The dataset viewer is not available for this split.
Error code: FeaturesError
Exception: ArrowInvalid
Message: JSON parse error: Invalid value. in row 0
Traceback: Traceback (most recent call last):
File "/usr/local/lib/python3.12/site-packages/datasets/packaged_modules/json/json.py", line 183, in _generate_tables
df = pandas_read_json(f)
^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/datasets/packaged_modules/json/json.py", line 38, in pandas_read_json
return pd.read_json(path_or_buf, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/pandas/io/json/_json.py", line 791, in read_json
json_reader = JsonReader(
^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/pandas/io/json/_json.py", line 905, in __init__
self.data = self._preprocess_data(data)
^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/pandas/io/json/_json.py", line 917, in _preprocess_data
data = data.read()
^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/datasets/utils/file_utils.py", line 844, in read_with_retries
out = read(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^
File "<frozen codecs>", line 322, in decode
UnicodeDecodeError: 'utf-8' codec can't decode byte 0xff in position 0: invalid start byte
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "/src/services/worker/src/worker/job_runners/split/first_rows.py", line 243, in compute_first_rows_from_streaming_response
iterable_dataset = iterable_dataset._resolve_features()
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 3608, in _resolve_features
features = _infer_features_from_batch(self.with_format(None)._head())
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 2368, in _head
return next(iter(self.iter(batch_size=n)))
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 2573, in iter
for key, example in iterator:
^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 2060, in __iter__
for key, pa_table in self._iter_arrow():
^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 2082, in _iter_arrow
yield from self.ex_iterable._iter_arrow()
File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 544, in _iter_arrow
for key, pa_table in iterator:
^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 383, in _iter_arrow
for key, pa_table in self.generate_tables_fn(**gen_kwags):
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/datasets/packaged_modules/json/json.py", line 186, in _generate_tables
raise e
File "/usr/local/lib/python3.12/site-packages/datasets/packaged_modules/json/json.py", line 160, in _generate_tables
pa_table = paj.read_json(
^^^^^^^^^^^^^^
File "pyarrow/_json.pyx", line 342, in pyarrow._json.read_json
File "pyarrow/error.pxi", line 155, in pyarrow.lib.pyarrow_internal_check_status
File "pyarrow/error.pxi", line 92, in pyarrow.lib.check_status
pyarrow.lib.ArrowInvalid: JSON parse error: Invalid value. in row 0Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.
RobotInter-VQA: Intermediate Representation Understanding & Generation VQA Dataset for Manipulation
English | 简体中文
A Visual Question Answering dataset for robotic manipulation, developed as part of the RoboInter, covering generation, understanding (and task planning) of Intermediate Representations. The dataset is built on top of the annotation of RoboInter-Data, raw robot datasets are from DROID and RH20T.
Dataset Structure
robotinter/
├── Generation/ # generation tasks (grounding, trajectory, contact, ...)
│ ├── image/ # Images (zip archives, extract before use)
│ │ ├── train/{droid,rh20t}/
│ │ └── val/
│ └── meta/ # VQA annotations in JSON
│ ├── train/{droid,rh20t}/{origin_format,llava_format,smart_resize_format}/
│ └── val/{origin_format,llava_format,smart_resize_format}/
├── Understanding/ # understanding tasks (multiple-choice/decision)
│ ├── image/
│ │ ├── train/{droid,rh20t}/
│ │ └── val/
│ └── meta/
│ ├── train/{droid,rh20t}/
│ └── val/
└── Task_planning/ # Task planning & primitive recognition
├── image/
│ ├── train/manipvqa/
│ └── val/{planning,choice,decide}/
└── meta/
├── train/manipvqa/
└── val/{planning,choice,decide}/
Quick Start
Extract images: All images are stored as
.zipfiles. Extract them in place:cd RoboInter-VQA/Task_planning/image/train/manipvqa cat task_planning.zip.* > task_planning_full.zip cd ../../../../ find . -name "*.zip" -execdir unzip -o {} \;Load VQA data: Refer to RoboInterVLM.
Coordinate Formats (Generation only)
The Generation annotations are provided in three coordinate formats. The underlying data and images are identical; only the coordinate representation in the answers differs:
| Format | Description | Example |
|---|---|---|
origin_format |
Pixel coordinates in original image resolution (h x w) |
[[72, 102], [192, 179]] |
llava_format |
Normalized coordinates in [0, 1] range as LLaVA-based Model |
[[0.22, 0.57], [0.60, 0.99]] |
smart_resize_format |
Pixel coordinates in resized image resolution as Qwen-based Model (new_h x new_w) |
[[69, 95], [184, 167]] |
JSON Descriptions
Generation (7 task types)
Each entry follows this schema:
{
"id": "unique_sample_id",
"task": "task_type",
"conversations": [{"from": "human", "value": "..."}, {"from": "gpt", "value": "..."}],
"images": "relative/path/to/image.jpg",
"gt": "ground_truth_value",
"h": 180, "w": 320,
"new_h": 168, "new_w": 308
}
| JSON File | Task | Description | Output Format |
|---|---|---|---|
*_traj_qa.json |
Trajectory Prediction | Given a task description and a starting position, predict 10 future trajectory waypoints for the gripper. | {"future_traj": [[x1,y1], ...]} |
*_traj_qa_wo_init_pos.json |
Trajectory Prediction (no init pos) | Same as above but without providing the starting position in the prompt. | {"future_traj": [[x1,y1], ...]} |
*_gripper_det_qa.json |
Gripper Detection | Detect the current bounding box of the robot gripper in the scene. | {"gripper_det_bbox": [[x1,y1],[x2,y2]]} |
*_contact_point_qa.json |
Contact Point Prediction | Predict the two contact points where the gripper fingers touch the manipulated object. | {"contact_point": [[x1,y1],[x2,y2]]} |
*_contact_box_qa.json |
Contact Box Prediction | Predict the bounding box of the gripper at the moment of contact with the object. | {"contact_bbox": [[x1,y1],[x2,y2]]} |
*_current_box_qa.json |
Current Object Box | Predict the current bounding box of the manipulated object. | {"current_bbox": [[x1,y1],[x2,y2]]} |
*_final_box_qa.json |
Final Object Box | Predict the final bounding box of the manipulated object (at the end of the action). | {"final_bbox": [[x1,y1],[x2,y2]]} |
Understanding (6 task types)
Multiple-choice VQA tasks that evaluate visual understanding of intermediate representations. Each entry uses single-image or multi-choice concatenated images.
| JSON File | Task | Description | Answer |
|---|---|---|---|
contact_decide.json |
Contact Decision | Given a scene, determine whether the gripper has reached/contacted the object. | Yes / No |
grasppose_choice.json |
Grasp Pose Choice | Select the correct grasping pose from 4 candidate images (A/B/C/D), where orange fork-like patterns represent possible gripper poses. | A/B/C/D |
grounding_choice.json |
Grounding Choice | Select which image correctly depicts the bounding box (purple box) of the manipulated object from 4 candidates. | A/B/C/D |
traj_choice.json |
Trajectory Choice | Select the correct gripper trajectory from 4 candidate images with gradient-colored paths (green=start, red=end). | A/B/C/D |
trajlang_choice.json |
Trajectory-Language Choice | Given a trajectory visualization, select the correct task description from 4 language options. | A/B/C/D |
traj_direction_choice.json |
Trajectory Direction Choice | Given colored arrows around the gripper, select which color represents the actual movement direction. | A/B/C/D |
Task Planning (16 task types)
Multi-image (video frame) or single-frame VQA tasks for high-level task planning, including 16 types (Scene understanding, Discriminative affordance negative task, Discriminative affordance positive task, Future multitask selection, Future prediction task, Future primitive selection task, Generative affordance task, Past description task, Past multitask selection, Past primitive selection, Planning remaining steps task, Planning task, Planning with context task, Success negative task, Success positive task, Temporal understanding). Each entry uses 8 sampled frames as input (Temporal understanding and Scene understanding use a combined image of four image). We provide 4 examples below:
| JSON File | Task | Description | Answer |
|---|---|---|---|
train/manipvqa/task_planning.json |
Next Step Planning (train) | Given 8 video frames and a goal, predict the next sub-task to perform. | Free-form text |
val/planning/task_planning.json |
Next Step Planning (val) | Same as training but on held-out validation data. | Free-form text |
val/choice/task_planning.json |
Primitive Selection (val) | Given 8 video frames, select which action primitive was just executed from 4 options. | A/B/C/D |
val/decide/task_planning.json |
Success Decision (val) | Given 8 video frames and a sub-task description, determine whether the sub-task was successfully completed. | Yes / No |
Data Statistics
Generation
| Source | traj_qa | gripper_det | contact_point | contact_box | current_box | final_box |
|---|---|---|---|---|---|---|
| DROID (train) | 31,282 | 84,777 | 78,004 | 78,004 | 149,671 | 145,996 |
| RH20T (train) | 33,803 | 120,747 | 115,266 | 115,266 | 225,055 | 224,944 |
| Val | 2,000 | 2,000 | 2,000 | 2,000 | 2,000 | 2,000 |
Understanding
| Source | contact_decide | grasppose_choice | grounding_choice | traj_choice | trajlang_choice | traj_direction |
|---|---|---|---|---|---|---|
| RH20T (train) | 15,060 | 9,835 | 8,158 | 3,610 | 3,610 | 3,729 |
| DROID (train) | 18,184 | - | 57,572 | 8,245 | 8,245 | 6,500 |
| Val | 15,514 | 2,702 | 6,108 | 787 | 1,474 | 266 |
Task Planning
| Split | Entries |
|---|---|
| Train (manipvqa) | 928,819 |
| Val - planning | 10,806 |
| Val - choice | 15,059 |
| Val - decide | 10,629 |
License
Please refer to the original dataset licenses for RoboInter, DROID and RH20T.
- Downloads last month
- 29