Spaces:
Sleeping
Sleeping
File size: 11,061 Bytes
14d6a4f 00bb6d2 14d6a4f 00bb6d2 14d6a4f 00bb6d2 a696df8 00bb6d2 a696df8 00bb6d2 a696df8 00bb6d2 14d6a4f 00bb6d2 14d6a4f 00bb6d2 14d6a4f 00bb6d2 14d6a4f 00bb6d2 a696df8 14d6a4f 00bb6d2 14d6a4f 00bb6d2 14d6a4f 00bb6d2 14d6a4f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 |
import os
import spacy
import stanza
import pandas as pd
import re
import docx
from collections import Counter
import stanza
from transformers import pipeline
import torch
from langdetect import detect
import streamlit as st
import io
from newspaper import Article # β
for URL input
import google.generativeai as genai # β
Gemini for insights
# ===============================
# π§ Safe SpaCy + Stanza Downloads
# ===============================
def safe_load_spacy():
try:
return spacy.load("en_core_web_trf")
except OSError:
try:
return spacy.load("en_core_web_sm")
except OSError:
os.system("python -m spacy download en_core_web_sm")
return spacy.load("en_core_web_sm")
nlp_en = safe_load_spacy()
stanza_dir = os.path.expanduser("~/.stanza_resources")
if not os.path.exists(stanza_dir):
stanza.download('hi')
stanza.download('ta')
stanza.download('hi')
stanza.download('ta')
nlp_hi = stanza.Pipeline('hi', processors='tokenize,pos', use_gpu=torch.cuda.is_available())
nlp_ta = stanza.Pipeline('ta', processors='tokenize,pos', use_gpu=torch.cuda.is_available())
# ===============================
# Gemini setup
# ===============================
api_key = os.getenv("GEMINI_API_KEY")
if not api_key:
raise ValueError("β Missing GEMINI_API_KEY. Please set it in Hugging Face secrets or locally.")
genai.configure(api_key=api_key)
# ===============================
# Language-Aware Pipeline Loader
# ===============================
def load_pipelines(language_code):
lang = language_code.upper()
device = 0 if torch.cuda.is_available() else -1
st.write(f"π Language detected: {lang}")
st.write(f"Device set to use {'cuda:0' if device == 0 else 'cpu'}")
if lang == "EN":
emo_model = "SamLowe/roberta-base-go_emotions"
elif lang in ["HI", "TA"]:
emo_model = "bhadresh-savani/bert-base-go-emotion"
else:
emo_model = "SamLowe/roberta-base-go_emotions"
emotion_pipeline = pipeline(
"text-classification",
model=emo_model,
tokenizer=emo_model,
return_all_scores=True,
device=device
)
if lang == "EN":
sent_model = "distilbert-base-uncased-finetuned-sst-2-english"
else:
sent_model = "cardiffnlp/twitter-xlm-roberta-base-sentiment-multilingual"
sentiment_pipeline = pipeline(
"text-classification",
model=sent_model,
tokenizer=sent_model,
return_all_scores=True,
device=device
)
return emotion_pipeline, sentiment_pipeline
# ===============================
# DOCX Reader β keep paras separate
# ===============================
def read_and_split_articles(file_path):
doc = docx.Document(file_path)
paragraphs = [para.text.strip() for para in doc.paragraphs if para.text.strip()]
return paragraphs
# ===============================
# URL Reader β title + main body
# ===============================
def read_article_from_url(url):
article = Article(url)
article.download()
article.parse()
title = article.title.strip()
body = article.text.strip()
full_text = f"{title}\n\n{body}"
return full_text
# ===============================
# Filter Neutral
# ===============================
def filter_neutral(emotion_results, neutral_threshold=0.75):
scores = {r["label"]: round(r["score"], 3)
for r in sorted(emotion_results, key=lambda x: x["score"], reverse=True)}
if "neutral" in scores and scores["neutral"] > neutral_threshold:
scores.pop("neutral")
return scores
# ===============================
# Sentence Splitter
# ===============================
def split_sentences(text, lang):
if lang == "hi":
sentences = re.split(r'ΰ₯€', text)
elif lang == "ta":
sentences = re.split(r'\.', text)
else:
doc = nlp_en(text)
sentences = [sent.text.strip() for sent in doc.sents]
return [s.strip() for s in sentences if s.strip()]
# ===============================
# POS Tagger
# ===============================
def get_pos_tags(sentence, lang):
if lang == "en":
doc = nlp_en(sentence)
return [(token.text, token.pos_) for token in doc]
elif lang == "hi":
doc = nlp_hi(sentence)
return [(word.text, word.upos) for sent in doc.sentences for word in sent.words]
elif lang == "ta":
doc = nlp_ta(sentence)
return [(word.text, word.upos) for sent in doc.sentences for word in sent.words]
else:
return []
# ===============================
# Gemini β Generate Insight + Rewrites
# ===============================
def generate_insight(paragraph, emotions, sentiment):
"""Use Gemini to suggest improvements and rewrites with Top 3 emotions only"""
try:
top_emotions = sorted(emotions.items(), key=lambda x: x[1], reverse=True)[:3]
emo_text = ", ".join([f"{k}: {v}" for k, v in top_emotions])
sent_text = f"{sentiment['label']} ({round(sentiment['score'], 3)})" if sentiment else "N/A"
prompt = (
f"Here is a paragraph:\n\n{paragraph}\n\n"
f"Top 3 detected emotions: {emo_text}\n"
f"Overall sentiment: {sent_text}\n\n"
"π Please provide:\n"
"1. A rewrite that keeps meaning intact but improves clarity and flow.\n"
"2. A rewrite that emphasizes the detected emotions to increase engagement.\n"
"Make them concrete and content-specific, not generic advice."
)
model = genai.GenerativeModel("gemini-1.5-flash")
response = model.generate_content(prompt)
return response.text.strip() if response and response.text else "No insight generated."
except Exception as e:
return f"β οΈ Insight generation failed: {str(e)}"
# ===============================
# Normalize Scores (scale to 1)
# ===============================
def normalize_scores(scores: dict):
if not scores:
return scores
max_val = max(scores.values())
if max_val == 0:
return scores
return {k: round(v / max_val, 3) for k, v in scores.items()}
# ===============================
# Analysis Function
# ===============================
def analyze_article(article_text, lang, emotion_pipeline, sentiment_pipeline):
export_rows = []
paragraphs = [p.strip() for p in article_text.split("\n\n") if p.strip()]
if len(paragraphs) <= 1:
paragraphs = [p.strip() for p in article_text.split("\n") if p.strip()]
# Weighted overall results
weighted_scores = {}
total_length = 0
all_sentiments = []
for para in paragraphs:
sentences = split_sentences(para, lang[:2])
for sentence in sentences:
emo_results = emotion_pipeline(sentence[:512])[0]
filtered = filter_neutral(emo_results)
length = len(sentence.split())
total_length += length
for emo, score in filtered.items():
weighted_scores[emo] = weighted_scores.get(emo, 0) + score * length
sentiment_results = sentiment_pipeline(sentence[:512])[0]
all_sentiments.append(max(sentiment_results, key=lambda x: x["score"]))
if total_length > 0:
weighted_scores = {emo: val / total_length for emo, val in weighted_scores.items()}
weighted_scores = normalize_scores(weighted_scores) # β
normalize to scale of 1
overall_sentiment = max(all_sentiments, key=lambda x: x["score"]) if all_sentiments else {}
st.subheader("π OVERALL (Weighted)")
st.write("Emotions β", weighted_scores)
st.write("Sentiment β", overall_sentiment)
export_rows.append({
"Type": "Overall",
"Text": "Weighted across article",
"Emotions": weighted_scores,
"Sentiment": overall_sentiment
})
# Paragraph-level
for p_idx, para in enumerate(paragraphs, start=1):
para_counter = Counter()
all_para_sentiments = []
sentences = split_sentences(para, lang[:2])
for sentence in sentences:
results = emotion_pipeline(sentence[:512])[0]
filtered = filter_neutral(results, neutral_threshold=0.75)
for emo, score in filtered.items():
para_counter[emo] += score
sentiment_results = sentiment_pipeline(sentence[:512])[0]
all_para_sentiments.append(max(sentiment_results, key=lambda x: x["score"]))
para_emotions = dict(sorted(para_counter.items(), key=lambda x: x[1], reverse=True))
para_emotions = normalize_scores(para_emotions) # β
normalize to scale of 1
para_sentiment = max(all_para_sentiments, key=lambda x: x["score"]) if all_para_sentiments else {}
st.write(f"\nπ Paragraph {p_idx}: {para}")
st.write("Emotions β", para_emotions)
st.write("Sentiment β", para_sentiment)
insight = generate_insight(para, para_emotions, para_sentiment)
st.write("π‘ Insights + Rewrites β", insight)
export_rows.append({
"Type": "Paragraph",
"Text": para,
"Emotions": para_emotions,
"Sentiment": para_sentiment,
"Insight": insight
})
return export_rows
# ===============================
# Streamlit App
# ===============================
st.title("π Multilingual Text Emotion + Sentiment Analyzer")
uploaded_file = st.file_uploader("Upload a DOCX file", type=["docx"])
url_input = st.text_input("Or enter an Article URL")
text_input = st.text_area("Or paste text here")
if st.button("π Analyze"):
with st.spinner("Running analysis... β³"):
if uploaded_file:
articles = read_and_split_articles(uploaded_file)
text_to_analyze = "\n\n".join(articles)
elif url_input.strip():
text_to_analyze = read_article_from_url(url_input)
elif text_input.strip():
text_to_analyze = text_input
else:
st.warning("Please upload a DOCX, enter a URL, or paste text to analyze.")
st.stop()
detected_lang = detect(text_to_analyze[:200]) if text_to_analyze else "en"
emotion_pipeline, sentiment_pipeline = load_pipelines(detected_lang)
export_rows = analyze_article(text_to_analyze, detected_lang, emotion_pipeline, sentiment_pipeline)
# β
Download buttons FIRST
df_export = pd.DataFrame(export_rows)
csv = df_export.to_csv(index=False).encode("utf-8")
st.download_button(
label="β¬οΈ Download CSV",
data=csv,
file_name="analysis_results.csv",
mime="text/csv",
)
excel_buffer = io.BytesIO()
df_export.to_excel(excel_buffer, index=False, engine="xlsxwriter")
st.download_button(
label="β¬οΈ Download Excel",
data=excel_buffer,
file_name="analysis_results.xlsx",
mime="application/vnd.openxmlformats-officedocument.spreadsheetml.sheet",
)
|