xstress-api-hf / app.py
gaidasalsaa's picture
add all
e92da9e
raw
history blame
5.81 kB
from fastapi import FastAPI
from pydantic import BaseModel
from typing import Optional
import requests
import torch
from transformers import AutoTokenizer, BertForSequenceClassification
from huggingface_hub import hf_hub_download
import logging
logger = logging.getLogger("app")
logging.basicConfig(level=logging.INFO)
# =====================================================
# CONFIG
# =====================================================
HF_MODEL_REPO = "gaidasalsaa/indobertweet-xstress-model"
BASE_MODEL = "indolem/indobertweet-base-uncased"
PT_FILE = "model_indobertweet.pth"
BEARER_TOKEN = "AAAAAAAAAAAAAAAAAAAAADXr5gEAAAAAnQZgkYRrC4iM5WTblBxDyt58oj8%3DriQZkuHuvRL6Suc3rmDhD3umqbHaxwim2Tfb34rfQpnKqf9Xhd"
# =====================================================
# GLOBAL MODEL STORAGE
# =====================================================
tokenizer = None
model = None
# =====================================================
# LOAD MODEL
# =====================================================
def load_model_once():
global tokenizer, model
if tokenizer is not None and model is not None:
logger.info("Model already loaded.")
return
logger.info("Starting model loading...")
device = "cpu"
logger.info(f"Using device: {device}")
# ---- load tokenizer ----
logger.info("Loading tokenizer...")
tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL)
logger.info("Tokenizer loaded")
# ---- download .pth ----
logger.info("Downloading best_indobertweet.pth...")
model_path = hf_hub_download(
repo_id=HF_MODEL_REPO,
filename=PT_FILE,
)
logger.info(f"Model file downloaded: {model_path}")
logger.info("Loading base model architecture...")
model = BertForSequenceClassification.from_pretrained(
BASE_MODEL,
num_labels=2,
)
logger.info("Loading fine-tuned weights (.pth)...")
state_dict = torch.load(model_path, map_location="cpu")
model.load_state_dict(state_dict, strict=True)
logger.info("Weights loaded successfully")
model.to(device)
model.eval()
logger.info("MODEL READY")
# =====================================================
# FASTAPI
# =====================================================
app = FastAPI(title="Stress Detection API")
@app.on_event("startup")
def startup_event():
logger.info("Starting model loading on startup...")
load_model_once()
class StressResponse(BaseModel):
message: str
data: Optional[dict] = None
# =====================================================
# TWITTER API
# =====================================================
def get_user_id(username):
url = f"https://api.x.com/2/users/by/username/{username}"
headers = {"Authorization": f"Bearer {BEARER_TOKEN}"}
r = requests.get(url, headers=headers)
if r.status_code != 200:
return None, r.json()
return r.json()["data"]["id"], r.json()
def fetch_tweets(user_id, limit=25):
url = f"https://api.x.com/2/users/{user_id}/tweets"
params = {"max_results": limit, "tweet.fields": "id,text,created_at"}
headers = {"Authorization": f"Bearer {BEARER_TOKEN}"}
r = requests.get(url, headers=headers, params=params)
if r.status_code != 200:
return None, r.json()
tweets = r.json().get("data", [])
return [t["text"] for t in tweets], r.json()
# =====================================================
# KEYWORD EXTRACTION
# =====================================================
def extract_keywords(tweets):
stress_words = [
"gelisah","cemas","tidur","takut","hati",
"resah","sampe","tenang","suka","mulu",
"sedih","ngerasa","gimana","gatau",
"perasaan","nangis","deg","khawatir",
"pikiran","harap","gabisa","bener","pengen",
"sakit","susah","bangun","biar","jam","kaya",
"bingung","mikir","tuhan","mikirin",
"bawaannya","marah","tbtb","anjir","cape",
"panik","enak","kali","pusing","semoga",
"kadang","langsung","kemarin","tugas",
"males"
]
found = set()
for t in tweets:
lower = t.lower()
for word in stress_words:
if word in lower:
found.add(word)
return list(found)
# =====================================================
# INFERENCE
# =====================================================
def predict_stress(text):
inputs = tokenizer(
text,
return_tensors="pt",
truncation=True,
padding=True,
max_length=128
)
with torch.no_grad():
outputs = model(**inputs)
probs = torch.softmax(outputs.logits, dim=1)[0]
label = torch.argmax(probs).item()
return label, float(probs[1])
# =====================================================
# API ROUTE
# =====================================================
@app.get("/analyze/{username}", response_model=StressResponse)
def analyze(username: str):
user_id, _ = get_user_id(username)
if user_id is None:
return StressResponse(message="Failed to fetch profile", data=None)
tweets, _ = fetch_tweets(user_id)
if not tweets:
return StressResponse(message="No tweets available", data=None)
labels = [predict_stress(t)[0] for t in tweets]
stress_percentage = round(sum(labels) / len(labels) * 100, 2)
if stress_percentage <= 25:
status = 0
elif stress_percentage <= 50:
status = 1
elif stress_percentage <= 75:
status = 2
else:
status = 3
keywords = extract_keywords(tweets)
return StressResponse(
message="Analysis complete",
data={
"username": username,
"total_tweets": len(tweets),
"stress_level": stress_percentage,
"keywords": keywords,
"stress_status": status
}
)