before
stringlengths
0
955k
after
stringlengths
0
877k
repo
stringlengths
1
74
type
stringclasses
1 value
def generate_aser_to_glucose_dict(head: str, tail: str, full_return=True): """ This function generates the replacement dictionary from ASER form to CKGP form. For example, 'I love you' will be replaced to 'PersonX love PersonY'. :param head: The head string in ASER form. e.g. I love you :param tail: The tail string in ASER form. e.g. You love I :param full_return: Whether return the replaced head, replaced tail, replaced head + tail as not. If true, return one dict and three strings. If false, only a dict. :return: return a dict of replacement rules from ASER to CKGP. If full_return is true, then also return the replaced head, replaced tail, replaced head + replaced tail, joined by a comma ', ' Note that For object, 'it' and 'that' are not covered. They will not be reversed For place, 'there' is not taken care of, as it's widely used in many ways. """ rule = {} head = ' '.join(['i' if token == 'my' else token for token in head.split()]) tail = ' '.join(['i' if token == 'my' else token for token in tail.split()]) head_subj = head.split()[0] tail_subj = tail.split()[0] if head_subj in PP_SINGLE and tail_subj in PP_SINGLE and (head_subj != tail_subj): <DeepExtract> for i in ATOMIC_subject_list: if i not in rule.values(): rule[head_subj] = i </DeepExtract> <DeepExtract> for i in ATOMIC_subject_list: if i not in rule.values(): rule[tail_subj] = i </DeepExtract> tokens = (head.lower() + ' ' + tail.lower()).split(' ') for t in tokens: if t in PP_SINGLE: if t in rule.keys(): continue else: <DeepExtract> for i in ATOMIC_subject_list: if i not in rule.values(): rule[t] = i </DeepExtract> if t in glucose_group_list: if t in rule.keys(): continue else: <DeepExtract> for i in ATOMIC_group_list: if i not in rule.values(): rule[t] = i </DeepExtract> <DeepExtract> (head_result, tail_result) = (head.lower(), tail.lower()) for i in rule.keys(): head_result = ' '.join([rule[i] if j == i else j for j in head_result.split(' ')]) tail_result = ' '.join([rule[i] if j == i else j for j in tail_result.split(' ')]) (replaced_head, replaced_tail) = (head_result, tail_result) </DeepExtract> if full_return: return (rule, replaced_head, replaced_tail, replaced_head + ', ' + replaced_tail) else: return rule
def generate_aser_to_glucose_dict(head: str, tail: str, full_return=True): """ This function generates the replacement dictionary from ASER form to CKGP form. For example, 'I love you' will be replaced to 'PersonX love PersonY'. :param head: The head string in ASER form. e.g. I love you :param tail: The tail string in ASER form. e.g. You love I :param full_return: Whether return the replaced head, replaced tail, replaced head + tail as not. If true, return one dict and three strings. If false, only a dict. :return: return a dict of replacement rules from ASER to CKGP. If full_return is true, then also return the replaced head, replaced tail, replaced head + replaced tail, joined by a comma ', ' Note that For object, 'it' and 'that' are not covered. They will not be reversed For place, 'there' is not taken care of, as it's widely used in many ways. """ rule = {} head = ' '.join(['i' if token == 'my' else token for token in head.split()]) tail = ' '.join(['i' if token == 'my' else token for token in tail.split()]) head_subj = head.split()[0] tail_subj = tail.split()[0] if head_subj in PP_SINGLE and tail_subj in PP_SINGLE and (head_subj != tail_subj): for i in ATOMIC_subject_list: if i not in rule.values(): rule[head_subj] = i for i in ATOMIC_subject_list: if i not in rule.values(): rule[tail_subj] = i tokens = (head.lower() + ' ' + tail.lower()).split(' ') for t in tokens: if t in PP_SINGLE: if t in rule.keys(): continue else: for i in ATOMIC_subject_list: if i not in rule.values(): rule[t] = i if t in glucose_group_list: if t in rule.keys(): continue else: for i in ATOMIC_group_list: if i not in rule.values(): rule[t] = i (head_result, tail_result) = (head.lower(), tail.lower()) for i in rule.keys(): head_result = ' '.join([rule[i] if j == i else j for j in head_result.split(' ')]) tail_result = ' '.join([rule[i] if j == i else j for j in tail_result.split(' ')]) (replaced_head, replaced_tail) = (head_result, tail_result) if full_return: return (rule, replaced_head, replaced_tail, replaced_head + ', ' + replaced_tail) else: return rule
ASER
positive
def testRenderBoolean(self): <DeepExtract> def_dict = {'className': 'Foo', 'type': 'boolean'} prototype = data_types.DataType(def_dict, None, language_model=self.language_model) dv = data_value.DataValue(True, prototype) dv = dv </DeepExtract> render_method = self.language_model._SUPPORTED_TYPES['boolean'] self.assertEqual('true', render_method(dv)) dv.SetValue(False) self.assertEqual('false', render_method(dv))
def testRenderBoolean(self): def_dict = {'className': 'Foo', 'type': 'boolean'} prototype = data_types.DataType(def_dict, None, language_model=self.language_model) dv = data_value.DataValue(True, prototype) dv = dv render_method = self.language_model._SUPPORTED_TYPES['boolean'] self.assertEqual('true', render_method(dv)) dv.SetValue(False) self.assertEqual('false', render_method(dv))
apis-client-generator
positive
def __init__(self, input_size: int, output_size: int, nr_params: int, d_model: int, nhead: int, num_encoder_layers: int, num_decoder_layers: int, dim_feedforward: int, dropout: float, activation: str, norm_type: Union[str, nn.Module, None]=None, custom_encoder: Optional[nn.Module]=None, custom_decoder: Optional[nn.Module]=None, **kwargs): """PyTorch module implementing a Transformer to be used in `TransformerModel`. PyTorch module implementing a simple encoder-decoder transformer architecture. Parameters ---------- input_size The dimensionality of the TimeSeries instances that will be fed to the the fit and predict functions. output_size The dimensionality of the output time series. nr_params The number of parameters of the likelihood (or 1 if no likelihood is used). d_model The number of expected features in the transformer encoder/decoder inputs. nhead The number of heads in the multiheadattention model. num_encoder_layers The number of encoder layers in the encoder. num_decoder_layers The number of decoder layers in the decoder. dim_feedforward The dimension of the feedforward network model. dropout Fraction of neurons affected by Dropout. activation The activation function of encoder/decoder intermediate layer. norm_type: str | nn.Module | None The type of LayerNorm variant to use. custom_encoder A custom transformer encoder provided by the user (default=None). custom_decoder A custom transformer decoder provided by the user (default=None). **kwargs All parameters required for :class:`darts.model.forecasting_models.PLForecastingModule` base class. Inputs ------ x of shape `(batch_size, input_chunk_length, input_size)` Tensor containing the features of the input sequence. Outputs ------- y of shape `(batch_size, output_chunk_length, target_size, nr_params)` Tensor containing the prediction at the last time step of the sequence. """ super().__init__(**kwargs) self.input_size = input_size self.target_size = output_size self.nr_params = nr_params self.target_length = self.output_chunk_length self.encoder = nn.Linear(input_size, d_model) self.positional_encoding = _PositionalEncoding(d_model, dropout, self.input_chunk_length) if isinstance(norm_type, str): try: self.layer_norm = getattr(layer_norm_variants, norm_type) except AttributeError: raise_log(AttributeError('please provide a valid layer norm type')) else: self.layer_norm = norm_type raise_if_not(activation in FFN, f"'{activation}' is not in {FFN}") if activation in GLU_FFN: raise_if(custom_encoder is not None or custom_decoder is not None, f'Cannot use `custom_encoder` or `custom_decoder` along with an `activation` from {GLU_FFN}', logger=logger) ffn_cls = getattr(glu_variants, activation) activation = None <DeepExtract> ffn = dict(ffn=ffn_cls(d_model=d_model, d_ff=dim_feedforward, dropout=dropout)) if ffn_cls else dict() layer = CustomFeedForwardEncoderLayer(**ffn, dropout=dropout, d_model=d_model, nhead=nhead, dim_feedforward=dim_feedforward) custom_encoder = nn.TransformerEncoder(layer, num_layers=num_encoder_layers, norm=self.layer_norm if self.layer_norm else nn.LayerNorm(d_model)) </DeepExtract> <DeepExtract> ffn = dict(ffn=ffn_cls(d_model=d_model, d_ff=dim_feedforward, dropout=dropout)) if ffn_cls else dict() layer = CustomFeedForwardDecoderLayer(**ffn, dropout=dropout, d_model=d_model, nhead=nhead, dim_feedforward=dim_feedforward) custom_decoder = nn.TransformerDecoder(layer, num_layers=num_decoder_layers, norm=self.layer_norm if self.layer_norm else nn.LayerNorm(d_model)) </DeepExtract> if self.layer_norm and custom_decoder is None: <DeepExtract> ffn = dict(ffn=None(d_model=d_model, d_ff=dim_feedforward, dropout=dropout)) if None else dict() layer = nn.TransformerEncoderLayer(**ffn, dropout=dropout, d_model=d_model, nhead=nhead, dim_feedforward=dim_feedforward) custom_encoder = nn.TransformerEncoder(layer, num_layers=num_encoder_layers, norm=self.layer_norm(d_model)) </DeepExtract> <DeepExtract> ffn = dict(ffn=None(d_model=d_model, d_ff=dim_feedforward, dropout=dropout)) if None else dict() layer = nn.TransformerDecoderLayer(**ffn, dropout=dropout, d_model=d_model, nhead=nhead, dim_feedforward=dim_feedforward) custom_decoder = nn.TransformerDecoder(layer, num_layers=num_decoder_layers, norm=self.layer_norm(d_model)) </DeepExtract> self.transformer = nn.Transformer(d_model=d_model, nhead=nhead, num_encoder_layers=num_encoder_layers, num_decoder_layers=num_decoder_layers, dim_feedforward=dim_feedforward, dropout=dropout, activation=activation, custom_encoder=custom_encoder, custom_decoder=custom_decoder) self.decoder = nn.Linear(d_model, self.output_chunk_length * self.target_size * self.nr_params)
def __init__(self, input_size: int, output_size: int, nr_params: int, d_model: int, nhead: int, num_encoder_layers: int, num_decoder_layers: int, dim_feedforward: int, dropout: float, activation: str, norm_type: Union[str, nn.Module, None]=None, custom_encoder: Optional[nn.Module]=None, custom_decoder: Optional[nn.Module]=None, **kwargs): """PyTorch module implementing a Transformer to be used in `TransformerModel`. PyTorch module implementing a simple encoder-decoder transformer architecture. Parameters ---------- input_size The dimensionality of the TimeSeries instances that will be fed to the the fit and predict functions. output_size The dimensionality of the output time series. nr_params The number of parameters of the likelihood (or 1 if no likelihood is used). d_model The number of expected features in the transformer encoder/decoder inputs. nhead The number of heads in the multiheadattention model. num_encoder_layers The number of encoder layers in the encoder. num_decoder_layers The number of decoder layers in the decoder. dim_feedforward The dimension of the feedforward network model. dropout Fraction of neurons affected by Dropout. activation The activation function of encoder/decoder intermediate layer. norm_type: str | nn.Module | None The type of LayerNorm variant to use. custom_encoder A custom transformer encoder provided by the user (default=None). custom_decoder A custom transformer decoder provided by the user (default=None). **kwargs All parameters required for :class:`darts.model.forecasting_models.PLForecastingModule` base class. Inputs ------ x of shape `(batch_size, input_chunk_length, input_size)` Tensor containing the features of the input sequence. Outputs ------- y of shape `(batch_size, output_chunk_length, target_size, nr_params)` Tensor containing the prediction at the last time step of the sequence. """ super().__init__(**kwargs) self.input_size = input_size self.target_size = output_size self.nr_params = nr_params self.target_length = self.output_chunk_length self.encoder = nn.Linear(input_size, d_model) self.positional_encoding = _PositionalEncoding(d_model, dropout, self.input_chunk_length) if isinstance(norm_type, str): try: self.layer_norm = getattr(layer_norm_variants, norm_type) except AttributeError: raise_log(AttributeError('please provide a valid layer norm type')) else: self.layer_norm = norm_type raise_if_not(activation in FFN, f"'{activation}' is not in {FFN}") if activation in GLU_FFN: raise_if(custom_encoder is not None or custom_decoder is not None, f'Cannot use `custom_encoder` or `custom_decoder` along with an `activation` from {GLU_FFN}', logger=logger) ffn_cls = getattr(glu_variants, activation) activation = None ffn = dict(ffn=ffn_cls(d_model=d_model, d_ff=dim_feedforward, dropout=dropout)) if ffn_cls else dict() layer = CustomFeedForwardEncoderLayer(**ffn, dropout=dropout, d_model=d_model, nhead=nhead, dim_feedforward=dim_feedforward) custom_encoder = nn.TransformerEncoder(layer, num_layers=num_encoder_layers, norm=self.layer_norm if self.layer_norm else nn.LayerNorm(d_model)) ffn = dict(ffn=ffn_cls(d_model=d_model, d_ff=dim_feedforward, dropout=dropout)) if ffn_cls else dict() layer = CustomFeedForwardDecoderLayer(**ffn, dropout=dropout, d_model=d_model, nhead=nhead, dim_feedforward=dim_feedforward) custom_decoder = nn.TransformerDecoder(layer, num_layers=num_decoder_layers, norm=self.layer_norm if self.layer_norm else nn.LayerNorm(d_model)) if self.layer_norm and custom_decoder is None: ffn = dict(ffn=None(d_model=d_model, d_ff=dim_feedforward, dropout=dropout)) if None else dict() layer = nn.TransformerEncoderLayer(**ffn, dropout=dropout, d_model=d_model, nhead=nhead, dim_feedforward=dim_feedforward) custom_encoder = nn.TransformerEncoder(layer, num_layers=num_encoder_layers, norm=self.layer_norm(d_model)) ffn = dict(ffn=None(d_model=d_model, d_ff=dim_feedforward, dropout=dropout)) if None else dict() layer = nn.TransformerDecoderLayer(**ffn, dropout=dropout, d_model=d_model, nhead=nhead, dim_feedforward=dim_feedforward) custom_decoder = nn.TransformerDecoder(layer, num_layers=num_decoder_layers, norm=self.layer_norm(d_model)) self.transformer = nn.Transformer(d_model=d_model, nhead=nhead, num_encoder_layers=num_encoder_layers, num_decoder_layers=num_decoder_layers, dim_feedforward=dim_feedforward, dropout=dropout, activation=activation, custom_encoder=custom_encoder, custom_decoder=custom_decoder) self.decoder = nn.Linear(d_model, self.output_chunk_length * self.target_size * self.nr_params)
darts
positive
def success(self): """Set MPushButton to SuccessType""" <DeepExtract> if MPushButton.SuccessType in [MPushButton.DefaultType, MPushButton.PrimaryType, MPushButton.SuccessType, MPushButton.WarningType, MPushButton.DangerType]: self._dayu_type = MPushButton.SuccessType else: raise ValueError("Input argument 'value' should be one of default/primary/success/warning/danger string.") self.style().polish(self) </DeepExtract> return self
def success(self): """Set MPushButton to SuccessType""" if MPushButton.SuccessType in [MPushButton.DefaultType, MPushButton.PrimaryType, MPushButton.SuccessType, MPushButton.WarningType, MPushButton.DangerType]: self._dayu_type = MPushButton.SuccessType else: raise ValueError("Input argument 'value' should be one of default/primary/success/warning/danger string.") self.style().polish(self) return self
dayu_widgets
positive
def startShell(self, mnopts=None): """Start a shell process for running commands""" if self.shell: error('%s: shell is already running\n' % self.name) return opts = '-cd' if mnopts is None else mnopts if self.inNamespace: opts += 'n' cmd = ['mnexec', opts, 'env', 'PS1=' + chr(127), 'bash', '--norc', '--noediting', '-is', 'mininet:' + self.name] (self.master, self.slave) = pty.openpty() <DeepExtract> assert self popen = Popen(cmd, **params) debug('_popen', cmd, popen.pid) self.shell = popen </DeepExtract> self.stdin = os.fdopen(self.master, 'r') self.stdout = self.stdin self.pid = self.shell.pid self.pollOut = select.poll() self.pollOut.register(self.stdout) self.outToNode[self.stdout.fileno()] = self self.inToNode[self.stdin.fileno()] = self self.execed = False self.lastCmd = None self.lastPid = None self.readbuf = '' while True: <DeepExtract> count = len(self.readbuf) if count < 1024: data = os.read(self.stdout.fileno(), 1024 - count) self.readbuf += self.decoder.decode(data) if 1024 >= len(self.readbuf): result = self.readbuf self.readbuf = '' else: result = self.readbuf[:1024] self.readbuf = self.readbuf[1024:] data = result </DeepExtract> if data[-1] == chr(127): break self.pollOut.poll() self.waiting = False <DeepExtract> verbose = kwargs.get('verbose', False) log = info if verbose else debug log('*** %s : %s\n' % (self.name, args)) if self.shell: self.shell.poll() if self.shell.returncode is not None: print('shell died on ', self.name) self.shell = None self.startShell() self.sendCmd(*args, **kwargs) return self.waitOutput(verbose) else: warn('(%s exited - ignoring cmd%s)\n' % (self, args)) return None </DeepExtract>
def startShell(self, mnopts=None): """Start a shell process for running commands""" if self.shell: error('%s: shell is already running\n' % self.name) return opts = '-cd' if mnopts is None else mnopts if self.inNamespace: opts += 'n' cmd = ['mnexec', opts, 'env', 'PS1=' + chr(127), 'bash', '--norc', '--noediting', '-is', 'mininet:' + self.name] (self.master, self.slave) = pty.openpty() assert self popen = Popen(cmd, **params) debug('_popen', cmd, popen.pid) self.shell = popen self.stdin = os.fdopen(self.master, 'r') self.stdout = self.stdin self.pid = self.shell.pid self.pollOut = select.poll() self.pollOut.register(self.stdout) self.outToNode[self.stdout.fileno()] = self self.inToNode[self.stdin.fileno()] = self self.execed = False self.lastCmd = None self.lastPid = None self.readbuf = '' while True: count = len(self.readbuf) if count < 1024: data = os.read(self.stdout.fileno(), 1024 - count) self.readbuf += self.decoder.decode(data) if 1024 >= len(self.readbuf): result = self.readbuf self.readbuf = '' else: result = self.readbuf[:1024] self.readbuf = self.readbuf[1024:] data = result if data[-1] == chr(127): break self.pollOut.poll() self.waiting = False verbose = kwargs.get('verbose', False) log = info if verbose else debug log('*** %s : %s\n' % (self.name, args)) if self.shell: self.shell.poll() if self.shell.returncode is not None: print('shell died on ', self.name) self.shell = None self.startShell() self.sendCmd(*args, **kwargs) return self.waitOutput(verbose) else: warn('(%s exited - ignoring cmd%s)\n' % (self, args)) return None </DeepExtract>
containernet
positive
def __init__(self, *args, **kwargs): widget = kwargs.get('widget') or self.widget <DeepExtract> if isinstance(widget, BaseCSVWidget) or (isinstance(widget, type) and issubclass(widget, BaseCSVWidget)): kwargs['widget'] = widget assert isinstance(widget, type), "'%s.widget' must be a widget class, not %s." % (self.__class__.__name__, repr(widget)) bases = (self.base_widget_class, widget) kwargs['widget'] = type(str('CSV%s' % widget.__name__), bases, {}) </DeepExtract> super().__init__(*args, **kwargs)
def __init__(self, *args, **kwargs): widget = kwargs.get('widget') or self.widget if isinstance(widget, BaseCSVWidget) or (isinstance(widget, type) and issubclass(widget, BaseCSVWidget)): kwargs['widget'] = widget assert isinstance(widget, type), "'%s.widget' must be a widget class, not %s." % (self.__class__.__name__, repr(widget)) bases = (self.base_widget_class, widget) kwargs['widget'] = type(str('CSV%s' % widget.__name__), bases, {}) super().__init__(*args, **kwargs)
django-filter
positive
def flush_batch_metrics(self, step=None): avg_metrics = {metric_name: mean(values) for (metric_name, values) in self.sub_batch_metrics.items()} <DeepExtract> for (metric_name, value) in avg_metrics.items(): self.metrics_logger.log_scalar(metric_name, value, step=step) </DeepExtract> self.sub_batch_metrics.clear() if self.time_last_flush is not None: time_since_last_flush = time() - self.time_last_flush if self.last_step is not None and step is not None and (step > self.last_step): time_since_last_flush = time_since_last_flush / (step - self.last_step) <DeepExtract> for (metric_name, value) in {'time_per_sample': time_since_last_flush}.items(): self.metrics_logger.log_scalar(metric_name, value, step=step) </DeepExtract> self.last_step = step self.time_last_flush = time() self.metrics_logger.flush()
def flush_batch_metrics(self, step=None): avg_metrics = {metric_name: mean(values) for (metric_name, values) in self.sub_batch_metrics.items()} for (metric_name, value) in avg_metrics.items(): self.metrics_logger.log_scalar(metric_name, value, step=step) self.sub_batch_metrics.clear() if self.time_last_flush is not None: time_since_last_flush = time() - self.time_last_flush if self.last_step is not None and step is not None and (step > self.last_step): time_since_last_flush = time_since_last_flush / (step - self.last_step) for (metric_name, value) in {'time_per_sample': time_since_last_flush}.items(): self.metrics_logger.log_scalar(metric_name, value, step=step) self.last_step = step self.time_last_flush = time() self.metrics_logger.flush()
code-transformer
positive
def interp_surgery(lay): """ Set parameters s.t. deconvolutional layers compute bilinear interpolation Only for deconvolution without groups """ (m, k, h, w) = lay.weight.data.size() if m != k: print('input + output channels need to be the same') raise ValueError if h != w: print('filters need to be square') raise ValueError <DeepExtract> factor = (h + 1) // 2 if h % 2 == 1: center = factor - 1 else: center = factor - 0.5 og = np.ogrid[:h, :h] filt = (1 - abs(og[0] - center) / factor) * (1 - abs(og[1] - center) / factor) </DeepExtract> for i in range(m): lay.weight[i, i, :, :].data.copy_(torch.from_numpy(filt)) return lay.weight.data
def interp_surgery(lay): """ Set parameters s.t. deconvolutional layers compute bilinear interpolation Only for deconvolution without groups """ (m, k, h, w) = lay.weight.data.size() if m != k: print('input + output channels need to be the same') raise ValueError if h != w: print('filters need to be square') raise ValueError factor = (h + 1) // 2 if h % 2 == 1: center = factor - 1 else: center = factor - 0.5 og = np.ogrid[:h, :h] filt = (1 - abs(og[0] - center) / factor) * (1 - abs(og[1] - center) / factor) for i in range(m): lay.weight[i, i, :, :].data.copy_(torch.from_numpy(filt)) return lay.weight.data
astmt
positive
def CheckChange(self): <DeepExtract> d1 = libtcod.random_get_int(0, 1, 6) d2 = libtcod.random_get_int(0, 1, 6) (d1, d2, roll) = (d1, d2, d1 + d2) </DeepExtract> month = campaign.current_date[1] if self.precip != 'None': if roll <= 3: if self.precip == 'Rain': <DeepExtract> libtcod.console_clear(con) libtcod.console_blit(con, 0, 0, SCREEN_WIDTH, SCREEN_HEIGHT, 0, 0, 0, 0.0, 0.7) lines = wrap('The rain stops.', 30) y = 25 libtcod.console_print_frame(0, SCREEN_XM - 17, y - 2, 34, len(lines) + 6, clear=True, flag=libtcod.BKGND_SET, fmt=0) for line in lines: libtcod.console_print_ex(0, SCREEN_XM, y, libtcod.BKGND_NONE, libtcod.CENTER, line) y += 1 if confirm: text = '[%cy%c] or [%cN%c]' % (libtcod.COLCTRL_1, libtcod.COLCTRL_STOP, libtcod.COLCTRL_1, libtcod.COLCTRL_STOP) else: text = '[%cEnter%c] to continue' % HIGHLIGHT libtcod.console_print_ex(0, SCREEN_XM, y + 1, libtcod.BKGND_NONE, libtcod.CENTER, text) choice = False exit_menu = False while not exit_menu: libtcod.sys_check_for_event(libtcod.EVENT_KEY_PRESS | libtcod.EVENT_MOUSE, key, mouse) key_char = chr(key.c) if libtcod.console_is_window_closed(): sys.exit() if confirm: if key.vk == libtcod.KEY_ENTER or key.vk == libtcod.KEY_ESCAPE or key_char in ['n', 'N']: exit_menu = True elif key_char in ['y', 'Y']: choice = True exit_menu = True elif key.vk == libtcod.KEY_ENTER: exit_menu = True libtcod.console_flush() if skip_update: return choice if battle is not None: RenderEncounter(no_flush=True) elif campaign.day_in_progress: RenderCampaign(no_flush=True) return choice </DeepExtract> else: <DeepExtract> libtcod.console_clear(con) libtcod.console_blit(con, 0, 0, SCREEN_WIDTH, SCREEN_HEIGHT, 0, 0, 0, 0.0, 0.7) lines = wrap('The snow stops falling.', 30) y = 25 libtcod.console_print_frame(0, SCREEN_XM - 17, y - 2, 34, len(lines) + 6, clear=True, flag=libtcod.BKGND_SET, fmt=0) for line in lines: libtcod.console_print_ex(0, SCREEN_XM, y, libtcod.BKGND_NONE, libtcod.CENTER, line) y += 1 if confirm: text = '[%cy%c] or [%cN%c]' % (libtcod.COLCTRL_1, libtcod.COLCTRL_STOP, libtcod.COLCTRL_1, libtcod.COLCTRL_STOP) else: text = '[%cEnter%c] to continue' % HIGHLIGHT libtcod.console_print_ex(0, SCREEN_XM, y + 1, libtcod.BKGND_NONE, libtcod.CENTER, text) choice = False exit_menu = False while not exit_menu: libtcod.sys_check_for_event(libtcod.EVENT_KEY_PRESS | libtcod.EVENT_MOUSE, key, mouse) key_char = chr(key.c) if libtcod.console_is_window_closed(): sys.exit() if confirm: if key.vk == libtcod.KEY_ENTER or key.vk == libtcod.KEY_ESCAPE or key_char in ['n', 'N']: exit_menu = True elif key_char in ['y', 'Y']: choice = True exit_menu = True elif key.vk == libtcod.KEY_ENTER: exit_menu = True libtcod.console_flush() if skip_update: return choice if battle is not None: RenderEncounter(no_flush=True) elif campaign.day_in_progress: RenderCampaign(no_flush=True) return choice </DeepExtract> self.precip = 'None' return elif self.clouds == 'Overcast': if roll <= 3: if month <= 2 or month == 12: self.precip = 'Snow' <DeepExtract> libtcod.console_clear(con) libtcod.console_blit(con, 0, 0, SCREEN_WIDTH, SCREEN_HEIGHT, 0, 0, 0, 0.0, 0.7) lines = wrap('Snow starts falling', 30) y = 25 libtcod.console_print_frame(0, SCREEN_XM - 17, y - 2, 34, len(lines) + 6, clear=True, flag=libtcod.BKGND_SET, fmt=0) for line in lines: libtcod.console_print_ex(0, SCREEN_XM, y, libtcod.BKGND_NONE, libtcod.CENTER, line) y += 1 if confirm: text = '[%cy%c] or [%cN%c]' % (libtcod.COLCTRL_1, libtcod.COLCTRL_STOP, libtcod.COLCTRL_1, libtcod.COLCTRL_STOP) else: text = '[%cEnter%c] to continue' % HIGHLIGHT libtcod.console_print_ex(0, SCREEN_XM, y + 1, libtcod.BKGND_NONE, libtcod.CENTER, text) choice = False exit_menu = False while not exit_menu: libtcod.sys_check_for_event(libtcod.EVENT_KEY_PRESS | libtcod.EVENT_MOUSE, key, mouse) key_char = chr(key.c) if libtcod.console_is_window_closed(): sys.exit() if confirm: if key.vk == libtcod.KEY_ENTER or key.vk == libtcod.KEY_ESCAPE or key_char in ['n', 'N']: exit_menu = True elif key_char in ['y', 'Y']: choice = True exit_menu = True elif key.vk == libtcod.KEY_ENTER: exit_menu = True libtcod.console_flush() if skip_update: return choice if battle is not None: RenderEncounter(no_flush=True) elif campaign.day_in_progress: RenderCampaign(no_flush=True) return choice </DeepExtract> elif 5 <= month <= 9: self.precip = 'Rain' <DeepExtract> libtcod.console_clear(con) libtcod.console_blit(con, 0, 0, SCREEN_WIDTH, SCREEN_HEIGHT, 0, 0, 0, 0.0, 0.7) lines = wrap('Rain starts falling', 30) y = 25 libtcod.console_print_frame(0, SCREEN_XM - 17, y - 2, 34, len(lines) + 6, clear=True, flag=libtcod.BKGND_SET, fmt=0) for line in lines: libtcod.console_print_ex(0, SCREEN_XM, y, libtcod.BKGND_NONE, libtcod.CENTER, line) y += 1 if confirm: text = '[%cy%c] or [%cN%c]' % (libtcod.COLCTRL_1, libtcod.COLCTRL_STOP, libtcod.COLCTRL_1, libtcod.COLCTRL_STOP) else: text = '[%cEnter%c] to continue' % HIGHLIGHT libtcod.console_print_ex(0, SCREEN_XM, y + 1, libtcod.BKGND_NONE, libtcod.CENTER, text) choice = False exit_menu = False while not exit_menu: libtcod.sys_check_for_event(libtcod.EVENT_KEY_PRESS | libtcod.EVENT_MOUSE, key, mouse) key_char = chr(key.c) if libtcod.console_is_window_closed(): sys.exit() if confirm: if key.vk == libtcod.KEY_ENTER or key.vk == libtcod.KEY_ESCAPE or key_char in ['n', 'N']: exit_menu = True elif key_char in ['y', 'Y']: choice = True exit_menu = True elif key.vk == libtcod.KEY_ENTER: exit_menu = True libtcod.console_flush() if skip_update: return choice if battle is not None: RenderEncounter(no_flush=True) elif campaign.day_in_progress: RenderCampaign(no_flush=True) return choice </DeepExtract> else: <DeepExtract> d1 = libtcod.random_get_int(0, 1, 6) d2 = libtcod.random_get_int(0, 1, 6) (d1, d2, roll) = (d1, d2, d1 + d2) </DeepExtract> if roll >= 11: self.precip = 'Snow' <DeepExtract> libtcod.console_clear(con) libtcod.console_blit(con, 0, 0, SCREEN_WIDTH, SCREEN_HEIGHT, 0, 0, 0, 0.0, 0.7) lines = wrap('Snow starts falling', 30) y = 25 libtcod.console_print_frame(0, SCREEN_XM - 17, y - 2, 34, len(lines) + 6, clear=True, flag=libtcod.BKGND_SET, fmt=0) for line in lines: libtcod.console_print_ex(0, SCREEN_XM, y, libtcod.BKGND_NONE, libtcod.CENTER, line) y += 1 if confirm: text = '[%cy%c] or [%cN%c]' % (libtcod.COLCTRL_1, libtcod.COLCTRL_STOP, libtcod.COLCTRL_1, libtcod.COLCTRL_STOP) else: text = '[%cEnter%c] to continue' % HIGHLIGHT libtcod.console_print_ex(0, SCREEN_XM, y + 1, libtcod.BKGND_NONE, libtcod.CENTER, text) choice = False exit_menu = False while not exit_menu: libtcod.sys_check_for_event(libtcod.EVENT_KEY_PRESS | libtcod.EVENT_MOUSE, key, mouse) key_char = chr(key.c) if libtcod.console_is_window_closed(): sys.exit() if confirm: if key.vk == libtcod.KEY_ENTER or key.vk == libtcod.KEY_ESCAPE or key_char in ['n', 'N']: exit_menu = True elif key_char in ['y', 'Y']: choice = True exit_menu = True elif key.vk == libtcod.KEY_ENTER: exit_menu = True libtcod.console_flush() if skip_update: return choice if battle is not None: RenderEncounter(no_flush=True) elif campaign.day_in_progress: RenderCampaign(no_flush=True) return choice </DeepExtract> else: self.precip = 'Rain' <DeepExtract> libtcod.console_clear(con) libtcod.console_blit(con, 0, 0, SCREEN_WIDTH, SCREEN_HEIGHT, 0, 0, 0, 0.0, 0.7) lines = wrap('Rain starts falling', 30) y = 25 libtcod.console_print_frame(0, SCREEN_XM - 17, y - 2, 34, len(lines) + 6, clear=True, flag=libtcod.BKGND_SET, fmt=0) for line in lines: libtcod.console_print_ex(0, SCREEN_XM, y, libtcod.BKGND_NONE, libtcod.CENTER, line) y += 1 if confirm: text = '[%cy%c] or [%cN%c]' % (libtcod.COLCTRL_1, libtcod.COLCTRL_STOP, libtcod.COLCTRL_1, libtcod.COLCTRL_STOP) else: text = '[%cEnter%c] to continue' % HIGHLIGHT libtcod.console_print_ex(0, SCREEN_XM, y + 1, libtcod.BKGND_NONE, libtcod.CENTER, text) choice = False exit_menu = False while not exit_menu: libtcod.sys_check_for_event(libtcod.EVENT_KEY_PRESS | libtcod.EVENT_MOUSE, key, mouse) key_char = chr(key.c) if libtcod.console_is_window_closed(): sys.exit() if confirm: if key.vk == libtcod.KEY_ENTER or key.vk == libtcod.KEY_ESCAPE or key_char in ['n', 'N']: exit_menu = True elif key_char in ['y', 'Y']: choice = True exit_menu = True elif key.vk == libtcod.KEY_ENTER: exit_menu = True libtcod.console_flush() if skip_update: return choice if battle is not None: RenderEncounter(no_flush=True) elif campaign.day_in_progress: RenderCampaign(no_flush=True) return choice </DeepExtract> return <DeepExtract> d1 = libtcod.random_get_int(0, 1, 6) d2 = libtcod.random_get_int(0, 1, 6) (d1, d2, roll) = (d1, d2, d1 + d2) </DeepExtract> if self.clouds == 'Clear': if roll <= 3: self.clouds = 'Overcast' <DeepExtract> libtcod.console_clear(con) libtcod.console_blit(con, 0, 0, SCREEN_WIDTH, SCREEN_HEIGHT, 0, 0, 0, 0.0, 0.7) lines = wrap('Clouds roll in and the weather turns overcast', 30) y = 25 libtcod.console_print_frame(0, SCREEN_XM - 17, y - 2, 34, len(lines) + 6, clear=True, flag=libtcod.BKGND_SET, fmt=0) for line in lines: libtcod.console_print_ex(0, SCREEN_XM, y, libtcod.BKGND_NONE, libtcod.CENTER, line) y += 1 if confirm: text = '[%cy%c] or [%cN%c]' % (libtcod.COLCTRL_1, libtcod.COLCTRL_STOP, libtcod.COLCTRL_1, libtcod.COLCTRL_STOP) else: text = '[%cEnter%c] to continue' % HIGHLIGHT libtcod.console_print_ex(0, SCREEN_XM, y + 1, libtcod.BKGND_NONE, libtcod.CENTER, text) choice = False exit_menu = False while not exit_menu: libtcod.sys_check_for_event(libtcod.EVENT_KEY_PRESS | libtcod.EVENT_MOUSE, key, mouse) key_char = chr(key.c) if libtcod.console_is_window_closed(): sys.exit() if confirm: if key.vk == libtcod.KEY_ENTER or key.vk == libtcod.KEY_ESCAPE or key_char in ['n', 'N']: exit_menu = True elif key_char in ['y', 'Y']: choice = True exit_menu = True elif key.vk == libtcod.KEY_ENTER: exit_menu = True libtcod.console_flush() if skip_update: return choice if battle is not None: RenderEncounter(no_flush=True) elif campaign.day_in_progress: RenderCampaign(no_flush=True) return choice </DeepExtract> return else: if roll <= 5: if self.fog: self.fog = False <DeepExtract> libtcod.console_clear(con) libtcod.console_blit(con, 0, 0, SCREEN_WIDTH, SCREEN_HEIGHT, 0, 0, 0, 0.0, 0.7) lines = wrap('The fog lifts.', 30) y = 25 libtcod.console_print_frame(0, SCREEN_XM - 17, y - 2, 34, len(lines) + 6, clear=True, flag=libtcod.BKGND_SET, fmt=0) for line in lines: libtcod.console_print_ex(0, SCREEN_XM, y, libtcod.BKGND_NONE, libtcod.CENTER, line) y += 1 if confirm: text = '[%cy%c] or [%cN%c]' % (libtcod.COLCTRL_1, libtcod.COLCTRL_STOP, libtcod.COLCTRL_1, libtcod.COLCTRL_STOP) else: text = '[%cEnter%c] to continue' % HIGHLIGHT libtcod.console_print_ex(0, SCREEN_XM, y + 1, libtcod.BKGND_NONE, libtcod.CENTER, text) choice = False exit_menu = False while not exit_menu: libtcod.sys_check_for_event(libtcod.EVENT_KEY_PRESS | libtcod.EVENT_MOUSE, key, mouse) key_char = chr(key.c) if libtcod.console_is_window_closed(): sys.exit() if confirm: if key.vk == libtcod.KEY_ENTER or key.vk == libtcod.KEY_ESCAPE or key_char in ['n', 'N']: exit_menu = True elif key_char in ['y', 'Y']: choice = True exit_menu = True elif key.vk == libtcod.KEY_ENTER: exit_menu = True libtcod.console_flush() if skip_update: return choice if battle is not None: RenderEncounter(no_flush=True) elif campaign.day_in_progress: RenderCampaign(no_flush=True) return choice </DeepExtract> return self.clouds = 'Clear' self.precip = 'None' <DeepExtract> libtcod.console_clear(con) libtcod.console_blit(con, 0, 0, SCREEN_WIDTH, SCREEN_HEIGHT, 0, 0, 0, 0.0, 0.7) lines = wrap('The sky clears.', 30) y = 25 libtcod.console_print_frame(0, SCREEN_XM - 17, y - 2, 34, len(lines) + 6, clear=True, flag=libtcod.BKGND_SET, fmt=0) for line in lines: libtcod.console_print_ex(0, SCREEN_XM, y, libtcod.BKGND_NONE, libtcod.CENTER, line) y += 1 if confirm: text = '[%cy%c] or [%cN%c]' % (libtcod.COLCTRL_1, libtcod.COLCTRL_STOP, libtcod.COLCTRL_1, libtcod.COLCTRL_STOP) else: text = '[%cEnter%c] to continue' % HIGHLIGHT libtcod.console_print_ex(0, SCREEN_XM, y + 1, libtcod.BKGND_NONE, libtcod.CENTER, text) choice = False exit_menu = False while not exit_menu: libtcod.sys_check_for_event(libtcod.EVENT_KEY_PRESS | libtcod.EVENT_MOUSE, key, mouse) key_char = chr(key.c) if libtcod.console_is_window_closed(): sys.exit() if confirm: if key.vk == libtcod.KEY_ENTER or key.vk == libtcod.KEY_ESCAPE or key_char in ['n', 'N']: exit_menu = True elif key_char in ['y', 'Y']: choice = True exit_menu = True elif key.vk == libtcod.KEY_ENTER: exit_menu = True libtcod.console_flush() if skip_update: return choice if battle is not None: RenderEncounter(no_flush=True) elif campaign.day_in_progress: RenderCampaign(no_flush=True) return choice </DeepExtract> return <DeepExtract> d1 = libtcod.random_get_int(0, 1, 6) d2 = libtcod.random_get_int(0, 1, 6) (d1, d2, roll) = (d1, d2, d1 + d2) </DeepExtract> if roll <= 3 and (not self.fog): self.fog = True <DeepExtract> libtcod.console_clear(con) libtcod.console_blit(con, 0, 0, SCREEN_WIDTH, SCREEN_HEIGHT, 0, 0, 0, 0.0, 0.7) lines = wrap('Fog rolls in.', 30) y = 25 libtcod.console_print_frame(0, SCREEN_XM - 17, y - 2, 34, len(lines) + 6, clear=True, flag=libtcod.BKGND_SET, fmt=0) for line in lines: libtcod.console_print_ex(0, SCREEN_XM, y, libtcod.BKGND_NONE, libtcod.CENTER, line) y += 1 if confirm: text = '[%cy%c] or [%cN%c]' % (libtcod.COLCTRL_1, libtcod.COLCTRL_STOP, libtcod.COLCTRL_1, libtcod.COLCTRL_STOP) else: text = '[%cEnter%c] to continue' % HIGHLIGHT libtcod.console_print_ex(0, SCREEN_XM, y + 1, libtcod.BKGND_NONE, libtcod.CENTER, text) choice = False exit_menu = False while not exit_menu: libtcod.sys_check_for_event(libtcod.EVENT_KEY_PRESS | libtcod.EVENT_MOUSE, key, mouse) key_char = chr(key.c) if libtcod.console_is_window_closed(): sys.exit() if confirm: if key.vk == libtcod.KEY_ENTER or key.vk == libtcod.KEY_ESCAPE or key_char in ['n', 'N']: exit_menu = True elif key_char in ['y', 'Y']: choice = True exit_menu = True elif key.vk == libtcod.KEY_ENTER: exit_menu = True libtcod.console_flush() if skip_update: return choice if battle is not None: RenderEncounter(no_flush=True) elif campaign.day_in_progress: RenderCampaign(no_flush=True) return choice </DeepExtract>
def CheckChange(self): d1 = libtcod.random_get_int(0, 1, 6) d2 = libtcod.random_get_int(0, 1, 6) (d1, d2, roll) = (d1, d2, d1 + d2) month = campaign.current_date[1] if self.precip != 'None': if roll <= 3: if self.precip == 'Rain': libtcod.console_clear(con) libtcod.console_blit(con, 0, 0, SCREEN_WIDTH, SCREEN_HEIGHT, 0, 0, 0, 0.0, 0.7) lines = wrap('The rain stops.', 30) y = 25 libtcod.console_print_frame(0, SCREEN_XM - 17, y - 2, 34, len(lines) + 6, clear=True, flag=libtcod.BKGND_SET, fmt=0) for line in lines: libtcod.console_print_ex(0, SCREEN_XM, y, libtcod.BKGND_NONE, libtcod.CENTER, line) y += 1 if confirm: text = '[%cy%c] or [%cN%c]' % (libtcod.COLCTRL_1, libtcod.COLCTRL_STOP, libtcod.COLCTRL_1, libtcod.COLCTRL_STOP) else: text = '[%cEnter%c] to continue' % HIGHLIGHT libtcod.console_print_ex(0, SCREEN_XM, y + 1, libtcod.BKGND_NONE, libtcod.CENTER, text) choice = False exit_menu = False while not exit_menu: libtcod.sys_check_for_event(libtcod.EVENT_KEY_PRESS | libtcod.EVENT_MOUSE, key, mouse) key_char = chr(key.c) if libtcod.console_is_window_closed(): sys.exit() if confirm: if key.vk == libtcod.KEY_ENTER or key.vk == libtcod.KEY_ESCAPE or key_char in ['n', 'N']: exit_menu = True elif key_char in ['y', 'Y']: choice = True exit_menu = True elif key.vk == libtcod.KEY_ENTER: exit_menu = True libtcod.console_flush() if skip_update: return choice if battle is not None: RenderEncounter(no_flush=True) elif campaign.day_in_progress: RenderCampaign(no_flush=True) return choice else: libtcod.console_clear(con) libtcod.console_blit(con, 0, 0, SCREEN_WIDTH, SCREEN_HEIGHT, 0, 0, 0, 0.0, 0.7) lines = wrap('The snow stops falling.', 30) y = 25 libtcod.console_print_frame(0, SCREEN_XM - 17, y - 2, 34, len(lines) + 6, clear=True, flag=libtcod.BKGND_SET, fmt=0) for line in lines: libtcod.console_print_ex(0, SCREEN_XM, y, libtcod.BKGND_NONE, libtcod.CENTER, line) y += 1 if confirm: text = '[%cy%c] or [%cN%c]' % (libtcod.COLCTRL_1, libtcod.COLCTRL_STOP, libtcod.COLCTRL_1, libtcod.COLCTRL_STOP) else: text = '[%cEnter%c] to continue' % HIGHLIGHT libtcod.console_print_ex(0, SCREEN_XM, y + 1, libtcod.BKGND_NONE, libtcod.CENTER, text) choice = False exit_menu = False while not exit_menu: libtcod.sys_check_for_event(libtcod.EVENT_KEY_PRESS | libtcod.EVENT_MOUSE, key, mouse) key_char = chr(key.c) if libtcod.console_is_window_closed(): sys.exit() if confirm: if key.vk == libtcod.KEY_ENTER or key.vk == libtcod.KEY_ESCAPE or key_char in ['n', 'N']: exit_menu = True elif key_char in ['y', 'Y']: choice = True exit_menu = True elif key.vk == libtcod.KEY_ENTER: exit_menu = True libtcod.console_flush() if skip_update: return choice if battle is not None: RenderEncounter(no_flush=True) elif campaign.day_in_progress: RenderCampaign(no_flush=True) return choice self.precip = 'None' return elif self.clouds == 'Overcast': if roll <= 3: if month <= 2 or month == 12: self.precip = 'Snow' libtcod.console_clear(con) libtcod.console_blit(con, 0, 0, SCREEN_WIDTH, SCREEN_HEIGHT, 0, 0, 0, 0.0, 0.7) lines = wrap('Snow starts falling', 30) y = 25 libtcod.console_print_frame(0, SCREEN_XM - 17, y - 2, 34, len(lines) + 6, clear=True, flag=libtcod.BKGND_SET, fmt=0) for line in lines: libtcod.console_print_ex(0, SCREEN_XM, y, libtcod.BKGND_NONE, libtcod.CENTER, line) y += 1 if confirm: text = '[%cy%c] or [%cN%c]' % (libtcod.COLCTRL_1, libtcod.COLCTRL_STOP, libtcod.COLCTRL_1, libtcod.COLCTRL_STOP) else: text = '[%cEnter%c] to continue' % HIGHLIGHT libtcod.console_print_ex(0, SCREEN_XM, y + 1, libtcod.BKGND_NONE, libtcod.CENTER, text) choice = False exit_menu = False while not exit_menu: libtcod.sys_check_for_event(libtcod.EVENT_KEY_PRESS | libtcod.EVENT_MOUSE, key, mouse) key_char = chr(key.c) if libtcod.console_is_window_closed(): sys.exit() if confirm: if key.vk == libtcod.KEY_ENTER or key.vk == libtcod.KEY_ESCAPE or key_char in ['n', 'N']: exit_menu = True elif key_char in ['y', 'Y']: choice = True exit_menu = True elif key.vk == libtcod.KEY_ENTER: exit_menu = True libtcod.console_flush() if skip_update: return choice if battle is not None: RenderEncounter(no_flush=True) elif campaign.day_in_progress: RenderCampaign(no_flush=True) return choice elif 5 <= month <= 9: self.precip = 'Rain' libtcod.console_clear(con) libtcod.console_blit(con, 0, 0, SCREEN_WIDTH, SCREEN_HEIGHT, 0, 0, 0, 0.0, 0.7) lines = wrap('Rain starts falling', 30) y = 25 libtcod.console_print_frame(0, SCREEN_XM - 17, y - 2, 34, len(lines) + 6, clear=True, flag=libtcod.BKGND_SET, fmt=0) for line in lines: libtcod.console_print_ex(0, SCREEN_XM, y, libtcod.BKGND_NONE, libtcod.CENTER, line) y += 1 if confirm: text = '[%cy%c] or [%cN%c]' % (libtcod.COLCTRL_1, libtcod.COLCTRL_STOP, libtcod.COLCTRL_1, libtcod.COLCTRL_STOP) else: text = '[%cEnter%c] to continue' % HIGHLIGHT libtcod.console_print_ex(0, SCREEN_XM, y + 1, libtcod.BKGND_NONE, libtcod.CENTER, text) choice = False exit_menu = False while not exit_menu: libtcod.sys_check_for_event(libtcod.EVENT_KEY_PRESS | libtcod.EVENT_MOUSE, key, mouse) key_char = chr(key.c) if libtcod.console_is_window_closed(): sys.exit() if confirm: if key.vk == libtcod.KEY_ENTER or key.vk == libtcod.KEY_ESCAPE or key_char in ['n', 'N']: exit_menu = True elif key_char in ['y', 'Y']: choice = True exit_menu = True elif key.vk == libtcod.KEY_ENTER: exit_menu = True libtcod.console_flush() if skip_update: return choice if battle is not None: RenderEncounter(no_flush=True) elif campaign.day_in_progress: RenderCampaign(no_flush=True) return choice else: d1 = libtcod.random_get_int(0, 1, 6) d2 = libtcod.random_get_int(0, 1, 6) (d1, d2, roll) = (d1, d2, d1 + d2) if roll >= 11: self.precip = 'Snow' libtcod.console_clear(con) libtcod.console_blit(con, 0, 0, SCREEN_WIDTH, SCREEN_HEIGHT, 0, 0, 0, 0.0, 0.7) lines = wrap('Snow starts falling', 30) y = 25 libtcod.console_print_frame(0, SCREEN_XM - 17, y - 2, 34, len(lines) + 6, clear=True, flag=libtcod.BKGND_SET, fmt=0) for line in lines: libtcod.console_print_ex(0, SCREEN_XM, y, libtcod.BKGND_NONE, libtcod.CENTER, line) y += 1 if confirm: text = '[%cy%c] or [%cN%c]' % (libtcod.COLCTRL_1, libtcod.COLCTRL_STOP, libtcod.COLCTRL_1, libtcod.COLCTRL_STOP) else: text = '[%cEnter%c] to continue' % HIGHLIGHT libtcod.console_print_ex(0, SCREEN_XM, y + 1, libtcod.BKGND_NONE, libtcod.CENTER, text) choice = False exit_menu = False while not exit_menu: libtcod.sys_check_for_event(libtcod.EVENT_KEY_PRESS | libtcod.EVENT_MOUSE, key, mouse) key_char = chr(key.c) if libtcod.console_is_window_closed(): sys.exit() if confirm: if key.vk == libtcod.KEY_ENTER or key.vk == libtcod.KEY_ESCAPE or key_char in ['n', 'N']: exit_menu = True elif key_char in ['y', 'Y']: choice = True exit_menu = True elif key.vk == libtcod.KEY_ENTER: exit_menu = True libtcod.console_flush() if skip_update: return choice if battle is not None: RenderEncounter(no_flush=True) elif campaign.day_in_progress: RenderCampaign(no_flush=True) return choice else: self.precip = 'Rain' libtcod.console_clear(con) libtcod.console_blit(con, 0, 0, SCREEN_WIDTH, SCREEN_HEIGHT, 0, 0, 0, 0.0, 0.7) lines = wrap('Rain starts falling', 30) y = 25 libtcod.console_print_frame(0, SCREEN_XM - 17, y - 2, 34, len(lines) + 6, clear=True, flag=libtcod.BKGND_SET, fmt=0) for line in lines: libtcod.console_print_ex(0, SCREEN_XM, y, libtcod.BKGND_NONE, libtcod.CENTER, line) y += 1 if confirm: text = '[%cy%c] or [%cN%c]' % (libtcod.COLCTRL_1, libtcod.COLCTRL_STOP, libtcod.COLCTRL_1, libtcod.COLCTRL_STOP) else: text = '[%cEnter%c] to continue' % HIGHLIGHT libtcod.console_print_ex(0, SCREEN_XM, y + 1, libtcod.BKGND_NONE, libtcod.CENTER, text) choice = False exit_menu = False while not exit_menu: libtcod.sys_check_for_event(libtcod.EVENT_KEY_PRESS | libtcod.EVENT_MOUSE, key, mouse) key_char = chr(key.c) if libtcod.console_is_window_closed(): sys.exit() if confirm: if key.vk == libtcod.KEY_ENTER or key.vk == libtcod.KEY_ESCAPE or key_char in ['n', 'N']: exit_menu = True elif key_char in ['y', 'Y']: choice = True exit_menu = True elif key.vk == libtcod.KEY_ENTER: exit_menu = True libtcod.console_flush() if skip_update: return choice if battle is not None: RenderEncounter(no_flush=True) elif campaign.day_in_progress: RenderCampaign(no_flush=True) return choice return d1 = libtcod.random_get_int(0, 1, 6) d2 = libtcod.random_get_int(0, 1, 6) (d1, d2, roll) = (d1, d2, d1 + d2) if self.clouds == 'Clear': if roll <= 3: self.clouds = 'Overcast' libtcod.console_clear(con) libtcod.console_blit(con, 0, 0, SCREEN_WIDTH, SCREEN_HEIGHT, 0, 0, 0, 0.0, 0.7) lines = wrap('Clouds roll in and the weather turns overcast', 30) y = 25 libtcod.console_print_frame(0, SCREEN_XM - 17, y - 2, 34, len(lines) + 6, clear=True, flag=libtcod.BKGND_SET, fmt=0) for line in lines: libtcod.console_print_ex(0, SCREEN_XM, y, libtcod.BKGND_NONE, libtcod.CENTER, line) y += 1 if confirm: text = '[%cy%c] or [%cN%c]' % (libtcod.COLCTRL_1, libtcod.COLCTRL_STOP, libtcod.COLCTRL_1, libtcod.COLCTRL_STOP) else: text = '[%cEnter%c] to continue' % HIGHLIGHT libtcod.console_print_ex(0, SCREEN_XM, y + 1, libtcod.BKGND_NONE, libtcod.CENTER, text) choice = False exit_menu = False while not exit_menu: libtcod.sys_check_for_event(libtcod.EVENT_KEY_PRESS | libtcod.EVENT_MOUSE, key, mouse) key_char = chr(key.c) if libtcod.console_is_window_closed(): sys.exit() if confirm: if key.vk == libtcod.KEY_ENTER or key.vk == libtcod.KEY_ESCAPE or key_char in ['n', 'N']: exit_menu = True elif key_char in ['y', 'Y']: choice = True exit_menu = True elif key.vk == libtcod.KEY_ENTER: exit_menu = True libtcod.console_flush() if skip_update: return choice if battle is not None: RenderEncounter(no_flush=True) elif campaign.day_in_progress: RenderCampaign(no_flush=True) return choice return else: if roll <= 5: if self.fog: self.fog = False libtcod.console_clear(con) libtcod.console_blit(con, 0, 0, SCREEN_WIDTH, SCREEN_HEIGHT, 0, 0, 0, 0.0, 0.7) lines = wrap('The fog lifts.', 30) y = 25 libtcod.console_print_frame(0, SCREEN_XM - 17, y - 2, 34, len(lines) + 6, clear=True, flag=libtcod.BKGND_SET, fmt=0) for line in lines: libtcod.console_print_ex(0, SCREEN_XM, y, libtcod.BKGND_NONE, libtcod.CENTER, line) y += 1 if confirm: text = '[%cy%c] or [%cN%c]' % (libtcod.COLCTRL_1, libtcod.COLCTRL_STOP, libtcod.COLCTRL_1, libtcod.COLCTRL_STOP) else: text = '[%cEnter%c] to continue' % HIGHLIGHT libtcod.console_print_ex(0, SCREEN_XM, y + 1, libtcod.BKGND_NONE, libtcod.CENTER, text) choice = False exit_menu = False while not exit_menu: libtcod.sys_check_for_event(libtcod.EVENT_KEY_PRESS | libtcod.EVENT_MOUSE, key, mouse) key_char = chr(key.c) if libtcod.console_is_window_closed(): sys.exit() if confirm: if key.vk == libtcod.KEY_ENTER or key.vk == libtcod.KEY_ESCAPE or key_char in ['n', 'N']: exit_menu = True elif key_char in ['y', 'Y']: choice = True exit_menu = True elif key.vk == libtcod.KEY_ENTER: exit_menu = True libtcod.console_flush() if skip_update: return choice if battle is not None: RenderEncounter(no_flush=True) elif campaign.day_in_progress: RenderCampaign(no_flush=True) return choice return self.clouds = 'Clear' self.precip = 'None' libtcod.console_clear(con) libtcod.console_blit(con, 0, 0, SCREEN_WIDTH, SCREEN_HEIGHT, 0, 0, 0, 0.0, 0.7) lines = wrap('The sky clears.', 30) y = 25 libtcod.console_print_frame(0, SCREEN_XM - 17, y - 2, 34, len(lines) + 6, clear=True, flag=libtcod.BKGND_SET, fmt=0) for line in lines: libtcod.console_print_ex(0, SCREEN_XM, y, libtcod.BKGND_NONE, libtcod.CENTER, line) y += 1 if confirm: text = '[%cy%c] or [%cN%c]' % (libtcod.COLCTRL_1, libtcod.COLCTRL_STOP, libtcod.COLCTRL_1, libtcod.COLCTRL_STOP) else: text = '[%cEnter%c] to continue' % HIGHLIGHT libtcod.console_print_ex(0, SCREEN_XM, y + 1, libtcod.BKGND_NONE, libtcod.CENTER, text) choice = False exit_menu = False while not exit_menu: libtcod.sys_check_for_event(libtcod.EVENT_KEY_PRESS | libtcod.EVENT_MOUSE, key, mouse) key_char = chr(key.c) if libtcod.console_is_window_closed(): sys.exit() if confirm: if key.vk == libtcod.KEY_ENTER or key.vk == libtcod.KEY_ESCAPE or key_char in ['n', 'N']: exit_menu = True elif key_char in ['y', 'Y']: choice = True exit_menu = True elif key.vk == libtcod.KEY_ENTER: exit_menu = True libtcod.console_flush() if skip_update: return choice if battle is not None: RenderEncounter(no_flush=True) elif campaign.day_in_progress: RenderCampaign(no_flush=True) return choice return d1 = libtcod.random_get_int(0, 1, 6) d2 = libtcod.random_get_int(0, 1, 6) (d1, d2, roll) = (d1, d2, d1 + d2) if roll <= 3 and (not self.fog): self.fog = True libtcod.console_clear(con) libtcod.console_blit(con, 0, 0, SCREEN_WIDTH, SCREEN_HEIGHT, 0, 0, 0, 0.0, 0.7) lines = wrap('Fog rolls in.', 30) y = 25 libtcod.console_print_frame(0, SCREEN_XM - 17, y - 2, 34, len(lines) + 6, clear=True, flag=libtcod.BKGND_SET, fmt=0) for line in lines: libtcod.console_print_ex(0, SCREEN_XM, y, libtcod.BKGND_NONE, libtcod.CENTER, line) y += 1 if confirm: text = '[%cy%c] or [%cN%c]' % (libtcod.COLCTRL_1, libtcod.COLCTRL_STOP, libtcod.COLCTRL_1, libtcod.COLCTRL_STOP) else: text = '[%cEnter%c] to continue' % HIGHLIGHT libtcod.console_print_ex(0, SCREEN_XM, y + 1, libtcod.BKGND_NONE, libtcod.CENTER, text) choice = False exit_menu = False while not exit_menu: libtcod.sys_check_for_event(libtcod.EVENT_KEY_PRESS | libtcod.EVENT_MOUSE, key, mouse) key_char = chr(key.c) if libtcod.console_is_window_closed(): sys.exit() if confirm: if key.vk == libtcod.KEY_ENTER or key.vk == libtcod.KEY_ESCAPE or key_char in ['n', 'N']: exit_menu = True elif key_char in ['y', 'Y']: choice = True exit_menu = True elif key.vk == libtcod.KEY_ENTER: exit_menu = True libtcod.console_flush() if skip_update: return choice if battle is not None: RenderEncounter(no_flush=True) elif campaign.day_in_progress: RenderCampaign(no_flush=True) return choice </DeepExtract>
armcom
positive
def make_scene_renderings(objects, cameras, urdf_ds_name, distance=1.5, theta=np.pi / 4, angles=[0], object_scale=1.0, camera_scale=1.5, background_color=(242, 231, 191), show_cameras=False, resolution=(640, 480), colormap_rgb=None, object_id_ref=0, gui=False, use_nms3d=True, camera_color=(0.2, 0.2, 0.2, 1.0)): renderer = BulletSceneRenderer([urdf_ds_name, 'camera'], background_color=background_color, gui=gui) urdf_ds = renderer.body_cache.urdf_ds is_camera = np.array(['camera' in label for label in urdf_ds.index['label']]) urdf_ds.index.loc[~is_camera, 'scale'] = object_scale * 0.001 urdf_ds.index.loc[is_camera, 'scale'] = camera_scale if use_nms3d: <DeepExtract> (TCO, TCO_infos) = (getattr(objects, 'TWO').cpu(), objects.infos) is_tested = set() TCO = np.array(TCO) scores = TCO_infos['score'].values all_t = TCO[:, :3, -1] argsort = np.argsort(-scores) keep = [] for (idx, TCO_n) in zip(argsort, TCO[argsort]): if idx in is_tested: continue t_n = TCO_n[:3, -1] dists = np.linalg.norm(t_n - all_t, axis=-1) dists[idx] = np.inf ids_merge = np.where(dists <= 0.04)[0] for id_merge in ids_merge: is_tested.add(id_merge) keep.append(idx) TCO = TCO[keep] TCO_infos = TCO_infos.loc[keep].reset_index(drop=True) new_preds = objects.clone() new_preds.infos = TCO_infos new_preds.poses = torch.as_tensor(TCO) objects = new_preds </DeepExtract> objects = objects.cpu() objects.TWO = objects.poses if colormap_rgb is None: <DeepExtract> colors_hex = sns.color_palette(n_colors=len(objects.infos['label'])).as_hex() colormap_hex = {label: color for (label, color) in zip(objects.infos['label'], colors_hex)} colormap_rgb = {k: [int(h[1:][i:i + 2], 16) / 255.0 for i in (0, 2, 4)] + [1.0] for (k, h) in colormap_hex.items()} (colormap_rgb, _) = (colormap_rgb, colormap_hex) </DeepExtract> objects.infos['color'] = objects.infos['label'].apply(lambda k: colormap_rgb[k]) cameras = cameras.cpu() TWWB = objects.poses[object_id_ref] cam = cameras[[0]] TCWB = invert_T(cam.TWC.squeeze(0)) @ TWWB TWBC = invert_T(TCWB) if TWBC[2, -1] < 0: quat = euler2quat([np.pi, 0, 0]) TWWB = Transform(TWWB.numpy()) * Transform(quat, np.zeros(3)) TWWB = TWWB.toHomogeneousMatrix() TWWB = np.asarray(TWWB) list_objects = [] for obj_id in range(len(objects)): TWO = np.linalg.inv(TWWB) @ objects.TWO[obj_id].numpy() TWO[:3, -1] *= object_scale obj = dict(name=objects.infos.loc[obj_id, 'label'], color=objects.infos.loc[obj_id, 'color'], TWO=TWO) list_objects.append(obj) target = np.mean(np.stack([obj['TWO'][:3, -1] for obj in list_objects]), axis=0) if show_cameras: for cam_id in range(len(cameras)): obj = dict(name='camera', color=camera_color, TWO=np.linalg.inv(TWWB) @ cameras.TWC[cam_id].numpy()) list_objects.append(obj) (fx, fy) = (515, 515) (w, h) = resolution K = np.array([[fx, 0, w / 2], [0, fy, h / 2], [0, 0, 1]]) list_cameras = [] for phi in angles: x = distance * np.sin(theta) * np.cos(phi) y = distance * np.sin(theta) * np.sin(phi) z = distance * np.cos(theta) t = np.array([x, y, z]) R = transforms3d.euler.euler2mat(np.pi, theta, phi, axes='sxyz') R = R @ transforms3d.euler.euler2mat(0, 0, -np.pi / 2, axes='sxyz') t += np.array(target) TWC = Transform(R, t).toHomogeneousMatrix() TWBC = TWWB @ TWC list_cameras.append(dict(K=K, TWC=TWC, resolution=(w, h))) renders = renderer.render_scene(list_objects, list_cameras) images = np.stack([render['rgb'] for render in renders]) if gui: time.sleep(100) renderer.disconnect() return images
def make_scene_renderings(objects, cameras, urdf_ds_name, distance=1.5, theta=np.pi / 4, angles=[0], object_scale=1.0, camera_scale=1.5, background_color=(242, 231, 191), show_cameras=False, resolution=(640, 480), colormap_rgb=None, object_id_ref=0, gui=False, use_nms3d=True, camera_color=(0.2, 0.2, 0.2, 1.0)): renderer = BulletSceneRenderer([urdf_ds_name, 'camera'], background_color=background_color, gui=gui) urdf_ds = renderer.body_cache.urdf_ds is_camera = np.array(['camera' in label for label in urdf_ds.index['label']]) urdf_ds.index.loc[~is_camera, 'scale'] = object_scale * 0.001 urdf_ds.index.loc[is_camera, 'scale'] = camera_scale if use_nms3d: (TCO, TCO_infos) = (getattr(objects, 'TWO').cpu(), objects.infos) is_tested = set() TCO = np.array(TCO) scores = TCO_infos['score'].values all_t = TCO[:, :3, -1] argsort = np.argsort(-scores) keep = [] for (idx, TCO_n) in zip(argsort, TCO[argsort]): if idx in is_tested: continue t_n = TCO_n[:3, -1] dists = np.linalg.norm(t_n - all_t, axis=-1) dists[idx] = np.inf ids_merge = np.where(dists <= 0.04)[0] for id_merge in ids_merge: is_tested.add(id_merge) keep.append(idx) TCO = TCO[keep] TCO_infos = TCO_infos.loc[keep].reset_index(drop=True) new_preds = objects.clone() new_preds.infos = TCO_infos new_preds.poses = torch.as_tensor(TCO) objects = new_preds objects = objects.cpu() objects.TWO = objects.poses if colormap_rgb is None: colors_hex = sns.color_palette(n_colors=len(objects.infos['label'])).as_hex() colormap_hex = {label: color for (label, color) in zip(objects.infos['label'], colors_hex)} colormap_rgb = {k: [int(h[1:][i:i + 2], 16) / 255.0 for i in (0, 2, 4)] + [1.0] for (k, h) in colormap_hex.items()} (colormap_rgb, _) = (colormap_rgb, colormap_hex) objects.infos['color'] = objects.infos['label'].apply(lambda k: colormap_rgb[k]) cameras = cameras.cpu() TWWB = objects.poses[object_id_ref] cam = cameras[[0]] TCWB = invert_T(cam.TWC.squeeze(0)) @ TWWB TWBC = invert_T(TCWB) if TWBC[2, -1] < 0: quat = euler2quat([np.pi, 0, 0]) TWWB = Transform(TWWB.numpy()) * Transform(quat, np.zeros(3)) TWWB = TWWB.toHomogeneousMatrix() TWWB = np.asarray(TWWB) list_objects = [] for obj_id in range(len(objects)): TWO = np.linalg.inv(TWWB) @ objects.TWO[obj_id].numpy() TWO[:3, -1] *= object_scale obj = dict(name=objects.infos.loc[obj_id, 'label'], color=objects.infos.loc[obj_id, 'color'], TWO=TWO) list_objects.append(obj) target = np.mean(np.stack([obj['TWO'][:3, -1] for obj in list_objects]), axis=0) if show_cameras: for cam_id in range(len(cameras)): obj = dict(name='camera', color=camera_color, TWO=np.linalg.inv(TWWB) @ cameras.TWC[cam_id].numpy()) list_objects.append(obj) (fx, fy) = (515, 515) (w, h) = resolution K = np.array([[fx, 0, w / 2], [0, fy, h / 2], [0, 0, 1]]) list_cameras = [] for phi in angles: x = distance * np.sin(theta) * np.cos(phi) y = distance * np.sin(theta) * np.sin(phi) z = distance * np.cos(theta) t = np.array([x, y, z]) R = transforms3d.euler.euler2mat(np.pi, theta, phi, axes='sxyz') R = R @ transforms3d.euler.euler2mat(0, 0, -np.pi / 2, axes='sxyz') t += np.array(target) TWC = Transform(R, t).toHomogeneousMatrix() TWBC = TWWB @ TWC list_cameras.append(dict(K=K, TWC=TWC, resolution=(w, h))) renders = renderer.render_scene(list_objects, list_cameras) images = np.stack([render['rgb'] for render in renders]) if gui: time.sleep(100) renderer.disconnect() return images
cosypose
positive
def find_anaconda(): path = Path.home() / 'anaconda3' if path.exists(): return path try: info = subprocess.check_output('conda info', shell=True).decode('utf-8') <DeepExtract> info = info.strip('\n').replace(' ', '') info_dict = {} latest_key = '' for line in info.splitlines(): if split in line: pair = line.split(split) info_dict[pair[0]] = pair[1] latest_key = pair[0] else: if not isinstance(info_dict[latest_key], list): info_dict[latest_key] = [info_dict[latest_key]] info_dict[latest_key].append(line) info_dict = info_dict </DeepExtract> return info_dict['activeenvlocation'] except subprocess.CalledProcessError: raise RuntimeError('find anadonda failed')
def find_anaconda(): path = Path.home() / 'anaconda3' if path.exists(): return path try: info = subprocess.check_output('conda info', shell=True).decode('utf-8') info = info.strip('\n').replace(' ', '') info_dict = {} latest_key = '' for line in info.splitlines(): if split in line: pair = line.split(split) info_dict[pair[0]] = pair[1] latest_key = pair[0] else: if not isinstance(info_dict[latest_key], list): info_dict[latest_key] = [info_dict[latest_key]] info_dict[latest_key].append(line) info_dict = info_dict return info_dict['activeenvlocation'] except subprocess.CalledProcessError: raise RuntimeError('find anadonda failed')
3D-CVF
positive
def main(env): taskcluster.auth() hooks = taskcluster.get_service('hooks') <DeepExtract> url = TC_INDEX_URL.format(env) resp = requests.get(url) resp.raise_for_status() all_tasks = list(map(lambda t: t['data'], resp.json()['tasks'])) </DeepExtract> skip_phids = [t['diff_phid'] for t in filter(is_not_error, all_tasks)] tasks = list(filter(is_mach_failure, all_tasks)) total = 0 for task in tasks: phid = task['diff_phid'] print('Triggering {} > {}'.format(phid, task['title'])) if phid in skip_phids: print('>> Skipping, phid {} has already a non-erroneous task'.format(phid)) continue extra_env = {'ANALYSIS_SOURCE': 'phabricator', 'ANALYSIS_ID': phid} task = hooks.triggerHook('project-relman', 'code-review-{}'.format(env), extra_env) print('>> New task {}'.format(task['status']['taskId'])) total += 1 print('Triggered {} tasks'.format(total))
def main(env): taskcluster.auth() hooks = taskcluster.get_service('hooks') url = TC_INDEX_URL.format(env) resp = requests.get(url) resp.raise_for_status() all_tasks = list(map(lambda t: t['data'], resp.json()['tasks'])) skip_phids = [t['diff_phid'] for t in filter(is_not_error, all_tasks)] tasks = list(filter(is_mach_failure, all_tasks)) total = 0 for task in tasks: phid = task['diff_phid'] print('Triggering {} > {}'.format(phid, task['title'])) if phid in skip_phids: print('>> Skipping, phid {} has already a non-erroneous task'.format(phid)) continue extra_env = {'ANALYSIS_SOURCE': 'phabricator', 'ANALYSIS_ID': phid} task = hooks.triggerHook('project-relman', 'code-review-{}'.format(env), extra_env) print('>> New task {}'.format(task['status']['taskId'])) total += 1 print('Triggered {} tasks'.format(total))
code-review
positive
def _get_dl(self, dataset): <DeepExtract> if not hasattr(self, 'tokenizer'): self.tokenizer = AbstractGeneratorTokenizer(tokenizer_model_path=self.hparams.tokenizer_model_path, extra_data_path=self.hparams.extra_data_path, lowercase=self.hparams.lowercase) </DeepExtract> sampler = torch.utils.data.distributed.DistributedSampler(dataset) loader = torch.utils.data.DataLoader(dataset=dataset, sampler=sampler, batch_size=self.hparams.batch_size, collate_fn=self._collate) return loader
def _get_dl(self, dataset): if not hasattr(self, 'tokenizer'): self.tokenizer = AbstractGeneratorTokenizer(tokenizer_model_path=self.hparams.tokenizer_model_path, extra_data_path=self.hparams.extra_data_path, lowercase=self.hparams.lowercase) sampler = torch.utils.data.distributed.DistributedSampler(dataset) loader = torch.utils.data.DataLoader(dataset=dataset, sampler=sampler, batch_size=self.hparams.batch_size, collate_fn=self._collate) return loader
agatha
positive
def __init__(self, block_data): if len(block_data) != 16384: raise ShadowBlockException('Invalid application information block size: {} bytes'.format(len(block_data))) super(ApplicationInformation, self).__init__(block_data) if self.get_type() != SHADOW_BLOCK_TYPE_UNKNOWN_NAME_4: raise ShadowBlockException('Invalid type: {}'.format(self.get_type())) <DeepExtract> offset = struct.unpack('<Q', self.shadow_block_data[32:40])[0] </DeepExtract> if offset == 0 and offset % 16384 != 0: raise ShadowBlockException('Invalid offset: {}'.format(offset))
def __init__(self, block_data): if len(block_data) != 16384: raise ShadowBlockException('Invalid application information block size: {} bytes'.format(len(block_data))) super(ApplicationInformation, self).__init__(block_data) if self.get_type() != SHADOW_BLOCK_TYPE_UNKNOWN_NAME_4: raise ShadowBlockException('Invalid type: {}'.format(self.get_type())) offset = struct.unpack('<Q', self.shadow_block_data[32:40])[0] if offset == 0 and offset % 16384 != 0: raise ShadowBlockException('Invalid offset: {}'.format(offset))
dfir_ntfs
positive
def execute(self, params, **kwargs): print('Enterprise name: {0}'.format(params.enterprise['enterprise_name'])) user_managed_nodes = set(self.get_user_managed_nodes(params)) node_scope = set() if kwargs.get('node'): subnode = kwargs.get('node').lower() root_nodes = [x['node_id'] for x in self.resolve_nodes(params, subnode) if x['node_id'] in user_managed_nodes] if len(root_nodes) == 0: logging.warning('Node "%s" not found', subnode) return if len(root_nodes) > 1: logging.warning('More than one node "%s" found. Use Node ID.', subnode) return logging.info('Output is limited to "%s" node', subnode) node_tree = {} for node in params.enterprise['nodes']: parent_id = node.get('parent_id') if parent_id not in node_tree: node_tree[parent_id] = [] node_tree[parent_id].append(node['node_id']) nl = [x for x in root_nodes] pos = 0 while pos < len(nl): if nl[pos] in node_tree: nl.extend(node_tree[nl[pos]]) pos += 1 if pos > 100: break node_scope.update([x for x in nl if x in user_managed_nodes]) else: node_scope.update((x['node_id'] for x in params.enterprise['nodes'] if x['node_id'] in user_managed_nodes)) root_nodes = list(self.get_user_root_nodes(params)) nodes = {} for node in params.enterprise['nodes']: node_id = node['node_id'] if node_id not in node_scope: continue nodes[node_id] = {'node_id': node_id, 'parent_id': node.get('parent_id') or 0, 'name': node['data'].get('displayname') or '', 'isolated': node.get('restrict_visibility') or False, 'users': [], 'teams': [], 'queued_teams': [], 'roles': [], 'children': []} for node in nodes: parent_id = nodes[node]['parent_id'] if parent_id in nodes: nodes[parent_id]['children'].append(node) users = {} if 'users' in params.enterprise: for user in params.enterprise['users']: node_id = user['node_id'] if node_id not in node_scope: continue user_id = user['enterprise_user_id'] u = {'id': user_id, 'node_id': node_id, 'username': user['username'] if 'username' in user else '[none]', 'name': user['data'].get('displayname') or '', 'status': user['status'], 'lock': user['lock']} if 'account_share_expiration' in user: u['account_share_expiration'] = user['account_share_expiration'] users[user_id] = u if node_id in nodes: nodes[node_id]['users'].append(user_id) teams = {} if 'teams' in params.enterprise: for team in params.enterprise['teams']: node_id = team['node_id'] if node_id not in node_scope: continue team_id = team['team_uid'] teams[team_id] = {'id': team_id, 'node_id': node_id, 'name': team['name'], 'restrict_sharing': team['restrict_sharing'], 'restrict_edit': team['restrict_edit'], 'restrict_view': team['restrict_view'], 'users': [], 'queued_users': []} if node_id in nodes: nodes[node_id]['teams'].append(team_id) if 'team_users' in params.enterprise: for tu in params.enterprise['team_users']: team_uid = tu['team_uid'] if tu['team_uid'] in teams: user_id = tu['enterprise_user_id'] teams[team_uid]['users'].append(user_id) queued_teams = {} if 'queued_teams' in params.enterprise: for queued_team in params.enterprise['queued_teams']: node_id = queued_team['node_id'] if node_id not in node_scope: continue team_id = queued_team['team_uid'] queued_teams[team_id] = {'id': team_id, 'node_id': node_id, 'name': queued_team['name'], 'queued_users': []} if node_id in nodes: nodes[node_id]['queued_teams'].append(team_id) if 'queued_team_users' in params.enterprise: for tu in params.enterprise['queued_team_users']: if tu['team_uid'] in queued_teams: queued_teams[tu['team_uid']]['queued_users'].extend(tu['users']) elif tu['team_uid'] in teams: teams[tu['team_uid']]['queued_users'].extend(tu['users']) roles = {} if 'roles' in params.enterprise: for role in params.enterprise['roles']: node_id = role['node_id'] if node_id not in node_scope: continue role_id = role['role_id'] roles[role_id] = {'id': role_id, 'node_id': node_id, 'name': role['data'].get('displayname') or '', 'visible_below': role['visible_below'], 'new_user_inherit': role['new_user_inherit'], 'is_admin': False, 'users': []} if node_id in nodes: nodes[node_id]['roles'].append(role_id) if 'role_users' in params.enterprise: for ru in params.enterprise['role_users']: role_id = ru['role_id'] if role_id in roles: roles[role_id]['users'].append(ru['enterprise_user_id']) if 'managed_nodes' in params.enterprise: for mn in params.enterprise['managed_nodes']: role_id = mn['role_id'] if role_id in roles: roles[role_id]['is_admin'] = True show_nodes = kwargs.get('nodes') or False show_users = kwargs.get('users') or False show_teams = kwargs.get('teams') or False show_roles = kwargs.get('roles') or False def user_email(user_id): if user_id in users: return users[user_id]['username'] else: return str(user_id) def restricts(team): rs = '' rs += 'R ' if team['restrict_view'] else ' ' rs += 'W ' if team['restrict_edit'] else ' ' rs += 'S' if team['restrict_sharing'] else ' ' return rs if not show_users and (not show_teams) and (not show_roles) and (not show_nodes): def tree_node(node): children = [nodes[x] for x in node['children']] children.sort(key=lambda x: x['name']) n = OD() for ch in children: name = ch['name'] if kwargs.get('verbose'): name += ' ({0})'.format(ch['node_id']) <DeepExtract> children = [nodes[x] for x in ch['children']] children.sort(key=lambda x: x['name']) n = OD() for ch in children: name = ch['name'] if kwargs.get('verbose'): name += ' ({0})'.format(ch['node_id']) n['[{0}]{1}'.format(name, ' |Isolated| ' if ch.get('isolated') else '')] = tree_node(ch) if len(ch['users']) > 0: if kwargs.get('verbose'): logging.debug('users: %s' % json.dumps(users, indent=4, sort_keys=True)) us = [users[x] for x in ch['users']] us.sort(key=lambda x: x['username'] if 'username' in x else 'a') ud = OD() for u in us: ud['{0} ({1})'.format(u['username'] if 'username' in u else '[none]', u['id'])] = {} n['User(s)'] = ud else: n['{0} user(s)'.format(len(ch['users']))] = {} if len(ch['roles']) > 0: if kwargs.get('verbose'): ts = [roles[x] for x in ch['roles']] ts.sort(key=lambda x: x['name']) td = OD() for (i, t) in enumerate(ts): td['{0} ({1})'.format(t['name'], t['id'])] = {} if i >= 50: td['{0} More Role(s)'.format(len(ts) - i)] = {} break n['Role(s)'] = td else: n['{0} role(s)'.format(len(ch['roles']))] = {} if len(ch['teams']) > 0: if kwargs.get('verbose'): ts = [teams[x] for x in ch['teams']] ts.sort(key=lambda x: x['name']) td = OD() for (i, t) in enumerate(ts): td['{0} ({1})'.format(t['name'], t['id'])] = {} if i >= 50: td['{0} More Team(s)'.format(len(ts) - i)] = {} break n['Teams(s)'] = td else: n['{0} team(s)'.format(len(ch['teams']))] = {} if len(ch['queued_teams']) > 0: if kwargs.get('verbose'): ts = [queued_teams[x] for x in ch['queued_teams']] ts.sort(key=lambda x: x['name']) td = OD() for (i, t) in enumerate(ts): td['{0} ({1})'.format(t['name'], t['id'])] = {} if i >= 50: td['{0} More Queued Team(s)'.format(len(ts) - i)] = {} break n['Queued Teams(s)'] = td else: n['{0} queued team(s)'.format(len(ch['queued_teams']))] = {} n['[{0}]{1}'.format(name, ' |Isolated| ' if ch.get('isolated') else '')] = n </DeepExtract> if len(node['users']) > 0: if kwargs.get('verbose'): logging.debug('users: %s' % json.dumps(users, indent=4, sort_keys=True)) us = [users[x] for x in node['users']] us.sort(key=lambda x: x['username'] if 'username' in x else 'a') ud = OD() for u in us: ud['{0} ({1})'.format(u['username'] if 'username' in u else '[none]', u['id'])] = {} n['User(s)'] = ud else: n['{0} user(s)'.format(len(node['users']))] = {} if len(node['roles']) > 0: if kwargs.get('verbose'): ts = [roles[x] for x in node['roles']] ts.sort(key=lambda x: x['name']) td = OD() for (i, t) in enumerate(ts): td['{0} ({1})'.format(t['name'], t['id'])] = {} if i >= 50: td['{0} More Role(s)'.format(len(ts) - i)] = {} break n['Role(s)'] = td else: n['{0} role(s)'.format(len(node['roles']))] = {} if len(node['teams']) > 0: if kwargs.get('verbose'): ts = [teams[x] for x in node['teams']] ts.sort(key=lambda x: x['name']) td = OD() for (i, t) in enumerate(ts): td['{0} ({1})'.format(t['name'], t['id'])] = {} if i >= 50: td['{0} More Team(s)'.format(len(ts) - i)] = {} break n['Teams(s)'] = td else: n['{0} team(s)'.format(len(node['teams']))] = {} if len(node['queued_teams']) > 0: if kwargs.get('verbose'): ts = [queued_teams[x] for x in node['queued_teams']] ts.sort(key=lambda x: x['name']) td = OD() for (i, t) in enumerate(ts): td['{0} ({1})'.format(t['name'], t['id'])] = {} if i >= 50: td['{0} More Queued Team(s)'.format(len(ts) - i)] = {} break n['Queued Teams(s)'] = td else: n['{0} queued team(s)'.format(len(node['queued_teams']))] = {} return n tree = OD() for node_id in root_nodes: r = nodes[node_id] root_name = r['name'] if not r['parent_id'] and root_name == '': root_name = params.enterprise['enterprise_name'] if kwargs.get('verbose'): root_name += ' ({0})'.format(r['node_id']) <DeepExtract> children = [nodes[x] for x in r['children']] children.sort(key=lambda x: x['name']) n = OD() for ch in children: name = ch['name'] if kwargs.get('verbose'): name += ' ({0})'.format(ch['node_id']) n['[{0}]{1}'.format(name, ' |Isolated| ' if ch.get('isolated') else '')] = tree_node(ch) if len(r['users']) > 0: if kwargs.get('verbose'): logging.debug('users: %s' % json.dumps(users, indent=4, sort_keys=True)) us = [users[x] for x in r['users']] us.sort(key=lambda x: x['username'] if 'username' in x else 'a') ud = OD() for u in us: ud['{0} ({1})'.format(u['username'] if 'username' in u else '[none]', u['id'])] = {} n['User(s)'] = ud else: n['{0} user(s)'.format(len(r['users']))] = {} if len(r['roles']) > 0: if kwargs.get('verbose'): ts = [roles[x] for x in r['roles']] ts.sort(key=lambda x: x['name']) td = OD() for (i, t) in enumerate(ts): td['{0} ({1})'.format(t['name'], t['id'])] = {} if i >= 50: td['{0} More Role(s)'.format(len(ts) - i)] = {} break n['Role(s)'] = td else: n['{0} role(s)'.format(len(r['roles']))] = {} if len(r['teams']) > 0: if kwargs.get('verbose'): ts = [teams[x] for x in r['teams']] ts.sort(key=lambda x: x['name']) td = OD() for (i, t) in enumerate(ts): td['{0} ({1})'.format(t['name'], t['id'])] = {} if i >= 50: td['{0} More Team(s)'.format(len(ts) - i)] = {} break n['Teams(s)'] = td else: n['{0} team(s)'.format(len(r['teams']))] = {} if len(r['queued_teams']) > 0: if kwargs.get('verbose'): ts = [queued_teams[x] for x in r['queued_teams']] ts.sort(key=lambda x: x['name']) td = OD() for (i, t) in enumerate(ts): td['{0} ({1})'.format(t['name'], t['id'])] = {} if i >= 50: td['{0} More Queued Team(s)'.format(len(ts) - i)] = {} break n['Queued Teams(s)'] = td else: n['{0} queued team(s)'.format(len(r['queued_teams']))] = {} tree['{0} {1}'.format(root_name, ' |Isolated| ' if r.get('isolated') else '')] = n </DeepExtract> if len(root_nodes) > 1: tree = OD([('', tree)]) else: print('') tr = LeftAligned() print(tr(tree)) else: columns = set() if kwargs.get('columns'): columns.update((x.strip() for x in kwargs.get('columns').split(','))) pattern = (kwargs.get('pattern') or '').lower() if show_nodes: supported_columns = SUPPORTED_NODE_COLUMNS if len(columns) == 0: columns.update(('parent_node', 'user_count', 'team_count', 'role_count')) else: wc = columns.difference(supported_columns) if len(wc) > 0: logging.warning('\n\nSupported node columns: %s\n', ', '.join(supported_columns)) has_provisioning = 'provisioning' in columns if has_provisioning: columns.remove('provisioning') email_provisioning = None scim_provisioning = None bridge_provisioning = None sso_provisioning = None displayed_columns = [x for x in supported_columns if x in columns] if has_provisioning: if 'email_provision' in params.enterprise: email_provisioning = {x['node_id']: x['domain'] for x in params.enterprise['email_provision']} if len(email_provisioning) > 0: displayed_columns.append('email_provisioning') else: email_provisioning = None if 'bridges' in params.enterprise: bridge_provisioning = {x['node_id']: x['status'] for x in params.enterprise['bridges']} if len(bridge_provisioning) > 0: displayed_columns.append('bridge_provisioning') else: bridge_provisioning = None if 'scims' in params.enterprise: scim_provisioning = {x['node_id']: x['status'] for x in params.enterprise['scims']} if len(scim_provisioning) > 0: displayed_columns.append('scim_provisioning') else: scim_provisioning = None if 'sso_services' in params.enterprise: sso_provisioning = {x['node_id']: x['name'] for x in params.enterprise['sso_services']} if len(sso_provisioning) > 0: displayed_columns.append('sso_provisioning') else: sso_provisioning = None rows = [] for n in nodes.values(): node_id = n['node_id'] row = [node_id, n['name']] for column in displayed_columns: if column == 'parent_node': parent_id = n.get('parent_id', 0) row.append(self.get_node_path(params, parent_id) if parent_id > 0 else '') elif column == 'user_count': us = n.get('users', []) row.append(len(us)) elif column == 'users': us = n.get('users', []) user_names = [users[x]['username'] for x in us if x in users] row.append(user_names) elif column == 'team_count': ts = n.get('teams', []) row.append(len(ts)) elif column == 'teams': ts = n.get('teams', []) team_names = [teams[x]['name'] for x in ts if x in teams] row.append(team_names) elif column == 'role_count': rs = n.get('roles', []) row.append(len(rs)) elif column == 'roles': rs = n.get('roles', []) role_names = [roles[x]['name'] for x in rs if x in roles] row.append(role_names) elif column == 'email_provisioning': status = email_provisioning.get(node_id) if email_provisioning else None row.append(status) elif column == 'bridge_provisioning': status = bridge_provisioning.get(node_id) if bridge_provisioning else None row.append(status) elif column == 'scim_provisioning': status = scim_provisioning.get(node_id) if scim_provisioning else None row.append(status) elif column == 'sso_provisioning': status = sso_provisioning.get(node_id) if sso_provisioning else None row.append(status) else: row.append(None) if pattern: if not any((1 for x in row if x and str(x).lower().find(pattern) >= 0)): continue rows.append(row) rows.sort(key=lambda x: x[1]) print('') headers = ['node_id', 'name'] headers.extend(displayed_columns) if kwargs.get('format') != 'json': headers = [string.capwords(x.replace('_', ' ')) for x in headers] return dump_report_data(rows, headers, fmt=kwargs.get('format'), filename=kwargs.get('output')) elif show_users: supported_columns = SUPPORTED_USER_COLUMNS if len(columns) == 0: columns.update(('name', 'status', 'transfer_status', 'node')) else: wc = columns.difference(supported_columns) if len(wc) > 0: logging.warning('\n\nSupported user columns: %s\n', ', '.join(supported_columns)) displayed_columns = [x for x in supported_columns if x in columns] rows = [] for u in users.values(): <DeepExtract> def lock_text(lock): user_status_dict = 'Locked' if lock == 1 else 'Disabled' if lock == 2 else '' account_status = 'Invited' if u['status'] == 'invited' else 'Active' if u['lock'] > 0: account_status = lock_text(u['lock']) acct_transfer_status = '' if 'account_share_expiration' in u: expire_at = datetime.datetime.fromtimestamp(u['account_share_expiration'] / 1000.0) if expire_at < datetime.datetime.now(): acct_transfer_status = 'Blocked' else: acct_transfer_status = 'Pending Transfer' user_status_dict = {'acct_status': account_status, 'acct_transfer_status': acct_transfer_status} </DeepExtract> user_id = u['id'] row = [user_id, u['username']] for column in displayed_columns: if column == 'name': row.append(u['name']) elif column == 'status': row.append(user_status_dict['acct_status']) elif column == 'transfer_status': row.append(user_status_dict['acct_transfer_status']) elif column == 'node': row.append(self.get_node_path(params, u['node_id'])) elif column == 'team_count': row.append(len([1 for t in teams.values() if t['users'] and user_id in t['users']])) elif column == 'teams': team_names = [t['name'] for t in teams.values() if t['users'] and user_id in t['users']] row.append(team_names) elif column == 'role_count': row.append(len([1 for r in roles.values() if r['users'] and user_id in r['users']])) elif column == 'roles': role_names = [r['name'] for r in roles.values() if r['users'] and user_id in r['users']] row.append(role_names) if pattern: if not any((1 for x in row if x and str(x).lower().find(pattern) >= 0)): continue rows.append(row) rows.sort(key=lambda x: x[1]) print('') headers = ['user_id', 'email'] headers.extend(displayed_columns) if kwargs.get('format') != 'json': headers = [string.capwords(x.replace('_', ' ')) for x in headers] return dump_report_data(rows, headers, fmt=kwargs.get('format'), filename=kwargs.get('output')) if show_teams: supported_columns = SUPPORTED_TEAM_COLUMNS if len(columns) == 0: columns.update(('restricts', 'node', 'user_count')) if 'queued_team_users' in params.enterprise: if len(params.enterprise['queued_team_users']) > 0: columns.update(('queued_user_count',)) else: wc = columns.difference(supported_columns) if len(wc) > 0: logging.warning('\n\nSupported team columns: %s\n', ', '.join(supported_columns)) displayed_columns = [x for x in supported_columns if x in columns] rows = [] for t in teams.values(): row = [t['id'], t['name']] for column in displayed_columns: if column == 'restricts': row.append(restricts(t)) elif column == 'node': row.append(self.get_node_path(params, t['node_id'])) elif column == 'user_count': row.append(len(t['users'])) elif column == 'users': row.append([user_email(x) for x in t['users']]) elif column == 'queued_user_count': row.append(len(t['queued_users'])) elif column == 'queued_users': row.append([user_email(x) for x in t['queued_users']]) if pattern: if not any((1 for x in row if x and str(x).lower().find(pattern) >= 0)): continue rows.append(row) for t in queued_teams.values(): row = [t['id'], t['name']] for column in displayed_columns: if column == 'restricts': row.append('Queued') elif column == 'node': row.append(self.get_node_path(params, t['node_id'])) elif column in {'user_count', 'users'}: row.append('') elif column == 'queued_user_count': row.append(len(t['queued_users'])) elif column == 'queued_users': row.append([user_email(x) for x in t['queued_users']]) if pattern: if not any((1 for x in row if x and str(x).lower().find(pattern) >= 0)): continue rows.append(row) rows.sort(key=lambda x: x[1]) print('') headers = ['team_uid', 'name'] headers.extend(displayed_columns) if kwargs.get('format') != 'json': headers = [string.capwords(x.replace('_', ' ')) for x in headers] return dump_report_data(rows, headers, fmt=kwargs.get('format'), filename=kwargs.get('output')) if show_roles: supported_columns = SUPPORTED_ROLE_COLUMNS if len(columns) == 0: columns.update(('default_role', 'admin', 'node', 'user_count')) else: wc = columns.difference(supported_columns) if len(wc) > 0: logging.warning('\n\nSupported role columns: %s\n', ', '.join(supported_columns)) displayed_columns = [x for x in supported_columns if x in columns] rows = [] for r in roles.values(): row = [r['id'], r['name']] for column in displayed_columns: if column == 'visible_below': row.append('Y' if r['visible_below'] else '') elif column == 'default_role': row.append('Y' if r['new_user_inherit'] else '') elif column == 'admin': row.append('Y' if r['is_admin'] else '') elif column == 'node': row.append(self.get_node_path(params, r['node_id'])) elif column == 'user_count': row.append(len(r['users'])) elif column == 'users': row.append([user_email(x) for x in r['users']]) if pattern: if not any((1 for x in row if x and str(x).lower().find(pattern) >= 0)): continue rows.append(row) rows.sort(key=lambda x: x[1]) print('') headers = ['role_id', 'name'] headers.extend(displayed_columns) if kwargs.get('format') != 'json': headers = [string.capwords(x.replace('_', ' ')) for x in headers] return dump_report_data(rows, headers, fmt=kwargs.get('format'), filename=kwargs.get('output')) print('')
def execute(self, params, **kwargs): print('Enterprise name: {0}'.format(params.enterprise['enterprise_name'])) user_managed_nodes = set(self.get_user_managed_nodes(params)) node_scope = set() if kwargs.get('node'): subnode = kwargs.get('node').lower() root_nodes = [x['node_id'] for x in self.resolve_nodes(params, subnode) if x['node_id'] in user_managed_nodes] if len(root_nodes) == 0: logging.warning('Node "%s" not found', subnode) return if len(root_nodes) > 1: logging.warning('More than one node "%s" found. Use Node ID.', subnode) return logging.info('Output is limited to "%s" node', subnode) node_tree = {} for node in params.enterprise['nodes']: parent_id = node.get('parent_id') if parent_id not in node_tree: node_tree[parent_id] = [] node_tree[parent_id].append(node['node_id']) nl = [x for x in root_nodes] pos = 0 while pos < len(nl): if nl[pos] in node_tree: nl.extend(node_tree[nl[pos]]) pos += 1 if pos > 100: break node_scope.update([x for x in nl if x in user_managed_nodes]) else: node_scope.update((x['node_id'] for x in params.enterprise['nodes'] if x['node_id'] in user_managed_nodes)) root_nodes = list(self.get_user_root_nodes(params)) nodes = {} for node in params.enterprise['nodes']: node_id = node['node_id'] if node_id not in node_scope: continue nodes[node_id] = {'node_id': node_id, 'parent_id': node.get('parent_id') or 0, 'name': node['data'].get('displayname') or '', 'isolated': node.get('restrict_visibility') or False, 'users': [], 'teams': [], 'queued_teams': [], 'roles': [], 'children': []} for node in nodes: parent_id = nodes[node]['parent_id'] if parent_id in nodes: nodes[parent_id]['children'].append(node) users = {} if 'users' in params.enterprise: for user in params.enterprise['users']: node_id = user['node_id'] if node_id not in node_scope: continue user_id = user['enterprise_user_id'] u = {'id': user_id, 'node_id': node_id, 'username': user['username'] if 'username' in user else '[none]', 'name': user['data'].get('displayname') or '', 'status': user['status'], 'lock': user['lock']} if 'account_share_expiration' in user: u['account_share_expiration'] = user['account_share_expiration'] users[user_id] = u if node_id in nodes: nodes[node_id]['users'].append(user_id) teams = {} if 'teams' in params.enterprise: for team in params.enterprise['teams']: node_id = team['node_id'] if node_id not in node_scope: continue team_id = team['team_uid'] teams[team_id] = {'id': team_id, 'node_id': node_id, 'name': team['name'], 'restrict_sharing': team['restrict_sharing'], 'restrict_edit': team['restrict_edit'], 'restrict_view': team['restrict_view'], 'users': [], 'queued_users': []} if node_id in nodes: nodes[node_id]['teams'].append(team_id) if 'team_users' in params.enterprise: for tu in params.enterprise['team_users']: team_uid = tu['team_uid'] if tu['team_uid'] in teams: user_id = tu['enterprise_user_id'] teams[team_uid]['users'].append(user_id) queued_teams = {} if 'queued_teams' in params.enterprise: for queued_team in params.enterprise['queued_teams']: node_id = queued_team['node_id'] if node_id not in node_scope: continue team_id = queued_team['team_uid'] queued_teams[team_id] = {'id': team_id, 'node_id': node_id, 'name': queued_team['name'], 'queued_users': []} if node_id in nodes: nodes[node_id]['queued_teams'].append(team_id) if 'queued_team_users' in params.enterprise: for tu in params.enterprise['queued_team_users']: if tu['team_uid'] in queued_teams: queued_teams[tu['team_uid']]['queued_users'].extend(tu['users']) elif tu['team_uid'] in teams: teams[tu['team_uid']]['queued_users'].extend(tu['users']) roles = {} if 'roles' in params.enterprise: for role in params.enterprise['roles']: node_id = role['node_id'] if node_id not in node_scope: continue role_id = role['role_id'] roles[role_id] = {'id': role_id, 'node_id': node_id, 'name': role['data'].get('displayname') or '', 'visible_below': role['visible_below'], 'new_user_inherit': role['new_user_inherit'], 'is_admin': False, 'users': []} if node_id in nodes: nodes[node_id]['roles'].append(role_id) if 'role_users' in params.enterprise: for ru in params.enterprise['role_users']: role_id = ru['role_id'] if role_id in roles: roles[role_id]['users'].append(ru['enterprise_user_id']) if 'managed_nodes' in params.enterprise: for mn in params.enterprise['managed_nodes']: role_id = mn['role_id'] if role_id in roles: roles[role_id]['is_admin'] = True show_nodes = kwargs.get('nodes') or False show_users = kwargs.get('users') or False show_teams = kwargs.get('teams') or False show_roles = kwargs.get('roles') or False def user_email(user_id): if user_id in users: return users[user_id]['username'] else: return str(user_id) def restricts(team): rs = '' rs += 'R ' if team['restrict_view'] else ' ' rs += 'W ' if team['restrict_edit'] else ' ' rs += 'S' if team['restrict_sharing'] else ' ' return rs if not show_users and (not show_teams) and (not show_roles) and (not show_nodes): def tree_node(node): children = [nodes[x] for x in node['children']] children.sort(key=lambda x: x['name']) n = OD() for ch in children: name = ch['name'] if kwargs.get('verbose'): name += ' ({0})'.format(ch['node_id']) children = [nodes[x] for x in ch['children']] children.sort(key=lambda x: x['name']) n = OD() for ch in children: name = ch['name'] if kwargs.get('verbose'): name += ' ({0})'.format(ch['node_id']) n['[{0}]{1}'.format(name, ' |Isolated| ' if ch.get('isolated') else '')] = tree_node(ch) if len(ch['users']) > 0: if kwargs.get('verbose'): logging.debug('users: %s' % json.dumps(users, indent=4, sort_keys=True)) us = [users[x] for x in ch['users']] us.sort(key=lambda x: x['username'] if 'username' in x else 'a') ud = OD() for u in us: ud['{0} ({1})'.format(u['username'] if 'username' in u else '[none]', u['id'])] = {} n['User(s)'] = ud else: n['{0} user(s)'.format(len(ch['users']))] = {} if len(ch['roles']) > 0: if kwargs.get('verbose'): ts = [roles[x] for x in ch['roles']] ts.sort(key=lambda x: x['name']) td = OD() for (i, t) in enumerate(ts): td['{0} ({1})'.format(t['name'], t['id'])] = {} if i >= 50: td['{0} More Role(s)'.format(len(ts) - i)] = {} break n['Role(s)'] = td else: n['{0} role(s)'.format(len(ch['roles']))] = {} if len(ch['teams']) > 0: if kwargs.get('verbose'): ts = [teams[x] for x in ch['teams']] ts.sort(key=lambda x: x['name']) td = OD() for (i, t) in enumerate(ts): td['{0} ({1})'.format(t['name'], t['id'])] = {} if i >= 50: td['{0} More Team(s)'.format(len(ts) - i)] = {} break n['Teams(s)'] = td else: n['{0} team(s)'.format(len(ch['teams']))] = {} if len(ch['queued_teams']) > 0: if kwargs.get('verbose'): ts = [queued_teams[x] for x in ch['queued_teams']] ts.sort(key=lambda x: x['name']) td = OD() for (i, t) in enumerate(ts): td['{0} ({1})'.format(t['name'], t['id'])] = {} if i >= 50: td['{0} More Queued Team(s)'.format(len(ts) - i)] = {} break n['Queued Teams(s)'] = td else: n['{0} queued team(s)'.format(len(ch['queued_teams']))] = {} n['[{0}]{1}'.format(name, ' |Isolated| ' if ch.get('isolated') else '')] = n if len(node['users']) > 0: if kwargs.get('verbose'): logging.debug('users: %s' % json.dumps(users, indent=4, sort_keys=True)) us = [users[x] for x in node['users']] us.sort(key=lambda x: x['username'] if 'username' in x else 'a') ud = OD() for u in us: ud['{0} ({1})'.format(u['username'] if 'username' in u else '[none]', u['id'])] = {} n['User(s)'] = ud else: n['{0} user(s)'.format(len(node['users']))] = {} if len(node['roles']) > 0: if kwargs.get('verbose'): ts = [roles[x] for x in node['roles']] ts.sort(key=lambda x: x['name']) td = OD() for (i, t) in enumerate(ts): td['{0} ({1})'.format(t['name'], t['id'])] = {} if i >= 50: td['{0} More Role(s)'.format(len(ts) - i)] = {} break n['Role(s)'] = td else: n['{0} role(s)'.format(len(node['roles']))] = {} if len(node['teams']) > 0: if kwargs.get('verbose'): ts = [teams[x] for x in node['teams']] ts.sort(key=lambda x: x['name']) td = OD() for (i, t) in enumerate(ts): td['{0} ({1})'.format(t['name'], t['id'])] = {} if i >= 50: td['{0} More Team(s)'.format(len(ts) - i)] = {} break n['Teams(s)'] = td else: n['{0} team(s)'.format(len(node['teams']))] = {} if len(node['queued_teams']) > 0: if kwargs.get('verbose'): ts = [queued_teams[x] for x in node['queued_teams']] ts.sort(key=lambda x: x['name']) td = OD() for (i, t) in enumerate(ts): td['{0} ({1})'.format(t['name'], t['id'])] = {} if i >= 50: td['{0} More Queued Team(s)'.format(len(ts) - i)] = {} break n['Queued Teams(s)'] = td else: n['{0} queued team(s)'.format(len(node['queued_teams']))] = {} return n tree = OD() for node_id in root_nodes: r = nodes[node_id] root_name = r['name'] if not r['parent_id'] and root_name == '': root_name = params.enterprise['enterprise_name'] if kwargs.get('verbose'): root_name += ' ({0})'.format(r['node_id']) children = [nodes[x] for x in r['children']] children.sort(key=lambda x: x['name']) n = OD() for ch in children: name = ch['name'] if kwargs.get('verbose'): name += ' ({0})'.format(ch['node_id']) n['[{0}]{1}'.format(name, ' |Isolated| ' if ch.get('isolated') else '')] = tree_node(ch) if len(r['users']) > 0: if kwargs.get('verbose'): logging.debug('users: %s' % json.dumps(users, indent=4, sort_keys=True)) us = [users[x] for x in r['users']] us.sort(key=lambda x: x['username'] if 'username' in x else 'a') ud = OD() for u in us: ud['{0} ({1})'.format(u['username'] if 'username' in u else '[none]', u['id'])] = {} n['User(s)'] = ud else: n['{0} user(s)'.format(len(r['users']))] = {} if len(r['roles']) > 0: if kwargs.get('verbose'): ts = [roles[x] for x in r['roles']] ts.sort(key=lambda x: x['name']) td = OD() for (i, t) in enumerate(ts): td['{0} ({1})'.format(t['name'], t['id'])] = {} if i >= 50: td['{0} More Role(s)'.format(len(ts) - i)] = {} break n['Role(s)'] = td else: n['{0} role(s)'.format(len(r['roles']))] = {} if len(r['teams']) > 0: if kwargs.get('verbose'): ts = [teams[x] for x in r['teams']] ts.sort(key=lambda x: x['name']) td = OD() for (i, t) in enumerate(ts): td['{0} ({1})'.format(t['name'], t['id'])] = {} if i >= 50: td['{0} More Team(s)'.format(len(ts) - i)] = {} break n['Teams(s)'] = td else: n['{0} team(s)'.format(len(r['teams']))] = {} if len(r['queued_teams']) > 0: if kwargs.get('verbose'): ts = [queued_teams[x] for x in r['queued_teams']] ts.sort(key=lambda x: x['name']) td = OD() for (i, t) in enumerate(ts): td['{0} ({1})'.format(t['name'], t['id'])] = {} if i >= 50: td['{0} More Queued Team(s)'.format(len(ts) - i)] = {} break n['Queued Teams(s)'] = td else: n['{0} queued team(s)'.format(len(r['queued_teams']))] = {} tree['{0} {1}'.format(root_name, ' |Isolated| ' if r.get('isolated') else '')] = n if len(root_nodes) > 1: tree = OD([('', tree)]) else: print('') tr = LeftAligned() print(tr(tree)) else: columns = set() if kwargs.get('columns'): columns.update((x.strip() for x in kwargs.get('columns').split(','))) pattern = (kwargs.get('pattern') or '').lower() if show_nodes: supported_columns = SUPPORTED_NODE_COLUMNS if len(columns) == 0: columns.update(('parent_node', 'user_count', 'team_count', 'role_count')) else: wc = columns.difference(supported_columns) if len(wc) > 0: logging.warning('\n\nSupported node columns: %s\n', ', '.join(supported_columns)) has_provisioning = 'provisioning' in columns if has_provisioning: columns.remove('provisioning') email_provisioning = None scim_provisioning = None bridge_provisioning = None sso_provisioning = None displayed_columns = [x for x in supported_columns if x in columns] if has_provisioning: if 'email_provision' in params.enterprise: email_provisioning = {x['node_id']: x['domain'] for x in params.enterprise['email_provision']} if len(email_provisioning) > 0: displayed_columns.append('email_provisioning') else: email_provisioning = None if 'bridges' in params.enterprise: bridge_provisioning = {x['node_id']: x['status'] for x in params.enterprise['bridges']} if len(bridge_provisioning) > 0: displayed_columns.append('bridge_provisioning') else: bridge_provisioning = None if 'scims' in params.enterprise: scim_provisioning = {x['node_id']: x['status'] for x in params.enterprise['scims']} if len(scim_provisioning) > 0: displayed_columns.append('scim_provisioning') else: scim_provisioning = None if 'sso_services' in params.enterprise: sso_provisioning = {x['node_id']: x['name'] for x in params.enterprise['sso_services']} if len(sso_provisioning) > 0: displayed_columns.append('sso_provisioning') else: sso_provisioning = None rows = [] for n in nodes.values(): node_id = n['node_id'] row = [node_id, n['name']] for column in displayed_columns: if column == 'parent_node': parent_id = n.get('parent_id', 0) row.append(self.get_node_path(params, parent_id) if parent_id > 0 else '') elif column == 'user_count': us = n.get('users', []) row.append(len(us)) elif column == 'users': us = n.get('users', []) user_names = [users[x]['username'] for x in us if x in users] row.append(user_names) elif column == 'team_count': ts = n.get('teams', []) row.append(len(ts)) elif column == 'teams': ts = n.get('teams', []) team_names = [teams[x]['name'] for x in ts if x in teams] row.append(team_names) elif column == 'role_count': rs = n.get('roles', []) row.append(len(rs)) elif column == 'roles': rs = n.get('roles', []) role_names = [roles[x]['name'] for x in rs if x in roles] row.append(role_names) elif column == 'email_provisioning': status = email_provisioning.get(node_id) if email_provisioning else None row.append(status) elif column == 'bridge_provisioning': status = bridge_provisioning.get(node_id) if bridge_provisioning else None row.append(status) elif column == 'scim_provisioning': status = scim_provisioning.get(node_id) if scim_provisioning else None row.append(status) elif column == 'sso_provisioning': status = sso_provisioning.get(node_id) if sso_provisioning else None row.append(status) else: row.append(None) if pattern: if not any((1 for x in row if x and str(x).lower().find(pattern) >= 0)): continue rows.append(row) rows.sort(key=lambda x: x[1]) print('') headers = ['node_id', 'name'] headers.extend(displayed_columns) if kwargs.get('format') != 'json': headers = [string.capwords(x.replace('_', ' ')) for x in headers] return dump_report_data(rows, headers, fmt=kwargs.get('format'), filename=kwargs.get('output')) elif show_users: supported_columns = SUPPORTED_USER_COLUMNS if len(columns) == 0: columns.update(('name', 'status', 'transfer_status', 'node')) else: wc = columns.difference(supported_columns) if len(wc) > 0: logging.warning('\n\nSupported user columns: %s\n', ', '.join(supported_columns)) displayed_columns = [x for x in supported_columns if x in columns] rows = [] for u in users.values(): def lock_text(lock): user_status_dict = 'Locked' if lock == 1 else 'Disabled' if lock == 2 else '' account_status = 'Invited' if u['status'] == 'invited' else 'Active' if u['lock'] > 0: account_status = lock_text(u['lock']) acct_transfer_status = '' if 'account_share_expiration' in u: expire_at = datetime.datetime.fromtimestamp(u['account_share_expiration'] / 1000.0) if expire_at < datetime.datetime.now(): acct_transfer_status = 'Blocked' else: acct_transfer_status = 'Pending Transfer' user_status_dict = {'acct_status': account_status, 'acct_transfer_status': acct_transfer_status} user_id = u['id'] row = [user_id, u['username']] for column in displayed_columns: if column == 'name': row.append(u['name']) elif column == 'status': row.append(user_status_dict['acct_status']) elif column == 'transfer_status': row.append(user_status_dict['acct_transfer_status']) elif column == 'node': row.append(self.get_node_path(params, u['node_id'])) elif column == 'team_count': row.append(len([1 for t in teams.values() if t['users'] and user_id in t['users']])) elif column == 'teams': team_names = [t['name'] for t in teams.values() if t['users'] and user_id in t['users']] row.append(team_names) elif column == 'role_count': row.append(len([1 for r in roles.values() if r['users'] and user_id in r['users']])) elif column == 'roles': role_names = [r['name'] for r in roles.values() if r['users'] and user_id in r['users']] row.append(role_names) if pattern: if not any((1 for x in row if x and str(x).lower().find(pattern) >= 0)): continue rows.append(row) rows.sort(key=lambda x: x[1]) print('') headers = ['user_id', 'email'] headers.extend(displayed_columns) if kwargs.get('format') != 'json': headers = [string.capwords(x.replace('_', ' ')) for x in headers] return dump_report_data(rows, headers, fmt=kwargs.get('format'), filename=kwargs.get('output')) if show_teams: supported_columns = SUPPORTED_TEAM_COLUMNS if len(columns) == 0: columns.update(('restricts', 'node', 'user_count')) if 'queued_team_users' in params.enterprise: if len(params.enterprise['queued_team_users']) > 0: columns.update(('queued_user_count',)) else: wc = columns.difference(supported_columns) if len(wc) > 0: logging.warning('\n\nSupported team columns: %s\n', ', '.join(supported_columns)) displayed_columns = [x for x in supported_columns if x in columns] rows = [] for t in teams.values(): row = [t['id'], t['name']] for column in displayed_columns: if column == 'restricts': row.append(restricts(t)) elif column == 'node': row.append(self.get_node_path(params, t['node_id'])) elif column == 'user_count': row.append(len(t['users'])) elif column == 'users': row.append([user_email(x) for x in t['users']]) elif column == 'queued_user_count': row.append(len(t['queued_users'])) elif column == 'queued_users': row.append([user_email(x) for x in t['queued_users']]) if pattern: if not any((1 for x in row if x and str(x).lower().find(pattern) >= 0)): continue rows.append(row) for t in queued_teams.values(): row = [t['id'], t['name']] for column in displayed_columns: if column == 'restricts': row.append('Queued') elif column == 'node': row.append(self.get_node_path(params, t['node_id'])) elif column in {'user_count', 'users'}: row.append('') elif column == 'queued_user_count': row.append(len(t['queued_users'])) elif column == 'queued_users': row.append([user_email(x) for x in t['queued_users']]) if pattern: if not any((1 for x in row if x and str(x).lower().find(pattern) >= 0)): continue rows.append(row) rows.sort(key=lambda x: x[1]) print('') headers = ['team_uid', 'name'] headers.extend(displayed_columns) if kwargs.get('format') != 'json': headers = [string.capwords(x.replace('_', ' ')) for x in headers] return dump_report_data(rows, headers, fmt=kwargs.get('format'), filename=kwargs.get('output')) if show_roles: supported_columns = SUPPORTED_ROLE_COLUMNS if len(columns) == 0: columns.update(('default_role', 'admin', 'node', 'user_count')) else: wc = columns.difference(supported_columns) if len(wc) > 0: logging.warning('\n\nSupported role columns: %s\n', ', '.join(supported_columns)) displayed_columns = [x for x in supported_columns if x in columns] rows = [] for r in roles.values(): row = [r['id'], r['name']] for column in displayed_columns: if column == 'visible_below': row.append('Y' if r['visible_below'] else '') elif column == 'default_role': row.append('Y' if r['new_user_inherit'] else '') elif column == 'admin': row.append('Y' if r['is_admin'] else '') elif column == 'node': row.append(self.get_node_path(params, r['node_id'])) elif column == 'user_count': row.append(len(r['users'])) elif column == 'users': row.append([user_email(x) for x in r['users']]) if pattern: if not any((1 for x in row if x and str(x).lower().find(pattern) >= 0)): continue rows.append(row) rows.sort(key=lambda x: x[1]) print('') headers = ['role_id', 'name'] headers.extend(displayed_columns) if kwargs.get('format') != 'json': headers = [string.capwords(x.replace('_', ' ')) for x in headers] return dump_report_data(rows, headers, fmt=kwargs.get('format'), filename=kwargs.get('output')) print('')
Commander
positive
def select(self, x, prng): relation = x seed = prng.randint(10000.0, 1000000000.0) <DeepExtract> config = relation.config config_str = '' for column in config: (d_left, d_right) = config[column]['domain'] if config[column]['type'] == 'continuous': config_str += 'C ' config_str += str(d_left) config_str += ' ' config_str += str(d_right) config_str += ' ' elif config[column]['type'] == 'discrete': config_str += 'D ' for i in range(d_left, d_right): config_str += str(i) config_str += ' ' config_str += '\n' config_str = config_str </DeepExtract> model_str = privBayesSelect.py_get_model(np.ascontiguousarray(relation.df.astype(np.int32)), config_str.encode('utf-8'), self.eps, self.theta, seed) model = PrivBayesSelect.make_models(model_str.decode('utf-8')) M = PrivBayesSelect.get_measurements(model, self.domain_shape) return EkteloMatrix(M)
def select(self, x, prng): relation = x seed = prng.randint(10000.0, 1000000000.0) config = relation.config config_str = '' for column in config: (d_left, d_right) = config[column]['domain'] if config[column]['type'] == 'continuous': config_str += 'C ' config_str += str(d_left) config_str += ' ' config_str += str(d_right) config_str += ' ' elif config[column]['type'] == 'discrete': config_str += 'D ' for i in range(d_left, d_right): config_str += str(i) config_str += ' ' config_str += '\n' config_str = config_str model_str = privBayesSelect.py_get_model(np.ascontiguousarray(relation.df.astype(np.int32)), config_str.encode('utf-8'), self.eps, self.theta, seed) model = PrivBayesSelect.make_models(model_str.decode('utf-8')) M = PrivBayesSelect.get_measurements(model, self.domain_shape) return EkteloMatrix(M)
ektelo
positive
def _increment_negative_power_in_einsum_r(formula, x, exponent, args1, args2, args3): (in_formulas, out_formula) = split_einsum_formula(formula) <DeepExtract> new_formula = '{}->{}'.format(','.join(in_formulas[:len(args1) + 1 + len(args2)] + in_formulas[len(args1) + 2 + len(args2):]), out_formula) </DeepExtract> return np.einsum(new_formula, *args1 + (x ** (exponent + 1),) + args2 + args3)
def _increment_negative_power_in_einsum_r(formula, x, exponent, args1, args2, args3): (in_formulas, out_formula) = split_einsum_formula(formula) new_formula = '{}->{}'.format(','.join(in_formulas[:len(args1) + 1 + len(args2)] + in_formulas[len(args1) + 2 + len(args2):]), out_formula) return np.einsum(new_formula, *args1 + (x ** (exponent + 1),) + args2 + args3)
autoconj
positive
def __getitem__(self, item): if self.env is None: self.env = self.init_lmdb(self.seq_dir) key = self.keys[item] (idx, (tot_frm, h, w), cur_frm) = self.parse_lmdb_key(key) c = 3 if self.data_type.lower() == 'rgb' else 1 frms = [] if self.moving_first_frame and random.uniform(0, 1) > self.moving_factor: frm = self.read_lmdb_frame(self.env, key, size=(h, w, c)) frm = frm.transpose(2, 0, 1) offsets = np.floor(np.random.uniform(-3.5, 4.5, size=(self.tempo_extent, 2))) offsets = offsets.astype(np.int32) pos = np.cumsum(offsets, axis=0) min_pos = np.min(pos, axis=0) topleft_pos = pos - min_pos range_pos = np.max(pos, axis=0) - min_pos (c_h, c_w) = (h - range_pos[0], w - range_pos[1]) for i in range(self.tempo_extent): (top, left) = topleft_pos[i] frms.append(frm[:, top:top + c_h, left:left + c_w].copy()) else: for i in range(cur_frm, cur_frm + self.tempo_extent): if i >= tot_frm: key = '{}_{}x{}x{}_{:04d}'.format(idx, tot_frm, h, w, 2 * tot_frm - i - 2) else: key = '{}_{}x{}x{}_{:04d}'.format(idx, tot_frm, h, w, i) frm = self.read_lmdb_frame(self.env, key, size=(h, w, c)) frm = frm.transpose(2, 0, 1) frms.append(frm) frms = np.stack(frms) <DeepExtract> csz = self.crop_size (h, w) = frms.shape[-2:] assert csz <= h and csz <= w, 'the crop size is larger than the image size' top = random.randint(0, h - csz) left = random.randint(0, w - csz) pats = frms[..., top:top + csz, left:left + csz] pats = pats </DeepExtract> <DeepExtract> axis = random.randint(1, 3) if axis > 1: pats = np.flip(pats, axis) axis = random.randint(0, 1) if axis < 1: pats = np.flip(pats, axis) k = random.randint(0, 3) pats = np.rot90(pats, k, (2, 3)) pats = pats </DeepExtract> tsr = torch.FloatTensor(np.ascontiguousarray(pats)) / 255.0 return {'gt': tsr}
def __getitem__(self, item): if self.env is None: self.env = self.init_lmdb(self.seq_dir) key = self.keys[item] (idx, (tot_frm, h, w), cur_frm) = self.parse_lmdb_key(key) c = 3 if self.data_type.lower() == 'rgb' else 1 frms = [] if self.moving_first_frame and random.uniform(0, 1) > self.moving_factor: frm = self.read_lmdb_frame(self.env, key, size=(h, w, c)) frm = frm.transpose(2, 0, 1) offsets = np.floor(np.random.uniform(-3.5, 4.5, size=(self.tempo_extent, 2))) offsets = offsets.astype(np.int32) pos = np.cumsum(offsets, axis=0) min_pos = np.min(pos, axis=0) topleft_pos = pos - min_pos range_pos = np.max(pos, axis=0) - min_pos (c_h, c_w) = (h - range_pos[0], w - range_pos[1]) for i in range(self.tempo_extent): (top, left) = topleft_pos[i] frms.append(frm[:, top:top + c_h, left:left + c_w].copy()) else: for i in range(cur_frm, cur_frm + self.tempo_extent): if i >= tot_frm: key = '{}_{}x{}x{}_{:04d}'.format(idx, tot_frm, h, w, 2 * tot_frm - i - 2) else: key = '{}_{}x{}x{}_{:04d}'.format(idx, tot_frm, h, w, i) frm = self.read_lmdb_frame(self.env, key, size=(h, w, c)) frm = frm.transpose(2, 0, 1) frms.append(frm) frms = np.stack(frms) csz = self.crop_size (h, w) = frms.shape[-2:] assert csz <= h and csz <= w, 'the crop size is larger than the image size' top = random.randint(0, h - csz) left = random.randint(0, w - csz) pats = frms[..., top:top + csz, left:left + csz] pats = pats axis = random.randint(1, 3) if axis > 1: pats = np.flip(pats, axis) axis = random.randint(0, 1) if axis < 1: pats = np.flip(pats, axis) k = random.randint(0, 3) pats = np.rot90(pats, k, (2, 3)) pats = pats tsr = torch.FloatTensor(np.ascontiguousarray(pats)) / 255.0 return {'gt': tsr}
EGVSR
positive
def boot_and_connect(self): <DeepExtract> if not getattr(self, 'conn', None): self.conn = self._get_connection() conn = self.conn </DeepExtract> <DeepExtract> conn = self.conn boot_new = True last_instance_path = None if 'use_existing_instance' in self._driver_options(): boot_new = False instance_id = self._driver_options()['use_existing_instance'] if instance_id == '__auto__': last_instance_path = '.vmlauncher_last_instance_%s' % self.driver_options_key if not os.path.exists(last_instance_path): boot_new = True else: instance_id = open(last_instance_path, 'r').read() if not boot_new: nodes = conn.list_nodes() nodes_with_id = [node for node in nodes if node.uuid == instance_id] if not nodes_with_id: err_msg_template = 'Specified use_existing_instance with instance id %s, but no such instance found.' raise Exception(err_msg_template % instance_id) node = nodes_with_id[0] if boot_new: node = self._boot_new(conn) if last_instance_path: open(last_instance_path, 'w').write(node.uuid) node = node </DeepExtract> self.conn = conn self.node = node self.uuid = node.uuid <DeepExtract> i = 0 while i < tries: try: ssh_client = self.__get_ssh_client() conn._ssh_client_connect(ssh_client=ssh_client, timeout=60) return except: i = i + 1 </DeepExtract>
def boot_and_connect(self): if not getattr(self, 'conn', None): self.conn = self._get_connection() conn = self.conn conn = self.conn boot_new = True last_instance_path = None if 'use_existing_instance' in self._driver_options(): boot_new = False instance_id = self._driver_options()['use_existing_instance'] if instance_id == '__auto__': last_instance_path = '.vmlauncher_last_instance_%s' % self.driver_options_key if not os.path.exists(last_instance_path): boot_new = True else: instance_id = open(last_instance_path, 'r').read() if not boot_new: nodes = conn.list_nodes() nodes_with_id = [node for node in nodes if node.uuid == instance_id] if not nodes_with_id: err_msg_template = 'Specified use_existing_instance with instance id %s, but no such instance found.' raise Exception(err_msg_template % instance_id) node = nodes_with_id[0] if boot_new: node = self._boot_new(conn) if last_instance_path: open(last_instance_path, 'w').write(node.uuid) node = node self.conn = conn self.node = node self.uuid = node.uuid i = 0 while i < tries: try: ssh_client = self.__get_ssh_client() conn._ssh_client_connect(ssh_client=ssh_client, timeout=60) return except: i = i + 1 </DeepExtract>
cloudbiolinux
positive
def __init__(self, allow_cookie_auth=None, blocked_regions=None): """Constructor for ApiAuth, authentication information for an API. Args: allow_cookie_auth: boolean, whether cooking auth is allowed. By default, API methods do not allow cookie authentication, and require the use of OAuth2 or ID tokens. Setting this field to True will allow cookies to be used to access the API, with potentially dangerous results. Please be very cautious in enabling this setting, and make sure to require appropriate XSRF tokens to protect your API. blocked_regions: list of Strings, a list of 2-letter ISO region codes to block. """ <DeepExtract> if allow_cookie_auth is None and allow_none: return if not isinstance(allow_cookie_auth, bool): raise TypeError("%s type doesn't match %s." % ('allow_cookie_auth', bool)) </DeepExtract> <DeepExtract> if blocked_regions is None: if not allow_none: raise TypeError('%s is None, which is not allowed.' % 'blocked_regions') return blocked_regions if not isinstance(blocked_regions, (tuple, list)): raise TypeError('%s is not a list.' % 'blocked_regions') if not all((isinstance(i, basestring) for i in blocked_regions)): type_list = list(set((type(setting) for setting in blocked_regions))) raise TypeError("%s contains types that don't match %s: %s" % ('blocked_regions', basestring.__name__, type_list)) return blocked_regions </DeepExtract> self.__allow_cookie_auth = allow_cookie_auth self.__blocked_regions = blocked_regions
def __init__(self, allow_cookie_auth=None, blocked_regions=None): """Constructor for ApiAuth, authentication information for an API. Args: allow_cookie_auth: boolean, whether cooking auth is allowed. By default, API methods do not allow cookie authentication, and require the use of OAuth2 or ID tokens. Setting this field to True will allow cookies to be used to access the API, with potentially dangerous results. Please be very cautious in enabling this setting, and make sure to require appropriate XSRF tokens to protect your API. blocked_regions: list of Strings, a list of 2-letter ISO region codes to block. """ if allow_cookie_auth is None and allow_none: return if not isinstance(allow_cookie_auth, bool): raise TypeError("%s type doesn't match %s." % ('allow_cookie_auth', bool)) if blocked_regions is None: if not allow_none: raise TypeError('%s is None, which is not allowed.' % 'blocked_regions') return blocked_regions if not isinstance(blocked_regions, (tuple, list)): raise TypeError('%s is not a list.' % 'blocked_regions') if not all((isinstance(i, basestring) for i in blocked_regions)): type_list = list(set((type(setting) for setting in blocked_regions))) raise TypeError("%s contains types that don't match %s: %s" % ('blocked_regions', basestring.__name__, type_list)) return blocked_regions self.__allow_cookie_auth = allow_cookie_auth self.__blocked_regions = blocked_regions
AndroidGCMTutorial
positive
def test_given_specific_random_seed_when_estimate_shapley_values_with_early_stopping_then_returns_deterministic_result(preserve_random_generator_state): <DeepExtract> (X, coefficients) = (np.random.normal(0, 1, (1000, 15)), np.random.choice(20, 15) - 10) </DeepExtract> def model(x): return np.sum(coefficients * x, axis=1) shapley_config = ShapleyConfig(approximation_method=ShapleyApproximationMethods.EARLY_STOPPING) assert estimate_shapley_values(lambda subset: _set_function_for_aggregated_feature_attribution(subset, X, model), X.shape[1], shapley_config) != approx(estimate_shapley_values(lambda subset: _set_function_for_aggregated_feature_attribution(subset, X, model), X.shape[1], shapley_config), abs=0) np.random.seed(0) shapley_values_1 = estimate_shapley_values(lambda subset: _set_function_for_aggregated_feature_attribution(subset, X, model), X.shape[1], shapley_config) np.random.seed(0) shapley_values_2 = estimate_shapley_values(lambda subset: _set_function_for_aggregated_feature_attribution(subset, X, model), X.shape[1], shapley_config) assert shapley_values_1 == approx(shapley_values_2, abs=0)
def test_given_specific_random_seed_when_estimate_shapley_values_with_early_stopping_then_returns_deterministic_result(preserve_random_generator_state): (X, coefficients) = (np.random.normal(0, 1, (1000, 15)), np.random.choice(20, 15) - 10) def model(x): return np.sum(coefficients * x, axis=1) shapley_config = ShapleyConfig(approximation_method=ShapleyApproximationMethods.EARLY_STOPPING) assert estimate_shapley_values(lambda subset: _set_function_for_aggregated_feature_attribution(subset, X, model), X.shape[1], shapley_config) != approx(estimate_shapley_values(lambda subset: _set_function_for_aggregated_feature_attribution(subset, X, model), X.shape[1], shapley_config), abs=0) np.random.seed(0) shapley_values_1 = estimate_shapley_values(lambda subset: _set_function_for_aggregated_feature_attribution(subset, X, model), X.shape[1], shapley_config) np.random.seed(0) shapley_values_2 = estimate_shapley_values(lambda subset: _set_function_for_aggregated_feature_attribution(subset, X, model), X.shape[1], shapley_config) assert shapley_values_1 == approx(shapley_values_2, abs=0)
dowhy
positive
def mujoco_arg_parser(): """ Create an argparse.ArgumentParser for run_mujoco.py. """ <DeepExtract> import argparse parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter) </DeepExtract> parser.add_argument('--env', help='environment ID', type=str, default='Reacher-v2') parser.add_argument('--seed', help='RNG seed', type=int, default=0) parser.add_argument('--num-timesteps', type=int, default=int(1000000.0)) return parser
def mujoco_arg_parser(): """ Create an argparse.ArgumentParser for run_mujoco.py. """ import argparse parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('--env', help='environment ID', type=str, default='Reacher-v2') parser.add_argument('--seed', help='RNG seed', type=int, default=0) parser.add_argument('--num-timesteps', type=int, default=int(1000000.0)) return parser
CHER
positive
def extract_from_parsed_result(self, parsed_result, para_eventualities, output_format='Relation', in_order=True, **kw): if output_format not in ['Relation', 'triplet']: raise NotImplementedError('Error: extract_from_parsed_result only supports Relation or triplet.') connective_dict = kw.get('connective_dict', SEED_CONNECTIVE_DICT) para_relations = list() for (sent_parsed_result, eventualities) in zip(parsed_result, para_eventualities): relations_in_sent = list() for head_eventuality in eventualities: for tail_eventuality in eventualities: if not head_eventuality.position < tail_eventuality.position: continue heid = head_eventuality.eid teid = tail_eventuality.eid <DeepExtract> extracted_senses = ['Co_Occurrence'] for sense in relation_senses: for connective_words in connective_dict[sense]: if self._verify_connective_in_one_sentence(connective_words, head_eventuality, tail_eventuality, sent_parsed_result['dependencies'], sent_parsed_result['tokens']): extracted_senses.append(sense) break extracted_senses = extracted_senses </DeepExtract> if len(extracted_senses) > 0: relations_in_sent.append(Relation(heid, teid, extracted_senses)) para_relations.append(relations_in_sent) for i in range(len(parsed_result) - 1): (eventualities1, eventualities2) = (para_eventualities[i], para_eventualities[i + 1]) relations_between_sents = list() if len(eventualities1) == 1 and len(eventualities2) == 1: (s1_tokens, s2_tokens) = (parsed_result[i]['tokens'], parsed_result[i + 1]['tokens']) (s1_eventuality, s2_eventuality) = (eventualities1[0], eventualities2[0]) (heid, teid) = (s1_eventuality.eid, s2_eventuality.eid) <DeepExtract> extracted_senses = list() for sense in relation_senses: for connective_words in connective_dict[sense]: if self._verify_connective_in_two_sentence(connective_words, s1_eventuality, s2_eventuality, s1_tokens, s2_tokens): extracted_senses.append(sense) break extracted_senses = extracted_senses </DeepExtract> if len(extracted_senses) > 0: relations_between_sents.append(Relation(heid, teid, extracted_senses)) para_relations.append(relations_between_sents) if in_order: if output_format == 'triplet': para_relations = [sorted(chain.from_iterable([r.to_triplets() for r in relations])) for relations in para_relations] return para_relations else: if output_format == 'Relation': rid2relation = dict() for relation in chain(*para_relations): if relation.rid not in rid2relation: rid2relation[relation.rid] = deepcopy(relation) else: rid2relation[relation.rid].update(relation) relations = sorted(rid2relation.values(), key=lambda r: r.rid) elif output_format == 'triplet': relations = sorted([r.to_triplets() for relations in para_relations for r in relations]) return relations
def extract_from_parsed_result(self, parsed_result, para_eventualities, output_format='Relation', in_order=True, **kw): if output_format not in ['Relation', 'triplet']: raise NotImplementedError('Error: extract_from_parsed_result only supports Relation or triplet.') connective_dict = kw.get('connective_dict', SEED_CONNECTIVE_DICT) para_relations = list() for (sent_parsed_result, eventualities) in zip(parsed_result, para_eventualities): relations_in_sent = list() for head_eventuality in eventualities: for tail_eventuality in eventualities: if not head_eventuality.position < tail_eventuality.position: continue heid = head_eventuality.eid teid = tail_eventuality.eid extracted_senses = ['Co_Occurrence'] for sense in relation_senses: for connective_words in connective_dict[sense]: if self._verify_connective_in_one_sentence(connective_words, head_eventuality, tail_eventuality, sent_parsed_result['dependencies'], sent_parsed_result['tokens']): extracted_senses.append(sense) break extracted_senses = extracted_senses if len(extracted_senses) > 0: relations_in_sent.append(Relation(heid, teid, extracted_senses)) para_relations.append(relations_in_sent) for i in range(len(parsed_result) - 1): (eventualities1, eventualities2) = (para_eventualities[i], para_eventualities[i + 1]) relations_between_sents = list() if len(eventualities1) == 1 and len(eventualities2) == 1: (s1_tokens, s2_tokens) = (parsed_result[i]['tokens'], parsed_result[i + 1]['tokens']) (s1_eventuality, s2_eventuality) = (eventualities1[0], eventualities2[0]) (heid, teid) = (s1_eventuality.eid, s2_eventuality.eid) extracted_senses = list() for sense in relation_senses: for connective_words in connective_dict[sense]: if self._verify_connective_in_two_sentence(connective_words, s1_eventuality, s2_eventuality, s1_tokens, s2_tokens): extracted_senses.append(sense) break extracted_senses = extracted_senses if len(extracted_senses) > 0: relations_between_sents.append(Relation(heid, teid, extracted_senses)) para_relations.append(relations_between_sents) if in_order: if output_format == 'triplet': para_relations = [sorted(chain.from_iterable([r.to_triplets() for r in relations])) for relations in para_relations] return para_relations else: if output_format == 'Relation': rid2relation = dict() for relation in chain(*para_relations): if relation.rid not in rid2relation: rid2relation[relation.rid] = deepcopy(relation) else: rid2relation[relation.rid].update(relation) relations = sorted(rid2relation.values(), key=lambda r: r.rid) elif output_format == 'triplet': relations = sorted([r.to_triplets() for relations in para_relations for r in relations]) return relations
ASER
positive
def countGroups(related): <DeepExtract> n = len(related) g = Graph(n) for i in range(n): for j in range(n): if j > i and related[i][j] == '1': g.addEdge(i, j) graph = g </DeepExtract> groups = graph.countGroups() return len(groups)
def countGroups(related): n = len(related) g = Graph(n) for i in range(n): for j in range(n): if j > i and related[i][j] == '1': g.addEdge(i, j) graph = g groups = graph.countGroups() return len(groups)
Competitive_Programming
positive
def save_mov_txt(mov, fname, mjd=False): """Save movie data to series of text files. Args: mov (Movie): movie object fname (str): basename of output text file mjd (int): MJD of saved movie Returns: """ if mjd is False: mjd = mov.mjd for i in range(mov.nframes): time_frame = mov.times[i] fname_frame = fname + '%05d' % i print('saving file ' + fname_frame) frame_im = mov.get_frame(i) <DeepExtract> if frame_im.polrep != 'stokes' or frame_im.pol_prim != 'I': frame_im = frame_im.switch_polrep(polrep_out='stokes', pol_prim_out=None) pdimas = frame_im.psize / ehc.RADPERAS xs = np.array([[j for j in range(frame_im.xdim)] for i in range(frame_im.ydim)]).reshape(frame_im.xdim * frame_im.ydim, 1) xs = pdimas * (xs[::-1] - frame_im.xdim / 2.0) ys = np.array([[i for j in range(frame_im.xdim)] for i in range(frame_im.ydim)]).reshape(frame_im.xdim * frame_im.ydim, 1) ys = pdimas * (ys[::-1] - frame_im.xdim / 2.0) if len(frame_im.vvec) and (not len(frame_im.qvec)): frame_im.qvec = 0 * frame_im.vvec frame_im.uvec = 0 * frame_im.vvec if len(frame_im.qvec) and len(frame_im.vvec): outdata = np.hstack((xs, ys, frame_im.imvec.reshape(frame_im.xdim * frame_im.ydim, 1), frame_im.qvec.reshape(frame_im.xdim * frame_im.ydim, 1), frame_im.uvec.reshape(frame_im.xdim * frame_im.ydim, 1), frame_im.vvec.reshape(frame_im.xdim * frame_im.ydim, 1))) hf = 'x (as) y (as) I (Jy/pixel) Q (Jy/pixel) U (Jy/pixel) V (Jy/pixel)' fmts = '%10.10f %10.10f %10.10f %10.10f %10.10f %10.10f' elif len(frame_im.qvec): outdata = np.hstack((xs, ys, frame_im.imvec.reshape(frame_im.xdim * frame_im.ydim, 1), frame_im.qvec.reshape(frame_im.xdim * frame_im.ydim, 1), frame_im.uvec.reshape(frame_im.xdim * frame_im.ydim, 1))) hf = 'x (as) y (as) I (Jy/pixel) Q (Jy/pixel) U (Jy/pixel)' fmts = '%10.10f %10.10f %10.10f %10.10f %10.10f' else: outdata = np.hstack((xs, ys, frame_im.imvec.reshape(frame_im.xdim * frame_im.ydim, 1))) hf = 'x (as) y (as) I (Jy/pixel)' fmts = '%10.10f %10.10f %10.10f' if not mjd: mjd = float(frame_im.mjd) if not time_frame: time_frame = frame_im.time mjd += time_frame / 24.0 head = 'SRC: %s \n' % frame_im.source + 'RA: ' + obsh.rastring(frame_im.ra) + '\n' + 'DEC: ' + obsh.decstring(frame_im.dec) + '\n' + 'MJD: %.6f \n' % float(mjd) + 'RF: %.4f GHz \n' % (frame_im.rf / 1000000000.0) + 'FOVX: %i pix %f as \n' % (frame_im.xdim, pdimas * frame_im.xdim) + 'FOVY: %i pix %f as \n' % (frame_im.ydim, pdimas * frame_im.ydim) + '------------------------------------\n' + hf np.savetxt(fname_frame, outdata, header=head, fmt=fmts) return </DeepExtract> return
def save_mov_txt(mov, fname, mjd=False): """Save movie data to series of text files. Args: mov (Movie): movie object fname (str): basename of output text file mjd (int): MJD of saved movie Returns: """ if mjd is False: mjd = mov.mjd for i in range(mov.nframes): time_frame = mov.times[i] fname_frame = fname + '%05d' % i print('saving file ' + fname_frame) frame_im = mov.get_frame(i) if frame_im.polrep != 'stokes' or frame_im.pol_prim != 'I': frame_im = frame_im.switch_polrep(polrep_out='stokes', pol_prim_out=None) pdimas = frame_im.psize / ehc.RADPERAS xs = np.array([[j for j in range(frame_im.xdim)] for i in range(frame_im.ydim)]).reshape(frame_im.xdim * frame_im.ydim, 1) xs = pdimas * (xs[::-1] - frame_im.xdim / 2.0) ys = np.array([[i for j in range(frame_im.xdim)] for i in range(frame_im.ydim)]).reshape(frame_im.xdim * frame_im.ydim, 1) ys = pdimas * (ys[::-1] - frame_im.xdim / 2.0) if len(frame_im.vvec) and (not len(frame_im.qvec)): frame_im.qvec = 0 * frame_im.vvec frame_im.uvec = 0 * frame_im.vvec if len(frame_im.qvec) and len(frame_im.vvec): outdata = np.hstack((xs, ys, frame_im.imvec.reshape(frame_im.xdim * frame_im.ydim, 1), frame_im.qvec.reshape(frame_im.xdim * frame_im.ydim, 1), frame_im.uvec.reshape(frame_im.xdim * frame_im.ydim, 1), frame_im.vvec.reshape(frame_im.xdim * frame_im.ydim, 1))) hf = 'x (as) y (as) I (Jy/pixel) Q (Jy/pixel) U (Jy/pixel) V (Jy/pixel)' fmts = '%10.10f %10.10f %10.10f %10.10f %10.10f %10.10f' elif len(frame_im.qvec): outdata = np.hstack((xs, ys, frame_im.imvec.reshape(frame_im.xdim * frame_im.ydim, 1), frame_im.qvec.reshape(frame_im.xdim * frame_im.ydim, 1), frame_im.uvec.reshape(frame_im.xdim * frame_im.ydim, 1))) hf = 'x (as) y (as) I (Jy/pixel) Q (Jy/pixel) U (Jy/pixel)' fmts = '%10.10f %10.10f %10.10f %10.10f %10.10f' else: outdata = np.hstack((xs, ys, frame_im.imvec.reshape(frame_im.xdim * frame_im.ydim, 1))) hf = 'x (as) y (as) I (Jy/pixel)' fmts = '%10.10f %10.10f %10.10f' if not mjd: mjd = float(frame_im.mjd) if not time_frame: time_frame = frame_im.time mjd += time_frame / 24.0 head = 'SRC: %s \n' % frame_im.source + 'RA: ' + obsh.rastring(frame_im.ra) + '\n' + 'DEC: ' + obsh.decstring(frame_im.dec) + '\n' + 'MJD: %.6f \n' % float(mjd) + 'RF: %.4f GHz \n' % (frame_im.rf / 1000000000.0) + 'FOVX: %i pix %f as \n' % (frame_im.xdim, pdimas * frame_im.xdim) + 'FOVY: %i pix %f as \n' % (frame_im.ydim, pdimas * frame_im.ydim) + '------------------------------------\n' + hf np.savetxt(fname_frame, outdata, header=head, fmt=fmts) return return
eht-imaging
positive
def union(self, types: Sequence[AnyType]) -> DeserializationMethodFactory: discriminator = get_inherited_discriminator(types) if discriminator is not None: return self.discriminate(discriminator, types) alt_factories = self._union_results(types) if len(alt_factories) == 1: return alt_factories[0] def factory(constraints: Optional[Constraints], _) -> DeserializationMethod: <DeepExtract> elt_factories = [self.visit(tp) for tp in (fact.merge(constraints).method for fact in alt_factories)] def factory(constraints: Optional[Constraints], _) -> DeserializationMethod: def len_error(constraints: Constraints) -> Union[str, Callable[[Any], str]]: alt_methods = constraints_validators(constraints)[list][0].error alt_methods = TupleMethod(constraints_validators(constraints)[list], len_error(Constraints(min_items=len((fact.merge(constraints).method for fact in alt_factories)))), len_error(Constraints(max_items=len((fact.merge(constraints).method for fact in alt_factories)))), tuple((fact.method for fact in elt_factories))) alt_methods = self._factory(factory, list) </DeepExtract> method_by_cls = dict(zip((f.cls for f in alt_factories if f.cls is not None), alt_methods)) if NoneType in types and len(alt_methods) == 2: value_method = next((meth for (fact, meth) in zip(alt_factories, alt_methods) if fact.cls is not NoneType)) return OptionalMethod(value_method, self.coercer) elif len(method_by_cls) == len(alt_factories) and (not any((isinstance(x, CoercerMethod) for x in alt_methods))): return UnionByTypeMethod(method_by_cls) else: return UnionMethod(alt_methods) return self._factory(factory)
def union(self, types: Sequence[AnyType]) -> DeserializationMethodFactory: discriminator = get_inherited_discriminator(types) if discriminator is not None: return self.discriminate(discriminator, types) alt_factories = self._union_results(types) if len(alt_factories) == 1: return alt_factories[0] def factory(constraints: Optional[Constraints], _) -> DeserializationMethod: elt_factories = [self.visit(tp) for tp in (fact.merge(constraints).method for fact in alt_factories)] def factory(constraints: Optional[Constraints], _) -> DeserializationMethod: def len_error(constraints: Constraints) -> Union[str, Callable[[Any], str]]: alt_methods = constraints_validators(constraints)[list][0].error alt_methods = TupleMethod(constraints_validators(constraints)[list], len_error(Constraints(min_items=len((fact.merge(constraints).method for fact in alt_factories)))), len_error(Constraints(max_items=len((fact.merge(constraints).method for fact in alt_factories)))), tuple((fact.method for fact in elt_factories))) alt_methods = self._factory(factory, list) method_by_cls = dict(zip((f.cls for f in alt_factories if f.cls is not None), alt_methods)) if NoneType in types and len(alt_methods) == 2: value_method = next((meth for (fact, meth) in zip(alt_factories, alt_methods) if fact.cls is not NoneType)) return OptionalMethod(value_method, self.coercer) elif len(method_by_cls) == len(alt_factories) and (not any((isinstance(x, CoercerMethod) for x in alt_methods))): return UnionByTypeMethod(method_by_cls) else: return UnionMethod(alt_methods) return self._factory(factory)
apischema
positive
def apply_phab(self, hg, phabricator_deployment, diff_id): if phabricator_deployment == PHAB_PROD: api_key = get_secret('PHABRICATOR_TOKEN') url = get_secret('PHABRICATOR_URL') else: api_key = get_secret('PHABRICATOR_DEV_TOKEN') url = get_secret('PHABRICATOR_DEV_URL') phabricator_api = PhabricatorAPI(api_key=api_key, url=url) stack = phabricator_api.load_patches_stack(diff_id) assert len(stack) > 0, 'No patches to apply' needed_stack = [] revisions = {} for patch in reversed(stack): needed_stack.insert(0, patch) if self.has_revision(hg, patch.base_revision): logger.info(f'Stopping at diff {patch.id} and revision {patch.base_revision}') break if not needed_stack: logger.info('All the patches are already applied') return diffs = phabricator_api.search_diffs(diff_phid=[p.phid for p in stack]) revisions = {diff['phid']: phabricator_api.load_revision(rev_phid=diff['revisionPHID'], attachments={'reviewers': True}) for diff in diffs} hg_base = needed_stack[0].base_revision if not self.has_revision(hg, hg_base): logger.warning('Missing base revision {} from Phabricator'.format(hg_base)) hg_base = 'tip' if hg_base: hg.update(rev=hg_base, clean=True) logger.info('Updated repo to %s', hg_base) if self.git_repo_dir and hg_base != 'tip': try: self.git_base = tuple(vcs_map.mercurial_to_git(self.git_repo_dir, [hg_base]))[0] subprocess.run(['git', 'checkout', '-b', 'analysis_branch', self.git_base], check=True, cwd=self.git_repo_dir) logger.info('Updated git repo to %s', self.git_base) except Exception as e: logger.info('Updating git repo to Mercurial %s failed: %s', hg_base, e) def load_user(phid): if phid.startswith('PHID-USER'): return phabricator_api.load_user(user_phid=phid) elif phid.startswith('PHID-PROJ'): logger.info('Skipping group reviewer %s', phid) else: raise ValueError(f'Unsupported reviewer {phid}') for patch in needed_stack: revision = revisions[patch.phid] message = '{}\n\n{}'.format(revision['fields']['title'], revision['fields']['summary']) author_name = None author_email = None if patch.commits: author_name = patch.commits[0]['author']['name'] author_email = patch.commits[0]['author']['email'] if author_name is None: <DeepExtract> if revision['fields']['authorPHID'].startswith('PHID-USER'): author = phabricator_api.load_user(user_phid=revision['fields']['authorPHID']) elif revision['fields']['authorPHID'].startswith('PHID-PROJ'): logger.info('Skipping group reviewer %s', revision['fields']['authorPHID']) else: raise ValueError(f"Unsupported reviewer {revision['fields']['authorPHID']}") </DeepExtract> author_name = author['fields']['realName'] author_email = author['fields']['username'] reviewers = list(filter(None, (load_user(reviewer['reviewerPHID']) for reviewer in revision['attachments']['reviewers']['reviewers']))) reviewers = set((reviewer['fields']['username'] for reviewer in reviewers)) if len(reviewers): <DeepExtract> if not reviewers: reviewers_str = '' else: reviewers_str = 'r=' + ','.join(reviewers) if message == '': message = reviewers_str message = message.splitlines() commit_summary = message.pop(0) message = '\n'.join(message) if not R_SPECIFIER_RE.search(commit_summary): commit_summary += ' ' + reviewers_str else: d = {'first': True} def replace_first_reviewer(matchobj): if R_SPECIFIER_RE.match(matchobj.group(2)): if d['first']: d['first'] = False message = matchobj.group(1) + reviewers_str else: message = '\x00' else: message = matchobj.group(0) commit_summary = re.sub(REVIEWERS_RE, replace_first_reviewer, commit_summary) commit_summary = re.sub(LIST + '\x00', '', commit_summary) commit_summary = re.sub('\x00', '', commit_summary) if message == '': message = commit_summary.strip() else: message = commit_summary.strip() + '\n' + message </DeepExtract> logger.info(f"Applying {patch.phid} from revision {revision['id']}: {message}") hg.import_(patches=io.BytesIO(patch.patch.encode('utf-8')), message=message.encode('utf-8'), user=f'{author_name} <{author_email}>'.encode('utf-8')) if self.git_repo_dir: patch_proc = subprocess.Popen(['patch', '-p1', '--no-backup-if-mismatch', '--force'], stdin=subprocess.PIPE, cwd=self.git_repo_dir) patch_proc.communicate(patch.patch.encode('utf-8')) assert patch_proc.returncode == 0, 'Failed to apply patch' subprocess.run(['git', '-c', f'user.name={author_name}', '-c', f'user.email={author_email}', 'commit', '-am', message], check=True, cwd=self.git_repo_dir)
def apply_phab(self, hg, phabricator_deployment, diff_id): if phabricator_deployment == PHAB_PROD: api_key = get_secret('PHABRICATOR_TOKEN') url = get_secret('PHABRICATOR_URL') else: api_key = get_secret('PHABRICATOR_DEV_TOKEN') url = get_secret('PHABRICATOR_DEV_URL') phabricator_api = PhabricatorAPI(api_key=api_key, url=url) stack = phabricator_api.load_patches_stack(diff_id) assert len(stack) > 0, 'No patches to apply' needed_stack = [] revisions = {} for patch in reversed(stack): needed_stack.insert(0, patch) if self.has_revision(hg, patch.base_revision): logger.info(f'Stopping at diff {patch.id} and revision {patch.base_revision}') break if not needed_stack: logger.info('All the patches are already applied') return diffs = phabricator_api.search_diffs(diff_phid=[p.phid for p in stack]) revisions = {diff['phid']: phabricator_api.load_revision(rev_phid=diff['revisionPHID'], attachments={'reviewers': True}) for diff in diffs} hg_base = needed_stack[0].base_revision if not self.has_revision(hg, hg_base): logger.warning('Missing base revision {} from Phabricator'.format(hg_base)) hg_base = 'tip' if hg_base: hg.update(rev=hg_base, clean=True) logger.info('Updated repo to %s', hg_base) if self.git_repo_dir and hg_base != 'tip': try: self.git_base = tuple(vcs_map.mercurial_to_git(self.git_repo_dir, [hg_base]))[0] subprocess.run(['git', 'checkout', '-b', 'analysis_branch', self.git_base], check=True, cwd=self.git_repo_dir) logger.info('Updated git repo to %s', self.git_base) except Exception as e: logger.info('Updating git repo to Mercurial %s failed: %s', hg_base, e) def load_user(phid): if phid.startswith('PHID-USER'): return phabricator_api.load_user(user_phid=phid) elif phid.startswith('PHID-PROJ'): logger.info('Skipping group reviewer %s', phid) else: raise ValueError(f'Unsupported reviewer {phid}') for patch in needed_stack: revision = revisions[patch.phid] message = '{}\n\n{}'.format(revision['fields']['title'], revision['fields']['summary']) author_name = None author_email = None if patch.commits: author_name = patch.commits[0]['author']['name'] author_email = patch.commits[0]['author']['email'] if author_name is None: if revision['fields']['authorPHID'].startswith('PHID-USER'): author = phabricator_api.load_user(user_phid=revision['fields']['authorPHID']) elif revision['fields']['authorPHID'].startswith('PHID-PROJ'): logger.info('Skipping group reviewer %s', revision['fields']['authorPHID']) else: raise ValueError(f"Unsupported reviewer {revision['fields']['authorPHID']}") author_name = author['fields']['realName'] author_email = author['fields']['username'] reviewers = list(filter(None, (load_user(reviewer['reviewerPHID']) for reviewer in revision['attachments']['reviewers']['reviewers']))) reviewers = set((reviewer['fields']['username'] for reviewer in reviewers)) if len(reviewers): if not reviewers: reviewers_str = '' else: reviewers_str = 'r=' + ','.join(reviewers) if message == '': message = reviewers_str message = message.splitlines() commit_summary = message.pop(0) message = '\n'.join(message) if not R_SPECIFIER_RE.search(commit_summary): commit_summary += ' ' + reviewers_str else: d = {'first': True} def replace_first_reviewer(matchobj): if R_SPECIFIER_RE.match(matchobj.group(2)): if d['first']: d['first'] = False message = matchobj.group(1) + reviewers_str else: message = '\x00' else: message = matchobj.group(0) commit_summary = re.sub(REVIEWERS_RE, replace_first_reviewer, commit_summary) commit_summary = re.sub(LIST + '\x00', '', commit_summary) commit_summary = re.sub('\x00', '', commit_summary) if message == '': message = commit_summary.strip() else: message = commit_summary.strip() + '\n' + message logger.info(f"Applying {patch.phid} from revision {revision['id']}: {message}") hg.import_(patches=io.BytesIO(patch.patch.encode('utf-8')), message=message.encode('utf-8'), user=f'{author_name} <{author_email}>'.encode('utf-8')) if self.git_repo_dir: patch_proc = subprocess.Popen(['patch', '-p1', '--no-backup-if-mismatch', '--force'], stdin=subprocess.PIPE, cwd=self.git_repo_dir) patch_proc.communicate(patch.patch.encode('utf-8')) assert patch_proc.returncode == 0, 'Failed to apply patch' subprocess.run(['git', '-c', f'user.name={author_name}', '-c', f'user.email={author_email}', 'commit', '-am', message], check=True, cwd=self.git_repo_dir)
bugbug
positive
def parse_dict_header(value): """Parse lists of key, value pairs as described by RFC 2068 Section 2 and convert them into a python dict: >>> d = parse_dict_header('foo="is a fish", bar="as well"') >>> type(d) is dict True >>> sorted(d.items()) [('bar', 'as well'), ('foo', 'is a fish')] If there is no value for a key it will be `None`: >>> parse_dict_header('key_without_value') {'key_without_value': None} To create a header from the :class:`dict` again, use the :func:`dump_header` function. :param value: a string with a dict header. :return: :class:`dict` :rtype: dict """ result = {} for item in _parse_list_header(value): if '=' not in item: result[item] = None continue (name, value) = item.split('=', 1) if value[:1] == value[-1:] == '"': <DeepExtract> if value[1:-1] and value[1:-1][0] == value[1:-1][-1] == '"': value[1:-1] = value[1:-1][1:-1] if not is_filename or value[1:-1][:2] != '\\\\': value[1:-1] = value[1:-1].replace('\\\\', '\\').replace('\\"', '"') value[1:-1] = value[1:-1] </DeepExtract> result[name] = value return result
def parse_dict_header(value): """Parse lists of key, value pairs as described by RFC 2068 Section 2 and convert them into a python dict: >>> d = parse_dict_header('foo="is a fish", bar="as well"') >>> type(d) is dict True >>> sorted(d.items()) [('bar', 'as well'), ('foo', 'is a fish')] If there is no value for a key it will be `None`: >>> parse_dict_header('key_without_value') {'key_without_value': None} To create a header from the :class:`dict` again, use the :func:`dump_header` function. :param value: a string with a dict header. :return: :class:`dict` :rtype: dict """ result = {} for item in _parse_list_header(value): if '=' not in item: result[item] = None continue (name, value) = item.split('=', 1) if value[:1] == value[-1:] == '"': if value[1:-1] and value[1:-1][0] == value[1:-1][-1] == '"': value[1:-1] = value[1:-1][1:-1] if not is_filename or value[1:-1][:2] != '\\\\': value[1:-1] = value[1:-1].replace('\\\\', '\\').replace('\\"', '"') value[1:-1] = value[1:-1] result[name] = value return result
AdvancedCloudFormation
positive
def get_info_about_model(inputs): <DeepExtract> model_folder_full_name = get_input_name_from_role(inputs, 'model_folder') model_folder = dataiku.Folder(model_folder_full_name).get_path() model_folder = model_folder </DeepExtract> model_info = utils.get_model_info(model_folder, goal=constants.SCORING) config = utils.get_config(model_folder) return add_can_use_gpu_to_resp({'layers': model_info['layers'], 'summary': model_info['summary'], 'default_layer_index': config['extract_layer_default_index']})
def get_info_about_model(inputs): model_folder_full_name = get_input_name_from_role(inputs, 'model_folder') model_folder = dataiku.Folder(model_folder_full_name).get_path() model_folder = model_folder model_info = utils.get_model_info(model_folder, goal=constants.SCORING) config = utils.get_config(model_folder) return add_can_use_gpu_to_resp({'layers': model_info['layers'], 'summary': model_info['summary'], 'default_layer_index': config['extract_layer_default_index']})
dataiku-contrib
positive
def _get_ground_truth(self): num_loc_list = [len(loc) for loc in self.locations] self.num_loc_list = num_loc_list loc_to_size_range = [] for (l, loc_per_level) in enumerate(self.locations): loc_to_size_range_per_level = loc_per_level.new_tensor(self.sizes_of_interest[l]) loc_to_size_range.append(loc_to_size_range_per_level[None].expand(num_loc_list[l], -1)) loc_to_size_range = torch.cat(loc_to_size_range, dim=0) locations = torch.cat(self.locations, dim=0) <DeepExtract> labels = [] reg_targets = [] bezier_targets = [] (xs, ys) = (locations[:, 0], locations[:, 1]) num_targets = 0 for im_i in range(len(self.gt_instances)): targets_per_im = self.gt_instances[im_i] bboxes = targets_per_im.gt_boxes.tensor labels_per_im = targets_per_im.gt_classes if bboxes.numel() == 0: labels.append(labels_per_im.new_zeros(locations.size(0)) + self.num_classes) reg_targets.append(locations.new_zeros((locations.size(0), 4))) bezier_targets.append(locations.new_zeros((locations.size(0), 16))) continue area = targets_per_im.gt_boxes.area() l = xs[:, None] - bboxes[:, 0][None] t = ys[:, None] - bboxes[:, 1][None] r = bboxes[:, 2][None] - xs[:, None] b = bboxes[:, 3][None] - ys[:, None] reg_targets_per_im = torch.stack([l, t, r, b], dim=2) bezier_pts = targets_per_im.beziers.view(-1, 8, 2) x_targets = bezier_pts[:, :, 0][None] - xs[:, None, None] y_targets = bezier_pts[:, :, 1][None] - ys[:, None, None] bezier_targets_per_im = torch.stack((x_targets, y_targets), dim=3) bezier_targets_per_im = bezier_targets_per_im.view(xs.size(0), bboxes.size(0), 16) if self.center_sample: is_in_boxes = self.get_sample_region(bboxes, self.strides, self.num_loc_list, xs, ys, radius=self.radius) else: is_in_boxes = reg_targets_per_im.min(dim=2)[0] > 0 max_reg_targets_per_im = reg_targets_per_im.max(dim=2)[0] is_cared_in_the_level = (max_reg_targets_per_im >= loc_to_size_range[:, [0]]) & (max_reg_targets_per_im <= loc_to_size_range[:, [1]]) locations_to_gt_area = area[None].repeat(len(locations), 1) locations_to_gt_area[is_in_boxes == 0] = INF locations_to_gt_area[is_cared_in_the_level == 0] = INF (locations_to_min_area, locations_to_gt_inds) = locations_to_gt_area.min(dim=1) reg_targets_per_im = reg_targets_per_im[range(len(locations)), locations_to_gt_inds] bezier_targets_per_im = bezier_targets_per_im[range(len(locations)), locations_to_gt_inds] labels_per_im = labels_per_im[locations_to_gt_inds] labels_per_im[locations_to_min_area == INF] = self.num_classes labels.append(labels_per_im) reg_targets.append(reg_targets_per_im) bezier_targets.append(bezier_targets_per_im) training_targets = {'labels': labels, 'reg_targets': reg_targets, 'bezier_targets': bezier_targets} </DeepExtract> training_targets = {k: self._transpose(v, num_loc_list) for (k, v) in training_targets.items()} reg_targets = training_targets['reg_targets'] bezier_targets = training_targets['bezier_targets'] for l in range(len(reg_targets)): reg_targets[l] = reg_targets[l] / float(self.strides[l]) bezier_targets[l] = bezier_targets[l] / float(self.strides[l]) return training_targets
def _get_ground_truth(self): num_loc_list = [len(loc) for loc in self.locations] self.num_loc_list = num_loc_list loc_to_size_range = [] for (l, loc_per_level) in enumerate(self.locations): loc_to_size_range_per_level = loc_per_level.new_tensor(self.sizes_of_interest[l]) loc_to_size_range.append(loc_to_size_range_per_level[None].expand(num_loc_list[l], -1)) loc_to_size_range = torch.cat(loc_to_size_range, dim=0) locations = torch.cat(self.locations, dim=0) labels = [] reg_targets = [] bezier_targets = [] (xs, ys) = (locations[:, 0], locations[:, 1]) num_targets = 0 for im_i in range(len(self.gt_instances)): targets_per_im = self.gt_instances[im_i] bboxes = targets_per_im.gt_boxes.tensor labels_per_im = targets_per_im.gt_classes if bboxes.numel() == 0: labels.append(labels_per_im.new_zeros(locations.size(0)) + self.num_classes) reg_targets.append(locations.new_zeros((locations.size(0), 4))) bezier_targets.append(locations.new_zeros((locations.size(0), 16))) continue area = targets_per_im.gt_boxes.area() l = xs[:, None] - bboxes[:, 0][None] t = ys[:, None] - bboxes[:, 1][None] r = bboxes[:, 2][None] - xs[:, None] b = bboxes[:, 3][None] - ys[:, None] reg_targets_per_im = torch.stack([l, t, r, b], dim=2) bezier_pts = targets_per_im.beziers.view(-1, 8, 2) x_targets = bezier_pts[:, :, 0][None] - xs[:, None, None] y_targets = bezier_pts[:, :, 1][None] - ys[:, None, None] bezier_targets_per_im = torch.stack((x_targets, y_targets), dim=3) bezier_targets_per_im = bezier_targets_per_im.view(xs.size(0), bboxes.size(0), 16) if self.center_sample: is_in_boxes = self.get_sample_region(bboxes, self.strides, self.num_loc_list, xs, ys, radius=self.radius) else: is_in_boxes = reg_targets_per_im.min(dim=2)[0] > 0 max_reg_targets_per_im = reg_targets_per_im.max(dim=2)[0] is_cared_in_the_level = (max_reg_targets_per_im >= loc_to_size_range[:, [0]]) & (max_reg_targets_per_im <= loc_to_size_range[:, [1]]) locations_to_gt_area = area[None].repeat(len(locations), 1) locations_to_gt_area[is_in_boxes == 0] = INF locations_to_gt_area[is_cared_in_the_level == 0] = INF (locations_to_min_area, locations_to_gt_inds) = locations_to_gt_area.min(dim=1) reg_targets_per_im = reg_targets_per_im[range(len(locations)), locations_to_gt_inds] bezier_targets_per_im = bezier_targets_per_im[range(len(locations)), locations_to_gt_inds] labels_per_im = labels_per_im[locations_to_gt_inds] labels_per_im[locations_to_min_area == INF] = self.num_classes labels.append(labels_per_im) reg_targets.append(reg_targets_per_im) bezier_targets.append(bezier_targets_per_im) training_targets = {'labels': labels, 'reg_targets': reg_targets, 'bezier_targets': bezier_targets} training_targets = {k: self._transpose(v, num_loc_list) for (k, v) in training_targets.items()} reg_targets = training_targets['reg_targets'] bezier_targets = training_targets['bezier_targets'] for l in range(len(reg_targets)): reg_targets[l] = reg_targets[l] / float(self.strides[l]) bezier_targets[l] = bezier_targets[l] / float(self.strides[l]) return training_targets
dict-guided
positive
def main(self): game_state = game.GameState() <DeepExtract> action = np.zeros([self.Num_action]) (state, _, _) = game_state.frame_step(action) state = self.reshape_input(state) for i in range(self.Num_skipping * self.Num_stacking): self.state_set.append(state) state = state </DeepExtract> <DeepExtract> self.state_set.append(state) state_in = np.zeros((self.img_size, self.img_size, self.Num_colorChannel * self.Num_stacking)) for stack_frame in range(self.Num_stacking): state_in[:, :, self.Num_colorChannel * stack_frame:self.Num_colorChannel * (stack_frame + 1)] = self.state_set[-1 - self.Num_skipping * stack_frame] del self.state_set[0] state_in = np.uint8(state_in) stacked_state = state_in </DeepExtract> while True: <DeepExtract> progress = '' if self.step <= self.Num_Exploration: progress = 'Exploring' elif self.step <= self.Num_Exploration + self.Num_Training: progress = 'Training' elif self.step <= self.Num_Exploration + self.Num_Training + self.Num_Testing: progress = 'Testing' else: progress = 'Finished' self.progress = progress </DeepExtract> <DeepExtract> action = np.zeros([self.Num_action]) action_index = 0 if self.progress == 'Exploring': action_index = random.randint(0, self.Num_action - 1) action[action_index] = 1 elif self.progress == 'Training': if random.random() < self.epsilon: action_index = random.randint(0, self.Num_action - 1) action[action_index] = 1 else: Q_value = self.Q_action.eval(feed_dict={self.input: [stacked_state], self.tau_min: self.sample_min, self.tau_max: self.sample_max, self.num_sample: self.Num_quantile}) action_index = np.argmax(Q_value) action[action_index] = 1 self.maxQ = np.max(Q_value) if self.epsilon > self.final_epsilon: self.epsilon -= self.first_epsilon / self.Num_Training elif self.progress == 'Testing': Q_value = self.Q_action.eval(feed_dict={self.input: [stacked_state], self.tau_min: self.sample_min, self.tau_max: self.sample_max, self.num_sample: self.Num_quantile}) action_index = np.argmax(Q_value) action[action_index] = 1 self.maxQ = np.max(Q_value) self.epsilon = 0 action = action </DeepExtract> (next_state, reward, terminal) = game_state.frame_step(action) <DeepExtract> state_out = cv2.resize(next_state, (self.img_size, self.img_size)) if self.Num_colorChannel == 1: state_out = cv2.cvtColor(state_out, cv2.COLOR_BGR2GRAY) state_out = np.reshape(state_out, (self.img_size, self.img_size, 1)) state_out = np.uint8(state_out) next_state = state_out </DeepExtract> <DeepExtract> self.state_set.append(next_state) state_in = np.zeros((self.img_size, self.img_size, self.Num_colorChannel * self.Num_stacking)) for stack_frame in range(self.Num_stacking): state_in[:, :, self.Num_colorChannel * stack_frame:self.Num_colorChannel * (stack_frame + 1)] = self.state_set[-1 - self.Num_skipping * stack_frame] del self.state_set[0] state_in = np.uint8(state_in) stacked_next_state = state_in </DeepExtract> <DeepExtract> if len(self.replay_memory) >= self.Num_replay_memory: del self.replay_memory[0] self.replay_memory.append([stacked_state, action, reward, stacked_next_state, terminal]) </DeepExtract> if self.progress == 'Training': if self.step % self.Num_update_target == 0: <DeepExtract> trainable_variables = tf.trainable_variables() trainable_variables_network = [var for var in trainable_variables if var.name.startswith('network')] trainable_variables_target = [var for var in trainable_variables if var.name.startswith('target')] for i in range(len(trainable_variables_network)): self.sess.run(tf.assign(trainable_variables_target[i], trainable_variables_network[i])) </DeepExtract> <DeepExtract> minibatch = random.sample(self.replay_memory, self.Num_batch) state_batch = [batch[0] for batch in minibatch] action_batch = [batch[1] for batch in minibatch] reward_batch = [batch[2] for batch in minibatch] next_state_batch = [batch[3] for batch in minibatch] terminal_batch = [batch[4] for batch in minibatch] Q_batch = self.Q_action.eval(feed_dict={self.input: next_state_batch, self.tau_min: 0.0, self.tau_max: 1.0, self.num_sample: self.Num_quantile}) theta_batch = self.logits_target.eval(feed_dict={self.input_target: next_state_batch, self.tau_min_target: 0.0, self.tau_max_target: 1.0, self.num_sample_target: self.Num_quantile_target}) theta_target = [] for i in range(len(minibatch)): theta_target.append([]) for j in range(self.Num_quantile_target): if terminal_batch[i] == True: theta_target[i].append(reward_batch[i]) else: theta_target[i].append(reward_batch[i] + self.gamma * theta_batch[j, i, np.argmax(Q_batch[i])]) action_binary = np.zeros([self.Num_quantile, self.Num_batch, self.Num_action]) for i in range(len(action_batch)): action_batch_max = np.argmax(action_batch[i]) action_binary[:, i, action_batch_max] = 1 (_, self.loss) = self.sess.run([self.train_step, self.loss_train], feed_dict={self.input: state_batch, self.theta_target: theta_target, self.action_binary_loss: action_binary, self.tau_min: 0.0, self.tau_max: 1.0, self.num_sample: self.Num_quantile}) </DeepExtract> <DeepExtract> if self.step == self.Num_Exploration + self.Num_Training: save_path = self.saver.save(self.sess, 'saved_networks/' + self.game_name + '/' + self.date_time + '_' + self.algorithm + '/model.ckpt') print('Model saved in file: %s' % save_path) </DeepExtract> stacked_state = stacked_next_state self.score += reward self.step += 1 <DeepExtract> if self.progress != 'Exploring': if terminal: self.score_board += self.score self.maxQ_board += self.maxQ self.loss_board += self.loss if self.episode % self.Num_plot_episode == 0 and self.episode != 0 and terminal or self.progress == 'Finished': diff_step = self.step - self.step_old diff_episode = self.episode - self.episode_old tensorboard_info = [self.score_board / diff_episode, self.maxQ_board / diff_step, self.loss_board / diff_step] for i in range(len(tensorboard_info)): self.sess.run(self.update_ops[i], feed_dict={self.summary_placeholders[i]: float(tensorboard_info[i])}) summary_str = self.sess.run(self.summary_op) self.summary_writer.add_summary(summary_str, self.step) self.score_board = 0 self.maxQ_board = 0 self.loss_board = 0 self.step_old = self.step self.episode_old = self.episode else: self.step_old = self.step </DeepExtract> if terminal: <DeepExtract> print('Step: ' + str(self.step) + ' / ' + 'Episode: ' + str(self.episode) + ' / ' + 'Progress: ' + self.progress + ' / ' + 'Epsilon: ' + str(self.epsilon) + ' / ' + 'Score: ' + str(self.score)) if self.progress != 'Exploring': self.episode += 1 self.score = 0 state = self.initialization(game_state) stacked_state = self.skip_and_stack_frame(state) stacked_state = stacked_state </DeepExtract> if self.progress == 'Finished': print('Finished!') break
def main(self): game_state = game.GameState() action = np.zeros([self.Num_action]) (state, _, _) = game_state.frame_step(action) state = self.reshape_input(state) for i in range(self.Num_skipping * self.Num_stacking): self.state_set.append(state) state = state self.state_set.append(state) state_in = np.zeros((self.img_size, self.img_size, self.Num_colorChannel * self.Num_stacking)) for stack_frame in range(self.Num_stacking): state_in[:, :, self.Num_colorChannel * stack_frame:self.Num_colorChannel * (stack_frame + 1)] = self.state_set[-1 - self.Num_skipping * stack_frame] del self.state_set[0] state_in = np.uint8(state_in) stacked_state = state_in while True: progress = '' if self.step <= self.Num_Exploration: progress = 'Exploring' elif self.step <= self.Num_Exploration + self.Num_Training: progress = 'Training' elif self.step <= self.Num_Exploration + self.Num_Training + self.Num_Testing: progress = 'Testing' else: progress = 'Finished' self.progress = progress action = np.zeros([self.Num_action]) action_index = 0 if self.progress == 'Exploring': action_index = random.randint(0, self.Num_action - 1) action[action_index] = 1 elif self.progress == 'Training': if random.random() < self.epsilon: action_index = random.randint(0, self.Num_action - 1) action[action_index] = 1 else: Q_value = self.Q_action.eval(feed_dict={self.input: [stacked_state], self.tau_min: self.sample_min, self.tau_max: self.sample_max, self.num_sample: self.Num_quantile}) action_index = np.argmax(Q_value) action[action_index] = 1 self.maxQ = np.max(Q_value) if self.epsilon > self.final_epsilon: self.epsilon -= self.first_epsilon / self.Num_Training elif self.progress == 'Testing': Q_value = self.Q_action.eval(feed_dict={self.input: [stacked_state], self.tau_min: self.sample_min, self.tau_max: self.sample_max, self.num_sample: self.Num_quantile}) action_index = np.argmax(Q_value) action[action_index] = 1 self.maxQ = np.max(Q_value) self.epsilon = 0 action = action (next_state, reward, terminal) = game_state.frame_step(action) state_out = cv2.resize(next_state, (self.img_size, self.img_size)) if self.Num_colorChannel == 1: state_out = cv2.cvtColor(state_out, cv2.COLOR_BGR2GRAY) state_out = np.reshape(state_out, (self.img_size, self.img_size, 1)) state_out = np.uint8(state_out) next_state = state_out self.state_set.append(next_state) state_in = np.zeros((self.img_size, self.img_size, self.Num_colorChannel * self.Num_stacking)) for stack_frame in range(self.Num_stacking): state_in[:, :, self.Num_colorChannel * stack_frame:self.Num_colorChannel * (stack_frame + 1)] = self.state_set[-1 - self.Num_skipping * stack_frame] del self.state_set[0] state_in = np.uint8(state_in) stacked_next_state = state_in if len(self.replay_memory) >= self.Num_replay_memory: del self.replay_memory[0] self.replay_memory.append([stacked_state, action, reward, stacked_next_state, terminal]) if self.progress == 'Training': if self.step % self.Num_update_target == 0: trainable_variables = tf.trainable_variables() trainable_variables_network = [var for var in trainable_variables if var.name.startswith('network')] trainable_variables_target = [var for var in trainable_variables if var.name.startswith('target')] for i in range(len(trainable_variables_network)): self.sess.run(tf.assign(trainable_variables_target[i], trainable_variables_network[i])) minibatch = random.sample(self.replay_memory, self.Num_batch) state_batch = [batch[0] for batch in minibatch] action_batch = [batch[1] for batch in minibatch] reward_batch = [batch[2] for batch in minibatch] next_state_batch = [batch[3] for batch in minibatch] terminal_batch = [batch[4] for batch in minibatch] Q_batch = self.Q_action.eval(feed_dict={self.input: next_state_batch, self.tau_min: 0.0, self.tau_max: 1.0, self.num_sample: self.Num_quantile}) theta_batch = self.logits_target.eval(feed_dict={self.input_target: next_state_batch, self.tau_min_target: 0.0, self.tau_max_target: 1.0, self.num_sample_target: self.Num_quantile_target}) theta_target = [] for i in range(len(minibatch)): theta_target.append([]) for j in range(self.Num_quantile_target): if terminal_batch[i] == True: theta_target[i].append(reward_batch[i]) else: theta_target[i].append(reward_batch[i] + self.gamma * theta_batch[j, i, np.argmax(Q_batch[i])]) action_binary = np.zeros([self.Num_quantile, self.Num_batch, self.Num_action]) for i in range(len(action_batch)): action_batch_max = np.argmax(action_batch[i]) action_binary[:, i, action_batch_max] = 1 (_, self.loss) = self.sess.run([self.train_step, self.loss_train], feed_dict={self.input: state_batch, self.theta_target: theta_target, self.action_binary_loss: action_binary, self.tau_min: 0.0, self.tau_max: 1.0, self.num_sample: self.Num_quantile}) if self.step == self.Num_Exploration + self.Num_Training: save_path = self.saver.save(self.sess, 'saved_networks/' + self.game_name + '/' + self.date_time + '_' + self.algorithm + '/model.ckpt') print('Model saved in file: %s' % save_path) stacked_state = stacked_next_state self.score += reward self.step += 1 if self.progress != 'Exploring': if terminal: self.score_board += self.score self.maxQ_board += self.maxQ self.loss_board += self.loss if self.episode % self.Num_plot_episode == 0 and self.episode != 0 and terminal or self.progress == 'Finished': diff_step = self.step - self.step_old diff_episode = self.episode - self.episode_old tensorboard_info = [self.score_board / diff_episode, self.maxQ_board / diff_step, self.loss_board / diff_step] for i in range(len(tensorboard_info)): self.sess.run(self.update_ops[i], feed_dict={self.summary_placeholders[i]: float(tensorboard_info[i])}) summary_str = self.sess.run(self.summary_op) self.summary_writer.add_summary(summary_str, self.step) self.score_board = 0 self.maxQ_board = 0 self.loss_board = 0 self.step_old = self.step self.episode_old = self.episode else: self.step_old = self.step if terminal: print('Step: ' + str(self.step) + ' / ' + 'Episode: ' + str(self.episode) + ' / ' + 'Progress: ' + self.progress + ' / ' + 'Epsilon: ' + str(self.epsilon) + ' / ' + 'Score: ' + str(self.score)) if self.progress != 'Exploring': self.episode += 1 self.score = 0 state = self.initialization(game_state) stacked_state = self.skip_and_stack_frame(state) stacked_state = stacked_state if self.progress == 'Finished': print('Finished!') break
DRL
positive
@dxpy.entry_point('main') def main(rep1_ta, ctl1_ta, rep1_xcor, rep1_paired_end, chrom_sizes, genomesize, narrowpeak_as, gappedpeak_as, broadpeak_as, rep2_ta=None, ctl2_ta=None, rep2_xcor=None, rep2_paired_end=None, fragment_length=None): rep1_ta_file = dxpy.DXFile(rep1_ta) dxpy.download_dxfile(rep1_ta_file.get_id(), rep1_ta_file.name) rep1_ta_filename = rep1_ta_file.name ntags_rep1 = common.count_lines(rep1_ta_filename) simplicate_experiment = rep1_ta and (not rep2_ta) if simplicate_experiment: logger.info('No rep2 tags specified so processing as a simplicate experiment.') else: logger.info('Rep1 and rep2 tags specified so processing as a replicated experiment.') if not simplicate_experiment: assert rep1_paired_end == rep2_paired_end, 'Mixed PE/SE not supported' rep2_ta_file = dxpy.DXFile(rep2_ta) dxpy.download_dxfile(rep2_ta_file.get_id(), rep2_ta_file.name) rep2_ta_filename = rep2_ta_file.name ntags_rep2 = common.count_lines(rep2_ta_filename) paired_end = rep1_paired_end unary_control = ctl1_ta == ctl2_ta or not ctl2_ta ctl1_ta_file = dxpy.DXFile(ctl1_ta) dxpy.download_dxfile(ctl1_ta_file.get_id(), ctl1_ta_file.name) ctl1_ta_filename = ctl1_ta_file.name if not unary_control: ctl2_ta_file = dxpy.DXFile(ctl2_ta) dxpy.download_dxfile(ctl2_ta_file.get_id(), ctl2_ta_file.name) ctl2_ta_filename = ctl2_ta_file.name else: ctl2_ta_file = ctl1_ta_file ctl2_ta_filename = ctl1_ta_file.name ntags_ctl1 = common.count_lines(ctl1_ta_filename) ntags_ctl2 = common.count_lines(ctl2_ta_filename) rep1_control = ctl1_ta rep1_ctl_msg = 'control rep1' rep2_control = ctl2_ta rep2_ctl_msg = 'control rep2' rep_info = [(ntags_rep1, 'replicate 1', rep1_ta_filename)] if not simplicate_experiment: rep_info.append((ntags_rep2, 'replicate 2', rep2_ta_filename)) rep_info.extend([(ntags_ctl1, 'control 1', ctl1_ta_filename), (ntags_ctl2, 'control 2', ctl2_ta_filename)]) for (n, name, filename) in rep_info: logger.info('Found %d tags in %s file %s' % (n, name, filename)) subprocess.check_output('ls -l', shell=True, stderr=subprocess.STDOUT) if not simplicate_experiment: pool_applet = dxpy.find_one_data_object(classname='applet', name='pool', project=dxpy.PROJECT_CONTEXT_ID, zero_ok=False, more_ok=False, return_handler=True) pool_replicates_subjob = pool_applet.run({'inputs': [rep1_ta, rep2_ta], 'prefix': 'pooled_reps'}, name='Pool replicates') pooled_replicates = pool_replicates_subjob.get_output_ref('pooled') <DeepExtract> xcor_only_applet = dxpy.find_one_data_object(classname='applet', name='xcor_only', project=dxpy.PROJECT_CONTEXT_ID, zero_ok=False, more_ok=False, return_handler=True) pooled_replicates_xcor_subjob = xcor_only_applet.run({'input_tagAlign': pooled_replicates, 'paired_end': paired_end}, name='Pool cross-correlation') </DeepExtract> if unary_control: logger.info('Only one control supplied.') if not simplicate_experiment: logger.info('Using one control for both replicate 1 and 2 and for the pool.') rep2_control = rep1_control control_for_pool = rep1_control pool_ctl_msg = 'one control' else: pool_controls_subjob = pool_applet.run({'inputs': [ctl1_ta, ctl2_ta], 'prefix': 'PL_ctls'}, name='Pool controls') pooled_controls = pool_controls_subjob.get_output_ref('pooled') control_for_pool = pooled_controls pool_ctl_msg = 'pooled controls' ratio_ctl_reads = float(ntags_ctl1) / float(ntags_ctl2) if ratio_ctl_reads < 1: ratio_ctl_reads = 1 / ratio_ctl_reads ratio_cutoff = 1.2 if ratio_ctl_reads > ratio_cutoff: logger.info('Number of reads in controls differ by > factor of %f. Using pooled controls.' % ratio_cutoff) rep1_control = pooled_controls rep2_control = pooled_controls elif ntags_ctl1 < ntags_rep1: logger.info('Fewer reads in control replicate 1 than experiment replicate 1. Using pooled controls for replicate 1.') rep1_control = pooled_controls rep1_ctl_msg = 'pooled controls' elif not simplicate_experiment and ntags_ctl2 < ntags_rep2: logger.info('Fewer reads in control replicate 2 than experiment replicate 2. Using pooled controls for replicate 2.') rep2_control = pooled_controls rep2_ctl_msg = 'pooled controls' else: logger.info('Using distinct controls for replicate 1 and 2.') rep1_control = ctl1_ta rep2_control = ctl2_ta rep1_ctl_msg = 'control rep1' rep2_ctl_msg = 'control rep2' pseudoreplicator_applet = dxpy.find_one_data_object(classname='applet', name='pseudoreplicator', zero_ok=False, more_ok=False, return_handler=True) rep1_pr_subjob = pseudoreplicator_applet.run({'input_tags': rep1_ta}) if not simplicate_experiment: rep2_pr_subjob = pseudoreplicator_applet.run({'input_tags': rep2_ta}) pool_pr1_subjob = pool_applet.run({'inputs': [rep1_pr_subjob.get_output_ref('pseudoreplicate1'), rep2_pr_subjob.get_output_ref('pseudoreplicate1')], 'prefix': 'PPR1'}) pool_pr2_subjob = pool_applet.run({'inputs': [rep1_pr_subjob.get_output_ref('pseudoreplicate2'), rep2_pr_subjob.get_output_ref('pseudoreplicate2')], 'prefix': 'PPR2'}) common_args = {'chrom_sizes': chrom_sizes, 'genomesize': genomesize, 'narrowpeak_as': narrowpeak_as, 'gappedpeak_as': gappedpeak_as, 'broadpeak_as': broadpeak_as} if fragment_length is not None: common_args.update({'fragment_length': fragment_length}) common_args.update({'prefix': 'r1'}) <DeepExtract> macs2_applet = dxpy.find_one_data_object(classname='applet', name='macs2', project=dxpy.PROJECT_CONTEXT_ID, zero_ok=False, more_ok=False, return_handler=True) macs2_input = {'experiment': rep1_ta, 'control': rep1_control, 'xcor_scores_input': rep1_xcor, 'chrom_sizes': chrom_sizes, 'narrowpeak_as': narrowpeak_as, 'gappedpeak_as': gappedpeak_as, 'broadpeak_as': broadpeak_as, 'genomesize': genomesize} if prefix: macs2_input.update({'prefix': prefix}) if fragment_length is not None: macs2_input.update({'fragment_length': fragment_length}) rep1_peaks_subjob = macs2_applet.run(macs2_input, name=name) </DeepExtract> common_args.update({'prefix': 'r1pr1'}) <DeepExtract> macs2_applet = dxpy.find_one_data_object(classname='applet', name='macs2', project=dxpy.PROJECT_CONTEXT_ID, zero_ok=False, more_ok=False, return_handler=True) macs2_input = {'experiment': rep1_pr_subjob.get_output_ref('pseudoreplicate1'), 'control': rep1_control, 'xcor_scores_input': rep1_xcor, 'chrom_sizes': chrom_sizes, 'narrowpeak_as': narrowpeak_as, 'gappedpeak_as': gappedpeak_as, 'broadpeak_as': broadpeak_as, 'genomesize': genomesize} if prefix: macs2_input.update({'prefix': prefix}) if fragment_length is not None: macs2_input.update({'fragment_length': fragment_length}) rep1pr1_peaks_subjob = macs2_applet.run(macs2_input, name=name) </DeepExtract> common_args.update({'prefix': 'r1pr2'}) <DeepExtract> macs2_applet = dxpy.find_one_data_object(classname='applet', name='macs2', project=dxpy.PROJECT_CONTEXT_ID, zero_ok=False, more_ok=False, return_handler=True) macs2_input = {'experiment': rep1_pr_subjob.get_output_ref('pseudoreplicate2'), 'control': rep1_control, 'xcor_scores_input': rep1_xcor, 'chrom_sizes': chrom_sizes, 'narrowpeak_as': narrowpeak_as, 'gappedpeak_as': gappedpeak_as, 'broadpeak_as': broadpeak_as, 'genomesize': genomesize} if prefix: macs2_input.update({'prefix': prefix}) if fragment_length is not None: macs2_input.update({'fragment_length': fragment_length}) rep1pr2_peaks_subjob = macs2_applet.run(macs2_input, name=name) </DeepExtract> if not simplicate_experiment: common_args.update({'prefix': 'r2'}) <DeepExtract> macs2_applet = dxpy.find_one_data_object(classname='applet', name='macs2', project=dxpy.PROJECT_CONTEXT_ID, zero_ok=False, more_ok=False, return_handler=True) macs2_input = {'experiment': rep2_ta, 'control': rep2_control, 'xcor_scores_input': rep2_xcor, 'chrom_sizes': chrom_sizes, 'narrowpeak_as': narrowpeak_as, 'gappedpeak_as': gappedpeak_as, 'broadpeak_as': broadpeak_as, 'genomesize': genomesize} if prefix: macs2_input.update({'prefix': prefix}) if fragment_length is not None: macs2_input.update({'fragment_length': fragment_length}) rep2_peaks_subjob = macs2_applet.run(macs2_input, name=name) </DeepExtract> common_args.update({'prefix': 'r2pr1'}) <DeepExtract> macs2_applet = dxpy.find_one_data_object(classname='applet', name='macs2', project=dxpy.PROJECT_CONTEXT_ID, zero_ok=False, more_ok=False, return_handler=True) macs2_input = {'experiment': rep2_pr_subjob.get_output_ref('pseudoreplicate1'), 'control': rep2_control, 'xcor_scores_input': rep2_xcor, 'chrom_sizes': chrom_sizes, 'narrowpeak_as': narrowpeak_as, 'gappedpeak_as': gappedpeak_as, 'broadpeak_as': broadpeak_as, 'genomesize': genomesize} if prefix: macs2_input.update({'prefix': prefix}) if fragment_length is not None: macs2_input.update({'fragment_length': fragment_length}) rep2pr1_peaks_subjob = macs2_applet.run(macs2_input, name=name) </DeepExtract> common_args.update({'prefix': 'r2pr2'}) <DeepExtract> macs2_applet = dxpy.find_one_data_object(classname='applet', name='macs2', project=dxpy.PROJECT_CONTEXT_ID, zero_ok=False, more_ok=False, return_handler=True) macs2_input = {'experiment': rep2_pr_subjob.get_output_ref('pseudoreplicate2'), 'control': rep2_control, 'xcor_scores_input': rep2_xcor, 'chrom_sizes': chrom_sizes, 'narrowpeak_as': narrowpeak_as, 'gappedpeak_as': gappedpeak_as, 'broadpeak_as': broadpeak_as, 'genomesize': genomesize} if prefix: macs2_input.update({'prefix': prefix}) if fragment_length is not None: macs2_input.update({'fragment_length': fragment_length}) rep2pr2_peaks_subjob = macs2_applet.run(macs2_input, name=name) </DeepExtract> common_args.update({'prefix': 'pool'}) <DeepExtract> macs2_applet = dxpy.find_one_data_object(classname='applet', name='macs2', project=dxpy.PROJECT_CONTEXT_ID, zero_ok=False, more_ok=False, return_handler=True) macs2_input = {'experiment': pooled_replicates, 'control': control_for_pool, 'xcor_scores_input': pooled_replicates_xcor_subjob.get_output_ref('CC_scores_file'), 'chrom_sizes': chrom_sizes, 'narrowpeak_as': narrowpeak_as, 'gappedpeak_as': gappedpeak_as, 'broadpeak_as': broadpeak_as, 'genomesize': genomesize} if prefix: macs2_input.update({'prefix': prefix}) if fragment_length is not None: macs2_input.update({'fragment_length': fragment_length}) pooled_peaks_subjob = macs2_applet.run(macs2_input, name=name) </DeepExtract> common_args.update({'prefix': 'ppr1'}) <DeepExtract> macs2_applet = dxpy.find_one_data_object(classname='applet', name='macs2', project=dxpy.PROJECT_CONTEXT_ID, zero_ok=False, more_ok=False, return_handler=True) macs2_input = {'experiment': pool_pr1_subjob.get_output_ref('pooled'), 'control': control_for_pool, 'xcor_scores_input': pooled_replicates_xcor_subjob.get_output_ref('CC_scores_file'), 'chrom_sizes': chrom_sizes, 'narrowpeak_as': narrowpeak_as, 'gappedpeak_as': gappedpeak_as, 'broadpeak_as': broadpeak_as, 'genomesize': genomesize} if prefix: macs2_input.update({'prefix': prefix}) if fragment_length is not None: macs2_input.update({'fragment_length': fragment_length}) pooledpr1_peaks_subjob = macs2_applet.run(macs2_input, name=name) </DeepExtract> common_args.update({'prefix': 'ppr2'}) <DeepExtract> macs2_applet = dxpy.find_one_data_object(classname='applet', name='macs2', project=dxpy.PROJECT_CONTEXT_ID, zero_ok=False, more_ok=False, return_handler=True) macs2_input = {'experiment': pool_pr2_subjob.get_output_ref('pooled'), 'control': control_for_pool, 'xcor_scores_input': pooled_replicates_xcor_subjob.get_output_ref('CC_scores_file'), 'chrom_sizes': chrom_sizes, 'narrowpeak_as': narrowpeak_as, 'gappedpeak_as': gappedpeak_as, 'broadpeak_as': broadpeak_as, 'genomesize': genomesize} if prefix: macs2_input.update({'prefix': prefix}) if fragment_length is not None: macs2_input.update({'fragment_length': fragment_length}) pooledpr2_peaks_subjob = macs2_applet.run(macs2_input, name=name) </DeepExtract> output = {'rep1_narrowpeaks': rep1_peaks_subjob.get_output_ref('narrowpeaks'), 'rep1_gappedpeaks': rep1_peaks_subjob.get_output_ref('gappedpeaks'), 'rep1_broadpeaks': rep1_peaks_subjob.get_output_ref('broadpeaks'), 'rep1_narrowpeaks_bb': rep1_peaks_subjob.get_output_ref('narrowpeaks_bb'), 'rep1_gappedpeaks_bb': rep1_peaks_subjob.get_output_ref('gappedpeaks_bb'), 'rep1_broadpeaks_bb': rep1_peaks_subjob.get_output_ref('broadpeaks_bb'), 'rep1_fc_signal': rep1_peaks_subjob.get_output_ref('fc_signal'), 'rep1_pvalue_signal': rep1_peaks_subjob.get_output_ref('pvalue_signal'), 'rep1pr1_narrowpeaks': rep1pr1_peaks_subjob.get_output_ref('narrowpeaks'), 'rep1pr1_gappedpeaks': rep1pr1_peaks_subjob.get_output_ref('gappedpeaks'), 'rep1pr1_broadpeaks': rep1pr1_peaks_subjob.get_output_ref('broadpeaks'), 'rep1pr1_fc_signal': rep1pr1_peaks_subjob.get_output_ref('fc_signal'), 'rep1pr1_pvalue_signal': rep1pr1_peaks_subjob.get_output_ref('pvalue_signal'), 'rep1pr2_narrowpeaks': rep1pr2_peaks_subjob.get_output_ref('narrowpeaks'), 'rep1pr2_gappedpeaks': rep1pr2_peaks_subjob.get_output_ref('gappedpeaks'), 'rep1pr2_broadpeaks': rep1pr2_peaks_subjob.get_output_ref('broadpeaks'), 'rep1pr2_fc_signal': rep1pr2_peaks_subjob.get_output_ref('fc_signal'), 'rep1pr2_pvalue_signal': rep1pr2_peaks_subjob.get_output_ref('pvalue_signal')} if not simplicate_experiment: output.update({'rep2_narrowpeaks': rep2_peaks_subjob.get_output_ref('narrowpeaks'), 'rep2_gappedpeaks': rep2_peaks_subjob.get_output_ref('gappedpeaks'), 'rep2_broadpeaks': rep2_peaks_subjob.get_output_ref('broadpeaks'), 'rep2_narrowpeaks_bb': rep2_peaks_subjob.get_output_ref('narrowpeaks_bb'), 'rep2_gappedpeaks_bb': rep2_peaks_subjob.get_output_ref('gappedpeaks_bb'), 'rep2_broadpeaks_bb': rep2_peaks_subjob.get_output_ref('broadpeaks_bb'), 'rep2_fc_signal': rep2_peaks_subjob.get_output_ref('fc_signal'), 'rep2_pvalue_signal': rep2_peaks_subjob.get_output_ref('pvalue_signal'), 'rep2pr1_narrowpeaks': rep2pr1_peaks_subjob.get_output_ref('narrowpeaks'), 'rep2pr1_gappedpeaks': rep2pr1_peaks_subjob.get_output_ref('gappedpeaks'), 'rep2pr1_broadpeaks': rep2pr1_peaks_subjob.get_output_ref('broadpeaks'), 'rep2pr1_fc_signal': rep2pr1_peaks_subjob.get_output_ref('fc_signal'), 'rep2pr1_pvalue_signal': rep2pr1_peaks_subjob.get_output_ref('pvalue_signal'), 'rep2pr2_narrowpeaks': rep2pr2_peaks_subjob.get_output_ref('narrowpeaks'), 'rep2pr2_gappedpeaks': rep2pr2_peaks_subjob.get_output_ref('gappedpeaks'), 'rep2pr2_broadpeaks': rep2pr2_peaks_subjob.get_output_ref('broadpeaks'), 'rep2pr2_fc_signal': rep2pr2_peaks_subjob.get_output_ref('fc_signal'), 'rep2pr2_pvalue_signal': rep2pr2_peaks_subjob.get_output_ref('pvalue_signal'), 'pooled_narrowpeaks': pooled_peaks_subjob.get_output_ref('narrowpeaks'), 'pooled_gappedpeaks': pooled_peaks_subjob.get_output_ref('gappedpeaks'), 'pooled_broadpeaks': pooled_peaks_subjob.get_output_ref('broadpeaks'), 'pooled_narrowpeaks_bb': pooled_peaks_subjob.get_output_ref('narrowpeaks_bb'), 'pooled_gappedpeaks_bb': pooled_peaks_subjob.get_output_ref('gappedpeaks_bb'), 'pooled_broadpeaks_bb': pooled_peaks_subjob.get_output_ref('broadpeaks_bb'), 'pooled_fc_signal': pooled_peaks_subjob.get_output_ref('fc_signal'), 'pooled_pvalue_signal': pooled_peaks_subjob.get_output_ref('pvalue_signal'), 'pooledpr1_narrowpeaks': pooledpr1_peaks_subjob.get_output_ref('narrowpeaks'), 'pooledpr1_gappedpeaks': pooledpr1_peaks_subjob.get_output_ref('gappedpeaks'), 'pooledpr1_broadpeaks': pooledpr1_peaks_subjob.get_output_ref('broadpeaks'), 'pooledpr1_fc_signal': pooledpr1_peaks_subjob.get_output_ref('fc_signal'), 'pooledpr1_pvalue_signal': pooledpr1_peaks_subjob.get_output_ref('pvalue_signal'), 'pooledpr2_narrowpeaks': pooledpr2_peaks_subjob.get_output_ref('narrowpeaks'), 'pooledpr2_gappedpeaks': pooledpr2_peaks_subjob.get_output_ref('gappedpeaks'), 'pooledpr2_broadpeaks': pooledpr2_peaks_subjob.get_output_ref('broadpeaks'), 'pooledpr2_fc_signal': pooledpr2_peaks_subjob.get_output_ref('fc_signal'), 'pooledpr2_pvalue_signal': pooledpr2_peaks_subjob.get_output_ref('pvalue_signal')}) return output
@dxpy.entry_point('main') def main(rep1_ta, ctl1_ta, rep1_xcor, rep1_paired_end, chrom_sizes, genomesize, narrowpeak_as, gappedpeak_as, broadpeak_as, rep2_ta=None, ctl2_ta=None, rep2_xcor=None, rep2_paired_end=None, fragment_length=None): rep1_ta_file = dxpy.DXFile(rep1_ta) dxpy.download_dxfile(rep1_ta_file.get_id(), rep1_ta_file.name) rep1_ta_filename = rep1_ta_file.name ntags_rep1 = common.count_lines(rep1_ta_filename) simplicate_experiment = rep1_ta and (not rep2_ta) if simplicate_experiment: logger.info('No rep2 tags specified so processing as a simplicate experiment.') else: logger.info('Rep1 and rep2 tags specified so processing as a replicated experiment.') if not simplicate_experiment: assert rep1_paired_end == rep2_paired_end, 'Mixed PE/SE not supported' rep2_ta_file = dxpy.DXFile(rep2_ta) dxpy.download_dxfile(rep2_ta_file.get_id(), rep2_ta_file.name) rep2_ta_filename = rep2_ta_file.name ntags_rep2 = common.count_lines(rep2_ta_filename) paired_end = rep1_paired_end unary_control = ctl1_ta == ctl2_ta or not ctl2_ta ctl1_ta_file = dxpy.DXFile(ctl1_ta) dxpy.download_dxfile(ctl1_ta_file.get_id(), ctl1_ta_file.name) ctl1_ta_filename = ctl1_ta_file.name if not unary_control: ctl2_ta_file = dxpy.DXFile(ctl2_ta) dxpy.download_dxfile(ctl2_ta_file.get_id(), ctl2_ta_file.name) ctl2_ta_filename = ctl2_ta_file.name else: ctl2_ta_file = ctl1_ta_file ctl2_ta_filename = ctl1_ta_file.name ntags_ctl1 = common.count_lines(ctl1_ta_filename) ntags_ctl2 = common.count_lines(ctl2_ta_filename) rep1_control = ctl1_ta rep1_ctl_msg = 'control rep1' rep2_control = ctl2_ta rep2_ctl_msg = 'control rep2' rep_info = [(ntags_rep1, 'replicate 1', rep1_ta_filename)] if not simplicate_experiment: rep_info.append((ntags_rep2, 'replicate 2', rep2_ta_filename)) rep_info.extend([(ntags_ctl1, 'control 1', ctl1_ta_filename), (ntags_ctl2, 'control 2', ctl2_ta_filename)]) for (n, name, filename) in rep_info: logger.info('Found %d tags in %s file %s' % (n, name, filename)) subprocess.check_output('ls -l', shell=True, stderr=subprocess.STDOUT) if not simplicate_experiment: pool_applet = dxpy.find_one_data_object(classname='applet', name='pool', project=dxpy.PROJECT_CONTEXT_ID, zero_ok=False, more_ok=False, return_handler=True) pool_replicates_subjob = pool_applet.run({'inputs': [rep1_ta, rep2_ta], 'prefix': 'pooled_reps'}, name='Pool replicates') pooled_replicates = pool_replicates_subjob.get_output_ref('pooled') xcor_only_applet = dxpy.find_one_data_object(classname='applet', name='xcor_only', project=dxpy.PROJECT_CONTEXT_ID, zero_ok=False, more_ok=False, return_handler=True) pooled_replicates_xcor_subjob = xcor_only_applet.run({'input_tagAlign': pooled_replicates, 'paired_end': paired_end}, name='Pool cross-correlation') if unary_control: logger.info('Only one control supplied.') if not simplicate_experiment: logger.info('Using one control for both replicate 1 and 2 and for the pool.') rep2_control = rep1_control control_for_pool = rep1_control pool_ctl_msg = 'one control' else: pool_controls_subjob = pool_applet.run({'inputs': [ctl1_ta, ctl2_ta], 'prefix': 'PL_ctls'}, name='Pool controls') pooled_controls = pool_controls_subjob.get_output_ref('pooled') control_for_pool = pooled_controls pool_ctl_msg = 'pooled controls' ratio_ctl_reads = float(ntags_ctl1) / float(ntags_ctl2) if ratio_ctl_reads < 1: ratio_ctl_reads = 1 / ratio_ctl_reads ratio_cutoff = 1.2 if ratio_ctl_reads > ratio_cutoff: logger.info('Number of reads in controls differ by > factor of %f. Using pooled controls.' % ratio_cutoff) rep1_control = pooled_controls rep2_control = pooled_controls elif ntags_ctl1 < ntags_rep1: logger.info('Fewer reads in control replicate 1 than experiment replicate 1. Using pooled controls for replicate 1.') rep1_control = pooled_controls rep1_ctl_msg = 'pooled controls' elif not simplicate_experiment and ntags_ctl2 < ntags_rep2: logger.info('Fewer reads in control replicate 2 than experiment replicate 2. Using pooled controls for replicate 2.') rep2_control = pooled_controls rep2_ctl_msg = 'pooled controls' else: logger.info('Using distinct controls for replicate 1 and 2.') rep1_control = ctl1_ta rep2_control = ctl2_ta rep1_ctl_msg = 'control rep1' rep2_ctl_msg = 'control rep2' pseudoreplicator_applet = dxpy.find_one_data_object(classname='applet', name='pseudoreplicator', zero_ok=False, more_ok=False, return_handler=True) rep1_pr_subjob = pseudoreplicator_applet.run({'input_tags': rep1_ta}) if not simplicate_experiment: rep2_pr_subjob = pseudoreplicator_applet.run({'input_tags': rep2_ta}) pool_pr1_subjob = pool_applet.run({'inputs': [rep1_pr_subjob.get_output_ref('pseudoreplicate1'), rep2_pr_subjob.get_output_ref('pseudoreplicate1')], 'prefix': 'PPR1'}) pool_pr2_subjob = pool_applet.run({'inputs': [rep1_pr_subjob.get_output_ref('pseudoreplicate2'), rep2_pr_subjob.get_output_ref('pseudoreplicate2')], 'prefix': 'PPR2'}) common_args = {'chrom_sizes': chrom_sizes, 'genomesize': genomesize, 'narrowpeak_as': narrowpeak_as, 'gappedpeak_as': gappedpeak_as, 'broadpeak_as': broadpeak_as} if fragment_length is not None: common_args.update({'fragment_length': fragment_length}) common_args.update({'prefix': 'r1'}) macs2_applet = dxpy.find_one_data_object(classname='applet', name='macs2', project=dxpy.PROJECT_CONTEXT_ID, zero_ok=False, more_ok=False, return_handler=True) macs2_input = {'experiment': rep1_ta, 'control': rep1_control, 'xcor_scores_input': rep1_xcor, 'chrom_sizes': chrom_sizes, 'narrowpeak_as': narrowpeak_as, 'gappedpeak_as': gappedpeak_as, 'broadpeak_as': broadpeak_as, 'genomesize': genomesize} if prefix: macs2_input.update({'prefix': prefix}) if fragment_length is not None: macs2_input.update({'fragment_length': fragment_length}) rep1_peaks_subjob = macs2_applet.run(macs2_input, name=name) common_args.update({'prefix': 'r1pr1'}) macs2_applet = dxpy.find_one_data_object(classname='applet', name='macs2', project=dxpy.PROJECT_CONTEXT_ID, zero_ok=False, more_ok=False, return_handler=True) macs2_input = {'experiment': rep1_pr_subjob.get_output_ref('pseudoreplicate1'), 'control': rep1_control, 'xcor_scores_input': rep1_xcor, 'chrom_sizes': chrom_sizes, 'narrowpeak_as': narrowpeak_as, 'gappedpeak_as': gappedpeak_as, 'broadpeak_as': broadpeak_as, 'genomesize': genomesize} if prefix: macs2_input.update({'prefix': prefix}) if fragment_length is not None: macs2_input.update({'fragment_length': fragment_length}) rep1pr1_peaks_subjob = macs2_applet.run(macs2_input, name=name) common_args.update({'prefix': 'r1pr2'}) macs2_applet = dxpy.find_one_data_object(classname='applet', name='macs2', project=dxpy.PROJECT_CONTEXT_ID, zero_ok=False, more_ok=False, return_handler=True) macs2_input = {'experiment': rep1_pr_subjob.get_output_ref('pseudoreplicate2'), 'control': rep1_control, 'xcor_scores_input': rep1_xcor, 'chrom_sizes': chrom_sizes, 'narrowpeak_as': narrowpeak_as, 'gappedpeak_as': gappedpeak_as, 'broadpeak_as': broadpeak_as, 'genomesize': genomesize} if prefix: macs2_input.update({'prefix': prefix}) if fragment_length is not None: macs2_input.update({'fragment_length': fragment_length}) rep1pr2_peaks_subjob = macs2_applet.run(macs2_input, name=name) if not simplicate_experiment: common_args.update({'prefix': 'r2'}) macs2_applet = dxpy.find_one_data_object(classname='applet', name='macs2', project=dxpy.PROJECT_CONTEXT_ID, zero_ok=False, more_ok=False, return_handler=True) macs2_input = {'experiment': rep2_ta, 'control': rep2_control, 'xcor_scores_input': rep2_xcor, 'chrom_sizes': chrom_sizes, 'narrowpeak_as': narrowpeak_as, 'gappedpeak_as': gappedpeak_as, 'broadpeak_as': broadpeak_as, 'genomesize': genomesize} if prefix: macs2_input.update({'prefix': prefix}) if fragment_length is not None: macs2_input.update({'fragment_length': fragment_length}) rep2_peaks_subjob = macs2_applet.run(macs2_input, name=name) common_args.update({'prefix': 'r2pr1'}) macs2_applet = dxpy.find_one_data_object(classname='applet', name='macs2', project=dxpy.PROJECT_CONTEXT_ID, zero_ok=False, more_ok=False, return_handler=True) macs2_input = {'experiment': rep2_pr_subjob.get_output_ref('pseudoreplicate1'), 'control': rep2_control, 'xcor_scores_input': rep2_xcor, 'chrom_sizes': chrom_sizes, 'narrowpeak_as': narrowpeak_as, 'gappedpeak_as': gappedpeak_as, 'broadpeak_as': broadpeak_as, 'genomesize': genomesize} if prefix: macs2_input.update({'prefix': prefix}) if fragment_length is not None: macs2_input.update({'fragment_length': fragment_length}) rep2pr1_peaks_subjob = macs2_applet.run(macs2_input, name=name) common_args.update({'prefix': 'r2pr2'}) macs2_applet = dxpy.find_one_data_object(classname='applet', name='macs2', project=dxpy.PROJECT_CONTEXT_ID, zero_ok=False, more_ok=False, return_handler=True) macs2_input = {'experiment': rep2_pr_subjob.get_output_ref('pseudoreplicate2'), 'control': rep2_control, 'xcor_scores_input': rep2_xcor, 'chrom_sizes': chrom_sizes, 'narrowpeak_as': narrowpeak_as, 'gappedpeak_as': gappedpeak_as, 'broadpeak_as': broadpeak_as, 'genomesize': genomesize} if prefix: macs2_input.update({'prefix': prefix}) if fragment_length is not None: macs2_input.update({'fragment_length': fragment_length}) rep2pr2_peaks_subjob = macs2_applet.run(macs2_input, name=name) common_args.update({'prefix': 'pool'}) macs2_applet = dxpy.find_one_data_object(classname='applet', name='macs2', project=dxpy.PROJECT_CONTEXT_ID, zero_ok=False, more_ok=False, return_handler=True) macs2_input = {'experiment': pooled_replicates, 'control': control_for_pool, 'xcor_scores_input': pooled_replicates_xcor_subjob.get_output_ref('CC_scores_file'), 'chrom_sizes': chrom_sizes, 'narrowpeak_as': narrowpeak_as, 'gappedpeak_as': gappedpeak_as, 'broadpeak_as': broadpeak_as, 'genomesize': genomesize} if prefix: macs2_input.update({'prefix': prefix}) if fragment_length is not None: macs2_input.update({'fragment_length': fragment_length}) pooled_peaks_subjob = macs2_applet.run(macs2_input, name=name) common_args.update({'prefix': 'ppr1'}) macs2_applet = dxpy.find_one_data_object(classname='applet', name='macs2', project=dxpy.PROJECT_CONTEXT_ID, zero_ok=False, more_ok=False, return_handler=True) macs2_input = {'experiment': pool_pr1_subjob.get_output_ref('pooled'), 'control': control_for_pool, 'xcor_scores_input': pooled_replicates_xcor_subjob.get_output_ref('CC_scores_file'), 'chrom_sizes': chrom_sizes, 'narrowpeak_as': narrowpeak_as, 'gappedpeak_as': gappedpeak_as, 'broadpeak_as': broadpeak_as, 'genomesize': genomesize} if prefix: macs2_input.update({'prefix': prefix}) if fragment_length is not None: macs2_input.update({'fragment_length': fragment_length}) pooledpr1_peaks_subjob = macs2_applet.run(macs2_input, name=name) common_args.update({'prefix': 'ppr2'}) macs2_applet = dxpy.find_one_data_object(classname='applet', name='macs2', project=dxpy.PROJECT_CONTEXT_ID, zero_ok=False, more_ok=False, return_handler=True) macs2_input = {'experiment': pool_pr2_subjob.get_output_ref('pooled'), 'control': control_for_pool, 'xcor_scores_input': pooled_replicates_xcor_subjob.get_output_ref('CC_scores_file'), 'chrom_sizes': chrom_sizes, 'narrowpeak_as': narrowpeak_as, 'gappedpeak_as': gappedpeak_as, 'broadpeak_as': broadpeak_as, 'genomesize': genomesize} if prefix: macs2_input.update({'prefix': prefix}) if fragment_length is not None: macs2_input.update({'fragment_length': fragment_length}) pooledpr2_peaks_subjob = macs2_applet.run(macs2_input, name=name) output = {'rep1_narrowpeaks': rep1_peaks_subjob.get_output_ref('narrowpeaks'), 'rep1_gappedpeaks': rep1_peaks_subjob.get_output_ref('gappedpeaks'), 'rep1_broadpeaks': rep1_peaks_subjob.get_output_ref('broadpeaks'), 'rep1_narrowpeaks_bb': rep1_peaks_subjob.get_output_ref('narrowpeaks_bb'), 'rep1_gappedpeaks_bb': rep1_peaks_subjob.get_output_ref('gappedpeaks_bb'), 'rep1_broadpeaks_bb': rep1_peaks_subjob.get_output_ref('broadpeaks_bb'), 'rep1_fc_signal': rep1_peaks_subjob.get_output_ref('fc_signal'), 'rep1_pvalue_signal': rep1_peaks_subjob.get_output_ref('pvalue_signal'), 'rep1pr1_narrowpeaks': rep1pr1_peaks_subjob.get_output_ref('narrowpeaks'), 'rep1pr1_gappedpeaks': rep1pr1_peaks_subjob.get_output_ref('gappedpeaks'), 'rep1pr1_broadpeaks': rep1pr1_peaks_subjob.get_output_ref('broadpeaks'), 'rep1pr1_fc_signal': rep1pr1_peaks_subjob.get_output_ref('fc_signal'), 'rep1pr1_pvalue_signal': rep1pr1_peaks_subjob.get_output_ref('pvalue_signal'), 'rep1pr2_narrowpeaks': rep1pr2_peaks_subjob.get_output_ref('narrowpeaks'), 'rep1pr2_gappedpeaks': rep1pr2_peaks_subjob.get_output_ref('gappedpeaks'), 'rep1pr2_broadpeaks': rep1pr2_peaks_subjob.get_output_ref('broadpeaks'), 'rep1pr2_fc_signal': rep1pr2_peaks_subjob.get_output_ref('fc_signal'), 'rep1pr2_pvalue_signal': rep1pr2_peaks_subjob.get_output_ref('pvalue_signal')} if not simplicate_experiment: output.update({'rep2_narrowpeaks': rep2_peaks_subjob.get_output_ref('narrowpeaks'), 'rep2_gappedpeaks': rep2_peaks_subjob.get_output_ref('gappedpeaks'), 'rep2_broadpeaks': rep2_peaks_subjob.get_output_ref('broadpeaks'), 'rep2_narrowpeaks_bb': rep2_peaks_subjob.get_output_ref('narrowpeaks_bb'), 'rep2_gappedpeaks_bb': rep2_peaks_subjob.get_output_ref('gappedpeaks_bb'), 'rep2_broadpeaks_bb': rep2_peaks_subjob.get_output_ref('broadpeaks_bb'), 'rep2_fc_signal': rep2_peaks_subjob.get_output_ref('fc_signal'), 'rep2_pvalue_signal': rep2_peaks_subjob.get_output_ref('pvalue_signal'), 'rep2pr1_narrowpeaks': rep2pr1_peaks_subjob.get_output_ref('narrowpeaks'), 'rep2pr1_gappedpeaks': rep2pr1_peaks_subjob.get_output_ref('gappedpeaks'), 'rep2pr1_broadpeaks': rep2pr1_peaks_subjob.get_output_ref('broadpeaks'), 'rep2pr1_fc_signal': rep2pr1_peaks_subjob.get_output_ref('fc_signal'), 'rep2pr1_pvalue_signal': rep2pr1_peaks_subjob.get_output_ref('pvalue_signal'), 'rep2pr2_narrowpeaks': rep2pr2_peaks_subjob.get_output_ref('narrowpeaks'), 'rep2pr2_gappedpeaks': rep2pr2_peaks_subjob.get_output_ref('gappedpeaks'), 'rep2pr2_broadpeaks': rep2pr2_peaks_subjob.get_output_ref('broadpeaks'), 'rep2pr2_fc_signal': rep2pr2_peaks_subjob.get_output_ref('fc_signal'), 'rep2pr2_pvalue_signal': rep2pr2_peaks_subjob.get_output_ref('pvalue_signal'), 'pooled_narrowpeaks': pooled_peaks_subjob.get_output_ref('narrowpeaks'), 'pooled_gappedpeaks': pooled_peaks_subjob.get_output_ref('gappedpeaks'), 'pooled_broadpeaks': pooled_peaks_subjob.get_output_ref('broadpeaks'), 'pooled_narrowpeaks_bb': pooled_peaks_subjob.get_output_ref('narrowpeaks_bb'), 'pooled_gappedpeaks_bb': pooled_peaks_subjob.get_output_ref('gappedpeaks_bb'), 'pooled_broadpeaks_bb': pooled_peaks_subjob.get_output_ref('broadpeaks_bb'), 'pooled_fc_signal': pooled_peaks_subjob.get_output_ref('fc_signal'), 'pooled_pvalue_signal': pooled_peaks_subjob.get_output_ref('pvalue_signal'), 'pooledpr1_narrowpeaks': pooledpr1_peaks_subjob.get_output_ref('narrowpeaks'), 'pooledpr1_gappedpeaks': pooledpr1_peaks_subjob.get_output_ref('gappedpeaks'), 'pooledpr1_broadpeaks': pooledpr1_peaks_subjob.get_output_ref('broadpeaks'), 'pooledpr1_fc_signal': pooledpr1_peaks_subjob.get_output_ref('fc_signal'), 'pooledpr1_pvalue_signal': pooledpr1_peaks_subjob.get_output_ref('pvalue_signal'), 'pooledpr2_narrowpeaks': pooledpr2_peaks_subjob.get_output_ref('narrowpeaks'), 'pooledpr2_gappedpeaks': pooledpr2_peaks_subjob.get_output_ref('gappedpeaks'), 'pooledpr2_broadpeaks': pooledpr2_peaks_subjob.get_output_ref('broadpeaks'), 'pooledpr2_fc_signal': pooledpr2_peaks_subjob.get_output_ref('fc_signal'), 'pooledpr2_pvalue_signal': pooledpr2_peaks_subjob.get_output_ref('pvalue_signal')}) return output
chip-seq-pipeline
positive
def _parse_channel_open_success(self, m): chanid = m.get_int() server_chanid = m.get_int() server_window_size = m.get_int() server_max_packet_size = m.get_int() chan = self._channels.get(chanid) if chan is None: <DeepExtract> if issubclass(type('Success for unrequested channel! [??]'), list): for m in 'Success for unrequested channel! [??]': self.logger.log(WARNING, m) else: self.logger.log(WARNING, 'Success for unrequested channel! [??]', *args) </DeepExtract> return self.lock.acquire() try: chan._set_remote_channel(server_chanid, server_window_size, server_max_packet_size) <DeepExtract> if issubclass(type('Secsh channel {:d} opened.'.format(chanid)), list): for m in 'Secsh channel {:d} opened.'.format(chanid): self.logger.log(DEBUG, m) else: self.logger.log(DEBUG, 'Secsh channel {:d} opened.'.format(chanid), *args) </DeepExtract> if chanid in self.channel_events: self.channel_events[chanid].set() del self.channel_events[chanid] finally: self.lock.release() return
def _parse_channel_open_success(self, m): chanid = m.get_int() server_chanid = m.get_int() server_window_size = m.get_int() server_max_packet_size = m.get_int() chan = self._channels.get(chanid) if chan is None: if issubclass(type('Success for unrequested channel! [??]'), list): for m in 'Success for unrequested channel! [??]': self.logger.log(WARNING, m) else: self.logger.log(WARNING, 'Success for unrequested channel! [??]', *args) return self.lock.acquire() try: chan._set_remote_channel(server_chanid, server_window_size, server_max_packet_size) if issubclass(type('Secsh channel {:d} opened.'.format(chanid)), list): for m in 'Secsh channel {:d} opened.'.format(chanid): self.logger.log(DEBUG, m) else: self.logger.log(DEBUG, 'Secsh channel {:d} opened.'.format(chanid), *args) if chanid in self.channel_events: self.channel_events[chanid].set() del self.channel_events[chanid] finally: self.lock.release() return
cerbrutus
positive
def eval_isophase_phaseswitch(isophase_vcf, config_file, out_f, name='NA'): <DeepExtract> for line in open(config_file): (a, b) = line.strip().split('=') if a == 'ref_chr': _chr = b elif a == 'ref_strand': _strand = b elif a == 'ref_start': _start = b elif a == 'ref_end': _end = b (_chr, _start, _end, _strand) = (_chr, _start, _end, _strand) </DeepExtract> reader = vcf.VCFReader(open(isophase_vcf)) prev = {} r = next(reader) for c in r.samples: prev[c.sample] = c.data.GT num_switch = 0 for r in reader: for c in r.samples: if c.data.GT.find('|') == -1: continue (a, b) = c.data.GT.split('|') if a == b: continue if prev[c.sample] != c.data.GT: num_switch += 1 prev[c.sample] = c.data.GT out_f.write('{name}\t{chrom}\t{start}\t{end}\t{strand}\t{num_iso}\t{num_switch}\n'.format(name=name, chrom=_chr, start=_start, end=_end, strand=_strand, num_iso=len(r.samples), num_switch=num_switch))
def eval_isophase_phaseswitch(isophase_vcf, config_file, out_f, name='NA'): for line in open(config_file): (a, b) = line.strip().split('=') if a == 'ref_chr': _chr = b elif a == 'ref_strand': _strand = b elif a == 'ref_start': _start = b elif a == 'ref_end': _end = b (_chr, _start, _end, _strand) = (_chr, _start, _end, _strand) reader = vcf.VCFReader(open(isophase_vcf)) prev = {} r = next(reader) for c in r.samples: prev[c.sample] = c.data.GT num_switch = 0 for r in reader: for c in r.samples: if c.data.GT.find('|') == -1: continue (a, b) = c.data.GT.split('|') if a == b: continue if prev[c.sample] != c.data.GT: num_switch += 1 prev[c.sample] = c.data.GT out_f.write('{name}\t{chrom}\t{start}\t{end}\t{strand}\t{num_iso}\t{num_switch}\n'.format(name=name, chrom=_chr, start=_start, end=_end, strand=_strand, num_iso=len(r.samples), num_switch=num_switch))
cDNA_Cupcake
positive
@wrap_input(0, 1) def resample_pointdata(source, target, data, is_sphere=False, source_mask=None, target_mask=None, red_func='mean', k=3, fill=0, n_jobs=1, append=False, key=None): """Resample point data in source to target surface. Parameters ---------- source : vtkPolyData or BSPolyData Source surface. target : vtkPolyData or BSPolyData Target surface. data : str, 1D ndarray or list or str and ndarray Point data in source surface to resample. is_sphere : bool, optional If True, assume source and target are provided as spheres that are aligned. Default is False. source_mask : str or 1D ndarray, optional Boolean mask. If str, it must be in the point data attributes of `source`. Default is None. If specified, only consider points within the mask. target_mask : str or 1D ndarray, optional Boolean mask. If str, it must be in the point data attributes of `target`. Default is None. If specified, only consider points within the mask. red_func : {'mean', 'weighted_mean', 'mode', 'weighted_mode'}, optional Reduction function. Default is 'mean'. k : int, optional Number of closest points to consider during resampling. Only used when ``is_sphere==False``. Default is 3. fill : int or float, optional Value used for entries out of the mask. Only used if the `target_mask` is provided. Default is 0. n_jobs : int, optional Number of parallel jobs. Only used when ``is_sphere==False``. Default is 1. append: bool, optional If True, append array to point data attributes of target surface and return surface. Otherwise, only return resampled arrays. Default is False. key : str or list of str, optional Array names to append to target's point data attributes. Only used if ``append == True``. If None, use names in `source_name`. Default is None. Returns ------- output : vtkPolyData, BSPolyData or list of ndarray Resampled point data. Return ndarray or list of ndarray if ``append == False``. Otherwise, return target surface with the new arrays. Notes ----- This function is meant for the same source and target surfaces but with different number of points. For other types of resampling, see vtkResampleWithDataSet. """ opt = ['mean', 'mode', 'weighted_mean', 'weighted_mode'] if n_jobs != 1: warnings.warn('The n_jobs parameter is deprecated and will be removed in a future version', DeprecationWarning) is_list = True if not isinstance(data, list): data = [data] is_list = False if isinstance(red_func, str): red_func = [red_func] * len(data) if isinstance(source_mask, str): source_mask = source.PointData[source_mask] if isinstance(target_mask, str): target_mask = source.PointData[target_mask] if not is_sphere: use_weights = False if k > 1 and np.isin(red_func, opt[2:]).any(): use_weights = True <DeepExtract> sp = me.get_points(source, mask=source_mask) tp = me.get_points(target, mask=target_mask) tree = KDTree(sp, leafsize=20) (dist, pids) = tree.query(tp, k=k, eps=0) if use_weights: pids = (pids, 1 / dist) pids = pids </DeepExtract> if use_weights: (pids, w) = pids else: <DeepExtract> c = vtkGenericCell() (close_pt, pcoord) = np.empty((2, 3)) (cid, subcid, dist) = [vtk_mutable(0) for _ in range(3)] if source_mask is not None: gids = np.arange(source.n_points) name_ids = source.append_array(gids, at='p') source_masked = mask_points(source, source_mask) source.remove_array(name_ids) source = source_masked if source.n_points != np.count_nonzero(source_mask): raise ValueError('Source mask is not fully connected.') celoc = vtkCellLocator() celoc.SetDataSet(source.VTKObject) celoc.BuildLocator() tp = me.get_points(target, mask=target_mask) n_pts = tp.shape[0] weights = np.empty((n_pts, 3)) pids = np.empty((n_pts, 3), dtype=np.int64) for (i, p) in enumerate(tp): celoc.FindClosestPoint(p, close_pt, c, cid, subcid, dist) c.EvaluatePosition(close_pt, close_pt, subcid, pcoord, dist, weights[i]) pids[i] = [c.GetPointIds().GetId(k) for k in range(3)] if source_mask is not None: gids = source.get_array(name_ids, at='p') pids = np.unique(gids, return_inverse=True)[1][pids] (pids, w) = (pids, weights) </DeepExtract> k = None for (i, rf) in enumerate(red_func): if rf in ['mean', 'mode']: red_func[i] = 'weighted_%s' % rf resampled = [None] * len(data) for (i, d) in enumerate(data): if isinstance(d, str): d = source.PointData[d] if source_mask is not None: d = d[source_mask] if k == 1: feat = d[pids] elif red_func[i] == 'mean': feat = np.nanmean(d[pids], axis=1) elif red_func[i] == 'weighted_mean': feat = np.average(d[pids], weights=w, axis=1) elif red_func[i] == 'mode': feat = mode(d[pids], axis=1)[0].squeeze() elif red_func[i] == 'weighted_mode': feat = weighted_mode(d[pids], w, axis=1)[0].squeeze() feat = feat.astype(d.dtype) else: raise ValueError('Unknown red_func: {0}'.format(red_func[i])) if target_mask is not None: feat = map_to_mask(feat, mask=target_mask, axis=1, fill=fill) resampled[i] = feat if append and key is not None: for (i, feat) in enumerate(resampled): target.append_array(feat, name=key[i], at='p') return resampled if is_list else resampled[0]
@wrap_input(0, 1) def resample_pointdata(source, target, data, is_sphere=False, source_mask=None, target_mask=None, red_func='mean', k=3, fill=0, n_jobs=1, append=False, key=None): """Resample point data in source to target surface. Parameters ---------- source : vtkPolyData or BSPolyData Source surface. target : vtkPolyData or BSPolyData Target surface. data : str, 1D ndarray or list or str and ndarray Point data in source surface to resample. is_sphere : bool, optional If True, assume source and target are provided as spheres that are aligned. Default is False. source_mask : str or 1D ndarray, optional Boolean mask. If str, it must be in the point data attributes of `source`. Default is None. If specified, only consider points within the mask. target_mask : str or 1D ndarray, optional Boolean mask. If str, it must be in the point data attributes of `target`. Default is None. If specified, only consider points within the mask. red_func : {'mean', 'weighted_mean', 'mode', 'weighted_mode'}, optional Reduction function. Default is 'mean'. k : int, optional Number of closest points to consider during resampling. Only used when ``is_sphere==False``. Default is 3. fill : int or float, optional Value used for entries out of the mask. Only used if the `target_mask` is provided. Default is 0. n_jobs : int, optional Number of parallel jobs. Only used when ``is_sphere==False``. Default is 1. append: bool, optional If True, append array to point data attributes of target surface and return surface. Otherwise, only return resampled arrays. Default is False. key : str or list of str, optional Array names to append to target's point data attributes. Only used if ``append == True``. If None, use names in `source_name`. Default is None. Returns ------- output : vtkPolyData, BSPolyData or list of ndarray Resampled point data. Return ndarray or list of ndarray if ``append == False``. Otherwise, return target surface with the new arrays. Notes ----- This function is meant for the same source and target surfaces but with different number of points. For other types of resampling, see vtkResampleWithDataSet. """ opt = ['mean', 'mode', 'weighted_mean', 'weighted_mode'] if n_jobs != 1: warnings.warn('The n_jobs parameter is deprecated and will be removed in a future version', DeprecationWarning) is_list = True if not isinstance(data, list): data = [data] is_list = False if isinstance(red_func, str): red_func = [red_func] * len(data) if isinstance(source_mask, str): source_mask = source.PointData[source_mask] if isinstance(target_mask, str): target_mask = source.PointData[target_mask] if not is_sphere: use_weights = False if k > 1 and np.isin(red_func, opt[2:]).any(): use_weights = True sp = me.get_points(source, mask=source_mask) tp = me.get_points(target, mask=target_mask) tree = KDTree(sp, leafsize=20) (dist, pids) = tree.query(tp, k=k, eps=0) if use_weights: pids = (pids, 1 / dist) pids = pids if use_weights: (pids, w) = pids else: c = vtkGenericCell() (close_pt, pcoord) = np.empty((2, 3)) (cid, subcid, dist) = [vtk_mutable(0) for _ in range(3)] if source_mask is not None: gids = np.arange(source.n_points) name_ids = source.append_array(gids, at='p') source_masked = mask_points(source, source_mask) source.remove_array(name_ids) source = source_masked if source.n_points != np.count_nonzero(source_mask): raise ValueError('Source mask is not fully connected.') celoc = vtkCellLocator() celoc.SetDataSet(source.VTKObject) celoc.BuildLocator() tp = me.get_points(target, mask=target_mask) n_pts = tp.shape[0] weights = np.empty((n_pts, 3)) pids = np.empty((n_pts, 3), dtype=np.int64) for (i, p) in enumerate(tp): celoc.FindClosestPoint(p, close_pt, c, cid, subcid, dist) c.EvaluatePosition(close_pt, close_pt, subcid, pcoord, dist, weights[i]) pids[i] = [c.GetPointIds().GetId(k) for k in range(3)] if source_mask is not None: gids = source.get_array(name_ids, at='p') pids = np.unique(gids, return_inverse=True)[1][pids] (pids, w) = (pids, weights) k = None for (i, rf) in enumerate(red_func): if rf in ['mean', 'mode']: red_func[i] = 'weighted_%s' % rf resampled = [None] * len(data) for (i, d) in enumerate(data): if isinstance(d, str): d = source.PointData[d] if source_mask is not None: d = d[source_mask] if k == 1: feat = d[pids] elif red_func[i] == 'mean': feat = np.nanmean(d[pids], axis=1) elif red_func[i] == 'weighted_mean': feat = np.average(d[pids], weights=w, axis=1) elif red_func[i] == 'mode': feat = mode(d[pids], axis=1)[0].squeeze() elif red_func[i] == 'weighted_mode': feat = weighted_mode(d[pids], w, axis=1)[0].squeeze() feat = feat.astype(d.dtype) else: raise ValueError('Unknown red_func: {0}'.format(red_func[i])) if target_mask is not None: feat = map_to_mask(feat, mask=target_mask, axis=1, fill=fill) resampled[i] = feat if append and key is not None: for (i, feat) in enumerate(resampled): target.append_array(feat, name=key[i], at='p') return resampled if is_list else resampled[0]
BrainSpace
positive
def test_estimated_departure_matches_real(self): <DeepExtract> if True: allowable: List[np.ndarray] = [np.array([0, 32])] * 2 else: allowable: List[np.ndarray] = [np.array([0] + list(range(8, 33)))] * 2 if remaining_energy is None: remaining_energy: List[float] = [3.3, 3.3] network: InfrastructureDict = single_phase_single_constraint(2, 100, allowable_pilots=allowable, is_continuous=np.array([True] * 2)) sessions: List[SessionDict] = session_generator(num_sessions=2, arrivals=[0] * 2, departures=[11, 12], estimated_departures=[11, 12], requested_energy=[3.3] * 2, remaining_energy=remaining_energy, min_rates=[session_min_rate] * 2, max_rates=[32] * 2) data = {'active_sessions': sessions, 'infrastructure_info': network, 'current_time': CURRENT_TIME, 'period': PERIOD} interface = TestingInterface(data) </DeepExtract> sorted_sessions = least_laxity_first(interface.active_sessions(), interface) self.assertEqual(sorted_sessions[0].session_id, '0') self.assertEqual(sorted_sessions[1].session_id, '1')
def test_estimated_departure_matches_real(self): if True: allowable: List[np.ndarray] = [np.array([0, 32])] * 2 else: allowable: List[np.ndarray] = [np.array([0] + list(range(8, 33)))] * 2 if remaining_energy is None: remaining_energy: List[float] = [3.3, 3.3] network: InfrastructureDict = single_phase_single_constraint(2, 100, allowable_pilots=allowable, is_continuous=np.array([True] * 2)) sessions: List[SessionDict] = session_generator(num_sessions=2, arrivals=[0] * 2, departures=[11, 12], estimated_departures=[11, 12], requested_energy=[3.3] * 2, remaining_energy=remaining_energy, min_rates=[session_min_rate] * 2, max_rates=[32] * 2) data = {'active_sessions': sessions, 'infrastructure_info': network, 'current_time': CURRENT_TIME, 'period': PERIOD} interface = TestingInterface(data) sorted_sessions = least_laxity_first(interface.active_sessions(), interface) self.assertEqual(sorted_sessions[0].session_id, '0') self.assertEqual(sorted_sessions[1].session_id, '1')
acnportal
positive
def _stringify_header(self, options): bits = [] <DeepExtract> if options['left_padding_width'] is not None: lpad = options['left_padding_width'] else: lpad = options['padding_width'] if options['right_padding_width'] is not None: rpad = options['right_padding_width'] else: rpad = options['padding_width'] (lpad, rpad) = (lpad, rpad) </DeepExtract> if options['border']: if options['hrules'] in (ALL, FRAME): bits.append(self._hrule) bits.append('\n') if options['vrules'] in (ALL, FRAME): bits.append(options['vertical_char']) else: bits.append(' ') if not self._field_names: if options['vrules'] in (ALL, FRAME): bits.append(options['vertical_char']) else: bits.append(' ') for (field, width) in zip(self._field_names, self._widths): if options['fields'] and field not in options['fields']: continue if self._header_style == 'cap': fieldname = field.capitalize() elif self._header_style == 'title': fieldname = field.title() elif self._header_style == 'upper': fieldname = field.upper() elif self._header_style == 'lower': fieldname = field.lower() else: fieldname = field bits.append(' ' * lpad + self._justify(fieldname, width, self._align[field]) + ' ' * rpad) if options['border']: if options['vrules'] == ALL: bits.append(options['vertical_char']) else: bits.append(' ') if options['border'] and options['vrules'] == FRAME: bits.pop() bits.append(options['vertical_char']) if options['border'] and options['hrules'] != NONE: bits.append('\n') bits.append(self._hrule) return ''.join(bits)
def _stringify_header(self, options): bits = [] if options['left_padding_width'] is not None: lpad = options['left_padding_width'] else: lpad = options['padding_width'] if options['right_padding_width'] is not None: rpad = options['right_padding_width'] else: rpad = options['padding_width'] (lpad, rpad) = (lpad, rpad) if options['border']: if options['hrules'] in (ALL, FRAME): bits.append(self._hrule) bits.append('\n') if options['vrules'] in (ALL, FRAME): bits.append(options['vertical_char']) else: bits.append(' ') if not self._field_names: if options['vrules'] in (ALL, FRAME): bits.append(options['vertical_char']) else: bits.append(' ') for (field, width) in zip(self._field_names, self._widths): if options['fields'] and field not in options['fields']: continue if self._header_style == 'cap': fieldname = field.capitalize() elif self._header_style == 'title': fieldname = field.title() elif self._header_style == 'upper': fieldname = field.upper() elif self._header_style == 'lower': fieldname = field.lower() else: fieldname = field bits.append(' ' * lpad + self._justify(fieldname, width, self._align[field]) + ' ' * rpad) if options['border']: if options['vrules'] == ALL: bits.append(options['vertical_char']) else: bits.append(' ') if options['border'] and options['vrules'] == FRAME: bits.pop() bits.append(options['vertical_char']) if options['border'] and options['hrules'] != NONE: bits.append('\n') bits.append(self._hrule) return ''.join(bits)
C--Compiler
positive
def write(self, data): <DeepExtract> if self.file.tell() + len(data) > self.max_file_size: self.close() self.file = self.open(next(self.nextFile)) </DeepExtract> self.file.write(data)
def write(self, data): if self.file.tell() + len(data) > self.max_file_size: self.close() self.file = self.open(next(self.nextFile)) self.file.write(data)
DistillBERT
positive
def get_final_text(pred_text, orig_text, do_lower_case): """Project the tokenized prediction back to the original text.""" def _strip_spaces(text): ns_chars = [] ns_to_s_map = collections.OrderedDict() for (i, c) in enumerate(text): if c == ' ': continue ns_to_s_map[len(ns_chars)] = i ns_chars.append(c) ns_text = ''.join(ns_chars) return (ns_text, ns_to_s_map) tokenizer = tokenization.BasicTokenizer(do_lower_case=do_lower_case) tok_text = ' '.join(tokenizer.tokenize(orig_text)) start_position = tok_text.find(pred_text) if start_position == -1: if FLAGS.verbose_logging: tf.logging.info("Unable to find text: '%s' in '%s'" % (pred_text, orig_text)) return orig_text end_position = start_position + len(pred_text) - 1 <DeepExtract> ns_chars = [] ns_to_s_map = collections.OrderedDict() for (i, c) in enumerate(orig_text): if c == ' ': continue ns_to_s_map[len(ns_chars)] = i ns_chars.append(c) ns_text = ''.join(ns_chars) (orig_ns_text, orig_ns_to_s_map) = (ns_text, ns_to_s_map) </DeepExtract> <DeepExtract> ns_chars = [] ns_to_s_map = collections.OrderedDict() for (i, c) in enumerate(tok_text): if c == ' ': continue ns_to_s_map[len(ns_chars)] = i ns_chars.append(c) ns_text = ''.join(ns_chars) (tok_ns_text, tok_ns_to_s_map) = (ns_text, ns_to_s_map) </DeepExtract> if len(orig_ns_text) != len(tok_ns_text): if FLAGS.verbose_logging: tf.logging.info("Length not equal after stripping spaces: '%s' vs '%s'", orig_ns_text, tok_ns_text) return orig_text tok_s_to_ns_map = {} for (i, tok_index) in six.iteritems(tok_ns_to_s_map): tok_s_to_ns_map[tok_index] = i orig_start_position = None if start_position in tok_s_to_ns_map: ns_start_position = tok_s_to_ns_map[start_position] if ns_start_position in orig_ns_to_s_map: orig_start_position = orig_ns_to_s_map[ns_start_position] if orig_start_position is None: if FLAGS.verbose_logging: tf.logging.info("Couldn't map start position") return orig_text orig_end_position = None if end_position in tok_s_to_ns_map: ns_end_position = tok_s_to_ns_map[end_position] if ns_end_position in orig_ns_to_s_map: orig_end_position = orig_ns_to_s_map[ns_end_position] if orig_end_position is None: if FLAGS.verbose_logging: tf.logging.info("Couldn't map end position") return orig_text output_text = orig_text[orig_start_position:orig_end_position + 1] return output_text
def get_final_text(pred_text, orig_text, do_lower_case): """Project the tokenized prediction back to the original text.""" def _strip_spaces(text): ns_chars = [] ns_to_s_map = collections.OrderedDict() for (i, c) in enumerate(text): if c == ' ': continue ns_to_s_map[len(ns_chars)] = i ns_chars.append(c) ns_text = ''.join(ns_chars) return (ns_text, ns_to_s_map) tokenizer = tokenization.BasicTokenizer(do_lower_case=do_lower_case) tok_text = ' '.join(tokenizer.tokenize(orig_text)) start_position = tok_text.find(pred_text) if start_position == -1: if FLAGS.verbose_logging: tf.logging.info("Unable to find text: '%s' in '%s'" % (pred_text, orig_text)) return orig_text end_position = start_position + len(pred_text) - 1 ns_chars = [] ns_to_s_map = collections.OrderedDict() for (i, c) in enumerate(orig_text): if c == ' ': continue ns_to_s_map[len(ns_chars)] = i ns_chars.append(c) ns_text = ''.join(ns_chars) (orig_ns_text, orig_ns_to_s_map) = (ns_text, ns_to_s_map) ns_chars = [] ns_to_s_map = collections.OrderedDict() for (i, c) in enumerate(tok_text): if c == ' ': continue ns_to_s_map[len(ns_chars)] = i ns_chars.append(c) ns_text = ''.join(ns_chars) (tok_ns_text, tok_ns_to_s_map) = (ns_text, ns_to_s_map) if len(orig_ns_text) != len(tok_ns_text): if FLAGS.verbose_logging: tf.logging.info("Length not equal after stripping spaces: '%s' vs '%s'", orig_ns_text, tok_ns_text) return orig_text tok_s_to_ns_map = {} for (i, tok_index) in six.iteritems(tok_ns_to_s_map): tok_s_to_ns_map[tok_index] = i orig_start_position = None if start_position in tok_s_to_ns_map: ns_start_position = tok_s_to_ns_map[start_position] if ns_start_position in orig_ns_to_s_map: orig_start_position = orig_ns_to_s_map[ns_start_position] if orig_start_position is None: if FLAGS.verbose_logging: tf.logging.info("Couldn't map start position") return orig_text orig_end_position = None if end_position in tok_s_to_ns_map: ns_end_position = tok_s_to_ns_map[end_position] if ns_end_position in orig_ns_to_s_map: orig_end_position = orig_ns_to_s_map[ns_end_position] if orig_end_position is None: if FLAGS.verbose_logging: tf.logging.info("Couldn't map end position") return orig_text output_text = orig_text[orig_start_position:orig_end_position + 1] return output_text
coref
positive
def get_public_key(): <DeepExtract> keys = cache.get('RSA_KEYS') if keys is None: keys = generate_RSA() cache.set('RSA_KEYS', keys, 3600) (_, pub) = keys </DeepExtract> return pub.decode()
def get_public_key(): keys = cache.get('RSA_KEYS') if keys is None: keys = generate_RSA() cache.set('RSA_KEYS', keys, 3600) (_, pub) = keys return pub.decode()
eoj3
positive
def test_date_search_from_items(self): <DeepExtract> response = self.app.get('collections/{}/items?bbox=0,43,1,44'.format(self.tested_product_type), follow_redirects=True) self.assertEqual(200, response.status_code) result1 = geojson.loads(response.data.decode('utf-8')) </DeepExtract> <DeepExtract> response = self.app.get('collections/{}/items?bbox=0,43,1,44&datetime=2018-01-20/2018-01-25'.format(self.tested_product_type), follow_redirects=True) self.assertEqual(200, response.status_code) result2 = geojson.loads(response.data.decode('utf-8')) </DeepExtract> self.assertGreaterEqual(len(result1.features), len(result2.features))
def test_date_search_from_items(self): response = self.app.get('collections/{}/items?bbox=0,43,1,44'.format(self.tested_product_type), follow_redirects=True) self.assertEqual(200, response.status_code) result1 = geojson.loads(response.data.decode('utf-8')) response = self.app.get('collections/{}/items?bbox=0,43,1,44&datetime=2018-01-20/2018-01-25'.format(self.tested_product_type), follow_redirects=True) self.assertEqual(200, response.status_code) result2 = geojson.loads(response.data.decode('utf-8')) self.assertGreaterEqual(len(result1.features), len(result2.features))
eodag
positive
def median_filter(tr, multiplier=10, windowlength=0.5, interp_len=0.05): """ Filter out spikes in data above a multiple of MAD of the data. Currently only has the ability to replaces spikes with linear interpolation. In the future we would aim to fill the gap with something more appropriate. Works in-place on data. :type tr: obspy.core.trace.Trace :param tr: trace to despike :type multiplier: float :param multiplier: median absolute deviation multiplier to find spikes above. :type windowlength: float :param windowlength: Length of window to look for spikes in in seconds. :type interp_len: float :param interp_len: Length in seconds to interpolate around spikes. :returns: :class:`obspy.core.trace.Trace` .. warning:: Not particularly effective, and may remove earthquake signals, use with caution. """ num_cores = cpu_count() filt = tr.copy() filt.detrend('linear') try: filt.filter('bandpass', freqmin=10.0, freqmax=tr.stats.sampling_rate / 2 - 1) except Exception as e: Logger.error('Could not filter due to error: {0}'.format(e)) data = filt.data del filt _windowlength = int(windowlength * tr.stats.sampling_rate) _interp_len = int(interp_len * tr.stats.sampling_rate) peaks = [] with Timer() as t: pool = Pool(processes=num_cores) results = [pool.apply_async(_median_window, args=(data[chunk * _windowlength:(chunk + 1) * _windowlength], chunk * _windowlength, multiplier, tr.stats.starttime + windowlength, tr.stats.sampling_rate)) for chunk in range(int(len(data) / _windowlength))] pool.close() for p in results: peaks += p.get() pool.join() for peak in peaks: <DeepExtract> start_loc = peak[1] - int(0.5 * _interp_len) end_loc = peak[1] + int(0.5 * _interp_len) if start_loc < 0: start_loc = 0 if end_loc > len(tr.data) - 1: end_loc = len(tr.data) - 1 fill = np.linspace(tr.data[start_loc], tr.data[end_loc], end_loc - start_loc) tr.data[start_loc:end_loc] = fill tr.data = tr.data </DeepExtract> Logger.debug('Despiking took: %s s' % t.secs) return tr
def median_filter(tr, multiplier=10, windowlength=0.5, interp_len=0.05): """ Filter out spikes in data above a multiple of MAD of the data. Currently only has the ability to replaces spikes with linear interpolation. In the future we would aim to fill the gap with something more appropriate. Works in-place on data. :type tr: obspy.core.trace.Trace :param tr: trace to despike :type multiplier: float :param multiplier: median absolute deviation multiplier to find spikes above. :type windowlength: float :param windowlength: Length of window to look for spikes in in seconds. :type interp_len: float :param interp_len: Length in seconds to interpolate around spikes. :returns: :class:`obspy.core.trace.Trace` .. warning:: Not particularly effective, and may remove earthquake signals, use with caution. """ num_cores = cpu_count() filt = tr.copy() filt.detrend('linear') try: filt.filter('bandpass', freqmin=10.0, freqmax=tr.stats.sampling_rate / 2 - 1) except Exception as e: Logger.error('Could not filter due to error: {0}'.format(e)) data = filt.data del filt _windowlength = int(windowlength * tr.stats.sampling_rate) _interp_len = int(interp_len * tr.stats.sampling_rate) peaks = [] with Timer() as t: pool = Pool(processes=num_cores) results = [pool.apply_async(_median_window, args=(data[chunk * _windowlength:(chunk + 1) * _windowlength], chunk * _windowlength, multiplier, tr.stats.starttime + windowlength, tr.stats.sampling_rate)) for chunk in range(int(len(data) / _windowlength))] pool.close() for p in results: peaks += p.get() pool.join() for peak in peaks: start_loc = peak[1] - int(0.5 * _interp_len) end_loc = peak[1] + int(0.5 * _interp_len) if start_loc < 0: start_loc = 0 if end_loc > len(tr.data) - 1: end_loc = len(tr.data) - 1 fill = np.linspace(tr.data[start_loc], tr.data[end_loc], end_loc - start_loc) tr.data[start_loc:end_loc] = fill tr.data = tr.data Logger.debug('Despiking took: %s s' % t.secs) return tr
EQcorrscan
positive
def code_complete(self, contents_filename, original_filename, line, column, complete_macros=False, complete_lang_constructs=False, opts=None): (tunit, tunit_build_flags, tunit_timestamp) = self.tunit_cache.fetch(original_filename) if tunit is None: build_flags = self.compiler_args.get(original_filename) <DeepExtract> try: tunit = self.index.parse(path=contents_filename, args=build_flags, options=self.default_parsing_flags() if opts is None else opts) except: logging.error(sys.exc_info()) </DeepExtract> if tunit: self.tunit_cache.insert(original_filename, tunit, build_flags, os.path.getmtime(original_filename)) else: logging.error('Unable to parse TUnit!') with open(contents_filename) as f: return tunit.codeComplete(tunit.spelling, line, column + 1, include_macros=complete_macros, include_code_patterns=complete_lang_constructs, unsaved_files=[(original_filename, f.read())])
def code_complete(self, contents_filename, original_filename, line, column, complete_macros=False, complete_lang_constructs=False, opts=None): (tunit, tunit_build_flags, tunit_timestamp) = self.tunit_cache.fetch(original_filename) if tunit is None: build_flags = self.compiler_args.get(original_filename) try: tunit = self.index.parse(path=contents_filename, args=build_flags, options=self.default_parsing_flags() if opts is None else opts) except: logging.error(sys.exc_info()) if tunit: self.tunit_cache.insert(original_filename, tunit, build_flags, os.path.getmtime(original_filename)) else: logging.error('Unable to parse TUnit!') with open(contents_filename) as f: return tunit.codeComplete(tunit.spelling, line, column + 1, include_macros=complete_macros, include_code_patterns=complete_lang_constructs, unsaved_files=[(original_filename, f.read())])
cxxd
positive
def _filter_event_tensor(self, events_tensor: torch.Tensor, segments_tensor: torch.Tensor, segment_label_name: str): """ Filter segment tensor :param events_tensor: :param segment_label_name: """ if segment_label_name is not None and events_tensor.size(0) > 0: for event_i in range(events_tensor.size(0)): <DeepExtract> segment_label_index = self.segment_label_name_to_index(segment_label_name) time_pos = 0 for segment_i in range(segments_tensor.size(0)): segment_start = segments_tensor[segment_i, 0] segment_end = segments_tensor[segment_i, 1] segment_label = segments_tensor[segment_i, 2] segment_length = segment_end - segment_start if segment_label == segment_label_index: if segment_start <= events_tensor[event_i][0] <= segment_end and segment_start <= events_tensor[event_i][1] <= segment_end: events_tensor[event_i][0] = time_pos + (events_tensor[event_i][0] - segment_start) events_tensor[event_i][1] = time_pos + (events_tensor[event_i][1] - segment_start) events_tensor[event_i] = events_tensor[event_i] time_pos += segment_length events_tensor[event_i][2] = -1 events_tensor[event_i] = events_tensor[event_i] </DeepExtract> return events_tensor[events_tensor[:, 2] != -1] else: return events_tensor
def _filter_event_tensor(self, events_tensor: torch.Tensor, segments_tensor: torch.Tensor, segment_label_name: str): """ Filter segment tensor :param events_tensor: :param segment_label_name: """ if segment_label_name is not None and events_tensor.size(0) > 0: for event_i in range(events_tensor.size(0)): segment_label_index = self.segment_label_name_to_index(segment_label_name) time_pos = 0 for segment_i in range(segments_tensor.size(0)): segment_start = segments_tensor[segment_i, 0] segment_end = segments_tensor[segment_i, 1] segment_label = segments_tensor[segment_i, 2] segment_length = segment_end - segment_start if segment_label == segment_label_index: if segment_start <= events_tensor[event_i][0] <= segment_end and segment_start <= events_tensor[event_i][1] <= segment_end: events_tensor[event_i][0] = time_pos + (events_tensor[event_i][0] - segment_start) events_tensor[event_i][1] = time_pos + (events_tensor[event_i][1] - segment_start) events_tensor[event_i] = events_tensor[event_i] time_pos += segment_length events_tensor[event_i][2] = -1 events_tensor[event_i] = events_tensor[event_i] return events_tensor[events_tensor[:, 2] != -1] else: return events_tensor
EchoTorch
positive
def MessageSetItemDecoder(extensions_by_number): """Returns a decoder for a MessageSet item. The parameter is the _extensions_by_number map for the message class. The message set message looks like this: message MessageSet { repeated group Item = 1 { required int32 type_id = 2; required string message = 3; } } """ type_id_tag_bytes = encoder.TagBytes(2, wire_format.WIRETYPE_VARINT) message_tag_bytes = encoder.TagBytes(3, wire_format.WIRETYPE_LENGTH_DELIMITED) item_end_tag_bytes = encoder.TagBytes(1, wire_format.WIRETYPE_END_GROUP) local_ReadTag = ReadTag local_DecodeVarint = _DecodeVarint local_SkipField = SkipField def DecodeItem(buffer, pos, end, message, field_dict): message_set_item_start = pos type_id = -1 message_start = -1 message_end = -1 while 1: (tag_bytes, pos) = local_ReadTag(buffer, pos) if tag_bytes == type_id_tag_bytes: (type_id, pos) = local_DecodeVarint(buffer, pos) elif tag_bytes == message_tag_bytes: (size, message_start) = local_DecodeVarint(buffer, pos) pos = message_end = message_start + size elif tag_bytes == item_end_tag_bytes: break else: <DeepExtract> wire_type = ord(tag_bytes[0:1]) & wiretype_mask pos = WIRETYPE_TO_SKIPPER[wire_type](buffer, pos, end) </DeepExtract> if pos == -1: raise _DecodeError('Missing group end tag.') if pos > end: raise _DecodeError('Truncated message.') if type_id == -1: raise _DecodeError('MessageSet item missing type_id.') if message_start == -1: raise _DecodeError('MessageSet item missing message.') extension = extensions_by_number.get(type_id) if extension is not None: value = field_dict.get(extension) if value is None: value = field_dict.setdefault(extension, extension.message_type._concrete_class()) if value._InternalParse(buffer, message_start, message_end) != message_end: raise _DecodeError('Unexpected end-group tag.') else: if not message._unknown_fields: message._unknown_fields = [] message._unknown_fields.append((MESSAGE_SET_ITEM_TAG, buffer[message_set_item_start:pos])) return pos return DecodeItem
def MessageSetItemDecoder(extensions_by_number): """Returns a decoder for a MessageSet item. The parameter is the _extensions_by_number map for the message class. The message set message looks like this: message MessageSet { repeated group Item = 1 { required int32 type_id = 2; required string message = 3; } } """ type_id_tag_bytes = encoder.TagBytes(2, wire_format.WIRETYPE_VARINT) message_tag_bytes = encoder.TagBytes(3, wire_format.WIRETYPE_LENGTH_DELIMITED) item_end_tag_bytes = encoder.TagBytes(1, wire_format.WIRETYPE_END_GROUP) local_ReadTag = ReadTag local_DecodeVarint = _DecodeVarint local_SkipField = SkipField def DecodeItem(buffer, pos, end, message, field_dict): message_set_item_start = pos type_id = -1 message_start = -1 message_end = -1 while 1: (tag_bytes, pos) = local_ReadTag(buffer, pos) if tag_bytes == type_id_tag_bytes: (type_id, pos) = local_DecodeVarint(buffer, pos) elif tag_bytes == message_tag_bytes: (size, message_start) = local_DecodeVarint(buffer, pos) pos = message_end = message_start + size elif tag_bytes == item_end_tag_bytes: break else: wire_type = ord(tag_bytes[0:1]) & wiretype_mask pos = WIRETYPE_TO_SKIPPER[wire_type](buffer, pos, end) if pos == -1: raise _DecodeError('Missing group end tag.') if pos > end: raise _DecodeError('Truncated message.') if type_id == -1: raise _DecodeError('MessageSet item missing type_id.') if message_start == -1: raise _DecodeError('MessageSet item missing message.') extension = extensions_by_number.get(type_id) if extension is not None: value = field_dict.get(extension) if value is None: value = field_dict.setdefault(extension, extension.message_type._concrete_class()) if value._InternalParse(buffer, message_start, message_end) != message_end: raise _DecodeError('Unexpected end-group tag.') else: if not message._unknown_fields: message._unknown_fields = [] message._unknown_fields.append((MESSAGE_SET_ITEM_TAG, buffer[message_set_item_start:pos])) return pos return DecodeItem
botchallenge
positive
def _rps(forecast: xr.Dataset, verif: xr.Dataset, dim: dimType=None, **metric_kwargs: metric_kwargsType) -> xr.Dataset: """Ranked Probability Score. .. math:: RPS(p, k) = \\sum_{m=1}^{M} [(\\sum_{k=1}^{m} p_k) - (\\sum_{k=1}^{m} \\ o_k)]^{2} Args: forecast: Forecasts. verif: Verification. dim: Dimensions to aggregate. **metric_kwargs, see :py:func:`.xskillscore.rps` .. note:: If ``category_edges`` is xr.Dataset or tuple of xr.Datasets, climpred will broadcast the grouped dimensions ``season``, ``month``, ``weekofyear``, ``dayfofyear`` onto the dimensions ``init`` for forecast and ``time`` for observations. see ``climpred.utils.broadcast_time_grouped_to_time``. Notes: +-----------------+-----------+ | **minimum** | 0.0 | +-----------------+-----------+ | **maximum** | ∞ | +-----------------+-----------+ | **perfect** | 0.0 | +-----------------+-----------+ | **orientation** | negative | +-----------------+-----------+ See also: * :py:func:`.xskillscore.rps` Example: >>> category_edges = np.array([-0.5, 0.0, 0.5, 1.0]) >>> HindcastEnsemble.verify( ... metric="rps", ... comparison="m2o", ... dim=["member", "init"], ... alignment="same_verifs", ... category_edges=category_edges, ... ) <xarray.Dataset> Dimensions: (lead: 10) Coordinates: * lead (lead) int32 1 2 3 4 5 6 7 8 9 10 observations_category_edge <U67 '[-np.inf, -0.5), [-0.5, 0.0), [0.0, 0.5... forecasts_category_edge <U67 '[-np.inf, -0.5), [-0.5, 0.0), [0.0, 0.5... skill <U11 'initialized' Data variables: SST (lead) float64 0.115 0.1123 ... 0.1687 0.1875 Attributes: prediction_skill_software: climpred https://climpred.readthedocs.io/ skill_calculated_by_function: HindcastEnsemble.verify() number_of_initializations: 64 number_of_members: 10 alignment: same_verifs metric: rps comparison: m2o dim: ['member', 'init'] reference: [] category_edges: [-0.5 0. 0.5 1. ] Provide ``category_edges`` as :py:class:`xarray.Dataset` for category edges varying along dimensions. >>> category_edges = ( ... xr.DataArray([9.5, 10.0, 10.5, 11.0], dims="category_edge") ... .assign_coords(category_edge=[9.5, 10.0, 10.5, 11.0]) ... .to_dataset(name="tos") ... ) >>> # category_edges = np.array([9.5, 10., 10.5, 11.]) # identical >>> PerfectModelEnsemble.verify( ... metric="rps", ... comparison="m2c", ... dim=["member", "init"], ... category_edges=category_edges, ... ) <xarray.Dataset> Dimensions: (lead: 20) Coordinates: * lead (lead) int64 1 2 3 4 5 6 7 ... 15 16 17 18 19 20 observations_category_edge <U71 '[-np.inf, 9.5), [9.5, 10.0), [10.0, 10.... forecasts_category_edge <U71 '[-np.inf, 9.5), [9.5, 10.0), [10.0, 10.... Data variables: tos (lead) float64 0.08951 0.1615 ... 0.1399 0.2274 Attributes: prediction_skill_software: climpred https://climpred.readthedocs.io/ skill_calculated_by_function: PerfectModelEnsemble.verify() number_of_initializations: 12 number_of_members: 10 metric: rps comparison: m2c dim: ['member', 'init'] reference: [] category_edges: <xarray.Dataset>\\nDimensions: (cate... Provide ``category_edges`` as tuple for different category edges to categorize forecasts and observations. >>> q = [1 / 3, 2 / 3] # terciles by month >>> forecast_edges = ( ... HindcastEnsemble.get_initialized() ... .groupby("init.month") ... .quantile(q=q, dim=["init", "member"]) ... .rename({"quantile": "category_edge"}) ... ) >>> obs_edges = ( ... HindcastEnsemble.get_observations() ... .groupby("time.month") ... .quantile(q=q, dim="time") ... .rename({"quantile": "category_edge"}) ... ) >>> category_edges = (obs_edges, forecast_edges) >>> HindcastEnsemble.verify( ... metric="rps", ... comparison="m2o", ... dim=["member", "init"], ... alignment="same_verifs", ... category_edges=category_edges, ... ) <xarray.Dataset> Dimensions: (lead: 10) Coordinates: * lead (lead) int32 1 2 3 4 5 6 7 8 9 10 observations_category_edge <U101 '[-np.inf, 0.3333333333333333), [0.3333... forecasts_category_edge <U101 '[-np.inf, 0.3333333333333333), [0.3333... skill <U11 'initialized' Data variables: SST (lead) float64 0.1248 0.1756 ... 0.3081 0.3413 Attributes: prediction_skill_software: climpred https://climpred.readthedocs.io/ skill_calculated_by_function: HindcastEnsemble.verify() number_of_initializations: 64 number_of_members: 10 alignment: same_verifs metric: rps comparison: m2o dim: ['member', 'init'] reference: [] category_edges: (<xarray.Dataset>\\nDimensions: (mon... """ if 'category_edges' in metric_kwargs: category_edges = metric_kwargs.pop('category_edges') else: category_edges = None if category_edges is not None and 'member' in forecast.dims: <DeepExtract> dim = _preprocess_dims(dim) if 'member' in dim: dim = dim.copy() dim.remove('member') else: raise ValueError(f'Expected to find `member` in `dim`, found {dim}') dim = dim </DeepExtract> elif 'category' in forecast.dims and 'category' in verif.dims: pass else: raise ValueError(f'rps either expects multiple forecast members and `category_edges` or `category` in both forecast and observations. Found: category_edges={category_edges}, forecast.dims = {forecast.dims}, observations.dims = {verif.dims}') if 'lead' not in forecast.dims and 'lead' in forecast.coords and 'lead': if isinstance(category_edges, tuple): if 'lead' in category_edges[1].dims: forecast_edges = category_edges[1].sel(lead=forecast.lead).rename({'init': 'time'}) from climpred.utils import my_shift forecast_edges['time'] = my_shift(forecast_edges.time, forecast.lead) forecast_edges = forecast_edges.sel(time=forecast.time) forecast_edges = forecast_edges.assign_coords(time=forecast.time) verif_edges = category_edges[0] category_edges = (verif_edges, forecast_edges) return rps(verif, forecast, category_edges, dim=dim, **metric_kwargs)
def _rps(forecast: xr.Dataset, verif: xr.Dataset, dim: dimType=None, **metric_kwargs: metric_kwargsType) -> xr.Dataset: """Ranked Probability Score. .. math:: RPS(p, k) = \\sum_{m=1}^{M} [(\\sum_{k=1}^{m} p_k) - (\\sum_{k=1}^{m} \\ o_k)]^{2} Args: forecast: Forecasts. verif: Verification. dim: Dimensions to aggregate. **metric_kwargs, see :py:func:`.xskillscore.rps` .. note:: If ``category_edges`` is xr.Dataset or tuple of xr.Datasets, climpred will broadcast the grouped dimensions ``season``, ``month``, ``weekofyear``, ``dayfofyear`` onto the dimensions ``init`` for forecast and ``time`` for observations. see ``climpred.utils.broadcast_time_grouped_to_time``. Notes: +-----------------+-----------+ | **minimum** | 0.0 | +-----------------+-----------+ | **maximum** | ∞ | +-----------------+-----------+ | **perfect** | 0.0 | +-----------------+-----------+ | **orientation** | negative | +-----------------+-----------+ See also: * :py:func:`.xskillscore.rps` Example: >>> category_edges = np.array([-0.5, 0.0, 0.5, 1.0]) >>> HindcastEnsemble.verify( ... metric="rps", ... comparison="m2o", ... dim=["member", "init"], ... alignment="same_verifs", ... category_edges=category_edges, ... ) <xarray.Dataset> Dimensions: (lead: 10) Coordinates: * lead (lead) int32 1 2 3 4 5 6 7 8 9 10 observations_category_edge <U67 '[-np.inf, -0.5), [-0.5, 0.0), [0.0, 0.5... forecasts_category_edge <U67 '[-np.inf, -0.5), [-0.5, 0.0), [0.0, 0.5... skill <U11 'initialized' Data variables: SST (lead) float64 0.115 0.1123 ... 0.1687 0.1875 Attributes: prediction_skill_software: climpred https://climpred.readthedocs.io/ skill_calculated_by_function: HindcastEnsemble.verify() number_of_initializations: 64 number_of_members: 10 alignment: same_verifs metric: rps comparison: m2o dim: ['member', 'init'] reference: [] category_edges: [-0.5 0. 0.5 1. ] Provide ``category_edges`` as :py:class:`xarray.Dataset` for category edges varying along dimensions. >>> category_edges = ( ... xr.DataArray([9.5, 10.0, 10.5, 11.0], dims="category_edge") ... .assign_coords(category_edge=[9.5, 10.0, 10.5, 11.0]) ... .to_dataset(name="tos") ... ) >>> # category_edges = np.array([9.5, 10., 10.5, 11.]) # identical >>> PerfectModelEnsemble.verify( ... metric="rps", ... comparison="m2c", ... dim=["member", "init"], ... category_edges=category_edges, ... ) <xarray.Dataset> Dimensions: (lead: 20) Coordinates: * lead (lead) int64 1 2 3 4 5 6 7 ... 15 16 17 18 19 20 observations_category_edge <U71 '[-np.inf, 9.5), [9.5, 10.0), [10.0, 10.... forecasts_category_edge <U71 '[-np.inf, 9.5), [9.5, 10.0), [10.0, 10.... Data variables: tos (lead) float64 0.08951 0.1615 ... 0.1399 0.2274 Attributes: prediction_skill_software: climpred https://climpred.readthedocs.io/ skill_calculated_by_function: PerfectModelEnsemble.verify() number_of_initializations: 12 number_of_members: 10 metric: rps comparison: m2c dim: ['member', 'init'] reference: [] category_edges: <xarray.Dataset>\\nDimensions: (cate... Provide ``category_edges`` as tuple for different category edges to categorize forecasts and observations. >>> q = [1 / 3, 2 / 3] # terciles by month >>> forecast_edges = ( ... HindcastEnsemble.get_initialized() ... .groupby("init.month") ... .quantile(q=q, dim=["init", "member"]) ... .rename({"quantile": "category_edge"}) ... ) >>> obs_edges = ( ... HindcastEnsemble.get_observations() ... .groupby("time.month") ... .quantile(q=q, dim="time") ... .rename({"quantile": "category_edge"}) ... ) >>> category_edges = (obs_edges, forecast_edges) >>> HindcastEnsemble.verify( ... metric="rps", ... comparison="m2o", ... dim=["member", "init"], ... alignment="same_verifs", ... category_edges=category_edges, ... ) <xarray.Dataset> Dimensions: (lead: 10) Coordinates: * lead (lead) int32 1 2 3 4 5 6 7 8 9 10 observations_category_edge <U101 '[-np.inf, 0.3333333333333333), [0.3333... forecasts_category_edge <U101 '[-np.inf, 0.3333333333333333), [0.3333... skill <U11 'initialized' Data variables: SST (lead) float64 0.1248 0.1756 ... 0.3081 0.3413 Attributes: prediction_skill_software: climpred https://climpred.readthedocs.io/ skill_calculated_by_function: HindcastEnsemble.verify() number_of_initializations: 64 number_of_members: 10 alignment: same_verifs metric: rps comparison: m2o dim: ['member', 'init'] reference: [] category_edges: (<xarray.Dataset>\\nDimensions: (mon... """ if 'category_edges' in metric_kwargs: category_edges = metric_kwargs.pop('category_edges') else: category_edges = None if category_edges is not None and 'member' in forecast.dims: dim = _preprocess_dims(dim) if 'member' in dim: dim = dim.copy() dim.remove('member') else: raise ValueError(f'Expected to find `member` in `dim`, found {dim}') dim = dim elif 'category' in forecast.dims and 'category' in verif.dims: pass else: raise ValueError(f'rps either expects multiple forecast members and `category_edges` or `category` in both forecast and observations. Found: category_edges={category_edges}, forecast.dims = {forecast.dims}, observations.dims = {verif.dims}') if 'lead' not in forecast.dims and 'lead' in forecast.coords and 'lead': if isinstance(category_edges, tuple): if 'lead' in category_edges[1].dims: forecast_edges = category_edges[1].sel(lead=forecast.lead).rename({'init': 'time'}) from climpred.utils import my_shift forecast_edges['time'] = my_shift(forecast_edges.time, forecast.lead) forecast_edges = forecast_edges.sel(time=forecast.time) forecast_edges = forecast_edges.assign_coords(time=forecast.time) verif_edges = category_edges[0] category_edges = (verif_edges, forecast_edges) return rps(verif, forecast, category_edges, dim=dim, **metric_kwargs)
climpred
positive
@pytest.mark.parametrize('created_at', [None, now()]) @pytest.mark.parametrize('sequence_number', ['2', '140']) def test_heap_item_clock(created_at, sequence_number): """heap_item guarantees total ordering, even for identical items.""" <DeepExtract> shard = Mock(spec=Shard) </DeepExtract> <DeepExtract> x = 0 def call(): nonlocal x x += 1 clock = x clock = call </DeepExtract> record = local_record(created_at, sequence_number) first_item = heap_item(clock, record, shard) second_item = heap_item(clock, record, shard) assert first_item < second_item assert first_item[1] == second_item[1] assert clock() == 3
@pytest.mark.parametrize('created_at', [None, now()]) @pytest.mark.parametrize('sequence_number', ['2', '140']) def test_heap_item_clock(created_at, sequence_number): """heap_item guarantees total ordering, even for identical items.""" shard = Mock(spec=Shard) x = 0 def call(): nonlocal x x += 1 clock = x clock = call record = local_record(created_at, sequence_number) first_item = heap_item(clock, record, shard) second_item = heap_item(clock, record, shard) assert first_item < second_item assert first_item[1] == second_item[1] assert clock() == 3
bloop
positive
@patch('download.sys.exit') @patch('download.os.path.exists') @patch('download.open') @patch('download.pycurl.Curl') def test_download_write_fail_fatal(self, test_curl, test_open, test_path, test_exit): """ Test fatal failure to write to dest after successful GET request. """ <DeepExtract> instance = test_curl.return_value instance.URL = MockOpts.URL instance.FOLLOWLOCATION = MockOpts.FOLLOWLOCATION instance.FAILONERROR = MockOpts.FAILONERROR instance.WRITEDATA = MockOpts.WRITEDATA instance.POSTFIELDS = MockOpts.POSTFIELDS instance = instance </DeepExtract> instance.setopt.side_effect = test_opts test_open.side_effect = IOError test_path.return_value = None data = download.do_curl('foo', 'testdest', is_fatal=True) test_exit.assert_called_once_with(1)
@patch('download.sys.exit') @patch('download.os.path.exists') @patch('download.open') @patch('download.pycurl.Curl') def test_download_write_fail_fatal(self, test_curl, test_open, test_path, test_exit): """ Test fatal failure to write to dest after successful GET request. """ instance = test_curl.return_value instance.URL = MockOpts.URL instance.FOLLOWLOCATION = MockOpts.FOLLOWLOCATION instance.FAILONERROR = MockOpts.FAILONERROR instance.WRITEDATA = MockOpts.WRITEDATA instance.POSTFIELDS = MockOpts.POSTFIELDS instance = instance instance.setopt.side_effect = test_opts test_open.side_effect = IOError test_path.return_value = None data = download.do_curl('foo', 'testdest', is_fatal=True) test_exit.assert_called_once_with(1)
autospec
positive
def get_psf_sky2pix(self, ra, dec): """ Determine the psf (a,b,pa) at a given sky location. The psf is in pixel coordinates. Parameters ---------- ra, dec : float The sky position (degrees). Returns ------- a, b, pa : (float, float, float) The psf semi-major axis (pixels), semi-minor axis (pixels), and rotation angle (degrees). If a psf is defined then it is the psf that is returned, otherwise the image restoring beam is returned. """ if self.psf_file is None: return (self._psf_a, self._psf_b, self._psf_theta) <DeepExtract> if self.psf_file is None: (x, y) = self.sky2pix((ra, dec)) (_, _, a, b, pa) = self.pix2sky_ellipse((x, y), self._psf_a, self._psf_b, self._psf_theta) psf_sky = (a, b, pa) (x, y) = self.psf_sky2pix((ra, dec)) log.debug('sky2sky {0}, {1}, {2}, {3}'.format(ra, dec, x, y)) x = int(np.clip(x, 0, self.psf_map.shape[1] - 1)) y = int(np.clip(y, 0, self.psf_map.shape[2] - 1)) psf_sky = self.psf_map[:3, x, y] psf_sky = psf_sky </DeepExtract> psf_pix = self.sky2pix_ellipse((ra, dec), psf_sky[0], psf_sky[1], psf_sky[2])[2:] return psf_pix
def get_psf_sky2pix(self, ra, dec): """ Determine the psf (a,b,pa) at a given sky location. The psf is in pixel coordinates. Parameters ---------- ra, dec : float The sky position (degrees). Returns ------- a, b, pa : (float, float, float) The psf semi-major axis (pixels), semi-minor axis (pixels), and rotation angle (degrees). If a psf is defined then it is the psf that is returned, otherwise the image restoring beam is returned. """ if self.psf_file is None: return (self._psf_a, self._psf_b, self._psf_theta) if self.psf_file is None: (x, y) = self.sky2pix((ra, dec)) (_, _, a, b, pa) = self.pix2sky_ellipse((x, y), self._psf_a, self._psf_b, self._psf_theta) psf_sky = (a, b, pa) (x, y) = self.psf_sky2pix((ra, dec)) log.debug('sky2sky {0}, {1}, {2}, {3}'.format(ra, dec, x, y)) x = int(np.clip(x, 0, self.psf_map.shape[1] - 1)) y = int(np.clip(y, 0, self.psf_map.shape[2] - 1)) psf_sky = self.psf_map[:3, x, y] psf_sky = psf_sky psf_pix = self.sky2pix_ellipse((ra, dec), psf_sky[0], psf_sky[1], psf_sky[2])[2:] return psf_pix
Aegean
positive
def add_node(info): try: assert info['port'] > 0 and info['cpus'] > 0 except Exception: return node = self._nodes.get(info['ip_addr'], None) if node is None: logger.debug('Discovered %s:%s (%s) with %s cpus', info['ip_addr'], info['port'], info['name'], info['cpus']) node = _Node(info['ip_addr'], info['port'], info['cpus'], info['sign'], self.node_secret, platform=info['platform'], keyfile=self.node_keyfile, certfile=self.node_certfile) node.name = info['name'] node.avail_info = info['avail_info'] self._nodes[node.ip_addr] = node else: node.last_pulse = time.time() auth = auth_code(self.node_secret, info['sign']) if info['cpus'] > 0: node.avail_cpus = info['cpus'] node.cpus = min(node.cpus, node.avail_cpus) else: logger.warning('Invalid "cpus" %s from %s ignored', info['cpus'], info['ip_addr']) if node.port == info['port'] and node.auth == auth: return logger.debug('Node %s rediscovered', info['ip_addr']) node.port = info['port'] if node.auth is not None: dead_jobs = [_job for _job in self._sched_jobs.itervalues() if _job.node is not None and _job.node.ip_addr == node.ip_addr] node.busy = 0 node.auth = auth clusters = list(node.clusters) node.clusters.clear() for cluster in clusters: dispy_node = cluster._dispy_nodes.pop(node.ip_addr, None) if not dispy_node: continue Task(self.send_node_status, cluster, dispy_node, DispyNode.Closed) <DeepExtract> if not dead_jobs: return for _job in dead_jobs: self._sched_jobs.pop(_job.uid, None) cluster = self._clusters.get(_job.compute_id, None) if not cluster: continue if cluster._compute.reentrant and (not _job.pinned): logger.debug('Rescheduling job %s from %s', _job.uid, _job.node.ip_addr) _job.job.status = DispyJob.Created _job.hash = os.urandom(10).encode('hex') cluster._jobs.append(_job) else: logger.debug('Terminating job %s scheduled on %s', _job.uid, _job.node.ip_addr) reply = _JobReply(_job, _job.node.ip_addr, status=DispyJob.Abandoned) reply.result = serialize(None) cluster.pending_jobs -= 1 if cluster.pending_jobs == 0: cluster.end_time = time.time() self.done_jobs[_job.uid] = _job Task(self.send_job_result, _job.uid, cluster, reply, resending=False) self._sched_event.set() </DeepExtract> node.auth = auth setup_computations = [] node.name = info['name'] node.scheduler_ip_addr = info['scheduler_ip_addr'] for cluster in self._clusters.itervalues(): if cluster in node.clusters: continue compute = cluster._compute for node_alloc in cluster._node_allocs: cpus = node_alloc.allocate(cluster, node.ip_addr, node.name, node.avail_cpus) if cpus <= 0: continue if cluster.exclusive or self.cooperative: node.cpus = min(node.avail_cpus, cpus) setup_computations.append((node_alloc.depends, node_alloc.setup_args, compute)) break if setup_computations: Task(self.setup_node, node, setup_computations)
def add_node(info): try: assert info['port'] > 0 and info['cpus'] > 0 except Exception: return node = self._nodes.get(info['ip_addr'], None) if node is None: logger.debug('Discovered %s:%s (%s) with %s cpus', info['ip_addr'], info['port'], info['name'], info['cpus']) node = _Node(info['ip_addr'], info['port'], info['cpus'], info['sign'], self.node_secret, platform=info['platform'], keyfile=self.node_keyfile, certfile=self.node_certfile) node.name = info['name'] node.avail_info = info['avail_info'] self._nodes[node.ip_addr] = node else: node.last_pulse = time.time() auth = auth_code(self.node_secret, info['sign']) if info['cpus'] > 0: node.avail_cpus = info['cpus'] node.cpus = min(node.cpus, node.avail_cpus) else: logger.warning('Invalid "cpus" %s from %s ignored', info['cpus'], info['ip_addr']) if node.port == info['port'] and node.auth == auth: return logger.debug('Node %s rediscovered', info['ip_addr']) node.port = info['port'] if node.auth is not None: dead_jobs = [_job for _job in self._sched_jobs.itervalues() if _job.node is not None and _job.node.ip_addr == node.ip_addr] node.busy = 0 node.auth = auth clusters = list(node.clusters) node.clusters.clear() for cluster in clusters: dispy_node = cluster._dispy_nodes.pop(node.ip_addr, None) if not dispy_node: continue Task(self.send_node_status, cluster, dispy_node, DispyNode.Closed) if not dead_jobs: return for _job in dead_jobs: self._sched_jobs.pop(_job.uid, None) cluster = self._clusters.get(_job.compute_id, None) if not cluster: continue if cluster._compute.reentrant and (not _job.pinned): logger.debug('Rescheduling job %s from %s', _job.uid, _job.node.ip_addr) _job.job.status = DispyJob.Created _job.hash = os.urandom(10).encode('hex') cluster._jobs.append(_job) else: logger.debug('Terminating job %s scheduled on %s', _job.uid, _job.node.ip_addr) reply = _JobReply(_job, _job.node.ip_addr, status=DispyJob.Abandoned) reply.result = serialize(None) cluster.pending_jobs -= 1 if cluster.pending_jobs == 0: cluster.end_time = time.time() self.done_jobs[_job.uid] = _job Task(self.send_job_result, _job.uid, cluster, reply, resending=False) self._sched_event.set() node.auth = auth setup_computations = [] node.name = info['name'] node.scheduler_ip_addr = info['scheduler_ip_addr'] for cluster in self._clusters.itervalues(): if cluster in node.clusters: continue compute = cluster._compute for node_alloc in cluster._node_allocs: cpus = node_alloc.allocate(cluster, node.ip_addr, node.name, node.avail_cpus) if cpus <= 0: continue if cluster.exclusive or self.cooperative: node.cpus = min(node.avail_cpus, cpus) setup_computations.append((node_alloc.depends, node_alloc.setup_args, compute)) break if setup_computations: Task(self.setup_node, node, setup_computations)
dispy
positive
def __init__(self, *, mtype=None, mid=None, code=None, payload=b'', token=b'', uri=None, transport_tuning=None, **kwargs): self.version = 1 if mtype is None: self.mtype = None else: self.mtype = Type(mtype) self.mid = mid if code is None: self.code = None else: self.code = Code(code) self.token = token self.payload = payload self.opt = Options() self.remote = None self.transport_tuning = transport_tuning or TransportTuning() if self.payload is None: raise TypeError('Payload must not be None. Use empty string instead.') if uri: <DeepExtract> parsed = urllib.parse.urlparse(uri) if parsed.fragment: raise ValueError('Fragment identifiers can not be set on a request URI') if parsed.scheme not in coap_schemes: self.opt.proxy_uri = uri return if parsed.username or parsed.password: raise ValueError('User name and password not supported.') if parsed.path not in ('', '/'): self.opt.uri_path = [urllib.parse.unquote(x) for x in parsed.path.split('/')[1:]] else: self.opt.uri_path = [] if parsed.query: self.opt.uri_query = [urllib.parse.unquote(x) for x in parsed.query.split('&')] else: self.opt.uri_query = [] self.remote = UndecidedRemote(parsed.scheme, parsed.netloc) is_ip_literal = parsed.netloc.startswith('[') or (parsed.hostname.count('.') == 3 and all((c in '0123456789.' for c in parsed.hostname)) and all((int(x) <= 255 for x in parsed.hostname.split('.')))) if set_uri_host and (not is_ip_literal): self.opt.uri_host = urllib.parse.unquote(parsed.hostname).translate(_ascii_lowercase) </DeepExtract> for (k, v) in kwargs.items(): setattr(self.opt, k, v)
def __init__(self, *, mtype=None, mid=None, code=None, payload=b'', token=b'', uri=None, transport_tuning=None, **kwargs): self.version = 1 if mtype is None: self.mtype = None else: self.mtype = Type(mtype) self.mid = mid if code is None: self.code = None else: self.code = Code(code) self.token = token self.payload = payload self.opt = Options() self.remote = None self.transport_tuning = transport_tuning or TransportTuning() if self.payload is None: raise TypeError('Payload must not be None. Use empty string instead.') if uri: parsed = urllib.parse.urlparse(uri) if parsed.fragment: raise ValueError('Fragment identifiers can not be set on a request URI') if parsed.scheme not in coap_schemes: self.opt.proxy_uri = uri return if parsed.username or parsed.password: raise ValueError('User name and password not supported.') if parsed.path not in ('', '/'): self.opt.uri_path = [urllib.parse.unquote(x) for x in parsed.path.split('/')[1:]] else: self.opt.uri_path = [] if parsed.query: self.opt.uri_query = [urllib.parse.unquote(x) for x in parsed.query.split('&')] else: self.opt.uri_query = [] self.remote = UndecidedRemote(parsed.scheme, parsed.netloc) is_ip_literal = parsed.netloc.startswith('[') or (parsed.hostname.count('.') == 3 and all((c in '0123456789.' for c in parsed.hostname)) and all((int(x) <= 255 for x in parsed.hostname.split('.')))) if set_uri_host and (not is_ip_literal): self.opt.uri_host = urllib.parse.unquote(parsed.hostname).translate(_ascii_lowercase) for (k, v) in kwargs.items(): setattr(self.opt, k, v)
aiocoap
positive
def parse_contest_results(cvr_xml: ET.ElementTree): results = defaultdict(set) <DeepExtract> contests = find(cvr_xml, 'Contests').findall(f"{{{namespace}}}{'Contest'}") </DeepExtract> for contest in contests: contest_name = find(contest, 'Name').text <DeepExtract> choices = find(contest, 'Options').findall(f"{{{namespace}}}{'Option'}") </DeepExtract> for choice in choices: if find(choice, 'WriteInData'): choice_name = 'Write-In' else: choice_name = find(choice, 'Name').text results[contest_name].add(choice_name) return results
def parse_contest_results(cvr_xml: ET.ElementTree): results = defaultdict(set) contests = find(cvr_xml, 'Contests').findall(f"{{{namespace}}}{'Contest'}") for contest in contests: contest_name = find(contest, 'Name').text choices = find(contest, 'Options').findall(f"{{{namespace}}}{'Option'}") for choice in choices: if find(choice, 'WriteInData'): choice_name = 'Write-In' else: choice_name = find(choice, 'Name').text results[contest_name].add(choice_name) return results
arlo
positive
def get_output(layer_or_layers, inputs=None, **kwargs): accepted_kwargs = {'deterministic'} treat_as_input = list(inputs.keys()) if isinstance(inputs, dict) else [] <DeepExtract> try: queue = deque(layer_or_layers) except TypeError: queue = deque([layer_or_layers]) seen = set() done = set() result = [] if treat_as_input is not None: seen.update(treat_as_input) while queue: layer_or_layers = queue[0] if layer_or_layers is None: queue.popleft() elif layer_or_layers not in seen: seen.add(layer_or_layers) if hasattr(layer_or_layers, 'input_layers'): queue.extendleft(reversed(layer_or_layers.input_layers)) elif hasattr(layer_or_layers, 'input_layer'): queue.appendleft(layer_or_layers.input_layer) else: queue.popleft() if layer_or_layers not in done: result.append(layer_or_layers) done.add(layer_or_layers) all_layers = result </DeepExtract> all_outputs = dict(((layer, layer.input_var) for layer in all_layers if isinstance(layer, InputLayer) and layer not in treat_as_input)) if isinstance(inputs, dict): all_outputs.update(((layer, tf.convert_to_tensor(expr)) for (layer, expr) in list(inputs.items()))) elif inputs is not None: if len(all_outputs) > 1: raise ValueError('get_output() was called with a single input expression on a network with multiple input layers. Please call it with a dictionary of input expressions instead.') for input_layer in all_outputs: all_outputs[input_layer] = tf.convert_to_tensor(inputs) for layer in all_layers: if layer not in all_outputs: try: if isinstance(layer, MergeLayer): layer_inputs = [all_outputs[input_layer] for input_layer in layer.input_layers] else: layer_inputs = all_outputs[layer.input_layer] except KeyError: raise ValueError('get_output() was called without giving an input expression for the free-floating layer %r. Please call it with a dictionary mapping this layer to an input expression.' % layer) all_outputs[layer] = layer.get_output_for(layer_inputs, **kwargs) try: (names, _, _, defaults, _, _, _) = getfullargspec(layer.get_output_for) except TypeError: pass else: if defaults is not None: accepted_kwargs |= set(names[-len(defaults):]) accepted_kwargs |= set(layer.get_output_kwargs) unused_kwargs = set(kwargs.keys()) - accepted_kwargs if unused_kwargs: suggestions = [] for kwarg in unused_kwargs: suggestion = get_close_matches(kwarg, accepted_kwargs) if suggestion: suggestions.append('%s (perhaps you meant %s)' % (kwarg, suggestion[0])) else: suggestions.append(kwarg) warn('get_output() was called with unused kwargs:\n\t%s' % '\n\t'.join(suggestions)) try: return [all_outputs[layer] for layer in layer_or_layers] except TypeError: return all_outputs[layer_or_layers]
def get_output(layer_or_layers, inputs=None, **kwargs): accepted_kwargs = {'deterministic'} treat_as_input = list(inputs.keys()) if isinstance(inputs, dict) else [] try: queue = deque(layer_or_layers) except TypeError: queue = deque([layer_or_layers]) seen = set() done = set() result = [] if treat_as_input is not None: seen.update(treat_as_input) while queue: layer_or_layers = queue[0] if layer_or_layers is None: queue.popleft() elif layer_or_layers not in seen: seen.add(layer_or_layers) if hasattr(layer_or_layers, 'input_layers'): queue.extendleft(reversed(layer_or_layers.input_layers)) elif hasattr(layer_or_layers, 'input_layer'): queue.appendleft(layer_or_layers.input_layer) else: queue.popleft() if layer_or_layers not in done: result.append(layer_or_layers) done.add(layer_or_layers) all_layers = result all_outputs = dict(((layer, layer.input_var) for layer in all_layers if isinstance(layer, InputLayer) and layer not in treat_as_input)) if isinstance(inputs, dict): all_outputs.update(((layer, tf.convert_to_tensor(expr)) for (layer, expr) in list(inputs.items()))) elif inputs is not None: if len(all_outputs) > 1: raise ValueError('get_output() was called with a single input expression on a network with multiple input layers. Please call it with a dictionary of input expressions instead.') for input_layer in all_outputs: all_outputs[input_layer] = tf.convert_to_tensor(inputs) for layer in all_layers: if layer not in all_outputs: try: if isinstance(layer, MergeLayer): layer_inputs = [all_outputs[input_layer] for input_layer in layer.input_layers] else: layer_inputs = all_outputs[layer.input_layer] except KeyError: raise ValueError('get_output() was called without giving an input expression for the free-floating layer %r. Please call it with a dictionary mapping this layer to an input expression.' % layer) all_outputs[layer] = layer.get_output_for(layer_inputs, **kwargs) try: (names, _, _, defaults, _, _, _) = getfullargspec(layer.get_output_for) except TypeError: pass else: if defaults is not None: accepted_kwargs |= set(names[-len(defaults):]) accepted_kwargs |= set(layer.get_output_kwargs) unused_kwargs = set(kwargs.keys()) - accepted_kwargs if unused_kwargs: suggestions = [] for kwarg in unused_kwargs: suggestion = get_close_matches(kwarg, accepted_kwargs) if suggestion: suggestions.append('%s (perhaps you meant %s)' % (kwarg, suggestion[0])) else: suggestions.append(kwarg) warn('get_output() was called with unused kwargs:\n\t%s' % '\n\t'.join(suggestions)) try: return [all_outputs[layer] for layer in layer_or_layers] except TypeError: return all_outputs[layer_or_layers]
Conditional_Density_Estimation
positive
def GetGlobalVSMacroEnv(vs_version): """Get a dict of variables mapping internal VS macro names to their gyp equivalents. Returns all variables that are independent of the target.""" env = {} if vs_version.Path(): env['$(VSInstallDir)'] = vs_version.Path() env['$(VCInstallDir)'] = os.path.join(vs_version.Path(), 'VC') + '\\' <DeepExtract> if hasattr(_FindDirectXInstallation, 'dxsdk_dir'): dxsdk_dir = _FindDirectXInstallation.dxsdk_dir dxsdk_dir = os.environ.get('DXSDK_DIR') if not dxsdk_dir: cmd = ['reg.exe', 'query', 'HKLM\\Software\\Microsoft\\DirectX', '/s'] p = subprocess.Popen(cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE) for line in p.communicate()[0].splitlines(): if 'InstallPath' in line: dxsdk_dir = line.split(' ')[3] + '\\' _FindDirectXInstallation.dxsdk_dir = dxsdk_dir dxsdk_dir = dxsdk_dir </DeepExtract> env['$(DXSDK_DIR)'] = dxsdk_dir if dxsdk_dir else '' env['$(WDK_DIR)'] = os.environ.get('WDK_DIR', '') return env
def GetGlobalVSMacroEnv(vs_version): """Get a dict of variables mapping internal VS macro names to their gyp equivalents. Returns all variables that are independent of the target.""" env = {} if vs_version.Path(): env['$(VSInstallDir)'] = vs_version.Path() env['$(VCInstallDir)'] = os.path.join(vs_version.Path(), 'VC') + '\\' if hasattr(_FindDirectXInstallation, 'dxsdk_dir'): dxsdk_dir = _FindDirectXInstallation.dxsdk_dir dxsdk_dir = os.environ.get('DXSDK_DIR') if not dxsdk_dir: cmd = ['reg.exe', 'query', 'HKLM\\Software\\Microsoft\\DirectX', '/s'] p = subprocess.Popen(cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE) for line in p.communicate()[0].splitlines(): if 'InstallPath' in line: dxsdk_dir = line.split(' ')[3] + '\\' _FindDirectXInstallation.dxsdk_dir = dxsdk_dir dxsdk_dir = dxsdk_dir env['$(DXSDK_DIR)'] = dxsdk_dir if dxsdk_dir else '' env['$(WDK_DIR)'] = os.environ.get('WDK_DIR', '') return env
brackets-shell
positive
def get_trigg_freq(self) -> float: mc = 10350000 <DeepExtract> r = self.cap.serialWrite(add_crc('@R1B0')) if not check_crc(r) or r[1] != 'Y': print('WARNING! Incorrect reply!') p_lsb = r[2:4] </DeepExtract> <DeepExtract> r = self.cap.serialWrite(add_crc('@R1B1')) if not check_crc(r) or r[1] != 'Y': print('WARNING! Incorrect reply!') p_mid = r[2:4] </DeepExtract> <DeepExtract> r = self.cap.serialWrite(add_crc('@R1B2')) if not check_crc(r) or r[1] != 'Y': print('WARNING! Incorrect reply!') p_msb = r[2:4] </DeepExtract> p = int(p_msb + p_mid + p_lsb, 16) return mc / p
def get_trigg_freq(self) -> float: mc = 10350000 r = self.cap.serialWrite(add_crc('@R1B0')) if not check_crc(r) or r[1] != 'Y': print('WARNING! Incorrect reply!') p_lsb = r[2:4] r = self.cap.serialWrite(add_crc('@R1B1')) if not check_crc(r) or r[1] != 'Y': print('WARNING! Incorrect reply!') p_mid = r[2:4] r = self.cap.serialWrite(add_crc('@R1B2')) if not check_crc(r) or r[1] != 'Y': print('WARNING! Incorrect reply!') p_msb = r[2:4] p = int(p_msb + p_mid + p_lsb, 16) return mc / p
crappy
positive
def main(): from argparse import ArgumentParser parser = ArgumentParser() parser.add_argument('input_prefix', help='Input prefix (ex: test.collapsed.min_fl_2)') args = parser.parse_args() output_prefix = args.input_prefix + '.nomono' <DeepExtract> group_filename = args.input_prefix + '.group.txt' count_filename = args.input_prefix + '.abundance.txt' gff_filename = args.input_prefix + '.gff' rep_filename = args.input_prefix + '.rep.fq' if not os.path.exists(count_filename): print('File {0} does not exist. Abort!'.format(count_filename), file=sys.stderr) sys.exit(-1) if not os.path.exists(gff_filename): print('File {0} does not exist. Abort!'.format(gff_filename), file=sys.stderr) sys.exit(-1) if not os.path.exists(rep_filename): print('File {0} does not exist. Abort!'.format(rep_filename), file=sys.stderr) sys.exit(-1) pbids1 = set([r.id for r in SeqIO.parse(open(rep_filename), 'fastq')]) pbids2 = set([r.seqid for r in GFF.collapseGFFReader(gff_filename)]) pbids3 = set(read_count_file(count_filename)[0].keys()) if len(pbids1) != len(pbids2) or len(pbids2) != len(pbids3) or len(pbids1) != len(pbids3): print('The number of PBID records in the files disagree! Sanity check failed.', file=sys.stderr) print('# of PBIDs in {0}: {1}'.format(rep_filename, len(pbids1)), file=sys.stderr) print('# of PBIDs in {0}: {1}'.format(gff_filename, len(pbids2)), file=sys.stderr) print('# of PBIDs in {0}: {1}'.format(count_filename, len(pbids3)), file=sys.stderr) sys.exit(-1) (count_filename, gff_filename, rep_filename) = (count_filename, gff_filename, rep_filename) </DeepExtract> good = [] f = open(output_prefix + '.gff', 'w') reader = GFF.collapseGFFReader(gff_filename) for r in reader: assert r.seqid.startswith('PB.') if len(r.ref_exons) > 1: good.append(r.seqid) GFF.write_collapseGFF_format(f, r) <DeepExtract> f = open(count_filename) count_header = '' while True: cur_pos = f.tell() line = f.readline() if not line.startswith('#'): f.seek(cur_pos) break else: count_header += line d = dict(((r['pbid'], r) for r in DictReader(f, delimiter='\t'))) f.close() (d, count_header) = (d, count_header) </DeepExtract> f = open(output_prefix + '.rep.fq', 'w') for r in SeqIO.parse(open(rep_filename), 'fastq'): if r.name.split('|')[0] in good: SeqIO.write(r, f, 'fastq') f.close() f = open(output_prefix + '.abundance.txt', 'w') f.write(count_header) writer = DictWriter(f, fieldnames=['pbid', 'count_fl', 'count_nfl', 'count_nfl_amb', 'norm_fl', 'norm_nfl', 'norm_nfl_amb'], delimiter='\t', lineterminator='\n') writer.writeheader() for k in good: r = d[k] writer.writerow(r) f.close() print('Output written to:', output_prefix + '.gff', file=sys.stderr) print('Output written to:', output_prefix + '.rep.fq', file=sys.stderr) print('Output written to:', output_prefix + '.gff', file=sys.stderr)
def main(): from argparse import ArgumentParser parser = ArgumentParser() parser.add_argument('input_prefix', help='Input prefix (ex: test.collapsed.min_fl_2)') args = parser.parse_args() output_prefix = args.input_prefix + '.nomono' group_filename = args.input_prefix + '.group.txt' count_filename = args.input_prefix + '.abundance.txt' gff_filename = args.input_prefix + '.gff' rep_filename = args.input_prefix + '.rep.fq' if not os.path.exists(count_filename): print('File {0} does not exist. Abort!'.format(count_filename), file=sys.stderr) sys.exit(-1) if not os.path.exists(gff_filename): print('File {0} does not exist. Abort!'.format(gff_filename), file=sys.stderr) sys.exit(-1) if not os.path.exists(rep_filename): print('File {0} does not exist. Abort!'.format(rep_filename), file=sys.stderr) sys.exit(-1) pbids1 = set([r.id for r in SeqIO.parse(open(rep_filename), 'fastq')]) pbids2 = set([r.seqid for r in GFF.collapseGFFReader(gff_filename)]) pbids3 = set(read_count_file(count_filename)[0].keys()) if len(pbids1) != len(pbids2) or len(pbids2) != len(pbids3) or len(pbids1) != len(pbids3): print('The number of PBID records in the files disagree! Sanity check failed.', file=sys.stderr) print('# of PBIDs in {0}: {1}'.format(rep_filename, len(pbids1)), file=sys.stderr) print('# of PBIDs in {0}: {1}'.format(gff_filename, len(pbids2)), file=sys.stderr) print('# of PBIDs in {0}: {1}'.format(count_filename, len(pbids3)), file=sys.stderr) sys.exit(-1) (count_filename, gff_filename, rep_filename) = (count_filename, gff_filename, rep_filename) good = [] f = open(output_prefix + '.gff', 'w') reader = GFF.collapseGFFReader(gff_filename) for r in reader: assert r.seqid.startswith('PB.') if len(r.ref_exons) > 1: good.append(r.seqid) GFF.write_collapseGFF_format(f, r) f = open(count_filename) count_header = '' while True: cur_pos = f.tell() line = f.readline() if not line.startswith('#'): f.seek(cur_pos) break else: count_header += line d = dict(((r['pbid'], r) for r in DictReader(f, delimiter='\t'))) f.close() (d, count_header) = (d, count_header) f = open(output_prefix + '.rep.fq', 'w') for r in SeqIO.parse(open(rep_filename), 'fastq'): if r.name.split('|')[0] in good: SeqIO.write(r, f, 'fastq') f.close() f = open(output_prefix + '.abundance.txt', 'w') f.write(count_header) writer = DictWriter(f, fieldnames=['pbid', 'count_fl', 'count_nfl', 'count_nfl_amb', 'norm_fl', 'norm_nfl', 'norm_nfl_amb'], delimiter='\t', lineterminator='\n') writer.writeheader() for k in good: r = d[k] writer.writerow(r) f.close() print('Output written to:', output_prefix + '.gff', file=sys.stderr) print('Output written to:', output_prefix + '.rep.fq', file=sys.stderr) print('Output written to:', output_prefix + '.gff', file=sys.stderr)
cDNA_Cupcake
positive
def test_subscribe_notifications(test): test.only_admin_implementation() def init_data(handler): device_id = test.generate_id('n-s-n', test.DEVICE_ENTITY) network_name = test.generate_id('n-s-n', test.NETWORK_ENTITY) description = '%s-description' % network_name network = handler.api.create_network(network_name, description) notification_names = ['%s-name-%s' % (device_id, i) for i in range(2)] device = handler.api.put_device(device_id, network_id=network.id) return (device, network, notification_names, []) def send_data(handler, device, notification_names): for notification_name in notification_names: notification = device.send_notification(notification_name) handler.data['notification_ids'].append(notification.id) def set_handler_data(handler, device, network, notification_names, notification_ids): handler.data['device'] = device handler.data['network'] = network handler.data['notification_names'] = notification_names handler.data['notification_ids'] = notification_ids def handle_connect(handler): <DeepExtract> device_id = test.generate_id('n-s-i-c', test.DEVICE_ENTITY) network_name = test.generate_id('n-s-i-c', test.NETWORK_ENTITY) description = '%s-description' % network_name network = handler.api.create_network(network_name, description) command_names = ['%s-name-%s' % (device_id, i) for i in range(2)] device = handler.api.put_device(device_id, network_id=network.id) (device, network, notification_names, notification_ids) = (device, network, command_names, []) </DeepExtract> <DeepExtract> handler.data['device'] = device handler.data['network'] = network handler.data['command_names'] = notification_names handler.data['command_ids'] = notification_ids </DeepExtract> <DeepExtract> for command_name in notification_names: command = device.send_command(command_name) handler.data['command_ids'].append(command.id) </DeepExtract> handler.data['subscription'] = network.subscribe_notifications() def handle_notification(handler, notification): assert notification.id in handler.data['notification_ids'] handler.data['notification_ids'].remove(notification.id) if handler.data['notification_ids']: return handler.data['subscription'].remove() handler.data['device'].remove() handler.data['network'].remove() handler.disconnect() test.run(handle_connect, handle_notification=handle_notification) def handle_connect(handler): <DeepExtract> device_id = test.generate_id('n-s-i-c', test.DEVICE_ENTITY) network_name = test.generate_id('n-s-i-c', test.NETWORK_ENTITY) description = '%s-description' % network_name network = handler.api.create_network(network_name, description) command_names = ['%s-name-%s' % (device_id, i) for i in range(2)] device = handler.api.put_device(device_id, network_id=network.id) (device, network, notification_names, notification_ids) = (device, network, command_names, []) </DeepExtract> notification_name = notification_names[:1] <DeepExtract> handler.data['device'] = device handler.data['network'] = network handler.data['command_names'] = notification_names handler.data['command_ids'] = notification_ids </DeepExtract> <DeepExtract> for command_name in notification_name: command = device.send_command(command_name) handler.data['command_ids'].append(command.id) </DeepExtract> handler.data['subscription'] = network.subscribe_notifications(names=notification_name) def handle_notification(handler, notification): assert notification.id == handler.data['notification_ids'][0] handler.data['subscription'].remove() handler.data['device'].remove() handler.data['network'].remove() handler.disconnect() test.run(handle_connect, handle_notification=handle_notification) def handle_connect(handler): network_name = test.generate_id('n-s-n', test.NETWORK_ENTITY) description = '%s-description' % network_name network = handler.api.create_network(network_name, description) device_id = test.generate_id('n-s-n', test.DEVICE_ENTITY) device = handler.api.put_device(device_id, network_id=network.id) notification_name = '%s-name-1' % device_id notification = device.send_notification(notification_name) <DeepExtract> handler.data['device'] = device handler.data['network'] = network handler.data['command_names'] = [notification_name] handler.data['command_ids'] = [notification.id] </DeepExtract> handler.data['subscription'] = network.subscribe_notifications() def handle_notification(handler, notification): assert notification.id == handler.data['notification_ids'][0] handler.data['subscription'].remove() handler.data['device'].remove() handler.data['network'].remove() handler.disconnect() test.run(handle_connect, handle_notification=handle_notification) def handle_connect(handler): network_name = test.generate_id('n-s-n', test.NETWORK_ENTITY) description = '%s-description' % network_name network = handler.api.create_network(network_name, description) network_1 = handler.api.get_network(network.id) network.remove() try: network_1.subscribe_notifications() assert False except ApiResponseError as api_response_error: assert api_response_error.code == 404 test.run(handle_connect)
def test_subscribe_notifications(test): test.only_admin_implementation() def init_data(handler): device_id = test.generate_id('n-s-n', test.DEVICE_ENTITY) network_name = test.generate_id('n-s-n', test.NETWORK_ENTITY) description = '%s-description' % network_name network = handler.api.create_network(network_name, description) notification_names = ['%s-name-%s' % (device_id, i) for i in range(2)] device = handler.api.put_device(device_id, network_id=network.id) return (device, network, notification_names, []) def send_data(handler, device, notification_names): for notification_name in notification_names: notification = device.send_notification(notification_name) handler.data['notification_ids'].append(notification.id) def set_handler_data(handler, device, network, notification_names, notification_ids): handler.data['device'] = device handler.data['network'] = network handler.data['notification_names'] = notification_names handler.data['notification_ids'] = notification_ids def handle_connect(handler): device_id = test.generate_id('n-s-i-c', test.DEVICE_ENTITY) network_name = test.generate_id('n-s-i-c', test.NETWORK_ENTITY) description = '%s-description' % network_name network = handler.api.create_network(network_name, description) command_names = ['%s-name-%s' % (device_id, i) for i in range(2)] device = handler.api.put_device(device_id, network_id=network.id) (device, network, notification_names, notification_ids) = (device, network, command_names, []) handler.data['device'] = device handler.data['network'] = network handler.data['command_names'] = notification_names handler.data['command_ids'] = notification_ids for command_name in notification_names: command = device.send_command(command_name) handler.data['command_ids'].append(command.id) handler.data['subscription'] = network.subscribe_notifications() def handle_notification(handler, notification): assert notification.id in handler.data['notification_ids'] handler.data['notification_ids'].remove(notification.id) if handler.data['notification_ids']: return handler.data['subscription'].remove() handler.data['device'].remove() handler.data['network'].remove() handler.disconnect() test.run(handle_connect, handle_notification=handle_notification) def handle_connect(handler): device_id = test.generate_id('n-s-i-c', test.DEVICE_ENTITY) network_name = test.generate_id('n-s-i-c', test.NETWORK_ENTITY) description = '%s-description' % network_name network = handler.api.create_network(network_name, description) command_names = ['%s-name-%s' % (device_id, i) for i in range(2)] device = handler.api.put_device(device_id, network_id=network.id) (device, network, notification_names, notification_ids) = (device, network, command_names, []) notification_name = notification_names[:1] handler.data['device'] = device handler.data['network'] = network handler.data['command_names'] = notification_names handler.data['command_ids'] = notification_ids for command_name in notification_name: command = device.send_command(command_name) handler.data['command_ids'].append(command.id) handler.data['subscription'] = network.subscribe_notifications(names=notification_name) def handle_notification(handler, notification): assert notification.id == handler.data['notification_ids'][0] handler.data['subscription'].remove() handler.data['device'].remove() handler.data['network'].remove() handler.disconnect() test.run(handle_connect, handle_notification=handle_notification) def handle_connect(handler): network_name = test.generate_id('n-s-n', test.NETWORK_ENTITY) description = '%s-description' % network_name network = handler.api.create_network(network_name, description) device_id = test.generate_id('n-s-n', test.DEVICE_ENTITY) device = handler.api.put_device(device_id, network_id=network.id) notification_name = '%s-name-1' % device_id notification = device.send_notification(notification_name) handler.data['device'] = device handler.data['network'] = network handler.data['command_names'] = [notification_name] handler.data['command_ids'] = [notification.id] handler.data['subscription'] = network.subscribe_notifications() def handle_notification(handler, notification): assert notification.id == handler.data['notification_ids'][0] handler.data['subscription'].remove() handler.data['device'].remove() handler.data['network'].remove() handler.disconnect() test.run(handle_connect, handle_notification=handle_notification) def handle_connect(handler): network_name = test.generate_id('n-s-n', test.NETWORK_ENTITY) description = '%s-description' % network_name network = handler.api.create_network(network_name, description) network_1 = handler.api.get_network(network.id) network.remove() try: network_1.subscribe_notifications() assert False except ApiResponseError as api_response_error: assert api_response_error.code == 404 test.run(handle_connect)
devicehive-python
positive
def test_message_completeness(self): """Test we're fully expecting all of the values for a message.""" self.err.error(('id',), 'error', 'description', 'file', 123, 456) <DeepExtract> results = json.loads(self.err.render_json()) </DeepExtract> eq_(len(results['messages']), 1, 'Unexpected number of messages.') message = results['messages'][0] eq_(message['id'], ['id']) eq_(message['message'], 'error') eq_(message['description'], 'description') eq_(message['file'], 'file') eq_(message['line'], 123) eq_(message['column'], 456)
def test_message_completeness(self): """Test we're fully expecting all of the values for a message.""" self.err.error(('id',), 'error', 'description', 'file', 123, 456) results = json.loads(self.err.render_json()) eq_(len(results['messages']), 1, 'Unexpected number of messages.') message = results['messages'][0] eq_(message['id'], ['id']) eq_(message['message'], 'error') eq_(message['description'], 'description') eq_(message['file'], 'file') eq_(message['line'], 123) eq_(message['column'], 456)
app-validator
positive
def getYesorNoResponse(handler_input, textType): table = boto3.resource('dynamodb').Table('AdvgStoryDetails') speak_output = GAME_END try: question_record = table.query(KeyConditionExpression=Key('CountryId').eq(get_country_id(handler_input.attributes_manager.session_attributes['country'])) & Key('QuestionNumber').eq(handler_input.attributes_manager.session_attributes['stats_record']['Items'][0]['QuestionNumber'] + 1)) if question_record['Count'] == 1: speak_output = question_record['Items'][0][textType] speak_output = '<voice name="' + get_polly_voice(handler_input.attributes_manager.session_attributes['country']) + '">' + speak_output + ' </voice>' handler_input.attributes_manager.session_attributes['stats_record']['Items'][0]['CurrentTurns'] += 1 handler_input.attributes_manager.session_attributes['stats_record']['Items'][0]['QuestionNumber'] += 1 if textType == 'YesResponseText': handler_input.attributes_manager.session_attributes['stats_record']['Items'][0]['MoneyLevel'] += question_record['Items'][0]['YesWealthImpact'] handler_input.attributes_manager.session_attributes['stats_record']['Items'][0]['EnergyLevel'] += question_record['Items'][0]['YesEnergyImpact'] elif textType == 'NoResponseText': handler_input.attributes_manager.session_attributes['stats_record']['Items'][0]['MoneyLevel'] += question_record['Items'][0]['NoWealthImpact'] handler_input.attributes_manager.session_attributes['stats_record']['Items'][0]['EnergyLevel'] += question_record['Items'][0]['NoEnergyImpact'] current_wealth = handler_input.attributes_manager.session_attributes['stats_record']['Items'][0]['MoneyLevel'] current_energy = handler_input.attributes_manager.session_attributes['stats_record']['Items'][0]['EnergyLevel'] if is_game_over(handler_input.attributes_manager.session_attributes['stats_record']): speak_output = '<voice name="' + get_polly_voice(handler_input.attributes_manager.session_attributes['country']) + '">Oh no adventurer, you don\'t have enough wealth or energy to continue on your adventure! This means your adventure is over. </voice> ' <DeepExtract> if is_user_on_session(handler_input) and has_active_adventure(handler_input): table = boto3.resource('dynamodb').Table('AdvgGameStats') table.update_item(Key={'PlayerNumber': handler_input.attributes_manager.session_attributes['user']['Items'][0]['PlayerNumber'], 'CountryId': get_country_id(handler_input.attributes_manager.session_attributes['country'])}, UpdateExpression='set ActiveFlag=:n', ConditionExpression='ActiveFlag=:a', ExpressionAttributeValues={':n': 'N', ':a': 'Y'}) </DeepExtract> elif is_warning_needed(current_wealth, current_energy): speak_output = '<voice name="' + get_polly_voice(handler_input.attributes_manager.session_attributes['country']) + '">Be careful adventurer, you are running low on wealth or energy. If you need a travel tip, say speak to the guide.</voice> ' speak_output = speak_output + ' ' + get_next_question(handler_input.attributes_manager.session_attributes['country'], handler_input.attributes_manager.session_attributes['stats_record'], handler_input) else: speak_output = speak_output + ' ' + get_next_question(handler_input.attributes_manager.session_attributes['country'], handler_input.attributes_manager.session_attributes['stats_record'], handler_input) else: logger.error("That question number doesn't exist: {}".format(handler_input.attributes_manager.session_attributes['stats_record']['Items'][0]['QuestionNumber'])) except: logger.error('An error in getYesorNoResponse for text type {} -- {}'.format(textType, handler_input)) speak_output = "Sorry, adventurer! I don't understand what you want to do. {}".format(VISIT_COUNTRY_REPROMPT) return speak_output
def getYesorNoResponse(handler_input, textType): table = boto3.resource('dynamodb').Table('AdvgStoryDetails') speak_output = GAME_END try: question_record = table.query(KeyConditionExpression=Key('CountryId').eq(get_country_id(handler_input.attributes_manager.session_attributes['country'])) & Key('QuestionNumber').eq(handler_input.attributes_manager.session_attributes['stats_record']['Items'][0]['QuestionNumber'] + 1)) if question_record['Count'] == 1: speak_output = question_record['Items'][0][textType] speak_output = '<voice name="' + get_polly_voice(handler_input.attributes_manager.session_attributes['country']) + '">' + speak_output + ' </voice>' handler_input.attributes_manager.session_attributes['stats_record']['Items'][0]['CurrentTurns'] += 1 handler_input.attributes_manager.session_attributes['stats_record']['Items'][0]['QuestionNumber'] += 1 if textType == 'YesResponseText': handler_input.attributes_manager.session_attributes['stats_record']['Items'][0]['MoneyLevel'] += question_record['Items'][0]['YesWealthImpact'] handler_input.attributes_manager.session_attributes['stats_record']['Items'][0]['EnergyLevel'] += question_record['Items'][0]['YesEnergyImpact'] elif textType == 'NoResponseText': handler_input.attributes_manager.session_attributes['stats_record']['Items'][0]['MoneyLevel'] += question_record['Items'][0]['NoWealthImpact'] handler_input.attributes_manager.session_attributes['stats_record']['Items'][0]['EnergyLevel'] += question_record['Items'][0]['NoEnergyImpact'] current_wealth = handler_input.attributes_manager.session_attributes['stats_record']['Items'][0]['MoneyLevel'] current_energy = handler_input.attributes_manager.session_attributes['stats_record']['Items'][0]['EnergyLevel'] if is_game_over(handler_input.attributes_manager.session_attributes['stats_record']): speak_output = '<voice name="' + get_polly_voice(handler_input.attributes_manager.session_attributes['country']) + '">Oh no adventurer, you don\'t have enough wealth or energy to continue on your adventure! This means your adventure is over. </voice> ' if is_user_on_session(handler_input) and has_active_adventure(handler_input): table = boto3.resource('dynamodb').Table('AdvgGameStats') table.update_item(Key={'PlayerNumber': handler_input.attributes_manager.session_attributes['user']['Items'][0]['PlayerNumber'], 'CountryId': get_country_id(handler_input.attributes_manager.session_attributes['country'])}, UpdateExpression='set ActiveFlag=:n', ConditionExpression='ActiveFlag=:a', ExpressionAttributeValues={':n': 'N', ':a': 'Y'}) elif is_warning_needed(current_wealth, current_energy): speak_output = '<voice name="' + get_polly_voice(handler_input.attributes_manager.session_attributes['country']) + '">Be careful adventurer, you are running low on wealth or energy. If you need a travel tip, say speak to the guide.</voice> ' speak_output = speak_output + ' ' + get_next_question(handler_input.attributes_manager.session_attributes['country'], handler_input.attributes_manager.session_attributes['stats_record'], handler_input) else: speak_output = speak_output + ' ' + get_next_question(handler_input.attributes_manager.session_attributes['country'], handler_input.attributes_manager.session_attributes['stats_record'], handler_input) else: logger.error("That question number doesn't exist: {}".format(handler_input.attributes_manager.session_attributes['stats_record']['Items'][0]['QuestionNumber'])) except: logger.error('An error in getYesorNoResponse for text type {} -- {}'.format(textType, handler_input)) speak_output = "Sorry, adventurer! I don't understand what you want to do. {}".format(VISIT_COUNTRY_REPROMPT) return speak_output
Course_Alexa_Skill_Builder
positive
def __init__(self, root_dir, split, data_transform=None, forward_context=0, back_context=0, strides=(1,), depth_type=None, **kwargs): super().__init__() assert depth_type is None or depth_type == '', 'VideoDataset currently does not support depth types' self.depth_type = depth_type self.with_depth = depth_type is not '' and depth_type is not None self.root_dir = root_dir self.split = split self.backward_context = back_context self.forward_context = forward_context self.max_len = 11 self.has_context = self.backward_context + self.forward_context > 0 self.strides = strides[0] self.files = [] <DeepExtract> files = defaultdict(list) for entry in os.scandir(root_dir): relpath = os.path.relpath(entry.path, root_dir) if entry.is_dir(): d_files = read_files(entry.path, ext=('.jpg', '.png', '.bmp', '.jpeg'), skip_empty=skip_empty) if skip_empty and (not len(d_files)): continue files[relpath] = d_files[entry.path] elif entry.is_file(): if ('.jpg', '.png', '.bmp', '.jpeg') is None or entry.path.lower().endswith(tuple(('.jpg', '.png', '.bmp', '.jpeg'))): files[root_dir].append(relpath) self.file_tree = files </DeepExtract> for (k, v) in self.file_tree.items(): file_list = sorted(v) files = [fname for fname in file_list if self._has_context(k, fname, file_list)] self.files.extend([[k, fname] for fname in files]) self.data_transform = data_transform
def __init__(self, root_dir, split, data_transform=None, forward_context=0, back_context=0, strides=(1,), depth_type=None, **kwargs): super().__init__() assert depth_type is None or depth_type == '', 'VideoDataset currently does not support depth types' self.depth_type = depth_type self.with_depth = depth_type is not '' and depth_type is not None self.root_dir = root_dir self.split = split self.backward_context = back_context self.forward_context = forward_context self.max_len = 11 self.has_context = self.backward_context + self.forward_context > 0 self.strides = strides[0] self.files = [] files = defaultdict(list) for entry in os.scandir(root_dir): relpath = os.path.relpath(entry.path, root_dir) if entry.is_dir(): d_files = read_files(entry.path, ext=('.jpg', '.png', '.bmp', '.jpeg'), skip_empty=skip_empty) if skip_empty and (not len(d_files)): continue files[relpath] = d_files[entry.path] elif entry.is_file(): if ('.jpg', '.png', '.bmp', '.jpeg') is None or entry.path.lower().endswith(tuple(('.jpg', '.png', '.bmp', '.jpeg'))): files[root_dir].append(relpath) self.file_tree = files for (k, v) in self.file_tree.items(): file_list = sorted(v) files = [fname for fname in file_list if self._has_context(k, fname, file_list)] self.files.extend([[k, fname] for fname in files]) self.data_transform = data_transform
dro-sfm
positive
def get_updates(self, params, constraints, loss): print('Using the SGLD Optimizer') <DeepExtract> grads = K.gradients(loss, params) if hasattr(self, 'clipnorm') and self.clipnorm > 0: norm = K.sqrt(sum([K.sum(K.square(g)) for g in grads])) grads = [clip_norm(g, self.clipnorm, norm) for g in grads] if hasattr(self, 'clipvalue') and self.clipvalue > 0: grads = [K.clip(g, -self.clipvalue, self.clipvalue) for g in grads] grads = grads </DeepExtract> lr = self.lr * (1.0 / (1.0 + self.decay * self.iterations)) self.updates = [(self.iterations, self.iterations + 1.0)] for (p, g, c) in zip(params, grads, constraints): m = K.variable(np.zeros(K.get_value(p).shape)) v = self.momentum * m - lr * g self.updates.append((m, v)) if self.nesterov: new_p = p + self.momentum * v - lr * g else: new_p = p + v self.updates.append((p, c(new_p))) return self.updates
def get_updates(self, params, constraints, loss): print('Using the SGLD Optimizer') grads = K.gradients(loss, params) if hasattr(self, 'clipnorm') and self.clipnorm > 0: norm = K.sqrt(sum([K.sum(K.square(g)) for g in grads])) grads = [clip_norm(g, self.clipnorm, norm) for g in grads] if hasattr(self, 'clipvalue') and self.clipvalue > 0: grads = [K.clip(g, -self.clipvalue, self.clipvalue) for g in grads] grads = grads lr = self.lr * (1.0 / (1.0 + self.decay * self.iterations)) self.updates = [(self.iterations, self.iterations + 1.0)] for (p, g, c) in zip(params, grads, constraints): m = K.variable(np.zeros(K.get_value(p).shape)) v = self.momentum * m - lr * g self.updates.append((m, v)) if self.nesterov: new_p = p + self.momentum * v - lr * g else: new_p = p + v self.updates.append((p, c(new_p))) return self.updates
Deep-Bayesian-Active-Learning
positive
def __init__(self, name, context, template=None, templateuri=None, callables=None, inherits=None, populate_self=True, calling_uri=None): self.name = name self.context = context self.inherits = inherits if callables is not None: self.callables = dict([(c.__name__, c) for c in callables]) if templateuri is not None: <DeepExtract> lookup = context._with_template.lookup if lookup is None: raise exceptions.TemplateLookupException("Template '%s' has no TemplateLookup associated" % context._with_template.uri) templateuri = lookup.adjust_uri(templateuri, calling_uri) try: self.template = lookup.get_template(templateuri) except exceptions.TopLevelLookupException: raise exceptions.TemplateLookupException(str(compat.exception_as())) </DeepExtract> self._templateuri = self.template.module._template_uri elif template is not None: self.template = template self._templateuri = template.module._template_uri else: raise TypeError("'template' argument is required.") if populate_self: <DeepExtract> if self is None: self = TemplateNamespace('self:%s' % self.template.uri, context, template=self.template, populate_self=False) context._data['self'] = context._data['local'] = self if hasattr(self.template.module, '_mako_inherit'): ret = self.template.module._mako_inherit(self.template, context) if ret: (lclcallable, lclcontext) = ret (lclcallable, lclcontext) = (self.template.callable_, context) </DeepExtract>
def __init__(self, name, context, template=None, templateuri=None, callables=None, inherits=None, populate_self=True, calling_uri=None): self.name = name self.context = context self.inherits = inherits if callables is not None: self.callables = dict([(c.__name__, c) for c in callables]) if templateuri is not None: lookup = context._with_template.lookup if lookup is None: raise exceptions.TemplateLookupException("Template '%s' has no TemplateLookup associated" % context._with_template.uri) templateuri = lookup.adjust_uri(templateuri, calling_uri) try: self.template = lookup.get_template(templateuri) except exceptions.TopLevelLookupException: raise exceptions.TemplateLookupException(str(compat.exception_as())) self._templateuri = self.template.module._template_uri elif template is not None: self.template = template self._templateuri = template.module._template_uri else: raise TypeError("'template' argument is required.") if populate_self: if self is None: self = TemplateNamespace('self:%s' % self.template.uri, context, template=self.template, populate_self=False) context._data['self'] = context._data['local'] = self if hasattr(self.template.module, '_mako_inherit'): ret = self.template.module._mako_inherit(self.template, context) if ret: (lclcallable, lclcontext) = ret (lclcallable, lclcontext) = (self.template.callable_, context) </DeepExtract>
atsf4g-co
positive
def count_rnn_cell(m: nn.RNNCell, x: torch.Tensor, y: torch.Tensor): <DeepExtract> total_ops = m.hidden_size * (m.input_size + m.hidden_size) + m.hidden_size if m.bias: total_ops += m.hidden_size * 2 total_ops = total_ops </DeepExtract> batch_size = x[0].size(0) total_ops *= batch_size m.total_ops += torch.DoubleTensor([int(total_ops)])
def count_rnn_cell(m: nn.RNNCell, x: torch.Tensor, y: torch.Tensor): total_ops = m.hidden_size * (m.input_size + m.hidden_size) + m.hidden_size if m.bias: total_ops += m.hidden_size * 2 total_ops = total_ops batch_size = x[0].size(0) total_ops *= batch_size m.total_ops += torch.DoubleTensor([int(total_ops)])
Divide-and-Co-training
positive
def aug_test(self, imgs, img_metas, rescale=False): feats = self.extract_feats(imgs) aug_bboxes = [] aug_scores = [] for (x, img_meta) in zip(feats, img_metas): outs = self.bbox_head(x) bbox_inputs = outs + (img_meta, self.test_cfg, False, False) (det_bboxes, det_scores) = self.bbox_head.get_bboxes(*bbox_inputs)[0] aug_bboxes.append(det_bboxes) aug_scores.append(det_scores) <DeepExtract> recovered_bboxes = [] for (bboxes, img_info) in zip(aug_bboxes, img_metas): img_shape = img_info[0]['img_shape'] scale_factor = img_info[0]['scale_factor'] flip = img_info[0]['flip'] bboxes = bbox_mapping_back(bboxes, img_shape, scale_factor, flip) recovered_bboxes.append(bboxes) bboxes = torch.cat(recovered_bboxes, dim=0) if aug_scores is None: (merged_bboxes, merged_scores) = bboxes else: scores = torch.cat(aug_scores, dim=0) (merged_bboxes, merged_scores) = (bboxes, scores) </DeepExtract> (det_bboxes, det_labels) = multiclass_nms(merged_bboxes, merged_scores, self.test_cfg.score_thr, self.test_cfg.nms, self.test_cfg.max_per_img) if rescale: _det_bboxes = det_bboxes else: _det_bboxes = det_bboxes.clone() _det_bboxes[:, :4] *= img_metas[0][0]['scale_factor'] bbox_results = bbox2result(_det_bboxes, det_labels, self.bbox_head.num_classes) return bbox_results
def aug_test(self, imgs, img_metas, rescale=False): feats = self.extract_feats(imgs) aug_bboxes = [] aug_scores = [] for (x, img_meta) in zip(feats, img_metas): outs = self.bbox_head(x) bbox_inputs = outs + (img_meta, self.test_cfg, False, False) (det_bboxes, det_scores) = self.bbox_head.get_bboxes(*bbox_inputs)[0] aug_bboxes.append(det_bboxes) aug_scores.append(det_scores) recovered_bboxes = [] for (bboxes, img_info) in zip(aug_bboxes, img_metas): img_shape = img_info[0]['img_shape'] scale_factor = img_info[0]['scale_factor'] flip = img_info[0]['flip'] bboxes = bbox_mapping_back(bboxes, img_shape, scale_factor, flip) recovered_bboxes.append(bboxes) bboxes = torch.cat(recovered_bboxes, dim=0) if aug_scores is None: (merged_bboxes, merged_scores) = bboxes else: scores = torch.cat(aug_scores, dim=0) (merged_bboxes, merged_scores) = (bboxes, scores) (det_bboxes, det_labels) = multiclass_nms(merged_bboxes, merged_scores, self.test_cfg.score_thr, self.test_cfg.nms, self.test_cfg.max_per_img) if rescale: _det_bboxes = det_bboxes else: _det_bboxes = det_bboxes.clone() _det_bboxes[:, :4] *= img_metas[0][0]['scale_factor'] bbox_results = bbox2result(_det_bboxes, det_labels, self.bbox_head.num_classes) return bbox_results
Cascade-RPN
positive
def set_session_config(enable_eager=False, enable_xla=False): """Sets the session config.""" if is_v2_0(): <DeepExtract> if enable_xla: tf.config.optimizer.set_jit(True) tf.config.optimizer.set_experimental_options({'pin_to_host_optimization': False}) </DeepExtract> else: <DeepExtract> config = None if enable_xla: config = tf.compat.v1.ConfigProto() config.graph_options.optimizer_options.global_jit_level = tf.OptimizerOptions.ON_2 config.graph_options.rewrite_options.pin_to_host_optimization = rewriter_config_pb2.RewriterConfig.OFF config = config </DeepExtract> if enable_eager: tf.compat.v1.enable_eager_execution(config=config) else: sess = tf.Session(config=config) tf.keras.backend.set_session(sess)
def set_session_config(enable_eager=False, enable_xla=False): """Sets the session config.""" if is_v2_0(): if enable_xla: tf.config.optimizer.set_jit(True) tf.config.optimizer.set_experimental_options({'pin_to_host_optimization': False}) else: config = None if enable_xla: config = tf.compat.v1.ConfigProto() config.graph_options.optimizer_options.global_jit_level = tf.OptimizerOptions.ON_2 config.graph_options.rewrite_options.pin_to_host_optimization = rewriter_config_pb2.RewriterConfig.OFF config = config if enable_eager: tf.compat.v1.enable_eager_execution(config=config) else: sess = tf.Session(config=config) tf.keras.backend.set_session(sess)
autodist
positive
def fom(self, params): """Run a forward simulation and calculate the figure of merit. Notes ----- The simualtion is performed in parallel with the help of all of the MPI node, however the calculation of the figure of merit itself is currently only performed on the master node (RANK == 0) Parameters ---------- params : numpy.ndarray List of design parameters of the system Returns ------- float **(Master node only)** The figure of merit :math:`F(\\mathbf{E},\\mathbf{H} ; \\mathbf{p})` """ <DeepExtract> pass </DeepExtract> self.prev_params = params self.sim.update() self.sim.solve_forward() return self.calc_fom(self.sim, params)
def fom(self, params): """Run a forward simulation and calculate the figure of merit. Notes ----- The simualtion is performed in parallel with the help of all of the MPI node, however the calculation of the figure of merit itself is currently only performed on the master node (RANK == 0) Parameters ---------- params : numpy.ndarray List of design parameters of the system Returns ------- float **(Master node only)** The figure of merit :math:`F(\\mathbf{E},\\mathbf{H} ; \\mathbf{p})` """ pass self.prev_params = params self.sim.update() self.sim.solve_forward() return self.calc_fom(self.sim, params)
emopt
positive
def _remove_items(*objs, **kwargs): if objs: chunks = [objs[x:x + 100] for x in range(0, len(objs), 100)] for chunk in chunks: kwargs = {self.column: multi_array_remove(self.column, *chunk)} <DeepExtract> qs = self.related_model.objects.filter(pk=self.instance.pk) qs.update(**kwargs) </DeepExtract> if self.symmetrical: kwargs = {self.column: ArrayRemove(self.column, self.instance.pk, output_field=self.field)} self.model.objects.filter(pk__in=list(objs)).update(**kwargs)
def _remove_items(*objs, **kwargs): if objs: chunks = [objs[x:x + 100] for x in range(0, len(objs), 100)] for chunk in chunks: kwargs = {self.column: multi_array_remove(self.column, *chunk)} qs = self.related_model.objects.filter(pk=self.instance.pk) qs.update(**kwargs) if self.symmetrical: kwargs = {self.column: ArrayRemove(self.column, self.instance.pk, output_field=self.field)} self.model.objects.filter(pk__in=list(objs)).update(**kwargs)
django_postgres_extensions
positive
def test_retry_select_events_after_deallocating_prepared_statement(self): <DeepExtract> if self.datastore.schema: table_name = f'{self.datastore.schema}.{table_name}' recorder = PostgresAggregateRecorder(datastore=self.datastore, events_table_name=table_name) recorder.create_table() recorder = recorder </DeepExtract> self.datastore.pool.pool_size = 1 originator_id = uuid4() stored_event1 = StoredEvent(originator_id=originator_id, originator_version=0, topic='topic1', state=b'state1') recorder.insert_events([stored_event1]) recorder.select_events(originator_id) with self.datastore.get_connection() as conn: if self.schema: statement_name = f'select_{self.schema}_{EVENTS_TABLE_NAME}' else: statement_name = f'select_{EVENTS_TABLE_NAME}' self.assertIn(statement_name, conn.is_prepared) conn.cursor().execute(f'DEALLOCATE {recorder.statement_name_aliases[statement_name]}') recorder.select_events(originator_id)
def test_retry_select_events_after_deallocating_prepared_statement(self): if self.datastore.schema: table_name = f'{self.datastore.schema}.{table_name}' recorder = PostgresAggregateRecorder(datastore=self.datastore, events_table_name=table_name) recorder.create_table() recorder = recorder self.datastore.pool.pool_size = 1 originator_id = uuid4() stored_event1 = StoredEvent(originator_id=originator_id, originator_version=0, topic='topic1', state=b'state1') recorder.insert_events([stored_event1]) recorder.select_events(originator_id) with self.datastore.get_connection() as conn: if self.schema: statement_name = f'select_{self.schema}_{EVENTS_TABLE_NAME}' else: statement_name = f'select_{EVENTS_TABLE_NAME}' self.assertIn(statement_name, conn.is_prepared) conn.cursor().execute(f'DEALLOCATE {recorder.statement_name_aliases[statement_name]}') recorder.select_events(originator_id)
eventsourcing
positive
def test_split_file_odd(create_dummy_file): <DeepExtract> patched_tempfile = mocker.patch('aizynthfinder.utils.files.tempfile.mktemp') split_files = ['\n'.join(list('abcdefg')) / 'split1', '\n'.join(list('abcdefg')) / 'split2', '\n'.join(list('abcdefg')) / 'split3'] patched_tempfile.side_effect = split_files filename = '\n'.join(list('abcdefg')) / 'input' def wrapper(content): with open(filename, 'w') as fileobj: fileobj.write(content) (filename, split_files) = (filename, split_files) (filename, split_files) = wrapper </DeepExtract> split_file(filename, 3) read_lines = [] for filename in split_files: assert os.path.exists(filename) with open(filename, 'r') as fileobj: read_lines.append(fileobj.read()) assert read_lines[0] == 'a\nb\nc' assert read_lines[1] == 'd\ne' assert read_lines[2] == 'f\ng'
def test_split_file_odd(create_dummy_file): patched_tempfile = mocker.patch('aizynthfinder.utils.files.tempfile.mktemp') split_files = ['\n'.join(list('abcdefg')) / 'split1', '\n'.join(list('abcdefg')) / 'split2', '\n'.join(list('abcdefg')) / 'split3'] patched_tempfile.side_effect = split_files filename = '\n'.join(list('abcdefg')) / 'input' def wrapper(content): with open(filename, 'w') as fileobj: fileobj.write(content) (filename, split_files) = (filename, split_files) (filename, split_files) = wrapper split_file(filename, 3) read_lines = [] for filename in split_files: assert os.path.exists(filename) with open(filename, 'r') as fileobj: read_lines.append(fileobj.read()) assert read_lines[0] == 'a\nb\nc' assert read_lines[1] == 'd\ne' assert read_lines[2] == 'f\ng'
aizynthfinder
positive
def test_unvectorize_multi_output(rngs, x_batch, x_single): def f_batch(X): return (hk.Linear(11)(X), hk.Linear(13)(X)) (init, f_batch) = hk.transform(f_batch) params = init(next(rngs), x_batch) <DeepExtract> y_batch = hk.Linear(11)(params) </DeepExtract> assert y_batch[0].shape == (7, 11) assert y_batch[1].shape == (7, 13) f_single = unvectorize(f_batch, in_axes=(None, None, 0), out_axes=0) y_single = f_single(params, next(rngs), x_single) assert y_single[0].shape == (11,) assert y_single[1].shape == (13,) f_single = unvectorize(f_batch, in_axes=(None, None, 0), out_axes=(0, None)) y_single = f_single(params, next(rngs), x_single) assert y_single[0].shape == (11,) assert y_single[1].shape == (1, 13) f_single = unvectorize(f_batch, in_axes=(None, None, 0), out_axes=None) y_single = f_single(params, next(rngs), x_single) assert y_single[0].shape == (1, 11) assert y_single[1].shape == (1, 13) f_single = unvectorize(f_batch, in_axes=(None, None, 0), out_axes=(0,)) msg = 'number of out_axes must match the number of function outputs' with pytest.raises(ValueError, match=msg): f_single(params, next(rngs), x_single)
def test_unvectorize_multi_output(rngs, x_batch, x_single): def f_batch(X): return (hk.Linear(11)(X), hk.Linear(13)(X)) (init, f_batch) = hk.transform(f_batch) params = init(next(rngs), x_batch) y_batch = hk.Linear(11)(params) assert y_batch[0].shape == (7, 11) assert y_batch[1].shape == (7, 13) f_single = unvectorize(f_batch, in_axes=(None, None, 0), out_axes=0) y_single = f_single(params, next(rngs), x_single) assert y_single[0].shape == (11,) assert y_single[1].shape == (13,) f_single = unvectorize(f_batch, in_axes=(None, None, 0), out_axes=(0, None)) y_single = f_single(params, next(rngs), x_single) assert y_single[0].shape == (11,) assert y_single[1].shape == (1, 13) f_single = unvectorize(f_batch, in_axes=(None, None, 0), out_axes=None) y_single = f_single(params, next(rngs), x_single) assert y_single[0].shape == (1, 11) assert y_single[1].shape == (1, 13) f_single = unvectorize(f_batch, in_axes=(None, None, 0), out_axes=(0,)) msg = 'number of out_axes must match the number of function outputs' with pytest.raises(ValueError, match=msg): f_single(params, next(rngs), x_single)
coax
positive
def test_spl_item(self): <DeepExtract> 'dotconfig-04.txt' = realpath(join(dirname(__file__), '..', '..', 'resources', 'dotconfig-04.txt')) </DeepExtract> checker = UBootConfigChecker('2019.04') config = checker.load(filename) self.assertTrue('CONFIG_SPL_FS_EXT4' in config) self.assertTrue(config['CONFIG_SPL_FS_EXT4'][0]) report = checker.audit() self.assertTrue('CVE-2019-11059' in report)
def test_spl_item(self): 'dotconfig-04.txt' = realpath(join(dirname(__file__), '..', '..', 'resources', 'dotconfig-04.txt')) checker = UBootConfigChecker('2019.04') config = checker.load(filename) self.assertTrue('CONFIG_SPL_FS_EXT4' in config) self.assertTrue(config['CONFIG_SPL_FS_EXT4'][0]) report = checker.audit() self.assertTrue('CVE-2019-11059' in report)
depthcharge
positive
def forward(self, tbl, tbl_len, tbl_split): """ Encode table headers. :param tbl: header token list :param tbl_len: length of token list (num_table_header, batch) :param tbl_split: table header boundary list """ <DeepExtract> (idx_sorted, tbl_len_sorted, idx_map_back) = sort_for_pack(tbl_len) tbl_sorted = tbl.index_select(1, Variable(torch.LongTensor(idx_sorted).cuda(), requires_grad=False)) (__, tbl_context) = self.encoder(tbl_sorted, tbl_len_sorted) v_idx_map_back = Variable(torch.LongTensor(idx_map_back).cuda(), requires_grad=False) tbl_context = tbl_context.index_select(1, v_idx_map_back) tbl_context = tbl_context </DeepExtract> if self.split_type == 'outcell': batch_index = torch.LongTensor(range(tbl_split.data.size(1))).unsqueeze_(0).cuda().expand_as(tbl_split.data) enc_split = tbl_context[tbl_split.data, batch_index, :] (enc_left, enc_right) = (enc_split[:-1], enc_split[1:]) elif self.split_type == 'incell': batch_index = torch.LongTensor(range(tbl_split.data.size(1))).unsqueeze_(0).cuda().expand(tbl_split.data.size(0) - 1, tbl_split.data.size(1)) split_left = (tbl_split.data[:-1] + 1).clamp(0, tbl_context.size(0) - 1) enc_left = tbl_context[split_left, batch_index, :] split_right = (tbl_split.data[1:] - 1).clamp(0, tbl_context.size(0) - 1) enc_right = tbl_context[split_right, batch_index, :] if self.merge_type == 'sub': return enc_right - enc_left elif self.merge_type == 'cat': half_hidden_size = self.hidden_size // 2 return torch.cat([enc_right[:, :, :half_hidden_size], enc_left[:, :, half_hidden_size:]], 2) elif self.merge_type == 'mlp': return self.merge(torch.cat([enc_right, enc_left], 2))
def forward(self, tbl, tbl_len, tbl_split): """ Encode table headers. :param tbl: header token list :param tbl_len: length of token list (num_table_header, batch) :param tbl_split: table header boundary list """ (idx_sorted, tbl_len_sorted, idx_map_back) = sort_for_pack(tbl_len) tbl_sorted = tbl.index_select(1, Variable(torch.LongTensor(idx_sorted).cuda(), requires_grad=False)) (__, tbl_context) = self.encoder(tbl_sorted, tbl_len_sorted) v_idx_map_back = Variable(torch.LongTensor(idx_map_back).cuda(), requires_grad=False) tbl_context = tbl_context.index_select(1, v_idx_map_back) tbl_context = tbl_context if self.split_type == 'outcell': batch_index = torch.LongTensor(range(tbl_split.data.size(1))).unsqueeze_(0).cuda().expand_as(tbl_split.data) enc_split = tbl_context[tbl_split.data, batch_index, :] (enc_left, enc_right) = (enc_split[:-1], enc_split[1:]) elif self.split_type == 'incell': batch_index = torch.LongTensor(range(tbl_split.data.size(1))).unsqueeze_(0).cuda().expand(tbl_split.data.size(0) - 1, tbl_split.data.size(1)) split_left = (tbl_split.data[:-1] + 1).clamp(0, tbl_context.size(0) - 1) enc_left = tbl_context[split_left, batch_index, :] split_right = (tbl_split.data[1:] - 1).clamp(0, tbl_context.size(0) - 1) enc_right = tbl_context[split_right, batch_index, :] if self.merge_type == 'sub': return enc_right - enc_left elif self.merge_type == 'cat': half_hidden_size = self.hidden_size // 2 return torch.cat([enc_right[:, :, :half_hidden_size], enc_left[:, :, half_hidden_size:]], 2) elif self.merge_type == 'mlp': return self.merge(torch.cat([enc_right, enc_left], 2))
coarse2fine
positive
def _mimetype(self, path): """ Attempt to read the file's mimetype. """ '\n The function below is implemented to handle linux system sys dev and proc directory\n bugs\n ' file_name = str(path.split('/')[-1]).strip() if re.search('^\\./proc/', path) or re.search('^\\./sys/', path): if file_name in self._files: try: <DeepExtract> fp = self._options['storage'].open(path, mode) </DeepExtract> mime = magic.Magic(mime=True).from_buffer(fp.read(10)) fp.close() return mime except: return 'application/empty' if re.search('^\\./dev/', path) and self._files[file_name] in 'l': return 'application/empty' if file_name in self._files: if self._files[file_name] not in '-l': return 'application/empty' <DeepExtract> fp = self._options['storage'].open(path, mode) </DeepExtract> mime = magic.Magic(mime=True).from_buffer(fp.read(10)) fp.close() return mime
def _mimetype(self, path): """ Attempt to read the file's mimetype. """ '\n The function below is implemented to handle linux system sys dev and proc directory\n bugs\n ' file_name = str(path.split('/')[-1]).strip() if re.search('^\\./proc/', path) or re.search('^\\./sys/', path): if file_name in self._files: try: fp = self._options['storage'].open(path, mode) mime = magic.Magic(mime=True).from_buffer(fp.read(10)) fp.close() return mime except: return 'application/empty' if re.search('^\\./dev/', path) and self._files[file_name] in 'l': return 'application/empty' if file_name in self._files: if self._files[file_name] not in '-l': return 'application/empty' fp = self._options['storage'].open(path, mode) mime = magic.Magic(mime=True).from_buffer(fp.read(10)) fp.close() return mime
adminset
positive
def _pl(self, image, context): tmp = image.copy() <DeepExtract> assert tmp.dtype == np.float32 img = cl_builder.new_image_from_ndarray(tmp) out = cl_builder.new_image(img.width, img.height) gaussian_repeat_cl(img, out, self.gA) gcr = img.to_numpy() </DeepExtract> error = (tmp - gcr) ** 2 mask = -gaussian_repeat(error, self.gB) mask -= np.min(mask) mask /= np.max(mask) mask = (mask - 0.5) * self.strength + 1.0 res = gcr + mask * (tmp - gcr) res[..., 3] = tmp[..., 3] return res
def _pl(self, image, context): tmp = image.copy() assert tmp.dtype == np.float32 img = cl_builder.new_image_from_ndarray(tmp) out = cl_builder.new_image(img.width, img.height) gaussian_repeat_cl(img, out, self.gA) gcr = img.to_numpy() error = (tmp - gcr) ** 2 mask = -gaussian_repeat(error, self.gB) mask -= np.min(mask) mask /= np.max(mask) mask = (mask - 0.5) * self.strength + 1.0 res = gcr + mask * (tmp - gcr) res[..., 3] = tmp[..., 3] return res
blender-texture-tools
positive
def mlp_actor_critic(x, a, hidden_sizes=(400, 300), activation=tf.nn.relu, output_activation=None, policy=mlp_gaussian_policy, action_space=None): with tf.variable_scope('pi'): (mu, pi, logp_pi) = policy(x, a, hidden_sizes, activation, output_activation) <DeepExtract> mu = tf.tanh(mu) pi = tf.tanh(pi) logp_pi -= tf.reduce_sum(tf.log(clip_but_pass_gradient(1 - pi ** 2, l=0, u=1) + 1e-06), axis=1) (mu, pi, logp_pi) = (mu, pi, logp_pi) </DeepExtract> action_scale = action_space mu *= action_scale pi *= action_scale vf_mlp = lambda x: tf.squeeze(mlp(x, list(hidden_sizes) + [1], activation, None), axis=1) with tf.variable_scope('q1'): q1 = vf_mlp(tf.concat([x, a], axis=-1)) with tf.variable_scope('q1', reuse=True): q1_pi = vf_mlp(tf.concat([x, pi], axis=-1)) with tf.variable_scope('q2'): q2 = vf_mlp(tf.concat([x, a], axis=-1)) with tf.variable_scope('q2', reuse=True): q2_pi = vf_mlp(tf.concat([x, pi], axis=-1)) with tf.variable_scope('v'): v = vf_mlp(x) return (mu, pi, logp_pi, q1, q2, q1_pi, q2_pi, v)
def mlp_actor_critic(x, a, hidden_sizes=(400, 300), activation=tf.nn.relu, output_activation=None, policy=mlp_gaussian_policy, action_space=None): with tf.variable_scope('pi'): (mu, pi, logp_pi) = policy(x, a, hidden_sizes, activation, output_activation) mu = tf.tanh(mu) pi = tf.tanh(pi) logp_pi -= tf.reduce_sum(tf.log(clip_but_pass_gradient(1 - pi ** 2, l=0, u=1) + 1e-06), axis=1) (mu, pi, logp_pi) = (mu, pi, logp_pi) action_scale = action_space mu *= action_scale pi *= action_scale vf_mlp = lambda x: tf.squeeze(mlp(x, list(hidden_sizes) + [1], activation, None), axis=1) with tf.variable_scope('q1'): q1 = vf_mlp(tf.concat([x, a], axis=-1)) with tf.variable_scope('q1', reuse=True): q1_pi = vf_mlp(tf.concat([x, pi], axis=-1)) with tf.variable_scope('q2'): q2 = vf_mlp(tf.concat([x, a], axis=-1)) with tf.variable_scope('q2', reuse=True): q2_pi = vf_mlp(tf.concat([x, pi], axis=-1)) with tf.variable_scope('v'): v = vf_mlp(x) return (mu, pi, logp_pi, q1, q2, q1_pi, q2_pi, v)
DRLib
positive
def run_in_background(name, args, **kwargs): """Pickle arguments to cache file, then call this script again via :func:`subprocess.call`. :param name: name of task :type name: ``unicode`` :param args: arguments passed as first argument to :func:`subprocess.call` :param \\**kwargs: keyword arguments to :func:`subprocess.call` :returns: exit code of sub-process :rtype: ``int`` When you call this function, it caches its arguments and then calls ``background.py`` in a subprocess. The Python subprocess will load the cached arguments, fork into the background, and then run the command you specified. This function will return as soon as the ``background.py`` subprocess has forked, returning the exit code of *that* process (i.e. not of the command you're trying to run). If that process fails, an error will be written to the log file. If a process is already running under the same name, this function will return immediately and will not run the specified command. """ if is_running(name): log.info('Task `{}` is already running'.format(name)) return <DeepExtract> argcache = wf.cachefile('{}.argcache'.format(name)) </DeepExtract> with open(argcache, 'wb') as file_obj: pickle.dump({'args': args, 'kwargs': kwargs}, file_obj) log.debug('Command arguments cached to `{}`'.format(argcache)) cmd = ['/usr/bin/python', __file__, name] log.debug('Calling {!r} ...'.format(cmd)) retcode = subprocess.call(cmd) if retcode: log.error('Failed to call task in background') else: log.debug('Executing task `{}` in background...'.format(name)) return retcode
def run_in_background(name, args, **kwargs): """Pickle arguments to cache file, then call this script again via :func:`subprocess.call`. :param name: name of task :type name: ``unicode`` :param args: arguments passed as first argument to :func:`subprocess.call` :param \\**kwargs: keyword arguments to :func:`subprocess.call` :returns: exit code of sub-process :rtype: ``int`` When you call this function, it caches its arguments and then calls ``background.py`` in a subprocess. The Python subprocess will load the cached arguments, fork into the background, and then run the command you specified. This function will return as soon as the ``background.py`` subprocess has forked, returning the exit code of *that* process (i.e. not of the command you're trying to run). If that process fails, an error will be written to the log file. If a process is already running under the same name, this function will return immediately and will not run the specified command. """ if is_running(name): log.info('Task `{}` is already running'.format(name)) return argcache = wf.cachefile('{}.argcache'.format(name)) with open(argcache, 'wb') as file_obj: pickle.dump({'args': args, 'kwargs': kwargs}, file_obj) log.debug('Command arguments cached to `{}`'.format(argcache)) cmd = ['/usr/bin/python', __file__, name] log.debug('Calling {!r} ...'.format(cmd)) retcode = subprocess.call(cmd) if retcode: log.error('Failed to call task in background') else: log.debug('Executing task `{}` in background...'.format(name)) return retcode
alfred_zotquery
positive
def run_advi(log_joint_fn, all_args, num_iterations, run_map=False): """Train model with automatic differentiation variational inference. Args: run_map: If True, runs ADVI with `E_q [ log p(data, params) ]` as loss function. """ (alpha, beta, epsilon, w, tau, x) = all_args log_posterior = lambda epsilon, w, tau: log_joint_fn(alpha, beta, epsilon, w, tau, x) def unpack_params(params): """Unpacks `np.ndarray` into list of variational parameters.""" param_shapes = [epsilon.shape, epsilon.shape, w.shape, w.shape, tau.shape, tau.shape] begin = 0 end = 0 unpacked_params = [] for param_shape in param_shapes: end += int(np.prod(param_shape)) param = params[begin:end].reshape(param_shape) begin = end unpacked_params.append(param) return unpacked_params def loss(params, t, return_marginal=False): """Reparameterization-based Monte Carlo estimate of negative ELBO.""" del t <DeepExtract> param_shapes = [epsilon.shape, epsilon.shape, w.shape, w.shape, tau.shape, tau.shape] begin = 0 end = 0 unpacked_params = [] for param_shape in param_shapes: end += int(np.prod(param_shape)) param = params[begin:end].reshape(param_shape) begin = end unpacked_params.append(param) unpacked_params = unpacked_params </DeepExtract> zs = [] log_q = 0.0 for t in range(2): loc = unpacked_params[2 * t] log_scale = unpacked_params[2 * t + 1] z = loc + np.exp(log_scale) * np.random.normal(0, 1, size=log_scale.shape) zs.append(z) log_q += log_probs.norm_gen_log_prob(z, loc, np.exp(log_scale)) zs.append(tau) log_p = log_posterior(*zs) if return_marginal: return log_p elif run_map: return -log_p return log_q - log_p def callback(params, t, g): """Callback for use in Autograd's optimizer routine.""" del g if t % FLAGS.num_print == 0 or t + 1 == num_iterations: <DeepExtract> del t unpacked_params = unpack_params(params) zs = [] log_q = 0.0 for t in range(2): loc = unpacked_params[2 * t] log_scale = unpacked_params[2 * t + 1] z = loc + np.exp(log_scale) * np.random.normal(0, 1, size=log_scale.shape) zs.append(z) log_q += log_probs.norm_gen_log_prob(z, loc, np.exp(log_scale)) zs.append(tau) log_p = log_posterior(*zs) if True: log_joint = log_p elif run_map: log_joint = -log_p log_joint = log_q - log_p </DeepExtract> elbo = -loss(params, t) runtime = time.time() - start print('Iteration: {:>3d} Log Joint: {:.3f} ELBO: {:.3f} Runtime (s): {:.3f}'.format(t, log_joint, elbo, runtime)) log_joints.append(log_joint) elbos.append(elbo) runtimes.append(runtime) return grad_loss = grad(loss) if run_map: print('Running MAP...') else: print('Running ADVI...') num_params = int(2 * np.prod(epsilon.shape) + 2 * np.prod(w.shape) + 2 * np.prod(tau.shape)) print('Number of parameters: ', num_params) params = np.concatenate([np.random.normal(0, 1, size=int(np.prod(epsilon.shape))), np.random.normal(-3, 0.001, size=int(np.prod(epsilon.shape))), np.random.normal(0, 1, size=int(np.prod(w.shape))), np.random.normal(-3, 0.001, size=int(np.prod(w.shape))), np.random.normal(0, 1, size=int(np.prod(tau.shape))), np.random.normal(-3, 0.001, size=int(np.prod(tau.shape)))], 0) log_joints = [] elbos = [] runtimes = [] start = time.time() params = adam(grad_loss, params, callback=callback, num_iters=num_iterations, step_size=0.01) return (log_joints, runtimes, elbos)
def run_advi(log_joint_fn, all_args, num_iterations, run_map=False): """Train model with automatic differentiation variational inference. Args: run_map: If True, runs ADVI with `E_q [ log p(data, params) ]` as loss function. """ (alpha, beta, epsilon, w, tau, x) = all_args log_posterior = lambda epsilon, w, tau: log_joint_fn(alpha, beta, epsilon, w, tau, x) def unpack_params(params): """Unpacks `np.ndarray` into list of variational parameters.""" param_shapes = [epsilon.shape, epsilon.shape, w.shape, w.shape, tau.shape, tau.shape] begin = 0 end = 0 unpacked_params = [] for param_shape in param_shapes: end += int(np.prod(param_shape)) param = params[begin:end].reshape(param_shape) begin = end unpacked_params.append(param) return unpacked_params def loss(params, t, return_marginal=False): """Reparameterization-based Monte Carlo estimate of negative ELBO.""" del t param_shapes = [epsilon.shape, epsilon.shape, w.shape, w.shape, tau.shape, tau.shape] begin = 0 end = 0 unpacked_params = [] for param_shape in param_shapes: end += int(np.prod(param_shape)) param = params[begin:end].reshape(param_shape) begin = end unpacked_params.append(param) unpacked_params = unpacked_params zs = [] log_q = 0.0 for t in range(2): loc = unpacked_params[2 * t] log_scale = unpacked_params[2 * t + 1] z = loc + np.exp(log_scale) * np.random.normal(0, 1, size=log_scale.shape) zs.append(z) log_q += log_probs.norm_gen_log_prob(z, loc, np.exp(log_scale)) zs.append(tau) log_p = log_posterior(*zs) if return_marginal: return log_p elif run_map: return -log_p return log_q - log_p def callback(params, t, g): """Callback for use in Autograd's optimizer routine.""" del g if t % FLAGS.num_print == 0 or t + 1 == num_iterations: del t unpacked_params = unpack_params(params) zs = [] log_q = 0.0 for t in range(2): loc = unpacked_params[2 * t] log_scale = unpacked_params[2 * t + 1] z = loc + np.exp(log_scale) * np.random.normal(0, 1, size=log_scale.shape) zs.append(z) log_q += log_probs.norm_gen_log_prob(z, loc, np.exp(log_scale)) zs.append(tau) log_p = log_posterior(*zs) if True: log_joint = log_p elif run_map: log_joint = -log_p log_joint = log_q - log_p elbo = -loss(params, t) runtime = time.time() - start print('Iteration: {:>3d} Log Joint: {:.3f} ELBO: {:.3f} Runtime (s): {:.3f}'.format(t, log_joint, elbo, runtime)) log_joints.append(log_joint) elbos.append(elbo) runtimes.append(runtime) return grad_loss = grad(loss) if run_map: print('Running MAP...') else: print('Running ADVI...') num_params = int(2 * np.prod(epsilon.shape) + 2 * np.prod(w.shape) + 2 * np.prod(tau.shape)) print('Number of parameters: ', num_params) params = np.concatenate([np.random.normal(0, 1, size=int(np.prod(epsilon.shape))), np.random.normal(-3, 0.001, size=int(np.prod(epsilon.shape))), np.random.normal(0, 1, size=int(np.prod(w.shape))), np.random.normal(-3, 0.001, size=int(np.prod(w.shape))), np.random.normal(0, 1, size=int(np.prod(tau.shape))), np.random.normal(-3, 0.001, size=int(np.prod(tau.shape)))], 0) log_joints = [] elbos = [] runtimes = [] start = time.time() params = adam(grad_loss, params, callback=callback, num_iters=num_iterations, step_size=0.01) return (log_joints, runtimes, elbos)
autoconj
positive
def test_mergeConstraintSets(self): """ Create a few disjoint sets, specify some constraints, and verify that they are merged correctly. """ def _verify(_coll_sets, _correct_answer): """ Assert that the ``_coll_sets`` are reduced to ``_correct_answer`` by the `mergeConstraintSets` algorithm. """ assert self.igor.updateLocalCache().ok ret = self.igor.uniquePairs() assert ret.ok ret = azrael.leonard.mergeConstraintSets(ret.data, _coll_sets) assert ret.ok computed = ret.data computed = [sorted(tuple(_)) for _ in computed] correct = [sorted(tuple(_)) for _ in _correct_answer] assert sorted(computed) == sorted(correct) igor = self.igor mergeConstraintSets = azrael.leonard.mergeConstraintSets self.igor.reset() assert self.igor.updateLocalCache().ok ret = self.igor.uniquePairs() assert ret.ok assert mergeConstraintSets(ret.data, []) == (True, None, []) <DeepExtract> assert self.igor.updateLocalCache().ok ret = self.igor.uniquePairs() assert ret.ok ret = azrael.leonard.mergeConstraintSets(ret.data, []) assert ret.ok computed = ret.data computed = [sorted(tuple(_)) for _ in computed] correct = [sorted(tuple(_)) for _ in []] assert sorted(computed) == sorted(correct) </DeepExtract> self.igor.reset() assert self.igor.updateLocalCache().ok ret = self.igor.uniquePairs() assert ret.ok assert mergeConstraintSets(ret.data, [[1]]) == (True, None, [[1]]) tmp = [[1, 2, 3]] assert mergeConstraintSets(ret.data, tmp) == (True, None, tmp) del tmp self.igor.reset() s = [['1'], ['2']] <DeepExtract> assert self.igor.updateLocalCache().ok ret = self.igor.uniquePairs() assert ret.ok ret = azrael.leonard.mergeConstraintSets(ret.data, s) assert ret.ok computed = ret.data computed = [sorted(tuple(_)) for _ in computed] correct = [sorted(tuple(_)) for _ in s] assert sorted(computed) == sorted(correct) </DeepExtract> assert igor.addConstraints([getP2P()]).ok <DeepExtract> assert self.igor.updateLocalCache().ok ret = self.igor.uniquePairs() assert ret.ok ret = azrael.leonard.mergeConstraintSets(ret.data, s) assert ret.ok computed = ret.data computed = [sorted(tuple(_)) for _ in computed] correct = [sorted(tuple(_)) for _ in [['1', '2']]] assert sorted(computed) == sorted(correct) </DeepExtract> self.igor.reset() <DeepExtract> assert self.igor.updateLocalCache().ok ret = self.igor.uniquePairs() assert ret.ok ret = azrael.leonard.mergeConstraintSets(ret.data, s) assert ret.ok computed = ret.data computed = [sorted(tuple(_)) for _ in computed] correct = [sorted(tuple(_)) for _ in s] assert sorted(computed) == sorted(correct) </DeepExtract> self.igor.reset() s = [['1'], ['2']] <DeepExtract> assert self.igor.updateLocalCache().ok ret = self.igor.uniquePairs() assert ret.ok ret = azrael.leonard.mergeConstraintSets(ret.data, s) assert ret.ok computed = ret.data computed = [sorted(tuple(_)) for _ in computed] correct = [sorted(tuple(_)) for _ in s] assert sorted(computed) == sorted(correct) </DeepExtract> assert igor.addConstraints([getP2P(rb_a='1', rb_b='3')]).ok <DeepExtract> assert self.igor.updateLocalCache().ok ret = self.igor.uniquePairs() assert ret.ok ret = azrael.leonard.mergeConstraintSets(ret.data, s) assert ret.ok computed = ret.data computed = [sorted(tuple(_)) for _ in computed] correct = [sorted(tuple(_)) for _ in s] assert sorted(computed) == sorted(correct) </DeepExtract> self.igor.reset() s = [['1', '2', '3'], ['4', '5'], ['6']] <DeepExtract> assert self.igor.updateLocalCache().ok ret = self.igor.uniquePairs() assert ret.ok ret = azrael.leonard.mergeConstraintSets(ret.data, s) assert ret.ok computed = ret.data computed = [sorted(tuple(_)) for _ in computed] correct = [sorted(tuple(_)) for _ in s] assert sorted(computed) == sorted(correct) </DeepExtract> assert igor.addConstraints([getP2P(rb_a='1', rb_b='6')]).ok <DeepExtract> assert self.igor.updateLocalCache().ok ret = self.igor.uniquePairs() assert ret.ok ret = azrael.leonard.mergeConstraintSets(ret.data, s) assert ret.ok computed = ret.data computed = [sorted(tuple(_)) for _ in computed] correct = [sorted(tuple(_)) for _ in [['1', '2', '3', '6'], ['4', '5']]] assert sorted(computed) == sorted(correct) </DeepExtract> self.igor.reset() s = [['1', '2', '3'], ['4', '5'], ['6']] <DeepExtract> assert self.igor.updateLocalCache().ok ret = self.igor.uniquePairs() assert ret.ok ret = azrael.leonard.mergeConstraintSets(ret.data, s) assert ret.ok computed = ret.data computed = [sorted(tuple(_)) for _ in computed] correct = [sorted(tuple(_)) for _ in s] assert sorted(computed) == sorted(correct) </DeepExtract> assert igor.addConstraints([getP2P(rb_a='1', rb_b='6')]).ok assert igor.addConstraints([getP2P(rb_a='3', rb_b='4')]).ok <DeepExtract> assert self.igor.updateLocalCache().ok ret = self.igor.uniquePairs() assert ret.ok ret = azrael.leonard.mergeConstraintSets(ret.data, s) assert ret.ok computed = ret.data computed = [sorted(tuple(_)) for _ in computed] correct = [sorted(tuple(_)) for _ in [['1', '2', '3', '6', '4', '5']]] assert sorted(computed) == sorted(correct) </DeepExtract>
def test_mergeConstraintSets(self): """ Create a few disjoint sets, specify some constraints, and verify that they are merged correctly. """ def _verify(_coll_sets, _correct_answer): """ Assert that the ``_coll_sets`` are reduced to ``_correct_answer`` by the `mergeConstraintSets` algorithm. """ assert self.igor.updateLocalCache().ok ret = self.igor.uniquePairs() assert ret.ok ret = azrael.leonard.mergeConstraintSets(ret.data, _coll_sets) assert ret.ok computed = ret.data computed = [sorted(tuple(_)) for _ in computed] correct = [sorted(tuple(_)) for _ in _correct_answer] assert sorted(computed) == sorted(correct) igor = self.igor mergeConstraintSets = azrael.leonard.mergeConstraintSets self.igor.reset() assert self.igor.updateLocalCache().ok ret = self.igor.uniquePairs() assert ret.ok assert mergeConstraintSets(ret.data, []) == (True, None, []) assert self.igor.updateLocalCache().ok ret = self.igor.uniquePairs() assert ret.ok ret = azrael.leonard.mergeConstraintSets(ret.data, []) assert ret.ok computed = ret.data computed = [sorted(tuple(_)) for _ in computed] correct = [sorted(tuple(_)) for _ in []] assert sorted(computed) == sorted(correct) self.igor.reset() assert self.igor.updateLocalCache().ok ret = self.igor.uniquePairs() assert ret.ok assert mergeConstraintSets(ret.data, [[1]]) == (True, None, [[1]]) tmp = [[1, 2, 3]] assert mergeConstraintSets(ret.data, tmp) == (True, None, tmp) del tmp self.igor.reset() s = [['1'], ['2']] assert self.igor.updateLocalCache().ok ret = self.igor.uniquePairs() assert ret.ok ret = azrael.leonard.mergeConstraintSets(ret.data, s) assert ret.ok computed = ret.data computed = [sorted(tuple(_)) for _ in computed] correct = [sorted(tuple(_)) for _ in s] assert sorted(computed) == sorted(correct) assert igor.addConstraints([getP2P()]).ok assert self.igor.updateLocalCache().ok ret = self.igor.uniquePairs() assert ret.ok ret = azrael.leonard.mergeConstraintSets(ret.data, s) assert ret.ok computed = ret.data computed = [sorted(tuple(_)) for _ in computed] correct = [sorted(tuple(_)) for _ in [['1', '2']]] assert sorted(computed) == sorted(correct) self.igor.reset() assert self.igor.updateLocalCache().ok ret = self.igor.uniquePairs() assert ret.ok ret = azrael.leonard.mergeConstraintSets(ret.data, s) assert ret.ok computed = ret.data computed = [sorted(tuple(_)) for _ in computed] correct = [sorted(tuple(_)) for _ in s] assert sorted(computed) == sorted(correct) self.igor.reset() s = [['1'], ['2']] assert self.igor.updateLocalCache().ok ret = self.igor.uniquePairs() assert ret.ok ret = azrael.leonard.mergeConstraintSets(ret.data, s) assert ret.ok computed = ret.data computed = [sorted(tuple(_)) for _ in computed] correct = [sorted(tuple(_)) for _ in s] assert sorted(computed) == sorted(correct) assert igor.addConstraints([getP2P(rb_a='1', rb_b='3')]).ok assert self.igor.updateLocalCache().ok ret = self.igor.uniquePairs() assert ret.ok ret = azrael.leonard.mergeConstraintSets(ret.data, s) assert ret.ok computed = ret.data computed = [sorted(tuple(_)) for _ in computed] correct = [sorted(tuple(_)) for _ in s] assert sorted(computed) == sorted(correct) self.igor.reset() s = [['1', '2', '3'], ['4', '5'], ['6']] assert self.igor.updateLocalCache().ok ret = self.igor.uniquePairs() assert ret.ok ret = azrael.leonard.mergeConstraintSets(ret.data, s) assert ret.ok computed = ret.data computed = [sorted(tuple(_)) for _ in computed] correct = [sorted(tuple(_)) for _ in s] assert sorted(computed) == sorted(correct) assert igor.addConstraints([getP2P(rb_a='1', rb_b='6')]).ok assert self.igor.updateLocalCache().ok ret = self.igor.uniquePairs() assert ret.ok ret = azrael.leonard.mergeConstraintSets(ret.data, s) assert ret.ok computed = ret.data computed = [sorted(tuple(_)) for _ in computed] correct = [sorted(tuple(_)) for _ in [['1', '2', '3', '6'], ['4', '5']]] assert sorted(computed) == sorted(correct) self.igor.reset() s = [['1', '2', '3'], ['4', '5'], ['6']] assert self.igor.updateLocalCache().ok ret = self.igor.uniquePairs() assert ret.ok ret = azrael.leonard.mergeConstraintSets(ret.data, s) assert ret.ok computed = ret.data computed = [sorted(tuple(_)) for _ in computed] correct = [sorted(tuple(_)) for _ in s] assert sorted(computed) == sorted(correct) assert igor.addConstraints([getP2P(rb_a='1', rb_b='6')]).ok assert igor.addConstraints([getP2P(rb_a='3', rb_b='4')]).ok assert self.igor.updateLocalCache().ok ret = self.igor.uniquePairs() assert ret.ok ret = azrael.leonard.mergeConstraintSets(ret.data, s) assert ret.ok computed = ret.data computed = [sorted(tuple(_)) for _ in computed] correct = [sorted(tuple(_)) for _ in [['1', '2', '3', '6', '4', '5']]] assert sorted(computed) == sorted(correct) </DeepExtract>
azrael
positive
def compute(self, iteration_result, reference_matrix=None): """general compute method, iteration_result is a dictionary that contains the results generated by the scoring functions in the current computation. the reference_matrix is actually a hack that allows the scoring function to normalize its scores to the range of a reference score matrix. In the normal case, those would be the gene expression row scores""" iteration = iteration_result['iteration'] if self.run_in_iteration(iteration): logging.debug("running '%s' in iteration %d with scaling: %f", self.id, iteration, self.scaling(iteration)) <DeepExtract> raise Exception('implement me') </DeepExtract> <DeepExtract> if self.cache_result: self.cached_result = computed_result else: logging.debug('pickle result to %s', self.pickle_path()) with open(self.pickle_path(), 'wb') as outfile: pickle.dump(computed_result, outfile) </DeepExtract> else: <DeepExtract> if self.cache_result and 'cached_result' in dir(self): computed_result = self.cached_result elif os.path.exists(self.pickle_path()): with open(self.pickle_path(), 'rb') as infile: computed_result = pickle.load(infile) else: computed_result = None </DeepExtract> self.run_log.log(iteration, self.run_in_iteration(iteration), self.scaling(iteration_result['iteration'])) <DeepExtract> if computed_result is None: iteration_result['score_means'][self.id] = 0.0 else: iteration_result['score_means'][self.id] = computed_result.mean() </DeepExtract> return computed_result
def compute(self, iteration_result, reference_matrix=None): """general compute method, iteration_result is a dictionary that contains the results generated by the scoring functions in the current computation. the reference_matrix is actually a hack that allows the scoring function to normalize its scores to the range of a reference score matrix. In the normal case, those would be the gene expression row scores""" iteration = iteration_result['iteration'] if self.run_in_iteration(iteration): logging.debug("running '%s' in iteration %d with scaling: %f", self.id, iteration, self.scaling(iteration)) raise Exception('implement me') if self.cache_result: self.cached_result = computed_result else: logging.debug('pickle result to %s', self.pickle_path()) with open(self.pickle_path(), 'wb') as outfile: pickle.dump(computed_result, outfile) else: if self.cache_result and 'cached_result' in dir(self): computed_result = self.cached_result elif os.path.exists(self.pickle_path()): with open(self.pickle_path(), 'rb') as infile: computed_result = pickle.load(infile) else: computed_result = None self.run_log.log(iteration, self.run_in_iteration(iteration), self.scaling(iteration_result['iteration'])) if computed_result is None: iteration_result['score_means'][self.id] = 0.0 else: iteration_result['score_means'][self.id] = computed_result.mean() return computed_result
cmonkey2
positive
def __init__(self, model_params, dataset_class, vocab_size, vocab): super().__init__(layers=None, name='Language Modeling Flow') self.model_params = model_params self.dataset_class = dataset_class self.max_seq_len = self.model_params['max_seq_len'] self.vocab_size = vocab_size self.vocab = vocab <DeepExtract> self.latent_dim = self.model_params['categ_encoding']['num_dimensions'] model_func = lambda c_out: AutoregressiveLSTMModel(c_in=self.latent_dim, c_out=c_out, max_seq_len=self.max_seq_len, num_layers=self.model_params['coupling_hidden_layers'], hidden_size=self.model_params['coupling_hidden_size'], dp_rate=self.model_params['coupling_dropout'], input_dp_rate=self.model_params['coupling_input_dropout']) self.model_params['categ_encoding']['flow_config']['model_func'] = model_func self.encoding_layer = create_encoding(self.model_params['categ_encoding'], dataset_class=self.dataset_class, vocab_size=self.vocab_size, vocab=self.vocab) num_flows = self.model_params['coupling_num_flows'] layers = [] for flow_index in range(num_flows): layers += [ActNormFlow(self.latent_dim)] if flow_index > 0: layers += [InvertibleConv(self.latent_dim)] layers += [AutoregressiveMixtureCDFCoupling(c_in=self.latent_dim, model_func=model_func, block_type='LSTM model', num_mixtures=self.model_params['coupling_num_mixtures'])] self.flow_layers = nn.ModuleList([self.encoding_layer] + layers) </DeepExtract> self.print_overview()
def __init__(self, model_params, dataset_class, vocab_size, vocab): super().__init__(layers=None, name='Language Modeling Flow') self.model_params = model_params self.dataset_class = dataset_class self.max_seq_len = self.model_params['max_seq_len'] self.vocab_size = vocab_size self.vocab = vocab self.latent_dim = self.model_params['categ_encoding']['num_dimensions'] model_func = lambda c_out: AutoregressiveLSTMModel(c_in=self.latent_dim, c_out=c_out, max_seq_len=self.max_seq_len, num_layers=self.model_params['coupling_hidden_layers'], hidden_size=self.model_params['coupling_hidden_size'], dp_rate=self.model_params['coupling_dropout'], input_dp_rate=self.model_params['coupling_input_dropout']) self.model_params['categ_encoding']['flow_config']['model_func'] = model_func self.encoding_layer = create_encoding(self.model_params['categ_encoding'], dataset_class=self.dataset_class, vocab_size=self.vocab_size, vocab=self.vocab) num_flows = self.model_params['coupling_num_flows'] layers = [] for flow_index in range(num_flows): layers += [ActNormFlow(self.latent_dim)] if flow_index > 0: layers += [InvertibleConv(self.latent_dim)] layers += [AutoregressiveMixtureCDFCoupling(c_in=self.latent_dim, model_func=model_func, block_type='LSTM model', num_mixtures=self.model_params['coupling_num_mixtures'])] self.flow_layers = nn.ModuleList([self.encoding_layer] + layers) self.print_overview()
CategoricalNF
positive
def get_hint_pep484585_callable_params(hint: object, exception_cls: TypeException=BeartypeDecorHintPep484585Exception, exception_prefix: str='') -> _HINT_PEP484585_CALLABLE_PARAMS: """ Object describing all **parameter type hints** (i.e., PEP-compliant child type hints typing the parameters accepted by a passed or returned callable) of the passed **callable type hint** (i.e., :pep:`484`-compliant ``typing.Callable[...]`` or :pep:`585`-compliant ``collections.abc.Callable[...]`` type hint). This getter returns one of several different types of objects, conditionally depending on the type of the first argument originally subscripting this hint. Specifically, if this hint was of the form: * ``Callable[[{arg_hints}], {return_hint}]``, this getter returns a tuple of the zero or more parameter type hints subscripting (indexing) this hint. * ``Callable[..., {return_hint}]``, the :data:`Ellipsis` singleton. * ``Callable[typing.ParamSpec[...], {return_hint}]``, the ``typing.ParamSpec[...]`` subscripting (indexing) this hint. This getter is intentionally *not* memoized (e.g., by the :func:`callable_cached` decorator), as the implementation requires no iteration and thus exhibits guaranteed constant-time behaviour. Parameters ---------- hint : object Callable type hint to be inspected. exception_cls : TypeException, optional Type of exception to be raised. Defaults to :exc:`BeartypeDecorHintPep484585Exception`. exception_prefix : str, optional Human-readable substring prefixing the representation of this object in the exception message. Defaults to the empty string. Returns ---------- _HINT_PEP484585_CALLABLE_PARAMS First argument originally subscripting this hint. Raises ---------- :exc:`exception_cls` If this hint is *not* a callable type hint. """ from beartype._util.hint.pep.utilpepget import get_hint_pep_args, get_hint_pep_sign_or_none <DeepExtract> from beartype._util.hint.pep.utilpepget import get_hint_pep_sign hint_sign = get_hint_pep_sign(hint=hint, exception_cls=exception_cls, exception_prefix=exception_prefix) if hint_sign is not HintSignCallable: assert issubclass(exception_cls, Exception), f'{repr(exception_cls)} not exception class.' assert isinstance(exception_prefix, str), f'{repr(exception_prefix)} not string.' raise exception_cls(f'{exception_prefix}type hint {repr(hint)} not PEP 484 or 585 callable type hint (i.e., "typing.Callable[...]" or "collections.abc.Callable[...]").') </DeepExtract> hint_args = get_hint_pep_args(hint) hint_params_len = len(hint_args) - 1 if hint_params_len == 0: return () elif hint_params_len >= 2: return hint_args[:-1] _TUPLE_EMPTY = () hint_param = hint_args[0] if hint_param is ... or hint_param is _TUPLE_EMPTY: return hint_param hint_param_sign = get_hint_pep_sign_or_none(hint_param) if hint_param_sign in HINT_SIGNS_CALLABLE_PARAMS: return hint_param return (hint_param,)
def get_hint_pep484585_callable_params(hint: object, exception_cls: TypeException=BeartypeDecorHintPep484585Exception, exception_prefix: str='') -> _HINT_PEP484585_CALLABLE_PARAMS: """ Object describing all **parameter type hints** (i.e., PEP-compliant child type hints typing the parameters accepted by a passed or returned callable) of the passed **callable type hint** (i.e., :pep:`484`-compliant ``typing.Callable[...]`` or :pep:`585`-compliant ``collections.abc.Callable[...]`` type hint). This getter returns one of several different types of objects, conditionally depending on the type of the first argument originally subscripting this hint. Specifically, if this hint was of the form: * ``Callable[[{arg_hints}], {return_hint}]``, this getter returns a tuple of the zero or more parameter type hints subscripting (indexing) this hint. * ``Callable[..., {return_hint}]``, the :data:`Ellipsis` singleton. * ``Callable[typing.ParamSpec[...], {return_hint}]``, the ``typing.ParamSpec[...]`` subscripting (indexing) this hint. This getter is intentionally *not* memoized (e.g., by the :func:`callable_cached` decorator), as the implementation requires no iteration and thus exhibits guaranteed constant-time behaviour. Parameters ---------- hint : object Callable type hint to be inspected. exception_cls : TypeException, optional Type of exception to be raised. Defaults to :exc:`BeartypeDecorHintPep484585Exception`. exception_prefix : str, optional Human-readable substring prefixing the representation of this object in the exception message. Defaults to the empty string. Returns ---------- _HINT_PEP484585_CALLABLE_PARAMS First argument originally subscripting this hint. Raises ---------- :exc:`exception_cls` If this hint is *not* a callable type hint. """ from beartype._util.hint.pep.utilpepget import get_hint_pep_args, get_hint_pep_sign_or_none from beartype._util.hint.pep.utilpepget import get_hint_pep_sign hint_sign = get_hint_pep_sign(hint=hint, exception_cls=exception_cls, exception_prefix=exception_prefix) if hint_sign is not HintSignCallable: assert issubclass(exception_cls, Exception), f'{repr(exception_cls)} not exception class.' assert isinstance(exception_prefix, str), f'{repr(exception_prefix)} not string.' raise exception_cls(f'{exception_prefix}type hint {repr(hint)} not PEP 484 or 585 callable type hint (i.e., "typing.Callable[...]" or "collections.abc.Callable[...]").') hint_args = get_hint_pep_args(hint) hint_params_len = len(hint_args) - 1 if hint_params_len == 0: return () elif hint_params_len >= 2: return hint_args[:-1] _TUPLE_EMPTY = () hint_param = hint_args[0] if hint_param is ... or hint_param is _TUPLE_EMPTY: return hint_param hint_param_sign = get_hint_pep_sign_or_none(hint_param) if hint_param_sign in HINT_SIGNS_CALLABLE_PARAMS: return hint_param return (hint_param,)
beartype
positive
def test_when_resource_updated(is_created=False): def test_when_policy_request_succeeds(): nonlocal policy_communicator_request_call_num simple_dummy_resource.nsx_resource_params = {'dummy': 'dummy'} simple_dummy_resource.resource_params = {} exec_logs = [] mock_policy_communicator.request.side_effect = [(200, 'OK'), (200, {'_revision': 1})] simple_dummy_resource._achieve_present_state(exec_logs) self.assertEqual(mock_policy_communicator.request.call_count, policy_communicator_request_call_num) policy_communicator_request_call_num += 1 if is_created: expected_message = '%s with id %s created.' % (simple_dummy_resource.__class__.__name__, simple_dummy_resource.id) else: expected_message = '%s with id %s updated.' % (simple_dummy_resource.__class__.__name__, simple_dummy_resource.id) expected_exec_logs = [{'changed': True, 'id': simple_dummy_resource.id, 'body': 'OK', 'message': expected_message, 'resource_type': simple_dummy_resource.__class__.__name__}] self.assertEqual(exec_logs, expected_exec_logs) def test_when_policy_request_fails(): nonlocal policy_communicator_request_call_num simple_dummy_resource.nsx_resource_params = {'dummy': 'dummy'} exec_logs = [] mock_policy_communicator.request.return_value = Mock(side_effect=Exception) simple_dummy_resource._achieve_present_state(exec_logs) self.assertEqual(mock_policy_communicator.request.call_count, policy_communicator_request_call_num) policy_communicator_request_call_num += 1 <DeepExtract> nonlocal policy_communicator_request_call_num simple_dummy_resource.nsx_resource_params = {'dummy': 'dummy'} simple_dummy_resource.resource_params = {} exec_logs = [] mock_policy_communicator.request.side_effect = [(200, 'OK'), (200, {'_revision': 1})] simple_dummy_resource._achieve_present_state(exec_logs) self.assertEqual(mock_policy_communicator.request.call_count, policy_communicator_request_call_num) policy_communicator_request_call_num += 1 if is_created: expected_message = '%s with id %s created.' % (simple_dummy_resource.__class__.__name__, simple_dummy_resource.id) else: expected_message = '%s with id %s updated.' % (simple_dummy_resource.__class__.__name__, simple_dummy_resource.id) expected_exec_logs = [{'changed': True, 'id': simple_dummy_resource.id, 'body': 'OK', 'message': expected_message, 'resource_type': simple_dummy_resource.__class__.__name__}] self.assertEqual(exec_logs, expected_exec_logs) </DeepExtract> <DeepExtract> nonlocal policy_communicator_request_call_num simple_dummy_resource.nsx_resource_params = {'dummy': 'dummy'} exec_logs = [] mock_policy_communicator.request.return_value = Mock(side_effect=Exception) simple_dummy_resource._achieve_present_state(exec_logs) self.assertEqual(mock_policy_communicator.request.call_count, policy_communicator_request_call_num) policy_communicator_request_call_num += 1 </DeepExtract> nonlocal policy_communicator_request_call_num
def test_when_resource_updated(is_created=False): def test_when_policy_request_succeeds(): nonlocal policy_communicator_request_call_num simple_dummy_resource.nsx_resource_params = {'dummy': 'dummy'} simple_dummy_resource.resource_params = {} exec_logs = [] mock_policy_communicator.request.side_effect = [(200, 'OK'), (200, {'_revision': 1})] simple_dummy_resource._achieve_present_state(exec_logs) self.assertEqual(mock_policy_communicator.request.call_count, policy_communicator_request_call_num) policy_communicator_request_call_num += 1 if is_created: expected_message = '%s with id %s created.' % (simple_dummy_resource.__class__.__name__, simple_dummy_resource.id) else: expected_message = '%s with id %s updated.' % (simple_dummy_resource.__class__.__name__, simple_dummy_resource.id) expected_exec_logs = [{'changed': True, 'id': simple_dummy_resource.id, 'body': 'OK', 'message': expected_message, 'resource_type': simple_dummy_resource.__class__.__name__}] self.assertEqual(exec_logs, expected_exec_logs) def test_when_policy_request_fails(): nonlocal policy_communicator_request_call_num simple_dummy_resource.nsx_resource_params = {'dummy': 'dummy'} exec_logs = [] mock_policy_communicator.request.return_value = Mock(side_effect=Exception) simple_dummy_resource._achieve_present_state(exec_logs) self.assertEqual(mock_policy_communicator.request.call_count, policy_communicator_request_call_num) policy_communicator_request_call_num += 1 nonlocal policy_communicator_request_call_num simple_dummy_resource.nsx_resource_params = {'dummy': 'dummy'} simple_dummy_resource.resource_params = {} exec_logs = [] mock_policy_communicator.request.side_effect = [(200, 'OK'), (200, {'_revision': 1})] simple_dummy_resource._achieve_present_state(exec_logs) self.assertEqual(mock_policy_communicator.request.call_count, policy_communicator_request_call_num) policy_communicator_request_call_num += 1 if is_created: expected_message = '%s with id %s created.' % (simple_dummy_resource.__class__.__name__, simple_dummy_resource.id) else: expected_message = '%s with id %s updated.' % (simple_dummy_resource.__class__.__name__, simple_dummy_resource.id) expected_exec_logs = [{'changed': True, 'id': simple_dummy_resource.id, 'body': 'OK', 'message': expected_message, 'resource_type': simple_dummy_resource.__class__.__name__}] self.assertEqual(exec_logs, expected_exec_logs) nonlocal policy_communicator_request_call_num simple_dummy_resource.nsx_resource_params = {'dummy': 'dummy'} exec_logs = [] mock_policy_communicator.request.return_value = Mock(side_effect=Exception) simple_dummy_resource._achieve_present_state(exec_logs) self.assertEqual(mock_policy_communicator.request.call_count, policy_communicator_request_call_num) policy_communicator_request_call_num += 1 nonlocal policy_communicator_request_call_num
ansible-for-nsxt
positive
def get_reconstructed_adj(self, t, X=None, node_l=None): if X is not None: node_num = X.shape[0] else: node_num = self._node_num adj_mtx_r = np.zeros((node_num, node_num)) for v_i in range(node_num): for v_j in range(node_num): if v_i == v_j: continue <DeepExtract> try: feat = np.fabs(self._X[t][v_i, :] - self._X[t][v_j, :]) adj_mtx_r[v_i, v_j] = self._model.predict(np.reshape(feat, [1, -1]))[0] except: pdb.set_trace() </DeepExtract> return adj_mtx_r
def get_reconstructed_adj(self, t, X=None, node_l=None): if X is not None: node_num = X.shape[0] else: node_num = self._node_num adj_mtx_r = np.zeros((node_num, node_num)) for v_i in range(node_num): for v_j in range(node_num): if v_i == v_j: continue try: feat = np.fabs(self._X[t][v_i, :] - self._X[t][v_j, :]) adj_mtx_r[v_i, v_j] = self._model.predict(np.reshape(feat, [1, -1]))[0] except: pdb.set_trace() return adj_mtx_r
DynamicGEM
positive
def init_rule(self, new_rule, new=True): """ Copies some necessary non-config state from an exiting rule to a new rule. """ if not new: self.scheduler.remove_job(job_id=new_rule['name']) try: <DeepExtract> rule_es = elasticsearch_client(new_rule) if rule_es.is_atleastfive(): new_rule['five'] = True else: new_rule['five'] = False return new_filters = [] for es_filter in new_rule.get('filter', []): if es_filter.get('query'): new_filters.append(es_filter['query']) else: new_filters.append(es_filter) new_rule['filter'] = new_filters </DeepExtract> except TransportError as e: elastalert_logger.warning('Error connecting to Elasticsearch for rule {}. The rule has been disabled.'.format(new_rule['name'])) <DeepExtract> email_body = text rule_name = None if new_rule: rule_name = new_rule['name'] elif rule_file: rule_name = rule_file if e and rule_name: if not subject: subject = 'Uncaught exception in ElastAlert - %s' % rule_name email_body += '\n\n' email_body += 'The rule %s has raised an uncaught exception.\n\n' % rule_name if self.disable_rules_on_error: modified = ' or if the rule config file has been modified' if not self.args.pin_rules else '' email_body += 'It has been disabled and will be re-enabled when ElastAlert restarts%s.\n\n' % modified tb = traceback.format_exc() email_body += tb if isinstance(self.notify_email, str): self.notify_email = [self.notify_email] email = MIMEText(email_body) email['Subject'] = subject if subject else 'ElastAlert notification' recipients = self.notify_email if new_rule and new_rule.get('notify_email'): if isinstance(new_rule['notify_email'], str): new_rule['notify_email'] = [new_rule['notify_email']] recipients = recipients + new_rule['notify_email'] recipients = list(set(recipients)) email['To'] = ', '.join(recipients) email['From'] = self.from_addr email['Reply-To'] = self.conf.get('email_reply_to', email['To']) try: smtp = SMTP(self.smtp_host) smtp.sendmail(self.from_addr, recipients, email.as_string()) except (SMTPException, error) as e: self.handle_error('Error connecting to SMTP host: %s' % e, {'email_body': email_body}) </DeepExtract> return False <DeepExtract> if not new_rule.get('filter_by_list', True): return if 'blacklist' in new_rule: listname = 'blacklist' elif 'whitelist' in new_rule: listname = 'whitelist' else: return filters = new_rule['filter'] additional_terms = [] for term in new_rule[listname]: if not term.startswith('/') or not term.endswith('/'): additional_terms.append(new_rule['compare_key'] + ':"' + term + '"') else: additional_terms.append(new_rule['compare_key'] + ':' + term) if listname == 'whitelist': query = 'NOT ' + ' AND NOT '.join(additional_terms) else: query = ' OR '.join(additional_terms) query_str_filter = {'query_string': {'query': query}} if self.writeback_es.is_atleastfive(): filters.append(query_str_filter) else: filters.append({'query': query_str_filter}) logging.debug('Enhanced filter with {} terms: {}'.format(listname, str(query_str_filter))) </DeepExtract> if 'top_count_keys' in new_rule and new_rule.get('raw_count_keys', True): if self.string_multi_field_name: string_multi_field_name = self.string_multi_field_name elif self.writeback_es.is_atleastfive(): string_multi_field_name = '.keyword' else: string_multi_field_name = '.raw' for (i, key) in enumerate(new_rule['top_count_keys']): if not key.endswith(string_multi_field_name): new_rule['top_count_keys'][i] += string_multi_field_name if 'download_dashboard' in new_rule['filter']: <DeepExtract> try: db = new_rule.get('dashboard_schema') if not db: db = self.get_dashboard(new_rule, new_rule['filter']['download_dashboard']) filters = kibana.filters_from_dashboard(db) except EAException: db_filters = None db_filters = filters </DeepExtract> if db_filters is not None: new_rule['filter'] = db_filters else: raise EAException('Could not download filters from %s' % new_rule['filter']['download_dashboard']) blank_rule = {'agg_matches': [], 'aggregate_alert_time': {}, 'current_aggregate_id': {}, 'processed_hits': {}, 'run_every': self.run_every, 'has_run_once': False} rule = blank_rule if not new: for rule in self.rules: if rule['name'] == new_rule['name']: break else: rule = blank_rule copy_properties = ['agg_matches', 'current_aggregate_id', 'aggregate_alert_time', 'processed_hits', 'starttime', 'minimum_starttime', 'has_run_once'] for prop in copy_properties: if prop not in rule: continue new_rule[prop] = rule[prop] job = self.scheduler.add_job(self.handle_rule_execution, 'interval', args=[new_rule], seconds=new_rule['run_every'].total_seconds(), id=new_rule['name'], max_instances=1, jitter=5) job.modify(next_run_time=datetime.datetime.now() + datetime.timedelta(seconds=random.randint(0, 15))) return new_rule
def init_rule(self, new_rule, new=True): """ Copies some necessary non-config state from an exiting rule to a new rule. """ if not new: self.scheduler.remove_job(job_id=new_rule['name']) try: rule_es = elasticsearch_client(new_rule) if rule_es.is_atleastfive(): new_rule['five'] = True else: new_rule['five'] = False return new_filters = [] for es_filter in new_rule.get('filter', []): if es_filter.get('query'): new_filters.append(es_filter['query']) else: new_filters.append(es_filter) new_rule['filter'] = new_filters except TransportError as e: elastalert_logger.warning('Error connecting to Elasticsearch for rule {}. The rule has been disabled.'.format(new_rule['name'])) email_body = text rule_name = None if new_rule: rule_name = new_rule['name'] elif rule_file: rule_name = rule_file if e and rule_name: if not subject: subject = 'Uncaught exception in ElastAlert - %s' % rule_name email_body += '\n\n' email_body += 'The rule %s has raised an uncaught exception.\n\n' % rule_name if self.disable_rules_on_error: modified = ' or if the rule config file has been modified' if not self.args.pin_rules else '' email_body += 'It has been disabled and will be re-enabled when ElastAlert restarts%s.\n\n' % modified tb = traceback.format_exc() email_body += tb if isinstance(self.notify_email, str): self.notify_email = [self.notify_email] email = MIMEText(email_body) email['Subject'] = subject if subject else 'ElastAlert notification' recipients = self.notify_email if new_rule and new_rule.get('notify_email'): if isinstance(new_rule['notify_email'], str): new_rule['notify_email'] = [new_rule['notify_email']] recipients = recipients + new_rule['notify_email'] recipients = list(set(recipients)) email['To'] = ', '.join(recipients) email['From'] = self.from_addr email['Reply-To'] = self.conf.get('email_reply_to', email['To']) try: smtp = SMTP(self.smtp_host) smtp.sendmail(self.from_addr, recipients, email.as_string()) except (SMTPException, error) as e: self.handle_error('Error connecting to SMTP host: %s' % e, {'email_body': email_body}) return False if not new_rule.get('filter_by_list', True): return if 'blacklist' in new_rule: listname = 'blacklist' elif 'whitelist' in new_rule: listname = 'whitelist' else: return filters = new_rule['filter'] additional_terms = [] for term in new_rule[listname]: if not term.startswith('/') or not term.endswith('/'): additional_terms.append(new_rule['compare_key'] + ':"' + term + '"') else: additional_terms.append(new_rule['compare_key'] + ':' + term) if listname == 'whitelist': query = 'NOT ' + ' AND NOT '.join(additional_terms) else: query = ' OR '.join(additional_terms) query_str_filter = {'query_string': {'query': query}} if self.writeback_es.is_atleastfive(): filters.append(query_str_filter) else: filters.append({'query': query_str_filter}) logging.debug('Enhanced filter with {} terms: {}'.format(listname, str(query_str_filter))) if 'top_count_keys' in new_rule and new_rule.get('raw_count_keys', True): if self.string_multi_field_name: string_multi_field_name = self.string_multi_field_name elif self.writeback_es.is_atleastfive(): string_multi_field_name = '.keyword' else: string_multi_field_name = '.raw' for (i, key) in enumerate(new_rule['top_count_keys']): if not key.endswith(string_multi_field_name): new_rule['top_count_keys'][i] += string_multi_field_name if 'download_dashboard' in new_rule['filter']: try: db = new_rule.get('dashboard_schema') if not db: db = self.get_dashboard(new_rule, new_rule['filter']['download_dashboard']) filters = kibana.filters_from_dashboard(db) except EAException: db_filters = None db_filters = filters if db_filters is not None: new_rule['filter'] = db_filters else: raise EAException('Could not download filters from %s' % new_rule['filter']['download_dashboard']) blank_rule = {'agg_matches': [], 'aggregate_alert_time': {}, 'current_aggregate_id': {}, 'processed_hits': {}, 'run_every': self.run_every, 'has_run_once': False} rule = blank_rule if not new: for rule in self.rules: if rule['name'] == new_rule['name']: break else: rule = blank_rule copy_properties = ['agg_matches', 'current_aggregate_id', 'aggregate_alert_time', 'processed_hits', 'starttime', 'minimum_starttime', 'has_run_once'] for prop in copy_properties: if prop not in rule: continue new_rule[prop] = rule[prop] job = self.scheduler.add_job(self.handle_rule_execution, 'interval', args=[new_rule], seconds=new_rule['run_every'].total_seconds(), id=new_rule['name'], max_instances=1, jitter=5) job.modify(next_run_time=datetime.datetime.now() + datetime.timedelta(seconds=random.randint(0, 15))) return new_rule
elastalert
positive
def get_entry_with_id(self, id, args): <DeepExtract> columns = '*' if with_rowid: columns = 'rowid, ' + columns query = 'SELECT {columns} FROM {table_name} WHERE rowid = ?;'.format(table_name=DataAccess.TABLE_PAIRS, columns=columns) pair = self.db.execute(query, (id,)).fetchone() </DeepExtract> patient_id = pair[0] result = {'pair': pair} return (patient_id, result)
def get_entry_with_id(self, id, args): columns = '*' if with_rowid: columns = 'rowid, ' + columns query = 'SELECT {columns} FROM {table_name} WHERE rowid = ?;'.format(table_name=DataAccess.TABLE_PAIRS, columns=columns) pair = self.db.execute(query, (id,)).fetchone() patient_id = pair[0] result = {'pair': pair} return (patient_id, result)
drnet
positive
def setUp(self): <DeepExtract> config = configparser.ConfigParser(interpolation=None) config['storage'] = {'host_file_separator': ','} config['cassandra'] = {'config_file': os.path.join(os.path.dirname(__file__), 'resources/yaml/work/cassandra_with_tokens_and_autobootstrap.yaml'), 'start_cmd': '/etc/init.d/cassandra start', 'stop_cmd': '/etc/init.d/cassandra stop', 'is_ccm': '1', 'resolve_ip_addresses': 'True', 'use_sudo': 'True'} config['grpc'] = {'enabled': '0'} config['kubernetes'] = {'enabled': '0', 'cassandra_url': 'None', 'use_mgmt_api': 'False'} self.config = config </DeepExtract> self.medusa_config = MedusaConfig(file_path=None, storage=_namedtuple_from_dict(StorageConfig, self.config['storage']), monitoring={}, cassandra=_namedtuple_from_dict(CassandraConfig, self.config['cassandra']), ssh=None, checks=None, logging=None, grpc=_namedtuple_from_dict(GrpcConfig, self.config['grpc']), kubernetes=_namedtuple_from_dict(KubernetesConfig, self.config['kubernetes'])) self.tmp_dir = pathlib.Path(tempfile.gettempdir()) self.default_restore_job = RestoreJob(cluster_backup=Mock(), config=self.medusa_config, temp_dir=self.tmp_dir, host_list=None, seed_target=None, keep_auth=False, verify=False, parallel_restores=None)
def setUp(self): config = configparser.ConfigParser(interpolation=None) config['storage'] = {'host_file_separator': ','} config['cassandra'] = {'config_file': os.path.join(os.path.dirname(__file__), 'resources/yaml/work/cassandra_with_tokens_and_autobootstrap.yaml'), 'start_cmd': '/etc/init.d/cassandra start', 'stop_cmd': '/etc/init.d/cassandra stop', 'is_ccm': '1', 'resolve_ip_addresses': 'True', 'use_sudo': 'True'} config['grpc'] = {'enabled': '0'} config['kubernetes'] = {'enabled': '0', 'cassandra_url': 'None', 'use_mgmt_api': 'False'} self.config = config self.medusa_config = MedusaConfig(file_path=None, storage=_namedtuple_from_dict(StorageConfig, self.config['storage']), monitoring={}, cassandra=_namedtuple_from_dict(CassandraConfig, self.config['cassandra']), ssh=None, checks=None, logging=None, grpc=_namedtuple_from_dict(GrpcConfig, self.config['grpc']), kubernetes=_namedtuple_from_dict(KubernetesConfig, self.config['kubernetes'])) self.tmp_dir = pathlib.Path(tempfile.gettempdir()) self.default_restore_job = RestoreJob(cluster_backup=Mock(), config=self.medusa_config, temp_dir=self.tmp_dir, host_list=None, seed_target=None, keep_auth=False, verify=False, parallel_restores=None)
cassandra-medusa
positive
def validate(self, value): value = super().validate(value) if not self.indexed or value is None: return value if not self.repeated: <DeepExtract> if len(value) > _max_indexed_length and len(value.encode(self.encoding)) > _max_indexed_length: raise ValueError(f'String value is longer than the maximum allowed length ({_max_indexed_length}) for indexed properties. Set indexed to False if the value should not be indexed.') </DeepExtract> return value
def validate(self, value): value = super().validate(value) if not self.indexed or value is None: return value if not self.repeated: if len(value) > _max_indexed_length and len(value.encode(self.encoding)) > _max_indexed_length: raise ValueError(f'String value is longer than the maximum allowed length ({_max_indexed_length}) for indexed properties. Set indexed to False if the value should not be indexed.') return value
anom-py
positive
def fit(self, X, y=None, sample_weight=None): """Applies the chainladder technique to triangle **X** Parameters ---------- X : Triangle The data used to compute the mean and standard deviation used for later scaling along the features axis. y : Ignored sample_weight : Triangle For exposure-based methods, the exposure to be used for fitting Returns ------- self : object Returns the instance itself. """ <DeepExtract> obj = X.copy() if 'ldf_' not in obj: obj = Development().fit_transform(obj) if len(obj.ddims) - len(obj.ldf_.ddims) == 1: obj = TailConstant().fit_transform(obj) self.X_ = obj.val_to_dev() </DeepExtract> <DeepExtract> if sample_weight and X.shape[:-1] != sample_weight.shape[:-1] and (sample_weight.shape[2] != 1) and (sample_weight.shape[0] > 1): warnings.warn('X and sample_weight are not aligned. Broadcasting may occur.\n') </DeepExtract> if sample_weight: self.sample_weight_ = sample_weight.set_backend(self.X_.array_backend) else: self.sample_weight_ = sample_weight return self
def fit(self, X, y=None, sample_weight=None): """Applies the chainladder technique to triangle **X** Parameters ---------- X : Triangle The data used to compute the mean and standard deviation used for later scaling along the features axis. y : Ignored sample_weight : Triangle For exposure-based methods, the exposure to be used for fitting Returns ------- self : object Returns the instance itself. """ obj = X.copy() if 'ldf_' not in obj: obj = Development().fit_transform(obj) if len(obj.ddims) - len(obj.ldf_.ddims) == 1: obj = TailConstant().fit_transform(obj) self.X_ = obj.val_to_dev() if sample_weight and X.shape[:-1] != sample_weight.shape[:-1] and (sample_weight.shape[2] != 1) and (sample_weight.shape[0] > 1): warnings.warn('X and sample_weight are not aligned. Broadcasting may occur.\n') if sample_weight: self.sample_weight_ = sample_weight.set_backend(self.X_.array_backend) else: self.sample_weight_ = sample_weight return self
chainladder-python
positive
def run_model_cfg(args, im, check_blobs): workspace.ResetWorkspace() <DeepExtract> model = test_engine.initialize_model_from_cfg(cfg.TEST.WEIGHTS) blobs = mutils.get_ws_blobs() (model, _) = (model, blobs) </DeepExtract> with c2_utils.NamedCudaScope(0): (cls_boxes, cls_segms, cls_keyps) = test_engine.im_detect_all(model, im, None, None) (boxes, segms, keypoints, classes) = vis_utils.convert_from_cls_format(cls_boxes, cls_segms, cls_keyps) <DeepExtract> indices = np.argsort(boxes[:, -1])[::-1] if boxes is not None: boxes = boxes[indices, :] if segms is not None: segms = [segms[x] for x in indices] if keypoints is not None: keypoints = [keypoints[x] for x in indices] if classes is not None: if isinstance(classes, list): classes = [classes[x] for x in indices] else: classes = classes[indices] (boxes, segms, keypoints, classes) = (boxes, segms, keypoints, classes) </DeepExtract> def _ornone(res): return np.array(res) if res is not None else np.array([], dtype=np.float32) with c2_utils.NamedCudaScope(0): workspace.FeedBlob(core.ScopedName('result_boxes'), _ornone(boxes)) workspace.FeedBlob(core.ScopedName('result_segms'), _ornone(segms)) workspace.FeedBlob(core.ScopedName('result_keypoints'), _ornone(keypoints)) workspace.FeedBlob(core.ScopedName('result_classids'), _ornone(classes)) with c2_utils.NamedCudaScope(0): <DeepExtract> ret = {} for x in check_blobs: sn = core.ScopedName(x) if workspace.HasBlob(sn): ret[x] = workspace.FetchBlob(sn) else: ret[x] = None ret = ret </DeepExtract> return ret
def run_model_cfg(args, im, check_blobs): workspace.ResetWorkspace() model = test_engine.initialize_model_from_cfg(cfg.TEST.WEIGHTS) blobs = mutils.get_ws_blobs() (model, _) = (model, blobs) with c2_utils.NamedCudaScope(0): (cls_boxes, cls_segms, cls_keyps) = test_engine.im_detect_all(model, im, None, None) (boxes, segms, keypoints, classes) = vis_utils.convert_from_cls_format(cls_boxes, cls_segms, cls_keyps) indices = np.argsort(boxes[:, -1])[::-1] if boxes is not None: boxes = boxes[indices, :] if segms is not None: segms = [segms[x] for x in indices] if keypoints is not None: keypoints = [keypoints[x] for x in indices] if classes is not None: if isinstance(classes, list): classes = [classes[x] for x in indices] else: classes = classes[indices] (boxes, segms, keypoints, classes) = (boxes, segms, keypoints, classes) def _ornone(res): return np.array(res) if res is not None else np.array([], dtype=np.float32) with c2_utils.NamedCudaScope(0): workspace.FeedBlob(core.ScopedName('result_boxes'), _ornone(boxes)) workspace.FeedBlob(core.ScopedName('result_segms'), _ornone(segms)) workspace.FeedBlob(core.ScopedName('result_keypoints'), _ornone(keypoints)) workspace.FeedBlob(core.ScopedName('result_classids'), _ornone(classes)) with c2_utils.NamedCudaScope(0): ret = {} for x in check_blobs: sn = core.ScopedName(x) if workspace.HasBlob(sn): ret[x] = workspace.FetchBlob(sn) else: ret[x] = None ret = ret return ret
AIC2018_iamai
positive
def convert(self, mode): if mode not in ('xyxy', 'xywh'): raise ValueError("mode should be 'xyxy' or 'xywh'") if mode == self.mode: return self <DeepExtract> if self.mode == 'xyxy': (xmin, ymin, xmax, ymax) = self.bbox.split(1, dim=-1) (xmin, ymin, xmax, ymax) = (xmin, ymin, xmax, ymax) elif self.mode == 'xywh': TO_REMOVE = 1 (xmin, ymin, w, h) = self.bbox.split(1, dim=-1) (xmin, ymin, xmax, ymax) = (xmin, ymin, xmin + (w - TO_REMOVE).clamp(min=0), ymin + (h - TO_REMOVE).clamp(min=0)) else: raise RuntimeError('Should not be here') </DeepExtract> if mode == 'xyxy': bbox = torch.cat((xmin, ymin, xmax, ymax), dim=-1) bbox = BoxList(bbox, self.size, mode=mode) else: TO_REMOVE = 1 bbox = torch.cat((xmin, ymin, xmax - xmin + TO_REMOVE, ymax - ymin + TO_REMOVE), dim=-1) bbox = BoxList(bbox, self.size, mode=mode) bbox._copy_extra_fields(self) return bbox
def convert(self, mode): if mode not in ('xyxy', 'xywh'): raise ValueError("mode should be 'xyxy' or 'xywh'") if mode == self.mode: return self if self.mode == 'xyxy': (xmin, ymin, xmax, ymax) = self.bbox.split(1, dim=-1) (xmin, ymin, xmax, ymax) = (xmin, ymin, xmax, ymax) elif self.mode == 'xywh': TO_REMOVE = 1 (xmin, ymin, w, h) = self.bbox.split(1, dim=-1) (xmin, ymin, xmax, ymax) = (xmin, ymin, xmin + (w - TO_REMOVE).clamp(min=0), ymin + (h - TO_REMOVE).clamp(min=0)) else: raise RuntimeError('Should not be here') if mode == 'xyxy': bbox = torch.cat((xmin, ymin, xmax, ymax), dim=-1) bbox = BoxList(bbox, self.size, mode=mode) else: TO_REMOVE = 1 bbox = torch.cat((xmin, ymin, xmax - xmin + TO_REMOVE, ymax - ymin + TO_REMOVE), dim=-1) bbox = BoxList(bbox, self.size, mode=mode) bbox._copy_extra_fields(self) return bbox
DetNAS
positive
def _generate_file_set(self, var=None, start_date=None, end_date=None, domain=None, intvl_in=None, dtype_in_vert=None, dtype_in_time=None, intvl_out=None): attempted_file_sets = [] for name in var.names: <DeepExtract> dtype_lbl = dtype_in_time if intvl_in == 'daily': domain += '_daily' if dtype_in_vert == ETA_STR and name != 'ps': domain += '_level' if dtype_in_time == 'inst': domain += '_inst' dtype_lbl = 'ts' if 'monthly_from_' in dtype_in_time: dtype = dtype_in_time.replace('monthly_from_', '') dtype_lbl = dtype else: dtype = dtype_in_time dur_str = str(self.data_dur) + 'yr' if dtype_in_time == 'av': subdir = intvl_in + '_' + dur_str else: subdir = os.path.join(intvl_in, dur_str) direc = os.path.join(self.data_direc, domain, dtype_lbl, subdir) data_start_year = times.infer_year(self.data_start_date) start_year = times.infer_year(start_date) end_year = times.infer_year(end_date) files = [os.path.join(direc, io.data_name_gfdl(name, domain, dtype, intvl_in, year, intvl_out, data_start_year, self.data_dur)) for year in range(start_year, end_year + 1)] files = list(set(files)) files.sort() file_set = files </DeepExtract> attempted_file_sets.append(file_set) if all([os.path.isfile(filename) for filename in file_set]): return file_set raise IOError('Files for the var {0} cannot be located using GFDL post-processing conventions. Attempted using the following sets of paths:\n\n{1}'.format(var, pprint.pformat(attempted_file_sets)))
def _generate_file_set(self, var=None, start_date=None, end_date=None, domain=None, intvl_in=None, dtype_in_vert=None, dtype_in_time=None, intvl_out=None): attempted_file_sets = [] for name in var.names: dtype_lbl = dtype_in_time if intvl_in == 'daily': domain += '_daily' if dtype_in_vert == ETA_STR and name != 'ps': domain += '_level' if dtype_in_time == 'inst': domain += '_inst' dtype_lbl = 'ts' if 'monthly_from_' in dtype_in_time: dtype = dtype_in_time.replace('monthly_from_', '') dtype_lbl = dtype else: dtype = dtype_in_time dur_str = str(self.data_dur) + 'yr' if dtype_in_time == 'av': subdir = intvl_in + '_' + dur_str else: subdir = os.path.join(intvl_in, dur_str) direc = os.path.join(self.data_direc, domain, dtype_lbl, subdir) data_start_year = times.infer_year(self.data_start_date) start_year = times.infer_year(start_date) end_year = times.infer_year(end_date) files = [os.path.join(direc, io.data_name_gfdl(name, domain, dtype, intvl_in, year, intvl_out, data_start_year, self.data_dur)) for year in range(start_year, end_year + 1)] files = list(set(files)) files.sort() file_set = files attempted_file_sets.append(file_set) if all([os.path.isfile(filename) for filename in file_set]): return file_set raise IOError('Files for the var {0} cannot be located using GFDL post-processing conventions. Attempted using the following sets of paths:\n\n{1}'.format(var, pprint.pformat(attempted_file_sets)))
aospy
positive
def generate_dir_rst(directory, fhindex, example_dir, root_dir, plot_gallery, seen_backrefs): """ Generate the rst file for an example directory. """ if not directory == '.': target_dir = os.path.join(root_dir, directory) src_dir = os.path.join(example_dir, directory) else: target_dir = root_dir src_dir = example_dir if not os.path.exists(os.path.join(src_dir, 'README.txt')): raise ValueError('Example directory %s does not have a README.txt' % src_dir) fhindex.write('\n\n\n%s\n\n\n' % open(os.path.join(src_dir, 'README.txt')).read()) if not os.path.exists(target_dir): os.makedirs(target_dir) <DeepExtract> new_list = [x for x in os.listdir(src_dir) if x.endswith('.py')] unsorted = np.zeros(shape=(len(new_list), 2)) unsorted = unsorted.astype(np.object) for (count, exmpl) in enumerate(new_list): (docstr_lines, total_lines) = extract_line_count(exmpl, src_dir) unsorted[count][1] = total_lines - docstr_lines unsorted[count][0] = exmpl index = np.lexsort((unsorted[:, 0].astype(np.str), unsorted[:, 1].astype(np.float))) if not len(unsorted): sorted_listdir = [] sorted_listdir = np.array(unsorted[index][:, 0]).tolist() </DeepExtract> if not os.path.exists(os.path.join(directory, 'images', 'thumb')): os.makedirs(os.path.join(directory, 'images', 'thumb')) for fname in sorted_listdir: if fname.endswith('py'): <DeepExtract> base_image_name = os.path.splitext(fname)[0] image_fname = '%s_%%03d.png' % base_image_name this_template = rst_template last_dir = os.path.split(src_dir)[-1] if last_dir == '.' or last_dir == 'examples': last_dir = '' else: last_dir += '_' short_fname = last_dir + fname src_file = os.path.join(src_dir, fname) example_file = os.path.join(target_dir, fname) shutil.copyfile(src_file, example_file) figure_list = [] image_dir = os.path.join(target_dir, 'images') thumb_dir = os.path.join(image_dir, 'thumb') if not os.path.exists(image_dir): os.makedirs(image_dir) if not os.path.exists(thumb_dir): os.makedirs(thumb_dir) image_path = os.path.join(image_dir, image_fname) stdout_path = os.path.join(image_dir, 'stdout_%s.txt' % base_image_name) time_path = os.path.join(image_dir, 'time_%s.txt' % base_image_name) thumb_file = os.path.join(thumb_dir, base_image_name + '.png') time_elapsed = 0 if plot_gallery and fname.startswith('plot'): first_image_file = image_path % 1 if os.path.exists(stdout_path): stdout = open(stdout_path).read() else: stdout = '' if os.path.exists(time_path): time_elapsed = float(open(time_path).read()) if not os.path.exists(first_image_file) or os.stat(first_image_file).st_mtime <= os.stat(src_file).st_mtime: print('plotting %s' % fname) t0 = time() import matplotlib.pyplot as plt plt.close('all') cwd = os.getcwd() try: orig_stdout = sys.stdout os.chdir(os.path.dirname(src_file)) my_buffer = StringIO() my_stdout = Tee(sys.stdout, my_buffer) sys.stdout = my_stdout my_globals = {'pl': plt} execfile(os.path.basename(src_file), my_globals) time_elapsed = time() - t0 sys.stdout = orig_stdout my_stdout = my_buffer.getvalue() if '__doc__' in my_globals: my_stdout = my_stdout.replace(my_globals['__doc__'], '') my_stdout = my_stdout.strip().expandtabs() if my_stdout: stdout = '**Script output**::\n\n %s\n\n' % '\n '.join(my_stdout.split('\n')) open(stdout_path, 'w').write(stdout) open(time_path, 'w').write('%f' % time_elapsed) os.chdir(cwd) fig_managers = matplotlib._pylab_helpers.Gcf.get_all_fig_managers() for fig_mngr in fig_managers: fig = plt.figure(fig_mngr.num) kwargs = {} to_rgba = matplotlib.colors.colorConverter.to_rgba for attr in ['facecolor', 'edgecolor']: fig_attr = getattr(fig, 'get_' + attr)() default_attr = matplotlib.rcParams['figure.' + attr] if to_rgba(fig_attr) != to_rgba(default_attr): kwargs[attr] = fig_attr fig.savefig(image_path % fig_mngr.num, **kwargs) figure_list.append(image_fname % fig_mngr.num) except: print(80 * '_') print('%s is not compiling:' % fname) traceback.print_exc() print(80 * '_') finally: os.chdir(cwd) sys.stdout = orig_stdout print(' - time elapsed : %.2g sec' % time_elapsed) else: figure_list = [f[len(image_dir):] for f in glob.glob(image_path.replace('%03d', '[0-9][0-9][0-9]'))] figure_list.sort() this_template = plot_rst_template car_thumb_path = os.path.join(os.path.split(root_dir)[0], '_build/html/stable/_images/') if not os.path.exists(car_thumb_path): os.makedirs(car_thumb_path) if os.path.exists(first_image_file): carousel_tfile = os.path.join(car_thumb_path, base_image_name + '_carousel.png') first_img = image_fname % 1 if first_img in carousel_thumbs: make_thumbnail(image_path % carousel_thumbs[first_img][0], carousel_tfile, carousel_thumbs[first_img][1], 190) make_thumbnail(first_image_file, thumb_file, 400, 280) if not os.path.exists(thumb_file): make_thumbnail('source/_static/no_image.png', thumb_file, 200, 140) (docstring, short_desc, end_row) = extract_docstring(example_file) if len(figure_list) == 1: figure_name = figure_list[0] image_list = SINGLE_IMAGE % figure_name.lstrip('/') else: image_list = HLIST_HEADER for figure_name in figure_list: image_list += HLIST_IMAGE_TEMPLATE % figure_name.lstrip('/') (time_m, time_s) = divmod(time_elapsed, 60) f = open(os.path.join(target_dir, base_image_name + '.rst'), 'w') f.write(this_template % locals()) f.flush() if six.PY2: example_code_obj = identify_names(open(example_file).read()) else: example_code_obj = identify_names(open(example_file, encoding='utf-8').read()) if example_code_obj: codeobj_fname = example_file[:-3] + '_codeobj.pickle' with open(codeobj_fname, 'wb') as fid: pickle.dump(example_code_obj, fid, pickle.HIGHEST_PROTOCOL) backrefs = set(('{module_short}.{name}'.format(**entry) for entry in example_code_obj.values() if entry['module'].startswith('sklearn'))) backrefs = backrefs </DeepExtract> new_fname = os.path.join(src_dir, fname) <DeepExtract> if six.PY2: lines = open(new_fname).readlines() else: lines = open(new_fname, encoding='utf-8').readlines() start_row = 0 if lines[0].startswith('#!'): lines.pop(0) start_row = 1 docstring = '' first_par = '' line_iterator = iter(lines) tokens = tokenize.generate_tokens(lambda : next(line_iterator)) for (tok_type, tok_content, _, (erow, _), _) in tokens: tok_type = token.tok_name[tok_type] if tok_type in ('NEWLINE', 'COMMENT', 'NL', 'INDENT', 'DEDENT'): continue elif tok_type == 'STRING': docstring = eval(tok_content) paragraphs = '\n'.join((line.rstrip() for line in docstring.split('\n'))).split('\n\n') if paragraphs: if True: if len(paragraphs) > 1: first_par = re.sub('\n', ' ', paragraphs[1]) first_par = first_par[:95] + '...' if len(first_par) > 95 else first_par else: raise ValueError("Docstring not found by gallery.\nPlease check the layout of your example file:\n {}\n and make sure it's correct".format(new_fname)) else: first_par = paragraphs[0] break (_, snippet, _) = (docstring, first_par, erow + 1 + start_row) </DeepExtract> fhindex.write(_thumbnail_div(directory, directory, fname, snippet)) fhindex.write('\n\n.. toctree::\n :hidden:\n\n %s/%s\n\n' % (directory, fname[:-3])) for backref in backrefs: include_path = os.path.join(root_dir, '../modules/generated/%s.examples' % backref) seen = backref in seen_backrefs with open(include_path, 'a' if seen else 'w') as ex_file: if not seen: print(file=ex_file) print('Examples using ``%s``' % backref, file=ex_file) print('-----------------%s--' % ('-' * len(backref)), file=ex_file) print(file=ex_file) rel_dir = os.path.join('../../auto_examples', directory) ex_file.write(_thumbnail_div(directory, rel_dir, fname, snippet)) seen_backrefs.add(backref) fhindex.write('\n.. raw:: html\n\n <div class="clearer"></div>\n ')
def generate_dir_rst(directory, fhindex, example_dir, root_dir, plot_gallery, seen_backrefs): """ Generate the rst file for an example directory. """ if not directory == '.': target_dir = os.path.join(root_dir, directory) src_dir = os.path.join(example_dir, directory) else: target_dir = root_dir src_dir = example_dir if not os.path.exists(os.path.join(src_dir, 'README.txt')): raise ValueError('Example directory %s does not have a README.txt' % src_dir) fhindex.write('\n\n\n%s\n\n\n' % open(os.path.join(src_dir, 'README.txt')).read()) if not os.path.exists(target_dir): os.makedirs(target_dir) new_list = [x for x in os.listdir(src_dir) if x.endswith('.py')] unsorted = np.zeros(shape=(len(new_list), 2)) unsorted = unsorted.astype(np.object) for (count, exmpl) in enumerate(new_list): (docstr_lines, total_lines) = extract_line_count(exmpl, src_dir) unsorted[count][1] = total_lines - docstr_lines unsorted[count][0] = exmpl index = np.lexsort((unsorted[:, 0].astype(np.str), unsorted[:, 1].astype(np.float))) if not len(unsorted): sorted_listdir = [] sorted_listdir = np.array(unsorted[index][:, 0]).tolist() if not os.path.exists(os.path.join(directory, 'images', 'thumb')): os.makedirs(os.path.join(directory, 'images', 'thumb')) for fname in sorted_listdir: if fname.endswith('py'): base_image_name = os.path.splitext(fname)[0] image_fname = '%s_%%03d.png' % base_image_name this_template = rst_template last_dir = os.path.split(src_dir)[-1] if last_dir == '.' or last_dir == 'examples': last_dir = '' else: last_dir += '_' short_fname = last_dir + fname src_file = os.path.join(src_dir, fname) example_file = os.path.join(target_dir, fname) shutil.copyfile(src_file, example_file) figure_list = [] image_dir = os.path.join(target_dir, 'images') thumb_dir = os.path.join(image_dir, 'thumb') if not os.path.exists(image_dir): os.makedirs(image_dir) if not os.path.exists(thumb_dir): os.makedirs(thumb_dir) image_path = os.path.join(image_dir, image_fname) stdout_path = os.path.join(image_dir, 'stdout_%s.txt' % base_image_name) time_path = os.path.join(image_dir, 'time_%s.txt' % base_image_name) thumb_file = os.path.join(thumb_dir, base_image_name + '.png') time_elapsed = 0 if plot_gallery and fname.startswith('plot'): first_image_file = image_path % 1 if os.path.exists(stdout_path): stdout = open(stdout_path).read() else: stdout = '' if os.path.exists(time_path): time_elapsed = float(open(time_path).read()) if not os.path.exists(first_image_file) or os.stat(first_image_file).st_mtime <= os.stat(src_file).st_mtime: print('plotting %s' % fname) t0 = time() import matplotlib.pyplot as plt plt.close('all') cwd = os.getcwd() try: orig_stdout = sys.stdout os.chdir(os.path.dirname(src_file)) my_buffer = StringIO() my_stdout = Tee(sys.stdout, my_buffer) sys.stdout = my_stdout my_globals = {'pl': plt} execfile(os.path.basename(src_file), my_globals) time_elapsed = time() - t0 sys.stdout = orig_stdout my_stdout = my_buffer.getvalue() if '__doc__' in my_globals: my_stdout = my_stdout.replace(my_globals['__doc__'], '') my_stdout = my_stdout.strip().expandtabs() if my_stdout: stdout = '**Script output**::\n\n %s\n\n' % '\n '.join(my_stdout.split('\n')) open(stdout_path, 'w').write(stdout) open(time_path, 'w').write('%f' % time_elapsed) os.chdir(cwd) fig_managers = matplotlib._pylab_helpers.Gcf.get_all_fig_managers() for fig_mngr in fig_managers: fig = plt.figure(fig_mngr.num) kwargs = {} to_rgba = matplotlib.colors.colorConverter.to_rgba for attr in ['facecolor', 'edgecolor']: fig_attr = getattr(fig, 'get_' + attr)() default_attr = matplotlib.rcParams['figure.' + attr] if to_rgba(fig_attr) != to_rgba(default_attr): kwargs[attr] = fig_attr fig.savefig(image_path % fig_mngr.num, **kwargs) figure_list.append(image_fname % fig_mngr.num) except: print(80 * '_') print('%s is not compiling:' % fname) traceback.print_exc() print(80 * '_') finally: os.chdir(cwd) sys.stdout = orig_stdout print(' - time elapsed : %.2g sec' % time_elapsed) else: figure_list = [f[len(image_dir):] for f in glob.glob(image_path.replace('%03d', '[0-9][0-9][0-9]'))] figure_list.sort() this_template = plot_rst_template car_thumb_path = os.path.join(os.path.split(root_dir)[0], '_build/html/stable/_images/') if not os.path.exists(car_thumb_path): os.makedirs(car_thumb_path) if os.path.exists(first_image_file): carousel_tfile = os.path.join(car_thumb_path, base_image_name + '_carousel.png') first_img = image_fname % 1 if first_img in carousel_thumbs: make_thumbnail(image_path % carousel_thumbs[first_img][0], carousel_tfile, carousel_thumbs[first_img][1], 190) make_thumbnail(first_image_file, thumb_file, 400, 280) if not os.path.exists(thumb_file): make_thumbnail('source/_static/no_image.png', thumb_file, 200, 140) (docstring, short_desc, end_row) = extract_docstring(example_file) if len(figure_list) == 1: figure_name = figure_list[0] image_list = SINGLE_IMAGE % figure_name.lstrip('/') else: image_list = HLIST_HEADER for figure_name in figure_list: image_list += HLIST_IMAGE_TEMPLATE % figure_name.lstrip('/') (time_m, time_s) = divmod(time_elapsed, 60) f = open(os.path.join(target_dir, base_image_name + '.rst'), 'w') f.write(this_template % locals()) f.flush() if six.PY2: example_code_obj = identify_names(open(example_file).read()) else: example_code_obj = identify_names(open(example_file, encoding='utf-8').read()) if example_code_obj: codeobj_fname = example_file[:-3] + '_codeobj.pickle' with open(codeobj_fname, 'wb') as fid: pickle.dump(example_code_obj, fid, pickle.HIGHEST_PROTOCOL) backrefs = set(('{module_short}.{name}'.format(**entry) for entry in example_code_obj.values() if entry['module'].startswith('sklearn'))) backrefs = backrefs new_fname = os.path.join(src_dir, fname) if six.PY2: lines = open(new_fname).readlines() else: lines = open(new_fname, encoding='utf-8').readlines() start_row = 0 if lines[0].startswith('#!'): lines.pop(0) start_row = 1 docstring = '' first_par = '' line_iterator = iter(lines) tokens = tokenize.generate_tokens(lambda : next(line_iterator)) for (tok_type, tok_content, _, (erow, _), _) in tokens: tok_type = token.tok_name[tok_type] if tok_type in ('NEWLINE', 'COMMENT', 'NL', 'INDENT', 'DEDENT'): continue elif tok_type == 'STRING': docstring = eval(tok_content) paragraphs = '\n'.join((line.rstrip() for line in docstring.split('\n'))).split('\n\n') if paragraphs: if True: if len(paragraphs) > 1: first_par = re.sub('\n', ' ', paragraphs[1]) first_par = first_par[:95] + '...' if len(first_par) > 95 else first_par else: raise ValueError("Docstring not found by gallery.\nPlease check the layout of your example file:\n {}\n and make sure it's correct".format(new_fname)) else: first_par = paragraphs[0] break (_, snippet, _) = (docstring, first_par, erow + 1 + start_row) fhindex.write(_thumbnail_div(directory, directory, fname, snippet)) fhindex.write('\n\n.. toctree::\n :hidden:\n\n %s/%s\n\n' % (directory, fname[:-3])) for backref in backrefs: include_path = os.path.join(root_dir, '../modules/generated/%s.examples' % backref) seen = backref in seen_backrefs with open(include_path, 'a' if seen else 'w') as ex_file: if not seen: print(file=ex_file) print('Examples using ``%s``' % backref, file=ex_file) print('-----------------%s--' % ('-' * len(backref)), file=ex_file) print(file=ex_file) rel_dir = os.path.join('../../auto_examples', directory) ex_file.write(_thumbnail_div(directory, rel_dir, fname, snippet)) seen_backrefs.add(backref) fhindex.write('\n.. raw:: html\n\n <div class="clearer"></div>\n ')
acoular
positive
def __init__(self, objectListView, rowIndex, subItemIndex, rowModel, cellValue, cellBounds, editor): CellEditEvent.__init__(self, olv_EVT_CELL_EDIT_STARTED) <DeepExtract> self.objectListView = objectListView self.rowIndex = rowIndex self.subItemIndex = subItemIndex self.rowModel = rowModel self.cellValue = cellValue self.editor = editor </DeepExtract> self.cellBounds = cellBounds
def __init__(self, objectListView, rowIndex, subItemIndex, rowModel, cellValue, cellBounds, editor): CellEditEvent.__init__(self, olv_EVT_CELL_EDIT_STARTED) self.objectListView = objectListView self.rowIndex = rowIndex self.subItemIndex = subItemIndex self.rowModel = rowModel self.cellValue = cellValue self.editor = editor self.cellBounds = cellBounds
bookhub
positive
def create_doc_uniq_target_variable_at_least_specific_coef_variation(self, nbr_val, coef_var_min, max_difference, default_value): <DeepExtract> list_nbr_documents = np.random.randint(default_value - max_difference, default_value + max_difference + 1, size=nbr_val) while list_nbr_documents.std() / list_nbr_documents.mean() < coef_var_min: index = np.argmax(list_nbr_documents) if list_nbr_documents[index] < list_nbr_documents.mean(): list_nbr_documents[index] -= 1 else: list_nbr_documents[index] += 1 nbr_doc_to_generate = list_nbr_documents </DeepExtract> return self.generate_doc_time_variable_sensitivity(nbr_doc_to_generate)
def create_doc_uniq_target_variable_at_least_specific_coef_variation(self, nbr_val, coef_var_min, max_difference, default_value): list_nbr_documents = np.random.randint(default_value - max_difference, default_value + max_difference + 1, size=nbr_val) while list_nbr_documents.std() / list_nbr_documents.mean() < coef_var_min: index = np.argmax(list_nbr_documents) if list_nbr_documents[index] < list_nbr_documents.mean(): list_nbr_documents[index] -= 1 else: list_nbr_documents[index] += 1 nbr_doc_to_generate = list_nbr_documents return self.generate_doc_time_variable_sensitivity(nbr_doc_to_generate)
ee-outliers
positive
def parse_document_content(self): if self.check_token(DirectiveToken, DocumentStartToken, DocumentEndToken, StreamEndToken): <DeepExtract> event = ScalarEvent(None, None, (True, False), u'', self.peek_token().start_mark, self.peek_token().start_mark) </DeepExtract> self.state = self.states.pop() return event else: return self.parse_block_node()
def parse_document_content(self): if self.check_token(DirectiveToken, DocumentStartToken, DocumentEndToken, StreamEndToken): event = ScalarEvent(None, None, (True, False), u'', self.peek_token().start_mark, self.peek_token().start_mark) self.state = self.states.pop() return event else: return self.parse_block_node()
aws-serverless-workshop-greater-china-region
positive
@checks(ABINARY2, uintpair) def r_opening(image, size, origin=0): """Opening with rectangular structuring element using maximum/minimum filter""" <DeepExtract> assert image.dtype == 'B' or image.dtype == 'i' or image.dtype == dtype('bool'), 'array should be binary, is %s %s' % (image.dtype, image.shape) assert amin(image) >= 0 and amax(image) <= 1, 'array should be binary, has values %g to %g' % (amin(image), amax(image)) </DeepExtract> <DeepExtract> image = filters.minimum_filter(image, size, origin=origin) </DeepExtract> return r_dilation(image, size, origin=origin)
@checks(ABINARY2, uintpair) def r_opening(image, size, origin=0): """Opening with rectangular structuring element using maximum/minimum filter""" assert image.dtype == 'B' or image.dtype == 'i' or image.dtype == dtype('bool'), 'array should be binary, is %s %s' % (image.dtype, image.shape) assert amin(image) >= 0 and amax(image) <= 1, 'array should be binary, has values %g to %g' % (amin(image), amax(image)) image = filters.minimum_filter(image, size, origin=origin) return r_dilation(image, size, origin=origin)
deep_ocr
positive
def _process_next(node): children = [] _node = node while True: next_node = _node.find('next') if next_node is None: break _children = next_node.getchildren() if len(_children) != 1: raise BlocklyXmlParserException('Incorrect number of children ({}) for BlocklyXmlParser._process_next()'.format(len(_children))) _node = _children[0] children.append(_node) data = {'children': [self._call_method(node)], 'data': {}} if children: <DeepExtract> if 'children' not in data: data['children'] = [] for child in None.getchildren() if children is None else children: child_data = self.visit(child) if child_data is not None: data['children'].append(child_data) </DeepExtract> return data
def _process_next(node): children = [] _node = node while True: next_node = _node.find('next') if next_node is None: break _children = next_node.getchildren() if len(_children) != 1: raise BlocklyXmlParserException('Incorrect number of children ({}) for BlocklyXmlParser._process_next()'.format(len(_children))) _node = _children[0] children.append(_node) data = {'children': [self._call_method(node)], 'data': {}} if children: if 'children' not in data: data['children'] = [] for child in None.getchildren() if children is None else children: child_data = self.visit(child) if child_data is not None: data['children'].append(child_data) return data
django-business-logic
positive
def test_serializationErrorTraceback(self): """ If serialization fails in L{Logger.write}, a traceback is logged, along with a C{eliot:serialization_failure} message for debugging purposes. """ <DeepExtract> logger = Logger() logger._destinations = Destinations() written = [] logger._destinations.add(written.append) (logger, written) = (logger, written) </DeepExtract> def raiser(i): raise RuntimeError('oops') serializer = _MessageSerializer([Field.forValue('message_type', 'mymessage', 'The type'), Field('fail', raiser, 'Serialization fail')]) message = {'message_type': 'mymessage', 'fail': 'will'} logger.write(message, serializer) self.assertEqual(len(written), 2) tracebackMessage = written[0] assertContainsFields(self, tracebackMessage, {'exception': '%s.RuntimeError' % (RuntimeError.__module__,), 'message_type': 'eliot:traceback'}) self.assertIn('RuntimeError: oops', tracebackMessage['traceback']) assertContainsFields(self, written[1], {'message_type': 'eliot:serialization_failure'}) self.assertEqual(eval(written[1]['message']), dict(((repr(key), repr(value)) for (key, value) in message.items())))
def test_serializationErrorTraceback(self): """ If serialization fails in L{Logger.write}, a traceback is logged, along with a C{eliot:serialization_failure} message for debugging purposes. """ logger = Logger() logger._destinations = Destinations() written = [] logger._destinations.add(written.append) (logger, written) = (logger, written) def raiser(i): raise RuntimeError('oops') serializer = _MessageSerializer([Field.forValue('message_type', 'mymessage', 'The type'), Field('fail', raiser, 'Serialization fail')]) message = {'message_type': 'mymessage', 'fail': 'will'} logger.write(message, serializer) self.assertEqual(len(written), 2) tracebackMessage = written[0] assertContainsFields(self, tracebackMessage, {'exception': '%s.RuntimeError' % (RuntimeError.__module__,), 'message_type': 'eliot:traceback'}) self.assertIn('RuntimeError: oops', tracebackMessage['traceback']) assertContainsFields(self, written[1], {'message_type': 'eliot:serialization_failure'}) self.assertEqual(eval(written[1]['message']), dict(((repr(key), repr(value)) for (key, value) in message.items())))
eliot
positive
def read_line(self): """ Reads the next line of `self._current_file` and returns it without the trailing new line (` `) (and any trailing whitespaces). If the file was entirely read, closes it and continues to read the file that was previously being read (if any). Returns `None` if there is no file left to read. """ line = self._current_file.readline() while line == '': <DeepExtract> if self._current_file is not None: self._current_file.close() if len(self._opened_files) > 0: self._current_file = self._opened_files.pop() else: self._current_file = None </DeepExtract> if self._current_file is None: return None line = self._current_file.readline() line = line.rstrip() self._last_read_line = line return line
def read_line(self): """ Reads the next line of `self._current_file` and returns it without the trailing new line (` `) (and any trailing whitespaces). If the file was entirely read, closes it and continues to read the file that was previously being read (if any). Returns `None` if there is no file left to read. """ line = self._current_file.readline() while line == '': if self._current_file is not None: self._current_file.close() if len(self._opened_files) > 0: self._current_file = self._opened_files.pop() else: self._current_file = None if self._current_file is None: return None line = self._current_file.readline() line = line.rstrip() self._last_read_line = line return line
Chatette
positive
def validate_bucket_path(path): """Validate a Google Cloud Storage bucket path. Args: path: a Google Storage bucket path. It should have form '/bucket'. Raises: ValueError: if path is invalid. """ <DeepExtract> if not path: raise ValueError('Path is empty') if not isinstance(path, basestring): raise TypeError('Path should be a string but is %s (%s).' % (path.__class__, path)) </DeepExtract> if not _GCS_BUCKET_PATH_REGEX.match(path): raise ValueError('Bucket should have format /bucket but got %s' % path)
def validate_bucket_path(path): """Validate a Google Cloud Storage bucket path. Args: path: a Google Storage bucket path. It should have form '/bucket'. Raises: ValueError: if path is invalid. """ if not path: raise ValueError('Path is empty') if not isinstance(path, basestring): raise TypeError('Path should be a string but is %s (%s).' % (path.__class__, path)) if not _GCS_BUCKET_PATH_REGEX.match(path): raise ValueError('Bucket should have format /bucket but got %s' % path)
appengine-gcs-blobstore-python
positive