Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -419,4 +419,138 @@ def generate(
|
|
| 419 |
steps: int,
|
| 420 |
shift: float,
|
| 421 |
enhance: bool,
|
| 422 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 419 |
steps: int,
|
| 420 |
shift: float,
|
| 421 |
enhance: bool,
|
| 422 |
+
random_seed: bool,
|
| 423 |
+
gallery_images,
|
| 424 |
+
progress=gr.Progress(track_tqdm=True),
|
| 425 |
+
):
|
| 426 |
+
global pipe
|
| 427 |
+
|
| 428 |
+
# 进入该函数时,ZeroGPU 会尝试分配 GPU;若失败,torch.cuda.is_available 可能为 False
|
| 429 |
+
if pipe is None:
|
| 430 |
+
# 启动阶段不加载,第一次生成时再加载(CPU)
|
| 431 |
+
load_models_cpu_only(MODEL_PATH)
|
| 432 |
+
|
| 433 |
+
if torch.cuda.is_available():
|
| 434 |
+
move_pipe_to_device(torch.device("cuda"))
|
| 435 |
+
warmup_if_needed()
|
| 436 |
+
else:
|
| 437 |
+
# 在 ZeroGPU 排队/额度不足/未正确启用硬件时,给出友好报错
|
| 438 |
+
raise gr.Error(
|
| 439 |
+
"当前未获得 ZeroGPU 的 CUDA 资源(torch.cuda.is_available()==False)。"
|
| 440 |
+
"请确认 Space 硬件选择为 ZeroGPU,并在有额度/队列可用时重试。"
|
| 441 |
+
)
|
| 442 |
+
|
| 443 |
+
final_prompt = prompt
|
| 444 |
+
if enhance:
|
| 445 |
+
final_prompt, _ = prompt_enhance(prompt, True)
|
| 446 |
+
|
| 447 |
+
if random_seed:
|
| 448 |
+
seed = random.randint(1, 1_000_000)
|
| 449 |
+
else:
|
| 450 |
+
seed = int(seed) if int(seed) != -1 else random.randint(1, 1_000_000)
|
| 451 |
+
|
| 452 |
+
try:
|
| 453 |
+
resolution_str = resolution.split(" ")[0] # "1024x1024 (1:1)" -> "1024x1024"
|
| 454 |
+
except Exception:
|
| 455 |
+
resolution_str = "1024x1024"
|
| 456 |
+
|
| 457 |
+
image, used_seed_str = generate_image(
|
| 458 |
+
prompt=final_prompt,
|
| 459 |
+
resolution=resolution_str,
|
| 460 |
+
seed=seed,
|
| 461 |
+
guidance_scale=0.0,
|
| 462 |
+
num_inference_steps=int(steps) + 1,
|
| 463 |
+
shift=float(shift),
|
| 464 |
+
progress=progress,
|
| 465 |
+
)
|
| 466 |
+
|
| 467 |
+
if gallery_images is None:
|
| 468 |
+
gallery_images = []
|
| 469 |
+
gallery_images.append(image)
|
| 470 |
+
|
| 471 |
+
return gallery_images, used_seed_str
|
| 472 |
+
|
| 473 |
+
|
| 474 |
+
# -------------------- UI --------------------
|
| 475 |
+
init_prompt_expander()
|
| 476 |
+
|
| 477 |
+
with gr.Blocks(title="Z-Image Demo") as demo:
|
| 478 |
+
gr.Markdown(
|
| 479 |
+
"""<div align="center">
|
| 480 |
+
|
| 481 |
+
# Z-Image Generation Demo
|
| 482 |
+
|
| 483 |
+
*An Efficient Image Generation Foundation Model with Single-Stream Diffusion Transformer*
|
| 484 |
+
|
| 485 |
+
</div>"""
|
| 486 |
+
)
|
| 487 |
+
|
| 488 |
+
with gr.Row():
|
| 489 |
+
with gr.Column(scale=1):
|
| 490 |
+
prompt_input = gr.Textbox(label="Prompt", lines=3, placeholder="Enter your prompt here...")
|
| 491 |
+
|
| 492 |
+
with gr.Row():
|
| 493 |
+
choices = [int(k) for k in RES_CHOICES.keys()]
|
| 494 |
+
res_cat = gr.Dropdown(value=1024, choices=choices, label="Resolution Category")
|
| 495 |
+
initial_res_choices = RES_CHOICES["1024"]
|
| 496 |
+
resolution = gr.Dropdown(
|
| 497 |
+
value=initial_res_choices[0],
|
| 498 |
+
choices=initial_res_choices,
|
| 499 |
+
label="Width x Height (Ratio)",
|
| 500 |
+
)
|
| 501 |
+
|
| 502 |
+
with gr.Row():
|
| 503 |
+
seed = gr.Number(label="Seed", value=-1, precision=0)
|
| 504 |
+
random_seed = gr.Checkbox(label="Random Seed", value=True)
|
| 505 |
+
|
| 506 |
+
with gr.Row():
|
| 507 |
+
steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=8, step=1, interactive=True)
|
| 508 |
+
shift = gr.Slider(label="Time Shift", minimum=1.0, maximum=10.0, value=3.0, step=0.1)
|
| 509 |
+
|
| 510 |
+
enhance = gr.Checkbox(label="Enhance Prompt (DashScope)", value=False)
|
| 511 |
+
|
| 512 |
+
generate_btn = gr.Button("Generate", variant="primary")
|
| 513 |
+
|
| 514 |
+
gr.Markdown("### Example Prompts")
|
| 515 |
+
gr.Examples(examples=EXAMPLE_PROMPTS, inputs=prompt_input, label=None)
|
| 516 |
+
|
| 517 |
+
with gr.Column(scale=1):
|
| 518 |
+
output_gallery = gr.Gallery(
|
| 519 |
+
label="Generated Images",
|
| 520 |
+
columns=2,
|
| 521 |
+
rows=2,
|
| 522 |
+
height=600,
|
| 523 |
+
object_fit="contain",
|
| 524 |
+
format="png",
|
| 525 |
+
interactive=False,
|
| 526 |
+
)
|
| 527 |
+
used_seed = gr.Textbox(label="Seed Used", interactive=False)
|
| 528 |
+
|
| 529 |
+
def update_res_choices(_res_cat):
|
| 530 |
+
key = str(_res_cat)
|
| 531 |
+
res_choices = RES_CHOICES.get(key, RES_CHOICES["1024"])
|
| 532 |
+
return gr.update(value=res_choices[0], choices=res_choices)
|
| 533 |
+
|
| 534 |
+
res_cat.change(update_res_choices, inputs=res_cat, outputs=resolution)
|
| 535 |
+
|
| 536 |
+
def update_seed(current_seed, random_seed_enabled):
|
| 537 |
+
if random_seed_enabled:
|
| 538 |
+
new_seed = random.randint(1, 1_000_000)
|
| 539 |
+
else:
|
| 540 |
+
new_seed = int(current_seed) if int(current_seed) != -1 else random.randint(1, 1_000_000)
|
| 541 |
+
return gr.update(value=new_seed)
|
| 542 |
+
|
| 543 |
+
generate_btn.click(update_seed, inputs=[seed, random_seed], outputs=[seed])
|
| 544 |
+
|
| 545 |
+
generate_btn.click(
|
| 546 |
+
generate,
|
| 547 |
+
inputs=[prompt_input, resolution, seed, steps, shift, enhance, random_seed, output_gallery],
|
| 548 |
+
outputs=[output_gallery, used_seed],
|
| 549 |
+
)
|
| 550 |
+
|
| 551 |
+
css = """
|
| 552 |
+
.fillable { max-width: 1230px !important; }
|
| 553 |
+
"""
|
| 554 |
+
|
| 555 |
+
if __name__ == "__main__":
|
| 556 |
+
demo.queue().launch(css=css)
|