Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -176,8 +176,7 @@ class ImageDataset(Dataset):
|
|
| 176 |
img_path = self.image_files[idx]
|
| 177 |
img = Image.open(img_path).convert('RGB')
|
| 178 |
return self.transform(img), os.path.basename(img_path)
|
| 179 |
-
|
| 180 |
-
|
| 181 |
@spaces.GPU(duration=299)
|
| 182 |
def process_images(images, threshold):
|
| 183 |
dataset = ImageDataset(images, transform)
|
|
@@ -221,24 +220,75 @@ def process_zip(zip_file, threshold):
|
|
| 221 |
if zip_file is None:
|
| 222 |
return None, None
|
| 223 |
|
| 224 |
-
|
| 225 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 226 |
|
| 227 |
-
|
| 228 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 229 |
|
| 230 |
-
|
| 231 |
-
|
| 232 |
-
|
| 233 |
-
|
| 234 |
-
|
| 235 |
-
|
| 236 |
-
|
| 237 |
-
|
| 238 |
-
|
| 239 |
-
|
| 240 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 241 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 242 |
return temp_file.name, df
|
| 243 |
|
| 244 |
with gr.Blocks(css=".output-class { display: none; }") as demo:
|
|
@@ -286,6 +336,21 @@ with gr.Blocks(css=".output-class { display: none; }") as demo:
|
|
| 286 |
inputs=[zip_input, multi_threshold_slider],
|
| 287 |
outputs=[zip_output, dataframe_output]
|
| 288 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 289 |
|
| 290 |
if __name__ == "__main__":
|
| 291 |
demo.queue().launch()
|
|
|
|
| 176 |
img_path = self.image_files[idx]
|
| 177 |
img = Image.open(img_path).convert('RGB')
|
| 178 |
return self.transform(img), os.path.basename(img_path)
|
| 179 |
+
|
|
|
|
| 180 |
@spaces.GPU(duration=299)
|
| 181 |
def process_images(images, threshold):
|
| 182 |
dataset = ImageDataset(images, transform)
|
|
|
|
| 220 |
if zip_file is None:
|
| 221 |
return None, None
|
| 222 |
|
| 223 |
+
with tempfile.TemporaryDirectory() as temp_dir:
|
| 224 |
+
with zipfile.ZipFile(zip_file.name, 'r') as zip_ref:
|
| 225 |
+
zip_ref.extractall(temp_dir)
|
| 226 |
+
|
| 227 |
+
all_files = [os.path.join(temp_dir, f) for f in os.listdir(temp_dir)]
|
| 228 |
+
image_files = [f for f in all_files if is_valid_image(f)]
|
| 229 |
+
results = process_images(image_files, threshold)
|
| 230 |
+
|
| 231 |
+
temp_file = NamedTemporaryFile(delete=False, suffix=".zip")
|
| 232 |
+
with zipfile.ZipFile(temp_file, "w") as zip_ref:
|
| 233 |
+
for image_name, text_no_impl, _ in results:
|
| 234 |
+
with zip_ref.open(''.join(image_name.split('.')[:-1]) + ".txt", 'w') as file:
|
| 235 |
+
file.write(text_no_impl.encode())
|
| 236 |
+
temp_file.seek(0)
|
| 237 |
+
df = pd.DataFrame([(os.path.basename(f), t) for f, t, _ in results], columns=['Image', 'Tags'])
|
| 238 |
|
| 239 |
+
return temp_file.name, df
|
| 240 |
+
|
| 241 |
+
@spaces.GPU(duration=120) # Reduced GPU duration for less wait time...
|
| 242 |
+
def process_images_light(images, threshold):
|
| 243 |
+
dataset = ImageDataset(images, transform)
|
| 244 |
+
|
| 245 |
+
dataloader = DataLoader(dataset, batch_size=16, num_workers=0, pin_memory=True, drop_last=False)
|
| 246 |
|
| 247 |
+
all_results = []
|
| 248 |
+
|
| 249 |
+
with torch.no_grad():
|
| 250 |
+
for batch, filenames in dataloader:
|
| 251 |
+
|
| 252 |
+
batch = batch.to(device)
|
| 253 |
+
with torch.no_grad():
|
| 254 |
+
logits = model(batch)
|
| 255 |
+
probabilities = torch.nn.functional.sigmoid(logits)
|
| 256 |
+
|
| 257 |
+
for i, prob in enumerate(probabilities):
|
| 258 |
+
indices = torch.where(prob > threshold)[0]
|
| 259 |
+
values = prob[indices]
|
| 260 |
+
|
| 261 |
+
temp = []
|
| 262 |
+
tag_score = dict()
|
| 263 |
+
for j in range(indices.size(0)):
|
| 264 |
+
temp.append([allowed_tags[indices[j]], values[j].item()])
|
| 265 |
+
tag_score[allowed_tags[indices[j]]] = values[j].item()
|
| 266 |
+
|
| 267 |
+
tags = ", ".join([t[0] for t in temp])
|
| 268 |
+
all_results.append((filenames[i], tags, tag_score))
|
| 269 |
+
|
| 270 |
+
return all_results
|
| 271 |
+
|
| 272 |
+
def process_zip_light(zip_file, threshold):
|
| 273 |
+
if zip_file is None:
|
| 274 |
+
return None, None
|
| 275 |
+
|
| 276 |
+
with tempfile.TemporaryDirectory() as temp_dir:
|
| 277 |
+
with zipfile.ZipFile(zip_file.name, 'r') as zip_ref:
|
| 278 |
+
zip_ref.extractall(temp_dir)
|
| 279 |
+
|
| 280 |
+
all_files = [os.path.join(temp_dir, f) for f in os.listdir(temp_dir)]
|
| 281 |
+
image_files = [f for f in all_files if is_valid_image(f)]
|
| 282 |
+
results = process_images_light(image_files, threshold)
|
| 283 |
|
| 284 |
+
temp_file = NamedTemporaryFile(delete=False, suffix=".zip")
|
| 285 |
+
with zipfile.ZipFile(temp_file, "w") as zip_ref:
|
| 286 |
+
for image_name, text_no_impl, _ in results:
|
| 287 |
+
with zip_ref.open(''.join(image_name.split('.')[:-1]) + ".txt", 'w') as file:
|
| 288 |
+
file.write(text_no_impl.encode())
|
| 289 |
+
temp_file.seek(0)
|
| 290 |
+
df = pd.DataFrame([(os.path.basename(f), t) for f, t, _ in results], columns=['Image', 'Tags'])
|
| 291 |
+
|
| 292 |
return temp_file.name, df
|
| 293 |
|
| 294 |
with gr.Blocks(css=".output-class { display: none; }") as demo:
|
|
|
|
| 336 |
inputs=[zip_input, multi_threshold_slider],
|
| 337 |
outputs=[zip_output, dataframe_output]
|
| 338 |
)
|
| 339 |
+
with gr.TabItem("Multiple Images (Light)"):
|
| 340 |
+
with gr.Row():
|
| 341 |
+
with gr.Column():
|
| 342 |
+
zip_input_light = gr.File(label="Upload ZIP file", file_types=['.zip'])
|
| 343 |
+
multi_threshold_slider_light = gr.Slider(minimum=0.00, maximum=1.00, step=0.01, value=0.20, label="Threshold")
|
| 344 |
+
process_button_light = gr.Button("Process Images (Light)")
|
| 345 |
+
with gr.Column():
|
| 346 |
+
zip_output_light = gr.File(label="Download Tagged Text Files (ZIP)")
|
| 347 |
+
dataframe_output_light = gr.Dataframe(label="Image Tags Summary")
|
| 348 |
+
|
| 349 |
+
process_button_light.click(
|
| 350 |
+
fn=process_zip_light,
|
| 351 |
+
inputs=[zip_input_light, multi_threshold_slider_light],
|
| 352 |
+
outputs=[zip_output_light, dataframe_output_light]
|
| 353 |
+
)
|
| 354 |
|
| 355 |
if __name__ == "__main__":
|
| 356 |
demo.queue().launch()
|