File size: 20,348 Bytes
75921b2 ff645cc bc62515 ff645cc ab05948 ff645cc ab05948 ff645cc e3ba680 ab05948 ff645cc ab05948 ff645cc ab05948 ff645cc bc62515 ab05948 bc62515 ff645cc 30a638e ff645cc ab05948 ff645cc ab05948 bc62515 ff645cc ab05948 ff645cc ab05948 ff645cc ab05948 ff645cc ed119eb ab05948 ed119eb bc62515 ed119eb ff645cc ab05948 ff645cc bc62515 ab05948 ff645cc ab05948 ff645cc ab05948 ff645cc ab05948 ff645cc ab05948 ff645cc ab05948 30a638e ab05948 ed119eb ab05948 ff645cc ab05948 bc62515 ff645cc fd4d970 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 |
import spaces
import gradio as gr
import torch
import numpy as np
from PIL import Image
import requests
import warnings
import json
import os
from datetime import datetime
from threading import Thread
from queue import Queue
import time
warnings.filterwarnings("ignore")
# Global model and processor
device = "cuda" if torch.cuda.is_available() else "cpu"
from transformers import Sam3Processor, Sam3Model
model = Sam3Model.from_pretrained("DiffusionWave/sam3", torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32).to(device)
processor = Sam3Processor.from_pretrained("DiffusionWave/sam3")
# Background processing queue
job_queue = Queue()
results_store = {}
job_counter = 0
# History storage
HISTORY_DIR = "segmentation_history"
HISTORY_FILE = os.path.join(HISTORY_DIR, "history.json")
CROPS_DIR = os.path.join(HISTORY_DIR, "crops")
os.makedirs(HISTORY_DIR, exist_ok=True)
os.makedirs(CROPS_DIR, exist_ok=True)
def load_history():
"""Load segmentation history from file"""
if os.path.exists(HISTORY_FILE):
try:
with open(HISTORY_FILE, 'r') as f:
return json.load(f)
except:
return []
return []
def save_history(history):
"""Save segmentation history to file"""
with open(HISTORY_FILE, 'w') as f:
json.dump(history, f, indent=2)
def crop_segmented_objects(image: Image.Image, masks, text: str, timestamp: str):
"""
Crop individual objects from masks and save them
Returns list of cropped image paths
"""
cropped_paths = []
image_np = np.array(image)
for i, mask in enumerate(masks):
# Convert mask to numpy if needed
if isinstance(mask, torch.Tensor):
mask_np = mask.cpu().numpy()
else:
mask_np = mask
# Find bounding box of the mask
rows = np.any(mask_np, axis=1)
cols = np.any(mask_np, axis=0)
if not rows.any() or not cols.any():
continue
y_min, y_max = np.where(rows)[0][[0, -1]]
x_min, x_max = np.where(cols)[0][[0, -1]]
# Add padding (10 pixels)
padding = 10
y_min = max(0, y_min - padding)
y_max = min(image_np.shape[0], y_max + padding)
x_min = max(0, x_min - padding)
x_max = min(image_np.shape[1], x_max + padding)
# Crop the image
cropped = image_np[y_min:y_max, x_min:x_max]
# Apply mask to cropped region (transparent background)
mask_crop = mask_np[y_min:y_max, x_min:x_max]
# Create RGBA image
cropped_rgba = np.zeros((*cropped.shape[:2], 4), dtype=np.uint8)
cropped_rgba[:, :, :3] = cropped
cropped_rgba[:, :, 3] = (mask_crop * 255).astype(np.uint8)
# Save cropped image
crop_filename = f"crop_{timestamp.replace(':', '-').replace(' ', '_')}_{text}_{i+1}.png"
crop_path = os.path.join(CROPS_DIR, crop_filename)
Image.fromarray(cropped_rgba).save(crop_path)
cropped_paths.append(crop_path)
return cropped_paths
def add_to_history(image_path, prompt, n_masks, scores, timestamp, crop_paths):
"""Add a new entry to history"""
history = load_history()
entry = {
"id": len(history) + 1,
"timestamp": timestamp,
"image_path": image_path,
"prompt": prompt,
"n_masks": n_masks,
"scores": scores,
"crop_paths": crop_paths
}
history.insert(0, entry) # Add to beginning
# Keep only last 100 entries
history = history[:100]
save_history(history)
return history
@spaces.GPU()
def segment_core(image: Image.Image, text: str, threshold: float, mask_threshold: float, save_crops: bool = True):
"""
Core segmentation function - can be called independently
"""
if image is None:
return None, "⌠Please upload an image.", None, []
if not text.strip():
return (image, []), "⌠Please enter a text prompt.", None, []
try:
inputs = processor(images=image, text=text.strip(), return_tensors="pt").to(device)
for key in inputs:
if inputs[key].dtype == torch.float32:
inputs[key] = inputs[key].to(model.dtype)
with torch.no_grad():
outputs = model(**inputs)
results = processor.post_process_instance_segmentation(
outputs,
threshold=threshold,
mask_threshold=mask_threshold,
target_sizes=inputs.get("original_sizes").tolist()
)[0]
n_masks = len(results['masks'])
if n_masks == 0:
return (image, []), f"⌠No objects found matching '{text}' (try adjusting thresholds).", None, []
# Format for AnnotatedImage
annotations = []
for i, (mask, score) in enumerate(zip(results['masks'], results['scores'])):
mask_np = mask.cpu().numpy().astype(np.float32)
label = f"{text} #{i+1} ({score:.2f})"
annotations.append((mask_np, label))
scores_list = results['scores'].cpu().numpy().tolist()
scores_text = ", ".join([f"{s:.2f}" for s in scores_list[:5]])
info = f"✅ Found **{n_masks}** objects matching **'{text}'**\n"
info += f"Confidence scores: {scores_text}{'...' if n_masks > 5 else ''}\n"
# Crop objects if requested
cropped_images = []
if save_crops:
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
crop_paths = crop_segmented_objects(image, results['masks'], text, timestamp)
info += f"âœ‚ï¸ Extracted **{len(crop_paths)}** cropped objects"
# Load cropped images for display
for path in crop_paths[:10]: # Limit to 10 for display
if os.path.exists(path):
cropped_images.append(Image.open(path))
else:
crop_paths = []
metadata = {
"n_masks": n_masks,
"scores": scores_list,
"crop_paths": crop_paths,
"masks": results['masks']
}
return (image, annotations), info, metadata, cropped_images
except Exception as e:
return (image, []), f"⌠Error during segmentation: {str(e)}", None, []
def segment(image: Image.Image, text: str, threshold: float, mask_threshold: float):
"""
Frontend segment function - with history saving
"""
result, info, metadata, cropped_images = segment_core(image, text, threshold, mask_threshold, save_crops=True)
# Save to history if successful
if metadata and metadata["n_masks"] > 0:
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
# Save image temporarily
img_filename = f"img_{int(time.time())}.jpg"
img_path = os.path.join(HISTORY_DIR, img_filename)
image.save(img_path)
add_to_history(
img_path,
text,
metadata["n_masks"],
metadata["scores"],
timestamp,
metadata["crop_paths"]
)
return result, info, cropped_images
def background_worker():
"""
Background worker thread - processes jobs independently
"""
while True:
job = job_queue.get()
if job is None:
break
job_id, image, text, threshold, mask_threshold = job
try:
result, info, metadata, cropped_images = segment_core(image, text, threshold, mask_threshold, save_crops=True)
results_store[job_id] = {
"status": "completed",
"result": result,
"info": info,
"metadata": metadata,
"cropped_images": cropped_images,
"timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S")
}
# Save to history
if metadata and metadata["n_masks"] > 0:
img_filename = f"bg_img_{job_id}.jpg"
img_path = os.path.join(HISTORY_DIR, img_filename)
image.save(img_path)
add_to_history(
img_path,
text,
metadata["n_masks"],
metadata["scores"],
results_store[job_id]["timestamp"],
metadata["crop_paths"]
)
except Exception as e:
results_store[job_id] = {
"status": "failed",
"error": str(e),
"timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S")
}
job_queue.task_done()
# Start background worker
worker_thread = Thread(target=background_worker, daemon=True)
worker_thread.start()
def submit_background_job(image, text, threshold, mask_threshold):
"""Submit a job to background queue"""
global job_counter
if image is None or not text.strip():
return "⌠Please provide image and text prompt.", ""
job_counter += 1
job_id = job_counter
job_queue.put((job_id, image, text, threshold, mask_threshold))
results_store[job_id] = {"status": "processing"}
return f"✅ Job #{job_id} submitted to background queue.", f"{job_id}"
def check_background_job(job_id_str):
"""Check status of background job"""
if not job_id_str.strip():
return "⌠Please enter a job ID.", None, []
try:
job_id = int(job_id_str)
if job_id not in results_store:
return f"⌠Job #{job_id} not found.", None, []
job_data = results_store[job_id]
status = job_data["status"]
if status == "processing":
return f"â³ Job #{job_id} is still processing...", None, []
elif status == "completed":
return (
f"✅ Job #{job_id} completed!\n{job_data['info']}",
job_data["result"],
job_data.get("cropped_images", [])
)
else:
return f"⌠Job #{job_id} failed: {job_data.get('error', 'Unknown error')}", None, []
except ValueError:
return "⌠Invalid job ID format.", None, []
def load_history_display():
"""Load and format history for display"""
history = load_history()
if not history:
return "📠No history yet. Start segmenting images!"
display = "## Segmentation History\n\n"
for entry in history[:20]: # Show last 20
display += f"**#{entry['id']}** - {entry['timestamp']}\n"
display += f"- Prompt: `{entry['prompt']}`\n"
display += f"- Found: {entry['n_masks']} objects\n"
display += f"- Cropped: {len(entry.get('crop_paths', []))} images\n"
display += f"- Top scores: {', '.join([f'{s:.2f}' for s in entry['scores'][:3]])}\n\n"
return display
def load_history_item(item_id):
"""Load a specific history item with cropped images"""
history = load_history()
for entry in history:
if entry['id'] == int(item_id):
info = f"**History item #{entry['id']}**\n"
info += f"Timestamp: {entry['timestamp']}\n"
info += f"Prompt: `{entry['prompt']}`\n"
info += f"Objects found: {entry['n_masks']}\n"
info += f"Cropped images: {len(entry.get('crop_paths', []))}"
image = None
if os.path.exists(entry['image_path']):
image = Image.open(entry['image_path'])
# Load cropped images
cropped_images = []
for crop_path in entry.get('crop_paths', [])[:10]:
if os.path.exists(crop_path):
cropped_images.append(Image.open(crop_path))
return image, entry['prompt'], info, cropped_images
return None, "", f"⌠History item #{item_id} not found", []
def clear_all():
"""Clear all inputs and outputs"""
return None, "", None, 0.5, 0.5, "📠Enter a prompt and click **Segment** to start.", []
def segment_example(image_path: str, prompt: str):
"""Handle example clicks"""
if image_path.startswith("http"):
image = Image.open(requests.get(image_path, stream=True).raw).convert("RGB")
else:
image = Image.open(image_path).convert("RGB")
return segment(image, prompt, 0.5, 0.5)
# Gradio Interface
with gr.Blocks(
theme=gr.themes.Soft(),
title="SAM3 - Promptable Concept Segmentation",
css=".gradio-container {max-width: 1600px !important;}"
) as demo:
gr.Markdown(
"""
# SAM3 - Promptable Concept Segmentation (PCS)
**SAM3** performs zero-shot instance segmentation using natural language prompts.
Upload an image, enter a text prompt (e.g., "person", "car", "dog"), and get segmentation masks + cropped objects.
Built with [anycoder](https://huggingface.co/spaces/akhaliq/anycoder)
"""
)
with gr.Tabs():
# Tab 1: Main Segmentation
with gr.Tab("🎯 Segmentation"):
gr.Markdown("### Inputs")
with gr.Row(variant="panel"):
image_input = gr.Image(
label="Input Image",
type="pil",
height=400,
)
image_output = gr.AnnotatedImage(
label="Output (Segmented Image)",
height=400,
show_legend=True,
)
with gr.Row():
text_input = gr.Textbox(
label="Text Prompt",
placeholder="e.g., person, ear, cat, bicycle...",
scale=3
)
clear_btn = gr.Button("🔄 Clear", size="sm", variant="secondary")
with gr.Row():
thresh_slider = gr.Slider(
minimum=0.0,
maximum=1.0,
value=0.5,
step=0.01,
label="Detection Threshold",
info="Higher = fewer detections"
)
mask_thresh_slider = gr.Slider(
minimum=0.0,
maximum=1.0,
value=0.5,
step=0.01,
label="Mask Threshold",
info="Higher = sharper masks"
)
info_output = gr.Markdown(
value="📠Enter a prompt and click **Segment** to start.",
label="Info / Results"
)
segment_btn = gr.Button("🎯 Segment Now", variant="primary", size="lg")
gr.Markdown("### âœ‚ï¸ Cropped Objects")
cropped_gallery = gr.Gallery(
label="Extracted Objects",
columns=5,
height=300,
object_fit="contain"
)
gr.Examples(
examples=[
["http://images.cocodataset.org/val2017/000000077595.jpg", "cat"],
],
inputs=[image_input, text_input],
outputs=[image_output, info_output, cropped_gallery],
fn=segment_example,
cache_examples=False,
)
# Tab 2: Background Processing
with gr.Tab("âš™ï¸ Background Processing"):
gr.Markdown(
"""
### Background Job Queue
Submit segmentation jobs that run independently in the background.
Useful for batch processing or when you want to continue working while processing.
"""
)
with gr.Row():
bg_image_input = gr.Image(label="Image", type="pil", height=300)
bg_status_output = gr.Markdown("📠Submit a job to start background processing.")
with gr.Row():
bg_text_input = gr.Textbox(label="Text Prompt", placeholder="e.g., person, car...")
bg_job_id_output = gr.Textbox(label="Job ID", interactive=False)
with gr.Row():
bg_thresh = gr.Slider(0.0, 1.0, 0.5, 0.01, label="Detection Threshold")
bg_mask_thresh = gr.Slider(0.0, 1.0, 0.5, 0.01, label="Mask Threshold")
bg_submit_btn = gr.Button("📤 Submit Background Job", variant="primary")
gr.Markdown("---")
gr.Markdown("### Check Job Status")
with gr.Row():
check_job_id = gr.Textbox(label="Enter Job ID", placeholder="e.g., 1")
check_btn = gr.Button("🔠Check Status", variant="secondary")
check_status_output = gr.Markdown("Enter a job ID and click Check Status.")
check_result_output = gr.AnnotatedImage(label="Result", height=400)
gr.Markdown("### Cropped Objects from Job")
check_cropped_gallery = gr.Gallery(
label="Extracted Objects",
columns=5,
height=300,
object_fit="contain"
)
# Tab 3: History
with gr.Tab("📚 History"):
gr.Markdown("### Segmentation History")
with gr.Row():
refresh_history_btn = gr.Button("🔄 Refresh History", variant="secondary")
history_item_id = gr.Textbox(label="Load History Item #", placeholder="Enter ID")
load_history_btn = gr.Button("📂 Load Item", variant="primary")
history_display = gr.Markdown(load_history_display())
gr.Markdown("---")
gr.Markdown("### Loaded History Item")
with gr.Row():
history_image = gr.Image(label="Original Image", type="pil", height=300)
history_info = gr.Markdown("Select a history item to view.")
history_prompt = gr.Textbox(label="Prompt", interactive=False)
gr.Markdown("### Cropped Objects from History")
history_cropped_gallery = gr.Gallery(
label="Extracted Objects",
columns=5,
height=300,
object_fit="contain"
)
# Event handlers
clear_btn.click(
fn=clear_all,
outputs=[image_input, text_input, image_output, thresh_slider, mask_thresh_slider, info_output, cropped_gallery]
)
segment_btn.click(
fn=segment,
inputs=[image_input, text_input, thresh_slider, mask_thresh_slider],
outputs=[image_output, info_output, cropped_gallery]
)
bg_submit_btn.click(
fn=submit_background_job,
inputs=[bg_image_input, bg_text_input, bg_thresh, bg_mask_thresh],
outputs=[bg_status_output, bg_job_id_output]
)
check_btn.click(
fn=check_background_job,
inputs=[check_job_id],
outputs=[check_status_output, check_result_output, check_cropped_gallery]
)
refresh_history_btn.click(
fn=load_history_display,
outputs=[history_display]
)
load_history_btn.click(
fn=load_history_item,
inputs=[history_item_id],
outputs=[history_image, history_prompt, history_info, history_cropped_gallery]
)
gr.Markdown(
"""
### Notes
- **Model**: [facebook/sam3](https://huggingface.co/facebook/sam3)
- Background jobs run independently and are tracked by Job ID
- All segmented objects are automatically cropped and saved
- Cropped images have transparent backgrounds (PNG format)
- History is saved automatically and persists across sessions
- GPU recommended for faster inference
"""
)
if __name__ == "__main__":
demo.launch(server_name="0.0.0.0", server_port=7860, share=False, debug=True) |