before
stringlengths
0
955k
after
stringlengths
0
877k
repo
stringlengths
1
74
type
stringclasses
1 value
def show_dconv_offset(im, all_offset, step=[2, 2], filter_size=3, dilation=2, pad=2, plot_area=2, plot_level=3): vis_attr = {'filter_size': filter_size, 'dilation': dilation, 'pad': pad, 'plot_area': plot_area, 'plot_level': plot_level} map_h = all_offset[0].shape[2] map_w = all_offset[0].shape[3] step_h = step[0] step_w = step[1] start_h = np.round(step_h / 2) start_w = np.round(step_w / 2) plt.figure() for im_h in range(start_h, map_h, step_h): for im_w in range(start_w, map_w, step_w): target_point = np.array([im_h, im_w]) source_y = np.round(target_point[0] * im.shape[0] / map_h) source_x = np.round(target_point[1] * im.shape[1] / map_w) if source_y < plot_area or source_x < plot_area or source_y >= im.shape[0] - plot_area or (source_x >= im.shape[1] - plot_area): continue cur_im = np.copy(im) <DeepExtract> map_h = all_offset[0].shape[2] map_w = all_offset[0].shape[3] for level in range(vis_attr['plot_level']): source_points = [] for (idx, cur_top_point) in enumerate([target_point]): cur_top_point = np.round(cur_top_point) if cur_top_point[0] < 0 or cur_top_point[1] < 0 or cur_top_point[0] > map_h - 1 or (cur_top_point[1] > map_w - 1): continue cur_source_point = kernel_inv_map(vis_attr, cur_top_point, map_h, map_w) cur_offset = np.squeeze(all_offset[level][:, :, int(cur_top_point[0]), int(cur_top_point[1])]) cur_source_point = offset_inv_map(cur_source_point, cur_offset) source_points = source_points + cur_source_point [target_point] = source_points source_points = source_points </DeepExtract> <DeepExtract> plot_area = vis_attr['plot_area'] for (idx, cur_source_point) in enumerate(source_points): y = np.round((cur_source_point[0] + 0.5) * cur_im.shape[0] / map_h).astype('i') x = np.round((cur_source_point[1] + 0.5) * cur_im.shape[1] / map_w).astype('i') if x < 0 or y < 0 or x > cur_im.shape[1] - 1 or (y > cur_im.shape[0] - 1): continue y = min(y, cur_im.shape[0] - vis_attr['plot_area'] - 1) x = min(x, cur_im.shape[1] - vis_attr['plot_area'] - 1) y = max(y, vis_attr['plot_area']) x = max(x, vis_attr['plot_area']) cur_im[y - plot_area:y + plot_area + 1, x - plot_area:x + plot_area + 1, :] = np.tile(np.reshape(color, (1, 1, 3)), (2 * plot_area + 1, 2 * plot_area + 1, 1)) cur_im = cur_im </DeepExtract> cur_im[source_y - plot_area:source_y + plot_area + 1, source_x - plot_area:source_x + plot_area + 1, :] = np.tile(np.reshape([0, 255, 0], (1, 1, 3)), (2 * plot_area + 1, 2 * plot_area + 1, 1)) plt.axis('off') plt.imshow(cur_im) plt.show(block=False) plt.pause(0.01) plt.clf()
def show_dconv_offset(im, all_offset, step=[2, 2], filter_size=3, dilation=2, pad=2, plot_area=2, plot_level=3): vis_attr = {'filter_size': filter_size, 'dilation': dilation, 'pad': pad, 'plot_area': plot_area, 'plot_level': plot_level} map_h = all_offset[0].shape[2] map_w = all_offset[0].shape[3] step_h = step[0] step_w = step[1] start_h = np.round(step_h / 2) start_w = np.round(step_w / 2) plt.figure() for im_h in range(start_h, map_h, step_h): for im_w in range(start_w, map_w, step_w): target_point = np.array([im_h, im_w]) source_y = np.round(target_point[0] * im.shape[0] / map_h) source_x = np.round(target_point[1] * im.shape[1] / map_w) if source_y < plot_area or source_x < plot_area or source_y >= im.shape[0] - plot_area or (source_x >= im.shape[1] - plot_area): continue cur_im = np.copy(im) map_h = all_offset[0].shape[2] map_w = all_offset[0].shape[3] for level in range(vis_attr['plot_level']): source_points = [] for (idx, cur_top_point) in enumerate([target_point]): cur_top_point = np.round(cur_top_point) if cur_top_point[0] < 0 or cur_top_point[1] < 0 or cur_top_point[0] > map_h - 1 or (cur_top_point[1] > map_w - 1): continue cur_source_point = kernel_inv_map(vis_attr, cur_top_point, map_h, map_w) cur_offset = np.squeeze(all_offset[level][:, :, int(cur_top_point[0]), int(cur_top_point[1])]) cur_source_point = offset_inv_map(cur_source_point, cur_offset) source_points = source_points + cur_source_point [target_point] = source_points source_points = source_points plot_area = vis_attr['plot_area'] for (idx, cur_source_point) in enumerate(source_points): y = np.round((cur_source_point[0] + 0.5) * cur_im.shape[0] / map_h).astype('i') x = np.round((cur_source_point[1] + 0.5) * cur_im.shape[1] / map_w).astype('i') if x < 0 or y < 0 or x > cur_im.shape[1] - 1 or (y > cur_im.shape[0] - 1): continue y = min(y, cur_im.shape[0] - vis_attr['plot_area'] - 1) x = min(x, cur_im.shape[1] - vis_attr['plot_area'] - 1) y = max(y, vis_attr['plot_area']) x = max(x, vis_attr['plot_area']) cur_im[y - plot_area:y + plot_area + 1, x - plot_area:x + plot_area + 1, :] = np.tile(np.reshape(color, (1, 1, 3)), (2 * plot_area + 1, 2 * plot_area + 1, 1)) cur_im = cur_im cur_im[source_y - plot_area:source_y + plot_area + 1, source_x - plot_area:source_x + plot_area + 1, :] = np.tile(np.reshape([0, 255, 0], (1, 1, 3)), (2 * plot_area + 1, 2 * plot_area + 1, 1)) plt.axis('off') plt.imshow(cur_im) plt.show(block=False) plt.pause(0.01) plt.clf()
Deformable-ConvNets
positive
def test_narma10_prediction_esn_ridge10(self): """ Test NARMA-10 prediction with default hyper-parameters (Nx=100, SP=0.99) """ <DeepExtract> use_cuda = torch.cuda.is_available() if use_cuda else False echotorch.utils.manual_seed(1) narma10_train_dataset = NARMADataset(train_sample_length, n_train_samples, system_order=10) narma10_test_dataset = NARMADataset(test_sample_length, n_test_samples, system_order=10) trainloader = DataLoader(narma10_train_dataset, batch_size=batch_size, shuffle=False, num_workers=1) testloader = DataLoader(narma10_test_dataset, batch_size=batch_size, shuffle=False, num_workers=1) w_matrix_generator = mg.matrix_factory.get_generator(name='normal', connectivity=connectivity, spectral_radius=spectral_radius, dtype=dtype) win_matrix_generator = mg.matrix_factory.get_generator(name='normal', connectivity=connectivity, scale=input_scaling, apply_spectral_radius=False, dtype=dtype) wbias_matrix_generator = mg.matrix_factory.get_generator(name='normal', connectivity=connectivity, scale=bias_scaling, apply_spectral_radius=False, dtype=dtype) esn = etrs.LiESN(input_dim=1, hidden_dim=reservoir_size, output_dim=1, spectral_radius=spectral_radius, leaky_rate=leaky_rate, learning_algo='inv', w_generator=w_matrix_generator, win_generator=win_matrix_generator, wbias_generator=wbias_matrix_generator, input_scaling=input_scaling, bias_scaling=bias_scaling, ridge_param=10, dtype=dtype) if use_cuda: esn.cuda() for data in trainloader: (inputs, targets) = data if dtype == torch.float64: (inputs, targets) = (inputs.double(), targets.double()) (inputs, targets) = (Variable(inputs), Variable(targets)) if use_cuda: (inputs, targets) = (inputs.cuda(), targets.cuda()) esn(inputs, targets) esn.finalize() dataiter = iter(trainloader) (train_u, train_y) = dataiter.next() if dtype == torch.float64: (train_u, train_y) = (train_u.double(), train_y.double()) (train_u, train_y) = (Variable(train_u), Variable(train_y)) if use_cuda: (train_u, train_y) = (train_u.cuda(), train_y.cuda()) y_train_predicted = esn(train_u) dataiter = iter(testloader) (test_u, test_y) = dataiter.next() if dtype == torch.float64: (test_u, test_y) = (test_u.double(), test_y.double()) (test_u, test_y) = (Variable(test_u), Variable(test_y)) if use_cuda: (test_u, test_y) = (test_u.cuda(), test_y.cuda()) y_test_predicted = esn(test_u) (train_mse, train_nrmse, test_mse, test_nrmse) = (echotorch.utils.mse(y_train_predicted.data, train_y.data), echotorch.utils.nrmse(y_train_predicted.data, train_y.data), echotorch.utils.mse(y_test_predicted.data, test_y.data), echotorch.utils.nrmse(y_test_predicted.data, test_y.data)) </DeepExtract> <DeepExtract> use_cuda = torch.cuda.is_available() if use_cuda else False echotorch.utils.manual_seed(1) narma10_train_dataset = NARMADataset(train_sample_length, n_train_samples, system_order=10) narma10_test_dataset = NARMADataset(test_sample_length, n_test_samples, system_order=10) trainloader = DataLoader(narma10_train_dataset, batch_size=batch_size, shuffle=False, num_workers=1) testloader = DataLoader(narma10_test_dataset, batch_size=batch_size, shuffle=False, num_workers=1) w_matrix_generator = mg.matrix_factory.get_generator(name='normal', connectivity=connectivity, spectral_radius=spectral_radius, dtype=torch.float32) win_matrix_generator = mg.matrix_factory.get_generator(name='normal', connectivity=connectivity, scale=input_scaling, apply_spectral_radius=False, dtype=torch.float32) wbias_matrix_generator = mg.matrix_factory.get_generator(name='normal', connectivity=connectivity, scale=bias_scaling, apply_spectral_radius=False, dtype=torch.float32) esn = etrs.LiESN(input_dim=1, hidden_dim=reservoir_size, output_dim=1, spectral_radius=spectral_radius, leaky_rate=leaky_rate, learning_algo='inv', w_generator=w_matrix_generator, win_generator=win_matrix_generator, wbias_generator=wbias_matrix_generator, input_scaling=input_scaling, bias_scaling=bias_scaling, ridge_param=10.0, dtype=torch.float32) if use_cuda: esn.cuda() for data in trainloader: (inputs, targets) = data if torch.float32 == torch.float64: (inputs, targets) = (inputs.double(), targets.double()) (inputs, targets) = (Variable(inputs), Variable(targets)) if use_cuda: (inputs, targets) = (inputs.cuda(), targets.cuda()) esn(inputs, targets) esn.finalize() dataiter = iter(trainloader) (train_u, train_y) = dataiter.next() if torch.float32 == torch.float64: (train_u, train_y) = (train_u.double(), train_y.double()) (train_u, train_y) = (Variable(train_u), Variable(train_y)) if use_cuda: (train_u, train_y) = (train_u.cuda(), train_y.cuda()) y_train_predicted = esn(train_u) dataiter = iter(testloader) (test_u, test_y) = dataiter.next() if torch.float32 == torch.float64: (test_u, test_y) = (test_u.double(), test_y.double()) (test_u, test_y) = (Variable(test_u), Variable(test_y)) if use_cuda: (test_u, test_y) = (test_u.cuda(), test_y.cuda()) y_test_predicted = esn(test_u) (train_mse32, train_nrmse32, test_mse32, test_nrmse32) = (echotorch.utils.mse(y_train_predicted.data, train_y.data), echotorch.utils.nrmse(y_train_predicted.data, train_y.data), echotorch.utils.mse(y_test_predicted.data, test_y.data), echotorch.utils.nrmse(y_test_predicted.data, test_y.data)) </DeepExtract> self.assertLessEqual(train_mse, 0.1) self.assertLessEqual(train_nrmse, 3.0) self.assertLessEqual(test_mse, 0.1) self.assertLessEqual(test_nrmse, 3.0) self.assertLessEqual(train_mse32, 0.1) self.assertLessEqual(train_nrmse32, 3.0) self.assertLessEqual(test_mse32, 0.2) self.assertLessEqual(test_nrmse32, 3.0)
def test_narma10_prediction_esn_ridge10(self): """ Test NARMA-10 prediction with default hyper-parameters (Nx=100, SP=0.99) """ use_cuda = torch.cuda.is_available() if use_cuda else False echotorch.utils.manual_seed(1) narma10_train_dataset = NARMADataset(train_sample_length, n_train_samples, system_order=10) narma10_test_dataset = NARMADataset(test_sample_length, n_test_samples, system_order=10) trainloader = DataLoader(narma10_train_dataset, batch_size=batch_size, shuffle=False, num_workers=1) testloader = DataLoader(narma10_test_dataset, batch_size=batch_size, shuffle=False, num_workers=1) w_matrix_generator = mg.matrix_factory.get_generator(name='normal', connectivity=connectivity, spectral_radius=spectral_radius, dtype=dtype) win_matrix_generator = mg.matrix_factory.get_generator(name='normal', connectivity=connectivity, scale=input_scaling, apply_spectral_radius=False, dtype=dtype) wbias_matrix_generator = mg.matrix_factory.get_generator(name='normal', connectivity=connectivity, scale=bias_scaling, apply_spectral_radius=False, dtype=dtype) esn = etrs.LiESN(input_dim=1, hidden_dim=reservoir_size, output_dim=1, spectral_radius=spectral_radius, leaky_rate=leaky_rate, learning_algo='inv', w_generator=w_matrix_generator, win_generator=win_matrix_generator, wbias_generator=wbias_matrix_generator, input_scaling=input_scaling, bias_scaling=bias_scaling, ridge_param=10, dtype=dtype) if use_cuda: esn.cuda() for data in trainloader: (inputs, targets) = data if dtype == torch.float64: (inputs, targets) = (inputs.double(), targets.double()) (inputs, targets) = (Variable(inputs), Variable(targets)) if use_cuda: (inputs, targets) = (inputs.cuda(), targets.cuda()) esn(inputs, targets) esn.finalize() dataiter = iter(trainloader) (train_u, train_y) = dataiter.next() if dtype == torch.float64: (train_u, train_y) = (train_u.double(), train_y.double()) (train_u, train_y) = (Variable(train_u), Variable(train_y)) if use_cuda: (train_u, train_y) = (train_u.cuda(), train_y.cuda()) y_train_predicted = esn(train_u) dataiter = iter(testloader) (test_u, test_y) = dataiter.next() if dtype == torch.float64: (test_u, test_y) = (test_u.double(), test_y.double()) (test_u, test_y) = (Variable(test_u), Variable(test_y)) if use_cuda: (test_u, test_y) = (test_u.cuda(), test_y.cuda()) y_test_predicted = esn(test_u) (train_mse, train_nrmse, test_mse, test_nrmse) = (echotorch.utils.mse(y_train_predicted.data, train_y.data), echotorch.utils.nrmse(y_train_predicted.data, train_y.data), echotorch.utils.mse(y_test_predicted.data, test_y.data), echotorch.utils.nrmse(y_test_predicted.data, test_y.data)) use_cuda = torch.cuda.is_available() if use_cuda else False echotorch.utils.manual_seed(1) narma10_train_dataset = NARMADataset(train_sample_length, n_train_samples, system_order=10) narma10_test_dataset = NARMADataset(test_sample_length, n_test_samples, system_order=10) trainloader = DataLoader(narma10_train_dataset, batch_size=batch_size, shuffle=False, num_workers=1) testloader = DataLoader(narma10_test_dataset, batch_size=batch_size, shuffle=False, num_workers=1) w_matrix_generator = mg.matrix_factory.get_generator(name='normal', connectivity=connectivity, spectral_radius=spectral_radius, dtype=torch.float32) win_matrix_generator = mg.matrix_factory.get_generator(name='normal', connectivity=connectivity, scale=input_scaling, apply_spectral_radius=False, dtype=torch.float32) wbias_matrix_generator = mg.matrix_factory.get_generator(name='normal', connectivity=connectivity, scale=bias_scaling, apply_spectral_radius=False, dtype=torch.float32) esn = etrs.LiESN(input_dim=1, hidden_dim=reservoir_size, output_dim=1, spectral_radius=spectral_radius, leaky_rate=leaky_rate, learning_algo='inv', w_generator=w_matrix_generator, win_generator=win_matrix_generator, wbias_generator=wbias_matrix_generator, input_scaling=input_scaling, bias_scaling=bias_scaling, ridge_param=10.0, dtype=torch.float32) if use_cuda: esn.cuda() for data in trainloader: (inputs, targets) = data if torch.float32 == torch.float64: (inputs, targets) = (inputs.double(), targets.double()) (inputs, targets) = (Variable(inputs), Variable(targets)) if use_cuda: (inputs, targets) = (inputs.cuda(), targets.cuda()) esn(inputs, targets) esn.finalize() dataiter = iter(trainloader) (train_u, train_y) = dataiter.next() if torch.float32 == torch.float64: (train_u, train_y) = (train_u.double(), train_y.double()) (train_u, train_y) = (Variable(train_u), Variable(train_y)) if use_cuda: (train_u, train_y) = (train_u.cuda(), train_y.cuda()) y_train_predicted = esn(train_u) dataiter = iter(testloader) (test_u, test_y) = dataiter.next() if torch.float32 == torch.float64: (test_u, test_y) = (test_u.double(), test_y.double()) (test_u, test_y) = (Variable(test_u), Variable(test_y)) if use_cuda: (test_u, test_y) = (test_u.cuda(), test_y.cuda()) y_test_predicted = esn(test_u) (train_mse32, train_nrmse32, test_mse32, test_nrmse32) = (echotorch.utils.mse(y_train_predicted.data, train_y.data), echotorch.utils.nrmse(y_train_predicted.data, train_y.data), echotorch.utils.mse(y_test_predicted.data, test_y.data), echotorch.utils.nrmse(y_test_predicted.data, test_y.data)) self.assertLessEqual(train_mse, 0.1) self.assertLessEqual(train_nrmse, 3.0) self.assertLessEqual(test_mse, 0.1) self.assertLessEqual(test_nrmse, 3.0) self.assertLessEqual(train_mse32, 0.1) self.assertLessEqual(train_nrmse32, 3.0) self.assertLessEqual(test_mse32, 0.2) self.assertLessEqual(test_nrmse32, 3.0)
EchoTorch
positive
def get(self, key): <DeepExtract> if self.root is None: self.root = None if key < self.root.key: self.root = self._get(self.root.left, key, val) elif key > self.root.key: self.root = self._get(self.root.right, key, val) else: self.root = self.root </DeepExtract> if x is None: return None else: return x.val
def get(self, key): if self.root is None: self.root = None if key < self.root.key: self.root = self._get(self.root.left, key, val) elif key > self.root.key: self.root = self._get(self.root.right, key, val) else: self.root = self.root if x is None: return None else: return x.val
CtCI-6th-Edition
positive
@tools.ormcache('templates', 'current_fp_taxes') def find_fp_tax_by_templates(self, templates, current_fp_taxes): result = [] for tpl in templates: <DeepExtract> fp_model = self.env['account.fiscal.position'] for matching in self.fp_matching_ids.sorted('sequence'): if matching.matching_value == 'xml_id': real = self.env['account.fiscal.position'] for template in tpl.position_id: try: real |= self.env.ref(self._get_real_xml_name(template)) except BaseException: _logger.info('Is not real xml Name') if not real: continue criteria = ('id', 'in', real.ids) else: field_name = matching.matching_value field_values = tpl.position_id.mapped(field_name) if not field_values: continue criteria = (field_name, 'in', field_values) result = fp_model.search([criteria, ('company_id', '=', self.company_id.id)], limit=1) if result: pos_id = result.id pos_id = False </DeepExtract> <DeepExtract> tax_model = self.env['account.tax'].with_context(active_test=False) for template in tpl.tax_src_id: for matching in self.tax_matching_ids.sorted('sequence'): if matching.matching_value == 'xml_id': real = self.env.ref(self._get_real_xml_name(template), raise_if_not_found=False) if not real: continue criteria = ('id', '=', real.id) else: field_name = matching.matching_value if not template[field_name]: continue criteria = (field_name, '=', template[field_name]) result = tax_model.search([criteria, ('company_id', '=', self.company_id.id), ('type_tax_use', '=', template.type_tax_use)], limit=1) if result: src_id = result.id src_id = False </DeepExtract> <DeepExtract> tax_model = self.env['account.tax'].with_context(active_test=False) for template in tpl.tax_dest_id: for matching in self.tax_matching_ids.sorted('sequence'): if matching.matching_value == 'xml_id': real = self.env.ref(self._get_real_xml_name(template), raise_if_not_found=False) if not real: continue criteria = ('id', '=', real.id) else: field_name = matching.matching_value if not template[field_name]: continue criteria = (field_name, '=', template[field_name]) result = tax_model.search([criteria, ('company_id', '=', self.company_id.id), ('type_tax_use', '=', template.type_tax_use)], limit=1) if result: dest_id = result.id dest_id = False </DeepExtract> existing = self.env['account.fiscal.position.tax'].search([('position_id', '=', pos_id), ('tax_src_id', '=', src_id), ('tax_dest_id', '=', dest_id)]) if not existing: result.append((0, 0, {'position_id': pos_id, 'tax_src_id': src_id, 'tax_dest_id': dest_id})) else: current_fp_taxes -= existing if current_fp_taxes: result += [(2, x.id) for x in current_fp_taxes] return result
@tools.ormcache('templates', 'current_fp_taxes') def find_fp_tax_by_templates(self, templates, current_fp_taxes): result = [] for tpl in templates: fp_model = self.env['account.fiscal.position'] for matching in self.fp_matching_ids.sorted('sequence'): if matching.matching_value == 'xml_id': real = self.env['account.fiscal.position'] for template in tpl.position_id: try: real |= self.env.ref(self._get_real_xml_name(template)) except BaseException: _logger.info('Is not real xml Name') if not real: continue criteria = ('id', 'in', real.ids) else: field_name = matching.matching_value field_values = tpl.position_id.mapped(field_name) if not field_values: continue criteria = (field_name, 'in', field_values) result = fp_model.search([criteria, ('company_id', '=', self.company_id.id)], limit=1) if result: pos_id = result.id pos_id = False tax_model = self.env['account.tax'].with_context(active_test=False) for template in tpl.tax_src_id: for matching in self.tax_matching_ids.sorted('sequence'): if matching.matching_value == 'xml_id': real = self.env.ref(self._get_real_xml_name(template), raise_if_not_found=False) if not real: continue criteria = ('id', '=', real.id) else: field_name = matching.matching_value if not template[field_name]: continue criteria = (field_name, '=', template[field_name]) result = tax_model.search([criteria, ('company_id', '=', self.company_id.id), ('type_tax_use', '=', template.type_tax_use)], limit=1) if result: src_id = result.id src_id = False tax_model = self.env['account.tax'].with_context(active_test=False) for template in tpl.tax_dest_id: for matching in self.tax_matching_ids.sorted('sequence'): if matching.matching_value == 'xml_id': real = self.env.ref(self._get_real_xml_name(template), raise_if_not_found=False) if not real: continue criteria = ('id', '=', real.id) else: field_name = matching.matching_value if not template[field_name]: continue criteria = (field_name, '=', template[field_name]) result = tax_model.search([criteria, ('company_id', '=', self.company_id.id), ('type_tax_use', '=', template.type_tax_use)], limit=1) if result: dest_id = result.id dest_id = False existing = self.env['account.fiscal.position.tax'].search([('position_id', '=', pos_id), ('tax_src_id', '=', src_id), ('tax_dest_id', '=', dest_id)]) if not existing: result.append((0, 0, {'position_id': pos_id, 'tax_src_id': src_id, 'tax_dest_id': dest_id})) else: current_fp_taxes -= existing if current_fp_taxes: result += [(2, x.id) for x in current_fp_taxes] return result
account-financial-tools
positive
@mock.patch('dlrn.api.api_logging.get_config') @mock.patch('dlrn.api.api_logging.get_config') @mock.patch('dlrn.api.api_logging.create_rotating_file_handler_dict', side_effect=mock_handler_dict) @mock.patch('dlrn.api.api_logging.create_logger_dict', side_effect=mock_logger_dict) def test_setup_complex_dict_config(self, mocked_logged_dict, mocked_handler_dict, mocked_retr_debug, mocked_retr_path): mocked_retr_debug.return_value = self.debug_bool mocked_retr_path.return_value = self.log_path_var <DeepExtract> result_dlrn_handler_dict = {self.dlrn_handler_name: {'class': 'logging.handlers.RotatingFileHandler', 'filename': self.file_path, 'backupCount': 3, 'maxBytes': 15728640, 'formatter': 'default'}} </DeepExtract> <DeepExtract> result_dlrn_logger_dict = {self.dlrn_logger_name: {'level': self.log_level, 'handlers': [self.dlrn_handler_name], 'propagate': False}} </DeepExtract> <DeepExtract> result_auth_handler_dict = {self.auth_handler_name: {'class': 'logging.handlers.RotatingFileHandler', 'filename': self.file_path, 'backupCount': 3, 'maxBytes': 15728640, 'formatter': 'default'}} </DeepExtract> <DeepExtract> result_auth_logger_dict = {self.auth_logger_name: {'level': self.log_level, 'handlers': [self.auth_handler_name], 'propagate': False}} </DeepExtract> return_dict = setup_dict_config({}) return_loggers = return_dict['loggers'] return_handlers = return_dict['handlers'] self.assertDictEqual(return_loggers[self.dlrn_logger_name], result_dlrn_logger_dict[self.dlrn_logger_name]) self.assertDictEqual(return_handlers[self.dlrn_handler_name], result_dlrn_handler_dict[self.dlrn_handler_name]) self.assertDictEqual(return_loggers[self.auth_logger_name], result_auth_logger_dict[self.auth_logger_name]) self.assertDictEqual(return_handlers[self.auth_handler_name], result_auth_handler_dict[self.auth_handler_name])
@mock.patch('dlrn.api.api_logging.get_config') @mock.patch('dlrn.api.api_logging.get_config') @mock.patch('dlrn.api.api_logging.create_rotating_file_handler_dict', side_effect=mock_handler_dict) @mock.patch('dlrn.api.api_logging.create_logger_dict', side_effect=mock_logger_dict) def test_setup_complex_dict_config(self, mocked_logged_dict, mocked_handler_dict, mocked_retr_debug, mocked_retr_path): mocked_retr_debug.return_value = self.debug_bool mocked_retr_path.return_value = self.log_path_var result_dlrn_handler_dict = {self.dlrn_handler_name: {'class': 'logging.handlers.RotatingFileHandler', 'filename': self.file_path, 'backupCount': 3, 'maxBytes': 15728640, 'formatter': 'default'}} result_dlrn_logger_dict = {self.dlrn_logger_name: {'level': self.log_level, 'handlers': [self.dlrn_handler_name], 'propagate': False}} result_auth_handler_dict = {self.auth_handler_name: {'class': 'logging.handlers.RotatingFileHandler', 'filename': self.file_path, 'backupCount': 3, 'maxBytes': 15728640, 'formatter': 'default'}} result_auth_logger_dict = {self.auth_logger_name: {'level': self.log_level, 'handlers': [self.auth_handler_name], 'propagate': False}} return_dict = setup_dict_config({}) return_loggers = return_dict['loggers'] return_handlers = return_dict['handlers'] self.assertDictEqual(return_loggers[self.dlrn_logger_name], result_dlrn_logger_dict[self.dlrn_logger_name]) self.assertDictEqual(return_handlers[self.dlrn_handler_name], result_dlrn_handler_dict[self.dlrn_handler_name]) self.assertDictEqual(return_loggers[self.auth_logger_name], result_auth_logger_dict[self.auth_logger_name]) self.assertDictEqual(return_handlers[self.auth_handler_name], result_auth_handler_dict[self.auth_handler_name])
DLRN
positive
@pytest.mark.scalecleanup def test_cleanup_scale(mom, min_index, max_index, service_id_list) -> None: """ Args: mom: Marathon on Marathon instance name min_index: minimum index to begin jenkins suffixes at max_index: maximum index to end jenkins suffixes at service_id_list: list of service ids to delete Blanket clean-up of jenkins instances on a DC/OS cluster. 1. Delete list of service ids if specified 2. Delete range between max and min if specified 1. Queries MoM for all apps matching "jenkins" prefix 2. Delete all jobs on running Jenkins instances 3. Uninstall all found Jenkins installs """ service_ids = list() if service_id_list != '': service_ids = service_id_list.split(',') elif min_index != -1 and max_index != -1: service_ids = ['jenkins/jenkins{}'.format(index) for index in range(min_index, max_index)] else: r = sdk_marathon.filter_apps_by_id('jenkins', mom) jenkins_apps = r.json()['apps'] jenkins_ids = [x['id'] for x in jenkins_apps] for service_id in jenkins_ids: if service_id.startswith('/'): service_id = service_id[1:] if service_id == 'jenkins': continue service_ids.append(service_id) <DeepExtract> thread_list = list() for service_name in service_ids: t = ResultThread(target=_cleanup_jenkins_install, daemon=False, name=service_name, args=(service_name,), kwargs=kwargs) t.event = event thread_list.append(t) t.start() cleanup_threads = thread_list </DeepExtract> <DeepExtract> timeout_failures = _wait_on_threads(cleanup_threads, **kwargs) timeout_names = [x.name for x in timeout_failures] if timeout_names: log.warning('The following {:d} Jenkins instance(s) failed to complete in {:d} minutes: {}'.format(len(timeout_names), DEPLOY_TIMEOUT // 60, ', '.join(timeout_names))) run_failures = [x for x in cleanup_threads if not x.result] run_fail_names = [x.name for x in run_failures] if run_fail_names: log.warning('The following {:d} Jenkins instance(s) encountered an error: {}'.format(len(run_fail_names), ', '.join(run_fail_names))) failure_list = timeout_names + run_fail_names failure_set = set(failure_list) return failure_set </DeepExtract>
@pytest.mark.scalecleanup def test_cleanup_scale(mom, min_index, max_index, service_id_list) -> None: """ Args: mom: Marathon on Marathon instance name min_index: minimum index to begin jenkins suffixes at max_index: maximum index to end jenkins suffixes at service_id_list: list of service ids to delete Blanket clean-up of jenkins instances on a DC/OS cluster. 1. Delete list of service ids if specified 2. Delete range between max and min if specified 1. Queries MoM for all apps matching "jenkins" prefix 2. Delete all jobs on running Jenkins instances 3. Uninstall all found Jenkins installs """ service_ids = list() if service_id_list != '': service_ids = service_id_list.split(',') elif min_index != -1 and max_index != -1: service_ids = ['jenkins/jenkins{}'.format(index) for index in range(min_index, max_index)] else: r = sdk_marathon.filter_apps_by_id('jenkins', mom) jenkins_apps = r.json()['apps'] jenkins_ids = [x['id'] for x in jenkins_apps] for service_id in jenkins_ids: if service_id.startswith('/'): service_id = service_id[1:] if service_id == 'jenkins': continue service_ids.append(service_id) thread_list = list() for service_name in service_ids: t = ResultThread(target=_cleanup_jenkins_install, daemon=False, name=service_name, args=(service_name,), kwargs=kwargs) t.event = event thread_list.append(t) t.start() cleanup_threads = thread_list timeout_failures = _wait_on_threads(cleanup_threads, **kwargs) timeout_names = [x.name for x in timeout_failures] if timeout_names: log.warning('The following {:d} Jenkins instance(s) failed to complete in {:d} minutes: {}'.format(len(timeout_names), DEPLOY_TIMEOUT // 60, ', '.join(timeout_names))) run_failures = [x for x in cleanup_threads if not x.result] run_fail_names = [x.name for x in run_failures] if run_fail_names: log.warning('The following {:d} Jenkins instance(s) encountered an error: {}'.format(len(run_fail_names), ', '.join(run_fail_names))) failure_list = timeout_names + run_fail_names failure_set = set(failure_list) return failure_set </DeepExtract>
dcos-jenkins-service
positive
def _read_sections(self): while not self._doc.eof(): <DeepExtract> section = self._doc.read_to_next_empty_line() while not self._is_at_section() and (not self._doc.eof()): if not self._doc.peek(-1).strip(): section += [''] section += self._doc.read_to_next_empty_line() data = section </DeepExtract> name = data[0].strip() if name.startswith('..'): yield (name, data[1:]) elif len(data) < 2: yield StopIteration else: yield (name, self._strip(data[2:]))
def _read_sections(self): while not self._doc.eof(): section = self._doc.read_to_next_empty_line() while not self._is_at_section() and (not self._doc.eof()): if not self._doc.peek(-1).strip(): section += [''] section += self._doc.read_to_next_empty_line() data = section name = data[0].strip() if name.startswith('..'): yield (name, data[1:]) elif len(data) < 2: yield StopIteration else: yield (name, self._strip(data[2:]))
astroML
positive
def dump_set(self, key): members = self.keyspace.smembers(key) length = len(members) <DeepExtract> if length < 1 << 6: result = struct.pack('>B', length & 255 | RDB_6BITLEN << 6) elif length < 1 << 14: result = struct.pack('>BB', length >> 8 & 255 | RDB_14BITLEN << 6, length & 255) else: result = struct.pack('>BL', RDB_32BITLEN << 6, length) </DeepExtract> for member in members: result += self._dump_string(member) return result
def dump_set(self, key): members = self.keyspace.smembers(key) length = len(members) if length < 1 << 6: result = struct.pack('>B', length & 255 | RDB_6BITLEN << 6) elif length < 1 << 14: result = struct.pack('>BB', length >> 8 & 255 | RDB_14BITLEN << 6, length & 255) else: result = struct.pack('>BL', RDB_32BITLEN << 6, length) for member in members: result += self._dump_string(member) return result
dredis
positive
def marginal_expectation(prediction_method: Callable[[np.ndarray], np.ndarray], feature_samples: np.ndarray, baseline_samples: np.ndarray, baseline_feature_indices: List[int], return_averaged_results: bool=True, feature_perturbation: str='randomize_columns_jointly', max_batch_size: int=-1) -> np.ndarray: """Estimates the marginal expectation for samples in baseline_noise_samples when randomizing features that are not part of baseline_feature_indices. This is, this function estimates y^i = E[Y | do(x^i_s)] := \\int_x_s' E[Y | x^i_s, x_s'] p(x_s') d x_s', where x^i_s is the i-th sample from baseline_noise_samples, s denotes the baseline_feature_indices and x_s' ~ X_s' denotes the randomized features that are not in s. For an approximation of the integral, the given prediction_method is evaluated multiple times for the same x^i_s, but different x_s' ~ X_s'. :param prediction_method: Prediction method of interest. This should expect a numpy array as input for making predictions. :param feature_samples: Samples from the joint distribution. These are used for randomizing the features that are not in baseline_feature_indices. :param baseline_samples: Samples for which the marginal expectation should be estimated. :param baseline_feature_indices: Column indices of the features in s. These values for these features are remain constant when estimating the expectation. :param return_averaged_results: If set to True, the expectation over all evaluated samples for the i-th baseline_noise_samples is returned. If set to False, all corresponding results for the i-th sample are returned. :param feature_perturbation: Type of feature permutation: 'randomize_columns_independently': Each feature not in s is randomly permuted separately. 'randomize_columns_jointly': All features not in s are jointly permuted. Note that this still represents an interventional distribution. :param max_batch_size: Maximum batch size for a estimating the predictions. This has a significant influence on the overall memory usage. If set to -1, all samples are used in one batch. :return: If return_averaged_results is False, a numpy array where the i-th entry belongs to the marginal expectation of x^i_s when randomizing the remaining features. If return_averaged_results is True, a two dimensional numpy array where the i-th entry contains all predictions for x^i_s when randomizing the remaining features. """ (feature_samples, baseline_samples) = shape_into_2d(feature_samples, baseline_samples) batch_size = baseline_samples.shape[0] if max_batch_size == -1 else max_batch_size result = [np.nan] * baseline_samples.shape[0] feature_samples = np.array(feature_samples) features_to_randomize = np.delete(np.arange(0, feature_samples.shape[1]), baseline_feature_indices) if feature_perturbation == 'randomize_columns_independently': <DeepExtract> feature_samples = np.array(feature_samples) if False: feature_samples[:, features_to_randomize] = feature_samples[np.random.choice(feature_samples.shape[0], feature_samples.shape[0], replace=False)][:, features_to_randomize] else: for feature in features_to_randomize: np.random.shuffle(feature_samples[:, feature]) feature_samples = feature_samples </DeepExtract> elif feature_perturbation == 'randomize_columns_jointly': <DeepExtract> feature_samples = np.array(feature_samples) if True: feature_samples[:, features_to_randomize] = feature_samples[np.random.choice(feature_samples.shape[0], feature_samples.shape[0], replace=False)][:, features_to_randomize] else: for feature in features_to_randomize: np.random.shuffle(feature_samples[:, feature]) feature_samples = feature_samples </DeepExtract> else: raise ValueError('Unknown argument %s as feature_perturbation type!' % feature_perturbation) inputs = repmat(feature_samples, batch_size, 1) for offset in range(0, baseline_samples.shape[0], batch_size): if offset + batch_size > baseline_samples.shape[0]: adjusted_batch_size = baseline_samples.shape[0] - offset inputs = inputs[:adjusted_batch_size * feature_samples.shape[0]] else: adjusted_batch_size = batch_size for index in range(adjusted_batch_size): inputs[index * feature_samples.shape[0]:(index + 1) * feature_samples.shape[0], baseline_feature_indices] = baseline_samples[offset + index, baseline_feature_indices] predictions = np.array(prediction_method(inputs)) for index in range(adjusted_batch_size): if return_averaged_results: result[offset + index] = np.mean(predictions[index * feature_samples.shape[0]:(index + 1) * feature_samples.shape[0]], axis=0) else: result[offset + index] = predictions[index * feature_samples.shape[0]:(index + 1) * feature_samples.shape[0]] return np.array(result)
def marginal_expectation(prediction_method: Callable[[np.ndarray], np.ndarray], feature_samples: np.ndarray, baseline_samples: np.ndarray, baseline_feature_indices: List[int], return_averaged_results: bool=True, feature_perturbation: str='randomize_columns_jointly', max_batch_size: int=-1) -> np.ndarray: """Estimates the marginal expectation for samples in baseline_noise_samples when randomizing features that are not part of baseline_feature_indices. This is, this function estimates y^i = E[Y | do(x^i_s)] := \\int_x_s' E[Y | x^i_s, x_s'] p(x_s') d x_s', where x^i_s is the i-th sample from baseline_noise_samples, s denotes the baseline_feature_indices and x_s' ~ X_s' denotes the randomized features that are not in s. For an approximation of the integral, the given prediction_method is evaluated multiple times for the same x^i_s, but different x_s' ~ X_s'. :param prediction_method: Prediction method of interest. This should expect a numpy array as input for making predictions. :param feature_samples: Samples from the joint distribution. These are used for randomizing the features that are not in baseline_feature_indices. :param baseline_samples: Samples for which the marginal expectation should be estimated. :param baseline_feature_indices: Column indices of the features in s. These values for these features are remain constant when estimating the expectation. :param return_averaged_results: If set to True, the expectation over all evaluated samples for the i-th baseline_noise_samples is returned. If set to False, all corresponding results for the i-th sample are returned. :param feature_perturbation: Type of feature permutation: 'randomize_columns_independently': Each feature not in s is randomly permuted separately. 'randomize_columns_jointly': All features not in s are jointly permuted. Note that this still represents an interventional distribution. :param max_batch_size: Maximum batch size for a estimating the predictions. This has a significant influence on the overall memory usage. If set to -1, all samples are used in one batch. :return: If return_averaged_results is False, a numpy array where the i-th entry belongs to the marginal expectation of x^i_s when randomizing the remaining features. If return_averaged_results is True, a two dimensional numpy array where the i-th entry contains all predictions for x^i_s when randomizing the remaining features. """ (feature_samples, baseline_samples) = shape_into_2d(feature_samples, baseline_samples) batch_size = baseline_samples.shape[0] if max_batch_size == -1 else max_batch_size result = [np.nan] * baseline_samples.shape[0] feature_samples = np.array(feature_samples) features_to_randomize = np.delete(np.arange(0, feature_samples.shape[1]), baseline_feature_indices) if feature_perturbation == 'randomize_columns_independently': feature_samples = np.array(feature_samples) if False: feature_samples[:, features_to_randomize] = feature_samples[np.random.choice(feature_samples.shape[0], feature_samples.shape[0], replace=False)][:, features_to_randomize] else: for feature in features_to_randomize: np.random.shuffle(feature_samples[:, feature]) feature_samples = feature_samples elif feature_perturbation == 'randomize_columns_jointly': feature_samples = np.array(feature_samples) if True: feature_samples[:, features_to_randomize] = feature_samples[np.random.choice(feature_samples.shape[0], feature_samples.shape[0], replace=False)][:, features_to_randomize] else: for feature in features_to_randomize: np.random.shuffle(feature_samples[:, feature]) feature_samples = feature_samples else: raise ValueError('Unknown argument %s as feature_perturbation type!' % feature_perturbation) inputs = repmat(feature_samples, batch_size, 1) for offset in range(0, baseline_samples.shape[0], batch_size): if offset + batch_size > baseline_samples.shape[0]: adjusted_batch_size = baseline_samples.shape[0] - offset inputs = inputs[:adjusted_batch_size * feature_samples.shape[0]] else: adjusted_batch_size = batch_size for index in range(adjusted_batch_size): inputs[index * feature_samples.shape[0]:(index + 1) * feature_samples.shape[0], baseline_feature_indices] = baseline_samples[offset + index, baseline_feature_indices] predictions = np.array(prediction_method(inputs)) for index in range(adjusted_batch_size): if return_averaged_results: result[offset + index] = np.mean(predictions[index * feature_samples.shape[0]:(index + 1) * feature_samples.shape[0]], axis=0) else: result[offset + index] = predictions[index * feature_samples.shape[0]:(index + 1) * feature_samples.shape[0]] return np.array(result)
dowhy
positive
def _publish_json(**kwargs): <DeepExtract> prod_folder = _get_request_param('prod_folder', prod_folder) with temporary_directory() as workdir: input_folder = workdir / 'input' output_folder = workdir / 'output' input_folder.mkdir(parents=True, exist_ok=True) output_folder.mkdir(parents=True, exist_ok=True) forbid_tokens = ('location/', 'main.') filter_func = lambda x: x.suffix == '.csv' and all((token not in str(x) for token in forbid_tokens)) download_folder(GCS_BUCKET_PROD, prod_folder, input_folder, filter_func) logger.log_info(f"Downloaded {sum((1 for _ in input_folder.glob('**/*.csv')))} CSV files") convert_tables_to_json(input_folder, output_folder) logger.log_info('CSV files converted to JSON') upload_folder(GCS_BUCKET_PROD, prod_folder, output_folder) return Response('OK', status=200) </DeepExtract> <DeepExtract> prod_folder = _get_request_param('prod_folder', prod_folder) location_key_from = _get_request_param('location_key_from', location_key_from) location_key_until = _get_request_param('location_key_until', location_key_until) with temporary_directory() as workdir: input_folder = workdir / 'input' output_folder = workdir / 'output' input_folder.mkdir(parents=True, exist_ok=True) output_folder.mkdir(parents=True, exist_ok=True) location_keys = list(table_read_column(SRC / 'data' / 'metadata.csv', 'key')) if location_key_from is not None: location_keys = [key for key in location_keys if key >= location_key_from] if location_key_until is not None: location_keys = [key for key in location_keys if key <= location_key_until] logger.log_info(f'Converting {len(location_keys)} location subsets to JSON from {location_keys[0]} until {location_keys[-1]}') def match_path(table_path: Path) -> bool: try: if prod_folder == 'v2': (location_key, table_name) = str(table_path).split('/', 1) return table_name == 'main.csv' and location_key in location_keys elif prod_folder == 'v3': (location_path, location_key) = (table_path.parent.name, table_path.stem) return location_path == 'location' and location_key in location_keys except: return False download_folder(GCS_BUCKET_PROD, prod_folder, input_folder, match_path) logger.log_info(f"Downloaded {sum((1 for _ in input_folder.glob('**/*.csv')))} CSV files") convert_tables_to_json(input_folder, output_folder) converted_count = sum((1 for _ in output_folder.glob('**/*.json'))) logger.log_info(f'Converted {converted_count} files to JSON') upload_folder(GCS_BUCKET_PROD, prod_folder, output_folder) return Response('OK', status=200) </DeepExtract>
def _publish_json(**kwargs): prod_folder = _get_request_param('prod_folder', prod_folder) with temporary_directory() as workdir: input_folder = workdir / 'input' output_folder = workdir / 'output' input_folder.mkdir(parents=True, exist_ok=True) output_folder.mkdir(parents=True, exist_ok=True) forbid_tokens = ('location/', 'main.') filter_func = lambda x: x.suffix == '.csv' and all((token not in str(x) for token in forbid_tokens)) download_folder(GCS_BUCKET_PROD, prod_folder, input_folder, filter_func) logger.log_info(f"Downloaded {sum((1 for _ in input_folder.glob('**/*.csv')))} CSV files") convert_tables_to_json(input_folder, output_folder) logger.log_info('CSV files converted to JSON') upload_folder(GCS_BUCKET_PROD, prod_folder, output_folder) return Response('OK', status=200) prod_folder = _get_request_param('prod_folder', prod_folder) location_key_from = _get_request_param('location_key_from', location_key_from) location_key_until = _get_request_param('location_key_until', location_key_until) with temporary_directory() as workdir: input_folder = workdir / 'input' output_folder = workdir / 'output' input_folder.mkdir(parents=True, exist_ok=True) output_folder.mkdir(parents=True, exist_ok=True) location_keys = list(table_read_column(SRC / 'data' / 'metadata.csv', 'key')) if location_key_from is not None: location_keys = [key for key in location_keys if key >= location_key_from] if location_key_until is not None: location_keys = [key for key in location_keys if key <= location_key_until] logger.log_info(f'Converting {len(location_keys)} location subsets to JSON from {location_keys[0]} until {location_keys[-1]}') def match_path(table_path: Path) -> bool: try: if prod_folder == 'v2': (location_key, table_name) = str(table_path).split('/', 1) return table_name == 'main.csv' and location_key in location_keys elif prod_folder == 'v3': (location_path, location_key) = (table_path.parent.name, table_path.stem) return location_path == 'location' and location_key in location_keys except: return False download_folder(GCS_BUCKET_PROD, prod_folder, input_folder, match_path) logger.log_info(f"Downloaded {sum((1 for _ in input_folder.glob('**/*.csv')))} CSV files") convert_tables_to_json(input_folder, output_folder) converted_count = sum((1 for _ in output_folder.glob('**/*.json'))) logger.log_info(f'Converted {converted_count} files to JSON') upload_folder(GCS_BUCKET_PROD, prod_folder, output_folder) return Response('OK', status=200) </DeepExtract>
covid-19-open-data
positive
def iter_releases(self) -> List['PatcherRelease']: """Generate releases available in the storage, latest first""" <DeepExtract> base = self.fspath(f'cdtb/releases/{self.patchline}') </DeepExtract> if not os.path.isdir(base): return versions = [] for version in os.listdir(base): try: versions.append(int(version)) except ValueError: continue for version in sorted(versions, reverse=True): if os.path.isfile(f'{base}/{version}/release.json'): yield PatcherRelease(self, version)
def iter_releases(self) -> List['PatcherRelease']: """Generate releases available in the storage, latest first""" base = self.fspath(f'cdtb/releases/{self.patchline}') if not os.path.isdir(base): return versions = [] for version in os.listdir(base): try: versions.append(int(version)) except ValueError: continue for version in sorted(versions, reverse=True): if os.path.isfile(f'{base}/{version}/release.json'): yield PatcherRelease(self, version)
CDTB
positive
def __setattr__(self, key, value): if key in ('_config', '_prefix'): self.__dict__[key] = value return <DeepExtract> warnings.warn('Attribute assignment is deprecated.', DeprecationWarning, stacklevel=3) </DeepExtract> if hasattr(DictMixin, key): raise AttributeError('Read-only attribute.') if key in self and self[key] and isinstance(self[key], self.__class__): raise AttributeError('Non-empty namespace attribute.') self[key] = value
def __setattr__(self, key, value): if key in ('_config', '_prefix'): self.__dict__[key] = value return warnings.warn('Attribute assignment is deprecated.', DeprecationWarning, stacklevel=3) if hasattr(DictMixin, key): raise AttributeError('Read-only attribute.') if key in self and self[key] and isinstance(self[key], self.__class__): raise AttributeError('Non-empty namespace attribute.') self[key] = value
aws-servicebroker
positive
def likelihood_ratio_filter(node_pairs, modified_adjacency, original_adjacency, d_min, threshold=0.004, undirected=True): """ Filter the input node pairs based on the likelihood ratio test proposed by Zügner et al. 2018, see https://dl.acm.org/citation.cfm?id=3220078. In essence, for each node pair return 1 if adding/removing the edge between the two nodes does not violate the unnoticeability constraint, and return 0 otherwise. Assumes unweighted and undirected graphs. """ N = int(modified_adjacency.shape[0]) original_degree_sequence = original_adjacency.sum(0) current_degree_sequence = modified_adjacency.sum(0) concat_degree_sequence = torch.cat((current_degree_sequence, original_degree_sequence)) <DeepExtract> D_G = original_degree_sequence[original_degree_sequence >= d_min.item()] try: sum_log_degrees = torch.log(D_G).sum() except: sum_log_degrees = np.log(D_G).sum() n = len(D_G) alpha = compute_alpha(n, sum_log_degrees, d_min) ll = compute_log_likelihood(n, alpha, sum_log_degrees, d_min) (ll_orig, alpha_orig, n_orig, sum_log_degrees_original) = (ll, alpha, n, sum_log_degrees) </DeepExtract> <DeepExtract> D_G = current_degree_sequence[current_degree_sequence >= d_min.item()] try: sum_log_degrees = torch.log(D_G).sum() except: sum_log_degrees = np.log(D_G).sum() n = len(D_G) alpha = compute_alpha(n, sum_log_degrees, d_min) ll = compute_log_likelihood(n, alpha, sum_log_degrees, d_min) (ll_current, alpha_current, n_current, sum_log_degrees_current) = (ll, alpha, n, sum_log_degrees) </DeepExtract> <DeepExtract> D_G = concat_degree_sequence[concat_degree_sequence >= d_min.item()] try: sum_log_degrees = torch.log(D_G).sum() except: sum_log_degrees = np.log(D_G).sum() n = len(D_G) alpha = compute_alpha(n, sum_log_degrees, d_min) ll = compute_log_likelihood(n, alpha, sum_log_degrees, d_min) (ll_comb, alpha_comb, n_comb, sum_log_degrees_combined) = (ll, alpha, n, sum_log_degrees) </DeepExtract> current_ratio = -2 * ll_comb + 2 * (ll_orig + ll_current) <DeepExtract> edge_entries_before = modified_adjacency[node_pairs.T] degree_sequence = modified_adjacency.sum(1) D_G = degree_sequence[degree_sequence >= d_min.item()] sum_log_degrees = torch.log(D_G).sum() n = len(D_G) deltas = -2 * edge_entries_before + 1 d_edges_before = degree_sequence[node_pairs] d_edges_after = degree_sequence[node_pairs] + deltas[:, None] (sum_log_degrees_after, new_n) = update_sum_log_degrees(sum_log_degrees, n, d_edges_before, d_edges_after, d_min) new_alpha = compute_alpha(new_n, sum_log_degrees_after, d_min) new_ll = compute_log_likelihood(new_n, new_alpha, sum_log_degrees_after, d_min) (new_lls, new_alphas, new_ns, new_sum_log_degrees) = (new_ll, new_alpha, new_n, sum_log_degrees_after) </DeepExtract> n_combined = n_orig + new_ns new_sum_log_degrees_combined = sum_log_degrees_original + new_sum_log_degrees <DeepExtract> try: alpha = 1 + n_combined / (new_sum_log_degrees_combined - n_combined * torch.log(d_min - 0.5)) except: alpha = 1 + n_combined / (new_sum_log_degrees_combined - n_combined * np.log(d_min - 0.5)) alpha_combined = alpha </DeepExtract> <DeepExtract> try: ll = n_combined * torch.log(alpha_combined) + n_combined * alpha_combined * torch.log(d_min) + (alpha_combined + 1) * new_sum_log_degrees_combined except: ll = n_combined * np.log(alpha_combined) + n_combined * alpha_combined * np.log(d_min) + (alpha_combined + 1) * new_sum_log_degrees_combined new_ll_combined = ll </DeepExtract> new_ratios = -2 * new_ll_combined + 2 * (new_lls + ll_orig) allowed_edges = new_ratios < threshold if allowed_edges.is_cuda: filtered_edges = node_pairs[allowed_edges.cpu().numpy().astype(np.bool)] else: filtered_edges = node_pairs[allowed_edges.numpy().astype(np.bool)] allowed_mask = torch.zeros(modified_adjacency.shape) allowed_mask[filtered_edges.T] = 1 if undirected: allowed_mask += allowed_mask.t() return (allowed_mask, current_ratio)
def likelihood_ratio_filter(node_pairs, modified_adjacency, original_adjacency, d_min, threshold=0.004, undirected=True): """ Filter the input node pairs based on the likelihood ratio test proposed by Zügner et al. 2018, see https://dl.acm.org/citation.cfm?id=3220078. In essence, for each node pair return 1 if adding/removing the edge between the two nodes does not violate the unnoticeability constraint, and return 0 otherwise. Assumes unweighted and undirected graphs. """ N = int(modified_adjacency.shape[0]) original_degree_sequence = original_adjacency.sum(0) current_degree_sequence = modified_adjacency.sum(0) concat_degree_sequence = torch.cat((current_degree_sequence, original_degree_sequence)) D_G = original_degree_sequence[original_degree_sequence >= d_min.item()] try: sum_log_degrees = torch.log(D_G).sum() except: sum_log_degrees = np.log(D_G).sum() n = len(D_G) alpha = compute_alpha(n, sum_log_degrees, d_min) ll = compute_log_likelihood(n, alpha, sum_log_degrees, d_min) (ll_orig, alpha_orig, n_orig, sum_log_degrees_original) = (ll, alpha, n, sum_log_degrees) D_G = current_degree_sequence[current_degree_sequence >= d_min.item()] try: sum_log_degrees = torch.log(D_G).sum() except: sum_log_degrees = np.log(D_G).sum() n = len(D_G) alpha = compute_alpha(n, sum_log_degrees, d_min) ll = compute_log_likelihood(n, alpha, sum_log_degrees, d_min) (ll_current, alpha_current, n_current, sum_log_degrees_current) = (ll, alpha, n, sum_log_degrees) D_G = concat_degree_sequence[concat_degree_sequence >= d_min.item()] try: sum_log_degrees = torch.log(D_G).sum() except: sum_log_degrees = np.log(D_G).sum() n = len(D_G) alpha = compute_alpha(n, sum_log_degrees, d_min) ll = compute_log_likelihood(n, alpha, sum_log_degrees, d_min) (ll_comb, alpha_comb, n_comb, sum_log_degrees_combined) = (ll, alpha, n, sum_log_degrees) current_ratio = -2 * ll_comb + 2 * (ll_orig + ll_current) edge_entries_before = modified_adjacency[node_pairs.T] degree_sequence = modified_adjacency.sum(1) D_G = degree_sequence[degree_sequence >= d_min.item()] sum_log_degrees = torch.log(D_G).sum() n = len(D_G) deltas = -2 * edge_entries_before + 1 d_edges_before = degree_sequence[node_pairs] d_edges_after = degree_sequence[node_pairs] + deltas[:, None] (sum_log_degrees_after, new_n) = update_sum_log_degrees(sum_log_degrees, n, d_edges_before, d_edges_after, d_min) new_alpha = compute_alpha(new_n, sum_log_degrees_after, d_min) new_ll = compute_log_likelihood(new_n, new_alpha, sum_log_degrees_after, d_min) (new_lls, new_alphas, new_ns, new_sum_log_degrees) = (new_ll, new_alpha, new_n, sum_log_degrees_after) n_combined = n_orig + new_ns new_sum_log_degrees_combined = sum_log_degrees_original + new_sum_log_degrees try: alpha = 1 + n_combined / (new_sum_log_degrees_combined - n_combined * torch.log(d_min - 0.5)) except: alpha = 1 + n_combined / (new_sum_log_degrees_combined - n_combined * np.log(d_min - 0.5)) alpha_combined = alpha try: ll = n_combined * torch.log(alpha_combined) + n_combined * alpha_combined * torch.log(d_min) + (alpha_combined + 1) * new_sum_log_degrees_combined except: ll = n_combined * np.log(alpha_combined) + n_combined * alpha_combined * np.log(d_min) + (alpha_combined + 1) * new_sum_log_degrees_combined new_ll_combined = ll new_ratios = -2 * new_ll_combined + 2 * (new_lls + ll_orig) allowed_edges = new_ratios < threshold if allowed_edges.is_cuda: filtered_edges = node_pairs[allowed_edges.cpu().numpy().astype(np.bool)] else: filtered_edges = node_pairs[allowed_edges.numpy().astype(np.bool)] allowed_mask = torch.zeros(modified_adjacency.shape) allowed_mask[filtered_edges.T] = 1 if undirected: allowed_mask += allowed_mask.t() return (allowed_mask, current_ratio)
DeepRobust
positive
def __call__(self, loc, score, anchor, img_size, scale=1.0): if self.parent_model.training: n_pre_nms = self.n_train_pre_nms n_post_nms = self.n_train_post_nms else: n_pre_nms = self.n_test_pre_nms n_post_nms = self.n_test_post_nms <DeepExtract> if anchor.shape[0] == 0: roi = np.zeros((0, 4), dtype=loc.dtype) anchor = anchor.astype(anchor.dtype, copy=False) src_height = anchor[:, 2] - anchor[:, 0] src_width = anchor[:, 3] - anchor[:, 1] src_ctr_y = anchor[:, 0] + 0.5 * src_height src_ctr_x = anchor[:, 1] + 0.5 * src_width dy = loc[:, 0::4] dx = loc[:, 1::4] dh = loc[:, 2::4] dw = loc[:, 3::4] ctr_y = dy * src_height[:, np.newaxis] + src_ctr_y[:, np.newaxis] ctr_x = dx * src_width[:, np.newaxis] + src_ctr_x[:, np.newaxis] h = np.exp(dh) * src_height[:, np.newaxis] w = np.exp(dw) * src_width[:, np.newaxis] dst_bbox = np.zeros(loc.shape, dtype=loc.dtype) dst_bbox[:, 0::4] = ctr_y - 0.5 * h dst_bbox[:, 1::4] = ctr_x - 0.5 * w dst_bbox[:, 2::4] = ctr_y + 0.5 * h dst_bbox[:, 3::4] = ctr_x + 0.5 * w roi = dst_bbox </DeepExtract> roi[:, slice(0, 4, 2)] = np.clip(roi[:, slice(0, 4, 2)], 0, img_size[0]) roi[:, slice(1, 4, 2)] = np.clip(roi[:, slice(1, 4, 2)], 0, img_size[1]) min_size = self.min_size * scale hs = roi[:, 2] - roi[:, 0] ws = roi[:, 3] - roi[:, 1] keep = np.where((hs >= min_size) & (ws >= min_size)) roi = roi[keep, :] score = score[keep] order = score.ravel().argsort()[::-1] if n_pre_nms > 0: order = order[:n_pre_nms] roi = roi[order, :] keep = non_maximum_supression(cp.ascontiguousarray(cp.asarray(roi)), thresh=self.nms_thresh) if n_post_nms > 0: keep = keep[:n_post_nms] roi = roi[keep] return roi
def __call__(self, loc, score, anchor, img_size, scale=1.0): if self.parent_model.training: n_pre_nms = self.n_train_pre_nms n_post_nms = self.n_train_post_nms else: n_pre_nms = self.n_test_pre_nms n_post_nms = self.n_test_post_nms if anchor.shape[0] == 0: roi = np.zeros((0, 4), dtype=loc.dtype) anchor = anchor.astype(anchor.dtype, copy=False) src_height = anchor[:, 2] - anchor[:, 0] src_width = anchor[:, 3] - anchor[:, 1] src_ctr_y = anchor[:, 0] + 0.5 * src_height src_ctr_x = anchor[:, 1] + 0.5 * src_width dy = loc[:, 0::4] dx = loc[:, 1::4] dh = loc[:, 2::4] dw = loc[:, 3::4] ctr_y = dy * src_height[:, np.newaxis] + src_ctr_y[:, np.newaxis] ctr_x = dx * src_width[:, np.newaxis] + src_ctr_x[:, np.newaxis] h = np.exp(dh) * src_height[:, np.newaxis] w = np.exp(dw) * src_width[:, np.newaxis] dst_bbox = np.zeros(loc.shape, dtype=loc.dtype) dst_bbox[:, 0::4] = ctr_y - 0.5 * h dst_bbox[:, 1::4] = ctr_x - 0.5 * w dst_bbox[:, 2::4] = ctr_y + 0.5 * h dst_bbox[:, 3::4] = ctr_x + 0.5 * w roi = dst_bbox roi[:, slice(0, 4, 2)] = np.clip(roi[:, slice(0, 4, 2)], 0, img_size[0]) roi[:, slice(1, 4, 2)] = np.clip(roi[:, slice(1, 4, 2)], 0, img_size[1]) min_size = self.min_size * scale hs = roi[:, 2] - roi[:, 0] ws = roi[:, 3] - roi[:, 1] keep = np.where((hs >= min_size) & (ws >= min_size)) roi = roi[keep, :] score = score[keep] order = score.ravel().argsort()[::-1] if n_pre_nms > 0: order = order[:n_pre_nms] roi = roi[order, :] keep = non_maximum_supression(cp.ascontiguousarray(cp.asarray(roi)), thresh=self.nms_thresh) if n_post_nms > 0: keep = keep[:n_post_nms] roi = roi[keep] return roi
DMMN
positive
def test_get_aws_security_credentials_get_ecs_from_option_url(mocker): <DeepExtract> try: config = ConfigParser.SafeConfigParser() except AttributeError: config = ConfigParser() if add_test_profile: config.add_section(AWSPROFILE) config = config </DeepExtract> response = json.dumps({'AccessKeyId': ACCESS_KEY_ID_VAL, 'Expiration': 'EXPIRATION_DATE', 'RoleArn': 'TASK_ROLE_ARN', 'SecretAccessKey': SECRET_ACCESS_KEY_VAL, 'Token': SESSION_TOKEN_VAL}) mocker.patch('mount_efs.urlopen', return_value=MockUrlLibResponse(data=response)) (credentials, credentials_source) = mount_efs.get_aws_security_credentials(config, True, 'us-east-1', None, AWSCREDSURI) assert credentials['AccessKeyId'] == ACCESS_KEY_ID_VAL assert credentials['SecretAccessKey'] == SECRET_ACCESS_KEY_VAL assert credentials['Token'] == SESSION_TOKEN_VAL assert credentials_source == 'ecs:' + AWSCREDSURI
def test_get_aws_security_credentials_get_ecs_from_option_url(mocker): try: config = ConfigParser.SafeConfigParser() except AttributeError: config = ConfigParser() if add_test_profile: config.add_section(AWSPROFILE) config = config response = json.dumps({'AccessKeyId': ACCESS_KEY_ID_VAL, 'Expiration': 'EXPIRATION_DATE', 'RoleArn': 'TASK_ROLE_ARN', 'SecretAccessKey': SECRET_ACCESS_KEY_VAL, 'Token': SESSION_TOKEN_VAL}) mocker.patch('mount_efs.urlopen', return_value=MockUrlLibResponse(data=response)) (credentials, credentials_source) = mount_efs.get_aws_security_credentials(config, True, 'us-east-1', None, AWSCREDSURI) assert credentials['AccessKeyId'] == ACCESS_KEY_ID_VAL assert credentials['SecretAccessKey'] == SECRET_ACCESS_KEY_VAL assert credentials['Token'] == SESSION_TOKEN_VAL assert credentials_source == 'ecs:' + AWSCREDSURI
efs-utils
positive
def accumulate(self, state, reward): W = self.net.layers.get_weights(unfold=True) if self.rewards > self.bestreward: self.bestreward = self.rewards self.shadow_net = W self.net.layers.set_weights(W + np.random.randn(*W.shape) * 0.1) <DeepExtract> self.rewards = 0 </DeepExtract> self.bestreward *= 0.1 return self.bestreward
def accumulate(self, state, reward): W = self.net.layers.get_weights(unfold=True) if self.rewards > self.bestreward: self.bestreward = self.rewards self.shadow_net = W self.net.layers.set_weights(W + np.random.randn(*W.shape) * 0.1) self.rewards = 0 self.bestreward *= 0.1 return self.bestreward
brainforge
positive
def create_s3_signal(self, signal): <DeepExtract> session = boto3.session.Session() s3_client = session.client('s3', region_name=self.aws_region) </DeepExtract> s3_client.upload_fileobj(io.BytesIO(b''), self.s3_bucket, self._get_s3_key(signal))
def create_s3_signal(self, signal): session = boto3.session.Session() s3_client = session.client('s3', region_name=self.aws_region) s3_client.upload_fileobj(io.BytesIO(b''), self.s3_bucket, self._get_s3_key(signal))
deepracer-local
positive
def filter_string_values(self, obj, ignored=None, seen=None): """ Remove any value from the dictionary which match the key filters """ if not ignored: <DeepExtract> setattr(ThreadContextVar.local_context(), self.name, new_value) </DeepExtract> if seen is None: seen = [] if type(ignored) is list: <DeepExtract> setattr(ThreadContextVar.local_context(), self.name, ignored) </DeepExtract> if id(obj) in ignored: return self.recursive_value if isinstance(obj, dict): ignored.add(id(obj)) seen.append(obj) clean_dict = {} for (key, value) in obj.items(): if self._should_filter(key): clean_dict[key] = self.filtered_value else: <DeepExtract> if not ignored: ignored = set() if seen is None: seen = [] if type(ignored) is list: ignored = set(ignored) if id(value) in ignored: clean_dict[key] = self.recursive_value if isinstance(value, dict): ignored.add(id(value)) seen.append(value) clean_dict = {} for (key, value) in value.items(): if self._should_filter(key): clean_dict[key] = self.filtered_value else: clean_dict[key] = self.filter_string_values(value, ignored, seen) clean_dict[key] = clean_dict clean_dict[key] = value </DeepExtract> return clean_dict return obj
def filter_string_values(self, obj, ignored=None, seen=None): """ Remove any value from the dictionary which match the key filters """ if not ignored: setattr(ThreadContextVar.local_context(), self.name, new_value) if seen is None: seen = [] if type(ignored) is list: setattr(ThreadContextVar.local_context(), self.name, ignored) if id(obj) in ignored: return self.recursive_value if isinstance(obj, dict): ignored.add(id(obj)) seen.append(obj) clean_dict = {} for (key, value) in obj.items(): if self._should_filter(key): clean_dict[key] = self.filtered_value else: if not ignored: ignored = set() if seen is None: seen = [] if type(ignored) is list: ignored = set(ignored) if id(value) in ignored: clean_dict[key] = self.recursive_value if isinstance(value, dict): ignored.add(id(value)) seen.append(value) clean_dict = {} for (key, value) in value.items(): if self._should_filter(key): clean_dict[key] = self.filtered_value else: clean_dict[key] = self.filter_string_values(value, ignored, seen) clean_dict[key] = clean_dict clean_dict[key] = value return clean_dict return obj
bugsnag-python
positive
def main(destination_schema, batch_size, start_id, upper_lim_override): Database.DATABASE_NAME = destination_schema db = Database() db.connect() if use_autocommit: db._connection.autocommit = True if upper_lim_override: upper_lim = upper_lim_override else: db._cursor.execute('SELECT MAX(id) FROM epidata.covidcast;') for (max_id,) in db._cursor: upper_lim = 1 + max_id print(f"migrating data to schema '{destination_schema}', with batch size {batch_size} and {start_id} <= ids < {upper_lim}") if start_id == 0: print('this WILL truncate any existing v4 tables') print() if input("type 'yes' to continue: ") != 'yes': sys.exit('operation cancelled!') print(f"starting run at: {time.strftime('%c')}") if start_id == 0: print('truncating tables...') for table in 'epimetric_load epimetric_latest epimetric_full geo_dim signal_dim'.split(): db._cursor.execute(f'TRUNCATE TABLE {table}') db.commit() start_id = 1 <DeepExtract> batch_lower = start_id while batch_lower < upper_lim: batch_upper = min(batch_lower + batch_size, upper_lim) batch_sql = f'\n INSERT INTO epimetric_load (\n `issue`, `source`, `signal`, geo_type, geo_value, time_type, time_value, `value`, stderr, sample_size, `lag`, value_updated_timestamp, is_latest_issue, missing_value, missing_stderr, missing_sample_size\n ) SELECT\n `issue`, `source`, `signal`, geo_type, geo_value, time_type, time_value, `value`, stderr, sample_size, `lag`, value_updated_timestamp, is_latest_issue, missing_value, missing_stderr, missing_sample_size\n FROM epidata.covidcast AS cc\n USE INDEX(`PRIMARY`)\n WHERE {batch_lower} <= cc.id AND cc.id < {batch_upper}; ' if use_transaction_wrappers: start_tx(db._cursor) print(f'-=-=-=-=-=-=-=- RUNNING BATCH STARTING AT {batch_lower} -=-=-=-=-=-=-=-') print(f"-=-=-=-=-=-=-=- RUNNING ''INSERT INTO SELECT FROM''... ", end='') t = time.time() db._cursor.execute(batch_sql) print(f'elapsed: {time.time() - t} sec, rows: {db._cursor.rowcount} -=-=-=-=-=-=-=-') t = time.time() db.run_dbjobs() print(f'-=-=-=-=-=-=-=- RAN db_jobs()... elapsed: {time.time() - t} sec -=-=-=-=-=-=-=-') print('-=-=-=-=-=-=-=- RUNNING commit()... ', end='') t = time.time() db.commit() if use_transaction_wrappers: finish_tx(db._cursor) print(f'elapsed: {time.time() - t} sec -=-=-=-=-=-=-=-') print('\n\n') batch_lower = batch_upper </DeepExtract> print('-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-') db._cursor.execute(f'SELECT MAX(epimetric_id) FROM epimetric_full;') for (max_id,) in db._cursor: print(f'epimetric_full: {max_id}') db._cursor.execute(f'SELECT MAX(epimetric_id) FROM epimetric_latest;') for (max_id,) in db._cursor: print(f'epimetric_latest: {max_id} (this should be <= the number above)') db._cursor.execute(f'SELECT COUNT(signal_key_id), MAX(signal_key_id) FROM signal_dim;') for (count_id, max_id) in db._cursor: print(f'signal_dim: count {count_id} / max {max_id}') db._cursor.execute(f'SELECT COUNT(geo_key_id), MAX(geo_key_id) FROM geo_dim;') for (count_id, max_id) in db._cursor: print(f'geo_dim: count {count_id} / max {max_id}') return upper_lim
def main(destination_schema, batch_size, start_id, upper_lim_override): Database.DATABASE_NAME = destination_schema db = Database() db.connect() if use_autocommit: db._connection.autocommit = True if upper_lim_override: upper_lim = upper_lim_override else: db._cursor.execute('SELECT MAX(id) FROM epidata.covidcast;') for (max_id,) in db._cursor: upper_lim = 1 + max_id print(f"migrating data to schema '{destination_schema}', with batch size {batch_size} and {start_id} <= ids < {upper_lim}") if start_id == 0: print('this WILL truncate any existing v4 tables') print() if input("type 'yes' to continue: ") != 'yes': sys.exit('operation cancelled!') print(f"starting run at: {time.strftime('%c')}") if start_id == 0: print('truncating tables...') for table in 'epimetric_load epimetric_latest epimetric_full geo_dim signal_dim'.split(): db._cursor.execute(f'TRUNCATE TABLE {table}') db.commit() start_id = 1 batch_lower = start_id while batch_lower < upper_lim: batch_upper = min(batch_lower + batch_size, upper_lim) batch_sql = f'\n INSERT INTO epimetric_load (\n `issue`, `source`, `signal`, geo_type, geo_value, time_type, time_value, `value`, stderr, sample_size, `lag`, value_updated_timestamp, is_latest_issue, missing_value, missing_stderr, missing_sample_size\n ) SELECT\n `issue`, `source`, `signal`, geo_type, geo_value, time_type, time_value, `value`, stderr, sample_size, `lag`, value_updated_timestamp, is_latest_issue, missing_value, missing_stderr, missing_sample_size\n FROM epidata.covidcast AS cc\n USE INDEX(`PRIMARY`)\n WHERE {batch_lower} <= cc.id AND cc.id < {batch_upper}; ' if use_transaction_wrappers: start_tx(db._cursor) print(f'-=-=-=-=-=-=-=- RUNNING BATCH STARTING AT {batch_lower} -=-=-=-=-=-=-=-') print(f"-=-=-=-=-=-=-=- RUNNING ''INSERT INTO SELECT FROM''... ", end='') t = time.time() db._cursor.execute(batch_sql) print(f'elapsed: {time.time() - t} sec, rows: {db._cursor.rowcount} -=-=-=-=-=-=-=-') t = time.time() db.run_dbjobs() print(f'-=-=-=-=-=-=-=- RAN db_jobs()... elapsed: {time.time() - t} sec -=-=-=-=-=-=-=-') print('-=-=-=-=-=-=-=- RUNNING commit()... ', end='') t = time.time() db.commit() if use_transaction_wrappers: finish_tx(db._cursor) print(f'elapsed: {time.time() - t} sec -=-=-=-=-=-=-=-') print('\n\n') batch_lower = batch_upper print('-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-') db._cursor.execute(f'SELECT MAX(epimetric_id) FROM epimetric_full;') for (max_id,) in db._cursor: print(f'epimetric_full: {max_id}') db._cursor.execute(f'SELECT MAX(epimetric_id) FROM epimetric_latest;') for (max_id,) in db._cursor: print(f'epimetric_latest: {max_id} (this should be <= the number above)') db._cursor.execute(f'SELECT COUNT(signal_key_id), MAX(signal_key_id) FROM signal_dim;') for (count_id, max_id) in db._cursor: print(f'signal_dim: count {count_id} / max {max_id}') db._cursor.execute(f'SELECT COUNT(geo_key_id), MAX(geo_key_id) FROM geo_dim;') for (count_id, max_id) in db._cursor: print(f'geo_dim: count {count_id} / max {max_id}') return upper_lim
delphi-epidata
positive
def get_next_object(opt, site, objects, ctime): """Not too efficent but works for now.""" rise_list = {} for obj in objects: obj_id = obj obj_info = objects[obj] if opt.debug: print('# object ', obj_id, ' @ ', ctime) print('# obj_info', obj_info) site_name = site['site']['name'] site_tag = site['site']['tag'] obs_lat = site['site']['latitude'] obs_long = site['site']['longitude'] obs_elev = float(site['site']['elevation']) obj_name = obj_info['name'] obj_tle1 = obj_info['tle1'][1:-1] obj_tle2 = obj_info['tle2'][1:-1] obj_freqs = np.array(string.split(obj_info['frequencies'], ','), np.float32) c_dtime = datetime.datetime.utcfromtimestamp(ctime) c_ephem_time = ephem.Date(c_dtime) <DeepExtract> obsLoc = ephem.Observer() obsLoc.lat = obs_lat obsLoc.long = obs_long obsLoc.elev = obs_elev obsLoc.date = c_ephem_time if opt.debug: print('dbg location: ', obsLoc) print('dbg tle1: ', obj_tle1) print('dbg tle2: ', obj_tle2) satObj = ephem.readtle(obj_name, obj_tle1, obj_tle2) if opt.debug: print('dbg object: ', satObj) satObj.compute(obsLoc) pinfo = obsLoc.next_pass(satObj) (sat_rise, sat_transit, sat_set) = (pinfo[0], pinfo[2], pinfo[4]) </DeepExtract> if sat_set <= sat_rise or sat_transit <= sat_rise or sat_set <= sat_transit: continue rise_list[sat_rise] = obj if opt.debug: print(' rise list : ', rise_list) keys = list(rise_list.keys()) if opt.debug: print(' rise keys : ', keys) keys.sort() if opt.debug: print(' sorted : ', keys) print(' selected : ', rise_list[keys[0]]) return rise_list[keys[0]]
def get_next_object(opt, site, objects, ctime): """Not too efficent but works for now.""" rise_list = {} for obj in objects: obj_id = obj obj_info = objects[obj] if opt.debug: print('# object ', obj_id, ' @ ', ctime) print('# obj_info', obj_info) site_name = site['site']['name'] site_tag = site['site']['tag'] obs_lat = site['site']['latitude'] obs_long = site['site']['longitude'] obs_elev = float(site['site']['elevation']) obj_name = obj_info['name'] obj_tle1 = obj_info['tle1'][1:-1] obj_tle2 = obj_info['tle2'][1:-1] obj_freqs = np.array(string.split(obj_info['frequencies'], ','), np.float32) c_dtime = datetime.datetime.utcfromtimestamp(ctime) c_ephem_time = ephem.Date(c_dtime) obsLoc = ephem.Observer() obsLoc.lat = obs_lat obsLoc.long = obs_long obsLoc.elev = obs_elev obsLoc.date = c_ephem_time if opt.debug: print('dbg location: ', obsLoc) print('dbg tle1: ', obj_tle1) print('dbg tle2: ', obj_tle2) satObj = ephem.readtle(obj_name, obj_tle1, obj_tle2) if opt.debug: print('dbg object: ', satObj) satObj.compute(obsLoc) pinfo = obsLoc.next_pass(satObj) (sat_rise, sat_transit, sat_set) = (pinfo[0], pinfo[2], pinfo[4]) if sat_set <= sat_rise or sat_transit <= sat_rise or sat_set <= sat_transit: continue rise_list[sat_rise] = obj if opt.debug: print(' rise list : ', rise_list) keys = list(rise_list.keys()) if opt.debug: print(' rise keys : ', keys) keys.sort() if opt.debug: print(' sorted : ', keys) print(' selected : ', rise_list[keys[0]]) return rise_list[keys[0]]
digital_rf
positive
def update_trades_table_and_activity_monitor(self, trade: dict, caller): """ Updates trade table and activity based on caller and sends message to Telegram if live bot is trading and Telegram feature is enabled. :param trade: Trade information to add to activity monitor and trades table. :param caller: Caller object that will rule which tables get updated. """ table = self.interface_dictionary[caller]['mainInterface']['historyTable'] <DeepExtract> if caller == SIMULATION: trader = self.simulation_trader elif caller == LIVE: trader = self.trader elif caller == BACKTEST: trader = self.backtester else: raise TypeError('Invalid type of caller specified.') </DeepExtract> if not trader: return trade_data = [trade['orderID'], trade['pair'], trade['price'], trade['percentage'], trade['profit'], trade['method'], trade['action']] add_to_table(table, trade_data) <DeepExtract> if caller == SIMULATION: self.add_to_simulation_activity_monitor(trade['action']) elif caller == LIVE: self.add_to_live_activity_monitor(trade['action']) elif caller == BACKTEST: self.add_to_backtest_monitor(trade['action']) else: raise TypeError('Invalid type of caller specified.') </DeepExtract> if caller == LIVE and self.telegram_bot and self.configuration.enableTelegramSendMessage.isChecked(): <DeepExtract> try: if self.telegram_bot is None: api_key = self.configuration.telegramApiKey.text() self.telegram_bot = TelegramBot(gui=self, token=api_key) chat_id = self.configuration.telegramChatID.text() if self.configuration.chat_pass: self.telegram_bot.send_message(chat_id, trade['action']) if stop_bot: self.telegram_bot.stop() self.telegram_bot = None except Exception as e: self.logger.exception(str(e)) </DeepExtract> <DeepExtract> if caller == LIVE: monitor = self.activityMonitor elif caller == SIMULATION: monitor = self.simulationActivityMonitor elif caller == BACKTEST: monitor = self.backtestTable else: raise ValueError('Invalid type of caller specified.') </DeepExtract> monitor.scrollToBottom() table.scrollToBottom()
def update_trades_table_and_activity_monitor(self, trade: dict, caller): """ Updates trade table and activity based on caller and sends message to Telegram if live bot is trading and Telegram feature is enabled. :param trade: Trade information to add to activity monitor and trades table. :param caller: Caller object that will rule which tables get updated. """ table = self.interface_dictionary[caller]['mainInterface']['historyTable'] if caller == SIMULATION: trader = self.simulation_trader elif caller == LIVE: trader = self.trader elif caller == BACKTEST: trader = self.backtester else: raise TypeError('Invalid type of caller specified.') if not trader: return trade_data = [trade['orderID'], trade['pair'], trade['price'], trade['percentage'], trade['profit'], trade['method'], trade['action']] add_to_table(table, trade_data) if caller == SIMULATION: self.add_to_simulation_activity_monitor(trade['action']) elif caller == LIVE: self.add_to_live_activity_monitor(trade['action']) elif caller == BACKTEST: self.add_to_backtest_monitor(trade['action']) else: raise TypeError('Invalid type of caller specified.') if caller == LIVE and self.telegram_bot and self.configuration.enableTelegramSendMessage.isChecked(): try: if self.telegram_bot is None: api_key = self.configuration.telegramApiKey.text() self.telegram_bot = TelegramBot(gui=self, token=api_key) chat_id = self.configuration.telegramChatID.text() if self.configuration.chat_pass: self.telegram_bot.send_message(chat_id, trade['action']) if stop_bot: self.telegram_bot.stop() self.telegram_bot = None except Exception as e: self.logger.exception(str(e)) if caller == LIVE: monitor = self.activityMonitor elif caller == SIMULATION: monitor = self.simulationActivityMonitor elif caller == BACKTEST: monitor = self.backtestTable else: raise ValueError('Invalid type of caller specified.') monitor.scrollToBottom() table.scrollToBottom()
algobot
positive
def with_roles_available(self, roles: Union[list, str], entity_slug, user_model, coa_slug: Optional[str]) -> AccountModelQuerySet: """ Convenience method to pull only available and unlocked AccountModels for a specific EntityModel and for a specific list of roles. Parameters ---------- entity_slug: EntityModel or str The EntityModel or EntityModel slug to pull accounts from. If slug is passed and coa_slug is None will result in an additional Database query to determine the default code of accounts. coa_slug: str Explicitly specify which chart of accounts to use. If None, will pull default Chart of Accounts. Discussed in detail in the CoA Model CoA slug, basically helps in identifying the complete Chart of Accounts for a particular EntityModel. user_model: The Django User Model making the request to check for permissions. roles: list or str Function accepts a single str instance of a role or a list of roles. For a list of roles , refer io.roles.py Returns ------- AccountModelQuerySet A QuerySet of all requested EntityModel Chart of Accounts. """ if isinstance(roles, str): roles = [roles] roles = validate_roles(roles) <DeepExtract> qs = self.for_entity(user_model=user_model, entity_slug=entity_slug, coa_slug=coa_slug) qs = qs.filter(active=True, locked=False) </DeepExtract> return qs.filter(role__in=roles)
def with_roles_available(self, roles: Union[list, str], entity_slug, user_model, coa_slug: Optional[str]) -> AccountModelQuerySet: """ Convenience method to pull only available and unlocked AccountModels for a specific EntityModel and for a specific list of roles. Parameters ---------- entity_slug: EntityModel or str The EntityModel or EntityModel slug to pull accounts from. If slug is passed and coa_slug is None will result in an additional Database query to determine the default code of accounts. coa_slug: str Explicitly specify which chart of accounts to use. If None, will pull default Chart of Accounts. Discussed in detail in the CoA Model CoA slug, basically helps in identifying the complete Chart of Accounts for a particular EntityModel. user_model: The Django User Model making the request to check for permissions. roles: list or str Function accepts a single str instance of a role or a list of roles. For a list of roles , refer io.roles.py Returns ------- AccountModelQuerySet A QuerySet of all requested EntityModel Chart of Accounts. """ if isinstance(roles, str): roles = [roles] roles = validate_roles(roles) qs = self.for_entity(user_model=user_model, entity_slug=entity_slug, coa_slug=coa_slug) qs = qs.filter(active=True, locked=False) return qs.filter(role__in=roles)
django-ledger
positive
def eval(t, dset_loader, use_gpu=True): with torch.no_grad(): total_loss = 0 total_acc = 0 total_num = 0 task = torch.autograd.Variable(torch.LongTensor([t]).cuda(), requires_grad=False) self.model.eval() total_reg = 0 for data in dset_loader: (images, targets) = data bs = images.shape[0] images = images.cuda() if use_gpu else images targets = targets.cuda() if use_gpu else targets (images, targets) = (Variable(images, requires_grad=False), Variable(targets, requires_grad=False)) (logits, masks) = self.model.forward(task, images, s=self.smax) <DeepExtract> reg = 0 count = 0 if self.mask_pre is not None: for (m, mp) in zip(masks, self.mask_pre): aux = 1 - mp reg += (m * aux).sum() count += aux.sum() else: for m in masks: reg += m.sum() count += np.prod(m.size()).item() reg /= count (loss, reg) = (self.ce(logits, targets) + self.lamb * reg, self.lamb * reg) </DeepExtract> (_, pred) = logits.max(1) hits = (pred == targets).float() total_loss += loss.data.cpu().numpy().item() * bs total_acc += hits.sum().data.cpu().numpy().item() total_num += bs total_reg += reg.data.cpu().numpy().item() * bs print('<reg={:.6f}/ce={:.6f}>'.format(total_reg / total_num, (total_loss - total_reg) / total_num), end='') return (total_loss / total_num, total_acc / total_num)
def eval(t, dset_loader, use_gpu=True): with torch.no_grad(): total_loss = 0 total_acc = 0 total_num = 0 task = torch.autograd.Variable(torch.LongTensor([t]).cuda(), requires_grad=False) self.model.eval() total_reg = 0 for data in dset_loader: (images, targets) = data bs = images.shape[0] images = images.cuda() if use_gpu else images targets = targets.cuda() if use_gpu else targets (images, targets) = (Variable(images, requires_grad=False), Variable(targets, requires_grad=False)) (logits, masks) = self.model.forward(task, images, s=self.smax) reg = 0 count = 0 if self.mask_pre is not None: for (m, mp) in zip(masks, self.mask_pre): aux = 1 - mp reg += (m * aux).sum() count += aux.sum() else: for m in masks: reg += m.sum() count += np.prod(m.size()).item() reg /= count (loss, reg) = (self.ce(logits, targets) + self.lamb * reg, self.lamb * reg) (_, pred) = logits.max(1) hits = (pred == targets).float() total_loss += loss.data.cpu().numpy().item() * bs total_acc += hits.sum().data.cpu().numpy().item() total_num += bs total_reg += reg.data.cpu().numpy().item() * bs print('<reg={:.6f}/ce={:.6f}>'.format(total_reg / total_num, (total_loss - total_reg) / total_num), end='') return (total_loss / total_num, total_acc / total_num)
CLsurvey
positive
def test_standby_failure(self): """ That the failure of a standby-replay daemon happens cleanly and doesn't interrupt anything else. """ use_daemons = sorted(self.mds_cluster.mds_ids[0:2]) (mds_a, mds_b) = use_daemons log.info('Using MDS daemons: {0}'.format(use_daemons)) <DeepExtract> self.set_conf('mds.{0}'.format(mds_b), 'mds_standby_for_name', mds_a) if True: self.set_conf('mds.{0}'.format(mds_b), 'mds_standby_replay', 'true') </DeepExtract> <DeepExtract> self.set_conf('mds.{0}'.format(mds_a), 'mds_standby_for_name', mds_b) if False: self.set_conf('mds.{0}'.format(mds_a), 'mds_standby_replay', 'true') </DeepExtract> fs_a = self.mds_cluster.newfs('alpha') self.mds_cluster.mds_restart(mds_a) fs_a.wait_for_daemons() self.assertEqual(fs_a.get_active_names(), [mds_a]) self.mds_cluster.mds_restart(mds_b) self.wait_for_daemon_start([mds_b]) <DeepExtract> status = self.mds_cluster.status() info = status.get_mds(mds_b) if info is None: log.warn(str(status)) raise RuntimeError("MDS '{0}' not found".format(mds_b)) else: info_b = info </DeepExtract> self.assertEqual(info_b['state'], 'up:standby-replay') self.assertEqual(info_b['standby_for_name'], mds_a) self.assertEqual(info_b['rank'], 0) self.mds_cluster.mds_stop(mds_b) self.mds_cluster.mds_fail(mds_b) self.assertEqual(fs_a.get_active_names(), [mds_a]) mds_map = fs_a.get_mds_map() self.assertEqual(len(mds_map['info']), 1) self.assertEqual(mds_map['failed'], []) self.assertEqual(mds_map['damaged'], []) self.assertEqual(mds_map['stopped'], [])
def test_standby_failure(self): """ That the failure of a standby-replay daemon happens cleanly and doesn't interrupt anything else. """ use_daemons = sorted(self.mds_cluster.mds_ids[0:2]) (mds_a, mds_b) = use_daemons log.info('Using MDS daemons: {0}'.format(use_daemons)) self.set_conf('mds.{0}'.format(mds_b), 'mds_standby_for_name', mds_a) if True: self.set_conf('mds.{0}'.format(mds_b), 'mds_standby_replay', 'true') self.set_conf('mds.{0}'.format(mds_a), 'mds_standby_for_name', mds_b) if False: self.set_conf('mds.{0}'.format(mds_a), 'mds_standby_replay', 'true') fs_a = self.mds_cluster.newfs('alpha') self.mds_cluster.mds_restart(mds_a) fs_a.wait_for_daemons() self.assertEqual(fs_a.get_active_names(), [mds_a]) self.mds_cluster.mds_restart(mds_b) self.wait_for_daemon_start([mds_b]) status = self.mds_cluster.status() info = status.get_mds(mds_b) if info is None: log.warn(str(status)) raise RuntimeError("MDS '{0}' not found".format(mds_b)) else: info_b = info self.assertEqual(info_b['state'], 'up:standby-replay') self.assertEqual(info_b['standby_for_name'], mds_a) self.assertEqual(info_b['rank'], 0) self.mds_cluster.mds_stop(mds_b) self.mds_cluster.mds_fail(mds_b) self.assertEqual(fs_a.get_active_names(), [mds_a]) mds_map = fs_a.get_mds_map() self.assertEqual(len(mds_map['info']), 1) self.assertEqual(mds_map['failed'], []) self.assertEqual(mds_map['damaged'], []) self.assertEqual(mds_map['stopped'], [])
ceph-qa-suite
positive
def open(self, port, param): errorcode = ReturnCodes.Good try: <DeepExtract> for client in self.clients: if port == client['port']: cli = client cli = None </DeepExtract> if cli is None: <DeepExtract> com_id = port[4:] com_param = [9600, 8, 'N', 1, 0, 0, 0, 0] if param is not None: s = param.split('-') com_param = [int(s[0]), int(s[1]), s[2], int(s[3]), int(s[4]), int(s[5]), int(s[6]), int(s[7])] ser_client = serial.Serial(baudrate=com_param[0], bytesize=com_param[1], parity=com_param[2], timeout=com_param[4], stopbits=com_param[3], dsrdtr=com_param[5], xonxoff=com_param[6], rtscts=com_param[7]) ser_client.setPort(com_id) client_param = {'port': port, 'client': ser_client, 'state': 'closed'} self.clients.append(client_param) ser_client = ser_client </DeepExtract> <DeepExtract> for client in self.clients: if port == client['port']: cli = client cli = None </DeepExtract> else: ser_client = cli['client'] if not ser_client.isOpen(): ser_client.open() cli['state'] = 'opened' result = 'serial port %s is opened' % port except BaseException: logger.exception('failed to open serial port %s' % port) result = 'failed to open serial port %s' % port errorcode = ReturnCodes.SCPI_SerialOpenFail return (errorcode, result)
def open(self, port, param): errorcode = ReturnCodes.Good try: for client in self.clients: if port == client['port']: cli = client cli = None if cli is None: com_id = port[4:] com_param = [9600, 8, 'N', 1, 0, 0, 0, 0] if param is not None: s = param.split('-') com_param = [int(s[0]), int(s[1]), s[2], int(s[3]), int(s[4]), int(s[5]), int(s[6]), int(s[7])] ser_client = serial.Serial(baudrate=com_param[0], bytesize=com_param[1], parity=com_param[2], timeout=com_param[4], stopbits=com_param[3], dsrdtr=com_param[5], xonxoff=com_param[6], rtscts=com_param[7]) ser_client.setPort(com_id) client_param = {'port': port, 'client': ser_client, 'state': 'closed'} self.clients.append(client_param) ser_client = ser_client for client in self.clients: if port == client['port']: cli = client cli = None else: ser_client = cli['client'] if not ser_client.isOpen(): ser_client.open() cli['state'] = 'opened' result = 'serial port %s is opened' % port except BaseException: logger.exception('failed to open serial port %s' % port) result = 'failed to open serial port %s' % port errorcode = ReturnCodes.SCPI_SerialOpenFail return (errorcode, result)
Converter-for-OPCUA
positive
def make_enc_kem(name, value, sig_key, alg, enc_key, enc): <DeepExtract> header = {'kid': sig_key.key_id, 'alg': alg} claims = {'sub': name, 'exp': int(time.time() + 5 * 60)} if value is not None: claims['value'] = value jwt = JWT(header, claims) jwt.make_signed_token(sig_key) plaintext = jwt.serialize(compact=True) </DeepExtract> eprot = {'kid': enc_key.key_id, 'alg': enc[0], 'enc': enc[1]} jwe = JWE(plaintext, json_encode(eprot)) jwe.add_recipient(enc_key) return jwe.serialize(compact=True)
def make_enc_kem(name, value, sig_key, alg, enc_key, enc): header = {'kid': sig_key.key_id, 'alg': alg} claims = {'sub': name, 'exp': int(time.time() + 5 * 60)} if value is not None: claims['value'] = value jwt = JWT(header, claims) jwt.make_signed_token(sig_key) plaintext = jwt.serialize(compact=True) eprot = {'kid': enc_key.key_id, 'alg': enc[0], 'enc': enc[1]} jwe = JWE(plaintext, json_encode(eprot)) jwe.add_recipient(enc_key) return jwe.serialize(compact=True)
custodia
positive
def phi_rotamers(traj, buffer_width=15): hard_boundaries = [0, 180, 360] <DeepExtract> valid_dihedral_types = ['phi', 'psi', 'chi1', 'chi2', 'chi3', 'chi4'] if 'phi' not in valid_dihedral_types: (angles, atom_inds) = (None, None, None) f = getattr(md, 'compute_%s' % 'phi') (atom_inds, angles) = f(traj) angles = np.rad2deg(angles) angles[np.where(angles < 0)] += 360 n_angles = angles.shape[1] ref_atom_inds = np.zeros(n_angles) for i in range(n_angles): atom = traj.topology.atom(atom_inds[i, 2]) ref_atom_inds[i] = int(atom.index) (angles, atom_inds) = (angles, atom_inds) </DeepExtract> (n_frames, n_angles) = angles.shape rotamers = np.zeros((n_frames, n_angles), dtype='int16') for i in range(n_angles): <DeepExtract> n_basins = len(hard_boundaries) - 1 if buffer_width < 0 or buffer_width >= 360.0 / n_basins: raise DataInvalid('Buffer width (got %s) must be between 0 and 360 degrees.' % buffer_width) if hard_boundaries[0] != 0 or hard_boundaries[-1] != 360: raise DataInvalid('hard_boundaries list must start with 0 and end with 360, list was %s.' % hard_boundaries) n_frames = len(angles[:, i]) rotamers = -1 * np.ones(n_frames, dtype='int16') for i in range(n_basins): if angles[:, i][0] < hard_boundaries[i + 1]: rotamers[0] = i break cur_state = rotamers[0] for i in range(1, n_frames): new_angle = angles[:, i][i] cur_angle = angles[:, i][i - 1] if is_buffered_transition(cur_state, new_angle, hard_boundaries, buffer_width): cur_state = np.digitize(new_angle, hard_boundaries) - 1 rotamers[i] = cur_state rotamers[:, i] = rotamers </DeepExtract> n_states = 2 * np.ones(n_angles, dtype='int16') return (rotamers, atom_inds, n_states)
def phi_rotamers(traj, buffer_width=15): hard_boundaries = [0, 180, 360] valid_dihedral_types = ['phi', 'psi', 'chi1', 'chi2', 'chi3', 'chi4'] if 'phi' not in valid_dihedral_types: (angles, atom_inds) = (None, None, None) f = getattr(md, 'compute_%s' % 'phi') (atom_inds, angles) = f(traj) angles = np.rad2deg(angles) angles[np.where(angles < 0)] += 360 n_angles = angles.shape[1] ref_atom_inds = np.zeros(n_angles) for i in range(n_angles): atom = traj.topology.atom(atom_inds[i, 2]) ref_atom_inds[i] = int(atom.index) (angles, atom_inds) = (angles, atom_inds) (n_frames, n_angles) = angles.shape rotamers = np.zeros((n_frames, n_angles), dtype='int16') for i in range(n_angles): n_basins = len(hard_boundaries) - 1 if buffer_width < 0 or buffer_width >= 360.0 / n_basins: raise DataInvalid('Buffer width (got %s) must be between 0 and 360 degrees.' % buffer_width) if hard_boundaries[0] != 0 or hard_boundaries[-1] != 360: raise DataInvalid('hard_boundaries list must start with 0 and end with 360, list was %s.' % hard_boundaries) n_frames = len(angles[:, i]) rotamers = -1 * np.ones(n_frames, dtype='int16') for i in range(n_basins): if angles[:, i][0] < hard_boundaries[i + 1]: rotamers[0] = i break cur_state = rotamers[0] for i in range(1, n_frames): new_angle = angles[:, i][i] cur_angle = angles[:, i][i - 1] if is_buffered_transition(cur_state, new_angle, hard_boundaries, buffer_width): cur_state = np.digitize(new_angle, hard_boundaries) - 1 rotamers[i] = cur_state rotamers[:, i] = rotamers n_states = 2 * np.ones(n_angles, dtype='int16') return (rotamers, atom_inds, n_states)
enspara
positive
def clean(names, queue=False, exchange=False): """Clean any queues or exchanges created by the test. :param names: Queue/Exchange names. :param queue: Remove queues. :param exchange: Remove exchanges. :return: """ if not queue and (not exchange): return api = ManagementApi(HTTP_URL, USERNAME, PASSWORD, timeout=10) if queue: <DeepExtract> for name in names: try: api.queue.delete(name) except exception.ApiError: pass </DeepExtract> if exchange: <DeepExtract> for name in names: try: api.exchange.delete(name) except exception.ApiError: pass </DeepExtract>
def clean(names, queue=False, exchange=False): """Clean any queues or exchanges created by the test. :param names: Queue/Exchange names. :param queue: Remove queues. :param exchange: Remove exchanges. :return: """ if not queue and (not exchange): return api = ManagementApi(HTTP_URL, USERNAME, PASSWORD, timeout=10) if queue: for name in names: try: api.queue.delete(name) except exception.ApiError: pass if exchange: for name in names: try: api.exchange.delete(name) except exception.ApiError: pass </DeepExtract>
amqpstorm
positive
@pytest.mark.parametrize('src,result', (('{}', {}), ("{'a': 'b', 1: 2}", {'a': 'b', 1: 2}), ('{None: 42}', {None: 42}), ('\n d = {"a": "b"}\n {1: 2, **d}\n ', {'a': 'b', 1: 2}), ("\n d1 = {'a': 'b'}\n d2 = {'c': 'd'}\n {**d1, **d2}\n ", {'a': 'b', 'c': 'd'}))) def test_dictionary(src, result): <DeepExtract> tree = collect(dedent(src), minimal=True) loc = ScanLocation(location='<unknown>') v = Visitor.run_stages(location=loc, stages=('convert', 'rewrite'), ast_tree=tree) if single: tree = v.tree[-1] else: tree = v.tree </DeepExtract> assert isinstance(tree, Dictionary) src_dict = tree.as_native() assert src_dict == result, src_dict
@pytest.mark.parametrize('src,result', (('{}', {}), ("{'a': 'b', 1: 2}", {'a': 'b', 1: 2}), ('{None: 42}', {None: 42}), ('\n d = {"a": "b"}\n {1: 2, **d}\n ', {'a': 'b', 1: 2}), ("\n d1 = {'a': 'b'}\n d2 = {'c': 'd'}\n {**d1, **d2}\n ", {'a': 'b', 'c': 'd'}))) def test_dictionary(src, result): tree = collect(dedent(src), minimal=True) loc = ScanLocation(location='<unknown>') v = Visitor.run_stages(location=loc, stages=('convert', 'rewrite'), ast_tree=tree) if single: tree = v.tree[-1] else: tree = v.tree assert isinstance(tree, Dictionary) src_dict = tree.as_native() assert src_dict == result, src_dict
aura
positive
@methodtrace(_logger) def get_configuration_descriptor(self, dev, config): desc = _usb_config_desc() <DeepExtract> if hasattr(_lib.openusb_parse_config_desc(_ctx.handle, dev, None, 0, config, byref(desc)), 'value'): _lib.openusb_parse_config_desc(_ctx.handle, dev, None, 0, config, byref(desc)) = _lib.openusb_parse_config_desc(_ctx.handle, dev, None, 0, config, byref(desc)).value if _lib.openusb_parse_config_desc(_ctx.handle, dev, None, 0, config, byref(desc)) != 0: raise USBError(_lib.openusb_strerror(_lib.openusb_parse_config_desc(_ctx.handle, dev, None, 0, config, byref(desc))), _lib.openusb_parse_config_desc(_ctx.handle, dev, None, 0, config, byref(desc)), _openusb_errno[_lib.openusb_parse_config_desc(_ctx.handle, dev, None, 0, config, byref(desc))]) return _lib.openusb_parse_config_desc(_ctx.handle, dev, None, 0, config, byref(desc)) </DeepExtract> desc.extra_descriptors = None return desc
@methodtrace(_logger) def get_configuration_descriptor(self, dev, config): desc = _usb_config_desc() if hasattr(_lib.openusb_parse_config_desc(_ctx.handle, dev, None, 0, config, byref(desc)), 'value'): _lib.openusb_parse_config_desc(_ctx.handle, dev, None, 0, config, byref(desc)) = _lib.openusb_parse_config_desc(_ctx.handle, dev, None, 0, config, byref(desc)).value if _lib.openusb_parse_config_desc(_ctx.handle, dev, None, 0, config, byref(desc)) != 0: raise USBError(_lib.openusb_strerror(_lib.openusb_parse_config_desc(_ctx.handle, dev, None, 0, config, byref(desc))), _lib.openusb_parse_config_desc(_ctx.handle, dev, None, 0, config, byref(desc)), _openusb_errno[_lib.openusb_parse_config_desc(_ctx.handle, dev, None, 0, config, byref(desc))]) return _lib.openusb_parse_config_desc(_ctx.handle, dev, None, 0, config, byref(desc)) desc.extra_descriptors = None return desc
CyKit
positive
def main(): if not JAR.exists(): print(f'Downloading {JAR_NAME}...') urllib.request.urlretrieve(JAR_URL, str(JAR)) print('Expanding lexer...') <DeepExtract> MODE_P = re.compile('mode ([A-Z_]+)\\;') TOKEN_P = re.compile('([A-Z_]+) ?\\:.*') with open(LEXER.parent.parent / (LEXER.name + '.jinja'), 'r') as fh: content = fh.read() template = jinja2.Environment(loader=jinja2.BaseLoader).from_string(content) current_mode = 'DEFAULT_MODE' tokens = collections.defaultdict(list) for line in content.split('\n'): mode_g = MODE_P.match(line) if mode_g: current_mode = mode_g.group(1) token_g = TOKEN_P.match(line) if token_g: tokens[current_mode].append(token_g.group(1)) new_content = template.render(tokens=tokens) with open(str(LEXER), 'w') as fh: fh.write(new_content) </DeepExtract> print('Compiling lexer...') subprocess.run(['java', '-jar', str(JAR), '-Dlanguage=Python3', str(LEXER), '-o', 'parser'], check=True) print('Compiling parser...') subprocess.run(['java', '-jar', str(JAR), '-Dlanguage=Python3', '-no-listener', '-visitor', str(PARSER), '-o', 'parser'], check=True) print('Done.')
def main(): if not JAR.exists(): print(f'Downloading {JAR_NAME}...') urllib.request.urlretrieve(JAR_URL, str(JAR)) print('Expanding lexer...') MODE_P = re.compile('mode ([A-Z_]+)\\;') TOKEN_P = re.compile('([A-Z_]+) ?\\:.*') with open(LEXER.parent.parent / (LEXER.name + '.jinja'), 'r') as fh: content = fh.read() template = jinja2.Environment(loader=jinja2.BaseLoader).from_string(content) current_mode = 'DEFAULT_MODE' tokens = collections.defaultdict(list) for line in content.split('\n'): mode_g = MODE_P.match(line) if mode_g: current_mode = mode_g.group(1) token_g = TOKEN_P.match(line) if token_g: tokens[current_mode].append(token_g.group(1)) new_content = template.render(tokens=tokens) with open(str(LEXER), 'w') as fh: fh.write(new_content) print('Compiling lexer...') subprocess.run(['java', '-jar', str(JAR), '-Dlanguage=Python3', str(LEXER), '-o', 'parser'], check=True) print('Compiling parser...') subprocess.run(['java', '-jar', str(JAR), '-Dlanguage=Python3', '-no-listener', '-visitor', str(PARSER), '-o', 'parser'], check=True) print('Done.')
cf-units
positive
def sharpen(pix, width, intensity): A = pix[..., 3] <DeepExtract> res = np.zeros(pix.shape, dtype=np.float32) gcr = gauss_curve(width) for i in range(-width, width + 1): if i != 0: res[:-i, ...] += pix[i:, ...] * gcr[i + width] res[-i:, ...] += pix[:i, ...] * gcr[i + width] else: res += pix * gcr[width] pix2 = res.copy() res *= 0.0 for i in range(-width, width + 1): if i != 0: res[:, :-i, :] += pix2[:, i:, :] * gcr[i + width] res[:, -i:, :] += pix2[:, :i, :] * gcr[i + width] else: res += pix2 * gcr[width] gas = res </DeepExtract> pix += (pix - gas) * intensity pix[..., 3] = A return pix
def sharpen(pix, width, intensity): A = pix[..., 3] res = np.zeros(pix.shape, dtype=np.float32) gcr = gauss_curve(width) for i in range(-width, width + 1): if i != 0: res[:-i, ...] += pix[i:, ...] * gcr[i + width] res[-i:, ...] += pix[:i, ...] * gcr[i + width] else: res += pix * gcr[width] pix2 = res.copy() res *= 0.0 for i in range(-width, width + 1): if i != 0: res[:, :-i, :] += pix2[:, i:, :] * gcr[i + width] res[:, -i:, :] += pix2[:, :i, :] * gcr[i + width] else: res += pix2 * gcr[width] gas = res pix += (pix - gas) * intensity pix[..., 3] = A return pix
blender-texture-tools
positive
def normals_to_height(image, grid_steps, iterations=2000, intensity=1.0): (ih, iw) = (image.shape[0], image.shape[1]) u = np.ones((ih, iw), dtype=np.float32) * 0.5 <DeepExtract> vectors = np.empty((image.shape[0], image.shape[1], 3), dtype=np.float32) vectors[..., 0] = image[..., 0] - 0.5 vectors[..., 1] = image[..., 1] - 0.5 vectors[..., 2] = image[..., 2] - 0.5 vectors *= 2.0 vectors = vectors </DeepExtract> vectors *= intensity t = np.empty_like(u, dtype=np.float32) for k in range(grid_steps, -1, -1): k = 2 ** k print('grid step:', k) n = np.roll(vectors[..., 0], k, axis=1) n -= np.roll(vectors[..., 0], -k, axis=1) n += np.roll(vectors[..., 1], k, axis=0) n -= np.roll(vectors[..., 1], -k, axis=0) n *= 0.125 for ic in range(iterations): if ic % 100 == 0: print(ic) t[:-k, :] = u[k:, :] t[-k:, :] = u[:k, :] t[k:, :] += u[:-k, :] t[:k, :] += u[-k:, :] t[:, :-k] += u[:, k:] t[:, -k:] += u[:, :k] t[:, k:] += u[:, :-k] t[:, :k] += u[:, -k:] t *= 0.25 u = t + n u = -u u -= np.min(u) u /= np.max(u) return np.dstack([u, u, u, image[..., 3]])
def normals_to_height(image, grid_steps, iterations=2000, intensity=1.0): (ih, iw) = (image.shape[0], image.shape[1]) u = np.ones((ih, iw), dtype=np.float32) * 0.5 vectors = np.empty((image.shape[0], image.shape[1], 3), dtype=np.float32) vectors[..., 0] = image[..., 0] - 0.5 vectors[..., 1] = image[..., 1] - 0.5 vectors[..., 2] = image[..., 2] - 0.5 vectors *= 2.0 vectors = vectors vectors *= intensity t = np.empty_like(u, dtype=np.float32) for k in range(grid_steps, -1, -1): k = 2 ** k print('grid step:', k) n = np.roll(vectors[..., 0], k, axis=1) n -= np.roll(vectors[..., 0], -k, axis=1) n += np.roll(vectors[..., 1], k, axis=0) n -= np.roll(vectors[..., 1], -k, axis=0) n *= 0.125 for ic in range(iterations): if ic % 100 == 0: print(ic) t[:-k, :] = u[k:, :] t[-k:, :] = u[:k, :] t[k:, :] += u[:-k, :] t[:k, :] += u[-k:, :] t[:, :-k] += u[:, k:] t[:, -k:] += u[:, :k] t[:, k:] += u[:, :-k] t[:, :k] += u[:, -k:] t *= 0.25 u = t + n u = -u u -= np.min(u) u /= np.max(u) return np.dstack([u, u, u, image[..., 3]])
blender-texture-tools
positive
def checklicensewarning(p_apikey, p_orglist, p_timethreshold, p_modeincludeempty=False): filterlist = [] i = 0 for org in p_orglist: print('INFO: Checking org %s "%s" ' % (org.id, org.name)) <DeepExtract> merakirequestthrottler() try: r = requests.get('https://%s/api/v0/organizations/%s/licenseState' % (org.shardhost, org.id), headers={'X-Cisco-Meraki-API-Key': p_apikey, 'Content-Type': 'application/json'}, timeout=(REQUESTS_CONNECT_TIMEOUT, REQUESTS_READ_TIMEOUT)) except: print('ERROR 03: Unable to contact Meraki cloud') sys.exit(2) returnvalue = [] if r.status_code != requests.codes.ok: licensestate = None rjson = r.json() licensestate = rjson </DeepExtract> if not licensestate is None: if licensestate['expirationDate'] == 'N/A': if p_modeincludeempty: timeremaining = 0 elif licensestate['status'] != 'License Required': timeremaining = p_timethreshold + 1 else: timeremaining = 0 else: <DeepExtract> mdate = datetime.date(datetime.strptime(licensestate['expirationDate'], '%b %d, %Y UTC')) today = date.today() retvalue = int(str(mdate - today).split(' ')[0]) timeremaining = retvalue </DeepExtract> if licensestate['status'] != 'OK' or timeremaining <= p_timethreshold: if licensestate['status'] != 'N/A' or p_modeincludeempty: filterlist.append(c_organizationdata()) filterlist[i].id = org.id filterlist[i].name = org.name filterlist[i].shardhost = org.shardhost filterlist[i].licensestate = licensestate['status'] filterlist[i].timeremaining = timeremaining i += 1 else: print('WARNING: Unable to fetch license state') return filterlist
def checklicensewarning(p_apikey, p_orglist, p_timethreshold, p_modeincludeempty=False): filterlist = [] i = 0 for org in p_orglist: print('INFO: Checking org %s "%s" ' % (org.id, org.name)) merakirequestthrottler() try: r = requests.get('https://%s/api/v0/organizations/%s/licenseState' % (org.shardhost, org.id), headers={'X-Cisco-Meraki-API-Key': p_apikey, 'Content-Type': 'application/json'}, timeout=(REQUESTS_CONNECT_TIMEOUT, REQUESTS_READ_TIMEOUT)) except: print('ERROR 03: Unable to contact Meraki cloud') sys.exit(2) returnvalue = [] if r.status_code != requests.codes.ok: licensestate = None rjson = r.json() licensestate = rjson if not licensestate is None: if licensestate['expirationDate'] == 'N/A': if p_modeincludeempty: timeremaining = 0 elif licensestate['status'] != 'License Required': timeremaining = p_timethreshold + 1 else: timeremaining = 0 else: mdate = datetime.date(datetime.strptime(licensestate['expirationDate'], '%b %d, %Y UTC')) today = date.today() retvalue = int(str(mdate - today).split(' ')[0]) timeremaining = retvalue if licensestate['status'] != 'OK' or timeremaining <= p_timethreshold: if licensestate['status'] != 'N/A' or p_modeincludeempty: filterlist.append(c_organizationdata()) filterlist[i].id = org.id filterlist[i].name = org.name filterlist[i].shardhost = org.shardhost filterlist[i].licensestate = licensestate['status'] filterlist[i].timeremaining = timeremaining i += 1 else: print('WARNING: Unable to fetch license state') return filterlist
automation-scripts
positive
@property @provide_session def previous_ti(self, session=None): """ The task instance for the task that ran before this task instance """ dag = self.task.dag if dag: <DeepExtract> dr = session.query(DagRun).filter(DagRun.dag_id == self.dag_id, DagRun.execution_date == self.execution_date).first() dr = dr </DeepExtract> if not dr: previous_scheduled_date = dag.previous_schedule(self.execution_date) if not previous_scheduled_date: return None return TaskInstance(task=self.task, execution_date=previous_scheduled_date) dr.dag = dag if dag.catchup: last_dagrun = dr.get_previous_scheduled_dagrun(session=session) else: last_dagrun = dr.get_previous_dagrun(session=session) if last_dagrun: return last_dagrun.get_task_instance(self.task_id, session=session) return None
@property @provide_session def previous_ti(self, session=None): """ The task instance for the task that ran before this task instance """ dag = self.task.dag if dag: dr = session.query(DagRun).filter(DagRun.dag_id == self.dag_id, DagRun.execution_date == self.execution_date).first() dr = dr if not dr: previous_scheduled_date = dag.previous_schedule(self.execution_date) if not previous_scheduled_date: return None return TaskInstance(task=self.task, execution_date=previous_scheduled_date) dr.dag = dag if dag.catchup: last_dagrun = dr.get_previous_scheduled_dagrun(session=session) else: last_dagrun = dr.get_previous_dagrun(session=session) if last_dagrun: return last_dagrun.get_task_instance(self.task_id, session=session) return None
docker-airflow
positive
def get_design_matrices(df, dependent_variable, independent_variables, interactions=[]): <DeepExtract> lhs_var = dependent_variable rhs_vars = independent_variables if 'name' in dependent_variable: lhs_var = dependent_variable['name'] if 'name' in independent_variables[0]: new_rhs_vars = [] for iv in independent_variables: if type(iv) is list: new_rhs_vars.append([x['name'] for x in iv]) elif 'name' in iv: new_rhs_vars.append(iv['name']) else: new_rhs_vars.append(iv) rhs_vars = new_rhs_vars if interactions: first_interaction = interactions[0] if 'name' in first_interaction: new_interactions = [] for interaction in interactions: new_interactions.append([term['name'] for term in interaction]) rhs_interactions = new_interactions else: rhs_interactions = interactions lhs = [Term([LookupFactor(lhs_var)])] rhs = [Term([])] for rhs_var in rhs_vars: if type(rhs_var) is list: rhs += [Term([LookupFactor(term) for term in rhs_var])] elif rhs_var in transformations: transformation = transformations[rhs_var] if transformation == 'square': rhs += [Term([LookupFactor(rhs_var)])] format_string = transformation_to_format_string[transformation] rhs += [Term([EvalFactor(format_string.format(rhs_var))])] else: rhs += [Term([LookupFactor(rhs_var)])] if interactions: rhs += [Term([LookupFactor(term) for term in interaction]) for interaction in rhs_interactions] model = ModelDesc(lhs, rhs) patsy_model = model </DeepExtract> (y, X) = dmatrices(patsy_model, df, return_type='dataframe') return (y, X)
def get_design_matrices(df, dependent_variable, independent_variables, interactions=[]): lhs_var = dependent_variable rhs_vars = independent_variables if 'name' in dependent_variable: lhs_var = dependent_variable['name'] if 'name' in independent_variables[0]: new_rhs_vars = [] for iv in independent_variables: if type(iv) is list: new_rhs_vars.append([x['name'] for x in iv]) elif 'name' in iv: new_rhs_vars.append(iv['name']) else: new_rhs_vars.append(iv) rhs_vars = new_rhs_vars if interactions: first_interaction = interactions[0] if 'name' in first_interaction: new_interactions = [] for interaction in interactions: new_interactions.append([term['name'] for term in interaction]) rhs_interactions = new_interactions else: rhs_interactions = interactions lhs = [Term([LookupFactor(lhs_var)])] rhs = [Term([])] for rhs_var in rhs_vars: if type(rhs_var) is list: rhs += [Term([LookupFactor(term) for term in rhs_var])] elif rhs_var in transformations: transformation = transformations[rhs_var] if transformation == 'square': rhs += [Term([LookupFactor(rhs_var)])] format_string = transformation_to_format_string[transformation] rhs += [Term([EvalFactor(format_string.format(rhs_var))])] else: rhs += [Term([LookupFactor(rhs_var)])] if interactions: rhs += [Term([LookupFactor(term) for term in interaction]) for interaction in rhs_interactions] model = ModelDesc(lhs, rhs) patsy_model = model (y, X) = dmatrices(patsy_model, df, return_type='dataframe') return (y, X)
DIVE-backend
positive
def sync(self, depsgraph): scene = depsgraph.scene settings = scene.hdusd.final view_layer = depsgraph.view_layer self.render_layer_name = view_layer.name self.status_title = f'{scene.name}: {self.render_layer_name}' <DeepExtract> self.render_engine.update_progress(0.0) self.render_engine.update_stats(self.status_title, 'Start syncing') log(f"Status [{0.0:.2}]: {'Start syncing'}") </DeepExtract> time_begin = time.perf_counter() border = ((0, 0), (1, 1)) if not scene.render.use_border else ((scene.render.border_min_x, scene.render.border_min_y), (scene.render.border_max_x - scene.render.border_min_x, scene.render.border_max_y - scene.render.border_min_y)) screen_width = int(scene.render.resolution_x * scene.render.resolution_percentage / 100) screen_height = int(scene.render.resolution_y * scene.render.resolution_percentage / 100) self.width = int(screen_width * border[1][0]) self.height = int(screen_height * border[1][1]) <DeepExtract> pass </DeepExtract> usd_utils.set_delegate_variant_stage(self.stage, settings.delegate_name) if self.render_engine.test_break(): log.warn('Syncing stopped by user termination') return self.render_engine.bl_use_gpu_context = settings.is_gl_delegate log.info('Scene synchronization time:', time_str(time.perf_counter() - time_begin)) <DeepExtract> self.render_engine.update_progress(0.0) self.render_engine.update_stats(self.status_title, 'Start render') log(f"Status [{0.0:.2}]: {'Start render'}") </DeepExtract>
def sync(self, depsgraph): scene = depsgraph.scene settings = scene.hdusd.final view_layer = depsgraph.view_layer self.render_layer_name = view_layer.name self.status_title = f'{scene.name}: {self.render_layer_name}' self.render_engine.update_progress(0.0) self.render_engine.update_stats(self.status_title, 'Start syncing') log(f"Status [{0.0:.2}]: {'Start syncing'}") time_begin = time.perf_counter() border = ((0, 0), (1, 1)) if not scene.render.use_border else ((scene.render.border_min_x, scene.render.border_min_y), (scene.render.border_max_x - scene.render.border_min_x, scene.render.border_max_y - scene.render.border_min_y)) screen_width = int(scene.render.resolution_x * scene.render.resolution_percentage / 100) screen_height = int(scene.render.resolution_y * scene.render.resolution_percentage / 100) self.width = int(screen_width * border[1][0]) self.height = int(screen_height * border[1][1]) pass usd_utils.set_delegate_variant_stage(self.stage, settings.delegate_name) if self.render_engine.test_break(): log.warn('Syncing stopped by user termination') return self.render_engine.bl_use_gpu_context = settings.is_gl_delegate log.info('Scene synchronization time:', time_str(time.perf_counter() - time_begin)) self.render_engine.update_progress(0.0) self.render_engine.update_stats(self.status_title, 'Start render') log(f"Status [{0.0:.2}]: {'Start render'}") </DeepExtract>
BlenderUSDHydraAddon
positive
def convert_resnet_bottleneck_deps(deps): assert len(deps) in [53, 104, 155] res_n = len(deps) - 3 num_blocks = resnet_n_to_num_blocks[res_n] <DeepExtract> start_layer_idx_of_stage = [2, 3 + num_blocks[0] * 3, 4 + (num_blocks[0] + num_blocks[1]) * 3, 5 + (num_blocks[0] + num_blocks[1] + num_blocks[2]) * 3] </DeepExtract> d = [deps[0]] for stage_idx in range(4): tmp = [] assert deps[start_layer_idx_of_stage[stage_idx] - 1] == deps[start_layer_idx_of_stage[stage_idx] + 2] for i in range(num_blocks[stage_idx]): tmp.append([deps[start_layer_idx_of_stage[stage_idx] + i * 3], deps[start_layer_idx_of_stage[stage_idx] + 1 + i * 3], deps[start_layer_idx_of_stage[stage_idx] + 2 + i * 3]]) d.append(tmp) return d
def convert_resnet_bottleneck_deps(deps): assert len(deps) in [53, 104, 155] res_n = len(deps) - 3 num_blocks = resnet_n_to_num_blocks[res_n] start_layer_idx_of_stage = [2, 3 + num_blocks[0] * 3, 4 + (num_blocks[0] + num_blocks[1]) * 3, 5 + (num_blocks[0] + num_blocks[1] + num_blocks[2]) * 3] d = [deps[0]] for stage_idx in range(4): tmp = [] assert deps[start_layer_idx_of_stage[stage_idx] - 1] == deps[start_layer_idx_of_stage[stage_idx] + 2] for i in range(num_blocks[stage_idx]): tmp.append([deps[start_layer_idx_of_stage[stage_idx] + i * 3], deps[start_layer_idx_of_stage[stage_idx] + 1 + i * 3], deps[start_layer_idx_of_stage[stage_idx] + 2 + i * 3]]) d.append(tmp) return d
ACNet
positive
def show_main_view(self, from_main): """Shows the main window depending on where the application comes from. If the from_main flag is true, the configuration comes from the previous GUI views. Otherwise, the configuration comes from a configuration file. Eitherway, the main view will be shown with the proper configuration. Arguments: from_main {bool} -- tells if the configuration comes from either configuration file or GUI. """ if not from_main: layout_configuration = self.layout_selector.get_config() <DeepExtract> for i in reversed(range(self.parent.main_layout.count())): widgetToRemove = self.parent.main_layout.itemAt(i).widget() self.parent.main_layout.removeWidget(widgetToRemove) widgetToRemove.setParent(None) </DeepExtract> else: layout_configuration = None self.main_view = MainView(layout_configuration, self.configuration, self.controller, self.parent) self.parent.main_layout.addWidget(self.main_view) <DeepExtract> self.w = QFrame(self.parent) self.w.setFixedSize(WIDTH, HEIGHT) self.w.setStyleSheet('background-color: rgba(51,51,51,1)') self.w.show() effect = QGraphicsOpacityEffect() self.w.setGraphicsEffect(effect) self.animation = QPropertyAnimation(effect, b'opacity') self.animation.setDuration(500) self.animation.setStartValue(1) self.animation.setEndValue(0) self.animation.start(QPropertyAnimation.DeleteWhenStopped) self.animation.finished.connect(self.fade_animation) </DeepExtract> <DeepExtract> self.thread_gui.start() </DeepExtract>
def show_main_view(self, from_main): """Shows the main window depending on where the application comes from. If the from_main flag is true, the configuration comes from the previous GUI views. Otherwise, the configuration comes from a configuration file. Eitherway, the main view will be shown with the proper configuration. Arguments: from_main {bool} -- tells if the configuration comes from either configuration file or GUI. """ if not from_main: layout_configuration = self.layout_selector.get_config() for i in reversed(range(self.parent.main_layout.count())): widgetToRemove = self.parent.main_layout.itemAt(i).widget() self.parent.main_layout.removeWidget(widgetToRemove) widgetToRemove.setParent(None) else: layout_configuration = None self.main_view = MainView(layout_configuration, self.configuration, self.controller, self.parent) self.parent.main_layout.addWidget(self.main_view) self.w = QFrame(self.parent) self.w.setFixedSize(WIDTH, HEIGHT) self.w.setStyleSheet('background-color: rgba(51,51,51,1)') self.w.show() effect = QGraphicsOpacityEffect() self.w.setGraphicsEffect(effect) self.animation = QPropertyAnimation(effect, b'opacity') self.animation.setDuration(500) self.animation.setStartValue(1) self.animation.setEndValue(0) self.animation.start(QPropertyAnimation.DeleteWhenStopped) self.animation.finished.connect(self.fade_animation) self.thread_gui.start() </DeepExtract>
BehaviorMetrics
positive
def async_check_update(self, now, callback=None): """Perform update check, run as target of background thread""" self._async_checking = True if self._verbose: print('{} BG thread: Checking for update now in background'.format(self._addon)) try: <DeepExtract> if self._verbose: print('Checking for update function') self._error = None self._error_msg = None if self._update_ready != None and now == False: return (self._update_ready, self._update_version, self._update_link) if self._current_version == None: raise ValueError('current_version not yet defined') if self._repo == None: raise ValueError('repo not yet defined') if self._user == None: raise ValueError('username not yet defined') self.set_updater_json() if now == False and self.past_interval_timestamp() == False: if self._verbose: print('Aborting check for updated, check interval not reached') return (False, None, None) if self._fake_install == True: if self._verbose: print('fake_install = True, setting fake version as ready') self._update_ready = True self._update_version = '(999,999,999)' self._update_link = 'http://127.0.0.1' return (self._update_ready, self._update_version, self._update_link) self.get_tags() self._json['last_check'] = str(datetime.now()) self.save_updater_json() new_version = self.version_tuple_from_text(self.tag_latest) if len(self._tags) == 0: self._update_ready = False self._update_version = None self._update_link = None return (False, None, None) if self._include_branches == False: link = self.select_link(self, self._tags[0]) else: n = len(self._include_branch_list) if len(self._tags) == n: link = self.select_link(self, self._tags[0]) else: link = self.select_link(self, self._tags[n]) if new_version == (): self._update_ready = False self._update_version = None self._update_link = None return (False, None, None) elif str(new_version).lower() in self._include_branch_list: if self._include_branch_autocheck == False: self._update_ready = False self._update_version = new_version self._update_link = link self.save_updater_json() return (True, new_version, link) else: raise ValueError('include_branch_autocheck: NOT YET DEVELOPED') elif new_version > self._current_version: self._update_ready = True self._update_version = new_version self._update_link = link self.save_updater_json() return (True, new_version, link) self._update_ready = False self._update_version = None self._update_link = None return (False, None, None) </DeepExtract> except Exception as exception: print('Checking for update error:') print(exception) <DeepExtract> if self._use_print_traces: traceback.print_exc() </DeepExtract> if not self._error: self._update_ready = False self._update_version = None self._update_link = None self._error = 'Error occurred' self._error_msg = 'Encountered an error while checking for updates' self._async_checking = False self._check_thread = None if self._verbose: print('{} BG thread: Finished checking for update, doing callback'.format(self._addon)) if callback: callback(self._update_ready)
def async_check_update(self, now, callback=None): """Perform update check, run as target of background thread""" self._async_checking = True if self._verbose: print('{} BG thread: Checking for update now in background'.format(self._addon)) try: if self._verbose: print('Checking for update function') self._error = None self._error_msg = None if self._update_ready != None and now == False: return (self._update_ready, self._update_version, self._update_link) if self._current_version == None: raise ValueError('current_version not yet defined') if self._repo == None: raise ValueError('repo not yet defined') if self._user == None: raise ValueError('username not yet defined') self.set_updater_json() if now == False and self.past_interval_timestamp() == False: if self._verbose: print('Aborting check for updated, check interval not reached') return (False, None, None) if self._fake_install == True: if self._verbose: print('fake_install = True, setting fake version as ready') self._update_ready = True self._update_version = '(999,999,999)' self._update_link = 'http://127.0.0.1' return (self._update_ready, self._update_version, self._update_link) self.get_tags() self._json['last_check'] = str(datetime.now()) self.save_updater_json() new_version = self.version_tuple_from_text(self.tag_latest) if len(self._tags) == 0: self._update_ready = False self._update_version = None self._update_link = None return (False, None, None) if self._include_branches == False: link = self.select_link(self, self._tags[0]) else: n = len(self._include_branch_list) if len(self._tags) == n: link = self.select_link(self, self._tags[0]) else: link = self.select_link(self, self._tags[n]) if new_version == (): self._update_ready = False self._update_version = None self._update_link = None return (False, None, None) elif str(new_version).lower() in self._include_branch_list: if self._include_branch_autocheck == False: self._update_ready = False self._update_version = new_version self._update_link = link self.save_updater_json() return (True, new_version, link) else: raise ValueError('include_branch_autocheck: NOT YET DEVELOPED') elif new_version > self._current_version: self._update_ready = True self._update_version = new_version self._update_link = link self.save_updater_json() return (True, new_version, link) self._update_ready = False self._update_version = None self._update_link = None return (False, None, None) except Exception as exception: print('Checking for update error:') print(exception) if self._use_print_traces: traceback.print_exc() if not self._error: self._update_ready = False self._update_version = None self._update_link = None self._error = 'Error occurred' self._error_msg = 'Encountered an error while checking for updates' self._async_checking = False self._check_thread = None if self._verbose: print('{} BG thread: Finished checking for update, doing callback'.format(self._addon)) if callback: callback(self._update_ready)
building_tools
positive
@mock.patch('analytics_dashboard.courses.permissions.OAuthAPIClient') def test_get_user_course_permissions(self, mock_client): """ Verify course permissions are retrieved and cached, even when paged. """ page_size = 5 course_ids = [str(x) for x in range(page_size * 2)] <DeepExtract> paged_responses = [] course_id_pages = [course_ids[x:x + page_size] for x in range(0, len(course_ids), page_size)] for (page, course_ids_for_page) in enumerate(course_id_pages, start=1): if page == len(course_id_pages): next_page_url = None else: next_page_url = 'http://course-api-host/course_ids?page={}'.format(page + 1) response = {'pagination': {'next': next_page_url}, 'results': course_ids_for_page} paged_responses.append(response) mock_client.return_value.get.return_value.json.side_effect = paged_responses expected_calls = self._get_expected_permissions_client_calls(len(course_id_pages)) </DeepExtract> self.assertCountEqual(permissions.get_user_course_permissions(self.user), course_ids) self.assertCountEqual(expected_calls, mock_client.mock_calls) mock_client.reset_mock() <DeepExtract> paged_responses = [] course_id_pages = [[self.new_course_id][x:x + page_size] for x in range(0, len([self.new_course_id]), page_size)] for (page, course_ids_for_page) in enumerate(course_id_pages, start=1): if page == len(course_id_pages): next_page_url = None else: next_page_url = 'http://course-api-host/course_ids?page={}'.format(page + 1) response = {'pagination': {'next': next_page_url}, 'results': course_ids_for_page} paged_responses.append(response) mock_client.return_value.get.return_value.json.side_effect = paged_responses return self._get_expected_permissions_client_calls(len(course_id_pages)) </DeepExtract> self.assertCountEqual(permissions.get_user_course_permissions(self.user), course_ids) self.assertFalse(mock_client.mock_calls) mock_client.reset_mock() self.assertCountEqual(permissions.get_user_course_permissions(self.user), course_ids) self.assertFalse(mock_client.mock_calls)
@mock.patch('analytics_dashboard.courses.permissions.OAuthAPIClient') def test_get_user_course_permissions(self, mock_client): """ Verify course permissions are retrieved and cached, even when paged. """ page_size = 5 course_ids = [str(x) for x in range(page_size * 2)] paged_responses = [] course_id_pages = [course_ids[x:x + page_size] for x in range(0, len(course_ids), page_size)] for (page, course_ids_for_page) in enumerate(course_id_pages, start=1): if page == len(course_id_pages): next_page_url = None else: next_page_url = 'http://course-api-host/course_ids?page={}'.format(page + 1) response = {'pagination': {'next': next_page_url}, 'results': course_ids_for_page} paged_responses.append(response) mock_client.return_value.get.return_value.json.side_effect = paged_responses expected_calls = self._get_expected_permissions_client_calls(len(course_id_pages)) self.assertCountEqual(permissions.get_user_course_permissions(self.user), course_ids) self.assertCountEqual(expected_calls, mock_client.mock_calls) mock_client.reset_mock() paged_responses = [] course_id_pages = [[self.new_course_id][x:x + page_size] for x in range(0, len([self.new_course_id]), page_size)] for (page, course_ids_for_page) in enumerate(course_id_pages, start=1): if page == len(course_id_pages): next_page_url = None else: next_page_url = 'http://course-api-host/course_ids?page={}'.format(page + 1) response = {'pagination': {'next': next_page_url}, 'results': course_ids_for_page} paged_responses.append(response) mock_client.return_value.get.return_value.json.side_effect = paged_responses return self._get_expected_permissions_client_calls(len(course_id_pages)) self.assertCountEqual(permissions.get_user_course_permissions(self.user), course_ids) self.assertFalse(mock_client.mock_calls) mock_client.reset_mock() self.assertCountEqual(permissions.get_user_course_permissions(self.user), course_ids) self.assertFalse(mock_client.mock_calls)
edx-analytics-dashboard
positive
def convert_examples_to_features(examples, label_list, max_seq_length, tokenizer): """Convert a set of `InputExample`s to a list of `InputFeatures`.""" features = [] for (ex_index, example) in enumerate(examples): if ex_index % 10000 == 0: tf.logging.info('Writing example %d of %d' % (ex_index, len(examples))) <DeepExtract> if isinstance(example, PaddingInputExample): feature = InputFeatures(input_ids=[0] * max_seq_length, input_mask=[0] * max_seq_length, segment_ids=[0] * max_seq_length, label_id=0, is_real_example=False) label_map = {} for (i, label) in enumerate(label_list): label_map[label] = i tokens_a = tokenizer.tokenize(example.text_a) tokens_b = None if example.text_b: tokens_b = tokenizer.tokenize(example.text_b) if tokens_b: _truncate_seq_pair(tokens_a, tokens_b, max_seq_length - 3) elif len(tokens_a) > max_seq_length - 2: tokens_a = tokens_a[0:max_seq_length - 2] tokens = [] segment_ids = [] tokens.append('[CLS]') segment_ids.append(0) for token in tokens_a: tokens.append(token) segment_ids.append(0) tokens.append('[SEP]') segment_ids.append(0) if tokens_b: for token in tokens_b: tokens.append(token) segment_ids.append(1) tokens.append('[SEP]') segment_ids.append(1) input_ids = tokenizer.convert_tokens_to_ids(tokens) input_mask = [1] * len(input_ids) while len(input_ids) < max_seq_length: input_ids.append(0) input_mask.append(0) segment_ids.append(0) assert len(input_ids) == max_seq_length assert len(input_mask) == max_seq_length assert len(segment_ids) == max_seq_length label_id = label_map[example.label] if ex_index < 5: tf.logging.info('*** Example ***') tf.logging.info('guid: %s' % example.guid) tf.logging.info('tokens: %s' % ' '.join([tokenization.printable_text(x) for x in tokens])) tf.logging.info('input_ids: %s' % ' '.join([str(x) for x in input_ids])) tf.logging.info('input_mask: %s' % ' '.join([str(x) for x in input_mask])) tf.logging.info('segment_ids: %s' % ' '.join([str(x) for x in segment_ids])) tf.logging.info('label: %s (id = %d)' % (example.label, label_id)) feature = InputFeatures(input_ids=input_ids, input_mask=input_mask, segment_ids=segment_ids, label_id=label_id, is_real_example=True) feature = feature </DeepExtract> features.append(feature) return features
def convert_examples_to_features(examples, label_list, max_seq_length, tokenizer): """Convert a set of `InputExample`s to a list of `InputFeatures`.""" features = [] for (ex_index, example) in enumerate(examples): if ex_index % 10000 == 0: tf.logging.info('Writing example %d of %d' % (ex_index, len(examples))) if isinstance(example, PaddingInputExample): feature = InputFeatures(input_ids=[0] * max_seq_length, input_mask=[0] * max_seq_length, segment_ids=[0] * max_seq_length, label_id=0, is_real_example=False) label_map = {} for (i, label) in enumerate(label_list): label_map[label] = i tokens_a = tokenizer.tokenize(example.text_a) tokens_b = None if example.text_b: tokens_b = tokenizer.tokenize(example.text_b) if tokens_b: _truncate_seq_pair(tokens_a, tokens_b, max_seq_length - 3) elif len(tokens_a) > max_seq_length - 2: tokens_a = tokens_a[0:max_seq_length - 2] tokens = [] segment_ids = [] tokens.append('[CLS]') segment_ids.append(0) for token in tokens_a: tokens.append(token) segment_ids.append(0) tokens.append('[SEP]') segment_ids.append(0) if tokens_b: for token in tokens_b: tokens.append(token) segment_ids.append(1) tokens.append('[SEP]') segment_ids.append(1) input_ids = tokenizer.convert_tokens_to_ids(tokens) input_mask = [1] * len(input_ids) while len(input_ids) < max_seq_length: input_ids.append(0) input_mask.append(0) segment_ids.append(0) assert len(input_ids) == max_seq_length assert len(input_mask) == max_seq_length assert len(segment_ids) == max_seq_length label_id = label_map[example.label] if ex_index < 5: tf.logging.info('*** Example ***') tf.logging.info('guid: %s' % example.guid) tf.logging.info('tokens: %s' % ' '.join([tokenization.printable_text(x) for x in tokens])) tf.logging.info('input_ids: %s' % ' '.join([str(x) for x in input_ids])) tf.logging.info('input_mask: %s' % ' '.join([str(x) for x in input_mask])) tf.logging.info('segment_ids: %s' % ' '.join([str(x) for x in segment_ids])) tf.logging.info('label: %s (id = %d)' % (example.label, label_id)) feature = InputFeatures(input_ids=input_ids, input_mask=input_mask, segment_ids=segment_ids, label_id=label_id, is_real_example=True) feature = feature features.append(feature) return features
BERT-for-Sequence-Labeling-and-Text-Classification
positive
def loadfat_sect(self, sect): """ Adds the indexes of the given sector to the FAT :param sect: string containing the first FAT sector, or array of long integers :returns: index of last FAT sector. """ if isinstance(sect, array.array): fat1 = sect else: <DeepExtract> a = array.array(UINT32, sect) if sys.byteorder == 'big': a.byteswap() fat1 = a </DeepExtract> <DeepExtract> if not DEBUG_MODE: return VPL = 8 tab = array.array(UINT32, sect) if sys.byteorder == 'big': tab.byteswap() nbsect = len(tab) nlines = (nbsect + VPL - 1) // VPL print('index', end=' ') for i in range(VPL): print('%8X' % i, end=' ') print() for l in range(nlines): index = l * VPL print('%8X:' % (firstindex + index), end=' ') for i in range(index, index + VPL): if i >= nbsect: break sect = tab[i] name = '%8X' % sect print(name, end=' ') print() </DeepExtract> for isect in fat1: isect = isect & 4294967295 debug('isect = %X' % isect) if isect == ENDOFCHAIN or isect == FREESECT: debug('found end of sector chain') break <DeepExtract> try: self.fp.seek(self.sectorsize * (isect + 1)) except: debug('getsect(): sect=%X, seek=%d, filesize=%d' % (isect, self.sectorsize * (isect + 1), self._filesize)) self._raise_defect(DEFECT_FATAL, 'OLE sector index out of range') sector = self.fp.read(self.sectorsize) if len(sector) != self.sectorsize: debug('getsect(): sect=%X, read=%d, sectorsize=%d' % (isect, len(sector), self.sectorsize)) self._raise_defect(DEFECT_FATAL, 'incomplete OLE sector') s = sector </DeepExtract> <DeepExtract> a = array.array(UINT32, s) if sys.byteorder == 'big': a.byteswap() nextfat = a </DeepExtract> self.fat = self.fat + nextfat return isect
def loadfat_sect(self, sect): """ Adds the indexes of the given sector to the FAT :param sect: string containing the first FAT sector, or array of long integers :returns: index of last FAT sector. """ if isinstance(sect, array.array): fat1 = sect else: a = array.array(UINT32, sect) if sys.byteorder == 'big': a.byteswap() fat1 = a if not DEBUG_MODE: return VPL = 8 tab = array.array(UINT32, sect) if sys.byteorder == 'big': tab.byteswap() nbsect = len(tab) nlines = (nbsect + VPL - 1) // VPL print('index', end=' ') for i in range(VPL): print('%8X' % i, end=' ') print() for l in range(nlines): index = l * VPL print('%8X:' % (firstindex + index), end=' ') for i in range(index, index + VPL): if i >= nbsect: break sect = tab[i] name = '%8X' % sect print(name, end=' ') print() for isect in fat1: isect = isect & 4294967295 debug('isect = %X' % isect) if isect == ENDOFCHAIN or isect == FREESECT: debug('found end of sector chain') break try: self.fp.seek(self.sectorsize * (isect + 1)) except: debug('getsect(): sect=%X, seek=%d, filesize=%d' % (isect, self.sectorsize * (isect + 1), self._filesize)) self._raise_defect(DEFECT_FATAL, 'OLE sector index out of range') sector = self.fp.read(self.sectorsize) if len(sector) != self.sectorsize: debug('getsect(): sect=%X, read=%d, sectorsize=%d' % (isect, len(sector), self.sectorsize)) self._raise_defect(DEFECT_FATAL, 'incomplete OLE sector') s = sector a = array.array(UINT32, s) if sys.byteorder == 'big': a.byteswap() nextfat = a self.fat = self.fat + nextfat return isect
crackerjack
positive
def _locate_or_create(): home_config = path.expanduser('~/.cephdeploy.conf') locations = [path.join(os.getcwd(), 'cephdeploy.conf'), home_config] for location in locations: if path.exists(location): logger.debug('found configuration file at: %s' % location) return location logger.info('could not find configuration file, will create one in $HOME') <DeepExtract> home_config = home_config or path.expanduser('~/.cephdeploy.conf') logger.debug('creating new configuration file: %s' % home_config) with open(home_config, 'w') as cd_conf: cd_conf.write(cd_conf_template) </DeepExtract> return home_config
def _locate_or_create(): home_config = path.expanduser('~/.cephdeploy.conf') locations = [path.join(os.getcwd(), 'cephdeploy.conf'), home_config] for location in locations: if path.exists(location): logger.debug('found configuration file at: %s' % location) return location logger.info('could not find configuration file, will create one in $HOME') home_config = home_config or path.expanduser('~/.cephdeploy.conf') logger.debug('creating new configuration file: %s' % home_config) with open(home_config, 'w') as cd_conf: cd_conf.write(cd_conf_template) return home_config
ceph-deploy
positive
@_wrapdll(cl_command_queue, cl_command_queue_info, size_t, void_p, P(size_t)) def clGetCommandQueueInfo(queue, param_name): """ :param queue: :class:`cl_command_queue`. :param param_name: One of the :class:`cl_command_queue_info` values. >>> q = clCreateCommandQueue() >>> q.context # doctest: +ELLIPSIS <cl_context ...> >>> q.device # doctest: +ELLIPSIS <cl_device ...> >>> q.properties # doctest: +ELLIPSIS NONE >>> q.reference_count 1 """ if param_name == cl_command_queue_info.CL_QUEUE_CONTEXT: param_value = cl_context() clGetCommandQueueInfo.call(queue, param_name, sizeof(param_value), byref(param_value), None) <DeepExtract> clRetainContext.call(param_value) </DeepExtract> return param_value elif param_name == cl_command_queue_info.CL_QUEUE_DEVICE: param_value = cl_device() clGetCommandQueueInfo.call(queue, param_name, sizeof(param_value), byref(param_value), None) return param_value elif param_name == cl_command_queue_info.CL_QUEUE_PROPERTIES: param_value = cl_command_queue_properties() clGetCommandQueueInfo.call(queue, param_name, sizeof(param_value), byref(param_value), None) return param_value elif param_name == cl_command_queue_info.CL_QUEUE_REFERENCE_COUNT: param_value = cl_uint() clGetCommandQueueInfo.call(queue, param_name, sizeof(param_value), byref(param_value), None) return int(param_value.value) else: raise ValueError('Unrecognized parameter %s' % param_name)
@_wrapdll(cl_command_queue, cl_command_queue_info, size_t, void_p, P(size_t)) def clGetCommandQueueInfo(queue, param_name): """ :param queue: :class:`cl_command_queue`. :param param_name: One of the :class:`cl_command_queue_info` values. >>> q = clCreateCommandQueue() >>> q.context # doctest: +ELLIPSIS <cl_context ...> >>> q.device # doctest: +ELLIPSIS <cl_device ...> >>> q.properties # doctest: +ELLIPSIS NONE >>> q.reference_count 1 """ if param_name == cl_command_queue_info.CL_QUEUE_CONTEXT: param_value = cl_context() clGetCommandQueueInfo.call(queue, param_name, sizeof(param_value), byref(param_value), None) clRetainContext.call(param_value) return param_value elif param_name == cl_command_queue_info.CL_QUEUE_DEVICE: param_value = cl_device() clGetCommandQueueInfo.call(queue, param_name, sizeof(param_value), byref(param_value), None) return param_value elif param_name == cl_command_queue_info.CL_QUEUE_PROPERTIES: param_value = cl_command_queue_properties() clGetCommandQueueInfo.call(queue, param_name, sizeof(param_value), byref(param_value), None) return param_value elif param_name == cl_command_queue_info.CL_QUEUE_REFERENCE_COUNT: param_value = cl_uint() clGetCommandQueueInfo.call(queue, param_name, sizeof(param_value), byref(param_value), None) return int(param_value.value) else: raise ValueError('Unrecognized parameter %s' % param_name)
blender-texture-tools
positive
def _generate_input_code(nodes: list, job_name: str, output_directory: str): """ Generates code for loading inputs. """ schemas = {} close_ops = filter(lambda op_node: isinstance(op_node, Close), nodes) my_close_ops = filter(lambda close_op: self.pid in close_op.get_in_rel().stored_with, close_ops) hdfs_import_statements = [] import_statements = [] for close_op in my_close_ops: <DeepExtract> in_rel = close_op.get_in_rel() in_cols = in_rel.columns out_rel = close_op.out_rel out_cols = out_rel.columns col_defs = [] col_def_template = open('{0}/col_def.tmpl'.format(self.template_directory), 'r').read() for (in_col, out_col) in zip(in_cols, out_cols): col_data = {'IN_NAME': in_col.get_name(), 'OUT_NAME': out_col.get_name(), 'TYPE': 'uint32'} col_defs.append(pystache.render(col_def_template, col_data)) col_def_str = '\n'.join(col_defs) rel_def_template = open('{0}/rel_def.tmpl'.format(self.template_directory), 'r').read() rel_data = {'NAME': close_op.get_in_rel().name, 'COL_DEFS': col_def_str} rel_def_header = ','.join([c.name for c in in_cols]) rel_def_str = pystache.render(rel_def_template, rel_data) (name, schema, header) = (in_rel.name, rel_def_str, rel_def_header) </DeepExtract> schemas[name] = schema if self.sm_config.use_hdfs: hdfs_import_statements.append(self._generate_hdfs_import(close_op, header, job_name)[:-1]) else: hdfs_import_statements.append('cp {} {}'.format(self.config.output_path + '/' + name + '.csv', self.config.code_path + '/' + job_name + '/' + name + '.csv')) import_statements.append(self._generate_csv_import(close_op, output_directory, job_name)[:-1]) input_code = '&&'.join(import_statements) if self.sm_config.use_docker: top_level_template = open('{0}/csv_import_top_level.tmpl'.format(self.template_directory), 'r').read() else: top_level_template = open('{0}/csv_import_no_docker.tmpl'.format(self.template_directory), 'r').read() top_level_data = {'SHAREMIND_HOME': self.sm_config.home_path, 'HDFS_IMPORTS': '\n'.join(hdfs_import_statements), 'IMPORTS': input_code} return (schemas, pystache.render(top_level_template, top_level_data))
def _generate_input_code(nodes: list, job_name: str, output_directory: str): """ Generates code for loading inputs. """ schemas = {} close_ops = filter(lambda op_node: isinstance(op_node, Close), nodes) my_close_ops = filter(lambda close_op: self.pid in close_op.get_in_rel().stored_with, close_ops) hdfs_import_statements = [] import_statements = [] for close_op in my_close_ops: in_rel = close_op.get_in_rel() in_cols = in_rel.columns out_rel = close_op.out_rel out_cols = out_rel.columns col_defs = [] col_def_template = open('{0}/col_def.tmpl'.format(self.template_directory), 'r').read() for (in_col, out_col) in zip(in_cols, out_cols): col_data = {'IN_NAME': in_col.get_name(), 'OUT_NAME': out_col.get_name(), 'TYPE': 'uint32'} col_defs.append(pystache.render(col_def_template, col_data)) col_def_str = '\n'.join(col_defs) rel_def_template = open('{0}/rel_def.tmpl'.format(self.template_directory), 'r').read() rel_data = {'NAME': close_op.get_in_rel().name, 'COL_DEFS': col_def_str} rel_def_header = ','.join([c.name for c in in_cols]) rel_def_str = pystache.render(rel_def_template, rel_data) (name, schema, header) = (in_rel.name, rel_def_str, rel_def_header) schemas[name] = schema if self.sm_config.use_hdfs: hdfs_import_statements.append(self._generate_hdfs_import(close_op, header, job_name)[:-1]) else: hdfs_import_statements.append('cp {} {}'.format(self.config.output_path + '/' + name + '.csv', self.config.code_path + '/' + job_name + '/' + name + '.csv')) import_statements.append(self._generate_csv_import(close_op, output_directory, job_name)[:-1]) input_code = '&&'.join(import_statements) if self.sm_config.use_docker: top_level_template = open('{0}/csv_import_top_level.tmpl'.format(self.template_directory), 'r').read() else: top_level_template = open('{0}/csv_import_no_docker.tmpl'.format(self.template_directory), 'r').read() top_level_data = {'SHAREMIND_HOME': self.sm_config.home_path, 'HDFS_IMPORTS': '\n'.join(hdfs_import_statements), 'IMPORTS': input_code} return (schemas, pystache.render(top_level_template, top_level_data))
conclave
positive
def get_frame_from_container_ipdu(pdu, target_frame, ea, float_factory, headers_are_littleendian): target_frame.is_fd = True pdus = ea.follow_all_ref(pdu, 'CONTAINED-PDU-TRIGGERING-REF') header_type = ea.get_child(pdu, 'HEADER-TYPE').text header_type_params = {'SHORT-HEADER': (24, 8), 'LONG-HEADER': (32, 32)} if header_type in header_type_params: mux_size = header_type_params[header_type] target_frame.add_signal(canmatrix.Signal(start_bit=0, size=mux_size[0], name='Header_ID', is_little_endian=headers_are_littleendian)) target_frame.add_signal(canmatrix.Signal(start_bit=mux_size[0], size=mux_size[1], name='Header_DLC', is_little_endian=headers_are_littleendian)) ipdus_refs = [] for cpdu in pdus: ipdu = ea.follow_ref(cpdu, 'I-PDU-REF') if ipdu in ipdus_refs: continue ipdus_refs.append(ipdu) timing_spec = ea.get_child(ipdu, 'I-PDU-TIMING-SPECIFICATION') if timing_spec is None: timing_spec = ea.get_child(ipdu, 'I-PDU-TIMING-SPECIFICATIONS') cyclic_timing = ea.get_child(timing_spec, 'CYCLIC-TIMING') repeating_time = ea.get_child(cyclic_timing, 'REPEATING-TIME') cycle_time = 0 value = ea.get_child(repeating_time, 'VALUE') if value is not None: cycle_time = int(float_factory(value.text) * 1000) else: time_period = ea.get_child(cyclic_timing, 'TIME-PERIOD') value = ea.get_child(time_period, 'VALUE') if value is not None: cycle_time = int(float_factory(value.text) * 1000) try: if header_type == 'SHORT-HEADER': header_id = ea.get_child(ipdu, 'HEADER-ID-SHORT-HEADER').text elif header_type == 'LONG-HEADER': header_id = ea.get_child(ipdu, 'HEADER-ID-LONG-HEADER').text else: header_id = None except AttributeError: header_id = None if header_id is not None: header_id = int(header_id, 0) if ipdu is not None and 'SECURED-I-PDU' in ipdu.tag: secured_i_pdu_name = ea.get_element_name(ipdu) payload = ea.follow_ref(ipdu, 'PAYLOAD-REF') ipdu = ea.follow_ref(payload, 'I-PDU-REF') logger.info("found secured pdu '%s', dissolved to '%s'", secured_i_pdu_name, ea.get_element_name(ipdu)) try: offset = int(ea.get_child(ipdu, 'OFFSET').text, 0) * 8 except: offset = 0 try: pdu_type = ipdu.attrib['DEST'] except KeyError: pdu_type = '' try: pdu_port_type = ea.get_child(cpdu, 'I-PDU-PORT-REF').attrib['DEST'] except (AttributeError, KeyError): pdu_port_type = '' ipdu_length = int(ea.get_child(ipdu, 'LENGTH').text, 0) ipdu_name = ea.get_element_name(ipdu) ipdu_triggering_name = ea.get_element_name(cpdu) target_pdu = canmatrix.Pdu(name=ipdu_name, size=ipdu_length, id=header_id, triggering_name=ipdu_triggering_name, pdu_type=pdu_type, port_type=pdu_port_type, cycle_time=cycle_time) pdu_sig_mapping = ea.get_children(ipdu, 'I-SIGNAL-TO-I-PDU-MAPPING') <DeepExtract> group_id = 1 if pdu_sig_mapping is None: return for signal in pdu_sig_mapping: compu_method = None motorola = ea.get_child(signal, 'PACKING-BYTE-ORDER') start_bit = ea.get_child(signal, 'START-POSITION') isignal = ea.follow_ref(signal, 'SIGNAL-REF') if isignal is None: isignal = ea.follow_ref(signal, 'I-SIGNAL-REF') if isignal is None: isignal = ea.follow_ref(signal, 'I-SIGNAL-GROUP-REF') if isignal is not None: logger.debug('get_signals: found I-SIGNAL-GROUP ') isignal_array = ea.follow_all_ref(isignal, 'I-SIGNAL-REF') get_signalgrp_and_signals(isignal, isignal_array, target_pdu, group_id, ea) group_id = group_id + 1 continue if isignal is None: logger.debug('Frame %s, no isignal for %s found', target_pdu.name, ea.get_child(signal, 'SHORT-NAME').text) receiver = [] for triggering in signal_triggerings: try: if ea.selector(triggering, '>I-SIGNAL-REF')[0] == isignal: reciving_ecu_instances = ea.selector(triggering, '>>I-SIGNAL-PORT-REF//COMMUNICATION-DIRECTION:IN/../../..') receiver = [ea.get_short_name(a) for a in reciving_ecu_instances] except IndexError: pass base_type = ea.follow_ref(isignal, 'BASE-TYPE-REF') if base_type is None: a = ea.selector(isignal, '>SYSTEM-SIGNAL-REF>DATA-TYPE-REF>BASE-TYPE-REF') if len(a) > 0: base_type = a[0] try: type_encoding = ea.get_child(base_type, 'BASE-TYPE-ENCODING').text except AttributeError: type_encoding = 'None' signal_name = None signal_name_elem = ea.get_child(isignal, 'LONG-NAME') if signal_name_elem is not None: signal_name_elem = ea.get_child(signal_name_elem, 'L-4') if signal_name_elem is not None: signal_name = signal_name_elem.text system_signal = ea.follow_ref(isignal, 'SYSTEM-SIGNAL-REF') if system_signal is None: logger.debug('Frame %s, signal %s has no system-signal', target_pdu.name, isignal.tag) if system_signal is not None and 'SYSTEM-SIGNAL-GROUP' in system_signal.tag: system_signals = ea.selector(system_signal, 'SYSTEM-SIGNAL-REFS>>SYSTEM-SIGNAL-REF') get_signalgrp_and_signals(system_signal, system_signals, target_pdu, group_id, ea) group_id = group_id + 1 continue length = ea.get_child(isignal, 'LENGTH') if length is None: length = ea.get_child(system_signal, 'LENGTH') signal_min = None signal_max = None signal_description = ea.get_element_desc(system_signal) datatype = ea.follow_ref(system_signal, 'DATA-TYPE-REF') if datatype is None: data_constr = None compu_method = None base_type = None for test_signal in [isignal, system_signal]: if data_constr is None: data_constr = ea.follow_ref(test_signal, 'DATA-CONSTR-REF') if compu_method is None: compu_method = ea.follow_ref(test_signal, 'COMPU-METHOD-REF') if base_type is None: base_type = ea.follow_ref(test_signal, 'BASE-TYPE-REF') lower = ea.get_child(data_constr, 'LOWER-LIMIT') upper = ea.get_child(data_constr, 'UPPER-LIMIT') else: lower = ea.get_child(datatype, 'LOWER-LIMIT') upper = ea.get_child(datatype, 'UPPER-LIMIT') type_encoding = ea.get_child(datatype, 'ENCODING') if lower is not None and upper is not None: signal_min = float_factory(lower.text) signal_max = float_factory(upper.text) datdefprops = ea.get_child(datatype, 'SW-DATA-DEF-PROPS') if compu_method is None and datdefprops is not None: compu_method = ea.follow_ref(datdefprops, 'COMPU-METHOD-REF') if compu_method is None: compu_method = ea.follow_ref(isignal, 'COMPU-METHOD-REF') base_type = ea.follow_ref(isignal, 'BASE-TYPE-REF') encoding = ea.get_child(base_type, 'BASE-TYPE-ENCODING') if encoding is not None and encoding.text == 'IEEE754': is_float = True if compu_method is None: networkrep = ea.get_child(isignal, 'NETWORK-REPRESENTATION-PROPS') data_def_props_var = ea.get_child(networkrep, 'SW-DATA-DEF-PROPS-VARIANTS') data_def_props_cond = ea.get_child(data_def_props_var, 'SW-DATA-DEF-PROPS-CONDITIONAL') if data_def_props_cond is not None: try: compu_method = ea.get_child(data_def_props_cond, 'COMPU-METHOD') except: logger.debug('No valid compu method found for this - check ARXML file!!') compu_method = None if compu_method is None: logger.error('No valid compu method found for isignal/systemsignal {}/{} - check ARXML file!!'.format(ea.get_short_name(isignal), ea.get_short_name(system_signal))) if compu_method is None: logger.debug('No Compmethod found!! - fuzzy search in syssignal.') compu_method = ea.follow_ref(system_signal, 'COMPU-METHOD-REF') (values, factor, offset, unit_elem, const) = decode_compu_method(compu_method, ea, float_factory) if signal_min is not None: signal_min *= factor signal_min += offset if signal_max is not None: signal_max *= factor signal_max += offset if base_type is None: base_type = ea.follow_ref(datdefprops, 'BASE-TYPE-REF') (is_signed, is_float) = eval_type_of_signal(type_encoding, base_type, ea) unit_element = ea.get_child(isignal, 'UNIT') display_name = ea.get_child(unit_element, 'DISPLAY-NAME') if display_name is not None: signal_unit = display_name.text else: signal_unit = '' if unit_elem is not None: longname = ea.get_child(unit_elem, 'LONG-NAME') display_name = None try: display_name = ea.get_child(unit_elem, 'DISPLAY-NAME') except: logger.debug('No Unit Display name found!! - using long name') if display_name is not None: signal_unit = display_name.text else: l4 = ea.get_child(longname, 'L-4') if l4 is not None: signal_unit = l4.text init_list = ea.selector(system_signal, '>INIT-VALUE-REF/VALUE') if len(init_list) == 0: init_list = ea.find_children_by_path(isignal, 'INIT-VALUE/NUMERICAL-VALUE-SPECIFICATION/VALUE') if init_list: initvalue = init_list[0] else: initvalue = None isignal_name = ea.get_short_name(isignal) system_signal_name = ea.get_short_name(system_signal) compu_name = ea.get_short_name(compu_method) name = isignal_name if isignal_name else system_signal_name is_little_endian = False if motorola is not None: is_little_endian = ar_byteorder_is_little(motorola.text) else: logger.debug('no name byte order for signal' + name) if start_bit is None: logger.debug('no startBit for signal given') if length is None: logger.debug('no length for signal given') if start_bit is not None: new_signal = canmatrix.Signal(name, start_bit=int(start_bit.text, 0) + offset, size=int(length.text, 0) if length is not None else 0, is_little_endian=is_little_endian, is_signed=is_signed, factor=factor, offset=offset, unit=signal_unit, receivers=receiver, multiplex=None, comment=signal_description, is_float=is_float) if signal_min is not None: new_signal.min = signal_min if signal_max is not None: new_signal.max = signal_max if not new_signal.is_little_endian: new_signal.set_startbit(int(start_bit.text, 0) + offset, bitNumbering=1) communication_direction = ea.selector(isignal, '<I-SIGNAL-TRIGGERING>I-SIGNAL-PORT-REF/COMMUNICATION-DIRECTION') if len(communication_direction) > 0: ecu = ea.get_ecu_instance(communication_direction[0]) if communication_direction[0].text == 'IN': new_signal.add_receiver(ea.get_short_name(ecu)) if base_type is not None: temp = ea.get_child(base_type, 'SHORT-NAME') if temp is not None and 'boolean' == temp.text: new_signal.add_values(1, 'TRUE') new_signal.add_values(0, 'FALSE') if initvalue is not None and initvalue.text is not None: initvalue.text = canmatrix.utils.guess_value(initvalue.text) try: new_signal.initial_value = float_factory(initvalue.text) * factor + offset except decimal.InvalidOperation: logger.error('could not decode value {}'.format(initvalue.text)) for (key, value) in list(values.items()): new_signal.add_values(canmatrix.utils.decode_number(key, float_factory), value) if signal_name is not None: new_signal.add_attribute('LongName', signal_name) if compu_name is not None and compu_name: new_signal.add_attribute('CompuMethodName', compu_name) if isignal_name is not None and isignal_name: new_signal.add_attribute('ISignalName', isignal_name) if system_signal_name is not None and system_signal_name: new_signal.add_attribute('SysSignalName', system_signal_name) existing_signal = target_pdu.signal_by_name(new_signal.name) if existing_signal is None: target_pdu.add_signal(new_signal) </DeepExtract> target_frame.add_pdu(target_pdu)
def get_frame_from_container_ipdu(pdu, target_frame, ea, float_factory, headers_are_littleendian): target_frame.is_fd = True pdus = ea.follow_all_ref(pdu, 'CONTAINED-PDU-TRIGGERING-REF') header_type = ea.get_child(pdu, 'HEADER-TYPE').text header_type_params = {'SHORT-HEADER': (24, 8), 'LONG-HEADER': (32, 32)} if header_type in header_type_params: mux_size = header_type_params[header_type] target_frame.add_signal(canmatrix.Signal(start_bit=0, size=mux_size[0], name='Header_ID', is_little_endian=headers_are_littleendian)) target_frame.add_signal(canmatrix.Signal(start_bit=mux_size[0], size=mux_size[1], name='Header_DLC', is_little_endian=headers_are_littleendian)) ipdus_refs = [] for cpdu in pdus: ipdu = ea.follow_ref(cpdu, 'I-PDU-REF') if ipdu in ipdus_refs: continue ipdus_refs.append(ipdu) timing_spec = ea.get_child(ipdu, 'I-PDU-TIMING-SPECIFICATION') if timing_spec is None: timing_spec = ea.get_child(ipdu, 'I-PDU-TIMING-SPECIFICATIONS') cyclic_timing = ea.get_child(timing_spec, 'CYCLIC-TIMING') repeating_time = ea.get_child(cyclic_timing, 'REPEATING-TIME') cycle_time = 0 value = ea.get_child(repeating_time, 'VALUE') if value is not None: cycle_time = int(float_factory(value.text) * 1000) else: time_period = ea.get_child(cyclic_timing, 'TIME-PERIOD') value = ea.get_child(time_period, 'VALUE') if value is not None: cycle_time = int(float_factory(value.text) * 1000) try: if header_type == 'SHORT-HEADER': header_id = ea.get_child(ipdu, 'HEADER-ID-SHORT-HEADER').text elif header_type == 'LONG-HEADER': header_id = ea.get_child(ipdu, 'HEADER-ID-LONG-HEADER').text else: header_id = None except AttributeError: header_id = None if header_id is not None: header_id = int(header_id, 0) if ipdu is not None and 'SECURED-I-PDU' in ipdu.tag: secured_i_pdu_name = ea.get_element_name(ipdu) payload = ea.follow_ref(ipdu, 'PAYLOAD-REF') ipdu = ea.follow_ref(payload, 'I-PDU-REF') logger.info("found secured pdu '%s', dissolved to '%s'", secured_i_pdu_name, ea.get_element_name(ipdu)) try: offset = int(ea.get_child(ipdu, 'OFFSET').text, 0) * 8 except: offset = 0 try: pdu_type = ipdu.attrib['DEST'] except KeyError: pdu_type = '' try: pdu_port_type = ea.get_child(cpdu, 'I-PDU-PORT-REF').attrib['DEST'] except (AttributeError, KeyError): pdu_port_type = '' ipdu_length = int(ea.get_child(ipdu, 'LENGTH').text, 0) ipdu_name = ea.get_element_name(ipdu) ipdu_triggering_name = ea.get_element_name(cpdu) target_pdu = canmatrix.Pdu(name=ipdu_name, size=ipdu_length, id=header_id, triggering_name=ipdu_triggering_name, pdu_type=pdu_type, port_type=pdu_port_type, cycle_time=cycle_time) pdu_sig_mapping = ea.get_children(ipdu, 'I-SIGNAL-TO-I-PDU-MAPPING') group_id = 1 if pdu_sig_mapping is None: return for signal in pdu_sig_mapping: compu_method = None motorola = ea.get_child(signal, 'PACKING-BYTE-ORDER') start_bit = ea.get_child(signal, 'START-POSITION') isignal = ea.follow_ref(signal, 'SIGNAL-REF') if isignal is None: isignal = ea.follow_ref(signal, 'I-SIGNAL-REF') if isignal is None: isignal = ea.follow_ref(signal, 'I-SIGNAL-GROUP-REF') if isignal is not None: logger.debug('get_signals: found I-SIGNAL-GROUP ') isignal_array = ea.follow_all_ref(isignal, 'I-SIGNAL-REF') get_signalgrp_and_signals(isignal, isignal_array, target_pdu, group_id, ea) group_id = group_id + 1 continue if isignal is None: logger.debug('Frame %s, no isignal for %s found', target_pdu.name, ea.get_child(signal, 'SHORT-NAME').text) receiver = [] for triggering in signal_triggerings: try: if ea.selector(triggering, '>I-SIGNAL-REF')[0] == isignal: reciving_ecu_instances = ea.selector(triggering, '>>I-SIGNAL-PORT-REF//COMMUNICATION-DIRECTION:IN/../../..') receiver = [ea.get_short_name(a) for a in reciving_ecu_instances] except IndexError: pass base_type = ea.follow_ref(isignal, 'BASE-TYPE-REF') if base_type is None: a = ea.selector(isignal, '>SYSTEM-SIGNAL-REF>DATA-TYPE-REF>BASE-TYPE-REF') if len(a) > 0: base_type = a[0] try: type_encoding = ea.get_child(base_type, 'BASE-TYPE-ENCODING').text except AttributeError: type_encoding = 'None' signal_name = None signal_name_elem = ea.get_child(isignal, 'LONG-NAME') if signal_name_elem is not None: signal_name_elem = ea.get_child(signal_name_elem, 'L-4') if signal_name_elem is not None: signal_name = signal_name_elem.text system_signal = ea.follow_ref(isignal, 'SYSTEM-SIGNAL-REF') if system_signal is None: logger.debug('Frame %s, signal %s has no system-signal', target_pdu.name, isignal.tag) if system_signal is not None and 'SYSTEM-SIGNAL-GROUP' in system_signal.tag: system_signals = ea.selector(system_signal, 'SYSTEM-SIGNAL-REFS>>SYSTEM-SIGNAL-REF') get_signalgrp_and_signals(system_signal, system_signals, target_pdu, group_id, ea) group_id = group_id + 1 continue length = ea.get_child(isignal, 'LENGTH') if length is None: length = ea.get_child(system_signal, 'LENGTH') signal_min = None signal_max = None signal_description = ea.get_element_desc(system_signal) datatype = ea.follow_ref(system_signal, 'DATA-TYPE-REF') if datatype is None: data_constr = None compu_method = None base_type = None for test_signal in [isignal, system_signal]: if data_constr is None: data_constr = ea.follow_ref(test_signal, 'DATA-CONSTR-REF') if compu_method is None: compu_method = ea.follow_ref(test_signal, 'COMPU-METHOD-REF') if base_type is None: base_type = ea.follow_ref(test_signal, 'BASE-TYPE-REF') lower = ea.get_child(data_constr, 'LOWER-LIMIT') upper = ea.get_child(data_constr, 'UPPER-LIMIT') else: lower = ea.get_child(datatype, 'LOWER-LIMIT') upper = ea.get_child(datatype, 'UPPER-LIMIT') type_encoding = ea.get_child(datatype, 'ENCODING') if lower is not None and upper is not None: signal_min = float_factory(lower.text) signal_max = float_factory(upper.text) datdefprops = ea.get_child(datatype, 'SW-DATA-DEF-PROPS') if compu_method is None and datdefprops is not None: compu_method = ea.follow_ref(datdefprops, 'COMPU-METHOD-REF') if compu_method is None: compu_method = ea.follow_ref(isignal, 'COMPU-METHOD-REF') base_type = ea.follow_ref(isignal, 'BASE-TYPE-REF') encoding = ea.get_child(base_type, 'BASE-TYPE-ENCODING') if encoding is not None and encoding.text == 'IEEE754': is_float = True if compu_method is None: networkrep = ea.get_child(isignal, 'NETWORK-REPRESENTATION-PROPS') data_def_props_var = ea.get_child(networkrep, 'SW-DATA-DEF-PROPS-VARIANTS') data_def_props_cond = ea.get_child(data_def_props_var, 'SW-DATA-DEF-PROPS-CONDITIONAL') if data_def_props_cond is not None: try: compu_method = ea.get_child(data_def_props_cond, 'COMPU-METHOD') except: logger.debug('No valid compu method found for this - check ARXML file!!') compu_method = None if compu_method is None: logger.error('No valid compu method found for isignal/systemsignal {}/{} - check ARXML file!!'.format(ea.get_short_name(isignal), ea.get_short_name(system_signal))) if compu_method is None: logger.debug('No Compmethod found!! - fuzzy search in syssignal.') compu_method = ea.follow_ref(system_signal, 'COMPU-METHOD-REF') (values, factor, offset, unit_elem, const) = decode_compu_method(compu_method, ea, float_factory) if signal_min is not None: signal_min *= factor signal_min += offset if signal_max is not None: signal_max *= factor signal_max += offset if base_type is None: base_type = ea.follow_ref(datdefprops, 'BASE-TYPE-REF') (is_signed, is_float) = eval_type_of_signal(type_encoding, base_type, ea) unit_element = ea.get_child(isignal, 'UNIT') display_name = ea.get_child(unit_element, 'DISPLAY-NAME') if display_name is not None: signal_unit = display_name.text else: signal_unit = '' if unit_elem is not None: longname = ea.get_child(unit_elem, 'LONG-NAME') display_name = None try: display_name = ea.get_child(unit_elem, 'DISPLAY-NAME') except: logger.debug('No Unit Display name found!! - using long name') if display_name is not None: signal_unit = display_name.text else: l4 = ea.get_child(longname, 'L-4') if l4 is not None: signal_unit = l4.text init_list = ea.selector(system_signal, '>INIT-VALUE-REF/VALUE') if len(init_list) == 0: init_list = ea.find_children_by_path(isignal, 'INIT-VALUE/NUMERICAL-VALUE-SPECIFICATION/VALUE') if init_list: initvalue = init_list[0] else: initvalue = None isignal_name = ea.get_short_name(isignal) system_signal_name = ea.get_short_name(system_signal) compu_name = ea.get_short_name(compu_method) name = isignal_name if isignal_name else system_signal_name is_little_endian = False if motorola is not None: is_little_endian = ar_byteorder_is_little(motorola.text) else: logger.debug('no name byte order for signal' + name) if start_bit is None: logger.debug('no startBit for signal given') if length is None: logger.debug('no length for signal given') if start_bit is not None: new_signal = canmatrix.Signal(name, start_bit=int(start_bit.text, 0) + offset, size=int(length.text, 0) if length is not None else 0, is_little_endian=is_little_endian, is_signed=is_signed, factor=factor, offset=offset, unit=signal_unit, receivers=receiver, multiplex=None, comment=signal_description, is_float=is_float) if signal_min is not None: new_signal.min = signal_min if signal_max is not None: new_signal.max = signal_max if not new_signal.is_little_endian: new_signal.set_startbit(int(start_bit.text, 0) + offset, bitNumbering=1) communication_direction = ea.selector(isignal, '<I-SIGNAL-TRIGGERING>I-SIGNAL-PORT-REF/COMMUNICATION-DIRECTION') if len(communication_direction) > 0: ecu = ea.get_ecu_instance(communication_direction[0]) if communication_direction[0].text == 'IN': new_signal.add_receiver(ea.get_short_name(ecu)) if base_type is not None: temp = ea.get_child(base_type, 'SHORT-NAME') if temp is not None and 'boolean' == temp.text: new_signal.add_values(1, 'TRUE') new_signal.add_values(0, 'FALSE') if initvalue is not None and initvalue.text is not None: initvalue.text = canmatrix.utils.guess_value(initvalue.text) try: new_signal.initial_value = float_factory(initvalue.text) * factor + offset except decimal.InvalidOperation: logger.error('could not decode value {}'.format(initvalue.text)) for (key, value) in list(values.items()): new_signal.add_values(canmatrix.utils.decode_number(key, float_factory), value) if signal_name is not None: new_signal.add_attribute('LongName', signal_name) if compu_name is not None and compu_name: new_signal.add_attribute('CompuMethodName', compu_name) if isignal_name is not None and isignal_name: new_signal.add_attribute('ISignalName', isignal_name) if system_signal_name is not None and system_signal_name: new_signal.add_attribute('SysSignalName', system_signal_name) existing_signal = target_pdu.signal_by_name(new_signal.name) if existing_signal is None: target_pdu.add_signal(new_signal) target_frame.add_pdu(target_pdu)
canmatrix
positive
def generate_common(): common_lib = 'libcommon.dll' if sys.platform == 'win32' else 'libcommon.so' <DeepExtract> a_h = '#include "common.h"\n\nvoid foo(struct mystruct *m);\n\n' a_c = '#include "a.h"\n\nvoid foo(struct mystruct *m) {\n\n}\n\n' b_h = '#include "common.h"\n\nvoid bar(struct mystruct *m);\n\n' b_c = '#include "b.h"\n\nvoid bar(struct mystruct *m) {\n\n}\n\n' common_h = 'struct mystruct {\n int a;\n};\n\n' try: os.mkdir(COMMON_DIR) except FileExistsError: rmtree(COMMON_DIR) os.mkdir(COMMON_DIR) names = {'a.h': a_h, 'a.c': a_c, 'b.h': b_h, 'b.c': b_c, 'common.h': common_h} for (name, source) in names.items(): with open(f'{COMMON_DIR}/{name}', 'w') as f: f.write(source) </DeepExtract> <DeepExtract> subprocess.run(['gcc', '-c', f'{COMMON_DIR}/a.c', '-o', f'{COMMON_DIR}/a.o']) subprocess.run(['gcc', '-c', f'{COMMON_DIR}/b.c', '-o', f'{COMMON_DIR}/b.o']) subprocess.run(['gcc', '-shared', '-o', f'{COMMON_DIR}/{common_lib}', f'{COMMON_DIR}/a.o', f'{COMMON_DIR}/b.o']) </DeepExtract> for file_name in ['a', 'b']: <DeepExtract> test_options = options.get_default_options() test_options.headers = [f'{COMMON_DIR}/{file_name}.h'] test_options.include_search_paths = [COMMON_DIR] test_options.libraries = [common_lib] test_options.compile_libdirs = [COMMON_DIR] test_options.embed_preamble = embed_preamble if embed_preamble: output = f'{COMMON_DIR}/{file_name}.py' else: output = f'{COMMON_DIR}/{file_name}2.py' descriptions = parser.parse(test_options.headers, test_options) processor.process(descriptions, test_options) printer_python.WrapperPrinter(output, test_options, descriptions) </DeepExtract> for file_name in ['a', 'b']: <DeepExtract> test_options = options.get_default_options() test_options.headers = [f'{COMMON_DIR}/{file_name}.h'] test_options.include_search_paths = [COMMON_DIR] test_options.libraries = [common_lib] test_options.compile_libdirs = [COMMON_DIR] test_options.embed_preamble = False if False: output = f'{COMMON_DIR}/{file_name}.py' else: output = f'{COMMON_DIR}/{file_name}2.py' descriptions = parser.parse(test_options.headers, test_options) processor.process(descriptions, test_options) printer_python.WrapperPrinter(output, test_options, descriptions) </DeepExtract>
def generate_common(): common_lib = 'libcommon.dll' if sys.platform == 'win32' else 'libcommon.so' a_h = '#include "common.h"\n\nvoid foo(struct mystruct *m);\n\n' a_c = '#include "a.h"\n\nvoid foo(struct mystruct *m) {\n\n}\n\n' b_h = '#include "common.h"\n\nvoid bar(struct mystruct *m);\n\n' b_c = '#include "b.h"\n\nvoid bar(struct mystruct *m) {\n\n}\n\n' common_h = 'struct mystruct {\n int a;\n};\n\n' try: os.mkdir(COMMON_DIR) except FileExistsError: rmtree(COMMON_DIR) os.mkdir(COMMON_DIR) names = {'a.h': a_h, 'a.c': a_c, 'b.h': b_h, 'b.c': b_c, 'common.h': common_h} for (name, source) in names.items(): with open(f'{COMMON_DIR}/{name}', 'w') as f: f.write(source) subprocess.run(['gcc', '-c', f'{COMMON_DIR}/a.c', '-o', f'{COMMON_DIR}/a.o']) subprocess.run(['gcc', '-c', f'{COMMON_DIR}/b.c', '-o', f'{COMMON_DIR}/b.o']) subprocess.run(['gcc', '-shared', '-o', f'{COMMON_DIR}/{common_lib}', f'{COMMON_DIR}/a.o', f'{COMMON_DIR}/b.o']) for file_name in ['a', 'b']: test_options = options.get_default_options() test_options.headers = [f'{COMMON_DIR}/{file_name}.h'] test_options.include_search_paths = [COMMON_DIR] test_options.libraries = [common_lib] test_options.compile_libdirs = [COMMON_DIR] test_options.embed_preamble = embed_preamble if embed_preamble: output = f'{COMMON_DIR}/{file_name}.py' else: output = f'{COMMON_DIR}/{file_name}2.py' descriptions = parser.parse(test_options.headers, test_options) processor.process(descriptions, test_options) printer_python.WrapperPrinter(output, test_options, descriptions) for file_name in ['a', 'b']: test_options = options.get_default_options() test_options.headers = [f'{COMMON_DIR}/{file_name}.h'] test_options.include_search_paths = [COMMON_DIR] test_options.libraries = [common_lib] test_options.compile_libdirs = [COMMON_DIR] test_options.embed_preamble = False if False: output = f'{COMMON_DIR}/{file_name}.py' else: output = f'{COMMON_DIR}/{file_name}2.py' descriptions = parser.parse(test_options.headers, test_options) processor.process(descriptions, test_options) printer_python.WrapperPrinter(output, test_options, descriptions) </DeepExtract>
ctypesgen
positive
def mouseReleaseEvent(self, event): if self.mouse_right: self.mouse_right = False return if not self.mouse_left: return self.mouse_left = False self.prev_pt = None if len(self.this_mouse_stroke) > 0: print('strokes', self.this_mouse_stroke) self.this_mouse_strokes.append(self.this_mouse_stroke) self.line_size.append(self.size) self.line_color_list.append(self.current_color) self.this_mouse_stroke = [] <DeepExtract> self.Refresh() area = QRectF(0.0, 0.0, 512.0, 512.0) area2 = QRectF(20.0, 120.0, 512.0, 512.0) image = QImage(area.width(), area.height(), QImage.Format_ARGB32_Premultiplied) painter = QPainter(image) self.render(painter, area, area2) painter.end() image.save(os.path.join(os.getcwd(), 'temp', 'query_img.png')) </DeepExtract> <DeepExtract> if self.query_shadow: path = os.path.join(os.getcwd(), 'temp', 'query_img.png') qstr = self.query(path) self.closest_face_fname = qstr[0] self.closer_face_fname_list = qstr self.shadow_pil = self.getShadow(qstr) for item in self.items(): obj_type = type(item) if isinstance(item, QGraphicsPixmapItem): self.removeItem(item) print('remove QGraphicsPixmapItem') '\n im = self.shadow_pil\n data = im.tobytes(\'raw\', \'RGB\')\n qim = QImage(data, im.size[0], im.size[1], QImage.Format_RGB888)\n \n pix = QPixmap.fromImage(qim)\n #pix.save("dddd1.png");\n pix=self.set_pixmap_alpha(pix)\n \n tst=self.addPixmap(pix)\n #tst=self.addPixmap(QPixmap(\'\\capture.png\'))\n tst.setPos(20, 120)\n ' self.Refresh() if self.shadow_show: self.setShadowImage() if self.mono_mask_show: self.setShadowImage_toRed() </DeepExtract> if self.callbk is not None: <DeepExtract> path = os.path.join(os.getcwd(), 'temp', 'query_img.png') qstr = self.query(path) self.callbk(qstr) </DeepExtract>
def mouseReleaseEvent(self, event): if self.mouse_right: self.mouse_right = False return if not self.mouse_left: return self.mouse_left = False self.prev_pt = None if len(self.this_mouse_stroke) > 0: print('strokes', self.this_mouse_stroke) self.this_mouse_strokes.append(self.this_mouse_stroke) self.line_size.append(self.size) self.line_color_list.append(self.current_color) self.this_mouse_stroke = [] self.Refresh() area = QRectF(0.0, 0.0, 512.0, 512.0) area2 = QRectF(20.0, 120.0, 512.0, 512.0) image = QImage(area.width(), area.height(), QImage.Format_ARGB32_Premultiplied) painter = QPainter(image) self.render(painter, area, area2) painter.end() image.save(os.path.join(os.getcwd(), 'temp', 'query_img.png')) if self.query_shadow: path = os.path.join(os.getcwd(), 'temp', 'query_img.png') qstr = self.query(path) self.closest_face_fname = qstr[0] self.closer_face_fname_list = qstr self.shadow_pil = self.getShadow(qstr) for item in self.items(): obj_type = type(item) if isinstance(item, QGraphicsPixmapItem): self.removeItem(item) print('remove QGraphicsPixmapItem') '\n im = self.shadow_pil\n data = im.tobytes(\'raw\', \'RGB\')\n qim = QImage(data, im.size[0], im.size[1], QImage.Format_RGB888)\n \n pix = QPixmap.fromImage(qim)\n #pix.save("dddd1.png");\n pix=self.set_pixmap_alpha(pix)\n \n tst=self.addPixmap(pix)\n #tst=self.addPixmap(QPixmap(\'\\capture.png\'))\n tst.setPos(20, 120)\n ' self.Refresh() if self.shadow_show: self.setShadowImage() if self.mono_mask_show: self.setShadowImage_toRed() if self.callbk is not None: path = os.path.join(os.getcwd(), 'temp', 'query_img.png') qstr = self.query(path) self.callbk(qstr) </DeepExtract>
dualFace
positive
def train_step(self, data): """One training step Arguments: data {dict of data} -- required keys and values: 'X' {LongTensor [batch_size, history_len, max_x_sent_len]} -- token ids of context sentences 'X_floor' {LongTensor [batch_size, history_len]} -- floors of context sentences 'Y' {LongTensor [batch_size, max_y_sent_len]} -- token ids of response sentence 'Y_floor' {LongTensor [batch_size]} -- floor of response sentence Returns: dict of data -- returned keys and values 'loss' {FloatTensor []} -- loss to backword dict of statistics -- returned keys and values 'ppl' {float} -- perplexity 'loss' {float} -- batch loss """ (X, Y) = (data['X'], data['Y']) (X_floor, Y_floor) = (data['X_floor'], data['Y_floor']) Y_in = Y[:, :-1].contiguous() Y_out = Y[:, 1:].contiguous() batch_size = X.size(0) <DeepExtract> (batch_size, history_len, max_x_sent_len) = X.size() flat_inputs = X.view(batch_size * history_len, max_x_sent_len) input_lens = (X != self.pad_token_id).sum(-1) flat_input_lens = input_lens.view(batch_size * history_len) (word_encodings, _, sent_encodings) = self.sent_encoder(flat_inputs, flat_input_lens) word_encodings = word_encodings.view(batch_size, history_len, max_x_sent_len, -1) sent_encodings = sent_encodings.view(batch_size, history_len, -1) if self.floor_encoder is not None: src_floors = X_floor.view(-1) tgt_floors = Y_floor.unsqueeze(1).repeat(1, history_len).view(-1) sent_encodings = sent_encodings.view(batch_size * history_len, -1) sent_encodings = self.floor_encoder(sent_encodings, src_floors=src_floors, tgt_floors=tgt_floors) sent_encodings = sent_encodings.view(batch_size, history_len, -1) dial_lens = (input_lens > 0).long().sum(1) (_, _, dial_encodings) = self.dial_encoder(sent_encodings, dial_lens) (word_encodings, sent_encodings, dial_encodings) = (word_encodings, sent_encodings, dial_encodings) </DeepExtract> attn_ctx = word_encodings.view(batch_size, -1, word_encodings.size(-1)) <DeepExtract> attn_mask = X.view(batch_size, -1) != self.pad_token_id attn_mask = attn_mask </DeepExtract> <DeepExtract> ctx_mech = self.ctx2mech_fc(dial_encodings) mech_scores = torch.matmul(torch.matmul(ctx_mech, self.score_bilinear), self.mechanism_embeddings.weight.T) mech_probs = F.softmax(mech_scores, dim=1) mech_probs = mech_probs </DeepExtract> mech_embed_inputs = torch.LongTensor(list(range(self.n_mechanisms))).to(DEVICE) repeated_mech_embed_inputs = mech_embed_inputs.unsqueeze(0).repeat(batch_size, 1).view(-1) repeated_mech_embeds = self.mechanism_embeddings(repeated_mech_embed_inputs) repeated_Y_in = Y_in.unsqueeze(1).repeat(1, self.n_mechanisms, 1) repeated_Y_in = repeated_Y_in.view(batch_size * self.n_mechanisms, -1) repeated_Y_out = Y_out.unsqueeze(1).repeat(1, self.n_mechanisms, 1) repeated_Y_out = repeated_Y_out.view(batch_size * self.n_mechanisms, -1) dial_encodings = dial_encodings.unsqueeze(1).repeat(1, self.n_mechanisms, 1) dial_encodings = dial_encodings.view(batch_size * self.n_mechanisms, self.dial_encoder_hidden_dim) attn_ctx = attn_ctx.unsqueeze(1).repeat(1, self.n_mechanisms, 1, 1) attn_ctx = attn_ctx.view(batch_size * self.n_mechanisms, -1, attn_ctx.size(-1)) attn_mask = attn_mask.unsqueeze(1).repeat(1, self.n_mechanisms, 1) attn_mask = attn_mask.view(batch_size * self.n_mechanisms, -1) dec_ctx = self.ctx_mech_combine_fc(torch.cat([dial_encodings, repeated_mech_embeds], dim=1)) <DeepExtract> batch_size = dec_ctx.size(0) hiddens = self._init_dec_hiddens(dec_ctx) feats = None feats = dec_ctx.unsqueeze(1).repeat(1, repeated_Y_in.size(1), 1) ret_dict = self.decoder.forward(batch_size=batch_size, inputs=repeated_Y_in, hiddens=hiddens, feats=feats, attn_ctx=attn_ctx, attn_mask=attn_mask, mode=DecoderRNN.MODE_TEACHER_FORCE) decoder_ret_dict = ret_dict </DeepExtract> loss = 0 word_neglogll = F.cross_entropy(decoder_ret_dict['logits'].view(-1, self.vocab_size), repeated_Y_out.view(-1), ignore_index=self.decoder.pad_token_id, reduction='none').view(batch_size, self.n_mechanisms, -1) sent_logll = word_neglogll.sum(2) * -1 mech_logll = (mech_probs + 1e-10).log() sent_mech_logll = sent_logll + mech_logll target_logll = torch.logsumexp(sent_mech_logll, dim=1) target_neglogll = target_logll * -1 loss = target_neglogll.mean() with torch.no_grad(): ppl = F.cross_entropy(decoder_ret_dict['logits'].view(-1, self.vocab_size), repeated_Y_out.view(-1), ignore_index=self.decoder.pad_token_id, reduction='mean').exp() ret_data = {'loss': loss} ret_stat = {'ppl': ppl.item(), 'loss': loss.item(), 'mech_prob_std': mech_probs.std(1).mean().item(), 'mech_prob_max': mech_probs.max(1)[0].mean().item()} return (ret_data, ret_stat)
def train_step(self, data): """One training step Arguments: data {dict of data} -- required keys and values: 'X' {LongTensor [batch_size, history_len, max_x_sent_len]} -- token ids of context sentences 'X_floor' {LongTensor [batch_size, history_len]} -- floors of context sentences 'Y' {LongTensor [batch_size, max_y_sent_len]} -- token ids of response sentence 'Y_floor' {LongTensor [batch_size]} -- floor of response sentence Returns: dict of data -- returned keys and values 'loss' {FloatTensor []} -- loss to backword dict of statistics -- returned keys and values 'ppl' {float} -- perplexity 'loss' {float} -- batch loss """ (X, Y) = (data['X'], data['Y']) (X_floor, Y_floor) = (data['X_floor'], data['Y_floor']) Y_in = Y[:, :-1].contiguous() Y_out = Y[:, 1:].contiguous() batch_size = X.size(0) (batch_size, history_len, max_x_sent_len) = X.size() flat_inputs = X.view(batch_size * history_len, max_x_sent_len) input_lens = (X != self.pad_token_id).sum(-1) flat_input_lens = input_lens.view(batch_size * history_len) (word_encodings, _, sent_encodings) = self.sent_encoder(flat_inputs, flat_input_lens) word_encodings = word_encodings.view(batch_size, history_len, max_x_sent_len, -1) sent_encodings = sent_encodings.view(batch_size, history_len, -1) if self.floor_encoder is not None: src_floors = X_floor.view(-1) tgt_floors = Y_floor.unsqueeze(1).repeat(1, history_len).view(-1) sent_encodings = sent_encodings.view(batch_size * history_len, -1) sent_encodings = self.floor_encoder(sent_encodings, src_floors=src_floors, tgt_floors=tgt_floors) sent_encodings = sent_encodings.view(batch_size, history_len, -1) dial_lens = (input_lens > 0).long().sum(1) (_, _, dial_encodings) = self.dial_encoder(sent_encodings, dial_lens) (word_encodings, sent_encodings, dial_encodings) = (word_encodings, sent_encodings, dial_encodings) attn_ctx = word_encodings.view(batch_size, -1, word_encodings.size(-1)) attn_mask = X.view(batch_size, -1) != self.pad_token_id attn_mask = attn_mask ctx_mech = self.ctx2mech_fc(dial_encodings) mech_scores = torch.matmul(torch.matmul(ctx_mech, self.score_bilinear), self.mechanism_embeddings.weight.T) mech_probs = F.softmax(mech_scores, dim=1) mech_probs = mech_probs mech_embed_inputs = torch.LongTensor(list(range(self.n_mechanisms))).to(DEVICE) repeated_mech_embed_inputs = mech_embed_inputs.unsqueeze(0).repeat(batch_size, 1).view(-1) repeated_mech_embeds = self.mechanism_embeddings(repeated_mech_embed_inputs) repeated_Y_in = Y_in.unsqueeze(1).repeat(1, self.n_mechanisms, 1) repeated_Y_in = repeated_Y_in.view(batch_size * self.n_mechanisms, -1) repeated_Y_out = Y_out.unsqueeze(1).repeat(1, self.n_mechanisms, 1) repeated_Y_out = repeated_Y_out.view(batch_size * self.n_mechanisms, -1) dial_encodings = dial_encodings.unsqueeze(1).repeat(1, self.n_mechanisms, 1) dial_encodings = dial_encodings.view(batch_size * self.n_mechanisms, self.dial_encoder_hidden_dim) attn_ctx = attn_ctx.unsqueeze(1).repeat(1, self.n_mechanisms, 1, 1) attn_ctx = attn_ctx.view(batch_size * self.n_mechanisms, -1, attn_ctx.size(-1)) attn_mask = attn_mask.unsqueeze(1).repeat(1, self.n_mechanisms, 1) attn_mask = attn_mask.view(batch_size * self.n_mechanisms, -1) dec_ctx = self.ctx_mech_combine_fc(torch.cat([dial_encodings, repeated_mech_embeds], dim=1)) batch_size = dec_ctx.size(0) hiddens = self._init_dec_hiddens(dec_ctx) feats = None feats = dec_ctx.unsqueeze(1).repeat(1, repeated_Y_in.size(1), 1) ret_dict = self.decoder.forward(batch_size=batch_size, inputs=repeated_Y_in, hiddens=hiddens, feats=feats, attn_ctx=attn_ctx, attn_mask=attn_mask, mode=DecoderRNN.MODE_TEACHER_FORCE) decoder_ret_dict = ret_dict loss = 0 word_neglogll = F.cross_entropy(decoder_ret_dict['logits'].view(-1, self.vocab_size), repeated_Y_out.view(-1), ignore_index=self.decoder.pad_token_id, reduction='none').view(batch_size, self.n_mechanisms, -1) sent_logll = word_neglogll.sum(2) * -1 mech_logll = (mech_probs + 1e-10).log() sent_mech_logll = sent_logll + mech_logll target_logll = torch.logsumexp(sent_mech_logll, dim=1) target_neglogll = target_logll * -1 loss = target_neglogll.mean() with torch.no_grad(): ppl = F.cross_entropy(decoder_ret_dict['logits'].view(-1, self.vocab_size), repeated_Y_out.view(-1), ignore_index=self.decoder.pad_token_id, reduction='mean').exp() ret_data = {'loss': loss} ret_stat = {'ppl': ppl.item(), 'loss': loss.item(), 'mech_prob_std': mech_probs.std(1).mean().item(), 'mech_prob_max': mech_probs.max(1)[0].mean().item()} return (ret_data, ret_stat)
dialog-processing
positive
def MenuBlockAsControls(menuItems, parentage=[]): blocks = [] curBlock = [] for item in menuItems: <DeepExtract> itemAsCtrl = ControlProps() itemAsCtrl['Texts'] = [item['Text']] itemAsCtrl['ControlID'] = item['ID'] itemAsCtrl['Type'] = item['Type'] itemAsCtrl['State'] = item['State'] itemAsCtrl['Class'] = 'MenuItem' itemAsCtrl['FriendlyClassName'] = 'MenuItem' itemAsCtrl['Rectangle'] = RECT(0, 0, 999, 999) itemAsCtrl['Fonts'] = [LOGFONTW()] itemAsCtrl['ClientRects'] = [RECT(0, 0, 999, 999)] itemAsCtrl['ContextHelpID'] = 0 itemAsCtrl['UserData'] = 0 itemAsCtrl['Style'] = 0 itemAsCtrl['ExStyle'] = 0 itemAsCtrl['IsVisible'] = 1 itemAsCtrl = itemAsCtrl </DeepExtract> if parentage: itemPath = '%s->%s' % ('->'.join(parentage), item['Text']) else: itemPath = item['Text'] curBlock.append(itemAsCtrl) if 'MenuItems' in item: parentage.append(item['Text']) blocks.extend(MenuBlockAsControls(item['MenuItems']['MenuItems'], parentage)) del parentage[-1] blocks.append(curBlock) return blocks
def MenuBlockAsControls(menuItems, parentage=[]): blocks = [] curBlock = [] for item in menuItems: itemAsCtrl = ControlProps() itemAsCtrl['Texts'] = [item['Text']] itemAsCtrl['ControlID'] = item['ID'] itemAsCtrl['Type'] = item['Type'] itemAsCtrl['State'] = item['State'] itemAsCtrl['Class'] = 'MenuItem' itemAsCtrl['FriendlyClassName'] = 'MenuItem' itemAsCtrl['Rectangle'] = RECT(0, 0, 999, 999) itemAsCtrl['Fonts'] = [LOGFONTW()] itemAsCtrl['ClientRects'] = [RECT(0, 0, 999, 999)] itemAsCtrl['ContextHelpID'] = 0 itemAsCtrl['UserData'] = 0 itemAsCtrl['Style'] = 0 itemAsCtrl['ExStyle'] = 0 itemAsCtrl['IsVisible'] = 1 itemAsCtrl = itemAsCtrl if parentage: itemPath = '%s->%s' % ('->'.join(parentage), item['Text']) else: itemPath = item['Text'] curBlock.append(itemAsCtrl) if 'MenuItems' in item: parentage.append(item['Text']) blocks.extend(MenuBlockAsControls(item['MenuItems']['MenuItems'], parentage)) del parentage[-1] blocks.append(curBlock) return blocks
BrowserRefresh-Sublime
positive
def make_iterator(self, dataset): <DeepExtract> tf.compat.v1.logging.info('Using pure synthetic data.') with self.scope(): if self.extended._global_batch_size: dist_dataset = SyntheticDataset(self, self.num_replicas_in_sync) else: dist_dataset = SyntheticDataset(self) </DeepExtract> return iter(dist_dataset)
def make_iterator(self, dataset): tf.compat.v1.logging.info('Using pure synthetic data.') with self.scope(): if self.extended._global_batch_size: dist_dataset = SyntheticDataset(self, self.num_replicas_in_sync) else: dist_dataset = SyntheticDataset(self) return iter(dist_dataset)
dialogue-utterance-rewriter
positive
def forward(self, x, do_ori=False): t = time.time() num_features_prefilter = self.num if self.num_Baum_iters > 0: num_features_prefilter = int(1.5 * self.num) <DeepExtract> t = time.time() (self.scale_pyr, self.sigmas, self.pix_dists) = self.ScalePyrGen(x) aff_matrices = [] top_responces = [] pyr_idxs = [] level_idxs = [] det_t = 0 nmst = 0 for oct_idx in range(len(self.sigmas)): octave = self.scale_pyr[oct_idx] sigmas_oct = self.sigmas[oct_idx] pix_dists_oct = self.pix_dists[oct_idx] low = None cur = None high = None octaveMap = (self.scale_pyr[oct_idx][0] * 0).byte() nms_f = NMS3dAndComposeA(w=octave[0].size(3), h=octave[0].size(2), border=self.b, mrSize=self.mrSize) for level_idx in range(1, len(octave) - 1): if cur is None: low = torch.clamp(self.RespNet(octave[level_idx - 1], sigmas_oct[level_idx - 1]) - self.th, min=0) else: low = cur if high is None: cur = torch.clamp(self.RespNet(octave[level_idx], sigmas_oct[level_idx]) - self.th, min=0) else: cur = high high = torch.clamp(self.RespNet(octave[level_idx + 1], sigmas_oct[level_idx + 1]) - self.th, min=0) (top_resp, aff_matrix, octaveMap_current) = nms_f(low, cur, high, num_features=num_features_prefilter, octaveMap=octaveMap, scales=sigmas_oct[level_idx - 1:level_idx + 2]) if top_resp is None: continue octaveMap = octaveMap_current (aff_matrices.append(aff_matrix), top_responces.append(top_resp)) pyr_id = Variable(oct_idx * torch.ones(aff_matrix.size(0))) lev_id = Variable((level_idx - 1) * torch.ones(aff_matrix.size(0))) if x.is_cuda: pyr_id = pyr_id.cuda() lev_id = lev_id.cuda() pyr_idxs.append(pyr_id) level_idxs.append(lev_id) all_responses = torch.cat(top_responces, dim=0) aff_m_scales = torch.cat(aff_matrices, dim=0) pyr_idxs_scales = torch.cat(pyr_idxs, dim=0) level_idxs_scale = torch.cat(level_idxs, dim=0) if num_features_prefilter > 0 and num_features_prefilter < all_responses.size(0): (all_responses, idxs) = torch.topk(all_responses, k=num_features_prefilter) LAFs = torch.index_select(aff_m_scales, 0, idxs) final_pyr_idxs = pyr_idxs_scales[idxs] final_level_idxs = level_idxs_scale[idxs] else: (responses, LAFs, final_pyr_idxs, final_level_idxs) = (all_responses, aff_m_scales, pyr_idxs_scales, level_idxs_scale) (responses, LAFs, final_pyr_idxs, final_level_idxs) = (all_responses, LAFs, final_pyr_idxs, final_level_idxs) </DeepExtract> print(time.time() - t, 'detection multiscale') t = time.time() LAFs[:, 0:2, 0:2] = self.mrSize * LAFs[:, :, 0:2] if self.num_Baum_iters > 0: <DeepExtract> pe_time = 0 affnet_time = 0 pyr_inv_idxs = get_inverted_pyr_index(self.scale_pyr, final_pyr_idxs, final_level_idxs) t = time.time() patches_small = extract_patches_from_pyramid_with_inv_index(self.scale_pyr, pyr_inv_idxs, LAFs, PS=self.AffNet.PS) pe_time += time.time() - t t = time.time() base_A = torch.eye(2).unsqueeze(0).expand(final_pyr_idxs.size(0), 2, 2) if responses.is_cuda: base_A = base_A.cuda() base_A = Variable(base_A) is_good = None n_patches = patches_small.size(0) for i in range(self.num_Baum_iters): t = time.time() A = batched_forward(self.AffNet, patches_small, 256) is_good_current = 1 affnet_time += time.time() - t if is_good is None: is_good = is_good_current else: is_good = is_good * is_good_current base_A = torch.bmm(A, base_A) new_LAFs = torch.cat([torch.bmm(base_A, LAFs[:, :, 0:2]), LAFs[:, :, 2:]], dim=2) if i != self.num_Baum_iters - 1: pe_time += time.time() - t t = time.time() patches_small = extract_patches_from_pyramid_with_inv_index(self.scale_pyr, pyr_inv_idxs, new_LAFs, PS=self.AffNet.PS) pe_time += time.time() - t (l1, l2) = batch_eig2x2(A) ratio1 = torch.abs(l1 / (l2 + 1e-08)) converged_mask = (ratio1 <= 1.2) * (ratio1 >= 0.8) (l1, l2) = batch_eig2x2(base_A) ratio = torch.abs(l1 / (l2 + 1e-08)) idxs_mask = (ratio < 6.0) * (ratio > 1.0 / 6.0) * checkTouchBoundary(new_LAFs) num_survived = idxs_mask.float().sum() if self.num > 0 and num_survived.data.item() > self.num: responses = responses * idxs_mask.float() (responses, idxs) = torch.topk(responses, k=self.num) else: idxs = Variable(torch.nonzero(idxs_mask.data).view(-1).long()) responses = responses[idxs] final_pyr_idxs = final_pyr_idxs[idxs] final_level_idxs = final_level_idxs[idxs] base_A = torch.index_select(base_A, 0, idxs) LAFs = torch.index_select(LAFs, 0, idxs) new_LAFs = torch.cat([torch.bmm(base_A, LAFs[:, :, 0:2]), LAFs[:, :, 2:]], dim=2) print('affnet_time', affnet_time) print('pe_time', pe_time) (responses, LAFs, final_pyr_idxs, final_level_idxs) = (responses, new_LAFs, final_pyr_idxs, final_level_idxs) </DeepExtract> print(time.time() - t, 'affine shape iters') t = time.time() if do_ori: <DeepExtract> pyr_inv_idxs = get_inverted_pyr_index(self.scale_pyr, final_pyr_idxs, final_level_idxs) patches_small = extract_patches_from_pyramid_with_inv_index(self.scale_pyr, pyr_inv_idxs, LAFs, PS=self.OriNet.PS) max_iters = 1 for i in range(max_iters): angles = self.OriNet(patches_small) if len(angles.size()) > 2: LAFs = torch.cat([torch.bmm(LAFs[:, :, :2], angles), LAFs[:, :, 2:]], dim=2) else: LAFs = torch.cat([torch.bmm(LAFs[:, :, :2], angles2A(angles).view(-1, 2, 2)), LAFs[:, :, 2:]], dim=2) if i != max_iters: patches_small = extract_patches_from_pyramid_with_inv_index(self.scale_pyr, pyr_inv_idxs, LAFs, PS=self.OriNet.PS) LAFs = LAFs </DeepExtract> return (denormalizeLAFs(LAFs, x.size(3), x.size(2)), responses)
def forward(self, x, do_ori=False): t = time.time() num_features_prefilter = self.num if self.num_Baum_iters > 0: num_features_prefilter = int(1.5 * self.num) t = time.time() (self.scale_pyr, self.sigmas, self.pix_dists) = self.ScalePyrGen(x) aff_matrices = [] top_responces = [] pyr_idxs = [] level_idxs = [] det_t = 0 nmst = 0 for oct_idx in range(len(self.sigmas)): octave = self.scale_pyr[oct_idx] sigmas_oct = self.sigmas[oct_idx] pix_dists_oct = self.pix_dists[oct_idx] low = None cur = None high = None octaveMap = (self.scale_pyr[oct_idx][0] * 0).byte() nms_f = NMS3dAndComposeA(w=octave[0].size(3), h=octave[0].size(2), border=self.b, mrSize=self.mrSize) for level_idx in range(1, len(octave) - 1): if cur is None: low = torch.clamp(self.RespNet(octave[level_idx - 1], sigmas_oct[level_idx - 1]) - self.th, min=0) else: low = cur if high is None: cur = torch.clamp(self.RespNet(octave[level_idx], sigmas_oct[level_idx]) - self.th, min=0) else: cur = high high = torch.clamp(self.RespNet(octave[level_idx + 1], sigmas_oct[level_idx + 1]) - self.th, min=0) (top_resp, aff_matrix, octaveMap_current) = nms_f(low, cur, high, num_features=num_features_prefilter, octaveMap=octaveMap, scales=sigmas_oct[level_idx - 1:level_idx + 2]) if top_resp is None: continue octaveMap = octaveMap_current (aff_matrices.append(aff_matrix), top_responces.append(top_resp)) pyr_id = Variable(oct_idx * torch.ones(aff_matrix.size(0))) lev_id = Variable((level_idx - 1) * torch.ones(aff_matrix.size(0))) if x.is_cuda: pyr_id = pyr_id.cuda() lev_id = lev_id.cuda() pyr_idxs.append(pyr_id) level_idxs.append(lev_id) all_responses = torch.cat(top_responces, dim=0) aff_m_scales = torch.cat(aff_matrices, dim=0) pyr_idxs_scales = torch.cat(pyr_idxs, dim=0) level_idxs_scale = torch.cat(level_idxs, dim=0) if num_features_prefilter > 0 and num_features_prefilter < all_responses.size(0): (all_responses, idxs) = torch.topk(all_responses, k=num_features_prefilter) LAFs = torch.index_select(aff_m_scales, 0, idxs) final_pyr_idxs = pyr_idxs_scales[idxs] final_level_idxs = level_idxs_scale[idxs] else: (responses, LAFs, final_pyr_idxs, final_level_idxs) = (all_responses, aff_m_scales, pyr_idxs_scales, level_idxs_scale) (responses, LAFs, final_pyr_idxs, final_level_idxs) = (all_responses, LAFs, final_pyr_idxs, final_level_idxs) print(time.time() - t, 'detection multiscale') t = time.time() LAFs[:, 0:2, 0:2] = self.mrSize * LAFs[:, :, 0:2] if self.num_Baum_iters > 0: pe_time = 0 affnet_time = 0 pyr_inv_idxs = get_inverted_pyr_index(self.scale_pyr, final_pyr_idxs, final_level_idxs) t = time.time() patches_small = extract_patches_from_pyramid_with_inv_index(self.scale_pyr, pyr_inv_idxs, LAFs, PS=self.AffNet.PS) pe_time += time.time() - t t = time.time() base_A = torch.eye(2).unsqueeze(0).expand(final_pyr_idxs.size(0), 2, 2) if responses.is_cuda: base_A = base_A.cuda() base_A = Variable(base_A) is_good = None n_patches = patches_small.size(0) for i in range(self.num_Baum_iters): t = time.time() A = batched_forward(self.AffNet, patches_small, 256) is_good_current = 1 affnet_time += time.time() - t if is_good is None: is_good = is_good_current else: is_good = is_good * is_good_current base_A = torch.bmm(A, base_A) new_LAFs = torch.cat([torch.bmm(base_A, LAFs[:, :, 0:2]), LAFs[:, :, 2:]], dim=2) if i != self.num_Baum_iters - 1: pe_time += time.time() - t t = time.time() patches_small = extract_patches_from_pyramid_with_inv_index(self.scale_pyr, pyr_inv_idxs, new_LAFs, PS=self.AffNet.PS) pe_time += time.time() - t (l1, l2) = batch_eig2x2(A) ratio1 = torch.abs(l1 / (l2 + 1e-08)) converged_mask = (ratio1 <= 1.2) * (ratio1 >= 0.8) (l1, l2) = batch_eig2x2(base_A) ratio = torch.abs(l1 / (l2 + 1e-08)) idxs_mask = (ratio < 6.0) * (ratio > 1.0 / 6.0) * checkTouchBoundary(new_LAFs) num_survived = idxs_mask.float().sum() if self.num > 0 and num_survived.data.item() > self.num: responses = responses * idxs_mask.float() (responses, idxs) = torch.topk(responses, k=self.num) else: idxs = Variable(torch.nonzero(idxs_mask.data).view(-1).long()) responses = responses[idxs] final_pyr_idxs = final_pyr_idxs[idxs] final_level_idxs = final_level_idxs[idxs] base_A = torch.index_select(base_A, 0, idxs) LAFs = torch.index_select(LAFs, 0, idxs) new_LAFs = torch.cat([torch.bmm(base_A, LAFs[:, :, 0:2]), LAFs[:, :, 2:]], dim=2) print('affnet_time', affnet_time) print('pe_time', pe_time) (responses, LAFs, final_pyr_idxs, final_level_idxs) = (responses, new_LAFs, final_pyr_idxs, final_level_idxs) print(time.time() - t, 'affine shape iters') t = time.time() if do_ori: pyr_inv_idxs = get_inverted_pyr_index(self.scale_pyr, final_pyr_idxs, final_level_idxs) patches_small = extract_patches_from_pyramid_with_inv_index(self.scale_pyr, pyr_inv_idxs, LAFs, PS=self.OriNet.PS) max_iters = 1 for i in range(max_iters): angles = self.OriNet(patches_small) if len(angles.size()) > 2: LAFs = torch.cat([torch.bmm(LAFs[:, :, :2], angles), LAFs[:, :, 2:]], dim=2) else: LAFs = torch.cat([torch.bmm(LAFs[:, :, :2], angles2A(angles).view(-1, 2, 2)), LAFs[:, :, 2:]], dim=2) if i != max_iters: patches_small = extract_patches_from_pyramid_with_inv_index(self.scale_pyr, pyr_inv_idxs, LAFs, PS=self.OriNet.PS) LAFs = LAFs return (denormalizeLAFs(LAFs, x.size(3), x.size(2)), responses)
affnet
positive
def open(self, update_remote=True): <DeepExtract> if not self.channel_buffer: alias = config.server_aliases.get(self.subdomain) if alias: self.preferred_name = alias elif config.short_buffer_names: self.preferred_name = self.subdomain else: self.preferred_name = self.domain self.channel_buffer = w.buffer_new(self.preferred_name, 'buffer_input_callback', 'EVENTROUTER', '', '') self.eventrouter.weechat_controller.register_buffer(self.channel_buffer, self) w.buffer_set(self.channel_buffer, 'localvar_set_type', 'server') w.buffer_set(self.channel_buffer, 'localvar_set_nick', self.nick) w.buffer_set(self.channel_buffer, 'localvar_set_server', self.preferred_name) if w.config_string(w.config_get('irc.look.server_buffer')) == 'merge_with_core': w.buffer_merge(self.channel_buffer, w.buffer_search_main()) </DeepExtract> self.active = True <DeepExtract> if not self.got_history: if self.team.connected: self.clear_messages() self.buffer_prnt('', 'getting channel history...', tagset='backlog') s = SlackRequest(self.team.token, SLACK_API_TRANSLATOR[self.type]['history'], {'channel': self.identifier, 'count': BACKLOG_SIZE}, team_hash=self.team.team_hash, channel_identifier=self.identifier, clear=True) if not slow_queue: self.eventrouter.receive(s) else: self.eventrouter.receive_slow(s) self.got_history = True </DeepExtract>
def open(self, update_remote=True): if not self.channel_buffer: alias = config.server_aliases.get(self.subdomain) if alias: self.preferred_name = alias elif config.short_buffer_names: self.preferred_name = self.subdomain else: self.preferred_name = self.domain self.channel_buffer = w.buffer_new(self.preferred_name, 'buffer_input_callback', 'EVENTROUTER', '', '') self.eventrouter.weechat_controller.register_buffer(self.channel_buffer, self) w.buffer_set(self.channel_buffer, 'localvar_set_type', 'server') w.buffer_set(self.channel_buffer, 'localvar_set_nick', self.nick) w.buffer_set(self.channel_buffer, 'localvar_set_server', self.preferred_name) if w.config_string(w.config_get('irc.look.server_buffer')) == 'merge_with_core': w.buffer_merge(self.channel_buffer, w.buffer_search_main()) self.active = True if not self.got_history: if self.team.connected: self.clear_messages() self.buffer_prnt('', 'getting channel history...', tagset='backlog') s = SlackRequest(self.team.token, SLACK_API_TRANSLATOR[self.type]['history'], {'channel': self.identifier, 'count': BACKLOG_SIZE}, team_hash=self.team.team_hash, channel_identifier=self.identifier, clear=True) if not slow_queue: self.eventrouter.receive(s) else: self.eventrouter.receive_slow(s) self.got_history = True </DeepExtract>
awesome-dots
positive
def load_checkpoint(model, optimizer, lr_scheduler, args, load_optimizer_states=True): """Load a model checkpoint.""" <DeepExtract> tracker_filename = get_checkpoint_tracker_filename(args.load) if not os.path.isfile(tracker_filename): print_rank_0('WARNING: could not find the metadata file {} '.format(tracker_filename)) if os.path.isdir(args.load): path = os.path.normpath(args.load) (load_dir, tag) = os.path.split(path) print_rank_0('Try to directly load the checkpoint from the directory') (load_dir, iteration, release, success) = (load_dir, tag, False, True) print_rank_0(' will not load any checkpoints and will start from random') (load_dir, iteration, release, success) = (args.load, 0, False, False) iteration = 0 release = False with open(tracker_filename, 'r') as f: metastring = f.read().strip() try: iteration = int(metastring) except ValueError: release = metastring == 'release' if not release: print_rank_0('ERROR: Invalid metadata file {}. Exiting'.format(tracker_filename)) exit() assert iteration > 0 or release, 'error parsing metadata file {}'.format(tracker_filename) (load_dir, iteration, release, success) = (args.load, iteration, release, True) </DeepExtract> if not success: return 0 if args.deepspeed: (checkpoint_name, sd) = model.load_checkpoint(load_dir, iteration, load_optimizer_states=not args.no_load_optim, load_lr_scheduler_states=not args.no_load_lr_scheduler) if not args.no_load_lr_scheduler and 'client_lr_scheduler' in sd: lr_scheduler.load_state_dict(sd['client_lr_scheduler']) <DeepExtract> if torch.distributed.is_initialized(): if torch.distributed.get_rank() == 0: print('Load lr scheduler state', flush=True) else: print('Load lr scheduler state', flush=True) </DeepExtract> if checkpoint_name is None: if mpu.get_data_parallel_rank() == 0: print('Unable to load checkpoint.') return iteration else: <DeepExtract> if release: d = 'release' else: d = '{}'.format(iteration) if zero: dp_rank = mpu.get_data_parallel_rank() d += '_zero_dp_rank_{}'.format(dp_rank) checkpoint_name = os.path.join(load_dir, d, 'mp_rank_{:02d}_model_states.pt'.format(mpu.get_model_parallel_rank())) </DeepExtract> if mpu.get_data_parallel_rank() == 0: print('global rank {} is loading checkpoint {}'.format(torch.distributed.get_rank(), checkpoint_name)) sd = torch.load(checkpoint_name, map_location='cpu') if isinstance(model, torchDDP): model = model.module try: model.load_state_dict(sd['module']) except KeyError: <DeepExtract> if torch.distributed.is_initialized(): if torch.distributed.get_rank() == 0: print('A metadata file exists but unable to load model from checkpoint {}, exiting'.format(checkpoint_name), flush=True) else: print('A metadata file exists but unable to load model from checkpoint {}, exiting'.format(checkpoint_name), flush=True) </DeepExtract> exit() if not release: try: if not args.no_load_optim and optimizer is not None and load_optimizer_states: optimizer.load_state_dict(sd['optimizer']) if not args.no_load_lr_scheduler and lr_scheduler is not None: lr_scheduler.load_state_dict(sd['lr_scheduler']) except KeyError: <DeepExtract> if torch.distributed.is_initialized(): if torch.distributed.get_rank() == 0: print('Unable to load optimizer from checkpoint {}, exiting. Specify --no-load-optim or --finetune to prevent attempting to load the optimizer state.'.format(checkpoint_name), flush=True) else: print('Unable to load optimizer from checkpoint {}, exiting. Specify --no-load-optim or --finetune to prevent attempting to load the optimizer state.'.format(checkpoint_name), flush=True) </DeepExtract> exit() if args.finetune or release: iteration = 0 else: try: iteration = sd['iteration'] except KeyError: try: iteration = sd['total_iters'] except KeyError: <DeepExtract> if torch.distributed.is_initialized(): if torch.distributed.get_rank() == 0: print('A metadata file exists but Unable to load iteration from checkpoint {}, exiting'.format(checkpoint_name), flush=True) else: print('A metadata file exists but Unable to load iteration from checkpoint {}, exiting'.format(checkpoint_name), flush=True) </DeepExtract> exit() if not release and (not args.finetune) and (not args.no_load_rng): try: random.setstate(sd['random_rng_state']) np.random.set_state(sd['np_rng_state']) torch.set_rng_state(sd['torch_rng_state']) torch.cuda.set_rng_state(sd['cuda_rng_state']) mpu.get_cuda_rng_tracker().set_states(sd['rng_tracker_states']) except KeyError: <DeepExtract> if torch.distributed.is_initialized(): if torch.distributed.get_rank() == 0: print('Unable to load optimizer from checkpoint {}, exiting. Specify --no-load-rng or --finetune to prevent attempting to load the random state.'.format(checkpoint_name), flush=True) else: print('Unable to load optimizer from checkpoint {}, exiting. Specify --no-load-rng or --finetune to prevent attempting to load the random state.'.format(checkpoint_name), flush=True) </DeepExtract> exit() if mpu.get_data_parallel_rank() == 0: print(' successfully loaded {}'.format(checkpoint_name)) return iteration
def load_checkpoint(model, optimizer, lr_scheduler, args, load_optimizer_states=True): """Load a model checkpoint.""" tracker_filename = get_checkpoint_tracker_filename(args.load) if not os.path.isfile(tracker_filename): print_rank_0('WARNING: could not find the metadata file {} '.format(tracker_filename)) if os.path.isdir(args.load): path = os.path.normpath(args.load) (load_dir, tag) = os.path.split(path) print_rank_0('Try to directly load the checkpoint from the directory') (load_dir, iteration, release, success) = (load_dir, tag, False, True) print_rank_0(' will not load any checkpoints and will start from random') (load_dir, iteration, release, success) = (args.load, 0, False, False) iteration = 0 release = False with open(tracker_filename, 'r') as f: metastring = f.read().strip() try: iteration = int(metastring) except ValueError: release = metastring == 'release' if not release: print_rank_0('ERROR: Invalid metadata file {}. Exiting'.format(tracker_filename)) exit() assert iteration > 0 or release, 'error parsing metadata file {}'.format(tracker_filename) (load_dir, iteration, release, success) = (args.load, iteration, release, True) if not success: return 0 if args.deepspeed: (checkpoint_name, sd) = model.load_checkpoint(load_dir, iteration, load_optimizer_states=not args.no_load_optim, load_lr_scheduler_states=not args.no_load_lr_scheduler) if not args.no_load_lr_scheduler and 'client_lr_scheduler' in sd: lr_scheduler.load_state_dict(sd['client_lr_scheduler']) if torch.distributed.is_initialized(): if torch.distributed.get_rank() == 0: print('Load lr scheduler state', flush=True) else: print('Load lr scheduler state', flush=True) if checkpoint_name is None: if mpu.get_data_parallel_rank() == 0: print('Unable to load checkpoint.') return iteration else: if release: d = 'release' else: d = '{}'.format(iteration) if zero: dp_rank = mpu.get_data_parallel_rank() d += '_zero_dp_rank_{}'.format(dp_rank) checkpoint_name = os.path.join(load_dir, d, 'mp_rank_{:02d}_model_states.pt'.format(mpu.get_model_parallel_rank())) if mpu.get_data_parallel_rank() == 0: print('global rank {} is loading checkpoint {}'.format(torch.distributed.get_rank(), checkpoint_name)) sd = torch.load(checkpoint_name, map_location='cpu') if isinstance(model, torchDDP): model = model.module try: model.load_state_dict(sd['module']) except KeyError: if torch.distributed.is_initialized(): if torch.distributed.get_rank() == 0: print('A metadata file exists but unable to load model from checkpoint {}, exiting'.format(checkpoint_name), flush=True) else: print('A metadata file exists but unable to load model from checkpoint {}, exiting'.format(checkpoint_name), flush=True) exit() if not release: try: if not args.no_load_optim and optimizer is not None and load_optimizer_states: optimizer.load_state_dict(sd['optimizer']) if not args.no_load_lr_scheduler and lr_scheduler is not None: lr_scheduler.load_state_dict(sd['lr_scheduler']) except KeyError: if torch.distributed.is_initialized(): if torch.distributed.get_rank() == 0: print('Unable to load optimizer from checkpoint {}, exiting. Specify --no-load-optim or --finetune to prevent attempting to load the optimizer state.'.format(checkpoint_name), flush=True) else: print('Unable to load optimizer from checkpoint {}, exiting. Specify --no-load-optim or --finetune to prevent attempting to load the optimizer state.'.format(checkpoint_name), flush=True) exit() if args.finetune or release: iteration = 0 else: try: iteration = sd['iteration'] except KeyError: try: iteration = sd['total_iters'] except KeyError: if torch.distributed.is_initialized(): if torch.distributed.get_rank() == 0: print('A metadata file exists but Unable to load iteration from checkpoint {}, exiting'.format(checkpoint_name), flush=True) else: print('A metadata file exists but Unable to load iteration from checkpoint {}, exiting'.format(checkpoint_name), flush=True) exit() if not release and (not args.finetune) and (not args.no_load_rng): try: random.setstate(sd['random_rng_state']) np.random.set_state(sd['np_rng_state']) torch.set_rng_state(sd['torch_rng_state']) torch.cuda.set_rng_state(sd['cuda_rng_state']) mpu.get_cuda_rng_tracker().set_states(sd['rng_tracker_states']) except KeyError: if torch.distributed.is_initialized(): if torch.distributed.get_rank() == 0: print('Unable to load optimizer from checkpoint {}, exiting. Specify --no-load-rng or --finetune to prevent attempting to load the random state.'.format(checkpoint_name), flush=True) else: print('Unable to load optimizer from checkpoint {}, exiting. Specify --no-load-rng or --finetune to prevent attempting to load the random state.'.format(checkpoint_name), flush=True) exit() if mpu.get_data_parallel_rank() == 0: print(' successfully loaded {}'.format(checkpoint_name)) return iteration
Chinese-Transformer-XL
positive
def check_tasks_not_updated(service_name: str, prefix: str, old_task_ids: Iterable[str]) -> None: sdk_plan.wait_for_completed_deployment(service_name) sdk_plan.wait_for_completed_recovery(service_name) <DeepExtract> log.info('Waiting until [{}] is active'.format(service_name)) @retrying.retry(wait_fixed=1000, stop_max_delay=timeout_seconds * 1000, retry_on_result=lambda res: not res) def _wait_for_active_framework() -> bool: return len(list(filter(lambda fwk: fwk['name'] == service_name and fwk['active'], sdk_cmd.cluster_request('GET', '/mesos/frameworks').json()['frameworks']))) > 0 _wait_for_active_framework() </DeepExtract> <DeepExtract> task_ids = [t.id for t in get_service_tasks(service_name, task_prefix=prefix)] </DeepExtract> task_sets = '\n- Old tasks: {}\n- Current tasks: {}'.format(sorted(old_task_ids), sorted(task_ids)) log.info('Checking tasks starting with "{}" have not been updated:{}'.format(prefix, task_sets)) assert set(old_task_ids).issubset(set(task_ids)), 'Tasks starting with "{}" were updated:{}'.format(prefix, task_sets)
def check_tasks_not_updated(service_name: str, prefix: str, old_task_ids: Iterable[str]) -> None: sdk_plan.wait_for_completed_deployment(service_name) sdk_plan.wait_for_completed_recovery(service_name) log.info('Waiting until [{}] is active'.format(service_name)) @retrying.retry(wait_fixed=1000, stop_max_delay=timeout_seconds * 1000, retry_on_result=lambda res: not res) def _wait_for_active_framework() -> bool: return len(list(filter(lambda fwk: fwk['name'] == service_name and fwk['active'], sdk_cmd.cluster_request('GET', '/mesos/frameworks').json()['frameworks']))) > 0 _wait_for_active_framework() task_ids = [t.id for t in get_service_tasks(service_name, task_prefix=prefix)] task_sets = '\n- Old tasks: {}\n- Current tasks: {}'.format(sorted(old_task_ids), sorted(task_ids)) log.info('Checking tasks starting with "{}" have not been updated:{}'.format(prefix, task_sets)) assert set(old_task_ids).issubset(set(task_ids)), 'Tasks starting with "{}" were updated:{}'.format(prefix, task_sets)
dcos-kafka-service
positive
def _assert_invalid(self, testline: str, expect_err: str=''): self.protocol.data_received(testline.encode('ascii')) <DeepExtract> loop.call_later(stop_after, protocol._handler_coroutine.cancel) with suppress(asyncio.CancelledError): loop.run_until_complete(protocol._handler_coroutine) </DeepExtract> handler: ProxyPeekerHandler = self.protocol.event_handler assert not self.protocol.session.proxy_data.valid assert not handler.called assert self.transport.close.called assert self.protocol.session.proxy_data.error == expect_err
def _assert_invalid(self, testline: str, expect_err: str=''): self.protocol.data_received(testline.encode('ascii')) loop.call_later(stop_after, protocol._handler_coroutine.cancel) with suppress(asyncio.CancelledError): loop.run_until_complete(protocol._handler_coroutine) handler: ProxyPeekerHandler = self.protocol.event_handler assert not self.protocol.session.proxy_data.valid assert not handler.called assert self.transport.close.called assert self.protocol.session.proxy_data.error == expect_err
aiosmtpd
positive
def test_pid_file(self, unit): """ support for the testsuite.py """ <DeepExtract> conf = self.load_unit_conf(unit) if conf is not None: conf = conf conf = self.default_unit_conf(unit) </DeepExtract> return self.pid_file_from(conf) or self.get_status_file_from(conf)
def test_pid_file(self, unit): """ support for the testsuite.py """ conf = self.load_unit_conf(unit) if conf is not None: conf = conf conf = self.default_unit_conf(unit) return self.pid_file_from(conf) or self.get_status_file_from(conf)
deployment
positive
def update_list_html(self, files_list): files_url = f'https://{settings.APP_HOST}{self.dataset.files_url}' content = f"""<html><head><meta http-equiv="Refresh" content="0; url='{files_url}'" /></head></html>""" temp_file = NamedTemporaryFile(delete=False, mode='w') temp_file.write(content) temp_file.close() <DeepExtract> print('\nUploading list HTML...', *args, **kwargs) </DeepExtract> dest_name = f'{self.dataset.slug}/{settings.MINIO_DATASET_TABLES_FILES_LIST_FILENAME}' progress = MinioProgress() self.minio.fput_object(self.bucket, dest_name, temp_file.name, progress=progress, content_type='text/html; charset=utf-8') os.remove(temp_file.name) return f'{settings.AWS_S3_ENDPOINT_URL}{self.bucket}/{dest_name}'
def update_list_html(self, files_list): files_url = f'https://{settings.APP_HOST}{self.dataset.files_url}' content = f"""<html><head><meta http-equiv="Refresh" content="0; url='{files_url}'" /></head></html>""" temp_file = NamedTemporaryFile(delete=False, mode='w') temp_file.write(content) temp_file.close() print('\nUploading list HTML...', *args, **kwargs) dest_name = f'{self.dataset.slug}/{settings.MINIO_DATASET_TABLES_FILES_LIST_FILENAME}' progress = MinioProgress() self.minio.fput_object(self.bucket, dest_name, temp_file.name, progress=progress, content_type='text/html; charset=utf-8') os.remove(temp_file.name) return f'{settings.AWS_S3_ENDPOINT_URL}{self.bucket}/{dest_name}'
brasil.io
positive
def visit_bullet_list(self, node): if 'sphx-glr-horizontal' in node.get('classes', []): <DeepExtract> if self.v2: self.body.append(self._start_tag(node, 'ac:layout')) self.context.append(self._end_tag(node)) self.body.append(self._start_tag(node, 'ac:layout-section', **{'ac:type': 'three_equal', 'ac:breakout-mode': 'default'})) self.context.append(self._end_tag(node)) self._hlist_columns_left = 3 else: self.body.append(self._start_tag(node, 'table', suffix=self.nl)) self.context.append(self._end_tag(node)) self.body.append(self._start_tag(node, 'tbody', suffix=self.nl, **{'style': 'border: none'})) self.context.append(self._end_tag(node)) self.body.append(self._start_tag(node, 'tr', suffix=self.nl)) self.context.append(self._end_tag(node)) </DeepExtract> self._list_context.append('sphx-glr-horizontal') return attribs = {} <DeepExtract> has_complex = False for child in node.children: if len(child.children) > 2 or (len(child.children) == 2 and (not isinstance(child.children[1], (nodes.bullet_list, nodes.enumerated_list)))): has_complex = True break if has_complex: for child in node.children: child.__confluence_list_item_margin = True if isinstance(node.parent, nodes.list_item): try: if node.parent.__confluence_list_item_margin: attribs['style'] = f'margin-top: {FCMMO}px;' except AttributeError: pass </DeepExtract> self.body.append(self._start_tag(node, 'ul', suffix=self.nl, **attribs)) self.context.append(self._end_tag(node)) self._list_context.append('')
def visit_bullet_list(self, node): if 'sphx-glr-horizontal' in node.get('classes', []): if self.v2: self.body.append(self._start_tag(node, 'ac:layout')) self.context.append(self._end_tag(node)) self.body.append(self._start_tag(node, 'ac:layout-section', **{'ac:type': 'three_equal', 'ac:breakout-mode': 'default'})) self.context.append(self._end_tag(node)) self._hlist_columns_left = 3 else: self.body.append(self._start_tag(node, 'table', suffix=self.nl)) self.context.append(self._end_tag(node)) self.body.append(self._start_tag(node, 'tbody', suffix=self.nl, **{'style': 'border: none'})) self.context.append(self._end_tag(node)) self.body.append(self._start_tag(node, 'tr', suffix=self.nl)) self.context.append(self._end_tag(node)) self._list_context.append('sphx-glr-horizontal') return attribs = {} has_complex = False for child in node.children: if len(child.children) > 2 or (len(child.children) == 2 and (not isinstance(child.children[1], (nodes.bullet_list, nodes.enumerated_list)))): has_complex = True break if has_complex: for child in node.children: child.__confluence_list_item_margin = True if isinstance(node.parent, nodes.list_item): try: if node.parent.__confluence_list_item_margin: attribs['style'] = f'margin-top: {FCMMO}px;' except AttributeError: pass self.body.append(self._start_tag(node, 'ul', suffix=self.nl, **attribs)) self.context.append(self._end_tag(node)) self._list_context.append('')
confluencebuilder
positive
@skipIf(django.VERSION >= (1, 8), 'IPAddressField is deprecated with Django >= 1.8') def test_auto_ip_address(self): <DeepExtract> class Form(forms.ModelForm): class Meta: model = AllFields fields = ('ip_address',) form_obj = Form </DeepExtract> <DeepExtract> self.assertIsInstance(form_obj.base_fields['ip_address'], forms.IPAddressField) </DeepExtract>
@skipIf(django.VERSION >= (1, 8), 'IPAddressField is deprecated with Django >= 1.8') def test_auto_ip_address(self): class Form(forms.ModelForm): class Meta: model = AllFields fields = ('ip_address',) form_obj = Form self.assertIsInstance(form_obj.base_fields['ip_address'], forms.IPAddressField) </DeepExtract>
django-floppyforms
positive
def test_pure_offline(): @deal.pure def func(do): if do: http = urllib3.PoolManager() http.request('GET', 'http://httpbin.org/robots.txt') <DeepExtract> if False: print(False) </DeepExtract> with pytest.raises(deal.OfflineContractError): <DeepExtract> if True: print(True) </DeepExtract>
def test_pure_offline(): @deal.pure def func(do): if do: http = urllib3.PoolManager() http.request('GET', 'http://httpbin.org/robots.txt') if False: print(False) with pytest.raises(deal.OfflineContractError): if True: print(True) </DeepExtract>
deal
positive
def _detect_time_without_format(time_list=None, original_list=None): """ Detects time in the following format format: <prefix><Optional extra separator><hour><Optional separator><minutes> where each part is in of one of the formats given against them prefix: "by", "before", "after", "at", "on", "dot", "exactly", "exact" hour: h, hh minute: m, mm extra separator: "-", space separator: ":", ".", space The meridiem is given assuming the time detected to be in within 12 hour span from the current timestamp. For example, If it is 5:33 AM at the moment of invoking this method, 6:20 would be assigned 'AM' as 5:33 AM <= 6:20 AM < 5:33 PM and 4:30 would be assigned 'PM' as 5:33 AM <= 4:30 PM < 5:33 PM Args: time_list (list): Optional, list to store dictionaries of detected time entities original_list (list): Optional, list to store corresponding substrings of given text which were detected as time entities Returns: A tuple of two lists with first list containing the detected time entities and second list containing their corresponding substrings in the given text. """ if time_list is None: time_list = [] if original_list is None: original_list = [] patterns = re.findall('\\b((?:by|before|after|at|dot|exactly|exact)[\\s-]*((0?[1-9]|1[0-2])[:.\\s]*([0-5][0-9])?)\\s*({timezone})?)\\s'.format(timezone=self.timezone_choices), self.processed_text.lower()) for pattern in patterns: original = pattern[0].strip() t1 = pattern[2] t2 = 0 tz = pattern[4] or None if tz: <DeepExtract> timezone_code = self.timezones_map[tz].value data_directory_path = os.path.join(os.path.dirname(os.path.abspath(__file__)).rstrip(os.sep), LANGUAGE_DATA_DIRECTORY) timezone_data_path = os.path.join(data_directory_path, TIMEZONES_CONSTANT_FILE) columns = [TIMEZONES_CODE_COLUMN_NAME, TIMEZONES_ALL_REGIONS_COLUMN_NAME] if os.path.exists(timezone_data_path): timezones_df = pd.read_csv(timezone_data_path, usecols=columns, index_col=TIMEZONES_CODE_COLUMN_NAME, encoding='utf-8') if re.search(self.timezone.zone, timezones_df.loc[timezone_code][TIMEZONES_ALL_REGIONS_COLUMN_NAME]): tz = self.timezone.zone else: tz = self.timezones_map[tz].preferred tz = self.timezone.zone </DeepExtract> if pattern[3]: t2 = pattern[3] <DeepExtract> if tz is not None: new_timezone = get_timezone(tz) else: new_timezone = self.timezone or pytz.timezone('UTC') current_datetime = datetime.datetime.now(new_timezone) current_hour = current_datetime.hour current_min = current_datetime.minute if int(t1) == 0 or int(t1) >= TWELVE_HOUR: meridiem = 'hrs' if current_hour >= TWELVE_HOUR: current_hour -= 12 if current_hour < int(t1) or (current_hour == int(t1) and current_min < int(t2)): meridiem = PM_MERIDIEM elif current_hour > int(t1): meridiem = PM_MERIDIEM elif current_hour == int(t1) and current_min > int(t2): meridiem = PM_MERIDIEM meridiem = AM_MERIDIEM </DeepExtract> time = {'hh': int(t1), 'mm': int(t2), 'nn': meridiem, 'tz': tz or (None if not self.timezone else self.timezone.zone)} time_list.append(time) original_list.append(original) return (time_list, original_list)
def _detect_time_without_format(time_list=None, original_list=None): """ Detects time in the following format format: <prefix><Optional extra separator><hour><Optional separator><minutes> where each part is in of one of the formats given against them prefix: "by", "before", "after", "at", "on", "dot", "exactly", "exact" hour: h, hh minute: m, mm extra separator: "-", space separator: ":", ".", space The meridiem is given assuming the time detected to be in within 12 hour span from the current timestamp. For example, If it is 5:33 AM at the moment of invoking this method, 6:20 would be assigned 'AM' as 5:33 AM <= 6:20 AM < 5:33 PM and 4:30 would be assigned 'PM' as 5:33 AM <= 4:30 PM < 5:33 PM Args: time_list (list): Optional, list to store dictionaries of detected time entities original_list (list): Optional, list to store corresponding substrings of given text which were detected as time entities Returns: A tuple of two lists with first list containing the detected time entities and second list containing their corresponding substrings in the given text. """ if time_list is None: time_list = [] if original_list is None: original_list = [] patterns = re.findall('\\b((?:by|before|after|at|dot|exactly|exact)[\\s-]*((0?[1-9]|1[0-2])[:.\\s]*([0-5][0-9])?)\\s*({timezone})?)\\s'.format(timezone=self.timezone_choices), self.processed_text.lower()) for pattern in patterns: original = pattern[0].strip() t1 = pattern[2] t2 = 0 tz = pattern[4] or None if tz: timezone_code = self.timezones_map[tz].value data_directory_path = os.path.join(os.path.dirname(os.path.abspath(__file__)).rstrip(os.sep), LANGUAGE_DATA_DIRECTORY) timezone_data_path = os.path.join(data_directory_path, TIMEZONES_CONSTANT_FILE) columns = [TIMEZONES_CODE_COLUMN_NAME, TIMEZONES_ALL_REGIONS_COLUMN_NAME] if os.path.exists(timezone_data_path): timezones_df = pd.read_csv(timezone_data_path, usecols=columns, index_col=TIMEZONES_CODE_COLUMN_NAME, encoding='utf-8') if re.search(self.timezone.zone, timezones_df.loc[timezone_code][TIMEZONES_ALL_REGIONS_COLUMN_NAME]): tz = self.timezone.zone else: tz = self.timezones_map[tz].preferred tz = self.timezone.zone if pattern[3]: t2 = pattern[3] if tz is not None: new_timezone = get_timezone(tz) else: new_timezone = self.timezone or pytz.timezone('UTC') current_datetime = datetime.datetime.now(new_timezone) current_hour = current_datetime.hour current_min = current_datetime.minute if int(t1) == 0 or int(t1) >= TWELVE_HOUR: meridiem = 'hrs' if current_hour >= TWELVE_HOUR: current_hour -= 12 if current_hour < int(t1) or (current_hour == int(t1) and current_min < int(t2)): meridiem = PM_MERIDIEM elif current_hour > int(t1): meridiem = PM_MERIDIEM elif current_hour == int(t1) and current_min > int(t2): meridiem = PM_MERIDIEM meridiem = AM_MERIDIEM time = {'hh': int(t1), 'mm': int(t2), 'nn': meridiem, 'tz': tz or (None if not self.timezone else self.timezone.zone)} time_list.append(time) original_list.append(original) return (time_list, original_list)
chatbot_ner
positive
def split(input_pdf, output_path, split_options): pdf = PdfFileReader(input_pdf) pdf_writer = PdfFileWriter() if ',' in split_options: pages = [page for page in split_options.split(',') if page] for page in pages: pdf_writer.addPage(pdf.getPage(int(page))) elif '-' in split_options: (page_begin, page_end) = split_options.split('-') page_begin = int(page_begin) page_end = int(page_end) <DeepExtract> if page_begin < 0 or page_begin == 1: page_begin = 0 if page_begin > 1: page_begin -= 1 page_begin = page_begin </DeepExtract> for page in range(page_begin, page_end): pdf_writer.addPage(pdf.getPage(page)) else: page_begin = int(split_options) <DeepExtract> if page_begin < 0 or page_begin == 1: page_begin = 0 if page_begin > 1: page_begin -= 1 page_begin = page_begin </DeepExtract> pdf_writer.addPage(pdf.getPage(page_begin)) with open(output_path, 'wb') as out: pdf_writer.write(out) message = f'PDF split successfully to {output_path}' <DeepExtract> with wx.MessageDialog(None, message=message, caption='Split Finished', style=wx.ICON_INFORMATION) as dlg: dlg.ShowModal() </DeepExtract>
def split(input_pdf, output_path, split_options): pdf = PdfFileReader(input_pdf) pdf_writer = PdfFileWriter() if ',' in split_options: pages = [page for page in split_options.split(',') if page] for page in pages: pdf_writer.addPage(pdf.getPage(int(page))) elif '-' in split_options: (page_begin, page_end) = split_options.split('-') page_begin = int(page_begin) page_end = int(page_end) if page_begin < 0 or page_begin == 1: page_begin = 0 if page_begin > 1: page_begin -= 1 page_begin = page_begin for page in range(page_begin, page_end): pdf_writer.addPage(pdf.getPage(page)) else: page_begin = int(split_options) if page_begin < 0 or page_begin == 1: page_begin = 0 if page_begin > 1: page_begin -= 1 page_begin = page_begin pdf_writer.addPage(pdf.getPage(page_begin)) with open(output_path, 'wb') as out: pdf_writer.write(out) message = f'PDF split successfully to {output_path}' with wx.MessageDialog(None, message=message, caption='Split Finished', style=wx.ICON_INFORMATION) as dlg: dlg.ShowModal() </DeepExtract>
applications_with_wxpython
positive
def __init__(self, num_layers, hidden_size, num_attention_heads, attention_dropout_prob, output_dropout_prob, checkpoint_activations, checkpoint_num_layers=1, layernorm_epsilon=1e-05, init_method_std=0.02, use_scaled_init_for_output_weights=True): super(GPT2ParallelTransformer, self).__init__() self.checkpoint_activations = checkpoint_activations self.checkpoint_num_layers = checkpoint_num_layers output_layer_init_method = None if use_scaled_init_for_output_weights: <DeepExtract> std = init_method_std / math.sqrt(2.0 * num_layers) def init_(tensor): output_layer_init_method = torch.nn.init.normal_(tensor, mean=0.0, std=std) output_layer_init_method = init_ </DeepExtract> def get_layer(): return GPT2ParallelTransformerLayer(hidden_size, num_attention_heads, attention_dropout_prob, output_dropout_prob, layernorm_epsilon, unscaled_init_method(init_method_std), output_layer_init_method=output_layer_init_method) self.layers = torch.nn.ModuleList([get_layer() for _ in range(num_layers)]) self.final_layernorm = LayerNorm(hidden_size, eps=layernorm_epsilon) if deepspeed.checkpointing.is_configured(): global get_cuda_rng_tracker, checkpoint get_cuda_rng_tracker = deepspeed.checkpointing.get_cuda_rng_tracker checkpoint = deepspeed.checkpointing.checkpoint
def __init__(self, num_layers, hidden_size, num_attention_heads, attention_dropout_prob, output_dropout_prob, checkpoint_activations, checkpoint_num_layers=1, layernorm_epsilon=1e-05, init_method_std=0.02, use_scaled_init_for_output_weights=True): super(GPT2ParallelTransformer, self).__init__() self.checkpoint_activations = checkpoint_activations self.checkpoint_num_layers = checkpoint_num_layers output_layer_init_method = None if use_scaled_init_for_output_weights: std = init_method_std / math.sqrt(2.0 * num_layers) def init_(tensor): output_layer_init_method = torch.nn.init.normal_(tensor, mean=0.0, std=std) output_layer_init_method = init_ def get_layer(): return GPT2ParallelTransformerLayer(hidden_size, num_attention_heads, attention_dropout_prob, output_dropout_prob, layernorm_epsilon, unscaled_init_method(init_method_std), output_layer_init_method=output_layer_init_method) self.layers = torch.nn.ModuleList([get_layer() for _ in range(num_layers)]) self.final_layernorm = LayerNorm(hidden_size, eps=layernorm_epsilon) if deepspeed.checkpointing.is_configured(): global get_cuda_rng_tracker, checkpoint get_cuda_rng_tracker = deepspeed.checkpointing.get_cuda_rng_tracker checkpoint = deepspeed.checkpointing.checkpoint
CPM-1-Generate
positive
def __init__(self, model_dir, gpus): self.model_dir = model_dir self.gpus = gpus optimizer = Adam(0.0001, 0.5) <DeepExtract> def conv_block_d(input_tensor, f, use_instance_norm=True): x = input_tensor x = Conv2D(f, kernel_size=4, strides=2, kernel_initializer=conv_init, use_bias=False, padding='same')(x) if use_instance_norm: x = inst_norm()(x) x = LeakyReLU(alpha=0.2)(x) (self.netDA, self.netDB) = x def Discriminator(nc_in, input_size=128): inp = Input(shape=(input_size, input_size, nc_in)) x = conv_block_d(inp, 64, False) x = conv_block_d(x, 128, True) x = conv_block_d(x, 256, True) x = conv_block_d(x, 512, True) out = Conv2D(1, kernel_size=4, kernel_initializer=conv_init, use_bias=False, padding='same', activation='sigmoid')(x) (self.netDA, self.netDB) = Model(inputs=[inp], outputs=out) netDA = Discriminator(self.nc_D_inp) netDB = Discriminator(self.nc_D_inp) try: netDA.load_weights(str(self.model_dir / hdf['netDAH5'])) netDB.load_weights(str(self.model_dir / hdf['netDBH5'])) print('Discriminator models loaded.') except: print('Discriminator weights files not found.') pass (self.netDA, self.netDB) = (netDA, netDB) </DeepExtract> <DeepExtract> def conv_block(input_tensor, f, use_instance_norm=True): x = input_tensor x = SeparableConv2D(f, kernel_size=3, strides=2, kernel_initializer=conv_init, use_bias=False, padding='same')(x) if use_instance_norm: x = inst_norm()(x) x = Activation('relu')(x) (self.netGA, self.netGB) = x def res_block(input_tensor, f, dilation=1): x = input_tensor x = Conv2D(f, kernel_size=3, kernel_initializer=conv_init, use_bias=False, padding='same', dilation_rate=dilation)(x) x = LeakyReLU(alpha=0.2)(x) x = Conv2D(f, kernel_size=3, kernel_initializer=conv_init, use_bias=False, padding='same', dilation_rate=dilation)(x) x = add([x, input_tensor]) (self.netGA, self.netGB) = x def upscale_ps(filters, use_instance_norm=True): def block(x, use_instance_norm=use_instance_norm): x = Conv2D(filters * 4, kernel_size=3, use_bias=False, kernel_initializer=RandomNormal(0, 0.02), padding='same')(x) if use_instance_norm: x = inst_norm()(x) x = LeakyReLU(0.1)(x) x = PixelShuffler()(x) (self.netGA, self.netGB) = x (self.netGA, self.netGB) = block def Encoder(nc_in=3, input_size=128): inp = Input(shape=(input_size, input_size, nc_in)) x = Conv2D(32, kernel_size=5, kernel_initializer=conv_init, use_bias=False, padding='same')(inp) x = conv_block(x, 64, use_instance_norm=False) x = conv_block(x, 128) x = conv_block(x, 256) x = conv_block(x, 512) x = conv_block(x, 1024) x = Dense(1024)(Flatten()(x)) x = Dense(4 * 4 * 1024)(x) x = Reshape((4, 4, 1024))(x) out = upscale_ps(512)(x) (self.netGA, self.netGB) = Model(inputs=inp, outputs=out) def Decoder_ps(nc_in=512, input_size=8): input_ = Input(shape=(input_size, input_size, nc_in)) x = input_ x = upscale_ps(256)(x) x = upscale_ps(128)(x) x = upscale_ps(64)(x) x = res_block(x, 64, dilation=2) out64 = Conv2D(64, kernel_size=3, padding='same')(x) out64 = LeakyReLU(alpha=0.1)(out64) out64 = Conv2D(3, kernel_size=5, padding='same', activation='tanh')(out64) x = upscale_ps(32)(x) x = res_block(x, 32) x = res_block(x, 32) alpha = Conv2D(1, kernel_size=5, padding='same', activation='sigmoid')(x) rgb = Conv2D(3, kernel_size=5, padding='same', activation='tanh')(x) out = concatenate([alpha, rgb]) (self.netGA, self.netGB) = Model(input_, [out, out64]) encoder = Encoder() decoder_A = Decoder_ps() decoder_B = Decoder_ps() x = Input(shape=self.img_shape) netGA = Model(x, decoder_A(encoder(x))) netGB = Model(x, decoder_B(encoder(x))) netGA.output_names = ['netGA_out_1', 'netGA_out_2'] netGB.output_names = ['netGB_out_1', 'netGB_out_2'] self.netGA_sm = netGA self.netGB_sm = netGB try: netGA.load_weights(str(self.model_dir / hdf['netGAH5'])) netGB.load_weights(str(self.model_dir / hdf['netGBH5'])) print('Generator models loaded.') except: print('Generator weights files not found.') pass if self.gpus > 1: netGA = multi_gpu_model(self.netGA_sm, self.gpus) netGB = multi_gpu_model(self.netGB_sm, self.gpus) (self.netGA, self.netGB) = (netGA, netGB) </DeepExtract>
def __init__(self, model_dir, gpus): self.model_dir = model_dir self.gpus = gpus optimizer = Adam(0.0001, 0.5) def conv_block_d(input_tensor, f, use_instance_norm=True): x = input_tensor x = Conv2D(f, kernel_size=4, strides=2, kernel_initializer=conv_init, use_bias=False, padding='same')(x) if use_instance_norm: x = inst_norm()(x) x = LeakyReLU(alpha=0.2)(x) (self.netDA, self.netDB) = x def Discriminator(nc_in, input_size=128): inp = Input(shape=(input_size, input_size, nc_in)) x = conv_block_d(inp, 64, False) x = conv_block_d(x, 128, True) x = conv_block_d(x, 256, True) x = conv_block_d(x, 512, True) out = Conv2D(1, kernel_size=4, kernel_initializer=conv_init, use_bias=False, padding='same', activation='sigmoid')(x) (self.netDA, self.netDB) = Model(inputs=[inp], outputs=out) netDA = Discriminator(self.nc_D_inp) netDB = Discriminator(self.nc_D_inp) try: netDA.load_weights(str(self.model_dir / hdf['netDAH5'])) netDB.load_weights(str(self.model_dir / hdf['netDBH5'])) print('Discriminator models loaded.') except: print('Discriminator weights files not found.') pass (self.netDA, self.netDB) = (netDA, netDB) def conv_block(input_tensor, f, use_instance_norm=True): x = input_tensor x = SeparableConv2D(f, kernel_size=3, strides=2, kernel_initializer=conv_init, use_bias=False, padding='same')(x) if use_instance_norm: x = inst_norm()(x) x = Activation('relu')(x) (self.netGA, self.netGB) = x def res_block(input_tensor, f, dilation=1): x = input_tensor x = Conv2D(f, kernel_size=3, kernel_initializer=conv_init, use_bias=False, padding='same', dilation_rate=dilation)(x) x = LeakyReLU(alpha=0.2)(x) x = Conv2D(f, kernel_size=3, kernel_initializer=conv_init, use_bias=False, padding='same', dilation_rate=dilation)(x) x = add([x, input_tensor]) (self.netGA, self.netGB) = x def upscale_ps(filters, use_instance_norm=True): def block(x, use_instance_norm=use_instance_norm): x = Conv2D(filters * 4, kernel_size=3, use_bias=False, kernel_initializer=RandomNormal(0, 0.02), padding='same')(x) if use_instance_norm: x = inst_norm()(x) x = LeakyReLU(0.1)(x) x = PixelShuffler()(x) (self.netGA, self.netGB) = x (self.netGA, self.netGB) = block def Encoder(nc_in=3, input_size=128): inp = Input(shape=(input_size, input_size, nc_in)) x = Conv2D(32, kernel_size=5, kernel_initializer=conv_init, use_bias=False, padding='same')(inp) x = conv_block(x, 64, use_instance_norm=False) x = conv_block(x, 128) x = conv_block(x, 256) x = conv_block(x, 512) x = conv_block(x, 1024) x = Dense(1024)(Flatten()(x)) x = Dense(4 * 4 * 1024)(x) x = Reshape((4, 4, 1024))(x) out = upscale_ps(512)(x) (self.netGA, self.netGB) = Model(inputs=inp, outputs=out) def Decoder_ps(nc_in=512, input_size=8): input_ = Input(shape=(input_size, input_size, nc_in)) x = input_ x = upscale_ps(256)(x) x = upscale_ps(128)(x) x = upscale_ps(64)(x) x = res_block(x, 64, dilation=2) out64 = Conv2D(64, kernel_size=3, padding='same')(x) out64 = LeakyReLU(alpha=0.1)(out64) out64 = Conv2D(3, kernel_size=5, padding='same', activation='tanh')(out64) x = upscale_ps(32)(x) x = res_block(x, 32) x = res_block(x, 32) alpha = Conv2D(1, kernel_size=5, padding='same', activation='sigmoid')(x) rgb = Conv2D(3, kernel_size=5, padding='same', activation='tanh')(x) out = concatenate([alpha, rgb]) (self.netGA, self.netGB) = Model(input_, [out, out64]) encoder = Encoder() decoder_A = Decoder_ps() decoder_B = Decoder_ps() x = Input(shape=self.img_shape) netGA = Model(x, decoder_A(encoder(x))) netGB = Model(x, decoder_B(encoder(x))) netGA.output_names = ['netGA_out_1', 'netGA_out_2'] netGB.output_names = ['netGB_out_1', 'netGB_out_2'] self.netGA_sm = netGA self.netGB_sm = netGB try: netGA.load_weights(str(self.model_dir / hdf['netGAH5'])) netGB.load_weights(str(self.model_dir / hdf['netGBH5'])) print('Generator models loaded.') except: print('Generator weights files not found.') pass if self.gpus > 1: netGA = multi_gpu_model(self.netGA_sm, self.gpus) netGB = multi_gpu_model(self.netGB_sm, self.gpus) (self.netGA, self.netGB) = (netGA, netGB) </DeepExtract>
DeepFakeTutorial
positive
def _prepare_data(self, X, a): """ Extract the relevant parts for outcome model and weight model for the entire data matrix Args: X (pd.DataFrame): Covariate matrix of size (num_subjects, num_features). a (pd.Series): Treatment assignment of size (num_subjects,). Returns: (pd.DataFrame, pd.DataFrame): X_outcome, X_weight Data matrix for outcome model and data matrix weight model """ <DeepExtract> outcome_covariates = self.outcome_covariates or X.columns X_outcome = X[outcome_covariates] X_outcome = X_outcome </DeepExtract> <DeepExtract> weight_covariates = self.weight_covariates or X.columns X_weight = X[weight_covariates] X_weight = X_weight </DeepExtract> return (X_outcome, X_weight)
def _prepare_data(self, X, a): """ Extract the relevant parts for outcome model and weight model for the entire data matrix Args: X (pd.DataFrame): Covariate matrix of size (num_subjects, num_features). a (pd.Series): Treatment assignment of size (num_subjects,). Returns: (pd.DataFrame, pd.DataFrame): X_outcome, X_weight Data matrix for outcome model and data matrix weight model """ outcome_covariates = self.outcome_covariates or X.columns X_outcome = X[outcome_covariates] X_outcome = X_outcome weight_covariates = self.weight_covariates or X.columns X_weight = X[weight_covariates] X_weight = X_weight return (X_outcome, X_weight)
causallib
positive
def test_book_retrieve_cache_miss(self): """Test idempotent retrieve using 'If-None-Match' HTTP header, should result in HTTP 200.""" book_response = self.client.get(reverse('book-detail', kwargs={'pk': self.book.id}), CONTENT_TYPE='application/json') self.assertEqual(book_response.status_code, status.HTTP_200_OK) etag = book_response['ETag'] <DeepExtract> self.book.issn = issn self.book.save() return self.book </DeepExtract> book_response = self.client.get(reverse('book-detail', kwargs={'pk': self.book.id}), CONTENT_TYPE='application/json', HTTP_IF_NONE_MATCH=etag) self.assertEqual(book_response.status_code, status.HTTP_200_OK, 'The response status code must be 200!') self.assertNotEqual(book_response['ETag'], etag)
def test_book_retrieve_cache_miss(self): """Test idempotent retrieve using 'If-None-Match' HTTP header, should result in HTTP 200.""" book_response = self.client.get(reverse('book-detail', kwargs={'pk': self.book.id}), CONTENT_TYPE='application/json') self.assertEqual(book_response.status_code, status.HTTP_200_OK) etag = book_response['ETag'] self.book.issn = issn self.book.save() return self.book book_response = self.client.get(reverse('book-detail', kwargs={'pk': self.book.id}), CONTENT_TYPE='application/json', HTTP_IF_NONE_MATCH=etag) self.assertEqual(book_response.status_code, status.HTTP_200_OK, 'The response status code must be 200!') self.assertNotEqual(book_response['ETag'], etag)
drf-extensions
positive
def interpolate(input, size=None, scale_factor=None, mode='nearest', align_corners=None): if input.numel() > 0: return torch.nn.functional.interpolate(input, size, scale_factor, mode, align_corners) def _check_size_scale_factor(dim): if size is None and scale_factor is None: raise ValueError('either size or scale_factor should be defined') if size is not None and scale_factor is not None: raise ValueError('only one of size or scale_factor should be defined') if scale_factor is not None and isinstance(scale_factor, tuple) and (len(scale_factor) != dim): raise ValueError('scale_factor shape must match input shape. Input is {}D, scale_factor size is {}'.format(dim, len(scale_factor))) def _output_size(dim): <DeepExtract> if size is None and scale_factor is None: raise ValueError('either size or scale_factor should be defined') if size is not None and scale_factor is not None: raise ValueError('only one of size or scale_factor should be defined') if scale_factor is not None and isinstance(scale_factor, tuple) and (len(scale_factor) != dim): raise ValueError('scale_factor shape must match input shape. Input is {}D, scale_factor size is {}'.format(dim, len(scale_factor))) </DeepExtract> if size is not None: return size scale_factors = _ntuple(dim)(scale_factor) return [int(math.floor(input.size(i + 2) * scale_factors[i])) for i in range(dim)] output_shape = tuple(_output_size(2)) output_shape = input.shape[:-2] + output_shape return _NewEmptyTensorOp.apply(input, output_shape)
def interpolate(input, size=None, scale_factor=None, mode='nearest', align_corners=None): if input.numel() > 0: return torch.nn.functional.interpolate(input, size, scale_factor, mode, align_corners) def _check_size_scale_factor(dim): if size is None and scale_factor is None: raise ValueError('either size or scale_factor should be defined') if size is not None and scale_factor is not None: raise ValueError('only one of size or scale_factor should be defined') if scale_factor is not None and isinstance(scale_factor, tuple) and (len(scale_factor) != dim): raise ValueError('scale_factor shape must match input shape. Input is {}D, scale_factor size is {}'.format(dim, len(scale_factor))) def _output_size(dim): if size is None and scale_factor is None: raise ValueError('either size or scale_factor should be defined') if size is not None and scale_factor is not None: raise ValueError('only one of size or scale_factor should be defined') if scale_factor is not None and isinstance(scale_factor, tuple) and (len(scale_factor) != dim): raise ValueError('scale_factor shape must match input shape. Input is {}D, scale_factor size is {}'.format(dim, len(scale_factor))) if size is not None: return size scale_factors = _ntuple(dim)(scale_factor) return [int(math.floor(input.size(i + 2) * scale_factors[i])) for i in range(dim)] output_shape = tuple(_output_size(2)) output_shape = input.shape[:-2] + output_shape return _NewEmptyTensorOp.apply(input, output_shape)
APNet
positive
def test_radii_list_to_ndarray(self): <DeepExtract> sections = np.asarray([NacaProfile(digits='0012') for i in range(10)]) radii = np.arange(0.4, 1.31, 0.1) chord_lengths = np.concatenate((np.arange(0.55, 1.1, 0.15), np.arange(1.03, 0.9, -0.03), np.array([0.3]))) pitch = np.append(np.arange(3.0, 4.0, 0.2), np.arange(4.1, 3.2, -0.2)) rake = np.append(np.arange(0.005, 0.08, 0.01), np.arange(0.075, 0.02, -0.03)) skew_angles = np.append(np.arange(-4.0, -9.0, -3.0), np.arange(-7.0, 15.0, 3.0)) blade = bl.Blade(sections=sections, radii=radii, chord_lengths=chord_lengths, pitch=pitch, rake=rake, skew_angles=skew_angles) </DeepExtract> blade.radii = list(range(10)) blade._check_params() self.assertIsInstance(blade.radii, np.ndarray)
def test_radii_list_to_ndarray(self): sections = np.asarray([NacaProfile(digits='0012') for i in range(10)]) radii = np.arange(0.4, 1.31, 0.1) chord_lengths = np.concatenate((np.arange(0.55, 1.1, 0.15), np.arange(1.03, 0.9, -0.03), np.array([0.3]))) pitch = np.append(np.arange(3.0, 4.0, 0.2), np.arange(4.1, 3.2, -0.2)) rake = np.append(np.arange(0.005, 0.08, 0.01), np.arange(0.075, 0.02, -0.03)) skew_angles = np.append(np.arange(-4.0, -9.0, -3.0), np.arange(-7.0, 15.0, 3.0)) blade = bl.Blade(sections=sections, radii=radii, chord_lengths=chord_lengths, pitch=pitch, rake=rake, skew_angles=skew_angles) blade.radii = list(range(10)) blade._check_params() self.assertIsInstance(blade.radii, np.ndarray)
BladeX
positive
def patch_version(self) -> Optional[PatchVersion]: """Return patch version or None if there is None This method reads/writes version from/to cache. """ if self.solution.storage.url == RadsStorage.URL_PBE: return PatchVersion('main') cache = self.solution.storage.fspath(f'{self.path}/_patch_version') if os.path.isfile(cache): logger.debug(f'retrieving patch version for {self} from cache') with open(cache) as f: version = f.read().strip() version = PatchVersion(version) if version else None else: <DeepExtract> logger.debug(f'retrieving patch version for {self}') retrievers = {'league_client_sln': ('league_client', 'system.yaml', get_system_yaml_version), 'lol_game_client_sln': ('lol_game_client', 'League of Legends.exe', get_exe_version)} try: (project_name, file_name, extractor) = retrievers[self.solution.name] except KeyError: raise RuntimeError(f'no known way to retrieve patch version for solution {self.solution.name}') for pv in self.projects(False): if pv.project.name == project_name: break else: raise ValueError(f'{project_name} project not found for {self}') try: filepaths = pv.filepaths() except requests.exceptions.HTTPError as e: if e.response is not None and e.response.status_code == 404: version = None raise path_suffix = f'/{file_name}' for path in filepaths: if path.endswith(path_suffix): fspath = self.solution.storage.fspath(path) if not os.path.isfile(path): pv.extract([path]) break else: if pv.project.name == 'league_client' and pv.version <= RadsVersion('0.0.0.43'): version = None raise ValueError(f"'{file_name}' not found for {pv}") version = extractor(fspath) version = PatchVersion(version) </DeepExtract> if version is None: logger.warning(f'failed to retrieve patch version for {self}') else: with open(cache, 'w') as f: f.write(f'{version}\n') return version
def patch_version(self) -> Optional[PatchVersion]: """Return patch version or None if there is None This method reads/writes version from/to cache. """ if self.solution.storage.url == RadsStorage.URL_PBE: return PatchVersion('main') cache = self.solution.storage.fspath(f'{self.path}/_patch_version') if os.path.isfile(cache): logger.debug(f'retrieving patch version for {self} from cache') with open(cache) as f: version = f.read().strip() version = PatchVersion(version) if version else None else: logger.debug(f'retrieving patch version for {self}') retrievers = {'league_client_sln': ('league_client', 'system.yaml', get_system_yaml_version), 'lol_game_client_sln': ('lol_game_client', 'League of Legends.exe', get_exe_version)} try: (project_name, file_name, extractor) = retrievers[self.solution.name] except KeyError: raise RuntimeError(f'no known way to retrieve patch version for solution {self.solution.name}') for pv in self.projects(False): if pv.project.name == project_name: break else: raise ValueError(f'{project_name} project not found for {self}') try: filepaths = pv.filepaths() except requests.exceptions.HTTPError as e: if e.response is not None and e.response.status_code == 404: version = None raise path_suffix = f'/{file_name}' for path in filepaths: if path.endswith(path_suffix): fspath = self.solution.storage.fspath(path) if not os.path.isfile(path): pv.extract([path]) break else: if pv.project.name == 'league_client' and pv.version <= RadsVersion('0.0.0.43'): version = None raise ValueError(f"'{file_name}' not found for {pv}") version = extractor(fspath) version = PatchVersion(version) if version is None: logger.warning(f'failed to retrieve patch version for {self}') else: with open(cache, 'w') as f: f.write(f'{version}\n') return version
CDTB
positive
@pytest.mark.integration def test_update_all_events_in_database(session, factory, patched_meetup): """ GIVEN: table contains upcoming events, adapter has same events with updated details WHEN: add_events_to_database is called THEN: update event information in database """ group = factory.UpcomingEventsGroup() num_events = 20 database_events = factory.Event.create_batch(size=num_events, group=group) fetched_events = [] for event in database_events: fetched_events.append(factory.EventDetails(id=event.remote_id, venue='TBD')) <DeepExtract> def _wrapper(events): fake_meetup = FakeMeetupAdapter(fetched_events) patcher(MODULE_TO_TEST, namespace='meetup', replacement=fake_meetup) return _wrapper </DeepExtract> sync_database_with_fetched_events(group) all_database_events = Event.query.all() assert len(all_database_events) == num_events for event in all_database_events: assert event.venue == 'TBD'
@pytest.mark.integration def test_update_all_events_in_database(session, factory, patched_meetup): """ GIVEN: table contains upcoming events, adapter has same events with updated details WHEN: add_events_to_database is called THEN: update event information in database """ group = factory.UpcomingEventsGroup() num_events = 20 database_events = factory.Event.create_batch(size=num_events, group=group) fetched_events = [] for event in database_events: fetched_events.append(factory.EventDetails(id=event.remote_id, venue='TBD')) def _wrapper(events): fake_meetup = FakeMeetupAdapter(fetched_events) patcher(MODULE_TO_TEST, namespace='meetup', replacement=fake_meetup) return _wrapper sync_database_with_fetched_events(group) all_database_events = Event.query.all() assert len(all_database_events) == num_events for event in all_database_events: assert event.venue == 'TBD'
busy-beaver
positive
def create_pid_file(tmpdir, pid): <DeepExtract> temp_file = tmpdir.join(watchdog.STUNNEL_PID_FILE) temp_file.write(str(pid), ensure=True) pid_file = temp_file </DeepExtract> return (pid_file.dirname, pid_file.basename, str(pid_file))
def create_pid_file(tmpdir, pid): temp_file = tmpdir.join(watchdog.STUNNEL_PID_FILE) temp_file.write(str(pid), ensure=True) pid_file = temp_file return (pid_file.dirname, pid_file.basename, str(pid_file))
efs-utils
positive
def test_worker_sends_final_results_after_last_chunk(self): messages = [{'frontend': self.make_frontend_request('message 1', 'ONLINE', has_next=True)}, {'frontend': self.make_frontend_request('', 'ONLINE', has_next=False)}] <DeepExtract> self.poller.add_messages(messages) self.worker.run() </DeepExtract> expected_message1 = createResultsMessage([(0, False, [(1.0, 'Interim result')])]) expected_message2 = createResultsMessage([(0, True, [(1.0, 'Hello World!')])]) <DeepExtract> sent_messages = [parseResultsMessage(message) for message in self.poller.sent_messages['frontend']] self.assertEquals([expected_message1, expected_message2], sent_messages) </DeepExtract>
def test_worker_sends_final_results_after_last_chunk(self): messages = [{'frontend': self.make_frontend_request('message 1', 'ONLINE', has_next=True)}, {'frontend': self.make_frontend_request('', 'ONLINE', has_next=False)}] self.poller.add_messages(messages) self.worker.run() expected_message1 = createResultsMessage([(0, False, [(1.0, 'Interim result')])]) expected_message2 = createResultsMessage([(0, True, [(1.0, 'Hello World!')])]) sent_messages = [parseResultsMessage(message) for message in self.poller.sent_messages['frontend']] self.assertEquals([expected_message1, expected_message2], sent_messages) </DeepExtract>
cloud-asr
positive
def launch(self): <DeepExtract> pid = os.fork() if pid: log.debug('Forked worker PID is %d', pid) self.stats['forks'] += 1 else: os.setpgrp() self.socket.close() self.socket = None exit_by_exception() pid = pid </DeepExtract> if pid: return pid else: from wsgiref.simple_server import make_server from borgcube.web.wsgi import get_wsgi_application from .utils import ThreadPoolWSGIServer (host, port) = settings.BUILTIN_WEB.rsplit(':', maxsplit=1) set_process_name('borgcubed [web process]') log.info('Serving HTTP on http://%s:%s', host, port) if settings.DEBUG: log.warning('DEBUG mode is enabled. This is rather dangerous.') if host not in ('127.0.0.1', 'localhost'): log.error('DEBUG mode is not possible for non-local host %s', host) sys.exit(1) httpd = make_server(host, int(port), get_wsgi_application(), server_class=ThreadPoolWSGIServer) try: httpd.serve_forever() finally: httpd.join() sys.exit(0)
def launch(self): pid = os.fork() if pid: log.debug('Forked worker PID is %d', pid) self.stats['forks'] += 1 else: os.setpgrp() self.socket.close() self.socket = None exit_by_exception() pid = pid if pid: return pid else: from wsgiref.simple_server import make_server from borgcube.web.wsgi import get_wsgi_application from .utils import ThreadPoolWSGIServer (host, port) = settings.BUILTIN_WEB.rsplit(':', maxsplit=1) set_process_name('borgcubed [web process]') log.info('Serving HTTP on http://%s:%s', host, port) if settings.DEBUG: log.warning('DEBUG mode is enabled. This is rather dangerous.') if host not in ('127.0.0.1', 'localhost'): log.error('DEBUG mode is not possible for non-local host %s', host) sys.exit(1) httpd = make_server(host, int(port), get_wsgi_application(), server_class=ThreadPoolWSGIServer) try: httpd.serve_forever() finally: httpd.join() sys.exit(0)
borgcube
positive
def test_serialize_normalize(self): from decimal import Decimal val = Decimal('1.00') node = DummySchemaNode(None) <DeepExtract> from colander import Invalid exc = Invalid(node, msg, val) typ = exc </DeepExtract> result = typ.serialize(node, val) self.assertEqual(result, '1')
def test_serialize_normalize(self): from decimal import Decimal val = Decimal('1.00') node = DummySchemaNode(None) from colander import Invalid exc = Invalid(node, msg, val) typ = exc result = typ.serialize(node, val) self.assertEqual(result, '1')
colander
positive
def receive_submit_request(application_file_path): """ Handle the request to submit a task """ blob_client = config.blob_client application = common.load_application(application_file_path) <DeepExtract> spark_home = os.environ['SPARK_HOME'] with open(os.path.join(spark_home, 'conf', 'master')) as f: master_ip = f.read().rstrip() files_path = os.environ['AZ_BATCH_TASK_WORKING_DIR'] jars = [os.path.join(files_path, os.path.basename(jar)) for jar in application.jars] py_files = [os.path.join(files_path, os.path.basename(py_file)) for py_file in application.py_files] files = [os.path.join(files_path, os.path.basename(f)) for f in application.files] spark_submit_cmd = CommandBuilder('{0}/bin/spark-submit'.format(spark_home)) spark_submit_cmd.add_option('--master', 'spark://{0}:7077'.format(master_ip)) spark_submit_cmd.add_option('--name', application.name) spark_submit_cmd.add_option('--class', application.main_class) spark_submit_cmd.add_option('--jars', jars and ','.join(jars)) spark_submit_cmd.add_option('--py-files', py_files and ','.join(py_files)) spark_submit_cmd.add_option('--files', files and ','.join(files)) spark_submit_cmd.add_option('--driver-java-options', application.driver_java_options) spark_submit_cmd.add_option('--driver-library-path', application.driver_library_path) spark_submit_cmd.add_option('--driver-class-path', application.driver_class_path) spark_submit_cmd.add_option('--driver-memory', application.driver_memory) spark_submit_cmd.add_option('--executor-memory', application.executor_memory) if application.driver_cores: spark_submit_cmd.add_option('--driver-cores', str(application.driver_cores)) if application.executor_cores: spark_submit_cmd.add_option('--executor-cores', str(application.executor_cores)) spark_submit_cmd.add_argument(os.path.expandvars(application.application) + ' ' + ' '.join(["'" + str(app_arg) + "'" for app_arg in application.application_args or []])) with open('spark-submit.txt', mode='w', encoding='UTF-8') as stream: stream.write(spark_submit_cmd.to_str()) cmd = spark_submit_cmd </DeepExtract> exit_code = -1 try: exit_code = subprocess.call(cmd.to_str(), shell=True) common.upload_log(blob_client, application) except Exception as e: common.upload_error_log(str(e), os.path.join(os.environ['AZ_BATCH_TASK_WORKING_DIR'], 'application.yaml')) return exit_code
def receive_submit_request(application_file_path): """ Handle the request to submit a task """ blob_client = config.blob_client application = common.load_application(application_file_path) spark_home = os.environ['SPARK_HOME'] with open(os.path.join(spark_home, 'conf', 'master')) as f: master_ip = f.read().rstrip() files_path = os.environ['AZ_BATCH_TASK_WORKING_DIR'] jars = [os.path.join(files_path, os.path.basename(jar)) for jar in application.jars] py_files = [os.path.join(files_path, os.path.basename(py_file)) for py_file in application.py_files] files = [os.path.join(files_path, os.path.basename(f)) for f in application.files] spark_submit_cmd = CommandBuilder('{0}/bin/spark-submit'.format(spark_home)) spark_submit_cmd.add_option('--master', 'spark://{0}:7077'.format(master_ip)) spark_submit_cmd.add_option('--name', application.name) spark_submit_cmd.add_option('--class', application.main_class) spark_submit_cmd.add_option('--jars', jars and ','.join(jars)) spark_submit_cmd.add_option('--py-files', py_files and ','.join(py_files)) spark_submit_cmd.add_option('--files', files and ','.join(files)) spark_submit_cmd.add_option('--driver-java-options', application.driver_java_options) spark_submit_cmd.add_option('--driver-library-path', application.driver_library_path) spark_submit_cmd.add_option('--driver-class-path', application.driver_class_path) spark_submit_cmd.add_option('--driver-memory', application.driver_memory) spark_submit_cmd.add_option('--executor-memory', application.executor_memory) if application.driver_cores: spark_submit_cmd.add_option('--driver-cores', str(application.driver_cores)) if application.executor_cores: spark_submit_cmd.add_option('--executor-cores', str(application.executor_cores)) spark_submit_cmd.add_argument(os.path.expandvars(application.application) + ' ' + ' '.join(["'" + str(app_arg) + "'" for app_arg in application.application_args or []])) with open('spark-submit.txt', mode='w', encoding='UTF-8') as stream: stream.write(spark_submit_cmd.to_str()) cmd = spark_submit_cmd exit_code = -1 try: exit_code = subprocess.call(cmd.to_str(), shell=True) common.upload_log(blob_client, application) except Exception as e: common.upload_error_log(str(e), os.path.join(os.environ['AZ_BATCH_TASK_WORKING_DIR'], 'application.yaml')) return exit_code
aztk
positive
def tasklist_shad_cpp(request, course, seminar=None, group=None): user = request.user user_is_attended = False user_is_attended_special_course = False if seminar: groups = seminar.groups.all().order_by('name') else: groups = course.groups.all().order_by('name') course.can_edit = course.user_can_edit_course(user) if course.can_be_chosen_by_extern: course.groups.add(course.group_with_extern) if group: groups = [group] group_x_student_x_task_takens = OrderedDict() group_x_task_list = {} group_x_max_score = {} default_teacher = {} show_hidden_tasks = request.session.get(str(request.user.id) + '_' + str(course.id) + '_show_hidden_tasks', False) show_academ_users = request.session.get(str(request.user.id) + '_' + str(course.id) + '_show_academ_users', True) academ_students = [] for group in groups: student_x_task_x_task_takens = {} tasks_for_groups = TaskGroupRelations.objects.filter(task__course=course, group=group, deleted=False, task__parent_task=seminar).exclude(task__type=Task.TYPE_MATERIAL).distinct().order_by('position').prefetch_related('task__groups').select_related('task') if show_hidden_tasks: group_x_task_list[group] = [x.task for x in tasks_for_groups] else: group_x_task_list[group] = [x.task for x in tasks_for_groups if not x.task.is_hidden] group_x_max_score.setdefault(group, 0) for task in group_x_task_list[group]: if not task.is_hidden: if task.type == task.TYPE_SEMINAR: group_x_max_score[group] += sum([x.score_max for x in task.children.all()]) else: group_x_max_score[group] += task.score_max if task.task_text is None: task.task_text = '' issues_students_in_group = Issue.objects.filter(task__in=group_x_task_list[group], student__group__in=[group]).order_by('student').select_related('task').prefetch_related('task__groups', 'task') issues_x_student = defaultdict(list) for issue in issues_students_in_group.all(): student_id = issue.student.id issues_x_student[student_id].append(issue) students = group.students.filter(is_active=True) not_active_students = UserProfile.objects.filter(Q(user__in=group.students.filter(is_active=True)) & (Q(user_status__tag='not_active') | Q(user_status__tag='academic'))) academ_students += [x.user for x in not_active_students] if not show_academ_users: students = set(students) - set(academ_students) for student in students: if user == student: user_is_attended = True user_is_attended_special_course = True student_task_takens = issues_x_student[student.id] task_x_task_taken = {} student_summ_scores = 0 for task_taken in student_task_takens: task_x_task_taken[task_taken.task.id] = task_taken if not task_taken.task.is_hidden: if task_taken.task.type == Task.TYPE_SEMINAR or task_taken.task.score_after_deadline or (not (not task_taken.task.score_after_deadline and task_taken.is_status_accepted_after_deadline())): student_summ_scores += task_taken.mark student_x_task_x_task_takens[student] = (task_x_task_taken, student_summ_scores) group_x_student_x_task_takens[group] = student_x_task_x_task_takens try: default_teacher[group] = DefaultTeacher.objects.get(course=course, group=group).teacher except DefaultTeacher.DoesNotExist: default_teacher[group] = None group_x_student_information = OrderedDict() for (group, student_x_task_x_task_takens) in group_x_student_x_task_takens.iteritems(): group_x_student_information.setdefault(group, []) for student in sorted(student_x_task_x_task_takens.keys(), key=lambda x: u'{0} {1}'.format(x.last_name, x.first_name)): if user == student: user_is_attended = True elif not course.user_can_see_transcript(user, student): continue <DeepExtract> mark_id = -1 course_mark = '--' course_mark_int = -1 course_marks = course.mark_system if course_marks and course_marks.marks: if course_marks.marks.all()[0].name_int != -1: course_mark_int = -10 try: student_course_mark = StudentCourseMark.objects.get(course=course, student=student) if student_course_mark.mark: mark_id = student_course_mark.mark.id course_mark = unicode(student_course_mark) course_mark_int = student_course_mark.mark.name_int except StudentCourseMark.DoesNotExist: pass (mark_id, course_mark, course_mark_int) = (mark_id, course_mark, course_mark_int) </DeepExtract> group_x_student_information[group].append((student, student_x_task_x_task_takens[student][0], student_x_task_x_task_takens[student][1], mark_id, course_mark, course_mark_int)) context = {'course': course, 'course_mark_system_vals': course.mark_system.marks.all() if course.mark_system else None, 'group_information': group_x_student_information, 'group_tasks': group_x_task_list, 'group_x_max_score': group_x_max_score, 'default_teacher': default_teacher, 'user': user, 'user_is_attended': user_is_attended, 'user_is_attended_special_course': user_is_attended_special_course, 'user_is_teacher': course.user_is_teacher(user), 'seminar': seminar, 'visible_queue': course.user_can_see_queue(user), 'visible_attendance_log': course.user_can_see_attendance_log(request.user), 'visible_hide_button': Task.objects.filter(Q(course=course) & Q(is_hidden=True)).exists(), 'show_hidden_tasks': show_hidden_tasks, 'visible_hide_button_users': len(academ_students), 'show_academ_users': show_academ_users} return context
def tasklist_shad_cpp(request, course, seminar=None, group=None): user = request.user user_is_attended = False user_is_attended_special_course = False if seminar: groups = seminar.groups.all().order_by('name') else: groups = course.groups.all().order_by('name') course.can_edit = course.user_can_edit_course(user) if course.can_be_chosen_by_extern: course.groups.add(course.group_with_extern) if group: groups = [group] group_x_student_x_task_takens = OrderedDict() group_x_task_list = {} group_x_max_score = {} default_teacher = {} show_hidden_tasks = request.session.get(str(request.user.id) + '_' + str(course.id) + '_show_hidden_tasks', False) show_academ_users = request.session.get(str(request.user.id) + '_' + str(course.id) + '_show_academ_users', True) academ_students = [] for group in groups: student_x_task_x_task_takens = {} tasks_for_groups = TaskGroupRelations.objects.filter(task__course=course, group=group, deleted=False, task__parent_task=seminar).exclude(task__type=Task.TYPE_MATERIAL).distinct().order_by('position').prefetch_related('task__groups').select_related('task') if show_hidden_tasks: group_x_task_list[group] = [x.task for x in tasks_for_groups] else: group_x_task_list[group] = [x.task for x in tasks_for_groups if not x.task.is_hidden] group_x_max_score.setdefault(group, 0) for task in group_x_task_list[group]: if not task.is_hidden: if task.type == task.TYPE_SEMINAR: group_x_max_score[group] += sum([x.score_max for x in task.children.all()]) else: group_x_max_score[group] += task.score_max if task.task_text is None: task.task_text = '' issues_students_in_group = Issue.objects.filter(task__in=group_x_task_list[group], student__group__in=[group]).order_by('student').select_related('task').prefetch_related('task__groups', 'task') issues_x_student = defaultdict(list) for issue in issues_students_in_group.all(): student_id = issue.student.id issues_x_student[student_id].append(issue) students = group.students.filter(is_active=True) not_active_students = UserProfile.objects.filter(Q(user__in=group.students.filter(is_active=True)) & (Q(user_status__tag='not_active') | Q(user_status__tag='academic'))) academ_students += [x.user for x in not_active_students] if not show_academ_users: students = set(students) - set(academ_students) for student in students: if user == student: user_is_attended = True user_is_attended_special_course = True student_task_takens = issues_x_student[student.id] task_x_task_taken = {} student_summ_scores = 0 for task_taken in student_task_takens: task_x_task_taken[task_taken.task.id] = task_taken if not task_taken.task.is_hidden: if task_taken.task.type == Task.TYPE_SEMINAR or task_taken.task.score_after_deadline or (not (not task_taken.task.score_after_deadline and task_taken.is_status_accepted_after_deadline())): student_summ_scores += task_taken.mark student_x_task_x_task_takens[student] = (task_x_task_taken, student_summ_scores) group_x_student_x_task_takens[group] = student_x_task_x_task_takens try: default_teacher[group] = DefaultTeacher.objects.get(course=course, group=group).teacher except DefaultTeacher.DoesNotExist: default_teacher[group] = None group_x_student_information = OrderedDict() for (group, student_x_task_x_task_takens) in group_x_student_x_task_takens.iteritems(): group_x_student_information.setdefault(group, []) for student in sorted(student_x_task_x_task_takens.keys(), key=lambda x: u'{0} {1}'.format(x.last_name, x.first_name)): if user == student: user_is_attended = True elif not course.user_can_see_transcript(user, student): continue mark_id = -1 course_mark = '--' course_mark_int = -1 course_marks = course.mark_system if course_marks and course_marks.marks: if course_marks.marks.all()[0].name_int != -1: course_mark_int = -10 try: student_course_mark = StudentCourseMark.objects.get(course=course, student=student) if student_course_mark.mark: mark_id = student_course_mark.mark.id course_mark = unicode(student_course_mark) course_mark_int = student_course_mark.mark.name_int except StudentCourseMark.DoesNotExist: pass (mark_id, course_mark, course_mark_int) = (mark_id, course_mark, course_mark_int) group_x_student_information[group].append((student, student_x_task_x_task_takens[student][0], student_x_task_x_task_takens[student][1], mark_id, course_mark, course_mark_int)) context = {'course': course, 'course_mark_system_vals': course.mark_system.marks.all() if course.mark_system else None, 'group_information': group_x_student_information, 'group_tasks': group_x_task_list, 'group_x_max_score': group_x_max_score, 'default_teacher': default_teacher, 'user': user, 'user_is_attended': user_is_attended, 'user_is_attended_special_course': user_is_attended_special_course, 'user_is_teacher': course.user_is_teacher(user), 'seminar': seminar, 'visible_queue': course.user_can_see_queue(user), 'visible_attendance_log': course.user_can_see_attendance_log(request.user), 'visible_hide_button': Task.objects.filter(Q(course=course) & Q(is_hidden=True)).exists(), 'show_hidden_tasks': show_hidden_tasks, 'visible_hide_button_users': len(academ_students), 'show_academ_users': show_academ_users} return context
anytask
positive
def _select_entire_single_column(self, col_sel): <DeepExtract> if col_sel not in self._column_info: raise KeyError(f'Column "{col_sel}" does not exist') </DeepExtract> <DeepExtract> col_info = self._column_info[col_sel] (dtype, loc) = (col_info.dtype, col_info.loc) </DeepExtract> new_data = {dtype: self._data[dtype][:, loc].reshape(-1, 1)} new_columns = np.array([col_sel], dtype='O') new_column_info = {col_sel: utils.Column(dtype, 0, 0)} new_str_reverse_map = {} if dtype == 'S': new_str_reverse_map = {0: self._str_reverse_map[loc]} return self._construct_from_new(new_data, new_column_info, new_columns, new_str_reverse_map)
def _select_entire_single_column(self, col_sel): if col_sel not in self._column_info: raise KeyError(f'Column "{col_sel}" does not exist') col_info = self._column_info[col_sel] (dtype, loc) = (col_info.dtype, col_info.loc) new_data = {dtype: self._data[dtype][:, loc].reshape(-1, 1)} new_columns = np.array([col_sel], dtype='O') new_column_info = {col_sel: utils.Column(dtype, 0, 0)} new_str_reverse_map = {} if dtype == 'S': new_str_reverse_map = {0: self._str_reverse_map[loc]} return self._construct_from_new(new_data, new_column_info, new_columns, new_str_reverse_map)
dexplo
positive
def _diff(self, cluster_a, cluster_b): for (name, account) in cluster_a.accounts.items(): if name == 'root': continue if name in cluster_b.accounts: total = 0 for (uid, user) in account.users.items(): if uid == 'root': continue if uid not in cluster_b.accounts[name].users: <DeepExtract> if self._skip_user(uid, name): return if self.sync: try: slurm_remove_assoc(uid, cluster_a.name, name, noop=self.noop) except SlurmError as e: logger.error('Failed removing Slurm association user %s account %s cluster %s: %s', uid, name, cluster_a.name, e) else: logger.error('Removed Slurm association user %s account %s cluster %s successfully', uid, name, cluster_a.name) row = [uid, name, cluster_a.name, 'Remove'] self.write('\t'.join(row)) </DeepExtract> total += 1 else: <DeepExtract> logger.debug('diff qos: cluster=%s account=%s uid=%s a=%s b=%s', cluster_a.name, name, user.name, user.spec_list(), cluster_b.accounts[name].users[uid].spec_list()) specs_a = [] for s in user.spec_list(): if s.startswith('QOS'): specs_a += self._parse_qos(s) specs_b = [] for s in cluster_b.accounts[name].users[uid].spec_list(): if s.startswith('QOS'): specs_b += self._parse_qos(s) specs_set_a = set(specs_a) specs_set_b = set(specs_b) diff = specs_set_a.difference(specs_set_b) logger.debug('diff qos: cluster=%s account=%s uid=%s a=%s b=%s diff=%s', cluster_a.name, name, user.name, specs_set_a, specs_set_b, diff) if len(diff) > 0: self.remove_qos(user.name, name, cluster_a.name, 'QOS-=' + ','.join([x for x in list(diff)])) </DeepExtract> if total == len(account.users): <DeepExtract> if self._skip_account(name): return if self.sync: try: slurm_remove_account(cluster_a.name, name, noop=self.noop) except SlurmError as e: logger.error('Failed removing Slurm account %s cluster %s: %s', name, cluster_a.name, e) else: logger.error('Removed Slurm account %s cluster %s successfully', name, cluster_a.name) row = ['', name, cluster_a.name, 'Remove'] self.write('\t'.join(row)) </DeepExtract> else: for (uid, user) in account.users.items(): <DeepExtract> if self._skip_user(uid, name): return if self.sync: try: slurm_remove_assoc(uid, cluster_a.name, name, noop=self.noop) except SlurmError as e: logger.error('Failed removing Slurm association user %s account %s cluster %s: %s', uid, name, cluster_a.name, e) else: logger.error('Removed Slurm association user %s account %s cluster %s successfully', uid, name, cluster_a.name) row = [uid, name, cluster_a.name, 'Remove'] self.write('\t'.join(row)) </DeepExtract> <DeepExtract> if self._skip_account(name): return if self.sync: try: slurm_remove_account(cluster_a.name, name, noop=self.noop) except SlurmError as e: logger.error('Failed removing Slurm account %s cluster %s: %s', name, cluster_a.name, e) else: logger.error('Removed Slurm account %s cluster %s successfully', name, cluster_a.name) row = ['', name, cluster_a.name, 'Remove'] self.write('\t'.join(row)) </DeepExtract>
def _diff(self, cluster_a, cluster_b): for (name, account) in cluster_a.accounts.items(): if name == 'root': continue if name in cluster_b.accounts: total = 0 for (uid, user) in account.users.items(): if uid == 'root': continue if uid not in cluster_b.accounts[name].users: if self._skip_user(uid, name): return if self.sync: try: slurm_remove_assoc(uid, cluster_a.name, name, noop=self.noop) except SlurmError as e: logger.error('Failed removing Slurm association user %s account %s cluster %s: %s', uid, name, cluster_a.name, e) else: logger.error('Removed Slurm association user %s account %s cluster %s successfully', uid, name, cluster_a.name) row = [uid, name, cluster_a.name, 'Remove'] self.write('\t'.join(row)) total += 1 else: logger.debug('diff qos: cluster=%s account=%s uid=%s a=%s b=%s', cluster_a.name, name, user.name, user.spec_list(), cluster_b.accounts[name].users[uid].spec_list()) specs_a = [] for s in user.spec_list(): if s.startswith('QOS'): specs_a += self._parse_qos(s) specs_b = [] for s in cluster_b.accounts[name].users[uid].spec_list(): if s.startswith('QOS'): specs_b += self._parse_qos(s) specs_set_a = set(specs_a) specs_set_b = set(specs_b) diff = specs_set_a.difference(specs_set_b) logger.debug('diff qos: cluster=%s account=%s uid=%s a=%s b=%s diff=%s', cluster_a.name, name, user.name, specs_set_a, specs_set_b, diff) if len(diff) > 0: self.remove_qos(user.name, name, cluster_a.name, 'QOS-=' + ','.join([x for x in list(diff)])) if total == len(account.users): if self._skip_account(name): return if self.sync: try: slurm_remove_account(cluster_a.name, name, noop=self.noop) except SlurmError as e: logger.error('Failed removing Slurm account %s cluster %s: %s', name, cluster_a.name, e) else: logger.error('Removed Slurm account %s cluster %s successfully', name, cluster_a.name) row = ['', name, cluster_a.name, 'Remove'] self.write('\t'.join(row)) else: for (uid, user) in account.users.items(): if self._skip_user(uid, name): return if self.sync: try: slurm_remove_assoc(uid, cluster_a.name, name, noop=self.noop) except SlurmError as e: logger.error('Failed removing Slurm association user %s account %s cluster %s: %s', uid, name, cluster_a.name, e) else: logger.error('Removed Slurm association user %s account %s cluster %s successfully', uid, name, cluster_a.name) row = [uid, name, cluster_a.name, 'Remove'] self.write('\t'.join(row)) if self._skip_account(name): return if self.sync: try: slurm_remove_account(cluster_a.name, name, noop=self.noop) except SlurmError as e: logger.error('Failed removing Slurm account %s cluster %s: %s', name, cluster_a.name, e) else: logger.error('Removed Slurm account %s cluster %s successfully', name, cluster_a.name) row = ['', name, cluster_a.name, 'Remove'] self.write('\t'.join(row)) </DeepExtract>
coldfront
positive
@check_ssh def ssh_output(self, cmd, allow_fail=False, combine_stderr=True, timeout_sec=None): """Runs the command via SSH and captures the output, returning it as a string. :param cmd: The remote ssh command. :param allow_fail: If True, ignore nonzero exit status of the remote command, else raise an ``RemoteCommandError`` :param combine_stderr: If True, return output from both stderr and stdout of the remote process. :param timeout_sec: Set timeout on blocking reads/writes. Default None. For more details see http://docs.paramiko.org/en/2.0/api/channel.html#paramiko.channel.Channel.settimeout :return: The stdout output from the ssh command. :raise RemoteCommandError: If ``allow_fail`` is False and the command returns a non-zero exit status """ <DeepExtract> 'Running ssh command: %s' % cmd = '%s: %s' % (str(self), 'Running ssh command: %s' % cmd) self.logger.log(logging.DEBUG, 'Running ssh command: %s' % cmd, *args, **kwargs) </DeepExtract> client = self.ssh_client chan = client.get_transport().open_session(timeout=timeout_sec) chan.settimeout(timeout_sec) chan.exec_command(cmd) chan.set_combine_stderr(combine_stderr) stdin = chan.makefile('wb', -1) stdout = chan.makefile('r', -1) stderr = chan.makefile_stderr('r', -1) try: stdoutdata = stdout.read() exit_status = stdin.channel.recv_exit_status() if exit_status != 0: if not allow_fail: raise RemoteCommandError(self, cmd, exit_status, stderr.read()) else: <DeepExtract> "Running ssh command '%s' exited with status %d and message: %s" % (cmd, exit_status, stderr.read()) = '%s: %s' % (str(self), "Running ssh command '%s' exited with status %d and message: %s" % (cmd, exit_status, stderr.read())) self.logger.log(logging.DEBUG, "Running ssh command '%s' exited with status %d and message: %s" % (cmd, exit_status, stderr.read()), *args, **kwargs) </DeepExtract> finally: stdin.close() stdout.close() stderr.close() <DeepExtract> 'Returning ssh command output:\n%s' % stdoutdata = '%s: %s' % (str(self), 'Returning ssh command output:\n%s' % stdoutdata) self.logger.log(logging.DEBUG, 'Returning ssh command output:\n%s' % stdoutdata, *args, **kwargs) </DeepExtract> return stdoutdata
@check_ssh def ssh_output(self, cmd, allow_fail=False, combine_stderr=True, timeout_sec=None): """Runs the command via SSH and captures the output, returning it as a string. :param cmd: The remote ssh command. :param allow_fail: If True, ignore nonzero exit status of the remote command, else raise an ``RemoteCommandError`` :param combine_stderr: If True, return output from both stderr and stdout of the remote process. :param timeout_sec: Set timeout on blocking reads/writes. Default None. For more details see http://docs.paramiko.org/en/2.0/api/channel.html#paramiko.channel.Channel.settimeout :return: The stdout output from the ssh command. :raise RemoteCommandError: If ``allow_fail`` is False and the command returns a non-zero exit status """ 'Running ssh command: %s' % cmd = '%s: %s' % (str(self), 'Running ssh command: %s' % cmd) self.logger.log(logging.DEBUG, 'Running ssh command: %s' % cmd, *args, **kwargs) client = self.ssh_client chan = client.get_transport().open_session(timeout=timeout_sec) chan.settimeout(timeout_sec) chan.exec_command(cmd) chan.set_combine_stderr(combine_stderr) stdin = chan.makefile('wb', -1) stdout = chan.makefile('r', -1) stderr = chan.makefile_stderr('r', -1) try: stdoutdata = stdout.read() exit_status = stdin.channel.recv_exit_status() if exit_status != 0: if not allow_fail: raise RemoteCommandError(self, cmd, exit_status, stderr.read()) else: "Running ssh command '%s' exited with status %d and message: %s" % (cmd, exit_status, stderr.read()) = '%s: %s' % (str(self), "Running ssh command '%s' exited with status %d and message: %s" % (cmd, exit_status, stderr.read())) self.logger.log(logging.DEBUG, "Running ssh command '%s' exited with status %d and message: %s" % (cmd, exit_status, stderr.read()), *args, **kwargs) finally: stdin.close() stdout.close() stderr.close() 'Returning ssh command output:\n%s' % stdoutdata = '%s: %s' % (str(self), 'Returning ssh command output:\n%s' % stdoutdata) self.logger.log(logging.DEBUG, 'Returning ssh command output:\n%s' % stdoutdata, *args, **kwargs) return stdoutdata
ducktape
positive
def define_G(input_nc, output_nc, ngf, which_model_netG, norm='batch', use_dropout=False, init_type='normal', gpu_ids=[], n_downsampling=2): netG = None use_gpu = len(gpu_ids) > 0 <DeepExtract> if norm == 'batch': norm_layer = functools.partial(nn.BatchNorm2d, affine=True) elif norm == 'batch_sync': norm_layer = BatchNorm2d elif norm == 'instance': norm_layer = functools.partial(nn.InstanceNorm2d, affine=False) elif norm == 'none': norm_layer = None else: raise NotImplementedError('normalization layer [%s] is not found' % norm) norm_layer = norm_layer </DeepExtract> if use_gpu: assert torch.cuda.is_available() if which_model_netG == 'Graph': assert len(input_nc) == 2 netG = GraphNetwork(input_nc, output_nc, ngf, norm_layer=norm_layer, use_dropout=use_dropout, n_blocks=9, gpu_ids=gpu_ids, n_downsampling=n_downsampling) else: raise NotImplementedError('Generator model name [%s] is not recognized' % which_model_netG) if len(gpu_ids) > 0: netG.cuda(gpu_ids[0]) <DeepExtract> print('initialization method [%s]' % init_type) if init_type == 'normal': netG.apply(weights_init_normal) elif init_type == 'xavier': netG.apply(weights_init_xavier) elif init_type == 'kaiming': netG.apply(weights_init_kaiming) elif init_type == 'orthogonal': netG.apply(weights_init_orthogonal) else: raise NotImplementedError('initialization method [%s] is not implemented' % init_type) </DeepExtract> return netG
def define_G(input_nc, output_nc, ngf, which_model_netG, norm='batch', use_dropout=False, init_type='normal', gpu_ids=[], n_downsampling=2): netG = None use_gpu = len(gpu_ids) > 0 if norm == 'batch': norm_layer = functools.partial(nn.BatchNorm2d, affine=True) elif norm == 'batch_sync': norm_layer = BatchNorm2d elif norm == 'instance': norm_layer = functools.partial(nn.InstanceNorm2d, affine=False) elif norm == 'none': norm_layer = None else: raise NotImplementedError('normalization layer [%s] is not found' % norm) norm_layer = norm_layer if use_gpu: assert torch.cuda.is_available() if which_model_netG == 'Graph': assert len(input_nc) == 2 netG = GraphNetwork(input_nc, output_nc, ngf, norm_layer=norm_layer, use_dropout=use_dropout, n_blocks=9, gpu_ids=gpu_ids, n_downsampling=n_downsampling) else: raise NotImplementedError('Generator model name [%s] is not recognized' % which_model_netG) if len(gpu_ids) > 0: netG.cuda(gpu_ids[0]) print('initialization method [%s]' % init_type) if init_type == 'normal': netG.apply(weights_init_normal) elif init_type == 'xavier': netG.apply(weights_init_xavier) elif init_type == 'kaiming': netG.apply(weights_init_kaiming) elif init_type == 'orthogonal': netG.apply(weights_init_orthogonal) else: raise NotImplementedError('initialization method [%s] is not implemented' % init_type) return netG
BiGraphGAN
positive
def __init__(self, pages: Dict[str, list]={}, project_url: Union[str, Dict[str, str]]=None, template_dir=None, examples_dir=None, extra_aliases: Union[List[str], Dict[str, str]]=None, max_signature_line_length: int=110, titles_size='###'): self.pages = pages self.project_url = project_url self.template_dir = template_dir self.examples_dir = examples_dir self.class_aliases = {} <DeepExtract> for list_elements in self.pages.values(): for element_as_str in list_elements: element = utils.import_object(element_as_str) if not isclass(element): continue true_dotted_path = utils.get_dotted_path(element) self.class_aliases[true_dotted_path] = element_as_str if isinstance(extra_aliases, dict): self.class_aliases.update(extra_aliases) elif isinstance(extra_aliases, list): for alias in extra_aliases: full_dotted_path = utils.get_dotted_path(utils.import_object(alias)) self.class_aliases[full_dotted_path] = alias </DeepExtract> self.max_signature_line_length = max_signature_line_length self.titles_size = titles_size
def __init__(self, pages: Dict[str, list]={}, project_url: Union[str, Dict[str, str]]=None, template_dir=None, examples_dir=None, extra_aliases: Union[List[str], Dict[str, str]]=None, max_signature_line_length: int=110, titles_size='###'): self.pages = pages self.project_url = project_url self.template_dir = template_dir self.examples_dir = examples_dir self.class_aliases = {} for list_elements in self.pages.values(): for element_as_str in list_elements: element = utils.import_object(element_as_str) if not isclass(element): continue true_dotted_path = utils.get_dotted_path(element) self.class_aliases[true_dotted_path] = element_as_str if isinstance(extra_aliases, dict): self.class_aliases.update(extra_aliases) elif isinstance(extra_aliases, list): for alias in extra_aliases: full_dotted_path = utils.get_dotted_path(utils.import_object(alias)) self.class_aliases[full_dotted_path] = alias self.max_signature_line_length = max_signature_line_length self.titles_size = titles_size
autokeras
positive
@add_data('b40') def b40_toy1d_dataset(key, data_size, batch_size, n_data=40, x_lim=[-4, 4], noise_std=3): """x^3 invertible function with added Gaussian noise. Return: (inputs, targets) are for plotting/visualization get_batch: function for getting another randomly selected batch of data """ subkeys = jax.random.split(key, n_data) inputs = np.concatenate([np.linspace(-4, -3, num=n_data // 2), np.linspace(-2.5, -1, num=n_data // 5), np.linspace(-1, 2, num=n_data // 5), np.linspace(2, 4, num=n_data // 2)]) <DeepExtract> rngs = jax.random.split(key, inputs.shape[0]) noise = vmap(random.normal, (0, None), 0)(rngs, (1,)) assert len(noise) == inputs.shape[0] noise = noise.squeeze() </DeepExtract> true_fn = lambda x: x ** 3 targets = true_fn(inputs) + noise * noise_std inputs = inputs[..., None] targets = targets[..., None] print('plot sample-gap-40 inputs: {} targets: {}'.format(inputs.shape, targets.shape)) D = inputs.shape[-1] test_x0 = np.repeat(np.expand_dims(np.linspace(x_lim[0] - 2, x_lim[1] + 2, data_size), axis=1), D, axis=1) test_x1 = np.repeat(np.expand_dims(true_fn(test_x0[:, 0]), axis=1), D, axis=1) test = (test_x0, test_x1) def get_batch(key, data_size, batch_size, D=1): assert data_size % batch_size == 0 num_batches = data_size / batch_size (key, subkey) = jax.random.split(key) batch_x = jax.random.uniform(subkey, (batch_size, D), minval=x_lim[0], maxval=x_lim[1]) batch_y = np.repeat(true_fn(batch_x[:, 0])[..., None], D, axis=1) return (key, (batch_x, batch_y)) return (inputs, targets, test, get_batch, noise_std)
@add_data('b40') def b40_toy1d_dataset(key, data_size, batch_size, n_data=40, x_lim=[-4, 4], noise_std=3): """x^3 invertible function with added Gaussian noise. Return: (inputs, targets) are for plotting/visualization get_batch: function for getting another randomly selected batch of data """ subkeys = jax.random.split(key, n_data) inputs = np.concatenate([np.linspace(-4, -3, num=n_data // 2), np.linspace(-2.5, -1, num=n_data // 5), np.linspace(-1, 2, num=n_data // 5), np.linspace(2, 4, num=n_data // 2)]) rngs = jax.random.split(key, inputs.shape[0]) noise = vmap(random.normal, (0, None), 0)(rngs, (1,)) assert len(noise) == inputs.shape[0] noise = noise.squeeze() true_fn = lambda x: x ** 3 targets = true_fn(inputs) + noise * noise_std inputs = inputs[..., None] targets = targets[..., None] print('plot sample-gap-40 inputs: {} targets: {}'.format(inputs.shape, targets.shape)) D = inputs.shape[-1] test_x0 = np.repeat(np.expand_dims(np.linspace(x_lim[0] - 2, x_lim[1] + 2, data_size), axis=1), D, axis=1) test_x1 = np.repeat(np.expand_dims(true_fn(test_x0[:, 0]), axis=1), D, axis=1) test = (test_x0, test_x1) def get_batch(key, data_size, batch_size, D=1): assert data_size % batch_size == 0 num_batches = data_size / batch_size (key, subkey) = jax.random.split(key) batch_x = jax.random.uniform(subkey, (batch_size, D), minval=x_lim[0], maxval=x_lim[1]) batch_y = np.repeat(true_fn(batch_x[:, 0])[..., None], D, axis=1) return (key, (batch_x, batch_y)) return (inputs, targets, test, get_batch, noise_std)
bayesian-sde
positive
def acc_and_f1(preds, labels): <DeepExtract> acc = (preds == labels).mean() </DeepExtract> f1 = f1_score(y_true=labels, y_pred=preds) return {'acc': acc, 'f1': f1, 'acc_and_f1': (acc + f1) / 2}
def acc_and_f1(preds, labels): acc = (preds == labels).mean() f1 = f1_score(y_true=labels, y_pred=preds) return {'acc': acc, 'f1': f1, 'acc_and_f1': (acc + f1) / 2}
ACS-QG
positive
def _create(self) -> ReleaseManifest: """Create the manifest from GitHub asset metadata and file contents.""" assets = {} for (asset_name, asset_data) in self.assets.items(): entries = {} data = asset_data['data'] metadata = asset_data['metadata'] for (file_name, file_data) in data.items(): file_metadata = file_data['metadata'] name = Path(file_name).name file_metadata.update(name=name) entry = AssetManifestEntry(**file_metadata) entries[name] = entry assets[asset_name] = AssetManifestMetadata(metadata['browser_download_url'], entries, metadata['zipped_sha256'], metadata['created_at'], metadata['label']) <DeepExtract> ignore = ['assets'] manual_set_keys = ['author', 'description'] keys = [f.name for f in dataclasses.fields(ReleaseManifest) if f.name not in ignore + manual_set_keys] parsed = {k: self.release.raw_data[k] for k in keys} parsed.update(description=self.release.raw_data['body'], author=self.release.raw_data['author']['login']) release_metadata = parsed </DeepExtract> release_metadata.update(assets=assets) release_manifest = ReleaseManifest(**release_metadata) return release_manifest
def _create(self) -> ReleaseManifest: """Create the manifest from GitHub asset metadata and file contents.""" assets = {} for (asset_name, asset_data) in self.assets.items(): entries = {} data = asset_data['data'] metadata = asset_data['metadata'] for (file_name, file_data) in data.items(): file_metadata = file_data['metadata'] name = Path(file_name).name file_metadata.update(name=name) entry = AssetManifestEntry(**file_metadata) entries[name] = entry assets[asset_name] = AssetManifestMetadata(metadata['browser_download_url'], entries, metadata['zipped_sha256'], metadata['created_at'], metadata['label']) ignore = ['assets'] manual_set_keys = ['author', 'description'] keys = [f.name for f in dataclasses.fields(ReleaseManifest) if f.name not in ignore + manual_set_keys] parsed = {k: self.release.raw_data[k] for k in keys} parsed.update(description=self.release.raw_data['body'], author=self.release.raw_data['author']['login']) release_metadata = parsed release_metadata.update(assets=assets) release_manifest = ReleaseManifest(**release_metadata) return release_manifest
detection-rules
positive
def login(webdriver, datasets): <DeepExtract> user = random.choice(datasets['users']) project_with_repo_prs = random.choice(datasets['pull_requests']) datasets['username'] = user[1] datasets['password'] = user[2] datasets['project_key'] = project_with_repo_prs[1] datasets['repo_slug'] = project_with_repo_prs[0] datasets['pull_request_branch_from'] = project_with_repo_prs[3] datasets['pull_request_branch_to'] = project_with_repo_prs[4] datasets['pull_request_id'] = project_with_repo_prs[2] </DeepExtract> client = BitbucketRestClient(BITBUCKET_SETTINGS.server_url, BITBUCKET_SETTINGS.admin_login, BITBUCKET_SETTINGS.admin_password) webdriver.app_version = version.parse(client.get_bitbucket_version()) login_page = LoginPage(webdriver) @print_timing('selenium_login') def measure(): @print_timing('selenium_login:open_login_page') def sub_measure(): login_page.go_to() if login_page.is_logged_in(): login_page.delete_all_cookies() login_page.go_to() <DeepExtract> login_page.go_to() if login_page.is_logged_in(): login_page.delete_all_cookies() login_page.go_to() </DeepExtract> login_page.set_credentials(datasets['username'], datasets['password']) @print_timing('selenium_login:login_get_started') def sub_measure(): login_page.submit_login() get_started_page = GetStarted(webdriver) get_started_page.wait_for_page_loaded() webdriver.node_id = login_page.get_node_id() print(f'node_id:{webdriver.node_id}') <DeepExtract> login_page.go_to() if login_page.is_logged_in(): login_page.delete_all_cookies() login_page.go_to() </DeepExtract> <DeepExtract> @print_timing('selenium_login:open_login_page') def sub_measure(): login_page.go_to() if login_page.is_logged_in(): login_page.delete_all_cookies() login_page.go_to() sub_measure() login_page.set_credentials(datasets['username'], datasets['password']) @print_timing('selenium_login:login_get_started') def sub_measure(): login_page.submit_login() get_started_page = GetStarted(webdriver) get_started_page.wait_for_page_loaded() webdriver.node_id = login_page.get_node_id() print(f'node_id:{webdriver.node_id}') sub_measure() </DeepExtract>
def login(webdriver, datasets): user = random.choice(datasets['users']) project_with_repo_prs = random.choice(datasets['pull_requests']) datasets['username'] = user[1] datasets['password'] = user[2] datasets['project_key'] = project_with_repo_prs[1] datasets['repo_slug'] = project_with_repo_prs[0] datasets['pull_request_branch_from'] = project_with_repo_prs[3] datasets['pull_request_branch_to'] = project_with_repo_prs[4] datasets['pull_request_id'] = project_with_repo_prs[2] client = BitbucketRestClient(BITBUCKET_SETTINGS.server_url, BITBUCKET_SETTINGS.admin_login, BITBUCKET_SETTINGS.admin_password) webdriver.app_version = version.parse(client.get_bitbucket_version()) login_page = LoginPage(webdriver) @print_timing('selenium_login') def measure(): @print_timing('selenium_login:open_login_page') def sub_measure(): login_page.go_to() if login_page.is_logged_in(): login_page.delete_all_cookies() login_page.go_to() login_page.go_to() if login_page.is_logged_in(): login_page.delete_all_cookies() login_page.go_to() login_page.set_credentials(datasets['username'], datasets['password']) @print_timing('selenium_login:login_get_started') def sub_measure(): login_page.submit_login() get_started_page = GetStarted(webdriver) get_started_page.wait_for_page_loaded() webdriver.node_id = login_page.get_node_id() print(f'node_id:{webdriver.node_id}') login_page.go_to() if login_page.is_logged_in(): login_page.delete_all_cookies() login_page.go_to() @print_timing('selenium_login:open_login_page') def sub_measure(): login_page.go_to() if login_page.is_logged_in(): login_page.delete_all_cookies() login_page.go_to() sub_measure() login_page.set_credentials(datasets['username'], datasets['password']) @print_timing('selenium_login:login_get_started') def sub_measure(): login_page.submit_login() get_started_page = GetStarted(webdriver) get_started_page.wait_for_page_loaded() webdriver.node_id = login_page.get_node_id() print(f'node_id:{webdriver.node_id}') sub_measure() </DeepExtract>
dc-app-performance-toolkit
positive
def flatten(self, input_layer=None): if input_layer is None: input_layer = self.top_layer shape = input_layer.get_shape().as_list() flat_dim = shape[1] * shape[2] * shape[3] <DeepExtract> if input_layer is None: input_layer = self.top_layer self.top_layer = tf.reshape(input_layer, [-1, flat_dim]) self.top_size = [-1, flat_dim][-1] self.top_layer = self.top_layer </DeepExtract> return self.top_layer
def flatten(self, input_layer=None): if input_layer is None: input_layer = self.top_layer shape = input_layer.get_shape().as_list() flat_dim = shape[1] * shape[2] * shape[3] if input_layer is None: input_layer = self.top_layer self.top_layer = tf.reshape(input_layer, [-1, flat_dim]) self.top_size = [-1, flat_dim][-1] self.top_layer = self.top_layer return self.top_layer
AOFP
positive
def sudo(self, params=''): cmd = 'sudo {}'.format(params) <DeepExtract> raise NotImplementedError('Do not call base class!') </DeepExtract> return self.get_response()
def sudo(self, params=''): cmd = 'sudo {}'.format(params) raise NotImplementedError('Do not call base class!') return self.get_response()
beeswarm
positive
def open(self, name, mode='r', *args, **kwargs): """ Find a resource and return a file object, or raise IOError. """ <DeepExtract> if name not in self.cache or DEBUG: for path in self.path: fpath = os.path.join(path, name) if os.path.isfile(fpath): if self.cachemode in ('all', 'found'): self.cache[name] = fpath fname = fpath if self.cachemode == 'all': self.cache[name] = None fname = self.cache[name] </DeepExtract> if not fname: raise IOError('Resource %r not found.' % name) return self.opener(name, *args, mode=mode, **kwargs)
def open(self, name, mode='r', *args, **kwargs): """ Find a resource and return a file object, or raise IOError. """ if name not in self.cache or DEBUG: for path in self.path: fpath = os.path.join(path, name) if os.path.isfile(fpath): if self.cachemode in ('all', 'found'): self.cache[name] = fpath fname = fpath if self.cachemode == 'all': self.cache[name] = None fname = self.cache[name] if not fname: raise IOError('Resource %r not found.' % name) return self.opener(name, *args, mode=mode, **kwargs)
AndroidGCMTutorial
positive
@app.function_name(name='put_get_multiple_blobs_as_bytes_return_http_response') @app.blob_input(arg_name='inputfile1', data_type='BINARY', path='python-worker-tests/shmem-test-bytes-1.txt', connection='AzureWebJobsStorage') @app.blob_input(arg_name='inputfile2', data_type='BINARY', path='python-worker-tests/shmem-test-bytes-2.txt', connection='AzureWebJobsStorage') @app.blob_output(arg_name='outputfile1', path='python-worker-tests/shmem-test-bytes-out-1.txt', data_type='BINARY', connection='AzureWebJobsStorage') @app.blob_output(arg_name='outputfile2', path='python-worker-tests/shmem-test-bytes-out-2.txt', data_type='BINARY', connection='AzureWebJobsStorage') @app.route(route='put_get_multiple_blobs_as_bytes_return_http_response') def put_get_multiple_blobs_as_bytes_return_http_response(req: func.HttpRequest, inputfile1: bytes, inputfile2: bytes, outputfile1: func.Out[bytes], outputfile2: func.Out[bytes]) -> func.HttpResponse: """ Read two blobs (bytes) and respond back (in HTTP response) with the number of bytes read from each blob and the MD5 digest of the content of each. Write two blobs (bytes) and respond back (in HTTP response) with the number bytes written in each blob and the MD5 digest of the content of each. The number of bytes to write are specified in the input HTTP request. """ input_content_size_1 = len(inputfile1) input_content_size_2 = len(inputfile2) input_content_md5_1 = hashlib.md5(inputfile1).hexdigest() input_content_md5_2 = hashlib.md5(inputfile2).hexdigest() output_content_size_1 = int(req.params['output_content_size_1']) output_content_size_2 = int(req.params['output_content_size_2']) <DeepExtract> content = bytearray((random.getrandbits(8) for _ in range(output_content_size_1))) content_md5 = hashlib.md5(content).hexdigest() (output_content_1, output_content_md5_1) = (content, content_md5) </DeepExtract> <DeepExtract> content = bytearray((random.getrandbits(8) for _ in range(output_content_size_2))) content_md5 = hashlib.md5(content).hexdigest() (output_content_2, output_content_md5_2) = (content, content_md5) </DeepExtract> outputfile1.set(output_content_1) outputfile2.set(output_content_2) response_dict = {'input_content_size_1': input_content_size_1, 'input_content_size_2': input_content_size_2, 'input_content_md5_1': input_content_md5_1, 'input_content_md5_2': input_content_md5_2, 'output_content_size_1': output_content_size_1, 'output_content_size_2': output_content_size_2, 'output_content_md5_1': output_content_md5_1, 'output_content_md5_2': output_content_md5_2} response_body = json.dumps(response_dict, indent=2) return func.HttpResponse(body=response_body, mimetype='application/json', status_code=200)
@app.function_name(name='put_get_multiple_blobs_as_bytes_return_http_response') @app.blob_input(arg_name='inputfile1', data_type='BINARY', path='python-worker-tests/shmem-test-bytes-1.txt', connection='AzureWebJobsStorage') @app.blob_input(arg_name='inputfile2', data_type='BINARY', path='python-worker-tests/shmem-test-bytes-2.txt', connection='AzureWebJobsStorage') @app.blob_output(arg_name='outputfile1', path='python-worker-tests/shmem-test-bytes-out-1.txt', data_type='BINARY', connection='AzureWebJobsStorage') @app.blob_output(arg_name='outputfile2', path='python-worker-tests/shmem-test-bytes-out-2.txt', data_type='BINARY', connection='AzureWebJobsStorage') @app.route(route='put_get_multiple_blobs_as_bytes_return_http_response') def put_get_multiple_blobs_as_bytes_return_http_response(req: func.HttpRequest, inputfile1: bytes, inputfile2: bytes, outputfile1: func.Out[bytes], outputfile2: func.Out[bytes]) -> func.HttpResponse: """ Read two blobs (bytes) and respond back (in HTTP response) with the number of bytes read from each blob and the MD5 digest of the content of each. Write two blobs (bytes) and respond back (in HTTP response) with the number bytes written in each blob and the MD5 digest of the content of each. The number of bytes to write are specified in the input HTTP request. """ input_content_size_1 = len(inputfile1) input_content_size_2 = len(inputfile2) input_content_md5_1 = hashlib.md5(inputfile1).hexdigest() input_content_md5_2 = hashlib.md5(inputfile2).hexdigest() output_content_size_1 = int(req.params['output_content_size_1']) output_content_size_2 = int(req.params['output_content_size_2']) content = bytearray((random.getrandbits(8) for _ in range(output_content_size_1))) content_md5 = hashlib.md5(content).hexdigest() (output_content_1, output_content_md5_1) = (content, content_md5) content = bytearray((random.getrandbits(8) for _ in range(output_content_size_2))) content_md5 = hashlib.md5(content).hexdigest() (output_content_2, output_content_md5_2) = (content, content_md5) outputfile1.set(output_content_1) outputfile2.set(output_content_2) response_dict = {'input_content_size_1': input_content_size_1, 'input_content_size_2': input_content_size_2, 'input_content_md5_1': input_content_md5_1, 'input_content_md5_2': input_content_md5_2, 'output_content_size_1': output_content_size_1, 'output_content_size_2': output_content_size_2, 'output_content_md5_1': output_content_md5_1, 'output_content_md5_2': output_content_md5_2} response_body = json.dumps(response_dict, indent=2) return func.HttpResponse(body=response_body, mimetype='application/json', status_code=200)
azure-functions-python-worker
positive
def _encode_as_pieces(text): <DeepExtract> if six.PY3: if isinstance(text, str): text = text elif isinstance(text, bytes): text = text.decode('utf-8', 'ignore') else: raise ValueError('Unsupported string type: %s' % type(text)) elif six.PY2: if isinstance(text, str): text = text.decode('utf-8', 'ignore') elif isinstance(text, unicode): text = text else: raise ValueError('Unsupported string type: %s' % type(text)) else: raise ValueError('Not running on Python2 or Python 3?') </DeepExtract> if self.split_by_punct: <DeepExtract> chars = list(text) i = 0 start_new_word = True output = [] while i < len(chars): char = chars[i] if _is_punctuation(char): output.append([char]) start_new_word = True else: if start_new_word: output.append([]) start_new_word = False output[-1].append(char) i += 1 words = [''.join(x) for x in output] </DeepExtract> pieces = [self.spm.encode_as_pieces(w) for w in words] return [p for w in pieces for p in w] else: return self.spm.encode_as_pieces(text)
def _encode_as_pieces(text): if six.PY3: if isinstance(text, str): text = text elif isinstance(text, bytes): text = text.decode('utf-8', 'ignore') else: raise ValueError('Unsupported string type: %s' % type(text)) elif six.PY2: if isinstance(text, str): text = text.decode('utf-8', 'ignore') elif isinstance(text, unicode): text = text else: raise ValueError('Unsupported string type: %s' % type(text)) else: raise ValueError('Not running on Python2 or Python 3?') if self.split_by_punct: chars = list(text) i = 0 start_new_word = True output = [] while i < len(chars): char = chars[i] if _is_punctuation(char): output.append([char]) start_new_word = True else: if start_new_word: output.append([]) start_new_word = False output[-1].append(char) i += 1 words = [''.join(x) for x in output] pieces = [self.spm.encode_as_pieces(w) for w in words] return [p for w in pieces for p in w] else: return self.spm.encode_as_pieces(text)
DeBERTa
positive
def observe(self, X, y): """Feed the observations back to hyperopt. Parameters ---------- X : list of dict-like Places where the objective function has already been evaluated. Each suggestion is a dictionary where each key corresponds to a parameter being optimized. y : array-like, shape (n,) Corresponding values where objective has been evaluated. """ assert len(X) == len(y) for (x_guess, y_) in zip(X, y): x_guess_ = HyperoptOptimizer.hashable_dict(x_guess) assert x_guess_ in self.trial_id_lookup, 'Appears to be guess that did not originate from suggest' trial_id = self.trial_id_lookup.pop(x_guess_) <DeepExtract> for trial in self.trials._dynamic_trials: if trial['tid'] == trial_id: assert isinstance(trial, dict) assert 'state' in trial and 'result' in trial assert trial['state'] == JOB_STATE_NEW trial = trial assert False, 'No matching trial ID' </DeepExtract> assert self.cleanup_guess(trial['misc']['vals']) == x_guess, 'trial ID not consistent with x values stored' result = {'loss': float(y_), 'status': STATUS_OK} trial['state'] = JOB_STATE_DONE trial['result'] = result self.trials.refresh()
def observe(self, X, y): """Feed the observations back to hyperopt. Parameters ---------- X : list of dict-like Places where the objective function has already been evaluated. Each suggestion is a dictionary where each key corresponds to a parameter being optimized. y : array-like, shape (n,) Corresponding values where objective has been evaluated. """ assert len(X) == len(y) for (x_guess, y_) in zip(X, y): x_guess_ = HyperoptOptimizer.hashable_dict(x_guess) assert x_guess_ in self.trial_id_lookup, 'Appears to be guess that did not originate from suggest' trial_id = self.trial_id_lookup.pop(x_guess_) for trial in self.trials._dynamic_trials: if trial['tid'] == trial_id: assert isinstance(trial, dict) assert 'state' in trial and 'result' in trial assert trial['state'] == JOB_STATE_NEW trial = trial assert False, 'No matching trial ID' assert self.cleanup_guess(trial['misc']['vals']) == x_guess, 'trial ID not consistent with x values stored' result = {'loss': float(y_), 'status': STATUS_OK} trial['state'] = JOB_STATE_DONE trial['result'] = result self.trials.refresh()
bayesmark
positive
def _coco_eval_to_keypoint_results(coco_eval): <DeepExtract> res = OrderedDict({'keypoint': OrderedDict([('AP', -1), ('AP50', -1), ('AP75', -1), ('APm', -1), ('APl', -1)])}) </DeepExtract> if coco_eval is not None: s = coco_eval.stats res['keypoint']['AP'] = s[COCO_AP] res['keypoint']['AP50'] = s[COCO_AP50] res['keypoint']['AP75'] = s[COCO_AP75] res['keypoint']['APm'] = s[COCO_KPS_APM] res['keypoint']['APl'] = s[COCO_KPS_APL] return res
def _coco_eval_to_keypoint_results(coco_eval): res = OrderedDict({'keypoint': OrderedDict([('AP', -1), ('AP50', -1), ('AP75', -1), ('APm', -1), ('APl', -1)])}) if coco_eval is not None: s = coco_eval.stats res['keypoint']['AP'] = s[COCO_AP] res['keypoint']['AP50'] = s[COCO_AP50] res['keypoint']['AP75'] = s[COCO_AP75] res['keypoint']['APm'] = s[COCO_KPS_APM] res['keypoint']['APl'] = s[COCO_KPS_APL] return res
Context-aware-ZSR
positive
def utcoffset(self, dt): <DeepExtract> if not self._dstmonth: isdst = False elif dt is None: isdst = None dston = picknthweekday(dt.year, self._dstmonth, self._dstdayofweek, self._dsthour, self._dstminute, self._dstweeknumber) dstoff = picknthweekday(dt.year, self._stdmonth, self._stddayofweek, self._stdhour, self._stdminute, self._stdweeknumber) if dston < dstoff: isdst = dston <= dt.replace(tzinfo=None) < dstoff else: isdst = not dstoff <= dt.replace(tzinfo=None) < dston </DeepExtract> if isdst is None: return None elif isdst: return datetime.timedelta(minutes=self._dstoffset) else: return datetime.timedelta(minutes=self._stdoffset)
def utcoffset(self, dt): if not self._dstmonth: isdst = False elif dt is None: isdst = None dston = picknthweekday(dt.year, self._dstmonth, self._dstdayofweek, self._dsthour, self._dstminute, self._dstweeknumber) dstoff = picknthweekday(dt.year, self._stdmonth, self._stddayofweek, self._stdhour, self._stdminute, self._stdweeknumber) if dston < dstoff: isdst = dston <= dt.replace(tzinfo=None) < dstoff else: isdst = not dstoff <= dt.replace(tzinfo=None) < dston if isdst is None: return None elif isdst: return datetime.timedelta(minutes=self._dstoffset) else: return datetime.timedelta(minutes=self._stdoffset)
alfred2-hasher
positive
def get_status(self): """ Get status """ <DeepExtract> if time.time() - self.pre_time < 1.0: time.sleep(1.0) self._intf.write(str('status')) self.pre_time = time.time() </DeepExtract> <DeepExtract> ret = self._intf.read() if len(ret) < 2 or ret[-2:] != '\r\n': logger.warning('read() termination error') ret = ret[:-2] </DeepExtract> logger.debug('status:{:s}'.format(ret)) try: tmp = ret.split(' ', 1) status = int(tmp[0]) status_str = tmp[1:] except (ValueError, AttributeError): logger.warning('get_status() wrong format: {}'.format(repr(ret))) status = -99 status_str = ret return (status, status_str)
def get_status(self): """ Get status """ if time.time() - self.pre_time < 1.0: time.sleep(1.0) self._intf.write(str('status')) self.pre_time = time.time() ret = self._intf.read() if len(ret) < 2 or ret[-2:] != '\r\n': logger.warning('read() termination error') ret = ret[:-2] logger.debug('status:{:s}'.format(ret)) try: tmp = ret.split(' ', 1) status = int(tmp[0]) status_str = tmp[1:] except (ValueError, AttributeError): logger.warning('get_status() wrong format: {}'.format(repr(ret))) status = -99 status_str = ret return (status, status_str)
basil
positive
def main(): setup_SIGINT() try: <DeepExtract> progname = os.path.basename(sys.argv[0]) parser = CLIParser(prog=progname, description='\n Reshuffle the input CNF. Returns a formula logically\n equivalent to the input with random application of\n (1) Polarity flips (2) Variables permutation (3) Clauses permutation.\n ', epilog="\n For more information type '%s [--help | -h ]'\n " % progname) parser.add_argument('--output', '-o', type=argparse.FileType('w'), metavar='<output>', default='-', help="Output file. The formula is saved\n on file instead of being sent to standard\n output. Setting '<output>' to '-' is another\n way to send the formula to standard output.\n (default: -)\n ") parser.add_argument('--seed', '-S', metavar='<seed>', default=None, type=str, action='store', help='Seed for any random process in the\n program. Any python hashable object will\n be fine. (default: current time)\n ') parser.add_argument('--input', '-i', type=argparse.FileType('r'), metavar='<input>', default='-', help="Input file. A formula in dimacs format. Setting '<input>' to '-' is\n another way to read from standard input.\n (default: -)\n ") parser.add_argument('--no-polarity-flips', '-p', action='store_true', dest='no_polarity_flips', help='No polarity flips') parser.add_argument('--no-variables-permutation', '-v', action='store_true', dest='no_variables_permutation', help='No permutation of variables') parser.add_argument('--no-clauses-permutation', '-c', action='store_true', dest='no_clauses_permutation', help='No permutation of clauses') parser.add_argument('--quiet', '-q', action='store_false', default=True, dest='verbose', help='Output just the formula with no header.') sys.argv = [str(x) for x in sys.argv] args = parser.parse_args(sys.argv[1:]) if hasattr(args, 'seed') and args.seed: random.seed(args.seed) msg = "Waiting for a DIMACS formula on <stdin>.\n Alternatively you can feed a formula to <stdin>\n with piping or using '-i' command line argument." with msg_prefix('c INPUT: '): interactive_msg(msg, filltext=70) F = CNF.from_file(args.input) polarity_flips = 'fixed' if args.no_polarity_flips else 'shuffle' variables_permutation = 'fixed' if args.no_variables_permutation else 'shuffle' clauses_permutation = 'fixed' if args.no_clauses_permutation else 'shuffle' G = Shuffle(F, polarity_flips, variables_permutation, clauses_permutation) if mode == 'formula': return G elif mode == 'string': return G.to_dimacs() else: G.to_file(args.output, fileformat='dimacs') </DeepExtract> except ValueError as e: error_msg('DIMACS ERROR: ' + str(e)) sys.exit(-1) except CLIError as e: error_msg(str(e)) sys.exit(-1) except InternalBug as e: print(str(e), file=sys.stderr) sys.exit(-1) except (BrokenPipeError, IOError): pass sys.stderr.close()
def main(): setup_SIGINT() try: progname = os.path.basename(sys.argv[0]) parser = CLIParser(prog=progname, description='\n Reshuffle the input CNF. Returns a formula logically\n equivalent to the input with random application of\n (1) Polarity flips (2) Variables permutation (3) Clauses permutation.\n ', epilog="\n For more information type '%s [--help | -h ]'\n " % progname) parser.add_argument('--output', '-o', type=argparse.FileType('w'), metavar='<output>', default='-', help="Output file. The formula is saved\n on file instead of being sent to standard\n output. Setting '<output>' to '-' is another\n way to send the formula to standard output.\n (default: -)\n ") parser.add_argument('--seed', '-S', metavar='<seed>', default=None, type=str, action='store', help='Seed for any random process in the\n program. Any python hashable object will\n be fine. (default: current time)\n ') parser.add_argument('--input', '-i', type=argparse.FileType('r'), metavar='<input>', default='-', help="Input file. A formula in dimacs format. Setting '<input>' to '-' is\n another way to read from standard input.\n (default: -)\n ") parser.add_argument('--no-polarity-flips', '-p', action='store_true', dest='no_polarity_flips', help='No polarity flips') parser.add_argument('--no-variables-permutation', '-v', action='store_true', dest='no_variables_permutation', help='No permutation of variables') parser.add_argument('--no-clauses-permutation', '-c', action='store_true', dest='no_clauses_permutation', help='No permutation of clauses') parser.add_argument('--quiet', '-q', action='store_false', default=True, dest='verbose', help='Output just the formula with no header.') sys.argv = [str(x) for x in sys.argv] args = parser.parse_args(sys.argv[1:]) if hasattr(args, 'seed') and args.seed: random.seed(args.seed) msg = "Waiting for a DIMACS formula on <stdin>.\n Alternatively you can feed a formula to <stdin>\n with piping or using '-i' command line argument." with msg_prefix('c INPUT: '): interactive_msg(msg, filltext=70) F = CNF.from_file(args.input) polarity_flips = 'fixed' if args.no_polarity_flips else 'shuffle' variables_permutation = 'fixed' if args.no_variables_permutation else 'shuffle' clauses_permutation = 'fixed' if args.no_clauses_permutation else 'shuffle' G = Shuffle(F, polarity_flips, variables_permutation, clauses_permutation) if mode == 'formula': return G elif mode == 'string': return G.to_dimacs() else: G.to_file(args.output, fileformat='dimacs') except ValueError as e: error_msg('DIMACS ERROR: ' + str(e)) sys.exit(-1) except CLIError as e: error_msg(str(e)) sys.exit(-1) except InternalBug as e: print(str(e), file=sys.stderr) sys.exit(-1) except (BrokenPipeError, IOError): pass sys.stderr.close()
cnfgen
positive
def forward(self, input_ids, token_type_ids=None, input_mask=None, attention_mask=None, mems=None, perm_mask=None, target_mapping=None, head_mask=None): input_ids = input_ids.transpose(0, 1).contiguous() token_type_ids = token_type_ids.transpose(0, 1).contiguous() if token_type_ids is not None else None input_mask = input_mask.transpose(0, 1).contiguous() if input_mask is not None else None attention_mask = attention_mask.transpose(0, 1).contiguous() if attention_mask is not None else None perm_mask = perm_mask.permute(1, 2, 0).contiguous() if perm_mask is not None else None target_mapping = target_mapping.permute(1, 2, 0).contiguous() if target_mapping is not None else None (qlen, bsz) = (input_ids.shape[0], input_ids.shape[1]) mlen = mems[0].shape[0] if mems is not None else 0 klen = mlen + qlen dtype_float = next(self.parameters()).dtype device = next(self.parameters()).device if self.attn_type == 'uni': <DeepExtract> attn_mask = torch.ones([qlen, qlen]) mask_up = torch.triu(attn_mask, diagonal=1) attn_mask_pad = torch.zeros([qlen, mlen]) ret = torch.cat([attn_mask_pad, mask_up], dim=1) if self.same_length: mask_lo = torch.tril(attn_mask, diagonal=-1) ret = torch.cat([ret[:, :qlen] + mask_lo, ret[:, qlen:]], dim=1) ret = ret.to(next(self.parameters())) attn_mask = ret </DeepExtract> attn_mask = attn_mask[:, :, None, None] elif self.attn_type == 'bi': attn_mask = None else: raise ValueError('Unsupported attention type: {}'.format(self.attn_type)) assert input_mask is None or attention_mask is None, 'You can only use one of input_mask (uses 1 for padding) ' 'or attention_mask (uses 0 for padding, added for compatbility with BERT). Please choose one.' if input_mask is None and attention_mask is not None: input_mask = 1.0 - attention_mask if input_mask is not None and perm_mask is not None: data_mask = input_mask[None] + perm_mask elif input_mask is not None and perm_mask is None: data_mask = input_mask[None] elif input_mask is None and perm_mask is not None: data_mask = perm_mask else: data_mask = None if data_mask is not None: mems_mask = torch.zeros([data_mask.shape[0], mlen, bsz]).to(data_mask) data_mask = torch.cat([mems_mask, data_mask], dim=1) if attn_mask is None: attn_mask = data_mask[:, :, :, None] else: attn_mask += data_mask[:, :, :, None] if attn_mask is not None: attn_mask = (attn_mask > 0).to(dtype_float) if attn_mask is not None: non_tgt_mask = -torch.eye(qlen).to(attn_mask) non_tgt_mask = torch.cat([torch.zeros([qlen, mlen]).to(attn_mask), non_tgt_mask], dim=-1) non_tgt_mask = (attn_mask + non_tgt_mask[:, :, None, None] > 0).to(attn_mask) else: non_tgt_mask = None word_emb_k = self.word_embedding(input_ids) output_h = self.dropout(word_emb_k) if target_mapping is not None: word_emb_q = self.mask_emb.expand(target_mapping.shape[0], bsz, -1) output_g = self.dropout(word_emb_q) else: output_g = None if token_type_ids is not None: mem_pad = torch.zeros([mlen, bsz], dtype=torch.long, device=device) cat_ids = torch.cat([mem_pad, token_type_ids], dim=0) seg_mat = (token_type_ids[:, None] != cat_ids[None, :]).long() seg_mat = F.one_hot(seg_mat, num_classes=2).to(dtype_float) else: seg_mat = None <DeepExtract> freq_seq = torch.arange(0, self.d_model, 2.0, dtype=torch.float) inv_freq = 1 / torch.pow(10000, freq_seq / self.d_model) if self.attn_type == 'bi': (beg, end) = (klen, -qlen) elif self.attn_type == 'uni': (beg, end) = (klen, -1) else: raise ValueError('Unknown `attn_type` {}.'.format(self.attn_type)) if self.bi_data: fwd_pos_seq = torch.arange(beg, end, -1.0, dtype=torch.float) bwd_pos_seq = torch.arange(-beg, -end, 1.0, dtype=torch.float) if self.clamp_len > 0: fwd_pos_seq = fwd_pos_seq.clamp(-self.clamp_len, self.clamp_len) bwd_pos_seq = bwd_pos_seq.clamp(-self.clamp_len, self.clamp_len) if bsz is not None: fwd_pos_emb = self.positional_embedding(fwd_pos_seq, inv_freq, bsz // 2) bwd_pos_emb = self.positional_embedding(bwd_pos_seq, inv_freq, bsz // 2) else: fwd_pos_emb = self.positional_embedding(fwd_pos_seq, inv_freq) bwd_pos_emb = self.positional_embedding(bwd_pos_seq, inv_freq) pos_emb = torch.cat([fwd_pos_emb, bwd_pos_emb], dim=1) else: fwd_pos_seq = torch.arange(beg, end, -1.0) if self.clamp_len > 0: fwd_pos_seq = fwd_pos_seq.clamp(-self.clamp_len, self.clamp_len) pos_emb = self.positional_embedding(fwd_pos_seq, inv_freq, bsz) pos_emb = pos_emb.to(next(self.parameters())) pos_emb = pos_emb </DeepExtract> pos_emb = self.dropout(pos_emb) if head_mask is not None: if head_mask.dim() == 1: head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(0).unsqueeze(0) head_mask = head_mask.expand(self.n_layer, -1, -1, -1, -1) elif head_mask.dim() == 2: head_mask = head_mask.unsqueeze(1).unsqueeze(1).unsqueeze(1) head_mask = head_mask.to(dtype=next(self.parameters()).dtype) else: head_mask = [None] * self.n_layer new_mems = () if mems is None: mems = [None] * len(self.layer) attentions = [] hidden_states = [] for (i, layer_module) in enumerate(self.layer): new_mems = new_mems + (self.cache_mem(output_h, mems[i]),) if self.output_hidden_states: hidden_states.append((output_h, output_g) if output_g is not None else output_h) outputs = layer_module(output_h, output_g, attn_mask_h=non_tgt_mask, attn_mask_g=attn_mask, r=pos_emb, seg_mat=seg_mat, mems=mems[i], target_mapping=target_mapping, head_mask=head_mask[i]) (output_h, output_g) = outputs[:2] if self.output_attentions: attentions.append(outputs[2]) if self.output_hidden_states: hidden_states.append((output_h, output_g) if output_g is not None else output_h) output = self.dropout(output_g if output_g is not None else output_h) outputs = (output.permute(1, 0, 2).contiguous(), new_mems) if self.output_hidden_states: if output_g is not None: hidden_states = tuple((h.permute(1, 0, 2).contiguous() for hs in hidden_states for h in hs)) else: hidden_states = tuple((hs.permute(1, 0, 2).contiguous() for hs in hidden_states)) outputs = outputs + (hidden_states,) if self.output_attentions: attentions = tuple((t.permute(2, 3, 0, 1).contiguous() for t in attentions)) outputs = outputs + (attentions,) return outputs
def forward(self, input_ids, token_type_ids=None, input_mask=None, attention_mask=None, mems=None, perm_mask=None, target_mapping=None, head_mask=None): input_ids = input_ids.transpose(0, 1).contiguous() token_type_ids = token_type_ids.transpose(0, 1).contiguous() if token_type_ids is not None else None input_mask = input_mask.transpose(0, 1).contiguous() if input_mask is not None else None attention_mask = attention_mask.transpose(0, 1).contiguous() if attention_mask is not None else None perm_mask = perm_mask.permute(1, 2, 0).contiguous() if perm_mask is not None else None target_mapping = target_mapping.permute(1, 2, 0).contiguous() if target_mapping is not None else None (qlen, bsz) = (input_ids.shape[0], input_ids.shape[1]) mlen = mems[0].shape[0] if mems is not None else 0 klen = mlen + qlen dtype_float = next(self.parameters()).dtype device = next(self.parameters()).device if self.attn_type == 'uni': attn_mask = torch.ones([qlen, qlen]) mask_up = torch.triu(attn_mask, diagonal=1) attn_mask_pad = torch.zeros([qlen, mlen]) ret = torch.cat([attn_mask_pad, mask_up], dim=1) if self.same_length: mask_lo = torch.tril(attn_mask, diagonal=-1) ret = torch.cat([ret[:, :qlen] + mask_lo, ret[:, qlen:]], dim=1) ret = ret.to(next(self.parameters())) attn_mask = ret attn_mask = attn_mask[:, :, None, None] elif self.attn_type == 'bi': attn_mask = None else: raise ValueError('Unsupported attention type: {}'.format(self.attn_type)) assert input_mask is None or attention_mask is None, 'You can only use one of input_mask (uses 1 for padding) ' 'or attention_mask (uses 0 for padding, added for compatbility with BERT). Please choose one.' if input_mask is None and attention_mask is not None: input_mask = 1.0 - attention_mask if input_mask is not None and perm_mask is not None: data_mask = input_mask[None] + perm_mask elif input_mask is not None and perm_mask is None: data_mask = input_mask[None] elif input_mask is None and perm_mask is not None: data_mask = perm_mask else: data_mask = None if data_mask is not None: mems_mask = torch.zeros([data_mask.shape[0], mlen, bsz]).to(data_mask) data_mask = torch.cat([mems_mask, data_mask], dim=1) if attn_mask is None: attn_mask = data_mask[:, :, :, None] else: attn_mask += data_mask[:, :, :, None] if attn_mask is not None: attn_mask = (attn_mask > 0).to(dtype_float) if attn_mask is not None: non_tgt_mask = -torch.eye(qlen).to(attn_mask) non_tgt_mask = torch.cat([torch.zeros([qlen, mlen]).to(attn_mask), non_tgt_mask], dim=-1) non_tgt_mask = (attn_mask + non_tgt_mask[:, :, None, None] > 0).to(attn_mask) else: non_tgt_mask = None word_emb_k = self.word_embedding(input_ids) output_h = self.dropout(word_emb_k) if target_mapping is not None: word_emb_q = self.mask_emb.expand(target_mapping.shape[0], bsz, -1) output_g = self.dropout(word_emb_q) else: output_g = None if token_type_ids is not None: mem_pad = torch.zeros([mlen, bsz], dtype=torch.long, device=device) cat_ids = torch.cat([mem_pad, token_type_ids], dim=0) seg_mat = (token_type_ids[:, None] != cat_ids[None, :]).long() seg_mat = F.one_hot(seg_mat, num_classes=2).to(dtype_float) else: seg_mat = None freq_seq = torch.arange(0, self.d_model, 2.0, dtype=torch.float) inv_freq = 1 / torch.pow(10000, freq_seq / self.d_model) if self.attn_type == 'bi': (beg, end) = (klen, -qlen) elif self.attn_type == 'uni': (beg, end) = (klen, -1) else: raise ValueError('Unknown `attn_type` {}.'.format(self.attn_type)) if self.bi_data: fwd_pos_seq = torch.arange(beg, end, -1.0, dtype=torch.float) bwd_pos_seq = torch.arange(-beg, -end, 1.0, dtype=torch.float) if self.clamp_len > 0: fwd_pos_seq = fwd_pos_seq.clamp(-self.clamp_len, self.clamp_len) bwd_pos_seq = bwd_pos_seq.clamp(-self.clamp_len, self.clamp_len) if bsz is not None: fwd_pos_emb = self.positional_embedding(fwd_pos_seq, inv_freq, bsz // 2) bwd_pos_emb = self.positional_embedding(bwd_pos_seq, inv_freq, bsz // 2) else: fwd_pos_emb = self.positional_embedding(fwd_pos_seq, inv_freq) bwd_pos_emb = self.positional_embedding(bwd_pos_seq, inv_freq) pos_emb = torch.cat([fwd_pos_emb, bwd_pos_emb], dim=1) else: fwd_pos_seq = torch.arange(beg, end, -1.0) if self.clamp_len > 0: fwd_pos_seq = fwd_pos_seq.clamp(-self.clamp_len, self.clamp_len) pos_emb = self.positional_embedding(fwd_pos_seq, inv_freq, bsz) pos_emb = pos_emb.to(next(self.parameters())) pos_emb = pos_emb pos_emb = self.dropout(pos_emb) if head_mask is not None: if head_mask.dim() == 1: head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(0).unsqueeze(0) head_mask = head_mask.expand(self.n_layer, -1, -1, -1, -1) elif head_mask.dim() == 2: head_mask = head_mask.unsqueeze(1).unsqueeze(1).unsqueeze(1) head_mask = head_mask.to(dtype=next(self.parameters()).dtype) else: head_mask = [None] * self.n_layer new_mems = () if mems is None: mems = [None] * len(self.layer) attentions = [] hidden_states = [] for (i, layer_module) in enumerate(self.layer): new_mems = new_mems + (self.cache_mem(output_h, mems[i]),) if self.output_hidden_states: hidden_states.append((output_h, output_g) if output_g is not None else output_h) outputs = layer_module(output_h, output_g, attn_mask_h=non_tgt_mask, attn_mask_g=attn_mask, r=pos_emb, seg_mat=seg_mat, mems=mems[i], target_mapping=target_mapping, head_mask=head_mask[i]) (output_h, output_g) = outputs[:2] if self.output_attentions: attentions.append(outputs[2]) if self.output_hidden_states: hidden_states.append((output_h, output_g) if output_g is not None else output_h) output = self.dropout(output_g if output_g is not None else output_h) outputs = (output.permute(1, 0, 2).contiguous(), new_mems) if self.output_hidden_states: if output_g is not None: hidden_states = tuple((h.permute(1, 0, 2).contiguous() for hs in hidden_states for h in hs)) else: hidden_states = tuple((hs.permute(1, 0, 2).contiguous() for hs in hidden_states)) outputs = outputs + (hidden_states,) if self.output_attentions: attentions = tuple((t.permute(2, 3, 0, 1).contiguous() for t in attentions)) outputs = outputs + (attentions,) return outputs
DIAC2019-DQD-Based-on-Adversarial-Attack
positive
def get_kitti_info_path(idx, prefix, info_type='image_2', file_tail='.png', training=True, relative_path=True): <DeepExtract> img_idx_str = '{:06d}'.format(idx) </DeepExtract> img_idx_str += file_tail prefix = pathlib.Path(prefix) if training: file_path = pathlib.Path('training') / info_type / img_idx_str else: file_path = pathlib.Path('testing') / info_type / img_idx_str if not (prefix / file_path).exists(): raise ValueError('file not exist: {}'.format(file_path)) if relative_path: return str(file_path) else: return str(prefix / file_path)
def get_kitti_info_path(idx, prefix, info_type='image_2', file_tail='.png', training=True, relative_path=True): img_idx_str = '{:06d}'.format(idx) img_idx_str += file_tail prefix = pathlib.Path(prefix) if training: file_path = pathlib.Path('training') / info_type / img_idx_str else: file_path = pathlib.Path('testing') / info_type / img_idx_str if not (prefix / file_path).exists(): raise ValueError('file not exist: {}'.format(file_path)) if relative_path: return str(file_path) else: return str(prefix / file_path)
CenterPoint-KITTI
positive
def train(self): """ Launches training and stores checkpoints at a frequency defined within params :return: None """ image_paths = get_image_paths(self.params, isTest=False) if self.params.BLOCK_IMAGES: train_data = get_train_data(image_paths, self.params) else: train_data = [] for imgPath in image_paths: train_data.append((imgPath, 0, 0)) <DeepExtract> idx = np.random.permutation(len(train_data)) while True: batchInds = get_batch_inds(idx, self.params) for inds in batchInds: (imgBatch, labelBatch) = load_batch(inds, train_data, self.params, self.mode, self.meanVals) yield (imgBatch, labelBatch) </DeepExtract> <DeepExtract> if self.params.BLOCK_IMAGES: imgSz = self.params.BLOCK_SZ else: imgSz = self.params.IMG_SZ input_tensor = Input(shape=(imgSz[0], imgSz[1], self.params.NUM_CHANNELS)) input_shape = (imgSz[0], imgSz[1], self.params.NUM_CHANNELS) if self.params.CONTINUE_TRAINING: model = self.get_model(None, input_tensor, input_shape) if self.mode == self.params.SINGLEVIEW_MODE: print('Continuing trainining from %s' % self.params.CONTINUE_SINGLEVIEW_MODEL_FILE) model.load_weights(self.params.CONTINUE_SINGLEVIEW_MODEL_FILE) elif self.mode == self.params.SEMANTIC_MODE: print('Continuing trainining from %s' % self.params.CONTINUE_SEMANTIC_MODEL_FILE) model.load_weights(self.params.CONTINUE_SEMANTIC_MODEL_FILE) else: if self.params.NUM_CHANNELS > 3: input_tensor_rgb = Input(shape=(imgSz[0], imgSz[1], 3)) input_shape_rgb = (imgSz[0], imgSz[1], 3) model = self.get_model(None, input_tensor, input_shape) if self.params.ENCODER_WEIGHTS is not None: baseModel = self.get_model(self.params.ENCODER_WEIGHTS, input_tensor_rgb, input_shape_rgb) print('Copying %s weights to %d-band model' % (self.params.ENCODER_WEIGHTS, self.params.NUM_CHANNELS)) for i in tqdm(range(len(baseModel.layers))): if i >= 7: model.layers[i].set_weights(baseModel.layers[i].get_weights()) else: model = self.get_model(self.params.ENCODER_WEIGHTS, input_tensor, input_shape) loss = self.params.SEMANTIC_LOSS if self.mode == self.params.SINGLEVIEW_MODE: loss = self.no_nan_mse model.compile(self.params.OPTIMIZER, loss=loss) model = model </DeepExtract> model.summary() checkpoint = ModelCheckpoint(filepath=self.params.CHECKPOINT_PATH, monitor='loss', verbose=0, save_best_only=False, save_weights_only=False, mode='auto', period=self.params.MODEL_SAVE_PERIOD) if len(train_data) <= 0: raise ValueError('No training data found. Update params.py accordingly') model.fit_generator(train_datagen, steps_per_epoch=int(len(train_data) / self.params.BATCH_SZ), epochs=self.params.NUM_EPOCHS, callbacks=[checkpoint])
def train(self): """ Launches training and stores checkpoints at a frequency defined within params :return: None """ image_paths = get_image_paths(self.params, isTest=False) if self.params.BLOCK_IMAGES: train_data = get_train_data(image_paths, self.params) else: train_data = [] for imgPath in image_paths: train_data.append((imgPath, 0, 0)) idx = np.random.permutation(len(train_data)) while True: batchInds = get_batch_inds(idx, self.params) for inds in batchInds: (imgBatch, labelBatch) = load_batch(inds, train_data, self.params, self.mode, self.meanVals) yield (imgBatch, labelBatch) if self.params.BLOCK_IMAGES: imgSz = self.params.BLOCK_SZ else: imgSz = self.params.IMG_SZ input_tensor = Input(shape=(imgSz[0], imgSz[1], self.params.NUM_CHANNELS)) input_shape = (imgSz[0], imgSz[1], self.params.NUM_CHANNELS) if self.params.CONTINUE_TRAINING: model = self.get_model(None, input_tensor, input_shape) if self.mode == self.params.SINGLEVIEW_MODE: print('Continuing trainining from %s' % self.params.CONTINUE_SINGLEVIEW_MODEL_FILE) model.load_weights(self.params.CONTINUE_SINGLEVIEW_MODEL_FILE) elif self.mode == self.params.SEMANTIC_MODE: print('Continuing trainining from %s' % self.params.CONTINUE_SEMANTIC_MODEL_FILE) model.load_weights(self.params.CONTINUE_SEMANTIC_MODEL_FILE) else: if self.params.NUM_CHANNELS > 3: input_tensor_rgb = Input(shape=(imgSz[0], imgSz[1], 3)) input_shape_rgb = (imgSz[0], imgSz[1], 3) model = self.get_model(None, input_tensor, input_shape) if self.params.ENCODER_WEIGHTS is not None: baseModel = self.get_model(self.params.ENCODER_WEIGHTS, input_tensor_rgb, input_shape_rgb) print('Copying %s weights to %d-band model' % (self.params.ENCODER_WEIGHTS, self.params.NUM_CHANNELS)) for i in tqdm(range(len(baseModel.layers))): if i >= 7: model.layers[i].set_weights(baseModel.layers[i].get_weights()) else: model = self.get_model(self.params.ENCODER_WEIGHTS, input_tensor, input_shape) loss = self.params.SEMANTIC_LOSS if self.mode == self.params.SINGLEVIEW_MODE: loss = self.no_nan_mse model.compile(self.params.OPTIMIZER, loss=loss) model = model model.summary() checkpoint = ModelCheckpoint(filepath=self.params.CHECKPOINT_PATH, monitor='loss', verbose=0, save_best_only=False, save_weights_only=False, mode='auto', period=self.params.MODEL_SAVE_PERIOD) if len(train_data) <= 0: raise ValueError('No training data found. Update params.py accordingly') model.fit_generator(train_datagen, steps_per_epoch=int(len(train_data) / self.params.BATCH_SZ), epochs=self.params.NUM_EPOCHS, callbacks=[checkpoint])
dfc2019
positive