before
stringlengths
0
955k
after
stringlengths
0
877k
repo
stringlengths
1
74
type
stringclasses
1 value
def annotateSenses(self, currentName, newLexiconName): <DeepExtract> sql = 'SHOW COLUMNS from %s' % currentName self.dbCursor.execute(sql) data = self.dbCursor.fetchall() if len(data) > 0: numColumns = len(data) if numColumns == 3: weighted = False elif numColumns == 4: weighted = True else: raise Exception('Incorrect lexicon specified; number of rows in table [%s] is not 3 or 4') else: raise Exception('Lexicon table [%s] has no columns' % currentName) </DeepExtract> senseLexicon = WeightedLexicon() try: senseLexicon.loadLexicon(newLexiconName) except MySQLdb.Error as e: print('in except') createLike = 'CREATE TABLE %s LIKE %s' % (newLexiconName, currentName) self.dbCursor.execute(createLike) senseLexicon.loadLexicon(newLexiconName) oldLexicon = self.currentLexicon newLexicon = senseLexicon.currentLexicon seenWords = set() for (cat, words) in newLexicon.items(): cat = cat.lower() for ws in words: if ws: (lemma, pos, sense, word) = ws.split('.') seenWords.add(cat + '#' + word) for (cat, words) in oldLexicon.items(): cat = cat.lower() for word in words: if cat + '#' + word in seenWords: print('already annotated %s: %s (skipping)' % (cat, word)) else: <DeepExtract> os.system('clear') print('\n[%s] \x1b[92m%s\x1b[0m\n%s' % (PERMA_CODES[cat].title(), word, '=' * (len(word) + 20))) print('\x1b[90m%s\x1b[0m\n' % PERMA_LONG_DEF[cat]) currentSenses = set() POSs = {wn.NOUN: 'noun', wn.VERB: 'verb', wn.ADJ: 'adjective', wn.ADV: 'adverb'} for (pos, posName) in POSs.items(): synsets = wn.synsets(word, pos) if synsets: print('\t%s:' % posName) i = 1 wss = [None] for syns in synsets: wss.append(syns.name + '.' + word) print('\t\t\x1b[92m %d: \x1b[0m(%s)\x1b[92m %s\x1b[0m' % (i, ', '.join([lemma.name for lemma in syns.lemmas]), syns.definition)) i += 1 answered = False senses = None while not senses: print('\n\tWhich of the above senses expresses \x1b[1m%s (i.e. %s)\x1b[0m?' % (PERMA_CODES[cat].title(), PERMA_SHORT_DEF[cat])) senses = input('\t(separate with spaces; 0 => none; cntrl-c to quit)? ') senses = senses.strip() if not re.match('^[0-9, ]+$', senses): print('entered non-numeric character') senses = None continue senses = re.findall('\\d+', senses) ins = set(range(len(wss))) for s in senses: s = int(s) if s == 0 and len(senses) > 1: print('entered 0 along with other senses') senses = None if s not in ins: print('%d not a choice' % s) senses = None for s in senses: if s > 0: ws = wss[int(s)] print('\t\t\tadding %s' % ws) currentSenses.add(ws) print('The following will be added: %s' % currentSenses) senses = currentSenses </DeepExtract> if senses: if weighted: smallNewLex = {cat: dict(list(zip(senses, [words[word]] * len(senses))))} sys.stderr.write('newLexiconName %s \n' % newLexiconName) <DeepExtract> if not smallNewLex: smallNewLex = self.weightedLexicon sqlQuery = 'INSERT INTO ' + newLexiconName + ' (term, category, weight) values (%s, %s, %s)' values = [] for cat in smallNewLex: for term in smallNewLex[cat]: if self.weightedLexicon[cat][term] != 0: values.extend([[term, cat.upper(), self.weightedLexicon[cat][term]]]) try: nbInserted = 0 length = len(values) chunks = zip(*[iter(values)] * 100) pprint.pprint(chunks) for v in chunks: nbInserted += self.dbCursor.executemany(sqlQuery, v) remainingValues = values[nbInserted:] if remainingValues: nbInserted += self.dbCursor.executemany(sqlQuery, remainingValues) print('Inserted %d terms into the lexicon' % nbInserted) if nbInserted != length: print("Warning the number of rows inserted doesn't match the total number of rows") except MySQLdb.Error as e: dlac.warn('MYSQL ERROR:' + str(e) + sqlQuery) sys.exit(1) </DeepExtract> else: smallNewLex = {cat: frozenset(senses)} <DeepExtract> if not smallNewLex: smallNewLex = self.currentLexicon sqlQuery = 'INSERT INTO ' + newLexiconName + ' (term, category) values (%s, %s)' values = [] for (cat, terms) in smallNewLex.items(): values.extend([[term, cat.upper()] for term in terms]) try: self.dbCursor.executemany(sqlQuery, values) except MySQLdb.Error as e: dlac.warn('MYSQL ERROR in insertLexiconRows:' + str(e) + sqlQuery) sys.exit(1) </DeepExtract>
def annotateSenses(self, currentName, newLexiconName): sql = 'SHOW COLUMNS from %s' % currentName self.dbCursor.execute(sql) data = self.dbCursor.fetchall() if len(data) > 0: numColumns = len(data) if numColumns == 3: weighted = False elif numColumns == 4: weighted = True else: raise Exception('Incorrect lexicon specified; number of rows in table [%s] is not 3 or 4') else: raise Exception('Lexicon table [%s] has no columns' % currentName) senseLexicon = WeightedLexicon() try: senseLexicon.loadLexicon(newLexiconName) except MySQLdb.Error as e: print('in except') createLike = 'CREATE TABLE %s LIKE %s' % (newLexiconName, currentName) self.dbCursor.execute(createLike) senseLexicon.loadLexicon(newLexiconName) oldLexicon = self.currentLexicon newLexicon = senseLexicon.currentLexicon seenWords = set() for (cat, words) in newLexicon.items(): cat = cat.lower() for ws in words: if ws: (lemma, pos, sense, word) = ws.split('.') seenWords.add(cat + '#' + word) for (cat, words) in oldLexicon.items(): cat = cat.lower() for word in words: if cat + '#' + word in seenWords: print('already annotated %s: %s (skipping)' % (cat, word)) else: os.system('clear') print('\n[%s] \x1b[92m%s\x1b[0m\n%s' % (PERMA_CODES[cat].title(), word, '=' * (len(word) + 20))) print('\x1b[90m%s\x1b[0m\n' % PERMA_LONG_DEF[cat]) currentSenses = set() POSs = {wn.NOUN: 'noun', wn.VERB: 'verb', wn.ADJ: 'adjective', wn.ADV: 'adverb'} for (pos, posName) in POSs.items(): synsets = wn.synsets(word, pos) if synsets: print('\t%s:' % posName) i = 1 wss = [None] for syns in synsets: wss.append(syns.name + '.' + word) print('\t\t\x1b[92m %d: \x1b[0m(%s)\x1b[92m %s\x1b[0m' % (i, ', '.join([lemma.name for lemma in syns.lemmas]), syns.definition)) i += 1 answered = False senses = None while not senses: print('\n\tWhich of the above senses expresses \x1b[1m%s (i.e. %s)\x1b[0m?' % (PERMA_CODES[cat].title(), PERMA_SHORT_DEF[cat])) senses = input('\t(separate with spaces; 0 => none; cntrl-c to quit)? ') senses = senses.strip() if not re.match('^[0-9, ]+$', senses): print('entered non-numeric character') senses = None continue senses = re.findall('\\d+', senses) ins = set(range(len(wss))) for s in senses: s = int(s) if s == 0 and len(senses) > 1: print('entered 0 along with other senses') senses = None if s not in ins: print('%d not a choice' % s) senses = None for s in senses: if s > 0: ws = wss[int(s)] print('\t\t\tadding %s' % ws) currentSenses.add(ws) print('The following will be added: %s' % currentSenses) senses = currentSenses if senses: if weighted: smallNewLex = {cat: dict(list(zip(senses, [words[word]] * len(senses))))} sys.stderr.write('newLexiconName %s \n' % newLexiconName) if not smallNewLex: smallNewLex = self.weightedLexicon sqlQuery = 'INSERT INTO ' + newLexiconName + ' (term, category, weight) values (%s, %s, %s)' values = [] for cat in smallNewLex: for term in smallNewLex[cat]: if self.weightedLexicon[cat][term] != 0: values.extend([[term, cat.upper(), self.weightedLexicon[cat][term]]]) try: nbInserted = 0 length = len(values) chunks = zip(*[iter(values)] * 100) pprint.pprint(chunks) for v in chunks: nbInserted += self.dbCursor.executemany(sqlQuery, v) remainingValues = values[nbInserted:] if remainingValues: nbInserted += self.dbCursor.executemany(sqlQuery, remainingValues) print('Inserted %d terms into the lexicon' % nbInserted) if nbInserted != length: print("Warning the number of rows inserted doesn't match the total number of rows") except MySQLdb.Error as e: dlac.warn('MYSQL ERROR:' + str(e) + sqlQuery) sys.exit(1) else: smallNewLex = {cat: frozenset(senses)} if not smallNewLex: smallNewLex = self.currentLexicon sqlQuery = 'INSERT INTO ' + newLexiconName + ' (term, category) values (%s, %s)' values = [] for (cat, terms) in smallNewLex.items(): values.extend([[term, cat.upper()] for term in terms]) try: self.dbCursor.executemany(sqlQuery, values) except MySQLdb.Error as e: dlac.warn('MYSQL ERROR in insertLexiconRows:' + str(e) + sqlQuery) sys.exit(1) </DeepExtract>
dlatk
positive
@s3_request def s3_get(url, temp_file): """Pull a file directly from S3.""" s3_resource = boto3.resource('s3') <DeepExtract> parsed = urlparse(url) if not parsed.netloc or not parsed.path: raise ValueError('bad s3 path {}'.format(url)) bucket_name = parsed.netloc s3_path = parsed.path if s3_path.startswith('/'): s3_path = s3_path[1:] (bucket_name, s3_path) = (bucket_name, s3_path) </DeepExtract> s3_resource.Bucket(bucket_name).download_fileobj(s3_path, temp_file)
@s3_request def s3_get(url, temp_file): """Pull a file directly from S3.""" s3_resource = boto3.resource('s3') parsed = urlparse(url) if not parsed.netloc or not parsed.path: raise ValueError('bad s3 path {}'.format(url)) bucket_name = parsed.netloc s3_path = parsed.path if s3_path.startswith('/'): s3_path = s3_path[1:] (bucket_name, s3_path) = (bucket_name, s3_path) s3_resource.Bucket(bucket_name).download_fileobj(s3_path, temp_file)
DeepEventMine
positive
def test_added_2_7(self): """Test for names added in 2.7.""" <DeepExtract> (before, after) = (up_to_version((2, 7)), from_version((2, 7))) </DeepExtract> for (name, suggs) in {'memoryview': [MEMVIEW_ADDED_MSG]}.items(): <DeepExtract> suggs = sorted(listify(suggs, [], str)) (error_type, error_msg) = NAMEERROR details = 'Running following code :\n---\n{0}\n---'.format(name) if PythonEnvRange(before, interpreters).contains_current_env(): exc = get_exception(name) self.assertFalse(exc is None, 'No exc thrown.' + details) (type_caught, value, traceback) = exc suggestions = sorted(get_suggestions_for_exception(value, traceback)) self.log_exception(name, exc, suggestions) self.assertTrue(isinstance(value, type_caught)) self.assertTrue(issubclass(type_caught, error_type), '{0} ({1}) not a subclass of {2}'.format(type_caught, value, error_type) + details) msg = next((a for a in value.args if isinstance(a, str)), '') if error_msg: self.assertRegexp(msg, error_msg, details) self.assertEqual(suggestions, suggs, details) </DeepExtract> <DeepExtract> details = 'Running following code :\n---\n{0}\n---'.format(name) if PythonEnvRange(after, interpreters).contains_current_env(): exc = get_exception(name) self.assertTrue(exc is None, 'Exc thrown : ' + str(exc) + details) </DeepExtract>
def test_added_2_7(self): """Test for names added in 2.7.""" (before, after) = (up_to_version((2, 7)), from_version((2, 7))) for (name, suggs) in {'memoryview': [MEMVIEW_ADDED_MSG]}.items(): suggs = sorted(listify(suggs, [], str)) (error_type, error_msg) = NAMEERROR details = 'Running following code :\n---\n{0}\n---'.format(name) if PythonEnvRange(before, interpreters).contains_current_env(): exc = get_exception(name) self.assertFalse(exc is None, 'No exc thrown.' + details) (type_caught, value, traceback) = exc suggestions = sorted(get_suggestions_for_exception(value, traceback)) self.log_exception(name, exc, suggestions) self.assertTrue(isinstance(value, type_caught)) self.assertTrue(issubclass(type_caught, error_type), '{0} ({1}) not a subclass of {2}'.format(type_caught, value, error_type) + details) msg = next((a for a in value.args if isinstance(a, str)), '') if error_msg: self.assertRegexp(msg, error_msg, details) self.assertEqual(suggestions, suggs, details) details = 'Running following code :\n---\n{0}\n---'.format(name) if PythonEnvRange(after, interpreters).contains_current_env(): exc = get_exception(name) self.assertTrue(exc is None, 'Exc thrown : ' + str(exc) + details) </DeepExtract>
DidYouMean-Python
positive
def resnet_fpn(features, min_level=3, max_level=7, resnet_depth=50, is_training_bn=False, use_nearest_upsampling=True): """ResNet feature pyramid networks.""" with tf.variable_scope('resnet%s' % resnet_depth): <DeepExtract> model_params = {18: {'block': residual_block, 'layers': [2, 2, 2, 2]}, 34: {'block': residual_block, 'layers': [3, 4, 6, 3]}, 50: {'block': bottleneck_block, 'layers': [3, 4, 6, 3]}, 101: {'block': bottleneck_block, 'layers': [3, 4, 23, 3]}, 152: {'block': bottleneck_block, 'layers': [3, 8, 36, 3]}, 200: {'block': bottleneck_block, 'layers': [3, 24, 36, 3]}} if resnet_depth not in model_params: raise ValueError('Not a valid resnet_depth:', resnet_depth) params = model_params[resnet_depth] resnet_fn = resnet_v1_generator(params['block'], params['layers'], data_format) </DeepExtract> (u2, u3, u4, u5) = resnet_fn(features, is_training_bn) feats_bottom_up = {2: u2, 3: u3, 4: u4, 5: u5} with tf.variable_scope('resnet_fpn'): feats_lateral = {} for level in range(min_level, _RESNET_MAX_LEVEL + 1): feats_lateral[level] = tf.layers.conv2d(feats_bottom_up[level], filters=256, kernel_size=(1, 1), padding='same', name='l%d' % level) feats = {_RESNET_MAX_LEVEL: feats_lateral[_RESNET_MAX_LEVEL]} for level in range(_RESNET_MAX_LEVEL - 1, min_level - 1, -1): if use_nearest_upsampling: feats[level] = nearest_upsampling(feats[level + 1], 2) + feats_lateral[level] else: feats[level] = resize_bilinear(feats[level + 1], tf.shape(feats_lateral[level])[1:3], feats[level + 1].dtype) + feats_lateral[level] for level in range(min_level, _RESNET_MAX_LEVEL + 1): feats[level] = tf.layers.conv2d(feats[level], filters=256, strides=(1, 1), kernel_size=(3, 3), padding='same', name='post_hoc_d%d' % level) for level in range(_RESNET_MAX_LEVEL + 1, max_level + 1): feats_in = feats[level - 1] if level > _RESNET_MAX_LEVEL + 1: feats_in = tf.nn.relu(feats_in) feats[level] = tf.layers.conv2d(feats_in, filters=256, strides=(2, 2), kernel_size=(3, 3), padding='same', name='p%d' % level) for level in range(min_level, max_level + 1): feats[level] = tf.layers.batch_normalization(inputs=feats[level], momentum=_BATCH_NORM_DECAY, epsilon=_BATCH_NORM_EPSILON, center=True, scale=True, training=is_training_bn, fused=True, name='p%d-bn' % level) return feats
def resnet_fpn(features, min_level=3, max_level=7, resnet_depth=50, is_training_bn=False, use_nearest_upsampling=True): """ResNet feature pyramid networks.""" with tf.variable_scope('resnet%s' % resnet_depth): model_params = {18: {'block': residual_block, 'layers': [2, 2, 2, 2]}, 34: {'block': residual_block, 'layers': [3, 4, 6, 3]}, 50: {'block': bottleneck_block, 'layers': [3, 4, 6, 3]}, 101: {'block': bottleneck_block, 'layers': [3, 4, 23, 3]}, 152: {'block': bottleneck_block, 'layers': [3, 8, 36, 3]}, 200: {'block': bottleneck_block, 'layers': [3, 24, 36, 3]}} if resnet_depth not in model_params: raise ValueError('Not a valid resnet_depth:', resnet_depth) params = model_params[resnet_depth] resnet_fn = resnet_v1_generator(params['block'], params['layers'], data_format) (u2, u3, u4, u5) = resnet_fn(features, is_training_bn) feats_bottom_up = {2: u2, 3: u3, 4: u4, 5: u5} with tf.variable_scope('resnet_fpn'): feats_lateral = {} for level in range(min_level, _RESNET_MAX_LEVEL + 1): feats_lateral[level] = tf.layers.conv2d(feats_bottom_up[level], filters=256, kernel_size=(1, 1), padding='same', name='l%d' % level) feats = {_RESNET_MAX_LEVEL: feats_lateral[_RESNET_MAX_LEVEL]} for level in range(_RESNET_MAX_LEVEL - 1, min_level - 1, -1): if use_nearest_upsampling: feats[level] = nearest_upsampling(feats[level + 1], 2) + feats_lateral[level] else: feats[level] = resize_bilinear(feats[level + 1], tf.shape(feats_lateral[level])[1:3], feats[level + 1].dtype) + feats_lateral[level] for level in range(min_level, _RESNET_MAX_LEVEL + 1): feats[level] = tf.layers.conv2d(feats[level], filters=256, strides=(1, 1), kernel_size=(3, 3), padding='same', name='post_hoc_d%d' % level) for level in range(_RESNET_MAX_LEVEL + 1, max_level + 1): feats_in = feats[level - 1] if level > _RESNET_MAX_LEVEL + 1: feats_in = tf.nn.relu(feats_in) feats[level] = tf.layers.conv2d(feats_in, filters=256, strides=(2, 2), kernel_size=(3, 3), padding='same', name='p%d' % level) for level in range(min_level, max_level + 1): feats[level] = tf.layers.batch_normalization(inputs=feats[level], momentum=_BATCH_NORM_DECAY, epsilon=_BATCH_NORM_EPSILON, center=True, scale=True, training=is_training_bn, fused=True, name='p%d-bn' % level) return feats
class-balanced-loss
positive
def update_observed_submodel(self): """ Method. Extract the sub-model of observed variables. Args: None. Returns: None. """ <DeepExtract> pass </DeepExtract> observed_variables = [var for var in flattened_model if var.is_observed] self.observed_submodel = ProbabilisticModel(observed_variables, is_fully_observed=True)
def update_observed_submodel(self): """ Method. Extract the sub-model of observed variables. Args: None. Returns: None. """ pass observed_variables = [var for var in flattened_model if var.is_observed] self.observed_submodel = ProbabilisticModel(observed_variables, is_fully_observed=True)
Brancher
positive
def absorbance_mode_params(self, wells: Union[List[Well], WellGroup], wavelength: WAVELENGTH, num_flashes: Optional[int]=None, settle_time: Optional[TIME]=None, read_position: Optional[SpectrophotometryBuildersReadPositions]=None, position_z: Optional[dict]=None): """ Parameters ---------- wells : iterable(Well) or WellGroup Wells to be read. wavelength : Unit or str The wavelengths at which to make absorbance measurements. num_flashes : int, optional The number of discrete reads to be taken and then averaged. settle_time : Unit or str, optional The time to wait between moving to a well and reading it. read_position: Enum("top", "bottom"), optional The position of the probe relative to the plate for the read position_z: dict, optional This should be specified with either `position_z_manual` or `position_z_calculated` Returns ------- dict Formatted mode_params for an absorbance mode. Raises ------ TypeError Invalid type specified for input parameters, e.g. `num_flashes` not of type int ValueError Invalid wells specified """ if not is_valid_well(wells): raise ValueError(f'Invalid wells {wells}, must be an iterable of wells or a WellGroup.') if isinstance(wells, Well): wells = WellGroup([wells]) if not isinstance(wavelength, list): wavelength = [wavelength] wavelength = [parse_unit(_, 'nanometer') for _ in wavelength] if num_flashes is not None and (not isinstance(num_flashes, int)): raise TypeError(f'Invalid num_flashes {num_flashes}, must be an int') if settle_time is not None: settle_time = parse_unit(settle_time, 'second') if read_position is not None and read_position not in self.READ_POSITIONS: raise ValueError(f'Invalid read_position {read_position}, must be in {self.READ_POSITIONS}.') if position_z is not None: <DeepExtract> suggested_msg = 'Please use either `position_z_manual` or `position_z_calculated` functions to construct the appropriate z-position.' if not isinstance(position_z, dict): raise TypeError(f'Invalid position_z {position_z}, must be a dict. {suggested_msg}') if 'calculated_from_wells' in position_z: position_z = self.position_z_calculated(**position_z['calculated_from_wells']) elif 'manual' in position_z: position_z = self.position_z_manual(**position_z['manual']) else: raise ValueError(f'Invalid position_z {position_z} specified. {suggested_msg}') </DeepExtract> mode_params = {'wells': wells, 'wavelength': wavelength, 'num_flashes': num_flashes, 'settle_time': settle_time, 'read_position': read_position, 'position_z': position_z} mode_params = {k: v for (k, v) in mode_params.items() if v is not None} return mode_params
def absorbance_mode_params(self, wells: Union[List[Well], WellGroup], wavelength: WAVELENGTH, num_flashes: Optional[int]=None, settle_time: Optional[TIME]=None, read_position: Optional[SpectrophotometryBuildersReadPositions]=None, position_z: Optional[dict]=None): """ Parameters ---------- wells : iterable(Well) or WellGroup Wells to be read. wavelength : Unit or str The wavelengths at which to make absorbance measurements. num_flashes : int, optional The number of discrete reads to be taken and then averaged. settle_time : Unit or str, optional The time to wait between moving to a well and reading it. read_position: Enum("top", "bottom"), optional The position of the probe relative to the plate for the read position_z: dict, optional This should be specified with either `position_z_manual` or `position_z_calculated` Returns ------- dict Formatted mode_params for an absorbance mode. Raises ------ TypeError Invalid type specified for input parameters, e.g. `num_flashes` not of type int ValueError Invalid wells specified """ if not is_valid_well(wells): raise ValueError(f'Invalid wells {wells}, must be an iterable of wells or a WellGroup.') if isinstance(wells, Well): wells = WellGroup([wells]) if not isinstance(wavelength, list): wavelength = [wavelength] wavelength = [parse_unit(_, 'nanometer') for _ in wavelength] if num_flashes is not None and (not isinstance(num_flashes, int)): raise TypeError(f'Invalid num_flashes {num_flashes}, must be an int') if settle_time is not None: settle_time = parse_unit(settle_time, 'second') if read_position is not None and read_position not in self.READ_POSITIONS: raise ValueError(f'Invalid read_position {read_position}, must be in {self.READ_POSITIONS}.') if position_z is not None: suggested_msg = 'Please use either `position_z_manual` or `position_z_calculated` functions to construct the appropriate z-position.' if not isinstance(position_z, dict): raise TypeError(f'Invalid position_z {position_z}, must be a dict. {suggested_msg}') if 'calculated_from_wells' in position_z: position_z = self.position_z_calculated(**position_z['calculated_from_wells']) elif 'manual' in position_z: position_z = self.position_z_manual(**position_z['manual']) else: raise ValueError(f'Invalid position_z {position_z} specified. {suggested_msg}') mode_params = {'wells': wells, 'wavelength': wavelength, 'num_flashes': num_flashes, 'settle_time': settle_time, 'read_position': read_position, 'position_z': position_z} mode_params = {k: v for (k, v) in mode_params.items() if v is not None} return mode_params
autoprotocol-python
positive
def gtoc_archive_add_many(self, archives: List[GtocArchiveEntry]): a: GtocArchiveEntry entries = [(a.src_uid, a.path_hash32, a.archive_magic) for a in archives] self.db_execute_many('INSERT OR IGNORE INTO core_gtoc_archive_def VALUES (?,?,?)', entries, dbg='gtoc_archive_add_many:0:insert') self.db_conn.commit() def_row_ids = [] for entry in entries: result = self.db_query_all('SELECT rowid FROM core_gtoc_archive_def WHERE (node_id_src=(?)) AND (path_hash32=(?)) AND (archive_magic=(?))', entry, dbg='gtoc_archive_add_many:1:select') assert len(result) == 1 def_row_ids.append(result[0][0]) file_entry_strings = set() a: GtocArchiveEntry for a in archives: fe: GtocFileEntry for fe in a.file_entries: file_entry_strings.add(fe.path) hash_list = [make_hash_string_tuple(s) for s in file_entry_strings] <DeepExtract> hash_list_str = [(to_str(h[0]), h[1], h[2], h[3], h[4]) for h in hash_list] hash_list_str_unique = list(set(hash_list_str)) self.db_execute_many('INSERT OR IGNORE INTO core_strings VALUES (?,?,?,?,?)', hash_list_str_unique, dbg='hash_string_add_many_basic:0:insert') self.db_conn.commit() self.db_changed_signal.call() hash_list_map = {} str_to_row_map = {} for rec in hash_list_str_unique: result = self.db_query_all('SELECT rowid FROM core_strings WHERE string=(?) and hash32=(?) and hash48=(?) and hash64=(?) and ext_hash32=(?)', rec, dbg='hash_string_add_many_basic:1:select') assert len(result) == 1 row_id = result[0][0] hash_list_map[rec] = row_id str_to_row_map[to_bytes(rec[0])] = row_id (_, _, str_to_row_map) = (hash_list_str, hash_list_map, str_to_row_map) </DeepExtract> all_file_entries = [] archive: GtocArchiveEntry for (def_row_id, archive) in zip(def_row_ids, archives): file_entry: GtocFileEntry for (i, file_entry) in enumerate(archive.file_entries): offset_in_archive = file_entry.offset_in_archive file_size = file_entry.file_size path = file_entry.path path_row_id = str_to_row_map[path] if offset_in_archive == 0: offset_in_archive = None all_file_entries.append((def_row_id, i, offset_in_archive, file_size, path_row_id)) self.db_execute_many('INSERT OR IGNORE INTO core_gtoc_file_entry VALUES (?,?,?,?,?)', all_file_entries, dbg='gtoc_archive_add_many:2:insert') self.db_conn.commit() self.db_changed_signal.call()
def gtoc_archive_add_many(self, archives: List[GtocArchiveEntry]): a: GtocArchiveEntry entries = [(a.src_uid, a.path_hash32, a.archive_magic) for a in archives] self.db_execute_many('INSERT OR IGNORE INTO core_gtoc_archive_def VALUES (?,?,?)', entries, dbg='gtoc_archive_add_many:0:insert') self.db_conn.commit() def_row_ids = [] for entry in entries: result = self.db_query_all('SELECT rowid FROM core_gtoc_archive_def WHERE (node_id_src=(?)) AND (path_hash32=(?)) AND (archive_magic=(?))', entry, dbg='gtoc_archive_add_many:1:select') assert len(result) == 1 def_row_ids.append(result[0][0]) file_entry_strings = set() a: GtocArchiveEntry for a in archives: fe: GtocFileEntry for fe in a.file_entries: file_entry_strings.add(fe.path) hash_list = [make_hash_string_tuple(s) for s in file_entry_strings] hash_list_str = [(to_str(h[0]), h[1], h[2], h[3], h[4]) for h in hash_list] hash_list_str_unique = list(set(hash_list_str)) self.db_execute_many('INSERT OR IGNORE INTO core_strings VALUES (?,?,?,?,?)', hash_list_str_unique, dbg='hash_string_add_many_basic:0:insert') self.db_conn.commit() self.db_changed_signal.call() hash_list_map = {} str_to_row_map = {} for rec in hash_list_str_unique: result = self.db_query_all('SELECT rowid FROM core_strings WHERE string=(?) and hash32=(?) and hash48=(?) and hash64=(?) and ext_hash32=(?)', rec, dbg='hash_string_add_many_basic:1:select') assert len(result) == 1 row_id = result[0][0] hash_list_map[rec] = row_id str_to_row_map[to_bytes(rec[0])] = row_id (_, _, str_to_row_map) = (hash_list_str, hash_list_map, str_to_row_map) all_file_entries = [] archive: GtocArchiveEntry for (def_row_id, archive) in zip(def_row_ids, archives): file_entry: GtocFileEntry for (i, file_entry) in enumerate(archive.file_entries): offset_in_archive = file_entry.offset_in_archive file_size = file_entry.file_size path = file_entry.path path_row_id = str_to_row_map[path] if offset_in_archive == 0: offset_in_archive = None all_file_entries.append((def_row_id, i, offset_in_archive, file_size, path_row_id)) self.db_execute_many('INSERT OR IGNORE INTO core_gtoc_file_entry VALUES (?,?,?,?,?)', all_file_entries, dbg='gtoc_archive_add_many:2:insert') self.db_conn.commit() self.db_changed_signal.call()
deca
positive
def run(args): args = candle.ArgumentStruct(**args) args.cuda = torch.cuda.is_available() args.device = torch.device('cuda' if args.cuda else 'cpu') <DeepExtract> datapath = fetch_data(args) train_data = P3B3(datapath, 'train') valid_data = P3B3(datapath, 'test') (train_data, valid_data) = (train_data, valid_data) </DeepExtract> hparams = Hparams(kernel1=args.kernel1, kernel2=args.kernel2, kernel3=args.kernel3, embed_dim=args.embed_dim, n_filters=args.n_filters) train_loader = DataLoader(train_data, batch_size=args.batch_size) valid_loader = DataLoader(valid_data, batch_size=args.batch_size) model = MTCNN(TASKS, hparams).to(args.device) model = create_prune_masks(model) optimizer = torch.optim.Adam(model.parameters(), lr=args.learning_rate, eps=args.eps) train_epoch_loss = [] valid_epoch_loss = [] for epoch in range(args.epochs): <DeepExtract> accmeter = AccuracyMeter(TASKS, train_loader) total_loss = 0 for (idx, (data, target)) in enumerate(train_loader): optimizer.zero_grad() (data, target) = (data.to(args.device), to_device(target, args.device)) logits = model(data) _ = TRAIN_F1_MICRO.f1(to_device(logits, 'cpu'), to_device(target, 'cpu')) _ = TRAIN_F1_MACRO.f1(to_device(logits, 'cpu'), to_device(target, 'cpu')) loss = model.loss_value(logits, target, reduce='mean') loss.backward() optimizer.step() total_loss += loss.item() accmeter.update(logits, target) avg_loss = total_loss / len(train_loader.dataset) accmeter.update_accuracy() print(f'\nEpoch {epoch} Training Accuracy:') accmeter.print_task_accuracies() accmeter.reset() train_loss = avg_loss </DeepExtract> <DeepExtract> accmeter = AccuracyMeter(TASKS, valid_loader) loss = 0 model.eval() with torch.no_grad(): for (idx, (data, target)) in enumerate(valid_loader): (data, target) = (data.to(args.device), to_device(target, args.device)) logits = model(data) _ = VALID_F1_MICRO.f1(to_device(logits, 'cpu'), to_device(target, 'cpu')) _ = VALID_F1_MACRO.f1(to_device(logits, 'cpu'), to_device(target, 'cpu')) loss += model.loss_value(logits, target, reduce='mean').item() accmeter.update(logits, target) accmeter.update_accuracy() print('Validation accuracy:') accmeter.print_task_accuracies() loss /= len(valid_loader.dataset) valid_loss = loss </DeepExtract> train_epoch_loss.append(train_loss) valid_epoch_loss.append(valid_loss) model = remove_prune_masks(model)
def run(args): args = candle.ArgumentStruct(**args) args.cuda = torch.cuda.is_available() args.device = torch.device('cuda' if args.cuda else 'cpu') datapath = fetch_data(args) train_data = P3B3(datapath, 'train') valid_data = P3B3(datapath, 'test') (train_data, valid_data) = (train_data, valid_data) hparams = Hparams(kernel1=args.kernel1, kernel2=args.kernel2, kernel3=args.kernel3, embed_dim=args.embed_dim, n_filters=args.n_filters) train_loader = DataLoader(train_data, batch_size=args.batch_size) valid_loader = DataLoader(valid_data, batch_size=args.batch_size) model = MTCNN(TASKS, hparams).to(args.device) model = create_prune_masks(model) optimizer = torch.optim.Adam(model.parameters(), lr=args.learning_rate, eps=args.eps) train_epoch_loss = [] valid_epoch_loss = [] for epoch in range(args.epochs): accmeter = AccuracyMeter(TASKS, train_loader) total_loss = 0 for (idx, (data, target)) in enumerate(train_loader): optimizer.zero_grad() (data, target) = (data.to(args.device), to_device(target, args.device)) logits = model(data) _ = TRAIN_F1_MICRO.f1(to_device(logits, 'cpu'), to_device(target, 'cpu')) _ = TRAIN_F1_MACRO.f1(to_device(logits, 'cpu'), to_device(target, 'cpu')) loss = model.loss_value(logits, target, reduce='mean') loss.backward() optimizer.step() total_loss += loss.item() accmeter.update(logits, target) avg_loss = total_loss / len(train_loader.dataset) accmeter.update_accuracy() print(f'\nEpoch {epoch} Training Accuracy:') accmeter.print_task_accuracies() accmeter.reset() train_loss = avg_loss accmeter = AccuracyMeter(TASKS, valid_loader) loss = 0 model.eval() with torch.no_grad(): for (idx, (data, target)) in enumerate(valid_loader): (data, target) = (data.to(args.device), to_device(target, args.device)) logits = model(data) _ = VALID_F1_MICRO.f1(to_device(logits, 'cpu'), to_device(target, 'cpu')) _ = VALID_F1_MACRO.f1(to_device(logits, 'cpu'), to_device(target, 'cpu')) loss += model.loss_value(logits, target, reduce='mean').item() accmeter.update(logits, target) accmeter.update_accuracy() print('Validation accuracy:') accmeter.print_task_accuracies() loss /= len(valid_loader.dataset) valid_loss = loss train_epoch_loss.append(train_loss) valid_epoch_loss.append(valid_loss) model = remove_prune_masks(model)
Benchmarks
positive
def main_cli(): """Entry point for command-line script""" multiprocessing.freeze_support() <DeepExtract> start_time = time.time() parser = get_argument_parser() (args, leftover_args) = parser.parse_known_args(args=sys.argv[1:]) if not logging.root.handlers: setup_logging(logger, log_to_stderr=is_any_output_stdout(args), quiet=args.quiet, minimal=args.report == 'minimal', debug=args.debug) log_header(sys.argv[1:]) profiler = setup_profiler_if_requested(args.profile) log_system_info() if args.quiet and args.report: parser.error('Options --quiet and --report cannot be used at the same time') if leftover_args: warn_if_en_dashes(sys.argv[1:]) parser.error('unrecognized arguments: ' + ' '.join(leftover_args)) if args.cores < 0: parser.error('Value for --cores cannot be negative') cores = available_cpu_count() if args.cores == 0 else args.cores file_opener = FileOpener(compression_level=args.compression_level, threads=estimate_compression_threads(cores)) if sys.stderr.isatty() and (not args.quiet) and (not args.debug): progress = Progress() else: progress = DummyProgress() paired = determine_paired(args) try: is_interleaved_input = args.interleaved and len(args.inputs) == 1 input_paths = setup_input_files(args.inputs, paired, is_interleaved_input) check_arguments(args, paired) (adapters, adapters2) = adapters_from_args(args) log_adapters(adapters, adapters2 if paired else None) make_pipeline = PipelineMaker(args, paired, adapters, adapters2) make_pipeline() adapter_names: List[Optional[str]] = [a.name for a in adapters] adapter_names2: List[Optional[str]] = [a.name for a in adapters2] outfiles = open_output_files(args, default_outfile, file_opener, adapter_names, adapter_names2) inpaths = InputPaths(*input_paths, interleaved=is_interleaved_input) logger.info('Processing %s reads on %d core%s ...', {False: 'single-end', True: 'paired-end'}[paired], cores, 's' if cores > 1 else '') stats = run_pipeline(make_pipeline, inpaths, outfiles, cores, progress, args.buffer_size) except KeyboardInterrupt: if args.debug: raise else: print('Interrupted', file=sys.stderr) sys.exit(130) except BrokenPipeError: sys.exit(1) except (OSError, EOFError, HasNoQualities, dnaio.UnknownFileFormat, dnaio.FileFormatError, CommandLineError) as e: logger.debug('Command line error. Traceback:', exc_info=True) logger.error('%s', e) exit_code = 2 if isinstance(e, CommandLineError) else 1 sys.exit(exit_code) elapsed = time.time() - start_time if args.report == 'minimal': report = minimal_report else: report = full_report logger.log(REPORT, '%s', report(stats, elapsed, args.gc_content / 100.0)) if args.json is not None: with open(args.json, 'w') as f: json_dict = json_report(stats=stats, cmdlineargs=sys.argv[1:], path1=inpaths.paths[0], path2=inpaths.paths[1] if len(inpaths.paths) > 1 else None, cores=cores, paired=paired, gc_content=args.gc_content / 100.0) f.write(json_dumps(json_dict)) f.write('\n') if profiler is not None: import pstats profiler.disable() pstats.Stats(profiler).sort_stats('time').print_stats(20) return stats </DeepExtract> return 0
def main_cli(): """Entry point for command-line script""" multiprocessing.freeze_support() start_time = time.time() parser = get_argument_parser() (args, leftover_args) = parser.parse_known_args(args=sys.argv[1:]) if not logging.root.handlers: setup_logging(logger, log_to_stderr=is_any_output_stdout(args), quiet=args.quiet, minimal=args.report == 'minimal', debug=args.debug) log_header(sys.argv[1:]) profiler = setup_profiler_if_requested(args.profile) log_system_info() if args.quiet and args.report: parser.error('Options --quiet and --report cannot be used at the same time') if leftover_args: warn_if_en_dashes(sys.argv[1:]) parser.error('unrecognized arguments: ' + ' '.join(leftover_args)) if args.cores < 0: parser.error('Value for --cores cannot be negative') cores = available_cpu_count() if args.cores == 0 else args.cores file_opener = FileOpener(compression_level=args.compression_level, threads=estimate_compression_threads(cores)) if sys.stderr.isatty() and (not args.quiet) and (not args.debug): progress = Progress() else: progress = DummyProgress() paired = determine_paired(args) try: is_interleaved_input = args.interleaved and len(args.inputs) == 1 input_paths = setup_input_files(args.inputs, paired, is_interleaved_input) check_arguments(args, paired) (adapters, adapters2) = adapters_from_args(args) log_adapters(adapters, adapters2 if paired else None) make_pipeline = PipelineMaker(args, paired, adapters, adapters2) make_pipeline() adapter_names: List[Optional[str]] = [a.name for a in adapters] adapter_names2: List[Optional[str]] = [a.name for a in adapters2] outfiles = open_output_files(args, default_outfile, file_opener, adapter_names, adapter_names2) inpaths = InputPaths(*input_paths, interleaved=is_interleaved_input) logger.info('Processing %s reads on %d core%s ...', {False: 'single-end', True: 'paired-end'}[paired], cores, 's' if cores > 1 else '') stats = run_pipeline(make_pipeline, inpaths, outfiles, cores, progress, args.buffer_size) except KeyboardInterrupt: if args.debug: raise else: print('Interrupted', file=sys.stderr) sys.exit(130) except BrokenPipeError: sys.exit(1) except (OSError, EOFError, HasNoQualities, dnaio.UnknownFileFormat, dnaio.FileFormatError, CommandLineError) as e: logger.debug('Command line error. Traceback:', exc_info=True) logger.error('%s', e) exit_code = 2 if isinstance(e, CommandLineError) else 1 sys.exit(exit_code) elapsed = time.time() - start_time if args.report == 'minimal': report = minimal_report else: report = full_report logger.log(REPORT, '%s', report(stats, elapsed, args.gc_content / 100.0)) if args.json is not None: with open(args.json, 'w') as f: json_dict = json_report(stats=stats, cmdlineargs=sys.argv[1:], path1=inpaths.paths[0], path2=inpaths.paths[1] if len(inpaths.paths) > 1 else None, cores=cores, paired=paired, gc_content=args.gc_content / 100.0) f.write(json_dumps(json_dict)) f.write('\n') if profiler is not None: import pstats profiler.disable() pstats.Stats(profiler).sort_stats('time').print_stats(20) return stats return 0
cutadapt
positive
def main(): """Main""" import matplotlib.pyplot as plt for deterministic in [True, False]: <DeepExtract> morph = ephys.morphologies.NrnFileMorphology(os.path.join(morph_dir, 'simple.swc')) somatic_loc = ephys.locations.NrnSeclistLocation('somatic', seclist_name='somatic') stochkv3_mech = ephys.mechanisms.NrnMODMechanism(name='StochKv3', suffix='StochKv3', locations=[somatic_loc], deterministic=deterministic) pas_mech = ephys.mechanisms.NrnMODMechanism(name='pas', suffix='pas', locations=[somatic_loc]) gkbar_param = ephys.parameters.NrnSectionParameter(name='gkbar_StochKv3', param_name='gkbar_StochKv3', locations=[somatic_loc], bounds=[0.0, 10.0], frozen=False) epas_param = ephys.parameters.NrnSectionParameter(name='e_pas', param_name='e_pas', locations=[somatic_loc], value=-90, frozen=True) celsius_param = ephys.parameters.NrnGlobalParameter(name='celsius', param_name='celsius', value=34.0, frozen=True) params = [epas_param, celsius_param, gkbar_param] stochkv3_cell = ephys.models.CellModel(name='stochkv3_cell', morph=morph, mechs=[pas_mech, stochkv3_mech], params=params) soma_loc = ephys.locations.NrnSeclistCompLocation(name='soma', seclist_name='somatic', sec_index=0, comp_x=0.5) stim = ephys.stimuli.NrnSquarePulse(step_amplitude=0.1, step_delay=50, step_duration=50, location=soma_loc, total_duration=150) hold_stim = ephys.stimuli.NrnSquarePulse(step_amplitude=-0.025, step_delay=0, step_duration=10000, location=soma_loc, total_duration=150) rec = ephys.recordings.CompRecording(name='Step.soma.v', location=soma_loc, variable='v') protocol = ephys.protocols.SweepProtocol('Step', [stim, hold_stim], [rec]) nrn = ephys.simulators.NrnSimulator(cvode_active=False) evaluator = ephys.evaluators.CellEvaluator(cell_model=stochkv3_cell, param_names=[param.name for param in params], fitness_calculator=ephys.objectivescalculators.ObjectivesCalculator(), sim=nrn) best_param_values = {'gkbar_StochKv3': 0.5} responses = evaluator.run_protocol(protocol, cell_model=stochkv3_cell, param_values=best_param_values, sim=nrn) hoc_string = stochkv3_cell.create_hoc(param_values=best_param_values, disable_banner=True) stochkv3_hoc_cell = ephys.models.HocCellModel('stochkv3_hoc_cell', morphology_path=morph_dir, hoc_string=hoc_string) nrn.neuron.h.celsius = 34 hoc_responses = protocol.run(stochkv3_hoc_cell, best_param_values, sim=nrn) evaluator.use_params_for_seed = True different_seed_responses = evaluator.run_protocol(protocol, cell_model=stochkv3_cell, param_values=best_param_values, sim=nrn) (stochkv3_responses, stochkv3_hoc_responses, different_seed_responses, stochkv3_hoc_string) = (responses, hoc_responses, different_seed_responses, hoc_string) </DeepExtract> with open(stochkv3_hoc_filename(deterministic=deterministic), 'w') as stochkv3_hoc_file: stochkv3_hoc_file.write(stochkv3_hoc_string) time = stochkv3_responses['Step.soma.v']['time'] py_voltage = stochkv3_responses['Step.soma.v']['voltage'] hoc_voltage = stochkv3_hoc_responses['Step.soma.v']['voltage'] different_seed_voltage = different_seed_responses['Step.soma.v']['voltage'] plt.figure() plt.plot(time, py_voltage - hoc_voltage, label='py - hoc diff') plt.xlabel('time (ms)') plt.ylabel('voltage diff(mV)') plt.title('Deterministic' if deterministic else 'Stochastic') plt.legend() plt.figure() plt.plot(time, py_voltage, label='py') plt.plot(time, hoc_voltage, label='hoc') plt.xlabel('time (ms)') plt.ylabel('voltage (mV)') plt.title('Deterministic' if deterministic else 'Stochastic') plt.legend() plt.figure() plt.plot(time, py_voltage, label='py') plt.plot(time, different_seed_voltage, label='different seed') plt.xlabel('time (ms)') plt.ylabel('voltage (mV)') plt.title('Deterministic' if deterministic else 'Stochastic') plt.legend() plt.show()
def main(): """Main""" import matplotlib.pyplot as plt for deterministic in [True, False]: morph = ephys.morphologies.NrnFileMorphology(os.path.join(morph_dir, 'simple.swc')) somatic_loc = ephys.locations.NrnSeclistLocation('somatic', seclist_name='somatic') stochkv3_mech = ephys.mechanisms.NrnMODMechanism(name='StochKv3', suffix='StochKv3', locations=[somatic_loc], deterministic=deterministic) pas_mech = ephys.mechanisms.NrnMODMechanism(name='pas', suffix='pas', locations=[somatic_loc]) gkbar_param = ephys.parameters.NrnSectionParameter(name='gkbar_StochKv3', param_name='gkbar_StochKv3', locations=[somatic_loc], bounds=[0.0, 10.0], frozen=False) epas_param = ephys.parameters.NrnSectionParameter(name='e_pas', param_name='e_pas', locations=[somatic_loc], value=-90, frozen=True) celsius_param = ephys.parameters.NrnGlobalParameter(name='celsius', param_name='celsius', value=34.0, frozen=True) params = [epas_param, celsius_param, gkbar_param] stochkv3_cell = ephys.models.CellModel(name='stochkv3_cell', morph=morph, mechs=[pas_mech, stochkv3_mech], params=params) soma_loc = ephys.locations.NrnSeclistCompLocation(name='soma', seclist_name='somatic', sec_index=0, comp_x=0.5) stim = ephys.stimuli.NrnSquarePulse(step_amplitude=0.1, step_delay=50, step_duration=50, location=soma_loc, total_duration=150) hold_stim = ephys.stimuli.NrnSquarePulse(step_amplitude=-0.025, step_delay=0, step_duration=10000, location=soma_loc, total_duration=150) rec = ephys.recordings.CompRecording(name='Step.soma.v', location=soma_loc, variable='v') protocol = ephys.protocols.SweepProtocol('Step', [stim, hold_stim], [rec]) nrn = ephys.simulators.NrnSimulator(cvode_active=False) evaluator = ephys.evaluators.CellEvaluator(cell_model=stochkv3_cell, param_names=[param.name for param in params], fitness_calculator=ephys.objectivescalculators.ObjectivesCalculator(), sim=nrn) best_param_values = {'gkbar_StochKv3': 0.5} responses = evaluator.run_protocol(protocol, cell_model=stochkv3_cell, param_values=best_param_values, sim=nrn) hoc_string = stochkv3_cell.create_hoc(param_values=best_param_values, disable_banner=True) stochkv3_hoc_cell = ephys.models.HocCellModel('stochkv3_hoc_cell', morphology_path=morph_dir, hoc_string=hoc_string) nrn.neuron.h.celsius = 34 hoc_responses = protocol.run(stochkv3_hoc_cell, best_param_values, sim=nrn) evaluator.use_params_for_seed = True different_seed_responses = evaluator.run_protocol(protocol, cell_model=stochkv3_cell, param_values=best_param_values, sim=nrn) (stochkv3_responses, stochkv3_hoc_responses, different_seed_responses, stochkv3_hoc_string) = (responses, hoc_responses, different_seed_responses, hoc_string) with open(stochkv3_hoc_filename(deterministic=deterministic), 'w') as stochkv3_hoc_file: stochkv3_hoc_file.write(stochkv3_hoc_string) time = stochkv3_responses['Step.soma.v']['time'] py_voltage = stochkv3_responses['Step.soma.v']['voltage'] hoc_voltage = stochkv3_hoc_responses['Step.soma.v']['voltage'] different_seed_voltage = different_seed_responses['Step.soma.v']['voltage'] plt.figure() plt.plot(time, py_voltage - hoc_voltage, label='py - hoc diff') plt.xlabel('time (ms)') plt.ylabel('voltage diff(mV)') plt.title('Deterministic' if deterministic else 'Stochastic') plt.legend() plt.figure() plt.plot(time, py_voltage, label='py') plt.plot(time, hoc_voltage, label='hoc') plt.xlabel('time (ms)') plt.ylabel('voltage (mV)') plt.title('Deterministic' if deterministic else 'Stochastic') plt.legend() plt.figure() plt.plot(time, py_voltage, label='py') plt.plot(time, different_seed_voltage, label='different seed') plt.xlabel('time (ms)') plt.ylabel('voltage (mV)') plt.title('Deterministic' if deterministic else 'Stochastic') plt.legend() plt.show()
BluePyOpt
positive
def tf_unitary_overlap(A: tf.Tensor, B: tf.Tensor, lvls: tf.Tensor=None) -> tf.Tensor: """Unitary overlap between two matrices. Parameters ---------- A : tf.Tensor Unitary A B : tf.Tensor Unitary B lvls : tf.Tensor, optional Levels, by default None Returns ------- tf.Tensor Overlap between the two unitaries Raises ------ TypeError For errors during cast ValueError For errors during matrix multiplicaton """ try: if lvls is None: lvls = tf.cast(tf.shape(B)[0], B.dtype) <DeepExtract> overlap = tf.reshape(tf.cast(tf.math.conj(tf.linalg.trace(tf.matmul(A, tf.linalg.adjoint(B))) / lvls) * tf.linalg.trace(tf.matmul(A, tf.linalg.adjoint(B))) / lvls, dtype=tf.float64), shape=[1]) </DeepExtract> except TypeError: raise TypeError('Possible Inconsistent Dimensions while casting tensors') except ValueError: raise ValueError('Possible Inconsistent Dimensions during Matrix Multiplication') return overlap
def tf_unitary_overlap(A: tf.Tensor, B: tf.Tensor, lvls: tf.Tensor=None) -> tf.Tensor: """Unitary overlap between two matrices. Parameters ---------- A : tf.Tensor Unitary A B : tf.Tensor Unitary B lvls : tf.Tensor, optional Levels, by default None Returns ------- tf.Tensor Overlap between the two unitaries Raises ------ TypeError For errors during cast ValueError For errors during matrix multiplicaton """ try: if lvls is None: lvls = tf.cast(tf.shape(B)[0], B.dtype) overlap = tf.reshape(tf.cast(tf.math.conj(tf.linalg.trace(tf.matmul(A, tf.linalg.adjoint(B))) / lvls) * tf.linalg.trace(tf.matmul(A, tf.linalg.adjoint(B))) / lvls, dtype=tf.float64), shape=[1]) except TypeError: raise TypeError('Possible Inconsistent Dimensions while casting tensors') except ValueError: raise ValueError('Possible Inconsistent Dimensions during Matrix Multiplication') return overlap
c3
positive
def __init__(self, x, min_limit=-np.inf, max_limit=np.inf, weights=1.0): self.points = x self.N = x.size self.min_limit = min_limit self.max_limit = max_limit <DeepExtract> z = np.append(x, [min_limit, max_limit]) sigma = np.ones(x.shape) for i in range(x.size): xleft = z[np.argmin([x[i] - k if k < x[i] else np.inf for k in z])] xright = z[np.argmin([k - x[i] if k > x[i] else np.inf for k in z])] sigma[i] = max(x[i] - xleft, xright - x[i]) if sigma[i] == np.inf: sigma[i] = min(x[i] - xleft, xright - x[i]) if sigma[i] == -np.inf: sigma[i] = 1.0 self.sigma = sigma </DeepExtract> self.weights = 2 / (erf((max_limit - x) / (np.sqrt(2.0) * self.sigma)) - erf((min_limit - x) / (np.sqrt(2.0) * self.sigma))) * weights self.W_sum = np.sum(self.weights)
def __init__(self, x, min_limit=-np.inf, max_limit=np.inf, weights=1.0): self.points = x self.N = x.size self.min_limit = min_limit self.max_limit = max_limit z = np.append(x, [min_limit, max_limit]) sigma = np.ones(x.shape) for i in range(x.size): xleft = z[np.argmin([x[i] - k if k < x[i] else np.inf for k in z])] xright = z[np.argmin([k - x[i] if k > x[i] else np.inf for k in z])] sigma[i] = max(x[i] - xleft, xright - x[i]) if sigma[i] == np.inf: sigma[i] = min(x[i] - xleft, xright - x[i]) if sigma[i] == -np.inf: sigma[i] = 1.0 self.sigma = sigma self.weights = 2 / (erf((max_limit - x) / (np.sqrt(2.0) * self.sigma)) - erf((min_limit - x) / (np.sqrt(2.0) * self.sigma))) * weights self.W_sum = np.sum(self.weights)
brainiak
positive
def prepare_train_img(idx): img_info = self.img_infos[idx] <DeepExtract> ann_info = self.img_infos[idx]['ann'] </DeepExtract> results = dict(img_info=img_info, ann_info=ann_info) if self.proposals is not None: results['proposals'] = self.proposals[idx] <DeepExtract> results['img_prefix'] = self.img_prefix results['seg_prefix'] = self.seg_prefix results['proposal_file'] = self.proposal_file results['bbox_fields'] = [] results['mask_fields'] = [] results['seg_fields'] = [] </DeepExtract> return self.pipeline(results)
def prepare_train_img(idx): img_info = self.img_infos[idx] ann_info = self.img_infos[idx]['ann'] results = dict(img_info=img_info, ann_info=ann_info) if self.proposals is not None: results['proposals'] = self.proposals[idx] results['img_prefix'] = self.img_prefix results['seg_prefix'] = self.seg_prefix results['proposal_file'] = self.proposal_file results['bbox_fields'] = [] results['mask_fields'] = [] results['seg_fields'] = [] return self.pipeline(results)
DetectoRS
positive
def _bimpm_forward(field_encoded_record1: torch.Tensor, field_encoded_record2: torch.Tensor, record_mask_record1: torch.Tensor, record_mask_record2: torch.Tensor) -> torch.Tensor: """Encodes in a record context, matches encodings, aggregates the matching results, classifies. We do this in a helper function to reuse it for the `self._compute_attributions` method. Parameters ---------- field_encoded_record1 Encoded record1 (in a field context) field_encoded_record2 Encoded record2 (in a field context) record_mask_record1 Mask for the record encoder for record1 record_mask_record2 Mask for the record encoder for record2 Returns ------- logits """ record_encoded_record1 = self._dropout(self._record_encoder(field_encoded_record1, mask=record_mask_record1)) record_encoded_record2 = self._dropout(self._record_encoder(field_encoded_record2, mask=record_mask_record2)) <DeepExtract> matching_vector_record1: List[torch.Tensor] = [] matching_vector_record2: List[torch.Tensor] = [] half_hidden_size = None if self._matcher_backward is not None: half_hidden_size = self._record_encoder.get_output_dim() // 2 matching_result = self._matcher_forward(record_encoded_record1[:, :, :half_hidden_size], record_mask_record1, record_encoded_record2[:, :, :half_hidden_size], record_mask_record2) matching_vector_record1.extend(matching_result[0]) matching_vector_record2.extend(matching_result[1]) if self._matcher_backward is not None: matching_result = self._matcher_backward(record_encoded_record1[:, :, half_hidden_size:], record_mask_record1, record_encoded_record2[:, :, half_hidden_size:], record_mask_record2) matching_vector_record1.extend(matching_result[0]) matching_vector_record2.extend(matching_result[1]) matching_vector_record1_cat = self._dropout(torch.cat(matching_vector_record1, dim=2)) matching_vector_record2_cat = self._dropout(torch.cat(matching_vector_record2, dim=2)) (matching_vector_record1, matching_vector_record2) = (matching_vector_record1_cat, matching_vector_record2_cat) </DeepExtract> aggregated_record1 = self._dropout(self._aggregator(matching_vector_record1, record_mask_record1)) aggregated_record2 = self._dropout(self._aggregator(matching_vector_record2, record_mask_record2)) aggregated_records = torch.cat([aggregated_record1, aggregated_record2], dim=-1) logits = self._output_layer(self._classifier_feedforward(aggregated_records)) return logits
def _bimpm_forward(field_encoded_record1: torch.Tensor, field_encoded_record2: torch.Tensor, record_mask_record1: torch.Tensor, record_mask_record2: torch.Tensor) -> torch.Tensor: """Encodes in a record context, matches encodings, aggregates the matching results, classifies. We do this in a helper function to reuse it for the `self._compute_attributions` method. Parameters ---------- field_encoded_record1 Encoded record1 (in a field context) field_encoded_record2 Encoded record2 (in a field context) record_mask_record1 Mask for the record encoder for record1 record_mask_record2 Mask for the record encoder for record2 Returns ------- logits """ record_encoded_record1 = self._dropout(self._record_encoder(field_encoded_record1, mask=record_mask_record1)) record_encoded_record2 = self._dropout(self._record_encoder(field_encoded_record2, mask=record_mask_record2)) matching_vector_record1: List[torch.Tensor] = [] matching_vector_record2: List[torch.Tensor] = [] half_hidden_size = None if self._matcher_backward is not None: half_hidden_size = self._record_encoder.get_output_dim() // 2 matching_result = self._matcher_forward(record_encoded_record1[:, :, :half_hidden_size], record_mask_record1, record_encoded_record2[:, :, :half_hidden_size], record_mask_record2) matching_vector_record1.extend(matching_result[0]) matching_vector_record2.extend(matching_result[1]) if self._matcher_backward is not None: matching_result = self._matcher_backward(record_encoded_record1[:, :, half_hidden_size:], record_mask_record1, record_encoded_record2[:, :, half_hidden_size:], record_mask_record2) matching_vector_record1.extend(matching_result[0]) matching_vector_record2.extend(matching_result[1]) matching_vector_record1_cat = self._dropout(torch.cat(matching_vector_record1, dim=2)) matching_vector_record2_cat = self._dropout(torch.cat(matching_vector_record2, dim=2)) (matching_vector_record1, matching_vector_record2) = (matching_vector_record1_cat, matching_vector_record2_cat) aggregated_record1 = self._dropout(self._aggregator(matching_vector_record1, record_mask_record1)) aggregated_record2 = self._dropout(self._aggregator(matching_vector_record2, record_mask_record2)) aggregated_records = torch.cat([aggregated_record1, aggregated_record2], dim=-1) logits = self._output_layer(self._classifier_feedforward(aggregated_records)) return logits
biome-text
positive
def se_resnet50(num_classes=1000, pretrained='imagenet'): model = SENet(SEResNetBottleneck, [3, 4, 6, 3], groups=1, reduction=16, dropout_p=None, inplanes=64, input_3x3=False, downsample_kernel_size=1, downsample_padding=0, num_classes=num_classes) if pretrained is not None: settings = pretrained_settings['se_resnet50'][pretrained] <DeepExtract> assert num_classes == settings['num_classes'], 'num_classes should be {}, but is {}'.format(settings['num_classes'], num_classes) model.load_state_dict(model_zoo.load_url(settings['url'])) model.input_space = settings['input_space'] model.input_size = settings['input_size'] model.input_range = settings['input_range'] model.mean = settings['mean'] model.std = settings['std'] </DeepExtract> return model
def se_resnet50(num_classes=1000, pretrained='imagenet'): model = SENet(SEResNetBottleneck, [3, 4, 6, 3], groups=1, reduction=16, dropout_p=None, inplanes=64, input_3x3=False, downsample_kernel_size=1, downsample_padding=0, num_classes=num_classes) if pretrained is not None: settings = pretrained_settings['se_resnet50'][pretrained] assert num_classes == settings['num_classes'], 'num_classes should be {}, but is {}'.format(settings['num_classes'], num_classes) model.load_state_dict(model_zoo.load_url(settings['url'])) model.input_space = settings['input_space'] model.input_size = settings['input_size'] model.input_range = settings['input_range'] model.mean = settings['mean'] model.std = settings['std'] return model
DCASE2018Task2
positive
def prepare(job, slices): <DeepExtract> char = options.get('newline') if not char: lf_char = 256 msg = '%s must be a single iso-8859-1 character (or %s)' % ('newline', specials) if isinstance(char, bytes): char = uni(char) try: char = char.encode('iso-8859-1') except UnicodeEncodeError: raise Exception(msg) assert len(char) == 1, msg lf_char = cstuff.backend.char2int(char) </DeepExtract> <DeepExtract> char = options.get('separator') if not char: separator = 10 if lf_char == 256 else lf_char msg = '%s must be a single iso-8859-1 character (or %s)' % ('separator', specials) if isinstance(char, bytes): char = uni(char) try: char = char.encode('iso-8859-1') except UnicodeEncodeError: raise Exception(msg) assert len(char) == 1, msg separator = cstuff.backend.char2int(char) </DeepExtract> <DeepExtract> char = options.get('comment') if not char: comment_char = 256 msg = '%s must be a single iso-8859-1 character (or %s)' % ('comment', specials) if isinstance(char, bytes): char = uni(char) try: char = char.encode('iso-8859-1') except UnicodeEncodeError: raise Exception(msg) assert len(char) == 1, msg comment_char = cstuff.backend.char2int(char) </DeepExtract> if options.quotes == 'True': quote_char = 256 elif options.quotes == 'False': quote_char = 257 else: <DeepExtract> char = options.get('quotes') if not char: quote_char = 257 msg = '%s must be a single iso-8859-1 character (or %s)' % ('quotes', 'True/False/empty') if isinstance(char, bytes): char = uni(char) try: char = char.encode('iso-8859-1') except UnicodeEncodeError: raise Exception(msg) assert len(char) == 1, msg quote_char = cstuff.backend.char2int(char) </DeepExtract> filename = os.path.join(job.input_directory, options.filename) orig_filename = filename assert 1 <= options.compression <= 9 open(filename, 'rb').close() fds = [os.pipe() for _ in range(slices)] read_fds = [t[0] for t in fds] write_fds = [t[1] for t in fds] if options.labelsonfirstline: (labels_rfd, labels_wfd) = os.pipe() else: labels_wfd = -1 success_fh = open('reader.success', 'wb+') (status_rfd, status_wfd) = os.pipe() p = Process(target=reader_process, name='reader', args=(slices, filename, write_fds, labels_wfd, success_fh.fileno(), status_wfd, comment_char, lf_char)) p.start() for fd in write_fds: os.close(fd) os.close(status_wfd) if options.labelsonfirstline: os.close(labels_wfd) out_fns = ['labels'] r_num = cstuff.mk_uint64(3) try: <DeepExtract> fn = 'import.success.%d' % (-1,) fh = open(fn, 'wb+') real_stderr = os.dup(2) try: os.dup2(fh.fileno(), 2) res = cstuff.backend.import_slice(*cstuff.bytesargs(labels_rfd, -1, -1, -1, out_fns, b'wb1', separator, r_num, quote_char, lf_char, 0, 0)) os.dup2(real_stderr, 2) fh.seek(0) msg = fh.read().decode('utf-8', 'replace') if msg or res: raise Exception(msg.strip() or 'c backend failed in label parsing') finally: os.dup2(real_stderr, 2) os.close(real_stderr) fh.close() os.unlink(fn) </DeepExtract> finally: os.close(labels_rfd) if os.path.exists('labels'): with typed_reader('bytes')('labels') as fh: labels_from_file = [lab.decode('utf-8', 'backslashreplace') for lab in fh] os.unlink('labels') else: labels_from_file = [] else: labels_from_file = None labels = options.labels or labels_from_file if options.allow_extra_empty: while labels and labels[-1] == '': labels.pop() assert labels, 'No labels' if options.strip_labels: labels = [x.strip() for x in labels] labels = [options.rename.get(x, x) for x in labels] assert len(labels) == len(set(labels)), 'Duplicate labels: %r' % (labels,) dw = job.datasetwriter(columns={n: 'bytes' for n in labels if n not in options.discard}, filename=orig_filename, caption='csvimport of ' + orig_filename, previous=datasets.previous, meta_only=True) if options.lineno_label: dw.add(options.lineno_label, 'int64') def dsprevious(name): if datasets.previous and datasets.previous.name == 'default': from accelerator.error import NoSuchDatasetError try: return datasets.previous.job.dataset(name) except NoSuchDatasetError: return None return None if options.allow_bad: bad_dw = job.datasetwriter(name='bad', filename=orig_filename, columns=dict(lineno='int64', data='bytes'), caption='bad lines from csvimport of ' + orig_filename, previous=dsprevious('bad'), meta_only=True) else: bad_dw = None if options.comment or options.skip_lines or options.skip_empty_lines: skipped_dw = job.datasetwriter(name='skipped', filename=orig_filename, columns=dict(lineno='int64', data='bytes'), caption='skipped lines from csvimport of ' + orig_filename, previous=dsprevious('skipped'), meta_only=True) else: skipped_dw = None return (separator, quote_char, lf_char, filename, orig_filename, labels, dw, bad_dw, skipped_dw, read_fds, success_fh, status_rfd)
def prepare(job, slices): char = options.get('newline') if not char: lf_char = 256 msg = '%s must be a single iso-8859-1 character (or %s)' % ('newline', specials) if isinstance(char, bytes): char = uni(char) try: char = char.encode('iso-8859-1') except UnicodeEncodeError: raise Exception(msg) assert len(char) == 1, msg lf_char = cstuff.backend.char2int(char) char = options.get('separator') if not char: separator = 10 if lf_char == 256 else lf_char msg = '%s must be a single iso-8859-1 character (or %s)' % ('separator', specials) if isinstance(char, bytes): char = uni(char) try: char = char.encode('iso-8859-1') except UnicodeEncodeError: raise Exception(msg) assert len(char) == 1, msg separator = cstuff.backend.char2int(char) char = options.get('comment') if not char: comment_char = 256 msg = '%s must be a single iso-8859-1 character (or %s)' % ('comment', specials) if isinstance(char, bytes): char = uni(char) try: char = char.encode('iso-8859-1') except UnicodeEncodeError: raise Exception(msg) assert len(char) == 1, msg comment_char = cstuff.backend.char2int(char) if options.quotes == 'True': quote_char = 256 elif options.quotes == 'False': quote_char = 257 else: char = options.get('quotes') if not char: quote_char = 257 msg = '%s must be a single iso-8859-1 character (or %s)' % ('quotes', 'True/False/empty') if isinstance(char, bytes): char = uni(char) try: char = char.encode('iso-8859-1') except UnicodeEncodeError: raise Exception(msg) assert len(char) == 1, msg quote_char = cstuff.backend.char2int(char) filename = os.path.join(job.input_directory, options.filename) orig_filename = filename assert 1 <= options.compression <= 9 open(filename, 'rb').close() fds = [os.pipe() for _ in range(slices)] read_fds = [t[0] for t in fds] write_fds = [t[1] for t in fds] if options.labelsonfirstline: (labels_rfd, labels_wfd) = os.pipe() else: labels_wfd = -1 success_fh = open('reader.success', 'wb+') (status_rfd, status_wfd) = os.pipe() p = Process(target=reader_process, name='reader', args=(slices, filename, write_fds, labels_wfd, success_fh.fileno(), status_wfd, comment_char, lf_char)) p.start() for fd in write_fds: os.close(fd) os.close(status_wfd) if options.labelsonfirstline: os.close(labels_wfd) out_fns = ['labels'] r_num = cstuff.mk_uint64(3) try: fn = 'import.success.%d' % (-1,) fh = open(fn, 'wb+') real_stderr = os.dup(2) try: os.dup2(fh.fileno(), 2) res = cstuff.backend.import_slice(*cstuff.bytesargs(labels_rfd, -1, -1, -1, out_fns, b'wb1', separator, r_num, quote_char, lf_char, 0, 0)) os.dup2(real_stderr, 2) fh.seek(0) msg = fh.read().decode('utf-8', 'replace') if msg or res: raise Exception(msg.strip() or 'c backend failed in label parsing') finally: os.dup2(real_stderr, 2) os.close(real_stderr) fh.close() os.unlink(fn) finally: os.close(labels_rfd) if os.path.exists('labels'): with typed_reader('bytes')('labels') as fh: labels_from_file = [lab.decode('utf-8', 'backslashreplace') for lab in fh] os.unlink('labels') else: labels_from_file = [] else: labels_from_file = None labels = options.labels or labels_from_file if options.allow_extra_empty: while labels and labels[-1] == '': labels.pop() assert labels, 'No labels' if options.strip_labels: labels = [x.strip() for x in labels] labels = [options.rename.get(x, x) for x in labels] assert len(labels) == len(set(labels)), 'Duplicate labels: %r' % (labels,) dw = job.datasetwriter(columns={n: 'bytes' for n in labels if n not in options.discard}, filename=orig_filename, caption='csvimport of ' + orig_filename, previous=datasets.previous, meta_only=True) if options.lineno_label: dw.add(options.lineno_label, 'int64') def dsprevious(name): if datasets.previous and datasets.previous.name == 'default': from accelerator.error import NoSuchDatasetError try: return datasets.previous.job.dataset(name) except NoSuchDatasetError: return None return None if options.allow_bad: bad_dw = job.datasetwriter(name='bad', filename=orig_filename, columns=dict(lineno='int64', data='bytes'), caption='bad lines from csvimport of ' + orig_filename, previous=dsprevious('bad'), meta_only=True) else: bad_dw = None if options.comment or options.skip_lines or options.skip_empty_lines: skipped_dw = job.datasetwriter(name='skipped', filename=orig_filename, columns=dict(lineno='int64', data='bytes'), caption='skipped lines from csvimport of ' + orig_filename, previous=dsprevious('skipped'), meta_only=True) else: skipped_dw = None return (separator, quote_char, lf_char, filename, orig_filename, labels, dw, bad_dw, skipped_dw, read_fds, success_fh, status_rfd)
accelerator
positive
def forward(self, batch_dict): for cur_module in self.module_list: batch_dict = cur_module(batch_dict) if self.training: <DeepExtract> disp_dict = {} (loss_rpn, tb_dict) = self.dense_head.get_loss() (loss_point, tb_dict) = self.point_head.get_loss(tb_dict) (loss_rcnn, tb_dict) = self.roi_head.get_loss(tb_dict) loss = loss_rpn + loss_point + loss_rcnn (loss, tb_dict, disp_dict) = (loss, tb_dict, disp_dict) </DeepExtract> ret_dict = {'loss': loss} return (ret_dict, tb_dict, disp_dict) else: (pred_dicts, recall_dicts) = self.post_processing(batch_dict) return (pred_dicts, recall_dicts)
def forward(self, batch_dict): for cur_module in self.module_list: batch_dict = cur_module(batch_dict) if self.training: disp_dict = {} (loss_rpn, tb_dict) = self.dense_head.get_loss() (loss_point, tb_dict) = self.point_head.get_loss(tb_dict) (loss_rcnn, tb_dict) = self.roi_head.get_loss(tb_dict) loss = loss_rpn + loss_point + loss_rcnn (loss, tb_dict, disp_dict) = (loss, tb_dict, disp_dict) ret_dict = {'loss': loss} return (ret_dict, tb_dict, disp_dict) else: (pred_dicts, recall_dicts) = self.post_processing(batch_dict) return (pred_dicts, recall_dicts)
CenterPoint-KITTI
positive
def test_ethtest_fixtures() -> None: <DeepExtract> with open(f'{ETHEREUM_TESTS_PATH}/PoWTests/ethash_tests.json') as pow_test_file_handler: ethereum_tests = [{'nonce': hex_to_bytes8(raw_fixture['nonce']), 'mix_digest': hex_to_bytes32(raw_fixture['mixHash']), 'header': rlp.decode_to(Header, hex_to_bytes(raw_fixture['header'])), 'seed': hex_to_bytes32(raw_fixture['seed']), 'result': hex_to_bytes32(raw_fixture['result']), 'cache_size': Uint(raw_fixture['cache_size']), 'dataset_size': Uint(raw_fixture['full_size']), 'header_hash': hex_to_bytes32(raw_fixture['header_hash']), 'cache_hash': hex_to_bytes32(raw_fixture['cache_hash'])} for raw_fixture in json.load(pow_test_file_handler).values()] </DeepExtract> for test in ethereum_tests: header = test['header'] assert header.nonce == test['nonce'] assert header.mix_digest == test['mix_digest'] assert generate_seed(header.number) == test['seed'] assert cache_size(header.number) == test['cache_size'] assert dataset_size(header.number) == test['dataset_size'] header_hash = generate_header_hash_for_pow(header) assert header_hash == test['header_hash'] cache = generate_cache(header.number) cache_hash = keccak256(b''.join((le_uint32_sequence_to_bytes(cache_item) for cache_item in cache))) assert cache_hash == test['cache_hash'] (mix_digest, result) = hashimoto_light(header_hash, header.nonce, cache, dataset_size(header.number)) assert mix_digest == test['mix_digest'] assert result == test['result']
def test_ethtest_fixtures() -> None: with open(f'{ETHEREUM_TESTS_PATH}/PoWTests/ethash_tests.json') as pow_test_file_handler: ethereum_tests = [{'nonce': hex_to_bytes8(raw_fixture['nonce']), 'mix_digest': hex_to_bytes32(raw_fixture['mixHash']), 'header': rlp.decode_to(Header, hex_to_bytes(raw_fixture['header'])), 'seed': hex_to_bytes32(raw_fixture['seed']), 'result': hex_to_bytes32(raw_fixture['result']), 'cache_size': Uint(raw_fixture['cache_size']), 'dataset_size': Uint(raw_fixture['full_size']), 'header_hash': hex_to_bytes32(raw_fixture['header_hash']), 'cache_hash': hex_to_bytes32(raw_fixture['cache_hash'])} for raw_fixture in json.load(pow_test_file_handler).values()] for test in ethereum_tests: header = test['header'] assert header.nonce == test['nonce'] assert header.mix_digest == test['mix_digest'] assert generate_seed(header.number) == test['seed'] assert cache_size(header.number) == test['cache_size'] assert dataset_size(header.number) == test['dataset_size'] header_hash = generate_header_hash_for_pow(header) assert header_hash == test['header_hash'] cache = generate_cache(header.number) cache_hash = keccak256(b''.join((le_uint32_sequence_to_bytes(cache_item) for cache_item in cache))) assert cache_hash == test['cache_hash'] (mix_digest, result) = hashimoto_light(header_hash, header.nonce, cache, dataset_size(header.number)) assert mix_digest == test['mix_digest'] assert result == test['result']
eth1.0-specs
positive
def find_image(self, name, tag): """ Lookup an image (by name and tag) and return the inspection results. """ if not name: return None <DeepExtract> pass </DeepExtract> <DeepExtract> try: response = self.images(name=name) except Exception as exc: self.fail('Error searching for image %s - %s' % (name, str(exc))) images = response if tag: lookup = '%s:%s' % (name, tag) lookup_digest = '%s@%s' % (name, tag) images = [] for image in response: tags = image.get('RepoTags') digests = image.get('RepoDigests') if tags and lookup in tags or (digests and lookup_digest in digests): images = [image] break images = images </DeepExtract> if not images: (registry, repo_name) = auth.resolve_repository_name(name) if registry == 'docker.io': <DeepExtract> pass </DeepExtract> <DeepExtract> try: response = self.images(name=repo_name) except Exception as exc: self.fail('Error searching for image %s - %s' % (repo_name, str(exc))) images = response if tag: lookup = '%s:%s' % (repo_name, tag) lookup_digest = '%s@%s' % (repo_name, tag) images = [] for image in response: tags = image.get('RepoTags') digests = image.get('RepoDigests') if tags and lookup in tags or (digests and lookup_digest in digests): images = [image] break images = images </DeepExtract> if not images and repo_name.startswith('library/'): lookup = repo_name[len('library/'):] <DeepExtract> pass </DeepExtract> <DeepExtract> try: response = self.images(name=lookup) except Exception as exc: self.fail('Error searching for image %s - %s' % (lookup, str(exc))) images = response if tag: lookup = '%s:%s' % (lookup, tag) lookup_digest = '%s@%s' % (lookup, tag) images = [] for image in response: tags = image.get('RepoTags') digests = image.get('RepoDigests') if tags and lookup in tags or (digests and lookup_digest in digests): images = [image] break images = images </DeepExtract> if not images: lookup = '%s/%s' % (registry, repo_name) <DeepExtract> pass </DeepExtract> <DeepExtract> try: response = self.images(name=lookup) except Exception as exc: self.fail('Error searching for image %s - %s' % (lookup, str(exc))) images = response if tag: lookup = '%s:%s' % (lookup, tag) lookup_digest = '%s@%s' % (lookup, tag) images = [] for image in response: tags = image.get('RepoTags') digests = image.get('RepoDigests') if tags and lookup in tags or (digests and lookup_digest in digests): images = [image] break images = images </DeepExtract> if not images and '/' not in repo_name: lookup = '%s/library/%s' % (registry, repo_name) <DeepExtract> pass </DeepExtract> <DeepExtract> try: response = self.images(name=lookup) except Exception as exc: self.fail('Error searching for image %s - %s' % (lookup, str(exc))) images = response if tag: lookup = '%s:%s' % (lookup, tag) lookup_digest = '%s@%s' % (lookup, tag) images = [] for image in response: tags = image.get('RepoTags') digests = image.get('RepoDigests') if tags and lookup in tags or (digests and lookup_digest in digests): images = [image] break images = images </DeepExtract> if len(images) > 1: <DeepExtract> pass </DeepExtract> if len(images) == 1: try: inspection = self.inspect_image(images[0]['Id']) except NotFound: <DeepExtract> pass </DeepExtract> return None except Exception as exc: <DeepExtract> pass </DeepExtract> return inspection <DeepExtract> pass </DeepExtract> return None
def find_image(self, name, tag): """ Lookup an image (by name and tag) and return the inspection results. """ if not name: return None pass try: response = self.images(name=name) except Exception as exc: self.fail('Error searching for image %s - %s' % (name, str(exc))) images = response if tag: lookup = '%s:%s' % (name, tag) lookup_digest = '%s@%s' % (name, tag) images = [] for image in response: tags = image.get('RepoTags') digests = image.get('RepoDigests') if tags and lookup in tags or (digests and lookup_digest in digests): images = [image] break images = images if not images: (registry, repo_name) = auth.resolve_repository_name(name) if registry == 'docker.io': pass try: response = self.images(name=repo_name) except Exception as exc: self.fail('Error searching for image %s - %s' % (repo_name, str(exc))) images = response if tag: lookup = '%s:%s' % (repo_name, tag) lookup_digest = '%s@%s' % (repo_name, tag) images = [] for image in response: tags = image.get('RepoTags') digests = image.get('RepoDigests') if tags and lookup in tags or (digests and lookup_digest in digests): images = [image] break images = images if not images and repo_name.startswith('library/'): lookup = repo_name[len('library/'):] pass try: response = self.images(name=lookup) except Exception as exc: self.fail('Error searching for image %s - %s' % (lookup, str(exc))) images = response if tag: lookup = '%s:%s' % (lookup, tag) lookup_digest = '%s@%s' % (lookup, tag) images = [] for image in response: tags = image.get('RepoTags') digests = image.get('RepoDigests') if tags and lookup in tags or (digests and lookup_digest in digests): images = [image] break images = images if not images: lookup = '%s/%s' % (registry, repo_name) pass try: response = self.images(name=lookup) except Exception as exc: self.fail('Error searching for image %s - %s' % (lookup, str(exc))) images = response if tag: lookup = '%s:%s' % (lookup, tag) lookup_digest = '%s@%s' % (lookup, tag) images = [] for image in response: tags = image.get('RepoTags') digests = image.get('RepoDigests') if tags and lookup in tags or (digests and lookup_digest in digests): images = [image] break images = images if not images and '/' not in repo_name: lookup = '%s/library/%s' % (registry, repo_name) pass try: response = self.images(name=lookup) except Exception as exc: self.fail('Error searching for image %s - %s' % (lookup, str(exc))) images = response if tag: lookup = '%s:%s' % (lookup, tag) lookup_digest = '%s@%s' % (lookup, tag) images = [] for image in response: tags = image.get('RepoTags') digests = image.get('RepoDigests') if tags and lookup in tags or (digests and lookup_digest in digests): images = [image] break images = images if len(images) > 1: pass if len(images) == 1: try: inspection = self.inspect_image(images[0]['Id']) except NotFound: pass return None except Exception as exc: pass return inspection pass return None
community.docker
positive
def __init__(self, levels, channels, opt, num_classes=1000, block=BasicBlock, residual_root=False, return_levels=True, pool_size=7, linear_root=False): super(DLA, self).__init__() self.channels = channels self.return_levels = True self.num_classes = num_classes self.base_layer = nn.Sequential(nn.Conv2d(3, channels[0], kernel_size=7, stride=1, padding=3, bias=False), BatchNorm(channels[0]), nn.ReLU(inplace=True)) <DeepExtract> modules = [] for i in range(levels[0]): modules.extend([nn.Conv2d(channels[0], channels[0], kernel_size=3, stride=stride if i == 0 else 1, padding=dilation, bias=False, dilation=dilation), BatchNorm(channels[0]), nn.ReLU(inplace=True)]) channels[0] = channels[0] self.level0 = nn.Sequential(*modules) </DeepExtract> <DeepExtract> modules = [] for i in range(levels[1]): modules.extend([nn.Conv2d(channels[0], channels[1], kernel_size=3, stride=2 if i == 0 else 1, padding=dilation, bias=False, dilation=dilation), BatchNorm(channels[1]), nn.ReLU(inplace=True)]) channels[0] = channels[1] self.level1 = nn.Sequential(*modules) </DeepExtract> self.level2 = Tree(levels[2], block, channels[1], channels[2], 2, level_root=False, root_residual=residual_root) self.level3 = Tree(levels[3], block, channels[2], channels[3], 2, level_root=True, root_residual=residual_root) self.level4 = Tree(levels[4], block, channels[3], channels[4], 2, level_root=True, root_residual=residual_root) self.level5 = Tree(levels[5], block, channels[4], channels[5], 2, level_root=True, root_residual=residual_root) if opt.pre_img: self.pre_img_layer = nn.Sequential(nn.Conv2d(3, channels[0], kernel_size=7, stride=1, padding=3, bias=False), BatchNorm(channels[0]), nn.ReLU(inplace=True)) if opt.pre_hm: self.pre_hm_layer = nn.Sequential(nn.Conv2d(1, channels[0], kernel_size=7, stride=1, padding=3, bias=False), BatchNorm(channels[0]), nn.ReLU(inplace=True)) for m in self.modules(): if isinstance(m, nn.Conv2d): n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels m.weight.data.normal_(0, math.sqrt(2.0 / n)) elif isinstance(m, BatchNorm): m.weight.data.fill_(1) m.bias.data.zero_()
def __init__(self, levels, channels, opt, num_classes=1000, block=BasicBlock, residual_root=False, return_levels=True, pool_size=7, linear_root=False): super(DLA, self).__init__() self.channels = channels self.return_levels = True self.num_classes = num_classes self.base_layer = nn.Sequential(nn.Conv2d(3, channels[0], kernel_size=7, stride=1, padding=3, bias=False), BatchNorm(channels[0]), nn.ReLU(inplace=True)) modules = [] for i in range(levels[0]): modules.extend([nn.Conv2d(channels[0], channels[0], kernel_size=3, stride=stride if i == 0 else 1, padding=dilation, bias=False, dilation=dilation), BatchNorm(channels[0]), nn.ReLU(inplace=True)]) channels[0] = channels[0] self.level0 = nn.Sequential(*modules) modules = [] for i in range(levels[1]): modules.extend([nn.Conv2d(channels[0], channels[1], kernel_size=3, stride=2 if i == 0 else 1, padding=dilation, bias=False, dilation=dilation), BatchNorm(channels[1]), nn.ReLU(inplace=True)]) channels[0] = channels[1] self.level1 = nn.Sequential(*modules) self.level2 = Tree(levels[2], block, channels[1], channels[2], 2, level_root=False, root_residual=residual_root) self.level3 = Tree(levels[3], block, channels[2], channels[3], 2, level_root=True, root_residual=residual_root) self.level4 = Tree(levels[4], block, channels[3], channels[4], 2, level_root=True, root_residual=residual_root) self.level5 = Tree(levels[5], block, channels[4], channels[5], 2, level_root=True, root_residual=residual_root) if opt.pre_img: self.pre_img_layer = nn.Sequential(nn.Conv2d(3, channels[0], kernel_size=7, stride=1, padding=3, bias=False), BatchNorm(channels[0]), nn.ReLU(inplace=True)) if opt.pre_hm: self.pre_hm_layer = nn.Sequential(nn.Conv2d(1, channels[0], kernel_size=7, stride=1, padding=3, bias=False), BatchNorm(channels[0]), nn.ReLU(inplace=True)) for m in self.modules(): if isinstance(m, nn.Conv2d): n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels m.weight.data.normal_(0, math.sqrt(2.0 / n)) elif isinstance(m, BatchNorm): m.weight.data.fill_(1) m.bias.data.zero_()
CenterTrack-IOU
positive
def get_xml_path(): """Return the alternative path to the UDUNITS2 XMl file""" default = Path(sys.prefix) / 'share' / 'udunits' / 'udunits2.xml' <DeepExtract> value = str(default) if config.has_option('System', 'udunits2_xml_path'): value = config.get('System', 'udunits2_xml_path') path = value </DeepExtract> return path.encode()
def get_xml_path(): """Return the alternative path to the UDUNITS2 XMl file""" default = Path(sys.prefix) / 'share' / 'udunits' / 'udunits2.xml' value = str(default) if config.has_option('System', 'udunits2_xml_path'): value = config.get('System', 'udunits2_xml_path') path = value return path.encode()
cf-units
positive
def _init_weights(self): def normal_init(m, mean, stddev, truncated=False): """ weight initalizer: truncated normal and random normal. """ if truncated: m.weight.data.normal_().fmod_(2).mul_(stddev).add_(mean) else: m.weight.data.normal_(mean, stddev) m.bias.data.zero_() <DeepExtract> if cfg.TRAIN.TRUNCATED: self.RCNN_rpn.RPN_Conv.weight.data.normal_().fmod_(2).mul_(0.01).add_(0) else: self.RCNN_rpn.RPN_Conv.weight.data.normal_(0, 0.01) self.RCNN_rpn.RPN_Conv.bias.data.zero_() </DeepExtract> <DeepExtract> if cfg.TRAIN.TRUNCATED: self.RCNN_rpn.RPN_cls_score.weight.data.normal_().fmod_(2).mul_(0.01).add_(0) else: self.RCNN_rpn.RPN_cls_score.weight.data.normal_(0, 0.01) self.RCNN_rpn.RPN_cls_score.bias.data.zero_() </DeepExtract> <DeepExtract> if cfg.TRAIN.TRUNCATED: self.RCNN_rpn.RPN_bbox_pred.weight.data.normal_().fmod_(2).mul_(0.01).add_(0) else: self.RCNN_rpn.RPN_bbox_pred.weight.data.normal_(0, 0.01) self.RCNN_rpn.RPN_bbox_pred.bias.data.zero_() </DeepExtract> <DeepExtract> if cfg.TRAIN.TRUNCATED: self.RCNN_cls_score.weight.data.normal_().fmod_(2).mul_(0.01).add_(0) else: self.RCNN_cls_score.weight.data.normal_(0, 0.01) self.RCNN_cls_score.bias.data.zero_() </DeepExtract> <DeepExtract> if cfg.TRAIN.TRUNCATED: self.RCNN_bbox_pred.weight.data.normal_().fmod_(2).mul_(0.001).add_(0) else: self.RCNN_bbox_pred.weight.data.normal_(0, 0.001) self.RCNN_bbox_pred.bias.data.zero_() </DeepExtract>
def _init_weights(self): def normal_init(m, mean, stddev, truncated=False): """ weight initalizer: truncated normal and random normal. """ if truncated: m.weight.data.normal_().fmod_(2).mul_(stddev).add_(mean) else: m.weight.data.normal_(mean, stddev) m.bias.data.zero_() if cfg.TRAIN.TRUNCATED: self.RCNN_rpn.RPN_Conv.weight.data.normal_().fmod_(2).mul_(0.01).add_(0) else: self.RCNN_rpn.RPN_Conv.weight.data.normal_(0, 0.01) self.RCNN_rpn.RPN_Conv.bias.data.zero_() if cfg.TRAIN.TRUNCATED: self.RCNN_rpn.RPN_cls_score.weight.data.normal_().fmod_(2).mul_(0.01).add_(0) else: self.RCNN_rpn.RPN_cls_score.weight.data.normal_(0, 0.01) self.RCNN_rpn.RPN_cls_score.bias.data.zero_() if cfg.TRAIN.TRUNCATED: self.RCNN_rpn.RPN_bbox_pred.weight.data.normal_().fmod_(2).mul_(0.01).add_(0) else: self.RCNN_rpn.RPN_bbox_pred.weight.data.normal_(0, 0.01) self.RCNN_rpn.RPN_bbox_pred.bias.data.zero_() if cfg.TRAIN.TRUNCATED: self.RCNN_cls_score.weight.data.normal_().fmod_(2).mul_(0.01).add_(0) else: self.RCNN_cls_score.weight.data.normal_(0, 0.01) self.RCNN_cls_score.bias.data.zero_() if cfg.TRAIN.TRUNCATED: self.RCNN_bbox_pred.weight.data.normal_().fmod_(2).mul_(0.001).add_(0) else: self.RCNN_bbox_pred.weight.data.normal_(0, 0.001) self.RCNN_bbox_pred.bias.data.zero_() </DeepExtract>
DatasetCulling
positive
def rec(node): res = [] while node: if _visible(node) or _show_all: res.append(node) if node.list and (not node.is_menuconfig): res += rec(node.list) elif node.list and isinstance(node.item, Symbol): <DeepExtract> res = [] while node.list: if _visible(node.list) or _show_all: res.append(node.list) if node.list.list and (not node.list.is_menuconfig): res += rec(node.list.list) elif node.list.list and isinstance(node.list.item, Symbol): shown_children = rec(node.list.list) if shown_children: res.append(node.list) if not node.list.is_menuconfig: res += shown_children node.list = node.list.next shown_children = res </DeepExtract> if shown_children: res.append(node) if not node.is_menuconfig: res += shown_children node = node.next return res
def rec(node): res = [] while node: if _visible(node) or _show_all: res.append(node) if node.list and (not node.is_menuconfig): res += rec(node.list) elif node.list and isinstance(node.item, Symbol): res = [] while node.list: if _visible(node.list) or _show_all: res.append(node.list) if node.list.list and (not node.list.is_menuconfig): res += rec(node.list.list) elif node.list.list and isinstance(node.list.item, Symbol): shown_children = rec(node.list.list) if shown_children: res.append(node.list) if not node.list.is_menuconfig: res += shown_children node.list = node.list.next shown_children = res if shown_children: res.append(node) if not node.is_menuconfig: res += shown_children node = node.next return res
cello
positive
def devices_status(): """Print current devices status.""" <DeepExtract> label = 'brand' if 'brand_raw' in cpuinfo.get_cpu_info().keys(): label = 'brand_raw' print('Cpu count: {:d} \t brand: {:s}'.format(os.cpu_count(), cpuinfo.get_cpu_info()[label])) print('Avg_load_1m: \t{:.3f}%%;'.format(os.getloadavg()[0])) print('Avg_load_5m:\t{:.3f}%%;'.format(os.getloadavg()[1])) print('Avg_load_15m:\t{:.3f}%%;'.format(os.getloadavg()[2])) </DeepExtract> <DeepExtract> if memoryInfo is None: memoryInfo = psutil.virtual_memory() print('Current RAM - total:\t {:.3f}GB;'.format(memoryInfo.total / 2.0 ** 30)) print('Current RAM - available:\t{:.3f}GB;'.format(memoryInfo.available / 2.0 ** 30)) print('Current RAM - used:\t{:.3f}GB;'.format(memoryInfo.used / 2.0 ** 30)) print('Current RAM - free:\t{:.3f}GB;'.format(memoryInfo.free / 2.0 ** 30)) </DeepExtract> <DeepExtract> if gpu_id is None: gpu_ids = GPUtil.getAvailable(limit=10) for gpu_id in gpu_ids: GPU = GPUtil.getGPUs()[gpu_id] GPU_load = GPU.load * 100 GPU_memoryUtil = GPU.memoryUtil / 2.0 ** 10 GPU_memoryTotal = GPU.memoryTotal / 2.0 ** 10 GPU_memoryUsed = GPU.memoryUsed / 2.0 ** 10 GPU_memoryFree = GPU.memoryFree / 2.0 ** 10 print('Current GPU (ID:{:d}) name:\t{:s}'.format(gpu_id, GPU.name)) print('Total_GPU_memory:\t{:.3f}GB;'.format(GPU_memoryTotal)) print('GPU_memoryUtil:\t{:.3f}GB;'.format(GPU_memoryUtil)) print('GPU_memoryUsed:\t{:.3f}GB;'.format(GPU_memoryUsed)) print('GPU_memoryFree:\t{:.3f}GB;'.format(GPU_memoryFree)) print('GPU_load:\t{:.3f}GB;'.format(GPU_load)) else: GPU = GPUtil.getGPUs()[gpu_id] GPU_load = GPU.load * 100 GPU_memoryUtil = GPU.memoryUtil / 2.0 ** 10 GPU_memoryTotal = GPU.memoryTotal / 2.0 ** 10 GPU_memoryUsed = GPU.memoryUsed / 2.0 ** 10 GPU_memoryFree = GPU.memoryFree / 2.0 ** 10 print('Current GPU (ID:{:d}) name:{:s}'.format(gpu_id, GPU.name)) print('Total_GPU_memory: {:.3f}GB;'.format(GPU_memoryTotal)) print('GPU_memoryUsed:{:.3f}GB;'.format(GPU_memoryUsed)) print('GPU_memoryFree:{:.3f}GB;'.format(GPU_memoryFree)) print('GPU_load:{:.3f}GB;'.format(GPU_load)) </DeepExtract>
def devices_status(): """Print current devices status.""" label = 'brand' if 'brand_raw' in cpuinfo.get_cpu_info().keys(): label = 'brand_raw' print('Cpu count: {:d} \t brand: {:s}'.format(os.cpu_count(), cpuinfo.get_cpu_info()[label])) print('Avg_load_1m: \t{:.3f}%%;'.format(os.getloadavg()[0])) print('Avg_load_5m:\t{:.3f}%%;'.format(os.getloadavg()[1])) print('Avg_load_15m:\t{:.3f}%%;'.format(os.getloadavg()[2])) if memoryInfo is None: memoryInfo = psutil.virtual_memory() print('Current RAM - total:\t {:.3f}GB;'.format(memoryInfo.total / 2.0 ** 30)) print('Current RAM - available:\t{:.3f}GB;'.format(memoryInfo.available / 2.0 ** 30)) print('Current RAM - used:\t{:.3f}GB;'.format(memoryInfo.used / 2.0 ** 30)) print('Current RAM - free:\t{:.3f}GB;'.format(memoryInfo.free / 2.0 ** 30)) if gpu_id is None: gpu_ids = GPUtil.getAvailable(limit=10) for gpu_id in gpu_ids: GPU = GPUtil.getGPUs()[gpu_id] GPU_load = GPU.load * 100 GPU_memoryUtil = GPU.memoryUtil / 2.0 ** 10 GPU_memoryTotal = GPU.memoryTotal / 2.0 ** 10 GPU_memoryUsed = GPU.memoryUsed / 2.0 ** 10 GPU_memoryFree = GPU.memoryFree / 2.0 ** 10 print('Current GPU (ID:{:d}) name:\t{:s}'.format(gpu_id, GPU.name)) print('Total_GPU_memory:\t{:.3f}GB;'.format(GPU_memoryTotal)) print('GPU_memoryUtil:\t{:.3f}GB;'.format(GPU_memoryUtil)) print('GPU_memoryUsed:\t{:.3f}GB;'.format(GPU_memoryUsed)) print('GPU_memoryFree:\t{:.3f}GB;'.format(GPU_memoryFree)) print('GPU_load:\t{:.3f}GB;'.format(GPU_load)) else: GPU = GPUtil.getGPUs()[gpu_id] GPU_load = GPU.load * 100 GPU_memoryUtil = GPU.memoryUtil / 2.0 ** 10 GPU_memoryTotal = GPU.memoryTotal / 2.0 ** 10 GPU_memoryUsed = GPU.memoryUsed / 2.0 ** 10 GPU_memoryFree = GPU.memoryFree / 2.0 ** 10 print('Current GPU (ID:{:d}) name:{:s}'.format(gpu_id, GPU.name)) print('Total_GPU_memory: {:.3f}GB;'.format(GPU_memoryTotal)) print('GPU_memoryUsed:{:.3f}GB;'.format(GPU_memoryUsed)) print('GPU_memoryFree:{:.3f}GB;'.format(GPU_memoryFree)) print('GPU_load:{:.3f}GB;'.format(GPU_load)) </DeepExtract>
beta-recsys
positive
def copy_alignments(self, *args): """ Copy the alignments from the previous or next frame to the current frame """ if self.get_edit_mode() != 'Edit': return frame_id = self.state['navigation']['frame_idx'] + args[1] if not 0 <= frame_id <= self.state['navigation']['max_frame']: return <DeepExtract> current_frame = self.state['navigation']['frame_name'] </DeepExtract> get_frame = self.frames.file_list_sorted[frame_id]['frame_fullname'] alignments = self.alignments.get_faces_in_frame(get_frame) for alignment in alignments: self.alignments.add_face(current_frame, alignment) self.state['edit']['updated'] = True self.state['edit']['update_faces'] = True <DeepExtract> self.state['edit']['redraw'] = True </DeepExtract>
def copy_alignments(self, *args): """ Copy the alignments from the previous or next frame to the current frame """ if self.get_edit_mode() != 'Edit': return frame_id = self.state['navigation']['frame_idx'] + args[1] if not 0 <= frame_id <= self.state['navigation']['max_frame']: return current_frame = self.state['navigation']['frame_name'] get_frame = self.frames.file_list_sorted[frame_id]['frame_fullname'] alignments = self.alignments.get_faces_in_frame(get_frame) for alignment in alignments: self.alignments.add_face(current_frame, alignment) self.state['edit']['updated'] = True self.state['edit']['update_faces'] = True self.state['edit']['redraw'] = True </DeepExtract>
DeepFakeTutorial
positive
def test_retain_set_and_clear(self): <DeepExtract> client_id_publisher = f'aws-crt-python-unit-test-{uuid.uuid4()}' </DeepExtract> payload = 'HELLO WORLD' topic_filter = 'test/MQTT5_Binding_Python_' + client_id_publisher callbacks = Mqtt5TestCallbacks() client_options = mqtt5.ClientOptions('will be replaced', 0) client_options.connect_options = mqtt5.ConnectPacket(client_id=client_id_publisher) <DeepExtract> config = Config(AuthType.DIRECT) if client_options is None: client_options = mqtt5.ClientOptions(host_name=config.endpoint, port=int(config.port)) if client_options.connect_options is None: client_options.connect_options = mqtt5.ConnectPacket() client_options.connect_options.client_id = create_client_id() if AuthType.DIRECT == AuthType.DIRECT or AuthType.DIRECT == AuthType.DIRECT_BASIC_AUTH or AuthType.DIRECT == AuthType.DIRECT_TLS or (AuthType.DIRECT == AuthType.DIRECT_PROXY) or (AuthType.DIRECT == AuthType.WS) or (AuthType.DIRECT == AuthType.WS_BASIC_AUTH) or (AuthType.DIRECT == AuthType.WS_TLS) or (AuthType.DIRECT == AuthType.WS_PROXY) or (AuthType.DIRECT == AuthType.DIRECT_MUTUAL_TLS) or (AuthType.DIRECT == AuthType.DIRECT_BASIC_AUTH_BAD) or (AuthType.DIRECT == AuthType.DOUBLE_CLIENT_ID_FAILURE) or (AuthType.DIRECT == AuthType.DIRECT_HOST_ONLY) or (AuthType.DIRECT == AuthType.WS_BAD_PORT) or (AuthType.DIRECT == AuthType.DIRECT_HOST_AND_PORT_ONLY): client_options.host_name = config.endpoint if AuthType.DIRECT == AuthType.DIRECT or AuthType.DIRECT == AuthType.DIRECT_BASIC_AUTH or AuthType.DIRECT == AuthType.DIRECT_TLS or (AuthType.DIRECT == AuthType.DIRECT_PROXY) or (AuthType.DIRECT == AuthType.WS) or (AuthType.DIRECT == AuthType.WS_BASIC_AUTH) or (AuthType.DIRECT == AuthType.WS_TLS) or (AuthType.DIRECT == AuthType.WS_PROXY) or (AuthType.DIRECT == AuthType.DIRECT_MUTUAL_TLS) or (AuthType.DIRECT == AuthType.DIRECT_BASIC_AUTH_BAD) or (AuthType.DIRECT == AuthType.DOUBLE_CLIENT_ID_FAILURE) or (AuthType.DIRECT == AuthType.DIRECT_HOST_AND_PORT_ONLY): client_options.port = int(config.port) if AuthType.DIRECT == AuthType.DIRECT_BASIC_AUTH or AuthType.DIRECT == AuthType.WS_BASIC_AUTH: client_options.connect_options.username = config.username client_options.connect_options.password = config.password if AuthType.DIRECT == AuthType.DIRECT_TLS or AuthType.DIRECT == AuthType.WS_TLS or AuthType.DIRECT == AuthType.DIRECT_PROXY: tls_ctx_options = io.TlsContextOptions() tls_ctx_options.verify_peer = False client_options.tls_ctx = io.ClientTlsContext(tls_ctx_options) if AuthType.DIRECT == AuthType.DIRECT_MUTUAL_TLS: tls_ctx_options = io.TlsContextOptions.create_client_with_mtls_from_path(config.cert_path, config.key_path) client_options.tls_ctx = io.ClientTlsContext(tls_ctx_options) if AuthType.DIRECT == AuthType.WS or AuthType.DIRECT == AuthType.WS_BASIC_AUTH or AuthType.DIRECT == AuthType.WS_TLS or (AuthType.DIRECT == AuthType.WS_PROXY) or (AuthType.DIRECT == AuthType.WS_BAD_PORT): client_options.websocket_handshake_transform = callbacks.ws_handshake_transform if AuthType.DIRECT == AuthType.DIRECT_PROXY or AuthType.DIRECT == AuthType.WS_PROXY: http_proxy_options = http.HttpProxyOptions(host_name=config.proxy_endpoint, port=int(config.proxy_port)) http_proxy_options.connection_type = http.HttpProxyConnectionType.Tunneling http_proxy_options.auth_type = http.HttpProxyAuthenticationType.Nothing client_options.http_proxy_options = http_proxy_options if callbacks is not None: client_options.on_publish_callback_fn = callbacks.on_publish_received client_options.on_lifecycle_event_stopped_fn = callbacks.on_lifecycle_stopped client_options.on_lifecycle_event_attempting_connect_fn = callbacks.on_lifecycle_attempting_connect client_options.on_lifecycle_event_connection_success_fn = callbacks.on_lifecycle_connection_success client_options.on_lifecycle_event_connection_failure_fn = callbacks.on_lifecycle_connection_failure client_options.on_lifecycle_event_disconnection_fn = callbacks.on_lifecycle_disconnection client = mqtt5.Client(client_options) client1 = client </DeepExtract> client1.start() callbacks.future_connection_success.result(TIMEOUT) publish_packet = mqtt5.PublishPacket(payload=payload, topic=topic_filter, retain=True, qos=mqtt5.QoS.AT_LEAST_ONCE) puback_future1 = client1.publish(publish_packet) puback_future1.result(TIMEOUT) <DeepExtract> client_id_subscriber = f'aws-crt-python-unit-test-{uuid.uuid4()}' </DeepExtract> callbacks2 = Mqtt5TestCallbacks() client_options2 = mqtt5.ClientOptions('will be replaced', 0) client_options2.connect_options = mqtt5.ConnectPacket(client_id=client_id_subscriber) client2 = Mqtt5ClientTest._create_client(AuthType.DIRECT, client_options=client_options2, callbacks=callbacks2) client2.start() callbacks2.future_connection_success.result(TIMEOUT) subscriptions = [] subscriptions.append(mqtt5.Subscription(topic_filter=topic_filter, qos=mqtt5.QoS.AT_LEAST_ONCE)) subscribe_packet = mqtt5.SubscribePacket(subscriptions=subscriptions) subscribe_future1 = client2.subscribe(subscribe_packet=subscribe_packet) suback_packet1 = subscribe_future1.result(TIMEOUT) self.assertIsInstance(suback_packet1, mqtt5.SubackPacket) received_retained_publish1 = callbacks2.future_publish_received.result(TIMEOUT) self.assertIsInstance(received_retained_publish1, mqtt5.PublishPacket) client2.stop() callbacks2.future_stopped.result(TIMEOUT) publish_packet.payload = None puback_future2 = client1.publish(publish_packet) puback_future2.result(TIMEOUT) client1.stop() callbacks.future_stopped.result(TIMEOUT) <DeepExtract> client_id_subscriber2 = f'aws-crt-python-unit-test-{uuid.uuid4()}' </DeepExtract> callbacks3 = Mqtt5TestCallbacks() client_options3 = mqtt5.ClientOptions('will be replaced', 0) client_options3.connect_options = mqtt5.ConnectPacket(client_id=client_id_subscriber2) client3 = Mqtt5ClientTest._create_client(AuthType.DIRECT, client_options=client_options3, callbacks=callbacks3) client3.start() callbacks3.future_connection_success.result(TIMEOUT) subscribe_future2 = client3.subscribe(subscribe_packet=subscribe_packet) suback_packet2 = subscribe_future2.result(TIMEOUT) self.assertIsInstance(suback_packet2, mqtt5.SubackPacket) time.sleep(1) self.assertEqual(callbacks3.on_publish_received_counter, 0) client3.stop() callbacks3.future_stopped.result(TIMEOUT)
def test_retain_set_and_clear(self): client_id_publisher = f'aws-crt-python-unit-test-{uuid.uuid4()}' payload = 'HELLO WORLD' topic_filter = 'test/MQTT5_Binding_Python_' + client_id_publisher callbacks = Mqtt5TestCallbacks() client_options = mqtt5.ClientOptions('will be replaced', 0) client_options.connect_options = mqtt5.ConnectPacket(client_id=client_id_publisher) config = Config(AuthType.DIRECT) if client_options is None: client_options = mqtt5.ClientOptions(host_name=config.endpoint, port=int(config.port)) if client_options.connect_options is None: client_options.connect_options = mqtt5.ConnectPacket() client_options.connect_options.client_id = create_client_id() if AuthType.DIRECT == AuthType.DIRECT or AuthType.DIRECT == AuthType.DIRECT_BASIC_AUTH or AuthType.DIRECT == AuthType.DIRECT_TLS or (AuthType.DIRECT == AuthType.DIRECT_PROXY) or (AuthType.DIRECT == AuthType.WS) or (AuthType.DIRECT == AuthType.WS_BASIC_AUTH) or (AuthType.DIRECT == AuthType.WS_TLS) or (AuthType.DIRECT == AuthType.WS_PROXY) or (AuthType.DIRECT == AuthType.DIRECT_MUTUAL_TLS) or (AuthType.DIRECT == AuthType.DIRECT_BASIC_AUTH_BAD) or (AuthType.DIRECT == AuthType.DOUBLE_CLIENT_ID_FAILURE) or (AuthType.DIRECT == AuthType.DIRECT_HOST_ONLY) or (AuthType.DIRECT == AuthType.WS_BAD_PORT) or (AuthType.DIRECT == AuthType.DIRECT_HOST_AND_PORT_ONLY): client_options.host_name = config.endpoint if AuthType.DIRECT == AuthType.DIRECT or AuthType.DIRECT == AuthType.DIRECT_BASIC_AUTH or AuthType.DIRECT == AuthType.DIRECT_TLS or (AuthType.DIRECT == AuthType.DIRECT_PROXY) or (AuthType.DIRECT == AuthType.WS) or (AuthType.DIRECT == AuthType.WS_BASIC_AUTH) or (AuthType.DIRECT == AuthType.WS_TLS) or (AuthType.DIRECT == AuthType.WS_PROXY) or (AuthType.DIRECT == AuthType.DIRECT_MUTUAL_TLS) or (AuthType.DIRECT == AuthType.DIRECT_BASIC_AUTH_BAD) or (AuthType.DIRECT == AuthType.DOUBLE_CLIENT_ID_FAILURE) or (AuthType.DIRECT == AuthType.DIRECT_HOST_AND_PORT_ONLY): client_options.port = int(config.port) if AuthType.DIRECT == AuthType.DIRECT_BASIC_AUTH or AuthType.DIRECT == AuthType.WS_BASIC_AUTH: client_options.connect_options.username = config.username client_options.connect_options.password = config.password if AuthType.DIRECT == AuthType.DIRECT_TLS or AuthType.DIRECT == AuthType.WS_TLS or AuthType.DIRECT == AuthType.DIRECT_PROXY: tls_ctx_options = io.TlsContextOptions() tls_ctx_options.verify_peer = False client_options.tls_ctx = io.ClientTlsContext(tls_ctx_options) if AuthType.DIRECT == AuthType.DIRECT_MUTUAL_TLS: tls_ctx_options = io.TlsContextOptions.create_client_with_mtls_from_path(config.cert_path, config.key_path) client_options.tls_ctx = io.ClientTlsContext(tls_ctx_options) if AuthType.DIRECT == AuthType.WS or AuthType.DIRECT == AuthType.WS_BASIC_AUTH or AuthType.DIRECT == AuthType.WS_TLS or (AuthType.DIRECT == AuthType.WS_PROXY) or (AuthType.DIRECT == AuthType.WS_BAD_PORT): client_options.websocket_handshake_transform = callbacks.ws_handshake_transform if AuthType.DIRECT == AuthType.DIRECT_PROXY or AuthType.DIRECT == AuthType.WS_PROXY: http_proxy_options = http.HttpProxyOptions(host_name=config.proxy_endpoint, port=int(config.proxy_port)) http_proxy_options.connection_type = http.HttpProxyConnectionType.Tunneling http_proxy_options.auth_type = http.HttpProxyAuthenticationType.Nothing client_options.http_proxy_options = http_proxy_options if callbacks is not None: client_options.on_publish_callback_fn = callbacks.on_publish_received client_options.on_lifecycle_event_stopped_fn = callbacks.on_lifecycle_stopped client_options.on_lifecycle_event_attempting_connect_fn = callbacks.on_lifecycle_attempting_connect client_options.on_lifecycle_event_connection_success_fn = callbacks.on_lifecycle_connection_success client_options.on_lifecycle_event_connection_failure_fn = callbacks.on_lifecycle_connection_failure client_options.on_lifecycle_event_disconnection_fn = callbacks.on_lifecycle_disconnection client = mqtt5.Client(client_options) client1 = client client1.start() callbacks.future_connection_success.result(TIMEOUT) publish_packet = mqtt5.PublishPacket(payload=payload, topic=topic_filter, retain=True, qos=mqtt5.QoS.AT_LEAST_ONCE) puback_future1 = client1.publish(publish_packet) puback_future1.result(TIMEOUT) client_id_subscriber = f'aws-crt-python-unit-test-{uuid.uuid4()}' callbacks2 = Mqtt5TestCallbacks() client_options2 = mqtt5.ClientOptions('will be replaced', 0) client_options2.connect_options = mqtt5.ConnectPacket(client_id=client_id_subscriber) client2 = Mqtt5ClientTest._create_client(AuthType.DIRECT, client_options=client_options2, callbacks=callbacks2) client2.start() callbacks2.future_connection_success.result(TIMEOUT) subscriptions = [] subscriptions.append(mqtt5.Subscription(topic_filter=topic_filter, qos=mqtt5.QoS.AT_LEAST_ONCE)) subscribe_packet = mqtt5.SubscribePacket(subscriptions=subscriptions) subscribe_future1 = client2.subscribe(subscribe_packet=subscribe_packet) suback_packet1 = subscribe_future1.result(TIMEOUT) self.assertIsInstance(suback_packet1, mqtt5.SubackPacket) received_retained_publish1 = callbacks2.future_publish_received.result(TIMEOUT) self.assertIsInstance(received_retained_publish1, mqtt5.PublishPacket) client2.stop() callbacks2.future_stopped.result(TIMEOUT) publish_packet.payload = None puback_future2 = client1.publish(publish_packet) puback_future2.result(TIMEOUT) client1.stop() callbacks.future_stopped.result(TIMEOUT) client_id_subscriber2 = f'aws-crt-python-unit-test-{uuid.uuid4()}' callbacks3 = Mqtt5TestCallbacks() client_options3 = mqtt5.ClientOptions('will be replaced', 0) client_options3.connect_options = mqtt5.ConnectPacket(client_id=client_id_subscriber2) client3 = Mqtt5ClientTest._create_client(AuthType.DIRECT, client_options=client_options3, callbacks=callbacks3) client3.start() callbacks3.future_connection_success.result(TIMEOUT) subscribe_future2 = client3.subscribe(subscribe_packet=subscribe_packet) suback_packet2 = subscribe_future2.result(TIMEOUT) self.assertIsInstance(suback_packet2, mqtt5.SubackPacket) time.sleep(1) self.assertEqual(callbacks3.on_publish_received_counter, 0) client3.stop() callbacks3.future_stopped.result(TIMEOUT)
aws-crt-python
positive
def get_target_conf(self, module): """ accept that a unit does not exist and return a unit conf that says 'not-loaded' """ <DeepExtract> try: conf = self.load_sysd_unit_conf(module) if conf is not None: conf = conf conf = self.load_sysd_template_conf(module) if conf is not None: conf = conf conf = self.load_sysv_unit_conf(module) if conf is not None: conf = conf except Exception as e: logg.warning('%s not loaded: %s', module, e) conf = None </DeepExtract> if conf is not None: return conf <DeepExtract> data = UnitConfParser() data.set(Unit, 'Description', description or 'NOT-FOUND ' + str(module)) conf = SystemctlConf(data, module) conf._root = self._root target_conf = conf </DeepExtract> if module in target_requires: target_conf.set(Unit, 'Requires', target_requires[module]) return target_conf
def get_target_conf(self, module): """ accept that a unit does not exist and return a unit conf that says 'not-loaded' """ try: conf = self.load_sysd_unit_conf(module) if conf is not None: conf = conf conf = self.load_sysd_template_conf(module) if conf is not None: conf = conf conf = self.load_sysv_unit_conf(module) if conf is not None: conf = conf except Exception as e: logg.warning('%s not loaded: %s', module, e) conf = None if conf is not None: return conf data = UnitConfParser() data.set(Unit, 'Description', description or 'NOT-FOUND ' + str(module)) conf = SystemctlConf(data, module) conf._root = self._root target_conf = conf if module in target_requires: target_conf.set(Unit, 'Requires', target_requires[module]) return target_conf
docker-systemctl-images
positive
def test_marshalling_task_command() -> None: <DeepExtract> js = to_js(SendMessage(Event('test', {'foo': 'hello'}))) again = from_js(js, type(SendMessage(Event('test', {'foo': 'hello'})))) assert DeepDiff(SendMessage(Event('test', {'foo': 'hello'})), again) == {}, f'Json: {js} serialized as {again}' </DeepExtract> <DeepExtract> js = to_js(ExecuteOnCLI('test', frozendict({'fii': 'bla'}))) again = from_js(js, type(ExecuteOnCLI('test', frozendict({'fii': 'bla'})))) assert DeepDiff(ExecuteOnCLI('test', frozendict({'fii': 'bla'})), again) == {}, f'Json: {js} serialized as {again}' </DeepExtract>
def test_marshalling_task_command() -> None: js = to_js(SendMessage(Event('test', {'foo': 'hello'}))) again = from_js(js, type(SendMessage(Event('test', {'foo': 'hello'})))) assert DeepDiff(SendMessage(Event('test', {'foo': 'hello'})), again) == {}, f'Json: {js} serialized as {again}' js = to_js(ExecuteOnCLI('test', frozendict({'fii': 'bla'}))) again = from_js(js, type(ExecuteOnCLI('test', frozendict({'fii': 'bla'})))) assert DeepDiff(ExecuteOnCLI('test', frozendict({'fii': 'bla'})), again) == {}, f'Json: {js} serialized as {again}' </DeepExtract>
cloudkeeper
positive
def handler(event: Dict[str, Any], context: Optional[Dict[str, Any]]) -> Any: <DeepExtract> logger.info(f'Generating kubeconfig in {KUBECONFIG_PATH}') run_command(f'aws eks update-kubeconfig --name orbit-{ORBIT_ENV} --role-arn arn:aws:iam::{ACCOUNT_ID}:role{ROLE_PREFIX}orbit-{ORBIT_ENV}-{REGION}-admin --kubeconfig {KUBECONFIG_PATH}') logger.info('Loading kubeconfig') try: config.load_kube_config(KUBECONFIG_PATH) logger.info('Loaded kubeconfig successfully') except config.ConfigException: raise Exception('Could not configure kubernetes python client') </DeepExtract> api_CoreV1 = client.CoreV1Api() userspace_dc = dynamic.DynamicClient(client=api_client.ApiClient()).resources.get(group=ORBIT_API_GROUP, api_version=ORBIT_API_VERSION, kind=USERSPACE_CR_KIND) <DeepExtract> user_name = cast(str, event.get('user_name')) user_email = cast(str, event.get('user_email')) expected_user_namespaces = cast(Dict[str, str], event.get('expected_user_namespaces')) all_ns_raw = api_CoreV1.list_namespace().to_dict() all_ns = [item.get('metadata').get('name') for item in all_ns_raw['items'] if item.get('metadata', {}).get('name') and item.get('metadata', {}).get('name').endswith(user_name)] create_user_namespace(api=api_CoreV1, userspace_dc=userspace_dc, user_name=user_name, user_email=user_email, expected_user_namespaces=expected_user_namespaces, namespaces=all_ns) delete_user_namespace(api=api_CoreV1, userspace_dc=userspace_dc, user_name=user_name, expected_user_namespaces=expected_user_namespaces, namespaces=all_ns) </DeepExtract>
def handler(event: Dict[str, Any], context: Optional[Dict[str, Any]]) -> Any: logger.info(f'Generating kubeconfig in {KUBECONFIG_PATH}') run_command(f'aws eks update-kubeconfig --name orbit-{ORBIT_ENV} --role-arn arn:aws:iam::{ACCOUNT_ID}:role{ROLE_PREFIX}orbit-{ORBIT_ENV}-{REGION}-admin --kubeconfig {KUBECONFIG_PATH}') logger.info('Loading kubeconfig') try: config.load_kube_config(KUBECONFIG_PATH) logger.info('Loaded kubeconfig successfully') except config.ConfigException: raise Exception('Could not configure kubernetes python client') api_CoreV1 = client.CoreV1Api() userspace_dc = dynamic.DynamicClient(client=api_client.ApiClient()).resources.get(group=ORBIT_API_GROUP, api_version=ORBIT_API_VERSION, kind=USERSPACE_CR_KIND) user_name = cast(str, event.get('user_name')) user_email = cast(str, event.get('user_email')) expected_user_namespaces = cast(Dict[str, str], event.get('expected_user_namespaces')) all_ns_raw = api_CoreV1.list_namespace().to_dict() all_ns = [item.get('metadata').get('name') for item in all_ns_raw['items'] if item.get('metadata', {}).get('name') and item.get('metadata', {}).get('name').endswith(user_name)] create_user_namespace(api=api_CoreV1, userspace_dc=userspace_dc, user_name=user_name, user_email=user_email, expected_user_namespaces=expected_user_namespaces, namespaces=all_ns) delete_user_namespace(api=api_CoreV1, userspace_dc=userspace_dc, user_name=user_name, expected_user_namespaces=expected_user_namespaces, namespaces=all_ns) </DeepExtract>
aws-orbit-workbench
positive
def homogeneous_input(self): input = self.input0 if self.has_bias(): <DeepExtract> batch = input.shape[0] ones = torch.ones(batch, 1, device=input.device) input = torch.cat([input, ones], dim=1) </DeepExtract> return input
def homogeneous_input(self): input = self.input0 if self.has_bias(): batch = input.shape[0] ones = torch.ones(batch, 1, device=input.device) input = torch.cat([input, ones], dim=1) return input
backpack
positive
def test_show_me_the_sum_success(): activity_count = 5 sum_ = 0 for i in range(activity_count): sum_ += i sum_results = f"Well that's nice {sum_}!" context_builder = ContextBuilder('test_fan_out_fan_in_function') <DeepExtract> context_builder.add_task_scheduled_event(name='GetActivityCount', id_=0) context_builder.add_orchestrator_completed_event() context_builder.add_orchestrator_started_event() context_builder.add_task_completed_event(id_=0, result=json.dumps(activity_count)) </DeepExtract> <DeepExtract> for i in range(activity_count): if i != failed_index: add_completed_event(context_builder, 1 + i, 'ParrotValue', i) else: add_failed_event(context_builder, 1 + i, 'ParrotValue', failed_reason, failed_details) </DeepExtract> <DeepExtract> context_builder.add_task_scheduled_event(name='ShowMeTheSum', id_=activity_count + 1) context_builder.add_orchestrator_completed_event() context_builder.add_orchestrator_started_event() context_builder.add_task_completed_event(id_=activity_count + 1, result=json.dumps(sum_results)) </DeepExtract> result = get_orchestration_state_result(context_builder, generator_function) <DeepExtract> expected_state = OrchestratorState(is_done=False, actions=[], output=sum_results, replay_schema=replay_schema) </DeepExtract> <DeepExtract> action = CallActivityAction(function_name='GetActivityCount', input_=None) expected_state.actions.append([action]) </DeepExtract> <DeepExtract> actions = [] for i in range(activity_count): action = CallActivityAction(function_name='ParrotValue', input_=json.dumps(i)) actions.append(action) expected_state.actions.append(actions) </DeepExtract> results = [] for i in range(activity_count): results.append(i) <DeepExtract> action = CallActivityAction(function_name='ShowMeTheSum', input_=results) expected_state.actions.append([action]) </DeepExtract> expected_state._is_done = True expected = expected_state.to_json() assert_valid_schema(result) assert_orchestration_state_equals(expected, result)
def test_show_me_the_sum_success(): activity_count = 5 sum_ = 0 for i in range(activity_count): sum_ += i sum_results = f"Well that's nice {sum_}!" context_builder = ContextBuilder('test_fan_out_fan_in_function') context_builder.add_task_scheduled_event(name='GetActivityCount', id_=0) context_builder.add_orchestrator_completed_event() context_builder.add_orchestrator_started_event() context_builder.add_task_completed_event(id_=0, result=json.dumps(activity_count)) for i in range(activity_count): if i != failed_index: add_completed_event(context_builder, 1 + i, 'ParrotValue', i) else: add_failed_event(context_builder, 1 + i, 'ParrotValue', failed_reason, failed_details) context_builder.add_task_scheduled_event(name='ShowMeTheSum', id_=activity_count + 1) context_builder.add_orchestrator_completed_event() context_builder.add_orchestrator_started_event() context_builder.add_task_completed_event(id_=activity_count + 1, result=json.dumps(sum_results)) result = get_orchestration_state_result(context_builder, generator_function) expected_state = OrchestratorState(is_done=False, actions=[], output=sum_results, replay_schema=replay_schema) action = CallActivityAction(function_name='GetActivityCount', input_=None) expected_state.actions.append([action]) actions = [] for i in range(activity_count): action = CallActivityAction(function_name='ParrotValue', input_=json.dumps(i)) actions.append(action) expected_state.actions.append(actions) results = [] for i in range(activity_count): results.append(i) action = CallActivityAction(function_name='ShowMeTheSum', input_=results) expected_state.actions.append([action]) expected_state._is_done = True expected = expected_state.to_json() assert_valid_schema(result) assert_orchestration_state_equals(expected, result)
azure-functions-durable-python
positive
def prepro(args): if not os.path.exists(args.target_dir): os.makedirs(args.target_dir) if args.mode == 'full': <DeepExtract> if args.tokenizer == 'PTB': import nltk sent_tokenize = nltk.sent_tokenize def word_tokenize(tokens): return [token.replace("''", '"').replace('``', '"') for token in nltk.word_tokenize(tokens)] elif args.tokenizer == 'Stanford': from my.corenlp_interface import CoreNLPInterface interface = CoreNLPInterface(args.url, args.port) sent_tokenize = interface.split_doc word_tokenize = interface.split_sent else: raise Exception() if not args.split: sent_tokenize = lambda para: [para] source_path = in_path or os.path.join(args.source_dir, '{}-{}v1.1.json'.format('train', args.suffix)) source_data = json.load(open(source_path, 'r')) (q, cq, y, rx, rcx, ids, idxs) = ([], [], [], [], [], [], []) na = [] cy = [] (x, cx) = ([], []) answerss = [] p = [] (word_counter, char_counter, lower_word_counter) = (Counter(), Counter(), Counter()) start_ai = int(round(len(source_data['data']) * start_ratio)) stop_ai = int(round(len(source_data['data']) * stop_ratio)) for (ai, article) in enumerate(tqdm(source_data['data'][start_ai:stop_ai])): (xp, cxp) = ([], []) pp = [] x.append(xp) cx.append(cxp) p.append(pp) for (pi, para) in enumerate(article['paragraphs']): context = para['context'] context = context.replace("''", '" ') context = context.replace('``', '" ') xi = list(map(word_tokenize, sent_tokenize(context))) xi = [process_tokens(tokens) for tokens in xi] cxi = [[list(xijk) for xijk in xij] for xij in xi] xp.append(xi) cxp.append(cxi) pp.append(context) for xij in xi: for xijk in xij: word_counter[xijk] += len(para['qas']) lower_word_counter[xijk.lower()] += len(para['qas']) for xijkl in xijk: char_counter[xijkl] += len(para['qas']) rxi = [ai, pi] assert len(x) - 1 == ai assert len(x[ai]) - 1 == pi for qa in para['qas']: qi = word_tokenize(qa['question']) qi = process_tokens(qi) cqi = [list(qij) for qij in qi] yi = [] cyi = [] answers = [] for answer in qa['answers']: answer_text = answer['text'] answers.append(answer_text) answer_start = answer['answer_start'] answer_stop = answer_start + len(answer_text) (yi0, yi1) = get_word_span(context, xi, answer_start, answer_stop) assert len(xi[yi0[0]]) > yi0[1] assert len(xi[yi1[0]]) >= yi1[1] w0 = xi[yi0[0]][yi0[1]] w1 = xi[yi1[0]][yi1[1] - 1] i0 = get_word_idx(context, xi, yi0) i1 = get_word_idx(context, xi, (yi1[0], yi1[1] - 1)) cyi0 = answer_start - i0 cyi1 = answer_stop - i1 - 1 assert answer_text[0] == w0[cyi0], (answer_text, w0, cyi0) assert answer_text[-1] == w1[cyi1] assert cyi0 < 32, (answer_text, w0) assert cyi1 < 32, (answer_text, w1) yi.append([yi0, yi1]) cyi.append([cyi0, cyi1]) if len(qa['answers']) == 0: yi.append([(0, 0), (0, 1)]) cyi.append([0, 1]) na.append(True) else: na.append(False) for qij in qi: word_counter[qij] += 1 lower_word_counter[qij.lower()] += 1 for qijk in qij: char_counter[qijk] += 1 q.append(qi) cq.append(cqi) y.append(yi) cy.append(cyi) rx.append(rxi) rcx.append(rxi) ids.append(qa['id']) idxs.append(len(idxs)) answerss.append(answers) if args.debug: break word2vec_dict = get_word2vec(args, word_counter) lower_word2vec_dict = get_word2vec(args, lower_word_counter) data = {'q': q, 'cq': cq, 'y': y, '*x': rx, '*cx': rcx, 'cy': cy, 'idxs': idxs, 'ids': ids, 'answerss': answerss, '*p': rx, 'na': na} shared = {'x': x, 'cx': cx, 'p': p, 'word_counter': word_counter, 'char_counter': char_counter, 'lower_word_counter': lower_word_counter, 'word2vec': word2vec_dict, 'lower_word2vec': lower_word2vec_dict} print('saving ...') save(args, data, shared, 'train') </DeepExtract> <DeepExtract> if args.tokenizer == 'PTB': import nltk sent_tokenize = nltk.sent_tokenize def word_tokenize(tokens): return [token.replace("''", '"').replace('``', '"') for token in nltk.word_tokenize(tokens)] elif args.tokenizer == 'Stanford': from my.corenlp_interface import CoreNLPInterface interface = CoreNLPInterface(args.url, args.port) sent_tokenize = interface.split_doc word_tokenize = interface.split_sent else: raise Exception() if not args.split: sent_tokenize = lambda para: [para] source_path = in_path or os.path.join(args.source_dir, '{}-{}v1.1.json'.format('dev', args.suffix)) source_data = json.load(open(source_path, 'r')) (q, cq, y, rx, rcx, ids, idxs) = ([], [], [], [], [], [], []) na = [] cy = [] (x, cx) = ([], []) answerss = [] p = [] (word_counter, char_counter, lower_word_counter) = (Counter(), Counter(), Counter()) start_ai = int(round(len(source_data['data']) * start_ratio)) stop_ai = int(round(len(source_data['data']) * stop_ratio)) for (ai, article) in enumerate(tqdm(source_data['data'][start_ai:stop_ai])): (xp, cxp) = ([], []) pp = [] x.append(xp) cx.append(cxp) p.append(pp) for (pi, para) in enumerate(article['paragraphs']): context = para['context'] context = context.replace("''", '" ') context = context.replace('``', '" ') xi = list(map(word_tokenize, sent_tokenize(context))) xi = [process_tokens(tokens) for tokens in xi] cxi = [[list(xijk) for xijk in xij] for xij in xi] xp.append(xi) cxp.append(cxi) pp.append(context) for xij in xi: for xijk in xij: word_counter[xijk] += len(para['qas']) lower_word_counter[xijk.lower()] += len(para['qas']) for xijkl in xijk: char_counter[xijkl] += len(para['qas']) rxi = [ai, pi] assert len(x) - 1 == ai assert len(x[ai]) - 1 == pi for qa in para['qas']: qi = word_tokenize(qa['question']) qi = process_tokens(qi) cqi = [list(qij) for qij in qi] yi = [] cyi = [] answers = [] for answer in qa['answers']: answer_text = answer['text'] answers.append(answer_text) answer_start = answer['answer_start'] answer_stop = answer_start + len(answer_text) (yi0, yi1) = get_word_span(context, xi, answer_start, answer_stop) assert len(xi[yi0[0]]) > yi0[1] assert len(xi[yi1[0]]) >= yi1[1] w0 = xi[yi0[0]][yi0[1]] w1 = xi[yi1[0]][yi1[1] - 1] i0 = get_word_idx(context, xi, yi0) i1 = get_word_idx(context, xi, (yi1[0], yi1[1] - 1)) cyi0 = answer_start - i0 cyi1 = answer_stop - i1 - 1 assert answer_text[0] == w0[cyi0], (answer_text, w0, cyi0) assert answer_text[-1] == w1[cyi1] assert cyi0 < 32, (answer_text, w0) assert cyi1 < 32, (answer_text, w1) yi.append([yi0, yi1]) cyi.append([cyi0, cyi1]) if len(qa['answers']) == 0: yi.append([(0, 0), (0, 1)]) cyi.append([0, 1]) na.append(True) else: na.append(False) for qij in qi: word_counter[qij] += 1 lower_word_counter[qij.lower()] += 1 for qijk in qij: char_counter[qijk] += 1 q.append(qi) cq.append(cqi) y.append(yi) cy.append(cyi) rx.append(rxi) rcx.append(rxi) ids.append(qa['id']) idxs.append(len(idxs)) answerss.append(answers) if args.debug: break word2vec_dict = get_word2vec(args, word_counter) lower_word2vec_dict = get_word2vec(args, lower_word_counter) data = {'q': q, 'cq': cq, 'y': y, '*x': rx, '*cx': rcx, 'cy': cy, 'idxs': idxs, 'ids': ids, 'answerss': answerss, '*p': rx, 'na': na} shared = {'x': x, 'cx': cx, 'p': p, 'word_counter': word_counter, 'char_counter': char_counter, 'lower_word_counter': lower_word_counter, 'word2vec': word2vec_dict, 'lower_word2vec': lower_word2vec_dict} print('saving ...') save(args, data, shared, 'dev') </DeepExtract> <DeepExtract> if args.tokenizer == 'PTB': import nltk sent_tokenize = nltk.sent_tokenize def word_tokenize(tokens): return [token.replace("''", '"').replace('``', '"') for token in nltk.word_tokenize(tokens)] elif args.tokenizer == 'Stanford': from my.corenlp_interface import CoreNLPInterface interface = CoreNLPInterface(args.url, args.port) sent_tokenize = interface.split_doc word_tokenize = interface.split_sent else: raise Exception() if not args.split: sent_tokenize = lambda para: [para] source_path = in_path or os.path.join(args.source_dir, '{}-{}v1.1.json'.format('dev', args.suffix)) source_data = json.load(open(source_path, 'r')) (q, cq, y, rx, rcx, ids, idxs) = ([], [], [], [], [], [], []) na = [] cy = [] (x, cx) = ([], []) answerss = [] p = [] (word_counter, char_counter, lower_word_counter) = (Counter(), Counter(), Counter()) start_ai = int(round(len(source_data['data']) * start_ratio)) stop_ai = int(round(len(source_data['data']) * stop_ratio)) for (ai, article) in enumerate(tqdm(source_data['data'][start_ai:stop_ai])): (xp, cxp) = ([], []) pp = [] x.append(xp) cx.append(cxp) p.append(pp) for (pi, para) in enumerate(article['paragraphs']): context = para['context'] context = context.replace("''", '" ') context = context.replace('``', '" ') xi = list(map(word_tokenize, sent_tokenize(context))) xi = [process_tokens(tokens) for tokens in xi] cxi = [[list(xijk) for xijk in xij] for xij in xi] xp.append(xi) cxp.append(cxi) pp.append(context) for xij in xi: for xijk in xij: word_counter[xijk] += len(para['qas']) lower_word_counter[xijk.lower()] += len(para['qas']) for xijkl in xijk: char_counter[xijkl] += len(para['qas']) rxi = [ai, pi] assert len(x) - 1 == ai assert len(x[ai]) - 1 == pi for qa in para['qas']: qi = word_tokenize(qa['question']) qi = process_tokens(qi) cqi = [list(qij) for qij in qi] yi = [] cyi = [] answers = [] for answer in qa['answers']: answer_text = answer['text'] answers.append(answer_text) answer_start = answer['answer_start'] answer_stop = answer_start + len(answer_text) (yi0, yi1) = get_word_span(context, xi, answer_start, answer_stop) assert len(xi[yi0[0]]) > yi0[1] assert len(xi[yi1[0]]) >= yi1[1] w0 = xi[yi0[0]][yi0[1]] w1 = xi[yi1[0]][yi1[1] - 1] i0 = get_word_idx(context, xi, yi0) i1 = get_word_idx(context, xi, (yi1[0], yi1[1] - 1)) cyi0 = answer_start - i0 cyi1 = answer_stop - i1 - 1 assert answer_text[0] == w0[cyi0], (answer_text, w0, cyi0) assert answer_text[-1] == w1[cyi1] assert cyi0 < 32, (answer_text, w0) assert cyi1 < 32, (answer_text, w1) yi.append([yi0, yi1]) cyi.append([cyi0, cyi1]) if len(qa['answers']) == 0: yi.append([(0, 0), (0, 1)]) cyi.append([0, 1]) na.append(True) else: na.append(False) for qij in qi: word_counter[qij] += 1 lower_word_counter[qij.lower()] += 1 for qijk in qij: char_counter[qijk] += 1 q.append(qi) cq.append(cqi) y.append(yi) cy.append(cyi) rx.append(rxi) rcx.append(rxi) ids.append(qa['id']) idxs.append(len(idxs)) answerss.append(answers) if args.debug: break word2vec_dict = get_word2vec(args, word_counter) lower_word2vec_dict = get_word2vec(args, lower_word_counter) data = {'q': q, 'cq': cq, 'y': y, '*x': rx, '*cx': rcx, 'cy': cy, 'idxs': idxs, 'ids': ids, 'answerss': answerss, '*p': rx, 'na': na} shared = {'x': x, 'cx': cx, 'p': p, 'word_counter': word_counter, 'char_counter': char_counter, 'lower_word_counter': lower_word_counter, 'word2vec': word2vec_dict, 'lower_word2vec': lower_word2vec_dict} print('saving ...') save(args, data, shared, 'test') </DeepExtract> elif args.mode == 'all': <DeepExtract> out_path = os.path.join(args.source_dir, 'all-v1.1.json') if os.path.exists(out_path): return train_path = os.path.join(args.source_dir, args.train_name) train_data = json.load(open(train_path, 'r')) dev_path = os.path.join(args.source_dir, args.dev_name) dev_data = json.load(open(dev_path, 'r')) train_data['data'].extend(dev_data['data']) print('dumping all data ...') json.dump(train_data, open(out_path, 'w')) </DeepExtract> <DeepExtract> if args.tokenizer == 'PTB': import nltk sent_tokenize = nltk.sent_tokenize def word_tokenize(tokens): return [token.replace("''", '"').replace('``', '"') for token in nltk.word_tokenize(tokens)] elif args.tokenizer == 'Stanford': from my.corenlp_interface import CoreNLPInterface interface = CoreNLPInterface(args.url, args.port) sent_tokenize = interface.split_doc word_tokenize = interface.split_sent else: raise Exception() if not args.split: sent_tokenize = lambda para: [para] source_path = in_path or os.path.join(args.source_dir, '{}-{}v1.1.json'.format('dev', args.suffix)) source_data = json.load(open(source_path, 'r')) (q, cq, y, rx, rcx, ids, idxs) = ([], [], [], [], [], [], []) na = [] cy = [] (x, cx) = ([], []) answerss = [] p = [] (word_counter, char_counter, lower_word_counter) = (Counter(), Counter(), Counter()) start_ai = int(round(len(source_data['data']) * 0.0)) stop_ai = int(round(len(source_data['data']) * 0.0)) for (ai, article) in enumerate(tqdm(source_data['data'][start_ai:stop_ai])): (xp, cxp) = ([], []) pp = [] x.append(xp) cx.append(cxp) p.append(pp) for (pi, para) in enumerate(article['paragraphs']): context = para['context'] context = context.replace("''", '" ') context = context.replace('``', '" ') xi = list(map(word_tokenize, sent_tokenize(context))) xi = [process_tokens(tokens) for tokens in xi] cxi = [[list(xijk) for xijk in xij] for xij in xi] xp.append(xi) cxp.append(cxi) pp.append(context) for xij in xi: for xijk in xij: word_counter[xijk] += len(para['qas']) lower_word_counter[xijk.lower()] += len(para['qas']) for xijkl in xijk: char_counter[xijkl] += len(para['qas']) rxi = [ai, pi] assert len(x) - 1 == ai assert len(x[ai]) - 1 == pi for qa in para['qas']: qi = word_tokenize(qa['question']) qi = process_tokens(qi) cqi = [list(qij) for qij in qi] yi = [] cyi = [] answers = [] for answer in qa['answers']: answer_text = answer['text'] answers.append(answer_text) answer_start = answer['answer_start'] answer_stop = answer_start + len(answer_text) (yi0, yi1) = get_word_span(context, xi, answer_start, answer_stop) assert len(xi[yi0[0]]) > yi0[1] assert len(xi[yi1[0]]) >= yi1[1] w0 = xi[yi0[0]][yi0[1]] w1 = xi[yi1[0]][yi1[1] - 1] i0 = get_word_idx(context, xi, yi0) i1 = get_word_idx(context, xi, (yi1[0], yi1[1] - 1)) cyi0 = answer_start - i0 cyi1 = answer_stop - i1 - 1 assert answer_text[0] == w0[cyi0], (answer_text, w0, cyi0) assert answer_text[-1] == w1[cyi1] assert cyi0 < 32, (answer_text, w0) assert cyi1 < 32, (answer_text, w1) yi.append([yi0, yi1]) cyi.append([cyi0, cyi1]) if len(qa['answers']) == 0: yi.append([(0, 0), (0, 1)]) cyi.append([0, 1]) na.append(True) else: na.append(False) for qij in qi: word_counter[qij] += 1 lower_word_counter[qij.lower()] += 1 for qijk in qij: char_counter[qijk] += 1 q.append(qi) cq.append(cqi) y.append(yi) cy.append(cyi) rx.append(rxi) rcx.append(rxi) ids.append(qa['id']) idxs.append(len(idxs)) answerss.append(answers) if args.debug: break word2vec_dict = get_word2vec(args, word_counter) lower_word2vec_dict = get_word2vec(args, lower_word_counter) data = {'q': q, 'cq': cq, 'y': y, '*x': rx, '*cx': rcx, 'cy': cy, 'idxs': idxs, 'ids': ids, 'answerss': answerss, '*p': rx, 'na': na} shared = {'x': x, 'cx': cx, 'p': p, 'word_counter': word_counter, 'char_counter': char_counter, 'lower_word_counter': lower_word_counter, 'word2vec': word2vec_dict, 'lower_word2vec': lower_word2vec_dict} print('saving ...') save(args, data, shared, 'dev') </DeepExtract> <DeepExtract> if args.tokenizer == 'PTB': import nltk sent_tokenize = nltk.sent_tokenize def word_tokenize(tokens): return [token.replace("''", '"').replace('``', '"') for token in nltk.word_tokenize(tokens)] elif args.tokenizer == 'Stanford': from my.corenlp_interface import CoreNLPInterface interface = CoreNLPInterface(args.url, args.port) sent_tokenize = interface.split_doc word_tokenize = interface.split_sent else: raise Exception() if not args.split: sent_tokenize = lambda para: [para] source_path = in_path or os.path.join(args.source_dir, '{}-{}v1.1.json'.format('dev', args.suffix)) source_data = json.load(open(source_path, 'r')) (q, cq, y, rx, rcx, ids, idxs) = ([], [], [], [], [], [], []) na = [] cy = [] (x, cx) = ([], []) answerss = [] p = [] (word_counter, char_counter, lower_word_counter) = (Counter(), Counter(), Counter()) start_ai = int(round(len(source_data['data']) * 0.0)) stop_ai = int(round(len(source_data['data']) * 0.0)) for (ai, article) in enumerate(tqdm(source_data['data'][start_ai:stop_ai])): (xp, cxp) = ([], []) pp = [] x.append(xp) cx.append(cxp) p.append(pp) for (pi, para) in enumerate(article['paragraphs']): context = para['context'] context = context.replace("''", '" ') context = context.replace('``', '" ') xi = list(map(word_tokenize, sent_tokenize(context))) xi = [process_tokens(tokens) for tokens in xi] cxi = [[list(xijk) for xijk in xij] for xij in xi] xp.append(xi) cxp.append(cxi) pp.append(context) for xij in xi: for xijk in xij: word_counter[xijk] += len(para['qas']) lower_word_counter[xijk.lower()] += len(para['qas']) for xijkl in xijk: char_counter[xijkl] += len(para['qas']) rxi = [ai, pi] assert len(x) - 1 == ai assert len(x[ai]) - 1 == pi for qa in para['qas']: qi = word_tokenize(qa['question']) qi = process_tokens(qi) cqi = [list(qij) for qij in qi] yi = [] cyi = [] answers = [] for answer in qa['answers']: answer_text = answer['text'] answers.append(answer_text) answer_start = answer['answer_start'] answer_stop = answer_start + len(answer_text) (yi0, yi1) = get_word_span(context, xi, answer_start, answer_stop) assert len(xi[yi0[0]]) > yi0[1] assert len(xi[yi1[0]]) >= yi1[1] w0 = xi[yi0[0]][yi0[1]] w1 = xi[yi1[0]][yi1[1] - 1] i0 = get_word_idx(context, xi, yi0) i1 = get_word_idx(context, xi, (yi1[0], yi1[1] - 1)) cyi0 = answer_start - i0 cyi1 = answer_stop - i1 - 1 assert answer_text[0] == w0[cyi0], (answer_text, w0, cyi0) assert answer_text[-1] == w1[cyi1] assert cyi0 < 32, (answer_text, w0) assert cyi1 < 32, (answer_text, w1) yi.append([yi0, yi1]) cyi.append([cyi0, cyi1]) if len(qa['answers']) == 0: yi.append([(0, 0), (0, 1)]) cyi.append([0, 1]) na.append(True) else: na.append(False) for qij in qi: word_counter[qij] += 1 lower_word_counter[qij.lower()] += 1 for qijk in qij: char_counter[qijk] += 1 q.append(qi) cq.append(cqi) y.append(yi) cy.append(cyi) rx.append(rxi) rcx.append(rxi) ids.append(qa['id']) idxs.append(len(idxs)) answerss.append(answers) if args.debug: break word2vec_dict = get_word2vec(args, word_counter) lower_word2vec_dict = get_word2vec(args, lower_word_counter) data = {'q': q, 'cq': cq, 'y': y, '*x': rx, '*cx': rcx, 'cy': cy, 'idxs': idxs, 'ids': ids, 'answerss': answerss, '*p': rx, 'na': na} shared = {'x': x, 'cx': cx, 'p': p, 'word_counter': word_counter, 'char_counter': char_counter, 'lower_word_counter': lower_word_counter, 'word2vec': word2vec_dict, 'lower_word2vec': lower_word2vec_dict} print('saving ...') save(args, data, shared, 'test') </DeepExtract> <DeepExtract> if args.tokenizer == 'PTB': import nltk sent_tokenize = nltk.sent_tokenize def word_tokenize(tokens): return [token.replace("''", '"').replace('``', '"') for token in nltk.word_tokenize(tokens)] elif args.tokenizer == 'Stanford': from my.corenlp_interface import CoreNLPInterface interface = CoreNLPInterface(args.url, args.port) sent_tokenize = interface.split_doc word_tokenize = interface.split_sent else: raise Exception() if not args.split: sent_tokenize = lambda para: [para] source_path = in_path or os.path.join(args.source_dir, '{}-{}v1.1.json'.format('all', args.suffix)) source_data = json.load(open(source_path, 'r')) (q, cq, y, rx, rcx, ids, idxs) = ([], [], [], [], [], [], []) na = [] cy = [] (x, cx) = ([], []) answerss = [] p = [] (word_counter, char_counter, lower_word_counter) = (Counter(), Counter(), Counter()) start_ai = int(round(len(source_data['data']) * start_ratio)) stop_ai = int(round(len(source_data['data']) * stop_ratio)) for (ai, article) in enumerate(tqdm(source_data['data'][start_ai:stop_ai])): (xp, cxp) = ([], []) pp = [] x.append(xp) cx.append(cxp) p.append(pp) for (pi, para) in enumerate(article['paragraphs']): context = para['context'] context = context.replace("''", '" ') context = context.replace('``', '" ') xi = list(map(word_tokenize, sent_tokenize(context))) xi = [process_tokens(tokens) for tokens in xi] cxi = [[list(xijk) for xijk in xij] for xij in xi] xp.append(xi) cxp.append(cxi) pp.append(context) for xij in xi: for xijk in xij: word_counter[xijk] += len(para['qas']) lower_word_counter[xijk.lower()] += len(para['qas']) for xijkl in xijk: char_counter[xijkl] += len(para['qas']) rxi = [ai, pi] assert len(x) - 1 == ai assert len(x[ai]) - 1 == pi for qa in para['qas']: qi = word_tokenize(qa['question']) qi = process_tokens(qi) cqi = [list(qij) for qij in qi] yi = [] cyi = [] answers = [] for answer in qa['answers']: answer_text = answer['text'] answers.append(answer_text) answer_start = answer['answer_start'] answer_stop = answer_start + len(answer_text) (yi0, yi1) = get_word_span(context, xi, answer_start, answer_stop) assert len(xi[yi0[0]]) > yi0[1] assert len(xi[yi1[0]]) >= yi1[1] w0 = xi[yi0[0]][yi0[1]] w1 = xi[yi1[0]][yi1[1] - 1] i0 = get_word_idx(context, xi, yi0) i1 = get_word_idx(context, xi, (yi1[0], yi1[1] - 1)) cyi0 = answer_start - i0 cyi1 = answer_stop - i1 - 1 assert answer_text[0] == w0[cyi0], (answer_text, w0, cyi0) assert answer_text[-1] == w1[cyi1] assert cyi0 < 32, (answer_text, w0) assert cyi1 < 32, (answer_text, w1) yi.append([yi0, yi1]) cyi.append([cyi0, cyi1]) if len(qa['answers']) == 0: yi.append([(0, 0), (0, 1)]) cyi.append([0, 1]) na.append(True) else: na.append(False) for qij in qi: word_counter[qij] += 1 lower_word_counter[qij.lower()] += 1 for qijk in qij: char_counter[qijk] += 1 q.append(qi) cq.append(cqi) y.append(yi) cy.append(cyi) rx.append(rxi) rcx.append(rxi) ids.append(qa['id']) idxs.append(len(idxs)) answerss.append(answers) if args.debug: break word2vec_dict = get_word2vec(args, word_counter) lower_word2vec_dict = get_word2vec(args, lower_word_counter) data = {'q': q, 'cq': cq, 'y': y, '*x': rx, '*cx': rcx, 'cy': cy, 'idxs': idxs, 'ids': ids, 'answerss': answerss, '*p': rx, 'na': na} shared = {'x': x, 'cx': cx, 'p': p, 'word_counter': word_counter, 'char_counter': char_counter, 'lower_word_counter': lower_word_counter, 'word2vec': word2vec_dict, 'lower_word2vec': lower_word2vec_dict} print('saving ...') save(args, data, shared, 'train') </DeepExtract> elif args.mode == 'single': assert len(args.single_path) > 0 <DeepExtract> if args.tokenizer == 'PTB': import nltk sent_tokenize = nltk.sent_tokenize def word_tokenize(tokens): return [token.replace("''", '"').replace('``', '"') for token in nltk.word_tokenize(tokens)] elif args.tokenizer == 'Stanford': from my.corenlp_interface import CoreNLPInterface interface = CoreNLPInterface(args.url, args.port) sent_tokenize = interface.split_doc word_tokenize = interface.split_sent else: raise Exception() if not args.split: sent_tokenize = lambda para: [para] source_path = args.single_path or os.path.join(args.source_dir, '{}-{}v1.1.json'.format('NULL', args.suffix)) source_data = json.load(open(source_path, 'r')) (q, cq, y, rx, rcx, ids, idxs) = ([], [], [], [], [], [], []) na = [] cy = [] (x, cx) = ([], []) answerss = [] p = [] (word_counter, char_counter, lower_word_counter) = (Counter(), Counter(), Counter()) start_ai = int(round(len(source_data['data']) * start_ratio)) stop_ai = int(round(len(source_data['data']) * stop_ratio)) for (ai, article) in enumerate(tqdm(source_data['data'][start_ai:stop_ai])): (xp, cxp) = ([], []) pp = [] x.append(xp) cx.append(cxp) p.append(pp) for (pi, para) in enumerate(article['paragraphs']): context = para['context'] context = context.replace("''", '" ') context = context.replace('``', '" ') xi = list(map(word_tokenize, sent_tokenize(context))) xi = [process_tokens(tokens) for tokens in xi] cxi = [[list(xijk) for xijk in xij] for xij in xi] xp.append(xi) cxp.append(cxi) pp.append(context) for xij in xi: for xijk in xij: word_counter[xijk] += len(para['qas']) lower_word_counter[xijk.lower()] += len(para['qas']) for xijkl in xijk: char_counter[xijkl] += len(para['qas']) rxi = [ai, pi] assert len(x) - 1 == ai assert len(x[ai]) - 1 == pi for qa in para['qas']: qi = word_tokenize(qa['question']) qi = process_tokens(qi) cqi = [list(qij) for qij in qi] yi = [] cyi = [] answers = [] for answer in qa['answers']: answer_text = answer['text'] answers.append(answer_text) answer_start = answer['answer_start'] answer_stop = answer_start + len(answer_text) (yi0, yi1) = get_word_span(context, xi, answer_start, answer_stop) assert len(xi[yi0[0]]) > yi0[1] assert len(xi[yi1[0]]) >= yi1[1] w0 = xi[yi0[0]][yi0[1]] w1 = xi[yi1[0]][yi1[1] - 1] i0 = get_word_idx(context, xi, yi0) i1 = get_word_idx(context, xi, (yi1[0], yi1[1] - 1)) cyi0 = answer_start - i0 cyi1 = answer_stop - i1 - 1 assert answer_text[0] == w0[cyi0], (answer_text, w0, cyi0) assert answer_text[-1] == w1[cyi1] assert cyi0 < 32, (answer_text, w0) assert cyi1 < 32, (answer_text, w1) yi.append([yi0, yi1]) cyi.append([cyi0, cyi1]) if len(qa['answers']) == 0: yi.append([(0, 0), (0, 1)]) cyi.append([0, 1]) na.append(True) else: na.append(False) for qij in qi: word_counter[qij] += 1 lower_word_counter[qij.lower()] += 1 for qijk in qij: char_counter[qijk] += 1 q.append(qi) cq.append(cqi) y.append(yi) cy.append(cyi) rx.append(rxi) rcx.append(rxi) ids.append(qa['id']) idxs.append(len(idxs)) answerss.append(answers) if args.debug: break word2vec_dict = get_word2vec(args, word_counter) lower_word2vec_dict = get_word2vec(args, lower_word_counter) data = {'q': q, 'cq': cq, 'y': y, '*x': rx, '*cx': rcx, 'cy': cy, 'idxs': idxs, 'ids': ids, 'answerss': answerss, '*p': rx, 'na': na} shared = {'x': x, 'cx': cx, 'p': p, 'word_counter': word_counter, 'char_counter': char_counter, 'lower_word_counter': lower_word_counter, 'word2vec': word2vec_dict, 'lower_word2vec': lower_word2vec_dict} print('saving ...') save(args, data, shared, 'single') </DeepExtract> else: <DeepExtract> if args.tokenizer == 'PTB': import nltk sent_tokenize = nltk.sent_tokenize def word_tokenize(tokens): return [token.replace("''", '"').replace('``', '"') for token in nltk.word_tokenize(tokens)] elif args.tokenizer == 'Stanford': from my.corenlp_interface import CoreNLPInterface interface = CoreNLPInterface(args.url, args.port) sent_tokenize = interface.split_doc word_tokenize = interface.split_sent else: raise Exception() if not args.split: sent_tokenize = lambda para: [para] source_path = in_path or os.path.join(args.source_dir, '{}-{}v1.1.json'.format('train', args.suffix)) source_data = json.load(open(source_path, 'r')) (q, cq, y, rx, rcx, ids, idxs) = ([], [], [], [], [], [], []) na = [] cy = [] (x, cx) = ([], []) answerss = [] p = [] (word_counter, char_counter, lower_word_counter) = (Counter(), Counter(), Counter()) start_ai = int(round(len(source_data['data']) * 0.0)) stop_ai = int(round(len(source_data['data']) * args.train_ratio)) for (ai, article) in enumerate(tqdm(source_data['data'][start_ai:stop_ai])): (xp, cxp) = ([], []) pp = [] x.append(xp) cx.append(cxp) p.append(pp) for (pi, para) in enumerate(article['paragraphs']): context = para['context'] context = context.replace("''", '" ') context = context.replace('``', '" ') xi = list(map(word_tokenize, sent_tokenize(context))) xi = [process_tokens(tokens) for tokens in xi] cxi = [[list(xijk) for xijk in xij] for xij in xi] xp.append(xi) cxp.append(cxi) pp.append(context) for xij in xi: for xijk in xij: word_counter[xijk] += len(para['qas']) lower_word_counter[xijk.lower()] += len(para['qas']) for xijkl in xijk: char_counter[xijkl] += len(para['qas']) rxi = [ai, pi] assert len(x) - 1 == ai assert len(x[ai]) - 1 == pi for qa in para['qas']: qi = word_tokenize(qa['question']) qi = process_tokens(qi) cqi = [list(qij) for qij in qi] yi = [] cyi = [] answers = [] for answer in qa['answers']: answer_text = answer['text'] answers.append(answer_text) answer_start = answer['answer_start'] answer_stop = answer_start + len(answer_text) (yi0, yi1) = get_word_span(context, xi, answer_start, answer_stop) assert len(xi[yi0[0]]) > yi0[1] assert len(xi[yi1[0]]) >= yi1[1] w0 = xi[yi0[0]][yi0[1]] w1 = xi[yi1[0]][yi1[1] - 1] i0 = get_word_idx(context, xi, yi0) i1 = get_word_idx(context, xi, (yi1[0], yi1[1] - 1)) cyi0 = answer_start - i0 cyi1 = answer_stop - i1 - 1 assert answer_text[0] == w0[cyi0], (answer_text, w0, cyi0) assert answer_text[-1] == w1[cyi1] assert cyi0 < 32, (answer_text, w0) assert cyi1 < 32, (answer_text, w1) yi.append([yi0, yi1]) cyi.append([cyi0, cyi1]) if len(qa['answers']) == 0: yi.append([(0, 0), (0, 1)]) cyi.append([0, 1]) na.append(True) else: na.append(False) for qij in qi: word_counter[qij] += 1 lower_word_counter[qij.lower()] += 1 for qijk in qij: char_counter[qijk] += 1 q.append(qi) cq.append(cqi) y.append(yi) cy.append(cyi) rx.append(rxi) rcx.append(rxi) ids.append(qa['id']) idxs.append(len(idxs)) answerss.append(answers) if args.debug: break word2vec_dict = get_word2vec(args, word_counter) lower_word2vec_dict = get_word2vec(args, lower_word_counter) data = {'q': q, 'cq': cq, 'y': y, '*x': rx, '*cx': rcx, 'cy': cy, 'idxs': idxs, 'ids': ids, 'answerss': answerss, '*p': rx, 'na': na} shared = {'x': x, 'cx': cx, 'p': p, 'word_counter': word_counter, 'char_counter': char_counter, 'lower_word_counter': lower_word_counter, 'word2vec': word2vec_dict, 'lower_word2vec': lower_word2vec_dict} print('saving ...') save(args, data, shared, 'train') </DeepExtract> <DeepExtract> if args.tokenizer == 'PTB': import nltk sent_tokenize = nltk.sent_tokenize def word_tokenize(tokens): return [token.replace("''", '"').replace('``', '"') for token in nltk.word_tokenize(tokens)] elif args.tokenizer == 'Stanford': from my.corenlp_interface import CoreNLPInterface interface = CoreNLPInterface(args.url, args.port) sent_tokenize = interface.split_doc word_tokenize = interface.split_sent else: raise Exception() if not args.split: sent_tokenize = lambda para: [para] source_path = in_path or os.path.join(args.source_dir, '{}-{}v1.1.json'.format('train', args.suffix)) source_data = json.load(open(source_path, 'r')) (q, cq, y, rx, rcx, ids, idxs) = ([], [], [], [], [], [], []) na = [] cy = [] (x, cx) = ([], []) answerss = [] p = [] (word_counter, char_counter, lower_word_counter) = (Counter(), Counter(), Counter()) start_ai = int(round(len(source_data['data']) * args.train_ratio)) stop_ai = int(round(len(source_data['data']) * 1.0)) for (ai, article) in enumerate(tqdm(source_data['data'][start_ai:stop_ai])): (xp, cxp) = ([], []) pp = [] x.append(xp) cx.append(cxp) p.append(pp) for (pi, para) in enumerate(article['paragraphs']): context = para['context'] context = context.replace("''", '" ') context = context.replace('``', '" ') xi = list(map(word_tokenize, sent_tokenize(context))) xi = [process_tokens(tokens) for tokens in xi] cxi = [[list(xijk) for xijk in xij] for xij in xi] xp.append(xi) cxp.append(cxi) pp.append(context) for xij in xi: for xijk in xij: word_counter[xijk] += len(para['qas']) lower_word_counter[xijk.lower()] += len(para['qas']) for xijkl in xijk: char_counter[xijkl] += len(para['qas']) rxi = [ai, pi] assert len(x) - 1 == ai assert len(x[ai]) - 1 == pi for qa in para['qas']: qi = word_tokenize(qa['question']) qi = process_tokens(qi) cqi = [list(qij) for qij in qi] yi = [] cyi = [] answers = [] for answer in qa['answers']: answer_text = answer['text'] answers.append(answer_text) answer_start = answer['answer_start'] answer_stop = answer_start + len(answer_text) (yi0, yi1) = get_word_span(context, xi, answer_start, answer_stop) assert len(xi[yi0[0]]) > yi0[1] assert len(xi[yi1[0]]) >= yi1[1] w0 = xi[yi0[0]][yi0[1]] w1 = xi[yi1[0]][yi1[1] - 1] i0 = get_word_idx(context, xi, yi0) i1 = get_word_idx(context, xi, (yi1[0], yi1[1] - 1)) cyi0 = answer_start - i0 cyi1 = answer_stop - i1 - 1 assert answer_text[0] == w0[cyi0], (answer_text, w0, cyi0) assert answer_text[-1] == w1[cyi1] assert cyi0 < 32, (answer_text, w0) assert cyi1 < 32, (answer_text, w1) yi.append([yi0, yi1]) cyi.append([cyi0, cyi1]) if len(qa['answers']) == 0: yi.append([(0, 0), (0, 1)]) cyi.append([0, 1]) na.append(True) else: na.append(False) for qij in qi: word_counter[qij] += 1 lower_word_counter[qij.lower()] += 1 for qijk in qij: char_counter[qijk] += 1 q.append(qi) cq.append(cqi) y.append(yi) cy.append(cyi) rx.append(rxi) rcx.append(rxi) ids.append(qa['id']) idxs.append(len(idxs)) answerss.append(answers) if args.debug: break word2vec_dict = get_word2vec(args, word_counter) lower_word2vec_dict = get_word2vec(args, lower_word_counter) data = {'q': q, 'cq': cq, 'y': y, '*x': rx, '*cx': rcx, 'cy': cy, 'idxs': idxs, 'ids': ids, 'answerss': answerss, '*p': rx, 'na': na} shared = {'x': x, 'cx': cx, 'p': p, 'word_counter': word_counter, 'char_counter': char_counter, 'lower_word_counter': lower_word_counter, 'word2vec': word2vec_dict, 'lower_word2vec': lower_word2vec_dict} print('saving ...') save(args, data, shared, 'dev') </DeepExtract> <DeepExtract> if args.tokenizer == 'PTB': import nltk sent_tokenize = nltk.sent_tokenize def word_tokenize(tokens): return [token.replace("''", '"').replace('``', '"') for token in nltk.word_tokenize(tokens)] elif args.tokenizer == 'Stanford': from my.corenlp_interface import CoreNLPInterface interface = CoreNLPInterface(args.url, args.port) sent_tokenize = interface.split_doc word_tokenize = interface.split_sent else: raise Exception() if not args.split: sent_tokenize = lambda para: [para] source_path = in_path or os.path.join(args.source_dir, '{}-{}v1.1.json'.format('dev', args.suffix)) source_data = json.load(open(source_path, 'r')) (q, cq, y, rx, rcx, ids, idxs) = ([], [], [], [], [], [], []) na = [] cy = [] (x, cx) = ([], []) answerss = [] p = [] (word_counter, char_counter, lower_word_counter) = (Counter(), Counter(), Counter()) start_ai = int(round(len(source_data['data']) * start_ratio)) stop_ai = int(round(len(source_data['data']) * stop_ratio)) for (ai, article) in enumerate(tqdm(source_data['data'][start_ai:stop_ai])): (xp, cxp) = ([], []) pp = [] x.append(xp) cx.append(cxp) p.append(pp) for (pi, para) in enumerate(article['paragraphs']): context = para['context'] context = context.replace("''", '" ') context = context.replace('``', '" ') xi = list(map(word_tokenize, sent_tokenize(context))) xi = [process_tokens(tokens) for tokens in xi] cxi = [[list(xijk) for xijk in xij] for xij in xi] xp.append(xi) cxp.append(cxi) pp.append(context) for xij in xi: for xijk in xij: word_counter[xijk] += len(para['qas']) lower_word_counter[xijk.lower()] += len(para['qas']) for xijkl in xijk: char_counter[xijkl] += len(para['qas']) rxi = [ai, pi] assert len(x) - 1 == ai assert len(x[ai]) - 1 == pi for qa in para['qas']: qi = word_tokenize(qa['question']) qi = process_tokens(qi) cqi = [list(qij) for qij in qi] yi = [] cyi = [] answers = [] for answer in qa['answers']: answer_text = answer['text'] answers.append(answer_text) answer_start = answer['answer_start'] answer_stop = answer_start + len(answer_text) (yi0, yi1) = get_word_span(context, xi, answer_start, answer_stop) assert len(xi[yi0[0]]) > yi0[1] assert len(xi[yi1[0]]) >= yi1[1] w0 = xi[yi0[0]][yi0[1]] w1 = xi[yi1[0]][yi1[1] - 1] i0 = get_word_idx(context, xi, yi0) i1 = get_word_idx(context, xi, (yi1[0], yi1[1] - 1)) cyi0 = answer_start - i0 cyi1 = answer_stop - i1 - 1 assert answer_text[0] == w0[cyi0], (answer_text, w0, cyi0) assert answer_text[-1] == w1[cyi1] assert cyi0 < 32, (answer_text, w0) assert cyi1 < 32, (answer_text, w1) yi.append([yi0, yi1]) cyi.append([cyi0, cyi1]) if len(qa['answers']) == 0: yi.append([(0, 0), (0, 1)]) cyi.append([0, 1]) na.append(True) else: na.append(False) for qij in qi: word_counter[qij] += 1 lower_word_counter[qij.lower()] += 1 for qijk in qij: char_counter[qijk] += 1 q.append(qi) cq.append(cqi) y.append(yi) cy.append(cyi) rx.append(rxi) rcx.append(rxi) ids.append(qa['id']) idxs.append(len(idxs)) answerss.append(answers) if args.debug: break word2vec_dict = get_word2vec(args, word_counter) lower_word2vec_dict = get_word2vec(args, lower_word_counter) data = {'q': q, 'cq': cq, 'y': y, '*x': rx, '*cx': rcx, 'cy': cy, 'idxs': idxs, 'ids': ids, 'answerss': answerss, '*p': rx, 'na': na} shared = {'x': x, 'cx': cx, 'p': p, 'word_counter': word_counter, 'char_counter': char_counter, 'lower_word_counter': lower_word_counter, 'word2vec': word2vec_dict, 'lower_word2vec': lower_word2vec_dict} print('saving ...') save(args, data, shared, 'test') </DeepExtract>
def prepro(args): if not os.path.exists(args.target_dir): os.makedirs(args.target_dir) if args.mode == 'full': if args.tokenizer == 'PTB': import nltk sent_tokenize = nltk.sent_tokenize def word_tokenize(tokens): return [token.replace("''", '"').replace('``', '"') for token in nltk.word_tokenize(tokens)] elif args.tokenizer == 'Stanford': from my.corenlp_interface import CoreNLPInterface interface = CoreNLPInterface(args.url, args.port) sent_tokenize = interface.split_doc word_tokenize = interface.split_sent else: raise Exception() if not args.split: sent_tokenize = lambda para: [para] source_path = in_path or os.path.join(args.source_dir, '{}-{}v1.1.json'.format('train', args.suffix)) source_data = json.load(open(source_path, 'r')) (q, cq, y, rx, rcx, ids, idxs) = ([], [], [], [], [], [], []) na = [] cy = [] (x, cx) = ([], []) answerss = [] p = [] (word_counter, char_counter, lower_word_counter) = (Counter(), Counter(), Counter()) start_ai = int(round(len(source_data['data']) * start_ratio)) stop_ai = int(round(len(source_data['data']) * stop_ratio)) for (ai, article) in enumerate(tqdm(source_data['data'][start_ai:stop_ai])): (xp, cxp) = ([], []) pp = [] x.append(xp) cx.append(cxp) p.append(pp) for (pi, para) in enumerate(article['paragraphs']): context = para['context'] context = context.replace("''", '" ') context = context.replace('``', '" ') xi = list(map(word_tokenize, sent_tokenize(context))) xi = [process_tokens(tokens) for tokens in xi] cxi = [[list(xijk) for xijk in xij] for xij in xi] xp.append(xi) cxp.append(cxi) pp.append(context) for xij in xi: for xijk in xij: word_counter[xijk] += len(para['qas']) lower_word_counter[xijk.lower()] += len(para['qas']) for xijkl in xijk: char_counter[xijkl] += len(para['qas']) rxi = [ai, pi] assert len(x) - 1 == ai assert len(x[ai]) - 1 == pi for qa in para['qas']: qi = word_tokenize(qa['question']) qi = process_tokens(qi) cqi = [list(qij) for qij in qi] yi = [] cyi = [] answers = [] for answer in qa['answers']: answer_text = answer['text'] answers.append(answer_text) answer_start = answer['answer_start'] answer_stop = answer_start + len(answer_text) (yi0, yi1) = get_word_span(context, xi, answer_start, answer_stop) assert len(xi[yi0[0]]) > yi0[1] assert len(xi[yi1[0]]) >= yi1[1] w0 = xi[yi0[0]][yi0[1]] w1 = xi[yi1[0]][yi1[1] - 1] i0 = get_word_idx(context, xi, yi0) i1 = get_word_idx(context, xi, (yi1[0], yi1[1] - 1)) cyi0 = answer_start - i0 cyi1 = answer_stop - i1 - 1 assert answer_text[0] == w0[cyi0], (answer_text, w0, cyi0) assert answer_text[-1] == w1[cyi1] assert cyi0 < 32, (answer_text, w0) assert cyi1 < 32, (answer_text, w1) yi.append([yi0, yi1]) cyi.append([cyi0, cyi1]) if len(qa['answers']) == 0: yi.append([(0, 0), (0, 1)]) cyi.append([0, 1]) na.append(True) else: na.append(False) for qij in qi: word_counter[qij] += 1 lower_word_counter[qij.lower()] += 1 for qijk in qij: char_counter[qijk] += 1 q.append(qi) cq.append(cqi) y.append(yi) cy.append(cyi) rx.append(rxi) rcx.append(rxi) ids.append(qa['id']) idxs.append(len(idxs)) answerss.append(answers) if args.debug: break word2vec_dict = get_word2vec(args, word_counter) lower_word2vec_dict = get_word2vec(args, lower_word_counter) data = {'q': q, 'cq': cq, 'y': y, '*x': rx, '*cx': rcx, 'cy': cy, 'idxs': idxs, 'ids': ids, 'answerss': answerss, '*p': rx, 'na': na} shared = {'x': x, 'cx': cx, 'p': p, 'word_counter': word_counter, 'char_counter': char_counter, 'lower_word_counter': lower_word_counter, 'word2vec': word2vec_dict, 'lower_word2vec': lower_word2vec_dict} print('saving ...') save(args, data, shared, 'train') if args.tokenizer == 'PTB': import nltk sent_tokenize = nltk.sent_tokenize def word_tokenize(tokens): return [token.replace("''", '"').replace('``', '"') for token in nltk.word_tokenize(tokens)] elif args.tokenizer == 'Stanford': from my.corenlp_interface import CoreNLPInterface interface = CoreNLPInterface(args.url, args.port) sent_tokenize = interface.split_doc word_tokenize = interface.split_sent else: raise Exception() if not args.split: sent_tokenize = lambda para: [para] source_path = in_path or os.path.join(args.source_dir, '{}-{}v1.1.json'.format('dev', args.suffix)) source_data = json.load(open(source_path, 'r')) (q, cq, y, rx, rcx, ids, idxs) = ([], [], [], [], [], [], []) na = [] cy = [] (x, cx) = ([], []) answerss = [] p = [] (word_counter, char_counter, lower_word_counter) = (Counter(), Counter(), Counter()) start_ai = int(round(len(source_data['data']) * start_ratio)) stop_ai = int(round(len(source_data['data']) * stop_ratio)) for (ai, article) in enumerate(tqdm(source_data['data'][start_ai:stop_ai])): (xp, cxp) = ([], []) pp = [] x.append(xp) cx.append(cxp) p.append(pp) for (pi, para) in enumerate(article['paragraphs']): context = para['context'] context = context.replace("''", '" ') context = context.replace('``', '" ') xi = list(map(word_tokenize, sent_tokenize(context))) xi = [process_tokens(tokens) for tokens in xi] cxi = [[list(xijk) for xijk in xij] for xij in xi] xp.append(xi) cxp.append(cxi) pp.append(context) for xij in xi: for xijk in xij: word_counter[xijk] += len(para['qas']) lower_word_counter[xijk.lower()] += len(para['qas']) for xijkl in xijk: char_counter[xijkl] += len(para['qas']) rxi = [ai, pi] assert len(x) - 1 == ai assert len(x[ai]) - 1 == pi for qa in para['qas']: qi = word_tokenize(qa['question']) qi = process_tokens(qi) cqi = [list(qij) for qij in qi] yi = [] cyi = [] answers = [] for answer in qa['answers']: answer_text = answer['text'] answers.append(answer_text) answer_start = answer['answer_start'] answer_stop = answer_start + len(answer_text) (yi0, yi1) = get_word_span(context, xi, answer_start, answer_stop) assert len(xi[yi0[0]]) > yi0[1] assert len(xi[yi1[0]]) >= yi1[1] w0 = xi[yi0[0]][yi0[1]] w1 = xi[yi1[0]][yi1[1] - 1] i0 = get_word_idx(context, xi, yi0) i1 = get_word_idx(context, xi, (yi1[0], yi1[1] - 1)) cyi0 = answer_start - i0 cyi1 = answer_stop - i1 - 1 assert answer_text[0] == w0[cyi0], (answer_text, w0, cyi0) assert answer_text[-1] == w1[cyi1] assert cyi0 < 32, (answer_text, w0) assert cyi1 < 32, (answer_text, w1) yi.append([yi0, yi1]) cyi.append([cyi0, cyi1]) if len(qa['answers']) == 0: yi.append([(0, 0), (0, 1)]) cyi.append([0, 1]) na.append(True) else: na.append(False) for qij in qi: word_counter[qij] += 1 lower_word_counter[qij.lower()] += 1 for qijk in qij: char_counter[qijk] += 1 q.append(qi) cq.append(cqi) y.append(yi) cy.append(cyi) rx.append(rxi) rcx.append(rxi) ids.append(qa['id']) idxs.append(len(idxs)) answerss.append(answers) if args.debug: break word2vec_dict = get_word2vec(args, word_counter) lower_word2vec_dict = get_word2vec(args, lower_word_counter) data = {'q': q, 'cq': cq, 'y': y, '*x': rx, '*cx': rcx, 'cy': cy, 'idxs': idxs, 'ids': ids, 'answerss': answerss, '*p': rx, 'na': na} shared = {'x': x, 'cx': cx, 'p': p, 'word_counter': word_counter, 'char_counter': char_counter, 'lower_word_counter': lower_word_counter, 'word2vec': word2vec_dict, 'lower_word2vec': lower_word2vec_dict} print('saving ...') save(args, data, shared, 'dev') if args.tokenizer == 'PTB': import nltk sent_tokenize = nltk.sent_tokenize def word_tokenize(tokens): return [token.replace("''", '"').replace('``', '"') for token in nltk.word_tokenize(tokens)] elif args.tokenizer == 'Stanford': from my.corenlp_interface import CoreNLPInterface interface = CoreNLPInterface(args.url, args.port) sent_tokenize = interface.split_doc word_tokenize = interface.split_sent else: raise Exception() if not args.split: sent_tokenize = lambda para: [para] source_path = in_path or os.path.join(args.source_dir, '{}-{}v1.1.json'.format('dev', args.suffix)) source_data = json.load(open(source_path, 'r')) (q, cq, y, rx, rcx, ids, idxs) = ([], [], [], [], [], [], []) na = [] cy = [] (x, cx) = ([], []) answerss = [] p = [] (word_counter, char_counter, lower_word_counter) = (Counter(), Counter(), Counter()) start_ai = int(round(len(source_data['data']) * start_ratio)) stop_ai = int(round(len(source_data['data']) * stop_ratio)) for (ai, article) in enumerate(tqdm(source_data['data'][start_ai:stop_ai])): (xp, cxp) = ([], []) pp = [] x.append(xp) cx.append(cxp) p.append(pp) for (pi, para) in enumerate(article['paragraphs']): context = para['context'] context = context.replace("''", '" ') context = context.replace('``', '" ') xi = list(map(word_tokenize, sent_tokenize(context))) xi = [process_tokens(tokens) for tokens in xi] cxi = [[list(xijk) for xijk in xij] for xij in xi] xp.append(xi) cxp.append(cxi) pp.append(context) for xij in xi: for xijk in xij: word_counter[xijk] += len(para['qas']) lower_word_counter[xijk.lower()] += len(para['qas']) for xijkl in xijk: char_counter[xijkl] += len(para['qas']) rxi = [ai, pi] assert len(x) - 1 == ai assert len(x[ai]) - 1 == pi for qa in para['qas']: qi = word_tokenize(qa['question']) qi = process_tokens(qi) cqi = [list(qij) for qij in qi] yi = [] cyi = [] answers = [] for answer in qa['answers']: answer_text = answer['text'] answers.append(answer_text) answer_start = answer['answer_start'] answer_stop = answer_start + len(answer_text) (yi0, yi1) = get_word_span(context, xi, answer_start, answer_stop) assert len(xi[yi0[0]]) > yi0[1] assert len(xi[yi1[0]]) >= yi1[1] w0 = xi[yi0[0]][yi0[1]] w1 = xi[yi1[0]][yi1[1] - 1] i0 = get_word_idx(context, xi, yi0) i1 = get_word_idx(context, xi, (yi1[0], yi1[1] - 1)) cyi0 = answer_start - i0 cyi1 = answer_stop - i1 - 1 assert answer_text[0] == w0[cyi0], (answer_text, w0, cyi0) assert answer_text[-1] == w1[cyi1] assert cyi0 < 32, (answer_text, w0) assert cyi1 < 32, (answer_text, w1) yi.append([yi0, yi1]) cyi.append([cyi0, cyi1]) if len(qa['answers']) == 0: yi.append([(0, 0), (0, 1)]) cyi.append([0, 1]) na.append(True) else: na.append(False) for qij in qi: word_counter[qij] += 1 lower_word_counter[qij.lower()] += 1 for qijk in qij: char_counter[qijk] += 1 q.append(qi) cq.append(cqi) y.append(yi) cy.append(cyi) rx.append(rxi) rcx.append(rxi) ids.append(qa['id']) idxs.append(len(idxs)) answerss.append(answers) if args.debug: break word2vec_dict = get_word2vec(args, word_counter) lower_word2vec_dict = get_word2vec(args, lower_word_counter) data = {'q': q, 'cq': cq, 'y': y, '*x': rx, '*cx': rcx, 'cy': cy, 'idxs': idxs, 'ids': ids, 'answerss': answerss, '*p': rx, 'na': na} shared = {'x': x, 'cx': cx, 'p': p, 'word_counter': word_counter, 'char_counter': char_counter, 'lower_word_counter': lower_word_counter, 'word2vec': word2vec_dict, 'lower_word2vec': lower_word2vec_dict} print('saving ...') save(args, data, shared, 'test') elif args.mode == 'all': out_path = os.path.join(args.source_dir, 'all-v1.1.json') if os.path.exists(out_path): return train_path = os.path.join(args.source_dir, args.train_name) train_data = json.load(open(train_path, 'r')) dev_path = os.path.join(args.source_dir, args.dev_name) dev_data = json.load(open(dev_path, 'r')) train_data['data'].extend(dev_data['data']) print('dumping all data ...') json.dump(train_data, open(out_path, 'w')) if args.tokenizer == 'PTB': import nltk sent_tokenize = nltk.sent_tokenize def word_tokenize(tokens): return [token.replace("''", '"').replace('``', '"') for token in nltk.word_tokenize(tokens)] elif args.tokenizer == 'Stanford': from my.corenlp_interface import CoreNLPInterface interface = CoreNLPInterface(args.url, args.port) sent_tokenize = interface.split_doc word_tokenize = interface.split_sent else: raise Exception() if not args.split: sent_tokenize = lambda para: [para] source_path = in_path or os.path.join(args.source_dir, '{}-{}v1.1.json'.format('dev', args.suffix)) source_data = json.load(open(source_path, 'r')) (q, cq, y, rx, rcx, ids, idxs) = ([], [], [], [], [], [], []) na = [] cy = [] (x, cx) = ([], []) answerss = [] p = [] (word_counter, char_counter, lower_word_counter) = (Counter(), Counter(), Counter()) start_ai = int(round(len(source_data['data']) * 0.0)) stop_ai = int(round(len(source_data['data']) * 0.0)) for (ai, article) in enumerate(tqdm(source_data['data'][start_ai:stop_ai])): (xp, cxp) = ([], []) pp = [] x.append(xp) cx.append(cxp) p.append(pp) for (pi, para) in enumerate(article['paragraphs']): context = para['context'] context = context.replace("''", '" ') context = context.replace('``', '" ') xi = list(map(word_tokenize, sent_tokenize(context))) xi = [process_tokens(tokens) for tokens in xi] cxi = [[list(xijk) for xijk in xij] for xij in xi] xp.append(xi) cxp.append(cxi) pp.append(context) for xij in xi: for xijk in xij: word_counter[xijk] += len(para['qas']) lower_word_counter[xijk.lower()] += len(para['qas']) for xijkl in xijk: char_counter[xijkl] += len(para['qas']) rxi = [ai, pi] assert len(x) - 1 == ai assert len(x[ai]) - 1 == pi for qa in para['qas']: qi = word_tokenize(qa['question']) qi = process_tokens(qi) cqi = [list(qij) for qij in qi] yi = [] cyi = [] answers = [] for answer in qa['answers']: answer_text = answer['text'] answers.append(answer_text) answer_start = answer['answer_start'] answer_stop = answer_start + len(answer_text) (yi0, yi1) = get_word_span(context, xi, answer_start, answer_stop) assert len(xi[yi0[0]]) > yi0[1] assert len(xi[yi1[0]]) >= yi1[1] w0 = xi[yi0[0]][yi0[1]] w1 = xi[yi1[0]][yi1[1] - 1] i0 = get_word_idx(context, xi, yi0) i1 = get_word_idx(context, xi, (yi1[0], yi1[1] - 1)) cyi0 = answer_start - i0 cyi1 = answer_stop - i1 - 1 assert answer_text[0] == w0[cyi0], (answer_text, w0, cyi0) assert answer_text[-1] == w1[cyi1] assert cyi0 < 32, (answer_text, w0) assert cyi1 < 32, (answer_text, w1) yi.append([yi0, yi1]) cyi.append([cyi0, cyi1]) if len(qa['answers']) == 0: yi.append([(0, 0), (0, 1)]) cyi.append([0, 1]) na.append(True) else: na.append(False) for qij in qi: word_counter[qij] += 1 lower_word_counter[qij.lower()] += 1 for qijk in qij: char_counter[qijk] += 1 q.append(qi) cq.append(cqi) y.append(yi) cy.append(cyi) rx.append(rxi) rcx.append(rxi) ids.append(qa['id']) idxs.append(len(idxs)) answerss.append(answers) if args.debug: break word2vec_dict = get_word2vec(args, word_counter) lower_word2vec_dict = get_word2vec(args, lower_word_counter) data = {'q': q, 'cq': cq, 'y': y, '*x': rx, '*cx': rcx, 'cy': cy, 'idxs': idxs, 'ids': ids, 'answerss': answerss, '*p': rx, 'na': na} shared = {'x': x, 'cx': cx, 'p': p, 'word_counter': word_counter, 'char_counter': char_counter, 'lower_word_counter': lower_word_counter, 'word2vec': word2vec_dict, 'lower_word2vec': lower_word2vec_dict} print('saving ...') save(args, data, shared, 'dev') if args.tokenizer == 'PTB': import nltk sent_tokenize = nltk.sent_tokenize def word_tokenize(tokens): return [token.replace("''", '"').replace('``', '"') for token in nltk.word_tokenize(tokens)] elif args.tokenizer == 'Stanford': from my.corenlp_interface import CoreNLPInterface interface = CoreNLPInterface(args.url, args.port) sent_tokenize = interface.split_doc word_tokenize = interface.split_sent else: raise Exception() if not args.split: sent_tokenize = lambda para: [para] source_path = in_path or os.path.join(args.source_dir, '{}-{}v1.1.json'.format('dev', args.suffix)) source_data = json.load(open(source_path, 'r')) (q, cq, y, rx, rcx, ids, idxs) = ([], [], [], [], [], [], []) na = [] cy = [] (x, cx) = ([], []) answerss = [] p = [] (word_counter, char_counter, lower_word_counter) = (Counter(), Counter(), Counter()) start_ai = int(round(len(source_data['data']) * 0.0)) stop_ai = int(round(len(source_data['data']) * 0.0)) for (ai, article) in enumerate(tqdm(source_data['data'][start_ai:stop_ai])): (xp, cxp) = ([], []) pp = [] x.append(xp) cx.append(cxp) p.append(pp) for (pi, para) in enumerate(article['paragraphs']): context = para['context'] context = context.replace("''", '" ') context = context.replace('``', '" ') xi = list(map(word_tokenize, sent_tokenize(context))) xi = [process_tokens(tokens) for tokens in xi] cxi = [[list(xijk) for xijk in xij] for xij in xi] xp.append(xi) cxp.append(cxi) pp.append(context) for xij in xi: for xijk in xij: word_counter[xijk] += len(para['qas']) lower_word_counter[xijk.lower()] += len(para['qas']) for xijkl in xijk: char_counter[xijkl] += len(para['qas']) rxi = [ai, pi] assert len(x) - 1 == ai assert len(x[ai]) - 1 == pi for qa in para['qas']: qi = word_tokenize(qa['question']) qi = process_tokens(qi) cqi = [list(qij) for qij in qi] yi = [] cyi = [] answers = [] for answer in qa['answers']: answer_text = answer['text'] answers.append(answer_text) answer_start = answer['answer_start'] answer_stop = answer_start + len(answer_text) (yi0, yi1) = get_word_span(context, xi, answer_start, answer_stop) assert len(xi[yi0[0]]) > yi0[1] assert len(xi[yi1[0]]) >= yi1[1] w0 = xi[yi0[0]][yi0[1]] w1 = xi[yi1[0]][yi1[1] - 1] i0 = get_word_idx(context, xi, yi0) i1 = get_word_idx(context, xi, (yi1[0], yi1[1] - 1)) cyi0 = answer_start - i0 cyi1 = answer_stop - i1 - 1 assert answer_text[0] == w0[cyi0], (answer_text, w0, cyi0) assert answer_text[-1] == w1[cyi1] assert cyi0 < 32, (answer_text, w0) assert cyi1 < 32, (answer_text, w1) yi.append([yi0, yi1]) cyi.append([cyi0, cyi1]) if len(qa['answers']) == 0: yi.append([(0, 0), (0, 1)]) cyi.append([0, 1]) na.append(True) else: na.append(False) for qij in qi: word_counter[qij] += 1 lower_word_counter[qij.lower()] += 1 for qijk in qij: char_counter[qijk] += 1 q.append(qi) cq.append(cqi) y.append(yi) cy.append(cyi) rx.append(rxi) rcx.append(rxi) ids.append(qa['id']) idxs.append(len(idxs)) answerss.append(answers) if args.debug: break word2vec_dict = get_word2vec(args, word_counter) lower_word2vec_dict = get_word2vec(args, lower_word_counter) data = {'q': q, 'cq': cq, 'y': y, '*x': rx, '*cx': rcx, 'cy': cy, 'idxs': idxs, 'ids': ids, 'answerss': answerss, '*p': rx, 'na': na} shared = {'x': x, 'cx': cx, 'p': p, 'word_counter': word_counter, 'char_counter': char_counter, 'lower_word_counter': lower_word_counter, 'word2vec': word2vec_dict, 'lower_word2vec': lower_word2vec_dict} print('saving ...') save(args, data, shared, 'test') if args.tokenizer == 'PTB': import nltk sent_tokenize = nltk.sent_tokenize def word_tokenize(tokens): return [token.replace("''", '"').replace('``', '"') for token in nltk.word_tokenize(tokens)] elif args.tokenizer == 'Stanford': from my.corenlp_interface import CoreNLPInterface interface = CoreNLPInterface(args.url, args.port) sent_tokenize = interface.split_doc word_tokenize = interface.split_sent else: raise Exception() if not args.split: sent_tokenize = lambda para: [para] source_path = in_path or os.path.join(args.source_dir, '{}-{}v1.1.json'.format('all', args.suffix)) source_data = json.load(open(source_path, 'r')) (q, cq, y, rx, rcx, ids, idxs) = ([], [], [], [], [], [], []) na = [] cy = [] (x, cx) = ([], []) answerss = [] p = [] (word_counter, char_counter, lower_word_counter) = (Counter(), Counter(), Counter()) start_ai = int(round(len(source_data['data']) * start_ratio)) stop_ai = int(round(len(source_data['data']) * stop_ratio)) for (ai, article) in enumerate(tqdm(source_data['data'][start_ai:stop_ai])): (xp, cxp) = ([], []) pp = [] x.append(xp) cx.append(cxp) p.append(pp) for (pi, para) in enumerate(article['paragraphs']): context = para['context'] context = context.replace("''", '" ') context = context.replace('``', '" ') xi = list(map(word_tokenize, sent_tokenize(context))) xi = [process_tokens(tokens) for tokens in xi] cxi = [[list(xijk) for xijk in xij] for xij in xi] xp.append(xi) cxp.append(cxi) pp.append(context) for xij in xi: for xijk in xij: word_counter[xijk] += len(para['qas']) lower_word_counter[xijk.lower()] += len(para['qas']) for xijkl in xijk: char_counter[xijkl] += len(para['qas']) rxi = [ai, pi] assert len(x) - 1 == ai assert len(x[ai]) - 1 == pi for qa in para['qas']: qi = word_tokenize(qa['question']) qi = process_tokens(qi) cqi = [list(qij) for qij in qi] yi = [] cyi = [] answers = [] for answer in qa['answers']: answer_text = answer['text'] answers.append(answer_text) answer_start = answer['answer_start'] answer_stop = answer_start + len(answer_text) (yi0, yi1) = get_word_span(context, xi, answer_start, answer_stop) assert len(xi[yi0[0]]) > yi0[1] assert len(xi[yi1[0]]) >= yi1[1] w0 = xi[yi0[0]][yi0[1]] w1 = xi[yi1[0]][yi1[1] - 1] i0 = get_word_idx(context, xi, yi0) i1 = get_word_idx(context, xi, (yi1[0], yi1[1] - 1)) cyi0 = answer_start - i0 cyi1 = answer_stop - i1 - 1 assert answer_text[0] == w0[cyi0], (answer_text, w0, cyi0) assert answer_text[-1] == w1[cyi1] assert cyi0 < 32, (answer_text, w0) assert cyi1 < 32, (answer_text, w1) yi.append([yi0, yi1]) cyi.append([cyi0, cyi1]) if len(qa['answers']) == 0: yi.append([(0, 0), (0, 1)]) cyi.append([0, 1]) na.append(True) else: na.append(False) for qij in qi: word_counter[qij] += 1 lower_word_counter[qij.lower()] += 1 for qijk in qij: char_counter[qijk] += 1 q.append(qi) cq.append(cqi) y.append(yi) cy.append(cyi) rx.append(rxi) rcx.append(rxi) ids.append(qa['id']) idxs.append(len(idxs)) answerss.append(answers) if args.debug: break word2vec_dict = get_word2vec(args, word_counter) lower_word2vec_dict = get_word2vec(args, lower_word_counter) data = {'q': q, 'cq': cq, 'y': y, '*x': rx, '*cx': rcx, 'cy': cy, 'idxs': idxs, 'ids': ids, 'answerss': answerss, '*p': rx, 'na': na} shared = {'x': x, 'cx': cx, 'p': p, 'word_counter': word_counter, 'char_counter': char_counter, 'lower_word_counter': lower_word_counter, 'word2vec': word2vec_dict, 'lower_word2vec': lower_word2vec_dict} print('saving ...') save(args, data, shared, 'train') elif args.mode == 'single': assert len(args.single_path) > 0 if args.tokenizer == 'PTB': import nltk sent_tokenize = nltk.sent_tokenize def word_tokenize(tokens): return [token.replace("''", '"').replace('``', '"') for token in nltk.word_tokenize(tokens)] elif args.tokenizer == 'Stanford': from my.corenlp_interface import CoreNLPInterface interface = CoreNLPInterface(args.url, args.port) sent_tokenize = interface.split_doc word_tokenize = interface.split_sent else: raise Exception() if not args.split: sent_tokenize = lambda para: [para] source_path = args.single_path or os.path.join(args.source_dir, '{}-{}v1.1.json'.format('NULL', args.suffix)) source_data = json.load(open(source_path, 'r')) (q, cq, y, rx, rcx, ids, idxs) = ([], [], [], [], [], [], []) na = [] cy = [] (x, cx) = ([], []) answerss = [] p = [] (word_counter, char_counter, lower_word_counter) = (Counter(), Counter(), Counter()) start_ai = int(round(len(source_data['data']) * start_ratio)) stop_ai = int(round(len(source_data['data']) * stop_ratio)) for (ai, article) in enumerate(tqdm(source_data['data'][start_ai:stop_ai])): (xp, cxp) = ([], []) pp = [] x.append(xp) cx.append(cxp) p.append(pp) for (pi, para) in enumerate(article['paragraphs']): context = para['context'] context = context.replace("''", '" ') context = context.replace('``', '" ') xi = list(map(word_tokenize, sent_tokenize(context))) xi = [process_tokens(tokens) for tokens in xi] cxi = [[list(xijk) for xijk in xij] for xij in xi] xp.append(xi) cxp.append(cxi) pp.append(context) for xij in xi: for xijk in xij: word_counter[xijk] += len(para['qas']) lower_word_counter[xijk.lower()] += len(para['qas']) for xijkl in xijk: char_counter[xijkl] += len(para['qas']) rxi = [ai, pi] assert len(x) - 1 == ai assert len(x[ai]) - 1 == pi for qa in para['qas']: qi = word_tokenize(qa['question']) qi = process_tokens(qi) cqi = [list(qij) for qij in qi] yi = [] cyi = [] answers = [] for answer in qa['answers']: answer_text = answer['text'] answers.append(answer_text) answer_start = answer['answer_start'] answer_stop = answer_start + len(answer_text) (yi0, yi1) = get_word_span(context, xi, answer_start, answer_stop) assert len(xi[yi0[0]]) > yi0[1] assert len(xi[yi1[0]]) >= yi1[1] w0 = xi[yi0[0]][yi0[1]] w1 = xi[yi1[0]][yi1[1] - 1] i0 = get_word_idx(context, xi, yi0) i1 = get_word_idx(context, xi, (yi1[0], yi1[1] - 1)) cyi0 = answer_start - i0 cyi1 = answer_stop - i1 - 1 assert answer_text[0] == w0[cyi0], (answer_text, w0, cyi0) assert answer_text[-1] == w1[cyi1] assert cyi0 < 32, (answer_text, w0) assert cyi1 < 32, (answer_text, w1) yi.append([yi0, yi1]) cyi.append([cyi0, cyi1]) if len(qa['answers']) == 0: yi.append([(0, 0), (0, 1)]) cyi.append([0, 1]) na.append(True) else: na.append(False) for qij in qi: word_counter[qij] += 1 lower_word_counter[qij.lower()] += 1 for qijk in qij: char_counter[qijk] += 1 q.append(qi) cq.append(cqi) y.append(yi) cy.append(cyi) rx.append(rxi) rcx.append(rxi) ids.append(qa['id']) idxs.append(len(idxs)) answerss.append(answers) if args.debug: break word2vec_dict = get_word2vec(args, word_counter) lower_word2vec_dict = get_word2vec(args, lower_word_counter) data = {'q': q, 'cq': cq, 'y': y, '*x': rx, '*cx': rcx, 'cy': cy, 'idxs': idxs, 'ids': ids, 'answerss': answerss, '*p': rx, 'na': na} shared = {'x': x, 'cx': cx, 'p': p, 'word_counter': word_counter, 'char_counter': char_counter, 'lower_word_counter': lower_word_counter, 'word2vec': word2vec_dict, 'lower_word2vec': lower_word2vec_dict} print('saving ...') save(args, data, shared, 'single') else: if args.tokenizer == 'PTB': import nltk sent_tokenize = nltk.sent_tokenize def word_tokenize(tokens): return [token.replace("''", '"').replace('``', '"') for token in nltk.word_tokenize(tokens)] elif args.tokenizer == 'Stanford': from my.corenlp_interface import CoreNLPInterface interface = CoreNLPInterface(args.url, args.port) sent_tokenize = interface.split_doc word_tokenize = interface.split_sent else: raise Exception() if not args.split: sent_tokenize = lambda para: [para] source_path = in_path or os.path.join(args.source_dir, '{}-{}v1.1.json'.format('train', args.suffix)) source_data = json.load(open(source_path, 'r')) (q, cq, y, rx, rcx, ids, idxs) = ([], [], [], [], [], [], []) na = [] cy = [] (x, cx) = ([], []) answerss = [] p = [] (word_counter, char_counter, lower_word_counter) = (Counter(), Counter(), Counter()) start_ai = int(round(len(source_data['data']) * 0.0)) stop_ai = int(round(len(source_data['data']) * args.train_ratio)) for (ai, article) in enumerate(tqdm(source_data['data'][start_ai:stop_ai])): (xp, cxp) = ([], []) pp = [] x.append(xp) cx.append(cxp) p.append(pp) for (pi, para) in enumerate(article['paragraphs']): context = para['context'] context = context.replace("''", '" ') context = context.replace('``', '" ') xi = list(map(word_tokenize, sent_tokenize(context))) xi = [process_tokens(tokens) for tokens in xi] cxi = [[list(xijk) for xijk in xij] for xij in xi] xp.append(xi) cxp.append(cxi) pp.append(context) for xij in xi: for xijk in xij: word_counter[xijk] += len(para['qas']) lower_word_counter[xijk.lower()] += len(para['qas']) for xijkl in xijk: char_counter[xijkl] += len(para['qas']) rxi = [ai, pi] assert len(x) - 1 == ai assert len(x[ai]) - 1 == pi for qa in para['qas']: qi = word_tokenize(qa['question']) qi = process_tokens(qi) cqi = [list(qij) for qij in qi] yi = [] cyi = [] answers = [] for answer in qa['answers']: answer_text = answer['text'] answers.append(answer_text) answer_start = answer['answer_start'] answer_stop = answer_start + len(answer_text) (yi0, yi1) = get_word_span(context, xi, answer_start, answer_stop) assert len(xi[yi0[0]]) > yi0[1] assert len(xi[yi1[0]]) >= yi1[1] w0 = xi[yi0[0]][yi0[1]] w1 = xi[yi1[0]][yi1[1] - 1] i0 = get_word_idx(context, xi, yi0) i1 = get_word_idx(context, xi, (yi1[0], yi1[1] - 1)) cyi0 = answer_start - i0 cyi1 = answer_stop - i1 - 1 assert answer_text[0] == w0[cyi0], (answer_text, w0, cyi0) assert answer_text[-1] == w1[cyi1] assert cyi0 < 32, (answer_text, w0) assert cyi1 < 32, (answer_text, w1) yi.append([yi0, yi1]) cyi.append([cyi0, cyi1]) if len(qa['answers']) == 0: yi.append([(0, 0), (0, 1)]) cyi.append([0, 1]) na.append(True) else: na.append(False) for qij in qi: word_counter[qij] += 1 lower_word_counter[qij.lower()] += 1 for qijk in qij: char_counter[qijk] += 1 q.append(qi) cq.append(cqi) y.append(yi) cy.append(cyi) rx.append(rxi) rcx.append(rxi) ids.append(qa['id']) idxs.append(len(idxs)) answerss.append(answers) if args.debug: break word2vec_dict = get_word2vec(args, word_counter) lower_word2vec_dict = get_word2vec(args, lower_word_counter) data = {'q': q, 'cq': cq, 'y': y, '*x': rx, '*cx': rcx, 'cy': cy, 'idxs': idxs, 'ids': ids, 'answerss': answerss, '*p': rx, 'na': na} shared = {'x': x, 'cx': cx, 'p': p, 'word_counter': word_counter, 'char_counter': char_counter, 'lower_word_counter': lower_word_counter, 'word2vec': word2vec_dict, 'lower_word2vec': lower_word2vec_dict} print('saving ...') save(args, data, shared, 'train') if args.tokenizer == 'PTB': import nltk sent_tokenize = nltk.sent_tokenize def word_tokenize(tokens): return [token.replace("''", '"').replace('``', '"') for token in nltk.word_tokenize(tokens)] elif args.tokenizer == 'Stanford': from my.corenlp_interface import CoreNLPInterface interface = CoreNLPInterface(args.url, args.port) sent_tokenize = interface.split_doc word_tokenize = interface.split_sent else: raise Exception() if not args.split: sent_tokenize = lambda para: [para] source_path = in_path or os.path.join(args.source_dir, '{}-{}v1.1.json'.format('train', args.suffix)) source_data = json.load(open(source_path, 'r')) (q, cq, y, rx, rcx, ids, idxs) = ([], [], [], [], [], [], []) na = [] cy = [] (x, cx) = ([], []) answerss = [] p = [] (word_counter, char_counter, lower_word_counter) = (Counter(), Counter(), Counter()) start_ai = int(round(len(source_data['data']) * args.train_ratio)) stop_ai = int(round(len(source_data['data']) * 1.0)) for (ai, article) in enumerate(tqdm(source_data['data'][start_ai:stop_ai])): (xp, cxp) = ([], []) pp = [] x.append(xp) cx.append(cxp) p.append(pp) for (pi, para) in enumerate(article['paragraphs']): context = para['context'] context = context.replace("''", '" ') context = context.replace('``', '" ') xi = list(map(word_tokenize, sent_tokenize(context))) xi = [process_tokens(tokens) for tokens in xi] cxi = [[list(xijk) for xijk in xij] for xij in xi] xp.append(xi) cxp.append(cxi) pp.append(context) for xij in xi: for xijk in xij: word_counter[xijk] += len(para['qas']) lower_word_counter[xijk.lower()] += len(para['qas']) for xijkl in xijk: char_counter[xijkl] += len(para['qas']) rxi = [ai, pi] assert len(x) - 1 == ai assert len(x[ai]) - 1 == pi for qa in para['qas']: qi = word_tokenize(qa['question']) qi = process_tokens(qi) cqi = [list(qij) for qij in qi] yi = [] cyi = [] answers = [] for answer in qa['answers']: answer_text = answer['text'] answers.append(answer_text) answer_start = answer['answer_start'] answer_stop = answer_start + len(answer_text) (yi0, yi1) = get_word_span(context, xi, answer_start, answer_stop) assert len(xi[yi0[0]]) > yi0[1] assert len(xi[yi1[0]]) >= yi1[1] w0 = xi[yi0[0]][yi0[1]] w1 = xi[yi1[0]][yi1[1] - 1] i0 = get_word_idx(context, xi, yi0) i1 = get_word_idx(context, xi, (yi1[0], yi1[1] - 1)) cyi0 = answer_start - i0 cyi1 = answer_stop - i1 - 1 assert answer_text[0] == w0[cyi0], (answer_text, w0, cyi0) assert answer_text[-1] == w1[cyi1] assert cyi0 < 32, (answer_text, w0) assert cyi1 < 32, (answer_text, w1) yi.append([yi0, yi1]) cyi.append([cyi0, cyi1]) if len(qa['answers']) == 0: yi.append([(0, 0), (0, 1)]) cyi.append([0, 1]) na.append(True) else: na.append(False) for qij in qi: word_counter[qij] += 1 lower_word_counter[qij.lower()] += 1 for qijk in qij: char_counter[qijk] += 1 q.append(qi) cq.append(cqi) y.append(yi) cy.append(cyi) rx.append(rxi) rcx.append(rxi) ids.append(qa['id']) idxs.append(len(idxs)) answerss.append(answers) if args.debug: break word2vec_dict = get_word2vec(args, word_counter) lower_word2vec_dict = get_word2vec(args, lower_word_counter) data = {'q': q, 'cq': cq, 'y': y, '*x': rx, '*cx': rcx, 'cy': cy, 'idxs': idxs, 'ids': ids, 'answerss': answerss, '*p': rx, 'na': na} shared = {'x': x, 'cx': cx, 'p': p, 'word_counter': word_counter, 'char_counter': char_counter, 'lower_word_counter': lower_word_counter, 'word2vec': word2vec_dict, 'lower_word2vec': lower_word2vec_dict} print('saving ...') save(args, data, shared, 'dev') if args.tokenizer == 'PTB': import nltk sent_tokenize = nltk.sent_tokenize def word_tokenize(tokens): return [token.replace("''", '"').replace('``', '"') for token in nltk.word_tokenize(tokens)] elif args.tokenizer == 'Stanford': from my.corenlp_interface import CoreNLPInterface interface = CoreNLPInterface(args.url, args.port) sent_tokenize = interface.split_doc word_tokenize = interface.split_sent else: raise Exception() if not args.split: sent_tokenize = lambda para: [para] source_path = in_path or os.path.join(args.source_dir, '{}-{}v1.1.json'.format('dev', args.suffix)) source_data = json.load(open(source_path, 'r')) (q, cq, y, rx, rcx, ids, idxs) = ([], [], [], [], [], [], []) na = [] cy = [] (x, cx) = ([], []) answerss = [] p = [] (word_counter, char_counter, lower_word_counter) = (Counter(), Counter(), Counter()) start_ai = int(round(len(source_data['data']) * start_ratio)) stop_ai = int(round(len(source_data['data']) * stop_ratio)) for (ai, article) in enumerate(tqdm(source_data['data'][start_ai:stop_ai])): (xp, cxp) = ([], []) pp = [] x.append(xp) cx.append(cxp) p.append(pp) for (pi, para) in enumerate(article['paragraphs']): context = para['context'] context = context.replace("''", '" ') context = context.replace('``', '" ') xi = list(map(word_tokenize, sent_tokenize(context))) xi = [process_tokens(tokens) for tokens in xi] cxi = [[list(xijk) for xijk in xij] for xij in xi] xp.append(xi) cxp.append(cxi) pp.append(context) for xij in xi: for xijk in xij: word_counter[xijk] += len(para['qas']) lower_word_counter[xijk.lower()] += len(para['qas']) for xijkl in xijk: char_counter[xijkl] += len(para['qas']) rxi = [ai, pi] assert len(x) - 1 == ai assert len(x[ai]) - 1 == pi for qa in para['qas']: qi = word_tokenize(qa['question']) qi = process_tokens(qi) cqi = [list(qij) for qij in qi] yi = [] cyi = [] answers = [] for answer in qa['answers']: answer_text = answer['text'] answers.append(answer_text) answer_start = answer['answer_start'] answer_stop = answer_start + len(answer_text) (yi0, yi1) = get_word_span(context, xi, answer_start, answer_stop) assert len(xi[yi0[0]]) > yi0[1] assert len(xi[yi1[0]]) >= yi1[1] w0 = xi[yi0[0]][yi0[1]] w1 = xi[yi1[0]][yi1[1] - 1] i0 = get_word_idx(context, xi, yi0) i1 = get_word_idx(context, xi, (yi1[0], yi1[1] - 1)) cyi0 = answer_start - i0 cyi1 = answer_stop - i1 - 1 assert answer_text[0] == w0[cyi0], (answer_text, w0, cyi0) assert answer_text[-1] == w1[cyi1] assert cyi0 < 32, (answer_text, w0) assert cyi1 < 32, (answer_text, w1) yi.append([yi0, yi1]) cyi.append([cyi0, cyi1]) if len(qa['answers']) == 0: yi.append([(0, 0), (0, 1)]) cyi.append([0, 1]) na.append(True) else: na.append(False) for qij in qi: word_counter[qij] += 1 lower_word_counter[qij.lower()] += 1 for qijk in qij: char_counter[qijk] += 1 q.append(qi) cq.append(cqi) y.append(yi) cy.append(cyi) rx.append(rxi) rcx.append(rxi) ids.append(qa['id']) idxs.append(len(idxs)) answerss.append(answers) if args.debug: break word2vec_dict = get_word2vec(args, word_counter) lower_word2vec_dict = get_word2vec(args, lower_word_counter) data = {'q': q, 'cq': cq, 'y': y, '*x': rx, '*cx': rcx, 'cy': cy, 'idxs': idxs, 'ids': ids, 'answerss': answerss, '*p': rx, 'na': na} shared = {'x': x, 'cx': cx, 'p': p, 'word_counter': word_counter, 'char_counter': char_counter, 'lower_word_counter': lower_word_counter, 'word2vec': word2vec_dict, 'lower_word2vec': lower_word2vec_dict} print('saving ...') save(args, data, shared, 'test') </DeepExtract>
dawn-bench-models
positive
def scale_matrix(factor, origin=None, direction=None): """Return matrix to scale by factor around origin in direction. Use factor -1 for point symmetry. >>> v = (numpy.random.rand(4, 5) - 0.5) * 20 >>> v[3] = 1 >>> S = scale_matrix(-1.234) >>> numpy.allclose(numpy.dot(S, v)[:3], -1.234*v[:3]) True >>> factor = random.random() * 10 - 5 >>> origin = numpy.random.random(3) - 0.5 >>> direct = numpy.random.random(3) - 0.5 >>> S = scale_matrix(factor, origin) >>> S = scale_matrix(factor, origin, direct) """ if direction is None: M = numpy.diag([factor, factor, factor, 1.0]) if origin is not None: M[:3, 3] = origin[:3] M[:3, 3] *= 1.0 - factor else: <DeepExtract> if out is None: direction[:3] = numpy.array(direction[:3], dtype=numpy.float64, copy=True) if direction[:3].ndim == 1: direction[:3] /= math.sqrt(numpy.dot(direction[:3], direction[:3])) direction = direction[:3] else: if out is not direction[:3]: out[:] = numpy.array(direction[:3], copy=False) direction[:3] = out length = numpy.atleast_1d(numpy.sum(direction[:3] * direction[:3], axis)) numpy.sqrt(length, length) if axis is not None: length = numpy.expand_dims(length, axis) direction[:3] /= length if out is None: direction = direction[:3] </DeepExtract> factor = 1.0 - factor M = numpy.identity(4) M[:3, :3] -= factor * numpy.outer(direction, direction) if origin is not None: M[:3, 3] = factor * numpy.dot(origin[:3], direction) * direction return M
def scale_matrix(factor, origin=None, direction=None): """Return matrix to scale by factor around origin in direction. Use factor -1 for point symmetry. >>> v = (numpy.random.rand(4, 5) - 0.5) * 20 >>> v[3] = 1 >>> S = scale_matrix(-1.234) >>> numpy.allclose(numpy.dot(S, v)[:3], -1.234*v[:3]) True >>> factor = random.random() * 10 - 5 >>> origin = numpy.random.random(3) - 0.5 >>> direct = numpy.random.random(3) - 0.5 >>> S = scale_matrix(factor, origin) >>> S = scale_matrix(factor, origin, direct) """ if direction is None: M = numpy.diag([factor, factor, factor, 1.0]) if origin is not None: M[:3, 3] = origin[:3] M[:3, 3] *= 1.0 - factor else: if out is None: direction[:3] = numpy.array(direction[:3], dtype=numpy.float64, copy=True) if direction[:3].ndim == 1: direction[:3] /= math.sqrt(numpy.dot(direction[:3], direction[:3])) direction = direction[:3] else: if out is not direction[:3]: out[:] = numpy.array(direction[:3], copy=False) direction[:3] = out length = numpy.atleast_1d(numpy.sum(direction[:3] * direction[:3], axis)) numpy.sqrt(length, length) if axis is not None: length = numpy.expand_dims(length, axis) direction[:3] /= length if out is None: direction = direction[:3] factor = 1.0 - factor M = numpy.identity(4) M[:3, :3] -= factor * numpy.outer(direction, direction) if origin is not None: M[:3, 3] = factor * numpy.dot(origin[:3], direction) * direction return M
alfred
positive
def generate_sidebar(app, fromdocname): env = app.builder.env container = nodes.compound(classes=['toctree-wrapper']) py = env.get_domain('py') classes = py.get_objects() classes_per_group = {'api': ([], None, 'bproc.'), 'internal': ([], 2, 'bproc.python.'), 'modules (deprecated)': ([], 3, '')} for e in classes: if e[2] == 'module' and e[3].startswith('blenderproc.api.') or (e[2] == 'class' and (not e[3].startswith('blenderproc.api.'))): if e[3].startswith('blenderproc.api.'): group = 'api' elif e[0].startswith('blenderproc.python.modules.'): group = 'modules (deprecated)' else: group = 'internal' classes_per_group[group][0].append(e) <DeepExtract> tutorials_dir = Path(__file__).absolute().parent.parent / 'docs' / 'tutorials' tutorials = [('Loading and manipulating objects', 'loader'), ('Configuring the camera', 'camera'), ('Rendering the scene', 'renderer'), ('Writing the results to file', 'writer'), ('How key frames work', 'key_frames'), ('Positioning objects via the physics simulator', 'physics')] container += nodes.caption('Tutorials', '', *[nodes.Text('Tutorials')]) for tutorial in tutorials: toc = nodes.bullet_list() ref = nodes.reference('', '') ref['refuri'] = app.builder.get_relative_uri(fromdocname, 'docs/tutorials/' + tutorial[1]) ref.append(nodes.Text(tutorial[0])) module_item = nodes.list_item('', addnodes.compact_paragraph('', '', ref), classes=['toctree-l1']) if fromdocname.startswith('docs/tutorials/' + tutorial[1]): module_item['classes'].append('current') toc += module_item container += toc </DeepExtract> <DeepExtract> examples = Path(__file__).absolute().parent.parent / 'examples' container += nodes.caption('Examples', '', *[nodes.Text('Examples')]) for example_groups in [examples / group for group in ['basics', 'advanced', 'datasets']]: if example_groups.is_dir(): toc = nodes.bullet_list() ref = nodes.reference('', '') ref['refuri'] = app.builder.get_relative_uri(fromdocname, 'examples/' + example_groups.name + '/README') ref.append(nodes.Text(example_groups.name.capitalize())) module_item = nodes.list_item('', addnodes.compact_paragraph('', '', ref), classes=['toctree-l1']) if fromdocname.startswith('examples/' + example_groups.name): module_item['classes'].append('current') toc += module_item subtree = nodes.bullet_list() module_item += subtree for example in sorted(example_groups.rglob('*/README.md'), key=lambda x: x.parent.name): ref = nodes.reference('', '') ref['refuri'] = app.builder.get_relative_uri(fromdocname, str(example).replace(str(examples), 'examples').replace('README.md', 'README')) ref.append(nodes.Text(example.parent.name)) class_item = nodes.list_item('', addnodes.compact_paragraph('', '', ref), classes=['toctree-l2']) if fromdocname == ref['refuri'].replace('.html', ''): class_item['classes'].append('current') subtree += class_item container += toc </DeepExtract> for (key, items) in classes_per_group.items(): <DeepExtract> toc = nodes.bullet_list() toc += nodes.caption(key.capitalize(), '', *[nodes.Text(key.capitalize())]) if items[1] is not None: entries = defaultdict(list) prefix = '.'.join(items[0][0][0].split('.')[:items[1]]) + '.' for e in items[0]: module = e[0].split('.')[items[1]] entries[module].append(e) for (module, class_list) in entries.items(): ref = nodes.reference('', '') ref['refuri'] = app.builder.get_relative_uri(fromdocname, prefix + module) ref.append(nodes.Text(items[2] + module if items[2] != '' else module.capitalize())) module_item = nodes.list_item('', addnodes.compact_paragraph('', '', ref), classes=['toctree-l1']) if fromdocname.startswith(prefix + module): module_item['classes'].append('current') toc += module_item subtree = nodes.bullet_list() module_item += subtree generate_classlist(app, fromdocname, subtree, class_list, '') else: generate_classlist(app, fromdocname, toc, items[0], items[2], level=1) container += toc </DeepExtract> return container
def generate_sidebar(app, fromdocname): env = app.builder.env container = nodes.compound(classes=['toctree-wrapper']) py = env.get_domain('py') classes = py.get_objects() classes_per_group = {'api': ([], None, 'bproc.'), 'internal': ([], 2, 'bproc.python.'), 'modules (deprecated)': ([], 3, '')} for e in classes: if e[2] == 'module' and e[3].startswith('blenderproc.api.') or (e[2] == 'class' and (not e[3].startswith('blenderproc.api.'))): if e[3].startswith('blenderproc.api.'): group = 'api' elif e[0].startswith('blenderproc.python.modules.'): group = 'modules (deprecated)' else: group = 'internal' classes_per_group[group][0].append(e) tutorials_dir = Path(__file__).absolute().parent.parent / 'docs' / 'tutorials' tutorials = [('Loading and manipulating objects', 'loader'), ('Configuring the camera', 'camera'), ('Rendering the scene', 'renderer'), ('Writing the results to file', 'writer'), ('How key frames work', 'key_frames'), ('Positioning objects via the physics simulator', 'physics')] container += nodes.caption('Tutorials', '', *[nodes.Text('Tutorials')]) for tutorial in tutorials: toc = nodes.bullet_list() ref = nodes.reference('', '') ref['refuri'] = app.builder.get_relative_uri(fromdocname, 'docs/tutorials/' + tutorial[1]) ref.append(nodes.Text(tutorial[0])) module_item = nodes.list_item('', addnodes.compact_paragraph('', '', ref), classes=['toctree-l1']) if fromdocname.startswith('docs/tutorials/' + tutorial[1]): module_item['classes'].append('current') toc += module_item container += toc examples = Path(__file__).absolute().parent.parent / 'examples' container += nodes.caption('Examples', '', *[nodes.Text('Examples')]) for example_groups in [examples / group for group in ['basics', 'advanced', 'datasets']]: if example_groups.is_dir(): toc = nodes.bullet_list() ref = nodes.reference('', '') ref['refuri'] = app.builder.get_relative_uri(fromdocname, 'examples/' + example_groups.name + '/README') ref.append(nodes.Text(example_groups.name.capitalize())) module_item = nodes.list_item('', addnodes.compact_paragraph('', '', ref), classes=['toctree-l1']) if fromdocname.startswith('examples/' + example_groups.name): module_item['classes'].append('current') toc += module_item subtree = nodes.bullet_list() module_item += subtree for example in sorted(example_groups.rglob('*/README.md'), key=lambda x: x.parent.name): ref = nodes.reference('', '') ref['refuri'] = app.builder.get_relative_uri(fromdocname, str(example).replace(str(examples), 'examples').replace('README.md', 'README')) ref.append(nodes.Text(example.parent.name)) class_item = nodes.list_item('', addnodes.compact_paragraph('', '', ref), classes=['toctree-l2']) if fromdocname == ref['refuri'].replace('.html', ''): class_item['classes'].append('current') subtree += class_item container += toc for (key, items) in classes_per_group.items(): toc = nodes.bullet_list() toc += nodes.caption(key.capitalize(), '', *[nodes.Text(key.capitalize())]) if items[1] is not None: entries = defaultdict(list) prefix = '.'.join(items[0][0][0].split('.')[:items[1]]) + '.' for e in items[0]: module = e[0].split('.')[items[1]] entries[module].append(e) for (module, class_list) in entries.items(): ref = nodes.reference('', '') ref['refuri'] = app.builder.get_relative_uri(fromdocname, prefix + module) ref.append(nodes.Text(items[2] + module if items[2] != '' else module.capitalize())) module_item = nodes.list_item('', addnodes.compact_paragraph('', '', ref), classes=['toctree-l1']) if fromdocname.startswith(prefix + module): module_item['classes'].append('current') toc += module_item subtree = nodes.bullet_list() module_item += subtree generate_classlist(app, fromdocname, subtree, class_list, '') else: generate_classlist(app, fromdocname, toc, items[0], items[2], level=1) container += toc return container
BlenderProc
positive
def learn(self, batch_size=100, actor_lr_input=0.001, critic_lr_input=0.001): self.q_optimizer.zero_grad() data = self.replay_buffer.sample_batch(batch_size) <DeepExtract> if self.per_flag: (tree_idx, batch_memory, ISWeights) = data (o, a, r, o2, d) = ([], [], [], [], []) for i in range(len(batch_memory)): o.append(batch_memory[i][0]) a.append(batch_memory[i][1]) r.append(batch_memory[i][2]) o2.append(batch_memory[i][3]) d.append(batch_memory[i][4]) o = torch.as_tensor(np.array(o), dtype=torch.float32, device=self.device) a = torch.as_tensor(np.array(a), dtype=torch.float32, device=self.device) r = torch.as_tensor(np.array(r), dtype=torch.float32, device=self.device) o2 = torch.as_tensor(np.array(o2), dtype=torch.float32, device=self.device) d = torch.as_tensor(np.array(d), dtype=torch.float32, device=self.device) ISWeights = torch.as_tensor(np.array(ISWeights), dtype=torch.float32, device=self.device) else: (o, a, r, o2, d) = (data['obs'], data['act'], data['rew'], data['obs2'], data['done']) q = self.ac.q(o, a) with torch.no_grad(): pi_targ = self.ac_targ.pi(o2) epsilon = torch.randn_like(pi_targ) * self.target_noise epsilon = torch.clamp(epsilon, -self.noise_clip, self.noise_clip) a2 = pi_targ + epsilon a2 = torch.clamp(a2, -self.a_bound, self.a_bound) q_pi_targ = self.ac_targ.q(o2, a2) backup = r + self.gamma * (1 - d) * q_pi_targ backup = torch.clamp(backup, -50.0, 0.0) loss_q = ((q - backup) ** 2).mean() loss_info = dict(Q1Vals=q, Q2Vals=q) if self.per_flag: loss_q = (ISWeights * (q - backup) ** 2).mean() abs_errors = torch.abs(backup - q) loss_info['abs_errors'] = abs_errors.detach().cpu().numpy() loss_info['tree_idx'] = tree_idx (loss_q, loss_info) = (loss_q, loss_info) </DeepExtract> loss_q.backward() self.q_optimizer.step() if self.per_flag: self.replay_buffer.batch_update(tree_idx=loss_info['tree_idx'], abs_errors=loss_info['abs_errors']) if self.learn_step % self.policy_delay == 0: for p in self.ac.q.parameters(): p.requires_grad = False self.pi_optimizer.zero_grad() <DeepExtract> if self.per_flag: (tree_idx, batch_memory, ISWeights) = data o = [] for i in range(len(batch_memory)): o.append(batch_memory[i][0]) o = torch.as_tensor(np.array(o), dtype=torch.float32, device=self.device) else: o = data['obs'] q_pi = self.ac.q(o, self.ac.pi(o)) loss_pi = -q_pi.mean() </DeepExtract> loss_pi.backward() self.pi_optimizer.step() for p in self.ac.q.parameters(): p.requires_grad = True with torch.no_grad(): for (p, p_targ) in zip(self.ac.parameters(), self.ac_targ.parameters()): p_targ.data.mul_(self.polyak) p_targ.data.add_((1 - self.polyak) * p.data) self.learn_step += 1 return (loss_q, loss_info['Q1Vals'].detach().cpu().numpy(), loss_info['Q2Vals'].detach().cpu().numpy())
def learn(self, batch_size=100, actor_lr_input=0.001, critic_lr_input=0.001): self.q_optimizer.zero_grad() data = self.replay_buffer.sample_batch(batch_size) if self.per_flag: (tree_idx, batch_memory, ISWeights) = data (o, a, r, o2, d) = ([], [], [], [], []) for i in range(len(batch_memory)): o.append(batch_memory[i][0]) a.append(batch_memory[i][1]) r.append(batch_memory[i][2]) o2.append(batch_memory[i][3]) d.append(batch_memory[i][4]) o = torch.as_tensor(np.array(o), dtype=torch.float32, device=self.device) a = torch.as_tensor(np.array(a), dtype=torch.float32, device=self.device) r = torch.as_tensor(np.array(r), dtype=torch.float32, device=self.device) o2 = torch.as_tensor(np.array(o2), dtype=torch.float32, device=self.device) d = torch.as_tensor(np.array(d), dtype=torch.float32, device=self.device) ISWeights = torch.as_tensor(np.array(ISWeights), dtype=torch.float32, device=self.device) else: (o, a, r, o2, d) = (data['obs'], data['act'], data['rew'], data['obs2'], data['done']) q = self.ac.q(o, a) with torch.no_grad(): pi_targ = self.ac_targ.pi(o2) epsilon = torch.randn_like(pi_targ) * self.target_noise epsilon = torch.clamp(epsilon, -self.noise_clip, self.noise_clip) a2 = pi_targ + epsilon a2 = torch.clamp(a2, -self.a_bound, self.a_bound) q_pi_targ = self.ac_targ.q(o2, a2) backup = r + self.gamma * (1 - d) * q_pi_targ backup = torch.clamp(backup, -50.0, 0.0) loss_q = ((q - backup) ** 2).mean() loss_info = dict(Q1Vals=q, Q2Vals=q) if self.per_flag: loss_q = (ISWeights * (q - backup) ** 2).mean() abs_errors = torch.abs(backup - q) loss_info['abs_errors'] = abs_errors.detach().cpu().numpy() loss_info['tree_idx'] = tree_idx (loss_q, loss_info) = (loss_q, loss_info) loss_q.backward() self.q_optimizer.step() if self.per_flag: self.replay_buffer.batch_update(tree_idx=loss_info['tree_idx'], abs_errors=loss_info['abs_errors']) if self.learn_step % self.policy_delay == 0: for p in self.ac.q.parameters(): p.requires_grad = False self.pi_optimizer.zero_grad() if self.per_flag: (tree_idx, batch_memory, ISWeights) = data o = [] for i in range(len(batch_memory)): o.append(batch_memory[i][0]) o = torch.as_tensor(np.array(o), dtype=torch.float32, device=self.device) else: o = data['obs'] q_pi = self.ac.q(o, self.ac.pi(o)) loss_pi = -q_pi.mean() loss_pi.backward() self.pi_optimizer.step() for p in self.ac.q.parameters(): p.requires_grad = True with torch.no_grad(): for (p, p_targ) in zip(self.ac.parameters(), self.ac_targ.parameters()): p_targ.data.mul_(self.polyak) p_targ.data.add_((1 - self.polyak) * p.data) self.learn_step += 1 return (loss_q, loss_info['Q1Vals'].detach().cpu().numpy(), loss_info['Q2Vals'].detach().cpu().numpy())
DRLib
positive
def test_alter_part(): def verify_alter(table, attribute_sql): definition_original = schema.connection.query(f'SHOW CREATE TABLE {table.full_table_name}').fetchone()[1] table.definition = table.definition_new table.alter(prompt=False) definition_new = schema.connection.query(f'SHOW CREATE TABLE {table.full_table_name}').fetchone()[1] assert re.sub(f'{attribute_sql},\n ', '', definition_new) == definition_original <DeepExtract> definition_original = schema.connection.query(f'SHOW CREATE TABLE {Parent.Child.full_table_name}').fetchone()[1] Parent.Child.definition = Parent.Child.definition_new Parent.Child.alter(prompt=False) definition_new = schema.connection.query(f'SHOW CREATE TABLE {Parent.Child.full_table_name}').fetchone()[1] assert re.sub(f"{'`child_id` .* DEFAULT NULL'},\n ", '', definition_new) == definition_original </DeepExtract> <DeepExtract> definition_original = schema.connection.query(f'SHOW CREATE TABLE {Parent.Grandchild.full_table_name}').fetchone()[1] Parent.Grandchild.definition = Parent.Grandchild.definition_new Parent.Grandchild.alter(prompt=False) definition_new = schema.connection.query(f'SHOW CREATE TABLE {Parent.Grandchild.full_table_name}').fetchone()[1] assert re.sub(f"{'`grandchild_id` .* DEFAULT NULL'},\n ", '', definition_new) == definition_original </DeepExtract>
def test_alter_part(): def verify_alter(table, attribute_sql): definition_original = schema.connection.query(f'SHOW CREATE TABLE {table.full_table_name}').fetchone()[1] table.definition = table.definition_new table.alter(prompt=False) definition_new = schema.connection.query(f'SHOW CREATE TABLE {table.full_table_name}').fetchone()[1] assert re.sub(f'{attribute_sql},\n ', '', definition_new) == definition_original definition_original = schema.connection.query(f'SHOW CREATE TABLE {Parent.Child.full_table_name}').fetchone()[1] Parent.Child.definition = Parent.Child.definition_new Parent.Child.alter(prompt=False) definition_new = schema.connection.query(f'SHOW CREATE TABLE {Parent.Child.full_table_name}').fetchone()[1] assert re.sub(f"{'`child_id` .* DEFAULT NULL'},\n ", '', definition_new) == definition_original definition_original = schema.connection.query(f'SHOW CREATE TABLE {Parent.Grandchild.full_table_name}').fetchone()[1] Parent.Grandchild.definition = Parent.Grandchild.definition_new Parent.Grandchild.alter(prompt=False) definition_new = schema.connection.query(f'SHOW CREATE TABLE {Parent.Grandchild.full_table_name}').fetchone()[1] assert re.sub(f"{'`grandchild_id` .* DEFAULT NULL'},\n ", '', definition_new) == definition_original </DeepExtract>
datajoint-python
positive
def __addInitialLinks(self): self.sliplinks = [] <DeepExtract> previous = self.letters[0] for item in self.letters[1:]: self.__addNonSlipLink(previous, item, label=self.successor) self.__addNonSlipLink(item, previous, label=self.predecessor) previous = item </DeepExtract> <DeepExtract> previous = self.numbers[0] for item in self.numbers[1:]: self.__addNonSlipLink(previous, item, label=self.successor) self.__addNonSlipLink(item, previous, label=self.predecessor) previous = item </DeepExtract> for letter in self.letters: <DeepExtract> categoryLength = self.letterCategory.conceptualDepth - letter.conceptualDepth self.__addCategoryLink(letter, self.letterCategory, categoryLength) link = self.__addLink(self.letterCategory, letter, None, 97.0) self.letterCategory.instanceLinks += [link] </DeepExtract> <DeepExtract> link = self.__addLink(self.samenessGroup, self.letterCategory, None, 50.0) self.samenessGroup.categoryLinks += [link] </DeepExtract> for number in self.numbers: <DeepExtract> categoryLength = self.length.conceptualDepth - number.conceptualDepth self.__addCategoryLink(number, self.length, categoryLength) link = self.__addLink(self.length, number, None, length) self.length.instanceLinks += [link] </DeepExtract> groups = [self.predecessorGroup, self.successorGroup, self.samenessGroup] for group in groups: <DeepExtract> link = self.__addLink(group, self.length, label, 95.0) group.lateralNonSlipLinks += [link] </DeepExtract> opposites = [(self.first, self.last), (self.leftmost, self.rightmost), (self.left, self.right), (self.successor, self.predecessor), (self.successorGroup, self.predecessorGroup)] for (a, b) in opposites: <DeepExtract> self.__addSlipLink(a, b, label=self.opposite) self.__addSlipLink(b, a, label=self.opposite) </DeepExtract> <DeepExtract> link = self.__addLink(self.letters[0], self.first, None, 75.0) self.letters[0].propertyLinks += [link] </DeepExtract> <DeepExtract> link = self.__addLink(self.letters[-1], self.last, None, 75.0) self.letters[-1].propertyLinks += [link] </DeepExtract> links = [(self.objectCategory, self.letter), (self.objectCategory, self.group), (self.stringPositionCategory, self.leftmost), (self.stringPositionCategory, self.rightmost), (self.stringPositionCategory, self.middle), (self.stringPositionCategory, self.single), (self.stringPositionCategory, self.whole), (self.alphabeticPositionCategory, self.first), (self.alphabeticPositionCategory, self.last), (self.directionCategory, self.left), (self.directionCategory, self.right), (self.bondCategory, self.predecessor), (self.bondCategory, self.successor), (self.bondCategory, self.sameness), (self.groupCategory, self.predecessorGroup), (self.groupCategory, self.successorGroup), (self.groupCategory, self.samenessGroup), (self.bondFacet, self.letterCategory), (self.bondFacet, self.length)] for (a, b) in links: <DeepExtract> categoryLength = a.conceptualDepth - b.conceptualDepth self.__addCategoryLink(b, a, categoryLength) link = self.__addLink(a, b, None, length) a.instanceLinks += [link] </DeepExtract> <DeepExtract> link = self.__addLink(self.sameness, self.samenessGroup, self.groupCategory, 30.0) self.sameness.lateralNonSlipLinks += [link] </DeepExtract> <DeepExtract> link = self.__addLink(self.successor, self.successorGroup, self.groupCategory, 60.0) self.successor.lateralNonSlipLinks += [link] </DeepExtract> <DeepExtract> link = self.__addLink(self.predecessor, self.predecessorGroup, self.groupCategory, 60.0) self.predecessor.lateralNonSlipLinks += [link] </DeepExtract> <DeepExtract> link = self.__addLink(self.samenessGroup, self.sameness, self.bondCategory, 90.0) self.samenessGroup.lateralNonSlipLinks += [link] </DeepExtract> <DeepExtract> link = self.__addLink(self.successorGroup, self.successor, self.bondCategory, 90.0) self.successorGroup.lateralNonSlipLinks += [link] </DeepExtract> <DeepExtract> link = self.__addLink(self.predecessorGroup, self.predecessor, self.bondCategory, 90.0) self.predecessorGroup.lateralNonSlipLinks += [link] </DeepExtract> <DeepExtract> link = self.__addLink(self.letterCategory, self.length, label, 95.0) self.letterCategory.lateralSlipLinks += [link] </DeepExtract> <DeepExtract> link = self.__addLink(self.length, self.letterCategory, label, 95.0) self.length.lateralSlipLinks += [link] </DeepExtract> <DeepExtract> link = self.__addLink(self.letter, self.group, label, 90.0) self.letter.lateralSlipLinks += [link] </DeepExtract> <DeepExtract> link = self.__addLink(self.group, self.letter, label, 90.0) self.group.lateralSlipLinks += [link] </DeepExtract> <DeepExtract> self.__addNonSlipLink(self.left, self.leftmost, length=90.0) self.__addNonSlipLink(self.leftmost, self.left, length=90.0) </DeepExtract> <DeepExtract> self.__addNonSlipLink(self.right, self.rightmost, length=90.0) self.__addNonSlipLink(self.rightmost, self.right, length=90.0) </DeepExtract> <DeepExtract> self.__addNonSlipLink(self.right, self.leftmost, length=100.0) self.__addNonSlipLink(self.leftmost, self.right, length=100.0) </DeepExtract> <DeepExtract> self.__addNonSlipLink(self.left, self.rightmost, length=100.0) self.__addNonSlipLink(self.rightmost, self.left, length=100.0) </DeepExtract> <DeepExtract> self.__addNonSlipLink(self.leftmost, self.first, length=100.0) self.__addNonSlipLink(self.first, self.leftmost, length=100.0) </DeepExtract> <DeepExtract> self.__addNonSlipLink(self.rightmost, self.first, length=100.0) self.__addNonSlipLink(self.first, self.rightmost, length=100.0) </DeepExtract> <DeepExtract> self.__addNonSlipLink(self.leftmost, self.last, length=100.0) self.__addNonSlipLink(self.last, self.leftmost, length=100.0) </DeepExtract> <DeepExtract> self.__addNonSlipLink(self.rightmost, self.last, length=100.0) self.__addNonSlipLink(self.last, self.rightmost, length=100.0) </DeepExtract> <DeepExtract> link = self.__addLink(self.single, self.whole, label, 90.0) self.single.lateralSlipLinks += [link] </DeepExtract> <DeepExtract> link = self.__addLink(self.whole, self.single, label, 90.0) self.whole.lateralSlipLinks += [link] </DeepExtract>
def __addInitialLinks(self): self.sliplinks = [] previous = self.letters[0] for item in self.letters[1:]: self.__addNonSlipLink(previous, item, label=self.successor) self.__addNonSlipLink(item, previous, label=self.predecessor) previous = item previous = self.numbers[0] for item in self.numbers[1:]: self.__addNonSlipLink(previous, item, label=self.successor) self.__addNonSlipLink(item, previous, label=self.predecessor) previous = item for letter in self.letters: categoryLength = self.letterCategory.conceptualDepth - letter.conceptualDepth self.__addCategoryLink(letter, self.letterCategory, categoryLength) link = self.__addLink(self.letterCategory, letter, None, 97.0) self.letterCategory.instanceLinks += [link] link = self.__addLink(self.samenessGroup, self.letterCategory, None, 50.0) self.samenessGroup.categoryLinks += [link] for number in self.numbers: categoryLength = self.length.conceptualDepth - number.conceptualDepth self.__addCategoryLink(number, self.length, categoryLength) link = self.__addLink(self.length, number, None, length) self.length.instanceLinks += [link] groups = [self.predecessorGroup, self.successorGroup, self.samenessGroup] for group in groups: link = self.__addLink(group, self.length, label, 95.0) group.lateralNonSlipLinks += [link] opposites = [(self.first, self.last), (self.leftmost, self.rightmost), (self.left, self.right), (self.successor, self.predecessor), (self.successorGroup, self.predecessorGroup)] for (a, b) in opposites: self.__addSlipLink(a, b, label=self.opposite) self.__addSlipLink(b, a, label=self.opposite) link = self.__addLink(self.letters[0], self.first, None, 75.0) self.letters[0].propertyLinks += [link] link = self.__addLink(self.letters[-1], self.last, None, 75.0) self.letters[-1].propertyLinks += [link] links = [(self.objectCategory, self.letter), (self.objectCategory, self.group), (self.stringPositionCategory, self.leftmost), (self.stringPositionCategory, self.rightmost), (self.stringPositionCategory, self.middle), (self.stringPositionCategory, self.single), (self.stringPositionCategory, self.whole), (self.alphabeticPositionCategory, self.first), (self.alphabeticPositionCategory, self.last), (self.directionCategory, self.left), (self.directionCategory, self.right), (self.bondCategory, self.predecessor), (self.bondCategory, self.successor), (self.bondCategory, self.sameness), (self.groupCategory, self.predecessorGroup), (self.groupCategory, self.successorGroup), (self.groupCategory, self.samenessGroup), (self.bondFacet, self.letterCategory), (self.bondFacet, self.length)] for (a, b) in links: categoryLength = a.conceptualDepth - b.conceptualDepth self.__addCategoryLink(b, a, categoryLength) link = self.__addLink(a, b, None, length) a.instanceLinks += [link] link = self.__addLink(self.sameness, self.samenessGroup, self.groupCategory, 30.0) self.sameness.lateralNonSlipLinks += [link] link = self.__addLink(self.successor, self.successorGroup, self.groupCategory, 60.0) self.successor.lateralNonSlipLinks += [link] link = self.__addLink(self.predecessor, self.predecessorGroup, self.groupCategory, 60.0) self.predecessor.lateralNonSlipLinks += [link] link = self.__addLink(self.samenessGroup, self.sameness, self.bondCategory, 90.0) self.samenessGroup.lateralNonSlipLinks += [link] link = self.__addLink(self.successorGroup, self.successor, self.bondCategory, 90.0) self.successorGroup.lateralNonSlipLinks += [link] link = self.__addLink(self.predecessorGroup, self.predecessor, self.bondCategory, 90.0) self.predecessorGroup.lateralNonSlipLinks += [link] link = self.__addLink(self.letterCategory, self.length, label, 95.0) self.letterCategory.lateralSlipLinks += [link] link = self.__addLink(self.length, self.letterCategory, label, 95.0) self.length.lateralSlipLinks += [link] link = self.__addLink(self.letter, self.group, label, 90.0) self.letter.lateralSlipLinks += [link] link = self.__addLink(self.group, self.letter, label, 90.0) self.group.lateralSlipLinks += [link] self.__addNonSlipLink(self.left, self.leftmost, length=90.0) self.__addNonSlipLink(self.leftmost, self.left, length=90.0) self.__addNonSlipLink(self.right, self.rightmost, length=90.0) self.__addNonSlipLink(self.rightmost, self.right, length=90.0) self.__addNonSlipLink(self.right, self.leftmost, length=100.0) self.__addNonSlipLink(self.leftmost, self.right, length=100.0) self.__addNonSlipLink(self.left, self.rightmost, length=100.0) self.__addNonSlipLink(self.rightmost, self.left, length=100.0) self.__addNonSlipLink(self.leftmost, self.first, length=100.0) self.__addNonSlipLink(self.first, self.leftmost, length=100.0) self.__addNonSlipLink(self.rightmost, self.first, length=100.0) self.__addNonSlipLink(self.first, self.rightmost, length=100.0) self.__addNonSlipLink(self.leftmost, self.last, length=100.0) self.__addNonSlipLink(self.last, self.leftmost, length=100.0) self.__addNonSlipLink(self.rightmost, self.last, length=100.0) self.__addNonSlipLink(self.last, self.rightmost, length=100.0) link = self.__addLink(self.single, self.whole, label, 90.0) self.single.lateralSlipLinks += [link] link = self.__addLink(self.whole, self.single, label, 90.0) self.whole.lateralSlipLinks += [link] </DeepExtract>
copycat
positive
def evaluate_boxes(dataset, all_boxes, output_dir, use_matlab=False): """Evaluate bounding box detection.""" logger.info('Evaluating detections') not_comp = not cfg.TEST.COMPETITION_MODE if _use_json_dataset_evaluator(dataset): coco_eval = json_dataset_evaluator.evaluate_boxes(dataset, all_boxes, output_dir, use_salt=not_comp, cleanup=not_comp) <DeepExtract> res = _empty_box_results() if coco_eval is not None: s = coco_eval.stats res['box']['AP'] = s[COCO_AP] res['box']['AP50'] = s[COCO_AP50] res['box']['AP75'] = s[COCO_AP75] res['box']['APs'] = s[COCO_APS] res['box']['APm'] = s[COCO_APM] res['box']['APl'] = s[COCO_APL] box_results = res </DeepExtract> elif _use_cityscapes_evaluator(dataset): logger.warn('Cityscapes bbox evaluated using COCO metrics/conversions') coco_eval = json_dataset_evaluator.evaluate_boxes(dataset, all_boxes, output_dir, use_salt=not_comp, cleanup=not_comp) <DeepExtract> res = _empty_box_results() if coco_eval is not None: s = coco_eval.stats res['box']['AP'] = s[COCO_AP] res['box']['AP50'] = s[COCO_AP50] res['box']['AP75'] = s[COCO_AP75] res['box']['APs'] = s[COCO_APS] res['box']['APm'] = s[COCO_APM] res['box']['APl'] = s[COCO_APL] box_results = res </DeepExtract> elif _use_voc_evaluator(dataset): voc_eval = voc_dataset_evaluator.evaluate_boxes(dataset, all_boxes, output_dir, use_matlab=use_matlab) <DeepExtract> box_results = _empty_box_results() </DeepExtract> else: raise NotImplementedError('No evaluator for dataset: {}'.format(dataset.name)) return OrderedDict([(dataset.name, box_results)])
def evaluate_boxes(dataset, all_boxes, output_dir, use_matlab=False): """Evaluate bounding box detection.""" logger.info('Evaluating detections') not_comp = not cfg.TEST.COMPETITION_MODE if _use_json_dataset_evaluator(dataset): coco_eval = json_dataset_evaluator.evaluate_boxes(dataset, all_boxes, output_dir, use_salt=not_comp, cleanup=not_comp) res = _empty_box_results() if coco_eval is not None: s = coco_eval.stats res['box']['AP'] = s[COCO_AP] res['box']['AP50'] = s[COCO_AP50] res['box']['AP75'] = s[COCO_AP75] res['box']['APs'] = s[COCO_APS] res['box']['APm'] = s[COCO_APM] res['box']['APl'] = s[COCO_APL] box_results = res elif _use_cityscapes_evaluator(dataset): logger.warn('Cityscapes bbox evaluated using COCO metrics/conversions') coco_eval = json_dataset_evaluator.evaluate_boxes(dataset, all_boxes, output_dir, use_salt=not_comp, cleanup=not_comp) res = _empty_box_results() if coco_eval is not None: s = coco_eval.stats res['box']['AP'] = s[COCO_AP] res['box']['AP50'] = s[COCO_AP50] res['box']['AP75'] = s[COCO_AP75] res['box']['APs'] = s[COCO_APS] res['box']['APm'] = s[COCO_APM] res['box']['APl'] = s[COCO_APL] box_results = res elif _use_voc_evaluator(dataset): voc_eval = voc_dataset_evaluator.evaluate_boxes(dataset, all_boxes, output_dir, use_matlab=use_matlab) box_results = _empty_box_results() else: raise NotImplementedError('No evaluator for dataset: {}'.format(dataset.name)) return OrderedDict([(dataset.name, box_results)])
AIC2018_iamai
positive
@classmethod def from_tuples(cls, fieldname, value, header_formatter=format_header_param_html5): """ A :class:`~urllib3.fields.RequestField` factory from old-style tuple parameters. Supports constructing :class:`~urllib3.fields.RequestField` from parameter of key/value strings AND key/filetuple. A filetuple is a (filename, data, MIME type) tuple where the MIME type is optional. For example:: 'foo': 'bar', 'fakefile': ('foofile.txt', 'contents of foofile'), 'realfile': ('barfile.txt', open('realfile').read()), 'typedfile': ('bazfile.bin', open('bazfile').read(), 'image/jpeg'), 'nonamefile': 'contents of nonamefile field', Field names and filenames must be unicode. """ if isinstance(value, tuple): if len(value) == 3: (filename, data, content_type) = value else: (filename, data) = value <DeepExtract> if filename: content_type = mimetypes.guess_type(filename)[0] or default content_type = default </DeepExtract> else: filename = None content_type = None data = value request_param = cls(fieldname, data, filename=filename, header_formatter=header_formatter) request_param.make_multipart(content_type=content_type) return request_param
@classmethod def from_tuples(cls, fieldname, value, header_formatter=format_header_param_html5): """ A :class:`~urllib3.fields.RequestField` factory from old-style tuple parameters. Supports constructing :class:`~urllib3.fields.RequestField` from parameter of key/value strings AND key/filetuple. A filetuple is a (filename, data, MIME type) tuple where the MIME type is optional. For example:: 'foo': 'bar', 'fakefile': ('foofile.txt', 'contents of foofile'), 'realfile': ('barfile.txt', open('realfile').read()), 'typedfile': ('bazfile.bin', open('bazfile').read(), 'image/jpeg'), 'nonamefile': 'contents of nonamefile field', Field names and filenames must be unicode. """ if isinstance(value, tuple): if len(value) == 3: (filename, data, content_type) = value else: (filename, data) = value if filename: content_type = mimetypes.guess_type(filename)[0] or default content_type = default else: filename = None content_type = None data = value request_param = cls(fieldname, data, filename=filename, header_formatter=header_formatter) request_param.make_multipart(content_type=content_type) return request_param
alexa-sky-hd
positive
def __getitem__(self, index): img_id = self.images[index] img_info = self.coco.loadImgs(ids=[img_id])[0] img_path = os.path.join(self.img_dir, img_info['file_name']) img = cv2.imread(img_path) (height, width) = (img.shape[0], img.shape[1]) c = np.array([img.shape[1] / 2.0, img.shape[0] / 2.0]) s = max(img.shape[0], img.shape[1]) * 1.0 flipped = False if self.split == 'train': if not self.opt.not_rand_crop: s = s * np.random.choice(np.arange(0.6, 1.4, 0.1)) <DeepExtract> i = 1 while img.shape[1] - 128 // i <= 128 // i: i *= 2 w_border = 128 // i </DeepExtract> <DeepExtract> i = 1 while img.shape[0] - 128 // i <= 128 // i: i *= 2 h_border = 128 // i </DeepExtract> c[0] = np.random.randint(low=w_border, high=img.shape[1] - w_border) c[1] = np.random.randint(low=h_border, high=img.shape[0] - h_border) else: sf = self.opt.scale cf = self.opt.shift s = s * np.clip(np.random.randn() * sf + 1, 1 - sf, 1 + sf) c[0] += img.shape[1] * np.clip(np.random.randn() * cf, -2 * cf, 2 * cf) c[1] += img.shape[0] * np.clip(np.random.randn() * cf, -2 * cf, 2 * cf) if np.random.random() < self.opt.flip: flipped = True img = img[:, ::-1, :] trans_input = get_affine_transform(c, s, 0, [self.opt.input_res, self.opt.input_res]) inp = cv2.warpAffine(img, trans_input, (self.opt.input_res, self.opt.input_res), flags=cv2.INTER_LINEAR) inp = inp.astype(np.float32) / 255.0 if self.split == 'train' and (not self.opt.no_color_aug): color_aug(self._data_rng, inp, self._eig_val, self._eig_vec) inp = (inp - self.mean) / self.std inp = inp.transpose(2, 0, 1) output_res = self.opt.output_res num_classes = self.opt.num_classes trans_output = get_affine_transform(c, s, 0, [output_res, output_res]) num_hm = 1 if self.opt.agnostic_ex else num_classes hm_t = np.zeros((num_hm, output_res, output_res), dtype=np.float32) hm_l = np.zeros((num_hm, output_res, output_res), dtype=np.float32) hm_b = np.zeros((num_hm, output_res, output_res), dtype=np.float32) hm_r = np.zeros((num_hm, output_res, output_res), dtype=np.float32) hm_c = np.zeros((num_classes, output_res, output_res), dtype=np.float32) reg_t = np.zeros((self.max_objs, 2), dtype=np.float32) reg_l = np.zeros((self.max_objs, 2), dtype=np.float32) reg_b = np.zeros((self.max_objs, 2), dtype=np.float32) reg_r = np.zeros((self.max_objs, 2), dtype=np.float32) ind_t = np.zeros(self.max_objs, dtype=np.int64) ind_l = np.zeros(self.max_objs, dtype=np.int64) ind_b = np.zeros(self.max_objs, dtype=np.int64) ind_r = np.zeros(self.max_objs, dtype=np.int64) reg_mask = np.zeros(self.max_objs, dtype=np.uint8) ann_ids = self.coco.getAnnIds(imgIds=[img_id]) anns = self.coco.loadAnns(ids=ann_ids) num_objs = min(len(anns), self.max_objs) draw_gaussian = draw_msra_gaussian if self.opt.mse_loss else draw_umich_gaussian for k in range(num_objs): ann = anns[k] pts = np.array(ann['extreme_points'], dtype=np.float32).reshape(4, 2) cls_id = int(self.cat_ids[ann['category_id']]) hm_id = 0 if self.opt.agnostic_ex else cls_id if flipped: pts[:, 0] = width - pts[:, 0] - 1 (pts[1], pts[3]) = (pts[3].copy(), pts[1].copy()) for j in range(4): pts[j] = affine_transform(pts[j], trans_output) pts = np.clip(pts, 0, self.opt.output_res - 1) (h, w) = (pts[2, 1] - pts[0, 1], pts[3, 0] - pts[1, 0]) if h > 0 and w > 0: radius = gaussian_radius((math.ceil(h), math.ceil(w))) radius = max(0, int(radius)) pt_int = pts.astype(np.int32) draw_gaussian(hm_t[hm_id], pt_int[0], radius) draw_gaussian(hm_l[hm_id], pt_int[1], radius) draw_gaussian(hm_b[hm_id], pt_int[2], radius) draw_gaussian(hm_r[hm_id], pt_int[3], radius) reg_t[k] = pts[0] - pt_int[0] reg_l[k] = pts[1] - pt_int[1] reg_b[k] = pts[2] - pt_int[2] reg_r[k] = pts[3] - pt_int[3] ind_t[k] = pt_int[0, 1] * output_res + pt_int[0, 0] ind_l[k] = pt_int[1, 1] * output_res + pt_int[1, 0] ind_b[k] = pt_int[2, 1] * output_res + pt_int[2, 0] ind_r[k] = pt_int[3, 1] * output_res + pt_int[3, 0] ct = [int((pts[3, 0] + pts[1, 0]) / 2), int((pts[0, 1] + pts[2, 1]) / 2)] draw_gaussian(hm_c[cls_id], ct, radius) reg_mask[k] = 1 ret = {'input': inp, 'hm_t': hm_t, 'hm_l': hm_l, 'hm_b': hm_b, 'hm_r': hm_r, 'hm_c': hm_c} if self.opt.reg_offset: ret.update({'reg_mask': reg_mask, 'reg_t': reg_t, 'reg_l': reg_l, 'reg_b': reg_b, 'reg_r': reg_r, 'ind_t': ind_t, 'ind_l': ind_l, 'ind_b': ind_b, 'ind_r': ind_r}) return ret
def __getitem__(self, index): img_id = self.images[index] img_info = self.coco.loadImgs(ids=[img_id])[0] img_path = os.path.join(self.img_dir, img_info['file_name']) img = cv2.imread(img_path) (height, width) = (img.shape[0], img.shape[1]) c = np.array([img.shape[1] / 2.0, img.shape[0] / 2.0]) s = max(img.shape[0], img.shape[1]) * 1.0 flipped = False if self.split == 'train': if not self.opt.not_rand_crop: s = s * np.random.choice(np.arange(0.6, 1.4, 0.1)) i = 1 while img.shape[1] - 128 // i <= 128 // i: i *= 2 w_border = 128 // i i = 1 while img.shape[0] - 128 // i <= 128 // i: i *= 2 h_border = 128 // i c[0] = np.random.randint(low=w_border, high=img.shape[1] - w_border) c[1] = np.random.randint(low=h_border, high=img.shape[0] - h_border) else: sf = self.opt.scale cf = self.opt.shift s = s * np.clip(np.random.randn() * sf + 1, 1 - sf, 1 + sf) c[0] += img.shape[1] * np.clip(np.random.randn() * cf, -2 * cf, 2 * cf) c[1] += img.shape[0] * np.clip(np.random.randn() * cf, -2 * cf, 2 * cf) if np.random.random() < self.opt.flip: flipped = True img = img[:, ::-1, :] trans_input = get_affine_transform(c, s, 0, [self.opt.input_res, self.opt.input_res]) inp = cv2.warpAffine(img, trans_input, (self.opt.input_res, self.opt.input_res), flags=cv2.INTER_LINEAR) inp = inp.astype(np.float32) / 255.0 if self.split == 'train' and (not self.opt.no_color_aug): color_aug(self._data_rng, inp, self._eig_val, self._eig_vec) inp = (inp - self.mean) / self.std inp = inp.transpose(2, 0, 1) output_res = self.opt.output_res num_classes = self.opt.num_classes trans_output = get_affine_transform(c, s, 0, [output_res, output_res]) num_hm = 1 if self.opt.agnostic_ex else num_classes hm_t = np.zeros((num_hm, output_res, output_res), dtype=np.float32) hm_l = np.zeros((num_hm, output_res, output_res), dtype=np.float32) hm_b = np.zeros((num_hm, output_res, output_res), dtype=np.float32) hm_r = np.zeros((num_hm, output_res, output_res), dtype=np.float32) hm_c = np.zeros((num_classes, output_res, output_res), dtype=np.float32) reg_t = np.zeros((self.max_objs, 2), dtype=np.float32) reg_l = np.zeros((self.max_objs, 2), dtype=np.float32) reg_b = np.zeros((self.max_objs, 2), dtype=np.float32) reg_r = np.zeros((self.max_objs, 2), dtype=np.float32) ind_t = np.zeros(self.max_objs, dtype=np.int64) ind_l = np.zeros(self.max_objs, dtype=np.int64) ind_b = np.zeros(self.max_objs, dtype=np.int64) ind_r = np.zeros(self.max_objs, dtype=np.int64) reg_mask = np.zeros(self.max_objs, dtype=np.uint8) ann_ids = self.coco.getAnnIds(imgIds=[img_id]) anns = self.coco.loadAnns(ids=ann_ids) num_objs = min(len(anns), self.max_objs) draw_gaussian = draw_msra_gaussian if self.opt.mse_loss else draw_umich_gaussian for k in range(num_objs): ann = anns[k] pts = np.array(ann['extreme_points'], dtype=np.float32).reshape(4, 2) cls_id = int(self.cat_ids[ann['category_id']]) hm_id = 0 if self.opt.agnostic_ex else cls_id if flipped: pts[:, 0] = width - pts[:, 0] - 1 (pts[1], pts[3]) = (pts[3].copy(), pts[1].copy()) for j in range(4): pts[j] = affine_transform(pts[j], trans_output) pts = np.clip(pts, 0, self.opt.output_res - 1) (h, w) = (pts[2, 1] - pts[0, 1], pts[3, 0] - pts[1, 0]) if h > 0 and w > 0: radius = gaussian_radius((math.ceil(h), math.ceil(w))) radius = max(0, int(radius)) pt_int = pts.astype(np.int32) draw_gaussian(hm_t[hm_id], pt_int[0], radius) draw_gaussian(hm_l[hm_id], pt_int[1], radius) draw_gaussian(hm_b[hm_id], pt_int[2], radius) draw_gaussian(hm_r[hm_id], pt_int[3], radius) reg_t[k] = pts[0] - pt_int[0] reg_l[k] = pts[1] - pt_int[1] reg_b[k] = pts[2] - pt_int[2] reg_r[k] = pts[3] - pt_int[3] ind_t[k] = pt_int[0, 1] * output_res + pt_int[0, 0] ind_l[k] = pt_int[1, 1] * output_res + pt_int[1, 0] ind_b[k] = pt_int[2, 1] * output_res + pt_int[2, 0] ind_r[k] = pt_int[3, 1] * output_res + pt_int[3, 0] ct = [int((pts[3, 0] + pts[1, 0]) / 2), int((pts[0, 1] + pts[2, 1]) / 2)] draw_gaussian(hm_c[cls_id], ct, radius) reg_mask[k] = 1 ret = {'input': inp, 'hm_t': hm_t, 'hm_l': hm_l, 'hm_b': hm_b, 'hm_r': hm_r, 'hm_c': hm_c} if self.opt.reg_offset: ret.update({'reg_mask': reg_mask, 'reg_t': reg_t, 'reg_l': reg_l, 'reg_b': reg_b, 'reg_r': reg_r, 'ind_t': ind_t, 'ind_l': ind_l, 'ind_b': ind_b, 'ind_r': ind_r}) return ret
CenterNet-CondInst
positive
def test_filter_file(get_product_flat): producer = models.Producer.objects.create() models.Product.objects.create(name='a', producer=producer, image='fred.jpg') models.Product.objects.create(name='b', producer=producer, image='bob.jpg') <DeepExtract> def helper(queries, *args, **kwargs): res = 1(queries, *args, **kwargs) if res['body'] == []: assert res['cols'] == [] assert res['rows'] == [] data = [] else: assert res['cols'] == [[]] data = [r + b for (r, b) in zip(res['rows'], res['body'][0])] data = helper </DeepExtract> <DeepExtract> assert sorted(data, key=str) == sorted([['b', '/media/bob.jpg']], key=str) </DeepExtract>
def test_filter_file(get_product_flat): producer = models.Producer.objects.create() models.Product.objects.create(name='a', producer=producer, image='fred.jpg') models.Product.objects.create(name='b', producer=producer, image='bob.jpg') def helper(queries, *args, **kwargs): res = 1(queries, *args, **kwargs) if res['body'] == []: assert res['cols'] == [] assert res['rows'] == [] data = [] else: assert res['cols'] == [[]] data = [r + b for (r, b) in zip(res['rows'], res['body'][0])] data = helper assert sorted(data, key=str) == sorted([['b', '/media/bob.jpg']], key=str) </DeepExtract>
django-data-browser
positive
def importable_name(cls): """ >>> class Example(object): ... pass >>> ex = Example() >>> importable_name(ex.__class__) == 'jsonpickle.util.Example' True >>> importable_name(type(25)) == '__builtin__.int' True >>> importable_name(None.__class__) == '__builtin__.NoneType' True >>> importable_name(False.__class__) == '__builtin__.bool' True >>> importable_name(AttributeError) == '__builtin__.AttributeError' True """ name = cls.__name__ <DeepExtract> if cls.__module__ == 'builtins' or cls.__module__ == 'exceptions': cls.__module__ = '__builtin__' else: cls.__module__ = cls.__module__ </DeepExtract> return '%s.%s' % (module, name)
def importable_name(cls): """ >>> class Example(object): ... pass >>> ex = Example() >>> importable_name(ex.__class__) == 'jsonpickle.util.Example' True >>> importable_name(type(25)) == '__builtin__.int' True >>> importable_name(None.__class__) == '__builtin__.NoneType' True >>> importable_name(False.__class__) == '__builtin__.bool' True >>> importable_name(AttributeError) == '__builtin__.AttributeError' True """ name = cls.__name__ if cls.__module__ == 'builtins' or cls.__module__ == 'exceptions': cls.__module__ = '__builtin__' else: cls.__module__ = cls.__module__ return '%s.%s' % (module, name)
appkernel
positive
def visit_block_quote(self, node): self.set_first_last(node) self.sp() <DeepExtract> self.context.append('{') self.last_output_char = '{' </DeepExtract> <DeepExtract> self.indent(by) self.rindent(by) self.noindent() </DeepExtract>
def visit_block_quote(self, node): self.set_first_last(node) self.sp() self.context.append('{') self.last_output_char = '{' self.indent(by) self.rindent(by) self.noindent() </DeepExtract>
ebookmaker
positive
def ls_tree(reference, path=None, directory=None): """ Returns a dictionary of files and folders for a given reference and path. Implemented using ``git ls-tree``. If an invalid reference and/or path None is returned. :param reference: git reference to pull from (branch, tag, or commit) :param path: tree to list :param directory: directory in which to run this command :returns: dict if a directory (or a reference) or None if it does not exist :raises: subprocess.CalledProcessError if any git calls fail :raises: RuntimeError if the output from git is not what we expected """ <DeepExtract> if type(reference) == str: reference = [reference] debug('track_branches(' + str(reference) + ', ' + str(directory) + ')') if reference == []: return current_branch = get_current_branch(directory) try: local_branches = get_branches(local_only=True, directory=directory) all_branches = get_branches(local_only=False, directory=directory) untracked_branches = [] for branch in all_branches: if branch.startswith('remotes/'): if branch.count('/') >= 2: branch = '/'.join(branch.split('/')[2:]) if branch not in local_branches: untracked_branches.append(branch) if reference is not None: branches_to_track = [] for untracked in untracked_branches: if untracked in reference: branches_to_track.append(untracked) else: branches_to_track = untracked_branches debug('Tracking branches: ' + str(branches_to_track)) for branch in branches_to_track: checkout(branch, directory=directory) finally: if current_branch: checkout(current_branch, directory=directory) </DeepExtract> cmd = 'git ls-tree ' + reference if path is not None and path != '': cmd += ':' + path (retcode, out, err) = execute_command(cmd, autofail=False, silent_error=True, cwd=directory, return_io=True) if retcode != 0: return None items = {} for line in out.splitlines(): tokens = line.split() if len(tokens) != 4: return None if tokens[1] not in ['blob', 'tree']: raise RuntimeError('item not a blob or tree') if tokens[3] in items: raise RuntimeError('duplicate name in ls tree') items[tokens[3]] = 'file' if tokens[1] == 'blob' else 'directory' return items
def ls_tree(reference, path=None, directory=None): """ Returns a dictionary of files and folders for a given reference and path. Implemented using ``git ls-tree``. If an invalid reference and/or path None is returned. :param reference: git reference to pull from (branch, tag, or commit) :param path: tree to list :param directory: directory in which to run this command :returns: dict if a directory (or a reference) or None if it does not exist :raises: subprocess.CalledProcessError if any git calls fail :raises: RuntimeError if the output from git is not what we expected """ if type(reference) == str: reference = [reference] debug('track_branches(' + str(reference) + ', ' + str(directory) + ')') if reference == []: return current_branch = get_current_branch(directory) try: local_branches = get_branches(local_only=True, directory=directory) all_branches = get_branches(local_only=False, directory=directory) untracked_branches = [] for branch in all_branches: if branch.startswith('remotes/'): if branch.count('/') >= 2: branch = '/'.join(branch.split('/')[2:]) if branch not in local_branches: untracked_branches.append(branch) if reference is not None: branches_to_track = [] for untracked in untracked_branches: if untracked in reference: branches_to_track.append(untracked) else: branches_to_track = untracked_branches debug('Tracking branches: ' + str(branches_to_track)) for branch in branches_to_track: checkout(branch, directory=directory) finally: if current_branch: checkout(current_branch, directory=directory) cmd = 'git ls-tree ' + reference if path is not None and path != '': cmd += ':' + path (retcode, out, err) = execute_command(cmd, autofail=False, silent_error=True, cwd=directory, return_io=True) if retcode != 0: return None items = {} for line in out.splitlines(): tokens = line.split() if len(tokens) != 4: return None if tokens[1] not in ['blob', 'tree']: raise RuntimeError('item not a blob or tree') if tokens[3] in items: raise RuntimeError('duplicate name in ls tree') items[tokens[3]] = 'file' if tokens[1] == 'blob' else 'directory' return items
bloom
positive
def main(): """ Main program. """ try: <DeepExtract> ap = argparse.ArgumentParser(prog='EbookMaker') CommonCode.add_common_options(ap, CONFIG_FILES[1]) add_local_options(ap) CommonCode.set_arg_defaults(ap, CONFIG_FILES[1]) global options options.update(vars(CommonCode.parse_config_and_args(ap, CONFIG_FILES[0], {'proxies': None, 'xelatex': 'xelatex', 'mobigen': 'ebook-convert', 'mobilang': 'ebook-convert', 'mobikf8': 'ebook-convert', 'groff': 'groff', 'rhyming_dict': None, 'timestamp': datetime.datetime.today().isoformat()[:19]}))) if not re.search('^(https?|file):', options.url): options.url = os.path.abspath(options.url) </DeepExtract> except configparser.Error as what: error('Error in configuration file: %s', str(what)) return 1 Logger.set_log_level(options.verbose) options.types = options.types or ['all'] options.types = CommonCode.add_dependencies(options.types, DEPENDENCIES, BUILD_ORDER) debug('Building types: %s' % ' '.join(options.types)) start_time = datetime.datetime.now() ParserFactory.load_parsers() WriterFactory.load_writers() PackagerFactory.load_packagers() output_files = dict() if options.is_job_queue: job_queue = cPickle.load(sys.stdin.buffer) else: job_queue = [] for type_ in options.types: job = CommonCode.Job(type_) job.url = options.url job.ebook = options.ebook job.outputdir = options.outputdir job_queue.append(job) dc = None for job in job_queue: try: info('Job starting for type %s from %s', job.type, job.url) <DeepExtract> url = job.url parser = ParserFactory.ParserFactory.create(url) try: parser.parse() except AttributeError as e: raise Exception(f'the file {job.url} could not be found or was unparsable') if options.is_job_queue: dc = PGDCObject() dc.load_from_database(job.ebook) dc.source = job.source dc.opf_identifier = job.opf_identifier dc = dc if options.coverpage_url: parser._make_coverpage_link(coverpage_url=options.coverpage_url) dc = DublinCore.GutenbergDublinCore() try: dc.load_from_rstheader(parser.unicode_content()) except (ValueError, UnicodeError): debug('No RST header found.') try: dc.load_from_parser(parser) except (ValueError, AttributeError, UnicodeError): debug('No HTML header found.') try: dc.load_from_pgheader(parser.unicode_content()) except (ValueError, UnicodeError): debug('No PG header found.') dc.source = parser.attribs.url dc.title = options.title or dc.title or 'NA' if options.author: dc.add_author(options.author, 'cre') if not dc.authors: dc.add_author('NA', 'cre') dc.project_gutenberg_id = options.ebook or dc.project_gutenberg_id if dc.project_gutenberg_id: dc.opf_identifier = '%sebooks/%d' % (gg.PG_URL, dc.project_gutenberg_id) else: dc.opf_identifier = 'urn:mybooks:%s' % hashlib.md5(dc.source.encode('utf-8')).hexdigest() if not dc.languages: info('no language found, using default') dc.add_lang_id('en') dc = dc </DeepExtract> job.dc = dc job.last_updated() job.outputfile = job.outputfile or make_output_filename(job.type, dc) output_files[job.type] = job.outputfile if job.type.startswith('kindle'): absoutputdir = os.path.abspath(job.outputdir) if job.type == 'kindle.images' and 'epub.images' in output_files: job.url = os.path.join(absoutputdir, output_files['epub.images']) elif job.type == 'kindle.noimages' and 'epub.noimages' in output_files: job.url = os.path.join(absoutputdir, output_files['epub.noimages']) if job.type.startswith('kf8') and 'epub3.images' in output_files: absoutputdir = os.path.abspath(job.outputdir) job.url = os.path.join(absoutputdir, output_files['epub3.images']) options.outputdir = job.outputdir <DeepExtract> log_handler = None Logger.ebook = job.ebook if job.logfile: log_handler = open_log(os.path.join(os.path.abspath(job.outputdir), job.logfile)) debug('=== Building %s ===' % job.type) start_time = datetime.datetime.now() try: if job.url: spider = Spider.Spider(job) for rewrite in options.rewrite: (from_url, to_url) = rewrite.split('>') spider.add_redirection(from_url, to_url) attribs = parsers.ParserAttributes() attribs.url = parsers.webify_url(job.url) attribs.id = 'start' if options.input_mediatype: attribs.orig_mediatype = attribs.HeaderElement.from_str(options.input_mediatype) spider.recursive_parse(attribs) if job.type.split('.')[0] in ('epub', 'epub3', 'html', 'kindle', 'cover', 'pdf'): elect_coverpage(spider, job.url, job.dc) job.url = spider.redirect(job.url) job.base_url = job.url job.spider = spider writer = WriterFactory.create(job.maintype) writer.build(job) if options.validate: writer.validate(job) packager = PackagerFactory.create(options.packager, job.type) if packager: packager.package(job) if job.type == 'html.images': options.html_images_list = list(job.spider.aux_file_iter()) if job.type.split('.')[0] == 'txt': ParserFactory.ParserFactory.parsers = {} except SkipOutputFormat as what: warning('%s' % what) except Exception as what: exception('%s' % what) end_time = datetime.datetime.now() info(' %s made in %s' % (job.type, end_time - start_time)) if log_handler: close_log(log_handler) </DeepExtract> if dc and hasattr(dc, 'session') and dc.session: dc.session.close() dc.session = None except Exception as e: critical('Job failed for type %s from %s', job.type, job.url) exception(e) continue packager = PackagerFactory.create(options.packager, 'push') if packager: job = job_queue[0] job.outputfile = '%d-final.zip' % dc.project_gutenberg_id packager.package(job) end_time = datetime.datetime.now() info(' Finished jobs. Total time: %s' % (end_time - start_time)) return 0
def main(): """ Main program. """ try: ap = argparse.ArgumentParser(prog='EbookMaker') CommonCode.add_common_options(ap, CONFIG_FILES[1]) add_local_options(ap) CommonCode.set_arg_defaults(ap, CONFIG_FILES[1]) global options options.update(vars(CommonCode.parse_config_and_args(ap, CONFIG_FILES[0], {'proxies': None, 'xelatex': 'xelatex', 'mobigen': 'ebook-convert', 'mobilang': 'ebook-convert', 'mobikf8': 'ebook-convert', 'groff': 'groff', 'rhyming_dict': None, 'timestamp': datetime.datetime.today().isoformat()[:19]}))) if not re.search('^(https?|file):', options.url): options.url = os.path.abspath(options.url) except configparser.Error as what: error('Error in configuration file: %s', str(what)) return 1 Logger.set_log_level(options.verbose) options.types = options.types or ['all'] options.types = CommonCode.add_dependencies(options.types, DEPENDENCIES, BUILD_ORDER) debug('Building types: %s' % ' '.join(options.types)) start_time = datetime.datetime.now() ParserFactory.load_parsers() WriterFactory.load_writers() PackagerFactory.load_packagers() output_files = dict() if options.is_job_queue: job_queue = cPickle.load(sys.stdin.buffer) else: job_queue = [] for type_ in options.types: job = CommonCode.Job(type_) job.url = options.url job.ebook = options.ebook job.outputdir = options.outputdir job_queue.append(job) dc = None for job in job_queue: try: info('Job starting for type %s from %s', job.type, job.url) url = job.url parser = ParserFactory.ParserFactory.create(url) try: parser.parse() except AttributeError as e: raise Exception(f'the file {job.url} could not be found or was unparsable') if options.is_job_queue: dc = PGDCObject() dc.load_from_database(job.ebook) dc.source = job.source dc.opf_identifier = job.opf_identifier dc = dc if options.coverpage_url: parser._make_coverpage_link(coverpage_url=options.coverpage_url) dc = DublinCore.GutenbergDublinCore() try: dc.load_from_rstheader(parser.unicode_content()) except (ValueError, UnicodeError): debug('No RST header found.') try: dc.load_from_parser(parser) except (ValueError, AttributeError, UnicodeError): debug('No HTML header found.') try: dc.load_from_pgheader(parser.unicode_content()) except (ValueError, UnicodeError): debug('No PG header found.') dc.source = parser.attribs.url dc.title = options.title or dc.title or 'NA' if options.author: dc.add_author(options.author, 'cre') if not dc.authors: dc.add_author('NA', 'cre') dc.project_gutenberg_id = options.ebook or dc.project_gutenberg_id if dc.project_gutenberg_id: dc.opf_identifier = '%sebooks/%d' % (gg.PG_URL, dc.project_gutenberg_id) else: dc.opf_identifier = 'urn:mybooks:%s' % hashlib.md5(dc.source.encode('utf-8')).hexdigest() if not dc.languages: info('no language found, using default') dc.add_lang_id('en') dc = dc job.dc = dc job.last_updated() job.outputfile = job.outputfile or make_output_filename(job.type, dc) output_files[job.type] = job.outputfile if job.type.startswith('kindle'): absoutputdir = os.path.abspath(job.outputdir) if job.type == 'kindle.images' and 'epub.images' in output_files: job.url = os.path.join(absoutputdir, output_files['epub.images']) elif job.type == 'kindle.noimages' and 'epub.noimages' in output_files: job.url = os.path.join(absoutputdir, output_files['epub.noimages']) if job.type.startswith('kf8') and 'epub3.images' in output_files: absoutputdir = os.path.abspath(job.outputdir) job.url = os.path.join(absoutputdir, output_files['epub3.images']) options.outputdir = job.outputdir log_handler = None Logger.ebook = job.ebook if job.logfile: log_handler = open_log(os.path.join(os.path.abspath(job.outputdir), job.logfile)) debug('=== Building %s ===' % job.type) start_time = datetime.datetime.now() try: if job.url: spider = Spider.Spider(job) for rewrite in options.rewrite: (from_url, to_url) = rewrite.split('>') spider.add_redirection(from_url, to_url) attribs = parsers.ParserAttributes() attribs.url = parsers.webify_url(job.url) attribs.id = 'start' if options.input_mediatype: attribs.orig_mediatype = attribs.HeaderElement.from_str(options.input_mediatype) spider.recursive_parse(attribs) if job.type.split('.')[0] in ('epub', 'epub3', 'html', 'kindle', 'cover', 'pdf'): elect_coverpage(spider, job.url, job.dc) job.url = spider.redirect(job.url) job.base_url = job.url job.spider = spider writer = WriterFactory.create(job.maintype) writer.build(job) if options.validate: writer.validate(job) packager = PackagerFactory.create(options.packager, job.type) if packager: packager.package(job) if job.type == 'html.images': options.html_images_list = list(job.spider.aux_file_iter()) if job.type.split('.')[0] == 'txt': ParserFactory.ParserFactory.parsers = {} except SkipOutputFormat as what: warning('%s' % what) except Exception as what: exception('%s' % what) end_time = datetime.datetime.now() info(' %s made in %s' % (job.type, end_time - start_time)) if log_handler: close_log(log_handler) if dc and hasattr(dc, 'session') and dc.session: dc.session.close() dc.session = None except Exception as e: critical('Job failed for type %s from %s', job.type, job.url) exception(e) continue packager = PackagerFactory.create(options.packager, 'push') if packager: job = job_queue[0] job.outputfile = '%d-final.zip' % dc.project_gutenberg_id packager.package(job) end_time = datetime.datetime.now() info(' Finished jobs. Total time: %s' % (end_time - start_time)) return 0
ebookmaker
positive
def test_reduce_data_dummyatlases(): n_jobs = 1 with tempfile.TemporaryDirectory() as datadir: for n_timeframes in ([25, 24], [25, 25]): n_voxels = 10 n_subjects = 2 n_components = 3 n_sessions = len(n_timeframes) np.random.seed(0) <DeepExtract> n_sessions = len(n_timeframes) cumsum_timeframes = np.cumsum([0] + n_timeframes) slices_timeframes = [slice(cumsum_timeframes[i], cumsum_timeframes[i + 1]) for i in range(n_sessions)] theta = np.linspace(-4 * np.pi, 4 * np.pi, int(np.sum(n_timeframes))) z = np.linspace(-2, 2, int(np.sum(n_timeframes))) r = z ** 2 + 1 x = r * np.sin(theta) y = r * np.cos(theta) S = np.vstack((x, y, z)) W = [] X = [] for subject in range(n_subjects): (Q, R) = np.linalg.qr(np.random.random((n_voxels, n_components))) W.append(Q.T) X_ = [] for session in range(n_sessions): S_s = S[:, slices_timeframes[session]] S_s = S_s - np.mean(S_s, axis=1, keepdims=True) noise = noise_level * np.random.random((n_voxels, n_timeframes[session])) noise = noise - np.mean(noise, axis=1, keepdims=True) data = Q.dot(S_s) + noise X_.append(data) X.append(X_) S = [S[:, s] - np.mean(S[:, s], axis=1, keepdims=True) for s in slices_timeframes] if input_format == 'array': paths = to_path(X, datadir) (paths, _, _) = (paths, W, S) elif input_format == 'list_of_list': (paths, _, _) = (X, W, S) elif input_format == 'list_of_array': (paths, _, _) = ([np.concatenate([X[i][j].T for j in range(n_sessions)]).T for i in range(n_subjects)], W, S) else: raise ValueError('Wrong input_format') </DeepExtract> atlas = np.arange(1, n_voxels + 1) data = reduce_data(paths, atlas=atlas, n_jobs=n_jobs, low_ram=False) for i in range(n_subjects): for j in range(n_sessions): assert_array_almost_equal(data[i, j].T, np.load(paths[i, j])) atlas = np.ones(n_voxels) data = reduce_data(paths, atlas=atlas, n_jobs=n_jobs, low_ram=False) for i in range(n_subjects): for j in range(n_sessions): assert_array_almost_equal(data[i, j].T.flatten(), np.mean(np.load(paths[i, j]), axis=0))
def test_reduce_data_dummyatlases(): n_jobs = 1 with tempfile.TemporaryDirectory() as datadir: for n_timeframes in ([25, 24], [25, 25]): n_voxels = 10 n_subjects = 2 n_components = 3 n_sessions = len(n_timeframes) np.random.seed(0) n_sessions = len(n_timeframes) cumsum_timeframes = np.cumsum([0] + n_timeframes) slices_timeframes = [slice(cumsum_timeframes[i], cumsum_timeframes[i + 1]) for i in range(n_sessions)] theta = np.linspace(-4 * np.pi, 4 * np.pi, int(np.sum(n_timeframes))) z = np.linspace(-2, 2, int(np.sum(n_timeframes))) r = z ** 2 + 1 x = r * np.sin(theta) y = r * np.cos(theta) S = np.vstack((x, y, z)) W = [] X = [] for subject in range(n_subjects): (Q, R) = np.linalg.qr(np.random.random((n_voxels, n_components))) W.append(Q.T) X_ = [] for session in range(n_sessions): S_s = S[:, slices_timeframes[session]] S_s = S_s - np.mean(S_s, axis=1, keepdims=True) noise = noise_level * np.random.random((n_voxels, n_timeframes[session])) noise = noise - np.mean(noise, axis=1, keepdims=True) data = Q.dot(S_s) + noise X_.append(data) X.append(X_) S = [S[:, s] - np.mean(S[:, s], axis=1, keepdims=True) for s in slices_timeframes] if input_format == 'array': paths = to_path(X, datadir) (paths, _, _) = (paths, W, S) elif input_format == 'list_of_list': (paths, _, _) = (X, W, S) elif input_format == 'list_of_array': (paths, _, _) = ([np.concatenate([X[i][j].T for j in range(n_sessions)]).T for i in range(n_subjects)], W, S) else: raise ValueError('Wrong input_format') atlas = np.arange(1, n_voxels + 1) data = reduce_data(paths, atlas=atlas, n_jobs=n_jobs, low_ram=False) for i in range(n_subjects): for j in range(n_sessions): assert_array_almost_equal(data[i, j].T, np.load(paths[i, j])) atlas = np.ones(n_voxels) data = reduce_data(paths, atlas=atlas, n_jobs=n_jobs, low_ram=False) for i in range(n_subjects): for j in range(n_sessions): assert_array_almost_equal(data[i, j].T.flatten(), np.mean(np.load(paths[i, j]), axis=0))
brainiak
positive
def forward(self, interp, interp_crit): <DeepExtract> if self.grad_outputs.size() != interp_crit.size(): self.grad_outputs.resize_(interp_crit.size()).fill_(1.0) grad_outputs = self.grad_outputs </DeepExtract> grad_interp = torch.autograd.grad(outputs=interp_crit, inputs=interp, grad_outputs=grad_outputs, create_graph=True, retain_graph=True, only_inputs=True)[0] grad_interp = grad_interp.view(grad_interp.size(0), -1) grad_interp_norm = grad_interp.norm(2, dim=1) loss = ((grad_interp_norm - 1) ** 2).mean() return loss
def forward(self, interp, interp_crit): if self.grad_outputs.size() != interp_crit.size(): self.grad_outputs.resize_(interp_crit.size()).fill_(1.0) grad_outputs = self.grad_outputs grad_interp = torch.autograd.grad(outputs=interp_crit, inputs=interp, grad_outputs=grad_outputs, create_graph=True, retain_graph=True, only_inputs=True)[0] grad_interp = grad_interp.view(grad_interp.size(0), -1) grad_interp_norm = grad_interp.norm(2, dim=1) loss = ((grad_interp_norm - 1) ** 2).mean() return loss
DeFlow
positive
def _parse_labels(labels_string: str) -> Dict[str, str]: labels: Dict[str, str] = {} if '=' not in labels_string: return labels escaping = False if '\\' in labels_string: escaping = True sub_labels = labels_string try: while sub_labels: value_start = sub_labels.index('=') label_name = sub_labels[:value_start] sub_labels = sub_labels[value_start + 1:].lstrip() quote_start = sub_labels.index('"') + 1 value_substr = sub_labels[quote_start:] i = 0 while i < len(value_substr): i = value_substr.index('"', i) if not _is_character_escaped(value_substr, i): break i += 1 quote_end = i + 1 label_value = sub_labels[quote_start:quote_end] if escaping: <DeepExtract> label_value = ESCAPING_RE.sub(replace_escape_sequence, label_value) </DeepExtract> labels[label_name.strip()] = label_value sub_labels = sub_labels[quote_end + 1:] next_comma = sub_labels.find(',') + 1 sub_labels = sub_labels[next_comma:].lstrip() return labels except ValueError: raise ValueError('Invalid labels: %s' % labels_string)
def _parse_labels(labels_string: str) -> Dict[str, str]: labels: Dict[str, str] = {} if '=' not in labels_string: return labels escaping = False if '\\' in labels_string: escaping = True sub_labels = labels_string try: while sub_labels: value_start = sub_labels.index('=') label_name = sub_labels[:value_start] sub_labels = sub_labels[value_start + 1:].lstrip() quote_start = sub_labels.index('"') + 1 value_substr = sub_labels[quote_start:] i = 0 while i < len(value_substr): i = value_substr.index('"', i) if not _is_character_escaped(value_substr, i): break i += 1 quote_end = i + 1 label_value = sub_labels[quote_start:quote_end] if escaping: label_value = ESCAPING_RE.sub(replace_escape_sequence, label_value) labels[label_name.strip()] = label_value sub_labels = sub_labels[quote_end + 1:] next_comma = sub_labels.find(',') + 1 sub_labels = sub_labels[next_comma:].lstrip() return labels except ValueError: raise ValueError('Invalid labels: %s' % labels_string)
client_python
positive
def test_transpose(self): FLIP_LEFT_RIGHT = 0 FLIP_TOP_BOTTOM = 1 <DeepExtract> diff = self.M.transpose(FLIP_LEFT_RIGHT).get_mask_tensor() - self.P.transpose(FLIP_LEFT_RIGHT).get_mask_tensor() diff = torch.sum(torch.abs(diff.float())).item() diff_hor = diff </DeepExtract> <DeepExtract> diff = self.M.transpose(FLIP_TOP_BOTTOM).get_mask_tensor() - self.P.transpose(FLIP_TOP_BOTTOM).get_mask_tensor() diff = torch.sum(torch.abs(diff.float())).item() diff_ver = diff </DeepExtract> self.assertTrue(diff_hor <= 53250.0) self.assertTrue(diff_ver <= 42494.0)
def test_transpose(self): FLIP_LEFT_RIGHT = 0 FLIP_TOP_BOTTOM = 1 diff = self.M.transpose(FLIP_LEFT_RIGHT).get_mask_tensor() - self.P.transpose(FLIP_LEFT_RIGHT).get_mask_tensor() diff = torch.sum(torch.abs(diff.float())).item() diff_hor = diff diff = self.M.transpose(FLIP_TOP_BOTTOM).get_mask_tensor() - self.P.transpose(FLIP_TOP_BOTTOM).get_mask_tensor() diff = torch.sum(torch.abs(diff.float())).item() diff_ver = diff self.assertTrue(diff_hor <= 53250.0) self.assertTrue(diff_ver <= 42494.0)
Box_Discretization_Network
positive
def udp_server(self, bind_addr, addrinfo, port_bound_event, task=None): task.set_daemon() udp_sock = AsyncSocket(socket.socket(addrinfo.family, socket.SOCK_DGRAM)) while 1: try: udp_sock.bind((bind_addr, self.port)) except socket.error as exc: if exc.errno == errno.EADDRINUSE: logger.warning('Port %s seems to be used by another program ...', self.port) else: logger.warning('Error binding to port %s: %s ...', self.port, exc.errno) yield task.sleep(5) except Exception: logger.warning('Could not bind to port %s: %s', self.port, traceback.format_exc()) yield task.sleep(5) else: break if addrinfo.family == socket.AF_INET: if self.ipv4_udp_multicast: mreq = socket.inet_aton(addrinfo.broadcast) + socket.inet_aton(addrinfo.ip) udp_sock.setsockopt(socket.IPPROTO_IP, socket.IP_ADD_MEMBERSHIP, mreq) else: mreq = socket.inet_pton(addrinfo.family, addrinfo.broadcast) mreq += struct.pack('@I', addrinfo.ifn) udp_sock.setsockopt(socket.IPPROTO_IPV6, socket.IPV6_JOIN_GROUP, mreq) try: udp_sock.setsockopt(socket.IPPROTO_IPV6, socket.IPV6_V6ONLY, 1) except Exception: pass port_bound_event.set() del port_bound_event while 1: try: (msg, addr) = (yield udp_sock.recvfrom(1000)) except GeneratorExit: break if msg.startswith(b'PING:'): try: info = deserialize(msg[len(b'PING:'):]) if info['version'] != _dispy_version: logger.warning('Ignoring %s due to version mismatch', addr[0]) continue assert info['port'] > 0 assert info['ip_addr'] except Exception: logger.debug('Ignoring node %s', addr[0]) continue <DeepExtract> auth = hashlib.sha1((self.secret + info['sign']).encode()).hexdigest().encode() </DeepExtract> node = self._nodes.get(info['ip_addr'], None) if node and node.auth == auth: continue sock = AsyncSocket(socket.socket(addrinfo.family, socket.SOCK_STREAM), keyfile=self.keyfile, certfile=self.certfile) sock.settimeout(MsgTimeout) msg = {'version': _dispy_version, 'port': self.port, 'sign': self.sign, 'node_ip_addr': info['ip_addr']} msg['ip_addrs'] = self.ip_addrs try: yield sock.connect((info['ip_addr'], info['port'])) yield sock.sendall(auth) yield sock.send_msg(b'PING:' + serialize(msg)) except GeneratorExit: break except Exception: logger.debug(traceback.format_exc()) finally: sock.close() elif msg.startswith(b'TERMINATED:'): try: info = deserialize(msg[len(b'TERMINATED:'):]) node = self._nodes[info['ip_addr']] assert node.auth == auth_code(self.secret, info['sign']) except Exception: pass else: <DeepExtract> if node.clusters: dead_jobs = [_job for _job in self._sched_jobs.values() if _job.node is not None and _job.node.ip_addr == node.ip_addr] clusters = list(node.clusters) node.clusters.clear() for cluster in clusters: dispy_node = cluster._dispy_nodes.pop(node.ip_addr, None) if not dispy_node: continue dispy_node.avail_cpus = dispy_node.cpus = dispy_node.busy = 0 if cluster.cluster_status: self.worker_Q.put((cluster.cluster_status, (DispyNode.Closed, dispy_node, None))) self.reschedule_jobs(dead_jobs) for _job in node.pending_jobs: cluster = self._clusters[_job.compute_id] self.finish_job(cluster, _job, DispyJob.Cancelled) if cluster.cluster_status: dispy_node = cluster._dispy_nodes.get(node.ip_addr, None) self.worker_Q.put((cluster.cluster_status, (DispyJob.Cancelled, dispy_node, _job.job))) node.pending_jobs = [] self._nodes.pop(node.ip_addr, None) </DeepExtract> else: pass udp_sock.close()
def udp_server(self, bind_addr, addrinfo, port_bound_event, task=None): task.set_daemon() udp_sock = AsyncSocket(socket.socket(addrinfo.family, socket.SOCK_DGRAM)) while 1: try: udp_sock.bind((bind_addr, self.port)) except socket.error as exc: if exc.errno == errno.EADDRINUSE: logger.warning('Port %s seems to be used by another program ...', self.port) else: logger.warning('Error binding to port %s: %s ...', self.port, exc.errno) yield task.sleep(5) except Exception: logger.warning('Could not bind to port %s: %s', self.port, traceback.format_exc()) yield task.sleep(5) else: break if addrinfo.family == socket.AF_INET: if self.ipv4_udp_multicast: mreq = socket.inet_aton(addrinfo.broadcast) + socket.inet_aton(addrinfo.ip) udp_sock.setsockopt(socket.IPPROTO_IP, socket.IP_ADD_MEMBERSHIP, mreq) else: mreq = socket.inet_pton(addrinfo.family, addrinfo.broadcast) mreq += struct.pack('@I', addrinfo.ifn) udp_sock.setsockopt(socket.IPPROTO_IPV6, socket.IPV6_JOIN_GROUP, mreq) try: udp_sock.setsockopt(socket.IPPROTO_IPV6, socket.IPV6_V6ONLY, 1) except Exception: pass port_bound_event.set() del port_bound_event while 1: try: (msg, addr) = (yield udp_sock.recvfrom(1000)) except GeneratorExit: break if msg.startswith(b'PING:'): try: info = deserialize(msg[len(b'PING:'):]) if info['version'] != _dispy_version: logger.warning('Ignoring %s due to version mismatch', addr[0]) continue assert info['port'] > 0 assert info['ip_addr'] except Exception: logger.debug('Ignoring node %s', addr[0]) continue auth = hashlib.sha1((self.secret + info['sign']).encode()).hexdigest().encode() node = self._nodes.get(info['ip_addr'], None) if node and node.auth == auth: continue sock = AsyncSocket(socket.socket(addrinfo.family, socket.SOCK_STREAM), keyfile=self.keyfile, certfile=self.certfile) sock.settimeout(MsgTimeout) msg = {'version': _dispy_version, 'port': self.port, 'sign': self.sign, 'node_ip_addr': info['ip_addr']} msg['ip_addrs'] = self.ip_addrs try: yield sock.connect((info['ip_addr'], info['port'])) yield sock.sendall(auth) yield sock.send_msg(b'PING:' + serialize(msg)) except GeneratorExit: break except Exception: logger.debug(traceback.format_exc()) finally: sock.close() elif msg.startswith(b'TERMINATED:'): try: info = deserialize(msg[len(b'TERMINATED:'):]) node = self._nodes[info['ip_addr']] assert node.auth == auth_code(self.secret, info['sign']) except Exception: pass else: if node.clusters: dead_jobs = [_job for _job in self._sched_jobs.values() if _job.node is not None and _job.node.ip_addr == node.ip_addr] clusters = list(node.clusters) node.clusters.clear() for cluster in clusters: dispy_node = cluster._dispy_nodes.pop(node.ip_addr, None) if not dispy_node: continue dispy_node.avail_cpus = dispy_node.cpus = dispy_node.busy = 0 if cluster.cluster_status: self.worker_Q.put((cluster.cluster_status, (DispyNode.Closed, dispy_node, None))) self.reschedule_jobs(dead_jobs) for _job in node.pending_jobs: cluster = self._clusters[_job.compute_id] self.finish_job(cluster, _job, DispyJob.Cancelled) if cluster.cluster_status: dispy_node = cluster._dispy_nodes.get(node.ip_addr, None) self.worker_Q.put((cluster.cluster_status, (DispyJob.Cancelled, dispy_node, _job.job))) node.pending_jobs = [] self._nodes.pop(node.ip_addr, None) else: pass udp_sock.close()
dispy
positive
def is_playbook(filename: str) -> bool: """ Check if the file is a playbook. Given a filename, it should return true if it looks like a playbook. The function is not supposed to raise exceptions. """ playbooks_keys = {'gather_facts', 'hosts', 'import_playbook', 'post_tasks', 'pre_tasks', 'roles', 'tasks'} if not isinstance(filename, str): filename = str(filename) try: <DeepExtract> dataloader = DataLoader() if hasattr(dataloader, 'set_vault_password'): dataloader.set_vault_password(DEFAULT_VAULT_PASSWORD) f = dataloader.load_from_file(filename) </DeepExtract> except Exception as exc: _logger.warning('Failed to load %s with %s, assuming is not a playbook.', filename, exc) else: if isinstance(f, AnsibleSequence) and hasattr(next(iter(f), {}), 'keys') and playbooks_keys.intersection(next(iter(f), {}).keys()): return True return False
def is_playbook(filename: str) -> bool: """ Check if the file is a playbook. Given a filename, it should return true if it looks like a playbook. The function is not supposed to raise exceptions. """ playbooks_keys = {'gather_facts', 'hosts', 'import_playbook', 'post_tasks', 'pre_tasks', 'roles', 'tasks'} if not isinstance(filename, str): filename = str(filename) try: dataloader = DataLoader() if hasattr(dataloader, 'set_vault_password'): dataloader.set_vault_password(DEFAULT_VAULT_PASSWORD) f = dataloader.load_from_file(filename) except Exception as exc: _logger.warning('Failed to load %s with %s, assuming is not a playbook.', filename, exc) else: if isinstance(f, AnsibleSequence) and hasattr(next(iter(f), {}), 'keys') and playbooks_keys.intersection(next(iter(f), {}).keys()): return True return False
ansible-lint
positive
def __init__(self, backbone, neck=None, head=None, pretrained=None, base_momentum=0.996, **kwargs): super(BYOL, self).__init__() self.online_net = nn.Sequential(builder.build_backbone(backbone), builder.build_neck(neck)) self.target_net = nn.Sequential(builder.build_backbone(backbone), builder.build_neck(neck)) self.backbone = self.online_net[0] for param in self.target_net.parameters(): param.requires_grad = False self.head = builder.build_head(head) <DeepExtract> if pretrained is not None: print_log('load model from: {}'.format(pretrained), logger='root') self.online_net[0].init_weights(pretrained=pretrained) self.online_net[1].init_weights(init_linear='kaiming') for (param_ol, param_tgt) in zip(self.online_net.parameters(), self.target_net.parameters()): param_tgt.data.copy_(param_ol.data) self.head.init_weights() </DeepExtract> self.base_momentum = base_momentum self.momentum = base_momentum
def __init__(self, backbone, neck=None, head=None, pretrained=None, base_momentum=0.996, **kwargs): super(BYOL, self).__init__() self.online_net = nn.Sequential(builder.build_backbone(backbone), builder.build_neck(neck)) self.target_net = nn.Sequential(builder.build_backbone(backbone), builder.build_neck(neck)) self.backbone = self.online_net[0] for param in self.target_net.parameters(): param.requires_grad = False self.head = builder.build_head(head) if pretrained is not None: print_log('load model from: {}'.format(pretrained), logger='root') self.online_net[0].init_weights(pretrained=pretrained) self.online_net[1].init_weights(init_linear='kaiming') for (param_ol, param_tgt) in zip(self.online_net.parameters(), self.target_net.parameters()): param_tgt.data.copy_(param_ol.data) self.head.init_weights() self.base_momentum = base_momentum self.momentum = base_momentum
DenseCL
positive
def delete(self, request, **kwargs): appSettings = self.get_app().appsettings_set.latest() addresses = self.get_serializer().validate_whitelist(request.data.get('addresses')) unfound_addresses = set(addresses) - set(appSettings.whitelist) if len(unfound_addresses) != 0: raise UnprocessableEntity('addresses {} does not exist in whitelist'.format(unfound_addresses)) <DeepExtract> user = self.get_object() serializer = self.get_serializer(user, many=False) addresses = Response(serializer.data) </DeepExtract> appSettings.new(self.request.user, whitelist=addresses) return Response(status=status.HTTP_204_NO_CONTENT)
def delete(self, request, **kwargs): appSettings = self.get_app().appsettings_set.latest() addresses = self.get_serializer().validate_whitelist(request.data.get('addresses')) unfound_addresses = set(addresses) - set(appSettings.whitelist) if len(unfound_addresses) != 0: raise UnprocessableEntity('addresses {} does not exist in whitelist'.format(unfound_addresses)) user = self.get_object() serializer = self.get_serializer(user, many=False) addresses = Response(serializer.data) appSettings.new(self.request.user, whitelist=addresses) return Response(status=status.HTTP_204_NO_CONTENT)
controller
positive
def register_sigint_handler(self): def signal_handler(signal, frame): logger.info('SIGINT: Shutting down RoIDataLoader threads and exiting...') <DeepExtract> self.coordinator.request_stop() self.coordinator.wait_for_stop() self.close_blobs_queues() for w in self._workers + self._enqueuers: w.join() </DeepExtract> signal.signal(signal.SIGINT, signal_handler)
def register_sigint_handler(self): def signal_handler(signal, frame): logger.info('SIGINT: Shutting down RoIDataLoader threads and exiting...') self.coordinator.request_stop() self.coordinator.wait_for_stop() self.close_blobs_queues() for w in self._workers + self._enqueuers: w.join() signal.signal(signal.SIGINT, signal_handler)
Detectron-Cascade-RCNN
positive
def align_neg_y(modal, context, event, keys, func_data): align_to_axis_normals(modal, 1, -1) <DeepExtract> modal._mouse_init = None modal._mode_cache.clear() keymap_refresh(modal) modal._current_tool = modal._basic_tool return </DeepExtract> return
def align_neg_y(modal, context, event, keys, func_data): align_to_axis_normals(modal, 1, -1) modal._mouse_init = None modal._mode_cache.clear() keymap_refresh(modal) modal._current_tool = modal._basic_tool return return
Abnormal
positive
def test_add_consumer_with_valid_parameters_doesnt_fail(self): <DeepExtract> list_versions = [{'id': 'v1', 'status': 'CURRENT', 'min_version': '1.0', 'max_version': '1.1', 'links': []}] self.list_versions.return_value = list_versions </DeepExtract> self.key_mgr.add_consumer(self.ctxt, self.secret_ref, self._get_custom_consumer_data())
def test_add_consumer_with_valid_parameters_doesnt_fail(self): list_versions = [{'id': 'v1', 'status': 'CURRENT', 'min_version': '1.0', 'max_version': '1.1', 'links': []}] self.list_versions.return_value = list_versions self.key_mgr.add_consumer(self.ctxt, self.secret_ref, self._get_custom_consumer_data())
castellan
positive
@p(('copies', 'used_copies'), copies_pairs) def test_memory_leak_warning_mock(self, copies, used_copies, monkeypatch): def warn(w): warn.warnings_list.append(w) warn.warnings_list = [] gc.collect() monkeypatch.setattr(warnings, 'warn', warn) def apply_test(): types = [int, int, int, float, complex, float, type(thub), type(pytest)] sig = [4, 3, 2, 7e-18, 9j, 0.2, thub, pytest] data = thub(sig, copies) assert isinstance(data, StreamTeeHub) safe_copies = min(copies, used_copies) assert all((all(types == data.map(type)) for n in xrange(safe_copies))) if copies < used_copies: with pytest.raises(IndexError): Stream(data) data.__del__() data.__del__() <DeepExtract> types = [int, int, int, float, complex, float, type(thub), type(pytest)] sig = [4, 3, 2, 7e-18, 9j, 0.2, thub, pytest] data = thub(sig, copies) assert isinstance(data, StreamTeeHub) safe_copies = min(copies, used_copies) assert all((all(types == data.map(type)) for n in xrange(safe_copies))) if copies < used_copies: with pytest.raises(IndexError): Stream(data) data.__del__() data.__del__() </DeepExtract> gc.collect() if copies > used_copies: w = warn.warnings_list.pop() assert isinstance(w, MemoryLeakWarning) parts = ['StreamTeeHub', str(copies - used_copies)] assert all((part in str(w) for part in parts)) assert not warn.warnings_list
@p(('copies', 'used_copies'), copies_pairs) def test_memory_leak_warning_mock(self, copies, used_copies, monkeypatch): def warn(w): warn.warnings_list.append(w) warn.warnings_list = [] gc.collect() monkeypatch.setattr(warnings, 'warn', warn) def apply_test(): types = [int, int, int, float, complex, float, type(thub), type(pytest)] sig = [4, 3, 2, 7e-18, 9j, 0.2, thub, pytest] data = thub(sig, copies) assert isinstance(data, StreamTeeHub) safe_copies = min(copies, used_copies) assert all((all(types == data.map(type)) for n in xrange(safe_copies))) if copies < used_copies: with pytest.raises(IndexError): Stream(data) data.__del__() data.__del__() types = [int, int, int, float, complex, float, type(thub), type(pytest)] sig = [4, 3, 2, 7e-18, 9j, 0.2, thub, pytest] data = thub(sig, copies) assert isinstance(data, StreamTeeHub) safe_copies = min(copies, used_copies) assert all((all(types == data.map(type)) for n in xrange(safe_copies))) if copies < used_copies: with pytest.raises(IndexError): Stream(data) data.__del__() data.__del__() gc.collect() if copies > used_copies: w = warn.warnings_list.pop() assert isinstance(w, MemoryLeakWarning) parts = ['StreamTeeHub', str(copies - used_copies)] assert all((part in str(w) for part in parts)) assert not warn.warnings_list
audiolazy
positive
def get_input_ids(text): if isinstance(text, str): <DeepExtract> all_special_tokens = self.all_special_tokens text = self.prepare_for_tokenization(text, **kwargs) def lowercase_text(t): escaped_special_toks = [re.escape(s_tok) for s_tok in all_special_tokens] pattern = '(' + '|'.join(escaped_special_toks) + ')|' + '(.+?)' tokens = re.sub(pattern, lambda m: m.groups()[0] or m.groups()[1].lower(), t) if self.init_kwargs.get('do_lower_case', False): text = lowercase_text(text) def split_on_token(tok, text): result = [] split_text = text.split(tok) for (i, sub_text) in enumerate(split_text): sub_text = sub_text.rstrip() if i == 0 and (not sub_text): result += [tok] elif i == len(split_text) - 1: if sub_text: result += [sub_text] else: pass else: if sub_text: result += [sub_text] result += [tok] tokens = result def split_on_tokens(tok_list, text): if not text.strip(): tokens = [] if not tok_list: tokens = self._tokenize(text) tokenized_text = [] text_list = [text] for tok in tok_list: tokenized_text = [] for sub_text in text_list: if sub_text not in self.unique_added_tokens_encoder: tokenized_text += split_on_token(tok, sub_text) else: tokenized_text += [sub_text] text_list = tokenized_text tokens = list(itertools.chain.from_iterable((self._tokenize(token) if token not in self.unique_added_tokens_encoder else [token] for token in tokenized_text))) added_tokens = self.unique_added_tokens_encoder tokenized_text = split_on_tokens(added_tokens, text) tokens = tokenized_text </DeepExtract> return self.convert_tokens_to_ids(tokens) elif isinstance(text, (list, tuple)) and len(text) > 0 and isinstance(text[0], str): return self.convert_tokens_to_ids(text) elif isinstance(text, (list, tuple)) and len(text) > 0 and isinstance(text[0], int): return text else: raise ValueError('Input is not valid. Should be a string, a list/tuple of strings or a list/tuple of integers.')
def get_input_ids(text): if isinstance(text, str): all_special_tokens = self.all_special_tokens text = self.prepare_for_tokenization(text, **kwargs) def lowercase_text(t): escaped_special_toks = [re.escape(s_tok) for s_tok in all_special_tokens] pattern = '(' + '|'.join(escaped_special_toks) + ')|' + '(.+?)' tokens = re.sub(pattern, lambda m: m.groups()[0] or m.groups()[1].lower(), t) if self.init_kwargs.get('do_lower_case', False): text = lowercase_text(text) def split_on_token(tok, text): result = [] split_text = text.split(tok) for (i, sub_text) in enumerate(split_text): sub_text = sub_text.rstrip() if i == 0 and (not sub_text): result += [tok] elif i == len(split_text) - 1: if sub_text: result += [sub_text] else: pass else: if sub_text: result += [sub_text] result += [tok] tokens = result def split_on_tokens(tok_list, text): if not text.strip(): tokens = [] if not tok_list: tokens = self._tokenize(text) tokenized_text = [] text_list = [text] for tok in tok_list: tokenized_text = [] for sub_text in text_list: if sub_text not in self.unique_added_tokens_encoder: tokenized_text += split_on_token(tok, sub_text) else: tokenized_text += [sub_text] text_list = tokenized_text tokens = list(itertools.chain.from_iterable((self._tokenize(token) if token not in self.unique_added_tokens_encoder else [token] for token in tokenized_text))) added_tokens = self.unique_added_tokens_encoder tokenized_text = split_on_tokens(added_tokens, text) tokens = tokenized_text return self.convert_tokens_to_ids(tokens) elif isinstance(text, (list, tuple)) and len(text) > 0 and isinstance(text[0], str): return self.convert_tokens_to_ids(text) elif isinstance(text, (list, tuple)) and len(text) > 0 and isinstance(text[0], int): return text else: raise ValueError('Input is not valid. Should be a string, a list/tuple of strings or a list/tuple of integers.')
Cutoff
positive
def score_choices(self, choices, ctxs): assert len(choices) == len(ctxs) cnts = [int(x) for x in ctxs[0][0::2]] (agree, scores) = (True, [0 for _ in range(len(ctxs))]) for i in range(len(cnts)): n = 0 for (agent_id, (choice, ctx)) in enumerate(zip(choices, ctxs)): <DeepExtract> try: taken = int(choice[i][choice[i].find('=') + 1:]) except: taken = 0 </DeepExtract> n += taken scores[agent_id] += int(ctx[2 * i + 1]) * taken agree = agree and n == 0 return (agree, scores)
def score_choices(self, choices, ctxs): assert len(choices) == len(ctxs) cnts = [int(x) for x in ctxs[0][0::2]] (agree, scores) = (True, [0 for _ in range(len(ctxs))]) for i in range(len(cnts)): n = 0 for (agent_id, (choice, ctx)) in enumerate(zip(choices, ctxs)): try: taken = int(choice[i][choice[i].find('=') + 1:]) except: taken = 0 n += taken scores[agent_id] += int(ctx[2 * i + 1]) * taken agree = agree and n == 0 return (agree, scores)
end-to-end-negotiator
positive
def test_mem(self, low1=0, high1=16, low2=0, high2=100000): self.driver = webdriver.Chrome() <DeepExtract> self.driver.get('http://www.emu86.org/') </DeepExtract> self.getById('subButton').click() for i in range(0, NUM_TESTS): a = random.randint(low2, high2) b = random.randint(low1, high1) message = '' try: int(hex(b).upper().split('X')[-1]) except Exception: message = 'Not a valid value for decimal number system' <DeepExtract> inputBox = self.getById('memText') self.enter_inputs(inputBox, hex(a).upper().split('X')[-1]) inputVal = self.getById('valueText') self.enter_inputs(inputVal, hex(b).upper().split('X')[-1]) self.getById('setMem').click() </DeepExtract> try: alert = self.driver.switch_to.alert alert_message = alert.text alert.accept() self.assertEqual(message, alert_message) except Exception: <DeepExtract> loc_val = self.driver.find_element_by_name(hex(a).upper().split('X')[-1]) </DeepExtract> val = loc_val.get_attribute('value') self.assertEqual(val, hex(b).upper().split('X')[-1]) self.assertEqual(message, '') <DeepExtract> self.driver.quit() </DeepExtract>
def test_mem(self, low1=0, high1=16, low2=0, high2=100000): self.driver = webdriver.Chrome() self.driver.get('http://www.emu86.org/') self.getById('subButton').click() for i in range(0, NUM_TESTS): a = random.randint(low2, high2) b = random.randint(low1, high1) message = '' try: int(hex(b).upper().split('X')[-1]) except Exception: message = 'Not a valid value for decimal number system' inputBox = self.getById('memText') self.enter_inputs(inputBox, hex(a).upper().split('X')[-1]) inputVal = self.getById('valueText') self.enter_inputs(inputVal, hex(b).upper().split('X')[-1]) self.getById('setMem').click() try: alert = self.driver.switch_to.alert alert_message = alert.text alert.accept() self.assertEqual(message, alert_message) except Exception: loc_val = self.driver.find_element_by_name(hex(a).upper().split('X')[-1]) val = loc_val.get_attribute('value') self.assertEqual(val, hex(b).upper().split('X')[-1]) self.assertEqual(message, '') self.driver.quit() </DeepExtract>
Emu86
positive
def filter_scanline(type, line, fo, prev=None): """Apply a scanline filter to a scanline. `type` specifies the filter type (0 to 4); `line` specifies the current (unfiltered) scanline as a sequence of bytes; `prev` specifies the previous (unfiltered) scanline as a sequence of bytes. `fo` specifies the filter offset; normally this is size of a pixel in bytes (the number of bytes per sample times the number of channels), but when this is < 1 (for bit depths < 8) then the filter offset is 1. """ assert 0 <= type < 5 out = array('B', [type]) if not prev: if type == 2: type = 0 elif type == 3: prev = [0] * len(line) elif type == 4: type = 1 if type == 0: out.extend(line) elif type == 1: <DeepExtract> ai = 0 for i in range(fu, len(result)): x = scanline[i] a = result[ai] result[i] = x + a & 255 ai += 1 </DeepExtract> elif type == 2: <DeepExtract> for i in range(len(result)): x = scanline[i] b = previous[i] result[i] = x + b & 255 </DeepExtract> elif type == 3: <DeepExtract> ai = -fu for i in range(len(result)): x = scanline[i] if ai < 0: a = 0 else: a = result[ai] b = previous[i] result[i] = x + (a + b >> 1) & 255 ai += 1 </DeepExtract> else: <DeepExtract> ai = -fu for i in range(len(result)): x = scanline[i] if ai < 0: a = c = 0 else: a = result[ai] c = previous[ai] b = previous[i] p = a + b - c pa = abs(p - a) pb = abs(p - b) pc = abs(p - c) if pa <= pb and pa <= pc: pr = a elif pb <= pc: pr = b else: pr = c result[i] = x + pr & 255 ai += 1 </DeepExtract> return out
def filter_scanline(type, line, fo, prev=None): """Apply a scanline filter to a scanline. `type` specifies the filter type (0 to 4); `line` specifies the current (unfiltered) scanline as a sequence of bytes; `prev` specifies the previous (unfiltered) scanline as a sequence of bytes. `fo` specifies the filter offset; normally this is size of a pixel in bytes (the number of bytes per sample times the number of channels), but when this is < 1 (for bit depths < 8) then the filter offset is 1. """ assert 0 <= type < 5 out = array('B', [type]) if not prev: if type == 2: type = 0 elif type == 3: prev = [0] * len(line) elif type == 4: type = 1 if type == 0: out.extend(line) elif type == 1: ai = 0 for i in range(fu, len(result)): x = scanline[i] a = result[ai] result[i] = x + a & 255 ai += 1 elif type == 2: for i in range(len(result)): x = scanline[i] b = previous[i] result[i] = x + b & 255 elif type == 3: ai = -fu for i in range(len(result)): x = scanline[i] if ai < 0: a = 0 else: a = result[ai] b = previous[i] result[i] = x + (a + b >> 1) & 255 ai += 1 else: ai = -fu for i in range(len(result)): x = scanline[i] if ai < 0: a = c = 0 else: a = result[ai] c = previous[ai] b = previous[i] p = a + b - c pa = abs(p - a) pb = abs(p - b) pc = abs(p - c) if pa <= pb and pa <= pc: pr = a elif pb <= pc: pr = b else: pr = c result[i] = x + pr & 255 ai += 1 return out
DF-VO
positive
def test_hst_type_1_quadrangle(): <DeepExtract> with mock.patch('capytaine.io.mesh_loaders._check_file', lambda foo: None): with mock.patch('capytaine.io.mesh_loaders.open', mock.mock_open(read_data='\n COORDINATES\n 1 0.0 0.0 0.0\n 2 1.0 0.0 0.0\n 3 1.0 1.0 0.0\n 4 0.0 1.0 0.0\n ENDCOORDINATES\n PANEL TYPE 1\n 1 1 2 3 4\n ENDPANEL\n ')): mesh = load_HST('mocked/filename') </DeepExtract> assert mesh.vertices.shape == (4, 3) assert mesh.faces.shape == (1, 4) assert np.allclose(mesh.faces_centers, np.array([[1 / 2, 1 / 2, 0.0]]))
def test_hst_type_1_quadrangle(): with mock.patch('capytaine.io.mesh_loaders._check_file', lambda foo: None): with mock.patch('capytaine.io.mesh_loaders.open', mock.mock_open(read_data='\n COORDINATES\n 1 0.0 0.0 0.0\n 2 1.0 0.0 0.0\n 3 1.0 1.0 0.0\n 4 0.0 1.0 0.0\n ENDCOORDINATES\n PANEL TYPE 1\n 1 1 2 3 4\n ENDPANEL\n ')): mesh = load_HST('mocked/filename') assert mesh.vertices.shape == (4, 3) assert mesh.faces.shape == (1, 4) assert np.allclose(mesh.faces_centers, np.array([[1 / 2, 1 / 2, 0.0]]))
capytaine
positive
def submit(self, fn, *args, **kwargs): with self._shutdown_lock: if self._shutdown_thread: raise RuntimeError('cannot schedule new futures after shutdown') f = Future() w = _WorkItem(f, fn, args, kwargs) self._pending_work_items[self._queue_count] = w self._work_ids.put(self._queue_count) self._queue_count += 1 <DeepExtract> if self._queue_management_thread is None: self._queue_management_thread = threading.Thread(target=_queue_manangement_worker, args=(weakref.ref(self), self._processes, self._pending_work_items, self._work_ids, self._call_queue, self._result_queue, self._shutdown_process_event)) self._queue_management_thread.daemon = True self._queue_management_thread.start() _thread_references.add(weakref.ref(self._queue_management_thread)) </DeepExtract> <DeepExtract> for _ in range(len(self._processes), self._max_workers): p = multiprocessing.Process(target=_process_worker, args=(self._call_queue, self._result_queue, self._shutdown_process_event)) p.start() self._processes.add(p) </DeepExtract> return f
def submit(self, fn, *args, **kwargs): with self._shutdown_lock: if self._shutdown_thread: raise RuntimeError('cannot schedule new futures after shutdown') f = Future() w = _WorkItem(f, fn, args, kwargs) self._pending_work_items[self._queue_count] = w self._work_ids.put(self._queue_count) self._queue_count += 1 if self._queue_management_thread is None: self._queue_management_thread = threading.Thread(target=_queue_manangement_worker, args=(weakref.ref(self), self._processes, self._pending_work_items, self._work_ids, self._call_queue, self._result_queue, self._shutdown_process_event)) self._queue_management_thread.daemon = True self._queue_management_thread.start() _thread_references.add(weakref.ref(self._queue_management_thread)) for _ in range(len(self._processes), self._max_workers): p = multiprocessing.Process(target=_process_worker, args=(self._call_queue, self._result_queue, self._shutdown_process_event)) p.start() self._processes.add(p) return f
evergreen
positive
def _pick_at_most_one(self, x, pool=None, rtol=None, atol=None): """ Iterates over the pool (full pool if ``pool`` is ``None``) to find the index of a single element ``x``, using the provided tolerances. It uses the test function ``self._where_isclose(pool, x, rtol, atol)``, returning an array of indices of matches. Tolerances start at the minimum one, and, until an element is found, are progressively increased until the maximum tolerance is reached. """ if pool is None: pool = self.values if rtol is None: rtol = self._adapt_rtol_min if atol is None: atol = self._adapt_atol_min <DeepExtract> </DeepExtract> if not len(i): if rtol > self._adapt_rtol_max and atol > self._adapt_atol_max: return np.empty(shape=0, dtype=int) if rtol <= self._adapt_rtol_max: rtol *= 10 if atol <= self._adapt_atol_max: atol *= 10 return self._pick_at_most_one(x, pool, rtol, atol) elif len(i) > 1: if rtol < self._adapt_rtol_min and atol < self._adapt_atol_min: return np.empty(shape=0, dtype=int) if rtol >= self._adapt_rtol_min: rtol /= 3 if atol >= self._adapt_atol_min: atol /= 3 return self._pick_at_most_one(x, pool, rtol, atol) else: return i
def _pick_at_most_one(self, x, pool=None, rtol=None, atol=None): """ Iterates over the pool (full pool if ``pool`` is ``None``) to find the index of a single element ``x``, using the provided tolerances. It uses the test function ``self._where_isclose(pool, x, rtol, atol)``, returning an array of indices of matches. Tolerances start at the minimum one, and, until an element is found, are progressively increased until the maximum tolerance is reached. """ if pool is None: pool = self.values if rtol is None: rtol = self._adapt_rtol_min if atol is None: atol = self._adapt_atol_min if not len(i): if rtol > self._adapt_rtol_max and atol > self._adapt_atol_max: return np.empty(shape=0, dtype=int) if rtol <= self._adapt_rtol_max: rtol *= 10 if atol <= self._adapt_atol_max: atol *= 10 return self._pick_at_most_one(x, pool, rtol, atol) elif len(i) > 1: if rtol < self._adapt_rtol_min and atol < self._adapt_atol_min: return np.empty(shape=0, dtype=int) if rtol >= self._adapt_rtol_min: rtol /= 3 if atol >= self._adapt_atol_min: atol /= 3 return self._pick_at_most_one(x, pool, rtol, atol) else: return i
cobaya
positive
def create_ppo(self, env_id='Pendulum-v0', name='ppo'): <DeepExtract> env = make(env_id) env_spec = EnvSpec(obs_space=env.observation_space, action_space=env.action_space) mlp_v = MLPVValueFunc(env_spec=env_spec, name_scope=name + 'mlp_v', name=name + 'mlp_v', mlp_config=[{'ACT': 'RELU', 'B_INIT_VALUE': 0.0, 'NAME': '1', 'N_UNITS': 16, 'L1_NORM': 0.01, 'L2_NORM': 0.01, 'TYPE': 'DENSE', 'W_NORMAL_STDDEV': 0.03}, {'ACT': 'LINEAR', 'B_INIT_VALUE': 0.0, 'NAME': 'OUPTUT', 'N_UNITS': 1, 'TYPE': 'DENSE', 'W_NORMAL_STDDEV': 0.03}]) (mlp_v, local) = (mlp_v, locals()) </DeepExtract> env_spec = local['env_spec'] env = local['env'] policy = self.create_normal_dist_mlp_policy(env_spec=env_spec, name=name)[0] ppo = PPO(env_spec=env_spec, config_or_config_dict={'gamma': 0.995, 'value_func_memory_size': 10000, 'lam': 0.98, 'policy_train_iter': 10, 'value_func_train_iter': 10, 'clipping_range': None, 'beta': 1.0, 'eta': 50, 'log_var_init': -1.0, 'kl_target': 0.003, 'policy_lr': 0.01, 'value_func_lr': 0.01, 'value_func_train_batch_size': 10, 'lr_multiplier': 1.0}, value_func=mlp_v, stochastic_policy=policy, name=name) return (ppo, locals())
def create_ppo(self, env_id='Pendulum-v0', name='ppo'): env = make(env_id) env_spec = EnvSpec(obs_space=env.observation_space, action_space=env.action_space) mlp_v = MLPVValueFunc(env_spec=env_spec, name_scope=name + 'mlp_v', name=name + 'mlp_v', mlp_config=[{'ACT': 'RELU', 'B_INIT_VALUE': 0.0, 'NAME': '1', 'N_UNITS': 16, 'L1_NORM': 0.01, 'L2_NORM': 0.01, 'TYPE': 'DENSE', 'W_NORMAL_STDDEV': 0.03}, {'ACT': 'LINEAR', 'B_INIT_VALUE': 0.0, 'NAME': 'OUPTUT', 'N_UNITS': 1, 'TYPE': 'DENSE', 'W_NORMAL_STDDEV': 0.03}]) (mlp_v, local) = (mlp_v, locals()) env_spec = local['env_spec'] env = local['env'] policy = self.create_normal_dist_mlp_policy(env_spec=env_spec, name=name)[0] ppo = PPO(env_spec=env_spec, config_or_config_dict={'gamma': 0.995, 'value_func_memory_size': 10000, 'lam': 0.98, 'policy_train_iter': 10, 'value_func_train_iter': 10, 'clipping_range': None, 'beta': 1.0, 'eta': 50, 'log_var_init': -1.0, 'kl_target': 0.003, 'policy_lr': 0.01, 'value_func_lr': 0.01, 'value_func_train_batch_size': 10, 'lr_multiplier': 1.0}, value_func=mlp_v, stochastic_policy=policy, name=name) return (ppo, locals())
baconian-project
positive
def reduce_img_size(path='../data/sm4/images', img_size=1024): path_new = path + '_reduced' <DeepExtract> if os.path.exists(path_new): shutil.rmtree(path_new) os.makedirs(path_new) </DeepExtract> for f in tqdm(glob.glob('%s/*.*' % path)): try: img = cv2.imread(f) (h, w) = img.shape[:2] r = img_size / max(h, w) if r < 1.0: img = cv2.resize(img, (int(w * r), int(h * r)), interpolation=cv2.INTER_AREA) fnew = f.replace(path, path_new) cv2.imwrite(fnew, img) except: print('WARNING: image failure %s' % f)
def reduce_img_size(path='../data/sm4/images', img_size=1024): path_new = path + '_reduced' if os.path.exists(path_new): shutil.rmtree(path_new) os.makedirs(path_new) for f in tqdm(glob.glob('%s/*.*' % path)): try: img = cv2.imread(f) (h, w) = img.shape[:2] r = img_size / max(h, w) if r < 1.0: img = cv2.resize(img, (int(w * r), int(h * r)), interpolation=cv2.INTER_AREA) fnew = f.replace(path, path_new) cv2.imwrite(fnew, img) except: print('WARNING: image failure %s' % f)
easy_detection
positive
def load(self, f=None): if self.has_checkpoint(): <DeepExtract> save_file = os.path.join(self.save_dir, 'last_checkpoint') try: with open(save_file, 'r') as f: last_saved = f.read() last_saved = last_saved.strip() except IOError: last_saved = '' f = last_saved </DeepExtract> if not f: self.logger.info('No checkpoint found. Initializing model from scratch') return {} self.logger.info('Loading checkpoint from {}'.format(f)) <DeepExtract> checkpoint = torch.load(f, map_location=torch.device('cpu')) </DeepExtract> <DeepExtract> load_state_dict(self.model, checkpoint.pop('model')) </DeepExtract> if 'optimizer' in checkpoint and self.optimizer: self.logger.info('Loading optimizer from {}'.format(f)) self.optimizer.load_state_dict(checkpoint.pop('optimizer')) if 'scheduler' in checkpoint and self.scheduler: self.logger.info('Loading scheduler from {}'.format(f)) self.scheduler.load_state_dict(checkpoint.pop('scheduler')) return checkpoint
def load(self, f=None): if self.has_checkpoint(): save_file = os.path.join(self.save_dir, 'last_checkpoint') try: with open(save_file, 'r') as f: last_saved = f.read() last_saved = last_saved.strip() except IOError: last_saved = '' f = last_saved if not f: self.logger.info('No checkpoint found. Initializing model from scratch') return {} self.logger.info('Loading checkpoint from {}'.format(f)) checkpoint = torch.load(f, map_location=torch.device('cpu')) load_state_dict(self.model, checkpoint.pop('model')) if 'optimizer' in checkpoint and self.optimizer: self.logger.info('Loading optimizer from {}'.format(f)) self.optimizer.load_state_dict(checkpoint.pop('optimizer')) if 'scheduler' in checkpoint and self.scheduler: self.logger.info('Loading scheduler from {}'.format(f)) self.scheduler.load_state_dict(checkpoint.pop('scheduler')) return checkpoint
DF-Traffic-Sign-Identification
positive
def kill_task_with_pattern(pattern, agent_host=None, timeout_seconds=DEFAULT_TIMEOUT_SECONDS): @retrying.retry(wait_fixed=1000, stop_max_delay=timeout_seconds * 1000, retry_on_result=lambda res: not res) def fn(): command = "sudo kill -9 $(ps ax | grep {} | grep -v grep | tr -s ' ' | sed 's/^ *//g' | cut -d ' ' -f 1)".format(pattern) if agent_host is None: <DeepExtract> log.info('(SSH:master) {}'.format(command)) (success, output) = shakedown.run_command_on_master(command) log.info('Output (success={}):\n{}'.format(success, output)) (exit_status, _) = (success, output) </DeepExtract> else: <DeepExtract> log.info('(SSH:agent={}) {}'.format(agent_host, command)) (success, output) = shakedown.run_command_on_agent(agent_host, command) log.info('Output (success={}):\n{}'.format(success, output)) (exit_status, _) = (success, output) </DeepExtract> return exit_status <DeepExtract> try: response = dcos.http.request(method, url, verify=verify, **kwargs) except dcos.errors.DCOSHTTPException as e: response = e.response except dcos.errors.DCOSUnprocessableException as e: response = e.response log_msg = 'Got {} for {} {}'.format(response.status_code, method.upper(), cluster_path) if kwargs: log_msg += ' (args: {})'.format(kwargs if log_args else [e for e in kwargs.keys()]) log.info(log_msg) if not response.ok: response_text = response.text if response_text: log.info('Response content ({} bytes):\n{}'.format(len(response_text), response_text)) else: log.info('No response content') if raise_on_error: response.raise_for_status() return response </DeepExtract>
def kill_task_with_pattern(pattern, agent_host=None, timeout_seconds=DEFAULT_TIMEOUT_SECONDS): @retrying.retry(wait_fixed=1000, stop_max_delay=timeout_seconds * 1000, retry_on_result=lambda res: not res) def fn(): command = "sudo kill -9 $(ps ax | grep {} | grep -v grep | tr -s ' ' | sed 's/^ *//g' | cut -d ' ' -f 1)".format(pattern) if agent_host is None: log.info('(SSH:master) {}'.format(command)) (success, output) = shakedown.run_command_on_master(command) log.info('Output (success={}):\n{}'.format(success, output)) (exit_status, _) = (success, output) else: log.info('(SSH:agent={}) {}'.format(agent_host, command)) (success, output) = shakedown.run_command_on_agent(agent_host, command) log.info('Output (success={}):\n{}'.format(success, output)) (exit_status, _) = (success, output) return exit_status try: response = dcos.http.request(method, url, verify=verify, **kwargs) except dcos.errors.DCOSHTTPException as e: response = e.response except dcos.errors.DCOSUnprocessableException as e: response = e.response log_msg = 'Got {} for {} {}'.format(response.status_code, method.upper(), cluster_path) if kwargs: log_msg += ' (args: {})'.format(kwargs if log_args else [e for e in kwargs.keys()]) log.info(log_msg) if not response.ok: response_text = response.text if response_text: log.info('Response content ({} bytes):\n{}'.format(len(response_text), response_text)) else: log.info('No response content') if raise_on_error: response.raise_for_status() return response </DeepExtract>
dcos-jenkins-service
positive
def draw_polyline(self, v, **attrs): <DeepExtract> geom = PolyLine(v, False) </DeepExtract> <DeepExtract> if 'color' in attrs: geom.set_color(*attrs['color']) if 'linewidth' in attrs: geom.set_linewidth(attrs['linewidth']) </DeepExtract> <DeepExtract> self.onetime_geoms.append(geom) </DeepExtract> return geom
def draw_polyline(self, v, **attrs): geom = PolyLine(v, False) if 'color' in attrs: geom.set_color(*attrs['color']) if 'linewidth' in attrs: geom.set_linewidth(attrs['linewidth']) self.onetime_geoms.append(geom) return geom
DQN-DDPG_Stock_Trading
positive
def save_subplots(self, out_path, names, fig=None, png_preview=True, tex_preview=True, override_externals=True, post_process=True): """Save subplots of figure into single TikZ figures.""" if fig is None: fig = plt.gcf() <DeepExtract> fig_axes = fig.get_axes() for ax in fig_axes: fig.delaxes(ax) fig_list = [] for ax in fig_axes: new_fig = plt.figure() new_fig._axstack.add(new_fig._make_key(ax), ax) new_fig.axes[0].change_geometry(1, 1, 1) fig_list.append(new_fig) axes = fig_list </DeepExtract> for (name, subplot) in zip(names, axes): assert len(subplot.get_axes()) == 1 out_file = os.path.join(out_path, name) <DeepExtract> if subplot is not None: self.set_current(subplot) tex_file = self._add_extension(out_file, 'tex') out_dir = os.path.dirname(out_file) os.makedirs(out_dir, exist_ok=True) if png_preview: png_file = self._add_extension('{}-preview'.format(out_file), 'png') plt.savefig(png_file, bbox_inches='tight') tikz_save(tex_file, override_externals=override_externals, extra_axis_parameters=self.extra_axis_parameters) if post_process is True: self.post_process(out_file) if tex_preview is True: tex_preview_file = self._add_extension('{}-preview'.format(out_file), 'tex') with open(tex_file, 'r') as f: content = ''.join(f.readlines()) preamble = '\\documentclass[tikz]{standalone}\n\\usepackage{tikz}\n\\usepackage{pgfplots}\n\\usepackage{amssymb}\n\\usetikzlibrary{shapes,\n pgfplots.groupplots,\n shadings,\n calc,\n arrows,\n backgrounds,\n colorbrewer,\n shadows.blur}\n\n% customize "zmystyle" as you wish\n \\pgfkeys{/pgfplots/zmystyle/.style={\n % legend pos = north east,\n % xmin=1, xmax=20,\n % ymin = 1, ymax = 1.2,\n % title = {The title},\n }\n }\n\n\\begin{document}\n' postamble = '\\end{document}' preview_content = preamble + content + postamble with open(tex_preview_file, 'w') as f: f.write(preview_content) subprocess.run(['pdflatex', '-output-directory', out_dir, tex_preview_file]) </DeepExtract>
def save_subplots(self, out_path, names, fig=None, png_preview=True, tex_preview=True, override_externals=True, post_process=True): """Save subplots of figure into single TikZ figures.""" if fig is None: fig = plt.gcf() fig_axes = fig.get_axes() for ax in fig_axes: fig.delaxes(ax) fig_list = [] for ax in fig_axes: new_fig = plt.figure() new_fig._axstack.add(new_fig._make_key(ax), ax) new_fig.axes[0].change_geometry(1, 1, 1) fig_list.append(new_fig) axes = fig_list for (name, subplot) in zip(names, axes): assert len(subplot.get_axes()) == 1 out_file = os.path.join(out_path, name) if subplot is not None: self.set_current(subplot) tex_file = self._add_extension(out_file, 'tex') out_dir = os.path.dirname(out_file) os.makedirs(out_dir, exist_ok=True) if png_preview: png_file = self._add_extension('{}-preview'.format(out_file), 'png') plt.savefig(png_file, bbox_inches='tight') tikz_save(tex_file, override_externals=override_externals, extra_axis_parameters=self.extra_axis_parameters) if post_process is True: self.post_process(out_file) if tex_preview is True: tex_preview_file = self._add_extension('{}-preview'.format(out_file), 'tex') with open(tex_file, 'r') as f: content = ''.join(f.readlines()) preamble = '\\documentclass[tikz]{standalone}\n\\usepackage{tikz}\n\\usepackage{pgfplots}\n\\usepackage{amssymb}\n\\usetikzlibrary{shapes,\n pgfplots.groupplots,\n shadings,\n calc,\n arrows,\n backgrounds,\n colorbrewer,\n shadows.blur}\n\n% customize "zmystyle" as you wish\n \\pgfkeys{/pgfplots/zmystyle/.style={\n % legend pos = north east,\n % xmin=1, xmax=20,\n % ymin = 1, ymax = 1.2,\n % title = {The title},\n }\n }\n\n\\begin{document}\n' postamble = '\\end{document}' preview_content = preamble + content + postamble with open(tex_preview_file, 'w') as f: f.write(preview_content) subprocess.run(['pdflatex', '-output-directory', out_dir, tex_preview_file]) </DeepExtract>
cockpit
positive
def _loglikelihood(self, parameters: Float64Array, sigma2: Float64Array, backcast: float | Float64Array, var_bounds: Float64Array, individual: bool=False) -> float | Float64Array: """ Computes the log-likelihood using the entire model Parameters ---------- parameters sigma2 backcast individual : bool, optional Returns ------- neg_llf : float Negative of model loglikelihood """ _callback_info['count'] += 1 <DeepExtract> parameters = np.asarray(parameters, dtype=float) (km, kv) = (int(self.num_params), int(self.volatility.num_params)) (mp, vp, dp) = (parameters[:km], parameters[km:km + kv], parameters[km + kv:]) </DeepExtract> resids = np.asarray(self.resids(mp), dtype=float) sigma2 = self.volatility.compute_variance(vp, resids, sigma2, backcast, var_bounds) llf = self.distribution.loglikelihood(dp, resids, sigma2, individual) if not individual: _callback_info['llf'] = llf_f = -float(llf) return llf_f return cast(np.ndarray, -llf)
def _loglikelihood(self, parameters: Float64Array, sigma2: Float64Array, backcast: float | Float64Array, var_bounds: Float64Array, individual: bool=False) -> float | Float64Array: """ Computes the log-likelihood using the entire model Parameters ---------- parameters sigma2 backcast individual : bool, optional Returns ------- neg_llf : float Negative of model loglikelihood """ _callback_info['count'] += 1 parameters = np.asarray(parameters, dtype=float) (km, kv) = (int(self.num_params), int(self.volatility.num_params)) (mp, vp, dp) = (parameters[:km], parameters[km:km + kv], parameters[km + kv:]) resids = np.asarray(self.resids(mp), dtype=float) sigma2 = self.volatility.compute_variance(vp, resids, sigma2, backcast, var_bounds) llf = self.distribution.loglikelihood(dp, resids, sigma2, individual) if not individual: _callback_info['llf'] = llf_f = -float(llf) return llf_f return cast(np.ndarray, -llf)
arch
positive
def __init__(self, args): self._args = args self._algo = 'retina' self._metric_tool_dir = './devkit' self._metric_prob_list = './../templatelists/facescrub_features_list.json' self._python_tool_dir = PYTHON_TOOL self._outdir_root = '' self._emb_outdir_root = '' self._emb_clean_outdir_root = '' self._face_scrub_list = './data/facescrub_lst' self._face_scrub_root = '../data/megaface/facescrub_images' self._face_scrub = [] self._face_scrub_emb_outdir = '' self._face_scrub_emb_clean_outdir = '' self._face_gallery_list = './data/megaface_lst' self._face_gallery_root = '../data/megaface/megaface_images' self._face_gallery = [] self._face_gallery_emb_outdir = '' self._face_gallery_emb_clean_outdir = '' self._face_scrub_noisy_list = './data/facescrub_noises.txt' self._face_gallery_noisy_list = './data/megaface_noises.txt' self._face_scrub_noisy_dict = {} self._face_gallery_noisy_dict = {} self._save_badcase = True if args.save_badcase else False self._badcase_prob = [] self._badcase_gall = [] self._face_badcase_savefile = 'megaface.badcase' <DeepExtract> epoch = int(self._args.model_path.strip().split(',')[1]) self._outdir_root = os.path.join('/'.join(self._args.model_path.strip().split('/')[:-1]), 'megaface_%d' % epoch) self._emb_outdir_root = os.path.join(self._outdir_root, 'embedding') self._emb_clean_outdir_root = os.path.join(self._outdir_root, 'embedding_clean') self._face_scrub_emb_outdir = os.path.join(self._emb_outdir_root, 'facescrub') os.system('mkdir -p %s' % self._face_scrub_emb_outdir) self._face_scrub_emb_clean_outdir = os.path.join(self._emb_clean_outdir_root, 'facescrub') os.system('mkdir -p %s' % self._face_scrub_emb_clean_outdir) self._face_gallery_emb_outdir = os.path.join(self._emb_outdir_root, 'megaface') os.system('mkdir -p %s' % self._face_gallery_emb_outdir) self._face_gallery_emb_clean_outdir = os.path.join(self._emb_clean_outdir_root, 'megaface') os.system('mkdir -p %s' % self._face_gallery_emb_clean_outdir) self._face_result_filename = 'megaface.%d.result' % epoch </DeepExtract> <DeepExtract> self._face_scrub = open(self._face_scrub_list).readlines() self._face_gallery = open(self._face_gallery_list).readlines() for line in open(self._face_scrub_noisy_list, 'r'): if line.startswith('#'): continue line = line.strip() fname = line.split('.')[0] p = fname.rfind('_') fname = fname[0:p] self._face_scrub_noisy_dict[line] = fname print('Noisy faces of scrub: %d' % len(self._face_scrub_noisy_dict)) for line in open(self._face_gallery_noisy_list, 'r'): if line.startswith('#'): continue line = line.strip() _vec = line.split('\t') if len(_vec) > 1: line = _vec[1] self._face_gallery_noisy_dict[line] = 1 print('Noisy faces of gallery: %d' % len(self._face_gallery_noisy_dict)) </DeepExtract>
def __init__(self, args): self._args = args self._algo = 'retina' self._metric_tool_dir = './devkit' self._metric_prob_list = './../templatelists/facescrub_features_list.json' self._python_tool_dir = PYTHON_TOOL self._outdir_root = '' self._emb_outdir_root = '' self._emb_clean_outdir_root = '' self._face_scrub_list = './data/facescrub_lst' self._face_scrub_root = '../data/megaface/facescrub_images' self._face_scrub = [] self._face_scrub_emb_outdir = '' self._face_scrub_emb_clean_outdir = '' self._face_gallery_list = './data/megaface_lst' self._face_gallery_root = '../data/megaface/megaface_images' self._face_gallery = [] self._face_gallery_emb_outdir = '' self._face_gallery_emb_clean_outdir = '' self._face_scrub_noisy_list = './data/facescrub_noises.txt' self._face_gallery_noisy_list = './data/megaface_noises.txt' self._face_scrub_noisy_dict = {} self._face_gallery_noisy_dict = {} self._save_badcase = True if args.save_badcase else False self._badcase_prob = [] self._badcase_gall = [] self._face_badcase_savefile = 'megaface.badcase' epoch = int(self._args.model_path.strip().split(',')[1]) self._outdir_root = os.path.join('/'.join(self._args.model_path.strip().split('/')[:-1]), 'megaface_%d' % epoch) self._emb_outdir_root = os.path.join(self._outdir_root, 'embedding') self._emb_clean_outdir_root = os.path.join(self._outdir_root, 'embedding_clean') self._face_scrub_emb_outdir = os.path.join(self._emb_outdir_root, 'facescrub') os.system('mkdir -p %s' % self._face_scrub_emb_outdir) self._face_scrub_emb_clean_outdir = os.path.join(self._emb_clean_outdir_root, 'facescrub') os.system('mkdir -p %s' % self._face_scrub_emb_clean_outdir) self._face_gallery_emb_outdir = os.path.join(self._emb_outdir_root, 'megaface') os.system('mkdir -p %s' % self._face_gallery_emb_outdir) self._face_gallery_emb_clean_outdir = os.path.join(self._emb_clean_outdir_root, 'megaface') os.system('mkdir -p %s' % self._face_gallery_emb_clean_outdir) self._face_result_filename = 'megaface.%d.result' % epoch self._face_scrub = open(self._face_scrub_list).readlines() self._face_gallery = open(self._face_gallery_list).readlines() for line in open(self._face_scrub_noisy_list, 'r'): if line.startswith('#'): continue line = line.strip() fname = line.split('.')[0] p = fname.rfind('_') fname = fname[0:p] self._face_scrub_noisy_dict[line] = fname print('Noisy faces of scrub: %d' % len(self._face_scrub_noisy_dict)) for line in open(self._face_gallery_noisy_list, 'r'): if line.startswith('#'): continue line = line.strip() _vec = line.split('\t') if len(_vec) > 1: line = _vec[1] self._face_gallery_noisy_dict[line] = 1 print('Noisy faces of gallery: %d' % len(self._face_gallery_noisy_dict)) </DeepExtract>
cavaface.pytorch
positive
def change_role(self, membership_id, role_name): """ Changes the role of an application member. Args: membership_id (int): the id of the membership that will be changed. role_name (str): the role name to be granted to the membership. Examples: >>> balena.models.application.membership.change_role(55074, 'observer') 'OK' """ <DeepExtract> base_request = BaseRequest() settings = Settings() params = {'filter': 'name', 'eq': role_name} roles = base_request.request('application_membership_role', 'GET', params=params, endpoint=settings.get('pine_endpoint'))['d'] if not roles: raise exceptions.BalenaApplicationMembershipRoleNotFound(role_name=role_name) else: role_id = roles[0]['id'] </DeepExtract> params = {'filter': 'id', 'eq': membership_id} data = {'application_membership_role': role_id} return self.base_request.request(self.RESOURCE, 'PATCH', params=params, data=data, endpoint=self.settings.get('pine_endpoint'))
def change_role(self, membership_id, role_name): """ Changes the role of an application member. Args: membership_id (int): the id of the membership that will be changed. role_name (str): the role name to be granted to the membership. Examples: >>> balena.models.application.membership.change_role(55074, 'observer') 'OK' """ base_request = BaseRequest() settings = Settings() params = {'filter': 'name', 'eq': role_name} roles = base_request.request('application_membership_role', 'GET', params=params, endpoint=settings.get('pine_endpoint'))['d'] if not roles: raise exceptions.BalenaApplicationMembershipRoleNotFound(role_name=role_name) else: role_id = roles[0]['id'] params = {'filter': 'id', 'eq': membership_id} data = {'application_membership_role': role_id} return self.base_request.request(self.RESOURCE, 'PATCH', params=params, data=data, endpoint=self.settings.get('pine_endpoint'))
balena-sdk-python
positive
def assert_content_manifest(client, request_id, image_contents): """ Check that the content manifest is successfully generated and contains correct content. Checks: * Check that status of content-manifest request is 200 * Validate content manifest schema * Check image_contents from content-manifest :param Client client: the Cachito API client :param int request_id: The Cachito request id :param list image_contents: expected image content part from content manifest """ content_manifest_response = client.fetch_content_manifest(request_id) assert content_manifest_response.status == 200, f'#{content_manifest_response.id}: response status {content_manifest_response.status} != 200' response_data = content_manifest_response.data <DeepExtract> icm_spec = response_data['metadata']['icm_spec'] requests_session = get_requests_session() schema = requests_session.get(icm_spec, timeout=30).json() assert validate_json(schema, response_data), f"ICM data not valid for schema at {response_data['metadata']['icm_spec']}: {response_data}" </DeepExtract> assert image_contents == content_manifest_response.data['image_contents'], f"#{content_manifest_response.id}: image content in reponse differs from test expectations.\nResponse image content: {json.dumps(content_manifest_response.data['image_contents'], indent=4, sort_keys=True)},\nTest expectations: {json.dumps(image_contents, indent=4, sort_keys=True)}"
def assert_content_manifest(client, request_id, image_contents): """ Check that the content manifest is successfully generated and contains correct content. Checks: * Check that status of content-manifest request is 200 * Validate content manifest schema * Check image_contents from content-manifest :param Client client: the Cachito API client :param int request_id: The Cachito request id :param list image_contents: expected image content part from content manifest """ content_manifest_response = client.fetch_content_manifest(request_id) assert content_manifest_response.status == 200, f'#{content_manifest_response.id}: response status {content_manifest_response.status} != 200' response_data = content_manifest_response.data icm_spec = response_data['metadata']['icm_spec'] requests_session = get_requests_session() schema = requests_session.get(icm_spec, timeout=30).json() assert validate_json(schema, response_data), f"ICM data not valid for schema at {response_data['metadata']['icm_spec']}: {response_data}" assert image_contents == content_manifest_response.data['image_contents'], f"#{content_manifest_response.id}: image content in reponse differs from test expectations.\nResponse image content: {json.dumps(content_manifest_response.data['image_contents'], indent=4, sort_keys=True)},\nTest expectations: {json.dumps(image_contents, indent=4, sort_keys=True)}"
cachito
positive
def dpCountAllGrp(self, *args): """ Count the number of active All_Grp and return them in a list. """ allGrpNodeList = [] allNodeList = cmds.ls(selection=False, type='transform') for nodeName in allNodeList: <DeepExtract> if cmds.objExists(nodeName): if cmds.objExists(nodeName + '.' + self.masterAttr): if cmds.getAttr(nodeName + '.' + self.masterAttr) == 1: allGrp = nodeName allGrp = False </DeepExtract> if allGrp: allGrpNodeList.append(allGrp) return allGrpNodeList
def dpCountAllGrp(self, *args): """ Count the number of active All_Grp and return them in a list. """ allGrpNodeList = [] allNodeList = cmds.ls(selection=False, type='transform') for nodeName in allNodeList: if cmds.objExists(nodeName): if cmds.objExists(nodeName + '.' + self.masterAttr): if cmds.getAttr(nodeName + '.' + self.masterAttr) == 1: allGrp = nodeName allGrp = False if allGrp: allGrpNodeList.append(allGrp) return allGrpNodeList
dpAutoRigSystem
positive
def check_valid_altdisks(module, action, vios, hdisks, vios_key, altdisk_op_tab, err_label): """ Check a valid alternate disk that - exists, - is an alternate disk and so can be used. sets the altdisk_op_tab acordingly: altdisk_op_tab[vios_key] = "FAILURE-ALTDC[12] <error message>" altdisk_op_tab[vios_key] = "SUCCESS-ALTDC" arguments: module (dict): The Ansible module action (str): The action to perform vios (str): The VIOS name hdisks (list): The lists of hdisks vios_key (str): The key for altdisk_op_tab status dicionary altdisk_op_tab (dict): The operation status err_label (str): The error to set the altdisk_op_tab value with return: True if alternate disk is found False otherwise """ module.debug('action: {0}, vios: {1}, hdisks: {2}, vios_key: {3}'.format(action, vios, hdisks, vios_key)) <DeepExtract> module.debug('get_pvs vios: {0}'.format(vios)) cmd = ['/usr/ios/cli/ioscli', 'lspv'] (ret, stdout, stderr) = nim_exec(module, vios, cmd) if ret != 0: msg = 'Failed to get the PV list on {0}, lspv returned: {1} {2}'.format(vios, ret, stderr) results['meta'][vios]['messages'].append(msg) module.log(msg) pvs = None pvs = {} for line in stdout.split('\n'): line = line.rstrip() match_key = re.match('^(hdisk\\S+)\\s+(\\S+)\\s+(\\S+)\\s*(\\S*)', line) if match_key: pvs[match_key.group(1)] = {} pvs[match_key.group(1)]['pvid'] = match_key.group(2) pvs[match_key.group(1)]['vg'] = match_key.group(3) pvs[match_key.group(1)]['status'] = match_key.group(4) module.debug('List of PVs:') for key in pvs.keys(): module.debug(' pvs[{0}]: {1}'.format(key, pvs[key])) pvs = pvs </DeepExtract> if pvs is None or not pvs: msg = 'to get the list of PVs on {0}'.format(vios) altdisk_op_tab[vios_key] = '{0} {1}'.format(err_label, msg) results['meta'][vios]['messages'].append('Failed ' + msg) module.log('ERROR: Failed ' + msg) return False if not isinstance(hdisks, list): msg = 'value is not a list for {0}'.format(vios) altdisk_op_tab[vios_key] = '{0} {1}'.format(err_label, msg) results['meta'][vios]['messages'].append('Target dictionary ' + msg) module.log('ERROR: Target dictionary ' + msg) return False if hdisks: for hdisk in hdisks: if hdisk not in pvs or pvs[hdisk]['vg'] != 'altinst_rootvg': msg = 'disk {0} is not an alternate install rootvg on {1}'.format(hdisk, vios) altdisk_op_tab[vios_key] = '{0} {1}'.format(err_label, msg) msg = 'Specified ' + msg results['meta'][vios]['messages'].append(msg) module.log('ERROR: ' + msg) return False else: for pv in pvs.keys(): if pvs[pv]['vg'] == 'altinst_rootvg': hdisks.append(pv) if not hdisks: msg = 'There is no alternate install rootvg on {0}'.format(vios) results['meta'][vios]['messages'].append(msg) module.log('ERROR: ' + msg) return False return True
def check_valid_altdisks(module, action, vios, hdisks, vios_key, altdisk_op_tab, err_label): """ Check a valid alternate disk that - exists, - is an alternate disk and so can be used. sets the altdisk_op_tab acordingly: altdisk_op_tab[vios_key] = "FAILURE-ALTDC[12] <error message>" altdisk_op_tab[vios_key] = "SUCCESS-ALTDC" arguments: module (dict): The Ansible module action (str): The action to perform vios (str): The VIOS name hdisks (list): The lists of hdisks vios_key (str): The key for altdisk_op_tab status dicionary altdisk_op_tab (dict): The operation status err_label (str): The error to set the altdisk_op_tab value with return: True if alternate disk is found False otherwise """ module.debug('action: {0}, vios: {1}, hdisks: {2}, vios_key: {3}'.format(action, vios, hdisks, vios_key)) module.debug('get_pvs vios: {0}'.format(vios)) cmd = ['/usr/ios/cli/ioscli', 'lspv'] (ret, stdout, stderr) = nim_exec(module, vios, cmd) if ret != 0: msg = 'Failed to get the PV list on {0}, lspv returned: {1} {2}'.format(vios, ret, stderr) results['meta'][vios]['messages'].append(msg) module.log(msg) pvs = None pvs = {} for line in stdout.split('\n'): line = line.rstrip() match_key = re.match('^(hdisk\\S+)\\s+(\\S+)\\s+(\\S+)\\s*(\\S*)', line) if match_key: pvs[match_key.group(1)] = {} pvs[match_key.group(1)]['pvid'] = match_key.group(2) pvs[match_key.group(1)]['vg'] = match_key.group(3) pvs[match_key.group(1)]['status'] = match_key.group(4) module.debug('List of PVs:') for key in pvs.keys(): module.debug(' pvs[{0}]: {1}'.format(key, pvs[key])) pvs = pvs if pvs is None or not pvs: msg = 'to get the list of PVs on {0}'.format(vios) altdisk_op_tab[vios_key] = '{0} {1}'.format(err_label, msg) results['meta'][vios]['messages'].append('Failed ' + msg) module.log('ERROR: Failed ' + msg) return False if not isinstance(hdisks, list): msg = 'value is not a list for {0}'.format(vios) altdisk_op_tab[vios_key] = '{0} {1}'.format(err_label, msg) results['meta'][vios]['messages'].append('Target dictionary ' + msg) module.log('ERROR: Target dictionary ' + msg) return False if hdisks: for hdisk in hdisks: if hdisk not in pvs or pvs[hdisk]['vg'] != 'altinst_rootvg': msg = 'disk {0} is not an alternate install rootvg on {1}'.format(hdisk, vios) altdisk_op_tab[vios_key] = '{0} {1}'.format(err_label, msg) msg = 'Specified ' + msg results['meta'][vios]['messages'].append(msg) module.log('ERROR: ' + msg) return False else: for pv in pvs.keys(): if pvs[pv]['vg'] == 'altinst_rootvg': hdisks.append(pv) if not hdisks: msg = 'There is no alternate install rootvg on {0}'.format(vios) results['meta'][vios]['messages'].append(msg) module.log('ERROR: ' + msg) return False return True
ansible-power-aix
positive
def load_pretrained_model(path): <DeepExtract> model = torchvision.models.detection.maskrcnn_resnet50_fpn(pretrained=True) anchor_generator = AnchorGenerator(sizes=tuple([(4, 8, 16, 32, 64, 128, 256, 512) for _ in range(5)]), aspect_ratios=tuple([(0.25, 0.5, 1.0, 2.0) for _ in range(5)])) model.rpn.anchor_generator = anchor_generator model.rpn.head = RPNHead(256, anchor_generator.num_anchors_per_location()[0]) in_features = model.roi_heads.box_predictor.cls_score.in_features model.roi_heads.box_predictor = FastRCNNPredictor(in_features, len(constants.OBJECTS_DETECTOR) + 1) in_features_mask = model.roi_heads.mask_predictor.conv5_mask.in_channels hidden_layer = 256 model.roi_heads.mask_predictor = MaskRCNNPredictor(in_features_mask, hidden_layer, len(constants.OBJECTS_DETECTOR) + 1) mask_rcnn = model </DeepExtract> mask_rcnn.load_state_dict(torch.load(path)) return mask_rcnn
def load_pretrained_model(path): model = torchvision.models.detection.maskrcnn_resnet50_fpn(pretrained=True) anchor_generator = AnchorGenerator(sizes=tuple([(4, 8, 16, 32, 64, 128, 256, 512) for _ in range(5)]), aspect_ratios=tuple([(0.25, 0.5, 1.0, 2.0) for _ in range(5)])) model.rpn.anchor_generator = anchor_generator model.rpn.head = RPNHead(256, anchor_generator.num_anchors_per_location()[0]) in_features = model.roi_heads.box_predictor.cls_score.in_features model.roi_heads.box_predictor = FastRCNNPredictor(in_features, len(constants.OBJECTS_DETECTOR) + 1) in_features_mask = model.roi_heads.mask_predictor.conv5_mask.in_channels hidden_layer = 256 model.roi_heads.mask_predictor = MaskRCNNPredictor(in_features_mask, hidden_layer, len(constants.OBJECTS_DETECTOR) + 1) mask_rcnn = model mask_rcnn.load_state_dict(torch.load(path)) return mask_rcnn
alfworld
positive
def ShowSkills(crew_member): if not crew_member.alive: return selected_skill = 0 exit_menu = False while not exit_menu: skill_list = [] for skill in SKILLS: if len(skill.restrictions) > 0: if crew_member.position not in skill.restrictions: continue if skill.name == 'Gyrostabilizer' and campaign.player_nation != 'USA': continue level = 0 for crew_skill in crew_member.skills: if crew_skill.name == skill.name: level = crew_skill.level break skill_list.append((skill, level)) libtcod.console_set_default_background(menu_con, libtcod.black) libtcod.console_set_default_foreground(menu_con, libtcod.white) libtcod.console_clear(menu_con) libtcod.console_print_frame(menu_con, 0, 0, MENU_CON_WIDTH - 1, MENU_CON_HEIGHT - 1, clear=False, flag=libtcod.BKGND_DEFAULT, fmt=0) libtcod.console_set_default_foreground(menu_con, MENU_TITLE_COLOR) libtcod.console_print_ex(menu_con, MENU_CON_XM, 2, libtcod.BKGND_NONE, libtcod.CENTER, 'Crew Skills') libtcod.console_set_default_foreground(menu_con, libtcod.white) libtcod.console_print_ex(menu_con, MENU_CON_XM, MENU_CON_HEIGHT - 5, libtcod.BKGND_NONE, libtcod.CENTER, '[%cW/S/Up/Down%c] Change Skill Selection' % HIGHLIGHT) libtcod.console_print_ex(menu_con, MENU_CON_XM, MENU_CON_HEIGHT - 4, libtcod.BKGND_NONE, libtcod.CENTER, '[%cEnter%c] Add/Upgrade Skill' % HIGHLIGHT) libtcod.console_print_ex(menu_con, MENU_CON_XM, MENU_CON_HEIGHT - 3, libtcod.BKGND_NONE, libtcod.CENTER, '[%cESC%c] Return/Continue' % HIGHLIGHT) crew_member.DisplayCrewInfo(menu_con, 29, 4, False) libtcod.console_set_default_foreground(menu_con, libtcod.light_grey) libtcod.console_print_frame(menu_con, 83, 4, 40, 30, clear=False, flag=libtcod.BKGND_DEFAULT, fmt=0) libtcod.console_print(menu_con, 86, 9, 'Description') libtcod.console_print(menu_con, 86, 25, 'Activation Levels') libtcod.console_set_default_foreground(menu_con, libtcod.white) libtcod.console_set_default_foreground(menu_con, libtcod.light_grey) libtcod.console_print_frame(menu_con, 56, 4, 27, 30, clear=False, flag=libtcod.BKGND_DEFAULT, fmt=0) libtcod.console_print(menu_con, 59, 5, 'Skills') libtcod.console_set_default_foreground(menu_con, libtcod.white) y = 7 n = 0 for (skill, level) in skill_list: if n == selected_skill: libtcod.console_set_default_background(menu_con, libtcod.darker_grey) libtcod.console_rect(menu_con, 57, y, 25, 1, False, flag=libtcod.BKGND_SET) libtcod.console_set_default_background(menu_con, libtcod.black) libtcod.console_set_default_foreground(menu_con, libtcod.white) lines = wrap(skill.desc, 30, subsequent_indent=' ') y2 = 11 for line in lines: libtcod.console_print(menu_con, 86, y2, line) y2 += 1 if skill.levels[0] == 100: libtcod.console_print(menu_con, 86, 27, 'Always active') else: x2 = 86 for skill_level in skill.levels: if skill_level <= level: libtcod.console_set_default_foreground(menu_con, libtcod.light_blue) else: libtcod.console_set_default_foreground(menu_con, libtcod.white) libtcod.console_print(menu_con, x2, 27, str(skill_level) + '%') x2 += len(str(skill_level)) + 2 if skill.name == 'Gyrostabilizer' and (not campaign.gyro_skill_avail): libtcod.console_set_default_foreground(menu_con, GREYED_COLOR) elif level > 0: libtcod.console_set_default_foreground(menu_con, libtcod.light_blue) else: libtcod.console_set_default_foreground(menu_con, libtcod.white) libtcod.console_print(menu_con, 58, y, skill.name) y += 1 n += 1 libtcod.console_blit(menu_con, 0, 0, MENU_CON_WIDTH, MENU_CON_HEIGHT, 0, MENU_CON_X, MENU_CON_Y) libtcod.console_flush() refresh = False while not refresh: libtcod.sys_check_for_event(libtcod.EVENT_KEY_PRESS | libtcod.EVENT_MOUSE, key, mouse) if libtcod.console_is_window_closed(): sys.exit() if key.vk == libtcod.KEY_ESCAPE: exit_menu = True break key_char = chr(key.c) if key.vk == libtcod.KEY_UP or key_char in ['w', 'W']: if selected_skill == 0: selected_skill = len(skill_list) - 1 else: selected_skill -= 1 refresh = True elif key.vk == libtcod.KEY_DOWN or key_char in ['s', 'S']: if selected_skill == len(skill_list) - 1: selected_skill = 0 else: selected_skill += 1 refresh = True elif key.vk == libtcod.KEY_ENTER: if not crew_member.NoActions() and crew_member.skill_pts > 0: n = 0 for (skill, level) in skill_list: if n == selected_skill: if skill.name == 'Gyrostabilizer' and (not campaign.gyro_skill_avail): break if level == 0: text = 'Spend a skill point to add skill "' + skill.name + '"' if PopUp(text, confirm=True): crew_member.skill_pts -= 1 crew_member.skills.append(SkillRecord(skill.name, skill.levels[0])) <DeepExtract> campaign.campaign_journal.append(crew_member.name + ' added a new skill: ' + skill.name + ', now at ' + str(skill.levels[0]) + '% activation') </DeepExtract> <DeepExtract> if not MIXER_ACTIVE: return if campaign is not None: if not campaign.sounds: return if not 'new_skill' in SOUNDS: return if SOUNDS['new_skill'] is None: return mixer.Mix_PlayChannel(-1, SOUNDS['new_skill'], 0) </DeepExtract> else: for skill_level in skill.levels: if level < skill_level: text = 'Spend a skill point to upgrade skill "' + skill.name + '"' if PopUp(text, confirm=True): crew_member.skill_pts -= 1 crew_member.UpgradeSkill(skill.name, skill_level) <DeepExtract> campaign.campaign_journal.append(crew_member.name + ' upgraded a skill: ' + skill.name + ', now at ' + str(skill_level) + '% activation') </DeepExtract> <DeepExtract> if not MIXER_ACTIVE: return if campaign is not None: if not campaign.sounds: return if not 'new_skill' in SOUNDS: return if SOUNDS['new_skill'] is None: return mixer.Mix_PlayChannel(-1, SOUNDS['new_skill'], 0) </DeepExtract> break break n += 1 refresh = True libtcod.console_flush()
def ShowSkills(crew_member): if not crew_member.alive: return selected_skill = 0 exit_menu = False while not exit_menu: skill_list = [] for skill in SKILLS: if len(skill.restrictions) > 0: if crew_member.position not in skill.restrictions: continue if skill.name == 'Gyrostabilizer' and campaign.player_nation != 'USA': continue level = 0 for crew_skill in crew_member.skills: if crew_skill.name == skill.name: level = crew_skill.level break skill_list.append((skill, level)) libtcod.console_set_default_background(menu_con, libtcod.black) libtcod.console_set_default_foreground(menu_con, libtcod.white) libtcod.console_clear(menu_con) libtcod.console_print_frame(menu_con, 0, 0, MENU_CON_WIDTH - 1, MENU_CON_HEIGHT - 1, clear=False, flag=libtcod.BKGND_DEFAULT, fmt=0) libtcod.console_set_default_foreground(menu_con, MENU_TITLE_COLOR) libtcod.console_print_ex(menu_con, MENU_CON_XM, 2, libtcod.BKGND_NONE, libtcod.CENTER, 'Crew Skills') libtcod.console_set_default_foreground(menu_con, libtcod.white) libtcod.console_print_ex(menu_con, MENU_CON_XM, MENU_CON_HEIGHT - 5, libtcod.BKGND_NONE, libtcod.CENTER, '[%cW/S/Up/Down%c] Change Skill Selection' % HIGHLIGHT) libtcod.console_print_ex(menu_con, MENU_CON_XM, MENU_CON_HEIGHT - 4, libtcod.BKGND_NONE, libtcod.CENTER, '[%cEnter%c] Add/Upgrade Skill' % HIGHLIGHT) libtcod.console_print_ex(menu_con, MENU_CON_XM, MENU_CON_HEIGHT - 3, libtcod.BKGND_NONE, libtcod.CENTER, '[%cESC%c] Return/Continue' % HIGHLIGHT) crew_member.DisplayCrewInfo(menu_con, 29, 4, False) libtcod.console_set_default_foreground(menu_con, libtcod.light_grey) libtcod.console_print_frame(menu_con, 83, 4, 40, 30, clear=False, flag=libtcod.BKGND_DEFAULT, fmt=0) libtcod.console_print(menu_con, 86, 9, 'Description') libtcod.console_print(menu_con, 86, 25, 'Activation Levels') libtcod.console_set_default_foreground(menu_con, libtcod.white) libtcod.console_set_default_foreground(menu_con, libtcod.light_grey) libtcod.console_print_frame(menu_con, 56, 4, 27, 30, clear=False, flag=libtcod.BKGND_DEFAULT, fmt=0) libtcod.console_print(menu_con, 59, 5, 'Skills') libtcod.console_set_default_foreground(menu_con, libtcod.white) y = 7 n = 0 for (skill, level) in skill_list: if n == selected_skill: libtcod.console_set_default_background(menu_con, libtcod.darker_grey) libtcod.console_rect(menu_con, 57, y, 25, 1, False, flag=libtcod.BKGND_SET) libtcod.console_set_default_background(menu_con, libtcod.black) libtcod.console_set_default_foreground(menu_con, libtcod.white) lines = wrap(skill.desc, 30, subsequent_indent=' ') y2 = 11 for line in lines: libtcod.console_print(menu_con, 86, y2, line) y2 += 1 if skill.levels[0] == 100: libtcod.console_print(menu_con, 86, 27, 'Always active') else: x2 = 86 for skill_level in skill.levels: if skill_level <= level: libtcod.console_set_default_foreground(menu_con, libtcod.light_blue) else: libtcod.console_set_default_foreground(menu_con, libtcod.white) libtcod.console_print(menu_con, x2, 27, str(skill_level) + '%') x2 += len(str(skill_level)) + 2 if skill.name == 'Gyrostabilizer' and (not campaign.gyro_skill_avail): libtcod.console_set_default_foreground(menu_con, GREYED_COLOR) elif level > 0: libtcod.console_set_default_foreground(menu_con, libtcod.light_blue) else: libtcod.console_set_default_foreground(menu_con, libtcod.white) libtcod.console_print(menu_con, 58, y, skill.name) y += 1 n += 1 libtcod.console_blit(menu_con, 0, 0, MENU_CON_WIDTH, MENU_CON_HEIGHT, 0, MENU_CON_X, MENU_CON_Y) libtcod.console_flush() refresh = False while not refresh: libtcod.sys_check_for_event(libtcod.EVENT_KEY_PRESS | libtcod.EVENT_MOUSE, key, mouse) if libtcod.console_is_window_closed(): sys.exit() if key.vk == libtcod.KEY_ESCAPE: exit_menu = True break key_char = chr(key.c) if key.vk == libtcod.KEY_UP or key_char in ['w', 'W']: if selected_skill == 0: selected_skill = len(skill_list) - 1 else: selected_skill -= 1 refresh = True elif key.vk == libtcod.KEY_DOWN or key_char in ['s', 'S']: if selected_skill == len(skill_list) - 1: selected_skill = 0 else: selected_skill += 1 refresh = True elif key.vk == libtcod.KEY_ENTER: if not crew_member.NoActions() and crew_member.skill_pts > 0: n = 0 for (skill, level) in skill_list: if n == selected_skill: if skill.name == 'Gyrostabilizer' and (not campaign.gyro_skill_avail): break if level == 0: text = 'Spend a skill point to add skill "' + skill.name + '"' if PopUp(text, confirm=True): crew_member.skill_pts -= 1 crew_member.skills.append(SkillRecord(skill.name, skill.levels[0])) campaign.campaign_journal.append(crew_member.name + ' added a new skill: ' + skill.name + ', now at ' + str(skill.levels[0]) + '% activation') if not MIXER_ACTIVE: return if campaign is not None: if not campaign.sounds: return if not 'new_skill' in SOUNDS: return if SOUNDS['new_skill'] is None: return mixer.Mix_PlayChannel(-1, SOUNDS['new_skill'], 0) else: for skill_level in skill.levels: if level < skill_level: text = 'Spend a skill point to upgrade skill "' + skill.name + '"' if PopUp(text, confirm=True): crew_member.skill_pts -= 1 crew_member.UpgradeSkill(skill.name, skill_level) campaign.campaign_journal.append(crew_member.name + ' upgraded a skill: ' + skill.name + ', now at ' + str(skill_level) + '% activation') if not MIXER_ACTIVE: return if campaign is not None: if not campaign.sounds: return if not 'new_skill' in SOUNDS: return if SOUNDS['new_skill'] is None: return mixer.Mix_PlayChannel(-1, SOUNDS['new_skill'], 0) break break n += 1 refresh = True libtcod.console_flush()
armcom
positive
@attest.test def custom_values(self): <DeepExtract> with open(self.path, 'w') as fp: fp.write('---\n') for (k, v) in iteritems(kwargs): fp.write('%s: %s\n' % (k, v)) fp.write('---\n') </DeepExtract> entry = Entry(self.path, conf) assert 'image' in entry assert entry.image == '/img/test.png'
@attest.test def custom_values(self): with open(self.path, 'w') as fp: fp.write('---\n') for (k, v) in iteritems(kwargs): fp.write('%s: %s\n' % (k, v)) fp.write('---\n') entry = Entry(self.path, conf) assert 'image' in entry assert entry.image == '/img/test.png'
acrylamid
positive
def build_graph(self): <DeepExtract> self.question = tf.placeholder(tf.int32, [self.batch_size, self.max_input_left], name='input_question') if self.dataset == 'TREC': self.input_y = tf.placeholder(tf.float32, [self.batch_size, 6], name='input_y') else: self.input_y = tf.placeholder(tf.float32, [self.batch_size, 2], name='input_y') self.q_position = tf.placeholder(tf.int32, [self.batch_size, self.max_input_left], name='q_position') self.dropout_keep_prob = tf.placeholder(tf.float32, name='dropout_keep_prob') </DeepExtract> <DeepExtract> with tf.name_scope('embedding'): if self.is_Embedding_Needed: W = tf.Variable(np.array(self.embeddings), name='W', dtype='float32', trainable=self.trainable) W_pos = tf.Variable(tf.random_uniform([self.vocab_size, self.embedding_size], 0, 2 * math.pi), name='W', trainable=self.trainable) else: W = tf.Variable(tf.random_uniform([self.vocab_size, self.embedding_size], -1.0, 1.0), name='W', trainable=self.trainable) self.embedding_W = W self.embedding_W_pos = W_pos (self.embedded_chars_q, self.embedding_chars_q_phase) = self.concat_embedding(self.question, self.q_position) self.embedded_chars_q = tf.reduce_sum([self.embedded_chars_q, self.embedding_chars_q_phase], 0) print(self.embedded_chars_q) self.represent = tf.reduce_mean(self.embedded_chars_q, 1) print(self.represent) </DeepExtract> <DeepExtract> self.l2_loss = tf.constant(0.0) with tf.name_scope('output'): if self.dataset == 'TREC': W = tf.get_variable('W', shape=[self.embedding_size, 6], initializer=tf.contrib.layers.xavier_initializer()) b = tf.Variable(tf.constant(0.1, shape=[6]), name='b') else: W = tf.get_variable('W', shape=[self.embedding_size, 2], initializer=tf.contrib.layers.xavier_initializer()) b = tf.Variable(tf.constant(0.1, shape=[2]), name='b') self.l2_loss += tf.nn.l2_loss(W) self.l2_loss += tf.nn.l2_loss(b) self.logits = tf.nn.xw_plus_b(self.represent, W, b, name='logits') self.scores = tf.nn.softmax(self.logits, name='scores') self.predictions = tf.argmax(self.scores, 1, name='predictions') </DeepExtract> <DeepExtract> with tf.name_scope('loss'): losses = tf.nn.softmax_cross_entropy_with_logits(logits=self.logits, labels=self.input_y) self.loss = tf.reduce_mean(losses) + self.l2_reg_lambda * self.l2_loss with tf.name_scope('accuracy'): correct_predictions = tf.equal(self.predictions, tf.argmax(self.input_y, 1)) self.accuracy = tf.reduce_mean(tf.cast(correct_predictions, 'float'), name='accuracy') </DeepExtract>
def build_graph(self): self.question = tf.placeholder(tf.int32, [self.batch_size, self.max_input_left], name='input_question') if self.dataset == 'TREC': self.input_y = tf.placeholder(tf.float32, [self.batch_size, 6], name='input_y') else: self.input_y = tf.placeholder(tf.float32, [self.batch_size, 2], name='input_y') self.q_position = tf.placeholder(tf.int32, [self.batch_size, self.max_input_left], name='q_position') self.dropout_keep_prob = tf.placeholder(tf.float32, name='dropout_keep_prob') with tf.name_scope('embedding'): if self.is_Embedding_Needed: W = tf.Variable(np.array(self.embeddings), name='W', dtype='float32', trainable=self.trainable) W_pos = tf.Variable(tf.random_uniform([self.vocab_size, self.embedding_size], 0, 2 * math.pi), name='W', trainable=self.trainable) else: W = tf.Variable(tf.random_uniform([self.vocab_size, self.embedding_size], -1.0, 1.0), name='W', trainable=self.trainable) self.embedding_W = W self.embedding_W_pos = W_pos (self.embedded_chars_q, self.embedding_chars_q_phase) = self.concat_embedding(self.question, self.q_position) self.embedded_chars_q = tf.reduce_sum([self.embedded_chars_q, self.embedding_chars_q_phase], 0) print(self.embedded_chars_q) self.represent = tf.reduce_mean(self.embedded_chars_q, 1) print(self.represent) self.l2_loss = tf.constant(0.0) with tf.name_scope('output'): if self.dataset == 'TREC': W = tf.get_variable('W', shape=[self.embedding_size, 6], initializer=tf.contrib.layers.xavier_initializer()) b = tf.Variable(tf.constant(0.1, shape=[6]), name='b') else: W = tf.get_variable('W', shape=[self.embedding_size, 2], initializer=tf.contrib.layers.xavier_initializer()) b = tf.Variable(tf.constant(0.1, shape=[2]), name='b') self.l2_loss += tf.nn.l2_loss(W) self.l2_loss += tf.nn.l2_loss(b) self.logits = tf.nn.xw_plus_b(self.represent, W, b, name='logits') self.scores = tf.nn.softmax(self.logits, name='scores') self.predictions = tf.argmax(self.scores, 1, name='predictions') with tf.name_scope('loss'): losses = tf.nn.softmax_cross_entropy_with_logits(logits=self.logits, labels=self.input_y) self.loss = tf.reduce_mean(losses) + self.l2_reg_lambda * self.l2_loss with tf.name_scope('accuracy'): correct_predictions = tf.equal(self.predictions, tf.argmax(self.input_y, 1)) self.accuracy = tf.reduce_mean(tf.cast(correct_predictions, 'float'), name='accuracy') </DeepExtract>
complex-order
positive
def describe_subnets(connection, module): """ Describe Subnets. module : AnsibleAWSModule object connection : boto3 client connection object """ filters = ansible_dict_to_boto3_filter_list(module.params.get('filters')) subnet_ids = module.params.get('subnet_ids') if subnet_ids is None: subnet_ids = [] subnet_info = list() try: <DeepExtract> response = connection.describe_subnets(SubnetIds=subnet_ids, Filters=filters) </DeepExtract> except (botocore.exceptions.ClientError, botocore.exceptions.BotoCoreError) as e: module.fail_json_aws(e, msg='Failed to describe subnets') for subnet in response['Subnets']: subnet['id'] = subnet['SubnetId'] subnet_info.append(camel_dict_to_snake_dict(subnet)) subnet_info[-1]['tags'] = boto3_tag_list_to_ansible_dict(subnet.get('Tags', [])) module.exit_json(subnets=subnet_info)
def describe_subnets(connection, module): """ Describe Subnets. module : AnsibleAWSModule object connection : boto3 client connection object """ filters = ansible_dict_to_boto3_filter_list(module.params.get('filters')) subnet_ids = module.params.get('subnet_ids') if subnet_ids is None: subnet_ids = [] subnet_info = list() try: response = connection.describe_subnets(SubnetIds=subnet_ids, Filters=filters) except (botocore.exceptions.ClientError, botocore.exceptions.BotoCoreError) as e: module.fail_json_aws(e, msg='Failed to describe subnets') for subnet in response['Subnets']: subnet['id'] = subnet['SubnetId'] subnet_info.append(camel_dict_to_snake_dict(subnet)) subnet_info[-1]['tags'] = boto3_tag_list_to_ansible_dict(subnet.get('Tags', [])) module.exit_json(subnets=subnet_info)
amazon.aws
positive
def __init__(self, applet: 'BluemanApplet') -> None: super().__init__(application=applet, title=_('Plugins'), icon_name='blueman', name='PluginDialog', border_width=10, default_width=490, default_height=380, resizable=False, visible=False) self.set_position(Gtk.WindowPosition.CENTER) self.applet = applet builder = Builder('applet-plugins-widget.ui') self.description = builder.get_widget('description', Gtk.Label) self.icon = builder.get_widget('icon', Gtk.Image) self.author_txt = builder.get_widget('author_txt', Gtk.Label) self.depends_hdr = builder.get_widget('depends_hdr', Gtk.Widget) self.depends_txt = builder.get_widget('depends_txt', Gtk.Label) self.conflicts_hdr = builder.get_widget('conflicts_hdr', Gtk.Widget) self.conflicts_txt = builder.get_widget('conflicts_txt', Gtk.Label) self.plugin_name = builder.get_widget('name', Gtk.Label) self.main_container = builder.get_widget('main_container', Gtk.Bin) self.content_grid = builder.get_widget('content', Gtk.Widget) self.b_prefs = builder.get_widget('b_prefs', Gtk.ToggleButton) self.b_prefs.connect('toggled', self.on_prefs_toggled) self.add(builder.get_widget('all', Gtk.Container)) cr = Gtk.CellRendererToggle() cr.connect('toggled', self.on_toggled) data: List[ListDataDict] = [{'id': 'active', 'type': bool, 'renderer': cr, 'render_attrs': {'active': 0, 'activatable': 1, 'visible': 1}}, {'id': 'activatable', 'type': bool}, {'id': 'icon', 'type': str, 'renderer': Gtk.CellRendererPixbuf(), 'render_attrs': {'icon-name': 2}}, {'id': 'desc', 'type': str, 'renderer': Gtk.CellRendererText(), 'render_attrs': {'markup': 3}, 'view_props': {'expand': True}}, {'id': 'name', 'type': str}] self.list = GenericList(data, headers_visible=False, visible=True) self.list.liststore.set_sort_column_id(3, Gtk.SortType.ASCENDING) self.list.liststore.set_sort_func(3, self.list_compare_func) self.list.selection.connect('changed', self.on_selection_changed) plugin_list = builder.get_widget('plugin_list', Gtk.ScrolledWindow) plugin_info = builder.get_widget('main_scrolled_window', Gtk.ScrolledWindow) plugin_list.add(self.list) if Gtk.get_minor_version() >= 16: plugin_list.props.overlay_scrolling = False plugin_info.props.overlay_scrolling = False <DeepExtract> classes: Dict[str, Type[AppletPlugin]] = self.applet.Plugins.get_classes() loaded = self.applet.Plugins.get_loaded() for (name, cls) in classes.items(): if cls.is_configurable(): desc = f'<span weight="bold">{name}</span>' else: desc = name self.list.append(active=name in loaded, icon=cls.__icon__, activatable=cls.__unloadable__, name=name, desc=desc) </DeepExtract> self.sig_a: int = self.applet.Plugins.connect('plugin-loaded', self.plugin_state_changed, True) self.sig_b: int = self.applet.Plugins.connect('plugin-unloaded', self.plugin_state_changed, False) self.connect('delete-event', self._on_close) self.list.set_cursor(0) close_action = Gio.SimpleAction.new('close', None) close_action.connect('activate', lambda x, y: self.close()) self.add_action(close_action)
def __init__(self, applet: 'BluemanApplet') -> None: super().__init__(application=applet, title=_('Plugins'), icon_name='blueman', name='PluginDialog', border_width=10, default_width=490, default_height=380, resizable=False, visible=False) self.set_position(Gtk.WindowPosition.CENTER) self.applet = applet builder = Builder('applet-plugins-widget.ui') self.description = builder.get_widget('description', Gtk.Label) self.icon = builder.get_widget('icon', Gtk.Image) self.author_txt = builder.get_widget('author_txt', Gtk.Label) self.depends_hdr = builder.get_widget('depends_hdr', Gtk.Widget) self.depends_txt = builder.get_widget('depends_txt', Gtk.Label) self.conflicts_hdr = builder.get_widget('conflicts_hdr', Gtk.Widget) self.conflicts_txt = builder.get_widget('conflicts_txt', Gtk.Label) self.plugin_name = builder.get_widget('name', Gtk.Label) self.main_container = builder.get_widget('main_container', Gtk.Bin) self.content_grid = builder.get_widget('content', Gtk.Widget) self.b_prefs = builder.get_widget('b_prefs', Gtk.ToggleButton) self.b_prefs.connect('toggled', self.on_prefs_toggled) self.add(builder.get_widget('all', Gtk.Container)) cr = Gtk.CellRendererToggle() cr.connect('toggled', self.on_toggled) data: List[ListDataDict] = [{'id': 'active', 'type': bool, 'renderer': cr, 'render_attrs': {'active': 0, 'activatable': 1, 'visible': 1}}, {'id': 'activatable', 'type': bool}, {'id': 'icon', 'type': str, 'renderer': Gtk.CellRendererPixbuf(), 'render_attrs': {'icon-name': 2}}, {'id': 'desc', 'type': str, 'renderer': Gtk.CellRendererText(), 'render_attrs': {'markup': 3}, 'view_props': {'expand': True}}, {'id': 'name', 'type': str}] self.list = GenericList(data, headers_visible=False, visible=True) self.list.liststore.set_sort_column_id(3, Gtk.SortType.ASCENDING) self.list.liststore.set_sort_func(3, self.list_compare_func) self.list.selection.connect('changed', self.on_selection_changed) plugin_list = builder.get_widget('plugin_list', Gtk.ScrolledWindow) plugin_info = builder.get_widget('main_scrolled_window', Gtk.ScrolledWindow) plugin_list.add(self.list) if Gtk.get_minor_version() >= 16: plugin_list.props.overlay_scrolling = False plugin_info.props.overlay_scrolling = False classes: Dict[str, Type[AppletPlugin]] = self.applet.Plugins.get_classes() loaded = self.applet.Plugins.get_loaded() for (name, cls) in classes.items(): if cls.is_configurable(): desc = f'<span weight="bold">{name}</span>' else: desc = name self.list.append(active=name in loaded, icon=cls.__icon__, activatable=cls.__unloadable__, name=name, desc=desc) self.sig_a: int = self.applet.Plugins.connect('plugin-loaded', self.plugin_state_changed, True) self.sig_b: int = self.applet.Plugins.connect('plugin-unloaded', self.plugin_state_changed, False) self.connect('delete-event', self._on_close) self.list.set_cursor(0) close_action = Gio.SimpleAction.new('close', None) close_action.connect('activate', lambda x, y: self.close()) self.add_action(close_action)
blueman
positive
def test_ohem_sampler_empty_gt(): assigner = MaxIoUAssigner(pos_iou_thr=0.5, neg_iou_thr=0.5, ignore_iof_thr=0.5, ignore_wrt_candidates=False) bboxes = torch.FloatTensor([[0, 0, 10, 10], [10, 10, 20, 20], [5, 5, 15, 15], [32, 32, 38, 42]]) gt_bboxes = torch.empty(0, 4) gt_labels = torch.LongTensor([]) gt_bboxes_ignore = torch.Tensor([]) assign_result = assigner.assign(bboxes, gt_bboxes, gt_bboxes_ignore=gt_bboxes_ignore, gt_labels=gt_labels) <DeepExtract> try: from test_forward import _get_detector_cfg except ImportError: import sys from os.path import dirname sys.path.insert(0, dirname(__file__)) from test_forward import _get_detector_cfg (model, train_cfg, test_cfg) = _get_detector_cfg('faster_rcnn_ohem_r50_fpn_1x.py') model['pretrained'] = None model['bbox_roi_extractor']['roi_layer']['use_torchvision'] = True from mmdet.models import build_detector context = build_detector(model, train_cfg=train_cfg, test_cfg=test_cfg) context = context </DeepExtract> sampler = OHEMSampler(num=10, pos_fraction=0.5, context=context, neg_pos_ub=-1, add_gt_as_proposals=True) feats = [torch.rand(1, 256, int(2 ** i), int(2 ** i)) for i in [6, 5, 4, 3, 2]] sample_result = sampler.sample(assign_result, bboxes, gt_bboxes, gt_labels, feats=feats) assert len(sample_result.pos_bboxes) == len(sample_result.pos_inds) assert len(sample_result.neg_bboxes) == len(sample_result.neg_inds)
def test_ohem_sampler_empty_gt(): assigner = MaxIoUAssigner(pos_iou_thr=0.5, neg_iou_thr=0.5, ignore_iof_thr=0.5, ignore_wrt_candidates=False) bboxes = torch.FloatTensor([[0, 0, 10, 10], [10, 10, 20, 20], [5, 5, 15, 15], [32, 32, 38, 42]]) gt_bboxes = torch.empty(0, 4) gt_labels = torch.LongTensor([]) gt_bboxes_ignore = torch.Tensor([]) assign_result = assigner.assign(bboxes, gt_bboxes, gt_bboxes_ignore=gt_bboxes_ignore, gt_labels=gt_labels) try: from test_forward import _get_detector_cfg except ImportError: import sys from os.path import dirname sys.path.insert(0, dirname(__file__)) from test_forward import _get_detector_cfg (model, train_cfg, test_cfg) = _get_detector_cfg('faster_rcnn_ohem_r50_fpn_1x.py') model['pretrained'] = None model['bbox_roi_extractor']['roi_layer']['use_torchvision'] = True from mmdet.models import build_detector context = build_detector(model, train_cfg=train_cfg, test_cfg=test_cfg) context = context sampler = OHEMSampler(num=10, pos_fraction=0.5, context=context, neg_pos_ub=-1, add_gt_as_proposals=True) feats = [torch.rand(1, 256, int(2 ** i), int(2 ** i)) for i in [6, 5, 4, 3, 2]] sample_result = sampler.sample(assign_result, bboxes, gt_bboxes, gt_labels, feats=feats) assert len(sample_result.pos_bboxes) == len(sample_result.pos_inds) assert len(sample_result.neg_bboxes) == len(sample_result.neg_inds)
Dense-RepPoints
positive
def arrange(self) -> None: <DeepExtract> GUIUtilities.clear_layout(self) </DeepExtract> if len(self.items) > 0: row = col = 0 n = max(len(self.items), self.cols) for idx in range(n): self.setColumnStretch(col, 1) self.setRowStretch(row, 1) if idx < len(self.items): widget = self.items[idx] self.addWidget(widget, row, col) else: self.addWidget(QWidget(), row, col) col += 1 if col % self.cols == 0: row += 1 col = 0
def arrange(self) -> None: GUIUtilities.clear_layout(self) if len(self.items) > 0: row = col = 0 n = max(len(self.items), self.cols) for idx in range(n): self.setColumnStretch(col, 1) self.setRowStretch(row, 1) if idx < len(self.items): widget = self.items[idx] self.addWidget(widget, row, col) else: self.addWidget(QWidget(), row, col) col += 1 if col % self.cols == 0: row += 1 col = 0
CvStudio
positive
def transpose(self, method): """ Transpose bounding box (flip or rotate in 90 degree steps) :param method: One of :py:attr:`PIL.Image.FLIP_LEFT_RIGHT`, :py:attr:`PIL.Image.FLIP_TOP_BOTTOM`, :py:attr:`PIL.Image.ROTATE_90`, :py:attr:`PIL.Image.ROTATE_180`, :py:attr:`PIL.Image.ROTATE_270`, :py:attr:`PIL.Image.TRANSPOSE` or :py:attr:`PIL.Image.TRANSVERSE`. """ if method not in (FLIP_LEFT_RIGHT, FLIP_TOP_BOTTOM): raise NotImplementedError('Only FLIP_LEFT_RIGHT and FLIP_TOP_BOTTOM implemented') (image_width, image_height) = self.size <DeepExtract> if self.mode == 'xyxy': (xmin, ymin, xmax, ymax) = self.bbox.split(1, dim=-1) (xmin, ymin, xmax, ymax) = (xmin, ymin, xmax, ymax) elif self.mode == 'xywh': TO_REMOVE = 1 (xmin, ymin, w, h) = self.bbox.split(1, dim=-1) (xmin, ymin, xmax, ymax) = (xmin, ymin, xmin + (w - TO_REMOVE).clamp(min=0), ymin + (h - TO_REMOVE).clamp(min=0)) else: raise RuntimeError('Should not be here') </DeepExtract> if method == FLIP_LEFT_RIGHT: TO_REMOVE = 1 transposed_xmin = image_width - xmax - TO_REMOVE transposed_xmax = image_width - xmin - TO_REMOVE transposed_ymin = ymin transposed_ymax = ymax elif method == FLIP_TOP_BOTTOM: transposed_xmin = xmin transposed_xmax = xmax transposed_ymin = image_height - ymax transposed_ymax = image_height - ymin transposed_boxes = torch.cat((transposed_xmin, transposed_ymin, transposed_xmax, transposed_ymax), dim=-1) bbox = BoxList(transposed_boxes, self.size, mode='xyxy') for (k, v) in self.extra_fields.items(): if not isinstance(v, torch.Tensor): v = v.transpose(method) bbox.add_field(k, v) return bbox.convert(self.mode)
def transpose(self, method): """ Transpose bounding box (flip or rotate in 90 degree steps) :param method: One of :py:attr:`PIL.Image.FLIP_LEFT_RIGHT`, :py:attr:`PIL.Image.FLIP_TOP_BOTTOM`, :py:attr:`PIL.Image.ROTATE_90`, :py:attr:`PIL.Image.ROTATE_180`, :py:attr:`PIL.Image.ROTATE_270`, :py:attr:`PIL.Image.TRANSPOSE` or :py:attr:`PIL.Image.TRANSVERSE`. """ if method not in (FLIP_LEFT_RIGHT, FLIP_TOP_BOTTOM): raise NotImplementedError('Only FLIP_LEFT_RIGHT and FLIP_TOP_BOTTOM implemented') (image_width, image_height) = self.size if self.mode == 'xyxy': (xmin, ymin, xmax, ymax) = self.bbox.split(1, dim=-1) (xmin, ymin, xmax, ymax) = (xmin, ymin, xmax, ymax) elif self.mode == 'xywh': TO_REMOVE = 1 (xmin, ymin, w, h) = self.bbox.split(1, dim=-1) (xmin, ymin, xmax, ymax) = (xmin, ymin, xmin + (w - TO_REMOVE).clamp(min=0), ymin + (h - TO_REMOVE).clamp(min=0)) else: raise RuntimeError('Should not be here') if method == FLIP_LEFT_RIGHT: TO_REMOVE = 1 transposed_xmin = image_width - xmax - TO_REMOVE transposed_xmax = image_width - xmin - TO_REMOVE transposed_ymin = ymin transposed_ymax = ymax elif method == FLIP_TOP_BOTTOM: transposed_xmin = xmin transposed_xmax = xmax transposed_ymin = image_height - ymax transposed_ymax = image_height - ymin transposed_boxes = torch.cat((transposed_xmin, transposed_ymin, transposed_xmax, transposed_ymax), dim=-1) bbox = BoxList(transposed_boxes, self.size, mode='xyxy') for (k, v) in self.extra_fields.items(): if not isinstance(v, torch.Tensor): v = v.transpose(method) bbox.add_field(k, v) return bbox.convert(self.mode)
AE-WTN
positive
def add_embeddings(self): with tf.name_scope('embedding'): if self.is_Embedding_Needed: W = tf.Variable(np.array(self.embeddings), name='W', dtype='float32', trainable=self.trainable) W_pos = tf.Variable(tf.random_uniform([500, self.embedding_size], -1.0, 1.0), name='W', trainable=self.trainable) else: W = tf.Variable(tf.random_uniform([self.vocab_size, self.embedding_size], -1.0, 1.0), name='W', trainable=self.trainable) self.embedding_W = W self.embedding_W_pos = W_pos <DeepExtract> embedded_chars_q = tf.nn.embedding_lookup(self.embedding_W, self.question) embedding_chars_q_pos = tf.nn.embedding_lookup(self.embedding_W_pos, self.q_position) (self.embedded_chars_q, self.embedded_chars_q_pos) = (embedded_chars_q, embedding_chars_q_pos) </DeepExtract> self.embedded_chars_q = tf.reduce_sum([self.embedded_chars_q, self.embedded_chars_q_pos], 0)
def add_embeddings(self): with tf.name_scope('embedding'): if self.is_Embedding_Needed: W = tf.Variable(np.array(self.embeddings), name='W', dtype='float32', trainable=self.trainable) W_pos = tf.Variable(tf.random_uniform([500, self.embedding_size], -1.0, 1.0), name='W', trainable=self.trainable) else: W = tf.Variable(tf.random_uniform([self.vocab_size, self.embedding_size], -1.0, 1.0), name='W', trainable=self.trainable) self.embedding_W = W self.embedding_W_pos = W_pos embedded_chars_q = tf.nn.embedding_lookup(self.embedding_W, self.question) embedding_chars_q_pos = tf.nn.embedding_lookup(self.embedding_W_pos, self.q_position) (self.embedded_chars_q, self.embedded_chars_q_pos) = (embedded_chars_q, embedding_chars_q_pos) self.embedded_chars_q = tf.reduce_sum([self.embedded_chars_q, self.embedded_chars_q_pos], 0)
complex-order
positive
@pytest.mark.ci def test_lpq_params(): <DeepExtract> assert dml_lpq.params['ml_m_z']['d'] == test_values assert dml_lpq.params['ml_m_d_z0']['d'][0] is None param_list_1 = [dml_lpq.models['ml_m_z']['d'][0][fold].n_estimators for fold in range(n_folds)] assert all((param == n_est_test for param in param_list_1)) param_list_2 = [dml_lpq.models['ml_m_d_z0']['d'][0][fold].n_estimators for fold in range(n_folds)] assert all((param == n_est_default for param in param_list_2)) </DeepExtract> param_list_2 = [dml_lpq.models['ml_m_d_z1']['d'][0][fold].n_estimators for fold in range(n_folds)] assert all((param == n_est_default for param in param_list_2)) param_list_2 = [dml_lpq.models['ml_g_du_z0']['d'][0][fold].n_estimators for fold in range(n_folds)] assert all((param == n_est_default for param in param_list_2)) param_list_2 = [dml_lpq.models['ml_g_du_z1']['d'][0][fold].n_estimators for fold in range(n_folds)] assert all((param == n_est_default for param in param_list_2))
@pytest.mark.ci def test_lpq_params(): assert dml_lpq.params['ml_m_z']['d'] == test_values assert dml_lpq.params['ml_m_d_z0']['d'][0] is None param_list_1 = [dml_lpq.models['ml_m_z']['d'][0][fold].n_estimators for fold in range(n_folds)] assert all((param == n_est_test for param in param_list_1)) param_list_2 = [dml_lpq.models['ml_m_d_z0']['d'][0][fold].n_estimators for fold in range(n_folds)] assert all((param == n_est_default for param in param_list_2)) param_list_2 = [dml_lpq.models['ml_m_d_z1']['d'][0][fold].n_estimators for fold in range(n_folds)] assert all((param == n_est_default for param in param_list_2)) param_list_2 = [dml_lpq.models['ml_g_du_z0']['d'][0][fold].n_estimators for fold in range(n_folds)] assert all((param == n_est_default for param in param_list_2)) param_list_2 = [dml_lpq.models['ml_g_du_z1']['d'][0][fold].n_estimators for fold in range(n_folds)] assert all((param == n_est_default for param in param_list_2))
doubleml-for-py
positive
def find_children_by_path(self, from_element, path): path_elements = path.split('/') element = from_element for element_name in path_elements[:-1]: <DeepExtract> if element is None: element = None ret = self.find(element_name, element) if ret is None: reference = self.find(element_name + '-REF', element) if reference is not None: raise 'use follow_ref!' element = ret </DeepExtract> <DeepExtract> if element is None: children = [] ret = self.findall(path_elements[-1], element) if not ret: ret_list = self.findall(path_elements[-1] + '-REF', element) ret = [self.get_short_name_path(item.text) for item in ret_list] if len(ret) > 0: raise 'use follow_all_ref!' children = ret </DeepExtract> return children
def find_children_by_path(self, from_element, path): path_elements = path.split('/') element = from_element for element_name in path_elements[:-1]: if element is None: element = None ret = self.find(element_name, element) if ret is None: reference = self.find(element_name + '-REF', element) if reference is not None: raise 'use follow_ref!' element = ret if element is None: children = [] ret = self.findall(path_elements[-1], element) if not ret: ret_list = self.findall(path_elements[-1] + '-REF', element) ret = [self.get_short_name_path(item.text) for item in ret_list] if len(ret) > 0: raise 'use follow_all_ref!' children = ret return children
canmatrix
positive
def move(self, dest, src): <DeepExtract> s_set = self.lookup.setdefault(src, _CopySet(src)) </DeepExtract> <DeepExtract> d_set = self.lookup.setdefault(dest, _CopySet(dest)) </DeepExtract> if s_set is d_set: return False d_set.remove(dest) s_set.add(dest) self.lookup[dest] = s_set return True
def move(self, dest, src): s_set = self.lookup.setdefault(src, _CopySet(src)) d_set = self.lookup.setdefault(dest, _CopySet(dest)) if s_set is d_set: return False d_set.remove(dest) s_set.add(dest) self.lookup[dest] = s_set return True
Apk-Changer
positive
def test_basic(self): """Test basic types.""" <DeepExtract> dbus_type = get_dbus_type(Int) self.assertEqual(dbus_type, 'i') self.assertTrue(GLib.VariantType.string_is_valid(dbus_type)) variant_type = get_variant_type(Int) self.assertIsInstance(variant_type, GLib.VariantType) self.assertEqual(variant_type.dup_string(), 'i') expected_type = GLib.VariantType.new('i') self.assertTrue(expected_type.equal(variant_type)) variant_type = get_variant_type('i') self.assertIsInstance(variant_type, GLib.VariantType) self.assertTrue(expected_type.equal(variant_type)) expected_value = is_base_type(Int, Tuple) and len(get_type_arguments(Int)) == 1 self.assertEqual(is_tuple_of_one(Int), expected_value) self.assertEqual(is_tuple_of_one('i'), expected_value) self.assertTrue(is_tuple_of_one(Tuple[Int])) self.assertTrue(is_tuple_of_one('({})'.format('i'))) </DeepExtract> <DeepExtract> dbus_type = get_dbus_type(Bool) self.assertEqual(dbus_type, 'b') self.assertTrue(GLib.VariantType.string_is_valid(dbus_type)) variant_type = get_variant_type(Bool) self.assertIsInstance(variant_type, GLib.VariantType) self.assertEqual(variant_type.dup_string(), 'b') expected_type = GLib.VariantType.new('b') self.assertTrue(expected_type.equal(variant_type)) variant_type = get_variant_type('b') self.assertIsInstance(variant_type, GLib.VariantType) self.assertTrue(expected_type.equal(variant_type)) expected_value = is_base_type(Bool, Tuple) and len(get_type_arguments(Bool)) == 1 self.assertEqual(is_tuple_of_one(Bool), expected_value) self.assertEqual(is_tuple_of_one('b'), expected_value) self.assertTrue(is_tuple_of_one(Tuple[Bool])) self.assertTrue(is_tuple_of_one('({})'.format('b'))) </DeepExtract> <DeepExtract> dbus_type = get_dbus_type(Double) self.assertEqual(dbus_type, 'd') self.assertTrue(GLib.VariantType.string_is_valid(dbus_type)) variant_type = get_variant_type(Double) self.assertIsInstance(variant_type, GLib.VariantType) self.assertEqual(variant_type.dup_string(), 'd') expected_type = GLib.VariantType.new('d') self.assertTrue(expected_type.equal(variant_type)) variant_type = get_variant_type('d') self.assertIsInstance(variant_type, GLib.VariantType) self.assertTrue(expected_type.equal(variant_type)) expected_value = is_base_type(Double, Tuple) and len(get_type_arguments(Double)) == 1 self.assertEqual(is_tuple_of_one(Double), expected_value) self.assertEqual(is_tuple_of_one('d'), expected_value) self.assertTrue(is_tuple_of_one(Tuple[Double])) self.assertTrue(is_tuple_of_one('({})'.format('d'))) </DeepExtract> <DeepExtract> dbus_type = get_dbus_type(Str) self.assertEqual(dbus_type, 's') self.assertTrue(GLib.VariantType.string_is_valid(dbus_type)) variant_type = get_variant_type(Str) self.assertIsInstance(variant_type, GLib.VariantType) self.assertEqual(variant_type.dup_string(), 's') expected_type = GLib.VariantType.new('s') self.assertTrue(expected_type.equal(variant_type)) variant_type = get_variant_type('s') self.assertIsInstance(variant_type, GLib.VariantType) self.assertTrue(expected_type.equal(variant_type)) expected_value = is_base_type(Str, Tuple) and len(get_type_arguments(Str)) == 1 self.assertEqual(is_tuple_of_one(Str), expected_value) self.assertEqual(is_tuple_of_one('s'), expected_value) self.assertTrue(is_tuple_of_one(Tuple[Str])) self.assertTrue(is_tuple_of_one('({})'.format('s'))) </DeepExtract> <DeepExtract> dbus_type = get_dbus_type(ObjPath) self.assertEqual(dbus_type, 'o') self.assertTrue(GLib.VariantType.string_is_valid(dbus_type)) variant_type = get_variant_type(ObjPath) self.assertIsInstance(variant_type, GLib.VariantType) self.assertEqual(variant_type.dup_string(), 'o') expected_type = GLib.VariantType.new('o') self.assertTrue(expected_type.equal(variant_type)) variant_type = get_variant_type('o') self.assertIsInstance(variant_type, GLib.VariantType) self.assertTrue(expected_type.equal(variant_type)) expected_value = is_base_type(ObjPath, Tuple) and len(get_type_arguments(ObjPath)) == 1 self.assertEqual(is_tuple_of_one(ObjPath), expected_value) self.assertEqual(is_tuple_of_one('o'), expected_value) self.assertTrue(is_tuple_of_one(Tuple[ObjPath])) self.assertTrue(is_tuple_of_one('({})'.format('o'))) </DeepExtract> <DeepExtract> dbus_type = get_dbus_type(UnixFD) self.assertEqual(dbus_type, 'h') self.assertTrue(GLib.VariantType.string_is_valid(dbus_type)) variant_type = get_variant_type(UnixFD) self.assertIsInstance(variant_type, GLib.VariantType) self.assertEqual(variant_type.dup_string(), 'h') expected_type = GLib.VariantType.new('h') self.assertTrue(expected_type.equal(variant_type)) variant_type = get_variant_type('h') self.assertIsInstance(variant_type, GLib.VariantType) self.assertTrue(expected_type.equal(variant_type)) expected_value = is_base_type(UnixFD, Tuple) and len(get_type_arguments(UnixFD)) == 1 self.assertEqual(is_tuple_of_one(UnixFD), expected_value) self.assertEqual(is_tuple_of_one('h'), expected_value) self.assertTrue(is_tuple_of_one(Tuple[UnixFD])) self.assertTrue(is_tuple_of_one('({})'.format('h'))) </DeepExtract> <DeepExtract> dbus_type = get_dbus_type(Variant) self.assertEqual(dbus_type, 'v') self.assertTrue(GLib.VariantType.string_is_valid(dbus_type)) variant_type = get_variant_type(Variant) self.assertIsInstance(variant_type, GLib.VariantType) self.assertEqual(variant_type.dup_string(), 'v') expected_type = GLib.VariantType.new('v') self.assertTrue(expected_type.equal(variant_type)) variant_type = get_variant_type('v') self.assertIsInstance(variant_type, GLib.VariantType) self.assertTrue(expected_type.equal(variant_type)) expected_value = is_base_type(Variant, Tuple) and len(get_type_arguments(Variant)) == 1 self.assertEqual(is_tuple_of_one(Variant), expected_value) self.assertEqual(is_tuple_of_one('v'), expected_value) self.assertTrue(is_tuple_of_one(Tuple[Variant])) self.assertTrue(is_tuple_of_one('({})'.format('v'))) </DeepExtract>
def test_basic(self): """Test basic types.""" dbus_type = get_dbus_type(Int) self.assertEqual(dbus_type, 'i') self.assertTrue(GLib.VariantType.string_is_valid(dbus_type)) variant_type = get_variant_type(Int) self.assertIsInstance(variant_type, GLib.VariantType) self.assertEqual(variant_type.dup_string(), 'i') expected_type = GLib.VariantType.new('i') self.assertTrue(expected_type.equal(variant_type)) variant_type = get_variant_type('i') self.assertIsInstance(variant_type, GLib.VariantType) self.assertTrue(expected_type.equal(variant_type)) expected_value = is_base_type(Int, Tuple) and len(get_type_arguments(Int)) == 1 self.assertEqual(is_tuple_of_one(Int), expected_value) self.assertEqual(is_tuple_of_one('i'), expected_value) self.assertTrue(is_tuple_of_one(Tuple[Int])) self.assertTrue(is_tuple_of_one('({})'.format('i'))) dbus_type = get_dbus_type(Bool) self.assertEqual(dbus_type, 'b') self.assertTrue(GLib.VariantType.string_is_valid(dbus_type)) variant_type = get_variant_type(Bool) self.assertIsInstance(variant_type, GLib.VariantType) self.assertEqual(variant_type.dup_string(), 'b') expected_type = GLib.VariantType.new('b') self.assertTrue(expected_type.equal(variant_type)) variant_type = get_variant_type('b') self.assertIsInstance(variant_type, GLib.VariantType) self.assertTrue(expected_type.equal(variant_type)) expected_value = is_base_type(Bool, Tuple) and len(get_type_arguments(Bool)) == 1 self.assertEqual(is_tuple_of_one(Bool), expected_value) self.assertEqual(is_tuple_of_one('b'), expected_value) self.assertTrue(is_tuple_of_one(Tuple[Bool])) self.assertTrue(is_tuple_of_one('({})'.format('b'))) dbus_type = get_dbus_type(Double) self.assertEqual(dbus_type, 'd') self.assertTrue(GLib.VariantType.string_is_valid(dbus_type)) variant_type = get_variant_type(Double) self.assertIsInstance(variant_type, GLib.VariantType) self.assertEqual(variant_type.dup_string(), 'd') expected_type = GLib.VariantType.new('d') self.assertTrue(expected_type.equal(variant_type)) variant_type = get_variant_type('d') self.assertIsInstance(variant_type, GLib.VariantType) self.assertTrue(expected_type.equal(variant_type)) expected_value = is_base_type(Double, Tuple) and len(get_type_arguments(Double)) == 1 self.assertEqual(is_tuple_of_one(Double), expected_value) self.assertEqual(is_tuple_of_one('d'), expected_value) self.assertTrue(is_tuple_of_one(Tuple[Double])) self.assertTrue(is_tuple_of_one('({})'.format('d'))) dbus_type = get_dbus_type(Str) self.assertEqual(dbus_type, 's') self.assertTrue(GLib.VariantType.string_is_valid(dbus_type)) variant_type = get_variant_type(Str) self.assertIsInstance(variant_type, GLib.VariantType) self.assertEqual(variant_type.dup_string(), 's') expected_type = GLib.VariantType.new('s') self.assertTrue(expected_type.equal(variant_type)) variant_type = get_variant_type('s') self.assertIsInstance(variant_type, GLib.VariantType) self.assertTrue(expected_type.equal(variant_type)) expected_value = is_base_type(Str, Tuple) and len(get_type_arguments(Str)) == 1 self.assertEqual(is_tuple_of_one(Str), expected_value) self.assertEqual(is_tuple_of_one('s'), expected_value) self.assertTrue(is_tuple_of_one(Tuple[Str])) self.assertTrue(is_tuple_of_one('({})'.format('s'))) dbus_type = get_dbus_type(ObjPath) self.assertEqual(dbus_type, 'o') self.assertTrue(GLib.VariantType.string_is_valid(dbus_type)) variant_type = get_variant_type(ObjPath) self.assertIsInstance(variant_type, GLib.VariantType) self.assertEqual(variant_type.dup_string(), 'o') expected_type = GLib.VariantType.new('o') self.assertTrue(expected_type.equal(variant_type)) variant_type = get_variant_type('o') self.assertIsInstance(variant_type, GLib.VariantType) self.assertTrue(expected_type.equal(variant_type)) expected_value = is_base_type(ObjPath, Tuple) and len(get_type_arguments(ObjPath)) == 1 self.assertEqual(is_tuple_of_one(ObjPath), expected_value) self.assertEqual(is_tuple_of_one('o'), expected_value) self.assertTrue(is_tuple_of_one(Tuple[ObjPath])) self.assertTrue(is_tuple_of_one('({})'.format('o'))) dbus_type = get_dbus_type(UnixFD) self.assertEqual(dbus_type, 'h') self.assertTrue(GLib.VariantType.string_is_valid(dbus_type)) variant_type = get_variant_type(UnixFD) self.assertIsInstance(variant_type, GLib.VariantType) self.assertEqual(variant_type.dup_string(), 'h') expected_type = GLib.VariantType.new('h') self.assertTrue(expected_type.equal(variant_type)) variant_type = get_variant_type('h') self.assertIsInstance(variant_type, GLib.VariantType) self.assertTrue(expected_type.equal(variant_type)) expected_value = is_base_type(UnixFD, Tuple) and len(get_type_arguments(UnixFD)) == 1 self.assertEqual(is_tuple_of_one(UnixFD), expected_value) self.assertEqual(is_tuple_of_one('h'), expected_value) self.assertTrue(is_tuple_of_one(Tuple[UnixFD])) self.assertTrue(is_tuple_of_one('({})'.format('h'))) dbus_type = get_dbus_type(Variant) self.assertEqual(dbus_type, 'v') self.assertTrue(GLib.VariantType.string_is_valid(dbus_type)) variant_type = get_variant_type(Variant) self.assertIsInstance(variant_type, GLib.VariantType) self.assertEqual(variant_type.dup_string(), 'v') expected_type = GLib.VariantType.new('v') self.assertTrue(expected_type.equal(variant_type)) variant_type = get_variant_type('v') self.assertIsInstance(variant_type, GLib.VariantType) self.assertTrue(expected_type.equal(variant_type)) expected_value = is_base_type(Variant, Tuple) and len(get_type_arguments(Variant)) == 1 self.assertEqual(is_tuple_of_one(Variant), expected_value) self.assertEqual(is_tuple_of_one('v'), expected_value) self.assertTrue(is_tuple_of_one(Tuple[Variant])) self.assertTrue(is_tuple_of_one('({})'.format('v'))) </DeepExtract>
dasbus
positive
def _restart_thread(self): """ Restarts subscription threads if their connection drops. :return: """ while self.running['restart_thread']: try: endpoint = self.restart_q.get(timeout=0.5) except TimeoutError: continue log.info('_restart_thread(): Restarting Thread for endpoint %s', endpoint) <DeepExtract> self.threads_running[endpoint] = False try: self.endpoint_threads[endpoint].join(timeout=1) except TimeoutError: self.endpoint_threads.pop(endpoint) self.garbage_collector() </DeepExtract> <DeepExtract> log.debug('GeminiWSS.subscribe(): Starting Thread for endpoint %s', endpoint) self.threads_running[endpoint] = True t = Thread(target=self._subscription_thread, args=(endpoint,), name=endpoint) t.daemon = True t.start() self.endpoint_threads[endpoint] = t </DeepExtract>
def _restart_thread(self): """ Restarts subscription threads if their connection drops. :return: """ while self.running['restart_thread']: try: endpoint = self.restart_q.get(timeout=0.5) except TimeoutError: continue log.info('_restart_thread(): Restarting Thread for endpoint %s', endpoint) self.threads_running[endpoint] = False try: self.endpoint_threads[endpoint].join(timeout=1) except TimeoutError: self.endpoint_threads.pop(endpoint) self.garbage_collector() log.debug('GeminiWSS.subscribe(): Starting Thread for endpoint %s', endpoint) self.threads_running[endpoint] = True t = Thread(target=self._subscription_thread, args=(endpoint,), name=endpoint) t.daemon = True t.start() self.endpoint_threads[endpoint] = t </DeepExtract>
bitex
positive
def read_atom(stream): header = stream.read(8) if not header: return assert len(header) == 8 n = 0 size = struct.unpack('>I', header[:4])[0] assert size > 0 n += 4 type = header[4:8] n += 4 assert type != b'uuid' if size == 1: <DeepExtract> size = struct.unpack('>Q', stream.read(8))[0] </DeepExtract> n += 8 left = size - n if type in atom_readers: return atom_readers[type](stream, size, left, type) raise NotImplementedError('%s: %d' % (type, left))
def read_atom(stream): header = stream.read(8) if not header: return assert len(header) == 8 n = 0 size = struct.unpack('>I', header[:4])[0] assert size > 0 n += 4 type = header[4:8] n += 4 assert type != b'uuid' if size == 1: size = struct.unpack('>Q', stream.read(8))[0] n += 8 left = size - n if type in atom_readers: return atom_readers[type](stream, size, left, type) raise NotImplementedError('%s: %d' % (type, left))
acmpv
positive
def process_create_message(message: Message, env: Environment) -> Evm: """ Executes a call to create a smart contract. Parameters ---------- message : Transaction specific items. env : External items required for EVM execution. Returns ------- evm: :py:class:`~ethereum.berlin.vm.Evm` Items containing execution specific objects. """ begin_transaction(env.state) destroy_storage(env.state, message.current_target) increment_nonce(env.state, message.current_target) <DeepExtract> if message.depth > STACK_DEPTH_LIMIT: raise StackDepthLimitError('Stack depth limit reached') begin_transaction(env.state) touch_account(env.state, message.current_target) if message.should_transfer_value and message.value != 0: move_ether(env.state, message.caller, message.current_target, message.value) evm = execute_code(message, env) if evm.has_erred: rollback_transaction(env.state) else: commit_transaction(env.state) evm = evm </DeepExtract> if not evm.has_erred: contract_code = evm.output contract_code_gas = len(contract_code) * GAS_CODE_DEPOSIT try: charge_gas(evm, contract_code_gas) ensure(len(contract_code) <= MAX_CODE_SIZE, OutOfGasError) except ExceptionalHalt: rollback_transaction(env.state) evm.gas_left = U256(0) evm.output = b'' evm.has_erred = True else: set_code(env.state, message.current_target, contract_code) commit_transaction(env.state) else: rollback_transaction(env.state) return evm
def process_create_message(message: Message, env: Environment) -> Evm: """ Executes a call to create a smart contract. Parameters ---------- message : Transaction specific items. env : External items required for EVM execution. Returns ------- evm: :py:class:`~ethereum.berlin.vm.Evm` Items containing execution specific objects. """ begin_transaction(env.state) destroy_storage(env.state, message.current_target) increment_nonce(env.state, message.current_target) if message.depth > STACK_DEPTH_LIMIT: raise StackDepthLimitError('Stack depth limit reached') begin_transaction(env.state) touch_account(env.state, message.current_target) if message.should_transfer_value and message.value != 0: move_ether(env.state, message.caller, message.current_target, message.value) evm = execute_code(message, env) if evm.has_erred: rollback_transaction(env.state) else: commit_transaction(env.state) evm = evm if not evm.has_erred: contract_code = evm.output contract_code_gas = len(contract_code) * GAS_CODE_DEPOSIT try: charge_gas(evm, contract_code_gas) ensure(len(contract_code) <= MAX_CODE_SIZE, OutOfGasError) except ExceptionalHalt: rollback_transaction(env.state) evm.gas_left = U256(0) evm.output = b'' evm.has_erred = True else: set_code(env.state, message.current_target, contract_code) commit_transaction(env.state) else: rollback_transaction(env.state) return evm
eth1.0-specs
positive
def send_reset_password_verification_email_notification(request: Request, user: 'AbstractBaseUser') -> None: signer = ResetPasswordSigner({'user_id': get_user_verification_id(user)}, request=request) <DeepExtract> template_selector = registration_settings.VERIFICATION_TEMPLATES_SELECTOR notification_method = NotificationMethod.EMAIL try: template_config_data = template_selector(request=request, user=user, notification_method=notification_method, notification_type=NotificationType.RESET_PASSWORD_VERIFICATION) except (VerificationTemplatesNotFound, LookupError): template_config_data = select_default_templates(request=request, user=user, notification_method=notification_method, notification_type=NotificationType.RESET_PASSWORD_VERIFICATION) template_config_data = template_config_data </DeepExtract> notification_data = {'params_signer': signer} send_verification_notification(NotificationType.RESET_PASSWORD_VERIFICATION, user, notification_data, template_config_data)
def send_reset_password_verification_email_notification(request: Request, user: 'AbstractBaseUser') -> None: signer = ResetPasswordSigner({'user_id': get_user_verification_id(user)}, request=request) template_selector = registration_settings.VERIFICATION_TEMPLATES_SELECTOR notification_method = NotificationMethod.EMAIL try: template_config_data = template_selector(request=request, user=user, notification_method=notification_method, notification_type=NotificationType.RESET_PASSWORD_VERIFICATION) except (VerificationTemplatesNotFound, LookupError): template_config_data = select_default_templates(request=request, user=user, notification_method=notification_method, notification_type=NotificationType.RESET_PASSWORD_VERIFICATION) template_config_data = template_config_data notification_data = {'params_signer': signer} send_verification_notification(NotificationType.RESET_PASSWORD_VERIFICATION, user, notification_data, template_config_data)
django-rest-registration
positive
@pytest.mark.parametrize('num_branch,num_spks,permute', [pytest.param(2, 2, True), pytest.param(2, 2, False), pytest.param(3, 2, True)]) def test_wa(num_branch, num_spks, permute): <DeepExtract> transform = EnhTransform(feats='spectrogram-log-cmvn', frame_len=512, frame_hop=256, center=True, stft_mode='librosa') base_rnn_cls = aps_sse_nnet('sse@base_rnn') nnet = base_rnn_cls(enh_transform=transform, num_bins=257, input_size=257, num_layers=2, num_spks=num_branch, hidden=256, training_mode='time') </DeepExtract> kwargs = {'permute': permute, 'num_spks': num_spks, 'objf': 'L1'} task = aps_task('sse@wa', nnet, **kwargs) <DeepExtract> (batch_size, chunk_size) = (4, 64000) egs = {'mix': th.rand(batch_size, chunk_size), 'ref': [th.rand(batch_size, chunk_size) for _ in range(num_branch)]} if num_branch == 1: egs['ref'] = egs['ref'][0] egs = egs </DeepExtract> <DeepExtract> for _ in range(5): stats = task(egs) loss = stats['loss'] loss.backward() norm = clip_grad_norm_(task.parameters(), 20) assert not math.isnan(loss.item()) assert not math.isnan(norm.item()) </DeepExtract>
@pytest.mark.parametrize('num_branch,num_spks,permute', [pytest.param(2, 2, True), pytest.param(2, 2, False), pytest.param(3, 2, True)]) def test_wa(num_branch, num_spks, permute): transform = EnhTransform(feats='spectrogram-log-cmvn', frame_len=512, frame_hop=256, center=True, stft_mode='librosa') base_rnn_cls = aps_sse_nnet('sse@base_rnn') nnet = base_rnn_cls(enh_transform=transform, num_bins=257, input_size=257, num_layers=2, num_spks=num_branch, hidden=256, training_mode='time') kwargs = {'permute': permute, 'num_spks': num_spks, 'objf': 'L1'} task = aps_task('sse@wa', nnet, **kwargs) (batch_size, chunk_size) = (4, 64000) egs = {'mix': th.rand(batch_size, chunk_size), 'ref': [th.rand(batch_size, chunk_size) for _ in range(num_branch)]} if num_branch == 1: egs['ref'] = egs['ref'][0] egs = egs for _ in range(5): stats = task(egs) loss = stats['loss'] loss.backward() norm = clip_grad_norm_(task.parameters(), 20) assert not math.isnan(loss.item()) assert not math.isnan(norm.item()) </DeepExtract>
aps
positive
def response_json_at_path_does_not_contain(response, json_path, value): """ """ <DeepExtract> results = jsonpath(response.json(), json_path) if not results: fail('Match not found at <{path}> for <{body}>'.format(path=json_path, body=response.json())) values = results </DeepExtract> [assert_that(actual_value).does_not_contain(eval(value)) for actual_value in values]
def response_json_at_path_does_not_contain(response, json_path, value): """ """ results = jsonpath(response.json(), json_path) if not results: fail('Match not found at <{path}> for <{body}>'.format(path=json_path, body=response.json())) values = results [assert_that(actual_value).does_not_contain(eval(value)) for actual_value in values]
behave-restful
positive
def overlay_display(self, im_list, color_coding=np.array([[1, 0, 1], [0, 1, 0]]), export_pdf='', show=True, f=False, shift=[0, 0], final_fov=False, interp='gaussian', scale='lin', gamma=0.5, dynamic_range=[1000.0], rescale=True): """Overlay primary polarization images of a list of images to compare structures. Args: im_list (list): list of images to align to the current image color_coding (numpy.array): Color coding of each image in the composite f (matplotlib.pyplot.figure): Figure to overlay on top of export_pdf (str): path to exported PDF with plot show (bool): Display the plot if true shift (list): list of manual image shifts, otherwise use the shift from maximum cross-correlation final_fov (float): fov of the comparison image (rad). If False it is the largestinput image fov scale (str) : compare images in 'log','lin',or 'gamma' scale gamma (float): exponent for gamma scale comparison dynamic_range (float): dynamic range for log and gamma scale comparisons Returns: (matplotlib.figure.Figure): figure object with image """ if not f: f = plt.figure() plt.clf() if len(dynamic_range) == 1: dynamic_range = dynamic_range * np.ones(len(im_list) + 1) if not isinstance(shift, np.ndarray) and (not isinstance(shift, bool)): shift = matlib.repmat(shift, len(im_list), 1) psize = self.psize max_fov = np.max([self.xdim * self.psize, self.ydim * self.psize]) for i in range(0, len(im_list)): psize = np.min([psize, im_list[i].psize]) max_fov = np.max([max_fov, im_list[i].xdim * im_list[i].psize, im_list[i].ydim * im_list[i].psize]) if not final_fov: final_fov = max_fov <DeepExtract> im0 = self.copy() if not np.all(im0.polrep == np.array([im.polrep for im in im_list])): raise Exception('In align_images, all images must have the same polrep!') if not np.all(im0.pol_prim == np.array([im.pol_prim for im in im_list])): raise Exception('In find_shift, all images must have the same pol_prim!') if len(dynamic_range) == 1: dynamic_range = dynamic_range * np.ones(len(im_list) + 1) useshift = True if isinstance(shift, bool): useshift = False psize = im0.psize max_fov = np.max([im0.xdim * im0.psize, im0.ydim * im0.psize]) for i in range(0, len(im_list)): psize = np.min([psize, im_list[i].psize]) max_fov = np.max([max_fov, im_list[i].xdim * im_list[i].psize, im_list[i].ydim * im_list[i].psize]) if not final_fov: final_fov = max_fov im_list_shift = [] shifts = [] for i in range(0, len(im_list)): (idx, _, im0_pad_orig, im_pad) = im0.find_shift(im_list[i], target_fov=2 * max_fov, psize=psize, pol=pol, scale=scale, gamma=gamma, dynamic_range=dynamic_range[i + 1]) if i == 0: npix = int(im0_pad_orig.xdim / 2) im0_pad = im0_pad_orig.regrid_image(final_fov, npix) if useshift: idx = shift[i] tmp = im_pad.shift(idx) shifts.append(idx) im_list_shift.append(tmp.regrid_image(final_fov, npix)) (im_list_shift, shifts, im0_pad) = (im_list_shift, shifts, im0_pad) </DeepExtract> if scale == 'log': log_offset = np.max(im0_pad.imvec) / dynamic_range[0] im0_pad.imvec = np.log10(im0_pad.imvec + log_offset) for i in range(0, len(im_list)): log_offset = np.max(im_list_shift[i].imvec) / dynamic_range[i + 1] im_list_shift[i].imvec = np.log10(im_list_shift[i].imvec + log_offset) if scale == 'gamma': log_offset = np.max(im0_pad.imvec) / dynamic_range[0] im0_pad.imvec = (im0_pad.imvec + log_offset) ** gamma for i in range(0, len(im_list)): log_offset = np.max(im_list_shift[i].imvec) / dynamic_range[i + 1] im_list_shift[i].imvec = (im_list_shift[i].imvec + log_offset) ** gamma composite_img = np.zeros((im0_pad.ydim, im0_pad.xdim, 3)) for i in range(-1, len(im_list)): if i == -1: immtx = im0_pad.imvec.reshape(im0_pad.ydim, im0_pad.xdim) else: immtx = im_list_shift[i].imvec.reshape(im0_pad.ydim, im0_pad.xdim) if rescale: immtx = immtx - np.min(np.min(immtx)) immtx = immtx / np.max(np.max(immtx)) for c in range(0, 3): composite_img[:, :, c] = composite_img[:, :, c] + color_coding[i + 1, c] * immtx if rescale is False: composite_img = composite_img - np.min(np.min(np.min(composite_img))) composite_img = composite_img / np.max(np.max(np.max(composite_img))) plt.subplot(111) plt.title('%s MJD %i %.2f GHz' % (self.source, self.mjd, self.rf / 1000000000.0), fontsize=20) plt.imshow(composite_img, interpolation=interp) xticks = obsh.ticks(im0_pad.xdim, im0_pad.psize / ehc.RADPERAS / 1e-06) yticks = obsh.ticks(im0_pad.ydim, im0_pad.psize / ehc.RADPERAS / 1e-06) plt.xticks(xticks[0], xticks[1]) plt.yticks(yticks[0], yticks[1]) plt.xlabel('Relative RA ($\\mu$as)') plt.ylabel('Relative Dec ($\\mu$as)') if show: plt.show(block=False) if export_pdf != '': f.savefig(export_pdf, bbox_inches='tight') return (f, shift)
def overlay_display(self, im_list, color_coding=np.array([[1, 0, 1], [0, 1, 0]]), export_pdf='', show=True, f=False, shift=[0, 0], final_fov=False, interp='gaussian', scale='lin', gamma=0.5, dynamic_range=[1000.0], rescale=True): """Overlay primary polarization images of a list of images to compare structures. Args: im_list (list): list of images to align to the current image color_coding (numpy.array): Color coding of each image in the composite f (matplotlib.pyplot.figure): Figure to overlay on top of export_pdf (str): path to exported PDF with plot show (bool): Display the plot if true shift (list): list of manual image shifts, otherwise use the shift from maximum cross-correlation final_fov (float): fov of the comparison image (rad). If False it is the largestinput image fov scale (str) : compare images in 'log','lin',or 'gamma' scale gamma (float): exponent for gamma scale comparison dynamic_range (float): dynamic range for log and gamma scale comparisons Returns: (matplotlib.figure.Figure): figure object with image """ if not f: f = plt.figure() plt.clf() if len(dynamic_range) == 1: dynamic_range = dynamic_range * np.ones(len(im_list) + 1) if not isinstance(shift, np.ndarray) and (not isinstance(shift, bool)): shift = matlib.repmat(shift, len(im_list), 1) psize = self.psize max_fov = np.max([self.xdim * self.psize, self.ydim * self.psize]) for i in range(0, len(im_list)): psize = np.min([psize, im_list[i].psize]) max_fov = np.max([max_fov, im_list[i].xdim * im_list[i].psize, im_list[i].ydim * im_list[i].psize]) if not final_fov: final_fov = max_fov im0 = self.copy() if not np.all(im0.polrep == np.array([im.polrep for im in im_list])): raise Exception('In align_images, all images must have the same polrep!') if not np.all(im0.pol_prim == np.array([im.pol_prim for im in im_list])): raise Exception('In find_shift, all images must have the same pol_prim!') if len(dynamic_range) == 1: dynamic_range = dynamic_range * np.ones(len(im_list) + 1) useshift = True if isinstance(shift, bool): useshift = False psize = im0.psize max_fov = np.max([im0.xdim * im0.psize, im0.ydim * im0.psize]) for i in range(0, len(im_list)): psize = np.min([psize, im_list[i].psize]) max_fov = np.max([max_fov, im_list[i].xdim * im_list[i].psize, im_list[i].ydim * im_list[i].psize]) if not final_fov: final_fov = max_fov im_list_shift = [] shifts = [] for i in range(0, len(im_list)): (idx, _, im0_pad_orig, im_pad) = im0.find_shift(im_list[i], target_fov=2 * max_fov, psize=psize, pol=pol, scale=scale, gamma=gamma, dynamic_range=dynamic_range[i + 1]) if i == 0: npix = int(im0_pad_orig.xdim / 2) im0_pad = im0_pad_orig.regrid_image(final_fov, npix) if useshift: idx = shift[i] tmp = im_pad.shift(idx) shifts.append(idx) im_list_shift.append(tmp.regrid_image(final_fov, npix)) (im_list_shift, shifts, im0_pad) = (im_list_shift, shifts, im0_pad) if scale == 'log': log_offset = np.max(im0_pad.imvec) / dynamic_range[0] im0_pad.imvec = np.log10(im0_pad.imvec + log_offset) for i in range(0, len(im_list)): log_offset = np.max(im_list_shift[i].imvec) / dynamic_range[i + 1] im_list_shift[i].imvec = np.log10(im_list_shift[i].imvec + log_offset) if scale == 'gamma': log_offset = np.max(im0_pad.imvec) / dynamic_range[0] im0_pad.imvec = (im0_pad.imvec + log_offset) ** gamma for i in range(0, len(im_list)): log_offset = np.max(im_list_shift[i].imvec) / dynamic_range[i + 1] im_list_shift[i].imvec = (im_list_shift[i].imvec + log_offset) ** gamma composite_img = np.zeros((im0_pad.ydim, im0_pad.xdim, 3)) for i in range(-1, len(im_list)): if i == -1: immtx = im0_pad.imvec.reshape(im0_pad.ydim, im0_pad.xdim) else: immtx = im_list_shift[i].imvec.reshape(im0_pad.ydim, im0_pad.xdim) if rescale: immtx = immtx - np.min(np.min(immtx)) immtx = immtx / np.max(np.max(immtx)) for c in range(0, 3): composite_img[:, :, c] = composite_img[:, :, c] + color_coding[i + 1, c] * immtx if rescale is False: composite_img = composite_img - np.min(np.min(np.min(composite_img))) composite_img = composite_img / np.max(np.max(np.max(composite_img))) plt.subplot(111) plt.title('%s MJD %i %.2f GHz' % (self.source, self.mjd, self.rf / 1000000000.0), fontsize=20) plt.imshow(composite_img, interpolation=interp) xticks = obsh.ticks(im0_pad.xdim, im0_pad.psize / ehc.RADPERAS / 1e-06) yticks = obsh.ticks(im0_pad.ydim, im0_pad.psize / ehc.RADPERAS / 1e-06) plt.xticks(xticks[0], xticks[1]) plt.yticks(yticks[0], yticks[1]) plt.xlabel('Relative RA ($\\mu$as)') plt.ylabel('Relative Dec ($\\mu$as)') if show: plt.show(block=False) if export_pdf != '': f.savefig(export_pdf, bbox_inches='tight') return (f, shift)
eht-imaging
positive
def test_get_container_link(self): l = ContainerLinkList() assert_a = lambda a: self.assertEqual(l.get_type_item(a), ContainerLink('a', None)) assert_b = lambda b: self.assertEqual(l.get_type_item(b), ContainerLink('b', 'b_')) <DeepExtract> self.assertEqual(InputConfigIdList('a', map_name=m, instances=i), [InputConfigId(ItemType.CONTAINER, 'm', 'c')]) self.assertEqual(get_map_config_ids('a', maps, default_map_name=m, default_instances=i), [MapConfigId(ItemType.CONTAINER, 'm', 'c', 'i')]) </DeepExtract> <DeepExtract> self.assertEqual(InputConfigIdList(('a',), map_name=m, instances=i), [InputConfigId(ItemType.CONTAINER, 'm', 'c')]) self.assertEqual(get_map_config_ids(('a',), maps, default_map_name=m, default_instances=i), [MapConfigId(ItemType.CONTAINER, 'm', 'c', 'i')]) </DeepExtract> <DeepExtract> self.assertEqual(InputConfigIdList({'container': 'a'}, map_name=m, instances=i), [InputConfigId(ItemType.CONTAINER, 'm', 'c')]) self.assertEqual(get_map_config_ids({'container': 'a'}, maps, default_map_name=m, default_instances=i), [MapConfigId(ItemType.CONTAINER, 'm', 'c', 'i')]) </DeepExtract> <DeepExtract> self.assertEqual(InputConfigIdList(['a', None], map_name=m, instances=i), [InputConfigId(ItemType.CONTAINER, 'm', 'c')]) self.assertEqual(get_map_config_ids(['a', None], maps, default_map_name=m, default_instances=i), [MapConfigId(ItemType.CONTAINER, 'm', 'c', 'i')]) </DeepExtract> <DeepExtract> six.assertCountEqual(self, InputConfigIdList(('b', 'b_'), map_name=m, instances=i), [InputConfigId(ItemType.CONTAINER, 'm', 'c', ('i',)), InputConfigId(ItemType.CONTAINER, 'm', 'd', ('i',)), InputConfigId(ItemType.CONTAINER, 'n', 'e', ('i', 'j'))]) six.assertCountEqual(self, get_map_config_ids(('b', 'b_'), maps, default_map_name=m, default_instances=i), [MapConfigId(ItemType.CONTAINER, 'm', 'c', 'i'), MapConfigId(ItemType.CONTAINER, 'm', 'd', 'i'), MapConfigId(ItemType.CONTAINER, 'n', 'e', 'i'), MapConfigId(ItemType.CONTAINER, 'n', 'e', 'j')]) </DeepExtract> <DeepExtract> six.assertCountEqual(self, InputConfigIdList({'container': 'b', 'alias': 'b_'}, map_name=m, instances=i), [InputConfigId(ItemType.CONTAINER, 'm', 'c', ('i',)), InputConfigId(ItemType.CONTAINER, 'm', 'd', ('i',)), InputConfigId(ItemType.CONTAINER, 'n', 'e', ('i', 'j'))]) six.assertCountEqual(self, get_map_config_ids({'container': 'b', 'alias': 'b_'}, maps, default_map_name=m, default_instances=i), [MapConfigId(ItemType.CONTAINER, 'm', 'c', 'i'), MapConfigId(ItemType.CONTAINER, 'm', 'd', 'i'), MapConfigId(ItemType.CONTAINER, 'n', 'e', 'i'), MapConfigId(ItemType.CONTAINER, 'n', 'e', 'j')]) </DeepExtract>
def test_get_container_link(self): l = ContainerLinkList() assert_a = lambda a: self.assertEqual(l.get_type_item(a), ContainerLink('a', None)) assert_b = lambda b: self.assertEqual(l.get_type_item(b), ContainerLink('b', 'b_')) self.assertEqual(InputConfigIdList('a', map_name=m, instances=i), [InputConfigId(ItemType.CONTAINER, 'm', 'c')]) self.assertEqual(get_map_config_ids('a', maps, default_map_name=m, default_instances=i), [MapConfigId(ItemType.CONTAINER, 'm', 'c', 'i')]) self.assertEqual(InputConfigIdList(('a',), map_name=m, instances=i), [InputConfigId(ItemType.CONTAINER, 'm', 'c')]) self.assertEqual(get_map_config_ids(('a',), maps, default_map_name=m, default_instances=i), [MapConfigId(ItemType.CONTAINER, 'm', 'c', 'i')]) self.assertEqual(InputConfigIdList({'container': 'a'}, map_name=m, instances=i), [InputConfigId(ItemType.CONTAINER, 'm', 'c')]) self.assertEqual(get_map_config_ids({'container': 'a'}, maps, default_map_name=m, default_instances=i), [MapConfigId(ItemType.CONTAINER, 'm', 'c', 'i')]) self.assertEqual(InputConfigIdList(['a', None], map_name=m, instances=i), [InputConfigId(ItemType.CONTAINER, 'm', 'c')]) self.assertEqual(get_map_config_ids(['a', None], maps, default_map_name=m, default_instances=i), [MapConfigId(ItemType.CONTAINER, 'm', 'c', 'i')]) six.assertCountEqual(self, InputConfigIdList(('b', 'b_'), map_name=m, instances=i), [InputConfigId(ItemType.CONTAINER, 'm', 'c', ('i',)), InputConfigId(ItemType.CONTAINER, 'm', 'd', ('i',)), InputConfigId(ItemType.CONTAINER, 'n', 'e', ('i', 'j'))]) six.assertCountEqual(self, get_map_config_ids(('b', 'b_'), maps, default_map_name=m, default_instances=i), [MapConfigId(ItemType.CONTAINER, 'm', 'c', 'i'), MapConfigId(ItemType.CONTAINER, 'm', 'd', 'i'), MapConfigId(ItemType.CONTAINER, 'n', 'e', 'i'), MapConfigId(ItemType.CONTAINER, 'n', 'e', 'j')]) six.assertCountEqual(self, InputConfigIdList({'container': 'b', 'alias': 'b_'}, map_name=m, instances=i), [InputConfigId(ItemType.CONTAINER, 'm', 'c', ('i',)), InputConfigId(ItemType.CONTAINER, 'm', 'd', ('i',)), InputConfigId(ItemType.CONTAINER, 'n', 'e', ('i', 'j'))]) six.assertCountEqual(self, get_map_config_ids({'container': 'b', 'alias': 'b_'}, maps, default_map_name=m, default_instances=i), [MapConfigId(ItemType.CONTAINER, 'm', 'c', 'i'), MapConfigId(ItemType.CONTAINER, 'm', 'd', 'i'), MapConfigId(ItemType.CONTAINER, 'n', 'e', 'i'), MapConfigId(ItemType.CONTAINER, 'n', 'e', 'j')]) </DeepExtract>
docker-map
positive
@api.onchange('contract_template_id') def _onchange_contract_template_id(self): """Update the contract fields with that of the template. Take special consideration with the `contract_line_ids`, which must be created using the data from the contract lines. Cascade deletion ensures that any errant lines that are created are also deleted. """ contract_template_id = self.contract_template_id if not contract_template_id: return for (field_name, field) in contract_template_id._fields.items(): if field.name == 'contract_line_ids': <DeepExtract> self.ensure_one() new_lines = self.env['contract.line'] contract_line_model = self.env['contract.line'] for contract_line in contract_template_id.contract_line_ids: vals = contract_line._convert_to_write(contract_line.read()[0]) vals.pop('contract_template_id', False) vals['date_start'] = fields.Date.context_today(contract_line) vals['recurring_next_date'] = fields.Date.context_today(contract_line) new_lines += contract_line_model.new(vals) new_lines._onchange_is_auto_renew() lines = new_lines </DeepExtract> self.contract_line_ids += lines elif not any((field.compute, field.related, field.automatic, field.readonly, field.company_dependent, field.name in self.NO_SYNC)): if self.contract_template_id[field_name]: self[field_name] = self.contract_template_id[field_name]
@api.onchange('contract_template_id') def _onchange_contract_template_id(self): """Update the contract fields with that of the template. Take special consideration with the `contract_line_ids`, which must be created using the data from the contract lines. Cascade deletion ensures that any errant lines that are created are also deleted. """ contract_template_id = self.contract_template_id if not contract_template_id: return for (field_name, field) in contract_template_id._fields.items(): if field.name == 'contract_line_ids': self.ensure_one() new_lines = self.env['contract.line'] contract_line_model = self.env['contract.line'] for contract_line in contract_template_id.contract_line_ids: vals = contract_line._convert_to_write(contract_line.read()[0]) vals.pop('contract_template_id', False) vals['date_start'] = fields.Date.context_today(contract_line) vals['recurring_next_date'] = fields.Date.context_today(contract_line) new_lines += contract_line_model.new(vals) new_lines._onchange_is_auto_renew() lines = new_lines self.contract_line_ids += lines elif not any((field.compute, field.related, field.automatic, field.readonly, field.company_dependent, field.name in self.NO_SYNC)): if self.contract_template_id[field_name]: self[field_name] = self.contract_template_id[field_name]
contract
positive
def loss(self, rpn_cls_scores, rpn_bbox_preds, rpn_dir_preds, gt_bboxes, gt_labels, anchors, anchors_mask, cfg): cls_reg_targets = multi_apply(anchor_target, anchors, anchors_mask, gt_bboxes, gt_labels, target_means=self.target_means, target_stds=self.target_stds, cfg=cfg, sampling=False) (labels_list, label_weights_list, bbox_targets_list, bbox_weights_list, dir_labels_list, dir_weights_list, pos_inds_list, neg_inds_list) = cls_reg_targets num_pos = sum([max(inds.numel(), 1) for inds in pos_inds_list]) num_neg = sum([max(inds.numel(), 1) for inds in neg_inds_list]) <DeepExtract> torch.cat(labels_list) = torch.cat(labels_list).contiguous().view(-1) torch.cat(label_weights_list) = torch.cat(label_weights_list).contiguous().view(-1) if self.use_sigmoid_cls: rpn_cls_scores = rpn_cls_scores.permute(0, 2, 3, 1).contiguous().view(-1) criterion = weighted_sigmoid_focal_loss else: rpn_cls_scores = rpn_cls_scores.permute(0, 2, 3, 1).contiguous().view(-1, 2) criterion = weighted_cross_entropy loss_cls = criterion(rpn_cls_scores, torch.cat(labels_list), torch.cat(label_weights_list), avg_factor=num_pos) torch.cat(bbox_targets_list) = torch.cat(bbox_targets_list).contiguous().view(-1, 7) torch.cat(bbox_weights_list) = torch.cat(bbox_weights_list).contiguous().view(-1, 7) rpn_bbox_preds = rpn_bbox_preds.permute(0, 2, 3, 1).contiguous().view(-1, 7) (rpn_bbox_preds, torch.cat(bbox_targets_list)) = add_sin_difference(rpn_bbox_preds, torch.cat(bbox_targets_list)) loss_reg = weighted_smoothl1(rpn_bbox_preds, torch.cat(bbox_targets_list), torch.cat(bbox_weights_list), beta=cfg.smoothl1_beta, avg_factor=num_pos) dir_logits = rpn_dir_preds.permute(0, 2, 3, 1).contiguous().view(-1, 2) loss_dir = weighted_cross_entropy(dir_logits, torch.cat(dir_labels_list), torch.cat(dir_weights_list), avg_factor=num_pos) loss_reg *= 2 loss_dir *= 0.2 (losses_cls, losses_reg, losses_dir) = (loss_cls, loss_reg, loss_dir) </DeepExtract> return dict(loss_rpn_cls=losses_cls, loss_rpn_reg=losses_reg, loss_rpn_dir=losses_dir)
def loss(self, rpn_cls_scores, rpn_bbox_preds, rpn_dir_preds, gt_bboxes, gt_labels, anchors, anchors_mask, cfg): cls_reg_targets = multi_apply(anchor_target, anchors, anchors_mask, gt_bboxes, gt_labels, target_means=self.target_means, target_stds=self.target_stds, cfg=cfg, sampling=False) (labels_list, label_weights_list, bbox_targets_list, bbox_weights_list, dir_labels_list, dir_weights_list, pos_inds_list, neg_inds_list) = cls_reg_targets num_pos = sum([max(inds.numel(), 1) for inds in pos_inds_list]) num_neg = sum([max(inds.numel(), 1) for inds in neg_inds_list]) torch.cat(labels_list) = torch.cat(labels_list).contiguous().view(-1) torch.cat(label_weights_list) = torch.cat(label_weights_list).contiguous().view(-1) if self.use_sigmoid_cls: rpn_cls_scores = rpn_cls_scores.permute(0, 2, 3, 1).contiguous().view(-1) criterion = weighted_sigmoid_focal_loss else: rpn_cls_scores = rpn_cls_scores.permute(0, 2, 3, 1).contiguous().view(-1, 2) criterion = weighted_cross_entropy loss_cls = criterion(rpn_cls_scores, torch.cat(labels_list), torch.cat(label_weights_list), avg_factor=num_pos) torch.cat(bbox_targets_list) = torch.cat(bbox_targets_list).contiguous().view(-1, 7) torch.cat(bbox_weights_list) = torch.cat(bbox_weights_list).contiguous().view(-1, 7) rpn_bbox_preds = rpn_bbox_preds.permute(0, 2, 3, 1).contiguous().view(-1, 7) (rpn_bbox_preds, torch.cat(bbox_targets_list)) = add_sin_difference(rpn_bbox_preds, torch.cat(bbox_targets_list)) loss_reg = weighted_smoothl1(rpn_bbox_preds, torch.cat(bbox_targets_list), torch.cat(bbox_weights_list), beta=cfg.smoothl1_beta, avg_factor=num_pos) dir_logits = rpn_dir_preds.permute(0, 2, 3, 1).contiguous().view(-1, 2) loss_dir = weighted_cross_entropy(dir_logits, torch.cat(dir_labels_list), torch.cat(dir_weights_list), avg_factor=num_pos) loss_reg *= 2 loss_dir *= 0.2 (losses_cls, losses_reg, losses_dir) = (loss_cls, loss_reg, loss_dir) return dict(loss_rpn_cls=losses_cls, loss_rpn_reg=losses_reg, loss_rpn_dir=losses_dir)
ebms_3dod
positive