Sentiment-Analysis / SAURL.py
Kartikay Khosla
Updated SAURL.py with latest changes
a696df8
import os
import spacy
import stanza
import pandas as pd
import re
import docx
from collections import Counter
import stanza
from transformers import pipeline
import torch
from langdetect import detect
import streamlit as st
import io
from newspaper import Article # βœ… for URL input
import google.generativeai as genai # βœ… Gemini for insights
# ===============================
# πŸ”§ Safe SpaCy + Stanza Downloads
# ===============================
def safe_load_spacy():
try:
return spacy.load("en_core_web_trf")
except OSError:
try:
return spacy.load("en_core_web_sm")
except OSError:
os.system("python -m spacy download en_core_web_sm")
return spacy.load("en_core_web_sm")
nlp_en = safe_load_spacy()
stanza_dir = os.path.expanduser("~/.stanza_resources")
if not os.path.exists(stanza_dir):
stanza.download('hi')
stanza.download('ta')
stanza.download('hi')
stanza.download('ta')
nlp_hi = stanza.Pipeline('hi', processors='tokenize,pos', use_gpu=torch.cuda.is_available())
nlp_ta = stanza.Pipeline('ta', processors='tokenize,pos', use_gpu=torch.cuda.is_available())
# ===============================
# Gemini setup
# ===============================
api_key = os.getenv("GEMINI_API_KEY")
if not api_key:
raise ValueError("❌ Missing GEMINI_API_KEY. Please set it in Hugging Face secrets or locally.")
genai.configure(api_key=api_key)
# ===============================
# Language-Aware Pipeline Loader
# ===============================
def load_pipelines(language_code):
lang = language_code.upper()
device = 0 if torch.cuda.is_available() else -1
st.write(f"🌍 Language detected: {lang}")
st.write(f"Device set to use {'cuda:0' if device == 0 else 'cpu'}")
if lang == "EN":
emo_model = "SamLowe/roberta-base-go_emotions"
elif lang in ["HI", "TA"]:
emo_model = "bhadresh-savani/bert-base-go-emotion"
else:
emo_model = "SamLowe/roberta-base-go_emotions"
emotion_pipeline = pipeline(
"text-classification",
model=emo_model,
tokenizer=emo_model,
return_all_scores=True,
device=device
)
if lang == "EN":
sent_model = "distilbert-base-uncased-finetuned-sst-2-english"
else:
sent_model = "cardiffnlp/twitter-xlm-roberta-base-sentiment-multilingual"
sentiment_pipeline = pipeline(
"text-classification",
model=sent_model,
tokenizer=sent_model,
return_all_scores=True,
device=device
)
return emotion_pipeline, sentiment_pipeline
# ===============================
# DOCX Reader – keep paras separate
# ===============================
def read_and_split_articles(file_path):
doc = docx.Document(file_path)
paragraphs = [para.text.strip() for para in doc.paragraphs if para.text.strip()]
return paragraphs
# ===============================
# URL Reader – title + main body
# ===============================
def read_article_from_url(url):
article = Article(url)
article.download()
article.parse()
title = article.title.strip()
body = article.text.strip()
full_text = f"{title}\n\n{body}"
return full_text
# ===============================
# Filter Neutral
# ===============================
def filter_neutral(emotion_results, neutral_threshold=0.75):
scores = {r["label"]: round(r["score"], 3)
for r in sorted(emotion_results, key=lambda x: x["score"], reverse=True)}
if "neutral" in scores and scores["neutral"] > neutral_threshold:
scores.pop("neutral")
return scores
# ===============================
# Sentence Splitter
# ===============================
def split_sentences(text, lang):
if lang == "hi":
sentences = re.split(r'ΰ₯€', text)
elif lang == "ta":
sentences = re.split(r'\.', text)
else:
doc = nlp_en(text)
sentences = [sent.text.strip() for sent in doc.sents]
return [s.strip() for s in sentences if s.strip()]
# ===============================
# POS Tagger
# ===============================
def get_pos_tags(sentence, lang):
if lang == "en":
doc = nlp_en(sentence)
return [(token.text, token.pos_) for token in doc]
elif lang == "hi":
doc = nlp_hi(sentence)
return [(word.text, word.upos) for sent in doc.sentences for word in sent.words]
elif lang == "ta":
doc = nlp_ta(sentence)
return [(word.text, word.upos) for sent in doc.sentences for word in sent.words]
else:
return []
# ===============================
# Gemini – Generate Insight + Rewrites
# ===============================
def generate_insight(paragraph, emotions, sentiment):
"""Use Gemini to suggest improvements and rewrites with Top 3 emotions only"""
try:
top_emotions = sorted(emotions.items(), key=lambda x: x[1], reverse=True)[:3]
emo_text = ", ".join([f"{k}: {v}" for k, v in top_emotions])
sent_text = f"{sentiment['label']} ({round(sentiment['score'], 3)})" if sentiment else "N/A"
prompt = (
f"Here is a paragraph:\n\n{paragraph}\n\n"
f"Top 3 detected emotions: {emo_text}\n"
f"Overall sentiment: {sent_text}\n\n"
"πŸ‘‰ Please provide:\n"
"1. A rewrite that keeps meaning intact but improves clarity and flow.\n"
"2. A rewrite that emphasizes the detected emotions to increase engagement.\n"
"Make them concrete and content-specific, not generic advice."
)
model = genai.GenerativeModel("gemini-1.5-flash")
response = model.generate_content(prompt)
return response.text.strip() if response and response.text else "No insight generated."
except Exception as e:
return f"⚠️ Insight generation failed: {str(e)}"
# ===============================
# Normalize Scores (scale to 1)
# ===============================
def normalize_scores(scores: dict):
if not scores:
return scores
max_val = max(scores.values())
if max_val == 0:
return scores
return {k: round(v / max_val, 3) for k, v in scores.items()}
# ===============================
# Analysis Function
# ===============================
def analyze_article(article_text, lang, emotion_pipeline, sentiment_pipeline):
export_rows = []
paragraphs = [p.strip() for p in article_text.split("\n\n") if p.strip()]
if len(paragraphs) <= 1:
paragraphs = [p.strip() for p in article_text.split("\n") if p.strip()]
# Weighted overall results
weighted_scores = {}
total_length = 0
all_sentiments = []
for para in paragraphs:
sentences = split_sentences(para, lang[:2])
for sentence in sentences:
emo_results = emotion_pipeline(sentence[:512])[0]
filtered = filter_neutral(emo_results)
length = len(sentence.split())
total_length += length
for emo, score in filtered.items():
weighted_scores[emo] = weighted_scores.get(emo, 0) + score * length
sentiment_results = sentiment_pipeline(sentence[:512])[0]
all_sentiments.append(max(sentiment_results, key=lambda x: x["score"]))
if total_length > 0:
weighted_scores = {emo: val / total_length for emo, val in weighted_scores.items()}
weighted_scores = normalize_scores(weighted_scores) # βœ… normalize to scale of 1
overall_sentiment = max(all_sentiments, key=lambda x: x["score"]) if all_sentiments else {}
st.subheader("πŸ“Š OVERALL (Weighted)")
st.write("Emotions β†’", weighted_scores)
st.write("Sentiment β†’", overall_sentiment)
export_rows.append({
"Type": "Overall",
"Text": "Weighted across article",
"Emotions": weighted_scores,
"Sentiment": overall_sentiment
})
# Paragraph-level
for p_idx, para in enumerate(paragraphs, start=1):
para_counter = Counter()
all_para_sentiments = []
sentences = split_sentences(para, lang[:2])
for sentence in sentences:
results = emotion_pipeline(sentence[:512])[0]
filtered = filter_neutral(results, neutral_threshold=0.75)
for emo, score in filtered.items():
para_counter[emo] += score
sentiment_results = sentiment_pipeline(sentence[:512])[0]
all_para_sentiments.append(max(sentiment_results, key=lambda x: x["score"]))
para_emotions = dict(sorted(para_counter.items(), key=lambda x: x[1], reverse=True))
para_emotions = normalize_scores(para_emotions) # βœ… normalize to scale of 1
para_sentiment = max(all_para_sentiments, key=lambda x: x["score"]) if all_para_sentiments else {}
st.write(f"\nπŸ“‘ Paragraph {p_idx}: {para}")
st.write("Emotions β†’", para_emotions)
st.write("Sentiment β†’", para_sentiment)
insight = generate_insight(para, para_emotions, para_sentiment)
st.write("πŸ’‘ Insights + Rewrites β†’", insight)
export_rows.append({
"Type": "Paragraph",
"Text": para,
"Emotions": para_emotions,
"Sentiment": para_sentiment,
"Insight": insight
})
return export_rows
# ===============================
# Streamlit App
# ===============================
st.title("πŸ“‘ Multilingual Text Emotion + Sentiment Analyzer")
uploaded_file = st.file_uploader("Upload a DOCX file", type=["docx"])
url_input = st.text_input("Or enter an Article URL")
text_input = st.text_area("Or paste text here")
if st.button("πŸ” Analyze"):
with st.spinner("Running analysis... ⏳"):
if uploaded_file:
articles = read_and_split_articles(uploaded_file)
text_to_analyze = "\n\n".join(articles)
elif url_input.strip():
text_to_analyze = read_article_from_url(url_input)
elif text_input.strip():
text_to_analyze = text_input
else:
st.warning("Please upload a DOCX, enter a URL, or paste text to analyze.")
st.stop()
detected_lang = detect(text_to_analyze[:200]) if text_to_analyze else "en"
emotion_pipeline, sentiment_pipeline = load_pipelines(detected_lang)
export_rows = analyze_article(text_to_analyze, detected_lang, emotion_pipeline, sentiment_pipeline)
# βœ… Download buttons FIRST
df_export = pd.DataFrame(export_rows)
csv = df_export.to_csv(index=False).encode("utf-8")
st.download_button(
label="⬇️ Download CSV",
data=csv,
file_name="analysis_results.csv",
mime="text/csv",
)
excel_buffer = io.BytesIO()
df_export.to_excel(excel_buffer, index=False, engine="xlsxwriter")
st.download_button(
label="⬇️ Download Excel",
data=excel_buffer,
file_name="analysis_results.xlsx",
mime="application/vnd.openxmlformats-officedocument.spreadsheetml.sheet",
)