Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,6 +1,11 @@
|
|
| 1 |
import json
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
|
| 3 |
import gradio as gr
|
|
|
|
| 4 |
from PIL import Image
|
| 5 |
import safetensors.torch
|
| 6 |
import spaces
|
|
@@ -10,6 +15,8 @@ import torch
|
|
| 10 |
from torchvision.transforms import transforms
|
| 11 |
from torchvision.transforms import InterpolationMode
|
| 12 |
import torchvision.transforms.functional as TF
|
|
|
|
|
|
|
| 13 |
|
| 14 |
torch.set_grad_enabled(False)
|
| 15 |
|
|
@@ -132,12 +139,11 @@ for idx, tag in enumerate(allowed_tags):
|
|
| 132 |
|
| 133 |
sorted_tag_score = {}
|
| 134 |
|
| 135 |
-
@spaces.GPU(duration=
|
| 136 |
def run_classifier(image, threshold):
|
| 137 |
global sorted_tag_score
|
| 138 |
img = image.convert('RGB')
|
| 139 |
-
tensor = transform(img).unsqueeze(0)
|
| 140 |
-
tensor = tensor.to(device)
|
| 141 |
with torch.no_grad():
|
| 142 |
logits = model(tensor)
|
| 143 |
probabilities = torch.nn.functional.sigmoid(logits[0])
|
|
@@ -156,7 +162,84 @@ def create_tags(threshold):
|
|
| 156 |
filtered_tag_score = {key: value for key, value in sorted_tag_score.items() if value > threshold}
|
| 157 |
text_no_impl = ", ".join(filtered_tag_score.keys())
|
| 158 |
return text_no_impl, filtered_tag_score
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 159 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 160 |
|
| 161 |
with gr.Blocks(css=".output-class { display: none; }") as demo:
|
| 162 |
gr.Markdown("""
|
|
@@ -165,25 +248,44 @@ with gr.Blocks(css=".output-class { display: none; }") as demo:
|
|
| 165 |
|
| 166 |
This tagger is the result of joint efforts between members of the RedRocket team. Special thanks to Minotoro at frosting.ai for providing the compute power for this project.
|
| 167 |
""")
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 187 |
|
| 188 |
if __name__ == "__main__":
|
| 189 |
-
demo.launch()
|
|
|
|
| 1 |
import json
|
| 2 |
+
import os
|
| 3 |
+
import zipfile
|
| 4 |
+
from io import BytesIO
|
| 5 |
+
from tempfile import NamedTemporaryFile
|
| 6 |
|
| 7 |
import gradio as gr
|
| 8 |
+
import pandas as pd
|
| 9 |
from PIL import Image
|
| 10 |
import safetensors.torch
|
| 11 |
import spaces
|
|
|
|
| 15 |
from torchvision.transforms import transforms
|
| 16 |
from torchvision.transforms import InterpolationMode
|
| 17 |
import torchvision.transforms.functional as TF
|
| 18 |
+
from torch.utils.data import Dataset, DataLoader
|
| 19 |
+
|
| 20 |
|
| 21 |
torch.set_grad_enabled(False)
|
| 22 |
|
|
|
|
| 139 |
|
| 140 |
sorted_tag_score = {}
|
| 141 |
|
| 142 |
+
@spaces.GPU(duration=9)
|
| 143 |
def run_classifier(image, threshold):
|
| 144 |
global sorted_tag_score
|
| 145 |
img = image.convert('RGB')
|
| 146 |
+
tensor = transform(img).unsqueeze(0).to(device)
|
|
|
|
| 147 |
with torch.no_grad():
|
| 148 |
logits = model(tensor)
|
| 149 |
probabilities = torch.nn.functional.sigmoid(logits[0])
|
|
|
|
| 162 |
filtered_tag_score = {key: value for key, value in sorted_tag_score.items() if value > threshold}
|
| 163 |
text_no_impl = ", ".join(filtered_tag_score.keys())
|
| 164 |
return text_no_impl, filtered_tag_score
|
| 165 |
+
|
| 166 |
+
|
| 167 |
+
class ImageDataset(Dataset):
|
| 168 |
+
def __init__(self, image_files, transform):
|
| 169 |
+
self.image_files = image_files
|
| 170 |
+
self.transform = transform
|
| 171 |
+
|
| 172 |
+
def __len__(self):
|
| 173 |
+
return len(self.image_files)
|
| 174 |
|
| 175 |
+
def __getitem__(self, idx):
|
| 176 |
+
img_path = self.image_files[idx]
|
| 177 |
+
img = Image.open(img_path).convert('RGB')
|
| 178 |
+
return self.transform(img), os.path.basename(img_path)
|
| 179 |
+
|
| 180 |
+
|
| 181 |
+
@spaces.GPU(duration=299)
|
| 182 |
+
def process_images(images, threshold):
|
| 183 |
+
dataset = ImageDataset(images, transform)
|
| 184 |
+
|
| 185 |
+
dataloader = DataLoader(dataset, batch_size=64, num_workers=0, pin_memory=True, drop_last=False)
|
| 186 |
+
|
| 187 |
+
all_results = []
|
| 188 |
+
|
| 189 |
+
with torch.no_grad():
|
| 190 |
+
for batch, filenames in dataloader:
|
| 191 |
+
|
| 192 |
+
batch = batch.to(device)
|
| 193 |
+
with torch.no_grad():
|
| 194 |
+
logits = model(batch)
|
| 195 |
+
probabilities = torch.nn.functional.sigmoid(logits)
|
| 196 |
+
|
| 197 |
+
for i, prob in enumerate(probabilities):
|
| 198 |
+
indices = torch.where(prob > threshold)[0]
|
| 199 |
+
values = prob[indices]
|
| 200 |
+
|
| 201 |
+
temp = []
|
| 202 |
+
tag_score = dict()
|
| 203 |
+
for j in range(indices.size(0)):
|
| 204 |
+
temp.append([allowed_tags[indices[j]], values[j].item()])
|
| 205 |
+
tag_score[allowed_tags[indices[j]]] = values[j].item()
|
| 206 |
+
|
| 207 |
+
tags = ", ".join([t[0] for t in temp])
|
| 208 |
+
all_results.append((filenames[i], tags, tag_score))
|
| 209 |
+
|
| 210 |
+
return all_results
|
| 211 |
+
|
| 212 |
+
def is_valid_image(file_path):
|
| 213 |
+
try:
|
| 214 |
+
with Image.open(file_path) as img:
|
| 215 |
+
img.verify()
|
| 216 |
+
return True
|
| 217 |
+
except:
|
| 218 |
+
return False
|
| 219 |
+
|
| 220 |
+
def process_zip(zip_file, threshold):
|
| 221 |
+
if zip_file is None:
|
| 222 |
+
return None, None
|
| 223 |
+
|
| 224 |
+
temp_dir = "temp_images"
|
| 225 |
+
os.makedirs(temp_dir, exist_ok=True)
|
| 226 |
+
|
| 227 |
+
with zipfile.ZipFile(zip_file.name, 'r') as zip_ref:
|
| 228 |
+
zip_ref.extractall(temp_dir)
|
| 229 |
+
|
| 230 |
+
all_files = [os.path.join(temp_dir, f) for f in os.listdir(temp_dir)]
|
| 231 |
+
image_files = [f for f in all_files if is_valid_image(f)]
|
| 232 |
+
results = process_images(image_files, threshold)
|
| 233 |
+
|
| 234 |
+
temp_file = NamedTemporaryFile(delete=False, suffix=".zip")
|
| 235 |
+
with zipfile.ZipFile(temp_file, "w") as zip_ref:
|
| 236 |
+
for image_name, text_no_impl, _ in results:
|
| 237 |
+
with zip_ref.open(''.join(image_name.split('.')[:-1]) + ".txt", 'w') as file:
|
| 238 |
+
file.write(text_no_impl.encode())
|
| 239 |
+
temp_file.seek(0)
|
| 240 |
+
df = pd.DataFrame([(os.path.basename(f), t) for f, t, _ in results], columns=['Image', 'Tags'])
|
| 241 |
+
|
| 242 |
+
return temp_file.name, df
|
| 243 |
|
| 244 |
with gr.Blocks(css=".output-class { display: none; }") as demo:
|
| 245 |
gr.Markdown("""
|
|
|
|
| 248 |
|
| 249 |
This tagger is the result of joint efforts between members of the RedRocket team. Special thanks to Minotoro at frosting.ai for providing the compute power for this project.
|
| 250 |
""")
|
| 251 |
+
|
| 252 |
+
with gr.Tabs():
|
| 253 |
+
with gr.TabItem("Single Image"):
|
| 254 |
+
with gr.Row():
|
| 255 |
+
with gr.Column():
|
| 256 |
+
image_input = gr.Image(label="Source", sources=['upload'], type='pil', height=512, show_label=False)
|
| 257 |
+
threshold_slider = gr.Slider(minimum=0.00, maximum=1.00, step=0.01, value=0.20, label="Threshold")
|
| 258 |
+
with gr.Column():
|
| 259 |
+
tag_string = gr.Textbox(label="Tag String")
|
| 260 |
+
label_box = gr.Label(label="Tag Predictions", num_top_classes=250, show_label=False)
|
| 261 |
+
|
| 262 |
+
image_input.upload(
|
| 263 |
+
fn=run_classifier,
|
| 264 |
+
inputs=[image_input, threshold_slider],
|
| 265 |
+
outputs=[tag_string, label_box]
|
| 266 |
+
)
|
| 267 |
+
|
| 268 |
+
threshold_slider.input(
|
| 269 |
+
fn=create_tags,
|
| 270 |
+
inputs=[threshold_slider],
|
| 271 |
+
outputs=[tag_string, label_box]
|
| 272 |
+
)
|
| 273 |
+
|
| 274 |
+
with gr.TabItem("Multiple Images"):
|
| 275 |
+
with gr.Row():
|
| 276 |
+
with gr.Column():
|
| 277 |
+
zip_input = gr.File(label="Upload ZIP file", file_types=['.zip'])
|
| 278 |
+
multi_threshold_slider = gr.Slider(minimum=0.00, maximum=1.00, step=0.01, value=0.20, label="Threshold")
|
| 279 |
+
process_button = gr.Button("Process Images")
|
| 280 |
+
with gr.Column():
|
| 281 |
+
zip_output = gr.File(label="Download Tagged Text Files (ZIP)")
|
| 282 |
+
dataframe_output = gr.Dataframe(label="Image Tags Summary")
|
| 283 |
+
|
| 284 |
+
process_button.click(
|
| 285 |
+
fn=process_zip,
|
| 286 |
+
inputs=[zip_input, multi_threshold_slider],
|
| 287 |
+
outputs=[zip_output, dataframe_output]
|
| 288 |
+
)
|
| 289 |
|
| 290 |
if __name__ == "__main__":
|
| 291 |
+
demo.queue().launch()
|