before
stringlengths
0
955k
after
stringlengths
0
877k
repo
stringlengths
1
74
type
stringclasses
1 value
def updateVault(vault): """Update a vault, which may or may not exist already.""" if isinstance(vault, str): deleted = True vault = self.vaults[vault] else: deleted = False logger = self.logger uuid = vault['id'] name = vault.get('name', '') logger.debug('updateVault() for %s (name: "%s")', uuid, name) if not deleted and (uuid not in self.vaults or (uuid in self.vaults and self.vaults[uuid].get('deleted', False))): logger.debug('this is a new vault') self.vaults[uuid] = vault unlocker = UnlockVaultWidget(uuid, self.stack) self.vaultCountChanged.connect(unlocker.vaultCountChanged) self.stack.addWidget(unlocker) noitems = NoItemWidget(uuid, self.stack) self.stack.addWidget(noitems) items = VersionList(self.stack) self.stack.addWidget(items) widgets = (unlocker, noitems, items) pos = self.vault_order.insert(name, uuid, widgets) backend = QApplication.instance().backend() if backend.get_vault_status(uuid) == 'UNLOCKED': logger.debug('new vault is unlocked') self.versions[uuid] = {} self.version_order[uuid] = SortedList() self.current_item[uuid] = None versions = backend.get_secrets(vault['id']) <DeepExtract> logger = self.logger logger.debug('updating {} versions for vault {}', len(versions), uuid) assert uuid in self.vaults vault = self.vaults[uuid] name = vault.get('name', '') pos = self.vault_order.find(name, uuid) assert pos != -1 (unlocker, noitems, items) = self.vault_order.dataat(pos) modifications = [] current_versions = self.versions[uuid] current_order = self.version_order[uuid] for version in versions: vuuid = version['id'] print('VERSION', repr(version)) key = sortkey(version) present = not version.get('deleted', False) cur_present = vuuid in current_versions cur_deleted = current_versions.get('vuuid', {}).get('deleted', False) if present: if not cur_present: modifications.append((key, 'new', version)) elif cur_present and (not cur_deleted): modifications.append((key, 'update', version)) elif cur_deleted: modifications.append((key, 'undelete', version)) elif cur_present and (not cur_deleted): modifications.append((key, 'delete', version)) modifications.sort() for (key, mod, version) in modifications: vuuid = version['id'] curversion = current_versions.get(vuuid) if mod in ('new', 'update'): group = version['fields'].get('group', '') grouppos = current_order.find(group) if grouppos == -1: item = GroupItem(uuid, group) item.openStateChanged.connect(self.setGroupOpenState) pos = current_order.insert(group, None, (item, None)) items.insertItem(pos, item) self.groupAdded.emit(uuid, group) if mod == 'new': assert curversion is None pos = current_order.find(key) print('KEY', repr(key)) assert pos == -1 item = PasswordItem(uuid, version) item.clicked.connect(self.changeCurrentItem) search = searchkey(version) pos = current_order.insert(key, vuuid, (item, search)) items.insertItem(pos, item) elif mod == 'update': assert curversion is not None curkey = sortkey(curversion) curpos = current_order.find(curkey, vuuid) assert curpos != -1 (item, search) = current_order.dataat(curpos) item.updateData(version) if key != curkey: current_order.removeat(curpos) newpos = current_order.insert(key, vuuid, (item, search)) items.removeItem(item) items.insertItem(newpos, item) elif mod == 'delete': assert curversion is not None curkey = sortkey(current_versions[vuuid]) curpos = current_order.find(curkey, vuuid) assert curpos != -1 (item, search) = current_order.dataat(curpos) current_order.removeat(curpos) items.removeItem(item) item.hide() item.destroy() if self.current_item[uuid] == vuuid: self.current_item[uuid] = None if mod in ('update', 'delete'): curgroup = curversion['fields'].get('group', '') curpos = current_order.find(curgroup) assert curpos != -1 prefix = '%s\x00' % curgroup if curpos == len(current_order) - 1 or not current_order.keyat(curpos + 1).startswith(prefix): (item, search) = current_order.dataat(curpos) current_order.removeat(curpos) items.removeItem(item) item.hide() item.destroy() self.groupRemoved.emit(uuid, curgroup) for version in versions: current_versions[version['id']] = version if uuid != self.current_vault: return if len(current_order) > 0: self.stack.setCurrentWidget(items) else: self.stack.setCurrentWidget(items) self.stack.setCurrentWidget(noitems) self.currentVaultItemCountChanged.emit(len(current_order)) </DeepExtract> self.tabbar.insertTab(pos, name) elif not deleted and uuid in self.vaults and (self.vaults[uuid].get('name', '') != name): logger.debug('this vault was renamed') curname = self.vaults[uuid].get('name', '') curpos = self.vault_order.find(curname, uuid) assert curpos != -1 self.vaults[uuid] = vault widgets = self.vault_order.dataat(curpos) self.vault_order.removeat(curpos) pos = self.vault_order.insert(name, uuid, widgets) self.tabbar.removeTab(curpos) self.tabbar.insertTab(pos, name) elif deleted and uuid in self.vaults and (not self.vaults[uuid].get('deleted', False)): logger.debug('this vault was deleted') curname = self.vaults[uuid].get('name', '') pos = self.vault_order.find(curname, uuid) assert pos != -1 self.vaults[uuid] = vault widgets = self.vault_order.dataat(pos) self.vault_order.removeat(pos) self.tabbar.removeTab(pos) for widget in widgets: self.stack.removeWidget(widget) else: self.vaults[uuid] = vault self.tabbar.setVisible(len(self.vault_order) > 1) self.vaultCountChanged.emit(len(self.vault_order))
def updateVault(vault): """Update a vault, which may or may not exist already.""" if isinstance(vault, str): deleted = True vault = self.vaults[vault] else: deleted = False logger = self.logger uuid = vault['id'] name = vault.get('name', '') logger.debug('updateVault() for %s (name: "%s")', uuid, name) if not deleted and (uuid not in self.vaults or (uuid in self.vaults and self.vaults[uuid].get('deleted', False))): logger.debug('this is a new vault') self.vaults[uuid] = vault unlocker = UnlockVaultWidget(uuid, self.stack) self.vaultCountChanged.connect(unlocker.vaultCountChanged) self.stack.addWidget(unlocker) noitems = NoItemWidget(uuid, self.stack) self.stack.addWidget(noitems) items = VersionList(self.stack) self.stack.addWidget(items) widgets = (unlocker, noitems, items) pos = self.vault_order.insert(name, uuid, widgets) backend = QApplication.instance().backend() if backend.get_vault_status(uuid) == 'UNLOCKED': logger.debug('new vault is unlocked') self.versions[uuid] = {} self.version_order[uuid] = SortedList() self.current_item[uuid] = None versions = backend.get_secrets(vault['id']) logger = self.logger logger.debug('updating {} versions for vault {}', len(versions), uuid) assert uuid in self.vaults vault = self.vaults[uuid] name = vault.get('name', '') pos = self.vault_order.find(name, uuid) assert pos != -1 (unlocker, noitems, items) = self.vault_order.dataat(pos) modifications = [] current_versions = self.versions[uuid] current_order = self.version_order[uuid] for version in versions: vuuid = version['id'] print('VERSION', repr(version)) key = sortkey(version) present = not version.get('deleted', False) cur_present = vuuid in current_versions cur_deleted = current_versions.get('vuuid', {}).get('deleted', False) if present: if not cur_present: modifications.append((key, 'new', version)) elif cur_present and (not cur_deleted): modifications.append((key, 'update', version)) elif cur_deleted: modifications.append((key, 'undelete', version)) elif cur_present and (not cur_deleted): modifications.append((key, 'delete', version)) modifications.sort() for (key, mod, version) in modifications: vuuid = version['id'] curversion = current_versions.get(vuuid) if mod in ('new', 'update'): group = version['fields'].get('group', '') grouppos = current_order.find(group) if grouppos == -1: item = GroupItem(uuid, group) item.openStateChanged.connect(self.setGroupOpenState) pos = current_order.insert(group, None, (item, None)) items.insertItem(pos, item) self.groupAdded.emit(uuid, group) if mod == 'new': assert curversion is None pos = current_order.find(key) print('KEY', repr(key)) assert pos == -1 item = PasswordItem(uuid, version) item.clicked.connect(self.changeCurrentItem) search = searchkey(version) pos = current_order.insert(key, vuuid, (item, search)) items.insertItem(pos, item) elif mod == 'update': assert curversion is not None curkey = sortkey(curversion) curpos = current_order.find(curkey, vuuid) assert curpos != -1 (item, search) = current_order.dataat(curpos) item.updateData(version) if key != curkey: current_order.removeat(curpos) newpos = current_order.insert(key, vuuid, (item, search)) items.removeItem(item) items.insertItem(newpos, item) elif mod == 'delete': assert curversion is not None curkey = sortkey(current_versions[vuuid]) curpos = current_order.find(curkey, vuuid) assert curpos != -1 (item, search) = current_order.dataat(curpos) current_order.removeat(curpos) items.removeItem(item) item.hide() item.destroy() if self.current_item[uuid] == vuuid: self.current_item[uuid] = None if mod in ('update', 'delete'): curgroup = curversion['fields'].get('group', '') curpos = current_order.find(curgroup) assert curpos != -1 prefix = '%s\x00' % curgroup if curpos == len(current_order) - 1 or not current_order.keyat(curpos + 1).startswith(prefix): (item, search) = current_order.dataat(curpos) current_order.removeat(curpos) items.removeItem(item) item.hide() item.destroy() self.groupRemoved.emit(uuid, curgroup) for version in versions: current_versions[version['id']] = version if uuid != self.current_vault: return if len(current_order) > 0: self.stack.setCurrentWidget(items) else: self.stack.setCurrentWidget(items) self.stack.setCurrentWidget(noitems) self.currentVaultItemCountChanged.emit(len(current_order)) self.tabbar.insertTab(pos, name) elif not deleted and uuid in self.vaults and (self.vaults[uuid].get('name', '') != name): logger.debug('this vault was renamed') curname = self.vaults[uuid].get('name', '') curpos = self.vault_order.find(curname, uuid) assert curpos != -1 self.vaults[uuid] = vault widgets = self.vault_order.dataat(curpos) self.vault_order.removeat(curpos) pos = self.vault_order.insert(name, uuid, widgets) self.tabbar.removeTab(curpos) self.tabbar.insertTab(pos, name) elif deleted and uuid in self.vaults and (not self.vaults[uuid].get('deleted', False)): logger.debug('this vault was deleted') curname = self.vaults[uuid].get('name', '') pos = self.vault_order.find(curname, uuid) assert pos != -1 self.vaults[uuid] = vault widgets = self.vault_order.dataat(pos) self.vault_order.removeat(pos) self.tabbar.removeTab(pos) for widget in widgets: self.stack.removeWidget(widget) else: self.vaults[uuid] = vault self.tabbar.setVisible(len(self.vault_order) > 1) self.vaultCountChanged.emit(len(self.vault_order))
bluepass
positive
def __step4(self): """ Find a noncovered zero and prime it. If there is no starred zero in the row containing this primed zero, Go to Step 5. Otherwise, cover this row and uncover the column containing the starred zero. Continue in this manner until there are no uncovered zeros left. Save the smallest uncovered value and Go to Step 6. """ step = 0 done = False row = -1 col = -1 star_col = -1 while not done: <DeepExtract> row = -1 col = -1 i = 0 n = self.n done = False while not done: j = 0 while True: if self.C[i][j] == 0 and (not self.row_covered[i]) and (not self.col_covered[j]): row = i col = j done = True j += 1 if j >= n: break i += 1 if i >= n: done = True (row, col) = (row, col) </DeepExtract> if row < 0: done = True step = 6 else: self.marked[row][col] = 2 <DeepExtract> col = -1 for j in range(self.n): if self.marked[row][j] == 1: col = j break star_col = col </DeepExtract> if star_col >= 0: col = star_col self.row_covered[row] = True self.col_covered[col] = False else: done = True self.Z0_r = row self.Z0_c = col step = 5 return step
def __step4(self): """ Find a noncovered zero and prime it. If there is no starred zero in the row containing this primed zero, Go to Step 5. Otherwise, cover this row and uncover the column containing the starred zero. Continue in this manner until there are no uncovered zeros left. Save the smallest uncovered value and Go to Step 6. """ step = 0 done = False row = -1 col = -1 star_col = -1 while not done: row = -1 col = -1 i = 0 n = self.n done = False while not done: j = 0 while True: if self.C[i][j] == 0 and (not self.row_covered[i]) and (not self.col_covered[j]): row = i col = j done = True j += 1 if j >= n: break i += 1 if i >= n: done = True (row, col) = (row, col) if row < 0: done = True step = 6 else: self.marked[row][col] = 2 col = -1 for j in range(self.n): if self.marked[row][j] == 1: col = j break star_col = col if star_col >= 0: col = star_col self.row_covered[row] = True self.col_covered[col] = False else: done = True self.Z0_r = row self.Z0_c = col step = 5 return step
CenterFusion
positive
def __init__(self, environment=None, params=None, observer=None): self._sac_params = params['ML']['BehaviorSACAgent'] BehaviorTFAAgent.__init__(self, environment=environment, params=params, observer=observer) BehaviorModel.__init__(self, params) <DeepExtract> self._replay_buffer = tf_uniform_replay_buffer.TFUniformReplayBuffer(data_spec=self._agent.collect_data_spec, batch_size=self._wrapped_env.batch_size, max_length=self._sac_params['ReplayBufferCapacity', '', 100000]) </DeepExtract> <DeepExtract> dataset = self._replay_buffer.as_dataset(num_parallel_calls=self._sac_params['ParallelBufferCalls', '', 1], sample_batch_size=self._sac_params['BatchSize', '', 512], num_steps=self._sac_params['BufferNumSteps', '', 2]).prefetch(self._sac_params['BufferPrefetch', '', 3]) self._dataset = dataset </DeepExtract> <DeepExtract> self._collect_policy = self._agent.collect_policy </DeepExtract> <DeepExtract> self._eval_policy = greedy_policy.GreedyPolicy(self._agent.policy) </DeepExtract>
def __init__(self, environment=None, params=None, observer=None): self._sac_params = params['ML']['BehaviorSACAgent'] BehaviorTFAAgent.__init__(self, environment=environment, params=params, observer=observer) BehaviorModel.__init__(self, params) self._replay_buffer = tf_uniform_replay_buffer.TFUniformReplayBuffer(data_spec=self._agent.collect_data_spec, batch_size=self._wrapped_env.batch_size, max_length=self._sac_params['ReplayBufferCapacity', '', 100000]) dataset = self._replay_buffer.as_dataset(num_parallel_calls=self._sac_params['ParallelBufferCalls', '', 1], sample_batch_size=self._sac_params['BatchSize', '', 512], num_steps=self._sac_params['BufferNumSteps', '', 2]).prefetch(self._sac_params['BufferPrefetch', '', 3]) self._dataset = dataset self._collect_policy = self._agent.collect_policy self._eval_policy = greedy_policy.GreedyPolicy(self._agent.policy) </DeepExtract>
bark-ml
positive
def duplicate_entries(self, duplicate, week_update): def duplicate_builder(queryset, new_date): for instance in queryset: duplicate = deepcopy(instance) duplicate.id = None duplicate.published = False duplicate.week_start = new_date yield duplicate def duplicate_helper(queryset, new_date): try: ProjectHours.objects.bulk_create(duplicate_builder(queryset, new_date)) except AttributeError: for entry in duplicate_builder(queryset, new_date): entry.save() msg = 'Project hours were copied' messages.info(self.request, msg) this_week = datetime.datetime.strptime(week_update, DATE_FORM_FORMAT).date() prev_week = this_week - relativedelta(days=7) <DeepExtract> prev_week = prev_week if prev_week else self.week_start week_end = prev_week + relativedelta(days=7) prev_week_qs = ProjectHours.objects.filter(week_start__gte=prev_week, week_start__lt=week_end) </DeepExtract> <DeepExtract> this_week = this_week if this_week else self.week_start week_end = this_week + relativedelta(days=7) this_week_qs = ProjectHours.objects.filter(week_start__gte=this_week, week_start__lt=week_end) </DeepExtract> param = {'week_start': week_update} url = '?'.join((reverse('edit_schedule'), urlencode(param))) if not prev_week_qs.exists(): msg = 'There are no hours to copy' messages.warning(self.request, msg) else: this_week_qs.delete() <DeepExtract> try: ProjectHours.objects.bulk_create(duplicate_builder(prev_week_qs, this_week)) except AttributeError: for entry in duplicate_builder(prev_week_qs, this_week): entry.save() msg = 'Project hours were copied' messages.info(self.request, msg) </DeepExtract> return HttpResponseRedirect(url)
def duplicate_entries(self, duplicate, week_update): def duplicate_builder(queryset, new_date): for instance in queryset: duplicate = deepcopy(instance) duplicate.id = None duplicate.published = False duplicate.week_start = new_date yield duplicate def duplicate_helper(queryset, new_date): try: ProjectHours.objects.bulk_create(duplicate_builder(queryset, new_date)) except AttributeError: for entry in duplicate_builder(queryset, new_date): entry.save() msg = 'Project hours were copied' messages.info(self.request, msg) this_week = datetime.datetime.strptime(week_update, DATE_FORM_FORMAT).date() prev_week = this_week - relativedelta(days=7) prev_week = prev_week if prev_week else self.week_start week_end = prev_week + relativedelta(days=7) prev_week_qs = ProjectHours.objects.filter(week_start__gte=prev_week, week_start__lt=week_end) this_week = this_week if this_week else self.week_start week_end = this_week + relativedelta(days=7) this_week_qs = ProjectHours.objects.filter(week_start__gte=this_week, week_start__lt=week_end) param = {'week_start': week_update} url = '?'.join((reverse('edit_schedule'), urlencode(param))) if not prev_week_qs.exists(): msg = 'There are no hours to copy' messages.warning(self.request, msg) else: this_week_qs.delete() try: ProjectHours.objects.bulk_create(duplicate_builder(prev_week_qs, this_week)) except AttributeError: for entry in duplicate_builder(prev_week_qs, this_week): entry.save() msg = 'Project hours were copied' messages.info(self.request, msg) return HttpResponseRedirect(url)
django-timepiece
positive
def run_command(self, command, timeout=-1): """Send a command to the REPL, wait for and return output. :param str command: The command to send. Trailing newlines are not needed. This should be a complete block of input that will trigger execution; if a continuation prompt is found after sending input, :exc:`ValueError` will be raised. :param int timeout: How long to wait for the next prompt. -1 means the default from the :class:`pexpect.spawn` object (default 30 seconds). None means to wait indefinitely. """ cmdlines = command.splitlines() if command.endswith('\n'): cmdlines.append('') if not cmdlines: raise ValueError('No command was given') self.child.sendline(cmdlines[0]) for line in cmdlines[1:]: <DeepExtract> return self.child.expect_exact([self.prompt, self.continuation_prompt], timeout=1) </DeepExtract> self.child.sendline(line) if self._expect_prompt(timeout=timeout) == 1: self.child.kill(signal.SIGINT) <DeepExtract> return self.child.expect_exact([self.prompt, self.continuation_prompt], timeout=1) </DeepExtract> raise ValueError('Continuation prompt found - input was incomplete:\n' + command) return self.child.before
def run_command(self, command, timeout=-1): """Send a command to the REPL, wait for and return output. :param str command: The command to send. Trailing newlines are not needed. This should be a complete block of input that will trigger execution; if a continuation prompt is found after sending input, :exc:`ValueError` will be raised. :param int timeout: How long to wait for the next prompt. -1 means the default from the :class:`pexpect.spawn` object (default 30 seconds). None means to wait indefinitely. """ cmdlines = command.splitlines() if command.endswith('\n'): cmdlines.append('') if not cmdlines: raise ValueError('No command was given') self.child.sendline(cmdlines[0]) for line in cmdlines[1:]: return self.child.expect_exact([self.prompt, self.continuation_prompt], timeout=1) self.child.sendline(line) if self._expect_prompt(timeout=timeout) == 1: self.child.kill(signal.SIGINT) return self.child.expect_exact([self.prompt, self.continuation_prompt], timeout=1) raise ValueError('Continuation prompt found - input was incomplete:\n' + command) return self.child.before
camr
positive
def get_range_boundaries(range_string, row=0, column=0): if ':' in range_string: (min_range, max_range) = range_string.split(':') (min_col, min_row) = coordinate_from_string(min_range) (max_col, max_row) = coordinate_from_string(max_range) min_col = column_index_from_string(min_col) + column max_col = column_index_from_string(max_col) + column min_row += row max_row += row else: (min_col, min_row) = coordinate_from_string(range_string) <DeepExtract> min_col = _col_conversion_cache[min_col] </DeepExtract> max_col = min_col + 1 max_row = min_row return (min_col, min_row, max_col, max_row)
def get_range_boundaries(range_string, row=0, column=0): if ':' in range_string: (min_range, max_range) = range_string.split(':') (min_col, min_row) = coordinate_from_string(min_range) (max_col, max_row) = coordinate_from_string(max_range) min_col = column_index_from_string(min_col) + column max_col = column_index_from_string(max_col) + column min_row += row max_row += row else: (min_col, min_row) = coordinate_from_string(range_string) min_col = _col_conversion_cache[min_col] max_col = min_col + 1 max_row = min_row return (min_col, min_row, max_col, max_row)
dataproxy
positive
def test_assert_if_mon_none_and_empty_True(self): <DeepExtract> cfg = CephConf() </DeepExtract> with pytest.raises(exc.NeedHostError): mon.get_mon_initial_members(Mock(), True, cfg)
def test_assert_if_mon_none_and_empty_True(self): cfg = CephConf() with pytest.raises(exc.NeedHostError): mon.get_mon_initial_members(Mock(), True, cfg)
ceph-deploy
positive
def _get_data_from_txt_file(txt_file_path: str) -> List[Dict[str, Any]]: """Returns a list of event data in dictionaries from a *.txt file. Args: txt_file_path: The file path. Returns: A list of event data in dictionaries, or an empty list if the data is not valid. """ calendar_content: List[Dict[str, Any]] = [] for event in _get_event_from_txt_file(txt_file_path): if not _is_event_text_valid(event): return [] <DeepExtract> if len(event.split(', ')) == 5: (head, content, start_date, end_date, location) = event.split(', ') location = location.replace('\n', '') else: (head, content, start_date, end_date) = event.split(', ') end_date = end_date.replace('\n', '') location = '' event_data = {'head': head, 'content': content, 'start_date': start_date, 'end_date': end_date, 'location': location} </DeepExtract> if not _is_event_dates_valid(event_data['start_date'], event_data['end_date']): return [] <DeepExtract> if ':' in event_data['start_date'] and ':' in event_data['start_date']: start_date = datetime.strptime(event_data['start_date'], DATE_FORMAT2) end_date = datetime.strptime(event_data['end_date'], DATE_FORMAT2) else: start_date = datetime.strptime(event_data['start_date'], DATE_FORMAT) end_date = datetime.strptime(event_data['end_date'], DATE_FORMAT) calendar_content.append({'Head': event_data['head'], 'Content': event_data['content'], 'S_Date': start_date, 'E_Date': end_date, 'Location': event_data['location']}) </DeepExtract> return calendar_content
def _get_data_from_txt_file(txt_file_path: str) -> List[Dict[str, Any]]: """Returns a list of event data in dictionaries from a *.txt file. Args: txt_file_path: The file path. Returns: A list of event data in dictionaries, or an empty list if the data is not valid. """ calendar_content: List[Dict[str, Any]] = [] for event in _get_event_from_txt_file(txt_file_path): if not _is_event_text_valid(event): return [] if len(event.split(', ')) == 5: (head, content, start_date, end_date, location) = event.split(', ') location = location.replace('\n', '') else: (head, content, start_date, end_date) = event.split(', ') end_date = end_date.replace('\n', '') location = '' event_data = {'head': head, 'content': content, 'start_date': start_date, 'end_date': end_date, 'location': location} if not _is_event_dates_valid(event_data['start_date'], event_data['end_date']): return [] if ':' in event_data['start_date'] and ':' in event_data['start_date']: start_date = datetime.strptime(event_data['start_date'], DATE_FORMAT2) end_date = datetime.strptime(event_data['end_date'], DATE_FORMAT2) else: start_date = datetime.strptime(event_data['start_date'], DATE_FORMAT) end_date = datetime.strptime(event_data['end_date'], DATE_FORMAT) calendar_content.append({'Head': event_data['head'], 'Content': event_data['content'], 'S_Date': start_date, 'E_Date': end_date, 'Location': event_data['location']}) return calendar_content
calendar
positive
def save_cfg(self, cfg_files, file_path): """Merge cfg_files and save merged configuration to file_path Args: cfg_files (str): configuration file paths [default, custom] file_path (str): path of text file for writing the configurations """ <DeepExtract> if cfg_files[0] is not None: with open(cfg_files[0], 'r') as f: default = yaml.load(f, Loader=yaml.FullLoader) else: default = {} </DeepExtract> <DeepExtract> cfg = {} for f in cfg_files: if f is not None: cfg = self.update_dict(cfg, read_yaml(f)) merged = edict(cfg) </DeepExtract> f = open(file_path, 'w') line = '# ' + '-' * 20 + ' Setup ' + '-' * 74 line += '|' + '-' * 10 + ' Default ' + '-' * 20 + '\n' f.writelines(line) <DeepExtract> offset_len = 100 for item in merged: if isinstance(merged[item], dict): line = ' ' * level_cnt + item + ': ' offset = offset_len - len(line) line += ' ' * offset + ' # | ' if default.get(item, -1) == -1: default[item] = {} line += ' --NEW-- ' f.writelines(line + '\n') self.write_cfg(default[item], merged[item], f, level_cnt + 1) else: line = ' ' * level_cnt + item + ': ' if merged[item] is not None: line += str(merged[item]) else: line += ' ' offset = offset_len - len(line) line += ' ' * offset + ' # | ' f.writelines(line) if default.get(item, -1) != -1: line = ' ' if merged[item] != default[item]: line = str(default[item]) f.writelines(line) else: line = ' --NEW-- ' f.writelines(line) f.writelines('\n') </DeepExtract> f.close()
def save_cfg(self, cfg_files, file_path): """Merge cfg_files and save merged configuration to file_path Args: cfg_files (str): configuration file paths [default, custom] file_path (str): path of text file for writing the configurations """ if cfg_files[0] is not None: with open(cfg_files[0], 'r') as f: default = yaml.load(f, Loader=yaml.FullLoader) else: default = {} cfg = {} for f in cfg_files: if f is not None: cfg = self.update_dict(cfg, read_yaml(f)) merged = edict(cfg) f = open(file_path, 'w') line = '# ' + '-' * 20 + ' Setup ' + '-' * 74 line += '|' + '-' * 10 + ' Default ' + '-' * 20 + '\n' f.writelines(line) offset_len = 100 for item in merged: if isinstance(merged[item], dict): line = ' ' * level_cnt + item + ': ' offset = offset_len - len(line) line += ' ' * offset + ' # | ' if default.get(item, -1) == -1: default[item] = {} line += ' --NEW-- ' f.writelines(line + '\n') self.write_cfg(default[item], merged[item], f, level_cnt + 1) else: line = ' ' * level_cnt + item + ': ' if merged[item] is not None: line += str(merged[item]) else: line += ' ' offset = offset_len - len(line) line += ' ' * offset + ' # | ' f.writelines(line) if default.get(item, -1) != -1: line = ' ' if merged[item] != default[item]: line = str(default[item]) f.writelines(line) else: line = ' --NEW-- ' f.writelines(line) f.writelines('\n') f.close()
DF-VO
positive
def test_carbon_tracker_offline_flush(self): tracker = OfflineEmissionsTracker(country_iso_code='USA', output_dir=self.emissions_path, output_file=self.emissions_file) tracker.start() <DeepExtract> end_time: float = time.time() + 1 while time.time() < end_time: pass </DeepExtract> tracker.flush() <DeepExtract> end_time: float = time.time() + 1 while time.time() < end_time: pass </DeepExtract> emissions = tracker.stop() assert isinstance(emissions, float) self.assertNotEqual(emissions, 0.0) self.assertAlmostEqual(emissions, 6.262572537957655e-05, places=2) <DeepExtract> with open(self.emissions_file_path, 'r') as f: lines = [line.rstrip() for line in f] assert len(lines) == expected_lines </DeepExtract>
def test_carbon_tracker_offline_flush(self): tracker = OfflineEmissionsTracker(country_iso_code='USA', output_dir=self.emissions_path, output_file=self.emissions_file) tracker.start() end_time: float = time.time() + 1 while time.time() < end_time: pass tracker.flush() end_time: float = time.time() + 1 while time.time() < end_time: pass emissions = tracker.stop() assert isinstance(emissions, float) self.assertNotEqual(emissions, 0.0) self.assertAlmostEqual(emissions, 6.262572537957655e-05, places=2) with open(self.emissions_file_path, 'r') as f: lines = [line.rstrip() for line in f] assert len(lines) == expected_lines </DeepExtract>
codecarbon
positive
def get_poison_index(self, y, fraction=None): if fraction is None: fraction = self.fraction else: <DeepExtract> fraction = float(fraction) if not 0.0 <= fraction <= 1.0: raise ValueError(f'fraction {fraction} not in [0.0, 1.0] range') fraction = fraction </DeepExtract> source_index = np.where(y == self.source_class)[0] total = len(source_index) poison_count = int(fraction * total) if poison_count == 0: log.warning(f'0 of {total} poisoned for class {self.source_class}.') return np.sort(np.random.choice(source_index, size=poison_count, replace=False))
def get_poison_index(self, y, fraction=None): if fraction is None: fraction = self.fraction else: fraction = float(fraction) if not 0.0 <= fraction <= 1.0: raise ValueError(f'fraction {fraction} not in [0.0, 1.0] range') fraction = fraction source_index = np.where(y == self.source_class)[0] total = len(source_index) poison_count = int(fraction * total) if poison_count == 0: log.warning(f'0 of {total} poisoned for class {self.source_class}.') return np.sort(np.random.choice(source_index, size=poison_count, replace=False))
armory
positive
def multistate_input(**kwargs): <DeepExtract> try: _prop = kwargs['name'] except KeyError: _prop = 'MSI' kwargs['name'] = _prop </DeepExtract> kwargs['objectType'] = MultiStateInputObject kwargs['is_commandable'] = True kwargs['relinquish_default'] = Unsigned(1) return multistate(**kwargs)
def multistate_input(**kwargs): try: _prop = kwargs['name'] except KeyError: _prop = 'MSI' kwargs['name'] = _prop kwargs['objectType'] = MultiStateInputObject kwargs['is_commandable'] = True kwargs['relinquish_default'] = Unsigned(1) return multistate(**kwargs)
BAC0
positive
def forward(self, batch_size, inputs=None, hiddens=None, feats=None, attn_ctx=None, attn_mask=None, mode='teacher forcing', gen_type='greedy', top_k=1, top_p=1.0, temp=1.0, mmi_args={'lm': None, 'lambda': 0, 'gamma': 0, 'tokenizer': None}): ret_dict = {'outputs': None, 'logits': None, 'hiddens': None, 'attn': None} if mode == DecoderRNN.MODE_TEACHER_FORCE: <DeepExtract> embedded = embedded_dropout(embed=self.embedding, words=inputs, dropout=self.dropout_emb if self.training else 0) rnn_inputs = embedded if self.feat_dim > 0: rnn_inputs = torch.cat([rnn_inputs, feats], dim=2) rnn_inputs = self.feat_fc(rnn_inputs) rnn_inputs = self.lockdrop(rnn_inputs, self.dropout_input) (outputs, new_hiddens) = self.rnn(rnn_inputs, hiddens) outputs = self.lockdrop(outputs, self.dropout_output) attns = None if self.use_attention: (outputs, attns) = self.attention(query=outputs, context=attn_ctx, mask=attn_mask) projected = self.project_fc(outputs) logits = self.word_classifier(projected) step_ret_dict = {'outputs': outputs, 'logits': logits, 'hiddens': new_hiddens, 'attns': attns} </DeepExtract> ret_dict['outputs'] = step_ret_dict['outputs'] ret_dict['logits'] = step_ret_dict['logits'] ret_dict['hiddens'] = step_ret_dict['hiddens'] ret_dict['attns'] = step_ret_dict['attns'] elif mode == DecoderRNN.MODE_FREE_RUN: if feats is None: n_unrolling_steps = self.max_len else: n_unrolling_steps = feats.size(1) bos_input = torch.LongTensor([self.bos_token_id]).to(DEVICE) bos_input.requires_grad_(False) step_input = bos_input.expand(batch_size, 1) step_hidden = hiddens def beamize_data(data, k, batch_dim=0): if batch_dim != 0: data = data.transpose(0, batch_dim).contiguous() batch_size = data.size()[0] data_size = data.size()[1:] num_dims = data.dim() data = data.unsqueeze(1).repeat((1,) + (k,) + (1,) * (num_dims - 1)).view((batch_size * k,) + data_size) if batch_dim != 0: data = data.transpose(0, batch_dim).contiguous() return data if gen_type in (DecoderRNN.GEN_BEAM, DecoderRNN.GEN_BEAM_SAMPLE, DecoderRNN.GEN_BEAM_MMI_ANTI_LM): <DeepExtract> if batch_dim != 0: step_input = step_input.transpose(0, batch_dim).contiguous() batch_size = step_input.size()[0] data_size = step_input.size()[1:] num_dims = step_input.dim() step_input = step_input.unsqueeze(1).repeat((1,) + (top_k,) + (1,) * (num_dims - 1)).view((batch_size * top_k,) + data_size) if batch_dim != 0: step_input = step_input.transpose(0, batch_dim).contiguous() step_input = step_input </DeepExtract> <DeepExtract> if 1 != 0: step_hidden = step_hidden.transpose(0, 1).contiguous() batch_size = step_hidden.size()[0] data_size = step_hidden.size()[1:] num_dims = step_hidden.dim() step_hidden = step_hidden.unsqueeze(1).repeat((1,) + (top_k,) + (1,) * (num_dims - 1)).view((batch_size * top_k,) + data_size) if 1 != 0: step_hidden = step_hidden.transpose(0, 1).contiguous() step_hidden = step_hidden </DeepExtract> <DeepExtract> if batch_dim != 0: attn_ctx = attn_ctx.transpose(0, batch_dim).contiguous() batch_size = attn_ctx.size()[0] data_size = attn_ctx.size()[1:] num_dims = attn_ctx.dim() attn_ctx = attn_ctx.unsqueeze(1).repeat((1,) + (top_k,) + (1,) * (num_dims - 1)).view((batch_size * top_k,) + data_size) if batch_dim != 0: attn_ctx = attn_ctx.transpose(0, batch_dim).contiguous() attn_ctx = attn_ctx </DeepExtract> <DeepExtract> if batch_dim != 0: attn_mask = attn_mask.transpose(0, batch_dim).contiguous() batch_size = attn_mask.size()[0] data_size = attn_mask.size()[1:] num_dims = attn_mask.dim() attn_mask = attn_mask.unsqueeze(1).repeat((1,) + (top_k,) + (1,) * (num_dims - 1)).view((batch_size * top_k,) + data_size) if batch_dim != 0: attn_mask = attn_mask.transpose(0, batch_dim).contiguous() attn_mask = attn_mask </DeepExtract> feats = None if feats is None else beamize_data(feats, top_k) cur_scores = torch.full((batch_size, top_k), -float('inf')).to(DEVICE) cur_scores[:, 0] = 0.0 beam_scores = [] beam_predecessors = [] beam_emmited_symbols = [] partial_seqs = step_input.tolist() else: step_output_lst = [] step_logit_lst = [] step_attn_lst = [] step_symbol_lst = [] for step_idx in range(n_unrolling_steps): if feats is None: step_feat = None else: step_feat = feats[:, step_idx, :].unsqueeze(1) <DeepExtract> embedded = embedded_dropout(embed=self.embedding, words=step_input, dropout=self.dropout_emb if self.training else 0) rnn_inputs = embedded if self.feat_dim > 0: rnn_inputs = torch.cat([rnn_inputs, step_feat], dim=2) rnn_inputs = self.feat_fc(rnn_inputs) rnn_inputs = self.lockdrop(rnn_inputs, self.dropout_input) (outputs, new_hiddens) = self.rnn(rnn_inputs, step_hidden) outputs = self.lockdrop(outputs, self.dropout_output) attns = None if self.use_attention: (outputs, attns) = self.attention(query=outputs, context=attn_ctx, mask=attn_mask) projected = self.project_fc(outputs) logits = self.word_classifier(projected) step_ret_dict = {'outputs': outputs, 'logits': logits, 'hiddens': new_hiddens, 'attns': attns} </DeepExtract> <DeepExtract> step_ret_dict['logits'].squeeze(1) = step_ret_dict['logits'].squeeze(1) / temp scores = step_ret_dict['logits'].squeeze(1) if gen_type == DecoderRNN.GEN_GREEDY: symbols = step_ret_dict['logits'].squeeze(1).topk(1)[1] elif gen_type in (DecoderRNN.GEN_BEAM, DecoderRNN.GEN_BEAM_MMI_ANTI_LM): logsoftmax_scores = F.log_softmax(step_ret_dict['logits'].squeeze(1), dim=1) (scores, symbols) = logsoftmax_scores.topk(top_k) elif gen_type == DecoderRNN.GEN_SAMPLE: probs = F.softmax(step_ret_dict['logits'].squeeze(1), dim=-1) dist = torch.distributions.Categorical(probs) symbols = dist.sample().unsqueeze(1) elif gen_type == DecoderRNN.GEN_TOP: top_k = min(top_k, step_ret_dict['logits'].squeeze(1).size(-1)) if top_k > 0: indices_to_remove = step_ret_dict['logits'].squeeze(1) < torch.topk(step_ret_dict['logits'].squeeze(1), top_k)[0][..., -1, None] step_ret_dict['logits'].squeeze(1)[indices_to_remove] = -float('inf') if top_p > 0.0: (sorted_logits, sorted_indices) = torch.sort(step_ret_dict['logits'].squeeze(1), descending=True) cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1) sorted_indices_to_remove = cumulative_probs > top_p sorted_indices_to_remove[..., 0] = 0 for batch_idx in range(step_ret_dict['logits'].squeeze(1).size(0)): indices_to_remove = sorted_indices[batch_idx][sorted_indices_to_remove[batch_idx]] step_ret_dict['logits'].squeeze(1)[batch_idx, indices_to_remove] = -float('inf') probs = F.softmax(step_ret_dict['logits'].squeeze(1), dim=-1) dist = torch.distributions.Categorical(probs) symbols = dist.sample().unsqueeze(1) elif gen_type == DecoderRNN.GEN_BEAM_SAMPLE: softmax_scores = F.softmax(step_ret_dict['logits'].squeeze(1), dim=1) symbols = torch.multinomial(softmax_scores, top_k) scores = torch.gather(softmax_scores, 1, symbols).log() else: raise Exception('unsupported generation type {}'.format(gen_type)) decode_dict = {'scores': scores, 'symbols': symbols} </DeepExtract> if gen_type not in (DecoderRNN.GEN_BEAM, DecoderRNN.GEN_BEAM_SAMPLE, DecoderRNN.GEN_BEAM_MMI_ANTI_LM): step_input = decode_dict['symbols'] step_hidden = step_ret_dict['hiddens'] step_output_lst.append(step_ret_dict['outputs']) step_logit_lst.append(step_ret_dict['logits']) step_attn_lst.append(step_ret_dict['attns']) step_symbol_lst.append(step_input) else: step_scores = decode_dict['scores'] step_symbols = decode_dict['symbols'] cur_scores = cur_scores.view(batch_size * top_k, 1) if gen_type == DecoderRNN.GEN_BEAM_MMI_ANTI_LM: step_symbol_lst = step_symbols.tolist() new_partial_seqs = [] for partial_seq_idx in range(len(partial_seqs)): partial_seq = partial_seqs[partial_seq_idx] for symbol in step_symbol_lst[partial_seq_idx]: new_partial_seqs.append(partial_seq + [symbol]) lm_seqs = [mmi_args['tokenizer'].convert_ids_to_tokens(ids) for ids in new_partial_seqs] lm_seqs = [mmi_args['tokenizer'].convert_tokens_to_string(tokens) for tokens in lm_seqs] lm_outputs = mmi_args['lm'].compute_prob(lm_seqs) lm_word_ll = lm_outputs['word_loglikelihood'] length_mask = torch.LongTensor(list(range(lm_word_ll.size(1)))).to(DEVICE).unsqueeze(0) length_mask = length_mask + 1 <= mmi_args['gamma'] length_penalty = length_mask.float().log() masked_lm_word_ll = lm_word_ll + length_penalty masked_lm_sent_ll = masked_lm_word_ll.sum(1) U_t = masked_lm_sent_ll.exp().view(batch_size * top_k, top_k) P_t_given_s = cur_scores.exp() mmi_scores = P_t_given_s - mmi_args['lambda'] * U_t + mmi_args['gamma'] * (step_idx + 1) new_score_candidates = mmi_scores.view(batch_size, top_k * top_k) (_, cand_idcs) = new_score_candidates.topk(top_k, dim=1) new_cur_scores = [] step_scores_flat = step_scores.view(batch_size, top_k * top_k) for batch_idx in range(len(cand_idcs)): for cand_idx in cand_idcs[batch_idx]: pred = cand_idx // top_k + batch_idx * top_k new_cur_scores.append(cur_scores[pred] + step_scores_flat[batch_idx][cand_idx]) cur_scores = torch.FloatTensor(new_cur_scores).to(DEVICE) else: new_score_candidates = (cur_scores * (step_idx + 1) + step_scores) / (step_idx + 2) new_score_candidates = new_score_candidates.view(batch_size, top_k * top_k) (cur_scores, cand_idcs) = new_score_candidates.topk(top_k, dim=1) cur_scores = cur_scores.view(batch_size * top_k) cand_idcs = cand_idcs.tolist() to_emit_symbol_candidates = step_symbols.view(batch_size, top_k * top_k).tolist() step_predecessors = [] step_emitted_symbols = [] for batch_idx in range(len(cand_idcs)): for cand_idx in cand_idcs[batch_idx]: pred = cand_idx // top_k + batch_idx * top_k emit = to_emit_symbol_candidates[batch_idx][cand_idx] step_predecessors.append(pred) step_emitted_symbols.append(emit) beam_emmited_symbols.append(step_emitted_symbols) beam_predecessors.append(step_predecessors) beam_scores.append(cur_scores.tolist()) new_partial_seqs = [] for (step_e, step_pred) in zip(step_emitted_symbols, step_predecessors): pred_partial_seq = partial_seqs[step_pred] new_partial_seq = pred_partial_seq + [step_e] new_partial_seqs.append(new_partial_seq) partial_seqs = new_partial_seqs eos_token_masks = torch.LongTensor(step_emitted_symbols).to(DEVICE) == self.eos_token_id cur_scores = cur_scores.masked_fill(eos_token_masks, -float('inf')) step_emitted_symbols = torch.LongTensor(step_emitted_symbols).view(batch_size * top_k, 1).to(DEVICE) step_input = step_emitted_symbols step_hidden = step_ret_dict['hiddens'] step_hidden = step_hidden.transpose(0, 1).contiguous() new_step_hidden = [] for batch_idx in range(len(cand_idcs)): for cand_idx in cand_idcs[batch_idx]: pred = cand_idx // top_k + batch_idx * top_k new_step_hidden.append(step_hidden[pred]) new_step_hidden = torch.stack(new_step_hidden) step_hidden = new_step_hidden step_hidden = step_hidden.transpose(0, 1).contiguous() if gen_type not in (DecoderRNN.GEN_BEAM, DecoderRNN.GEN_BEAM_SAMPLE, DecoderRNN.GEN_BEAM_MMI_ANTI_LM): outputs = torch.cat(step_output_lst, dim=1) logits = torch.cat(step_logit_lst, dim=1) if self.use_attention: attns = torch.cat(step_attn_lst, dim=1) else: attns = None symbols = torch.cat(step_symbol_lst, dim=1) ret_dict['outputs'] = outputs ret_dict['logits'] = logits ret_dict['hiddens'] = step_hidden ret_dict['attns'] = attns ret_dict['symbols'] = symbols else: <DeepExtract> beam_scores = np.array(beam_scores) beam_predecessors = np.array(beam_predecessors) beam_emmited_symbols = np.array(beam_emmited_symbols) (L, N) = beam_scores.shape assert beam_scores.shape == beam_predecessors.shape == beam_emmited_symbols.shape assert N == batch_size * top_k def backtrack_from_coordinate(i, j): """ arguments i - step axis j - batch*beam axis """ score = beam_scores[i, j] seq = [beam_emmited_symbols[i, j]] while i > 0: j = beam_predecessors[i, j] i = i - 1 seq.append(beam_emmited_symbols[i, j]) seq.reverse() batch_seqs = (seq, score) batch_seqs = [[] for _ in range(batch_size)] for i in range(L - 1): for j in range(N): if beam_emmited_symbols[i, j] == self.eos_token_id: (seq, score) = backtrack_from_coordinate(i, j) batch_idx = j // top_k batch_seqs[batch_idx].append((seq, score)) i = L - 1 for j in range(N): (seq, score) = backtrack_from_coordinate(i, j) batch_idx = j // top_k batch_seqs[batch_idx].append((seq, score)) batch_seqs = [sorted(seqs, key=lambda x: x[1], reverse=True) for seqs in batch_seqs] batch_seqs = batch_seqs </DeepExtract> batch_best_seqs = [seq_score_pairs[0][0] for seq_score_pairs in batch_seqs] seq_lens = [len(seq) for seq in batch_best_seqs] max_seq_len = max(seq_lens) symbols = [seq + [self.pad_token_id] * (max_seq_len - len(seq)) for seq in batch_best_seqs] symbols = torch.LongTensor(symbols).to(DEVICE) ret_dict['symbols'] = symbols ret_dict['beam_hypotheses'] = batch_seqs return ret_dict
def forward(self, batch_size, inputs=None, hiddens=None, feats=None, attn_ctx=None, attn_mask=None, mode='teacher forcing', gen_type='greedy', top_k=1, top_p=1.0, temp=1.0, mmi_args={'lm': None, 'lambda': 0, 'gamma': 0, 'tokenizer': None}): ret_dict = {'outputs': None, 'logits': None, 'hiddens': None, 'attn': None} if mode == DecoderRNN.MODE_TEACHER_FORCE: embedded = embedded_dropout(embed=self.embedding, words=inputs, dropout=self.dropout_emb if self.training else 0) rnn_inputs = embedded if self.feat_dim > 0: rnn_inputs = torch.cat([rnn_inputs, feats], dim=2) rnn_inputs = self.feat_fc(rnn_inputs) rnn_inputs = self.lockdrop(rnn_inputs, self.dropout_input) (outputs, new_hiddens) = self.rnn(rnn_inputs, hiddens) outputs = self.lockdrop(outputs, self.dropout_output) attns = None if self.use_attention: (outputs, attns) = self.attention(query=outputs, context=attn_ctx, mask=attn_mask) projected = self.project_fc(outputs) logits = self.word_classifier(projected) step_ret_dict = {'outputs': outputs, 'logits': logits, 'hiddens': new_hiddens, 'attns': attns} ret_dict['outputs'] = step_ret_dict['outputs'] ret_dict['logits'] = step_ret_dict['logits'] ret_dict['hiddens'] = step_ret_dict['hiddens'] ret_dict['attns'] = step_ret_dict['attns'] elif mode == DecoderRNN.MODE_FREE_RUN: if feats is None: n_unrolling_steps = self.max_len else: n_unrolling_steps = feats.size(1) bos_input = torch.LongTensor([self.bos_token_id]).to(DEVICE) bos_input.requires_grad_(False) step_input = bos_input.expand(batch_size, 1) step_hidden = hiddens def beamize_data(data, k, batch_dim=0): if batch_dim != 0: data = data.transpose(0, batch_dim).contiguous() batch_size = data.size()[0] data_size = data.size()[1:] num_dims = data.dim() data = data.unsqueeze(1).repeat((1,) + (k,) + (1,) * (num_dims - 1)).view((batch_size * k,) + data_size) if batch_dim != 0: data = data.transpose(0, batch_dim).contiguous() return data if gen_type in (DecoderRNN.GEN_BEAM, DecoderRNN.GEN_BEAM_SAMPLE, DecoderRNN.GEN_BEAM_MMI_ANTI_LM): if batch_dim != 0: step_input = step_input.transpose(0, batch_dim).contiguous() batch_size = step_input.size()[0] data_size = step_input.size()[1:] num_dims = step_input.dim() step_input = step_input.unsqueeze(1).repeat((1,) + (top_k,) + (1,) * (num_dims - 1)).view((batch_size * top_k,) + data_size) if batch_dim != 0: step_input = step_input.transpose(0, batch_dim).contiguous() step_input = step_input if 1 != 0: step_hidden = step_hidden.transpose(0, 1).contiguous() batch_size = step_hidden.size()[0] data_size = step_hidden.size()[1:] num_dims = step_hidden.dim() step_hidden = step_hidden.unsqueeze(1).repeat((1,) + (top_k,) + (1,) * (num_dims - 1)).view((batch_size * top_k,) + data_size) if 1 != 0: step_hidden = step_hidden.transpose(0, 1).contiguous() step_hidden = step_hidden if batch_dim != 0: attn_ctx = attn_ctx.transpose(0, batch_dim).contiguous() batch_size = attn_ctx.size()[0] data_size = attn_ctx.size()[1:] num_dims = attn_ctx.dim() attn_ctx = attn_ctx.unsqueeze(1).repeat((1,) + (top_k,) + (1,) * (num_dims - 1)).view((batch_size * top_k,) + data_size) if batch_dim != 0: attn_ctx = attn_ctx.transpose(0, batch_dim).contiguous() attn_ctx = attn_ctx if batch_dim != 0: attn_mask = attn_mask.transpose(0, batch_dim).contiguous() batch_size = attn_mask.size()[0] data_size = attn_mask.size()[1:] num_dims = attn_mask.dim() attn_mask = attn_mask.unsqueeze(1).repeat((1,) + (top_k,) + (1,) * (num_dims - 1)).view((batch_size * top_k,) + data_size) if batch_dim != 0: attn_mask = attn_mask.transpose(0, batch_dim).contiguous() attn_mask = attn_mask feats = None if feats is None else beamize_data(feats, top_k) cur_scores = torch.full((batch_size, top_k), -float('inf')).to(DEVICE) cur_scores[:, 0] = 0.0 beam_scores = [] beam_predecessors = [] beam_emmited_symbols = [] partial_seqs = step_input.tolist() else: step_output_lst = [] step_logit_lst = [] step_attn_lst = [] step_symbol_lst = [] for step_idx in range(n_unrolling_steps): if feats is None: step_feat = None else: step_feat = feats[:, step_idx, :].unsqueeze(1) embedded = embedded_dropout(embed=self.embedding, words=step_input, dropout=self.dropout_emb if self.training else 0) rnn_inputs = embedded if self.feat_dim > 0: rnn_inputs = torch.cat([rnn_inputs, step_feat], dim=2) rnn_inputs = self.feat_fc(rnn_inputs) rnn_inputs = self.lockdrop(rnn_inputs, self.dropout_input) (outputs, new_hiddens) = self.rnn(rnn_inputs, step_hidden) outputs = self.lockdrop(outputs, self.dropout_output) attns = None if self.use_attention: (outputs, attns) = self.attention(query=outputs, context=attn_ctx, mask=attn_mask) projected = self.project_fc(outputs) logits = self.word_classifier(projected) step_ret_dict = {'outputs': outputs, 'logits': logits, 'hiddens': new_hiddens, 'attns': attns} step_ret_dict['logits'].squeeze(1) = step_ret_dict['logits'].squeeze(1) / temp scores = step_ret_dict['logits'].squeeze(1) if gen_type == DecoderRNN.GEN_GREEDY: symbols = step_ret_dict['logits'].squeeze(1).topk(1)[1] elif gen_type in (DecoderRNN.GEN_BEAM, DecoderRNN.GEN_BEAM_MMI_ANTI_LM): logsoftmax_scores = F.log_softmax(step_ret_dict['logits'].squeeze(1), dim=1) (scores, symbols) = logsoftmax_scores.topk(top_k) elif gen_type == DecoderRNN.GEN_SAMPLE: probs = F.softmax(step_ret_dict['logits'].squeeze(1), dim=-1) dist = torch.distributions.Categorical(probs) symbols = dist.sample().unsqueeze(1) elif gen_type == DecoderRNN.GEN_TOP: top_k = min(top_k, step_ret_dict['logits'].squeeze(1).size(-1)) if top_k > 0: indices_to_remove = step_ret_dict['logits'].squeeze(1) < torch.topk(step_ret_dict['logits'].squeeze(1), top_k)[0][..., -1, None] step_ret_dict['logits'].squeeze(1)[indices_to_remove] = -float('inf') if top_p > 0.0: (sorted_logits, sorted_indices) = torch.sort(step_ret_dict['logits'].squeeze(1), descending=True) cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1) sorted_indices_to_remove = cumulative_probs > top_p sorted_indices_to_remove[..., 0] = 0 for batch_idx in range(step_ret_dict['logits'].squeeze(1).size(0)): indices_to_remove = sorted_indices[batch_idx][sorted_indices_to_remove[batch_idx]] step_ret_dict['logits'].squeeze(1)[batch_idx, indices_to_remove] = -float('inf') probs = F.softmax(step_ret_dict['logits'].squeeze(1), dim=-1) dist = torch.distributions.Categorical(probs) symbols = dist.sample().unsqueeze(1) elif gen_type == DecoderRNN.GEN_BEAM_SAMPLE: softmax_scores = F.softmax(step_ret_dict['logits'].squeeze(1), dim=1) symbols = torch.multinomial(softmax_scores, top_k) scores = torch.gather(softmax_scores, 1, symbols).log() else: raise Exception('unsupported generation type {}'.format(gen_type)) decode_dict = {'scores': scores, 'symbols': symbols} if gen_type not in (DecoderRNN.GEN_BEAM, DecoderRNN.GEN_BEAM_SAMPLE, DecoderRNN.GEN_BEAM_MMI_ANTI_LM): step_input = decode_dict['symbols'] step_hidden = step_ret_dict['hiddens'] step_output_lst.append(step_ret_dict['outputs']) step_logit_lst.append(step_ret_dict['logits']) step_attn_lst.append(step_ret_dict['attns']) step_symbol_lst.append(step_input) else: step_scores = decode_dict['scores'] step_symbols = decode_dict['symbols'] cur_scores = cur_scores.view(batch_size * top_k, 1) if gen_type == DecoderRNN.GEN_BEAM_MMI_ANTI_LM: step_symbol_lst = step_symbols.tolist() new_partial_seqs = [] for partial_seq_idx in range(len(partial_seqs)): partial_seq = partial_seqs[partial_seq_idx] for symbol in step_symbol_lst[partial_seq_idx]: new_partial_seqs.append(partial_seq + [symbol]) lm_seqs = [mmi_args['tokenizer'].convert_ids_to_tokens(ids) for ids in new_partial_seqs] lm_seqs = [mmi_args['tokenizer'].convert_tokens_to_string(tokens) for tokens in lm_seqs] lm_outputs = mmi_args['lm'].compute_prob(lm_seqs) lm_word_ll = lm_outputs['word_loglikelihood'] length_mask = torch.LongTensor(list(range(lm_word_ll.size(1)))).to(DEVICE).unsqueeze(0) length_mask = length_mask + 1 <= mmi_args['gamma'] length_penalty = length_mask.float().log() masked_lm_word_ll = lm_word_ll + length_penalty masked_lm_sent_ll = masked_lm_word_ll.sum(1) U_t = masked_lm_sent_ll.exp().view(batch_size * top_k, top_k) P_t_given_s = cur_scores.exp() mmi_scores = P_t_given_s - mmi_args['lambda'] * U_t + mmi_args['gamma'] * (step_idx + 1) new_score_candidates = mmi_scores.view(batch_size, top_k * top_k) (_, cand_idcs) = new_score_candidates.topk(top_k, dim=1) new_cur_scores = [] step_scores_flat = step_scores.view(batch_size, top_k * top_k) for batch_idx in range(len(cand_idcs)): for cand_idx in cand_idcs[batch_idx]: pred = cand_idx // top_k + batch_idx * top_k new_cur_scores.append(cur_scores[pred] + step_scores_flat[batch_idx][cand_idx]) cur_scores = torch.FloatTensor(new_cur_scores).to(DEVICE) else: new_score_candidates = (cur_scores * (step_idx + 1) + step_scores) / (step_idx + 2) new_score_candidates = new_score_candidates.view(batch_size, top_k * top_k) (cur_scores, cand_idcs) = new_score_candidates.topk(top_k, dim=1) cur_scores = cur_scores.view(batch_size * top_k) cand_idcs = cand_idcs.tolist() to_emit_symbol_candidates = step_symbols.view(batch_size, top_k * top_k).tolist() step_predecessors = [] step_emitted_symbols = [] for batch_idx in range(len(cand_idcs)): for cand_idx in cand_idcs[batch_idx]: pred = cand_idx // top_k + batch_idx * top_k emit = to_emit_symbol_candidates[batch_idx][cand_idx] step_predecessors.append(pred) step_emitted_symbols.append(emit) beam_emmited_symbols.append(step_emitted_symbols) beam_predecessors.append(step_predecessors) beam_scores.append(cur_scores.tolist()) new_partial_seqs = [] for (step_e, step_pred) in zip(step_emitted_symbols, step_predecessors): pred_partial_seq = partial_seqs[step_pred] new_partial_seq = pred_partial_seq + [step_e] new_partial_seqs.append(new_partial_seq) partial_seqs = new_partial_seqs eos_token_masks = torch.LongTensor(step_emitted_symbols).to(DEVICE) == self.eos_token_id cur_scores = cur_scores.masked_fill(eos_token_masks, -float('inf')) step_emitted_symbols = torch.LongTensor(step_emitted_symbols).view(batch_size * top_k, 1).to(DEVICE) step_input = step_emitted_symbols step_hidden = step_ret_dict['hiddens'] step_hidden = step_hidden.transpose(0, 1).contiguous() new_step_hidden = [] for batch_idx in range(len(cand_idcs)): for cand_idx in cand_idcs[batch_idx]: pred = cand_idx // top_k + batch_idx * top_k new_step_hidden.append(step_hidden[pred]) new_step_hidden = torch.stack(new_step_hidden) step_hidden = new_step_hidden step_hidden = step_hidden.transpose(0, 1).contiguous() if gen_type not in (DecoderRNN.GEN_BEAM, DecoderRNN.GEN_BEAM_SAMPLE, DecoderRNN.GEN_BEAM_MMI_ANTI_LM): outputs = torch.cat(step_output_lst, dim=1) logits = torch.cat(step_logit_lst, dim=1) if self.use_attention: attns = torch.cat(step_attn_lst, dim=1) else: attns = None symbols = torch.cat(step_symbol_lst, dim=1) ret_dict['outputs'] = outputs ret_dict['logits'] = logits ret_dict['hiddens'] = step_hidden ret_dict['attns'] = attns ret_dict['symbols'] = symbols else: beam_scores = np.array(beam_scores) beam_predecessors = np.array(beam_predecessors) beam_emmited_symbols = np.array(beam_emmited_symbols) (L, N) = beam_scores.shape assert beam_scores.shape == beam_predecessors.shape == beam_emmited_symbols.shape assert N == batch_size * top_k def backtrack_from_coordinate(i, j): """ arguments i - step axis j - batch*beam axis """ score = beam_scores[i, j] seq = [beam_emmited_symbols[i, j]] while i > 0: j = beam_predecessors[i, j] i = i - 1 seq.append(beam_emmited_symbols[i, j]) seq.reverse() batch_seqs = (seq, score) batch_seqs = [[] for _ in range(batch_size)] for i in range(L - 1): for j in range(N): if beam_emmited_symbols[i, j] == self.eos_token_id: (seq, score) = backtrack_from_coordinate(i, j) batch_idx = j // top_k batch_seqs[batch_idx].append((seq, score)) i = L - 1 for j in range(N): (seq, score) = backtrack_from_coordinate(i, j) batch_idx = j // top_k batch_seqs[batch_idx].append((seq, score)) batch_seqs = [sorted(seqs, key=lambda x: x[1], reverse=True) for seqs in batch_seqs] batch_seqs = batch_seqs batch_best_seqs = [seq_score_pairs[0][0] for seq_score_pairs in batch_seqs] seq_lens = [len(seq) for seq in batch_best_seqs] max_seq_len = max(seq_lens) symbols = [seq + [self.pad_token_id] * (max_seq_len - len(seq)) for seq in batch_best_seqs] symbols = torch.LongTensor(symbols).to(DEVICE) ret_dict['symbols'] = symbols ret_dict['beam_hypotheses'] = batch_seqs return ret_dict
dialog-processing
positive
def _strip_href(eles: List[BeautifulSoup]): for ele in eles: for a in ele.find_all('a'): <DeepExtract> if a and a.attrs and ('href' in a.attrs): a['href'] = 'stripped_href' </DeepExtract> for link in ele.find_all('link'): <DeepExtract> if link and link.attrs and ('href' in link.attrs): link['href'] = 'stripped_href' </DeepExtract> for meta in ele.find_all('meta'): <DeepExtract> if meta and meta.attrs and ('content' in meta.attrs): meta['content'] = 'stripped_content' </DeepExtract> for script in ele.find_all('script'): <DeepExtract> if script and script.attrs and ('src' in script.attrs): script['src'] = 'stripped_src' </DeepExtract> return eles
def _strip_href(eles: List[BeautifulSoup]): for ele in eles: for a in ele.find_all('a'): if a and a.attrs and ('href' in a.attrs): a['href'] = 'stripped_href' for link in ele.find_all('link'): if link and link.attrs and ('href' in link.attrs): link['href'] = 'stripped_href' for meta in ele.find_all('meta'): if meta and meta.attrs and ('content' in meta.attrs): meta['content'] = 'stripped_content' for script in ele.find_all('script'): if script and script.attrs and ('src' in script.attrs): script['src'] = 'stripped_src' return eles
arxiv-browse
positive
def test_define_scope_agent(self): url = 'http://testserver/XAPI/statements' guid = str(uuid.uuid1()) stmt_data = {'id': guid, 'actor': {'objectType': 'Agent', 'mbox': 'mailto:bob@bob.com', 'name': 'bob'}, 'verb': {'id': 'http://example.com/verbs/helped', 'display': {'en-US': 'helped'}}, 'object': {'objectType': 'Agent', 'mbox': 'mailto:tim@tim.com', 'name': 'tim'}} stmt_post = self.client.post(reverse('lrs:statements'), json.dumps(stmt_data), content_type='application/json', Authorization=self.jane_auth, X_Experience_API_Version=settings.XAPI_VERSION) self.assertEqual(stmt_post.status_code, 200) put_guid = str(uuid.uuid1()) stmt = json.dumps({'actor': {'objectType': 'Agent', 'mbox': 'mailto:bill@bill.com', 'name': 'bill'}, 'verb': {'id': 'http://example.com/verbs/talked', 'display': {'en-US': 'talked'}}, 'object': {'objectType': 'Agent', 'mbox': 'mailto:tim@tim.com', 'name': 'tim timson'}}) param = {'statementId': put_guid} path = '%s?%s' % (url, urllib.parse.urlencode(param)) <DeepExtract> if not request_nonce: request_nonce = ''.join((random.choice(string.ascii_uppercase + string.digits) for _ in range(6))) if not consumer: consumer = self.consumer oauth_header_request_token_params = 'OAuth realm="test",oauth_consumer_key="%s",oauth_signature_method="HMAC-SHA1",oauth_timestamp="%s",oauth_nonce="%s",oauth_version="1.0",oauth_callback="http://example.com/access_token_ready"' % (consumer.key, str(int(time.time())), request_nonce) request_token_params = {} if parameters: request_token_params = parameters if scope: if 'statements/write statements/read': request_token_params['scope'] = 'statements/write statements/read' else: request_token_params['scope'] = 'all' if param_type == 'qs': request_token_path = '%s?%s' % (INITIATE_ENDPOINT, urllib.parse.urlencode(request_token_params)) else: request_token_path = INITIATE_ENDPOINT oauth_header_request_token_params_list = oauth_header_request_token_params.split(',') oauth_header_request_token_params_dict = {} for p in oauth_header_request_token_params_list: item = p.split('=') oauth_header_request_token_params_dict[str(item[0]).strip()] = str(item[1]).strip('"') del oauth_header_request_token_params_dict['OAuth realm'] if param_type == 'qs': oauth_request = oauth.Request.from_consumer_and_token(consumer, token=None, http_method='GET', http_url=request_token_path, parameters=oauth_header_request_token_params_dict) else: oauth_request = oauth.Request.from_consumer_and_token(consumer, token=None, http_method='POST', http_url=request_token_path, parameters=dict(list(oauth_header_request_token_params_dict.items()) + list(request_token_params.items()))) signature_method = oauth.SignatureMethod_HMAC_SHA1() signature = signature_method.sign(oauth_request, consumer, None) oauth_header_request_token_params = oauth_header_request_token_params + ',oauth_signature=%s' % signature if param_type == 'qs': request_resp = self.client.get(request_token_path, Authorization=oauth_header_request_token_params) else: request_resp = self.client.post(request_token_path, Authorization=oauth_header_request_token_params, data=request_token_params, content_type='application/x-www-form-urlencoded') self.assertEqual(request_resp.status_code, 200) self.assertIn('oauth_token_secret', request_resp.content) self.assertIn('oauth_token', request_resp.content) self.assertIn('oauth_callback_confirmed', request_resp.content) token_secret = request_resp.content.split('&')[0].split('=')[1] request_token = Token.objects.get(secret=token_secret) authorize_param = {'oauth_token': request_token.key} authorize_path = '%s?%s' % (AUTHORIZATION_ENDPOINT, urllib.parse.urlencode(authorize_param)) auth_resp = self.client.get(authorize_path) self.assertEqual(auth_resp.status_code, 302) self.assertIn('/accounts/login?next=/XAPI/OAuth/authorize%3F', auth_resp['Location']) self.assertIn(request_token.key, auth_resp['Location']) self.client.login(username='jane', password='toto') self.assertEqual(request_token.is_approved, False) auth_resp = self.client.get(authorize_path) self.assertEqual(auth_resp.status_code, 200) auth_form = auth_resp.context['form'] data = auth_form.initial data['authorize_access'] = 1 data['oauth_token'] = request_token.key if change_scope: data['scope'] = change_scope auth_post = self.client.post(AUTHORIZATION_ENDPOINT, data) self.assertEqual(auth_post.status_code, 302) self.assertIn('http://example.com/access_token_ready?oauth_verifier=', auth_post['Location']) self.assertIn('oauth_token=', auth_post['Location']) token_key = auth_post['Location'].split('?')[1].split('&')[1].split('=')[1] request_token_after_auth = Token.objects.get(key=token_key) self.assertIn(request_token_after_auth.key, auth_post['Location']) self.assertEqual(request_token_after_auth.is_approved, True) if not access_nonce: access_nonce = 'access_nonce' oauth_header_access_token_params = 'OAuth realm="test",oauth_consumer_key="%s",oauth_token="%s",oauth_signature_method="HMAC-SHA1",oauth_timestamp="%s",oauth_nonce="%s",oauth_version="1.0",oauth_verifier="%s"' % (consumer.key, request_token_after_auth.key, str(int(time.time())), access_nonce, request_token_after_auth.verifier) param_list = oauth_header_access_token_params.split(',') oauth_header_access_params_dict = {} for p in param_list: item = p.split('=') oauth_header_access_params_dict[str(item[0]).strip()] = str(item[1]).strip('"') del oauth_header_access_params_dict['OAuth realm'] oauth_request = oauth.Request.from_token_and_callback(request_token_after_auth, http_method='GET', http_url=TOKEN_ENDPOINT, parameters=oauth_header_access_params_dict) signature_method = oauth.SignatureMethod_HMAC_SHA1() signature = signature_method.sign(oauth_request, consumer, request_token_after_auth) oauth_header_access_token_params += ',oauth_signature="%s"' % signature access_resp = self.client.get(TOKEN_ENDPOINT, Authorization=oauth_header_access_token_params) self.assertEqual(access_resp.status_code, 200) content = access_resp.content.split('&') access_token_secret = content[0].split('=')[1] access_token_key = content[1].split('=')[1] access_token = Token.objects.get(secret=access_token_secret, key=access_token_key) if not resource_nonce: resource_nonce = 'resource_nonce' oauth_header_resource_params = 'OAuth realm="test", oauth_consumer_key="%s",oauth_token="%s",oauth_signature_method="HMAC-SHA1",oauth_timestamp="%s",oauth_nonce="%s",oauth_version="1.0"' % (consumer.key, access_token.key, str(int(time.time())), resource_nonce) self.client.logout() (oauth_header_resource_params, access_token) = (oauth_header_resource_params, access_token) </DeepExtract> param_list = oauth_header_resource_params.split(',') oauth_header_resource_params_dict = {} for p in param_list: item = p.split('=') oauth_header_resource_params_dict[str(item[0]).strip()] = str(item[1]).strip('"') del oauth_header_resource_params_dict['OAuth realm'] oauth_request = oauth.Request.from_token_and_callback(access_token, http_method='PUT', http_url=path, parameters=oauth_header_resource_params_dict) signature_method = oauth.SignatureMethod_HMAC_SHA1() signature = signature_method.sign(oauth_request, self.consumer, access_token) oauth_header_resource_params += ',oauth_signature="%s"' % signature resp = self.client.put(path, data=stmt, content_type='application/json', Authorization=oauth_header_resource_params, X_Experience_API_Version=settings.XAPI_VERSION) self.assertEqual(resp.status_code, 204) agents = Agent.objects.all().values_list('name', flat=True) self.assertEqual(len(agents), 7) self.assertIn('tim', agents) self.assertNotIn('tim timson', agents) get_params = {'agent': {'objectType': 'Agent', 'mbox': 'mailto:tim@tim.com'}, 'related_agents': True} path = '%s?%s' % (url, urllib.parse.urlencode(get_params)) oauth_header_resource_params_dict['oauth_nonce'] = 'get_differ_nonce' oauth_request2 = oauth.Request.from_token_and_callback(access_token, http_method='GET', http_url=path, parameters=oauth_header_resource_params_dict) signature_method2 = oauth.SignatureMethod_HMAC_SHA1() signature2 = signature_method2.sign(oauth_request2, self.consumer, access_token) sig = oauth_header_resource_params.replace('"%s"' % signature, '"%s"' % signature2) new_oauth_headers = sig.replace('oauth_nonce="resource_nonce"', 'oauth_nonce="get_differ_nonce"') get_resp = self.client.get(path, X_Experience_API_Version=settings.XAPI_VERSION, Authorization=new_oauth_headers) self.assertEqual(get_resp.status_code, 200) content = json.loads(get_resp.content) self.assertEqual(len(content['statements']), 2) self.client.logout() ot = 'Group' members = [{'name': 'john doe', 'mbox': 'mailto:jd@example.com'}, {'name': 'jan doe', 'mbox': 'mailto:jandoe@example.com'}] kwargs = {'objectType': ot, 'member': members, 'name': 'doe group'} (global_group, created) = Agent.objects.retrieve_or_create(**kwargs) members = [{'name': 'john doe', 'mbox': 'mailto:jd@example.com'}, {'name': 'jan doe', 'mbox': 'mailto:jandoe@example.com'}, {'name': 'dave doe', 'mbox': 'mailto:dd@example.com'}] kwargs1 = {'objectType': ot, 'member': members, 'name': 'doe group'} post_stmt = {'actor': {'objectType': 'Agent', 'mbox': 'mailto:dom@dom.com', 'name': 'dom'}, 'verb': {'id': 'http://example.com/verbs/assisted', 'display': {'en-US': 'assisted'}}, 'object': kwargs1} stmt_json = json.dumps(post_stmt) <DeepExtract> if not request_nonce: request_nonce = 'request_nonce2' oauth_header_request_token_params = 'OAuth realm="test",oauth_consumer_key="%s",oauth_signature_method="HMAC-SHA1",oauth_timestamp="%s",oauth_nonce="%s",oauth_version="1.0",oauth_callback="http://example.com/access_token_ready"' % (self.consumer2.key, str(int(time.time())), request_nonce) request_token_params = {} if parameters: request_token_params = parameters if scope: if 'statements/write statements/read': request_token_params['scope'] = 'statements/write statements/read' else: request_token_params['scope'] = 'all' if param_type == 'qs': request_token_path = '%s?%s' % (INITIATE_ENDPOINT, urllib.parse.urlencode(request_token_params)) else: request_token_path = INITIATE_ENDPOINT oauth_header_request_token_params_list = oauth_header_request_token_params.split(',') oauth_header_request_token_params_dict = {} for p in oauth_header_request_token_params_list: item = p.split('=') oauth_header_request_token_params_dict[str(item[0]).strip()] = str(item[1]).strip('"') del oauth_header_request_token_params_dict['OAuth realm'] if param_type == 'qs': oauth_request = oauth.Request.from_consumer_and_token(self.consumer2, token=None, http_method='GET', http_url=request_token_path, parameters=oauth_header_request_token_params_dict) else: oauth_request = oauth.Request.from_consumer_and_token(self.consumer2, token=None, http_method='POST', http_url=request_token_path, parameters=dict(list(oauth_header_request_token_params_dict.items()) + list(request_token_params.items()))) signature_method = oauth.SignatureMethod_HMAC_SHA1() signature = signature_method.sign(oauth_request, self.consumer2, None) oauth_header_request_token_params = oauth_header_request_token_params + ',oauth_signature=%s' % signature if param_type == 'qs': request_resp = self.client.get(request_token_path, Authorization=oauth_header_request_token_params) else: request_resp = self.client.post(request_token_path, Authorization=oauth_header_request_token_params, data=request_token_params, content_type='application/x-www-form-urlencoded') self.assertEqual(request_resp.status_code, 200) self.assertIn('oauth_token_secret', request_resp.content) self.assertIn('oauth_token', request_resp.content) self.assertIn('oauth_callback_confirmed', request_resp.content) request_token = Token.objects.get(consumer=self.consumer2) authorize_param = {'oauth_token': request_token.key} authorize_path = '%s?%s' % (AUTHORIZATION_ENDPOINT, urllib.parse.urlencode(authorize_param)) auth_resp = self.client.get(authorize_path) self.assertEqual(auth_resp.status_code, 302) self.assertIn('/accounts/login?next=/XAPI/OAuth/authorize%3F', auth_resp['Location']) self.assertIn(request_token.key, auth_resp['Location']) self.client.login(username='dick', password='lassie') self.assertEqual(request_token.is_approved, False) auth_resp = self.client.get(authorize_path) self.assertEqual(auth_resp.status_code, 200) auth_form = auth_resp.context['form'] data = auth_form.initial data['authorize_access'] = 1 data['oauth_token'] = request_token.key if change_scope: data['scope'] = change_scope auth_post = self.client.post(AUTHORIZATION_ENDPOINT, data) self.assertEqual(auth_post.status_code, 302) self.assertIn('http://example.com/access_token_ready?oauth_verifier=', auth_post['Location']) self.assertIn('oauth_token=', auth_post['Location']) request_token_after_auth = Token.objects.get(consumer=self.consumer2) self.assertIn(request_token_after_auth.key, auth_post['Location']) self.assertEqual(request_token_after_auth.is_approved, True) if not access_nonce: access_nonce = 'access_nonce2' oauth_header_access_token_params = 'OAuth realm="test",oauth_consumer_key="%s",oauth_token="%s",oauth_signature_method="HMAC-SHA1",oauth_timestamp="%s",oauth_nonce="%s",oauth_version="1.0",oauth_verifier="%s"' % (self.consumer2.key, request_token_after_auth.key, str(int(time.time())), access_nonce, request_token_after_auth.verifier) param_list = oauth_header_access_token_params.split(',') oauth_header_access_params_dict = {} for p in param_list: item = p.split('=') oauth_header_access_params_dict[str(item[0]).strip()] = str(item[1]).strip('"') del oauth_header_access_params_dict['OAuth realm'] oauth_request = oauth.Request.from_token_and_callback(request_token_after_auth, http_method='GET', http_url=TOKEN_ENDPOINT, parameters=oauth_header_access_params_dict) signature_method = oauth.SignatureMethod_HMAC_SHA1() signature = signature_method.sign(oauth_request, self.consumer2, request_token_after_auth) oauth_header_access_token_params += ',oauth_signature="%s"' % signature access_resp = self.client.get(TOKEN_ENDPOINT, Authorization=oauth_header_access_token_params) self.assertEqual(access_resp.status_code, 200) content = access_resp.content.split('&') access_token_secret = content[0].split('=')[1] access_token_key = content[1].split('=')[1] access_token = Token.objects.get(secret=access_token_secret, key=access_token_key) if not resource_nonce: resource_nonce = 'resource_nonce2' oauth_header_resource_params = 'OAuth realm="test", oauth_consumer_key="%s",oauth_token="%s",oauth_signature_method="HMAC-SHA1",oauth_timestamp="%s",oauth_nonce="%s",oauth_version="1.0"' % (self.consumer2.key, access_token.key, str(int(time.time())), resource_nonce) self.client.logout() (post_oauth_header_resource_params, post_access_token) = (oauth_header_resource_params, access_token) </DeepExtract> post_param_list = post_oauth_header_resource_params.split(',') post_oauth_header_resource_params_dict = {} for p in post_param_list: item = p.split('=') post_oauth_header_resource_params_dict[str(item[0]).strip()] = str(item[1]).strip('"') del post_oauth_header_resource_params_dict['OAuth realm'] post_oauth_request = oauth.Request.from_token_and_callback(post_access_token, http_method='POST', http_url='http://testserver/XAPI/statements', parameters=post_oauth_header_resource_params_dict) post_signature_method = oauth.SignatureMethod_HMAC_SHA1() post_signature = post_signature_method.sign(post_oauth_request, self.consumer2, post_access_token) post_oauth_header_resource_params += ',oauth_signature="%s"' % post_signature post = self.client.post(reverse('lrs:statements'), data=stmt_json, content_type='application/json', Authorization=post_oauth_header_resource_params, X_Experience_API_Version=settings.XAPI_VERSION) self.assertEqual(post.status_code, 200) agents = Agent.objects.all().values_list('name', flat=True) self.assertEqual(len(agents), 15) self.assertIn('bill', agents) self.assertNotIn('tim timson', agents) self.assertIn('dom', agents) self.assertIn('bob', agents) self.assertIn('tim', agents) self.assertIn('jan doe', agents) self.assertIn('john doe', agents) self.assertIn('dave doe', agents) self.assertIn('jane', agents) self.assertIn('dick', agents) self.assertIn('doe group', agents)
def test_define_scope_agent(self): url = 'http://testserver/XAPI/statements' guid = str(uuid.uuid1()) stmt_data = {'id': guid, 'actor': {'objectType': 'Agent', 'mbox': 'mailto:bob@bob.com', 'name': 'bob'}, 'verb': {'id': 'http://example.com/verbs/helped', 'display': {'en-US': 'helped'}}, 'object': {'objectType': 'Agent', 'mbox': 'mailto:tim@tim.com', 'name': 'tim'}} stmt_post = self.client.post(reverse('lrs:statements'), json.dumps(stmt_data), content_type='application/json', Authorization=self.jane_auth, X_Experience_API_Version=settings.XAPI_VERSION) self.assertEqual(stmt_post.status_code, 200) put_guid = str(uuid.uuid1()) stmt = json.dumps({'actor': {'objectType': 'Agent', 'mbox': 'mailto:bill@bill.com', 'name': 'bill'}, 'verb': {'id': 'http://example.com/verbs/talked', 'display': {'en-US': 'talked'}}, 'object': {'objectType': 'Agent', 'mbox': 'mailto:tim@tim.com', 'name': 'tim timson'}}) param = {'statementId': put_guid} path = '%s?%s' % (url, urllib.parse.urlencode(param)) if not request_nonce: request_nonce = ''.join((random.choice(string.ascii_uppercase + string.digits) for _ in range(6))) if not consumer: consumer = self.consumer oauth_header_request_token_params = 'OAuth realm="test",oauth_consumer_key="%s",oauth_signature_method="HMAC-SHA1",oauth_timestamp="%s",oauth_nonce="%s",oauth_version="1.0",oauth_callback="http://example.com/access_token_ready"' % (consumer.key, str(int(time.time())), request_nonce) request_token_params = {} if parameters: request_token_params = parameters if scope: if 'statements/write statements/read': request_token_params['scope'] = 'statements/write statements/read' else: request_token_params['scope'] = 'all' if param_type == 'qs': request_token_path = '%s?%s' % (INITIATE_ENDPOINT, urllib.parse.urlencode(request_token_params)) else: request_token_path = INITIATE_ENDPOINT oauth_header_request_token_params_list = oauth_header_request_token_params.split(',') oauth_header_request_token_params_dict = {} for p in oauth_header_request_token_params_list: item = p.split('=') oauth_header_request_token_params_dict[str(item[0]).strip()] = str(item[1]).strip('"') del oauth_header_request_token_params_dict['OAuth realm'] if param_type == 'qs': oauth_request = oauth.Request.from_consumer_and_token(consumer, token=None, http_method='GET', http_url=request_token_path, parameters=oauth_header_request_token_params_dict) else: oauth_request = oauth.Request.from_consumer_and_token(consumer, token=None, http_method='POST', http_url=request_token_path, parameters=dict(list(oauth_header_request_token_params_dict.items()) + list(request_token_params.items()))) signature_method = oauth.SignatureMethod_HMAC_SHA1() signature = signature_method.sign(oauth_request, consumer, None) oauth_header_request_token_params = oauth_header_request_token_params + ',oauth_signature=%s' % signature if param_type == 'qs': request_resp = self.client.get(request_token_path, Authorization=oauth_header_request_token_params) else: request_resp = self.client.post(request_token_path, Authorization=oauth_header_request_token_params, data=request_token_params, content_type='application/x-www-form-urlencoded') self.assertEqual(request_resp.status_code, 200) self.assertIn('oauth_token_secret', request_resp.content) self.assertIn('oauth_token', request_resp.content) self.assertIn('oauth_callback_confirmed', request_resp.content) token_secret = request_resp.content.split('&')[0].split('=')[1] request_token = Token.objects.get(secret=token_secret) authorize_param = {'oauth_token': request_token.key} authorize_path = '%s?%s' % (AUTHORIZATION_ENDPOINT, urllib.parse.urlencode(authorize_param)) auth_resp = self.client.get(authorize_path) self.assertEqual(auth_resp.status_code, 302) self.assertIn('/accounts/login?next=/XAPI/OAuth/authorize%3F', auth_resp['Location']) self.assertIn(request_token.key, auth_resp['Location']) self.client.login(username='jane', password='toto') self.assertEqual(request_token.is_approved, False) auth_resp = self.client.get(authorize_path) self.assertEqual(auth_resp.status_code, 200) auth_form = auth_resp.context['form'] data = auth_form.initial data['authorize_access'] = 1 data['oauth_token'] = request_token.key if change_scope: data['scope'] = change_scope auth_post = self.client.post(AUTHORIZATION_ENDPOINT, data) self.assertEqual(auth_post.status_code, 302) self.assertIn('http://example.com/access_token_ready?oauth_verifier=', auth_post['Location']) self.assertIn('oauth_token=', auth_post['Location']) token_key = auth_post['Location'].split('?')[1].split('&')[1].split('=')[1] request_token_after_auth = Token.objects.get(key=token_key) self.assertIn(request_token_after_auth.key, auth_post['Location']) self.assertEqual(request_token_after_auth.is_approved, True) if not access_nonce: access_nonce = 'access_nonce' oauth_header_access_token_params = 'OAuth realm="test",oauth_consumer_key="%s",oauth_token="%s",oauth_signature_method="HMAC-SHA1",oauth_timestamp="%s",oauth_nonce="%s",oauth_version="1.0",oauth_verifier="%s"' % (consumer.key, request_token_after_auth.key, str(int(time.time())), access_nonce, request_token_after_auth.verifier) param_list = oauth_header_access_token_params.split(',') oauth_header_access_params_dict = {} for p in param_list: item = p.split('=') oauth_header_access_params_dict[str(item[0]).strip()] = str(item[1]).strip('"') del oauth_header_access_params_dict['OAuth realm'] oauth_request = oauth.Request.from_token_and_callback(request_token_after_auth, http_method='GET', http_url=TOKEN_ENDPOINT, parameters=oauth_header_access_params_dict) signature_method = oauth.SignatureMethod_HMAC_SHA1() signature = signature_method.sign(oauth_request, consumer, request_token_after_auth) oauth_header_access_token_params += ',oauth_signature="%s"' % signature access_resp = self.client.get(TOKEN_ENDPOINT, Authorization=oauth_header_access_token_params) self.assertEqual(access_resp.status_code, 200) content = access_resp.content.split('&') access_token_secret = content[0].split('=')[1] access_token_key = content[1].split('=')[1] access_token = Token.objects.get(secret=access_token_secret, key=access_token_key) if not resource_nonce: resource_nonce = 'resource_nonce' oauth_header_resource_params = 'OAuth realm="test", oauth_consumer_key="%s",oauth_token="%s",oauth_signature_method="HMAC-SHA1",oauth_timestamp="%s",oauth_nonce="%s",oauth_version="1.0"' % (consumer.key, access_token.key, str(int(time.time())), resource_nonce) self.client.logout() (oauth_header_resource_params, access_token) = (oauth_header_resource_params, access_token) param_list = oauth_header_resource_params.split(',') oauth_header_resource_params_dict = {} for p in param_list: item = p.split('=') oauth_header_resource_params_dict[str(item[0]).strip()] = str(item[1]).strip('"') del oauth_header_resource_params_dict['OAuth realm'] oauth_request = oauth.Request.from_token_and_callback(access_token, http_method='PUT', http_url=path, parameters=oauth_header_resource_params_dict) signature_method = oauth.SignatureMethod_HMAC_SHA1() signature = signature_method.sign(oauth_request, self.consumer, access_token) oauth_header_resource_params += ',oauth_signature="%s"' % signature resp = self.client.put(path, data=stmt, content_type='application/json', Authorization=oauth_header_resource_params, X_Experience_API_Version=settings.XAPI_VERSION) self.assertEqual(resp.status_code, 204) agents = Agent.objects.all().values_list('name', flat=True) self.assertEqual(len(agents), 7) self.assertIn('tim', agents) self.assertNotIn('tim timson', agents) get_params = {'agent': {'objectType': 'Agent', 'mbox': 'mailto:tim@tim.com'}, 'related_agents': True} path = '%s?%s' % (url, urllib.parse.urlencode(get_params)) oauth_header_resource_params_dict['oauth_nonce'] = 'get_differ_nonce' oauth_request2 = oauth.Request.from_token_and_callback(access_token, http_method='GET', http_url=path, parameters=oauth_header_resource_params_dict) signature_method2 = oauth.SignatureMethod_HMAC_SHA1() signature2 = signature_method2.sign(oauth_request2, self.consumer, access_token) sig = oauth_header_resource_params.replace('"%s"' % signature, '"%s"' % signature2) new_oauth_headers = sig.replace('oauth_nonce="resource_nonce"', 'oauth_nonce="get_differ_nonce"') get_resp = self.client.get(path, X_Experience_API_Version=settings.XAPI_VERSION, Authorization=new_oauth_headers) self.assertEqual(get_resp.status_code, 200) content = json.loads(get_resp.content) self.assertEqual(len(content['statements']), 2) self.client.logout() ot = 'Group' members = [{'name': 'john doe', 'mbox': 'mailto:jd@example.com'}, {'name': 'jan doe', 'mbox': 'mailto:jandoe@example.com'}] kwargs = {'objectType': ot, 'member': members, 'name': 'doe group'} (global_group, created) = Agent.objects.retrieve_or_create(**kwargs) members = [{'name': 'john doe', 'mbox': 'mailto:jd@example.com'}, {'name': 'jan doe', 'mbox': 'mailto:jandoe@example.com'}, {'name': 'dave doe', 'mbox': 'mailto:dd@example.com'}] kwargs1 = {'objectType': ot, 'member': members, 'name': 'doe group'} post_stmt = {'actor': {'objectType': 'Agent', 'mbox': 'mailto:dom@dom.com', 'name': 'dom'}, 'verb': {'id': 'http://example.com/verbs/assisted', 'display': {'en-US': 'assisted'}}, 'object': kwargs1} stmt_json = json.dumps(post_stmt) if not request_nonce: request_nonce = 'request_nonce2' oauth_header_request_token_params = 'OAuth realm="test",oauth_consumer_key="%s",oauth_signature_method="HMAC-SHA1",oauth_timestamp="%s",oauth_nonce="%s",oauth_version="1.0",oauth_callback="http://example.com/access_token_ready"' % (self.consumer2.key, str(int(time.time())), request_nonce) request_token_params = {} if parameters: request_token_params = parameters if scope: if 'statements/write statements/read': request_token_params['scope'] = 'statements/write statements/read' else: request_token_params['scope'] = 'all' if param_type == 'qs': request_token_path = '%s?%s' % (INITIATE_ENDPOINT, urllib.parse.urlencode(request_token_params)) else: request_token_path = INITIATE_ENDPOINT oauth_header_request_token_params_list = oauth_header_request_token_params.split(',') oauth_header_request_token_params_dict = {} for p in oauth_header_request_token_params_list: item = p.split('=') oauth_header_request_token_params_dict[str(item[0]).strip()] = str(item[1]).strip('"') del oauth_header_request_token_params_dict['OAuth realm'] if param_type == 'qs': oauth_request = oauth.Request.from_consumer_and_token(self.consumer2, token=None, http_method='GET', http_url=request_token_path, parameters=oauth_header_request_token_params_dict) else: oauth_request = oauth.Request.from_consumer_and_token(self.consumer2, token=None, http_method='POST', http_url=request_token_path, parameters=dict(list(oauth_header_request_token_params_dict.items()) + list(request_token_params.items()))) signature_method = oauth.SignatureMethod_HMAC_SHA1() signature = signature_method.sign(oauth_request, self.consumer2, None) oauth_header_request_token_params = oauth_header_request_token_params + ',oauth_signature=%s' % signature if param_type == 'qs': request_resp = self.client.get(request_token_path, Authorization=oauth_header_request_token_params) else: request_resp = self.client.post(request_token_path, Authorization=oauth_header_request_token_params, data=request_token_params, content_type='application/x-www-form-urlencoded') self.assertEqual(request_resp.status_code, 200) self.assertIn('oauth_token_secret', request_resp.content) self.assertIn('oauth_token', request_resp.content) self.assertIn('oauth_callback_confirmed', request_resp.content) request_token = Token.objects.get(consumer=self.consumer2) authorize_param = {'oauth_token': request_token.key} authorize_path = '%s?%s' % (AUTHORIZATION_ENDPOINT, urllib.parse.urlencode(authorize_param)) auth_resp = self.client.get(authorize_path) self.assertEqual(auth_resp.status_code, 302) self.assertIn('/accounts/login?next=/XAPI/OAuth/authorize%3F', auth_resp['Location']) self.assertIn(request_token.key, auth_resp['Location']) self.client.login(username='dick', password='lassie') self.assertEqual(request_token.is_approved, False) auth_resp = self.client.get(authorize_path) self.assertEqual(auth_resp.status_code, 200) auth_form = auth_resp.context['form'] data = auth_form.initial data['authorize_access'] = 1 data['oauth_token'] = request_token.key if change_scope: data['scope'] = change_scope auth_post = self.client.post(AUTHORIZATION_ENDPOINT, data) self.assertEqual(auth_post.status_code, 302) self.assertIn('http://example.com/access_token_ready?oauth_verifier=', auth_post['Location']) self.assertIn('oauth_token=', auth_post['Location']) request_token_after_auth = Token.objects.get(consumer=self.consumer2) self.assertIn(request_token_after_auth.key, auth_post['Location']) self.assertEqual(request_token_after_auth.is_approved, True) if not access_nonce: access_nonce = 'access_nonce2' oauth_header_access_token_params = 'OAuth realm="test",oauth_consumer_key="%s",oauth_token="%s",oauth_signature_method="HMAC-SHA1",oauth_timestamp="%s",oauth_nonce="%s",oauth_version="1.0",oauth_verifier="%s"' % (self.consumer2.key, request_token_after_auth.key, str(int(time.time())), access_nonce, request_token_after_auth.verifier) param_list = oauth_header_access_token_params.split(',') oauth_header_access_params_dict = {} for p in param_list: item = p.split('=') oauth_header_access_params_dict[str(item[0]).strip()] = str(item[1]).strip('"') del oauth_header_access_params_dict['OAuth realm'] oauth_request = oauth.Request.from_token_and_callback(request_token_after_auth, http_method='GET', http_url=TOKEN_ENDPOINT, parameters=oauth_header_access_params_dict) signature_method = oauth.SignatureMethod_HMAC_SHA1() signature = signature_method.sign(oauth_request, self.consumer2, request_token_after_auth) oauth_header_access_token_params += ',oauth_signature="%s"' % signature access_resp = self.client.get(TOKEN_ENDPOINT, Authorization=oauth_header_access_token_params) self.assertEqual(access_resp.status_code, 200) content = access_resp.content.split('&') access_token_secret = content[0].split('=')[1] access_token_key = content[1].split('=')[1] access_token = Token.objects.get(secret=access_token_secret, key=access_token_key) if not resource_nonce: resource_nonce = 'resource_nonce2' oauth_header_resource_params = 'OAuth realm="test", oauth_consumer_key="%s",oauth_token="%s",oauth_signature_method="HMAC-SHA1",oauth_timestamp="%s",oauth_nonce="%s",oauth_version="1.0"' % (self.consumer2.key, access_token.key, str(int(time.time())), resource_nonce) self.client.logout() (post_oauth_header_resource_params, post_access_token) = (oauth_header_resource_params, access_token) post_param_list = post_oauth_header_resource_params.split(',') post_oauth_header_resource_params_dict = {} for p in post_param_list: item = p.split('=') post_oauth_header_resource_params_dict[str(item[0]).strip()] = str(item[1]).strip('"') del post_oauth_header_resource_params_dict['OAuth realm'] post_oauth_request = oauth.Request.from_token_and_callback(post_access_token, http_method='POST', http_url='http://testserver/XAPI/statements', parameters=post_oauth_header_resource_params_dict) post_signature_method = oauth.SignatureMethod_HMAC_SHA1() post_signature = post_signature_method.sign(post_oauth_request, self.consumer2, post_access_token) post_oauth_header_resource_params += ',oauth_signature="%s"' % post_signature post = self.client.post(reverse('lrs:statements'), data=stmt_json, content_type='application/json', Authorization=post_oauth_header_resource_params, X_Experience_API_Version=settings.XAPI_VERSION) self.assertEqual(post.status_code, 200) agents = Agent.objects.all().values_list('name', flat=True) self.assertEqual(len(agents), 15) self.assertIn('bill', agents) self.assertNotIn('tim timson', agents) self.assertIn('dom', agents) self.assertIn('bob', agents) self.assertIn('tim', agents) self.assertIn('jan doe', agents) self.assertIn('john doe', agents) self.assertIn('dave doe', agents) self.assertIn('jane', agents) self.assertIn('dick', agents) self.assertIn('doe group', agents)
ADL_LRS
positive
def brentq(self, tau_init, tol=0.001, max_iter=20): self.in_search = False <DeepExtract> tau = tau_init h = 1 + self.hs[0] g = -1 i = 0 while (g < 0 and h - self.hs[0] > 1e-13) and i < max_itr: self.clear_hist() self.f(tau) ind = self.taus.index(tau) h = self.hs[ind] g = self.gs[ind] tau *= 0.5 i += 1 i = ind </DeepExtract> tau_init = self.taus[i] g_init = self.gs[i] if self.wolfe(g_init, self.hs[i], tau_init): log.debug('CG: Using initial step, since Wolfe satisfied!') tau_opt = tau_init else: self.in_search = True try: taus = None if g_init > 0: taus = [0, tau_init] if taus is None: for i in range(3): <DeepExtract> log.debug('CG: Polynomial extrapolation BEGIN') g0 = self.f(tau_init / (i + 1.0)) tau1 = tau_init / (i + 1.0) tau_prev = tau1 g1 = g0 i = 0 while g1 * g0 > 0 and i < max_itr: tau_prev = tau1 if len(self.gs) > 1: gs = sp.array(self.gs) pts = min(max_points, len(gs)) res = sp.polyfit(self.taus[-pts:], gs[-pts:], max(max_deg, pts - 1), full=True) po = res[0] por = sp.roots(po) if por.max().real > 0: tau1 = por.max().real if tau1 > tau_init / (i + 1.0) * 10: tau1 = min(tau_prev * 2, tau1) if g1 < 0: tau1 *= fac_inc else: tau1 *= fac_red g1 = self.f(tau1) i += 1 if i == max_itr: log.debug('CG: Polynomial extrapolation MAX ITR') taus = None else: log.debug('CG: Polynomial extrapolation DONE') taus = sorted([tau_prev, tau1]) </DeepExtract> if not taus is None: break <DeepExtract> self.taus = self.taus[:1] self.hs = self.hs[:1] self.gs = self.gs[:1] self.lLs = self.lLs[:1] self.rLs = self.rLs[:1] self.K0s = self.K0s[:1] self.Ws = self.Ws[:1] </DeepExtract> if taus is None: return (0, self.hs[0], 0) try: tau_opt = opti.brentq(self.f, taus[0], taus[-1], xtol=tol, maxiter=max_iter) except ValueError: log.warning('CG: Failed to find a valid bracket.') return (0, self.hs[0], 0) except EvoMPS_line_search_wolfe_sat as e: log.debug('CG: Aborting early due to Wolfe') tau_opt = e.tau i = self.taus.index(tau_opt) h_min = self.hs[i] self.in_search = False return (tau_opt, h_min, i)
def brentq(self, tau_init, tol=0.001, max_iter=20): self.in_search = False tau = tau_init h = 1 + self.hs[0] g = -1 i = 0 while (g < 0 and h - self.hs[0] > 1e-13) and i < max_itr: self.clear_hist() self.f(tau) ind = self.taus.index(tau) h = self.hs[ind] g = self.gs[ind] tau *= 0.5 i += 1 i = ind tau_init = self.taus[i] g_init = self.gs[i] if self.wolfe(g_init, self.hs[i], tau_init): log.debug('CG: Using initial step, since Wolfe satisfied!') tau_opt = tau_init else: self.in_search = True try: taus = None if g_init > 0: taus = [0, tau_init] if taus is None: for i in range(3): log.debug('CG: Polynomial extrapolation BEGIN') g0 = self.f(tau_init / (i + 1.0)) tau1 = tau_init / (i + 1.0) tau_prev = tau1 g1 = g0 i = 0 while g1 * g0 > 0 and i < max_itr: tau_prev = tau1 if len(self.gs) > 1: gs = sp.array(self.gs) pts = min(max_points, len(gs)) res = sp.polyfit(self.taus[-pts:], gs[-pts:], max(max_deg, pts - 1), full=True) po = res[0] por = sp.roots(po) if por.max().real > 0: tau1 = por.max().real if tau1 > tau_init / (i + 1.0) * 10: tau1 = min(tau_prev * 2, tau1) if g1 < 0: tau1 *= fac_inc else: tau1 *= fac_red g1 = self.f(tau1) i += 1 if i == max_itr: log.debug('CG: Polynomial extrapolation MAX ITR') taus = None else: log.debug('CG: Polynomial extrapolation DONE') taus = sorted([tau_prev, tau1]) if not taus is None: break self.taus = self.taus[:1] self.hs = self.hs[:1] self.gs = self.gs[:1] self.lLs = self.lLs[:1] self.rLs = self.rLs[:1] self.K0s = self.K0s[:1] self.Ws = self.Ws[:1] if taus is None: return (0, self.hs[0], 0) try: tau_opt = opti.brentq(self.f, taus[0], taus[-1], xtol=tol, maxiter=max_iter) except ValueError: log.warning('CG: Failed to find a valid bracket.') return (0, self.hs[0], 0) except EvoMPS_line_search_wolfe_sat as e: log.debug('CG: Aborting early due to Wolfe') tau_opt = e.tau i = self.taus.index(tau_opt) h_min = self.hs[i] self.in_search = False return (tau_opt, h_min, i)
evoMPS
positive
def OnKeyDown(self, event): objs = self.myOlv.GetSelectedObjects() key = event.GetKeyCode() if wx.WXK_DELETE == key: <DeepExtract> for obj in objs: pass self.myOlv.RemoveObjects(objs) </DeepExtract> elif 3 == key: <DeepExtract> self.dataObj = wx.TextDataObject() file_ids = ','.join([obj.file_id for obj in objs]) wx.MessageBox(file_ids, 'MD5 code') </DeepExtract>
def OnKeyDown(self, event): objs = self.myOlv.GetSelectedObjects() key = event.GetKeyCode() if wx.WXK_DELETE == key: for obj in objs: pass self.myOlv.RemoveObjects(objs) elif 3 == key: self.dataObj = wx.TextDataObject() file_ids = ','.join([obj.file_id for obj in objs]) wx.MessageBox(file_ids, 'MD5 code') </DeepExtract>
bookhub
positive
def get_conn(self, auto_open=False): """Return a connection to our HTTP server.""" <DeepExtract> cls_name = '{scheme}Connection'.format(scheme=self.scheme.upper()) conn = getattr(http.client, cls_name) </DeepExtract> conn.auto_open = auto_open conn.connect() return conn
def get_conn(self, auto_open=False): """Return a connection to our HTTP server.""" cls_name = '{scheme}Connection'.format(scheme=self.scheme.upper()) conn = getattr(http.client, cls_name) conn.auto_open = auto_open conn.connect() return conn
cheroot
positive
def main(args): parser = argparse.ArgumentParser() parser.add_argument('--input_pc', type=str, help='Input labelled point cloud. The point cloud should has geon type label, output txt from roof_segmentation.py. ') parser.add_argument('--output_png', type=str, help='Output png result file.') parser.add_argument('--output_txt', type=str, help='Output txt result file includes all planar points for Purdue to process.') parser.add_argument('--output_geon', type=str, help='Output geon file.') args = parser.parse_args(args) (point_list, building_label_list, geon_label_list) = utils.read_geon_type_pc(args.input_pc) center_of_mess = np.mean(point_list, axis=0) point_list = point_list - center_of_mess point_list = point_list.astype(np.float32) cloud_filtered = pcl.PointCloud() cloud_filtered.from_array(point_list) print(cloud_filtered.size) fig = plt.figure() ax = fig.add_subplot(111, projection='3d') geon_model = [] all_remaining_index = [] index = 0 building_index_list = [] building_max_index = np.max(building_label_list) total_list = np.arange(building_label_list.shape[0]) for i in range(building_max_index + 1): current_list = total_list[building_label_list == i] building_index_list.append(current_list) geon_type_number = 4 cylinder_index = 2 sphere_index = 3 point_number_scale = 1 for indices in building_index_list: if len(indices) < 300: if len(all_remaining_index) == 0: all_remaining_index = copy.copy(indices) else: all_remaining_index = np.concatenate((all_remaining_index, indices), axis=None) continue geon_index_list = [] for i in range(geon_type_number): geon_index_list.append([]) building_points = np.zeros((len(indices), 3), dtype=np.float32) num_building_points = len(indices) for (i, indice) in enumerate(indices): building_points[i][0] = cloud_filtered[indice][0] building_points[i][1] = cloud_filtered[indice][1] building_points[i][2] = cloud_filtered[indice][2] for (i, indice) in enumerate(indices): geon_index_list[geon_label_list[indice]].append(indice) fitted_index = np.zeros(len(indices), dtype=np.int32) fitted_index = fitted_index == 1 if len(geon_index_list[cylinder_index]) > 0.1 * len(indices): points = np.zeros((len(geon_index_list[cylinder_index]), 3), dtype=np.float32) for (i, indice) in enumerate(geon_index_list[cylinder_index]): points[i][0] = cloud_filtered[indice][0] points[i][1] = cloud_filtered[indice][1] points[i][2] = cloud_filtered[indice][2] current_cloud = pcl.PointCloud() current_cloud.from_array(points) num_current_cylinder_point = current_cloud.size if num_building_points > 15000: vg = current_cloud.make_voxel_grid_filter() vg.set_leaf_size(1, 1, 1) current_cloud = vg.filter() num_filtered_building_points = current_cloud.size current_points = np.zeros((current_cloud.size, 3), dtype=np.float32) for i in range(current_cloud.size): current_points[i] = current_cloud[i] max_r = 80 min_r = 40 if num_current_cylinder_point > 10000: max_r = 80 min_r = 40 else: max_r = 30 min_r = 10 while True: <DeepExtract> section_pc = pcl.PointCloud() section_pc.from_array(current_points) cylinder_seg = section_pc.make_segmenter_normals(ksearch=50) cylinder_seg.set_optimize_coefficients(True) cylinder_seg.set_model_type(pcl.SACMODEL_CYLINDER) cylinder_seg.set_normal_distance_weight(0.1) cylinder_seg.set_method_type(pcl.SAC_RANSAC) cylinder_seg.set_max_iterations(1000) cylinder_seg.set_distance_threshold(3) cylinder_seg.set_radius_limits(min_r, max_r) (cylinder_indices, cylinder_coefficients) = cylinder_seg.segment() (cylinder_indices, cylinder_coefficients) = (cylinder_indices, cylinder_coefficients) </DeepExtract> if len(cylinder_indices) < 1000 * point_number_scale: break cylinder_points = np.zeros((len(cylinder_indices), 3), dtype=np.float32) for (i, indice) in enumerate(cylinder_indices): cylinder_points[i][0] = current_points[indice][0] cylinder_points[i][1] = current_points[indice][1] cylinder_points[i][2] = current_points[indice][2] (centroid, ex, ey, ez, fitted_indices, coefficients, min_axis_z, max_axis_z, mean_diff) = two_D_fitting.fit_2D_curve(cylinder_coefficients[3:-1], cylinder_points, fit_type='poly2', dist_threshold=10) for i in range(len(fitted_indices)): if len(fitted_indices[i]) < max(500, 0.05 * num_filtered_building_points): continue fitted_points = np.zeros((len(fitted_indices[i]), 3), np.float32) for (j, tmp_idx) in enumerate(fitted_indices[i]): fitted_points[j, :] = cylinder_points[tmp_idx, :] ax.scatter(fitted_points[:, 0], fitted_points[:, 1], fitted_points[:, 2], zdir='z', s=1, c='C{}'.format(2), rasterized=True, alpha=0.5) (all_fitted_indices, ortho_x_max, ortho_x_min, error) = two_D_fitting.check_2D_curve(ex, ey, ez, coefficients, centroid, building_points, min_axis_z[i], max_axis_z[i], fit_type='poly2') fitted_index[all_fitted_indices] = True geon_model.append({'name': 'poly_cylinder', 'model': [centroid, ex, ey, coefficients, min_axis_z[i], max_axis_z[i], ortho_x_min, ortho_x_max, len(fitted_indices[i]), mean_diff]}) current_cloud = current_cloud.extract(cylinder_indices, True) if current_cloud.size < max(500, 0.1 * num_filtered_building_points): break current_points = np.zeros((current_cloud.size, 3), dtype=np.float32) for i in range(current_cloud.size): current_points[i][0] = current_cloud[i][0] current_points[i][1] = current_cloud[i][1] current_points[i][2] = current_cloud[i][2] if len(geon_index_list[sphere_index]) > 0.3 * len(indices): points = np.zeros((len(geon_index_list[sphere_index]), 3), dtype=np.float32) for (i, indice) in enumerate(geon_index_list[sphere_index]): points[i][0] = cloud_filtered[indice][0] points[i][1] = cloud_filtered[indice][1] points[i][2] = cloud_filtered[indice][2] current_cloud = pcl.PointCloud() current_cloud.from_array(points) if num_building_points > 10000: vg = current_cloud.make_voxel_grid_filter() vg.set_leaf_size(1, 1, 1) current_cloud = vg.filter() current_points = np.zeros((current_cloud.size, 3), dtype=np.float32) for i in range(current_cloud.size): current_points[i] = current_cloud[i] while True: <DeepExtract> section_pc = pcl.PointCloud() section_pc.from_array(current_points) sphere_seg = section_pc.make_segmenter_normals(ksearch=50) sphere_seg.set_optimize_coefficients(True) sphere_seg.set_model_type(pcl.SACMODEL_SPHERE) sphere_seg.set_normal_distance_weight(0.3) sphere_seg.set_method_type(pcl.SAC_RANSAC) sphere_seg.set_max_iterations(1000) sphere_seg.set_distance_threshold(2) sphere_seg.set_radius_limits(5, 20) (sphere_indices, sphere_coefficients) = sphere_seg.segment() min_lst = [] fitted_indices = [] max_lst = [] if len(sphere_indices) > 100: sphere_points = current_points[sphere_indices, :] sphere_indices = np.asarray(sphere_indices) points_z = sphere_points[:, 2] - sphere_coefficients[2] if np.max(points_z) - np.min(points_z) < 8: sphere_indices = [] (sphere_indices, sphere_coefficients, min_lst, max_lst) = ([], sphere_coefficients, min_lst, max_lst) (min_lst, max_lst, fitted_indices) = two_D_fitting.get_z_length(points_z, sphere_indices) for i in range(len(max_lst)): if min_lst[i] < -0.8 * sphere_coefficients[-1]: min_lst[i] = -1 * sphere_coefficients[-1] if max_lst[i] > 0.9 * sphere_coefficients[-1]: max_lst[i] = sphere_coefficients[-1] (sphere_indices, sphere_coefficients, min_lst, max_lst) = (sphere_indices, sphere_coefficients, min_lst, max_lst) </DeepExtract> if len(sphere_indices) < 200 * point_number_scale: break if sphere_coefficients[-1] > 0: <DeepExtract> theta_max = get_theta(min_lst[0], sphere_coefficients[-1]) theta_min = get_theta(max_lst[0], sphere_coefficients[-1]) (u, v) = np.mgrid[0:2 * np.pi:10j, theta_min:theta_max:10j] x = np.cos(u) * np.sin(v) * sphere_coefficients[-1] y = np.sin(u) * np.sin(v) * sphere_coefficients[-1] z = np.cos(v) * sphere_coefficients[-1] x = x + sphere_coefficients[0:3][0] y = y + sphere_coefficients[0:3][1] z = z + sphere_coefficients[0:3][2] ax.plot_wireframe(x, y, z, color='r', alpha=0.5) </DeepExtract> sphere_points = np.zeros((len(sphere_indices), 3), dtype=np.float32) for (i, indice) in enumerate(sphere_indices): sphere_points[i][0] = current_points[indice][0] sphere_points[i][1] = current_points[indice][1] sphere_points[i][2] = current_points[indice][2] ax.scatter(sphere_points[:, 0], sphere_points[:, 1], sphere_points[:, 2], zdir='z', s=1, c='C{}'.format(3), rasterized=True, alpha=0.5) geon_model.append({'name': 'sphere', 'model': [sphere_coefficients[0:3], sphere_coefficients[-1], min_lst[0], max_lst[0], len(sphere_indices)]}) <DeepExtract> distance = building_points - sphere_coefficients[0:3] distance = distance * distance distance = np.sqrt(np.sum(distance, axis=1)) error = distance - sphere_coefficients[-1] sphere_indices = np.arange(building_points.shape[0]) sphere_indices = sphere_indices[np.logical_and(error < 3, error > -3)] (all_fitted_indices, error) = (sphere_indices, error) </DeepExtract> fitted_index[all_fitted_indices] = True current_cloud = current_cloud.extract(sphere_indices, True) if current_cloud.size < 1000 * point_number_scale: break current_points = np.zeros((current_cloud.size, 3), dtype=np.float32) for i in range(current_cloud.size): current_points[i][0] = current_cloud[i][0] current_points[i][1] = current_cloud[i][1] current_points[i][2] = current_cloud[i][2] remaining_index_list = indices[fitted_index == False] if len(all_remaining_index) == 0: all_remaining_index = copy.copy(remaining_index_list) else: all_remaining_index = np.concatenate((all_remaining_index, remaining_index_list), axis=None) remaining_point_list = [] remaining_geon_list = [] for index in all_remaining_index: remaining_point_list.append(point_list[index, :]) remaining_geon_list.append(geon_label_list[index]) remaining_point_list = np.asarray(remaining_point_list) show_cloud = pcl.PointCloud() show_cloud.from_array(remaining_point_list) vg = show_cloud.make_voxel_grid_filter() vg.set_leaf_size(2, 2, 2) show_cloud = vg.filter() show_points = np.zeros((show_cloud.size, 3), dtype=np.float32) for i in range(show_cloud.size): show_points[i, :] = show_cloud[i] ax.scatter(show_points[:, 0], show_points[:, 1], show_points[:, 2], zdir='z', s=1, c='C{}'.format(9), alpha=0.01) remaining_point_list = remaining_point_list + center_of_mess fout = open('{}'.format(args.output_txt), mode='w') for point_idx in range(remaining_point_list.shape[0]): fout.write('{} {} {} {}\n'.format(remaining_point_list[point_idx, 0], remaining_point_list[point_idx, 1], remaining_point_list[point_idx, 2], remaining_geon_list[point_idx])) utils.axisEqual3D(ax) plt.savefig(args.output_png, bbox_inches='tight') plt.close() pickle.dump([center_of_mess, geon_model], open(args.output_geon, 'wb'))
def main(args): parser = argparse.ArgumentParser() parser.add_argument('--input_pc', type=str, help='Input labelled point cloud. The point cloud should has geon type label, output txt from roof_segmentation.py. ') parser.add_argument('--output_png', type=str, help='Output png result file.') parser.add_argument('--output_txt', type=str, help='Output txt result file includes all planar points for Purdue to process.') parser.add_argument('--output_geon', type=str, help='Output geon file.') args = parser.parse_args(args) (point_list, building_label_list, geon_label_list) = utils.read_geon_type_pc(args.input_pc) center_of_mess = np.mean(point_list, axis=0) point_list = point_list - center_of_mess point_list = point_list.astype(np.float32) cloud_filtered = pcl.PointCloud() cloud_filtered.from_array(point_list) print(cloud_filtered.size) fig = plt.figure() ax = fig.add_subplot(111, projection='3d') geon_model = [] all_remaining_index = [] index = 0 building_index_list = [] building_max_index = np.max(building_label_list) total_list = np.arange(building_label_list.shape[0]) for i in range(building_max_index + 1): current_list = total_list[building_label_list == i] building_index_list.append(current_list) geon_type_number = 4 cylinder_index = 2 sphere_index = 3 point_number_scale = 1 for indices in building_index_list: if len(indices) < 300: if len(all_remaining_index) == 0: all_remaining_index = copy.copy(indices) else: all_remaining_index = np.concatenate((all_remaining_index, indices), axis=None) continue geon_index_list = [] for i in range(geon_type_number): geon_index_list.append([]) building_points = np.zeros((len(indices), 3), dtype=np.float32) num_building_points = len(indices) for (i, indice) in enumerate(indices): building_points[i][0] = cloud_filtered[indice][0] building_points[i][1] = cloud_filtered[indice][1] building_points[i][2] = cloud_filtered[indice][2] for (i, indice) in enumerate(indices): geon_index_list[geon_label_list[indice]].append(indice) fitted_index = np.zeros(len(indices), dtype=np.int32) fitted_index = fitted_index == 1 if len(geon_index_list[cylinder_index]) > 0.1 * len(indices): points = np.zeros((len(geon_index_list[cylinder_index]), 3), dtype=np.float32) for (i, indice) in enumerate(geon_index_list[cylinder_index]): points[i][0] = cloud_filtered[indice][0] points[i][1] = cloud_filtered[indice][1] points[i][2] = cloud_filtered[indice][2] current_cloud = pcl.PointCloud() current_cloud.from_array(points) num_current_cylinder_point = current_cloud.size if num_building_points > 15000: vg = current_cloud.make_voxel_grid_filter() vg.set_leaf_size(1, 1, 1) current_cloud = vg.filter() num_filtered_building_points = current_cloud.size current_points = np.zeros((current_cloud.size, 3), dtype=np.float32) for i in range(current_cloud.size): current_points[i] = current_cloud[i] max_r = 80 min_r = 40 if num_current_cylinder_point > 10000: max_r = 80 min_r = 40 else: max_r = 30 min_r = 10 while True: section_pc = pcl.PointCloud() section_pc.from_array(current_points) cylinder_seg = section_pc.make_segmenter_normals(ksearch=50) cylinder_seg.set_optimize_coefficients(True) cylinder_seg.set_model_type(pcl.SACMODEL_CYLINDER) cylinder_seg.set_normal_distance_weight(0.1) cylinder_seg.set_method_type(pcl.SAC_RANSAC) cylinder_seg.set_max_iterations(1000) cylinder_seg.set_distance_threshold(3) cylinder_seg.set_radius_limits(min_r, max_r) (cylinder_indices, cylinder_coefficients) = cylinder_seg.segment() (cylinder_indices, cylinder_coefficients) = (cylinder_indices, cylinder_coefficients) if len(cylinder_indices) < 1000 * point_number_scale: break cylinder_points = np.zeros((len(cylinder_indices), 3), dtype=np.float32) for (i, indice) in enumerate(cylinder_indices): cylinder_points[i][0] = current_points[indice][0] cylinder_points[i][1] = current_points[indice][1] cylinder_points[i][2] = current_points[indice][2] (centroid, ex, ey, ez, fitted_indices, coefficients, min_axis_z, max_axis_z, mean_diff) = two_D_fitting.fit_2D_curve(cylinder_coefficients[3:-1], cylinder_points, fit_type='poly2', dist_threshold=10) for i in range(len(fitted_indices)): if len(fitted_indices[i]) < max(500, 0.05 * num_filtered_building_points): continue fitted_points = np.zeros((len(fitted_indices[i]), 3), np.float32) for (j, tmp_idx) in enumerate(fitted_indices[i]): fitted_points[j, :] = cylinder_points[tmp_idx, :] ax.scatter(fitted_points[:, 0], fitted_points[:, 1], fitted_points[:, 2], zdir='z', s=1, c='C{}'.format(2), rasterized=True, alpha=0.5) (all_fitted_indices, ortho_x_max, ortho_x_min, error) = two_D_fitting.check_2D_curve(ex, ey, ez, coefficients, centroid, building_points, min_axis_z[i], max_axis_z[i], fit_type='poly2') fitted_index[all_fitted_indices] = True geon_model.append({'name': 'poly_cylinder', 'model': [centroid, ex, ey, coefficients, min_axis_z[i], max_axis_z[i], ortho_x_min, ortho_x_max, len(fitted_indices[i]), mean_diff]}) current_cloud = current_cloud.extract(cylinder_indices, True) if current_cloud.size < max(500, 0.1 * num_filtered_building_points): break current_points = np.zeros((current_cloud.size, 3), dtype=np.float32) for i in range(current_cloud.size): current_points[i][0] = current_cloud[i][0] current_points[i][1] = current_cloud[i][1] current_points[i][2] = current_cloud[i][2] if len(geon_index_list[sphere_index]) > 0.3 * len(indices): points = np.zeros((len(geon_index_list[sphere_index]), 3), dtype=np.float32) for (i, indice) in enumerate(geon_index_list[sphere_index]): points[i][0] = cloud_filtered[indice][0] points[i][1] = cloud_filtered[indice][1] points[i][2] = cloud_filtered[indice][2] current_cloud = pcl.PointCloud() current_cloud.from_array(points) if num_building_points > 10000: vg = current_cloud.make_voxel_grid_filter() vg.set_leaf_size(1, 1, 1) current_cloud = vg.filter() current_points = np.zeros((current_cloud.size, 3), dtype=np.float32) for i in range(current_cloud.size): current_points[i] = current_cloud[i] while True: section_pc = pcl.PointCloud() section_pc.from_array(current_points) sphere_seg = section_pc.make_segmenter_normals(ksearch=50) sphere_seg.set_optimize_coefficients(True) sphere_seg.set_model_type(pcl.SACMODEL_SPHERE) sphere_seg.set_normal_distance_weight(0.3) sphere_seg.set_method_type(pcl.SAC_RANSAC) sphere_seg.set_max_iterations(1000) sphere_seg.set_distance_threshold(2) sphere_seg.set_radius_limits(5, 20) (sphere_indices, sphere_coefficients) = sphere_seg.segment() min_lst = [] fitted_indices = [] max_lst = [] if len(sphere_indices) > 100: sphere_points = current_points[sphere_indices, :] sphere_indices = np.asarray(sphere_indices) points_z = sphere_points[:, 2] - sphere_coefficients[2] if np.max(points_z) - np.min(points_z) < 8: sphere_indices = [] (sphere_indices, sphere_coefficients, min_lst, max_lst) = ([], sphere_coefficients, min_lst, max_lst) (min_lst, max_lst, fitted_indices) = two_D_fitting.get_z_length(points_z, sphere_indices) for i in range(len(max_lst)): if min_lst[i] < -0.8 * sphere_coefficients[-1]: min_lst[i] = -1 * sphere_coefficients[-1] if max_lst[i] > 0.9 * sphere_coefficients[-1]: max_lst[i] = sphere_coefficients[-1] (sphere_indices, sphere_coefficients, min_lst, max_lst) = (sphere_indices, sphere_coefficients, min_lst, max_lst) if len(sphere_indices) < 200 * point_number_scale: break if sphere_coefficients[-1] > 0: theta_max = get_theta(min_lst[0], sphere_coefficients[-1]) theta_min = get_theta(max_lst[0], sphere_coefficients[-1]) (u, v) = np.mgrid[0:2 * np.pi:10j, theta_min:theta_max:10j] x = np.cos(u) * np.sin(v) * sphere_coefficients[-1] y = np.sin(u) * np.sin(v) * sphere_coefficients[-1] z = np.cos(v) * sphere_coefficients[-1] x = x + sphere_coefficients[0:3][0] y = y + sphere_coefficients[0:3][1] z = z + sphere_coefficients[0:3][2] ax.plot_wireframe(x, y, z, color='r', alpha=0.5) sphere_points = np.zeros((len(sphere_indices), 3), dtype=np.float32) for (i, indice) in enumerate(sphere_indices): sphere_points[i][0] = current_points[indice][0] sphere_points[i][1] = current_points[indice][1] sphere_points[i][2] = current_points[indice][2] ax.scatter(sphere_points[:, 0], sphere_points[:, 1], sphere_points[:, 2], zdir='z', s=1, c='C{}'.format(3), rasterized=True, alpha=0.5) geon_model.append({'name': 'sphere', 'model': [sphere_coefficients[0:3], sphere_coefficients[-1], min_lst[0], max_lst[0], len(sphere_indices)]}) distance = building_points - sphere_coefficients[0:3] distance = distance * distance distance = np.sqrt(np.sum(distance, axis=1)) error = distance - sphere_coefficients[-1] sphere_indices = np.arange(building_points.shape[0]) sphere_indices = sphere_indices[np.logical_and(error < 3, error > -3)] (all_fitted_indices, error) = (sphere_indices, error) fitted_index[all_fitted_indices] = True current_cloud = current_cloud.extract(sphere_indices, True) if current_cloud.size < 1000 * point_number_scale: break current_points = np.zeros((current_cloud.size, 3), dtype=np.float32) for i in range(current_cloud.size): current_points[i][0] = current_cloud[i][0] current_points[i][1] = current_cloud[i][1] current_points[i][2] = current_cloud[i][2] remaining_index_list = indices[fitted_index == False] if len(all_remaining_index) == 0: all_remaining_index = copy.copy(remaining_index_list) else: all_remaining_index = np.concatenate((all_remaining_index, remaining_index_list), axis=None) remaining_point_list = [] remaining_geon_list = [] for index in all_remaining_index: remaining_point_list.append(point_list[index, :]) remaining_geon_list.append(geon_label_list[index]) remaining_point_list = np.asarray(remaining_point_list) show_cloud = pcl.PointCloud() show_cloud.from_array(remaining_point_list) vg = show_cloud.make_voxel_grid_filter() vg.set_leaf_size(2, 2, 2) show_cloud = vg.filter() show_points = np.zeros((show_cloud.size, 3), dtype=np.float32) for i in range(show_cloud.size): show_points[i, :] = show_cloud[i] ax.scatter(show_points[:, 0], show_points[:, 1], show_points[:, 2], zdir='z', s=1, c='C{}'.format(9), alpha=0.01) remaining_point_list = remaining_point_list + center_of_mess fout = open('{}'.format(args.output_txt), mode='w') for point_idx in range(remaining_point_list.shape[0]): fout.write('{} {} {} {}\n'.format(remaining_point_list[point_idx, 0], remaining_point_list[point_idx, 1], remaining_point_list[point_idx, 2], remaining_geon_list[point_idx])) utils.axisEqual3D(ax) plt.savefig(args.output_png, bbox_inches='tight') plt.close() pickle.dump([center_of_mess, geon_model], open(args.output_geon, 'wb'))
Danesfield
positive
def parse_cli(output, tmpl): if not isinstance(output, string_types): raise AnsibleError('parse_cli input should be a string, but was given a input of %s' % type(output)) if not os.path.exists(tmpl): raise AnsibleError('unable to locate parse_cli template: %s' % tmpl) try: template = Template() except ImportError as exc: raise AnsibleError(to_native(exc)) with open(tmpl) as tmpl_fh: tmpl_content = tmpl_fh.read() spec = yaml.safe_load(tmpl_content) obj = {} for (name, attrs) in iteritems(spec['keys']): value = attrs['value'] try: variables = spec.get('vars', {}) value = template(value, variables) except Exception: pass if 'start_block' in attrs and 'end_block' in attrs: start_block = re.compile(attrs['start_block']) end_block = re.compile(attrs['end_block']) blocks = list() lines = None block_started = False for line in output.split('\n'): match_start = start_block.match(line) match_end = end_block.match(line) if match_start: lines = list() lines.append(line) block_started = True elif match_end: if lines: lines.append(line) blocks.append('\n'.join(lines)) lines = None block_started = False elif block_started: if lines: lines.append(line) regex_items = [re.compile(r) for r in attrs['items']] objects = list() for block in blocks: if isinstance(value, Mapping) and 'key' not in value: items = list() for regex in regex_items: items.append(re_finditer(regex, block)) obj = {} for (k, v) in iteritems(value): try: obj[k] = template(v, {'item': items}, fail_on_undefined=False) except Exception: obj[k] = None objects.append(obj) elif isinstance(value, Mapping): items = list() for regex in regex_items: items.append(re_finditer(regex, block)) key = template(value['key'], {'item': items}) values = dict([(k, template(v, {'item': items})) for (k, v) in iteritems(value['values'])]) objects.append({key: values}) return objects elif 'items' in attrs: regexp = re.compile(attrs['items']) when = attrs.get('when') conditional = '{%% if %s %%}True{%% else %%}False{%% endif %%}' % when if isinstance(value, Mapping) and 'key' not in value: values = list() for item in re_matchall(regexp, output): entry = {} for (item_key, item_value) in iteritems(value): entry[item_key] = template(item_value, {'item': item}) if when: if template(conditional, {'item': entry}): values.append(entry) else: values.append(entry) obj[name] = values elif isinstance(value, Mapping): values = dict() for item in re_matchall(regexp, output): entry = {} for (item_key, item_value) in iteritems(value['values']): entry[item_key] = template(item_value, {'item': item}) key = template(value['key'], {'item': item}) if when: if template(conditional, {'item': {'key': key, 'value': entry}}): values[key] = entry else: values[key] = entry obj[name] = values else: <DeepExtract> obj = {} match = regexp.search(output, re.M) if match: items = list(match.groups()) if regexp.groupindex: for (name, index) in iteritems(regexp.groupindex): obj[name] = items[index - 1] item = obj </DeepExtract> obj[name] = template(value, {'item': item}) else: obj[name] = value return obj
def parse_cli(output, tmpl): if not isinstance(output, string_types): raise AnsibleError('parse_cli input should be a string, but was given a input of %s' % type(output)) if not os.path.exists(tmpl): raise AnsibleError('unable to locate parse_cli template: %s' % tmpl) try: template = Template() except ImportError as exc: raise AnsibleError(to_native(exc)) with open(tmpl) as tmpl_fh: tmpl_content = tmpl_fh.read() spec = yaml.safe_load(tmpl_content) obj = {} for (name, attrs) in iteritems(spec['keys']): value = attrs['value'] try: variables = spec.get('vars', {}) value = template(value, variables) except Exception: pass if 'start_block' in attrs and 'end_block' in attrs: start_block = re.compile(attrs['start_block']) end_block = re.compile(attrs['end_block']) blocks = list() lines = None block_started = False for line in output.split('\n'): match_start = start_block.match(line) match_end = end_block.match(line) if match_start: lines = list() lines.append(line) block_started = True elif match_end: if lines: lines.append(line) blocks.append('\n'.join(lines)) lines = None block_started = False elif block_started: if lines: lines.append(line) regex_items = [re.compile(r) for r in attrs['items']] objects = list() for block in blocks: if isinstance(value, Mapping) and 'key' not in value: items = list() for regex in regex_items: items.append(re_finditer(regex, block)) obj = {} for (k, v) in iteritems(value): try: obj[k] = template(v, {'item': items}, fail_on_undefined=False) except Exception: obj[k] = None objects.append(obj) elif isinstance(value, Mapping): items = list() for regex in regex_items: items.append(re_finditer(regex, block)) key = template(value['key'], {'item': items}) values = dict([(k, template(v, {'item': items})) for (k, v) in iteritems(value['values'])]) objects.append({key: values}) return objects elif 'items' in attrs: regexp = re.compile(attrs['items']) when = attrs.get('when') conditional = '{%% if %s %%}True{%% else %%}False{%% endif %%}' % when if isinstance(value, Mapping) and 'key' not in value: values = list() for item in re_matchall(regexp, output): entry = {} for (item_key, item_value) in iteritems(value): entry[item_key] = template(item_value, {'item': item}) if when: if template(conditional, {'item': entry}): values.append(entry) else: values.append(entry) obj[name] = values elif isinstance(value, Mapping): values = dict() for item in re_matchall(regexp, output): entry = {} for (item_key, item_value) in iteritems(value['values']): entry[item_key] = template(item_value, {'item': item}) key = template(value['key'], {'item': item}) if when: if template(conditional, {'item': {'key': key, 'value': entry}}): values[key] = entry else: values[key] = entry obj[name] = values else: obj = {} match = regexp.search(output, re.M) if match: items = list(match.groups()) if regexp.groupindex: for (name, index) in iteritems(regexp.groupindex): obj[name] = items[index - 1] item = obj obj[name] = template(value, {'item': item}) else: obj[name] = value return obj
ansible.netcommon
positive
def get_task(task_id): <DeepExtract> mc = MetaController() task_report = mc.read_task(task_id) </DeepExtract> if task_report is not None: return change_date_to_str(task_report) else: return add_error({}, 8, 'Task not found')
def get_task(task_id): mc = MetaController() task_report = mc.read_task(task_id) if task_report is not None: return change_date_to_str(task_report) else: return add_error({}, 8, 'Task not found')
codex-backend
positive
def _compute_sampling_prob(self): """Class Diversity Sensitive Sampling http://www.objects365.org/slides/Obj365_BaiduVIS.pdf """ self.probs = np.zeros(len(self), dtype=np.float) P = np.load('counts.npy')[1:] for i in range(len(self)): <DeepExtract> ann = self.img_infos[i]['ann'] </DeepExtract> gt_labels = ann['labels'] labels = np.unique(gt_labels) Ci = len(labels) Pc = P[labels] self.probs[i] = np.log(Ci) * np.sum(Pc)
def _compute_sampling_prob(self): """Class Diversity Sensitive Sampling http://www.objects365.org/slides/Obj365_BaiduVIS.pdf """ self.probs = np.zeros(len(self), dtype=np.float) P = np.load('counts.npy')[1:] for i in range(len(self)): ann = self.img_infos[i]['ann'] gt_labels = ann['labels'] labels = np.unique(gt_labels) Ci = len(labels) Pc = P[labels] self.probs[i] = np.log(Ci) * np.sum(Pc)
C-HOI
positive
def update_state(self, y_true: tf.Tensor, y_pred: tf.Tensor, sequence_id: Union[int, str]=0, weights: Optional[tf.Tensor]=None): """Accumulates the segmentation and tracking quality statistics. Args: y_true: The ground-truth panoptic label map for a particular video frame (defined as semantic_map * max_instances_per_category + instance_map). y_pred: The predicted panoptic label map for a particular video frame (defined as semantic_map * max_instances_per_category + instance_map). sequence_id: The optional ID of the sequence the frames belong to. When no sequence is given, all frames are considered to belong to the same sequence (default: 0). weights: The weights for each pixel with the same shape of `y_true`. """ y_true = tf.cast(y_true, dtype=tf.int64) y_pred = tf.cast(y_pred, dtype=tf.int64) if weights is not None: weights = tf.reshape(weights, y_true.shape) semantic_label = y_true // self._max_instances_per_category semantic_prediction = y_pred // self._max_instances_per_category if self._ignore_label > self._num_classes: semantic_label = tf.where(tf.not_equal(semantic_label, self._ignore_label), semantic_label, self._num_classes) semantic_prediction = tf.where(tf.not_equal(semantic_prediction, self._ignore_label), semantic_prediction, self._num_classes) if sequence_id in self._iou_confusion_matrix_per_sequence: self._iou_confusion_matrix_per_sequence[sequence_id] += tf.math.confusion_matrix(tf.reshape(semantic_label, [-1]), tf.reshape(semantic_prediction, [-1]), self._confusion_matrix_size, dtype=tf.float64, weights=tf.reshape(weights, [-1]) if weights is not None else None) self._sequence_length[sequence_id] += 1 else: self._iou_confusion_matrix_per_sequence[sequence_id] = tf.math.confusion_matrix(tf.reshape(semantic_label, [-1]), tf.reshape(semantic_prediction, [-1]), self._confusion_matrix_size, dtype=tf.float64, weights=tf.reshape(weights, [-1]) if weights is not None else None) self._predictions[sequence_id] = {} self._ground_truth[sequence_id] = {} self._intersections[sequence_id] = {} self._sequence_length[sequence_id] = 1 instance_label = y_true % self._max_instances_per_category label_mask = tf.zeros_like(semantic_label, dtype=tf.bool) prediction_mask = tf.zeros_like(semantic_prediction, dtype=tf.bool) for things_class_id in self._things_list: label_mask = tf.logical_or(label_mask, tf.equal(semantic_label, things_class_id)) prediction_mask = tf.logical_or(prediction_mask, tf.equal(semantic_prediction, things_class_id)) is_crowd = tf.logical_and(tf.equal(instance_label, 0), label_mask) label_mask = tf.logical_and(label_mask, tf.logical_not(is_crowd)) prediction_mask = tf.logical_and(prediction_mask, tf.logical_not(is_crowd)) seq_preds = self._predictions[sequence_id] seq_gts = self._ground_truth[sequence_id] seq_intersects = self._intersections[sequence_id] <DeepExtract> if weights[prediction_mask] if weights is not None else None is None: unique_weight_list = [1.0] else: (unique_weight_list, _) = tf.unique(weights[prediction_mask] if weights is not None else None) unique_weight_list = unique_weight_list.numpy().tolist() _check_weights(unique_weight_list) for weight in unique_weight_list: if weights[prediction_mask] if weights is not None else None is None: (ids, _, counts) = tf.unique_with_counts(y_pred[prediction_mask]) else: (ids, _, counts) = tf.unique_with_counts(tf.boolean_mask(y_pred[prediction_mask], tf.equal(weight, weights[prediction_mask] if weights is not None else None))) for (idx, count) in zip(ids.numpy(), tf.cast(counts, tf.float32)): if idx in seq_preds: seq_preds[idx] += count * weight else: seq_preds[idx] = count * weight </DeepExtract> <DeepExtract> if weights[label_mask] if weights is not None else None is None: unique_weight_list = [1.0] else: (unique_weight_list, _) = tf.unique(weights[label_mask] if weights is not None else None) unique_weight_list = unique_weight_list.numpy().tolist() _check_weights(unique_weight_list) for weight in unique_weight_list: if weights[label_mask] if weights is not None else None is None: (ids, _, counts) = tf.unique_with_counts(y_true[label_mask]) else: (ids, _, counts) = tf.unique_with_counts(tf.boolean_mask(y_true[label_mask], tf.equal(weight, weights[label_mask] if weights is not None else None))) for (idx, count) in zip(ids.numpy(), tf.cast(counts, tf.float32)): if idx in seq_gts: seq_gts[idx] += count * weight else: seq_gts[idx] = count * weight </DeepExtract> non_crowd_intersection = tf.logical_and(label_mask, prediction_mask) intersection_ids = y_true[non_crowd_intersection] * self._offset + y_pred[non_crowd_intersection] <DeepExtract> if weights[non_crowd_intersection] if weights is not None else None is None: unique_weight_list = [1.0] else: (unique_weight_list, _) = tf.unique(weights[non_crowd_intersection] if weights is not None else None) unique_weight_list = unique_weight_list.numpy().tolist() _check_weights(unique_weight_list) for weight in unique_weight_list: if weights[non_crowd_intersection] if weights is not None else None is None: (ids, _, counts) = tf.unique_with_counts(intersection_ids) else: (ids, _, counts) = tf.unique_with_counts(tf.boolean_mask(intersection_ids, tf.equal(weight, weights[non_crowd_intersection] if weights is not None else None))) for (idx, count) in zip(ids.numpy(), tf.cast(counts, tf.float32)): if idx in seq_intersects: seq_intersects[idx] += count * weight else: seq_intersects[idx] = count * weight </DeepExtract>
def update_state(self, y_true: tf.Tensor, y_pred: tf.Tensor, sequence_id: Union[int, str]=0, weights: Optional[tf.Tensor]=None): """Accumulates the segmentation and tracking quality statistics. Args: y_true: The ground-truth panoptic label map for a particular video frame (defined as semantic_map * max_instances_per_category + instance_map). y_pred: The predicted panoptic label map for a particular video frame (defined as semantic_map * max_instances_per_category + instance_map). sequence_id: The optional ID of the sequence the frames belong to. When no sequence is given, all frames are considered to belong to the same sequence (default: 0). weights: The weights for each pixel with the same shape of `y_true`. """ y_true = tf.cast(y_true, dtype=tf.int64) y_pred = tf.cast(y_pred, dtype=tf.int64) if weights is not None: weights = tf.reshape(weights, y_true.shape) semantic_label = y_true // self._max_instances_per_category semantic_prediction = y_pred // self._max_instances_per_category if self._ignore_label > self._num_classes: semantic_label = tf.where(tf.not_equal(semantic_label, self._ignore_label), semantic_label, self._num_classes) semantic_prediction = tf.where(tf.not_equal(semantic_prediction, self._ignore_label), semantic_prediction, self._num_classes) if sequence_id in self._iou_confusion_matrix_per_sequence: self._iou_confusion_matrix_per_sequence[sequence_id] += tf.math.confusion_matrix(tf.reshape(semantic_label, [-1]), tf.reshape(semantic_prediction, [-1]), self._confusion_matrix_size, dtype=tf.float64, weights=tf.reshape(weights, [-1]) if weights is not None else None) self._sequence_length[sequence_id] += 1 else: self._iou_confusion_matrix_per_sequence[sequence_id] = tf.math.confusion_matrix(tf.reshape(semantic_label, [-1]), tf.reshape(semantic_prediction, [-1]), self._confusion_matrix_size, dtype=tf.float64, weights=tf.reshape(weights, [-1]) if weights is not None else None) self._predictions[sequence_id] = {} self._ground_truth[sequence_id] = {} self._intersections[sequence_id] = {} self._sequence_length[sequence_id] = 1 instance_label = y_true % self._max_instances_per_category label_mask = tf.zeros_like(semantic_label, dtype=tf.bool) prediction_mask = tf.zeros_like(semantic_prediction, dtype=tf.bool) for things_class_id in self._things_list: label_mask = tf.logical_or(label_mask, tf.equal(semantic_label, things_class_id)) prediction_mask = tf.logical_or(prediction_mask, tf.equal(semantic_prediction, things_class_id)) is_crowd = tf.logical_and(tf.equal(instance_label, 0), label_mask) label_mask = tf.logical_and(label_mask, tf.logical_not(is_crowd)) prediction_mask = tf.logical_and(prediction_mask, tf.logical_not(is_crowd)) seq_preds = self._predictions[sequence_id] seq_gts = self._ground_truth[sequence_id] seq_intersects = self._intersections[sequence_id] if weights[prediction_mask] if weights is not None else None is None: unique_weight_list = [1.0] else: (unique_weight_list, _) = tf.unique(weights[prediction_mask] if weights is not None else None) unique_weight_list = unique_weight_list.numpy().tolist() _check_weights(unique_weight_list) for weight in unique_weight_list: if weights[prediction_mask] if weights is not None else None is None: (ids, _, counts) = tf.unique_with_counts(y_pred[prediction_mask]) else: (ids, _, counts) = tf.unique_with_counts(tf.boolean_mask(y_pred[prediction_mask], tf.equal(weight, weights[prediction_mask] if weights is not None else None))) for (idx, count) in zip(ids.numpy(), tf.cast(counts, tf.float32)): if idx in seq_preds: seq_preds[idx] += count * weight else: seq_preds[idx] = count * weight if weights[label_mask] if weights is not None else None is None: unique_weight_list = [1.0] else: (unique_weight_list, _) = tf.unique(weights[label_mask] if weights is not None else None) unique_weight_list = unique_weight_list.numpy().tolist() _check_weights(unique_weight_list) for weight in unique_weight_list: if weights[label_mask] if weights is not None else None is None: (ids, _, counts) = tf.unique_with_counts(y_true[label_mask]) else: (ids, _, counts) = tf.unique_with_counts(tf.boolean_mask(y_true[label_mask], tf.equal(weight, weights[label_mask] if weights is not None else None))) for (idx, count) in zip(ids.numpy(), tf.cast(counts, tf.float32)): if idx in seq_gts: seq_gts[idx] += count * weight else: seq_gts[idx] = count * weight non_crowd_intersection = tf.logical_and(label_mask, prediction_mask) intersection_ids = y_true[non_crowd_intersection] * self._offset + y_pred[non_crowd_intersection] if weights[non_crowd_intersection] if weights is not None else None is None: unique_weight_list = [1.0] else: (unique_weight_list, _) = tf.unique(weights[non_crowd_intersection] if weights is not None else None) unique_weight_list = unique_weight_list.numpy().tolist() _check_weights(unique_weight_list) for weight in unique_weight_list: if weights[non_crowd_intersection] if weights is not None else None is None: (ids, _, counts) = tf.unique_with_counts(intersection_ids) else: (ids, _, counts) = tf.unique_with_counts(tf.boolean_mask(intersection_ids, tf.equal(weight, weights[non_crowd_intersection] if weights is not None else None))) for (idx, count) in zip(ids.numpy(), tf.cast(counts, tf.float32)): if idx in seq_intersects: seq_intersects[idx] += count * weight else: seq_intersects[idx] = count * weight </DeepExtract>
deeplab2
positive
@patch('ckanext.dcat.harvesters.DCATRDFHarvester._save_gather_error') @responses.activate @pytest.mark.ckan_config('ckanext.dcat.max_file_size', 100) def test_harvest_config_file_size(self, mock_save_gather_error): harvester = DCATRDFHarvester() <DeepExtract> responses.add_passthru(re.compile(config.get('solr_url', 'http://127.0.0.1:8983/solr').rstrip('/') + '/\\w+')) </DeepExtract> actual_file_size = 1024 * 1024 * 110 allowed_file_size = 1024 * 1024 * 100 responses.add(responses.HEAD, self.ttl_mock_url, status=200, content_type=self.ttl_content_type, adding_headers={'content-length': six.text_type(actual_file_size)}) <DeepExtract> source_dict = {'title': 'Test RDF DCAT Source', 'name': 'test-rdf-dcat-source', 'url': self.ttl_mock_url, 'source_type': 'dcat_rdf'} source_dict.update(**kwargs) harvest_source = helpers.call_action('harvest_source_create', {}, **source_dict) harvest_source = harvest_source </DeepExtract> <DeepExtract> harvest_job = helpers.call_action('harvest_job_create', {}, source_id=harvest_source['id']) harvest_job = harvest_job </DeepExtract> harvester._get_content_and_type(self.ttl_mock_url, harvest_job, 1, self.ttl_content_type) msg = 'Remote file is too big. Allowed\n file size: {allowed}, Content-Length: {actual}.'.format(allowed=allowed_file_size, actual=actual_file_size) mock_save_gather_error.assert_called_once_with(msg, harvest_job)
@patch('ckanext.dcat.harvesters.DCATRDFHarvester._save_gather_error') @responses.activate @pytest.mark.ckan_config('ckanext.dcat.max_file_size', 100) def test_harvest_config_file_size(self, mock_save_gather_error): harvester = DCATRDFHarvester() responses.add_passthru(re.compile(config.get('solr_url', 'http://127.0.0.1:8983/solr').rstrip('/') + '/\\w+')) actual_file_size = 1024 * 1024 * 110 allowed_file_size = 1024 * 1024 * 100 responses.add(responses.HEAD, self.ttl_mock_url, status=200, content_type=self.ttl_content_type, adding_headers={'content-length': six.text_type(actual_file_size)}) source_dict = {'title': 'Test RDF DCAT Source', 'name': 'test-rdf-dcat-source', 'url': self.ttl_mock_url, 'source_type': 'dcat_rdf'} source_dict.update(**kwargs) harvest_source = helpers.call_action('harvest_source_create', {}, **source_dict) harvest_source = harvest_source harvest_job = helpers.call_action('harvest_job_create', {}, source_id=harvest_source['id']) harvest_job = harvest_job harvester._get_content_and_type(self.ttl_mock_url, harvest_job, 1, self.ttl_content_type) msg = 'Remote file is too big. Allowed\n file size: {allowed}, Content-Length: {actual}.'.format(allowed=allowed_file_size, actual=actual_file_size) mock_save_gather_error.assert_called_once_with(msg, harvest_job)
ckanext-dcat
positive
def test_advancedSearching(self): parser = self.parser items = parser.getElementsByName('items') assert items, 'Failed to get items' <DeepExtract> itemsUnder = [] for item in items: priceEms = item.getElementsByName('price') assert priceEms, 'Failed to find price elements' assert len(priceEms) == 1, 'Expected 1 price element, got %d' % (len(priceEms),) priceEm = priceEms[0] priceInner = priceEm.innerHTML.strip() assert priceInner, 'Got blank innerHTML in price element' try: priceValue = round(float(priceEm.innerHTML.strip()), 2) except: raise AssertionError('Failed to parse price value, not a float? (%f)' % (priceValue,)) if priceValue < 4.0: itemsUnder.append(item) itemsUnderFour = itemsUnder </DeepExtract> assert len(itemsUnderFour) == 3, 'Asserted to find 3 items under 4.00, but found %d' % (len(itemsUnderFour),) names = [self._getItemName(item) for item in itemsUnderFour] for name in names: assert name, 'Expected name not to be blank' names = set(names) assert 'Sponges' in names, 'Expected to find Sponges' assert 'Turtles' in names, 'Expected to find Turtles' assert 'Pudding Cups' in names, 'Expected to find Pudding Cups' assert 'Gold Brick' not in names, 'Expected NOT TO find Gold Brick'
def test_advancedSearching(self): parser = self.parser items = parser.getElementsByName('items') assert items, 'Failed to get items' itemsUnder = [] for item in items: priceEms = item.getElementsByName('price') assert priceEms, 'Failed to find price elements' assert len(priceEms) == 1, 'Expected 1 price element, got %d' % (len(priceEms),) priceEm = priceEms[0] priceInner = priceEm.innerHTML.strip() assert priceInner, 'Got blank innerHTML in price element' try: priceValue = round(float(priceEm.innerHTML.strip()), 2) except: raise AssertionError('Failed to parse price value, not a float? (%f)' % (priceValue,)) if priceValue < 4.0: itemsUnder.append(item) itemsUnderFour = itemsUnder assert len(itemsUnderFour) == 3, 'Asserted to find 3 items under 4.00, but found %d' % (len(itemsUnderFour),) names = [self._getItemName(item) for item in itemsUnderFour] for name in names: assert name, 'Expected name not to be blank' names = set(names) assert 'Sponges' in names, 'Expected to find Sponges' assert 'Turtles' in names, 'Expected to find Turtles' assert 'Pudding Cups' in names, 'Expected to find Pudding Cups' assert 'Gold Brick' not in names, 'Expected NOT TO find Gold Brick'
AdvancedHTMLParser
positive
def test_is_native_enabled_default_false(self): <DeepExtract> chart = {'schema': 'armada/Chart/v{}'.format(str(version)), 'metadata': {'name': 'test'}, const.KEYWORD_DATA: {}} unit = wait.ChartWait(k8s=mock.MagicMock(), release_id=helm.HelmReleaseId('test', 'test-test'), chart=chart, k8s_wait_attempts=1, k8s_wait_attempt_sleep=1, timeout=timeout) </DeepExtract> self.assertEquals(unit.is_native_enabled(), False)
def test_is_native_enabled_default_false(self): chart = {'schema': 'armada/Chart/v{}'.format(str(version)), 'metadata': {'name': 'test'}, const.KEYWORD_DATA: {}} unit = wait.ChartWait(k8s=mock.MagicMock(), release_id=helm.HelmReleaseId('test', 'test-test'), chart=chart, k8s_wait_attempts=1, k8s_wait_attempt_sleep=1, timeout=timeout) self.assertEquals(unit.is_native_enabled(), False)
armada
positive
def simple_test(self, img, img_metas, proposals=None, rescale=False): """Run inference on a single image. Args: img (Tensor): must be in shape (N, C, H, W) img_metas (list[dict]): a list with one dictionary element. See `mmdet/datasets/pipelines/formatting.py:Collect` for details of meta dicts. proposals : if specified overrides rpn proposals rescale (bool): if True returns boxes in original image space Returns: dict: results """ <DeepExtract> x = self.backbone(img) if self.with_neck: x = self.neck(x) x = x </DeepExtract> proposal_list = self.simple_test_rpn(x, img_metas, self.test_cfg.rpn) if proposals is None else proposals img_shape = img_metas[0]['img_shape'] ori_shape = img_metas[0]['ori_shape'] scale_factor = img_metas[0]['scale_factor'] ms_bbox_result = {} ms_segm_result = {} ms_scores = [] rcnn_test_cfg = self.test_cfg.rcnn rois = bbox2roi(proposal_list) for i in range(self.num_stages): bbox_roi_extractor = self.bbox_roi_extractor[i] bbox_head = self.bbox_head[i] bbox_feats = bbox_roi_extractor(x[:len(bbox_roi_extractor.featmap_strides)], rois) if self.with_shared_head: bbox_feats = self.shared_head(bbox_feats) (cls_score, bbox_pred) = bbox_head(bbox_feats) ms_scores.append(cls_score) if i < self.num_stages - 1: bbox_label = cls_score.argmax(dim=1) rois = bbox_head.regress_by_class(rois, bbox_label, bbox_pred, img_metas[0]) cls_score = sum(ms_scores) / self.num_stages (det_bboxes, det_labels) = self.bbox_head[-1].get_det_bboxes(rois, cls_score, bbox_pred, img_shape, scale_factor, rescale=rescale, cfg=rcnn_test_cfg) bbox_result = bbox2result(det_bboxes, det_labels, self.bbox_head[-1].num_classes) ms_bbox_result['ensemble'] = bbox_result if self.with_mask: if det_bboxes.shape[0] == 0: mask_classes = self.mask_head[-1].num_classes - 1 segm_result = [[] for _ in range(mask_classes)] else: if isinstance(scale_factor, float): _bboxes = det_bboxes[:, :4] * scale_factor if rescale else det_bboxes else: _bboxes = det_bboxes[:, :4] * torch.from_numpy(scale_factor).to(det_bboxes.device) if rescale else det_bboxes mask_rois = bbox2roi([_bboxes]) aug_masks = [] for i in range(self.num_stages): mask_roi_extractor = self.mask_roi_extractor[i] mask_feats = mask_roi_extractor(x[:len(mask_roi_extractor.featmap_strides)], mask_rois) if self.with_shared_head: mask_feats = self.shared_head(mask_feats) mask_pred = self.mask_head[i](mask_feats) aug_masks.append(mask_pred.sigmoid().cpu().numpy()) merged_masks = merge_aug_masks(aug_masks, [img_metas] * self.num_stages, self.test_cfg.rcnn) segm_result = self.mask_head[-1].get_seg_masks(merged_masks, _bboxes, det_labels, rcnn_test_cfg, ori_shape, scale_factor, rescale) ms_segm_result['ensemble'] = segm_result if self.with_mask: results = (ms_bbox_result['ensemble'], ms_segm_result['ensemble']) else: results = ms_bbox_result['ensemble'] return results
def simple_test(self, img, img_metas, proposals=None, rescale=False): """Run inference on a single image. Args: img (Tensor): must be in shape (N, C, H, W) img_metas (list[dict]): a list with one dictionary element. See `mmdet/datasets/pipelines/formatting.py:Collect` for details of meta dicts. proposals : if specified overrides rpn proposals rescale (bool): if True returns boxes in original image space Returns: dict: results """ x = self.backbone(img) if self.with_neck: x = self.neck(x) x = x proposal_list = self.simple_test_rpn(x, img_metas, self.test_cfg.rpn) if proposals is None else proposals img_shape = img_metas[0]['img_shape'] ori_shape = img_metas[0]['ori_shape'] scale_factor = img_metas[0]['scale_factor'] ms_bbox_result = {} ms_segm_result = {} ms_scores = [] rcnn_test_cfg = self.test_cfg.rcnn rois = bbox2roi(proposal_list) for i in range(self.num_stages): bbox_roi_extractor = self.bbox_roi_extractor[i] bbox_head = self.bbox_head[i] bbox_feats = bbox_roi_extractor(x[:len(bbox_roi_extractor.featmap_strides)], rois) if self.with_shared_head: bbox_feats = self.shared_head(bbox_feats) (cls_score, bbox_pred) = bbox_head(bbox_feats) ms_scores.append(cls_score) if i < self.num_stages - 1: bbox_label = cls_score.argmax(dim=1) rois = bbox_head.regress_by_class(rois, bbox_label, bbox_pred, img_metas[0]) cls_score = sum(ms_scores) / self.num_stages (det_bboxes, det_labels) = self.bbox_head[-1].get_det_bboxes(rois, cls_score, bbox_pred, img_shape, scale_factor, rescale=rescale, cfg=rcnn_test_cfg) bbox_result = bbox2result(det_bboxes, det_labels, self.bbox_head[-1].num_classes) ms_bbox_result['ensemble'] = bbox_result if self.with_mask: if det_bboxes.shape[0] == 0: mask_classes = self.mask_head[-1].num_classes - 1 segm_result = [[] for _ in range(mask_classes)] else: if isinstance(scale_factor, float): _bboxes = det_bboxes[:, :4] * scale_factor if rescale else det_bboxes else: _bboxes = det_bboxes[:, :4] * torch.from_numpy(scale_factor).to(det_bboxes.device) if rescale else det_bboxes mask_rois = bbox2roi([_bboxes]) aug_masks = [] for i in range(self.num_stages): mask_roi_extractor = self.mask_roi_extractor[i] mask_feats = mask_roi_extractor(x[:len(mask_roi_extractor.featmap_strides)], mask_rois) if self.with_shared_head: mask_feats = self.shared_head(mask_feats) mask_pred = self.mask_head[i](mask_feats) aug_masks.append(mask_pred.sigmoid().cpu().numpy()) merged_masks = merge_aug_masks(aug_masks, [img_metas] * self.num_stages, self.test_cfg.rcnn) segm_result = self.mask_head[-1].get_seg_masks(merged_masks, _bboxes, det_labels, rcnn_test_cfg, ori_shape, scale_factor, rescale) ms_segm_result['ensemble'] = segm_result if self.with_mask: results = (ms_bbox_result['ensemble'], ms_segm_result['ensemble']) else: results = ms_bbox_result['ensemble'] return results
EfficientDet-bifpn
positive
def flush(): while True: try: log.debug('Flushing metrics in greenlet') <DeepExtract> try: if self._is_flush_in_progress: log.debug('A flush is already in progress. Skipping this one.') return False if self._disabled: log.info("Not flushing because we're disabled.") return False self._is_flush_in_progress = True (metrics, dists) = self._get_aggregate_metrics_and_dists(timestamp or time()) count_metrics = len(metrics) if count_metrics: self.flush_count += 1 log.debug('Flush #%s sending %s metrics' % (self.flush_count, count_metrics)) self.reporter.flush_metrics(metrics) else: log.debug('No metrics to flush. Continuing.') count_dists = len(dists) if count_dists: self.flush_count += 1 log.debug('Flush #%s sending %s distributions' % (self.flush_count, count_dists)) self.reporter.flush_distributions(dists) else: log.debug('No distributions to flush. Continuing.') events = self._get_aggregate_events() count_events = len(events) if count_events: self.flush_count += 1 log.debug('Flush #%s sending %s events' % (self.flush_count, count_events)) self.reporter.flush_events(events) else: log.debug('No events to flush. Continuing.') except ApiNotInitialized: raise except Exception: try: log.exception('Error flushing metrics and events') except Exception: pass finally: self._is_flush_in_progress = False </DeepExtract> gevent.sleep(self.flush_interval) except Exception: try: log.exception('Error flushing in greenlet') except Exception: pass
def flush(): while True: try: log.debug('Flushing metrics in greenlet') try: if self._is_flush_in_progress: log.debug('A flush is already in progress. Skipping this one.') return False if self._disabled: log.info("Not flushing because we're disabled.") return False self._is_flush_in_progress = True (metrics, dists) = self._get_aggregate_metrics_and_dists(timestamp or time()) count_metrics = len(metrics) if count_metrics: self.flush_count += 1 log.debug('Flush #%s sending %s metrics' % (self.flush_count, count_metrics)) self.reporter.flush_metrics(metrics) else: log.debug('No metrics to flush. Continuing.') count_dists = len(dists) if count_dists: self.flush_count += 1 log.debug('Flush #%s sending %s distributions' % (self.flush_count, count_dists)) self.reporter.flush_distributions(dists) else: log.debug('No distributions to flush. Continuing.') events = self._get_aggregate_events() count_events = len(events) if count_events: self.flush_count += 1 log.debug('Flush #%s sending %s events' % (self.flush_count, count_events)) self.reporter.flush_events(events) else: log.debug('No events to flush. Continuing.') except ApiNotInitialized: raise except Exception: try: log.exception('Error flushing metrics and events') except Exception: pass finally: self._is_flush_in_progress = False gevent.sleep(self.flush_interval) except Exception: try: log.exception('Error flushing in greenlet') except Exception: pass
datadogpy
positive
def test_swiz(self): <DeepExtract> func = TestPluginIl.bv.get_functions_by_name('test_swiz')[0] </DeepExtract> self.assertEqual(self.list_asm(func), '\n{ R1 = swiz(R0) }\n{ jumpr LR }') self.assertEqual(self.list_llil(func), '\n0: temp1.d = (R0 & 0xff) << 0x18 | (R0 & 0xff00) << 8 | (R0 & 0xff0000) u>> 8 | (R0 & 0xff000000) u>> 0x18\n1: R1 = temp1.d\n2: temp200.d = LR\n3: <return> jump(LR)')
def test_swiz(self): func = TestPluginIl.bv.get_functions_by_name('test_swiz')[0] self.assertEqual(self.list_asm(func), '\n{ R1 = swiz(R0) }\n{ jumpr LR }') self.assertEqual(self.list_llil(func), '\n0: temp1.d = (R0 & 0xff) << 0x18 | (R0 & 0xff00) << 8 | (R0 & 0xff0000) u>> 8 | (R0 & 0xff000000) u>> 0x18\n1: R1 = temp1.d\n2: temp200.d = LR\n3: <return> jump(LR)')
binja-hexagon
positive
def write(self, shape_id): root = Element('c:userShapes', {'xmlns:c': 'http://schemas.openxmlformats.org/drawingml/2006/chart'}) for shape in self._shapes: anchor = SubElement(root, 'cdr:relSizeAnchor', {'xmlns:cdr': 'http://schemas.openxmlformats.org/drawingml/2006/chartDrawing'}) (xstart, ystart, xend, yend) = shape.get_coordinates() _from = SubElement(anchor, 'cdr:from') SubElement(_from, 'cdr:x').text = str(xstart) SubElement(_from, 'cdr:y').text = str(ystart) _to = SubElement(anchor, 'cdr:to') SubElement(_to, 'cdr:x').text = str(xend) SubElement(_to, 'cdr:y').text = str(yend) sp = SubElement(anchor, 'cdr:sp', {'macro': '', 'textlink': ''}) nvspr = SubElement(sp, 'cdr:nvSpPr') SubElement(nvspr, 'cdr:cNvPr', {'id': str(shape_id), 'name': 'shape %s' % shape_id}) SubElement(nvspr, 'cdr:cNvSpPr') sppr = SubElement(sp, 'cdr:spPr') frm = SubElement(sppr, 'a:xfrm', {'xmlns:a': self.schema}) SubElement(frm, 'a:off', {'x': '0', 'y': '0'}) SubElement(frm, 'a:ext', {'cx': '0', 'cy': '0'}) prstgeom = SubElement(sppr, 'a:prstGeom', {'xmlns:a': self.schema, 'prst': str(shape.style)}) SubElement(prstgeom, 'a:avLst') fill = SubElement(sppr, 'a:solidFill', {'xmlns:a': self.schema}) SubElement(fill, 'a:srgbClr', {'val': shape.color}) border = SubElement(sppr, 'a:ln', {'xmlns:a': self.schema, 'w': str(shape._border_width)}) sf = SubElement(border, 'a:solidFill') SubElement(sf, 'a:srgbClr', {'val': shape.border_color}) <DeepExtract> style = SubElement(sp, 'cdr:style') ln_ref = SubElement(style, 'a:lnRef', {'xmlns:a': self.schema, 'idx': '2'}) scheme_clr = SubElement(ln_ref, 'a:schemeClr', {'val': 'accent1'}) SubElement(scheme_clr, 'a:shade', {'val': '50000'}) fill_ref = SubElement(style, 'a:fillRef', {'xmlns:a': self.schema, 'idx': '1'}) SubElement(fill_ref, 'a:schemeClr', {'val': 'accent1'}) effect_ref = SubElement(style, 'a:effectRef', {'xmlns:a': self.schema, 'idx': '0'}) SubElement(effect_ref, 'a:schemeClr', {'val': 'accent1'}) font_ref = SubElement(style, 'a:fontRef', {'xmlns:a': self.schema, 'idx': 'minor'}) SubElement(font_ref, 'a:schemeClr', {'val': 'lt1'}) </DeepExtract> <DeepExtract> tx_body = SubElement(sp, 'cdr:txBody') SubElement(tx_body, 'a:bodyPr', {'xmlns:a': self.schema, 'vertOverflow': 'clip'}) SubElement(tx_body, 'a:lstStyle', {'xmlns:a': self.schema}) p = SubElement(tx_body, 'a:p', {'xmlns:a': self.schema}) if shape.text: r = SubElement(p, 'a:r') rpr = SubElement(r, 'a:rPr', {'lang': 'en-US'}) fill = SubElement(rpr, 'a:solidFill') SubElement(fill, 'a:srgbClr', {'val': shape.text_color}) SubElement(r, 'a:t').text = shape.text else: SubElement(p, 'a:endParaRPr', {'lang': 'en-US'}) </DeepExtract> shape_id += 1 return get_document_content(root)
def write(self, shape_id): root = Element('c:userShapes', {'xmlns:c': 'http://schemas.openxmlformats.org/drawingml/2006/chart'}) for shape in self._shapes: anchor = SubElement(root, 'cdr:relSizeAnchor', {'xmlns:cdr': 'http://schemas.openxmlformats.org/drawingml/2006/chartDrawing'}) (xstart, ystart, xend, yend) = shape.get_coordinates() _from = SubElement(anchor, 'cdr:from') SubElement(_from, 'cdr:x').text = str(xstart) SubElement(_from, 'cdr:y').text = str(ystart) _to = SubElement(anchor, 'cdr:to') SubElement(_to, 'cdr:x').text = str(xend) SubElement(_to, 'cdr:y').text = str(yend) sp = SubElement(anchor, 'cdr:sp', {'macro': '', 'textlink': ''}) nvspr = SubElement(sp, 'cdr:nvSpPr') SubElement(nvspr, 'cdr:cNvPr', {'id': str(shape_id), 'name': 'shape %s' % shape_id}) SubElement(nvspr, 'cdr:cNvSpPr') sppr = SubElement(sp, 'cdr:spPr') frm = SubElement(sppr, 'a:xfrm', {'xmlns:a': self.schema}) SubElement(frm, 'a:off', {'x': '0', 'y': '0'}) SubElement(frm, 'a:ext', {'cx': '0', 'cy': '0'}) prstgeom = SubElement(sppr, 'a:prstGeom', {'xmlns:a': self.schema, 'prst': str(shape.style)}) SubElement(prstgeom, 'a:avLst') fill = SubElement(sppr, 'a:solidFill', {'xmlns:a': self.schema}) SubElement(fill, 'a:srgbClr', {'val': shape.color}) border = SubElement(sppr, 'a:ln', {'xmlns:a': self.schema, 'w': str(shape._border_width)}) sf = SubElement(border, 'a:solidFill') SubElement(sf, 'a:srgbClr', {'val': shape.border_color}) style = SubElement(sp, 'cdr:style') ln_ref = SubElement(style, 'a:lnRef', {'xmlns:a': self.schema, 'idx': '2'}) scheme_clr = SubElement(ln_ref, 'a:schemeClr', {'val': 'accent1'}) SubElement(scheme_clr, 'a:shade', {'val': '50000'}) fill_ref = SubElement(style, 'a:fillRef', {'xmlns:a': self.schema, 'idx': '1'}) SubElement(fill_ref, 'a:schemeClr', {'val': 'accent1'}) effect_ref = SubElement(style, 'a:effectRef', {'xmlns:a': self.schema, 'idx': '0'}) SubElement(effect_ref, 'a:schemeClr', {'val': 'accent1'}) font_ref = SubElement(style, 'a:fontRef', {'xmlns:a': self.schema, 'idx': 'minor'}) SubElement(font_ref, 'a:schemeClr', {'val': 'lt1'}) tx_body = SubElement(sp, 'cdr:txBody') SubElement(tx_body, 'a:bodyPr', {'xmlns:a': self.schema, 'vertOverflow': 'clip'}) SubElement(tx_body, 'a:lstStyle', {'xmlns:a': self.schema}) p = SubElement(tx_body, 'a:p', {'xmlns:a': self.schema}) if shape.text: r = SubElement(p, 'a:r') rpr = SubElement(r, 'a:rPr', {'lang': 'en-US'}) fill = SubElement(rpr, 'a:solidFill') SubElement(fill, 'a:srgbClr', {'val': shape.text_color}) SubElement(r, 'a:t').text = shape.text else: SubElement(p, 'a:endParaRPr', {'lang': 'en-US'}) shape_id += 1 return get_document_content(root)
dataproxy
positive
def cache_bi_event(event, multi_events=False): bi_file_in_use_lock.acquire() outFile = None try: <DeepExtract> if not os.path.isfile(bi_cfg_file): cached_events = [] else: f = None try: if False: bi_file_in_use_lock.acquire() f = open(bi_cfg_file) cached_events = json.load(f) f.close() if not isinstance(cached_events, list): cached_events = [] except: cached_events = [] finally: if f is not None: f.close() if False: bi_file_in_use_lock.release() cache_events = cached_events </DeepExtract> if multi_events: need_cache_size = len(event) else: need_cache_size = 1 events_size = len(cache_events) if events_size >= Statistic.MAX_CACHE_EVENTS: start_idx = events_size - (Statistic.MAX_CACHE_EVENTS - need_cache_size) cache_events = cache_events[start_idx:] if multi_events: for e in event: cache_events.append(e) else: cache_events.append(event) outFile = open(bi_cfg_file, 'w') json.dump(cache_events, outFile) outFile.close() except: if outFile is not None: outFile.close() finally: bi_file_in_use_lock.release()
def cache_bi_event(event, multi_events=False): bi_file_in_use_lock.acquire() outFile = None try: if not os.path.isfile(bi_cfg_file): cached_events = [] else: f = None try: if False: bi_file_in_use_lock.acquire() f = open(bi_cfg_file) cached_events = json.load(f) f.close() if not isinstance(cached_events, list): cached_events = [] except: cached_events = [] finally: if f is not None: f.close() if False: bi_file_in_use_lock.release() cache_events = cached_events if multi_events: need_cache_size = len(event) else: need_cache_size = 1 events_size = len(cache_events) if events_size >= Statistic.MAX_CACHE_EVENTS: start_idx = events_size - (Statistic.MAX_CACHE_EVENTS - need_cache_size) cache_events = cache_events[start_idx:] if multi_events: for e in event: cache_events.append(e) else: cache_events.append(event) outFile = open(bi_cfg_file, 'w') json.dump(cache_events, outFile) outFile.close() except: if outFile is not None: outFile.close() finally: bi_file_in_use_lock.release()
cocos2d-console
positive
def main(args, config): utils.init_distributed_mode(args) device = torch.device(args.device) seed = args.seed + utils.get_rank() torch.manual_seed(seed) np.random.seed(seed) random.seed(seed) cudnn.benchmark = True print('Creating dataset') (grd_train_dataset, grd_test_dataset) = create_dataset('grounding', config) datasets = [grd_train_dataset, grd_test_dataset] if args.distributed: num_tasks = utils.get_world_size() global_rank = utils.get_rank() samplers = create_sampler(datasets, [True, False], num_tasks, global_rank) else: samplers = [None, None] (train_loader, test_loader) = create_loader(datasets, samplers, batch_size=[config['batch_size'], config['batch_size']], num_workers=[4, 4], is_trains=[True, False], collate_fns=[None, None]) tokenizer = BertTokenizer.from_pretrained(args.text_encoder) refer = REFER(config['refcoco_data'], 'refcoco+', 'unc') dets = json.load(open(config['det_file'], 'r')) cocos = json.load(open(config['coco_file'], 'r')) print('Creating model') model = ALBEF(config=config, text_encoder=args.text_encoder, tokenizer=tokenizer) if args.checkpoint: checkpoint = torch.load(args.checkpoint, map_location='cpu') state_dict = checkpoint['model'] pos_embed_reshaped = interpolate_pos_embed(state_dict['visual_encoder.pos_embed'], model.visual_encoder) state_dict['visual_encoder.pos_embed'] = pos_embed_reshaped m_pos_embed_reshaped = interpolate_pos_embed(state_dict['visual_encoder_m.pos_embed'], model.visual_encoder_m) state_dict['visual_encoder_m.pos_embed'] = m_pos_embed_reshaped for key in list(state_dict.keys()): if 'bert' in key: encoder_key = key.replace('bert.', '') state_dict[encoder_key] = state_dict[key] del state_dict[key] msg = model.load_state_dict(state_dict, strict=False) print('load checkpoint from %s' % args.checkpoint) print(msg) model = model.to(device) model_without_ddp = model if args.distributed: model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu]) model_without_ddp = model.module arg_opt = utils.AttrDict(config['optimizer']) optimizer = create_optimizer(arg_opt, model) arg_sche = utils.AttrDict(config['schedular']) (lr_scheduler, _) = create_scheduler(arg_sche, optimizer) max_epoch = config['schedular']['epochs'] warmup_steps = config['schedular']['warmup_epochs'] best = 0 print('Start training') start_time = time.time() for epoch in range(0, max_epoch): if not args.evaluate: if args.distributed: train_loader.sampler.set_epoch(epoch) <DeepExtract> model.train() metric_logger = utils.MetricLogger(delimiter=' ') metric_logger.add_meter('lr', utils.SmoothedValue(window_size=1, fmt='{value:.6f}')) metric_logger.add_meter('loss_itm', utils.SmoothedValue(window_size=1, fmt='{value:.4f}')) metric_logger.add_meter('loss_ita', utils.SmoothedValue(window_size=1, fmt='{value:.4f}')) header = 'Train Epoch: [{}]'.format(epoch) print_freq = 50 step_size = 100 warmup_iterations = warmup_steps * step_size for (i, (image, text, idx)) in enumerate(metric_logger.log_every(train_loader, print_freq, header)): image = image.to(device, non_blocking=True) idx = idx.to(device, non_blocking=True) text_input = tokenizer(text, padding='longest', max_length=30, return_tensors='pt').to(device) if epoch > 0 or not config['warm_up']: alpha = config['alpha'] else: alpha = config['alpha'] * min(1, i / len(train_loader)) (loss_ita, loss_itm) = model(image, text_input, alpha=alpha, idx=idx) loss = loss_ita + loss_itm optimizer.zero_grad() loss.backward() optimizer.step() metric_logger.update(loss_itm=loss_itm.item()) metric_logger.update(loss_ita=loss_ita.item()) metric_logger.update(lr=optimizer.param_groups[0]['lr']) if epoch == 0 and i % step_size == 0 and (i <= warmup_iterations): lr_scheduler.step(i // step_size) metric_logger.synchronize_between_processes() print('Averaged stats:', metric_logger.global_avg()) train_stats = {k: '{:.3f}'.format(meter.global_avg) for (k, meter) in metric_logger.meters.items()} </DeepExtract> <DeepExtract> model_without_ddp.eval() metric_logger = utils.MetricLogger(delimiter=' ') header = 'Evaluation:' print_freq = 50 if args.gradcam_mode == 'itm': model_without_ddp.text_encoder.base_model.base_model.encoder.layer[args.block_num].crossattention.self.save_attention = True result = [] for (image, text, ref_ids) in metric_logger.log_every(test_loader, print_freq, header): image = image.to(device) text_input = tokenizer(text, padding='longest', return_tensors='pt').to(device) if args.gradcam_mode == 'itm': image_embeds = model_without_ddp.visual_encoder(image) image_atts = torch.ones(image_embeds.size()[:-1], dtype=torch.long).to(image.device) output = model_without_ddp.text_encoder(text_input.input_ids, attention_mask=text_input.attention_mask, encoder_hidden_states=image_embeds, encoder_attention_mask=image_atts, return_dict=True) vl_embeddings = output.last_hidden_state[:, 0, :] vl_output = model_without_ddp.itm_head(vl_embeddings) loss = vl_output[:, 1].sum() model_without_ddp.zero_grad() loss.backward() with torch.no_grad(): mask = text_input.attention_mask.view(text_input.attention_mask.size(0), 1, -1, 1, 1) grads = model_without_ddp.text_encoder.base_model.base_model.encoder.layer[args.block_num].crossattention.self.get_attn_gradients().detach() cams = model_without_ddp.text_encoder.base_model.base_model.encoder.layer[args.block_num].crossattention.self.get_attention_map().detach() cams = cams[:, :, :, 1:].reshape(image.size(0), 12, -1, 24, 24) * mask grads = grads[:, :, :, 1:].clamp(min=0).reshape(image.size(0), 12, -1, 24, 24) * mask gradcam = cams * grads gradcam = gradcam.mean(1).mean(1) elif args.gradcam_mode == 'itc': image_embeds = model_without_ddp.visual_encoder(image, register_blk=args.block_num) image_feat = F.normalize(model_without_ddp.vision_proj(image_embeds[:, 0, :]), dim=-1) text_output = model_without_ddp.text_encoder(text_input.input_ids, attention_mask=text_input.attention_mask, return_dict=True, mode='text') text_embeds = text_output.last_hidden_state text_feat = F.normalize(model_without_ddp.text_proj(text_embeds[:, 0, :]), dim=-1) sim = image_feat @ text_feat.t() / model_without_ddp.temp loss = sim.diag().sum() model_without_ddp.zero_grad() loss.backward() with torch.no_grad(): grad = model_without_ddp.visual_encoder.blocks[args.block_num].attn.get_attn_gradients().detach() cam = model_without_ddp.visual_encoder.blocks[args.block_num].attn.get_attention_map().detach() cam = cam[:, :, 0, 1:].reshape(image.size(0), -1, 24, 24) grad = grad[:, :, 0, 1:].reshape(image.size(0), -1, 24, 24).clamp(0) gradcam = (cam * grad).mean(1) for (r_id, cam) in zip(ref_ids, gradcam): result.append({'ref_id': r_id.item(), 'pred': cam}) if args.gradcam_mode == 'itm': model_without_ddp.text_encoder.base_model.base_model.encoder.layer[args.block_num].crossattention.self.save_attention = False result = result </DeepExtract> results = collect_result(result, args.result_dir, 'epoch%d' % epoch, is_json=False, is_list=True) if utils.is_main_process(): grounding_acc = grounding_eval(results, dets, cocos, refer, alpha=0.5, mask_size=24) if args.evaluate: log_stats = {**{f'{k}': v for (k, v) in grounding_acc.items()}, 'epoch': epoch} else: log_stats = {**{f'train_{k}': v for (k, v) in train_stats.items()}, **{f'{k}': v for (k, v) in grounding_acc.items()}, 'epoch': epoch} if grounding_acc['val_d'] > best: save_obj = {'model': model_without_ddp.state_dict(), 'optimizer': optimizer.state_dict(), 'lr_scheduler': lr_scheduler.state_dict(), 'config': config, 'epoch': epoch} torch.save(save_obj, os.path.join(args.output_dir, 'checkpoint_best.pth')) best = grounding_acc['val_d'] with open(os.path.join(args.output_dir, 'log.txt'), 'a') as f: f.write(json.dumps(log_stats) + '\n') if args.evaluate: break lr_scheduler.step(epoch + warmup_steps + 1) dist.barrier() total_time = time.time() - start_time total_time_str = str(datetime.timedelta(seconds=int(total_time))) print('Training time {}'.format(total_time_str))
def main(args, config): utils.init_distributed_mode(args) device = torch.device(args.device) seed = args.seed + utils.get_rank() torch.manual_seed(seed) np.random.seed(seed) random.seed(seed) cudnn.benchmark = True print('Creating dataset') (grd_train_dataset, grd_test_dataset) = create_dataset('grounding', config) datasets = [grd_train_dataset, grd_test_dataset] if args.distributed: num_tasks = utils.get_world_size() global_rank = utils.get_rank() samplers = create_sampler(datasets, [True, False], num_tasks, global_rank) else: samplers = [None, None] (train_loader, test_loader) = create_loader(datasets, samplers, batch_size=[config['batch_size'], config['batch_size']], num_workers=[4, 4], is_trains=[True, False], collate_fns=[None, None]) tokenizer = BertTokenizer.from_pretrained(args.text_encoder) refer = REFER(config['refcoco_data'], 'refcoco+', 'unc') dets = json.load(open(config['det_file'], 'r')) cocos = json.load(open(config['coco_file'], 'r')) print('Creating model') model = ALBEF(config=config, text_encoder=args.text_encoder, tokenizer=tokenizer) if args.checkpoint: checkpoint = torch.load(args.checkpoint, map_location='cpu') state_dict = checkpoint['model'] pos_embed_reshaped = interpolate_pos_embed(state_dict['visual_encoder.pos_embed'], model.visual_encoder) state_dict['visual_encoder.pos_embed'] = pos_embed_reshaped m_pos_embed_reshaped = interpolate_pos_embed(state_dict['visual_encoder_m.pos_embed'], model.visual_encoder_m) state_dict['visual_encoder_m.pos_embed'] = m_pos_embed_reshaped for key in list(state_dict.keys()): if 'bert' in key: encoder_key = key.replace('bert.', '') state_dict[encoder_key] = state_dict[key] del state_dict[key] msg = model.load_state_dict(state_dict, strict=False) print('load checkpoint from %s' % args.checkpoint) print(msg) model = model.to(device) model_without_ddp = model if args.distributed: model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu]) model_without_ddp = model.module arg_opt = utils.AttrDict(config['optimizer']) optimizer = create_optimizer(arg_opt, model) arg_sche = utils.AttrDict(config['schedular']) (lr_scheduler, _) = create_scheduler(arg_sche, optimizer) max_epoch = config['schedular']['epochs'] warmup_steps = config['schedular']['warmup_epochs'] best = 0 print('Start training') start_time = time.time() for epoch in range(0, max_epoch): if not args.evaluate: if args.distributed: train_loader.sampler.set_epoch(epoch) model.train() metric_logger = utils.MetricLogger(delimiter=' ') metric_logger.add_meter('lr', utils.SmoothedValue(window_size=1, fmt='{value:.6f}')) metric_logger.add_meter('loss_itm', utils.SmoothedValue(window_size=1, fmt='{value:.4f}')) metric_logger.add_meter('loss_ita', utils.SmoothedValue(window_size=1, fmt='{value:.4f}')) header = 'Train Epoch: [{}]'.format(epoch) print_freq = 50 step_size = 100 warmup_iterations = warmup_steps * step_size for (i, (image, text, idx)) in enumerate(metric_logger.log_every(train_loader, print_freq, header)): image = image.to(device, non_blocking=True) idx = idx.to(device, non_blocking=True) text_input = tokenizer(text, padding='longest', max_length=30, return_tensors='pt').to(device) if epoch > 0 or not config['warm_up']: alpha = config['alpha'] else: alpha = config['alpha'] * min(1, i / len(train_loader)) (loss_ita, loss_itm) = model(image, text_input, alpha=alpha, idx=idx) loss = loss_ita + loss_itm optimizer.zero_grad() loss.backward() optimizer.step() metric_logger.update(loss_itm=loss_itm.item()) metric_logger.update(loss_ita=loss_ita.item()) metric_logger.update(lr=optimizer.param_groups[0]['lr']) if epoch == 0 and i % step_size == 0 and (i <= warmup_iterations): lr_scheduler.step(i // step_size) metric_logger.synchronize_between_processes() print('Averaged stats:', metric_logger.global_avg()) train_stats = {k: '{:.3f}'.format(meter.global_avg) for (k, meter) in metric_logger.meters.items()} model_without_ddp.eval() metric_logger = utils.MetricLogger(delimiter=' ') header = 'Evaluation:' print_freq = 50 if args.gradcam_mode == 'itm': model_without_ddp.text_encoder.base_model.base_model.encoder.layer[args.block_num].crossattention.self.save_attention = True result = [] for (image, text, ref_ids) in metric_logger.log_every(test_loader, print_freq, header): image = image.to(device) text_input = tokenizer(text, padding='longest', return_tensors='pt').to(device) if args.gradcam_mode == 'itm': image_embeds = model_without_ddp.visual_encoder(image) image_atts = torch.ones(image_embeds.size()[:-1], dtype=torch.long).to(image.device) output = model_without_ddp.text_encoder(text_input.input_ids, attention_mask=text_input.attention_mask, encoder_hidden_states=image_embeds, encoder_attention_mask=image_atts, return_dict=True) vl_embeddings = output.last_hidden_state[:, 0, :] vl_output = model_without_ddp.itm_head(vl_embeddings) loss = vl_output[:, 1].sum() model_without_ddp.zero_grad() loss.backward() with torch.no_grad(): mask = text_input.attention_mask.view(text_input.attention_mask.size(0), 1, -1, 1, 1) grads = model_without_ddp.text_encoder.base_model.base_model.encoder.layer[args.block_num].crossattention.self.get_attn_gradients().detach() cams = model_without_ddp.text_encoder.base_model.base_model.encoder.layer[args.block_num].crossattention.self.get_attention_map().detach() cams = cams[:, :, :, 1:].reshape(image.size(0), 12, -1, 24, 24) * mask grads = grads[:, :, :, 1:].clamp(min=0).reshape(image.size(0), 12, -1, 24, 24) * mask gradcam = cams * grads gradcam = gradcam.mean(1).mean(1) elif args.gradcam_mode == 'itc': image_embeds = model_without_ddp.visual_encoder(image, register_blk=args.block_num) image_feat = F.normalize(model_without_ddp.vision_proj(image_embeds[:, 0, :]), dim=-1) text_output = model_without_ddp.text_encoder(text_input.input_ids, attention_mask=text_input.attention_mask, return_dict=True, mode='text') text_embeds = text_output.last_hidden_state text_feat = F.normalize(model_without_ddp.text_proj(text_embeds[:, 0, :]), dim=-1) sim = image_feat @ text_feat.t() / model_without_ddp.temp loss = sim.diag().sum() model_without_ddp.zero_grad() loss.backward() with torch.no_grad(): grad = model_without_ddp.visual_encoder.blocks[args.block_num].attn.get_attn_gradients().detach() cam = model_without_ddp.visual_encoder.blocks[args.block_num].attn.get_attention_map().detach() cam = cam[:, :, 0, 1:].reshape(image.size(0), -1, 24, 24) grad = grad[:, :, 0, 1:].reshape(image.size(0), -1, 24, 24).clamp(0) gradcam = (cam * grad).mean(1) for (r_id, cam) in zip(ref_ids, gradcam): result.append({'ref_id': r_id.item(), 'pred': cam}) if args.gradcam_mode == 'itm': model_without_ddp.text_encoder.base_model.base_model.encoder.layer[args.block_num].crossattention.self.save_attention = False result = result results = collect_result(result, args.result_dir, 'epoch%d' % epoch, is_json=False, is_list=True) if utils.is_main_process(): grounding_acc = grounding_eval(results, dets, cocos, refer, alpha=0.5, mask_size=24) if args.evaluate: log_stats = {**{f'{k}': v for (k, v) in grounding_acc.items()}, 'epoch': epoch} else: log_stats = {**{f'train_{k}': v for (k, v) in train_stats.items()}, **{f'{k}': v for (k, v) in grounding_acc.items()}, 'epoch': epoch} if grounding_acc['val_d'] > best: save_obj = {'model': model_without_ddp.state_dict(), 'optimizer': optimizer.state_dict(), 'lr_scheduler': lr_scheduler.state_dict(), 'config': config, 'epoch': epoch} torch.save(save_obj, os.path.join(args.output_dir, 'checkpoint_best.pth')) best = grounding_acc['val_d'] with open(os.path.join(args.output_dir, 'log.txt'), 'a') as f: f.write(json.dumps(log_stats) + '\n') if args.evaluate: break lr_scheduler.step(epoch + warmup_steps + 1) dist.barrier() total_time = time.time() - start_time total_time_str = str(datetime.timedelta(seconds=int(total_time))) print('Training time {}'.format(total_time_str))
ALBEF
positive
def exitDataModelQuery(self, ctx): <DeepExtract> query = self._stack.pop() </DeepExtract> <DeepExtract> action = self._stack.pop() </DeepExtract> <DeepExtract> event_type = self._stack.pop() </DeepExtract> <DeepExtract> self._stack.append(DataModelQuery(object_name=event_type, action=action, query=query)) </DeepExtract>
def exitDataModelQuery(self, ctx): query = self._stack.pop() action = self._stack.pop() event_type = self._stack.pop() self._stack.append(DataModelQuery(object_name=event_type, action=action, query=query)) </DeepExtract>
cascade-server
positive
def stack_with_locals(f): if hasattr(sys, 'tracebacklimit'): limit = sys.tracebacklimit else: limit = None frames = [] n = 0 while f is not None and (limit is None or n < limit): (lineno, co) = (f.f_lineno, f.f_code) (name, filename) = (co.co_name, co.co_filename) args = inspect.getargvalues(f) linecache.checkcache(filename) line = linecache.getline(filename, lineno, f.f_globals) if line: line = line.strip() else: line = None frames.append((filename, lineno, name, line, f.f_locals, args)) f = f.f_back n += 1 frames.reverse() out = [] for (filename, lineno, name, line, localvars, args) in frames: out.append(' File "%s", line %d, in %s' % (filename, lineno, name)) if line: out.append(' %s' % line.strip()) args = inspect.formatargvalues(*args, formatvalue=formatvalue) out.append('\n Arguments: %s%s' % (name, args)) if localvars: out.append(' Local variables:\n') try: <DeepExtract> reprs = SafePrettyPrinter(indent=1, width=76, depth=depth).pformat(localvars) </DeepExtract> except Exception: reprs = 'failed to format local variables' out += [' ' + l for l in reprs.splitlines()] out.append('') return '\n'.join(out)
def stack_with_locals(f): if hasattr(sys, 'tracebacklimit'): limit = sys.tracebacklimit else: limit = None frames = [] n = 0 while f is not None and (limit is None or n < limit): (lineno, co) = (f.f_lineno, f.f_code) (name, filename) = (co.co_name, co.co_filename) args = inspect.getargvalues(f) linecache.checkcache(filename) line = linecache.getline(filename, lineno, f.f_globals) if line: line = line.strip() else: line = None frames.append((filename, lineno, name, line, f.f_locals, args)) f = f.f_back n += 1 frames.reverse() out = [] for (filename, lineno, name, line, localvars, args) in frames: out.append(' File "%s", line %d, in %s' % (filename, lineno, name)) if line: out.append(' %s' % line.strip()) args = inspect.formatargvalues(*args, formatvalue=formatvalue) out.append('\n Arguments: %s%s' % (name, args)) if localvars: out.append(' Local variables:\n') try: reprs = SafePrettyPrinter(indent=1, width=76, depth=depth).pformat(localvars) except Exception: reprs = 'failed to format local variables' out += [' ' + l for l in reprs.splitlines()] out.append('') return '\n'.join(out)
agraph-python
positive
def test_unknown(self, client): <DeepExtract> self._create_fixture_user() self.login(client, 'fixture@example.com', 'fixture') </DeepExtract> unknown_url = self.url.format('unknown') response = client.get(unknown_url, follow_redirects=True) if 'compare' in unknown_url and response.status_code == 404: if 'not found: ellipsis (...) expected as part of URL': return if getattr(self, 'redirect_on_unknown', True): assert b'local-dev-conbench - Home' in response.data, response.data else: title = f'local-dev-conbench - {self.title}'.encode() assert title in response.data, response.data
def test_unknown(self, client): self._create_fixture_user() self.login(client, 'fixture@example.com', 'fixture') unknown_url = self.url.format('unknown') response = client.get(unknown_url, follow_redirects=True) if 'compare' in unknown_url and response.status_code == 404: if 'not found: ellipsis (...) expected as part of URL': return if getattr(self, 'redirect_on_unknown', True): assert b'local-dev-conbench - Home' in response.data, response.data else: title = f'local-dev-conbench - {self.title}'.encode() assert title in response.data, response.data
conbench
positive
def execute(self): image = self.camera_0.getImage().data image_1 = self.camera_1.getImage().data image_2 = self.camera_2.getImage().data image_3 = self.camera_3.getImage().data bird_eye_view_1 = self.bird_eye_view.getImage(self.vehicle) bird_eye_view_1 = cv2.cvtColor(bird_eye_view_1, cv2.COLOR_BGR2RGB) if self.cameras_first_images == []: self.cameras_first_images.append(image) self.cameras_first_images.append(image_1) self.cameras_first_images.append(image_2) self.cameras_first_images.append(image_3) self.cameras_first_images.append(bird_eye_view_1) self.cameras_last_images = [image, image_1, image_2, image_3, bird_eye_view_1] <DeepExtract> if image_1.shape[0] != image_1.shape[1]: if image_1.shape[0] > image_1.shape[1]: difference = image_1.shape[0] - image_1.shape[1] (extra_left, extra_right) = (int(difference / 2), int(difference / 2)) (extra_top, extra_bottom) = (0, 0) else: difference = image_1.shape[1] - image_1.shape[0] (extra_left, extra_right) = (0, 0) (extra_top, extra_bottom) = (int(difference / 2), int(difference / 2)) image_1 = np.pad(image_1, ((extra_top, extra_bottom), (extra_left, extra_right), (0, 0)), mode='constant', constant_values=0) self.handler.update_frame('frame_1', image_1) </DeepExtract> <DeepExtract> if image_2.shape[0] != image_2.shape[1]: if image_2.shape[0] > image_2.shape[1]: difference = image_2.shape[0] - image_2.shape[1] (extra_left, extra_right) = (int(difference / 2), int(difference / 2)) (extra_top, extra_bottom) = (0, 0) else: difference = image_2.shape[1] - image_2.shape[0] (extra_left, extra_right) = (0, 0) (extra_top, extra_bottom) = (int(difference / 2), int(difference / 2)) image_2 = np.pad(image_2, ((extra_top, extra_bottom), (extra_left, extra_right), (0, 0)), mode='constant', constant_values=0) self.handler.update_frame('frame_2', image_2) </DeepExtract> <DeepExtract> if image_3.shape[0] != image_3.shape[1]: if image_3.shape[0] > image_3.shape[1]: difference = image_3.shape[0] - image_3.shape[1] (extra_left, extra_right) = (int(difference / 2), int(difference / 2)) (extra_top, extra_bottom) = (0, 0) else: difference = image_3.shape[1] - image_3.shape[0] (extra_left, extra_right) = (0, 0) (extra_top, extra_bottom) = (int(difference / 2), int(difference / 2)) image_3 = np.pad(image_3, ((extra_top, extra_bottom), (extra_left, extra_right), (0, 0)), mode='constant', constant_values=0) self.handler.update_frame('frame_3', image_3) </DeepExtract> <DeepExtract> if bird_eye_view_1.shape[0] != bird_eye_view_1.shape[1]: if bird_eye_view_1.shape[0] > bird_eye_view_1.shape[1]: difference = bird_eye_view_1.shape[0] - bird_eye_view_1.shape[1] (extra_left, extra_right) = (int(difference / 2), int(difference / 2)) (extra_top, extra_bottom) = (0, 0) else: difference = bird_eye_view_1.shape[1] - bird_eye_view_1.shape[0] (extra_left, extra_right) = (0, 0) (extra_top, extra_bottom) = (int(difference / 2), int(difference / 2)) bird_eye_view_1 = np.pad(bird_eye_view_1, ((extra_top, extra_bottom), (extra_left, extra_right), (0, 0)), mode='constant', constant_values=0) self.handler.update_frame('frame_0', bird_eye_view_1) </DeepExtract> <DeepExtract> self.handler.update_pose3d(self.pose.getPose3d()) </DeepExtract> image_shape = (50, 150) img_base = cv2.resize(bird_eye_view_1, image_shape) AUGMENTATIONS_TEST = Compose([Normalize()]) image = AUGMENTATIONS_TEST(image=img_base) img = image['image'] self.bird_eye_view_images += 1 if (self.previous_bird_eye_view_image == img).all() == False: self.bird_eye_view_unique_images += 1 self.previous_bird_eye_view_image = img velocity_dim = np.full((150, 50), self.previous_speed / 30) new_img_vel = np.dstack((img, velocity_dim)) img = new_img_vel img = np.expand_dims(img, axis=0) start_time = time.time() try: prediction = self.net.predict(img, verbose=0) self.inference_times.append(time.time() - start_time) throttle = prediction[0][0] steer = prediction[0][1] * (1 - -1) + -1 break_command = prediction[0][2] speed = self.vehicle.get_velocity() vehicle_speed = 3.6 * math.sqrt(speed.x ** 2 + speed.y ** 2 + speed.z ** 2) self.previous_speed = vehicle_speed if vehicle_speed < 5: self.motors.sendThrottle(1.0) self.motors.sendSteer(0.0) self.motors.sendBrake(0) else: self.motors.sendThrottle(throttle) self.motors.sendSteer(steer) self.motors.sendBrake(break_command) except NotFoundError as ex: logger.info('Error inside brain: NotFoundError!') logger.warning(type(ex).__name__) print_exc() raise Exception(ex) except UnimplementedError as ex: logger.info('Error inside brain: UnimplementedError!') logger.warning(type(ex).__name__) print_exc() raise Exception(ex) except Exception as ex: logger.info('Error inside brain: Exception!') logger.warning(type(ex).__name__) print_exc() raise Exception(ex)
def execute(self): image = self.camera_0.getImage().data image_1 = self.camera_1.getImage().data image_2 = self.camera_2.getImage().data image_3 = self.camera_3.getImage().data bird_eye_view_1 = self.bird_eye_view.getImage(self.vehicle) bird_eye_view_1 = cv2.cvtColor(bird_eye_view_1, cv2.COLOR_BGR2RGB) if self.cameras_first_images == []: self.cameras_first_images.append(image) self.cameras_first_images.append(image_1) self.cameras_first_images.append(image_2) self.cameras_first_images.append(image_3) self.cameras_first_images.append(bird_eye_view_1) self.cameras_last_images = [image, image_1, image_2, image_3, bird_eye_view_1] if image_1.shape[0] != image_1.shape[1]: if image_1.shape[0] > image_1.shape[1]: difference = image_1.shape[0] - image_1.shape[1] (extra_left, extra_right) = (int(difference / 2), int(difference / 2)) (extra_top, extra_bottom) = (0, 0) else: difference = image_1.shape[1] - image_1.shape[0] (extra_left, extra_right) = (0, 0) (extra_top, extra_bottom) = (int(difference / 2), int(difference / 2)) image_1 = np.pad(image_1, ((extra_top, extra_bottom), (extra_left, extra_right), (0, 0)), mode='constant', constant_values=0) self.handler.update_frame('frame_1', image_1) if image_2.shape[0] != image_2.shape[1]: if image_2.shape[0] > image_2.shape[1]: difference = image_2.shape[0] - image_2.shape[1] (extra_left, extra_right) = (int(difference / 2), int(difference / 2)) (extra_top, extra_bottom) = (0, 0) else: difference = image_2.shape[1] - image_2.shape[0] (extra_left, extra_right) = (0, 0) (extra_top, extra_bottom) = (int(difference / 2), int(difference / 2)) image_2 = np.pad(image_2, ((extra_top, extra_bottom), (extra_left, extra_right), (0, 0)), mode='constant', constant_values=0) self.handler.update_frame('frame_2', image_2) if image_3.shape[0] != image_3.shape[1]: if image_3.shape[0] > image_3.shape[1]: difference = image_3.shape[0] - image_3.shape[1] (extra_left, extra_right) = (int(difference / 2), int(difference / 2)) (extra_top, extra_bottom) = (0, 0) else: difference = image_3.shape[1] - image_3.shape[0] (extra_left, extra_right) = (0, 0) (extra_top, extra_bottom) = (int(difference / 2), int(difference / 2)) image_3 = np.pad(image_3, ((extra_top, extra_bottom), (extra_left, extra_right), (0, 0)), mode='constant', constant_values=0) self.handler.update_frame('frame_3', image_3) if bird_eye_view_1.shape[0] != bird_eye_view_1.shape[1]: if bird_eye_view_1.shape[0] > bird_eye_view_1.shape[1]: difference = bird_eye_view_1.shape[0] - bird_eye_view_1.shape[1] (extra_left, extra_right) = (int(difference / 2), int(difference / 2)) (extra_top, extra_bottom) = (0, 0) else: difference = bird_eye_view_1.shape[1] - bird_eye_view_1.shape[0] (extra_left, extra_right) = (0, 0) (extra_top, extra_bottom) = (int(difference / 2), int(difference / 2)) bird_eye_view_1 = np.pad(bird_eye_view_1, ((extra_top, extra_bottom), (extra_left, extra_right), (0, 0)), mode='constant', constant_values=0) self.handler.update_frame('frame_0', bird_eye_view_1) self.handler.update_pose3d(self.pose.getPose3d()) image_shape = (50, 150) img_base = cv2.resize(bird_eye_view_1, image_shape) AUGMENTATIONS_TEST = Compose([Normalize()]) image = AUGMENTATIONS_TEST(image=img_base) img = image['image'] self.bird_eye_view_images += 1 if (self.previous_bird_eye_view_image == img).all() == False: self.bird_eye_view_unique_images += 1 self.previous_bird_eye_view_image = img velocity_dim = np.full((150, 50), self.previous_speed / 30) new_img_vel = np.dstack((img, velocity_dim)) img = new_img_vel img = np.expand_dims(img, axis=0) start_time = time.time() try: prediction = self.net.predict(img, verbose=0) self.inference_times.append(time.time() - start_time) throttle = prediction[0][0] steer = prediction[0][1] * (1 - -1) + -1 break_command = prediction[0][2] speed = self.vehicle.get_velocity() vehicle_speed = 3.6 * math.sqrt(speed.x ** 2 + speed.y ** 2 + speed.z ** 2) self.previous_speed = vehicle_speed if vehicle_speed < 5: self.motors.sendThrottle(1.0) self.motors.sendSteer(0.0) self.motors.sendBrake(0) else: self.motors.sendThrottle(throttle) self.motors.sendSteer(steer) self.motors.sendBrake(break_command) except NotFoundError as ex: logger.info('Error inside brain: NotFoundError!') logger.warning(type(ex).__name__) print_exc() raise Exception(ex) except UnimplementedError as ex: logger.info('Error inside brain: UnimplementedError!') logger.warning(type(ex).__name__) print_exc() raise Exception(ex) except Exception as ex: logger.info('Error inside brain: Exception!') logger.warning(type(ex).__name__) print_exc() raise Exception(ex)
BehaviorMetrics
positive
def train_custom_model(nlp_inputs, meta_inputs, meta_outputs, nlp_outputs, full_ds, target, keras_model_type, keras_options, model_options, var_df, cat_vocab_dict, project_name='', save_model_flag=True, use_my_model='', verbose=0): """ Given a keras model and a tf.data.dataset that is batched, this function will train a keras model. It will first split the batched_data into train_ds and valid_ds (80/20). Then it will select the right parameters based on model type and train the model and evaluate it on valid_ds. It will return a keras model fully trained on the full batched_data finally and train history. """ save_model_path = model_options['save_model_path'] inputs = nlp_inputs + meta_inputs nlps = var_df['nlp_vars'] lats = var_df['lat_vars'] lons = var_df['lon_vars'] if nlp_inputs: nlp_flag = True else: nlp_flag = False start_time = time.time() targets = cat_vocab_dict['target_variables'] max_trials = model_options['max_trials'] overwrite_flag = True data_size = check_keras_options(keras_options, 'data_size', 10000) batch_size = check_keras_options(keras_options, 'batchsize', 64) class_weights = check_keras_options(keras_options, 'class_weight', {}) if not isinstance(model_options['label_encode_flag'], str): if not model_options['label_encode_flag']: print(' removing class weights since label_encode_flag is set to False which means classes can be anything.') class_weights = {} print(' Class weights: %s' % class_weights) num_classes = model_options['num_classes'] num_labels = model_options['num_labels'] modeltype = model_options['modeltype'] patience = keras_options['patience'] cols_len = len([item for sublist in list(var_df.values()) for item in sublist]) if isinstance(meta_outputs, list): data_dim = int(data_size) NON_NLP_VARS = [] else: <DeepExtract> lst = [] for i in cat_vocab_dict['predictors_in_train']: if i not in nlps: lst.append(i) NON_NLP_VARS = lst </DeepExtract> try: data_dim = int(data_size * meta_outputs.shape[1]) except: data_dim = int(data_size * meta_outputs[0].shape[1]) optimizer = keras_options['optimizer'] early_stopping = check_keras_options(keras_options, 'early_stopping', False) print(' original datasize = %s, initial batchsize = %s' % (data_size, batch_size)) print(' Early stopping : %s' % early_stopping) NUMBER_OF_EPOCHS = check_keras_options(keras_options, 'epochs', 100) if keras_options['lr_scheduler'] in ['expo', 'ExponentialDecay', 'exponentialdecay']: print(' chosen ExponentialDecay learning rate scheduler') expo_steps = NUMBER_OF_EPOCHS * data_size // batch_size learning_rate = keras.optimizers.schedules.ExponentialDecay(0.0001, expo_steps, 0.1) else: learning_rate = check_keras_options(keras_options, 'learning_rate', 0.05) if len(var_df['nlp_vars']) > 0: steps = 10 else: steps = max(10, data_size // (batch_size * 2)) steps = min(300, steps) print(' recommended steps per epoch = %d' % steps) STEPS_PER_EPOCH = check_keras_options(keras_options, 'steps_per_epoch', steps) kernel_initializer = check_keras_options(keras_options, 'kernel_initializer', 'lecun_normal') activation = 'selu' print(' default initializer = %s, default activation = %s' % (kernel_initializer, activation)) use_bias = check_keras_options(keras_options, 'use_bias', True) lr_scheduler = check_keras_options(keras_options, 'lr_scheduler', '') onecycle_steps = max(10, np.ceil(data_size / (2 * batch_size)) * NUMBER_OF_EPOCHS) print(' Onecycle steps = %d' % onecycle_steps) (keras_options, model_options, num_predicts, output_activation) = get_model_defaults(keras_options, model_options, targets) val_mode = keras_options['mode'] val_monitor = keras_options['monitor'] val_loss = keras_options['loss'] val_metrics = keras_options['metrics'] try: print(' number of classes = %s, output_activation = %s' % (num_predicts, output_activation)) print(' loss function: %s' % str(val_loss).split('.')[-1].split(' ')[0]) except: print(' loss fn = %s number of classes = %s, output_activation = %s' % (val_loss, num_predicts, output_activation)) modeltype = cat_vocab_dict['modeltype'] regular_body = True if isinstance(meta_outputs, list): if nlp_flag: if len(nlp_outputs) > 0: regular_body = False else: regular_body = True else: regular_body = False save_weights_only = check_keras_options(keras_options, 'save_weights_only', False) print(' steps_per_epoch = %s, number epochs = %s' % (STEPS_PER_EPOCH, NUMBER_OF_EPOCHS)) print(' val mode = %s, val monitor = %s, patience = %s' % (val_mode, val_monitor, patience)) (callbacks_dict, tb_logpath) = get_callbacks(val_mode, val_monitor, patience, learning_rate, save_weights_only, onecycle_steps, save_model_path) chosen_callback = get_chosen_callback(callbacks_dict, keras_options) if not keras_options['lr_scheduler']: print(' chosen keras LR scheduler = default') else: print(' chosen keras LR scheduler = %s' % keras_options['lr_scheduler']) recover = lambda x, y: y print('\nSplitting train into 80+20 percent: train and validation data') valid_ds1 = full_ds.enumerate().filter(is_valid).map(recover) train_ds = full_ds.enumerate().filter(is_train).map(recover) heldout_ds1 = valid_ds1 print(' Splitting validation 20 into 10+10 percent: valid and heldout data') valid_ds = heldout_ds1.enumerate().filter(is_test).map(recover) heldout_ds = heldout_ds1.enumerate().filter(is_test).map(recover) print('\nLoading model and setting params. Will take 2-3 mins. Please be patient.') shuffle_size = 1000 if num_labels <= 1: try: y_test = np.concatenate(list(heldout_ds.map(lambda x, y: y).as_numpy_iterator())) print(' Single-Label: Heldout data shape: %s' % (y_test.shape,)) max_batch_size = int(min(y_test.shape[0], 4096)) except: max_batch_size = 48 pass else: iters = int(data_size / batch_size) + 1 for (inum, each_target) in enumerate(target): add_ls = [] for (feats, labs) in heldout_ds.take(iters): add_ls.append(list(labs[each_target].numpy())) flat_list = [item for sublist in add_ls for item in sublist] if inum == 0: each_array = np.array(flat_list) else: each_array = np.c_[each_array, np.array(flat_list)] y_test = copy.deepcopy(each_array) print(' Multi-Label: Heldout data shape: %s' % (y_test.shape,)) max_batch_size = y_test.shape[0] if modeltype == 'Regression': if (y_test >= 0).all(): output_activation = 'softplus' print('Setting output activation layer as softplus since there are no negative values') print(' Shuffle size = %d' % shuffle_size) train_ds = train_ds.prefetch(tf.data.AUTOTUNE).shuffle(shuffle_size, reshuffle_each_iteration=False, seed=42) valid_ds = valid_ds.prefetch(tf.data.AUTOTUNE) if not isinstance(use_my_model, str): tuner = 'None' else: tuner = model_options['tuner'] print(' Training %s model using %s. This will take time...' % (keras_model_type, tuner)) from secrets import randbelow rand_num = randbelow(10000) tf.compat.v1.reset_default_graph() K.clear_session() if keras_options['lr_scheduler'] in ['expo', 'ExponentialDecay', 'exponentialdecay']: callbacks_list_tuner = callbacks_dict['early_stop'] else: callbacks_list_tuner = [chosen_callback, callbacks_dict['early_stop']] targets = cat_vocab_dict['target_variables'] tune_mode = 'min' trials_saved_path = os.path.join(save_model_path, 'trials') if num_labels > 1 and modeltype != 'Regression': tune_mode = 'max' else: tune_mode = val_mode if tuner.lower() == 'storm': randomization_factor = 0.5 tuner = MyTuner(project_dir=trials_saved_path, build_fn=build_model_storm, objective_direction=tune_mode, init_random=5, max_iters=max_trials, randomize_axis_factor=randomization_factor, overwrite=True) start_time1 = time.time() print(' STORM Tuner max_trials = %d, randomization factor = %0.2f' % (max_trials, randomization_factor)) tuner_epochs = 100 tuner_steps = STEPS_PER_EPOCH batch_limit = min(max_batch_size, int(5 * find_batch_size(data_size))) batch_nums = int(min(8, math.log(batch_limit, 3))) print('Max. batch size = %d, number of batch sizes to try: %d' % (batch_limit, batch_nums)) tuner.search(train_ds, valid_ds, tuner_epochs, tuner_steps, inputs, meta_outputs, cols_len, output_activation, num_predicts, modeltype, optimizer, val_loss, val_metrics, patience, val_mode, data_size, learning_rate, val_monitor, callbacks_list_tuner, modeltype, class_weights, batch_size, batch_limit, batch_nums, targets, nlp_flag, regular_body, project_name, keras_model_type, cat_vocab_dict, model_options) best_trial = tuner.get_best_trial() print(' best trial selected as %s' % best_trial) print('Time taken for tuning hyperparameters = %0.0f (mins)' % ((time.time() - start_time1) / 60)) try: hpq = tuner.get_best_config() <DeepExtract> keras.backend.clear_session() if len(args) == 2: (batch_limit, batch_nums) = (args[0], args[1]) batch_size = hpq.Param('batch_size', [32, 64, 128, 256, 512, 1024, 2048], ordered=True) elif len(args) == 1: batch_size = args[0] batch_size = hpq.Param('batch_size', [batch_size]) else: batch_size = hpq.Param('batch_size', [32, 64, 128, 256, 512, 1024, 2048]) num_layers = hpq.Param('num_layers', [1, 2, 3], ordered=True) model_body = Sequential([]) activation_fn = hpq.Param('activation', ['relu', 'selu', 'elu']) use_bias = hpq.Param('use_bias', [True, False]) weight_decay = hpq.Param('weight_decay', np.logspace(-8, -3, 10)) batch_norm = hpq.Param('batch_norm', [True, False]) kernel_initializer = hpq.Param('kernel_initializer', ['glorot_uniform', 'he_normal', 'lecun_normal', 'he_uniform'], ordered=False) dropout_flag = hpq.Param('use_dropout', [True, False]) batch_norm_flag = hpq.Param('use_batch_norm', [True, False]) num_hidden = [50, 100, 150, 200, 250, 300, 350, 400, 450, 500] model_body.add(Dense(hpq.Param('kernel_size_' + str(0), num_hidden, ordered=True), use_bias=use_bias, kernel_initializer=kernel_initializer, name='storm_dense_0')) model_body.add(Activation(activation_fn, name='activation_0')) if batch_norm_flag: model_body.add(BatchNormalization(name='batch_norm_0')) if dropout_flag: model_body.add(Dropout(hpq.Param('dropout_value', [0.5, 0.6, 0.7, 0.8, 0.9], ordered=True), name='dropout_0')) kernel_size = hpq.values['kernel_size_' + str(0)] if dropout_flag: dropout_value = hpq.values['dropout_value'] else: dropout_value = 0.5 batch_norm_flag = hpq.values['use_batch_norm'] num_copy = copy.deepcopy(num_layers) for x in range(num_copy): kernel_size = int(0.75 * kernel_size) model_body.add(Dense(kernel_size, name='storm_dense_' + str(x + 1), use_bias=use_bias, kernel_initializer=kernel_initializer)) model_body.add(Activation(activation_fn, name='activation_' + str(x + 100))) if batch_norm_flag: model_body.add(BatchNormalization(name='batch_norm_' + str(x + 1))) if dropout_flag: model_body.add(Dropout(dropout_value, name='dropout_' + str(x + 1))) selected_optimizer = hpq.Param('optimizer', ['Adam', 'AdaMax', 'Adagrad', 'SGD', 'RMSprop', 'Nadam', 'nesterov'], ordered=False) optimizer = return_optimizer_trials(hpq, selected_optimizer) (best_model, best_optimizer) = (model_body, optimizer) </DeepExtract> best_batch = hpq.values['batch_size'] hpq_optimizer = hpq.values['optimizer'] if best_trial.metrics['final_lr'] < 0: print(' best learning rate less than zero. Resetting it....') optimizer_lr = 0.01 else: optimizer_lr = best_trial.metrics['final_lr'] print('Best hyperparameters: %s' % hpq.values) except: <DeepExtract> num_layers = check_keras_options(keras_options, 'num_layers', 2) model_body = tf.keras.Sequential([]) for l_ in range(num_layers): model_body.add(layers.Dense(64, activation='relu', kernel_initializer='lecun_normal')) deep_model = model_body </DeepExtract> best_batch = batch_size hpq_optimizer = 'SGD' best_optimizer = keras.optimizers.SGD(lr=0.001, momentum=0.9, nesterov=True) optimizer_lr = 0.01 print(' Storm Tuner is erroring. Hence picking defaults including lr = %s' % optimizer_lr) print('\nSetting best optimizer %s its best learning_rate = %s' % (hpq_optimizer, optimizer_lr)) best_optimizer = return_optimizer(hpq_optimizer) K.set_value(best_optimizer.learning_rate, optimizer_lr) if regular_body: storm_outputs = add_outputs_to_model_body(best_model, meta_outputs) else: storm_outputs = add_outputs_to_auto_model_body(best_model, meta_outputs, nlp_flag) best_model = get_compiled_model(inputs, storm_outputs, output_activation, num_predicts, modeltype, best_optimizer, val_loss, val_metrics, cols_len, targets) deep_model = best_model elif tuner.lower() == 'optuna': optuna_scores = [] def objective(trial): optimizer_options = '' <DeepExtract> n_layers = trial.suggest_int('n_layers', 2, 8) num_hidden = trial.suggest_categorical('n_units', [50, 100, 150, 200, 250, 300, 350, 400, 450, 500]) weight_decay = trial.suggest_float('weight_decay', 1e-08, 0.001, log=True) use_bias = trial.suggest_categorical('use_bias', [True, False]) batch_norm = trial.suggest_categorical('batch_norm', [True, False]) add_noise = trial.suggest_categorical('add_noise', [True, False]) dropout = trial.suggest_float('dropout', 0.5, 0.9) activation_fn = trial.suggest_categorical('activation', ['relu', 'elu', 'selu']) kernel_initializer = trial.suggest_categorical('kernel_initializer', ['glorot_uniform', 'he_normal', 'lecun_normal', 'he_uniform']) kernel_size = num_hidden model = tf.keras.Sequential() for i in range(n_layers): kernel_size = int(kernel_size * 0.8) model.add(tf.keras.layers.Dense(kernel_size, name='opt_dense_' + str(i), use_bias=use_bias, kernel_initializer=kernel_initializer)) model.add(Activation(activation_fn, name='opt_activation_' + str(i))) if batch_norm: model.add(BatchNormalization(name='opt_batchnorm_' + str(i))) if add_noise: model.add(GaussianNoise(trial.suggest_float('adam_learning_rate', 1e-07, 0.001, log=True))) model.add(Dropout(dropout, name='opt_drop_' + str(i))) kwargs = {} if isinstance(optimizer_options, str): if optimizer_options == '': optimizer_options = ['Adam', 'SGD'] optimizer_selected = trial.suggest_categorical('optimizer', optimizer_options) else: optimizer_selected = optimizer_options else: optimizer_selected = trial.suggest_categorical('optimizer', optimizer_options) if optimizer_selected == 'Adam': kwargs['learning_rate'] = trial.suggest_float('adam_learning_rate', 1e-07, 0.001, log=True) kwargs['epsilon'] = trial.suggest_float('adam_epsilon', 1e-14, 0.0001, log=True) elif optimizer_selected == 'SGD': kwargs['learning_rate'] = trial.suggest_float('sgd_opt_learning_rate', 1e-07, 0.001, log=True) kwargs['momentum'] = trial.suggest_float('sgd_opt_momentum', 0.8, 0.95) optimizer = getattr(tf.optimizers, optimizer_selected)(**kwargs) if regular_body: opt_outputs = add_outputs_to_model_body(model, meta_outputs) else: opt_outputs = add_outputs_to_auto_model_body(model, meta_outputs, nlp_flag) comp_model = get_compiled_model(inputs, opt_outputs, output_activation, num_predicts, modeltype, optimizer, val_loss, val_metrics, cols_len, targets) opt_model = comp_model </DeepExtract> optuna_epochs = 5 history = opt_model.fit(train_ds, validation_data=valid_ds, epochs=optuna_epochs, shuffle=True, callbacks=callbacks_list_tuner, verbose=0) if num_labels == 1: score = np.mean(history.history[val_monitor][-5:]) else: for i in range(num_labels): metric1 = [x for x in history.history.keys() if (targets[i] in x) & ('loss' not in x)] val_metric = metric1[0] if i == 0: results = history.history[val_metric][-5:] else: results = np.c_[results, history.history[val_metric][-5:]] score = results.mean(axis=1).mean() optuna_scores.append(score) return score study_name = project_name + '_' + keras_model_type + '_study_' + str(rand_num) if tune_mode == 'max': study = optuna.create_study(study_name=study_name, direction='maximize', load_if_exists=False) else: study = optuna.create_study(study_name=study_name, direction='minimize', load_if_exists=False) study.optimize(objective, n_trials=max_trials) print('Best trial score in Optuna: %s' % study.best_trial.value) print(' Scores mean:', np.mean(optuna_scores), 'std:', np.std(optuna_scores)) print(' Best params: %s' % study.best_params) optimizer_options = study.best_params['optimizer'] <DeepExtract> n_layers = study.best_trial.suggest_int('n_layers', 2, 8) num_hidden = study.best_trial.suggest_categorical('n_units', [50, 100, 150, 200, 250, 300, 350, 400, 450, 500]) weight_decay = study.best_trial.suggest_float('weight_decay', 1e-08, 0.001, log=True) use_bias = study.best_trial.suggest_categorical('use_bias', [True, False]) batch_norm = study.best_trial.suggest_categorical('batch_norm', [True, False]) add_noise = study.best_trial.suggest_categorical('add_noise', [True, False]) dropout = study.best_trial.suggest_float('dropout', 0.5, 0.9) activation_fn = study.best_trial.suggest_categorical('activation', ['relu', 'elu', 'selu']) kernel_initializer = study.best_trial.suggest_categorical('kernel_initializer', ['glorot_uniform', 'he_normal', 'lecun_normal', 'he_uniform']) kernel_size = num_hidden model = tf.keras.Sequential() for i in range(n_layers): kernel_size = int(kernel_size * 0.8) model.add(tf.keras.layers.Dense(kernel_size, name='opt_dense_' + str(i), use_bias=use_bias, kernel_initializer=kernel_initializer)) model.add(Activation(activation_fn, name='opt_activation_' + str(i))) if batch_norm: model.add(BatchNormalization(name='opt_batchnorm_' + str(i))) if add_noise: model.add(GaussianNoise(study.best_trial.suggest_float('adam_learning_rate', 1e-07, 0.001, log=True))) model.add(Dropout(dropout, name='opt_drop_' + str(i))) kwargs = {} if isinstance(optimizer_options, str): if optimizer_options == '': optimizer_options = ['Adam', 'SGD'] optimizer_selected = study.best_trial.suggest_categorical('optimizer', optimizer_options) else: optimizer_selected = optimizer_options else: optimizer_selected = study.best_trial.suggest_categorical('optimizer', optimizer_options) if optimizer_selected == 'Adam': kwargs['learning_rate'] = study.best_trial.suggest_float('adam_learning_rate', 1e-07, 0.001, log=True) kwargs['epsilon'] = study.best_trial.suggest_float('adam_epsilon', 1e-14, 0.0001, log=True) elif optimizer_selected == 'SGD': kwargs['learning_rate'] = study.best_trial.suggest_float('sgd_opt_learning_rate', 1e-07, 0.001, log=True) kwargs['momentum'] = study.best_trial.suggest_float('sgd_opt_momentum', 0.8, 0.95) optimizer = getattr(tf.optimizers, optimizer_selected)(**kwargs) if regular_body: opt_outputs = add_outputs_to_model_body(model, meta_outputs) else: opt_outputs = add_outputs_to_auto_model_body(model, meta_outputs, nlp_flag) comp_model = get_compiled_model(inputs, opt_outputs, output_activation, num_predicts, modeltype, optimizer, val_loss, val_metrics, cols_len, targets) best_model = comp_model </DeepExtract> best_optimizer = best_model.optimizer <DeepExtract> n_layers = study.best_trial.suggest_int('n_layers', 2, 8) num_hidden = study.best_trial.suggest_categorical('n_units', [50, 100, 150, 200, 250, 300, 350, 400, 450, 500]) weight_decay = study.best_trial.suggest_float('weight_decay', 1e-08, 0.001, log=True) use_bias = study.best_trial.suggest_categorical('use_bias', [True, False]) batch_norm = study.best_trial.suggest_categorical('batch_norm', [True, False]) add_noise = study.best_trial.suggest_categorical('add_noise', [True, False]) dropout = study.best_trial.suggest_float('dropout', 0.5, 0.9) activation_fn = study.best_trial.suggest_categorical('activation', ['relu', 'elu', 'selu']) kernel_initializer = study.best_trial.suggest_categorical('kernel_initializer', ['glorot_uniform', 'he_normal', 'lecun_normal', 'he_uniform']) kernel_size = num_hidden model = tf.keras.Sequential() for i in range(n_layers): kernel_size = int(kernel_size * 0.8) model.add(tf.keras.layers.Dense(kernel_size, name='opt_dense_' + str(i), use_bias=use_bias, kernel_initializer=kernel_initializer)) model.add(Activation(activation_fn, name='opt_activation_' + str(i))) if batch_norm: model.add(BatchNormalization(name='opt_batchnorm_' + str(i))) if add_noise: model.add(GaussianNoise(study.best_trial.suggest_float('adam_learning_rate', 1e-07, 0.001, log=True))) model.add(Dropout(dropout, name='opt_drop_' + str(i))) kwargs = {} if isinstance(optimizer_options, str): if optimizer_options == '': optimizer_options = ['Adam', 'SGD'] optimizer_selected = study.best_trial.suggest_categorical('optimizer', optimizer_options) else: optimizer_selected = optimizer_options else: optimizer_selected = study.best_trial.suggest_categorical('optimizer', optimizer_options) if optimizer_selected == 'Adam': kwargs['learning_rate'] = study.best_trial.suggest_float('adam_learning_rate', 1e-07, 0.001, log=True) kwargs['epsilon'] = study.best_trial.suggest_float('adam_epsilon', 1e-14, 0.0001, log=True) elif optimizer_selected == 'SGD': kwargs['learning_rate'] = study.best_trial.suggest_float('sgd_opt_learning_rate', 1e-07, 0.001, log=True) kwargs['momentum'] = study.best_trial.suggest_float('sgd_opt_momentum', 0.8, 0.95) optimizer = getattr(tf.optimizers, optimizer_selected)(**kwargs) if regular_body: opt_outputs = add_outputs_to_model_body(model, meta_outputs) else: opt_outputs = add_outputs_to_auto_model_body(model, meta_outputs, nlp_flag) comp_model = get_compiled_model(inputs, opt_outputs, output_activation, num_predicts, modeltype, optimizer, val_loss, val_metrics, cols_len, targets) deep_model = comp_model </DeepExtract> best_batch = batch_size optimizer_lr = best_optimizer.learning_rate.numpy() print('\nBest optimizer = %s and best learning_rate = %s' % (best_optimizer, optimizer_lr)) K.set_value(best_optimizer.learning_rate, optimizer_lr) elif tuner.lower() == 'none': print('skipping tuner search since use_my_model flag set to True...') best_model = use_my_model deep_model = use_my_model if regular_body: best_outputs = add_outputs_to_model_body(best_model, meta_outputs) deep_outputs = add_outputs_to_model_body(deep_model, meta_outputs) else: best_outputs = add_outputs_to_auto_model_body(best_model, meta_outputs, nlp_flag) deep_outputs = add_outputs_to_auto_model_body(deep_model, meta_outputs, nlp_flag) best_optimizer = keras.optimizers.SGD(lr=0.001, momentum=0.9, nesterov=True) best_batch = batch_size optimizer_lr = best_optimizer.learning_rate.numpy() print('\nBest optimizer = %s and best learning_rate = %s' % (best_optimizer, optimizer_lr)) K.set_value(best_optimizer.learning_rate, optimizer_lr) best_model = get_compiled_model(inputs, best_outputs, output_activation, num_predicts, modeltype, best_optimizer, val_loss, val_metrics, cols_len, targets) deep_model = get_compiled_model(inputs, deep_outputs, output_activation, num_predicts, modeltype, best_optimizer, val_loss, val_metrics, cols_len, targets) train_ds = train_ds.unbatch().batch(best_batch, drop_remainder=True) train_ds = train_ds.shuffle(shuffle_size, reshuffle_each_iteration=False, seed=42).prefetch(tf.data.AUTOTUNE) valid_ds = valid_ds.unbatch().batch(best_batch, drop_remainder=True) valid_ds = valid_ds.prefetch(tf.data.AUTOTUNE) if keras_options['lr_scheduler'] in ['expo', 'ExponentialDecay', 'exponentialdecay']: if early_stopping: callbacks_list = [callbacks_dict['early_stop'], callbacks_dict['tensor_board']] else: callbacks_list = [callbacks_dict['tensor_board']] elif early_stopping: callbacks_list = [callbacks_dict['early_stop'], callbacks_dict['tensor_board'], chosen_callback] else: callbacks_list = [callbacks_dict['tensor_board'], chosen_callback] print('Model training with best hyperparameters for %d epochs' % NUMBER_OF_EPOCHS) for each_callback in callbacks_list: print(' Callback added: %s' % str(each_callback).split('.')[-1]) np.random.seed(42) tf.random.set_seed(42) history = best_model.fit(train_ds, validation_data=valid_ds, epochs=NUMBER_OF_EPOCHS, callbacks=callbacks_list, class_weight=class_weights, shuffle=True) print(' Model training completed. Following metrics available: %s' % history.history.keys()) print('Time taken to train model (in mins) = %0.0f' % ((time.time() - start_time) / 60)) K.clear_session() <DeepExtract> sess = get_session() K.clear_session() sess.close() sess = get_session() try: del opt_model del best_model del deep_model print('deleted deep and best models from memory') except: pass print(gc.collect()) config = tf.compat.v1.ConfigProto() config.gpu_options.per_process_gpu_memory_fraction = 1 config.gpu_options.visible_device_list = '0' set_session(tf.compat.v1.Session(config=config)) </DeepExtract> tf.compat.v1.reset_default_graph() tf.keras.backend.reset_uids() try: stopped_epoch = max(5, int(pd.DataFrame(history.history).shape[0] - patience)) except: stopped_epoch = 100 print(' Stopped epoch = %s' % stopped_epoch) try: if modeltype == 'Regression': plot_history(history, val_monitor[4:], target) elif modeltype == 'Classification': plot_history(history, val_monitor[4:], target) else: plot_history(history, val_monitor[4:], target) except: print(' Plot history is erroring. Tensorboard logs can be found here: %s' % tb_logpath) print('Time taken to train model (in mins) = %0.0f' % ((time.time() - start_time) / 60)) print(' Stopped epoch = %s' % stopped_epoch) scores = [] ls = [] print('Held out data actuals shape: %s' % (y_test.shape,)) if verbose >= 1: try: print_one_row_from_tf_label(heldout_ds) except: print('could not print samples from heldout ds labels') y_probas = best_model.predict(heldout_ds) if isinstance(target, str): if modeltype != 'Regression': y_test_preds = y_probas.argmax(axis=1) elif y_test.dtype == 'int': y_test_preds = y_probas.round().astype(int) else: y_test_preds = y_probas.ravel() elif modeltype != 'Regression': for each_t in range(len(target)): if each_t == 0: y_test_preds = y_probas[each_t].argmax(axis=1).astype(int) else: y_test_preds = np.c_[y_test_preds, y_probas[each_t].argmax(axis=1).astype(int)] else: for each_t in range(len(target)): if each_t == 0: y_test_preds = y_probas[each_t].mean(axis=1) else: y_test_preds = np.c_[y_test_preds, y_probas[each_t].mean(axis=1)] if y_test.dtype == 'int': y_test_preds = y_test_preds.round().astype(int) print('\nHeld out predictions shape:%s' % (y_test_preds.shape,)) if verbose >= 1: if modeltype != 'Regression': print(' Sample predictions: %s' % y_test_preds[:10]) elif num_labels == 1: print(' Sample predictions: %s' % y_test_preds.ravel()[:10]) else: print(' Sample predictions:\n%s' % y_test_preds[:10]) print('\n###########################################################') print(' Held-out test data set Results:') num_labels = cat_vocab_dict['num_labels'] num_classes = cat_vocab_dict['num_classes'] if check_for_nan_in_array(y_probas): y_probas = pd.DataFrame(y_probas).fillna(0).values elif check_for_nan_in_array(y_test_preds): y_test_preds = pd.DataFrame(y_test_preds).fillna(0).values.ravel() if num_labels <= 1: if modeltype == 'Regression': print_regression_model_stats(y_test, y_test_preds, target, plot_name=project_name) plot_regression_residuals(y_test, y_test_preds, target, project_name, num_labels) else: print_classification_header(num_classes, num_labels, target) labels = cat_vocab_dict['original_classes'] if cat_vocab_dict['target_transformed']: target_names = cat_vocab_dict['transformed_classes'] target_le = cat_vocab_dict['target_le'] y_pred = y_probas.argmax(axis=1) y_test_trans = target_le.inverse_transform(y_test) y_pred_trans = target_le.inverse_transform(y_pred) labels = np.unique(y_test_trans) plot_classification_results(y_test_trans, y_pred_trans, labels, labels, target) else: y_pred = y_probas.argmax(axis=1) labels = np.unique(y_test) plot_classification_results(y_test, y_pred, labels, labels, target) print_classification_metrics(y_test, y_probas, proba_flag=True) elif modeltype == 'Regression': print_regression_model_stats(y_test, y_test_preds, target, plot_name=project_name) plot_regression_residuals(y_test, y_test_preds, target, project_name, num_labels) else: try: targets = cat_vocab_dict['target_variables'] for (i, each_target) in enumerate(targets): print_classification_header(num_classes, num_labels, each_target) labels = cat_vocab_dict[each_target + '_original_classes'] if cat_vocab_dict['target_transformed']: target_names = cat_vocab_dict[each_target + '_transformed_classes'] target_le = cat_vocab_dict['target_le'][i] y_pred = y_probas[i].argmax(axis=1) y_test_trans = target_le.inverse_transform(y_test[:, i]) y_pred_trans = target_le.inverse_transform(y_pred) labels = np.unique(y_test_trans) plot_classification_results(y_test_trans, y_pred_trans, labels, labels, each_target) else: y_pred = y_probas[i].argmax(axis=1) labels = np.unique(y_test[:, i]) plot_classification_results(y_test[:, i], y_pred, labels, labels, each_target) print_classification_metrics(y_test[:, i], y_probas[i], proba_flag=True) print(classification_report(y_test[:, i], y_test_preds[:, i])) print(confusion_matrix(y_test[:, i], y_test_preds[:, i])) except: print_classification_metrics(y_test, y_test_preds, False) print(classification_report(y_test, y_test_preds)) print('\nFinally, training on full train dataset. This will take time...') full_ds = full_ds.unbatch().batch(best_batch) full_ds = full_ds.shuffle(shuffle_size, reshuffle_each_iteration=False, seed=42).prefetch(best_batch) best_rate = best_model.optimizer.lr.numpy() if best_rate < 0: print(' best learning rate less than zero. Resetting it....') best_rate = 0.01 else: pass print(' best learning rate = %s' % best_rate) K.set_value(deep_model.optimizer.learning_rate, best_rate) print(' set learning rate using best model:', deep_model.optimizer.learning_rate.numpy()) print(' max epochs for training = %d' % stopped_epoch) callbacks_list = [callbacks_dict['check_point']] deep_model.fit(full_ds, epochs=stopped_epoch, class_weight=class_weights, callbacks=callbacks_list, shuffle=True, verbose=0) save_model_artifacts(deep_model, cat_vocab_dict, var_df, save_model_path, save_model_flag, model_options) K.clear_session() tf.compat.v1.reset_default_graph() <DeepExtract> sess = get_session() K.clear_session() sess.close() sess = get_session() try: del opt_model del best_model del deep_model print('deleted deep and best models from memory') except: pass print(gc.collect()) config = tf.compat.v1.ConfigProto() config.gpu_options.per_process_gpu_memory_fraction = 1 config.gpu_options.visible_device_list = '0' set_session(tf.compat.v1.Session(config=config)) </DeepExtract> tf.keras.backend.reset_uids() print('\nDeep_Auto_ViML completed. Total time taken = %0.0f (in mins)' % ((time.time() - start_time) / 60)) return (deep_model, cat_vocab_dict)
def train_custom_model(nlp_inputs, meta_inputs, meta_outputs, nlp_outputs, full_ds, target, keras_model_type, keras_options, model_options, var_df, cat_vocab_dict, project_name='', save_model_flag=True, use_my_model='', verbose=0): """ Given a keras model and a tf.data.dataset that is batched, this function will train a keras model. It will first split the batched_data into train_ds and valid_ds (80/20). Then it will select the right parameters based on model type and train the model and evaluate it on valid_ds. It will return a keras model fully trained on the full batched_data finally and train history. """ save_model_path = model_options['save_model_path'] inputs = nlp_inputs + meta_inputs nlps = var_df['nlp_vars'] lats = var_df['lat_vars'] lons = var_df['lon_vars'] if nlp_inputs: nlp_flag = True else: nlp_flag = False start_time = time.time() targets = cat_vocab_dict['target_variables'] max_trials = model_options['max_trials'] overwrite_flag = True data_size = check_keras_options(keras_options, 'data_size', 10000) batch_size = check_keras_options(keras_options, 'batchsize', 64) class_weights = check_keras_options(keras_options, 'class_weight', {}) if not isinstance(model_options['label_encode_flag'], str): if not model_options['label_encode_flag']: print(' removing class weights since label_encode_flag is set to False which means classes can be anything.') class_weights = {} print(' Class weights: %s' % class_weights) num_classes = model_options['num_classes'] num_labels = model_options['num_labels'] modeltype = model_options['modeltype'] patience = keras_options['patience'] cols_len = len([item for sublist in list(var_df.values()) for item in sublist]) if isinstance(meta_outputs, list): data_dim = int(data_size) NON_NLP_VARS = [] else: lst = [] for i in cat_vocab_dict['predictors_in_train']: if i not in nlps: lst.append(i) NON_NLP_VARS = lst try: data_dim = int(data_size * meta_outputs.shape[1]) except: data_dim = int(data_size * meta_outputs[0].shape[1]) optimizer = keras_options['optimizer'] early_stopping = check_keras_options(keras_options, 'early_stopping', False) print(' original datasize = %s, initial batchsize = %s' % (data_size, batch_size)) print(' Early stopping : %s' % early_stopping) NUMBER_OF_EPOCHS = check_keras_options(keras_options, 'epochs', 100) if keras_options['lr_scheduler'] in ['expo', 'ExponentialDecay', 'exponentialdecay']: print(' chosen ExponentialDecay learning rate scheduler') expo_steps = NUMBER_OF_EPOCHS * data_size // batch_size learning_rate = keras.optimizers.schedules.ExponentialDecay(0.0001, expo_steps, 0.1) else: learning_rate = check_keras_options(keras_options, 'learning_rate', 0.05) if len(var_df['nlp_vars']) > 0: steps = 10 else: steps = max(10, data_size // (batch_size * 2)) steps = min(300, steps) print(' recommended steps per epoch = %d' % steps) STEPS_PER_EPOCH = check_keras_options(keras_options, 'steps_per_epoch', steps) kernel_initializer = check_keras_options(keras_options, 'kernel_initializer', 'lecun_normal') activation = 'selu' print(' default initializer = %s, default activation = %s' % (kernel_initializer, activation)) use_bias = check_keras_options(keras_options, 'use_bias', True) lr_scheduler = check_keras_options(keras_options, 'lr_scheduler', '') onecycle_steps = max(10, np.ceil(data_size / (2 * batch_size)) * NUMBER_OF_EPOCHS) print(' Onecycle steps = %d' % onecycle_steps) (keras_options, model_options, num_predicts, output_activation) = get_model_defaults(keras_options, model_options, targets) val_mode = keras_options['mode'] val_monitor = keras_options['monitor'] val_loss = keras_options['loss'] val_metrics = keras_options['metrics'] try: print(' number of classes = %s, output_activation = %s' % (num_predicts, output_activation)) print(' loss function: %s' % str(val_loss).split('.')[-1].split(' ')[0]) except: print(' loss fn = %s number of classes = %s, output_activation = %s' % (val_loss, num_predicts, output_activation)) modeltype = cat_vocab_dict['modeltype'] regular_body = True if isinstance(meta_outputs, list): if nlp_flag: if len(nlp_outputs) > 0: regular_body = False else: regular_body = True else: regular_body = False save_weights_only = check_keras_options(keras_options, 'save_weights_only', False) print(' steps_per_epoch = %s, number epochs = %s' % (STEPS_PER_EPOCH, NUMBER_OF_EPOCHS)) print(' val mode = %s, val monitor = %s, patience = %s' % (val_mode, val_monitor, patience)) (callbacks_dict, tb_logpath) = get_callbacks(val_mode, val_monitor, patience, learning_rate, save_weights_only, onecycle_steps, save_model_path) chosen_callback = get_chosen_callback(callbacks_dict, keras_options) if not keras_options['lr_scheduler']: print(' chosen keras LR scheduler = default') else: print(' chosen keras LR scheduler = %s' % keras_options['lr_scheduler']) recover = lambda x, y: y print('\nSplitting train into 80+20 percent: train and validation data') valid_ds1 = full_ds.enumerate().filter(is_valid).map(recover) train_ds = full_ds.enumerate().filter(is_train).map(recover) heldout_ds1 = valid_ds1 print(' Splitting validation 20 into 10+10 percent: valid and heldout data') valid_ds = heldout_ds1.enumerate().filter(is_test).map(recover) heldout_ds = heldout_ds1.enumerate().filter(is_test).map(recover) print('\nLoading model and setting params. Will take 2-3 mins. Please be patient.') shuffle_size = 1000 if num_labels <= 1: try: y_test = np.concatenate(list(heldout_ds.map(lambda x, y: y).as_numpy_iterator())) print(' Single-Label: Heldout data shape: %s' % (y_test.shape,)) max_batch_size = int(min(y_test.shape[0], 4096)) except: max_batch_size = 48 pass else: iters = int(data_size / batch_size) + 1 for (inum, each_target) in enumerate(target): add_ls = [] for (feats, labs) in heldout_ds.take(iters): add_ls.append(list(labs[each_target].numpy())) flat_list = [item for sublist in add_ls for item in sublist] if inum == 0: each_array = np.array(flat_list) else: each_array = np.c_[each_array, np.array(flat_list)] y_test = copy.deepcopy(each_array) print(' Multi-Label: Heldout data shape: %s' % (y_test.shape,)) max_batch_size = y_test.shape[0] if modeltype == 'Regression': if (y_test >= 0).all(): output_activation = 'softplus' print('Setting output activation layer as softplus since there are no negative values') print(' Shuffle size = %d' % shuffle_size) train_ds = train_ds.prefetch(tf.data.AUTOTUNE).shuffle(shuffle_size, reshuffle_each_iteration=False, seed=42) valid_ds = valid_ds.prefetch(tf.data.AUTOTUNE) if not isinstance(use_my_model, str): tuner = 'None' else: tuner = model_options['tuner'] print(' Training %s model using %s. This will take time...' % (keras_model_type, tuner)) from secrets import randbelow rand_num = randbelow(10000) tf.compat.v1.reset_default_graph() K.clear_session() if keras_options['lr_scheduler'] in ['expo', 'ExponentialDecay', 'exponentialdecay']: callbacks_list_tuner = callbacks_dict['early_stop'] else: callbacks_list_tuner = [chosen_callback, callbacks_dict['early_stop']] targets = cat_vocab_dict['target_variables'] tune_mode = 'min' trials_saved_path = os.path.join(save_model_path, 'trials') if num_labels > 1 and modeltype != 'Regression': tune_mode = 'max' else: tune_mode = val_mode if tuner.lower() == 'storm': randomization_factor = 0.5 tuner = MyTuner(project_dir=trials_saved_path, build_fn=build_model_storm, objective_direction=tune_mode, init_random=5, max_iters=max_trials, randomize_axis_factor=randomization_factor, overwrite=True) start_time1 = time.time() print(' STORM Tuner max_trials = %d, randomization factor = %0.2f' % (max_trials, randomization_factor)) tuner_epochs = 100 tuner_steps = STEPS_PER_EPOCH batch_limit = min(max_batch_size, int(5 * find_batch_size(data_size))) batch_nums = int(min(8, math.log(batch_limit, 3))) print('Max. batch size = %d, number of batch sizes to try: %d' % (batch_limit, batch_nums)) tuner.search(train_ds, valid_ds, tuner_epochs, tuner_steps, inputs, meta_outputs, cols_len, output_activation, num_predicts, modeltype, optimizer, val_loss, val_metrics, patience, val_mode, data_size, learning_rate, val_monitor, callbacks_list_tuner, modeltype, class_weights, batch_size, batch_limit, batch_nums, targets, nlp_flag, regular_body, project_name, keras_model_type, cat_vocab_dict, model_options) best_trial = tuner.get_best_trial() print(' best trial selected as %s' % best_trial) print('Time taken for tuning hyperparameters = %0.0f (mins)' % ((time.time() - start_time1) / 60)) try: hpq = tuner.get_best_config() keras.backend.clear_session() if len(args) == 2: (batch_limit, batch_nums) = (args[0], args[1]) batch_size = hpq.Param('batch_size', [32, 64, 128, 256, 512, 1024, 2048], ordered=True) elif len(args) == 1: batch_size = args[0] batch_size = hpq.Param('batch_size', [batch_size]) else: batch_size = hpq.Param('batch_size', [32, 64, 128, 256, 512, 1024, 2048]) num_layers = hpq.Param('num_layers', [1, 2, 3], ordered=True) model_body = Sequential([]) activation_fn = hpq.Param('activation', ['relu', 'selu', 'elu']) use_bias = hpq.Param('use_bias', [True, False]) weight_decay = hpq.Param('weight_decay', np.logspace(-8, -3, 10)) batch_norm = hpq.Param('batch_norm', [True, False]) kernel_initializer = hpq.Param('kernel_initializer', ['glorot_uniform', 'he_normal', 'lecun_normal', 'he_uniform'], ordered=False) dropout_flag = hpq.Param('use_dropout', [True, False]) batch_norm_flag = hpq.Param('use_batch_norm', [True, False]) num_hidden = [50, 100, 150, 200, 250, 300, 350, 400, 450, 500] model_body.add(Dense(hpq.Param('kernel_size_' + str(0), num_hidden, ordered=True), use_bias=use_bias, kernel_initializer=kernel_initializer, name='storm_dense_0')) model_body.add(Activation(activation_fn, name='activation_0')) if batch_norm_flag: model_body.add(BatchNormalization(name='batch_norm_0')) if dropout_flag: model_body.add(Dropout(hpq.Param('dropout_value', [0.5, 0.6, 0.7, 0.8, 0.9], ordered=True), name='dropout_0')) kernel_size = hpq.values['kernel_size_' + str(0)] if dropout_flag: dropout_value = hpq.values['dropout_value'] else: dropout_value = 0.5 batch_norm_flag = hpq.values['use_batch_norm'] num_copy = copy.deepcopy(num_layers) for x in range(num_copy): kernel_size = int(0.75 * kernel_size) model_body.add(Dense(kernel_size, name='storm_dense_' + str(x + 1), use_bias=use_bias, kernel_initializer=kernel_initializer)) model_body.add(Activation(activation_fn, name='activation_' + str(x + 100))) if batch_norm_flag: model_body.add(BatchNormalization(name='batch_norm_' + str(x + 1))) if dropout_flag: model_body.add(Dropout(dropout_value, name='dropout_' + str(x + 1))) selected_optimizer = hpq.Param('optimizer', ['Adam', 'AdaMax', 'Adagrad', 'SGD', 'RMSprop', 'Nadam', 'nesterov'], ordered=False) optimizer = return_optimizer_trials(hpq, selected_optimizer) (best_model, best_optimizer) = (model_body, optimizer) best_batch = hpq.values['batch_size'] hpq_optimizer = hpq.values['optimizer'] if best_trial.metrics['final_lr'] < 0: print(' best learning rate less than zero. Resetting it....') optimizer_lr = 0.01 else: optimizer_lr = best_trial.metrics['final_lr'] print('Best hyperparameters: %s' % hpq.values) except: num_layers = check_keras_options(keras_options, 'num_layers', 2) model_body = tf.keras.Sequential([]) for l_ in range(num_layers): model_body.add(layers.Dense(64, activation='relu', kernel_initializer='lecun_normal')) deep_model = model_body best_batch = batch_size hpq_optimizer = 'SGD' best_optimizer = keras.optimizers.SGD(lr=0.001, momentum=0.9, nesterov=True) optimizer_lr = 0.01 print(' Storm Tuner is erroring. Hence picking defaults including lr = %s' % optimizer_lr) print('\nSetting best optimizer %s its best learning_rate = %s' % (hpq_optimizer, optimizer_lr)) best_optimizer = return_optimizer(hpq_optimizer) K.set_value(best_optimizer.learning_rate, optimizer_lr) if regular_body: storm_outputs = add_outputs_to_model_body(best_model, meta_outputs) else: storm_outputs = add_outputs_to_auto_model_body(best_model, meta_outputs, nlp_flag) best_model = get_compiled_model(inputs, storm_outputs, output_activation, num_predicts, modeltype, best_optimizer, val_loss, val_metrics, cols_len, targets) deep_model = best_model elif tuner.lower() == 'optuna': optuna_scores = [] def objective(trial): optimizer_options = '' n_layers = trial.suggest_int('n_layers', 2, 8) num_hidden = trial.suggest_categorical('n_units', [50, 100, 150, 200, 250, 300, 350, 400, 450, 500]) weight_decay = trial.suggest_float('weight_decay', 1e-08, 0.001, log=True) use_bias = trial.suggest_categorical('use_bias', [True, False]) batch_norm = trial.suggest_categorical('batch_norm', [True, False]) add_noise = trial.suggest_categorical('add_noise', [True, False]) dropout = trial.suggest_float('dropout', 0.5, 0.9) activation_fn = trial.suggest_categorical('activation', ['relu', 'elu', 'selu']) kernel_initializer = trial.suggest_categorical('kernel_initializer', ['glorot_uniform', 'he_normal', 'lecun_normal', 'he_uniform']) kernel_size = num_hidden model = tf.keras.Sequential() for i in range(n_layers): kernel_size = int(kernel_size * 0.8) model.add(tf.keras.layers.Dense(kernel_size, name='opt_dense_' + str(i), use_bias=use_bias, kernel_initializer=kernel_initializer)) model.add(Activation(activation_fn, name='opt_activation_' + str(i))) if batch_norm: model.add(BatchNormalization(name='opt_batchnorm_' + str(i))) if add_noise: model.add(GaussianNoise(trial.suggest_float('adam_learning_rate', 1e-07, 0.001, log=True))) model.add(Dropout(dropout, name='opt_drop_' + str(i))) kwargs = {} if isinstance(optimizer_options, str): if optimizer_options == '': optimizer_options = ['Adam', 'SGD'] optimizer_selected = trial.suggest_categorical('optimizer', optimizer_options) else: optimizer_selected = optimizer_options else: optimizer_selected = trial.suggest_categorical('optimizer', optimizer_options) if optimizer_selected == 'Adam': kwargs['learning_rate'] = trial.suggest_float('adam_learning_rate', 1e-07, 0.001, log=True) kwargs['epsilon'] = trial.suggest_float('adam_epsilon', 1e-14, 0.0001, log=True) elif optimizer_selected == 'SGD': kwargs['learning_rate'] = trial.suggest_float('sgd_opt_learning_rate', 1e-07, 0.001, log=True) kwargs['momentum'] = trial.suggest_float('sgd_opt_momentum', 0.8, 0.95) optimizer = getattr(tf.optimizers, optimizer_selected)(**kwargs) if regular_body: opt_outputs = add_outputs_to_model_body(model, meta_outputs) else: opt_outputs = add_outputs_to_auto_model_body(model, meta_outputs, nlp_flag) comp_model = get_compiled_model(inputs, opt_outputs, output_activation, num_predicts, modeltype, optimizer, val_loss, val_metrics, cols_len, targets) opt_model = comp_model optuna_epochs = 5 history = opt_model.fit(train_ds, validation_data=valid_ds, epochs=optuna_epochs, shuffle=True, callbacks=callbacks_list_tuner, verbose=0) if num_labels == 1: score = np.mean(history.history[val_monitor][-5:]) else: for i in range(num_labels): metric1 = [x for x in history.history.keys() if (targets[i] in x) & ('loss' not in x)] val_metric = metric1[0] if i == 0: results = history.history[val_metric][-5:] else: results = np.c_[results, history.history[val_metric][-5:]] score = results.mean(axis=1).mean() optuna_scores.append(score) return score study_name = project_name + '_' + keras_model_type + '_study_' + str(rand_num) if tune_mode == 'max': study = optuna.create_study(study_name=study_name, direction='maximize', load_if_exists=False) else: study = optuna.create_study(study_name=study_name, direction='minimize', load_if_exists=False) study.optimize(objective, n_trials=max_trials) print('Best trial score in Optuna: %s' % study.best_trial.value) print(' Scores mean:', np.mean(optuna_scores), 'std:', np.std(optuna_scores)) print(' Best params: %s' % study.best_params) optimizer_options = study.best_params['optimizer'] n_layers = study.best_trial.suggest_int('n_layers', 2, 8) num_hidden = study.best_trial.suggest_categorical('n_units', [50, 100, 150, 200, 250, 300, 350, 400, 450, 500]) weight_decay = study.best_trial.suggest_float('weight_decay', 1e-08, 0.001, log=True) use_bias = study.best_trial.suggest_categorical('use_bias', [True, False]) batch_norm = study.best_trial.suggest_categorical('batch_norm', [True, False]) add_noise = study.best_trial.suggest_categorical('add_noise', [True, False]) dropout = study.best_trial.suggest_float('dropout', 0.5, 0.9) activation_fn = study.best_trial.suggest_categorical('activation', ['relu', 'elu', 'selu']) kernel_initializer = study.best_trial.suggest_categorical('kernel_initializer', ['glorot_uniform', 'he_normal', 'lecun_normal', 'he_uniform']) kernel_size = num_hidden model = tf.keras.Sequential() for i in range(n_layers): kernel_size = int(kernel_size * 0.8) model.add(tf.keras.layers.Dense(kernel_size, name='opt_dense_' + str(i), use_bias=use_bias, kernel_initializer=kernel_initializer)) model.add(Activation(activation_fn, name='opt_activation_' + str(i))) if batch_norm: model.add(BatchNormalization(name='opt_batchnorm_' + str(i))) if add_noise: model.add(GaussianNoise(study.best_trial.suggest_float('adam_learning_rate', 1e-07, 0.001, log=True))) model.add(Dropout(dropout, name='opt_drop_' + str(i))) kwargs = {} if isinstance(optimizer_options, str): if optimizer_options == '': optimizer_options = ['Adam', 'SGD'] optimizer_selected = study.best_trial.suggest_categorical('optimizer', optimizer_options) else: optimizer_selected = optimizer_options else: optimizer_selected = study.best_trial.suggest_categorical('optimizer', optimizer_options) if optimizer_selected == 'Adam': kwargs['learning_rate'] = study.best_trial.suggest_float('adam_learning_rate', 1e-07, 0.001, log=True) kwargs['epsilon'] = study.best_trial.suggest_float('adam_epsilon', 1e-14, 0.0001, log=True) elif optimizer_selected == 'SGD': kwargs['learning_rate'] = study.best_trial.suggest_float('sgd_opt_learning_rate', 1e-07, 0.001, log=True) kwargs['momentum'] = study.best_trial.suggest_float('sgd_opt_momentum', 0.8, 0.95) optimizer = getattr(tf.optimizers, optimizer_selected)(**kwargs) if regular_body: opt_outputs = add_outputs_to_model_body(model, meta_outputs) else: opt_outputs = add_outputs_to_auto_model_body(model, meta_outputs, nlp_flag) comp_model = get_compiled_model(inputs, opt_outputs, output_activation, num_predicts, modeltype, optimizer, val_loss, val_metrics, cols_len, targets) best_model = comp_model best_optimizer = best_model.optimizer n_layers = study.best_trial.suggest_int('n_layers', 2, 8) num_hidden = study.best_trial.suggest_categorical('n_units', [50, 100, 150, 200, 250, 300, 350, 400, 450, 500]) weight_decay = study.best_trial.suggest_float('weight_decay', 1e-08, 0.001, log=True) use_bias = study.best_trial.suggest_categorical('use_bias', [True, False]) batch_norm = study.best_trial.suggest_categorical('batch_norm', [True, False]) add_noise = study.best_trial.suggest_categorical('add_noise', [True, False]) dropout = study.best_trial.suggest_float('dropout', 0.5, 0.9) activation_fn = study.best_trial.suggest_categorical('activation', ['relu', 'elu', 'selu']) kernel_initializer = study.best_trial.suggest_categorical('kernel_initializer', ['glorot_uniform', 'he_normal', 'lecun_normal', 'he_uniform']) kernel_size = num_hidden model = tf.keras.Sequential() for i in range(n_layers): kernel_size = int(kernel_size * 0.8) model.add(tf.keras.layers.Dense(kernel_size, name='opt_dense_' + str(i), use_bias=use_bias, kernel_initializer=kernel_initializer)) model.add(Activation(activation_fn, name='opt_activation_' + str(i))) if batch_norm: model.add(BatchNormalization(name='opt_batchnorm_' + str(i))) if add_noise: model.add(GaussianNoise(study.best_trial.suggest_float('adam_learning_rate', 1e-07, 0.001, log=True))) model.add(Dropout(dropout, name='opt_drop_' + str(i))) kwargs = {} if isinstance(optimizer_options, str): if optimizer_options == '': optimizer_options = ['Adam', 'SGD'] optimizer_selected = study.best_trial.suggest_categorical('optimizer', optimizer_options) else: optimizer_selected = optimizer_options else: optimizer_selected = study.best_trial.suggest_categorical('optimizer', optimizer_options) if optimizer_selected == 'Adam': kwargs['learning_rate'] = study.best_trial.suggest_float('adam_learning_rate', 1e-07, 0.001, log=True) kwargs['epsilon'] = study.best_trial.suggest_float('adam_epsilon', 1e-14, 0.0001, log=True) elif optimizer_selected == 'SGD': kwargs['learning_rate'] = study.best_trial.suggest_float('sgd_opt_learning_rate', 1e-07, 0.001, log=True) kwargs['momentum'] = study.best_trial.suggest_float('sgd_opt_momentum', 0.8, 0.95) optimizer = getattr(tf.optimizers, optimizer_selected)(**kwargs) if regular_body: opt_outputs = add_outputs_to_model_body(model, meta_outputs) else: opt_outputs = add_outputs_to_auto_model_body(model, meta_outputs, nlp_flag) comp_model = get_compiled_model(inputs, opt_outputs, output_activation, num_predicts, modeltype, optimizer, val_loss, val_metrics, cols_len, targets) deep_model = comp_model best_batch = batch_size optimizer_lr = best_optimizer.learning_rate.numpy() print('\nBest optimizer = %s and best learning_rate = %s' % (best_optimizer, optimizer_lr)) K.set_value(best_optimizer.learning_rate, optimizer_lr) elif tuner.lower() == 'none': print('skipping tuner search since use_my_model flag set to True...') best_model = use_my_model deep_model = use_my_model if regular_body: best_outputs = add_outputs_to_model_body(best_model, meta_outputs) deep_outputs = add_outputs_to_model_body(deep_model, meta_outputs) else: best_outputs = add_outputs_to_auto_model_body(best_model, meta_outputs, nlp_flag) deep_outputs = add_outputs_to_auto_model_body(deep_model, meta_outputs, nlp_flag) best_optimizer = keras.optimizers.SGD(lr=0.001, momentum=0.9, nesterov=True) best_batch = batch_size optimizer_lr = best_optimizer.learning_rate.numpy() print('\nBest optimizer = %s and best learning_rate = %s' % (best_optimizer, optimizer_lr)) K.set_value(best_optimizer.learning_rate, optimizer_lr) best_model = get_compiled_model(inputs, best_outputs, output_activation, num_predicts, modeltype, best_optimizer, val_loss, val_metrics, cols_len, targets) deep_model = get_compiled_model(inputs, deep_outputs, output_activation, num_predicts, modeltype, best_optimizer, val_loss, val_metrics, cols_len, targets) train_ds = train_ds.unbatch().batch(best_batch, drop_remainder=True) train_ds = train_ds.shuffle(shuffle_size, reshuffle_each_iteration=False, seed=42).prefetch(tf.data.AUTOTUNE) valid_ds = valid_ds.unbatch().batch(best_batch, drop_remainder=True) valid_ds = valid_ds.prefetch(tf.data.AUTOTUNE) if keras_options['lr_scheduler'] in ['expo', 'ExponentialDecay', 'exponentialdecay']: if early_stopping: callbacks_list = [callbacks_dict['early_stop'], callbacks_dict['tensor_board']] else: callbacks_list = [callbacks_dict['tensor_board']] elif early_stopping: callbacks_list = [callbacks_dict['early_stop'], callbacks_dict['tensor_board'], chosen_callback] else: callbacks_list = [callbacks_dict['tensor_board'], chosen_callback] print('Model training with best hyperparameters for %d epochs' % NUMBER_OF_EPOCHS) for each_callback in callbacks_list: print(' Callback added: %s' % str(each_callback).split('.')[-1]) np.random.seed(42) tf.random.set_seed(42) history = best_model.fit(train_ds, validation_data=valid_ds, epochs=NUMBER_OF_EPOCHS, callbacks=callbacks_list, class_weight=class_weights, shuffle=True) print(' Model training completed. Following metrics available: %s' % history.history.keys()) print('Time taken to train model (in mins) = %0.0f' % ((time.time() - start_time) / 60)) K.clear_session() sess = get_session() K.clear_session() sess.close() sess = get_session() try: del opt_model del best_model del deep_model print('deleted deep and best models from memory') except: pass print(gc.collect()) config = tf.compat.v1.ConfigProto() config.gpu_options.per_process_gpu_memory_fraction = 1 config.gpu_options.visible_device_list = '0' set_session(tf.compat.v1.Session(config=config)) tf.compat.v1.reset_default_graph() tf.keras.backend.reset_uids() try: stopped_epoch = max(5, int(pd.DataFrame(history.history).shape[0] - patience)) except: stopped_epoch = 100 print(' Stopped epoch = %s' % stopped_epoch) try: if modeltype == 'Regression': plot_history(history, val_monitor[4:], target) elif modeltype == 'Classification': plot_history(history, val_monitor[4:], target) else: plot_history(history, val_monitor[4:], target) except: print(' Plot history is erroring. Tensorboard logs can be found here: %s' % tb_logpath) print('Time taken to train model (in mins) = %0.0f' % ((time.time() - start_time) / 60)) print(' Stopped epoch = %s' % stopped_epoch) scores = [] ls = [] print('Held out data actuals shape: %s' % (y_test.shape,)) if verbose >= 1: try: print_one_row_from_tf_label(heldout_ds) except: print('could not print samples from heldout ds labels') y_probas = best_model.predict(heldout_ds) if isinstance(target, str): if modeltype != 'Regression': y_test_preds = y_probas.argmax(axis=1) elif y_test.dtype == 'int': y_test_preds = y_probas.round().astype(int) else: y_test_preds = y_probas.ravel() elif modeltype != 'Regression': for each_t in range(len(target)): if each_t == 0: y_test_preds = y_probas[each_t].argmax(axis=1).astype(int) else: y_test_preds = np.c_[y_test_preds, y_probas[each_t].argmax(axis=1).astype(int)] else: for each_t in range(len(target)): if each_t == 0: y_test_preds = y_probas[each_t].mean(axis=1) else: y_test_preds = np.c_[y_test_preds, y_probas[each_t].mean(axis=1)] if y_test.dtype == 'int': y_test_preds = y_test_preds.round().astype(int) print('\nHeld out predictions shape:%s' % (y_test_preds.shape,)) if verbose >= 1: if modeltype != 'Regression': print(' Sample predictions: %s' % y_test_preds[:10]) elif num_labels == 1: print(' Sample predictions: %s' % y_test_preds.ravel()[:10]) else: print(' Sample predictions:\n%s' % y_test_preds[:10]) print('\n###########################################################') print(' Held-out test data set Results:') num_labels = cat_vocab_dict['num_labels'] num_classes = cat_vocab_dict['num_classes'] if check_for_nan_in_array(y_probas): y_probas = pd.DataFrame(y_probas).fillna(0).values elif check_for_nan_in_array(y_test_preds): y_test_preds = pd.DataFrame(y_test_preds).fillna(0).values.ravel() if num_labels <= 1: if modeltype == 'Regression': print_regression_model_stats(y_test, y_test_preds, target, plot_name=project_name) plot_regression_residuals(y_test, y_test_preds, target, project_name, num_labels) else: print_classification_header(num_classes, num_labels, target) labels = cat_vocab_dict['original_classes'] if cat_vocab_dict['target_transformed']: target_names = cat_vocab_dict['transformed_classes'] target_le = cat_vocab_dict['target_le'] y_pred = y_probas.argmax(axis=1) y_test_trans = target_le.inverse_transform(y_test) y_pred_trans = target_le.inverse_transform(y_pred) labels = np.unique(y_test_trans) plot_classification_results(y_test_trans, y_pred_trans, labels, labels, target) else: y_pred = y_probas.argmax(axis=1) labels = np.unique(y_test) plot_classification_results(y_test, y_pred, labels, labels, target) print_classification_metrics(y_test, y_probas, proba_flag=True) elif modeltype == 'Regression': print_regression_model_stats(y_test, y_test_preds, target, plot_name=project_name) plot_regression_residuals(y_test, y_test_preds, target, project_name, num_labels) else: try: targets = cat_vocab_dict['target_variables'] for (i, each_target) in enumerate(targets): print_classification_header(num_classes, num_labels, each_target) labels = cat_vocab_dict[each_target + '_original_classes'] if cat_vocab_dict['target_transformed']: target_names = cat_vocab_dict[each_target + '_transformed_classes'] target_le = cat_vocab_dict['target_le'][i] y_pred = y_probas[i].argmax(axis=1) y_test_trans = target_le.inverse_transform(y_test[:, i]) y_pred_trans = target_le.inverse_transform(y_pred) labels = np.unique(y_test_trans) plot_classification_results(y_test_trans, y_pred_trans, labels, labels, each_target) else: y_pred = y_probas[i].argmax(axis=1) labels = np.unique(y_test[:, i]) plot_classification_results(y_test[:, i], y_pred, labels, labels, each_target) print_classification_metrics(y_test[:, i], y_probas[i], proba_flag=True) print(classification_report(y_test[:, i], y_test_preds[:, i])) print(confusion_matrix(y_test[:, i], y_test_preds[:, i])) except: print_classification_metrics(y_test, y_test_preds, False) print(classification_report(y_test, y_test_preds)) print('\nFinally, training on full train dataset. This will take time...') full_ds = full_ds.unbatch().batch(best_batch) full_ds = full_ds.shuffle(shuffle_size, reshuffle_each_iteration=False, seed=42).prefetch(best_batch) best_rate = best_model.optimizer.lr.numpy() if best_rate < 0: print(' best learning rate less than zero. Resetting it....') best_rate = 0.01 else: pass print(' best learning rate = %s' % best_rate) K.set_value(deep_model.optimizer.learning_rate, best_rate) print(' set learning rate using best model:', deep_model.optimizer.learning_rate.numpy()) print(' max epochs for training = %d' % stopped_epoch) callbacks_list = [callbacks_dict['check_point']] deep_model.fit(full_ds, epochs=stopped_epoch, class_weight=class_weights, callbacks=callbacks_list, shuffle=True, verbose=0) save_model_artifacts(deep_model, cat_vocab_dict, var_df, save_model_path, save_model_flag, model_options) K.clear_session() tf.compat.v1.reset_default_graph() sess = get_session() K.clear_session() sess.close() sess = get_session() try: del opt_model del best_model del deep_model print('deleted deep and best models from memory') except: pass print(gc.collect()) config = tf.compat.v1.ConfigProto() config.gpu_options.per_process_gpu_memory_fraction = 1 config.gpu_options.visible_device_list = '0' set_session(tf.compat.v1.Session(config=config)) tf.keras.backend.reset_uids() print('\nDeep_Auto_ViML completed. Total time taken = %0.0f (in mins)' % ((time.time() - start_time) / 60)) return (deep_model, cat_vocab_dict)
deep_autoviml
positive
def main(): """Print a clients_daily_scalar_aggregates query to stdout.""" parser = argparse.ArgumentParser() parser.add_argument('--no-parameterize', action='store_true', help='Generate a query without parameters') parser.add_argument('--source-table', type=str, help='Name of Glean table', default='org_mozilla_fenix_stable.metrics_v1') parser.add_argument('--product', type=str, default='org_mozilla_fenix') args = parser.parse_args() submission_date = 'date_sub(current_date, interval 2 day)' if args.no_parameterize else '@submission_date' header = f'-- Query generated by: python3 -m bigquery_etl.glam.clients_daily_histogram_aggregates --source-table {args.source_table}' + (' --no-parameterize' if args.no_parameterize else '') filter_desktop_builds = True if args.product == 'firefox_desktop' else False schema = get_schema(args.source_table) <DeepExtract> metric_type_set = {'timing_distribution', 'memory_distribution', 'custom_distribution'} metrics: Dict[str, List[str]] = {metric_type: [] for metric_type in metric_type_set} excluded_metrics = get_etl_excluded_probes_quickfix('fenix') for root_field in schema: if root_field['name'] != 'metrics': continue for metric_field in root_field['fields']: metric_type = metric_field['name'] if metric_type not in metric_type_set: continue for field in metric_field['fields']: if field['name'] not in excluded_metrics: metrics[metric_type].append(field['name']) distributions = metrics </DeepExtract> metrics_sql = get_metrics_sql(distributions).strip() if not metrics_sql: print(header) print('-- Empty query: no probes found!') sys.exit(1) print(render_main(header=header, filter_desktop_builds=filter_desktop_builds, source_table=args.source_table, submission_date=submission_date, attributes=ATTRIBUTES, histograms=metrics_sql, ping_type=ping_type_from_table(args.source_table)))
def main(): """Print a clients_daily_scalar_aggregates query to stdout.""" parser = argparse.ArgumentParser() parser.add_argument('--no-parameterize', action='store_true', help='Generate a query without parameters') parser.add_argument('--source-table', type=str, help='Name of Glean table', default='org_mozilla_fenix_stable.metrics_v1') parser.add_argument('--product', type=str, default='org_mozilla_fenix') args = parser.parse_args() submission_date = 'date_sub(current_date, interval 2 day)' if args.no_parameterize else '@submission_date' header = f'-- Query generated by: python3 -m bigquery_etl.glam.clients_daily_histogram_aggregates --source-table {args.source_table}' + (' --no-parameterize' if args.no_parameterize else '') filter_desktop_builds = True if args.product == 'firefox_desktop' else False schema = get_schema(args.source_table) metric_type_set = {'timing_distribution', 'memory_distribution', 'custom_distribution'} metrics: Dict[str, List[str]] = {metric_type: [] for metric_type in metric_type_set} excluded_metrics = get_etl_excluded_probes_quickfix('fenix') for root_field in schema: if root_field['name'] != 'metrics': continue for metric_field in root_field['fields']: metric_type = metric_field['name'] if metric_type not in metric_type_set: continue for field in metric_field['fields']: if field['name'] not in excluded_metrics: metrics[metric_type].append(field['name']) distributions = metrics metrics_sql = get_metrics_sql(distributions).strip() if not metrics_sql: print(header) print('-- Empty query: no probes found!') sys.exit(1) print(render_main(header=header, filter_desktop_builds=filter_desktop_builds, source_table=args.source_table, submission_date=submission_date, attributes=ATTRIBUTES, histograms=metrics_sql, ping_type=ping_type_from_table(args.source_table)))
bigquery-etl
positive
def write_dispense(self, instr) -> str: """ An MFSim DISPENSE node has 5 parameters: nodeid, type, fluidName, volume, nodeName nodeName <- this means nothing to MFSim :param instr: :return: """ _ret = 'NODE (%s, DISPENSE, ' % str(self.opid) capture = instr.defs['var'].volumes volume = next(iter(capture.values())) if hasattr(instr.defs['var'], 'points_to'): _ret += '%s, %s, %s)\n' % (instr.uses[0]['name'], str(volume), instr.defs['var'].points_to.name) else: _ret += '%s, %s, %s)\n' % (instr.uses[0]['name'], str(volume), instr.defs['var'].name) to = list(self.cblock.dag._succ[instr.defs['var'].name]) if len(to) > 1: <DeepExtract> _ret = list() check = instr.uses[0]['name'] found_instr = False for i in self.cblock.instructions: if i is instr: found_instr = True continue if not found_instr: continue if i.op in {IRInstruction.NOP, IRInstruction.CONDITIONAL}: continue self.log.info(i) if instr.op is IRInstruction.DETECT: for use in i.uses: if use['name'] in to: if i.iid != check: if instr.uses[1]['name'] == use['name'] and instr.uses[1]['offset'] == use['offset']: if not _ret: _ret.append(use['name']) elif i.defs['name'] in to: if i.iid != check: for u in i.uses: if u['name'] == instr.defs['name'] and u['offset'] == instr.defs['offset']: if not _ret: _ret.append(i.defs['var'].name) if len(_ret) < 1: self.log.fatal('A non-split instruction has multiple successors!') exit(-1) to = _ret </DeepExtract> for key in to: to_instr = [x for x in self.cblock.instructions if x.defs is not None and x.defs['var'].name is key] for ti in to_instr: _ret += self.write_edge(self.opid, ti.iid) self.num_dispense += 1 return _ret
def write_dispense(self, instr) -> str: """ An MFSim DISPENSE node has 5 parameters: nodeid, type, fluidName, volume, nodeName nodeName <- this means nothing to MFSim :param instr: :return: """ _ret = 'NODE (%s, DISPENSE, ' % str(self.opid) capture = instr.defs['var'].volumes volume = next(iter(capture.values())) if hasattr(instr.defs['var'], 'points_to'): _ret += '%s, %s, %s)\n' % (instr.uses[0]['name'], str(volume), instr.defs['var'].points_to.name) else: _ret += '%s, %s, %s)\n' % (instr.uses[0]['name'], str(volume), instr.defs['var'].name) to = list(self.cblock.dag._succ[instr.defs['var'].name]) if len(to) > 1: _ret = list() check = instr.uses[0]['name'] found_instr = False for i in self.cblock.instructions: if i is instr: found_instr = True continue if not found_instr: continue if i.op in {IRInstruction.NOP, IRInstruction.CONDITIONAL}: continue self.log.info(i) if instr.op is IRInstruction.DETECT: for use in i.uses: if use['name'] in to: if i.iid != check: if instr.uses[1]['name'] == use['name'] and instr.uses[1]['offset'] == use['offset']: if not _ret: _ret.append(use['name']) elif i.defs['name'] in to: if i.iid != check: for u in i.uses: if u['name'] == instr.defs['name'] and u['offset'] == instr.defs['offset']: if not _ret: _ret.append(i.defs['var'].name) if len(_ret) < 1: self.log.fatal('A non-split instruction has multiple successors!') exit(-1) to = _ret for key in to: to_instr = [x for x in self.cblock.instructions if x.defs is not None and x.defs['var'].name is key] for ti in to_instr: _ret += self.write_edge(self.opid, ti.iid) self.num_dispense += 1 return _ret
BioScript
positive
def std_(self, x_cond, n_samples=10 ** 6): """ Standard deviation of the fitted distribution conditioned on x_cond Args: x_cond: different x values to condition on - numpy array of shape (n_values, ndim_x) Returns: Standard deviations sqrt(Var[y|x]) corresponding to x_cond - numpy array of shape (n_values, ndim_y) """ <DeepExtract> if x_cond.ndim == 1: x_cond = np.expand_dims(x_cond, axis=1) if Y is not None: if Y.ndim == 1: Y = np.expand_dims(Y, axis=1) assert x_cond.shape[0] == Y.shape[0], 'X and Y must have the same length along axis 0' assert x_cond.ndim == Y.ndim == 2, 'X and Y must be matrices' if Y is None: x_cond = x_cond else: x_cond = (x_cond, Y) </DeepExtract> assert x_cond.ndim == 2 return self._std_pdf(x_cond, n_samples=n_samples)
def std_(self, x_cond, n_samples=10 ** 6): """ Standard deviation of the fitted distribution conditioned on x_cond Args: x_cond: different x values to condition on - numpy array of shape (n_values, ndim_x) Returns: Standard deviations sqrt(Var[y|x]) corresponding to x_cond - numpy array of shape (n_values, ndim_y) """ if x_cond.ndim == 1: x_cond = np.expand_dims(x_cond, axis=1) if Y is not None: if Y.ndim == 1: Y = np.expand_dims(Y, axis=1) assert x_cond.shape[0] == Y.shape[0], 'X and Y must have the same length along axis 0' assert x_cond.ndim == Y.ndim == 2, 'X and Y must be matrices' if Y is None: x_cond = x_cond else: x_cond = (x_cond, Y) assert x_cond.ndim == 2 return self._std_pdf(x_cond, n_samples=n_samples)
Conditional_Density_Estimation
positive
def _handle_error(self, error): message = '' if 'name' in error and 'path' in error: message = "\t* Name: {0} - Path: '{1}'".format(error['name'], error['path']) else: <DeepExtract> message = 'The following error was received: {0}'.format(self.response.text) </DeepExtract> if 'value' in error: message = "{0} - Value: '{1}'".format(message, error['value']) return message
def _handle_error(self, error): message = '' if 'name' in error and 'path' in error: message = "\t* Name: {0} - Path: '{1}'".format(error['name'], error['path']) else: message = 'The following error was received: {0}'.format(self.response.text) if 'value' in error: message = "{0} - Value: '{1}'".format(message, error['value']) return message
contentful-management.py
positive
def forward(self, w, r_emb, r_w_bias, r_bias, attn_mask=None, mems=None): (qlen, bsz) = (w.size(0), w.size(1)) if mems is not None: cat = torch.cat([mems, w], 0) if self.pre_lnorm: w_heads = self.qkv_net(self.layer_norm(cat)) else: w_heads = self.qkv_net(cat) (w_head_q, w_head_k, w_head_v) = torch.chunk(w_heads, 3, dim=-1) w_head_q = w_head_q[-qlen:] else: if self.pre_lnorm: w_heads = self.qkv_net(self.layer_norm(w)) else: w_heads = self.qkv_net(w) (w_head_q, w_head_k, w_head_v) = torch.chunk(w_heads, 3, dim=-1) klen = w_head_k.size(0) w_head_q = w_head_q.view(qlen, bsz, self.n_head, self.d_head) w_head_k = w_head_k.view(klen, bsz, self.n_head, self.d_head) w_head_v = w_head_v.view(klen, bsz, self.n_head, self.d_head) if klen > r_emb.size(0): r_emb_pad = r_emb[0:1].expand(klen - r_emb.size(0), -1, -1) r_emb = torch.cat([r_emb_pad, r_emb], 0) r_bias_pad = r_bias[0:1].expand(klen - r_bias.size(0), -1) r_bias = torch.cat([r_bias_pad, r_bias], 0) else: r_emb = r_emb[-klen:] r_bias = r_bias[-klen:] rw_head_q = w_head_q + r_w_bias[None] AC = torch.einsum('ibnd,jbnd->ijbn', (rw_head_q, w_head_k)) B_ = torch.einsum('ibnd,jnd->ijbn', (w_head_q, r_emb)) D_ = r_bias[None, :, None] <DeepExtract> zero_pad = torch.zeros((B_ + D_.size(0), 1, *B_ + D_.size()[2:]), device=B_ + D_.device, dtype=B_ + D_.dtype) x_padded = torch.cat([zero_pad, B_ + D_], dim=1) x_padded = x_padded.view(B_ + D_.size(1) + 1, B_ + D_.size(0), *B_ + D_.size()[2:]) B_ + D_ = x_padded[1:].view_as(B_ + D_) if zero_triu: ones = torch.ones((B_ + D_.size(0), B_ + D_.size(1))) B_ + D_ = B_ + D_ * torch.tril(ones, B_ + D_.size(1) - B_ + D_.size(0))[:, :, None, None] BD = B_ + D_ </DeepExtract> attn_score = AC + BD attn_score.mul_(self.scale) if attn_mask is not None and attn_mask.any().item(): if attn_mask.dim() == 2: attn_score.masked_fill_(attn_mask[None, :, :, None], -float('inf')) elif attn_mask.dim() == 3: attn_score.masked_fill_(attn_mask[:, :, :, None], -float('inf')) attn_prob = F.softmax(attn_score, dim=1) attn_prob = self.dropatt(attn_prob) attn_vec = torch.einsum('ijbn,jbnd->ibnd', (attn_prob, w_head_v)) attn_vec = attn_vec.contiguous().view(attn_vec.size(0), attn_vec.size(1), self.n_head * self.d_head) attn_out = self.o_net(attn_vec) attn_out = self.drop(attn_out) if self.pre_lnorm: output = w + attn_out else: output = self.layer_norm(w + attn_out) return output
def forward(self, w, r_emb, r_w_bias, r_bias, attn_mask=None, mems=None): (qlen, bsz) = (w.size(0), w.size(1)) if mems is not None: cat = torch.cat([mems, w], 0) if self.pre_lnorm: w_heads = self.qkv_net(self.layer_norm(cat)) else: w_heads = self.qkv_net(cat) (w_head_q, w_head_k, w_head_v) = torch.chunk(w_heads, 3, dim=-1) w_head_q = w_head_q[-qlen:] else: if self.pre_lnorm: w_heads = self.qkv_net(self.layer_norm(w)) else: w_heads = self.qkv_net(w) (w_head_q, w_head_k, w_head_v) = torch.chunk(w_heads, 3, dim=-1) klen = w_head_k.size(0) w_head_q = w_head_q.view(qlen, bsz, self.n_head, self.d_head) w_head_k = w_head_k.view(klen, bsz, self.n_head, self.d_head) w_head_v = w_head_v.view(klen, bsz, self.n_head, self.d_head) if klen > r_emb.size(0): r_emb_pad = r_emb[0:1].expand(klen - r_emb.size(0), -1, -1) r_emb = torch.cat([r_emb_pad, r_emb], 0) r_bias_pad = r_bias[0:1].expand(klen - r_bias.size(0), -1) r_bias = torch.cat([r_bias_pad, r_bias], 0) else: r_emb = r_emb[-klen:] r_bias = r_bias[-klen:] rw_head_q = w_head_q + r_w_bias[None] AC = torch.einsum('ibnd,jbnd->ijbn', (rw_head_q, w_head_k)) B_ = torch.einsum('ibnd,jnd->ijbn', (w_head_q, r_emb)) D_ = r_bias[None, :, None] zero_pad = torch.zeros((B_ + D_.size(0), 1, *B_ + D_.size()[2:]), device=B_ + D_.device, dtype=B_ + D_.dtype) x_padded = torch.cat([zero_pad, B_ + D_], dim=1) x_padded = x_padded.view(B_ + D_.size(1) + 1, B_ + D_.size(0), *B_ + D_.size()[2:]) B_ + D_ = x_padded[1:].view_as(B_ + D_) if zero_triu: ones = torch.ones((B_ + D_.size(0), B_ + D_.size(1))) B_ + D_ = B_ + D_ * torch.tril(ones, B_ + D_.size(1) - B_ + D_.size(0))[:, :, None, None] BD = B_ + D_ attn_score = AC + BD attn_score.mul_(self.scale) if attn_mask is not None and attn_mask.any().item(): if attn_mask.dim() == 2: attn_score.masked_fill_(attn_mask[None, :, :, None], -float('inf')) elif attn_mask.dim() == 3: attn_score.masked_fill_(attn_mask[:, :, :, None], -float('inf')) attn_prob = F.softmax(attn_score, dim=1) attn_prob = self.dropatt(attn_prob) attn_vec = torch.einsum('ijbn,jbnd->ibnd', (attn_prob, w_head_v)) attn_vec = attn_vec.contiguous().view(attn_vec.size(0), attn_vec.size(1), self.n_head * self.d_head) attn_out = self.o_net(attn_vec) attn_out = self.drop(attn_out) if self.pre_lnorm: output = w + attn_out else: output = self.layer_norm(w + attn_out) return output
complex-order
positive
def run(self): try: <DeepExtract> print('\x1b[1m{0}\x1b[0m'.format('Removing previous builds…')) </DeepExtract> rmtree(os.path.join(here, 'dist')) except OSError: pass <DeepExtract> print('\x1b[1m{0}\x1b[0m'.format('Building Source and Wheel (universal) distribution…')) </DeepExtract> os.system('{0} setup.py sdist bdist_wheel --universal'.format(sys.executable)) <DeepExtract> print('\x1b[1m{0}\x1b[0m'.format('Uploading the package to PyPI via Twine…')) </DeepExtract> os.system('twine upload --repository-url https://test.pypi.org/legacy/ dist/*') sys.exit()
def run(self): try: print('\x1b[1m{0}\x1b[0m'.format('Removing previous builds…')) rmtree(os.path.join(here, 'dist')) except OSError: pass print('\x1b[1m{0}\x1b[0m'.format('Building Source and Wheel (universal) distribution…')) os.system('{0} setup.py sdist bdist_wheel --universal'.format(sys.executable)) print('\x1b[1m{0}\x1b[0m'.format('Uploading the package to PyPI via Twine…')) os.system('twine upload --repository-url https://test.pypi.org/legacy/ dist/*') sys.exit()
deephyper
positive
def download_urls(urls, title, ext, total_size, output_dir='.', refer=None, merge=True, faker=False, headers={}, **kwargs): assert urls if json_output: json_output_.download_urls(urls=urls, title=title, ext=ext, total_size=total_size, refer=refer) return if dry_run: print('Real URLs:\n%s' % '\n'.join(urls)) return if player: <DeepExtract> import subprocess import shlex subprocess.call(shlex.split(player) + list(urls)) </DeepExtract> return if not total_size: try: <DeepExtract> total_size = sum([url_size(url, faker=faker, headers=headers) for url in urls]) </DeepExtract> except: import traceback traceback.print_exc(file=sys.stdout) pass <DeepExtract> if default_encoding == 'utf-8': title = get_filename(title) else: title = get_filename(title) </DeepExtract> <DeepExtract> global output_filename if output_filename: if ext: output_filename = output_filename + '.' + ext output_filename = output_filename merged_ext = ext if len(urls) > 1 and merge: from .processor.ffmpeg import has_ffmpeg_installed if ext in ['flv', 'f4v']: if has_ffmpeg_installed(): merged_ext = 'mp4' else: merged_ext = 'flv' elif ext == 'mp4': merged_ext = 'mp4' elif ext == 'ts': if has_ffmpeg_installed(): merged_ext = 'mkv' else: merged_ext = 'ts' output_filename = '%s.%s' % (title, merged_ext) </DeepExtract> output_filepath = os.path.join(output_dir, output_filename) if total_size: if not force and os.path.exists(output_filepath) and (os.path.getsize(output_filepath) >= total_size * 0.9): print('Skipping %s: file already exists' % output_filepath) print() return bar = SimpleProgressBar(total_size, len(urls)) else: bar = PiecesProgressBar(total_size, len(urls)) if len(urls) == 1: url = urls[0] print('Downloading %s ...' % tr(output_filename)) bar.update() <DeepExtract> if refer is not None: headers['Referer'] = refer file_size = url_size(url, faker=faker, headers=headers) if os.path.exists(output_filepath): if not force and file_size == os.path.getsize(output_filepath): if not is_part: if bar: bar.done() print('Skipping %s: file already exists' % tr(os.path.basename(output_filepath))) elif bar: bar.update_received(file_size) return elif not is_part: if bar: bar.done() print('Overwriting %s' % tr(os.path.basename(output_filepath)), '...') elif not os.path.exists(os.path.dirname(output_filepath)): os.mkdir(os.path.dirname(output_filepath)) temp_filepath = output_filepath + '.download' if file_size != float('inf') else output_filepath received = 0 if not force: open_mode = 'ab' if os.path.exists(temp_filepath): received += os.path.getsize(temp_filepath) if bar: bar.update_received(os.path.getsize(temp_filepath)) else: open_mode = 'wb' if received < file_size: if faker: headers = fake_headers elif headers: headers = headers else: headers = {} headers['Range'] = 'bytes=' + str(received) + '-' if refer: headers['Referer'] = refer if timeout: response = urlopen_with_retry(request.Request(url, headers=headers), timeout=timeout) else: response = urlopen_with_retry(request.Request(url, headers=headers)) try: range_start = int(response.headers['content-range'][6:].split('/')[0].split('-')[0]) end_length = int(response.headers['content-range'][6:].split('/')[1]) range_length = end_length - range_start except: content_length = response.headers['content-length'] range_length = int(content_length) if content_length != None else float('inf') if file_size != received + range_length: received = 0 if bar: bar.received = 0 open_mode = 'wb' with open(temp_filepath, open_mode) as output: while True: buffer = response.read(1024 * 256) if not buffer: if received == file_size: break else: headers['Range'] = 'bytes=' + str(received) + '-' response = urlopen_with_retry(request.Request(url, headers=headers)) output.write(buffer) received += len(buffer) if bar: bar.update_received(len(buffer)) assert received == os.path.getsize(temp_filepath), '%s == %s == %s' % (received, os.path.getsize(temp_filepath), temp_filepath) if os.access(output_filepath, os.W_OK): os.remove(output_filepath) os.rename(temp_filepath, output_filepath) </DeepExtract> bar.done() else: parts = [] print('Downloading %s.%s ...' % (tr(title), ext)) bar.update() for (i, url) in enumerate(urls): filename = '%s[%02d].%s' % (title, i, ext) filepath = os.path.join(output_dir, filename) parts.append(filepath) bar.update_piece(i + 1) <DeepExtract> if refer is not None: headers['Referer'] = refer file_size = url_size(url, faker=faker, headers=headers) if os.path.exists(filepath): if not force and file_size == os.path.getsize(filepath): if not True: if bar: bar.done() print('Skipping %s: file already exists' % tr(os.path.basename(filepath))) elif bar: bar.update_received(file_size) return elif not True: if bar: bar.done() print('Overwriting %s' % tr(os.path.basename(filepath)), '...') elif not os.path.exists(os.path.dirname(filepath)): os.mkdir(os.path.dirname(filepath)) temp_filepath = filepath + '.download' if file_size != float('inf') else filepath received = 0 if not force: open_mode = 'ab' if os.path.exists(temp_filepath): received += os.path.getsize(temp_filepath) if bar: bar.update_received(os.path.getsize(temp_filepath)) else: open_mode = 'wb' if received < file_size: if faker: headers = fake_headers elif headers: headers = headers else: headers = {} headers['Range'] = 'bytes=' + str(received) + '-' if refer: headers['Referer'] = refer if timeout: response = urlopen_with_retry(request.Request(url, headers=headers), timeout=timeout) else: response = urlopen_with_retry(request.Request(url, headers=headers)) try: range_start = int(response.headers['content-range'][6:].split('/')[0].split('-')[0]) end_length = int(response.headers['content-range'][6:].split('/')[1]) range_length = end_length - range_start except: content_length = response.headers['content-length'] range_length = int(content_length) if content_length != None else float('inf') if file_size != received + range_length: received = 0 if bar: bar.received = 0 open_mode = 'wb' with open(temp_filepath, open_mode) as output: while True: buffer = response.read(1024 * 256) if not buffer: if received == file_size: break else: headers['Range'] = 'bytes=' + str(received) + '-' response = urlopen_with_retry(request.Request(url, headers=headers)) output.write(buffer) received += len(buffer) if bar: bar.update_received(len(buffer)) assert received == os.path.getsize(temp_filepath), '%s == %s == %s' % (received, os.path.getsize(temp_filepath), temp_filepath) if os.access(filepath, os.W_OK): os.remove(filepath) os.rename(temp_filepath, filepath) </DeepExtract> bar.done() if not merge: print() return if 'av' in kwargs and kwargs['av']: from .processor.ffmpeg import has_ffmpeg_installed if has_ffmpeg_installed(): from .processor.ffmpeg import ffmpeg_concat_av ret = ffmpeg_concat_av(parts, output_filepath, ext) print('Merged into %s' % output_filename) if ret == 0: for part in parts: os.remove(part) elif ext in ['flv', 'f4v']: try: from .processor.ffmpeg import has_ffmpeg_installed if has_ffmpeg_installed(): from .processor.ffmpeg import ffmpeg_concat_flv_to_mp4 ffmpeg_concat_flv_to_mp4(parts, output_filepath) else: from .processor.join_flv import concat_flv concat_flv(parts, output_filepath) print('Merged into %s' % output_filename) except: raise else: for part in parts: os.remove(part) elif ext == 'mp4': try: from .processor.ffmpeg import has_ffmpeg_installed if has_ffmpeg_installed(): from .processor.ffmpeg import ffmpeg_concat_mp4_to_mp4 ffmpeg_concat_mp4_to_mp4(parts, output_filepath) else: from .processor.join_mp4 import concat_mp4 concat_mp4(parts, output_filepath) print('Merged into %s' % output_filename) except: raise else: for part in parts: os.remove(part) elif ext == 'ts': try: from .processor.ffmpeg import has_ffmpeg_installed if has_ffmpeg_installed(): from .processor.ffmpeg import ffmpeg_concat_ts_to_mkv ffmpeg_concat_ts_to_mkv(parts, output_filepath) else: from .processor.join_ts import concat_ts concat_ts(parts, output_filepath) print('Merged into %s' % output_filename) except: raise else: for part in parts: os.remove(part) else: print("Can't merge %s files" % ext) print()
def download_urls(urls, title, ext, total_size, output_dir='.', refer=None, merge=True, faker=False, headers={}, **kwargs): assert urls if json_output: json_output_.download_urls(urls=urls, title=title, ext=ext, total_size=total_size, refer=refer) return if dry_run: print('Real URLs:\n%s' % '\n'.join(urls)) return if player: import subprocess import shlex subprocess.call(shlex.split(player) + list(urls)) return if not total_size: try: total_size = sum([url_size(url, faker=faker, headers=headers) for url in urls]) except: import traceback traceback.print_exc(file=sys.stdout) pass if default_encoding == 'utf-8': title = get_filename(title) else: title = get_filename(title) global output_filename if output_filename: if ext: output_filename = output_filename + '.' + ext output_filename = output_filename merged_ext = ext if len(urls) > 1 and merge: from .processor.ffmpeg import has_ffmpeg_installed if ext in ['flv', 'f4v']: if has_ffmpeg_installed(): merged_ext = 'mp4' else: merged_ext = 'flv' elif ext == 'mp4': merged_ext = 'mp4' elif ext == 'ts': if has_ffmpeg_installed(): merged_ext = 'mkv' else: merged_ext = 'ts' output_filename = '%s.%s' % (title, merged_ext) output_filepath = os.path.join(output_dir, output_filename) if total_size: if not force and os.path.exists(output_filepath) and (os.path.getsize(output_filepath) >= total_size * 0.9): print('Skipping %s: file already exists' % output_filepath) print() return bar = SimpleProgressBar(total_size, len(urls)) else: bar = PiecesProgressBar(total_size, len(urls)) if len(urls) == 1: url = urls[0] print('Downloading %s ...' % tr(output_filename)) bar.update() if refer is not None: headers['Referer'] = refer file_size = url_size(url, faker=faker, headers=headers) if os.path.exists(output_filepath): if not force and file_size == os.path.getsize(output_filepath): if not is_part: if bar: bar.done() print('Skipping %s: file already exists' % tr(os.path.basename(output_filepath))) elif bar: bar.update_received(file_size) return elif not is_part: if bar: bar.done() print('Overwriting %s' % tr(os.path.basename(output_filepath)), '...') elif not os.path.exists(os.path.dirname(output_filepath)): os.mkdir(os.path.dirname(output_filepath)) temp_filepath = output_filepath + '.download' if file_size != float('inf') else output_filepath received = 0 if not force: open_mode = 'ab' if os.path.exists(temp_filepath): received += os.path.getsize(temp_filepath) if bar: bar.update_received(os.path.getsize(temp_filepath)) else: open_mode = 'wb' if received < file_size: if faker: headers = fake_headers elif headers: headers = headers else: headers = {} headers['Range'] = 'bytes=' + str(received) + '-' if refer: headers['Referer'] = refer if timeout: response = urlopen_with_retry(request.Request(url, headers=headers), timeout=timeout) else: response = urlopen_with_retry(request.Request(url, headers=headers)) try: range_start = int(response.headers['content-range'][6:].split('/')[0].split('-')[0]) end_length = int(response.headers['content-range'][6:].split('/')[1]) range_length = end_length - range_start except: content_length = response.headers['content-length'] range_length = int(content_length) if content_length != None else float('inf') if file_size != received + range_length: received = 0 if bar: bar.received = 0 open_mode = 'wb' with open(temp_filepath, open_mode) as output: while True: buffer = response.read(1024 * 256) if not buffer: if received == file_size: break else: headers['Range'] = 'bytes=' + str(received) + '-' response = urlopen_with_retry(request.Request(url, headers=headers)) output.write(buffer) received += len(buffer) if bar: bar.update_received(len(buffer)) assert received == os.path.getsize(temp_filepath), '%s == %s == %s' % (received, os.path.getsize(temp_filepath), temp_filepath) if os.access(output_filepath, os.W_OK): os.remove(output_filepath) os.rename(temp_filepath, output_filepath) bar.done() else: parts = [] print('Downloading %s.%s ...' % (tr(title), ext)) bar.update() for (i, url) in enumerate(urls): filename = '%s[%02d].%s' % (title, i, ext) filepath = os.path.join(output_dir, filename) parts.append(filepath) bar.update_piece(i + 1) if refer is not None: headers['Referer'] = refer file_size = url_size(url, faker=faker, headers=headers) if os.path.exists(filepath): if not force and file_size == os.path.getsize(filepath): if not True: if bar: bar.done() print('Skipping %s: file already exists' % tr(os.path.basename(filepath))) elif bar: bar.update_received(file_size) return elif not True: if bar: bar.done() print('Overwriting %s' % tr(os.path.basename(filepath)), '...') elif not os.path.exists(os.path.dirname(filepath)): os.mkdir(os.path.dirname(filepath)) temp_filepath = filepath + '.download' if file_size != float('inf') else filepath received = 0 if not force: open_mode = 'ab' if os.path.exists(temp_filepath): received += os.path.getsize(temp_filepath) if bar: bar.update_received(os.path.getsize(temp_filepath)) else: open_mode = 'wb' if received < file_size: if faker: headers = fake_headers elif headers: headers = headers else: headers = {} headers['Range'] = 'bytes=' + str(received) + '-' if refer: headers['Referer'] = refer if timeout: response = urlopen_with_retry(request.Request(url, headers=headers), timeout=timeout) else: response = urlopen_with_retry(request.Request(url, headers=headers)) try: range_start = int(response.headers['content-range'][6:].split('/')[0].split('-')[0]) end_length = int(response.headers['content-range'][6:].split('/')[1]) range_length = end_length - range_start except: content_length = response.headers['content-length'] range_length = int(content_length) if content_length != None else float('inf') if file_size != received + range_length: received = 0 if bar: bar.received = 0 open_mode = 'wb' with open(temp_filepath, open_mode) as output: while True: buffer = response.read(1024 * 256) if not buffer: if received == file_size: break else: headers['Range'] = 'bytes=' + str(received) + '-' response = urlopen_with_retry(request.Request(url, headers=headers)) output.write(buffer) received += len(buffer) if bar: bar.update_received(len(buffer)) assert received == os.path.getsize(temp_filepath), '%s == %s == %s' % (received, os.path.getsize(temp_filepath), temp_filepath) if os.access(filepath, os.W_OK): os.remove(filepath) os.rename(temp_filepath, filepath) bar.done() if not merge: print() return if 'av' in kwargs and kwargs['av']: from .processor.ffmpeg import has_ffmpeg_installed if has_ffmpeg_installed(): from .processor.ffmpeg import ffmpeg_concat_av ret = ffmpeg_concat_av(parts, output_filepath, ext) print('Merged into %s' % output_filename) if ret == 0: for part in parts: os.remove(part) elif ext in ['flv', 'f4v']: try: from .processor.ffmpeg import has_ffmpeg_installed if has_ffmpeg_installed(): from .processor.ffmpeg import ffmpeg_concat_flv_to_mp4 ffmpeg_concat_flv_to_mp4(parts, output_filepath) else: from .processor.join_flv import concat_flv concat_flv(parts, output_filepath) print('Merged into %s' % output_filename) except: raise else: for part in parts: os.remove(part) elif ext == 'mp4': try: from .processor.ffmpeg import has_ffmpeg_installed if has_ffmpeg_installed(): from .processor.ffmpeg import ffmpeg_concat_mp4_to_mp4 ffmpeg_concat_mp4_to_mp4(parts, output_filepath) else: from .processor.join_mp4 import concat_mp4 concat_mp4(parts, output_filepath) print('Merged into %s' % output_filename) except: raise else: for part in parts: os.remove(part) elif ext == 'ts': try: from .processor.ffmpeg import has_ffmpeg_installed if has_ffmpeg_installed(): from .processor.ffmpeg import ffmpeg_concat_ts_to_mkv ffmpeg_concat_ts_to_mkv(parts, output_filepath) else: from .processor.join_ts import concat_ts concat_ts(parts, output_filepath) print('Merged into %s' % output_filename) except: raise else: for part in parts: os.remove(part) else: print("Can't merge %s files" % ext) print()
acmpv
positive
@classmethod def create(cls, opt_func, lr, layer_groups, **kwargs): """Create an `optim.Optimizer` from `opt_func` with `lr`. Set lr on `layer_groups`.""" <DeepExtract> split_groups = [] for l in layer_groups: (l1, l2) = ([], []) for c in l.children(): if isinstance(c, bn_types): l2.append(c) else: l1.append(c) split_groups += [nn.Sequential(*l1), nn.Sequential(*l2)] split_groups = split_groups </DeepExtract> opt = opt_func([{'params': trainable_params(l), 'lr': 0} for l in split_groups]) opt = cls(opt, **kwargs) (opt.lr, opt.opt_func) = (listify(lr, layer_groups), opt_func) return opt
@classmethod def create(cls, opt_func, lr, layer_groups, **kwargs): """Create an `optim.Optimizer` from `opt_func` with `lr`. Set lr on `layer_groups`.""" split_groups = [] for l in layer_groups: (l1, l2) = ([], []) for c in l.children(): if isinstance(c, bn_types): l2.append(c) else: l1.append(c) split_groups += [nn.Sequential(*l1), nn.Sequential(*l2)] split_groups = split_groups opt = opt_func([{'params': trainable_params(l), 'lr': 0} for l in split_groups]) opt = cls(opt, **kwargs) (opt.lr, opt.opt_func) = (listify(lr, layer_groups), opt_func) return opt
End-to-End-Multi-View-Fusion-for-3D-Object-Detection-in-LiDAR-Point-Clouds
positive
def __init__(self, label, fn_callback, icon=None, tooltip=None, color=(1, 1, 1, 1), align=0, bgcolor=None, bordercolor=(0, 0, 0, 0.4), hovercolor=(1, 1, 1, 0.1), presscolor=(0, 0, 0, 0.2), margin=0, padding=4): super().__init__(vertical=False, margin=margin) self.defer_recalc = True if icon: <DeepExtract> self.ui_items.append(icon) icon.register_dirty_callback(self) self.dirty() return icon </DeepExtract> <DeepExtract> self.ui_items.append(UI_Spacer(width=4)) UI_Spacer(width=4).register_dirty_callback(self) self.dirty() return UI_Spacer(width=4) </DeepExtract> self.tooltip = tooltip <DeepExtract> self.ui_items.append(UI_Label(label, color=color, align=align, margin=padding)) UI_Label(label, color=color, align=align, margin=padding).register_dirty_callback(self) self.dirty() self.label = UI_Label(label, color=color, align=align, margin=padding) </DeepExtract> self.fn_callback = fn_callback self.pressed = False self.bgcolor = bgcolor self.bordercolor = bordercolor self.presscolor = presscolor self.hovercolor = hovercolor self.mouse = None self.hovering = False self.defer_recalc = False
def __init__(self, label, fn_callback, icon=None, tooltip=None, color=(1, 1, 1, 1), align=0, bgcolor=None, bordercolor=(0, 0, 0, 0.4), hovercolor=(1, 1, 1, 0.1), presscolor=(0, 0, 0, 0.2), margin=0, padding=4): super().__init__(vertical=False, margin=margin) self.defer_recalc = True if icon: self.ui_items.append(icon) icon.register_dirty_callback(self) self.dirty() return icon self.ui_items.append(UI_Spacer(width=4)) UI_Spacer(width=4).register_dirty_callback(self) self.dirty() return UI_Spacer(width=4) self.tooltip = tooltip self.ui_items.append(UI_Label(label, color=color, align=align, margin=padding)) UI_Label(label, color=color, align=align, margin=padding).register_dirty_callback(self) self.dirty() self.label = UI_Label(label, color=color, align=align, margin=padding) self.fn_callback = fn_callback self.pressed = False self.bgcolor = bgcolor self.bordercolor = bordercolor self.presscolor = presscolor self.hovercolor = hovercolor self.mouse = None self.hovering = False self.defer_recalc = False
addon_common
positive
def detect_object(inference, camera, classes, threshold, out_dir, range_x=[0, 1], range_y=[0, 1]): """Detects objects belonging to given classes in camera stream.""" stream = io.BytesIO() camera.capture(stream, format='jpeg') stream.seek(0) image = Image.open(stream) rgb_histogram = np.array(image.histogram()).reshape((3, 256)) green_peak = np.argmax(rgb_histogram[1, :]) if green_peak < 3: time.sleep(1.0) return (False, None, None) debug_data = [] detection = False max_accumulator = 0.0 print('Inferring...') for p in crop_parameters(image, range_x, range_y): im_crop = image.crop(p) accumulator = 0.0 infer_classes = image_classification.get_classes(inference.run(im_crop), top_k=5, threshold=0.05) corner = [p[0], p[1]] print(corner) for (idx, (label, score)) in enumerate(infer_classes): debug_data.append((corner, im_crop.size, idx, label, score)) if label in classes: accumulator += score if accumulator > max_accumulator: max_accumulator = accumulator if accumulator >= threshold: detection = True break if out_dir: <DeepExtract> global debug_idx if debug_idx == 0: for filepath in [f for f in os.listdir(out_dir) if f.startswith('image_')]: try: path_idx = int(filepath[6:12]) + 1 debug_idx = max(debug_idx, path_idx) except BaseException: pass print('debug_idx:', debug_idx) if filename is None: output_path = os.path.join(out_dir, 'image_%06d.jpg' % debug_idx) debug_idx += 1 else: output_path = os.path.join(out_dir, filename) image.save(output_path) with open(output_path + '_classes.txt', 'w') as f: for debug_tuple in debug_data: f.write('%s + %s Result %d: %s (prob=%f)\n' % debug_tuple) with open(output_path + '_classes.pkl', 'wb') as f: pickle.dump(debug_data, f, protocol=0) </DeepExtract> print('Accumulator: %f' % max_accumulator) print('Detection!' if detection else 'Non Detection') return (detection, image, debug_data)
def detect_object(inference, camera, classes, threshold, out_dir, range_x=[0, 1], range_y=[0, 1]): """Detects objects belonging to given classes in camera stream.""" stream = io.BytesIO() camera.capture(stream, format='jpeg') stream.seek(0) image = Image.open(stream) rgb_histogram = np.array(image.histogram()).reshape((3, 256)) green_peak = np.argmax(rgb_histogram[1, :]) if green_peak < 3: time.sleep(1.0) return (False, None, None) debug_data = [] detection = False max_accumulator = 0.0 print('Inferring...') for p in crop_parameters(image, range_x, range_y): im_crop = image.crop(p) accumulator = 0.0 infer_classes = image_classification.get_classes(inference.run(im_crop), top_k=5, threshold=0.05) corner = [p[0], p[1]] print(corner) for (idx, (label, score)) in enumerate(infer_classes): debug_data.append((corner, im_crop.size, idx, label, score)) if label in classes: accumulator += score if accumulator > max_accumulator: max_accumulator = accumulator if accumulator >= threshold: detection = True break if out_dir: global debug_idx if debug_idx == 0: for filepath in [f for f in os.listdir(out_dir) if f.startswith('image_')]: try: path_idx = int(filepath[6:12]) + 1 debug_idx = max(debug_idx, path_idx) except BaseException: pass print('debug_idx:', debug_idx) if filename is None: output_path = os.path.join(out_dir, 'image_%06d.jpg' % debug_idx) debug_idx += 1 else: output_path = os.path.join(out_dir, filename) image.save(output_path) with open(output_path + '_classes.txt', 'w') as f: for debug_tuple in debug_data: f.write('%s + %s Result %d: %s (prob=%f)\n' % debug_tuple) with open(output_path + '_classes.pkl', 'wb') as f: pickle.dump(debug_data, f, protocol=0) print('Accumulator: %f' % max_accumulator) print('Detection!' if detection else 'Non Detection') return (detection, image, debug_data)
aiyprojects-raspbian
positive
def collect_stats_rows(rows, response, path): if isinstance(response, dict): for (k, v) in response.iteritems(): <DeepExtract> if isinstance(v, dict): for (k, v) in v.iteritems(): collect_stats_rows(rows, v, path + [k] + [k]) elif isinstance(v, (tuple, list)): for e in v: collect_stats_rows(rows, e, path + [k]) else: rows.append({'_source': {'_metric_name': '.'.join(path + [k]), 'value': v}}) </DeepExtract> elif isinstance(response, (tuple, list)): for e in response: <DeepExtract> if isinstance(e, dict): for (k, v) in e.iteritems(): collect_stats_rows(rows, v, path + [k]) elif isinstance(e, (tuple, list)): for e in e: collect_stats_rows(rows, e, path) else: rows.append({'_source': {'_metric_name': '.'.join(path), 'value': e}}) </DeepExtract> else: rows.append({'_source': {'_metric_name': '.'.join(path), 'value': response}})
def collect_stats_rows(rows, response, path): if isinstance(response, dict): for (k, v) in response.iteritems(): if isinstance(v, dict): for (k, v) in v.iteritems(): collect_stats_rows(rows, v, path + [k] + [k]) elif isinstance(v, (tuple, list)): for e in v: collect_stats_rows(rows, e, path + [k]) else: rows.append({'_source': {'_metric_name': '.'.join(path + [k]), 'value': v}}) elif isinstance(response, (tuple, list)): for e in response: if isinstance(e, dict): for (k, v) in e.iteritems(): collect_stats_rows(rows, v, path + [k]) elif isinstance(e, (tuple, list)): for e in e: collect_stats_rows(rows, e, path) else: rows.append({'_source': {'_metric_name': '.'.join(path), 'value': e}}) else: rows.append({'_source': {'_metric_name': '.'.join(path), 'value': response}})
es-monitor
positive
def _create_table(df: pd.DataFrame, cursor: pg8000.Cursor, table: str, schema: str, mode: str, index: bool, dtype: Optional[Dict[str, str]], varchar_lengths: Optional[Dict[str, int]]) -> None: if mode == 'overwrite': <DeepExtract> schema_str = f'"{schema}".' if schema else '' sql = f'DROP TABLE IF EXISTS {schema_str}"{table}"' _logger.debug('Drop table query:\n%s', sql) cursor.execute(sql) </DeepExtract> elif _does_table_exist(cursor=cursor, schema=schema, table=table): return postgresql_types: Dict[str, str] = _data_types.database_types_from_pandas(df=df, index=index, dtype=dtype, varchar_lengths_default='TEXT', varchar_lengths=varchar_lengths, converter_func=_data_types.pyarrow2postgresql) cols_str: str = ''.join([f'"{k}" {v},\n' for (k, v) in postgresql_types.items()])[:-2] sql = f'CREATE TABLE IF NOT EXISTS "{schema}"."{table}" (\n{cols_str})' _logger.debug('Create table query:\n%s', sql) cursor.execute(sql)
def _create_table(df: pd.DataFrame, cursor: pg8000.Cursor, table: str, schema: str, mode: str, index: bool, dtype: Optional[Dict[str, str]], varchar_lengths: Optional[Dict[str, int]]) -> None: if mode == 'overwrite': schema_str = f'"{schema}".' if schema else '' sql = f'DROP TABLE IF EXISTS {schema_str}"{table}"' _logger.debug('Drop table query:\n%s', sql) cursor.execute(sql) elif _does_table_exist(cursor=cursor, schema=schema, table=table): return postgresql_types: Dict[str, str] = _data_types.database_types_from_pandas(df=df, index=index, dtype=dtype, varchar_lengths_default='TEXT', varchar_lengths=varchar_lengths, converter_func=_data_types.pyarrow2postgresql) cols_str: str = ''.join([f'"{k}" {v},\n' for (k, v) in postgresql_types.items()])[:-2] sql = f'CREATE TABLE IF NOT EXISTS "{schema}"."{table}" (\n{cols_str})' _logger.debug('Create table query:\n%s', sql) cursor.execute(sql)
aws-data-wrangler
positive
def F(x, CDFVAL): <DeepExtract> _complementary = False order = parameter.order if int(x) == 1: F = 1 value = F if int(x) == -1: F = 0 value = F if order > 0: median = (beta ** 2 - alpha ** 2) / (2 * order + alpha + beta) ** 2 else: median = 2.0 / (1.0 + (alpha + 1.0) / (beta + 1.0)) - 1.0 if x > median: x = -x _complementary = True (alpha, beta) = (beta, alpha) (parameter.shape_parameter_A, parameter.shape_parameter_B) = (parameter.shape_parameter_B, parameter.shape_parameter_A) logfactor = 0.0 for i in range(0, int(order)): quadratic_root = 2.0 / (x + 1.0) * (zeroes[i] + 1.0) - 1.0 recurrence_ab = self._quadratic_modification(recurrence_ab, quadratic_root) logfactor += np.log(recurrence_ab[0, 1] * ((x + 1.0) / 2.0) ** 2 * scaling_kn_factor) recurrence_ab[0, 1] = 1 linear_root = (3 - x) / (1 + x) for j in range(0, int(A)): recurrence_ab = self._linear_modification(recurrence_ab, linear_root) logfactor += logfactor + np.log(recurrence_ab[0, 1] * 1.0 / 2.0 * (x + 1.0)) recurrence_ab[0, 1] = 1 (u, w) = parameter._get_local_quadrature(M - 1, recurrence_ab) integral = np.dot(w, (2.0 - 1.0 / 2.0 * (u + 1.0) * (x + 1.0)) ** (alpha - A)) F = np.exp(logfactor - alpha * np.log(2.0) - betaln(beta + 1.0, alpha + 1.0) - np.log(beta + 1.0) + (beta + 1) * np.log((x + 1.0) / 2.0)) * integral F = np.asscalar(F) if _complementary: F = 1 - F value = F </DeepExtract> value = value - CDFVAL return value
def F(x, CDFVAL): _complementary = False order = parameter.order if int(x) == 1: F = 1 value = F if int(x) == -1: F = 0 value = F if order > 0: median = (beta ** 2 - alpha ** 2) / (2 * order + alpha + beta) ** 2 else: median = 2.0 / (1.0 + (alpha + 1.0) / (beta + 1.0)) - 1.0 if x > median: x = -x _complementary = True (alpha, beta) = (beta, alpha) (parameter.shape_parameter_A, parameter.shape_parameter_B) = (parameter.shape_parameter_B, parameter.shape_parameter_A) logfactor = 0.0 for i in range(0, int(order)): quadratic_root = 2.0 / (x + 1.0) * (zeroes[i] + 1.0) - 1.0 recurrence_ab = self._quadratic_modification(recurrence_ab, quadratic_root) logfactor += np.log(recurrence_ab[0, 1] * ((x + 1.0) / 2.0) ** 2 * scaling_kn_factor) recurrence_ab[0, 1] = 1 linear_root = (3 - x) / (1 + x) for j in range(0, int(A)): recurrence_ab = self._linear_modification(recurrence_ab, linear_root) logfactor += logfactor + np.log(recurrence_ab[0, 1] * 1.0 / 2.0 * (x + 1.0)) recurrence_ab[0, 1] = 1 (u, w) = parameter._get_local_quadrature(M - 1, recurrence_ab) integral = np.dot(w, (2.0 - 1.0 / 2.0 * (u + 1.0) * (x + 1.0)) ** (alpha - A)) F = np.exp(logfactor - alpha * np.log(2.0) - betaln(beta + 1.0, alpha + 1.0) - np.log(beta + 1.0) + (beta + 1) * np.log((x + 1.0) / 2.0)) * integral F = np.asscalar(F) if _complementary: F = 1 - F value = F value = value - CDFVAL return value
equadratures
positive
def _build_cluster_args(**pars: Any) -> Dict[str, Any]: account_id: str = sts.get_account_id(boto3_session=pars['boto3_session']) region: str = _utils.get_region_from_session(boto3_session=pars['boto3_session']) if pars.get('logging_s3_path') is None: <DeepExtract> if account_id is None: _account_id: str = sts.get_account_id(boto3_session=pars['boto3_session']) else: _account_id = account_id if region is None and None is not None: _region: str = _utils.get_region_from_session(boto3_session=pars['boto3_session']) elif region is None and None is None: raise exceptions.InvalidArgumentCombination('You must pass region or subnet_id or both.') else: _region = region pars['logging_s3_path'] = f's3://aws-logs-{_account_id}-{_region}/elasticmapreduce/' </DeepExtract> spark_env: Optional[Dict[str, str]] = None yarn_env: Optional[Dict[str, str]] = None livy_env: Optional[Dict[str, str]] = None if pars['spark_pyarrow'] is True: if pars['spark_defaults'] is None: pars['spark_defaults'] = {'spark.sql.execution.arrow.enabled': 'true'} else: pars['spark_defaults']['spark.sql.execution.arrow.enabled'] = 'true' spark_env = {'ARROW_PRE_0_15_IPC_FORMAT': '1'} yarn_env = {'ARROW_PRE_0_15_IPC_FORMAT': '1'} livy_env = {'ARROW_PRE_0_15_IPC_FORMAT': '1'} if pars['python3'] is True: if spark_env is None: spark_env = {'PYSPARK_PYTHON': '/usr/bin/python3'} else: spark_env['PYSPARK_PYTHON'] = '/usr/bin/python3' if pars['spark_jars_path'] is not None: paths: str = ','.join(pars['spark_jars_path']) if pars['spark_defaults'] is None: pars['spark_defaults'] = {'spark.jars': paths} else: pars['spark_defaults']['spark.jars'] = paths args: Dict[str, Any] = {'Name': pars['cluster_name'], 'LogUri': pars['logging_s3_path'], 'ReleaseLabel': pars['emr_release'], 'VisibleToAllUsers': pars['visible_to_all_users'], 'JobFlowRole': pars['emr_ec2_role'], 'ServiceRole': pars['emr_role'], 'Instances': {'KeepJobFlowAliveWhenNoSteps': pars['keep_cluster_alive_when_no_steps'], 'TerminationProtected': pars['termination_protected'], 'Ec2SubnetId': pars['subnet_id'], 'InstanceFleets': []}, 'StepConcurrencyLevel': pars['step_concurrency_level']} if pars['auto_termination_policy'] is not None: args['AutoTerminationPolicy'] = pars['auto_termination_policy'] if pars['custom_ami_id'] is not None: args['CustomAmiId'] = pars['custom_ami_id'] if pars['key_pair_name'] is not None: args['Instances']['Ec2KeyName'] = pars['key_pair_name'] if pars['security_group_master'] is not None: args['Instances']['EmrManagedMasterSecurityGroup'] = pars['security_group_master'] if pars['security_groups_master_additional'] is not None: args['Instances']['AdditionalMasterSecurityGroups'] = pars['security_groups_master_additional'] if pars['security_group_slave'] is not None: args['Instances']['EmrManagedSlaveSecurityGroup'] = pars['security_group_slave'] if pars['security_groups_slave_additional'] is not None: args['Instances']['AdditionalSlaveSecurityGroups'] = pars['security_groups_slave_additional'] if pars['security_group_service_access'] is not None: args['Instances']['ServiceAccessSecurityGroup'] = pars['security_group_service_access'] args['Configurations'] = [{'Classification': 'spark-log4j', 'Properties': {'log4j.rootCategory': f"{pars['spark_log_level']}, console"}}] if not pars['configurations'] else pars['configurations'] if pars['docker'] is True: if pars.get('extra_public_registries') is None: extra_public_registries: List[str] = [] else: extra_public_registries = pars['extra_public_registries'] registries: str = f"local,centos,{account_id}.dkr.ecr.{region}.amazonaws.com,{','.join(extra_public_registries)}" registries = registries[:-1] if registries.endswith(',') else registries args['Configurations'].append({'Classification': 'container-executor', 'Properties': {}, 'Configurations': [{'Classification': 'docker', 'Properties': {'docker.privileged-containers.registries': registries, 'docker.trusted.registries': registries}, 'Configurations': []}]}) if spark_env is not None: args['Configurations'].append({'Classification': 'spark-env', 'Properties': {}, 'Configurations': [{'Classification': 'export', 'Properties': spark_env, 'Configurations': []}]}) if yarn_env is not None: args['Configurations'].append({'Classification': 'yarn-env', 'Properties': {}, 'Configurations': [{'Classification': 'export', 'Properties': yarn_env, 'Configurations': []}]}) if livy_env is not None: args['Configurations'].append({'Classification': 'livy-env', 'Properties': {}, 'Configurations': [{'Classification': 'export', 'Properties': livy_env, 'Configurations': []}]}) if pars['spark_glue_catalog'] is True: args['Configurations'].append({'Classification': 'spark-hive-site', 'Properties': {'hive.metastore.client.factory.class': 'com.amazonaws.glue.catalog.metastore.AWSGlueDataCatalogHiveClientFactory'}, 'Configurations': []}) if pars['hive_glue_catalog'] is True: hive_conf: Dict[str, Any] = {'Classification': 'hive-site', 'Properties': {}, 'Configurations': []} hive_conf['Properties']['hive.metastore.client.factory.class'] = 'com.amazonaws.glue.catalog.metastore.AWSGlueDataCatalogHiveClientFactory' args['Configurations'].append(hive_conf) if pars['presto_glue_catalog'] is True: args['Configurations'].append({'Classification': 'presto-connector-hive', 'Properties': {'hive.metastore.glue.datacatalog.enabled': 'true'}, 'Configurations': []}) if pars['consistent_view'] is True: args['Configurations'].append({'Classification': 'emrfs-site', 'Properties': {'fs.s3.consistent.retryPeriodSeconds': str(pars.get('consistent_view_retry_seconds', '10')), 'fs.s3.consistent': 'true', 'fs.s3.consistent.retryCount': str(pars.get('consistent_view_retry_count', '5')), 'fs.s3.consistent.metadata.tableName': pars.get('consistent_view_table_name', 'EmrFSMetadata')}}) if pars['maximize_resource_allocation'] is True: args['Configurations'].append({'Classification': 'spark', 'Properties': {'maximizeResourceAllocation': 'true'}}) if pars['spark_defaults'] is not None: spark_defaults: Dict[str, Union[str, Dict[str, str]]] = {'Classification': 'spark-defaults', 'Properties': pars['spark_defaults']} args['Configurations'].append(spark_defaults) if pars.get('custom_classifications') is not None: for c in pars['custom_classifications']: args['Configurations'].append(c) if pars['applications']: args['Applications'] = [{'Name': x} for x in pars['applications']] if pars['bootstraps_paths']: args['BootstrapActions'] = [{'Name': x, 'ScriptBootstrapAction': {'Path': x}} for x in pars['bootstraps_paths']] if pars['debugging'] is True or pars['steps'] is not None: args['Steps'] = [] if pars['debugging'] is True: args['Steps'].append({'Name': 'Setup Hadoop Debugging', 'ActionOnFailure': 'TERMINATE_CLUSTER', 'HadoopJarStep': {'Jar': 'command-runner.jar', 'Args': ['state-pusher-script']}}) if pars['steps'] is not None: args['Steps'] += pars['steps'] timeout_action_master: str = 'SWITCH_TO_ON_DEMAND' if pars['spot_timeout_to_on_demand_master'] else 'TERMINATE_CLUSTER' fleet_master: Dict[str, Any] = {'Name': 'MASTER', 'InstanceFleetType': 'MASTER', 'TargetOnDemandCapacity': pars['instance_num_on_demand_master'], 'TargetSpotCapacity': pars['instance_num_spot_master'], 'InstanceTypeConfigs': [{'InstanceType': pars['instance_type_master'], 'WeightedCapacity': 1, 'BidPriceAsPercentageOfOnDemandPrice': pars['spot_bid_percentage_of_on_demand_master'], 'EbsConfiguration': {'EbsBlockDeviceConfigs': [{'VolumeSpecification': {'SizeInGB': pars['instance_ebs_size_master'], 'VolumeType': 'gp2'}, 'VolumesPerInstance': 1}], 'EbsOptimized': True}}]} if pars['instance_num_spot_master'] > 0: fleet_master['LaunchSpecifications'] = {'SpotSpecification': {'TimeoutDurationMinutes': pars['spot_provisioning_timeout_master'], 'TimeoutAction': timeout_action_master}} args['Instances']['InstanceFleets'].append(fleet_master) if pars['instance_num_spot_core'] > 0 or pars['instance_num_on_demand_core'] > 0: timeout_action_core = 'SWITCH_TO_ON_DEMAND' if pars['spot_timeout_to_on_demand_core'] else 'TERMINATE_CLUSTER' fleet_core: Dict[str, Any] = {'Name': 'CORE', 'InstanceFleetType': 'CORE', 'TargetOnDemandCapacity': pars['instance_num_on_demand_core'], 'TargetSpotCapacity': pars['instance_num_spot_core'], 'InstanceTypeConfigs': [{'InstanceType': pars['instance_type_core'], 'WeightedCapacity': 1, 'BidPriceAsPercentageOfOnDemandPrice': pars['spot_bid_percentage_of_on_demand_core'], 'EbsConfiguration': {'EbsBlockDeviceConfigs': [{'VolumeSpecification': {'SizeInGB': pars['instance_ebs_size_core'], 'VolumeType': 'gp2'}, 'VolumesPerInstance': 1}], 'EbsOptimized': True}}]} if pars['instance_num_spot_core'] > 0: fleet_core['LaunchSpecifications'] = {'SpotSpecification': {'TimeoutDurationMinutes': pars['spot_provisioning_timeout_core'], 'TimeoutAction': timeout_action_core}} args['Instances']['InstanceFleets'].append(fleet_core) if pars['instance_num_spot_task'] > 0 or pars['instance_num_on_demand_task'] > 0: timeout_action_task: str = 'SWITCH_TO_ON_DEMAND' if pars['spot_timeout_to_on_demand_task'] else 'TERMINATE_CLUSTER' fleet_task: Dict[str, Any] = {'Name': 'TASK', 'InstanceFleetType': 'TASK', 'TargetOnDemandCapacity': pars['instance_num_on_demand_task'], 'TargetSpotCapacity': pars['instance_num_spot_task'], 'InstanceTypeConfigs': [{'InstanceType': pars['instance_type_task'], 'WeightedCapacity': 1, 'BidPriceAsPercentageOfOnDemandPrice': pars['spot_bid_percentage_of_on_demand_task'], 'EbsConfiguration': {'EbsBlockDeviceConfigs': [{'VolumeSpecification': {'SizeInGB': pars['instance_ebs_size_task'], 'VolumeType': 'gp2'}, 'VolumesPerInstance': 1}], 'EbsOptimized': True}}]} if pars['instance_num_spot_task'] > 0: fleet_task['LaunchSpecifications'] = {'SpotSpecification': {'TimeoutDurationMinutes': pars['spot_provisioning_timeout_task'], 'TimeoutAction': timeout_action_task}} args['Instances']['InstanceFleets'].append(fleet_task) if pars['tags'] is not None: args['Tags'] = [{'Key': k, 'Value': v} for (k, v) in pars['tags'].items()] _logger.debug('args: \n%s', pprint.pformat(args)) return args
def _build_cluster_args(**pars: Any) -> Dict[str, Any]: account_id: str = sts.get_account_id(boto3_session=pars['boto3_session']) region: str = _utils.get_region_from_session(boto3_session=pars['boto3_session']) if pars.get('logging_s3_path') is None: if account_id is None: _account_id: str = sts.get_account_id(boto3_session=pars['boto3_session']) else: _account_id = account_id if region is None and None is not None: _region: str = _utils.get_region_from_session(boto3_session=pars['boto3_session']) elif region is None and None is None: raise exceptions.InvalidArgumentCombination('You must pass region or subnet_id or both.') else: _region = region pars['logging_s3_path'] = f's3://aws-logs-{_account_id}-{_region}/elasticmapreduce/' spark_env: Optional[Dict[str, str]] = None yarn_env: Optional[Dict[str, str]] = None livy_env: Optional[Dict[str, str]] = None if pars['spark_pyarrow'] is True: if pars['spark_defaults'] is None: pars['spark_defaults'] = {'spark.sql.execution.arrow.enabled': 'true'} else: pars['spark_defaults']['spark.sql.execution.arrow.enabled'] = 'true' spark_env = {'ARROW_PRE_0_15_IPC_FORMAT': '1'} yarn_env = {'ARROW_PRE_0_15_IPC_FORMAT': '1'} livy_env = {'ARROW_PRE_0_15_IPC_FORMAT': '1'} if pars['python3'] is True: if spark_env is None: spark_env = {'PYSPARK_PYTHON': '/usr/bin/python3'} else: spark_env['PYSPARK_PYTHON'] = '/usr/bin/python3' if pars['spark_jars_path'] is not None: paths: str = ','.join(pars['spark_jars_path']) if pars['spark_defaults'] is None: pars['spark_defaults'] = {'spark.jars': paths} else: pars['spark_defaults']['spark.jars'] = paths args: Dict[str, Any] = {'Name': pars['cluster_name'], 'LogUri': pars['logging_s3_path'], 'ReleaseLabel': pars['emr_release'], 'VisibleToAllUsers': pars['visible_to_all_users'], 'JobFlowRole': pars['emr_ec2_role'], 'ServiceRole': pars['emr_role'], 'Instances': {'KeepJobFlowAliveWhenNoSteps': pars['keep_cluster_alive_when_no_steps'], 'TerminationProtected': pars['termination_protected'], 'Ec2SubnetId': pars['subnet_id'], 'InstanceFleets': []}, 'StepConcurrencyLevel': pars['step_concurrency_level']} if pars['auto_termination_policy'] is not None: args['AutoTerminationPolicy'] = pars['auto_termination_policy'] if pars['custom_ami_id'] is not None: args['CustomAmiId'] = pars['custom_ami_id'] if pars['key_pair_name'] is not None: args['Instances']['Ec2KeyName'] = pars['key_pair_name'] if pars['security_group_master'] is not None: args['Instances']['EmrManagedMasterSecurityGroup'] = pars['security_group_master'] if pars['security_groups_master_additional'] is not None: args['Instances']['AdditionalMasterSecurityGroups'] = pars['security_groups_master_additional'] if pars['security_group_slave'] is not None: args['Instances']['EmrManagedSlaveSecurityGroup'] = pars['security_group_slave'] if pars['security_groups_slave_additional'] is not None: args['Instances']['AdditionalSlaveSecurityGroups'] = pars['security_groups_slave_additional'] if pars['security_group_service_access'] is not None: args['Instances']['ServiceAccessSecurityGroup'] = pars['security_group_service_access'] args['Configurations'] = [{'Classification': 'spark-log4j', 'Properties': {'log4j.rootCategory': f"{pars['spark_log_level']}, console"}}] if not pars['configurations'] else pars['configurations'] if pars['docker'] is True: if pars.get('extra_public_registries') is None: extra_public_registries: List[str] = [] else: extra_public_registries = pars['extra_public_registries'] registries: str = f"local,centos,{account_id}.dkr.ecr.{region}.amazonaws.com,{','.join(extra_public_registries)}" registries = registries[:-1] if registries.endswith(',') else registries args['Configurations'].append({'Classification': 'container-executor', 'Properties': {}, 'Configurations': [{'Classification': 'docker', 'Properties': {'docker.privileged-containers.registries': registries, 'docker.trusted.registries': registries}, 'Configurations': []}]}) if spark_env is not None: args['Configurations'].append({'Classification': 'spark-env', 'Properties': {}, 'Configurations': [{'Classification': 'export', 'Properties': spark_env, 'Configurations': []}]}) if yarn_env is not None: args['Configurations'].append({'Classification': 'yarn-env', 'Properties': {}, 'Configurations': [{'Classification': 'export', 'Properties': yarn_env, 'Configurations': []}]}) if livy_env is not None: args['Configurations'].append({'Classification': 'livy-env', 'Properties': {}, 'Configurations': [{'Classification': 'export', 'Properties': livy_env, 'Configurations': []}]}) if pars['spark_glue_catalog'] is True: args['Configurations'].append({'Classification': 'spark-hive-site', 'Properties': {'hive.metastore.client.factory.class': 'com.amazonaws.glue.catalog.metastore.AWSGlueDataCatalogHiveClientFactory'}, 'Configurations': []}) if pars['hive_glue_catalog'] is True: hive_conf: Dict[str, Any] = {'Classification': 'hive-site', 'Properties': {}, 'Configurations': []} hive_conf['Properties']['hive.metastore.client.factory.class'] = 'com.amazonaws.glue.catalog.metastore.AWSGlueDataCatalogHiveClientFactory' args['Configurations'].append(hive_conf) if pars['presto_glue_catalog'] is True: args['Configurations'].append({'Classification': 'presto-connector-hive', 'Properties': {'hive.metastore.glue.datacatalog.enabled': 'true'}, 'Configurations': []}) if pars['consistent_view'] is True: args['Configurations'].append({'Classification': 'emrfs-site', 'Properties': {'fs.s3.consistent.retryPeriodSeconds': str(pars.get('consistent_view_retry_seconds', '10')), 'fs.s3.consistent': 'true', 'fs.s3.consistent.retryCount': str(pars.get('consistent_view_retry_count', '5')), 'fs.s3.consistent.metadata.tableName': pars.get('consistent_view_table_name', 'EmrFSMetadata')}}) if pars['maximize_resource_allocation'] is True: args['Configurations'].append({'Classification': 'spark', 'Properties': {'maximizeResourceAllocation': 'true'}}) if pars['spark_defaults'] is not None: spark_defaults: Dict[str, Union[str, Dict[str, str]]] = {'Classification': 'spark-defaults', 'Properties': pars['spark_defaults']} args['Configurations'].append(spark_defaults) if pars.get('custom_classifications') is not None: for c in pars['custom_classifications']: args['Configurations'].append(c) if pars['applications']: args['Applications'] = [{'Name': x} for x in pars['applications']] if pars['bootstraps_paths']: args['BootstrapActions'] = [{'Name': x, 'ScriptBootstrapAction': {'Path': x}} for x in pars['bootstraps_paths']] if pars['debugging'] is True or pars['steps'] is not None: args['Steps'] = [] if pars['debugging'] is True: args['Steps'].append({'Name': 'Setup Hadoop Debugging', 'ActionOnFailure': 'TERMINATE_CLUSTER', 'HadoopJarStep': {'Jar': 'command-runner.jar', 'Args': ['state-pusher-script']}}) if pars['steps'] is not None: args['Steps'] += pars['steps'] timeout_action_master: str = 'SWITCH_TO_ON_DEMAND' if pars['spot_timeout_to_on_demand_master'] else 'TERMINATE_CLUSTER' fleet_master: Dict[str, Any] = {'Name': 'MASTER', 'InstanceFleetType': 'MASTER', 'TargetOnDemandCapacity': pars['instance_num_on_demand_master'], 'TargetSpotCapacity': pars['instance_num_spot_master'], 'InstanceTypeConfigs': [{'InstanceType': pars['instance_type_master'], 'WeightedCapacity': 1, 'BidPriceAsPercentageOfOnDemandPrice': pars['spot_bid_percentage_of_on_demand_master'], 'EbsConfiguration': {'EbsBlockDeviceConfigs': [{'VolumeSpecification': {'SizeInGB': pars['instance_ebs_size_master'], 'VolumeType': 'gp2'}, 'VolumesPerInstance': 1}], 'EbsOptimized': True}}]} if pars['instance_num_spot_master'] > 0: fleet_master['LaunchSpecifications'] = {'SpotSpecification': {'TimeoutDurationMinutes': pars['spot_provisioning_timeout_master'], 'TimeoutAction': timeout_action_master}} args['Instances']['InstanceFleets'].append(fleet_master) if pars['instance_num_spot_core'] > 0 or pars['instance_num_on_demand_core'] > 0: timeout_action_core = 'SWITCH_TO_ON_DEMAND' if pars['spot_timeout_to_on_demand_core'] else 'TERMINATE_CLUSTER' fleet_core: Dict[str, Any] = {'Name': 'CORE', 'InstanceFleetType': 'CORE', 'TargetOnDemandCapacity': pars['instance_num_on_demand_core'], 'TargetSpotCapacity': pars['instance_num_spot_core'], 'InstanceTypeConfigs': [{'InstanceType': pars['instance_type_core'], 'WeightedCapacity': 1, 'BidPriceAsPercentageOfOnDemandPrice': pars['spot_bid_percentage_of_on_demand_core'], 'EbsConfiguration': {'EbsBlockDeviceConfigs': [{'VolumeSpecification': {'SizeInGB': pars['instance_ebs_size_core'], 'VolumeType': 'gp2'}, 'VolumesPerInstance': 1}], 'EbsOptimized': True}}]} if pars['instance_num_spot_core'] > 0: fleet_core['LaunchSpecifications'] = {'SpotSpecification': {'TimeoutDurationMinutes': pars['spot_provisioning_timeout_core'], 'TimeoutAction': timeout_action_core}} args['Instances']['InstanceFleets'].append(fleet_core) if pars['instance_num_spot_task'] > 0 or pars['instance_num_on_demand_task'] > 0: timeout_action_task: str = 'SWITCH_TO_ON_DEMAND' if pars['spot_timeout_to_on_demand_task'] else 'TERMINATE_CLUSTER' fleet_task: Dict[str, Any] = {'Name': 'TASK', 'InstanceFleetType': 'TASK', 'TargetOnDemandCapacity': pars['instance_num_on_demand_task'], 'TargetSpotCapacity': pars['instance_num_spot_task'], 'InstanceTypeConfigs': [{'InstanceType': pars['instance_type_task'], 'WeightedCapacity': 1, 'BidPriceAsPercentageOfOnDemandPrice': pars['spot_bid_percentage_of_on_demand_task'], 'EbsConfiguration': {'EbsBlockDeviceConfigs': [{'VolumeSpecification': {'SizeInGB': pars['instance_ebs_size_task'], 'VolumeType': 'gp2'}, 'VolumesPerInstance': 1}], 'EbsOptimized': True}}]} if pars['instance_num_spot_task'] > 0: fleet_task['LaunchSpecifications'] = {'SpotSpecification': {'TimeoutDurationMinutes': pars['spot_provisioning_timeout_task'], 'TimeoutAction': timeout_action_task}} args['Instances']['InstanceFleets'].append(fleet_task) if pars['tags'] is not None: args['Tags'] = [{'Key': k, 'Value': v} for (k, v) in pars['tags'].items()] _logger.debug('args: \n%s', pprint.pformat(args)) return args
aws-data-wrangler
positive
def designator(self): localctx = BraketPragmasParser.DesignatorContext(self, self._ctx, self.state) <DeepExtract> if hasattr(localctx, 'enterBraketPragma'): localctx.enterBraketPragma(self) </DeepExtract> try: self.enterOuterAlt(localctx, 1) self.state = 891 self.match(BraketPragmasParser.LBRACKET) self.state = 892 <DeepExtract> _parentctx = self._ctx _parentState = self.state localctx = BraketPragmasParser.ExpressionContext(self, self._ctx, _parentState) _prevctx = localctx _startState = 124 self.enterRecursionRule(localctx, 124, self.RULE_expression, 0) self._la = 0 try: self.enterOuterAlt(localctx, 1) self.state = 682 self._errHandler.sync(self) la_ = self._interp.adaptivePredict(self._input, 60, self._ctx) if la_ == 1: localctx = BraketPragmasParser.ParenthesisExpressionContext(self, localctx) self._ctx = localctx _prevctx = localctx self.state = 656 self.match(BraketPragmasParser.LPAREN) self.state = 657 self.expression(0) self.state = 658 self.match(BraketPragmasParser.RPAREN) pass elif la_ == 2: localctx = BraketPragmasParser.UnaryExpressionContext(self, localctx) self._ctx = localctx _prevctx = localctx self.state = 660 localctx.op = self._input.LT(1) _la = self._input.LA(1) if not (_la - 94 & ~63 == 0 and 1 << _la - 94 & (1 << BraketPragmasParser.MINUS - 94 | 1 << BraketPragmasParser.TILDE - 94 | 1 << BraketPragmasParser.EXCLAMATION_POINT - 94) != 0): localctx.op = self._errHandler.recoverInline(self) else: self._errHandler.reportMatch(self) self.consume() self.state = 661 self.expression(15) pass elif la_ == 3: localctx = BraketPragmasParser.CastExpressionContext(self, localctx) self._ctx = localctx _prevctx = localctx self.state = 664 self._errHandler.sync(self) token = self._input.LA(1) if token in [BraketPragmasParser.BOOL, BraketPragmasParser.BIT, BraketPragmasParser.INT, BraketPragmasParser.UINT, BraketPragmasParser.FLOAT, BraketPragmasParser.ANGLE, BraketPragmasParser.COMPLEX, BraketPragmasParser.DURATION, BraketPragmasParser.STRETCH]: self.state = 662 self.scalarType() pass elif token in [BraketPragmasParser.ARRAY]: self.state = 663 self.arrayType() pass else: raise NoViableAltException(self) self.state = 666 self.match(BraketPragmasParser.LPAREN) self.state = 667 self.expression(0) self.state = 668 self.match(BraketPragmasParser.RPAREN) pass elif la_ == 4: localctx = BraketPragmasParser.DurationofExpressionContext(self, localctx) self._ctx = localctx _prevctx = localctx self.state = 670 self.match(BraketPragmasParser.DURATIONOF) self.state = 671 self.match(BraketPragmasParser.LPAREN) self.state = 672 self.scope() self.state = 673 self.match(BraketPragmasParser.RPAREN) pass elif la_ == 5: localctx = BraketPragmasParser.CallExpressionContext(self, localctx) self._ctx = localctx _prevctx = localctx self.state = 675 self.match(BraketPragmasParser.Identifier) self.state = 676 self.match(BraketPragmasParser.LPAREN) self.state = 678 self._errHandler.sync(self) _la = self._input.LA(1) if _la - 58 & ~63 == 0 and 1 << _la - 58 & (1 << BraketPragmasParser.BOOL - 58 | 1 << BraketPragmasParser.BIT - 58 | 1 << BraketPragmasParser.INT - 58 | 1 << BraketPragmasParser.UINT - 58 | 1 << BraketPragmasParser.FLOAT - 58 | 1 << BraketPragmasParser.ANGLE - 58 | 1 << BraketPragmasParser.COMPLEX - 58 | 1 << BraketPragmasParser.ARRAY - 58 | 1 << BraketPragmasParser.DURATION - 58 | 1 << BraketPragmasParser.STRETCH - 58 | 1 << BraketPragmasParser.DURATIONOF - 58 | 1 << BraketPragmasParser.BooleanLiteral - 58 | 1 << BraketPragmasParser.LPAREN - 58 | 1 << BraketPragmasParser.MINUS - 58 | 1 << BraketPragmasParser.TILDE - 58 | 1 << BraketPragmasParser.EXCLAMATION_POINT - 58 | 1 << BraketPragmasParser.ImaginaryLiteral - 58 | 1 << BraketPragmasParser.BinaryIntegerLiteral - 58 | 1 << BraketPragmasParser.OctalIntegerLiteral - 58 | 1 << BraketPragmasParser.DecimalIntegerLiteral - 58 | 1 << BraketPragmasParser.HexIntegerLiteral - 58 | 1 << BraketPragmasParser.Identifier - 58 | 1 << BraketPragmasParser.HardwareQubit - 58 | 1 << BraketPragmasParser.FloatLiteral - 58 | 1 << BraketPragmasParser.TimingLiteral - 58 | 1 << BraketPragmasParser.BitstringLiteral - 58) != 0: self.state = 677 self.expressionList() self.state = 680 self.match(BraketPragmasParser.RPAREN) pass elif la_ == 6: localctx = BraketPragmasParser.LiteralExpressionContext(self, localctx) self._ctx = localctx _prevctx = localctx self.state = 681 _la = self._input.LA(1) if not (_la - 79 & ~63 == 0 and 1 << _la - 79 & (1 << BraketPragmasParser.BooleanLiteral - 79 | 1 << BraketPragmasParser.ImaginaryLiteral - 79 | 1 << BraketPragmasParser.BinaryIntegerLiteral - 79 | 1 << BraketPragmasParser.OctalIntegerLiteral - 79 | 1 << BraketPragmasParser.DecimalIntegerLiteral - 79 | 1 << BraketPragmasParser.HexIntegerLiteral - 79 | 1 << BraketPragmasParser.Identifier - 79 | 1 << BraketPragmasParser.HardwareQubit - 79 | 1 << BraketPragmasParser.FloatLiteral - 79 | 1 << BraketPragmasParser.TimingLiteral - 79 | 1 << BraketPragmasParser.BitstringLiteral - 79) != 0): self._errHandler.recoverInline(self) else: self._errHandler.reportMatch(self) self.consume() pass self._ctx.stop = self._input.LT(-1) self.state = 721 self._errHandler.sync(self) _alt = self._interp.adaptivePredict(self._input, 62, self._ctx) while _alt != 2 and _alt != ATN.INVALID_ALT_NUMBER: if _alt == 1: if self._parseListeners is not None: self.triggerExitRuleEvent() _prevctx = localctx self.state = 719 self._errHandler.sync(self) la_ = self._interp.adaptivePredict(self._input, 61, self._ctx) if la_ == 1: localctx = BraketPragmasParser.PowerExpressionContext(self, BraketPragmasParser.ExpressionContext(self, _parentctx, _parentState)) self.pushNewRecursionContext(localctx, _startState, self.RULE_expression) self.state = 684 if not self.precpred(self._ctx, 16): from antlr4.error.Errors import FailedPredicateException raise FailedPredicateException(self, 'self.precpred(self._ctx, 16)') self.state = 685 localctx.op = self.match(BraketPragmasParser.DOUBLE_ASTERISK) self.state = 686 self.expression(16) pass elif la_ == 2: localctx = BraketPragmasParser.MultiplicativeExpressionContext(self, BraketPragmasParser.ExpressionContext(self, _parentctx, _parentState)) self.pushNewRecursionContext(localctx, _startState, self.RULE_expression) self.state = 687 if not self.precpred(self._ctx, 14): from antlr4.error.Errors import FailedPredicateException raise FailedPredicateException(self, 'self.precpred(self._ctx, 14)') self.state = 688 localctx.op = self._input.LT(1) _la = self._input.LA(1) if not (_la - 95 & ~63 == 0 and 1 << _la - 95 & (1 << BraketPragmasParser.ASTERISK - 95 | 1 << BraketPragmasParser.SLASH - 95 | 1 << BraketPragmasParser.PERCENT - 95) != 0): localctx.op = self._errHandler.recoverInline(self) else: self._errHandler.reportMatch(self) self.consume() self.state = 689 self.expression(15) pass elif la_ == 3: localctx = BraketPragmasParser.AdditiveExpressionContext(self, BraketPragmasParser.ExpressionContext(self, _parentctx, _parentState)) self.pushNewRecursionContext(localctx, _startState, self.RULE_expression) self.state = 690 if not self.precpred(self._ctx, 13): from antlr4.error.Errors import FailedPredicateException raise FailedPredicateException(self, 'self.precpred(self._ctx, 13)') self.state = 691 localctx.op = self._input.LT(1) _la = self._input.LA(1) if not (_la == BraketPragmasParser.PLUS or _la == BraketPragmasParser.MINUS): localctx.op = self._errHandler.recoverInline(self) else: self._errHandler.reportMatch(self) self.consume() self.state = 692 self.expression(14) pass elif la_ == 4: localctx = BraketPragmasParser.BitshiftExpressionContext(self, BraketPragmasParser.ExpressionContext(self, _parentctx, _parentState)) self.pushNewRecursionContext(localctx, _startState, self.RULE_expression) self.state = 693 if not self.precpred(self._ctx, 12): from antlr4.error.Errors import FailedPredicateException raise FailedPredicateException(self, 'self.precpred(self._ctx, 12)') self.state = 694 localctx.op = self.match(BraketPragmasParser.BitshiftOperator) self.state = 695 self.expression(13) pass elif la_ == 5: localctx = BraketPragmasParser.ComparisonExpressionContext(self, BraketPragmasParser.ExpressionContext(self, _parentctx, _parentState)) self.pushNewRecursionContext(localctx, _startState, self.RULE_expression) self.state = 696 if not self.precpred(self._ctx, 11): from antlr4.error.Errors import FailedPredicateException raise FailedPredicateException(self, 'self.precpred(self._ctx, 11)') self.state = 697 localctx.op = self.match(BraketPragmasParser.ComparisonOperator) self.state = 698 self.expression(12) pass elif la_ == 6: localctx = BraketPragmasParser.EqualityExpressionContext(self, BraketPragmasParser.ExpressionContext(self, _parentctx, _parentState)) self.pushNewRecursionContext(localctx, _startState, self.RULE_expression) self.state = 699 if not self.precpred(self._ctx, 10): from antlr4.error.Errors import FailedPredicateException raise FailedPredicateException(self, 'self.precpred(self._ctx, 10)') self.state = 700 localctx.op = self.match(BraketPragmasParser.EqualityOperator) self.state = 701 self.expression(11) pass elif la_ == 7: localctx = BraketPragmasParser.BitwiseAndExpressionContext(self, BraketPragmasParser.ExpressionContext(self, _parentctx, _parentState)) self.pushNewRecursionContext(localctx, _startState, self.RULE_expression) self.state = 702 if not self.precpred(self._ctx, 9): from antlr4.error.Errors import FailedPredicateException raise FailedPredicateException(self, 'self.precpred(self._ctx, 9)') self.state = 703 localctx.op = self.match(BraketPragmasParser.AMPERSAND) self.state = 704 self.expression(10) pass elif la_ == 8: localctx = BraketPragmasParser.BitwiseXorExpressionContext(self, BraketPragmasParser.ExpressionContext(self, _parentctx, _parentState)) self.pushNewRecursionContext(localctx, _startState, self.RULE_expression) self.state = 705 if not self.precpred(self._ctx, 8): from antlr4.error.Errors import FailedPredicateException raise FailedPredicateException(self, 'self.precpred(self._ctx, 8)') self.state = 706 localctx.op = self.match(BraketPragmasParser.CARET) self.state = 707 self.expression(9) pass elif la_ == 9: localctx = BraketPragmasParser.BitwiseOrExpressionContext(self, BraketPragmasParser.ExpressionContext(self, _parentctx, _parentState)) self.pushNewRecursionContext(localctx, _startState, self.RULE_expression) self.state = 708 if not self.precpred(self._ctx, 7): from antlr4.error.Errors import FailedPredicateException raise FailedPredicateException(self, 'self.precpred(self._ctx, 7)') self.state = 709 localctx.op = self.match(BraketPragmasParser.PIPE) self.state = 710 self.expression(8) pass elif la_ == 10: localctx = BraketPragmasParser.LogicalAndExpressionContext(self, BraketPragmasParser.ExpressionContext(self, _parentctx, _parentState)) self.pushNewRecursionContext(localctx, _startState, self.RULE_expression) self.state = 711 if not self.precpred(self._ctx, 6): from antlr4.error.Errors import FailedPredicateException raise FailedPredicateException(self, 'self.precpred(self._ctx, 6)') self.state = 712 localctx.op = self.match(BraketPragmasParser.DOUBLE_AMPERSAND) self.state = 713 self.expression(7) pass elif la_ == 11: localctx = BraketPragmasParser.LogicalOrExpressionContext(self, BraketPragmasParser.ExpressionContext(self, _parentctx, _parentState)) self.pushNewRecursionContext(localctx, _startState, self.RULE_expression) self.state = 714 if not self.precpred(self._ctx, 5): from antlr4.error.Errors import FailedPredicateException raise FailedPredicateException(self, 'self.precpred(self._ctx, 5)') self.state = 715 localctx.op = self.match(BraketPragmasParser.DOUBLE_PIPE) self.state = 716 self.expression(6) pass elif la_ == 12: localctx = BraketPragmasParser.IndexExpressionContext(self, BraketPragmasParser.ExpressionContext(self, _parentctx, _parentState)) self.pushNewRecursionContext(localctx, _startState, self.RULE_expression) self.state = 717 if not self.precpred(self._ctx, 17): from antlr4.error.Errors import FailedPredicateException raise FailedPredicateException(self, 'self.precpred(self._ctx, 17)') self.state = 718 self.indexOperator() pass self.state = 723 self._errHandler.sync(self) _alt = self._interp.adaptivePredict(self._input, 62, self._ctx) except RecognitionException as re: localctx.exception = re self._errHandler.reportError(self, re) self._errHandler.recover(self, re) finally: self.unrollRecursionContexts(_parentctx) return localctx </DeepExtract> self.state = 893 self.match(BraketPragmasParser.RBRACKET) except RecognitionException as re: localctx.exception = re self._errHandler.reportError(self, re) self._errHandler.recover(self, re) finally: <DeepExtract> if hasattr(listener, 'exitBraketPragma'): listener.exitBraketPragma(self) </DeepExtract> return localctx
def designator(self): localctx = BraketPragmasParser.DesignatorContext(self, self._ctx, self.state) if hasattr(localctx, 'enterBraketPragma'): localctx.enterBraketPragma(self) try: self.enterOuterAlt(localctx, 1) self.state = 891 self.match(BraketPragmasParser.LBRACKET) self.state = 892 _parentctx = self._ctx _parentState = self.state localctx = BraketPragmasParser.ExpressionContext(self, self._ctx, _parentState) _prevctx = localctx _startState = 124 self.enterRecursionRule(localctx, 124, self.RULE_expression, 0) self._la = 0 try: self.enterOuterAlt(localctx, 1) self.state = 682 self._errHandler.sync(self) la_ = self._interp.adaptivePredict(self._input, 60, self._ctx) if la_ == 1: localctx = BraketPragmasParser.ParenthesisExpressionContext(self, localctx) self._ctx = localctx _prevctx = localctx self.state = 656 self.match(BraketPragmasParser.LPAREN) self.state = 657 self.expression(0) self.state = 658 self.match(BraketPragmasParser.RPAREN) pass elif la_ == 2: localctx = BraketPragmasParser.UnaryExpressionContext(self, localctx) self._ctx = localctx _prevctx = localctx self.state = 660 localctx.op = self._input.LT(1) _la = self._input.LA(1) if not (_la - 94 & ~63 == 0 and 1 << _la - 94 & (1 << BraketPragmasParser.MINUS - 94 | 1 << BraketPragmasParser.TILDE - 94 | 1 << BraketPragmasParser.EXCLAMATION_POINT - 94) != 0): localctx.op = self._errHandler.recoverInline(self) else: self._errHandler.reportMatch(self) self.consume() self.state = 661 self.expression(15) pass elif la_ == 3: localctx = BraketPragmasParser.CastExpressionContext(self, localctx) self._ctx = localctx _prevctx = localctx self.state = 664 self._errHandler.sync(self) token = self._input.LA(1) if token in [BraketPragmasParser.BOOL, BraketPragmasParser.BIT, BraketPragmasParser.INT, BraketPragmasParser.UINT, BraketPragmasParser.FLOAT, BraketPragmasParser.ANGLE, BraketPragmasParser.COMPLEX, BraketPragmasParser.DURATION, BraketPragmasParser.STRETCH]: self.state = 662 self.scalarType() pass elif token in [BraketPragmasParser.ARRAY]: self.state = 663 self.arrayType() pass else: raise NoViableAltException(self) self.state = 666 self.match(BraketPragmasParser.LPAREN) self.state = 667 self.expression(0) self.state = 668 self.match(BraketPragmasParser.RPAREN) pass elif la_ == 4: localctx = BraketPragmasParser.DurationofExpressionContext(self, localctx) self._ctx = localctx _prevctx = localctx self.state = 670 self.match(BraketPragmasParser.DURATIONOF) self.state = 671 self.match(BraketPragmasParser.LPAREN) self.state = 672 self.scope() self.state = 673 self.match(BraketPragmasParser.RPAREN) pass elif la_ == 5: localctx = BraketPragmasParser.CallExpressionContext(self, localctx) self._ctx = localctx _prevctx = localctx self.state = 675 self.match(BraketPragmasParser.Identifier) self.state = 676 self.match(BraketPragmasParser.LPAREN) self.state = 678 self._errHandler.sync(self) _la = self._input.LA(1) if _la - 58 & ~63 == 0 and 1 << _la - 58 & (1 << BraketPragmasParser.BOOL - 58 | 1 << BraketPragmasParser.BIT - 58 | 1 << BraketPragmasParser.INT - 58 | 1 << BraketPragmasParser.UINT - 58 | 1 << BraketPragmasParser.FLOAT - 58 | 1 << BraketPragmasParser.ANGLE - 58 | 1 << BraketPragmasParser.COMPLEX - 58 | 1 << BraketPragmasParser.ARRAY - 58 | 1 << BraketPragmasParser.DURATION - 58 | 1 << BraketPragmasParser.STRETCH - 58 | 1 << BraketPragmasParser.DURATIONOF - 58 | 1 << BraketPragmasParser.BooleanLiteral - 58 | 1 << BraketPragmasParser.LPAREN - 58 | 1 << BraketPragmasParser.MINUS - 58 | 1 << BraketPragmasParser.TILDE - 58 | 1 << BraketPragmasParser.EXCLAMATION_POINT - 58 | 1 << BraketPragmasParser.ImaginaryLiteral - 58 | 1 << BraketPragmasParser.BinaryIntegerLiteral - 58 | 1 << BraketPragmasParser.OctalIntegerLiteral - 58 | 1 << BraketPragmasParser.DecimalIntegerLiteral - 58 | 1 << BraketPragmasParser.HexIntegerLiteral - 58 | 1 << BraketPragmasParser.Identifier - 58 | 1 << BraketPragmasParser.HardwareQubit - 58 | 1 << BraketPragmasParser.FloatLiteral - 58 | 1 << BraketPragmasParser.TimingLiteral - 58 | 1 << BraketPragmasParser.BitstringLiteral - 58) != 0: self.state = 677 self.expressionList() self.state = 680 self.match(BraketPragmasParser.RPAREN) pass elif la_ == 6: localctx = BraketPragmasParser.LiteralExpressionContext(self, localctx) self._ctx = localctx _prevctx = localctx self.state = 681 _la = self._input.LA(1) if not (_la - 79 & ~63 == 0 and 1 << _la - 79 & (1 << BraketPragmasParser.BooleanLiteral - 79 | 1 << BraketPragmasParser.ImaginaryLiteral - 79 | 1 << BraketPragmasParser.BinaryIntegerLiteral - 79 | 1 << BraketPragmasParser.OctalIntegerLiteral - 79 | 1 << BraketPragmasParser.DecimalIntegerLiteral - 79 | 1 << BraketPragmasParser.HexIntegerLiteral - 79 | 1 << BraketPragmasParser.Identifier - 79 | 1 << BraketPragmasParser.HardwareQubit - 79 | 1 << BraketPragmasParser.FloatLiteral - 79 | 1 << BraketPragmasParser.TimingLiteral - 79 | 1 << BraketPragmasParser.BitstringLiteral - 79) != 0): self._errHandler.recoverInline(self) else: self._errHandler.reportMatch(self) self.consume() pass self._ctx.stop = self._input.LT(-1) self.state = 721 self._errHandler.sync(self) _alt = self._interp.adaptivePredict(self._input, 62, self._ctx) while _alt != 2 and _alt != ATN.INVALID_ALT_NUMBER: if _alt == 1: if self._parseListeners is not None: self.triggerExitRuleEvent() _prevctx = localctx self.state = 719 self._errHandler.sync(self) la_ = self._interp.adaptivePredict(self._input, 61, self._ctx) if la_ == 1: localctx = BraketPragmasParser.PowerExpressionContext(self, BraketPragmasParser.ExpressionContext(self, _parentctx, _parentState)) self.pushNewRecursionContext(localctx, _startState, self.RULE_expression) self.state = 684 if not self.precpred(self._ctx, 16): from antlr4.error.Errors import FailedPredicateException raise FailedPredicateException(self, 'self.precpred(self._ctx, 16)') self.state = 685 localctx.op = self.match(BraketPragmasParser.DOUBLE_ASTERISK) self.state = 686 self.expression(16) pass elif la_ == 2: localctx = BraketPragmasParser.MultiplicativeExpressionContext(self, BraketPragmasParser.ExpressionContext(self, _parentctx, _parentState)) self.pushNewRecursionContext(localctx, _startState, self.RULE_expression) self.state = 687 if not self.precpred(self._ctx, 14): from antlr4.error.Errors import FailedPredicateException raise FailedPredicateException(self, 'self.precpred(self._ctx, 14)') self.state = 688 localctx.op = self._input.LT(1) _la = self._input.LA(1) if not (_la - 95 & ~63 == 0 and 1 << _la - 95 & (1 << BraketPragmasParser.ASTERISK - 95 | 1 << BraketPragmasParser.SLASH - 95 | 1 << BraketPragmasParser.PERCENT - 95) != 0): localctx.op = self._errHandler.recoverInline(self) else: self._errHandler.reportMatch(self) self.consume() self.state = 689 self.expression(15) pass elif la_ == 3: localctx = BraketPragmasParser.AdditiveExpressionContext(self, BraketPragmasParser.ExpressionContext(self, _parentctx, _parentState)) self.pushNewRecursionContext(localctx, _startState, self.RULE_expression) self.state = 690 if not self.precpred(self._ctx, 13): from antlr4.error.Errors import FailedPredicateException raise FailedPredicateException(self, 'self.precpred(self._ctx, 13)') self.state = 691 localctx.op = self._input.LT(1) _la = self._input.LA(1) if not (_la == BraketPragmasParser.PLUS or _la == BraketPragmasParser.MINUS): localctx.op = self._errHandler.recoverInline(self) else: self._errHandler.reportMatch(self) self.consume() self.state = 692 self.expression(14) pass elif la_ == 4: localctx = BraketPragmasParser.BitshiftExpressionContext(self, BraketPragmasParser.ExpressionContext(self, _parentctx, _parentState)) self.pushNewRecursionContext(localctx, _startState, self.RULE_expression) self.state = 693 if not self.precpred(self._ctx, 12): from antlr4.error.Errors import FailedPredicateException raise FailedPredicateException(self, 'self.precpred(self._ctx, 12)') self.state = 694 localctx.op = self.match(BraketPragmasParser.BitshiftOperator) self.state = 695 self.expression(13) pass elif la_ == 5: localctx = BraketPragmasParser.ComparisonExpressionContext(self, BraketPragmasParser.ExpressionContext(self, _parentctx, _parentState)) self.pushNewRecursionContext(localctx, _startState, self.RULE_expression) self.state = 696 if not self.precpred(self._ctx, 11): from antlr4.error.Errors import FailedPredicateException raise FailedPredicateException(self, 'self.precpred(self._ctx, 11)') self.state = 697 localctx.op = self.match(BraketPragmasParser.ComparisonOperator) self.state = 698 self.expression(12) pass elif la_ == 6: localctx = BraketPragmasParser.EqualityExpressionContext(self, BraketPragmasParser.ExpressionContext(self, _parentctx, _parentState)) self.pushNewRecursionContext(localctx, _startState, self.RULE_expression) self.state = 699 if not self.precpred(self._ctx, 10): from antlr4.error.Errors import FailedPredicateException raise FailedPredicateException(self, 'self.precpred(self._ctx, 10)') self.state = 700 localctx.op = self.match(BraketPragmasParser.EqualityOperator) self.state = 701 self.expression(11) pass elif la_ == 7: localctx = BraketPragmasParser.BitwiseAndExpressionContext(self, BraketPragmasParser.ExpressionContext(self, _parentctx, _parentState)) self.pushNewRecursionContext(localctx, _startState, self.RULE_expression) self.state = 702 if not self.precpred(self._ctx, 9): from antlr4.error.Errors import FailedPredicateException raise FailedPredicateException(self, 'self.precpred(self._ctx, 9)') self.state = 703 localctx.op = self.match(BraketPragmasParser.AMPERSAND) self.state = 704 self.expression(10) pass elif la_ == 8: localctx = BraketPragmasParser.BitwiseXorExpressionContext(self, BraketPragmasParser.ExpressionContext(self, _parentctx, _parentState)) self.pushNewRecursionContext(localctx, _startState, self.RULE_expression) self.state = 705 if not self.precpred(self._ctx, 8): from antlr4.error.Errors import FailedPredicateException raise FailedPredicateException(self, 'self.precpred(self._ctx, 8)') self.state = 706 localctx.op = self.match(BraketPragmasParser.CARET) self.state = 707 self.expression(9) pass elif la_ == 9: localctx = BraketPragmasParser.BitwiseOrExpressionContext(self, BraketPragmasParser.ExpressionContext(self, _parentctx, _parentState)) self.pushNewRecursionContext(localctx, _startState, self.RULE_expression) self.state = 708 if not self.precpred(self._ctx, 7): from antlr4.error.Errors import FailedPredicateException raise FailedPredicateException(self, 'self.precpred(self._ctx, 7)') self.state = 709 localctx.op = self.match(BraketPragmasParser.PIPE) self.state = 710 self.expression(8) pass elif la_ == 10: localctx = BraketPragmasParser.LogicalAndExpressionContext(self, BraketPragmasParser.ExpressionContext(self, _parentctx, _parentState)) self.pushNewRecursionContext(localctx, _startState, self.RULE_expression) self.state = 711 if not self.precpred(self._ctx, 6): from antlr4.error.Errors import FailedPredicateException raise FailedPredicateException(self, 'self.precpred(self._ctx, 6)') self.state = 712 localctx.op = self.match(BraketPragmasParser.DOUBLE_AMPERSAND) self.state = 713 self.expression(7) pass elif la_ == 11: localctx = BraketPragmasParser.LogicalOrExpressionContext(self, BraketPragmasParser.ExpressionContext(self, _parentctx, _parentState)) self.pushNewRecursionContext(localctx, _startState, self.RULE_expression) self.state = 714 if not self.precpred(self._ctx, 5): from antlr4.error.Errors import FailedPredicateException raise FailedPredicateException(self, 'self.precpred(self._ctx, 5)') self.state = 715 localctx.op = self.match(BraketPragmasParser.DOUBLE_PIPE) self.state = 716 self.expression(6) pass elif la_ == 12: localctx = BraketPragmasParser.IndexExpressionContext(self, BraketPragmasParser.ExpressionContext(self, _parentctx, _parentState)) self.pushNewRecursionContext(localctx, _startState, self.RULE_expression) self.state = 717 if not self.precpred(self._ctx, 17): from antlr4.error.Errors import FailedPredicateException raise FailedPredicateException(self, 'self.precpred(self._ctx, 17)') self.state = 718 self.indexOperator() pass self.state = 723 self._errHandler.sync(self) _alt = self._interp.adaptivePredict(self._input, 62, self._ctx) except RecognitionException as re: localctx.exception = re self._errHandler.reportError(self, re) self._errHandler.recover(self, re) finally: self.unrollRecursionContexts(_parentctx) return localctx self.state = 893 self.match(BraketPragmasParser.RBRACKET) except RecognitionException as re: localctx.exception = re self._errHandler.reportError(self, re) self._errHandler.recover(self, re) finally: if hasattr(listener, 'exitBraketPragma'): listener.exitBraketPragma(self) return localctx
amazon-braket-default-simulator-python
positive
def compose_vis_ddd(self, img_path, flipped, dets, calib, vis_thresh, pred, bev, img_id='out'): self.imgs[img_id] = cv2.imread(img_path) if flipped: self.imgs[img_id] = self.imgs[img_id][:, ::-1].copy() (h, w) = pred.shape[:2] (hs, ws) = (self.imgs[img_id].shape[0] / h, self.imgs[img_id].shape[1] / w) self.imgs[img_id] = cv2.resize(self.imgs[img_id], (w, h)) <DeepExtract> if self.theme == 'white': pred = 255 - pred if pred.shape[0] != self.imgs[img_id].shape[0] or pred.shape[0] != self.imgs[img_id].shape[1]: pred = cv2.resize(pred, (self.imgs[img_id].shape[1], self.imgs[img_id].shape[0])) if len(pred.shape) == 2: pred = pred.reshape(pred.shape[0], pred.shape[1], 1) self.imgs[img_id] = self.imgs[img_id] * (1.0 - self.opt.hm_transparency) + pred * self.opt.hm_transparency self.imgs[img_id][self.imgs[img_id] > 255] = 255 self.imgs[img_id][self.imgs[img_id] < 0] = 0 self.imgs[img_id] = self.imgs[img_id].astype(np.uint8).copy() </DeepExtract> for item in dets: if item['score'] > vis_thresh: dim = item['dim'] loc = item['loc'] rot_y = item['rot_y'] cl = self.colors[int(item['class']) - 1, 0, 0].tolist() if loc[2] > 1: box_3d = compute_box_3d(dim, loc, rot_y) box_2d = project_to_image(box_3d, calib) box_2d[:, 0] /= hs box_2d[:, 1] /= ws self.imgs[img_id] = draw_box_3d(self.imgs[img_id], box_2d, cl) self.imgs[img_id] = np.concatenate([self.imgs[img_id], self.imgs[bev]], axis=1)
def compose_vis_ddd(self, img_path, flipped, dets, calib, vis_thresh, pred, bev, img_id='out'): self.imgs[img_id] = cv2.imread(img_path) if flipped: self.imgs[img_id] = self.imgs[img_id][:, ::-1].copy() (h, w) = pred.shape[:2] (hs, ws) = (self.imgs[img_id].shape[0] / h, self.imgs[img_id].shape[1] / w) self.imgs[img_id] = cv2.resize(self.imgs[img_id], (w, h)) if self.theme == 'white': pred = 255 - pred if pred.shape[0] != self.imgs[img_id].shape[0] or pred.shape[0] != self.imgs[img_id].shape[1]: pred = cv2.resize(pred, (self.imgs[img_id].shape[1], self.imgs[img_id].shape[0])) if len(pred.shape) == 2: pred = pred.reshape(pred.shape[0], pred.shape[1], 1) self.imgs[img_id] = self.imgs[img_id] * (1.0 - self.opt.hm_transparency) + pred * self.opt.hm_transparency self.imgs[img_id][self.imgs[img_id] > 255] = 255 self.imgs[img_id][self.imgs[img_id] < 0] = 0 self.imgs[img_id] = self.imgs[img_id].astype(np.uint8).copy() for item in dets: if item['score'] > vis_thresh: dim = item['dim'] loc = item['loc'] rot_y = item['rot_y'] cl = self.colors[int(item['class']) - 1, 0, 0].tolist() if loc[2] > 1: box_3d = compute_box_3d(dim, loc, rot_y) box_2d = project_to_image(box_3d, calib) box_2d[:, 0] /= hs box_2d[:, 1] /= ws self.imgs[img_id] = draw_box_3d(self.imgs[img_id], box_2d, cl) self.imgs[img_id] = np.concatenate([self.imgs[img_id], self.imgs[bev]], axis=1)
CenterFusion
positive
def __call__(self, *args, **kwargs): assert len(args) <= len(self.inputs), 'Too many arguments provided' feed_dict = {} for (inpt, value) in zip(self.inputs, args): <DeepExtract> if issubclass(type(inpt), TfInput): feed_dict.update(inpt.make_feed_dict(value)) elif is_placeholder(inpt): feed_dict[inpt] = value </DeepExtract> kwargs_passed_inpt_names = set() for inpt in self.inputs[len(args):]: inpt_name = inpt.name.split(':')[0] inpt_name = inpt_name.split('/')[-1] assert inpt_name not in kwargs_passed_inpt_names, 'this function has two arguments with the same name "{}", so kwargs cannot be used.'.format(inpt_name) if inpt_name in kwargs: kwargs_passed_inpt_names.add(inpt_name) <DeepExtract> if issubclass(type(inpt), TfInput): feed_dict.update(inpt.make_feed_dict(kwargs.pop(inpt_name))) elif is_placeholder(inpt): feed_dict[inpt] = kwargs.pop(inpt_name) </DeepExtract> else: assert inpt in self.givens, 'Missing argument ' + inpt_name assert len(kwargs) == 0, 'Function got extra arguments ' + str(list(kwargs.keys())) for inpt in self.givens: feed_dict[inpt] = feed_dict.get(inpt, self.givens[inpt]) results = get_session().run(self.outputs_update, feed_dict=feed_dict)[:-1] if self.check_nan: if any((np.isnan(r).any() for r in results)): raise RuntimeError('Nan detected') return results
def __call__(self, *args, **kwargs): assert len(args) <= len(self.inputs), 'Too many arguments provided' feed_dict = {} for (inpt, value) in zip(self.inputs, args): if issubclass(type(inpt), TfInput): feed_dict.update(inpt.make_feed_dict(value)) elif is_placeholder(inpt): feed_dict[inpt] = value kwargs_passed_inpt_names = set() for inpt in self.inputs[len(args):]: inpt_name = inpt.name.split(':')[0] inpt_name = inpt_name.split('/')[-1] assert inpt_name not in kwargs_passed_inpt_names, 'this function has two arguments with the same name "{}", so kwargs cannot be used.'.format(inpt_name) if inpt_name in kwargs: kwargs_passed_inpt_names.add(inpt_name) if issubclass(type(inpt), TfInput): feed_dict.update(inpt.make_feed_dict(kwargs.pop(inpt_name))) elif is_placeholder(inpt): feed_dict[inpt] = kwargs.pop(inpt_name) else: assert inpt in self.givens, 'Missing argument ' + inpt_name assert len(kwargs) == 0, 'Function got extra arguments ' + str(list(kwargs.keys())) for inpt in self.givens: feed_dict[inpt] = feed_dict.get(inpt, self.givens[inpt]) results = get_session().run(self.outputs_update, feed_dict=feed_dict)[:-1] if self.check_nan: if any((np.isnan(r).any() for r in results)): raise RuntimeError('Nan detected') return results
deeprl-baselines
positive
def list_lc_collections(lcc_server): """This lists all light curve collections made available on the LCC-Server. If you have an LCC-Server API key present in `~/.astrobase/lccs/` that is associated with an LCC-Server user account, light curve collections visible to this user will be returned as well, even if they are not visible to the public. Parameters ---------- lcc_server : str The base URL of the LCC-Server to talk to. Returns ------- dict Returns a dict containing lists of info items per collection. This includes collection_ids, lists of columns, lists of indexed columns, lists of full-text indexed columns, detailed column descriptions, number of objects in each collection, collection sky coverage, etc. """ url = '%s/api/collections' % lcc_server try: LOGINFO('getting list of recent publicly visible and owned LC collections from %s' % (lcc_server,)) <DeepExtract> USERHOME = os.path.expanduser('~') APIKEYFILE = os.path.join(USERHOME, '.astrobase', 'lccs', 'apikey-%s' % lcc_server.replace('https://', 'https-').replace('http://', 'http-')) if os.path.exists(APIKEYFILE): fileperm = oct(os.stat(APIKEYFILE)[stat.ST_MODE]) if fileperm == '0100600' or fileperm == '0o100600': with open(APIKEYFILE) as infd: (apikey, expires) = infd.read().strip('\n').split() now = datetime.now(utc) if sys.version_info[:2] < (3, 7): expdt = datetime.strptime(expires.replace('Z', ''), '%Y-%m-%dT%H:%M:%S.%f').replace(tzinfo=utc) else: expdt = datetime.fromisoformat(expires.replace('Z', '+00:00')) if now > expdt: LOGERROR('API key has expired. expiry was on: %s' % expires) (have_apikey, apikey, expires) = (False, apikey, expires) else: (have_apikey, apikey, expires) = (True, apikey, expires) else: LOGWARNING('The API key file %s has bad permissions and is insecure, not reading it.\n(you need to chmod 600 this file)' % APIKEYFILE) (have_apikey, apikey, expires) = (False, None, None) else: LOGWARNING('No LCC-Server API key found in: {apikeyfile}'.format(apikeyfile=APIKEYFILE)) (have_apikey, apikey, expires) = (False, None, None) </DeepExtract> if not have_apikey: <DeepExtract> USERHOME = os.path.expanduser('~') APIKEYFILE = os.path.join(USERHOME, '.astrobase', 'lccs', 'apikey-%s' % lcc_server.replace('https://', 'https-').replace('http://', 'http-')) url = '%s/api/key' % lcc_server resp = urlopen(url) if resp.code == 200: respdict = json.loads(resp.read()) else: LOGERROR('could not fetch the API key from LCC-Server at: %s' % lcc_server) LOGERROR('the HTTP status code was: %s' % resp.status_code) (apikey, expires) = None apikey = respdict['result']['apikey'] expires = respdict['result']['expires'] if not os.path.exists(os.path.dirname(APIKEYFILE)): os.makedirs(os.path.dirname(APIKEYFILE)) with open(APIKEYFILE, 'w') as outfd: outfd.write('%s %s\n' % (apikey, expires)) os.chmod(APIKEYFILE, 33152) LOGINFO('key fetched successfully from: %s. expires on: %s' % (lcc_server, expires)) LOGINFO('written to: %s' % APIKEYFILE) (apikey, expires) = (apikey, expires) </DeepExtract> if apikey: headers = {'Authorization': 'Bearer: %s' % apikey} else: headers = {} req = Request(url, data=None, headers=headers) resp = urlopen(req) lcc_list = json.loads(resp.read())['result']['collections'] return lcc_list except HTTPError as e: LOGERROR('could not retrieve list of collections, URL used: %s, error code: %s, reason: %s' % (url, e.code, e.reason)) return None
def list_lc_collections(lcc_server): """This lists all light curve collections made available on the LCC-Server. If you have an LCC-Server API key present in `~/.astrobase/lccs/` that is associated with an LCC-Server user account, light curve collections visible to this user will be returned as well, even if they are not visible to the public. Parameters ---------- lcc_server : str The base URL of the LCC-Server to talk to. Returns ------- dict Returns a dict containing lists of info items per collection. This includes collection_ids, lists of columns, lists of indexed columns, lists of full-text indexed columns, detailed column descriptions, number of objects in each collection, collection sky coverage, etc. """ url = '%s/api/collections' % lcc_server try: LOGINFO('getting list of recent publicly visible and owned LC collections from %s' % (lcc_server,)) USERHOME = os.path.expanduser('~') APIKEYFILE = os.path.join(USERHOME, '.astrobase', 'lccs', 'apikey-%s' % lcc_server.replace('https://', 'https-').replace('http://', 'http-')) if os.path.exists(APIKEYFILE): fileperm = oct(os.stat(APIKEYFILE)[stat.ST_MODE]) if fileperm == '0100600' or fileperm == '0o100600': with open(APIKEYFILE) as infd: (apikey, expires) = infd.read().strip('\n').split() now = datetime.now(utc) if sys.version_info[:2] < (3, 7): expdt = datetime.strptime(expires.replace('Z', ''), '%Y-%m-%dT%H:%M:%S.%f').replace(tzinfo=utc) else: expdt = datetime.fromisoformat(expires.replace('Z', '+00:00')) if now > expdt: LOGERROR('API key has expired. expiry was on: %s' % expires) (have_apikey, apikey, expires) = (False, apikey, expires) else: (have_apikey, apikey, expires) = (True, apikey, expires) else: LOGWARNING('The API key file %s has bad permissions and is insecure, not reading it.\n(you need to chmod 600 this file)' % APIKEYFILE) (have_apikey, apikey, expires) = (False, None, None) else: LOGWARNING('No LCC-Server API key found in: {apikeyfile}'.format(apikeyfile=APIKEYFILE)) (have_apikey, apikey, expires) = (False, None, None) if not have_apikey: USERHOME = os.path.expanduser('~') APIKEYFILE = os.path.join(USERHOME, '.astrobase', 'lccs', 'apikey-%s' % lcc_server.replace('https://', 'https-').replace('http://', 'http-')) url = '%s/api/key' % lcc_server resp = urlopen(url) if resp.code == 200: respdict = json.loads(resp.read()) else: LOGERROR('could not fetch the API key from LCC-Server at: %s' % lcc_server) LOGERROR('the HTTP status code was: %s' % resp.status_code) (apikey, expires) = None apikey = respdict['result']['apikey'] expires = respdict['result']['expires'] if not os.path.exists(os.path.dirname(APIKEYFILE)): os.makedirs(os.path.dirname(APIKEYFILE)) with open(APIKEYFILE, 'w') as outfd: outfd.write('%s %s\n' % (apikey, expires)) os.chmod(APIKEYFILE, 33152) LOGINFO('key fetched successfully from: %s. expires on: %s' % (lcc_server, expires)) LOGINFO('written to: %s' % APIKEYFILE) (apikey, expires) = (apikey, expires) if apikey: headers = {'Authorization': 'Bearer: %s' % apikey} else: headers = {} req = Request(url, data=None, headers=headers) resp = urlopen(req) lcc_list = json.loads(resp.read())['result']['collections'] return lcc_list except HTTPError as e: LOGERROR('could not retrieve list of collections, URL used: %s, error code: %s, reason: %s' % (url, e.code, e.reason)) return None
astrobase
positive
def validate_expression_arguments(self, function, operator, quantity, units, name=None): """ Where a date expression contains a reference to another column we can't evaluate it here, but we can check that the rest of the expression is valid """ if function: <DeepExtract> prefix = f"date_{'function'}_" try: return getattr(self, f'{prefix}{function}') except AttributeError: methods = [n[len(prefix):] for n in dir(self) if n.startswith(prefix)] raise InvalidExpressionError(f"Unknown date {'function'} '{function}' (allowed are {', '.join(methods)})") </DeepExtract> if operator: int(quantity) <DeepExtract> prefix = f"date_{'unit'}_" try: return getattr(self, f'{prefix}{units}') except AttributeError: methods = [n[len(prefix):] for n in dir(self) if n.startswith(prefix)] raise InvalidExpressionError(f"Unknown date {'unit'} '{units}' (allowed are {', '.join(methods)})") </DeepExtract>
def validate_expression_arguments(self, function, operator, quantity, units, name=None): """ Where a date expression contains a reference to another column we can't evaluate it here, but we can check that the rest of the expression is valid """ if function: prefix = f"date_{'function'}_" try: return getattr(self, f'{prefix}{function}') except AttributeError: methods = [n[len(prefix):] for n in dir(self) if n.startswith(prefix)] raise InvalidExpressionError(f"Unknown date {'function'} '{function}' (allowed are {', '.join(methods)})") if operator: int(quantity) prefix = f"date_{'unit'}_" try: return getattr(self, f'{prefix}{units}') except AttributeError: methods = [n[len(prefix):] for n in dir(self) if n.startswith(prefix)] raise InvalidExpressionError(f"Unknown date {'unit'} '{units}' (allowed are {', '.join(methods)})") </DeepExtract>
cohort-extractor
positive
def __init__(self, timeout_secs, message=None, log_level=logging.WARNING, interrupt='thread', sig=signal.SIGINT, id=None, interruptions: Union[Dict, List[Dict]]=None, wait_retry_secs=1, before_interrupt=None): def interruption(): inter_iter = iter(self._interruptions) while not self._interrupt_event.is_set(): inter = self._last_attempt = next(inter_iter, self._last_attempt) log.log(self._log_level, inter.message) if inter.before_interrupt is not None: try: inter.before_interrupt() except Exception: log.warning('Swallowing the error raised by `before_interrupt` hook: %s', inter.before_interrupt, exc_info=True) try: if inter.interrupt == 'thread': if isinstance(inter.sig, (type(None), BaseException)): exc = TimeoutError(inter.message) if inter.sig is None else inter.sig <DeepExtract> import ctypes tid = ctypes.c_long(inter.id) exc_class = exc if inspect.isclass(exc) else type(exc.__class__.__name__, (exc.__class__,), dict(__init__=lambda s: super(s.__class__, s).__init__(str(exc)))) exc_class = ctypes.py_object(exc_class) ret = ctypes.pythonapi.PyThreadState_SetAsyncExc(tid, exc_class) if ret == 0: raise ValueError(f'Nonexistent thread {inter.id}') elif ret > 1: ctypes.pythonapi.PyThreadState_SetAsyncExc(tid, None) raise SystemError(f'Failed raising exception in thread {inter.id}') </DeepExtract> else: signal.pthread_kill(inter.id, inter.sig) elif inter.interrupt == 'process': os.kill(inter.id, inter.sig) except Exception: raise finally: self._interrupt_event.wait(inter.wait) super().__init__(timeout_secs, on_timeout=interruption) self._timeout_secs = timeout_secs self._message = message self._log_level = log_level self._interrupt = interrupt self._sig = sig self._id = id self._wait_retry_secs = wait_retry_secs self._before_interrupt = before_interrupt self._interruptions = [self._make_interruption(i) for i in (interruptions if isinstance(interruptions, list) else [interruptions] if isinstance(interruptions, dict) else [dict()])] self._interrupt_event = threading.Event() self._last_attempt = None
def __init__(self, timeout_secs, message=None, log_level=logging.WARNING, interrupt='thread', sig=signal.SIGINT, id=None, interruptions: Union[Dict, List[Dict]]=None, wait_retry_secs=1, before_interrupt=None): def interruption(): inter_iter = iter(self._interruptions) while not self._interrupt_event.is_set(): inter = self._last_attempt = next(inter_iter, self._last_attempt) log.log(self._log_level, inter.message) if inter.before_interrupt is not None: try: inter.before_interrupt() except Exception: log.warning('Swallowing the error raised by `before_interrupt` hook: %s', inter.before_interrupt, exc_info=True) try: if inter.interrupt == 'thread': if isinstance(inter.sig, (type(None), BaseException)): exc = TimeoutError(inter.message) if inter.sig is None else inter.sig import ctypes tid = ctypes.c_long(inter.id) exc_class = exc if inspect.isclass(exc) else type(exc.__class__.__name__, (exc.__class__,), dict(__init__=lambda s: super(s.__class__, s).__init__(str(exc)))) exc_class = ctypes.py_object(exc_class) ret = ctypes.pythonapi.PyThreadState_SetAsyncExc(tid, exc_class) if ret == 0: raise ValueError(f'Nonexistent thread {inter.id}') elif ret > 1: ctypes.pythonapi.PyThreadState_SetAsyncExc(tid, None) raise SystemError(f'Failed raising exception in thread {inter.id}') else: signal.pthread_kill(inter.id, inter.sig) elif inter.interrupt == 'process': os.kill(inter.id, inter.sig) except Exception: raise finally: self._interrupt_event.wait(inter.wait) super().__init__(timeout_secs, on_timeout=interruption) self._timeout_secs = timeout_secs self._message = message self._log_level = log_level self._interrupt = interrupt self._sig = sig self._id = id self._wait_retry_secs = wait_retry_secs self._before_interrupt = before_interrupt self._interruptions = [self._make_interruption(i) for i in (interruptions if isinstance(interruptions, list) else [interruptions] if isinstance(interruptions, dict) else [dict()])] self._interrupt_event = threading.Event() self._last_attempt = None
automlbenchmark
positive
@pytest.mark.hps_slow_test def test_parallel_cv(): """ Test whether parallel jobs work """ <DeepExtract> (X, y) = make_classification(n_samples=1000, n_features=20, n_redundant=0, n_informative=18, random_state=1, n_clusters_per_class=1) opt = BayesSearchCV(SVC(), {'C': Real(0.001, 1000.0, prior='log-uniform'), 'gamma': Real(0.001, 10.0, prior='log-uniform'), 'degree': Integer(1, 3)}, n_jobs=1, n_iter=11, n_points=n_points, cv=5, random_state=42) opt.fit(X, y) assert opt.score(X, y) > 0.9 opt2 = BayesSearchCV(SVC(), {'C': Real(0.001, 1000.0, prior='log-uniform'), 'gamma': Real(0.001, 10.0, prior='log-uniform'), 'degree': Integer(1, 3)}, n_jobs=1, n_iter=11, n_points=n_points, cv=5, random_state=42) opt2.fit(X, y) assert opt.score(X, y) == opt2.score(X, y) </DeepExtract> <DeepExtract> (X, y) = make_classification(n_samples=1000, n_features=20, n_redundant=0, n_informative=18, random_state=1, n_clusters_per_class=1) opt = BayesSearchCV(SVC(), {'C': Real(0.001, 1000.0, prior='log-uniform'), 'gamma': Real(0.001, 10.0, prior='log-uniform'), 'degree': Integer(1, 3)}, n_jobs=2, n_iter=11, n_points=n_points, cv=5, random_state=42) opt.fit(X, y) assert opt.score(X, y) > 0.9 opt2 = BayesSearchCV(SVC(), {'C': Real(0.001, 1000.0, prior='log-uniform'), 'gamma': Real(0.001, 10.0, prior='log-uniform'), 'degree': Integer(1, 3)}, n_jobs=2, n_iter=11, n_points=n_points, cv=5, random_state=42) opt2.fit(X, y) assert opt.score(X, y) == opt2.score(X, y) </DeepExtract>
@pytest.mark.hps_slow_test def test_parallel_cv(): """ Test whether parallel jobs work """ (X, y) = make_classification(n_samples=1000, n_features=20, n_redundant=0, n_informative=18, random_state=1, n_clusters_per_class=1) opt = BayesSearchCV(SVC(), {'C': Real(0.001, 1000.0, prior='log-uniform'), 'gamma': Real(0.001, 10.0, prior='log-uniform'), 'degree': Integer(1, 3)}, n_jobs=1, n_iter=11, n_points=n_points, cv=5, random_state=42) opt.fit(X, y) assert opt.score(X, y) > 0.9 opt2 = BayesSearchCV(SVC(), {'C': Real(0.001, 1000.0, prior='log-uniform'), 'gamma': Real(0.001, 10.0, prior='log-uniform'), 'degree': Integer(1, 3)}, n_jobs=1, n_iter=11, n_points=n_points, cv=5, random_state=42) opt2.fit(X, y) assert opt.score(X, y) == opt2.score(X, y) (X, y) = make_classification(n_samples=1000, n_features=20, n_redundant=0, n_informative=18, random_state=1, n_clusters_per_class=1) opt = BayesSearchCV(SVC(), {'C': Real(0.001, 1000.0, prior='log-uniform'), 'gamma': Real(0.001, 10.0, prior='log-uniform'), 'degree': Integer(1, 3)}, n_jobs=2, n_iter=11, n_points=n_points, cv=5, random_state=42) opt.fit(X, y) assert opt.score(X, y) > 0.9 opt2 = BayesSearchCV(SVC(), {'C': Real(0.001, 1000.0, prior='log-uniform'), 'gamma': Real(0.001, 10.0, prior='log-uniform'), 'degree': Integer(1, 3)}, n_jobs=2, n_iter=11, n_points=n_points, cv=5, random_state=42) opt2.fit(X, y) assert opt.score(X, y) == opt2.score(X, y) </DeepExtract>
deephyper
positive
def test_dict_output(): vsim = elfi.tools.vectorize(simulator) vsum = elfi.tools.vectorize(summary) <DeepExtract> n = 30 rs = random_state or np.random.RandomState() data = rs.multinomial(n, [0.2, 0.8]) obs = dict(zip(range(n), data)) </DeepExtract> elfi.new_model() p = elfi.Prior('dirichlet', [2, 2]) sim = elfi.Simulator(vsim, p, observed=obs) S = elfi.Summary(vsum, sim) d = elfi.Distance('euclidean', S) pool = elfi.OutputPool(['sim']) rej = elfi.Rejection(d, batch_size=100, pool=pool, output_names=['sim']) sample = rej.sample(100, n_sim=1000) mean = np.mean(sample.samples['p'], axis=0) assert mean[1] > mean[0]
def test_dict_output(): vsim = elfi.tools.vectorize(simulator) vsum = elfi.tools.vectorize(summary) n = 30 rs = random_state or np.random.RandomState() data = rs.multinomial(n, [0.2, 0.8]) obs = dict(zip(range(n), data)) elfi.new_model() p = elfi.Prior('dirichlet', [2, 2]) sim = elfi.Simulator(vsim, p, observed=obs) S = elfi.Summary(vsum, sim) d = elfi.Distance('euclidean', S) pool = elfi.OutputPool(['sim']) rej = elfi.Rejection(d, batch_size=100, pool=pool, output_names=['sim']) sample = rej.sample(100, n_sim=1000) mean = np.mean(sample.samples['p'], axis=0) assert mean[1] > mean[0]
elfi
positive
@auto_fp16() def forward(self, feats): """ Forward computation in multiple levels Args: feats (list(Tensor)): input feature maps, in shape of [B, C, H, W] Returns: list(Tensor): predict feature map, in shape of [B, 2, H, W] """ preds = [] for i in range(len(self.featmap_indices)): <DeepExtract> x_4 = feats[i] x_p4 = self.P4_conv(x_4) x_4_1x7 = self.channel4_1x7_conv(x_4) x_p4_1x7 = self.P4_1x7_conv(x_p4) x_4 = x_p4_1x7 + x_p4 + x_4_1x7 x_4 = self.rpn4(x_4) score_pred_text_4 = self.conv_logits_text(x_4) score_pred_text_4 = torch.sigmoid(score_pred_text_4) pred = score_pred_text_4 </DeepExtract> preds.append(pred) return preds
@auto_fp16() def forward(self, feats): """ Forward computation in multiple levels Args: feats (list(Tensor)): input feature maps, in shape of [B, C, H, W] Returns: list(Tensor): predict feature map, in shape of [B, 2, H, W] """ preds = [] for i in range(len(self.featmap_indices)): x_4 = feats[i] x_p4 = self.P4_conv(x_4) x_4_1x7 = self.channel4_1x7_conv(x_4) x_p4_1x7 = self.P4_1x7_conv(x_p4) x_4 = x_p4_1x7 + x_p4 + x_4_1x7 x_4 = self.rpn4(x_4) score_pred_text_4 = self.conv_logits_text(x_4) score_pred_text_4 = torch.sigmoid(score_pred_text_4) pred = score_pred_text_4 preds.append(pred) return preds
DAVAR-Lab-OCR
positive
def test_actual_backend_noproxy(self): <DeepExtract> reg = CacheRegion(**init_args) reg.configure(backend, **config_args) reg = reg </DeepExtract> assert isinstance(reg.backend, CacheBackend) assert isinstance(reg.actual_backend, CacheBackend)
def test_actual_backend_noproxy(self): reg = CacheRegion(**init_args) reg.configure(backend, **config_args) reg = reg assert isinstance(reg.backend, CacheBackend) assert isinstance(reg.actual_backend, CacheBackend)
dogpile.cache
positive
def test_var_undefined(self): unparser = Unparser() <DeepExtract> ast = es5.parse(textwrap.dedent('\n var x, y;\n ').strip()) </DeepExtract> self.assertEqual(dict(unparser(ast)), {'x': None, 'y': None})
def test_var_undefined(self): unparser = Unparser() ast = es5.parse(textwrap.dedent('\n var x, y;\n ').strip()) self.assertEqual(dict(unparser(ast)), {'x': None, 'y': None})
calmjs.parse
positive
def doTest(): <DeepExtract> equal(doExtraDetect('@media screen and (max-device-width: 480px)'.replace(' ', '')), WEBKIT, 'webkit mobile hack is ok') equal(doExtraDetect('@media screen and (-webkit-min-device-pixel-ratio:0)'.replace(' ', '')), WEBKIT, 'webkit hack is ok') equal(doExtraDetect('@media all and (-webkit-min-device-pixel-ratio:10000), not all and (-webkit-min-device-pixel-ratio:0)'.replace(' ', '')), OPERA, 'opera hack is ok') </DeepExtract> <DeepExtract> equal(doExtraDetect('@keyframes fda'), NONEIE | IE9PLUS, '@keyframes') equal(doExtraDetect('@-webkit-keyframes fda'), WEBKIT, '@-webkit-keyframes') equal(doExtraDetect('@-moz-keyframes fda'), FIREFOX, '@-moz-keyframes') equal(doExtraDetect('@-ms-keyframes fda'), IE9PLUS, '@-ms-keyframes') equal(doExtraDetect('@-o-keyframes fda'), OPERA, '@-o-keyframes') </DeepExtract>
def doTest(): equal(doExtraDetect('@media screen and (max-device-width: 480px)'.replace(' ', '')), WEBKIT, 'webkit mobile hack is ok') equal(doExtraDetect('@media screen and (-webkit-min-device-pixel-ratio:0)'.replace(' ', '')), WEBKIT, 'webkit hack is ok') equal(doExtraDetect('@media all and (-webkit-min-device-pixel-ratio:10000), not all and (-webkit-min-device-pixel-ratio:0)'.replace(' ', '')), OPERA, 'opera hack is ok') equal(doExtraDetect('@keyframes fda'), NONEIE | IE9PLUS, '@keyframes') equal(doExtraDetect('@-webkit-keyframes fda'), WEBKIT, '@-webkit-keyframes') equal(doExtraDetect('@-moz-keyframes fda'), FIREFOX, '@-moz-keyframes') equal(doExtraDetect('@-ms-keyframes fda'), IE9PLUS, '@-ms-keyframes') equal(doExtraDetect('@-o-keyframes fda'), OPERA, '@-o-keyframes') </DeepExtract>
CSSCheckStyle
positive
def mlp_model_adv_q(input, num_outputs, scope, index, n_adv=3, n_good=5, n_land=6, share_weights=False, num_units=64, reuse=None): if reuse is None: reuse = tf.AUTO_REUSE if share_weights else False with tf.variable_scope(scope, reuse=reuse): basic = 0 self_dim = n_land * 3 + 5 shorton = 1 num_test = num_units // 2 input_action = input[:, -5 * (n_adv + n_good):] self_action = input_action[:, index * 5:(index + 1) * 5] other_good_action = input_action[:, 5 * n_adv:] adv_action = input_action[:, :5 * n_adv] other_adv_action = tf.concat([input_action[:, :5 * index], input_action[:, 5 * (index + 1):5 * n_adv]], 1) length_wolf = n_land * 3 + (n_good + n_adv) * 5 length_sheep = length_wolf self_start = index * length_wolf input_obs_self = input[:, self_start:self_start + length_wolf] batch_size = input.shape[0].value self_in = tf.concat([input_obs_self, self_action], 1) with tf.variable_scope('self', reuse=reuse): <DeepExtract> if reuse is None: reuse = tf.AUTO_REUSE if share_weights else False with tf.variable_scope('mlp', reuse=reuse): num_test = num_units // 2 batch_size = self_in.shape[0].value self_dim = 5 + 3 * n_land self_land = self_in[:, 5:5 + 3 * n_land] if True: self_action = self_in[:, -5:] else: self_action = None self_in = self_in[:, :5] if True: self_in = tf.concat([self_in, self_action], axis=1) with tf.variable_scope('self', reuse=reuse): self_out = FULLY_CONNECTED(self_in, num_outputs=num_units, scope='l1', activation_fn=tf.nn.relu) self_out = FULLY_CONNECTED(self_out, num_outputs=num_test, scope='l2', activation_fn=tf.nn.relu) land_mark_input = self_in[:, 5:5 + 3 * n_land] land_mark_input = tf.split(land_mark_input, n_land, axis=1) land_info = [] land_outs = [] with tf.variable_scope('landmark', reuse=reuse): fc1_out = FULLY_CONNECTED(land_mark_input, num_outputs=num_units, scope='l1', activation_fn=tf.nn.relu) land_outs = FULLY_CONNECTED(fc1_out, num_outputs=num_test, scope='l2', activation_fn=tf.nn.relu) land_out = tf.transpose(land_outs, [1, 2, 0]) land_out_attn = tf.nn.softmax(tf.matmul(tf.expand_dims(self_out, 1), land_out) / math.sqrt(num_test)) land_out = tf.squeeze(tf.matmul(land_out_attn, tf.transpose(land_out, [0, 2, 1])), 1) land_out = tf.contrib.layers.layer_norm(land_out) land_out = tf.nn.relu(land_out) other_good_in = self_in[:, self_dim:] other_good_ins = [] for i in range(n_good): pos = other_good_in[:, 2 * (n_adv - 1) + i * 2:2 * (n_adv - 1) + (i + 1) * 2] vel = other_good_in[:, 4 * (n_adv - 1) + 2 * n_good + i * 2:4 * (n_adv - 1) + 2 * n_good + (i + 1) * 2] is_live = other_good_in[:, 5 * (n_adv - 1) + 4 * n_good + i:5 * (n_adv - 1) + 4 * n_good + i + 1] if True: tmp = tf.concat([pos, vel, is_live], axis=1) else: tmp = tf.concat([pos, vel, is_live], axis=1) other_good_ins.append(tmp) with tf.variable_scope('good', reuse=reuse): fc1_good = FULLY_CONNECTED(other_good_ins, num_outputs=num_units, activation_fn=tf.nn.relu, scope='l1', reuse=reuse) other_good_outs = FULLY_CONNECTED(fc1_good, num_outputs=num_test, activation_fn=tf.nn.relu, scope='l2', reuse=reuse) other_good_out = tf.transpose(other_good_outs, [1, 2, 0]) other_good_out_attn = tf.nn.softmax(tf.matmul(tf.expand_dims(self_out, 1), other_good_out) / math.sqrt(num_test)) other_good_out = tf.squeeze(tf.matmul(other_good_out_attn, tf.transpose(other_good_out, [0, 2, 1])), 1) other_good_out = tf.contrib.layers.layer_norm(other_good_out) other_good_out = tf.nn.relu(other_good_out) if n_adv == 1: input_merge = tf.concat([self_out, other_good_out], 1) out = FULLY_CONNECTED(input_merge, num_outputs=num_units, activation_fn=tf.nn.relu) out = FULLY_CONNECTED(out, num_outputs=num_test, activation_fn=None) self_out = out other_adv_beg = self_dim other_adv_in = self_in[:, self_dim:] other_adv_ins = [] for i in range(n_adv - 1): pos = other_adv_in[:, i * 2:(i + 1) * 2] vel = other_adv_in[:, 2 * (n_adv - 1) + 2 * n_good + i * 2:2 * (n_adv - 1) + 2 * n_good + (i + 1) * 2] is_live = other_adv_in[:, 4 * (n_adv - 1) + 4 * n_good + i:4 * (n_adv - 1) + 4 * n_good + i + 1] if not True: tmp = tf.concat([pos, vel, is_live], axis=1) else: tmp = tf.concat([pos, vel, is_live], axis=1) other_adv_ins.append(tmp) other_adv_outs = [] with tf.variable_scope('adv', reuse=reuse): fc1_adv = FULLY_CONNECTED(other_adv_ins, num_outputs=num_units, activation_fn=tf.nn.relu, scope='l1', reuse=reuse) other_adv_outs = FULLY_CONNECTED(fc1_adv, num_outputs=num_test, activation_fn=tf.nn.relu, scope='l2', reuse=reuse) other_adv_out = tf.transpose(other_adv_outs, [1, 2, 0]) if n_adv > 0: other_adv_out_attn = tf.nn.softmax(tf.matmul(tf.expand_dims(self_out, 1), other_adv_out) / math.sqrt(num_test)) other_adv_out = tf.squeeze(tf.matmul(other_adv_out_attn, tf.transpose(other_adv_out, [0, 2, 1])), 1) other_adv_out = tf.contrib.layers.layer_norm(other_adv_out) other_adv_out = tf.nn.relu(other_adv_out) else: other_adv_out = None if n_adv <= 0: input_merge = tf.concat([self_out, land_out, other_good_out], 1) else: input_merge = tf.concat([self_out, land_out, other_good_out, other_adv_out], 1) out = FULLY_CONNECTED(input_merge, num_outputs=num_units, scope='last_1', activation_fn=tf.nn.relu if True else tf.nn.leaky_relu) out = FULLY_CONNECTED(out, num_outputs=num_test, scope='last_2', activation_fn=None) self_out = out </DeepExtract> other_good_ins = [] for i in range(n_good): other_good_beg = n_adv * length_wolf + i * length_sheep other_good_in = input[:, other_good_beg:other_good_beg + length_sheep] tmp = tf.concat([other_good_in, other_good_action[:, i * 5:(i + 1) * 5]], axis=1) other_good_ins.append(tmp) other_good_outs = [] if basic: other_good_out = tf.concat([i for i in other_good_ins], 1) else: for i in range(n_good): with tf.variable_scope('good{}'.format('' if share_weights else i), reuse=reuse): <DeepExtract> if reuse is None: reuse = tf.AUTO_REUSE if share_weights else False with tf.variable_scope('mlp', reuse=reuse): num_test = num_units // 2 batch_size = other_good_ins[i].shape[0].value self_land = other_good_ins[i][:, 5:5 + 3 * n_land] if True: self_action = other_good_ins[i][:, -5:] else: self_action = None self_dim = 5 + 3 * n_land self_in = other_good_ins[i][:, :5] if True: self_in = tf.concat([self_in, self_action], axis=1) with tf.variable_scope('self', reuse=reuse): self_out = FULLY_CONNECTED(self_in, num_outputs=num_units, scope='l1', activation_fn=tf.nn.relu) self_out = FULLY_CONNECTED(self_out, num_outputs=num_test, scope='l2', activation_fn=tf.nn.relu) land_mark_input = other_good_ins[i][:, 5:5 + 3 * n_land] land_mark_input = tf.split(land_mark_input, n_land, axis=1) with tf.variable_scope('landmark', reuse=reuse): fc1_out = FULLY_CONNECTED(land_mark_input, num_outputs=num_units, scope='l1', activation_fn=tf.nn.relu) land_outs = FULLY_CONNECTED(fc1_out, num_outputs=num_test, scope='l2', activation_fn=tf.nn.relu) land_out = tf.transpose(land_outs, [1, 2, 0]) land_out_attn = tf.nn.softmax(tf.matmul(tf.expand_dims(self_out, 1), land_out) / math.sqrt(num_test)) land_out = tf.squeeze(tf.matmul(land_out_attn, tf.transpose(land_out, [0, 2, 1])), 1) land_out = tf.contrib.layers.layer_norm(land_out) land_out = tf.nn.relu(land_out) if n_good != 1: other_good_dim = (2 + 2 + 1) * (n_good - 1) other_good_in = other_good_ins[i][:, self_dim:] other_good_ins = [] for i in range(n_good - 1): pos = other_good_in[:, 2 * n_adv + i * 2:2 * n_adv + (i + 1) * 2] vel = other_good_in[:, 2 * n_adv + 2 * (n_good - 1) + 2 * n_adv + i * 2:2 * n_adv + 2 * (n_good - 1) + 2 * n_adv + (i + 1) * 2] is_live = other_good_in[:, 5 * n_adv + 4 * (n_good - 1) + i:5 * n_adv + 4 * (n_good - 1) + i + 1] if True: tmp = tf.concat([pos, vel, is_live], axis=1) else: tmp = tf.concat([pos, vel, is_live], axis=1) other_good_ins.append(tmp) with tf.variable_scope('good', reuse=reuse): fc1_good = FULLY_CONNECTED(other_good_ins, num_outputs=num_units, activation_fn=tf.nn.relu, scope='l1', reuse=reuse) other_good_outs = FULLY_CONNECTED(fc1_good, num_outputs=num_test, activation_fn=tf.nn.relu, scope='l2', reuse=reuse) other_good_out = tf.transpose(other_good_outs, [1, 2, 0]) other_good_out_attn = tf.nn.softmax(tf.matmul(tf.expand_dims(self_out, 1), other_good_out) / math.sqrt(num_test)) other_good_out = tf.squeeze(tf.matmul(other_good_out_attn, tf.transpose(other_good_out, [0, 2, 1])), 1) other_good_out = tf.contrib.layers.layer_norm(other_good_out) other_good_out = tf.nn.relu(other_good_out) other_adv_dim = 5 * n_adv other_adv_beg = self_dim other_adv_in = other_good_ins[i][:, other_adv_beg:] other_adv_ins = [] for i in range(n_adv): pos = other_adv_in[:, i * 2:(i + 1) * 2] vel = other_adv_in[:, 2 * n_adv + 2 * (n_good - 1) + i * 2:2 * n_adv + 2 * (n_good - 1) + (i + 1) * 2] is_live = other_adv_in[:, 4 * n_adv + 4 * (n_good - 1) + i:4 * n_adv + 4 * (n_good - 1) + i + 1] if not True: tmp = tf.concat([pos, vel, is_live], axis=1) else: tmp = tf.concat([pos, vel, is_live], axis=1) other_adv_ins.append(tmp) with tf.variable_scope('adv', reuse=reuse): fc1_adv = FULLY_CONNECTED(other_adv_ins, num_outputs=num_units, activation_fn=tf.nn.relu, scope='l1', reuse=reuse) other_adv_outs = FULLY_CONNECTED(fc1_adv, num_outputs=num_test, activation_fn=tf.nn.relu, scope='l2', reuse=reuse) if n_adv > 0: other_adv_out = tf.transpose(other_adv_outs, [1, 2, 0]) other_adv_out_attn = tf.nn.softmax(tf.matmul(tf.expand_dims(self_out, 1), other_adv_out) / math.sqrt(num_test)) other_adv_out = tf.squeeze(tf.matmul(other_adv_out_attn, tf.transpose(other_adv_out, [0, 2, 1])), 1) other_adv_out = tf.contrib.layers.layer_norm(other_adv_out) other_adv_out = tf.nn.relu(other_adv_out) else: other_adv_out = None if n_good == 1: input_merge = tf.concat([self_out, land_out, other_adv_out], 1) elif n_adv <= 0: input_merge = tf.concat([self_out, land_out, other_good_out], 1) else: input_merge = tf.concat([self_out, land_out, other_good_out, other_adv_out], 1) out = FULLY_CONNECTED(input_merge, num_outputs=num_units, scope='last_1', activation_fn=tf.nn.relu if True else tf.nn.leaky_relu) out = FULLY_CONNECTED(out, num_outputs=num_units, scope='last_11', activation_fn=tf.nn.relu if True else tf.nn.leaky_relu) out = FULLY_CONNECTED(out, num_outputs=num_test, scope='last_2', activation_fn=None) out = out </DeepExtract> other_good_outs.append(out) if n_adv != 1: other_adv_ins = [] for i in range(n_adv): if i == index: continue other_adv_beg = length_wolf * i other_adv_in = input[:, other_adv_beg:other_adv_beg + length_wolf] tmp = tf.concat([other_adv_in, adv_action[:, i * 5:(i + 1) * 5]], 1) other_adv_ins.append(tmp) other_adv_outs = [] if basic: other_adv_out = tf.concat([i for i in other_adv_ins], 1) else: for i in range(n_adv - 1): true_id = i if i < index else i + 1 with tf.variable_scope('adv{}'.format('' if share_weights else true_id), reuse=reuse): <DeepExtract> if reuse is None: reuse = tf.AUTO_REUSE if share_weights else False with tf.variable_scope('mlp', reuse=reuse): num_test = num_units // 2 batch_size = other_adv_ins[i].shape[0].value self_dim = 5 + 3 * n_land self_land = other_adv_ins[i][:, 5:5 + 3 * n_land] if True: self_action = other_adv_ins[i][:, -5:] else: self_action = None self_in = other_adv_ins[i][:, :5] if True: self_in = tf.concat([self_in, self_action], axis=1) with tf.variable_scope('self', reuse=reuse): self_out = FULLY_CONNECTED(self_in, num_outputs=num_units, scope='l1', activation_fn=tf.nn.relu) self_out = FULLY_CONNECTED(self_out, num_outputs=num_test, scope='l2', activation_fn=tf.nn.relu) land_mark_input = other_adv_ins[i][:, 5:5 + 3 * n_land] land_mark_input = tf.split(land_mark_input, n_land, axis=1) land_info = [] land_outs = [] with tf.variable_scope('landmark', reuse=reuse): fc1_out = FULLY_CONNECTED(land_mark_input, num_outputs=num_units, scope='l1', activation_fn=tf.nn.relu) land_outs = FULLY_CONNECTED(fc1_out, num_outputs=num_test, scope='l2', activation_fn=tf.nn.relu) land_out = tf.transpose(land_outs, [1, 2, 0]) land_out_attn = tf.nn.softmax(tf.matmul(tf.expand_dims(self_out, 1), land_out) / math.sqrt(num_test)) land_out = tf.squeeze(tf.matmul(land_out_attn, tf.transpose(land_out, [0, 2, 1])), 1) land_out = tf.contrib.layers.layer_norm(land_out) land_out = tf.nn.relu(land_out) other_good_in = other_adv_ins[i][:, self_dim:] other_good_ins = [] for i in range(n_good): pos = other_good_in[:, 2 * (n_adv - 1) + i * 2:2 * (n_adv - 1) + (i + 1) * 2] vel = other_good_in[:, 4 * (n_adv - 1) + 2 * n_good + i * 2:4 * (n_adv - 1) + 2 * n_good + (i + 1) * 2] is_live = other_good_in[:, 5 * (n_adv - 1) + 4 * n_good + i:5 * (n_adv - 1) + 4 * n_good + i + 1] if True: tmp = tf.concat([pos, vel, is_live], axis=1) else: tmp = tf.concat([pos, vel, is_live], axis=1) other_good_ins.append(tmp) with tf.variable_scope('good', reuse=reuse): fc1_good = FULLY_CONNECTED(other_good_ins, num_outputs=num_units, activation_fn=tf.nn.relu, scope='l1', reuse=reuse) other_good_outs = FULLY_CONNECTED(fc1_good, num_outputs=num_test, activation_fn=tf.nn.relu, scope='l2', reuse=reuse) other_good_out = tf.transpose(other_good_outs, [1, 2, 0]) other_good_out_attn = tf.nn.softmax(tf.matmul(tf.expand_dims(self_out, 1), other_good_out) / math.sqrt(num_test)) other_good_out = tf.squeeze(tf.matmul(other_good_out_attn, tf.transpose(other_good_out, [0, 2, 1])), 1) other_good_out = tf.contrib.layers.layer_norm(other_good_out) other_good_out = tf.nn.relu(other_good_out) if n_adv == 1: input_merge = tf.concat([self_out, other_good_out], 1) out = FULLY_CONNECTED(input_merge, num_outputs=num_units, activation_fn=tf.nn.relu) out = FULLY_CONNECTED(out, num_outputs=num_test, activation_fn=None) out = out other_adv_beg = self_dim other_adv_in = other_adv_ins[i][:, self_dim:] other_adv_ins = [] for i in range(n_adv - 1): pos = other_adv_in[:, i * 2:(i + 1) * 2] vel = other_adv_in[:, 2 * (n_adv - 1) + 2 * n_good + i * 2:2 * (n_adv - 1) + 2 * n_good + (i + 1) * 2] is_live = other_adv_in[:, 4 * (n_adv - 1) + 4 * n_good + i:4 * (n_adv - 1) + 4 * n_good + i + 1] if not True: tmp = tf.concat([pos, vel, is_live], axis=1) else: tmp = tf.concat([pos, vel, is_live], axis=1) other_adv_ins.append(tmp) other_adv_outs = [] with tf.variable_scope('adv', reuse=reuse): fc1_adv = FULLY_CONNECTED(other_adv_ins, num_outputs=num_units, activation_fn=tf.nn.relu, scope='l1', reuse=reuse) other_adv_outs = FULLY_CONNECTED(fc1_adv, num_outputs=num_test, activation_fn=tf.nn.relu, scope='l2', reuse=reuse) other_adv_out = tf.transpose(other_adv_outs, [1, 2, 0]) if n_adv > 0: other_adv_out_attn = tf.nn.softmax(tf.matmul(tf.expand_dims(self_out, 1), other_adv_out) / math.sqrt(num_test)) other_adv_out = tf.squeeze(tf.matmul(other_adv_out_attn, tf.transpose(other_adv_out, [0, 2, 1])), 1) other_adv_out = tf.contrib.layers.layer_norm(other_adv_out) other_adv_out = tf.nn.relu(other_adv_out) else: other_adv_out = None if n_adv <= 0: input_merge = tf.concat([self_out, land_out, other_good_out], 1) else: input_merge = tf.concat([self_out, land_out, other_good_out, other_adv_out], 1) out = FULLY_CONNECTED(input_merge, num_outputs=num_units, scope='last_1', activation_fn=tf.nn.relu if True else tf.nn.leaky_relu) out = FULLY_CONNECTED(out, num_outputs=num_test, scope='last_2', activation_fn=None) out = out </DeepExtract> other_adv_outs.append(out) else: other_adv_outs = [] theta_out = [] phi_out = [] g_out = [] theta_out.append(FULLY_CONNECTED(self_out, num_outputs=num_test, scope='theta_f', reuse=tf.AUTO_REUSE, activation_fn=None)) phi_out.append(FULLY_CONNECTED(self_out, num_outputs=num_test, scope='phi_f', reuse=tf.AUTO_REUSE, activation_fn=None)) g_out.append(FULLY_CONNECTED(self_out, num_outputs=num_test, scope='g_f', reuse=tf.AUTO_REUSE, activation_fn=None)) for (i, out) in enumerate(other_good_outs): theta_out.append(FULLY_CONNECTED(out, num_outputs=num_test, scope='theta_f', reuse=tf.AUTO_REUSE, activation_fn=None)) phi_out.append(FULLY_CONNECTED(out, num_outputs=num_test, scope='phi_f', reuse=tf.AUTO_REUSE, activation_fn=None)) g_out.append(FULLY_CONNECTED(out, num_outputs=num_test, scope='g_f', reuse=tf.AUTO_REUSE, activation_fn=None)) for (i, out) in enumerate(other_adv_outs): theta_out.append(FULLY_CONNECTED(out, num_outputs=num_test, scope='theta_f', reuse=tf.AUTO_REUSE, activation_fn=None)) phi_out.append(FULLY_CONNECTED(out, num_outputs=num_test, scope='phi_f', reuse=tf.AUTO_REUSE, activation_fn=None)) g_out.append(FULLY_CONNECTED(out, num_outputs=num_test, scope='g_f', reuse=tf.AUTO_REUSE, activation_fn=None)) theta_outs = tf.stack(theta_out, 2) phi_outs = tf.stack(phi_out, 2) g_outs = tf.stack(g_out, 2) self_attention = tf.nn.softmax(tf.matmul(theta_outs, tf.transpose(phi_outs, [0, 2, 1])) / math.sqrt(num_test)) input_all = tf.matmul(self_attention, g_outs) input_all_new = [] for i in range(n_adv + n_good): input_all_new.append(tf.contrib.layers.layer_norm(input_all[:, :, i], scope='qlayernorm1', reuse=tf.AUTO_REUSE)) input_all = tf.stack(input_all_new, 2) '\n input_all = tf.contrib.layers.layer_norm(input_all)\n ' input_all = tf.nn.relu(input_all) self_out_new = input_all[:, :, 0] good_out_new = input_all[:, :, 1:1 + n_good] adv_out_new = input_all[:, :, 1 + n_good:] if n_adv > 0: other_adv_out_attn = tf.nn.softmax(tf.matmul(tf.expand_dims(self_out_new, 1), adv_out_new) / math.sqrt(num_test)) other_adv_out = tf.squeeze(tf.matmul(other_adv_out_attn, tf.transpose(adv_out_new, [0, 2, 1])), 1) other_adv_out = tf.contrib.layers.layer_norm(other_adv_out) other_adv_out = tf.nn.relu(other_adv_out) other_good_out_attn = tf.nn.softmax(tf.matmul(tf.expand_dims(self_out_new, 1), good_out_new) / math.sqrt(num_test)) other_good_out = tf.squeeze(tf.matmul(other_good_out_attn, tf.transpose(good_out_new, [0, 2, 1])), 1) other_good_out = tf.contrib.layers.layer_norm(other_good_out) other_good_out = tf.nn.relu(other_good_out) if n_adv == 1: input_merge = tf.concat([self_out, other_good_out], 1) elif n_adv <= 0: input_merge = tf.concat([self_out, other_good_out], 1) else: input_merge = tf.concat([self_out, other_good_out, other_adv_out], 1) out = FULLY_CONNECTED(input_merge, num_outputs=num_units, scope='last_1', activation_fn=tf.nn.leaky_relu) out = FULLY_CONNECTED(out, num_outputs=num_units, scope='last_11', activation_fn=tf.nn.leaky_relu) out = FULLY_CONNECTED(out, num_outputs=num_outputs, scope='last_2', activation_fn=None) return out
def mlp_model_adv_q(input, num_outputs, scope, index, n_adv=3, n_good=5, n_land=6, share_weights=False, num_units=64, reuse=None): if reuse is None: reuse = tf.AUTO_REUSE if share_weights else False with tf.variable_scope(scope, reuse=reuse): basic = 0 self_dim = n_land * 3 + 5 shorton = 1 num_test = num_units // 2 input_action = input[:, -5 * (n_adv + n_good):] self_action = input_action[:, index * 5:(index + 1) * 5] other_good_action = input_action[:, 5 * n_adv:] adv_action = input_action[:, :5 * n_adv] other_adv_action = tf.concat([input_action[:, :5 * index], input_action[:, 5 * (index + 1):5 * n_adv]], 1) length_wolf = n_land * 3 + (n_good + n_adv) * 5 length_sheep = length_wolf self_start = index * length_wolf input_obs_self = input[:, self_start:self_start + length_wolf] batch_size = input.shape[0].value self_in = tf.concat([input_obs_self, self_action], 1) with tf.variable_scope('self', reuse=reuse): if reuse is None: reuse = tf.AUTO_REUSE if share_weights else False with tf.variable_scope('mlp', reuse=reuse): num_test = num_units // 2 batch_size = self_in.shape[0].value self_dim = 5 + 3 * n_land self_land = self_in[:, 5:5 + 3 * n_land] if True: self_action = self_in[:, -5:] else: self_action = None self_in = self_in[:, :5] if True: self_in = tf.concat([self_in, self_action], axis=1) with tf.variable_scope('self', reuse=reuse): self_out = FULLY_CONNECTED(self_in, num_outputs=num_units, scope='l1', activation_fn=tf.nn.relu) self_out = FULLY_CONNECTED(self_out, num_outputs=num_test, scope='l2', activation_fn=tf.nn.relu) land_mark_input = self_in[:, 5:5 + 3 * n_land] land_mark_input = tf.split(land_mark_input, n_land, axis=1) land_info = [] land_outs = [] with tf.variable_scope('landmark', reuse=reuse): fc1_out = FULLY_CONNECTED(land_mark_input, num_outputs=num_units, scope='l1', activation_fn=tf.nn.relu) land_outs = FULLY_CONNECTED(fc1_out, num_outputs=num_test, scope='l2', activation_fn=tf.nn.relu) land_out = tf.transpose(land_outs, [1, 2, 0]) land_out_attn = tf.nn.softmax(tf.matmul(tf.expand_dims(self_out, 1), land_out) / math.sqrt(num_test)) land_out = tf.squeeze(tf.matmul(land_out_attn, tf.transpose(land_out, [0, 2, 1])), 1) land_out = tf.contrib.layers.layer_norm(land_out) land_out = tf.nn.relu(land_out) other_good_in = self_in[:, self_dim:] other_good_ins = [] for i in range(n_good): pos = other_good_in[:, 2 * (n_adv - 1) + i * 2:2 * (n_adv - 1) + (i + 1) * 2] vel = other_good_in[:, 4 * (n_adv - 1) + 2 * n_good + i * 2:4 * (n_adv - 1) + 2 * n_good + (i + 1) * 2] is_live = other_good_in[:, 5 * (n_adv - 1) + 4 * n_good + i:5 * (n_adv - 1) + 4 * n_good + i + 1] if True: tmp = tf.concat([pos, vel, is_live], axis=1) else: tmp = tf.concat([pos, vel, is_live], axis=1) other_good_ins.append(tmp) with tf.variable_scope('good', reuse=reuse): fc1_good = FULLY_CONNECTED(other_good_ins, num_outputs=num_units, activation_fn=tf.nn.relu, scope='l1', reuse=reuse) other_good_outs = FULLY_CONNECTED(fc1_good, num_outputs=num_test, activation_fn=tf.nn.relu, scope='l2', reuse=reuse) other_good_out = tf.transpose(other_good_outs, [1, 2, 0]) other_good_out_attn = tf.nn.softmax(tf.matmul(tf.expand_dims(self_out, 1), other_good_out) / math.sqrt(num_test)) other_good_out = tf.squeeze(tf.matmul(other_good_out_attn, tf.transpose(other_good_out, [0, 2, 1])), 1) other_good_out = tf.contrib.layers.layer_norm(other_good_out) other_good_out = tf.nn.relu(other_good_out) if n_adv == 1: input_merge = tf.concat([self_out, other_good_out], 1) out = FULLY_CONNECTED(input_merge, num_outputs=num_units, activation_fn=tf.nn.relu) out = FULLY_CONNECTED(out, num_outputs=num_test, activation_fn=None) self_out = out other_adv_beg = self_dim other_adv_in = self_in[:, self_dim:] other_adv_ins = [] for i in range(n_adv - 1): pos = other_adv_in[:, i * 2:(i + 1) * 2] vel = other_adv_in[:, 2 * (n_adv - 1) + 2 * n_good + i * 2:2 * (n_adv - 1) + 2 * n_good + (i + 1) * 2] is_live = other_adv_in[:, 4 * (n_adv - 1) + 4 * n_good + i:4 * (n_adv - 1) + 4 * n_good + i + 1] if not True: tmp = tf.concat([pos, vel, is_live], axis=1) else: tmp = tf.concat([pos, vel, is_live], axis=1) other_adv_ins.append(tmp) other_adv_outs = [] with tf.variable_scope('adv', reuse=reuse): fc1_adv = FULLY_CONNECTED(other_adv_ins, num_outputs=num_units, activation_fn=tf.nn.relu, scope='l1', reuse=reuse) other_adv_outs = FULLY_CONNECTED(fc1_adv, num_outputs=num_test, activation_fn=tf.nn.relu, scope='l2', reuse=reuse) other_adv_out = tf.transpose(other_adv_outs, [1, 2, 0]) if n_adv > 0: other_adv_out_attn = tf.nn.softmax(tf.matmul(tf.expand_dims(self_out, 1), other_adv_out) / math.sqrt(num_test)) other_adv_out = tf.squeeze(tf.matmul(other_adv_out_attn, tf.transpose(other_adv_out, [0, 2, 1])), 1) other_adv_out = tf.contrib.layers.layer_norm(other_adv_out) other_adv_out = tf.nn.relu(other_adv_out) else: other_adv_out = None if n_adv <= 0: input_merge = tf.concat([self_out, land_out, other_good_out], 1) else: input_merge = tf.concat([self_out, land_out, other_good_out, other_adv_out], 1) out = FULLY_CONNECTED(input_merge, num_outputs=num_units, scope='last_1', activation_fn=tf.nn.relu if True else tf.nn.leaky_relu) out = FULLY_CONNECTED(out, num_outputs=num_test, scope='last_2', activation_fn=None) self_out = out other_good_ins = [] for i in range(n_good): other_good_beg = n_adv * length_wolf + i * length_sheep other_good_in = input[:, other_good_beg:other_good_beg + length_sheep] tmp = tf.concat([other_good_in, other_good_action[:, i * 5:(i + 1) * 5]], axis=1) other_good_ins.append(tmp) other_good_outs = [] if basic: other_good_out = tf.concat([i for i in other_good_ins], 1) else: for i in range(n_good): with tf.variable_scope('good{}'.format('' if share_weights else i), reuse=reuse): if reuse is None: reuse = tf.AUTO_REUSE if share_weights else False with tf.variable_scope('mlp', reuse=reuse): num_test = num_units // 2 batch_size = other_good_ins[i].shape[0].value self_land = other_good_ins[i][:, 5:5 + 3 * n_land] if True: self_action = other_good_ins[i][:, -5:] else: self_action = None self_dim = 5 + 3 * n_land self_in = other_good_ins[i][:, :5] if True: self_in = tf.concat([self_in, self_action], axis=1) with tf.variable_scope('self', reuse=reuse): self_out = FULLY_CONNECTED(self_in, num_outputs=num_units, scope='l1', activation_fn=tf.nn.relu) self_out = FULLY_CONNECTED(self_out, num_outputs=num_test, scope='l2', activation_fn=tf.nn.relu) land_mark_input = other_good_ins[i][:, 5:5 + 3 * n_land] land_mark_input = tf.split(land_mark_input, n_land, axis=1) with tf.variable_scope('landmark', reuse=reuse): fc1_out = FULLY_CONNECTED(land_mark_input, num_outputs=num_units, scope='l1', activation_fn=tf.nn.relu) land_outs = FULLY_CONNECTED(fc1_out, num_outputs=num_test, scope='l2', activation_fn=tf.nn.relu) land_out = tf.transpose(land_outs, [1, 2, 0]) land_out_attn = tf.nn.softmax(tf.matmul(tf.expand_dims(self_out, 1), land_out) / math.sqrt(num_test)) land_out = tf.squeeze(tf.matmul(land_out_attn, tf.transpose(land_out, [0, 2, 1])), 1) land_out = tf.contrib.layers.layer_norm(land_out) land_out = tf.nn.relu(land_out) if n_good != 1: other_good_dim = (2 + 2 + 1) * (n_good - 1) other_good_in = other_good_ins[i][:, self_dim:] other_good_ins = [] for i in range(n_good - 1): pos = other_good_in[:, 2 * n_adv + i * 2:2 * n_adv + (i + 1) * 2] vel = other_good_in[:, 2 * n_adv + 2 * (n_good - 1) + 2 * n_adv + i * 2:2 * n_adv + 2 * (n_good - 1) + 2 * n_adv + (i + 1) * 2] is_live = other_good_in[:, 5 * n_adv + 4 * (n_good - 1) + i:5 * n_adv + 4 * (n_good - 1) + i + 1] if True: tmp = tf.concat([pos, vel, is_live], axis=1) else: tmp = tf.concat([pos, vel, is_live], axis=1) other_good_ins.append(tmp) with tf.variable_scope('good', reuse=reuse): fc1_good = FULLY_CONNECTED(other_good_ins, num_outputs=num_units, activation_fn=tf.nn.relu, scope='l1', reuse=reuse) other_good_outs = FULLY_CONNECTED(fc1_good, num_outputs=num_test, activation_fn=tf.nn.relu, scope='l2', reuse=reuse) other_good_out = tf.transpose(other_good_outs, [1, 2, 0]) other_good_out_attn = tf.nn.softmax(tf.matmul(tf.expand_dims(self_out, 1), other_good_out) / math.sqrt(num_test)) other_good_out = tf.squeeze(tf.matmul(other_good_out_attn, tf.transpose(other_good_out, [0, 2, 1])), 1) other_good_out = tf.contrib.layers.layer_norm(other_good_out) other_good_out = tf.nn.relu(other_good_out) other_adv_dim = 5 * n_adv other_adv_beg = self_dim other_adv_in = other_good_ins[i][:, other_adv_beg:] other_adv_ins = [] for i in range(n_adv): pos = other_adv_in[:, i * 2:(i + 1) * 2] vel = other_adv_in[:, 2 * n_adv + 2 * (n_good - 1) + i * 2:2 * n_adv + 2 * (n_good - 1) + (i + 1) * 2] is_live = other_adv_in[:, 4 * n_adv + 4 * (n_good - 1) + i:4 * n_adv + 4 * (n_good - 1) + i + 1] if not True: tmp = tf.concat([pos, vel, is_live], axis=1) else: tmp = tf.concat([pos, vel, is_live], axis=1) other_adv_ins.append(tmp) with tf.variable_scope('adv', reuse=reuse): fc1_adv = FULLY_CONNECTED(other_adv_ins, num_outputs=num_units, activation_fn=tf.nn.relu, scope='l1', reuse=reuse) other_adv_outs = FULLY_CONNECTED(fc1_adv, num_outputs=num_test, activation_fn=tf.nn.relu, scope='l2', reuse=reuse) if n_adv > 0: other_adv_out = tf.transpose(other_adv_outs, [1, 2, 0]) other_adv_out_attn = tf.nn.softmax(tf.matmul(tf.expand_dims(self_out, 1), other_adv_out) / math.sqrt(num_test)) other_adv_out = tf.squeeze(tf.matmul(other_adv_out_attn, tf.transpose(other_adv_out, [0, 2, 1])), 1) other_adv_out = tf.contrib.layers.layer_norm(other_adv_out) other_adv_out = tf.nn.relu(other_adv_out) else: other_adv_out = None if n_good == 1: input_merge = tf.concat([self_out, land_out, other_adv_out], 1) elif n_adv <= 0: input_merge = tf.concat([self_out, land_out, other_good_out], 1) else: input_merge = tf.concat([self_out, land_out, other_good_out, other_adv_out], 1) out = FULLY_CONNECTED(input_merge, num_outputs=num_units, scope='last_1', activation_fn=tf.nn.relu if True else tf.nn.leaky_relu) out = FULLY_CONNECTED(out, num_outputs=num_units, scope='last_11', activation_fn=tf.nn.relu if True else tf.nn.leaky_relu) out = FULLY_CONNECTED(out, num_outputs=num_test, scope='last_2', activation_fn=None) out = out other_good_outs.append(out) if n_adv != 1: other_adv_ins = [] for i in range(n_adv): if i == index: continue other_adv_beg = length_wolf * i other_adv_in = input[:, other_adv_beg:other_adv_beg + length_wolf] tmp = tf.concat([other_adv_in, adv_action[:, i * 5:(i + 1) * 5]], 1) other_adv_ins.append(tmp) other_adv_outs = [] if basic: other_adv_out = tf.concat([i for i in other_adv_ins], 1) else: for i in range(n_adv - 1): true_id = i if i < index else i + 1 with tf.variable_scope('adv{}'.format('' if share_weights else true_id), reuse=reuse): if reuse is None: reuse = tf.AUTO_REUSE if share_weights else False with tf.variable_scope('mlp', reuse=reuse): num_test = num_units // 2 batch_size = other_adv_ins[i].shape[0].value self_dim = 5 + 3 * n_land self_land = other_adv_ins[i][:, 5:5 + 3 * n_land] if True: self_action = other_adv_ins[i][:, -5:] else: self_action = None self_in = other_adv_ins[i][:, :5] if True: self_in = tf.concat([self_in, self_action], axis=1) with tf.variable_scope('self', reuse=reuse): self_out = FULLY_CONNECTED(self_in, num_outputs=num_units, scope='l1', activation_fn=tf.nn.relu) self_out = FULLY_CONNECTED(self_out, num_outputs=num_test, scope='l2', activation_fn=tf.nn.relu) land_mark_input = other_adv_ins[i][:, 5:5 + 3 * n_land] land_mark_input = tf.split(land_mark_input, n_land, axis=1) land_info = [] land_outs = [] with tf.variable_scope('landmark', reuse=reuse): fc1_out = FULLY_CONNECTED(land_mark_input, num_outputs=num_units, scope='l1', activation_fn=tf.nn.relu) land_outs = FULLY_CONNECTED(fc1_out, num_outputs=num_test, scope='l2', activation_fn=tf.nn.relu) land_out = tf.transpose(land_outs, [1, 2, 0]) land_out_attn = tf.nn.softmax(tf.matmul(tf.expand_dims(self_out, 1), land_out) / math.sqrt(num_test)) land_out = tf.squeeze(tf.matmul(land_out_attn, tf.transpose(land_out, [0, 2, 1])), 1) land_out = tf.contrib.layers.layer_norm(land_out) land_out = tf.nn.relu(land_out) other_good_in = other_adv_ins[i][:, self_dim:] other_good_ins = [] for i in range(n_good): pos = other_good_in[:, 2 * (n_adv - 1) + i * 2:2 * (n_adv - 1) + (i + 1) * 2] vel = other_good_in[:, 4 * (n_adv - 1) + 2 * n_good + i * 2:4 * (n_adv - 1) + 2 * n_good + (i + 1) * 2] is_live = other_good_in[:, 5 * (n_adv - 1) + 4 * n_good + i:5 * (n_adv - 1) + 4 * n_good + i + 1] if True: tmp = tf.concat([pos, vel, is_live], axis=1) else: tmp = tf.concat([pos, vel, is_live], axis=1) other_good_ins.append(tmp) with tf.variable_scope('good', reuse=reuse): fc1_good = FULLY_CONNECTED(other_good_ins, num_outputs=num_units, activation_fn=tf.nn.relu, scope='l1', reuse=reuse) other_good_outs = FULLY_CONNECTED(fc1_good, num_outputs=num_test, activation_fn=tf.nn.relu, scope='l2', reuse=reuse) other_good_out = tf.transpose(other_good_outs, [1, 2, 0]) other_good_out_attn = tf.nn.softmax(tf.matmul(tf.expand_dims(self_out, 1), other_good_out) / math.sqrt(num_test)) other_good_out = tf.squeeze(tf.matmul(other_good_out_attn, tf.transpose(other_good_out, [0, 2, 1])), 1) other_good_out = tf.contrib.layers.layer_norm(other_good_out) other_good_out = tf.nn.relu(other_good_out) if n_adv == 1: input_merge = tf.concat([self_out, other_good_out], 1) out = FULLY_CONNECTED(input_merge, num_outputs=num_units, activation_fn=tf.nn.relu) out = FULLY_CONNECTED(out, num_outputs=num_test, activation_fn=None) out = out other_adv_beg = self_dim other_adv_in = other_adv_ins[i][:, self_dim:] other_adv_ins = [] for i in range(n_adv - 1): pos = other_adv_in[:, i * 2:(i + 1) * 2] vel = other_adv_in[:, 2 * (n_adv - 1) + 2 * n_good + i * 2:2 * (n_adv - 1) + 2 * n_good + (i + 1) * 2] is_live = other_adv_in[:, 4 * (n_adv - 1) + 4 * n_good + i:4 * (n_adv - 1) + 4 * n_good + i + 1] if not True: tmp = tf.concat([pos, vel, is_live], axis=1) else: tmp = tf.concat([pos, vel, is_live], axis=1) other_adv_ins.append(tmp) other_adv_outs = [] with tf.variable_scope('adv', reuse=reuse): fc1_adv = FULLY_CONNECTED(other_adv_ins, num_outputs=num_units, activation_fn=tf.nn.relu, scope='l1', reuse=reuse) other_adv_outs = FULLY_CONNECTED(fc1_adv, num_outputs=num_test, activation_fn=tf.nn.relu, scope='l2', reuse=reuse) other_adv_out = tf.transpose(other_adv_outs, [1, 2, 0]) if n_adv > 0: other_adv_out_attn = tf.nn.softmax(tf.matmul(tf.expand_dims(self_out, 1), other_adv_out) / math.sqrt(num_test)) other_adv_out = tf.squeeze(tf.matmul(other_adv_out_attn, tf.transpose(other_adv_out, [0, 2, 1])), 1) other_adv_out = tf.contrib.layers.layer_norm(other_adv_out) other_adv_out = tf.nn.relu(other_adv_out) else: other_adv_out = None if n_adv <= 0: input_merge = tf.concat([self_out, land_out, other_good_out], 1) else: input_merge = tf.concat([self_out, land_out, other_good_out, other_adv_out], 1) out = FULLY_CONNECTED(input_merge, num_outputs=num_units, scope='last_1', activation_fn=tf.nn.relu if True else tf.nn.leaky_relu) out = FULLY_CONNECTED(out, num_outputs=num_test, scope='last_2', activation_fn=None) out = out other_adv_outs.append(out) else: other_adv_outs = [] theta_out = [] phi_out = [] g_out = [] theta_out.append(FULLY_CONNECTED(self_out, num_outputs=num_test, scope='theta_f', reuse=tf.AUTO_REUSE, activation_fn=None)) phi_out.append(FULLY_CONNECTED(self_out, num_outputs=num_test, scope='phi_f', reuse=tf.AUTO_REUSE, activation_fn=None)) g_out.append(FULLY_CONNECTED(self_out, num_outputs=num_test, scope='g_f', reuse=tf.AUTO_REUSE, activation_fn=None)) for (i, out) in enumerate(other_good_outs): theta_out.append(FULLY_CONNECTED(out, num_outputs=num_test, scope='theta_f', reuse=tf.AUTO_REUSE, activation_fn=None)) phi_out.append(FULLY_CONNECTED(out, num_outputs=num_test, scope='phi_f', reuse=tf.AUTO_REUSE, activation_fn=None)) g_out.append(FULLY_CONNECTED(out, num_outputs=num_test, scope='g_f', reuse=tf.AUTO_REUSE, activation_fn=None)) for (i, out) in enumerate(other_adv_outs): theta_out.append(FULLY_CONNECTED(out, num_outputs=num_test, scope='theta_f', reuse=tf.AUTO_REUSE, activation_fn=None)) phi_out.append(FULLY_CONNECTED(out, num_outputs=num_test, scope='phi_f', reuse=tf.AUTO_REUSE, activation_fn=None)) g_out.append(FULLY_CONNECTED(out, num_outputs=num_test, scope='g_f', reuse=tf.AUTO_REUSE, activation_fn=None)) theta_outs = tf.stack(theta_out, 2) phi_outs = tf.stack(phi_out, 2) g_outs = tf.stack(g_out, 2) self_attention = tf.nn.softmax(tf.matmul(theta_outs, tf.transpose(phi_outs, [0, 2, 1])) / math.sqrt(num_test)) input_all = tf.matmul(self_attention, g_outs) input_all_new = [] for i in range(n_adv + n_good): input_all_new.append(tf.contrib.layers.layer_norm(input_all[:, :, i], scope='qlayernorm1', reuse=tf.AUTO_REUSE)) input_all = tf.stack(input_all_new, 2) '\n input_all = tf.contrib.layers.layer_norm(input_all)\n ' input_all = tf.nn.relu(input_all) self_out_new = input_all[:, :, 0] good_out_new = input_all[:, :, 1:1 + n_good] adv_out_new = input_all[:, :, 1 + n_good:] if n_adv > 0: other_adv_out_attn = tf.nn.softmax(tf.matmul(tf.expand_dims(self_out_new, 1), adv_out_new) / math.sqrt(num_test)) other_adv_out = tf.squeeze(tf.matmul(other_adv_out_attn, tf.transpose(adv_out_new, [0, 2, 1])), 1) other_adv_out = tf.contrib.layers.layer_norm(other_adv_out) other_adv_out = tf.nn.relu(other_adv_out) other_good_out_attn = tf.nn.softmax(tf.matmul(tf.expand_dims(self_out_new, 1), good_out_new) / math.sqrt(num_test)) other_good_out = tf.squeeze(tf.matmul(other_good_out_attn, tf.transpose(good_out_new, [0, 2, 1])), 1) other_good_out = tf.contrib.layers.layer_norm(other_good_out) other_good_out = tf.nn.relu(other_good_out) if n_adv == 1: input_merge = tf.concat([self_out, other_good_out], 1) elif n_adv <= 0: input_merge = tf.concat([self_out, other_good_out], 1) else: input_merge = tf.concat([self_out, other_good_out, other_adv_out], 1) out = FULLY_CONNECTED(input_merge, num_outputs=num_units, scope='last_1', activation_fn=tf.nn.leaky_relu) out = FULLY_CONNECTED(out, num_outputs=num_units, scope='last_11', activation_fn=tf.nn.leaky_relu) out = FULLY_CONNECTED(out, num_outputs=num_outputs, scope='last_2', activation_fn=None) return out
epciclr2020
positive
def _reapplyEvents(newEvents=None): """ reapply all uncertain events on top of the baseline. This should be the last thing which is done as part of adding an event as it may recurse into addEvent at the end. """ if newEvents is None: newEvents = [] self.pauseListeners = True oldGameState = self.currGameState self.currGameState = deepcopy(self.baselineGameState) for event in self.uncertainEvents: newEvent = event.apply(self) if newEvent: newEvents.append(newEvent) self.pauseListeners = False for oldPlayer in oldGameState.players.itervalues(): <DeepExtract> with self.stateLock: if not (oldPlayer.team_id, oldPlayer.player_id) in self.currGameState.players: self.currGameState.players[oldPlayer.team_id, oldPlayer.player_id] = Player(team_id=oldPlayer.team_id, player_id=oldPlayer.player_id) if oldPlayer.team_id > self.currGameState.teamCount: self.currGameState.teamCount = oldPlayer.team_id if oldPlayer.player_id > self.currGameState.largestTeam: self.currGameState.largestTeam = oldPlayer.player_id newPlayer = self.currGameState.players[oldPlayer.team_id, oldPlayer.player_id] </DeepExtract> if oldPlayer != newPlayer: print('Detected a Player in need of adjusting: ', oldPlayer, '->', newPlayer) parametersSnapshot = deepcopy(self.currGameState.parameters) <DeepExtract> if not self.pauseListeners: for listener in self.playerAdjustedListeners: listener(oldPlayer.team_id, oldPlayer.player_id, newPlayer, parametersSnapshot) </DeepExtract> for newEvent in newEvents: <DeepExtract> with self.stateLock: currentServerTime = time.time() if newEvent.serverTime > currentServerTime: self._addFutureEvent(newEvent) else: self._addPastEvent(newEvent) </DeepExtract>
def _reapplyEvents(newEvents=None): """ reapply all uncertain events on top of the baseline. This should be the last thing which is done as part of adding an event as it may recurse into addEvent at the end. """ if newEvents is None: newEvents = [] self.pauseListeners = True oldGameState = self.currGameState self.currGameState = deepcopy(self.baselineGameState) for event in self.uncertainEvents: newEvent = event.apply(self) if newEvent: newEvents.append(newEvent) self.pauseListeners = False for oldPlayer in oldGameState.players.itervalues(): with self.stateLock: if not (oldPlayer.team_id, oldPlayer.player_id) in self.currGameState.players: self.currGameState.players[oldPlayer.team_id, oldPlayer.player_id] = Player(team_id=oldPlayer.team_id, player_id=oldPlayer.player_id) if oldPlayer.team_id > self.currGameState.teamCount: self.currGameState.teamCount = oldPlayer.team_id if oldPlayer.player_id > self.currGameState.largestTeam: self.currGameState.largestTeam = oldPlayer.player_id newPlayer = self.currGameState.players[oldPlayer.team_id, oldPlayer.player_id] if oldPlayer != newPlayer: print('Detected a Player in need of adjusting: ', oldPlayer, '->', newPlayer) parametersSnapshot = deepcopy(self.currGameState.parameters) if not self.pauseListeners: for listener in self.playerAdjustedListeners: listener(oldPlayer.team_id, oldPlayer.player_id, newPlayer, parametersSnapshot) for newEvent in newEvents: with self.stateLock: currentServerTime = time.time() if newEvent.serverTime > currentServerTime: self._addFutureEvent(newEvent) else: self._addPastEvent(newEvent) </DeepExtract>
arduino-milestag
positive
def message_with_print(url, chat_id, text): print('HUMAN: {}'.format(text)) <DeepExtract> url = url + '/message' r = requests.post(url, json={'text': text, 'chat_id': chat_id}) res = r.json() </DeepExtract> print('BOT: {}'.format(res['text']))
def message_with_print(url, chat_id, text): print('HUMAN: {}'.format(text)) url = url + '/message' r = requests.post(url, json={'text': text, 'chat_id': chat_id}) res = r.json() print('BOT: {}'.format(res['text']))
convai-bot-1337
positive
def adapt_theory_for_maps(cls, data_params): if self.aberration_coeff: <DeepExtract> ells = np.arange(self.pcl_lmin, self.pcl_lmax + 1) cl_norm = ells * (ells + 1) for i in range(self.nmaps_required): for j in range(i + 1): CL = cls[i, j] if CL is not None: if CL.theory_ij[0] <= 2 and CL.theory_ij[1] <= 2: cl_deriv = CL.CL / cl_norm cl_deriv[1:-1] = (cl_deriv[2:] - cl_deriv[:-2]) / 2 cl_deriv[0] = cl_deriv[1] cl_deriv[-1] = cl_deriv[-2] cl_deriv *= cl_norm cl_deriv *= ells CL.CL += self.aberration_coeff * cl_deriv </DeepExtract> <DeepExtract> pass </DeepExtract> if self.calibration_param is not None and self.calibration_param in data_params: for i in range(self.nmaps_required): for j in range(i + 1): CL = cls[i, j] if CL is not None: if CL.theory_ij[0] <= 2 and CL.theory_ij[1] <= 2: CL.CL /= data_params[self.calibration_param] ** 2
def adapt_theory_for_maps(cls, data_params): if self.aberration_coeff: ells = np.arange(self.pcl_lmin, self.pcl_lmax + 1) cl_norm = ells * (ells + 1) for i in range(self.nmaps_required): for j in range(i + 1): CL = cls[i, j] if CL is not None: if CL.theory_ij[0] <= 2 and CL.theory_ij[1] <= 2: cl_deriv = CL.CL / cl_norm cl_deriv[1:-1] = (cl_deriv[2:] - cl_deriv[:-2]) / 2 cl_deriv[0] = cl_deriv[1] cl_deriv[-1] = cl_deriv[-2] cl_deriv *= cl_norm cl_deriv *= ells CL.CL += self.aberration_coeff * cl_deriv pass if self.calibration_param is not None and self.calibration_param in data_params: for i in range(self.nmaps_required): for j in range(i + 1): CL = cls[i, j] if CL is not None: if CL.theory_ij[0] <= 2 and CL.theory_ij[1] <= 2: CL.CL /= data_params[self.calibration_param] ** 2
cobaya
positive
def draw_3d_bbox_meshes_in_pyqt(widget, bboxes, colors=GLColor.Gray, alpha=1.0, edgecolors=None): <DeepExtract> bbox_faces = np.array([[0, 1, 2], [0, 2, 3], [4, 5, 6], [4, 6, 7], [0, 4, 7], [0, 7, 3], [1, 5, 6], [1, 6, 2], [3, 2, 6], [3, 6, 7], [0, 1, 5], [0, 5, 4]]) verts_list = [] faces_list = [] for (i, bbox) in enumerate(bboxes): verts_list.append(bbox) faces_list.append(bbox_faces + 8 * i) verts = np.concatenate(verts_list, axis=0) faces = np.concatenate(faces_list, axis=0) (verts, faces) = (verts, faces) </DeepExtract> if not isinstance(colors, list): if isinstance(colors, GLColor): <DeepExtract> colors = (*colors.value, alpha) </DeepExtract> colors = np.array([colors for i in range(len(verts))]) m1 = gl.GLMeshItem(vertexes=verts, faces=faces, faceColors=colors, smooth=False) m1.setGLOptions('additive') widget.addItem(m1) return widget
def draw_3d_bbox_meshes_in_pyqt(widget, bboxes, colors=GLColor.Gray, alpha=1.0, edgecolors=None): bbox_faces = np.array([[0, 1, 2], [0, 2, 3], [4, 5, 6], [4, 6, 7], [0, 4, 7], [0, 7, 3], [1, 5, 6], [1, 6, 2], [3, 2, 6], [3, 6, 7], [0, 1, 5], [0, 5, 4]]) verts_list = [] faces_list = [] for (i, bbox) in enumerate(bboxes): verts_list.append(bbox) faces_list.append(bbox_faces + 8 * i) verts = np.concatenate(verts_list, axis=0) faces = np.concatenate(faces_list, axis=0) (verts, faces) = (verts, faces) if not isinstance(colors, list): if isinstance(colors, GLColor): colors = (*colors.value, alpha) colors = np.array([colors for i in range(len(verts))]) m1 = gl.GLMeshItem(vertexes=verts, faces=faces, faceColors=colors, smooth=False) m1.setGLOptions('additive') widget.addItem(m1) return widget
3D-CVF
positive
def pio_subtract(ref: Union[ParameterIO, ParameterList], mod: Union[ParameterIO, ParameterList]) -> Union[ParameterIO, ParameterList]: if isinstance(ref, ParameterIO): merged = deepcopy(ref) else: merged = ref for (key, plist) in mod.lists.items(): if key in merged.lists: <DeepExtract> if isinstance(merged.lists[key], ParameterIO): merged = deepcopy(merged.lists[key]) else: merged = merged.lists[key] for (key, plist) in plist.lists.items(): if key in merged.lists: pio_subtract(merged.lists[key], plist) if len(merged.lists[key].objects) == 0 and len(merged.lists[key].lists) == 0: del merged.lists[key] for (key, pobj) in plist.objects.items(): if key in merged.objects: merged_pobj = merged.objects[key] for pkey in pobj.params: if pkey in merged_pobj.params: del merged_pobj.params[pkey] if len(merged_pobj.params) == 0: del merged.objects[key] return merged </DeepExtract> if len(merged.lists[key].objects) == 0 and len(merged.lists[key].lists) == 0: del merged.lists[key] for (key, pobj) in mod.objects.items(): if key in merged.objects: merged_pobj = merged.objects[key] for pkey in pobj.params: if pkey in merged_pobj.params: del merged_pobj.params[pkey] if len(merged_pobj.params) == 0: del merged.objects[key] return merged
def pio_subtract(ref: Union[ParameterIO, ParameterList], mod: Union[ParameterIO, ParameterList]) -> Union[ParameterIO, ParameterList]: if isinstance(ref, ParameterIO): merged = deepcopy(ref) else: merged = ref for (key, plist) in mod.lists.items(): if key in merged.lists: if isinstance(merged.lists[key], ParameterIO): merged = deepcopy(merged.lists[key]) else: merged = merged.lists[key] for (key, plist) in plist.lists.items(): if key in merged.lists: pio_subtract(merged.lists[key], plist) if len(merged.lists[key].objects) == 0 and len(merged.lists[key].lists) == 0: del merged.lists[key] for (key, pobj) in plist.objects.items(): if key in merged.objects: merged_pobj = merged.objects[key] for pkey in pobj.params: if pkey in merged_pobj.params: del merged_pobj.params[pkey] if len(merged_pobj.params) == 0: del merged.objects[key] return merged if len(merged.lists[key].objects) == 0 and len(merged.lists[key].lists) == 0: del merged.lists[key] for (key, pobj) in mod.objects.items(): if key in merged.objects: merged_pobj = merged.objects[key] for pkey in pobj.params: if pkey in merged_pobj.params: del merged_pobj.params[pkey] if len(merged_pobj.params) == 0: del merged.objects[key] return merged
BCML
positive
def minmax(self): if self.firstfree[0]: <DeepExtract> self._update_extremes(torch.min(self.data[0][:, :self.firstfree[0]].t(), dim=0)[0], torch.max(self.data[0][:, :self.firstfree[0]].t(), dim=0)[0]) </DeepExtract> return self.extremes.clone()
def minmax(self): if self.firstfree[0]: self._update_extremes(torch.min(self.data[0][:, :self.firstfree[0]].t(), dim=0)[0], torch.max(self.data[0][:, :self.firstfree[0]].t(), dim=0)[0]) return self.extremes.clone()
dissect
positive
def __init__(self, id, question_text, ground_truth, model_names): self.id = id <DeepExtract> def remove_articles(text): self.question_text = re.sub('\\b(a|an|the)\\b', ' ', text) def white_space_fix(text): self.question_text = ' '.join(text.split()) def remove_punc(text): exclude = set(string.punctuation) self.question_text = ''.join((ch for ch in text if ch not in exclude)) def lower(text): self.question_text = text.lower() self.question_text = white_space_fix(remove_articles(remove_punc(lower(question_text)))) </DeepExtract> self.question_head_ngram = [] self.question_tokens = nltk.word_tokenize(self.question_text) for nc in range(3): self.question_head_ngram.append(' '.join(self.question_tokens[0:nc])) self.ground_truth = ground_truth self.model_names = model_names self.em = np.zeros(2) self.f1 = np.zeros(2) self.answer_text = []
def __init__(self, id, question_text, ground_truth, model_names): self.id = id def remove_articles(text): self.question_text = re.sub('\\b(a|an|the)\\b', ' ', text) def white_space_fix(text): self.question_text = ' '.join(text.split()) def remove_punc(text): exclude = set(string.punctuation) self.question_text = ''.join((ch for ch in text if ch not in exclude)) def lower(text): self.question_text = text.lower() self.question_text = white_space_fix(remove_articles(remove_punc(lower(question_text)))) self.question_head_ngram = [] self.question_tokens = nltk.word_tokenize(self.question_text) for nc in range(3): self.question_head_ngram.append(' '.join(self.question_tokens[0:nc])) self.ground_truth = ground_truth self.model_names = model_names self.em = np.zeros(2) self.f1 = np.zeros(2) self.answer_text = []
bi-att-flow
positive
def get_inverse_ohe_min_max_normalized_data(self, transformed_data): """Transforms one-hot-encoded and min-max normalized data into raw user-fed data format. transformed_data should be a dataframe or an array""" <DeepExtract> out = transformed_data.copy() for feat in self.categorical_feature_names: cat_col_values = [] for val in list(self.data_df[feat].unique()): cat_col_values.append(feat + prefix_sep + str(val)) match_cols = [c for c in transformed_data.columns if c in cat_col_values] (cols, labs) = [[c.replace(x, '') for c in match_cols] for x in ['', feat + prefix_sep]] out[feat] = pd.Categorical(np.array(labs)[np.argmax(transformed_data[cols].values, axis=1)]) out.drop(cols, axis=1, inplace=True) raw_data = out </DeepExtract> <DeepExtract> if len(raw_data) == 0: raw_data = raw_data result = raw_data.copy() for feature_name in self.continuous_feature_names: max_value = self.data_df[feature_name].max() min_value = self.data_df[feature_name].min() result[feature_name] = raw_data[feature_name] * (max_value - min_value) + min_value raw_data = result </DeepExtract> <DeepExtract> precisions_dict = defaultdict(int) precisions = [0] * len(self.feature_names) for (ix, col) in enumerate(self.continuous_feature_names): if self.continuous_features_precision is not None and col in self.continuous_features_precision: precisions[ix] = self.continuous_features_precision[col] precisions_dict[col] = self.continuous_features_precision[col] elif self.data_df[col].dtype == np.float32 or self.data_df[col].dtype == np.float64: modes = self.data_df[col].mode() maxp = len(str(modes[0]).split('.')[1]) for mx in range(len(modes)): prec = len(str(modes[mx]).split('.')[1]) if prec > maxp: maxp = prec precisions[ix] = maxp precisions_dict[col] = maxp if output_type == 'list': precisions = precisions elif output_type == 'dict': precisions = precisions_dict </DeepExtract> for (ix, feature) in enumerate(self.continuous_feature_names): raw_data[feature] = raw_data[feature].astype(float).round(precisions[ix]) raw_data = raw_data[self.feature_names] return raw_data
def get_inverse_ohe_min_max_normalized_data(self, transformed_data): """Transforms one-hot-encoded and min-max normalized data into raw user-fed data format. transformed_data should be a dataframe or an array""" out = transformed_data.copy() for feat in self.categorical_feature_names: cat_col_values = [] for val in list(self.data_df[feat].unique()): cat_col_values.append(feat + prefix_sep + str(val)) match_cols = [c for c in transformed_data.columns if c in cat_col_values] (cols, labs) = [[c.replace(x, '') for c in match_cols] for x in ['', feat + prefix_sep]] out[feat] = pd.Categorical(np.array(labs)[np.argmax(transformed_data[cols].values, axis=1)]) out.drop(cols, axis=1, inplace=True) raw_data = out if len(raw_data) == 0: raw_data = raw_data result = raw_data.copy() for feature_name in self.continuous_feature_names: max_value = self.data_df[feature_name].max() min_value = self.data_df[feature_name].min() result[feature_name] = raw_data[feature_name] * (max_value - min_value) + min_value raw_data = result precisions_dict = defaultdict(int) precisions = [0] * len(self.feature_names) for (ix, col) in enumerate(self.continuous_feature_names): if self.continuous_features_precision is not None and col in self.continuous_features_precision: precisions[ix] = self.continuous_features_precision[col] precisions_dict[col] = self.continuous_features_precision[col] elif self.data_df[col].dtype == np.float32 or self.data_df[col].dtype == np.float64: modes = self.data_df[col].mode() maxp = len(str(modes[0]).split('.')[1]) for mx in range(len(modes)): prec = len(str(modes[mx]).split('.')[1]) if prec > maxp: maxp = prec precisions[ix] = maxp precisions_dict[col] = maxp if output_type == 'list': precisions = precisions elif output_type == 'dict': precisions = precisions_dict for (ix, feature) in enumerate(self.continuous_feature_names): raw_data[feature] = raw_data[feature].astype(float).round(precisions[ix]) raw_data = raw_data[self.feature_names] return raw_data
DiCE
positive
def test_datagram_frame(self): with client_and_server(client_options={'max_datagram_frame_size': 65536}, server_options={'max_datagram_frame_size': 65536}) as (client, server): <DeepExtract> event = client.next_event() self.assertEqual(type(event), events.ProtocolNegotiated) self.assertEqual(event.alpn_protocol, None) event = client.next_event() self.assertEqual(type(event), events.HandshakeCompleted) self.assertEqual(event.alpn_protocol, None) self.assertEqual(event.early_data_accepted, False) self.assertEqual(event.session_resumed, False) for i in range(7): self.assertEqual(type(client.next_event()), events.ConnectionIdIssued) self.assertIsNone(client.next_event()) event = server.next_event() self.assertEqual(type(event), events.ProtocolNegotiated) self.assertEqual(event.alpn_protocol, None) event = server.next_event() self.assertEqual(type(event), events.HandshakeCompleted) self.assertEqual(event.alpn_protocol, None) for i in range(7): self.assertEqual(type(server.next_event()), events.ConnectionIdIssued) self.assertIsNone(server.next_event()) </DeepExtract> client.send_datagram_frame(b'hello') self.assertEqual(transfer(client, server), 1) event = server.next_event() self.assertEqual(type(event), events.DatagramFrameReceived) self.assertEqual(event.data, b'hello')
def test_datagram_frame(self): with client_and_server(client_options={'max_datagram_frame_size': 65536}, server_options={'max_datagram_frame_size': 65536}) as (client, server): event = client.next_event() self.assertEqual(type(event), events.ProtocolNegotiated) self.assertEqual(event.alpn_protocol, None) event = client.next_event() self.assertEqual(type(event), events.HandshakeCompleted) self.assertEqual(event.alpn_protocol, None) self.assertEqual(event.early_data_accepted, False) self.assertEqual(event.session_resumed, False) for i in range(7): self.assertEqual(type(client.next_event()), events.ConnectionIdIssued) self.assertIsNone(client.next_event()) event = server.next_event() self.assertEqual(type(event), events.ProtocolNegotiated) self.assertEqual(event.alpn_protocol, None) event = server.next_event() self.assertEqual(type(event), events.HandshakeCompleted) self.assertEqual(event.alpn_protocol, None) for i in range(7): self.assertEqual(type(server.next_event()), events.ConnectionIdIssued) self.assertIsNone(server.next_event()) client.send_datagram_frame(b'hello') self.assertEqual(transfer(client, server), 1) event = server.next_event() self.assertEqual(type(event), events.DatagramFrameReceived) self.assertEqual(event.data, b'hello')
aioquic
positive
def convert_state_dict_type(state_dict, ttype=torch.FloatTensor): if isinstance(state_dict, dict): cpu_dict = OrderedDict() for (k, v) in state_dict.items(): <DeepExtract> if isinstance(v, dict): cpu_dict = OrderedDict() for (k, v) in v.items(): cpu_dict[k] = convert_state_dict_type(v) cpu_dict[k] = cpu_dict elif isinstance(v, list): cpu_dict[k] = [convert_state_dict_type(v) for v in v] elif torch.is_tensor(v): cpu_dict[k] = v.type(ttype) else: cpu_dict[k] = v </DeepExtract> return cpu_dict elif isinstance(state_dict, list): return [convert_state_dict_type(v) for v in state_dict] elif torch.is_tensor(state_dict): return state_dict.type(ttype) else: return state_dict
def convert_state_dict_type(state_dict, ttype=torch.FloatTensor): if isinstance(state_dict, dict): cpu_dict = OrderedDict() for (k, v) in state_dict.items(): if isinstance(v, dict): cpu_dict = OrderedDict() for (k, v) in v.items(): cpu_dict[k] = convert_state_dict_type(v) cpu_dict[k] = cpu_dict elif isinstance(v, list): cpu_dict[k] = [convert_state_dict_type(v) for v in v] elif torch.is_tensor(v): cpu_dict[k] = v.type(ttype) else: cpu_dict[k] = v return cpu_dict elif isinstance(state_dict, list): return [convert_state_dict_type(v) for v in state_dict] elif torch.is_tensor(state_dict): return state_dict.type(ttype) else: return state_dict
Abstractive-Text-Summarization
positive
def paths(root): res = [] <DeepExtract> if not root.left and (not root.right): res.append(str(root.val)) if root.left: dfs(res, root.left, str(root.val) + '->' + str(root.left.val)) if root.right: dfs(res, root.right, str(root.val) + '->' + str(root.right.val)) </DeepExtract> return res
def paths(root): res = [] if not root.left and (not root.right): res.append(str(root.val)) if root.left: dfs(res, root.left, str(root.val) + '->' + str(root.left.val)) if root.right: dfs(res, root.right, str(root.val) + '->' + str(root.right.val)) return res
algorithms
positive
def source_to_records(mappings, source, source_wrapper=None, records_wrapper=None): if source_wrapper: source = source_wrapper(source) <DeepExtract> callback = partial(_row_cb, mappings) </DeepExtract> records = (callback(row) for row in source) if records_wrapper: records = records_wrapper(records) return records
def source_to_records(mappings, source, source_wrapper=None, records_wrapper=None): if source_wrapper: source = source_wrapper(source) callback = partial(_row_cb, mappings) records = (callback(row) for row in source) if records_wrapper: records = records_wrapper(records) return records
AlephNull
positive
def _get_base_counts(ref, alts, alphabet, illegal=('S', '*', '[', ']', '>', '<')): """Return a list of A,C,G and T frequencies in given position of the alignment. ******CCCCCcccccCccCCCCcccCcCccCcc^SC^]c * - deletion +INT / -INT - insertion S - ?? [ or ] - ?? """ dels = alts.count('*') alts = alts.upper() <DeepExtract> for symbol in ('-', '+'): baseNo = 0 while symbol in alts: i = alts.index(symbol) j = 1 digits = [] while alts[i + j].isdigit(): digits.append(alts[i + j]) j += 1 if digits: baseNo = int(''.join(digits)) alts = alts[:i] + alts[i + baseNo + len(digits) + 1:] alts = alts </DeepExtract> base_counts = [] for base in alphabet: if base != ref: base_counts.append(alts.count(base)) else: base_counts.append(alts.count('.') + alts.count(',')) return (base_counts, dels)
def _get_base_counts(ref, alts, alphabet, illegal=('S', '*', '[', ']', '>', '<')): """Return a list of A,C,G and T frequencies in given position of the alignment. ******CCCCCcccccCccCCCCcccCcCccCcc^SC^]c * - deletion +INT / -INT - insertion S - ?? [ or ] - ?? """ dels = alts.count('*') alts = alts.upper() for symbol in ('-', '+'): baseNo = 0 while symbol in alts: i = alts.index(symbol) j = 1 digits = [] while alts[i + j].isdigit(): digits.append(alts[i + j]) j += 1 if digits: baseNo = int(''.join(digits)) alts = alts[:i] + alts[i + baseNo + len(digits) + 1:] alts = alts base_counts = [] for base in alphabet: if base != ref: base_counts.append(alts.count(base)) else: base_counts.append(alts.count('.') + alts.count(',')) return (base_counts, dels)
bin
positive
def test_factory_sets_identifiers(self): model = {'identifiers': [{'name': 'QueueUrl'}, {'name': 'ReceiptHandle'}]} <DeepExtract> if model is None: model = {} if resource_json_definitions is None: resource_json_definitions = {} service_context = ServiceContext(service_name='test', resource_json_definitions=resource_json_definitions, service_model=service_model, service_waiter_model=None) MessageResource = self.factory.load_from_definition(resource_name='Message', single_resource_json_definition=model, service_context=service_context) </DeepExtract> assert 'queue_url' in MessageResource.meta.identifiers assert 'receipt_handle' in MessageResource.meta.identifiers
def test_factory_sets_identifiers(self): model = {'identifiers': [{'name': 'QueueUrl'}, {'name': 'ReceiptHandle'}]} if model is None: model = {} if resource_json_definitions is None: resource_json_definitions = {} service_context = ServiceContext(service_name='test', resource_json_definitions=resource_json_definitions, service_model=service_model, service_waiter_model=None) MessageResource = self.factory.load_from_definition(resource_name='Message', single_resource_json_definition=model, service_context=service_context) assert 'queue_url' in MessageResource.meta.identifiers assert 'receipt_handle' in MessageResource.meta.identifiers
boto3
positive
def parents(ds, tips): if not isinstance(ds, tuple): ds = (ds,) for p in ds: pds = Dataset(p) if pds.parent: <DeepExtract> if not isinstance(pds.parent, tuple): pds.parent = (pds.parent,) for p in pds.parent: pds = Dataset(p) if pds.parent: parents(pds.parent, tips) else: tips.add(pds) return tips </DeepExtract> else: tips.add(pds) return tips
def parents(ds, tips): if not isinstance(ds, tuple): ds = (ds,) for p in ds: pds = Dataset(p) if pds.parent: if not isinstance(pds.parent, tuple): pds.parent = (pds.parent,) for p in pds.parent: pds = Dataset(p) if pds.parent: parents(pds.parent, tips) else: tips.add(pds) return tips else: tips.add(pds) return tips
accelerator
positive
def execute(self, context): obj = bpy.context.active_object bm = bmesh.from_edit_mesh(obj.data) <DeepExtract> context = bpy.context wm = context.window_manager wm.progress_begin(0, 100) def edge_is_intersecting(e2, bm): for e1 in bm.edges: edge_visible = not e1.hide edge_not_same = e1.verts[0] not in e2 and e1.verts[1] not in e2 if edge_visible and edge_not_same: i = geometry.intersect_line_line_2d(e1.verts[0].co.xz, e1.verts[1].co.xz, e2[0].co.xz, e2[1].co.xz) if i != None: return True return False def get_linked_verts(vert): linked_verts = [vert] outer_verts = [vert] while len(outer_verts) > 0: new_verts = [] for outer_vert in outer_verts: for edge in outer_vert.link_edges: other_vert = edge.other_vert(outer_vert) if other_vert not in linked_verts: linked_verts.append(other_vert) new_verts.append(other_vert) outer_verts = new_verts return linked_verts faces = [] for face in bm.faces: if not face.hide: face_editable = True for vert in face.verts: if vert.hide: face_editable = False break if face_editable: faces.append(face) bmesh.ops.delete(bm, geom=faces, context='FACES_ONLY') wm.progress_update(30) (edges_len_average, shortest_edge) = get_average_edge_length(bm, context.active_object) verts = [] for edge in bm.edges: if not edge.hide: if edge.calc_length() < edges_len_average * 0.01: if edge.verts[0] not in verts: verts.append(edge.verts[0]) if edge.verts[1] not in verts: verts.append(edge.verts[1]) bmesh.ops.remove_doubles(bm, verts=verts, dist=0.01) intersection_points = [] to_be_deleted = [] for e1 in bm.edges: for e2 in bm.edges: edges_not_visible = not e1.hide and (not e2.hide) edges_share_points = e1.verts[0].co.xz in [e2.verts[0].co.xz, e2.verts[1].co.xz] or e1.verts[1].co.xz in [e2.verts[0].co.xz, e2.verts[1].co.xz] if e1 != e2 and (not edges_share_points) and edges_not_visible: i = geometry.intersect_line_line_2d(e1.verts[0].co.xz, e1.verts[1].co.xz, e2.verts[0].co.xz, e2.verts[1].co.xz) if i != None: i_3d = Vector((i[0], e1.verts[0].co[1], i[1])) if e1 not in to_be_deleted: to_be_deleted.append(e1) if e2 not in to_be_deleted: to_be_deleted.append(e2) if i_3d not in intersection_points: intersection_points.append(i_3d) for edge in to_be_deleted: bm.edges.remove(edge) for p in intersection_points: bm.verts.new(p) def get_vertex_loops(bm): all_verts = [] vert_loops = [] for vert in bm.verts: if not vert.hide: if vert not in all_verts: loop_list = get_linked_verts(vert) vert_loops.append(loop_list) all_verts += loop_list return vert_loops connected_edges = [] for vert in bm.verts: if not vert.hide and len(vert.link_edges) == 0: distance = 1000000000000000 vert_a = None vert_b = None for vert2 in bm.verts: edge_center = (vert.co + vert2.co) * 0.5 if vert != vert2 and vert2.co != vert.co: if (vert.co - vert2.co).magnitude < distance: distance = (vert.co - vert2.co).magnitude vert_a = vert vert_b = vert2 if vert_a != None and vert_b != None: edge_center = (vert_a.co + vert_b.co) * 0.5 if edge_center not in connected_edges: bm.edges.new([vert_a, vert_b]) connected_edges.append(edge_center) vert_loops = get_vertex_loops(bm) connected_edges = [] if len(vert_loops) > 0: for (i, loop) in enumerate(vert_loops): for vert in loop: exclude_verts = [vert.link_edges[0].other_vert(vert), vert] if len(vert.link_edges) > 0 else [vert] distance = 1000000000000000 vert_a = None vert_b = None if len(vert.link_edges) == 1: for (j, loop_next) in enumerate(vert_loops): for vert2 in loop_next: if vert2 != vert: edge1 = (vert.co - vert.link_edges[0].other_vert(vert).co).normalized() edge2 = (vert.co - vert2.co).normalized() if edge1.length > 0 and edge2.length > 0: angle = degrees(edge1.angle(edge2)) if (vert.co - vert2.co).magnitude < distance and vert2 not in exclude_verts and (abs(angle) > 30) and (not edge_is_intersecting([vert, vert2], bm)): distance = (vert.co - vert2.co).magnitude vert_a = vert vert_b = vert2 if vert_a != None and vert_b != None: edge_center = (vert_a.co + vert_b.co) * 0.5 if edge_center not in connected_edges: bm.edges.new([vert_a, vert_b]) connected_edges.append(edge_center) wm.progress_update(100) vert_loops = get_vertex_loops(bm) connected_edges = [] if len(vert_loops) > 1: for (i, loop) in enumerate(vert_loops): distance = 1000000000000000 vert_a = None vert_b = None for (j, loop_next) in enumerate(vert_loops): if j != i: for vert in loop: for vert2 in loop_next: if (vert.co - vert2.co).magnitude < distance: distance = (vert.co - vert2.co).magnitude vert_a = vert vert_b = vert2 if vert_a != None and vert_b != None: edge_center = (vert_a.co + vert_b.co) * 0.5 if edge_center not in connected_edges: bm.edges.new([vert_a, vert_b]) connected_edges.append(edge_center) edges_center = [] for edge in bm.edges: edges_center.append((edge.verts[0].co + edge.verts[1].co) * 0.5) edges = [] for edge in bm.edges: if not edge.hide: edges.append(edge) bmesh.ops.triangle_fill(bm, use_beauty=True, use_dissolve=True, edges=edges) delete_edges = [] for edge in bm.edges: if not edge.hide and (not edge.verts[0].hide) and (not edge.verts[1].hide): edge_center = (edge.verts[0].co + edge.verts[1].co) * 0.5 if edge_center not in edges_center and edge.is_boundary: delete_edges.append(edge) bmesh.ops.delete(bm, geom=delete_edges, context='EDGES') delete_edges = [] for edge in bm.edges: if not edge.hide and edge.is_wire and (not edge.verts[0].hide) and (not edge.verts[1].hide): delete_edges.append(edge) bmesh.ops.delete(bm, geom=delete_edges, context='EDGES') faces = [] for face in bm.faces: if not face.hide: face_editable = True for vert in face.verts: if vert.hide: face_editable = False break if face_editable: faces.append(face) bmesh.ops.triangulate(bm, faces=faces) bmesh.update_edit_mesh(obj.data) wm.progress_end() </DeepExtract> bpy.ops.coa_tools.reproject_sprite_texture() return {'FINISHED'}
def execute(self, context): obj = bpy.context.active_object bm = bmesh.from_edit_mesh(obj.data) context = bpy.context wm = context.window_manager wm.progress_begin(0, 100) def edge_is_intersecting(e2, bm): for e1 in bm.edges: edge_visible = not e1.hide edge_not_same = e1.verts[0] not in e2 and e1.verts[1] not in e2 if edge_visible and edge_not_same: i = geometry.intersect_line_line_2d(e1.verts[0].co.xz, e1.verts[1].co.xz, e2[0].co.xz, e2[1].co.xz) if i != None: return True return False def get_linked_verts(vert): linked_verts = [vert] outer_verts = [vert] while len(outer_verts) > 0: new_verts = [] for outer_vert in outer_verts: for edge in outer_vert.link_edges: other_vert = edge.other_vert(outer_vert) if other_vert not in linked_verts: linked_verts.append(other_vert) new_verts.append(other_vert) outer_verts = new_verts return linked_verts faces = [] for face in bm.faces: if not face.hide: face_editable = True for vert in face.verts: if vert.hide: face_editable = False break if face_editable: faces.append(face) bmesh.ops.delete(bm, geom=faces, context='FACES_ONLY') wm.progress_update(30) (edges_len_average, shortest_edge) = get_average_edge_length(bm, context.active_object) verts = [] for edge in bm.edges: if not edge.hide: if edge.calc_length() < edges_len_average * 0.01: if edge.verts[0] not in verts: verts.append(edge.verts[0]) if edge.verts[1] not in verts: verts.append(edge.verts[1]) bmesh.ops.remove_doubles(bm, verts=verts, dist=0.01) intersection_points = [] to_be_deleted = [] for e1 in bm.edges: for e2 in bm.edges: edges_not_visible = not e1.hide and (not e2.hide) edges_share_points = e1.verts[0].co.xz in [e2.verts[0].co.xz, e2.verts[1].co.xz] or e1.verts[1].co.xz in [e2.verts[0].co.xz, e2.verts[1].co.xz] if e1 != e2 and (not edges_share_points) and edges_not_visible: i = geometry.intersect_line_line_2d(e1.verts[0].co.xz, e1.verts[1].co.xz, e2.verts[0].co.xz, e2.verts[1].co.xz) if i != None: i_3d = Vector((i[0], e1.verts[0].co[1], i[1])) if e1 not in to_be_deleted: to_be_deleted.append(e1) if e2 not in to_be_deleted: to_be_deleted.append(e2) if i_3d not in intersection_points: intersection_points.append(i_3d) for edge in to_be_deleted: bm.edges.remove(edge) for p in intersection_points: bm.verts.new(p) def get_vertex_loops(bm): all_verts = [] vert_loops = [] for vert in bm.verts: if not vert.hide: if vert not in all_verts: loop_list = get_linked_verts(vert) vert_loops.append(loop_list) all_verts += loop_list return vert_loops connected_edges = [] for vert in bm.verts: if not vert.hide and len(vert.link_edges) == 0: distance = 1000000000000000 vert_a = None vert_b = None for vert2 in bm.verts: edge_center = (vert.co + vert2.co) * 0.5 if vert != vert2 and vert2.co != vert.co: if (vert.co - vert2.co).magnitude < distance: distance = (vert.co - vert2.co).magnitude vert_a = vert vert_b = vert2 if vert_a != None and vert_b != None: edge_center = (vert_a.co + vert_b.co) * 0.5 if edge_center not in connected_edges: bm.edges.new([vert_a, vert_b]) connected_edges.append(edge_center) vert_loops = get_vertex_loops(bm) connected_edges = [] if len(vert_loops) > 0: for (i, loop) in enumerate(vert_loops): for vert in loop: exclude_verts = [vert.link_edges[0].other_vert(vert), vert] if len(vert.link_edges) > 0 else [vert] distance = 1000000000000000 vert_a = None vert_b = None if len(vert.link_edges) == 1: for (j, loop_next) in enumerate(vert_loops): for vert2 in loop_next: if vert2 != vert: edge1 = (vert.co - vert.link_edges[0].other_vert(vert).co).normalized() edge2 = (vert.co - vert2.co).normalized() if edge1.length > 0 and edge2.length > 0: angle = degrees(edge1.angle(edge2)) if (vert.co - vert2.co).magnitude < distance and vert2 not in exclude_verts and (abs(angle) > 30) and (not edge_is_intersecting([vert, vert2], bm)): distance = (vert.co - vert2.co).magnitude vert_a = vert vert_b = vert2 if vert_a != None and vert_b != None: edge_center = (vert_a.co + vert_b.co) * 0.5 if edge_center not in connected_edges: bm.edges.new([vert_a, vert_b]) connected_edges.append(edge_center) wm.progress_update(100) vert_loops = get_vertex_loops(bm) connected_edges = [] if len(vert_loops) > 1: for (i, loop) in enumerate(vert_loops): distance = 1000000000000000 vert_a = None vert_b = None for (j, loop_next) in enumerate(vert_loops): if j != i: for vert in loop: for vert2 in loop_next: if (vert.co - vert2.co).magnitude < distance: distance = (vert.co - vert2.co).magnitude vert_a = vert vert_b = vert2 if vert_a != None and vert_b != None: edge_center = (vert_a.co + vert_b.co) * 0.5 if edge_center not in connected_edges: bm.edges.new([vert_a, vert_b]) connected_edges.append(edge_center) edges_center = [] for edge in bm.edges: edges_center.append((edge.verts[0].co + edge.verts[1].co) * 0.5) edges = [] for edge in bm.edges: if not edge.hide: edges.append(edge) bmesh.ops.triangle_fill(bm, use_beauty=True, use_dissolve=True, edges=edges) delete_edges = [] for edge in bm.edges: if not edge.hide and (not edge.verts[0].hide) and (not edge.verts[1].hide): edge_center = (edge.verts[0].co + edge.verts[1].co) * 0.5 if edge_center not in edges_center and edge.is_boundary: delete_edges.append(edge) bmesh.ops.delete(bm, geom=delete_edges, context='EDGES') delete_edges = [] for edge in bm.edges: if not edge.hide and edge.is_wire and (not edge.verts[0].hide) and (not edge.verts[1].hide): delete_edges.append(edge) bmesh.ops.delete(bm, geom=delete_edges, context='EDGES') faces = [] for face in bm.faces: if not face.hide: face_editable = True for vert in face.verts: if vert.hide: face_editable = False break if face_editable: faces.append(face) bmesh.ops.triangulate(bm, faces=faces) bmesh.update_edit_mesh(obj.data) wm.progress_end() bpy.ops.coa_tools.reproject_sprite_texture() return {'FINISHED'}
coa_tools
positive
def test_break_lock_with_log_info_calls_borg_with_info_parameter(): flexmock(module.flags).should_receive('make_repository_flags').and_return(('repo',)) <DeepExtract> flexmock(module.environment).should_receive('make_environment') flexmock(module).should_receive('execute_command').with_args(('borg', 'break-lock', '--info', 'repo'), borg_local_path='borg', extra_environment=None).once() </DeepExtract> insert_logging_mock(logging.INFO) module.break_lock(repository_path='repo', storage_config={}, local_borg_version='1.2.3')
def test_break_lock_with_log_info_calls_borg_with_info_parameter(): flexmock(module.flags).should_receive('make_repository_flags').and_return(('repo',)) flexmock(module.environment).should_receive('make_environment') flexmock(module).should_receive('execute_command').with_args(('borg', 'break-lock', '--info', 'repo'), borg_local_path='borg', extra_environment=None).once() insert_logging_mock(logging.INFO) module.break_lock(repository_path='repo', storage_config={}, local_borg_version='1.2.3')
borgmatic
positive
def execute_FuncCall(self, f, mem): name = f.args[0].name try: <DeepExtract> fnc = self.prog.getfnc(name) </DeepExtract> except KeyError: raise RuntimeErr("Unknown function: '%s'" % (name,)) args = [self.execute(x, mem) for x in f.args[1:]] newmem = {VAR_IN: mem.get(VAR_IN, UndefValue()), VAR_OUT: mem.get(VAR_OUT, UndefValue())} if len(fnc.params) != len(args): raise RuntimeErr('Wrong number of args: expected %s, got %s' % (len(fnc.params), len(args))) for ((var, _), arg) in zip(fnc.params, args): newmem[var] = deepcopy(arg) oldfnc = self.fnc oldloc = self.loc <DeepExtract> if self.timeout and self.starttime and (time.time() - self.starttime > self.timeout): raise RuntimeErr('Timeout (%.3f)' % (round(time.time() - self.starttime, 3),)) name = fnc.__class__.__name__ meth = getattr(self, 'execute_%s' % (name,)) try: trace = meth(fnc, newmem) except (OverflowError, ZeroDivisionError, AttributeError, TypeError, IndexError, RuntimeError, ValueError, KeyError) as ex: raise RuntimeErr("Exception '%s' on execution of '%s'" % (ex, fnc)) </DeepExtract> self.fnc = oldfnc self.loc = oldloc return trace[-1][2].get(prime(VAR_RET), self.DEFAULT_RETURN)
def execute_FuncCall(self, f, mem): name = f.args[0].name try: fnc = self.prog.getfnc(name) except KeyError: raise RuntimeErr("Unknown function: '%s'" % (name,)) args = [self.execute(x, mem) for x in f.args[1:]] newmem = {VAR_IN: mem.get(VAR_IN, UndefValue()), VAR_OUT: mem.get(VAR_OUT, UndefValue())} if len(fnc.params) != len(args): raise RuntimeErr('Wrong number of args: expected %s, got %s' % (len(fnc.params), len(args))) for ((var, _), arg) in zip(fnc.params, args): newmem[var] = deepcopy(arg) oldfnc = self.fnc oldloc = self.loc if self.timeout and self.starttime and (time.time() - self.starttime > self.timeout): raise RuntimeErr('Timeout (%.3f)' % (round(time.time() - self.starttime, 3),)) name = fnc.__class__.__name__ meth = getattr(self, 'execute_%s' % (name,)) try: trace = meth(fnc, newmem) except (OverflowError, ZeroDivisionError, AttributeError, TypeError, IndexError, RuntimeError, ValueError, KeyError) as ex: raise RuntimeErr("Exception '%s' on execution of '%s'" % (ex, fnc)) self.fnc = oldfnc self.loc = oldloc return trace[-1][2].get(prime(VAR_RET), self.DEFAULT_RETURN)
clara
positive
def _teardown_features(self): super(QtGraphicsView, self)._teardown_features() features = self._extra_features if features & GraphicFeature.MouseEvent: <DeepExtract> widget = self.widget del widget.mousePressEvent del widget.mouseMoveEvent del widget.mouseReleaseEvent </DeepExtract> if features & GraphicFeature.WheelEvent: <DeepExtract> widget = self.widget del widget.wheelEvent </DeepExtract> <DeepExtract> widget = self.widget del widget.resizeEvent </DeepExtract>
def _teardown_features(self): super(QtGraphicsView, self)._teardown_features() features = self._extra_features if features & GraphicFeature.MouseEvent: widget = self.widget del widget.mousePressEvent del widget.mouseMoveEvent del widget.mouseReleaseEvent if features & GraphicFeature.WheelEvent: widget = self.widget del widget.wheelEvent widget = self.widget del widget.resizeEvent </DeepExtract>
enamlx
positive
def create_cluster_from_parameters(cluster, template): """ Function to create the Cluster from the MacroParameters :param ecs_composex.elasticache.elasticache_stack.CacheCluster cluster: :param template: :return: """ required_keys = ['Engine', 'EngineVersion'] if not cluster.properties and (not all((key in required_keys for key in cluster.parameters))): raise KeyError('When using MacroParameters only, you must specify at least', required_keys) props = {'CacheNodeType': 'cache.t3.small' if not keyisset('CacheNodeType', cluster.parameters) else cluster.parameters['CacheNodeType'], 'Engine': cluster.parameters['Engine'], 'EngineVersion': cluster.parameters['EngineVersion'], 'NumCacheNodes': 1, 'VpcSecurityGroupIds': [GetAtt(cluster.db_sg, 'GroupId')], 'CacheSubnetGroupName': Ref(cluster.db_subnet_group), 'Tags': Tags(Name=cluster.logical_name, ComposeName=cluster.name)} if keyisset('ParameterGroup', cluster.parameters): <DeepExtract> props = import_record_properties(cluster.parameters['ParameterGroup'], ParameterGroup) cluster.parameter_group = ParameterGroup(f'{cluster.logical_name}ParameterGroup', **props) </DeepExtract> template.add_resource(cluster.parameter_group) cluster.cfn_resource = CacheCluster(cluster.logical_name, **props) template.add_resource(cluster.cfn_resource)
def create_cluster_from_parameters(cluster, template): """ Function to create the Cluster from the MacroParameters :param ecs_composex.elasticache.elasticache_stack.CacheCluster cluster: :param template: :return: """ required_keys = ['Engine', 'EngineVersion'] if not cluster.properties and (not all((key in required_keys for key in cluster.parameters))): raise KeyError('When using MacroParameters only, you must specify at least', required_keys) props = {'CacheNodeType': 'cache.t3.small' if not keyisset('CacheNodeType', cluster.parameters) else cluster.parameters['CacheNodeType'], 'Engine': cluster.parameters['Engine'], 'EngineVersion': cluster.parameters['EngineVersion'], 'NumCacheNodes': 1, 'VpcSecurityGroupIds': [GetAtt(cluster.db_sg, 'GroupId')], 'CacheSubnetGroupName': Ref(cluster.db_subnet_group), 'Tags': Tags(Name=cluster.logical_name, ComposeName=cluster.name)} if keyisset('ParameterGroup', cluster.parameters): props = import_record_properties(cluster.parameters['ParameterGroup'], ParameterGroup) cluster.parameter_group = ParameterGroup(f'{cluster.logical_name}ParameterGroup', **props) template.add_resource(cluster.parameter_group) cluster.cfn_resource = CacheCluster(cluster.logical_name, **props) template.add_resource(cluster.cfn_resource)
ecs_composex
positive
def compileAlias(self, sym): """ Compiles the given symbol as an alias. """ <DeepExtract> if sym in self.aliases: alias = self.aliases[sym] alias = None </DeepExtract> if alias is None: raise CompilerException('Unknown Local ' + str(sym)) return alias.compile(self)
def compileAlias(self, sym): """ Compiles the given symbol as an alias. """ if sym in self.aliases: alias = self.aliases[sym] alias = None if alias is None: raise CompilerException('Unknown Local ' + str(sym)) return alias.compile(self)
clojure-py
positive
def get_conn_parent_category_not_linked_Ctx(parse_dict, DocID, sent_index, conn_indices): <DeepExtract> C_String = ' '.join([parse_dict[DocID]['sentences'][sent_index]['words'][word_token][0] for word_token in conn_indices]) conn_name = C_String </DeepExtract> parse_tree = parse_dict[DocID]['sentences'][sent_index]['parsetree'].strip() syntax_tree = Syntax_tree(parse_tree) if syntax_tree.tree == None: parent_categoryCtx = 'NONE_TREE' else: parent_category_node = syntax_tree.get_parent_category_node_by_token_indices(conn_indices) <DeepExtract> if parent_category_node == None: parent_categoryCtx = 'None' Ctx = [] Ctx.append(parent_category_node.name) if parent_category_node.up == None: Ctx.append('NULL') else: Ctx.append(parent_category_node.up.name) left_siblings = syntax_tree.get_left_siblings(parent_category_node) if left_siblings == []: Ctx.append('NULL') else: Ctx.append(left_siblings[-1].name) right_siblings = syntax_tree.get_right_siblings(parent_category_node) if right_siblings == []: Ctx.append('NULL') else: Ctx.append(right_siblings[0].name) nodeCtx = '-'.join(Ctx) parent_categoryCtx = nodeCtx </DeepExtract> conn_parent_categoryCtx = '%s|%s' % (conn_name, parent_categoryCtx) return conn_parent_categoryCtx
def get_conn_parent_category_not_linked_Ctx(parse_dict, DocID, sent_index, conn_indices): C_String = ' '.join([parse_dict[DocID]['sentences'][sent_index]['words'][word_token][0] for word_token in conn_indices]) conn_name = C_String parse_tree = parse_dict[DocID]['sentences'][sent_index]['parsetree'].strip() syntax_tree = Syntax_tree(parse_tree) if syntax_tree.tree == None: parent_categoryCtx = 'NONE_TREE' else: parent_category_node = syntax_tree.get_parent_category_node_by_token_indices(conn_indices) if parent_category_node == None: parent_categoryCtx = 'None' Ctx = [] Ctx.append(parent_category_node.name) if parent_category_node.up == None: Ctx.append('NULL') else: Ctx.append(parent_category_node.up.name) left_siblings = syntax_tree.get_left_siblings(parent_category_node) if left_siblings == []: Ctx.append('NULL') else: Ctx.append(left_siblings[-1].name) right_siblings = syntax_tree.get_right_siblings(parent_category_node) if right_siblings == []: Ctx.append('NULL') else: Ctx.append(right_siblings[0].name) nodeCtx = '-'.join(Ctx) parent_categoryCtx = nodeCtx conn_parent_categoryCtx = '%s|%s' % (conn_name, parent_categoryCtx) return conn_parent_categoryCtx
conll2015_discourse
positive
def xml2dict(string): """Convert and XML string into nested dicts The lowest element will be a Field object """ root = ET.fromstring(string) data = {} def _recurse(elem): data = {} for subelem in elem: if hasattr(subelem, 'text') and subelem.text.strip(): field = Field(subelem.text, subelem.attrib) if subelem.tag not in data: data[subelem.tag] = field elif not isinstance(data[subelem.tag], list): data[subelem.tag] = [data[subelem.tag], field] else: data[subelem.tag].append(field) elif subelem.tag in data: if not isinstance(data[subelem.tag], list): data[subelem.tag] = [data[subelem.tag], _recurse(subelem)] else: data[subelem.tag].append(_recurse(subelem)) else: <DeepExtract> data = {} for subelem in subelem: if hasattr(subelem, 'text') and subelem.text.strip(): field = Field(subelem.text, subelem.attrib) if subelem.tag not in data: data[subelem.tag] = field elif not isinstance(data[subelem.tag], list): data[subelem.tag] = [data[subelem.tag], field] else: data[subelem.tag].append(field) elif subelem.tag in data: if not isinstance(data[subelem.tag], list): data[subelem.tag] = [data[subelem.tag], _recurse(subelem)] else: data[subelem.tag].append(_recurse(subelem)) else: data[subelem.tag] = _recurse(subelem) data[subelem.tag] = data </DeepExtract> return data return _recurse(root)
def xml2dict(string): """Convert and XML string into nested dicts The lowest element will be a Field object """ root = ET.fromstring(string) data = {} def _recurse(elem): data = {} for subelem in elem: if hasattr(subelem, 'text') and subelem.text.strip(): field = Field(subelem.text, subelem.attrib) if subelem.tag not in data: data[subelem.tag] = field elif not isinstance(data[subelem.tag], list): data[subelem.tag] = [data[subelem.tag], field] else: data[subelem.tag].append(field) elif subelem.tag in data: if not isinstance(data[subelem.tag], list): data[subelem.tag] = [data[subelem.tag], _recurse(subelem)] else: data[subelem.tag].append(_recurse(subelem)) else: data = {} for subelem in subelem: if hasattr(subelem, 'text') and subelem.text.strip(): field = Field(subelem.text, subelem.attrib) if subelem.tag not in data: data[subelem.tag] = field elif not isinstance(data[subelem.tag], list): data[subelem.tag] = [data[subelem.tag], field] else: data[subelem.tag].append(field) elif subelem.tag in data: if not isinstance(data[subelem.tag], list): data[subelem.tag] = [data[subelem.tag], _recurse(subelem)] else: data[subelem.tag].append(_recurse(subelem)) else: data[subelem.tag] = _recurse(subelem) data[subelem.tag] = data return data return _recurse(root)
beyond
positive
def cond_log_prob(self, inputs: Union[str, List[str]], targets: Union[List[str], List[List[str]]], batch_size: int=64, absolute_normalization: Optional[bool]=False) -> Union[List[float], List[List[float]]]: """Computes conditional log probabilities of targets given inputs. Args: `inputs`: A single string input or a list of string inputs. `targets`: Possible string outputs for each input. If input is a string, this is a list `[t_1, t_2, ..., t_n]` of possible string outputs. If input is a list of strings, then this is a nested list `[[t_1, t_2, ..., t_n], ...]` with length equal to `len(inputs)`. `absolute_normalization`: When True, the function returns the log probability of unconstrained generation or the target sequence. When False (default), log probabilities are normalized so that the probabilities of generating `targets` sum to 1. Note that setting `absolute_normalization` to True restricts the class of models that can be evaluated to those that can assign absolute probabilities to sequences. Returns: If a single string input is provided, returns a list of log-probabilities `[lp_1, lp_2, ..., lp_n]` predicted by the model, where `lp_i = log(prob(t_i | input)` is the conditional log-prob to generate target `t_i` given input. If a list of string inputs was provided, returns a list of such elements of the form `[[lp_1, lp_2, ..., lp_n], ...]`, where each element contains the log-probabilities for the corresponding input and targets. In this case, the length of the returned list is `len(input)`. """ if isinstance(inputs, str): input_list = [inputs] target_list = [targets] else: input_list = inputs target_list = targets <DeepExtract> flat_idx = [] flat_inputs = [] flat_choices = [] for (example_id, (example_input, choices)) in enumerate(zip(input_list, target_list)): for (choice_id, choice) in enumerate(choices): flat_idx.append((example_id, choice_id)) flat_inputs.append(example_input) flat_choices.append(choice) (flat_idx, flat_inputs, flat_choices) = (flat_idx, flat_inputs, flat_choices) </DeepExtract> num_examples = len(flat_idx) flat_scores = [] for idx in range(0, num_examples, batch_size): batch_idx = flat_idx[idx:min(idx + batch_size, num_examples)] batch_inputs = flat_inputs[idx:min(idx + batch_size, num_examples)] batch_choices = flat_choices[idx:min(idx + batch_size, num_examples)] batch_scores = self._model.score(batch_inputs, batch_choices) flat_scores += batch_scores scores = [[] for _ in range(len(input_list))] for (idx, score) in zip(flat_idx, flat_scores): if score == 0: logging.warning('Found score identical to zero. Probably from empty target. Setting score to -inf.') scores[idx[0]].append(-np.inf) else: scores[idx[0]].append(score) if not absolute_normalization: scores = [list(score_row - scipy.special.logsumexp(score_row)) for score_row in scores] if isinstance(inputs, str): scores = scores[0] return scores
def cond_log_prob(self, inputs: Union[str, List[str]], targets: Union[List[str], List[List[str]]], batch_size: int=64, absolute_normalization: Optional[bool]=False) -> Union[List[float], List[List[float]]]: """Computes conditional log probabilities of targets given inputs. Args: `inputs`: A single string input or a list of string inputs. `targets`: Possible string outputs for each input. If input is a string, this is a list `[t_1, t_2, ..., t_n]` of possible string outputs. If input is a list of strings, then this is a nested list `[[t_1, t_2, ..., t_n], ...]` with length equal to `len(inputs)`. `absolute_normalization`: When True, the function returns the log probability of unconstrained generation or the target sequence. When False (default), log probabilities are normalized so that the probabilities of generating `targets` sum to 1. Note that setting `absolute_normalization` to True restricts the class of models that can be evaluated to those that can assign absolute probabilities to sequences. Returns: If a single string input is provided, returns a list of log-probabilities `[lp_1, lp_2, ..., lp_n]` predicted by the model, where `lp_i = log(prob(t_i | input)` is the conditional log-prob to generate target `t_i` given input. If a list of string inputs was provided, returns a list of such elements of the form `[[lp_1, lp_2, ..., lp_n], ...]`, where each element contains the log-probabilities for the corresponding input and targets. In this case, the length of the returned list is `len(input)`. """ if isinstance(inputs, str): input_list = [inputs] target_list = [targets] else: input_list = inputs target_list = targets flat_idx = [] flat_inputs = [] flat_choices = [] for (example_id, (example_input, choices)) in enumerate(zip(input_list, target_list)): for (choice_id, choice) in enumerate(choices): flat_idx.append((example_id, choice_id)) flat_inputs.append(example_input) flat_choices.append(choice) (flat_idx, flat_inputs, flat_choices) = (flat_idx, flat_inputs, flat_choices) num_examples = len(flat_idx) flat_scores = [] for idx in range(0, num_examples, batch_size): batch_idx = flat_idx[idx:min(idx + batch_size, num_examples)] batch_inputs = flat_inputs[idx:min(idx + batch_size, num_examples)] batch_choices = flat_choices[idx:min(idx + batch_size, num_examples)] batch_scores = self._model.score(batch_inputs, batch_choices) flat_scores += batch_scores scores = [[] for _ in range(len(input_list))] for (idx, score) in zip(flat_idx, flat_scores): if score == 0: logging.warning('Found score identical to zero. Probably from empty target. Setting score to -inf.') scores[idx[0]].append(-np.inf) else: scores[idx[0]].append(score) if not absolute_normalization: scores = [list(score_row - scipy.special.logsumexp(score_row)) for score_row in scores] if isinstance(inputs, str): scores = scores[0] return scores
BIG-bench
positive
def from_fmt_obj(self, fmtobj, directory, labeled=True, **kwargs): if not isinstance(fmtobj, dpdata.plugins.deepmd.DeePMDMixedFormat): for dd in fmtobj.from_multi_systems(directory, **kwargs): if labeled: system = LabeledSystem().from_fmt_obj(fmtobj, dd, **kwargs) else: system = System().from_fmt_obj(fmtobj, dd, **kwargs) system.sort_atom_names() <DeepExtract> if not len(system.data['atom_numbs']): return False elif not len(self.data['atom_numbs']): self.data = system.data return False if system.uniq_formula != self.uniq_formula: raise RuntimeError('systems with inconsistent formula could not be append: %s v.s. %s' % (self.uniq_formula, system.uniq_formula)) if system.data['atom_names'] != self.data['atom_names']: system.sort_atom_names() self.sort_atom_names() if (system.data['atom_types'] != self.data['atom_types']).any(): system.sort_atom_types() self.sort_atom_types() for ii in ['atom_numbs', 'atom_names']: assert system.data[ii] == self.data[ii] for ii in ['atom_types', 'orig']: eq = [v1 == v2 for (v1, v2) in zip(system.data[ii], self.data[ii])] assert all(eq) for tt in self.DTYPES: if tt.shape is not None and Axis.NFRAMES in tt.shape: if tt.name not in self.data and tt.name in system.data: raise RuntimeError('system has %s, but this does not' % tt.name) elif tt.name in self.data and tt.name not in system.data: raise RuntimeError('this has %s, but system does not' % tt.name) elif tt.name not in self.data and tt.name not in system.data: continue axis_nframes = tt.shape.index(Axis.NFRAMES) self.data[tt.name] = np.concatenate((self.data[tt.name], system[tt.name]), axis=axis_nframes) if self.nopbc and (not system.nopbc): self.data['nopbc'] = False return True </DeepExtract> return self else: system_list = [] for dd in fmtobj.from_multi_systems(directory, **kwargs): if labeled: data_list = fmtobj.from_labeled_system_mix(dd, **kwargs) for data_item in data_list: system_list.append(LabeledSystem(data=data_item, **kwargs)) else: data_list = fmtobj.from_system_mix(dd, **kwargs) for data_item in data_list: system_list.append(System(data=data_item, **kwargs)) <DeepExtract> if not len(*system_list.data['atom_numbs']): return False elif not len(self.data['atom_numbs']): self.data = *system_list.data return False if *system_list.uniq_formula != self.uniq_formula: raise RuntimeError('systems with inconsistent formula could not be append: %s v.s. %s' % (self.uniq_formula, *system_list.uniq_formula)) if *system_list.data['atom_names'] != self.data['atom_names']: *system_list.sort_atom_names() self.sort_atom_names() if (*system_list.data['atom_types'] != self.data['atom_types']).any(): *system_list.sort_atom_types() self.sort_atom_types() for ii in ['atom_numbs', 'atom_names']: assert *system_list.data[ii] == self.data[ii] for ii in ['atom_types', 'orig']: eq = [v1 == v2 for (v1, v2) in zip(*system_list.data[ii], self.data[ii])] assert all(eq) for tt in self.DTYPES: if tt.shape is not None and Axis.NFRAMES in tt.shape: if tt.name not in self.data and tt.name in *system_list.data: raise RuntimeError('system has %s, but this does not' % tt.name) elif tt.name in self.data and tt.name not in *system_list.data: raise RuntimeError('this has %s, but system does not' % tt.name) elif tt.name not in self.data and tt.name not in *system_list.data: continue axis_nframes = tt.shape.index(Axis.NFRAMES) self.data[tt.name] = np.concatenate((self.data[tt.name], *system_list[tt.name]), axis=axis_nframes) if self.nopbc and (not *system_list.nopbc): self.data['nopbc'] = False return True </DeepExtract> return self
def from_fmt_obj(self, fmtobj, directory, labeled=True, **kwargs): if not isinstance(fmtobj, dpdata.plugins.deepmd.DeePMDMixedFormat): for dd in fmtobj.from_multi_systems(directory, **kwargs): if labeled: system = LabeledSystem().from_fmt_obj(fmtobj, dd, **kwargs) else: system = System().from_fmt_obj(fmtobj, dd, **kwargs) system.sort_atom_names() if not len(system.data['atom_numbs']): return False elif not len(self.data['atom_numbs']): self.data = system.data return False if system.uniq_formula != self.uniq_formula: raise RuntimeError('systems with inconsistent formula could not be append: %s v.s. %s' % (self.uniq_formula, system.uniq_formula)) if system.data['atom_names'] != self.data['atom_names']: system.sort_atom_names() self.sort_atom_names() if (system.data['atom_types'] != self.data['atom_types']).any(): system.sort_atom_types() self.sort_atom_types() for ii in ['atom_numbs', 'atom_names']: assert system.data[ii] == self.data[ii] for ii in ['atom_types', 'orig']: eq = [v1 == v2 for (v1, v2) in zip(system.data[ii], self.data[ii])] assert all(eq) for tt in self.DTYPES: if tt.shape is not None and Axis.NFRAMES in tt.shape: if tt.name not in self.data and tt.name in system.data: raise RuntimeError('system has %s, but this does not' % tt.name) elif tt.name in self.data and tt.name not in system.data: raise RuntimeError('this has %s, but system does not' % tt.name) elif tt.name not in self.data and tt.name not in system.data: continue axis_nframes = tt.shape.index(Axis.NFRAMES) self.data[tt.name] = np.concatenate((self.data[tt.name], system[tt.name]), axis=axis_nframes) if self.nopbc and (not system.nopbc): self.data['nopbc'] = False return True return self else: system_list = [] for dd in fmtobj.from_multi_systems(directory, **kwargs): if labeled: data_list = fmtobj.from_labeled_system_mix(dd, **kwargs) for data_item in data_list: system_list.append(LabeledSystem(data=data_item, **kwargs)) else: data_list = fmtobj.from_system_mix(dd, **kwargs) for data_item in data_list: system_list.append(System(data=data_item, **kwargs)) if not len(*system_list.data['atom_numbs']): return False elif not len(self.data['atom_numbs']): self.data = *system_list.data return False if *system_list.uniq_formula != self.uniq_formula: raise RuntimeError('systems with inconsistent formula could not be append: %s v.s. %s' % (self.uniq_formula, *system_list.uniq_formula)) if *system_list.data['atom_names'] != self.data['atom_names']: *system_list.sort_atom_names() self.sort_atom_names() if (*system_list.data['atom_types'] != self.data['atom_types']).any(): *system_list.sort_atom_types() self.sort_atom_types() for ii in ['atom_numbs', 'atom_names']: assert *system_list.data[ii] == self.data[ii] for ii in ['atom_types', 'orig']: eq = [v1 == v2 for (v1, v2) in zip(*system_list.data[ii], self.data[ii])] assert all(eq) for tt in self.DTYPES: if tt.shape is not None and Axis.NFRAMES in tt.shape: if tt.name not in self.data and tt.name in *system_list.data: raise RuntimeError('system has %s, but this does not' % tt.name) elif tt.name in self.data and tt.name not in *system_list.data: raise RuntimeError('this has %s, but system does not' % tt.name) elif tt.name not in self.data and tt.name not in *system_list.data: continue axis_nframes = tt.shape.index(Axis.NFRAMES) self.data[tt.name] = np.concatenate((self.data[tt.name], *system_list[tt.name]), axis=axis_nframes) if self.nopbc and (not *system_list.nopbc): self.data['nopbc'] = False return True return self
dpdata
positive
def contains(self, elem): """Test if the filter contains an element elem may be a COutPoint or bytes """ if isinstance(elem, bitcoin.core.COutPoint): elem = elem.serialize() if len(self.vData) == 1 and self.vData[0] == 255: return True for i in range(0, self.nHashFuncs): <DeepExtract> nIndex = MurmurHash3(i * 4221880213 + self.nTweak & 4294967295, elem) % (len(self.vData) * 8) </DeepExtract> if not self.vData[nIndex >> 3] & self.__bit_mask[7 & nIndex]: return False return True
def contains(self, elem): """Test if the filter contains an element elem may be a COutPoint or bytes """ if isinstance(elem, bitcoin.core.COutPoint): elem = elem.serialize() if len(self.vData) == 1 and self.vData[0] == 255: return True for i in range(0, self.nHashFuncs): nIndex = MurmurHash3(i * 4221880213 + self.nTweak & 4294967295, elem) % (len(self.vData) * 8) if not self.vData[nIndex >> 3] & self.__bit_mask[7 & nIndex]: return False return True
dust-b-gone
positive
@property def route53(self): """ A boto Route53 connection. """ if not getattr(self, '_route53', None): <DeepExtract> self._route53 = boto.route53.connect_to_region(self._region, aws_access_key_id=self._access_key, aws_secret_access_key=self._secret_key) </DeepExtract> return self._route53
@property def route53(self): """ A boto Route53 connection. """ if not getattr(self, '_route53', None): self._route53 = boto.route53.connect_to_region(self._region, aws_access_key_id=self._access_key, aws_secret_access_key=self._secret_key) return self._route53
aurproxy
positive
def test_get_dns_name_and_fall_back_ip_address_success(mocker): """ When the dns name cannot be resolved, and the fallback to mount target ip address is retrieved """ <DeepExtract> try: config = ConfigParser.SafeConfigParser() except AttributeError: config = ConfigParser() config.add_section(mount_efs.CONFIG_SECTION) if mount_efs.CONFIG_SECTION != config_section: config.add_section(config_section) config.set(mount_efs.CONFIG_SECTION, 'dns_name_format', dns_name_format) config.set(config_section, 'dns_name_suffix', dns_name_suffix) if has_fallback_to_mount_target_ip_address_item: config.set(mount_efs.CONFIG_SECTION, mount_efs.FALLBACK_TO_MOUNT_TARGET_IP_ADDRESS_ITEM, str(fallback_to_mount_target_ip_address)) config = config </DeepExtract> dns_mock = mocker.patch('socket.gethostbyname', side_effect=socket.gaierror) get_fallback_mount_target_ip_mock = mocker.patch('mount_efs.get_fallback_mount_target_ip_address', return_value=IP_ADDRESS) (dns_name, ip_address) = mount_efs.get_dns_name_and_fallback_mount_target_ip_address(config, FS_ID, DEFAULT_NFS_OPTIONS) assert '%s.efs.%s.amazonaws.com' % (FS_ID, DEFAULT_REGION) == dns_name assert IP_ADDRESS == ip_address utils.assert_called(dns_mock) utils.assert_called(get_fallback_mount_target_ip_mock)
def test_get_dns_name_and_fall_back_ip_address_success(mocker): """ When the dns name cannot be resolved, and the fallback to mount target ip address is retrieved """ try: config = ConfigParser.SafeConfigParser() except AttributeError: config = ConfigParser() config.add_section(mount_efs.CONFIG_SECTION) if mount_efs.CONFIG_SECTION != config_section: config.add_section(config_section) config.set(mount_efs.CONFIG_SECTION, 'dns_name_format', dns_name_format) config.set(config_section, 'dns_name_suffix', dns_name_suffix) if has_fallback_to_mount_target_ip_address_item: config.set(mount_efs.CONFIG_SECTION, mount_efs.FALLBACK_TO_MOUNT_TARGET_IP_ADDRESS_ITEM, str(fallback_to_mount_target_ip_address)) config = config dns_mock = mocker.patch('socket.gethostbyname', side_effect=socket.gaierror) get_fallback_mount_target_ip_mock = mocker.patch('mount_efs.get_fallback_mount_target_ip_address', return_value=IP_ADDRESS) (dns_name, ip_address) = mount_efs.get_dns_name_and_fallback_mount_target_ip_address(config, FS_ID, DEFAULT_NFS_OPTIONS) assert '%s.efs.%s.amazonaws.com' % (FS_ID, DEFAULT_REGION) == dns_name assert IP_ADDRESS == ip_address utils.assert_called(dns_mock) utils.assert_called(get_fallback_mount_target_ip_mock)
efs-utils
positive
def sample_factors(self, num, random_state): """Sample a batch of factors Y.""" factors = np.zeros(shape=(num, self.num_factors), dtype=np.int64) for i in range(self.num_factors): <DeepExtract> factors[:, i] = random_state.randint(self.factor_sizes[i], size=num) </DeepExtract> return factors
def sample_factors(self, num, random_state): """Sample a batch of factors Y.""" factors = np.zeros(shape=(num, self.num_factors), dtype=np.int64) for i in range(self.num_factors): factors[:, i] = random_state.randint(self.factor_sizes[i], size=num) return factors
disentanglement_lib
positive
def convert_examples_to_features(examples, label_list, max_seq_length, tokenizer): """Convert a set of `InputExample`s to a list of `InputFeatures`.""" features = [] for (ex_index, example) in enumerate(examples): if ex_index % 10000 == 0: tf.logging.info('Writing example %d of %d' % (ex_index, len(examples))) <DeepExtract> if isinstance(example, PaddingInputExample): feature = InputFeatures(input_ids=[0] * max_seq_length, input_mask=[0] * max_seq_length, segment_ids=[0] * max_seq_length, label_id=0, is_real_example=False) label_map = {} for (i, label) in enumerate(label_list): label_map[label] = i tokens_a = tokenizer.tokenize(example.text_a) tokens_b = None if example.text_b: tokens_b = tokenizer.tokenize(example.text_b) if tokens_b: _truncate_seq_pair(tokens_a, tokens_b, max_seq_length - 3) elif len(tokens_a) > max_seq_length - 2: tokens_a = tokens_a[0:max_seq_length - 2] tokens = [] segment_ids = [] tokens.append('[CLS]') segment_ids.append(0) for token in tokens_a: tokens.append(token) segment_ids.append(0) tokens.append('[SEP]') segment_ids.append(0) if tokens_b: for token in tokens_b: tokens.append(token) segment_ids.append(1) tokens.append('[SEP]') segment_ids.append(1) input_ids = tokenizer.convert_tokens_to_ids(tokens) input_mask = [1] * len(input_ids) while len(input_ids) < max_seq_length: input_ids.append(0) input_mask.append(0) segment_ids.append(0) assert len(input_ids) == max_seq_length assert len(input_mask) == max_seq_length assert len(segment_ids) == max_seq_length label_id = label_map[example.label] if ex_index < 5: tf.logging.info('*** Example ***') tf.logging.info('guid: %s' % example.guid) tf.logging.info('tokens: %s' % ' '.join([tokenization.printable_text(x) for x in tokens])) tf.logging.info('input_ids: %s' % ' '.join([str(x) for x in input_ids])) tf.logging.info('input_mask: %s' % ' '.join([str(x) for x in input_mask])) tf.logging.info('segment_ids: %s' % ' '.join([str(x) for x in segment_ids])) tf.logging.info('label: %s (id = %d)' % (example.label, label_id)) feature = InputFeatures(input_ids=input_ids, input_mask=input_mask, segment_ids=segment_ids, label_id=label_id, is_real_example=True) feature = feature </DeepExtract> features.append(feature) return features
def convert_examples_to_features(examples, label_list, max_seq_length, tokenizer): """Convert a set of `InputExample`s to a list of `InputFeatures`.""" features = [] for (ex_index, example) in enumerate(examples): if ex_index % 10000 == 0: tf.logging.info('Writing example %d of %d' % (ex_index, len(examples))) if isinstance(example, PaddingInputExample): feature = InputFeatures(input_ids=[0] * max_seq_length, input_mask=[0] * max_seq_length, segment_ids=[0] * max_seq_length, label_id=0, is_real_example=False) label_map = {} for (i, label) in enumerate(label_list): label_map[label] = i tokens_a = tokenizer.tokenize(example.text_a) tokens_b = None if example.text_b: tokens_b = tokenizer.tokenize(example.text_b) if tokens_b: _truncate_seq_pair(tokens_a, tokens_b, max_seq_length - 3) elif len(tokens_a) > max_seq_length - 2: tokens_a = tokens_a[0:max_seq_length - 2] tokens = [] segment_ids = [] tokens.append('[CLS]') segment_ids.append(0) for token in tokens_a: tokens.append(token) segment_ids.append(0) tokens.append('[SEP]') segment_ids.append(0) if tokens_b: for token in tokens_b: tokens.append(token) segment_ids.append(1) tokens.append('[SEP]') segment_ids.append(1) input_ids = tokenizer.convert_tokens_to_ids(tokens) input_mask = [1] * len(input_ids) while len(input_ids) < max_seq_length: input_ids.append(0) input_mask.append(0) segment_ids.append(0) assert len(input_ids) == max_seq_length assert len(input_mask) == max_seq_length assert len(segment_ids) == max_seq_length label_id = label_map[example.label] if ex_index < 5: tf.logging.info('*** Example ***') tf.logging.info('guid: %s' % example.guid) tf.logging.info('tokens: %s' % ' '.join([tokenization.printable_text(x) for x in tokens])) tf.logging.info('input_ids: %s' % ' '.join([str(x) for x in input_ids])) tf.logging.info('input_mask: %s' % ' '.join([str(x) for x in input_mask])) tf.logging.info('segment_ids: %s' % ' '.join([str(x) for x in segment_ids])) tf.logging.info('label: %s (id = %d)' % (example.label, label_id)) feature = InputFeatures(input_ids=input_ids, input_mask=input_mask, segment_ids=segment_ids, label_id=label_id, is_real_example=True) feature = feature features.append(feature) return features
arabert
positive
def execute(self, operation, parameters=None): """ Prepare and execute a database operation (query or command). :param operation: query or command to execute. :param parameters: sequence or mapping that will be bound to variables in the operation. :return: None """ <DeepExtract> if self._state == self._states.CURSOR_CLOSED: raise InterfaceError('cursor already closed') </DeepExtract> <DeepExtract> self._state = self._states.RUNNING </DeepExtract> try: <DeepExtract> external_tables = [{'name': name, 'structure': structure, 'data': data} for (name, (structure, data)) in self._external_tables.items()] or None execute = self._client.execute if self._stream_results: execute = self._client.execute_iter self._settings = self._settings or {} self._settings['max_block_size'] = self._max_row_buffer execute_kwargs = {'settings': self._settings, 'external_tables': external_tables, 'types_check': self._types_check, 'query_id': self._query_id} (execute, execute_kwargs) = (execute, execute_kwargs) </DeepExtract> <DeepExtract> self._check_cursor_closed() self._begin_query() try: (execute, execute_kwargs) = self._prepare() response = execute(operation, params=parameters, with_column_types=True, **execute_kwargs) except DriverError as orig: raise OperationalError(orig) self._process_response(response) self._end_query() </DeepExtract> except DriverError as orig: raise OperationalError(orig) <DeepExtract> if executemany: self._rowcount = response response = None if not response or isinstance(response, int): self._columns = self._types = self._rows = [] if isinstance(response, int): self._rowcount = response return if self._stream_results: columns_with_types = next(response) rows = response else: (rows, columns_with_types) = response self._columns_with_types = columns_with_types if columns_with_types: (self._columns, self._types) = zip(*columns_with_types) if not self._stream_results: self._rowcount = len(rows) else: self._columns = self._types = [] self._rows = rows </DeepExtract> <DeepExtract> self._state = self._states.FINISHED </DeepExtract>
def execute(self, operation, parameters=None): """ Prepare and execute a database operation (query or command). :param operation: query or command to execute. :param parameters: sequence or mapping that will be bound to variables in the operation. :return: None """ if self._state == self._states.CURSOR_CLOSED: raise InterfaceError('cursor already closed') self._state = self._states.RUNNING try: external_tables = [{'name': name, 'structure': structure, 'data': data} for (name, (structure, data)) in self._external_tables.items()] or None execute = self._client.execute if self._stream_results: execute = self._client.execute_iter self._settings = self._settings or {} self._settings['max_block_size'] = self._max_row_buffer execute_kwargs = {'settings': self._settings, 'external_tables': external_tables, 'types_check': self._types_check, 'query_id': self._query_id} (execute, execute_kwargs) = (execute, execute_kwargs) self._check_cursor_closed() self._begin_query() try: (execute, execute_kwargs) = self._prepare() response = execute(operation, params=parameters, with_column_types=True, **execute_kwargs) except DriverError as orig: raise OperationalError(orig) self._process_response(response) self._end_query() except DriverError as orig: raise OperationalError(orig) if executemany: self._rowcount = response response = None if not response or isinstance(response, int): self._columns = self._types = self._rows = [] if isinstance(response, int): self._rowcount = response return if self._stream_results: columns_with_types = next(response) rows = response else: (rows, columns_with_types) = response self._columns_with_types = columns_with_types if columns_with_types: (self._columns, self._types) = zip(*columns_with_types) if not self._stream_results: self._rowcount = len(rows) else: self._columns = self._types = [] self._rows = rows self._state = self._states.FINISHED </DeepExtract>
clickhouse-driver
positive
def iter_explain(self, instances_df, nh_size): [Xs, Ys, isSparse] = self.preprocessor.generate_samples(nh_size) [Xe, Ye, isSparse] = self.preprocessor.preprocess(instances_df) <DeepExtract> distances = self.compute_distances_to_neighborhood(Xe, Xs) weights = self.kernel.transform(distances) sample_weights = weights </DeepExtract> classes = self.preprocessor.get_classes() predictor_features = self.preprocessor.get_predictor_features() coefs_cols = ['coef_{}'.format(c) for c in classes] predictor_features_df = pd.DataFrame(predictor_features, columns=['feature']) samples_cols = ['sample_{}'.format(s) for s in range(nh_size)] for (row_idx, [to_exp, to_proba, w]) in enumerate(izip(Xe, Ye, sample_weights)): Xs[0, :] = to_exp Ys[0, :] = to_proba model_regressor = Ridge(alpha=self.ridge_alpha, fit_intercept=True, random_state=self.random_state) model_regressor.fit(Xs, Ys, sample_weight=w) local_r2_score = model_regressor.score(Xs, Ys, sample_weight=None) intercept_np = model_regressor.intercept_ model_coefs = model_regressor.coef_ kernel_distance_avg = np.mean(w) kernel_distance_std = np.std(w) coefs_df = pd.DataFrame(model_coefs.T, columns=coefs_cols) explanation_df = pd.concat((predictor_features_df, coefs_df), axis=1) explanation_df.insert(0, '_exp_id', row_idx) instance_df = pd.DataFrame(to_exp.reshape(-1, len(to_exp)), columns=predictor_features) instance_df['r2_score'] = local_r2_score instance_df['kernel_distance_avg'] = kernel_distance_avg instance_df['kernel_distance_std'] = kernel_distance_std instance_df.insert(0, '_exp_id', row_idx) yield (explanation_df, instance_df)
def iter_explain(self, instances_df, nh_size): [Xs, Ys, isSparse] = self.preprocessor.generate_samples(nh_size) [Xe, Ye, isSparse] = self.preprocessor.preprocess(instances_df) distances = self.compute_distances_to_neighborhood(Xe, Xs) weights = self.kernel.transform(distances) sample_weights = weights classes = self.preprocessor.get_classes() predictor_features = self.preprocessor.get_predictor_features() coefs_cols = ['coef_{}'.format(c) for c in classes] predictor_features_df = pd.DataFrame(predictor_features, columns=['feature']) samples_cols = ['sample_{}'.format(s) for s in range(nh_size)] for (row_idx, [to_exp, to_proba, w]) in enumerate(izip(Xe, Ye, sample_weights)): Xs[0, :] = to_exp Ys[0, :] = to_proba model_regressor = Ridge(alpha=self.ridge_alpha, fit_intercept=True, random_state=self.random_state) model_regressor.fit(Xs, Ys, sample_weight=w) local_r2_score = model_regressor.score(Xs, Ys, sample_weight=None) intercept_np = model_regressor.intercept_ model_coefs = model_regressor.coef_ kernel_distance_avg = np.mean(w) kernel_distance_std = np.std(w) coefs_df = pd.DataFrame(model_coefs.T, columns=coefs_cols) explanation_df = pd.concat((predictor_features_df, coefs_df), axis=1) explanation_df.insert(0, '_exp_id', row_idx) instance_df = pd.DataFrame(to_exp.reshape(-1, len(to_exp)), columns=predictor_features) instance_df['r2_score'] = local_r2_score instance_df['kernel_distance_avg'] = kernel_distance_avg instance_df['kernel_distance_std'] = kernel_distance_std instance_df.insert(0, '_exp_id', row_idx) yield (explanation_df, instance_df)
dataiku-contrib
positive
def _sample(n_samples): """ Not for end use; please use `sample`. Samples model parameters from the prior distribution. This is an helper function called by the main `sample` one in order to split drawing from the prior in chunks to avoid parallelization issues with MPI. Parameters ---------- n_samples: integer Number of samples to generate Returns ------- list List containing sampled parameter values. """ <DeepExtract> seed_arr = self.rng.randint(0, np.iinfo(np.uint32).max, size=n_samples, dtype=np.uint32) sorted_seed_arr = np.sort(seed_arr) indices = sorted_seed_arr[:-1] == sorted_seed_arr[1:] if np.sum(indices) > 0: sorted_seed_arr[:-1][indices] = sorted_seed_arr[:-1][indices] + 1 rng_arr = np.array([np.random.RandomState(seed) for seed in sorted_seed_arr]) rng_pds = self.backend.parallelize(rng_arr) rng_pds = rng_pds </DeepExtract> parameters_pds = self.backend.map(self._sample_parameter_only, rng_pds) parameters = self.backend.collect(parameters_pds) return parameters
def _sample(n_samples): """ Not for end use; please use `sample`. Samples model parameters from the prior distribution. This is an helper function called by the main `sample` one in order to split drawing from the prior in chunks to avoid parallelization issues with MPI. Parameters ---------- n_samples: integer Number of samples to generate Returns ------- list List containing sampled parameter values. """ seed_arr = self.rng.randint(0, np.iinfo(np.uint32).max, size=n_samples, dtype=np.uint32) sorted_seed_arr = np.sort(seed_arr) indices = sorted_seed_arr[:-1] == sorted_seed_arr[1:] if np.sum(indices) > 0: sorted_seed_arr[:-1][indices] = sorted_seed_arr[:-1][indices] + 1 rng_arr = np.array([np.random.RandomState(seed) for seed in sorted_seed_arr]) rng_pds = self.backend.parallelize(rng_arr) rng_pds = rng_pds parameters_pds = self.backend.map(self._sample_parameter_only, rng_pds) parameters = self.backend.collect(parameters_pds) return parameters
abcpy
positive
def addAnnotation(self, cert, udct, box, page0ref, obj13, obj13ref, new_13): from endesive.pdf.PyPDF2_annotate.annotations.signature import Signature from endesive.pdf.PyPDF2_annotate.config.appearance import Appearance from endesive.pdf.PyPDF2_annotate.config.location import Location from endesive.pdf.PyPDF2_annotate.util.geometry import identity (x1, y1, x2, y2) = box annotation = Signature(Location(x1=x1, y1=y1, x2=x2, y2=y2, page=0), Appearance()) if 'signature' in udct: annotationtext = udct['signature'] wrap_text = udct.get('text', {}).get('wraptext', True) font_size = udct.get('text', {}).get('fontsize', 12) text_align = udct.get('text', {}).get('textalign', 'left') line_spacing = udct.get('text', {}).get('linespacing', 1.2) annotation.add_default_font() annotation.set_signature_appearance(['fill_colour', 0, 0, 0], ['font', 'default', font_size], ['text_box', annotationtext, 'default', 0, 0, x2 - x1, y2 - y1, font_size, wrap_text, text_align, 'middle', line_spacing]) elif 'signature_img' in udct: annotation.add_image(udct['signature_img'], 'Image') annotation.set_signature_appearance(['image', 'Image', 0, 0, x2 - x1, y2 - y1, udct.get('signature_img_distort', True), udct.get('signature_img_centred', False)]) elif 'signature_appearance' in udct: sig = {} for f in ('background', 'icon', 'labels', 'border', 'outline'): if f in udct['signature_appearance']: sig[f] = udct['signature_appearance'][f] toggles = udct['signature_appearance'].get('display', []) for f in ('contact', 'reason', 'location', 'contact', 'signingdate'): if f in toggles: sig[f] = udct.get(f, '{} unknown'.format(f)) if 'date' in toggles: sig['date'] = udct['signingdate'] if 'CN' in toggles: from cryptography.x509 import ObjectIdentifier sig['CN'] = cert.subject.get_attributes_for_oid(ObjectIdentifier('2.5.4.3'))[0].value if 'DN' in toggles: sig['DN'] = cert.subject.rfc4514_string() annotation.simple_signature(sig) else: if 'manual_images' in udct: for (name, img) in udct['manual_images'].items(): annotation.add_image(img, name=name) if 'manual_fonts' in udct: for (name, path) in udct['manual_fonts'].items(): annotation.add_ttf_font(path, name=name) annotation.add_default_font() annotation.set_signature_appearance(*udct['signature_manual']) pdfa = annotation.as_pdf_object(identity(), page=page0ref) <DeepExtract> stream = getattr(pdfa['/AP']['/N'], 'stream', None) if stream is not None: d = {'__streamdata__': stream, '/Length': len(stream)} d.update(pdfa['/AP']['/N']) dct = pdf.StreamObject.initializeFromDictionary(d) if '/Filter' in pdfa['/AP']['/N'] and pdfa['/AP']['/N']['/Filter'] == '/FlatDecode': del dct['/Filter'] dct = dct.flateEncode() else: dct = pdf.DictionaryObject() for (k, v) in pdfa['/AP']['/N'].items(): if isinstance(v, pdf.DictionaryObject): if v.indirect: v = self._extend(v) v = self._addObject(v) else: v = self._extend(v) elif isinstance(v, list): result = pdf.ArrayObject() for va in v: if isinstance(va, pdf.DictionaryObject): if va.indirect: va = self._extend(va) va = self._addObject(va) else: va = self._extend(va) result.append(va) v = result dct[k] = v objapn = dct </DeepExtract> objapnref = self._addObject(objapn) objap = po.DictionaryObject() objap[po.NameObject('/N')] = objapnref obj13.update({po.NameObject('/Rect'): po.ArrayObject([po.FloatObject(x1), po.FloatObject(y1), po.FloatObject(x2), po.FloatObject(y2)]), po.NameObject('/AP'): objap}) page0 = page0ref.getObject() if new_13: annots = po.ArrayObject([obj13ref]) if '/Annots' in page0: page0annots = page0['/Annots'] if isinstance(page0annots, po.IndirectObject): annots.insert(0, page0annots) elif isinstance(page0annots, po.ArrayObject): annots = page0annots annots.append(obj13ref) else: annots = page0['/Annots'] page0.update({po.NameObject('/Annots'): annots}) self._objects[page0ref.idnum - 1] = page0
def addAnnotation(self, cert, udct, box, page0ref, obj13, obj13ref, new_13): from endesive.pdf.PyPDF2_annotate.annotations.signature import Signature from endesive.pdf.PyPDF2_annotate.config.appearance import Appearance from endesive.pdf.PyPDF2_annotate.config.location import Location from endesive.pdf.PyPDF2_annotate.util.geometry import identity (x1, y1, x2, y2) = box annotation = Signature(Location(x1=x1, y1=y1, x2=x2, y2=y2, page=0), Appearance()) if 'signature' in udct: annotationtext = udct['signature'] wrap_text = udct.get('text', {}).get('wraptext', True) font_size = udct.get('text', {}).get('fontsize', 12) text_align = udct.get('text', {}).get('textalign', 'left') line_spacing = udct.get('text', {}).get('linespacing', 1.2) annotation.add_default_font() annotation.set_signature_appearance(['fill_colour', 0, 0, 0], ['font', 'default', font_size], ['text_box', annotationtext, 'default', 0, 0, x2 - x1, y2 - y1, font_size, wrap_text, text_align, 'middle', line_spacing]) elif 'signature_img' in udct: annotation.add_image(udct['signature_img'], 'Image') annotation.set_signature_appearance(['image', 'Image', 0, 0, x2 - x1, y2 - y1, udct.get('signature_img_distort', True), udct.get('signature_img_centred', False)]) elif 'signature_appearance' in udct: sig = {} for f in ('background', 'icon', 'labels', 'border', 'outline'): if f in udct['signature_appearance']: sig[f] = udct['signature_appearance'][f] toggles = udct['signature_appearance'].get('display', []) for f in ('contact', 'reason', 'location', 'contact', 'signingdate'): if f in toggles: sig[f] = udct.get(f, '{} unknown'.format(f)) if 'date' in toggles: sig['date'] = udct['signingdate'] if 'CN' in toggles: from cryptography.x509 import ObjectIdentifier sig['CN'] = cert.subject.get_attributes_for_oid(ObjectIdentifier('2.5.4.3'))[0].value if 'DN' in toggles: sig['DN'] = cert.subject.rfc4514_string() annotation.simple_signature(sig) else: if 'manual_images' in udct: for (name, img) in udct['manual_images'].items(): annotation.add_image(img, name=name) if 'manual_fonts' in udct: for (name, path) in udct['manual_fonts'].items(): annotation.add_ttf_font(path, name=name) annotation.add_default_font() annotation.set_signature_appearance(*udct['signature_manual']) pdfa = annotation.as_pdf_object(identity(), page=page0ref) stream = getattr(pdfa['/AP']['/N'], 'stream', None) if stream is not None: d = {'__streamdata__': stream, '/Length': len(stream)} d.update(pdfa['/AP']['/N']) dct = pdf.StreamObject.initializeFromDictionary(d) if '/Filter' in pdfa['/AP']['/N'] and pdfa['/AP']['/N']['/Filter'] == '/FlatDecode': del dct['/Filter'] dct = dct.flateEncode() else: dct = pdf.DictionaryObject() for (k, v) in pdfa['/AP']['/N'].items(): if isinstance(v, pdf.DictionaryObject): if v.indirect: v = self._extend(v) v = self._addObject(v) else: v = self._extend(v) elif isinstance(v, list): result = pdf.ArrayObject() for va in v: if isinstance(va, pdf.DictionaryObject): if va.indirect: va = self._extend(va) va = self._addObject(va) else: va = self._extend(va) result.append(va) v = result dct[k] = v objapn = dct objapnref = self._addObject(objapn) objap = po.DictionaryObject() objap[po.NameObject('/N')] = objapnref obj13.update({po.NameObject('/Rect'): po.ArrayObject([po.FloatObject(x1), po.FloatObject(y1), po.FloatObject(x2), po.FloatObject(y2)]), po.NameObject('/AP'): objap}) page0 = page0ref.getObject() if new_13: annots = po.ArrayObject([obj13ref]) if '/Annots' in page0: page0annots = page0['/Annots'] if isinstance(page0annots, po.IndirectObject): annots.insert(0, page0annots) elif isinstance(page0annots, po.ArrayObject): annots = page0annots annots.append(obj13ref) else: annots = page0['/Annots'] page0.update({po.NameObject('/Annots'): annots}) self._objects[page0ref.idnum - 1] = page0
endesive
positive
def api_request(url, method='get', params=None, ret_key=None): params = params or {} resp = None try: method = method.lower() <DeepExtract> g.user is not None or abort(403, 'You have to login to do this') key = g.user.key secret = g.user.secret values = ''.join([str(params[k]) for k in sorted(params.keys()) if params[k] is not None]) if params.keys() else '' _secret = ''.join([urlparse(url).path, secret, values]).encode('utf-8') params['_secret'] = hashlib.sha1(_secret).hexdigest() params['_key'] = key params = params </DeepExtract> if method == 'get': resp = getattr(requests, method)(url, params=params) else: resp = getattr(requests, method)(url, data=params) if resp.status_code != 200: return abort(resp.status_code, resp.json().get('message')) resp = resp.json() if ret_key is not None: return resp.get(ret_key) return resp except Exception as e: code = e.code if hasattr(e, 'code') else None if isinstance(code, int) and resp is not None: return abort(code, resp.json().get('message')) current_app.logger.warning(url) current_app.logger.warning(params) current_app.logger.error(str(e)) return abort(500, 'server unknown error')
def api_request(url, method='get', params=None, ret_key=None): params = params or {} resp = None try: method = method.lower() g.user is not None or abort(403, 'You have to login to do this') key = g.user.key secret = g.user.secret values = ''.join([str(params[k]) for k in sorted(params.keys()) if params[k] is not None]) if params.keys() else '' _secret = ''.join([urlparse(url).path, secret, values]).encode('utf-8') params['_secret'] = hashlib.sha1(_secret).hexdigest() params['_key'] = key params = params if method == 'get': resp = getattr(requests, method)(url, params=params) else: resp = getattr(requests, method)(url, data=params) if resp.status_code != 200: return abort(resp.status_code, resp.json().get('message')) resp = resp.json() if ret_key is not None: return resp.get(ret_key) return resp except Exception as e: code = e.code if hasattr(e, 'code') else None if isinstance(code, int) and resp is not None: return abort(code, resp.json().get('message')) current_app.logger.warning(url) current_app.logger.warning(params) current_app.logger.error(str(e)) return abort(500, 'server unknown error')
cmdb
positive
@ignoreLinted('H_DP_GENERAL_MISPLACED', 'H_DP_GLOBALS_MISPLACED', 'I_NOTIMPL_HINT') def test_issue_54(self): """ Subject: W_ARROW wasn't implemented and basic-pbx samples used it Source: https://github.com/ossobv/asterisklint/issues/54 """ <DeepExtract> dp = NamedTemporaryFile() dp.write("[Hints]\n; Don't die even though there is no arrow. Source: asterisk/asterisk\n; 2cfb3df35df7930541177eb32d71afa52cd38899 configs/basic-pbx/extensions.conf\nexten => _10XX,hint,PJSIP/${EXTEN}\nexten = _11XX,hint,PJSIP/${EXTEN}\n".encode('utf-8')) dp.flush() mainmod = import_module('asterisklint.commands.dialplan-check') mainmod.main([dp.name], {}) </DeepExtract> self.assertLinted({'H_CONF_NO_ARROW': 1, 'W_WSH_VARSET': 1})
@ignoreLinted('H_DP_GENERAL_MISPLACED', 'H_DP_GLOBALS_MISPLACED', 'I_NOTIMPL_HINT') def test_issue_54(self): """ Subject: W_ARROW wasn't implemented and basic-pbx samples used it Source: https://github.com/ossobv/asterisklint/issues/54 """ dp = NamedTemporaryFile() dp.write("[Hints]\n; Don't die even though there is no arrow. Source: asterisk/asterisk\n; 2cfb3df35df7930541177eb32d71afa52cd38899 configs/basic-pbx/extensions.conf\nexten => _10XX,hint,PJSIP/${EXTEN}\nexten = _11XX,hint,PJSIP/${EXTEN}\n".encode('utf-8')) dp.flush() mainmod = import_module('asterisklint.commands.dialplan-check') mainmod.main([dp.name], {}) self.assertLinted({'H_CONF_NO_ARROW': 1, 'W_WSH_VARSET': 1})
asterisklint
positive