DigitClassifier / README.md
lizardwine's picture
Update README.md
dad649e verified
---
license: apache-2.0
---
# πŸ–ŠοΈβœοΈ Handwritten Digit Recognition Model
## πŸ“„ Overview
πŸ€– **Model Name:** Handwritten Digit Recognition Model
🧠 **Model Type:** Convolutional Neural Network (CNN)
πŸ“Š **Input:** 28x28 grayscale images of handwritten digits (0-9)
πŸ”’ **Output:** A 10-dimensional vector representing the probabilities of each digit (0-9)
🎯 **Purpose:** To classify handwritten digits from images with high accuracy
☁️ **Download:** Click [here](https://huggingface.co/lizardwine/DigitClassifier/resolve/main/DigitClassifier.keras?download=true) to download
---
## πŸ“š Description
This model is designed to recognize handwritten digits from 0 to 9. It processes input images of size 28x28 pixels and outputs a vector of 10 probabilities, each corresponding to one of the digits. The digit with the highest probability is selected as the predicted class.
---
## πŸ” Use Cases
1. **Educational Tools:** 🏫 Helping students learn and practice handwriting recognition.
2. **Digitization Projects:** πŸ“„ Converting handwritten documents into digital format.
3. **Assistive Technology:** 🦾 Assisting individuals with disabilities in digit writing.
---
## πŸ“ˆ Performance
πŸ” **Accuracy:** ~99% on the MNIST dataset.
πŸ•’ **Latency:** Fast inference time suitable for real-time applications.
---
## πŸ› οΈ Technical Details
- **Architecture:** Convolutional Neural Network (CNN)
- **Layers:** Convolutional layers, pooling layers, fully connected layers
- **Activation Functions:** ReLU, Softmax
---
## πŸ“₯ Input Format
- **Type:** Grayscale image
- **Shape:** 28x28 pixels
- **Range:** 0-1 (pixel intensity)
---
## πŸ“€ Output Format
- **Type:** Probability vector
- **Shape:** 10-dimensional
- **Range:** 0-1 (sum of probabilities equals 1)
---
## 🧩 Model Training
- **Dataset:** MNIST dataset πŸ“š
- **Training Epochs:** 10
- **Batch Size:** 32
- **Optimizer:** Adam
- **Learning rate:** 1e-3
---
## πŸ’‘ How to Use
1. **Preprocess the Image:** Resize and normalize the image to 28x28 pixels with values between 0 and 1.
2. **Feed the Image:** Input the preprocessed image into the model.
3. **Interpret the Output:** Analyze the 10-dimensional output vector to find the digit with the highest probability.
### Loading the Model
To use the model, first, load it using Keras.
```python
from keras.models import load_model
# Load the pre-trained model
model = load_model('path/to/DigitClassifier.keras')
```
### Preprocessing the Input
Preprocess the input image to fit the model's requirements.
```python
import numpy as np
from keras.preprocessing import image
def preprocess_image(img_path):
# Load the image
img = image.load_img(img_path, color_mode='grayscale', target_size=(28, 28))
# Convert to numpy array
img_array = image.img_to_array(img)
# Normalize the image
img_array = img_array / 255.0
# Reshape to add batch dimension
img_array = np.expand_dims(img_array, axis=0)
return img_array
# Example usage
img_path = 'path/to/your/image.png'
processed_image = preprocess_image(img_path)
```
### Making Predictions
Use the model to predict the digit from the processed image.
```python
# Predict the digit
predictions = model.predict(processed_image)
# Get the digit with the highest probability
predicted_digit = np.argmax(predictions)
print(f'The predicted digit is: {predicted_digit}')
```
### Full Example
Combining all steps into a single example.
```python
from keras.models import load_model
from keras.preprocessing import image
import numpy as np
# Load the pre-trained model
model = load_model('path/to/DigitClassifier.keras')
def preprocess_image(img_path):
img = image.load_img(img_path, color_mode='grayscale', target_size=(28, 28))
img_array = image.img_to_array(img)
img_array = img_array / 255.0
img_array = np.expand_dims(img_array, axis=0)
return img_array
img_path = 'path/to/your/image.png'
processed_image = preprocess_image(img_path)
predictions = model.predict(processed_image)
predicted_digit = np.argmax(predictions)
print(f'The predicted digit is: {predicted_digit}')
```
---
## ⚠️ Limitations
- **Handwriting Variability:** Performance may decrease with highly unconventional handwriting.
- **Noise:** Model performance can be affected by noisy or poor-quality images.
---
## πŸ‘₯ Contributors
- **Developer:** Lizardwine (x@lizardwine.com)
- **Organization:** lizardwine
- **Date:** 06/06/2024
---
## πŸ“ References
- MNIST Dataset: [Link](http://yann.lecun.com/exdb/mnist/)
- CNN Architecture: [Link](https://en.wikipedia.org/wiki/Convolutional_neural_network)
---
πŸŽ‰ **Thank you for using our Handwritten Digit Recognition Model!** πŸŽ‰