Spaces:
Sleeping
Sleeping
Commit
·
e92da9e
1
Parent(s):
d183062
add all
Browse files- Dockerfile +34 -0
- app.py +200 -0
- requirements.txt +7 -0
Dockerfile
ADDED
|
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Use official Python runtime
|
| 2 |
+
FROM python:3.10-slim
|
| 3 |
+
|
| 4 |
+
# Set working directory
|
| 5 |
+
WORKDIR /app
|
| 6 |
+
|
| 7 |
+
# Install system dependencies
|
| 8 |
+
RUN apt-get update && apt-get install -y \
|
| 9 |
+
build-essential \
|
| 10 |
+
curl \
|
| 11 |
+
&& rm -rf /var/lib/apt/lists/*
|
| 12 |
+
|
| 13 |
+
# Copy requirements first (for better caching)
|
| 14 |
+
COPY requirements.txt .
|
| 15 |
+
|
| 16 |
+
# Install Python dependencies
|
| 17 |
+
RUN pip install --no-cache-dir --upgrade pip && \
|
| 18 |
+
pip install --no-cache-dir -r requirements.txt
|
| 19 |
+
|
| 20 |
+
# Copy application code
|
| 21 |
+
COPY app.py .
|
| 22 |
+
|
| 23 |
+
# Expose port 7860 (required by HF Spaces)
|
| 24 |
+
EXPOSE 7860
|
| 25 |
+
|
| 26 |
+
# Set environment variables
|
| 27 |
+
ENV PYTHONUNBUFFERED=1
|
| 28 |
+
|
| 29 |
+
# Health check
|
| 30 |
+
HEALTHCHECK --interval=30s --timeout=10s --start-period=60s --retries=3 \
|
| 31 |
+
CMD curl -f http://localhost:7860/health || exit 1
|
| 32 |
+
|
| 33 |
+
# Run the application
|
| 34 |
+
CMD ["uvicorn", "app:app", "--host", "0.0.0.0", "--port", "7860", "--workers", "1"]
|
app.py
ADDED
|
@@ -0,0 +1,200 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from fastapi import FastAPI
|
| 2 |
+
from pydantic import BaseModel
|
| 3 |
+
from typing import Optional
|
| 4 |
+
import requests
|
| 5 |
+
import torch
|
| 6 |
+
from transformers import AutoTokenizer, BertForSequenceClassification
|
| 7 |
+
from huggingface_hub import hf_hub_download
|
| 8 |
+
|
| 9 |
+
import logging
|
| 10 |
+
logger = logging.getLogger("app")
|
| 11 |
+
logging.basicConfig(level=logging.INFO)
|
| 12 |
+
|
| 13 |
+
# =====================================================
|
| 14 |
+
# CONFIG
|
| 15 |
+
# =====================================================
|
| 16 |
+
HF_MODEL_REPO = "gaidasalsaa/indobertweet-xstress-model"
|
| 17 |
+
BASE_MODEL = "indolem/indobertweet-base-uncased"
|
| 18 |
+
PT_FILE = "model_indobertweet.pth"
|
| 19 |
+
|
| 20 |
+
BEARER_TOKEN = "AAAAAAAAAAAAAAAAAAAAADXr5gEAAAAAnQZgkYRrC4iM5WTblBxDyt58oj8%3DriQZkuHuvRL6Suc3rmDhD3umqbHaxwim2Tfb34rfQpnKqf9Xhd"
|
| 21 |
+
|
| 22 |
+
# =====================================================
|
| 23 |
+
# GLOBAL MODEL STORAGE
|
| 24 |
+
# =====================================================
|
| 25 |
+
tokenizer = None
|
| 26 |
+
model = None
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
# =====================================================
|
| 30 |
+
# LOAD MODEL
|
| 31 |
+
# =====================================================
|
| 32 |
+
def load_model_once():
|
| 33 |
+
global tokenizer, model
|
| 34 |
+
|
| 35 |
+
if tokenizer is not None and model is not None:
|
| 36 |
+
logger.info("Model already loaded.")
|
| 37 |
+
return
|
| 38 |
+
|
| 39 |
+
logger.info("Starting model loading...")
|
| 40 |
+
|
| 41 |
+
device = "cpu"
|
| 42 |
+
logger.info(f"Using device: {device}")
|
| 43 |
+
|
| 44 |
+
# ---- load tokenizer ----
|
| 45 |
+
logger.info("Loading tokenizer...")
|
| 46 |
+
tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL)
|
| 47 |
+
logger.info("Tokenizer loaded")
|
| 48 |
+
|
| 49 |
+
# ---- download .pth ----
|
| 50 |
+
logger.info("Downloading best_indobertweet.pth...")
|
| 51 |
+
model_path = hf_hub_download(
|
| 52 |
+
repo_id=HF_MODEL_REPO,
|
| 53 |
+
filename=PT_FILE,
|
| 54 |
+
)
|
| 55 |
+
logger.info(f"Model file downloaded: {model_path}")
|
| 56 |
+
|
| 57 |
+
logger.info("Loading base model architecture...")
|
| 58 |
+
model = BertForSequenceClassification.from_pretrained(
|
| 59 |
+
BASE_MODEL,
|
| 60 |
+
num_labels=2,
|
| 61 |
+
)
|
| 62 |
+
|
| 63 |
+
logger.info("Loading fine-tuned weights (.pth)...")
|
| 64 |
+
state_dict = torch.load(model_path, map_location="cpu")
|
| 65 |
+
|
| 66 |
+
model.load_state_dict(state_dict, strict=True)
|
| 67 |
+
logger.info("Weights loaded successfully")
|
| 68 |
+
|
| 69 |
+
model.to(device)
|
| 70 |
+
model.eval()
|
| 71 |
+
|
| 72 |
+
logger.info("MODEL READY")
|
| 73 |
+
|
| 74 |
+
|
| 75 |
+
# =====================================================
|
| 76 |
+
# FASTAPI
|
| 77 |
+
# =====================================================
|
| 78 |
+
app = FastAPI(title="Stress Detection API")
|
| 79 |
+
|
| 80 |
+
|
| 81 |
+
@app.on_event("startup")
|
| 82 |
+
def startup_event():
|
| 83 |
+
logger.info("Starting model loading on startup...")
|
| 84 |
+
load_model_once()
|
| 85 |
+
|
| 86 |
+
|
| 87 |
+
class StressResponse(BaseModel):
|
| 88 |
+
message: str
|
| 89 |
+
data: Optional[dict] = None
|
| 90 |
+
|
| 91 |
+
|
| 92 |
+
# =====================================================
|
| 93 |
+
# TWITTER API
|
| 94 |
+
# =====================================================
|
| 95 |
+
def get_user_id(username):
|
| 96 |
+
url = f"https://api.x.com/2/users/by/username/{username}"
|
| 97 |
+
headers = {"Authorization": f"Bearer {BEARER_TOKEN}"}
|
| 98 |
+
r = requests.get(url, headers=headers)
|
| 99 |
+
if r.status_code != 200:
|
| 100 |
+
return None, r.json()
|
| 101 |
+
return r.json()["data"]["id"], r.json()
|
| 102 |
+
|
| 103 |
+
|
| 104 |
+
def fetch_tweets(user_id, limit=25):
|
| 105 |
+
url = f"https://api.x.com/2/users/{user_id}/tweets"
|
| 106 |
+
params = {"max_results": limit, "tweet.fields": "id,text,created_at"}
|
| 107 |
+
headers = {"Authorization": f"Bearer {BEARER_TOKEN}"}
|
| 108 |
+
r = requests.get(url, headers=headers, params=params)
|
| 109 |
+
if r.status_code != 200:
|
| 110 |
+
return None, r.json()
|
| 111 |
+
tweets = r.json().get("data", [])
|
| 112 |
+
return [t["text"] for t in tweets], r.json()
|
| 113 |
+
|
| 114 |
+
|
| 115 |
+
# =====================================================
|
| 116 |
+
# KEYWORD EXTRACTION
|
| 117 |
+
# =====================================================
|
| 118 |
+
def extract_keywords(tweets):
|
| 119 |
+
stress_words = [
|
| 120 |
+
"gelisah","cemas","tidur","takut","hati",
|
| 121 |
+
"resah","sampe","tenang","suka","mulu",
|
| 122 |
+
"sedih","ngerasa","gimana","gatau",
|
| 123 |
+
"perasaan","nangis","deg","khawatir",
|
| 124 |
+
"pikiran","harap","gabisa","bener","pengen",
|
| 125 |
+
"sakit","susah","bangun","biar","jam","kaya",
|
| 126 |
+
"bingung","mikir","tuhan","mikirin",
|
| 127 |
+
"bawaannya","marah","tbtb","anjir","cape",
|
| 128 |
+
"panik","enak","kali","pusing","semoga",
|
| 129 |
+
"kadang","langsung","kemarin","tugas",
|
| 130 |
+
"males"
|
| 131 |
+
]
|
| 132 |
+
|
| 133 |
+
found = set()
|
| 134 |
+
for t in tweets:
|
| 135 |
+
lower = t.lower()
|
| 136 |
+
for word in stress_words:
|
| 137 |
+
if word in lower:
|
| 138 |
+
found.add(word)
|
| 139 |
+
|
| 140 |
+
return list(found)
|
| 141 |
+
|
| 142 |
+
|
| 143 |
+
# =====================================================
|
| 144 |
+
# INFERENCE
|
| 145 |
+
# =====================================================
|
| 146 |
+
def predict_stress(text):
|
| 147 |
+
inputs = tokenizer(
|
| 148 |
+
text,
|
| 149 |
+
return_tensors="pt",
|
| 150 |
+
truncation=True,
|
| 151 |
+
padding=True,
|
| 152 |
+
max_length=128
|
| 153 |
+
)
|
| 154 |
+
|
| 155 |
+
with torch.no_grad():
|
| 156 |
+
outputs = model(**inputs)
|
| 157 |
+
probs = torch.softmax(outputs.logits, dim=1)[0]
|
| 158 |
+
|
| 159 |
+
label = torch.argmax(probs).item()
|
| 160 |
+
return label, float(probs[1])
|
| 161 |
+
|
| 162 |
+
|
| 163 |
+
# =====================================================
|
| 164 |
+
# API ROUTE
|
| 165 |
+
# =====================================================
|
| 166 |
+
@app.get("/analyze/{username}", response_model=StressResponse)
|
| 167 |
+
def analyze(username: str):
|
| 168 |
+
user_id, _ = get_user_id(username)
|
| 169 |
+
if user_id is None:
|
| 170 |
+
return StressResponse(message="Failed to fetch profile", data=None)
|
| 171 |
+
|
| 172 |
+
tweets, _ = fetch_tweets(user_id)
|
| 173 |
+
if not tweets:
|
| 174 |
+
return StressResponse(message="No tweets available", data=None)
|
| 175 |
+
|
| 176 |
+
labels = [predict_stress(t)[0] for t in tweets]
|
| 177 |
+
|
| 178 |
+
stress_percentage = round(sum(labels) / len(labels) * 100, 2)
|
| 179 |
+
|
| 180 |
+
if stress_percentage <= 25:
|
| 181 |
+
status = 0
|
| 182 |
+
elif stress_percentage <= 50:
|
| 183 |
+
status = 1
|
| 184 |
+
elif stress_percentage <= 75:
|
| 185 |
+
status = 2
|
| 186 |
+
else:
|
| 187 |
+
status = 3
|
| 188 |
+
|
| 189 |
+
keywords = extract_keywords(tweets)
|
| 190 |
+
|
| 191 |
+
return StressResponse(
|
| 192 |
+
message="Analysis complete",
|
| 193 |
+
data={
|
| 194 |
+
"username": username,
|
| 195 |
+
"total_tweets": len(tweets),
|
| 196 |
+
"stress_level": stress_percentage,
|
| 197 |
+
"keywords": keywords,
|
| 198 |
+
"stress_status": status
|
| 199 |
+
}
|
| 200 |
+
)
|
requirements.txt
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
fastapi==0.115.6
|
| 2 |
+
uvicorn[standard]==0.34.0
|
| 3 |
+
torch==2.5.1
|
| 4 |
+
transformers==4.48.0
|
| 5 |
+
huggingface-hub==0.27.1
|
| 6 |
+
requests==2.32.3
|
| 7 |
+
pydantic==2.10.6
|