.ckpt')) vaegmm = vaegmm od = OutlierVAEGMM(threshold=state_dict['threshold'], vaegmm=vaegmm, samples=state_dict['samples']) od.phi = state_dict['phi'] od.mu = state_dict['mu'] od.cov = state_dict['cov'] od.L = state_dict['L'] od.log_det_cov = state_dict['log_det_cov'] if not all((tf.is_tensor(_) for _ in [od.phi, od.mu, od.cov, od.L, od.log_det_cov])): logger.warning('Loaded VAEGMM detector has not been fit.') detector = od elif detector_name == 'AdversarialAE': model_dir = Path(filepath).joinpath('model') if not [f.name for f in model_dir.glob('[!.]*.h5')]: logger.warning('No encoder, decoder or ae found in {}.'.format(model_dir)) ae = None encoder_net = tf.keras.models.load_model(model_dir.joinpath('encoder_net.h5')) decoder_net = tf.keras.models.load_model(model_dir.joinpath('decoder_net.h5')) ae = AE(encoder_net, decoder_net) ae.load_weights(model_dir.joinpath('ae.ckpt')) ae = ae custom_objects = kwargs['custom_objects'] if 'custom_objects' in k else None model_dir = Path(model_dir) model_name = filename + '.h5' if model_name not in [f.name for f in model_dir.glob('[!.]*.h5')]: raise FileNotFoundError(f'{model_name} not found in {model_dir.resolve()}.') model = tf.keras.models.load_model(model_dir.joinpath(model_name), custom_objects=custom_objects) if isinstance(layer, int): model = HiddenOutput(model, layer=layer) model = model model_dir = Path(filepath).joinpath('model') hidden_layer_kld = state_dict['hidden_layer_kld'] if not hidden_layer_kld: model_hl = [] model_hl = [] for (i, (hidden_layer, output_dim)) in enumerate(hidden_layer_kld.items()): m = DenseHidden(model, hidden_layer, output_dim) m.load_weights(model_dir.joinpath('model_hl_' + str(i) + '.ckpt')) model_hl.append(m) model_hl = model_hl ad = AdversarialAE(threshold=state_dict['threshold'], ae=ae, model=model, model_hl=model_hl, w_model_hl=state_dict['w_model_hl'], temperature=state_dict['temperature']) detector = ad elif detector_name == 'ModelDistillation': model_dir = Path(model_dir) model_name = 'distilled_model' + '.h5' if model_name not in [f.name for f in model_dir.glob('[!.]*.h5')]: raise FileNotFoundError(f'{model_name} not found in {model_dir.resolve()}.') model = tf.keras.models.load_model(model_dir.joinpath(model_name), custom_objects=custom_objects) if isinstance(layer, int): model = HiddenOutput(model, layer=layer) md = model custom_objects = kwargs['custom_objects'] if 'custom_objects' in k else None model_dir = Path(model_dir) model_name = filename + '.h5' if model_name not in [f.name for f in model_dir.glob('[!.]*.h5')]: raise FileNotFoundError(f'{model_name} not found in {model_dir.resolve()}.') model = tf.keras.models.load_model(model_dir.joinpath(model_name), custom_objects=custom_objects) if isinstance(layer, int): model = HiddenOutput(model, layer=layer) model = model ad = ModelDistillation(threshold=state_dict['threshold'], distilled_model=md, model=model, temperature=state_dict['temperature'], loss_type=state_dict['loss_type']) detector = ad elif detector_name == 'OutlierProphet': od = OutlierProphet(cap=state_dict['cap']) od.model = state_dict['model'] detector = od elif detector_name == 'SpectralResidual': od = SpectralResidual(threshold=state_dict['threshold'], window_amp=state_dict['window_amp'], window_local=state_dict['window_local'], n_est_points=state_dict['n_est_points'], n_grad_points=state_dict['n_grad_points']) detector = od elif detector_name == 'OutlierSeq2Seq': model_dir = Path(filepath).joinpath('model') if not [f.name for f in model_dir.glob('[!.]*.h5')]: logger.warning('No seq2seq or threshold estimation net found in {}.'.format(model_dir)) seq2seq = None threshold_net = tf.keras.models.load_model(model_dir.joinpath('threshold_net.h5'), compile=False) latent_dim = state_dict['latent_dim'] n_features = state_dict['shape'][-1] encoder_net = EncoderLSTM(latent_dim) decoder_net = DecoderLSTM(latent_dim, n_features, state_dict['output_activation']) seq2seq = Seq2Seq(encoder_net, decoder_net, threshold_net, n_features, beta=state_dict['beta']) seq2seq.load_weights(model_dir.joinpath('seq2seq.ckpt')) seq2seq = seq2seq (seq_len, n_features) = state_dict['shape'][1:] od = OutlierSeq2Seq(n_features, seq_len, threshold=state_dict['threshold'], seq2seq=seq2seq, latent_dim=state_dict['latent_dim'], output_activation=state_dict['output_activation']) detector = od elif detector_name in ['ChiSquareDrift', 'ClassifierDriftTF', 'KSDrift', 'MMDDriftTF', 'TabularDrift']: (emb, tokenizer) = (None, None) if state_dict['other']['load_text_embedding']: model_dir = Path(filepath).joinpath(load_dir) tokenizer = AutoTokenizer.from_pretrained(str(model_dir.resolve())) args = dill.load(open(model_dir.joinpath('embedding.dill'), 'rb')) emb = TransformerEmbedding(str(model_dir.resolve()), embedding_type=args['embedding_type'], layers=args['layers']) (emb, tokenizer) = (emb, tokenizer) try: model_dir = Path(model_dir) model_name = 'encoder' + '.h5' if model_name not in [f.name for f in model_dir.glob('[!.]*.h5')]: raise FileNotFoundError(f'{model_name} not found in {model_dir.resolve()}.') model = tf.keras.models.load_model(model_dir.joinpath(model_name), custom_objects=custom_objects) if isinstance(layer, int): model = HiddenOutput(model, layer=layer) model = model except FileNotFoundError: logger.warning('No model found in {}, setting `model` to `None`.'.format(model_dir)) model = None if detector_name == 'KSDrift': load_fn = init_cd_ksdrift elif detector_name == 'MMDDriftTF': load_fn = init_cd_mmddrift elif detector_name == 'ChiSquareDrift': load_fn = init_cd_chisquaredrift elif detector_name == 'TabularDrift': load_fn = init_cd_tabulardrift elif detector_name == 'ClassifierDriftTF': model_dir = Path(model_dir) model_name = 'clf_drift' + '.h5' if model_name not in [f.name for f in model_dir.glob('[!.]*.h5')]: raise FileNotFoundError(f'{model_name} not found in {model_dir.resolve()}.') model = tf.keras.models.load_model(model_dir.joinpath(model_name), custom_objects=custom_objects) if isinstance(layer, int): model = HiddenOutput(model, layer=layer) clf_drift = model load_fn = partial(init_cd_classifierdrift, clf_drift) else: raise NotImplementedError detector = load_fn(state_dict, model, emb, tokenizer, **kwargs) elif detector_name == 'LLR': model_dir = Path(filepath).joinpath('model') h5files = [f.name for f in model_dir.glob('[!.]*.h5')] if 'model_s.h5' in h5files and 'model_b.h5' in h5files: (model_s, dist_s) = build_model(dist_s, input_shape, str(model_dir.joinpath('model_s.h5').resolve())) (model_b, dist_b) = build_model(dist_b, input_shape, str(model_dir.joinpath('model_b.h5').resolve())) models = (dist_s, dist_b, model_s, model_b) else: dist_s = tf.keras.models.load_model(model_dir.joinpath('model.h5'), compile=False) if 'model_background.h5' in h5files: dist_b = tf.keras.models.load_model(model_dir.joinpath('model_background.h5'), compile=False) else: dist_b = None models = (dist_s, dist_b, None, None) od = LLR(threshold=state_dict['threshold'], model=models[0], model_background=models[1], log_prob=state_dict['log_prob'], sequential=state_dict['sequential']) if models[2] is not None and models[3] is not None: od.model_s = models[2] od.model_b = models[3] detector = od else: raise NotImplementedError detector.meta = meta_dict logger.info('Finished loading detector.') return detector
alibi-detect
positive
def test_save_and_load_tokenizer(self): <DeepExtract> raise NotImplementedError </DeepExtract> before_tokens = tokenizer.encode(u'He is very happy, UNwantéd,running') with TemporaryDirectory() as tmpdirname: tokenizer.save_pretrained(tmpdirname) tokenizer = tokenizer.from_pretrained(tmpdirname) after_tokens = tokenizer.encode(u'He is very happy, UNwantéd,running') self.assertListEqual(before_tokens, after_tokens)
def test_save_and_load_tokenizer(self): raise NotImplementedError before_tokens = tokenizer.encode(u'He is very happy, UNwantéd,running') with TemporaryDirectory() as tmpdirname: tokenizer.save_pretrained(tmpdirname) tokenizer = tokenizer.from_pretrained(tmpdirname) after_tokens = tokenizer.encode(u'He is very happy, UNwantéd,running') self.assertListEqual(before_tokens, after_tokens)
CCF-BDCI-Sentiment-Analysis-Baseline
positive
def get_network_interface(component_key, vm_config, subnet_name, public_ip_name, security_group_association_name, index): <DeepExtract> config = select_first(self.docs, lambda x: x.kind == 'infrastructure/network-interface') if config is None: config = load_schema_obj(schema_types.DEFAULT, 'azure', 'infrastructure/network-interface') config['version'] = VERSION network_interface = config </DeepExtract> network_interface.specification.name = resource_name(self.cluster_prefix, self.cluster_name, 'nic' + '-' + str(index), component_key) network_interface.specification.use_network_security_groups = self.use_network_security_groups network_interface.specification.security_group_association_name = security_group_association_name network_interface.specification.ip_configuration_name = resource_name(self.cluster_prefix, self.cluster_name, 'ipconf' + '-' + str(index), component_key) network_interface.specification.subnet_name = subnet_name network_interface.specification.use_public_ip = self.cluster_model.specification.cloud.use_public_ips network_interface.specification.public_ip_name = public_ip_name network_interface.specification.enable_accelerated_networking = vm_config.specification.network_interface.enable_accelerated_networking return network_interface
def get_network_interface(component_key, vm_config, subnet_name, public_ip_name, security_group_association_name, index): config = select_first(self.docs, lambda x: x.kind == 'infrastructure/network-interface') if config is None: config = load_schema_obj(schema_types.DEFAULT, 'azure', 'infrastructure/network-interface') config['version'] = VERSION network_interface = config network_interface.specification.name = resource_name(self.cluster_prefix, self.cluster_name, 'nic' + '-' + str(index), component_key) network_interface.specification.use_network_security_groups = self.use_network_security_groups network_interface.specification.security_group_association_name = security_group_association_name network_interface.specification.ip_configuration_name = resource_name(self.cluster_prefix, self.cluster_name, 'ipconf' + '-' + str(index), component_key) network_interface.specification.subnet_name = subnet_name network_interface.specification.use_public_ip = self.cluster_model.specification.cloud.use_public_ips network_interface.specification.public_ip_name = public_ip_name network_interface.specification.enable_accelerated_networking = vm_config.specification.network_interface.enable_accelerated_networking return network_interface
epiphany
positive