hexsha
stringlengths
40
40
size
int64
4
1.02M
ext
stringclasses
8 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
4
209
max_stars_repo_name
stringlengths
5
121
max_stars_repo_head_hexsha
stringlengths
40
40
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
4
209
max_issues_repo_name
stringlengths
5
121
max_issues_repo_head_hexsha
stringlengths
40
40
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
4
209
max_forks_repo_name
stringlengths
5
121
max_forks_repo_head_hexsha
stringlengths
40
40
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
4
1.02M
avg_line_length
float64
1.07
66.1k
max_line_length
int64
4
266k
alphanum_fraction
float64
0.01
1
676a35038f2f1fa1008bac252e568a2761aaeeed
2,866
py
Python
deepfool.py
LandAndLand/Universal-Adversarial-Perturbations-Pytorch
967bb0aedf924a3836172bf0d4acb8a7ac442048
[ "MIT" ]
39
2019-06-03T21:28:24.000Z
2022-03-26T12:12:16.000Z
deepfool.py
LandAndLand/Universal-Adversarial-Perturbations-Pytorch
967bb0aedf924a3836172bf0d4acb8a7ac442048
[ "MIT" ]
1
2020-02-24T02:02:00.000Z
2020-02-24T02:02:00.000Z
deepfool.py
LandAndLand/Universal-Adversarial-Perturbations-Pytorch
967bb0aedf924a3836172bf0d4acb8a7ac442048
[ "MIT" ]
10
2019-07-05T19:09:57.000Z
2022-02-16T05:38:18.000Z
## This file source is https://github.com/BXuan694/Universal-Adversarial-Perturbation/blob/master/deepfool.py ## This file is not the scope of the original paper of this project import numpy as np from torch.autograd import Variable import torch as torch import copy from torch.autograd.gradcheck import zero_gradients def deepfool(image, net, num_classes, overshoot, max_iter): """ :param image: :param net: network (input: images, output: values of activation **BEFORE** softmax). :param num_classes: num_classes (limits the number of classes to test against, by default = 10) :param overshoot: used as a termination criterion to prevent vanishing updates (default = 0.02). :param max_iter: maximum number of iterations for deepfool (default = 50) :return: minimal perturbation that fools the classifier, number of iterations that it required, new estimated_label and perturbed image """ is_cuda = torch.cuda.is_available() if is_cuda: image = image.cuda() net = net.cuda() f_image = net.forward(Variable(image[None, :, :, :], requires_grad=True)).data.cpu().numpy().flatten() I = f_image.argsort()[::-1] I = I[0:num_classes] label = I[0] input_shape = image.cpu().numpy().shape pert_image = copy.deepcopy(image) w = np.zeros(input_shape) r_tot = np.zeros(input_shape) loop_i = 0 x = Variable(pert_image[None, :], requires_grad=True) fs = net.forward(x) k_i = label while k_i == label and loop_i < max_iter: pert = np.inf fs[0, I[0]].backward(retain_graph=True) grad_orig = x.grad.data.cpu().numpy().copy() for k in range(1, num_classes): zero_gradients(x) fs[0, I[k]].backward(retain_graph=True) cur_grad = x.grad.data.cpu().numpy().copy() # set new w_k and new f_k w_k = cur_grad - grad_orig f_k = (fs[0, I[k]] - fs[0, I[0]]).data.cpu().numpy() pert_k = abs(f_k)/np.linalg.norm(w_k.flatten()) # determine which w_k to use if pert_k < pert: pert = pert_k w = w_k # compute r_i and r_tot # Added 1e-4 for numerical stability r_i = (pert+1e-4) * w / np.linalg.norm(w) r_tot = np.float32(r_tot + r_i) if is_cuda: pert_image = image + (1+overshoot)*torch.from_numpy(r_tot).cuda() else: pert_image = image + (1+overshoot)*torch.from_numpy(r_tot) x = Variable(pert_image, requires_grad=True) # print(image.shape) # print(x.view(1,1,image.shape[0],-1).shape) fs = net.forward(x.view(1,1,image.shape[1],-1)) k_i = np.argmax(fs.data.cpu().numpy().flatten()) loop_i += 1 return (1+overshoot)*r_tot, loop_i, label, k_i, pert_image
33.325581
142
0.618632
55f75811d3b2ede04b0b8b8b6f4bd969afde4971
1,204
py
Python
model/cascade.rcnn/yexiguafu/res50.rcnn.double.heads.two.stages.set.nms/demo.py
yexiguafuqihao/crowddet-megengine
866c0fd3767e8f3cce84a78efc0ff95f23ef6b61
[ "Apache-2.0" ]
1
2022-03-09T06:59:32.000Z
2022-03-09T06:59:32.000Z
model/cascade.rcnn/yexiguafu/res50.rcnn.double.heads.two.stages.set.nms/demo.py
yexiguafuqihao/crowddet-megengine
866c0fd3767e8f3cce84a78efc0ff95f23ef6b61
[ "Apache-2.0" ]
null
null
null
model/cascade.rcnn/yexiguafu/res50.rcnn.double.heads.two.stages.set.nms/demo.py
yexiguafuqihao/crowddet-megengine
866c0fd3767e8f3cce84a78efc0ff95f23ef6b61
[ "Apache-2.0" ]
null
null
null
from config import config from common import * def computeJaccard(fpath, save_path ='results.md'): assert os.path.exists(fpath) records = load_func(fpath) GT = load_func(config.eval_json) fid = open(save_path, 'a') for i in range(3, 10): score_thr = 1e-1 * i results = common_process(worker, records, 20, GT, score_thr, 0.5) line = strline(results) line = 'score_thr:{:.3f}, '.format(score_thr) + line print(line) fid.write(line + '\n') fid.flush() fid.close() def computeIoUs(fpath): name = os.path.basename(fpath) print('Evaluating {}...'.format(name)) mAP, mMR = compute_mAP(fpath) fid = open('results.md', 'a') fid.write('{}\ndtboxes:\n'.format(name)) print('{}\ndtboxes:\n'.format(name)) line = 'mAP:{:.4f}, mMR:{:.4f}, '.format(mAP, mMR) print(line) fid.write(line + '\n') fid.close() computeJaccard(fpath) def eval_all(): for epoch in range(20, 40): fpath = osp.join(config.eval_dir, 'epoch-{}.human'.format(epoch)) if not os.path.exists(fpath): continue computeIoUs(fpath) if __name__ == '__main__': eval_all()
26.173913
73
0.591362
6aedde51ba335d586bdb455e473e969b9e72abe2
1,670
py
Python
dockerfille_dev/flask_api.py
Bilal-IA/Continuous-Machine-Learning-CML-CI-CD-project
5b5c418241f0d2b6c05bde196348c90769c13518
[ "Apache-2.0" ]
null
null
null
dockerfille_dev/flask_api.py
Bilal-IA/Continuous-Machine-Learning-CML-CI-CD-project
5b5c418241f0d2b6c05bde196348c90769c13518
[ "Apache-2.0" ]
null
null
null
dockerfille_dev/flask_api.py
Bilal-IA/Continuous-Machine-Learning-CML-CI-CD-project
5b5c418241f0d2b6c05bde196348c90769c13518
[ "Apache-2.0" ]
null
null
null
from flask import Flask, request import pickle import flasgger from flasgger import Swagger app=Flask(__name__) Swagger(app) pickle_in = open("model.pkl","rb") reg_model=pickle.load(pickle_in) @app.route('/predict',methods=["Get"]) def predict_house_price(): """Real Estate Price Prediction !!. --- parameters: - name: transaction_date in: query type: number required: true - name: house_age in: query type: number required: true - name: distance_to_MRT_station in: query type: number required: true - name: number_of_convenience_stores in: query type: number required: true - name: latitude in: query type: number required: true - name: longitude in: query type: number required: true responses: 200: description: The output values """ transaction_date=request.args.get("transaction_date") house_age=request.args.get("house_age") distance_to_MRT_station=request.args.get("distance_to_MRT_station") number_of_convenience_stores=request.args.get("number_of_convenience_stores") latitude=request.args.get("latitude") longitude_=request.args.get("longitude_") prediction=reg_model.predict([[transaction_date,house_age,distance_to_MRT_station,number_of_convenience_stores,latitude,longitude_]]) print(prediction) return "The predicted House Price is"+str(prediction) if __name__=='__main__': app.run(host='0.0.0.0',port=8000)
27.833333
138
0.632335
b5bd07cb92cfaded0d512d59acd3cdf09193dfed
8,049
py
Python
modin/pandas/test/dataframe/test_binary.py
heuermh/modin
2f880c1c93b05dbcaf8120ef6bb75a6adfa2e8e5
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
modin/pandas/test/dataframe/test_binary.py
heuermh/modin
2f880c1c93b05dbcaf8120ef6bb75a6adfa2e8e5
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
modin/pandas/test/dataframe/test_binary.py
heuermh/modin
2f880c1c93b05dbcaf8120ef6bb75a6adfa2e8e5
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
# Licensed to Modin Development Team under one or more contributor license agreements. # See the NOTICE file distributed with this work for additional information regarding # copyright ownership. The Modin Development Team licenses this file to you under the # Apache License, Version 2.0 (the "License"); you may not use this file except in # compliance with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software distributed under # the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF # ANY KIND, either express or implied. See the License for the specific language # governing permissions and limitations under the License. import pytest import pandas import matplotlib import modin.pandas as pd from modin.pandas.test.utils import ( df_equals, test_data_values, test_data_keys, eval_general, test_data, create_test_dfs, ) from modin.config import NPartitions NPartitions.put(4) # Force matplotlib to not use any Xwindows backend. matplotlib.use("Agg") @pytest.mark.parametrize( "other", [ lambda df: 4, lambda df, axis: df.iloc[0] if axis == "columns" else list(df[df.columns[0]]), ], ids=["scalar", "series_or_list"], ) @pytest.mark.parametrize("axis", ["rows", "columns"]) @pytest.mark.parametrize( "op", [ *("add", "radd", "sub", "rsub", "mod", "rmod", "pow", "rpow"), *("truediv", "rtruediv", "mul", "rmul", "floordiv", "rfloordiv"), ], ) def test_math_functions(other, axis, op): data = test_data["float_nan_data"] if (op == "floordiv" or op == "rfloordiv") and axis == "rows": # lambda == "series_or_list" pytest.xfail(reason="different behaviour") if op == "rmod" and axis == "rows": # lambda == "series_or_list" pytest.xfail(reason="different behaviour") eval_general( *create_test_dfs(data), lambda df: getattr(df, op)(other(df, axis), axis=axis) ) @pytest.mark.parametrize( "other", [lambda df: df[: -(2 ** 4)], lambda df: df[df.columns[0]].reset_index(drop=True)], ids=["check_missing_value", "check_different_index"], ) @pytest.mark.parametrize("fill_value", [None, 3.0]) @pytest.mark.parametrize( "op", [ *("add", "radd", "sub", "rsub", "mod", "rmod", "pow", "rpow"), *("truediv", "rtruediv", "mul", "rmul", "floordiv", "rfloordiv"), ], ) def test_math_functions_fill_value(other, fill_value, op): data = test_data["int_data"] modin_df, pandas_df = pd.DataFrame(data), pandas.DataFrame(data) eval_general( modin_df, pandas_df, lambda df: getattr(df, op)(other(df), axis=0, fill_value=fill_value), ) @pytest.mark.parametrize( "op", [ *("add", "radd", "sub", "rsub", "mod", "rmod", "pow", "rpow"), *("truediv", "rtruediv", "mul", "rmul", "floordiv", "rfloordiv"), ], ) def test_math_functions_level(op): modin_df = pd.DataFrame(test_data["int_data"]) modin_df.index = pandas.MultiIndex.from_tuples( [(i // 4, i // 2, i) for i in modin_df.index] ) # Defaults to pandas with pytest.warns(UserWarning): # Operation against self for sanity check getattr(modin_df, op)(modin_df, axis=0, level=1) @pytest.mark.parametrize( "math_op, alias", [ ("truediv", "divide"), ("truediv", "div"), ("rtruediv", "rdiv"), ("mul", "multiply"), ("sub", "subtract"), ("add", "__add__"), ("radd", "__radd__"), ("div", "__div__"), ("rdiv", "__rdiv__"), ("truediv", "__truediv__"), ("rtruediv", "__rtruediv__"), ("floordiv", "__floordiv__"), ("rfloordiv", "__rfloordiv__"), ("mod", "__mod__"), ("rmod", "__rmod__"), ("mul", "__mul__"), ("rmul", "__rmul__"), ("pow", "__pow__"), ("rpow", "__rpow__"), ("sub", "__sub__"), ("rsub", "__rsub__"), ], ) def test_math_alias(math_op, alias): assert getattr(pd.DataFrame, math_op) == getattr(pd.DataFrame, alias) @pytest.mark.parametrize("other", ["as_left", 4, 4.0, "a"]) @pytest.mark.parametrize("op", ["eq", "ge", "gt", "le", "lt", "ne"]) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_comparison(data, op, other): eval_general( *create_test_dfs(data), lambda df: getattr(df, op)(df if other == "as_left" else other), ) @pytest.mark.parametrize("op", ["eq", "ge", "gt", "le", "lt", "ne"]) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_multi_level_comparison(data, op): modin_df_multi_level = pd.DataFrame(data) new_idx = pandas.MultiIndex.from_tuples( [(i // 4, i // 2, i) for i in modin_df_multi_level.index] ) modin_df_multi_level.index = new_idx # Defaults to pandas with pytest.warns(UserWarning): # Operation against self for sanity check getattr(modin_df_multi_level, op)(modin_df_multi_level, axis=0, level=1) def test_equals(): frame_data = {"col1": [2.9, 3, 3, 3], "col2": [2, 3, 4, 1]} modin_df1 = pd.DataFrame(frame_data) modin_df2 = pd.DataFrame(frame_data) assert modin_df1.equals(modin_df2) df_equals(modin_df1, modin_df2) df_equals(modin_df1, pd.DataFrame(modin_df1)) frame_data = {"col1": [2.9, 3, 3, 3], "col2": [2, 3, 5, 1]} modin_df3 = pd.DataFrame(frame_data, index=list("abcd")) assert not modin_df1.equals(modin_df3) with pytest.raises(AssertionError): df_equals(modin_df3, modin_df1) with pytest.raises(AssertionError): df_equals(modin_df3, modin_df2) assert modin_df1.equals(modin_df2._query_compiler.to_pandas()) @pytest.mark.parametrize("is_more_other_partitions", [True, False]) @pytest.mark.parametrize( "op_type", ["df_ser", "df_df", "ser_ser_same_name", "ser_ser_different_name"] ) @pytest.mark.parametrize( "is_idx_aligned", [True, False], ids=["idx_aligned", "idx_not_aligned"] ) def test_mismatched_row_partitions(is_idx_aligned, op_type, is_more_other_partitions): data = [0, 1, 2, 3, 4, 5] modin_df1, pandas_df1 = create_test_dfs({"a": data, "b": data}) modin_df, pandas_df = modin_df1.loc[:2], pandas_df1.loc[:2] modin_df2 = modin_df.append(modin_df) pandas_df2 = pandas_df.append(pandas_df) if is_more_other_partitions: modin_df2, modin_df1 = modin_df1, modin_df2 pandas_df2, pandas_df1 = pandas_df1, pandas_df2 if is_idx_aligned: if is_more_other_partitions: modin_df1.index = pandas_df1.index = pandas_df2.index else: modin_df2.index = pandas_df2.index = pandas_df1.index # Pandas don't support this case because result will contain duplicate values by col axis. if op_type == "df_ser" and not is_idx_aligned and is_more_other_partitions: eval_general( modin_df2, pandas_df2, lambda df: df / modin_df1.a if isinstance(df, pd.DataFrame) else df / pandas_df1.a, ) return if op_type == "df_ser": modin_res = modin_df2 / modin_df1.a pandas_res = pandas_df2 / pandas_df1.a elif op_type == "df_df": modin_res = modin_df2 / modin_df1 pandas_res = pandas_df2 / pandas_df1 elif op_type == "ser_ser_same_name": modin_res = modin_df2.a / modin_df1.a pandas_res = pandas_df2.a / pandas_df1.a elif op_type == "ser_ser_different_name": modin_res = modin_df2.a / modin_df1.b pandas_res = pandas_df2.a / pandas_df1.b df_equals(modin_res, pandas_res) def test_duplicate_indexes(): data = [0, 1, 2, 3, 4, 5] modin_df1, pandas_df1 = create_test_dfs( {"a": data, "b": data}, index=[0, 1, 2, 0, 1, 2] ) modin_df2, pandas_df2 = create_test_dfs({"a": data, "b": data}) df_equals(modin_df1 / modin_df2, pandas_df1 / pandas_df2)
32.719512
94
0.638464
02f2408585678efc2603dabf4e3e519292b9af20
3,979
py
Python
lib/galaxy/datatypes/upload_util.py
astrovsky01/galaxy
e106fd2f0b1a9a2f37a92e634fb8a5dc3d0fe51a
[ "CC-BY-3.0" ]
2
2015-02-23T21:21:44.000Z
2015-06-17T20:10:47.000Z
lib/galaxy/datatypes/upload_util.py
astrovsky01/galaxy
e106fd2f0b1a9a2f37a92e634fb8a5dc3d0fe51a
[ "CC-BY-3.0" ]
8
2015-09-23T15:45:17.000Z
2021-06-30T19:14:19.000Z
lib/galaxy/datatypes/upload_util.py
anvilproject/galaxy
c429c8f12f3788bb1450d8a7b43cfb84831f2c54
[ "CC-BY-3.0" ]
null
null
null
import os from typing import NamedTuple, Optional from galaxy.datatypes import data, sniff from galaxy.util.checkers import ( check_binary, is_single_file_zip, is_zip, ) class UploadProblemException(Exception): pass class HandleUploadResponse(NamedTuple): stdout: Optional[str] ext: str datatype: data.Data is_binary: bool converted_path: Optional[str] def handle_upload( registry, path: str, # dataset.path requested_ext: str, # dataset.file_type name: str, # dataset.name, tmp_prefix: Optional[str], tmp_dir: Optional[str], check_content: bool, link_data_only: bool, in_place: bool, auto_decompress: bool, convert_to_posix_lines: bool, convert_spaces_to_tabs: bool, ) -> HandleUploadResponse: stdout = None converted_path = None multi_file_zip = False # Does the first 1K contain a null? is_binary = check_binary(path) # Decompress if needed/desired and determine/validate filetype. If a keep-compressed datatype is explicitly selected # or if autodetection is selected and the file sniffs as a keep-compressed datatype, it will not be decompressed. if not link_data_only: if auto_decompress and is_zip(path) and not is_single_file_zip(path): multi_file_zip = True try: ext, converted_path, compression_type = sniff.handle_uploaded_dataset_file_internal( path, registry, ext=requested_ext, tmp_prefix=tmp_prefix, tmp_dir=tmp_dir, in_place=in_place, check_content=check_content, is_binary=is_binary, auto_decompress=auto_decompress, uploaded_file_ext=os.path.splitext(name)[1].lower().lstrip('.'), convert_to_posix_lines=convert_to_posix_lines, convert_spaces_to_tabs=convert_spaces_to_tabs, ) except sniff.InappropriateDatasetContentError as exc: raise UploadProblemException(exc) elif requested_ext == 'auto': ext = sniff.guess_ext(path, registry.sniff_order, is_binary=is_binary) else: ext = requested_ext # The converted path will be the same as the input path if no conversion was done (or in-place conversion is used) converted_path = None if converted_path == path else converted_path # Validate datasets where the filetype was explicitly set using the filetype's sniffer (if any) if requested_ext != 'auto': datatype = registry.get_datatype_by_extension(requested_ext) # Enable sniffer "validate mode" (prevents certain sniffers from disabling themselves) if check_content and hasattr(datatype, 'sniff') and not datatype.sniff(path): stdout = ("Warning: The file 'Type' was set to '{ext}' but the file does not appear to be of that" " type".format(ext=requested_ext)) # Handle unsniffable binaries if is_binary and ext == 'binary': upload_ext = os.path.splitext(name)[1].lower().lstrip('.') if registry.is_extension_unsniffable_binary(upload_ext): stdout = ("Warning: The file's datatype cannot be determined from its contents and was guessed based on" " its extension, to avoid this warning, manually set the file 'Type' to '{ext}' when uploading" " this type of file".format(ext=upload_ext)) ext = upload_ext else: stdout = ("The uploaded binary file format cannot be determined automatically, please set the file 'Type'" " manually") datatype = registry.get_datatype_by_extension(ext) if multi_file_zip and not getattr(datatype, 'compressed', False): stdout = 'ZIP file contained more than one file, only the first file was added to Galaxy.' return HandleUploadResponse(stdout, ext, datatype, is_binary, converted_path)
39.79
120
0.671023
c368486fba0ab6bd97ee7297baa78caba3170c2c
538
py
Python
main/xinput/template.py
RoastVeg/cports
803c7f07af341eb32f791b6ec1f237edb2764bd5
[ "BSD-2-Clause" ]
null
null
null
main/xinput/template.py
RoastVeg/cports
803c7f07af341eb32f791b6ec1f237edb2764bd5
[ "BSD-2-Clause" ]
null
null
null
main/xinput/template.py
RoastVeg/cports
803c7f07af341eb32f791b6ec1f237edb2764bd5
[ "BSD-2-Clause" ]
null
null
null
pkgname = "xinput" pkgver = "1.6.3" pkgrel = 0 build_style = "gnu_configure" hostmakedepends = ["pkgconf"] makedepends = [ "libxext-devel", "libxi-devel", "libxrandr-devel", "libxinerama-devel" ] pkgdesc = "X input device configuration utility" maintainer = "q66 <q66@chimera-linux.org>" license = "MIT" url = "https://xorg.freedesktop.org" source = f"$(XORG_SITE)/app/{pkgname}-{pkgver}.tar.bz2" sha256 = "35a281dd3b9b22ea85e39869bb7670ba78955d5fec17c6ef7165d61e5aeb66ed" def post_install(self): self.install_license("COPYING")
29.888889
75
0.737918
a04e5610ec98ac23399936c3693e1730c24fc347
351
py
Python
pressure_vessel_calcs/h_conical_head_calc.py
marciokristo/Pressure_Vessel_Calc
146a656021f694d0faf453cce2a0947eef24158c
[ "MIT" ]
null
null
null
pressure_vessel_calcs/h_conical_head_calc.py
marciokristo/Pressure_Vessel_Calc
146a656021f694d0faf453cce2a0947eef24158c
[ "MIT" ]
null
null
null
pressure_vessel_calcs/h_conical_head_calc.py
marciokristo/Pressure_Vessel_Calc
146a656021f694d0faf453cce2a0947eef24158c
[ "MIT" ]
null
null
null
""" PR_VESSEL 2021 ASME VIII Div.1 Calculation program for Pressure Vessels analysis Created by Marcio Cristo 2021 This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation. File destinated to create conical head calculations functions """
39
167
0.811966
51f28545c2e31df4fe0ae246c58c01590dcfada7
3,366
py
Python
Python Programs/consecutive-prime-sum-tcs-codevita.py
muhammad-masood-ur-rehman/Skillrack
71a25417c89d0efab40ee6229ccd758b26ae4312
[ "CC0-1.0" ]
2
2021-06-26T21:50:59.000Z
2021-09-18T04:55:51.000Z
Python Programs/consecutive-prime-sum-tcs-codevita.py
muhammad-masood-ur-rehman/Skillrack
71a25417c89d0efab40ee6229ccd758b26ae4312
[ "CC0-1.0" ]
null
null
null
Python Programs/consecutive-prime-sum-tcs-codevita.py
muhammad-masood-ur-rehman/Skillrack
71a25417c89d0efab40ee6229ccd758b26ae4312
[ "CC0-1.0" ]
null
null
null
Consecutive Prime Sum - TCS CodeVita Some prime numbers can be expressed as a sum of other consecutive prime numbers. · For example o 5 = 2 + 3, o 17 = 2 + 3 + 5 + 7, o 41 = 2 + 3 + 5 + 7 + 11 + 13. Your task is to find out how many prime numbers which satisfy this property are present in the range 3 to N subject to a constraint that summation should always start with number 2. Write code to find out the number of prime numbers that satisfy the above-mentioned property in a given range. Input Format: First line contains a number N Output Format: Print the total number of all such prime numbers which are less than or equal to N. Constraints: 2<N<=12,000,000,000 Example Input/Output 1: Input: 43 Output: 4 Python: num = int(input()) arr = [] sum = 0 count = 0 if num > 1: for i in range(2, num + 2): for j in range(2, i): if i % j == 0: break else: arr.append(i) def is_prime(sum): for i in range(2, (sum // 2) +2): if sum % i == 0: return False else: return True for i in range(0, len(arr)): sum = sum + arr[i] if sum <= num: if is_prime(sum): count = count + 1 print(count) C: #include <stdio.h> int prime(int b) { int j,cnt; cnt=1; for(j=2;j<=b/2;j++) { if(b%j==0) cnt=0; } if(cnt==0) return 1; else return 0; } int main() { int i,j,n,cnt,a[25],c,sum=0,count=0,k=0; scanf("%d",&n); for(i=2;i<=n;i++) { cnt=1; for(j=2;j<=n/2;j++) { if(i%j==0) cnt=0; } if(cnt==1) { a[k]=i; k++; } } for(i=0;i<k;i++) { sum=sum+a[i]; c= prime(sum); if(c==1) count++; } printf("%d",count); return 0; } C++: #include <iostream> using namespace std; int prime(int b) { int j,cnt; cnt=1; for(j=2;j<=b/2;j++) { if(b%j==0) cnt=0; } if(cnt==0) return 1; else return 0; } int main() { int i,j,n,cnt,a[25],c,sum=0,count=0,k=0; cin>>n; for(i=2;i<=n;i++) { cnt=1; for(j=2;j<=n/2;j++) { if(i%j==0) cnt=0; } if(cnt==1) { a[k]=i; k++; } } for(i=0;i<k;i++) { sum=sum+a[i]; c= prime(sum); if(c==1) count++; } cout<<count; return 0; } Java: import java.util.Scanner; class Main { static int prime(int b) { int j,cnt; cnt=1; for (j = 2; j <= b/2; j++) { if(b%j==0) cnt=0; } if(cnt==0) return 1; else return 0; } public static void main(String[] args) { Scanner sc = new Scanner(System.in); int i,j,n=0,cnt,c=0,sum=0,count=0,k=0; Main t = new Main(); int[] a = new int[25]; System.out.println("Enter no"); n = sc.nextInt(); for (i = 2; i <=n ; i++) { cnt=1; for (j = 2; j <= n/2; j++) { if(i%j==0) cnt=0; } if(cnt==1) { a[k]=i; k++; } } for (i = 0; i < k; i++) { sum=sum+a[i]; c=t.prime(sum); if(c==1) count++; } System.out.println(count); } }
19.125
181
0.45514
3dca01bfccd19f099bd7425174814c2b2876b5e8
5,366
py
Python
KD_Lib/KD/vision/BANN/BANN.py
DA-southampton/KD_Lib
bd4a9b93b9674607ecf467d280d5cab1c516bdc6
[ "MIT" ]
1
2021-11-26T17:46:29.000Z
2021-11-26T17:46:29.000Z
KD_Lib/KD/vision/BANN/BANN.py
DA-southampton/KD_Lib
bd4a9b93b9674607ecf467d280d5cab1c516bdc6
[ "MIT" ]
null
null
null
KD_Lib/KD/vision/BANN/BANN.py
DA-southampton/KD_Lib
bd4a9b93b9674607ecf467d280d5cab1c516bdc6
[ "MIT" ]
null
null
null
import torch import torch.nn as nn import torch.nn.functional as F import os import glob from copy import deepcopy from KD_Lib.KD.common import BaseClass class BANN(BaseClass): """ Implementation of paper "Born Again Neural Networks" https://arxiv.org/abs/1805.04770 :param student_model (torch.nn.Module): Student model :param train_loader (torch.utils.data.DataLoader): Dataloader for training :param val_loader (torch.utils.data.DataLoader): Dataloader for validation :param optimizer (torch.optim.*): Optimizer for training :param num_gen (int): Number of generations to train. :param loss_fn (torch.nn.Module): Loss Function used for first model in gen. later, KLDivLoss is used. :param temp (float): Temperature parameter for distillation :param distil_weight (float): Weight paramter for distillation loss :param device (str): Device for training; 'cpu' for cpu and 'cuda' for gpu :param log (bool): True if logging required :param logdir (str): Directory for storing logs """ def __init__( self, student_model, train_loader, val_loader, optimizer, num_gen, loss_fn=nn.CrossEntropyLoss(), epoch_interval=5, temp=20.0, distil_weight=0.5, device="cpu", log=False, logdir="./Experiments", ): super(BANN, self).__init__( student_model, student_model, train_loader, val_loader, optimizer, optimizer, loss_fn, temp, distil_weight, device, log, logdir, ) self.init_weights = deepcopy(student_model.state_dict()) self.init_optim = deepcopy(optimizer.state_dict()) self.num_gen = num_gen self.gen = 0 def train_student( self, epochs=10, plot_losses=False, save_model=True, save_model_pth="./models/student-{}.pth", ): """ Function that will be training the student :param epochs (int): Number of epochs you want to train the student per generation :param plot_losses (bool): True if you want to plot the losses for every generation :param save_model (bool): True if you want to save the student model (Set true if you want to use models for later evaluation) :param save_model_pth (str): Path where you want to save the student model """ try: fmt = save_model_pth.format(1) except: print("Invalid save_model_pth, allow {\} for generation number") return for k in range(self.num_gen): print("Born Again : Gen {}/{}".format(k + 1, self.num_gen)) self._train_student( epochs, plot_losses, save_model, save_model_pth.format(k + 1) ) # Use best model in k-1 gen as last model self.teacher_model.load_state_dict(self.best_student_model_weights) # Reset model for next generation self.student_model.load_state_dict(self.init_weights) # Reset optimizer for next generation self.optimizer_student.load_state_dict(self.init_optim) self.gen += 1 def evaluate(self, models_dir="./models"): """ Evaluate method for printing accuracies of the trained network :param models_dir (str): Location of stored models. (default: ./models) """ print("Evaluating Model Ensemble") models_dir = glob.glob(os.path.join(models_dir, "*.pth")) len_models = len(models_dir) outputs = [] model = self.student_model for model_weight in models_dir: model.load_state_dict(torch.load(model_weight)) output = self._evaluate_model(model, verbose=False) outputs.append(output) print("Total Models: ", len(outputs)) total = len(self.val_loader) print("Total Samples: ", total) correct = 0 for idx, (data, target) in enumerate(self.val_loader): target = target.to(self.device) output = outputs[0][idx] / len_models for k in range(1, len_models): output += outputs[k][idx] / len_models pred = output.argmax(dim=1, keepdim=True) correct += pred.eq(target.view_as(pred)).sum().item() print("-" * 80) print(f"Accuracy: {correct/total}") def calculate_kd_loss(self, y_pred_student, y_pred_teacher, y_true): """ Function used for calculating the KD loss during distillation :param y_pred_student (Tensor): Predicted outputs from the student network :param y_pred_teacher (Tensor): Predicted outputs from the teacher network :param y_true (Tensor): True labels """ if self.gen == 0: return self.loss_fn(y_pred_student, y_true) s_i = F.log_softmax(y_pred_student / self.temp, dim=1) t_i = F.softmax(y_pred_teacher / self.temp, dim=1) KD_loss = nn.KLDivLoss()(s_i, t_i) * ( self.distil_weight * self.temp * self.temp ) KD_loss += F.cross_entropy(y_pred_student, y_true) * (1.0 - self.distil_weight) return KD_loss
35.773333
134
0.611629
e7037fbf044ecc71e6d33b7cba00759955406b69
4,357
py
Python
keras_frcnn/stanford_dogs_parser.py
bordac6/frcnn-from-scratch-with-keras
f041d360c835d5ec15c3c12bf3658a54ffb20d73
[ "Apache-2.0" ]
null
null
null
keras_frcnn/stanford_dogs_parser.py
bordac6/frcnn-from-scratch-with-keras
f041d360c835d5ec15c3c12bf3658a54ffb20d73
[ "Apache-2.0" ]
null
null
null
keras_frcnn/stanford_dogs_parser.py
bordac6/frcnn-from-scratch-with-keras
f041d360c835d5ec15c3c12bf3658a54ffb20d73
[ "Apache-2.0" ]
null
null
null
import os import cv2 import xml.etree.ElementTree as ET from scipy.io import loadmat import numpy as np def get_data(data_paths): all_imgs = [] classes_count = {} class_mapping = {} visualise = False print("data path:", data_paths) train_list = loadmat(os.path.join(data_paths, 'lists', 'train_list.mat')) # test_list = loadmat(os.path.join(data_paths, 'lists', 'test_list.mat')) print('Parsing annotation files') annot_path = os.path.join(data_paths, 'Annotation') imgs_path = os.path.join(data_paths, 'Images') trainval = [tr[0][0] for tr in train_list['file_list']] trainval_files = trainval[:int(len(trainval)*0.8)] test_files = trainval[int(len(trainval)*0.8):] annots = [os.path.join(annot_path, s[0][0]) for s in train_list['annotation_list']] idx = 0 for annot in annots: try: idx += 1 et = ET.parse(annot) element = et.getroot() element_objs = element.findall('object') element_filename = element.find('filename').text element_width = int(element.find('size').find('width').text) element_height = int(element.find('size').find('height').text) if len(element_objs) > 0: path_to_filename = element_filename for file_name in trainval: if element_filename in file_name: path_to_filename = file_name annotation_data = {'filepath': os.path.join(imgs_path, path_to_filename), 'width': element_width, 'height': element_height, 'bboxes': []} if any( element_filename in tv for tv in trainval_files): annotation_data['imageset'] = 'trainval' elif any(element_filename in tst for tst in test_files): annotation_data['imageset'] = 'test' else: annotation_data['imageset'] = 'trainval' for element_obj in element_objs: class_name = element_obj.find('name').text if class_name not in classes_count: classes_count[class_name] = 1 else: classes_count[class_name] += 1 if class_name not in class_mapping: class_mapping[class_name] = len(class_mapping) obj_bbox = element_obj.find('bndbox') x1 = int(round(float(obj_bbox.find('xmin').text))) y1 = int(round(float(obj_bbox.find('ymin').text))) x2 = int(round(float(obj_bbox.find('xmax').text))) y2 = int(round(float(obj_bbox.find('ymax').text))) difficulty = 1 # parse all files. annotation_data['bboxes'].append( {'class': class_name, 'x1': x1, 'x2': x2, 'y1': y1, 'y2': y2, 'difficult': difficulty}) all_imgs.append(annotation_data) # if visualise: # img = cv2.imread(annotation_data['filepath']) # for bbox in annotation_data['bboxes']: # cv2.rectangle(img, (bbox['x1'], bbox['y1']), (bbox[ # 'x2'], bbox['y2']), (0, 0, 255)) # cv2.imshow('img', img) # cv2.waitKey(0) except Exception as e: print(e) continue return all_imgs, classes_count, class_mapping
48.955056
129
0.439982
2141bd975fad1b180f193f014ef9c5533a34f002
1,547
gyp
Python
library/boost-phoenix/1.57.0.gyp
KjellSchubert/bru
dd70b721d07fbd27c57c845cc3a29cd8f2dfc587
[ "MIT" ]
3
2015-01-06T15:22:16.000Z
2015-11-27T18:13:04.000Z
library/boost-phoenix/1.57.0.gyp
KjellSchubert/bru
dd70b721d07fbd27c57c845cc3a29cd8f2dfc587
[ "MIT" ]
7
2015-02-10T15:13:38.000Z
2021-05-30T07:51:13.000Z
library/boost-phoenix/1.57.0.gyp
KjellSchubert/bru
dd70b721d07fbd27c57c845cc3a29cd8f2dfc587
[ "MIT" ]
3
2015-01-29T17:19:53.000Z
2016-01-06T12:50:06.000Z
{ "targets": [ { "target_name": "boost-phoenix", "type": "none", "include_dirs": [ "1.57.0/phoenix-boost-1.57.0/include" ], "all_dependent_settings": { "include_dirs": [ "1.57.0/phoenix-boost-1.57.0/include" ] }, "dependencies": [ "../boost-config/boost-config.gyp:*", "../boost-predef/boost-predef.gyp:*", "../boost-proto/boost-proto.gyp:*", "../boost-assert/boost-assert.gyp:*", "../boost-detail/boost-detail.gyp:*", "../boost-fusion/boost-fusion.gyp:*", "../boost-range/boost-range.gyp:*", "../boost-core/boost-core.gyp:*", "../boost-bind/boost-bind.gyp:*", "../boost-preprocessor/boost-preprocessor.gyp:*", "../boost-mpl/boost-mpl.gyp:*" ] } # this here's one these smallish looking tests that take disturbingly # long to compile. It's not as slow to compile as most of the # boost-spirit tests, but still slow enough for me to not want to keep # it enabled #{ # "target_name": "boost-phoenix_test_for_each", # "type": "executable", # "test": {}, # "sources": [ "1.57.0/phoenix-boost-1.57.0/test/algorithm/for_each.cpp" ], # "dependencies": [ "boost-phoenix" ] #} ] }
37.731707
86
0.461538
3d5da590ffaaa562174a9fd2350c60699a8b4cb2
10,294
py
Python
tools/waf-tools/f_vscode.py
patkan/foxbms-2
329216a5b0739362512b4c744975a136f674f60c
[ "CC-BY-4.0", "BSD-3-Clause" ]
null
null
null
tools/waf-tools/f_vscode.py
patkan/foxbms-2
329216a5b0739362512b4c744975a136f674f60c
[ "CC-BY-4.0", "BSD-3-Clause" ]
null
null
null
tools/waf-tools/f_vscode.py
patkan/foxbms-2
329216a5b0739362512b4c744975a136f674f60c
[ "CC-BY-4.0", "BSD-3-Clause" ]
null
null
null
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # # Copyright (c) 2010 - 2021, Fraunhofer-Gesellschaft zur Foerderung der angewandten Forschung e.V. # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # # We kindly request you to use one or more of the following phrases to refer to # foxBMS in your hardware, software, documentation or advertising materials: # # - "This product uses parts of foxBMS®" # - "This product includes parts of foxBMS®" # - "This product is derived from foxBMS®" """Implements a waf tool to configure a VS Code workspace to foxBMS specific needs. For information on VS Code see https://code.visualstudio.com/. """ import os import re import pathlib import json import jsonschema import jinja2 from waflib import Utils from waflib import Context # This tool uses slash as path separator for the sake of simplicity as it # - works on both, Windows and unix-like systems (see # https://docs.microsoft.com/en-us/archive/blogs/larryosterman/why-is-the-dos-path-character) # - it make the json configuration file more readable def fix_jinja(txt): """appends empty line to file, if missing""" return ( os.linesep.join([s for s in txt.splitlines() if not s.strip() == ""]) + os.linesep ) def configure(conf): # pylint: disable=too-many-statements,too-many-branches """configuration step of the VS Code waf tool: - Find code - configure a project if code was found""" # create a VS Code workspace if code is installed on this platform if Utils.is_win32: conf.find_program("code", mandatory=False) if not conf.env.CODE: code_dir = "Microsoft VS Code" path_list = [ os.path.join(os.environ["LOCALAPPDATA"], "Programs", code_dir), os.path.join(os.environ["PROGRAMFILES"], code_dir), ] conf.find_program( "code", path_list=path_list, mandatory=False, ) else: conf.find_program("code", mandatory=False) if not conf.env.CODE: return conf.start_msg("Creating workspace") vscode_dir = conf.path.make_node(".vscode") vscode_dir.mkdir() vscode_config_dir = conf.path.find_dir(os.path.join("tools", "ide", "vscode")) template_loader = jinja2.FileSystemLoader(searchpath=vscode_config_dir.relpath()) template_env = jinja2.Environment(loader=template_loader) if Utils.is_win32: waf_wrapper_script = pathlib.Path(conf.path.abspath()).as_posix() + "/waf.bat" else: waf_wrapper_script = pathlib.Path(conf.path.abspath()) + "/waf.sh" template = template_env.get_template("tasks.json.jinja2") tasks = template.render( WAF_WRAPPER_SCRIPT=waf_wrapper_script, ) vsc_tasks_file = os.path.join(vscode_dir.relpath(), "tasks.json") conf.path.make_node(vsc_tasks_file).write(fix_jinja(tasks)) template = template_env.get_template("extensions.json.jinja2") extensions = template.render() vsc_extensions_file = os.path.join(vscode_dir.relpath(), "extensions.json") conf.path.make_node(vsc_extensions_file).write(fix_jinja(extensions)) template = template_env.get_template("cspell.json.jinja2") cspell = template.render() vsc_cspell_file = os.path.join(vscode_dir.relpath(), "cspell.json") conf.path.make_node(vsc_cspell_file).write(fix_jinja(cspell)) template = template_env.get_template("settings.json.jinja2") # Python and friends: Python, conda, pylint, black py_exe = "python" if conf.env.PYTHON: py_exe = pathlib.Path(conf.env.PYTHON[0]).as_posix() conda_exe = "conda" if conf.env.CONDA: conda_exe = pathlib.Path(conf.env.CONDA[0]).as_posix() pylint_exe = "pylint" if conf.env.PYLINT: pylint_exe = pathlib.Path(conf.env.PYLINT[0]).as_posix() pylint_cfg = "" if conf.env.PYLINT_CONFIG: pylint_cfg = pathlib.Path(conf.env.PYLINT_CONFIG[0]).as_posix() black_exe = "black" if conf.env.BLACK: black_exe = pathlib.Path(conf.env.BLACK[0]).as_posix() black_cfg = "" if conf.env.BLACK_CONFIG: black_cfg = pathlib.Path(conf.env.BLACK_CONFIG[0]).as_posix() # directory of waf and waf-tools waf_dir = pathlib.Path(Context.waf_dir).as_posix() waf_tools_dir = pathlib.Path( os.path.join(conf.path.abspath(), "tools", "waf-tools") ).as_posix() # Clang-format clang_format_executable = "" if conf.env.CLANG_FORMAT: clang_format_executable = pathlib.Path(conf.env.CLANG_FORMAT[0]).as_posix() # now it is in an case save to render the template if not conf.env.CLANG_FORMAT[0]: clang_format_executable = "" else: clang_format_executable = pathlib.Path(conf.env.CLANG_FORMAT[0]).as_posix() settings = template.render( PYTHONPATH=py_exe, WAF_DIR=waf_dir, WAF_TOOLS_DIR=waf_tools_dir, CONDA_PATH=conda_exe, PYLINT_PATH=pylint_exe, PYLINT_CONFIG=pylint_cfg, BLACKPATH=black_exe, BLACK_CONFIG=black_cfg, CLANG_FORMAT_EXECUTABLE=clang_format_executable, ) vsc_settings_file = os.path.join(vscode_dir.relpath(), "settings.json") conf.path.make_node(vsc_settings_file).write(fix_jinja(settings)) template = template_env.get_template("c_cpp_properties.json.jinja2") defines_read = ( conf.root.find_node(conf.env.COMPILER_BUILTIN_DEFINES_FILE[0]) .read() .splitlines() ) vscode_defines = [] reg = re.compile(r"(#define)([ ])([a-zA-Z0-9_]{1,})([ ])([a-zA-Z0-9_\":. ]{1,})") for d in defines_read: define = d.split("/*")[0] _def = reg.search(define) if _def: def_name, val = _def.group(3), _def.group(5) if def_name in ("__DATE__", "__TIME__"): continue if '"' in val: val = val.replace('"', '\\"') vscode_defines.append((def_name, val)) bms_config = json.loads( conf.path.find_node(os.path.join("conf", "bms", "bms.json")).read() ) bms_config_schema = json.loads( conf.path.find_node( os.path.join("conf", "bms", "schema", "bms.schema.json") ).read() ) try: jsonschema.validate(instance=bms_config, schema=bms_config_schema) except jsonschema.exceptions.ValidationError as err: good_values = ", ".join([f"'{i}'" for i in err.validator_value]) conf.fatal( f"Measurement IC '{err.instance}' is not supported. Use one of " f"these: {good_values}." ) bal = bms_config["slave-unit"]["balancing-strategy"] soc = bms_config["application"]["algorithm"]["state-estimation"]["soc"] soe = bms_config["application"]["algorithm"]["state-estimation"]["soe"] soh = bms_config["application"]["algorithm"]["state-estimation"]["soh"] imd = bms_config["application"]["insulation-monitoring-device"] imd_manufacturer = imd["manufacturer"] imd_model = imd["model"] chip = bms_config["slave-unit"]["measurement-ic"]["chip"] if chip in ("6804-1", "6811-1", "6812-1"): chip = "6813-1" c_cpp_properties = template.render( ARMCL=pathlib.Path(conf.env.CC[0]).as_posix(), OS=bms_config["operating-system"]["name"], BALANCING_STRATEGY=bal, MEASUREMENT_IC_MANUFACTURER=bms_config["slave-unit"]["measurement-ic"][ "manufacturer" ], MEASUREMENT_IC_CHIP=chip, TEMPERATURE_SENSOR_MANUFACTURER=bms_config["slave-unit"]["temperature-sensor"][ "manufacturer" ], TEMPERATURE_SENSOR_MODEL=bms_config["slave-unit"]["temperature-sensor"][ "model" ], TEMPERATURE_SENSOR_METHOD=bms_config["slave-unit"]["temperature-sensor"][ "method" ], STATE_ESTIMATOR_SOC=soc, STATE_ESTIMATOR_SOE=soe, STATE_ESTIMATOR_SOH=soh, IMD_MANUFACTURER=imd_manufacturer, IMD_MODEL=imd_model, INCLUDES=[pathlib.Path(x).as_posix() for x in conf.env.INCLUDES], CSTANDARD="c99", DEFINES=vscode_defines, ) vsc_c_cpp_properties_file = os.path.join( vscode_dir.relpath(), "c_cpp_properties.json" ) for i in conf.env.VSCODE_MK_DIRS: conf.path.make_node(i).mkdir() conf.path.make_node(vsc_c_cpp_properties_file).write(fix_jinja(c_cpp_properties)) template = template_env.get_template("launch.json.jinja2") gdb_exe = "gdb" if conf.env.GDB: gdb_exe = pathlib.Path(conf.env.GDB[0]).as_posix() launch = template.render(GDB=gdb_exe) vsc_launch_file = os.path.join(vscode_dir.relpath(), "launch.json") conf.path.make_node(vsc_launch_file).write(fix_jinja(launch)) conf.end_msg("ok")
38.845283
98
0.674471
0c3d1d17430244999650f3ff14ef461bc2b43b0a
17,035
py
Python
tests/integration/basetests.py
glormph/msstitch
ec7256caa5ec2bb0ba14a326fd445266c56f2295
[ "MIT" ]
2
2017-03-06T13:59:52.000Z
2019-02-08T19:33:40.000Z
tests/integration/basetests.py
glormph/msstitch
ec7256caa5ec2bb0ba14a326fd445266c56f2295
[ "MIT" ]
3
2017-06-26T07:10:33.000Z
2020-03-06T11:43:28.000Z
tests/integration/basetests.py
glormph/msstitch
ec7256caa5ec2bb0ba14a326fd445266c56f2295
[ "MIT" ]
2
2018-10-04T10:04:04.000Z
2019-05-17T22:09:29.000Z
import unittest import subprocess import os import shutil import sqlite3 import re from lxml import etree from tempfile import mkdtemp class BaseTest(unittest.TestCase): testdir = 'tests' fixdir = os.path.join(os.getcwd(), testdir, 'fixtures') basefixdir = os.path.join(os.getcwd(), testdir, 'base_fixtures') outdir = os.path.join(os.getcwd(), testdir, 'test_output') executable = 'msstitch' def setUp(self): self.infile = os.path.join(self.fixdir, self.infilename) os.makedirs(self.outdir, exist_ok=True) self.workdir = mkdtemp(dir=self.outdir) os.chdir(self.workdir) self.resultfn = os.path.join(self.workdir, self.infilename) def tearDown(self): pass #shutil.rmtree(self.workdir) def get_std_options(self): cmd = [self.executable, self.command, '-i'] if type(self.infile) != list: self.infile = [self.infile] cmd.extend(self.infile) if self.resultfn is not None: cmd.extend(['-o', self.resultfn]) elif self.resultfn is None: cmd.extend(['-d', self.workdir]) return cmd def run_command(self, options=[], return_error=False): cmd = self.get_std_options() cmd.extend(options) check = not return_error try: complete = subprocess.run(cmd, capture_output=True, text=True, check=check) except subprocess.CalledProcessError as e: print('Failed to run command: ', cmd) print('Output of command:') print(e.stdout) print(e.stderr) raise else: return complete def get_values_from_db(self, dbfile, sql): db = sqlite3.connect(dbfile) return db.execute(sql) def seq_in_db(self, dbconn, seq, seqtype, max_falloff=False): seq = seq.replace('L', 'I') if seqtype == 'ntermfalloff': seq = '{0}%'.format(seq[::-1]) sql = 'SELECT seqs FROM known_searchspace WHERE seqs LIKE ?' for match in dbconn.execute(sql, (seq,)): if match[0][:-max_falloff] in seq: return True else: sql = ('SELECT EXISTS(SELECT seqs FROM known_searchspace WHERE ' 'seqs=? LIMIT 1)') return dbconn.execute(sql, (seq,)).fetchone()[0] == 1 def get_tsvheader(self, fn): with open(fn) as fp: return next(fp).strip('\n').split('\t') def tsv_generator(self, fn): header = self.get_tsvheader(fn) tsv = self.get_all_lines(fn) for line in tsv: yield {field: val for field, val in zip(header, line.strip('\n').split('\t'))} def get_all_lines(self, fn): with open(fn) as fp: next(fp) for line in fp: yield line def get_xml_namespace(self, fn): root = self.get_root_el(fn) ns = {} for prefix in root.nsmap: separator = ':' nsprefix = prefix if prefix is None: nsprefix = '' separator = '' ns['xmlns{0}{1}'.format(separator, nsprefix)] = root.nsmap[prefix] return ns def get_root_el(self, fn): rootgen = etree.iterparse(fn, events=('start',)) root = next(rootgen)[1] for child in root.getchildren(): root.remove(child) return root def copy_db_to_workdir(self, dbfn, dst=False): if not dst: shutil.copy(os.path.join(self.fixdir, dbfn), self.resultfn) else: shutil.copy(os.path.join(self.fixdir, dbfn), dst) def get_float_or_na(self, value): try: return float(value) except ValueError: return value def check_lines(self, expected, result): with open(expected) as fp, open(result) as resultfp: for expline, resline in zip(fp, resultfp): self.assertEqual(expline, resline) def isoquant_check(self, expected_isotable, acc_field, channels, nopsms): isoquant = {} accession = self.get_tsvheader(expected_isotable)[0] for line in self.tsv_generator(expected_isotable): acc = line.pop(accession) isoquant[acc] = line for result in self.tsv_generator(self.resultfn): for ch in channels + nopsms: try: resval = float(result[ch]) expval = float(isoquant[result[acc_field]][ch]) except ValueError: # NA found self.assertEqual(result[ch], isoquant[result[acc_field]][ch]) else: self.assertEqual(resval, expval) class BaseTestPycolator(BaseTest): infilename = 'perco.xml' def get_psm_pep_ids_from_file(self, fn): contents = self.read_percolator_out(fn) return {'psm_ids': self.get_element_ids(contents['psms'], 'psm_id', contents['ns']), 'peptide_ids': self.get_element_ids(contents['peptides'], 'peptide_id', contents['ns']), 'psm_seqs': self.get_psm_seqs(contents['psms'], contents['ns']) } def read_percolator_out(self, fn): ns = self.get_xml_namespace(fn)['xmlns'] contents = {'ns': ns, 'psms': [], 'peptides': []} xml = etree.iterparse(fn) for ac, el in xml: if el.tag == '{%s}psm' % ns: contents['psms'].append(el) elif el.tag == '{%s}peptide' % ns: contents['peptides'].append(el) return contents def get_element_ids(self, elements, id_attrib, ns): return [x.attrib['{%s}%s' % (ns, id_attrib)] for x in elements] def get_psm_seqs(self, psms, ns): return [pepseq.attrib['seq'] for pepseq in self.get_subelements(psms, 'peptide_seq', ns)] def get_subelements(self, elements, subel, ns): return [element.find('{%s}%s' % (ns, subel)) for element in elements] def strip_modifications(self, pep): return re.sub('\[UNIMOD:\d*\]', '', pep) class MzidTSVBaseTest(BaseTest): def rowify(self, records): row, rownr = [], 0 for record in records: if record[0] == rownr: row.append(record[1:]) else: yield row row = [record[1:]] rownr += 1 def check_results_sql(self, checkfields, expected_values): for resultvals, exp_vals in zip(self.get_values(checkfields), expected_values): for resultval, expectval in zip(resultvals, exp_vals): self.assertEqual([str(x) if x is not None else 'NA' for x in expectval], [str(x) for x in resultval]) def process_dbvalues_both(self, dbfile, sql, permfieldnrs, permfieldnames): '''FIXME what does this do, is it same as rowify but with fields?''' dbvals = self.get_values_from_db(dbfile, sql) rownr, permvals = 0, [] for record in dbvals: if record[0] != rownr: yield [tuple([x, y]) for x, y in zip(permfieldnames, permvals)] permvals = [record[nr] for nr in permfieldnrs] rownr += 1 else: permvals.extend([record[nr] for nr in permfieldnrs]) def get_values(self, checkfields, outfile=False): if not outfile: outfile = self.resultfn with open(outfile) as fp: header = next(fp).strip('\n').split('\t') fieldindices = [header.index(field) for field in checkfields] for line in fp: line = line.strip('\n').split('\t') if len(checkfields) > 1: yield [(field, line[ix]) for field, ix in zip(checkfields, fieldindices)] else: yield [(line[ix],) for ix in fieldindices] class MSLookupTest(BaseTest): base_db_fn = None suffix = '' def setUp(self): super().setUp() self.resultfn = os.path.join(self.workdir, 'mslookup_db.sqlite') if self.base_db_fn is not None: self.copy_db_to_workdir(self.base_db_fn) def run_command(self, options=None): if options is None: options = [] if self.base_db_fn is not None: options.extend(['--dbfile', self.resultfn]) super().run_command(options) class ProttableTest(BaseTest): def setUp(self): super().setUp() self.psmfile = os.path.join( self.fixdir, 'set1_target_pg.tsv') self.decoyfn = os.path.join(self.fixdir, 'decoy_peptides.tsv') def check_ms1(self, featkey, featout): top_ms1 = self.get_top_peps(self.infile[0], featkey, 'Peptide sequence', 'MS1 area (highest of all PSMs)') top_ms1 = {prot: sum(sorted(ms1s.values(), reverse=True)[:3]) / len(sorted(ms1s.values())[:3]) for prot, ms1s in top_ms1.items()} for protein in self.tsv_generator(self.resultfn): try: self.assertEqual(float(protein['MS1 precursor area']), top_ms1[protein[featout]]) except ValueError: self.assertNotIn(protein['Protein ID'], top_ms1) def dotest_proteintable(self, scorecolpat, featkey, featout, summarize_method='denoms', should_error=False): if summarize_method == 'denoms': summ = ['--denompatterns', '126'] elif summarize_method == 'sweep': summ = ['--mediansweep'] elif summarize_method == 'intensity': summ = ['--medianintensity'] options = ['--scorecolpattern', scorecolpat, '--logscore', '--decoyfn', self.decoyfn, '--ms1quant', '--isobquantcolpattern', 'plex', *summ, '--psmtable', self.psmfile ] + self.specialoptions res = self.run_command(options, return_error=should_error) if not should_error: self.check_ms1(featkey, featout) return res def get_top_peps(self, fn, featkey, pepkey, valuekey, lowerbetter=False): top_vals = {} for pep in self.tsv_generator(fn): prot = pep[featkey] seq = pep[pepkey] try: value = float(pep[valuekey]) except ValueError: continue if prot in top_vals and seq in top_vals[prot]: if lowerbetter and value > top_vals[prot][seq]: continue elif not lowerbetter and value < top_vals[prot][seq]: continue try: top_vals[prot][seq] = value except KeyError: top_vals[prot] = {seq: value} return top_vals class MergeTest(BaseTest): infilename = '' command = 'merge' dbfn = 'target_psms.sqlite' def run_command(self, options): self.infile = os.path.join(self.fixdir, self.infilename) self.resultfn = os.path.join(self.workdir, self.infilename) super().run_command(options) def setUp(self): super().setUp() self.dbfile = os.path.join(self.workdir, self.dbfn) self.copy_db_to_workdir(self.dbfn, self.dbfile) self.options = ['--setnames', 'Set1', '--fdrcolpattern', 'q-value', '--ms1quantcolpattern', 'area', '--isobquantcolpattern', 'plex', '--dbfile', self.dbfile, ] def check_build_values(self, sql, fields, accession, cutoff=False): expected = {} sql = sql + ' WHERE bs.set_name="Set1"' for rec in self.get_values_from_db(self.dbfile, sql): # skip multiple entries of e.g protein group per peptide # or gene per protein try: expected[rec[0]][rec[1]] = rec[2:] except KeyError: expected[rec[0]] = {rec[1]: rec[2:]} for line in self.tsv_generator(self.resultfn): acc = line[accession] for setname, pepvals in expected[acc].items(): for val, field in zip(pepvals, fields): self.assertEqual(str(val), line['{}_{}'.format(setname, field)]) expected.pop(acc) self.check_exp_empty(expected, cutoff) def check_exp_empty(self, expected, cutoff): if cutoff: self.assertFalse(expected == {}) else: self.assertTrue(expected == {}) def check_built_isobaric(self, sql, accession, nopsms=False, cutoff=False): expected = {} if 'WHERE' in sql: sql = sql + ' AND bs.set_name="Set1"' else: sql = sql + ' WHERE bs.set_name="Set1"' for rec in self.get_values_from_db(self.dbfile, sql): if nopsms: am_psm, fqpsm = False, False else: am_psm, fqpsm = rec[4], rec[5] try: expected[rec[0]][rec[1]][rec[2]] = [rec[3], am_psm, fqpsm] except KeyError: try: expected[rec[0]][rec[1]] = {rec[2]: [rec[3], am_psm, fqpsm]} except KeyError: expected[rec[0]] = {rec[1]: {rec[2]: [rec[3], am_psm, fqpsm]}} if cutoff: expected[rec[0]][rec[1]][rec[2]] = [rec[3], am_psm, fqpsm, rec[6]] for line in self.tsv_generator(self.resultfn): for setname, fields in expected[line[accession]].items(): for field, exp_val in fields.items(): setfield = '{}_{}'.format(setname, field) if cutoff and exp_val[3] > cutoff: exp_val = ['NA', 'NA'] if line[setfield] != 'NA': self.assertAlmostEqual(float(line[setfield]), exp_val[0]) else: self.assertEqual(exp_val[0], 'NA') if not nopsms: nr_psms = line['{} - Quanted PSM count'.format(setfield)] self.assertEqual(nr_psms, str(exp_val[1])) if not nopsms: nr_fqpsms = line['{}_Fully quanted PSM count'.format(setname)] self.assertEqual(nr_fqpsms, str(exp_val[2])) expected.pop(line[accession]) self.check_exp_empty(expected, cutoff) def check_protein_data(self, centrictype, sql, psm_sql): centric = {'proteincentric': 'pc', 'genecentric': 'gc', 'assoccentric': 'ac'}[centrictype] expected = {rec[0]: [x if x else 'NA' for x in rec[1:]] for rec in self.get_values_from_db(self.dbfile, sql)} pdatalup = { 'pc': {'acc': 'Protein ID', 'fields': [('Gene ID', 0), ('Gene Name', 1), ('Coverage', 3)]}, 'gc': {'acc': 'Gene ID', 'fields': [('Gene Name', 0), ('Protein ID(s)', 1)]}, 'ac': {'acc': 'Gene Name', 'fields': [('Gene ID', 0), ('Protein ID(s)', 1)]}, } for row in self.tsv_generator(self.resultfn): acc = row[pdatalup[centric]['acc']] for (field, ix) in pdatalup[centric]['fields']: self.assertEqual(set(str(row[field]).split(';')), set(str(expected[acc][ix]).split(','))) self.assertEqual(row['Description'], expected[acc][2]) expected, unipeps = {}, {} for rec in self.get_values_from_db(self.dbfile, psm_sql): pacc = rec[0] try: unipeps[rec[2]].add(pacc) except KeyError: unipeps[rec[2]] = set([pacc]) try: expected[pacc]['psms'].add(rec[1]) except KeyError: expected[pacc] = {'psms': set([rec[1]]), 'pep': set([rec[2]]), 'unipep': 0} else: expected[pacc]['pep'].add(rec[2]) for pep, prot in unipeps.items(): if len(prot) == 1: expected[prot.pop()]['unipep'] += 1 for protein in self.tsv_generator(self.resultfn): pacc = protein[pdatalup[centric]['acc']] poolname = 'Set1' self.assertEqual(protein['{}_Unique peptide count'.format(poolname)], str(expected[pacc]['unipep'])) self.assertEqual(protein['{}_Peptide count'.format(poolname)], str(len(expected[pacc]['pep']))) self.assertEqual(protein['{}_PSM count'.format(poolname)], str(len(expected[pacc]['psms'])))
39.43287
114
0.532962
85ced520c9935a7bbd3491364d2ae154ebc498f0
6,792
py
Python
bindings/python/ensmallen_graph/datasets/string/thioalkalimicrobiumaerophilum.py
caufieldjh/ensmallen_graph
14e98b1cdbc73193a84a913d7d4f2b2b3eb2c43a
[ "MIT" ]
null
null
null
bindings/python/ensmallen_graph/datasets/string/thioalkalimicrobiumaerophilum.py
caufieldjh/ensmallen_graph
14e98b1cdbc73193a84a913d7d4f2b2b3eb2c43a
[ "MIT" ]
null
null
null
bindings/python/ensmallen_graph/datasets/string/thioalkalimicrobiumaerophilum.py
caufieldjh/ensmallen_graph
14e98b1cdbc73193a84a913d7d4f2b2b3eb2c43a
[ "MIT" ]
null
null
null
""" This file offers the methods to automatically retrieve the graph Thioalkalimicrobium aerophilum. The graph is automatically retrieved from the STRING repository. Report --------------------- At the time of rendering these methods (please see datetime below), the graph had the following characteristics: Datetime: 2021-02-02 21:36:28.452014 The undirected graph Thioalkalimicrobium aerophilum has 2061 nodes and 129705 weighted edges, of which none are self-loops. The graph is dense as it has a density of 0.06110 and has 4 connected components, where the component with most nodes has 2052 nodes and the component with the least nodes has 2 nodes. The graph median node degree is 104, the mean node degree is 125.87, and the node degree mode is 2. The top 5 most central nodes are 717772.THIAE_10085 (degree 897), 717772.THIAE_07710 (degree 770), 717772.THIAE_06645 (degree 732), 717772.THIAE_03260 (degree 679) and 717772.THIAE_09745 (degree 623). References --------------------- Please cite the following if you use the data: @article{szklarczyk2019string, title={STRING v11: protein--protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets}, author={Szklarczyk, Damian and Gable, Annika L and Lyon, David and Junge, Alexander and Wyder, Stefan and Huerta-Cepas, Jaime and Simonovic, Milan and Doncheva, Nadezhda T and Morris, John H and Bork, Peer and others}, journal={Nucleic acids research}, volume={47}, number={D1}, pages={D607--D613}, year={2019}, publisher={Oxford University Press} } Usage example ---------------------- The usage of this graph is relatively straightforward: .. code:: python # First import the function to retrieve the graph from the datasets from ensmallen_graph.datasets.string import ThioalkalimicrobiumAerophilum # Then load the graph graph = ThioalkalimicrobiumAerophilum() # Finally, you can do anything with it, for instance, compute its report: print(graph) # If you need to run a link prediction task with validation, # you can split the graph using a connected holdout as follows: train_graph, validation_graph = graph.connected_holdout( # You can use an 80/20 split the holdout, for example. train_size=0.8, # The random state is used to reproduce the holdout. random_state=42, # Wether to show a loading bar. verbose=True ) # Remember that, if you need, you can enable the memory-time trade-offs: train_graph.enable( vector_sources=True, vector_destinations=True, vector_outbounds=True ) # Consider using the methods made available in the Embiggen package # to run graph embedding or link prediction tasks. """ from typing import Dict from ..automatic_graph_retrieval import AutomaticallyRetrievedGraph from ...ensmallen_graph import EnsmallenGraph # pylint: disable=import-error def ThioalkalimicrobiumAerophilum( directed: bool = False, verbose: int = 2, cache_path: str = "graphs/string", **additional_graph_kwargs: Dict ) -> EnsmallenGraph: """Return new instance of the Thioalkalimicrobium aerophilum graph. The graph is automatically retrieved from the STRING repository. Parameters ------------------- directed: bool = False, Wether to load the graph as directed or undirected. By default false. verbose: int = 2, Wether to show loading bars during the retrieval and building of the graph. cache_path: str = "graphs", Where to store the downloaded graphs. additional_graph_kwargs: Dict, Additional graph kwargs. Returns ----------------------- Instace of Thioalkalimicrobium aerophilum graph. Report --------------------- At the time of rendering these methods (please see datetime below), the graph had the following characteristics: Datetime: 2021-02-02 21:36:28.452014 The undirected graph Thioalkalimicrobium aerophilum has 2061 nodes and 129705 weighted edges, of which none are self-loops. The graph is dense as it has a density of 0.06110 and has 4 connected components, where the component with most nodes has 2052 nodes and the component with the least nodes has 2 nodes. The graph median node degree is 104, the mean node degree is 125.87, and the node degree mode is 2. The top 5 most central nodes are 717772.THIAE_10085 (degree 897), 717772.THIAE_07710 (degree 770), 717772.THIAE_06645 (degree 732), 717772.THIAE_03260 (degree 679) and 717772.THIAE_09745 (degree 623). References --------------------- Please cite the following if you use the data: @article{szklarczyk2019string, title={STRING v11: protein--protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets}, author={Szklarczyk, Damian and Gable, Annika L and Lyon, David and Junge, Alexander and Wyder, Stefan and Huerta-Cepas, Jaime and Simonovic, Milan and Doncheva, Nadezhda T and Morris, John H and Bork, Peer and others}, journal={Nucleic acids research}, volume={47}, number={D1}, pages={D607--D613}, year={2019}, publisher={Oxford University Press} } Usage example ---------------------- The usage of this graph is relatively straightforward: .. code:: python # First import the function to retrieve the graph from the datasets from ensmallen_graph.datasets.string import ThioalkalimicrobiumAerophilum # Then load the graph graph = ThioalkalimicrobiumAerophilum() # Finally, you can do anything with it, for instance, compute its report: print(graph) # If you need to run a link prediction task with validation, # you can split the graph using a connected holdout as follows: train_graph, validation_graph = graph.connected_holdout( # You can use an 80/20 split the holdout, for example. train_size=0.8, # The random state is used to reproduce the holdout. random_state=42, # Wether to show a loading bar. verbose=True ) # Remember that, if you need, you can enable the memory-time trade-offs: train_graph.enable( vector_sources=True, vector_destinations=True, vector_outbounds=True ) # Consider using the methods made available in the Embiggen package # to run graph embedding or link prediction tasks. """ return AutomaticallyRetrievedGraph( graph_name="ThioalkalimicrobiumAerophilum", dataset="string", directed=directed, verbose=verbose, cache_path=cache_path, additional_graph_kwargs=additional_graph_kwargs )()
35.560209
223
0.708186
d4f09e7c7e695a027cd5f9335e372eac4fe053bc
1,637
py
Python
ooobuild/lo/util/x_refresh_listener.py
Amourspirit/ooo_uno_tmpl
64e0c86fd68f24794acc22d63d8d32ae05dd12b8
[ "Apache-2.0" ]
null
null
null
ooobuild/lo/util/x_refresh_listener.py
Amourspirit/ooo_uno_tmpl
64e0c86fd68f24794acc22d63d8d32ae05dd12b8
[ "Apache-2.0" ]
null
null
null
ooobuild/lo/util/x_refresh_listener.py
Amourspirit/ooo_uno_tmpl
64e0c86fd68f24794acc22d63d8d32ae05dd12b8
[ "Apache-2.0" ]
null
null
null
# coding: utf-8 # # Copyright 2022 :Barry-Thomas-Paul: Moss # # Licensed under the Apache License, Version 2.0 (the "License") # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http: // www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Interface Class # this is a auto generated file generated by Cheetah # Libre Office Version: 7.3 # Namespace: com.sun.star.util import typing from abc import abstractmethod from ..lang.x_event_listener import XEventListener as XEventListener_c7230c4a if typing.TYPE_CHECKING: from ..lang.event_object import EventObject as EventObject_a3d70b03 class XRefreshListener(XEventListener_c7230c4a): """ makes it possible to receive refreshed events. See Also: `API XRefreshListener <https://api.libreoffice.org/docs/idl/ref/interfacecom_1_1sun_1_1star_1_1util_1_1XRefreshListener.html>`_ """ __ooo_ns__: str = 'com.sun.star.util' __ooo_full_ns__: str = 'com.sun.star.util.XRefreshListener' __ooo_type_name__: str = 'interface' __pyunointerface__: str = 'com.sun.star.util.XRefreshListener' @abstractmethod def refreshed(self, rEvent: 'EventObject_a3d70b03') -> None: """ is called when the object data is refreshed. """ __all__ = ['XRefreshListener']
34.829787
135
0.745266
c361ee9a1f7457902ed58797b4cd61b9315f1372
5,228
py
Python
desktop/libs/hadoop/src/hadoop/fs/upload.py
abayer/hue
27213bb8fe89cdf0547109081e9f29c03bcc8ca5
[ "Apache-2.0" ]
1
2020-01-09T15:48:22.000Z
2020-01-09T15:48:22.000Z
desktop/libs/hadoop/src/hadoop/fs/upload.py
abayer/hue
27213bb8fe89cdf0547109081e9f29c03bcc8ca5
[ "Apache-2.0" ]
null
null
null
desktop/libs/hadoop/src/hadoop/fs/upload.py
abayer/hue
27213bb8fe89cdf0547109081e9f29c03bcc8ca5
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python # Licensed to Cloudera, Inc. under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. Cloudera, Inc. licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Classes for a custom upload handler to stream into HDFS. Note that since our middlewares inspect request.POST, we cannot inject a custom handler into a specific view. Therefore we always use the HDFSfileUploadHandler, which is triggered by a magic prefix ("HDFS") in the field name. See http://docs.djangoproject.com/en/1.2/topics/http/file-uploads/ """ import errno import logging import time from django.core.files.uploadhandler import \ FileUploadHandler, StopFutureHandlers, StopUpload from desktop.lib import fsmanager import hadoop.fs.hadoopfs UPLOAD_SUBDIR = 'hue-uploads' LOG = logging.getLogger(__name__) class HDFSerror(Exception): pass class HDFStemporaryUploadedFile(hadoop.fs.hadoopfs.FileUpload): """ A temporary HDFS file to store upload data. This class does not have any file read methods. """ def __init__(self, request, name): self.name = name self.size = None self._do_cleanup = False try: self._fs = request.fs except AttributeError: _, self._fs = fsmanager.get_default_hdfs() # Don't want to handle this upload if we don't have an HDFS if not self._fs: raise HDFSerror("No HDFS found") # We want to set the user to be the superuser. But any operation # in the fs needs a username, including the retrieval of the superuser. # So we first set it to the DEFAULT_USER to break this chicken-&-egg. self._fs.setuser(hadoop.fs.hadoopfs.DEFAULT_USER) self._fs.setuser(self._fs.superuser) self._path = self._fs.mktemp( subdir='hue-uploads', prefix='tmp.%s' % (request.environ['REMOTE_ADDR'],)) # Make the tmp dir 0777 self._fs.chmod(self._fs.dirname(self._path), 0777) hadoop.fs.hadoopfs.FileUpload.__init__(self, self._fs, self._path) self._do_cleanup = True def __del__(self): if self._do_cleanup: # Do not do cleanup here. It's hopeless. The self._fs threadlocal states # are going to be all wrong. LOG.error("Left-over upload file is not cleaned up: %s" % (self._path,)) def get_temp_path(self): return self._path def finish_upload(self, size): try: self.size = size self.close() except Exception, ex: LOG.exception('Error uploading file to %s' % (self.path,)) raise def remove(self): try: self._fs.remove(self._path) self._do_cleanup = False except IOError, ex: if ex.errno != errno.ENOENT: LOG.exception('Failed to remove temporary upload file "%s". ' 'Please cleanup manually: %s' % (self._path, ex)) class HDFSfileUploadHandler(FileUploadHandler): """ Handle file upload by storing data in a temp HDFS file. This handler is triggered by any upload field whose name starts with "HDFS" (case insensitive). """ def __init__(self, request): FileUploadHandler.__init__(self, request) self._file = None self._starttime = 0 self._activated = False def new_file(self, field_name, file_name, *args, **kwargs): # Detect "HDFS" in the field name. # NOTE: The user is not authenticated at this point, and it's # very difficult to do so because we handle upload before # running the auth middleware. if field_name.upper().startswith('HDFS'): try: self._file = HDFStemporaryUploadedFile(self.request, file_name) except (HDFSerror, IOError), ex: LOG.error("Not using HDFS upload handler: %s" % (ex,)) return LOG.debug('Upload attempt to %s' % (self._file.get_temp_path(),)) self._activated = True self._starttime = time.time() raise StopFutureHandlers() def receive_data_chunk(self, raw_data, start): if not self._activated: return raw_data try: self._file.write(raw_data) self._file.flush() return None except IOError: LOG.exception('Error storing upload data in temporary file "%s"' % (self._file.get_temp_path(),)) raise StopUpload() def file_complete(self, file_size): if not self._activated: return None try: self._file.finish_upload(file_size) except IOError: LOG.exception('Error closing uploaded temporary file "%s"' % (self._file.get_temp_path(),)) raise elapsed = time.time() - self._starttime LOG.debug('Uploaded %s bytes to HDFS in %s seconds' % (file_size, elapsed)) return self._file
32.47205
80
0.688982
0419b2e1d88c6040202150b709038c2b9d54f87f
3,924
py
Python
Bio/motifs/xms.py
lukasz-kozlowski/biopython
6b601cf09234e1e82cfc94ad5030389036cb6343
[ "BSD-3-Clause" ]
2,856
2015-01-01T07:10:06.000Z
2022-03-31T18:17:25.000Z
Bio/motifs/xms.py
lukasz-kozlowski/biopython
6b601cf09234e1e82cfc94ad5030389036cb6343
[ "BSD-3-Clause" ]
3,429
2015-01-05T11:11:42.000Z
2022-03-31T13:08:10.000Z
Bio/motifs/xms.py
lukasz-kozlowski/biopython
6b601cf09234e1e82cfc94ad5030389036cb6343
[ "BSD-3-Clause" ]
1,619
2015-01-05T13:07:11.000Z
2022-03-31T19:19:52.000Z
# Copyright 2015 by Gert Hulselmans. All rights reserved. # This file is part of the Biopython distribution and governed by your # choice of the "Biopython License Agreement" or the "BSD 3-Clause License". # Please see the LICENSE file that should have been included as part of this # package. """Parse XMS motif files.""" from Bio import motifs from xml.dom import minidom, Node import re class XMSScanner: """Class for scanning XMS XML file.""" def __init__(self, doc): """Generate motif Record from xms document, an XML-like motif pfm file.""" self.record = Record() for child in doc.getElementsByTagName("motif"): if child.nodeType == Node.ELEMENT_NODE: self.handle_motif(child) def handle_motif(self, node): """Read the motif's name and column from the node and add the motif record.""" motif_name = self.get_text(node.getElementsByTagName("name")) nucleotide_counts = {"A": [], "C": [], "G": [], "T": []} for column in node.getElementsByTagName("column"): [ nucleotide_counts[nucleotide].append(float(nucleotide_count)) for nucleotide, nucleotide_count in zip( ["A", "C", "G", "T"], self.get_acgt(column) ) ] motif = motifs.Motif(alphabet="GATC", counts=nucleotide_counts) motif.name = motif_name self.record.append(motif) def get_property_value(self, node, key_name): """Extract the value of the motif's property named key_name from node.""" for cur_property in node.getElementsByTagName("prop"): right_property = False cur_value = None for child in cur_property.childNodes: if child.nodeType != Node.ELEMENT_NODE: continue if child.tagName == "key" and self.get_text([child]) == key_name: right_property = True if child.tagName == "value": cur_value = self.get_text([child]) if right_property: return cur_value return None def get_acgt(self, node): """Get and return the motif's weights of A, C, G, T.""" a, c, g, t = 0.0, 0.0, 0.0, 0.0 for weight in node.getElementsByTagName("weight"): if weight.getAttribute("symbol") == "adenine": a = float(self.get_text([weight])) elif weight.getAttribute("symbol") == "cytosine": c = float(self.get_text([weight])) elif weight.getAttribute("symbol") == "guanine": g = float(self.get_text([weight])) elif weight.getAttribute("symbol") == "thymine": t = float(self.get_text([weight])) return a, c, g, t def get_text(self, nodelist): """Return a string representation of the motif's properties listed on nodelist .""" retlist = [] for node in nodelist: if node.nodeType == Node.TEXT_NODE: retlist.append(node.wholeText) elif node.hasChildNodes: retlist.append(self.get_text(node.childNodes)) return re.sub(r"\s+", " ", "".join(retlist)) class Record(list): """Class to store the information in a XMS matrix table. The record inherits from a list containing the individual motifs. """ def __str__(self): """Return a string representation of the motifs in the Record object.""" return "\n".join(str(motif) for motif in self) def read(handle): """Read motifs in XMS matrix format from a file handle. XMS is an XML format for describing regulatory motifs and PSSMs. This format was defined by Thomas Down, and used in the NestedMICA and MotifExplorer programs. """ xms_doc = minidom.parse(handle) record = XMSScanner(xms_doc).record return record
36.672897
98
0.603721
55c430fb3f1eb7ccb30dabc9a121fa578c877b72
3,346
py
Python
tests/src/HDP/prediction/smote.py
bellwethers-in-se/issueCloseTime
e5e00c9625da0793dc8e7985fd88b0ca0b35f7d3
[ "MIT" ]
9
2017-07-27T10:32:48.000Z
2021-07-01T11:51:51.000Z
tests/src/HDP/prediction/smote.py
bellwethers-in-se/issueCloseTime
e5e00c9625da0793dc8e7985fd88b0ca0b35f7d3
[ "MIT" ]
11
2016-03-15T16:27:47.000Z
2019-09-05T02:25:08.000Z
tests/src/HDP/prediction/smote.py
bellwethers-in-se/issueCloseTime
e5e00c9625da0793dc8e7985fd88b0ca0b35f7d3
[ "MIT" ]
5
2017-01-28T22:45:34.000Z
2019-12-04T13:15:10.000Z
from collections import Counter from sklearn.neighbors import NearestNeighbors, BallTree, KDTree import numpy as np from scipy.spatial.distance import euclidean from random import choice, seed as rseed, uniform as rand from pdb import set_trace import pandas as pd def SMOTE(data=None, atleast=50, atmost=100, a=None, b=None, k=5, resample=False): """ Synthetic Minority Oversampling Technique """ def knn(a, b): "k nearest neighbors" b = np.array([bb[:-1] for bb in b]) tree = BallTree(b) __, indx = tree.query(a[:-1], k=6) return [b[i] for i in indx] # set_trace() # return sorted(b, key=lambda F: euclidean(a[:-1], F[:-1])) def kfn(me, my_lot, others): "k farthest neighbors" my_closest = None return sorted(b, key=lambda F: euclidean(a[:-1], F[:-1])) def extrapolate(one, two): # t=time() new = len(one) * [None] new[:-1] = [a + rand(0, 1) * (b - a) for a, b in zip(one[:-1], two[:-1])] new[-1] = int(one[-1]) return new def populate(data, atleast): newData = [dd.tolist() for dd in data] if atleast - len(newData) < 0: try: return [choice(newData) for _ in xrange(atleast)] except: set_trace() else: for _ in xrange(atleast - len(newData)): one = choice(data) neigh = knn(one, data)[1:k + 1] try: two = choice(neigh) except IndexError: two = one newData.append(extrapolate(one, two)) return newData def populate2(data1, data2): newData = [] for _ in xrange(atleast): for one in data1: neigh = kfn(one, data)[1:k + 1] try: two = choice(neigh) except IndexError: two = one newData.append(extrapolate(one, two)) return [choice(newData) for _ in xrange(atleast)] def depopulate(data): # if resample: # newer = [] # for _ in xrange(atmost): # orig = choice(data) # newer.append(extrapolate(orig, knn(orig, data)[1])) # return newer # else: return [choice(data).tolist() for _ in xrange(atmost)] newCells = [] # rseed(1) klass = lambda df: df[df.columns[-1]] count = Counter(klass(data)) # set_trace() atleast = 50 # if a==None else int(a*max([count[k] for k in count.keys()])) atmost = 100 # if b==None else int(b*max([count[k] for k in count.keys()])) try: major, minor = count.keys() except: set_trace() for u in count.keys(): if u == minor: newCells.extend(populate([r for r in data.as_matrix() if r[-1] == u], atleast=atleast)) if u == major: newCells.extend(depopulate([r for r in data.as_matrix() if r[-1] == u])) else: newCells.extend([r.tolist() for r in data.as_matrix() if r[-1] == u]) # set_trace() return pd.DataFrame(newCells, columns=data.columns) def __test_smote(): """ A test case goes here :return: """ pass if __name__=="__main__": __test_smote()
30.981481
99
0.527197
6d6ba65def40f3fbb5a99e9f9f303fc0459daea4
6,355
py
Python
utility/uwsgi/daemon.py
sbofgayschool/KV2
b894ac3ddbc389df642fc1bcb730cb0d3310ad4c
[ "MIT" ]
3
2020-01-14T14:44:59.000Z
2020-01-15T23:52:42.000Z
utility/uwsgi/daemon.py
ririripley/KV2
b894ac3ddbc389df642fc1bcb730cb0d3310ad4c
[ "MIT" ]
null
null
null
utility/uwsgi/daemon.py
ririripley/KV2
b894ac3ddbc389df642fc1bcb730cb0d3310ad4c
[ "MIT" ]
1
2020-12-07T16:15:43.000Z
2020-12-07T16:15:43.000Z
# -*- coding: utf-8 -*- # The MIT License (MIT) # Copyright (c) 2020 SBofGaySchoolBuPaAnything # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. # IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, # DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR # OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE # OR OTHER DEALINGS IN THE SOFTWARE. __author__ = "chenty" import json import configparser import subprocess import os import signal from utility.function import get_logger, log_output, transform_address def run(module_name="Gateway", uwsgi_conf_path="config/uwsgi.json"): """ Load config and run uwsgi :param module_name: Name of the caller module :param uwsgi_conf_path: Path to uwsgi config file :return: None """ # Load config file with open(uwsgi_conf_path, "r") as f: config = json.load(f) # Generate daemon logger from config file # If logger arguments exist in config file, write the log to the designated file # Else, forward the log to standard output if "log_daemon" in config["daemon"]: daemon_logger = get_logger( "uwsgi_daemon", config["daemon"]["log_daemon"]["info"], config["daemon"]["log_daemon"]["error"] ) else: daemon_logger = get_logger("uwsgi_daemon", None, None) daemon_logger.info("%s uwsgi_daemon program started." % module_name) # Generate uwsgi logger forwarding uwsgi log to designated location if "log_uwsgi" in config["daemon"]: uwsgi_logger = get_logger( "uwsgi", config["daemon"]["log_uwsgi"]["info"], config["daemon"]["log_uwsgi"]["error"], True ) else: uwsgi_logger = get_logger("uwsgi", None, None, True) # Generate ini config file for uwsgi ini = configparser.ConfigParser() ini["uwsgi"] = { "http": config["uwsgi"]["host"] + ":" + config["uwsgi"]["port"], "module": config["uwsgi"]["module"], "processes": config["uwsgi"]["processes"], "threads": config["uwsgi"]["threads"], "master": config["uwsgi"]["master"] } with open(config["uwsgi"]["exe"][-1], "w") as f: ini.write(f) daemon_logger.info("Generated ini file for uwsgi.") command = config["uwsgi"]["exe"] for c in command: daemon_logger.info("Starting uwsgi with command: " + c) # Run uwsgi in a subprocess. uwsgi_proc = subprocess.Popen( command, stdout=subprocess.PIPE, stderr=subprocess.STDOUT ) # Log the raw output of uwsgi until it exit or terminated try: log_output(uwsgi_logger, uwsgi_proc.stdout, None) daemon_logger.info("Received EOF from uwsgi.") except KeyboardInterrupt: daemon_logger.info("Received SIGINT. Killing uwsgi process.", exc_info=True) os.kill(uwsgi_proc.pid, signal.SIGINT) except: daemon_logger.error("Accidentally terminated. Killing uwsgi process.", exc_info=True) uwsgi_proc.terminate() # Wait for the subprocess to prevent uwsgi_proc.wait() daemon_logger.info("%s uwsgi_daemon program exiting." % module_name) return def command_parser(parser): """ Add uwsgi args to args parser :param parser: The args parser :return: Callback function to modify config """ # Add needed args parser.add_argument("--uwsgi-host", dest="uwsgi_host", default=None, help="Listen address of uwsgi") parser.add_argument("--uwsgi-port", type=int, dest="uwsgi_port", default=None, help="Listen port of uwsgi") parser.add_argument("--uwsgi-processes", type=int, dest="uwsgi_processes", default=None, help="Number of process of the uwsgi") parser.add_argument("--uwsgi-threads", type=int, dest="uwsgi_threads", default=None, help="Number of thread in each the uwsgi process") parser.add_argument("--uwsgi-print-log", dest="uwsgi_print_log", action="store_const", const=True, default=False, help="Print the log of uwsgi module to stdout") def conf_generator(args, config_sub, client, services, start_order): """ Callback function to modify uwsgi configuration according to parsed args :param args: Parse args :param config_sub: Template config :param client: Docker client :param services: Dictionary of services :param start_order: List of services in starting order :return: None """ # Modify config by parsed args if args.uwsgi_host is not None: config_sub["uwsgi"]["host"] = transform_address(args.uwsgi_host, client) if args.uwsgi_port is not None: config_sub["uwsgi"]["port"] = str(args.uwsgi_port) if args.uwsgi_processes is not None: config_sub["uwsgi"]["processes"] = args.uwsgi_processes if args.uwsgi_threads is not None: config_sub["uwsgi"]["threads"] = args.uwsgi_threads if args.uwsgi_print_log: config_sub["daemon"].pop("log_daemon", None) config_sub["daemon"].pop("log_uwsgi", None) config_sub["server"].pop("log_daemon", None) # Generate information for execution services["uwsgi"] = { "pid_file": config_sub["daemon"]["pid_file"], "command": config_sub["daemon"]["exe"], "process": None } start_order.append("uwsgi") return return conf_generator
39.47205
117
0.654603
e26c34124fd2b4407c4cfd7317a3ae5c2eb07e74
22,802
py
Python
Benchmark_Approaches/IGSQL/model_util.py
xjtu-intsoft/chase-page
84657a6b80e926b91ff99a78e660ba8f603321f4
[ "MIT" ]
34
2021-05-07T06:59:33.000Z
2022-03-15T02:36:19.000Z
Benchmark_Approaches/IGSQL/model_util.py
xjtu-intsoft/chase-page
84657a6b80e926b91ff99a78e660ba8f603321f4
[ "MIT" ]
null
null
null
Benchmark_Approaches/IGSQL/model_util.py
xjtu-intsoft/chase-page
84657a6b80e926b91ff99a78e660ba8f603321f4
[ "MIT" ]
2
2021-08-17T12:23:03.000Z
2021-10-12T04:10:41.000Z
"""Basic model training and evaluation functions.""" from enum import Enum import random import sys import json import progressbar import model.torch_utils import data_util.sql_util import torch def write_prediction(fileptr, identifier, input_seq, probability, prediction, flat_prediction, gold_query, flat_gold_queries, gold_tables, index_in_interaction, database_username, database_password, database_timeout, compute_metrics=True): pred_obj = {} pred_obj["identifier"] = identifier if len(identifier.split('/')) == 2: database_id, interaction_id = identifier.split('/') else: database_id = 'atis' interaction_id = identifier pred_obj["database_id"] = database_id pred_obj["interaction_id"] = interaction_id pred_obj["input_seq"] = input_seq pred_obj["probability"] = probability pred_obj["prediction"] = prediction pred_obj["flat_prediction"] = flat_prediction pred_obj["gold_query"] = gold_query pred_obj["flat_gold_queries"] = flat_gold_queries pred_obj["index_in_interaction"] = index_in_interaction pred_obj["gold_tables"] = str(gold_tables) # Now compute the metrics we want. if compute_metrics: # First metric: whether flat predicted query is in the gold query set. correct_string = " ".join(flat_prediction) in [ " ".join(q) for q in flat_gold_queries] pred_obj["correct_string"] = correct_string # Database metrics if not correct_string: syntactic, semantic, pred_table = sql_util.execution_results( " ".join(flat_prediction), database_username, database_password, database_timeout) pred_table = sorted(pred_table) best_prec = 0. best_rec = 0. best_f1 = 0. for gold_table in gold_tables: num_overlap = float(len(set(pred_table) & set(gold_table))) if len(set(gold_table)) > 0: prec = num_overlap / len(set(gold_table)) else: prec = 1. if len(set(pred_table)) > 0: rec = num_overlap / len(set(pred_table)) else: rec = 1. if prec > 0. and rec > 0.: f1 = (2 * (prec * rec)) / (prec + rec) else: f1 = 1. best_prec = max(best_prec, prec) best_rec = max(best_rec, rec) best_f1 = max(best_f1, f1) else: syntactic = True semantic = True pred_table = [] best_prec = 1. best_rec = 1. best_f1 = 1. assert best_prec <= 1. assert best_rec <= 1. assert best_f1 <= 1. pred_obj["syntactic"] = syntactic pred_obj["semantic"] = semantic correct_table = (pred_table in gold_tables) or correct_string pred_obj["correct_table"] = correct_table pred_obj["strict_correct_table"] = correct_table and syntactic pred_obj["pred_table"] = str(pred_table) pred_obj["table_prec"] = best_prec pred_obj["table_rec"] = best_rec pred_obj["table_f1"] = best_f1 fileptr.write(json.dumps(pred_obj, ensure_ascii=False) + "\n") class Metrics(Enum): """Definitions of simple metrics to compute.""" LOSS = 1 TOKEN_ACCURACY = 2 STRING_ACCURACY = 3 CORRECT_TABLES = 4 STRICT_CORRECT_TABLES = 5 SEMANTIC_QUERIES = 6 SYNTACTIC_QUERIES = 7 def get_progressbar(name, size): """Gets a progress bar object given a name and the total size. Inputs: name (str): The name to display on the side. size (int): The maximum size of the progress bar. """ return progressbar.ProgressBar(maxval=size, widgets=[name, progressbar.Bar('=', '[', ']'), ' ', progressbar.Percentage(), ' ', progressbar.ETA()]) def train_epoch_with_utterances(batches, model, randomize=True): """Trains model for a single epoch given batches of utterance data. Inputs: batches (UtteranceBatch): The batches to give to training. model (ATISModel): The model obect. learning_rate (float): The learning rate to use during training. dropout_amount (float): Amount of dropout to set in the model. randomize (bool): Whether or not to randomize the order that the batches are seen. """ if randomize: random.shuffle(batches) progbar = get_progressbar("train ", len(batches)) progbar.start() loss_sum = 0. for i, batch in enumerate(batches): batch_loss = model.train_step(batch) loss_sum += batch_loss progbar.update(i) progbar.finish() total_loss = loss_sum / len(batches) return total_loss def train_epoch_with_interactions(interaction_batches, params, model, randomize=True, db2id=None, id2db=None, step=None): """Trains model for single epoch given batches of interactions. Inputs: interaction_batches (list of InteractionBatch): The batches to train on. params (namespace): Parameters to run with. model (ATISModel): Model to train. randomize (bool): Whether or not to randomize the order that batches are seen. """ if randomize: random.shuffle(interaction_batches) progbar = get_progressbar("train ", len(interaction_batches)) progbar.start() loss_sum = 0. skip_ls = ["sakila_1", "baseball_1", "soccer_1", "cre_Drama_Workshop_Groups", "formula_1", "assets_maintenance/8"] skip_num = 0 for i, interaction_batch in enumerate(interaction_batches): assert len(interaction_batch) == 1 interaction = interaction_batch.items[0] if interaction.identifier == "raw/atis2/12-1.1/ATIS2/TEXT/TEST/NOV92/770/5": continue if "baseball_1" in interaction.identifier: continue skip = False if 'cosql' in params.data_directory: print(interaction.identifier, i, skip_num) for ele in skip_ls: if ele in interaction.identifier: print("skip") skip = True continue if skip: print("skip, length:", len(interaction.gold_utterances())) skip_num += 1 continue batch_loss, step = model.train_step(interaction, params.train_maximum_sql_length, db2id=db2id, id2db=id2db, step=step) loss_sum += batch_loss #torch.cuda.empty_cache() progbar.update(i) progbar.finish() total_loss = loss_sum / len(interaction_batches) return total_loss, step def update_sums(metrics, metrics_sums, predicted_sequence, flat_sequence, gold_query, original_gold_query, gold_forcing=False, loss=None, token_accuracy=0., database_username="", database_password="", database_timeout=0, gold_table=None): """" Updates summing for metrics in an aggregator. TODO: don't use sums, just keep the raw value. """ if Metrics.LOSS in metrics: metrics_sums[Metrics.LOSS] += loss.item() if Metrics.TOKEN_ACCURACY in metrics: if gold_forcing: metrics_sums[Metrics.TOKEN_ACCURACY] += token_accuracy else: num_tokens_correct = 0. for j, token in enumerate(gold_query): if len( predicted_sequence) > j and predicted_sequence[j] == token: num_tokens_correct += 1 metrics_sums[Metrics.TOKEN_ACCURACY] += num_tokens_correct / \ len(gold_query) if Metrics.STRING_ACCURACY in metrics: metrics_sums[Metrics.STRING_ACCURACY] += int( flat_sequence == original_gold_query) if Metrics.CORRECT_TABLES in metrics: assert database_username, "You did not provide a database username" assert database_password, "You did not provide a database password" assert database_timeout > 0, "Database timeout is 0 seconds" # Evaluate SQL if flat_sequence != original_gold_query: syntactic, semantic, table = sql_util.execution_results( " ".join(flat_sequence), database_username, database_password, database_timeout) else: syntactic = True semantic = True table = gold_table metrics_sums[Metrics.CORRECT_TABLES] += int(table == gold_table) if Metrics.SYNTACTIC_QUERIES in metrics: metrics_sums[Metrics.SYNTACTIC_QUERIES] += int(syntactic) if Metrics.SEMANTIC_QUERIES in metrics: metrics_sums[Metrics.SEMANTIC_QUERIES] += int(semantic) if Metrics.STRICT_CORRECT_TABLES in metrics: metrics_sums[Metrics.STRICT_CORRECT_TABLES] += int( table == gold_table and syntactic) def construct_averages(metrics_sums, total_num): """ Computes the averages for metrics. Inputs: metrics_sums (dict Metric -> float): Sums for a metric. total_num (int): Number to divide by (average). """ metrics_averages = {} for metric, value in metrics_sums.items(): metrics_averages[metric] = value / total_num if metric != "loss": metrics_averages[metric] *= 100. return metrics_averages def evaluate_utterance_sample(sample, model, max_generation_length, name="", gold_forcing=False, metrics=None, total_num=-1, database_username="", database_password="", database_timeout=0, write_results=False): """Evaluates a sample of utterance examples. Inputs: sample (list of Utterance): Examples to evaluate. model (ATISModel): Model to predict with. max_generation_length (int): Maximum length to generate. name (str): Name to log with. gold_forcing (bool): Whether to force the gold tokens during decoding. metrics (list of Metric): Metrics to evaluate with. total_num (int): Number to divide by when reporting results. database_username (str): Username to use for executing queries. database_password (str): Password to use when executing queries. database_timeout (float): Timeout on queries when executing. write_results (bool): Whether to write the results to a file. """ assert metrics if total_num < 0: total_num = len(sample) metrics_sums = {} for metric in metrics: metrics_sums[metric] = 0. predictions_file = open(name + "_predictions.json", "w") print("Predicting with filename " + str(name) + "_predictions.json") progbar = get_progressbar(name, len(sample)) progbar.start() predictions = [] for i, item in enumerate(sample): _, loss, predicted_seq = model.eval_step( item, max_generation_length, feed_gold_query=gold_forcing) loss = loss / len(item.gold_query()) predictions.append(predicted_seq) flat_sequence = item.flatten_sequence(predicted_seq) token_accuracy = torch_utils.per_token_accuracy( item.gold_query(), predicted_seq) if write_results: write_prediction( predictions_file, identifier=item.interaction.identifier, input_seq=item.input_sequence(), probability=0, prediction=predicted_seq, flat_prediction=flat_sequence, gold_query=item.gold_query(), flat_gold_queries=item.original_gold_queries(), gold_tables=item.gold_tables(), index_in_interaction=item.utterance_index, database_username=database_username, database_password=database_password, database_timeout=database_timeout) update_sums(metrics, metrics_sums, predicted_seq, flat_sequence, item.gold_query(), item.original_gold_queries()[0], gold_forcing, loss, token_accuracy, database_username=database_username, database_password=database_password, database_timeout=database_timeout, gold_table=item.gold_tables()[0]) progbar.update(i) progbar.finish() predictions_file.close() return construct_averages(metrics_sums, total_num), None def evaluate_interaction_sample(sample, model, max_generation_length, name="", gold_forcing=False, metrics=None, total_num=-1, database_username="", database_password="", database_timeout=0, use_predicted_queries=False, write_results=False, use_gpu=False, compute_metrics=False): """ Evaluates a sample of interactions. """ predictions_file = open(name + "_predictions.json", "w") print("Predicting with file " + str(name + "_predictions.json")) metrics_sums = {} for metric in metrics: metrics_sums[metric] = 0. progbar = get_progressbar(name, len(sample)) progbar.start() num_utterances = 0 ignore_with_gpu = [line.strip() for line in open( "data/cpu_full_interactions.txt").readlines()] predictions = [] use_gpu = not ("--no_gpus" in sys.argv or "--no_gpus=1" in sys.argv) model.eval() for i, interaction in enumerate(sample): # if use_gpu and interaction.identifier in ignore_with_gpu: # continue # elif not use_gpu and interaction.identifier not in ignore_with_gpu: # continue try: with torch.no_grad(): if use_predicted_queries: example_preds = model.predict_with_predicted_queries( interaction, max_generation_length) else: example_preds = model.predict_with_gold_queries( interaction, max_generation_length, feed_gold_query=gold_forcing) #torch.cuda.empty_cache() except RuntimeError as exception: print("Failed on interaction: " + str(interaction.identifier)) print(exception) print("\n\n") exit() predictions.extend(example_preds) assert len(example_preds) == len( interaction.interaction.utterances) or not example_preds for j, pred in enumerate(example_preds): num_utterances += 1 sequence, loss, token_accuracy, _, decoder_results = pred if use_predicted_queries: item = interaction.processed_utterances[j] original_utt = interaction.interaction.utterances[item.index] gold_query = original_utt.gold_query_to_use original_gold_query = original_utt.original_gold_query gold_table = original_utt.gold_sql_results gold_queries = [q[0] for q in original_utt.all_gold_queries] gold_tables = [q[1] for q in original_utt.all_gold_queries] index = item.index else: item = interaction.gold_utterances()[j] gold_query = item.gold_query() original_gold_query = item.original_gold_query() gold_table = item.gold_table() gold_queries = item.original_gold_queries() gold_tables = item.gold_tables() index = item.utterance_index if loss: loss = loss / len(gold_query) flat_sequence = item.flatten_sequence(sequence) if write_results: write_prediction( predictions_file, identifier=interaction.identifier, input_seq=item.input_sequence(), probability=decoder_results.probability, prediction=sequence, flat_prediction=flat_sequence, gold_query=gold_query, flat_gold_queries=gold_queries, gold_tables=gold_tables, index_in_interaction=index, database_username=database_username, database_password=database_password, database_timeout=database_timeout, compute_metrics=compute_metrics) update_sums(metrics, metrics_sums, sequence, flat_sequence, gold_query, original_gold_query, gold_forcing, loss, token_accuracy, database_username=database_username, database_password=database_password, database_timeout=database_timeout, gold_table=gold_table) progbar.update(i) progbar.finish() if total_num < 0: total_num = num_utterances predictions_file.close() return construct_averages(metrics_sums, total_num), predictions def evaluate_using_predicted_queries(sample, model, name="", gold_forcing=False, metrics=None, total_num=-1, database_username="", database_password="", database_timeout=0, snippet_keep_age=1): predictions_file = open(name + "_predictions.json", "w") print("Predicting with file " + str(name + "_predictions.json")) assert not gold_forcing metrics_sums = {} for metric in metrics: metrics_sums[metric] = 0. progbar = get_progressbar(name, len(sample)) progbar.start() num_utterances = 0 predictions = [] for i, item in enumerate(sample): int_predictions = [] item.start_interaction() while not item.done(): utterance = item.next_utterance(snippet_keep_age) predicted_sequence, loss, _, probability = model.eval_step( utterance) int_predictions.append((utterance, predicted_sequence)) flat_sequence = utterance.flatten_sequence(predicted_sequence) if sql_util.executable( flat_sequence, username=database_username, password=database_password, timeout=database_timeout) and probability >= 0.24: utterance.set_pred_query( item.remove_snippets(predicted_sequence)) item.add_utterance(utterance, item.remove_snippets(predicted_sequence), previous_snippets=utterance.snippets()) else: # Add the /previous/ predicted query, guaranteed to be syntactically # correct seq = [] utterance.set_pred_query(seq) item.add_utterance( utterance, seq, previous_snippets=utterance.snippets()) original_utt = item.interaction.utterances[utterance.index] write_prediction( predictions_file, identifier=item.interaction.identifier, input_seq=utterance.input_sequence(), probability=probability, prediction=predicted_sequence, flat_prediction=flat_sequence, gold_query=original_utt.gold_query_to_use, flat_gold_queries=[ q[0] for q in original_utt.all_gold_queries], gold_tables=[ q[1] for q in original_utt.all_gold_queries], index_in_interaction=utterance.index, database_username=database_username, database_password=database_password, database_timeout=database_timeout) update_sums(metrics, metrics_sums, predicted_sequence, flat_sequence, original_utt.gold_query_to_use, original_utt.original_gold_query, gold_forcing, loss, token_accuracy=0, database_username=database_username, database_password=database_password, database_timeout=database_timeout, gold_table=original_utt.gold_sql_results) predictions.append(int_predictions) progbar.update(i) progbar.finish() if total_num < 0: total_num = num_utterances predictions_file.close() return construct_averages(metrics_sums, total_num), predictions
36.95624
126
0.555302
777d00046f9c7faf78f9ee4605e1695c87e8c4f8
1,062
py
Python
Python_Exams/1_Exam_Arrays/Solutions/solution_exercise_3.py
pablogalve/Python-Learning
40e296ba416dffc3f9c794c7770e03cc2c9a53d0
[ "MIT" ]
4
2020-01-27T13:46:19.000Z
2022-02-15T15:11:50.000Z
Python_Exams/1_Exam_Arrays/Solutions/solution_exercise_3.py
pablogalve/Python-Learning
40e296ba416dffc3f9c794c7770e03cc2c9a53d0
[ "MIT" ]
null
null
null
Python_Exams/1_Exam_Arrays/Solutions/solution_exercise_3.py
pablogalve/Python-Learning
40e296ba416dffc3f9c794c7770e03cc2c9a53d0
[ "MIT" ]
null
null
null
print("...CITIES...") print("1-Add an element to the llist.") print("2-Remove an element from the list.") print("3-Find an element in the list.") print("4-Exit the program") list_variable = [] i = 0 chosen_option = int(input("Choose an option: ")) while (chosen_option != 4): if (chosen_option == 1): element = input("What city do you want to add to the list? ") list_variable.append(element) print(list_variable) if (chosen_option == 2): erase = input("What city do you want to remove from the list? ") if erase in list_variable: list_variable.remove(erase) else: print("Your element is not on the list.") print(list_variable) if (chosen_option == 3): cont = 0 buscar=input("What city do you want to find in the list? ") if buscar in list_variable: cont = cont + 1 print("Your city appears " + str(cont) + " times on the list.") else: print("Your word is not on the list.") chosen_option=int(input("Choose another option: ")) print("The final list is: " + str(list_variable))
33.1875
69
0.653484
199f10c2bbe835dd35880e4a2bba5bdf1f3664e8
56
py
Python
cli/__init__.py
dimko/binaryalert
53d7c407a18f5c3153b6bb4a2ceaf21c8321e89e
[ "Apache-2.0" ]
1,324
2017-07-26T03:46:03.000Z
2022-03-31T01:32:47.000Z
cli/__init__.py
abhinavbom/binaryalert
53d7c407a18f5c3153b6bb4a2ceaf21c8321e89e
[ "Apache-2.0" ]
168
2017-07-26T05:48:01.000Z
2021-06-01T22:27:35.000Z
cli/__init__.py
abhinavbom/binaryalert
53d7c407a18f5c3153b6bb4a2ceaf21c8321e89e
[ "Apache-2.0" ]
212
2017-07-26T04:05:11.000Z
2022-02-25T17:48:15.000Z
"""BinaryAlert release version""" __version__ = '1.2.0'
18.666667
33
0.696429
3964f1144e51d9b7aa9fc2d8a201844148828aa5
2,222
py
Python
entity_history/migrations/0001_initial.py
ambitioninc/django-entity-history
128b4bddb7338d259f69179bafd1918f3e59b4b0
[ "MIT" ]
4
2015-11-01T00:33:25.000Z
2017-08-31T16:56:18.000Z
entity_history/migrations/0001_initial.py
ambitioninc/django-entity-history
128b4bddb7338d259f69179bafd1918f3e59b4b0
[ "MIT" ]
2
2015-04-06T20:24:38.000Z
2015-04-20T14:32:50.000Z
entity_history/migrations/0001_initial.py
ambitioninc/django-entity-history
128b4bddb7338d259f69179bafd1918f3e59b4b0
[ "MIT" ]
7
2015-04-06T19:49:37.000Z
2018-03-05T18:14:53.000Z
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('entity', '0001_initial'), ] operations = [ migrations.CreateModel( name='EntityActivationEvent', fields=[ ('id', models.AutoField(serialize=False, auto_created=True, verbose_name='ID', primary_key=True)), ('time', models.DateTimeField(db_index=True, help_text='The time of the activation / deactivation')), ('was_activated', models.BooleanField(help_text='True if the entity was activated, false otherwise', default=None)), ('entity', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, help_text='The entity that was activated / deactivated', to='entity.Entity')), ], options={ }, bases=(models.Model,), ), migrations.CreateModel( name='EntityRelationshipActivationEvent', fields=[ ('id', models.AutoField(serialize=False, auto_created=True, verbose_name='ID', primary_key=True)), ('time', models.DateTimeField(db_index=True, help_text='The time of the activation / deactivation')), ('was_activated', models.BooleanField(help_text='True if the entity was activated, false otherwise', default=None)), ('sub_entity', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='entity.Entity', related_name='+', help_text='The sub entity in the relationship that was activated / deactivated')), ('super_entity', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='entity.Entity', related_name='+', help_text='The super entity in the relationship that was activated / deactivated')), ], options={ }, bases=(models.Model,), ), migrations.CreateModel( name='EntityHistory', fields=[ ], options={ 'proxy': True, }, bases=('entity.entity',), ), ]
44.44
218
0.605311
5a0cfae56b6755531f88369e3c738996e650facf
592
py
Python
src/api/data_objects.py
Matthew-Klawitter/Matrix-Barista-Bot
cc42cabce2ed123fff94f77f1677d6685b19acc2
[ "MIT" ]
2
2021-10-17T03:32:49.000Z
2022-02-24T04:28:15.000Z
src/api/data_objects.py
Matthew-Klawitter/Matrix-Barista-Bot
cc42cabce2ed123fff94f77f1677d6685b19acc2
[ "MIT" ]
null
null
null
src/api/data_objects.py
Matthew-Klawitter/Matrix-Barista-Bot
cc42cabce2ed123fff94f77f1677d6685b19acc2
[ "MIT" ]
null
null
null
class Message: def __init__(self, bridge, room, event): self.username = room.user_name(event.sender) self.room_id = room.room_id self.room_name = room.display_name self.bridge = bridge self.message = event.body self.is_command = event.body.startswith("!") # Parsed message for correct command handling if self.is_command: parts = event.body[1:].split(" ", 1) self.command = parts[0] if len(parts) > 1: self.args = parts[1] else: self.args = ""
34.823529
53
0.552365
cb0e8c8363421c0f5d9d9a96aa708b9be39ce5af
703
py
Python
ot2_controller/launch/ot2_bob_bringup.launch.py
AD-SDL/ot2_workcell
c994c5a5bd79a154e624f17bbde1a13a5461cc69
[ "MIT" ]
2
2022-02-09T19:18:58.000Z
2022-02-09T19:18:59.000Z
ot2_controller/launch/ot2_bob_bringup.launch.py
urd00m/ros2tests
c994c5a5bd79a154e624f17bbde1a13a5461cc69
[ "MIT" ]
1
2022-03-14T20:50:28.000Z
2022-03-14T20:50:28.000Z
ot2_controller/launch/ot2_bob_bringup.launch.py
urd00m/ros2tests
c994c5a5bd79a154e624f17bbde1a13a5461cc69
[ "MIT" ]
null
null
null
from launch import LaunchDescription from launch_ros.actions import Node def generate_launch_description(): ld = LaunchDescription() ot2_controller = Node( package="ot2_controller", executable="ot2_controller", output='screen', parameters=[{"name": "bob"}], emulate_tty=True, # arguments=[('__log_level:=debug')], ) protocol_handler = Node( package="ot2_controller", executable="protocol_manager", output='screen', parameters=[{"name": "bob"}], emulate_tty=True, # arguments=[('__log_level:=debug')], ) ld.add_action(ot2_controller) ld.add_action(protocol_handler) return ld
27.038462
44
0.630156
d9b1aeb73eb595109a7a5aaa6583f0dbe67a0152
1,083
py
Python
samples/tests/test_query_to_arrow.py
KoffieLabs/python-bigquery
33b317abdc6d69f33722cb0504bb0b78c1c80e30
[ "Apache-2.0" ]
1
2022-03-25T21:07:44.000Z
2022-03-25T21:07:44.000Z
samples/tests/test_query_to_arrow.py
abecerrilsalas/python-bigquery
8da4fa9e77bcfd2b68818b5d65b38ccc59899a01
[ "Apache-2.0" ]
null
null
null
samples/tests/test_query_to_arrow.py
abecerrilsalas/python-bigquery
8da4fa9e77bcfd2b68818b5d65b38ccc59899a01
[ "Apache-2.0" ]
null
null
null
# Copyright 2019 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pytest from .. import query_to_arrow pyarrow = pytest.importorskip("pyarrow") def test_query_to_arrow(capsys: "pytest.CaptureFixture[str]") -> None: arrow_table = query_to_arrow.query_to_arrow() out, err = capsys.readouterr() assert "Downloaded 8 rows, 2 columns." in out arrow_schema = arrow_table.schema assert arrow_schema.names == ["race", "participant"] assert pyarrow.types.is_string(arrow_schema.types[0]) assert pyarrow.types.is_struct(arrow_schema.types[1])
34.935484
74
0.751616
d57621fec4e5bfc885c13ec0ec64ee3152777236
13,261
py
Python
luna/gateware/soc/peripheral.py
TomKeddie/luna
6688f7ae2a1b506eb6498cc2ad15dddcef0cc06a
[ "BSD-3-Clause" ]
2
2020-11-04T10:54:15.000Z
2022-03-17T20:38:21.000Z
luna/gateware/soc/peripheral.py
hxkrrzq/luna
e56a3eef6a9fa138755512bec1252725601425c1
[ "BSD-3-Clause" ]
null
null
null
luna/gateware/soc/peripheral.py
hxkrrzq/luna
e56a3eef6a9fa138755512bec1252725601425c1
[ "BSD-3-Clause" ]
2
2021-06-26T06:06:52.000Z
2022-01-19T22:36:19.000Z
# # This file is part of LUNA. # # Adapted from lambdasoc. # This file includes content Copyright (C) 2020 LambdaConcept. # # Per our BSD license, derivative files must include this license disclaimer. # # Copyright (c) 2020 Great Scott Gadgets <info@greatscottgadgets.com> # SPDX-License-Identifier: BSD-3-Clause """ Peripheral helpers for LUNA devices. """ from contextlib import contextmanager from nmigen import Module, Elaboratable from nmigen import tracer from nmigen.utils import log2_int from nmigen_soc import csr, wishbone from nmigen_soc.memory import MemoryMap from nmigen_soc.csr.wishbone import WishboneCSRBridge from .event import EventSource, IRQLine, InterruptSource __all__ = ["Peripheral", "CSRBank", "PeripheralBridge"] class Peripheral: """Wishbone peripheral. A helper class to reduce the boilerplate needed to control a peripheral with a Wishbone interface. It provides facilities for instantiating CSR registers, requesting windows to subordinate busses and sending interrupt requests to the CPU. The ``Peripheral`` class is not meant to be instantiated as-is, but rather as a base class for actual peripherals. Usage example ------------- ``` class ExamplePeripheral(Peripheral, Elaboratable): def __init__(self): super().__init__() bank = self.csr_bank() self._foo = bank.csr(8, "r") self._bar = bank.csr(8, "w") self._rdy = self.event(mode="rise") self._bridge = self.bridge(data_width=32, granularity=8, alignment=2) self.bus = self._bridge.bus self.irq = self._bridge.irq def elaborate(self, platform): m = Module() m.submodules.bridge = self._bridge # ... return m ``` Arguments --------- name : str Name of this peripheral. If ``None`` (default) the name is inferred from the variable name this peripheral is assigned to. Properties ---------- name : str Name of the peripheral. """ def __init__(self, name=None, src_loc_at=1): if name is not None and not isinstance(name, str): raise TypeError("Name must be a string, not {!r}".format(name)) self.name = name or tracer.get_var_name(depth=2 + src_loc_at).lstrip("_") self._csr_banks = [] self._windows = [] self._events = [] self._bus = None self._irq = None @property def bus(self): """Wishbone bus interface. Return value ------------ An instance of :class:`Interface`. Exceptions ---------- Raises :exn:`NotImplementedError` if the peripheral does not have a Wishbone bus. """ if self._bus is None: raise NotImplementedError("Peripheral {!r} does not have a bus interface" .format(self)) return self._bus @bus.setter def bus(self, bus): if not isinstance(bus, wishbone.Interface): raise TypeError("Bus interface must be an instance of wishbone.Interface, not {!r}" .format(bus)) self._bus = bus @property def irq(self): """Interrupt request line. Return value ------------ An instance of :class:`IRQLine`. Exceptions ---------- Raises :exn:`NotImplementedError` if the peripheral does not have an IRQ line. """ if self._irq is None: raise NotImplementedError("Peripheral {!r} does not have an IRQ line" .format(self)) return self._irq @irq.setter def irq(self, irq): if not isinstance(irq, IRQLine): raise TypeError("IRQ line must be an instance of IRQLine, not {!r}" .format(irq)) self._irq = irq def csr_bank(self, *, addr=None, alignment=None, desc=None): """Request a CSR bank. Arguments --------- addr : int or None Address of the bank. If ``None``, the implicit next address will be used. Otherwise, the exact specified address (which must be a multiple of ``2 ** max(alignment, bridge_alignment)``) will be used. alignment : int or None Alignment of the bank. If not specified, the bridge alignment is used. See :class:`nmigen_soc.csr.Multiplexer` for details. desc: (str, optional): Documentation of the given CSR bank. Return value ------------ An instance of :class:`CSRBank`. """ bank = CSRBank(name_prefix=self.name) self._csr_banks.append((bank, addr, alignment)) return bank def window(self, *, addr_width, data_width, granularity=None, features=frozenset(), alignment=0, addr=None, sparse=None): """Request a window to a subordinate bus. See :meth:`nmigen_soc.wishbone.Decoder.add` for details. Return value ------------ An instance of :class:`nmigen_soc.wishbone.Interface`. """ window = wishbone.Interface(addr_width=addr_width, data_width=data_width, granularity=granularity, features=features) granularity_bits = log2_int(data_width // window.granularity) window.memory_map = MemoryMap(addr_width=addr_width + granularity_bits, data_width=window.granularity, alignment=alignment) self._windows.append((window, addr, sparse)) return window def event(self, *, mode="level", name=None, src_loc_at=0, desc=None): """Request an event source. See :class:`EventSource` for details. Return value ------------ An instance of :class:`EventSource`. """ event = EventSource(mode=mode, name=name, src_loc_at=1 + src_loc_at) self._events.append(event) return event def bridge(self, *, data_width=8, granularity=None, features=frozenset(), alignment=0): """Request a bridge to the resources of the peripheral. See :class:`PeripheralBridge` for details. Return value ------------ A :class:`PeripheralBridge` providing access to local resources. """ return PeripheralBridge(self, data_width=data_width, granularity=granularity, features=features, alignment=alignment) def iter_csr_banks(self): """Iterate requested CSR banks and their parameters. Yield values ------------ A tuple ``bank, addr, alignment`` describing the bank and its parameters. """ for bank, addr, alignment in self._csr_banks: yield bank, addr, alignment def iter_windows(self): """Iterate requested windows and their parameters. Yield values ------------ A tuple ``window, addr, sparse`` descr given to :meth:`Peripheral.window`. """ for window, addr, sparse in self._windows: yield window, addr, sparse def iter_events(self): """Iterate requested event sources. Yield values ------------ An instance of :class:`EventSource`. """ for event in self._events: yield event class CSRBank: """CSR register bank. Parameters ---------- name_prefix : str Name prefix of the bank registers. """ def __init__(self, *, name_prefix=""): self._name_prefix = name_prefix self._csr_regs = [] def csr(self, width, access, *, addr=None, alignment=None, name=None, desc=None, src_loc_at=0): """Request a CSR register. Parameters ---------- width : int Width of the register. See :class:`nmigen_soc.csr.Element`. access : :class:`Access` Register access mode. See :class:`nmigen_soc.csr.Element`. addr : int Address of the register. See :meth:`nmigen_soc.csr.Multiplexer.add`. alignment : int Register alignment. See :class:`nmigen_soc.csr.Multiplexer`. name : str Name of the register. If ``None`` (default) the name is inferred from the variable name this register is assigned to. desc: str Documentation for the provided register, if available. Used to capture register documentation automatically. Return value ------------ An instance of :class:`nmigen_soc.csr.Element`. """ if name is not None and not isinstance(name, str): raise TypeError("Name must be a string, not {!r}".format(name)) name = name or tracer.get_var_name(depth=2 + src_loc_at).lstrip("_") elem_name = "{}_{}".format(self._name_prefix, name) elem = csr.Element(width, access, name=elem_name) self._csr_regs.append((elem, addr, alignment)) return elem def iter_csr_regs(self): """Iterate requested CSR registers and their parameters. Yield values ------------ A tuple ``elem, addr, alignment`` describing the register and its parameters. """ for elem, addr, alignment in self._csr_regs: yield elem, addr, alignment class PeripheralBridge(Elaboratable): """Peripheral bridge. A bridge providing access to the registers and windows of a peripheral, and support for interrupt requests from its event sources. Event managment is performed by an :class:`InterruptSource` submodule. Parameters --------- periph : :class:`Peripheral` The peripheral whose resources are exposed by this bridge. data_width : int Data width. See :class:`nmigen_soc.wishbone.Interface`. granularity : int or None Granularity. See :class:`nmigen_soc.wishbone.Interface`. features : iter(str) Optional signal set. See :class:`nmigen_soc.wishbone.Interface`. alignment : int Resource alignment. See :class:`nmigen_soc.memory.MemoryMap`. Attributes ---------- bus : :class:`nmigen_soc.wishbone.Interface` Wishbone bus providing access to the resources of the peripheral. irq : :class:`IRQLine`, out Interrupt request. It is raised if any event source is enabled and has a pending notification. """ def __init__(self, periph, *, data_width, granularity, features, alignment): if not isinstance(periph, Peripheral): raise TypeError("Peripheral must be an instance of Peripheral, not {!r}" .format(periph)) self._wb_decoder = wishbone.Decoder(addr_width=1, data_width=data_width, granularity=granularity, features=features, alignment=alignment) self._csr_subs = [] for bank, bank_addr, bank_alignment in periph.iter_csr_banks(): if bank_alignment is None: bank_alignment = alignment csr_mux = csr.Multiplexer(addr_width=1, data_width=8, alignment=bank_alignment) for elem, elem_addr, elem_alignment in bank.iter_csr_regs(): if elem_alignment is None: elem_alignment = alignment csr_mux.add(elem, addr=elem_addr, alignment=elem_alignment, extend=True) csr_bridge = WishboneCSRBridge(csr_mux.bus, data_width=data_width) self._wb_decoder.add(csr_bridge.wb_bus, addr=bank_addr, extend=True) self._csr_subs.append((csr_mux, csr_bridge)) for window, window_addr, window_sparse in periph.iter_windows(): self._wb_decoder.add(window, addr=window_addr, sparse=window_sparse, extend=True) events = list(periph.iter_events()) if len(events) > 0: self._int_src = InterruptSource(events, name="{}_ev".format(periph.name)) self.irq = self._int_src.irq csr_mux = csr.Multiplexer(addr_width=1, data_width=8, alignment=alignment) csr_mux.add(self._int_src.status, extend=True) csr_mux.add(self._int_src.pending, extend=True) csr_mux.add(self._int_src.enable, extend=True) csr_bridge = WishboneCSRBridge(csr_mux.bus, data_width=data_width) self._wb_decoder.add(csr_bridge.wb_bus, extend=True) self._csr_subs.append((csr_mux, csr_bridge)) else: self._int_src = None self.irq = None self.bus = self._wb_decoder.bus def elaborate(self, platform): m = Module() for i, (csr_mux, csr_bridge) in enumerate(self._csr_subs): m.submodules[ "csr_mux_{}".format(i)] = csr_mux m.submodules["csr_bridge_{}".format(i)] = csr_bridge if self._int_src is not None: m.submodules._int_src = self._int_src m.submodules.wb_decoder = self._wb_decoder return m
34.989446
102
0.598296
2bbcc9b8bb0a67d7be431fb22741ea93a00a8521
788
py
Python
resources/lib/utils.py
robweber/service.history
445d88fcd35c508a49404cb3a6172c6857da5a17
[ "MIT" ]
1
2022-02-13T16:55:30.000Z
2022-02-13T16:55:30.000Z
resources/lib/utils.py
robweber/service.history
445d88fcd35c508a49404cb3a6172c6857da5a17
[ "MIT" ]
null
null
null
resources/lib/utils.py
robweber/service.history
445d88fcd35c508a49404cb3a6172c6857da5a17
[ "MIT" ]
null
null
null
import xbmc import xbmcaddon __addon_id__= 'service.history' __Addon = xbmcaddon.Addon(__addon_id__) def data_dir(): return __Addon.getAddonInfo('profile') def addon_dir(): return __Addon.getAddonInfo('path') def log(message,loglevel=xbmc.LOGNOTICE): xbmc.log(encode(__addon_id__ + ": " + message),level=loglevel) def showNotification(message): xbmc.executebuiltin("Notification(" + getString(30010) + "," + message + ",4000," + xbmc.translatePath(__Addon.getAddonInfo('path') + "/icon.png") + ")") def getSetting(name): return __Addon.getSetting(name) def setSetting(name,value): __Addon.setSetting(name,value) def getString(string_id): return __Addon.getLocalizedString(string_id) def encode(string): return string.encode('UTF-8','replace')
26.266667
157
0.725888
12020df236136a7e613b4e88bbe23ab744130758
3,245
py
Python
model_selfAttn.py
danachang/End2EndDecoder
575d6077c5932a2e0a63d5af9691d12e5cb468ef
[ "MIT" ]
null
null
null
model_selfAttn.py
danachang/End2EndDecoder
575d6077c5932a2e0a63d5af9691d12e5cb468ef
[ "MIT" ]
null
null
null
model_selfAttn.py
danachang/End2EndDecoder
575d6077c5932a2e0a63d5af9691d12e5cb468ef
[ "MIT" ]
null
null
null
from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import tensorflow as tf from util import log from decoder_selfAttn import Decoder from decoder_mdl import Decoder_Mdl class Model(object): def __init__(self, config, debug_information=False, is_train=True): self.debug = debug_information self.config = config self.batch_size = config.batch_size self.h = config.h self.w = config.w self.c = config.c self.output_dim = config.output_dim self.output_act_fn = config.output_act_fn self.num_d_conv = config.num_d_conv self.num_d_fc = config.num_d_fc self.d_norm_type = config.d_norm_type self.loss_type = config.loss_type # added for Decoder_mdl self.load_pretrained = config.load_pretrained self.arch = config.arch # create placeholders for the input self.image = tf.placeholder( name='image', dtype=tf.float32, shape=[self.batch_size, self.h, self.w, self.c], ) self.label = tf.placeholder( name='label', dtype=tf.float32, shape=[self.batch_size, self.output_dim], ) self.build(is_train=is_train) def get_feed_dict(self, batch_chunk): fd = { self.image: batch_chunk['image'], # [bs, h, w, c] self.label: batch_chunk['label'], # [bs, v] (v should be 3) } return fd def build(self, is_train=True): # Decoder {{{ # ========= # Input: an image [bs, h, w, c] # Output: [bs, [x, y, v]] if self.arch == 'ConvNet': D = Decoder('Decoder', self.output_dim, self.output_act_fn, self.num_d_conv, self.num_d_fc, self.d_norm_type, is_train) else: D = Decoder_Mdl('Decoder_Mdl', self.output_dim, self.output_act_fn, self.num_d_conv, self.num_d_fc, self.d_norm_type, is_train, self.load_pretrained, self.arch) pred_label, conv_list, actv_list, attn_list = D(self.image) self.pred_label = pred_label self.conv_list = conv_list self.actv_list = actv_list self.attn_list = attn_list # }}} # Build losses {{{ # ========= # compute loss if self.loss_type == 'l1': self.ori_loss = tf.abs(self.label - pred_label) self.loss = tf.reduce_mean(self.ori_loss) elif self.loss_type == 'l2': self.ori_loss = (self.label - pred_label) **2 self.loss = tf.reduce_mean(self.ori_loss) else: raise NotImplementedError # }}} # TensorBoard summaries {{{ # ========= tf.summary.scalar("loss/loss", self.loss) tf.summary.image("image", self.image) # }}} # Output {{{ # ========= self.output = { 'pred_label': pred_label } # }}} log.warn('\033[93mSuccessfully loaded the model.\033[0m')
30.613208
80
0.552542
a990710624274b2f54cca3a0ef587b69b44600e9
1,418
py
Python
yts-top-movies/yts-top-movies.py
jae-yong-2/awesomeScripts
7561f2a6966e51973338db592da9f64cf53245e8
[ "MIT" ]
245
2020-09-24T03:49:20.000Z
2021-01-31T20:09:57.000Z
yts-top-movies/yts-top-movies.py
jae-yong-2/awesomeScripts
7561f2a6966e51973338db592da9f64cf53245e8
[ "MIT" ]
252
2020-09-28T02:19:44.000Z
2021-01-23T09:00:34.000Z
yts-top-movies/yts-top-movies.py
jae-yong-2/awesomeScripts
7561f2a6966e51973338db592da9f64cf53245e8
[ "MIT" ]
219
2020-09-23T18:51:42.000Z
2021-01-23T09:54:40.000Z
"""This script allows us to see the most popular movies on yts.mx - Most popular movies - Latest uploads - Upcoming movies The script uses BeautifylSoup to scrap data from the website. """ import requests from bs4 import BeautifulSoup title = f""" \t {'-' * 80} \t {'YTS.mx Top Movies':^80} \t {'-' * 80} \t {'By: chemsedd':^80} \t {'-' * 80} """ print(title) # YTS website url = 'https://yts.mx/' headers = { 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:79.0)\ Gecko/20100101\ Firefox/79.0' } # Request web page page = requests.get(url, headers=headers) # parse to html soup = BeautifulSoup(page.content, 'html.parser') # top movies titles top_movies_title = soup.find_all('a', class_='browse-movie-title') # top movies years top_movies_year = soup.find_all('div', class_='browse-movie-year') movies_list = zip(top_movies_title, top_movies_year) # # Popular downloads for index, movie in enumerate(movies_list): if index == 0: print('\t\n', '\t Popular Downloads:', '\n\t', '-' * 80) elif index == 4: print('\t\n', '\t Latest Movies:', '\n\t', '-' * 80) elif index == 12: print('\t\n', '\t Upcoming Movies:', '\n\t', '-' * 80) title, year = movie link = title.attrs['href'] title = title.contents[-1].strip() year = year.contents[0].strip('\n') print(f"\t {index + 1:02} - {title:30} ({year}) >> {link}")
27.269231
70
0.616361
2cdbaf6ffd5b45d80505c713762777ee91ef76b9
1,096
py
Python
var/spack/repos/builtin/packages/r-sp/package.py
RemoteConnectionManager/spack
f2967b6c16effd26ce007cf86cadbb645c574f50
[ "ECL-2.0", "Apache-2.0", "MIT" ]
null
null
null
var/spack/repos/builtin/packages/r-sp/package.py
RemoteConnectionManager/spack
f2967b6c16effd26ce007cf86cadbb645c574f50
[ "ECL-2.0", "Apache-2.0", "MIT" ]
17
2018-09-20T18:32:50.000Z
2019-12-04T16:58:12.000Z
var/spack/repos/builtin/packages/r-sp/package.py
RemoteConnectionManager/spack
f2967b6c16effd26ce007cf86cadbb645c574f50
[ "ECL-2.0", "Apache-2.0", "MIT" ]
1
2019-09-21T07:45:10.000Z
2019-09-21T07:45:10.000Z
# Copyright 2013-2019 Lawrence Livermore National Security, LLC and other # Spack Project Developers. See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: (Apache-2.0 OR MIT) from spack import * class RSp(RPackage): """Classes and methods for spatial data; the classes document where the spatial location information resides, for 2D or 3D data. Utility functions are provided, e.g. for plotting data as maps, spatial selection, as well as methods for retrieving coordinates, for subsetting, print, summary, etc.""" homepage = "https://github.com/edzer/sp/" url = "https://cloud.r-project.org/src/contrib/sp_1.2-3.tar.gz" list_url = "https://cloud.r-project.org/src/contrib/Archive/sp" version('1.3-1', sha256='57988b53ba8acc35f3912d62feba4b929a0f757c6b54080c623c5d805e0cb59f') version('1.2-7', sha256='6d60e03e1abd30a7d4afe547d157ce3dd7a8c166fc5e407fd6d62ae99ff30460') version('1.2-3', 'f0e24d993dec128642ee66b6b47b10c1') depends_on('r@3.0.0:', type=('build', 'run')) depends_on('r-lattice', type=('build', 'run'))
43.84
95
0.730839
32c7cee45607a82e35c95d44e9d12e5365b515f2
142
py
Python
exercises/while_loops.py
salwa19-meet/y2s18-python_review
701c4e3a1a294fbcb32be3f06f54a371bcececfa
[ "MIT" ]
null
null
null
exercises/while_loops.py
salwa19-meet/y2s18-python_review
701c4e3a1a294fbcb32be3f06f54a371bcececfa
[ "MIT" ]
null
null
null
exercises/while_loops.py
salwa19-meet/y2s18-python_review
701c4e3a1a294fbcb32be3f06f54a371bcececfa
[ "MIT" ]
null
null
null
# Write your solution for 1.3 here!sum = 0 i = 1 counter = 0 while (sum<=10000): sum = sum + i i+=1 counter+=1 print (counter )
15.777778
43
0.577465
add9c6dd70fe908b970668eb02a23564754e9dfc
1,312
py
Python
Laelia/apps/base/migrations/0029_auto_20201003_2233.py
arantesdv/LaeliaAppProject
93fca5393cb8406694903d9adde02067480c792e
[ "MIT" ]
null
null
null
Laelia/apps/base/migrations/0029_auto_20201003_2233.py
arantesdv/LaeliaAppProject
93fca5393cb8406694903d9adde02067480c792e
[ "MIT" ]
null
null
null
Laelia/apps/base/migrations/0029_auto_20201003_2233.py
arantesdv/LaeliaAppProject
93fca5393cb8406694903d9adde02067480c792e
[ "MIT" ]
null
null
null
# Generated by Django 3.0.6 on 2020-10-04 01:33 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('base', '0028_auto_20201003_2231'), ] operations = [ migrations.AlterField( model_name='schedule', name='duration', field=models.IntegerField(choices=[(15, '15min'), (30, '30min'), (45, '45min'), (60, '60min'), (75, '75min'), (90, '90min'), (105, '105min'), (120, '120min')], default=60), ), migrations.AlterField( model_name='schedule', name='hour', field=models.IntegerField(choices=[(0, '0h'), (1, '1h'), (2, '2h'), (3, '3h'), (4, '4h'), (5, '5h'), (6, '6h'), (7, '7h'), (8, '8h'), (9, '9h'), (10, '10h'), (11, '11h'), (12, '12h'), (13, '13h'), (14, '14h'), (15, '15h'), (16, '16h'), (17, '17h'), (18, '18h'), (19, '19h'), (20, '20h'), (21, '21h'), (22, '22h'), (23, '23h')], default=8), ), migrations.AlterField( model_name='schedule', name='min', field=models.IntegerField(choices=[(0, '0min'), (5, '5min'), (10, '10min'), (15, '15min'), (20, '20min'), (25, '25min'), (30, '30min'), (35, '35min'), (40, '40min'), (45, '45min'), (50, '50min'), (55, '55min')], default=0), ), ]
45.241379
351
0.492378
882ca4fef2a8c0710b6b3779de645d5523509ae9
8,122
py
Python
networkconfgen/custom_filters.py
hoelsner/networkconfgen
d30ccc5c4e58d74c5eb5bcd41386c453d0130685
[ "MIT" ]
21
2018-01-25T10:56:00.000Z
2020-12-12T18:09:26.000Z
networkconfgen/custom_filters.py
AstritCepele/networkconfgen
d30ccc5c4e58d74c5eb5bcd41386c453d0130685
[ "MIT" ]
null
null
null
networkconfgen/custom_filters.py
AstritCepele/networkconfgen
d30ccc5c4e58d74c5eb5bcd41386c453d0130685
[ "MIT" ]
7
2018-06-28T13:44:20.000Z
2020-11-16T00:26:18.000Z
""" Any custom filter that is bound to the Jinja2 Template Engine used in the NetworkConfGen class """ import logging import re from ipaddress import IPv4Network from networkconfgen.constants import ERROR_UNKNOWN, ERROR_INVALID_VLAN_RANGE, ERROR_INVALID_VALUE, \ CISCO_INTERFACE_PATTERN, JUNIPER_INTERFACE_PATTERN, OS_CISCO_IOS, OS_JUNIPER_JUNOS, ERROR_PARAMETER, \ ERROR_REGEX, ERROR_NO_MATCH logger = logging.getLogger("networkconfgen") def get_interface_components(interface_string, regex_to_use=CISCO_INTERFACE_PATTERN): """ split the given string to the interface_name, chassis, module and port (consider experimental) :param interface_string: :param regex_to_use: regular expression, that defines four named parameters interface_name, chassis, module and port :return: tuple with the interface_name (lowered), the chassis number (default to 0 if not found), the module and port """ pattern = re.compile(regex_to_use) param = pattern.match(interface_string.lower()) interface_name = param.group("interface_name").lower() if not param.group("chassis"): chassis = 0 else: chassis = param.group("chassis") module = param.group("module") port = int(param.group("port")) return interface_name, str(chassis), str(module), str(port) def dotted_decimal(prefix_length): """ converts the given prefix length to a dotted decimal representation :param prefix_length: :return: """ try: ip = IPv4Network("0.0.0.0/" + str(prefix_length)) return str(ip.netmask) except Exception: return "%s(%s)" % (ERROR_INVALID_VALUE, prefix_length) def wildcard_mask(prefix_length): """ converts the given prefix length to a dotted decimal hostmask (e.g. for ACLs) :param prefix_length: :return: """ try: ip = IPv4Network("0.0.0.0/" + str(prefix_length)) return str(ip.hostmask) except Exception: return "%s(%s)" % (ERROR_INVALID_VALUE, prefix_length) def valid_vlan_name(vlan_name): """ create a valid VLAN name (removed certain unwanted charaters) :param vlan_name: :return: """ invalid_chars = list(";,.#+*=?%$()[]") clean_string = vlan_name.replace(" ", "_") clean_string = clean_string.replace("-", "_") clean_string = "".join(e for e in clean_string if e not in invalid_chars) return clean_string def convert_interface_name(interface_name, target_vendor=None): """ used to convert an vendor specific interface name to another interface name of a different vendor :param interface_name: interface string, that should be converted :param target_vendor: target Vendor string ('cisco_ios' or 'juniper_junos') """ if target_vendor is None: target_vendor = OS_JUNIPER_JUNOS translation_map = { # from => to => interface name (lowercase) OS_CISCO_IOS: { OS_JUNIPER_JUNOS: { "eth": "ge", "fa": "ge", "gi": "ge", "te": "xe", "fo": "et", }, }, OS_JUNIPER_JUNOS: { OS_CISCO_IOS: { "ge": "gi", "xe": "te", }, } } try: result = None if re.match(CISCO_INTERFACE_PATTERN, interface_name, re.IGNORECASE): if OS_CISCO_IOS not in target_vendor: # don't modify if the target vendor is the same # cisco interface detected logger.debug("Cisco interface string '%s' detected by convert_interface_name" % interface_name) if OS_JUNIPER_JUNOS in target_vendor.lower(): # juniper port numbering starts with 0 intf, chassis, module, port = get_interface_components(interface_name, CISCO_INTERFACE_PATTERN) result = "%s-%s/%s/%s" % (translation_map[OS_CISCO_IOS][OS_JUNIPER_JUNOS][intf], chassis, module, str(int(port) - 1)) elif re.match(JUNIPER_INTERFACE_PATTERN, interface_name, re.IGNORECASE): if OS_JUNIPER_JUNOS not in target_vendor: # don't modify if the target vendor is the same # juniper interface detected logger.debug("Juniper interface string '%s' detected by convert_interface_name" % interface_name) if OS_CISCO_IOS in target_vendor.lower(): intf, chassis, module, port = get_interface_components(interface_name, JUNIPER_INTERFACE_PATTERN) result = "%s%s/%s/%s" % (translation_map[OS_JUNIPER_JUNOS][OS_CISCO_IOS][intf], chassis, module, str(int(port) + 1)) if result: return result else: return interface_name except Exception as ex: msg = "Exception while translating interface name '%s' to '%s' (%s)" % (interface_name, target_vendor, str(ex)) logger.error(msg) logger.debug(msg, exc_info=True) return ERROR_UNKNOWN def expand_vlan_list(vlan_list): """ converts a range statement to a list (or a list with an error message if the parameter is not valid) - no verification of the VLAN ID range (1-4094) :param vlan_list: string in the format `(\d+-\d+)` :return: list entry with the result """ result = [] list_regex = "(\d+-\d+)" re_result = re.match(list_regex, vlan_list) if re_result is None: # if the list is invalid, return a list with a single error entry result.append("%s(%s)" % (ERROR_INVALID_VLAN_RANGE, vlan_list)) else: # extract values and check range elements = vlan_list.split("-") val_a = int(elements[0]) val_b = int(elements[1]) if val_a >= val_b: result.append("%s(%s)" % (ERROR_INVALID_VLAN_RANGE, vlan_list)) else: # valid parameter, create vlan list result.extend(list(range(val_a, val_b + 1))) return result def split_interface(interface_regex, value): """ convert an interface based on the given regular expression to a dictionary with all components, e.g. regex: .*(?P<chassis>\d+)\/(?P<module>\d+)\/(?P<port>\d+).* value: interface gi1/2/3 will return { "chassis": 1, "module": 2, "port": 3 } or in case of an error to { "error": "message" } :param interface_regex: valid regular expression :param value: value that should be parsed :return: dictionary with three possible """ if type(interface_regex) is not str: return {"error": "%s(%s)" % (ERROR_PARAMETER, "invalid type for 'interface_regex'")} if type(value) is not str: return {"error": "%s(%s)" % (ERROR_PARAMETER, "invalid type for 'value'")} try: pattern = re.compile(interface_regex, re.IGNORECASE) except Exception as ex: return {"error": "%s(%s)" % (ERROR_REGEX, str(ex))} match = pattern.match(value) if match: # check groups 'chassis', 'module'and 'port' # if empty, a None value is used result = match.groupdict() valid_groups = ["chassis", "module", "port"] # add None values if certain groups does not exist for key in valid_groups: result[key] = None if key not in result.keys() else result[key] # delete other keys keys_to_delete = [] for key in result.keys(): if key not in valid_groups: keys_to_delete.append(key) for key in keys_to_delete: del result[key] else: # no match, return error message result = {"error": "%s(pattern '%s' for '%s')" % (ERROR_NO_MATCH, interface_regex, value)} return result def split_interface_cisco_ios(value): return split_interface(".*%s.*" % CISCO_INTERFACE_PATTERN, value) def split_interface_juniper_junos(value): return split_interface(".*%s.*" % JUNIPER_INTERFACE_PATTERN, value)
32.358566
121
0.619921
46207b5296e9594219bb55face43bf1f45981042
6,339
py
Python
baselines/baselines/common/policies.py
yooceii/HardRLWithYoutube
e9644c16a8125af09d998ad1df733135d129a3aa
[ "MIT" ]
34
2018-10-16T16:09:07.000Z
2021-10-19T06:21:03.000Z
baselines/baselines/common/policies.py
yooceii/HardRLWithYoutube
e9644c16a8125af09d998ad1df733135d129a3aa
[ "MIT" ]
5
2019-01-31T16:31:13.000Z
2019-06-26T01:13:04.000Z
baselines/baselines/common/policies.py
yooceii/HardRLWithYoutube
e9644c16a8125af09d998ad1df733135d129a3aa
[ "MIT" ]
9
2018-12-04T11:39:43.000Z
2021-04-02T19:17:11.000Z
import tensorflow as tf from baselines.common import tf_util from baselines.a2c.utils import fc from baselines.common.distributions import make_pdtype from baselines.common.input import observation_placeholder, encode_observation from baselines.common.tf_util import adjust_shape from baselines.common.mpi_running_mean_std import RunningMeanStd from baselines.common.models import get_network_builder import gym class PolicyWithValue(object): """ Encapsulates fields and methods for RL policy and value function estimation with shared parameters """ def __init__(self, env, observations, latent, estimate_q=False, vf_latent=None, sess=None, **tensors): """ Parameters: ---------- env RL environment observations tensorflow placeholder in which the observations will be fed latent latent state from which policy distribution parameters should be inferred vf_latent latent state from which value function should be inferred (if None, then latent is used) sess tensorflow session to run calculations in (if None, default session is used) **tensors tensorflow tensors for additional attributes such as state or mask """ self.X = observations self.state = tf.constant([]) self.initial_state = None self.__dict__.update(tensors) vf_latent = vf_latent if vf_latent is not None else latent vf_latent = tf.layers.flatten(vf_latent) latent = tf.layers.flatten(latent) self.pdtype = make_pdtype(env.action_space) self.pd, self.pi = self.pdtype.pdfromlatent(latent, init_scale=0.01) self.action = self.pd.sample() self.neglogp = self.pd.neglogp(self.action) self.sess = sess if estimate_q: assert isinstance(env.action_space, gym.spaces.Discrete) self.q = fc(vf_latent, 'q', env.action_space.n) self.vf = self.q else: self.vf = fc(vf_latent, 'vf', 1) self.vf = self.vf[:,0] def _evaluate(self, variables, observation, **extra_feed): sess = self.sess or tf.get_default_session() feed_dict = {self.X: adjust_shape(self.X, observation)} for inpt_name, data in extra_feed.items(): if inpt_name in self.__dict__.keys(): inpt = self.__dict__[inpt_name] if isinstance(inpt, tf.Tensor) and inpt._op.type == 'Placeholder': feed_dict[inpt] = adjust_shape(inpt, data) return sess.run(variables, feed_dict) def step(self, observation, **extra_feed): """ Compute next action(s) given the observation(s) Parameters: ---------- observation observation data (either single or a batch) **extra_feed additional data such as state or mask (names of the arguments should match the ones in constructor, see __init__) Returns: ------- (action, value estimate, next state, negative log likelihood of the action under current policy parameters) tuple """ a, v, state, neglogp = self._evaluate([self.action, self.vf, self.state, self.neglogp], observation, **extra_feed) if state.size == 0: state = None return a, v, state, neglogp def value(self, ob, *args, **kwargs): """ Compute value estimate(s) given the observation(s) Parameters: ---------- observation observation data (either single or a batch) **extra_feed additional data such as state or mask (names of the arguments should match the ones in constructor, see __init__) Returns: ------- value estimate """ return self._evaluate(self.vf, ob, *args, **kwargs) def save(self, save_path): tf_util.save_state(save_path, sess=self.sess) def load(self, load_path): tf_util.load_state(load_path, sess=self.sess) def build_policy(env, policy_network, value_network=None, normalize_observations=False, estimate_q=False, **policy_kwargs): if isinstance(policy_network, str): network_type = policy_network policy_network = get_network_builder(network_type)(**policy_kwargs) def policy_fn(nbatch=None, nsteps=None, sess=None, observ_placeholder=None): ob_space = env.observation_space X = observ_placeholder if observ_placeholder is not None else observation_placeholder(ob_space, batch_size=nbatch) extra_tensors = {} if normalize_observations and X.dtype == tf.float32: encoded_x, rms = _normalize_clip_observation(X) extra_tensors['rms'] = rms else: encoded_x = X encoded_x = encode_observation(ob_space, encoded_x) with tf.variable_scope('pi', reuse=tf.AUTO_REUSE): policy_latent, recurrent_tensors = policy_network(encoded_x) if recurrent_tensors is not None: # recurrent architecture, need a few more steps nenv = nbatch // nsteps assert nenv > 0, 'Bad input for recurrent policy: batch size {} smaller than nsteps {}'.format(nbatch, nsteps) policy_latent, recurrent_tensors = policy_network(encoded_x, nenv) extra_tensors.update(recurrent_tensors) _v_net = value_network if _v_net is None or _v_net == 'shared': vf_latent = policy_latent else: if _v_net == 'copy': _v_net = policy_network else: assert callable(_v_net) with tf.variable_scope('vf', reuse=tf.AUTO_REUSE): vf_latent, _ = _v_net(encoded_x) policy = PolicyWithValue( env=env, observations=X, latent=policy_latent, vf_latent=vf_latent, sess=sess, estimate_q=estimate_q, **extra_tensors ) return policy return policy_fn def _normalize_clip_observation(x, clip_range=[-5.0, 5.0]): rms = RunningMeanStd(shape=x.shape[1:]) norm_x = tf.clip_by_value((x - rms.mean) / rms.std, min(clip_range), max(clip_range)) return norm_x, rms
35.216667
137
0.630541
3e5d64cb37ce17377d8718948d142779de4a84fb
7,678
py
Python
example/example_face.py
Tomoya-K-0504/deepSELF
0e5a7d0169b3e9edcb5c8d9802140a84ce5cb69a
[ "MIT" ]
1
2021-08-17T09:56:47.000Z
2021-08-17T09:56:47.000Z
example/example_face.py
JIangjiang1108/deepSELF
0e5a7d0169b3e9edcb5c8d9802140a84ce5cb69a
[ "MIT" ]
null
null
null
example/example_face.py
JIangjiang1108/deepSELF
0e5a7d0169b3e9edcb5c8d9802140a84ce5cb69a
[ "MIT" ]
1
2021-08-17T09:56:41.000Z
2021-08-17T09:56:41.000Z
import itertools import logging import pprint import shutil from copy import deepcopy from dataclasses import dataclass from datetime import datetime as dt from pathlib import Path import hydra import mlflow import numpy as np import pandas as pd import torch from hydra import utils from joblib import Parallel, delayed from omegaconf import OmegaConf from deepself.models.nn_models.cnn import CNNConfig from deepself.models.nn_models.cnn_rnn import CNNRNNConfig from deepself.models.nn_models.rnn import RNNConfig from deepself.src.dataset import ManifestDataSet from deepself.tasks.base_experiment import typical_train, typical_experiment from deepself.utils.config import ExptConfig, before_hydra from deepself.utils.utils import dump_dict LABELS = ['Anger', 'Disgust', 'Fear', 'Happy', 'Sad', 'Surprise', 'Neutral'] @dataclass class ExampleFaceConfig(ExptConfig): n_parallel: int = 1 mlflow: bool = False def label_func(row): return row[0] def load_func(row): im = np.array(list(map(int, row[1].split(' ')))).reshape((48, 48)) / 255 return torch.tensor(im[None, :, :], dtype=torch.float) def create_manifest(expt_conf, expt_dir): data_dir = Path(utils.to_absolute_path('input')) manifest_df = pd.read_csv(data_dir / 'fer2013.csv') train_val_df = manifest_df[manifest_df['Usage'] == 'Training'] train_df = train_val_df.iloc[:int(len(train_val_df) * 0.7), :] train_df.to_csv(expt_dir / 'train_manifest.csv', index=False, header=None) expt_conf.train.train_path = expt_dir / 'train_manifest.csv' val_df = train_val_df.iloc[int(len(train_val_df) * 0.7):, :] val_df.to_csv(expt_dir / 'val_manifest.csv', index=False, header=None) expt_conf.train.val_path = expt_dir / 'val_manifest.csv' test_df = manifest_df[manifest_df['Usage'] != 'Training'] test_df.to_csv(expt_dir / 'test_manifest.csv', index=False, header=None) expt_conf.train.test_path = expt_dir / 'test_manifest.csv' return expt_conf def set_hyperparameter(expt_conf, param, param_value): if len(param.split('.')) == 1: expt_conf[param] = param_value else: tmp = expt_conf for attr in param.split('.')[:-1]: tmp = getattr(tmp, str(attr)) setattr(tmp, param.split('.')[-1], param_value) return expt_conf def main(cfg, expt_dir, hyperparameters): if cfg.expt_id == 'timestamp': cfg.expt_id = dt.today().strftime('%Y-%m-%d_%H:%M') logging.basicConfig(level=logging.DEBUG, format="[%(name)s] [%(levelname)s] %(message)s", filename=expt_dir / 'expt.log') cfg.train.class_names = LABELS dataset_cls = ManifestDataSet metrics_names = {'train': ['loss', 'uar'], 'val': ['loss', 'uar'], 'test': ['loss', 'uar']} cfg = create_manifest(cfg, expt_dir) process_func = None patterns = list(itertools.product(*hyperparameters.values())) val_results = pd.DataFrame(np.zeros((len(patterns), len(hyperparameters) + len(metrics_names['val']))), columns=list(hyperparameters.keys()) + metrics_names['val']) pp = pprint.PrettyPrinter(indent=4) pp.pprint(hyperparameters) groups = None def experiment(pattern, cfg): for i, param in enumerate(hyperparameters.keys()): cfg = set_hyperparameter(cfg, param, pattern[i]) cfg.train.model.model_path = str(expt_dir / f"{'_'.join([str(p).replace('/', '-') for p in pattern])}.pth") cfg.train.log_id = f"{'_'.join([str(p).replace('/', '-') for p in pattern])}" with mlflow.start_run(): result_series, val_pred, _ = typical_train(cfg, load_func, label_func, process_func, dataset_cls, groups) mlflow.log_params({hyperparameter: value for hyperparameter, value in zip(hyperparameters.keys(), pattern)}) return result_series, val_pred # For debugging if cfg.n_parallel == 1: result_pred_list = [experiment(pattern, deepcopy(cfg)) for pattern in patterns] else: cfg.n_jobs = 0 result_pred_list = Parallel(n_jobs=cfg.n_parallel, verbose=0)( [delayed(experiment)(pattern, deepcopy(cfg)) for pattern in patterns]) val_results.iloc[:, :len(hyperparameters)] = patterns result_list = np.array([result for result, pred in result_pred_list]) val_results.iloc[:, len(hyperparameters):] = result_list pp.pprint(val_results) pp.pprint(val_results.iloc[:, len(hyperparameters):].describe()) val_results.to_csv(expt_dir / 'val_results.csv', index=False) print(f"Devel results saved into {expt_dir / 'val_results.csv'}") for (_, _), pattern in zip(result_pred_list, patterns): pattern_name = f"{'_'.join([str(p).replace('/', '-') for p in pattern])}" dump_dict(expt_dir / f'{pattern_name}.txt', cfg) # Train with train + devel dataset if cfg.test: best_trial_idx = val_results['uar'].argmax() best_pattern = patterns[best_trial_idx] for i, param in enumerate(hyperparameters.keys()): cfg = set_hyperparameter(cfg, param, best_pattern[i]) dump_dict(expt_dir / 'best_parameters.txt', {p: v for p, v in zip(hyperparameters.keys(), best_pattern)}) metrics, pred_dict_list, _ = typical_experiment(cfg, load_func, label_func, process_func, dataset_cls, groups) sub_name = f"uar-{metrics[-1]:.4f}_sub_{'_'.join([str(p).replace('/', '-') for p in best_pattern])}.csv" pd.DataFrame(pred_dict_list['test']).to_csv(expt_dir / f'{sub_name}_prob.csv', index=False, header=None) pd.DataFrame(pred_dict_list['test'].argmax(axis=1)).to_csv(expt_dir / sub_name, index=False, header=None) print(f"Submission file is saved in {expt_dir / sub_name}") mlflow.end_run() @hydra.main(config_name="config") def hydra_main(cfg: ExampleFaceConfig): console = logging.StreamHandler() console.setFormatter(logging.Formatter("[%(name)s] [%(levelname)s] %(message)s")) console.setLevel(logging.INFO) logging.getLogger("ml").addHandler(console) if OmegaConf.get_type(cfg.train.model) == CNNConfig: hyperparameters = { 'train.model.optim.lr': [1e-4], } elif OmegaConf.get_type(cfg.train.model) == CNNRNNConfig: hyperparameters = { 'train.model.optim.lr': [1e-3, 1e-4, 1e-5], 'window_size': [0.5], 'window_stride': [0.1], 'transform': ['logmel'], 'rnn_type': [cfg.rnn_type], 'bidirectional': [True], 'rnn_n_layers': [1], 'rnn_hidden_size': [10], } elif OmegaConf.get_type(cfg.train.model) == RNNConfig: hyperparameters = { 'bidirectional': [True, False], 'rnn_type': ['lstm', 'gru'], 'rnn_n_layers': [1, 2], 'rnn_hidden_size': [10, 50], 'transform': [None], 'train.model.optim.lr': [1e-3, 1e-4, 1e-5], } else: hyperparameters = { 'train.model.optim.lr': [1e-4, 1e-5], 'data.batch_size': [64], 'data.epoch_rate': [1.0], 'data.sample_balance': ['same'], } cfg.expt_id = f'{cfg.train.model_type.value}_pretrain-{cfg.train.model.pretrained}' expt_dir = Path(utils.to_absolute_path('output')) / 'example_face' / f'{cfg.expt_id}' expt_dir.mkdir(exist_ok=True, parents=True) main(cfg, expt_dir, hyperparameters) if not cfg.mlflow: shutil.rmtree('mlruns') if __name__ == '__main__': config_store = before_hydra(ExampleFaceConfig) hydra_main()
37.091787
120
0.646913
228c2c4d80462b7089b07d8ccee38c9a8e4f7a3c
2,961
py
Python
mysite/scisheets/helpers/helpers_test.py
ScienceStacks/JViz
c8de23d90d49d4c9bc10da25f4a87d6f44aab138
[ "Artistic-2.0", "Apache-2.0" ]
31
2016-11-16T22:34:35.000Z
2022-03-22T22:16:11.000Z
mysite/scisheets/helpers/helpers_test.py
ScienceStacks/JViz
c8de23d90d49d4c9bc10da25f4a87d6f44aab138
[ "Artistic-2.0", "Apache-2.0" ]
6
2017-06-24T06:29:36.000Z
2022-01-23T06:30:01.000Z
mysite/scisheets/helpers/helpers_test.py
ScienceStacks/JViz
c8de23d90d49d4c9bc10da25f4a87d6f44aab138
[ "Artistic-2.0", "Apache-2.0" ]
4
2017-07-27T16:23:50.000Z
2022-03-12T06:36:13.000Z
'''Client Mocks''' import scisheets.core.helpers.cell_types as cell_types from django.test import TestCase, RequestFactory from django.contrib.sessions.middleware import SessionMiddleware BASE_URL = "http://localhost:8000/scisheets/" TARGET = 'Cell' COMMAND = 'Update' VALUE = 'XXX' ROW_INDEX = 1 COLUMN_INDEX = 3 COLUMN_NAME = 'Col_2' TABLE_NAME = 'XYZ' IGNORE_TEST = False class HelperHTTP(object): def __init__(self): self._factory = RequestFactory() def addSessionToRequest(self, request): middleware = SessionMiddleware() middleware.process_request(request) request.session.save() def ajaxCommandFactory(self): ajax_cmd = {} ajax_cmd['target'] = TARGET ajax_cmd['command'] = COMMAND ajax_cmd['value'] = VALUE ajax_cmd['row'] = ROW_INDEX ajax_cmd['columnName'] = COLUMN_NAME ajax_cmd['table'] = TABLE_NAME ajax_cmd['args[]'] = None return ajax_cmd def createBaseURL(self, params=None): # Creates the base URL to construct a table # Input: params # 0 - number of columns # 1 - number of rows # Output: URL if params is None: client_url = BASE_URL else: ncol = params[0] nrow = params[1] client_url = "%s%d/%d/" % (BASE_URL, ncol, nrow) return client_url def createURL(self, address="dummy", count=None, values=None, names=None): # Input: count - number of variables # names - variable names # values - values to use for each variable # address - URL address # Returns - a URL string with variables in the GET format url = address count = 0 if values is not None: count = len(values) if names is None: names = [] for n in range(count): names.append("var%d" % n) for n in range(count): if n == 0: url += "command?" else: url += "&" if values is None: url += "%s=%d" % (names[n], n) else: if cell_types.isStr(values[n]): url += "%s=%s" % (names[n], values[n]) elif isinstance(values[n], int): url += "%s=%d" % (names[n], values[n]) elif cell_types.isFloats([n]): url += "%s=%f" % (names[n], values[n]) elif values[n] is None: url += "%s=%s" % (names[n], None) elif isinstance(values[n], list): url += "%s=%s" % (names[n], values[n]) else: import pdb; pdb.set_trace() UNKNOWN_TYPE return url def createURLFromAjaxCommand(self, ajax_cmd, address=None): # Input: ajax_cmd - command dictionary from commandFactory # Output: URL names = ajax_cmd.keys() values = [] for name in names: values.append(ajax_cmd[name]) return self.createURL(values=values, names=names, address=address) def URL2Request(self, url): # Input: url - URL string # Returns - request with count number of parameters return self._factory.get(url)
28.747573
76
0.609591
bf8e6c757be4595777016c9c30c3d2a607aad858
2,150
py
Python
zipline/pipeline/hooks/delegate.py
leonarduschen/zipline
5e6c9fce7e0f812bd181024ad192ca2976d49667
[ "Apache-2.0" ]
14,525
2015-01-01T02:57:52.000Z
2022-03-31T18:16:35.000Z
zipline/pipeline/hooks/delegate.py
leonarduschen/zipline
5e6c9fce7e0f812bd181024ad192ca2976d49667
[ "Apache-2.0" ]
2,146
2015-01-01T13:03:44.000Z
2022-02-22T03:25:28.000Z
zipline/pipeline/hooks/delegate.py
leonarduschen/zipline
5e6c9fce7e0f812bd181024ad192ca2976d49667
[ "Apache-2.0" ]
4,517
2015-01-01T14:26:47.000Z
2022-03-31T14:38:05.000Z
from interface import implements from zipline.utils.compat import ExitStack, contextmanager, wraps from .iface import PipelineHooks, PIPELINE_HOOKS_CONTEXT_MANAGERS from .no import NoHooks def delegating_hooks_method(method_name): """Factory function for making DelegatingHooks methods. """ if method_name in PIPELINE_HOOKS_CONTEXT_MANAGERS: # Generate a contextmanager that enters the context of all child hooks. @wraps(getattr(PipelineHooks, method_name)) @contextmanager def ctx(self, *args, **kwargs): with ExitStack() as stack: for hook in self._hooks: sub_ctx = getattr(hook, method_name)(*args, **kwargs) stack.enter_context(sub_ctx) yield stack return ctx else: # Generate a method that calls methods of all child hooks. @wraps(getattr(PipelineHooks, method_name)) def method(self, *args, **kwargs): for hook in self._hooks: sub_method = getattr(hook, method_name) sub_method(*args, **kwargs) return method class DelegatingHooks(implements(PipelineHooks)): """A PipelineHooks that delegates to one or more other hooks. Parameters ---------- hooks : list[implements(PipelineHooks)] Sequence of hooks to delegate to. """ def __new__(cls, hooks): if len(hooks) == 0: # OPTIMIZATION: Short-circuit to a NoHooks if we don't have any # sub-hooks. return NoHooks() elif len(hooks) == 1: # OPTIMIZATION: Unwrap delegation layer if we only have one # sub-hook. return hooks[0] else: self = super(DelegatingHooks, cls).__new__(cls) self._hooks = hooks return self # Implement all interface methods by delegating to corresponding methods on # input hooks. locals().update({ name: delegating_hooks_method(name) # TODO: Expose this publicly on interface. for name in PipelineHooks._signatures }) del delegating_hooks_method
32.575758
79
0.626977
4a19fd2b2985d4d9656278c2e7d1ba36e8276eed
9,621
py
Python
train_crf.py
bubblemans/Gun-Violence-Information-Retrieval-Using-BERT-as-Sequence-Tagging-Task
a8a199760c531286ae79fd9de541387a6c9fd5a7
[ "MIT" ]
null
null
null
train_crf.py
bubblemans/Gun-Violence-Information-Retrieval-Using-BERT-as-Sequence-Tagging-Task
a8a199760c531286ae79fd9de541387a6c9fd5a7
[ "MIT" ]
null
null
null
train_crf.py
bubblemans/Gun-Violence-Information-Retrieval-Using-BERT-as-Sequence-Tagging-Task
a8a199760c531286ae79fd9de541387a6c9fd5a7
[ "MIT" ]
null
null
null
import argparse import math import logging import pandas as pd import tqdm import torch import torch.nn as nn from torch.utils.data import DataLoader from models import BERT_CRF_Linear, BERT_CRF_LSTM, BERT_CRF_BiLSTM from dataset import GunViolenceDataset from utils import * logging.basicConfig(format='%(asctime)s - %(message)s', level=logging.INFO) def train(train_X, train_Y, learning_rate, cuda_available, epochs, model_type, is_balance, batch_size, max_seq_length, patience, min_delta, baseline): training_set = GunViolenceDataset(train_X, train_Y) training_generator = DataLoader( training_set, batch_size=batch_size, shuffle=True, ) iter_in_one_epoch = len(train_X) // batch_size tokenizer = torch.hub.load(TRANSFORMER_PATH, 'tokenizer', 'bert-base-cased') # cased! model = None if model_type == 'LSTM': model = BERT_CRF_LSTM(3) elif model_type == 'BiLSTM': model = BERT_CRF_BiLSTM(3) else: model = BERT_CRF_Linear(3) # 3 different labels: B, I, O if cuda_available: model.to('cuda') # move data onto GPU model.train() optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate) losses = [] num_no_improve = 0 best_loss = None stopping_epoch = 0 for epoch in range(1, epochs + 1): loss = 0 with tqdm.tqdm(training_generator, unit="batch") as tepoch: for i, (train_x, train_y) in enumerate(tepoch): tepoch.set_description(f"Epoch {epoch}") # prepare model input tokens, labels = convert_examples_to_features(train_x, train_y, tokenizer, max_seq_length) indexed_tokens = [tokenizer.convert_tokens_to_ids(token) for token in tokens] segments_ids = [[0] * len(indexed_token) for indexed_token in indexed_tokens] if cuda_available: segments_tensors = torch.tensor(segments_ids).to('cuda') tokens_tensor = torch.tensor(indexed_tokens).to('cuda') labels = torch.tensor(labels).to('cuda') else: segments_tensors = torch.tensor(segments_ids) tokens_tensor = torch.tensor(indexed_tokens) labels = torch.tensor(labels) # forward pass y_pred, logits, loss = model(tokens_tensor, segments_tensors, labels) losses.append((epoch + i / iter_in_one_epoch, loss.item())) # display loss tepoch.set_postfix(loss="{:.4f}".format(loss.item())) # zero out gradients optimizer.zero_grad() # backward pass loss.backward() # update parameters optimizer.step() if not best_loss: best_loss = loss elif loss <= best_loss + min_delta: best_loss = loss num_no_improve += 1 elif loss < baseline: num_no_improve += 1 if num_no_improve > patience: stopping_epoch = epoch logging.info('Early Stop on epoch {} with the best loss {}'.format(stopping_epoch, best_loss)) break torch.save(model, 'output/model') return model, tokenizer, stopping_epoch def evaluate(model, evaluate_X, evaluate_Y, tokenizer, cuda_available, batch_size, max_seq_length, model_type, lr, epochs): def _get_prediction(normalized_probs): # classify B, I, O based on probabilities labels = [] for sample_prob in normalized_probs: max_prob = -math.inf label = None for i, prob in enumerate(sample_prob): if max_prob < prob: max_prob = prob label = i labels.append(label) return labels model.eval() num_samples = len(evaluate_X) evaluate_set = GunViolenceDataset(evaluate_X, evaluate_Y) evaluate_generator = DataLoader( evaluate_set, batch_size=1, shuffle=True, ) num_of_tp = num_of_fn = num_of_fp = num_of_tn = 0 for i, (evaluate_x, evaluate_y) in enumerate(evaluate_generator): tokens, labels = convert_examples_to_features(evaluate_x, evaluate_y, tokenizer, max_seq_length) indexed_tokens = [tokenizer.convert_tokens_to_ids(token) for token in tokens] segments_ids = [[0] * len(indexed_token) for indexed_token in indexed_tokens] if cuda_available: segments_tensors = torch.tensor(segments_ids).to('cuda') tokens_tensor = torch.tensor(indexed_tokens).to('cuda') labels = torch.tensor(labels).to('cuda') else: segments_tensors = torch.tensor(segments_ids) tokens_tensor = torch.tensor(indexed_tokens) labels = torch.tensor(labels) with torch.no_grad(): y_pred, logits, loss = model(tokens_tensor, segments_tensors, labels) normalized_probs = nn.functional.softmax(logits, dim=1)[0] results = y_pred[0] # get the real target original = '' for i, (x, y) in enumerate(zip(evaluate_x[0].split(), evaluate_y[0].split())): if y[0] == 'B': original = x + ' ' index = i while index + 1 < len(evaluate_y[0].split()) and evaluate_y[0].split()[index + 1][0] == 'I': original += '{} '.format(evaluate_x[0].split()[index + 1]) index += 1 break original = original.strip() probabilities = [] predictions = [] prediction = [] for token, tag, prob in zip(tokens[0], results, normalized_probs): if tag == 0: # tag == 'B' probabilities.append(prob) if len(prediction) != 0: predictions.append(prediction) prediction = [] prediction.append(token) elif tag == 1: # tag == 'I' prediction.append(token) if len(prediction) != 0: predictions.append(prediction) # one sentence might generate multiple targets, eg. shooters or victims # we need to pick the most possible one, which is the one has the highest probability in 'B' tag max_prob = -math.inf max_prob_ind = 0 for i, prob in enumerate(probabilities): if max_prob < prob[0]: max_prob_ind = i max_prob = prob[0] # calculate true positive, false positive, true negative, false negative result = '' if len(predictions) != 0: result = tokenizer.convert_tokens_to_string(predictions[max_prob_ind]) if result == original: num_of_tp += 1 else: num_of_fp += 1 else: if original.strip() != '': num_of_fn += 1 else: num_of_tn += 1 accuracy = num_of_tp/num_samples if num_samples != 0 else 0 precision = num_of_tp/(num_of_tp + num_of_fp) if num_of_tp + num_of_fp != 0 else 0 recall = num_of_tp/(num_of_tp + num_of_fn) if num_of_tp + num_of_fn != 0 else 0 with open('victim/output/crf_{}_{}_{}_{}_{}.txt'.format(model_type, lr, epochs, batch_size, max_seq_length), 'w') as wf: wf.write('tp: {}\n'.format(num_of_tp)) wf.write('tn: {}\n'.format(num_of_tn)) wf.write('fp: {}\n'.format(num_of_fp)) wf.write('fn: {}\n'.format(num_of_fn)) wf.write('total: {}\n'.format(num_samples)) wf.write('correct: {}\n'.format(num_of_tp)) wf.write('accuracy: {}\n'.format(accuracy)) wf.write('precision: {}\n'.format(precision)) wf.write('recall: {}\n'.format(recall)) f1 = 2 * precision * recall / (precision + recall) if precision + recall != 0 else 0 wf.write('F1: {}\n'.format(f1)) def get_data(filename): df = pd.read_csv(filename) texts = df['texts'].tolist() labels = df['labels'].tolist() return texts, labels if __name__ == '__main__': args = handle_arguments() model = None tokenizer = None if not args.model: train_X, train_Y = get_data(args.input_dir + '/train.csv', args.is_balance) dev_X, dev_Y = get_data(args.input_dir + '/dev.csv', args.is_balance) train_X += dev_X train_Y += dev_Y model, tokenizer, stopping_epoch = train( train_X, train_Y, args.lr, args.cuda_available, args.epochs, args.model_type, args.is_balance, args.batch_size, args.max_seq_length, args.patience, args.min_delta, args.baseline ) else: model = torch.load(args.model) tokenizer = torch.hub.load(TRANSFORMER_PATH, 'tokenizer', 'bert-base-cased') # cased! test_X, test_Y = get_data(args.input_dir + '/test.csv') eval_results = evaluate( model, test_X, test_Y, tokenizer, args.cuda_available, args.batch_size, args.max_seq_length, args.model_type, args.lr, stopping_epoch, args.output_dir )
35.899254
150
0.566989
924a8378e03074102f4f470ee41805bd89d04096
1,655
py
Python
djangocms_nbrender/migrations/0001_initial.py
correctiv/djangocms-nbrender
230e23a22a3e08d6e64d985da5da0a1b5cc43372
[ "MIT" ]
6
2016-03-22T09:26:44.000Z
2020-03-05T16:20:35.000Z
djangocms_nbrender/migrations/0001_initial.py
correctiv/djangocms-nbrender
230e23a22a3e08d6e64d985da5da0a1b5cc43372
[ "MIT" ]
null
null
null
djangocms_nbrender/migrations/0001_initial.py
correctiv/djangocms-nbrender
230e23a22a3e08d6e64d985da5da0a1b5cc43372
[ "MIT" ]
4
2017-12-14T08:18:22.000Z
2018-09-18T00:30:29.000Z
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import migrations, models import djangocms_nbrender.utils import djangocms_nbrender.models class Migration(migrations.Migration): dependencies = [ ('cms', '0013_urlconfrevision'), ] operations = [ migrations.CreateModel( name='Notebook', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('name', models.CharField(max_length=255)), ('slug', models.SlugField(max_length=255)), ('url', models.URLField(blank=True)), ('notebook', models.FileField(storage=djangocms_nbrender.utils.OverwriteStorage(), upload_to=djangocms_nbrender.models.get_notebook_filename, blank=True)), ], options={ 'ordering': ('name',), 'verbose_name': 'Notebook', 'verbose_name_plural': 'Notebooks', }, ), migrations.CreateModel( name='NotebookViewerCMSPlugin', fields=[ ('cmsplugin_ptr', models.OneToOneField(parent_link=True, auto_created=True, primary_key=True, serialize=False, to='cms.CMSPlugin')), ('start', models.IntegerField(null=True, blank=True)), ('count', models.IntegerField(null=True, blank=True)), ('notebook', models.ForeignKey(to='djangocms_nbrender.Notebook')), ], options={ 'abstract': False, }, bases=('cms.cmsplugin',), ), ]
36.777778
171
0.574018
0a0e6f9ca0d12d45dd00c00f80e139d097fe5600
748
py
Python
kaggle-tables/main.py
brigadadigitalmx/medical-policy-briefs
93c60d294538337cb1dd187b0dc30e3940882bf7
[ "Apache-2.0" ]
null
null
null
kaggle-tables/main.py
brigadadigitalmx/medical-policy-briefs
93c60d294538337cb1dd187b0dc30e3940882bf7
[ "Apache-2.0" ]
12
2020-04-07T20:30:34.000Z
2021-09-28T01:52:47.000Z
kaggle-tables/main.py
brigadadigitalmx/medical-policy-briefs
93c60d294538337cb1dd187b0dc30e3940882bf7
[ "Apache-2.0" ]
4
2020-04-10T03:24:43.000Z
2020-04-14T00:49:23.000Z
import re from pathlib import Path from selenium import webdriver import pandas as pd driver = webdriver.Firefox() driver.get("https://www.kaggle.com/covid-19-contributions") elems = driver.find_elements_by_class_name('c19-finding') first = elems[0] headers = first.find_elements_by_class_name('heading6') tables = first.find_elements_by_class_name('c19-table') assert len(headers) == len(tables) Path('output').mkdir(exist_ok=True) pattern = re.compile('[\W_]+') for header, table in zip(headers, tables): name = pattern.sub('_', header.text ) print(name) table_html = table.get_attribute('innerHTML') df = pd.read_html('<table>{}</table>'.format(table_html))[0] df.to_csv(str(Path('output', name+'.csv')), index=False)
27.703704
64
0.725936
54e86aef40055c8911549ee3ec692bfeb7c8ee40
5,245
py
Python
promgen/admin.py
kackey0-1/promgen
8fb7b65c8a814429a0b5f484bfec931df76c5d83
[ "MIT", "Apache-2.0", "BSD-3-Clause" ]
913
2016-08-02T03:06:09.000Z
2022-03-29T17:35:26.000Z
promgen/admin.py
kackey0-1/promgen
8fb7b65c8a814429a0b5f484bfec931df76c5d83
[ "MIT", "Apache-2.0", "BSD-3-Clause" ]
299
2016-08-08T02:48:02.000Z
2022-03-31T01:01:15.000Z
promgen/admin.py
kackey0-1/promgen
8fb7b65c8a814429a0b5f484bfec931df76c5d83
[ "MIT", "Apache-2.0", "BSD-3-Clause" ]
152
2016-08-06T08:23:15.000Z
2022-02-28T09:17:12.000Z
# Copyright (c) 2017 LINE Corporation # These sources are released under the terms of the MIT license: see LICENSE import json from django import forms from django.contrib import admin from django.utils.html import format_html from promgen import actions, models, plugins class PrometheusInline(admin.TabularInline): model = models.Prometheus class FilterInline(admin.TabularInline): model = models.Filter @admin.register(models.Host) class HostAdmin(admin.ModelAdmin): list_display = ('name', 'farm') @admin.register(models.Shard) class ShardAdmin(admin.ModelAdmin): list_display = ("name", "url", "proxy", "enabled") list_filter = ("proxy", "enabled") inlines = [PrometheusInline] actions = [ actions.shard_targets, actions.shard_rules, actions.shard_urls, ] @admin.register(models.Service) class ServiceAdmin(admin.ModelAdmin): list_display = ('name', 'owner') list_filter = (('owner', admin.RelatedOnlyFieldListFilter),) list_select_related = ('owner',) @admin.register(models.Project) class ProjectAdmin(admin.ModelAdmin): list_display = ('name', 'shard', 'service', 'farm', 'owner') list_select_related = ('service', 'farm', 'shard', 'owner') list_filter = ('shard', ('owner', admin.RelatedOnlyFieldListFilter),) class SenderForm(forms.ModelForm): sender = forms.ChoiceField(choices=[ (entry.module_name, entry.module_name) for entry in plugins.notifications() ]) class Meta: model = models.Sender exclude = ['content_object'] @admin.register(models.Sender) class SenderAdmin(admin.ModelAdmin): list_display = ('content_object', 'content_type', 'sender', 'show_value', 'owner') form = SenderForm list_filter = ('sender', 'content_type') list_select_related = ('content_type',) inlines = [FilterInline] @admin.register(models.Farm) class FarmAdmin(admin.ModelAdmin): list_display = ('name', 'source') list_filter = ('source',) @admin.register(models.Exporter) class ExporterAdmin(admin.ModelAdmin): list_display = ('job', 'port', 'path', 'project', 'enabled') list_filter = ('job', 'port',) readonly_fields = ('project',) @admin.register(models.DefaultExporter) class DefaultExporterAdmin(admin.ModelAdmin): list_display = ('job', 'port', 'path') list_filter = ('job', 'port') @admin.register(models.Probe) class ProbeAdmin(admin.ModelAdmin): list_display = ("module", "description") @admin.register(models.URL) class URLAdmin(admin.ModelAdmin): # Disable add permission and project editing because of the difficult UI # but leave support for editing url/probe through admin panel def has_add_permission(self, request): return False list_display = ("url", "probe", "project") list_filter = ("probe", ("project__service", admin.RelatedOnlyFieldListFilter)) list_select_related = ("project", "project__service", "probe") readonly_fields = ("project",) class RuleLabelInline(admin.TabularInline): model = models.RuleLabel class RuleAnnotationInline(admin.TabularInline): model = models.RuleAnnotation @admin.register(models.Rule) class RuleAdmin(admin.ModelAdmin): list_display = ('name', 'clause', 'duration', 'content_object') list_filter = ('duration',) list_select_related = ('content_type',) inlines = [RuleLabelInline, RuleAnnotationInline] def get_queryset(self, request): qs = super(RuleAdmin, self).get_queryset(request) return qs.prefetch_related('content_object',) @admin.register(models.Prometheus) class PrometheusAdmin(admin.ModelAdmin): list_display = ("shard", "host", "port") list_filter = ("shard",) actions = [ actions.prometheus_targets, actions.prometheus_rules, actions.prometheus_urls, actions.prometheus_reload, actions.prometheus_tombstones, ] @admin.register(models.Alert) class AlertAdmin(admin.ModelAdmin): def __getattr__(self, name): # Override __getattr__ so that we can return a label # for any of our special values in list_display def __get_label(label): def __wrapped(instance): try: return instance.json['commonLabels'][label] except KeyError: return '' # We give the wrapped function the same description as # our label so that it shows up right in the admin panel __wrapped.short_description = label return __wrapped if name in self.list_display: return __get_label(name) date_hierarchy = 'created' list_display = ( 'created', 'datasource', 'alertname', 'service', 'project', 'severity', 'job', ) fields = ('created', '_json') readonly_fields = ('created', '_json') ordering = ('-created',) @admin.display(description="json") def _json(self, instance): return format_html('<pre>{}</pre>', json.dumps(instance.json, indent=2)) def has_add_permission(self, request, obj=None): return False def has_change_permission(self, request, obj=None): return False
28.505435
86
0.672259
7e7df1b2cba282e14a79dd5fcf25200390493c07
5,428
py
Python
rational_number_class.py
markfoleyie/pa1_2021
b6011ff6eece29e53095a8cf69d0f2764e8d0c88
[ "MIT" ]
1
2020-10-01T20:22:40.000Z
2020-10-01T20:22:40.000Z
rational_number_class.py
markfoleyie/pa1_2021
b6011ff6eece29e53095a8cf69d0f2764e8d0c88
[ "MIT" ]
null
null
null
rational_number_class.py
markfoleyie/pa1_2021
b6011ff6eece29e53095a8cf69d0f2764e8d0c88
[ "MIT" ]
3
2020-10-29T21:19:37.000Z
2021-02-25T20:04:30.000Z
""" A simple Rational number class. This demonstrates operator overloading using the 'magic' methods such as '__add__'. """ class Rational: """ Implements a simple Rational number. Note that not all possible methods are implemented. Only a sample of the 'magic' methods which enable operator overloading are implemented. """ def __init__(self, numer, denom=1): """ Initializer method. This sets up the instance variables i.e. those prepended with 'self.' In this case we store the numerator & denominator, being the two elements that make up a rational number. An integer can be considered a rational in the form of itself over 1, hence the default. Your classes should always include an initializer method. """ self.numer = numer self.denom = denom def __str__(self): """ String representation for printing. When print(instance) is called this method is fired. Your classes should always have this method. """ return f"{self.numer} / {self.denom}" def __repr__(self): """ Representation of Rational number. This is the 'definitive' representation of an instance, usually a string representation of the code to make the instance. It's also acceptable, at this level, to just make this invoke the __str__ method. this method is invoked when you enter the instance name in an interactive editor such as IDLE or PyCharm console. Your classes should always have this method. """ return f"{self.__class__.__name__}({self.numer}, {self.denom})" def __add__(self, f): """ Add two Rationals, __add__ enables the '+' operator, thus overloading it. """ if type(f) == int: # Make sure that the second object is a rational, if it's an int then convert it. f = Rational(f) if type(f) == Rational: # find the least common multiple (lcm) this_lcm = self.lcm(self.denom, f.denom) # multiply to make denominators the same, then add numerators this_sum = (this_lcm // self.denom * self.numer) + \ (this_lcm // f.denom * f.numer) return Rational(this_sum, this_lcm) else: raise TypeError(f"Invalid type. Cannot add rational and {type(f)}.") def __radd__(self, f): """ Add two Rationals (reversed). Mapping is reversed: if "1 + x", x maps to self, and 1 maps to f. We then just call __add__ as in 'normal' addition. """ return self.__add__(f) def __iadd__(self, i): ''' Increment a rational. Implements rational += i. ''' return self.__add__(i) def __sub__(self, f): """ Subtract two Rationals. Subtraction is the same as addition with "+" changed to "-" """ this_lcm = self.lcm(self.denom, f.denom) numerator_diff = (this_lcm // self.denom * self.numer) - \ (this_lcm // f.denom * f.numer) return Rational(numerator_diff, this_lcm) def reduce_rational(self, rational): """ Return the reduced fractional value. Find the geatest common divisor (gcd) and then divide numerator and denominator by gcd. """ this_gcd = self.gcd(rational.numer, rational.denom) return Rational(rational.numer // this_gcd, rational.denom // this_gcd) def __eq__(self, f): """ Compare two Rationals for equality. Reduce both; then check that numerators and denominators are equal """ f1 = self.reduce_rational(self) f2 = f.reduce_rational(f) return f1.numer == f2.numer and f1.denom == f2.denom @staticmethod def gcd(a, b): """ Greatest common divisor. This is a utility method to calculate GCD of any rational number, so as such, it doesn't need to be in the class at all. It could be implemented as a function outside the class. However, it's convenient to store it in the class but it doesn't neet 'self'. WE call this type of method a static method. We haven't covered these yet so don't worry if you don't understand the concept. """ # Ensure that a > b, if it is not reverse a & b if not a > b: a, b = b, a print(f"Initial fraction is {a}/{b}") while b != 0: rem = a % b a, b = b, rem print(f"... {a}/{b}") print(f"GCD is {a}") return a @classmethod def lcm(cls, a, b): """ Least common multiple (LCM). Also a utility method implemented as a 'class' method. It could be a static nethod but as it calls the gcd method it needs to know its own class. Note that, instead of 'self', we use 'cls'. Again, don't worry about not understanding this concept yet. """ print(f"LCM is {a * b // cls.gcd(a, b)}") return (a * b // cls.gcd(a, b)) if __name__ == "__main__": rat1 = Rational(1, 2) rat2 = Rational(3, 4) rat6 = Rational(6, 8) rat3 = rat1 + rat2 rat4 = rat1.__add__(rat2) rat5 = Rational.__add__(rat1, rat2) rat7 = rat2 - rat2 print(rat1) print(rat2) print(f"{rat2} == {rat6} is {rat2 == rat6}") # Deliberate error rat8 = rat1 + 3.14
35.94702
115
0.602432
d760a78a562fc5634425083f5eb63174fd6ea3fb
1,017
py
Python
run.py
tr4n2uil/test-automate
ca68b2b142f987643784b1eaab69328eb979e58e
[ "MIT" ]
null
null
null
run.py
tr4n2uil/test-automate
ca68b2b142f987643784b1eaab69328eb979e58e
[ "MIT" ]
null
null
null
run.py
tr4n2uil/test-automate
ca68b2b142f987643784b1eaab69328eb979e58e
[ "MIT" ]
null
null
null
#!/usr/local/bin/python # coding: utf-8 from selenium import webdriver from selenium.webdriver.common.keys import Keys from selenium.webdriver.common.desired_capabilities import DesiredCapabilities #desired_cap = {'os': 'ios', 'device': 'iPhone 6', 'browser': 'iPhone', 'emulator': True } desired_cap = {'os': 'OS X', 'os_version': 'El Capitan', 'browser': 'Chrome', 'browser_version': '46' } driver = webdriver.Remote( #command_executor="http://vibhajrajan1:SvnxogEy3yWtWzqCuWCD@local.browserstack.com:8080/wd/hub", command_executor="http://vibhajrajan1:SvnxogEy3yWtWzqCuWCD@local.browserstack.com/wd/hub", #command_executor='https://vibhajrajan1:isx1GLKoDPyxvJwMZBso@66.201.41.7/wd/hub', desired_capabilities=desired_cap) driver.get("http://www.google.com") if not "Google" in driver.title: raise Exception("Unable to load google page!") for n in range(0, 50): print driver.title elem = driver.find_element_by_name("q") elem.send_keys(u'👿') elem.submit() print driver.title driver.quit()
37.666667
103
0.745329
dbd8b34ac2fdd238f11219430c9057fe793c44ff
4,041
py
Python
mcrouter/test/test_mcrouter.py
alynx282/mcrouter
b16af1a119eee775b051d323cb885b73fdf75757
[ "MIT" ]
null
null
null
mcrouter/test/test_mcrouter.py
alynx282/mcrouter
b16af1a119eee775b051d323cb885b73fdf75757
[ "MIT" ]
null
null
null
mcrouter/test/test_mcrouter.py
alynx282/mcrouter
b16af1a119eee775b051d323cb885b73fdf75757
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import time from mcrouter.test.MCProcess import Memcached from mcrouter.test.McrouterTestCase import McrouterTestCase from mcrouter.test.mock_servers import SleepServer from mcrouter.test.mock_servers import ConnectionErrorServer class TestDevNull(McrouterTestCase): config = './mcrouter/test/test_dev_null.json' extra_args = [] def setUp(self): # The order here must corresponds to the order of hosts in the .json self.mc_good = self.add_server(Memcached()) self.mc_wild = self.add_server(Memcached()) def get_mcrouter(self): return self.add_mcrouter(self.config, extra_args=self.extra_args) def test_dev_null(self): mcr = self.get_mcrouter() # finally setup is done mcr.set("good:key", "should_be_set") mcr.set("key", "should_be_set_wild") mcr.set("null:key", "should_not_be_set") mcgood_val = self.mc_good.get("good:key") mcnull_val = self.mc_wild.get("null:key") mcwild_val = self.mc_wild.get("key") self.assertEqual(mcgood_val, "should_be_set") self.assertEqual(mcnull_val, None) self.assertEqual(mcwild_val, "should_be_set_wild") self.assertEqual(mcr.delete("null:key2"), None) self.assertEqual(int(mcr.stats('all')['dev_null_requests']), 2) class TestDuplicateServers(McrouterTestCase): config = './mcrouter/test/test_duplicate_servers.json' extra_args = [] def setUp(self): self.wildcard = self.add_server(Memcached(), 12345) def get_mcrouter(self): return self.add_mcrouter( self.config, '/a/a/', extra_args=self.extra_args) def test_duplicate_servers(self): mcr = self.get_mcrouter() stats = mcr.stats('servers') # Check that only one proxy destination connection is made # for all the duplicate servers self.assertEqual(1, len(stats)) # Hardcoding default server timeout key = ('localhost:' + str(self.port_map[12345]) + ':ascii:plain:notcompressed-1000') self.assertTrue(key in stats) class TestDuplicateServersDiffTimeouts(McrouterTestCase): config = './mcrouter/test/test_duplicate_servers_difftimeouts.json' extra_args = [] def setUp(self): self.wildcard = self.add_server(Memcached(), 12345) def get_mcrouter(self): return self.add_mcrouter( self.config, '/a/a/', extra_args=self.extra_args) def test_duplicate_servers_difftimeouts(self): mcr = self.get_mcrouter() stats = mcr.stats('servers') # Check that only two proxy destination connections are made # for all the duplicate servers in pools with diff timeout self.assertEqual(2, len(stats)) # Hardcoding default server timeout key = ('localhost:' + str(self.port_map[12345]) + ':ascii:plain:notcompressed-1000') self.assertTrue(key in stats) key = ('localhost:' + str(self.port_map[12345]) + ':ascii:plain:notcompressed-2000') self.assertTrue(key in stats) class TestPoolServerErrors(McrouterTestCase): config = './mcrouter/test/test_pool_server_errors.json' def setUp(self): self.mc1 = self.add_server(Memcached()) # mc2 is ErrorRoute self.mc3 = self.add_server(Memcached()) def test_pool_server_errors(self): mcr = self.add_mcrouter(self.config, '/a/a/') self.assertIsNone(mcr.get('test')) stats = mcr.stats('servers') self.assertEqual(2, len(stats)) self.assertTrue(mcr.set('/b/b/abc', 'valueA')) self.assertEqual(self.mc1.get('abc'), 'valueA') self.assertFalse(mcr.set('/b/b/a', 'valueB')) self.assertTrue(mcr.set('/b/b/ab', 'valueC')) self.assertEqual(self.mc3.get('ab'), 'valueC')
33.396694
76
0.661717
5f1eac462a2dcc6007189e1e39bba852ec2a1aeb
13,212
py
Python
pycalculix/cadimporter.py
tnakaicode/-pycalculix4win
c269e66d5b234275ca7905f13d186e31864523ea
[ "Apache-2.0" ]
null
null
null
pycalculix/cadimporter.py
tnakaicode/-pycalculix4win
c269e66d5b234275ca7905f13d186e31864523ea
[ "Apache-2.0" ]
null
null
null
pycalculix/cadimporter.py
tnakaicode/-pycalculix4win
c269e66d5b234275ca7905f13d186e31864523ea
[ "Apache-2.0" ]
null
null
null
"""This module stores the CadImporter class, which is used to load CAD parts.""" import collections import math import os # needed to prevent dxfgrabber from crashing on import os.environ['DXFGRABBER_CYTHON'] = 'OFF' import dxfgrabber # needed for dxf files import subprocess # needed to run gmsh to make geo files from . import geometry from . import partmodule class CadImporter(object): """Makes an object which can import cad parts. Args: feamodel (FeaModel): model that we want to import parts into layer (int): layer to import, all entities will be flattened to one plane. -1 mean all layers, any other number is a specific layer swapxy (bool): True rotates the part from x axial to y axial scale (str): string telling the unit conversion scalar * Any option of 'fromunit-tounit' using the below units * mm, m, in, ft * Examples 'mm-m' 'm-in' 'ft-mm' 'in-ft' * Default value is '' and does not apply a scale factor Attributes: __fea (FeaModel): model __fname (str): file we want to import __layer (int): layer to import __swapxy (bool): If true, swap part from xy to yx orientation """ def __init__(self, feamodel, fname='', layer=-1, swapxy=False, scale=''): self.__fea = feamodel self.__fname = fname self.__layer = layer self.__swapxy = swapxy self.__scale = scale def load(self): """Loads the self.__fname cad file Returns: list: list of Part """ if self.__fname == '': print('You must pass in a file name to load!') return [] ext = os.path.splitext(self.__fname)[1] first_pt = None if len(self.__fea.points) > 0: first_pt = self.__fea.points[0] if ext == '.dxf': parts = self.__load_dxf() elif ext in ['.brep', '.brp', '.iges', '.igs', '.step', '.stp']: self.__make_geo() parts = self.__load_geo() last_pt = None if first_pt != None: if len(self.__fea.points) > 2: last_pt = self.__fea.points[-1] if self.__scale != '': # call scale pass return parts def __fix_tuple(self, xy_tup): """Adjusts the point to be in the right plane (yx)""" if self.__swapxy: return xy_tup[::-1] return xy_tup @staticmethod def __find_make_pt(xy_tup, points_dict): """ Returns a point if it exists within geometry.ACC or makes, stores and returns the point if it doesn't exist """ point = points_dict.get(xy_tup) if point is not None: return point xy_point = geometry.Point(xy_tup[0], xy_tup[1]) for realpoint in points_dict.values(): dist = (xy_point - realpoint).length() if dist < geometry.ACC: return realpoint points_dict[xy_tup] = xy_point return xy_point def __get_pts_lines(self, lines, arcs): """Returns a set of points, and a list of Lines and Arcs Args: lines (dxfgrabber LINE list): dxf lines arcs (dxfgrabber ARC list): dxf arcs Returns: list: [list of points, list of Line and Arc] """ # store unique points points_dict = {} all_lines = [] for ind, line in enumerate(lines): tup = self.__fix_tuple((line.start[0], line.start[1])) start = self.__find_make_pt(tup, points_dict) tup = self.__fix_tuple((line.end[0], line.end[1])) end = self.__find_make_pt(tup, points_dict) line = geometry.Line(start, end) all_lines.append(line) for ind, arc in enumerate(arcs): # dxfgrabber arcs are stored ccw when looking at xy plane # x horizontal # y vertical tup = self.__fix_tuple((arc.center[0], arc.center[1])) center = self.__find_make_pt(tup, points_dict) sign = -1 if self.__swapxy: sign = 1 startangle = arc.start_angle*sign endangle = arc.end_angle*sign angle = endangle - startangle if arc.end_angle < arc.start_angle: angle = angle + 360*sign """ print('---------------------------------------') print('| ARC') print('center: %s' % center) print('startangle: %f' % startangle) print('endangle: %f' % endangle) print('traversed_angle: %f' % angle) """ start_vect = geometry.Point(0, arc.radius) if self.__swapxy == False: start_vect = geometry.Point(arc.radius, 0) start_vect.rot_ccw_deg(arc.start_angle*sign) end_vect = geometry.Point(0, arc.radius) if self.__swapxy == False: end_vect = geometry.Point(arc.radius, 0) end_vect.rot_ccw_deg(arc.end_angle*sign) start = center + start_vect start_tup = (start.x, start.y) end = center + end_vect end_tup = (end.x, end.y) start = self.__find_make_pt(start_tup, points_dict) end = self.__find_make_pt(end_tup, points_dict) rvect = start - center if abs(angle) <= 90: arc = geometry.Arc(start, end, center) all_lines.append(arc) print('1 arc made') continue #print(' %s' % arc) pieces = math.ceil(abs(angle)/90) print('%i arcs being made' % pieces) points = [start, end] # 2 pieces need 3 points, we have start + end already --> 1 pt inserts = pieces + 1 - 2 piece_ang = angle/pieces #print('piece_ang = %f' % piece_ang) while inserts > 0: rvect.rot_ccw_deg(piece_ang) point = center + rvect tup = (point.x, point.y) point = self.__find_make_pt(tup, points_dict) points.insert(-1, point) inserts = inserts - 1 for ind in range(len(points)-1): #print(' %s' % arc) arc = geometry.Arc(points[ind], points[ind+1], center) all_lines.append(arc) for line in all_lines: line.save_to_points() return [list(points_dict.values()), all_lines] def __make_geo(self): """Makes a gmsh geo file given a step, iges, or brep input""" # gmsh freecad_part.iges -o out_iges.geo -0 fname_list = self.__fname.split('.') geo_file = fname_list[0]+'.geo' runstr = "%s %s -o %s -0" % (os.getenv("GMSH"), self.__fname, geo_file) print(runstr) subprocess.call(runstr, shell=True) print('Wrote file: %s' % geo_file) def __load_geo(self): """Loads in a gmsh geo file and returns a list of parts Returns: list: list of Part """ pass # process any splines? and turn them into arcs # http://www.mathopenref.com/constcirclecenter.html # find max dist between points # double it # select two segments # draw normal lines # find intersections, that is the center @staticmethod def __dangling_points(all_points): return [point for point in all_points if len(point.lines) == 1 and not point.arc_center] def __load_dxf(self): """Loads in a dxf file and returns a list of parts Returns: list: list of Part """ print('Loading file: %s' % self.__fname) dwg = dxfgrabber.readfile(self.__fname) lines = [item for item in dwg.entities if item.dxftype == 'LINE'] arcs = [item for item in dwg.entities if item.dxftype == 'ARC'] if self.__layer > -1: lines = [item for item in lines if item.layer == self.__layer] arcs = [item for item in arcs if item.layer == self.__layer] print('File read.') print('Loaded %i lines' % len(lines)) print('Loaded %i arcs' % len(arcs)) print('Loaded %i line segments, lines or arcs' % (len(lines)+len(arcs))) # get all points and Line and Arc using pycalculix entities print('Converting to pycalculix lines arcs and points ...') all_points, all_lines = self.__get_pts_lines(lines, arcs) print('Loaded %i line segments, lines or arcs' % len(all_lines)) print('Loaded %i points' % len(all_points)) # for point in all_points: # print('%s %s' % (point, point.lines)) # for line in all_lines: # print('%s %s' % (line, line.points)) # remove all lines that are not part of areas dangling_points = self.__dangling_points(all_points) pruned_geometry = bool(dangling_points) while dangling_points: for point in dangling_points: all_points.remove(point) print('Removed point= %s' % point) dangling_line = list(point.lines)[0] point.unset_line(dangling_line) if dangling_line in all_lines: all_lines.remove(dangling_line) print('Removed line= %s' % dangling_line) dangling_points = self.__dangling_points(all_points) if pruned_geometry: print('Remaining line segments: %i' % len(all_lines)) print('Remaining points: %i' % len(all_points)) # make line all_loops now all_loops = [] line = all_lines[0] this_loop = geometry.LineLoop() while len(all_lines) > 0: this_loop.append(line) all_lines.remove(line) if this_loop.closed == True: all_loops.append(this_loop) this_loop = geometry.LineLoop() if all_lines: line = all_lines[0] continue point = line.pt(1) other_lines = point.lines - set([line]) if len(other_lines) > 1: # note: one could exclude connected segment nodes # make disconnected line all_loops, then have another # loop to connect thos disconnected line all_loops print('One point was connected to > 2 lines.') print('Only import simple part all_loops, or surfaces.') raise Exception('Import geometry is too complex') next_line = list(other_lines)[0] if line.pt(1) != next_line.pt(0): next_line.reverse() line = next_line # find exterior loops exterior_loops = [] for ind, loop in enumerate(all_loops): other_loops = all_loops[ind+1:] other_loops.extend(exterior_loops) is_exterior = True for other_loop in other_loops: if loop.inside(other_loop): is_exterior = False break if is_exterior: # exterior must be clockwise if loop.ccw: loop.reverse() exterior_loops.append(loop) # remove the found part exterior loops from all_loops for exterior_loop in exterior_loops: all_loops.remove(exterior_loop) # each part in parts is a list of line all_loops # [exterior, hole1, hole2] parts = [[exterior_loop] for exterior_loop in exterior_loops] # now place the child hole loops after the part exterior loop for part_loops in parts: exterior_loop = part_loops[0] # find child holes for hole_loop in all_loops: if hole_loop.inside(exterior_loop): hole_loop.hole = True # holes must be ccw if not hole_loop.ccw: hole_loop.reverse() part_loops.append(hole_loop) # remove child holes from loop list for hole_loop in part_loops[1:]: all_loops.remove(hole_loop) # make parts parts_list = [] for part_loops in parts: this_part = partmodule.Part(self.__fea) for ind, loop in enumerate(part_loops): is_hole = loop.hole start = loop[0].pt(0) this_part.goto(start.x, start.y, is_hole) for item in loop: if isinstance(item, geometry.Line): end = item.pt(1) this_part.draw_line_to(end.x, end.y) elif isinstance(item, geometry.Arc): end = item.pt(1) center = item.actr this_part.draw_arc(end.x, end.y, center.x, center.y) parts_list.append(this_part) print('Parts created: %i' % len(parts_list)) return parts_list
39.321429
82
0.548819
671a2e7e071ec01724b5691461ac1b52c3e191bc
6,404
py
Python
NLP/GPT2/run_generation.py
LiuHaolan/models
1639b3039237c3997c51ff87f0b6113bb2e8d236
[ "Apache-2.0" ]
null
null
null
NLP/GPT2/run_generation.py
LiuHaolan/models
1639b3039237c3997c51ff87f0b6113bb2e8d236
[ "Apache-2.0" ]
null
null
null
NLP/GPT2/run_generation.py
LiuHaolan/models
1639b3039237c3997c51ff87f0b6113bb2e8d236
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python3 # coding=utf-8 # Copyright 2018 Google AI, Google Brain and Carnegie Mellon University Authors and the HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Conditional text generation with the auto-regressive models of the library (GPT/GPT-2) """ from __future__ import absolute_import, division, print_function, unicode_literals import argparse import logging from tqdm import trange import oneflow as flow import numpy as np from model_config import GPT2Config from model import GPT2LMHeadModel from tokenizer import build_tokenizer logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt = '%m/%d/%Y %H:%M:%S', level = logging.INFO) logger = logging.getLogger(__name__) MAX_LENGTH = int(10000) # Hardcoded max length to avoid infinite loop def set_seed(args): np.random.seed(args.seed) flow.manual_seed(args.seed) def top_k_top_p_filtering(logits, top_k=0, top_p=0.0, filter_value=-float('Inf')): """ Filter a distribution of logits using top-k and/or nucleus (top-p) filtering Args: logits: logits distribution shape (vocabulary size) top_k > 0: keep only top k tokens with highest probability (top-k filtering). top_p > 0.0: keep the top tokens with cumulative probability >= top_p (nucleus filtering). Nucleus filtering is described in Holtzman et al. (http://arxiv.org/abs/1904.09751) From: https://gist.github.com/thomwolf/1a5a29f6962089e871b94cbd09daf317 """ top_k = min(top_k, logits.size(-1)) # Safety check if top_k > 0: # Remove all tokens with a probability less than the last token of the top-k indices_to_remove = logits < flow.topk(logits, top_k)[0][..., -1, None] logits[indices_to_remove] = filter_value # todo: support top_p # if top_p > 0.0: # sorted_logits, sorted_indices = flow.sort(logits, descending=True) # cumulative_probs = flow.cumsum(flow.softmax(sorted_logits, dim=-1), dim=-1) # # Remove tokens with cumulative probability above the threshold # sorted_indices_to_remove = cumulative_probs > top_p # # Shift the indices to the right to keep also the first token above the threshold # sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone() # sorted_indices_to_remove[..., 0] = 0 # indices_to_remove = sorted_indices[sorted_indices_to_remove] # logits[indices_to_remove] = filter_value return logits def sample_sequence(model, length, context, num_samples=1, temperature=1, top_k=1, top_p=0.0, device='cuda'): context = flow.tensor(context, dtype=flow.long, device=device) context = context.unsqueeze(0).repeat(num_samples, 1) generated = context past_key_values = None with flow.no_grad(): for _ in trange(length): outputs = model(generated, past_key_values=past_key_values, use_cache=True) logits, past_key_values = outputs[:2] next_token_logits = logits[:, -1, :] / temperature filtered_logits = top_k_top_p_filtering(next_token_logits, top_k=top_k, top_p=top_p) probs = filtered_logits.softmax(-1) next_token = probs.argmax(-1) # next_token = flow.multinomial(flow.softmax(filtered_logits, dim=-1), num_samples=1) generated = flow.cat((generated, next_token.unsqueeze(0)), dim=1) return generated def main(): parser = argparse.ArgumentParser() parser.add_argument("--vocab_file", default="gpt2-vocab.json", type=str) parser.add_argument("--merges_file", default="gpt2-merges.txt", type=str) parser.add_argument("--restore_file", default="gpt2_oneflow_model", type=str, help="Path to pre-trained model") parser.add_argument("--prompt", type=str, default="") parser.add_argument("--length", type=int, default=20) parser.add_argument("--temperature", type=float, default=1.0) parser.add_argument("--top_k", type=int, default=1) parser.add_argument("--top_p", type=float, default=0.9) parser.add_argument("--no_cuda", action='store_true', help="Avoid using CUDA when available") parser.add_argument('--seed', type=int, default=42, help="random seed for initialization") args = parser.parse_args() args.device = flow.device("cuda" if not args.no_cuda else "cpu") set_seed(args) tokenizer = build_tokenizer(vocab_file=args.vocab_file, merges_file=args.merges_file, tokenizer_type="GPT2BPETokenizer") config = GPT2Config() model = GPT2LMHeadModel(config) if args.restore_file is not None: model.load_state_dict(flow.load(args.restore_file)) model.lm_head.weight = model.transformer.wte.weight model.to(args.device) model.eval() if args.length < 0 and config.max_position_embeddings > 0: args.length = config.max_position_embeddings elif 0 < config.max_position_embeddings < args.length: args.length = config.max_position_embeddings # No generation bigger than model size elif args.length < 0: args.length = MAX_LENGTH # avoid infinite loop print(args) while True: raw_text = args.prompt if args.prompt else input("Model prompt >>> ") context_tokens = tokenizer.tokenize(raw_text) out = sample_sequence( model=model, context=context_tokens, length=args.length, temperature=args.temperature, top_k=args.top_k, top_p=args.top_p, device=args.device, ) out = out[0, len(context_tokens):].tolist() text = tokenizer.detokenize(out) print(text) if args.prompt: break return text if __name__ == '__main__': main()
41.856209
124
0.686914
e5107e1707993e6b0ea9a6e4a05a7c8e57202625
115
py
Python
pylint_beergarden/__init__.py
gershwinlabs/pylint-beergarden
1a581c4dbf73eb5b1cd3b945291d9c0aca0cd55c
[ "MIT" ]
null
null
null
pylint_beergarden/__init__.py
gershwinlabs/pylint-beergarden
1a581c4dbf73eb5b1cd3b945291d9c0aca0cd55c
[ "MIT" ]
null
null
null
pylint_beergarden/__init__.py
gershwinlabs/pylint-beergarden
1a581c4dbf73eb5b1cd3b945291d9c0aca0cd55c
[ "MIT" ]
null
null
null
# vim: expandtab tabstop=4 shiftwidth=4 from pylint_beergarden import plugin, checker register = plugin.register
19.166667
45
0.808696
00dc588a4688a086685c490e20bd1bd7c71b2a19
2,068
py
Python
homeassistant/components/binary_sensor/modbus.py
EmitKiwi/home-assistant
0999e2ddc476f4bddf710005168b082f03a7cdc0
[ "Apache-2.0" ]
37
2018-05-22T07:17:26.000Z
2022-03-03T13:14:46.000Z
homeassistant/components/binary_sensor/modbus.py
EmitKiwi/home-assistant
0999e2ddc476f4bddf710005168b082f03a7cdc0
[ "Apache-2.0" ]
125
2018-12-11T07:31:20.000Z
2021-07-27T08:20:03.000Z
homeassistant/components/binary_sensor/modbus.py
EmitKiwi/home-assistant
0999e2ddc476f4bddf710005168b082f03a7cdc0
[ "Apache-2.0" ]
8
2018-05-30T20:05:26.000Z
2021-02-19T14:17:05.000Z
""" Support for Modbus Coil sensors. For more details about this platform, please refer to the documentation at https://home-assistant.io/components/binary_sensor.modbus/ """ import logging import voluptuous as vol import homeassistant.components.modbus as modbus from homeassistant.const import CONF_NAME, CONF_SLAVE from homeassistant.components.binary_sensor import BinarySensorDevice from homeassistant.helpers import config_validation as cv from homeassistant.components.sensor import PLATFORM_SCHEMA _LOGGER = logging.getLogger(__name__) DEPENDENCIES = ['modbus'] CONF_COIL = 'coil' CONF_COILS = 'coils' PLATFORM_SCHEMA = PLATFORM_SCHEMA.extend({ vol.Required(CONF_COILS): [{ vol.Required(CONF_COIL): cv.positive_int, vol.Required(CONF_NAME): cv.string, vol.Optional(CONF_SLAVE): cv.positive_int }] }) def setup_platform(hass, config, add_devices, discovery_info=None): """Set up the Modbus binary sensors.""" sensors = [] for coil in config.get(CONF_COILS): sensors.append(ModbusCoilSensor( coil.get(CONF_NAME), coil.get(CONF_SLAVE), coil.get(CONF_COIL))) add_devices(sensors) class ModbusCoilSensor(BinarySensorDevice): """Modbus coil sensor.""" def __init__(self, name, slave, coil): """Initialize the modbus coil sensor.""" self._name = name self._slave = int(slave) if slave else None self._coil = int(coil) self._value = None @property def name(self): """Return the name of the sensor.""" return self._name @property def is_on(self): """Return the state of the sensor.""" return self._value def update(self): """Update the state of the sensor.""" result = modbus.HUB.read_coils(self._slave, self._coil, 1) try: self._value = result.bits[0] except AttributeError: _LOGGER.error( 'No response from modbus slave %s coil %s', self._slave, self._coil)
28.722222
74
0.663443
289c8317fafc084793c303577de5a0a539d2555d
4,464
py
Python
CybORG/CybORG/Shared/BaselineRewardCalculator.py
rafvasq/cage-challenge-1
95affdfa38afc1124f1a1a09c92fbc0ed5b96318
[ "MIT" ]
18
2021-08-20T15:07:55.000Z
2022-03-11T12:05:15.000Z
CybORG/CybORG/Shared/BaselineRewardCalculator.py
rafvasq/cage-challenge-1
95affdfa38afc1124f1a1a09c92fbc0ed5b96318
[ "MIT" ]
7
2021-11-09T06:46:58.000Z
2022-03-31T12:35:06.000Z
CybORG/CybORG/Shared/BaselineRewardCalculator.py
rafvasq/cage-challenge-1
95affdfa38afc1124f1a1a09c92fbc0ed5b96318
[ "MIT" ]
13
2021-08-17T00:26:31.000Z
2022-03-29T20:06:45.000Z
# Copyright DST Group. Licensed under the MIT license. from CybORG.Shared.Actions.Action import Action from CybORG.Shared.RewardCalculator import RewardCalculator WIN_REWARD = 1 LOSE_REWARD = -1 REWARD_MAX_DECIMAL_PLACES = 3 REWARD_DIFF_SCALE_FACTOR = 1000 class BaselineRewardCalculator(RewardCalculator): def __init__(self, agent_name: str): super().__init__(agent_name) self.previous_diff = 0 self.flat = True def calculate_reward(self, current_state: dict, action: Action, agent_observations: dict, done: bool): reward = 0 if done: # check for win win = True for key, host in current_state.items(): if key != "success" and isinstance(host, dict): for session in host.get("Sessions", []): if "Agent" in session and session["Agent"] == "Red": win = False break if not win: break # check for win or loss if win: reward += WIN_REWARD else: reward += LOSE_REWARD current_diff = 0 for i in range(len(self.init_state)): if self.init_state[i] != flat_fixed_state[i]: current_diff -= 1 # Code for calculating reward with recursive methods. # Note that self.init_state will need to be an observation # rather than a flat fixed list for this to work # # current_diff = self.obs_diff(self.init_state.get_dict(), # current_state.get_dict()) diff = (current_diff - self.previous_diff) reward += diff / REWARD_DIFF_SCALE_FACTOR self.previous_diff = current_diff self.previous_state = flat_fixed_state self.previous_obs = agent_observations self.tick() return round(reward, REWARD_MAX_DECIMAL_PLACES) # Method to find number of differences between two observations as # dictionaries def obs_diff(self, init, current): reward = 0 if init == current: return reward list_init = {} list_current = {} val_init = {} val_current = {} shared_keys = [] for k, v in current.items(): if type(v) is dict: if k in init: reward += self.obs_diff(init[k], current[k]) shared_keys.append(k) else: reward -= 1 + self.obs_size(v) elif type(v) is list: list_current[k] = v else: val_current[k] = v for k, v in init.items(): if type(v) is dict: if k not in shared_keys: reward -= 1 + self.obs_size(init[k]) elif type(v) is list: list_init[k] = v else: val_init[k] = v for k, v in list_init.items(): if k in list_current: for d_init in v: for d_cur in list_current[k]: if d_init == d_cur: v.remove(d_init) list_current[k].remove(d_cur) for i in range(len(v)): if i < len(list_current[k]): reward += self.obs_diff(v[i], list_current[k][i]) else: reward -= self.obs_size(v[i]) for i in range(len(v), len(list_current[k])): reward -= self.obs_size(list_current[k][i]) list_current.pop(k) else: reward -= 1 for d in v: reward -= self.obs_size(d) for k, v in list_current.items(): reward -= 1 for d in v: reward -= self.obs_size(d) reward -= len(dict(val_init.items() ^ val_current.items())) return reward # Method to find the size of an observation as a dictionary def obs_size(self, d): count = 0 for k, v in d.items(): if type(v) is dict: count += 1 + self.obs_size(v) elif type(v) is list: count += 1 for i in v: count += self.obs_size(i) else: count += 1 return count
33.56391
106
0.499776
85714bb7a1ae08a253c7b81a878b4d2d5fb5b727
278
py
Python
paramiko_tutorial/files.py
Full-Stack-Cloud-Developer/paramiko-tutorial
e890a9770ef896fde43e93d683470b9ae736453c
[ "MIT" ]
1
2020-11-25T12:46:10.000Z
2020-11-25T12:46:10.000Z
paramiko_tutorial/files.py
jbrdge/paramiko-tutorial
90151d4b432e69f089a41079a05387d8c235e697
[ "MIT" ]
null
null
null
paramiko_tutorial/files.py
jbrdge/paramiko-tutorial
90151d4b432e69f089a41079a05387d8c235e697
[ "MIT" ]
null
null
null
"""Find local files to be uploaded to remote host.""" import os def fetch_local_files(local_file_dir): """Create list of file paths.""" local_files = os.walk(local_file_dir) for root, dirs, files in local_files: return [f'{root}/{file}' for file in files]
27.8
53
0.683453
15daf5fc39f3766110be8a8f733f328fe07b3d76
490
py
Python
data/scripts/templates/object/tangible/ship/components/droid_interface/shared_ddi_sfs_imperial_2.py
obi-two/GameServer
7d37024e2291a97d49522610cd8f1dbe5666afc2
[ "MIT" ]
20
2015-02-23T15:11:56.000Z
2022-03-18T20:56:48.000Z
data/scripts/templates/object/tangible/ship/components/droid_interface/shared_ddi_sfs_imperial_2.py
apathyboy/swganh
665128efe9154611dec4cb5efc61d246dd095984
[ "MIT" ]
null
null
null
data/scripts/templates/object/tangible/ship/components/droid_interface/shared_ddi_sfs_imperial_2.py
apathyboy/swganh
665128efe9154611dec4cb5efc61d246dd095984
[ "MIT" ]
20
2015-04-04T16:35:59.000Z
2022-03-24T14:54:37.000Z
#### NOTICE: THIS FILE IS AUTOGENERATED #### MODIFICATIONS MAY BE LOST IF DONE IMPROPERLY #### PLEASE SEE THE ONLINE DOCUMENTATION FOR EXAMPLES from swgpy.object import * def create(kernel): result = Tangible() result.template = "object/tangible/ship/components/droid_interface/shared_ddi_sfs_imperial_2.iff" result.attribute_template_id = 8 result.stfName("space/space_item","ddi_sfs_imperial_2_n") #### BEGIN MODIFICATIONS #### #### END MODIFICATIONS #### return result
28.823529
98
0.746939
1d75f6c94f340178a26d4fd94c2c4311c301cd1b
5,120
py
Python
private_sharing/urls.py
danamlewis/open-humans
9b08310cf151f49032b66ddd005bbd47d466cc4e
[ "MIT" ]
57
2016-09-01T21:55:52.000Z
2022-03-27T22:15:32.000Z
private_sharing/urls.py
danamlewis/open-humans
9b08310cf151f49032b66ddd005bbd47d466cc4e
[ "MIT" ]
464
2015-03-23T18:08:28.000Z
2016-08-25T04:57:36.000Z
private_sharing/urls.py
danamlewis/open-humans
9b08310cf151f49032b66ddd005bbd47d466cc4e
[ "MIT" ]
25
2017-01-24T16:23:27.000Z
2021-11-07T01:51:42.000Z
from django.urls import path, re_path from django.views.generic import TemplateView from . import views app_name = "direct-sharing" urlpatterns = [ path( "projects/oauth2/create/", views.CreateOAuth2DataRequestProjectView.as_view(), name="create-oauth2", ), path( "projects/on-site/create/", views.CreateOnSiteDataRequestProjectView.as_view(), name="create-on-site", ), re_path( r"^projects/registered_datatypes/(?P<slug>[a-z0-9_-]+)/$", views.SelectDatatypesView.as_view(), name="select-datatypes", ), re_path( r"^projects/on-site/join/(?P<slug>[a-z0-9_-]+)/$", views.JoinOnSiteDataRequestProjectView.as_view(), name="join-on-site", ), re_path( r"^projects/on-site/authorize/(?P<slug>[a-z0-9_-]+)/$", views.AuthorizeOnSiteDataRequestProjectView.as_view(), name="authorize-on-site", ), # Override /oauth2/authorize/ to specify our own context data path( "projects/oauth2/authorize/", views.AuthorizeOAuth2ProjectView.as_view(), name="authorize-oauth2", ), path( "authorize-inactive/", TemplateView.as_view(template_name="private_sharing/authorize-inactive.html"), name="authorize-inactive", ), re_path( r"^projects/leave/(?P<pk>[0-9]+)/$", views.ProjectLeaveView.as_view(), name="leave-project", ), re_path( r"^projects/oauth2/update/(?P<slug>[a-z0-9_-]+)/$", views.UpdateOAuth2DataRequestProjectView.as_view(), name="update-oauth2", ), re_path( r"^projects/on-site/update/(?P<slug>[a-z0-9_-]+)/$", views.UpdateOnSiteDataRequestProjectView.as_view(), name="update-on-site", ), re_path( r"^projects/oauth2/(?P<slug>[a-z0-9_-]+)/$", views.OAuth2DataRequestProjectDetailView.as_view(), name="detail-oauth2", ), re_path( r"^projects/on-site/(?P<slug>[a-z0-9_-]+)/$", views.OnSiteDataRequestProjectDetailView.as_view(), name="detail-on-site", ), path( "projects/manage/", views.ManageDataRequestActivitiesView.as_view(), name="manage-projects", ), re_path( r"^projects/message/(?P<slug>[a-z0-9_-]+)/$", views.MessageProjectMembersView.as_view(), name="message-members", ), re_path( r"^projects/remove-members/(?P<slug>[a-z0-9_-]+)/$", views.RemoveProjectMembersView.as_view(), name="remove-members", ), re_path( r"^projects/withdrawn-members/(?P<slug>[a-z0-9_-]+)/$", views.DataRequestProjectWithdrawnView.as_view(), name="withdrawn-members", ), re_path( r"^in-development/$", views.InDevelopmentView.as_view(), name="in-development" ), # Documentation path("overview/", views.OverviewView.as_view(), name="overview"), path( "approval/", TemplateView.as_view(template_name="direct-sharing/approval.html"), name="project-approval", ), path( "on-site-features/", TemplateView.as_view(template_name="direct-sharing/on-site-features.html"), name="on-site-features", ), path( "on-site-setup/", TemplateView.as_view(template_name="direct-sharing/on-site-setup.html"), name="on-site-setup", ), path( "on-site-data-access/", TemplateView.as_view(template_name="direct-sharing/on-site-data-access.html"), name="on-site-data-access", ), path( "on-site-messages/", TemplateView.as_view(template_name="direct-sharing/on-site-messages.html"), name="on-site-messages", ), path( "on-site-member-removal/", TemplateView.as_view( template_name="direct-sharing/on-site-member-removal.html" ), name="on-site-member-removal", ), path( "on-site-data-upload/", TemplateView.as_view(template_name="direct-sharing/on-site-data-upload.html"), name="on-site-data-upload", ), path( "oauth2-features/", TemplateView.as_view(template_name="direct-sharing/oauth2-features.html"), name="oauth2-features", ), path( "oauth2-setup/", TemplateView.as_view(template_name="direct-sharing/oauth2-setup.html"), name="oauth2-setup", ), path( "oauth2-data-access/", TemplateView.as_view(template_name="direct-sharing/oauth2-data-access.html"), name="oauth2-data-access", ), path( "oauth2-messages/", TemplateView.as_view(template_name="direct-sharing/oauth2-messages.html"), name="oauth2-messages", ), path( "oauth2-member-removal/", TemplateView.as_view(template_name="direct-sharing/oauth2-member-removal.html"), name="oauth2-member-removal", ), path( "oauth2-data-upload/", TemplateView.as_view(template_name="direct-sharing/oauth2-data-upload.html"), name="oauth2-data-upload", ), ]
31.411043
88
0.604297
1aae79f49423c7b3ae9372c5d001c1edb7ffb5ab
6,197
py
Python
rl_player_train.py
ScarfZapdos/showdownbot
02c5ee6d8fb76fbaa5dc4f8b41e2ab6e29d6024d
[ "MIT" ]
null
null
null
rl_player_train.py
ScarfZapdos/showdownbot
02c5ee6d8fb76fbaa5dc4f8b41e2ab6e29d6024d
[ "MIT" ]
null
null
null
rl_player_train.py
ScarfZapdos/showdownbot
02c5ee6d8fb76fbaa5dc4f8b41e2ab6e29d6024d
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- import numpy as np import tensorflow as tf import os from poke_env.player.env_player import Gen8EnvSinglePlayer from poke_env.player.random_player import RandomPlayer from rl.agents.dqn import DQNAgent from rl.policy import LinearAnnealedPolicy, EpsGreedyQPolicy from rl.memory import SequentialMemory from tensorflow.keras.layers import Dense, Flatten from tensorflow.keras.models import Sequential from tensorflow.keras.optimizers import Adam from tensorflow.python.keras.backend import set_session, get_session #DEEPLY INSPIRED BY POKE-ENV EXAMPLE tf_config = tf.compat.v1.ConfigProto( device_count={'GPU': 0}, intra_op_parallelism_threads=1, allow_soft_placement=True) tf_config.gpu_options.allow_growth = True tf_config.gpu_options.per_process_gpu_memory_fraction = 0.6 tf.keras.backend.clear_session() sess = tf.compat.v1.Session(config=tf_config) graph = tf.compat.v1.get_default_graph() # We define our RL player # It needs a state embedder and a reward computer, hence these two methods class SimpleRLPlayer(Gen8EnvSinglePlayer): def embed_battle(self, battle): # -1 indicates that the move does not have a base power # or is not available moves_base_power = -np.ones(4) moves_dmg_multiplier = np.ones(4) for i, move in enumerate(battle.available_moves): moves_base_power[i] = ( move.base_power / 100 ) # Simple rescaling to facilitate learning if move.type and battle.opponent_active_pokemon: moves_dmg_multiplier[i] = move.type.damage_multiplier( battle.opponent_active_pokemon.type_1, battle.opponent_active_pokemon.type_2, ) # We count how many pokemons have not fainted in each team remaining_mon_team = ( len([mon for mon in battle.team.values() if mon.fainted]) / 6 ) remaining_mon_opponent = ( len([mon for mon in battle.opponent_team.values() if mon.fainted]) / 6 ) # Final vector with 10 components return np.concatenate( [ moves_base_power, moves_dmg_multiplier, [remaining_mon_team, remaining_mon_opponent], ] ) def compute_reward(self, battle) -> float: return self.reward_computing_helper( battle, fainted_value=2, hp_value=1, victory_value=30 ) class MaxDamagePlayer(RandomPlayer): def choose_move(self, battle): # If the player can attack, it will if battle.available_moves: # Finds the best move among available ones best_move = max(battle.available_moves, key=lambda move: move.base_power) return self.create_order(best_move) # If no attack is available, a random switch will be made else: return self.choose_random_move(battle) NB_TRAINING_STEPS = 5000 NB_EVALUATION_EPISODES = 100 tf.random.set_seed(0) np.random.seed(0) # This is the function that will be used to train the dqn def dqn_training(player, dqn, nb_steps): global sess global graph with graph.as_default(): set_session(sess) dqn.fit(player, nb_steps=nb_steps) player.complete_current_battle() def dqn_evaluation(player, dqn, nb_episodes): # Reset battle statistics global sess global graph with graph.as_default(): set_session(sess) player.reset_battles() dqn.test(player, nb_episodes=nb_episodes, visualize=False, verbose=False) print( "DQN Evaluation: %d victories out of %d episodes" % (player.n_won_battles, nb_episodes) ) if __name__ == "__main__": env_player = SimpleRLPlayer(battle_format="gen8randombattle") print(env_player.action_space) opponent = RandomPlayer(battle_format="gen8randombattle") second_opponent = MaxDamagePlayer(battle_format="gen8randombattle") # Output dimension n_action = len(env_player.action_space) model = Sequential() model.add(Dense(128, activation="elu", name='Input', input_shape=(1, 10))) # Our embedding have shape (1, 10), which affects our hidden layer # dimension and output dimension # Flattening resolve potential issues that would arise otherwise model.add(Flatten(name='Flatten1')) model.add(Dense(64, name='Hidden1', activation="elu")) model.add(Dense(n_action, name='Hidden2', activation="linear")) memory = SequentialMemory(limit=5000, window_length=1) # Simple epsilon greedy policy = LinearAnnealedPolicy( EpsGreedyQPolicy(), attr="eps", value_max=1.0, value_min=0.05, value_test=0, nb_steps=5000, ) # Defining our DQN dqn = DQNAgent( model=model, nb_actions=len(env_player.action_space), policy=policy, memory=memory, nb_steps_warmup=750, gamma=0.5, target_model_update=1, delta_clip=0.01, enable_double_dqn=True, ) init = tf.compat.v1.global_variables_initializer() sess.run(init) dqn.compile(Adam(lr=0.00025), metrics=["mae"]) # Training with graph.as_default(): env_player.play_against( env_algorithm=dqn_training, opponent=opponent, env_algorithm_kwargs={"dqn": dqn, "nb_steps": NB_TRAINING_STEPS}, ) model.save("model_%d" % NB_TRAINING_STEPS) # Evaluation print("Results against random player:") env_player.play_against( env_algorithm=dqn_evaluation, opponent=opponent, env_algorithm_kwargs={"dqn": dqn, "nb_episodes": NB_EVALUATION_EPISODES}, ) print("\nResults against max player:") env_player.play_against( env_algorithm=dqn_evaluation, opponent=second_opponent, env_algorithm_kwargs={"dqn": dqn, "nb_episodes": NB_EVALUATION_EPISODES}, )
31.943299
86
0.648701
747390a1ab0557c66ea8a047e2e1c213ed918e00
21,530
py
Python
urllib3/util/selectors.py
lslebodn/urllib3
da86fb6c3f44281d808ceb14d8f2a01895cab6e5
[ "MIT" ]
null
null
null
urllib3/util/selectors.py
lslebodn/urllib3
da86fb6c3f44281d808ceb14d8f2a01895cab6e5
[ "MIT" ]
null
null
null
urllib3/util/selectors.py
lslebodn/urllib3
da86fb6c3f44281d808ceb14d8f2a01895cab6e5
[ "MIT" ]
null
null
null
# Backport of selectors.py from Python 3.5+ to support Python < 3.4 # Also has the behavior specified in PEP 475 which is to retry syscalls # in the case of an EINTR error. This module is required because selectors34 # does not follow this behavior and instead returns that no dile descriptor # events have occurred rather than retry the syscall. The decision to drop # support for select.devpoll is made to maintain 100% test coverage. import errno import math import select import socket import sys import time from collections import namedtuple from ..packages.six import integer_types try: from collections.abc import Mapping except ImportError: from collections import Mapping try: monotonic = time.monotonic except (AttributeError, ImportError): # Python 3.3< monotonic = time.time EVENT_READ = (1 << 0) EVENT_WRITE = (1 << 1) HAS_SELECT = True # Variable that shows whether the platform has a selector. _SYSCALL_SENTINEL = object() # Sentinel in case a system call returns None. _DEFAULT_SELECTOR = None class SelectorError(Exception): def __init__(self, errcode): super(SelectorError, self).__init__() self.errno = errcode def __repr__(self): return "<SelectorError errno={0}>".format(self.errno) def __str__(self): return self.__repr__() def _fileobj_to_fd(fileobj): """ Return a file descriptor from a file object. If given an integer will simply return that integer back. """ if isinstance(fileobj, integer_types): fd = fileobj else: try: fd = int(fileobj.fileno()) except (AttributeError, TypeError, ValueError): raise ValueError("Invalid file object: {0!r}".format(fileobj)) if fd < 0: raise ValueError("Invalid file descriptor: {0}".format(fd)) return fd # Determine which function to use to wrap system calls because Python 3.5+ # already handles the case when system calls are interrupted. if sys.version_info >= (3, 5): def _syscall_wrapper(func, _, *args, **kwargs): """ This is the short-circuit version of the below logic because in Python 3.5+ all system calls automatically restart and recalculate their timeouts. """ try: return func(*args, **kwargs) except (OSError, IOError, select.error) as e: errcode = None if hasattr(e, "errno"): errcode = e.errno raise SelectorError(errcode) else: def _syscall_wrapper(func, recalc_timeout, *args, **kwargs): """ Wrapper function for syscalls that could fail due to EINTR. All functions should be retried if there is time left in the timeout in accordance with PEP 475. """ if recalc_timeout and "timeout" not in kwargs: raise ValueError( "Timeout must be in kwargs to be recalculated") # timeout for recalcultion must be a keyword argument timeout = kwargs.get("timeout", None) # Based on the timeout, determine call expiry time if timeout is None: expires = None recalc_timeout = False else: timeout = float(timeout) if timeout < 0.0: # Timeout less than 0 treated as no timeout. expires = None else: expires = monotonic() + timeout result = _SYSCALL_SENTINEL while result is _SYSCALL_SENTINEL: try: result = func(*args, **kwargs) # OSError is thrown by select.select # IOError is thrown by select.epoll.poll # select.error is thrown by select.poll.poll # Aren't we thankful for Python 3.x rework for exceptions? except (OSError, IOError, select.error) as e: # select.error wasn't a subclass of OSError in the past. errcode = None if hasattr(e, "errno") and e.errno is not None: errcode = e.errno elif hasattr(e, "args"): errcode = e.args[0] # Also test for the Windows equivalent of EINTR. is_interrupt = (errcode == errno.EINTR or (hasattr(errno, "WSAEINTR") and errcode == errno.WSAEINTR)) if is_interrupt: if expires is not None: current_time = monotonic() if current_time > expires: raise OSError(errno.ETIMEDOUT, "Connection timed out") if recalc_timeout: kwargs["timeout"] = expires - current_time continue if errcode: raise SelectorError(errcode) else: raise return result SelectorKey = namedtuple('SelectorKey', ['fileobj', 'fd', 'events', 'data']) class _SelectorMapping(Mapping): """ Mapping of file objects to selector keys """ def __init__(self, selector): self._selector = selector def __len__(self): return len(self._selector._fd_to_key) def __getitem__(self, fileobj): try: fd = self._selector._fileobj_lookup(fileobj) return self._selector._fd_to_key[fd] except KeyError: raise KeyError("{0!r} is not registered.".format(fileobj)) def __iter__(self): return iter(self._selector._fd_to_key) class BaseSelector(object): """ Abstract Selector class A selector supports registering file objects to be monitored for specific I/O events. A file object is a file descriptor or any object with a `fileno()` method. An arbitrary object can be attached to the file object which can be used for example to store context info, a callback, etc. A selector can use various implementations (select(), poll(), epoll(), and kqueue()) depending on the platform. The 'DefaultSelector' class uses the most efficient implementation for the current platform. """ def __init__(self): # Maps file descriptors to keys. self._fd_to_key = {} # Read-only mapping returned by get_map() self._map = _SelectorMapping(self) def _fileobj_lookup(self, fileobj): """ Return a file descriptor from a file object. This wraps _fileobj_to_fd() to do an exhaustive search in case the object is invalid but we still have it in our map. Used by unregister() so we can unregister an object that was previously registered even if it is closed. It is also used by _SelectorMapping """ try: return _fileobj_to_fd(fileobj) except ValueError: # Search through all our mapped keys. for key in self._fd_to_key.values(): if key.fileobj is fileobj: return key.fd # Raise ValueError after all. raise def register(self, fileobj, events, data=None): """ Register a file object for a set of events to monitor. """ if (not events) or (events & ~(EVENT_READ | EVENT_WRITE)): raise ValueError("Invalid events: {0!r}".format(events)) key = SelectorKey(fileobj, self._fileobj_lookup(fileobj), events, data) if key.fd in self._fd_to_key: raise KeyError("{0!r} (FD {1}) is already registered" .format(fileobj, key.fd)) self._fd_to_key[key.fd] = key return key def unregister(self, fileobj): """ Unregister a file object from being monitored. """ try: key = self._fd_to_key.pop(self._fileobj_lookup(fileobj)) except KeyError: raise KeyError("{0!r} is not registered".format(fileobj)) # Getting the fileno of a closed socket on Windows errors with EBADF. except socket.error as e: # Platform-specific: Windows. if e.errno != errno.EBADF: raise else: for key in self._fd_to_key.values(): if key.fileobj is fileobj: self._fd_to_key.pop(key.fd) break else: raise KeyError("{0!r} is not registered".format(fileobj)) return key def modify(self, fileobj, events, data=None): """ Change a registered file object monitored events and data. """ # NOTE: Some subclasses optimize this operation even further. try: key = self._fd_to_key[self._fileobj_lookup(fileobj)] except KeyError: raise KeyError("{0!r} is not registered".format(fileobj)) if events != key.events: self.unregister(fileobj) key = self.register(fileobj, events, data) elif data != key.data: # Use a shortcut to update the data. key = key._replace(data=data) self._fd_to_key[key.fd] = key return key def select(self, timeout=None): """ Perform the actual selection until some monitored file objects are ready or the timeout expires. """ raise NotImplementedError() def close(self): """ Close the selector. This must be called to ensure that all underlying resources are freed. """ self._fd_to_key.clear() self._map = None def get_key(self, fileobj): """ Return the key associated with a registered file object. """ mapping = self.get_map() if mapping is None: raise RuntimeError("Selector is closed") try: return mapping[fileobj] except KeyError: raise KeyError("{0!r} is not registered".format(fileobj)) def get_map(self): """ Return a mapping of file objects to selector keys """ return self._map def _key_from_fd(self, fd): """ Return the key associated to a given file descriptor Return None if it is not found. """ try: return self._fd_to_key[fd] except KeyError: return None def __enter__(self): return self def __exit__(self, *args): self.close() # Almost all platforms have select.select() if hasattr(select, "select"): class SelectSelector(BaseSelector): """ Select-based selector. """ def __init__(self): super(SelectSelector, self).__init__() self._readers = set() self._writers = set() def register(self, fileobj, events, data=None): key = super(SelectSelector, self).register(fileobj, events, data) if events & EVENT_READ: self._readers.add(key.fd) if events & EVENT_WRITE: self._writers.add(key.fd) return key def unregister(self, fileobj): key = super(SelectSelector, self).unregister(fileobj) self._readers.discard(key.fd) self._writers.discard(key.fd) return key def _wrap_select(self, r, w, timeout=None): """ Wrapper for select.select because timeout is a positional arg """ return select.select(r, w, [], timeout) def select(self, timeout=None): # Selecting on empty lists on Windows errors out. if not len(self._readers) and not len(self._writers): return [] timeout = None if timeout is None else max(timeout, 0.0) ready = [] r, w, _ = _syscall_wrapper(self._wrap_select, True, self._readers, self._writers, timeout=timeout) r = set(r) w = set(w) for fd in r | w: events = 0 if fd in r: events |= EVENT_READ if fd in w: events |= EVENT_WRITE key = self._key_from_fd(fd) if key: ready.append((key, events & key.events)) return ready if hasattr(select, "poll"): class PollSelector(BaseSelector): """ Poll-based selector """ def __init__(self): super(PollSelector, self).__init__() self._poll = select.poll() def register(self, fileobj, events, data=None): key = super(PollSelector, self).register(fileobj, events, data) event_mask = 0 if events & EVENT_READ: event_mask |= select.POLLIN if events & EVENT_WRITE: event_mask |= select.POLLOUT self._poll.register(key.fd, event_mask) return key def unregister(self, fileobj): key = super(PollSelector, self).unregister(fileobj) self._poll.unregister(key.fd) return key def _wrap_poll(self, timeout=None): """ Wrapper function for select.poll.poll() so that _syscall_wrapper can work with only seconds. """ if timeout is not None: if timeout <= 0: timeout = 0 else: # select.poll.poll() has a resolution of 1 millisecond, # round away from zero to wait *at least* timeout seconds. timeout = math.ceil(timeout * 1e3) result = self._poll.poll(timeout) return result def select(self, timeout=None): ready = [] fd_events = _syscall_wrapper(self._wrap_poll, True, timeout=timeout) for fd, event_mask in fd_events: events = 0 if event_mask & ~select.POLLIN: events |= EVENT_WRITE if event_mask & ~select.POLLOUT: events |= EVENT_READ key = self._key_from_fd(fd) if key: ready.append((key, events & key.events)) return ready if hasattr(select, "epoll"): class EpollSelector(BaseSelector): """ Epoll-based selector """ def __init__(self): super(EpollSelector, self).__init__() self._epoll = select.epoll() def fileno(self): return self._epoll.fileno() def register(self, fileobj, events, data=None): key = super(EpollSelector, self).register(fileobj, events, data) events_mask = 0 if events & EVENT_READ: events_mask |= select.EPOLLIN if events & EVENT_WRITE: events_mask |= select.EPOLLOUT _syscall_wrapper(self._epoll.register, False, key.fd, events_mask) return key def unregister(self, fileobj): key = super(EpollSelector, self).unregister(fileobj) try: _syscall_wrapper(self._epoll.unregister, False, key.fd) except SelectorError: # This can occur when the fd was closed since registry. pass return key def select(self, timeout=None): if timeout is not None: if timeout <= 0: timeout = 0.0 else: # select.epoll.poll() has a resolution of 1 millisecond # but luckily takes seconds so we don't need a wrapper # like PollSelector. Just for better rounding. timeout = math.ceil(timeout * 1e3) * 1e-3 timeout = float(timeout) else: timeout = -1.0 # epoll.poll() must have a float. # We always want at least 1 to ensure that select can be called # with no file descriptors registered. Otherwise will fail. max_events = max(len(self._fd_to_key), 1) ready = [] fd_events = _syscall_wrapper(self._epoll.poll, True, timeout=timeout, maxevents=max_events) for fd, event_mask in fd_events: events = 0 if event_mask & ~select.EPOLLIN: events |= EVENT_WRITE if event_mask & ~select.EPOLLOUT: events |= EVENT_READ key = self._key_from_fd(fd) if key: ready.append((key, events & key.events)) return ready def close(self): self._epoll.close() super(EpollSelector, self).close() if hasattr(select, "kqueue"): class KqueueSelector(BaseSelector): """ Kqueue / Kevent-based selector """ def __init__(self): super(KqueueSelector, self).__init__() self._kqueue = select.kqueue() def fileno(self): return self._kqueue.fileno() def register(self, fileobj, events, data=None): key = super(KqueueSelector, self).register(fileobj, events, data) if events & EVENT_READ: kevent = select.kevent(key.fd, select.KQ_FILTER_READ, select.KQ_EV_ADD) _syscall_wrapper(self._kqueue.control, False, [kevent], 0, 0) if events & EVENT_WRITE: kevent = select.kevent(key.fd, select.KQ_FILTER_WRITE, select.KQ_EV_ADD) _syscall_wrapper(self._kqueue.control, False, [kevent], 0, 0) return key def unregister(self, fileobj): key = super(KqueueSelector, self).unregister(fileobj) if key.events & EVENT_READ: kevent = select.kevent(key.fd, select.KQ_FILTER_READ, select.KQ_EV_DELETE) try: _syscall_wrapper(self._kqueue.control, False, [kevent], 0, 0) except SelectorError: pass if key.events & EVENT_WRITE: kevent = select.kevent(key.fd, select.KQ_FILTER_WRITE, select.KQ_EV_DELETE) try: _syscall_wrapper(self._kqueue.control, False, [kevent], 0, 0) except SelectorError: pass return key def select(self, timeout=None): if timeout is not None: timeout = max(timeout, 0) max_events = len(self._fd_to_key) * 2 ready_fds = {} kevent_list = _syscall_wrapper(self._wrap_control, True, None, max_events, timeout=timeout) for kevent in kevent_list: fd = kevent.ident event_mask = kevent.filter events = 0 if event_mask == select.KQ_FILTER_READ: events |= EVENT_READ if event_mask == select.KQ_FILTER_WRITE: events |= EVENT_WRITE key = self._key_from_fd(fd) if key: if key.fd not in ready_fds: ready_fds[key.fd] = (key, events & key.events) else: old_events = ready_fds[key.fd][1] ready_fds[key.fd] = (key, (events | old_events) & key.events) return list(ready_fds.values()) def close(self): self._kqueue.close() super(KqueueSelector, self).close() def _wrap_control(self, changelist, max_events, timeout=None): return self._kqueue.control(changelist, max_events, timeout) if not hasattr(select, 'select'): # Platform-specific: AppEngine HAS_SELECT = False def _can_allocate(struct): """ Checks that select structs can be allocated by the underlying operating system, not just advertised by the select module. We don't check select() because we'll be hopeful that most platforms that don't have it available will not advertise it. (ie: GAE) """ try: # select.poll() objects won't fail until used. if struct == 'poll': p = select.poll() p.poll(0) # All others will fail on allocation. else: getattr(select, struct)().close() return True except (OSError, AttributeError): return False # Choose the best implementation, roughly: # kqueue == epoll > poll > select. Devpoll not supported. (See above) # select() also can't accept a FD > FD_SETSIZE (usually around 1024) def DefaultSelector(): """ This function serves as a first call for DefaultSelector to detect if the select module is being monkey-patched incorrectly by eventlet, greenlet, and preserve proper behavior. """ global _DEFAULT_SELECTOR if _DEFAULT_SELECTOR is None: if _can_allocate('kqueue'): _DEFAULT_SELECTOR = KqueueSelector elif _can_allocate('epoll'): _DEFAULT_SELECTOR = EpollSelector elif _can_allocate('poll'): _DEFAULT_SELECTOR = PollSelector elif hasattr(select, 'select'): _DEFAULT_SELECTOR = SelectSelector else: # Platform-specific: AppEngine raise ValueError('Platform does not have a selector') return _DEFAULT_SELECTOR()
36.306914
89
0.56614
76ef55080249585331b0153c7e9f49d33aca787b
1,024
py
Python
DifferentiableHOS/Plot.py
LSSTDESC/DifferentiableHOS
7c83f6c9e4a820a0420adef113e0f2435732fe3e
[ "MIT" ]
1
2021-01-18T14:44:14.000Z
2021-01-18T14:44:14.000Z
DifferentiableHOS/Plot.py
LSSTDESC/DifferentiableHOS
7c83f6c9e4a820a0420adef113e0f2435732fe3e
[ "MIT" ]
13
2021-02-19T09:59:41.000Z
2021-12-13T09:52:41.000Z
DifferentiableHOS/Plot.py
LSSTDESC/DifferentiableHOS
7c83f6c9e4a820a0420adef113e0f2435732fe3e
[ "MIT" ]
null
null
null
import matplotlib.pyplot as plt from matplotlib.patches import Ellipse import numpy as np def plot_contours(fisher, pos, nstd=1., ax=None, **kwargs): """ Plot 2D parameter contours given a Hessian matrix of the likelihood """ def eigsorted(cov): vals, vecs = np.linalg.eigh(cov) order = vals.argsort()[::-1] return vals[order], vecs[:, order] mat = fisher cov = np.linalg.inv(mat) sigma_marg = lambda i: np.sqrt(cov[i, i]) if ax is None: ax = plt.gca() vals, vecs = eigsorted(cov) theta = np.degrees(np.arctan2(*vecs[:, 0][::-1])) # Width and height are "full" widths, not radius width, height = 2 * nstd * np.sqrt(vals) ellip = Ellipse(xy=pos, width=width, height=height, angle=theta, **kwargs) ax.add_artist(ellip) sz = max(width, height) s1 = 1.5 * nstd * sigma_marg(0) s2 = 1.5 * nstd * sigma_marg(1) ax.set_xlim(pos[0] - s1, pos[0] + s1) ax.set_ylim(pos[1] - s2, pos[1] + s2) plt.draw() return ellip
27.675676
78
0.610352
fb77a5ef6a73df2a997f5848847b70fb3f2f2127
1,150
py
Python
backend/util/string.py
artontech/ArtonFileManager
b099c5294ab731b0a0f1eb7dbe35397df4515863
[ "Apache-2.0" ]
1
2020-11-17T12:45:47.000Z
2020-11-17T12:45:47.000Z
backend/util/string.py
artontech/ArtonFileManager
b099c5294ab731b0a0f1eb7dbe35397df4515863
[ "Apache-2.0" ]
null
null
null
backend/util/string.py
artontech/ArtonFileManager
b099c5294ab731b0a0f1eb7dbe35397df4515863
[ "Apache-2.0" ]
null
null
null
''' string ''' import base64 import os def join(str1: str, str2: str) -> str: ''' join string ''' if str1 is None: str1 = '' if str2 is None: str2 = '' return str1 + str2 def str2bool(data: str, default: bool = None) -> bool: ''' trans to bool ''' l_str = str(data).lower() if l_str == "true": return True if l_str == "false": return False return default def str2base64(data: str, encoding: str = "utf-8") -> str: ''' trans to base64 ''' return base64.b64encode(data.encode(encoding)).decode() def relative_path(path1: str, path2: str) -> str: ''' calc relative path ''' path1, path2 = path1.split(os.sep), path2.split(os.sep) intersection = 0 for index in range(min(len(path1), len(path2))): m, n = path1[index], path2[index] if m != n: intersection = index break def backward(): return (len(path1) - intersection - 1) * ('..' + os.sep) def forward(): return os.sep.join(path2[intersection:]) out = backward() + forward() return out
25.555556
65
0.54087
211b67be1bc8853d3981c36517dbe6dde98e137f
18,076
py
Python
userbot/modules/gdrive.py
yonouf/UserBug
23c1d750e58a67eaaaf9a13b8700fe9dccf3bb7d
[ "Naumen", "Condor-1.1", "MS-PL" ]
null
null
null
userbot/modules/gdrive.py
yonouf/UserBug
23c1d750e58a67eaaaf9a13b8700fe9dccf3bb7d
[ "Naumen", "Condor-1.1", "MS-PL" ]
null
null
null
userbot/modules/gdrive.py
yonouf/UserBug
23c1d750e58a67eaaaf9a13b8700fe9dccf3bb7d
[ "Naumen", "Condor-1.1", "MS-PL" ]
2
2020-01-01T11:36:37.000Z
2020-01-02T05:41:19.000Z
# Copyright (C) 2019 The Raphielscape Company LLC. # # Licensed under the Raphielscape Public License, Version 1.c (the "License"); # you may not use this file except in compliance with the License. import asyncio import math import os import time from pySmartDL import SmartDL from telethon import events from apiclient.discovery import build from apiclient.http import MediaFileUpload from apiclient.errors import ResumableUploadError from oauth2client.client import OAuth2WebServerFlow from oauth2client.file import Storage from oauth2client import file, client, tools from userbot import (G_DRIVE_CLIENT_ID, G_DRIVE_CLIENT_SECRET, G_DRIVE_AUTH_TOKEN_DATA, GDRIVE_FOLDER_ID, BOTLOG_CHATID, TEMP_DOWNLOAD_DIRECTORY, CMD_HELP, LOGS) from userbot.events import register from mimetypes import guess_type import httplib2 import subprocess from userbot.modules.upload_download import progress, humanbytes, time_formatter # Path to token json file, it should be in same directory as script G_DRIVE_TOKEN_FILE = "./auth_token.txt" # Copy your credentials from the APIs Console CLIENT_ID = G_DRIVE_CLIENT_ID CLIENT_SECRET = G_DRIVE_CLIENT_SECRET # Check https://developers.google.com/drive/scopes for all available scopes OAUTH_SCOPE = "https://www.googleapis.com/auth/drive.file" # Redirect URI for installed apps, can be left as is REDIRECT_URI = "urn:ietf:wg:oauth:2.0:oob" # global variable to set Folder ID to upload to parent_id = GDRIVE_FOLDER_ID # global variable to indicate mimeType of directories in gDrive G_DRIVE_DIR_MIME_TYPE = "application/vnd.google-apps.folder" @register(pattern=r"^.gd(?: |$)(.*)", outgoing=True) async def gdrive_upload_function(dryb): """ For .gdrive command, upload files to google drive. """ await dryb.edit("Loading...") input_str = dryb.pattern_match.group(1) if CLIENT_ID is None or CLIENT_SECRET is None: return if not os.path.isdir(TEMP_DOWNLOAD_DIRECTORY): os.makedirs(TEMP_DOWNLOAD_DIRECTORY) required_file_name = None if "|" in input_str: url, file_name = input_str.split("|") url = url.strip() # https://stackoverflow.com/a/761825/4723940 file_name = file_name.strip() head, tail = os.path.split(file_name) if head: if not os.path.isdir(os.path.join(TEMP_DOWNLOAD_DIRECTORY, head)): os.makedirs(os.path.join(TEMP_DOWNLOAD_DIRECTORY, head)) file_name = os.path.join(head, tail) downloaded_file_name = TEMP_DOWNLOAD_DIRECTORY + "" + file_name downloader = SmartDL(url, downloaded_file_name, progress_bar=False) downloader.start(blocking=False) c_time = time.time() display_message = None while not downloader.isFinished(): status = downloader.get_status().capitalize() total_length = downloader.filesize if downloader.filesize else None downloaded = downloader.get_dl_size() now = time.time() diff = now - c_time percentage = downloader.get_progress() * 100 speed = downloader.get_speed() elapsed_time = round(diff) * 1000 progress_str = "[{0}{1}] {2}%".format( ''.join(["█" for i in range(math.floor(percentage / 10))]), ''.join(["░" for i in range(10 - math.floor(percentage / 10))]), round(percentage, 2)) estimated_total_time = downloader.get_eta(human=True) try: current_message = f"{status}...\ \nURL : {url}\ \nFile Name : {file_name}\ \n{progress_str}\ \n{humanbytes(downloaded)} of {humanbytes(total_length)}\ \nETA : {estimated_total_time}" if round(diff % 10.00) == 0 and current_message != display_message: await dryb.edit(current_message) display_message = current_message except Exception as e: LOGS.info(str(e)) pass if downloader.isSuccessful(): await dryb.edit( "Downloaded to [here]({})\nNow Uploading to 𝐆𝐃𝐑𝐈𝐕𝐄." .format(downloaded_file_name)) required_file_name = downloaded_file_name else: await dryb.edit("Incorrect URL\n{}".format(url)) elif input_str: input_str = input_str.strip() if os.path.exists(input_str): required_file_name = input_str await dryb.edit( "Found [this]({})\nNow Uploading to 𝐆𝐃𝐑𝐈𝐕𝐄." .format(input_str)) else: await dryb.edit( "File not found. Invalid path!") return False elif dryb.reply_to_msg_id: try: c_time = time.time() downloaded_file_name = await dryb.client.download_media( await dryb.get_reply_message(), TEMP_DOWNLOAD_DIRECTORY, progress_callback=lambda d, t: asyncio.get_event_loop( ).create_task(progress(d, t, dryb, c_time, "Downloading..."))) except Exception as e: await dryb.edit(str(e)) else: required_file_name = downloaded_file_name await dryb.edit( "Downloaded to [here]({})\nNow Uploading to 𝐆𝐃𝐑𝐈𝐕𝐄." .format(downloaded_file_name)) if required_file_name: if G_DRIVE_AUTH_TOKEN_DATA is not None: with open(G_DRIVE_TOKEN_FILE, "w") as t_file: t_file.write(G_DRIVE_AUTH_TOKEN_DATA) # Check if token file exists, if not create it by requesting # authorization code if not os.path.isfile(G_DRIVE_TOKEN_FILE): storage = await create_token_file(G_DRIVE_TOKEN_FILE, dryb) http = authorize(G_DRIVE_TOKEN_FILE, storage) # Authorize, get file parameters, upload file and print out result URL # for download http = authorize(G_DRIVE_TOKEN_FILE, None) file_name, mime_type = file_ops(required_file_name) # required_file_name will have the full path # Sometimes API fails to retrieve starting URI, we wrap it. try: g_drive_link = await upload_file(http, required_file_name, file_name, mime_type, dryb, parent_id) await dryb.edit( f"This [Files]({required_file_name}) Uploaded to [𝐆𝐃𝐑𝐈𝐕𝐄]({g_drive_link})!" ) except Exception as e: await dryb.edit( f"Uploading Error: {e}") @register(pattern=r"^.ggd(?: |$)(.*)", outgoing=True) async def upload_dir_to_gdrive(event): await event.edit("Loading...") if CLIENT_ID is None or CLIENT_SECRET is None: return input_str = event.pattern_match.group(1) if os.path.isdir(input_str): # TODO: remove redundant code if G_DRIVE_AUTH_TOKEN_DATA is not None: with open(G_DRIVE_TOKEN_FILE, "w") as t_file: t_file.write(G_DRIVE_AUTH_TOKEN_DATA) # Check if token file exists, if not create it by requesting authorization code storage = None if not os.path.isfile(G_DRIVE_TOKEN_FILE): storage = await create_token_file(G_DRIVE_TOKEN_FILE, event) http = authorize(G_DRIVE_TOKEN_FILE, storage) # Authorize, get file parameters, upload file and print out result URL for download # first, create a sub-directory dir_id = await create_directory( http, os.path.basename(os.path.abspath(input_str)), parent_id) await DoTeskWithDir(http, input_str, event, dir_id) dir_link = "https://drive.google.com/folderview?id={}".format(dir_id) await event.edit(f"Here is your [𝐆𝐃𝐑𝐈𝐕𝐄]({dir_link})") else: await event.edit(f"Directory {input_str} Not Exist") @register(pattern=r"^.li(?: |$)(.*)", outgoing=True) async def gdrive_search_list(event): await event.edit("Loading...") if CLIENT_ID is None or CLIENT_SECRET is None: return input_str = event.pattern_match.group(1).strip() # TODO: remove redundant code if G_DRIVE_AUTH_TOKEN_DATA is not None: with open(G_DRIVE_TOKEN_FILE, "w") as t_file: t_file.write(G_DRIVE_AUTH_TOKEN_DATA) # Check if token file exists, if not create it by requesting authorization code storage = None if not os.path.isfile(G_DRIVE_TOKEN_FILE): storage = await create_token_file(G_DRIVE_TOKEN_FILE, event) http = authorize(G_DRIVE_TOKEN_FILE, storage) # Authorize, get file parameters, upload file and print out result URL for download await event.edit(f"Searching for {input_str} in your 𝐆𝐃𝐑𝐈𝐕𝐄") gsearch_results = await gdrive_search(http, input_str) await event.edit(gsearch_results, link_preview=False) @register( pattern= r"^.gsetf https?://drive\.google\.com/drive/u/\d/folders/([-\w]{25,})", outgoing=True) async def download(set): """For .gsetf command, allows you to set path""" await set.edit("Loading...") input_str = set.pattern_match.group(1) if input_str: parent_id = input_str await set.edit( "Custom Folder ID set successfully." ) await set.delete() else: await set.edit( "Use .gdrivesp <link to GDrive Folder> to set the folder to upload new files to." ) @register(pattern="^.gsetclear$", outgoing=True) async def download(gclr): """For .gsetclear command, allows you clear ur curnt custom path""" await gclr.reply("Loading...") parent_id = GDRIVE_FOLDER_ID await gclr.edit("Custom Folder ID cleared.") @register(pattern="^.gfolder$", outgoing=True) async def show_current_gdrove_folder(event): if parent_id: folder_link = f"https://drive.google.com/drive/folders/" + parent_id await event.edit( f"I'm currently uploading files on [𝐆𝐃𝐑𝐈𝐕𝐄]({folder_link})") else: await event.edit( f"My userbot is currently uploading files to the root of my Google Drive storage.\ \nFind uploaded files [here](https://drive.google.com/drive/my-drive)" ) # Get mime type and name of given file def file_ops(file_path): mime_type = guess_type(file_path)[0] mime_type = mime_type if mime_type else "text/plain" file_name = file_path.split("/")[-1] return file_name, mime_type async def create_token_file(token_file, event): # Run through the OAuth flow and retrieve credentials flow = OAuth2WebServerFlow(CLIENT_ID, CLIENT_SECRET, OAUTH_SCOPE, redirect_uri=REDIRECT_URI) authorize_url = flow.step1_get_authorize_url() async with event.client.conversation(BOTLOG_CHATID) as conv: await conv.send_message( f"Go to the following link in your browser: {authorize_url} and reply the code" ) response = conv.wait_event( events.NewMessage(outgoing=True, chats=BOTLOG_CHATID)) response = await response code = response.message.message.strip() credentials = flow.step2_exchange(code) storage = Storage(token_file) storage.put(credentials) return storage def authorize(token_file, storage): # Get credentials if storage is None: storage = Storage(token_file) credentials = storage.get() # Create an httplib2.Http object and authorize it with our credentials http = httplib2.Http() credentials.refresh(http) http = credentials.authorize(http) return http async def upload_file(http, file_path, file_name, mime_type, event, parent_id): # Create Google Drive service instance drive_service = build("drive", "v2", http=http, cache_discovery=False) # File body description media_body = MediaFileUpload(file_path, mimetype=mime_type, resumable=True) body = { "title": file_name, "description": "Uploaded using custom Userbot", "mimeType": mime_type, } if parent_id: body["parents"] = [{"id": parent_id}] # Permissions body description: anyone who has link can upload # Other permissions can be found at https://developers.google.com/drive/v2/reference/permissions permissions = { "role": "reader", "type": "anyone", "value": None, "withLink": True } # Insert a file file = drive_service.files().insert(body=body, media_body=media_body) response = None display_message = "" while response is None: status, response = file.next_chunk() await asyncio.sleep(1) if status: percentage = int(status.progress() * 100) progress_str = "[{0}{1}] {2}%".format( "".join(["█" for i in range(math.floor(percentage / 10))]), "".join(["░" for i in range(10 - math.floor(percentage / 10))]), round(percentage, 2)) current_message = f"Uploading to 𝐆𝐃𝐑𝐈𝐕𝐄\nFile Name : {file_name}\n{progress_str}" if display_message != current_message: try: await event.edit(current_message) display_message = current_message except Exception as e: LOGS.info(str(e)) pass file_id = response.get("id") # Insert new permissions drive_service.permissions().insert(fileId=file_id, body=permissions).execute() # Define file instance and get url for download file = drive_service.files().get(fileId=file_id).execute() download_url = file.get("webContentLink") return download_url async def create_directory(http, directory_name, parent_id): drive_service = build("drive", "v2", http=http, cache_discovery=False) permissions = { "role": "reader", "type": "anyone", "value": None, "withLink": True } file_metadata = { "title": directory_name, "mimeType": G_DRIVE_DIR_MIME_TYPE } if parent_id: file_metadata["parents"] = [{"id": parent_id}] file = drive_service.files().insert(body=file_metadata).execute() file_id = file.get("id") drive_service.permissions().insert(fileId=file_id, body=permissions).execute() LOGS.info("Created 𝐆𝐃𝐑𝐈𝐕𝐄 Folder :\nName : {}\nID : {} ".format( file.get("title"), file_id)) return file_id async def DoTeskWithDir(http, input_directory, event, parent_id): list_dirs = os.listdir(input_directory) if len(list_dirs) == 0: return parent_id r_p_id = None for a_c_f_name in list_dirs: current_file_name = os.path.join(input_directory, a_c_f_name) if os.path.isdir(current_file_name): current_dir_id = await create_directory(http, a_c_f_name, parent_id) r_p_id = await DoTeskWithDir(http, current_file_name, event, current_dir_id) else: file_name, mime_type = file_ops(current_file_name) # current_file_name will have the full path g_drive_link = await upload_file(http, current_file_name, file_name, mime_type, event, parent_id) r_p_id = parent_id # TODO: there is a #bug here :( return r_p_id async def gdrive_list_file_md(service, file_id): try: file = service.files().get(fileId=file_id).execute() # LOGS.info(file) file_meta_data = {} file_meta_data["title"] = file["title"] mimeType = file["mimeType"] file_meta_data["createdDate"] = file["createdDate"] if mimeType == G_DRIVE_DIR_MIME_TYPE: # is a dir. file_meta_data["mimeType"] = "directory" file_meta_data["previewURL"] = file["alternateLink"] else: # is a file. file_meta_data["mimeType"] = file["mimeType"] file_meta_data["md5Checksum"] = file["md5Checksum"] file_meta_data["fileSize"] = str(humanbytes(int(file["fileSize"]))) file_meta_data["quotaBytesUsed"] = str( humanbytes(int(file["quotaBytesUsed"]))) file_meta_data["previewURL"] = file["downloadUrl"] return json.dumps(file_meta_data, sort_keys=True, indent=4) except Exception as e: return str(e) async def gdrive_search(http, search_query): if parent_id: query = "'{}' in parents and (title contains '{}')".format( parent_id, search_query) else: query = "title contains '{}'".format(search_query) drive_service = build("drive", "v2", http=http, cache_discovery=False) page_token = None res = "" while True: try: response = drive_service.files().list( q=query, spaces="drive", fields="nextPageToken, items(id, title, mimeType)", pageToken=page_token).execute() for file in response.get("items", []): file_title = file.get("title") file_id = file.get("id") if file.get("mimeType") == G_DRIVE_DIR_MIME_TYPE: res += f"[FOLDER] {file_title}\nhttps://drive.google.com/drive/folders/{file_id}\n\n" else: res += f"{file_title}\nhttps://drive.google.com/uc?id={file_id}&export=download\n\n" page_token = response.get("nextPageToken", None) if page_token is None: break except Exception as e: res += str(e) break msg = f"**GDrive Query**:\n{search_query}\n**Results**\n{res}" return msg
40.895928
105
0.618721
a7e666dfa6daeed54685c2e7f80e02e16b0c2712
8,183
py
Python
SCSCons/PathList.py
Relintai/pandemonium_engine
3de05db75a396b497f145411f71eb363572b38ae
[ "MIT", "Apache-2.0", "CC-BY-4.0", "Unlicense" ]
1,403
2017-11-23T14:24:01.000Z
2022-03-30T20:59:39.000Z
nuitka/build/inline_copy/lib/scons-4.3.0/SCons/PathList.py
lps1333/Nuitka
02e8d59a275cd7fe482cbc8100e753ff5abe39d7
[ "Apache-2.0" ]
3,708
2017-11-27T13:47:12.000Z
2022-03-29T17:21:17.000Z
nuitka/build/inline_copy/lib/scons-4.3.0/SCons/PathList.py
lps1333/Nuitka
02e8d59a275cd7fe482cbc8100e753ff5abe39d7
[ "Apache-2.0" ]
281
2017-12-01T23:48:38.000Z
2022-03-31T15:25:44.000Z
# MIT License # # Copyright The SCons Foundation # # Permission is hereby granted, free of charge, to any person obtaining # a copy of this software and associated documentation files (the # "Software"), to deal in the Software without restriction, including # without limitation the rights to use, copy, modify, merge, publish, # distribute, sublicense, and/or sell copies of the Software, and to # permit persons to whom the Software is furnished to do so, subject to # the following conditions: # # The above copyright notice and this permission notice shall be included # in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY # KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE # WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE # LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION # OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION # WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """Handle lists of directory paths. These are the path lists that get set as CPPPATH, LIBPATH, etc.) with as much caching of data and efficiency as we can, while still keeping the evaluation delayed so that we Do the Right Thing (almost) regardless of how the variable is specified. """ import os import SCons.Memoize import SCons.Node import SCons.Util # # Variables to specify the different types of entries in a PathList object: # TYPE_STRING_NO_SUBST = 0 # string with no '$' TYPE_STRING_SUBST = 1 # string containing '$' TYPE_OBJECT = 2 # other object def node_conv(obj): """ This is the "string conversion" routine that we have our substitutions use to return Nodes, not strings. This relies on the fact that an EntryProxy object has a get() method that returns the underlying Node that it wraps, which is a bit of architectural dependence that we might need to break or modify in the future in response to additional requirements. """ try: get = obj.get except AttributeError: if isinstance(obj, SCons.Node.Node) or SCons.Util.is_Sequence( obj ): result = obj else: result = str(obj) else: result = get() return result class _PathList: """ An actual PathList object. """ def __init__(self, pathlist): """ Initializes a PathList object, canonicalizing the input and pre-processing it for quicker substitution later. The stored representation of the PathList is a list of tuples containing (type, value), where the "type" is one of the TYPE_* variables defined above. We distinguish between: strings that contain no '$' and therefore need no delayed-evaluation string substitution (we expect that there will be many of these and that we therefore get a pretty big win from avoiding string substitution) strings that contain '$' and therefore need substitution (the hard case is things like '${TARGET.dir}/include', which require re-evaluation for every target + source) other objects (which may be something like an EntryProxy that needs a method called to return a Node) Pre-identifying the type of each element in the PathList up-front and storing the type in the list of tuples is intended to reduce the amount of calculation when we actually do the substitution over and over for each target. """ if SCons.Util.is_String(pathlist): pathlist = pathlist.split(os.pathsep) elif not SCons.Util.is_Sequence(pathlist): pathlist = [pathlist] pl = [] for p in pathlist: try: found = '$' in p except (AttributeError, TypeError): type = TYPE_OBJECT else: if not found: type = TYPE_STRING_NO_SUBST else: type = TYPE_STRING_SUBST pl.append((type, p)) self.pathlist = tuple(pl) def __len__(self): return len(self.pathlist) def __getitem__(self, i): return self.pathlist[i] def subst_path(self, env, target, source): """ Performs construction variable substitution on a pre-digested PathList for a specific target and source. """ result = [] for type, value in self.pathlist: if type == TYPE_STRING_SUBST: value = env.subst(value, target=target, source=source, conv=node_conv) if SCons.Util.is_Sequence(value): result.extend(SCons.Util.flatten(value)) elif value: result.append(value) elif type == TYPE_OBJECT: value = node_conv(value) if value: result.append(value) elif value: result.append(value) return tuple(result) class PathListCache: """ A class to handle caching of PathList lookups. This class gets instantiated once and then deleted from the namespace, so it's used as a Singleton (although we don't enforce that in the usual Pythonic ways). We could have just made the cache a dictionary in the module namespace, but putting it in this class allows us to use the same Memoizer pattern that we use elsewhere to count cache hits and misses, which is very valuable. Lookup keys in the cache are computed by the _PathList_key() method. Cache lookup should be quick, so we don't spend cycles canonicalizing all forms of the same lookup key. For example, 'x:y' and ['x', 'y'] logically represent the same list, but we don't bother to split string representations and treat those two equivalently. (Note, however, that we do, treat lists and tuples the same.) The main type of duplication we're trying to catch will come from looking up the same path list from two different clones of the same construction environment. That is, given env2 = env1.Clone() both env1 and env2 will have the same CPPPATH value, and we can cheaply avoid re-parsing both values of CPPPATH by using the common value from this cache. """ def __init__(self): self._memo = {} def _PathList_key(self, pathlist): """ Returns the key for memoization of PathLists. Note that we want this to be pretty quick, so we don't completely canonicalize all forms of the same list. For example, 'dir1:$ROOT/dir2' and ['$ROOT/dir1', 'dir'] may logically represent the same list if you're executing from $ROOT, but we're not going to bother splitting strings into path elements, or massaging strings into Nodes, to identify that equivalence. We just want to eliminate obvious redundancy from the normal case of re-using exactly the same cloned value for a path. """ if SCons.Util.is_Sequence(pathlist): pathlist = tuple(SCons.Util.flatten(pathlist)) return pathlist @SCons.Memoize.CountDictCall(_PathList_key) def PathList(self, pathlist): """ Returns the cached _PathList object for the specified pathlist, creating and caching a new object as necessary. """ pathlist = self._PathList_key(pathlist) try: memo_dict = self._memo['PathList'] except KeyError: memo_dict = {} self._memo['PathList'] = memo_dict else: try: return memo_dict[pathlist] except KeyError: pass result = _PathList(pathlist) memo_dict[pathlist] = result return result PathList = PathListCache().PathList del PathListCache # Local Variables: # tab-width:4 # indent-tabs-mode:nil # End: # vim: set expandtab tabstop=4 shiftwidth=4:
36.368889
77
0.65245
f5f6806f33d4334e8f4039e613e5e6f4369bff14
3,004
py
Python
tensorflow/python/training/learning_rate_decay_test.py
deepakmuralidharan/tensorflow
f40e41f9c71ef2865f96f3db3cea2909797fe2a3
[ "Apache-2.0" ]
23
2016-02-04T21:08:43.000Z
2022-01-14T13:22:33.000Z
tensorflow/python/training/learning_rate_decay_test.py
deepakmuralidharan/tensorflow
f40e41f9c71ef2865f96f3db3cea2909797fe2a3
[ "Apache-2.0" ]
2
2016-05-31T16:38:55.000Z
2018-12-30T20:17:05.000Z
tensorflow/python/training/learning_rate_decay_test.py
deepakmuralidharan/tensorflow
f40e41f9c71ef2865f96f3db3cea2909797fe2a3
[ "Apache-2.0" ]
20
2016-02-15T17:31:02.000Z
2020-01-12T08:18:48.000Z
# Copyright 2015 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Functional test for learning rate decay.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow.python.platform from tensorflow.python.framework import dtypes from tensorflow.python.framework import test_util from tensorflow.python.ops import state_ops from tensorflow.python.ops import variables from tensorflow.python.platform import googletest from tensorflow.python.training import learning_rate_decay class LRDecayTest(test_util.TensorFlowTestCase): def testContinuous(self): with self.test_session(): step = 5 decayed_lr = learning_rate_decay.exponential_decay(0.05, step, 10, 0.96) expected = .05 * 0.96 ** (5.0 / 10.0) self.assertAllClose(decayed_lr.eval(), expected, 1e-6) def testStaircase(self): with self.test_session(): step = state_ops.variable_op([], dtypes.int32) assign_100 = state_ops.assign(step, 100) assign_1 = state_ops.assign(step, 1) assign_2 = state_ops.assign(step, 2) decayed_lr = learning_rate_decay.exponential_decay(.1, step, 3, 0.96, staircase=True) # No change to learning rate assign_1.op.run() self.assertAllClose(decayed_lr.eval(), .1, 1e-6) assign_2.op.run() self.assertAllClose(decayed_lr.eval(), .1, 1e-6) # Decayed learning rate assign_100.op.run() expected = .1 * 0.96**(100 // 3) self.assertAllClose(decayed_lr.eval(), expected, 1e-6) def testVariables(self): with self.test_session(): step = variables.Variable(1) assign_1 = step.assign(1) assign_2 = step.assign(2) assign_100 = step.assign(100) decayed_lr = learning_rate_decay.exponential_decay(.1, step, 3, 0.96, staircase=True) variables.initialize_all_variables().run() # No change to learning rate assign_1.op.run() self.assertAllClose(decayed_lr.eval(), .1, 1e-6) assign_2.op.run() self.assertAllClose(decayed_lr.eval(), .1, 1e-6) # Decayed learning rate assign_100.op.run() expected = .1 * 0.96**(100 // 3) self.assertAllClose(decayed_lr.eval(), expected, 1e-6) if __name__ == "__main__": googletest.main()
37.55
80
0.665113
1224064900ea09b9ec50ee17ce1ec1a43214ecc8
3,816
py
Python
contrib/macdeploy/custom_dsstore.py
bitcoin-pirate/BITP-Core
613a24d6e49ed3035a2144a50f39e7d03eeca20b
[ "MIT" ]
null
null
null
contrib/macdeploy/custom_dsstore.py
bitcoin-pirate/BITP-Core
613a24d6e49ed3035a2144a50f39e7d03eeca20b
[ "MIT" ]
null
null
null
contrib/macdeploy/custom_dsstore.py
bitcoin-pirate/BITP-Core
613a24d6e49ed3035a2144a50f39e7d03eeca20b
[ "MIT" ]
null
null
null
#!/usr/bin/env python # Copyright (c) 2013-2016 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. from __future__ import division,print_function,unicode_literals import biplist from ds_store import DSStore from mac_alias import Alias import sys output_file = sys.argv[1] package_name_ns = sys.argv[2] ds = DSStore.open(output_file, 'w+') ds['.']['bwsp'] = { 'ShowStatusBar': False, 'WindowBounds': b'{{300, 280}, {500, 343}}', 'ContainerShowSidebar': False, 'SidebarWidth': 0, 'ShowTabView': False, 'PreviewPaneVisibility': False, 'ShowToolbar': False, 'ShowSidebar': False, 'ShowPathbar': True } icvp = { 'gridOffsetX': 0.0, 'textSize': 12.0, 'viewOptionsVersion': 1, 'backgroundImageAlias': b'\x00\x00\x00\x00\x02\x1e\x00\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xd1\x94\\\xb0H+\x00\x05\x00\x00\x00\x98\x0fbackground.tiff\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x99\xd19\xb0\xf8\x00\x00\x00\x00\x00\x00\x00\x00\xff\xff\xff\xff\x00\x00\r\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x0b.background\x00\x00\x10\x00\x08\x00\x00\xd1\x94\\\xb0\x00\x00\x00\x11\x00\x08\x00\x00\xd19\xb0\xf8\x00\x00\x00\x01\x00\x04\x00\x00\x00\x98\x00\x0e\x00 \x00\x0f\x00b\x00a\x00c\x00k\x00g\x00r\x00o\x00u\x00n\x00d\x00.\x00t\x00i\x00f\x00f\x00\x0f\x00\x02\x00\x00\x00\x12\x00\x1c/.background/background.tiff\x00\x14\x01\x06\x00\x00\x00\x00\x01\x06\x00\x02\x00\x00\x0cMacintosh HD\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xce\x97\xab\xc3H+\x00\x00\x01\x88[\x88\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02u\xab\x8d\xd1\x94\\\xb0devrddsk\xff\xff\xff\xff\x00\x00\t \x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x07bitcoin\x00\x00\x10\x00\x08\x00\x00\xce\x97\xab\xc3\x00\x00\x00\x11\x00\x08\x00\x00\xd1\x94\\\xb0\x00\x00\x00\x01\x00\x14\x01\x88[\x88\x00\x16\xa9\t\x00\x08\xfaR\x00\x08\xfaQ\x00\x02d\x8e\x00\x0e\x00\x02\x00\x00\x00\x0f\x00\x1a\x00\x0c\x00M\x00a\x00c\x00i\x00n\x00t\x00o\x00s\x00h\x00 \x00H\x00D\x00\x13\x00\x01/\x00\x00\x15\x00\x02\x00\x14\xff\xff\x00\x00\xff\xff\x00\x00', 'backgroundColorBlue': 1.0, 'iconSize': 96.0, 'backgroundColorGreen': 1.0, 'arrangeBy': 'none', 'showIconPreview': True, 'gridSpacing': 100.0, 'gridOffsetY': 0.0, 'showItemInfo': False, 'labelOnBottom': True, 'backgroundType': 2, 'backgroundColorRed': 1.0 } alias = Alias.from_bytes(icvp['backgroundImageAlias']) alias.volume.name = package_name_ns alias.volume.posix_path = '/Volumes/' + package_name_ns alias.volume.disk_image_alias.target.filename = package_name_ns + '.temp.dmg' alias.volume.disk_image_alias.target.carbon_path = 'Macintosh HD:Users:\x00bitcoinpirateuser:\x00Documents:\x00bitcoinpirate:\x00bitcoinpirate:\x00' + package_name_ns + '.temp.dmg' alias.volume.disk_image_alias.target.posix_path = 'Users/bitcoinpirateuser/Documents/bitcoinpirate/bitcoinpirate/' + package_name_ns + '.temp.dmg' alias.target.carbon_path = package_name_ns + ':.background:\x00background.tiff' icvp['backgroundImageAlias'] = biplist.Data(alias.to_bytes()) ds['.']['icvp'] = icvp ds['.']['vSrn'] = ('long', 1) ds['Applications']['Iloc'] = (370, 156) ds['BitcoinPirate-Qt.app']['Iloc'] = (128, 156) ds.flush() ds.close()
62.557377
1,817
0.730346
b2b41fae203875643d41015acebcc26954848381
6,737
py
Python
practice/src/transformer2.py
hankyul2/ddackdae
5e9728578ab0f05c1f49e4a39e9753233a75e1da
[ "Apache-2.0" ]
null
null
null
practice/src/transformer2.py
hankyul2/ddackdae
5e9728578ab0f05c1f49e4a39e9753233a75e1da
[ "Apache-2.0" ]
null
null
null
practice/src/transformer2.py
hankyul2/ddackdae
5e9728578ab0f05c1f49e4a39e9753233a75e1da
[ "Apache-2.0" ]
null
null
null
import copy import math import torch import numpy as np from einops import rearrange from torch import nn import torch.nn.functional as F class Encoder(nn.Module): def __init__(self, layer, norm, N): super(Encoder, self).__init__() self.layers = clone(layer, N) self.norm = norm def forward(self, src, src_mask): for layer in self.layers: src = layer(src, src_mask) return self.norm(src) class EncoderLayer(nn.Module): def __init__(self, attn, ff, su): super(EncoderLayer, self).__init__() self.attn = attn self.ff = ff self.su = clone(su, 2) def forward(self, src, src_mask): src = self.su[0](src, lambda x: self.attn(x, x, x, src_mask)) return self.su[1](src, self.ff) class Decoder(nn.Module): def __init__(self, layer, norm, N): super(Decoder, self).__init__() self.layers = clone(layer, N) self.norm = norm def forward(self, src, tgt, src_mask, tgt_mask): for layer in self.layers: tgt = layer(src, tgt, src_mask, tgt_mask) return self.norm(tgt) class DecoderLayer(nn.Module): def __init__(self, attn, attn2, ff, su): super(DecoderLayer, self).__init__() self.attn = attn self.attn2 = attn2 self.ff = ff self.su = clone(su, 3) def forward(self, src, tgt, src_mask, tgt_mask): tgt = self.su[0](tgt, lambda x: self.attn(x, x, x, tgt_mask)) tgt = self.su[1](tgt, lambda x: self.attn(x, src, src, src_mask)) return self.su[2](tgt, self.ff) class Transformer(nn.Module): def __init__(self, src_embed, tgt_embed, encoder, decoder, generator): super(Transformer, self).__init__() self.src_embed = src_embed self.tgt_embed = tgt_embed self.encoder = encoder self.decoder = decoder self.generator = generator def forward(self, src, tgt, src_mask, tgt_mask): src_rep = self.encode(src, src_mask) tgt_rep = self.decode(src_rep, tgt, src_mask, tgt_mask) return self.generator(tgt_rep) def decode(self, src_rep, tgt, src_mask, tgt_mask): return self.decoder(src_rep, self.tgt_embed(tgt), src_mask, tgt_mask) def encode(self, src, src_mask): return self.encoder(self.src_embed(src), src_mask) def get_transformer(src_vocab_size, tgt_vocab_size, N, d_model, h, d_ff, dropout=0.1): c = copy.deepcopy src_embed = Embedding(d_model, src_vocab_size) tgt_embed = Embedding(d_model, tgt_vocab_size) pe = PositionalEncoding(d_model, dropout=dropout) src_embed = nn.Sequential(src_embed, c(pe)) tgt_embed = nn.Sequential(tgt_embed, c(pe)) attn = MultiheadAttention(d_model, h, dropout=dropout) ff = FeedForward(d_model, d_ff, dropout=dropout) norm = LayerNorm(d_model) su = SublayerConnection(c(norm)) encoder = Encoder(EncoderLayer(c(attn), c(ff), c(su)), c(norm), N) decoder = Decoder(DecoderLayer(c(attn), c(attn), c(ff), c(su)), c(norm), N) generator = nn.Linear(d_model, tgt_vocab_size) model = Transformer(src_embed, tgt_embed, encoder, decoder, generator) for name, param in model.named_parameters(): if param.dim() > 1: nn.init.xavier_uniform(param) return model def clone(layer, n): return nn.ModuleList([copy.deepcopy(layer) for _ in range(n)]) class MultiheadAttention(nn.Module): def __init__(self, d_model, h, dropout=0.1): super(MultiheadAttention, self).__init__() assert d_model % h == 0 self.h = h self.d_k = d_model // h self.w = clone(nn.Linear(d_model, d_model), 3) self.dropout = nn.Dropout(p=dropout) self.out = nn.Linear(d_model, d_model) def forward(self, q, k, v, mask): q, k, v = [rearrange(f(x), 'b s (h k) -> b h s k', h=self.h) for f, x in zip(self.w, [q, k, v])] score = q @ k.transpose(-1, -2) / math.sqrt(self.d_k) score = torch.masked_fill(score, mask, -1e9) attn = F.softmax(score, dim=-1) attn = self.dropout(attn) w_v = attn @ v c_v = rearrange(w_v, 'b h s k -> b s (h k)') return self.out(c_v) class FeedForward(nn.Module): def __init__(self, d_model, d_ff, dropout=0.1): super(FeedForward, self).__init__() self.w_1 = nn.Linear(d_model, d_ff) self.w_2 = nn.Linear(d_ff, d_model) self.dropout = nn.Dropout(p=dropout) def forward(self, x): return self.w_2(self.dropout(F.gelu(self.w_1(x)))) class LayerNorm(nn.Module): def __init__(self, d_model, eps=1e-9): super(LayerNorm, self).__init__() self.a_2 = nn.Parameter(torch.ones(d_model)) self.b_2 = nn.Parameter(torch.zeros(d_model)) self.eps = eps def forward(self, x): mean = x.mean(dim=-1, keepdim=True) std = x.std(dim=-1, keepdim=True) return self.a_2 * (x - mean) / (std + self.eps) + self.b_2 class SublayerConnection(nn.Module): def __init__(self, norm, dropout=0.1): super(SublayerConnection, self).__init__() self.norm = norm self.dropout = nn.Dropout(p=dropout) def forward(self, x, layer): return x + self.dropout(layer(self.norm(x))) class Embedding(nn.Module): def __init__(self, d_model, vocab_size): super(Embedding, self).__init__() self.embed = nn.Embedding(vocab_size, d_model) self.d_model = d_model def forward(self, x): return self.embed(x) * math.sqrt(self.d_model) class PositionalEncoding(nn.Module): def __init__(self, d_model, max_len=50000, dropout=0.1): super(PositionalEncoding, self).__init__() pe = torch.zeros(max_len, d_model) position = torch.arange(max_len).unsqueeze(1) div_term = torch.exp(torch.arange(0, d_model, 2) * (-math.log(10000) / d_model)) pe[:, ::2] = torch.sin(position * div_term) pe[:, 1::2] = torch.cos(position * div_term) self.register_buffer('pe', pe.unsqueeze(0)) self.dropout = nn.Dropout(p=dropout) def forward(self, x): return self.dropout(x + self.pe[:, :x.size(1)]) def get_sample_data(): src = torch.arange(1, 101, 1).view(10, 10) tgt = torch.arange(2, 102, 1).view(10, 10) src_mask, tgt_mask = get_mask(src, tgt) return src, tgt, src_mask, tgt_mask def get_mask(src, tgt, pad_idx=0): src_mask = get_pad_mask(src, pad_idx) tgt_mask = get_pad_mask(tgt, pad_idx) | get_seq_mask(src) return src_mask, tgt_mask def get_seq_mask(src): return torch.from_numpy(np.triu(np.ones(src.size(1)))) == 1 def get_pad_mask(src, pad_idx): return (src == pad_idx).unsqueeze(1).unsqueeze(1)
31.046083
104
0.629212
3c95e61d32d1d5f2b303290e819aaca832ebf9df
1,712
py
Python
CIL-tutorial/walnut.py
paskino/CIL-work
20b7d6db2f74bcbb4b5dd524a5c3ae3fe7b1952d
[ "BSD-3-Clause" ]
null
null
null
CIL-tutorial/walnut.py
paskino/CIL-work
20b7d6db2f74bcbb4b5dd524a5c3ae3fe7b1952d
[ "BSD-3-Clause" ]
null
null
null
CIL-tutorial/walnut.py
paskino/CIL-work
20b7d6db2f74bcbb4b5dd524a5c3ae3fe7b1952d
[ "BSD-3-Clause" ]
1
2021-07-01T11:27:58.000Z
2021-07-01T11:27:58.000Z
import numpy as np import os from cil.io import TXRMDataReader, TIFFWriter from cil.processors import TransmissionAbsorptionConverter, Binner from cil.plugins.tigre import FBP from cil.utilities.display import show2D, show_geometry base_dir = os.path.abspath(r"C:\Users\ofn77899\Data\walnut") data_name = "valnut" filename = os.path.join(base_dir, data_name, "valnut_2014-03-21_643_28/tomo-A/valnut_tomo-A.txrm") is2D = False data = TXRMDataReader(file_name=filename).read() if is2D: data = data.get_slice(vertical='centre') else: binner = Binner(roi={'horizontal': (None, None, 4),'vertical': (None, None, 4)}) data = binner(data) # show_geometry(data.geometry) data = TransmissionAbsorptionConverter()(data) data.reorder(order='tigre') ig = data.geometry.get_ImageGeometry() fbp = FBP(ig, data.geometry) recon = fbp(data) from cil.io import NEXUSDataWriter writer = NEXUSDataWriter() writer.set_up(data=recon, file_name=os.path.abspath('noce.nxs')) writer.write() # show2D([data, recon], fix_range=(-0.01,0.06)) from ccpi.viewer import viewer2D, viewer3D from ccpi.viewer.utils.conversion import Converter import vtk from functools import partial v = viewer3D() def clipping_plane(v, interactor, event): if interactor.GetKeyCode() == "c": planew = vtk.vtkImplicitPlaneWidget() planew.SetInteractor(v.getInteractor()) plane = vtk.vtkPlane() planew.GetPlane(plane) planew.PlaceWidget() v.volume_mapper.AddClippingPlane(plane) v.plane = plane v.planew = planew v.style.AddObserver('KeyPressEvent', partial(clipping_plane, v), 1.0) v.setInputData(Converter.numpy2vtkImage(recon.as_array())) v.startRenderLoop()
27.612903
98
0.733061
719dab7a2a9a17ecf76aec878de83cf0dabdfc72
379
py
Python
setup.py
kirberich/textractor
fb55c27f2facbe8ff200bbf2cf30daaed7ab01b6
[ "MIT" ]
null
null
null
setup.py
kirberich/textractor
fb55c27f2facbe8ff200bbf2cf30daaed7ab01b6
[ "MIT" ]
null
null
null
setup.py
kirberich/textractor
fb55c27f2facbe8ff200bbf2cf30daaed7ab01b6
[ "MIT" ]
null
null
null
from setuptools import setup setup( name='textractor', version='1.0', description='Minimalistic HTML text extraction library', url='https://github.com/kirberich/textractor', author='Robert Kirberich', license='MIT', py_modules=['textractor'], zip_safe=False, install_requires=[ 'six', 'beautifulsoup4', 'lxml' ] )
21.055556
60
0.627968
95b94e7327030cee33385ba574c8017ea793b5ef
3,775
py
Python
deepseries/model/wave2wave.py
EvilPsyCHo/Deep-Time-Series-Prediction
f6a6da060bb3f7d07f2a61967ee6007e9821064e
[ "Apache-2.0" ]
334
2019-11-01T01:39:18.000Z
2022-03-31T08:10:17.000Z
deepseries/model/wave2wave.py
luxixiang/Deep-Time-Series-Prediction
f6a6da060bb3f7d07f2a61967ee6007e9821064e
[ "Apache-2.0" ]
8
2019-12-30T08:01:32.000Z
2021-12-06T05:27:29.000Z
deepseries/model/wave2wave.py
luxixiang/Deep-Time-Series-Prediction
f6a6da060bb3f7d07f2a61967ee6007e9821064e
[ "Apache-2.0" ]
57
2020-01-13T13:20:15.000Z
2022-03-31T08:10:20.000Z
# encoding: utf-8 """ @author : zhirui zhou @contact: evilpsycho42@gmail.com @time : 2020/5/20 10:51 """ import torch.nn as nn import torch from deepseries.nn.cnn import WaveNet from deepseries.nn.comm import Embeddings, Concat from deepseries.nn.loss import RMSE from deepseries.log import get_logger logger = get_logger(__name__) class Wave2Wave(nn.Module): def __init__(self, target_size, enc_cat_size=None, enc_num_size=None, dec_cat_size=None, dec_num_size=None, residual_channels=32, share_embeds=False, skip_channels=32, num_blocks=3, num_layers=8, dropout=.0, hidden_channels=128, loss_fn=RMSE(), debug=False, nonlinearity="Tanh"): super(Wave2Wave, self).__init__() self.debug = debug self.enc_embeds = Embeddings(enc_cat_size, seq_last=True) if share_embeds: self.dec_embeds = self.enc_embeds else: self.dec_embeds = Embeddings(dec_cat_size, seq_last=True) self.concat = Concat(dim=1) self.dropout = nn.Dropout(dropout) enc_input_channels = (self.enc_embeds.output_size + target_size + (enc_num_size if isinstance(enc_num_size, int) else 0)) dec_input_channels = (self.dec_embeds.output_size + target_size + (dec_num_size if isinstance(dec_num_size, int) else 0)) self.encoder = WaveNet(enc_input_channels, residual_channels, skip_channels, num_blocks, num_layers) self.decoder = WaveNet(dec_input_channels, residual_channels, skip_channels, num_blocks, num_layers) self.conv_output1 = nn.Conv1d(skip_channels, hidden_channels, kernel_size=1) self.conv_output2 = nn.Conv1d(hidden_channels, target_size, kernel_size=1) self.nonlinearity = getattr(nn, nonlinearity)() self.loss_fn = loss_fn def encode(self, x, num=None, cat=None): x = self.concat(x, num, self.enc_embeds(cat)) x = self.dropout(x) _, state = self.encoder.encode(x) return state def decode(self, x, state, num=None, cat=None): x = self.concat(x, num, self.enc_embeds(cat)) x = self.dropout(x) skips, state = self.decoder.decode(x, state) output = self.nonlinearity(self.conv_output1(skips)) output = self.conv_output2(output) return output, state def batch_loss(self, x, y, w=None): state = self.encode(x['enc_x'], x['enc_num'], x['enc_cat']) preds = [] for step in range(x['dec_len']): pred, state = self.decode(x['dec_x'][:, :, [step]], state, x['dec_num'][:, :, [step]] if x['dec_num'] is not None else None, x['dec_cat'][:, :, [step]] if x['dec_cat'] is not None else None) preds.append(pred) preds = torch.cat(preds, dim=2) if self.debug: message = f"batch loss predict mean: {preds.mean():.3f}, target mean: {y.mean():.3f}" logger.info(message) loss = self.loss_fn(preds, y, w) del state return loss @torch.no_grad() def predict(self, enc_x, dec_len, enc_num=None, enc_cat=None, dec_num=None, dec_cat=None): state = self.encode(enc_x, enc_num, enc_cat) preds = [] y = enc_x[:, :, [-1]] for step in range(dec_len): y, state = self.decode(y, state, dec_num[:, :, [step]] if dec_num is not None else None, dec_cat[:, :, [step]] if dec_cat is not None else None) preds.append(y) del state return torch.cat(preds, dim=2)
43.390805
111
0.593642
a47033aab9506653cb2c6aa31f6a3f6c67255717
299
py
Python
2. mergesort in multi-threading/test.py
yedkk/parallel-computing-and-mapreduce
e10448ae318deca0dbd9e7a0e1cf8bfc7a66c323
[ "MIT" ]
null
null
null
2. mergesort in multi-threading/test.py
yedkk/parallel-computing-and-mapreduce
e10448ae318deca0dbd9e7a0e1cf8bfc7a66c323
[ "MIT" ]
null
null
null
2. mergesort in multi-threading/test.py
yedkk/parallel-computing-and-mapreduce
e10448ae318deca0dbd9e7a0e1cf8bfc7a66c323
[ "MIT" ]
null
null
null
words = count_them(["different","same"],['C:\\Users\yedkk\ds410-hw-yedkk\hw3\part-00000', 'C:\\Users\yedkk\ds410-hw-yedkk\hw3\part-00001', 'C:\\Users\yedkk\ds410-hw-yedkk\hw3\part-00002', 'C:\\Users\yedkk\ds410-hw-yedkk\hw3\part-00003']) d.visualize('ati_out.png') print(words[-5000], words[-10000])
99.666667
237
0.70903
1ea039ee17dfe9410263211646390f7e98b8af05
5,828
py
Python
mvm_python.py
JamesSample/icpw
47562f601fc8fe23720267d083dabc540889565e
[ "MIT" ]
1
2020-05-06T21:18:33.000Z
2020-05-06T21:18:33.000Z
mvm_python.py
JamesSample/icpw
47562f601fc8fe23720267d083dabc540889565e
[ "MIT" ]
1
2020-02-05T16:50:23.000Z
2020-03-26T16:16:37.000Z
mvm_python.py
JamesSample/icpw
47562f601fc8fe23720267d083dabc540889565e
[ "MIT" ]
null
null
null
#------------------------------------------------------------------------------- # Name: mvm_python.py # Purpose: Download data from the MVM web API. # # Author: James Sample # # Created: 19/10/2018 # Copyright: (c) James Sample and NIVA, 2018 # Licence: <your licence> #------------------------------------------------------------------------------- """ Basic Python functions for downloading data from the Swedish water quality database: https://miljodata.slu.se/mvm/ """ def convert_dates(time_string): """ Modifed from here: https://stackoverflow.com/a/28507530/505698 """ import re from datetime import datetime, timedelta, timezone epoch = datetime(1970, 1, 1, tzinfo=timezone.utc) ticks, offset = re.match(r'/Date\((\d+)([+-]\d{4})?\)/$', time_string).groups() utc_dt = epoch + timedelta(milliseconds=int(ticks)) if offset: offset = int(offset) hours, minutes = divmod(abs(offset), 100) if offset < 0: hours, minutes = -hours, -minutes dt = utc_dt.astimezone(timezone(timedelta(hours=hours, minutes=minutes))) return datetime(dt.year, dt.month, dt.day) else: return datetime(utc_dt.year, utc_dt.month, utc_date.day) def get_mvm_token(token_path): """ Read valid MVM access token from .xlsx """ import pandas as pd import datetime as dt # Read Excel df = pd.read_excel(token_path, sheet_name='Sheet1') # Get most recent token df.sort_values(by=['Expiry_Date'], inplace=True, ascending=False) token = df['Token'][0] exp_date = df['Expiry_Date'][0] # Check valid if exp_date < dt.datetime.now(): raise ValueError('The token file has no valid tokens.\n' 'Please log-in to MVM and update the tokens in the file:\n\n' ' https://miljodata.slu.se/mvm/') return token def query_mvm_station_data(site_id, st_yr, end_yr, token_path): """ Download data for a specific site using the Miljödata MVM API. Based on documentation here: http://miljodata.slu.se/mvm/OpenAPI Args: site_id: Int. MD-MVM ID for site of interest st_yr: Int. Start year of interest end_yr: Int. End year of interest public_token: Raw str. Path to .xlsx containing tokens. See example .xlsx for details Returns: Dataframe """ import requests import pandas as pd import numpy as np # Get access token token = get_mvm_token(token_path) # Build url and get data url = (r'http://miljodata.slu.se/mvm/ws/ObservationsService.svc/rest' r'/GetSamplesBySite?token=%s&siteid=%s&fromYear=%s&toYear=%s' % (token, site_id, st_yr, end_yr)) response = requests.get(url) data = response.json() # Dict for data of interest data_dict = {'mvm_id':[], 'station_name':[], 'station_type':[], 'sample_id':[], 'sample_date':[], 'depth1':[], 'depth2':[], 'par_name':[], 'par_desc':[], 'unit':[], 'value':[], 'flag':[]} # Loop over samples for samp in data: # Get sample data stn_id = int(samp['SiteId']) stn_name = samp['SiteName'] stn_type = samp['SiteType'] samp_id = int(samp['SampleId']) date = convert_dates(samp['SampleDate']) depth1 = samp['MinDepth'] if depth1: depth1 = float(samp['MinDepth'].replace(',', '.')) else: depth1 = np.nan depth2 = samp['MaxDepth'] if depth2: depth2 = float(samp['MaxDepth'].replace(',', '.')) else: depth2 = np.nan # Loop over pars for par in samp['ObservationValues']: # Get par data par_name = par['PropertyAbbrevName'] par_desc = par['PropertyName'] par_unit = par['UnitOfMeasureName'] # Deal with LOD flags par_value = par['ReportedValue'] if par_value: par_value = par_value.replace(',', '.') if par_value[0] in ('<', '>'): flag = par_value[0] par_value = par_value[1:] else: flag = np.nan par_value = float(par_value) else: par_value = np.nan flag = np.nan # Add to dict data_dict['mvm_id'].append(stn_id) data_dict['station_name'].append(stn_name) data_dict['station_type'].append(stn_type) data_dict['sample_id'].append(samp_id) data_dict['sample_date'].append(date) data_dict['depth1'].append(depth1) data_dict['depth2'].append(depth2) data_dict['par_name'].append(par_name) data_dict['par_desc'].append(par_desc) data_dict['unit'].append(par_unit) data_dict['value'].append(par_value) data_dict['flag'].append(flag) df = pd.DataFrame(data_dict) df.sort_values(by=['sample_date', 'par_name'], inplace=True) df.reset_index(inplace=True, drop=True) return df
33.494253
86
0.497598
fb085d03d58f8d54a2dc6855fc977bf8bb57a57e
2,939
py
Python
Award/models.py
Eugeneiregi/Awards
5cd6d51d59f170cd6ee4ee464f152484191884bd
[ "MIT" ]
null
null
null
Award/models.py
Eugeneiregi/Awards
5cd6d51d59f170cd6ee4ee464f152484191884bd
[ "MIT" ]
8
2020-06-11T10:03:53.000Z
2022-03-12T00:34:32.000Z
Award/models.py
Eugeneiregi/Awards
5cd6d51d59f170cd6ee4ee464f152484191884bd
[ "MIT" ]
null
null
null
from django.contrib.auth.models import User from django.core.validators import MinValueValidator, MaxValueValidator from django.db import models class Profile(models.Model): profile_picture = models.ImageField(upload_to='profile_pics/', blank=True) prof_user = models.ForeignKey(User, on_delete=models.PROTECT, null=True) bio = models.TextField(default="") contact_info = models.CharField(max_length=200, blank=True) profile_Id = models.IntegerField(default=0) all_projects = models.ForeignKey('Project', on_delete=models.PROTECT, null=True) def __str__(self): return self.bio def save_profile(self): self.save() def delete_profile(self): self.delete() def update_bio(self, bio): self.bio = bio self.save() @classmethod def get_profile_data(cls): return Profile.objects.all() class Meta: db_table = 'profiles' class Project(models.Model): title = models.CharField(max_length=100) details = models.TextField() link = models.CharField(max_length=100) user = models.ForeignKey(User, on_delete=models.PROTECT, null=True) image = models.ImageField(upload_to='project_images', blank=True) user_project_id = models.IntegerField(default=0) design = models.IntegerField(choices=list(zip(range(0, 11), range(0, 11))), default=0) usability = models.IntegerField(choices=list(zip(range(0, 11), range(0, 11))), default=0) creativity = models.IntegerField(choices=list(zip(range(0, 11), range(0, 11))), default=0) content = models.IntegerField(choices=list(zip(range(0, 11), range(0, 11))), default=0) vote_submissions = models.IntegerField(default=0) def __str__(self): return self.title @classmethod def fetch_all_images(cls): all_images = Project.objects.all() return all_images @classmethod def get_single_project(cls, project): project = cls.objects.get(id=project) return project @classmethod def search_project_by_title(cls, search_term): project = cls.objects.filter(title__icontains=search_term) return project class Meta: db_table = 'projects' ordering = ['-id'] class Rate(models.Model): user = models.ForeignKey(User, on_delete=models.PROTECT) post = models.ForeignKey(Project, on_delete=models.PROTECT, related_name='likes', null=True) design = models.IntegerField(validators=[MinValueValidator(1), MaxValueValidator(10)]) usability = models.IntegerField(validators=[MinValueValidator(1), MaxValueValidator(10)], null=True) creativity = models.IntegerField(validators=[MinValueValidator(1), MaxValueValidator(10)]) content = models.IntegerField(validators=[MinValueValidator(1), MaxValueValidator(10)]) def save_rate(self): self.save() def delete_rate(self): self.delete() class Meta: db_table = 'ratings'
34.576471
104
0.699898
96be3af8e55400ee7ddc00de1dbd1d53417e6945
936
py
Python
matrix-python-project/utils/decrypt.py
hokaso/hocassian-media-matrix
2c2e5a4c72dfa43d2eed0f083f5b19238aea2765
[ "MIT" ]
141
2021-06-27T03:18:54.000Z
2022-03-17T03:24:26.000Z
matrix-python-project/utils/decrypt.py
hokaso/hocassian-media-matrix
2c2e5a4c72dfa43d2eed0f083f5b19238aea2765
[ "MIT" ]
1
2021-08-06T17:35:01.000Z
2021-08-06T17:35:01.000Z
matrix-python-project/utils/decrypt.py
hokaso/hocassian-media-matrix
2c2e5a4c72dfa43d2eed0f083f5b19238aea2765
[ "MIT" ]
24
2021-06-29T01:58:59.000Z
2022-03-02T01:42:43.000Z
# -*- coding: utf-8 -*- # AES-demo #采用AES对称加密算法 import os, json, time, base64 from Crypto.Cipher import AES # str不是16的倍数那就补足为16的倍数 def add_to_16(value): while len(value) % 16 != 0: value += '\0' return str.encode(value) # 解密方法 def decrypt(): with open("../key.txt", 'r') as f: key = f.readline() with open("list.txt", "r") as f0: _info = f0.readlines() info = [i.replace("\n", "") for i in _info] for ikey in info: with open(ikey + ".en", "r") as f1: text = f1.read() aes = AES.new(add_to_16(key), AES.MODE_ECB) base64_decrypted = base64.decodebytes(text.encode(encoding='cp936')) _decrypted_text = str(aes.decrypt(base64_decrypted), encoding='gbk').replace('\0', '') decrypted_text = eval(_decrypted_text) with open(ikey, 'wb') as f2: f2.write(decrypted_text) if __name__ == '__main__': decrypt()
22.285714
94
0.58547
9126fb916a06464b0b12a1884880e97d4ddef2bd
4,809
py
Python
pymc3/step_methods/arraystep.py
ds7788/hello-world
f16466f4d4de8cd412771415a361738ba020e568
[ "Apache-2.0" ]
1
2018-08-16T22:03:21.000Z
2018-08-16T22:03:21.000Z
pymc3/step_methods/arraystep.py
ds7788/hello-world
f16466f4d4de8cd412771415a361738ba020e568
[ "Apache-2.0" ]
null
null
null
pymc3/step_methods/arraystep.py
ds7788/hello-world
f16466f4d4de8cd412771415a361738ba020e568
[ "Apache-2.0" ]
null
null
null
from ..core import * from .compound import CompoundStep from ..vartypes import * import numpy as np from numpy.random import uniform from numpy import log, isfinite from enum import IntEnum, unique __all__ = ['ArrayStep', 'ArrayStepShared', 'metrop_select', 'SamplerHist', 'Competence', 'Constant'] # TODO Add docstrings to ArrayStep @unique class Competence(IntEnum): """Enum for charaterizing competence classes of step methods. Values include: 0: incompatible 1: compatible 2: preferred 3: ideal """ incompatible = 0 compatible = 1 preferred = 2 ideal = 3 class BlockedStep(object): def __new__(cls, *args, **kwargs): blocked = kwargs.get('blocked') if blocked is None: # Try to look up default value from class blocked = getattr(cls, 'default_blocked', True) kwargs['blocked'] = blocked model = modelcontext(kwargs.get('model')) # vars can either be first arg or a kwarg if 'vars' not in kwargs and len(args) >= 1: vars = args[0] args = args[1:] elif 'vars' in kwargs: vars = kwargs.pop('vars') else: # Assume all model variables vars = model.vars #get the actual inputs from the vars vars = inputvars(vars) if not blocked and len(vars) > 1: # In this case we create a separate sampler for each var # and append them to a CompoundStep steps = [] for var in vars: step = super(BlockedStep, cls).__new__(cls) # If we don't return the instance we have to manually # call __init__ step.__init__([var], *args, **kwargs) steps.append(step) return CompoundStep(steps) else: return super(BlockedStep, cls).__new__(cls) @staticmethod def competence(var): return Competence.incompatible @classmethod def _competence(cls, vars): return [cls.competence(var) for var in np.atleast_1d(vars)] class ArrayStep(BlockedStep): def __init__(self, vars, fs, allvars=False, blocked=True): self.vars = vars self.ordering = ArrayOrdering(vars) self.fs = fs self.allvars = allvars self.blocked = blocked def step(self, point): bij = DictToArrayBijection(self.ordering, point) inputs = list(map(bij.mapf, self.fs)) if self.allvars: inputs += [point] apoint = self.astep(bij.map(point), *inputs) return bij.rmap(apoint) class ArrayStepShared(BlockedStep): """Faster version of ArrayStep that requires the substep method that does not wrap the functions the step method uses. Works by setting shared variables before using the step. This eliminates the mapping and unmapping overhead as well as moving fewer variables around. """ def __init__(self, vars, shared, blocked=True): """ Parameters ---------- vars : list of sampling variables shared : dict of theano variable -> shared variable blocked : Boolean (default True) """ self.vars = vars self.ordering = ArrayOrdering(vars) self.shared = { str(var) : shared for var, shared in shared.items() } self.blocked = blocked def step(self, point): for var, share in self.shared.items(): share.container.storage[0] = point[var] bij = DictToArrayBijection(self.ordering, point) apoint = self.astep(bij.map(point)) return bij.rmap(apoint) def metrop_select(mr, q, q0): # Perform rejection/acceptance step for Metropolis class samplers # Compare acceptance ratio to uniform random number if isfinite(mr) and log(uniform()) < mr: # Accept proposed value return q else: # Reject proposed value return q0 class SamplerHist(object): def __init__(self): self.metrops = [] def acceptr(self): return np.minimum(np.exp(self.metrops), 1) class Constant(ArrayStep): """ Dummy sampler that returns the current value at every iteration. Useful for fixing parameters at a particular value. Parameters ---------- vars : list List of variables for sampler. model : PyMC Model Optional model for sampling step. Defaults to None (taken from context). """ def __init__(self, vars, model=None, **kwargs): model = modelcontext(model) self.model = model vars = inputvars(vars) super(Constant, self).__init__(vars, [model.fastlogp], **kwargs) def astep(self, q0, logp): return q0
28.96988
122
0.607403
b2706655401d1fd3621fc1a9adfdba984f20015f
3,296
py
Python
pyspheregl/demo/world_points.py
JosephOHagan/pyspheregl
4258f8bb69372f0cb33ea1d859aaa1d8195e0167
[ "BSD-2-Clause" ]
null
null
null
pyspheregl/demo/world_points.py
JosephOHagan/pyspheregl
4258f8bb69372f0cb33ea1d859aaa1d8195e0167
[ "BSD-2-Clause" ]
null
null
null
pyspheregl/demo/world_points.py
JosephOHagan/pyspheregl
4258f8bb69372f0cb33ea1d859aaa1d8195e0167
[ "BSD-2-Clause" ]
3
2018-08-09T18:57:51.000Z
2019-11-23T08:27:33.000Z
import numpy as np import pyglet from pyglet.gl import * # sphere stuff from ..sim.sphere_sim import getshader, resource_file from ..sim import sphere_sim from ..sphere import sphere from ..utils.graphics_utils import make_unit_quad_tile from ..utils.shader import ShaderVBO, shader_from_file from ..utils.np_vbo import VBuf, IBuf from ..utils import transformations as tn from ..touch.rotater import RotationHandler from ..touch import rotater import zipfile def load_cities(): city_zip = resource_file("data/cities1000.zip") lonlats_radians = [] with zipfile.ZipFile(city_zip) as z: all_cities = z.open("cities1000.txt") for line in all_cities: fields = line.split("\t") lat, lon = float(fields[4]), -float(fields[5]) lonlats_radians.append([np.radians(lon), np.radians(lat)]) return np.array(lonlats_radians, dtype=np.float32) class WorldPoints(object): def __init__(self): self.viewer = sphere_sim.make_viewer(show_touches=True, draw_fn=self.draw, tick_fn=self.tick, touch_fn=self.touch) self.rotater = RotationHandler(rotater.EQUATORIAL) world_indices, world_verts, world_texs = make_unit_quad_tile(1) world_texture = pyglet.image.load(resource_file("data/azworld.png")) whole_shader = shader_from_file([getshader("sphere.vert"), getshader("user/whole_sphere.vert")], [getshader("user/whole_sphere_tex.frag")]) self.world_render = ShaderVBO(whole_shader, IBuf(world_indices), buffers={"quad_vtx":VBuf(world_verts),}, textures={"tex":world_texture.texture}) pts = load_cities() # point shader; simple coloured circles, with no spherical correction point_shader = shader_from_file([getshader("sphere.vert"), getshader("user/point.vert")], [getshader("user/point.frag")]) self.point_vbo = ShaderVBO(point_shader, IBuf(np.arange(len(pts))), buffers={"position":VBuf(pts), }, vars={"constant_size":1, }, attribs={"color":(1,1,1,1)}, primitives=GL_POINTS) self.viewer.start() def touch(self, events): for event in events: xyz = sphere.polar_to_cart(*event.touch.lonlat) if event.event=="DRAG": self.rotater.drag(event.touch.id, xyz) if event.event=="UP": self.rotater.up(event.touch.id, xyz) if event.event=="DOWN": self.rotater.down(event.touch.id, xyz) def draw(self): glClearColor(0.0,0.0,0.0,1) glClear(GL_COLOR_BUFFER_BIT) glEnable(GL_VERTEX_PROGRAM_POINT_SIZE) glEnable(GL_POINT_SPRITE) self.world_render.draw() self.point_vbo.draw(vars={"quat":self.rotater.orientation}) def tick(self): self.rotater.update(1/60.0) pass if __name__=="__main__": p = WorldPoints()
37.033708
148
0.581311
858c644641578fab57269fe79cb1d579c6db5942
11,752
py
Python
froide/helper/email_parsing.py
OpendataCH/froide
8136bac0d8caa56f9cfc7ba15480be987280e55d
[ "MIT" ]
null
null
null
froide/helper/email_parsing.py
OpendataCH/froide
8136bac0d8caa56f9cfc7ba15480be987280e55d
[ "MIT" ]
null
null
null
froide/helper/email_parsing.py
OpendataCH/froide
8136bac0d8caa56f9cfc7ba15480be987280e55d
[ "MIT" ]
null
null
null
""" Original EmailParser Code by Ian Lewis: http://www.ianlewis.org/en/parsing-email-attachments-python Licensed under MIT """ import re import time from contextlib import closing from datetime import datetime, timedelta from email.header import decode_header from email.message import EmailMessage from email.parser import BytesParser as Parser from email.utils import getaddresses, parseaddr, parsedate_tz from io import BytesIO from typing import Dict, List, Optional, Tuple from urllib.parse import unquote from django.utils.functional import cached_property import pytz from .email_utils import ( AuthenticityStatus, check_dkim, check_dmarc, check_spf, detect_auto_reply, get_bounce_info, ) from .text_utils import convert_html_to_text # Restrict to max 3 consecutive newlines in email body MULTI_NL_RE = re.compile("((?:\r?\n){,3})(?:\r?\n)*") DISPO_SPLIT = re.compile(r"""((?:[^;"']|"[^"]*"|'[^']*')+)""") # Reassemble regular-parameter section # https://tools.ietf.org/html/rfc2231#7 DISPO_MULTI_VALUE = re.compile(r"(\w+)\*\d+$") def split_with_quotes(dispo): return [x.strip() for x in DISPO_SPLIT.split(dispo.strip()) if x and x != ";"] def get_email_headers(message_bytes, headers=None): p = Parser() with closing(BytesIO(message_bytes)) as stream: msgobj = p.parse(stream) if headers is None: headers = dict(msgobj) return {k: [parse_header_field(x) for x in msgobj.get_all(k, [])] for k in headers} class EmailAttachment(BytesIO): content_type: str size: int name: Optional[str] create_date: Optional[str] mod_date: Optional[str] read_date: Optional[str] def parse_email_body( msgobj: EmailMessage, ) -> Tuple[List[str], List[str], List[EmailAttachment]]: body = [] html = [] attachments = [] for part in msgobj.walk(): attachment = parse_attachment(part) if attachment: attachments.append(attachment) elif part.get_content_type() == "text/plain": body.append(decode_message_part(part)) elif part.get_content_type() == "text/html": html.append(decode_message_part(part)) return body, html, attachments def decode_message_part(part): charset = part.get_content_charset() or "ascii" return str(part.get_payload(decode=True), charset, "replace") def parse_main_headers(msgobj): subject = parse_header_field(msgobj["Subject"]) tos = get_address_list(msgobj.get_all("To", [])) x_original_tos = get_address_list(msgobj.get_all("X-Original-To", [])) ccs = get_address_list(msgobj.get_all("Cc", [])) resent_tos = get_address_list(msgobj.get_all("resent-to", [])) resent_ccs = get_address_list(msgobj.get_all("resent-cc", [])) from_field = parseaddr(str(msgobj.get("From"))) from_field = ( parse_header_field(from_field[0]), from_field[1].lower() if from_field[1] else from_field[1], ) date = parse_date(str(msgobj.get("Date"))) return { "message_id": msgobj.get("Message-Id"), "date": date, "subject": subject, "from_": from_field, "to": tos, "x_original_to": x_original_tos, "cc": ccs, "resent_to": resent_tos, "resent_cc": resent_ccs, } def parse_dispositions(dispo): if not isinstance(dispo, str): dispo = parse_header_field(dispo) dispos = split_with_quotes(dispo) dispo_name = dispos[0].lower() dispo_dict = {} for param in dispos[1:]: if "=" not in param: continue name, value = param.split("=", 1) name = name.lower().strip() value = value.strip() if value.startswith('"') and value.endswith('"'): value = value[1:-1] multi_name = DISPO_MULTI_VALUE.match(name) if multi_name: name = multi_name.group(1) if name in dispo_dict: dispo_dict[name] += value else: dispo_dict[name] = value else: dispo_dict[name] = value for name, value in dispo_dict.items(): dispo_dict[name] = parse_header_field(value) return dispo_name, dispo_dict def parse_attachment(message_part): content_disposition = message_part.get("Content-Disposition", None) if not content_disposition: return None dispo_type, dispo_dict = parse_dispositions(content_disposition) if not ( dispo_type == "attachment" or (dispo_type == "inline" and "filename" in dispo_dict) ): return None content_type = message_part.get("Content-Type", None) file_data = message_part.get_payload(decode=True) if file_data is None: payloads = message_part.get_payload() file_data = "\n\n".join([p.as_string() for p in payloads]).encode("utf-8") attachment = EmailAttachment(file_data) attachment.content_type = message_part.get_content_type() attachment.size = len(file_data) attachment.name = None attachment.create_date = None attachment.mod_date = None attachment.read_date = None attachment.name = get_attachment_name( attachment, dispo_dict, content_type=content_type ) if "create-date" in dispo_dict: attachment.create_date = dispo_dict["create-date"] # TODO: datetime if "modification-date" in dispo_dict: attachment.mod_date = dispo_dict["modification-date"] # TODO: datetime if "read-date" in dispo_dict: attachment.read_date = dispo_dict["read-date"] # TODO: datetime return attachment def get_attachment_name(attachment, dispo_dict, content_type=None): name = None if "filename" in dispo_dict: name = dispo_dict["filename"] if name is None and "filename*" in dispo_dict: name = parse_extended_header_field(dispo_dict["filename*"]) if content_type: _, content_dict = parse_dispositions(content_type) if "name" in content_dict: name = content_dict["name"] if name is None and "name*" in content_dict: name = parse_extended_header_field(content_dict["name*"]) if name is None and content_type == "message/rfc822": attachment_bytes = attachment.getvalue() attachment_headers = get_email_headers(attachment_bytes, ["Subject"]) subject = attachment_headers["Subject"] if subject: name = "%s.eml" % subject[0][:45] return name def parse_header_field(field): if field is None: return None if isinstance(field, str): # For Python 2 # see http://stackoverflow.com/questions/7331351/python-email-header-decoding-utf-8 field = re.sub(r"(=\?[\w-]+\?\w\?.*\?=)(?!$)", r"\1 ", field) field = field.replace("\n ", "") try: decodefrag = decode_header(field) except UnicodeEncodeError: # Python 2 failure if isinstance(field, str): return field return try_decoding(field) if decodefrag and isinstance(decodefrag[0][0], bytes) and b"=?" in decodefrag[0][0]: # Likely failed to decode! # Python expects encoded words in individual lines # https://github.com/python/cpython/blob/a8d5e2f255f1a20fc8af7dc16a7cb708e014952a/Lib/email/header.py#L86 # But encoded words may have been split up! # Let's remove newlines that are not preceded by # encoded word terminator and try again field = re.sub(r"(?<!\?\=)\n ", "=20", field) decodefrag = decode_header(field) fragments = [] for s, enc in decodefrag: decoded = None if enc or not isinstance(s, str): decoded = try_decoding(s, encoding=enc) else: decoded = s fragments.append(decoded.strip(" ")) field = " ".join(fragments) return field.replace("\n\t", " ").replace("\n", "").replace("\r", "") def parse_extended_header_field(field): """ https://tools.ietf.org/html/rfc5987#section-3.2 """ try: fname_encoding, fname_lang, fname = field.split("'") except ValueError: return str(field) return unquote(fname, encoding=fname_encoding) def try_decoding(encoded, encoding=None): decoded = None if encoding and encoding != "unknown-8bit": try: decoded = encoded.decode(encoding, errors="replace") except (UnicodeDecodeError, LookupError): pass if decoded is None: # Try common encodings for enc in ("utf-8", "latin1"): try: decoded = encoded.decode(enc) break except UnicodeDecodeError: continue if decoded is None: # Fall back to ascii and replace decoded = encoded.decode("ascii", errors="replace") return decoded def get_address_list(values): values = [parse_header_field(value) for value in values] address_list = getaddresses(values) fixed = [] for addr in address_list: fixed.append((parse_header_field(addr[0]), addr[1])) return fixed def parse_date(date_str): date_tuple = parsedate_tz(date_str) if date_tuple is None: return None date = datetime.fromtimestamp(time.mktime(date_tuple[:9])) offset = date_tuple[9] if offset is not None: date = date - timedelta(seconds=offset) return pytz.utc.localize(date) EmailField = Tuple[str, str] class ParsedEmail(object): message_id: str = "" date: datetime = None subject: str body: str html: Optional[str] from_: EmailField to: List[EmailField] = [] x_original_to: List[EmailField] = [] cc: List[EmailField] = [] resent_to: List[EmailField] = [] resent_cc: List[EmailField] = [] attachments: List[EmailAttachment] = [] def __init__(self, msgobj, **kwargs): self.msgobj: EmailMessage = msgobj for k, v in kwargs.items(): setattr(self, k, v) @cached_property def bounce_info(self): return self.get_bounce_info() def get_bounce_info(self): return get_bounce_info(self.body, msgobj=self.msgobj, date=self.date) @cached_property def is_auto_reply(self): return self.detect_auto_reply() def detect_auto_reply(self): return detect_auto_reply(self.from_, subject=self.subject, msgobj=self.msgobj) def is_direct_recipient(self, email_address): return any(email.lower() == email_address.lower() for name, email in self.to) @cached_property def fails_authenticity(self): checks = self.get_authenticity_checks() return [c for c in checks if c.failed] def get_authenticity_checks(self) -> Dict[str, AuthenticityStatus]: if hasattr(self, "_authenticity_checks"): return self._authenticity_checks checks = [] status = check_spf(self.msgobj) if status: checks.append(status) status = check_dmarc(self.msgobj) if status: checks.append(status) status = check_dkim(self.msgobj) if status: checks.append(status) self._authenticity_checks = checks return checks def fix_email_body(body): return MULTI_NL_RE.sub("\\1", body) def parse_email(bytesfile: BytesIO) -> ParsedEmail: p = Parser() msgobj = p.parse(bytesfile) body, html, attachments = parse_email_body(msgobj) body = "\n".join(body).strip() html = "\n".join(html).strip() if not body and html: body = convert_html_to_text(html) body = fix_email_body(body) email_info = parse_main_headers(msgobj) email_info.update({"body": body, "html": html, "attachments": attachments}) return ParsedEmail(msgobj, **email_info)
31.007916
113
0.646273
5a5ddc6c3e8a40ca8b0cbc723191a01cf09b8a05
4,064
py
Python
custom_components/ge_home/devices/base.py
bendavis/ha_components
cc19732fd5d234881f74c90f636658ca7b04cb47
[ "MIT" ]
null
null
null
custom_components/ge_home/devices/base.py
bendavis/ha_components
cc19732fd5d234881f74c90f636658ca7b04cb47
[ "MIT" ]
null
null
null
custom_components/ge_home/devices/base.py
bendavis/ha_components
cc19732fd5d234881f74c90f636658ca7b04cb47
[ "MIT" ]
null
null
null
import asyncio import logging from typing import Dict, List, Optional from gehomesdk import GeAppliance from gehomesdk.erd import ErdCode, ErdCodeType, ErdApplianceType from homeassistant.core import HomeAssistant from homeassistant.helpers.entity import Entity from homeassistant.helpers.update_coordinator import DataUpdateCoordinator from ..const import DOMAIN _LOGGER = logging.getLogger(__name__) class ApplianceApi: """ API class to represent a single physical device. Since a physical device can have many entities, we"ll pool common elements here """ APPLIANCE_TYPE = None # type: Optional[ErdApplianceType] def __init__(self, coordinator: DataUpdateCoordinator, appliance: GeAppliance): if not appliance.initialized: raise RuntimeError("Appliance not ready") self._appliance = appliance self._loop = appliance.client.loop self._hass = coordinator.hass self.coordinator = coordinator self.initial_update = False self._entities = {} # type: Optional[Dict[str, Entity]] @property def hass(self) -> HomeAssistant: return self._hass @property def loop(self) -> Optional[asyncio.AbstractEventLoop]: if self._loop is None: self._loop = self._appliance.client.loop return self._loop @property def appliance(self) -> GeAppliance: return self._appliance @appliance.setter def appliance(self, value: GeAppliance): self._appliance = value @property def available(self) -> bool: #Note - online will be there since we're using the GE coordinator #Didn't want to deal with the circular references to get the type hints #working. return self.appliance.available and self.coordinator.online @property def serial_number(self) -> str: return self.appliance.get_erd_value(ErdCode.SERIAL_NUMBER) @property def model_number(self) -> str: return self.appliance.get_erd_value(ErdCode.MODEL_NUMBER) @property def sw_version(self) -> str: appVer = self.try_get_erd_value(ErdCode.APPLIANCE_SW_VERSION) wifiVer = self.try_get_erd_value(ErdCode.WIFI_MODULE_SW_VERSION) return 'Appliance=' + str(appVer or 'Unknown') + '/Wifi=' + str(wifiVer or 'Unknown') @property def name(self) -> str: appliance_type = self.appliance.appliance_type if appliance_type is None or appliance_type == ErdApplianceType.UNKNOWN: appliance_type = "Appliance" else: appliance_type = appliance_type.name.replace("_", " ").title() return f"GE {appliance_type} {self.serial_number}" @property def device_info(self) -> Dict: """Device info dictionary.""" return { "identifiers": {(DOMAIN, self.serial_number)}, "name": self.name, "manufacturer": "GE", "model": self.model_number, "sw_version": self.sw_version } @property def entities(self) -> List[Entity]: return list(self._entities.values()) def get_all_entities(self) -> List[Entity]: """Create Entities for this device.""" from ..entities import GeErdSensor, GeErdSwitch entities = [ GeErdSensor(self, ErdCode.CLOCK_TIME), GeErdSwitch(self, ErdCode.SABBATH_MODE), ] return entities def build_entities_list(self) -> None: """Build the entities list, adding anything new.""" from ..entities import GeErdEntity entities = [ e for e in self.get_all_entities() if not isinstance(e, GeErdEntity) or e.erd_code in self.appliance.known_properties ] for entity in entities: if entity.unique_id not in self._entities: self._entities[entity.unique_id] = entity def try_get_erd_value(self, code: ErdCodeType): try: return self.appliance.get_erd_value(code) except: return None
32.253968
94
0.656988
69f6c22cb075dcba695f64c5a667da858d2dbf88
4,293
py
Python
task-automation/AMITaggingFromEc2py.py
witaloandrade/botools
b37ef276fc7f1882e5c20a992c20c13e80078fe8
[ "MIT" ]
null
null
null
task-automation/AMITaggingFromEc2py.py
witaloandrade/botools
b37ef276fc7f1882e5c20a992c20c13e80078fe8
[ "MIT" ]
null
null
null
task-automation/AMITaggingFromEc2py.py
witaloandrade/botools
b37ef276fc7f1882e5c20a992c20c13e80078fe8
[ "MIT" ]
null
null
null
#!/usr/bin/python3 """ Witalo Andrade - 2021-07-15 This script will copy old BillingId/Owner tag values to new values. How run it: python3 ./<NAME>.py """ import os import boto3 from time import sleep from botocore.exceptions import ClientError import logging import re logging.basicConfig(format='%(levelname)s : %(message)s', level=logging.ERROR) logger = logging.getLogger() #Static most used regions aws_regions = ["us-east-1","us-west-2","ap-southeast-1","ap-southeast-2","eu-central-1","eu-west-1"] def pullAwsCreds(file='~/.aws/credentials'): """ This function will return a list with all aws profiles from user default aws cred file. """ path = file full_path = os.path.expanduser(path) with open(full_path, 'r') as f: lines = f.readlines() f.close() return [line[1:-2] for line in lines if line.startswith('[') ] def addTags(aws_accounts): """ This function will iterate through ec2 instances and update the tags from regexLowerCaseTags return. """ for account in aws_accounts: print('Working on aws credential :', account) for each_reg in aws_regions: session=boto3.Session(profile_name=account,region_name=each_reg) client = session.client('ec2') response = client.describe_instances( Filters=[ # add any filters if needed, used for dev #{ # 'Name': 'tag:Name', # 'Values': ['xyz'] #} ] ) for reservation in response['Reservations']: for instance_description in reservation['Instances']: print('Listing :', instance_description['InstanceId']) sleep(2) to_tag = regexLowerCaseTags(instance_description['Tags']) if to_tag: logger.info('Func returned new tags: %s for %s ', to_tag, instance_description['InstanceId'] ) try: print("Tagging ec2 {} - {}".format(instance_description['InstanceId'], to_tag, end='\n\n')) client.create_tags(Resources=[instance_description['InstanceId']], DryRun=False, Tags=to_tag) except ClientError as e: if e.response['Error'].get('Code') == 'DryRunOperation': print("DryRun executed, ec2 would have been tagged.",end='\n\n') else: logger.error('Failed to tag ec2 with error : %s', account,end='\n\n') except Exception as e: print(e) def lowerCaseTags(tags): new_tags = [] for t in tags: if t['Key'] == 'BillingId': new_tags.append({'Key':'billingid', 'Value': t['Value']}) elif t['Key'] == 'Owner': new_tags.append({'Key':'owner', 'Value': t['Value']}) if len(new_tags) > 0: return new_tags def regexLowerCaseTags(tags): """ This function will return the new tag values from the existing tags. I will try to regex filter best and not valid values. """ new_tags = [] billKeyRegex = re.compile(r'bill', re.IGNORECASE) billValueRegex = re.compile(r'\D+-\d+', re.IGNORECASE) ownerRegex = re.compile(r'owner', re.IGNORECASE) emailRegex = re.compile(r'\b[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\.[A-Z|a-z]{2,}\b') for t in tags: if bool(billKeyRegex.search(t['Key'])) == True and bool(billValueRegex.search(t['Value'])) == True: print('Found {}'.format(t)) b = {'Key':'billingid', 'Value': t['Value']} elif bool(ownerRegex.search(t['Key'])) == True and bool(emailRegex.search(t['Value'])) == True: print('Found {}'.format(t)) o = {'Key':'owner', 'Value': emailRegex.search(t['Value']).group()} try: new_tags.append(b) except Exception as e: logger.info('Billing not found') try: new_tags.append(o) except Exception as e: logger.info('Owner not found') #print('Result is :', new_tags) if len(new_tags) > 0: return new_tags def main(): addTags(pullAwsCreds()) if __name__ == '__main__': main()
38.330357
121
0.569299
0d8c21969cb6a759e7ccc7dc7d78c05395f52aaf
5,255
py
Python
python/examples/depthwise_conv/depthwise_conv_2d_bench.py
yzhang93/iree-llvm-sandbox
1566f318f27585b60464516a63b49e5bc09f8fcb
[ "Apache-2.0" ]
null
null
null
python/examples/depthwise_conv/depthwise_conv_2d_bench.py
yzhang93/iree-llvm-sandbox
1566f318f27585b60464516a63b49e5bc09f8fcb
[ "Apache-2.0" ]
null
null
null
python/examples/depthwise_conv/depthwise_conv_2d_bench.py
yzhang93/iree-llvm-sandbox
1566f318f27585b60464516a63b49e5bc09f8fcb
[ "Apache-2.0" ]
null
null
null
# RUN: %PYTHON %s 2>&1 | FileCheck %s # This file contains simple test cases that combine various codegen options. from ..core.experts import * from ..core.harness import * from ..core.transforms import * from .definitions import * fun_name = 'depthwise_conv_2d_nhwc_hwc' op_name = 'linalg.depthwise_conv_2d_nhwc_hwc' ################################################################################ # Compilation strategies. ################################################################################ # Note: `\` char at the end of next line prevents formatter reflows, keep it. all_names = [ \ "DepthWiseConv2DExpert" ] all_experts = [ # Note: `\` char at the end of next line prevents formatter reflows, keep it. e.print_ir(after_all=False, at_begin=False, llvm=False) for e in [ \ DoubleTileAndDecompose( fun_name=fun_name, op_name=op_name, # N H W C KH, KW tile_sizes=[1, 8, 14, 32], peel=[0, 1, 2], # N H W C KH, KW tile_sizes2=[1, 1, 7, 32, 1, 3], peel2=[0, 1, 2]) .then(Vectorize(fun_name, '')) .then(Bufferize()) .then(LowerVectors()) .then(LowerToLLVM()) ] ] ################################################################################ # Problem instantiation ################################################################################ keys = ['N', 'H', 'W', 'C', 'KH', 'KW', 'strides', 'dilations'] # CHECK-NOT: FAILURE def main(): n_iters = 1000 # N H W C KH KW st dil microbenchmark_problem_size_list = [ [1, 16, 16, 32, 3, 3, [1, 1], [1, 1]], [1, 16, 16, 32, 3, 3, [1, 2], [1, 2]], [1, 16, 16, 32, 3, 3, [2, 1], [1, 2]], [1, 16, 16, 32, 3, 3, [2, 2], [2, 2]], [1, 16, 16, 32, 3, 3, [2, 3], [3, 2]], [1, 16, 16, 32, 3, 3, [3, 2], [2, 3]], ] benchmark_problem_size_list = [ #################################################### # /* H W KH KW PH PW S D G */ #################################################### # b->Args({112, 112, 3, 3, 2, 2, 1, 1, 32}); # b->Args({ 56, 56, 3, 3, 2, 2, 1, 1, 128}); # b->Args({ 56, 56, 3, 3, 2, 2, 2, 1, 128}); # b->Args({ 28, 28, 3, 3, 2, 2, 1, 1, 256}); # b->Args({ 28, 28, 3, 3, 2, 2, 2, 1, 256}); # b->Args({ 14, 14, 3, 3, 2, 2, 1, 1, 512}); # b->Args({ 14, 14, 3, 3, 2, 2, 2, 1, 512}); #################################################### # N H W C KH KW st dil #################################################### [1, 112, 112, 32, 3, 3, [1, 1], [1, 1]], [1, 56, 56, 128, 3, 3, [1, 1], [1, 1]], [1, 56, 56, 128, 3, 3, [2, 2], [1, 1]], [1, 28, 28, 256, 3, 3, [1, 1], [1, 1]], [1, 28, 28, 256, 3, 3, [2, 2], [1, 1]], [1, 14, 14, 512, 3, 3, [1, 1], [1, 1]], [1, 14, 14, 512, 3, 3, [2, 2], [1, 1]], [1, 7, 7, 1024, 3, 3, [1, 1], [1, 1]], ] # Specify default configuration and parse command line. args = test_argparser( "depthwise conv 2d benchmark", default_n_iters=1000, default_problem_sizes_list=benchmark_problem_size_list, default_expert_list=all_names, default_dynamic_at_compile_time_list=[ [], # case 1: static at compile time # case 2: partially dynamic at compile time ['H', 'W'], # case 3: partially dynamic at compile time ['C'], # case 4: fully dynamic at compile time (except KH, KW) ['N', 'H', 'W', 'C'], ], default_spec_list=[]) for dynamic_at_compile_time in args.dynamic_at_compile_time_list: def numpy_kernel(args, sizes, types): problem = DepthwiseConvolutionProblem('NHWC', 'HWC', strides=sizes['strides'], dilations=sizes['dilations']) problem.reference_np(*args) def pytorch_kernel(args, sizes, types): problem = DepthwiseConvolutionProblem('NHWC', 'HWC', strides=sizes['strides'], dilations=sizes['dilations']) problem.reference_pt(*args) test_harness(lambda sizes, t: DepthwiseConvolutionProblem( 'NHWC', 'HWC', strides=sizes['strides'], dilations=sizes['dilations']), [[np.float32] * 3], test_sizes(keys, args.problem_sizes_list), test_experts(all_experts, all_names, args.expert_list), n_iters=args.n_iters, dynamic_at_compile_time_sizes=set( dynamic_at_compile_time).intersection(keys), function_name=fun_name, dump_ir_to_file='/tmp/abcd.mlir', dump_obj_to_file='/tmp/abcd.o', numpy_benchmark=numpy_kernel, pytorch_benchmark=pytorch_kernel, dump_data_to_file=args.dump_data) if __name__ == '__main__': main()
38.357664
81
0.442055
648a04658683e4dfd71ff4e6f2a620d5a400b2da
4,028
py
Python
duke-cs671-fall21-coupon-recommendation/outputs/rules/RF/18_features/numtrees_12/rule_4.py
apcarrik/kaggle
6e2d4db58017323e7ba5510bcc2598e01a4ee7bf
[ "MIT" ]
null
null
null
duke-cs671-fall21-coupon-recommendation/outputs/rules/RF/18_features/numtrees_12/rule_4.py
apcarrik/kaggle
6e2d4db58017323e7ba5510bcc2598e01a4ee7bf
[ "MIT" ]
null
null
null
duke-cs671-fall21-coupon-recommendation/outputs/rules/RF/18_features/numtrees_12/rule_4.py
apcarrik/kaggle
6e2d4db58017323e7ba5510bcc2598e01a4ee7bf
[ "MIT" ]
null
null
null
def findDecision(obj): #obj[0]: Passanger, obj[1]: Weather, obj[2]: Time, obj[3]: Coupon, obj[4]: Coupon_validity, obj[5]: Gender, obj[6]: Age, obj[7]: Maritalstatus, obj[8]: Children, obj[9]: Education, obj[10]: Occupation, obj[11]: Income, obj[12]: Bar, obj[13]: Coffeehouse, obj[14]: Restaurantlessthan20, obj[15]: Restaurant20to50, obj[16]: Direction_same, obj[17]: Distance # {"feature": "Coupon", "instances": 85, "metric_value": 0.9879, "depth": 1} if obj[3]>1: # {"feature": "Coffeehouse", "instances": 62, "metric_value": 0.9072, "depth": 2} if obj[13]<=1.0: # {"feature": "Income", "instances": 35, "metric_value": 0.9947, "depth": 3} if obj[11]<=6: # {"feature": "Occupation", "instances": 31, "metric_value": 0.9992, "depth": 4} if obj[10]>3: # {"feature": "Bar", "instances": 26, "metric_value": 0.9829, "depth": 5} if obj[12]<=2.0: # {"feature": "Education", "instances": 23, "metric_value": 0.9321, "depth": 6} if obj[9]<=2: # {"feature": "Coupon_validity", "instances": 14, "metric_value": 0.5917, "depth": 7} if obj[4]>0: # {"feature": "Weather", "instances": 8, "metric_value": 0.8113, "depth": 8} if obj[1]<=0: # {"feature": "Time", "instances": 7, "metric_value": 0.5917, "depth": 9} if obj[2]<=2: return 'True' elif obj[2]>2: # {"feature": "Gender", "instances": 2, "metric_value": 1.0, "depth": 10} if obj[5]<=0: return 'True' elif obj[5]>0: return 'False' else: return 'False' else: return 'True' elif obj[1]>0: return 'False' else: return 'False' elif obj[4]<=0: return 'True' else: return 'True' elif obj[9]>2: # {"feature": "Distance", "instances": 9, "metric_value": 0.9183, "depth": 7} if obj[17]>1: # {"feature": "Passanger", "instances": 5, "metric_value": 0.971, "depth": 8} if obj[0]>1: # {"feature": "Gender", "instances": 3, "metric_value": 0.9183, "depth": 9} if obj[5]<=0: return 'False' elif obj[5]>0: return 'True' else: return 'True' elif obj[0]<=1: return 'True' else: return 'True' elif obj[17]<=1: return 'False' else: return 'False' else: return 'False' elif obj[12]>2.0: return 'False' else: return 'False' elif obj[10]<=3: return 'False' else: return 'False' elif obj[11]>6: return 'True' else: return 'True' elif obj[13]>1.0: # {"feature": "Passanger", "instances": 27, "metric_value": 0.6052, "depth": 3} if obj[0]>0: # {"feature": "Income", "instances": 26, "metric_value": 0.5159, "depth": 4} if obj[11]<=4: return 'True' elif obj[11]>4: # {"feature": "Restaurantlessthan20", "instances": 11, "metric_value": 0.8454, "depth": 5} if obj[14]<=2.0: return 'True' elif obj[14]>2.0: # {"feature": "Time", "instances": 5, "metric_value": 0.971, "depth": 6} if obj[2]>1: # {"feature": "Gender", "instances": 3, "metric_value": 0.9183, "depth": 7} if obj[5]>0: return 'True' elif obj[5]<=0: return 'False' else: return 'False' elif obj[2]<=1: return 'False' else: return 'False' else: return 'False' else: return 'True' elif obj[0]<=0: return 'False' else: return 'False' else: return 'True' elif obj[3]<=1: # {"feature": "Education", "instances": 23, "metric_value": 0.8281, "depth": 2} if obj[9]>1: return 'False' elif obj[9]<=1: # {"feature": "Occupation", "instances": 10, "metric_value": 0.971, "depth": 3} if obj[10]>2: # {"feature": "Distance", "instances": 7, "metric_value": 0.5917, "depth": 4} if obj[17]<=2: return 'True' elif obj[17]>2: return 'False' else: return 'False' elif obj[10]<=2: return 'False' else: return 'False' else: return 'True' else: return 'False'
37.296296
378
0.542205
35c4094b846663cdbc4b77e0ba392b8ebfae8185
901
py
Python
animal_shelters/migrations/0014_auto_20210716_1333.py
KrzysztofCalus/Animal_shelters_app
982689c719377d94bac22145fb6fc4bfb81821a2
[ "CC0-1.0" ]
null
null
null
animal_shelters/migrations/0014_auto_20210716_1333.py
KrzysztofCalus/Animal_shelters_app
982689c719377d94bac22145fb6fc4bfb81821a2
[ "CC0-1.0" ]
null
null
null
animal_shelters/migrations/0014_auto_20210716_1333.py
KrzysztofCalus/Animal_shelters_app
982689c719377d94bac22145fb6fc4bfb81821a2
[ "CC0-1.0" ]
null
null
null
# Generated by Django 3.2.4 on 2021-07-16 13:33 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('animal_shelters', '0013_auto_20210715_1935'), ] operations = [ migrations.AlterField( model_name='owner', name='about', field=models.TextField(blank=True, null=True), ), migrations.AlterField( model_name='owner', name='capacity', field=models.PositiveIntegerField(blank=True, null=True), ), migrations.AlterField( model_name='owner', name='donations', field=models.TextField(blank=True, null=True), ), migrations.AlterField( model_name='owner', name='regulations', field=models.TextField(blank=True, null=True), ), ]
26.5
69
0.564928
6322cae22e46b1890a4644a369af6810818abe11
495
py
Python
cat_blog/users/tests/test_tasks.py
turamant/cat_blog
0a04978db78d805f6468626ab23454ffa52b2411
[ "MIT" ]
null
null
null
cat_blog/users/tests/test_tasks.py
turamant/cat_blog
0a04978db78d805f6468626ab23454ffa52b2411
[ "MIT" ]
4
2021-03-30T14:29:55.000Z
2021-06-10T19:56:22.000Z
cat_blog/users/tests/test_tasks.py
turamant/cat_blog
0a04978db78d805f6468626ab23454ffa52b2411
[ "MIT" ]
null
null
null
import pytest from celery.result import EagerResult from cat_blog.users.tasks import get_users_count from cat_blog.users.tests.factories import UserFactory pytestmark = pytest.mark.django_db def test_user_count(settings): """A basic test to execute the get_users_count Celery task.""" UserFactory.create_batch(3) settings.CELERY_TASK_ALWAYS_EAGER = True task_result = get_users_count.delay() assert isinstance(task_result, EagerResult) assert task_result.result == 3
29.117647
66
0.789899
a7cba21667e624e970fb95c8372f19d0fd0e5e2c
4,582
py
Python
test/functional/mempool_reorg.py
Carbon-Reduction-Initiative/CARI
ff7e8d4d67628aa1a833d338704b37c3d8188aaa
[ "MIT" ]
2
2021-04-23T20:50:52.000Z
2021-11-08T20:09:46.000Z
test/functional/mempool_reorg.py
Carbon-Reduction-Initiative/CARI
ff7e8d4d67628aa1a833d338704b37c3d8188aaa
[ "MIT" ]
null
null
null
test/functional/mempool_reorg.py
Carbon-Reduction-Initiative/CARI
ff7e8d4d67628aa1a833d338704b37c3d8188aaa
[ "MIT" ]
5
2020-11-06T10:06:07.000Z
2022-01-26T17:19:20.000Z
#!/usr/bin/env python3 # Copyright (c) 2014-2017 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Test mempool re-org scenarios. Test re-org scenarios with a mempool that contains transactions that spend (directly or indirectly) coinbase transactions. """ from test_framework.test_framework import CariTestFramework from test_framework.util import * import time # Create one-input, one-output, no-fee transaction: class MempoolCoinbaseTest(CariTestFramework): def set_test_params(self): self.num_nodes = 2 self.extra_args = [["-checkmempool"]] * 2 def run_test(self): # Start with a 200 block chain assert_equal(self.nodes[0].getblockcount(), 200) # Mine four blocks. After this, nodes[0] blocks # 101, 102, and 103 are spend-able. new_blocks = self.nodes[1].generate(4) self.sync_all() node0_address = self.nodes[0].getnewaddress() node1_address = self.nodes[1].getnewaddress() # Three scenarios for re-orging coinbase spends in the memory pool: # 1. Direct coinbase spend : spend_101 # 2. Indirect (coinbase spend in chain, child in mempool) : spend_102 and spend_102_1 # 3. Indirect (coinbase and child both in chain) : spend_103 and spend_103_1 # Use invalidatblock to make all of the above coinbase spends invalid (immature coinbase), # and make sure the mempool code behaves correctly. b = [ self.nodes[0].getblockhash(n) for n in range(101, 105) ] coinbase_txids = [ self.nodes[0].getblock(h)['tx'][0] for h in b ] spend_101_raw = create_tx(self.nodes[0], coinbase_txids[1], node1_address, 249.99) spend_102_raw = create_tx(self.nodes[0], coinbase_txids[2], node0_address, 249.99) spend_103_raw = create_tx(self.nodes[0], coinbase_txids[3], node0_address, 249.99) # Create a transaction which is time-locked to two blocks in the future timelock_tx = self.nodes[0].createrawtransaction([{"txid": coinbase_txids[0], "vout": 0}], {node0_address: 249.99}) # Set the time lock timelock_tx = timelock_tx.replace("ffffffff", "11111191", 1) timelock_tx = timelock_tx[:-8] + hex(self.nodes[0].getblockcount() + 2)[2:] + "000000" timelock_tx = self.nodes[0].signrawtransaction(timelock_tx)["hex"] # This will raise an exception because the timelock transaction is too immature to spend assert_raises_rpc_error(-26, "non-final", self.nodes[0].sendrawtransaction, timelock_tx) # Broadcast and mine spend_102 and 103: spend_102_id = self.nodes[0].sendrawtransaction(spend_102_raw) spend_103_id = self.nodes[0].sendrawtransaction(spend_103_raw) self.nodes[0].generate(1) # Time-locked transaction is still too immature to spend assert_raises_rpc_error(-26,'non-final', self.nodes[0].sendrawtransaction, timelock_tx) # Create 102_1 and 103_1: spend_102_1_raw = create_tx(self.nodes[0], spend_102_id, node1_address, 249.98) spend_103_1_raw = create_tx(self.nodes[0], spend_103_id, node1_address, 249.98) # Broadcast and mine 103_1: spend_103_1_id = self.nodes[0].sendrawtransaction(spend_103_1_raw) last_block = self.nodes[0].generate(1) # Time-locked transaction can now be spent #timelock_tx_id = self.nodes[0].sendrawtransaction(timelock_tx) # ... now put spend_101 and spend_102_1 in memory pools: spend_101_id = self.nodes[0].sendrawtransaction(spend_101_raw) spend_102_1_id = self.nodes[0].sendrawtransaction(spend_102_1_raw) assert_equal(set(self.nodes[0].getrawmempool()), {spend_101_id, spend_102_1_id}) self.sync_all() for node in self.nodes: node.invalidateblock(last_block[0]) # Time-locked transaction is now too immature and has been removed from the mempool # spend_103_1 has been re-orged out of the chain and is back in the mempool assert_equal(set(self.nodes[0].getrawmempool()), {spend_101_id, spend_102_1_id, spend_103_1_id}) # Use invalidateblock to re-org back and make all those coinbase spends # immature/invalid: for node in self.nodes: node.invalidateblock(new_blocks[0]) # mempool should be empty. assert_equal(set(self.nodes[0].getrawmempool()), set()) self.sync_all() if __name__ == '__main__': MempoolCoinbaseTest().main()
48.231579
123
0.690965
f72538c76f49ccac9bcd5d18c35fad8c0e5bdbe6
691
py
Python
backtracking/0216_combination_sum_3.py
MartinMa28/Algorithms_review
3f2297038c00f5a560941360ca702e6868530f34
[ "MIT" ]
null
null
null
backtracking/0216_combination_sum_3.py
MartinMa28/Algorithms_review
3f2297038c00f5a560941360ca702e6868530f34
[ "MIT" ]
null
null
null
backtracking/0216_combination_sum_3.py
MartinMa28/Algorithms_review
3f2297038c00f5a560941360ca702e6868530f34
[ "MIT" ]
null
null
null
class Solution: def __init__(self): self.combs = [] def _backtrack(self, candidates, cur, target, k): if len(cur) == k and sum(cur) == target: self.combs.append(cur[:]) return if sum(cur) > target: return elif len(cur) < k: for idx, candi in enumerate(candidates): cur.append(candi) self._backtrack(candidates[idx + 1:], cur, target, k) # backtracking cur.pop() def combinationSum3(self, k: int, n: int) -> list: self._backtrack(range(1, 10), [], n, k) return self.combs
30.043478
69
0.474674
3fae588403a5e2909f831ba1636738eee83128c4
2,965
py
Python
ggpacket.py
twasilczyk/gg-server
e267eb9845f8c743b153279b7ae716d60fe1f611
[ "MIT" ]
1
2018-01-16T04:01:06.000Z
2018-01-16T04:01:06.000Z
ggpacket.py
twasilczyk/gg-server
e267eb9845f8c743b153279b7ae716d60fe1f611
[ "MIT" ]
null
null
null
ggpacket.py
twasilczyk/gg-server
e267eb9845f8c743b153279b7ae716d60fe1f611
[ "MIT" ]
null
null
null
import struct import time import ggproto import packets_pb2 def readUIN(data): return int(data[2:]) def writeUIN(uin): uin = str(uin) return struct.pack("<BB", 0, len(uin)) + uin class GGPacket: def __init__(self, pid): self.pid = pid def body(self): return "" def __str__(self): b = self.body() header = struct.pack("<II", self.pid, len(b)) return header + b class Notify105Last: def ParseFromString(self, data): self.blist = [] while (len(data) > 0): (_, uin_len) = struct.unpack("=BB", data[:2]) data = data[2:] uin = data[:uin_len] data = data[(uin_len + 1):] self.blist.append(int(uin)) class Ping: def __init__(self): pass def parsePacket(p_type, p_data): if (p_type == ggproto.LOGIN105): p = packets_pb2.GG105Login() p.ParseFromString(p_data) return p elif (p_type == ggproto.NOTIFY105_LAST): p = Notify105Last() p.ParseFromString(p_data) return p elif (p_type == ggproto.PING): return Ping() else: return None class Welcome(GGPacket): def __init__(self): GGPacket.__init__(self, ggproto.WELCOME) def body(self): return struct.pack("<I", 0x01020304) class Login110OK(GGPacket): def __init__(self, uin): GGPacket.__init__(self, ggproto.LOGIN110_OK) self.uin = uin def body(self): p = packets_pb2.GG110LoginOK() p.dummy1 = 1 p.dummyhash = "nej2844d8d43s2dMNea2584sdf1sf418" p.uin = self.uin p.server_time = int(time.time()) return p.SerializeToString() class IMToken(GGPacket): def __init__(self): GGPacket.__init__(self, ggproto.IMTOKEN) def body(self): p = packets_pb2.GG110Imtoken() p.imtoken = "1234567890123456789012345678901234567890" return p.SerializeToString() class Status80(GGPacket): def __init__(self, uin): GGPacket.__init__(self, ggproto.STATUS80) self.uin = uin def body(self): return struct.pack("<IIIIhBBII", self.uin, ggproto.STATUS_AVAIL, 0, 0, 0, 255, 0, 0, 0) class NotifyReply80(GGPacket): def __init__(self, blist): GGPacket.__init__(self, ggproto.NOTIFY_REPLY80) self.blist = blist def body(self): p = "" for uin in self.blist: # XXX: copy-pasta p = p + struct.pack("<IIIIhBBII", uin, ggproto.STATUS_AVAIL, 0, 0, 0, 255, 0, 0, 0) return p class UserData(GGPacket): def __init__(self, blist): GGPacket.__init__(self, ggproto.USER_DATA) self.blist = blist def body(self): p = struct.pack("<II", 3, len(self.blist)) for uin in self.blist: p = p + struct.pack("<II", uin, 0) return p class Pong110(GGPacket): def __init__(self): GGPacket.__init__(self, ggproto.PONG110) def body(self): p = packets_pb2.GG110Pong() p.server_time = int(time.time()) return p.SerializeToString() class MagicNotification(GGPacket): def __init__(self): GGPacket.__init__(self, ggproto.MAGIC_NOTIFICATION) def body(self): p = packets_pb2.GG110MagicNotification() p.dummy1 = 2 p.seq = 1 p.dummy2 = 1 p.dummy3 = 1 p.uin = writeUIN(1234567) p.dummy4 = "" return p.SerializeToString()
23.164063
89
0.693761
435808ecd070b23c6baf2ccf88b907be018ba667
12,172
py
Python
venv/lib/python3.8/site-packages/mercurial/lock.py
JesseDavids/mqtta
389eb4f06242d4473fe1bcff7fc6a22290e0d99c
[ "Apache-2.0" ]
4
2021-02-05T10:57:39.000Z
2022-02-25T04:43:23.000Z
venv/lib/python3.8/site-packages/mercurial/lock.py
JesseDavids/mqtta
389eb4f06242d4473fe1bcff7fc6a22290e0d99c
[ "Apache-2.0" ]
null
null
null
venv/lib/python3.8/site-packages/mercurial/lock.py
JesseDavids/mqtta
389eb4f06242d4473fe1bcff7fc6a22290e0d99c
[ "Apache-2.0" ]
null
null
null
# lock.py - simple advisory locking scheme for mercurial # # Copyright 2005, 2006 Matt Mackall <mpm@selenic.com> # # This software may be used and distributed according to the terms of the # GNU General Public License version 2 or any later version. from __future__ import absolute_import import contextlib import errno import os import signal import socket import time import warnings from .i18n import _ from .pycompat import getattr from . import ( encoding, error, pycompat, util, ) from .utils import procutil def _getlockprefix(): """Return a string which is used to differentiate pid namespaces It's useful to detect "dead" processes and remove stale locks with confidence. Typically it's just hostname. On modern linux, we include an extra Linux-specific pid namespace identifier. """ result = encoding.strtolocal(socket.gethostname()) if pycompat.sysplatform.startswith(b'linux'): try: result += b'/%x' % os.stat(b'/proc/self/ns/pid').st_ino except OSError as ex: if ex.errno not in (errno.ENOENT, errno.EACCES, errno.ENOTDIR): raise return result @contextlib.contextmanager def _delayedinterrupt(): """Block signal interrupt while doing something critical This makes sure that the code block wrapped by this context manager won't be interrupted. For Windows developers: It appears not possible to guard time.sleep() from CTRL_C_EVENT, so please don't use time.sleep() to test if this is working. """ assertedsigs = [] blocked = False orighandlers = {} def raiseinterrupt(num): if num == getattr(signal, 'SIGINT', None) or num == getattr( signal, 'CTRL_C_EVENT', None ): raise KeyboardInterrupt else: raise error.SignalInterrupt def catchterm(num, frame): if blocked: assertedsigs.append(num) else: raiseinterrupt(num) try: # save handlers first so they can be restored even if a setup is # interrupted between signal.signal() and orighandlers[] =. for name in [ b'CTRL_C_EVENT', b'SIGINT', b'SIGBREAK', b'SIGHUP', b'SIGTERM', ]: num = getattr(signal, name, None) if num and num not in orighandlers: orighandlers[num] = signal.getsignal(num) try: for num in orighandlers: signal.signal(num, catchterm) except ValueError: pass # in a thread? no luck blocked = True yield finally: # no simple way to reliably restore all signal handlers because # any loops, recursive function calls, except blocks, etc. can be # interrupted. so instead, make catchterm() raise interrupt. blocked = False try: for num, handler in orighandlers.items(): signal.signal(num, handler) except ValueError: pass # in a thread? # re-raise interrupt exception if any, which may be shadowed by a new # interrupt occurred while re-raising the first one if assertedsigs: raiseinterrupt(assertedsigs[0]) def trylock(ui, vfs, lockname, timeout, warntimeout, *args, **kwargs): """return an acquired lock or raise an a LockHeld exception This function is responsible to issue warnings and or debug messages about the held lock while trying to acquires it.""" def printwarning(printer, locker): """issue the usual "waiting on lock" message through any channel""" # show more details for new-style locks if b':' in locker: host, pid = locker.split(b":", 1) msg = _( b"waiting for lock on %s held by process %r on host %r\n" ) % ( pycompat.bytestr(l.desc), pycompat.bytestr(pid), pycompat.bytestr(host), ) else: msg = _(b"waiting for lock on %s held by %r\n") % ( l.desc, pycompat.bytestr(locker), ) printer(msg) l = lock(vfs, lockname, 0, *args, dolock=False, **kwargs) debugidx = 0 if (warntimeout and timeout) else -1 warningidx = 0 if not timeout: warningidx = -1 elif warntimeout: warningidx = warntimeout delay = 0 while True: try: l._trylock() break except error.LockHeld as inst: if delay == debugidx: printwarning(ui.debug, inst.locker) if delay == warningidx: printwarning(ui.warn, inst.locker) if timeout <= delay: raise error.LockHeld( errno.ETIMEDOUT, inst.filename, l.desc, inst.locker ) time.sleep(1) delay += 1 l.delay = delay if l.delay: if 0 <= warningidx <= l.delay: ui.warn(_(b"got lock after %d seconds\n") % l.delay) else: ui.debug(b"got lock after %d seconds\n" % l.delay) if l.acquirefn: l.acquirefn() return l class lock(object): """An advisory lock held by one process to control access to a set of files. Non-cooperating processes or incorrectly written scripts can ignore Mercurial's locking scheme and stomp all over the repository, so don't do that. Typically used via localrepository.lock() to lock the repository store (.hg/store/) or localrepository.wlock() to lock everything else under .hg/.""" # lock is symlink on platforms that support it, file on others. # symlink is used because create of directory entry and contents # are atomic even over nfs. # old-style lock: symlink to pid # new-style lock: symlink to hostname:pid _host = None def __init__( self, vfs, fname, timeout=-1, releasefn=None, acquirefn=None, desc=None, signalsafe=True, dolock=True, ): self.vfs = vfs self.f = fname self.held = 0 self.timeout = timeout self.releasefn = releasefn self.acquirefn = acquirefn self.desc = desc if signalsafe: self._maybedelayedinterrupt = _delayedinterrupt else: self._maybedelayedinterrupt = util.nullcontextmanager self.postrelease = [] self.pid = self._getpid() if dolock: self.delay = self.lock() if self.acquirefn: self.acquirefn() def __enter__(self): return self def __exit__(self, exc_type, exc_value, exc_tb): success = all(a is None for a in (exc_type, exc_value, exc_tb)) self.release(success=success) def __del__(self): if self.held: warnings.warn( "use lock.release instead of del lock", category=DeprecationWarning, stacklevel=2, ) # ensure the lock will be removed # even if recursive locking did occur self.held = 1 self.release() def _getpid(self): # wrapper around procutil.getpid() to make testing easier return procutil.getpid() def lock(self): timeout = self.timeout while True: try: self._trylock() return self.timeout - timeout except error.LockHeld as inst: if timeout != 0: time.sleep(1) if timeout > 0: timeout -= 1 continue raise error.LockHeld( errno.ETIMEDOUT, inst.filename, self.desc, inst.locker ) def _trylock(self): if self.held: self.held += 1 return if lock._host is None: lock._host = _getlockprefix() lockname = b'%s:%d' % (lock._host, self.pid) retry = 5 while not self.held and retry: retry -= 1 try: with self._maybedelayedinterrupt(): self.vfs.makelock(lockname, self.f) self.held = 1 except (OSError, IOError) as why: if why.errno == errno.EEXIST: locker = self._readlock() if locker is None: continue locker = self._testlock(locker) if locker is not None: raise error.LockHeld( errno.EAGAIN, self.vfs.join(self.f), self.desc, locker, ) else: raise error.LockUnavailable( why.errno, why.strerror, why.filename, self.desc ) if not self.held: # use empty locker to mean "busy for frequent lock/unlock # by many processes" raise error.LockHeld( errno.EAGAIN, self.vfs.join(self.f), self.desc, b"" ) def _readlock(self): """read lock and return its value Returns None if no lock exists, pid for old-style locks, and host:pid for new-style locks. """ try: return self.vfs.readlock(self.f) except (OSError, IOError) as why: if why.errno == errno.ENOENT: return None raise def _lockshouldbebroken(self, locker): if locker is None: return False try: host, pid = locker.split(b":", 1) except ValueError: return False if host != lock._host: return False try: pid = int(pid) except ValueError: return False if procutil.testpid(pid): return False return True def _testlock(self, locker): if not self._lockshouldbebroken(locker): return locker # if locker dead, break lock. must do this with another lock # held, or can race and break valid lock. try: with lock(self.vfs, self.f + b'.break', timeout=0): locker = self._readlock() if not self._lockshouldbebroken(locker): return locker self.vfs.unlink(self.f) except error.LockError: return locker def testlock(self): """return id of locker if lock is valid, else None. If old-style lock, we cannot tell what machine locker is on. with new-style lock, if locker is on this machine, we can see if locker is alive. If locker is on this machine but not alive, we can safely break lock. The lock file is only deleted when None is returned. """ locker = self._readlock() return self._testlock(locker) def release(self, success=True): """release the lock and execute callback function if any If the lock has been acquired multiple times, the actual release is delayed to the last release call.""" if self.held > 1: self.held -= 1 elif self.held == 1: self.held = 0 if self._getpid() != self.pid: # we forked, and are not the parent return try: if self.releasefn: self.releasefn() finally: try: self.vfs.unlink(self.f) except OSError: pass # The postrelease functions typically assume the lock is not held # at all. for callback in self.postrelease: callback(success) # Prevent double usage and help clear cycles. self.postrelease = None def release(*locks): for lock in locks: if lock is not None: lock.release()
30.582915
78
0.552498
a67e32ba36d9f5b94b86acb9e52573d6ccd245fa
10,703
py
Python
odoo/addons/website_sale/models/sale_order.py
tuanquanghpvn/odoo8-tutorial
52d25f1ca5f233c431cb9d3b24b79c3b4fb5127e
[ "MIT" ]
1
2019-12-29T11:53:56.000Z
2019-12-29T11:53:56.000Z
odoo/addons/website_sale/models/sale_order.py
tuanquanghpvn/odoo8-tutorial
52d25f1ca5f233c431cb9d3b24b79c3b4fb5127e
[ "MIT" ]
null
null
null
odoo/addons/website_sale/models/sale_order.py
tuanquanghpvn/odoo8-tutorial
52d25f1ca5f233c431cb9d3b24b79c3b4fb5127e
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- import random from openerp import SUPERUSER_ID from openerp.osv import osv, orm, fields from openerp.addons.web.http import request from openerp.tools.translate import _ class sale_order(osv.Model): _inherit = "sale.order" def _cart_qty(self, cr, uid, ids, field_name, arg, context=None): res = dict() for order in self.browse(cr, uid, ids, context=context): res[order.id] = int(sum(l.product_uom_qty for l in (order.website_order_line or []))) return res _columns = { 'website_order_line': fields.one2many( 'sale.order.line', 'order_id', string='Order Lines displayed on Website', readonly=True, help='Order Lines to be displayed on the website. They should not be used for computation purpose.', ), 'cart_quantity': fields.function(_cart_qty, type='integer', string='Cart Quantity'), 'payment_acquirer_id': fields.many2one('payment.acquirer', 'Payment Acquirer', on_delete='set null', copy=False), 'payment_tx_id': fields.many2one('payment.transaction', 'Transaction', on_delete='set null', copy=False), } def _get_errors(self, cr, uid, order, context=None): return [] def _get_website_data(self, cr, uid, order, context): return { 'partner': order.partner_id.id, 'order': order } def _cart_find_product_line(self, cr, uid, ids, product_id=None, line_id=None, context=None, **kwargs): for so in self.browse(cr, uid, ids, context=context): domain = [('order_id', '=', so.id), ('product_id', '=', product_id)] if line_id: domain += [('id', '=', line_id)] return self.pool.get('sale.order.line').search(cr, SUPERUSER_ID, domain, context=context) def _website_product_id_change(self, cr, uid, ids, order_id, product_id, qty=0, line_id=None, context=None): so = self.pool.get('sale.order').browse(cr, uid, order_id, context=context) values = self.pool.get('sale.order.line').product_id_change(cr, SUPERUSER_ID, [], pricelist=so.pricelist_id.id, product=product_id, partner_id=so.partner_id.id, fiscal_position=so.fiscal_position.id, qty=qty, context=context )['value'] if line_id: line = self.pool.get('sale.order.line').browse(cr, SUPERUSER_ID, line_id, context=context) values['name'] = line.name else: product = self.pool.get('product.product').browse(cr, uid, product_id, context=context) values['name'] = product.description_sale and "%s\n%s" % (product.display_name, product.description_sale) or product.display_name values['product_id'] = product_id values['order_id'] = order_id if values.get('tax_id') != None: values['tax_id'] = [(6, 0, values['tax_id'])] return values def _cart_update(self, cr, uid, ids, product_id=None, line_id=None, add_qty=0, set_qty=0, context=None, **kwargs): """ Add or set product quantity, add_qty can be negative """ sol = self.pool.get('sale.order.line') quantity = 0 for so in self.browse(cr, uid, ids, context=context): if so.state != 'draft': request.session['sale_order_id'] = None raise osv.except_osv(_('Error!'), _('It is forbidden to modify a sale order which is not in draft status')) if line_id != False: line_ids = so._cart_find_product_line(product_id, line_id, context=context, **kwargs) if line_ids: line_id = line_ids[0] # Create line if no line with product_id can be located if not line_id: values = self._website_product_id_change(cr, uid, ids, so.id, product_id, qty=1, context=context) line_id = sol.create(cr, SUPERUSER_ID, values, context=context) if add_qty: add_qty -= 1 # compute new quantity if set_qty: quantity = set_qty elif add_qty != None: quantity = sol.browse(cr, SUPERUSER_ID, line_id, context=context).product_uom_qty + (add_qty or 0) # Remove zero of negative lines if quantity <= 0: sol.unlink(cr, SUPERUSER_ID, [line_id], context=context) else: # update line values = self._website_product_id_change(cr, uid, ids, so.id, product_id, qty=quantity, line_id=line_id, context=context) values['product_uom_qty'] = quantity sol.write(cr, SUPERUSER_ID, [line_id], values, context=context) return {'line_id': line_id, 'quantity': quantity} def _cart_accessories(self, cr, uid, ids, context=None): for order in self.browse(cr, uid, ids, context=context): s = set(j.id for l in (order.website_order_line or []) for j in (l.product_id.accessory_product_ids or [])) s -= set(l.product_id.id for l in order.order_line) product_ids = random.sample(s, min(len(s),3)) return self.pool['product.product'].browse(cr, uid, product_ids, context=context) class website(orm.Model): _inherit = 'website' _columns = { 'pricelist_id': fields.related('user_id','partner_id','property_product_pricelist', type='many2one', relation='product.pricelist', string='Default Pricelist'), 'currency_id': fields.related('pricelist_id','currency_id', type='many2one', relation='res.currency', string='Default Currency'), } def sale_product_domain(self, cr, uid, ids, context=None): return [("sale_ok", "=", True)] def sale_get_order(self, cr, uid, ids, force_create=False, code=None, update_pricelist=None, context=None): sale_order_obj = self.pool['sale.order'] sale_order_id = request.session.get('sale_order_id') sale_order = None # create so if needed if not sale_order_id and (force_create or code): # TODO cache partner_id session partner = self.pool['res.users'].browse(cr, SUPERUSER_ID, uid, context=context).partner_id for w in self.browse(cr, uid, ids): values = { 'user_id': w.user_id.id, 'partner_id': partner.id, 'pricelist_id': partner.property_product_pricelist.id, 'section_id': self.pool.get('ir.model.data').get_object_reference(cr, uid, 'website', 'salesteam_website_sales')[1], } sale_order_id = sale_order_obj.create(cr, SUPERUSER_ID, values, context=context) values = sale_order_obj.onchange_partner_id(cr, SUPERUSER_ID, [], partner.id, context=context)['value'] sale_order_obj.write(cr, SUPERUSER_ID, [sale_order_id], values, context=context) request.session['sale_order_id'] = sale_order_id if sale_order_id: # TODO cache partner_id session partner = self.pool['res.users'].browse(cr, SUPERUSER_ID, uid, context=context).partner_id sale_order = sale_order_obj.browse(cr, SUPERUSER_ID, sale_order_id, context=context) if not sale_order.exists(): request.session['sale_order_id'] = None return None # check for change of pricelist with a coupon if code and code != sale_order.pricelist_id.code: pricelist_ids = self.pool['product.pricelist'].search(cr, SUPERUSER_ID, [('code', '=', code)], context=context) if pricelist_ids: pricelist_id = pricelist_ids[0] request.session['sale_order_code_pricelist_id'] = pricelist_id update_pricelist = True pricelist_id = request.session.get('sale_order_code_pricelist_id') or partner.property_product_pricelist.id # check for change of partner_id ie after signup if sale_order.partner_id.id != partner.id and request.website.partner_id.id != partner.id: flag_pricelist = False if pricelist_id != sale_order.pricelist_id.id: flag_pricelist = True fiscal_position = sale_order.fiscal_position and sale_order.fiscal_position.id or False values = sale_order_obj.onchange_partner_id(cr, SUPERUSER_ID, [sale_order_id], partner.id, context=context)['value'] if values.get('fiscal_position'): order_lines = map(int,sale_order.order_line) values.update(sale_order_obj.onchange_fiscal_position(cr, SUPERUSER_ID, [], values['fiscal_position'], [[6, 0, order_lines]], context=context)['value']) values['partner_id'] = partner.id sale_order_obj.write(cr, SUPERUSER_ID, [sale_order_id], values, context=context) if flag_pricelist or values.get('fiscal_position', False) != fiscal_position: update_pricelist = True # update the pricelist if update_pricelist: values = {'pricelist_id': pricelist_id} values.update(sale_order.onchange_pricelist_id(pricelist_id, None)['value']) sale_order.write(values) for line in sale_order.order_line: if line.exists(): sale_order._cart_update(product_id=line.product_id.id, line_id=line.id, add_qty=0) # update browse record if (code and code != sale_order.pricelist_id.code) or sale_order.partner_id.id != partner.id: sale_order = sale_order_obj.browse(cr, SUPERUSER_ID, sale_order.id, context=context) return sale_order def sale_get_transaction(self, cr, uid, ids, context=None): transaction_obj = self.pool.get('payment.transaction') tx_id = request.session.get('sale_transaction_id') if tx_id: tx_ids = transaction_obj.search(cr, SUPERUSER_ID, [('id', '=', tx_id), ('state', 'not in', ['cancel'])], context=context) if tx_ids: return transaction_obj.browse(cr, SUPERUSER_ID, tx_ids[0], context=context) else: request.session['sale_transaction_id'] = False return False def sale_reset(self, cr, uid, ids, context=None): request.session.update({ 'sale_order_id': False, 'sale_transaction_id': False, 'sale_order_code_pricelist_id': False, })
48.429864
141
0.613286
e73da25b738650b85ba56a05411845edcd2b5f27
5,935
py
Python
nerfies/schedules.py
oahzxl/nerfies
9e8b007d8fc7059f6a42e07233c76c4f356d8439
[ "Apache-2.0" ]
716
2021-02-03T08:37:54.000Z
2022-03-31T19:40:45.000Z
nerfies/schedules.py
oahzxl/nerfies
9e8b007d8fc7059f6a42e07233c76c4f356d8439
[ "Apache-2.0" ]
53
2021-02-04T21:07:44.000Z
2022-03-31T15:58:21.000Z
nerfies/schedules.py
oahzxl/nerfies
9e8b007d8fc7059f6a42e07233c76c4f356d8439
[ "Apache-2.0" ]
107
2021-02-03T09:57:48.000Z
2022-03-29T09:19:33.000Z
# Copyright 2021 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Annealing Schedules.""" import abc import collections import copy import math from typing import Any, Iterable, List, Tuple, Union from jax import numpy as jnp def from_tuple(x): schedule_type, *args = x return SCHEDULE_MAP[schedule_type](*args) def from_dict(d): d = copy.copy(dict(d)) schedule_type = d.pop('type') return SCHEDULE_MAP[schedule_type](**d) def from_config(schedule): if isinstance(schedule, Schedule): return schedule if isinstance(schedule, Tuple) or isinstance(schedule, List): return from_tuple(schedule) if isinstance(schedule, collections.Mapping): return from_dict(schedule) raise ValueError(f'Unknown type {type(schedule)}.') class Schedule(abc.ABC): """An interface for generic schedules..""" @abc.abstractmethod def get(self, step): """Get the value for the given step.""" raise NotImplementedError def __call__(self, step): return self.get(step) class ConstantSchedule(Schedule): """Linearly scaled scheduler.""" def __init__(self, value): super().__init__() self.value = value def get(self, step): """Get the value for the given step.""" return jnp.full_like(step, self.value, dtype=jnp.float32) class LinearSchedule(Schedule): """Linearly scaled scheduler.""" def __init__(self, initial_value, final_value, num_steps): super().__init__() self.initial_value = initial_value self.final_value = final_value self.num_steps = num_steps def get(self, step): """Get the value for the given step.""" if self.num_steps == 0: return jnp.full_like(step, self.final_value, dtype=jnp.float32) alpha = jnp.minimum(step / self.num_steps, 1.0) return (1.0 - alpha) * self.initial_value + alpha * self.final_value class ExponentialSchedule(Schedule): """Exponentially decaying scheduler.""" def __init__(self, initial_value, final_value, num_steps, eps=1e-10): super().__init__() if initial_value <= final_value: raise ValueError('Final value must be less than initial value.') self.initial_value = initial_value self.final_value = final_value self.num_steps = num_steps self.eps = eps def get(self, step): """Get the value for the given step.""" if step >= self.num_steps: return jnp.full_like(step, self.final_value, dtype=jnp.float32) final_value = max(self.final_value, self.eps) base = final_value / self.initial_value exponent = step / (self.num_steps - 1) if step >= self.num_steps: return jnp.full_like(step, self.final_value, dtype=jnp.float32) return self.initial_value * base**exponent class CosineEasingSchedule(Schedule): """Schedule that eases slowsly using a cosine.""" def __init__(self, initial_value, final_value, num_steps): super().__init__() self.initial_value = initial_value self.final_value = final_value self.num_steps = num_steps def get(self, step): """Get the value for the given step.""" alpha = jnp.minimum(step / self.num_steps, 1.0) scale = self.final_value - self.initial_value x = min(max(alpha, 0.0), 1.0) return (self.initial_value + scale * 0.5 * (1 + math.cos(jnp.pi * x + jnp.pi))) class StepSchedule(Schedule): """Schedule that eases slowsly using a cosine.""" def __init__(self, initial_value, decay_interval, decay_factor, max_decays, final_value=None): super().__init__() self.initial_value = initial_value self.decay_factor = decay_factor self.decay_interval = decay_interval self.max_decays = max_decays if final_value is None: final_value = self.initial_value * self.decay_factor**self.max_decays self.final_value = final_value def get(self, step): """Get the value for the given step.""" phase = step // self.decay_interval if phase >= self.max_decays: return self.final_value else: return self.initial_value * self.decay_factor**phase class PiecewiseSchedule(Schedule): """A piecewise combination of multiple schedules.""" def __init__( self, schedules: Iterable[Tuple[int, Union[Schedule, Iterable[Any]]]]): self.schedules = [from_config(s) for ms, s in schedules] milestones = jnp.array([ms for ms, s in schedules]) self.milestones = jnp.cumsum(milestones)[:-1] def get(self, step): idx = jnp.searchsorted(self.milestones, step, side='right') schedule = self.schedules[idx] base_idx = self.milestones[idx - 1] if idx >= 1 else 0 return schedule.get(step - base_idx) class DelayedSchedule(Schedule): """Delays the start of the base schedule.""" def __init__(self, base_schedule: Schedule, delay_steps, delay_mult): self.base_schedule = from_config(base_schedule) self.delay_steps = delay_steps self.delay_mult = delay_mult def get(self, step): delay_rate = ( self.delay_mult + (1 - self.delay_mult) * jnp.sin(0.5 * jnp.pi * jnp.clip(step / self.delay_steps, 0, 1))) return delay_rate * self.base_schedule(step) SCHEDULE_MAP = { 'constant': ConstantSchedule, 'linear': LinearSchedule, 'exponential': ExponentialSchedule, 'cosine_easing': CosineEasingSchedule, 'step': StepSchedule, 'piecewise': PiecewiseSchedule, 'delayed': DelayedSchedule, }
29.527363
77
0.693513
6d325f33051561006bca2e2b619761bd0a157753
10,688
py
Python
vyper/parser/lll_node.py
mpcnat/vyper
731263c9bea826a167639989350688833f68c182
[ "MIT" ]
null
null
null
vyper/parser/lll_node.py
mpcnat/vyper
731263c9bea826a167639989350688833f68c182
[ "MIT" ]
null
null
null
vyper/parser/lll_node.py
mpcnat/vyper
731263c9bea826a167639989350688833f68c182
[ "MIT" ]
null
null
null
import re from vyper.types import ( ceil32, BaseType, NodeType, NullType ) from vyper.opcodes import ( comb_opcodes ) from vyper.utils import valid_lll_macros # Set default string representation for ints in LLL output. AS_HEX_DEFAULT = True # Terminal color types OKBLUE = '\033[94m' OKMAGENTA = '\033[35m' OKLIGHTMAGENTA = '\033[95m' OKLIGHTBLUE = '\033[94m' ENDC = '\033[0m' class NullAttractor(): def __add__(self, other): return NullAttractor() def __repr__(self): return 'None' __radd__ = __add__ __mul__ = __add__ # Data structure for LLL parse tree class LLLnode(): repr_show_gas = False def __init__(self, value, args=None, typ=None, location=None, pos=None, annotation='', mutable=True, add_gas_estimate=0): if args is None: args = [] self.value = value self.args = args self.typ = typ assert isinstance(self.typ, NodeType) or self.typ is None, repr(self.typ) self.location = location self.pos = pos self.annotation = annotation self.mutable = mutable self.add_gas_estimate = add_gas_estimate self.as_hex = AS_HEX_DEFAULT # Determine this node's valency (1 if it pushes a value on the stack, # 0 otherwise) and checks to make sure the number and valencies of # children are correct. Also, find an upper bound on gas consumption # Numbers if isinstance(self.value, int): self.valency = 1 self.gas = 5 elif isinstance(self.value, str): # Opcodes and pseudo-opcodes (e.g. clamp) if self.value.upper() in comb_opcodes: _, ins, outs, gas = comb_opcodes[self.value.upper()] self.valency = outs if len(self.args) != ins: raise Exception("Number of arguments mismatched: %r %r" % (self.value, self.args)) # We add 2 per stack height at push time and take it back # at pop time; this makes `break` easier to handle self.gas = gas + 2 * (outs - ins) for arg in self.args: if arg.valency == 0: raise Exception("Can't have a zerovalent argument to an opcode or a pseudo-opcode! %r" % arg) self.gas += arg.gas # Dynamic gas cost: 8 gas for each byte of logging data if self.value.upper()[0:3] == 'LOG' and isinstance(self.args[1].value, int): self.gas += self.args[1].value * 8 # Dynamic gas cost: non-zero-valued call if self.value.upper() == 'CALL' and self.args[2].value != 0: self.gas += 34000 # Dynamic gas cost: filling sstore (ie. not clearing) elif self.value.upper() == 'SSTORE' and self.args[1].value != 0: self.gas += 15000 # Dynamic gas cost: calldatacopy elif self.value.upper() in ('CALLDATACOPY', 'CODECOPY'): size = 34000 if isinstance(self.args[2].value, int): size = self.args[2].value elif isinstance(self.args[2], LLLnode) and len(self.args[2].args) > 0: size = self.args[2].args / [-1].value self.gas += ceil32(size) // 32 * 3 # Gas limits in call if self.value.upper() == 'CALL' and isinstance(self.args[0].value, int): self.gas += self.args[0].value # If statements elif self.value == 'if': if len(self.args) == 3: self.gas = self.args[0].gas + max(self.args[1].gas, self.args[2].gas) + 3 if self.args[1].valency != self.args[2].valency: raise Exception("Valency mismatch between then and else clause: %r %r" % (self.args[1], self.args[2])) if len(self.args) == 2: self.gas = self.args[0].gas + self.args[1].gas + 17 if self.args[1].valency: raise Exception("2-clause if statement must have a zerovalent body: %r" % self.args[1]) if not self.args[0].valency: raise Exception("Can't have a zerovalent argument as a test to an if statement! %r" % self.args[0]) if len(self.args) not in (2, 3): raise Exception("If can only have 2 or 3 arguments") self.valency = self.args[1].valency # With statements: with <var> <initial> <statement> elif self.value == 'with': if len(self.args) != 3: raise Exception("With statement must have 3 arguments") if len(self.args[0].args) or not isinstance(self.args[0].value, str): raise Exception("First argument to with statement must be a variable") if not self.args[1].valency: raise Exception("Second argument to with statement (initial value) cannot be zerovalent: %r" % self.args[1]) self.valency = self.args[2].valency self.gas = sum([arg.gas for arg in self.args]) + 5 # Repeat statements: repeat <index_memloc> <startval> <rounds> <body> elif self.value == 'repeat': if len(self.args[2].args) or not isinstance(self.args[2].value, int) or self.args[2].value <= 0: raise Exception("Number of times repeated must be a constant nonzero positive integer: %r" % self.args[2]) if not self.args[0].valency: raise Exception("First argument to repeat (memory location) cannot be zerovalent: %r" % self.args[0]) if not self.args[1].valency: raise Exception("Second argument to repeat (start value) cannot be zerovalent: %r" % self.args[1]) if self.args[3].valency: raise Exception("Third argument to repeat (clause to be repeated) must be zerovalent: %r" % self.args[3]) self.valency = 0 if self.args[1].value == 'mload' or self.args[1].value == 'sload': rounds = self.args[2].value else: rounds = abs(self.args[2].value - self.args[1].value) self.gas = rounds * (self.args[3].gas + 50) + 30 # Seq statements: seq <statement> <statement> ... elif self.value == 'seq': self.valency = self.args[-1].valency if self.args else 0 self.gas = sum([arg.gas for arg in self.args]) + 30 # Multi statements: multi <expr> <expr> ... elif self.value == 'multi': for arg in self.args: if not arg.valency: raise Exception("Multi expects all children to not be zerovalent: %r" % arg) self.valency = sum([arg.valency for arg in self.args]) self.gas = sum([arg.gas for arg in self.args]) # LLL brackets (don't bother gas counting) elif self.value == 'lll': self.valency = 1 self.gas = NullAttractor() # Stack variables else: self.valency = 1 self.gas = 5 elif self.value is None and isinstance(self.typ, NullType): self.valency = 1 self.gas = 5 else: raise Exception("Invalid value for LLL AST node: %r" % self.value) assert isinstance(self.args, list) self.gas += self.add_gas_estimate def to_list(self): return [self.value] + [a.to_list() for a in self.args] @property def repr_value(self): if isinstance(self.value, int) and self.as_hex: return hex(self.value) if not isinstance(self.value, str): return str(self.value) return self.value @staticmethod def _colorise_keywords(val): if val.lower() in valid_lll_macros: # highlight macro return OKLIGHTMAGENTA + val + ENDC elif val.upper() in comb_opcodes.keys(): return OKMAGENTA + val + ENDC return val def repr(self): if not len(self.args): if self.annotation: return '%r ' % self.repr_value + OKLIGHTBLUE + '<%s>' % self.annotation + ENDC else: return str(self.repr_value) # x = repr(self.to_list()) # if len(x) < 80: # return x o = '' if self.annotation: o += '/* %s */ \n' % self.annotation if self.repr_show_gas and self.gas: o += OKBLUE + "{" + ENDC + str(self.gas) + OKBLUE + "} " + ENDC # add gas for info. o += '[' + self._colorise_keywords(self.repr_value) prev_lineno = self.pos[0] if self.pos else None arg_lineno = None annotated = False has_inner_newlines = False for arg in self.args: o += ',\n ' arg_lineno = arg.pos[0] if arg.pos else None if arg_lineno is not None and arg_lineno != prev_lineno and self.value in ('seq', 'if'): o += '# Line %d\n ' % (arg_lineno) prev_lineno = arg_lineno annotated = True arg_repr = arg.repr() if '\n' in arg_repr: has_inner_newlines = True sub = arg_repr.replace('\n', '\n ').strip(' ') o += self._colorise_keywords(sub) output = o.rstrip(' ') + ']' output_on_one_line = re.sub(r',\n *', ', ', output).replace('\n', '') if (len(output_on_one_line) < 80 or len(self.args) == 1) and not annotated and not has_inner_newlines: return output_on_one_line else: return output def __repr__(self): return self.repr() @classmethod def from_list(cls, obj, typ=None, location=None, pos=None, annotation=None, mutable=True, add_gas_estimate=0): if isinstance(typ, str): typ = BaseType(typ) if isinstance(obj, LLLnode): if obj.pos is None: obj.pos = pos if obj.location is None: obj.location = location return obj elif not isinstance(obj, list): return cls(obj, [], typ, location, pos, annotation, mutable, add_gas_estimate=add_gas_estimate) else: return cls(obj[0], [cls.from_list(o, pos=pos) for o in obj[1:]], typ, location, pos, annotation, mutable, add_gas_estimate=add_gas_estimate)
44.719665
152
0.544068
cbcdb6909198784a7079e1ce5f3995fffb5b72f0
598
py
Python
src/sentry/testutils/middleware.py
learninto/sentry
4f9f564841498b3af49c1677d6b61f3e47b01923
[ "BSD-3-Clause" ]
1
2019-10-17T17:46:16.000Z
2019-10-17T17:46:16.000Z
src/sentry/testutils/middleware.py
learninto/sentry
4f9f564841498b3af49c1677d6b61f3e47b01923
[ "BSD-3-Clause" ]
null
null
null
src/sentry/testutils/middleware.py
learninto/sentry
4f9f564841498b3af49c1677d6b61f3e47b01923
[ "BSD-3-Clause" ]
null
null
null
from __future__ import absolute_import from sentry.middleware.sudo import SudoMiddleware as BaseSudoMiddleware class BrokenRequestMiddleware(object): def process_request(self, request): raise ImportError("request") class BrokenResponseMiddleware(object): def process_response(self, request, response): raise ImportError("response") class BrokenViewMiddleware(object): def process_view(self, request, func, args, kwargs): raise ImportError("view") class SudoMiddleware(BaseSudoMiddleware): def has_sudo_privileges(self, request): return True
24.916667
71
0.757525
d8f3ee92b81b82e85b49144b1a59b7a4c93ecd5d
1,588
py
Python
src/baxter_tools/__init__.py
birlrobotics/baxter_tools
0561030eb8cacd0e241d8f282d1f238466d44504
[ "BSD-3-Clause" ]
null
null
null
src/baxter_tools/__init__.py
birlrobotics/baxter_tools
0561030eb8cacd0e241d8f282d1f238466d44504
[ "BSD-3-Clause" ]
null
null
null
src/baxter_tools/__init__.py
birlrobotics/baxter_tools
0561030eb8cacd0e241d8f282d1f238466d44504
[ "BSD-3-Clause" ]
null
null
null
# Copyright (c) 2013-2014, Rethink Robotics # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # 2. Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # 3. Neither the name of the Rethink Robotics nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. from .smoketests import SmokeTest
54.758621
77
0.785894
67c99cf8281b54455de7bb1998602f66105a3994
256
py
Python
solutions/976_largest_perimeter_triangle.py
YiqunPeng/leetcode_pro
7e6376984f9baec49a5e827d98330fe3d1b656f0
[ "MIT" ]
null
null
null
solutions/976_largest_perimeter_triangle.py
YiqunPeng/leetcode_pro
7e6376984f9baec49a5e827d98330fe3d1b656f0
[ "MIT" ]
null
null
null
solutions/976_largest_perimeter_triangle.py
YiqunPeng/leetcode_pro
7e6376984f9baec49a5e827d98330fe3d1b656f0
[ "MIT" ]
null
null
null
class Solution: def largestPerimeter(self, nums: List[int]) -> int: nums.sort() for i in range(len(nums)-1, 1, -1): if nums[i-1] + nums[i-2] > nums[i]: return nums[i-1] + nums[i-2] + nums[i] return 0
32
55
0.5
23362a8c6eacc40514591784e5e13606c819b9fc
17,684
py
Python
evalml/tests/model_understanding_tests/prediction_explanations_tests/test_user_interface.py
freddyaboulton/evalml
53242f9d7397a1af3f8c48d498a023042790d4c3
[ "BSD-3-Clause" ]
454
2020-09-25T15:36:06.000Z
2022-03-30T04:48:49.000Z
evalml/tests/model_understanding_tests/prediction_explanations_tests/test_user_interface.py
freddyaboulton/evalml
53242f9d7397a1af3f8c48d498a023042790d4c3
[ "BSD-3-Clause" ]
2,175
2020-09-25T17:05:45.000Z
2022-03-31T19:54:54.000Z
evalml/tests/model_understanding_tests/prediction_explanations_tests/test_user_interface.py
freddyaboulton/evalml
53242f9d7397a1af3f8c48d498a023042790d4c3
[ "BSD-3-Clause" ]
66
2020-09-25T18:46:27.000Z
2022-03-02T18:33:30.000Z
import copy import json from itertools import product import numpy as np import pandas as pd import pytest from evalml.model_understanding.prediction_explanations._user_interface import ( _BinarySHAPTable, _make_json_serializable, _make_rows, _make_text_table, _MultiClassSHAPTable, _RegressionSHAPTable, ) make_rows_test_cases = [ ({"a": [0.2], "b": [0.1]}, 3, [["a", "1.20", "++"], ["b", "1.10", "+"]]), ( { "a": [0.3], "b": [-0.9], "c": [0.5], "d": [0.33], "e": [-0.67], "f": [-0.2], "g": [0.71], }, 4, [ ["g", "1.71", "++++"], ["c", "1.50", "+++"], ["e", "0.33", "----"], ["b", "0.10", "-----"], ], ), ( {"a": [1.0], "f": [-1.0], "e": [0.0]}, 5, [["a", "2.00", "+++++"], ["e", "1.00", "+"], ["f", "0.00", "-----"]], ), ] @pytest.mark.parametrize( "test_case,include_shap_values,include_string_features", product(make_rows_test_cases, [True, False], [True, False]), ) def test_make_rows_and_make_table( test_case, include_shap_values, include_string_features ): values, top_k, answer = test_case pipeline_features = pd.DataFrame( {name: value[0] + 1 for name, value in values.items()}, index=[5] ) if include_string_features: pipeline_features["a"] = ["foo-feature"] pipeline_features["b"] = [np.datetime64("2020-08-14")] if include_shap_values: new_answer = copy.deepcopy(answer) for row in new_answer: row.append("{:.2f}".format(values[row[0]][0])) else: new_answer = copy.deepcopy(answer) if include_string_features: filtered_answer = [] for row in new_answer: filtered_answer.append(row) val = row[1] if row[0] == "a": val = "foo-feature" elif row[0] == "b": val = "2020-08-14 00:00:00" filtered_answer[-1][1] = val new_answer = filtered_answer assert ( _make_rows( values, values, pipeline_features, pipeline_features, top_k, include_shap_values, ) == new_answer ) table = _make_text_table( values, values, pipeline_features, pipeline_features, top_k, include_shap_values ).splitlines() if include_shap_values: assert "SHAP Value" in table[0] # Subtracting two because a header and a line under the header are included in the table. assert len(table) - 2 == len(new_answer) @pytest.mark.parametrize( "value,answer", [ (np.int64(3), 3), (np.float32(3.2), 3.2), (np.str_("foo"), "foo"), (np.bool_(True), True), ], ) def test_make_json_serializable(value, answer): value = _make_json_serializable(value) if answer != "foo": np.testing.assert_almost_equal(value, answer) else: assert value == answer json.dumps(value) regression = { "a": [6.500], "b": [1.770], "c": [0.570], "d": [-0.090], "e": [-0.290], "f": [-1.910], "foo": [0.01], "bar": [-0.02], } regression_normalized = { "a": [0.6214], "b": [0.1692], "bar": [-0.0019], "c": [0.0544], "d": [-0.0086], "e": [-0.0277], "f": [-0.8], "foo": [0.0001], } regression_pipeline_features = pd.DataFrame( { "a": 7.5, "b": 2.77, "c": 1.57, "d": 0.91, "e": 0.71, "f": -0.21, "foo": -20, "bar": -30, }, index=[31], ) regression_original_features = pd.DataFrame( { "a": 0.75, "b": 0.277, "c": 0.57, "d": 1.91, "e": 1.71, "f": -1.21, "foo": -20, "bar": -40, }, index=[31], ) regression_table = """Feature Name Feature Value Contribution to Prediction ========================================================= a 7.50 ++++ b 2.77 + f -0.21 -----""".splitlines() regression_table_shap = """Feature Name Feature Value Contribution to Prediction SHAP Value ====================================================================== a 7.50 ++++ 6.50 b 2.77 + 1.77 f -0.21 ----- -1.91""".splitlines() regression_dict = { "explanations": [ { "feature_names": ["a", "b", "f"], "feature_values": [7.5, 2.77, -0.21], "qualitative_explanation": ["++++", "+", "-----"], "quantitative_explanation": [None, None, None], "drill_down": {}, "class_name": None, "expected_value": [0], } ] } regression_dict_shap = { "explanations": [ { "feature_names": ["a", "b", "f"], "feature_values": [7.5, 2.77, -0.21], "qualitative_explanation": ["++++", "+", "-----"], "quantitative_explanation": [6.50, 1.77, -1.91], "drill_down": {}, "class_name": None, "expected_value": [0], } ] } binary = [ {"a": [0], "b": [0], "c": [0], "d": [0], "e": [0], "f": [0], "foo": [-1]}, { "a": [1.180], "b": [0.0], "c": [1.120], "d": [-0.560], "e": [-2.600], "f": [-0.900], "foo": [-1], }, ] binary_normalized = [ { "a": [0.0], "b": [0.0], "c": [0.0], "d": [0.0], "e": [0.0], "f": [0.0], "foo": [-1.0], }, { "a": [0.16], "b": [0.0], "c": [0.15], "d": [-0.08], "e": [-0.35], "f": [-0.12], "foo": [-0.14], }, ] binary_pipeline_features = pd.DataFrame( {"a": 2.18, "b": 2.12, "c": 1.0, "d": -1.56, "e": -1.8, "f": -1.9, "foo": -20}, index=[23], ) binary_original_features = pd.DataFrame( {"a": 1.18, "b": 1.12, "c": 2.0, "d": -2.56, "e": -2.8, "f": -2.9, "foo": -30}, index=[23], ) binary_table = """Feature Name Feature Value Contribution to Prediction ========================================================= a 2.18 + c 1.00 + e -1.80 --""".splitlines() binary_table_shap = """Feature Name Feature Value Contribution to Prediction SHAP Value ====================================================================== a 2.18 + 1.18 c 1.00 + 1.12 e -1.80 -- -2.60""".splitlines() binary_dict = { "explanations": [ { "feature_names": ["a", "c", "e"], "feature_values": [2.180, 1.0, -1.80], "qualitative_explanation": ["+", "+", "--"], "quantitative_explanation": [None, None, None], "drill_down": {}, "class_name": "1", "expected_value": [0], } ] } binary_dict_shap = { "explanations": [ { "feature_names": ["a", "c", "e"], "feature_values": [2.180, 1.0, -1.80], "qualitative_explanation": ["+", "+", "--"], "quantitative_explanation": [1.180, 1.120, -2.60], "drill_down": {}, "class_name": "1", "expected_value": [0], } ] } multiclass = [ {"a": [0], "b": [0], "c": [0], "d": [0.11], "e": [0.18], "f": [0], "foo": [-1]}, { "a": [1.180], "b": [1.120], "c": [0.000], "d": [-2.560], "e": [-2.800], "f": [-2.900], "foo": [-1], }, { "a": [0.680], "b": [0.000], "c": [0.000], "d": [-2.040], "e": [-1.840], "f": [-2.680], "foo": [-1], }, ] multiclass_normalized = [ { "a": [0.0], "b": [0.0], "c": [0.0], "d": [0.07], "e": [0.08], "f": [0.0], "foo": [-1.0], }, { "a": [0.102], "b": [0.097], "c": [0.0], "d": [-0.221], "e": [-0.242], "f": [-0.251], "foo": [-0.0865], }, { "a": [0.08], "b": [0.0], "c": [0.0], "d": [-0.25], "e": [-0.22], "f": [-0.33], "foo": [-0.12], }, ] multiclass_pipeline_features = pd.DataFrame( {"a": 2.18, "b": 2.12, "c": 1.0, "d": -1.56, "e": -1.8, "f": -1.9, "foo": 30}, index=[10], ) multiclass_original_features = pd.DataFrame( {"a": 1.18, "b": 1.12, "c": 2.0, "d": -2.56, "e": -4.8, "f": -5.9, "foo": 40}, index=[10], ) multiclass_table = """Class: 0 Feature Name Feature Value Contribution to Prediction ========================================================= e -1.80 + d -1.56 + foo 30.00 ----- Class: 1 Feature Name Feature Value Contribution to Prediction ========================================================= d -1.56 -- e -1.80 -- f -1.90 -- Class: 2 Feature Name Feature Value Contribution to Prediction ========================================================= e -1.80 -- d -1.56 -- f -1.90 --""".splitlines() multiclass_table_shap = """Class: 0 Feature Name Feature Value Contribution to Prediction SHAP Value ====================================================================== e -1.80 + 0.18 d -1.56 + 0.11 foo 30.00 ----- -1.00 Class: 1 Feature Name Feature Value Contribution to Prediction SHAP Value ====================================================================== d -1.56 -- -2.56 e -1.80 -- -2.80 f -1.90 -- -2.90 Class: 2 Feature Name Feature Value Contribution to Prediction SHAP Value ====================================================================== e -1.80 -- -1.84 d -1.56 -- -2.04 f -1.90 -- -2.68""".splitlines() multiclass_dict = { "explanations": [ { "feature_names": ["e", "d", "foo"], "feature_values": [-1.8, -1.56, 30], "qualitative_explanation": ["+", "+", "-----"], "quantitative_explanation": [None, None, None], "drill_down": {}, "class_name": "0", "expected_value": 0, }, { "feature_names": ["d", "e", "f"], "feature_values": [-1.56, -1.8, -1.9], "qualitative_explanation": ["--", "--", "--"], "quantitative_explanation": [None, None, None], "drill_down": {}, "class_name": "1", "expected_value": 1, }, { "feature_names": ["e", "d", "f"], "feature_values": [-1.8, -1.56, -1.9], "qualitative_explanation": ["--", "--", "--"], "quantitative_explanation": [None, None, None], "drill_down": {}, "class_name": "2", "expected_value": 2, }, ] } multiclass_dict_shap = { "explanations": [ { "feature_names": ["e", "d", "foo"], "feature_values": [-1.8, -1.56, 30], "qualitative_explanation": ["+", "+", "-----"], "quantitative_explanation": [0.18, 0.11, -1], "drill_down": {}, "class_name": "0", "expected_value": 0, }, { "feature_names": ["d", "e", "f"], "feature_values": [-1.56, -1.8, -1.9], "qualitative_explanation": ["--", "--", "--"], "quantitative_explanation": [-2.56, -2.8, -2.9], "drill_down": {}, "class_name": "1", "expected_value": 1, }, { "feature_names": ["e", "d", "f"], "feature_values": [-1.8, -1.56, -1.9], "qualitative_explanation": ["--", "--", "--"], "quantitative_explanation": [-1.84, -2.04, -2.68], "drill_down": {}, "class_name": "2", "expected_value": 2, }, ] } @pytest.mark.parametrize( "values,normalized_values,pipeline_features,original_features,include_shap,expected_values, output_format,answer", [ ( regression, regression_normalized, regression_pipeline_features, regression_original_features, False, [0], "text", regression_table, ), ( regression, regression_normalized, regression_pipeline_features, regression_original_features, True, [0], "text", regression_table_shap, ), ( regression, regression_normalized, regression_pipeline_features, regression_original_features, False, [0], "dict", regression_dict, ), ( regression, regression_normalized, regression_pipeline_features, regression_original_features, True, [0], "dict", regression_dict_shap, ), ( binary, binary_normalized, binary_pipeline_features, binary_original_features, False, [0], "text", binary_table, ), ( binary, binary_normalized, binary_pipeline_features, binary_original_features, True, [0], "text", binary_table_shap, ), ( binary, binary_normalized, binary_pipeline_features, binary_original_features, False, [0], "dict", binary_dict, ), ( binary, binary_normalized, binary_pipeline_features, binary_original_features, True, [0], "dict", binary_dict_shap, ), ( multiclass, multiclass_normalized, multiclass_pipeline_features, multiclass_original_features, False, [0, 1, 2], "text", multiclass_table, ), ( multiclass, multiclass_normalized, multiclass_pipeline_features, multiclass_original_features, True, [0, 1, 2], "text", multiclass_table_shap, ), ( multiclass, multiclass_normalized, multiclass_pipeline_features, multiclass_original_features, False, [0, 1, 2], "dict", multiclass_dict, ), ( multiclass, multiclass_normalized, multiclass_pipeline_features, multiclass_original_features, True, [0, 1, 2], "dict", multiclass_dict_shap, ), ], ) def test_make_single_prediction_table( values, normalized_values, pipeline_features, original_features, include_shap, expected_values, output_format, answer, ): class_names = ["0", "1", "2"] if isinstance(values, list): if len(values) > 2: table_maker = _MultiClassSHAPTable( top_k=3, include_shap_values=include_shap, include_expected_value=False, class_names=class_names, provenance={}, ) else: table_maker = _BinarySHAPTable( class_names=class_names, top_k=3, include_shap_values=include_shap, include_expected_value=False, provenance={}, ) else: table_maker = _RegressionSHAPTable( top_k=3, include_shap_values=include_shap, include_expected_value=False, provenance={}, ) table_maker = ( table_maker.make_text if output_format == "text" else table_maker.make_dict ) table = table_maker( aggregated_shap_values=values, aggregated_normalized_values=normalized_values, shap_values=values, normalized_values=normalized_values, pipeline_features=pipeline_features, original_features=pipeline_features, expected_value=expected_values, ) # Making sure the content is the same, regardless of formatting. if output_format == "text": for index, (row_table, row_answer) in enumerate( zip(table.splitlines(), answer) ): assert row_table.strip().split() == row_answer.strip().split() else: assert table == answer
26.998473
118
0.417892
599b48d82b505fbcafd05e8e6288511fe975f658
9,051
py
Python
contrib/python/numpy/numpy/core/shape_base.py
HeyLey/catboost
f472aed90604ebe727537d9d4a37147985e10ec2
[ "Apache-2.0" ]
60
2017-08-05T21:47:56.000Z
2022-03-08T21:46:29.000Z
contrib/python/numpy/numpy/core/shape_base.py
HeyLey/catboost
f472aed90604ebe727537d9d4a37147985e10ec2
[ "Apache-2.0" ]
48
2020-05-20T08:26:54.000Z
2022-03-29T21:19:52.000Z
contrib/python/numpy/numpy/core/shape_base.py
HeyLey/catboost
f472aed90604ebe727537d9d4a37147985e10ec2
[ "Apache-2.0" ]
31
2020-05-25T21:14:56.000Z
2022-03-25T08:57:43.000Z
from __future__ import division, absolute_import, print_function __all__ = ['atleast_1d', 'atleast_2d', 'atleast_3d', 'vstack', 'hstack', 'stack'] from . import numeric as _nx from .numeric import asanyarray, newaxis def atleast_1d(*arys): """ Convert inputs to arrays with at least one dimension. Scalar inputs are converted to 1-dimensional arrays, whilst higher-dimensional inputs are preserved. Parameters ---------- arys1, arys2, ... : array_like One or more input arrays. Returns ------- ret : ndarray An array, or sequence of arrays, each with ``a.ndim >= 1``. Copies are made only if necessary. See Also -------- atleast_2d, atleast_3d Examples -------- >>> np.atleast_1d(1.0) array([ 1.]) >>> x = np.arange(9.0).reshape(3,3) >>> np.atleast_1d(x) array([[ 0., 1., 2.], [ 3., 4., 5.], [ 6., 7., 8.]]) >>> np.atleast_1d(x) is x True >>> np.atleast_1d(1, [3, 4]) [array([1]), array([3, 4])] """ res = [] for ary in arys: ary = asanyarray(ary) if len(ary.shape) == 0: result = ary.reshape(1) else: result = ary res.append(result) if len(res) == 1: return res[0] else: return res def atleast_2d(*arys): """ View inputs as arrays with at least two dimensions. Parameters ---------- arys1, arys2, ... : array_like One or more array-like sequences. Non-array inputs are converted to arrays. Arrays that already have two or more dimensions are preserved. Returns ------- res, res2, ... : ndarray An array, or tuple of arrays, each with ``a.ndim >= 2``. Copies are avoided where possible, and views with two or more dimensions are returned. See Also -------- atleast_1d, atleast_3d Examples -------- >>> np.atleast_2d(3.0) array([[ 3.]]) >>> x = np.arange(3.0) >>> np.atleast_2d(x) array([[ 0., 1., 2.]]) >>> np.atleast_2d(x).base is x True >>> np.atleast_2d(1, [1, 2], [[1, 2]]) [array([[1]]), array([[1, 2]]), array([[1, 2]])] """ res = [] for ary in arys: ary = asanyarray(ary) if len(ary.shape) == 0: result = ary.reshape(1, 1) elif len(ary.shape) == 1: result = ary[newaxis,:] else: result = ary res.append(result) if len(res) == 1: return res[0] else: return res def atleast_3d(*arys): """ View inputs as arrays with at least three dimensions. Parameters ---------- arys1, arys2, ... : array_like One or more array-like sequences. Non-array inputs are converted to arrays. Arrays that already have three or more dimensions are preserved. Returns ------- res1, res2, ... : ndarray An array, or tuple of arrays, each with ``a.ndim >= 3``. Copies are avoided where possible, and views with three or more dimensions are returned. For example, a 1-D array of shape ``(N,)`` becomes a view of shape ``(1, N, 1)``, and a 2-D array of shape ``(M, N)`` becomes a view of shape ``(M, N, 1)``. See Also -------- atleast_1d, atleast_2d Examples -------- >>> np.atleast_3d(3.0) array([[[ 3.]]]) >>> x = np.arange(3.0) >>> np.atleast_3d(x).shape (1, 3, 1) >>> x = np.arange(12.0).reshape(4,3) >>> np.atleast_3d(x).shape (4, 3, 1) >>> np.atleast_3d(x).base is x True >>> for arr in np.atleast_3d([1, 2], [[1, 2]], [[[1, 2]]]): ... print(arr, arr.shape) ... [[[1] [2]]] (1, 2, 1) [[[1] [2]]] (1, 2, 1) [[[1 2]]] (1, 1, 2) """ res = [] for ary in arys: ary = asanyarray(ary) if len(ary.shape) == 0: result = ary.reshape(1, 1, 1) elif len(ary.shape) == 1: result = ary[newaxis,:, newaxis] elif len(ary.shape) == 2: result = ary[:,:, newaxis] else: result = ary res.append(result) if len(res) == 1: return res[0] else: return res def vstack(tup): """ Stack arrays in sequence vertically (row wise). Take a sequence of arrays and stack them vertically to make a single array. Rebuild arrays divided by `vsplit`. Parameters ---------- tup : sequence of ndarrays Tuple containing arrays to be stacked. The arrays must have the same shape along all but the first axis. Returns ------- stacked : ndarray The array formed by stacking the given arrays. See Also -------- stack : Join a sequence of arrays along a new axis. hstack : Stack arrays in sequence horizontally (column wise). dstack : Stack arrays in sequence depth wise (along third dimension). concatenate : Join a sequence of arrays along an existing axis. vsplit : Split array into a list of multiple sub-arrays vertically. Notes ----- Equivalent to ``np.concatenate(tup, axis=0)`` if `tup` contains arrays that are at least 2-dimensional. Examples -------- >>> a = np.array([1, 2, 3]) >>> b = np.array([2, 3, 4]) >>> np.vstack((a,b)) array([[1, 2, 3], [2, 3, 4]]) >>> a = np.array([[1], [2], [3]]) >>> b = np.array([[2], [3], [4]]) >>> np.vstack((a,b)) array([[1], [2], [3], [2], [3], [4]]) """ return _nx.concatenate([atleast_2d(_m) for _m in tup], 0) def hstack(tup): """ Stack arrays in sequence horizontally (column wise). Take a sequence of arrays and stack them horizontally to make a single array. Rebuild arrays divided by `hsplit`. Parameters ---------- tup : sequence of ndarrays All arrays must have the same shape along all but the second axis. Returns ------- stacked : ndarray The array formed by stacking the given arrays. See Also -------- stack : Join a sequence of arrays along a new axis. vstack : Stack arrays in sequence vertically (row wise). dstack : Stack arrays in sequence depth wise (along third axis). concatenate : Join a sequence of arrays along an existing axis. hsplit : Split array along second axis. Notes ----- Equivalent to ``np.concatenate(tup, axis=1)`` Examples -------- >>> a = np.array((1,2,3)) >>> b = np.array((2,3,4)) >>> np.hstack((a,b)) array([1, 2, 3, 2, 3, 4]) >>> a = np.array([[1],[2],[3]]) >>> b = np.array([[2],[3],[4]]) >>> np.hstack((a,b)) array([[1, 2], [2, 3], [3, 4]]) """ arrs = [atleast_1d(_m) for _m in tup] # As a special case, dimension 0 of 1-dimensional arrays is "horizontal" if arrs[0].ndim == 1: return _nx.concatenate(arrs, 0) else: return _nx.concatenate(arrs, 1) def stack(arrays, axis=0): """ Join a sequence of arrays along a new axis. The `axis` parameter specifies the index of the new axis in the dimensions of the result. For example, if ``axis=0`` it will be the first dimension and if ``axis=-1`` it will be the last dimension. .. versionadded:: 1.10.0 Parameters ---------- arrays : sequence of array_like Each array must have the same shape. axis : int, optional The axis in the result array along which the input arrays are stacked. Returns ------- stacked : ndarray The stacked array has one more dimension than the input arrays. See Also -------- concatenate : Join a sequence of arrays along an existing axis. split : Split array into a list of multiple sub-arrays of equal size. Examples -------- >>> arrays = [np.random.randn(3, 4) for _ in range(10)] >>> np.stack(arrays, axis=0).shape (10, 3, 4) >>> np.stack(arrays, axis=1).shape (3, 10, 4) >>> np.stack(arrays, axis=2).shape (3, 4, 10) >>> a = np.array([1, 2, 3]) >>> b = np.array([2, 3, 4]) >>> np.stack((a, b)) array([[1, 2, 3], [2, 3, 4]]) >>> np.stack((a, b), axis=-1) array([[1, 2], [2, 3], [3, 4]]) """ arrays = [asanyarray(arr) for arr in arrays] if not arrays: raise ValueError('need at least one array to stack') shapes = set(arr.shape for arr in arrays) if len(shapes) != 1: raise ValueError('all input arrays must have the same shape') result_ndim = arrays[0].ndim + 1 if not -result_ndim <= axis < result_ndim: msg = 'axis {0} out of bounds [-{1}, {1})'.format(axis, result_ndim) raise IndexError(msg) if axis < 0: axis += result_ndim sl = (slice(None),) * axis + (_nx.newaxis,) expanded_arrays = [arr[sl] for arr in arrays] return _nx.concatenate(expanded_arrays, axis=axis)
25.786325
79
0.54204
b186e4947ad4ffefd3ec4fdc0971a6081e9e068a
548
py
Python
test_cases/general/array/of/path/py/test_generate/__init__.py
Parquery/mapry
93515307f9eba8447fe64b0ac7cc68b2d07205a7
[ "MIT" ]
11
2019-06-26T05:56:41.000Z
2021-03-28T16:44:16.000Z
test_cases/general/array/of/path/py/test_generate/__init__.py
Parquery/mapry
93515307f9eba8447fe64b0ac7cc68b2d07205a7
[ "MIT" ]
4
2019-10-18T14:43:59.000Z
2020-04-02T19:12:07.000Z
test_cases/general/array/of/path/py/test_generate/__init__.py
Parquery/mapry
93515307f9eba8447fe64b0ac7cc68b2d07205a7
[ "MIT" ]
3
2019-06-17T07:39:03.000Z
2020-04-01T14:01:23.000Z
# File automatically generated by mapry. DO NOT EDIT OR APPEND! """defines some object graph.""" import pathlib import typing class SomeGraph: """defines some object graph.""" def __init__( self, array_of_paths: typing.List[pathlib.Path]) -> None: """ initializes an instance of SomeGraph with the given values. :param array_of_paths: tests an array of paths. """ self.array_of_paths = array_of_paths # File automatically generated by mapry. DO NOT EDIT OR APPEND!
20.296296
67
0.65146
ad2c19c7613ac72dbe8324af1f3c7a8052b05216
42,215
py
Python
mmdet3d/models/dense_heads/fcos_mono3d_head.py
amirulhaq/mmdetection3d
88855ae872aa1411ab124fd1702edc3e2105c3dd
[ "Apache-2.0" ]
29
2021-09-29T13:31:12.000Z
2022-03-15T13:31:25.000Z
mmdet3d/models/dense_heads/fcos_mono3d_head.py
amirulhaq/mmdetection3d
88855ae872aa1411ab124fd1702edc3e2105c3dd
[ "Apache-2.0" ]
3
2021-12-13T01:21:12.000Z
2022-02-24T01:46:14.000Z
mmdet3d/models/dense_heads/fcos_mono3d_head.py
amirulhaq/mmdetection3d
88855ae872aa1411ab124fd1702edc3e2105c3dd
[ "Apache-2.0" ]
1
2021-06-22T23:43:29.000Z
2021-06-22T23:43:29.000Z
import numpy as np import torch from mmcv.cnn import Scale, normal_init from mmcv.runner import force_fp32 from torch import nn as nn from mmdet3d.core import box3d_multiclass_nms, limit_period, xywhr2xyxyr from mmdet.core import multi_apply from mmdet.models.builder import HEADS, build_loss from .anchor_free_mono3d_head import AnchorFreeMono3DHead INF = 1e8 @HEADS.register_module() class FCOSMono3DHead(AnchorFreeMono3DHead): """Anchor-free head used in FCOS3D. Args: num_classes (int): Number of categories excluding the background category. in_channels (int): Number of channels in the input feature map. regress_ranges (tuple[tuple[int, int]]): Regress range of multiple level points. center_sampling (bool): If true, use center sampling. Default: True. center_sample_radius (float): Radius of center sampling. Default: 1.5. norm_on_bbox (bool): If true, normalize the regression targets with FPN strides. Default: True. centerness_on_reg (bool): If true, position centerness on the regress branch. Please refer to https://github.com/tianzhi0549/FCOS/issues/89#issuecomment-516877042. Default: True. centerness_alpha: Parameter used to adjust the intensity attenuation from the center to the periphery. Default: 2.5. loss_cls (dict): Config of classification loss. loss_bbox (dict): Config of localization loss. loss_dir (dict): Config of direction classification loss. loss_attr (dict): Config of attribute classification loss. loss_centerness (dict): Config of centerness loss. norm_cfg (dict): dictionary to construct and config norm layer. Default: norm_cfg=dict(type='GN', num_groups=32, requires_grad=True). centerness_branch (tuple[int]): Channels for centerness branch. Default: (64, ). """ # noqa: E501 def __init__(self, num_classes, in_channels, regress_ranges=((-1, 48), (48, 96), (96, 192), (192, 384), (384, INF)), center_sampling=True, center_sample_radius=1.5, norm_on_bbox=True, centerness_on_reg=True, centerness_alpha=2.5, loss_cls=dict( type='FocalLoss', use_sigmoid=True, gamma=2.0, alpha=0.25, loss_weight=1.0), loss_bbox=dict( type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=1.0), loss_dir=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0), loss_attr=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0), loss_centerness=dict( type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0), norm_cfg=dict(type='GN', num_groups=32, requires_grad=True), centerness_branch=(64, ), **kwargs): self.regress_ranges = regress_ranges self.center_sampling = center_sampling self.center_sample_radius = center_sample_radius self.norm_on_bbox = norm_on_bbox self.centerness_on_reg = centerness_on_reg self.centerness_alpha = centerness_alpha self.centerness_branch = centerness_branch super().__init__( num_classes, in_channels, loss_cls=loss_cls, loss_bbox=loss_bbox, loss_dir=loss_dir, loss_attr=loss_attr, norm_cfg=norm_cfg, **kwargs) self.loss_centerness = build_loss(loss_centerness) def _init_layers(self): """Initialize layers of the head.""" super()._init_layers() self.conv_centerness_prev = self._init_branch( conv_channels=self.centerness_branch, conv_strides=(1, ) * len(self.centerness_branch)) self.conv_centerness = nn.Conv2d(self.centerness_branch[-1], 1, 1) self.scales = nn.ModuleList([ nn.ModuleList([Scale(1.0) for _ in range(3)]) for _ in self.strides ]) # only for offset, depth and size regression def init_weights(self): """Initialize weights of the head.""" super().init_weights() for m in self.conv_centerness_prev: if isinstance(m.conv, nn.Conv2d): normal_init(m.conv, std=0.01) normal_init(self.conv_centerness, std=0.01) def forward(self, feats): """Forward features from the upstream network. Args: feats (tuple[Tensor]): Features from the upstream network, each is a 4D-tensor. Returns: tuple: cls_scores (list[Tensor]): Box scores for each scale level, each is a 4D-tensor, the channel number is num_points * num_classes. bbox_preds (list[Tensor]): Box energies / deltas for each scale level, each is a 4D-tensor, the channel number is num_points * bbox_code_size. dir_cls_preds (list[Tensor]): Box scores for direction class predictions on each scale level, each is a 4D-tensor, the channel number is num_points * 2. (bin = 2). attr_preds (list[Tensor]): Attribute scores for each scale level, each is a 4D-tensor, the channel number is num_points * num_attrs. centernesses (list[Tensor]): Centerness for each scale level, each is a 4D-tensor, the channel number is num_points * 1. """ return multi_apply(self.forward_single, feats, self.scales, self.strides) def forward_single(self, x, scale, stride): """Forward features of a single scale levle. Args: x (Tensor): FPN feature maps of the specified stride. scale (:obj: `mmcv.cnn.Scale`): Learnable scale module to resize the bbox prediction. stride (int): The corresponding stride for feature maps, only used to normalize the bbox prediction when self.norm_on_bbox is True. Returns: tuple: scores for each class, bbox and direction class \ predictions, centerness predictions of input feature maps. """ cls_score, bbox_pred, dir_cls_pred, attr_pred, cls_feat, reg_feat = \ super().forward_single(x) if self.centerness_on_reg: clone_reg_feat = reg_feat.clone() for conv_centerness_prev_layer in self.conv_centerness_prev: clone_reg_feat = conv_centerness_prev_layer(clone_reg_feat) centerness = self.conv_centerness(clone_reg_feat) else: clone_cls_feat = cls_feat.clone() for conv_centerness_prev_layer in self.conv_centerness_prev: clone_cls_feat = conv_centerness_prev_layer(clone_cls_feat) centerness = self.conv_centerness(clone_cls_feat) # scale the bbox_pred of different level # only apply to offset, depth and size prediction scale_offset, scale_depth, scale_size = scale[0:3] clone_bbox_pred = bbox_pred.clone() bbox_pred[:, :2] = scale_offset(clone_bbox_pred[:, :2]).float() bbox_pred[:, 2] = scale_depth(clone_bbox_pred[:, 2]).float() bbox_pred[:, 3:6] = scale_size(clone_bbox_pred[:, 3:6]).float() bbox_pred[:, 2] = bbox_pred[:, 2].exp() bbox_pred[:, 3:6] = bbox_pred[:, 3:6].exp() + 1e-6 # avoid size=0 assert self.norm_on_bbox is True, 'Setting norm_on_bbox to False '\ 'has not been thoroughly tested for FCOS3D.' if self.norm_on_bbox: if not self.training: # Note that this line is conducted only when testing bbox_pred[:, :2] *= stride return cls_score, bbox_pred, dir_cls_pred, attr_pred, centerness @staticmethod def add_sin_difference(boxes1, boxes2): """Convert the rotation difference to difference in sine function. Args: boxes1 (torch.Tensor): Original Boxes in shape (NxC), where C>=7 and the 7th dimension is rotation dimension. boxes2 (torch.Tensor): Target boxes in shape (NxC), where C>=7 and the 7th dimension is rotation dimension. Returns: tuple[torch.Tensor]: ``boxes1`` and ``boxes2`` whose 7th \ dimensions are changed. """ rad_pred_encoding = torch.sin(boxes1[..., 6:7]) * torch.cos( boxes2[..., 6:7]) rad_tg_encoding = torch.cos(boxes1[..., 6:7]) * torch.sin(boxes2[..., 6:7]) boxes1 = torch.cat( [boxes1[..., :6], rad_pred_encoding, boxes1[..., 7:]], dim=-1) boxes2 = torch.cat([boxes2[..., :6], rad_tg_encoding, boxes2[..., 7:]], dim=-1) return boxes1, boxes2 @staticmethod def get_direction_target(reg_targets, dir_offset=0, num_bins=2, one_hot=True): """Encode direction to 0 ~ num_bins-1. Args: reg_targets (torch.Tensor): Bbox regression targets. dir_offset (int): Direction offset. num_bins (int): Number of bins to divide 2*PI. one_hot (bool): Whether to encode as one hot. Returns: torch.Tensor: Encoded direction targets. """ rot_gt = reg_targets[..., 6] offset_rot = limit_period(rot_gt - dir_offset, 0, 2 * np.pi) dir_cls_targets = torch.floor(offset_rot / (2 * np.pi / num_bins)).long() dir_cls_targets = torch.clamp(dir_cls_targets, min=0, max=num_bins - 1) if one_hot: dir_targets = torch.zeros( *list(dir_cls_targets.shape), num_bins, dtype=reg_targets.dtype, device=dir_cls_targets.device) dir_targets.scatter_(dir_cls_targets.unsqueeze(dim=-1).long(), 1.0) dir_cls_targets = dir_targets return dir_cls_targets @force_fp32( apply_to=('cls_scores', 'bbox_preds', 'dir_cls_preds', 'attr_preds', 'centernesses')) def loss(self, cls_scores, bbox_preds, dir_cls_preds, attr_preds, centernesses, gt_bboxes, gt_labels, gt_bboxes_3d, gt_labels_3d, centers2d, depths, attr_labels, img_metas, gt_bboxes_ignore=None): """Compute loss of the head. Args: cls_scores (list[Tensor]): Box scores for each scale level, each is a 4D-tensor, the channel number is num_points * num_classes. bbox_preds (list[Tensor]): Box energies / deltas for each scale level, each is a 4D-tensor, the channel number is num_points * bbox_code_size. dir_cls_preds (list[Tensor]): Box scores for direction class predictions on each scale level, each is a 4D-tensor, the channel number is num_points * 2. (bin = 2) attr_preds (list[Tensor]): Attribute scores for each scale level, each is a 4D-tensor, the channel number is num_points * num_attrs. centernesses (list[Tensor]): Centerness for each scale level, each is a 4D-tensor, the channel number is num_points * 1. gt_bboxes (list[Tensor]): Ground truth bboxes for each image with shape (num_gts, 4) in [tl_x, tl_y, br_x, br_y] format. gt_labels (list[Tensor]): class indices corresponding to each box gt_bboxes_3d (list[Tensor]): 3D boxes ground truth with shape of (num_gts, code_size). gt_labels_3d (list[Tensor]): same as gt_labels centers2d (list[Tensor]): 2D centers on the image with shape of (num_gts, 2). depths (list[Tensor]): Depth ground truth with shape of (num_gts, ). attr_labels (list[Tensor]): Attributes indices of each box. img_metas (list[dict]): Meta information of each image, e.g., image size, scaling factor, etc. gt_bboxes_ignore (None | list[Tensor]): specify which bounding boxes can be ignored when computing the loss. Returns: dict[str, Tensor]: A dictionary of loss components. """ assert len(cls_scores) == len(bbox_preds) == len(centernesses) == len( attr_preds) featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores] all_level_points = self.get_points(featmap_sizes, bbox_preds[0].dtype, bbox_preds[0].device) labels_3d, bbox_targets_3d, centerness_targets, attr_targets = \ self.get_targets( all_level_points, gt_bboxes, gt_labels, gt_bboxes_3d, gt_labels_3d, centers2d, depths, attr_labels) num_imgs = cls_scores[0].size(0) # flatten cls_scores, bbox_preds, dir_cls_preds and centerness flatten_cls_scores = [ cls_score.permute(0, 2, 3, 1).reshape(-1, self.cls_out_channels) for cls_score in cls_scores ] flatten_bbox_preds = [ bbox_pred.permute(0, 2, 3, 1).reshape(-1, sum(self.group_reg_dims)) for bbox_pred in bbox_preds ] flatten_dir_cls_preds = [ dir_cls_pred.permute(0, 2, 3, 1).reshape(-1, 2) for dir_cls_pred in dir_cls_preds ] flatten_centerness = [ centerness.permute(0, 2, 3, 1).reshape(-1) for centerness in centernesses ] flatten_cls_scores = torch.cat(flatten_cls_scores) flatten_bbox_preds = torch.cat(flatten_bbox_preds) flatten_dir_cls_preds = torch.cat(flatten_dir_cls_preds) flatten_centerness = torch.cat(flatten_centerness) flatten_labels_3d = torch.cat(labels_3d) flatten_bbox_targets_3d = torch.cat(bbox_targets_3d) flatten_centerness_targets = torch.cat(centerness_targets) # FG cat_id: [0, num_classes -1], BG cat_id: num_classes bg_class_ind = self.num_classes pos_inds = ((flatten_labels_3d >= 0) & (flatten_labels_3d < bg_class_ind)).nonzero().reshape(-1) num_pos = len(pos_inds) loss_cls = self.loss_cls( flatten_cls_scores, flatten_labels_3d, avg_factor=num_pos + num_imgs) # avoid num_pos is 0 pos_bbox_preds = flatten_bbox_preds[pos_inds] pos_dir_cls_preds = flatten_dir_cls_preds[pos_inds] pos_centerness = flatten_centerness[pos_inds] if self.pred_attrs: flatten_attr_preds = [ attr_pred.permute(0, 2, 3, 1).reshape(-1, self.num_attrs) for attr_pred in attr_preds ] flatten_attr_preds = torch.cat(flatten_attr_preds) flatten_attr_targets = torch.cat(attr_targets) pos_attr_preds = flatten_attr_preds[pos_inds] if num_pos > 0: pos_bbox_targets_3d = flatten_bbox_targets_3d[pos_inds] pos_centerness_targets = flatten_centerness_targets[pos_inds] if self.pred_attrs: pos_attr_targets = flatten_attr_targets[pos_inds] bbox_weights = pos_centerness_targets.new_ones( len(pos_centerness_targets), sum(self.group_reg_dims)) equal_weights = pos_centerness_targets.new_ones( pos_centerness_targets.shape) code_weight = self.train_cfg.get('code_weight', None) if code_weight: assert len(code_weight) == sum(self.group_reg_dims) bbox_weights = bbox_weights * bbox_weights.new_tensor( code_weight) if self.use_direction_classifier: pos_dir_cls_targets = self.get_direction_target( pos_bbox_targets_3d, self.dir_offset, one_hot=False) if self.diff_rad_by_sin: pos_bbox_preds, pos_bbox_targets_3d = self.add_sin_difference( pos_bbox_preds, pos_bbox_targets_3d) loss_offset = self.loss_bbox( pos_bbox_preds[:, :2], pos_bbox_targets_3d[:, :2], weight=bbox_weights[:, :2], avg_factor=equal_weights.sum()) loss_depth = self.loss_bbox( pos_bbox_preds[:, 2], pos_bbox_targets_3d[:, 2], weight=bbox_weights[:, 2], avg_factor=equal_weights.sum()) loss_size = self.loss_bbox( pos_bbox_preds[:, 3:6], pos_bbox_targets_3d[:, 3:6], weight=bbox_weights[:, 3:6], avg_factor=equal_weights.sum()) loss_rotsin = self.loss_bbox( pos_bbox_preds[:, 6], pos_bbox_targets_3d[:, 6], weight=bbox_weights[:, 6], avg_factor=equal_weights.sum()) loss_velo = None if self.pred_velo: loss_velo = self.loss_bbox( pos_bbox_preds[:, 7:9], pos_bbox_targets_3d[:, 7:9], weight=bbox_weights[:, 7:9], avg_factor=equal_weights.sum()) loss_centerness = self.loss_centerness(pos_centerness, pos_centerness_targets) # direction classification loss loss_dir = None # TODO: add more check for use_direction_classifier if self.use_direction_classifier: loss_dir = self.loss_dir( pos_dir_cls_preds, pos_dir_cls_targets, equal_weights, avg_factor=equal_weights.sum()) # attribute classification loss loss_attr = None if self.pred_attrs: loss_attr = self.loss_attr( pos_attr_preds, pos_attr_targets, pos_centerness_targets, avg_factor=pos_centerness_targets.sum()) else: # need absolute due to possible negative delta x/y loss_offset = pos_bbox_preds[:, :2].sum() loss_depth = pos_bbox_preds[:, 2].sum() loss_size = pos_bbox_preds[:, 3:6].sum() loss_rotsin = pos_bbox_preds[:, 6].sum() loss_velo = None if self.pred_velo: loss_velo = pos_bbox_preds[:, 7:9].sum() loss_centerness = pos_centerness.sum() loss_dir = None if self.use_direction_classifier: loss_dir = pos_dir_cls_preds.sum() loss_attr = None if self.pred_attrs: loss_attr = pos_attr_preds.sum() loss_dict = dict( loss_cls=loss_cls, loss_offset=loss_offset, loss_depth=loss_depth, loss_size=loss_size, loss_rotsin=loss_rotsin, loss_centerness=loss_centerness) if loss_velo is not None: loss_dict['loss_velo'] = loss_velo if loss_dir is not None: loss_dict['loss_dir'] = loss_dir if loss_attr is not None: loss_dict['loss_attr'] = loss_attr return loss_dict @force_fp32( apply_to=('cls_scores', 'bbox_preds', 'dir_cls_preds', 'attr_preds', 'centernesses')) def get_bboxes(self, cls_scores, bbox_preds, dir_cls_preds, attr_preds, centernesses, img_metas, cfg=None, rescale=None): """Transform network output for a batch into bbox predictions. Args: cls_scores (list[Tensor]): Box scores for each scale level Has shape (N, num_points * num_classes, H, W) bbox_preds (list[Tensor]): Box energies / deltas for each scale level with shape (N, num_points * 4, H, W) dir_cls_preds (list[Tensor]): Box scores for direction class predictions on each scale level, each is a 4D-tensor, the channel number is num_points * 2. (bin = 2) attr_preds (list[Tensor]): Attribute scores for each scale level Has shape (N, num_points * num_attrs, H, W) centernesses (list[Tensor]): Centerness for each scale level with shape (N, num_points * 1, H, W) img_metas (list[dict]): Meta information of each image, e.g., image size, scaling factor, etc. cfg (mmcv.Config): Test / postprocessing configuration, if None, test_cfg would be used rescale (bool): If True, return boxes in original image space Returns: list[tuple[Tensor, Tensor]]: Each item in result_list is 2-tuple. \ The first item is an (n, 5) tensor, where the first 4 columns \ are bounding box positions (tl_x, tl_y, br_x, br_y) and the \ 5-th column is a score between 0 and 1. The second item is a \ (n,) tensor where each item is the predicted class label of \ the corresponding box. """ assert len(cls_scores) == len(bbox_preds) == len(dir_cls_preds) == \ len(centernesses) == len(attr_preds) num_levels = len(cls_scores) featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores] mlvl_points = self.get_points(featmap_sizes, bbox_preds[0].dtype, bbox_preds[0].device) result_list = [] for img_id in range(len(img_metas)): cls_score_list = [ cls_scores[i][img_id].detach() for i in range(num_levels) ] bbox_pred_list = [ bbox_preds[i][img_id].detach() for i in range(num_levels) ] if self.use_direction_classifier: dir_cls_pred_list = [ dir_cls_preds[i][img_id].detach() for i in range(num_levels) ] else: dir_cls_pred_list = [ cls_scores[i][img_id].new_full( [2, *cls_scores[i][img_id].shape[1:]], 0).detach() for i in range(num_levels) ] if self.pred_attrs: attr_pred_list = [ attr_preds[i][img_id].detach() for i in range(num_levels) ] else: attr_pred_list = [ cls_scores[i][img_id].new_full( [self.num_attrs, *cls_scores[i][img_id].shape[1:]], self.attr_background_label).detach() for i in range(num_levels) ] centerness_pred_list = [ centernesses[i][img_id].detach() for i in range(num_levels) ] input_meta = img_metas[img_id] det_bboxes = self._get_bboxes_single( cls_score_list, bbox_pred_list, dir_cls_pred_list, attr_pred_list, centerness_pred_list, mlvl_points, input_meta, cfg, rescale) result_list.append(det_bboxes) return result_list def _get_bboxes_single(self, cls_scores, bbox_preds, dir_cls_preds, attr_preds, centernesses, mlvl_points, input_meta, cfg, rescale=False): """Transform outputs for a single batch item into bbox predictions. Args: cls_scores (list[Tensor]): Box scores for a single scale level Has shape (num_points * num_classes, H, W). bbox_preds (list[Tensor]): Box energies / deltas for a single scale level with shape (num_points * bbox_code_size, H, W). dir_cls_preds (list[Tensor]): Box scores for direction class predictions on a single scale level with shape \ (num_points * 2, H, W) attr_preds (list[Tensor]): Attribute scores for each scale level Has shape (N, num_points * num_attrs, H, W) centernesses (list[Tensor]): Centerness for a single scale level with shape (num_points, H, W). mlvl_points (list[Tensor]): Box reference for a single scale level with shape (num_total_points, 2). input_meta (dict): Metadata of input image. cfg (mmcv.Config): Test / postprocessing configuration, if None, test_cfg would be used. rescale (bool): If True, return boxes in original image space. Returns: tuples[Tensor]: Predicted 3D boxes, scores, labels and attributes. """ view = np.array(input_meta['cam_intrinsic']) scale_factor = input_meta['scale_factor'] cfg = self.test_cfg if cfg is None else cfg assert len(cls_scores) == len(bbox_preds) == len(mlvl_points) mlvl_centers2d = [] mlvl_bboxes = [] mlvl_scores = [] mlvl_dir_scores = [] mlvl_attr_scores = [] mlvl_centerness = [] for cls_score, bbox_pred, dir_cls_pred, attr_pred, centerness, \ points in zip(cls_scores, bbox_preds, dir_cls_preds, attr_preds, centernesses, mlvl_points): assert cls_score.size()[-2:] == bbox_pred.size()[-2:] scores = cls_score.permute(1, 2, 0).reshape( -1, self.cls_out_channels).sigmoid() dir_cls_pred = dir_cls_pred.permute(1, 2, 0).reshape(-1, 2) dir_cls_score = torch.max(dir_cls_pred, dim=-1)[1] attr_pred = attr_pred.permute(1, 2, 0).reshape(-1, self.num_attrs) attr_score = torch.max(attr_pred, dim=-1)[1] centerness = centerness.permute(1, 2, 0).reshape(-1).sigmoid() bbox_pred = bbox_pred.permute(1, 2, 0).reshape(-1, sum(self.group_reg_dims)) bbox_pred = bbox_pred[:, :self.bbox_code_size] nms_pre = cfg.get('nms_pre', -1) if nms_pre > 0 and scores.shape[0] > nms_pre: max_scores, _ = (scores * centerness[:, None]).max(dim=1) _, topk_inds = max_scores.topk(nms_pre) points = points[topk_inds, :] bbox_pred = bbox_pred[topk_inds, :] scores = scores[topk_inds, :] dir_cls_pred = dir_cls_pred[topk_inds, :] centerness = centerness[topk_inds] dir_cls_score = dir_cls_score[topk_inds] attr_score = attr_score[topk_inds] # change the offset to actual center predictions bbox_pred[:, :2] = points - bbox_pred[:, :2] if rescale: bbox_pred[:, :2] /= bbox_pred[:, :2].new_tensor(scale_factor) pred_center2d = bbox_pred[:, :3].clone() bbox_pred[:, :3] = self.pts2Dto3D(bbox_pred[:, :3], view) mlvl_centers2d.append(pred_center2d) mlvl_bboxes.append(bbox_pred) mlvl_scores.append(scores) mlvl_dir_scores.append(dir_cls_score) mlvl_attr_scores.append(attr_score) mlvl_centerness.append(centerness) mlvl_centers2d = torch.cat(mlvl_centers2d) mlvl_bboxes = torch.cat(mlvl_bboxes) mlvl_dir_scores = torch.cat(mlvl_dir_scores) # change local yaw to global yaw for 3D nms if mlvl_bboxes.shape[0] > 0: dir_rot = limit_period(mlvl_bboxes[..., 6] - self.dir_offset, 0, np.pi) mlvl_bboxes[..., 6] = ( dir_rot + self.dir_offset + np.pi * mlvl_dir_scores.to(mlvl_bboxes.dtype)) cam_intrinsic = mlvl_centers2d.new_zeros((4, 4)) cam_intrinsic[:view.shape[0], :view.shape[1]] = \ mlvl_centers2d.new_tensor(view) mlvl_bboxes[:, 6] = torch.atan2( mlvl_centers2d[:, 0] - cam_intrinsic[0, 2], cam_intrinsic[0, 0]) + mlvl_bboxes[:, 6] mlvl_bboxes_for_nms = xywhr2xyxyr(input_meta['box_type_3d']( mlvl_bboxes, box_dim=self.bbox_code_size, origin=(0.5, 0.5, 0.5)).bev) mlvl_scores = torch.cat(mlvl_scores) padding = mlvl_scores.new_zeros(mlvl_scores.shape[0], 1) # remind that we set FG labels to [0, num_class-1] since mmdet v2.0 # BG cat_id: num_class mlvl_scores = torch.cat([mlvl_scores, padding], dim=1) mlvl_attr_scores = torch.cat(mlvl_attr_scores) mlvl_centerness = torch.cat(mlvl_centerness) # no scale_factors in box3d_multiclass_nms # Then we multiply it from outside mlvl_nms_scores = mlvl_scores * mlvl_centerness[:, None] results = box3d_multiclass_nms(mlvl_bboxes, mlvl_bboxes_for_nms, mlvl_nms_scores, cfg.score_thr, cfg.max_per_img, cfg, mlvl_dir_scores, mlvl_attr_scores) bboxes, scores, labels, dir_scores, attrs = results attrs = attrs.to(labels.dtype) # change data type to int bboxes = input_meta['box_type_3d']( bboxes, box_dim=self.bbox_code_size, origin=(0.5, 0.5, 0.5)) # Note that the predictions use origin (0.5, 0.5, 0.5) # Due to the ground truth centers2d are the gravity center of objects # v0.10.0 fix inplace operation to the input tensor of cam_box3d # So here we also need to add origin=(0.5, 0.5, 0.5) if not self.pred_attrs: attrs = None return bboxes, scores, labels, attrs @staticmethod def pts2Dto3D(points, view): """ Args: points (torch.Tensor): points in 2D images, [N, 3], \ 3 corresponds with x, y in the image and depth. view (np.ndarray): camera instrinsic, [3, 3] Returns: torch.Tensor: points in 3D space. [N, 3], \ 3 corresponds with x, y, z in 3D space. """ assert view.shape[0] <= 4 assert view.shape[1] <= 4 assert points.shape[1] == 3 points2D = points[:, :2] depths = points[:, 2].view(-1, 1) unnorm_points2D = torch.cat([points2D * depths, depths], dim=1) viewpad = torch.eye(4, dtype=points2D.dtype, device=points2D.device) viewpad[:view.shape[0], :view.shape[1]] = points2D.new_tensor(view) inv_viewpad = torch.inverse(viewpad).transpose(0, 1) # Do operation in homogenous coordinates. nbr_points = unnorm_points2D.shape[0] homo_points2D = torch.cat( [unnorm_points2D, points2D.new_ones((nbr_points, 1))], dim=1) points3D = torch.mm(homo_points2D, inv_viewpad)[:, :3] return points3D def _get_points_single(self, featmap_size, stride, dtype, device, flatten=False): """Get points according to feature map sizes.""" y, x = super()._get_points_single(featmap_size, stride, dtype, device) points = torch.stack((x.reshape(-1) * stride, y.reshape(-1) * stride), dim=-1) + stride // 2 return points def get_targets(self, points, gt_bboxes_list, gt_labels_list, gt_bboxes_3d_list, gt_labels_3d_list, centers2d_list, depths_list, attr_labels_list): """Compute regression, classification and centerss targets for points in multiple images. Args: points (list[Tensor]): Points of each fpn level, each has shape (num_points, 2). gt_bboxes_list (list[Tensor]): Ground truth bboxes of each image, each has shape (num_gt, 4). gt_labels_list (list[Tensor]): Ground truth labels of each box, each has shape (num_gt,). gt_bboxes_3d_list (list[Tensor]): 3D Ground truth bboxes of each image, each has shape (num_gt, bbox_code_size). gt_labels_3d_list (list[Tensor]): 3D Ground truth labels of each box, each has shape (num_gt,). centers2d_list (list[Tensor]): Projected 3D centers onto 2D image, each has shape (num_gt, 2). depths_list (list[Tensor]): Depth of projected 3D centers onto 2D image, each has shape (num_gt, 1). attr_labels_list (list[Tensor]): Attribute labels of each box, each has shape (num_gt,). Returns: tuple: concat_lvl_labels (list[Tensor]): Labels of each level. \ concat_lvl_bbox_targets (list[Tensor]): BBox targets of each \ level. """ assert len(points) == len(self.regress_ranges) num_levels = len(points) # expand regress ranges to align with points expanded_regress_ranges = [ points[i].new_tensor(self.regress_ranges[i])[None].expand_as( points[i]) for i in range(num_levels) ] # concat all levels points and regress ranges concat_regress_ranges = torch.cat(expanded_regress_ranges, dim=0) concat_points = torch.cat(points, dim=0) # the number of points per img, per lvl num_points = [center.size(0) for center in points] if attr_labels_list is None: attr_labels_list = [ gt_labels.new_full(gt_labels.shape, self.attr_background_label) for gt_labels in gt_labels_list ] # get labels and bbox_targets of each image _, _, labels_3d_list, bbox_targets_3d_list, centerness_targets_list, \ attr_targets_list = multi_apply( self._get_target_single, gt_bboxes_list, gt_labels_list, gt_bboxes_3d_list, gt_labels_3d_list, centers2d_list, depths_list, attr_labels_list, points=concat_points, regress_ranges=concat_regress_ranges, num_points_per_lvl=num_points) # split to per img, per level labels_3d_list = [ labels_3d.split(num_points, 0) for labels_3d in labels_3d_list ] bbox_targets_3d_list = [ bbox_targets_3d.split(num_points, 0) for bbox_targets_3d in bbox_targets_3d_list ] centerness_targets_list = [ centerness_targets.split(num_points, 0) for centerness_targets in centerness_targets_list ] attr_targets_list = [ attr_targets.split(num_points, 0) for attr_targets in attr_targets_list ] # concat per level image concat_lvl_labels_3d = [] concat_lvl_bbox_targets_3d = [] concat_lvl_centerness_targets = [] concat_lvl_attr_targets = [] for i in range(num_levels): concat_lvl_labels_3d.append( torch.cat([labels[i] for labels in labels_3d_list])) concat_lvl_centerness_targets.append( torch.cat([ centerness_targets[i] for centerness_targets in centerness_targets_list ])) bbox_targets_3d = torch.cat([ bbox_targets_3d[i] for bbox_targets_3d in bbox_targets_3d_list ]) concat_lvl_attr_targets.append( torch.cat( [attr_targets[i] for attr_targets in attr_targets_list])) if self.norm_on_bbox: bbox_targets_3d[:, : 2] = bbox_targets_3d[:, :2] / self.strides[i] concat_lvl_bbox_targets_3d.append(bbox_targets_3d) return concat_lvl_labels_3d, concat_lvl_bbox_targets_3d, \ concat_lvl_centerness_targets, concat_lvl_attr_targets def _get_target_single(self, gt_bboxes, gt_labels, gt_bboxes_3d, gt_labels_3d, centers2d, depths, attr_labels, points, regress_ranges, num_points_per_lvl): """Compute regression and classification targets for a single image.""" num_points = points.size(0) num_gts = gt_labels.size(0) if not isinstance(gt_bboxes_3d, torch.Tensor): gt_bboxes_3d = gt_bboxes_3d.tensor.to(gt_bboxes.device) if num_gts == 0: return gt_labels.new_full((num_points,), self.background_label), \ gt_bboxes.new_zeros((num_points, 4)), \ gt_labels_3d.new_full( (num_points,), self.background_label), \ gt_bboxes_3d.new_zeros((num_points, self.bbox_code_size)), \ gt_bboxes_3d.new_zeros((num_points,)), \ attr_labels.new_full( (num_points,), self.attr_background_label) areas = (gt_bboxes[:, 2] - gt_bboxes[:, 0]) * ( gt_bboxes[:, 3] - gt_bboxes[:, 1]) areas = areas[None].repeat(num_points, 1) regress_ranges = regress_ranges[:, None, :].expand( num_points, num_gts, 2) gt_bboxes = gt_bboxes[None].expand(num_points, num_gts, 4) centers2d = centers2d[None].expand(num_points, num_gts, 2) gt_bboxes_3d = gt_bboxes_3d[None].expand(num_points, num_gts, self.bbox_code_size) depths = depths[None, :, None].expand(num_points, num_gts, 1) xs, ys = points[:, 0], points[:, 1] xs = xs[:, None].expand(num_points, num_gts) ys = ys[:, None].expand(num_points, num_gts) delta_xs = (xs - centers2d[..., 0])[..., None] delta_ys = (ys - centers2d[..., 1])[..., None] bbox_targets_3d = torch.cat( (delta_xs, delta_ys, depths, gt_bboxes_3d[..., 3:]), dim=-1) left = xs - gt_bboxes[..., 0] right = gt_bboxes[..., 2] - xs top = ys - gt_bboxes[..., 1] bottom = gt_bboxes[..., 3] - ys bbox_targets = torch.stack((left, top, right, bottom), -1) assert self.center_sampling is True, 'Setting center_sampling to '\ 'False has not been implemented for FCOS3D.' # condition1: inside a `center bbox` radius = self.center_sample_radius center_xs = centers2d[..., 0] center_ys = centers2d[..., 1] center_gts = torch.zeros_like(gt_bboxes) stride = center_xs.new_zeros(center_xs.shape) # project the points on current lvl back to the `original` sizes lvl_begin = 0 for lvl_idx, num_points_lvl in enumerate(num_points_per_lvl): lvl_end = lvl_begin + num_points_lvl stride[lvl_begin:lvl_end] = self.strides[lvl_idx] * radius lvl_begin = lvl_end center_gts[..., 0] = center_xs - stride center_gts[..., 1] = center_ys - stride center_gts[..., 2] = center_xs + stride center_gts[..., 3] = center_ys + stride cb_dist_left = xs - center_gts[..., 0] cb_dist_right = center_gts[..., 2] - xs cb_dist_top = ys - center_gts[..., 1] cb_dist_bottom = center_gts[..., 3] - ys center_bbox = torch.stack( (cb_dist_left, cb_dist_top, cb_dist_right, cb_dist_bottom), -1) inside_gt_bbox_mask = center_bbox.min(-1)[0] > 0 # condition2: limit the regression range for each location max_regress_distance = bbox_targets.max(-1)[0] inside_regress_range = ( (max_regress_distance >= regress_ranges[..., 0]) & (max_regress_distance <= regress_ranges[..., 1])) # center-based criterion to deal with ambiguity dists = torch.sqrt(torch.sum(bbox_targets_3d[..., :2]**2, dim=-1)) dists[inside_gt_bbox_mask == 0] = INF dists[inside_regress_range == 0] = INF min_dist, min_dist_inds = dists.min(dim=1) labels = gt_labels[min_dist_inds] labels_3d = gt_labels_3d[min_dist_inds] attr_labels = attr_labels[min_dist_inds] labels[min_dist == INF] = self.background_label # set as BG labels_3d[min_dist == INF] = self.background_label # set as BG attr_labels[min_dist == INF] = self.attr_background_label bbox_targets = bbox_targets[range(num_points), min_dist_inds] bbox_targets_3d = bbox_targets_3d[range(num_points), min_dist_inds] relative_dists = torch.sqrt( torch.sum(bbox_targets_3d[..., :2]**2, dim=-1)) / (1.414 * stride[:, 0]) # [N, 1] / [N, 1] centerness_targets = torch.exp(-self.centerness_alpha * relative_dists) return labels, bbox_targets, labels_3d, bbox_targets_3d, \ centerness_targets, attr_labels
44.624736
113
0.571195
38bdd5891b4f18a611c0d1400eab329f8e3c270e
1,759
py
Python
manga_db/db/id_map.py
nilfoer/mangadb
860d7de310002735631ea26810b4df5b6bc08d7b
[ "MIT" ]
3
2021-01-14T16:22:41.000Z
2022-02-21T03:31:22.000Z
manga_db/db/id_map.py
nilfoer/mangadb
860d7de310002735631ea26810b4df5b6bc08d7b
[ "MIT" ]
13
2021-01-14T10:34:19.000Z
2021-05-20T08:47:54.000Z
manga_db/db/id_map.py
nilfoer/mangadb
860d7de310002735631ea26810b4df5b6bc08d7b
[ "MIT" ]
1
2022-02-24T03:10:04.000Z
2022-02-24T03:10:04.000Z
import weakref class IndentityMap: def __init__(self): # d[key] directly returns acutal object (not weakref) # if value gets gc'd key/entry gets autmatically removed from WeakValueDictionary # if we retrieved and assigned the obj to a var then it wont be collected by gc anymore self._dict = weakref.WeakValueDictionary() def add(self, obj): if not obj._in_db: return False else: key = obj.key if key in self._dict: # TODO custom exception raise Exception(f"Can't add {key} to IndentityMap, since there is already " "an instance present for this key!") else: self._dict[key] = obj return True def add_unprecedented(self, obj): if not obj._in_db: return False else: key = obj.key self._dict[key] = obj return True def remove(self, key): del self._dict[key] def discard(self, key): try: self.remove(key) return True except KeyError: return False def __getitem__(self, key): return self._dict[key] def __contains__(self, key): return key in self._dict def get(self, key, default=None): try: obj = self._dict[key] return obj except KeyError: return default def items(self): return self._dict.items() def keys(self): return self._dict.keys() def values(self): return self._dict.values() def __iter__(self): return iter(self._dict) def __len__(self): return len(self._dict)
25.128571
95
0.549744
6e1a1ad6f798eaa5838ca53f1f5a62f22e5313bb
482
py
Python
packages/python/plotly/plotly/validators/splom/hoverlabel/_bordercolor.py
mastermind88/plotly.py
efa70710df1af22958e1be080e105130042f1839
[ "MIT" ]
null
null
null
packages/python/plotly/plotly/validators/splom/hoverlabel/_bordercolor.py
mastermind88/plotly.py
efa70710df1af22958e1be080e105130042f1839
[ "MIT" ]
null
null
null
packages/python/plotly/plotly/validators/splom/hoverlabel/_bordercolor.py
mastermind88/plotly.py
efa70710df1af22958e1be080e105130042f1839
[ "MIT" ]
null
null
null
import _plotly_utils.basevalidators class BordercolorValidator(_plotly_utils.basevalidators.ColorValidator): def __init__( self, plotly_name="bordercolor", parent_name="splom.hoverlabel", **kwargs ): super(BordercolorValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, array_ok=kwargs.pop("array_ok", True), edit_type=kwargs.pop("edit_type", "none"), **kwargs, )
32.133333
81
0.653527
262a0ab73cb1436d2b54b1a0aefa4f16d78ce539
800
py
Python
migrations/versions/6abc139be248_creating_table_subjects.py
gabrieldosprazeres/e-plus
0cd2cf77a2be5ac5b577e22c64f78180d3f5ff69
[ "MIT" ]
null
null
null
migrations/versions/6abc139be248_creating_table_subjects.py
gabrieldosprazeres/e-plus
0cd2cf77a2be5ac5b577e22c64f78180d3f5ff69
[ "MIT" ]
null
null
null
migrations/versions/6abc139be248_creating_table_subjects.py
gabrieldosprazeres/e-plus
0cd2cf77a2be5ac5b577e22c64f78180d3f5ff69
[ "MIT" ]
null
null
null
"""creating table 'subjects' Revision ID: 6abc139be248 Revises: 567869708e99 Create Date: 2022-01-06 21:48:30.749836 """ from alembic import op import sqlalchemy as sa # revision identifiers, used by Alembic. revision = '6abc139be248' down_revision = '567869708e99' branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### op.create_table('subjects', sa.Column('id', sa.Integer(), nullable=False), sa.Column('subject', sa.String(length=50), nullable=False), sa.PrimaryKeyConstraint('id'), sa.UniqueConstraint('subject') ) # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.drop_table('subjects') # ### end Alembic commands ###
23.529412
65
0.685
d1fb329cc395e99e9cee3db38eb481f56c890e73
1,436
py
Python
src/its_preselector/test/test_cal_source.py
NTIA/Preselector
ee275a6bd48b452cc1d2cd8870e1e617d7e4373b
[ "RSA-MD" ]
null
null
null
src/its_preselector/test/test_cal_source.py
NTIA/Preselector
ee275a6bd48b452cc1d2cd8870e1e617d7e4373b
[ "RSA-MD" ]
1
2022-03-25T21:57:57.000Z
2022-03-25T21:57:57.000Z
src/its_preselector/test/test_cal_source.py
NTIA/Preselector
ee275a6bd48b452cc1d2cd8870e1e617d7e4373b
[ "RSA-MD" ]
null
null
null
import unittest from its_preselector.web_relay_preselector import WebRelayPreselector import json class TestCalSource(unittest.TestCase): @classmethod def setUpClass(cls): file = open('test_metadata.sigmf-meta') sensor_def = json.load(file) file.close() cls.preselector = WebRelayPreselector(sensor_def, {}) null_file = open('null_preselector.sigmf-meta') null_def = json.load(null_file) null_file.close() cls.empty_preselector = WebRelayPreselector(null_def, {}) def test_valid_cal_source(self): cal_sources = self.preselector.cal_sources self.assertEqual(1, len(cal_sources)) cal_source = cal_sources[0] self.assertEqual(14.6, cal_source.enr) self.assertEqual("Calibrated noise source", cal_source.type) def test_valid_cal_source_spec(self): spec = self.preselector.cal_sources[0].cal_source_spec self.assertEqual("SG53400067", spec.id) self.assertEqual("Keysight 346B", spec.model) self.assertEqual("https://www.keysight.com/en/pd-1000001299%3Aepsg%3Apro-pn-346B/noise-source-10-mhz-to-18-ghz-nominal-enr-15-db?cc=US&lc=eng",spec.supplemental_information) def test_empty_cal_source(self): self.assertIsNotNone(self.empty_preselector.cal_sources) self.assertEqual(0, len(self.empty_preselector.cal_sources)) if __name__ == '__main__': unittest.main()
37.789474
181
0.711003
b58d03ffa8a18b32ecf99a2f312c35311e37f471
3,246
py
Python
monk/pytorch/losses/retrieve_loss.py
Shreyashwaghe/monk_v1
4ee4d9483e8ffac9b73a41f3c378e5abf5fc799b
[ "Apache-2.0" ]
2
2020-09-16T06:05:50.000Z
2021-04-07T12:05:20.000Z
monk/pytorch/losses/retrieve_loss.py
Shreyashwaghe/monk_v1
4ee4d9483e8ffac9b73a41f3c378e5abf5fc799b
[ "Apache-2.0" ]
null
null
null
monk/pytorch/losses/retrieve_loss.py
Shreyashwaghe/monk_v1
4ee4d9483e8ffac9b73a41f3c378e5abf5fc799b
[ "Apache-2.0" ]
null
null
null
from pytorch.losses.imports import * from system.imports import * @accepts(dict, post_trace=True) @TraceFunction(trace_args=False, trace_rv=False) def retrieve_loss(system_dict): ''' Retrieve loss post state changes Args: system_dict (dict): System dictionary storing experiment state and set variables Returns: dict: updated system dict ''' system_dict["local"]["criterion"] = system_dict["hyper-parameters"]["loss"]["name"]; name = system_dict["local"]["criterion"]; if(name == "l1"): system_dict["local"]["criterion"] = torch.nn.L1Loss( reduction='mean'); elif(name == "l2"): system_dict["local"]["criterion"] = torch.nn.MSELoss( reduction='mean'); elif(name == "softmaxcrossentropy"): system_dict["local"]["criterion"] = torch.nn.CrossEntropyLoss( weight=system_dict["hyper-parameters"]["loss"]["params"]["weight"], reduction='mean'); elif(name == "crossentropy"): system_dict["local"]["criterion"] = torch.nn.NLLLoss( weight=system_dict["hyper-parameters"]["loss"]["params"]["weight"], reduction='mean'); elif(name == "sigmoidbinarycrossentropy"): system_dict["local"]["criterion"] = torch.nn.BCEWithLogitsLoss( weight=system_dict["hyper-parameters"]["loss"]["params"]["weight"], reduction='mean'); elif(name == "binarycrossentropy"): system_dict["local"]["criterion"] = torch.nn.BCELoss( weight=system_dict["hyper-parameters"]["loss"]["params"]["weight"], reduction='mean'); elif(name == "kldiv"): system_dict["local"]["criterion"] = torch.nn.KLDivLoss( reduction='mean'); elif(name == "poissonnll"): system_dict["local"]["criterion"] = torch.nn.PoissonNLLLoss( log_input=system_dict["hyper-parameters"]["loss"]["params"]["log_pre_applied"], reduction='mean'); elif(name == "huber"): system_dict["local"]["criterion"] = torch.nn.SmoothL1Loss( reduction='mean'); elif(name == "hinge"): system_dict["local"]["criterion"] = torch.nn.HingeEmbeddingLoss( margin=system_dict["hyper-parameters"]["loss"]["params"]["margin"], reduction='mean'); elif(name == "squaredhinge"): system_dict["local"]["criterion"] = torch.nn.SoftMarginLoss( reduction='mean'); elif(name == "multimargin"): system_dict["local"]["criterion"] = torch.nn.MultiMarginLoss( p=1, margin=system_dict["hyper-parameters"]["loss"]["params"]["margin"], reduction='mean'); elif(name == "squaredmultimargin"): system_dict["local"]["criterion"] = torch.nn.MultiMarginLoss( p=2, margin=system_dict["hyper-parameters"]["loss"]["params"]["margin"], reduction='mean'); elif(name == "multilabelmargin"): system_dict["local"]["criterion"] = torch.nn.MultiLabelMarginLoss( reduction='mean'); elif(name == "multilabelsoftmargin"): system_dict["local"]["criterion"] = torch.nn.MultiLabelSoftMarginLoss( reduction='mean'); return system_dict;
35.67033
91
0.601664
be4e5c3c81fefd213e5a89f63bac36543c571e1c
259
py
Python
lib/model/nms/nms_gpu.py
user-never-lose/fpn.pytorch
21b15e1414db9bb8fb8c5574cfc0ce0d40e01286
[ "MIT" ]
945
2018-01-14T05:11:11.000Z
2022-03-30T07:44:41.000Z
lib/model/nms/nms_gpu.py
smartprobe/SKCD
f8d52f060d07f043c2d208ec84e5ce55225aaef6
[ "MIT" ]
55
2018-01-20T22:34:47.000Z
2021-12-03T05:48:51.000Z
lib/model/nms/nms_gpu.py
smartprobe/SKCD
f8d52f060d07f043c2d208ec84e5ce55225aaef6
[ "MIT" ]
254
2018-01-14T05:12:16.000Z
2022-03-19T12:50:31.000Z
import torch import numpy as np from _ext import nms import pdb def nms_gpu(dets, thresh): keep = dets.new(dets.size(0), 1).zero_().int() num_out = dets.new(1).zero_().int() nms.nms_cuda(keep, dets, num_out, thresh) keep = keep[:num_out[0]] return keep
21.583333
47
0.702703
6b226ec047dbd0edfe152e91a361e5b89a26216b
3,502
py
Python
OS/10. Round Robin.py
pratikpc/OpenGL-Pracs
8827eb65576db788733a011dcabee4daa3d32d94
[ "MIT" ]
1
2019-04-26T15:09:57.000Z
2019-04-26T15:09:57.000Z
OS/10. Round Robin.py
pratikpc/OpenGL-Pracs
8827eb65576db788733a011dcabee4daa3d32d94
[ "MIT" ]
null
null
null
OS/10. Round Robin.py
pratikpc/OpenGL-Pracs
8827eb65576db788733a011dcabee4daa3d32d94
[ "MIT" ]
1
2020-11-19T07:59:13.000Z
2020-11-19T07:59:13.000Z
# Algorithm # Create A Class Process # Store Usual params in it # ProcessId, Burst, Arrival, Completion etc # # But also create Param # <b>*RobinLeft*</b> # Set *RobinLeft=Burst* # Also IterationCount = 0 # ProcessAppendNotAddedAhead # Iterate through all processes # Add to Chart all Processes which have # SUPER IMP # (Arrival <= chart[top].arrival + Quantum) &&&&& Never Before been added # Check this by iterationCount = 0 # Main Code # Input all Processes # Run Sort By Process Arrival Time # Create a deque chart (use for creating queue) # Add top Element of Process to Chart # First Set Top Element IterationCount as 1 # Loop till Chart Not Empty # EXTRACT TOP CHART ELEMENT # Run ProcessAppendNotAddedAhead on Processes & Chart & Quantum # Compare Process RobinLeft with Quantum # If LESS or EQUAL # WORK DONE # SET COMPLETION = COMPLETION + ROBIN LEFT # ROBIN LEFT = 0 # PROCESS COMPLETION = COMPLETION # PROCESS TURN AROUND = PROCESS COMPLETION - PROCESS ARRIVAL # PROCESS WAITING = PROCESS TURN AROUND - PROCESS BURST # ADD TO *RESULT* LIST # ELSE # Work is YET TO BE FINISHED # SET PROCESS ROBIN LEFT = PROCESS ROBIN LEFT - QUANTUM # PROCESS ITERATION COUNT += 1 # PROCESS ADD TO CHART QUEUE class Process: def __init__(self, processId, arrival, burst): self.processId = processId self.arrival = arrival self.burst = burst self.robinLeft = burst self.completion = 0 self.turnAround = 0 self.waiting = 0 self.iterationCount = 0 def ProcessAppendNotAddedAhead(processes, chart, quantum): for process in processes: if process.arrival <= (chart[0].arrival + quantum) and process.iterationCount == 0: process.iterationCount = process.iterationCount+1 chart.append(process) # Example present in Sir Notebook processes = [Process(1,5,5),Process(2,4,6),Process(3,3,7),Process(4,1,9),Process(5,2,2), Process(6,6,3)] quantum = 3 processes = sorted(processes, reverse=False, key=lambda process: process.arrival) from collections import deque chart = deque([]) processTop = processes[0] processTop.iterationCount = 1 chart.append(processTop) totalTimeLimit = processes[0].arrival for process in processes: if (process.arrival > totalTimeLimit): totalTimeLimit = process.arrival else: totalTimeLimit = process.burst + totalTimeLimit result = [] completionTime = processes[0].arrival while len(chart) > 0: ProcessAppendNotAddedAhead(processes, chart, quantum) process = chart.popleft() print(process.robinLeft, " Process ", process.processId) if (process.arrival > completionTime): completionTime = process.arrival if (process.robinLeft <= quantum): completionTime += process.robinLeft process.completion = completionTime process.turnAround = process.completion - process.arrival process.waiting = process.turnAround - process.burst print ("Process ", process.processId, " done at ", process.completion) result.append(process) else: completionTime += quantum process.iterationCount = process.iterationCount + 1 process.robinLeft -= quantum chart.append(process) turnAroundTot = 0 waitingTot = 0 for process in result: turnAroundTot = turnAroundTot + process.turnAround waitingTot = waitingTot + process.waiting print ("It took Waiting =", waitingTot , " and Turn Around= ", turnAroundTot) turnAroundAvg = turnAroundTot/len(processes) waitingAvg = waitingTot/len(processes) print ("It took Avg Waiting =", waitingAvg , " and Avg Turn Around= ", turnAroundAvg)
31.836364
104
0.736722
f0cec8c3aac51ad838bb6de92bd719f169eca75d
7,962
py
Python
app.py
syedparsa/mealRestAPI
1fd2dcb41fc1a320f6724471bfa89070d872d5e5
[ "MIT" ]
null
null
null
app.py
syedparsa/mealRestAPI
1fd2dcb41fc1a320f6724471bfa89070d872d5e5
[ "MIT" ]
null
null
null
app.py
syedparsa/mealRestAPI
1fd2dcb41fc1a320f6724471bfa89070d872d5e5
[ "MIT" ]
null
null
null
from flask_migrate import Migrate from flask import Flask, request, jsonify, make_response from flask_sqlalchemy import SQLAlchemy from werkzeug.security import generate_password_hash, check_password_hash import uuid import jwt import datetime import json from functools import wraps app = Flask(__name__) app.config["DATABASE_URL"] = 'postgres://khbjjuusbhztzo:6e3ffe89e02363413236a1a658cada7dc5e50e1c5b120a1be8c39a33d621582a@ec2-34-241-19-183.eu-west-1.compute.amazonaws.com:5432/dmuftpqtlgggo' app.config['SQLALCHEMY_TRACK_MODIFICATIONS'] = True app.config['SECRET_KEY'] = 'Th1s1ss3cr3t' db = SQLAlchemy(app) migrate = Migrate(app, db) class Users(db.Model): id = db.Column(db.Integer, primary_key=True, autoincrement=True) name = db.Column(db.String(50)) password = db.Column(db.String()) admin = db.Column(db.Boolean) class Meals (db.Model): mealId = db.Column(db.Integer, primary_key=True, autoincrement=True) price = db.Column(db.Integer) name = db.Column(db.String(100), unique=True, nullable=False) ingredients = db.Column(db.String(500)) isSpicy = db.Column(db.Boolean, default=False) isVegan = db.Column(db.Boolean, default=False) isGlutenFree = db.Column(db.Boolean, default=False) description = db.Column(db.String(500)) db.create_all() db.session.commit() def token_required(is_admin): def decorator(f): @wraps(f) def wrapper(*args, **kwargs): token = None if 'x-access-tokens' in request.headers: token = request.headers['x-access-tokens'] if not token: return error_handler(400, "Valid token is missing") try: data = jwt.decode( token, app.config["SECRET_KEY"], algorithms=["HS256"]) current_user = Users.query.filter_by(id=data['id']).first() if is_admin: if not current_user.admin: return error_handler(401, "Unauthorized Access!") except BaseException: return error_handler(404, "User not found!") return f(*args, **kwargs) return wrapper return decorator def responce_handler( status_code, message_header, message, additional_message=None): if additional_message: return jsonify({'staus': status_code, message_header: message, 'note': additional_message}) return jsonify({'staus': status_code, message_header: message}) def success_handler(message): return responce_handler(200, "message", message) def error_handler(status_code, message): return responce_handler(status_code, "error", message) @app.route('/register', methods=['POST']) def signup_user(): data = request.get_json() password = data['password'] name = data['name'] if password.strip() is None or name.strip() is None: return error_handler(400, "Invalid Input!") if Users.query.filter_by(name=name).first() is not None: return error_handler(403, "User already exists!") hashed_password = generate_passworpid_hash(password, method='sha256') new_user = Users(name=name, password=hashed_password, admin=False) db.session.add(new_user) db.session.commit() return success_handler("registered successfully") @app.route('/login', methods=['GET', 'POST']) def login_user(): auth = request.authorization if not auth or not auth.username or not auth.password: return error_handler(401, 'Username or password is incorrect') user = Users.query.filter_by(name=auth.username).first() if check_password_hash(user.password, auth.password): token = jwt.encode({'id': user.id, 'exp': datetime.datetime.utcnow( ) + datetime.timedelta(minutes=30)}, app.config["SECRET_KEY"], algorithm="HS256") return responce_handler(200, "token", token) return error_handler(404, "User Not Found") @app.route('/users', methods=['GET']) @token_required(is_admin=True) def get_all_users(): users = Users.query.all() result = [] for user in users: user_data = {} user_data['id'] = user.id user_data['name'] = user.name user_data['admin'] = user.admin result.append(user_data) return responce_handler(200, "users", result) @app.route('/') def index(): return success_handler("Welcome to Meals REST API") @app.route('/createMeal', methods=['POST']) @token_required(is_admin=True) def create_Meal(): data = request.get_json() name = data['name'] price = data['price'] ingredients = data['ingredients'] isSpicy = data['isSpicy'] isVegan = data['isVegan'] isGlutenFree = data['isGlutenFree'] description = data['description'] new_Meal = Meals( name=name, price=price, ingredients=ingredients, isSpicy=isSpicy, isVegan=isVegan, isGlutenFree=isGlutenFree, description=description ) db.session.add(new_Meal) db.session.commit() return success_handler("new meal added!") @app.route('/meal', methods=['GET']) @token_required(is_admin=False) def get_Meals(): all_meals = Meals.query.all() result = [] for meal in all_meals: eat_data = get_meal_details(meal) result.append(eat_data) return responce_handler(200, "meals", result) def get_meal_details(meal): return {'id': meal.mealId, 'name': meal.name, 'price': meal.price, 'ingredients': meal.ingredients, 'isSpicy': meal.isSpicy, 'isVegan': meal.isVegan, 'isGlutenFree': meal.isGlutenFree, 'description': meal.description, } @app.route('/updateMeal/<id>', methods=['POST']) @token_required(is_admin=True) def update(id): meal = Meals.query.filter_by(mealId=id) data = request.get_json() updateMeal(meal, data) if 'name' in data.keys(): return responce_handler( 200, 'message', 'Meal Updated', additional_message="Meal's name cannot be updated!\nDelete and create new one if you want!!") return success_handler("Meal updated!") @app.route('/updateMeal/<name>', methods=['POST']) @token_required(is_admin=False) def update_by_name(name): meal = Meals.query.filter_by(name=name) data = request.get_json() updateMeal(meal, data) if 'name' in data.keys(): return responce_handler( 200, 'message', 'Meal Updated', additional_message="Meal's name cannot be updated!\nDelete and create new one if you want!!") return success_handler("Meal updated!") def updateMeal(meal, data): if meal: for d in data.keys(): if d == 'price': meal.price = data[d] elif d == 'ingredients': meal.ingredients = data[d] elif d == 'isSpicy': meal.isSpicy = data[d] elif d == 'isVegan': meal.isVegan = data[d] elif d == 'isGlutenFree': meal.isGlutenFree = data[d] elif d == 'description': meal.description = data[d] db.session.commit() @app.route('/meal/<id>', methods=['GET']) @token_required(is_admin=False) def get_FMeals(id): meal = Meals.query.filter_by(mealId=id) if not meal: return error_handler(404, "meal not found!") return responce_handler(200, "meal", meal) @app.route('/meal/<id>', methods=['DELETE']) @token_required(is_admin=True) def delete_Meals(id): meal = Meals.query.filter_by(mealId=id) if meal: meal.delete() db.session.commit() return success_handler("Deleted successfuly") return error_handler(404, "Meal Not Found!!") if __name__ == '__main__': app.run(debug=True)
30.273764
190
0.632756