sam3 / app.py
Translsis's picture
Update app.py
ab05948 verified
import spaces
import gradio as gr
import torch
import numpy as np
from PIL import Image
import requests
import warnings
import json
import os
from datetime import datetime
from threading import Thread
from queue import Queue
import time
warnings.filterwarnings("ignore")
# Global model and processor
device = "cuda" if torch.cuda.is_available() else "cpu"
from transformers import Sam3Processor, Sam3Model
model = Sam3Model.from_pretrained("DiffusionWave/sam3", torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32).to(device)
processor = Sam3Processor.from_pretrained("DiffusionWave/sam3")
# Background processing queue
job_queue = Queue()
results_store = {}
job_counter = 0
# History storage
HISTORY_DIR = "segmentation_history"
HISTORY_FILE = os.path.join(HISTORY_DIR, "history.json")
CROPS_DIR = os.path.join(HISTORY_DIR, "crops")
os.makedirs(HISTORY_DIR, exist_ok=True)
os.makedirs(CROPS_DIR, exist_ok=True)
def load_history():
"""Load segmentation history from file"""
if os.path.exists(HISTORY_FILE):
try:
with open(HISTORY_FILE, 'r') as f:
return json.load(f)
except:
return []
return []
def save_history(history):
"""Save segmentation history to file"""
with open(HISTORY_FILE, 'w') as f:
json.dump(history, f, indent=2)
def crop_segmented_objects(image: Image.Image, masks, text: str, timestamp: str):
"""
Crop individual objects from masks and save them
Returns list of cropped image paths
"""
cropped_paths = []
image_np = np.array(image)
for i, mask in enumerate(masks):
# Convert mask to numpy if needed
if isinstance(mask, torch.Tensor):
mask_np = mask.cpu().numpy()
else:
mask_np = mask
# Find bounding box of the mask
rows = np.any(mask_np, axis=1)
cols = np.any(mask_np, axis=0)
if not rows.any() or not cols.any():
continue
y_min, y_max = np.where(rows)[0][[0, -1]]
x_min, x_max = np.where(cols)[0][[0, -1]]
# Add padding (10 pixels)
padding = 10
y_min = max(0, y_min - padding)
y_max = min(image_np.shape[0], y_max + padding)
x_min = max(0, x_min - padding)
x_max = min(image_np.shape[1], x_max + padding)
# Crop the image
cropped = image_np[y_min:y_max, x_min:x_max]
# Apply mask to cropped region (transparent background)
mask_crop = mask_np[y_min:y_max, x_min:x_max]
# Create RGBA image
cropped_rgba = np.zeros((*cropped.shape[:2], 4), dtype=np.uint8)
cropped_rgba[:, :, :3] = cropped
cropped_rgba[:, :, 3] = (mask_crop * 255).astype(np.uint8)
# Save cropped image
crop_filename = f"crop_{timestamp.replace(':', '-').replace(' ', '_')}_{text}_{i+1}.png"
crop_path = os.path.join(CROPS_DIR, crop_filename)
Image.fromarray(cropped_rgba).save(crop_path)
cropped_paths.append(crop_path)
return cropped_paths
def add_to_history(image_path, prompt, n_masks, scores, timestamp, crop_paths):
"""Add a new entry to history"""
history = load_history()
entry = {
"id": len(history) + 1,
"timestamp": timestamp,
"image_path": image_path,
"prompt": prompt,
"n_masks": n_masks,
"scores": scores,
"crop_paths": crop_paths
}
history.insert(0, entry) # Add to beginning
# Keep only last 100 entries
history = history[:100]
save_history(history)
return history
@spaces.GPU()
def segment_core(image: Image.Image, text: str, threshold: float, mask_threshold: float, save_crops: bool = True):
"""
Core segmentation function - can be called independently
"""
if image is None:
return None, "❌ Please upload an image.", None, []
if not text.strip():
return (image, []), "❌ Please enter a text prompt.", None, []
try:
inputs = processor(images=image, text=text.strip(), return_tensors="pt").to(device)
for key in inputs:
if inputs[key].dtype == torch.float32:
inputs[key] = inputs[key].to(model.dtype)
with torch.no_grad():
outputs = model(**inputs)
results = processor.post_process_instance_segmentation(
outputs,
threshold=threshold,
mask_threshold=mask_threshold,
target_sizes=inputs.get("original_sizes").tolist()
)[0]
n_masks = len(results['masks'])
if n_masks == 0:
return (image, []), f"❌ No objects found matching '{text}' (try adjusting thresholds).", None, []
# Format for AnnotatedImage
annotations = []
for i, (mask, score) in enumerate(zip(results['masks'], results['scores'])):
mask_np = mask.cpu().numpy().astype(np.float32)
label = f"{text} #{i+1} ({score:.2f})"
annotations.append((mask_np, label))
scores_list = results['scores'].cpu().numpy().tolist()
scores_text = ", ".join([f"{s:.2f}" for s in scores_list[:5]])
info = f"✅ Found **{n_masks}** objects matching **'{text}'**\n"
info += f"Confidence scores: {scores_text}{'...' if n_masks > 5 else ''}\n"
# Crop objects if requested
cropped_images = []
if save_crops:
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
crop_paths = crop_segmented_objects(image, results['masks'], text, timestamp)
info += f"✂️ Extracted **{len(crop_paths)}** cropped objects"
# Load cropped images for display
for path in crop_paths[:10]: # Limit to 10 for display
if os.path.exists(path):
cropped_images.append(Image.open(path))
else:
crop_paths = []
metadata = {
"n_masks": n_masks,
"scores": scores_list,
"crop_paths": crop_paths,
"masks": results['masks']
}
return (image, annotations), info, metadata, cropped_images
except Exception as e:
return (image, []), f"❌ Error during segmentation: {str(e)}", None, []
def segment(image: Image.Image, text: str, threshold: float, mask_threshold: float):
"""
Frontend segment function - with history saving
"""
result, info, metadata, cropped_images = segment_core(image, text, threshold, mask_threshold, save_crops=True)
# Save to history if successful
if metadata and metadata["n_masks"] > 0:
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
# Save image temporarily
img_filename = f"img_{int(time.time())}.jpg"
img_path = os.path.join(HISTORY_DIR, img_filename)
image.save(img_path)
add_to_history(
img_path,
text,
metadata["n_masks"],
metadata["scores"],
timestamp,
metadata["crop_paths"]
)
return result, info, cropped_images
def background_worker():
"""
Background worker thread - processes jobs independently
"""
while True:
job = job_queue.get()
if job is None:
break
job_id, image, text, threshold, mask_threshold = job
try:
result, info, metadata, cropped_images = segment_core(image, text, threshold, mask_threshold, save_crops=True)
results_store[job_id] = {
"status": "completed",
"result": result,
"info": info,
"metadata": metadata,
"cropped_images": cropped_images,
"timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S")
}
# Save to history
if metadata and metadata["n_masks"] > 0:
img_filename = f"bg_img_{job_id}.jpg"
img_path = os.path.join(HISTORY_DIR, img_filename)
image.save(img_path)
add_to_history(
img_path,
text,
metadata["n_masks"],
metadata["scores"],
results_store[job_id]["timestamp"],
metadata["crop_paths"]
)
except Exception as e:
results_store[job_id] = {
"status": "failed",
"error": str(e),
"timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S")
}
job_queue.task_done()
# Start background worker
worker_thread = Thread(target=background_worker, daemon=True)
worker_thread.start()
def submit_background_job(image, text, threshold, mask_threshold):
"""Submit a job to background queue"""
global job_counter
if image is None or not text.strip():
return "❌ Please provide image and text prompt.", ""
job_counter += 1
job_id = job_counter
job_queue.put((job_id, image, text, threshold, mask_threshold))
results_store[job_id] = {"status": "processing"}
return f"✅ Job #{job_id} submitted to background queue.", f"{job_id}"
def check_background_job(job_id_str):
"""Check status of background job"""
if not job_id_str.strip():
return "❌ Please enter a job ID.", None, []
try:
job_id = int(job_id_str)
if job_id not in results_store:
return f"❌ Job #{job_id} not found.", None, []
job_data = results_store[job_id]
status = job_data["status"]
if status == "processing":
return f"⏳ Job #{job_id} is still processing...", None, []
elif status == "completed":
return (
f"✅ Job #{job_id} completed!\n{job_data['info']}",
job_data["result"],
job_data.get("cropped_images", [])
)
else:
return f"❌ Job #{job_id} failed: {job_data.get('error', 'Unknown error')}", None, []
except ValueError:
return "❌ Invalid job ID format.", None, []
def load_history_display():
"""Load and format history for display"""
history = load_history()
if not history:
return "📝 No history yet. Start segmenting images!"
display = "## Segmentation History\n\n"
for entry in history[:20]: # Show last 20
display += f"**#{entry['id']}** - {entry['timestamp']}\n"
display += f"- Prompt: `{entry['prompt']}`\n"
display += f"- Found: {entry['n_masks']} objects\n"
display += f"- Cropped: {len(entry.get('crop_paths', []))} images\n"
display += f"- Top scores: {', '.join([f'{s:.2f}' for s in entry['scores'][:3]])}\n\n"
return display
def load_history_item(item_id):
"""Load a specific history item with cropped images"""
history = load_history()
for entry in history:
if entry['id'] == int(item_id):
info = f"**History item #{entry['id']}**\n"
info += f"Timestamp: {entry['timestamp']}\n"
info += f"Prompt: `{entry['prompt']}`\n"
info += f"Objects found: {entry['n_masks']}\n"
info += f"Cropped images: {len(entry.get('crop_paths', []))}"
image = None
if os.path.exists(entry['image_path']):
image = Image.open(entry['image_path'])
# Load cropped images
cropped_images = []
for crop_path in entry.get('crop_paths', [])[:10]:
if os.path.exists(crop_path):
cropped_images.append(Image.open(crop_path))
return image, entry['prompt'], info, cropped_images
return None, "", f"❌ History item #{item_id} not found", []
def clear_all():
"""Clear all inputs and outputs"""
return None, "", None, 0.5, 0.5, "📝 Enter a prompt and click **Segment** to start.", []
def segment_example(image_path: str, prompt: str):
"""Handle example clicks"""
if image_path.startswith("http"):
image = Image.open(requests.get(image_path, stream=True).raw).convert("RGB")
else:
image = Image.open(image_path).convert("RGB")
return segment(image, prompt, 0.5, 0.5)
# Gradio Interface
with gr.Blocks(
theme=gr.themes.Soft(),
title="SAM3 - Promptable Concept Segmentation",
css=".gradio-container {max-width: 1600px !important;}"
) as demo:
gr.Markdown(
"""
# SAM3 - Promptable Concept Segmentation (PCS)
**SAM3** performs zero-shot instance segmentation using natural language prompts.
Upload an image, enter a text prompt (e.g., "person", "car", "dog"), and get segmentation masks + cropped objects.
Built with [anycoder](https://huggingface.co/spaces/akhaliq/anycoder)
"""
)
with gr.Tabs():
# Tab 1: Main Segmentation
with gr.Tab("🎯 Segmentation"):
gr.Markdown("### Inputs")
with gr.Row(variant="panel"):
image_input = gr.Image(
label="Input Image",
type="pil",
height=400,
)
image_output = gr.AnnotatedImage(
label="Output (Segmented Image)",
height=400,
show_legend=True,
)
with gr.Row():
text_input = gr.Textbox(
label="Text Prompt",
placeholder="e.g., person, ear, cat, bicycle...",
scale=3
)
clear_btn = gr.Button("🔄 Clear", size="sm", variant="secondary")
with gr.Row():
thresh_slider = gr.Slider(
minimum=0.0,
maximum=1.0,
value=0.5,
step=0.01,
label="Detection Threshold",
info="Higher = fewer detections"
)
mask_thresh_slider = gr.Slider(
minimum=0.0,
maximum=1.0,
value=0.5,
step=0.01,
label="Mask Threshold",
info="Higher = sharper masks"
)
info_output = gr.Markdown(
value="📝 Enter a prompt and click **Segment** to start.",
label="Info / Results"
)
segment_btn = gr.Button("🎯 Segment Now", variant="primary", size="lg")
gr.Markdown("### ✂️ Cropped Objects")
cropped_gallery = gr.Gallery(
label="Extracted Objects",
columns=5,
height=300,
object_fit="contain"
)
gr.Examples(
examples=[
["http://images.cocodataset.org/val2017/000000077595.jpg", "cat"],
],
inputs=[image_input, text_input],
outputs=[image_output, info_output, cropped_gallery],
fn=segment_example,
cache_examples=False,
)
# Tab 2: Background Processing
with gr.Tab("⚙️ Background Processing"):
gr.Markdown(
"""
### Background Job Queue
Submit segmentation jobs that run independently in the background.
Useful for batch processing or when you want to continue working while processing.
"""
)
with gr.Row():
bg_image_input = gr.Image(label="Image", type="pil", height=300)
bg_status_output = gr.Markdown("📝 Submit a job to start background processing.")
with gr.Row():
bg_text_input = gr.Textbox(label="Text Prompt", placeholder="e.g., person, car...")
bg_job_id_output = gr.Textbox(label="Job ID", interactive=False)
with gr.Row():
bg_thresh = gr.Slider(0.0, 1.0, 0.5, 0.01, label="Detection Threshold")
bg_mask_thresh = gr.Slider(0.0, 1.0, 0.5, 0.01, label="Mask Threshold")
bg_submit_btn = gr.Button("📤 Submit Background Job", variant="primary")
gr.Markdown("---")
gr.Markdown("### Check Job Status")
with gr.Row():
check_job_id = gr.Textbox(label="Enter Job ID", placeholder="e.g., 1")
check_btn = gr.Button("🔍 Check Status", variant="secondary")
check_status_output = gr.Markdown("Enter a job ID and click Check Status.")
check_result_output = gr.AnnotatedImage(label="Result", height=400)
gr.Markdown("### Cropped Objects from Job")
check_cropped_gallery = gr.Gallery(
label="Extracted Objects",
columns=5,
height=300,
object_fit="contain"
)
# Tab 3: History
with gr.Tab("📚 History"):
gr.Markdown("### Segmentation History")
with gr.Row():
refresh_history_btn = gr.Button("🔄 Refresh History", variant="secondary")
history_item_id = gr.Textbox(label="Load History Item #", placeholder="Enter ID")
load_history_btn = gr.Button("📂 Load Item", variant="primary")
history_display = gr.Markdown(load_history_display())
gr.Markdown("---")
gr.Markdown("### Loaded History Item")
with gr.Row():
history_image = gr.Image(label="Original Image", type="pil", height=300)
history_info = gr.Markdown("Select a history item to view.")
history_prompt = gr.Textbox(label="Prompt", interactive=False)
gr.Markdown("### Cropped Objects from History")
history_cropped_gallery = gr.Gallery(
label="Extracted Objects",
columns=5,
height=300,
object_fit="contain"
)
# Event handlers
clear_btn.click(
fn=clear_all,
outputs=[image_input, text_input, image_output, thresh_slider, mask_thresh_slider, info_output, cropped_gallery]
)
segment_btn.click(
fn=segment,
inputs=[image_input, text_input, thresh_slider, mask_thresh_slider],
outputs=[image_output, info_output, cropped_gallery]
)
bg_submit_btn.click(
fn=submit_background_job,
inputs=[bg_image_input, bg_text_input, bg_thresh, bg_mask_thresh],
outputs=[bg_status_output, bg_job_id_output]
)
check_btn.click(
fn=check_background_job,
inputs=[check_job_id],
outputs=[check_status_output, check_result_output, check_cropped_gallery]
)
refresh_history_btn.click(
fn=load_history_display,
outputs=[history_display]
)
load_history_btn.click(
fn=load_history_item,
inputs=[history_item_id],
outputs=[history_image, history_prompt, history_info, history_cropped_gallery]
)
gr.Markdown(
"""
### Notes
- **Model**: [facebook/sam3](https://huggingface.co/facebook/sam3)
- Background jobs run independently and are tracked by Job ID
- All segmented objects are automatically cropped and saved
- Cropped images have transparent backgrounds (PNG format)
- History is saved automatically and persists across sessions
- GPU recommended for faster inference
"""
)
if __name__ == "__main__":
demo.launch(server_name="0.0.0.0", server_port=7860, share=False, debug=True)