before
stringlengths
0
955k
after
stringlengths
0
877k
repo
stringlengths
1
74
type
stringclasses
1 value
def __init__(self, image, mount_point=None): """ Raises CommandDoesNotExistException if the command is not present on the system. :param image: instance of NspawnImage :param mount_point: str, directory where the filesystem will be mounted """ <DeepExtract> command_exists('losetup', ['losetup', '-V'], 'losetup is not present on your system') command_exists('partprobe', ['partprobe', '-v'], 'partprobe is not present on your system') command_exists('mount', ['mount', '-V'], 'mount is not present on your system') </DeepExtract> self.mount_point_exists = False super(NspawnImageFS, self).__init__(image, mount_point=mount_point) self.image = image
def __init__(self, image, mount_point=None): """ Raises CommandDoesNotExistException if the command is not present on the system. :param image: instance of NspawnImage :param mount_point: str, directory where the filesystem will be mounted """ command_exists('losetup', ['losetup', '-V'], 'losetup is not present on your system') command_exists('partprobe', ['partprobe', '-v'], 'partprobe is not present on your system') command_exists('mount', ['mount', '-V'], 'mount is not present on your system') self.mount_point_exists = False super(NspawnImageFS, self).__init__(image, mount_point=mount_point) self.image = image
conu
positive
def __init__(self, actor, critic, a_lr, c_lr, discount=0.99, tau=0.001, center_reward=False, normalize=False): if actor.is_recurrent or critic.is_recurrent: self.recurrent = True else: self.recurrent = False self.behavioral_actor = actor self.behavioral_critic = critic self.target_actor = copy.deepcopy(actor) self.target_critic = copy.deepcopy(critic) <DeepExtract> for (param, target_param) in zip(self.behavioral_critic.parameters(), self.target_critic.parameters()): target_param.data.copy_(1.0 * param.data + (1 - 1.0) * target_param.data) for (param, target_param) in zip(self.behavioral_actor.parameters(), self.target_actor.parameters()): target_param.data.copy_(1.0 * param.data + (1 - 1.0) * target_param.data) </DeepExtract> self.actor_optimizer = torch.optim.Adam(self.behavioral_actor.parameters(), lr=a_lr) self.critic_optimizer = torch.optim.Adam(self.behavioral_critic.parameters(), lr=c_lr, weight_decay=0.01) self.discount = discount self.tau = tau self.center_reward = center_reward self.normalize = normalize
def __init__(self, actor, critic, a_lr, c_lr, discount=0.99, tau=0.001, center_reward=False, normalize=False): if actor.is_recurrent or critic.is_recurrent: self.recurrent = True else: self.recurrent = False self.behavioral_actor = actor self.behavioral_critic = critic self.target_actor = copy.deepcopy(actor) self.target_critic = copy.deepcopy(critic) for (param, target_param) in zip(self.behavioral_critic.parameters(), self.target_critic.parameters()): target_param.data.copy_(1.0 * param.data + (1 - 1.0) * target_param.data) for (param, target_param) in zip(self.behavioral_actor.parameters(), self.target_actor.parameters()): target_param.data.copy_(1.0 * param.data + (1 - 1.0) * target_param.data) self.actor_optimizer = torch.optim.Adam(self.behavioral_actor.parameters(), lr=a_lr) self.critic_optimizer = torch.optim.Adam(self.behavioral_critic.parameters(), lr=c_lr, weight_decay=0.01) self.discount = discount self.tau = tau self.center_reward = center_reward self.normalize = normalize
apex
positive
def test(self, batch_size, criterion_nlu, criterion_nlg, test_nlu=True, test_nlg=True, sample_size=20, epoch=-1): nlu_loss = nlg_loss = None nlu_scorer = nlg_scorer = None batch_amount = 0 if test_nlu: nlu_scorer = IntentPredSlotFillScorer(intent_acc=self.with_intent) nlu_loss = 0 for (b_idx, batch) in enumerate(tqdm(self.test_nlu_data_loader)): with torch.no_grad(): <DeepExtract> self.nlu.eval() inputs = batch['inputs'].to(self.device) targets = batch['labels'].clone().detach().to(self.device) (slot_logits, outputs, decisions, intent_logits) = self.nlu(inputs, _BOS, labels=targets, beam_size=sample_size, tf_ratio=teacher_forcing_ratio if not True else 0.0) intent_prediction = intent_logits.argmax(-1) if self.dual_inference is not None: (best, best_intent) = self.dual_inference.forward_nlu(inputs, slot_logits, decisions, intent_logits, intent_prediction, self.nlg) else: best = decisions[:, 0].detach() best_intent = intent_logits.detach() outputs_indices = best.cpu().clone().numpy() slot_prediction = outputs_indices if self.with_intent: intent_prediction = best_intent.cpu() intent_prediction = intent_prediction.clone().numpy() if nlu_scorer: targets_clone = targets.detach().cpu().long().numpy() targets_clone = [self.train_data_engine.untokenize_nlu_slot_seq(target) for target in targets_clone] slot_prediction = [self.train_data_engine.untokenize_nlu_slot_seq(prediction) for prediction in slot_prediction] nlu_scorer.update(targets_clone, slot_prediction, intent_labels=batch['intent'].clone().cpu().numpy() if self.with_intent else None, intent_prediction=intent_prediction if self.with_intent else None) if True and result_path: self._record_nlu_test_result(result_path, inputs, targets_clone, slot_prediction) (batch_loss, batch_logits, slot_prediction, intent_logits, intent_prediction, _, _, _) = (torch.tensor([0]), slot_logits, outputs_indices, intent_logits, intent_prediction, None, 0, 0) </DeepExtract> nlu_loss += batch_loss.item() batch_amount += 1 nlu_loss /= batch_amount nlu_scorer.print_avg_scores() batch_amount = 0 if test_nlg: nlg_scorer = SequenceScorer() nlg_loss = 0 for (b_idx, batch) in enumerate(tqdm(self.test_nlg_data_loader)): with torch.no_grad(): <DeepExtract> self.nlg.eval() attrs = (batch['slot_key'].clone().detach().to(self.device), torch.tensor(batch['slot_key_lens']).to(self.device), batch['slot_value'].clone().detach().to(self.device), torch.tensor(batch['slot_value_lens']).to(self.device), batch['intent'].clone().detach().to(self.device)) labels = batch['target'].clone().detach().to(self.device) refs = batch['multi_refs'] nlu_slot_seqs = batch['dual_nlu_labels'].clone().detach().to(self.device) (logits, outputs, decisions, semantic_embs) = self.nlg(attrs, _BOS, labels, beam_size=sample_size, tf_ratio=0.0, st=nlg_st) (batch_size, _, seq_length, vocab_size) = logits.size() if self.dual_inference is not None: best = self.dual_inference.forward_nlg(attrs, logits, decisions, nlu_slot_seqs, sample_size, self.nlu) else: best = decisions[:, 0].detach() outputs_indices = best.cpu().clone().numpy() outputs_indices = np.argmax(outputs_indices, axis=-1) if nlg_scorer: labels_clone = labels.detach().cpu().numpy() nlg_scorer.update(labels_clone, refs, outputs_indices) (sup_loss, rl_loss, nlg_joint_prob, reward) = criterion_nlg(logits.cpu(), labels.cpu(), decisions=decisions.cpu(), n_supervise=1, calculate_reward=reinforce) has_rl = isinstance(rl_loss, torch.Tensor) if not True: if supervised and isinstance(sup_loss, torch.Tensor): sup_loss.backward(retain_graph=retain_graph or has_rl or self.dim_loss) if reinforce and has_rl: rl_loss.backward(retain_graph=retain_graph) if optimize and (not self.dim_loss): if max_norm: clip_grad_norm_(self.nlg_parameters, max_norm) self.nlg_optimizer.step() self.nlg_optimizer.zero_grad() (batch_loss, batch_logits, batch_decode_result, _, _, _, _) = (sup_loss + rl_loss, logits, outputs, nlg_joint_prob, reward, attrs, semantic_embs) </DeepExtract> nlg_loss += batch_loss.item() batch_amount += 1 nlg_loss /= batch_amount nlg_scorer.print_avg_scores() <DeepExtract> filename = self.valid_log_path if True else self.train_log_path nlu_loss = 'None' if nlu_loss is None else '{:.4f}'.format(nlu_loss) nlg_loss = 'None' if nlg_loss is None else '{:.3f}'.format(nlg_loss) if nlu_scorer is not None: (intent_acc, slot_f1_p_r) = nlu_scorer.get_avg_scores() intent_acc = '{:.4f}'.format(intent_acc) slot_f1 = '{:.4f}'.format(slot_f1_p_r[0]) else: slot_f1 = '-1.0' if nlg_scorer is not None: (_, bleu, _, rouge, _, _) = nlg_scorer.get_avg_scores() bleu = '{:.4f}'.format(bleu) rouge = ' '.join(['{:.4f}'.format(s) for s in rouge]) else: (bleu, rouge) = ('-1.0', '-1.0 -1.0 -1.0') with open(filename, 'a') as file: file.write(f'{epoch},{nlu_loss},{nlg_loss},{intent_acc},{slot_f1},{bleu},{rouge}\n') </DeepExtract> if test_nlg: nlg_scorer.write_avg_scores_to_file(self.test_result_path) if test_nlu: nlu_scorer.write_avg_scores_to_file(self.test_result_path)
def test(self, batch_size, criterion_nlu, criterion_nlg, test_nlu=True, test_nlg=True, sample_size=20, epoch=-1): nlu_loss = nlg_loss = None nlu_scorer = nlg_scorer = None batch_amount = 0 if test_nlu: nlu_scorer = IntentPredSlotFillScorer(intent_acc=self.with_intent) nlu_loss = 0 for (b_idx, batch) in enumerate(tqdm(self.test_nlu_data_loader)): with torch.no_grad(): self.nlu.eval() inputs = batch['inputs'].to(self.device) targets = batch['labels'].clone().detach().to(self.device) (slot_logits, outputs, decisions, intent_logits) = self.nlu(inputs, _BOS, labels=targets, beam_size=sample_size, tf_ratio=teacher_forcing_ratio if not True else 0.0) intent_prediction = intent_logits.argmax(-1) if self.dual_inference is not None: (best, best_intent) = self.dual_inference.forward_nlu(inputs, slot_logits, decisions, intent_logits, intent_prediction, self.nlg) else: best = decisions[:, 0].detach() best_intent = intent_logits.detach() outputs_indices = best.cpu().clone().numpy() slot_prediction = outputs_indices if self.with_intent: intent_prediction = best_intent.cpu() intent_prediction = intent_prediction.clone().numpy() if nlu_scorer: targets_clone = targets.detach().cpu().long().numpy() targets_clone = [self.train_data_engine.untokenize_nlu_slot_seq(target) for target in targets_clone] slot_prediction = [self.train_data_engine.untokenize_nlu_slot_seq(prediction) for prediction in slot_prediction] nlu_scorer.update(targets_clone, slot_prediction, intent_labels=batch['intent'].clone().cpu().numpy() if self.with_intent else None, intent_prediction=intent_prediction if self.with_intent else None) if True and result_path: self._record_nlu_test_result(result_path, inputs, targets_clone, slot_prediction) (batch_loss, batch_logits, slot_prediction, intent_logits, intent_prediction, _, _, _) = (torch.tensor([0]), slot_logits, outputs_indices, intent_logits, intent_prediction, None, 0, 0) nlu_loss += batch_loss.item() batch_amount += 1 nlu_loss /= batch_amount nlu_scorer.print_avg_scores() batch_amount = 0 if test_nlg: nlg_scorer = SequenceScorer() nlg_loss = 0 for (b_idx, batch) in enumerate(tqdm(self.test_nlg_data_loader)): with torch.no_grad(): self.nlg.eval() attrs = (batch['slot_key'].clone().detach().to(self.device), torch.tensor(batch['slot_key_lens']).to(self.device), batch['slot_value'].clone().detach().to(self.device), torch.tensor(batch['slot_value_lens']).to(self.device), batch['intent'].clone().detach().to(self.device)) labels = batch['target'].clone().detach().to(self.device) refs = batch['multi_refs'] nlu_slot_seqs = batch['dual_nlu_labels'].clone().detach().to(self.device) (logits, outputs, decisions, semantic_embs) = self.nlg(attrs, _BOS, labels, beam_size=sample_size, tf_ratio=0.0, st=nlg_st) (batch_size, _, seq_length, vocab_size) = logits.size() if self.dual_inference is not None: best = self.dual_inference.forward_nlg(attrs, logits, decisions, nlu_slot_seqs, sample_size, self.nlu) else: best = decisions[:, 0].detach() outputs_indices = best.cpu().clone().numpy() outputs_indices = np.argmax(outputs_indices, axis=-1) if nlg_scorer: labels_clone = labels.detach().cpu().numpy() nlg_scorer.update(labels_clone, refs, outputs_indices) (sup_loss, rl_loss, nlg_joint_prob, reward) = criterion_nlg(logits.cpu(), labels.cpu(), decisions=decisions.cpu(), n_supervise=1, calculate_reward=reinforce) has_rl = isinstance(rl_loss, torch.Tensor) if not True: if supervised and isinstance(sup_loss, torch.Tensor): sup_loss.backward(retain_graph=retain_graph or has_rl or self.dim_loss) if reinforce and has_rl: rl_loss.backward(retain_graph=retain_graph) if optimize and (not self.dim_loss): if max_norm: clip_grad_norm_(self.nlg_parameters, max_norm) self.nlg_optimizer.step() self.nlg_optimizer.zero_grad() (batch_loss, batch_logits, batch_decode_result, _, _, _, _) = (sup_loss + rl_loss, logits, outputs, nlg_joint_prob, reward, attrs, semantic_embs) nlg_loss += batch_loss.item() batch_amount += 1 nlg_loss /= batch_amount nlg_scorer.print_avg_scores() filename = self.valid_log_path if True else self.train_log_path nlu_loss = 'None' if nlu_loss is None else '{:.4f}'.format(nlu_loss) nlg_loss = 'None' if nlg_loss is None else '{:.3f}'.format(nlg_loss) if nlu_scorer is not None: (intent_acc, slot_f1_p_r) = nlu_scorer.get_avg_scores() intent_acc = '{:.4f}'.format(intent_acc) slot_f1 = '{:.4f}'.format(slot_f1_p_r[0]) else: slot_f1 = '-1.0' if nlg_scorer is not None: (_, bleu, _, rouge, _, _) = nlg_scorer.get_avg_scores() bleu = '{:.4f}'.format(bleu) rouge = ' '.join(['{:.4f}'.format(s) for s in rouge]) else: (bleu, rouge) = ('-1.0', '-1.0 -1.0 -1.0') with open(filename, 'a') as file: file.write(f'{epoch},{nlu_loss},{nlg_loss},{intent_acc},{slot_f1},{bleu},{rouge}\n') if test_nlg: nlg_scorer.write_avg_scores_to_file(self.test_result_path) if test_nlu: nlu_scorer.write_avg_scores_to_file(self.test_result_path)
DuaLUG
positive
def test_removed_reduce(self): """Builtin reduce is removed - moved to functools.""" code = 'reduce(lambda x, y: x + y, [1, 2, 3, 4, 5])' new_code = 'from functools import reduce\n' + code sugg = "'reduce' from functools (not imported)" <DeepExtract> (before, after) = (up_to_version((3, 0)), from_version((3, 0))) </DeepExtract> <DeepExtract> details = 'Running following code :\n---\n{0}\n---'.format(code) if PythonEnvRange(before, interpreters).contains_current_env(): exc = get_exception(code) self.assertTrue(exc is None, 'Exc thrown : ' + str(exc) + details) </DeepExtract> <DeepExtract> sugg = sorted(listify(sugg, [], str)) (error_type, error_msg) = NAMEERROR details = 'Running following code :\n---\n{0}\n---'.format(code) if PythonEnvRange(after, interpreters).contains_current_env(): exc = get_exception(code) self.assertFalse(exc is None, 'No exc thrown.' + details) (type_caught, value, traceback) = exc suggestions = sorted(get_suggestions_for_exception(value, traceback)) self.log_exception(code, exc, suggestions) self.assertTrue(isinstance(value, type_caught)) self.assertTrue(issubclass(type_caught, error_type), '{0} ({1}) not a subclass of {2}'.format(type_caught, value, error_type) + details) msg = next((a for a in value.args if isinstance(a, str)), '') if error_msg: self.assertRegexp(msg, error_msg, details) self.assertEqual(suggestions, sugg, details) </DeepExtract> <DeepExtract> details = 'Running following code :\n---\n{0}\n---'.format(new_code) if PythonEnvRange(after, interpreters).contains_current_env(): exc = get_exception(new_code) self.assertTrue(exc is None, 'Exc thrown : ' + str(exc) + details) </DeepExtract>
def test_removed_reduce(self): """Builtin reduce is removed - moved to functools.""" code = 'reduce(lambda x, y: x + y, [1, 2, 3, 4, 5])' new_code = 'from functools import reduce\n' + code sugg = "'reduce' from functools (not imported)" (before, after) = (up_to_version((3, 0)), from_version((3, 0))) details = 'Running following code :\n---\n{0}\n---'.format(code) if PythonEnvRange(before, interpreters).contains_current_env(): exc = get_exception(code) self.assertTrue(exc is None, 'Exc thrown : ' + str(exc) + details) sugg = sorted(listify(sugg, [], str)) (error_type, error_msg) = NAMEERROR details = 'Running following code :\n---\n{0}\n---'.format(code) if PythonEnvRange(after, interpreters).contains_current_env(): exc = get_exception(code) self.assertFalse(exc is None, 'No exc thrown.' + details) (type_caught, value, traceback) = exc suggestions = sorted(get_suggestions_for_exception(value, traceback)) self.log_exception(code, exc, suggestions) self.assertTrue(isinstance(value, type_caught)) self.assertTrue(issubclass(type_caught, error_type), '{0} ({1}) not a subclass of {2}'.format(type_caught, value, error_type) + details) msg = next((a for a in value.args if isinstance(a, str)), '') if error_msg: self.assertRegexp(msg, error_msg, details) self.assertEqual(suggestions, sugg, details) details = 'Running following code :\n---\n{0}\n---'.format(new_code) if PythonEnvRange(after, interpreters).contains_current_env(): exc = get_exception(new_code) self.assertTrue(exc is None, 'Exc thrown : ' + str(exc) + details) </DeepExtract>
DidYouMean-Python
positive
def test_get_z(self): <DeepExtract> self = Mpfr_t() mpfr_init2(self, 20) x = self </DeepExtract> mpfr_const_pi(x, MPFR_RNDN) z = Mpz_t() rv = mpfr_get_z(z, x, MPFR_RNDD) self.assertEqual(mpz_get_str(10, z), '3') self.assertLess(rv, 0) rv = mpfr_get_z(z, x, MPFR_RNDU) self.assertEqual(mpz_get_str(10, z), '4') self.assertGreater(rv, 0) mpfr_set_d(x, 123.0, MPFR_RNDN) rv = mpfr_get_z(z, x, MPFR_RNDU) self.assertEqual(mpz_get_str(10, z), '123') self.assertEqual(rv, 0) for x in [posinf(), neginf(), nan()]: mpfr_clear_flags() rv = mpfr_get_z(z, x, MPFR_RNDN) self.assertEqual(mpfr_flags_save(), MPFR_FLAGS_ERANGE) self.assertEqual(rv, 0) self.assertEqual(mpz_get_str(10, z), '0')
def test_get_z(self): self = Mpfr_t() mpfr_init2(self, 20) x = self mpfr_const_pi(x, MPFR_RNDN) z = Mpz_t() rv = mpfr_get_z(z, x, MPFR_RNDD) self.assertEqual(mpz_get_str(10, z), '3') self.assertLess(rv, 0) rv = mpfr_get_z(z, x, MPFR_RNDU) self.assertEqual(mpz_get_str(10, z), '4') self.assertGreater(rv, 0) mpfr_set_d(x, 123.0, MPFR_RNDN) rv = mpfr_get_z(z, x, MPFR_RNDU) self.assertEqual(mpz_get_str(10, z), '123') self.assertEqual(rv, 0) for x in [posinf(), neginf(), nan()]: mpfr_clear_flags() rv = mpfr_get_z(z, x, MPFR_RNDN) self.assertEqual(mpfr_flags_save(), MPFR_FLAGS_ERANGE) self.assertEqual(rv, 0) self.assertEqual(mpz_get_str(10, z), '0')
bigfloat
positive
@patch('deepparse.parser.address_parser.DataLoader') @patch('deepparse.parser.address_parser.Experiment') @patch('deepparse.parser.address_parser.SGD') @patch('deepparse.parser.address_parser.ModelFactory') @patch('deepparse.parser.address_parser.EmbeddingsModelFactory') @patch('deepparse.parser.address_parser.VectorizerFactory') @patch('deepparse.parser.address_parser.DataProcessorFactory') @patch('deepparse.parser.address_parser.DataPadder') def test_givenABPEmbModel_whenTestCPU_thenInstantiateExperimentProperly(self, data_padder_mock, data_processor_factory_mock, vectorizer_factory_mock, embeddings_model_factory_mock, model_factory_mock, optimizer_mock, experiment_mock, data_loader_mock): model_factory_mock().create.return_value = self.model_mock self.address_parser = AddressParser(model_type=self.a_bpemb_model_type, device=self.a_device, verbose=self.verbose) <DeepExtract> if dataset_container is None: dataset_container = self.mocked_data_container if num_workers is None: num_workers = self.a_number_of_workers self.address_parser.test(dataset_container, self.a_batch_size, num_workers=num_workers, callbacks=self.a_callbacks_list, seed=self.a_seed) </DeepExtract> <DeepExtract> experiment_mock.assert_called_with('./checkpoint', self.model_mock, device=self.a_device, loss_function=nll_loss, batch_metrics=[accuracy], logging=False) </DeepExtract>
@patch('deepparse.parser.address_parser.DataLoader') @patch('deepparse.parser.address_parser.Experiment') @patch('deepparse.parser.address_parser.SGD') @patch('deepparse.parser.address_parser.ModelFactory') @patch('deepparse.parser.address_parser.EmbeddingsModelFactory') @patch('deepparse.parser.address_parser.VectorizerFactory') @patch('deepparse.parser.address_parser.DataProcessorFactory') @patch('deepparse.parser.address_parser.DataPadder') def test_givenABPEmbModel_whenTestCPU_thenInstantiateExperimentProperly(self, data_padder_mock, data_processor_factory_mock, vectorizer_factory_mock, embeddings_model_factory_mock, model_factory_mock, optimizer_mock, experiment_mock, data_loader_mock): model_factory_mock().create.return_value = self.model_mock self.address_parser = AddressParser(model_type=self.a_bpemb_model_type, device=self.a_device, verbose=self.verbose) if dataset_container is None: dataset_container = self.mocked_data_container if num_workers is None: num_workers = self.a_number_of_workers self.address_parser.test(dataset_container, self.a_batch_size, num_workers=num_workers, callbacks=self.a_callbacks_list, seed=self.a_seed) experiment_mock.assert_called_with('./checkpoint', self.model_mock, device=self.a_device, loss_function=nll_loss, batch_metrics=[accuracy], logging=False) </DeepExtract>
deepparse
positive
def simple_test(self, img, img_metas, rescale=False): <DeepExtract> x = self.backbone(img) if self.with_neck: x = self.neck(x) x = x </DeepExtract> outs = self.bbox_head(x) bbox_inputs = outs + (img_metas, self.test_cfg, rescale) bbox_list = self.bbox_head.get_bboxes(*bbox_inputs) bbox_results = [bbox2result(det_bboxes, det_labels, self.bbox_head.num_classes) for (det_bboxes, det_labels) in bbox_list] return bbox_results[0]
def simple_test(self, img, img_metas, rescale=False): x = self.backbone(img) if self.with_neck: x = self.neck(x) x = x outs = self.bbox_head(x) bbox_inputs = outs + (img_metas, self.test_cfg, rescale) bbox_list = self.bbox_head.get_bboxes(*bbox_inputs) bbox_results = [bbox2result(det_bboxes, det_labels, self.bbox_head.num_classes) for (det_bboxes, det_labels) in bbox_list] return bbox_results[0]
ATSS-EfficientDet-PyTorch
positive
def assignments(self, assignment_type=None): """ Returns the assignments (and problems) for the represented course. """ assignment_type_name = None if assignment_type is None else assignment_type['name'] <DeepExtract> assignment_type_key = sanitize_cache_key(f"{self.course_id}_{f'assignments_{assignment_type_name}'}") </DeepExtract> assignments = cache.get(assignment_type_key) if not assignments: <DeepExtract> all_assignments_key = sanitize_cache_key(f"{self.course_id}_{'assignments'}") </DeepExtract> assignments = cache.get(all_assignments_key) if not assignments: structure = self._get_structure() assignments = CourseStructure.course_structure_to_assignments(structure, graded=True, assignment_type=None) cache.set(all_assignments_key, assignments) if assignment_type: assignment_type['name'] = assignment_type['name'].lower() assignments = [assignment for assignment in assignments if assignment['assignment_type'].lower() == assignment_type['name']] self.add_child_data_to_parent_blocks(assignments, self._build_graded_answer_distribution_url) self.attach_data_to_parents(assignments, self._build_assignment_url) cache.set(assignment_type_key, assignments) return assignments
def assignments(self, assignment_type=None): """ Returns the assignments (and problems) for the represented course. """ assignment_type_name = None if assignment_type is None else assignment_type['name'] assignment_type_key = sanitize_cache_key(f"{self.course_id}_{f'assignments_{assignment_type_name}'}") assignments = cache.get(assignment_type_key) if not assignments: all_assignments_key = sanitize_cache_key(f"{self.course_id}_{'assignments'}") assignments = cache.get(all_assignments_key) if not assignments: structure = self._get_structure() assignments = CourseStructure.course_structure_to_assignments(structure, graded=True, assignment_type=None) cache.set(all_assignments_key, assignments) if assignment_type: assignment_type['name'] = assignment_type['name'].lower() assignments = [assignment for assignment in assignments if assignment['assignment_type'].lower() == assignment_type['name']] self.add_child_data_to_parent_blocks(assignments, self._build_graded_answer_distribution_url) self.attach_data_to_parents(assignments, self._build_assignment_url) cache.set(assignment_type_key, assignments) return assignments
edx-analytics-dashboard
positive
def __init__(self): if not os.path.exists(args.save_dir): os.makedirs(args.save_dir) self.sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True)) self.Worker_L2I = worker_L2I(args, train_data_iterator.get_num_labels(), train_data_iterator.get_observation_size()) self.Worker_I2L = worker_I2L(args) self.image_LM = [tf.placeholder(tf.float32, shape=(args.batch_size,)) for _ in range(args.nr_gpu)] self.trade_off_I2L = tf.placeholder(tf.float32, shape=()) self.trade_off_L2I = tf.placeholder(tf.float32, shape=()) self.I2L_grads = [] self.train_uidx = 0 <DeepExtract> self.nlls_I2L = self.Worker_I2L.model.nlls self.soft_labels = self.Worker_I2L.model.predictions (nlls_L2I, loss_gen_test) = self.Worker_L2I.GetLoss() (nlls_L2I_train_bpd_list, nlls_L2I_test_bpd_list, consistent_loss_list) = ([None for _ in xrange(args.nr_gpu)], [None for _ in xrange(args.nr_gpu)], [None for _ in xrange(args.nr_gpu)]) (overall_cost_I2L_list, overall_cost_L2I_list, nlls_I2L_batchMean_list) = ([None for _ in xrange(args.nr_gpu)], [None for _ in xrange(args.nr_gpu)], [None for _ in xrange(args.nr_gpu)]) (grads_I2L_list, grads_L2I_list) = ([None for _ in xrange(args.nr_gpu)], [None for _ in xrange(args.nr_gpu)]) for i in range(args.nr_gpu): with tf.device('/gpu:%d' % i): nlls_L2I_train_bpd = tf.reduce_mean(nlls_L2I[i]) / (np.log(2.0) * 32 * 32 * 3) nlls_L2I_test_bpd = tf.reduce_mean(loss_gen_test[i]) / (np.log(2.0) * 32 * 32 * 3 * args.batch_size) if args.L2I_normalization: consistent_loss = tf.reduce_mean((self.image_LM[i] * np.log(2.0) + self.nlls_I2L[i] + tf.log(0.1) - nlls_L2I[i] / (32.0 * 32 * 3)) ** 2.0) else: consistent_loss = tf.reduce_mean((self.image_LM[i] * np.log(2.0) + (self.nlls_I2L[i] + tf.log(0.1) - nlls_L2I[i]) / 3072.0 + args.bias) ** 2.0) nlls_L2I_train_bpd_list[i] = nlls_L2I_train_bpd nlls_L2I_test_bpd_list[i] = nlls_L2I_test_bpd consistent_loss_list[i] = consistent_loss nlls_I2L_batchMean = tf.reduce_mean(self.nlls_I2L[i]) overall_cost_I2L = nlls_I2L_batchMean + self.trade_off_I2L ** 2.0 * consistent_loss overall_cost_L2I = nlls_L2I_train_bpd + self.trade_off_L2I ** 2.0 * consistent_loss nlls_I2L_batchMean_list[i] = nlls_I2L_batchMean overall_cost_I2L_list[i] = overall_cost_I2L overall_cost_L2I_list[i] = overall_cost_L2I if args.oneside is None: grads_I2L_list[i] = tf.gradients(overall_cost_I2L, self.Worker_I2L.model.trainable_variables) grads_L2I_list[i] = tf.gradients(overall_cost_L2I, self.Worker_L2I.all_params) elif args.oneside == 'I2L': grads_I2L_list[i] = tf.gradients(overall_cost_I2L, self.Worker_I2L.model.trainable_variables) elif args.oneside == 'L2I': grads_L2I_list[i] = tf.gradients(overall_cost_L2I, self.Worker_L2I.all_params) with tf.device('/gpu:0'): for i in range(1, args.nr_gpu): nlls_L2I_train_bpd_list[0] += nlls_L2I_train_bpd_list[i] nlls_L2I_test_bpd_list[0] += nlls_L2I_test_bpd_list[i] consistent_loss_list[0] += consistent_loss_list[i] overall_cost_I2L_list[0] += overall_cost_I2L_list[i] overall_cost_L2I_list[0] += overall_cost_L2I_list[i] nlls_I2L_batchMean_list[0] += nlls_I2L_batchMean_list[i] if args.oneside != 'L2I': for j in range(len(grads_I2L_list[0])): grads_I2L_list[0][j] += grads_I2L_list[i][j] if args.oneside != 'I2L': for j in range(len(grads_L2I_list[0])): grads_L2I_list[0][j] += grads_L2I_list[i][j] if args.oneside != 'L2I': for j in range(len(grads_I2L_list[0])): grads_I2L_list[0][j] /= args.nr_gpu * 1.0 if args.oneside != 'I2L': for j in range(len(grads_L2I_list[0])): grads_L2I_list[0][j] /= args.nr_gpu * 1.0 if args.oneside is None: self.Worker_I2L.model.Update(grads_I2L_list[0]) self.Worker_L2I.Update(grads_L2I_list[0]) elif args.oneside == 'I2L': self.Worker_I2L.model.Update(grads_I2L_list[0]) elif args.oneside == 'L2I': self.Worker_L2I.Update(grads_L2I_list[0]) self.nlls_L2I_train_bpd = nlls_L2I_train_bpd_list[0] / args.nr_gpu self.nlls_L2I_test_bpd = nlls_L2I_test_bpd_list[0] / args.nr_gpu self.consistent_loss = consistent_loss_list[0] / args.nr_gpu self.nlls_I2L_batchMean = nlls_I2L_batchMean_list[0] / args.nr_gpu self.overall_cost_I2L = overall_cost_I2L_list[0] / args.nr_gpu self.overall_cost_L2I = overall_cost_L2I_list[0] / args.nr_gpu self.Worker_L2I.build_sample_from_model() </DeepExtract> self.lr_l2i = self.Worker_L2I.args.learning_rate self.current_epoch = 0 self.assign_op = lambda ref_, val_: tf.assign(ref_, val_)
def __init__(self): if not os.path.exists(args.save_dir): os.makedirs(args.save_dir) self.sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True)) self.Worker_L2I = worker_L2I(args, train_data_iterator.get_num_labels(), train_data_iterator.get_observation_size()) self.Worker_I2L = worker_I2L(args) self.image_LM = [tf.placeholder(tf.float32, shape=(args.batch_size,)) for _ in range(args.nr_gpu)] self.trade_off_I2L = tf.placeholder(tf.float32, shape=()) self.trade_off_L2I = tf.placeholder(tf.float32, shape=()) self.I2L_grads = [] self.train_uidx = 0 self.nlls_I2L = self.Worker_I2L.model.nlls self.soft_labels = self.Worker_I2L.model.predictions (nlls_L2I, loss_gen_test) = self.Worker_L2I.GetLoss() (nlls_L2I_train_bpd_list, nlls_L2I_test_bpd_list, consistent_loss_list) = ([None for _ in xrange(args.nr_gpu)], [None for _ in xrange(args.nr_gpu)], [None for _ in xrange(args.nr_gpu)]) (overall_cost_I2L_list, overall_cost_L2I_list, nlls_I2L_batchMean_list) = ([None for _ in xrange(args.nr_gpu)], [None for _ in xrange(args.nr_gpu)], [None for _ in xrange(args.nr_gpu)]) (grads_I2L_list, grads_L2I_list) = ([None for _ in xrange(args.nr_gpu)], [None for _ in xrange(args.nr_gpu)]) for i in range(args.nr_gpu): with tf.device('/gpu:%d' % i): nlls_L2I_train_bpd = tf.reduce_mean(nlls_L2I[i]) / (np.log(2.0) * 32 * 32 * 3) nlls_L2I_test_bpd = tf.reduce_mean(loss_gen_test[i]) / (np.log(2.0) * 32 * 32 * 3 * args.batch_size) if args.L2I_normalization: consistent_loss = tf.reduce_mean((self.image_LM[i] * np.log(2.0) + self.nlls_I2L[i] + tf.log(0.1) - nlls_L2I[i] / (32.0 * 32 * 3)) ** 2.0) else: consistent_loss = tf.reduce_mean((self.image_LM[i] * np.log(2.0) + (self.nlls_I2L[i] + tf.log(0.1) - nlls_L2I[i]) / 3072.0 + args.bias) ** 2.0) nlls_L2I_train_bpd_list[i] = nlls_L2I_train_bpd nlls_L2I_test_bpd_list[i] = nlls_L2I_test_bpd consistent_loss_list[i] = consistent_loss nlls_I2L_batchMean = tf.reduce_mean(self.nlls_I2L[i]) overall_cost_I2L = nlls_I2L_batchMean + self.trade_off_I2L ** 2.0 * consistent_loss overall_cost_L2I = nlls_L2I_train_bpd + self.trade_off_L2I ** 2.0 * consistent_loss nlls_I2L_batchMean_list[i] = nlls_I2L_batchMean overall_cost_I2L_list[i] = overall_cost_I2L overall_cost_L2I_list[i] = overall_cost_L2I if args.oneside is None: grads_I2L_list[i] = tf.gradients(overall_cost_I2L, self.Worker_I2L.model.trainable_variables) grads_L2I_list[i] = tf.gradients(overall_cost_L2I, self.Worker_L2I.all_params) elif args.oneside == 'I2L': grads_I2L_list[i] = tf.gradients(overall_cost_I2L, self.Worker_I2L.model.trainable_variables) elif args.oneside == 'L2I': grads_L2I_list[i] = tf.gradients(overall_cost_L2I, self.Worker_L2I.all_params) with tf.device('/gpu:0'): for i in range(1, args.nr_gpu): nlls_L2I_train_bpd_list[0] += nlls_L2I_train_bpd_list[i] nlls_L2I_test_bpd_list[0] += nlls_L2I_test_bpd_list[i] consistent_loss_list[0] += consistent_loss_list[i] overall_cost_I2L_list[0] += overall_cost_I2L_list[i] overall_cost_L2I_list[0] += overall_cost_L2I_list[i] nlls_I2L_batchMean_list[0] += nlls_I2L_batchMean_list[i] if args.oneside != 'L2I': for j in range(len(grads_I2L_list[0])): grads_I2L_list[0][j] += grads_I2L_list[i][j] if args.oneside != 'I2L': for j in range(len(grads_L2I_list[0])): grads_L2I_list[0][j] += grads_L2I_list[i][j] if args.oneside != 'L2I': for j in range(len(grads_I2L_list[0])): grads_I2L_list[0][j] /= args.nr_gpu * 1.0 if args.oneside != 'I2L': for j in range(len(grads_L2I_list[0])): grads_L2I_list[0][j] /= args.nr_gpu * 1.0 if args.oneside is None: self.Worker_I2L.model.Update(grads_I2L_list[0]) self.Worker_L2I.Update(grads_L2I_list[0]) elif args.oneside == 'I2L': self.Worker_I2L.model.Update(grads_I2L_list[0]) elif args.oneside == 'L2I': self.Worker_L2I.Update(grads_L2I_list[0]) self.nlls_L2I_train_bpd = nlls_L2I_train_bpd_list[0] / args.nr_gpu self.nlls_L2I_test_bpd = nlls_L2I_test_bpd_list[0] / args.nr_gpu self.consistent_loss = consistent_loss_list[0] / args.nr_gpu self.nlls_I2L_batchMean = nlls_I2L_batchMean_list[0] / args.nr_gpu self.overall_cost_I2L = overall_cost_I2L_list[0] / args.nr_gpu self.overall_cost_L2I = overall_cost_L2I_list[0] / args.nr_gpu self.Worker_L2I.build_sample_from_model() self.lr_l2i = self.Worker_L2I.args.learning_rate self.current_epoch = 0 self.assign_op = lambda ref_, val_: tf.assign(ref_, val_)
DualLearning
positive
def rotate_and_crop(cv_image, old_pos_cor, max_angle=0, random_crop=True, random_width=0.2, random_height=0.2, **kwargs): """ online crop image, rotate the text horizontally and crop image Args: cv_image (np.array): image old_pos_cor (list): bounding box coordinate max_angle (int): max rotate angle random_crop (bool): whether to random crop, training stage sets True random_width (int): random width, expand roi_width range (1+[0, random_width])*roi_width random_height (int): random height, expand roi_height range(1+[0, random_height])*roi_height **kwargs (None): backup parameter Returns: np.array: image after rotation and crop """ random_th = 0.3 pos_cor = old_pos_cor.copy() <DeepExtract> pi_num = 3.141592653 pos_cor = list(map(float, pos_cor)) x_1 = pos_cor[0] y_1 = pos_cor[1] x_2 = pos_cor[2] y_2 = pos_cor[3] x_x = x_2 - x_1 y_y = y_2 - y_1 if x_x == 0.0: angle_temp = pi_num / 2.0 else: angle_temp = math.atan(abs(y_y / x_x)) if x_x < 0.0 and y_y >= 0.0: angle_temp = pi_num - angle_temp elif x_x < 0.0 and y_y < 0.0: angle_temp = pi_num + angle_temp elif x_x >= 0.0 and y_y < 0.0: angle_temp = pi_num * 2.0 - angle_temp else: angle_temp = math.atan(abs(y_y / x_x)) rotate_angle = angle_temp / pi_num * 180 </DeepExtract> if random.random() > random_th: random_angle = (random.random() * 2 - 1) * max_angle rotate_angle += random_angle (height, width) = cv_image.shape[:2] <DeepExtract> (x_1, y_1, x_2, y_2, x_3, y_3, x_4, y_4) = pos_cor dst_x1 = max(0, min(x_1, x_2, x_3, x_4)) dst_y1 = max(0, min(y_1, y_2, y_3, y_4)) dst_x2 = min(width - 1, max(x_1, x_2, x_3, x_4)) dst_y2 = min(height - 1, max(y_1, y_2, y_3, y_4)) (dst_x, dst_y) = (dst_x1, dst_y1) width = dst_x2 - dst_x1 + 1 height = dst_y2 - dst_y1 + 1 (roi_x, roi_y, roi_width, roi_height) = [dst_x, dst_y, width, height] </DeepExtract> roi_larger_x = int(max(0, roi_x - roi_width / 2)) roi_larger_y = int(max(0, roi_y - roi_height)) right_x = int(min(width, roi_x + roi_width / 2 * 3)) bottom_y = int(min(height, roi_y + 2 * roi_height)) roi_larger_img = cv_image[roi_larger_y:bottom_y, roi_larger_x:right_x, :] for label_i in range(4): pos_cor[2 * label_i] -= roi_larger_x pos_cor[2 * label_i + 1] -= roi_larger_y (roi_larger_h, roi_larger_w) = roi_larger_img.shape[:2] radis = int(math.sqrt(roi_larger_h ** 2 + roi_larger_w ** 2)) + 2 larger_img_for_rotate = np.zeros((radis, radis, 3)) roi_x = int((radis - roi_larger_w) / 2) roi_y = int((radis - roi_larger_h) / 2) larger_img_for_rotate[roi_y:roi_y + roi_larger_h, roi_x:roi_x + roi_larger_w, :] = roi_larger_img for label_i in range(4): pos_cor[2 * label_i] += roi_x pos_cor[2 * label_i + 1] += roi_y (height, width) = larger_img_for_rotate.shape[:2] rotate_matrix = cv2.getRotationMatrix2D((height / 2, width / 2), rotate_angle, 1) rotate_img = cv2.warpAffine(larger_img_for_rotate, rotate_matrix, (height, width)) <DeepExtract> box2 = [0] * 8 (box2[0], box2[1]) = trans_rot_affine(rotate_matrix, pos_cor[0], pos_cor[1]) (box2[2], box2[3]) = trans_rot_affine(rotate_matrix, pos_cor[2], pos_cor[3]) (box2[4], box2[5]) = trans_rot_affine(rotate_matrix, pos_cor[4], pos_cor[5]) (box2[6], box2[7]) = trans_rot_affine(rotate_matrix, pos_cor[6], pos_cor[7]) pos_cor = box2 </DeepExtract> (height, width) = rotate_img.shape[:2] <DeepExtract> (x_1, y_1, x_2, y_2, x_3, y_3, x_4, y_4) = pos_cor dst_x1 = max(0, min(x_1, x_2, x_3, x_4)) dst_y1 = max(0, min(y_1, y_2, y_3, y_4)) dst_x2 = min(width - 1, max(x_1, x_2, x_3, x_4)) dst_y2 = min(height - 1, max(y_1, y_2, y_3, y_4)) (dst_x, dst_y) = (dst_x1, dst_y1) width = dst_x2 - dst_x1 + 1 height = dst_y2 - dst_y1 + 1 (roi_x, roi_y, roi_width, roi_height) = [dst_x, dst_y, width, height] </DeepExtract> if random_crop and random.random() > random_th: add_width = int(random_width * roi_width * random.random()) add_height = int(random_height * roi_height * random.random()) per_w = random.random() per_h = random.random() roi_x = max(0, roi_x - int(per_w * add_width)) roi_y = max(0, roi_y - int(per_h * add_height)) x_rt = min(width - 1, roi_x + add_width + roi_width) y_rt = min(height - 1, roi_y + add_height + roi_height) roi_width = max(1, x_rt - roi_x) roi_height = max(1, y_rt - roi_y) roi_img = rotate_img[roi_y:roi_y + roi_height, roi_x:roi_x + roi_width, :] return roi_img
def rotate_and_crop(cv_image, old_pos_cor, max_angle=0, random_crop=True, random_width=0.2, random_height=0.2, **kwargs): """ online crop image, rotate the text horizontally and crop image Args: cv_image (np.array): image old_pos_cor (list): bounding box coordinate max_angle (int): max rotate angle random_crop (bool): whether to random crop, training stage sets True random_width (int): random width, expand roi_width range (1+[0, random_width])*roi_width random_height (int): random height, expand roi_height range(1+[0, random_height])*roi_height **kwargs (None): backup parameter Returns: np.array: image after rotation and crop """ random_th = 0.3 pos_cor = old_pos_cor.copy() pi_num = 3.141592653 pos_cor = list(map(float, pos_cor)) x_1 = pos_cor[0] y_1 = pos_cor[1] x_2 = pos_cor[2] y_2 = pos_cor[3] x_x = x_2 - x_1 y_y = y_2 - y_1 if x_x == 0.0: angle_temp = pi_num / 2.0 else: angle_temp = math.atan(abs(y_y / x_x)) if x_x < 0.0 and y_y >= 0.0: angle_temp = pi_num - angle_temp elif x_x < 0.0 and y_y < 0.0: angle_temp = pi_num + angle_temp elif x_x >= 0.0 and y_y < 0.0: angle_temp = pi_num * 2.0 - angle_temp else: angle_temp = math.atan(abs(y_y / x_x)) rotate_angle = angle_temp / pi_num * 180 if random.random() > random_th: random_angle = (random.random() * 2 - 1) * max_angle rotate_angle += random_angle (height, width) = cv_image.shape[:2] (x_1, y_1, x_2, y_2, x_3, y_3, x_4, y_4) = pos_cor dst_x1 = max(0, min(x_1, x_2, x_3, x_4)) dst_y1 = max(0, min(y_1, y_2, y_3, y_4)) dst_x2 = min(width - 1, max(x_1, x_2, x_3, x_4)) dst_y2 = min(height - 1, max(y_1, y_2, y_3, y_4)) (dst_x, dst_y) = (dst_x1, dst_y1) width = dst_x2 - dst_x1 + 1 height = dst_y2 - dst_y1 + 1 (roi_x, roi_y, roi_width, roi_height) = [dst_x, dst_y, width, height] roi_larger_x = int(max(0, roi_x - roi_width / 2)) roi_larger_y = int(max(0, roi_y - roi_height)) right_x = int(min(width, roi_x + roi_width / 2 * 3)) bottom_y = int(min(height, roi_y + 2 * roi_height)) roi_larger_img = cv_image[roi_larger_y:bottom_y, roi_larger_x:right_x, :] for label_i in range(4): pos_cor[2 * label_i] -= roi_larger_x pos_cor[2 * label_i + 1] -= roi_larger_y (roi_larger_h, roi_larger_w) = roi_larger_img.shape[:2] radis = int(math.sqrt(roi_larger_h ** 2 + roi_larger_w ** 2)) + 2 larger_img_for_rotate = np.zeros((radis, radis, 3)) roi_x = int((radis - roi_larger_w) / 2) roi_y = int((radis - roi_larger_h) / 2) larger_img_for_rotate[roi_y:roi_y + roi_larger_h, roi_x:roi_x + roi_larger_w, :] = roi_larger_img for label_i in range(4): pos_cor[2 * label_i] += roi_x pos_cor[2 * label_i + 1] += roi_y (height, width) = larger_img_for_rotate.shape[:2] rotate_matrix = cv2.getRotationMatrix2D((height / 2, width / 2), rotate_angle, 1) rotate_img = cv2.warpAffine(larger_img_for_rotate, rotate_matrix, (height, width)) box2 = [0] * 8 (box2[0], box2[1]) = trans_rot_affine(rotate_matrix, pos_cor[0], pos_cor[1]) (box2[2], box2[3]) = trans_rot_affine(rotate_matrix, pos_cor[2], pos_cor[3]) (box2[4], box2[5]) = trans_rot_affine(rotate_matrix, pos_cor[4], pos_cor[5]) (box2[6], box2[7]) = trans_rot_affine(rotate_matrix, pos_cor[6], pos_cor[7]) pos_cor = box2 (height, width) = rotate_img.shape[:2] (x_1, y_1, x_2, y_2, x_3, y_3, x_4, y_4) = pos_cor dst_x1 = max(0, min(x_1, x_2, x_3, x_4)) dst_y1 = max(0, min(y_1, y_2, y_3, y_4)) dst_x2 = min(width - 1, max(x_1, x_2, x_3, x_4)) dst_y2 = min(height - 1, max(y_1, y_2, y_3, y_4)) (dst_x, dst_y) = (dst_x1, dst_y1) width = dst_x2 - dst_x1 + 1 height = dst_y2 - dst_y1 + 1 (roi_x, roi_y, roi_width, roi_height) = [dst_x, dst_y, width, height] if random_crop and random.random() > random_th: add_width = int(random_width * roi_width * random.random()) add_height = int(random_height * roi_height * random.random()) per_w = random.random() per_h = random.random() roi_x = max(0, roi_x - int(per_w * add_width)) roi_y = max(0, roi_y - int(per_h * add_height)) x_rt = min(width - 1, roi_x + add_width + roi_width) y_rt = min(height - 1, roi_y + add_height + roi_height) roi_width = max(1, x_rt - roi_x) roi_height = max(1, y_rt - roi_y) roi_img = rotate_img[roi_y:roi_y + roi_height, roi_x:roi_x + roi_width, :] return roi_img
DAVAR-Lab-OCR
positive
def test_add(self, mock_call): """Verify Veracity can add files.""" <DeepExtract> self.wc.add(self.path) </DeepExtract> calls = [call(('vv', 'add', self.path))] mock_call.assert_has_calls(calls)
def test_add(self, mock_call): """Verify Veracity can add files.""" self.wc.add(self.path) calls = [call(('vv', 'add', self.path))] mock_call.assert_has_calls(calls)
doorstop
positive
def test_forward1(self): (N, C) = (8, 3) <DeepExtract> if H is not None: x = np.random.randn(N, C, H, W).astype(dtype) else: x = np.random.randn(N, C).astype(dtype) gamma = np.random.randn(C).astype(dtype) beta = np.random.randn(C).astype(dtype) mean = np.random.randn(C).astype(dtype) var = np.abs(np.random.randn(C).astype(dtype)) (x, gamma, beta, mean, var) = (x, gamma, beta, mean, var) </DeepExtract> cy = chainer.links.BatchNormalization(3)(x) y = dezero.layers.BatchNorm()(x) self.assertTrue(array_allclose(y.data, cy.data))
def test_forward1(self): (N, C) = (8, 3) if H is not None: x = np.random.randn(N, C, H, W).astype(dtype) else: x = np.random.randn(N, C).astype(dtype) gamma = np.random.randn(C).astype(dtype) beta = np.random.randn(C).astype(dtype) mean = np.random.randn(C).astype(dtype) var = np.abs(np.random.randn(C).astype(dtype)) (x, gamma, beta, mean, var) = (x, gamma, beta, mean, var) cy = chainer.links.BatchNormalization(3)(x) y = dezero.layers.BatchNorm()(x) self.assertTrue(array_allclose(y.data, cy.data))
deep-learning-from-scratch-3
positive
def covariance_to_internal_jacobian(external_values, constr): """Jacobian of ``covariance_to_internal``. For reference see docstring of ``jacobian_covariance_from_internal``. In comparison to that function, however, here we want to differentiate the reverse graph external --> cov --> cholesky --> internal Again use the vectors :math:`c` and :math:`x` to denote the external and internal values, respectively. To solve for the jacobian we make use of the identity .. math:: \\frac{\\mathrm{d}x}{\\mathrm{d}c} = (\\frac{\\mathrm{d}c}{\\mathrm{d}x})^{-1} Args: external_values (np.ndarray): Row-wise half-vectorized covariance matrix Returns: deriv: The Jacobian matrix. """ cov = cov_params_to_matrix(external_values) chol = robust_cholesky(cov) internal = chol[np.tril_indices(len(chol))] <DeepExtract> chol = chol_params_to_lower_triangular_matrix(internal) dim = len(chol) K = _commutation_matrix(dim) L = _elimination_matrix(dim) left = np.eye(dim ** 2) + K right = np.kron(chol, np.eye(dim)) intermediate = left @ right deriv = L @ intermediate @ L.T deriv = deriv </DeepExtract> deriv = np.linalg.pinv(deriv) return deriv
def covariance_to_internal_jacobian(external_values, constr): """Jacobian of ``covariance_to_internal``. For reference see docstring of ``jacobian_covariance_from_internal``. In comparison to that function, however, here we want to differentiate the reverse graph external --> cov --> cholesky --> internal Again use the vectors :math:`c` and :math:`x` to denote the external and internal values, respectively. To solve for the jacobian we make use of the identity .. math:: \\frac{\\mathrm{d}x}{\\mathrm{d}c} = (\\frac{\\mathrm{d}c}{\\mathrm{d}x})^{-1} Args: external_values (np.ndarray): Row-wise half-vectorized covariance matrix Returns: deriv: The Jacobian matrix. """ cov = cov_params_to_matrix(external_values) chol = robust_cholesky(cov) internal = chol[np.tril_indices(len(chol))] chol = chol_params_to_lower_triangular_matrix(internal) dim = len(chol) K = _commutation_matrix(dim) L = _elimination_matrix(dim) left = np.eye(dim ** 2) + K right = np.kron(chol, np.eye(dim)) intermediate = left @ right deriv = L @ intermediate @ L.T deriv = deriv deriv = np.linalg.pinv(deriv) return deriv
estimagic
positive
@unittest.skipIf(Env.is_community(), 'Community can not test mcm operations') def test_mcm(self): mcm = F.search_client_mcm() clusters = mcm.list_clusters()['clusters'] self.assertEqual(len(clusters), 2) cluster_name = clusters[0]['clusterName'] date = datetime.datetime.now().strftime('%Y-%m-%d-%H-%M-%S') if 'TRAVIS' in os.environ: instance = os.environ['TRAVIS_JOB_NUMBER'] else: instance = 'unknown' python_version = platform.python_version().replace('.', '')[:2] python_version += os.environ.get('TEST_TYPE', '') def user_id(number): return 'python{}-{}-{}-{}'.format(python_version, date, instance, number) mcm.assign_user_id(user_id(0), cluster_name) mcm.assign_user_ids([user_id(1), user_id(2)], cluster_name) def get_user_id(number): while True: try: return mcm.get_user_id(user_id(number)) except RequestException as exception: if exception.status_code != 404: raise exception for number in range(3): self.assertEqual(get_user_id(number), {'userID': user_id(number), 'clusterName': cluster_name, 'nbRecords': 0, 'dataSize': 0}) for number in range(3): users_ids = [user['userID'] for user in mcm.search_user_ids(user_id(number))['hits']] self.assertIn(user_id(number), users_ids) users = mcm.list_user_ids() self.assertIsInstance(users, dict) self.assertIsInstance(users['userIDs'], list) self.assertTrue(len(users['userIDs']) > 0) users = mcm.get_top_user_ids() self.assertIsInstance(users, dict) self.assertIsInstance(users['topUsers'], dict) self.assertTrue(len(users['topUsers']) > 0) result = None def remove_user_id(number): while True: try: return mcm.remove_user_id(user_id(number)) except RequestException as exception: if exception.status_code != 400: raise exception for number in range(3): <DeepExtract> while True: try: return mcm.remove_user_id(user_id(number)) except RequestException as exception: if exception.status_code != 400: raise exception </DeepExtract> def assert_remove(number): while True: try: mcm.get_user_id(user_id(number)) except RequestException as exception: if exception.status_code == 404: return for number in range(3): <DeepExtract> while True: try: mcm.get_user_id(user_id(number)) except RequestException as exception: if exception.status_code == 404: return </DeepExtract> has_pending_mappings = mcm.has_pending_mappings({'retrieveMappings': True}) self.assertIsNotNone(has_pending_mappings) self.assertIsInstance(has_pending_mappings['pending'], bool) self.assertTrue('clusters' in has_pending_mappings) self.assertIsInstance(has_pending_mappings['clusters'], dict) has_pending_mappings = mcm.has_pending_mappings({'retrieveMappings': False}) self.assertIsInstance(has_pending_mappings['pending'], bool) self.assertFalse('clusters' in has_pending_mappings) has_pending_mappings = mcm.has_pending_mappings() self.assertIsInstance(has_pending_mappings['pending'], bool) self.assertFalse('clusters' in has_pending_mappings) mcm.close()
@unittest.skipIf(Env.is_community(), 'Community can not test mcm operations') def test_mcm(self): mcm = F.search_client_mcm() clusters = mcm.list_clusters()['clusters'] self.assertEqual(len(clusters), 2) cluster_name = clusters[0]['clusterName'] date = datetime.datetime.now().strftime('%Y-%m-%d-%H-%M-%S') if 'TRAVIS' in os.environ: instance = os.environ['TRAVIS_JOB_NUMBER'] else: instance = 'unknown' python_version = platform.python_version().replace('.', '')[:2] python_version += os.environ.get('TEST_TYPE', '') def user_id(number): return 'python{}-{}-{}-{}'.format(python_version, date, instance, number) mcm.assign_user_id(user_id(0), cluster_name) mcm.assign_user_ids([user_id(1), user_id(2)], cluster_name) def get_user_id(number): while True: try: return mcm.get_user_id(user_id(number)) except RequestException as exception: if exception.status_code != 404: raise exception for number in range(3): self.assertEqual(get_user_id(number), {'userID': user_id(number), 'clusterName': cluster_name, 'nbRecords': 0, 'dataSize': 0}) for number in range(3): users_ids = [user['userID'] for user in mcm.search_user_ids(user_id(number))['hits']] self.assertIn(user_id(number), users_ids) users = mcm.list_user_ids() self.assertIsInstance(users, dict) self.assertIsInstance(users['userIDs'], list) self.assertTrue(len(users['userIDs']) > 0) users = mcm.get_top_user_ids() self.assertIsInstance(users, dict) self.assertIsInstance(users['topUsers'], dict) self.assertTrue(len(users['topUsers']) > 0) result = None def remove_user_id(number): while True: try: return mcm.remove_user_id(user_id(number)) except RequestException as exception: if exception.status_code != 400: raise exception for number in range(3): while True: try: return mcm.remove_user_id(user_id(number)) except RequestException as exception: if exception.status_code != 400: raise exception def assert_remove(number): while True: try: mcm.get_user_id(user_id(number)) except RequestException as exception: if exception.status_code == 404: return for number in range(3): while True: try: mcm.get_user_id(user_id(number)) except RequestException as exception: if exception.status_code == 404: return has_pending_mappings = mcm.has_pending_mappings({'retrieveMappings': True}) self.assertIsNotNone(has_pending_mappings) self.assertIsInstance(has_pending_mappings['pending'], bool) self.assertTrue('clusters' in has_pending_mappings) self.assertIsInstance(has_pending_mappings['clusters'], dict) has_pending_mappings = mcm.has_pending_mappings({'retrieveMappings': False}) self.assertIsInstance(has_pending_mappings['pending'], bool) self.assertFalse('clusters' in has_pending_mappings) has_pending_mappings = mcm.has_pending_mappings() self.assertIsInstance(has_pending_mappings['pending'], bool) self.assertFalse('clusters' in has_pending_mappings) mcm.close()
algoliasearch-client-python
positive
def __init__(self, env, format='gif', path=None, metadata=None, enabled=True, base_path=None): """Overrides original constructor to add support for generating gifs.""" self.format = format modes = env.metadata.get('render.modes', []) self.enabled = enabled if not self.enabled: return self.ansi_mode = False if 'rgb_array' not in modes: if 'ansi' in modes: self.ansi_mode = True else: self.enabled = False return if path is not None and base_path is not None: raise error.Error('You can pass one of `path` or `base_path`.') self.last_frame = None self.env = env required_ext = '.json' if self.ansi_mode else '.' + format if path is None: if base_path is not None: path = base_path + required_ext else: with tempfile.NamedTemporaryFile(suffix=required_ext, delete=False) as f: path = f.name self.path = path (path_base, actual_ext) = os.path.splitext(self.path) if actual_ext != required_ext: hint = " HINT: The environment is text-only, therefore we're recording its text output in a structured JSON format." if self.ansi_mode else '' raise error.Error('Invalid path given: {} -- must have file extension {}.{}'.format(self.path, required_ext, hint)) <DeepExtract> open(path, 'a').close() </DeepExtract> self.frames_per_sec = env.metadata.get('video.frames_per_second', 30) self.encoder = None self.broken = False self.metadata = metadata or {} self.metadata['content_type'] = 'video/vnd.openai.ansivid' if self.ansi_mode else 'video/' + self.format self.metadata_path = '{}.meta.json'.format(path_base) self.empty = True
def __init__(self, env, format='gif', path=None, metadata=None, enabled=True, base_path=None): """Overrides original constructor to add support for generating gifs.""" self.format = format modes = env.metadata.get('render.modes', []) self.enabled = enabled if not self.enabled: return self.ansi_mode = False if 'rgb_array' not in modes: if 'ansi' in modes: self.ansi_mode = True else: self.enabled = False return if path is not None and base_path is not None: raise error.Error('You can pass one of `path` or `base_path`.') self.last_frame = None self.env = env required_ext = '.json' if self.ansi_mode else '.' + format if path is None: if base_path is not None: path = base_path + required_ext else: with tempfile.NamedTemporaryFile(suffix=required_ext, delete=False) as f: path = f.name self.path = path (path_base, actual_ext) = os.path.splitext(self.path) if actual_ext != required_ext: hint = " HINT: The environment is text-only, therefore we're recording its text output in a structured JSON format." if self.ansi_mode else '' raise error.Error('Invalid path given: {} -- must have file extension {}.{}'.format(self.path, required_ext, hint)) open(path, 'a').close() self.frames_per_sec = env.metadata.get('video.frames_per_second', 30) self.encoder = None self.broken = False self.metadata = metadata or {} self.metadata['content_type'] = 'video/vnd.openai.ansivid' if self.ansi_mode else 'video/' + self.format self.metadata_path = '{}.meta.json'.format(path_base) self.empty = True
cherry
positive
def test_fail_toomany(self): thingnode = colander.SchemaNode(colander.String()) thingnode2 = colander.SchemaNode(colander.String()) class MySchema(colander.SequenceSchema): thing = thingnode thing2 = thingnode2 <DeepExtract> from colander import Invalid try: MySchema(*arg, **kw) except Invalid as e: e = e else: raise AssertionError('Invalid not raised') </DeepExtract> self.assertEqual(e.msg, 'Sequence schemas must have exactly one child node')
def test_fail_toomany(self): thingnode = colander.SchemaNode(colander.String()) thingnode2 = colander.SchemaNode(colander.String()) class MySchema(colander.SequenceSchema): thing = thingnode thing2 = thingnode2 from colander import Invalid try: MySchema(*arg, **kw) except Invalid as e: e = e else: raise AssertionError('Invalid not raised') self.assertEqual(e.msg, 'Sequence schemas must have exactly one child node')
colander
positive
def VAELoss(loss: str, vocab_size: int, beta_start: float, beta_end: float, beta_steps: int): """Add beta * KL to the loss and return relevant loss layer.""" <DeepExtract> if loss == 'multi': layer = deepr.layers.MultiLogLikelihood(inputs=('logits', 'targetPositivesOneHot'), outputs='loss') elif loss == 'l2': layer = L2Loss(inputs=('logits', 'targetPositivesOneHot'), outputs='loss') elif loss == 'multi_css': layer = MultiLogLikelihoodCSS(vocab_size=vocab_size) elif loss == 'bpr': layer = BPRLoss(vocab_size=vocab_size) elif loss == 'ns': layer = NegativeSampling(vocab_size=vocab_size) else: raise ValueError(f"Unknown loss option {loss} (must be 'multi', 'multi_css' or 'bpr')") layer = layer </DeepExtract> return deepr.layers.DAG(deepr.layers.Select(inputs=tuple(list(layer.inputs) + ['KL'])), layer, deepr.layers.AddWithWeight(inputs=('loss', 'KL'), outputs='loss', start=beta_start, end=beta_end, steps=beta_steps), deepr.layers.Select(inputs=layer.outputs))
def VAELoss(loss: str, vocab_size: int, beta_start: float, beta_end: float, beta_steps: int): """Add beta * KL to the loss and return relevant loss layer.""" if loss == 'multi': layer = deepr.layers.MultiLogLikelihood(inputs=('logits', 'targetPositivesOneHot'), outputs='loss') elif loss == 'l2': layer = L2Loss(inputs=('logits', 'targetPositivesOneHot'), outputs='loss') elif loss == 'multi_css': layer = MultiLogLikelihoodCSS(vocab_size=vocab_size) elif loss == 'bpr': layer = BPRLoss(vocab_size=vocab_size) elif loss == 'ns': layer = NegativeSampling(vocab_size=vocab_size) else: raise ValueError(f"Unknown loss option {loss} (must be 'multi', 'multi_css' or 'bpr')") layer = layer return deepr.layers.DAG(deepr.layers.Select(inputs=tuple(list(layer.inputs) + ['KL'])), layer, deepr.layers.AddWithWeight(inputs=('loss', 'KL'), outputs='loss', start=beta_start, end=beta_end, steps=beta_steps), deepr.layers.Select(inputs=layer.outputs))
deepr
positive
def forward(self, x, y=None): """ Forward :param x: Input signal. :param y: Target outputs :return: Output or hidden states """ batch_size = x.size()[0] time_length = x.size()[1] if self._with_bias: <DeepExtract> if x.is_cuda: bias = Variable(torch.ones((x.size()[0], x.size()[1], 1), dtype=self.dtype).cuda(), requires_grad=False) else: bias = Variable(torch.ones((x.size()[0], x.size()[1], 1), dtype=self.dtype), requires_grad=False) x = torch.cat((bias, x), dim=2) </DeepExtract> if self.training: for b in range(batch_size): if not self._averaged: self.xTx.data.add_(x[b].t().mm(x[b]).data) self.xTy.data.add_(x[b].t().mm(y[b]).data) else: self.xTx.data.add_((x[b].t().mm(x[b]) / time_length).data) self.xTy.data.add_((x[b].t().mm(y[b]) / time_length).data) self._n_samples += 1.0 if self._with_bias: return x[:, :, 1:] else: return x elif not self.training: outputs = Variable(torch.zeros(batch_size, time_length, self._output_dim, dtype=self._dtype), requires_grad=False) outputs = outputs.cuda() if self.w_out.is_cuda else outputs for b in range(batch_size): outputs[b] = torch.mm(self.w_out, x[b].t()).t() if self._softmax_output: return self._softmax(outputs) elif self._normalize_output: return torch.abs(outputs) / torch.sum(torch.abs(outputs), axis=2).reshape(outputs.size(0), outputs.size(1), 1) else: return outputs
def forward(self, x, y=None): """ Forward :param x: Input signal. :param y: Target outputs :return: Output or hidden states """ batch_size = x.size()[0] time_length = x.size()[1] if self._with_bias: if x.is_cuda: bias = Variable(torch.ones((x.size()[0], x.size()[1], 1), dtype=self.dtype).cuda(), requires_grad=False) else: bias = Variable(torch.ones((x.size()[0], x.size()[1], 1), dtype=self.dtype), requires_grad=False) x = torch.cat((bias, x), dim=2) if self.training: for b in range(batch_size): if not self._averaged: self.xTx.data.add_(x[b].t().mm(x[b]).data) self.xTy.data.add_(x[b].t().mm(y[b]).data) else: self.xTx.data.add_((x[b].t().mm(x[b]) / time_length).data) self.xTy.data.add_((x[b].t().mm(y[b]) / time_length).data) self._n_samples += 1.0 if self._with_bias: return x[:, :, 1:] else: return x elif not self.training: outputs = Variable(torch.zeros(batch_size, time_length, self._output_dim, dtype=self._dtype), requires_grad=False) outputs = outputs.cuda() if self.w_out.is_cuda else outputs for b in range(batch_size): outputs[b] = torch.mm(self.w_out, x[b].t()).t() if self._softmax_output: return self._softmax(outputs) elif self._normalize_output: return torch.abs(outputs) / torch.sum(torch.abs(outputs), axis=2).reshape(outputs.size(0), outputs.size(1), 1) else: return outputs
EchoTorch
positive
def evaluate(self, x, target=None): <DeepExtract> (batch, _, h, w) = x.size() assert batch == 1 stride_rate = 2.0 / 3.0 crop_size = self.crop_size stride = int(crop_size * stride_rate) with torch.cuda.device_of(x): scores = x.new().resize_(batch, self.nclass, h, w).zero_().cuda() for scale in self.scales: long_size = int(math.ceil(self.base_size * scale)) if h > w: height = long_size width = int(1.0 * w * long_size / h + 0.5) short_size = width else: width = long_size height = int(1.0 * h * long_size / w + 0.5) short_size = height '\n short_size = int(math.ceil(self.base_size * scale))\n if h > w:\n width = short_size\n height = int(1.0 * h * short_size / w)\n long_size = height\n else:\n height = short_size\n width = int(1.0 * w * short_size / h)\n long_size = width\n ' cur_img = resize_image(x, height, width, **self.module._up_kwargs) if long_size <= crop_size: pad_img = pad_image(cur_img, self.module.mean, self.module.std, crop_size) outputs = module_inference(self.module, pad_img, self.flip) outputs = crop_image(outputs, 0, height, 0, width) else: if short_size < crop_size: pad_img = pad_image(cur_img, self.module.mean, self.module.std, crop_size) else: pad_img = cur_img (_, _, ph, pw) = pad_img.size() assert ph >= height and pw >= width h_grids = int(math.ceil(1.0 * (ph - crop_size) / stride)) + 1 w_grids = int(math.ceil(1.0 * (pw - crop_size) / stride)) + 1 with torch.cuda.device_of(x): outputs = x.new().resize_(batch, self.nclass, ph, pw).zero_().cuda() count_norm = x.new().resize_(batch, 1, ph, pw).zero_().cuda() for idh in range(h_grids): for idw in range(w_grids): h0 = idh * stride w0 = idw * stride h1 = min(h0 + crop_size, ph) w1 = min(w0 + crop_size, pw) crop_img = crop_image(pad_img, h0, h1, w0, w1) pad_crop_img = pad_image(crop_img, self.module.mean, self.module.std, crop_size) output = module_inference(self.module, pad_crop_img, self.flip) outputs[:, :, h0:h1, w0:w1] += crop_image(output, 0, h1 - h0, 0, w1 - w0) count_norm[:, :, h0:h1, w0:w1] += 1 assert (count_norm == 0).sum() == 0 outputs = outputs / count_norm outputs = outputs[:, :, :height, :width] score = resize_image(outputs, h, w, **self.module._up_kwargs) scores += score pred = scores </DeepExtract> if isinstance(pred, (tuple, list)): pred = pred[0] if target is None: return pred (correct, labeled) = batch_pix_accuracy(pred.data, target.data) (inter, union) = batch_intersection_union(pred.data, target.data, self.nclass) return (correct, labeled, inter, union)
def evaluate(self, x, target=None): (batch, _, h, w) = x.size() assert batch == 1 stride_rate = 2.0 / 3.0 crop_size = self.crop_size stride = int(crop_size * stride_rate) with torch.cuda.device_of(x): scores = x.new().resize_(batch, self.nclass, h, w).zero_().cuda() for scale in self.scales: long_size = int(math.ceil(self.base_size * scale)) if h > w: height = long_size width = int(1.0 * w * long_size / h + 0.5) short_size = width else: width = long_size height = int(1.0 * h * long_size / w + 0.5) short_size = height '\n short_size = int(math.ceil(self.base_size * scale))\n if h > w:\n width = short_size\n height = int(1.0 * h * short_size / w)\n long_size = height\n else:\n height = short_size\n width = int(1.0 * w * short_size / h)\n long_size = width\n ' cur_img = resize_image(x, height, width, **self.module._up_kwargs) if long_size <= crop_size: pad_img = pad_image(cur_img, self.module.mean, self.module.std, crop_size) outputs = module_inference(self.module, pad_img, self.flip) outputs = crop_image(outputs, 0, height, 0, width) else: if short_size < crop_size: pad_img = pad_image(cur_img, self.module.mean, self.module.std, crop_size) else: pad_img = cur_img (_, _, ph, pw) = pad_img.size() assert ph >= height and pw >= width h_grids = int(math.ceil(1.0 * (ph - crop_size) / stride)) + 1 w_grids = int(math.ceil(1.0 * (pw - crop_size) / stride)) + 1 with torch.cuda.device_of(x): outputs = x.new().resize_(batch, self.nclass, ph, pw).zero_().cuda() count_norm = x.new().resize_(batch, 1, ph, pw).zero_().cuda() for idh in range(h_grids): for idw in range(w_grids): h0 = idh * stride w0 = idw * stride h1 = min(h0 + crop_size, ph) w1 = min(w0 + crop_size, pw) crop_img = crop_image(pad_img, h0, h1, w0, w1) pad_crop_img = pad_image(crop_img, self.module.mean, self.module.std, crop_size) output = module_inference(self.module, pad_crop_img, self.flip) outputs[:, :, h0:h1, w0:w1] += crop_image(output, 0, h1 - h0, 0, w1 - w0) count_norm[:, :, h0:h1, w0:w1] += 1 assert (count_norm == 0).sum() == 0 outputs = outputs / count_norm outputs = outputs[:, :, :height, :width] score = resize_image(outputs, h, w, **self.module._up_kwargs) scores += score pred = scores if isinstance(pred, (tuple, list)): pred = pred[0] if target is None: return pred (correct, labeled) = batch_pix_accuracy(pred.data, target.data) (inter, union) = batch_intersection_union(pred.data, target.data, self.nclass) return (correct, labeled, inter, union)
DANet
positive
def cls_loss(index, label_dict, pred_dict): pmask = label_dict[maps_dict.GT_PMASK][index] nmask = label_dict[maps_dict.GT_NMASK][index] gt_cls = label_dict[maps_dict.GT_CLS][index] cls_mask = pmask + nmask cls_mask = tf.reduce_max(cls_mask, axis=-1) pred_cls = pred_dict[maps_dict.PRED_CLS][index] norm_param = tf.maximum(1.0, tf.reduce_sum(cls_mask)) if self.cls_activation == 'Sigmoid': gt_cls = tf.cast(tf.one_hot(gt_cls - 1, depth=len(self.cls_list), on_value=1, off_value=0, axis=-1), tf.float32) if self.cls_loss_type == 'Is-Not': if self.cls_activation == 'Softmax': cls_loss = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=gt_cls, logits=pred_cls) else: cls_loss = tf.nn.sigmoid_cross_entropy_with_logits(labels=gt_cls, logits=pred_cls) cls_loss = tf.reduce_mean(cls_loss, axis=-1) elif self.cls_loss_type == 'Focal-loss': cls_loss = model_util.focal_loss_producer(pred_cls, gt_cls) cls_loss = tf.reduce_mean(cls_loss, axis=-1) elif self.cls_loss_type == 'Center-ness': base_xyz = pred_dict[maps_dict.KEY_OUTPUT_XYZ][index] base_xyz = tf.stop_gradient(base_xyz) assigned_boxes_3d = label_dict[maps_dict.GT_BOXES_ANCHORS_3D][index] <DeepExtract> (bs, pts_num, _) = base_xyz.get_shape().as_list() assigned_boxes_3d = tf.reduce_sum(assigned_boxes_3d * tf.expand_dims(pmask, axis=-1), axis=2) pmask = tf.reduce_max(pmask, axis=2) canonical_xyz = base_xyz - assigned_boxes_3d[:, :, :3] canonical_xyz = tf.reshape(canonical_xyz, [bs * pts_num, 1, 3]) rys = tf.reshape(assigned_boxes_3d[:, :, -1], [bs * pts_num]) canonical_xyz = rotate_points(canonical_xyz, -rys) canonical_xyz = tf.reshape(canonical_xyz, [bs, pts_num, 3]) distance_front = assigned_boxes_3d[:, :, 3] / 2.0 - canonical_xyz[:, :, 0] distance_back = canonical_xyz[:, :, 0] + assigned_boxes_3d[:, :, 3] / 2.0 distance_bottom = 0 - canonical_xyz[:, :, 1] distance_top = canonical_xyz[:, :, 1] + assigned_boxes_3d[:, :, 4] distance_left = assigned_boxes_3d[:, :, 5] / 2.0 - canonical_xyz[:, :, 2] distance_right = canonical_xyz[:, :, 2] + assigned_boxes_3d[:, :, 5] / 2.0 ctr_ness_l = tf.minimum(distance_front, distance_back) / tf.maximum(distance_front, distance_back) * pmask ctr_ness_w = tf.minimum(distance_left, distance_right) / tf.maximum(distance_left, distance_right) * pmask ctr_ness_h = tf.minimum(distance_bottom, distance_top) / tf.maximum(distance_bottom, distance_top) * pmask ctr_ness = tf.maximum(ctr_ness_l * ctr_ness_h * ctr_ness_w, epsilon) ctr_ness = tf.pow(ctr_ness, 1 / 3.0) (min_ctr_ness, max_ctr_ness) = self.ctr_ness_range ctr_ness_range = max_ctr_ness - min_ctr_ness ctr_ness *= ctr_ness_range ctr_ness += min_ctr_ness ctr_ness = ctr_ness </DeepExtract> gt_cls = gt_cls * tf.expand_dims(ctr_ness, axis=-1) cls_loss = tf.nn.sigmoid_cross_entropy_with_logits(labels=gt_cls, logits=pred_cls) cls_loss = tf.reduce_mean(cls_loss, axis=-1) cls_loss = tf.reduce_sum(cls_loss * cls_mask) / norm_param cls_loss = tf.identity(cls_loss, 'cls_loss%d' % index) tf.summary.scalar('cls_loss%d' % index, cls_loss) tf.add_to_collection(tf.GraphKeys.LOSSES, cls_loss)
def cls_loss(index, label_dict, pred_dict): pmask = label_dict[maps_dict.GT_PMASK][index] nmask = label_dict[maps_dict.GT_NMASK][index] gt_cls = label_dict[maps_dict.GT_CLS][index] cls_mask = pmask + nmask cls_mask = tf.reduce_max(cls_mask, axis=-1) pred_cls = pred_dict[maps_dict.PRED_CLS][index] norm_param = tf.maximum(1.0, tf.reduce_sum(cls_mask)) if self.cls_activation == 'Sigmoid': gt_cls = tf.cast(tf.one_hot(gt_cls - 1, depth=len(self.cls_list), on_value=1, off_value=0, axis=-1), tf.float32) if self.cls_loss_type == 'Is-Not': if self.cls_activation == 'Softmax': cls_loss = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=gt_cls, logits=pred_cls) else: cls_loss = tf.nn.sigmoid_cross_entropy_with_logits(labels=gt_cls, logits=pred_cls) cls_loss = tf.reduce_mean(cls_loss, axis=-1) elif self.cls_loss_type == 'Focal-loss': cls_loss = model_util.focal_loss_producer(pred_cls, gt_cls) cls_loss = tf.reduce_mean(cls_loss, axis=-1) elif self.cls_loss_type == 'Center-ness': base_xyz = pred_dict[maps_dict.KEY_OUTPUT_XYZ][index] base_xyz = tf.stop_gradient(base_xyz) assigned_boxes_3d = label_dict[maps_dict.GT_BOXES_ANCHORS_3D][index] (bs, pts_num, _) = base_xyz.get_shape().as_list() assigned_boxes_3d = tf.reduce_sum(assigned_boxes_3d * tf.expand_dims(pmask, axis=-1), axis=2) pmask = tf.reduce_max(pmask, axis=2) canonical_xyz = base_xyz - assigned_boxes_3d[:, :, :3] canonical_xyz = tf.reshape(canonical_xyz, [bs * pts_num, 1, 3]) rys = tf.reshape(assigned_boxes_3d[:, :, -1], [bs * pts_num]) canonical_xyz = rotate_points(canonical_xyz, -rys) canonical_xyz = tf.reshape(canonical_xyz, [bs, pts_num, 3]) distance_front = assigned_boxes_3d[:, :, 3] / 2.0 - canonical_xyz[:, :, 0] distance_back = canonical_xyz[:, :, 0] + assigned_boxes_3d[:, :, 3] / 2.0 distance_bottom = 0 - canonical_xyz[:, :, 1] distance_top = canonical_xyz[:, :, 1] + assigned_boxes_3d[:, :, 4] distance_left = assigned_boxes_3d[:, :, 5] / 2.0 - canonical_xyz[:, :, 2] distance_right = canonical_xyz[:, :, 2] + assigned_boxes_3d[:, :, 5] / 2.0 ctr_ness_l = tf.minimum(distance_front, distance_back) / tf.maximum(distance_front, distance_back) * pmask ctr_ness_w = tf.minimum(distance_left, distance_right) / tf.maximum(distance_left, distance_right) * pmask ctr_ness_h = tf.minimum(distance_bottom, distance_top) / tf.maximum(distance_bottom, distance_top) * pmask ctr_ness = tf.maximum(ctr_ness_l * ctr_ness_h * ctr_ness_w, epsilon) ctr_ness = tf.pow(ctr_ness, 1 / 3.0) (min_ctr_ness, max_ctr_ness) = self.ctr_ness_range ctr_ness_range = max_ctr_ness - min_ctr_ness ctr_ness *= ctr_ness_range ctr_ness += min_ctr_ness ctr_ness = ctr_ness gt_cls = gt_cls * tf.expand_dims(ctr_ness, axis=-1) cls_loss = tf.nn.sigmoid_cross_entropy_with_logits(labels=gt_cls, logits=pred_cls) cls_loss = tf.reduce_mean(cls_loss, axis=-1) cls_loss = tf.reduce_sum(cls_loss * cls_mask) / norm_param cls_loss = tf.identity(cls_loss, 'cls_loss%d' % index) tf.summary.scalar('cls_loss%d' % index, cls_loss) tf.add_to_collection(tf.GraphKeys.LOSSES, cls_loss)
3DSSD
positive
def step(self, closure=None, **kargs): with kargs['timer']('grad.apply_grad', epoch=self.conf.epoch_): <DeepExtract> for group in self.param_groups: weight_decay = group['weight_decay'] momentum = group['momentum'] dampening = group['dampening'] nesterov = group['nesterov'] for p in group['params']: param_state = self.state[p] if p.grad is None: continue d_p = p.grad.data if weight_decay != 0: d_p.add_(p.data, alpha=weight_decay) if self.clip_grad: d_p = self._clip_gradient(d_p, param_state) if momentum != 0: if 'momentum_buffer' not in param_state: buf = param_state['momentum_buffer'] = torch.zeros_like(d_p) buf.add_(d_p) else: buf = param_state['momentum_buffer'] buf.mul_(momentum).add_(d_p, alpha=1 - dampening) if nesterov: d_p = d_p.add(momentum, buf) else: d_p = buf p.grad.data = d_p </DeepExtract> with kargs['timer']('grad.recover_hat_params', epoch=self.conf.epoch_): (params, _) = get_data(self.param_groups, self.param_names, is_get_grad=False) (grads, shapes) = get_data(self.param_groups, self.param_names, is_get_grad=True) with kargs['timer']('grad.compress', epoch=self.conf.epoch_): <DeepExtract> (selected_values, selected_indices, n_bits) = ([], [], []) for ((idx, param_name), grad) in zip(self.param_names, grads): _grad = grad.data.view(-1) + self.memory_of_grads[param_name] compress_ratio = self._get_compress_ratio() (_selected_values, _selected_indices, _n_bits) = compress_or_quantize(grad=_grad, comm_op=self.comm_op, compressor_fn=self.compressor_fn, compress_ratio=compress_ratio, quantize_level=self.quantize_level, is_biased=self.is_biased) selected_values.append(_selected_values) selected_indices.append(_selected_indices) n_bits.append(_n_bits) if self.is_compress_op: (_, nmask) = self.compressor_fn.get_mask(_grad, _selected_indices) self.memory_of_grads[param_name] = _grad * nmask if self.mask_momentum: self.state[self.param_groups[idx]['params'][0]]['momentum_buffer'].mul_(nmask.view(grad.size())) else: pass self.selected_shapes = [len(_value) for _value in selected_values] flatten_selected_values = flatten(selected_values) flatten_selected_indices = flatten(selected_indices) if selected_indices[0] is not None else None (selected_values, selected_indices, n_bits) = (flatten_selected_values, flatten_selected_indices, sum(n_bits)) </DeepExtract> with kargs['timer']('grad.sync', epoch=self.conf.epoch_): <DeepExtract> if self.is_compress_op: message_to_send = torch.cat([selected_values, selected_indices]) if self.comm_device == 'cpu': message_to_send = message_to_send.cpu().pin_memory() synced_message = self.world_aggregator._agg(message_to_send, communication_scheme='all_gather') else: message_to_send = selected_values if self.comm_device == 'cpu': message_to_send = message_to_send.cpu().pin_memory() synced_message = self.world_aggregator._agg(message_to_send, op='sum', communication_scheme='all_reduce') message_size = len(message_to_send) (synced_message, message_size) = (synced_message, message_size) </DeepExtract> with kargs['timer']('grad.recover_info', epoch=self.conf.epoch_): <DeepExtract> _message_size = int(message_size / 2) if self.is_compress_op: empty_grads = torch.zeros_like(flatten(params)) for message in synced_message: (q_values, q_indices) = self.compressor_fn.uncompress(message[:_message_size], message[_message_size:], self.selected_shapes, shapes) empty_grads[q_indices] += q_values _update = empty_grads / self.n_nodes else: _update = synced_message / self.n_nodes updated_flatten_params = flatten(params).add(-self.param_groups[0]['lr'], recover_device(_update, device=flatten(params).device)) updated_flatten_params = updated_flatten_params </DeepExtract> with kargs['timer']('grad.update_model', epoch=self.conf.epoch_): unflatten(params, updated_flatten_params, shapes) return n_bits
def step(self, closure=None, **kargs): with kargs['timer']('grad.apply_grad', epoch=self.conf.epoch_): for group in self.param_groups: weight_decay = group['weight_decay'] momentum = group['momentum'] dampening = group['dampening'] nesterov = group['nesterov'] for p in group['params']: param_state = self.state[p] if p.grad is None: continue d_p = p.grad.data if weight_decay != 0: d_p.add_(p.data, alpha=weight_decay) if self.clip_grad: d_p = self._clip_gradient(d_p, param_state) if momentum != 0: if 'momentum_buffer' not in param_state: buf = param_state['momentum_buffer'] = torch.zeros_like(d_p) buf.add_(d_p) else: buf = param_state['momentum_buffer'] buf.mul_(momentum).add_(d_p, alpha=1 - dampening) if nesterov: d_p = d_p.add(momentum, buf) else: d_p = buf p.grad.data = d_p with kargs['timer']('grad.recover_hat_params', epoch=self.conf.epoch_): (params, _) = get_data(self.param_groups, self.param_names, is_get_grad=False) (grads, shapes) = get_data(self.param_groups, self.param_names, is_get_grad=True) with kargs['timer']('grad.compress', epoch=self.conf.epoch_): (selected_values, selected_indices, n_bits) = ([], [], []) for ((idx, param_name), grad) in zip(self.param_names, grads): _grad = grad.data.view(-1) + self.memory_of_grads[param_name] compress_ratio = self._get_compress_ratio() (_selected_values, _selected_indices, _n_bits) = compress_or_quantize(grad=_grad, comm_op=self.comm_op, compressor_fn=self.compressor_fn, compress_ratio=compress_ratio, quantize_level=self.quantize_level, is_biased=self.is_biased) selected_values.append(_selected_values) selected_indices.append(_selected_indices) n_bits.append(_n_bits) if self.is_compress_op: (_, nmask) = self.compressor_fn.get_mask(_grad, _selected_indices) self.memory_of_grads[param_name] = _grad * nmask if self.mask_momentum: self.state[self.param_groups[idx]['params'][0]]['momentum_buffer'].mul_(nmask.view(grad.size())) else: pass self.selected_shapes = [len(_value) for _value in selected_values] flatten_selected_values = flatten(selected_values) flatten_selected_indices = flatten(selected_indices) if selected_indices[0] is not None else None (selected_values, selected_indices, n_bits) = (flatten_selected_values, flatten_selected_indices, sum(n_bits)) with kargs['timer']('grad.sync', epoch=self.conf.epoch_): if self.is_compress_op: message_to_send = torch.cat([selected_values, selected_indices]) if self.comm_device == 'cpu': message_to_send = message_to_send.cpu().pin_memory() synced_message = self.world_aggregator._agg(message_to_send, communication_scheme='all_gather') else: message_to_send = selected_values if self.comm_device == 'cpu': message_to_send = message_to_send.cpu().pin_memory() synced_message = self.world_aggregator._agg(message_to_send, op='sum', communication_scheme='all_reduce') message_size = len(message_to_send) (synced_message, message_size) = (synced_message, message_size) with kargs['timer']('grad.recover_info', epoch=self.conf.epoch_): _message_size = int(message_size / 2) if self.is_compress_op: empty_grads = torch.zeros_like(flatten(params)) for message in synced_message: (q_values, q_indices) = self.compressor_fn.uncompress(message[:_message_size], message[_message_size:], self.selected_shapes, shapes) empty_grads[q_indices] += q_values _update = empty_grads / self.n_nodes else: _update = synced_message / self.n_nodes updated_flatten_params = flatten(params).add(-self.param_groups[0]['lr'], recover_device(_update, device=flatten(params).device)) updated_flatten_params = updated_flatten_params with kargs['timer']('grad.update_model', epoch=self.conf.epoch_): unflatten(params, updated_flatten_params, shapes) return n_bits
ChocoSGD
positive
def iter(self, k, reverse=False): c = self.db.cursor() c.jump(k) tup = c.get() if reverse: <DeepExtract> raise NotImplementedError </DeepExtract> if not tup: c.jump_back() tup = c.get() return itertools.chain((tup,), it) if tup else it else: <DeepExtract> raise NotImplementedError </DeepExtract> return itertools.chain((tup,), it) if tup else it
def iter(self, k, reverse=False): c = self.db.cursor() c.jump(k) tup = c.get() if reverse: raise NotImplementedError if not tup: c.jump_back() tup = c.get() return itertools.chain((tup,), it) if tup else it else: raise NotImplementedError return itertools.chain((tup,), it) if tup else it
acid
positive
def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1, base_width=64, dilation=1, norm_layer=None): super(SABottleneck, self).__init__() if norm_layer is None: norm_layer = nn.BatchNorm2d width = int(planes * (base_width / 64.0)) * groups <DeepExtract> self.conv1 = nn.Conv2d(inplanes, width, kernel_size=1, stride=stride, bias=False) </DeepExtract> self.bn1 = norm_layer(width) <DeepExtract> self.conv2 = nn.Conv2d(width, width, kernel_size=3, stride=stride, padding=dilation, groups=groups, bias=False, dilation=dilation) </DeepExtract> self.bn2 = norm_layer(width) <DeepExtract> self.conv3 = nn.Conv2d(width, planes * self.expansion, kernel_size=1, stride=stride, bias=False) </DeepExtract> self.bn3 = norm_layer(planes * self.expansion) self.sa = sa_layer(planes * 4) self.relu = nn.ReLU(inplace=True) self.downsample = downsample self.stride = stride
def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1, base_width=64, dilation=1, norm_layer=None): super(SABottleneck, self).__init__() if norm_layer is None: norm_layer = nn.BatchNorm2d width = int(planes * (base_width / 64.0)) * groups self.conv1 = nn.Conv2d(inplanes, width, kernel_size=1, stride=stride, bias=False) self.bn1 = norm_layer(width) self.conv2 = nn.Conv2d(width, width, kernel_size=3, stride=stride, padding=dilation, groups=groups, bias=False, dilation=dilation) self.bn2 = norm_layer(width) self.conv3 = nn.Conv2d(width, planes * self.expansion, kernel_size=1, stride=stride, bias=False) self.bn3 = norm_layer(planes * self.expansion) self.sa = sa_layer(planes * 4) self.relu = nn.ReLU(inplace=True) self.downsample = downsample self.stride = stride
awesome-attention-mechanism-in-cv
positive
def register(self, obj=None, force=False): if obj is None: def wrapper(fn_or_class): name = fn_or_class.__name__ <DeepExtract> if name in self._obj_map and (not force): raise KeyError('An object named "{}" was already registered in "{}" registry'.format(name, self._name)) self._obj_map[name] = fn_or_class </DeepExtract> return fn_or_class return wrapper name = obj.__name__ <DeepExtract> if name in self._obj_map and (not force): raise KeyError('An object named "{}" was already registered in "{}" registry'.format(name, self._name)) self._obj_map[name] = obj </DeepExtract>
def register(self, obj=None, force=False): if obj is None: def wrapper(fn_or_class): name = fn_or_class.__name__ if name in self._obj_map and (not force): raise KeyError('An object named "{}" was already registered in "{}" registry'.format(name, self._name)) self._obj_map[name] = fn_or_class return fn_or_class return wrapper name = obj.__name__ if name in self._obj_map and (not force): raise KeyError('An object named "{}" was already registered in "{}" registry'.format(name, self._name)) self._obj_map[name] = obj </DeepExtract>
Dassl.pytorch
positive
def __init__(self, num_classes, loss, version=1.0, fc_dims=None, dropout_p=None, **kwargs): super(SqueezeNet, self).__init__() self.loss = loss self.feature_dim = 512 if version not in [1.0, 1.1]: raise ValueError('Unsupported SqueezeNet version {version}:1.0 or 1.1 expected'.format(version=version)) if version == 1.0: self.features = nn.Sequential(nn.Conv2d(3, 96, kernel_size=7, stride=2), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True), Fire(96, 16, 64, 64), Fire(128, 16, 64, 64), Fire(128, 32, 128, 128), nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True), Fire(256, 32, 128, 128), Fire(256, 48, 192, 192), Fire(384, 48, 192, 192), Fire(384, 64, 256, 256), nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True), Fire(512, 64, 256, 256)) else: self.features = nn.Sequential(nn.Conv2d(3, 64, kernel_size=3, stride=2), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True), Fire(64, 16, 64, 64), Fire(128, 16, 64, 64), nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True), Fire(128, 32, 128, 128), Fire(256, 32, 128, 128), nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True), Fire(256, 48, 192, 192), Fire(384, 48, 192, 192), Fire(384, 64, 256, 256), Fire(512, 64, 256, 256)) self.global_avgpool = nn.AdaptiveAvgPool2d(1) <DeepExtract> if fc_dims is None: self.feature_dim = 512 self.fc = None assert isinstance(fc_dims, (list, tuple)), 'fc_dims must be either list or tuple, but got {}'.format(type(fc_dims)) layers = [] for dim in fc_dims: layers.append(nn.Linear(512, dim)) layers.append(nn.BatchNorm1d(dim)) layers.append(nn.ReLU(inplace=True)) if dropout_p is not None: layers.append(nn.Dropout(p=dropout_p)) 512 = dim self.feature_dim = fc_dims[-1] self.fc = nn.Sequential(*layers) </DeepExtract> self.classifier = nn.Linear(self.feature_dim, num_classes) <DeepExtract> for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') if m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.BatchNorm2d): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) elif isinstance(m, nn.BatchNorm1d): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) elif isinstance(m, nn.Linear): nn.init.normal_(m.weight, 0, 0.01) if m.bias is not None: nn.init.constant_(m.bias, 0) </DeepExtract>
def __init__(self, num_classes, loss, version=1.0, fc_dims=None, dropout_p=None, **kwargs): super(SqueezeNet, self).__init__() self.loss = loss self.feature_dim = 512 if version not in [1.0, 1.1]: raise ValueError('Unsupported SqueezeNet version {version}:1.0 or 1.1 expected'.format(version=version)) if version == 1.0: self.features = nn.Sequential(nn.Conv2d(3, 96, kernel_size=7, stride=2), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True), Fire(96, 16, 64, 64), Fire(128, 16, 64, 64), Fire(128, 32, 128, 128), nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True), Fire(256, 32, 128, 128), Fire(256, 48, 192, 192), Fire(384, 48, 192, 192), Fire(384, 64, 256, 256), nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True), Fire(512, 64, 256, 256)) else: self.features = nn.Sequential(nn.Conv2d(3, 64, kernel_size=3, stride=2), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True), Fire(64, 16, 64, 64), Fire(128, 16, 64, 64), nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True), Fire(128, 32, 128, 128), Fire(256, 32, 128, 128), nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True), Fire(256, 48, 192, 192), Fire(384, 48, 192, 192), Fire(384, 64, 256, 256), Fire(512, 64, 256, 256)) self.global_avgpool = nn.AdaptiveAvgPool2d(1) if fc_dims is None: self.feature_dim = 512 self.fc = None assert isinstance(fc_dims, (list, tuple)), 'fc_dims must be either list or tuple, but got {}'.format(type(fc_dims)) layers = [] for dim in fc_dims: layers.append(nn.Linear(512, dim)) layers.append(nn.BatchNorm1d(dim)) layers.append(nn.ReLU(inplace=True)) if dropout_p is not None: layers.append(nn.Dropout(p=dropout_p)) 512 = dim self.feature_dim = fc_dims[-1] self.fc = nn.Sequential(*layers) self.classifier = nn.Linear(self.feature_dim, num_classes) for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') if m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.BatchNorm2d): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) elif isinstance(m, nn.BatchNorm1d): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) elif isinstance(m, nn.Linear): nn.init.normal_(m.weight, 0, 0.01) if m.bias is not None: nn.init.constant_(m.bias, 0) </DeepExtract>
deep-person-reid
positive
def silhouette_samples(X, labels, *, metric='euclidean', **kwds): """Compute the Silhouette Coefficient for each sample. The Silhouette Coefficient is a measure of how well samples are clustered with samples that are similar to themselves. Clustering models with a high Silhouette Coefficient are said to be dense, where samples in the same cluster are similar to each other, and well separated, where samples in different clusters are not very similar to each other. The Silhouette Coefficient is calculated using the mean intra-cluster distance (``a``) and the mean nearest-cluster distance (``b``) for each sample. The Silhouette Coefficient for a sample is ``(b - a) / max(a, b)``. Note that Silhouette Coefficient is only defined if number of labels is 2 ``<= n_labels <= n_samples - 1``. This function returns the Silhouette Coefficient for each sample. The best value is 1 and the worst value is -1. Values near 0 indicate overlapping clusters. Read more in the :ref:`User Guide <silhouette_coefficient>`. Parameters ---------- X : array-like of shape (n_samples_a, n_samples_a) if metric == "precomputed" or (n_samples_a, n_features) otherwise An array of pairwise distances between samples, or a feature array. labels : array-like of shape (n_samples,) Label values for each sample. metric : str or callable, default='euclidean' The metric to use when calculating distance between instances in a feature array. If metric is a string, it must be one of the options allowed by :func:`sklearn.metrics.pairwise.pairwise_distances`. If ``X`` is the distance array itself, use "precomputed" as the metric. Precomputed distance matrices must have 0 along the diagonal. `**kwds` : optional keyword parameters Any further parameters are passed directly to the distance function. If using a ``scipy.spatial.distance`` metric, the parameters are still metric dependent. See the scipy docs for usage examples. Returns ------- silhouette : array-like of shape (n_samples,) Silhouette Coefficients for each sample. References ---------- .. [1] `Peter J. Rousseeuw (1987). "Silhouettes: a Graphical Aid to the Interpretation and Validation of Cluster Analysis". Computational and Applied Mathematics 20: 53-65. <https://www.sciencedirect.com/science/article/pii/0377042787901257>`_ .. [2] `Wikipedia entry on the Silhouette Coefficient <https://en.wikipedia.org/wiki/Silhouette_(clustering)>`_ """ (X, labels) = check_X_y(X, labels, accept_sparse=['csc', 'csr']) if metric == 'precomputed': atol = np.finfo(X.dtype).eps * 100 if np.any(np.abs(np.diagonal(X)) > atol): raise ValueError('The precomputed distance matrix contains non-zero elements on the diagonal. Use np.fill_diagonal(X, 0).') le = LabelEncoder() labels = le.fit_transform(labels) n_samples = len(labels) label_freqs = np.bincount(labels) <DeepExtract> if not 1 < len(le.classes_) < n_samples: raise ValueError('Number of labels is %d. Valid values are 2 to n_samples - 1 (inclusive)' % len(le.classes_)) </DeepExtract> kwds['metric'] = metric reduce_func = functools.partial(_silhouette_reduce, labels=labels, label_freqs=label_freqs) results = zip(*pairwise_distances_chunked(X, reduce_func=reduce_func, **kwds)) (intra_clust_dists, inter_clust_dists) = results intra_clust_dists = np.concatenate(intra_clust_dists) inter_clust_dists = np.concatenate(inter_clust_dists) denom = (label_freqs - 1).take(labels, mode='clip') with np.errstate(divide='ignore', invalid='ignore'): intra_clust_dists /= denom sil_samples = inter_clust_dists - intra_clust_dists with np.errstate(divide='ignore', invalid='ignore'): sil_samples /= np.maximum(intra_clust_dists, inter_clust_dists) return np.nan_to_num(sil_samples)
def silhouette_samples(X, labels, *, metric='euclidean', **kwds): """Compute the Silhouette Coefficient for each sample. The Silhouette Coefficient is a measure of how well samples are clustered with samples that are similar to themselves. Clustering models with a high Silhouette Coefficient are said to be dense, where samples in the same cluster are similar to each other, and well separated, where samples in different clusters are not very similar to each other. The Silhouette Coefficient is calculated using the mean intra-cluster distance (``a``) and the mean nearest-cluster distance (``b``) for each sample. The Silhouette Coefficient for a sample is ``(b - a) / max(a, b)``. Note that Silhouette Coefficient is only defined if number of labels is 2 ``<= n_labels <= n_samples - 1``. This function returns the Silhouette Coefficient for each sample. The best value is 1 and the worst value is -1. Values near 0 indicate overlapping clusters. Read more in the :ref:`User Guide <silhouette_coefficient>`. Parameters ---------- X : array-like of shape (n_samples_a, n_samples_a) if metric == "precomputed" or (n_samples_a, n_features) otherwise An array of pairwise distances between samples, or a feature array. labels : array-like of shape (n_samples,) Label values for each sample. metric : str or callable, default='euclidean' The metric to use when calculating distance between instances in a feature array. If metric is a string, it must be one of the options allowed by :func:`sklearn.metrics.pairwise.pairwise_distances`. If ``X`` is the distance array itself, use "precomputed" as the metric. Precomputed distance matrices must have 0 along the diagonal. `**kwds` : optional keyword parameters Any further parameters are passed directly to the distance function. If using a ``scipy.spatial.distance`` metric, the parameters are still metric dependent. See the scipy docs for usage examples. Returns ------- silhouette : array-like of shape (n_samples,) Silhouette Coefficients for each sample. References ---------- .. [1] `Peter J. Rousseeuw (1987). "Silhouettes: a Graphical Aid to the Interpretation and Validation of Cluster Analysis". Computational and Applied Mathematics 20: 53-65. <https://www.sciencedirect.com/science/article/pii/0377042787901257>`_ .. [2] `Wikipedia entry on the Silhouette Coefficient <https://en.wikipedia.org/wiki/Silhouette_(clustering)>`_ """ (X, labels) = check_X_y(X, labels, accept_sparse=['csc', 'csr']) if metric == 'precomputed': atol = np.finfo(X.dtype).eps * 100 if np.any(np.abs(np.diagonal(X)) > atol): raise ValueError('The precomputed distance matrix contains non-zero elements on the diagonal. Use np.fill_diagonal(X, 0).') le = LabelEncoder() labels = le.fit_transform(labels) n_samples = len(labels) label_freqs = np.bincount(labels) if not 1 < len(le.classes_) < n_samples: raise ValueError('Number of labels is %d. Valid values are 2 to n_samples - 1 (inclusive)' % len(le.classes_)) kwds['metric'] = metric reduce_func = functools.partial(_silhouette_reduce, labels=labels, label_freqs=label_freqs) results = zip(*pairwise_distances_chunked(X, reduce_func=reduce_func, **kwds)) (intra_clust_dists, inter_clust_dists) = results intra_clust_dists = np.concatenate(intra_clust_dists) inter_clust_dists = np.concatenate(inter_clust_dists) denom = (label_freqs - 1).take(labels, mode='clip') with np.errstate(divide='ignore', invalid='ignore'): intra_clust_dists /= denom sil_samples = inter_clust_dists - intra_clust_dists with np.errstate(divide='ignore', invalid='ignore'): sil_samples /= np.maximum(intra_clust_dists, inter_clust_dists) return np.nan_to_num(sil_samples)
autogoal
positive
def get(self, request, *args, **kwargs): allocation_change_obj = get_object_or_404(AllocationChangeRequest, pk=self.kwargs.get('pk')) allocation_change_form = AllocationChangeForm(initial={'justification': allocation_change_obj.justification, 'end_date_extension': allocation_change_obj.end_date_extension}) allocation_change_form.fields['justification'].disabled = True if allocation_change_obj.status.name != 'Pending': allocation_change_form.fields['end_date_extension'].disabled = True if not self.request.user.is_staff and (not self.request.user.is_superuser): allocation_change_form.fields['end_date_extension'].disabled = True note_form = AllocationChangeNoteForm(initial={'notes': allocation_change_obj.notes}) <DeepExtract> context = super().get_context_data(**kwargs) pk = self.kwargs.get('pk') allocation_obj = get_object_or_404(Allocation, pk=pk) allocation_users = allocation_obj.allocationuser_set.exclude(status__name__in=['Removed']).order_by('user__username') alloc_attr_set = allocation_obj.get_attribute_set(self.request.user) attributes_with_usage = [a for a in alloc_attr_set if hasattr(a, 'allocationattributeusage')] attributes = alloc_attr_set allocation_changes = allocation_obj.allocationchangerequest_set.all().order_by('-pk') guage_data = [] invalid_attributes = [] for attribute in attributes_with_usage: try: guage_data.append(generate_guauge_data_from_usage(attribute.allocation_attribute_type.name, float(attribute.value), float(attribute.allocationattributeusage.value))) except ValueError: logger.error("Allocation attribute '%s' is not an int but has a usage", attribute.allocation_attribute_type.name) invalid_attributes.append(attribute) for a in invalid_attributes: attributes_with_usage.remove(a) context['allocation_users'] = allocation_users context['guage_data'] = guage_data context['attributes_with_usage'] = attributes_with_usage context['attributes'] = attributes context['allocation_changes'] = allocation_changes context['is_allowed_to_update_project'] = allocation_obj.project.has_perm(self.request.user, ProjectPermission.UPDATE) noteset = allocation_obj.allocationusernote_set notes = noteset.all() if self.request.user.is_superuser else noteset.filter(is_private=False) context['notes'] = notes context['ALLOCATION_ENABLE_ALLOCATION_RENEWAL'] = ALLOCATION_ENABLE_ALLOCATION_RENEWAL context = context </DeepExtract> context['allocation_change_form'] = allocation_change_form context['note_form'] = note_form return render(request, self.template_name, context)
def get(self, request, *args, **kwargs): allocation_change_obj = get_object_or_404(AllocationChangeRequest, pk=self.kwargs.get('pk')) allocation_change_form = AllocationChangeForm(initial={'justification': allocation_change_obj.justification, 'end_date_extension': allocation_change_obj.end_date_extension}) allocation_change_form.fields['justification'].disabled = True if allocation_change_obj.status.name != 'Pending': allocation_change_form.fields['end_date_extension'].disabled = True if not self.request.user.is_staff and (not self.request.user.is_superuser): allocation_change_form.fields['end_date_extension'].disabled = True note_form = AllocationChangeNoteForm(initial={'notes': allocation_change_obj.notes}) context = super().get_context_data(**kwargs) pk = self.kwargs.get('pk') allocation_obj = get_object_or_404(Allocation, pk=pk) allocation_users = allocation_obj.allocationuser_set.exclude(status__name__in=['Removed']).order_by('user__username') alloc_attr_set = allocation_obj.get_attribute_set(self.request.user) attributes_with_usage = [a for a in alloc_attr_set if hasattr(a, 'allocationattributeusage')] attributes = alloc_attr_set allocation_changes = allocation_obj.allocationchangerequest_set.all().order_by('-pk') guage_data = [] invalid_attributes = [] for attribute in attributes_with_usage: try: guage_data.append(generate_guauge_data_from_usage(attribute.allocation_attribute_type.name, float(attribute.value), float(attribute.allocationattributeusage.value))) except ValueError: logger.error("Allocation attribute '%s' is not an int but has a usage", attribute.allocation_attribute_type.name) invalid_attributes.append(attribute) for a in invalid_attributes: attributes_with_usage.remove(a) context['allocation_users'] = allocation_users context['guage_data'] = guage_data context['attributes_with_usage'] = attributes_with_usage context['attributes'] = attributes context['allocation_changes'] = allocation_changes context['is_allowed_to_update_project'] = allocation_obj.project.has_perm(self.request.user, ProjectPermission.UPDATE) noteset = allocation_obj.allocationusernote_set notes = noteset.all() if self.request.user.is_superuser else noteset.filter(is_private=False) context['notes'] = notes context['ALLOCATION_ENABLE_ALLOCATION_RENEWAL'] = ALLOCATION_ENABLE_ALLOCATION_RENEWAL context = context context['allocation_change_form'] = allocation_change_form context['note_form'] = note_form return render(request, self.template_name, context)
coldfront
positive
def main() -> None: if not os.path.exists(DIR_LOG): os.makedirs(DIR_LOG, exist_ok=True) now = datetime.datetime.now() now_s = now.strftime('%Y-%m-%d_%H:%M:%S') fn_log = now_s + '.bugzoo.log' fn_log = os.path.join(DIR_LOG, fn_log) def on_error(msg: str, unexpected: bool=False) -> None: msg = indent(msg, 2) ftr = '\n\nSee log file for details: {}'.format(fn_log) hdr = 'An {} occurred during execution:\n\n' hdr = hdr.format('unexpected error' if unexpected else 'error') msg = RULE + hdr + msg + ftr print(msg) sys.exit(1) try: log_formatter = logging.Formatter('%(levelname)s:%(name)s:%(asctime)s: %(message)s') log_to_file = logging.handlers.WatchedFileHandler(fn_log, mode='w') log_to_file.setFormatter(log_formatter) log_to_file.setLevel(logging.DEBUG) logging.getLogger('bugzoo').setLevel(logging.DEBUG) logging.getLogger('bugzoo').addHandler(log_to_file) with BugZooCLI() as app: app.run() except BugZooException as err: logger.exception('An error occurred') <DeepExtract> err.message = indent(err.message, 2) ftr = '\n\nSee log file for details: {}'.format(fn_log) hdr = 'An {} occurred during execution:\n\n' hdr = hdr.format('unexpected error' if False else 'error') err.message = RULE + hdr + err.message + ftr print(err.message) sys.exit(1) </DeepExtract> except Exception as err: logger.exception('An unexpected error occurred') msg = repr(err) <DeepExtract> msg = indent(msg, 2) ftr = '\n\nSee log file for details: {}'.format(fn_log) hdr = 'An {} occurred during execution:\n\n' hdr = hdr.format('unexpected error' if True else 'error') msg = RULE + hdr + msg + ftr print(msg) sys.exit(1) </DeepExtract> except KeyboardInterrupt: logger.info('Command cancelled by keyboard interrupt.') sys.exit(1)
def main() -> None: if not os.path.exists(DIR_LOG): os.makedirs(DIR_LOG, exist_ok=True) now = datetime.datetime.now() now_s = now.strftime('%Y-%m-%d_%H:%M:%S') fn_log = now_s + '.bugzoo.log' fn_log = os.path.join(DIR_LOG, fn_log) def on_error(msg: str, unexpected: bool=False) -> None: msg = indent(msg, 2) ftr = '\n\nSee log file for details: {}'.format(fn_log) hdr = 'An {} occurred during execution:\n\n' hdr = hdr.format('unexpected error' if unexpected else 'error') msg = RULE + hdr + msg + ftr print(msg) sys.exit(1) try: log_formatter = logging.Formatter('%(levelname)s:%(name)s:%(asctime)s: %(message)s') log_to_file = logging.handlers.WatchedFileHandler(fn_log, mode='w') log_to_file.setFormatter(log_formatter) log_to_file.setLevel(logging.DEBUG) logging.getLogger('bugzoo').setLevel(logging.DEBUG) logging.getLogger('bugzoo').addHandler(log_to_file) with BugZooCLI() as app: app.run() except BugZooException as err: logger.exception('An error occurred') err.message = indent(err.message, 2) ftr = '\n\nSee log file for details: {}'.format(fn_log) hdr = 'An {} occurred during execution:\n\n' hdr = hdr.format('unexpected error' if False else 'error') err.message = RULE + hdr + err.message + ftr print(err.message) sys.exit(1) except Exception as err: logger.exception('An unexpected error occurred') msg = repr(err) msg = indent(msg, 2) ftr = '\n\nSee log file for details: {}'.format(fn_log) hdr = 'An {} occurred during execution:\n\n' hdr = hdr.format('unexpected error' if True else 'error') msg = RULE + hdr + msg + ftr print(msg) sys.exit(1) except KeyboardInterrupt: logger.info('Command cancelled by keyboard interrupt.') sys.exit(1)
BugZoo
positive
def drawFieldCells(self, cells): <DeepExtract> field = self.layout.get('field') </DeepExtract> for cell in cells: ((x, y), spriteNames) = cell if not len(spriteNames): <DeepExtract> (char, fg, bg) = self.characters.get(' ', self.defaultChar) </DeepExtract> else: <DeepExtract> (char, fg, bg) = self.characters.get(spriteNames[0], self.defaultChar) </DeepExtract> for spriteName in spriteNames[1:]: if bg is not None: break <DeepExtract> (_char, _fg, bg) = self.characters.get(spriteName, self.defaultChar) </DeepExtract> field.change_cell(x, y, char, TextStyle(fg, bg))
def drawFieldCells(self, cells): field = self.layout.get('field') for cell in cells: ((x, y), spriteNames) = cell if not len(spriteNames): (char, fg, bg) = self.characters.get(' ', self.defaultChar) else: (char, fg, bg) = self.characters.get(spriteNames[0], self.defaultChar) for spriteName in spriteNames[1:]: if bg is not None: break (_char, _fg, bg) = self.characters.get(spriteName, self.defaultChar) field.change_cell(x, y, char, TextStyle(fg, bg))
Asciifarm
positive
def _create_uniform_grid_exclude_border(n_dim, order): assert order > 0 assert n_dim > 0 x_data = np.arange(1, order + 1) / (order + 1.0) <DeepExtract> [x_data] * n_dim = [np.asarray(arg).reshape(len(arg), -1) for arg in [x_data] * n_dim] shapes = [arg.shape for arg in [x_data] * n_dim] size = np.prod(shapes, 0)[0] * np.sum(shapes, 0)[1] if size > 10 ** 9: raise MemoryError('Too large sets') out = [x_data] * n_dim[0] for arg in [x_data] * n_dim[1:]: out = np.hstack([np.tile(out, len(arg)).reshape(-1, out.shape[1]), np.tile(arg.T, len(out)).reshape(arg.shape[1], -1).T]) x_data = out </DeepExtract> return x_data
def _create_uniform_grid_exclude_border(n_dim, order): assert order > 0 assert n_dim > 0 x_data = np.arange(1, order + 1) / (order + 1.0) [x_data] * n_dim = [np.asarray(arg).reshape(len(arg), -1) for arg in [x_data] * n_dim] shapes = [arg.shape for arg in [x_data] * n_dim] size = np.prod(shapes, 0)[0] * np.sum(shapes, 0)[1] if size > 10 ** 9: raise MemoryError('Too large sets') out = [x_data] * n_dim[0] for arg in [x_data] * n_dim[1:]: out = np.hstack([np.tile(out, len(arg)).reshape(-1, out.shape[1]), np.tile(arg.T, len(out)).reshape(arg.shape[1], -1).T]) x_data = out return x_data
deephyper
positive
def download_file_from_google_drive(file_id, save_path): """Download files from google drive. Reference: https://stackoverflow.com/questions/25010369/wget-curl-large-file-from-google-drive Args: file_id (str): File id. save_path (str): Save path. """ session = requests.Session() URL = 'https://docs.google.com/uc?export=download' params = {'id': file_id} response = session.get(URL, params=params, stream=True) <DeepExtract> for (key, value) in response.cookies.items(): if key.startswith('download_warning'): token = value token = None </DeepExtract> if token: params['confirm'] = token response = session.get(URL, params=params, stream=True) response_file_size = session.get(URL, params=params, stream=True, headers={'Range': 'bytes=0-2'}) if 'Content-Range' in response_file_size.headers: file_size = int(response_file_size.headers['Content-Range'].split('/')[1]) else: file_size = None <DeepExtract> if file_size is not None: pbar = tqdm(total=math.ceil(file_size / chunk_size), unit='chunk') readable_file_size = sizeof_fmt(file_size) else: pbar = None with open(save_path, 'wb') as f: downloaded_size = 0 for chunk in response.iter_content(chunk_size): downloaded_size += chunk_size if pbar is not None: pbar.update(1) pbar.set_description(f'Download {sizeof_fmt(downloaded_size)} / {readable_file_size}') if chunk: f.write(chunk) if pbar is not None: pbar.close() </DeepExtract>
def download_file_from_google_drive(file_id, save_path): """Download files from google drive. Reference: https://stackoverflow.com/questions/25010369/wget-curl-large-file-from-google-drive Args: file_id (str): File id. save_path (str): Save path. """ session = requests.Session() URL = 'https://docs.google.com/uc?export=download' params = {'id': file_id} response = session.get(URL, params=params, stream=True) for (key, value) in response.cookies.items(): if key.startswith('download_warning'): token = value token = None if token: params['confirm'] = token response = session.get(URL, params=params, stream=True) response_file_size = session.get(URL, params=params, stream=True, headers={'Range': 'bytes=0-2'}) if 'Content-Range' in response_file_size.headers: file_size = int(response_file_size.headers['Content-Range'].split('/')[1]) else: file_size = None if file_size is not None: pbar = tqdm(total=math.ceil(file_size / chunk_size), unit='chunk') readable_file_size = sizeof_fmt(file_size) else: pbar = None with open(save_path, 'wb') as f: downloaded_size = 0 for chunk in response.iter_content(chunk_size): downloaded_size += chunk_size if pbar is not None: pbar.update(1) pbar.set_description(f'Download {sizeof_fmt(downloaded_size)} / {readable_file_size}') if chunk: f.write(chunk) if pbar is not None: pbar.close() </DeepExtract>
BasicSR
positive
def setup_environment(): """Perform environment setup work. The default setup is a no-op, but this function allows the user to specify a Python source file that performs custom setup work that may be necessary to their computing environment. """ custom_module_path = os.environ.get('TORCH_DETECTRON_ENV_MODULE') if custom_module_path: <DeepExtract> module = import_file('fcos_core.utils.env.custom_module', custom_module_path) assert hasattr(module, 'setup_environment') and callable(module.setup_environment), "Custom environment module defined in {} does not have the required callable attribute 'setup_environment'.".format(custom_module_path) module.setup_environment() </DeepExtract> else: pass
def setup_environment(): """Perform environment setup work. The default setup is a no-op, but this function allows the user to specify a Python source file that performs custom setup work that may be necessary to their computing environment. """ custom_module_path = os.environ.get('TORCH_DETECTRON_ENV_MODULE') if custom_module_path: module = import_file('fcos_core.utils.env.custom_module', custom_module_path) assert hasattr(module, 'setup_environment') and callable(module.setup_environment), "Custom environment module defined in {} does not have the required callable attribute 'setup_environment'.".format(custom_module_path) module.setup_environment() else: pass
EveryPixelMatters
positive
def actionNewGroup_triggered(self): if self.backend.sessions is None: return self.backend.sessions.newGroup() oldtext = self.groupComboBox.currentText() <DeepExtract> groupsById = self.backend.sessions.groupsById box = self.groupComboBox box.clear() index = 0 setindex = None for group in sorted(groupsById.keys()): name = groupsById[group].name box.addItem(name) if name == oldtext: setindex = index index += 1 if setindex is not None: box.setCurrentIndex(setindex) box.setEnabled(True) </DeepExtract> self.allGroupsFigureDirty = True <DeepExtract> current = self.tabWidget.currentWidget().objectName() if current == 'allGroupsTab': self.updateAssignPlot() elif current == 'oneGroupTab': self.updateGroupInfo() elif current == 'compareTab': self.updateCompareTab() </DeepExtract>
def actionNewGroup_triggered(self): if self.backend.sessions is None: return self.backend.sessions.newGroup() oldtext = self.groupComboBox.currentText() groupsById = self.backend.sessions.groupsById box = self.groupComboBox box.clear() index = 0 setindex = None for group in sorted(groupsById.keys()): name = groupsById[group].name box.addItem(name) if name == oldtext: setindex = index index += 1 if setindex is not None: box.setCurrentIndex(setindex) box.setEnabled(True) self.allGroupsFigureDirty = True current = self.tabWidget.currentWidget().objectName() if current == 'allGroupsTab': self.updateAssignPlot() elif current == 'oneGroupTab': self.updateGroupInfo() elif current == 'compareTab': self.updateCompareTab() </DeepExtract>
combinato
positive
def Process(self, start_token): """Runs the pass on a token stream. Args: start_token: The first token in the stream. """ if start_token is None: return <DeepExtract> def IsScopeToken(token): return token.type is javascripttokens.JavaScriptTokenType.IDENTIFIER and token.string == 'goog.scope' scope_tokens = [t for t in start_token if IsScopeToken(t)] for token in scope_tokens: scope_context = token.metadata.context if not (scope_context.type == ecmametadatapass.EcmaContext.STATEMENT and scope_context.parent.type == ecmametadatapass.EcmaContext.ROOT): self._MaybeReportError(error.Error(errors.INVALID_USE_OF_GOOG_SCOPE, 'goog.scope call not in global scope', token)) for token in scope_tokens[1:]: self._MaybeReportError(error.Error(errors.EXTRA_GOOG_SCOPE_USAGE, 'More than one goog.scope call in file.', token)) </DeepExtract> if self._closurized_namespaces: context = start_token.metadata.context root_context = context.GetRoot() <DeepExtract> assert root_context.type is ecmametadatapass.EcmaContext.ROOT global_alias_map = {} for context in root_context.children: if context.type == ecmametadatapass.EcmaContext.STATEMENT: for statement_child in context.children: if statement_child.type == ecmametadatapass.EcmaContext.VAR: match = scopeutil.MatchModuleAlias(statement_child) if match: symbol = match[1] if scopeutil.IsInClosurizedNamespace(symbol, self._closurized_namespaces): global_alias_map[match[0]] = symbol for context in root_context.children: self._ProcessBlock(context, global_alias_map) </DeepExtract>
def Process(self, start_token): """Runs the pass on a token stream. Args: start_token: The first token in the stream. """ if start_token is None: return def IsScopeToken(token): return token.type is javascripttokens.JavaScriptTokenType.IDENTIFIER and token.string == 'goog.scope' scope_tokens = [t for t in start_token if IsScopeToken(t)] for token in scope_tokens: scope_context = token.metadata.context if not (scope_context.type == ecmametadatapass.EcmaContext.STATEMENT and scope_context.parent.type == ecmametadatapass.EcmaContext.ROOT): self._MaybeReportError(error.Error(errors.INVALID_USE_OF_GOOG_SCOPE, 'goog.scope call not in global scope', token)) for token in scope_tokens[1:]: self._MaybeReportError(error.Error(errors.EXTRA_GOOG_SCOPE_USAGE, 'More than one goog.scope call in file.', token)) if self._closurized_namespaces: context = start_token.metadata.context root_context = context.GetRoot() assert root_context.type is ecmametadatapass.EcmaContext.ROOT global_alias_map = {} for context in root_context.children: if context.type == ecmametadatapass.EcmaContext.STATEMENT: for statement_child in context.children: if statement_child.type == ecmametadatapass.EcmaContext.VAR: match = scopeutil.MatchModuleAlias(statement_child) if match: symbol = match[1] if scopeutil.IsInClosurizedNamespace(symbol, self._closurized_namespaces): global_alias_map[match[0]] = symbol for context in root_context.children: self._ProcessBlock(context, global_alias_map) </DeepExtract>
closure-linter
positive
def getAllCas(self): """ **Description** Used to retrieve the list of :code:`(groupId, caContent)` pair for this discovery information. The retrieved pairs could be from different Greengrass groups. This is designed for users who want to iterate through all available cores/groups/CAs at the same time, regardless of which group those CAs belong to. **Syntax** .. code:: python myDiscoveryInfo.getAllCas() **Parameters** None **Returns** List of :code:`(groupId, caContent)` string pair, where :code:`caContent` is the CA content string and :code:`groupId` is the group id that this CA belongs to. """ <DeepExtract> groups_dict = self.toObjectAtGroupLevel() group_list = list(groups_dict.values()) </DeepExtract> ca_list = list() for group in group_list: for ca in group.caList: ca_list.append((group.groupId, ca)) return ca_list
def getAllCas(self): """ **Description** Used to retrieve the list of :code:`(groupId, caContent)` pair for this discovery information. The retrieved pairs could be from different Greengrass groups. This is designed for users who want to iterate through all available cores/groups/CAs at the same time, regardless of which group those CAs belong to. **Syntax** .. code:: python myDiscoveryInfo.getAllCas() **Parameters** None **Returns** List of :code:`(groupId, caContent)` string pair, where :code:`caContent` is the CA content string and :code:`groupId` is the group id that this CA belongs to. """ groups_dict = self.toObjectAtGroupLevel() group_list = list(groups_dict.values()) ca_list = list() for group in group_list: for ca in group.caList: ca_list.append((group.groupId, ca)) return ca_list
aws-iot-device-sdk-python
positive
def reset(self): self.phase = random.randint(0, self.phaselen) self.time = 0 self.counter = 0 <DeepExtract> if self.phase is None: self.phase = self.phase if self.phase > self.phaselen: self.phase = 0 pos = np.copy(self.trajectory.qpos[self.phase * self.simrate]) pos[0] *= self.speed pos[0] += (self.trajectory.qpos[-1, 0] - self.trajectory.qpos[0, 0]) * self.counter * self.speed pos[1] = 0 vel = np.copy(self.trajectory.qvel[self.phase * self.simrate]) vel[0] *= self.speed (qpos, qvel) = (pos, vel) </DeepExtract> self.sim.set_qpos(qpos) self.sim.set_qvel(qvel) self.cassie_state = self.sim.step_pd(self.u) self.speed = random.randint(0, 10) / 10 <DeepExtract> if self.phase is None: self.phase = self.phase if self.phase > self.phaselen: self.phase = 0 pos = np.copy(self.trajectory.qpos[self.phase * self.simrate]) pos[0] *= self.speed pos[0] += (self.trajectory.qpos[-1, 0] - self.trajectory.qpos[0, 0]) * self.counter * self.speed pos[1] = 0 vel = np.copy(self.trajectory.qvel[self.phase * self.simrate]) vel[0] *= self.speed (ref_pos, ref_vel) = (pos, vel) </DeepExtract> self.prev_action = ref_pos[self.pos_idx] return self.get_full_state()
def reset(self): self.phase = random.randint(0, self.phaselen) self.time = 0 self.counter = 0 if self.phase is None: self.phase = self.phase if self.phase > self.phaselen: self.phase = 0 pos = np.copy(self.trajectory.qpos[self.phase * self.simrate]) pos[0] *= self.speed pos[0] += (self.trajectory.qpos[-1, 0] - self.trajectory.qpos[0, 0]) * self.counter * self.speed pos[1] = 0 vel = np.copy(self.trajectory.qvel[self.phase * self.simrate]) vel[0] *= self.speed (qpos, qvel) = (pos, vel) self.sim.set_qpos(qpos) self.sim.set_qvel(qvel) self.cassie_state = self.sim.step_pd(self.u) self.speed = random.randint(0, 10) / 10 if self.phase is None: self.phase = self.phase if self.phase > self.phaselen: self.phase = 0 pos = np.copy(self.trajectory.qpos[self.phase * self.simrate]) pos[0] *= self.speed pos[0] += (self.trajectory.qpos[-1, 0] - self.trajectory.qpos[0, 0]) * self.counter * self.speed pos[1] = 0 vel = np.copy(self.trajectory.qvel[self.phase * self.simrate]) vel[0] *= self.speed (ref_pos, ref_vel) = (pos, vel) self.prev_action = ref_pos[self.pos_idx] return self.get_full_state()
apex
positive
def _test_clear_input(self): """ Tests that a user can clear the search filter to unfilter the results. """ <DeepExtract> search_bar = self.page.q(css='#search-course-list') self.assertTrue(search_bar.present) self.clear_all_filters() self.check_cleared() search_input = self.driver.find_element_by_id('search-course-list') search_input.send_keys(Keys.CONTROL, 'a') search_input.send_keys('search') clear = self.page.q(css='button.clear') self.assertTrue(clear.present) search_input.send_keys(Keys.ENTER) search_input = self.page.q(css='#search-course-list') self.assertEqual(search_input.attrs('value'), ['search']) EmptyPromise(lambda : self.page.q(css='ul.active-filters').present, 'Search performed').fulfill() active_filters = self.page.q(css='ul.active-filters') self.assertTrue(active_filters.present) search_active_filter = self.page.q(css='ul.active-filters li.filter-text_search') self.assertTrue('search' in search_active_filter.text[0]) course_ids = self.page.q(css='.course-list .course-id') self.assertFalse(course_ids.present) alert = self.page.q(css='.list-main .alert-information') self.assertTrue(alert.present) self.assertTrue('No courses matched your criteria' in alert.text[0]) </DeepExtract> clear = self.page.q(css='button.clear') self.assertTrue(clear.present) clear.first.click() <DeepExtract> EmptyPromise(lambda : self.driver.find_element_by_id('search-course-list').get_attribute('value') != 'search', 'Search input cleared').fulfill() search_input = self.driver.find_element_by_id('search-course-list') self.assertNotEqual(search_input.get_attribute('value'), 'search') EmptyPromise(lambda : not self.page.q(css='ul.active-filters').present, 'Active filters hidden').fulfill() active_filters = self.page.q(css='ul.active-filters') self.assertFalse(active_filters.present) EmptyPromise(lambda : self.page.q(css='.course-list .course-id').present, 'Table unfiltered').fulfill() course_ids = self.page.q(css='.course-list .course-id') self.assertTrue(course_ids.present) self.assertIn(TEST_COURSE_ID, course_ids.text) </DeepExtract>
def _test_clear_input(self): """ Tests that a user can clear the search filter to unfilter the results. """ search_bar = self.page.q(css='#search-course-list') self.assertTrue(search_bar.present) self.clear_all_filters() self.check_cleared() search_input = self.driver.find_element_by_id('search-course-list') search_input.send_keys(Keys.CONTROL, 'a') search_input.send_keys('search') clear = self.page.q(css='button.clear') self.assertTrue(clear.present) search_input.send_keys(Keys.ENTER) search_input = self.page.q(css='#search-course-list') self.assertEqual(search_input.attrs('value'), ['search']) EmptyPromise(lambda : self.page.q(css='ul.active-filters').present, 'Search performed').fulfill() active_filters = self.page.q(css='ul.active-filters') self.assertTrue(active_filters.present) search_active_filter = self.page.q(css='ul.active-filters li.filter-text_search') self.assertTrue('search' in search_active_filter.text[0]) course_ids = self.page.q(css='.course-list .course-id') self.assertFalse(course_ids.present) alert = self.page.q(css='.list-main .alert-information') self.assertTrue(alert.present) self.assertTrue('No courses matched your criteria' in alert.text[0]) clear = self.page.q(css='button.clear') self.assertTrue(clear.present) clear.first.click() EmptyPromise(lambda : self.driver.find_element_by_id('search-course-list').get_attribute('value') != 'search', 'Search input cleared').fulfill() search_input = self.driver.find_element_by_id('search-course-list') self.assertNotEqual(search_input.get_attribute('value'), 'search') EmptyPromise(lambda : not self.page.q(css='ul.active-filters').present, 'Active filters hidden').fulfill() active_filters = self.page.q(css='ul.active-filters') self.assertFalse(active_filters.present) EmptyPromise(lambda : self.page.q(css='.course-list .course-id').present, 'Table unfiltered').fulfill() course_ids = self.page.q(css='.course-list .course-id') self.assertTrue(course_ids.present) self.assertIn(TEST_COURSE_ID, course_ids.text) </DeepExtract>
edx-analytics-dashboard
positive
def images_preprocessing_avabox(imgs, split, crop_size, spatial_shift_pos, flip_flag=''): (height, width, _) = imgs[0].shape if split == 1: imgs = [cv2.resize(image, (crop_size, crop_size), interpolation=getattr(cv2, cfg.INTERPOLATION)).astype(np.float32) for image in imgs] if cfg.AVABOX.RANDOM_CROP: (imgs, _) = imgproc.random_short_side_scale_jitter_list(imgs, min_size=cfg.TRAIN.JITTER_SCALES[0], max_size=cfg.TRAIN.JITTER_SCALES[1]) (imgs, _) = imgproc.random_crop_list(imgs, crop_size, order='HWC') if flip_flag == '': (imgs, _) = imgproc.horizontal_flip_list(0.5, imgs, order='HWC') elif flip_flag == 'y': (imgs, _) = imgproc.horizontal_flip_list(0.5, imgs, order='HWC', force_flip=True) else: assert flip_flag == 'n' else: imgs = [cv2.resize(image, (crop_size, crop_size), interpolation=getattr(cv2, cfg.INTERPOLATION)).astype(np.float32) for image in imgs] if cfg.AVA.FORCE_TEST_FLIP and cfg.DATASET in ['ava', 'avabox']: (imgs, _) = imgproc.horizontal_flip_list(0.5, imgs, order='HWC', force_flip=True) imgs = [imgproc.HWC2CHW(img) for img in imgs] imgs = [img / 255.0 for img in imgs] imgs = [np.ascontiguousarray(img.reshape((3, crop_size, crop_size))).astype(np.float32) for img in imgs] if cfg.TRAIN.USE_COLOR_AUGMENTATION and split == 1: <DeepExtract> if not cfg.TRAIN.PCA_JITTER_ONLY: imgs = imgproc.color_jitter_list(imgs, img_brightness=0.4, img_contrast=0.4, img_saturation=0.4) imgs = imgproc.lighting_list(imgs, alphastd=0.1, eigval=PCA['eigval'], eigvec=np.array(PCA['eigvec']).astype(np.float32)) imgs = imgs </DeepExtract> imgs = [imgproc.color_normalization(img, DATA_MEAN, DATA_STD) for img in imgs] imgs = np.concatenate([np.expand_dims(img, axis=1) for img in imgs], axis=1) if not cfg.MODEL.USE_BGR: imgs = imgs[::-1, ...] return imgs
def images_preprocessing_avabox(imgs, split, crop_size, spatial_shift_pos, flip_flag=''): (height, width, _) = imgs[0].shape if split == 1: imgs = [cv2.resize(image, (crop_size, crop_size), interpolation=getattr(cv2, cfg.INTERPOLATION)).astype(np.float32) for image in imgs] if cfg.AVABOX.RANDOM_CROP: (imgs, _) = imgproc.random_short_side_scale_jitter_list(imgs, min_size=cfg.TRAIN.JITTER_SCALES[0], max_size=cfg.TRAIN.JITTER_SCALES[1]) (imgs, _) = imgproc.random_crop_list(imgs, crop_size, order='HWC') if flip_flag == '': (imgs, _) = imgproc.horizontal_flip_list(0.5, imgs, order='HWC') elif flip_flag == 'y': (imgs, _) = imgproc.horizontal_flip_list(0.5, imgs, order='HWC', force_flip=True) else: assert flip_flag == 'n' else: imgs = [cv2.resize(image, (crop_size, crop_size), interpolation=getattr(cv2, cfg.INTERPOLATION)).astype(np.float32) for image in imgs] if cfg.AVA.FORCE_TEST_FLIP and cfg.DATASET in ['ava', 'avabox']: (imgs, _) = imgproc.horizontal_flip_list(0.5, imgs, order='HWC', force_flip=True) imgs = [imgproc.HWC2CHW(img) for img in imgs] imgs = [img / 255.0 for img in imgs] imgs = [np.ascontiguousarray(img.reshape((3, crop_size, crop_size))).astype(np.float32) for img in imgs] if cfg.TRAIN.USE_COLOR_AUGMENTATION and split == 1: if not cfg.TRAIN.PCA_JITTER_ONLY: imgs = imgproc.color_jitter_list(imgs, img_brightness=0.4, img_contrast=0.4, img_saturation=0.4) imgs = imgproc.lighting_list(imgs, alphastd=0.1, eigval=PCA['eigval'], eigvec=np.array(PCA['eigvec']).astype(np.float32)) imgs = imgs imgs = [imgproc.color_normalization(img, DATA_MEAN, DATA_STD) for img in imgs] imgs = np.concatenate([np.expand_dims(img, axis=1) for img in imgs], axis=1) if not cfg.MODEL.USE_BGR: imgs = imgs[::-1, ...] return imgs
CRCNN-Action
positive
def _pyfs_read(filename, offset, size): """_pyfs_read(filename, offset, size) -> size bytes starting at offset, as a string""" <DeepExtract> components = filename.split('/') if len(components) != 2 or components[0] != '': functions = None functions = _pyfs_files.get(components[1]) </DeepExtract> if functions is None: return None (do_open, do_read) = functions return do_read(offset, size)
def _pyfs_read(filename, offset, size): """_pyfs_read(filename, offset, size) -> size bytes starting at offset, as a string""" components = filename.split('/') if len(components) != 2 or components[0] != '': functions = None functions = _pyfs_files.get(components[1]) if functions is None: return None (do_open, do_read) = functions return do_read(offset, size)
bits
positive
def transform(self, data_pack: DataPack, verbose: int=1) -> DataPack: """ Apply transformation on data, create `tri-letter` representation. :param data_pack: Inputs to be preprocessed. :param verbose: Verbosity. :return: Transformed data as :class:`DataPack` object. """ data_pack = data_pack.copy() <DeepExtract> units_ = [units.Tokenize(), units.Lowercase(), units.PuncRemoval(), units.StopRemoval(), units.NgramLetter()] </DeepExtract> assert len(units_) == 5, 'Must have 5 pre-processing step in DSSM ' if self._with_word_hashing: term_index = self._context['vocab_unit'].state['term_index'] units_.append(units.WordHashing(term_index)) func = chain_transform(units_) data_pack.apply_on_text(func, inplace=True, verbose=verbose) return data_pack
def transform(self, data_pack: DataPack, verbose: int=1) -> DataPack: """ Apply transformation on data, create `tri-letter` representation. :param data_pack: Inputs to be preprocessed. :param verbose: Verbosity. :return: Transformed data as :class:`DataPack` object. """ data_pack = data_pack.copy() units_ = [units.Tokenize(), units.Lowercase(), units.PuncRemoval(), units.StopRemoval(), units.NgramLetter()] assert len(units_) == 5, 'Must have 5 pre-processing step in DSSM ' if self._with_word_hashing: term_index = self._context['vocab_unit'].state['term_index'] units_.append(units.WordHashing(term_index)) func = chain_transform(units_) data_pack.apply_on_text(func, inplace=True, verbose=verbose) return data_pack
EMNLP2020
positive
def mask_aug(mask, config): """ mask: uint8 (HxW), 0 (bg), 128 (ignore), 255 (fg) """ (oldh, oldw) = mask.shape if config['flip'] and np.random.rand() > 0.5: mask = mask[:, ::-1] assert config['scale'][0] <= config['scale'][1] if not (config['scale'][0] == 1 and config['scale'][0] == 1): scale = np.random.uniform(config['scale'][0], config['scale'][1]) (newh, neww) = (int(scale * oldh), int(scale * oldw)) mask = cv2.resize(mask, (neww, newh), interpolation=cv2.INTER_NEAREST) bbox = [(neww - oldw) // 2, (newh - oldh) // 2, oldw, oldh] <DeepExtract> need_squeeze = False if len(mask.shape) == 2: mask = mask[:, :, np.newaxis] need_squeeze = True assert len((0,)) == mask.shape[2] (x, y, w, h) = bbox (x, y, w, h) = (int(x), int(y), int(w), int(h)) (H, W) = mask.shape[:2] output = np.tile(np.array((0,)), (h, w, 1)).astype(mask.dtype) if bbox_iou((x, y, x + w, y + h), (0, 0, W, H)) > 0: output[max(-y, 0):min(H - y, h), max(-x, 0):min(W - x, w), :] = mask[max(y, 0):min(y + h, H), max(x, 0):min(x + w, W), :] if need_squeeze: output = np.squeeze(output) mask = output </DeepExtract> return mask
def mask_aug(mask, config): """ mask: uint8 (HxW), 0 (bg), 128 (ignore), 255 (fg) """ (oldh, oldw) = mask.shape if config['flip'] and np.random.rand() > 0.5: mask = mask[:, ::-1] assert config['scale'][0] <= config['scale'][1] if not (config['scale'][0] == 1 and config['scale'][0] == 1): scale = np.random.uniform(config['scale'][0], config['scale'][1]) (newh, neww) = (int(scale * oldh), int(scale * oldw)) mask = cv2.resize(mask, (neww, newh), interpolation=cv2.INTER_NEAREST) bbox = [(neww - oldw) // 2, (newh - oldh) // 2, oldw, oldh] need_squeeze = False if len(mask.shape) == 2: mask = mask[:, :, np.newaxis] need_squeeze = True assert len((0,)) == mask.shape[2] (x, y, w, h) = bbox (x, y, w, h) = (int(x), int(y), int(w), int(h)) (H, W) = mask.shape[:2] output = np.tile(np.array((0,)), (h, w, 1)).astype(mask.dtype) if bbox_iou((x, y, x + w, y + h), (0, 0, W, H)) > 0: output[max(-y, 0):min(H - y, h), max(-x, 0):min(W - x, w), :] = mask[max(y, 0):min(y + h, H), max(x, 0):min(x + w, W), :] if need_squeeze: output = np.squeeze(output) mask = output return mask
deocclusion
positive
def generate_report_data(self, params, kwargs, sox_data, report_fmt, node, root_node): def get_accessed_records(user): columns = ['record_uid', 'ip_address', 'keeper_version'] rq_filter = {'username': user, 'audit_event_type': 'open_record'} from keepercommander.commands.aram import API_EVENT_SUMMARY_ROW_LIMIT rq = {'command': 'get_audit_event_reports', 'report_type': 'span', 'scope': 'enterprise', 'aggregate': ['last_created'], 'limit': API_EVENT_SUMMARY_ROW_LIMIT, 'filter': rq_filter, 'columns': columns} records_accessed = dict() def update_records_accessed(events): for event in events: r_uid = event.get('record_uid') if r_uid not in records_accessed: records_accessed.update({r_uid: event}) def get_events(max_ts): rq_filter['created'] = {'max': max_ts} rs = api.communicate(params, rq) return rs.get('audit_event_overview_report_rows') max_ts = int(datetime.datetime.now().timestamp()) while True: <DeepExtract> rq_filter['created'] = {'max': max_ts} rs = api.communicate(params, rq) events = rs.get('audit_event_overview_report_rows') </DeepExtract> <DeepExtract> for event in events: r_uid = event.get('record_uid') if r_uid not in records_accessed: records_accessed.update({r_uid: event}) </DeepExtract> if len(events) >= API_EVENT_SUMMARY_ROW_LIMIT: earliest_event = events[-1] max_ts = int(earliest_event.get('last_created')) else: break return records_accessed def fill_table(access_events): table = [] for rec in access_events.values(): rec_uid = rec.get('record_uid') sox_rec = sox_data.get_records().get(rec_uid) rec_info = sox_rec.data if sox_rec else {} rec_owner = sox_data.get_record_owner(rec_uid) row = [rec_uid, rec_info.get('title'), rec_info.get('url', '').rstrip('/'), rec_owner and rec_owner.email, rec.get('ip_address'), rec.get('keeper_version'), datetime.datetime.fromtimestamp(int(rec.get('last_created')))] table.append(row) return table report_data = [] user_lookup = {user.get('enterprise_user_id'): user.get('username') for user in params.enterprise.get('users')} username_or_id = kwargs.get('user') username = user_lookup.get(int(username_or_id)) if username_or_id.isdigit() else username_or_id try: <DeepExtract> columns = ['record_uid', 'ip_address', 'keeper_version'] rq_filter = {'username': username, 'audit_event_type': 'open_record'} from keepercommander.commands.aram import API_EVENT_SUMMARY_ROW_LIMIT rq = {'command': 'get_audit_event_reports', 'report_type': 'span', 'scope': 'enterprise', 'aggregate': ['last_created'], 'limit': API_EVENT_SUMMARY_ROW_LIMIT, 'filter': rq_filter, 'columns': columns} records_accessed = dict() def update_records_accessed(events): for event in events: r_uid = event.get('record_uid') if r_uid not in records_accessed: records_accessed.update({r_uid: event}) def get_events(max_ts): rq_filter['created'] = {'max': max_ts} rs = api.communicate(params, rq) accessed = rs.get('audit_event_overview_report_rows') max_ts = int(datetime.datetime.now().timestamp()) while True: events = get_events(max_ts) update_records_accessed(events) if len(events) >= API_EVENT_SUMMARY_ROW_LIMIT: earliest_event = events[-1] max_ts = int(earliest_event.get('last_created')) else: break accessed = records_accessed </DeepExtract> <DeepExtract> table = [] for rec in accessed.values(): rec_uid = rec.get('record_uid') sox_rec = sox_data.get_records().get(rec_uid) rec_info = sox_rec.data if sox_rec else {} rec_owner = sox_data.get_record_owner(rec_uid) row = [rec_uid, rec_info.get('title'), rec_info.get('url', '').rstrip('/'), rec_owner and rec_owner.email, rec.get('ip_address'), rec.get('keeper_version'), datetime.datetime.fromtimestamp(int(rec.get('last_created')))] table.append(row) report_data = table </DeepExtract> except Error as e: logging.warning(f'User {username_or_id} not found, error = "{e.message}"') return report_data
def generate_report_data(self, params, kwargs, sox_data, report_fmt, node, root_node): def get_accessed_records(user): columns = ['record_uid', 'ip_address', 'keeper_version'] rq_filter = {'username': user, 'audit_event_type': 'open_record'} from keepercommander.commands.aram import API_EVENT_SUMMARY_ROW_LIMIT rq = {'command': 'get_audit_event_reports', 'report_type': 'span', 'scope': 'enterprise', 'aggregate': ['last_created'], 'limit': API_EVENT_SUMMARY_ROW_LIMIT, 'filter': rq_filter, 'columns': columns} records_accessed = dict() def update_records_accessed(events): for event in events: r_uid = event.get('record_uid') if r_uid not in records_accessed: records_accessed.update({r_uid: event}) def get_events(max_ts): rq_filter['created'] = {'max': max_ts} rs = api.communicate(params, rq) return rs.get('audit_event_overview_report_rows') max_ts = int(datetime.datetime.now().timestamp()) while True: rq_filter['created'] = {'max': max_ts} rs = api.communicate(params, rq) events = rs.get('audit_event_overview_report_rows') for event in events: r_uid = event.get('record_uid') if r_uid not in records_accessed: records_accessed.update({r_uid: event}) if len(events) >= API_EVENT_SUMMARY_ROW_LIMIT: earliest_event = events[-1] max_ts = int(earliest_event.get('last_created')) else: break return records_accessed def fill_table(access_events): table = [] for rec in access_events.values(): rec_uid = rec.get('record_uid') sox_rec = sox_data.get_records().get(rec_uid) rec_info = sox_rec.data if sox_rec else {} rec_owner = sox_data.get_record_owner(rec_uid) row = [rec_uid, rec_info.get('title'), rec_info.get('url', '').rstrip('/'), rec_owner and rec_owner.email, rec.get('ip_address'), rec.get('keeper_version'), datetime.datetime.fromtimestamp(int(rec.get('last_created')))] table.append(row) return table report_data = [] user_lookup = {user.get('enterprise_user_id'): user.get('username') for user in params.enterprise.get('users')} username_or_id = kwargs.get('user') username = user_lookup.get(int(username_or_id)) if username_or_id.isdigit() else username_or_id try: columns = ['record_uid', 'ip_address', 'keeper_version'] rq_filter = {'username': username, 'audit_event_type': 'open_record'} from keepercommander.commands.aram import API_EVENT_SUMMARY_ROW_LIMIT rq = {'command': 'get_audit_event_reports', 'report_type': 'span', 'scope': 'enterprise', 'aggregate': ['last_created'], 'limit': API_EVENT_SUMMARY_ROW_LIMIT, 'filter': rq_filter, 'columns': columns} records_accessed = dict() def update_records_accessed(events): for event in events: r_uid = event.get('record_uid') if r_uid not in records_accessed: records_accessed.update({r_uid: event}) def get_events(max_ts): rq_filter['created'] = {'max': max_ts} rs = api.communicate(params, rq) accessed = rs.get('audit_event_overview_report_rows') max_ts = int(datetime.datetime.now().timestamp()) while True: events = get_events(max_ts) update_records_accessed(events) if len(events) >= API_EVENT_SUMMARY_ROW_LIMIT: earliest_event = events[-1] max_ts = int(earliest_event.get('last_created')) else: break accessed = records_accessed table = [] for rec in accessed.values(): rec_uid = rec.get('record_uid') sox_rec = sox_data.get_records().get(rec_uid) rec_info = sox_rec.data if sox_rec else {} rec_owner = sox_data.get_record_owner(rec_uid) row = [rec_uid, rec_info.get('title'), rec_info.get('url', '').rstrip('/'), rec_owner and rec_owner.email, rec.get('ip_address'), rec.get('keeper_version'), datetime.datetime.fromtimestamp(int(rec.get('last_created')))] table.append(row) report_data = table except Error as e: logging.warning(f'User {username_or_id} not found, error = "{e.message}"') return report_data
Commander
positive
@flaky(max_runs=3) def test_given_simple_causal_chain_with_linear_relationships_when_attribute_anomaly_scores_with_it_score_then_returns_qualitatively_correct_results(): num_training_samples = 5000 X0 = np.random.normal(0, 1, num_training_samples) X1 = X0 + np.random.normal(0, 1, num_training_samples) X2 = X1 + np.random.normal(0, 1, num_training_samples) X3 = X2 + np.random.normal(0, 1, num_training_samples) training_data = pd.DataFrame({'X0': X0, 'X1': X1, 'X2': X2, 'X3': X3}) causal_model = InvertibleStructuralCausalModel(nx.DiGraph([('X0', 'X1'), ('X1', 'X2'), ('X2', 'X3')])) auto.assign_causal_mechanisms(causal_model, training_data, auto.AssignmentQuality.GOOD) <DeepExtract> pass </DeepExtract> anomaly_data = pd.DataFrame({'X0': np.array([0, 10, 10]), 'X1': np.array([10, 10, 10]), 'X2': np.array([10, 10, 10]), 'X3': np.array([10, 10, 20])}) scores = attribute_anomalies(causal_model, 'X3', anomaly_data, anomaly_scorer=MedianCDFQuantileScorer(), num_distribution_samples=num_training_samples, attribute_mean_deviation=False) def total_anomaly_score(training_data, anomaly_sample): distribution_samples = training_data['X3'].to_numpy() anomaly_scorer = MedianCDFQuantileScorer() anomaly_scorer.fit(distribution_samples) return -np.log(_relative_frequency(anomaly_scorer.score(distribution_samples) >= anomaly_scorer.score(anomaly_sample))) assert scores['X0'][0] < 0.5 assert scores['X0'][1] > 8 assert scores['X0'][2] > 4 assert scores['X1'][0] > 8 assert scores['X1'][1] < 0.5 assert scores['X1'][2] < 0.5 assert np.all(scores['X2'] < 0.5) assert np.all(scores['X3'][:2] < 0.5) assert scores['X3'][2] > 4 assert scores['X0'][0] + scores['X1'][0] + scores['X2'][0] + scores['X3'][0] == approx(total_anomaly_score(training_data, anomaly_data['X3'].to_numpy()[0]), abs=0.001) assert scores['X0'][1] + scores['X1'][1] + scores['X2'][1] + scores['X3'][1] == approx(total_anomaly_score(training_data, anomaly_data['X3'].to_numpy()[1]), abs=0.001) assert scores['X0'][2] + scores['X1'][2] + scores['X2'][2] + scores['X3'][2] == approx(total_anomaly_score(training_data, anomaly_data['X3'].to_numpy()[2]), abs=0.001)
@flaky(max_runs=3) def test_given_simple_causal_chain_with_linear_relationships_when_attribute_anomaly_scores_with_it_score_then_returns_qualitatively_correct_results(): num_training_samples = 5000 X0 = np.random.normal(0, 1, num_training_samples) X1 = X0 + np.random.normal(0, 1, num_training_samples) X2 = X1 + np.random.normal(0, 1, num_training_samples) X3 = X2 + np.random.normal(0, 1, num_training_samples) training_data = pd.DataFrame({'X0': X0, 'X1': X1, 'X2': X2, 'X3': X3}) causal_model = InvertibleStructuralCausalModel(nx.DiGraph([('X0', 'X1'), ('X1', 'X2'), ('X2', 'X3')])) auto.assign_causal_mechanisms(causal_model, training_data, auto.AssignmentQuality.GOOD) pass anomaly_data = pd.DataFrame({'X0': np.array([0, 10, 10]), 'X1': np.array([10, 10, 10]), 'X2': np.array([10, 10, 10]), 'X3': np.array([10, 10, 20])}) scores = attribute_anomalies(causal_model, 'X3', anomaly_data, anomaly_scorer=MedianCDFQuantileScorer(), num_distribution_samples=num_training_samples, attribute_mean_deviation=False) def total_anomaly_score(training_data, anomaly_sample): distribution_samples = training_data['X3'].to_numpy() anomaly_scorer = MedianCDFQuantileScorer() anomaly_scorer.fit(distribution_samples) return -np.log(_relative_frequency(anomaly_scorer.score(distribution_samples) >= anomaly_scorer.score(anomaly_sample))) assert scores['X0'][0] < 0.5 assert scores['X0'][1] > 8 assert scores['X0'][2] > 4 assert scores['X1'][0] > 8 assert scores['X1'][1] < 0.5 assert scores['X1'][2] < 0.5 assert np.all(scores['X2'] < 0.5) assert np.all(scores['X3'][:2] < 0.5) assert scores['X3'][2] > 4 assert scores['X0'][0] + scores['X1'][0] + scores['X2'][0] + scores['X3'][0] == approx(total_anomaly_score(training_data, anomaly_data['X3'].to_numpy()[0]), abs=0.001) assert scores['X0'][1] + scores['X1'][1] + scores['X2'][1] + scores['X3'][1] == approx(total_anomaly_score(training_data, anomaly_data['X3'].to_numpy()[1]), abs=0.001) assert scores['X0'][2] + scores['X1'][2] + scores['X2'][2] + scores['X3'][2] == approx(total_anomaly_score(training_data, anomaly_data['X3'].to_numpy()[2]), abs=0.001)
dowhy
positive
def test_coef_eq_layers_change(): dbn = DBN([5], pretrain_epochs=0, finetune_epochs=0, random_state=1234) <DeepExtract> from sklearn import datasets iris = datasets.load_iris() X = iris.data Y = iris.target (X, y) = (X, Y) </DeepExtract> dbn.fit(X, y) eq_(dbn.layers[0].b, np.zeros(5)) eq_(dbn.layers[1].b, np.zeros(3)) dbn.coef_[:] = np.ones(len(dbn.coef_)) eq_(dbn.layers[0].b, np.ones(5)) eq_(dbn.layers[0].W, np.ones((4, 5))) eq_(dbn.layers[1].b, np.ones(3)) eq_(dbn.layers[1].W, np.ones((5, 3))) eq_(dbn.layers[0].b[0], 1) dbn.coef_[0] = 2 eq_(dbn.layers[0].b[0], 2) eq_(dbn.coef_[1], 1) dbn.layers[0].b[1] = 3 eq_(dbn.coef_[1], 3)
def test_coef_eq_layers_change(): dbn = DBN([5], pretrain_epochs=0, finetune_epochs=0, random_state=1234) from sklearn import datasets iris = datasets.load_iris() X = iris.data Y = iris.target (X, y) = (X, Y) dbn.fit(X, y) eq_(dbn.layers[0].b, np.zeros(5)) eq_(dbn.layers[1].b, np.zeros(3)) dbn.coef_[:] = np.ones(len(dbn.coef_)) eq_(dbn.layers[0].b, np.ones(5)) eq_(dbn.layers[0].W, np.ones((4, 5))) eq_(dbn.layers[1].b, np.ones(3)) eq_(dbn.layers[1].W, np.ones((5, 3))) eq_(dbn.layers[0].b[0], 1) dbn.coef_[0] = 2 eq_(dbn.layers[0].b[0], 2) eq_(dbn.coef_[1], 1) dbn.layers[0].b[1] = 3 eq_(dbn.coef_[1], 3)
copper
positive
def subsetsSums(nums): def helper(start, summ, result): result.append(summ) for i in range(start, len(nums)): <DeepExtract> result.append(summ + nums[i]) for i in range(i + 1, len(nums)): helper(i + 1, summ + nums[i] + nums[i], result) return result </DeepExtract> return result return helper(0, 0, [])
def subsetsSums(nums): def helper(start, summ, result): result.append(summ) for i in range(start, len(nums)): result.append(summ + nums[i]) for i in range(i + 1, len(nums)): helper(i + 1, summ + nums[i] + nums[i], result) return result return result return helper(0, 0, [])
Algorithm-Implementations
positive
def process_item(self, item): <DeepExtract> if item is None: cve = None if 'ASSIGNER' not in item['cve']['CVE_data_meta']: item['cve']['CVE_data_meta']['ASSIGNER'] = None cve = {'id': item['cve']['CVE_data_meta']['ID'], 'assigner': item['cve']['CVE_data_meta']['ASSIGNER'], 'Published': parse_datetime(item['publishedDate'], ignoretz=True), 'Modified': parse_datetime(item['lastModifiedDate'], ignoretz=True), 'last-modified': parse_datetime(item['lastModifiedDate'], ignoretz=True)} for description in item['cve']['description']['description_data']: if description['lang'] == 'en': if 'summary' in cve: cve['summary'] += ' {}'.format(description['value']) else: cve['summary'] = description['value'] if 'impact' in item: cve['access'] = {} cve['impact'] = {} if 'baseMetricV3' in item['impact']: cve['impact3'] = {} cve['exploitability3'] = {} cve['impact3']['availability'] = item['impact']['baseMetricV3']['cvssV3']['availabilityImpact'] cve['impact3']['confidentiality'] = item['impact']['baseMetricV3']['cvssV3']['confidentialityImpact'] cve['impact3']['integrity'] = item['impact']['baseMetricV3']['cvssV3']['integrityImpact'] cve['exploitability3']['attackvector'] = item['impact']['baseMetricV3']['cvssV3']['attackVector'] cve['exploitability3']['attackcomplexity'] = item['impact']['baseMetricV3']['cvssV3']['attackComplexity'] cve['exploitability3']['privilegesrequired'] = item['impact']['baseMetricV3']['cvssV3']['privilegesRequired'] cve['exploitability3']['userinteraction'] = item['impact']['baseMetricV3']['cvssV3']['userInteraction'] cve['exploitability3']['scope'] = item['impact']['baseMetricV3']['cvssV3']['scope'] cve['cvss3'] = float(item['impact']['baseMetricV3']['cvssV3']['baseScore']) cve['cvss3-vector'] = item['impact']['baseMetricV3']['cvssV3']['vectorString'] cve['impactScore3'] = float(item['impact']['baseMetricV3']['impactScore']) cve['exploitabilityScore3'] = float(item['impact']['baseMetricV3']['exploitabilityScore']) else: cve['cvss3'] = None if 'baseMetricV2' in item['impact']: cve['access']['authentication'] = item['impact']['baseMetricV2']['cvssV2']['authentication'] cve['access']['complexity'] = item['impact']['baseMetricV2']['cvssV2']['accessComplexity'] cve['access']['vector'] = item['impact']['baseMetricV2']['cvssV2']['accessVector'] cve['impact']['availability'] = item['impact']['baseMetricV2']['cvssV2']['availabilityImpact'] cve['impact']['confidentiality'] = item['impact']['baseMetricV2']['cvssV2']['confidentialityImpact'] cve['impact']['integrity'] = item['impact']['baseMetricV2']['cvssV2']['integrityImpact'] cve['cvss'] = float(item['impact']['baseMetricV2']['cvssV2']['baseScore']) cve['exploitabilityScore'] = float(item['impact']['baseMetricV2']['exploitabilityScore']) cve['impactScore'] = float(item['impact']['baseMetricV2']['impactScore']) cve['cvss-time'] = parse_datetime(item['lastModifiedDate'], ignoretz=True) cve['cvss-vector'] = item['impact']['baseMetricV2']['cvssV2']['vectorString'] else: cve['cvss'] = None if 'references' in item['cve']: cve['references'] = [] for ref in item['cve']['references']['reference_data']: cve['references'].append(ref['url']) if 'configurations' in item: cve['vulnerable_configuration'] = [] cve['vulnerable_product'] = [] cve['vendors'] = [] cve['products'] = [] cve['vulnerable_product_stems'] = [] cve['vulnerable_configuration_stems'] = [] for cpe in item['configurations']['nodes']: if 'cpe_match' in cpe: for cpeuri in cpe['cpe_match']: if 'cpe23Uri' not in cpeuri: continue if cpeuri['vulnerable']: (query, version_info) = self.get_cpe_info(cpeuri) if query != {}: query['id'] = hashlib.sha1(cpeuri['cpe23Uri'].encode('utf-8') + version_info.encode('utf-8')).hexdigest() cpe_info = getCPEVersionInformation(query) if cpe_info: if cpe_info['cpe_name']: for vulnerable_version in cpe_info['cpe_name']: cve = self.add_if_missing(cve, 'vulnerable_product', vulnerable_version['cpe23Uri']) cve = self.add_if_missing(cve, 'vulnerable_configuration', vulnerable_version['cpe23Uri']) cve = self.add_if_missing(cve, 'vulnerable_configuration_stems', self.stem(vulnerable_version['cpe23Uri'])) (vendor, product) = self.get_vendor_product(vulnerable_version['cpe23Uri']) cve = self.add_if_missing(cve, 'vendors', vendor) cve = self.add_if_missing(cve, 'products', product) cve = self.add_if_missing(cve, 'vulnerable_product_stems', self.stem(vulnerable_version['cpe23Uri'])) else: cve = self.add_if_missing(cve, 'vulnerable_product', cpeuri['cpe23Uri']) cve = self.add_if_missing(cve, 'vulnerable_configuration', cpeuri['cpe23Uri']) cve = self.add_if_missing(cve, 'vulnerable_configuration_stems', self.stem(cpeuri['cpe23Uri'])) (vendor, product) = self.get_vendor_product(cpeuri['cpe23Uri']) cve = self.add_if_missing(cve, 'vendors', vendor) cve = self.add_if_missing(cve, 'products', product) cve = self.add_if_missing(cve, 'vulnerable_product_stems', self.stem(cpeuri['cpe23Uri'])) else: cve = self.add_if_missing(cve, 'vulnerable_product', cpeuri['cpe23Uri']) cve = self.add_if_missing(cve, 'vulnerable_configuration', cpeuri['cpe23Uri']) cve = self.add_if_missing(cve, 'vulnerable_configuration_stems', self.stem(cpeuri['cpe23Uri'])) (vendor, product) = self.get_vendor_product(cpeuri['cpe23Uri']) cve = self.add_if_missing(cve, 'vendors', vendor) cve = self.add_if_missing(cve, 'products', product) cve = self.add_if_missing(cve, 'vulnerable_product_stems', self.stem(cpeuri['cpe23Uri'])) else: cve = self.add_if_missing(cve, 'vulnerable_configuration', cpeuri['cpe23Uri']) cve = self.add_if_missing(cve, 'vulnerable_configuration_stems', self.stem(cpeuri['cpe23Uri'])) if 'children' in cpe: for child in cpe['children']: if 'cpe_match' in child: for cpeuri in child['cpe_match']: if 'cpe23Uri' not in cpeuri: continue if cpeuri['vulnerable']: (query, version_info) = self.get_cpe_info(cpeuri) if query != {}: query['id'] = hashlib.sha1(cpeuri['cpe23Uri'].encode('utf-8') + version_info.encode('utf-8')).hexdigest() cpe_info = getCPEVersionInformation(query) if cpe_info: if cpe_info['cpe_name']: for vulnerable_version in cpe_info['cpe_name']: cve = self.add_if_missing(cve, 'vulnerable_product', vulnerable_version['cpe23Uri']) cve = self.add_if_missing(cve, 'vulnerable_configuration', vulnerable_version['cpe23Uri']) cve = self.add_if_missing(cve, 'vulnerable_configuration_stems', self.stem(vulnerable_version['cpe23Uri'])) (vendor, product) = self.get_vendor_product(vulnerable_version['cpe23Uri']) cve = self.add_if_missing(cve, 'vendors', vendor) cve = self.add_if_missing(cve, 'products', product) cve = self.add_if_missing(cve, 'vulnerable_product_stems', self.stem(vulnerable_version['cpe23Uri'])) else: cve = self.add_if_missing(cve, 'vulnerable_product', cpeuri['cpe23Uri']) cve = self.add_if_missing(cve, 'vulnerable_configuration', cpeuri['cpe23Uri']) cve = self.add_if_missing(cve, 'vulnerable_configuration_stems', self.stem(cpeuri['cpe23Uri'])) (vendor, product) = self.get_vendor_product(cpeuri['cpe23Uri']) cve = self.add_if_missing(cve, 'vendors', vendor) cve = self.add_if_missing(cve, 'products', product) cve = self.add_if_missing(cve, 'vulnerable_product_stems', self.stem(cpeuri['cpe23Uri'])) else: if 'cpe23Uri' not in cpeuri: continue cve = self.add_if_missing(cve, 'vulnerable_product', cpeuri['cpe23Uri']) cve = self.add_if_missing(cve, 'vulnerable_configuration', cpeuri['cpe23Uri']) cve = self.add_if_missing(cve, 'vulnerable_configuration_stems', self.stem(cpeuri['cpe23Uri'])) (vendor, product) = self.get_vendor_product(cpeuri['cpe23Uri']) cve = self.add_if_missing(cve, 'vendors', vendor) cve = self.add_if_missing(cve, 'products', product) cve = self.add_if_missing(cve, 'vulnerable_product_stems', self.stem(cpeuri['cpe23Uri'])) else: if 'cpe23Uri' not in cpeuri: continue cve = self.add_if_missing(cve, 'vulnerable_configuration', cpeuri['cpe23Uri']) cve = self.add_if_missing(cve, 'vulnerable_configuration_stems', self.stem(cpeuri['cpe23Uri'])) if 'problemtype' in item['cve']: for problem in item['cve']['problemtype']['problemtype_data']: for cwe in problem['description']: if cwe['lang'] == 'en': cve['cwe'] = cwe['value'] if not 'cwe' in cve: cve['cwe'] = defaultvalue['cwe'] else: cve['cwe'] = defaultvalue['cwe'] cve['vulnerable_configuration_cpe_2_2'] = [] cve = cve </DeepExtract> if cve is not None: if self.is_update: self.queue.put(DatabaseAction(action=DatabaseAction.actions.UpdateOne, collection=self.feed_type.lower(), doc=cve)) else: self.queue.put(DatabaseAction(action=DatabaseAction.actions.InsertOne, collection=self.feed_type.lower(), doc=cve))
def process_item(self, item): if item is None: cve = None if 'ASSIGNER' not in item['cve']['CVE_data_meta']: item['cve']['CVE_data_meta']['ASSIGNER'] = None cve = {'id': item['cve']['CVE_data_meta']['ID'], 'assigner': item['cve']['CVE_data_meta']['ASSIGNER'], 'Published': parse_datetime(item['publishedDate'], ignoretz=True), 'Modified': parse_datetime(item['lastModifiedDate'], ignoretz=True), 'last-modified': parse_datetime(item['lastModifiedDate'], ignoretz=True)} for description in item['cve']['description']['description_data']: if description['lang'] == 'en': if 'summary' in cve: cve['summary'] += ' {}'.format(description['value']) else: cve['summary'] = description['value'] if 'impact' in item: cve['access'] = {} cve['impact'] = {} if 'baseMetricV3' in item['impact']: cve['impact3'] = {} cve['exploitability3'] = {} cve['impact3']['availability'] = item['impact']['baseMetricV3']['cvssV3']['availabilityImpact'] cve['impact3']['confidentiality'] = item['impact']['baseMetricV3']['cvssV3']['confidentialityImpact'] cve['impact3']['integrity'] = item['impact']['baseMetricV3']['cvssV3']['integrityImpact'] cve['exploitability3']['attackvector'] = item['impact']['baseMetricV3']['cvssV3']['attackVector'] cve['exploitability3']['attackcomplexity'] = item['impact']['baseMetricV3']['cvssV3']['attackComplexity'] cve['exploitability3']['privilegesrequired'] = item['impact']['baseMetricV3']['cvssV3']['privilegesRequired'] cve['exploitability3']['userinteraction'] = item['impact']['baseMetricV3']['cvssV3']['userInteraction'] cve['exploitability3']['scope'] = item['impact']['baseMetricV3']['cvssV3']['scope'] cve['cvss3'] = float(item['impact']['baseMetricV3']['cvssV3']['baseScore']) cve['cvss3-vector'] = item['impact']['baseMetricV3']['cvssV3']['vectorString'] cve['impactScore3'] = float(item['impact']['baseMetricV3']['impactScore']) cve['exploitabilityScore3'] = float(item['impact']['baseMetricV3']['exploitabilityScore']) else: cve['cvss3'] = None if 'baseMetricV2' in item['impact']: cve['access']['authentication'] = item['impact']['baseMetricV2']['cvssV2']['authentication'] cve['access']['complexity'] = item['impact']['baseMetricV2']['cvssV2']['accessComplexity'] cve['access']['vector'] = item['impact']['baseMetricV2']['cvssV2']['accessVector'] cve['impact']['availability'] = item['impact']['baseMetricV2']['cvssV2']['availabilityImpact'] cve['impact']['confidentiality'] = item['impact']['baseMetricV2']['cvssV2']['confidentialityImpact'] cve['impact']['integrity'] = item['impact']['baseMetricV2']['cvssV2']['integrityImpact'] cve['cvss'] = float(item['impact']['baseMetricV2']['cvssV2']['baseScore']) cve['exploitabilityScore'] = float(item['impact']['baseMetricV2']['exploitabilityScore']) cve['impactScore'] = float(item['impact']['baseMetricV2']['impactScore']) cve['cvss-time'] = parse_datetime(item['lastModifiedDate'], ignoretz=True) cve['cvss-vector'] = item['impact']['baseMetricV2']['cvssV2']['vectorString'] else: cve['cvss'] = None if 'references' in item['cve']: cve['references'] = [] for ref in item['cve']['references']['reference_data']: cve['references'].append(ref['url']) if 'configurations' in item: cve['vulnerable_configuration'] = [] cve['vulnerable_product'] = [] cve['vendors'] = [] cve['products'] = [] cve['vulnerable_product_stems'] = [] cve['vulnerable_configuration_stems'] = [] for cpe in item['configurations']['nodes']: if 'cpe_match' in cpe: for cpeuri in cpe['cpe_match']: if 'cpe23Uri' not in cpeuri: continue if cpeuri['vulnerable']: (query, version_info) = self.get_cpe_info(cpeuri) if query != {}: query['id'] = hashlib.sha1(cpeuri['cpe23Uri'].encode('utf-8') + version_info.encode('utf-8')).hexdigest() cpe_info = getCPEVersionInformation(query) if cpe_info: if cpe_info['cpe_name']: for vulnerable_version in cpe_info['cpe_name']: cve = self.add_if_missing(cve, 'vulnerable_product', vulnerable_version['cpe23Uri']) cve = self.add_if_missing(cve, 'vulnerable_configuration', vulnerable_version['cpe23Uri']) cve = self.add_if_missing(cve, 'vulnerable_configuration_stems', self.stem(vulnerable_version['cpe23Uri'])) (vendor, product) = self.get_vendor_product(vulnerable_version['cpe23Uri']) cve = self.add_if_missing(cve, 'vendors', vendor) cve = self.add_if_missing(cve, 'products', product) cve = self.add_if_missing(cve, 'vulnerable_product_stems', self.stem(vulnerable_version['cpe23Uri'])) else: cve = self.add_if_missing(cve, 'vulnerable_product', cpeuri['cpe23Uri']) cve = self.add_if_missing(cve, 'vulnerable_configuration', cpeuri['cpe23Uri']) cve = self.add_if_missing(cve, 'vulnerable_configuration_stems', self.stem(cpeuri['cpe23Uri'])) (vendor, product) = self.get_vendor_product(cpeuri['cpe23Uri']) cve = self.add_if_missing(cve, 'vendors', vendor) cve = self.add_if_missing(cve, 'products', product) cve = self.add_if_missing(cve, 'vulnerable_product_stems', self.stem(cpeuri['cpe23Uri'])) else: cve = self.add_if_missing(cve, 'vulnerable_product', cpeuri['cpe23Uri']) cve = self.add_if_missing(cve, 'vulnerable_configuration', cpeuri['cpe23Uri']) cve = self.add_if_missing(cve, 'vulnerable_configuration_stems', self.stem(cpeuri['cpe23Uri'])) (vendor, product) = self.get_vendor_product(cpeuri['cpe23Uri']) cve = self.add_if_missing(cve, 'vendors', vendor) cve = self.add_if_missing(cve, 'products', product) cve = self.add_if_missing(cve, 'vulnerable_product_stems', self.stem(cpeuri['cpe23Uri'])) else: cve = self.add_if_missing(cve, 'vulnerable_configuration', cpeuri['cpe23Uri']) cve = self.add_if_missing(cve, 'vulnerable_configuration_stems', self.stem(cpeuri['cpe23Uri'])) if 'children' in cpe: for child in cpe['children']: if 'cpe_match' in child: for cpeuri in child['cpe_match']: if 'cpe23Uri' not in cpeuri: continue if cpeuri['vulnerable']: (query, version_info) = self.get_cpe_info(cpeuri) if query != {}: query['id'] = hashlib.sha1(cpeuri['cpe23Uri'].encode('utf-8') + version_info.encode('utf-8')).hexdigest() cpe_info = getCPEVersionInformation(query) if cpe_info: if cpe_info['cpe_name']: for vulnerable_version in cpe_info['cpe_name']: cve = self.add_if_missing(cve, 'vulnerable_product', vulnerable_version['cpe23Uri']) cve = self.add_if_missing(cve, 'vulnerable_configuration', vulnerable_version['cpe23Uri']) cve = self.add_if_missing(cve, 'vulnerable_configuration_stems', self.stem(vulnerable_version['cpe23Uri'])) (vendor, product) = self.get_vendor_product(vulnerable_version['cpe23Uri']) cve = self.add_if_missing(cve, 'vendors', vendor) cve = self.add_if_missing(cve, 'products', product) cve = self.add_if_missing(cve, 'vulnerable_product_stems', self.stem(vulnerable_version['cpe23Uri'])) else: cve = self.add_if_missing(cve, 'vulnerable_product', cpeuri['cpe23Uri']) cve = self.add_if_missing(cve, 'vulnerable_configuration', cpeuri['cpe23Uri']) cve = self.add_if_missing(cve, 'vulnerable_configuration_stems', self.stem(cpeuri['cpe23Uri'])) (vendor, product) = self.get_vendor_product(cpeuri['cpe23Uri']) cve = self.add_if_missing(cve, 'vendors', vendor) cve = self.add_if_missing(cve, 'products', product) cve = self.add_if_missing(cve, 'vulnerable_product_stems', self.stem(cpeuri['cpe23Uri'])) else: if 'cpe23Uri' not in cpeuri: continue cve = self.add_if_missing(cve, 'vulnerable_product', cpeuri['cpe23Uri']) cve = self.add_if_missing(cve, 'vulnerable_configuration', cpeuri['cpe23Uri']) cve = self.add_if_missing(cve, 'vulnerable_configuration_stems', self.stem(cpeuri['cpe23Uri'])) (vendor, product) = self.get_vendor_product(cpeuri['cpe23Uri']) cve = self.add_if_missing(cve, 'vendors', vendor) cve = self.add_if_missing(cve, 'products', product) cve = self.add_if_missing(cve, 'vulnerable_product_stems', self.stem(cpeuri['cpe23Uri'])) else: if 'cpe23Uri' not in cpeuri: continue cve = self.add_if_missing(cve, 'vulnerable_configuration', cpeuri['cpe23Uri']) cve = self.add_if_missing(cve, 'vulnerable_configuration_stems', self.stem(cpeuri['cpe23Uri'])) if 'problemtype' in item['cve']: for problem in item['cve']['problemtype']['problemtype_data']: for cwe in problem['description']: if cwe['lang'] == 'en': cve['cwe'] = cwe['value'] if not 'cwe' in cve: cve['cwe'] = defaultvalue['cwe'] else: cve['cwe'] = defaultvalue['cwe'] cve['vulnerable_configuration_cpe_2_2'] = [] cve = cve if cve is not None: if self.is_update: self.queue.put(DatabaseAction(action=DatabaseAction.actions.UpdateOne, collection=self.feed_type.lower(), doc=cve)) else: self.queue.put(DatabaseAction(action=DatabaseAction.actions.InsertOne, collection=self.feed_type.lower(), doc=cve))
cve-search
positive
def extract_unt_fedban(message: Message, args: List[str]) -> (Optional[int], Optional[str]): prev_message = message.reply_to_message split_text = message.text.split(None, 1) if len(split_text) < 2: return id_from_reply(message) text_to_parse = split_text[1] text = '' entities = list(message.parse_entities([MessageEntity.TEXT_MENTION])) if len(entities) > 0: ent = entities[0] else: ent = None if entities and ent and (ent.offset == len(message.text) - len(text_to_parse)): ent = entities[0] user_id = ent.user.id text = message.text[ent.offset + ent.length:] elif len(args) >= 1 and args[0][0] == '@': user = args[0] user_id = get_user_id(user) if not user_id and (not str(user_id).isdigit()): message.reply_text("I don't seem to have interacted with this user before - please forward a message from them to give me control! (like a voodoo doll, I need a piece of them to be able to execute certain commands...)") return (None, None) else: user_id = user_id res = message.text.split(None, 2) if len(res) >= 3: text = res[2] elif len(args) >= 1 and args[0].isdigit(): user_id = int(args[0]) res = message.text.split(None, 2) if len(res) >= 3: text = res[2] elif prev_message: <DeepExtract> prev_message = message.reply_to_message if not prev_message: (user_id, text) = (None, None) user_id = prev_message.from_user.id res = message.text.split(None, 1) if len(res) < 2: (user_id, text) = (user_id, '') (user_id, text) = (user_id, res[1]) </DeepExtract> else: return (None, None) try: message.bot.get_chat(user_id) except BadRequest as excp: if excp.message in ('User_id_invalid', 'Chat not found') and (not str(user_id).isdigit()): message.reply_text("I don't seem to have interacted with this user before - please forward messages fromthem to give me control! (Like a voodoo doll, I need a piece to be able toto execute certain commands ...)") return (None, None) elif excp.message != 'Chat not found': LOGGER.exception('Exception %s on user %s', excp.message, user_id) return (None, None) elif not str(user_id).isdigit(): return (None, None) return (user_id, text)
def extract_unt_fedban(message: Message, args: List[str]) -> (Optional[int], Optional[str]): prev_message = message.reply_to_message split_text = message.text.split(None, 1) if len(split_text) < 2: return id_from_reply(message) text_to_parse = split_text[1] text = '' entities = list(message.parse_entities([MessageEntity.TEXT_MENTION])) if len(entities) > 0: ent = entities[0] else: ent = None if entities and ent and (ent.offset == len(message.text) - len(text_to_parse)): ent = entities[0] user_id = ent.user.id text = message.text[ent.offset + ent.length:] elif len(args) >= 1 and args[0][0] == '@': user = args[0] user_id = get_user_id(user) if not user_id and (not str(user_id).isdigit()): message.reply_text("I don't seem to have interacted with this user before - please forward a message from them to give me control! (like a voodoo doll, I need a piece of them to be able to execute certain commands...)") return (None, None) else: user_id = user_id res = message.text.split(None, 2) if len(res) >= 3: text = res[2] elif len(args) >= 1 and args[0].isdigit(): user_id = int(args[0]) res = message.text.split(None, 2) if len(res) >= 3: text = res[2] elif prev_message: prev_message = message.reply_to_message if not prev_message: (user_id, text) = (None, None) user_id = prev_message.from_user.id res = message.text.split(None, 1) if len(res) < 2: (user_id, text) = (user_id, '') (user_id, text) = (user_id, res[1]) else: return (None, None) try: message.bot.get_chat(user_id) except BadRequest as excp: if excp.message in ('User_id_invalid', 'Chat not found') and (not str(user_id).isdigit()): message.reply_text("I don't seem to have interacted with this user before - please forward messages fromthem to give me control! (Like a voodoo doll, I need a piece to be able toto execute certain commands ...)") return (None, None) elif excp.message != 'Chat not found': LOGGER.exception('Exception %s on user %s', excp.message, user_id) return (None, None) elif not str(user_id).isdigit(): return (None, None) return (user_id, text)
CinderellaProBot
positive
@bp.route('/reset', methods=['POST'], defaults={'target': 'all'}) @bp.route('/reset/<string:target>', methods=['POST']) def http_reset(target): try: <DeepExtract> message_uuid = str(uuid.uuid4()) formatted_message = json.dumps({'job': 'reset', 'target': target, 'body': body, 'request_method': request.method, 'message_uuid': message_uuid}) self.redis_connector.message_connection.publish(self.redis_connector.servers_channel, formatted_message) self.logger.info('Published {}'.format(formatted_message)) message_uuid = message_uuid </DeepExtract> return Response(json.dumps(gather_response('reset', message_uuid=message_uuid, response_number_target=0 if target == 'all' else 1)), mimetype='application/json', status=200) except Exception as e: self.logger.error(e) return Response(INTERNAL_ERROR_RESPONSE, mimetype='application/json', status=500)
@bp.route('/reset', methods=['POST'], defaults={'target': 'all'}) @bp.route('/reset/<string:target>', methods=['POST']) def http_reset(target): try: message_uuid = str(uuid.uuid4()) formatted_message = json.dumps({'job': 'reset', 'target': target, 'body': body, 'request_method': request.method, 'message_uuid': message_uuid}) self.redis_connector.message_connection.publish(self.redis_connector.servers_channel, formatted_message) self.logger.info('Published {}'.format(formatted_message)) message_uuid = message_uuid return Response(json.dumps(gather_response('reset', message_uuid=message_uuid, response_number_target=0 if target == 'all' else 1)), mimetype='application/json', status=200) except Exception as e: self.logger.error(e) return Response(INTERNAL_ERROR_RESPONSE, mimetype='application/json', status=500)
eventgen
positive
def __getitem__(self, index): index = self.indices[index] hyp = self.hyp mosaic = self.mosaic and random.random() < hyp['mosaic'] if mosaic: <DeepExtract> labels4 = [] s = self.img_size (yc, xc) = [int(random.uniform(-x, 2 * s + x)) for x in self.mosaic_border] indices = [self] + [self.indices[random.randint(0, self.n - 1)] for _ in range(3)] for (i, self) in enumerate(indices): (img, _, (h, w)) = load_image(self, self) if i == 0: img4 = np.full((s * 2, s * 2, img.shape[2]), 114, dtype=np.uint8) (x1a, y1a, x2a, y2a) = (max(xc - w, 0), max(yc - h, 0), xc, yc) (x1b, y1b, x2b, y2b) = (w - (x2a - x1a), h - (y2a - y1a), w, h) elif i == 1: (x1a, y1a, x2a, y2a) = (xc, max(yc - h, 0), min(xc + w, s * 2), yc) (x1b, y1b, x2b, y2b) = (0, h - (y2a - y1a), min(w, x2a - x1a), h) elif i == 2: (x1a, y1a, x2a, y2a) = (max(xc - w, 0), yc, xc, min(s * 2, yc + h)) (x1b, y1b, x2b, y2b) = (w - (x2a - x1a), 0, w, min(y2a - y1a, h)) elif i == 3: (x1a, y1a, x2a, y2a) = (xc, yc, min(xc + w, s * 2), min(s * 2, yc + h)) (x1b, y1b, x2b, y2b) = (0, 0, min(w, x2a - x1a), min(y2a - y1a, h)) img4[y1a:y2a, x1a:x2a] = img[y1b:y2b, x1b:x2b] padw = x1a - x1b padh = y1a - y1b x = self.labels[self] labels = x.copy() if x.size > 0: labels[:, 1] = w * (x[:, 1] - x[:, 3] / 2) + padw labels[:, 2] = h * (x[:, 2] - x[:, 4] / 2) + padh labels[:, 3] = w * (x[:, 1] + x[:, 3] / 2) + padw labels[:, 4] = h * (x[:, 2] + x[:, 4] / 2) + padh labels4.append(labels) if len(labels4): labels4 = np.concatenate(labels4, 0) np.clip(labels4[:, 1:], 0, 2 * s, out=labels4[:, 1:]) (img4, labels4) = random_perspective(img4, labels4, degrees=self.hyp['degrees'], translate=self.hyp['translate'], scale=self.hyp['scale'], shear=self.hyp['shear'], perspective=self.hyp['perspective'], border=self.mosaic_border) (img, labels) = (img4, labels4) </DeepExtract> shapes = None if random.random() < hyp['mixup']: <DeepExtract> labels4 = [] s = self.img_size (yc, xc) = [int(random.uniform(-x, 2 * s + x)) for x in self.mosaic_border] indices = [self] + [self.indices[random.randint(0, self.n - 1)] for _ in range(3)] for (i, self) in enumerate(indices): (img, _, (h, w)) = load_image(self, self) if i == 0: img4 = np.full((s * 2, s * 2, img.shape[2]), 114, dtype=np.uint8) (x1a, y1a, x2a, y2a) = (max(xc - w, 0), max(yc - h, 0), xc, yc) (x1b, y1b, x2b, y2b) = (w - (x2a - x1a), h - (y2a - y1a), w, h) elif i == 1: (x1a, y1a, x2a, y2a) = (xc, max(yc - h, 0), min(xc + w, s * 2), yc) (x1b, y1b, x2b, y2b) = (0, h - (y2a - y1a), min(w, x2a - x1a), h) elif i == 2: (x1a, y1a, x2a, y2a) = (max(xc - w, 0), yc, xc, min(s * 2, yc + h)) (x1b, y1b, x2b, y2b) = (w - (x2a - x1a), 0, w, min(y2a - y1a, h)) elif i == 3: (x1a, y1a, x2a, y2a) = (xc, yc, min(xc + w, s * 2), min(s * 2, yc + h)) (x1b, y1b, x2b, y2b) = (0, 0, min(w, x2a - x1a), min(y2a - y1a, h)) img4[y1a:y2a, x1a:x2a] = img[y1b:y2b, x1b:x2b] padw = x1a - x1b padh = y1a - y1b x = self.labels[self] labels = x.copy() if x.size > 0: labels[:, 1] = w * (x[:, 1] - x[:, 3] / 2) + padw labels[:, 2] = h * (x[:, 2] - x[:, 4] / 2) + padh labels[:, 3] = w * (x[:, 1] + x[:, 3] / 2) + padw labels[:, 4] = h * (x[:, 2] + x[:, 4] / 2) + padh labels4.append(labels) if len(labels4): labels4 = np.concatenate(labels4, 0) np.clip(labels4[:, 1:], 0, 2 * s, out=labels4[:, 1:]) (img4, labels4) = random_perspective(img4, labels4, degrees=self.hyp['degrees'], translate=self.hyp['translate'], scale=self.hyp['scale'], shear=self.hyp['shear'], perspective=self.hyp['perspective'], border=self.mosaic_border) (img2, labels2) = (img4, labels4) </DeepExtract> r = np.random.beta(8.0, 8.0) img = (img * r + img2 * (1 - r)).astype(np.uint8) labels = np.concatenate((labels, labels2), 0) else: <DeepExtract> img = self.imgs[self] if img is None: path = self.img_files[self] img = cv2.imread(path) assert img is not None, 'Image Not Found ' + path (h0, w0) = img.shape[:2] r = self.img_size / max(h0, w0) if r != 1: interp = cv2.INTER_AREA if r < 1 and (not self.augment) else cv2.INTER_LINEAR img = cv2.resize(img, (int(w0 * r), int(h0 * r)), interpolation=interp) (img, (h0, w0), (h, w)) = (img, (h0, w0), img.shape[:2]) else: (img, (h0, w0), (h, w)) = (self.imgs[self], self.img_hw0[self], self.img_hw[self]) </DeepExtract> shape = self.batch_shapes[self.batch[index]] if self.rect else self.img_size <DeepExtract> shape = img.shape[:2] if isinstance(shape, int): shape = (shape, shape) r = min(shape[0] / shape[0], shape[1] / shape[1]) if not self.augment: r = min(r, 1.0) ratio = (r, r) new_unpad = (int(round(shape[1] * r)), int(round(shape[0] * r))) (dw, dh) = (shape[1] - new_unpad[0], shape[0] - new_unpad[1]) if False: (dw, dh) = (np.mod(dw, 32), np.mod(dh, 32)) elif scaleFill: (dw, dh) = (0.0, 0.0) new_unpad = (shape[1], shape[0]) ratio = (shape[1] / shape[1], shape[0] / shape[0]) dw /= 2 dh /= 2 if shape[::-1] != new_unpad: img = cv2.resize(img, new_unpad, interpolation=cv2.INTER_LINEAR) (top, bottom) = (int(round(dh - 0.1)), int(round(dh + 0.1))) (left, right) = (int(round(dw - 0.1)), int(round(dw + 0.1))) img = cv2.copyMakeBorder(img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color) (img, ratio, pad) = (img, ratio, (dw, dh)) </DeepExtract> shapes = ((h0, w0), ((h / h0, w / w0), pad)) labels = [] x = self.labels[index] if x.size > 0: labels = x.copy() labels[:, 1] = ratio[0] * w * (x[:, 1] - x[:, 3] / 2) + pad[0] labels[:, 2] = ratio[1] * h * (x[:, 2] - x[:, 4] / 2) + pad[1] labels[:, 3] = ratio[0] * w * (x[:, 1] + x[:, 3] / 2) + pad[0] labels[:, 4] = ratio[1] * h * (x[:, 2] + x[:, 4] / 2) + pad[1] if self.augment: if not mosaic: <DeepExtract> height = img.shape[0] + border[0] * 2 width = img.shape[1] + border[1] * 2 C = np.eye(3) C[0, 2] = -img.shape[1] / 2 C[1, 2] = -img.shape[0] / 2 P = np.eye(3) P[2, 0] = random.uniform(-hyp['perspective'], hyp['perspective']) P[2, 1] = random.uniform(-hyp['perspective'], hyp['perspective']) R = np.eye(3) a = random.uniform(-hyp['degrees'], hyp['degrees']) s = random.uniform(1 - hyp['scale'], 1 + hyp['scale']) R[:2] = cv2.getRotationMatrix2D(angle=a, center=(0, 0), scale=s) S = np.eye(3) S[0, 1] = math.tan(random.uniform(-hyp['shear'], hyp['shear']) * math.pi / 180) S[1, 0] = math.tan(random.uniform(-hyp['shear'], hyp['shear']) * math.pi / 180) T = np.eye(3) T[0, 2] = random.uniform(0.5 - hyp['translate'], 0.5 + hyp['translate']) * width T[1, 2] = random.uniform(0.5 - hyp['translate'], 0.5 + hyp['translate']) * height M = T @ S @ R @ P @ C if border[0] != 0 or border[1] != 0 or (M != np.eye(3)).any(): if hyp['perspective']: img = cv2.warpPerspective(img, M, dsize=(width, height), borderValue=(114, 114, 114)) else: img = cv2.warpAffine(img, M[:2], dsize=(width, height), borderValue=(114, 114, 114)) n = len(labels) if n: xy = np.ones((n * 4, 3)) xy[:, :2] = labels[:, [1, 2, 3, 4, 1, 4, 3, 2]].reshape(n * 4, 2) xy = xy @ M.T if hyp['perspective']: xy = (xy[:, :2] / xy[:, 2:3]).reshape(n, 8) else: xy = xy[:, :2].reshape(n, 8) x = xy[:, [0, 2, 4, 6]] y = xy[:, [1, 3, 5, 7]] xy = np.concatenate((x.min(1), y.min(1), x.max(1), y.max(1))).reshape(4, n).T xy[:, [0, 2]] = xy[:, [0, 2]].clip(0, width) xy[:, [1, 3]] = xy[:, [1, 3]].clip(0, height) i = box_candidates(box1=labels[:, 1:5].T * s, box2=xy.T) labels = labels[i] labels[:, 1:5] = xy[i] (img, labels) = (img, labels) </DeepExtract> <DeepExtract> r = np.random.uniform(-1, 1, 3) * [hyp['hsv_h'], hyp['hsv_s'], hyp['hsv_v']] + 1 (hue, sat, val) = cv2.split(cv2.cvtColor(img, cv2.COLOR_BGR2HSV)) dtype = img.dtype x = np.arange(0, 256, dtype=np.int16) lut_hue = (x * r[0] % 180).astype(dtype) lut_sat = np.clip(x * r[1], 0, 255).astype(dtype) lut_val = np.clip(x * r[2], 0, 255).astype(dtype) img_hsv = cv2.merge((cv2.LUT(hue, lut_hue), cv2.LUT(sat, lut_sat), cv2.LUT(val, lut_val))).astype(dtype) cv2.cvtColor(img_hsv, cv2.COLOR_HSV2BGR, dst=img) </DeepExtract> nL = len(labels) if nL: labels[:, 1:5] = xyxy2xywh(labels[:, 1:5]) labels[:, [2, 4]] /= img.shape[0] labels[:, [1, 3]] /= img.shape[1] if self.augment: if random.random() < hyp['flipud']: img = np.flipud(img) if nL: labels[:, 2] = 1 - labels[:, 2] if random.random() < hyp['fliplr']: img = np.fliplr(img) if nL: labels[:, 1] = 1 - labels[:, 1] labels_out = torch.zeros((nL, 6)) if nL: labels_out[:, 1:] = torch.from_numpy(labels) img = img[:, :, ::-1].transpose(2, 0, 1) img = np.ascontiguousarray(img) return (torch.from_numpy(img), labels_out, self.img_files[index], shapes)
def __getitem__(self, index): index = self.indices[index] hyp = self.hyp mosaic = self.mosaic and random.random() < hyp['mosaic'] if mosaic: labels4 = [] s = self.img_size (yc, xc) = [int(random.uniform(-x, 2 * s + x)) for x in self.mosaic_border] indices = [self] + [self.indices[random.randint(0, self.n - 1)] for _ in range(3)] for (i, self) in enumerate(indices): (img, _, (h, w)) = load_image(self, self) if i == 0: img4 = np.full((s * 2, s * 2, img.shape[2]), 114, dtype=np.uint8) (x1a, y1a, x2a, y2a) = (max(xc - w, 0), max(yc - h, 0), xc, yc) (x1b, y1b, x2b, y2b) = (w - (x2a - x1a), h - (y2a - y1a), w, h) elif i == 1: (x1a, y1a, x2a, y2a) = (xc, max(yc - h, 0), min(xc + w, s * 2), yc) (x1b, y1b, x2b, y2b) = (0, h - (y2a - y1a), min(w, x2a - x1a), h) elif i == 2: (x1a, y1a, x2a, y2a) = (max(xc - w, 0), yc, xc, min(s * 2, yc + h)) (x1b, y1b, x2b, y2b) = (w - (x2a - x1a), 0, w, min(y2a - y1a, h)) elif i == 3: (x1a, y1a, x2a, y2a) = (xc, yc, min(xc + w, s * 2), min(s * 2, yc + h)) (x1b, y1b, x2b, y2b) = (0, 0, min(w, x2a - x1a), min(y2a - y1a, h)) img4[y1a:y2a, x1a:x2a] = img[y1b:y2b, x1b:x2b] padw = x1a - x1b padh = y1a - y1b x = self.labels[self] labels = x.copy() if x.size > 0: labels[:, 1] = w * (x[:, 1] - x[:, 3] / 2) + padw labels[:, 2] = h * (x[:, 2] - x[:, 4] / 2) + padh labels[:, 3] = w * (x[:, 1] + x[:, 3] / 2) + padw labels[:, 4] = h * (x[:, 2] + x[:, 4] / 2) + padh labels4.append(labels) if len(labels4): labels4 = np.concatenate(labels4, 0) np.clip(labels4[:, 1:], 0, 2 * s, out=labels4[:, 1:]) (img4, labels4) = random_perspective(img4, labels4, degrees=self.hyp['degrees'], translate=self.hyp['translate'], scale=self.hyp['scale'], shear=self.hyp['shear'], perspective=self.hyp['perspective'], border=self.mosaic_border) (img, labels) = (img4, labels4) shapes = None if random.random() < hyp['mixup']: labels4 = [] s = self.img_size (yc, xc) = [int(random.uniform(-x, 2 * s + x)) for x in self.mosaic_border] indices = [self] + [self.indices[random.randint(0, self.n - 1)] for _ in range(3)] for (i, self) in enumerate(indices): (img, _, (h, w)) = load_image(self, self) if i == 0: img4 = np.full((s * 2, s * 2, img.shape[2]), 114, dtype=np.uint8) (x1a, y1a, x2a, y2a) = (max(xc - w, 0), max(yc - h, 0), xc, yc) (x1b, y1b, x2b, y2b) = (w - (x2a - x1a), h - (y2a - y1a), w, h) elif i == 1: (x1a, y1a, x2a, y2a) = (xc, max(yc - h, 0), min(xc + w, s * 2), yc) (x1b, y1b, x2b, y2b) = (0, h - (y2a - y1a), min(w, x2a - x1a), h) elif i == 2: (x1a, y1a, x2a, y2a) = (max(xc - w, 0), yc, xc, min(s * 2, yc + h)) (x1b, y1b, x2b, y2b) = (w - (x2a - x1a), 0, w, min(y2a - y1a, h)) elif i == 3: (x1a, y1a, x2a, y2a) = (xc, yc, min(xc + w, s * 2), min(s * 2, yc + h)) (x1b, y1b, x2b, y2b) = (0, 0, min(w, x2a - x1a), min(y2a - y1a, h)) img4[y1a:y2a, x1a:x2a] = img[y1b:y2b, x1b:x2b] padw = x1a - x1b padh = y1a - y1b x = self.labels[self] labels = x.copy() if x.size > 0: labels[:, 1] = w * (x[:, 1] - x[:, 3] / 2) + padw labels[:, 2] = h * (x[:, 2] - x[:, 4] / 2) + padh labels[:, 3] = w * (x[:, 1] + x[:, 3] / 2) + padw labels[:, 4] = h * (x[:, 2] + x[:, 4] / 2) + padh labels4.append(labels) if len(labels4): labels4 = np.concatenate(labels4, 0) np.clip(labels4[:, 1:], 0, 2 * s, out=labels4[:, 1:]) (img4, labels4) = random_perspective(img4, labels4, degrees=self.hyp['degrees'], translate=self.hyp['translate'], scale=self.hyp['scale'], shear=self.hyp['shear'], perspective=self.hyp['perspective'], border=self.mosaic_border) (img2, labels2) = (img4, labels4) r = np.random.beta(8.0, 8.0) img = (img * r + img2 * (1 - r)).astype(np.uint8) labels = np.concatenate((labels, labels2), 0) else: img = self.imgs[self] if img is None: path = self.img_files[self] img = cv2.imread(path) assert img is not None, 'Image Not Found ' + path (h0, w0) = img.shape[:2] r = self.img_size / max(h0, w0) if r != 1: interp = cv2.INTER_AREA if r < 1 and (not self.augment) else cv2.INTER_LINEAR img = cv2.resize(img, (int(w0 * r), int(h0 * r)), interpolation=interp) (img, (h0, w0), (h, w)) = (img, (h0, w0), img.shape[:2]) else: (img, (h0, w0), (h, w)) = (self.imgs[self], self.img_hw0[self], self.img_hw[self]) shape = self.batch_shapes[self.batch[index]] if self.rect else self.img_size shape = img.shape[:2] if isinstance(shape, int): shape = (shape, shape) r = min(shape[0] / shape[0], shape[1] / shape[1]) if not self.augment: r = min(r, 1.0) ratio = (r, r) new_unpad = (int(round(shape[1] * r)), int(round(shape[0] * r))) (dw, dh) = (shape[1] - new_unpad[0], shape[0] - new_unpad[1]) if False: (dw, dh) = (np.mod(dw, 32), np.mod(dh, 32)) elif scaleFill: (dw, dh) = (0.0, 0.0) new_unpad = (shape[1], shape[0]) ratio = (shape[1] / shape[1], shape[0] / shape[0]) dw /= 2 dh /= 2 if shape[::-1] != new_unpad: img = cv2.resize(img, new_unpad, interpolation=cv2.INTER_LINEAR) (top, bottom) = (int(round(dh - 0.1)), int(round(dh + 0.1))) (left, right) = (int(round(dw - 0.1)), int(round(dw + 0.1))) img = cv2.copyMakeBorder(img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color) (img, ratio, pad) = (img, ratio, (dw, dh)) shapes = ((h0, w0), ((h / h0, w / w0), pad)) labels = [] x = self.labels[index] if x.size > 0: labels = x.copy() labels[:, 1] = ratio[0] * w * (x[:, 1] - x[:, 3] / 2) + pad[0] labels[:, 2] = ratio[1] * h * (x[:, 2] - x[:, 4] / 2) + pad[1] labels[:, 3] = ratio[0] * w * (x[:, 1] + x[:, 3] / 2) + pad[0] labels[:, 4] = ratio[1] * h * (x[:, 2] + x[:, 4] / 2) + pad[1] if self.augment: if not mosaic: height = img.shape[0] + border[0] * 2 width = img.shape[1] + border[1] * 2 C = np.eye(3) C[0, 2] = -img.shape[1] / 2 C[1, 2] = -img.shape[0] / 2 P = np.eye(3) P[2, 0] = random.uniform(-hyp['perspective'], hyp['perspective']) P[2, 1] = random.uniform(-hyp['perspective'], hyp['perspective']) R = np.eye(3) a = random.uniform(-hyp['degrees'], hyp['degrees']) s = random.uniform(1 - hyp['scale'], 1 + hyp['scale']) R[:2] = cv2.getRotationMatrix2D(angle=a, center=(0, 0), scale=s) S = np.eye(3) S[0, 1] = math.tan(random.uniform(-hyp['shear'], hyp['shear']) * math.pi / 180) S[1, 0] = math.tan(random.uniform(-hyp['shear'], hyp['shear']) * math.pi / 180) T = np.eye(3) T[0, 2] = random.uniform(0.5 - hyp['translate'], 0.5 + hyp['translate']) * width T[1, 2] = random.uniform(0.5 - hyp['translate'], 0.5 + hyp['translate']) * height M = T @ S @ R @ P @ C if border[0] != 0 or border[1] != 0 or (M != np.eye(3)).any(): if hyp['perspective']: img = cv2.warpPerspective(img, M, dsize=(width, height), borderValue=(114, 114, 114)) else: img = cv2.warpAffine(img, M[:2], dsize=(width, height), borderValue=(114, 114, 114)) n = len(labels) if n: xy = np.ones((n * 4, 3)) xy[:, :2] = labels[:, [1, 2, 3, 4, 1, 4, 3, 2]].reshape(n * 4, 2) xy = xy @ M.T if hyp['perspective']: xy = (xy[:, :2] / xy[:, 2:3]).reshape(n, 8) else: xy = xy[:, :2].reshape(n, 8) x = xy[:, [0, 2, 4, 6]] y = xy[:, [1, 3, 5, 7]] xy = np.concatenate((x.min(1), y.min(1), x.max(1), y.max(1))).reshape(4, n).T xy[:, [0, 2]] = xy[:, [0, 2]].clip(0, width) xy[:, [1, 3]] = xy[:, [1, 3]].clip(0, height) i = box_candidates(box1=labels[:, 1:5].T * s, box2=xy.T) labels = labels[i] labels[:, 1:5] = xy[i] (img, labels) = (img, labels) r = np.random.uniform(-1, 1, 3) * [hyp['hsv_h'], hyp['hsv_s'], hyp['hsv_v']] + 1 (hue, sat, val) = cv2.split(cv2.cvtColor(img, cv2.COLOR_BGR2HSV)) dtype = img.dtype x = np.arange(0, 256, dtype=np.int16) lut_hue = (x * r[0] % 180).astype(dtype) lut_sat = np.clip(x * r[1], 0, 255).astype(dtype) lut_val = np.clip(x * r[2], 0, 255).astype(dtype) img_hsv = cv2.merge((cv2.LUT(hue, lut_hue), cv2.LUT(sat, lut_sat), cv2.LUT(val, lut_val))).astype(dtype) cv2.cvtColor(img_hsv, cv2.COLOR_HSV2BGR, dst=img) nL = len(labels) if nL: labels[:, 1:5] = xyxy2xywh(labels[:, 1:5]) labels[:, [2, 4]] /= img.shape[0] labels[:, [1, 3]] /= img.shape[1] if self.augment: if random.random() < hyp['flipud']: img = np.flipud(img) if nL: labels[:, 2] = 1 - labels[:, 2] if random.random() < hyp['fliplr']: img = np.fliplr(img) if nL: labels[:, 1] = 1 - labels[:, 1] labels_out = torch.zeros((nL, 6)) if nL: labels_out[:, 1:] = torch.from_numpy(labels) img = img[:, :, ::-1].transpose(2, 0, 1) img = np.ascontiguousarray(img) return (torch.from_numpy(img), labels_out, self.img_files[index], shapes)
Auto_maker
positive
def main(): parser = argparse.ArgumentParser() parser.add_argument('--input_file', default=None, type=str, required=True) parser.add_argument('--vocab_file', default=None, type=str, required=True, help='The vocabulary file that the BERT model was trained on.') parser.add_argument('--output_file', default=None, type=str, required=True) parser.add_argument('--bert_config_file', default=None, type=str, required=True, help='The config json file corresponding to the pre-trained BERT model. This specifies the model architecture.') parser.add_argument('--init_checkpoint', default=None, type=str, required=True, help='Initial checkpoint (usually from a pre-trained BERT model).') parser.add_argument('--layers', default='-1,-2,-3,-4', type=str) parser.add_argument('--max_seq_length', default=128, type=int, help='The maximum total input sequence length after WordPiece tokenization. Sequences longer than this will be truncated, and sequences shorter than this will be padded.') parser.add_argument('--do_lower_case', default=True, action='store_true', help='Whether to lower case the input text. Should be True for uncased models and False for cased models.') parser.add_argument('--batch_size', default=32, type=int, help='Batch size for predictions.') parser.add_argument('--local_rank', type=int, default=-1, help='local_rank for distributed training on gpus') args = parser.parse_args() if args.local_rank == -1 or args.no_cuda: device = torch.device('cuda' if torch.cuda.is_available() and (not args.no_cuda) else 'cpu') n_gpu = torch.cuda.device_count() else: device = torch.device('cuda', args.local_rank) n_gpu = 1 torch.distributed.init_process_group(backend='nccl') logger.info('device', device, 'n_gpu', n_gpu, 'distributed training', bool(args.local_rank != -1)) layer_indexes = [int(x) for x in args.layers.split(',')] bert_config = BertConfig.from_json_file(args.bert_config_file) tokenizer = tokenization.FullTokenizer(vocab_file=args.vocab_file, do_lower_case=args.do_lower_case) <DeepExtract> examples = [] unique_id = 0 with open(args.input_file, 'r') as reader: while True: line = tokenization.convert_to_unicode(reader.readline()) if not line: break line = line.strip() text_a = None text_b = None m = re.match('^(.*) \\|\\|\\| (.*)$', line) if m is None: text_a = line else: text_a = m.group(1) text_b = m.group(2) examples.append(InputExample(unique_id=unique_id, text_a=text_a, text_b=text_b)) unique_id += 1 examples = examples </DeepExtract> <DeepExtract> features = [] for (ex_index, example) in enumerate(examples): tokens_a = tokenizer.tokenize(example.text_a) tokens_b = None if example.text_b: tokens_b = tokenizer.tokenize(example.text_b) if tokens_b: _truncate_seq_pair(tokens_a, tokens_b, args.max_seq_length - 3) elif len(tokens_a) > args.max_seq_length - 2: tokens_a = tokens_a[0:args.max_seq_length - 2] tokens = [] input_type_ids = [] tokens.append('[CLS]') input_type_ids.append(0) for token in tokens_a: tokens.append(token) input_type_ids.append(0) tokens.append('[SEP]') input_type_ids.append(0) if tokens_b: for token in tokens_b: tokens.append(token) input_type_ids.append(1) tokens.append('[SEP]') input_type_ids.append(1) input_ids = tokenizer.convert_tokens_to_ids(tokens) input_mask = [1] * len(input_ids) while len(input_ids) < args.max_seq_length: input_ids.append(0) input_mask.append(0) input_type_ids.append(0) assert len(input_ids) == args.max_seq_length assert len(input_mask) == args.max_seq_length assert len(input_type_ids) == args.max_seq_length if ex_index < 5: logger.info('*** Example ***') logger.info('unique_id: %s' % example.unique_id) logger.info('tokens: %s' % ' '.join([str(x) for x in tokens])) logger.info('input_ids: %s' % ' '.join([str(x) for x in input_ids])) logger.info('input_mask: %s' % ' '.join([str(x) for x in input_mask])) logger.info('input_type_ids: %s' % ' '.join([str(x) for x in input_type_ids])) features.append(InputFeatures(unique_id=example.unique_id, tokens=tokens, input_ids=input_ids, input_mask=input_mask, input_type_ids=input_type_ids)) features = features </DeepExtract> unique_id_to_feature = {} for feature in features: unique_id_to_feature[feature.unique_id] = feature model = BertModel(bert_config) if args.init_checkpoint is not None: model.load_state_dict(torch.load(args.init_checkpoint, map_location='cpu')) model.to(device) if args.local_rank != -1: model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank], output_device=args.local_rank) elif n_gpu > 1: model = torch.nn.DataParallel(model) all_input_ids = torch.tensor([f.input_ids for f in features], dtype=torch.long) all_input_mask = torch.tensor([f.input_mask for f in features], dtype=torch.long) all_example_index = torch.arange(all_input_ids.size(0), dtype=torch.long) eval_data = TensorDataset(all_input_ids, all_input_mask, all_example_index) if args.local_rank == -1: eval_sampler = SequentialSampler(eval_data) else: eval_sampler = DistributedSampler(eval_data) eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=args.batch_size) model.eval() with open(args.output_file, 'w', encoding='utf-8') as writer: for (input_ids, input_mask, example_indices) in eval_dataloader: input_ids = input_ids.to(device) input_mask = input_mask.to(device) (all_encoder_layers, _) = model(input_ids, token_type_ids=None, attention_mask=input_mask) all_encoder_layers = all_encoder_layers for (b, example_index) in enumerate(example_indices): feature = features[example_index.item()] unique_id = int(feature.unique_id) output_json = collections.OrderedDict() output_json['linex_index'] = unique_id all_out_features = [] for (i, token) in enumerate(feature.tokens): all_layers = [] for (j, layer_index) in enumerate(layer_indexes): layer_output = all_encoder_layers[int(layer_index)].detach().cpu().numpy() layer_output = layer_output[b] layers = collections.OrderedDict() layers['index'] = layer_index layers['values'] = [round(x.item(), 6) for x in layer_output[i]] all_layers.append(layers) out_features = collections.OrderedDict() out_features['token'] = token out_features['layers'] = all_layers all_out_features.append(out_features) output_json['features'] = all_out_features writer.write(json.dumps(output_json) + '\n')
def main(): parser = argparse.ArgumentParser() parser.add_argument('--input_file', default=None, type=str, required=True) parser.add_argument('--vocab_file', default=None, type=str, required=True, help='The vocabulary file that the BERT model was trained on.') parser.add_argument('--output_file', default=None, type=str, required=True) parser.add_argument('--bert_config_file', default=None, type=str, required=True, help='The config json file corresponding to the pre-trained BERT model. This specifies the model architecture.') parser.add_argument('--init_checkpoint', default=None, type=str, required=True, help='Initial checkpoint (usually from a pre-trained BERT model).') parser.add_argument('--layers', default='-1,-2,-3,-4', type=str) parser.add_argument('--max_seq_length', default=128, type=int, help='The maximum total input sequence length after WordPiece tokenization. Sequences longer than this will be truncated, and sequences shorter than this will be padded.') parser.add_argument('--do_lower_case', default=True, action='store_true', help='Whether to lower case the input text. Should be True for uncased models and False for cased models.') parser.add_argument('--batch_size', default=32, type=int, help='Batch size for predictions.') parser.add_argument('--local_rank', type=int, default=-1, help='local_rank for distributed training on gpus') args = parser.parse_args() if args.local_rank == -1 or args.no_cuda: device = torch.device('cuda' if torch.cuda.is_available() and (not args.no_cuda) else 'cpu') n_gpu = torch.cuda.device_count() else: device = torch.device('cuda', args.local_rank) n_gpu = 1 torch.distributed.init_process_group(backend='nccl') logger.info('device', device, 'n_gpu', n_gpu, 'distributed training', bool(args.local_rank != -1)) layer_indexes = [int(x) for x in args.layers.split(',')] bert_config = BertConfig.from_json_file(args.bert_config_file) tokenizer = tokenization.FullTokenizer(vocab_file=args.vocab_file, do_lower_case=args.do_lower_case) examples = [] unique_id = 0 with open(args.input_file, 'r') as reader: while True: line = tokenization.convert_to_unicode(reader.readline()) if not line: break line = line.strip() text_a = None text_b = None m = re.match('^(.*) \\|\\|\\| (.*)$', line) if m is None: text_a = line else: text_a = m.group(1) text_b = m.group(2) examples.append(InputExample(unique_id=unique_id, text_a=text_a, text_b=text_b)) unique_id += 1 examples = examples features = [] for (ex_index, example) in enumerate(examples): tokens_a = tokenizer.tokenize(example.text_a) tokens_b = None if example.text_b: tokens_b = tokenizer.tokenize(example.text_b) if tokens_b: _truncate_seq_pair(tokens_a, tokens_b, args.max_seq_length - 3) elif len(tokens_a) > args.max_seq_length - 2: tokens_a = tokens_a[0:args.max_seq_length - 2] tokens = [] input_type_ids = [] tokens.append('[CLS]') input_type_ids.append(0) for token in tokens_a: tokens.append(token) input_type_ids.append(0) tokens.append('[SEP]') input_type_ids.append(0) if tokens_b: for token in tokens_b: tokens.append(token) input_type_ids.append(1) tokens.append('[SEP]') input_type_ids.append(1) input_ids = tokenizer.convert_tokens_to_ids(tokens) input_mask = [1] * len(input_ids) while len(input_ids) < args.max_seq_length: input_ids.append(0) input_mask.append(0) input_type_ids.append(0) assert len(input_ids) == args.max_seq_length assert len(input_mask) == args.max_seq_length assert len(input_type_ids) == args.max_seq_length if ex_index < 5: logger.info('*** Example ***') logger.info('unique_id: %s' % example.unique_id) logger.info('tokens: %s' % ' '.join([str(x) for x in tokens])) logger.info('input_ids: %s' % ' '.join([str(x) for x in input_ids])) logger.info('input_mask: %s' % ' '.join([str(x) for x in input_mask])) logger.info('input_type_ids: %s' % ' '.join([str(x) for x in input_type_ids])) features.append(InputFeatures(unique_id=example.unique_id, tokens=tokens, input_ids=input_ids, input_mask=input_mask, input_type_ids=input_type_ids)) features = features unique_id_to_feature = {} for feature in features: unique_id_to_feature[feature.unique_id] = feature model = BertModel(bert_config) if args.init_checkpoint is not None: model.load_state_dict(torch.load(args.init_checkpoint, map_location='cpu')) model.to(device) if args.local_rank != -1: model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank], output_device=args.local_rank) elif n_gpu > 1: model = torch.nn.DataParallel(model) all_input_ids = torch.tensor([f.input_ids for f in features], dtype=torch.long) all_input_mask = torch.tensor([f.input_mask for f in features], dtype=torch.long) all_example_index = torch.arange(all_input_ids.size(0), dtype=torch.long) eval_data = TensorDataset(all_input_ids, all_input_mask, all_example_index) if args.local_rank == -1: eval_sampler = SequentialSampler(eval_data) else: eval_sampler = DistributedSampler(eval_data) eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=args.batch_size) model.eval() with open(args.output_file, 'w', encoding='utf-8') as writer: for (input_ids, input_mask, example_indices) in eval_dataloader: input_ids = input_ids.to(device) input_mask = input_mask.to(device) (all_encoder_layers, _) = model(input_ids, token_type_ids=None, attention_mask=input_mask) all_encoder_layers = all_encoder_layers for (b, example_index) in enumerate(example_indices): feature = features[example_index.item()] unique_id = int(feature.unique_id) output_json = collections.OrderedDict() output_json['linex_index'] = unique_id all_out_features = [] for (i, token) in enumerate(feature.tokens): all_layers = [] for (j, layer_index) in enumerate(layer_indexes): layer_output = all_encoder_layers[int(layer_index)].detach().cpu().numpy() layer_output = layer_output[b] layers = collections.OrderedDict() layers['index'] = layer_index layers['values'] = [round(x.item(), 6) for x in layer_output[i]] all_layers.append(layers) out_features = collections.OrderedDict() out_features['token'] = token out_features['layers'] = all_layers all_out_features.append(out_features) output_json['features'] = all_out_features writer.write(json.dumps(output_json) + '\n')
BERT4doc-Classification
positive
def urlopen(self, method, url, redirect=True, **kw): """ Same as :meth:`urllib3.connectionpool.HTTPConnectionPool.urlopen` with custom cross-host redirect logic and only sends the request-uri portion of the ``url``. The given ``url`` parameter must be absolute, such that an appropriate :class:`urllib3.connectionpool.ConnectionPool` can be chosen for it. """ u = parse_url(url) <DeepExtract> if not u.host: raise LocationValueError('No host specified.') u.scheme = u.scheme or 'http' u.port = u.port or port_by_scheme.get(u.scheme, 80) pool_key = (u.scheme, u.host, u.port) with self.pools.lock: pool = self.pools.get(pool_key) if pool: conn = pool pool = self._new_pool(u.scheme, u.host, u.port) self.pools[pool_key] = pool conn = pool </DeepExtract> kw['assert_same_host'] = False kw['redirect'] = False if 'headers' not in kw: kw['headers'] = self.headers if self.proxy is not None and u.scheme == 'http': response = conn.urlopen(method, url, **kw) else: response = conn.urlopen(method, u.request_uri, **kw) redirect_location = redirect and response.get_redirect_location() if not redirect_location: return response redirect_location = urljoin(url, redirect_location) if response.status == 303: method = 'GET' retries = kw.get('retries') if not isinstance(retries, Retry): retries = Retry.from_int(retries, redirect=redirect) kw['retries'] = retries.increment(method, redirect_location) kw['redirect'] = redirect log.info('Redirecting %s -> %s' % (url, redirect_location)) return self.urlopen(method, redirect_location, **kw)
def urlopen(self, method, url, redirect=True, **kw): """ Same as :meth:`urllib3.connectionpool.HTTPConnectionPool.urlopen` with custom cross-host redirect logic and only sends the request-uri portion of the ``url``. The given ``url`` parameter must be absolute, such that an appropriate :class:`urllib3.connectionpool.ConnectionPool` can be chosen for it. """ u = parse_url(url) if not u.host: raise LocationValueError('No host specified.') u.scheme = u.scheme or 'http' u.port = u.port or port_by_scheme.get(u.scheme, 80) pool_key = (u.scheme, u.host, u.port) with self.pools.lock: pool = self.pools.get(pool_key) if pool: conn = pool pool = self._new_pool(u.scheme, u.host, u.port) self.pools[pool_key] = pool conn = pool kw['assert_same_host'] = False kw['redirect'] = False if 'headers' not in kw: kw['headers'] = self.headers if self.proxy is not None and u.scheme == 'http': response = conn.urlopen(method, url, **kw) else: response = conn.urlopen(method, u.request_uri, **kw) redirect_location = redirect and response.get_redirect_location() if not redirect_location: return response redirect_location = urljoin(url, redirect_location) if response.status == 303: method = 'GET' retries = kw.get('retries') if not isinstance(retries, Retry): retries = Retry.from_int(retries, redirect=redirect) kw['retries'] = retries.increment(method, redirect_location) kw['redirect'] = redirect log.info('Redirecting %s -> %s' % (url, redirect_location)) return self.urlopen(method, redirect_location, **kw)
crunchy-xml-decoder
positive
def load(file_or_filename): """Load the configuration from a file. 'file_or_filename' can be either:- a) a filename b) a file-like object that must be open for reading """ <DeepExtract> if isinstance(file_or_filename, str): f = open(file_or_filename, mode) else: f = file_or_filename f = f </DeepExtract> section_name = None section_body = '' for line in f: stripped = line.strip() if stripped.startswith('[') and stripped.endswith(']'): if section_name is not None: <DeepExtract> section = self.setdefault(section_name, {}) exec(section_body, self._namespaces, section) del self._namespaces['__builtins__'] namespace = self._get_namespace(section_name) namespace.__dict__.update(section) </DeepExtract> section_name = stripped[1:-1] section_body = '' elif section_name is not None: section_body += line if section_name is not None: <DeepExtract> section = self.setdefault(section_name, {}) exec(section_body, self._namespaces, section) del self._namespaces['__builtins__'] namespace = self._get_namespace(section_name) namespace.__dict__.update(section) </DeepExtract> f.close()
def load(file_or_filename): """Load the configuration from a file. 'file_or_filename' can be either:- a) a filename b) a file-like object that must be open for reading """ if isinstance(file_or_filename, str): f = open(file_or_filename, mode) else: f = file_or_filename f = f section_name = None section_body = '' for line in f: stripped = line.strip() if stripped.startswith('[') and stripped.endswith(']'): if section_name is not None: section = self.setdefault(section_name, {}) exec(section_body, self._namespaces, section) del self._namespaces['__builtins__'] namespace = self._get_namespace(section_name) namespace.__dict__.update(section) section_name = stripped[1:-1] section_body = '' elif section_name is not None: section_body += line if section_name is not None: section = self.setdefault(section_name, {}) exec(section_body, self._namespaces, section) del self._namespaces['__builtins__'] namespace = self._get_namespace(section_name) namespace.__dict__.update(section) f.close()
apptools
positive
def parse_packet(self, parent: str, payload: bytes) -> None: self.parent = parent if parent == '[SERVER]': self.parentPacket = self.serverPacket elif parent == '[CLIENT]': self.parentPacket = self.clientPacket else: raise Exception if self.parentPacket.packetSize == 0: self.parentPacket.packetSize = int(payload[:4].hex(), 16) - len(payload[4:]) payload = payload[4:] self.parentPacket.data = payload payload = b'' elif len(payload) > self.parentPacket.packetSize: self.parentPacket.data = self.parentPacket.data + payload[:self.parentPacket.packetSize] payload = payload[self.parentPacket.packetSize:] self.parentPacket.packetSize = 0 else: self.parentPacket.packetSize -= len(payload) self.parentPacket.data = self.parentPacket.data + payload payload = b'' if self.parentPacket.packetSize == 0: <DeepExtract> self.packetSize: int = self.parentPacket.packetSize self.data: bytes = self.parentPacket.data self.command: bytes sftp_num: int = self.extract_int(1) packet: str = self.packetLayout[sftp_num] self.prevID: int = self.ID self.ID: int = self.extract_int(4) self.path: bytes = b'' if packet == 'SSH_FXP_OPENDIR': self.path = self.extract_string() elif packet == 'SSH_FXP_REALPATH': self.path = self.extract_string() self.command = b'cd ' + self.path log.msg(parent + '[SFTP] Entered Command: ' + self.command.decode()) elif packet == 'SSH_FXP_OPEN': self.path = self.extract_string() pflags = f'{self.extract_int(4):08b}' if pflags[6] == '1': self.command = b'put ' + self.path self.theFile = b'' elif pflags[7] == '1': self.command = b'get ' + self.path else: log.msg(parent + f'[SFTP] New SFTP pflag detected: {pflags!r} {self.data!r}') log.msg(parent + ' [SFTP] Entered Command: ' + self.command.decode()) elif packet == 'SSH_FXP_READ': pass elif packet == 'SSH_FXP_WRITE': if self.handle == self.extract_string(): self.offset = self.extract_int(8) self.theFile = self.theFile[:self.offset] + self.extract_data() elif packet == 'SSH_FXP_HANDLE': if self.ID == self.prevID: self.handle = self.extract_string() elif packet == 'SSH_FXP_READDIR': if self.handle == self.extract_string(): self.command = b'ls ' + self.path elif packet == 'SSH_FXP_SETSTAT': self.path = self.extract_string() self.command = self.extract_attrs() + b' ' + self.path elif packet == 'SSH_FXP_EXTENDED': cmd = self.extract_string() self.path = self.extract_string() if cmd == b'statvfs@openssh.com': self.command = b'df ' + self.path elif cmd == b'hardlink@openssh.com': self.command = b'ln ' + self.path + b' ' + self.extract_string() elif cmd == b'posix-rename@openssh.com': self.command = b'mv ' + self.path + b' ' + self.extract_string() else: log.msg(parent + f'[SFTP] New SFTP Extended Command detected: {cmd!r} {self.data!r}') elif packet == 'SSH_FXP_EXTENDED_REPLY': log.msg(parent + '[SFTP] Entered Command: ' + self.command.decode()) elif packet == 'SSH_FXP_CLOSE': if self.handle == self.extract_string(): if b'get' in self.command: log.msg(parent + ' [SFTP] Finished Downloading: ' + self.path.decode()) elif b'put' in self.command: log.msg(parent + ' [SFTP] Finished Uploading: ' + self.path.decode()) elif packet == 'SSH_FXP_SYMLINK': self.command = b'ln -s ' + self.extract_string() + b' ' + self.extract_string() elif packet == 'SSH_FXP_MKDIR': self.command = b'mkdir ' + self.extract_string() elif packet == 'SSH_FXP_REMOVE': self.command = b'rm ' + self.extract_string() elif packet == 'SSH_FXP_RMDIR': self.command = b'rmdir ' + self.extract_string() elif packet == 'SSH_FXP_STATUS': if self.ID == self.prevID: code = self.extract_int(4) if code in [0, 1]: if b'get' not in self.command and b'put' not in self.command: log.msg(parent + ' [SFTP] Entered Command: ' + self.command.decode()) else: message = self.extract_string() log.msg(parent + ' [SFTP] Failed Command: ' + self.command.decode() + ' Reason: ' + message.decode()) </DeepExtract> if len(payload) != 0: <DeepExtract> self.parent = parent if parent == '[SERVER]': self.parentPacket = self.serverPacket elif parent == '[CLIENT]': self.parentPacket = self.clientPacket else: raise Exception if self.parentPacket.packetSize == 0: self.parentPacket.packetSize = int(payload[:4].hex(), 16) - len(payload[4:]) payload = payload[4:] self.parentPacket.data = payload payload = b'' elif len(payload) > self.parentPacket.packetSize: self.parentPacket.data = self.parentPacket.data + payload[:self.parentPacket.packetSize] payload = payload[self.parentPacket.packetSize:] self.parentPacket.packetSize = 0 else: self.parentPacket.packetSize -= len(payload) self.parentPacket.data = self.parentPacket.data + payload payload = b'' if self.parentPacket.packetSize == 0: self.handle_packet(parent) if len(payload) != 0: self.parse_packet(parent, payload) </DeepExtract>
def parse_packet(self, parent: str, payload: bytes) -> None: self.parent = parent if parent == '[SERVER]': self.parentPacket = self.serverPacket elif parent == '[CLIENT]': self.parentPacket = self.clientPacket else: raise Exception if self.parentPacket.packetSize == 0: self.parentPacket.packetSize = int(payload[:4].hex(), 16) - len(payload[4:]) payload = payload[4:] self.parentPacket.data = payload payload = b'' elif len(payload) > self.parentPacket.packetSize: self.parentPacket.data = self.parentPacket.data + payload[:self.parentPacket.packetSize] payload = payload[self.parentPacket.packetSize:] self.parentPacket.packetSize = 0 else: self.parentPacket.packetSize -= len(payload) self.parentPacket.data = self.parentPacket.data + payload payload = b'' if self.parentPacket.packetSize == 0: self.packetSize: int = self.parentPacket.packetSize self.data: bytes = self.parentPacket.data self.command: bytes sftp_num: int = self.extract_int(1) packet: str = self.packetLayout[sftp_num] self.prevID: int = self.ID self.ID: int = self.extract_int(4) self.path: bytes = b'' if packet == 'SSH_FXP_OPENDIR': self.path = self.extract_string() elif packet == 'SSH_FXP_REALPATH': self.path = self.extract_string() self.command = b'cd ' + self.path log.msg(parent + '[SFTP] Entered Command: ' + self.command.decode()) elif packet == 'SSH_FXP_OPEN': self.path = self.extract_string() pflags = f'{self.extract_int(4):08b}' if pflags[6] == '1': self.command = b'put ' + self.path self.theFile = b'' elif pflags[7] == '1': self.command = b'get ' + self.path else: log.msg(parent + f'[SFTP] New SFTP pflag detected: {pflags!r} {self.data!r}') log.msg(parent + ' [SFTP] Entered Command: ' + self.command.decode()) elif packet == 'SSH_FXP_READ': pass elif packet == 'SSH_FXP_WRITE': if self.handle == self.extract_string(): self.offset = self.extract_int(8) self.theFile = self.theFile[:self.offset] + self.extract_data() elif packet == 'SSH_FXP_HANDLE': if self.ID == self.prevID: self.handle = self.extract_string() elif packet == 'SSH_FXP_READDIR': if self.handle == self.extract_string(): self.command = b'ls ' + self.path elif packet == 'SSH_FXP_SETSTAT': self.path = self.extract_string() self.command = self.extract_attrs() + b' ' + self.path elif packet == 'SSH_FXP_EXTENDED': cmd = self.extract_string() self.path = self.extract_string() if cmd == b'statvfs@openssh.com': self.command = b'df ' + self.path elif cmd == b'hardlink@openssh.com': self.command = b'ln ' + self.path + b' ' + self.extract_string() elif cmd == b'posix-rename@openssh.com': self.command = b'mv ' + self.path + b' ' + self.extract_string() else: log.msg(parent + f'[SFTP] New SFTP Extended Command detected: {cmd!r} {self.data!r}') elif packet == 'SSH_FXP_EXTENDED_REPLY': log.msg(parent + '[SFTP] Entered Command: ' + self.command.decode()) elif packet == 'SSH_FXP_CLOSE': if self.handle == self.extract_string(): if b'get' in self.command: log.msg(parent + ' [SFTP] Finished Downloading: ' + self.path.decode()) elif b'put' in self.command: log.msg(parent + ' [SFTP] Finished Uploading: ' + self.path.decode()) elif packet == 'SSH_FXP_SYMLINK': self.command = b'ln -s ' + self.extract_string() + b' ' + self.extract_string() elif packet == 'SSH_FXP_MKDIR': self.command = b'mkdir ' + self.extract_string() elif packet == 'SSH_FXP_REMOVE': self.command = b'rm ' + self.extract_string() elif packet == 'SSH_FXP_RMDIR': self.command = b'rmdir ' + self.extract_string() elif packet == 'SSH_FXP_STATUS': if self.ID == self.prevID: code = self.extract_int(4) if code in [0, 1]: if b'get' not in self.command and b'put' not in self.command: log.msg(parent + ' [SFTP] Entered Command: ' + self.command.decode()) else: message = self.extract_string() log.msg(parent + ' [SFTP] Failed Command: ' + self.command.decode() + ' Reason: ' + message.decode()) if len(payload) != 0: self.parent = parent if parent == '[SERVER]': self.parentPacket = self.serverPacket elif parent == '[CLIENT]': self.parentPacket = self.clientPacket else: raise Exception if self.parentPacket.packetSize == 0: self.parentPacket.packetSize = int(payload[:4].hex(), 16) - len(payload[4:]) payload = payload[4:] self.parentPacket.data = payload payload = b'' elif len(payload) > self.parentPacket.packetSize: self.parentPacket.data = self.parentPacket.data + payload[:self.parentPacket.packetSize] payload = payload[self.parentPacket.packetSize:] self.parentPacket.packetSize = 0 else: self.parentPacket.packetSize -= len(payload) self.parentPacket.data = self.parentPacket.data + payload payload = b'' if self.parentPacket.packetSize == 0: self.handle_packet(parent) if len(payload) != 0: self.parse_packet(parent, payload) </DeepExtract>
cowrie
positive
def step(self, actions): if self.terminate_episode: return self.reset() self.current_step += 1 rewards = np.zeros(len(self.ur5_episode_memories)) <DeepExtract> if self.stop_ur5_after_reach: for (i, (action, ur5, target_eef_pose)) in enumerate(zip(actions, self.active_ur5s, self.task_manager.get_target_end_effector_poses())): if self.check_ur5_reached_target(i, ur5, target_eef_pose): action = np.zeros(6) if self.centralized_policy: actions = actions[0] self.ur5_episode_memories[0].add_action(actions) actions = list(torch.split(actions, 6)) else: for (action, m) in zip(actions, self.ur5_episode_memories): m.add_action(action) if self.centralized_critic: for (this_ur5, memory) in zip(self.active_ur5s, self.ur5_episode_memories): pos = np.array(this_ur5.get_pose()[0]) sorted_ur5s = [(action, ur5) for (action, ur5) in zip(actions, self.active_ur5s) if np.linalg.norm(pos - np.array(ur5.get_pose()[0])) < 2 * self.workspace_radius] sorted_ur5s.sort(reverse=True, key=lambda item: np.linalg.norm(pos - np.array(item[1].get_pose()[0]))) sorted_actions = [action for (action, ur5) in sorted_ur5s] sorted_actions[-1] = torch.FloatTensor([0.0] * 6) critic_obs = [] for (obs, action) in zip(memory.data['observations'][-1], sorted_actions): critic_obs.append(torch.cat((obs, action))) memory.data['critic_observations'].append(torch.stack(critic_obs)) if len(memory.data['critic_next_observations']): memory.data['critic_next_observations'][-1] = memory.data['critic_observations'][-1] self.action_to_robots(actions) </DeepExtract> for t_sim in range(self.simulation_steps_per_action_step): p.stepSimulation() for ur5 in self.active_ur5s: ur5.step() <DeepExtract> colliding = any([ur5.check_collision() for ur5 in self.active_ur5s]) if colliding: self.on_collision() self.state = {'ur5s': []} self.state['ur5s'] = [{'end_effector_pose': ur5.get_end_effector_pose(), 'joint_values': ur5.get_arm_joint_values(), 'link_positions': ur5.get_link_global_positions(), 'ur5': ur5, 'pose': ur5.get_pose(), 'colliding': False if not colliding else ur5.check_collision(), 'target_pose': target_eef_pose, 'reached_target': self.check_ur5_reached_target(i, ur5, target_eef_pose)} for (i, (ur5, target_eef_pose)) in enumerate(zip(self.active_ur5s, self.task_manager.get_target_end_effector_poses()))] self.state['reach_count'] = sum([1 if ur5_state['reached_target'] else 0 for ur5_state in self.state['ur5s']]) if self.state['reach_count'] == len(self.active_ur5s): self.on_all_ur5s_reach_target() self.state = self.state </DeepExtract> rewards += self.get_rewards(self.state) <DeepExtract> for (i, ur5) in enumerate(self.active_ur5s): if self.state['ur5s'][i]['colliding']: self.stats['collisions'][i] += +1 self.task_manager.set_timer(self.current_step * self.simulation_steps_per_action_step + t_sim / self.episode_length * self.simulation_steps_per_action_step) </DeepExtract> if self.gui and p.readUserDebugParameter(self.real_time_debug) == 1.0: time.sleep(BaseEnv.SIMULATION_TIMESTEP) rKey = ord('r') keys = p.getKeyboardEvents() if rKey in keys and keys[rKey] & p.KEY_WAS_TRIGGERED: self.terminate_episode = True if self.terminate_episode: break self.terminate_episode = self.terminate_episode or self.current_step >= self.episode_length <DeepExtract> pass </DeepExtract> self.observations = [self.preprocess_obs(o) for o in self.get_observations(state=self.state)] self.episode_reward_sum += rewards for (o, r, m) in zip(self.observations, rewards, self.ur5_episode_memories): m.add_rewards_and_termination(r, self.terminate_episode) m.add_value('next_observations', o) if self.centralized_critic: critic_next_obs = [] for obs in m.data['next_observations'][-1]: critic_next_obs.append(torch.cat((obs, torch.FloatTensor([0.0] * 6)))) m.data['critic_next_observations'].append(torch.stack(critic_next_obs)) if not self.terminate_episode: m.add_observation(o) if self.terminate_episode: <DeepExtract> success = self.stats['collective_reach_count'] if sum(self.stats['collisions']) == 0 else 0 if success != 0: self.on_success() self.failed_in_task = self.stats['collective_reach_count'] == 0 or sum(self.stats['collisions']) != 0 self.send_memory_to_clusters() self.send_stats_to_logger() </DeepExtract> return (self.obs_to_policy(self.observations), self.ray_id)
def step(self, actions): if self.terminate_episode: return self.reset() self.current_step += 1 rewards = np.zeros(len(self.ur5_episode_memories)) if self.stop_ur5_after_reach: for (i, (action, ur5, target_eef_pose)) in enumerate(zip(actions, self.active_ur5s, self.task_manager.get_target_end_effector_poses())): if self.check_ur5_reached_target(i, ur5, target_eef_pose): action = np.zeros(6) if self.centralized_policy: actions = actions[0] self.ur5_episode_memories[0].add_action(actions) actions = list(torch.split(actions, 6)) else: for (action, m) in zip(actions, self.ur5_episode_memories): m.add_action(action) if self.centralized_critic: for (this_ur5, memory) in zip(self.active_ur5s, self.ur5_episode_memories): pos = np.array(this_ur5.get_pose()[0]) sorted_ur5s = [(action, ur5) for (action, ur5) in zip(actions, self.active_ur5s) if np.linalg.norm(pos - np.array(ur5.get_pose()[0])) < 2 * self.workspace_radius] sorted_ur5s.sort(reverse=True, key=lambda item: np.linalg.norm(pos - np.array(item[1].get_pose()[0]))) sorted_actions = [action for (action, ur5) in sorted_ur5s] sorted_actions[-1] = torch.FloatTensor([0.0] * 6) critic_obs = [] for (obs, action) in zip(memory.data['observations'][-1], sorted_actions): critic_obs.append(torch.cat((obs, action))) memory.data['critic_observations'].append(torch.stack(critic_obs)) if len(memory.data['critic_next_observations']): memory.data['critic_next_observations'][-1] = memory.data['critic_observations'][-1] self.action_to_robots(actions) for t_sim in range(self.simulation_steps_per_action_step): p.stepSimulation() for ur5 in self.active_ur5s: ur5.step() colliding = any([ur5.check_collision() for ur5 in self.active_ur5s]) if colliding: self.on_collision() self.state = {'ur5s': []} self.state['ur5s'] = [{'end_effector_pose': ur5.get_end_effector_pose(), 'joint_values': ur5.get_arm_joint_values(), 'link_positions': ur5.get_link_global_positions(), 'ur5': ur5, 'pose': ur5.get_pose(), 'colliding': False if not colliding else ur5.check_collision(), 'target_pose': target_eef_pose, 'reached_target': self.check_ur5_reached_target(i, ur5, target_eef_pose)} for (i, (ur5, target_eef_pose)) in enumerate(zip(self.active_ur5s, self.task_manager.get_target_end_effector_poses()))] self.state['reach_count'] = sum([1 if ur5_state['reached_target'] else 0 for ur5_state in self.state['ur5s']]) if self.state['reach_count'] == len(self.active_ur5s): self.on_all_ur5s_reach_target() self.state = self.state rewards += self.get_rewards(self.state) for (i, ur5) in enumerate(self.active_ur5s): if self.state['ur5s'][i]['colliding']: self.stats['collisions'][i] += +1 self.task_manager.set_timer(self.current_step * self.simulation_steps_per_action_step + t_sim / self.episode_length * self.simulation_steps_per_action_step) if self.gui and p.readUserDebugParameter(self.real_time_debug) == 1.0: time.sleep(BaseEnv.SIMULATION_TIMESTEP) rKey = ord('r') keys = p.getKeyboardEvents() if rKey in keys and keys[rKey] & p.KEY_WAS_TRIGGERED: self.terminate_episode = True if self.terminate_episode: break self.terminate_episode = self.terminate_episode or self.current_step >= self.episode_length pass self.observations = [self.preprocess_obs(o) for o in self.get_observations(state=self.state)] self.episode_reward_sum += rewards for (o, r, m) in zip(self.observations, rewards, self.ur5_episode_memories): m.add_rewards_and_termination(r, self.terminate_episode) m.add_value('next_observations', o) if self.centralized_critic: critic_next_obs = [] for obs in m.data['next_observations'][-1]: critic_next_obs.append(torch.cat((obs, torch.FloatTensor([0.0] * 6)))) m.data['critic_next_observations'].append(torch.stack(critic_next_obs)) if not self.terminate_episode: m.add_observation(o) if self.terminate_episode: success = self.stats['collective_reach_count'] if sum(self.stats['collisions']) == 0 else 0 if success != 0: self.on_success() self.failed_in_task = self.stats['collective_reach_count'] == 0 or sum(self.stats['collisions']) != 0 self.send_memory_to_clusters() self.send_stats_to_logger() return (self.obs_to_policy(self.observations), self.ray_id)
decentralized-multiarm
positive
def regularPolygonWall(self, corners=3, r=None, h=None, side=None, edges='e', hole=None, callback=None, move=None): """Create regular polygon as a wall :param corners: number of corners of the polygon :param r: radius distance center to one of the corners :param h: distance center to one of the sides (height of sector) :param side: length of one side :param edges: (Default value = "e", may be string/list of length corners) :param hole: diameter of central hole (Default value = 0) :param callback: (Default value = None, middle=0, then sides=1..) :param move: (Default value = None) """ <DeepExtract> if r: side = 2 * math.sin(math.radians(180.0 / corners)) * r h = r * math.cos(math.radians(180.0 / corners)) elif h: side = 2 * math.tan(math.radians(180.0 / corners)) * h r = ((side / 2.0) ** 2 + h ** 2) ** 0.5 elif side: h = 0.5 * side * math.tan(math.radians(90 - 180.0 / corners)) r = ((side / 2.0) ** 2 + h ** 2) ** 0.5 (r, h, side) = (r, h, side) </DeepExtract> t = self.thickness if not hasattr(edges, '__getitem__') or len(edges) == 1: edges = [edges] * corners edges = [self.edges.get(e, e) for e in edges] edges += edges if corners % 2: th = r + h + edges[0].spacing() + max(edges[corners // 2].spacing(), edges[corners // 2 + 1].spacing()) / math.sin(math.radians(90 - 180 / corners)) else: th = 2 * h + edges[0].spacing() + edges[corners // 2].spacing() tw = 0 for i in range(corners): ang = (180 + 360 * i) / corners tw = max(tw, 2 * abs(math.sin(math.radians(ang)) * (r + max(edges[i].spacing(), edges[i + 1].spacing()) / math.sin(math.radians(90 - 180 / corners))))) if self.move(tw, th, move, before=True): return <DeepExtract> self.ctx.move_to(0, 0) self.ctx.translate(0.5 * tw - 0.5 * side, edges[0].margin()) self.ctx.rotate(degrees * math.pi / 180.0) self.ctx.move_to(0, 0) </DeepExtract> if hole: <DeepExtract> if not hole / 2.0: hole / 2.0 = d / 2.0 if hole / 2.0 < self.burn: hole / 2.0 = self.burn + 1e-09 r_ = hole / 2.0 - self.burn self.moveTo(side / 2.0 + r_, h + edges[0].startwidth() + self.burn, -90) self.corner(-360, hole / 2.0, tabs) </DeepExtract> <DeepExtract> if h + edges[0].startwidth() + self.burn is None: h + edges[0].startwidth() + self.burn = self.burn if hasattr(callback, '__getitem__'): try: callback = callback[0] 0 = None except (KeyError, IndexError): pass if callback and callable(callback): with self.saved_context(): self.moveTo(side / 2.0, h + edges[0].startwidth() + self.burn, a) if 0 is None: callback() else: callback(0) self.ctx.move_to(0, 0) </DeepExtract> for i in range(corners): <DeepExtract> if edges[i].startwidth() + self.burn is None: edges[i].startwidth() + self.burn = self.burn if hasattr(callback, '__getitem__'): try: callback = callback[i + 1] i + 1 = None except (KeyError, IndexError): pass if callback and callable(callback): with self.saved_context(): self.moveTo(0, edges[i].startwidth() + self.burn, a) if i + 1 is None: callback() else: callback(i + 1) self.ctx.move_to(0, 0) </DeepExtract> edges[i](side) <DeepExtract> edges[i] = self.edges.get(edges[i], edges[i]) edges[i + 1] = self.edges.get(edges[i + 1], edges[i + 1]) self.edge(edges[i + 1].startwidth() * math.tan(math.radians(360.0 / corners / 2.0))) self.corner(360.0 / corners) self.edge(edges[i].endwidth() * math.tan(math.radians(360.0 / corners / 2.0))) </DeepExtract> <DeepExtract> if not move: move = '' terms = move.split() dontdraw = before and 'only' in terms tw += self.spacing th += self.spacing if 'rotated' in terms: (tw, th) = (th, tw) moves = {'up': (0, th, False), 'down': (0, -th, True), 'left': (-tw, 0, True), 'right': (tw, 0, False), 'only': (0, 0, None), 'mirror': (0, 0, None), 'rotated': (0, 0, None)} if not before: self.ctx.restore() if self.labels and label: self.text(label, tw / 2, th / 2, align='middle center', color=Color.ANNOTATIONS, fontsize=4) self.ctx.stroke() for term in terms: if not term in moves: raise ValueError("Unknown direction: '%s'" % term) (mx, my, movebeforeprint) = moves[term] if movebeforeprint and before: self.moveTo(mx, my) elif not movebeforeprint and (not before) or dontdraw: self.moveTo(mx, my) if not dontdraw: if before: if self.debug: with self.saved_context(): self.set_source_color(Color.ANNOTATIONS) self.ctx.rectangle(0, 0, tw, th) self.ctx.save() if 'rotated' in terms: self.moveTo(tw, 0, 90) (tw, th) = (th, tw) if 'mirror' in terms: self.moveTo(tw, 0) self.ctx.scale(-1, 1) self.moveTo(self.spacing / 2.0, self.spacing / 2.0) self.ctx.new_part() return dontdraw </DeepExtract>
def regularPolygonWall(self, corners=3, r=None, h=None, side=None, edges='e', hole=None, callback=None, move=None): """Create regular polygon as a wall :param corners: number of corners of the polygon :param r: radius distance center to one of the corners :param h: distance center to one of the sides (height of sector) :param side: length of one side :param edges: (Default value = "e", may be string/list of length corners) :param hole: diameter of central hole (Default value = 0) :param callback: (Default value = None, middle=0, then sides=1..) :param move: (Default value = None) """ if r: side = 2 * math.sin(math.radians(180.0 / corners)) * r h = r * math.cos(math.radians(180.0 / corners)) elif h: side = 2 * math.tan(math.radians(180.0 / corners)) * h r = ((side / 2.0) ** 2 + h ** 2) ** 0.5 elif side: h = 0.5 * side * math.tan(math.radians(90 - 180.0 / corners)) r = ((side / 2.0) ** 2 + h ** 2) ** 0.5 (r, h, side) = (r, h, side) t = self.thickness if not hasattr(edges, '__getitem__') or len(edges) == 1: edges = [edges] * corners edges = [self.edges.get(e, e) for e in edges] edges += edges if corners % 2: th = r + h + edges[0].spacing() + max(edges[corners // 2].spacing(), edges[corners // 2 + 1].spacing()) / math.sin(math.radians(90 - 180 / corners)) else: th = 2 * h + edges[0].spacing() + edges[corners // 2].spacing() tw = 0 for i in range(corners): ang = (180 + 360 * i) / corners tw = max(tw, 2 * abs(math.sin(math.radians(ang)) * (r + max(edges[i].spacing(), edges[i + 1].spacing()) / math.sin(math.radians(90 - 180 / corners))))) if self.move(tw, th, move, before=True): return self.ctx.move_to(0, 0) self.ctx.translate(0.5 * tw - 0.5 * side, edges[0].margin()) self.ctx.rotate(degrees * math.pi / 180.0) self.ctx.move_to(0, 0) if hole: if not hole / 2.0: hole / 2.0 = d / 2.0 if hole / 2.0 < self.burn: hole / 2.0 = self.burn + 1e-09 r_ = hole / 2.0 - self.burn self.moveTo(side / 2.0 + r_, h + edges[0].startwidth() + self.burn, -90) self.corner(-360, hole / 2.0, tabs) if h + edges[0].startwidth() + self.burn is None: h + edges[0].startwidth() + self.burn = self.burn if hasattr(callback, '__getitem__'): try: callback = callback[0] 0 = None except (KeyError, IndexError): pass if callback and callable(callback): with self.saved_context(): self.moveTo(side / 2.0, h + edges[0].startwidth() + self.burn, a) if 0 is None: callback() else: callback(0) self.ctx.move_to(0, 0) for i in range(corners): if edges[i].startwidth() + self.burn is None: edges[i].startwidth() + self.burn = self.burn if hasattr(callback, '__getitem__'): try: callback = callback[i + 1] i + 1 = None except (KeyError, IndexError): pass if callback and callable(callback): with self.saved_context(): self.moveTo(0, edges[i].startwidth() + self.burn, a) if i + 1 is None: callback() else: callback(i + 1) self.ctx.move_to(0, 0) edges[i](side) edges[i] = self.edges.get(edges[i], edges[i]) edges[i + 1] = self.edges.get(edges[i + 1], edges[i + 1]) self.edge(edges[i + 1].startwidth() * math.tan(math.radians(360.0 / corners / 2.0))) self.corner(360.0 / corners) self.edge(edges[i].endwidth() * math.tan(math.radians(360.0 / corners / 2.0))) if not move: move = '' terms = move.split() dontdraw = before and 'only' in terms tw += self.spacing th += self.spacing if 'rotated' in terms: (tw, th) = (th, tw) moves = {'up': (0, th, False), 'down': (0, -th, True), 'left': (-tw, 0, True), 'right': (tw, 0, False), 'only': (0, 0, None), 'mirror': (0, 0, None), 'rotated': (0, 0, None)} if not before: self.ctx.restore() if self.labels and label: self.text(label, tw / 2, th / 2, align='middle center', color=Color.ANNOTATIONS, fontsize=4) self.ctx.stroke() for term in terms: if not term in moves: raise ValueError("Unknown direction: '%s'" % term) (mx, my, movebeforeprint) = moves[term] if movebeforeprint and before: self.moveTo(mx, my) elif not movebeforeprint and (not before) or dontdraw: self.moveTo(mx, my) if not dontdraw: if before: if self.debug: with self.saved_context(): self.set_source_color(Color.ANNOTATIONS) self.ctx.rectangle(0, 0, tw, th) self.ctx.save() if 'rotated' in terms: self.moveTo(tw, 0, 90) (tw, th) = (th, tw) if 'mirror' in terms: self.moveTo(tw, 0) self.ctx.scale(-1, 1) self.moveTo(self.spacing / 2.0, self.spacing / 2.0) self.ctx.new_part() return dontdraw </DeepExtract>
boxes
positive
def _remove_unaccepted_files(self, path): """ Recursively delete unaccepted files based on their mimetype and return the final number or files in the directory. """ ls = [] for p in map(lambda x: os.path.join(path, x), os.listdir(path)): if os.path.islink(p): raise Exception(ElfinderErrorMessages.ERROR_ARC_SYMLINKS) <DeepExtract> if os.path.isdir(p): mime = 'directory' mime = magic.Magic(mime=True).from_file(p.encode('utf-8')) int_mime = None if not mime or mime in ['inode/x-empty', 'application/empty']: int_mime = mimetypes.guess_type(name if name else p)[0] mime = int_mime if int_mime else mime </DeepExtract> if not self.mime_accepted(mime) or not self._name_accepted(self._basename(p)): if mime != 'directory': os.unlink(p) else: shutil.rmtree(p) elif mime != 'directory' or self._remove_unaccepted_files(p): ls.append(p) return ls
def _remove_unaccepted_files(self, path): """ Recursively delete unaccepted files based on their mimetype and return the final number or files in the directory. """ ls = [] for p in map(lambda x: os.path.join(path, x), os.listdir(path)): if os.path.islink(p): raise Exception(ElfinderErrorMessages.ERROR_ARC_SYMLINKS) if os.path.isdir(p): mime = 'directory' mime = magic.Magic(mime=True).from_file(p.encode('utf-8')) int_mime = None if not mime or mime in ['inode/x-empty', 'application/empty']: int_mime = mimetypes.guess_type(name if name else p)[0] mime = int_mime if int_mime else mime if not self.mime_accepted(mime) or not self._name_accepted(self._basename(p)): if mime != 'directory': os.unlink(p) else: shutil.rmtree(p) elif mime != 'directory' or self._remove_unaccepted_files(p): ls.append(p) return ls
adminset
positive
def forward(self, input: torch.Tensor, logdet=None, reverse=False, ft=None): if not reverse: z = input assert z.shape[1] == self.in_channels, (z.shape[1], self.in_channels) <DeepExtract> z = torch.cat([ft, self.fFeatures], dim=1) h = self.f(z) (shift, scale) = thops.split_feature(h, 'cross') scale = torch.sigmoid(scale + 2.0) + self.affine_eps (scaleFt, shiftFt) = (scale, shift) </DeepExtract> z = z + shiftFt z = z * scaleFt logdet = logdet + self.get_logdet(scaleFt) <DeepExtract> z1 = z[:, :self.channels_for_nn] z2 = z[:, self.channels_for_nn:] assert z1.shape[1] + z2.shape[1] == z.shape[1], (z1.shape[1], z2.shape[1], z.shape[1]) (z1, z2) = (z1, z2) </DeepExtract> <DeepExtract> z = torch.cat([z1, self.fAffine], dim=1) h = self.f(z) (shift, scale) = thops.split_feature(h, 'cross') scale = torch.sigmoid(scale + 2.0) + self.affine_eps (scale, shift) = (scale, shift) </DeepExtract> <DeepExtract> assert z1.shape[1] == self.channels_for_nn, (z1.shape[1], self.channels_for_nn) assert z2.shape[1] == self.channels_for_co, (z2.shape[1], self.channels_for_co) assert scale.shape[1] == shift.shape[1], (scale.shape[1], shift.shape[1]) assert scale.shape[1] == z2.shape[1], (scale.shape[1], z1.shape[1], z2.shape[1]) </DeepExtract> z2 = z2 + shift z2 = z2 * scale logdet = logdet + self.get_logdet(scale) z = thops.cat_feature(z1, z2) output = z else: z = input <DeepExtract> z1 = z[:, :self.channels_for_nn] z2 = z[:, self.channels_for_nn:] assert z1.shape[1] + z2.shape[1] == z.shape[1], (z1.shape[1], z2.shape[1], z.shape[1]) (z1, z2) = (z1, z2) </DeepExtract> <DeepExtract> z = torch.cat([z1, self.fAffine], dim=1) h = self.f(z) (shift, scale) = thops.split_feature(h, 'cross') scale = torch.sigmoid(scale + 2.0) + self.affine_eps (scale, shift) = (scale, shift) </DeepExtract> <DeepExtract> assert z1.shape[1] == self.channels_for_nn, (z1.shape[1], self.channels_for_nn) assert z2.shape[1] == self.channels_for_co, (z2.shape[1], self.channels_for_co) assert scale.shape[1] == shift.shape[1], (scale.shape[1], shift.shape[1]) assert scale.shape[1] == z2.shape[1], (scale.shape[1], z1.shape[1], z2.shape[1]) </DeepExtract> z2 = z2 / scale z2 = z2 - shift z = thops.cat_feature(z1, z2) logdet = logdet - self.get_logdet(scale) <DeepExtract> z = torch.cat([ft, self.fFeatures], dim=1) h = self.f(z) (shift, scale) = thops.split_feature(h, 'cross') scale = torch.sigmoid(scale + 2.0) + self.affine_eps (scaleFt, shiftFt) = (scale, shift) </DeepExtract> z = z / scaleFt z = z - shiftFt logdet = logdet - self.get_logdet(scaleFt) output = z return (output, logdet)
def forward(self, input: torch.Tensor, logdet=None, reverse=False, ft=None): if not reverse: z = input assert z.shape[1] == self.in_channels, (z.shape[1], self.in_channels) z = torch.cat([ft, self.fFeatures], dim=1) h = self.f(z) (shift, scale) = thops.split_feature(h, 'cross') scale = torch.sigmoid(scale + 2.0) + self.affine_eps (scaleFt, shiftFt) = (scale, shift) z = z + shiftFt z = z * scaleFt logdet = logdet + self.get_logdet(scaleFt) z1 = z[:, :self.channels_for_nn] z2 = z[:, self.channels_for_nn:] assert z1.shape[1] + z2.shape[1] == z.shape[1], (z1.shape[1], z2.shape[1], z.shape[1]) (z1, z2) = (z1, z2) z = torch.cat([z1, self.fAffine], dim=1) h = self.f(z) (shift, scale) = thops.split_feature(h, 'cross') scale = torch.sigmoid(scale + 2.0) + self.affine_eps (scale, shift) = (scale, shift) assert z1.shape[1] == self.channels_for_nn, (z1.shape[1], self.channels_for_nn) assert z2.shape[1] == self.channels_for_co, (z2.shape[1], self.channels_for_co) assert scale.shape[1] == shift.shape[1], (scale.shape[1], shift.shape[1]) assert scale.shape[1] == z2.shape[1], (scale.shape[1], z1.shape[1], z2.shape[1]) z2 = z2 + shift z2 = z2 * scale logdet = logdet + self.get_logdet(scale) z = thops.cat_feature(z1, z2) output = z else: z = input z1 = z[:, :self.channels_for_nn] z2 = z[:, self.channels_for_nn:] assert z1.shape[1] + z2.shape[1] == z.shape[1], (z1.shape[1], z2.shape[1], z.shape[1]) (z1, z2) = (z1, z2) z = torch.cat([z1, self.fAffine], dim=1) h = self.f(z) (shift, scale) = thops.split_feature(h, 'cross') scale = torch.sigmoid(scale + 2.0) + self.affine_eps (scale, shift) = (scale, shift) assert z1.shape[1] == self.channels_for_nn, (z1.shape[1], self.channels_for_nn) assert z2.shape[1] == self.channels_for_co, (z2.shape[1], self.channels_for_co) assert scale.shape[1] == shift.shape[1], (scale.shape[1], shift.shape[1]) assert scale.shape[1] == z2.shape[1], (scale.shape[1], z1.shape[1], z2.shape[1]) z2 = z2 / scale z2 = z2 - shift z = thops.cat_feature(z1, z2) logdet = logdet - self.get_logdet(scale) z = torch.cat([ft, self.fFeatures], dim=1) h = self.f(z) (shift, scale) = thops.split_feature(h, 'cross') scale = torch.sigmoid(scale + 2.0) + self.affine_eps (scaleFt, shiftFt) = (scale, shift) z = z / scaleFt z = z - shiftFt logdet = logdet - self.get_logdet(scaleFt) output = z return (output, logdet)
DeFlow
positive
def comparePrettyValues(self, aPretty, bPretty, tolerance=0.01): <DeepExtract> values = aPretty.split() aList = values </DeepExtract> <DeepExtract> values = bPretty.split() bList = values </DeepExtract> if len(aList) != len(bList): return False for (a, b) in zip(aList, bList): try: aNum = float(a) bNum = float(b) error = abs(aNum - bNum) if error > tolerance: return False except ValueError: if a.strip() != b.strip(): return False return True
def comparePrettyValues(self, aPretty, bPretty, tolerance=0.01): values = aPretty.split() aList = values values = bPretty.split() bList = values if len(aList) != len(bList): return False for (a, b) in zip(aList, bList): try: aNum = float(a) bNum = float(b) error = abs(aNum - bNum) if error > tolerance: return False except ValueError: if a.strip() != b.strip(): return False return True
comp90054-cheat
positive
def parse_and_preprocess(self, value, batch_position): assert self.supports_datasets() <DeepExtract> feature_map = {'image/encoded': tf.FixedLenFeature([], dtype=tf.string, default_value=''), 'image/class/label': tf.FixedLenFeature([1], dtype=tf.int64, default_value=-1)} features = tf.parse_single_example(value, feature_map) label = tf.cast(features['image/class/label'], dtype=tf.int32) (image_buffer, label_index, _, _) = (features['image/encoded'], label, None, None) </DeepExtract> <DeepExtract> raise NotImplementedError('Must be implemented by subclass.') </DeepExtract> return (image, label_index)
def parse_and_preprocess(self, value, batch_position): assert self.supports_datasets() feature_map = {'image/encoded': tf.FixedLenFeature([], dtype=tf.string, default_value=''), 'image/class/label': tf.FixedLenFeature([1], dtype=tf.int64, default_value=-1)} features = tf.parse_single_example(value, feature_map) label = tf.cast(features['image/class/label'], dtype=tf.int32) (image_buffer, label_index, _, _) = (features['image/encoded'], label, None, None) raise NotImplementedError('Must be implemented by subclass.') return (image, label_index)
AOFP
positive
def main(conf): <DeepExtract> if not conf['compute_wer']: compute_metrics = COMPUTE_METRICS try: from espnet2.bin.asr_inference import Speech2Text from espnet_model_zoo.downloader import ModelDownloader except ModuleNotFoundError: import warnings warnings.warn("Couldn't find espnet installation. Continuing without.") compute_metrics = COMPUTE_METRICS compute_metrics = COMPUTE_METRICS + ['wer'] </DeepExtract> anno_df = pd.read_csv(Path(conf['test_dir']).parent.parent.parent / 'test_annotations.csv') wer_tracker = MockWERTracker() if not conf['compute_wer'] else WERTracker(ASR_MODEL_PATH, anno_df) model_path = os.path.join(conf['exp_dir'], 'best_model.pth') model = DCCRNet.from_pretrained(model_path) if conf['use_gpu']: model.cuda() model_device = next(model.parameters()).device test_set = LibriMix(csv_dir=conf['test_dir'], task=conf['task'], sample_rate=conf['sample_rate'], n_src=conf['train_conf']['data']['n_src'], segment=None, return_id=True) loss_func = PITLossWrapper(pairwise_neg_sisdr, pit_from='pw_mtx') eval_save_dir = os.path.join(conf['exp_dir'], conf['out_dir']) ex_save_dir = os.path.join(eval_save_dir, 'examples/') if conf['n_save_ex'] == -1: conf['n_save_ex'] = len(test_set) save_idx = random.sample(range(len(test_set)), conf['n_save_ex']) series_list = [] torch.no_grad().__enter__() for idx in tqdm(range(len(test_set))): (mix, sources, ids) = test_set[idx] (mix, sources) = tensors_to_device([mix, sources], device=model_device) est_sources = model(mix.unsqueeze(0)) (loss, reordered_sources) = loss_func(est_sources, sources[None], return_est=True) mix_np = mix.cpu().data.numpy() sources_np = sources.cpu().data.numpy() est_sources_np = reordered_sources.squeeze(0).cpu().data.numpy() utt_metrics = get_metrics(mix_np, sources_np, est_sources_np, sample_rate=conf['sample_rate'], metrics_list=COMPUTE_METRICS) utt_metrics['mix_path'] = test_set.mixture_path est_sources_np_normalized = normalize_estimates(est_sources_np, mix_np) utt_metrics.update(**wer_tracker(mix=mix_np, clean=sources_np, estimate=est_sources_np_normalized, wav_id=ids, sample_rate=conf['sample_rate'])) series_list.append(pd.Series(utt_metrics)) if idx in save_idx: local_save_dir = os.path.join(ex_save_dir, 'ex_{}/'.format(idx)) os.makedirs(local_save_dir, exist_ok=True) sf.write(local_save_dir + 'mixture.wav', mix_np, conf['sample_rate']) for (src_idx, src) in enumerate(sources_np): sf.write(local_save_dir + 's{}.wav'.format(src_idx), src, conf['sample_rate']) for (src_idx, est_src) in enumerate(est_sources_np_normalized): sf.write(local_save_dir + 's{}_estimate.wav'.format(src_idx), est_src, conf['sample_rate']) with open(local_save_dir + 'metrics.json', 'w') as f: json.dump(utt_metrics, f, indent=0) all_metrics_df = pd.DataFrame(series_list) all_metrics_df.to_csv(os.path.join(eval_save_dir, 'all_metrics.csv')) final_results = {} for metric_name in compute_metrics: input_metric_name = 'input_' + metric_name ldf = all_metrics_df[metric_name] - all_metrics_df[input_metric_name] final_results[metric_name] = all_metrics_df[metric_name].mean() final_results[metric_name + '_imp'] = ldf.mean() print('Overall metrics :') pprint(final_results) if conf['compute_wer']: print('\nWER report') wer_card = wer_tracker.final_report_as_markdown() print(wer_card) with open(os.path.join(eval_save_dir, 'final_wer.md'), 'w') as f: f.write(wer_card) with open(os.path.join(eval_save_dir, 'final_metrics.json'), 'w') as f: json.dump(final_results, f, indent=0) model_dict = torch.load(model_path, map_location='cpu') os.makedirs(os.path.join(conf['exp_dir'], 'publish_dir'), exist_ok=True) publishable = save_publishable(os.path.join(conf['exp_dir'], 'publish_dir'), model_dict, metrics=final_results, train_conf=train_conf)
def main(conf): if not conf['compute_wer']: compute_metrics = COMPUTE_METRICS try: from espnet2.bin.asr_inference import Speech2Text from espnet_model_zoo.downloader import ModelDownloader except ModuleNotFoundError: import warnings warnings.warn("Couldn't find espnet installation. Continuing without.") compute_metrics = COMPUTE_METRICS compute_metrics = COMPUTE_METRICS + ['wer'] anno_df = pd.read_csv(Path(conf['test_dir']).parent.parent.parent / 'test_annotations.csv') wer_tracker = MockWERTracker() if not conf['compute_wer'] else WERTracker(ASR_MODEL_PATH, anno_df) model_path = os.path.join(conf['exp_dir'], 'best_model.pth') model = DCCRNet.from_pretrained(model_path) if conf['use_gpu']: model.cuda() model_device = next(model.parameters()).device test_set = LibriMix(csv_dir=conf['test_dir'], task=conf['task'], sample_rate=conf['sample_rate'], n_src=conf['train_conf']['data']['n_src'], segment=None, return_id=True) loss_func = PITLossWrapper(pairwise_neg_sisdr, pit_from='pw_mtx') eval_save_dir = os.path.join(conf['exp_dir'], conf['out_dir']) ex_save_dir = os.path.join(eval_save_dir, 'examples/') if conf['n_save_ex'] == -1: conf['n_save_ex'] = len(test_set) save_idx = random.sample(range(len(test_set)), conf['n_save_ex']) series_list = [] torch.no_grad().__enter__() for idx in tqdm(range(len(test_set))): (mix, sources, ids) = test_set[idx] (mix, sources) = tensors_to_device([mix, sources], device=model_device) est_sources = model(mix.unsqueeze(0)) (loss, reordered_sources) = loss_func(est_sources, sources[None], return_est=True) mix_np = mix.cpu().data.numpy() sources_np = sources.cpu().data.numpy() est_sources_np = reordered_sources.squeeze(0).cpu().data.numpy() utt_metrics = get_metrics(mix_np, sources_np, est_sources_np, sample_rate=conf['sample_rate'], metrics_list=COMPUTE_METRICS) utt_metrics['mix_path'] = test_set.mixture_path est_sources_np_normalized = normalize_estimates(est_sources_np, mix_np) utt_metrics.update(**wer_tracker(mix=mix_np, clean=sources_np, estimate=est_sources_np_normalized, wav_id=ids, sample_rate=conf['sample_rate'])) series_list.append(pd.Series(utt_metrics)) if idx in save_idx: local_save_dir = os.path.join(ex_save_dir, 'ex_{}/'.format(idx)) os.makedirs(local_save_dir, exist_ok=True) sf.write(local_save_dir + 'mixture.wav', mix_np, conf['sample_rate']) for (src_idx, src) in enumerate(sources_np): sf.write(local_save_dir + 's{}.wav'.format(src_idx), src, conf['sample_rate']) for (src_idx, est_src) in enumerate(est_sources_np_normalized): sf.write(local_save_dir + 's{}_estimate.wav'.format(src_idx), est_src, conf['sample_rate']) with open(local_save_dir + 'metrics.json', 'w') as f: json.dump(utt_metrics, f, indent=0) all_metrics_df = pd.DataFrame(series_list) all_metrics_df.to_csv(os.path.join(eval_save_dir, 'all_metrics.csv')) final_results = {} for metric_name in compute_metrics: input_metric_name = 'input_' + metric_name ldf = all_metrics_df[metric_name] - all_metrics_df[input_metric_name] final_results[metric_name] = all_metrics_df[metric_name].mean() final_results[metric_name + '_imp'] = ldf.mean() print('Overall metrics :') pprint(final_results) if conf['compute_wer']: print('\nWER report') wer_card = wer_tracker.final_report_as_markdown() print(wer_card) with open(os.path.join(eval_save_dir, 'final_wer.md'), 'w') as f: f.write(wer_card) with open(os.path.join(eval_save_dir, 'final_metrics.json'), 'w') as f: json.dump(final_results, f, indent=0) model_dict = torch.load(model_path, map_location='cpu') os.makedirs(os.path.join(conf['exp_dir'], 'publish_dir'), exist_ok=True) publishable = save_publishable(os.path.join(conf['exp_dir'], 'publish_dir'), model_dict, metrics=final_results, train_conf=train_conf)
asteroid
positive
def _get_or_create_profiles(bundle_ids: Sequence[BundleId], certificates: Sequence[SigningCertificate], profile_type: ProfileType, create_resource: bool, platform: Optional[BundleIdPlatform]=None): def has_certificate(profile) -> bool: try: profile_certificates = self.api_client.profiles.list_certificate_ids(profile) return bool(certificate_ids.issubset({c.id for c in profile_certificates})) except AppStoreConnectApiError as err: error = f'Listing {SigningCertificate.s} for {Profile} {profile.id} failed unexpectedly' self.logger.warning(Colors.YELLOW(f'{error}: {err.error_response}')) return False def missing_profile(bundle_id) -> bool: try: bundle_ids_profiles = self.api_client.bundle_ids.list_profile_ids(bundle_id) return not profile_ids & {p.id for p in bundle_ids_profiles} except AppStoreConnectApiError as err: error = f'Listing {Profile.s} for {BundleId} {bundle_id.id} failed unexpectedly' self.logger.warning(Colors.YELLOW(f'{error}: {err.error_response}')) return True certificate_ids = {c.id for c in certificates} <DeepExtract> profiles_filter = self.api_client.profiles.Filter(profile_type=profile_type, profile_state=ProfileState.ACTIVE, name=profile_name) profiles = [] for resource_id in set([bundle_id.id for bundle_id in bundle_ids]): bundle_id_profiles = self._list_related_resources(resource_id, BundleId, Profile, self.api_client.bundle_ids.list_profiles, profiles_filter, False) profiles.extend(bundle_id_profiles) if save: self._save_profiles(profiles) profiles = profiles </DeepExtract> profiles = list(filter(has_certificate, profiles)) certificate_names = ', '.join((c.get_display_info() for c in certificates)) message = f'that contain {SigningCertificate.plural(len(certificates))} {certificate_names}' self.printer.log_filtered(Profile, profiles, message) for profile in profiles: self.logger.info(f'- {profile.get_display_info()}') profile_ids = {p.id for p in profiles} bundle_ids_without_profiles = list(filter(missing_profile, bundle_ids)) if bundle_ids_without_profiles and (not create_resource): missing = ', '.join((f'"{bid.attributes.identifier}" [{bid.id}]' for bid in bundle_ids_without_profiles)) raise AppStoreConnectError(f'Did not find {profile_type} {Profile.s} for {BundleId.s}: {missing}') <DeepExtract> if not bundle_ids_without_profiles: created_profiles = [] if platform is None: platform = bundle_ids_without_profiles[0].attributes.platform devices = self.list_devices(platform=platform, device_status=DeviceStatus.ENABLED, should_print=False) certificates = self.list_certificates(profile_type=profile_type, should_print=False) certificate_ids = list({c.id for c in chain(certificates, certificates)}) device_ids = [d.id for d in devices if d.attributes.deviceClass.is_compatible(profile_type)] for bundle_id in bundle_ids_without_profiles: yield self.create_profile(bundle_id.id, certificate_ids, device_ids, profile_type=profile_type, should_print=False) </DeepExtract> profiles.extend(created_profiles) return profiles
def _get_or_create_profiles(bundle_ids: Sequence[BundleId], certificates: Sequence[SigningCertificate], profile_type: ProfileType, create_resource: bool, platform: Optional[BundleIdPlatform]=None): def has_certificate(profile) -> bool: try: profile_certificates = self.api_client.profiles.list_certificate_ids(profile) return bool(certificate_ids.issubset({c.id for c in profile_certificates})) except AppStoreConnectApiError as err: error = f'Listing {SigningCertificate.s} for {Profile} {profile.id} failed unexpectedly' self.logger.warning(Colors.YELLOW(f'{error}: {err.error_response}')) return False def missing_profile(bundle_id) -> bool: try: bundle_ids_profiles = self.api_client.bundle_ids.list_profile_ids(bundle_id) return not profile_ids & {p.id for p in bundle_ids_profiles} except AppStoreConnectApiError as err: error = f'Listing {Profile.s} for {BundleId} {bundle_id.id} failed unexpectedly' self.logger.warning(Colors.YELLOW(f'{error}: {err.error_response}')) return True certificate_ids = {c.id for c in certificates} profiles_filter = self.api_client.profiles.Filter(profile_type=profile_type, profile_state=ProfileState.ACTIVE, name=profile_name) profiles = [] for resource_id in set([bundle_id.id for bundle_id in bundle_ids]): bundle_id_profiles = self._list_related_resources(resource_id, BundleId, Profile, self.api_client.bundle_ids.list_profiles, profiles_filter, False) profiles.extend(bundle_id_profiles) if save: self._save_profiles(profiles) profiles = profiles profiles = list(filter(has_certificate, profiles)) certificate_names = ', '.join((c.get_display_info() for c in certificates)) message = f'that contain {SigningCertificate.plural(len(certificates))} {certificate_names}' self.printer.log_filtered(Profile, profiles, message) for profile in profiles: self.logger.info(f'- {profile.get_display_info()}') profile_ids = {p.id for p in profiles} bundle_ids_without_profiles = list(filter(missing_profile, bundle_ids)) if bundle_ids_without_profiles and (not create_resource): missing = ', '.join((f'"{bid.attributes.identifier}" [{bid.id}]' for bid in bundle_ids_without_profiles)) raise AppStoreConnectError(f'Did not find {profile_type} {Profile.s} for {BundleId.s}: {missing}') if not bundle_ids_without_profiles: created_profiles = [] if platform is None: platform = bundle_ids_without_profiles[0].attributes.platform devices = self.list_devices(platform=platform, device_status=DeviceStatus.ENABLED, should_print=False) certificates = self.list_certificates(profile_type=profile_type, should_print=False) certificate_ids = list({c.id for c in chain(certificates, certificates)}) device_ids = [d.id for d in devices if d.attributes.deviceClass.is_compatible(profile_type)] for bundle_id in bundle_ids_without_profiles: yield self.create_profile(bundle_id.id, certificate_ids, device_ids, profile_type=profile_type, should_print=False) profiles.extend(created_profiles) return profiles
cli-tools
positive
def _HandleLeftClickOrDoubleClick(self, evt): """ Handle a left click or left double click on the ListView """ evt.Skip() if evt.m_altDown or evt.m_controlDown or evt.m_shiftDown: return if self.cellEditMode == self.CELLEDIT_NONE: return if evt.LeftUp() and self.cellEditMode == self.CELLEDIT_DOUBLECLICK: return if evt.LeftDClick() and self.cellEditMode == self.CELLEDIT_SINGLECLICK: return <DeepExtract> if wx.Platform == '__WXMSW__': (rowIndex, flags, subItemIndex) = wx.ListCtrl.HitTestSubItem(self, evt.GetPosition()) (rowIndex, flags) = self.HitTest(evt.GetPosition()) if flags & wx.LIST_HITTEST_ONITEM == 0: (rowIndex, flags, subItemIndex) = (-1, 0, -1) if not self.InReportView(): (rowIndex, flags, subItemIndex) = (rowIndex, wx.LIST_HITTEST_ONITEM, 0) right = 0 scrolledX = self.GetScrollPos(wx.HORIZONTAL) + evt.GetPosition().x for i in range(self.GetColumnCount()): left = right right += self.GetColumnWidth(i) if scrolledX < right: if scrolledX - left < self.smallImageList.GetSize(0)[0]: flag = wx.LIST_HITTEST_ONITEMICON else: flag = wx.LIST_HITTEST_ONITEMLABEL (rowIndex, flags, subItemIndex) = (rowIndex, flag, i) (rowIndex, flags, subItemIndex) = (rowIndex, 0, -1) </DeepExtract> if flags & wx.LIST_HITTEST_ONITEM == 0 or subItemIndex == -1: return if subItemIndex == 0 and self.cellEditMode == self.CELLEDIT_SINGLECLICK: return <DeepExtract> if 0 > rowIndex >= self.GetItemCount(): return if 0 > subItemIndex >= self.GetColumnCount(): return if self.cellEditMode == self.CELLEDIT_NONE: return if not self.columns[subItemIndex].isEditable: return if self.GetObjectAt(rowIndex) is None: return self.StartCellEdit(rowIndex, subItemIndex) </DeepExtract>
def _HandleLeftClickOrDoubleClick(self, evt): """ Handle a left click or left double click on the ListView """ evt.Skip() if evt.m_altDown or evt.m_controlDown or evt.m_shiftDown: return if self.cellEditMode == self.CELLEDIT_NONE: return if evt.LeftUp() and self.cellEditMode == self.CELLEDIT_DOUBLECLICK: return if evt.LeftDClick() and self.cellEditMode == self.CELLEDIT_SINGLECLICK: return if wx.Platform == '__WXMSW__': (rowIndex, flags, subItemIndex) = wx.ListCtrl.HitTestSubItem(self, evt.GetPosition()) (rowIndex, flags) = self.HitTest(evt.GetPosition()) if flags & wx.LIST_HITTEST_ONITEM == 0: (rowIndex, flags, subItemIndex) = (-1, 0, -1) if not self.InReportView(): (rowIndex, flags, subItemIndex) = (rowIndex, wx.LIST_HITTEST_ONITEM, 0) right = 0 scrolledX = self.GetScrollPos(wx.HORIZONTAL) + evt.GetPosition().x for i in range(self.GetColumnCount()): left = right right += self.GetColumnWidth(i) if scrolledX < right: if scrolledX - left < self.smallImageList.GetSize(0)[0]: flag = wx.LIST_HITTEST_ONITEMICON else: flag = wx.LIST_HITTEST_ONITEMLABEL (rowIndex, flags, subItemIndex) = (rowIndex, flag, i) (rowIndex, flags, subItemIndex) = (rowIndex, 0, -1) if flags & wx.LIST_HITTEST_ONITEM == 0 or subItemIndex == -1: return if subItemIndex == 0 and self.cellEditMode == self.CELLEDIT_SINGLECLICK: return if 0 > rowIndex >= self.GetItemCount(): return if 0 > subItemIndex >= self.GetColumnCount(): return if self.cellEditMode == self.CELLEDIT_NONE: return if not self.columns[subItemIndex].isEditable: return if self.GetObjectAt(rowIndex) is None: return self.StartCellEdit(rowIndex, subItemIndex) </DeepExtract>
bookhub
positive
def create_game(main_user, form): """ Creates a Game by: - saving the form - setting default values - adding users who can play the game - creating an avatar for the main user. - creating the game secret in game manager :param main_user: The user who requested game creation, and is the game owner. :param form: The form used to submit the creation of the game. :param users_to_add_to_game: List of User objects who are able to play this game. :return: The initialised Game object. """ game = form.save(commit=False) <DeepExtract> game.auth_token = secrets.token_urlsafe(nbytes=NUM_BYTES_FOR_TOKEN_GENERATOR)[:TOKEN_MAX_LENGTH] </DeepExtract> game.generator = 'Main' game.owner = game.game_class.teacher.new_user game.main_user = game.game_class.teacher.new_user game.created_by = main_user.userprofile.teacher game.save() create_avatar_for_user(main_user, game.id) game_manager = GameManager() game_manager.create_game_secret(game_id=game.id, token=game.auth_token) return game
def create_game(main_user, form): """ Creates a Game by: - saving the form - setting default values - adding users who can play the game - creating an avatar for the main user. - creating the game secret in game manager :param main_user: The user who requested game creation, and is the game owner. :param form: The form used to submit the creation of the game. :param users_to_add_to_game: List of User objects who are able to play this game. :return: The initialised Game object. """ game = form.save(commit=False) game.auth_token = secrets.token_urlsafe(nbytes=NUM_BYTES_FOR_TOKEN_GENERATOR)[:TOKEN_MAX_LENGTH] game.generator = 'Main' game.owner = game.game_class.teacher.new_user game.main_user = game.game_class.teacher.new_user game.created_by = main_user.userprofile.teacher game.save() create_avatar_for_user(main_user, game.id) game_manager = GameManager() game_manager.create_game_secret(game_id=game.id, token=game.auth_token) return game
aimmo
positive
def get_is_NNP_WP(arg_clauses, clause_index, parse_dict): if clause_index == 0: return 'NONE' <DeepExtract> DocID = arg_clauses.DocID sent_index = arg_clauses.sent_index curr_clause_indices = arg_clauses.clauses[clause_index][0] subtrees = [] parse_tree = parse_dict[DocID]['sentences'][sent_index]['parsetree'].strip() syntax_tree = Syntax_tree(parse_tree) if syntax_tree.tree != None: clause_leaves = set([syntax_tree.get_leaf_node_by_token_index(index) for index in curr_clause_indices]) no_need = [] for node in syntax_tree.tree.traverse(strategy='levelorder'): if node not in no_need: if set(node.get_leaves()) <= clause_leaves: subtrees.append(node) no_need.extend(node.get_descendants()) production_rule = [] for tree in subtrees: for node in tree.traverse(strategy='levelorder'): if not node.is_leaf(): rule = node.name + '-->' + ' '.join([child.name for child in node.get_children()]) production_rule.append(rule) curr_production_rule = production_rule </DeepExtract> <DeepExtract> DocID = arg_clauses.DocID sent_index = arg_clauses.sent_index curr_clause_indices = arg_clauses.clauses[clause_index - 1][0] subtrees = [] parse_tree = parse_dict[DocID]['sentences'][sent_index]['parsetree'].strip() syntax_tree = Syntax_tree(parse_tree) if syntax_tree.tree != None: clause_leaves = set([syntax_tree.get_leaf_node_by_token_index(index) for index in curr_clause_indices]) no_need = [] for node in syntax_tree.tree.traverse(strategy='levelorder'): if node not in no_need: if set(node.get_leaves()) <= clause_leaves: subtrees.append(node) no_need.extend(node.get_descendants()) production_rule = [] for tree in subtrees: for node in tree.traverse(strategy='levelorder'): if not node.is_leaf(): rule = node.name + '-->' + ' '.join([child.name for child in node.get_children()]) production_rule.append(rule) prev_production_rule = production_rule </DeepExtract> flag = 0 for rule in curr_production_rule: (part1, part2) = rule.split('-->') if 'WHNP' in part1 and 'WP' in part2: flag = 1 break if flag == 1: for rule in prev_production_rule: (part1, part2) = rule.split('-->') if 'NP' in part1 and 'NNP' in part2: return 'yes' return 'no' else: return 'no'
def get_is_NNP_WP(arg_clauses, clause_index, parse_dict): if clause_index == 0: return 'NONE' DocID = arg_clauses.DocID sent_index = arg_clauses.sent_index curr_clause_indices = arg_clauses.clauses[clause_index][0] subtrees = [] parse_tree = parse_dict[DocID]['sentences'][sent_index]['parsetree'].strip() syntax_tree = Syntax_tree(parse_tree) if syntax_tree.tree != None: clause_leaves = set([syntax_tree.get_leaf_node_by_token_index(index) for index in curr_clause_indices]) no_need = [] for node in syntax_tree.tree.traverse(strategy='levelorder'): if node not in no_need: if set(node.get_leaves()) <= clause_leaves: subtrees.append(node) no_need.extend(node.get_descendants()) production_rule = [] for tree in subtrees: for node in tree.traverse(strategy='levelorder'): if not node.is_leaf(): rule = node.name + '-->' + ' '.join([child.name for child in node.get_children()]) production_rule.append(rule) curr_production_rule = production_rule DocID = arg_clauses.DocID sent_index = arg_clauses.sent_index curr_clause_indices = arg_clauses.clauses[clause_index - 1][0] subtrees = [] parse_tree = parse_dict[DocID]['sentences'][sent_index]['parsetree'].strip() syntax_tree = Syntax_tree(parse_tree) if syntax_tree.tree != None: clause_leaves = set([syntax_tree.get_leaf_node_by_token_index(index) for index in curr_clause_indices]) no_need = [] for node in syntax_tree.tree.traverse(strategy='levelorder'): if node not in no_need: if set(node.get_leaves()) <= clause_leaves: subtrees.append(node) no_need.extend(node.get_descendants()) production_rule = [] for tree in subtrees: for node in tree.traverse(strategy='levelorder'): if not node.is_leaf(): rule = node.name + '-->' + ' '.join([child.name for child in node.get_children()]) production_rule.append(rule) prev_production_rule = production_rule flag = 0 for rule in curr_production_rule: (part1, part2) = rule.split('-->') if 'WHNP' in part1 and 'WP' in part2: flag = 1 break if flag == 1: for rule in prev_production_rule: (part1, part2) = rule.split('-->') if 'NP' in part1 and 'NNP' in part2: return 'yes' return 'no' else: return 'no'
conll2015_discourse
positive
def flush_dbs(self, flush_data, flush_utxos, estimate_txs_remaining): """Flush out cached state. History is always flushed; UTXOs are flushed if flush_utxos.""" if flush_data.height == self.db_height: <DeepExtract> assert flush_data.tx_count == self.fs_tx_count == self.db_tx_count assert flush_data.height == self.fs_height == self.db_height assert flush_data.tip == self.db_tip assert not flush_data.headers assert not flush_data.block_tx_hashes assert not flush_data.adds assert not flush_data.deletes assert not flush_data.undo_infos self.history.assert_flushed() </DeepExtract> return start_time = time.time() prior_flush = self.last_flush tx_delta = flush_data.tx_count - self.last_flush_tx_count <DeepExtract> prior_tx_count = self.tx_counts[self.fs_height] if self.fs_height >= 0 else 0 assert len(flush_data.block_tx_hashes) == len(flush_data.headers) assert flush_data.height == self.fs_height + len(flush_data.headers) assert flush_data.tx_count == (self.tx_counts[-1] if self.tx_counts else 0) assert len(self.tx_counts) == flush_data.height + 1 hashes = b''.join(flush_data.block_tx_hashes) flush_data.block_tx_hashes.clear() assert len(hashes) % 32 == 0 assert len(hashes) // 32 == flush_data.tx_count - prior_tx_count start_time = time.monotonic() height_start = self.fs_height + 1 offset = self.header_offset(height_start) self.headers_file.write(offset, b''.join(flush_data.headers)) self.fs_update_header_offsets(offset, height_start, flush_data.headers) flush_data.headers.clear() offset = height_start * self.tx_counts.itemsize self.tx_counts_file.write(offset, self.tx_counts[height_start:].tobytes()) offset = prior_tx_count * 32 self.hashes_file.write(offset, hashes) self.fs_height = flush_data.height self.fs_tx_count = flush_data.tx_count if self.utxo_db.for_sync: elapsed = time.monotonic() - start_time self.logger.info(f'flushed filesystem data in {elapsed:.2f}s') </DeepExtract> <DeepExtract> self.history.flush() </DeepExtract> with self.utxo_db.write_batch() as batch: if flush_utxos: <DeepExtract> start_time = time.monotonic() add_count = len(flush_data.adds) spend_count = len(flush_data.deletes) // 2 batch_delete = batch.delete for key in sorted(flush_data.deletes): batch_delete(key) flush_data.deletes.clear() batch_put = batch.put for (key, value) in flush_data.adds.items(): hashX = value[:HASHX_LEN] txout_idx = key[-4:] tx_num = value[HASHX_LEN:HASHX_LEN + TXNUM_LEN] value_sats = value[-8:] suffix = txout_idx + tx_num batch_put(b'h' + key[:COMP_TXID_LEN] + suffix, hashX) batch_put(b'u' + hashX + suffix, value_sats) flush_data.adds.clear() self.flush_undo_infos(batch_put, flush_data.undo_infos) flush_data.undo_infos.clear() if self.utxo_db.for_sync: block_count = flush_data.height - self.db_height tx_count = flush_data.tx_count - self.db_tx_count elapsed = time.monotonic() - start_time self.logger.info(f'flushed {block_count:,d} blocks with {tx_count:,d} txs, {add_count:,d} UTXO adds, {spend_count:,d} spends in {elapsed:.1f}s, committing...') self.utxo_flush_count = self.history.flush_count self.db_height = flush_data.height self.db_tx_count = flush_data.tx_count self.db_tip = flush_data.tip </DeepExtract> <DeepExtract> now = time.time() self.wall_time += now - self.last_flush self.last_flush = now self.last_flush_tx_count = self.fs_tx_count self.write_utxo_state(batch) </DeepExtract> <DeepExtract> now = time.time() self.wall_time += now - self.last_flush self.last_flush = now self.last_flush_tx_count = self.fs_tx_count self.write_utxo_state(self.utxo_db) </DeepExtract> elapsed = self.last_flush - start_time self.logger.info(f'flush #{self.history.flush_count:,d} took {elapsed:.1f}s. Height {flush_data.height:,d} txs: {flush_data.tx_count:,d} ({tx_delta:+,d})') if self.utxo_db.for_sync: flush_interval = self.last_flush - prior_flush tx_per_sec_gen = int(flush_data.tx_count / self.wall_time) tx_per_sec_last = 1 + int(tx_delta / flush_interval) eta = estimate_txs_remaining() / tx_per_sec_last self.logger.info(f'tx/sec since genesis: {tx_per_sec_gen:,d}, since last flush: {tx_per_sec_last:,d}') self.logger.info(f'sync time: {formatted_time(self.wall_time)} ETA: {formatted_time(eta)}')
def flush_dbs(self, flush_data, flush_utxos, estimate_txs_remaining): """Flush out cached state. History is always flushed; UTXOs are flushed if flush_utxos.""" if flush_data.height == self.db_height: assert flush_data.tx_count == self.fs_tx_count == self.db_tx_count assert flush_data.height == self.fs_height == self.db_height assert flush_data.tip == self.db_tip assert not flush_data.headers assert not flush_data.block_tx_hashes assert not flush_data.adds assert not flush_data.deletes assert not flush_data.undo_infos self.history.assert_flushed() return start_time = time.time() prior_flush = self.last_flush tx_delta = flush_data.tx_count - self.last_flush_tx_count prior_tx_count = self.tx_counts[self.fs_height] if self.fs_height >= 0 else 0 assert len(flush_data.block_tx_hashes) == len(flush_data.headers) assert flush_data.height == self.fs_height + len(flush_data.headers) assert flush_data.tx_count == (self.tx_counts[-1] if self.tx_counts else 0) assert len(self.tx_counts) == flush_data.height + 1 hashes = b''.join(flush_data.block_tx_hashes) flush_data.block_tx_hashes.clear() assert len(hashes) % 32 == 0 assert len(hashes) // 32 == flush_data.tx_count - prior_tx_count start_time = time.monotonic() height_start = self.fs_height + 1 offset = self.header_offset(height_start) self.headers_file.write(offset, b''.join(flush_data.headers)) self.fs_update_header_offsets(offset, height_start, flush_data.headers) flush_data.headers.clear() offset = height_start * self.tx_counts.itemsize self.tx_counts_file.write(offset, self.tx_counts[height_start:].tobytes()) offset = prior_tx_count * 32 self.hashes_file.write(offset, hashes) self.fs_height = flush_data.height self.fs_tx_count = flush_data.tx_count if self.utxo_db.for_sync: elapsed = time.monotonic() - start_time self.logger.info(f'flushed filesystem data in {elapsed:.2f}s') self.history.flush() with self.utxo_db.write_batch() as batch: if flush_utxos: start_time = time.monotonic() add_count = len(flush_data.adds) spend_count = len(flush_data.deletes) // 2 batch_delete = batch.delete for key in sorted(flush_data.deletes): batch_delete(key) flush_data.deletes.clear() batch_put = batch.put for (key, value) in flush_data.adds.items(): hashX = value[:HASHX_LEN] txout_idx = key[-4:] tx_num = value[HASHX_LEN:HASHX_LEN + TXNUM_LEN] value_sats = value[-8:] suffix = txout_idx + tx_num batch_put(b'h' + key[:COMP_TXID_LEN] + suffix, hashX) batch_put(b'u' + hashX + suffix, value_sats) flush_data.adds.clear() self.flush_undo_infos(batch_put, flush_data.undo_infos) flush_data.undo_infos.clear() if self.utxo_db.for_sync: block_count = flush_data.height - self.db_height tx_count = flush_data.tx_count - self.db_tx_count elapsed = time.monotonic() - start_time self.logger.info(f'flushed {block_count:,d} blocks with {tx_count:,d} txs, {add_count:,d} UTXO adds, {spend_count:,d} spends in {elapsed:.1f}s, committing...') self.utxo_flush_count = self.history.flush_count self.db_height = flush_data.height self.db_tx_count = flush_data.tx_count self.db_tip = flush_data.tip now = time.time() self.wall_time += now - self.last_flush self.last_flush = now self.last_flush_tx_count = self.fs_tx_count self.write_utxo_state(batch) now = time.time() self.wall_time += now - self.last_flush self.last_flush = now self.last_flush_tx_count = self.fs_tx_count self.write_utxo_state(self.utxo_db) elapsed = self.last_flush - start_time self.logger.info(f'flush #{self.history.flush_count:,d} took {elapsed:.1f}s. Height {flush_data.height:,d} txs: {flush_data.tx_count:,d} ({tx_delta:+,d})') if self.utxo_db.for_sync: flush_interval = self.last_flush - prior_flush tx_per_sec_gen = int(flush_data.tx_count / self.wall_time) tx_per_sec_last = 1 + int(tx_delta / flush_interval) eta = estimate_txs_remaining() / tx_per_sec_last self.logger.info(f'tx/sec since genesis: {tx_per_sec_gen:,d}, since last flush: {tx_per_sec_last:,d}') self.logger.info(f'sync time: {formatted_time(self.wall_time)} ETA: {formatted_time(eta)}')
electrumx
positive
def _get_mimetree(self): if self._mimetree is None: tree = self._message.get_mime_tree() <DeepExtract> att = settings.get_theming_attribute('thread', 'body') att_focus = settings.get_theming_attribute('thread', 'body_focus') mimepart = tree[1] if isinstance(tree[1], (email.message.EmailMessage, Attachment)) else None (label, subtrees) = tree label = ANSIText(label, att, att_focus, ANSI_BACKGROUND, mimepart=mimepart) if subtrees is None or mimepart: tree = (label, None) else: tree = (label, [self._text_tree_to_widget_tree(s) for s in subtrees]) </DeepExtract> tree = SimpleTree([tree]) self._mimetree = ArrowTree(tree) return self._mimetree
def _get_mimetree(self): if self._mimetree is None: tree = self._message.get_mime_tree() att = settings.get_theming_attribute('thread', 'body') att_focus = settings.get_theming_attribute('thread', 'body_focus') mimepart = tree[1] if isinstance(tree[1], (email.message.EmailMessage, Attachment)) else None (label, subtrees) = tree label = ANSIText(label, att, att_focus, ANSI_BACKGROUND, mimepart=mimepart) if subtrees is None or mimepart: tree = (label, None) else: tree = (label, [self._text_tree_to_widget_tree(s) for s in subtrees]) tree = SimpleTree([tree]) self._mimetree = ArrowTree(tree) return self._mimetree
alot
positive
def predict(self, user_ids, log_seqs, item_indices): """Predict scores for input item sequential. Args: user_ids ([type]): [description] log_seqs ([type]): [description] item_indices ([type]): [description] Returns: [type]: [logits] """ <DeepExtract> seqs = self.item_emb(torch.as_tensor(log_seqs, dtype=torch.long).to(self.device)) seqs *= self.item_emb.embedding_dim ** 0.5 positions = np.tile(np.array(range(log_seqs.shape[1])), [log_seqs.shape[0], 1]) seqs += self.pos_emb(torch.as_tensor(positions, dtype=torch.long).to(self.device)) seqs = self.emb_dropout(seqs) timeline_mask = torch.BoolTensor(log_seqs == 0).to(self.device) seqs *= ~timeline_mask.unsqueeze(-1) tl = seqs.shape[1] attention_mask = ~torch.tril(torch.ones((tl, tl), dtype=torch.bool, device=self.device)) for i in range(len(self.attention_layers)): seqs = torch.transpose(seqs, 0, 1) Q = self.attention_layernorms[i](seqs) (mha_outputs, _) = self.attention_layers[i](Q, seqs, seqs, attn_mask=attention_mask) seqs = Q + mha_outputs seqs = torch.transpose(seqs, 0, 1) seqs = self.forward_layernorms[i](seqs) seqs = self.forward_layers[i](seqs) seqs *= ~timeline_mask.unsqueeze(-1) log_feats = self.last_layernorm(seqs) log_feats = log_feats </DeepExtract> final_feat = log_feats[:, -1, :] item_embs = self.item_emb(torch.as_tensor(item_indices, dtype=torch.long, device=self.device)) logits = item_embs.matmul(final_feat.unsqueeze(-1)).squeeze(-1) return logits
def predict(self, user_ids, log_seqs, item_indices): """Predict scores for input item sequential. Args: user_ids ([type]): [description] log_seqs ([type]): [description] item_indices ([type]): [description] Returns: [type]: [logits] """ seqs = self.item_emb(torch.as_tensor(log_seqs, dtype=torch.long).to(self.device)) seqs *= self.item_emb.embedding_dim ** 0.5 positions = np.tile(np.array(range(log_seqs.shape[1])), [log_seqs.shape[0], 1]) seqs += self.pos_emb(torch.as_tensor(positions, dtype=torch.long).to(self.device)) seqs = self.emb_dropout(seqs) timeline_mask = torch.BoolTensor(log_seqs == 0).to(self.device) seqs *= ~timeline_mask.unsqueeze(-1) tl = seqs.shape[1] attention_mask = ~torch.tril(torch.ones((tl, tl), dtype=torch.bool, device=self.device)) for i in range(len(self.attention_layers)): seqs = torch.transpose(seqs, 0, 1) Q = self.attention_layernorms[i](seqs) (mha_outputs, _) = self.attention_layers[i](Q, seqs, seqs, attn_mask=attention_mask) seqs = Q + mha_outputs seqs = torch.transpose(seqs, 0, 1) seqs = self.forward_layernorms[i](seqs) seqs = self.forward_layers[i](seqs) seqs *= ~timeline_mask.unsqueeze(-1) log_feats = self.last_layernorm(seqs) log_feats = log_feats final_feat = log_feats[:, -1, :] item_embs = self.item_emb(torch.as_tensor(item_indices, dtype=torch.long, device=self.device)) logits = item_embs.matmul(final_feat.unsqueeze(-1)).squeeze(-1) return logits
beta-recsys
positive
def restore_CF(self, use_QR=True, normalize=True): if self.canonical_form == 'right': <DeepExtract> if use_QR: G0 = tm.restore_RCF_r_seq(self.A, self.r, sanity_checks=self.sanity_checks, sc_data='restore_RCF_r') if not self._are_bond_dims_synced(): log.info('Bond dimension changed during restore_RCF.') A = copy.copy(self.A) r = copy.copy(self.r) self.set_state_from_tensors(A, do_update=False) self.r = r else: G_n_i = sp.eye(self.D[self.N], dtype=self.typ) for n in range(self.N, 0, -1): (self.r[n - 1], _, G_n_i) = tm.restore_RCF_r(self.A[n], self.r[n], G_n_i, sc_data=('site', n), zero_tol=self.zero_tol, sanity_checks=self.sanity_checks) G0 = G_n_i if normalize: self.A[1] *= G0[0, 0] / abs(G0[0, 0]) norm = 1.0 else: self.A[1] *= G0[0, 0] self.r[0] *= abs(G0[0, 0]) ** 2 norm = abs(G0[0, 0]) if self.sanity_checks: if not sp.allclose(self.r[0].A, norm ** 2, atol=1e-12, rtol=1e-12): log.warning('Sanity Fail in restore_RCF!: r_0 is bad / norm failure: %g vs. %g', self.r[0].A.real, norm ** 2) if diag_l: G = tm.restore_RCF_l_seq(self.A, self.l, sanity_checks=self.sanity_checks, sc_data='restore_RCF_l') if self.sanity_checks: if not sp.allclose(self.l[self.N].A, norm ** 2, atol=1e-12, rtol=1e-12): log.warning('Sanity Fail in restore_RCF!: l_N is bad / norm failure: %g vs. %g', self.l[self.N].A.real, norm ** 2) for n in range(1, self.N + 1): r_nm1 = tm.eps_r_noop(self.r[n], self.A[n], self.A[n]) if not sp.allclose(r_nm1, self.r[n - 1], atol=1e-11, rtol=1e-11): log.warning('Sanity Fail in restore_RCF!: r_%u is bad (off by %g)', n, la.norm(r_nm1 - self.r[n - 1])) elif update_l: self.calc_l() </DeepExtract> else: <DeepExtract> if use_QR: GN = tm.restore_LCF_l_seq(self.A, self.l, sanity_checks=self.sanity_checks, sc_data='restore_LCF_l') if not self._are_bond_dims_synced(): log.info('Bond dimension changed during restore_LCF.') A = copy.copy(self.A) l = copy.copy(self.l) self.set_state_from_tensors(A, do_update=False) self.l = l else: G = sp.eye(self.D[0], dtype=self.typ) for n in range(1, self.N + 1): (self.l[n], G, _) = tm.restore_LCF_l(self.A[n], self.l[n - 1], G, zero_tol=self.zero_tol, sanity_checks=self.sanity_checks) GN = G if normalize: self.A[self.N] *= GN[0, 0] / abs(GN[0, 0]) norm = 1.0 else: self.A[self.N] *= GN[0, 0] self.l[self.N] *= abs(GN[0, 0]) ** 2 norm = abs(GN[0, 0]) if self.sanity_checks: lN = tm.eps_l_noop(self.l[self.N - 1], self.A[self.N], self.A[self.N]) if not sp.allclose(lN, norm ** 2, atol=1e-12, rtol=1e-12): log.warning('Sanity Fail in restore_LCF!: l_N is bad / norm failure') if diag_r: tm.restore_LCF_r_seq(self.A, self.r, sanity_checks=self.sanity_checks, sc_data='restore_LCF_r') if self.sanity_checks: if not sp.allclose(self.r[0].A, norm ** 2, atol=1e-12, rtol=1e-12): log.warning('Sanity Fail in restore_LCF!: r_0 is bad / norm failure') log.warning('r_0 = %s', self.r[0].squeeze().real) for n in range(1, self.N + 1): l = tm.eps_l_noop(self.l[n - 1], self.A[n], self.A[n]) if not sp.allclose(l, self.l[n], atol=1e-11, rtol=1e-11): log.warning('Sanity Fail in restore_LCF!: l_%u is bad (off by %g)', n, la.norm(l - self.l[n])) elif update_r: self.calc_r() </DeepExtract>
def restore_CF(self, use_QR=True, normalize=True): if self.canonical_form == 'right': if use_QR: G0 = tm.restore_RCF_r_seq(self.A, self.r, sanity_checks=self.sanity_checks, sc_data='restore_RCF_r') if not self._are_bond_dims_synced(): log.info('Bond dimension changed during restore_RCF.') A = copy.copy(self.A) r = copy.copy(self.r) self.set_state_from_tensors(A, do_update=False) self.r = r else: G_n_i = sp.eye(self.D[self.N], dtype=self.typ) for n in range(self.N, 0, -1): (self.r[n - 1], _, G_n_i) = tm.restore_RCF_r(self.A[n], self.r[n], G_n_i, sc_data=('site', n), zero_tol=self.zero_tol, sanity_checks=self.sanity_checks) G0 = G_n_i if normalize: self.A[1] *= G0[0, 0] / abs(G0[0, 0]) norm = 1.0 else: self.A[1] *= G0[0, 0] self.r[0] *= abs(G0[0, 0]) ** 2 norm = abs(G0[0, 0]) if self.sanity_checks: if not sp.allclose(self.r[0].A, norm ** 2, atol=1e-12, rtol=1e-12): log.warning('Sanity Fail in restore_RCF!: r_0 is bad / norm failure: %g vs. %g', self.r[0].A.real, norm ** 2) if diag_l: G = tm.restore_RCF_l_seq(self.A, self.l, sanity_checks=self.sanity_checks, sc_data='restore_RCF_l') if self.sanity_checks: if not sp.allclose(self.l[self.N].A, norm ** 2, atol=1e-12, rtol=1e-12): log.warning('Sanity Fail in restore_RCF!: l_N is bad / norm failure: %g vs. %g', self.l[self.N].A.real, norm ** 2) for n in range(1, self.N + 1): r_nm1 = tm.eps_r_noop(self.r[n], self.A[n], self.A[n]) if not sp.allclose(r_nm1, self.r[n - 1], atol=1e-11, rtol=1e-11): log.warning('Sanity Fail in restore_RCF!: r_%u is bad (off by %g)', n, la.norm(r_nm1 - self.r[n - 1])) elif update_l: self.calc_l() else: if use_QR: GN = tm.restore_LCF_l_seq(self.A, self.l, sanity_checks=self.sanity_checks, sc_data='restore_LCF_l') if not self._are_bond_dims_synced(): log.info('Bond dimension changed during restore_LCF.') A = copy.copy(self.A) l = copy.copy(self.l) self.set_state_from_tensors(A, do_update=False) self.l = l else: G = sp.eye(self.D[0], dtype=self.typ) for n in range(1, self.N + 1): (self.l[n], G, _) = tm.restore_LCF_l(self.A[n], self.l[n - 1], G, zero_tol=self.zero_tol, sanity_checks=self.sanity_checks) GN = G if normalize: self.A[self.N] *= GN[0, 0] / abs(GN[0, 0]) norm = 1.0 else: self.A[self.N] *= GN[0, 0] self.l[self.N] *= abs(GN[0, 0]) ** 2 norm = abs(GN[0, 0]) if self.sanity_checks: lN = tm.eps_l_noop(self.l[self.N - 1], self.A[self.N], self.A[self.N]) if not sp.allclose(lN, norm ** 2, atol=1e-12, rtol=1e-12): log.warning('Sanity Fail in restore_LCF!: l_N is bad / norm failure') if diag_r: tm.restore_LCF_r_seq(self.A, self.r, sanity_checks=self.sanity_checks, sc_data='restore_LCF_r') if self.sanity_checks: if not sp.allclose(self.r[0].A, norm ** 2, atol=1e-12, rtol=1e-12): log.warning('Sanity Fail in restore_LCF!: r_0 is bad / norm failure') log.warning('r_0 = %s', self.r[0].squeeze().real) for n in range(1, self.N + 1): l = tm.eps_l_noop(self.l[n - 1], self.A[n], self.A[n]) if not sp.allclose(l, self.l[n], atol=1e-11, rtol=1e-11): log.warning('Sanity Fail in restore_LCF!: l_%u is bad (off by %g)', n, la.norm(l - self.l[n])) elif update_r: self.calc_r() </DeepExtract>
evoMPS
positive
def get_all_credentials(self): auth_data = self.auths.copy() if self.creds_store: <DeepExtract> if self.creds_store not in self._stores: self._stores[self.creds_store] = Store(self.creds_store, environment=self._credstore_env) store = self._stores[self.creds_store] </DeepExtract> for k in store.list().keys(): <DeepExtract> if not k or k == INDEX_NAME: k = INDEX_URL log.debug('Looking for auth entry for %s', repr(k)) store = self._get_store_instance(self.creds_store) try: data = store.get(k) res = {'ServerAddress': k} if data['Username'] == TOKEN_USERNAME: res['IdentityToken'] = data['Secret'] else: res.update({'Username': data['Username'], 'Password': data['Secret']}) auth_data[k] = res except CredentialsNotFound: log.debug('No entry found') auth_data[k] = None except StoreError as e: raise errors.DockerException('Credentials store error: {0}'.format(repr(e))) </DeepExtract> auth_data[convert_to_hostname(k)] = auth_data[k] for (reg, store_name) in self.cred_helpers.items(): <DeepExtract> if not reg or reg == INDEX_NAME: reg = INDEX_URL log.debug('Looking for auth entry for %s', repr(reg)) store = self._get_store_instance(store_name) try: data = store.get(reg) res = {'ServerAddress': reg} if data['Username'] == TOKEN_USERNAME: res['IdentityToken'] = data['Secret'] else: res.update({'Username': data['Username'], 'Password': data['Secret']}) auth_data[reg] = res except CredentialsNotFound: log.debug('No entry found') auth_data[reg] = None except StoreError as e: raise errors.DockerException('Credentials store error: {0}'.format(repr(e))) </DeepExtract> auth_data[convert_to_hostname(reg)] = auth_data[reg] return auth_data
def get_all_credentials(self): auth_data = self.auths.copy() if self.creds_store: if self.creds_store not in self._stores: self._stores[self.creds_store] = Store(self.creds_store, environment=self._credstore_env) store = self._stores[self.creds_store] for k in store.list().keys(): if not k or k == INDEX_NAME: k = INDEX_URL log.debug('Looking for auth entry for %s', repr(k)) store = self._get_store_instance(self.creds_store) try: data = store.get(k) res = {'ServerAddress': k} if data['Username'] == TOKEN_USERNAME: res['IdentityToken'] = data['Secret'] else: res.update({'Username': data['Username'], 'Password': data['Secret']}) auth_data[k] = res except CredentialsNotFound: log.debug('No entry found') auth_data[k] = None except StoreError as e: raise errors.DockerException('Credentials store error: {0}'.format(repr(e))) auth_data[convert_to_hostname(k)] = auth_data[k] for (reg, store_name) in self.cred_helpers.items(): if not reg or reg == INDEX_NAME: reg = INDEX_URL log.debug('Looking for auth entry for %s', repr(reg)) store = self._get_store_instance(store_name) try: data = store.get(reg) res = {'ServerAddress': reg} if data['Username'] == TOKEN_USERNAME: res['IdentityToken'] = data['Secret'] else: res.update({'Username': data['Username'], 'Password': data['Secret']}) auth_data[reg] = res except CredentialsNotFound: log.debug('No entry found') auth_data[reg] = None except StoreError as e: raise errors.DockerException('Credentials store error: {0}'.format(repr(e))) auth_data[convert_to_hostname(reg)] = auth_data[reg] return auth_data
community.docker
positive
def test_select_with_zmq_error(self): s = self.SELECTOR() self.addCleanup(s.close) <DeepExtract> (rd, wr) = socketpair() self.addCleanup(rd.close) self.addCleanup(wr.close) (rd, wr) = (rd, wr) </DeepExtract> s.register(rd, EVENT_READ) m = mock.Mock() m.side_effect = zmq.ZMQError(errno.EFAULT, 'not a socket') s._poller.poll = m with self.assertRaises(OSError) as ctx: s.select() self.assertEqual(errno.EFAULT, ctx.exception.errno)
def test_select_with_zmq_error(self): s = self.SELECTOR() self.addCleanup(s.close) (rd, wr) = socketpair() self.addCleanup(rd.close) self.addCleanup(wr.close) (rd, wr) = (rd, wr) s.register(rd, EVENT_READ) m = mock.Mock() m.side_effect = zmq.ZMQError(errno.EFAULT, 'not a socket') s._poller.poll = m with self.assertRaises(OSError) as ctx: s.select() self.assertEqual(errno.EFAULT, ctx.exception.errno)
aiozmq
positive
def _check_package_selection_parameters(args, pkg_names): <DeepExtract> extensions = instantiate_extensions(__name__) for (name, extension) in extensions.items(): extension.PACKAGE_SELECTION_NAME = name package_selection_extensions = order_extensions_by_priority(extensions) </DeepExtract> for extension in package_selection_extensions.values(): try: retval = extension.check_parameters(args=args, pkg_names=pkg_names) assert retval is None, 'check_parameters() should return None' except Exception as e: exc = traceback.format_exc() logger.error(f"Exception in package selection extension '{extension.PACKAGE_SELECTION_NAME}': {e}\n{exc}")
def _check_package_selection_parameters(args, pkg_names): extensions = instantiate_extensions(__name__) for (name, extension) in extensions.items(): extension.PACKAGE_SELECTION_NAME = name package_selection_extensions = order_extensions_by_priority(extensions) for extension in package_selection_extensions.values(): try: retval = extension.check_parameters(args=args, pkg_names=pkg_names) assert retval is None, 'check_parameters() should return None' except Exception as e: exc = traceback.format_exc() logger.error(f"Exception in package selection extension '{extension.PACKAGE_SELECTION_NAME}': {e}\n{exc}")
colcon-core
positive
def testClassificationShapes(self): global_pool = True num_classes = 10 <DeepExtract> if None in [2, 224, 224, 3]: inputs = tf.placeholder(tf.float32, (2, 224, 224, 3)) else: inputs = tf.to_float(np.tile(np.reshape(np.reshape(np.arange(224), [224, 1]) + np.reshape(np.arange(224), [1, 224]), [1, 224, 224, 1]), [2, 1, 1, 3])) </DeepExtract> with slim.arg_scope(xception.xception_arg_scope()): <DeepExtract> block = xception.xception_block blocks = [block('entry_flow/block1', depth_list=[1, 1, 1], skip_connection_type='conv', activation_fn_in_separable_conv=False, regularize_depthwise=regularize_depthwise, num_units=1, stride=2), block('entry_flow/block2', depth_list=[2, 2, 2], skip_connection_type='conv', activation_fn_in_separable_conv=False, regularize_depthwise=regularize_depthwise, num_units=1, stride=2), block('entry_flow/block3', depth_list=[4, 4, 4], skip_connection_type='conv', activation_fn_in_separable_conv=False, regularize_depthwise=regularize_depthwise, num_units=1, stride=1), block('entry_flow/block4', depth_list=[4, 4, 4], skip_connection_type='conv', activation_fn_in_separable_conv=False, regularize_depthwise=regularize_depthwise, num_units=1, stride=2), block('middle_flow/block1', depth_list=[4, 4, 4], skip_connection_type='sum', activation_fn_in_separable_conv=False, regularize_depthwise=regularize_depthwise, num_units=2, stride=1), block('exit_flow/block1', depth_list=[8, 8, 8], skip_connection_type='conv', activation_fn_in_separable_conv=False, regularize_depthwise=regularize_depthwise, num_units=1, stride=2), block('exit_flow/block2', depth_list=[16, 16, 16], skip_connection_type='none', activation_fn_in_separable_conv=True, regularize_depthwise=regularize_depthwise, num_units=1, stride=1)] (_, end_points) = xception.xception(inputs, blocks=blocks, num_classes=num_classes, is_training=is_training, global_pool=global_pool, output_stride=output_stride, reuse=reuse, scope='xception') </DeepExtract> endpoint_to_shape = {'xception/entry_flow/conv1_1': [2, 112, 112, 32], 'xception/entry_flow/block1': [2, 56, 56, 1], 'xception/entry_flow/block2': [2, 28, 28, 2], 'xception/entry_flow/block4': [2, 14, 14, 4], 'xception/middle_flow/block1': [2, 14, 14, 4], 'xception/exit_flow/block1': [2, 7, 7, 8], 'xception/exit_flow/block2': [2, 7, 7, 16]} for (endpoint, shape) in six.iteritems(endpoint_to_shape): self.assertListEqual(end_points[endpoint].get_shape().as_list(), shape)
def testClassificationShapes(self): global_pool = True num_classes = 10 if None in [2, 224, 224, 3]: inputs = tf.placeholder(tf.float32, (2, 224, 224, 3)) else: inputs = tf.to_float(np.tile(np.reshape(np.reshape(np.arange(224), [224, 1]) + np.reshape(np.arange(224), [1, 224]), [1, 224, 224, 1]), [2, 1, 1, 3])) with slim.arg_scope(xception.xception_arg_scope()): block = xception.xception_block blocks = [block('entry_flow/block1', depth_list=[1, 1, 1], skip_connection_type='conv', activation_fn_in_separable_conv=False, regularize_depthwise=regularize_depthwise, num_units=1, stride=2), block('entry_flow/block2', depth_list=[2, 2, 2], skip_connection_type='conv', activation_fn_in_separable_conv=False, regularize_depthwise=regularize_depthwise, num_units=1, stride=2), block('entry_flow/block3', depth_list=[4, 4, 4], skip_connection_type='conv', activation_fn_in_separable_conv=False, regularize_depthwise=regularize_depthwise, num_units=1, stride=1), block('entry_flow/block4', depth_list=[4, 4, 4], skip_connection_type='conv', activation_fn_in_separable_conv=False, regularize_depthwise=regularize_depthwise, num_units=1, stride=2), block('middle_flow/block1', depth_list=[4, 4, 4], skip_connection_type='sum', activation_fn_in_separable_conv=False, regularize_depthwise=regularize_depthwise, num_units=2, stride=1), block('exit_flow/block1', depth_list=[8, 8, 8], skip_connection_type='conv', activation_fn_in_separable_conv=False, regularize_depthwise=regularize_depthwise, num_units=1, stride=2), block('exit_flow/block2', depth_list=[16, 16, 16], skip_connection_type='none', activation_fn_in_separable_conv=True, regularize_depthwise=regularize_depthwise, num_units=1, stride=1)] (_, end_points) = xception.xception(inputs, blocks=blocks, num_classes=num_classes, is_training=is_training, global_pool=global_pool, output_stride=output_stride, reuse=reuse, scope='xception') endpoint_to_shape = {'xception/entry_flow/conv1_1': [2, 112, 112, 32], 'xception/entry_flow/block1': [2, 56, 56, 1], 'xception/entry_flow/block2': [2, 28, 28, 2], 'xception/entry_flow/block4': [2, 14, 14, 4], 'xception/middle_flow/block1': [2, 14, 14, 4], 'xception/exit_flow/block1': [2, 7, 7, 8], 'xception/exit_flow/block2': [2, 7, 7, 16]} for (endpoint, shape) in six.iteritems(endpoint_to_shape): self.assertListEqual(end_points[endpoint].get_shape().as_list(), shape)
data-science-bowl-2018
positive
def plot_history(history, metric, targets): if isinstance(targets, str): fig = plt.figure(figsize=(15, 6)) hist = pd.DataFrame(history.history) hist['epoch'] = history.epoch ax1 = plt.subplot(1, 2, 1) ax1.set_title('Model Training vs Validation Loss') <DeepExtract> train_metrics = history.history['loss'] val_metrics = history.history['val_' + 'loss'] epochs = range(1, len(train_metrics) + 1) ax1.plot(epochs, train_metrics) ax1.plot(epochs, val_metrics) ax1.set_xlabel('Epochs') ax1.set_ylabel('loss') ax1.legend(['train_' + 'loss', 'val_' + 'loss']) </DeepExtract> ax2 = plt.subplot(1, 2, 2) ax2.set_title('Model Training vs Validation %s' % metric) <DeepExtract> train_metrics = history.history[metric] val_metrics = history.history['val_' + metric] epochs = range(1, len(train_metrics) + 1) ax2.plot(epochs, train_metrics) ax2.plot(epochs, val_metrics) ax2.set_xlabel('Epochs') ax2.set_ylabel(metric) ax2.legend(['train_' + metric, 'val_' + metric]) </DeepExtract> else: for each_target in targets: fig = plt.figure(figsize=(15, 6)) hist = pd.DataFrame(history.history) hist['epoch'] = history.epoch ax1 = plt.subplot(1, 2, 1) ax1.set_title('Model Training vs Validation Loss') <DeepExtract> train_metrics = history.history[each_target + '_loss'] val_metrics = history.history['val_' + each_target + '_loss'] epochs = range(1, len(train_metrics) + 1) ax1.plot(epochs, train_metrics) ax1.plot(epochs, val_metrics) ax1.set_xlabel('Epochs') ax1.set_ylabel(each_target + '_loss') ax1.legend(['train_' + each_target + '_loss', 'val_' + each_target + '_loss']) </DeepExtract> ax2 = plt.subplot(1, 2, 2) metric1 = [x for x in hist.columns.tolist() if (each_target in x) & ('loss' not in x)] metric2 = metric1[0] ax2.set_title('Model Training vs Validation %s' % metric2) <DeepExtract> train_metrics = history.history[metric2] val_metrics = history.history['val_' + metric2] epochs = range(1, len(train_metrics) + 1) ax2.plot(epochs, train_metrics) ax2.plot(epochs, val_metrics) ax2.set_xlabel('Epochs') ax2.set_ylabel(metric2) ax2.legend(['train_' + metric2, 'val_' + metric2]) </DeepExtract> plt.show()
def plot_history(history, metric, targets): if isinstance(targets, str): fig = plt.figure(figsize=(15, 6)) hist = pd.DataFrame(history.history) hist['epoch'] = history.epoch ax1 = plt.subplot(1, 2, 1) ax1.set_title('Model Training vs Validation Loss') train_metrics = history.history['loss'] val_metrics = history.history['val_' + 'loss'] epochs = range(1, len(train_metrics) + 1) ax1.plot(epochs, train_metrics) ax1.plot(epochs, val_metrics) ax1.set_xlabel('Epochs') ax1.set_ylabel('loss') ax1.legend(['train_' + 'loss', 'val_' + 'loss']) ax2 = plt.subplot(1, 2, 2) ax2.set_title('Model Training vs Validation %s' % metric) train_metrics = history.history[metric] val_metrics = history.history['val_' + metric] epochs = range(1, len(train_metrics) + 1) ax2.plot(epochs, train_metrics) ax2.plot(epochs, val_metrics) ax2.set_xlabel('Epochs') ax2.set_ylabel(metric) ax2.legend(['train_' + metric, 'val_' + metric]) else: for each_target in targets: fig = plt.figure(figsize=(15, 6)) hist = pd.DataFrame(history.history) hist['epoch'] = history.epoch ax1 = plt.subplot(1, 2, 1) ax1.set_title('Model Training vs Validation Loss') train_metrics = history.history[each_target + '_loss'] val_metrics = history.history['val_' + each_target + '_loss'] epochs = range(1, len(train_metrics) + 1) ax1.plot(epochs, train_metrics) ax1.plot(epochs, val_metrics) ax1.set_xlabel('Epochs') ax1.set_ylabel(each_target + '_loss') ax1.legend(['train_' + each_target + '_loss', 'val_' + each_target + '_loss']) ax2 = plt.subplot(1, 2, 2) metric1 = [x for x in hist.columns.tolist() if (each_target in x) & ('loss' not in x)] metric2 = metric1[0] ax2.set_title('Model Training vs Validation %s' % metric2) train_metrics = history.history[metric2] val_metrics = history.history['val_' + metric2] epochs = range(1, len(train_metrics) + 1) ax2.plot(epochs, train_metrics) ax2.plot(epochs, val_metrics) ax2.set_xlabel('Epochs') ax2.set_ylabel(metric2) ax2.legend(['train_' + metric2, 'val_' + metric2]) plt.show()
deep_autoviml
positive
def delete_last(self, num_to_delete=1): """Deletes the last N datapoints from the dataset. Parameters ---------- num_to_delete : int the number of datapoints to remove from the end of the dataset """ if self._access_mode == READ_ONLY_ACCESS: raise ValueError('Cannot delete datapoints with read-only access') if num_to_delete > self._num_datapoints: raise ValueError('Cannot remove more than the number of datapoints in the dataset') last_datapoint_ind = self._num_datapoints - 1 last_tensor_ind = last_datapoint_ind // self._datapoints_per_file new_last_datapoint_ind = self._num_datapoints - 1 - num_to_delete new_num_datapoints = new_last_datapoint_ind + 1 new_last_datapoint_ind = max(new_last_datapoint_ind, 0) new_last_tensor_ind = new_last_datapoint_ind // self._datapoints_per_file delete_tensor_ind = range(new_last_tensor_ind + 1, last_tensor_ind + 1) for tensor_ind in delete_tensor_ind: for field_name in self.field_names: <DeepExtract> file_ext = TENSOR_EXT if compressed: file_ext = COMPRESSED_TENSOR_EXT filename = os.path.join(self.filename, 'tensors', ('%s_%0' + str(self._filename_numeric_label_place) + 'd%s') % (field_name, tensor_ind, file_ext)) filename = filename </DeepExtract> os.remove(filename) dataset_empty = False target_tensor_size = new_num_datapoints % self._datapoints_per_file if target_tensor_size == 0: if new_num_datapoints > 0: target_tensor_size = self._datapoints_per_file else: dataset_empty = True for field_name in self.field_names: <DeepExtract> if new_last_tensor_ind == self._tensor_cache_file_num[field_name]: new_last_tensor = self._tensors[field_name] filename = self.generate_tensor_filename(field_name, new_last_tensor_ind, compressed=True) Tensor.load(filename, compressed=True, prealloc=self._tensors[field_name]) self._tensor_cache_file_num[field_name] = new_last_tensor_ind new_last_tensor = self._tensors[field_name] </DeepExtract> while new_last_tensor.size > target_tensor_size: new_last_tensor.delete_last() <DeepExtract> file_ext = TENSOR_EXT if compressed: file_ext = COMPRESSED_TENSOR_EXT filename = os.path.join(self.filename, 'tensors', ('%s_%0' + str(self._filename_numeric_label_place) + 'd%s') % (field_name, new_last_tensor_ind, file_ext)) filename = filename </DeepExtract> new_last_tensor.save(filename, compressed=True) if not new_last_tensor.has_data: os.remove(filename) new_last_tensor.reset() if self._num_datapoints - 1 - num_to_delete >= 0: self._num_datapoints = new_num_datapoints else: self._num_datapoints = 0 self._num_tensors = new_last_tensor_ind + 1 if dataset_empty: self._num_tensors = 0
def delete_last(self, num_to_delete=1): """Deletes the last N datapoints from the dataset. Parameters ---------- num_to_delete : int the number of datapoints to remove from the end of the dataset """ if self._access_mode == READ_ONLY_ACCESS: raise ValueError('Cannot delete datapoints with read-only access') if num_to_delete > self._num_datapoints: raise ValueError('Cannot remove more than the number of datapoints in the dataset') last_datapoint_ind = self._num_datapoints - 1 last_tensor_ind = last_datapoint_ind // self._datapoints_per_file new_last_datapoint_ind = self._num_datapoints - 1 - num_to_delete new_num_datapoints = new_last_datapoint_ind + 1 new_last_datapoint_ind = max(new_last_datapoint_ind, 0) new_last_tensor_ind = new_last_datapoint_ind // self._datapoints_per_file delete_tensor_ind = range(new_last_tensor_ind + 1, last_tensor_ind + 1) for tensor_ind in delete_tensor_ind: for field_name in self.field_names: file_ext = TENSOR_EXT if compressed: file_ext = COMPRESSED_TENSOR_EXT filename = os.path.join(self.filename, 'tensors', ('%s_%0' + str(self._filename_numeric_label_place) + 'd%s') % (field_name, tensor_ind, file_ext)) filename = filename os.remove(filename) dataset_empty = False target_tensor_size = new_num_datapoints % self._datapoints_per_file if target_tensor_size == 0: if new_num_datapoints > 0: target_tensor_size = self._datapoints_per_file else: dataset_empty = True for field_name in self.field_names: if new_last_tensor_ind == self._tensor_cache_file_num[field_name]: new_last_tensor = self._tensors[field_name] filename = self.generate_tensor_filename(field_name, new_last_tensor_ind, compressed=True) Tensor.load(filename, compressed=True, prealloc=self._tensors[field_name]) self._tensor_cache_file_num[field_name] = new_last_tensor_ind new_last_tensor = self._tensors[field_name] while new_last_tensor.size > target_tensor_size: new_last_tensor.delete_last() file_ext = TENSOR_EXT if compressed: file_ext = COMPRESSED_TENSOR_EXT filename = os.path.join(self.filename, 'tensors', ('%s_%0' + str(self._filename_numeric_label_place) + 'd%s') % (field_name, new_last_tensor_ind, file_ext)) filename = filename new_last_tensor.save(filename, compressed=True) if not new_last_tensor.has_data: os.remove(filename) new_last_tensor.reset() if self._num_datapoints - 1 - num_to_delete >= 0: self._num_datapoints = new_num_datapoints else: self._num_datapoints = 0 self._num_tensors = new_last_tensor_ind + 1 if dataset_empty: self._num_tensors = 0
autolab_core
positive
def _fit_implementation(self, x, y, verbose, callbacks, sample_weight, validation_data, validation_steps, steps_per_epoch, class_weight) -> tf.keras.callbacks.History: """Train the model. This method performs operations that resembles as the Keras' fit function. Details: 1. Load the training dataset in Yggdrasil (locally or remotely). 2. Load the validation dataset in Yggdrasil (locally or ignored). 3. Train the Yggdrasil model. Depending on the learner, this might also evaluate the model (on the validation dataset or with out-of-bag). 4. Evaluate the model using the Keras metrics. We recommend training / validating models with finite datasets. For backward compatibility with the early version of TF-DF, we also support infinite dataset with specified number of steps (`steps_per_epoch` and `validation_steps` arguments). Using a number of steps currently raises a warning, and will later raise an error (and the logic be removed). """ if not isinstance(callbacks, tf.keras.callbacks.CallbackList): callbacks = tf.keras.callbacks.CallbackList(callbacks, model=self, add_history=False) history = tf.keras.callbacks.History() history.model = self history.on_train_begin() history.on_epoch_begin(0) callbacks.on_train_begin() callbacks.on_epoch_begin(0) distribution_config = tf_core.get_distribution_configuration(self.distribute_strategy) validation_data_handler = None if validation_data: (val_x, val_y, val_sample_weight) = tf.keras.utils.unpack_x_y_sample_weight(validation_data) if distribution_config is None or not self.support_distributed_training(): validation_data_handler = get_data_handler(x=val_x, y=val_y, sample_weight=val_sample_weight, model=self, steps_per_epoch=validation_steps, class_weight=class_weight) time_begin_train_dataset_reading = datetime.now() if self._verbose >= 1: tf_logging.info('Reading training dataset...') coordinator = None if distribution_config is None or not self.support_distributed_training(): data_handler = get_data_handler(x=x, y=y, sample_weight=sample_weight, model=self, class_weight=class_weight) iterator = iter(data_handler._dataset) if steps_per_epoch is None: <DeepExtract> num_examples = 0 for data in iterator: num_examples += self.train_step(data) self._num_training_examples = num_examples </DeepExtract> else: tf_logging.warning('You are using non-distributed training with steps_per_epoch. This solution will lead to a sub-optimal model. Instead, use a finite training dataset (e.g. a dataset without repeat operation) and remove the `steps_per_epoch` argument. This warning will be turned into an error in the future.') def consumes_one_training_batch(iterator): data = next(iterator) return self.train_step(data) tf_consumes_one_training_batch = tf.function(consumes_one_training_batch, reduce_retracing=True) num_examples = 0 try: for _ in range(steps_per_epoch): num_examples += tf_consumes_one_training_batch(iterator) except tf.errors.OutOfRangeError: pass self._num_training_examples = num_examples else: if class_weight is not None: raise ValueError('class_weight not support for distributed training. Feed the example weights through the dataset.') if not self.capabilities().support_partial_cache_dataset_format: raise ValueError(f'The model {type(self)} does not support training with a TF Distribution strategy (i.e. model.capabilities().support_partial_cache_dataset_format == False). If the dataset is small, simply remove the distribution strategy scope (i.e. `with strategy.scope():` around the model construction). If the dataset is large, use a distributed version of the model. For example, use DistributedGradientBoostedTreesModel instead of GradientBoostedTreesModel.') coordinator = tf.distribute.experimental.coordinator.ClusterCoordinator(self.distribute_strategy) with self.distribute_strategy.scope(): per_worker_dataset = coordinator.create_per_worker_dataset(x) per_worker_iter = iter(per_worker_dataset) if steps_per_epoch is not None: tf_logging.warning('You are using distributed training with steps_per_epoch. This solution will lead to a sub-optimal model. Instead, use a finite training dataset (e.g. a dataset without repeat operation) and remove the `steps_per_epoch` argument.') def remote_consumes_one_training_batch(iterator): data = next(iterator) <DeepExtract> return self.collect_data_step(data, is_training_example=True) </DeepExtract> tf_remote_consumes_one_training_batch = tf.function(remote_consumes_one_training_batch, reduce_retracing=True) tf_logging.info('Scheduling of %d steps', steps_per_epoch) for _ in range(steps_per_epoch): coordinator.schedule(tf_remote_consumes_one_training_batch, args=(per_worker_iter,)) tf_logging.info('Waiting for scheduled steps to complete') coordinator.join() self._num_training_examples = -1 else: def remote_consumes_training_examples_until_eof(iterator): return self._consumes_training_examples_until_eof(iterator) tf_remote_consumes_training_examples_until_eof = tf.function(remote_consumes_training_examples_until_eof, reduce_retracing=True) self._num_training_examples = tf_core.execute_function_on_each_worker(coordinator, tf_remote_consumes_training_examples_until_eof, (per_worker_iter,)) if self._verbose >= 1: t = datetime.now() - time_begin_train_dataset_reading tf_logging.info(f'Training dataset read in {t}. Found {self._num_training_examples} examples.') if validation_data is not None: if coordinator is not None and self.support_distributed_training(): assert validation_data_handler is None tf_logging.warning('With distributed training, the validation dataset is not (yet) used for early stopping.') self._num_validation_examples = None else: assert validation_data_handler is not None time_begin_valid_dataset_reading = datetime.now() if self._verbose >= 1: tf_logging.info('Reading validation dataset...') iterator = iter(validation_data_handler._dataset) if validation_steps is None: <DeepExtract> num_examples = 0 for data in iterator: num_examples += self.valid_step(data) self._num_validation_examples = num_examples </DeepExtract> else: tf_logging.warning('You are using non-distributed validation with steps_per_epoch. This solution will lead to a sub-optimal model. Instead, use a finite validation dataset (e.g. a dataset without repeat operation) and remove the `validation_steps` argument. This warning will be turned into an error in the future.') def consumes_one_valid_batch(iterator): data = next(iterator) return self.valid_step(data) tf_consumes_one_valid_batch = tf.function(consumes_one_valid_batch, reduce_retracing=True) num_examples = 0 try: for _ in range(validation_steps): num_examples += tf_consumes_one_valid_batch(iterator) except tf.errors.OutOfRangeError: pass self._num_validation_examples = num_examples tf_logging.info('Num validation examples: %s', self.num_validation_examples) if self._verbose >= 1: t = datetime.now() - time_begin_valid_dataset_reading tf_logging.info(f'Validation dataset read in {t}. Found {self._num_validation_examples} examples.') time_begin_training_model = datetime.now() if self._verbose >= 1: tf_logging.info('Training model...') <DeepExtract> if self._normalized_input_feature_keys is None: raise Exception('The training graph was not built.') train_model_path = self._temp_directory model_path = os.path.join(train_model_path, 'model') guide = self._build_guide() training_config = copy.deepcopy(self._advanced_arguments.yggdrasil_training_config) if self._weighted_training: training_config.weight_definition.attribute = WEIGHTS training_config.weight_definition.numerical.SetInParent() for feature_key in self._normalized_input_feature_keys: feature_regex = tf_core.normalize_inputs_regexp(feature_key, False) training_config.features.append(feature_regex) deployment_config = copy.deepcopy(self._advanced_arguments.yggdrasil_deployment_config) if not deployment_config.HasField('num_threads'): deployment_config.num_threads = self._num_threads distribution_config = tf_core.get_distribution_configuration(self.distribute_strategy) (resource_ids, feature_names) = tf_core.column_keys_to_resource_ids(self._normalized_column_keys, self._training_model_id, True) with cc_logging.capture_cpp_log_context(verbose=self._verbose >= 2): if distribution_config is None or not self.support_distributed_training(): tf_core.train(resource_ids=resource_ids, model_id=self._training_model_id, model_dir=train_model_path, generic_hparms=tf_core.hparams_dict_to_generic_proto(self._learner_params), keep_model_in_resource=True, guide=guide, training_config=training_config, deployment_config=deployment_config, try_resume_training=self._try_resume_training, has_validation_dataset=self._has_validation_dataset, node_format=self._advanced_arguments.node_format) else: tf_core.finalize_distributed_dataset_collection(cluster_coordinator=coordinator, resource_ids=resource_ids, feature_names=feature_names, dataset_path=self._distributed_partial_dataset_cache_path()) tf_core.train_on_file_dataset(train_dataset_path='partial_dataset_cache:' + self._distributed_partial_dataset_cache_path(), valid_dataset_path=None, model_id=self._training_model_id, model_dir=train_model_path, generic_hparms=tf_core.hparams_dict_to_generic_proto(self._learner_params), keep_model_in_resource=True, guide=guide, training_config=training_config, deployment_config=deployment_config, working_cache_path=os.path.join(self._temp_directory, 'working_cache'), distribution_config=distribution_config, try_resume_training=self._try_resume_training, cluster_coordinator=coordinator, node_format=self._advanced_arguments.node_format, force_ydf_port=self._advanced_arguments.force_ydf_port) self._description = training_op.SimpleMLShowModel(model_identifier=self._training_model_id).numpy().decode('utf-8') training_op.SimpleMLUnloadModel(model_identifier=self._training_model_id) self._is_trained.assign(True) if self._is_multitask: self._models = [] for task_idx in range(len(self._multitask)): self._models.append(tf_op.ModelV2(model_path=model_path, verbose=False, file_prefix=f'{self._training_model_id}_{task_idx}', allow_slow_inference=self._advanced_arguments.allow_slow_inference)) else: self._models = [tf_op.ModelV2(model_path=model_path, verbose=False, file_prefix=self._training_model_id, allow_slow_inference=self._advanced_arguments.allow_slow_inference)] </DeepExtract> if self._verbose >= 1: tf_logging.info('Model trained in %s', datetime.now() - time_begin_training_model) self._build(x) if validation_data is not None and (not self._advanced_arguments.populate_history_with_yggdrasil_logs): val_logs = self.evaluate(x=val_x, y=val_y, verbose='auto' if self._verbose > 0 else 0, sample_weight=val_sample_weight, return_dict=True, steps=validation_steps, callbacks=callbacks) val_logs = {'val_' + name: val for (name, val) in val_logs.items()} callbacks.on_epoch_end(0, val_logs) history.on_epoch_end(0, val_logs) else: <DeepExtract> if inspector is None: inspector = self.make_inspector() training_logs = inspector.training_logs() last_logs = None if training_logs is not None: for src_logs in training_logs: if src_logs.evaluation is not None: last_logs = src_logs.evaluation.to_dict() history.on_batch_end(src_logs.num_trees, last_logs) last_logs = last_logs </DeepExtract> callbacks.on_epoch_end(0, last_logs) history.on_epoch_end(0, last_logs) callbacks.on_train_end() self.history = history return self.history
def _fit_implementation(self, x, y, verbose, callbacks, sample_weight, validation_data, validation_steps, steps_per_epoch, class_weight) -> tf.keras.callbacks.History: """Train the model. This method performs operations that resembles as the Keras' fit function. Details: 1. Load the training dataset in Yggdrasil (locally or remotely). 2. Load the validation dataset in Yggdrasil (locally or ignored). 3. Train the Yggdrasil model. Depending on the learner, this might also evaluate the model (on the validation dataset or with out-of-bag). 4. Evaluate the model using the Keras metrics. We recommend training / validating models with finite datasets. For backward compatibility with the early version of TF-DF, we also support infinite dataset with specified number of steps (`steps_per_epoch` and `validation_steps` arguments). Using a number of steps currently raises a warning, and will later raise an error (and the logic be removed). """ if not isinstance(callbacks, tf.keras.callbacks.CallbackList): callbacks = tf.keras.callbacks.CallbackList(callbacks, model=self, add_history=False) history = tf.keras.callbacks.History() history.model = self history.on_train_begin() history.on_epoch_begin(0) callbacks.on_train_begin() callbacks.on_epoch_begin(0) distribution_config = tf_core.get_distribution_configuration(self.distribute_strategy) validation_data_handler = None if validation_data: (val_x, val_y, val_sample_weight) = tf.keras.utils.unpack_x_y_sample_weight(validation_data) if distribution_config is None or not self.support_distributed_training(): validation_data_handler = get_data_handler(x=val_x, y=val_y, sample_weight=val_sample_weight, model=self, steps_per_epoch=validation_steps, class_weight=class_weight) time_begin_train_dataset_reading = datetime.now() if self._verbose >= 1: tf_logging.info('Reading training dataset...') coordinator = None if distribution_config is None or not self.support_distributed_training(): data_handler = get_data_handler(x=x, y=y, sample_weight=sample_weight, model=self, class_weight=class_weight) iterator = iter(data_handler._dataset) if steps_per_epoch is None: num_examples = 0 for data in iterator: num_examples += self.train_step(data) self._num_training_examples = num_examples else: tf_logging.warning('You are using non-distributed training with steps_per_epoch. This solution will lead to a sub-optimal model. Instead, use a finite training dataset (e.g. a dataset without repeat operation) and remove the `steps_per_epoch` argument. This warning will be turned into an error in the future.') def consumes_one_training_batch(iterator): data = next(iterator) return self.train_step(data) tf_consumes_one_training_batch = tf.function(consumes_one_training_batch, reduce_retracing=True) num_examples = 0 try: for _ in range(steps_per_epoch): num_examples += tf_consumes_one_training_batch(iterator) except tf.errors.OutOfRangeError: pass self._num_training_examples = num_examples else: if class_weight is not None: raise ValueError('class_weight not support for distributed training. Feed the example weights through the dataset.') if not self.capabilities().support_partial_cache_dataset_format: raise ValueError(f'The model {type(self)} does not support training with a TF Distribution strategy (i.e. model.capabilities().support_partial_cache_dataset_format == False). If the dataset is small, simply remove the distribution strategy scope (i.e. `with strategy.scope():` around the model construction). If the dataset is large, use a distributed version of the model. For example, use DistributedGradientBoostedTreesModel instead of GradientBoostedTreesModel.') coordinator = tf.distribute.experimental.coordinator.ClusterCoordinator(self.distribute_strategy) with self.distribute_strategy.scope(): per_worker_dataset = coordinator.create_per_worker_dataset(x) per_worker_iter = iter(per_worker_dataset) if steps_per_epoch is not None: tf_logging.warning('You are using distributed training with steps_per_epoch. This solution will lead to a sub-optimal model. Instead, use a finite training dataset (e.g. a dataset without repeat operation) and remove the `steps_per_epoch` argument.') def remote_consumes_one_training_batch(iterator): data = next(iterator) return self.collect_data_step(data, is_training_example=True) tf_remote_consumes_one_training_batch = tf.function(remote_consumes_one_training_batch, reduce_retracing=True) tf_logging.info('Scheduling of %d steps', steps_per_epoch) for _ in range(steps_per_epoch): coordinator.schedule(tf_remote_consumes_one_training_batch, args=(per_worker_iter,)) tf_logging.info('Waiting for scheduled steps to complete') coordinator.join() self._num_training_examples = -1 else: def remote_consumes_training_examples_until_eof(iterator): return self._consumes_training_examples_until_eof(iterator) tf_remote_consumes_training_examples_until_eof = tf.function(remote_consumes_training_examples_until_eof, reduce_retracing=True) self._num_training_examples = tf_core.execute_function_on_each_worker(coordinator, tf_remote_consumes_training_examples_until_eof, (per_worker_iter,)) if self._verbose >= 1: t = datetime.now() - time_begin_train_dataset_reading tf_logging.info(f'Training dataset read in {t}. Found {self._num_training_examples} examples.') if validation_data is not None: if coordinator is not None and self.support_distributed_training(): assert validation_data_handler is None tf_logging.warning('With distributed training, the validation dataset is not (yet) used for early stopping.') self._num_validation_examples = None else: assert validation_data_handler is not None time_begin_valid_dataset_reading = datetime.now() if self._verbose >= 1: tf_logging.info('Reading validation dataset...') iterator = iter(validation_data_handler._dataset) if validation_steps is None: num_examples = 0 for data in iterator: num_examples += self.valid_step(data) self._num_validation_examples = num_examples else: tf_logging.warning('You are using non-distributed validation with steps_per_epoch. This solution will lead to a sub-optimal model. Instead, use a finite validation dataset (e.g. a dataset without repeat operation) and remove the `validation_steps` argument. This warning will be turned into an error in the future.') def consumes_one_valid_batch(iterator): data = next(iterator) return self.valid_step(data) tf_consumes_one_valid_batch = tf.function(consumes_one_valid_batch, reduce_retracing=True) num_examples = 0 try: for _ in range(validation_steps): num_examples += tf_consumes_one_valid_batch(iterator) except tf.errors.OutOfRangeError: pass self._num_validation_examples = num_examples tf_logging.info('Num validation examples: %s', self.num_validation_examples) if self._verbose >= 1: t = datetime.now() - time_begin_valid_dataset_reading tf_logging.info(f'Validation dataset read in {t}. Found {self._num_validation_examples} examples.') time_begin_training_model = datetime.now() if self._verbose >= 1: tf_logging.info('Training model...') if self._normalized_input_feature_keys is None: raise Exception('The training graph was not built.') train_model_path = self._temp_directory model_path = os.path.join(train_model_path, 'model') guide = self._build_guide() training_config = copy.deepcopy(self._advanced_arguments.yggdrasil_training_config) if self._weighted_training: training_config.weight_definition.attribute = WEIGHTS training_config.weight_definition.numerical.SetInParent() for feature_key in self._normalized_input_feature_keys: feature_regex = tf_core.normalize_inputs_regexp(feature_key, False) training_config.features.append(feature_regex) deployment_config = copy.deepcopy(self._advanced_arguments.yggdrasil_deployment_config) if not deployment_config.HasField('num_threads'): deployment_config.num_threads = self._num_threads distribution_config = tf_core.get_distribution_configuration(self.distribute_strategy) (resource_ids, feature_names) = tf_core.column_keys_to_resource_ids(self._normalized_column_keys, self._training_model_id, True) with cc_logging.capture_cpp_log_context(verbose=self._verbose >= 2): if distribution_config is None or not self.support_distributed_training(): tf_core.train(resource_ids=resource_ids, model_id=self._training_model_id, model_dir=train_model_path, generic_hparms=tf_core.hparams_dict_to_generic_proto(self._learner_params), keep_model_in_resource=True, guide=guide, training_config=training_config, deployment_config=deployment_config, try_resume_training=self._try_resume_training, has_validation_dataset=self._has_validation_dataset, node_format=self._advanced_arguments.node_format) else: tf_core.finalize_distributed_dataset_collection(cluster_coordinator=coordinator, resource_ids=resource_ids, feature_names=feature_names, dataset_path=self._distributed_partial_dataset_cache_path()) tf_core.train_on_file_dataset(train_dataset_path='partial_dataset_cache:' + self._distributed_partial_dataset_cache_path(), valid_dataset_path=None, model_id=self._training_model_id, model_dir=train_model_path, generic_hparms=tf_core.hparams_dict_to_generic_proto(self._learner_params), keep_model_in_resource=True, guide=guide, training_config=training_config, deployment_config=deployment_config, working_cache_path=os.path.join(self._temp_directory, 'working_cache'), distribution_config=distribution_config, try_resume_training=self._try_resume_training, cluster_coordinator=coordinator, node_format=self._advanced_arguments.node_format, force_ydf_port=self._advanced_arguments.force_ydf_port) self._description = training_op.SimpleMLShowModel(model_identifier=self._training_model_id).numpy().decode('utf-8') training_op.SimpleMLUnloadModel(model_identifier=self._training_model_id) self._is_trained.assign(True) if self._is_multitask: self._models = [] for task_idx in range(len(self._multitask)): self._models.append(tf_op.ModelV2(model_path=model_path, verbose=False, file_prefix=f'{self._training_model_id}_{task_idx}', allow_slow_inference=self._advanced_arguments.allow_slow_inference)) else: self._models = [tf_op.ModelV2(model_path=model_path, verbose=False, file_prefix=self._training_model_id, allow_slow_inference=self._advanced_arguments.allow_slow_inference)] if self._verbose >= 1: tf_logging.info('Model trained in %s', datetime.now() - time_begin_training_model) self._build(x) if validation_data is not None and (not self._advanced_arguments.populate_history_with_yggdrasil_logs): val_logs = self.evaluate(x=val_x, y=val_y, verbose='auto' if self._verbose > 0 else 0, sample_weight=val_sample_weight, return_dict=True, steps=validation_steps, callbacks=callbacks) val_logs = {'val_' + name: val for (name, val) in val_logs.items()} callbacks.on_epoch_end(0, val_logs) history.on_epoch_end(0, val_logs) else: if inspector is None: inspector = self.make_inspector() training_logs = inspector.training_logs() last_logs = None if training_logs is not None: for src_logs in training_logs: if src_logs.evaluation is not None: last_logs = src_logs.evaluation.to_dict() history.on_batch_end(src_logs.num_trees, last_logs) last_logs = last_logs callbacks.on_epoch_end(0, last_logs) history.on_epoch_end(0, last_logs) callbacks.on_train_end() self.history = history return self.history
decision-forests
positive
def runOrPrompt() -> None: if self.cmdpending: <DeepExtract> pp = None def runOrPrompt() -> None: if self.cmdpending: self.runCommand() else: self.showPrompt() def parse_arguments(arguments: list[str]) -> list[str]: parsed_arguments = [] for arg in arguments: parsed_arguments.append(arg) return parsed_arguments def parse_file_arguments(arguments: str) -> list[str]: """ Look up arguments in the file system """ parsed_arguments = [] for arg in arguments: matches = self.protocol.fs.resolve_path_wc(arg, self.protocol.cwd) if matches: parsed_arguments.extend(matches) else: parsed_arguments.append(arg) return parsed_arguments if not self.cmdpending: if self.protocol.pp.next_command is None: if self.interactive: self.showPrompt() elif len(self.protocol.cmdstack) == 1: ret = failure.Failure(error.ProcessDone(status='')) self.protocol.terminal.transport.processEnded(ret) else: return else: pass return cmdAndArgs = self.cmdpending.pop(0) cmd2 = copy.copy(cmdAndArgs) environ = copy.copy(self.environ) cmd_array = [] cmd: dict[str, Any] = {} while cmdAndArgs: piece = cmdAndArgs.pop(0) if piece.count('='): (key, val) = piece.split('=', 1) environ[key] = val continue cmd['command'] = piece cmd['rargs'] = [] break if 'command' not in cmd or not cmd['command']: runOrPrompt() return pipe_indices = [i for (i, x) in enumerate(cmdAndArgs) if x == '|'] multipleCmdArgs: list[list[str]] = [] pipe_indices.append(len(cmdAndArgs)) start = 0 for (_index, pipe_indice) in enumerate(pipe_indices): multipleCmdArgs.append(cmdAndArgs[start:pipe_indice]) start = pipe_indice + 1 cmd['rargs'] = parse_arguments(multipleCmdArgs.pop(0)) cmd_array.append(cmd) cmd = {} for value in multipleCmdArgs: cmd['command'] = value.pop(0) cmd['rargs'] = parse_arguments(value) cmd_array.append(cmd) cmd = {} lastpp = None for (index, cmd) in reversed(list(enumerate(cmd_array))): cmdclass = self.protocol.getCommand(cmd['command'], environ['PATH'].split(':')) if cmdclass: log.msg(input=cmd['command'] + ' ' + ' '.join(cmd['rargs']), format='Command found: %(input)s') if index == len(cmd_array) - 1: lastpp = StdOutStdErrEmulationProtocol(self.protocol, cmdclass, cmd['rargs'], None, None, self.redirect) pp = lastpp else: pp = StdOutStdErrEmulationProtocol(self.protocol, cmdclass, cmd['rargs'], None, lastpp, self.redirect) lastpp = pp else: log.msg(eventid='cowrie.command.failed', input=' '.join(cmd2), format='Command not found: %(input)s') self.protocol.terminal.write('-bash: {}: command not found\n'.format(cmd['command']).encode('utf8')) if not self.interactive: stat = failure.Failure(error.ProcessDone(status='')) self.protocol.terminal.transport.processEnded(stat) runOrPrompt() pp = None break if pp: self.protocol.call_command(pp, cmdclass, *cmd_array[0]['rargs']) </DeepExtract> else: <DeepExtract> if not self.interactive: return prompt = '' if CowrieConfig.has_option('honeypot', 'prompt'): prompt = CowrieConfig.get('honeypot', 'prompt') prompt += ' ' else: cwd = self.protocol.cwd homelen = len(self.protocol.user.avatar.home) if cwd == self.protocol.user.avatar.home: cwd = '~' elif len(cwd) > homelen + 1 and cwd[:homelen + 1] == self.protocol.user.avatar.home + '/': cwd = '~' + cwd[homelen:] prompt = f'{self.protocol.user.username}@{self.protocol.hostname}:{cwd}' if not self.protocol.user.uid: prompt += '# ' else: prompt += '$ ' self.protocol.terminal.write(prompt.encode('ascii')) self.protocol.ps = (prompt.encode('ascii'), b'> ') </DeepExtract>
def runOrPrompt() -> None: if self.cmdpending: pp = None def runOrPrompt() -> None: if self.cmdpending: self.runCommand() else: self.showPrompt() def parse_arguments(arguments: list[str]) -> list[str]: parsed_arguments = [] for arg in arguments: parsed_arguments.append(arg) return parsed_arguments def parse_file_arguments(arguments: str) -> list[str]: """ Look up arguments in the file system """ parsed_arguments = [] for arg in arguments: matches = self.protocol.fs.resolve_path_wc(arg, self.protocol.cwd) if matches: parsed_arguments.extend(matches) else: parsed_arguments.append(arg) return parsed_arguments if not self.cmdpending: if self.protocol.pp.next_command is None: if self.interactive: self.showPrompt() elif len(self.protocol.cmdstack) == 1: ret = failure.Failure(error.ProcessDone(status='')) self.protocol.terminal.transport.processEnded(ret) else: return else: pass return cmdAndArgs = self.cmdpending.pop(0) cmd2 = copy.copy(cmdAndArgs) environ = copy.copy(self.environ) cmd_array = [] cmd: dict[str, Any] = {} while cmdAndArgs: piece = cmdAndArgs.pop(0) if piece.count('='): (key, val) = piece.split('=', 1) environ[key] = val continue cmd['command'] = piece cmd['rargs'] = [] break if 'command' not in cmd or not cmd['command']: runOrPrompt() return pipe_indices = [i for (i, x) in enumerate(cmdAndArgs) if x == '|'] multipleCmdArgs: list[list[str]] = [] pipe_indices.append(len(cmdAndArgs)) start = 0 for (_index, pipe_indice) in enumerate(pipe_indices): multipleCmdArgs.append(cmdAndArgs[start:pipe_indice]) start = pipe_indice + 1 cmd['rargs'] = parse_arguments(multipleCmdArgs.pop(0)) cmd_array.append(cmd) cmd = {} for value in multipleCmdArgs: cmd['command'] = value.pop(0) cmd['rargs'] = parse_arguments(value) cmd_array.append(cmd) cmd = {} lastpp = None for (index, cmd) in reversed(list(enumerate(cmd_array))): cmdclass = self.protocol.getCommand(cmd['command'], environ['PATH'].split(':')) if cmdclass: log.msg(input=cmd['command'] + ' ' + ' '.join(cmd['rargs']), format='Command found: %(input)s') if index == len(cmd_array) - 1: lastpp = StdOutStdErrEmulationProtocol(self.protocol, cmdclass, cmd['rargs'], None, None, self.redirect) pp = lastpp else: pp = StdOutStdErrEmulationProtocol(self.protocol, cmdclass, cmd['rargs'], None, lastpp, self.redirect) lastpp = pp else: log.msg(eventid='cowrie.command.failed', input=' '.join(cmd2), format='Command not found: %(input)s') self.protocol.terminal.write('-bash: {}: command not found\n'.format(cmd['command']).encode('utf8')) if not self.interactive: stat = failure.Failure(error.ProcessDone(status='')) self.protocol.terminal.transport.processEnded(stat) runOrPrompt() pp = None break if pp: self.protocol.call_command(pp, cmdclass, *cmd_array[0]['rargs']) else: if not self.interactive: return prompt = '' if CowrieConfig.has_option('honeypot', 'prompt'): prompt = CowrieConfig.get('honeypot', 'prompt') prompt += ' ' else: cwd = self.protocol.cwd homelen = len(self.protocol.user.avatar.home) if cwd == self.protocol.user.avatar.home: cwd = '~' elif len(cwd) > homelen + 1 and cwd[:homelen + 1] == self.protocol.user.avatar.home + '/': cwd = '~' + cwd[homelen:] prompt = f'{self.protocol.user.username}@{self.protocol.hostname}:{cwd}' if not self.protocol.user.uid: prompt += '# ' else: prompt += '$ ' self.protocol.terminal.write(prompt.encode('ascii')) self.protocol.ps = (prompt.encode('ascii'), b'> ') </DeepExtract>
cowrie
positive
def plot_tracking(image, tlwhs, obj_ids, scores=None, frame_id=0, fps=0.0, ids2=None): im = np.ascontiguousarray(np.copy(image)) (im_h, im_w) = im.shape[:2] top_view = np.zeros([im_w, im_w, 3], dtype=np.uint8) + 255 text_scale = max(1, image.shape[1] / 1600.0) text_thickness = 1 if text_scale > 1.1 else 1 line_thickness = max(1, int(image.shape[1] / 500.0)) radius = max(5, int(im_w / 140.0)) cv2.putText(im, 'frame: %d fps: %.2f num: %d' % (frame_id, fps, len(tlwhs)), (0, int(15 * text_scale)), cv2.FONT_HERSHEY_PLAIN, text_scale, (0, 0, 255), thickness=2) for (i, tlwh) in enumerate(tlwhs): (x1, y1, w, h) = tlwh intbox = tuple(map(int, (x1, y1, x1 + w, y1 + h))) obj_id = int(obj_ids[i]) id_text = '{}'.format(int(obj_id)) if ids2 is not None: id_text = id_text + ', {}'.format(int(ids2[i])) _line_thickness = 1 if obj_id <= 0 else line_thickness <DeepExtract> abs(obj_id) = abs(obj_id) * 3 color = (37 * abs(obj_id) % 255, 17 * abs(obj_id) % 255, 29 * abs(obj_id) % 255) color = color </DeepExtract> cv2.rectangle(im, intbox[0:2], intbox[2:4], color=color, thickness=line_thickness) cv2.putText(im, id_text, (intbox[0], intbox[1] + 30), cv2.FONT_HERSHEY_PLAIN, text_scale, (0, 0, 255), thickness=text_thickness) return im
def plot_tracking(image, tlwhs, obj_ids, scores=None, frame_id=0, fps=0.0, ids2=None): im = np.ascontiguousarray(np.copy(image)) (im_h, im_w) = im.shape[:2] top_view = np.zeros([im_w, im_w, 3], dtype=np.uint8) + 255 text_scale = max(1, image.shape[1] / 1600.0) text_thickness = 1 if text_scale > 1.1 else 1 line_thickness = max(1, int(image.shape[1] / 500.0)) radius = max(5, int(im_w / 140.0)) cv2.putText(im, 'frame: %d fps: %.2f num: %d' % (frame_id, fps, len(tlwhs)), (0, int(15 * text_scale)), cv2.FONT_HERSHEY_PLAIN, text_scale, (0, 0, 255), thickness=2) for (i, tlwh) in enumerate(tlwhs): (x1, y1, w, h) = tlwh intbox = tuple(map(int, (x1, y1, x1 + w, y1 + h))) obj_id = int(obj_ids[i]) id_text = '{}'.format(int(obj_id)) if ids2 is not None: id_text = id_text + ', {}'.format(int(ids2[i])) _line_thickness = 1 if obj_id <= 0 else line_thickness abs(obj_id) = abs(obj_id) * 3 color = (37 * abs(obj_id) % 255, 17 * abs(obj_id) % 255, 29 * abs(obj_id) % 255) color = color cv2.rectangle(im, intbox[0:2], intbox[2:4], color=color, thickness=line_thickness) cv2.putText(im, id_text, (intbox[0], intbox[1] + 30), cv2.FONT_HERSHEY_PLAIN, text_scale, (0, 0, 255), thickness=text_thickness) return im
AlphAction
positive
def ancestor(self, nid, level=None): """ For a given id, get ancestor node object at a given level. If no level is provided, the parent node is returned. """ if not self.contains(nid): raise NodeIDAbsentError("Node '%s' is not in the tree" % nid) descendant = self[nid] ascendant = self[nid].bpointer <DeepExtract> ascendant_level = len([n for n in self.rsearch(ascendant, filter_fn)]) - 1 </DeepExtract> if level is None: return ascendant elif nid == self.root: return self[nid] elif level >= self.level(descendant.identifier): raise AttributeError("Descendant level (level %s) must be greater than its ancestor's level (level %s)" % (str(self.level(descendant.identifier)), level)) while ascendant is not None: if ascendant_level == level: return self[ascendant] else: descendant = ascendant ascendant = self[descendant].bpointer <DeepExtract> ascendant_level = len([n for n in self.rsearch(ascendant, filter_fn)]) - 1 </DeepExtract> return None
def ancestor(self, nid, level=None): """ For a given id, get ancestor node object at a given level. If no level is provided, the parent node is returned. """ if not self.contains(nid): raise NodeIDAbsentError("Node '%s' is not in the tree" % nid) descendant = self[nid] ascendant = self[nid].bpointer ascendant_level = len([n for n in self.rsearch(ascendant, filter_fn)]) - 1 if level is None: return ascendant elif nid == self.root: return self[nid] elif level >= self.level(descendant.identifier): raise AttributeError("Descendant level (level %s) must be greater than its ancestor's level (level %s)" % (str(self.level(descendant.identifier)), level)) while ascendant is not None: if ascendant_level == level: return self[ascendant] else: descendant = ascendant ascendant = self[descendant].bpointer ascendant_level = len([n for n in self.rsearch(ascendant, filter_fn)]) - 1 return None
cloudkeeper
positive
def test_crop(self): box = [400, 250, 500, 300] <DeepExtract> diff = self.M.crop(box).get_mask_tensor() - self.P.crop(box).get_mask_tensor() diff = torch.sum(torch.abs(diff.float())).item() diff = diff </DeepExtract> self.assertTrue(diff <= 1.0)
def test_crop(self): box = [400, 250, 500, 300] diff = self.M.crop(box).get_mask_tensor() - self.P.crop(box).get_mask_tensor() diff = torch.sum(torch.abs(diff.float())).item() diff = diff self.assertTrue(diff <= 1.0)
EmbedMask
positive
def test_jinja_variable_def(self): expected_message = 'Jinja2 variable definitions are suggested to take a ``{{%<one space>set<one space><variable name><one space>=<one space><expression><one space>%}}`` form. See lines {}'.format([2]) with tmp_directory() as recipe_dir: def assert_jinja(jinja_var, is_good=True): with io.open(os.path.join(recipe_dir, 'meta.yaml'), 'w') as fh: fh.write('\n {{% set name = "conda-smithy" %}}\n {}\n '.format(jinja_var)) (lints, hints) = linter.lintify({}, recipe_dir) if is_good: message = "Found lints when there shouldn't have been a lint for '{}'.".format(jinja_var) else: message = "Expecting lints for '{}', but didn't get any.".format(jinja_var) self.assertEqual(not is_good, any((lint.startswith(expected_message) for lint in lints)), message) <DeepExtract> with io.open(os.path.join(recipe_dir, 'meta.yaml'), 'w') as fh: fh.write('\n {{% set name = "conda-smithy" %}}\n {}\n '.format('{% set version = "0.27.3" %}')) (lints, hints) = linter.lintify({}, recipe_dir) if is_good: message = "Found lints when there shouldn't have been a lint for '{}'.".format('{% set version = "0.27.3" %}') else: message = "Expecting lints for '{}', but didn't get any.".format('{% set version = "0.27.3" %}') self.assertEqual(not is_good, any((lint.startswith(expected_message) for lint in lints)), message) </DeepExtract> <DeepExtract> with io.open(os.path.join(recipe_dir, 'meta.yaml'), 'w') as fh: fh.write('\n {{% set name = "conda-smithy" %}}\n {}\n '.format('{% set version="0.27.3" %}')) (lints, hints) = linter.lintify({}, recipe_dir) if False: message = "Found lints when there shouldn't have been a lint for '{}'.".format('{% set version="0.27.3" %}') else: message = "Expecting lints for '{}', but didn't get any.".format('{% set version="0.27.3" %}') self.assertEqual(not False, any((lint.startswith(expected_message) for lint in lints)), message) </DeepExtract> <DeepExtract> with io.open(os.path.join(recipe_dir, 'meta.yaml'), 'w') as fh: fh.write('\n {{% set name = "conda-smithy" %}}\n {}\n '.format('{%set version = "0.27.3" %}')) (lints, hints) = linter.lintify({}, recipe_dir) if False: message = "Found lints when there shouldn't have been a lint for '{}'.".format('{%set version = "0.27.3" %}') else: message = "Expecting lints for '{}', but didn't get any.".format('{%set version = "0.27.3" %}') self.assertEqual(not False, any((lint.startswith(expected_message) for lint in lints)), message) </DeepExtract> <DeepExtract> with io.open(os.path.join(recipe_dir, 'meta.yaml'), 'w') as fh: fh.write('\n {{% set name = "conda-smithy" %}}\n {}\n '.format('{% set version = "0.27.3"%}')) (lints, hints) = linter.lintify({}, recipe_dir) if False: message = "Found lints when there shouldn't have been a lint for '{}'.".format('{% set version = "0.27.3"%}') else: message = "Expecting lints for '{}', but didn't get any.".format('{% set version = "0.27.3"%}') self.assertEqual(not False, any((lint.startswith(expected_message) for lint in lints)), message) </DeepExtract> <DeepExtract> with io.open(os.path.join(recipe_dir, 'meta.yaml'), 'w') as fh: fh.write('\n {{% set name = "conda-smithy" %}}\n {}\n '.format('{% set version= "0.27.3"%}')) (lints, hints) = linter.lintify({}, recipe_dir) if False: message = "Found lints when there shouldn't have been a lint for '{}'.".format('{% set version= "0.27.3"%}') else: message = "Expecting lints for '{}', but didn't get any.".format('{% set version= "0.27.3"%}') self.assertEqual(not False, any((lint.startswith(expected_message) for lint in lints)), message) </DeepExtract>
def test_jinja_variable_def(self): expected_message = 'Jinja2 variable definitions are suggested to take a ``{{%<one space>set<one space><variable name><one space>=<one space><expression><one space>%}}`` form. See lines {}'.format([2]) with tmp_directory() as recipe_dir: def assert_jinja(jinja_var, is_good=True): with io.open(os.path.join(recipe_dir, 'meta.yaml'), 'w') as fh: fh.write('\n {{% set name = "conda-smithy" %}}\n {}\n '.format(jinja_var)) (lints, hints) = linter.lintify({}, recipe_dir) if is_good: message = "Found lints when there shouldn't have been a lint for '{}'.".format(jinja_var) else: message = "Expecting lints for '{}', but didn't get any.".format(jinja_var) self.assertEqual(not is_good, any((lint.startswith(expected_message) for lint in lints)), message) with io.open(os.path.join(recipe_dir, 'meta.yaml'), 'w') as fh: fh.write('\n {{% set name = "conda-smithy" %}}\n {}\n '.format('{% set version = "0.27.3" %}')) (lints, hints) = linter.lintify({}, recipe_dir) if is_good: message = "Found lints when there shouldn't have been a lint for '{}'.".format('{% set version = "0.27.3" %}') else: message = "Expecting lints for '{}', but didn't get any.".format('{% set version = "0.27.3" %}') self.assertEqual(not is_good, any((lint.startswith(expected_message) for lint in lints)), message) with io.open(os.path.join(recipe_dir, 'meta.yaml'), 'w') as fh: fh.write('\n {{% set name = "conda-smithy" %}}\n {}\n '.format('{% set version="0.27.3" %}')) (lints, hints) = linter.lintify({}, recipe_dir) if False: message = "Found lints when there shouldn't have been a lint for '{}'.".format('{% set version="0.27.3" %}') else: message = "Expecting lints for '{}', but didn't get any.".format('{% set version="0.27.3" %}') self.assertEqual(not False, any((lint.startswith(expected_message) for lint in lints)), message) with io.open(os.path.join(recipe_dir, 'meta.yaml'), 'w') as fh: fh.write('\n {{% set name = "conda-smithy" %}}\n {}\n '.format('{%set version = "0.27.3" %}')) (lints, hints) = linter.lintify({}, recipe_dir) if False: message = "Found lints when there shouldn't have been a lint for '{}'.".format('{%set version = "0.27.3" %}') else: message = "Expecting lints for '{}', but didn't get any.".format('{%set version = "0.27.3" %}') self.assertEqual(not False, any((lint.startswith(expected_message) for lint in lints)), message) with io.open(os.path.join(recipe_dir, 'meta.yaml'), 'w') as fh: fh.write('\n {{% set name = "conda-smithy" %}}\n {}\n '.format('{% set version = "0.27.3"%}')) (lints, hints) = linter.lintify({}, recipe_dir) if False: message = "Found lints when there shouldn't have been a lint for '{}'.".format('{% set version = "0.27.3"%}') else: message = "Expecting lints for '{}', but didn't get any.".format('{% set version = "0.27.3"%}') self.assertEqual(not False, any((lint.startswith(expected_message) for lint in lints)), message) with io.open(os.path.join(recipe_dir, 'meta.yaml'), 'w') as fh: fh.write('\n {{% set name = "conda-smithy" %}}\n {}\n '.format('{% set version= "0.27.3"%}')) (lints, hints) = linter.lintify({}, recipe_dir) if False: message = "Found lints when there shouldn't have been a lint for '{}'.".format('{% set version= "0.27.3"%}') else: message = "Expecting lints for '{}', but didn't get any.".format('{% set version= "0.27.3"%}') self.assertEqual(not False, any((lint.startswith(expected_message) for lint in lints)), message) </DeepExtract>
conda-smithy
positive
def __check(options, default): if not isinstance(default, dict): return options for key in default.keys(): if not key in options: options[key] = default[key] if not key == 'transform': <DeepExtract> if not isinstance(default[key], dict): options[key][key] = options[key] for key in default[key].keys(): if not key in options[key]: options[key][key] = default[key][key] if not key == 'transform': options[key][key] = __check(options[key][key], default[key][key]) options[key][key] = options[key] </DeepExtract> return options
def __check(options, default): if not isinstance(default, dict): return options for key in default.keys(): if not key in options: options[key] = default[key] if not key == 'transform': if not isinstance(default[key], dict): options[key][key] = options[key] for key in default[key].keys(): if not key in options[key]: options[key][key] = default[key][key] if not key == 'transform': options[key][key] = __check(options[key][key], default[key][key]) options[key][key] = options[key] return options
aerial_wildlife_detection
positive
def main(): argument_spec = dict(stack_name=dict(), all_facts=dict(required=False, default=False, type='bool'), stack_policy=dict(required=False, default=False, type='bool'), stack_events=dict(required=False, default=False, type='bool'), stack_resources=dict(required=False, default=False, type='bool'), stack_template=dict(required=False, default=False, type='bool'), stack_change_sets=dict(required=False, default=False, type='bool')) module = AnsibleAWSModule(argument_spec=argument_spec, supports_check_mode=True) service_mgr = CloudFormationServiceManager(module) result = {'cloudformation': {}} for stack_description in service_mgr.describe_stacks(module.params.get('stack_name')): facts = {'stack_description': stack_description} stack_name = stack_description.get('StackName') if facts['stack_description']: <DeepExtract> if facts['stack_description'].get('Outputs'): facts['stack_outputs'] = dict(zip([i.get('OutputKey') for i in facts['stack_description'].get('Outputs')], [i.get('OutputValue') for i in facts['stack_description'].get('Outputs')])) else: facts['stack_outputs'] = dict() </DeepExtract> <DeepExtract> if facts['stack_description'].get('Parameters'): facts['stack_parameters'] = dict(zip([i.get('ParameterKey') for i in facts['stack_description'].get('Parameters')], [i.get('ParameterValue') for i in facts['stack_description'].get('Parameters')])) else: facts['stack_parameters'] = dict() </DeepExtract> facts['stack_tags'] = boto3_tag_list_to_ansible_dict(facts['stack_description'].get('Tags')) all_facts = module.params.get('all_facts') if all_facts or module.params.get('stack_resources'): facts['stack_resource_list'] = service_mgr.list_stack_resources(stack_name) <DeepExtract> if facts.get('stack_resource_list'): facts['stack_resources'] = dict(zip([i.get('LogicalResourceId') for i in facts.get('stack_resource_list')], [i.get('PhysicalResourceId') for i in facts.get('stack_resource_list')])) else: facts['stack_resources'] = dict() </DeepExtract> if all_facts or module.params.get('stack_template'): facts['stack_template'] = service_mgr.get_template(stack_name) if all_facts or module.params.get('stack_policy'): facts['stack_policy'] = service_mgr.get_stack_policy(stack_name) if all_facts or module.params.get('stack_events'): facts['stack_events'] = service_mgr.describe_stack_events(stack_name) if all_facts or module.params.get('stack_change_sets'): facts['stack_change_sets'] = service_mgr.describe_stack_change_sets(stack_name) result['cloudformation'][stack_name] = camel_dict_to_snake_dict(facts, ignore_list=('stack_outputs', 'stack_parameters', 'stack_policy', 'stack_resources', 'stack_tags', 'stack_template')) module.exit_json(changed=False, **result)
def main(): argument_spec = dict(stack_name=dict(), all_facts=dict(required=False, default=False, type='bool'), stack_policy=dict(required=False, default=False, type='bool'), stack_events=dict(required=False, default=False, type='bool'), stack_resources=dict(required=False, default=False, type='bool'), stack_template=dict(required=False, default=False, type='bool'), stack_change_sets=dict(required=False, default=False, type='bool')) module = AnsibleAWSModule(argument_spec=argument_spec, supports_check_mode=True) service_mgr = CloudFormationServiceManager(module) result = {'cloudformation': {}} for stack_description in service_mgr.describe_stacks(module.params.get('stack_name')): facts = {'stack_description': stack_description} stack_name = stack_description.get('StackName') if facts['stack_description']: if facts['stack_description'].get('Outputs'): facts['stack_outputs'] = dict(zip([i.get('OutputKey') for i in facts['stack_description'].get('Outputs')], [i.get('OutputValue') for i in facts['stack_description'].get('Outputs')])) else: facts['stack_outputs'] = dict() if facts['stack_description'].get('Parameters'): facts['stack_parameters'] = dict(zip([i.get('ParameterKey') for i in facts['stack_description'].get('Parameters')], [i.get('ParameterValue') for i in facts['stack_description'].get('Parameters')])) else: facts['stack_parameters'] = dict() facts['stack_tags'] = boto3_tag_list_to_ansible_dict(facts['stack_description'].get('Tags')) all_facts = module.params.get('all_facts') if all_facts or module.params.get('stack_resources'): facts['stack_resource_list'] = service_mgr.list_stack_resources(stack_name) if facts.get('stack_resource_list'): facts['stack_resources'] = dict(zip([i.get('LogicalResourceId') for i in facts.get('stack_resource_list')], [i.get('PhysicalResourceId') for i in facts.get('stack_resource_list')])) else: facts['stack_resources'] = dict() if all_facts or module.params.get('stack_template'): facts['stack_template'] = service_mgr.get_template(stack_name) if all_facts or module.params.get('stack_policy'): facts['stack_policy'] = service_mgr.get_stack_policy(stack_name) if all_facts or module.params.get('stack_events'): facts['stack_events'] = service_mgr.describe_stack_events(stack_name) if all_facts or module.params.get('stack_change_sets'): facts['stack_change_sets'] = service_mgr.describe_stack_change_sets(stack_name) result['cloudformation'][stack_name] = camel_dict_to_snake_dict(facts, ignore_list=('stack_outputs', 'stack_parameters', 'stack_policy', 'stack_resources', 'stack_tags', 'stack_template')) module.exit_json(changed=False, **result)
amazon.aws
positive
def write_build_prepend(self): """Write out any custom supplied commands at the start of the %build section and every build type.""" if self.config.build_prepend: <DeepExtract> self.specfile.write_strip('## build_prepend content') </DeepExtract> for line in self.config.build_prepend: <DeepExtract> self.specfile.write_strip('{}\n'.format(line)) </DeepExtract> <DeepExtract> self.specfile.write_strip('## build_prepend end') </DeepExtract>
def write_build_prepend(self): """Write out any custom supplied commands at the start of the %build section and every build type.""" if self.config.build_prepend: self.specfile.write_strip('## build_prepend content') for line in self.config.build_prepend: self.specfile.write_strip('{}\n'.format(line)) self.specfile.write_strip('## build_prepend end') </DeepExtract>
autospec
positive
def files_destination_settings(fdict): """Get global resources files destination :param dict fdict: configuration block :rtype: DestinationSettings :return: destination settings """ conf = fdict['destination'] try: shared = conf['shared_data_volume'] except KeyError: shared = None try: storage = conf['storage_account_settings'] except KeyError: storage = None try: rdp = conf['relative_destination_path'] if rdp is not None: rdp = rdp.lstrip('/').rstrip('/') if len(rdp) == 0: rdp = None except KeyError: rdp = None try: method = conf['data_transfer']['method'].lower() except KeyError: if storage is None: raise RuntimeError('no transfer method specified for data transfer of source: {} to {} rdp={}'.format(files_source_settings(fdict).path, shared, rdp)) else: method = None try: ssh_eo = conf['data_transfer']['scp_ssh_extra_options'] if ssh_eo is None: raise KeyError() except KeyError: ssh_eo = '' try: rsync_eo = conf['data_transfer']['rsync_extra_options'] if rsync_eo is None: raise KeyError() except KeyError: rsync_eo = '' try: mpt = conf['data_transfer']['max_parallel_transfers_per_node'] if mpt is not None and mpt <= 0: raise KeyError() except KeyError: mpt = None if mpt is None: mpt = 1 try: split = conf['data_transfer']['split_files_megabytes'] if split is not None and split <= 0: raise KeyError() if split is not None: split <<= 20 except KeyError: split = None <DeepExtract> try: ret = conf['data_transfer']['ssh_private_key'] if util.is_none_or_empty(ret): raise KeyError() except KeyError: ret = default ssh_private_key = ret </DeepExtract> if util.is_not_empty(ssh_private_key): ssh_private_key = pathlib.Path(ssh_private_key) try: container = conf['data_transfer']['container'] if util.is_none_or_empty(container): raise KeyError() except KeyError: container = None try: fshare = conf['data_transfer']['file_share'] if util.is_none_or_empty(fshare): raise KeyError() except KeyError: fshare = None try: bx_eo = conf['data_transfer']['blobxfer_extra_options'] if bx_eo is None: bx_eo = '' except KeyError: bx_eo = '' return DestinationSettings(storage_account_settings=storage, shared_data_volume=shared, relative_destination_path=rdp, data_transfer=DataTransferSettings(container=container, file_share=fshare, blobxfer_extra_options=bx_eo, method=method, ssh_private_key=ssh_private_key, scp_ssh_extra_options=ssh_eo, rsync_extra_options=rsync_eo, split_files_megabytes=split, max_parallel_transfers_per_node=mpt))
def files_destination_settings(fdict): """Get global resources files destination :param dict fdict: configuration block :rtype: DestinationSettings :return: destination settings """ conf = fdict['destination'] try: shared = conf['shared_data_volume'] except KeyError: shared = None try: storage = conf['storage_account_settings'] except KeyError: storage = None try: rdp = conf['relative_destination_path'] if rdp is not None: rdp = rdp.lstrip('/').rstrip('/') if len(rdp) == 0: rdp = None except KeyError: rdp = None try: method = conf['data_transfer']['method'].lower() except KeyError: if storage is None: raise RuntimeError('no transfer method specified for data transfer of source: {} to {} rdp={}'.format(files_source_settings(fdict).path, shared, rdp)) else: method = None try: ssh_eo = conf['data_transfer']['scp_ssh_extra_options'] if ssh_eo is None: raise KeyError() except KeyError: ssh_eo = '' try: rsync_eo = conf['data_transfer']['rsync_extra_options'] if rsync_eo is None: raise KeyError() except KeyError: rsync_eo = '' try: mpt = conf['data_transfer']['max_parallel_transfers_per_node'] if mpt is not None and mpt <= 0: raise KeyError() except KeyError: mpt = None if mpt is None: mpt = 1 try: split = conf['data_transfer']['split_files_megabytes'] if split is not None and split <= 0: raise KeyError() if split is not None: split <<= 20 except KeyError: split = None try: ret = conf['data_transfer']['ssh_private_key'] if util.is_none_or_empty(ret): raise KeyError() except KeyError: ret = default ssh_private_key = ret if util.is_not_empty(ssh_private_key): ssh_private_key = pathlib.Path(ssh_private_key) try: container = conf['data_transfer']['container'] if util.is_none_or_empty(container): raise KeyError() except KeyError: container = None try: fshare = conf['data_transfer']['file_share'] if util.is_none_or_empty(fshare): raise KeyError() except KeyError: fshare = None try: bx_eo = conf['data_transfer']['blobxfer_extra_options'] if bx_eo is None: bx_eo = '' except KeyError: bx_eo = '' return DestinationSettings(storage_account_settings=storage, shared_data_volume=shared, relative_destination_path=rdp, data_transfer=DataTransferSettings(container=container, file_share=fshare, blobxfer_extra_options=bx_eo, method=method, ssh_private_key=ssh_private_key, scp_ssh_extra_options=ssh_eo, rsync_extra_options=rsync_eo, split_files_megabytes=split, max_parallel_transfers_per_node=mpt))
cortana-intelligence-inventory-optimization
positive
def evaluateStack(self, s): op = s.pop() if op == 'unary -': return -self.evaluateStack(s) if op in '+-x/^': <DeepExtract> op = s.pop() if op == 'unary -': op2 = -self.evaluateStack(s) if op in '+-x/^': op2 = self.evaluateStack(s) op1 = self.evaluateStack(s) op2 = self.opn[op](op1, op2) elif op == 'PI': op2 = math.pi elif op == 'E': op2 = math.e elif op in self.fn: op2 = self.fn[op](self.evaluateStack(s)) elif op[0].isalpha(): op2 = 0 else: op2 = float(op) </DeepExtract> <DeepExtract> op = s.pop() if op == 'unary -': op1 = -self.evaluateStack(s) if op in '+-x/^': op2 = self.evaluateStack(s) op1 = self.evaluateStack(s) op1 = self.opn[op](op1, op2) elif op == 'PI': op1 = math.pi elif op == 'E': op1 = math.e elif op in self.fn: op1 = self.fn[op](self.evaluateStack(s)) elif op[0].isalpha(): op1 = 0 else: op1 = float(op) </DeepExtract> return self.opn[op](op1, op2) elif op == 'PI': return math.pi elif op == 'E': return math.e elif op in self.fn: return self.fn[op](self.evaluateStack(s)) elif op[0].isalpha(): return 0 else: return float(op)
def evaluateStack(self, s): op = s.pop() if op == 'unary -': return -self.evaluateStack(s) if op in '+-x/^': op = s.pop() if op == 'unary -': op2 = -self.evaluateStack(s) if op in '+-x/^': op2 = self.evaluateStack(s) op1 = self.evaluateStack(s) op2 = self.opn[op](op1, op2) elif op == 'PI': op2 = math.pi elif op == 'E': op2 = math.e elif op in self.fn: op2 = self.fn[op](self.evaluateStack(s)) elif op[0].isalpha(): op2 = 0 else: op2 = float(op) op = s.pop() if op == 'unary -': op1 = -self.evaluateStack(s) if op in '+-x/^': op2 = self.evaluateStack(s) op1 = self.evaluateStack(s) op1 = self.opn[op](op1, op2) elif op == 'PI': op1 = math.pi elif op == 'E': op1 = math.e elif op in self.fn: op1 = self.fn[op](self.evaluateStack(s)) elif op[0].isalpha(): op1 = 0 else: op1 = float(op) return self.opn[op](op1, op2) elif op == 'PI': return math.pi elif op == 'E': return math.e elif op in self.fn: return self.fn[op](self.evaluateStack(s)) elif op[0].isalpha(): return 0 else: return float(op)
CorpBot.py
positive
def main(args): <DeepExtract> gold_docs = get_documents(args.documents_path, args.gold_path) pred_docs = get_documents(args.documents_path, args.pred_path) evaluator = evaluate_documents(gold_docs, pred_docs, language=args.language) </DeepExtract> print() print(evaluator.entity_level()) print() print(evaluator.token_level()) print() print(evaluator.token_level_blind())
def main(args): gold_docs = get_documents(args.documents_path, args.gold_path) pred_docs = get_documents(args.documents_path, args.pred_path) evaluator = evaluate_documents(gold_docs, pred_docs, language=args.language) print() print(evaluator.entity_level()) print() print(evaluator.token_level()) print() print(evaluator.token_level_blind())
deidentify
positive
def create_object_for_package_header(stix_package_header, env, type_of_obj): <DeepExtract> instance = {'type': type_of_obj} if get_option_value('spec_version') == '2.1': instance['spec_version'] = '2.1' instance['id'] = generate_stix2x_id(type_of_obj, None.id_ if None and hasattr(None, 'id_') and None.id_ else parent_id, id_used) if None: timestamp = convert_timestamp_of_stix_object(None, env.timestamp, True) else: timestamp = strftime_with_appropriate_fractional_seconds(env.timestamp, True) instance['created'] = timestamp if type_of_obj != 'marking-definition': instance['modified'] = timestamp instance['description'] = '' if False: instance['external_references'] = [] sdo_instance = instance </DeepExtract> if hasattr(stix_package_header, 'title') and stix_package_header.title is not None: sdo_instance['name'] = stix_package_header.title <DeepExtract> if hasattr(stix_package_header, 'descriptions') and len(stix_package_header.descriptions) != 0: description_as_text = str(process_structured_text_list(stix_package_header.descriptions)) if description_as_text: if parent_info and sdo_instance['description']: sdo_instance['description'] += '\nPARENT_DESCRIPTION: \n' + description_as_text else: sdo_instance['description'] += description_as_text elif hasattr(stix_package_header, 'description') and stix_package_header.description is not None: sdo_instance['description'] += str(stix_package_header.description.value) if hasattr(stix_package_header, 'short_descriptions') and len(stix_package_header.short_descriptions) != 0: if sdo_instance['description']: sdo_instance['description'] += '\n' process_short_description(sdo_instance, process_structured_text_list(stix_package_header.short_descriptions), 'short_descriptions', parent_info) elif hasattr(stix_package_header, 'short_description') and stix_package_header.short_description is not None: if sdo_instance['description']: sdo_instance['description'] += '\n' process_short_description(sdo_instance, stix_package_header.short_description, 'short_description', parent_info) </DeepExtract> if env.created_by_ref: sdo_instance['created_by_ref'] = env.created_by_ref if type_of_obj == 'report': spec_version = get_option_value('spec_version') convert_controlled_vocabs_to_open_vocabs(sdo_instance, 'labels' if spec_version == '2.0' else 'report_types', stix_package_header.package_intents, REPORT_LABELS_MAP, False, required=spec_version == '2.0') else: sdo_instance['context'] = 'header_information' <DeepExtract> (container, extension_definition_id) = determine_container_for_missing_properties(type_of_obj, sdo_instance) if container is not None: if stix_package_header.package_intents: handle_missing_string_property(container, 'package_intents', stix_package_header.package_intents, sdo_instance['id'], True) fill_in_extension_properties(sdo_instance, container, extension_definition_id) </DeepExtract> sdo_instance['object_refs'] = [x['id'] for x in env.bundle_instance['objects']] if type_of_obj == 'report': sdo_instance['published'] = strftime_with_appropriate_fractional_seconds(datetime.now(), True) if 'description' in sdo_instance and sdo_instance['description'] == '': del sdo_instance['description'] info('%s was created to store the extra STIX package header information', 220, sdo_instance['id']) return sdo_instance
def create_object_for_package_header(stix_package_header, env, type_of_obj): instance = {'type': type_of_obj} if get_option_value('spec_version') == '2.1': instance['spec_version'] = '2.1' instance['id'] = generate_stix2x_id(type_of_obj, None.id_ if None and hasattr(None, 'id_') and None.id_ else parent_id, id_used) if None: timestamp = convert_timestamp_of_stix_object(None, env.timestamp, True) else: timestamp = strftime_with_appropriate_fractional_seconds(env.timestamp, True) instance['created'] = timestamp if type_of_obj != 'marking-definition': instance['modified'] = timestamp instance['description'] = '' if False: instance['external_references'] = [] sdo_instance = instance if hasattr(stix_package_header, 'title') and stix_package_header.title is not None: sdo_instance['name'] = stix_package_header.title if hasattr(stix_package_header, 'descriptions') and len(stix_package_header.descriptions) != 0: description_as_text = str(process_structured_text_list(stix_package_header.descriptions)) if description_as_text: if parent_info and sdo_instance['description']: sdo_instance['description'] += '\nPARENT_DESCRIPTION: \n' + description_as_text else: sdo_instance['description'] += description_as_text elif hasattr(stix_package_header, 'description') and stix_package_header.description is not None: sdo_instance['description'] += str(stix_package_header.description.value) if hasattr(stix_package_header, 'short_descriptions') and len(stix_package_header.short_descriptions) != 0: if sdo_instance['description']: sdo_instance['description'] += '\n' process_short_description(sdo_instance, process_structured_text_list(stix_package_header.short_descriptions), 'short_descriptions', parent_info) elif hasattr(stix_package_header, 'short_description') and stix_package_header.short_description is not None: if sdo_instance['description']: sdo_instance['description'] += '\n' process_short_description(sdo_instance, stix_package_header.short_description, 'short_description', parent_info) if env.created_by_ref: sdo_instance['created_by_ref'] = env.created_by_ref if type_of_obj == 'report': spec_version = get_option_value('spec_version') convert_controlled_vocabs_to_open_vocabs(sdo_instance, 'labels' if spec_version == '2.0' else 'report_types', stix_package_header.package_intents, REPORT_LABELS_MAP, False, required=spec_version == '2.0') else: sdo_instance['context'] = 'header_information' (container, extension_definition_id) = determine_container_for_missing_properties(type_of_obj, sdo_instance) if container is not None: if stix_package_header.package_intents: handle_missing_string_property(container, 'package_intents', stix_package_header.package_intents, sdo_instance['id'], True) fill_in_extension_properties(sdo_instance, container, extension_definition_id) sdo_instance['object_refs'] = [x['id'] for x in env.bundle_instance['objects']] if type_of_obj == 'report': sdo_instance['published'] = strftime_with_appropriate_fractional_seconds(datetime.now(), True) if 'description' in sdo_instance and sdo_instance['description'] == '': del sdo_instance['description'] info('%s was created to store the extra STIX package header information', 220, sdo_instance['id']) return sdo_instance
cti-stix-elevator
positive
def revert_sources(self): """Revert all sources to the revisions specified in :attr:`sources`. """ for (target, desc) in self.sources.items(): if desc[0] in ('local', 'downloadable'): continue (vcs_type, vcs_spec, options) = desc local_dir = self.odoo_dir if target is main_software else target <DeepExtract> if os.path.isabs(local_dir): local_dir = local_dir local_dir = join(self.buildout_dir, local_dir) </DeepExtract> repo = vcs.repo(vcs_type, local_dir, vcs_spec[0], **options) try: repo.revert(vcs_spec[1]) except NotImplementedError: logger.warn('vcs-revert: not implemented for %s repository at %s', vcs_type, local_dir) else: logger.info('Reverted %s repository at %s', vcs_type, local_dir)
def revert_sources(self): """Revert all sources to the revisions specified in :attr:`sources`. """ for (target, desc) in self.sources.items(): if desc[0] in ('local', 'downloadable'): continue (vcs_type, vcs_spec, options) = desc local_dir = self.odoo_dir if target is main_software else target if os.path.isabs(local_dir): local_dir = local_dir local_dir = join(self.buildout_dir, local_dir) repo = vcs.repo(vcs_type, local_dir, vcs_spec[0], **options) try: repo.revert(vcs_spec[1]) except NotImplementedError: logger.warn('vcs-revert: not implemented for %s repository at %s', vcs_type, local_dir) else: logger.info('Reverted %s repository at %s', vcs_type, local_dir)
anybox.recipe.odoo
positive
@config.on_load def on_load(): if config.LOG_NOT_FOUND: global notfound_logger <DeepExtract> logger = logging.getLogger('notfound') logger.setLevel(logging.DEBUG) filename = Path(config.LOG_DIR).joinpath('{}.log'.format('notfound')) try: handler = logging.handlers.TimedRotatingFileHandler(str(filename), when='midnight') except FileNotFoundError: print('Unable to write to {}'.format(filename)) else: logger.addHandler(handler) notfound_logger = logger </DeepExtract> if config.LOG_QUERIES: global query_logger <DeepExtract> logger = logging.getLogger('queries') logger.setLevel(logging.DEBUG) filename = Path(config.LOG_DIR).joinpath('{}.log'.format('queries')) try: handler = logging.handlers.TimedRotatingFileHandler(str(filename), when='midnight') except FileNotFoundError: print('Unable to write to {}'.format(filename)) else: logger.addHandler(handler) query_logger = logger </DeepExtract> if config.SLOW_QUERIES: global slow_query_logger <DeepExtract> logger = logging.getLogger('slow_queries') logger.setLevel(logging.DEBUG) filename = Path(config.LOG_DIR).joinpath('{}.log'.format('slow_queries')) try: handler = logging.handlers.TimedRotatingFileHandler(str(filename), when='midnight') except FileNotFoundError: print('Unable to write to {}'.format(filename)) else: logger.addHandler(handler) slow_query_logger = logger </DeepExtract>
@config.on_load def on_load(): if config.LOG_NOT_FOUND: global notfound_logger logger = logging.getLogger('notfound') logger.setLevel(logging.DEBUG) filename = Path(config.LOG_DIR).joinpath('{}.log'.format('notfound')) try: handler = logging.handlers.TimedRotatingFileHandler(str(filename), when='midnight') except FileNotFoundError: print('Unable to write to {}'.format(filename)) else: logger.addHandler(handler) notfound_logger = logger if config.LOG_QUERIES: global query_logger logger = logging.getLogger('queries') logger.setLevel(logging.DEBUG) filename = Path(config.LOG_DIR).joinpath('{}.log'.format('queries')) try: handler = logging.handlers.TimedRotatingFileHandler(str(filename), when='midnight') except FileNotFoundError: print('Unable to write to {}'.format(filename)) else: logger.addHandler(handler) query_logger = logger if config.SLOW_QUERIES: global slow_query_logger logger = logging.getLogger('slow_queries') logger.setLevel(logging.DEBUG) filename = Path(config.LOG_DIR).joinpath('{}.log'.format('slow_queries')) try: handler = logging.handlers.TimedRotatingFileHandler(str(filename), when='midnight') except FileNotFoundError: print('Unable to write to {}'.format(filename)) else: logger.addHandler(handler) slow_query_logger = logger </DeepExtract>
addok
positive
@cached(3600) def get_dialcode(destination_number, dialcode): """ Retrieve the correct dialcode for a destination_number """ if dialcode and len(dialcode) > 0: return dialcode else: <DeepExtract> settings.PREFIX_TO_IGNORE = settings.PREFIX_TO_IGNORE.strip(' \t\n\r') if settings.PREFIX_TO_IGNORE and len(settings.PREFIX_TO_IGNORE) > 0: settings.PREFIX_TO_IGNORE = settings.PREFIX_TO_IGNORE.split(',') settings.PREFIX_TO_IGNORE = sorted(settings.PREFIX_TO_IGNORE, key=len, reverse=True) for rprefix in settings.PREFIX_TO_IGNORE: rprefix = rprefix.strip(' \t\n\r') rprefix = re.sub('\\+', '\\\\+', rprefix) if rprefix and len(rprefix) > 0: destination_number = re.sub('^%s' % rprefix, '', destination_number) sanitized_destination = destination_number </DeepExtract> <DeepExtract> sanitized_destination = str(sanitized_destination) if len(sanitized_destination) > 0 and sanitized_destination[0] == '+': sanitized_destination = sanitized_destination[1:] m = re.search('(\\d*)', sanitized_destination) sanitized_destination = m.group(0) try: int(sanitized_destination) except ValueError: prefix_list = False prefix_range = range(settings.PREFIX_LIMIT_MIN, settings.PREFIX_LIMIT_MAX + 1) prefix_range.reverse() destination_prefix_list = '' for i in prefix_range: if i == settings.PREFIX_LIMIT_MIN: destination_prefix_list = destination_prefix_list + sanitized_destination[0:i] else: destination_prefix_list = destination_prefix_list + sanitized_destination[0:i] + ', ' prefix_list = str(destination_prefix_list) </DeepExtract> if prefix_list and len(sanitized_destination) > settings.PN_MAX_DIGITS and (not sanitized_destination[:1].isalpha()): <DeepExtract> country_id = None prefix = None if not prefix_list: (country_id, prefix_id) = (country_id, prefix) try: prefix_obj = Prefix.objects.filter(prefix__in=eval(prefix_list)).order_by('prefix') for i in xrange(0, len(prefix_obj)): if prefix_obj[i].country_id: country_id = prefix_obj[i].country_id.id prefix = prefix_obj[i].prefix (country_id, prefix_id) = (country_id, prefix) except: (country_id, prefix_id) = (country_id, prefix) </DeepExtract> dialcode = prefix_id else: dialcode = '' return dialcode
@cached(3600) def get_dialcode(destination_number, dialcode): """ Retrieve the correct dialcode for a destination_number """ if dialcode and len(dialcode) > 0: return dialcode else: settings.PREFIX_TO_IGNORE = settings.PREFIX_TO_IGNORE.strip(' \t\n\r') if settings.PREFIX_TO_IGNORE and len(settings.PREFIX_TO_IGNORE) > 0: settings.PREFIX_TO_IGNORE = settings.PREFIX_TO_IGNORE.split(',') settings.PREFIX_TO_IGNORE = sorted(settings.PREFIX_TO_IGNORE, key=len, reverse=True) for rprefix in settings.PREFIX_TO_IGNORE: rprefix = rprefix.strip(' \t\n\r') rprefix = re.sub('\\+', '\\\\+', rprefix) if rprefix and len(rprefix) > 0: destination_number = re.sub('^%s' % rprefix, '', destination_number) sanitized_destination = destination_number sanitized_destination = str(sanitized_destination) if len(sanitized_destination) > 0 and sanitized_destination[0] == '+': sanitized_destination = sanitized_destination[1:] m = re.search('(\\d*)', sanitized_destination) sanitized_destination = m.group(0) try: int(sanitized_destination) except ValueError: prefix_list = False prefix_range = range(settings.PREFIX_LIMIT_MIN, settings.PREFIX_LIMIT_MAX + 1) prefix_range.reverse() destination_prefix_list = '' for i in prefix_range: if i == settings.PREFIX_LIMIT_MIN: destination_prefix_list = destination_prefix_list + sanitized_destination[0:i] else: destination_prefix_list = destination_prefix_list + sanitized_destination[0:i] + ', ' prefix_list = str(destination_prefix_list) if prefix_list and len(sanitized_destination) > settings.PN_MAX_DIGITS and (not sanitized_destination[:1].isalpha()): country_id = None prefix = None if not prefix_list: (country_id, prefix_id) = (country_id, prefix) try: prefix_obj = Prefix.objects.filter(prefix__in=eval(prefix_list)).order_by('prefix') for i in xrange(0, len(prefix_obj)): if prefix_obj[i].country_id: country_id = prefix_obj[i].country_id.id prefix = prefix_obj[i].prefix (country_id, prefix_id) = (country_id, prefix) except: (country_id, prefix_id) = (country_id, prefix) dialcode = prefix_id else: dialcode = '' return dialcode
cdr-stats
positive
def test_invalid_method_result(self): """Test a method with an invalid result.""" <DeepExtract> self.object = Mock(__dbus_xml__=dedent('\n <node>\n <interface name="Interface">\n <method name="Method">\n <arg direction="out" name="return" type="t"/>\n </method>\n </interface>\n </node>\n ')) del self.object.Get del self.object.Set del self.object.GetAll self.object.Signal1 = Signal() self.object.Signal2 = Signal() self.object.PropertiesChanged = Signal() self.handler = ServerObjectHandler(self.message_bus, self.object_path, self.object, error_mapper=self.error_mapper) self.handler.connect_object() </DeepExtract> self.object.Method.return_value = -1 <DeepExtract> invocation = Mock() with self.assertLogs(level='WARN'): self.handler._method_callback(invocation, 'Interface', 'Method', parameters) invocation.return_dbus_error.assert_called_once() invocation.return_value.assert_not_called() ((name, msg), kwargs) = invocation.return_dbus_error.call_args self.assertEqual(kwargs, {}) self.assertEqual(name, 'not.known.Error.OverflowError', 'Unexpected error name.') if error_message is not None: self.assertEqual(msg, error_message, 'Unexpected error message.') </DeepExtract>
def test_invalid_method_result(self): """Test a method with an invalid result.""" self.object = Mock(__dbus_xml__=dedent('\n <node>\n <interface name="Interface">\n <method name="Method">\n <arg direction="out" name="return" type="t"/>\n </method>\n </interface>\n </node>\n ')) del self.object.Get del self.object.Set del self.object.GetAll self.object.Signal1 = Signal() self.object.Signal2 = Signal() self.object.PropertiesChanged = Signal() self.handler = ServerObjectHandler(self.message_bus, self.object_path, self.object, error_mapper=self.error_mapper) self.handler.connect_object() self.object.Method.return_value = -1 invocation = Mock() with self.assertLogs(level='WARN'): self.handler._method_callback(invocation, 'Interface', 'Method', parameters) invocation.return_dbus_error.assert_called_once() invocation.return_value.assert_not_called() ((name, msg), kwargs) = invocation.return_dbus_error.call_args self.assertEqual(kwargs, {}) self.assertEqual(name, 'not.known.Error.OverflowError', 'Unexpected error name.') if error_message is not None: self.assertEqual(msg, error_message, 'Unexpected error message.') </DeepExtract>
dasbus
positive
def __init__(self, env_args, lut_holder, is_evaluating): """ Args: env_args: Depending on game type an instance of PokerEnvArgs or DiscretePokerEnvArgs lut_holder: Depending on game type. An instance of a subclass of LutHolder. It is not checked whether the correct one is passed, so be sure to pass the right one! lut_holder could theoretically be created encapsulated by an instance of this class, but for optimization (i.e. only one per machine, not per env), we pass it. is_evaluating (bool): Whether the environment shall be spawned in evaluation mode (i.e. no randomization) or not. """ assert env_args.n_seats >= 2 self._args = copy.deepcopy(env_args) self.lut_holder = lut_holder self.IS_EVALUATING = is_evaluating self.deck = DeckOfCards(num_suits=self.N_SUITS, num_ranks=self.N_RANKS) self.BTN_POS = NotImplementedError self.SB_POS = NotImplementedError self.BB_POS = NotImplementedError self._USE_SIMPLE_HU_OBS = NotImplementedError self.RETURN_PRE_TRANSITION_STATE_IN_INFO = NotImplementedError self.N_SEATS = NotImplementedError self.MAX_CHIPS = NotImplementedError self.STACK_RANDOMIZATION_RANGE = NotImplementedError self.REWARD_SCALAR = NotImplementedError self.seats = NotImplementedError <DeepExtract> a = copy.deepcopy(env_args) if a.n_seats == 2: self.BTN_POS = 0 self.SB_POS = 0 self.BB_POS = 1 else: self.BTN_POS = 0 self.SB_POS = 1 self.BB_POS = 2 self._USE_SIMPLE_HU_OBS = a.use_simplified_headsup_obs self.RETURN_PRE_TRANSITION_STATE_IN_INFO = a.RETURN_PRE_TRANSITION_STATE_IN_INFO self.N_SEATS = int(a.n_seats) try: self.MAX_CHIPS = sum(a.starting_stack_sizes_list) + a.stack_randomization_range[1] * a.n_seats + 1 except TypeError: self.MAX_CHIPS = a.n_seats * (self.DEFAULT_STACK_SIZE + a.stack_randomization_range[1]) + 1 self.STACK_RANDOMIZATION_RANGE = a.stack_randomization_range if a.scale_rewards: try: self.REWARD_SCALAR = float(sum(a.starting_stack_sizes_list)) / float(a.n_seats) / 5 except TypeError: self.REWARD_SCALAR = self.DEFAULT_STACK_SIZE / 5.0 else: self.REWARD_SCALAR = 1.0 self.seats = [PokerPlayer(seat_id=i, poker_env=self, is_evaluating=is_evaluating, starting_stack=a.starting_stack_sizes_list[i] if a.starting_stack_sizes_list[i] is not None else self.DEFAULT_STACK_SIZE, stack_randomization_range=a.stack_randomization_range) for i in range(a.n_seats)] </DeepExtract> <DeepExtract> obs_idx_dict = {} obs_parts_idxs_dict = {'board': [], 'players': [[] for _ in range(self.N_SEATS)], 'table_state': []} next_idx = [0] def get_discrete(size, name, _curr_idx): obs_idx_dict[name] = _curr_idx[0] _curr_idx[0] += 1 (self.observation_space, self.obs_idx_dict, self.obs_parts_idxs_dict) = spaces.Discrete(size) def get_new_box(name, _curr_idx, high, low=0): obs_idx_dict[name] = _curr_idx[0] _curr_idx[0] += 1 (self.observation_space, self.obs_idx_dict, self.obs_parts_idxs_dict) = spaces.Box(low=low, high=high, shape=(1,), dtype=np.float32) if self.N_SEATS == 2 and self._USE_SIMPLE_HU_OBS: _k = next_idx[0] _table_space = [get_new_box('ante', next_idx, self.N_SEATS), get_new_box('small_blind', next_idx, self.N_SEATS), get_new_box('big_blind', next_idx, self.N_SEATS), get_new_box('min_raise', next_idx, self.N_SEATS), get_new_box('pot_amt', next_idx, self.N_SEATS), get_new_box('total_to_call', next_idx, self.N_SEATS), get_new_box('last_action_how_much', next_idx, self.N_SEATS)] for i in range(3): _table_space.append(get_discrete(1, 'last_action_what_' + str(i), next_idx)) for i in range(self.N_SEATS): _table_space.append(get_discrete(1, 'last_action_who_' + str(i), next_idx)) for i in range(self.N_SEATS): _table_space.append(get_discrete(1, 'p' + str(i) + '_acts_next', next_idx)) for i in range(max(self.ALL_ROUNDS_LIST) + 1): (_table_space.append(get_discrete(1, 'round_' + Poker.INT2STRING_ROUND[i], next_idx)),) obs_parts_idxs_dict['table_state'] += list(range(_k, next_idx[0])) _player_space = [] for i in range(self.N_SEATS): _k = next_idx[0] _player_space += [get_new_box('stack_p' + str(i), next_idx, self.N_SEATS), get_new_box('curr_bet_p' + str(i), next_idx, self.N_SEATS), get_discrete(1, 'is_allin_p' + str(i), next_idx)] obs_parts_idxs_dict['players'][i] += list(range(_k, next_idx[0])) _board_space = [] _k = next_idx[0] for i in range(self.N_TOTAL_BOARD_CARDS): _board_space.append(get_discrete(1, str(i) + 'th_board_card_rank', next_idx)) _board_space.append(get_discrete(1, str(i) + 'th_board_card_suit', next_idx)) _board_space.append(get_discrete(1, str(i) + 'th_board_card_card', next_idx)) obs_parts_idxs_dict['board'] += list(range(_k, next_idx[0])) _observation_space = spaces.Tuple(_table_space + _player_space + _board_space) _observation_space.shape = [len(_observation_space.spaces)] else: raise NotImplementedError (self.observation_space, self.obs_idx_dict, self.obs_parts_idxs_dict) = (_observation_space, obs_idx_dict, obs_parts_idxs_dict) </DeepExtract> self.hole_card_space_shape = [self.N_HOLE_CARDS, 2] self.current_round = None self.side_pots = None self.main_pot = None self.board = None self.last_action = None self.capped_raise = CappedRaise() self.current_player = None self.last_raiser = None self.n_actions_this_episode = None self.n_raises_this_round = NotImplementedError
def __init__(self, env_args, lut_holder, is_evaluating): """ Args: env_args: Depending on game type an instance of PokerEnvArgs or DiscretePokerEnvArgs lut_holder: Depending on game type. An instance of a subclass of LutHolder. It is not checked whether the correct one is passed, so be sure to pass the right one! lut_holder could theoretically be created encapsulated by an instance of this class, but for optimization (i.e. only one per machine, not per env), we pass it. is_evaluating (bool): Whether the environment shall be spawned in evaluation mode (i.e. no randomization) or not. """ assert env_args.n_seats >= 2 self._args = copy.deepcopy(env_args) self.lut_holder = lut_holder self.IS_EVALUATING = is_evaluating self.deck = DeckOfCards(num_suits=self.N_SUITS, num_ranks=self.N_RANKS) self.BTN_POS = NotImplementedError self.SB_POS = NotImplementedError self.BB_POS = NotImplementedError self._USE_SIMPLE_HU_OBS = NotImplementedError self.RETURN_PRE_TRANSITION_STATE_IN_INFO = NotImplementedError self.N_SEATS = NotImplementedError self.MAX_CHIPS = NotImplementedError self.STACK_RANDOMIZATION_RANGE = NotImplementedError self.REWARD_SCALAR = NotImplementedError self.seats = NotImplementedError a = copy.deepcopy(env_args) if a.n_seats == 2: self.BTN_POS = 0 self.SB_POS = 0 self.BB_POS = 1 else: self.BTN_POS = 0 self.SB_POS = 1 self.BB_POS = 2 self._USE_SIMPLE_HU_OBS = a.use_simplified_headsup_obs self.RETURN_PRE_TRANSITION_STATE_IN_INFO = a.RETURN_PRE_TRANSITION_STATE_IN_INFO self.N_SEATS = int(a.n_seats) try: self.MAX_CHIPS = sum(a.starting_stack_sizes_list) + a.stack_randomization_range[1] * a.n_seats + 1 except TypeError: self.MAX_CHIPS = a.n_seats * (self.DEFAULT_STACK_SIZE + a.stack_randomization_range[1]) + 1 self.STACK_RANDOMIZATION_RANGE = a.stack_randomization_range if a.scale_rewards: try: self.REWARD_SCALAR = float(sum(a.starting_stack_sizes_list)) / float(a.n_seats) / 5 except TypeError: self.REWARD_SCALAR = self.DEFAULT_STACK_SIZE / 5.0 else: self.REWARD_SCALAR = 1.0 self.seats = [PokerPlayer(seat_id=i, poker_env=self, is_evaluating=is_evaluating, starting_stack=a.starting_stack_sizes_list[i] if a.starting_stack_sizes_list[i] is not None else self.DEFAULT_STACK_SIZE, stack_randomization_range=a.stack_randomization_range) for i in range(a.n_seats)] obs_idx_dict = {} obs_parts_idxs_dict = {'board': [], 'players': [[] for _ in range(self.N_SEATS)], 'table_state': []} next_idx = [0] def get_discrete(size, name, _curr_idx): obs_idx_dict[name] = _curr_idx[0] _curr_idx[0] += 1 (self.observation_space, self.obs_idx_dict, self.obs_parts_idxs_dict) = spaces.Discrete(size) def get_new_box(name, _curr_idx, high, low=0): obs_idx_dict[name] = _curr_idx[0] _curr_idx[0] += 1 (self.observation_space, self.obs_idx_dict, self.obs_parts_idxs_dict) = spaces.Box(low=low, high=high, shape=(1,), dtype=np.float32) if self.N_SEATS == 2 and self._USE_SIMPLE_HU_OBS: _k = next_idx[0] _table_space = [get_new_box('ante', next_idx, self.N_SEATS), get_new_box('small_blind', next_idx, self.N_SEATS), get_new_box('big_blind', next_idx, self.N_SEATS), get_new_box('min_raise', next_idx, self.N_SEATS), get_new_box('pot_amt', next_idx, self.N_SEATS), get_new_box('total_to_call', next_idx, self.N_SEATS), get_new_box('last_action_how_much', next_idx, self.N_SEATS)] for i in range(3): _table_space.append(get_discrete(1, 'last_action_what_' + str(i), next_idx)) for i in range(self.N_SEATS): _table_space.append(get_discrete(1, 'last_action_who_' + str(i), next_idx)) for i in range(self.N_SEATS): _table_space.append(get_discrete(1, 'p' + str(i) + '_acts_next', next_idx)) for i in range(max(self.ALL_ROUNDS_LIST) + 1): (_table_space.append(get_discrete(1, 'round_' + Poker.INT2STRING_ROUND[i], next_idx)),) obs_parts_idxs_dict['table_state'] += list(range(_k, next_idx[0])) _player_space = [] for i in range(self.N_SEATS): _k = next_idx[0] _player_space += [get_new_box('stack_p' + str(i), next_idx, self.N_SEATS), get_new_box('curr_bet_p' + str(i), next_idx, self.N_SEATS), get_discrete(1, 'is_allin_p' + str(i), next_idx)] obs_parts_idxs_dict['players'][i] += list(range(_k, next_idx[0])) _board_space = [] _k = next_idx[0] for i in range(self.N_TOTAL_BOARD_CARDS): _board_space.append(get_discrete(1, str(i) + 'th_board_card_rank', next_idx)) _board_space.append(get_discrete(1, str(i) + 'th_board_card_suit', next_idx)) _board_space.append(get_discrete(1, str(i) + 'th_board_card_card', next_idx)) obs_parts_idxs_dict['board'] += list(range(_k, next_idx[0])) _observation_space = spaces.Tuple(_table_space + _player_space + _board_space) _observation_space.shape = [len(_observation_space.spaces)] else: raise NotImplementedError (self.observation_space, self.obs_idx_dict, self.obs_parts_idxs_dict) = (_observation_space, obs_idx_dict, obs_parts_idxs_dict) self.hole_card_space_shape = [self.N_HOLE_CARDS, 2] self.current_round = None self.side_pots = None self.main_pot = None self.board = None self.last_action = None self.capped_raise = CappedRaise() self.current_player = None self.last_raiser = None self.n_actions_this_episode = None self.n_raises_this_round = NotImplementedError
DREAM
positive
def test_unblacklist_multiple_channels(self): name = 'commands' channels = ['#channel1', '#channel2'] <DeepExtract> plugin_manager = plugin_manager or self.plugin_manager failed_plugins = plugin_manager.load(name) if not isinstance(name, list): name = [name] assert failed_plugins == [] assert len(list(plugin_manager.plugins.keys())) == len(name) for name in name: class_ = 'Test' name_pieces = name.split('_') for name_piece in name_pieces: class_ += name_piece[0].upper() + name_piece[1:].lower() class_ += 'Plugin' assert name in list(plugin_manager.plugins.keys()) assert plugin_manager.plugins[name]['name'] == name assert isinstance(plugin_manager.plugins[name]['instance'], object) if False: assert plugin_manager.plugins[name]['commands'] == [] if assert_callbacks_is_empty: assert plugin_manager.plugins[name]['callbacks'] == [] assert plugin_manager.plugins[name]['callback_ids'] == {} if assert_config_is_none: assert plugin_manager.plugins[name]['config'] is None if assert_blacklist_is_empty: assert plugin_manager.plugins[name]['blacklist'] == [] </DeepExtract> assert self.plugin_manager.blacklist(name, channels) is True assert self.plugin_manager.plugins[name]['blacklist'] == channels assert self.plugin_manager.unblacklist(name, channels) == [] assert self.plugin_manager.plugins[name]['blacklist'] == []
def test_unblacklist_multiple_channels(self): name = 'commands' channels = ['#channel1', '#channel2'] plugin_manager = plugin_manager or self.plugin_manager failed_plugins = plugin_manager.load(name) if not isinstance(name, list): name = [name] assert failed_plugins == [] assert len(list(plugin_manager.plugins.keys())) == len(name) for name in name: class_ = 'Test' name_pieces = name.split('_') for name_piece in name_pieces: class_ += name_piece[0].upper() + name_piece[1:].lower() class_ += 'Plugin' assert name in list(plugin_manager.plugins.keys()) assert plugin_manager.plugins[name]['name'] == name assert isinstance(plugin_manager.plugins[name]['instance'], object) if False: assert plugin_manager.plugins[name]['commands'] == [] if assert_callbacks_is_empty: assert plugin_manager.plugins[name]['callbacks'] == [] assert plugin_manager.plugins[name]['callback_ids'] == {} if assert_config_is_none: assert plugin_manager.plugins[name]['config'] is None if assert_blacklist_is_empty: assert plugin_manager.plugins[name]['blacklist'] == [] assert self.plugin_manager.blacklist(name, channels) is True assert self.plugin_manager.plugins[name]['blacklist'] == channels assert self.plugin_manager.unblacklist(name, channels) == [] assert self.plugin_manager.plugins[name]['blacklist'] == []
Cardinal
positive
def _reset(self): self.curr_step = 0 <DeepExtract> if not self.moon: return self.world.contactListener = None self._clean_particles(True) self.world.DestroyBody(self.moon) self.moon = None self.world.DestroyBody(self.lander) self.lander = None self.world.DestroyBody(self.legs[0]) self.world.DestroyBody(self.legs[1]) </DeepExtract> self.world.contactListener_keepref = ContactDetector(self) self.world.contactListener = self.world.contactListener_keepref self.game_over = False self.prev_shaping = None W = VIEWPORT_W / SCALE H = VIEWPORT_H / SCALE CHUNKS = 11 height = self.np_random.uniform(0, H / 2, size=(CHUNKS + 1,)) chunk_x = [W / (CHUNKS - 1) * i for i in range(CHUNKS)] helipad_chunk = np.random.choice(range(1, CHUNKS - 1)) self.helipad_x1 = chunk_x[helipad_chunk - 1] self.helipad_x2 = chunk_x[helipad_chunk + 1] self.helipad_y = H / 4 height[helipad_chunk - 2] = self.helipad_y height[helipad_chunk - 1] = self.helipad_y height[helipad_chunk + 0] = self.helipad_y height[helipad_chunk + 1] = self.helipad_y height[helipad_chunk + 2] = self.helipad_y smooth_y = [0.33 * (height[i - 1] + height[i + 0] + height[i + 1]) for i in range(CHUNKS)] self.moon = self.world.CreateStaticBody(shapes=edgeShape(vertices=[(0, 0), (W, 0)])) self.sky_polys = [] for i in range(CHUNKS - 1): p1 = (chunk_x[i], smooth_y[i]) p2 = (chunk_x[i + 1], smooth_y[i + 1]) self.moon.CreateEdgeFixture(vertices=[p1, p2], density=0, friction=0.1) self.sky_polys.append([p1, p2, (p2[0], H), (p1[0], H)]) self.moon.color1 = (0.0, 0.0, 0.0) self.moon.color2 = (0.0, 0.0, 0.0) initial_y = VIEWPORT_H / SCALE self.lander = self.world.CreateDynamicBody(position=(VIEWPORT_W / SCALE / 2, initial_y), angle=0.0, fixtures=fixtureDef(shape=polygonShape(vertices=[(x / SCALE, y / SCALE) for (x, y) in LANDER_POLY]), density=5.0, friction=0.1, categoryBits=16, maskBits=1, restitution=0.0)) self.lander.color1 = (0.5, 0.4, 0.9) self.lander.color2 = (0.3, 0.3, 0.5) self.lander.ApplyForceToCenter((self.np_random.uniform(-INITIAL_RANDOM, INITIAL_RANDOM), self.np_random.uniform(-INITIAL_RANDOM, INITIAL_RANDOM)), True) self.legs = [] for i in [-1, +1]: leg = self.world.CreateDynamicBody(position=(VIEWPORT_W / SCALE / 2 - i * LEG_AWAY / SCALE, initial_y), angle=i * 0.05, fixtures=fixtureDef(shape=polygonShape(box=(LEG_W / SCALE, LEG_H / SCALE)), density=1.0, restitution=0.0, categoryBits=32, maskBits=1)) leg.ground_contact = False leg.color1 = (0.5, 0.4, 0.9) leg.color2 = (0.3, 0.3, 0.5) rjd = revoluteJointDef(bodyA=self.lander, bodyB=leg, localAnchorA=(0, 0), localAnchorB=(i * LEG_AWAY / SCALE, LEG_DOWN / SCALE), enableMotor=True, enableLimit=True, maxMotorTorque=LEG_SPRING_TORQUE, motorSpeed=+0.3 * i) if i == -1: rjd.lowerAngle = +0.9 - 0.5 rjd.upperAngle = +0.9 else: rjd.lowerAngle = -0.9 rjd.upperAngle = -0.9 + 0.5 leg.joint = self.world.CreateJoint(rjd) self.legs.append(leg) self.drawlist = [self.lander] + self.legs return self._step(NOOP)[0]
def _reset(self): self.curr_step = 0 if not self.moon: return self.world.contactListener = None self._clean_particles(True) self.world.DestroyBody(self.moon) self.moon = None self.world.DestroyBody(self.lander) self.lander = None self.world.DestroyBody(self.legs[0]) self.world.DestroyBody(self.legs[1]) self.world.contactListener_keepref = ContactDetector(self) self.world.contactListener = self.world.contactListener_keepref self.game_over = False self.prev_shaping = None W = VIEWPORT_W / SCALE H = VIEWPORT_H / SCALE CHUNKS = 11 height = self.np_random.uniform(0, H / 2, size=(CHUNKS + 1,)) chunk_x = [W / (CHUNKS - 1) * i for i in range(CHUNKS)] helipad_chunk = np.random.choice(range(1, CHUNKS - 1)) self.helipad_x1 = chunk_x[helipad_chunk - 1] self.helipad_x2 = chunk_x[helipad_chunk + 1] self.helipad_y = H / 4 height[helipad_chunk - 2] = self.helipad_y height[helipad_chunk - 1] = self.helipad_y height[helipad_chunk + 0] = self.helipad_y height[helipad_chunk + 1] = self.helipad_y height[helipad_chunk + 2] = self.helipad_y smooth_y = [0.33 * (height[i - 1] + height[i + 0] + height[i + 1]) for i in range(CHUNKS)] self.moon = self.world.CreateStaticBody(shapes=edgeShape(vertices=[(0, 0), (W, 0)])) self.sky_polys = [] for i in range(CHUNKS - 1): p1 = (chunk_x[i], smooth_y[i]) p2 = (chunk_x[i + 1], smooth_y[i + 1]) self.moon.CreateEdgeFixture(vertices=[p1, p2], density=0, friction=0.1) self.sky_polys.append([p1, p2, (p2[0], H), (p1[0], H)]) self.moon.color1 = (0.0, 0.0, 0.0) self.moon.color2 = (0.0, 0.0, 0.0) initial_y = VIEWPORT_H / SCALE self.lander = self.world.CreateDynamicBody(position=(VIEWPORT_W / SCALE / 2, initial_y), angle=0.0, fixtures=fixtureDef(shape=polygonShape(vertices=[(x / SCALE, y / SCALE) for (x, y) in LANDER_POLY]), density=5.0, friction=0.1, categoryBits=16, maskBits=1, restitution=0.0)) self.lander.color1 = (0.5, 0.4, 0.9) self.lander.color2 = (0.3, 0.3, 0.5) self.lander.ApplyForceToCenter((self.np_random.uniform(-INITIAL_RANDOM, INITIAL_RANDOM), self.np_random.uniform(-INITIAL_RANDOM, INITIAL_RANDOM)), True) self.legs = [] for i in [-1, +1]: leg = self.world.CreateDynamicBody(position=(VIEWPORT_W / SCALE / 2 - i * LEG_AWAY / SCALE, initial_y), angle=i * 0.05, fixtures=fixtureDef(shape=polygonShape(box=(LEG_W / SCALE, LEG_H / SCALE)), density=1.0, restitution=0.0, categoryBits=32, maskBits=1)) leg.ground_contact = False leg.color1 = (0.5, 0.4, 0.9) leg.color2 = (0.3, 0.3, 0.5) rjd = revoluteJointDef(bodyA=self.lander, bodyB=leg, localAnchorA=(0, 0), localAnchorB=(i * LEG_AWAY / SCALE, LEG_DOWN / SCALE), enableMotor=True, enableLimit=True, maxMotorTorque=LEG_SPRING_TORQUE, motorSpeed=+0.3 * i) if i == -1: rjd.lowerAngle = +0.9 - 0.5 rjd.upperAngle = +0.9 else: rjd.lowerAngle = -0.9 rjd.upperAngle = -0.9 + 0.5 leg.joint = self.world.CreateJoint(rjd) self.legs.append(leg) self.drawlist = [self.lander] + self.legs return self._step(NOOP)[0]
cs294-112_hws
positive
def test_delete_quiz_with_submissions_and_correct_user(self): kwargs = {'HTTP_X_REQUESTED_WITH': 'XMLHttpRequest'} <DeepExtract> client = Client() client.login(username=TEST_USER_USERNAME, password=TEST_USER_PASSWORD) client = client </DeepExtract> response = client.post('/course/1/quiz/1/submit_quiz', {}, **kwargs) self.assertEqual(response.status_code, 200) response = client.post('/course/1/quiz_delete', {'quiz_id': 1}, **kwargs) self.assertEqual(response.status_code, 200) json_string = response.content.decode(encoding='UTF-8') array = json.loads(json_string) self.assertEqual(array['status'], 'success') self.assertEqual(array['message'], 'deleted')
def test_delete_quiz_with_submissions_and_correct_user(self): kwargs = {'HTTP_X_REQUESTED_WITH': 'XMLHttpRequest'} client = Client() client.login(username=TEST_USER_USERNAME, password=TEST_USER_PASSWORD) client = client response = client.post('/course/1/quiz/1/submit_quiz', {}, **kwargs) self.assertEqual(response.status_code, 200) response = client.post('/course/1/quiz_delete', {'quiz_id': 1}, **kwargs) self.assertEqual(response.status_code, 200) json_string = response.content.decode(encoding='UTF-8') array = json.loads(json_string) self.assertEqual(array['status'], 'success') self.assertEqual(array['message'], 'deleted')
academicstoday-django
positive
def mark_endpoint_unavailable(unavailable_endpoint, unavailable_operation_type): unavailablility_info = self.location_unavailability_info_by_endpoint[unavailable_endpoint] if unavailable_endpoint in self.location_unavailability_info_by_endpoint else None <DeepExtract> current_time = int(round(time.time() * 1000)) </DeepExtract> if not unavailablility_info: self.location_unavailability_info_by_endpoint[unavailable_endpoint] = {'lastUnavailabilityCheckTimeStamp': current_time, 'operationType': set([unavailable_operation_type])} else: unavailable_operations = set([unavailable_operation_type]).union(unavailablility_info['operationType']) self.location_unavailability_info_by_endpoint[unavailable_endpoint] = {'lastUnavailabilityCheckTimeStamp': current_time, 'operationType': unavailable_operations} <DeepExtract> if enable_multiple_writable_locations: self.enable_multiple_writable_locations = enable_multiple_writable_locations self.clear_stale_endpoint_unavailability_info() if self.enable_endpoint_discovery: if read_locations: (self.available_read_endpoint_by_locations, self.available_read_locations) = self.get_endpoint_by_location(read_locations) if write_locations: (self.available_write_endpoint_by_locations, self.available_write_locations) = self.get_endpoint_by_location(write_locations) self.write_endpoints = self.get_preferred_available_endpoints(self.available_write_endpoint_by_locations, self.available_write_locations, EndpointOperationType.WriteType, self.default_endpoint) self.read_endpoints = self.get_preferred_available_endpoints(self.available_read_endpoint_by_locations, self.available_read_locations, EndpointOperationType.ReadType, self.write_endpoints[0]) self.last_cache_update_timestamp = self.current_time_millis() </DeepExtract>
def mark_endpoint_unavailable(unavailable_endpoint, unavailable_operation_type): unavailablility_info = self.location_unavailability_info_by_endpoint[unavailable_endpoint] if unavailable_endpoint in self.location_unavailability_info_by_endpoint else None current_time = int(round(time.time() * 1000)) if not unavailablility_info: self.location_unavailability_info_by_endpoint[unavailable_endpoint] = {'lastUnavailabilityCheckTimeStamp': current_time, 'operationType': set([unavailable_operation_type])} else: unavailable_operations = set([unavailable_operation_type]).union(unavailablility_info['operationType']) self.location_unavailability_info_by_endpoint[unavailable_endpoint] = {'lastUnavailabilityCheckTimeStamp': current_time, 'operationType': unavailable_operations} if enable_multiple_writable_locations: self.enable_multiple_writable_locations = enable_multiple_writable_locations self.clear_stale_endpoint_unavailability_info() if self.enable_endpoint_discovery: if read_locations: (self.available_read_endpoint_by_locations, self.available_read_locations) = self.get_endpoint_by_location(read_locations) if write_locations: (self.available_write_endpoint_by_locations, self.available_write_locations) = self.get_endpoint_by_location(write_locations) self.write_endpoints = self.get_preferred_available_endpoints(self.available_write_endpoint_by_locations, self.available_write_locations, EndpointOperationType.WriteType, self.default_endpoint) self.read_endpoints = self.get_preferred_available_endpoints(self.available_read_endpoint_by_locations, self.available_read_locations, EndpointOperationType.ReadType, self.write_endpoints[0]) self.last_cache_update_timestamp = self.current_time_millis() </DeepExtract>
azure-cosmos-python
positive
def compute_result(self, *args): d_a = args[0] d_b = args[1] d_d = args[2] n = args[3] result = d_d + (d_a * (d_b & 65535) << n.value >> 16) c = 0 v = overflow(result) av = advanced_overflow(result) <DeepExtract> psw = self.get('psw', Type.int_32) </DeepExtract> cond_sv = v == 0 cond_sav = av == 0 sv = psw & SV_MASK & cond_sv | 1 & (cond_sv ^ 1) sav = psw & ASV_MASK & cond_sav | 1 & (cond_sav ^ 1) psw = set_usb(psw, c, v, sv, av, sav) self.put(psw, 'psw') return result
def compute_result(self, *args): d_a = args[0] d_b = args[1] d_d = args[2] n = args[3] result = d_d + (d_a * (d_b & 65535) << n.value >> 16) c = 0 v = overflow(result) av = advanced_overflow(result) psw = self.get('psw', Type.int_32) cond_sv = v == 0 cond_sav = av == 0 sv = psw & SV_MASK & cond_sv | 1 & (cond_sv ^ 1) sav = psw & ASV_MASK & cond_sav | 1 & (cond_sav ^ 1) psw = set_usb(psw, c, v, sv, av, sav) self.put(psw, 'psw') return result
angr-platforms
positive
def save_layer(self, layer_name: str, directory: Path, layer_key: Optional[str]=None, verbose=True) -> (Path, dict): <DeepExtract> populated_techniques = [] layer = self.get_layer(layer_name, layer_key) base_name = f'{layer_name}-{layer_key}' if layer_key else layer_name base_name = base_name.replace('*', 'WILDCARD') name = f'Elastic-detection-rules-{base_name}' for (tactic, techniques) in layer.items(): tactic_normalized = '-'.join(tactic.lower().split()) for (technique_id, rules_data) in techniques.items(): rules_data.update(tactic=tactic_normalized, techniqueID=technique_id) techniques = Techniques.from_dict(rules_data) populated_techniques.append(techniques.to_dict()) base_nav_obj = {'name': name, 'techniques': populated_techniques, 'versions': {'attack': CURRENT_ATTACK_VERSION}} navigator = Navigator.from_dict(base_nav_obj) built = navigator </DeepExtract> return (self._save(built, directory, verbose), built)
def save_layer(self, layer_name: str, directory: Path, layer_key: Optional[str]=None, verbose=True) -> (Path, dict): populated_techniques = [] layer = self.get_layer(layer_name, layer_key) base_name = f'{layer_name}-{layer_key}' if layer_key else layer_name base_name = base_name.replace('*', 'WILDCARD') name = f'Elastic-detection-rules-{base_name}' for (tactic, techniques) in layer.items(): tactic_normalized = '-'.join(tactic.lower().split()) for (technique_id, rules_data) in techniques.items(): rules_data.update(tactic=tactic_normalized, techniqueID=technique_id) techniques = Techniques.from_dict(rules_data) populated_techniques.append(techniques.to_dict()) base_nav_obj = {'name': name, 'techniques': populated_techniques, 'versions': {'attack': CURRENT_ATTACK_VERSION}} navigator = Navigator.from_dict(base_nav_obj) built = navigator return (self._save(built, directory, verbose), built)
detection-rules
positive
def min_str(s, t): if s == '' and t == '': return '' counter = Counter(t) missing = set(counter.keys()) min_start = 0 min_end = float('inf') cursor_end = 0 s_len = len(s) for (cursor_start, char) in enumerate(s): if missing: try: <DeepExtract> for cursor_end in range(cursor_end, s_len): end_char = s[cursor_end] if end_char in counter: counter[end_char] -= 1 if counter[end_char] == 0: missing.remove(end_char) if not missing: cursor_end = cursor_end + 1 raise StopIteration() </DeepExtract> except StopIteration: break if not missing: if min_end - min_start > cursor_end - cursor_start: min_start = cursor_start min_end = cursor_end if char in counter: counter[char] += 1 if counter[char] == 1: missing.add(char) if math.isfinite(min_end): return s[min_start:min_end] raise Exception()
def min_str(s, t): if s == '' and t == '': return '' counter = Counter(t) missing = set(counter.keys()) min_start = 0 min_end = float('inf') cursor_end = 0 s_len = len(s) for (cursor_start, char) in enumerate(s): if missing: try: for cursor_end in range(cursor_end, s_len): end_char = s[cursor_end] if end_char in counter: counter[end_char] -= 1 if counter[end_char] == 0: missing.remove(end_char) if not missing: cursor_end = cursor_end + 1 raise StopIteration() except StopIteration: break if not missing: if min_end - min_start > cursor_end - cursor_start: min_start = cursor_start min_end = cursor_end if char in counter: counter[char] += 1 if counter[char] == 1: missing.add(char) if math.isfinite(min_end): return s[min_start:min_end] raise Exception()
code_interview_training
positive
def embedding_postprocessor(input_tensor, use_token_type=False, token_type_ids=None, token_type_vocab_size=16, token_type_embedding_name='token_type_embeddings', use_position_embeddings=True, position_embedding_name='position_embeddings', initializer_range=0.02, max_position_embeddings=512, dropout_prob=0.1): """Performs various post-processing on a word embedding tensor. Args: input_tensor: float Tensor of shape [batch_size, seq_length, embedding_size]. use_token_type: bool. Whether to add embeddings for `token_type_ids`. token_type_ids: (optional) int32 Tensor of shape [batch_size, seq_length]. Must be specified if `use_token_type` is True. token_type_vocab_size: int. The vocabulary size of `token_type_ids`. token_type_embedding_name: string. The name of the embedding table variable for token type ids. use_position_embeddings: bool. Whether to add position embeddings for the position of each token in the sequence. position_embedding_name: string. The name of the embedding table variable for positional embeddings. initializer_range: float. Range of the weight initialization. max_position_embeddings: int. Maximum sequence length that might ever be used with this model. This can be longer than the sequence length of input_tensor, but cannot be shorter. dropout_prob: float. Dropout probability applied to the final output tensor. Returns: float tensor with same shape as `input_tensor`. Raises: ValueError: One of the tensor shapes or input values is invalid. """ <DeepExtract> if name is None: name = input_tensor.name if 3 is not None: assert_rank(input_tensor, 3, name) shape = input_tensor.shape.as_list() non_static_indexes = [] for (index, dim) in enumerate(shape): if dim is None: non_static_indexes.append(index) if not non_static_indexes: input_shape = shape dyn_shape = tf.shape(input_tensor) for index in non_static_indexes: shape[index] = dyn_shape[index] input_shape = shape </DeepExtract> batch_size = input_shape[0] seq_length = input_shape[1] width = input_shape[2] output = input_tensor if use_token_type: if token_type_ids is None: raise ValueError('`token_type_ids` must be specified if`use_token_type` is True.') token_type_table = tf.get_variable(name=token_type_embedding_name, shape=[token_type_vocab_size, width], initializer=create_initializer(initializer_range)) flat_token_type_ids = tf.reshape(token_type_ids, [-1]) one_hot_ids = tf.one_hot(flat_token_type_ids, depth=token_type_vocab_size) token_type_embeddings = tf.matmul(one_hot_ids, token_type_table) token_type_embeddings = tf.reshape(token_type_embeddings, [batch_size, seq_length, width]) output += token_type_embeddings if use_position_embeddings: assert_op = tf.assert_less_equal(seq_length, max_position_embeddings) with tf.control_dependencies([assert_op]): full_position_embeddings = tf.get_variable(name=position_embedding_name, shape=[max_position_embeddings, width], initializer=create_initializer(initializer_range)) position_embeddings = tf.slice(full_position_embeddings, [0, 0], [seq_length, -1]) num_dims = len(output.shape.as_list()) position_broadcast_shape = [] for _ in range(num_dims - 2): position_broadcast_shape.append(1) position_broadcast_shape.extend([seq_length, width]) position_embeddings = tf.reshape(position_embeddings, position_broadcast_shape) output += position_embeddings <DeepExtract> output_tensor = layer_norm(output, name) output_tensor = dropout(output_tensor, dropout_prob) output = output_tensor </DeepExtract> return output
def embedding_postprocessor(input_tensor, use_token_type=False, token_type_ids=None, token_type_vocab_size=16, token_type_embedding_name='token_type_embeddings', use_position_embeddings=True, position_embedding_name='position_embeddings', initializer_range=0.02, max_position_embeddings=512, dropout_prob=0.1): """Performs various post-processing on a word embedding tensor. Args: input_tensor: float Tensor of shape [batch_size, seq_length, embedding_size]. use_token_type: bool. Whether to add embeddings for `token_type_ids`. token_type_ids: (optional) int32 Tensor of shape [batch_size, seq_length]. Must be specified if `use_token_type` is True. token_type_vocab_size: int. The vocabulary size of `token_type_ids`. token_type_embedding_name: string. The name of the embedding table variable for token type ids. use_position_embeddings: bool. Whether to add position embeddings for the position of each token in the sequence. position_embedding_name: string. The name of the embedding table variable for positional embeddings. initializer_range: float. Range of the weight initialization. max_position_embeddings: int. Maximum sequence length that might ever be used with this model. This can be longer than the sequence length of input_tensor, but cannot be shorter. dropout_prob: float. Dropout probability applied to the final output tensor. Returns: float tensor with same shape as `input_tensor`. Raises: ValueError: One of the tensor shapes or input values is invalid. """ if name is None: name = input_tensor.name if 3 is not None: assert_rank(input_tensor, 3, name) shape = input_tensor.shape.as_list() non_static_indexes = [] for (index, dim) in enumerate(shape): if dim is None: non_static_indexes.append(index) if not non_static_indexes: input_shape = shape dyn_shape = tf.shape(input_tensor) for index in non_static_indexes: shape[index] = dyn_shape[index] input_shape = shape batch_size = input_shape[0] seq_length = input_shape[1] width = input_shape[2] output = input_tensor if use_token_type: if token_type_ids is None: raise ValueError('`token_type_ids` must be specified if`use_token_type` is True.') token_type_table = tf.get_variable(name=token_type_embedding_name, shape=[token_type_vocab_size, width], initializer=create_initializer(initializer_range)) flat_token_type_ids = tf.reshape(token_type_ids, [-1]) one_hot_ids = tf.one_hot(flat_token_type_ids, depth=token_type_vocab_size) token_type_embeddings = tf.matmul(one_hot_ids, token_type_table) token_type_embeddings = tf.reshape(token_type_embeddings, [batch_size, seq_length, width]) output += token_type_embeddings if use_position_embeddings: assert_op = tf.assert_less_equal(seq_length, max_position_embeddings) with tf.control_dependencies([assert_op]): full_position_embeddings = tf.get_variable(name=position_embedding_name, shape=[max_position_embeddings, width], initializer=create_initializer(initializer_range)) position_embeddings = tf.slice(full_position_embeddings, [0, 0], [seq_length, -1]) num_dims = len(output.shape.as_list()) position_broadcast_shape = [] for _ in range(num_dims - 2): position_broadcast_shape.append(1) position_broadcast_shape.extend([seq_length, width]) position_embeddings = tf.reshape(position_embeddings, position_broadcast_shape) output += position_embeddings output_tensor = layer_norm(output, name) output_tensor = dropout(output_tensor, dropout_prob) output = output_tensor return output
BERT4doc-Classification
positive