File size: 22,276 Bytes
bfd60b5
95e2d44
6dfb0b7
 
 
 
95e2d44
6dfb0b7
bfd60b5
 
 
6dfb0b7
95e2d44
6dfb0b7
 
 
95e2d44
6dfb0b7
 
 
 
 
 
 
 
 
 
2e613c7
6dfb0b7
2e613c7
95e2d44
bfd60b5
2e613c7
95e2d44
 
 
524d875
95e2d44
524d875
2e613c7
 
95e2d44
 
 
 
6dfb0b7
 
 
95e2d44
 
 
 
 
 
 
 
 
 
 
 
 
 
4d44787
 
 
 
 
 
 
 
2e613c7
 
4d44787
 
 
2e613c7
 
 
 
 
 
 
 
 
 
 
 
 
95e2d44
 
2e613c7
6dfb0b7
 
2e613c7
4d44787
f2fb2f9
6dfb0b7
4d44787
 
6dfb0b7
 
 
 
 
 
 
 
 
2e613c7
6dfb0b7
95e2d44
 
 
 
 
6dfb0b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bfd60b5
6dfb0b7
 
 
95e2d44
6dfb0b7
 
 
bfd60b5
6dfb0b7
 
2e613c7
6dfb0b7
2e613c7
6dfb0b7
 
 
 
 
 
 
2e613c7
bfd60b5
6dfb0b7
 
2e613c7
6dfb0b7
2e613c7
6dfb0b7
 
2e613c7
6dfb0b7
 
 
 
2e613c7
6dfb0b7
2e613c7
 
6dfb0b7
2e613c7
 
 
 
 
6dfb0b7
 
 
2e613c7
 
 
 
 
 
 
 
 
95e2d44
6dfb0b7
 
2e613c7
6dfb0b7
 
 
2e613c7
6dfb0b7
 
2e613c7
6dfb0b7
2e613c7
 
6dfb0b7
 
 
 
 
 
 
 
 
2e613c7
6dfb0b7
 
 
 
 
 
2e613c7
6dfb0b7
2e613c7
6dfb0b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2e613c7
 
 
 
 
6dfb0b7
2e613c7
 
 
 
 
 
 
 
 
 
6dfb0b7
 
 
 
2e613c7
6dfb0b7
2e613c7
 
6dfb0b7
2e613c7
6dfb0b7
 
 
 
2e613c7
6dfb0b7
 
 
2e613c7
 
 
6dfb0b7
2e613c7
 
6dfb0b7
2e613c7
6dfb0b7
2e613c7
 
 
6dfb0b7
 
2e613c7
 
 
 
6dfb0b7
 
2e613c7
6dfb0b7
95e2d44
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bfd60b5
95e2d44
 
bfd60b5
95e2d44
6dfb0b7
95e2d44
 
 
2e613c7
6dfb0b7
2e613c7
95e2d44
6dfb0b7
95e2d44
 
 
 
 
 
 
6dfb0b7
95e2d44
 
 
 
 
 
bfd60b5
95e2d44
 
 
 
 
bfd60b5
95e2d44
 
 
6dfb0b7
2e613c7
6dfb0b7
 
95e2d44
 
bfd60b5
6dfb0b7
2e613c7
6dfb0b7
 
 
 
 
95e2d44
6dfb0b7
95e2d44
 
 
2e613c7
 
 
 
 
 
 
 
 
 
 
95e2d44
2e613c7
6dfb0b7
2e613c7
6dfb0b7
 
2e613c7
6dfb0b7
 
2e613c7
 
6dfb0b7
2e613c7
 
 
 
6dfb0b7
95e2d44
6dfb0b7
95e2d44
 
6dfb0b7
95e2d44
6dfb0b7
2e613c7
95e2d44
 
2e613c7
95e2d44
 
 
 
6dfb0b7
95e2d44
 
 
6dfb0b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bfd60b5
2e613c7
 
 
 
 
 
 
 
 
6dfb0b7
2e613c7
 
 
 
4cf56ba
6dfb0b7
befc765
6dfb0b7
 
befc765
6dfb0b7
 
 
 
 
2e613c7
6dfb0b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
befc765
 
6dfb0b7
 
57d5222
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
import os
import sys
import re
import json
import random
import logging
import warnings
from dataclasses import dataclass

import gradio as gr
import torch
from PIL import Image, ImageDraw, ImageFont

import spaces
from diffusers import AutoencoderKL, FlowMatchEulerDiscreteScheduler
from transformers import AutoModelForCausalLM, AutoTokenizer

# ------------------------- 可选依赖:Prompt Enhancer 模板 -------------------------
# 你的原工程里如果有 pe.py,会自动使用;没有也不会报错(enhance 默认关闭)
try:
    sys.path.append(os.path.dirname(os.path.abspath(__file__)))
    from pe import prompt_template  # type: ignore
except Exception:
    prompt_template = (
        "You are a helpful prompt engineer. Expand the user prompt into a richer, detailed prompt. "
        "Return JSON with key revised_prompt."
    )

# ------------------------- Z-Image 相关(依赖你环境中 diffusers 的实现) -------------------------
from diffusers import ZImagePipeline
from diffusers.models.transformers.transformer_z_image import ZImageTransformer2DModel

# ==================== Environment Variables ==================================
MODEL_PATH = os.environ.get("MODEL_PATH", "Tongyi-MAI/Z-Image-Turbo")
ENABLE_COMPILE = os.environ.get("ENABLE_COMPILE", "true").lower() == "true"
ENABLE_WARMUP = os.environ.get("ENABLE_WARMUP", "true").lower() == "true"
ATTENTION_BACKEND = os.environ.get("ATTENTION_BACKEND", "flash_3")
DASHSCOPE_API_KEY = os.environ.get("DASHSCOPE_API_KEY")
HF_TOKEN = os.environ.get("HF_TOKEN")
# =============================================================================

os.environ["TOKENIZERS_PARALLELISM"] = "false"
warnings.filterwarnings("ignore")
logging.getLogger("transformers").setLevel(logging.ERROR)

DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
DTYPE = torch.bfloat16 if DEVICE == "cuda" else torch.float32

RES_CHOICES = {
    "1024": [
        "1024x1024 ( 1:1 )",
        "1152x896 ( 9:7 )",
        "896x1152 ( 7:9 )",
        "1152x864 ( 4:3 )",
        "864x1152 ( 3:4 )",
        "1248x832 ( 3:2 )",
        "832x1248 ( 2:3 )",
        "1280x720 ( 16:9 )",
        "720x1280 ( 9:16 )",
        "1344x576 ( 21:9 )",
        "576x1344 ( 9:21 )",
    ],
    "1280": [
        "1280x1280 ( 1:1 )",
        "1440x1120 ( 9:7 )",
        "1120x1440 ( 7:9 )",
        "1472x1104 ( 4:3 )",
        "1104x1472 ( 3:4 )",
        "1536x1024 ( 3:2 )",
        "1024x1536 ( 2:3 )",
        "1536x864 ( 16:9 )",
        "864x1536 ( 9:16 )",
        "1680x720 ( 21:9 )",
        "720x1680 ( 9:21 )",
    ],
    "1536": [
        "1536x1536 ( 1:1 )",
        "1728x1344 ( 9:7 )",
        "1344x1728 ( 7:9 )",
        "1728x1296 ( 4:3 )",
        "1296x1728 ( 3:4 )",
        "1872x1248 ( 3:2 )",
        "1248x1872 ( 2:3 )",
        "2048x1152 ( 16:9 )",
        "1152x2048 ( 9:16 )",
        "2016x864 ( 21:9 )",
        "864x2016 ( 9:21 )",
    ],
}

RESOLUTION_SET = []
for _k, v in RES_CHOICES.items():
    RESOLUTION_SET.extend(v)

EXAMPLE_PROMPTS = [
    ["一位男士和他的贵宾犬穿着配套的服装参加狗狗秀,室内灯光,背景中有观众。"],
    ["极具氛围感的暗调人像,一位优雅的中国美女在黑暗的房间里。一束强光通过遮光板,在她的脸上投射出一个清晰的闪电形状的光影,正好照亮一只眼睛。高对比度,明暗交界清晰,神秘感,莱卡相机色调。"],
]

# ------------------------- HF token 兼容参数 -------------------------
def _hf_token_kwargs(token: str | None):
    """
    transformers / diffusers 的 from_pretrained 近年来从 use_auth_token 迁移到 token。
    这里做一个兼容:优先传 token,不支持则回退 use_auth_token。
    """
    if not token:
        return {}
    return {"token": token, "use_auth_token": token}

def get_resolution(resolution: str):
    match = re.search(r"(\d+)\s*[×x]\s*(\d+)", resolution)
    if match:
        return int(match.group(1)), int(match.group(2))
    return 1024, 1024

def _make_blocked_image(width=1024, height=1024, text="Blocked by Safety Checker"):
    img = Image.new("RGB", (width, height), (20, 20, 20))
    draw = ImageDraw.Draw(img)
    try:
        font = ImageFont.load_default()
    except Exception:
        font = None
    draw.rectangle([0, 0, width, 90], fill=(160, 0, 0))
    draw.text((20, 30), text, fill=(255, 255, 255), font=font)
    return img

def _load_nsfw_placeholder(width=1024, height=1024):
    """
    命中 NSFW 时优先加载工作目录的 nsfw.png;
    不存在就生成一张占位图,避免文件缺失导致再次报错。
    """
    if os.path.exists("nsfw.png"):
        try:
            return Image.open("nsfw.png").convert("RGB")
        except Exception:
            pass
    return _make_blocked_image(width, height, "NSFW blocked")

def load_models(model_path: str, enable_compile=False, attention_backend="native"):
    print(f"[Init] Loading models from: {model_path}")
    print(f"[Init] DEVICE={DEVICE}, DTYPE={DTYPE}, ENABLE_COMPILE={enable_compile}, ATTENTION_BACKEND={attention_backend}")

    # 远端 repo-id(不存在的本地路径) vs 本地目录
    is_local_dir = os.path.exists(model_path)
    token_kwargs = _hf_token_kwargs(HF_TOKEN) if not is_local_dir else {}

    # 1) VAE
    if not is_local_dir:
        vae = AutoencoderKL.from_pretrained(
            model_path,
            subfolder="vae",
            torch_dtype=DTYPE if DEVICE == "cuda" else torch.float32,
            **token_kwargs,
        )
    else:
        vae = AutoencoderKL.from_pretrained(
            os.path.join(model_path, "vae"),
            torch_dtype=DTYPE if DEVICE == "cuda" else torch.float32,
        )

    # 2) Text Encoder + Tokenizer
    if not is_local_dir:
        text_encoder = AutoModelForCausalLM.from_pretrained(
            model_path,
            subfolder="text_encoder",
            torch_dtype=DTYPE if DEVICE == "cuda" else torch.float32,
            **token_kwargs,
        ).eval()
        tokenizer = AutoTokenizer.from_pretrained(
            model_path,
            subfolder="tokenizer",
            **token_kwargs,
        )
    else:
        text_encoder = AutoModelForCausalLM.from_pretrained(
            os.path.join(model_path, "text_encoder"),
            torch_dtype=DTYPE if DEVICE == "cuda" else torch.float32,
        ).eval()
        tokenizer = AutoTokenizer.from_pretrained(os.path.join(model_path, "tokenizer"))

    tokenizer.padding_side = "left"

    # compile 优化(仅 CUDA 才建议打开)
    if enable_compile and DEVICE == "cuda":
        print("[Init] Enabling torch.compile optimizations...")
        torch._inductor.config.conv_1x1_as_mm = True
        torch._inductor.config.coordinate_descent_tuning = True
        torch._inductor.config.epilogue_fusion = False
        torch._inductor.config.coordinate_descent_check_all_directions = True
        torch._inductor.config.max_autotune_gemm = True
        torch._inductor.config.max_autotune_gemm_backends = "TRITON,ATEN"
        torch._inductor.config.triton.cudagraphs = False

    pipe = ZImagePipeline(scheduler=None, vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, transformer=None)

    # 3) Transformer
    if not is_local_dir:
        transformer = ZImageTransformer2DModel.from_pretrained(
            model_path,
            subfolder="transformer",
            **token_kwargs,
        )
    else:
        transformer = ZImageTransformer2DModel.from_pretrained(os.path.join(model_path, "transformer"))

    transformer = transformer.to(DEVICE, DTYPE)
    pipe.transformer = transformer

    # attention backend 可能在不同环境不支持,做容错
    try:
        pipe.transformer.set_attention_backend(attention_backend)
    except Exception as e:
        print(f"[Init] set_attention_backend('{attention_backend}') failed, fallback to 'native'. Error: {e}")
        try:
            pipe.transformer.set_attention_backend("native")
        except Exception as e2:
            print(f"[Init] fallback set_attention_backend('native') failed: {e2}")

    if enable_compile and DEVICE == "cuda":
        try:
            print("[Init] Compiling transformer...")
            pipe.transformer = torch.compile(pipe.transformer, mode="max-autotune-no-cudagraphs", fullgraph=False)
        except Exception as e:
            print(f"[Init] torch.compile failed, continue without compile. Error: {e}")

    pipe = pipe.to(DEVICE, DTYPE)

    # 4) Safety Checker(用于生成后过滤)
    try:
        from diffusers.pipelines.stable_diffusion import StableDiffusionSafetyChecker
        try:
            from transformers import CLIPImageProcessor as _CLIPProcessor
        except Exception:
            # 老版本兼容
            from transformers import CLIPFeatureExtractor as _CLIPProcessor  # type: ignore

        safety_model_id = "CompVis/stable-diffusion-safety-checker"
        safety_feature_extractor = _CLIPProcessor.from_pretrained(safety_model_id, **_hf_token_kwargs(HF_TOKEN))
        safety_checker = StableDiffusionSafetyChecker.from_pretrained(
            safety_model_id,
            torch_dtype=torch.float16 if DEVICE == "cuda" else torch.float32,
            **_hf_token_kwargs(HF_TOKEN),
        ).to(DEVICE)

        pipe.safety_feature_extractor = safety_feature_extractor
        pipe.safety_checker = safety_checker
        print("[Init] Safety checker loaded.")
    except Exception as e:
        print(f"[Init] Safety checker init failed. NSFW filtering will be skipped. Error: {e}")
        pipe.safety_feature_extractor = None
        pipe.safety_checker = None

    return pipe

def generate_image(
    pipe,
    prompt: str,
    resolution="1024x1024",
    seed=42,
    guidance_scale=5.0,
    num_inference_steps=50,
    shift=3.0,
    max_sequence_length=512,
    progress=gr.Progress(track_tqdm=True),
):
    width, height = get_resolution(resolution)

    if DEVICE == "cuda":
        generator = torch.Generator(device="cuda").manual_seed(int(seed))
    else:
        generator = torch.Generator().manual_seed(int(seed))

    scheduler = FlowMatchEulerDiscreteScheduler(num_train_timesteps=1000, shift=float(shift))
    pipe.scheduler = scheduler

    out = pipe(
        prompt=prompt,
        height=int(height),
        width=int(width),
        guidance_scale=float(guidance_scale),
        num_inference_steps=int(num_inference_steps),
        generator=generator,
        max_sequence_length=int(max_sequence_length),
    )
    image = out.images[0]
    return image

def warmup_model(pipe, resolutions):
    print("[Warmup] Starting warmup phase...")
    dummy_prompt = "warmup"
    for res_str in resolutions:
        print(f"[Warmup] Resolution: {res_str}")
        try:
            for i in range(2):
                generate_image(
                    pipe,
                    prompt=dummy_prompt,
                    resolution=res_str.split(" ")[0],
                    num_inference_steps=6,
                    guidance_scale=0.0,
                    seed=42 + i,
                )
        except Exception as e:
            print(f"[Warmup] Failed for {res_str}: {e}")
    print("[Warmup] Completed.")

# ==================== Prompt Expander(保留但默认不启用) ====================
@dataclass
class PromptOutput:
    status: bool
    prompt: str
    seed: int
    system_prompt: str
    message: str

class PromptExpander:
    def __init__(self, backend="api", **kwargs):
        self.backend = backend

    def decide_system_prompt(self, template_name=None):
        return prompt_template

class APIPromptExpander(PromptExpander):
    def __init__(self, api_config=None, **kwargs):
        super().__init__(backend="api", **kwargs)
        self.api_config = api_config or {}
        self.client = self._init_api_client()

    def _init_api_client(self):
        try:
            from openai import OpenAI

            api_key = self.api_config.get("api_key") or DASHSCOPE_API_KEY
            base_url = self.api_config.get("base_url", "https://dashscope.aliyuncs.com/compatible-mode/v1")

            if not api_key:
                print("[PE] Warning: DASHSCOPE_API_KEY not found. Prompt enhance unavailable.")
                return None

            return OpenAI(api_key=api_key, base_url=base_url)
        except ImportError:
            print("[PE] Please install openai: pip install openai")
            return None
        except Exception as e:
            print(f"[PE] Failed to initialize API client: {e}")
            return None

    def __call__(self, prompt, system_prompt=None, seed=-1, **kwargs):
        return self.extend(prompt, system_prompt, seed, **kwargs)

    def extend(self, prompt, system_prompt=None, seed=-1, **kwargs):
        if self.client is None:
            return PromptOutput(False, "", seed, system_prompt or "", "API client not initialized")

        if system_prompt is None:
            system_prompt = self.decide_system_prompt()

        if "{prompt}" in system_prompt:
            system_prompt = system_prompt.format(prompt=prompt)
            prompt = " "

        try:
            model = self.api_config.get("model", "qwen3-max-preview")
            response = self.client.chat.completions.create(
                model=model,
                messages=[{"role": "system", "content": system_prompt}, {"role": "user", "content": prompt}],
                temperature=0.7,
                top_p=0.8,
            )
            content = response.choices[0].message.content or ""

            # 尝试从 ```json 块中解析 revised_prompt
            expanded_prompt = content
            json_start = content.find("```json")
            if json_start != -1:
                json_end = content.find("```", json_start + 7)
                if json_end != -1:
                    json_str = content[json_start + 7 : json_end].strip()
                    try:
                        data = json.loads(json_str)
                        expanded_prompt = data.get("revised_prompt", content)
                    except Exception:
                        expanded_prompt = content

            return PromptOutput(True, expanded_prompt, seed, system_prompt, content)
        except Exception as e:
            return PromptOutput(False, "", seed, system_prompt, str(e))

def create_prompt_expander(backend="api", **kwargs):
    if backend == "api":
        return APIPromptExpander(**kwargs)
    raise ValueError("Only 'api' backend is supported.")

pipe = None
prompt_expander = None

def init_app():
    global pipe, prompt_expander

    try:
        pipe = load_models(MODEL_PATH, enable_compile=ENABLE_COMPILE, attention_backend=ATTENTION_BACKEND)
        print("[Init] Model loaded.")

        if ENABLE_WARMUP and pipe is not None:
            all_res = []
            for cat in RES_CHOICES.values():
                all_res.extend(cat)
            warmup_model(pipe, all_res)

    except Exception as e:
        print(f"[Init] Error loading model: {e}")
        pipe = None

    try:
        prompt_expander = create_prompt_expander(backend="api", api_config={"model": "qwen3-max-preview"})
        print("[Init] Prompt expander ready (disabled by default).")
    except Exception as e:
        print(f"[Init] Error initializing prompt expander: {e}")
        prompt_expander = None

def prompt_enhance(prompt, enable_enhance: bool):
    if not enable_enhance or not prompt_expander:
        return prompt, "Enhancement disabled or unavailable."

    if not prompt.strip():
        return "", "Please enter a prompt."

    try:
        result = prompt_expander(prompt)
        if result.status:
            return result.prompt, result.message
        return prompt, f"Enhancement failed: {result.message}"
    except Exception as e:
        return prompt, f"Error: {str(e)}"

def try_enable_aoti(pipe):
    """
    AoTI(ZeroGPU 加速)可用则启用;不可用则跳过,不影响主流程。
    """
    if pipe is None:
        return
    try:
        # 优先按你原代码的结构尝试:pipe.transformer.layers
        if hasattr(pipe, "transformer") and pipe.transformer is not None:
            target = None
            if hasattr(pipe.transformer, "layers"):
                target = pipe.transformer.layers
                if hasattr(target, "_repeated_blocks"):
                    target._repeated_blocks = ["ZImageTransformerBlock"]
            else:
                # 兜底:直接对 transformer 设置
                target = pipe.transformer
                if hasattr(target, "_repeated_blocks"):
                    target._repeated_blocks = ["ZImageTransformerBlock"]

            if target is not None:
                spaces.aoti_blocks_load(target, "zerogpu-aoti/Z-Image", variant="fa3")
                print("[Init] AoTI blocks loaded.")
    except Exception as e:
        print(f"[Init] AoTI not enabled (safe to ignore). Error: {e}")

@spaces.GPU
def generate(
    prompt,
    resolution="1024x1024 ( 1:1 )",
    seed=42,
    steps=9,
    shift=3.0,
    random_seed=True,
    gallery_images=None,
    enhance=False,  # 默认不启用
    progress=gr.Progress(track_tqdm=True),
):
    if random_seed:
        new_seed = random.randint(1, 1000000)
    else:
        new_seed = int(seed) if int(seed) != -1 else random.randint(1, 1000000)

    if pipe is None:
        raise gr.Error("Model not loaded. Please check logs.")

    final_prompt = prompt or ""
    if enhance:
        # 你原注释说 DISABLED,这里仍保留能力但默认关闭
        final_prompt, _msg = prompt_enhance(final_prompt, True)
        print(f"[PE] Enhanced prompt: {final_prompt}")

    # 解析 "1024x1024 ( 1:1 )" -> "1024x1024"
    try:
        resolution_str = str(resolution).split(" ")[0]
    except Exception:
        resolution_str = "1024x1024"

    width, height = get_resolution(resolution_str)

    # 生成
    image = generate_image(
        pipe=pipe,
        prompt=final_prompt,
        resolution=resolution_str,
        seed=new_seed,
        guidance_scale=0.0,
        num_inference_steps=int(steps) + 1,
        shift=float(shift),
    )

    # 生成后 NSFW 安全检查(已去掉 prompt_check)
    try:
        if getattr(pipe, "safety_feature_extractor", None) is not None and getattr(pipe, "safety_checker", None) is not None:
            # CLIP 输入
            clip_inputs = pipe.safety_feature_extractor([image], return_tensors="pt")
            clip_input = clip_inputs.pixel_values.to(DEVICE)

            # SafetyChecker 需要 numpy 格式图片(batch, H, W, C),float32 0-1
            import numpy as np
            img_np = np.array(image).astype("float32") / 255.0
            img_np = img_np[None, ...]

            checked_images, has_nsfw = pipe.safety_checker(images=img_np, clip_input=clip_input)
            # has_nsfw 一般是 list[bool]
            if isinstance(has_nsfw, (list, tuple)) and len(has_nsfw) > 0 and bool(has_nsfw[0]):
                image = _load_nsfw_placeholder(width, height)
    except Exception as e:
        # Safety checker 失败不应阻塞主流程
        print(f"[Safety] Check failed (ignored): {e}")

    if gallery_images is None:
        gallery_images = []
    gallery_images = [image] + list(gallery_images)

    return gallery_images, str(new_seed), int(new_seed)

# ------------------------- 启动初始化 -------------------------
init_app()
try_enable_aoti(pipe)

# ==================== Gradio UI ====================
with gr.Blocks(title="Z-Image Demo") as demo:
    gr.Markdown(
        """<div align="center">
# Z-Image Generation Demo
*An Efficient Image Generation Foundation Model with Single-Stream Diffusion Transformer*
</div>"""
    )

    with gr.Row():
        with gr.Column(scale=1):
            prompt_input = gr.Textbox(label="Prompt", lines=3, placeholder="Enter your prompt here...")

            with gr.Row():
                choices = [int(k) for k in RES_CHOICES.keys()]
                res_cat = gr.Dropdown(value=1024, choices=choices, label="Resolution Category")

                initial_res_choices = RES_CHOICES["1024"]
                resolution = gr.Dropdown(
                    value=initial_res_choices[0],
                    choices=RESOLUTION_SET,
                    label="Width x Height (Ratio)",
                )

            with gr.Row():
                seed = gr.Number(label="Seed", value=42, precision=0)
                random_seed = gr.Checkbox(label="Random Seed", value=True)

            with gr.Row():
                steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=8, step=1, interactive=False)
                shift = gr.Slider(label="Time Shift", minimum=1.0, maximum=10.0, value=3.0, step=0.1)

            # 注意:enhance 默认不开启(你原本也标注 DISABLED)
            # enhance = gr.Checkbox(label="Enhance Prompt (DashScope)", value=False)

            generate_btn = gr.Button("Generate", variant="primary")

            gr.Markdown("### 📝 Example Prompts")
            gr.Examples(examples=EXAMPLE_PROMPTS, inputs=prompt_input, label=None)

        with gr.Column(scale=1):
            output_gallery = gr.Gallery(
                label="Generated Images",
                columns=2,
                rows=2,
                height=600,
                object_fit="contain",
                format="png",
                interactive=False,
            )
            used_seed = gr.Textbox(label="Seed Used", interactive=False)

    def update_res_choices(_res_cat):
        if str(_res_cat) in RES_CHOICES:
            res_choices = RES_CHOICES[str(_res_cat)]
        else:
            res_choices = RES_CHOICES["1024"]
        return gr.update(value=res_choices[0], choices=res_choices)

    res_cat.change(update_res_choices, inputs=res_cat, outputs=resolution)

    generate_btn.click(
        generate,
        inputs=[prompt_input, resolution, seed, steps, shift, random_seed, output_gallery],
        outputs=[output_gallery, used_seed, seed],
    )

css = """
.fillable{max-width: 1230px !important}
"""

if __name__ == "__main__":
    # Gradio 新版本支持 mcp_server;若你环境版本较旧报错,把 mcp_server=True 去掉即可
    demo.launch(css=css, mcp_server=True)