before
stringlengths
0
955k
after
stringlengths
0
877k
repo
stringlengths
1
74
type
stringclasses
1 value
def nearest_neighbor_features_per_object(reference_embeddings, query_embeddings, reference_labels, k_nearest_neighbors, gt_ids=None, n_chunks=100): """Calculates the distance to the nearest neighbor per object. For every pixel of query_embeddings calculate the distance to the nearest neighbor in the (possibly subsampled) reference_embeddings per object. Args: reference_embeddings: Tensor of shape [height, width, embedding_dim], the embedding vectors for the reference frame. query_embeddings: Tensor of shape [n_query_images, height, width, embedding_dim], the embedding vectors for the query frames. reference_labels: Tensor of shape [height, width, 1], the class labels of the reference frame. max_neighbors_per_object: Integer, the maximum number of candidates for the nearest neighbor query per object after subsampling, or 0 for no subsampling. k_nearest_neighbors: Integer, the number of nearest neighbors to use. gt_ids: Int tensor of shape [n_objs] of the sorted unique ground truth ids in the first frame. If None, it will be derived from reference_labels. n_chunks: Integer, the number of chunks to use to save memory (set to 1 for no chunking). Returns: nn_features: A float32 tensor of nearest neighbor features of shape [n_query_images, height, width, n_objects, feature_dim]. gt_ids: An int32 tensor of the unique sorted object ids present in the reference labels. """ assert reference_embeddings.size()[:2] == reference_labels.size()[:2] (h, w, _) = query_embeddings.size() reference_labels_flat = reference_labels.view(-1) if gt_ids is None: ref_obj_ids = torch.unique(reference_labels_flat)[-1] ref_obj_ids = np.arange(0, ref_obj_ids.cpu() + 1) gt_ids = torch.from_numpy(ref_obj_ids) gt_ids = gt_ids.int() if torch.cuda.is_available(): gt_ids = gt_ids.cuda() else: gt_ids = gt_ids.cpu() gt_ids = np.arange(0, gt_ids + 1) gt_ids = torch.from_numpy(gt_ids) gt_ids = gt_ids.int() if torch.cuda.is_available(): gt_ids = gt_ids.cuda() embedding_dim = query_embeddings.size()[-1] query_embeddings_flat = query_embeddings.view(-1, embedding_dim) reference_embeddings_flat = reference_embeddings.view(-1, embedding_dim) <DeepExtract> chunk_size = int(np.ceil(float(query_embeddings_flat.size()[0]) / n_chunks)) wrong_label_mask = reference_labels_flat != torch.unsqueeze(gt_ids, 1) all_features = [] for n in range(n_chunks): if n_chunks == 1: query_embeddings_flat_chunk = query_embeddings_flat else: chunk_start = n * chunk_size chunk_end = (n + 1) * chunk_size query_embeddings_flat_chunk = query_embeddings_flat[chunk_start:chunk_end] features = _nn_features_per_object_for_chunk(reference_embeddings_flat, query_embeddings_flat_chunk, wrong_label_mask, k_nearest_neighbors) all_features.append(features) if n_chunks == 1: nn_features = all_features[0] else: nn_features = torch.cat(all_features, dim=0) nn_features = nn_features </DeepExtract> nn_features_dim = nn_features.size()[-1] nn_features_reshape = nn_features.view(1, h, w, gt_ids.size(0), nn_features_dim) return (nn_features_reshape, gt_ids)
def nearest_neighbor_features_per_object(reference_embeddings, query_embeddings, reference_labels, k_nearest_neighbors, gt_ids=None, n_chunks=100): """Calculates the distance to the nearest neighbor per object. For every pixel of query_embeddings calculate the distance to the nearest neighbor in the (possibly subsampled) reference_embeddings per object. Args: reference_embeddings: Tensor of shape [height, width, embedding_dim], the embedding vectors for the reference frame. query_embeddings: Tensor of shape [n_query_images, height, width, embedding_dim], the embedding vectors for the query frames. reference_labels: Tensor of shape [height, width, 1], the class labels of the reference frame. max_neighbors_per_object: Integer, the maximum number of candidates for the nearest neighbor query per object after subsampling, or 0 for no subsampling. k_nearest_neighbors: Integer, the number of nearest neighbors to use. gt_ids: Int tensor of shape [n_objs] of the sorted unique ground truth ids in the first frame. If None, it will be derived from reference_labels. n_chunks: Integer, the number of chunks to use to save memory (set to 1 for no chunking). Returns: nn_features: A float32 tensor of nearest neighbor features of shape [n_query_images, height, width, n_objects, feature_dim]. gt_ids: An int32 tensor of the unique sorted object ids present in the reference labels. """ assert reference_embeddings.size()[:2] == reference_labels.size()[:2] (h, w, _) = query_embeddings.size() reference_labels_flat = reference_labels.view(-1) if gt_ids is None: ref_obj_ids = torch.unique(reference_labels_flat)[-1] ref_obj_ids = np.arange(0, ref_obj_ids.cpu() + 1) gt_ids = torch.from_numpy(ref_obj_ids) gt_ids = gt_ids.int() if torch.cuda.is_available(): gt_ids = gt_ids.cuda() else: gt_ids = gt_ids.cpu() gt_ids = np.arange(0, gt_ids + 1) gt_ids = torch.from_numpy(gt_ids) gt_ids = gt_ids.int() if torch.cuda.is_available(): gt_ids = gt_ids.cuda() embedding_dim = query_embeddings.size()[-1] query_embeddings_flat = query_embeddings.view(-1, embedding_dim) reference_embeddings_flat = reference_embeddings.view(-1, embedding_dim) chunk_size = int(np.ceil(float(query_embeddings_flat.size()[0]) / n_chunks)) wrong_label_mask = reference_labels_flat != torch.unsqueeze(gt_ids, 1) all_features = [] for n in range(n_chunks): if n_chunks == 1: query_embeddings_flat_chunk = query_embeddings_flat else: chunk_start = n * chunk_size chunk_end = (n + 1) * chunk_size query_embeddings_flat_chunk = query_embeddings_flat[chunk_start:chunk_end] features = _nn_features_per_object_for_chunk(reference_embeddings_flat, query_embeddings_flat_chunk, wrong_label_mask, k_nearest_neighbors) all_features.append(features) if n_chunks == 1: nn_features = all_features[0] else: nn_features = torch.cat(all_features, dim=0) nn_features = nn_features nn_features_dim = nn_features.size()[-1] nn_features_reshape = nn_features.view(1, h, w, gt_ids.size(0), nn_features_dim) return (nn_features_reshape, gt_ids)
CVPR2020_MANet
positive
@get('/test') def test_method(): success = True response = {'cleanup': {'success': False, 'data': []}, 'put': {'success': False, 'data': ['skipped']}, 'describe': {'success': False, 'data': ['skipped']}, 'list': {'success': False, 'data': ['skipped']}, 'idempotency': {'success': False, 'data': ['skipped']}, 'delete': {'success': False, 'data': ['skipped']}} try: response['cleanup']['success'] = True <DeepExtract> items = method_wrapper(get_list) </DeepExtract> assert items['success'], items['error'] for item in items['response']: response['cleanup']['data'].append('cleaning up item %s' % item) <DeepExtract> return method_wrapper(delete_item, item_id=item) </DeepExtract> if len(items) == 0: response['cleanup']['data'].append('No items to cleanup') else: response['cleanup']['data'].append('Successfully cleaned up all items') except Exception as e: traceback.print_exc() success = False response['cleanup']['success'] = False response['cleanup']['data'].append('%s %s' % (str(e.__class__), str(e))) if success: try: <DeepExtract> if not '{"content": "test_content"}': '{"content": "test_content"}' = request.body.read().decode('utf-8') if not 'application/json': 'application/json' = request.content_type response['put'] = method_wrapper(put_item, item_id='test', data='{"content": "test_content"}', content_type='application/json') </DeepExtract> assert response['put']['success'], response['put']['error'] response['put']['data'] = ['Successfully put item'] except Exception as e: traceback.print_exc() success = False response['put']['success'] = False response['put']['data'] = ['%s %s' % (str(e.__class__), str(e))] if success: try: <DeepExtract> response['describe'] = method_wrapper(get_item, item_id='test') </DeepExtract> assert response['describe']['success'], response['describe']['error'] expected = {'item_id': 'test', 'content': 'test_content'} assert response['describe']['response'] == expected, 'unexpected response object, expecting: "%s" got: "%s" ' % (json.dumps(expected), json.dumps(response['describe']['response'])) response['describe']['data'] = ['Successfully described item'] except Exception as e: traceback.print_exc() success = False response['describe']['success'] = False response['describe']['data'] = ['%s %s' % (str(e.__class__), str(e))] if success: try: <DeepExtract> response['list'] = method_wrapper(get_list) </DeepExtract> assert response['list']['success'], response['list']['error'] expected = ['test'] assert response['list']['response'] == expected, 'unexpected response object, expecting: "%s" got: "%s" ' % (json.dumps(expected), json.dumps(response['list']['response'])) response['list']['data'] = ['Successfully listed items'] except Exception as e: traceback.print_exc() success = False response['list']['success'] = False response['list']['data'] = ['%s %s' % (str(e.__class__), str(e))] if success: try: response['idempotency']['success'] = True response['idempotency']['data'] = [] <DeepExtract> if not '{"content": "test_content_idempotent"}': '{"content": "test_content_idempotent"}' = request.body.read().decode('utf-8') if not 'application/json': 'application/json' = request.content_type return method_wrapper(put_item, item_id='test', data='{"content": "test_content_idempotent"}', content_type='application/json') </DeepExtract> response['idempotency']['data'].append('Put an additional item with duplicate item_id') <DeepExtract> describe = method_wrapper(get_item, item_id='test') </DeepExtract> assert describe['success'], describe['error'] expected = {'item_id': 'test', 'content': 'test_content_idempotent'} assert describe['response'] == expected, 'unexpected describe response object, expecting: "%s" got: "%s" ' % (json.dumps(expected), json.dumps(describe['response'])) response['idempotency']['data'].append('Verified describe has updated content') <DeepExtract> list_items = method_wrapper(get_list) </DeepExtract> assert list_items['success'], list_items['error'] expected = ['test'] assert list_items['response'] == expected, 'unexpected list response object, expecting: "%s" got: "%s" ' % (json.dumps(expected), json.dumps(list_items['response'])) response['idempotency']['data'].append('Verified list does not contain duplicates') response['idempotency']['data'].append('Successfully tested idempotency') except Exception as e: traceback.print_exc() success = False response['idempotency']['success'] = False response['idempotency']['data'].append('%s %s' % (str(e.__class__), str(e))) if success: try: <DeepExtract> response['delete'] = method_wrapper(delete_item, item_id='test') </DeepExtract> assert response['delete']['success'], response['delete']['error'] response['delete']['data'] = ['Successfully deleted item'] except Exception as e: traceback.print_exc() success = False response['delete']['success'] = False response['delete']['data'] = ['%s %s' % (str(e.__class__), str(e))] return {'success': success, 'data': response}
@get('/test') def test_method(): success = True response = {'cleanup': {'success': False, 'data': []}, 'put': {'success': False, 'data': ['skipped']}, 'describe': {'success': False, 'data': ['skipped']}, 'list': {'success': False, 'data': ['skipped']}, 'idempotency': {'success': False, 'data': ['skipped']}, 'delete': {'success': False, 'data': ['skipped']}} try: response['cleanup']['success'] = True items = method_wrapper(get_list) assert items['success'], items['error'] for item in items['response']: response['cleanup']['data'].append('cleaning up item %s' % item) return method_wrapper(delete_item, item_id=item) if len(items) == 0: response['cleanup']['data'].append('No items to cleanup') else: response['cleanup']['data'].append('Successfully cleaned up all items') except Exception as e: traceback.print_exc() success = False response['cleanup']['success'] = False response['cleanup']['data'].append('%s %s' % (str(e.__class__), str(e))) if success: try: if not '{"content": "test_content"}': '{"content": "test_content"}' = request.body.read().decode('utf-8') if not 'application/json': 'application/json' = request.content_type response['put'] = method_wrapper(put_item, item_id='test', data='{"content": "test_content"}', content_type='application/json') assert response['put']['success'], response['put']['error'] response['put']['data'] = ['Successfully put item'] except Exception as e: traceback.print_exc() success = False response['put']['success'] = False response['put']['data'] = ['%s %s' % (str(e.__class__), str(e))] if success: try: response['describe'] = method_wrapper(get_item, item_id='test') assert response['describe']['success'], response['describe']['error'] expected = {'item_id': 'test', 'content': 'test_content'} assert response['describe']['response'] == expected, 'unexpected response object, expecting: "%s" got: "%s" ' % (json.dumps(expected), json.dumps(response['describe']['response'])) response['describe']['data'] = ['Successfully described item'] except Exception as e: traceback.print_exc() success = False response['describe']['success'] = False response['describe']['data'] = ['%s %s' % (str(e.__class__), str(e))] if success: try: response['list'] = method_wrapper(get_list) assert response['list']['success'], response['list']['error'] expected = ['test'] assert response['list']['response'] == expected, 'unexpected response object, expecting: "%s" got: "%s" ' % (json.dumps(expected), json.dumps(response['list']['response'])) response['list']['data'] = ['Successfully listed items'] except Exception as e: traceback.print_exc() success = False response['list']['success'] = False response['list']['data'] = ['%s %s' % (str(e.__class__), str(e))] if success: try: response['idempotency']['success'] = True response['idempotency']['data'] = [] if not '{"content": "test_content_idempotent"}': '{"content": "test_content_idempotent"}' = request.body.read().decode('utf-8') if not 'application/json': 'application/json' = request.content_type return method_wrapper(put_item, item_id='test', data='{"content": "test_content_idempotent"}', content_type='application/json') response['idempotency']['data'].append('Put an additional item with duplicate item_id') describe = method_wrapper(get_item, item_id='test') assert describe['success'], describe['error'] expected = {'item_id': 'test', 'content': 'test_content_idempotent'} assert describe['response'] == expected, 'unexpected describe response object, expecting: "%s" got: "%s" ' % (json.dumps(expected), json.dumps(describe['response'])) response['idempotency']['data'].append('Verified describe has updated content') list_items = method_wrapper(get_list) assert list_items['success'], list_items['error'] expected = ['test'] assert list_items['response'] == expected, 'unexpected list response object, expecting: "%s" got: "%s" ' % (json.dumps(expected), json.dumps(list_items['response'])) response['idempotency']['data'].append('Verified list does not contain duplicates') response['idempotency']['data'].append('Successfully tested idempotency') except Exception as e: traceback.print_exc() success = False response['idempotency']['success'] = False response['idempotency']['data'].append('%s %s' % (str(e.__class__), str(e))) if success: try: response['delete'] = method_wrapper(delete_item, item_id='test') assert response['delete']['success'], response['delete']['error'] response['delete']['data'] = ['Successfully deleted item'] except Exception as e: traceback.print_exc() success = False response['delete']['success'] = False response['delete']['data'] = ['%s %s' % (str(e.__class__), str(e))] return {'success': success, 'data': response}
aws-servicebroker
positive
def test_constructor(self): """ Tests assigning an image field through the model's constructor. """ p = self.PersonModel(name='Joe', mugshot=self.file1) <DeepExtract> field = getattr(p, field_name) if 4 is None and 8 is None: with self.assertRaises(ValueError): getattr(field, 'width') with self.assertRaises(ValueError): getattr(field, 'height') else: self.assertEqual(field.width, 4) self.assertEqual(field.height, 8) width_field_name = field_name + '_width' if hasattr(p, width_field_name): self.assertEqual(getattr(p, width_field_name), 4) height_field_name = field_name + '_height' if hasattr(p, height_field_name): self.assertEqual(getattr(p, height_field_name), 8) </DeepExtract> p.save() <DeepExtract> field = getattr(p, field_name) if 4 is None and 8 is None: with self.assertRaises(ValueError): getattr(field, 'width') with self.assertRaises(ValueError): getattr(field, 'height') else: self.assertEqual(field.width, 4) self.assertEqual(field.height, 8) width_field_name = field_name + '_width' if hasattr(p, width_field_name): self.assertEqual(getattr(p, width_field_name), 4) height_field_name = field_name + '_height' if hasattr(p, height_field_name): self.assertEqual(getattr(p, height_field_name), 8) </DeepExtract>
def test_constructor(self): """ Tests assigning an image field through the model's constructor. """ p = self.PersonModel(name='Joe', mugshot=self.file1) field = getattr(p, field_name) if 4 is None and 8 is None: with self.assertRaises(ValueError): getattr(field, 'width') with self.assertRaises(ValueError): getattr(field, 'height') else: self.assertEqual(field.width, 4) self.assertEqual(field.height, 8) width_field_name = field_name + '_width' if hasattr(p, width_field_name): self.assertEqual(getattr(p, width_field_name), 4) height_field_name = field_name + '_height' if hasattr(p, height_field_name): self.assertEqual(getattr(p, height_field_name), 8) p.save() field = getattr(p, field_name) if 4 is None and 8 is None: with self.assertRaises(ValueError): getattr(field, 'width') with self.assertRaises(ValueError): getattr(field, 'height') else: self.assertEqual(field.width, 4) self.assertEqual(field.height, 8) width_field_name = field_name + '_width' if hasattr(p, width_field_name): self.assertEqual(getattr(p, width_field_name), 4) height_field_name = field_name + '_height' if hasattr(p, height_field_name): self.assertEqual(getattr(p, height_field_name), 8) </DeepExtract>
django-firebird
positive
def _filter(self, input, target_genomes): """Add adapters to input probes. """ input = list(input) logger.info('Computing adapter votes across all target genomes') <DeepExtract> logger.info('Building map from k-mers to probes') kmer_probe_map = probe.SharedKmerProbeMap.construct(probe.construct_kmer_probe_map_to_find_probe_covers(input, self.mismatches, self.lcf_thres, min_k=self.kmer_probe_map_k, k=self.kmer_probe_map_k)) probe.open_probe_finding_pool(kmer_probe_map, self.cover_range_fn) def iter_all_seqs(): for genomes_from_group in target_genomes: for g in genomes_from_group: for seq in g.seqs: yield seq cumulative_votes = [(0, 0) for _ in range(len(input))] for sequence in iter_all_seqs(): votes = self._votes_in_sequence(input, sequence) votes_flipped = self._flip_AB_votes(votes) cumulative_votes_with_nonflipped = self._sum_votes_per_probe(cumulative_votes, votes) sum_nonflipped = self._sum_plurality_vote_across_probes(cumulative_votes_with_nonflipped) cumulative_votes_with_flipped = self._sum_votes_per_probe(cumulative_votes, votes_flipped) sum_flipped = self._sum_plurality_vote_across_probes(cumulative_votes_with_flipped) if sum_flipped > sum_nonflipped: cumulative_votes = cumulative_votes_with_flipped else: cumulative_votes = cumulative_votes_with_nonflipped probe.close_probe_finding_pool() votes = cumulative_votes </DeepExtract> logger.info('Adding adapters to probes based on votes') input_with_adapters = [] for i in range(len(input)): p = input[i] vote = votes[i] assert len(vote) == 2 if vote[0] > vote[1]: new_p = p.with_prepended_str(self.adapter_a_5end).with_appended_str(self.adapter_a_3end) else: new_p = p.with_prepended_str(self.adapter_b_5end).with_appended_str(self.adapter_b_3end) input_with_adapters += [new_p] return input_with_adapters
def _filter(self, input, target_genomes): """Add adapters to input probes. """ input = list(input) logger.info('Computing adapter votes across all target genomes') logger.info('Building map from k-mers to probes') kmer_probe_map = probe.SharedKmerProbeMap.construct(probe.construct_kmer_probe_map_to_find_probe_covers(input, self.mismatches, self.lcf_thres, min_k=self.kmer_probe_map_k, k=self.kmer_probe_map_k)) probe.open_probe_finding_pool(kmer_probe_map, self.cover_range_fn) def iter_all_seqs(): for genomes_from_group in target_genomes: for g in genomes_from_group: for seq in g.seqs: yield seq cumulative_votes = [(0, 0) for _ in range(len(input))] for sequence in iter_all_seqs(): votes = self._votes_in_sequence(input, sequence) votes_flipped = self._flip_AB_votes(votes) cumulative_votes_with_nonflipped = self._sum_votes_per_probe(cumulative_votes, votes) sum_nonflipped = self._sum_plurality_vote_across_probes(cumulative_votes_with_nonflipped) cumulative_votes_with_flipped = self._sum_votes_per_probe(cumulative_votes, votes_flipped) sum_flipped = self._sum_plurality_vote_across_probes(cumulative_votes_with_flipped) if sum_flipped > sum_nonflipped: cumulative_votes = cumulative_votes_with_flipped else: cumulative_votes = cumulative_votes_with_nonflipped probe.close_probe_finding_pool() votes = cumulative_votes logger.info('Adding adapters to probes based on votes') input_with_adapters = [] for i in range(len(input)): p = input[i] vote = votes[i] assert len(vote) == 2 if vote[0] > vote[1]: new_p = p.with_prepended_str(self.adapter_a_5end).with_appended_str(self.adapter_a_3end) else: new_p = p.with_prepended_str(self.adapter_b_5end).with_appended_str(self.adapter_b_3end) input_with_adapters += [new_p] return input_with_adapters
catch
positive
def create_resolves_to(self, source_id: str, target_id: str, start_date: datetime, end_date: datetime, description: Optional[str]=None) -> Relationship: """ Create the `resolves-to` relationship between the source and the target. The relation is added to the bundle. Parameters ---------- source_id : str Id of the source, must be the id of a `domain-name`. target_id : str Id of the target, must be the id of a `domain-name` or an `ipv4-addr`. start_date : datetime Starting date for the relationship. end_date : datetime Ending date for the relationship. description : str, optional Description of the relationship (e.g. the type (name-server, redirect, etc.). Returns ------- Relationship Created relationship. """ <DeepExtract> kwargs = {'created_by_ref': self.author, 'confidence': self.helper.connect_confidence_level} if description is not None: kwargs['description'] = description if start_date != '' and end_date != '': kwargs |= {'start_time': start_date, 'stop_time': end_date} rel = Relationship(id=StixCoreRelationship.generate_id('resolves-to', source_id, target_id, start_date, end_date), relationship_type='resolves-to', source_ref=source_id, target_ref=target_id, **kwargs) </DeepExtract> self.bundle.append(rel) return rel
def create_resolves_to(self, source_id: str, target_id: str, start_date: datetime, end_date: datetime, description: Optional[str]=None) -> Relationship: """ Create the `resolves-to` relationship between the source and the target. The relation is added to the bundle. Parameters ---------- source_id : str Id of the source, must be the id of a `domain-name`. target_id : str Id of the target, must be the id of a `domain-name` or an `ipv4-addr`. start_date : datetime Starting date for the relationship. end_date : datetime Ending date for the relationship. description : str, optional Description of the relationship (e.g. the type (name-server, redirect, etc.). Returns ------- Relationship Created relationship. """ kwargs = {'created_by_ref': self.author, 'confidence': self.helper.connect_confidence_level} if description is not None: kwargs['description'] = description if start_date != '' and end_date != '': kwargs |= {'start_time': start_date, 'stop_time': end_date} rel = Relationship(id=StixCoreRelationship.generate_id('resolves-to', source_id, target_id, start_date, end_date), relationship_type='resolves-to', source_ref=source_id, target_ref=target_id, **kwargs) self.bundle.append(rel) return rel
connectors
positive
def perform_unlock_bypass(ctx): if is_unlocked(ctx): log.info("Device is already using 'unlocked' command table.") return True if not is_vulnerable(ctx): log.error('Device does not appear to be vulnerable.') return False ctx.patch_memory(_patch_list, impl='i2c') <DeepExtract> unlocked_cmds = ('editenv', 'dek_blob', 'fuse', 'loadb', 'mw', 'nand', 'ubi') available = ctx.commands(cached=False, detailed=False) for cmd in unlocked_cmds: if cmd in available: success = True success = False </DeepExtract> if success: log.info("Success! Device is now using 'unlocked' command table.") else: log.error("Failed to switch to 'unlocked' command table.") return success
def perform_unlock_bypass(ctx): if is_unlocked(ctx): log.info("Device is already using 'unlocked' command table.") return True if not is_vulnerable(ctx): log.error('Device does not appear to be vulnerable.') return False ctx.patch_memory(_patch_list, impl='i2c') unlocked_cmds = ('editenv', 'dek_blob', 'fuse', 'loadb', 'mw', 'nand', 'ubi') available = ctx.commands(cached=False, detailed=False) for cmd in unlocked_cmds: if cmd in available: success = True success = False if success: log.info("Success! Device is now using 'unlocked' command table.") else: log.error("Failed to switch to 'unlocked' command table.") return success
depthcharge
positive
def __init__(self, block, layers, groups=1, bottleneck_width=32, num_classes=1000, dilated=False, dilation=1, deep_stem=False, stem_width=64, avg_down=False, avd=False, norm_layer=nn.BatchNorm2d): self.cardinality = groups self.bottleneck_width = bottleneck_width self.inplanes = stem_width * 2 if deep_stem else 64 self.avg_down = avg_down self.avd = avd super(SCNet, self).__init__() conv_layer = nn.Conv2d if deep_stem: self.conv1 = nn.Sequential(conv_layer(3, stem_width, kernel_size=3, stride=2, padding=1, bias=False), norm_layer(stem_width), nn.ReLU(inplace=True), conv_layer(stem_width, stem_width, kernel_size=3, stride=1, padding=1, bias=False), norm_layer(stem_width), nn.ReLU(inplace=True), conv_layer(stem_width, stem_width * 2, kernel_size=3, stride=1, padding=1, bias=False)) else: self.conv1 = conv_layer(3, 64, kernel_size=7, stride=2, padding=3, bias=False) self.bn1 = norm_layer(self.inplanes) self.relu = nn.ReLU(inplace=True) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) <DeepExtract> downsample = None if stride != 1 or self.inplanes != 64 * block.expansion: down_layers = [] if self.avg_down: if dilation == 1: down_layers.append(nn.AvgPool2d(kernel_size=stride, stride=stride, ceil_mode=True, count_include_pad=False)) else: down_layers.append(nn.AvgPool2d(kernel_size=1, stride=1, ceil_mode=True, count_include_pad=False)) down_layers.append(nn.Conv2d(self.inplanes, 64 * block.expansion, kernel_size=1, stride=1, bias=False)) else: down_layers.append(nn.Conv2d(self.inplanes, 64 * block.expansion, kernel_size=1, stride=stride, bias=False)) down_layers.append(norm_layer(64 * block.expansion)) downsample = nn.Sequential(*down_layers) layers = [] if dilation == 1 or dilation == 2: layers.append(block(self.inplanes, 64, stride, downsample=downsample, cardinality=self.cardinality, bottleneck_width=self.bottleneck_width, avd=self.avd, dilation=1, is_first=False, norm_layer=norm_layer)) elif dilation == 4: layers.append(block(self.inplanes, 64, stride, downsample=downsample, cardinality=self.cardinality, bottleneck_width=self.bottleneck_width, avd=self.avd, dilation=2, is_first=False, norm_layer=norm_layer)) else: raise RuntimeError('=> unknown dilation size: {}'.format(dilation)) self.inplanes = 64 * block.expansion for i in range(1, layers[0]): layers.append(block(self.inplanes, 64, cardinality=self.cardinality, bottleneck_width=self.bottleneck_width, avd=self.avd, dilation=dilation, norm_layer=norm_layer)) self.layer1 = nn.Sequential(*layers) </DeepExtract> <DeepExtract> downsample = None if 2 != 1 or self.inplanes != 128 * block.expansion: down_layers = [] if self.avg_down: if dilation == 1: down_layers.append(nn.AvgPool2d(kernel_size=2, stride=2, ceil_mode=True, count_include_pad=False)) else: down_layers.append(nn.AvgPool2d(kernel_size=1, stride=1, ceil_mode=True, count_include_pad=False)) down_layers.append(nn.Conv2d(self.inplanes, 128 * block.expansion, kernel_size=1, stride=1, bias=False)) else: down_layers.append(nn.Conv2d(self.inplanes, 128 * block.expansion, kernel_size=1, stride=2, bias=False)) down_layers.append(norm_layer(128 * block.expansion)) downsample = nn.Sequential(*down_layers) layers = [] if dilation == 1 or dilation == 2: layers.append(block(self.inplanes, 128, 2, downsample=downsample, cardinality=self.cardinality, bottleneck_width=self.bottleneck_width, avd=self.avd, dilation=1, is_first=is_first, norm_layer=norm_layer)) elif dilation == 4: layers.append(block(self.inplanes, 128, 2, downsample=downsample, cardinality=self.cardinality, bottleneck_width=self.bottleneck_width, avd=self.avd, dilation=2, is_first=is_first, norm_layer=norm_layer)) else: raise RuntimeError('=> unknown dilation size: {}'.format(dilation)) self.inplanes = 128 * block.expansion for i in range(1, layers[1]): layers.append(block(self.inplanes, 128, cardinality=self.cardinality, bottleneck_width=self.bottleneck_width, avd=self.avd, dilation=dilation, norm_layer=norm_layer)) self.layer2 = nn.Sequential(*layers) </DeepExtract> if dilated or dilation == 4: <DeepExtract> downsample = None if 1 != 1 or self.inplanes != 256 * block.expansion: down_layers = [] if self.avg_down: if 2 == 1: down_layers.append(nn.AvgPool2d(kernel_size=1, stride=1, ceil_mode=True, count_include_pad=False)) else: down_layers.append(nn.AvgPool2d(kernel_size=1, stride=1, ceil_mode=True, count_include_pad=False)) down_layers.append(nn.Conv2d(self.inplanes, 256 * block.expansion, kernel_size=1, stride=1, bias=False)) else: down_layers.append(nn.Conv2d(self.inplanes, 256 * block.expansion, kernel_size=1, stride=1, bias=False)) down_layers.append(norm_layer(256 * block.expansion)) downsample = nn.Sequential(*down_layers) layers = [] if 2 == 1 or 2 == 2: layers.append(block(self.inplanes, 256, 1, downsample=downsample, cardinality=self.cardinality, bottleneck_width=self.bottleneck_width, avd=self.avd, dilation=1, is_first=is_first, norm_layer=norm_layer)) elif 2 == 4: layers.append(block(self.inplanes, 256, 1, downsample=downsample, cardinality=self.cardinality, bottleneck_width=self.bottleneck_width, avd=self.avd, dilation=2, is_first=is_first, norm_layer=norm_layer)) else: raise RuntimeError('=> unknown dilation size: {}'.format(2)) self.inplanes = 256 * block.expansion for i in range(1, layers[2]): layers.append(block(self.inplanes, 256, cardinality=self.cardinality, bottleneck_width=self.bottleneck_width, avd=self.avd, dilation=2, norm_layer=norm_layer)) self.layer3 = nn.Sequential(*layers) </DeepExtract> <DeepExtract> downsample = None if 1 != 1 or self.inplanes != 512 * block.expansion: down_layers = [] if self.avg_down: if 4 == 1: down_layers.append(nn.AvgPool2d(kernel_size=1, stride=1, ceil_mode=True, count_include_pad=False)) else: down_layers.append(nn.AvgPool2d(kernel_size=1, stride=1, ceil_mode=True, count_include_pad=False)) down_layers.append(nn.Conv2d(self.inplanes, 512 * block.expansion, kernel_size=1, stride=1, bias=False)) else: down_layers.append(nn.Conv2d(self.inplanes, 512 * block.expansion, kernel_size=1, stride=1, bias=False)) down_layers.append(norm_layer(512 * block.expansion)) downsample = nn.Sequential(*down_layers) layers = [] if 4 == 1 or 4 == 2: layers.append(block(self.inplanes, 512, 1, downsample=downsample, cardinality=self.cardinality, bottleneck_width=self.bottleneck_width, avd=self.avd, dilation=1, is_first=is_first, norm_layer=norm_layer)) elif 4 == 4: layers.append(block(self.inplanes, 512, 1, downsample=downsample, cardinality=self.cardinality, bottleneck_width=self.bottleneck_width, avd=self.avd, dilation=2, is_first=is_first, norm_layer=norm_layer)) else: raise RuntimeError('=> unknown dilation size: {}'.format(4)) self.inplanes = 512 * block.expansion for i in range(1, layers[3]): layers.append(block(self.inplanes, 512, cardinality=self.cardinality, bottleneck_width=self.bottleneck_width, avd=self.avd, dilation=4, norm_layer=norm_layer)) self.layer4 = nn.Sequential(*layers) </DeepExtract> elif dilation == 2: <DeepExtract> downsample = None if 2 != 1 or self.inplanes != 256 * block.expansion: down_layers = [] if self.avg_down: if 1 == 1: down_layers.append(nn.AvgPool2d(kernel_size=2, stride=2, ceil_mode=True, count_include_pad=False)) else: down_layers.append(nn.AvgPool2d(kernel_size=1, stride=1, ceil_mode=True, count_include_pad=False)) down_layers.append(nn.Conv2d(self.inplanes, 256 * block.expansion, kernel_size=1, stride=1, bias=False)) else: down_layers.append(nn.Conv2d(self.inplanes, 256 * block.expansion, kernel_size=1, stride=2, bias=False)) down_layers.append(norm_layer(256 * block.expansion)) downsample = nn.Sequential(*down_layers) layers = [] if 1 == 1 or 1 == 2: layers.append(block(self.inplanes, 256, 2, downsample=downsample, cardinality=self.cardinality, bottleneck_width=self.bottleneck_width, avd=self.avd, dilation=1, is_first=is_first, norm_layer=norm_layer)) elif 1 == 4: layers.append(block(self.inplanes, 256, 2, downsample=downsample, cardinality=self.cardinality, bottleneck_width=self.bottleneck_width, avd=self.avd, dilation=2, is_first=is_first, norm_layer=norm_layer)) else: raise RuntimeError('=> unknown dilation size: {}'.format(1)) self.inplanes = 256 * block.expansion for i in range(1, layers[2]): layers.append(block(self.inplanes, 256, cardinality=self.cardinality, bottleneck_width=self.bottleneck_width, avd=self.avd, dilation=1, norm_layer=norm_layer)) self.layer3 = nn.Sequential(*layers) </DeepExtract> <DeepExtract> downsample = None if 1 != 1 or self.inplanes != 512 * block.expansion: down_layers = [] if self.avg_down: if 2 == 1: down_layers.append(nn.AvgPool2d(kernel_size=1, stride=1, ceil_mode=True, count_include_pad=False)) else: down_layers.append(nn.AvgPool2d(kernel_size=1, stride=1, ceil_mode=True, count_include_pad=False)) down_layers.append(nn.Conv2d(self.inplanes, 512 * block.expansion, kernel_size=1, stride=1, bias=False)) else: down_layers.append(nn.Conv2d(self.inplanes, 512 * block.expansion, kernel_size=1, stride=1, bias=False)) down_layers.append(norm_layer(512 * block.expansion)) downsample = nn.Sequential(*down_layers) layers = [] if 2 == 1 or 2 == 2: layers.append(block(self.inplanes, 512, 1, downsample=downsample, cardinality=self.cardinality, bottleneck_width=self.bottleneck_width, avd=self.avd, dilation=1, is_first=is_first, norm_layer=norm_layer)) elif 2 == 4: layers.append(block(self.inplanes, 512, 1, downsample=downsample, cardinality=self.cardinality, bottleneck_width=self.bottleneck_width, avd=self.avd, dilation=2, is_first=is_first, norm_layer=norm_layer)) else: raise RuntimeError('=> unknown dilation size: {}'.format(2)) self.inplanes = 512 * block.expansion for i in range(1, layers[3]): layers.append(block(self.inplanes, 512, cardinality=self.cardinality, bottleneck_width=self.bottleneck_width, avd=self.avd, dilation=2, norm_layer=norm_layer)) self.layer4 = nn.Sequential(*layers) </DeepExtract> else: <DeepExtract> downsample = None if 2 != 1 or self.inplanes != 256 * block.expansion: down_layers = [] if self.avg_down: if dilation == 1: down_layers.append(nn.AvgPool2d(kernel_size=2, stride=2, ceil_mode=True, count_include_pad=False)) else: down_layers.append(nn.AvgPool2d(kernel_size=1, stride=1, ceil_mode=True, count_include_pad=False)) down_layers.append(nn.Conv2d(self.inplanes, 256 * block.expansion, kernel_size=1, stride=1, bias=False)) else: down_layers.append(nn.Conv2d(self.inplanes, 256 * block.expansion, kernel_size=1, stride=2, bias=False)) down_layers.append(norm_layer(256 * block.expansion)) downsample = nn.Sequential(*down_layers) layers = [] if dilation == 1 or dilation == 2: layers.append(block(self.inplanes, 256, 2, downsample=downsample, cardinality=self.cardinality, bottleneck_width=self.bottleneck_width, avd=self.avd, dilation=1, is_first=is_first, norm_layer=norm_layer)) elif dilation == 4: layers.append(block(self.inplanes, 256, 2, downsample=downsample, cardinality=self.cardinality, bottleneck_width=self.bottleneck_width, avd=self.avd, dilation=2, is_first=is_first, norm_layer=norm_layer)) else: raise RuntimeError('=> unknown dilation size: {}'.format(dilation)) self.inplanes = 256 * block.expansion for i in range(1, layers[2]): layers.append(block(self.inplanes, 256, cardinality=self.cardinality, bottleneck_width=self.bottleneck_width, avd=self.avd, dilation=dilation, norm_layer=norm_layer)) self.layer3 = nn.Sequential(*layers) </DeepExtract> <DeepExtract> downsample = None if 2 != 1 or self.inplanes != 512 * block.expansion: down_layers = [] if self.avg_down: if dilation == 1: down_layers.append(nn.AvgPool2d(kernel_size=2, stride=2, ceil_mode=True, count_include_pad=False)) else: down_layers.append(nn.AvgPool2d(kernel_size=1, stride=1, ceil_mode=True, count_include_pad=False)) down_layers.append(nn.Conv2d(self.inplanes, 512 * block.expansion, kernel_size=1, stride=1, bias=False)) else: down_layers.append(nn.Conv2d(self.inplanes, 512 * block.expansion, kernel_size=1, stride=2, bias=False)) down_layers.append(norm_layer(512 * block.expansion)) downsample = nn.Sequential(*down_layers) layers = [] if dilation == 1 or dilation == 2: layers.append(block(self.inplanes, 512, 2, downsample=downsample, cardinality=self.cardinality, bottleneck_width=self.bottleneck_width, avd=self.avd, dilation=1, is_first=is_first, norm_layer=norm_layer)) elif dilation == 4: layers.append(block(self.inplanes, 512, 2, downsample=downsample, cardinality=self.cardinality, bottleneck_width=self.bottleneck_width, avd=self.avd, dilation=2, is_first=is_first, norm_layer=norm_layer)) else: raise RuntimeError('=> unknown dilation size: {}'.format(dilation)) self.inplanes = 512 * block.expansion for i in range(1, layers[3]): layers.append(block(self.inplanes, 512, cardinality=self.cardinality, bottleneck_width=self.bottleneck_width, avd=self.avd, dilation=dilation, norm_layer=norm_layer)) self.layer4 = nn.Sequential(*layers) </DeepExtract> self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) self.fc = nn.Linear(512 * block.expansion, num_classes) for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') elif isinstance(m, norm_layer): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0)
def __init__(self, block, layers, groups=1, bottleneck_width=32, num_classes=1000, dilated=False, dilation=1, deep_stem=False, stem_width=64, avg_down=False, avd=False, norm_layer=nn.BatchNorm2d): self.cardinality = groups self.bottleneck_width = bottleneck_width self.inplanes = stem_width * 2 if deep_stem else 64 self.avg_down = avg_down self.avd = avd super(SCNet, self).__init__() conv_layer = nn.Conv2d if deep_stem: self.conv1 = nn.Sequential(conv_layer(3, stem_width, kernel_size=3, stride=2, padding=1, bias=False), norm_layer(stem_width), nn.ReLU(inplace=True), conv_layer(stem_width, stem_width, kernel_size=3, stride=1, padding=1, bias=False), norm_layer(stem_width), nn.ReLU(inplace=True), conv_layer(stem_width, stem_width * 2, kernel_size=3, stride=1, padding=1, bias=False)) else: self.conv1 = conv_layer(3, 64, kernel_size=7, stride=2, padding=3, bias=False) self.bn1 = norm_layer(self.inplanes) self.relu = nn.ReLU(inplace=True) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) downsample = None if stride != 1 or self.inplanes != 64 * block.expansion: down_layers = [] if self.avg_down: if dilation == 1: down_layers.append(nn.AvgPool2d(kernel_size=stride, stride=stride, ceil_mode=True, count_include_pad=False)) else: down_layers.append(nn.AvgPool2d(kernel_size=1, stride=1, ceil_mode=True, count_include_pad=False)) down_layers.append(nn.Conv2d(self.inplanes, 64 * block.expansion, kernel_size=1, stride=1, bias=False)) else: down_layers.append(nn.Conv2d(self.inplanes, 64 * block.expansion, kernel_size=1, stride=stride, bias=False)) down_layers.append(norm_layer(64 * block.expansion)) downsample = nn.Sequential(*down_layers) layers = [] if dilation == 1 or dilation == 2: layers.append(block(self.inplanes, 64, stride, downsample=downsample, cardinality=self.cardinality, bottleneck_width=self.bottleneck_width, avd=self.avd, dilation=1, is_first=False, norm_layer=norm_layer)) elif dilation == 4: layers.append(block(self.inplanes, 64, stride, downsample=downsample, cardinality=self.cardinality, bottleneck_width=self.bottleneck_width, avd=self.avd, dilation=2, is_first=False, norm_layer=norm_layer)) else: raise RuntimeError('=> unknown dilation size: {}'.format(dilation)) self.inplanes = 64 * block.expansion for i in range(1, layers[0]): layers.append(block(self.inplanes, 64, cardinality=self.cardinality, bottleneck_width=self.bottleneck_width, avd=self.avd, dilation=dilation, norm_layer=norm_layer)) self.layer1 = nn.Sequential(*layers) downsample = None if 2 != 1 or self.inplanes != 128 * block.expansion: down_layers = [] if self.avg_down: if dilation == 1: down_layers.append(nn.AvgPool2d(kernel_size=2, stride=2, ceil_mode=True, count_include_pad=False)) else: down_layers.append(nn.AvgPool2d(kernel_size=1, stride=1, ceil_mode=True, count_include_pad=False)) down_layers.append(nn.Conv2d(self.inplanes, 128 * block.expansion, kernel_size=1, stride=1, bias=False)) else: down_layers.append(nn.Conv2d(self.inplanes, 128 * block.expansion, kernel_size=1, stride=2, bias=False)) down_layers.append(norm_layer(128 * block.expansion)) downsample = nn.Sequential(*down_layers) layers = [] if dilation == 1 or dilation == 2: layers.append(block(self.inplanes, 128, 2, downsample=downsample, cardinality=self.cardinality, bottleneck_width=self.bottleneck_width, avd=self.avd, dilation=1, is_first=is_first, norm_layer=norm_layer)) elif dilation == 4: layers.append(block(self.inplanes, 128, 2, downsample=downsample, cardinality=self.cardinality, bottleneck_width=self.bottleneck_width, avd=self.avd, dilation=2, is_first=is_first, norm_layer=norm_layer)) else: raise RuntimeError('=> unknown dilation size: {}'.format(dilation)) self.inplanes = 128 * block.expansion for i in range(1, layers[1]): layers.append(block(self.inplanes, 128, cardinality=self.cardinality, bottleneck_width=self.bottleneck_width, avd=self.avd, dilation=dilation, norm_layer=norm_layer)) self.layer2 = nn.Sequential(*layers) if dilated or dilation == 4: downsample = None if 1 != 1 or self.inplanes != 256 * block.expansion: down_layers = [] if self.avg_down: if 2 == 1: down_layers.append(nn.AvgPool2d(kernel_size=1, stride=1, ceil_mode=True, count_include_pad=False)) else: down_layers.append(nn.AvgPool2d(kernel_size=1, stride=1, ceil_mode=True, count_include_pad=False)) down_layers.append(nn.Conv2d(self.inplanes, 256 * block.expansion, kernel_size=1, stride=1, bias=False)) else: down_layers.append(nn.Conv2d(self.inplanes, 256 * block.expansion, kernel_size=1, stride=1, bias=False)) down_layers.append(norm_layer(256 * block.expansion)) downsample = nn.Sequential(*down_layers) layers = [] if 2 == 1 or 2 == 2: layers.append(block(self.inplanes, 256, 1, downsample=downsample, cardinality=self.cardinality, bottleneck_width=self.bottleneck_width, avd=self.avd, dilation=1, is_first=is_first, norm_layer=norm_layer)) elif 2 == 4: layers.append(block(self.inplanes, 256, 1, downsample=downsample, cardinality=self.cardinality, bottleneck_width=self.bottleneck_width, avd=self.avd, dilation=2, is_first=is_first, norm_layer=norm_layer)) else: raise RuntimeError('=> unknown dilation size: {}'.format(2)) self.inplanes = 256 * block.expansion for i in range(1, layers[2]): layers.append(block(self.inplanes, 256, cardinality=self.cardinality, bottleneck_width=self.bottleneck_width, avd=self.avd, dilation=2, norm_layer=norm_layer)) self.layer3 = nn.Sequential(*layers) downsample = None if 1 != 1 or self.inplanes != 512 * block.expansion: down_layers = [] if self.avg_down: if 4 == 1: down_layers.append(nn.AvgPool2d(kernel_size=1, stride=1, ceil_mode=True, count_include_pad=False)) else: down_layers.append(nn.AvgPool2d(kernel_size=1, stride=1, ceil_mode=True, count_include_pad=False)) down_layers.append(nn.Conv2d(self.inplanes, 512 * block.expansion, kernel_size=1, stride=1, bias=False)) else: down_layers.append(nn.Conv2d(self.inplanes, 512 * block.expansion, kernel_size=1, stride=1, bias=False)) down_layers.append(norm_layer(512 * block.expansion)) downsample = nn.Sequential(*down_layers) layers = [] if 4 == 1 or 4 == 2: layers.append(block(self.inplanes, 512, 1, downsample=downsample, cardinality=self.cardinality, bottleneck_width=self.bottleneck_width, avd=self.avd, dilation=1, is_first=is_first, norm_layer=norm_layer)) elif 4 == 4: layers.append(block(self.inplanes, 512, 1, downsample=downsample, cardinality=self.cardinality, bottleneck_width=self.bottleneck_width, avd=self.avd, dilation=2, is_first=is_first, norm_layer=norm_layer)) else: raise RuntimeError('=> unknown dilation size: {}'.format(4)) self.inplanes = 512 * block.expansion for i in range(1, layers[3]): layers.append(block(self.inplanes, 512, cardinality=self.cardinality, bottleneck_width=self.bottleneck_width, avd=self.avd, dilation=4, norm_layer=norm_layer)) self.layer4 = nn.Sequential(*layers) elif dilation == 2: downsample = None if 2 != 1 or self.inplanes != 256 * block.expansion: down_layers = [] if self.avg_down: if 1 == 1: down_layers.append(nn.AvgPool2d(kernel_size=2, stride=2, ceil_mode=True, count_include_pad=False)) else: down_layers.append(nn.AvgPool2d(kernel_size=1, stride=1, ceil_mode=True, count_include_pad=False)) down_layers.append(nn.Conv2d(self.inplanes, 256 * block.expansion, kernel_size=1, stride=1, bias=False)) else: down_layers.append(nn.Conv2d(self.inplanes, 256 * block.expansion, kernel_size=1, stride=2, bias=False)) down_layers.append(norm_layer(256 * block.expansion)) downsample = nn.Sequential(*down_layers) layers = [] if 1 == 1 or 1 == 2: layers.append(block(self.inplanes, 256, 2, downsample=downsample, cardinality=self.cardinality, bottleneck_width=self.bottleneck_width, avd=self.avd, dilation=1, is_first=is_first, norm_layer=norm_layer)) elif 1 == 4: layers.append(block(self.inplanes, 256, 2, downsample=downsample, cardinality=self.cardinality, bottleneck_width=self.bottleneck_width, avd=self.avd, dilation=2, is_first=is_first, norm_layer=norm_layer)) else: raise RuntimeError('=> unknown dilation size: {}'.format(1)) self.inplanes = 256 * block.expansion for i in range(1, layers[2]): layers.append(block(self.inplanes, 256, cardinality=self.cardinality, bottleneck_width=self.bottleneck_width, avd=self.avd, dilation=1, norm_layer=norm_layer)) self.layer3 = nn.Sequential(*layers) downsample = None if 1 != 1 or self.inplanes != 512 * block.expansion: down_layers = [] if self.avg_down: if 2 == 1: down_layers.append(nn.AvgPool2d(kernel_size=1, stride=1, ceil_mode=True, count_include_pad=False)) else: down_layers.append(nn.AvgPool2d(kernel_size=1, stride=1, ceil_mode=True, count_include_pad=False)) down_layers.append(nn.Conv2d(self.inplanes, 512 * block.expansion, kernel_size=1, stride=1, bias=False)) else: down_layers.append(nn.Conv2d(self.inplanes, 512 * block.expansion, kernel_size=1, stride=1, bias=False)) down_layers.append(norm_layer(512 * block.expansion)) downsample = nn.Sequential(*down_layers) layers = [] if 2 == 1 or 2 == 2: layers.append(block(self.inplanes, 512, 1, downsample=downsample, cardinality=self.cardinality, bottleneck_width=self.bottleneck_width, avd=self.avd, dilation=1, is_first=is_first, norm_layer=norm_layer)) elif 2 == 4: layers.append(block(self.inplanes, 512, 1, downsample=downsample, cardinality=self.cardinality, bottleneck_width=self.bottleneck_width, avd=self.avd, dilation=2, is_first=is_first, norm_layer=norm_layer)) else: raise RuntimeError('=> unknown dilation size: {}'.format(2)) self.inplanes = 512 * block.expansion for i in range(1, layers[3]): layers.append(block(self.inplanes, 512, cardinality=self.cardinality, bottleneck_width=self.bottleneck_width, avd=self.avd, dilation=2, norm_layer=norm_layer)) self.layer4 = nn.Sequential(*layers) else: downsample = None if 2 != 1 or self.inplanes != 256 * block.expansion: down_layers = [] if self.avg_down: if dilation == 1: down_layers.append(nn.AvgPool2d(kernel_size=2, stride=2, ceil_mode=True, count_include_pad=False)) else: down_layers.append(nn.AvgPool2d(kernel_size=1, stride=1, ceil_mode=True, count_include_pad=False)) down_layers.append(nn.Conv2d(self.inplanes, 256 * block.expansion, kernel_size=1, stride=1, bias=False)) else: down_layers.append(nn.Conv2d(self.inplanes, 256 * block.expansion, kernel_size=1, stride=2, bias=False)) down_layers.append(norm_layer(256 * block.expansion)) downsample = nn.Sequential(*down_layers) layers = [] if dilation == 1 or dilation == 2: layers.append(block(self.inplanes, 256, 2, downsample=downsample, cardinality=self.cardinality, bottleneck_width=self.bottleneck_width, avd=self.avd, dilation=1, is_first=is_first, norm_layer=norm_layer)) elif dilation == 4: layers.append(block(self.inplanes, 256, 2, downsample=downsample, cardinality=self.cardinality, bottleneck_width=self.bottleneck_width, avd=self.avd, dilation=2, is_first=is_first, norm_layer=norm_layer)) else: raise RuntimeError('=> unknown dilation size: {}'.format(dilation)) self.inplanes = 256 * block.expansion for i in range(1, layers[2]): layers.append(block(self.inplanes, 256, cardinality=self.cardinality, bottleneck_width=self.bottleneck_width, avd=self.avd, dilation=dilation, norm_layer=norm_layer)) self.layer3 = nn.Sequential(*layers) downsample = None if 2 != 1 or self.inplanes != 512 * block.expansion: down_layers = [] if self.avg_down: if dilation == 1: down_layers.append(nn.AvgPool2d(kernel_size=2, stride=2, ceil_mode=True, count_include_pad=False)) else: down_layers.append(nn.AvgPool2d(kernel_size=1, stride=1, ceil_mode=True, count_include_pad=False)) down_layers.append(nn.Conv2d(self.inplanes, 512 * block.expansion, kernel_size=1, stride=1, bias=False)) else: down_layers.append(nn.Conv2d(self.inplanes, 512 * block.expansion, kernel_size=1, stride=2, bias=False)) down_layers.append(norm_layer(512 * block.expansion)) downsample = nn.Sequential(*down_layers) layers = [] if dilation == 1 or dilation == 2: layers.append(block(self.inplanes, 512, 2, downsample=downsample, cardinality=self.cardinality, bottleneck_width=self.bottleneck_width, avd=self.avd, dilation=1, is_first=is_first, norm_layer=norm_layer)) elif dilation == 4: layers.append(block(self.inplanes, 512, 2, downsample=downsample, cardinality=self.cardinality, bottleneck_width=self.bottleneck_width, avd=self.avd, dilation=2, is_first=is_first, norm_layer=norm_layer)) else: raise RuntimeError('=> unknown dilation size: {}'.format(dilation)) self.inplanes = 512 * block.expansion for i in range(1, layers[3]): layers.append(block(self.inplanes, 512, cardinality=self.cardinality, bottleneck_width=self.bottleneck_width, avd=self.avd, dilation=dilation, norm_layer=norm_layer)) self.layer4 = nn.Sequential(*layers) self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) self.fc = nn.Linear(512 * block.expansion, num_classes) for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') elif isinstance(m, norm_layer): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0)
awesome-attention-mechanism-in-cv
positive
def _retrieve_issue_activity(base_url, id): <DeepExtract> activity_url = base_url + 'show_activity.cgi?id=' + id </DeepExtract> printdbg('Retrieving activity of issue #%s from %s' % (id, activity_url)) data = self._urlopen_auth(activity_url).read() parser = SoupHtmlParser(data, id) changes = parser.parse_changes() return changes
def _retrieve_issue_activity(base_url, id): activity_url = base_url + 'show_activity.cgi?id=' + id printdbg('Retrieving activity of issue #%s from %s' % (id, activity_url)) data = self._urlopen_auth(activity_url).read() parser = SoupHtmlParser(data, id) changes = parser.parse_changes() return changes
Bicho
positive
def _set_frequency(frequency: float) -> float: """Sets the bus frequency. Sets the FT232H clock divisor value, according to the desired bus frequency. The actual bus frequency is then as close as possible to the desired value, but may still be slightly different. Args: frequency (:obj:`float`): Desired bus frequency (in Hz) Returns: Actual bus frequency """ divcode = ft232h_cmds['enable_clk_div5'] divisor = int((ft232h_clock['base'] + frequency / 2) / frequency) - 1 divisor = max(0, min(65535, divisor)) actual_freq = ft232h_clock['base'] / (divisor + 1) error = actual_freq / frequency - 1 divisor_hs = int((ft232h_clock['high'] + frequency / 2) / frequency) - 1 divisor_hs = max(0, min(65535, divisor_hs)) actual_freq_hs = ft232h_clock['high'] / (divisor_hs + 1) error_hs = actual_freq_hs / frequency - 1 if abs(error_hs) <= abs(error): divcode = ft232h_cmds['disable_clk_div5'] divisor = divisor_hs actual_freq = actual_freq_hs cmd = bytearray((divcode,)) cmd.extend((ft232h_cmds['set_tck_divisor'], divisor & 255, divisor >> 8 & 255)) cmd.extend((ft232h_cmds['send_immediate'],)) <DeepExtract> offset = 0 size = len(cmd) try: while offset < size: write_size = self._writebuffer_chunksize if offset + write_size > size: write_size = size - offset try: length = self._usb_dev.write(self._in_ep, cmd[offset:offset + write_size], self._usb_write_timeout) except USBError: raise if length <= 0: raise USBError('Usb bulk write error') offset += length return offset except USBError: print('An error occurred while writing to USB') raise </DeepExtract> bytes_ = bytes(self._read_data_bytes(2)) if len(bytes_) >= 2 and bytes_[0] == 'ú': raise IOError('Invalid command @ %d' % bytes_[1]) <DeepExtract> if self._ctrl_transfer_out(ft232h_sio_req['reset'], ft232h_sio_args['purge_RX']): raise IOError('Unable to flush RX buffer') self._readoffset = 0 self._readbuffer = bytearray() </DeepExtract> return actual_freq
def _set_frequency(frequency: float) -> float: """Sets the bus frequency. Sets the FT232H clock divisor value, according to the desired bus frequency. The actual bus frequency is then as close as possible to the desired value, but may still be slightly different. Args: frequency (:obj:`float`): Desired bus frequency (in Hz) Returns: Actual bus frequency """ divcode = ft232h_cmds['enable_clk_div5'] divisor = int((ft232h_clock['base'] + frequency / 2) / frequency) - 1 divisor = max(0, min(65535, divisor)) actual_freq = ft232h_clock['base'] / (divisor + 1) error = actual_freq / frequency - 1 divisor_hs = int((ft232h_clock['high'] + frequency / 2) / frequency) - 1 divisor_hs = max(0, min(65535, divisor_hs)) actual_freq_hs = ft232h_clock['high'] / (divisor_hs + 1) error_hs = actual_freq_hs / frequency - 1 if abs(error_hs) <= abs(error): divcode = ft232h_cmds['disable_clk_div5'] divisor = divisor_hs actual_freq = actual_freq_hs cmd = bytearray((divcode,)) cmd.extend((ft232h_cmds['set_tck_divisor'], divisor & 255, divisor >> 8 & 255)) cmd.extend((ft232h_cmds['send_immediate'],)) offset = 0 size = len(cmd) try: while offset < size: write_size = self._writebuffer_chunksize if offset + write_size > size: write_size = size - offset try: length = self._usb_dev.write(self._in_ep, cmd[offset:offset + write_size], self._usb_write_timeout) except USBError: raise if length <= 0: raise USBError('Usb bulk write error') offset += length return offset except USBError: print('An error occurred while writing to USB') raise bytes_ = bytes(self._read_data_bytes(2)) if len(bytes_) >= 2 and bytes_[0] == 'ú': raise IOError('Invalid command @ %d' % bytes_[1]) if self._ctrl_transfer_out(ft232h_sio_req['reset'], ft232h_sio_args['purge_RX']): raise IOError('Unable to flush RX buffer') self._readoffset = 0 self._readbuffer = bytearray() return actual_freq
crappy
positive
def test_try_catch_finally_statement(self): unparser = Unparser() <DeepExtract> ast = es5.parse(textwrap.dedent('\n try {\n var x = 100;\n y = 111;\n }\n catch (e) {\n var x = 200;\n y = 222;\n }\n finally {\n z = 1;\n }\n ').strip()) </DeepExtract> self.assertEqual(dict(unparser(ast)), {Try: [[{'x': 100, 'y': 111}, {Catch: [['e', {'x': 200, 'y': 222}]]}, {Finally: [[{'z': 1}]]}]]})
def test_try_catch_finally_statement(self): unparser = Unparser() ast = es5.parse(textwrap.dedent('\n try {\n var x = 100;\n y = 111;\n }\n catch (e) {\n var x = 200;\n y = 222;\n }\n finally {\n z = 1;\n }\n ').strip()) self.assertEqual(dict(unparser(ast)), {Try: [[{'x': 100, 'y': 111}, {Catch: [['e', {'x': 200, 'y': 222}]]}, {Finally: [[{'z': 1}]]}]]})
calmjs.parse
positive
def read_json(self): """read JSON serialize the content of the file and transform it in a json format type Returns: JSON -- serialized json data """ <DeepExtract> encoding = 'utf-8' text = '' try: with codecs.open(self.file_name, 'r', encoding) as file: text = file.read() except (IOError, UnicodeError): pass file = text </DeepExtract> if file: return json.loads(file) return []
def read_json(self): """read JSON serialize the content of the file and transform it in a json format type Returns: JSON -- serialized json data """ encoding = 'utf-8' text = '' try: with codecs.open(self.file_name, 'r', encoding) as file: text = file.read() except (IOError, UnicodeError): pass file = text if file: return json.loads(file) return []
Deviot
positive
def update_parametrization(obj): <DeepExtract> if obj.mbdyn.type == 'node': node = bpy.context.scene.mbdyn.nodes[obj.mbdyn.dkey] elif obj.mbdyn.type == 'element': node = bpy.context.scene.mbdyn.elems[obj.mbdyn.dkey] elif obj.mbdyn.type == 'reference': node = bpy.context.scene.mbdyn.refs[obj.mbdyn.dkey] else: node = None </DeepExtract> if node: return assign_parametrization(obj, node) else: return {'NOTFOUND_DICT'}
def update_parametrization(obj): if obj.mbdyn.type == 'node': node = bpy.context.scene.mbdyn.nodes[obj.mbdyn.dkey] elif obj.mbdyn.type == 'element': node = bpy.context.scene.mbdyn.elems[obj.mbdyn.dkey] elif obj.mbdyn.type == 'reference': node = bpy.context.scene.mbdyn.refs[obj.mbdyn.dkey] else: node = None if node: return assign_parametrization(obj, node) else: return {'NOTFOUND_DICT'}
blendyn
positive
@verbose(True, verbose_output=False, timeout=None, _str=None) def analyze(self, data): """ start pattern analysis for words and wordsstripped """ data['CARDS'] = deepcopy(self.datastruct) self.words = data['StringsRAW']['wordsinsensitive'] self.wordsstripped = data['StringsRAW']['wordsstripped'] <DeepExtract> temp_list = [] temp_var = findall(self.detectionamericanexpress, self.wordsstripped) if len(temp_var) > 0: for _ in temp_var: temp_list.append(_) for temp_var in set(temp_list): data['CARDS']['AMERICANEXPRESS'].append({'Count': temp_list.count(temp_var), 'AmericanExpress': temp_var}) </DeepExtract> <DeepExtract> temp_list = [] temp_var = findall(self.detectionvisa, self.wordsstripped) if len(temp_var) > 0: for _ in temp_var: temp_list.append(_) for temp_var in set(temp_list): data['CARDS']['VISA'].append({'Count': temp_list.count(temp_var), 'Visa': temp_var}) </DeepExtract> <DeepExtract> temp_list = [] temp_var = findall(self.detectionmastercard, self.wordsstripped) if len(temp_var) > 0: for _ in temp_var: temp_list.append(_) for temp_var in set(temp_list): data['CARDS']['MASTERCARD'].append({'Count': temp_list.count(temp_var), 'MasterCard': temp_var}) </DeepExtract> <DeepExtract> temp_list = [] temp_var = findall(self.detectiondiscover, self.wordsstripped) if len(temp_var) > 0: for _ in temp_var: temp_list.append(_) for temp_var in set(temp_list): data['CARDS']['DISCOVER'].append({'Count': temp_list.count(temp_var), 'Discover': temp_var}) </DeepExtract> <DeepExtract> temp_list = [] temp_var = findall(self.detectionjcb, self.wordsstripped) if len(temp_var) > 0: for _ in temp_var: temp_list.append(_) for temp_var in set(temp_list): data['CARDS']['JCB'].append({'Count': temp_list.count(temp_var), 'JCB': temp_var}) </DeepExtract> <DeepExtract> temp_list = [] temp_var = findall(self.detectiondinersclub, self.wordsstripped) if len(temp_var) > 0: for _ in temp_var: temp_list.append(_) for temp_var in set(temp_list): data['CARDS']['DINERSCLUB'].append({'Count': temp_list.count(temp_var), 'DinersClub': temp_var}) </DeepExtract>
@verbose(True, verbose_output=False, timeout=None, _str=None) def analyze(self, data): """ start pattern analysis for words and wordsstripped """ data['CARDS'] = deepcopy(self.datastruct) self.words = data['StringsRAW']['wordsinsensitive'] self.wordsstripped = data['StringsRAW']['wordsstripped'] temp_list = [] temp_var = findall(self.detectionamericanexpress, self.wordsstripped) if len(temp_var) > 0: for _ in temp_var: temp_list.append(_) for temp_var in set(temp_list): data['CARDS']['AMERICANEXPRESS'].append({'Count': temp_list.count(temp_var), 'AmericanExpress': temp_var}) temp_list = [] temp_var = findall(self.detectionvisa, self.wordsstripped) if len(temp_var) > 0: for _ in temp_var: temp_list.append(_) for temp_var in set(temp_list): data['CARDS']['VISA'].append({'Count': temp_list.count(temp_var), 'Visa': temp_var}) temp_list = [] temp_var = findall(self.detectionmastercard, self.wordsstripped) if len(temp_var) > 0: for _ in temp_var: temp_list.append(_) for temp_var in set(temp_list): data['CARDS']['MASTERCARD'].append({'Count': temp_list.count(temp_var), 'MasterCard': temp_var}) temp_list = [] temp_var = findall(self.detectiondiscover, self.wordsstripped) if len(temp_var) > 0: for _ in temp_var: temp_list.append(_) for temp_var in set(temp_list): data['CARDS']['DISCOVER'].append({'Count': temp_list.count(temp_var), 'Discover': temp_var}) temp_list = [] temp_var = findall(self.detectionjcb, self.wordsstripped) if len(temp_var) > 0: for _ in temp_var: temp_list.append(_) for temp_var in set(temp_list): data['CARDS']['JCB'].append({'Count': temp_list.count(temp_var), 'JCB': temp_var}) temp_list = [] temp_var = findall(self.detectiondinersclub, self.wordsstripped) if len(temp_var) > 0: for _ in temp_var: temp_list.append(_) for temp_var in set(temp_list): data['CARDS']['DINERSCLUB'].append({'Count': temp_list.count(temp_var), 'DinersClub': temp_var}) </DeepExtract>
analyzer
positive
def _createMo(node, parentMo): (pkgName, className) = parseMoClassName(node.tag) fqClassName = 'cobra.model.' + pkgName + '.' + className pyClass = ClassLoader.loadClass(fqClassName) parentDnStr = None moProps = {} for (attr, val) in list(node.attrib.items()): if attr == 'dn': parentDnStr = getParentDn(str(val)) elif attr == 'rn' or attr == 'instanceId': pass elif attr == 'status' and (not val): pass else: moProps[attr] = str(val) namingVals = [] for propMeta in pyClass.meta.namingProps: propName = propMeta.moPropName namingVals.append(moProps[propName]) del moProps[propName] parentMoOrDn = parentMo if parentMo else parentDnStr mo = pyClass(parentMoOrDn, *namingVals, markDirty=False, **moProps) mo.resetProps() for childNode in node: <DeepExtract> (pkgName, className) = parseMoClassName(childNode.tag) fqClassName = 'cobra.model.' + pkgName + '.' + className pyClass = ClassLoader.loadClass(fqClassName) parentDnStr = None moProps = {} for (attr, val) in list(childNode.attrib.items()): if attr == 'dn': parentDnStr = getParentDn(str(val)) elif attr == 'rn' or attr == 'instanceId': pass elif attr == 'status' and (not val): pass else: moProps[attr] = str(val) namingVals = [] for propMeta in pyClass.meta.namingProps: propName = propMeta.moPropName namingVals.append(moProps[propName]) del moProps[propName] parentMoOrDn = mo if mo else parentDnStr mo = pyClass(parentMoOrDn, *namingVals, markDirty=False, **moProps) mo.resetProps() for childNode in childNode: _createMo(childNode, mo) return mo </DeepExtract> return mo
def _createMo(node, parentMo): (pkgName, className) = parseMoClassName(node.tag) fqClassName = 'cobra.model.' + pkgName + '.' + className pyClass = ClassLoader.loadClass(fqClassName) parentDnStr = None moProps = {} for (attr, val) in list(node.attrib.items()): if attr == 'dn': parentDnStr = getParentDn(str(val)) elif attr == 'rn' or attr == 'instanceId': pass elif attr == 'status' and (not val): pass else: moProps[attr] = str(val) namingVals = [] for propMeta in pyClass.meta.namingProps: propName = propMeta.moPropName namingVals.append(moProps[propName]) del moProps[propName] parentMoOrDn = parentMo if parentMo else parentDnStr mo = pyClass(parentMoOrDn, *namingVals, markDirty=False, **moProps) mo.resetProps() for childNode in node: (pkgName, className) = parseMoClassName(childNode.tag) fqClassName = 'cobra.model.' + pkgName + '.' + className pyClass = ClassLoader.loadClass(fqClassName) parentDnStr = None moProps = {} for (attr, val) in list(childNode.attrib.items()): if attr == 'dn': parentDnStr = getParentDn(str(val)) elif attr == 'rn' or attr == 'instanceId': pass elif attr == 'status' and (not val): pass else: moProps[attr] = str(val) namingVals = [] for propMeta in pyClass.meta.namingProps: propName = propMeta.moPropName namingVals.append(moProps[propName]) del moProps[propName] parentMoOrDn = mo if mo else parentDnStr mo = pyClass(parentMoOrDn, *namingVals, markDirty=False, **moProps) mo.resetProps() for childNode in childNode: _createMo(childNode, mo) return mo return mo
cobra
positive
def __init__(self, factory, args, required, optional, resolve, is_context): <DeepExtract> if not callable(factory): raise RuntimeError </DeepExtract> <DeepExtract> if not (args.keys() == required ^ optional and (not required & optional)): raise RuntimeError </DeepExtract> <DeepExtract> if not callable(resolve): raise RuntimeError </DeepExtract> self.factory = factory self.args = args self.required = required self.optional = optional self.resolve = resolve self.is_context = is_context
def __init__(self, factory, args, required, optional, resolve, is_context): if not callable(factory): raise RuntimeError if not (args.keys() == required ^ optional and (not required & optional)): raise RuntimeError if not callable(resolve): raise RuntimeError self.factory = factory self.args = args self.required = required self.optional = optional self.resolve = resolve self.is_context = is_context
dependencies
positive
def test_any_static_before_dynamic(self): """ Static ANY routes have higher priority than dynamic ANY routes. """ <DeepExtract> self.r.add('/<:>', 'ANY', 'bar', **ka) </DeepExtract> self.assertEqual(self.match('/foo')[0], 'bar') <DeepExtract> self.r.add('/foo', 'ANY', 'foo', **ka) </DeepExtract> self.assertEqual(self.match('/foo')[0], 'foo')
def test_any_static_before_dynamic(self): """ Static ANY routes have higher priority than dynamic ANY routes. """ self.r.add('/<:>', 'ANY', 'bar', **ka) self.assertEqual(self.match('/foo')[0], 'bar') self.r.add('/foo', 'ANY', 'foo', **ka) self.assertEqual(self.match('/foo')[0], 'foo')
bottle
positive
def apply_along_axis(func, axis, x, *args, **kwargs): """ Apply a function to slices along the given axis. Execute func(a, \\*args, \\*\\*kwargs) where func operates on nd-arrays and a is a slice of arr along axis. The size of the slices is determined by the blocks shape of x. func must meet the following conditions: - Take an nd-array as argument - Accept `axis` as a keyword argument - Return an array-like structure Parameters ---------- func : function This function should accept nd-arrays and an axis argument. It is applied to slices of arr along the specified axis. axis : integer Axis along which arr is sliced. Can be 0 or 1. x : ds-array Input distributed array. args : any Additional arguments to func. kwargs : any Additional named arguments to func. Returns ------- out : ds-array The output array. The shape of out is identical to the shape of arr, except along the axis dimension. The output ds-array is dense regardless of the type of the input array. Examples -------- >>> import dislib as ds >>> import numpy as np >>> >>> >>> if __name__ == '__main__': >>> x = ds.random_array((100, 100), block_size=(25, 25)) >>> mean = ds.apply_along_axis(np.mean, 0, x) >>> print(mean.collect()) """ if axis != 0 and axis != 1: raise ValueError('Axis must be 0 or 1.') tlshape = x._top_left_shape bshape = x._reg_shape shape = x.shape out_blocks = list() for block in x._iterator(axis=not axis): <DeepExtract> arr = Array._merge_blocks(block._blocks) kwargs['axis'] = axis out = func(arr, *args, **kwargs) if not issparse(arr): out = np.asarray(out) else: out = csr_matrix(out) if axis == 0: out = out.reshape(1, -1) else: out = out.reshape(-1, 1) </DeepExtract> out_blocks.append(out) if axis == 0: blocks = [out_blocks] out_tlbshape = (1, tlshape[1]) out_bshape = (1, bshape[1]) out_shape = (1, shape[1]) else: blocks = [[block] for block in out_blocks] out_tlbshape = (tlshape[0], 1) out_bshape = (bshape[0], 1) out_shape = (shape[0], 1) return Array(blocks, top_left_shape=out_tlbshape, reg_shape=out_bshape, shape=out_shape, sparse=x._sparse)
def apply_along_axis(func, axis, x, *args, **kwargs): """ Apply a function to slices along the given axis. Execute func(a, \\*args, \\*\\*kwargs) where func operates on nd-arrays and a is a slice of arr along axis. The size of the slices is determined by the blocks shape of x. func must meet the following conditions: - Take an nd-array as argument - Accept `axis` as a keyword argument - Return an array-like structure Parameters ---------- func : function This function should accept nd-arrays and an axis argument. It is applied to slices of arr along the specified axis. axis : integer Axis along which arr is sliced. Can be 0 or 1. x : ds-array Input distributed array. args : any Additional arguments to func. kwargs : any Additional named arguments to func. Returns ------- out : ds-array The output array. The shape of out is identical to the shape of arr, except along the axis dimension. The output ds-array is dense regardless of the type of the input array. Examples -------- >>> import dislib as ds >>> import numpy as np >>> >>> >>> if __name__ == '__main__': >>> x = ds.random_array((100, 100), block_size=(25, 25)) >>> mean = ds.apply_along_axis(np.mean, 0, x) >>> print(mean.collect()) """ if axis != 0 and axis != 1: raise ValueError('Axis must be 0 or 1.') tlshape = x._top_left_shape bshape = x._reg_shape shape = x.shape out_blocks = list() for block in x._iterator(axis=not axis): arr = Array._merge_blocks(block._blocks) kwargs['axis'] = axis out = func(arr, *args, **kwargs) if not issparse(arr): out = np.asarray(out) else: out = csr_matrix(out) if axis == 0: out = out.reshape(1, -1) else: out = out.reshape(-1, 1) out_blocks.append(out) if axis == 0: blocks = [out_blocks] out_tlbshape = (1, tlshape[1]) out_bshape = (1, bshape[1]) out_shape = (1, shape[1]) else: blocks = [[block] for block in out_blocks] out_tlbshape = (tlshape[0], 1) out_bshape = (bshape[0], 1) out_shape = (shape[0], 1) return Array(blocks, top_left_shape=out_tlbshape, reg_shape=out_bshape, shape=out_shape, sparse=x._sparse)
dislib
positive
def proof_3(case): print('Proof 3') dots = case[1] (d1, d2, d3) = dots center = case[0] theta = case[-2] varphi = case[-1] self.add_foreground_mobject(dots) def fade_mobs(fade=0.9): def update(mob): mob.fade(fade) return mob return update diameter_vector = Line(d3.get_center(), center.get_center()).get_vector() diameter = Line(d3.get_center(), d3.get_center() + diameter_vector * 2, color=RED_A) d4 = Dot(diameter.get_end()) arc_psi_1 = ArcBetweenVectors(0.6, d2, d4, d3, color=RED_A) arc_psi_2 = ArcBetweenVectors(0.6, d2, d4, center, color=RED_A) arc_alpha_1 = ArcBetweenVectors(0.7, d1, d4, d3, color=YELLOW_B, stroke_width=8) arc_alpha_2 = ArcBetweenVectors(0.7, d1, d4, center, color=YELLOW_B, stroke_width=8) psi_1 = LabelFromArc(arc_psi_1, theta.get_height() * 0.8, '\\psi_1', color=RED_A, distance_proportion=2.1) psi_2 = LabelFromArc(arc_psi_2, theta.get_height() * 0.8, '\\psi_2', color=RED_A, distance_proportion=2.1) alpha_1 = LabelFromArc(arc_alpha_1, theta.get_height() * 0.8, '\\alpha_1', color=YELLOW_B, distance_proportion=2.5) back_1 = BackgroundRectangle(alpha_1) alpha_2 = LabelFromArc(arc_alpha_2, theta.get_height() * 0.8, '\\alpha_2', color=YELLOW_B, distance_proportion=2.3) back_2 = BackgroundRectangle(alpha_2) line_1 = Line(center.get_center(), d1.get_center(), color=varphi.get_color()) line_2 = Line(d3.get_center(), d1.get_center(), color=varphi.get_color()) psi_g = VGroup(arc_psi_1, arc_psi_2, psi_1, psi_2) alpha_g = VGroup(arc_alpha_1, arc_alpha_2, alpha_1, alpha_2) theta_g = VGroup(theta, varphi, case[-3], case[-4], case[2], case[3]) self.wait() self.play(GrowFromCenter(diameter)) self.wait() self.play(LaggedStart(*[Write(arc) for arc in psi_g])) self.wait(2) self.play(*list(map(FadeIn, [back_1, back_2])), LaggedStart(*[Write(arc) for arc in alpha_g])) self.wait(2) self.add_foreground_mobjects(back_1, back_2, alpha_g) self.cases_group_3.add(arc_psi_1, arc_psi_2, arc_alpha_1, arc_alpha_2, diameter, psi_1, psi_2, alpha_1, alpha_2) self.add(line_1, line_2) for i in [psi_g, theta_g]: for j in i: j.save_state() self.play(*[ApplyFunction(fade_mobs(), i) for i in psi_g], *[ApplyFunction(fade_mobs(), i) for i in theta_g]) self.wait() formulas = [['\\alpha_1', '=', '\\psi_1', '+', '\\theta'], ['\\alpha_2', '=', '\\psi_2', '+', '\\varphi'], ['\\alpha_2', '=', '2', '\\alpha_1'], ['\\psi_2', '+', '\\varphi', '=', '2', '(', '\\psi_1', '+', '\\theta', ')'], ['\\psi_2', '=', '2', '\\psi_1'], ['2', '\\psi_1', '+', '\\varphi', '=', '2', '\\psi_1', '+', '2', '\\theta'], ['\\varphi', '=', '2', '\\theta']] tex_formulas_kwargs = {'tex_to_color_map': {'\\psi_1': psi_1.get_color(), '\\psi_2': psi_2.get_color(), '\\varphi': varphi.get_color(), '\\theta': theta.get_color(), '\\alpha_1': alpha_1.get_color(), '\\alpha_2': alpha_2.get_color()}} f = VGroup(*[TexMobject(*formula, **tex_formulas_kwargs) for formula in formulas]) f.arrange(DOWN) f.scale(1.3) for (fi, i) in zip(f[1:], [1, 1, 3, 1, 4, 1]): <DeepExtract> c1 = fi[i].get_center() c2 = f[0][1].get_center() distance = c2 - c1 fi.shift(RIGHT * distance[0]) </DeepExtract> f.to_edge(RIGHT, buff=1.8) by_case_1 = TextMobject('By case 1') by_case_1.next_to(f[2], RIGHT) by_case_2 = by_case_1.copy() by_case_2.next_to(f[4], RIGHT) self.play(FadeOut(back_1), Restore(theta), Restore(psi_1), ReplacementTransform(alpha_1[0], f[0][0]), run_time=2) self.play(TransformFromCopy(psi_1[0], f[0][2]), TransformFromCopy(theta[0], f[0][-1]), *[Write(f[0][i]) for i in [1, 3]], run_time=3) self.wait() self.play(FadeOut(back_2), Restore(varphi), Restore(psi_2), ReplacementTransform(alpha_2[0], f[1][0]), run_time=2) self.play(TransformFromCopy(psi_2[0], f[1][2]), TransformFromCopy(varphi[0], f[1][-1]), *[Write(f[1][i]) for i in [1, 3]], run_time=3) self.wait() self.play(Write(by_case_1)) self.wait() self.play(Write(f[2])) self.wait() self.play(TransformFromCopy(f[0][-3:], f[3][6:9]), TransformFromCopy(f[1][-3:], f[3][:3]), *[TransformFromCopy(f[2][i], f[3][j]) for (i, j) in zip([1, 2], [3, 4])], *[Write(f[3][i]) for i in [5, 9]], run_time=3) self.wait() self.wait() line_3 = Line(d3.get_center(), d2.get_center(), color=TEAL_A) line_4 = Line(center.get_center(), d2.get_center(), color=PURPLE_A) save_grp = VGroup(arc_alpha_1, arc_alpha_2, varphi, theta) for i in save_grp: try: i.save_state() except: pass self.play(FadeOut(line_1), FadeOut(line_2), FadeIn(line_3), FadeIn(line_4), *[ApplyMethod(i.fade, 0.92) for i in save_grp], *[Restore(i) for i in [arc_psi_1, arc_psi_2]]) self.wait(3) self.play(Write(by_case_2)) self.wait() self.play(Write(f[4])) self.wait(3) self.play(*[Restore(i) for i in [*save_grp, *case[2:6]]]) self.wait() self.play(TransformFromCopy(f[3][0], f[5][:2]), *[TransformFromCopy(f[3][i], f[5][j]) for (i, j) in zip([1, 2, 3, 4, 6, 7, 8, 4], [2, 3, 4, 5, 6, 7, 9, 8])], run_time=3) self.wait() self.play(*[ApplyMethod(f[5][i].fade, 0.8) for i in [0, 1, 5, 6]], run_time=2) self.play(*[TransformFromCopy(f[5][i], f[6][j]) for (i, j) in zip([3, 4, 8, 9], [0, 1, 2, 3])], run_time=3) self.play(Succession(FadeToColor(f[6], YELLOW), FadeToColor(f[6], PURPLE_A)), AnimationGroup(ShowCreationThenDestructionAround(f[6].deepcopy()), ShowCreationThenDestructionAround(f[6].deepcopy()), lag_ratio=1)) self.cases_group_3.add(line_1, line_2, line_3, line_4, by_case_1, by_case_2, f) self.wait()
def proof_3(case): print('Proof 3') dots = case[1] (d1, d2, d3) = dots center = case[0] theta = case[-2] varphi = case[-1] self.add_foreground_mobject(dots) def fade_mobs(fade=0.9): def update(mob): mob.fade(fade) return mob return update diameter_vector = Line(d3.get_center(), center.get_center()).get_vector() diameter = Line(d3.get_center(), d3.get_center() + diameter_vector * 2, color=RED_A) d4 = Dot(diameter.get_end()) arc_psi_1 = ArcBetweenVectors(0.6, d2, d4, d3, color=RED_A) arc_psi_2 = ArcBetweenVectors(0.6, d2, d4, center, color=RED_A) arc_alpha_1 = ArcBetweenVectors(0.7, d1, d4, d3, color=YELLOW_B, stroke_width=8) arc_alpha_2 = ArcBetweenVectors(0.7, d1, d4, center, color=YELLOW_B, stroke_width=8) psi_1 = LabelFromArc(arc_psi_1, theta.get_height() * 0.8, '\\psi_1', color=RED_A, distance_proportion=2.1) psi_2 = LabelFromArc(arc_psi_2, theta.get_height() * 0.8, '\\psi_2', color=RED_A, distance_proportion=2.1) alpha_1 = LabelFromArc(arc_alpha_1, theta.get_height() * 0.8, '\\alpha_1', color=YELLOW_B, distance_proportion=2.5) back_1 = BackgroundRectangle(alpha_1) alpha_2 = LabelFromArc(arc_alpha_2, theta.get_height() * 0.8, '\\alpha_2', color=YELLOW_B, distance_proportion=2.3) back_2 = BackgroundRectangle(alpha_2) line_1 = Line(center.get_center(), d1.get_center(), color=varphi.get_color()) line_2 = Line(d3.get_center(), d1.get_center(), color=varphi.get_color()) psi_g = VGroup(arc_psi_1, arc_psi_2, psi_1, psi_2) alpha_g = VGroup(arc_alpha_1, arc_alpha_2, alpha_1, alpha_2) theta_g = VGroup(theta, varphi, case[-3], case[-4], case[2], case[3]) self.wait() self.play(GrowFromCenter(diameter)) self.wait() self.play(LaggedStart(*[Write(arc) for arc in psi_g])) self.wait(2) self.play(*list(map(FadeIn, [back_1, back_2])), LaggedStart(*[Write(arc) for arc in alpha_g])) self.wait(2) self.add_foreground_mobjects(back_1, back_2, alpha_g) self.cases_group_3.add(arc_psi_1, arc_psi_2, arc_alpha_1, arc_alpha_2, diameter, psi_1, psi_2, alpha_1, alpha_2) self.add(line_1, line_2) for i in [psi_g, theta_g]: for j in i: j.save_state() self.play(*[ApplyFunction(fade_mobs(), i) for i in psi_g], *[ApplyFunction(fade_mobs(), i) for i in theta_g]) self.wait() formulas = [['\\alpha_1', '=', '\\psi_1', '+', '\\theta'], ['\\alpha_2', '=', '\\psi_2', '+', '\\varphi'], ['\\alpha_2', '=', '2', '\\alpha_1'], ['\\psi_2', '+', '\\varphi', '=', '2', '(', '\\psi_1', '+', '\\theta', ')'], ['\\psi_2', '=', '2', '\\psi_1'], ['2', '\\psi_1', '+', '\\varphi', '=', '2', '\\psi_1', '+', '2', '\\theta'], ['\\varphi', '=', '2', '\\theta']] tex_formulas_kwargs = {'tex_to_color_map': {'\\psi_1': psi_1.get_color(), '\\psi_2': psi_2.get_color(), '\\varphi': varphi.get_color(), '\\theta': theta.get_color(), '\\alpha_1': alpha_1.get_color(), '\\alpha_2': alpha_2.get_color()}} f = VGroup(*[TexMobject(*formula, **tex_formulas_kwargs) for formula in formulas]) f.arrange(DOWN) f.scale(1.3) for (fi, i) in zip(f[1:], [1, 1, 3, 1, 4, 1]): c1 = fi[i].get_center() c2 = f[0][1].get_center() distance = c2 - c1 fi.shift(RIGHT * distance[0]) f.to_edge(RIGHT, buff=1.8) by_case_1 = TextMobject('By case 1') by_case_1.next_to(f[2], RIGHT) by_case_2 = by_case_1.copy() by_case_2.next_to(f[4], RIGHT) self.play(FadeOut(back_1), Restore(theta), Restore(psi_1), ReplacementTransform(alpha_1[0], f[0][0]), run_time=2) self.play(TransformFromCopy(psi_1[0], f[0][2]), TransformFromCopy(theta[0], f[0][-1]), *[Write(f[0][i]) for i in [1, 3]], run_time=3) self.wait() self.play(FadeOut(back_2), Restore(varphi), Restore(psi_2), ReplacementTransform(alpha_2[0], f[1][0]), run_time=2) self.play(TransformFromCopy(psi_2[0], f[1][2]), TransformFromCopy(varphi[0], f[1][-1]), *[Write(f[1][i]) for i in [1, 3]], run_time=3) self.wait() self.play(Write(by_case_1)) self.wait() self.play(Write(f[2])) self.wait() self.play(TransformFromCopy(f[0][-3:], f[3][6:9]), TransformFromCopy(f[1][-3:], f[3][:3]), *[TransformFromCopy(f[2][i], f[3][j]) for (i, j) in zip([1, 2], [3, 4])], *[Write(f[3][i]) for i in [5, 9]], run_time=3) self.wait() self.wait() line_3 = Line(d3.get_center(), d2.get_center(), color=TEAL_A) line_4 = Line(center.get_center(), d2.get_center(), color=PURPLE_A) save_grp = VGroup(arc_alpha_1, arc_alpha_2, varphi, theta) for i in save_grp: try: i.save_state() except: pass self.play(FadeOut(line_1), FadeOut(line_2), FadeIn(line_3), FadeIn(line_4), *[ApplyMethod(i.fade, 0.92) for i in save_grp], *[Restore(i) for i in [arc_psi_1, arc_psi_2]]) self.wait(3) self.play(Write(by_case_2)) self.wait() self.play(Write(f[4])) self.wait(3) self.play(*[Restore(i) for i in [*save_grp, *case[2:6]]]) self.wait() self.play(TransformFromCopy(f[3][0], f[5][:2]), *[TransformFromCopy(f[3][i], f[5][j]) for (i, j) in zip([1, 2, 3, 4, 6, 7, 8, 4], [2, 3, 4, 5, 6, 7, 9, 8])], run_time=3) self.wait() self.play(*[ApplyMethod(f[5][i].fade, 0.8) for i in [0, 1, 5, 6]], run_time=2) self.play(*[TransformFromCopy(f[5][i], f[6][j]) for (i, j) in zip([3, 4, 8, 9], [0, 1, 2, 3])], run_time=3) self.play(Succession(FadeToColor(f[6], YELLOW), FadeToColor(f[6], PURPLE_A)), AnimationGroup(ShowCreationThenDestructionAround(f[6].deepcopy()), ShowCreationThenDestructionAround(f[6].deepcopy()), lag_ratio=1)) self.cases_group_3.add(line_1, line_2, line_3, line_4, by_case_1, by_case_2, f) self.wait()
AnimationsWithManim
positive
def nuscenes_gt_to_kitti(self, lyft_dataroot: str='/home/yw763/driving/lyft/v1.02-train', table_folder: str='/home/yw763/driving/lyft/v1.02-train/v1.02-train', lidar_name: str='LIDAR_TOP', get_all_detections: bool=True, parallel_n_jobs: int=16, samples_count: Optional[int]=None) -> None: """Converts nuScenes GT formatted annotations to KITTI format. Args: lyft_dataroot: folder with tables (json files). table_folder: folder with tables (json files). lidar_name: Name of the lidar sensor. Only one lidar allowed at this moment. get_all_detections: If True, will write all bboxes in PointCloud and use only FrontCamera. parallel_n_jobs: Number of threads to parralel processing. samples_count: Number of samples to convert. """ self.lyft_dataroot = lyft_dataroot self.table_folder = table_folder self.lidar_name = lidar_name self.get_all_detections = get_all_detections self.samples_count = samples_count self.parallel_n_jobs = parallel_n_jobs self.lyft_ds = LyftDataset(self.lyft_dataroot, self.table_folder) self.kitti_to_nu_lidar = Quaternion(axis=(0, 0, 1), angle=np.pi) self.kitti_to_nu_lidar_inv = self.kitti_to_nu_lidar.inverse split_logs = [self.lyft_ds.get('log', scene['log_token'])['logfile'] for scene in self.lyft_ds.scene] if self.get_all_detections: self.cams_to_see = ['CAM_FRONT'] else: self.cams_to_see = ['CAM_FRONT', 'CAM_FRONT_LEFT', 'CAM_FRONT_RIGHT', 'CAM_BACK', 'CAM_BACK_LEFT', 'CAM_BACK_RIGHT'] self.label_folder = self.store_dir.joinpath('label_2') self.calib_folder = self.store_dir.joinpath('calib') self.image_folder = self.store_dir.joinpath('image_2') self.lidar_folder = self.store_dir.joinpath('velodyne') for folder in [self.label_folder, self.calib_folder, self.image_folder, self.lidar_folder]: if not folder.is_dir(): folder.mkdir(parents=True) <DeepExtract> samples = [] str_to_write = '' for sample in self.lyft_ds.sample: scene = self.lyft_ds.get('scene', sample['scene_token']) log = self.lyft_ds.get('log', scene['log_token']) logfile = log['logfile'] if logfile in split_logs: samples.append(sample['token']) str_to_write += '{} {}\n'.format(sample['token'], sample['scene_token']) with open(os.path.join(os.path.dirname(self.store_dir), 'lyft_scenes.txt'), 'w') as f: f.write(str_to_write) sample_tokens = samples </DeepExtract> if self.samples_count is not None: sample_tokens = sample_tokens[:self.samples_count] sample_tokens = sample_tokens self.tokens = sample_tokens with parallel_backend('threading', n_jobs=self.parallel_n_jobs): Parallel()((delayed(self.process_token_to_kitti)(sample_token) for sample_token in tqdm(sample_tokens)))
def nuscenes_gt_to_kitti(self, lyft_dataroot: str='/home/yw763/driving/lyft/v1.02-train', table_folder: str='/home/yw763/driving/lyft/v1.02-train/v1.02-train', lidar_name: str='LIDAR_TOP', get_all_detections: bool=True, parallel_n_jobs: int=16, samples_count: Optional[int]=None) -> None: """Converts nuScenes GT formatted annotations to KITTI format. Args: lyft_dataroot: folder with tables (json files). table_folder: folder with tables (json files). lidar_name: Name of the lidar sensor. Only one lidar allowed at this moment. get_all_detections: If True, will write all bboxes in PointCloud and use only FrontCamera. parallel_n_jobs: Number of threads to parralel processing. samples_count: Number of samples to convert. """ self.lyft_dataroot = lyft_dataroot self.table_folder = table_folder self.lidar_name = lidar_name self.get_all_detections = get_all_detections self.samples_count = samples_count self.parallel_n_jobs = parallel_n_jobs self.lyft_ds = LyftDataset(self.lyft_dataroot, self.table_folder) self.kitti_to_nu_lidar = Quaternion(axis=(0, 0, 1), angle=np.pi) self.kitti_to_nu_lidar_inv = self.kitti_to_nu_lidar.inverse split_logs = [self.lyft_ds.get('log', scene['log_token'])['logfile'] for scene in self.lyft_ds.scene] if self.get_all_detections: self.cams_to_see = ['CAM_FRONT'] else: self.cams_to_see = ['CAM_FRONT', 'CAM_FRONT_LEFT', 'CAM_FRONT_RIGHT', 'CAM_BACK', 'CAM_BACK_LEFT', 'CAM_BACK_RIGHT'] self.label_folder = self.store_dir.joinpath('label_2') self.calib_folder = self.store_dir.joinpath('calib') self.image_folder = self.store_dir.joinpath('image_2') self.lidar_folder = self.store_dir.joinpath('velodyne') for folder in [self.label_folder, self.calib_folder, self.image_folder, self.lidar_folder]: if not folder.is_dir(): folder.mkdir(parents=True) samples = [] str_to_write = '' for sample in self.lyft_ds.sample: scene = self.lyft_ds.get('scene', sample['scene_token']) log = self.lyft_ds.get('log', scene['log_token']) logfile = log['logfile'] if logfile in split_logs: samples.append(sample['token']) str_to_write += '{} {}\n'.format(sample['token'], sample['scene_token']) with open(os.path.join(os.path.dirname(self.store_dir), 'lyft_scenes.txt'), 'w') as f: f.write(str_to_write) sample_tokens = samples if self.samples_count is not None: sample_tokens = sample_tokens[:self.samples_count] sample_tokens = sample_tokens self.tokens = sample_tokens with parallel_backend('threading', n_jobs=self.parallel_n_jobs): Parallel()((delayed(self.process_token_to_kitti)(sample_token) for sample_token in tqdm(sample_tokens)))
3D_adapt_auto_driving
positive
def _parse_kexecdh_init(self, m): peer_key_bytes = m.get_string() peer_key = X25519PublicKey.from_public_bytes(peer_key_bytes) <DeepExtract> secret = self.key.exchange(peer_key) if constant_time.bytes_eq(secret, b'\x00' * 32): raise SSHException("peer's curve25519 public value has wrong order") K = secret </DeepExtract> K = long(binascii.hexlify(K), 16) hm = Message() hm.add(self.transport.remote_version, self.transport.local_version, self.transport.remote_kex_init, self.transport.local_kex_init) server_key_bytes = self.transport.get_server_key().asbytes() exchange_key_bytes = self.key.public_key().public_bytes(serialization.Encoding.Raw, serialization.PublicFormat.Raw) hm.add_string(server_key_bytes) hm.add_string(peer_key_bytes) hm.add_string(exchange_key_bytes) hm.add_mpint(K) H = self.hash_algo(hm.asbytes()).digest() self.transport._set_K_H(K, H) sig = self.transport.get_server_key().sign_ssh_data(H) m = Message() m.add_byte(c_MSG_KEXECDH_REPLY) m.add_string(server_key_bytes) m.add_string(exchange_key_bytes) m.add_string(sig) self.transport._send_message(m) self.transport._activate_outbound()
def _parse_kexecdh_init(self, m): peer_key_bytes = m.get_string() peer_key = X25519PublicKey.from_public_bytes(peer_key_bytes) secret = self.key.exchange(peer_key) if constant_time.bytes_eq(secret, b'\x00' * 32): raise SSHException("peer's curve25519 public value has wrong order") K = secret K = long(binascii.hexlify(K), 16) hm = Message() hm.add(self.transport.remote_version, self.transport.local_version, self.transport.remote_kex_init, self.transport.local_kex_init) server_key_bytes = self.transport.get_server_key().asbytes() exchange_key_bytes = self.key.public_key().public_bytes(serialization.Encoding.Raw, serialization.PublicFormat.Raw) hm.add_string(server_key_bytes) hm.add_string(peer_key_bytes) hm.add_string(exchange_key_bytes) hm.add_mpint(K) H = self.hash_algo(hm.asbytes()).digest() self.transport._set_K_H(K, H) sig = self.transport.get_server_key().sign_ssh_data(H) m = Message() m.add_byte(c_MSG_KEXECDH_REPLY) m.add_string(server_key_bytes) m.add_string(exchange_key_bytes) m.add_string(sig) self.transport._send_message(m) self.transport._activate_outbound()
cerbrutus
positive
def __init__(self): """Inits the local environment with the initial os environment.""" self.logger = logging.getLogger(LOGGING_GROUP) self.active_environ = None self.active_path = None self.active_pypath = None self.active_buildvars = var_dict.VarDict() self.checkpoints = [] <DeepExtract> self.active_environ = dict() for (key, value) in os.environ.items(): self.active_environ[key] = value path = self.active_environ.get('PATH', '') self.active_path = list(filter(None, path.split(os.pathsep))) self.active_pypath = sys.path self.active_environ.pop('PATH', None) self.active_environ.pop('PYTHONPATH', None) </DeepExtract> <DeepExtract> new_index = len(self.checkpoints) self.checkpoints.append({'environ': copy.copy(self.active_environ), 'path': self.active_path, 'pypath': self.active_pypath, 'buildvars': copy.copy(self.active_buildvars)}) return new_index </DeepExtract>
def __init__(self): """Inits the local environment with the initial os environment.""" self.logger = logging.getLogger(LOGGING_GROUP) self.active_environ = None self.active_path = None self.active_pypath = None self.active_buildvars = var_dict.VarDict() self.checkpoints = [] self.active_environ = dict() for (key, value) in os.environ.items(): self.active_environ[key] = value path = self.active_environ.get('PATH', '') self.active_path = list(filter(None, path.split(os.pathsep))) self.active_pypath = sys.path self.active_environ.pop('PATH', None) self.active_environ.pop('PYTHONPATH', None) new_index = len(self.checkpoints) self.checkpoints.append({'environ': copy.copy(self.active_environ), 'path': self.active_path, 'pypath': self.active_pypath, 'buildvars': copy.copy(self.active_buildvars)}) return new_index </DeepExtract>
edk2-pytool-extensions
positive
def reset(self): self.reset_callback(self.world) <DeepExtract> self.render_geoms = None self.render_geoms_xform = None </DeepExtract> obs_n = [] self.agents = self.world.policy_agents for agent in self.agents: obs_n.append(self._get_obs(agent)) self.episode_memory = [] <DeepExtract> import copy self.episode_memory.append(copy.deepcopy(self.world)) </DeepExtract> return obs_n
def reset(self): self.reset_callback(self.world) self.render_geoms = None self.render_geoms_xform = None obs_n = [] self.agents = self.world.policy_agents for agent in self.agents: obs_n.append(self._get_obs(agent)) self.episode_memory = [] import copy self.episode_memory.append(copy.deepcopy(self.world)) return obs_n
epciclr2020
positive
def drill_hole(cx, cy, r): global MOVE_HEIGHT, gTMP_DRILL_X, gTMP_DRILL_Y, gTMP_DRILL_Z, DRILL_SPEED, DRILL_DEPTH, Z_STEP_DRILL, XY_SPEED out_data = '' gcode_tmp_flag = 0 z_step_n = int(float(DRILL_DEPTH) / float(Z_STEP_DRILL)) + 1 z_step = float(DRILL_DEPTH) / z_step_n if MOVE_HEIGHT != gTMP_DRILL_Z: gTMP_DRILL_Z = MOVE_HEIGHT out_data += 'G0 Z' + floats(gTMP_DRILL_Z) + ' F' + floats(DRILL_SPEED) + '\n' out_data += 'G0 X' + floats(cx) + ' Y' + floats(cy) + '\n' <DeepExtract> int(100) new_points_num = int(2.0 * pi * float(r) / float(MM_PER_ARC_SEGMENT)) if new_points_num < 4: new_points_num = 4 elif new_points_num > 50: new_points_num = 50 100 = new_points_num points = [] i = 100 while i > 0: cir_x = cx + r * cos(2.0 * pi * float(i) / float(100)) cir_y = cy + r * sin(2.0 * pi * float(i) / float(100)) points.extend([cir_x, cir_y]) i -= 1 cir_x = cx + r * cos(0.0) cir_y = cy + r * sin(0.0) points.extend([cir_x, cir_y]) points = points </DeepExtract> i = 1 while i <= z_step_n: gTMP_DRILL_Z = i * z_step j = 0 cricle_data = 'G1' while j < len(points): px = points[j] py = points[j + 1] if px != gTMP_DRILL_X: gTMP_DRILL_X = px cricle_data += ' X' + floats(px) gcode_tmp_flag = 1 if py != gTMP_DRILL_Y: gTMP_DRILL_Y = py cricle_data += ' Y' + floats(py) gcode_tmp_flag = 1 if gcode_tmp_flag: cricle_data += ' F' + floats(XY_SPEED) cricle_data = 'G1' gcode_tmp_flag = 0 j += 2 i += 1 DRILL_DESIRED_DIAM = 2 * (r + DRILL_D / 2) out_data += 'G0 Z' + floats(DRILL_DEPTH) + ' F' + floats(DRILL_SPEED) + ' D' + floats(DRILL_DESIRED_DIAM) + '\n' gTMP_DRILL_X = cx + r gTMP_DRILL_Y = cy return out_data
def drill_hole(cx, cy, r): global MOVE_HEIGHT, gTMP_DRILL_X, gTMP_DRILL_Y, gTMP_DRILL_Z, DRILL_SPEED, DRILL_DEPTH, Z_STEP_DRILL, XY_SPEED out_data = '' gcode_tmp_flag = 0 z_step_n = int(float(DRILL_DEPTH) / float(Z_STEP_DRILL)) + 1 z_step = float(DRILL_DEPTH) / z_step_n if MOVE_HEIGHT != gTMP_DRILL_Z: gTMP_DRILL_Z = MOVE_HEIGHT out_data += 'G0 Z' + floats(gTMP_DRILL_Z) + ' F' + floats(DRILL_SPEED) + '\n' out_data += 'G0 X' + floats(cx) + ' Y' + floats(cy) + '\n' int(100) new_points_num = int(2.0 * pi * float(r) / float(MM_PER_ARC_SEGMENT)) if new_points_num < 4: new_points_num = 4 elif new_points_num > 50: new_points_num = 50 100 = new_points_num points = [] i = 100 while i > 0: cir_x = cx + r * cos(2.0 * pi * float(i) / float(100)) cir_y = cy + r * sin(2.0 * pi * float(i) / float(100)) points.extend([cir_x, cir_y]) i -= 1 cir_x = cx + r * cos(0.0) cir_y = cy + r * sin(0.0) points.extend([cir_x, cir_y]) points = points i = 1 while i <= z_step_n: gTMP_DRILL_Z = i * z_step j = 0 cricle_data = 'G1' while j < len(points): px = points[j] py = points[j + 1] if px != gTMP_DRILL_X: gTMP_DRILL_X = px cricle_data += ' X' + floats(px) gcode_tmp_flag = 1 if py != gTMP_DRILL_Y: gTMP_DRILL_Y = py cricle_data += ' Y' + floats(py) gcode_tmp_flag = 1 if gcode_tmp_flag: cricle_data += ' F' + floats(XY_SPEED) cricle_data = 'G1' gcode_tmp_flag = 0 j += 2 i += 1 DRILL_DESIRED_DIAM = 2 * (r + DRILL_D / 2) out_data += 'G0 Z' + floats(DRILL_DEPTH) + ' F' + floats(DRILL_SPEED) + ' D' + floats(DRILL_DESIRED_DIAM) + '\n' gTMP_DRILL_X = cx + r gTMP_DRILL_Y = cy return out_data
Cyclone-PCB-Factory
positive
def _get_env_info(self, measurements, sensor_data): env_info = {} pm = measurements.player_measurements env_info['pos_x'] = pm.transform.location.x env_info['pos_y'] = pm.transform.location.y env_info['pos_z'] = pm.transform.location.z env_info['intersection_otherlane'] = pm.intersection_otherlane env_info['intersection_offroad'] = pm.intersection_offroad for camera_name in self._params['cameras']: camera_params = self._params[camera_name] <DeepExtract> if len(sensor_data[camera_name].data.shape) == 2: sensor_data[camera_name].data = np.expand_dims(sensor_data[camera_name].data, axis=2) if {**camera_params, 'grayscale': False}.get('grayscale', False): def rgb2gray(rgb): env_info[camera_name] = np.dot(rgb[..., :3], [0.299, 0.587, 0.114]) sensor_data[camera_name].data = np.expand_dims(rgb2gray(sensor_data[camera_name].data), axis=2) if {**camera_params, 'grayscale': False}['postprocessing'] == 'Depth': (min_range, max_range) = (0.0001, 1) sensor_data[camera_name].data = np.clip(sensor_data[camera_name].data, min_range, max_range) sensor_data[camera_name].data = np.log(sensor_data[camera_name].data) sensor_data[camera_name].data = 255 * (sensor_data[camera_name].data - np.log(min_range)) / (np.log(max_range) - np.log(min_range)) assert sensor_data[camera_name].data.min() >= 0 and sensor_data[camera_name].data.max() <= 255 sensor_data[camera_name].data = sensor_data[camera_name].data.astype(np.uint8) env_info[camera_name] = sensor_data[camera_name].data </DeepExtract> assert tuple(env_info[camera_name].shape[:2]) == (CarlaCollSpeedEnv.CAMERA_HEIGHT, CarlaCollSpeedEnv.CAMERA_HEIGHT * CarlaCollSpeedEnv.WIDTH_TO_HEIGHT_RATIO) return env_info
def _get_env_info(self, measurements, sensor_data): env_info = {} pm = measurements.player_measurements env_info['pos_x'] = pm.transform.location.x env_info['pos_y'] = pm.transform.location.y env_info['pos_z'] = pm.transform.location.z env_info['intersection_otherlane'] = pm.intersection_otherlane env_info['intersection_offroad'] = pm.intersection_offroad for camera_name in self._params['cameras']: camera_params = self._params[camera_name] if len(sensor_data[camera_name].data.shape) == 2: sensor_data[camera_name].data = np.expand_dims(sensor_data[camera_name].data, axis=2) if {**camera_params, 'grayscale': False}.get('grayscale', False): def rgb2gray(rgb): env_info[camera_name] = np.dot(rgb[..., :3], [0.299, 0.587, 0.114]) sensor_data[camera_name].data = np.expand_dims(rgb2gray(sensor_data[camera_name].data), axis=2) if {**camera_params, 'grayscale': False}['postprocessing'] == 'Depth': (min_range, max_range) = (0.0001, 1) sensor_data[camera_name].data = np.clip(sensor_data[camera_name].data, min_range, max_range) sensor_data[camera_name].data = np.log(sensor_data[camera_name].data) sensor_data[camera_name].data = 255 * (sensor_data[camera_name].data - np.log(min_range)) / (np.log(max_range) - np.log(min_range)) assert sensor_data[camera_name].data.min() >= 0 and sensor_data[camera_name].data.max() <= 255 sensor_data[camera_name].data = sensor_data[camera_name].data.astype(np.uint8) env_info[camera_name] = sensor_data[camera_name].data assert tuple(env_info[camera_name].shape[:2]) == (CarlaCollSpeedEnv.CAMERA_HEIGHT, CarlaCollSpeedEnv.CAMERA_HEIGHT * CarlaCollSpeedEnv.WIDTH_TO_HEIGHT_RATIO) return env_info
CAPs
positive
def __setitem__(self, name, msg): """Add a subexception related to a child node with the message ``msg``. ``name`` must be present in the names of the set of child nodes of this exception's node; if this is not so, a :exc:`KeyError` is raised. For example, if the exception upon which ``__setitem__`` is called has a node attribute, and that node attribute has children that have the names ``name`` and ``title``, you may successfully call ``__setitem__('name', 'Bad name')`` or ``__setitem__('title', 'Bad title')``. But calling ``__setitem__('wrong', 'whoops')`` will result in a :exc:`KeyError`. This method is typically only useful if the ``node`` attribute of the exception upon which it is called is a schema node representing a mapping. """ for (num, child) in enumerate(self.node.children): if child.name == name: exc = Invalid(child, msg) <DeepExtract> if self.node and isinstance(self.node.typ, Positional): exc.positional = True if num is not None: exc.pos = num self.children.append(exc) </DeepExtract> return raise KeyError(name)
def __setitem__(self, name, msg): """Add a subexception related to a child node with the message ``msg``. ``name`` must be present in the names of the set of child nodes of this exception's node; if this is not so, a :exc:`KeyError` is raised. For example, if the exception upon which ``__setitem__`` is called has a node attribute, and that node attribute has children that have the names ``name`` and ``title``, you may successfully call ``__setitem__('name', 'Bad name')`` or ``__setitem__('title', 'Bad title')``. But calling ``__setitem__('wrong', 'whoops')`` will result in a :exc:`KeyError`. This method is typically only useful if the ``node`` attribute of the exception upon which it is called is a schema node representing a mapping. """ for (num, child) in enumerate(self.node.children): if child.name == name: exc = Invalid(child, msg) if self.node and isinstance(self.node.typ, Positional): exc.positional = True if num is not None: exc.pos = num self.children.append(exc) return raise KeyError(name)
colander
positive
def getattr_recursive(self, name): """Recursively check wrappers to find attribute. :param name (str) name of attribute to look for :return: (object) attribute """ <DeepExtract> all_attributes = self.__dict__.copy() all_attributes.update(self.class_attributes) all_attributes = all_attributes </DeepExtract> if name in all_attributes: attr = getattr(self, name) elif hasattr(self.venv, 'getattr_recursive'): attr = self.venv.getattr_recursive(name) else: attr = getattr(self.venv, name) return attr
def getattr_recursive(self, name): """Recursively check wrappers to find attribute. :param name (str) name of attribute to look for :return: (object) attribute """ all_attributes = self.__dict__.copy() all_attributes.update(self.class_attributes) all_attributes = all_attributes if name in all_attributes: attr = getattr(self, name) elif hasattr(self.venv, 'getattr_recursive'): attr = self.venv.getattr_recursive(name) else: attr = getattr(self.venv, name) return attr
adversarially-guided-actor-critic
positive
def decode_arpl(state): if state.using64: state.result.operation = 'movsxd' <DeepExtract> if state.final_op_size == 1: reg_list = get_byte_reg_list(state) if state.final_op_size == 2: reg_list = Reg16List if state.final_op_size == 4: reg_list = Reg32List if state.final_op_size == 8: reg_list = Reg64List </DeepExtract> <DeepExtract> reg = decode_rm(state, state.operand1, Reg32List, 4) if state.operand0 != None: if state.rex_reg: reg_offset = 8 else: reg_offset = 0 state.operand0.size = state.final_op_size state.operand0.operand = reg_list[reg + reg_offset] </DeepExtract> else: state.final_op_size = 2 <DeepExtract> if state.final_op_size == 1: reg_list = get_byte_reg_list(state) if state.final_op_size == 2: reg_list = Reg16List if state.final_op_size == 4: reg_list = Reg32List if state.final_op_size == 8: reg_list = Reg64List </DeepExtract> <DeepExtract> reg = decode_rm(state, state.operand0, reg_list, 2) if state.operand1 != None: if state.rex_reg: reg_offset = 8 else: reg_offset = 0 state.operand1.size = state.final_op_size state.operand1.operand = reg_list[reg + reg_offset] </DeepExtract>
def decode_arpl(state): if state.using64: state.result.operation = 'movsxd' if state.final_op_size == 1: reg_list = get_byte_reg_list(state) if state.final_op_size == 2: reg_list = Reg16List if state.final_op_size == 4: reg_list = Reg32List if state.final_op_size == 8: reg_list = Reg64List reg = decode_rm(state, state.operand1, Reg32List, 4) if state.operand0 != None: if state.rex_reg: reg_offset = 8 else: reg_offset = 0 state.operand0.size = state.final_op_size state.operand0.operand = reg_list[reg + reg_offset] else: state.final_op_size = 2 if state.final_op_size == 1: reg_list = get_byte_reg_list(state) if state.final_op_size == 2: reg_list = Reg16List if state.final_op_size == 4: reg_list = Reg32List if state.final_op_size == 8: reg_list = Reg64List reg = decode_rm(state, state.operand0, reg_list, 2) if state.operand1 != None: if state.rex_reg: reg_offset = 8 else: reg_offset = 0 state.operand1.size = state.final_op_size state.operand1.operand = reg_list[reg + reg_offset] </DeepExtract>
deprecated-binaryninja-python
positive
def precision_recall_fscore_iou_support(raster_true, raster_pred, beta=1.0, smooth=1e-06, average=None, rtol=1e-08, envelope_true=0, binarization=None): """Computes precision, recall, F1 score, and Intersection over Union metrics all in one pass. :param raster_true: the input ground truth raster image :type raster_true: numpy.ndarray :param raster_pred: the input predicted raster image :type raster_pred: numpy.ndarray :param beta: The strength of recall versus precision in the F-score. :type beta: float :param smooth: how much smoothing to apply when computing possibly zero quantities :type smooth: float :param rtol: zeroes down values smaller than this :type rtol: float :param average: If ``None``, does nothing. Otherwise, determines the kind of averaging to apply: ``'mean'``: computes mean values :param envelope_true: how much is the spatial tolerance to the inaccuracies in vectorization. The `raster_true` image will be dilated (i.e., its black lines expanded) by this many pixels in every direction. :type envelope_true: int :param binarization: If ``None``, no binarization is performed, and the images are assumed to be already binary. Otherwise, determines the type of binarization performed before computing metrics on 1-0 images: ``'maxink'``: Binarize the image, converting all grayscale values to black (thickening the lines, maximizing ink). ``'maxwhite'``: Binarize the image, converting all grayscale values to white (thinning the lines, maximizing whitespace). ``'median'``: Binarize the image, converting all values below 128 to black. :type binarization: str, optional :return: precision, recall, F1 score, and IoU metrics. Shape of all measures is determined by `average` variable. If `average` is None, all values are arrays of floats. If `average` is not None, all values are floating-point numbers. """ <DeepExtract> raster_true = ensure_tensor(raster_true) if binarization == 'maxink': binarization_func = color_utils.img_8bit_to_binary_maxink elif binarization == 'maxwhite': binarization_func = color_utils.img_8bit_to_binary_maxwhite elif binarization == 'median': binarization_func = color_utils.img_8bit_to_binary_median elif None is binarization: binarization_func = lambda image: image else: raise NotImplementedError raster_true = binarization_func(raster_true) assert _is_binary_1bit(raster_true), 'images are not binary (only values 0 and 1 allowed in images)' raster_true = 1 - raster_true if envelope_true: assert isinstance(envelope_true, int) raster_true = np.array([binary_dilation(r, iterations=envelope_true) for r in raster_true]).astype(np.uint8) raster_true = raster_true </DeepExtract> <DeepExtract> raster_pred = ensure_tensor(raster_pred) if binarization == 'maxink': binarization_func = color_utils.img_8bit_to_binary_maxink elif binarization == 'maxwhite': binarization_func = color_utils.img_8bit_to_binary_maxwhite elif binarization == 'median': binarization_func = color_utils.img_8bit_to_binary_median elif None is binarization: binarization_func = lambda image: image else: raise NotImplementedError raster_pred = binarization_func(raster_pred) assert _is_binary_1bit(raster_pred), 'images are not binary (only values 0 and 1 allowed in images)' raster_pred = 1 - raster_pred if envelope: assert isinstance(envelope, int) raster_pred = np.array([binary_dilation(r, iterations=envelope) for r in raster_pred]).astype(np.uint8) raster_pred = raster_pred </DeepExtract> axes = (1, 2) tp = np.sum(raster_true * raster_pred, axis=axes) fp = np.sum(raster_pred, axis=axes) - tp fn = np.sum(raster_true, axis=axes) - tp precision = (tp + smooth) / (tp + fp + smooth) recall = (tp + smooth) / (tp + fn + smooth) beta2 = beta ** 2 f_score = (1 + beta2) * (precision * recall + smooth) / (beta2 * precision + recall + smooth) f_score[np.isclose(recall, 0, rtol=rtol) & np.isclose(precision, 0, rtol=rtol)] = 0 union = tp + fp + fn iou_score = (tp + smooth) / (union + smooth) if average == 'mean': precision = np.mean(precision, axis=0) recall = np.mean(recall, axis=0) f_score = np.mean(f_score, axis=0) iou_score = np.mean(iou_score, axis=0) return (precision, recall, f_score, iou_score)
def precision_recall_fscore_iou_support(raster_true, raster_pred, beta=1.0, smooth=1e-06, average=None, rtol=1e-08, envelope_true=0, binarization=None): """Computes precision, recall, F1 score, and Intersection over Union metrics all in one pass. :param raster_true: the input ground truth raster image :type raster_true: numpy.ndarray :param raster_pred: the input predicted raster image :type raster_pred: numpy.ndarray :param beta: The strength of recall versus precision in the F-score. :type beta: float :param smooth: how much smoothing to apply when computing possibly zero quantities :type smooth: float :param rtol: zeroes down values smaller than this :type rtol: float :param average: If ``None``, does nothing. Otherwise, determines the kind of averaging to apply: ``'mean'``: computes mean values :param envelope_true: how much is the spatial tolerance to the inaccuracies in vectorization. The `raster_true` image will be dilated (i.e., its black lines expanded) by this many pixels in every direction. :type envelope_true: int :param binarization: If ``None``, no binarization is performed, and the images are assumed to be already binary. Otherwise, determines the type of binarization performed before computing metrics on 1-0 images: ``'maxink'``: Binarize the image, converting all grayscale values to black (thickening the lines, maximizing ink). ``'maxwhite'``: Binarize the image, converting all grayscale values to white (thinning the lines, maximizing whitespace). ``'median'``: Binarize the image, converting all values below 128 to black. :type binarization: str, optional :return: precision, recall, F1 score, and IoU metrics. Shape of all measures is determined by `average` variable. If `average` is None, all values are arrays of floats. If `average` is not None, all values are floating-point numbers. """ raster_true = ensure_tensor(raster_true) if binarization == 'maxink': binarization_func = color_utils.img_8bit_to_binary_maxink elif binarization == 'maxwhite': binarization_func = color_utils.img_8bit_to_binary_maxwhite elif binarization == 'median': binarization_func = color_utils.img_8bit_to_binary_median elif None is binarization: binarization_func = lambda image: image else: raise NotImplementedError raster_true = binarization_func(raster_true) assert _is_binary_1bit(raster_true), 'images are not binary (only values 0 and 1 allowed in images)' raster_true = 1 - raster_true if envelope_true: assert isinstance(envelope_true, int) raster_true = np.array([binary_dilation(r, iterations=envelope_true) for r in raster_true]).astype(np.uint8) raster_true = raster_true raster_pred = ensure_tensor(raster_pred) if binarization == 'maxink': binarization_func = color_utils.img_8bit_to_binary_maxink elif binarization == 'maxwhite': binarization_func = color_utils.img_8bit_to_binary_maxwhite elif binarization == 'median': binarization_func = color_utils.img_8bit_to_binary_median elif None is binarization: binarization_func = lambda image: image else: raise NotImplementedError raster_pred = binarization_func(raster_pred) assert _is_binary_1bit(raster_pred), 'images are not binary (only values 0 and 1 allowed in images)' raster_pred = 1 - raster_pred if envelope: assert isinstance(envelope, int) raster_pred = np.array([binary_dilation(r, iterations=envelope) for r in raster_pred]).astype(np.uint8) raster_pred = raster_pred axes = (1, 2) tp = np.sum(raster_true * raster_pred, axis=axes) fp = np.sum(raster_pred, axis=axes) - tp fn = np.sum(raster_true, axis=axes) - tp precision = (tp + smooth) / (tp + fp + smooth) recall = (tp + smooth) / (tp + fn + smooth) beta2 = beta ** 2 f_score = (1 + beta2) * (precision * recall + smooth) / (beta2 * precision + recall + smooth) f_score[np.isclose(recall, 0, rtol=rtol) & np.isclose(precision, 0, rtol=rtol)] = 0 union = tp + fp + fn iou_score = (tp + smooth) / (union + smooth) if average == 'mean': precision = np.mean(precision, axis=0) recall = np.mean(recall, axis=0) f_score = np.mean(f_score, axis=0) iou_score = np.mean(iou_score, axis=0) return (precision, recall, f_score, iou_score)
Deep-Vectorization-of-Technical-Drawings
positive
def add_force_field_physics(ref=None): <DeepExtract> objref = None if ref is None: objref = ao() elif is_string(ref): if object_exists(ref): objref = bpy.data.objects[ref] else: objref = ref objref = objref </DeepExtract> bpy.context.view_layer.objects.active = objref if objref.field.type == 'NONE': bpy.ops.object.forcefield_toggle()
def add_force_field_physics(ref=None): objref = None if ref is None: objref = ao() elif is_string(ref): if object_exists(ref): objref = bpy.data.objects[ref] else: objref = ref objref = objref bpy.context.view_layer.objects.active = objref if objref.field.type == 'NONE': bpy.ops.object.forcefield_toggle()
BY-GEN-public
positive
def get_all(self): if self._module.params['resource'] is None: <DeepExtract> self._module_result['failed'] = True self._module_result['changed'] = False self._module_result.update(kwargs) self._module_result['msg'] = 'NITRO resource is undefined.' self._module_result['headers'] = self._headers self._module.fail_json(**self._module_result) </DeepExtract> url = '%s://%s/%s/%s' % (self._module.params['nitro_protocol'], self._module.params['nsip'], self.api_path, self._module.params['resource']) self._module.debug('headers %s' % self._headers) timeout = self._module.params['timeout'] (r, info) = fetch_url(self._module, url=url, headers=self._headers, method='GET', timeout=timeout) result = {} <DeepExtract> if r is not None: result['http_response_body'] = codecs.decode(r.read(), 'utf-8') elif 'body' in info: result['http_response_body'] = codecs.decode(info['body'], 'utf-8') del info['body'] else: result['http_response_body'] = '' result['http_response_data'] = info result['nitro_errorcode'] = None result['nitro_message'] = None result['nitro_severity'] = None if result['http_response_body'] != '': try: data = self._module.from_json(result['http_response_body']) except ValueError: data = {} result['nitro_errorcode'] = data.get('errorcode') result['nitro_message'] = data.get('message') result['nitro_severity'] = data.get('severity') if result['nitro_errorcode'] is None: if result['http_response_data'].get('status') != 200: result['nitro_errorcode'] = -1 result['nitro_message'] = result['http_response_data'].get('msg', 'HTTP status %s' % result['http_response_data']['status']) result['nitro_severity'] = 'ERROR' else: result['nitro_errorcode'] = 0 result['nitro_message'] = 'Success' result['nitro_severity'] = 'NONE' </DeepExtract> <DeepExtract> result['nitro_object'] = [] if result['nitro_errorcode'] == 0: if result['http_response_body'] != '': data = self._module.from_json(result['http_response_body']) if self._module.params['resource'] in data: result['nitro_object'] = data[self._module.params['resource']] else: del result['nitro_object'] </DeepExtract> self._module_result['changed'] = False return result
def get_all(self): if self._module.params['resource'] is None: self._module_result['failed'] = True self._module_result['changed'] = False self._module_result.update(kwargs) self._module_result['msg'] = 'NITRO resource is undefined.' self._module_result['headers'] = self._headers self._module.fail_json(**self._module_result) url = '%s://%s/%s/%s' % (self._module.params['nitro_protocol'], self._module.params['nsip'], self.api_path, self._module.params['resource']) self._module.debug('headers %s' % self._headers) timeout = self._module.params['timeout'] (r, info) = fetch_url(self._module, url=url, headers=self._headers, method='GET', timeout=timeout) result = {} if r is not None: result['http_response_body'] = codecs.decode(r.read(), 'utf-8') elif 'body' in info: result['http_response_body'] = codecs.decode(info['body'], 'utf-8') del info['body'] else: result['http_response_body'] = '' result['http_response_data'] = info result['nitro_errorcode'] = None result['nitro_message'] = None result['nitro_severity'] = None if result['http_response_body'] != '': try: data = self._module.from_json(result['http_response_body']) except ValueError: data = {} result['nitro_errorcode'] = data.get('errorcode') result['nitro_message'] = data.get('message') result['nitro_severity'] = data.get('severity') if result['nitro_errorcode'] is None: if result['http_response_data'].get('status') != 200: result['nitro_errorcode'] = -1 result['nitro_message'] = result['http_response_data'].get('msg', 'HTTP status %s' % result['http_response_data']['status']) result['nitro_severity'] = 'ERROR' else: result['nitro_errorcode'] = 0 result['nitro_message'] = 'Success' result['nitro_severity'] = 'NONE' result['nitro_object'] = [] if result['nitro_errorcode'] == 0: if result['http_response_body'] != '': data = self._module.from_json(result['http_response_body']) if self._module.params['resource'] in data: result['nitro_object'] = data[self._module.params['resource']] else: del result['nitro_object'] self._module_result['changed'] = False return result
citrix-adc-ansible-modules
positive
def next(self): with self.lock: <DeepExtract> with self.lock: index_array = next(self.index_generator) index_array = self._get_batches_of_transformed_samples(index_array) </DeepExtract> return self._get_batches_of_transformed_samples(index_array)
def next(self): with self.lock: with self.lock: index_array = next(self.index_generator) index_array = self._get_batches_of_transformed_samples(index_array) return self._get_batches_of_transformed_samples(index_array)
dsb2018_topcoders
positive
def test_blade_rotate_exceptions_no_transformation(self): <DeepExtract> sections = np.asarray([NacaProfile(digits='0012') for i in range(10)]) radii = np.arange(0.4, 1.31, 0.1) chord_lengths = np.concatenate((np.arange(0.55, 1.1, 0.15), np.arange(1.03, 0.9, -0.03), np.array([0.3]))) pitch = np.append(np.arange(3.0, 4.0, 0.2), np.arange(4.1, 3.2, -0.2)) rake = np.append(np.arange(0.005, 0.08, 0.01), np.arange(0.075, 0.02, -0.03)) skew_angles = np.append(np.arange(-4.0, -9.0, -3.0), np.arange(-7.0, 15.0, 3.0)) blade = bl.Blade(sections=sections, radii=radii, chord_lengths=chord_lengths, pitch=pitch, rake=rake, skew_angles=skew_angles) </DeepExtract> with self.assertRaises(ValueError): blade.rotate(rad_angle=80, deg_angle=None)
def test_blade_rotate_exceptions_no_transformation(self): sections = np.asarray([NacaProfile(digits='0012') for i in range(10)]) radii = np.arange(0.4, 1.31, 0.1) chord_lengths = np.concatenate((np.arange(0.55, 1.1, 0.15), np.arange(1.03, 0.9, -0.03), np.array([0.3]))) pitch = np.append(np.arange(3.0, 4.0, 0.2), np.arange(4.1, 3.2, -0.2)) rake = np.append(np.arange(0.005, 0.08, 0.01), np.arange(0.075, 0.02, -0.03)) skew_angles = np.append(np.arange(-4.0, -9.0, -3.0), np.arange(-7.0, 15.0, 3.0)) blade = bl.Blade(sections=sections, radii=radii, chord_lengths=chord_lengths, pitch=pitch, rake=rake, skew_angles=skew_angles) with self.assertRaises(ValueError): blade.rotate(rad_angle=80, deg_angle=None)
BladeX
positive
@mock.patch('search.services.index.Search') @mock.patch('search.services.index.Elasticsearch') def test_simple_query(self, mock_Elasticsearch, mock_Search): """:class:`.index.search` supports :class:`SimpleQuery`.""" mock_results = mock.MagicMock() mock_results.__getitem__.return_value = {'total': 53} <DeepExtract> rdata = {'authors': [{'full_name': 'N. Ame'}], 'owners': [{'full_name': 'N. Ame'}], 'submitter': {'full_name': 'N. Ame'}, 'paper_id': '1234.56789', 'title': 'some title', 'abstract': 'An abstract with math $/alpha * /alpha$ for you.'} </DeepExtract> mock_result = mock.MagicMock(_d_=rdata, **rdata) mock_result.meta.score = 1 mock_results.__iter__.return_value = [mock_result] mock_Search.execute.return_value = mock_results mock_Search.return_value = mock_Search mock_Search.filter.return_value = mock_Search mock_Search.highlight.return_value = mock_Search mock_Search.highlight_options.return_value = mock_Search mock_Search.query.return_value = mock_Search mock_Search.sort.return_value = mock_Search mock_Search.__getitem__.return_value = mock_Search query = SimpleQuery(order='relevance', size=10, search_field='title', value='foo title') document_set = index.SearchSession.search(query, highlight=True) self.assertEqual(document_set['metadata']['start'], 0) self.assertEqual(document_set['metadata']['total_results'], 53) self.assertEqual(document_set['metadata']['current_page'], 1) self.assertEqual(document_set['metadata']['total_pages'], 6) self.assertEqual(document_set['metadata']['size'], 10) self.assertEqual(len(document_set['results']), 1)
@mock.patch('search.services.index.Search') @mock.patch('search.services.index.Elasticsearch') def test_simple_query(self, mock_Elasticsearch, mock_Search): """:class:`.index.search` supports :class:`SimpleQuery`.""" mock_results = mock.MagicMock() mock_results.__getitem__.return_value = {'total': 53} rdata = {'authors': [{'full_name': 'N. Ame'}], 'owners': [{'full_name': 'N. Ame'}], 'submitter': {'full_name': 'N. Ame'}, 'paper_id': '1234.56789', 'title': 'some title', 'abstract': 'An abstract with math $/alpha * /alpha$ for you.'} mock_result = mock.MagicMock(_d_=rdata, **rdata) mock_result.meta.score = 1 mock_results.__iter__.return_value = [mock_result] mock_Search.execute.return_value = mock_results mock_Search.return_value = mock_Search mock_Search.filter.return_value = mock_Search mock_Search.highlight.return_value = mock_Search mock_Search.highlight_options.return_value = mock_Search mock_Search.query.return_value = mock_Search mock_Search.sort.return_value = mock_Search mock_Search.__getitem__.return_value = mock_Search query = SimpleQuery(order='relevance', size=10, search_field='title', value='foo title') document_set = index.SearchSession.search(query, highlight=True) self.assertEqual(document_set['metadata']['start'], 0) self.assertEqual(document_set['metadata']['total_results'], 53) self.assertEqual(document_set['metadata']['current_page'], 1) self.assertEqual(document_set['metadata']['total_pages'], 6) self.assertEqual(document_set['metadata']['size'], 10) self.assertEqual(len(document_set['results']), 1)
arxiv-search
positive
def stocGradAscent1(dataMatrix, classLabels, numIter=150): (m, n) = shape(dataMatrix) weights = ones(n) for i in range(numIter): dataIndex = len(list(range(m))) for j in range(m): alpha = 4 / (1.0 + i + j) + 0.01 randIndex = int(random.uniform(0, dataIndex)) <DeepExtract> h = 1 / (1 + exp(-sum(dataMatrix[randIndex] * weights))) </DeepExtract> error = classLabels[randIndex] - h weights = weights + alpha * error * dataMatrix[randIndex] dataIndex -= 1 return weights
def stocGradAscent1(dataMatrix, classLabels, numIter=150): (m, n) = shape(dataMatrix) weights = ones(n) for i in range(numIter): dataIndex = len(list(range(m))) for j in range(m): alpha = 4 / (1.0 + i + j) + 0.01 randIndex = int(random.uniform(0, dataIndex)) h = 1 / (1 + exp(-sum(dataMatrix[randIndex] * weights))) error = classLabels[randIndex] - h weights = weights + alpha * error * dataMatrix[randIndex] dataIndex -= 1 return weights
AlgorithmsByPython
positive
def test_compact_output(self): """ In compact mode, the process reads JSON lines from stdin and writes out a pretty-printed compact version. """ messages = [SIMPLE_MESSAGE, UNTYPED_MESSAGE, SIMPLE_MESSAGE] <DeepExtract> process = Popen([b'eliot-prettyprint'] + list([b'--compact']), stdin=PIPE, stdout=PIPE) process.stdin.write(b''.join((line + b'\n' for line in map(dumps, messages)))) process.stdin.close() result = process.stdout.read().decode('utf-8') process.stdout.close() stdout = result </DeepExtract> self.assertEqual(stdout, ''.join((compact_format(message) + '\n' for message in messages)))
def test_compact_output(self): """ In compact mode, the process reads JSON lines from stdin and writes out a pretty-printed compact version. """ messages = [SIMPLE_MESSAGE, UNTYPED_MESSAGE, SIMPLE_MESSAGE] process = Popen([b'eliot-prettyprint'] + list([b'--compact']), stdin=PIPE, stdout=PIPE) process.stdin.write(b''.join((line + b'\n' for line in map(dumps, messages)))) process.stdin.close() result = process.stdout.read().decode('utf-8') process.stdout.close() stdout = result self.assertEqual(stdout, ''.join((compact_format(message) + '\n' for message in messages)))
eliot
positive
def file_count(path): count = 0 for f in os.listdir(path): child = os.path.join(path, f) if os.path.isdir(child): <DeepExtract> count = 0 for f in os.listdir(child): child = os.path.join(child, f) if os.path.isdir(child): child_count = file_count(child) count += child_count else: count += 1 child_count = count </DeepExtract> count += child_count else: count += 1 return count
def file_count(path): count = 0 for f in os.listdir(path): child = os.path.join(path, f) if os.path.isdir(child): count = 0 for f in os.listdir(child): child = os.path.join(child, f) if os.path.isdir(child): child_count = file_count(child) count += child_count else: count += 1 child_count = count count += child_count else: count += 1 return count
3d-dl
positive
def start_plugin(module, conf, boat, waypoint_manager): log.info("Starting plugin {} with config '{}'".format(color(module.plugin.__name__, 34), color(str(conf), 36))) <DeepExtract> global boatd_module if boatd_module is None: boatd_module = Boatd(boat, waypoint_manager) boatd = boatd_module </DeepExtract> plugin = module.plugin(conf, boatd) t = threading.Thread(target=plugin.start) t.start() return plugin
def start_plugin(module, conf, boat, waypoint_manager): log.info("Starting plugin {} with config '{}'".format(color(module.plugin.__name__, 34), color(str(conf), 36))) global boatd_module if boatd_module is None: boatd_module = Boatd(boat, waypoint_manager) boatd = boatd_module plugin = module.plugin(conf, boatd) t = threading.Thread(target=plugin.start) t.start() return plugin
boatd
positive
def demo_pipeline_prepare_nyu(sem_cat, dset, baseline_uncertainty_name, reload_dset=True, roi_field=None, roi_transform=None): <DeepExtract> dir_base = pp('{dset.dir_out}', 'eval_' + sem_cat, '{dset.name}_demo_{dset.split}_' + sem_cat) tmpl_part = pp(dir_base, 'parts', '{frame.fid_no_subdir}_{channel.suffix}{channel.img_ext}') tmpl_fused = pp(dir_base, '{frame.fid_no_subdir}_{channel.suffix}{channel.img_ext}') demo_chs = {'demo_image': ChannelLoaderImage(tmpl_part, suffix='image', img_ext='.jpg'), 'demo_gt_contour': ChannelLoaderImage(tmpl_part, suffix='gt_contour', img_ext='.jpg'), 'demo_pred_labels': ChannelLoaderImage(tmpl_part, suffix='pred_labels', img_ext='.png'), 'demo_gen_image': ChannelLoaderImage(tmpl_part, suffix='gen_image', img_ext='.jpg'), 'demo_anomaly_uncertainty': ChannelLoaderImage(tmpl_part, suffix='anomaly_uncertainty', img_ext='.jpg'), 'demo_anomaly_ours': ChannelLoaderImage(tmpl_part, suffix='anomaly_ours', img_ext='.jpg'), 'demo_pipeline': ChannelLoaderImage(tmpl_fused, suffix='pipeline', img_ext='.jpg'), 'demo_scores': ChannelLoaderImage(tmpl_fused, suffix='scores', img_ext='.jpg')} </DeepExtract> demo_chs_names = list(demo_chs.keys()) dset.add_channels(**demo_chs) chan_anomaly_unc = f'anomaly_{baseline_uncertainty_name}' chan_anomaly_ours = 'anomaly_lag_swap_gt' dset.set_channels_enabled('image', 'labels_category40', 'pred_labels_trainIds', 'gen_image', chan_anomaly_ours, chan_anomaly_unc) if reload_dset: dset.discover() unc_95_percentile = demo_get_uncertainty_bounds_for_plots(dset, baseline_uncertainty_name) unc_scale = 1.0 / unc_95_percentile print(baseline_uncertainty_name, '- uncertainty scale:', unc_scale) roi_trs = [] if roi_field is not None: if roi_transform is not None: roi_trs.append(roi_transform) roi_trs.append(partial(demo_tr_apply_roi, roi_field=roi_field, score_fields=['anomaly_uncertainty', 'anomaly_ours'])) demo_out_pipeline = TrsChain(*[TrRename({chan_anomaly_unc: 'anomaly_uncertainty', chan_anomaly_ours: 'anomaly_ours'}), partial(tr_rescale_uncertainty, unc_scale)] + roi_trs + [tr_demo_imgs_nyu, TrSaveChannelsAutoDset(demo_chs_names)]) return demo_out_pipeline
def demo_pipeline_prepare_nyu(sem_cat, dset, baseline_uncertainty_name, reload_dset=True, roi_field=None, roi_transform=None): dir_base = pp('{dset.dir_out}', 'eval_' + sem_cat, '{dset.name}_demo_{dset.split}_' + sem_cat) tmpl_part = pp(dir_base, 'parts', '{frame.fid_no_subdir}_{channel.suffix}{channel.img_ext}') tmpl_fused = pp(dir_base, '{frame.fid_no_subdir}_{channel.suffix}{channel.img_ext}') demo_chs = {'demo_image': ChannelLoaderImage(tmpl_part, suffix='image', img_ext='.jpg'), 'demo_gt_contour': ChannelLoaderImage(tmpl_part, suffix='gt_contour', img_ext='.jpg'), 'demo_pred_labels': ChannelLoaderImage(tmpl_part, suffix='pred_labels', img_ext='.png'), 'demo_gen_image': ChannelLoaderImage(tmpl_part, suffix='gen_image', img_ext='.jpg'), 'demo_anomaly_uncertainty': ChannelLoaderImage(tmpl_part, suffix='anomaly_uncertainty', img_ext='.jpg'), 'demo_anomaly_ours': ChannelLoaderImage(tmpl_part, suffix='anomaly_ours', img_ext='.jpg'), 'demo_pipeline': ChannelLoaderImage(tmpl_fused, suffix='pipeline', img_ext='.jpg'), 'demo_scores': ChannelLoaderImage(tmpl_fused, suffix='scores', img_ext='.jpg')} demo_chs_names = list(demo_chs.keys()) dset.add_channels(**demo_chs) chan_anomaly_unc = f'anomaly_{baseline_uncertainty_name}' chan_anomaly_ours = 'anomaly_lag_swap_gt' dset.set_channels_enabled('image', 'labels_category40', 'pred_labels_trainIds', 'gen_image', chan_anomaly_ours, chan_anomaly_unc) if reload_dset: dset.discover() unc_95_percentile = demo_get_uncertainty_bounds_for_plots(dset, baseline_uncertainty_name) unc_scale = 1.0 / unc_95_percentile print(baseline_uncertainty_name, '- uncertainty scale:', unc_scale) roi_trs = [] if roi_field is not None: if roi_transform is not None: roi_trs.append(roi_transform) roi_trs.append(partial(demo_tr_apply_roi, roi_field=roi_field, score_fields=['anomaly_uncertainty', 'anomaly_ours'])) demo_out_pipeline = TrsChain(*[TrRename({chan_anomaly_unc: 'anomaly_uncertainty', chan_anomaly_ours: 'anomaly_ours'}), partial(tr_rescale_uncertainty, unc_scale)] + roi_trs + [tr_demo_imgs_nyu, TrSaveChannelsAutoDset(demo_chs_names)]) return demo_out_pipeline
detecting-the-unexpected
positive
def test_cli_version(): from elasticluster import __version__ as elasticluster_version <DeepExtract> with temporary_dir() as tmpdir: with environment(HOME=os.getcwd(), PYTHONWARNINGS='ignore::DeprecationWarning,ignore::UserWarning' if sys.version_info < (3, 6) else '') as env: proc = subprocess.Popen(['elasticluster'] + ['--version'], stdin=None, stdout=subprocess.PIPE, stderr=subprocess.PIPE, close_fds=True, shell=False) (stdout, stderr) = proc.communicate() (out, err, code) = (stdout, stderr, proc.returncode) </DeepExtract> assert not err assert not code assert out.rstrip() == 'elasticluster version {0}'.format(elasticluster_version).encode('ascii')
def test_cli_version(): from elasticluster import __version__ as elasticluster_version with temporary_dir() as tmpdir: with environment(HOME=os.getcwd(), PYTHONWARNINGS='ignore::DeprecationWarning,ignore::UserWarning' if sys.version_info < (3, 6) else '') as env: proc = subprocess.Popen(['elasticluster'] + ['--version'], stdin=None, stdout=subprocess.PIPE, stderr=subprocess.PIPE, close_fds=True, shell=False) (stdout, stderr) = proc.communicate() (out, err, code) = (stdout, stderr, proc.returncode) assert not err assert not code assert out.rstrip() == 'elasticluster version {0}'.format(elasticluster_version).encode('ascii')
elasticluster
positive
def run_analyze(conn, cluster_name, cw, schema_name='public', table_name=None, blacklisted_tables=None, ignore_errors=False, predicate_cols=False, stats_off_pct=10, **kwargs): statements = [] if predicate_cols: predicate_cols_option = ' PREDICATE COLUMNS ' else: predicate_cols_option = ' ALL COLUMNS ' if table_name is not None: get_analyze_statement_feedback = 'SELECT DISTINCT \'analyze \' + "schema" + \'."\' + "table" + \'"\' + \'%s ; \'\n + \'/* Stats_Off : \' + CAST("stats_off" AS VARCHAR(10)) + \' */ ;\'\n FROM svv_table_info\n WHERE stats_off::DECIMAL (32,4) > %s ::DECIMAL (32,4)\n AND trim("schema") ~ \'%s\'\n AND trim("table") = \'%s\';\n ' % (predicate_cols_option, stats_off_pct, schema_name, table_name) elif blacklisted_tables is not None: <DeepExtract> datetime_str = str(datetime.datetime.now()) if 'Extracting Candidate Tables for analyze based on Query Optimizer Alerts...' is not None: if re.match('.*\\n.*', 'Extracting Candidate Tables for analyze based on Query Optimizer Alerts...') is not None: print('/* [%s]\n%s\n*/\n' % (str(os.getpid()), 'Extracting Candidate Tables for analyze based on Query Optimizer Alerts...')) else: print('-- %s [%s] %s' % (datetime_str, str(os.getpid()), 'Extracting Candidate Tables for analyze based on Query Optimizer Alerts...')) </DeepExtract> blacklisted_tables_array = blacklisted_tables.split(',') get_analyze_statement_feedback = '\n SELECT DISTINCT \'analyze \' + feedback_tbl.schema_name + \'."\' + feedback_tbl.table_name + \'"\' + \'%s ; \' + \'/* Stats_Off : \' + CAST(info_tbl."stats_off" AS VARCHAR(10)) + \' */ ;\'\n FROM (/* Get top N rank tables based on the missing statistics alerts */\n SELECT TRIM(n.nspname)::VARCHAR schema_name,\n TRIM(c.relname)::VARCHAR table_name\n FROM (SELECT TRIM(SPLIT_PART(SPLIT_PART(a.plannode,\':\',2),\' \',2)) AS Table_Name,\n COUNT(a.query),\n DENSE_RANK() OVER (ORDER BY COUNT(a.query) DESC) AS qry_rnk\n FROM stl_explain a,\n stl_query b\n WHERE a.query = b.query\n AND CAST(b.starttime AS DATE) >= dateadd(DAY,%s,CURRENT_DATE)\n AND a.userid > 1\n AND regexp_instr(a.plannode,\'.*missing statistics.*\') > 0\n AND regexp_instr(a.plannode,\'.*_bkp_.*\') = 0\n GROUP BY Table_Name) miss_tbl\n LEFT JOIN pg_class c ON c.relname = TRIM(miss_tbl.table_name)\n LEFT JOIN pg_catalog.pg_namespace n ON n.oid = c.relnamespace WHERE miss_tbl.qry_rnk <= %s\n /* Get the top N rank tables based on the stl_alert_event_log alerts */\n UNION\n SELECT schema_name,\n table_name\n FROM (SELECT TRIM(n.nspname)::VARCHAR schema_name,\n TRIM(c.relname)::VARCHAR table_name,\n DENSE_RANK() OVER (ORDER BY COUNT(*) DESC) AS qry_rnk,\n COUNT(*)\n FROM stl_alert_event_log AS l\n JOIN (SELECT query,\n tbl,\n perm_table_name\n FROM stl_scan\n WHERE perm_table_name <> \'Internal Worktable\'\n GROUP BY query,\n tbl,\n perm_table_name) AS s ON s.query = l.query\n JOIN pg_class c ON c.oid = s.tbl\n JOIN pg_catalog.pg_namespace n ON n.oid = c.relnamespace\n WHERE l.userid > 1\n AND l.event_time >= dateadd(DAY,%s,CURRENT_DATE)\n AND regexp_instr(l.Solution,\'.*ANALYZE command.*\') > 0\n GROUP BY TRIM(n.nspname),\n TRIM(c.relname)) anlyz_tbl\n WHERE anlyz_tbl.qry_rnk < %s\n UNION\n /* just a base dump of svv_table_info to check the stats_off metric */\n SELECT "schema"::VARCHAR schema_name,\n "table"::VARCHAR table_name\n FROM svv_table_info) feedback_tbl\n JOIN svv_table_info info_tbl\n ON info_tbl.schema = feedback_tbl.schema_name\n AND info_tbl.table = feedback_tbl.table_name\n WHERE info_tbl.stats_off::DECIMAL(32,4) > %s::DECIMAL(32,4)\n AND TRIM(info_tbl.schema) ~ \'%s\'\n AND info_tbl.table NOT IN (%s)\n ORDER BY info_tbl.size ASC;\n ' % (predicate_cols_option, goback_no_of_days, query_rank, goback_no_of_days, query_rank, stats_off_pct, schema_name, str(blacklisted_tables_array)[1:-1]) else: <DeepExtract> datetime_str = str(datetime.datetime.now()) if 'Extracting Candidate Tables for analyze based on Query Optimizer Alerts...' is not None: if re.match('.*\\n.*', 'Extracting Candidate Tables for analyze based on Query Optimizer Alerts...') is not None: print('/* [%s]\n%s\n*/\n' % (str(os.getpid()), 'Extracting Candidate Tables for analyze based on Query Optimizer Alerts...')) else: print('-- %s [%s] %s' % (datetime_str, str(os.getpid()), 'Extracting Candidate Tables for analyze based on Query Optimizer Alerts...')) </DeepExtract> get_analyze_statement_feedback = '\n SELECT DISTINCT \'analyze \' + feedback_tbl.schema_name + \'."\' + feedback_tbl.table_name + \'"\' + \'%s ; \' + \'/* Stats_Off : \' + CAST(info_tbl."stats_off" AS VARCHAR(10)) + \' */ ;\'\n FROM (/* Get top N rank tables based on the missing statistics alerts */ \n SELECT TRIM(n.nspname)::VARCHAR schema_name,\n TRIM(c.relname)::VARCHAR table_name \n FROM (SELECT TRIM(SPLIT_PART(SPLIT_PART(a.plannode,\':\',2),\' \',2)) AS Table_Name,\n COUNT(a.query),\n DENSE_RANK() OVER (ORDER BY COUNT(a.query) DESC) AS qry_rnk\n FROM stl_explain a,\n stl_query b\n WHERE a.query = b.query\n AND CAST(b.starttime AS DATE) >= dateadd(DAY,%s,CURRENT_DATE)\n AND a.userid > 1\n AND regexp_instr(a.plannode,\'.*missing statistics.*\') > 0\n AND regexp_instr(a.plannode,\'.*_bkp_.*\') = 0\n GROUP BY Table_Name) miss_tbl \n LEFT JOIN pg_class c ON c.relname = TRIM(miss_tbl.table_name) \n LEFT JOIN pg_catalog.pg_namespace n ON n.oid = c.relnamespace WHERE miss_tbl.qry_rnk <= %s \n /* Get the top N rank tables based on the stl_alert_event_log alerts */\n UNION\n SELECT schema_name,\n table_name\n FROM (SELECT TRIM(n.nspname)::VARCHAR schema_name,\n TRIM(c.relname)::VARCHAR table_name,\n DENSE_RANK() OVER (ORDER BY COUNT(*) DESC) AS qry_rnk,\n COUNT(*)\n FROM stl_alert_event_log AS l\n JOIN (SELECT query,\n tbl,\n perm_table_name\n FROM stl_scan\n WHERE perm_table_name <> \'Internal Worktable\'\n GROUP BY query,\n tbl,\n perm_table_name) AS s ON s.query = l.query\n JOIN pg_class c ON c.oid = s.tbl\n JOIN pg_catalog.pg_namespace n ON n.oid = c.relnamespace\n WHERE l.userid > 1\n AND l.event_time >= dateadd(DAY,%s,CURRENT_DATE)\n AND regexp_instr(l.Solution,\'.*ANALYZE command.*\') > 0\n GROUP BY TRIM(n.nspname),\n TRIM(c.relname)) anlyz_tbl\n WHERE anlyz_tbl.qry_rnk < %s \n UNION\n /* just a base dump of svv_table_info to check the stats_off metric */ \n SELECT "schema"::VARCHAR schema_name,\n "table"::VARCHAR table_name\n FROM svv_table_info) feedback_tbl\n JOIN svv_table_info info_tbl\n ON info_tbl.schema = feedback_tbl.schema_name\n AND info_tbl.table = feedback_tbl.table_name\n WHERE info_tbl.stats_off::DECIMAL(32,4) > %s::DECIMAL(32,4)\n AND TRIM(info_tbl.schema) ~ \'%s\' \n ORDER BY info_tbl.size ASC\n ' % (predicate_cols_option, goback_no_of_days, query_rank, goback_no_of_days, query_rank, stats_off_pct, schema_name) if debug: <DeepExtract> datetime_str = str(datetime.datetime.now()) if get_analyze_statement_feedback is not None: if re.match('.*\\n.*', get_analyze_statement_feedback) is not None: print('/* [%s]\n%s\n*/\n' % (str(os.getpid()), get_analyze_statement_feedback)) else: print('-- %s [%s] %s' % (datetime_str, str(os.getpid()), get_analyze_statement_feedback)) </DeepExtract> <DeepExtract> cursor = conn.cursor() cursor.execute(get_analyze_statement_feedback) try: results = cursor.fetchall() if debug: comment('Query Execution returned %s Results' % len(results)) except Exception as e: if 'no result set' in str(e): analyze_statements = None else: raise e analyze_statements = results </DeepExtract> for vs in analyze_statements: statements.append(vs[0]) <DeepExtract> datetime_str = str(datetime.datetime.now()) if 'Found %s Tables requiring Analysis' % len(statements) is not None: if re.match('.*\\n.*', 'Found %s Tables requiring Analysis' % len(statements)) is not None: print('/* [%s]\n%s\n*/\n' % (str(os.getpid()), 'Found %s Tables requiring Analysis' % len(statements))) else: print('-- %s [%s] %s' % (datetime_str, str(os.getpid()), 'Found %s Tables requiring Analysis' % len(statements))) </DeepExtract> if not run_commands(conn, statements, cw=cw, cluster_name=cluster_name, suppress_errors=ignore_errors): if not ignore_errors: if debug: print('Error running statements: %s' % (str(statements),)) return ERROR if table_name is None: <DeepExtract> datetime_str = str(datetime.datetime.now()) if 'Extracting Candidate Tables for analyze based on stats off from system table info ...' is not None: if re.match('.*\\n.*', 'Extracting Candidate Tables for analyze based on stats off from system table info ...') is not None: print('/* [%s]\n%s\n*/\n' % (str(os.getpid()), 'Extracting Candidate Tables for analyze based on stats off from system table info ...')) else: print('-- %s [%s] %s' % (datetime_str, str(os.getpid()), 'Extracting Candidate Tables for analyze based on stats off from system table info ...')) </DeepExtract> if blacklisted_tables is not None: blacklisted_tables_array = blacklisted_tables.split(',') get_analyze_statement = 'SELECT DISTINCT \'analyze \' + "schema" + \'."\' + "table" + \'" %s ; \'\n + \'/* Stats_Off : \' + CAST("stats_off" AS VARCHAR(10)) + \' */ ;\'\n FROM svv_table_info\n WHERE stats_off::DECIMAL (32,4) > %s::DECIMAL (32,4)\n AND trim("schema") ~ \'%s\'\n AND "table" NOT IN (%s)\n ORDER BY "size" ASC ;\n ' % (predicate_cols_option, stats_off_pct, schema_name, str(blacklisted_tables_array)[1:-1]) else: get_analyze_statement = 'SELECT DISTINCT \'analyze \' + "schema" + \'."\' + "table" + \'" %s ; \'\n + \'/* Stats_Off : \' + CAST("stats_off" AS VARCHAR(10)) + \' */ ;\'\n FROM svv_table_info\n WHERE stats_off::DECIMAL (32,4) > %s::DECIMAL (32,4)\n AND trim("schema") ~ \'%s\'\n ORDER BY "size" ASC ;\n ' % (predicate_cols_option, stats_off_pct, schema_name) if debug: <DeepExtract> datetime_str = str(datetime.datetime.now()) if get_analyze_statement is not None: if re.match('.*\\n.*', get_analyze_statement) is not None: print('/* [%s]\n%s\n*/\n' % (str(os.getpid()), get_analyze_statement)) else: print('-- %s [%s] %s' % (datetime_str, str(os.getpid()), get_analyze_statement)) </DeepExtract> <DeepExtract> cursor = conn.cursor() cursor.execute(get_analyze_statement) try: results = cursor.fetchall() if debug: comment('Query Execution returned %s Results' % len(results)) except Exception as e: if 'no result set' in str(e): analyze_statements = None else: raise e analyze_statements = results </DeepExtract> statements = [] for vs in analyze_statements: statements.append(vs[0]) if not run_commands(conn, statements, cw=cw, cluster_name=cluster_name, suppress_errors=ignore_errors): if not ignore_errors: if debug: print('Error running statements: %s' % (str(statements),)) return ERROR return True
def run_analyze(conn, cluster_name, cw, schema_name='public', table_name=None, blacklisted_tables=None, ignore_errors=False, predicate_cols=False, stats_off_pct=10, **kwargs): statements = [] if predicate_cols: predicate_cols_option = ' PREDICATE COLUMNS ' else: predicate_cols_option = ' ALL COLUMNS ' if table_name is not None: get_analyze_statement_feedback = 'SELECT DISTINCT \'analyze \' + "schema" + \'."\' + "table" + \'"\' + \'%s ; \'\n + \'/* Stats_Off : \' + CAST("stats_off" AS VARCHAR(10)) + \' */ ;\'\n FROM svv_table_info\n WHERE stats_off::DECIMAL (32,4) > %s ::DECIMAL (32,4)\n AND trim("schema") ~ \'%s\'\n AND trim("table") = \'%s\';\n ' % (predicate_cols_option, stats_off_pct, schema_name, table_name) elif blacklisted_tables is not None: datetime_str = str(datetime.datetime.now()) if 'Extracting Candidate Tables for analyze based on Query Optimizer Alerts...' is not None: if re.match('.*\\n.*', 'Extracting Candidate Tables for analyze based on Query Optimizer Alerts...') is not None: print('/* [%s]\n%s\n*/\n' % (str(os.getpid()), 'Extracting Candidate Tables for analyze based on Query Optimizer Alerts...')) else: print('-- %s [%s] %s' % (datetime_str, str(os.getpid()), 'Extracting Candidate Tables for analyze based on Query Optimizer Alerts...')) blacklisted_tables_array = blacklisted_tables.split(',') get_analyze_statement_feedback = '\n SELECT DISTINCT \'analyze \' + feedback_tbl.schema_name + \'."\' + feedback_tbl.table_name + \'"\' + \'%s ; \' + \'/* Stats_Off : \' + CAST(info_tbl."stats_off" AS VARCHAR(10)) + \' */ ;\'\n FROM (/* Get top N rank tables based on the missing statistics alerts */\n SELECT TRIM(n.nspname)::VARCHAR schema_name,\n TRIM(c.relname)::VARCHAR table_name\n FROM (SELECT TRIM(SPLIT_PART(SPLIT_PART(a.plannode,\':\',2),\' \',2)) AS Table_Name,\n COUNT(a.query),\n DENSE_RANK() OVER (ORDER BY COUNT(a.query) DESC) AS qry_rnk\n FROM stl_explain a,\n stl_query b\n WHERE a.query = b.query\n AND CAST(b.starttime AS DATE) >= dateadd(DAY,%s,CURRENT_DATE)\n AND a.userid > 1\n AND regexp_instr(a.plannode,\'.*missing statistics.*\') > 0\n AND regexp_instr(a.plannode,\'.*_bkp_.*\') = 0\n GROUP BY Table_Name) miss_tbl\n LEFT JOIN pg_class c ON c.relname = TRIM(miss_tbl.table_name)\n LEFT JOIN pg_catalog.pg_namespace n ON n.oid = c.relnamespace WHERE miss_tbl.qry_rnk <= %s\n /* Get the top N rank tables based on the stl_alert_event_log alerts */\n UNION\n SELECT schema_name,\n table_name\n FROM (SELECT TRIM(n.nspname)::VARCHAR schema_name,\n TRIM(c.relname)::VARCHAR table_name,\n DENSE_RANK() OVER (ORDER BY COUNT(*) DESC) AS qry_rnk,\n COUNT(*)\n FROM stl_alert_event_log AS l\n JOIN (SELECT query,\n tbl,\n perm_table_name\n FROM stl_scan\n WHERE perm_table_name <> \'Internal Worktable\'\n GROUP BY query,\n tbl,\n perm_table_name) AS s ON s.query = l.query\n JOIN pg_class c ON c.oid = s.tbl\n JOIN pg_catalog.pg_namespace n ON n.oid = c.relnamespace\n WHERE l.userid > 1\n AND l.event_time >= dateadd(DAY,%s,CURRENT_DATE)\n AND regexp_instr(l.Solution,\'.*ANALYZE command.*\') > 0\n GROUP BY TRIM(n.nspname),\n TRIM(c.relname)) anlyz_tbl\n WHERE anlyz_tbl.qry_rnk < %s\n UNION\n /* just a base dump of svv_table_info to check the stats_off metric */\n SELECT "schema"::VARCHAR schema_name,\n "table"::VARCHAR table_name\n FROM svv_table_info) feedback_tbl\n JOIN svv_table_info info_tbl\n ON info_tbl.schema = feedback_tbl.schema_name\n AND info_tbl.table = feedback_tbl.table_name\n WHERE info_tbl.stats_off::DECIMAL(32,4) > %s::DECIMAL(32,4)\n AND TRIM(info_tbl.schema) ~ \'%s\'\n AND info_tbl.table NOT IN (%s)\n ORDER BY info_tbl.size ASC;\n ' % (predicate_cols_option, goback_no_of_days, query_rank, goback_no_of_days, query_rank, stats_off_pct, schema_name, str(blacklisted_tables_array)[1:-1]) else: datetime_str = str(datetime.datetime.now()) if 'Extracting Candidate Tables for analyze based on Query Optimizer Alerts...' is not None: if re.match('.*\\n.*', 'Extracting Candidate Tables for analyze based on Query Optimizer Alerts...') is not None: print('/* [%s]\n%s\n*/\n' % (str(os.getpid()), 'Extracting Candidate Tables for analyze based on Query Optimizer Alerts...')) else: print('-- %s [%s] %s' % (datetime_str, str(os.getpid()), 'Extracting Candidate Tables for analyze based on Query Optimizer Alerts...')) get_analyze_statement_feedback = '\n SELECT DISTINCT \'analyze \' + feedback_tbl.schema_name + \'."\' + feedback_tbl.table_name + \'"\' + \'%s ; \' + \'/* Stats_Off : \' + CAST(info_tbl."stats_off" AS VARCHAR(10)) + \' */ ;\'\n FROM (/* Get top N rank tables based on the missing statistics alerts */ \n SELECT TRIM(n.nspname)::VARCHAR schema_name,\n TRIM(c.relname)::VARCHAR table_name \n FROM (SELECT TRIM(SPLIT_PART(SPLIT_PART(a.plannode,\':\',2),\' \',2)) AS Table_Name,\n COUNT(a.query),\n DENSE_RANK() OVER (ORDER BY COUNT(a.query) DESC) AS qry_rnk\n FROM stl_explain a,\n stl_query b\n WHERE a.query = b.query\n AND CAST(b.starttime AS DATE) >= dateadd(DAY,%s,CURRENT_DATE)\n AND a.userid > 1\n AND regexp_instr(a.plannode,\'.*missing statistics.*\') > 0\n AND regexp_instr(a.plannode,\'.*_bkp_.*\') = 0\n GROUP BY Table_Name) miss_tbl \n LEFT JOIN pg_class c ON c.relname = TRIM(miss_tbl.table_name) \n LEFT JOIN pg_catalog.pg_namespace n ON n.oid = c.relnamespace WHERE miss_tbl.qry_rnk <= %s \n /* Get the top N rank tables based on the stl_alert_event_log alerts */\n UNION\n SELECT schema_name,\n table_name\n FROM (SELECT TRIM(n.nspname)::VARCHAR schema_name,\n TRIM(c.relname)::VARCHAR table_name,\n DENSE_RANK() OVER (ORDER BY COUNT(*) DESC) AS qry_rnk,\n COUNT(*)\n FROM stl_alert_event_log AS l\n JOIN (SELECT query,\n tbl,\n perm_table_name\n FROM stl_scan\n WHERE perm_table_name <> \'Internal Worktable\'\n GROUP BY query,\n tbl,\n perm_table_name) AS s ON s.query = l.query\n JOIN pg_class c ON c.oid = s.tbl\n JOIN pg_catalog.pg_namespace n ON n.oid = c.relnamespace\n WHERE l.userid > 1\n AND l.event_time >= dateadd(DAY,%s,CURRENT_DATE)\n AND regexp_instr(l.Solution,\'.*ANALYZE command.*\') > 0\n GROUP BY TRIM(n.nspname),\n TRIM(c.relname)) anlyz_tbl\n WHERE anlyz_tbl.qry_rnk < %s \n UNION\n /* just a base dump of svv_table_info to check the stats_off metric */ \n SELECT "schema"::VARCHAR schema_name,\n "table"::VARCHAR table_name\n FROM svv_table_info) feedback_tbl\n JOIN svv_table_info info_tbl\n ON info_tbl.schema = feedback_tbl.schema_name\n AND info_tbl.table = feedback_tbl.table_name\n WHERE info_tbl.stats_off::DECIMAL(32,4) > %s::DECIMAL(32,4)\n AND TRIM(info_tbl.schema) ~ \'%s\' \n ORDER BY info_tbl.size ASC\n ' % (predicate_cols_option, goback_no_of_days, query_rank, goback_no_of_days, query_rank, stats_off_pct, schema_name) if debug: datetime_str = str(datetime.datetime.now()) if get_analyze_statement_feedback is not None: if re.match('.*\\n.*', get_analyze_statement_feedback) is not None: print('/* [%s]\n%s\n*/\n' % (str(os.getpid()), get_analyze_statement_feedback)) else: print('-- %s [%s] %s' % (datetime_str, str(os.getpid()), get_analyze_statement_feedback)) cursor = conn.cursor() cursor.execute(get_analyze_statement_feedback) try: results = cursor.fetchall() if debug: comment('Query Execution returned %s Results' % len(results)) except Exception as e: if 'no result set' in str(e): analyze_statements = None else: raise e analyze_statements = results for vs in analyze_statements: statements.append(vs[0]) datetime_str = str(datetime.datetime.now()) if 'Found %s Tables requiring Analysis' % len(statements) is not None: if re.match('.*\\n.*', 'Found %s Tables requiring Analysis' % len(statements)) is not None: print('/* [%s]\n%s\n*/\n' % (str(os.getpid()), 'Found %s Tables requiring Analysis' % len(statements))) else: print('-- %s [%s] %s' % (datetime_str, str(os.getpid()), 'Found %s Tables requiring Analysis' % len(statements))) if not run_commands(conn, statements, cw=cw, cluster_name=cluster_name, suppress_errors=ignore_errors): if not ignore_errors: if debug: print('Error running statements: %s' % (str(statements),)) return ERROR if table_name is None: datetime_str = str(datetime.datetime.now()) if 'Extracting Candidate Tables for analyze based on stats off from system table info ...' is not None: if re.match('.*\\n.*', 'Extracting Candidate Tables for analyze based on stats off from system table info ...') is not None: print('/* [%s]\n%s\n*/\n' % (str(os.getpid()), 'Extracting Candidate Tables for analyze based on stats off from system table info ...')) else: print('-- %s [%s] %s' % (datetime_str, str(os.getpid()), 'Extracting Candidate Tables for analyze based on stats off from system table info ...')) if blacklisted_tables is not None: blacklisted_tables_array = blacklisted_tables.split(',') get_analyze_statement = 'SELECT DISTINCT \'analyze \' + "schema" + \'."\' + "table" + \'" %s ; \'\n + \'/* Stats_Off : \' + CAST("stats_off" AS VARCHAR(10)) + \' */ ;\'\n FROM svv_table_info\n WHERE stats_off::DECIMAL (32,4) > %s::DECIMAL (32,4)\n AND trim("schema") ~ \'%s\'\n AND "table" NOT IN (%s)\n ORDER BY "size" ASC ;\n ' % (predicate_cols_option, stats_off_pct, schema_name, str(blacklisted_tables_array)[1:-1]) else: get_analyze_statement = 'SELECT DISTINCT \'analyze \' + "schema" + \'."\' + "table" + \'" %s ; \'\n + \'/* Stats_Off : \' + CAST("stats_off" AS VARCHAR(10)) + \' */ ;\'\n FROM svv_table_info\n WHERE stats_off::DECIMAL (32,4) > %s::DECIMAL (32,4)\n AND trim("schema") ~ \'%s\'\n ORDER BY "size" ASC ;\n ' % (predicate_cols_option, stats_off_pct, schema_name) if debug: datetime_str = str(datetime.datetime.now()) if get_analyze_statement is not None: if re.match('.*\\n.*', get_analyze_statement) is not None: print('/* [%s]\n%s\n*/\n' % (str(os.getpid()), get_analyze_statement)) else: print('-- %s [%s] %s' % (datetime_str, str(os.getpid()), get_analyze_statement)) cursor = conn.cursor() cursor.execute(get_analyze_statement) try: results = cursor.fetchall() if debug: comment('Query Execution returned %s Results' % len(results)) except Exception as e: if 'no result set' in str(e): analyze_statements = None else: raise e analyze_statements = results statements = [] for vs in analyze_statements: statements.append(vs[0]) if not run_commands(conn, statements, cw=cw, cluster_name=cluster_name, suppress_errors=ignore_errors): if not ignore_errors: if debug: print('Error running statements: %s' % (str(statements),)) return ERROR return True
amazon-redshift-utils
positive
def test_deactivated_callable(self): """ Disabled enforcers should be returning just Callable """ settings = Settings(enabled=False) func = no_type_check(self.func_int___none()) wrapped = apply_enforcer(func) enforcer = wrapped.__enforcer__ func_type = enforcer.callable_signature self.assertEqual(func_type, Callable) <DeepExtract> def func_int___none(a: int) -> None: pass func = func_int___none </DeepExtract> self.assertFalse(hasattr(func, '__enforcer__')) wrapped = apply_enforcer(func, settings=settings) enforcer = wrapped.__enforcer__ func_type = enforcer.callable_signature self.assertIsNotNone(enforcer.settings) self.assertFalse(enforcer.settings) self.assertFalse(enforcer.settings.enabled) self.assertEqual(func_type, Callable)
def test_deactivated_callable(self): """ Disabled enforcers should be returning just Callable """ settings = Settings(enabled=False) func = no_type_check(self.func_int___none()) wrapped = apply_enforcer(func) enforcer = wrapped.__enforcer__ func_type = enforcer.callable_signature self.assertEqual(func_type, Callable) def func_int___none(a: int) -> None: pass func = func_int___none self.assertFalse(hasattr(func, '__enforcer__')) wrapped = apply_enforcer(func, settings=settings) enforcer = wrapped.__enforcer__ func_type = enforcer.callable_signature self.assertIsNotNone(enforcer.settings) self.assertFalse(enforcer.settings) self.assertFalse(enforcer.settings.enabled) self.assertEqual(func_type, Callable)
enforce
positive
def run_on_container(self, command, target_container=None): if target_container is None: target_container = self._container_id <DeepExtract> try: result = (subprocess.check_output(('docker', 'exec', target_container, 'bash', '-c', command), cwd=self._workdir.name, stderr=subprocess.STDOUT).decode('utf-8').strip(), True) except subprocess.CalledProcessError as e: result = (e.output.decode('utf-8').strip(), False) </DeepExtract> if not result[1]: raise RuntimeError('Error running command on container: {}'.format(result[0])) return result[0]
def run_on_container(self, command, target_container=None): if target_container is None: target_container = self._container_id try: result = (subprocess.check_output(('docker', 'exec', target_container, 'bash', '-c', command), cwd=self._workdir.name, stderr=subprocess.STDOUT).decode('utf-8').strip(), True) except subprocess.CalledProcessError as e: result = (e.output.decode('utf-8').strip(), False) if not result[1]: raise RuntimeError('Error running command on container: {}'.format(result[0])) return result[0]
cf-mendix-buildpack
positive
def _stop(self, bp, ret): <DeepExtract> cont = self.controller cont.disable_breakpoint(self) if not gdb.current_progspace().filename: elf = self.stage.elf gdb.execute('file %s' % elf) cont.gdb_print('loaded file %s\n' % elf) cont.gdb_print('Inserting breakpoints for %s %s ...\n' % (self.controller.name, self.stage.stagename)) cont.current_substage = 0 cont.insert_breakpoints(self.stage) cont.gdb_print('Done setting breakpoints\n') for s in self.controller.stage_hooks: s(self, self.stage) </DeepExtract> return False
def _stop(self, bp, ret): cont = self.controller cont.disable_breakpoint(self) if not gdb.current_progspace().filename: elf = self.stage.elf gdb.execute('file %s' % elf) cont.gdb_print('loaded file %s\n' % elf) cont.gdb_print('Inserting breakpoints for %s %s ...\n' % (self.controller.name, self.stage.stagename)) cont.current_substage = 0 cont.insert_breakpoints(self.stage) cont.gdb_print('Done setting breakpoints\n') for s in self.controller.stage_hooks: s(self, self.stage) return False
bootloader_instrumentation_suite
positive
@pytest.mark.test_version_older_with_envar @pytest.mark.parametrize('version', ['0.01.0']) def test_c2r_latest_older_unsupported_version(convert2rhel, c2r_version, version, older_version_envar): """ Verify that running older version of Convert2RHEL with the environment variable "CONVERT2RHEL_ALLOW_OLDER_VERSION" continues the conversion. Running older version of convert2rhel on OS major version 6 or older should inhibit either way. """ <DeepExtract> path_to_version = subprocess.check_output(['find', '/usr/lib/', '-path', '*/convert2rhel/__init__.py', '-printf', '%p']).decode('utf-8') with open(path_to_version, 'r') as version_file: old_version_content = version_file.read() def _update_c2r_version(version): """ Modify the Convert2RHEL version value in the __init__.py file. We want to simulate the running version is older/newer than in the repositories. """ with open(path_to_version, 'w') as version_file: version_pattern = '__version__ = "(\\d+\\.\\d+\\.\\d+)"' updated_version_content = re.sub(version_pattern, '__version__ = "{}"'.format(version), old_version_content) version_file.write(updated_version_content) yield _update_c2r_version def _restore_c2r_version(): with open(path_to_version, 'w') as version_file: version_file.write(old_version_content) _restore_c2r_version() </DeepExtract> with convert2rhel('--no-rpm-va --debug') as c2r: c2r.expect('Continue with the system conversion?') c2r.sendline('y') assert c2r.expect('You are currently running 0.01', timeout=300) == 0 assert c2r.expect("'CONVERT2RHEL_ALLOW_OLDER_VERSION' environment variable detected, continuing conversion", timeout=300) == 0 c2r.expect('Continue with the system conversion?') c2r.sendline('n') assert c2r.exitstatus != 0
@pytest.mark.test_version_older_with_envar @pytest.mark.parametrize('version', ['0.01.0']) def test_c2r_latest_older_unsupported_version(convert2rhel, c2r_version, version, older_version_envar): """ Verify that running older version of Convert2RHEL with the environment variable "CONVERT2RHEL_ALLOW_OLDER_VERSION" continues the conversion. Running older version of convert2rhel on OS major version 6 or older should inhibit either way. """ path_to_version = subprocess.check_output(['find', '/usr/lib/', '-path', '*/convert2rhel/__init__.py', '-printf', '%p']).decode('utf-8') with open(path_to_version, 'r') as version_file: old_version_content = version_file.read() def _update_c2r_version(version): """ Modify the Convert2RHEL version value in the __init__.py file. We want to simulate the running version is older/newer than in the repositories. """ with open(path_to_version, 'w') as version_file: version_pattern = '__version__ = "(\\d+\\.\\d+\\.\\d+)"' updated_version_content = re.sub(version_pattern, '__version__ = "{}"'.format(version), old_version_content) version_file.write(updated_version_content) yield _update_c2r_version def _restore_c2r_version(): with open(path_to_version, 'w') as version_file: version_file.write(old_version_content) _restore_c2r_version() with convert2rhel('--no-rpm-va --debug') as c2r: c2r.expect('Continue with the system conversion?') c2r.sendline('y') assert c2r.expect('You are currently running 0.01', timeout=300) == 0 assert c2r.expect("'CONVERT2RHEL_ALLOW_OLDER_VERSION' environment variable detected, continuing conversion", timeout=300) == 0 c2r.expect('Continue with the system conversion?') c2r.sendline('n') assert c2r.exitstatus != 0
convert2rhel
positive
def killScript(reason=None): if reason is None: print(readMe) sys.exit() else: <DeepExtract> logString = '%s -- %s' % (datetime.datetime.now(), 'ERROR: %s' % reason) print(logString) if not filePath is None: try: with open(filePath, 'a') as logFile: logFile.write('%s\n' % logString) except: log('ERROR: Unable to append to log file') </DeepExtract> sys.exit()
def killScript(reason=None): if reason is None: print(readMe) sys.exit() else: logString = '%s -- %s' % (datetime.datetime.now(), 'ERROR: %s' % reason) print(logString) if not filePath is None: try: with open(filePath, 'a') as logFile: logFile.write('%s\n' % logString) except: log('ERROR: Unable to append to log file') sys.exit()
automation-scripts
positive
def reset(self): self.phase = random.randint(0, self.phaselen) <DeepExtract> if self.phase is None: self.phase = self.phase if self.phase > self.phaselen: self.phase = 0 pos = np.copy(self.trajectory.qpos[self.phase * self.simrate]) pos[1] = 0 vel = np.copy(self.trajectory.qvel[self.phase * self.simrate]) (qpos0, qvel0) = (pos, vel) </DeepExtract> self.sim.set_qpos(np.ndarray.flatten(qpos0)) self.sim.set_qvel(np.ndarray.flatten(qvel0)) self.goal_qpos = np.ndarray.flatten(self.init_qpos) self.goal_qvel = np.ndarray.flatten(self.init_qvel) return self.get_full_state()
def reset(self): self.phase = random.randint(0, self.phaselen) if self.phase is None: self.phase = self.phase if self.phase > self.phaselen: self.phase = 0 pos = np.copy(self.trajectory.qpos[self.phase * self.simrate]) pos[1] = 0 vel = np.copy(self.trajectory.qvel[self.phase * self.simrate]) (qpos0, qvel0) = (pos, vel) self.sim.set_qpos(np.ndarray.flatten(qpos0)) self.sim.set_qvel(np.ndarray.flatten(qvel0)) self.goal_qpos = np.ndarray.flatten(self.init_qpos) self.goal_qvel = np.ndarray.flatten(self.init_qvel) return self.get_full_state()
apex
positive
def laplace_approximation(trial_model, dtype, data, uv, sigma, gains_t1, gains_t2): global globdict if globdict['marginalize_gains'] == True and dtype == 'amp': gain_hess = np.zeros((len(globdict['gain_list']), len(globdict['gain_list']))) <DeepExtract> global globdict if not True: if globdict['gain_init'] == None: gain = 1 else: None = globdict['gain_init'] if globdict['marginalize_gains']: None = globdict['gain_init'] if dtype in ['amp', 'vis']: gains_wzero = np.append(None, 0.0) gain = (1.0 + gains_wzero[gains_t1]) * (1.0 + gains_wzero[gains_t2]) else: gain = 1 </DeepExtract> amp_model = np.abs(trial_model.sample_uv(uv[:, 0], uv[:, 1])) amp_bar = gain * data sigma_bar = gain * sigma <DeepExtract> global globdict if not True: if globdict['gain_init'] == None: (g1, g2) = (0.0, 0.0) else: None = globdict['gain_init'] if globdict['marginalize_gains']: None = globdict['gain_init'] if dtype in ['amp', 'vis']: gains_wzero = np.append(None, 0.0) (g1, g2) = (gains_wzero[gains_t1], gains_wzero[gains_t2]) else: (g1, g2) = (0, 0) </DeepExtract> for j in range(len(gain)): gain_hess[gains_t1[j], gains_t1[j]] += amp_model[j] * (3.0 * amp_model[j] - 2.0 * amp_bar[j]) / ((1.0 + g1[j]) ** 2 * sigma_bar[j] ** 2) gain_hess[gains_t2[j], gains_t2[j]] += amp_model[j] * (3.0 * amp_model[j] - 2.0 * amp_bar[j]) / ((1.0 + g2[j]) ** 2 * sigma_bar[j] ** 2) gain_hess[gains_t1[j], gains_t2[j]] += amp_model[j] * (2.0 * amp_model[j] - amp_bar[j]) / ((1.0 + g1[j]) * (1.0 + g2[j]) * sigma_bar[j] ** 2) gain_hess[gains_t2[j], gains_t1[j]] += amp_model[j] * (2.0 * amp_model[j] - amp_bar[j]) / ((1.0 + g1[j]) * (1.0 + g2[j]) * sigma_bar[j] ** 2) for j in range(len(globdict['gain_list'])): t = globdict['gain_list'][j][1] if globdict['gain_prior'][t]['prior_type'] == 'gauss': gain_hess[j, j] += 1.0 / globdict['gain_prior'][t]['std'] elif globdict['gain_prior'][t]['prior_type'] == 'flat': gain_hess[j, j] += 0.0 elif globdict['gain_prior'][t]['prior_type'] == 'exponential': gain_hess[j, j] += 0.0 elif globdict['gain_prior'][t]['prior_type'] == 'fixed': gain_hess[j, j] += 0.0 else: raise Exception('Gain prior not implemented!') return np.log((2.0 * np.pi) ** (len(gain) / 2.0) * np.abs(np.linalg.det(gain_hess)) ** (-0.5)) else: return 0.0
def laplace_approximation(trial_model, dtype, data, uv, sigma, gains_t1, gains_t2): global globdict if globdict['marginalize_gains'] == True and dtype == 'amp': gain_hess = np.zeros((len(globdict['gain_list']), len(globdict['gain_list']))) global globdict if not True: if globdict['gain_init'] == None: gain = 1 else: None = globdict['gain_init'] if globdict['marginalize_gains']: None = globdict['gain_init'] if dtype in ['amp', 'vis']: gains_wzero = np.append(None, 0.0) gain = (1.0 + gains_wzero[gains_t1]) * (1.0 + gains_wzero[gains_t2]) else: gain = 1 amp_model = np.abs(trial_model.sample_uv(uv[:, 0], uv[:, 1])) amp_bar = gain * data sigma_bar = gain * sigma global globdict if not True: if globdict['gain_init'] == None: (g1, g2) = (0.0, 0.0) else: None = globdict['gain_init'] if globdict['marginalize_gains']: None = globdict['gain_init'] if dtype in ['amp', 'vis']: gains_wzero = np.append(None, 0.0) (g1, g2) = (gains_wzero[gains_t1], gains_wzero[gains_t2]) else: (g1, g2) = (0, 0) for j in range(len(gain)): gain_hess[gains_t1[j], gains_t1[j]] += amp_model[j] * (3.0 * amp_model[j] - 2.0 * amp_bar[j]) / ((1.0 + g1[j]) ** 2 * sigma_bar[j] ** 2) gain_hess[gains_t2[j], gains_t2[j]] += amp_model[j] * (3.0 * amp_model[j] - 2.0 * amp_bar[j]) / ((1.0 + g2[j]) ** 2 * sigma_bar[j] ** 2) gain_hess[gains_t1[j], gains_t2[j]] += amp_model[j] * (2.0 * amp_model[j] - amp_bar[j]) / ((1.0 + g1[j]) * (1.0 + g2[j]) * sigma_bar[j] ** 2) gain_hess[gains_t2[j], gains_t1[j]] += amp_model[j] * (2.0 * amp_model[j] - amp_bar[j]) / ((1.0 + g1[j]) * (1.0 + g2[j]) * sigma_bar[j] ** 2) for j in range(len(globdict['gain_list'])): t = globdict['gain_list'][j][1] if globdict['gain_prior'][t]['prior_type'] == 'gauss': gain_hess[j, j] += 1.0 / globdict['gain_prior'][t]['std'] elif globdict['gain_prior'][t]['prior_type'] == 'flat': gain_hess[j, j] += 0.0 elif globdict['gain_prior'][t]['prior_type'] == 'exponential': gain_hess[j, j] += 0.0 elif globdict['gain_prior'][t]['prior_type'] == 'fixed': gain_hess[j, j] += 0.0 else: raise Exception('Gain prior not implemented!') return np.log((2.0 * np.pi) ** (len(gain) / 2.0) * np.abs(np.linalg.det(gain_hess)) ** (-0.5)) else: return 0.0
eht-imaging
positive
def main(source=None, num_epochs=None, method=None, batch_size=None, learning_rate=None, beta=None, n_samples=None, image_dir=None, binary_dir=None, dim_z=None, prior=None): <DeepExtract> if source is None: raise ValueError('source not provided.') logger.info('Reading MNIST ({}), from {}'.format('train', source)) with gzip.open(source, 'rb') as f: x = cPickle.load(f) if 'train' == 'train': data = np.float32(x[0][0]) elif 'train' == 'valid': data = np.float32(x[1][0]) elif 'train' == 'test': data = np.float32(x[2][0]) else: raise ValueError() data = np.reshape(data, (-1, 1, 28, 28)) data = data </DeepExtract> train_samples = data.shape[0] noise_var = T.matrix('noise') input_var = T.tensor4('inputs') logger.info('Building model and graph') <DeepExtract> layer = InputLayer(shape=(None, dim_z), input_var=noise_var) layer = batch_norm(DenseLayer(layer, 1024)) layer = batch_norm(DenseLayer(layer, dim_h * 2 * 7 * 7)) layer = ReshapeLayer(layer, ([0], dim_h * 2, 7, 7)) layer = batch_norm(Deconv2DLayer(layer, dim_h, 5, stride=2, pad=2)) layer = Deconv2DLayer(layer, 1, 5, stride=2, pad=2, nonlinearity=None) logger.debug('Generator output: {}'.format(layer.output_shape)) generator = layer </DeepExtract> <DeepExtract> layer = InputLayer(shape=(None, 1, DIM_X, DIM_Y), input_var=input_var) layer = Conv2DLayer(layer, dim_h, 5, stride=2, pad=2, nonlinearity=lrelu) layer = Conv2DLayer(layer, dim_h * 2, 5, stride=2, pad=2, nonlinearity=lrelu) layer = DenseLayer(layer, 1024, nonlinearity=lrelu) layer = DenseLayer(layer, 1, nonlinearity=None) logger.debug('Discriminator output: {}'.format(layer.output_shape)) discriminator = layer </DeepExtract> <DeepExtract> layer = InputLayer(shape=(None, dim_z), input_var=noise_var) layer = DenseLayer(layer, dim_h) layer = batch_norm(DenseLayer(layer, 1)) baseline = layer </DeepExtract> trng = RandomStreams(random.randint(1, 1000000)) g_output_logit = lasagne.layers.get_output(generator) log_Z = lasagne.layers.get_output(baseline) <DeepExtract> R = trng.uniform(size=(n_samples, batch_size, DIM_C, DIM_X, DIM_Y), dtype=floatX_) g_output = T.nnet.sigmoid(g_output_logit) samples = (R <= T.shape_padleft(g_output)).astype(floatX_) D_r = lasagne.layers.get_output(discriminator) D_f = lasagne.layers.get_output(discriminator, samples.reshape((-1, DIM_C, DIM_X, DIM_Y))) D_f_ = D_f.reshape((n_samples, batch_size)) log_w = D_f_ log_g = -((1.0 - samples) * T.shape_padleft(g_output_logit) + T.shape_padleft(T.nnet.softplus(-g_output_logit))).sum(axis=(2, 3, 4)) log_N = T.log(log_w.shape[0]).astype(floatX_) log_Z_est = log_sum_exp(log_w - log_N, axis=0) log_w_tilde = log_w - T.shape_padleft(log_Z_est) - log_N w_tilde = T.exp(log_w_tilde) r = theano.gradient.disconnected_grad(log_w - log_Z[None, :] - 1) generator_loss = -(r * log_g).mean() discriminator_loss = T.nnet.softplus(-D_r).mean() + T.nnet.softplus(-D_f).mean() + D_f.mean() (generator_loss, discriminator_loss, D_r, D_f, log_Z_est, log_w, w_tilde, d) = (generator_loss, discriminator_loss, D_r, D_f, log_Z_est, log_w, w_tilde, {}) </DeepExtract> baseline_loss = ((log_Z - log_Z_est) ** 2).mean() generator_params = lasagne.layers.get_all_params(generator, trainable=True) discriminator_params = lasagne.layers.get_all_params(discriminator, trainable=True) baseline_params = lasagne.layers.get_all_params(baseline, trainable=True) eta = theano.shared(floatX(learning_rate)) updates = lasagne.updates.adam(generator_loss, generator_params, learning_rate=eta, beta1=beta) updates.update(lasagne.updates.adam(discriminator_loss, discriminator_params, learning_rate=eta, beta1=beta)) updates.update(lasagne.updates.adam(baseline_loss, baseline_params, learning_rate=eta, beta1=beta)) results = {'p(real)': (T.nnet.sigmoid(D_r) > 0.5).mean(), 'p(fake': (T.nnet.sigmoid(D_f) < 0.5).mean(), 'G loss': generator_loss, 'D loss': discriminator_loss, 'log Z': log_Z, 'log Z est': log_Z_est.mean(), 'log_Z est var': log_Z_est.std() ** 2, 'log w': log_w.mean(), 'log w var': log_w.std() ** 2, 'norm w': w_tilde.mean(), 'norm w var': w_tilde.std() ** 2, 'ESS': (1.0 / (w_tilde ** 2).sum(0)).mean()} train_fn = theano.function([noise_var, input_var], results, updates=updates) gen_fn = theano.function([noise_var], T.nnet.sigmoid(lasagne.layers.get_output(generator, deterministic=True))) logger.info('Training...') results = {} for epoch in range(num_epochs): u = 0 prefix = '{}_{}'.format(method, epoch) e_results = {} widgets = ['Epoch {}, '.format(epoch), Timer(), Bar()] pbar = ProgressBar(widgets=widgets, maxval=train_samples // batch_size).start() prefix = str(epoch) start_time = time.time() batch0 = None for batch in iterate_minibatches(data, batch_size, shuffle=True): if batch0 is None: batch0 = batch if batch.shape[0] == batch_size: if prior == 'uniform': noise = floatX(np.random.rand(batch_size, dim_z)) elif prior == 'gaussian': noise = floatX(np.random.normal(size=(batch_size, dim_z))) outs = train_fn(noise, batch) outs = dict(((k, np.asarray(v)) for (k, v) in outs.items())) <DeepExtract> for (k, v) in d.iteritems(): if k in e_results.keys(): e_results[k].append(v) else: e_results[k] = [v] </DeepExtract> u += 1 pbar.update(u) else: logger.error('Skipped batch of size {}'.format(batch.shape)) <DeepExtract> for (k, v) in d.iteritems(): if k in results.keys(): results[k].append(v) else: results[k] = [v] </DeepExtract> np.savez(path.join(binary_dir, '{}_results.npz'.format(prefix)), **results) try: if prior == 'uniform': noise = floatX(np.random.rand(100, dim_z)) elif prior == 'gaussian': noise = floatX(np.random.normal(size=(100, dim_z))) samples = gen_fn(noise) <DeepExtract> results = dict(((k, np.mean(v)) for (k, v) in results.items())) logger.info(results) if image_dir is not None: plt.imsave(path.join(image_dir, '{}.png'.format(prefix)), samples.reshape(10, 10, 28, 28).transpose(0, 2, 1, 3).reshape(10 * 28, 10 * 28), cmap='gray') </DeepExtract> except Exception as e: print(e) pass logger.info('Epoch {} of {} took {:.3f}s'.format(epoch + 1, num_epochs, time.time() - start_time)) np.savez(path.join(binary_dir, '{}_generator_params.npz'.format(prefix)), *lasagne.layers.get_all_param_values(generator)) np.savez(path.join(binary_dir, '{}_discriminator_params.npz'.format(prefix)), *lasagne.layers.get_all_param_values(discriminator))
def main(source=None, num_epochs=None, method=None, batch_size=None, learning_rate=None, beta=None, n_samples=None, image_dir=None, binary_dir=None, dim_z=None, prior=None): if source is None: raise ValueError('source not provided.') logger.info('Reading MNIST ({}), from {}'.format('train', source)) with gzip.open(source, 'rb') as f: x = cPickle.load(f) if 'train' == 'train': data = np.float32(x[0][0]) elif 'train' == 'valid': data = np.float32(x[1][0]) elif 'train' == 'test': data = np.float32(x[2][0]) else: raise ValueError() data = np.reshape(data, (-1, 1, 28, 28)) data = data train_samples = data.shape[0] noise_var = T.matrix('noise') input_var = T.tensor4('inputs') logger.info('Building model and graph') layer = InputLayer(shape=(None, dim_z), input_var=noise_var) layer = batch_norm(DenseLayer(layer, 1024)) layer = batch_norm(DenseLayer(layer, dim_h * 2 * 7 * 7)) layer = ReshapeLayer(layer, ([0], dim_h * 2, 7, 7)) layer = batch_norm(Deconv2DLayer(layer, dim_h, 5, stride=2, pad=2)) layer = Deconv2DLayer(layer, 1, 5, stride=2, pad=2, nonlinearity=None) logger.debug('Generator output: {}'.format(layer.output_shape)) generator = layer layer = InputLayer(shape=(None, 1, DIM_X, DIM_Y), input_var=input_var) layer = Conv2DLayer(layer, dim_h, 5, stride=2, pad=2, nonlinearity=lrelu) layer = Conv2DLayer(layer, dim_h * 2, 5, stride=2, pad=2, nonlinearity=lrelu) layer = DenseLayer(layer, 1024, nonlinearity=lrelu) layer = DenseLayer(layer, 1, nonlinearity=None) logger.debug('Discriminator output: {}'.format(layer.output_shape)) discriminator = layer layer = InputLayer(shape=(None, dim_z), input_var=noise_var) layer = DenseLayer(layer, dim_h) layer = batch_norm(DenseLayer(layer, 1)) baseline = layer trng = RandomStreams(random.randint(1, 1000000)) g_output_logit = lasagne.layers.get_output(generator) log_Z = lasagne.layers.get_output(baseline) R = trng.uniform(size=(n_samples, batch_size, DIM_C, DIM_X, DIM_Y), dtype=floatX_) g_output = T.nnet.sigmoid(g_output_logit) samples = (R <= T.shape_padleft(g_output)).astype(floatX_) D_r = lasagne.layers.get_output(discriminator) D_f = lasagne.layers.get_output(discriminator, samples.reshape((-1, DIM_C, DIM_X, DIM_Y))) D_f_ = D_f.reshape((n_samples, batch_size)) log_w = D_f_ log_g = -((1.0 - samples) * T.shape_padleft(g_output_logit) + T.shape_padleft(T.nnet.softplus(-g_output_logit))).sum(axis=(2, 3, 4)) log_N = T.log(log_w.shape[0]).astype(floatX_) log_Z_est = log_sum_exp(log_w - log_N, axis=0) log_w_tilde = log_w - T.shape_padleft(log_Z_est) - log_N w_tilde = T.exp(log_w_tilde) r = theano.gradient.disconnected_grad(log_w - log_Z[None, :] - 1) generator_loss = -(r * log_g).mean() discriminator_loss = T.nnet.softplus(-D_r).mean() + T.nnet.softplus(-D_f).mean() + D_f.mean() (generator_loss, discriminator_loss, D_r, D_f, log_Z_est, log_w, w_tilde, d) = (generator_loss, discriminator_loss, D_r, D_f, log_Z_est, log_w, w_tilde, {}) baseline_loss = ((log_Z - log_Z_est) ** 2).mean() generator_params = lasagne.layers.get_all_params(generator, trainable=True) discriminator_params = lasagne.layers.get_all_params(discriminator, trainable=True) baseline_params = lasagne.layers.get_all_params(baseline, trainable=True) eta = theano.shared(floatX(learning_rate)) updates = lasagne.updates.adam(generator_loss, generator_params, learning_rate=eta, beta1=beta) updates.update(lasagne.updates.adam(discriminator_loss, discriminator_params, learning_rate=eta, beta1=beta)) updates.update(lasagne.updates.adam(baseline_loss, baseline_params, learning_rate=eta, beta1=beta)) results = {'p(real)': (T.nnet.sigmoid(D_r) > 0.5).mean(), 'p(fake': (T.nnet.sigmoid(D_f) < 0.5).mean(), 'G loss': generator_loss, 'D loss': discriminator_loss, 'log Z': log_Z, 'log Z est': log_Z_est.mean(), 'log_Z est var': log_Z_est.std() ** 2, 'log w': log_w.mean(), 'log w var': log_w.std() ** 2, 'norm w': w_tilde.mean(), 'norm w var': w_tilde.std() ** 2, 'ESS': (1.0 / (w_tilde ** 2).sum(0)).mean()} train_fn = theano.function([noise_var, input_var], results, updates=updates) gen_fn = theano.function([noise_var], T.nnet.sigmoid(lasagne.layers.get_output(generator, deterministic=True))) logger.info('Training...') results = {} for epoch in range(num_epochs): u = 0 prefix = '{}_{}'.format(method, epoch) e_results = {} widgets = ['Epoch {}, '.format(epoch), Timer(), Bar()] pbar = ProgressBar(widgets=widgets, maxval=train_samples // batch_size).start() prefix = str(epoch) start_time = time.time() batch0 = None for batch in iterate_minibatches(data, batch_size, shuffle=True): if batch0 is None: batch0 = batch if batch.shape[0] == batch_size: if prior == 'uniform': noise = floatX(np.random.rand(batch_size, dim_z)) elif prior == 'gaussian': noise = floatX(np.random.normal(size=(batch_size, dim_z))) outs = train_fn(noise, batch) outs = dict(((k, np.asarray(v)) for (k, v) in outs.items())) for (k, v) in d.iteritems(): if k in e_results.keys(): e_results[k].append(v) else: e_results[k] = [v] u += 1 pbar.update(u) else: logger.error('Skipped batch of size {}'.format(batch.shape)) for (k, v) in d.iteritems(): if k in results.keys(): results[k].append(v) else: results[k] = [v] np.savez(path.join(binary_dir, '{}_results.npz'.format(prefix)), **results) try: if prior == 'uniform': noise = floatX(np.random.rand(100, dim_z)) elif prior == 'gaussian': noise = floatX(np.random.normal(size=(100, dim_z))) samples = gen_fn(noise) results = dict(((k, np.mean(v)) for (k, v) in results.items())) logger.info(results) if image_dir is not None: plt.imsave(path.join(image_dir, '{}.png'.format(prefix)), samples.reshape(10, 10, 28, 28).transpose(0, 2, 1, 3).reshape(10 * 28, 10 * 28), cmap='gray') except Exception as e: print(e) pass logger.info('Epoch {} of {} took {:.3f}s'.format(epoch + 1, num_epochs, time.time() - start_time)) np.savez(path.join(binary_dir, '{}_generator_params.npz'.format(prefix)), *lasagne.layers.get_all_param_values(generator)) np.savez(path.join(binary_dir, '{}_discriminator_params.npz'.format(prefix)), *lasagne.layers.get_all_param_values(discriminator))
BGAN
positive
def _create_layers(self): self.max_num_nodes = self.dataset_class.max_num_nodes() self.num_node_types = self.dataset_class.num_node_types() self.num_edge_types = self.dataset_class.num_edge_types() self.num_max_neighbours = self.dataset_class.num_max_neighbours() prior_config = get_param_val(self.model_params, 'prior_distribution', default_val=dict()) self.prior_distribution = create_prior_distribution(prior_config) <DeepExtract> self.node_encoding = create_encoding(self.model_params['categ_encoding_nodes'], dataset_class=self.dataset_class, vocab_size=self.num_node_types, category_prior=self.dataset_class.get_node_prior(data_root='data/')) self.edge_attr_encoding = create_encoding(self.model_params['categ_encoding_edges'], dataset_class=self.dataset_class, vocab_size=self.num_edge_types, category_prior=self.dataset_class.get_edge_prior(data_root='data/')) self.encoding_dim_nodes = self.node_encoding.D self.encoding_dim_edges = self.edge_attr_encoding.D self.edge_virtual_encoding = LinearCategoricalEncoding(num_dimensions=self.encoding_dim_edges, flow_config={'num_flows': self.model_params['encoding_virtual_num_flows'], 'hidden_layers': 2, 'hidden_size': 128}, dataset_class=self.dataset_class, vocab_size=1) self.edge_virtual_decoder = DecoderLinear(num_categories=2, embed_dim=self.encoding_dim_edges, hidden_size=128, num_layers=2, class_prior_log=np.log(np.array([0.9, 0.1]))) </DeepExtract> <DeepExtract> hidden_size_nodes = get_param_val(self.model_params, 'coupling_hidden_size_nodes', default_val=256) hidden_size_edges = get_param_val(self.model_params, 'coupling_hidden_size_edges', default_val=128) num_flows = get_param_val(self.model_params, 'coupling_num_flows', default_val='4,6,6') num_flows = [int(k) for k in num_flows.split(',')] hidden_layers = get_param_val(self.model_params, 'coupling_hidden_layers', default_val=4) if isinstance(hidden_layers, str): if ',' in hidden_layers: hidden_layers = [int(l) for l in hidden_layers.split(',')] else: hidden_layers = [int(hidden_layers)] * 3 else: hidden_layers = [hidden_layers] * 3 num_mixtures_nodes = get_param_val(self.model_params, 'coupling_num_mixtures_nodes', default_val=16) num_mixtures_edges = get_param_val(self.model_params, 'coupling_num_mixtures_edges', default_val=16) mask_ratio = get_param_val(self.model_params, 'coupling_mask_ratio', default_val=0.5) dropout = get_param_val(self.model_params, 'coupling_dropout', default_val=0.0) coupling_mask_nodes = CouplingLayer.create_channel_mask(self.encoding_dim_nodes, ratio=mask_ratio) step1_model_func = lambda c_out: RGCNNet(c_in=self.encoding_dim_nodes, c_out=c_out, num_edges=self.num_edge_types, num_layers=hidden_layers[0], hidden_size=hidden_size_nodes, max_neighbours=self.dataset_class.num_max_neighbours(), dp_rate=dropout, rgc_layer_fun=RelationGraphConv) step1_flows = [] for _ in range(num_flows[0]): step1_flows += [ActNormFlow(self.encoding_dim_nodes), InvertibleConv(self.encoding_dim_nodes), MixtureCDFCoupling(c_in=self.encoding_dim_nodes, mask=coupling_mask_nodes, model_func=step1_model_func, block_type='RelationGraphConv', num_mixtures=num_mixtures_nodes, regularizer_max=3.5, regularizer_factor=2)] self.step1_flows = nn.ModuleList(step1_flows) coupling_mask_edges = CouplingLayer.create_channel_mask(self.encoding_dim_edges, ratio=mask_ratio) def edge2node_layer_func(step_idx): if step_idx == 1: return lambda : Edge2NodeAttnLayer(hidden_size_nodes=hidden_size_nodes, hidden_size_edges=hidden_size_edges, skip_config=2) else: return lambda : Edge2NodeQKVAttnLayer(hidden_size_nodes=hidden_size_nodes, hidden_size_edges=hidden_size_edges, skip_config=2) node2edge_layer_func = lambda : Node2EdgePlainLayer(hidden_size_nodes=hidden_size_nodes, hidden_size_edges=hidden_size_edges, skip_config=2) def edge_gnn_layer_func(step_idx): return lambda : EdgeGNNLayer(edge2node_layer_func=edge2node_layer_func(step_idx), node2edge_layer_func=node2edge_layer_func) def get_model_func(step_idx): return lambda c_out_nodes, c_out_edges: EdgeGNN(c_in_nodes=self.encoding_dim_nodes, c_in_edges=self.encoding_dim_edges, c_out_nodes=c_out_nodes, c_out_edges=c_out_edges, edge_gnn_layer_func=edge_gnn_layer_func(step_idx), max_neighbours=self.dataset_class.num_max_neighbours(), num_layers=hidden_layers[step_idx]) actnorm_layer = lambda : NodeEdgeFlowWrapper(node_flow=ActNormFlow(c_in=self.encoding_dim_nodes), edge_flow=ActNormFlow(c_in=self.encoding_dim_edges)) permut_layer = lambda : NodeEdgeFlowWrapper(node_flow=InvertibleConv(c_in=self.encoding_dim_nodes), edge_flow=InvertibleConv(c_in=self.encoding_dim_edges)) coupling_layer = lambda step_idx: NodeEdgeCoupling(c_in_nodes=self.encoding_dim_nodes, c_in_edges=self.encoding_dim_edges, mask_nodes=coupling_mask_nodes, mask_edges=coupling_mask_edges, num_mixtures_nodes=num_mixtures_nodes, num_mixtures_edges=num_mixtures_edges, model_func=get_model_func(step_idx), regularizer_max=3.5, regularizer_factor=2) step2_flows = [] for _ in range(num_flows[1]): step2_flows += [actnorm_layer(), permut_layer(), coupling_layer(step_idx=1)] self.step2_flows = nn.ModuleList(step2_flows) step3_flows = [] for _ in range(num_flows[2]): step3_flows += [actnorm_layer(), permut_layer(), coupling_layer(step_idx=2)] self.step3_flows = nn.ModuleList(step3_flows) </DeepExtract>
def _create_layers(self): self.max_num_nodes = self.dataset_class.max_num_nodes() self.num_node_types = self.dataset_class.num_node_types() self.num_edge_types = self.dataset_class.num_edge_types() self.num_max_neighbours = self.dataset_class.num_max_neighbours() prior_config = get_param_val(self.model_params, 'prior_distribution', default_val=dict()) self.prior_distribution = create_prior_distribution(prior_config) self.node_encoding = create_encoding(self.model_params['categ_encoding_nodes'], dataset_class=self.dataset_class, vocab_size=self.num_node_types, category_prior=self.dataset_class.get_node_prior(data_root='data/')) self.edge_attr_encoding = create_encoding(self.model_params['categ_encoding_edges'], dataset_class=self.dataset_class, vocab_size=self.num_edge_types, category_prior=self.dataset_class.get_edge_prior(data_root='data/')) self.encoding_dim_nodes = self.node_encoding.D self.encoding_dim_edges = self.edge_attr_encoding.D self.edge_virtual_encoding = LinearCategoricalEncoding(num_dimensions=self.encoding_dim_edges, flow_config={'num_flows': self.model_params['encoding_virtual_num_flows'], 'hidden_layers': 2, 'hidden_size': 128}, dataset_class=self.dataset_class, vocab_size=1) self.edge_virtual_decoder = DecoderLinear(num_categories=2, embed_dim=self.encoding_dim_edges, hidden_size=128, num_layers=2, class_prior_log=np.log(np.array([0.9, 0.1]))) hidden_size_nodes = get_param_val(self.model_params, 'coupling_hidden_size_nodes', default_val=256) hidden_size_edges = get_param_val(self.model_params, 'coupling_hidden_size_edges', default_val=128) num_flows = get_param_val(self.model_params, 'coupling_num_flows', default_val='4,6,6') num_flows = [int(k) for k in num_flows.split(',')] hidden_layers = get_param_val(self.model_params, 'coupling_hidden_layers', default_val=4) if isinstance(hidden_layers, str): if ',' in hidden_layers: hidden_layers = [int(l) for l in hidden_layers.split(',')] else: hidden_layers = [int(hidden_layers)] * 3 else: hidden_layers = [hidden_layers] * 3 num_mixtures_nodes = get_param_val(self.model_params, 'coupling_num_mixtures_nodes', default_val=16) num_mixtures_edges = get_param_val(self.model_params, 'coupling_num_mixtures_edges', default_val=16) mask_ratio = get_param_val(self.model_params, 'coupling_mask_ratio', default_val=0.5) dropout = get_param_val(self.model_params, 'coupling_dropout', default_val=0.0) coupling_mask_nodes = CouplingLayer.create_channel_mask(self.encoding_dim_nodes, ratio=mask_ratio) step1_model_func = lambda c_out: RGCNNet(c_in=self.encoding_dim_nodes, c_out=c_out, num_edges=self.num_edge_types, num_layers=hidden_layers[0], hidden_size=hidden_size_nodes, max_neighbours=self.dataset_class.num_max_neighbours(), dp_rate=dropout, rgc_layer_fun=RelationGraphConv) step1_flows = [] for _ in range(num_flows[0]): step1_flows += [ActNormFlow(self.encoding_dim_nodes), InvertibleConv(self.encoding_dim_nodes), MixtureCDFCoupling(c_in=self.encoding_dim_nodes, mask=coupling_mask_nodes, model_func=step1_model_func, block_type='RelationGraphConv', num_mixtures=num_mixtures_nodes, regularizer_max=3.5, regularizer_factor=2)] self.step1_flows = nn.ModuleList(step1_flows) coupling_mask_edges = CouplingLayer.create_channel_mask(self.encoding_dim_edges, ratio=mask_ratio) def edge2node_layer_func(step_idx): if step_idx == 1: return lambda : Edge2NodeAttnLayer(hidden_size_nodes=hidden_size_nodes, hidden_size_edges=hidden_size_edges, skip_config=2) else: return lambda : Edge2NodeQKVAttnLayer(hidden_size_nodes=hidden_size_nodes, hidden_size_edges=hidden_size_edges, skip_config=2) node2edge_layer_func = lambda : Node2EdgePlainLayer(hidden_size_nodes=hidden_size_nodes, hidden_size_edges=hidden_size_edges, skip_config=2) def edge_gnn_layer_func(step_idx): return lambda : EdgeGNNLayer(edge2node_layer_func=edge2node_layer_func(step_idx), node2edge_layer_func=node2edge_layer_func) def get_model_func(step_idx): return lambda c_out_nodes, c_out_edges: EdgeGNN(c_in_nodes=self.encoding_dim_nodes, c_in_edges=self.encoding_dim_edges, c_out_nodes=c_out_nodes, c_out_edges=c_out_edges, edge_gnn_layer_func=edge_gnn_layer_func(step_idx), max_neighbours=self.dataset_class.num_max_neighbours(), num_layers=hidden_layers[step_idx]) actnorm_layer = lambda : NodeEdgeFlowWrapper(node_flow=ActNormFlow(c_in=self.encoding_dim_nodes), edge_flow=ActNormFlow(c_in=self.encoding_dim_edges)) permut_layer = lambda : NodeEdgeFlowWrapper(node_flow=InvertibleConv(c_in=self.encoding_dim_nodes), edge_flow=InvertibleConv(c_in=self.encoding_dim_edges)) coupling_layer = lambda step_idx: NodeEdgeCoupling(c_in_nodes=self.encoding_dim_nodes, c_in_edges=self.encoding_dim_edges, mask_nodes=coupling_mask_nodes, mask_edges=coupling_mask_edges, num_mixtures_nodes=num_mixtures_nodes, num_mixtures_edges=num_mixtures_edges, model_func=get_model_func(step_idx), regularizer_max=3.5, regularizer_factor=2) step2_flows = [] for _ in range(num_flows[1]): step2_flows += [actnorm_layer(), permut_layer(), coupling_layer(step_idx=1)] self.step2_flows = nn.ModuleList(step2_flows) step3_flows = [] for _ in range(num_flows[2]): step3_flows += [actnorm_layer(), permut_layer(), coupling_layer(step_idx=2)] self.step3_flows = nn.ModuleList(step3_flows) </DeepExtract>
CategoricalNF
positive
def verify_signature(self, value, sig): """Verifies the signature for the given value.""" <DeepExtract> salt = want_bytes(self.salt) if self.key_derivation == 'concat': key = self.digest_method(salt + self.secret_key).digest() elif self.key_derivation == 'django-concat': key = self.digest_method(salt + b'signer' + self.secret_key).digest() elif self.key_derivation == 'hmac': mac = hmac.new(self.secret_key, digestmod=self.digest_method) mac.update(salt) key = mac.digest() elif self.key_derivation == 'none': key = self.secret_key else: raise TypeError('Unknown key derivation method') </DeepExtract> try: <DeepExtract> sig = want_bytes(sig, encoding='ascii', errors='ignore') sig = base64.urlsafe_b64decode(sig + b'=' * (-len(sig) % 4)) </DeepExtract> except Exception: return False return self.algorithm.verify_signature(key, value, sig)
def verify_signature(self, value, sig): """Verifies the signature for the given value.""" salt = want_bytes(self.salt) if self.key_derivation == 'concat': key = self.digest_method(salt + self.secret_key).digest() elif self.key_derivation == 'django-concat': key = self.digest_method(salt + b'signer' + self.secret_key).digest() elif self.key_derivation == 'hmac': mac = hmac.new(self.secret_key, digestmod=self.digest_method) mac.update(salt) key = mac.digest() elif self.key_derivation == 'none': key = self.secret_key else: raise TypeError('Unknown key derivation method') try: sig = want_bytes(sig, encoding='ascii', errors='ignore') sig = base64.urlsafe_b64decode(sig + b'=' * (-len(sig) % 4)) except Exception: return False return self.algorithm.verify_signature(key, value, sig)
appengine-toolkit
positive
def run_n_episodes(self): """Runs game to completion n times and then summarises results and saves model (if asked to)""" start = time.time() results_queue = Queue() gradient_updates_queue = Queue() episode_number = multiprocessing.Value('i', 0) self.optimizer_lock = multiprocessing.Lock() episodes_per_process = int(self.config.num_episodes_to_run / self.worker_processes) + 1 processes = [] self.actor_critic.share_memory() self.actor_critic_optimizer.share_memory() optimizer_worker = multiprocessing.Process(target=self.update_shared_model, args=(gradient_updates_queue,)) optimizer_worker.start() for process_num in range(self.worker_processes): worker = Actor_Critic_Worker(process_num, copy.deepcopy(self.environment), self.actor_critic, episode_number, self.optimizer_lock, self.actor_critic_optimizer, self.config, episodes_per_process, self.hyperparameters['epsilon_decay_rate_denominator'], self.action_size, self.action_types, results_queue, copy.deepcopy(self.actor_critic), gradient_updates_queue) worker.start() processes.append(worker) <DeepExtract> while True: with episode_number.get_lock(): carry_on = episode_number.value < self.config.num_episodes_to_run if carry_on: if not results_queue.empty(): self.total_episode_score_so_far = results_queue.get() self.save_and_print_result() else: break </DeepExtract> for worker in processes: worker.join() optimizer_worker.kill() time_taken = time.time() - start return (self.game_full_episode_scores, self.rolling_results, time_taken)
def run_n_episodes(self): """Runs game to completion n times and then summarises results and saves model (if asked to)""" start = time.time() results_queue = Queue() gradient_updates_queue = Queue() episode_number = multiprocessing.Value('i', 0) self.optimizer_lock = multiprocessing.Lock() episodes_per_process = int(self.config.num_episodes_to_run / self.worker_processes) + 1 processes = [] self.actor_critic.share_memory() self.actor_critic_optimizer.share_memory() optimizer_worker = multiprocessing.Process(target=self.update_shared_model, args=(gradient_updates_queue,)) optimizer_worker.start() for process_num in range(self.worker_processes): worker = Actor_Critic_Worker(process_num, copy.deepcopy(self.environment), self.actor_critic, episode_number, self.optimizer_lock, self.actor_critic_optimizer, self.config, episodes_per_process, self.hyperparameters['epsilon_decay_rate_denominator'], self.action_size, self.action_types, results_queue, copy.deepcopy(self.actor_critic), gradient_updates_queue) worker.start() processes.append(worker) while True: with episode_number.get_lock(): carry_on = episode_number.value < self.config.num_episodes_to_run if carry_on: if not results_queue.empty(): self.total_episode_score_so_far = results_queue.get() self.save_and_print_result() else: break for worker in processes: worker.join() optimizer_worker.kill() time_taken = time.time() - start return (self.game_full_episode_scores, self.rolling_results, time_taken)
Deep-Reinforcement-Learning-Algorithms-with-PyTorch
positive
def Process(self) -> None: """Copies the list of paths to or from the remote host.""" if not self._paths: fspaths: Sequence[Union[containers.File, containers.RemoteFSPath]] if self._upload: fspaths = self.GetContainers(containers.File) else: fspaths = self.GetContainers(containers.RemoteFSPath) self._paths = [fspath.path for fspath in fspaths] if not self._paths: self.ModuleError('No files found for copying with SCP module.', critical=True) <DeepExtract> mkdir_command = ['mkdir', '-m', 'g+w', '-p', self._destination] if self._upload: cmd = ['ssh'] if self._multiplexing: cmd.extend(['-o', 'ControlPath=~/.ssh/ctrl-%C']) cmd.extend([self._GenerateRemotePrefix()]) cmd.extend(mkdir_command) self.logger.info('Creating destination directory {0:s} on host {1:s}'.format(self._destination, self._hostname)) else: cmd = mkdir_command self.logger.info('Shelling out: {0:s}'.format(' '.join(cmd))) ret = subprocess.call(cmd) if ret != 0: self.ModuleError('Failed creating destination directory, bailing.', critical=True) </DeepExtract> cmd = ['scp'] if self._multiplexing: cmd.extend(['-o', 'ControlMaster=auto', '-o', 'ControlPath=~/.ssh/ctrl-%C']) if self._extra_ssh_options: cmd.extend(self._extra_ssh_options) if self._id_file: cmd.extend(['-i', self._id_file]) if self._upload: cmd.extend(self._paths) cmd.extend(self._PrefixRemotePaths([self._destination])) else: cmd.extend(self._PrefixRemotePaths(self._paths)) cmd.extend([self._destination]) self.logger.debug('Executing SCP command: {0:s}'.format(' '.join(cmd))) ret = subprocess.call(cmd) if ret != 0: self.ModuleError('Failed copying {0!s}'.format(self._paths), critical=True) fspath: Union[containers.File, containers.RemoteFSPath] for path_ in self._paths: file_name = os.path.basename(path_) full_path = os.path.join(self._destination, file_name) if self._upload: self.PublishMessage(f'Remote filesystem path {full_path}') fspath = containers.RemoteFSPath(path=full_path, hostname=self._hostname) else: self.PublishMessage(f'Local filesystem path {full_path}') fspath = containers.File(name=file_name, path=full_path) self.StoreContainer(fspath)
def Process(self) -> None: """Copies the list of paths to or from the remote host.""" if not self._paths: fspaths: Sequence[Union[containers.File, containers.RemoteFSPath]] if self._upload: fspaths = self.GetContainers(containers.File) else: fspaths = self.GetContainers(containers.RemoteFSPath) self._paths = [fspath.path for fspath in fspaths] if not self._paths: self.ModuleError('No files found for copying with SCP module.', critical=True) mkdir_command = ['mkdir', '-m', 'g+w', '-p', self._destination] if self._upload: cmd = ['ssh'] if self._multiplexing: cmd.extend(['-o', 'ControlPath=~/.ssh/ctrl-%C']) cmd.extend([self._GenerateRemotePrefix()]) cmd.extend(mkdir_command) self.logger.info('Creating destination directory {0:s} on host {1:s}'.format(self._destination, self._hostname)) else: cmd = mkdir_command self.logger.info('Shelling out: {0:s}'.format(' '.join(cmd))) ret = subprocess.call(cmd) if ret != 0: self.ModuleError('Failed creating destination directory, bailing.', critical=True) cmd = ['scp'] if self._multiplexing: cmd.extend(['-o', 'ControlMaster=auto', '-o', 'ControlPath=~/.ssh/ctrl-%C']) if self._extra_ssh_options: cmd.extend(self._extra_ssh_options) if self._id_file: cmd.extend(['-i', self._id_file]) if self._upload: cmd.extend(self._paths) cmd.extend(self._PrefixRemotePaths([self._destination])) else: cmd.extend(self._PrefixRemotePaths(self._paths)) cmd.extend([self._destination]) self.logger.debug('Executing SCP command: {0:s}'.format(' '.join(cmd))) ret = subprocess.call(cmd) if ret != 0: self.ModuleError('Failed copying {0!s}'.format(self._paths), critical=True) fspath: Union[containers.File, containers.RemoteFSPath] for path_ in self._paths: file_name = os.path.basename(path_) full_path = os.path.join(self._destination, file_name) if self._upload: self.PublishMessage(f'Remote filesystem path {full_path}') fspath = containers.RemoteFSPath(path=full_path, hostname=self._hostname) else: self.PublishMessage(f'Local filesystem path {full_path}') fspath = containers.File(name=file_name, path=full_path) self.StoreContainer(fspath)
dftimewolf
positive
def prolong(self, n): """Return a Chebtech of length n, obtained either by truncating if n < self.size or zero-padding if n > self.size. In all cases a deep copy is returned. """ m = self.size ak = self.coeffs cls = self.__class__ if n - m < 0: out = cls(ak[:n].copy(), interval=self.interval) elif n - m > 0: out = cls(np.append(ak, np.zeros(n - m)), interval=self.interval) else: <DeepExtract> out = self.__class__(self.coeffs.copy(), interval=self.interval.copy()) </DeepExtract> return out
def prolong(self, n): """Return a Chebtech of length n, obtained either by truncating if n < self.size or zero-padding if n > self.size. In all cases a deep copy is returned. """ m = self.size ak = self.coeffs cls = self.__class__ if n - m < 0: out = cls(ak[:n].copy(), interval=self.interval) elif n - m > 0: out = cls(np.append(ak, np.zeros(n - m)), interval=self.interval) else: out = self.__class__(self.coeffs.copy(), interval=self.interval.copy()) return out
chebpy
positive
def _create_indicator_pattern(object_type: str, property_path: List[str], value: str) -> IndicatorPattern: <DeepExtract> object_path = _create_object_path(object_type, property_path) pattern = _create_equality_observation_expression_str(object_path, value) </DeepExtract> main_observable_type = _OBJECT_TYPE_TO_OBSERVABLE_TYPE_MAP[object_type] return IndicatorPattern(pattern=pattern, main_observable_type=main_observable_type)
def _create_indicator_pattern(object_type: str, property_path: List[str], value: str) -> IndicatorPattern: object_path = _create_object_path(object_type, property_path) pattern = _create_equality_observation_expression_str(object_path, value) main_observable_type = _OBJECT_TYPE_TO_OBSERVABLE_TYPE_MAP[object_type] return IndicatorPattern(pattern=pattern, main_observable_type=main_observable_type)
connectors
positive
@pytest.mark.host_test def test_load_config_file(self): config_file_path = os.path.join(os.getcwd(), 'esptool.cfg') with self.ConfigFile(config_file_path, self.dummy_config): <DeepExtract> def run_esptool_process(cmd): print('Executing {}...'.format(' '.join(cmd))) try: output = subprocess.check_output([str(s) for s in cmd], cwd=TEST_DIR, stderr=subprocess.STDOUT) output = output.decode('utf-8') except subprocess.CalledProcessError as e: print(e.output.decode('utf-8')) raise e try: esptool = [os.environ['ESPTOOL_PY']] except KeyError: esptool = ['-m', 'esptool'] trace_arg = ['--trace'] if arg_trace else [] base_cmd = [sys.executable] + esptool + trace_arg if chip or (arg_chip is not None and chip != 'auto'): base_cmd += ['--chip', chip or arg_chip] if port or arg_port is not None: base_cmd += ['--port', port or arg_port] if baud or arg_baud is not None: base_cmd += ['--baud', str(baud or arg_baud)] usb_jtag_serial_reset = ['--before', 'usb_reset'] if arg_preload_port else [] full_cmd = base_cmd + usb_jtag_serial_reset + 'version'.split(' ') if preload and arg_preload_port and (arg_chip in ['esp32c3', 'esp32s3', 'esp32c6', 'esp32h2']): port_index = base_cmd.index('--port') + 1 base_cmd[port_index] = arg_preload_port preload_cmd = base_cmd + ['--no-stub', 'load_ram', f'{TEST_DIR}/images/ram_helloworld/helloworld-{arg_chip}.bin'] print('\nPreloading dummy binary to disable RTC watchdog...') run_esptool_process(preload_cmd) print('Dummy binary preloaded successfully.') time.sleep(0.3) print(f'''\nRunning the "{'version'}" command...''') output = run_esptool_process(full_cmd) print(output) output = output </DeepExtract> assert f'Loaded custom configuration from {config_file_path}' in output assert 'Ignoring unknown config file option' not in output assert 'Ignoring invalid config file' not in output with self.ConfigFile(config_file_path, '[wrong section name]'): <DeepExtract> def run_esptool_process(cmd): print('Executing {}...'.format(' '.join(cmd))) try: output = subprocess.check_output([str(s) for s in cmd], cwd=TEST_DIR, stderr=subprocess.STDOUT) output = output.decode('utf-8') except subprocess.CalledProcessError as e: print(e.output.decode('utf-8')) raise e try: esptool = [os.environ['ESPTOOL_PY']] except KeyError: esptool = ['-m', 'esptool'] trace_arg = ['--trace'] if arg_trace else [] base_cmd = [sys.executable] + esptool + trace_arg if chip or (arg_chip is not None and chip != 'auto'): base_cmd += ['--chip', chip or arg_chip] if port or arg_port is not None: base_cmd += ['--port', port or arg_port] if baud or arg_baud is not None: base_cmd += ['--baud', str(baud or arg_baud)] usb_jtag_serial_reset = ['--before', 'usb_reset'] if arg_preload_port else [] full_cmd = base_cmd + usb_jtag_serial_reset + 'version'.split(' ') if preload and arg_preload_port and (arg_chip in ['esp32c3', 'esp32s3', 'esp32c6', 'esp32h2']): port_index = base_cmd.index('--port') + 1 base_cmd[port_index] = arg_preload_port preload_cmd = base_cmd + ['--no-stub', 'load_ram', f'{TEST_DIR}/images/ram_helloworld/helloworld-{arg_chip}.bin'] print('\nPreloading dummy binary to disable RTC watchdog...') run_esptool_process(preload_cmd) print('Dummy binary preloaded successfully.') time.sleep(0.3) print(f'''\nRunning the "{'version'}" command...''') output = run_esptool_process(full_cmd) print(output) output = output </DeepExtract> assert f'Loaded custom configuration from {config_file_path}' not in output faulty_config = '[esptool]\nconnect_attempts = 5\nconnect_attempts = 9\n' with self.ConfigFile(config_file_path, faulty_config): <DeepExtract> def run_esptool_process(cmd): print('Executing {}...'.format(' '.join(cmd))) try: output = subprocess.check_output([str(s) for s in cmd], cwd=TEST_DIR, stderr=subprocess.STDOUT) output = output.decode('utf-8') except subprocess.CalledProcessError as e: print(e.output.decode('utf-8')) raise e try: esptool = [os.environ['ESPTOOL_PY']] except KeyError: esptool = ['-m', 'esptool'] trace_arg = ['--trace'] if arg_trace else [] base_cmd = [sys.executable] + esptool + trace_arg if chip or (arg_chip is not None and chip != 'auto'): base_cmd += ['--chip', chip or arg_chip] if port or arg_port is not None: base_cmd += ['--port', port or arg_port] if baud or arg_baud is not None: base_cmd += ['--baud', str(baud or arg_baud)] usb_jtag_serial_reset = ['--before', 'usb_reset'] if arg_preload_port else [] full_cmd = base_cmd + usb_jtag_serial_reset + 'version'.split(' ') if preload and arg_preload_port and (arg_chip in ['esp32c3', 'esp32s3', 'esp32c6', 'esp32h2']): port_index = base_cmd.index('--port') + 1 base_cmd[port_index] = arg_preload_port preload_cmd = base_cmd + ['--no-stub', 'load_ram', f'{TEST_DIR}/images/ram_helloworld/helloworld-{arg_chip}.bin'] print('\nPreloading dummy binary to disable RTC watchdog...') run_esptool_process(preload_cmd) print('Dummy binary preloaded successfully.') time.sleep(0.3) print(f'''\nRunning the "{'version'}" command...''') output = run_esptool_process(full_cmd) print(output) output = output </DeepExtract> assert f'Ignoring invalid config file {config_file_path}' in output assert "option 'connect_attempts' in section 'esptool' already exists" in output faulty_config = '[esptool]\nconnect_attempts = 9\ntimout = 2\nbits = 2' with self.ConfigFile(config_file_path, faulty_config): <DeepExtract> def run_esptool_process(cmd): print('Executing {}...'.format(' '.join(cmd))) try: output = subprocess.check_output([str(s) for s in cmd], cwd=TEST_DIR, stderr=subprocess.STDOUT) output = output.decode('utf-8') except subprocess.CalledProcessError as e: print(e.output.decode('utf-8')) raise e try: esptool = [os.environ['ESPTOOL_PY']] except KeyError: esptool = ['-m', 'esptool'] trace_arg = ['--trace'] if arg_trace else [] base_cmd = [sys.executable] + esptool + trace_arg if chip or (arg_chip is not None and chip != 'auto'): base_cmd += ['--chip', chip or arg_chip] if port or arg_port is not None: base_cmd += ['--port', port or arg_port] if baud or arg_baud is not None: base_cmd += ['--baud', str(baud or arg_baud)] usb_jtag_serial_reset = ['--before', 'usb_reset'] if arg_preload_port else [] full_cmd = base_cmd + usb_jtag_serial_reset + 'version'.split(' ') if preload and arg_preload_port and (arg_chip in ['esp32c3', 'esp32s3', 'esp32c6', 'esp32h2']): port_index = base_cmd.index('--port') + 1 base_cmd[port_index] = arg_preload_port preload_cmd = base_cmd + ['--no-stub', 'load_ram', f'{TEST_DIR}/images/ram_helloworld/helloworld-{arg_chip}.bin'] print('\nPreloading dummy binary to disable RTC watchdog...') run_esptool_process(preload_cmd) print('Dummy binary preloaded successfully.') time.sleep(0.3) print(f'''\nRunning the "{'version'}" command...''') output = run_esptool_process(full_cmd) print(output) output = output </DeepExtract> assert 'Ignoring unknown config file options: bits, timout' in output config_file_path = os.path.join(os.getcwd(), 'tox.ini') with self.ConfigFile(config_file_path, self.dummy_config): <DeepExtract> def run_esptool_process(cmd): print('Executing {}...'.format(' '.join(cmd))) try: output = subprocess.check_output([str(s) for s in cmd], cwd=TEST_DIR, stderr=subprocess.STDOUT) output = output.decode('utf-8') except subprocess.CalledProcessError as e: print(e.output.decode('utf-8')) raise e try: esptool = [os.environ['ESPTOOL_PY']] except KeyError: esptool = ['-m', 'esptool'] trace_arg = ['--trace'] if arg_trace else [] base_cmd = [sys.executable] + esptool + trace_arg if chip or (arg_chip is not None and chip != 'auto'): base_cmd += ['--chip', chip or arg_chip] if port or arg_port is not None: base_cmd += ['--port', port or arg_port] if baud or arg_baud is not None: base_cmd += ['--baud', str(baud or arg_baud)] usb_jtag_serial_reset = ['--before', 'usb_reset'] if arg_preload_port else [] full_cmd = base_cmd + usb_jtag_serial_reset + 'version'.split(' ') if preload and arg_preload_port and (arg_chip in ['esp32c3', 'esp32s3', 'esp32c6', 'esp32h2']): port_index = base_cmd.index('--port') + 1 base_cmd[port_index] = arg_preload_port preload_cmd = base_cmd + ['--no-stub', 'load_ram', f'{TEST_DIR}/images/ram_helloworld/helloworld-{arg_chip}.bin'] print('\nPreloading dummy binary to disable RTC watchdog...') run_esptool_process(preload_cmd) print('Dummy binary preloaded successfully.') time.sleep(0.3) print(f'''\nRunning the "{'version'}" command...''') output = run_esptool_process(full_cmd) print(output) output = output </DeepExtract> assert f'Loaded custom configuration from {config_file_path}' in output
@pytest.mark.host_test def test_load_config_file(self): config_file_path = os.path.join(os.getcwd(), 'esptool.cfg') with self.ConfigFile(config_file_path, self.dummy_config): def run_esptool_process(cmd): print('Executing {}...'.format(' '.join(cmd))) try: output = subprocess.check_output([str(s) for s in cmd], cwd=TEST_DIR, stderr=subprocess.STDOUT) output = output.decode('utf-8') except subprocess.CalledProcessError as e: print(e.output.decode('utf-8')) raise e try: esptool = [os.environ['ESPTOOL_PY']] except KeyError: esptool = ['-m', 'esptool'] trace_arg = ['--trace'] if arg_trace else [] base_cmd = [sys.executable] + esptool + trace_arg if chip or (arg_chip is not None and chip != 'auto'): base_cmd += ['--chip', chip or arg_chip] if port or arg_port is not None: base_cmd += ['--port', port or arg_port] if baud or arg_baud is not None: base_cmd += ['--baud', str(baud or arg_baud)] usb_jtag_serial_reset = ['--before', 'usb_reset'] if arg_preload_port else [] full_cmd = base_cmd + usb_jtag_serial_reset + 'version'.split(' ') if preload and arg_preload_port and (arg_chip in ['esp32c3', 'esp32s3', 'esp32c6', 'esp32h2']): port_index = base_cmd.index('--port') + 1 base_cmd[port_index] = arg_preload_port preload_cmd = base_cmd + ['--no-stub', 'load_ram', f'{TEST_DIR}/images/ram_helloworld/helloworld-{arg_chip}.bin'] print('\nPreloading dummy binary to disable RTC watchdog...') run_esptool_process(preload_cmd) print('Dummy binary preloaded successfully.') time.sleep(0.3) print(f'''\nRunning the "{'version'}" command...''') output = run_esptool_process(full_cmd) print(output) output = output assert f'Loaded custom configuration from {config_file_path}' in output assert 'Ignoring unknown config file option' not in output assert 'Ignoring invalid config file' not in output with self.ConfigFile(config_file_path, '[wrong section name]'): def run_esptool_process(cmd): print('Executing {}...'.format(' '.join(cmd))) try: output = subprocess.check_output([str(s) for s in cmd], cwd=TEST_DIR, stderr=subprocess.STDOUT) output = output.decode('utf-8') except subprocess.CalledProcessError as e: print(e.output.decode('utf-8')) raise e try: esptool = [os.environ['ESPTOOL_PY']] except KeyError: esptool = ['-m', 'esptool'] trace_arg = ['--trace'] if arg_trace else [] base_cmd = [sys.executable] + esptool + trace_arg if chip or (arg_chip is not None and chip != 'auto'): base_cmd += ['--chip', chip or arg_chip] if port or arg_port is not None: base_cmd += ['--port', port or arg_port] if baud or arg_baud is not None: base_cmd += ['--baud', str(baud or arg_baud)] usb_jtag_serial_reset = ['--before', 'usb_reset'] if arg_preload_port else [] full_cmd = base_cmd + usb_jtag_serial_reset + 'version'.split(' ') if preload and arg_preload_port and (arg_chip in ['esp32c3', 'esp32s3', 'esp32c6', 'esp32h2']): port_index = base_cmd.index('--port') + 1 base_cmd[port_index] = arg_preload_port preload_cmd = base_cmd + ['--no-stub', 'load_ram', f'{TEST_DIR}/images/ram_helloworld/helloworld-{arg_chip}.bin'] print('\nPreloading dummy binary to disable RTC watchdog...') run_esptool_process(preload_cmd) print('Dummy binary preloaded successfully.') time.sleep(0.3) print(f'''\nRunning the "{'version'}" command...''') output = run_esptool_process(full_cmd) print(output) output = output assert f'Loaded custom configuration from {config_file_path}' not in output faulty_config = '[esptool]\nconnect_attempts = 5\nconnect_attempts = 9\n' with self.ConfigFile(config_file_path, faulty_config): def run_esptool_process(cmd): print('Executing {}...'.format(' '.join(cmd))) try: output = subprocess.check_output([str(s) for s in cmd], cwd=TEST_DIR, stderr=subprocess.STDOUT) output = output.decode('utf-8') except subprocess.CalledProcessError as e: print(e.output.decode('utf-8')) raise e try: esptool = [os.environ['ESPTOOL_PY']] except KeyError: esptool = ['-m', 'esptool'] trace_arg = ['--trace'] if arg_trace else [] base_cmd = [sys.executable] + esptool + trace_arg if chip or (arg_chip is not None and chip != 'auto'): base_cmd += ['--chip', chip or arg_chip] if port or arg_port is not None: base_cmd += ['--port', port or arg_port] if baud or arg_baud is not None: base_cmd += ['--baud', str(baud or arg_baud)] usb_jtag_serial_reset = ['--before', 'usb_reset'] if arg_preload_port else [] full_cmd = base_cmd + usb_jtag_serial_reset + 'version'.split(' ') if preload and arg_preload_port and (arg_chip in ['esp32c3', 'esp32s3', 'esp32c6', 'esp32h2']): port_index = base_cmd.index('--port') + 1 base_cmd[port_index] = arg_preload_port preload_cmd = base_cmd + ['--no-stub', 'load_ram', f'{TEST_DIR}/images/ram_helloworld/helloworld-{arg_chip}.bin'] print('\nPreloading dummy binary to disable RTC watchdog...') run_esptool_process(preload_cmd) print('Dummy binary preloaded successfully.') time.sleep(0.3) print(f'''\nRunning the "{'version'}" command...''') output = run_esptool_process(full_cmd) print(output) output = output assert f'Ignoring invalid config file {config_file_path}' in output assert "option 'connect_attempts' in section 'esptool' already exists" in output faulty_config = '[esptool]\nconnect_attempts = 9\ntimout = 2\nbits = 2' with self.ConfigFile(config_file_path, faulty_config): def run_esptool_process(cmd): print('Executing {}...'.format(' '.join(cmd))) try: output = subprocess.check_output([str(s) for s in cmd], cwd=TEST_DIR, stderr=subprocess.STDOUT) output = output.decode('utf-8') except subprocess.CalledProcessError as e: print(e.output.decode('utf-8')) raise e try: esptool = [os.environ['ESPTOOL_PY']] except KeyError: esptool = ['-m', 'esptool'] trace_arg = ['--trace'] if arg_trace else [] base_cmd = [sys.executable] + esptool + trace_arg if chip or (arg_chip is not None and chip != 'auto'): base_cmd += ['--chip', chip or arg_chip] if port or arg_port is not None: base_cmd += ['--port', port or arg_port] if baud or arg_baud is not None: base_cmd += ['--baud', str(baud or arg_baud)] usb_jtag_serial_reset = ['--before', 'usb_reset'] if arg_preload_port else [] full_cmd = base_cmd + usb_jtag_serial_reset + 'version'.split(' ') if preload and arg_preload_port and (arg_chip in ['esp32c3', 'esp32s3', 'esp32c6', 'esp32h2']): port_index = base_cmd.index('--port') + 1 base_cmd[port_index] = arg_preload_port preload_cmd = base_cmd + ['--no-stub', 'load_ram', f'{TEST_DIR}/images/ram_helloworld/helloworld-{arg_chip}.bin'] print('\nPreloading dummy binary to disable RTC watchdog...') run_esptool_process(preload_cmd) print('Dummy binary preloaded successfully.') time.sleep(0.3) print(f'''\nRunning the "{'version'}" command...''') output = run_esptool_process(full_cmd) print(output) output = output assert 'Ignoring unknown config file options: bits, timout' in output config_file_path = os.path.join(os.getcwd(), 'tox.ini') with self.ConfigFile(config_file_path, self.dummy_config): def run_esptool_process(cmd): print('Executing {}...'.format(' '.join(cmd))) try: output = subprocess.check_output([str(s) for s in cmd], cwd=TEST_DIR, stderr=subprocess.STDOUT) output = output.decode('utf-8') except subprocess.CalledProcessError as e: print(e.output.decode('utf-8')) raise e try: esptool = [os.environ['ESPTOOL_PY']] except KeyError: esptool = ['-m', 'esptool'] trace_arg = ['--trace'] if arg_trace else [] base_cmd = [sys.executable] + esptool + trace_arg if chip or (arg_chip is not None and chip != 'auto'): base_cmd += ['--chip', chip or arg_chip] if port or arg_port is not None: base_cmd += ['--port', port or arg_port] if baud or arg_baud is not None: base_cmd += ['--baud', str(baud or arg_baud)] usb_jtag_serial_reset = ['--before', 'usb_reset'] if arg_preload_port else [] full_cmd = base_cmd + usb_jtag_serial_reset + 'version'.split(' ') if preload and arg_preload_port and (arg_chip in ['esp32c3', 'esp32s3', 'esp32c6', 'esp32h2']): port_index = base_cmd.index('--port') + 1 base_cmd[port_index] = arg_preload_port preload_cmd = base_cmd + ['--no-stub', 'load_ram', f'{TEST_DIR}/images/ram_helloworld/helloworld-{arg_chip}.bin'] print('\nPreloading dummy binary to disable RTC watchdog...') run_esptool_process(preload_cmd) print('Dummy binary preloaded successfully.') time.sleep(0.3) print(f'''\nRunning the "{'version'}" command...''') output = run_esptool_process(full_cmd) print(output) output = output assert f'Loaded custom configuration from {config_file_path}' in output
esptool
positive
def test_app_delete(self): app_data = {} <DeepExtract> app_data['name'] = 'abc' + str(randint(0, 5000)) </DeepExtract> app_data['location'] = 'abc' app_data['version'] = 'version' app_data['dep_target'] = 'local' app_data['env_id'] = 1 new_app_id = app.App().insert(app_data) app.App().delete(new_app_id) deleted_app = app.App().get(new_app_id) self.assertIsNone(deleted_app)
def test_app_delete(self): app_data = {} app_data['name'] = 'abc' + str(randint(0, 5000)) app_data['location'] = 'abc' app_data['version'] = 'version' app_data['dep_target'] = 'local' app_data['env_id'] = 1 new_app_id = app.App().insert(app_data) app.App().delete(new_app_id) deleted_app = app.App().get(new_app_id) self.assertIsNone(deleted_app)
caastle
positive
def __init__(self, param_decls: t.Optional[t.Sequence[str]]=None, type: t.Optional[t.Union[types.ParamType, t.Any]]=None, required: bool=False, default: t.Optional[t.Union[t.Any, t.Callable[[], t.Any]]]=None, callback: t.Optional[t.Callable[[Context, 'Parameter', t.Any], t.Any]]=None, nargs: t.Optional[int]=None, multiple: bool=False, metavar: t.Optional[str]=None, expose_value: bool=True, is_eager: bool=False, envvar: t.Optional[t.Union[str, t.Sequence[str]]]=None, shell_complete: t.Optional[t.Callable[[Context, 'Parameter', str], t.Union[t.List['CompletionItem'], t.List[str]]]]=None) -> None: <DeepExtract> raise NotImplementedError() </DeepExtract> self.type = types.convert_type(type, default) if nargs is None: if self.type.is_composite: nargs = self.type.arity else: nargs = 1 self.required = required self.callback = callback self.nargs = nargs self.multiple = multiple self.expose_value = expose_value self.default = default self.is_eager = is_eager self.metavar = metavar self.envvar = envvar self._custom_shell_complete = shell_complete if __debug__: if self.type.is_composite and nargs != self.type.arity: raise ValueError(f"'nargs' must be {self.type.arity} (or None) for type {self.type!r}, but it was {nargs}.") check_default = default if not callable(default) else None if check_default is not None: if multiple: try: check_default = next(_check_iter(check_default), None) except TypeError: raise ValueError("'default' must be a list when 'multiple' is true.") from None if nargs != 1 and check_default is not None: try: <DeepExtract> if isinstance(check_default, str): raise TypeError return iter(check_default) </DeepExtract> except TypeError: if multiple: message = "'default' must be a list of lists when 'multiple' is true and 'nargs' != 1." else: message = "'default' must be a list when 'nargs' != 1." raise ValueError(message) from None if nargs > 1 and len(check_default) != nargs: subject = 'item length' if multiple else 'length' raise ValueError(f"'default' {subject} must match nargs={nargs}.")
def __init__(self, param_decls: t.Optional[t.Sequence[str]]=None, type: t.Optional[t.Union[types.ParamType, t.Any]]=None, required: bool=False, default: t.Optional[t.Union[t.Any, t.Callable[[], t.Any]]]=None, callback: t.Optional[t.Callable[[Context, 'Parameter', t.Any], t.Any]]=None, nargs: t.Optional[int]=None, multiple: bool=False, metavar: t.Optional[str]=None, expose_value: bool=True, is_eager: bool=False, envvar: t.Optional[t.Union[str, t.Sequence[str]]]=None, shell_complete: t.Optional[t.Callable[[Context, 'Parameter', str], t.Union[t.List['CompletionItem'], t.List[str]]]]=None) -> None: raise NotImplementedError() self.type = types.convert_type(type, default) if nargs is None: if self.type.is_composite: nargs = self.type.arity else: nargs = 1 self.required = required self.callback = callback self.nargs = nargs self.multiple = multiple self.expose_value = expose_value self.default = default self.is_eager = is_eager self.metavar = metavar self.envvar = envvar self._custom_shell_complete = shell_complete if __debug__: if self.type.is_composite and nargs != self.type.arity: raise ValueError(f"'nargs' must be {self.type.arity} (or None) for type {self.type!r}, but it was {nargs}.") check_default = default if not callable(default) else None if check_default is not None: if multiple: try: check_default = next(_check_iter(check_default), None) except TypeError: raise ValueError("'default' must be a list when 'multiple' is true.") from None if nargs != 1 and check_default is not None: try: if isinstance(check_default, str): raise TypeError return iter(check_default) except TypeError: if multiple: message = "'default' must be a list of lists when 'multiple' is true and 'nargs' != 1." else: message = "'default' must be a list when 'nargs' != 1." raise ValueError(message) from None if nargs > 1 and len(check_default) != nargs: subject = 'item length' if multiple else 'length' raise ValueError(f"'default' {subject} must match nargs={nargs}.")
click
positive
def findFactors(num, result, prefix): for i in range(1, int(num / 2) + 1): if num % i == 0: tmp = prefix + [i, num // i] tmp.sort() <DeepExtract> for a in result: if tmp == a: return result.append(tmp) </DeepExtract> if i != 1: <DeepExtract> for i in range(1, int(i / 2) + 1): if i % i == 0: tmp = prefix + [num // i] + [i, i // i] tmp.sort() lookup(result, tmp) if i != 1: findFactors(i, result, prefix + [num // i] + [i // i]) findFactors(i // i, result, prefix + [num // i] + [i]) </DeepExtract> <DeepExtract> for i in range(1, int(num // i / 2) + 1): if num // i % i == 0: tmp = prefix + [i] + [i, num // i // i] tmp.sort() lookup(result, tmp) if i != 1: findFactors(i, result, prefix + [i] + [num // i // i]) findFactors(num // i // i, result, prefix + [i] + [i]) </DeepExtract>
def findFactors(num, result, prefix): for i in range(1, int(num / 2) + 1): if num % i == 0: tmp = prefix + [i, num // i] tmp.sort() for a in result: if tmp == a: return result.append(tmp) if i != 1: for i in range(1, int(i / 2) + 1): if i % i == 0: tmp = prefix + [num // i] + [i, i // i] tmp.sort() lookup(result, tmp) if i != 1: findFactors(i, result, prefix + [num // i] + [i // i]) findFactors(i // i, result, prefix + [num // i] + [i]) for i in range(1, int(num // i / 2) + 1): if num // i % i == 0: tmp = prefix + [i] + [i, num // i // i] tmp.sort() lookup(result, tmp) if i != 1: findFactors(i, result, prefix + [i] + [num // i // i]) findFactors(num // i // i, result, prefix + [i] + [i]) </DeepExtract>
challenges
positive
def add_row(self, row): for key in row.keys(): <DeepExtract> if key not in self.columns: self.columns[key] = {'name': key, 'type': column_type, 'friendly_name': key} </DeepExtract> self.rows.append(row)
def add_row(self, row): for key in row.keys(): if key not in self.columns: self.columns[key] = {'name': key, 'type': column_type, 'friendly_name': key} self.rows.append(row)
docker-redash
positive
def test_data_nao_pode_ser_1969_por_padrao_de_itens_criados(self): with api.env.adopt_roles(['Manager']): obj = api.content.create(type='collective.nitf.content', container=self.portal['folder'], id='noticia', title='noticia') transaction.commit() item_date = obj.modified() if obj.EffectiveDate() == 'None' else obj.effective() date = item_date.strftime(LOCAL_TIME_FORMAT) time = item_date.strftime(TIME_FORMAT) <DeepExtract> setRoles(self.portal, TEST_USER_ID, ['Site Administrator']) self.browser.handleErrors = False basic_auth = 'Basic {0}'.format('{0}:{1}'.format(TEST_USER_NAME, TEST_USER_PASSWORD)) self.browser.addHeader('Authorization', basic_auth) </DeepExtract> self.browser.open('{0}/{1}'.format(self.folder.absolute_url(), 'summary_view')) contents_no_spaces = ''.join(self.browser.contents.split()) self.assertIn('<iclass="icon-day"></i>{0}</span><spanclass="summary-view-icon"><iclass="icon-hour"></i>{1}'.format(date, time), contents_no_spaces) self.assertNotIn('<iclass="icon-day"></i>31/12/1969', contents_no_spaces)
def test_data_nao_pode_ser_1969_por_padrao_de_itens_criados(self): with api.env.adopt_roles(['Manager']): obj = api.content.create(type='collective.nitf.content', container=self.portal['folder'], id='noticia', title='noticia') transaction.commit() item_date = obj.modified() if obj.EffectiveDate() == 'None' else obj.effective() date = item_date.strftime(LOCAL_TIME_FORMAT) time = item_date.strftime(TIME_FORMAT) setRoles(self.portal, TEST_USER_ID, ['Site Administrator']) self.browser.handleErrors = False basic_auth = 'Basic {0}'.format('{0}:{1}'.format(TEST_USER_NAME, TEST_USER_PASSWORD)) self.browser.addHeader('Authorization', basic_auth) self.browser.open('{0}/{1}'.format(self.folder.absolute_url(), 'summary_view')) contents_no_spaces = ''.join(self.browser.contents.split()) self.assertIn('<iclass="icon-day"></i>{0}</span><spanclass="summary-view-icon"><iclass="icon-hour"></i>{1}'.format(date, time), contents_no_spaces) self.assertNotIn('<iclass="icon-day"></i>31/12/1969', contents_no_spaces)
brasil.gov.portal
positive
def mon(args): if args.subcommand == 'create': <DeepExtract> cfg = conf.ceph.load(args) if not args.mon: args.mon = get_mon_initial_members(args, error_on_empty=True, _cfg=cfg) if args.keyrings: monitor_keyring = concatenate_keyrings(args) else: keyring_path = '{cluster}.mon.keyring'.format(cluster=args.cluster) try: monitor_keyring = files.read_file(keyring_path) except IOError: LOG.warning('keyring (%s) not found, creating a new one' % keyring_path) new_mon_keyring(args) monitor_keyring = files.read_file(keyring_path) LOG.debug('Deploying mon, cluster %s hosts %s', args.cluster, ' '.join(args.mon)) errors = 0 for (name, host) in mon_hosts(args.mon): try: LOG.debug('detecting platform for host %s ...', name) distro = hosts.get(host, username=args.username, callbacks=[packages.ceph_is_installed]) LOG.info('distro info: %s %s %s', distro.name, distro.release, distro.codename) rlogger = logging.getLogger(name) hostname_is_compatible(distro.conn, rlogger, name) rlogger.debug('deploying mon to %s', name) distro.mon.create(distro, args, monitor_keyring) time.sleep(2) mon_status(distro.conn, rlogger, name, args) catch_mon_errors(distro.conn, rlogger, name, cfg, args) distro.conn.exit() except RuntimeError as e: LOG.error(e) errors += 1 if errors: raise exc.GenericError('Failed to create %d monitors' % errors) </DeepExtract> elif args.subcommand == 'add': <DeepExtract> cfg = conf.ceph.load(args) mon_host = args.mon[0] try: with open('{cluster}.mon.keyring'.format(cluster=args.cluster), 'rb') as f: monitor_keyring = f.read() except IOError: raise RuntimeError("mon keyring not found; run 'new' to create a new cluster") LOG.info('ensuring configuration of new mon host: %s', mon_host) args.client = args.mon admin.admin(args) LOG.debug('Adding mon to cluster %s, host %s', args.cluster, mon_host) mon_section = 'mon.%s' % mon_host cfg_mon_addr = cfg.safe_get(mon_section, 'mon addr') if args.address: LOG.debug('using mon address via --address %s' % args.address) mon_ip = args.address elif cfg_mon_addr: LOG.debug('using mon address via configuration: %s' % cfg_mon_addr) mon_ip = cfg_mon_addr else: mon_ip = net.get_nonlocal_ip(mon_host) LOG.debug('using mon address by resolving host: %s' % mon_ip) try: LOG.debug('detecting platform for host %s ...', mon_host) distro = hosts.get(mon_host, username=args.username, callbacks=[packages.ceph_is_installed]) LOG.info('distro info: %s %s %s', distro.name, distro.release, distro.codename) rlogger = logging.getLogger(mon_host) hostname_is_compatible(distro.conn, rlogger, mon_host) rlogger.debug('adding mon to %s', mon_host) args.address = mon_ip distro.mon.add(distro, args, monitor_keyring) time.sleep(2) catch_mon_errors(distro.conn, rlogger, mon_host, cfg, args) mon_status(distro.conn, rlogger, mon_host, args) distro.conn.exit() except RuntimeError as e: LOG.error(e) raise exc.GenericError('Failed to add monitor to host: %s' % mon_host) </DeepExtract> elif args.subcommand == 'destroy': <DeepExtract> errors = 0 for (name, host) in mon_hosts(args.mon): try: LOG.debug('Removing mon from %s', name) distro = hosts.get(host, username=args.username, callbacks=[packages.ceph_is_installed]) hostname = distro.conn.remote_module.shortname() destroy_mon(distro.conn, args.cluster, hostname) distro.conn.exit() except RuntimeError as e: LOG.error(e) errors += 1 if errors: raise exc.GenericError('Failed to destroy %d monitors' % errors) </DeepExtract> elif args.subcommand == 'create-initial': <DeepExtract> mon_initial_members = get_mon_initial_members(args, error_on_empty=True) args.mon = mon_initial_members mon_create(args) mon_in_quorum = set([]) mon_members = set([host for host in mon_initial_members]) for host in mon_initial_members: mon_name = 'mon.%s' % host LOG.info('processing monitor %s', mon_name) sleeps = [20, 20, 15, 10, 10, 5] tries = 5 rlogger = logging.getLogger(host) distro = hosts.get(host, username=args.username, callbacks=[packages.ceph_is_installed]) while tries: status = mon_status_check(distro.conn, rlogger, host, args) has_reached_quorum = status.get('state', '') in ['peon', 'leader'] if not has_reached_quorum: LOG.warning('%s monitor is not yet in quorum, tries left: %s' % (mon_name, tries)) tries -= 1 sleep_seconds = sleeps.pop() LOG.warning('waiting %s seconds before retrying', sleep_seconds) time.sleep(sleep_seconds) else: mon_in_quorum.add(host) LOG.info('%s monitor has reached quorum!', mon_name) break distro.conn.exit() if mon_in_quorum == mon_members: LOG.info('all initial monitors are running and have formed quorum') LOG.info('Running gatherkeys...') gatherkeys.gatherkeys(args) else: LOG.error('Some monitors have still not reached quorum:') for host in mon_members - mon_in_quorum: LOG.error('%s', host) raise SystemExit('cluster may not be in a healthy state') </DeepExtract> else: LOG.error('subcommand %s not implemented', args.subcommand)
def mon(args): if args.subcommand == 'create': cfg = conf.ceph.load(args) if not args.mon: args.mon = get_mon_initial_members(args, error_on_empty=True, _cfg=cfg) if args.keyrings: monitor_keyring = concatenate_keyrings(args) else: keyring_path = '{cluster}.mon.keyring'.format(cluster=args.cluster) try: monitor_keyring = files.read_file(keyring_path) except IOError: LOG.warning('keyring (%s) not found, creating a new one' % keyring_path) new_mon_keyring(args) monitor_keyring = files.read_file(keyring_path) LOG.debug('Deploying mon, cluster %s hosts %s', args.cluster, ' '.join(args.mon)) errors = 0 for (name, host) in mon_hosts(args.mon): try: LOG.debug('detecting platform for host %s ...', name) distro = hosts.get(host, username=args.username, callbacks=[packages.ceph_is_installed]) LOG.info('distro info: %s %s %s', distro.name, distro.release, distro.codename) rlogger = logging.getLogger(name) hostname_is_compatible(distro.conn, rlogger, name) rlogger.debug('deploying mon to %s', name) distro.mon.create(distro, args, monitor_keyring) time.sleep(2) mon_status(distro.conn, rlogger, name, args) catch_mon_errors(distro.conn, rlogger, name, cfg, args) distro.conn.exit() except RuntimeError as e: LOG.error(e) errors += 1 if errors: raise exc.GenericError('Failed to create %d monitors' % errors) elif args.subcommand == 'add': cfg = conf.ceph.load(args) mon_host = args.mon[0] try: with open('{cluster}.mon.keyring'.format(cluster=args.cluster), 'rb') as f: monitor_keyring = f.read() except IOError: raise RuntimeError("mon keyring not found; run 'new' to create a new cluster") LOG.info('ensuring configuration of new mon host: %s', mon_host) args.client = args.mon admin.admin(args) LOG.debug('Adding mon to cluster %s, host %s', args.cluster, mon_host) mon_section = 'mon.%s' % mon_host cfg_mon_addr = cfg.safe_get(mon_section, 'mon addr') if args.address: LOG.debug('using mon address via --address %s' % args.address) mon_ip = args.address elif cfg_mon_addr: LOG.debug('using mon address via configuration: %s' % cfg_mon_addr) mon_ip = cfg_mon_addr else: mon_ip = net.get_nonlocal_ip(mon_host) LOG.debug('using mon address by resolving host: %s' % mon_ip) try: LOG.debug('detecting platform for host %s ...', mon_host) distro = hosts.get(mon_host, username=args.username, callbacks=[packages.ceph_is_installed]) LOG.info('distro info: %s %s %s', distro.name, distro.release, distro.codename) rlogger = logging.getLogger(mon_host) hostname_is_compatible(distro.conn, rlogger, mon_host) rlogger.debug('adding mon to %s', mon_host) args.address = mon_ip distro.mon.add(distro, args, monitor_keyring) time.sleep(2) catch_mon_errors(distro.conn, rlogger, mon_host, cfg, args) mon_status(distro.conn, rlogger, mon_host, args) distro.conn.exit() except RuntimeError as e: LOG.error(e) raise exc.GenericError('Failed to add monitor to host: %s' % mon_host) elif args.subcommand == 'destroy': errors = 0 for (name, host) in mon_hosts(args.mon): try: LOG.debug('Removing mon from %s', name) distro = hosts.get(host, username=args.username, callbacks=[packages.ceph_is_installed]) hostname = distro.conn.remote_module.shortname() destroy_mon(distro.conn, args.cluster, hostname) distro.conn.exit() except RuntimeError as e: LOG.error(e) errors += 1 if errors: raise exc.GenericError('Failed to destroy %d monitors' % errors) elif args.subcommand == 'create-initial': mon_initial_members = get_mon_initial_members(args, error_on_empty=True) args.mon = mon_initial_members mon_create(args) mon_in_quorum = set([]) mon_members = set([host for host in mon_initial_members]) for host in mon_initial_members: mon_name = 'mon.%s' % host LOG.info('processing monitor %s', mon_name) sleeps = [20, 20, 15, 10, 10, 5] tries = 5 rlogger = logging.getLogger(host) distro = hosts.get(host, username=args.username, callbacks=[packages.ceph_is_installed]) while tries: status = mon_status_check(distro.conn, rlogger, host, args) has_reached_quorum = status.get('state', '') in ['peon', 'leader'] if not has_reached_quorum: LOG.warning('%s monitor is not yet in quorum, tries left: %s' % (mon_name, tries)) tries -= 1 sleep_seconds = sleeps.pop() LOG.warning('waiting %s seconds before retrying', sleep_seconds) time.sleep(sleep_seconds) else: mon_in_quorum.add(host) LOG.info('%s monitor has reached quorum!', mon_name) break distro.conn.exit() if mon_in_quorum == mon_members: LOG.info('all initial monitors are running and have formed quorum') LOG.info('Running gatherkeys...') gatherkeys.gatherkeys(args) else: LOG.error('Some monitors have still not reached quorum:') for host in mon_members - mon_in_quorum: LOG.error('%s', host) raise SystemExit('cluster may not be in a healthy state') else: LOG.error('subcommand %s not implemented', args.subcommand)
ceph-deploy
positive
@mock.patch('alot.db.utils.settings.get', mock.Mock(return_value=True)) def test_prefer_plaintext_mixed(self): expected = 'text/plain' <DeepExtract> mail = EmailMessage() set_basic_headers(mail) mail.set_content('This is an email') mail.add_alternative('<!DOCTYPE html><html><body>This is an html email</body></html>', subtype='html') mail = mail </DeepExtract> actual = utils.get_body_part(mail).get_content_type() self.assertEqual(actual, expected)
@mock.patch('alot.db.utils.settings.get', mock.Mock(return_value=True)) def test_prefer_plaintext_mixed(self): expected = 'text/plain' mail = EmailMessage() set_basic_headers(mail) mail.set_content('This is an email') mail.add_alternative('<!DOCTYPE html><html><body>This is an html email</body></html>', subtype='html') mail = mail actual = utils.get_body_part(mail).get_content_type() self.assertEqual(actual, expected)
alot
positive
def get(params, optimizer, learning_rate=None, decay=None, weight_decay=0): """Retrieves an Optimizer instance.""" if isinstance(optimizer, torch.optim.Optimizer): optim = optimizer elif optimizer in ['L-BFGS', 'L-BFGS-B']: if weight_decay > 0: raise ValueError("L-BFGS optimizer doesn't support weight_decay > 0") if learning_rate is not None or decay is not None: print('Warning: learning rate is ignored for {}'.format(optimizer)) optim = torch.optim.LBFGS(params, lr=1, max_iter=LBFGS_options['iter_per_step'], max_eval=LBFGS_options['fun_per_step'], tolerance_grad=LBFGS_options['gtol'], tolerance_change=LBFGS_options['ftol'], history_size=LBFGS_options['maxcor'], line_search_fn=None) else: if learning_rate is None: raise ValueError('No learning rate for {}.'.format(optimizer)) if optimizer == 'sgd': optim = torch.optim.SGD(params, lr=learning_rate, weight_decay=weight_decay) elif optimizer == 'rmsprop': optim = torch.optim.RMSprop(params, lr=learning_rate, weight_decay=weight_decay) elif optimizer == 'adam': optim = torch.optim.Adam(params, lr=learning_rate, weight_decay=weight_decay) elif optimizer == 'adamw': if weight_decay == 0: raise ValueError('AdamW optimizer requires non-zero weight decay') optim = torch.optim.AdamW(params, lr=learning_rate, weight_decay=weight_decay) else: raise NotImplementedError(f'{optimizer} to be implemented for backend pytorch.') <DeepExtract> if decay is None: lr_scheduler = None if decay[0] == 'step': lr_scheduler = torch.optim.lr_scheduler.StepLR(optim, step_size=decay[1], gamma=decay[2]) raise NotImplementedError(f'{decay[0]} learning rate scheduler to be implemented for backend pytorch.') </DeepExtract> return (optim, lr_scheduler)
def get(params, optimizer, learning_rate=None, decay=None, weight_decay=0): """Retrieves an Optimizer instance.""" if isinstance(optimizer, torch.optim.Optimizer): optim = optimizer elif optimizer in ['L-BFGS', 'L-BFGS-B']: if weight_decay > 0: raise ValueError("L-BFGS optimizer doesn't support weight_decay > 0") if learning_rate is not None or decay is not None: print('Warning: learning rate is ignored for {}'.format(optimizer)) optim = torch.optim.LBFGS(params, lr=1, max_iter=LBFGS_options['iter_per_step'], max_eval=LBFGS_options['fun_per_step'], tolerance_grad=LBFGS_options['gtol'], tolerance_change=LBFGS_options['ftol'], history_size=LBFGS_options['maxcor'], line_search_fn=None) else: if learning_rate is None: raise ValueError('No learning rate for {}.'.format(optimizer)) if optimizer == 'sgd': optim = torch.optim.SGD(params, lr=learning_rate, weight_decay=weight_decay) elif optimizer == 'rmsprop': optim = torch.optim.RMSprop(params, lr=learning_rate, weight_decay=weight_decay) elif optimizer == 'adam': optim = torch.optim.Adam(params, lr=learning_rate, weight_decay=weight_decay) elif optimizer == 'adamw': if weight_decay == 0: raise ValueError('AdamW optimizer requires non-zero weight decay') optim = torch.optim.AdamW(params, lr=learning_rate, weight_decay=weight_decay) else: raise NotImplementedError(f'{optimizer} to be implemented for backend pytorch.') if decay is None: lr_scheduler = None if decay[0] == 'step': lr_scheduler = torch.optim.lr_scheduler.StepLR(optim, step_size=decay[1], gamma=decay[2]) raise NotImplementedError(f'{decay[0]} learning rate scheduler to be implemented for backend pytorch.') return (optim, lr_scheduler)
deepxde
positive
def _send_initially(message, messageerror_monitor=None): """Put the message on the wire for the first time, starting retransmission timeouts""" self.log.debug('Sending message %r', message) if message.mtype is CON: assert messageerror_monitor is not None, 'messageerror_monitor needs to be set for CONs' <DeepExtract> key = (message.remote, message.mid) if message.remote not in self._backlogs: self._backlogs[message.remote] = [] timeout = random.uniform(message.transport_tuning.ACK_TIMEOUT, message.transport_tuning.ACK_TIMEOUT * message.transport_tuning.ACK_RANDOM_FACTOR) next_retransmission = self._schedule_retransmit(message, timeout, 0) self._active_exchanges[key] = (messageerror_monitor, next_retransmission) self.log.debug('Exchange added, message ID: %d.', message.mid) </DeepExtract> <DeepExtract> key = (message.remote, message.mid) if key in self._recent_messages: self._recent_messages[key] = message </DeepExtract> <DeepExtract> self.message_interface.send(message) </DeepExtract>
def _send_initially(message, messageerror_monitor=None): """Put the message on the wire for the first time, starting retransmission timeouts""" self.log.debug('Sending message %r', message) if message.mtype is CON: assert messageerror_monitor is not None, 'messageerror_monitor needs to be set for CONs' key = (message.remote, message.mid) if message.remote not in self._backlogs: self._backlogs[message.remote] = [] timeout = random.uniform(message.transport_tuning.ACK_TIMEOUT, message.transport_tuning.ACK_TIMEOUT * message.transport_tuning.ACK_RANDOM_FACTOR) next_retransmission = self._schedule_retransmit(message, timeout, 0) self._active_exchanges[key] = (messageerror_monitor, next_retransmission) self.log.debug('Exchange added, message ID: %d.', message.mid) key = (message.remote, message.mid) if key in self._recent_messages: self._recent_messages[key] = message self.message_interface.send(message) </DeepExtract>
aiocoap
positive
def validate(self): url_config = self._meta.get('url_config') if url_config: <DeepExtract> if 'auth_type' not in url_config: self._error("'auth_type' is required in lambda's url config") auth_types = [IAM_AUTH_TYPE, NONE_AUTH_TYPE] if url_config['auth_type'] not in auth_types: self._error(f"'auth_type' must be equal to one of these: {', '.join(auth_types)}") cors = url_config.get('cors') if cors and (not isinstance(cors, dict)): self._error("'cors' parameter in lambda config must be a dict") if cors: allowed_parameters = {'allow_credentials', 'allow_headers', 'allow_methods', 'allow_origins', 'expose_headers', 'max_age'} impostors = set(cors.keys()) - allowed_parameters if impostors: self._error(f'Only these parameters are allowed: {allowed_parameters}') </DeepExtract> ephemeral_storage = self._meta.get('ephemeral_storage') if ephemeral_storage: <DeepExtract> if not isinstance(ephemeral_storage, int): self._error(f"Ephemeral storage size must an integer but not '{type(ephemeral_storage).__name__}'") if not 512 <= ephemeral_storage <= 10240: self._error('Ephemeral storage size must be between 512 and 10240 MB') </DeepExtract>
def validate(self): url_config = self._meta.get('url_config') if url_config: if 'auth_type' not in url_config: self._error("'auth_type' is required in lambda's url config") auth_types = [IAM_AUTH_TYPE, NONE_AUTH_TYPE] if url_config['auth_type'] not in auth_types: self._error(f"'auth_type' must be equal to one of these: {', '.join(auth_types)}") cors = url_config.get('cors') if cors and (not isinstance(cors, dict)): self._error("'cors' parameter in lambda config must be a dict") if cors: allowed_parameters = {'allow_credentials', 'allow_headers', 'allow_methods', 'allow_origins', 'expose_headers', 'max_age'} impostors = set(cors.keys()) - allowed_parameters if impostors: self._error(f'Only these parameters are allowed: {allowed_parameters}') ephemeral_storage = self._meta.get('ephemeral_storage') if ephemeral_storage: if not isinstance(ephemeral_storage, int): self._error(f"Ephemeral storage size must an integer but not '{type(ephemeral_storage).__name__}'") if not 512 <= ephemeral_storage <= 10240: self._error('Ephemeral storage size must be between 512 and 10240 MB') </DeepExtract>
aws-syndicate
positive
def attach_subscription(): """Attach a specific subscription to the registered OS. If no subscription ID has been provided through command line, let the user interactively choose one. """ if tool_opts.activation_key: loggerinst.info('Using the activation key provided through the command line...') return True pool = ['subscription-manager', 'attach'] if tool_opts.auto_attach: pool.append('--auto') loggerinst.info('Auto-attaching compatible subscriptions to the system ...') elif tool_opts.pool: pool.extend(['--pool', tool_opts.pool]) loggerinst.info('Attaching provided subscription pool ID to the system ...') else: <DeepExtract> releaver_created = False if system_info.version.major >= 8: if not os.path.exists(DNF_RELEASEVER_FILE): with open(DNF_RELEASEVER_FILE, 'w') as handler: handler.write(system_info.original_releasever) releaver_created = True (subs_raw, ret_code) = utils.run_subprocess(['subscription-manager', 'list', '--available'], print_output=False) if releaver_created: os.remove(DNF_RELEASEVER_FILE) if ret_code != 0: loggerinst.critical('Unable to get list of available subscriptions:\n%s' % subs_raw) subs_list = list(get_sub(subs_raw)) </DeepExtract> if len(subs_list) == 0: loggerinst.warning('No subscription available for the conversion.') return False elif len(subs_list) == 1: sub_num = 0 loggerinst.info(' %s is the only subscription available, it will automatically be selected for the conversion.' % subs_list[0].pool_id) else: loggerinst.info('Manually select subscription appropriate for the conversion') <DeepExtract> loggerinst.info('Choose one of your subscriptions that is to be used for converting this system to RHEL:') for (index, sub) in enumerate(subs_list): index += 1 loggerinst.info('\n======= Subscription number %d =======\n\n%s' % (index, sub.sub_raw)) </DeepExtract> sub_num = utils.let_user_choose_item(len(subs_list), 'subscription') loggerinst.info('Attaching subscription with pool ID %s to the system ...' % subs_list[sub_num].pool_id) pool.extend(['--pool', subs_list[sub_num].pool_id]) (_, ret_code) = utils.run_subprocess(pool) if ret_code != 0: loggerinst.critical('Unsuccessful attachment of a subscription.') return True
def attach_subscription(): """Attach a specific subscription to the registered OS. If no subscription ID has been provided through command line, let the user interactively choose one. """ if tool_opts.activation_key: loggerinst.info('Using the activation key provided through the command line...') return True pool = ['subscription-manager', 'attach'] if tool_opts.auto_attach: pool.append('--auto') loggerinst.info('Auto-attaching compatible subscriptions to the system ...') elif tool_opts.pool: pool.extend(['--pool', tool_opts.pool]) loggerinst.info('Attaching provided subscription pool ID to the system ...') else: releaver_created = False if system_info.version.major >= 8: if not os.path.exists(DNF_RELEASEVER_FILE): with open(DNF_RELEASEVER_FILE, 'w') as handler: handler.write(system_info.original_releasever) releaver_created = True (subs_raw, ret_code) = utils.run_subprocess(['subscription-manager', 'list', '--available'], print_output=False) if releaver_created: os.remove(DNF_RELEASEVER_FILE) if ret_code != 0: loggerinst.critical('Unable to get list of available subscriptions:\n%s' % subs_raw) subs_list = list(get_sub(subs_raw)) if len(subs_list) == 0: loggerinst.warning('No subscription available for the conversion.') return False elif len(subs_list) == 1: sub_num = 0 loggerinst.info(' %s is the only subscription available, it will automatically be selected for the conversion.' % subs_list[0].pool_id) else: loggerinst.info('Manually select subscription appropriate for the conversion') loggerinst.info('Choose one of your subscriptions that is to be used for converting this system to RHEL:') for (index, sub) in enumerate(subs_list): index += 1 loggerinst.info('\n======= Subscription number %d =======\n\n%s' % (index, sub.sub_raw)) sub_num = utils.let_user_choose_item(len(subs_list), 'subscription') loggerinst.info('Attaching subscription with pool ID %s to the system ...' % subs_list[sub_num].pool_id) pool.extend(['--pool', subs_list[sub_num].pool_id]) (_, ret_code) = utils.run_subprocess(pool) if ret_code != 0: loggerinst.critical('Unsuccessful attachment of a subscription.') return True
convert2rhel
positive
def test_tokenize_roundtrip(self): def T(serialized_script, expected_tokens, test_roundtrip=True): serialized_script = x(serialized_script) script_obj = CScript(serialized_script) actual_tokens = list(script_obj) self.assertEqual(actual_tokens, expected_tokens) if test_roundtrip: recreated_script = CScript(actual_tokens) self.assertEqual(recreated_script, serialized_script) <DeepExtract> '' = x('') [] = x([]) serialized_data = CScriptOp.encode_op_pushdata('') self.assertEqual(serialized_data, []) </DeepExtract> <DeepExtract> '00' = x('00') [b''] = x([b'']) serialized_data = CScriptOp.encode_op_pushdata('00') self.assertEqual(serialized_data, [b'']) </DeepExtract> <DeepExtract> '0100' = x('0100') [b'\x00'] = x([b'\x00']) serialized_data = CScriptOp.encode_op_pushdata('0100') self.assertEqual(serialized_data, [b'\x00']) </DeepExtract> <DeepExtract> '4b' + 'ff' * 75 = x('4b' + 'ff' * 75) [b'\xff' * 75] = x([b'\xff' * 75]) serialized_data = CScriptOp.encode_op_pushdata('4b' + 'ff' * 75) self.assertEqual(serialized_data, [b'\xff' * 75]) </DeepExtract> <DeepExtract> '4c00' = x('4c00') [b''] = x([b'']) serialized_data = CScriptOp.encode_op_pushdata('4c00') self.assertEqual(serialized_data, [b'']) </DeepExtract> <DeepExtract> '4c04deadbeef' = x('4c04deadbeef') [x('deadbeef')] = x([x('deadbeef')]) serialized_data = CScriptOp.encode_op_pushdata('4c04deadbeef') self.assertEqual(serialized_data, [x('deadbeef')]) </DeepExtract> <DeepExtract> '4d0000' = x('4d0000') [b''] = x([b'']) serialized_data = CScriptOp.encode_op_pushdata('4d0000') self.assertEqual(serialized_data, [b'']) </DeepExtract> <DeepExtract> '4d0400deadbeef' = x('4d0400deadbeef') [x('deadbeef')] = x([x('deadbeef')]) serialized_data = CScriptOp.encode_op_pushdata('4d0400deadbeef') self.assertEqual(serialized_data, [x('deadbeef')]) </DeepExtract> <DeepExtract> '4e00000000' = x('4e00000000') [b''] = x([b'']) serialized_data = CScriptOp.encode_op_pushdata('4e00000000') self.assertEqual(serialized_data, [b'']) </DeepExtract> <DeepExtract> '4e04000000deadbeef' = x('4e04000000deadbeef') [x('deadbeef')] = x([x('deadbeef')]) serialized_data = CScriptOp.encode_op_pushdata('4e04000000deadbeef') self.assertEqual(serialized_data, [x('deadbeef')]) </DeepExtract> <DeepExtract> '4f' = x('4f') [OP_1NEGATE] = x([OP_1NEGATE]) serialized_data = CScriptOp.encode_op_pushdata('4f') self.assertEqual(serialized_data, [OP_1NEGATE]) </DeepExtract> <DeepExtract> '51' = x('51') [1] = x([1]) serialized_data = CScriptOp.encode_op_pushdata('51') self.assertEqual(serialized_data, [1]) </DeepExtract> <DeepExtract> '52' = x('52') [2] = x([2]) serialized_data = CScriptOp.encode_op_pushdata('52') self.assertEqual(serialized_data, [2]) </DeepExtract> <DeepExtract> '53' = x('53') [3] = x([3]) serialized_data = CScriptOp.encode_op_pushdata('53') self.assertEqual(serialized_data, [3]) </DeepExtract> <DeepExtract> '54' = x('54') [4] = x([4]) serialized_data = CScriptOp.encode_op_pushdata('54') self.assertEqual(serialized_data, [4]) </DeepExtract> <DeepExtract> '55' = x('55') [5] = x([5]) serialized_data = CScriptOp.encode_op_pushdata('55') self.assertEqual(serialized_data, [5]) </DeepExtract> <DeepExtract> '56' = x('56') [6] = x([6]) serialized_data = CScriptOp.encode_op_pushdata('56') self.assertEqual(serialized_data, [6]) </DeepExtract> <DeepExtract> '57' = x('57') [7] = x([7]) serialized_data = CScriptOp.encode_op_pushdata('57') self.assertEqual(serialized_data, [7]) </DeepExtract> <DeepExtract> '58' = x('58') [8] = x([8]) serialized_data = CScriptOp.encode_op_pushdata('58') self.assertEqual(serialized_data, [8]) </DeepExtract> <DeepExtract> '59' = x('59') [9] = x([9]) serialized_data = CScriptOp.encode_op_pushdata('59') self.assertEqual(serialized_data, [9]) </DeepExtract> <DeepExtract> '5a' = x('5a') [10] = x([10]) serialized_data = CScriptOp.encode_op_pushdata('5a') self.assertEqual(serialized_data, [10]) </DeepExtract> <DeepExtract> '5b' = x('5b') [11] = x([11]) serialized_data = CScriptOp.encode_op_pushdata('5b') self.assertEqual(serialized_data, [11]) </DeepExtract> <DeepExtract> '5c' = x('5c') [12] = x([12]) serialized_data = CScriptOp.encode_op_pushdata('5c') self.assertEqual(serialized_data, [12]) </DeepExtract> <DeepExtract> '5d' = x('5d') [13] = x([13]) serialized_data = CScriptOp.encode_op_pushdata('5d') self.assertEqual(serialized_data, [13]) </DeepExtract> <DeepExtract> '5e' = x('5e') [14] = x([14]) serialized_data = CScriptOp.encode_op_pushdata('5e') self.assertEqual(serialized_data, [14]) </DeepExtract> <DeepExtract> '5f' = x('5f') [15] = x([15]) serialized_data = CScriptOp.encode_op_pushdata('5f') self.assertEqual(serialized_data, [15]) </DeepExtract> <DeepExtract> '9b' = x('9b') [OP_BOOLOR] = x([OP_BOOLOR]) serialized_data = CScriptOp.encode_op_pushdata('9b') self.assertEqual(serialized_data, [OP_BOOLOR]) </DeepExtract> <DeepExtract> '9a9b' = x('9a9b') [OP_BOOLAND, OP_BOOLOR] = x([OP_BOOLAND, OP_BOOLOR]) serialized_data = CScriptOp.encode_op_pushdata('9a9b') self.assertEqual(serialized_data, [OP_BOOLAND, OP_BOOLOR]) </DeepExtract> <DeepExtract> 'ff' = x('ff') [OP_INVALIDOPCODE] = x([OP_INVALIDOPCODE]) serialized_data = CScriptOp.encode_op_pushdata('ff') self.assertEqual(serialized_data, [OP_INVALIDOPCODE]) </DeepExtract> <DeepExtract> 'fafbfcfd' = x('fafbfcfd') [CScriptOp(250), CScriptOp(251), CScriptOp(252), CScriptOp(253)] = x([CScriptOp(250), CScriptOp(251), CScriptOp(252), CScriptOp(253)]) serialized_data = CScriptOp.encode_op_pushdata('fafbfcfd') self.assertEqual(serialized_data, [CScriptOp(250), CScriptOp(251), CScriptOp(252), CScriptOp(253)]) </DeepExtract> <DeepExtract> '512103e2a0e6a91fa985ce4dda7f048fca5ec8264292aed9290594321aa53d37fdea32410478d430274f8c5ec1321338151e9f27f4c676a008bdf8638d07c0b6be9ab35c71a1518063243acd4dfe96b66e3f2ec8013c8e072cd09b3834a19f81f659cc345552ae' = x('512103e2a0e6a91fa985ce4dda7f048fca5ec8264292aed9290594321aa53d37fdea32410478d430274f8c5ec1321338151e9f27f4c676a008bdf8638d07c0b6be9ab35c71a1518063243acd4dfe96b66e3f2ec8013c8e072cd09b3834a19f81f659cc345552ae') [1, x('03e2a0e6a91fa985ce4dda7f048fca5ec8264292aed9290594321aa53d37fdea32'), x('0478d430274f8c5ec1321338151e9f27f4c676a008bdf8638d07c0b6be9ab35c71a1518063243acd4dfe96b66e3f2ec8013c8e072cd09b3834a19f81f659cc3455'), 2, OP_CHECKMULTISIG] = x([1, x('03e2a0e6a91fa985ce4dda7f048fca5ec8264292aed9290594321aa53d37fdea32'), x('0478d430274f8c5ec1321338151e9f27f4c676a008bdf8638d07c0b6be9ab35c71a1518063243acd4dfe96b66e3f2ec8013c8e072cd09b3834a19f81f659cc3455'), 2, OP_CHECKMULTISIG]) serialized_data = CScriptOp.encode_op_pushdata('512103e2a0e6a91fa985ce4dda7f048fca5ec8264292aed9290594321aa53d37fdea32410478d430274f8c5ec1321338151e9f27f4c676a008bdf8638d07c0b6be9ab35c71a1518063243acd4dfe96b66e3f2ec8013c8e072cd09b3834a19f81f659cc345552ae') self.assertEqual(serialized_data, [1, x('03e2a0e6a91fa985ce4dda7f048fca5ec8264292aed9290594321aa53d37fdea32'), x('0478d430274f8c5ec1321338151e9f27f4c676a008bdf8638d07c0b6be9ab35c71a1518063243acd4dfe96b66e3f2ec8013c8e072cd09b3834a19f81f659cc3455'), 2, OP_CHECKMULTISIG]) </DeepExtract>
def test_tokenize_roundtrip(self): def T(serialized_script, expected_tokens, test_roundtrip=True): serialized_script = x(serialized_script) script_obj = CScript(serialized_script) actual_tokens = list(script_obj) self.assertEqual(actual_tokens, expected_tokens) if test_roundtrip: recreated_script = CScript(actual_tokens) self.assertEqual(recreated_script, serialized_script) '' = x('') [] = x([]) serialized_data = CScriptOp.encode_op_pushdata('') self.assertEqual(serialized_data, []) '00' = x('00') [b''] = x([b'']) serialized_data = CScriptOp.encode_op_pushdata('00') self.assertEqual(serialized_data, [b'']) '0100' = x('0100') [b'\x00'] = x([b'\x00']) serialized_data = CScriptOp.encode_op_pushdata('0100') self.assertEqual(serialized_data, [b'\x00']) '4b' + 'ff' * 75 = x('4b' + 'ff' * 75) [b'\xff' * 75] = x([b'\xff' * 75]) serialized_data = CScriptOp.encode_op_pushdata('4b' + 'ff' * 75) self.assertEqual(serialized_data, [b'\xff' * 75]) '4c00' = x('4c00') [b''] = x([b'']) serialized_data = CScriptOp.encode_op_pushdata('4c00') self.assertEqual(serialized_data, [b'']) '4c04deadbeef' = x('4c04deadbeef') [x('deadbeef')] = x([x('deadbeef')]) serialized_data = CScriptOp.encode_op_pushdata('4c04deadbeef') self.assertEqual(serialized_data, [x('deadbeef')]) '4d0000' = x('4d0000') [b''] = x([b'']) serialized_data = CScriptOp.encode_op_pushdata('4d0000') self.assertEqual(serialized_data, [b'']) '4d0400deadbeef' = x('4d0400deadbeef') [x('deadbeef')] = x([x('deadbeef')]) serialized_data = CScriptOp.encode_op_pushdata('4d0400deadbeef') self.assertEqual(serialized_data, [x('deadbeef')]) '4e00000000' = x('4e00000000') [b''] = x([b'']) serialized_data = CScriptOp.encode_op_pushdata('4e00000000') self.assertEqual(serialized_data, [b'']) '4e04000000deadbeef' = x('4e04000000deadbeef') [x('deadbeef')] = x([x('deadbeef')]) serialized_data = CScriptOp.encode_op_pushdata('4e04000000deadbeef') self.assertEqual(serialized_data, [x('deadbeef')]) '4f' = x('4f') [OP_1NEGATE] = x([OP_1NEGATE]) serialized_data = CScriptOp.encode_op_pushdata('4f') self.assertEqual(serialized_data, [OP_1NEGATE]) '51' = x('51') [1] = x([1]) serialized_data = CScriptOp.encode_op_pushdata('51') self.assertEqual(serialized_data, [1]) '52' = x('52') [2] = x([2]) serialized_data = CScriptOp.encode_op_pushdata('52') self.assertEqual(serialized_data, [2]) '53' = x('53') [3] = x([3]) serialized_data = CScriptOp.encode_op_pushdata('53') self.assertEqual(serialized_data, [3]) '54' = x('54') [4] = x([4]) serialized_data = CScriptOp.encode_op_pushdata('54') self.assertEqual(serialized_data, [4]) '55' = x('55') [5] = x([5]) serialized_data = CScriptOp.encode_op_pushdata('55') self.assertEqual(serialized_data, [5]) '56' = x('56') [6] = x([6]) serialized_data = CScriptOp.encode_op_pushdata('56') self.assertEqual(serialized_data, [6]) '57' = x('57') [7] = x([7]) serialized_data = CScriptOp.encode_op_pushdata('57') self.assertEqual(serialized_data, [7]) '58' = x('58') [8] = x([8]) serialized_data = CScriptOp.encode_op_pushdata('58') self.assertEqual(serialized_data, [8]) '59' = x('59') [9] = x([9]) serialized_data = CScriptOp.encode_op_pushdata('59') self.assertEqual(serialized_data, [9]) '5a' = x('5a') [10] = x([10]) serialized_data = CScriptOp.encode_op_pushdata('5a') self.assertEqual(serialized_data, [10]) '5b' = x('5b') [11] = x([11]) serialized_data = CScriptOp.encode_op_pushdata('5b') self.assertEqual(serialized_data, [11]) '5c' = x('5c') [12] = x([12]) serialized_data = CScriptOp.encode_op_pushdata('5c') self.assertEqual(serialized_data, [12]) '5d' = x('5d') [13] = x([13]) serialized_data = CScriptOp.encode_op_pushdata('5d') self.assertEqual(serialized_data, [13]) '5e' = x('5e') [14] = x([14]) serialized_data = CScriptOp.encode_op_pushdata('5e') self.assertEqual(serialized_data, [14]) '5f' = x('5f') [15] = x([15]) serialized_data = CScriptOp.encode_op_pushdata('5f') self.assertEqual(serialized_data, [15]) '9b' = x('9b') [OP_BOOLOR] = x([OP_BOOLOR]) serialized_data = CScriptOp.encode_op_pushdata('9b') self.assertEqual(serialized_data, [OP_BOOLOR]) '9a9b' = x('9a9b') [OP_BOOLAND, OP_BOOLOR] = x([OP_BOOLAND, OP_BOOLOR]) serialized_data = CScriptOp.encode_op_pushdata('9a9b') self.assertEqual(serialized_data, [OP_BOOLAND, OP_BOOLOR]) 'ff' = x('ff') [OP_INVALIDOPCODE] = x([OP_INVALIDOPCODE]) serialized_data = CScriptOp.encode_op_pushdata('ff') self.assertEqual(serialized_data, [OP_INVALIDOPCODE]) 'fafbfcfd' = x('fafbfcfd') [CScriptOp(250), CScriptOp(251), CScriptOp(252), CScriptOp(253)] = x([CScriptOp(250), CScriptOp(251), CScriptOp(252), CScriptOp(253)]) serialized_data = CScriptOp.encode_op_pushdata('fafbfcfd') self.assertEqual(serialized_data, [CScriptOp(250), CScriptOp(251), CScriptOp(252), CScriptOp(253)]) '512103e2a0e6a91fa985ce4dda7f048fca5ec8264292aed9290594321aa53d37fdea32410478d430274f8c5ec1321338151e9f27f4c676a008bdf8638d07c0b6be9ab35c71a1518063243acd4dfe96b66e3f2ec8013c8e072cd09b3834a19f81f659cc345552ae' = x('512103e2a0e6a91fa985ce4dda7f048fca5ec8264292aed9290594321aa53d37fdea32410478d430274f8c5ec1321338151e9f27f4c676a008bdf8638d07c0b6be9ab35c71a1518063243acd4dfe96b66e3f2ec8013c8e072cd09b3834a19f81f659cc345552ae') [1, x('03e2a0e6a91fa985ce4dda7f048fca5ec8264292aed9290594321aa53d37fdea32'), x('0478d430274f8c5ec1321338151e9f27f4c676a008bdf8638d07c0b6be9ab35c71a1518063243acd4dfe96b66e3f2ec8013c8e072cd09b3834a19f81f659cc3455'), 2, OP_CHECKMULTISIG] = x([1, x('03e2a0e6a91fa985ce4dda7f048fca5ec8264292aed9290594321aa53d37fdea32'), x('0478d430274f8c5ec1321338151e9f27f4c676a008bdf8638d07c0b6be9ab35c71a1518063243acd4dfe96b66e3f2ec8013c8e072cd09b3834a19f81f659cc3455'), 2, OP_CHECKMULTISIG]) serialized_data = CScriptOp.encode_op_pushdata('512103e2a0e6a91fa985ce4dda7f048fca5ec8264292aed9290594321aa53d37fdea32410478d430274f8c5ec1321338151e9f27f4c676a008bdf8638d07c0b6be9ab35c71a1518063243acd4dfe96b66e3f2ec8013c8e072cd09b3834a19f81f659cc345552ae') self.assertEqual(serialized_data, [1, x('03e2a0e6a91fa985ce4dda7f048fca5ec8264292aed9290594321aa53d37fdea32'), x('0478d430274f8c5ec1321338151e9f27f4c676a008bdf8638d07c0b6be9ab35c71a1518063243acd4dfe96b66e3f2ec8013c8e072cd09b3834a19f81f659cc3455'), 2, OP_CHECKMULTISIG]) </DeepExtract>
checklocktimeverify-demos
positive
def __init__(self, parent_widget, obj, allow_obj_sel, allow_face_sel, allow_solid_sel, allow_point_sel=False, allow_edge_sel=False): ui_path = os.path.join(CfdTools.getModulePath(), 'Gui', 'TaskPanelCfdListOfFaces.ui') self.parent_widget = parent_widget self.form = FreeCADGui.PySideUic.loadUi(ui_path, self.parent_widget) self.parent_widget.layout().addWidget(self.form) self.selecting_references = False self.recompute_timer = QTimer() self.recompute_timer.setSingleShot(True) self.recompute_timer.timeout.connect(self.recomputeDocument) self.obj = obj self.ShapeRefs = self.obj.ShapeRefs self.doc_name = self.obj.Document.Name self.view_object = self.obj.ViewObject self.allow_obj_sel = allow_obj_sel self.allow_face_sel = allow_face_sel self.allow_solid_sel = allow_solid_sel self.allow_point_sel = allow_point_sel self.allow_edge_sel = allow_edge_sel self.selection_mode_solid = not allow_face_sel and allow_solid_sel sel_list = [] sel_rb_list = [] if allow_face_sel: sel_list.append('faces') sel_rb_list.append('Face') if allow_edge_sel: sel_list.append('edges') sel_rb_list.append('Edge') if allow_point_sel: sel_list.append('vertices') sel_rb_list.append('Vertex') sel_rb_text = ' / '.join(sel_rb_list) sel_msg = '' if len(sel_list) > 0: sel_msg = sel_list[0] if len(sel_list) > 1: for i in range(len(sel_list) - 2): sel_msg += ', ' + sel_list[i + 1] sel_msg += ' and ' + sel_list[-1] self.form.rb_standard.setText(sel_rb_text) self.selection_mode_std_print_message = 'Select {} by single-clicking on them'.format(sel_msg) self.selection_mode_solid_print_message = 'Select solids by single-clicking on a face or edge which belongs to the solid' if self.allow_obj_sel: self.selection_mode_std_print_message += ', or entire object by double-clicking on it.' self.selection_mode_solid_print_message += ', or entire object by double-clicking on it.' else: self.selection_mode_std_print_message += '.' self.selection_mode_solid_print_message += '.' exclusive_sel = not allow_solid_sel or not (allow_face_sel or allow_edge_sel or allow_point_sel) self.form.labelSelection.setVisible(not exclusive_sel) self.form.rb_standard.setVisible(not exclusive_sel) self.form.rb_solid.setVisible(not exclusive_sel) self.form.faceSelectPushButton.setVisible(allow_obj_sel) self.form.rb_standard.toggled.connect(self.choose_selection_mode_standard) self.form.rb_solid.toggled.connect(self.choose_selection_mode_solid) self.form.listReferences.currentRowChanged.connect(self.setReferenceListSelection) self.form.buttonAddFace.clicked.connect(self.buttonAddFaceClicked) self.form.buttonAddFace.setCheckable(True) self.form.buttonRemoveFace.clicked.connect(self.buttonRemoveFaceClicked) self.form.individualFacesFrame.setVisible(not allow_obj_sel) self.form.faceSelectPushButton.setChecked(not allow_obj_sel) self.shapeNames = [] self.shapeLabels = [] for i in FreeCADGui.ActiveDocument.Document.Objects: if 'Shape' in i.PropertiesList: if not i.Shape.isNull() and (not (hasattr(i, 'Proxy') and isinstance(i.Proxy, CfdFluidBoundary.CfdFluidBoundary))) and (not (hasattr(i, 'Proxy') and isinstance(i.Proxy, CfdMeshRefinement.CfdMeshRefinement))) and (not (hasattr(i, 'Proxy') and isinstance(i.Proxy, CfdZone.CfdZone))): self.shapeNames.append(i.Name) self.shapeLabels.append(i.Label) for (i, label) in enumerate(self.shapeLabels): item = QtGui.QListWidgetItem(label) if allow_obj_sel: item.setFlags(item.flags() | QtCore.Qt.ItemIsUserCheckable) item.setCheckState(QtCore.Qt.Unchecked) item.setData(QtCore.Qt.UserRole, i) self.form.objectListWidget.addItem(item) self.form.objectListWidget.itemSelectionChanged.connect(self.faceListShapeChosen) self.form.objectListWidget.itemChanged.connect(self.objectListItemChanged) self.form.faceSelectPushButton.toggled.connect(self.faceSelectPushButtonChanged) self.form.faceListWidget.itemSelectionChanged.connect(self.faceHighlightChange) self.form.faceListWidget.itemChanged.connect(self.faceListItemChanged) self.form.selectAllButton.clicked.connect(self.selectAllButtonClicked) self.form.selectNoneButton.clicked.connect(self.selectNoneButtonClicked) self.form.objectListWidget.setToolTip('Choose solid objects from the list and optionally select one or more of the sub-components associated with the currently selected shape.') self.form.tabWidget.currentChanged.connect(self.tabChanged) <DeepExtract> self.form.objectListWidget.itemChanged.disconnect(self.objectListItemChanged) if self.allow_obj_sel: for i in range(self.form.objectListWidget.count()): listItem = self.form.objectListWidget.item(i) listItem.setCheckState(QtCore.Qt.Unchecked) self.form.listReferences.clear() items = [] remove_refs = [] for ref in self.ShapeRefs: try: idx = self.shapeNames.index(ref[0].Name) except ValueError: remove_refs.append(ref) else: listItem = self.form.objectListWidget.item(idx) for rr in ref[1]: if rr: item_label = self.shapeLabels[idx] + ':' + rr if self.allow_obj_sel: if listItem.checkState() == QtCore.Qt.Unchecked: listItem.setCheckState(QtCore.Qt.PartiallyChecked) else: item_label = self.shapeLabels[idx] if self.allow_obj_sel: listItem.setCheckState(QtCore.Qt.Checked) items.append((item_label, (ref[0], rr))) for ref in remove_refs: self.ShapeRefs.remove(ref) if remove_refs: self.scheduleRecompute() for listItem in items: item = QtGui.QListWidgetItem(listItem[0]) item.setData(QtCore.Qt.UserRole, listItem[1]) self.form.listReferences.addItem(item) self.form.listReferences.setSortingEnabled(False) self.form.objectListWidget.itemChanged.connect(self.objectListItemChanged) </DeepExtract> if len(self.ShapeRefs) == 0: <DeepExtract> for sel in FreeCADGui.Selection.getSelectionEx(): if sel.HasSubObjects: for sub in sel.SubElementNames: print('Adding selection {}:{}'.format(sel.ObjectName, sub)) self.addSelection(sel.DocumentName, sel.ObjectName, sub) elif self.allow_obj_sel: print('Adding selection {}'.format(sel.ObjectName)) self.addSelection(sel.DocumentName, sel.ObjectName, None) self.scheduleRecompute() </DeepExtract> <DeepExtract> self.recompute_timer.start() </DeepExtract> FreeCADGui.Selection.clearSelection() <DeepExtract> self.form.buttonAddFace.setChecked(self.selecting_references) if self.selection_mode_solid: print_message = self.selection_mode_solid_print_message else: print_message = self.selection_mode_std_print_message self.form.labelHelpText.setText(print_message) </DeepExtract>
def __init__(self, parent_widget, obj, allow_obj_sel, allow_face_sel, allow_solid_sel, allow_point_sel=False, allow_edge_sel=False): ui_path = os.path.join(CfdTools.getModulePath(), 'Gui', 'TaskPanelCfdListOfFaces.ui') self.parent_widget = parent_widget self.form = FreeCADGui.PySideUic.loadUi(ui_path, self.parent_widget) self.parent_widget.layout().addWidget(self.form) self.selecting_references = False self.recompute_timer = QTimer() self.recompute_timer.setSingleShot(True) self.recompute_timer.timeout.connect(self.recomputeDocument) self.obj = obj self.ShapeRefs = self.obj.ShapeRefs self.doc_name = self.obj.Document.Name self.view_object = self.obj.ViewObject self.allow_obj_sel = allow_obj_sel self.allow_face_sel = allow_face_sel self.allow_solid_sel = allow_solid_sel self.allow_point_sel = allow_point_sel self.allow_edge_sel = allow_edge_sel self.selection_mode_solid = not allow_face_sel and allow_solid_sel sel_list = [] sel_rb_list = [] if allow_face_sel: sel_list.append('faces') sel_rb_list.append('Face') if allow_edge_sel: sel_list.append('edges') sel_rb_list.append('Edge') if allow_point_sel: sel_list.append('vertices') sel_rb_list.append('Vertex') sel_rb_text = ' / '.join(sel_rb_list) sel_msg = '' if len(sel_list) > 0: sel_msg = sel_list[0] if len(sel_list) > 1: for i in range(len(sel_list) - 2): sel_msg += ', ' + sel_list[i + 1] sel_msg += ' and ' + sel_list[-1] self.form.rb_standard.setText(sel_rb_text) self.selection_mode_std_print_message = 'Select {} by single-clicking on them'.format(sel_msg) self.selection_mode_solid_print_message = 'Select solids by single-clicking on a face or edge which belongs to the solid' if self.allow_obj_sel: self.selection_mode_std_print_message += ', or entire object by double-clicking on it.' self.selection_mode_solid_print_message += ', or entire object by double-clicking on it.' else: self.selection_mode_std_print_message += '.' self.selection_mode_solid_print_message += '.' exclusive_sel = not allow_solid_sel or not (allow_face_sel or allow_edge_sel or allow_point_sel) self.form.labelSelection.setVisible(not exclusive_sel) self.form.rb_standard.setVisible(not exclusive_sel) self.form.rb_solid.setVisible(not exclusive_sel) self.form.faceSelectPushButton.setVisible(allow_obj_sel) self.form.rb_standard.toggled.connect(self.choose_selection_mode_standard) self.form.rb_solid.toggled.connect(self.choose_selection_mode_solid) self.form.listReferences.currentRowChanged.connect(self.setReferenceListSelection) self.form.buttonAddFace.clicked.connect(self.buttonAddFaceClicked) self.form.buttonAddFace.setCheckable(True) self.form.buttonRemoveFace.clicked.connect(self.buttonRemoveFaceClicked) self.form.individualFacesFrame.setVisible(not allow_obj_sel) self.form.faceSelectPushButton.setChecked(not allow_obj_sel) self.shapeNames = [] self.shapeLabels = [] for i in FreeCADGui.ActiveDocument.Document.Objects: if 'Shape' in i.PropertiesList: if not i.Shape.isNull() and (not (hasattr(i, 'Proxy') and isinstance(i.Proxy, CfdFluidBoundary.CfdFluidBoundary))) and (not (hasattr(i, 'Proxy') and isinstance(i.Proxy, CfdMeshRefinement.CfdMeshRefinement))) and (not (hasattr(i, 'Proxy') and isinstance(i.Proxy, CfdZone.CfdZone))): self.shapeNames.append(i.Name) self.shapeLabels.append(i.Label) for (i, label) in enumerate(self.shapeLabels): item = QtGui.QListWidgetItem(label) if allow_obj_sel: item.setFlags(item.flags() | QtCore.Qt.ItemIsUserCheckable) item.setCheckState(QtCore.Qt.Unchecked) item.setData(QtCore.Qt.UserRole, i) self.form.objectListWidget.addItem(item) self.form.objectListWidget.itemSelectionChanged.connect(self.faceListShapeChosen) self.form.objectListWidget.itemChanged.connect(self.objectListItemChanged) self.form.faceSelectPushButton.toggled.connect(self.faceSelectPushButtonChanged) self.form.faceListWidget.itemSelectionChanged.connect(self.faceHighlightChange) self.form.faceListWidget.itemChanged.connect(self.faceListItemChanged) self.form.selectAllButton.clicked.connect(self.selectAllButtonClicked) self.form.selectNoneButton.clicked.connect(self.selectNoneButtonClicked) self.form.objectListWidget.setToolTip('Choose solid objects from the list and optionally select one or more of the sub-components associated with the currently selected shape.') self.form.tabWidget.currentChanged.connect(self.tabChanged) self.form.objectListWidget.itemChanged.disconnect(self.objectListItemChanged) if self.allow_obj_sel: for i in range(self.form.objectListWidget.count()): listItem = self.form.objectListWidget.item(i) listItem.setCheckState(QtCore.Qt.Unchecked) self.form.listReferences.clear() items = [] remove_refs = [] for ref in self.ShapeRefs: try: idx = self.shapeNames.index(ref[0].Name) except ValueError: remove_refs.append(ref) else: listItem = self.form.objectListWidget.item(idx) for rr in ref[1]: if rr: item_label = self.shapeLabels[idx] + ':' + rr if self.allow_obj_sel: if listItem.checkState() == QtCore.Qt.Unchecked: listItem.setCheckState(QtCore.Qt.PartiallyChecked) else: item_label = self.shapeLabels[idx] if self.allow_obj_sel: listItem.setCheckState(QtCore.Qt.Checked) items.append((item_label, (ref[0], rr))) for ref in remove_refs: self.ShapeRefs.remove(ref) if remove_refs: self.scheduleRecompute() for listItem in items: item = QtGui.QListWidgetItem(listItem[0]) item.setData(QtCore.Qt.UserRole, listItem[1]) self.form.listReferences.addItem(item) self.form.listReferences.setSortingEnabled(False) self.form.objectListWidget.itemChanged.connect(self.objectListItemChanged) if len(self.ShapeRefs) == 0: for sel in FreeCADGui.Selection.getSelectionEx(): if sel.HasSubObjects: for sub in sel.SubElementNames: print('Adding selection {}:{}'.format(sel.ObjectName, sub)) self.addSelection(sel.DocumentName, sel.ObjectName, sub) elif self.allow_obj_sel: print('Adding selection {}'.format(sel.ObjectName)) self.addSelection(sel.DocumentName, sel.ObjectName, None) self.scheduleRecompute() self.recompute_timer.start() FreeCADGui.Selection.clearSelection() self.form.buttonAddFace.setChecked(self.selecting_references) if self.selection_mode_solid: print_message = self.selection_mode_solid_print_message else: print_message = self.selection_mode_std_print_message self.form.labelHelpText.setText(print_message) </DeepExtract>
CfdOF
positive
def forward(self, enc_pad: th.Tensor, enc_len: Optional[th.Tensor], dec_prev: th.Tensor, ali_prev: th.Tensor) -> Tuple[th.Tensor, th.Tensor]: """ Args enc_pad: N x Ti x D_enc enc_len: N dec_prev: N x D_dec ali_prev: N x Ti (do not use here) Return ali: N x H x Ti ctx: N x D_enc """ (N, T, _) = enc_pad.shape if self.enc_part is None: ep = self.enc_proj(enc_pad) ep = ep.view(N, T, self.att_head, self.att_dim) self.enc_part = ep.transpose(1, 2) kp = self.key_proj(enc_pad) kp = kp.transpose(1, 2) self.key_part = kp.view(N, self.att_head, self.att_dim, T) if enc_len is not None: self.pad_mask = padding_mask(enc_len)[:, None] dec_part = self.dec_proj(dec_prev) dec_part = dec_part.view(-1, self.att_head, self.att_dim) sum_part = th.tanh(self.key_part + dec_part[..., None]) score = self.w(sum_part.view(N, -1, T)) <DeepExtract> if enc_len is None: ali = tf.softmax(score, dim=-1) else: if self.pad_mask is None: raise RuntimeError('Attention: pad_mask should not be None when enc_len is not None') score = score.masked_fill(self.pad_mask, NEG_INF) ali = tf.softmax(score, dim=-1) </DeepExtract> ctx = th.sum(ali[..., None] * self.enc_part, -2) ctx = self.ctx_proj(ctx.view(N, -1)) return (ali, ctx)
def forward(self, enc_pad: th.Tensor, enc_len: Optional[th.Tensor], dec_prev: th.Tensor, ali_prev: th.Tensor) -> Tuple[th.Tensor, th.Tensor]: """ Args enc_pad: N x Ti x D_enc enc_len: N dec_prev: N x D_dec ali_prev: N x Ti (do not use here) Return ali: N x H x Ti ctx: N x D_enc """ (N, T, _) = enc_pad.shape if self.enc_part is None: ep = self.enc_proj(enc_pad) ep = ep.view(N, T, self.att_head, self.att_dim) self.enc_part = ep.transpose(1, 2) kp = self.key_proj(enc_pad) kp = kp.transpose(1, 2) self.key_part = kp.view(N, self.att_head, self.att_dim, T) if enc_len is not None: self.pad_mask = padding_mask(enc_len)[:, None] dec_part = self.dec_proj(dec_prev) dec_part = dec_part.view(-1, self.att_head, self.att_dim) sum_part = th.tanh(self.key_part + dec_part[..., None]) score = self.w(sum_part.view(N, -1, T)) if enc_len is None: ali = tf.softmax(score, dim=-1) else: if self.pad_mask is None: raise RuntimeError('Attention: pad_mask should not be None when enc_len is not None') score = score.masked_fill(self.pad_mask, NEG_INF) ali = tf.softmax(score, dim=-1) ctx = th.sum(ali[..., None] * self.enc_part, -2) ctx = self.ctx_proj(ctx.view(N, -1)) return (ali, ctx)
aps
positive
def conv1d(inputs, num_output_channels, kernel_size, scope, stride=1, padding='SAME', data_format='NHWC', use_xavier=True, stddev=0.001, weight_decay=None, activation_fn=tf.nn.relu, bn=False, bn_decay=None, is_training=None): """ 1D convolution with non-linear operation. Args: inputs: 3-D tensor variable BxLxC num_output_channels: int kernel_size: int scope: string stride: int padding: 'SAME' or 'VALID' data_format: 'NHWC' or 'NCHW' use_xavier: bool, use xavier_initializer if true stddev: float, stddev for truncated_normal init weight_decay: float activation_fn: function bn: bool, whether to use batch norm bn_decay: float or float tensor variable in [0,1] is_training: bool Tensor variable Returns: Variable tensor """ with tf.variable_scope(scope) as sc: assert data_format == 'NHWC' or data_format == 'NCHW' if data_format == 'NHWC': num_in_channels = inputs.get_shape()[-1].value elif data_format == 'NCHW': num_in_channels = inputs.get_shape()[1].value kernel_shape = [kernel_size, num_in_channels, num_output_channels] <DeepExtract> if use_xavier: initializer = tf.contrib.layers.xavier_initializer() else: initializer = tf.truncated_normal_initializer(stddev=stddev) var = _variable_on_cpu('weights', kernel_shape, initializer) if weight_decay is not None: weight_decay = tf.multiply(tf.nn.l2_loss(var), weight_decay, name='weight_loss') tf.add_to_collection('losses', weight_decay) kernel = var </DeepExtract> outputs = tf.nn.conv1d(inputs, kernel, stride=stride, padding=padding, data_format=data_format) <DeepExtract> with tf.device('/cpu:0'): dtype = tf.float16 if use_fp16 else tf.float32 var = tf.get_variable('biases', [num_output_channels], initializer=tf.constant_initializer(0.0), dtype=dtype) biases = var </DeepExtract> outputs = tf.nn.bias_add(outputs, biases, data_format=data_format) if bn: <DeepExtract> outputs = batch_norm_template(outputs, is_training, 'bn', [0, 1], bn_decay, data_format) </DeepExtract> if activation_fn is not None: outputs = activation_fn(outputs) return outputs
def conv1d(inputs, num_output_channels, kernel_size, scope, stride=1, padding='SAME', data_format='NHWC', use_xavier=True, stddev=0.001, weight_decay=None, activation_fn=tf.nn.relu, bn=False, bn_decay=None, is_training=None): """ 1D convolution with non-linear operation. Args: inputs: 3-D tensor variable BxLxC num_output_channels: int kernel_size: int scope: string stride: int padding: 'SAME' or 'VALID' data_format: 'NHWC' or 'NCHW' use_xavier: bool, use xavier_initializer if true stddev: float, stddev for truncated_normal init weight_decay: float activation_fn: function bn: bool, whether to use batch norm bn_decay: float or float tensor variable in [0,1] is_training: bool Tensor variable Returns: Variable tensor """ with tf.variable_scope(scope) as sc: assert data_format == 'NHWC' or data_format == 'NCHW' if data_format == 'NHWC': num_in_channels = inputs.get_shape()[-1].value elif data_format == 'NCHW': num_in_channels = inputs.get_shape()[1].value kernel_shape = [kernel_size, num_in_channels, num_output_channels] if use_xavier: initializer = tf.contrib.layers.xavier_initializer() else: initializer = tf.truncated_normal_initializer(stddev=stddev) var = _variable_on_cpu('weights', kernel_shape, initializer) if weight_decay is not None: weight_decay = tf.multiply(tf.nn.l2_loss(var), weight_decay, name='weight_loss') tf.add_to_collection('losses', weight_decay) kernel = var outputs = tf.nn.conv1d(inputs, kernel, stride=stride, padding=padding, data_format=data_format) with tf.device('/cpu:0'): dtype = tf.float16 if use_fp16 else tf.float32 var = tf.get_variable('biases', [num_output_channels], initializer=tf.constant_initializer(0.0), dtype=dtype) biases = var outputs = tf.nn.bias_add(outputs, biases, data_format=data_format) if bn: outputs = batch_norm_template(outputs, is_training, 'bn', [0, 1], bn_decay, data_format) if activation_fn is not None: outputs = activation_fn(outputs) return outputs
aiimooc_lesson
positive
def __getitem__(self, index): file_name = self.filenames[index] whole_image_path = os.path.join(self.split_dir, file_name) whole_image = Image.open(whole_image_path) image_array = np.asarray(whole_image) label_array = image_array[:, :256, :] pixel_array = image_array[:, 256:, :] label_img = Image.fromarray(label_array) pix_img = Image.fromarray(pixel_array) <DeepExtract> params = {} params['flip'] = np.random.rand(1)[0] > 0.5 if not self.config.NO_CROP: (diff_length, diff_width) = (self.config.LOAD_SIZE - self.config.IMSIZE, self.config.IM_RATIO * self.config.LOAD_SIZE - self.config.IM_RATIO * self.config.IMSIZE) pos_x = np.random.randint(0, diff_width) pos_y = np.random.randint(0, diff_length) params['crop_pos'] = (pos_x, pos_y) params['load_size'] = self.config.LOAD_SIZE params['img_size'] = self.config.IMSIZE trans_params = params </DeepExtract> <DeepExtract> if cfg.NO_FLIP: trans_params['flip'] = False if self.split == 'val': trans_list = [transforms.Scale([trans_params['img_size'], cfg.IM_RATIO * trans_params['img_size']], Image.BILINEAR), transforms.ToTensor()] elif cfg.NO_CROP: trans_list = [transforms.Scale([trans_params['img_size'], cfg.IM_RATIO * trans_params['img_size']], Image.BILINEAR), transforms.Lambda(lambda img: __flip(img, trans_params['flip'])), transforms.ToTensor()] else: trans_list = [transforms.Scale([trans_params['load_size'], cfg.IM_RATIO * trans_params['load_size']], Image.BILINEAR), transforms.Lambda(lambda img: __flip(img, trans_params['flip'])), transforms.Lambda(lambda img: __crop(img, trans_params['crop_pos'], trans_params['img_size'])), transforms.ToTensor()] if True: trans_list.append(transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))) trans = transforms.Compose(trans_list) img_transform = trans </DeepExtract> img_tensor = img_transform(pix_img) label_map_tensor = img_transform(label_img) return (img_tensor, label_map_tensor, torch.FloatTensor([0]), file_name)
def __getitem__(self, index): file_name = self.filenames[index] whole_image_path = os.path.join(self.split_dir, file_name) whole_image = Image.open(whole_image_path) image_array = np.asarray(whole_image) label_array = image_array[:, :256, :] pixel_array = image_array[:, 256:, :] label_img = Image.fromarray(label_array) pix_img = Image.fromarray(pixel_array) params = {} params['flip'] = np.random.rand(1)[0] > 0.5 if not self.config.NO_CROP: (diff_length, diff_width) = (self.config.LOAD_SIZE - self.config.IMSIZE, self.config.IM_RATIO * self.config.LOAD_SIZE - self.config.IM_RATIO * self.config.IMSIZE) pos_x = np.random.randint(0, diff_width) pos_y = np.random.randint(0, diff_length) params['crop_pos'] = (pos_x, pos_y) params['load_size'] = self.config.LOAD_SIZE params['img_size'] = self.config.IMSIZE trans_params = params if cfg.NO_FLIP: trans_params['flip'] = False if self.split == 'val': trans_list = [transforms.Scale([trans_params['img_size'], cfg.IM_RATIO * trans_params['img_size']], Image.BILINEAR), transforms.ToTensor()] elif cfg.NO_CROP: trans_list = [transforms.Scale([trans_params['img_size'], cfg.IM_RATIO * trans_params['img_size']], Image.BILINEAR), transforms.Lambda(lambda img: __flip(img, trans_params['flip'])), transforms.ToTensor()] else: trans_list = [transforms.Scale([trans_params['load_size'], cfg.IM_RATIO * trans_params['load_size']], Image.BILINEAR), transforms.Lambda(lambda img: __flip(img, trans_params['flip'])), transforms.Lambda(lambda img: __crop(img, trans_params['crop_pos'], trans_params['img_size'])), transforms.ToTensor()] if True: trans_list.append(transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))) trans = transforms.Compose(trans_list) img_transform = trans img_tensor = img_transform(pix_img) label_map_tensor = img_transform(label_img) return (img_tensor, label_map_tensor, torch.FloatTensor([0]), file_name)
DSGAN
positive
def test_forward_and_gradient(self): A = np.random.randn(2, 3, 5, 7).astype(np.float32) I = np.array([0, 1], dtype=np.int32) <DeepExtract> with core.DeviceScope(core.DeviceOption(caffe2_pb2.CUDA, 0)): op = core.CreateOperator('BatchPermutation', ['X', 'I'], ['Y']) workspace.FeedBlob('X', A) workspace.FeedBlob('I', I) workspace.RunOperatorOnce(op) Y = workspace.FetchBlob('Y') if True: gc = gradient_checker.GradientChecker(stepsize=0.1, threshold=0.001, device_option=core.DeviceOption(caffe2_pb2.CUDA, 0)) (res, grad, grad_estimated) = gc.CheckSimple(op, [A, I], 0, [0]) self.assertTrue(res, 'Grad check failed') Y_ref = A[I] np.testing.assert_allclose(Y, Y_ref, rtol=1e-05, atol=1e-08) </DeepExtract> A = np.random.randn(2, 3, 5, 7).astype(np.float32) I = np.array([1, 0], dtype=np.int32) <DeepExtract> with core.DeviceScope(core.DeviceOption(caffe2_pb2.CUDA, 0)): op = core.CreateOperator('BatchPermutation', ['X', 'I'], ['Y']) workspace.FeedBlob('X', A) workspace.FeedBlob('I', I) workspace.RunOperatorOnce(op) Y = workspace.FetchBlob('Y') if True: gc = gradient_checker.GradientChecker(stepsize=0.1, threshold=0.001, device_option=core.DeviceOption(caffe2_pb2.CUDA, 0)) (res, grad, grad_estimated) = gc.CheckSimple(op, [A, I], 0, [0]) self.assertTrue(res, 'Grad check failed') Y_ref = A[I] np.testing.assert_allclose(Y, Y_ref, rtol=1e-05, atol=1e-08) </DeepExtract> A = np.random.randn(10, 3, 5, 7).astype(np.float32) I = np.array(np.random.permutation(10), dtype=np.int32) <DeepExtract> with core.DeviceScope(core.DeviceOption(caffe2_pb2.CUDA, 0)): op = core.CreateOperator('BatchPermutation', ['X', 'I'], ['Y']) workspace.FeedBlob('X', A) workspace.FeedBlob('I', I) workspace.RunOperatorOnce(op) Y = workspace.FetchBlob('Y') if True: gc = gradient_checker.GradientChecker(stepsize=0.1, threshold=0.001, device_option=core.DeviceOption(caffe2_pb2.CUDA, 0)) (res, grad, grad_estimated) = gc.CheckSimple(op, [A, I], 0, [0]) self.assertTrue(res, 'Grad check failed') Y_ref = A[I] np.testing.assert_allclose(Y, Y_ref, rtol=1e-05, atol=1e-08) </DeepExtract>
def test_forward_and_gradient(self): A = np.random.randn(2, 3, 5, 7).astype(np.float32) I = np.array([0, 1], dtype=np.int32) with core.DeviceScope(core.DeviceOption(caffe2_pb2.CUDA, 0)): op = core.CreateOperator('BatchPermutation', ['X', 'I'], ['Y']) workspace.FeedBlob('X', A) workspace.FeedBlob('I', I) workspace.RunOperatorOnce(op) Y = workspace.FetchBlob('Y') if True: gc = gradient_checker.GradientChecker(stepsize=0.1, threshold=0.001, device_option=core.DeviceOption(caffe2_pb2.CUDA, 0)) (res, grad, grad_estimated) = gc.CheckSimple(op, [A, I], 0, [0]) self.assertTrue(res, 'Grad check failed') Y_ref = A[I] np.testing.assert_allclose(Y, Y_ref, rtol=1e-05, atol=1e-08) A = np.random.randn(2, 3, 5, 7).astype(np.float32) I = np.array([1, 0], dtype=np.int32) with core.DeviceScope(core.DeviceOption(caffe2_pb2.CUDA, 0)): op = core.CreateOperator('BatchPermutation', ['X', 'I'], ['Y']) workspace.FeedBlob('X', A) workspace.FeedBlob('I', I) workspace.RunOperatorOnce(op) Y = workspace.FetchBlob('Y') if True: gc = gradient_checker.GradientChecker(stepsize=0.1, threshold=0.001, device_option=core.DeviceOption(caffe2_pb2.CUDA, 0)) (res, grad, grad_estimated) = gc.CheckSimple(op, [A, I], 0, [0]) self.assertTrue(res, 'Grad check failed') Y_ref = A[I] np.testing.assert_allclose(Y, Y_ref, rtol=1e-05, atol=1e-08) A = np.random.randn(10, 3, 5, 7).astype(np.float32) I = np.array(np.random.permutation(10), dtype=np.int32) with core.DeviceScope(core.DeviceOption(caffe2_pb2.CUDA, 0)): op = core.CreateOperator('BatchPermutation', ['X', 'I'], ['Y']) workspace.FeedBlob('X', A) workspace.FeedBlob('I', I) workspace.RunOperatorOnce(op) Y = workspace.FetchBlob('Y') if True: gc = gradient_checker.GradientChecker(stepsize=0.1, threshold=0.001, device_option=core.DeviceOption(caffe2_pb2.CUDA, 0)) (res, grad, grad_estimated) = gc.CheckSimple(op, [A, I], 0, [0]) self.assertTrue(res, 'Grad check failed') Y_ref = A[I] np.testing.assert_allclose(Y, Y_ref, rtol=1e-05, atol=1e-08) </DeepExtract>
Clustered-Object-Detection-in-Aerial-Image
positive
def getPage(self, pageNumber): """ Retrieves a page by number from this PDF file. :param int pageNumber: The page number to retrieve (pages begin at zero) :return: a :class:`PageObject<pdf.PageObject>` instance. :rtype: :class:`PageObject<pdf.PageObject>` """ if self.flattenedPages == None: <DeepExtract> inheritablePageAttributes = (NameObject('/Resources'), NameObject('/MediaBox'), NameObject('/CropBox'), NameObject('/Rotate')) if inherit == None: inherit = dict() if pages == None: self.flattenedPages = [] catalog = self.trailer['/Root'].getObject() pages = catalog['/Pages'].getObject() t = '/Pages' if '/Type' in pages: t = pages['/Type'] if t == '/Pages': for attr in inheritablePageAttributes: if attr in pages: inherit[attr] = pages[attr] for page in pages['/Kids']: addt = {} if isinstance(page, IndirectObject): addt['indirectRef'] = page self._flatten(page.getObject(), inherit, **addt) elif t == '/Page': for (attr, value) in list(inherit.items()): if attr not in pages: pages[attr] = value pageObj = PageObject(self, indirectRef) pageObj.update(pages) self.flattenedPages.append(pageObj) </DeepExtract> return self.flattenedPages[pageNumber]
def getPage(self, pageNumber): """ Retrieves a page by number from this PDF file. :param int pageNumber: The page number to retrieve (pages begin at zero) :return: a :class:`PageObject<pdf.PageObject>` instance. :rtype: :class:`PageObject<pdf.PageObject>` """ if self.flattenedPages == None: inheritablePageAttributes = (NameObject('/Resources'), NameObject('/MediaBox'), NameObject('/CropBox'), NameObject('/Rotate')) if inherit == None: inherit = dict() if pages == None: self.flattenedPages = [] catalog = self.trailer['/Root'].getObject() pages = catalog['/Pages'].getObject() t = '/Pages' if '/Type' in pages: t = pages['/Type'] if t == '/Pages': for attr in inheritablePageAttributes: if attr in pages: inherit[attr] = pages[attr] for page in pages['/Kids']: addt = {} if isinstance(page, IndirectObject): addt['indirectRef'] = page self._flatten(page.getObject(), inherit, **addt) elif t == '/Page': for (attr, value) in list(inherit.items()): if attr not in pages: pages[attr] = value pageObj = PageObject(self, indirectRef) pageObj.update(pages) self.flattenedPages.append(pageObj) return self.flattenedPages[pageNumber]
endesive
positive
def step(self, actions): self.terminal = self.day >= 685 if self.terminal: plt.plot(self.asset_memory, 'r') plt.plot(account_growth) plt.savefig('result_test.png') plt.close() print('total_reward:{}'.format(self.state[0] + sum(np.array(self.state[1:29]) * np.array(self.state[29:])) - 10000)) return (self.state, self.reward, self.terminal, {}) else: begin_total_asset = self.state[0] + sum(np.array(self.state[1:29]) * np.array(self.state[29:])) argsort_actions = np.argsort(actions) sell_index = argsort_actions[:np.where(actions < 0)[0].shape[0]] buy_index = argsort_actions[::-1][:np.where(actions > 0)[0].shape[0]] for index in sell_index: <DeepExtract> if self.state[index + 29] > 0: self.state[0] += self.state[index + 1] * min(abs(actions[index]), self.state[index + 29]) self.state[index + 29] -= min(abs(actions[index]), self.state[index + 29]) else: pass </DeepExtract> for index in buy_index: <DeepExtract> available_amount = self.state[0] // self.state[index + 1] self.state[0] -= self.state[index + 1] * min(available_amount, actions[index]) self.state[index + 29] += min(available_amount, actions[index]) </DeepExtract> self.day += 1 self.data = test_daily_data[self.day] self.state = [self.state[0]] + self.data.adjcp.values.tolist() + list(self.state[29:]) end_total_asset = self.state[0] + sum(np.array(self.state[1:29]) * np.array(self.state[29:])) self.reward = end_total_asset - begin_total_asset self.asset_memory.append(end_total_asset) return (self.state, self.reward, self.terminal, {})
def step(self, actions): self.terminal = self.day >= 685 if self.terminal: plt.plot(self.asset_memory, 'r') plt.plot(account_growth) plt.savefig('result_test.png') plt.close() print('total_reward:{}'.format(self.state[0] + sum(np.array(self.state[1:29]) * np.array(self.state[29:])) - 10000)) return (self.state, self.reward, self.terminal, {}) else: begin_total_asset = self.state[0] + sum(np.array(self.state[1:29]) * np.array(self.state[29:])) argsort_actions = np.argsort(actions) sell_index = argsort_actions[:np.where(actions < 0)[0].shape[0]] buy_index = argsort_actions[::-1][:np.where(actions > 0)[0].shape[0]] for index in sell_index: if self.state[index + 29] > 0: self.state[0] += self.state[index + 1] * min(abs(actions[index]), self.state[index + 29]) self.state[index + 29] -= min(abs(actions[index]), self.state[index + 29]) else: pass for index in buy_index: available_amount = self.state[0] // self.state[index + 1] self.state[0] -= self.state[index + 1] * min(available_amount, actions[index]) self.state[index + 29] += min(available_amount, actions[index]) self.day += 1 self.data = test_daily_data[self.day] self.state = [self.state[0]] + self.data.adjcp.values.tolist() + list(self.state[29:]) end_total_asset = self.state[0] + sum(np.array(self.state[1:29]) * np.array(self.state[29:])) self.reward = end_total_asset - begin_total_asset self.asset_memory.append(end_total_asset) return (self.state, self.reward, self.terminal, {})
DQN-DDPG_Stock_Trading
positive
def insertBlankPage(self, width=None, height=None, index=0): """ Inserts a blank page to this PDF file and returns it. If no page size is specified, use the size of the last page. :param float width: The width of the new page expressed in default user space units. :param float height: The height of the new page expressed in default user space units. :param int index: Position to add the page. :return: the newly appended page :rtype: :class:`PageObject<PyPDF2.pdf.PageObject>` :raises PageSizeNotDefinedError: if width and height are not defined and previous page does not exist. """ if width is None or (height is None and self.getNumPages() - 1 >= index): <DeepExtract> pages = self.getObject(self._pages) oldpage = pages['/Kids'][index].getObject() </DeepExtract> width = oldpage.mediaBox.getWidth() height = oldpage.mediaBox.getHeight() page = PageObject.createBlankPage(self, width, height) <DeepExtract> self._addPage(page, lambda l, p: l.insert(index, p)) </DeepExtract> return page
def insertBlankPage(self, width=None, height=None, index=0): """ Inserts a blank page to this PDF file and returns it. If no page size is specified, use the size of the last page. :param float width: The width of the new page expressed in default user space units. :param float height: The height of the new page expressed in default user space units. :param int index: Position to add the page. :return: the newly appended page :rtype: :class:`PageObject<PyPDF2.pdf.PageObject>` :raises PageSizeNotDefinedError: if width and height are not defined and previous page does not exist. """ if width is None or (height is None and self.getNumPages() - 1 >= index): pages = self.getObject(self._pages) oldpage = pages['/Kids'][index].getObject() width = oldpage.mediaBox.getWidth() height = oldpage.mediaBox.getHeight() page = PageObject.createBlankPage(self, width, height) self._addPage(page, lambda l, p: l.insert(index, p)) return page
endesive
positive
def init_request(self, *args, **kwargs): if not self.has_view_permission(): raise PermissionDenied request = self.request request.session['LIST_QUERY'] = (self.model_info, self.request.META['QUERY_STRING']) self.pk_attname = self.opts.pk.attname self.lookup_opts = self.opts <DeepExtract> self.base_list_display = COL_LIST_VAR in self.request.GET and self.request.GET[COL_LIST_VAR] != '' and self.request.GET[COL_LIST_VAR].split('.') or self.list_display self.list_display = list(self.base_list_display) </DeepExtract> <DeepExtract> if self.list_display_links or not self.list_display: self.list_display_links = self.list_display_links else: self.list_display_links = list(self.list_display)[:1] </DeepExtract> try: self.page_num = int(request.GET.get(PAGE_VAR, 0)) except ValueError: self.page_num = 0 self.show_all = ALL_VAR in request.GET self.to_field = request.GET.get(TO_FIELD_VAR) self.params = dict(request.GET.items()) if PAGE_VAR in self.params: del self.params[PAGE_VAR] if ERROR_FLAG in self.params: del self.params[ERROR_FLAG]
def init_request(self, *args, **kwargs): if not self.has_view_permission(): raise PermissionDenied request = self.request request.session['LIST_QUERY'] = (self.model_info, self.request.META['QUERY_STRING']) self.pk_attname = self.opts.pk.attname self.lookup_opts = self.opts self.base_list_display = COL_LIST_VAR in self.request.GET and self.request.GET[COL_LIST_VAR] != '' and self.request.GET[COL_LIST_VAR].split('.') or self.list_display self.list_display = list(self.base_list_display) if self.list_display_links or not self.list_display: self.list_display_links = self.list_display_links else: self.list_display_links = list(self.list_display)[:1] try: self.page_num = int(request.GET.get(PAGE_VAR, 0)) except ValueError: self.page_num = 0 self.show_all = ALL_VAR in request.GET self.to_field = request.GET.get(TO_FIELD_VAR) self.params = dict(request.GET.items()) if PAGE_VAR in self.params: del self.params[PAGE_VAR] if ERROR_FLAG in self.params: del self.params[ERROR_FLAG]
devops
positive
def _swap_fds(self, in_variant, out_variant, fds=None): """Swap Unix file descriptors in the input.""" <DeepExtract> (in_variant, fd_list) = acquire_fds(in_variant) if fds is None: self.assertIsNone(fd_list) else: self.assertIsInstance(fd_list, Gio.UnixFDList) self.assertEqual(fd_list.peek_fds(), fds) if out_variant is None: self.assertIsNone(in_variant) else: self.assertIsInstance(in_variant, Variant) self.assertEqual(in_variant.unpack(), out_variant.unpack()) self.assertTrue(in_variant.equal(out_variant)) (in_variant, fd_list) = (in_variant, fd_list) </DeepExtract> <DeepExtract> variant = restore_fds(variant, fd_list) if in_variant is None: self.assertIsNone(variant) else: self.assertIsInstance(variant, Variant) self.assertEqual(variant.unpack(), in_variant.unpack()) self.assertTrue(variant.equal(in_variant)) </DeepExtract>
def _swap_fds(self, in_variant, out_variant, fds=None): """Swap Unix file descriptors in the input.""" (in_variant, fd_list) = acquire_fds(in_variant) if fds is None: self.assertIsNone(fd_list) else: self.assertIsInstance(fd_list, Gio.UnixFDList) self.assertEqual(fd_list.peek_fds(), fds) if out_variant is None: self.assertIsNone(in_variant) else: self.assertIsInstance(in_variant, Variant) self.assertEqual(in_variant.unpack(), out_variant.unpack()) self.assertTrue(in_variant.equal(out_variant)) (in_variant, fd_list) = (in_variant, fd_list) variant = restore_fds(variant, fd_list) if in_variant is None: self.assertIsNone(variant) else: self.assertIsInstance(variant, Variant) self.assertEqual(variant.unpack(), in_variant.unpack()) self.assertTrue(variant.equal(in_variant)) </DeepExtract>
dasbus
positive
def _get_rois_blob(im_rois, im_scale): """Converts RoIs into network inputs. Arguments: im_rois (ndarray): R x 4 matrix of RoIs in original image coordinates im_scale_factors (list): scale factors as returned by _get_image_blob Returns: blob (ndarray): R x 5 matrix of RoIs in the image pyramid with columns [level, x1, y1, x2, y2] """ <DeepExtract> rois = im_rois.astype(np.float, copy=False) * im_scale levels = np.zeros((im_rois.shape[0], 1), dtype=np.int) (rois, levels) = (rois, levels) </DeepExtract> rois_blob = np.hstack((levels, rois)) return rois_blob.astype(np.float32, copy=False)
def _get_rois_blob(im_rois, im_scale): """Converts RoIs into network inputs. Arguments: im_rois (ndarray): R x 4 matrix of RoIs in original image coordinates im_scale_factors (list): scale factors as returned by _get_image_blob Returns: blob (ndarray): R x 5 matrix of RoIs in the image pyramid with columns [level, x1, y1, x2, y2] """ rois = im_rois.astype(np.float, copy=False) * im_scale levels = np.zeros((im_rois.shape[0], 1), dtype=np.int) (rois, levels) = (rois, levels) rois_blob = np.hstack((levels, rois)) return rois_blob.astype(np.float32, copy=False)
Detectron-DA-Faster-RCNN
positive
def compute_n(self, book, series_ref): """ Computes a score for the given SeriesRef, which describes how closely that ref matches the given ComicBook. The higher the score, the closer the match. Scores can be negative. """ def split(name_s): if name_s is None: name_s = '' name_s = re.sub("'", '', name_s).lower() name_s = re.sub('\\W+', ' ', name_s) name_s = re.sub('giant[- ]*sized?', 'giant size', name_s) name_s = re.sub('king[- ]*sized?', 'king size', name_s) name_s = re.sub('one[- ]*shot', 'one shot', name_s) return name_s.split() bookname_s = '' if not book.series_s else book.series_s if bookname_s and book.format_s: bookname_s += ' ' + book.format_s <DeepExtract> if bookname_s is None: bookname_s = '' bookname_s = re.sub("'", '', bookname_s).lower() bookname_s = re.sub('\\W+', ' ', bookname_s) bookname_s = re.sub('giant[- ]*sized?', 'giant size', bookname_s) bookname_s = re.sub('king[- ]*sized?', 'king size', bookname_s) bookname_s = re.sub('one[- ]*shot', 'one shot', bookname_s) bookwords = bookname_s.split() </DeepExtract> <DeepExtract> if series_ref.series_name_s is None: series_ref.series_name_s = '' series_ref.series_name_s = re.sub("'", '', series_ref.series_name_s).lower() series_ref.series_name_s = re.sub('\\W+', ' ', series_ref.series_name_s) series_ref.series_name_s = re.sub('giant[- ]*sized?', 'giant size', series_ref.series_name_s) series_ref.series_name_s = re.sub('king[- ]*sized?', 'king size', series_ref.series_name_s) series_ref.series_name_s = re.sub('one[- ]*shot', 'one shot', series_ref.series_name_s) serieswords = series_ref.series_name_s.split() </DeepExtract> namescore_n = 0 for word in bookwords: if word in serieswords: namescore_n += 5 serieswords.remove(word) else: namescore_n -= 1 namescore_n -= len(serieswords) priorscore_n = 7 if sstr(series_ref.series_key) in self.__prior_series_sl else 0 pub_s = series_ref.publisher_s.lower() publisherscore_n = -6 if 'panini' in pub_s or 'deagostina' in pub_s or pub_s == 'marvel italia' or (pub_s == 'marvel uk') or (pub_s == 'semic_as') or (pub_s == 'abril') else 0 booknumber_n = book.issue_num_s if book.issue_num_s else '-1000' booknumber_n = re.sub('[^\\d.-]+', '', booknumber_n) try: booknumber_n = float(booknumber_n) except: booknumber_n = -999 series_count_n = series_ref.issue_count_n if series_count_n > 100: bookscore_n = 100 else: bookscore_n = 100 if booknumber_n - 1 <= series_count_n else -100 current_year_n = datetime.datetime.now().year is_valid_year_b = lambda y: y > 1900 and y <= current_year_n + 1 series_year_n = series_ref.volume_year_n book_year_n = book.pub_year_n if is_valid_year_b(book.pub_year_n) else book.rel_year_n yearscore_n = 0 if is_valid_year_b(book_year_n): if not is_valid_year_b(series_year_n): yearscore_n = -100 elif series_year_n > book_year_n: yearscore_n = -500 if is_valid_year_b(series_year_n): recency_score_n = -(current_year_n - series_year_n) / 100.0 else: recency_score_n = -1.0 return bookscore_n + namescore_n + publisherscore_n + priorscore_n + yearscore_n + recency_score_n
def compute_n(self, book, series_ref): """ Computes a score for the given SeriesRef, which describes how closely that ref matches the given ComicBook. The higher the score, the closer the match. Scores can be negative. """ def split(name_s): if name_s is None: name_s = '' name_s = re.sub("'", '', name_s).lower() name_s = re.sub('\\W+', ' ', name_s) name_s = re.sub('giant[- ]*sized?', 'giant size', name_s) name_s = re.sub('king[- ]*sized?', 'king size', name_s) name_s = re.sub('one[- ]*shot', 'one shot', name_s) return name_s.split() bookname_s = '' if not book.series_s else book.series_s if bookname_s and book.format_s: bookname_s += ' ' + book.format_s if bookname_s is None: bookname_s = '' bookname_s = re.sub("'", '', bookname_s).lower() bookname_s = re.sub('\\W+', ' ', bookname_s) bookname_s = re.sub('giant[- ]*sized?', 'giant size', bookname_s) bookname_s = re.sub('king[- ]*sized?', 'king size', bookname_s) bookname_s = re.sub('one[- ]*shot', 'one shot', bookname_s) bookwords = bookname_s.split() if series_ref.series_name_s is None: series_ref.series_name_s = '' series_ref.series_name_s = re.sub("'", '', series_ref.series_name_s).lower() series_ref.series_name_s = re.sub('\\W+', ' ', series_ref.series_name_s) series_ref.series_name_s = re.sub('giant[- ]*sized?', 'giant size', series_ref.series_name_s) series_ref.series_name_s = re.sub('king[- ]*sized?', 'king size', series_ref.series_name_s) series_ref.series_name_s = re.sub('one[- ]*shot', 'one shot', series_ref.series_name_s) serieswords = series_ref.series_name_s.split() namescore_n = 0 for word in bookwords: if word in serieswords: namescore_n += 5 serieswords.remove(word) else: namescore_n -= 1 namescore_n -= len(serieswords) priorscore_n = 7 if sstr(series_ref.series_key) in self.__prior_series_sl else 0 pub_s = series_ref.publisher_s.lower() publisherscore_n = -6 if 'panini' in pub_s or 'deagostina' in pub_s or pub_s == 'marvel italia' or (pub_s == 'marvel uk') or (pub_s == 'semic_as') or (pub_s == 'abril') else 0 booknumber_n = book.issue_num_s if book.issue_num_s else '-1000' booknumber_n = re.sub('[^\\d.-]+', '', booknumber_n) try: booknumber_n = float(booknumber_n) except: booknumber_n = -999 series_count_n = series_ref.issue_count_n if series_count_n > 100: bookscore_n = 100 else: bookscore_n = 100 if booknumber_n - 1 <= series_count_n else -100 current_year_n = datetime.datetime.now().year is_valid_year_b = lambda y: y > 1900 and y <= current_year_n + 1 series_year_n = series_ref.volume_year_n book_year_n = book.pub_year_n if is_valid_year_b(book.pub_year_n) else book.rel_year_n yearscore_n = 0 if is_valid_year_b(book_year_n): if not is_valid_year_b(series_year_n): yearscore_n = -100 elif series_year_n > book_year_n: yearscore_n = -500 if is_valid_year_b(series_year_n): recency_score_n = -(current_year_n - series_year_n) / 100.0 else: recency_score_n = -1.0 return bookscore_n + namescore_n + publisherscore_n + priorscore_n + yearscore_n + recency_score_n
comic-vine-scraper
positive
def compute_result(self, *args): d_a = args[0] d_b = args[1] n = args[2] sc1 = (d_a >> 16 == 32768) & (d_b & 65535 == 32768) & (n == 1).cast_to(Type.int_32) sc0 = (d_a & 65535 == 32768) & (d_b & 65535 == 32768) & (n == 1).cast_to(Type.int_32) mul_res1 = 2147483647 & sc1 | (d_a >> 16) * (d_b & 65535) << n.value & (sc1 ^ 65535) mul_res0 = 2147483647 & sc0 | (d_a & 65535) * (d_b & 65535) << n.value & (sc0 ^ 65535) e_d_0 = self.get('d{0}'.format(self.data['d']), Type.int_32) e_d_1 = self.get('d{0}'.format(self.data['d'] + 1), Type.int_32) max_pos = self.constant(INT32_MAX_POS, Type.int_32) max_neg = self.constant(INT32_MAX_NEG, Type.int_32) result_w0 = ssov32(e_d_0 - mul_res0, max_pos, max_neg) result_w1 = ssov32(e_d_1 - mul_res1, max_pos, max_neg) self.put(result_w0, 'd{0}'.format(self.data['c'])) self.put(result_w1, 'd{0}'.format(self.data['c'] + 1)) c = 0 ov_w0 = overflow(result_w0) ov_w1 = overflow(result_w1) v = ov_w1 | ov_w0 aov_w0 = advanced_overflow(result_w0) aov_w1 = advanced_overflow(result_w1) av = aov_w1 | aov_w0 <DeepExtract> psw = self.get('psw', Type.int_32) </DeepExtract> cond_sv = v == 0 cond_sav = av == 0 sv = psw & SV_MASK & cond_sv | 1 & (cond_sv ^ 1) sav = psw & ASV_MASK & cond_sav | 1 & (cond_sav ^ 1) psw = set_usb(psw, c, v, sv, av, sav) self.put(psw, 'psw')
def compute_result(self, *args): d_a = args[0] d_b = args[1] n = args[2] sc1 = (d_a >> 16 == 32768) & (d_b & 65535 == 32768) & (n == 1).cast_to(Type.int_32) sc0 = (d_a & 65535 == 32768) & (d_b & 65535 == 32768) & (n == 1).cast_to(Type.int_32) mul_res1 = 2147483647 & sc1 | (d_a >> 16) * (d_b & 65535) << n.value & (sc1 ^ 65535) mul_res0 = 2147483647 & sc0 | (d_a & 65535) * (d_b & 65535) << n.value & (sc0 ^ 65535) e_d_0 = self.get('d{0}'.format(self.data['d']), Type.int_32) e_d_1 = self.get('d{0}'.format(self.data['d'] + 1), Type.int_32) max_pos = self.constant(INT32_MAX_POS, Type.int_32) max_neg = self.constant(INT32_MAX_NEG, Type.int_32) result_w0 = ssov32(e_d_0 - mul_res0, max_pos, max_neg) result_w1 = ssov32(e_d_1 - mul_res1, max_pos, max_neg) self.put(result_w0, 'd{0}'.format(self.data['c'])) self.put(result_w1, 'd{0}'.format(self.data['c'] + 1)) c = 0 ov_w0 = overflow(result_w0) ov_w1 = overflow(result_w1) v = ov_w1 | ov_w0 aov_w0 = advanced_overflow(result_w0) aov_w1 = advanced_overflow(result_w1) av = aov_w1 | aov_w0 psw = self.get('psw', Type.int_32) cond_sv = v == 0 cond_sav = av == 0 sv = psw & SV_MASK & cond_sv | 1 & (cond_sv ^ 1) sav = psw & ASV_MASK & cond_sav | 1 & (cond_sav ^ 1) psw = set_usb(psw, c, v, sv, av, sav) self.put(psw, 'psw')
angr-platforms
positive
@parameterized.named_parameters(jtu.cases_from_list(({'testcase_name': rec.test_name.capitalize(), 'name': rec.name, 'np_op': getattr(np, rec.name), 'bm_op': getattr(bm, rec.name)} for rec in JAX_ARGMINMAX_RECORDS))) def testArgMinMaxEmpty(self, name, np_op, bm_op): name = name[3:] if name.startswith('nan') else name msg = 'attempt to get {} of an empty sequence'.format(name) with self.assertRaises(ValueError, msg=msg): <DeepExtract> return bm.geomspace(np.array([]), stop, num, endpoint=endpoint, dtype=dtype, axis=axis) </DeepExtract> with self.assertRaises(ValueError, msg=msg): <DeepExtract> return bm.geomspace(np.zeros((2, 0)), stop, num, endpoint=endpoint, dtype=dtype, axis=1) </DeepExtract> np_fun = jtu.with_jax_dtype_defaults(partial(np_op, axis=0)) bm_fun = partial(bm_op, axis=0) args_maker = lambda : [np.zeros((2, 0))] self._CheckAgainstNumpy(np_fun, bm_func(bm_fun), args_maker) self._CompileAndCheck(bm_func(bm_fun), args_maker)
@parameterized.named_parameters(jtu.cases_from_list(({'testcase_name': rec.test_name.capitalize(), 'name': rec.name, 'np_op': getattr(np, rec.name), 'bm_op': getattr(bm, rec.name)} for rec in JAX_ARGMINMAX_RECORDS))) def testArgMinMaxEmpty(self, name, np_op, bm_op): name = name[3:] if name.startswith('nan') else name msg = 'attempt to get {} of an empty sequence'.format(name) with self.assertRaises(ValueError, msg=msg): return bm.geomspace(np.array([]), stop, num, endpoint=endpoint, dtype=dtype, axis=axis) with self.assertRaises(ValueError, msg=msg): return bm.geomspace(np.zeros((2, 0)), stop, num, endpoint=endpoint, dtype=dtype, axis=1) np_fun = jtu.with_jax_dtype_defaults(partial(np_op, axis=0)) bm_fun = partial(bm_op, axis=0) args_maker = lambda : [np.zeros((2, 0))] self._CheckAgainstNumpy(np_fun, bm_func(bm_fun), args_maker) self._CompileAndCheck(bm_func(bm_fun), args_maker)
BrainPy
positive
def load_dataset(self): <DeepExtract> image_set_file = os.path.join(self._data_path, 'ImageSets', 'Main', self._image_set + '.txt') assert os.path.exists(image_set_file), 'Path does not exist: {}'.format(image_set_file) with open(image_set_file) as f: image_index = [x.strip() for x in f.readlines()] self._image_indexes = image_index </DeepExtract> self._image_names = [self.image_path_from_index(index) for index in self.image_indexes] <DeepExtract> cache_file = os.path.join(self.cache_path, self.name + '_gt_roidb.pkl') if os.path.exists(cache_file): with open(cache_file, 'rb') as fid: roidb = pickle.load(fid) print('{} gt roidb loaded from {}'.format(self.name, cache_file)) self._annotations = roidb gt_roidb = [self._annotation_from_index(index) for index in self.image_indexes] with open(cache_file, 'wb') as fid: pickle.dump(gt_roidb, fid, pickle.HIGHEST_PROTOCOL) print('wrote gt roidb to {}'.format(cache_file)) self._annotations = gt_roidb </DeepExtract>
def load_dataset(self): image_set_file = os.path.join(self._data_path, 'ImageSets', 'Main', self._image_set + '.txt') assert os.path.exists(image_set_file), 'Path does not exist: {}'.format(image_set_file) with open(image_set_file) as f: image_index = [x.strip() for x in f.readlines()] self._image_indexes = image_index self._image_names = [self.image_path_from_index(index) for index in self.image_indexes] cache_file = os.path.join(self.cache_path, self.name + '_gt_roidb.pkl') if os.path.exists(cache_file): with open(cache_file, 'rb') as fid: roidb = pickle.load(fid) print('{} gt roidb loaded from {}'.format(self.name, cache_file)) self._annotations = roidb gt_roidb = [self._annotation_from_index(index) for index in self.image_indexes] with open(cache_file, 'wb') as fid: pickle.dump(gt_roidb, fid, pickle.HIGHEST_PROTOCOL) print('wrote gt roidb to {}'.format(cache_file)) self._annotations = gt_roidb </DeepExtract>
Detection-PyTorch-Notebook
positive
def getAllUsersByRole(roleId): payload = {} params = {} params['pgSize'] = 250 params['pgNum'] = 1 params['active'] = True params['roleId'] = roleId allUsers = [] <DeepExtract> address = serverAddress + '/api/user' if 'get' == 'get': r = requests.get(address, auth=(credsUsername, userPassword), params=params, verify=False) elif 'get' == 'post' and execute: r = requests.post(address, auth=(credsUsername, userPassword), data={}, params=params, verify=False) elif 'get' == 'put' and execute: r = requests.put(address, auth=(credsUsername, userPassword), data={}, params=params, verify=False) elif 'get' == 'delete' and execute: r = requests.delete(address, auth=(credsUsername, userPassword), data={}, params=params, verify=False) elif not execute: r = False else: print('ERROR: Invalid Request type. Try again') r = False response = r </DeepExtract> firstContent = response.text firstData = json.loads(firstContent)['data'] totalUsers = firstData['totalCount'] pagesNeeded = totalUsers // params['pgSize'] + (totalUsers % params['pgSize'] > 0) while params['pgNum'] <= pagesNeeded: <DeepExtract> address = serverAddress + '/api/user' if 'get' == 'get': r = requests.get(address, auth=(credsUsername, userPassword), params=params, verify=False) elif 'get' == 'post' and execute: r = requests.post(address, auth=(credsUsername, userPassword), data={}, params=params, verify=False) elif 'get' == 'put' and execute: r = requests.put(address, auth=(credsUsername, userPassword), data={}, params=params, verify=False) elif 'get' == 'delete' and execute: r = requests.delete(address, auth=(credsUsername, userPassword), data={}, params=params, verify=False) elif not execute: r = False else: print('ERROR: Invalid Request type. Try again') r = False response = r </DeepExtract> content = response.text data = json.loads(content)['data'] allUsers.extend(data['users']) params['pgNum'] += 1 return allUsers
def getAllUsersByRole(roleId): payload = {} params = {} params['pgSize'] = 250 params['pgNum'] = 1 params['active'] = True params['roleId'] = roleId allUsers = [] address = serverAddress + '/api/user' if 'get' == 'get': r = requests.get(address, auth=(credsUsername, userPassword), params=params, verify=False) elif 'get' == 'post' and execute: r = requests.post(address, auth=(credsUsername, userPassword), data={}, params=params, verify=False) elif 'get' == 'put' and execute: r = requests.put(address, auth=(credsUsername, userPassword), data={}, params=params, verify=False) elif 'get' == 'delete' and execute: r = requests.delete(address, auth=(credsUsername, userPassword), data={}, params=params, verify=False) elif not execute: r = False else: print('ERROR: Invalid Request type. Try again') r = False response = r firstContent = response.text firstData = json.loads(firstContent)['data'] totalUsers = firstData['totalCount'] pagesNeeded = totalUsers // params['pgSize'] + (totalUsers % params['pgSize'] > 0) while params['pgNum'] <= pagesNeeded: address = serverAddress + '/api/user' if 'get' == 'get': r = requests.get(address, auth=(credsUsername, userPassword), params=params, verify=False) elif 'get' == 'post' and execute: r = requests.post(address, auth=(credsUsername, userPassword), data={}, params=params, verify=False) elif 'get' == 'put' and execute: r = requests.put(address, auth=(credsUsername, userPassword), data={}, params=params, verify=False) elif 'get' == 'delete' and execute: r = requests.delete(address, auth=(credsUsername, userPassword), data={}, params=params, verify=False) elif not execute: r = False else: print('ERROR: Invalid Request type. Try again') r = False response = r content = response.text data = json.loads(content)['data'] allUsers.extend(data['users']) params['pgNum'] += 1 return allUsers
crashplan_api_examples
positive
def get_quarter_start(self, year: int, quarter: int, fy_start_month: int=None) -> date: """ The fiscal year quarter starting date of the EntityModel, according to its settings. Parameters ---------- year: int The fiscal year associated with the requested start date. quarter: int The quarter number associated with the requested start date. fy_start_month: int Optional fiscal year month start. If passed, it will override the EntityModel setting. Returns ------- date The date when the requested EntityModel quarter starts. """ if fy_start_month: <DeepExtract> if fy_start_month not in self.VALID_MONTHS: raise ValidationError(f'Specified month is not valid: {fy_start_month}') </DeepExtract> fy_start_month = self.get_fy_start_month() if not fy_start_month else fy_start_month <DeepExtract> if quarter not in self.VALID_QUARTERS: raise ValidationError(f'Specified quarter is not valid: {quarter}') </DeepExtract> quarter_month_start = (quarter - 1) * 3 + fy_start_month year_start = year if quarter_month_start > 12: quarter_month_start -= 12 year_start = year + 1 return date(year_start, quarter_month_start, 1)
def get_quarter_start(self, year: int, quarter: int, fy_start_month: int=None) -> date: """ The fiscal year quarter starting date of the EntityModel, according to its settings. Parameters ---------- year: int The fiscal year associated with the requested start date. quarter: int The quarter number associated with the requested start date. fy_start_month: int Optional fiscal year month start. If passed, it will override the EntityModel setting. Returns ------- date The date when the requested EntityModel quarter starts. """ if fy_start_month: if fy_start_month not in self.VALID_MONTHS: raise ValidationError(f'Specified month is not valid: {fy_start_month}') fy_start_month = self.get_fy_start_month() if not fy_start_month else fy_start_month if quarter not in self.VALID_QUARTERS: raise ValidationError(f'Specified quarter is not valid: {quarter}') quarter_month_start = (quarter - 1) * 3 + fy_start_month year_start = year if quarter_month_start > 12: quarter_month_start -= 12 year_start = year + 1 return date(year_start, quarter_month_start, 1)
django-ledger
positive
def test_create(self): <DeepExtract> namespace = self.namespace if namespace is None else namespace d_kwargs = {'app_type': kwargs.get('app_type', 'web'), 'version': kwargs.get('version', 'v99'), 'replicas': kwargs.get('replicas', 1), 'pod_termination_grace_period_seconds': 2, 'image': 'quay.io/fake/image', 'entrypoint': 'sh', 'command': 'start'} deployment = self.scheduler.deployment.create(namespace, name, **d_kwargs) self.assertEqual(deployment.status_code, 201, deployment.json()) data = {'min': kwargs.get('min', 2), 'max': kwargs.get('max', 4), 'cpu_percent': 45, 'wait': True} horizontalpodautoscaler = self.scheduler.hpa.create(namespace, name, kwargs.get('app_type'), deployment.json(), **data) self.assertEqual(horizontalpodautoscaler.status_code, 201, horizontalpodautoscaler.json()) name = name </DeepExtract> deployment = self.scheduler.deployment.get(self.namespace, name).json() self.assertEqual(deployment['spec']['replicas'], 2, deployment) labels = {'app': self.namespace, 'type': 'web', 'version': 'v99'} pods = self.scheduler.pod.get(self.namespace, labels=labels).json() self.assertEqual(len(pods['items']), 2)
def test_create(self): namespace = self.namespace if namespace is None else namespace d_kwargs = {'app_type': kwargs.get('app_type', 'web'), 'version': kwargs.get('version', 'v99'), 'replicas': kwargs.get('replicas', 1), 'pod_termination_grace_period_seconds': 2, 'image': 'quay.io/fake/image', 'entrypoint': 'sh', 'command': 'start'} deployment = self.scheduler.deployment.create(namespace, name, **d_kwargs) self.assertEqual(deployment.status_code, 201, deployment.json()) data = {'min': kwargs.get('min', 2), 'max': kwargs.get('max', 4), 'cpu_percent': 45, 'wait': True} horizontalpodautoscaler = self.scheduler.hpa.create(namespace, name, kwargs.get('app_type'), deployment.json(), **data) self.assertEqual(horizontalpodautoscaler.status_code, 201, horizontalpodautoscaler.json()) name = name deployment = self.scheduler.deployment.get(self.namespace, name).json() self.assertEqual(deployment['spec']['replicas'], 2, deployment) labels = {'app': self.namespace, 'type': 'web', 'version': 'v99'} pods = self.scheduler.pod.get(self.namespace, labels=labels).json() self.assertEqual(len(pods['items']), 2)
controller
positive
def testMockCallback(self): <DeepExtract> self.assertEquals('', self.PerformSingleLineLint('MockCallback<bool(int)>')) </DeepExtract> <DeepExtract> self.assertEquals('', self.PerformSingleLineLint('MockCallback<int(float, char)>')) </DeepExtract>
def testMockCallback(self): self.assertEquals('', self.PerformSingleLineLint('MockCallback<bool(int)>')) self.assertEquals('', self.PerformSingleLineLint('MockCallback<int(float, char)>')) </DeepExtract>
cpplint
positive
def get_anchors(self, featmap_sizes, shape_preds, loc_preds, img_metas, use_loc_filter=False, device='cuda'): """Get squares according to feature map sizes and guided anchors. Args: featmap_sizes (list[tuple]): Multi-level feature map sizes. shape_preds (list[tensor]): Multi-level shape predictions. loc_preds (list[tensor]): Multi-level location predictions. img_metas (list[dict]): Image meta info. use_loc_filter (bool): Use loc filter or not. device (torch.device | str): device for returned tensors Returns: tuple: square approxs of each image, guided anchors of each image, loc masks of each image """ num_imgs = len(img_metas) num_levels = len(featmap_sizes) multi_level_squares = [] for i in range(num_levels): squares = self.square_generators[i].grid_anchors(featmap_sizes[i], self.anchor_strides[i], device=device) multi_level_squares.append(squares) squares_list = [multi_level_squares for _ in range(num_imgs)] guided_anchors_list = [] loc_mask_list = [] for (img_id, img_meta) in enumerate(img_metas): multi_level_guided_anchors = [] multi_level_loc_mask = [] for i in range(num_levels): squares = squares_list[img_id][i] shape_pred = shape_preds[i][img_id] loc_pred = loc_preds[i][img_id] <DeepExtract> loc_pred = loc_pred.sigmoid().detach() if use_loc_filter: loc_mask = loc_pred >= self.loc_filter_thr else: loc_mask = loc_pred >= 0.0 mask = loc_mask.permute(1, 2, 0).expand(-1, -1, self.num_anchors) mask = mask.contiguous().view(-1) squares = squares[mask] anchor_deltas = shape_pred.permute(1, 2, 0).contiguous().view(-1, 2).detach()[mask] bbox_deltas = anchor_deltas.new_full(squares.size(), 0) bbox_deltas[:, 2:] = anchor_deltas guided_anchors = delta2bbox(squares, bbox_deltas, self.anchoring_means, self.anchoring_stds, wh_ratio_clip=1e-06) (guided_anchors, loc_mask) = (guided_anchors, mask) </DeepExtract> multi_level_guided_anchors.append(guided_anchors) multi_level_loc_mask.append(loc_mask) guided_anchors_list.append(multi_level_guided_anchors) loc_mask_list.append(multi_level_loc_mask) return (squares_list, guided_anchors_list, loc_mask_list)
def get_anchors(self, featmap_sizes, shape_preds, loc_preds, img_metas, use_loc_filter=False, device='cuda'): """Get squares according to feature map sizes and guided anchors. Args: featmap_sizes (list[tuple]): Multi-level feature map sizes. shape_preds (list[tensor]): Multi-level shape predictions. loc_preds (list[tensor]): Multi-level location predictions. img_metas (list[dict]): Image meta info. use_loc_filter (bool): Use loc filter or not. device (torch.device | str): device for returned tensors Returns: tuple: square approxs of each image, guided anchors of each image, loc masks of each image """ num_imgs = len(img_metas) num_levels = len(featmap_sizes) multi_level_squares = [] for i in range(num_levels): squares = self.square_generators[i].grid_anchors(featmap_sizes[i], self.anchor_strides[i], device=device) multi_level_squares.append(squares) squares_list = [multi_level_squares for _ in range(num_imgs)] guided_anchors_list = [] loc_mask_list = [] for (img_id, img_meta) in enumerate(img_metas): multi_level_guided_anchors = [] multi_level_loc_mask = [] for i in range(num_levels): squares = squares_list[img_id][i] shape_pred = shape_preds[i][img_id] loc_pred = loc_preds[i][img_id] loc_pred = loc_pred.sigmoid().detach() if use_loc_filter: loc_mask = loc_pred >= self.loc_filter_thr else: loc_mask = loc_pred >= 0.0 mask = loc_mask.permute(1, 2, 0).expand(-1, -1, self.num_anchors) mask = mask.contiguous().view(-1) squares = squares[mask] anchor_deltas = shape_pred.permute(1, 2, 0).contiguous().view(-1, 2).detach()[mask] bbox_deltas = anchor_deltas.new_full(squares.size(), 0) bbox_deltas[:, 2:] = anchor_deltas guided_anchors = delta2bbox(squares, bbox_deltas, self.anchoring_means, self.anchoring_stds, wh_ratio_clip=1e-06) (guided_anchors, loc_mask) = (guided_anchors, mask) multi_level_guided_anchors.append(guided_anchors) multi_level_loc_mask.append(loc_mask) guided_anchors_list.append(multi_level_guided_anchors) loc_mask_list.append(multi_level_loc_mask) return (squares_list, guided_anchors_list, loc_mask_list)
DetectoRS
positive
def get_inception_resnet_v2_unet_softmax(input_shape, weights='imagenet'): inp = Input(input_shape + (4,)) x = conv2d_bn(inp, 32, 3, strides=2, padding='same') x = conv2d_bn(x, 32, 3, padding='same') x = conv2d_bn(x, 64, 3) conv1 = x x = MaxPooling2D(3, strides=2, padding='same')(x) x = conv2d_bn(x, 80, 1, padding='same') x = conv2d_bn(x, 192, 3, padding='same') conv2 = x x = MaxPooling2D(3, strides=2, padding='same')(x) branch_0 = conv2d_bn(x, 96, 1) branch_1 = conv2d_bn(x, 48, 1) branch_1 = conv2d_bn(branch_1, 64, 5) branch_2 = conv2d_bn(x, 64, 1) branch_2 = conv2d_bn(branch_2, 96, 3) branch_2 = conv2d_bn(branch_2, 96, 3) branch_pool = AveragePooling2D(3, strides=1, padding='same')(x) branch_pool = conv2d_bn(branch_pool, 64, 1) branches = [branch_0, branch_1, branch_2, branch_pool] channel_axis = 1 if K.image_data_format() == 'channels_first' else 3 x = Concatenate(axis=channel_axis, name='mixed_5b')(branches) for block_idx in range(1, 11): x = inception_resnet_block(x, scale=0.17, block_type='block35', block_idx=block_idx) conv3 = x branch_0 = conv2d_bn(x, 384, 3, strides=2, padding='same') branch_1 = conv2d_bn(x, 256, 1) branch_1 = conv2d_bn(branch_1, 256, 3) branch_1 = conv2d_bn(branch_1, 384, 3, strides=2, padding='same') branch_pool = MaxPooling2D(3, strides=2, padding='same')(x) branches = [branch_0, branch_1, branch_pool] x = Concatenate(axis=channel_axis, name='mixed_6a')(branches) for block_idx in range(1, 21): x = inception_resnet_block(x, scale=0.1, block_type='block17', block_idx=block_idx) conv4 = x branch_0 = conv2d_bn(x, 256, 1) branch_0 = conv2d_bn(branch_0, 384, 3, strides=2, padding='same') branch_1 = conv2d_bn(x, 256, 1) branch_1 = conv2d_bn(branch_1, 288, 3, strides=2, padding='same') branch_2 = conv2d_bn(x, 256, 1) branch_2 = conv2d_bn(branch_2, 288, 3) branch_2 = conv2d_bn(branch_2, 320, 3, strides=2, padding='same') branch_pool = MaxPooling2D(3, strides=2, padding='same')(x) branches = [branch_0, branch_1, branch_2, branch_pool] x = Concatenate(axis=channel_axis, name='mixed_7a')(branches) for block_idx in range(1, 10): x = inception_resnet_block(x, scale=0.2, block_type='block8', block_idx=block_idx) x = inception_resnet_block(x, scale=1.0, activation=None, block_type='block8', block_idx=10) x = conv2d_bn(x, 1536, 1, name='conv_7b') conv5 = x <DeepExtract> name = None if prefix is not None: name = prefix + '_conv' conv = Conv2D(320, kernel, padding='same', kernel_initializer='he_normal', strides=strides, name=name)(UpSampling2D()(conv5)) if prefix is not None: name = prefix + '_norm' conv = BatchNormalization(name=name, axis=bn_axis)(conv) if prefix is not None: name = prefix + '_act' conv = Activation(act, name=name)(conv) conv6 = conv </DeepExtract> conv6 = concatenate([conv6, conv4], axis=-1) <DeepExtract> name = None if prefix is not None: name = prefix + '_conv' conv = Conv2D(320, kernel, padding='same', kernel_initializer='he_normal', strides=strides, name=name)(conv6) if prefix is not None: name = prefix + '_norm' conv = BatchNormalization(name=name, axis=bn_axis)(conv) if prefix is not None: name = prefix + '_act' conv = Activation(act, name=name)(conv) conv6 = conv </DeepExtract> <DeepExtract> name = None if prefix is not None: name = prefix + '_conv' conv = Conv2D(256, kernel, padding='same', kernel_initializer='he_normal', strides=strides, name=name)(UpSampling2D()(conv6)) if prefix is not None: name = prefix + '_norm' conv = BatchNormalization(name=name, axis=bn_axis)(conv) if prefix is not None: name = prefix + '_act' conv = Activation(act, name=name)(conv) conv7 = conv </DeepExtract> conv7 = concatenate([conv7, conv3], axis=-1) <DeepExtract> name = None if prefix is not None: name = prefix + '_conv' conv = Conv2D(256, kernel, padding='same', kernel_initializer='he_normal', strides=strides, name=name)(conv7) if prefix is not None: name = prefix + '_norm' conv = BatchNormalization(name=name, axis=bn_axis)(conv) if prefix is not None: name = prefix + '_act' conv = Activation(act, name=name)(conv) conv7 = conv </DeepExtract> <DeepExtract> name = None if prefix is not None: name = prefix + '_conv' conv = Conv2D(128, kernel, padding='same', kernel_initializer='he_normal', strides=strides, name=name)(UpSampling2D()(conv7)) if prefix is not None: name = prefix + '_norm' conv = BatchNormalization(name=name, axis=bn_axis)(conv) if prefix is not None: name = prefix + '_act' conv = Activation(act, name=name)(conv) conv8 = conv </DeepExtract> conv8 = concatenate([conv8, conv2], axis=-1) <DeepExtract> name = None if prefix is not None: name = prefix + '_conv' conv = Conv2D(128, kernel, padding='same', kernel_initializer='he_normal', strides=strides, name=name)(conv8) if prefix is not None: name = prefix + '_norm' conv = BatchNormalization(name=name, axis=bn_axis)(conv) if prefix is not None: name = prefix + '_act' conv = Activation(act, name=name)(conv) conv8 = conv </DeepExtract> <DeepExtract> name = None if prefix is not None: name = prefix + '_conv' conv = Conv2D(96, kernel, padding='same', kernel_initializer='he_normal', strides=strides, name=name)(UpSampling2D()(conv8)) if prefix is not None: name = prefix + '_norm' conv = BatchNormalization(name=name, axis=bn_axis)(conv) if prefix is not None: name = prefix + '_act' conv = Activation(act, name=name)(conv) conv9 = conv </DeepExtract> conv9 = concatenate([conv9, conv1], axis=-1) <DeepExtract> name = None if prefix is not None: name = prefix + '_conv' conv = Conv2D(96, kernel, padding='same', kernel_initializer='he_normal', strides=strides, name=name)(conv9) if prefix is not None: name = prefix + '_norm' conv = BatchNormalization(name=name, axis=bn_axis)(conv) if prefix is not None: name = prefix + '_act' conv = Activation(act, name=name)(conv) conv9 = conv </DeepExtract> <DeepExtract> name = None if prefix is not None: name = prefix + '_conv' conv = Conv2D(64, kernel, padding='same', kernel_initializer='he_normal', strides=strides, name=name)(UpSampling2D()(conv9)) if prefix is not None: name = prefix + '_norm' conv = BatchNormalization(name=name, axis=bn_axis)(conv) if prefix is not None: name = prefix + '_act' conv = Activation(act, name=name)(conv) conv10 = conv </DeepExtract> <DeepExtract> name = None if prefix is not None: name = prefix + '_conv' conv = Conv2D(64, kernel, padding='same', kernel_initializer='he_normal', strides=strides, name=name)(conv10) if prefix is not None: name = prefix + '_norm' conv = BatchNormalization(name=name, axis=bn_axis)(conv) if prefix is not None: name = prefix + '_act' conv = Activation(act, name=name)(conv) conv10 = conv </DeepExtract> res = Conv2D(3, (1, 1), activation='softmax')(conv10) model = Model(inp, res) if weights == 'imagenet': inception_resnet_v2 = InceptionResNetV2(weights=weights, include_top=False, input_shape=input_shape + (3,)) for i in range(2, len(inception_resnet_v2.layers) - 1): model.layers[i].set_weights(inception_resnet_v2.layers[i].get_weights()) model.layers[i].trainable = False return model
def get_inception_resnet_v2_unet_softmax(input_shape, weights='imagenet'): inp = Input(input_shape + (4,)) x = conv2d_bn(inp, 32, 3, strides=2, padding='same') x = conv2d_bn(x, 32, 3, padding='same') x = conv2d_bn(x, 64, 3) conv1 = x x = MaxPooling2D(3, strides=2, padding='same')(x) x = conv2d_bn(x, 80, 1, padding='same') x = conv2d_bn(x, 192, 3, padding='same') conv2 = x x = MaxPooling2D(3, strides=2, padding='same')(x) branch_0 = conv2d_bn(x, 96, 1) branch_1 = conv2d_bn(x, 48, 1) branch_1 = conv2d_bn(branch_1, 64, 5) branch_2 = conv2d_bn(x, 64, 1) branch_2 = conv2d_bn(branch_2, 96, 3) branch_2 = conv2d_bn(branch_2, 96, 3) branch_pool = AveragePooling2D(3, strides=1, padding='same')(x) branch_pool = conv2d_bn(branch_pool, 64, 1) branches = [branch_0, branch_1, branch_2, branch_pool] channel_axis = 1 if K.image_data_format() == 'channels_first' else 3 x = Concatenate(axis=channel_axis, name='mixed_5b')(branches) for block_idx in range(1, 11): x = inception_resnet_block(x, scale=0.17, block_type='block35', block_idx=block_idx) conv3 = x branch_0 = conv2d_bn(x, 384, 3, strides=2, padding='same') branch_1 = conv2d_bn(x, 256, 1) branch_1 = conv2d_bn(branch_1, 256, 3) branch_1 = conv2d_bn(branch_1, 384, 3, strides=2, padding='same') branch_pool = MaxPooling2D(3, strides=2, padding='same')(x) branches = [branch_0, branch_1, branch_pool] x = Concatenate(axis=channel_axis, name='mixed_6a')(branches) for block_idx in range(1, 21): x = inception_resnet_block(x, scale=0.1, block_type='block17', block_idx=block_idx) conv4 = x branch_0 = conv2d_bn(x, 256, 1) branch_0 = conv2d_bn(branch_0, 384, 3, strides=2, padding='same') branch_1 = conv2d_bn(x, 256, 1) branch_1 = conv2d_bn(branch_1, 288, 3, strides=2, padding='same') branch_2 = conv2d_bn(x, 256, 1) branch_2 = conv2d_bn(branch_2, 288, 3) branch_2 = conv2d_bn(branch_2, 320, 3, strides=2, padding='same') branch_pool = MaxPooling2D(3, strides=2, padding='same')(x) branches = [branch_0, branch_1, branch_2, branch_pool] x = Concatenate(axis=channel_axis, name='mixed_7a')(branches) for block_idx in range(1, 10): x = inception_resnet_block(x, scale=0.2, block_type='block8', block_idx=block_idx) x = inception_resnet_block(x, scale=1.0, activation=None, block_type='block8', block_idx=10) x = conv2d_bn(x, 1536, 1, name='conv_7b') conv5 = x name = None if prefix is not None: name = prefix + '_conv' conv = Conv2D(320, kernel, padding='same', kernel_initializer='he_normal', strides=strides, name=name)(UpSampling2D()(conv5)) if prefix is not None: name = prefix + '_norm' conv = BatchNormalization(name=name, axis=bn_axis)(conv) if prefix is not None: name = prefix + '_act' conv = Activation(act, name=name)(conv) conv6 = conv conv6 = concatenate([conv6, conv4], axis=-1) name = None if prefix is not None: name = prefix + '_conv' conv = Conv2D(320, kernel, padding='same', kernel_initializer='he_normal', strides=strides, name=name)(conv6) if prefix is not None: name = prefix + '_norm' conv = BatchNormalization(name=name, axis=bn_axis)(conv) if prefix is not None: name = prefix + '_act' conv = Activation(act, name=name)(conv) conv6 = conv name = None if prefix is not None: name = prefix + '_conv' conv = Conv2D(256, kernel, padding='same', kernel_initializer='he_normal', strides=strides, name=name)(UpSampling2D()(conv6)) if prefix is not None: name = prefix + '_norm' conv = BatchNormalization(name=name, axis=bn_axis)(conv) if prefix is not None: name = prefix + '_act' conv = Activation(act, name=name)(conv) conv7 = conv conv7 = concatenate([conv7, conv3], axis=-1) name = None if prefix is not None: name = prefix + '_conv' conv = Conv2D(256, kernel, padding='same', kernel_initializer='he_normal', strides=strides, name=name)(conv7) if prefix is not None: name = prefix + '_norm' conv = BatchNormalization(name=name, axis=bn_axis)(conv) if prefix is not None: name = prefix + '_act' conv = Activation(act, name=name)(conv) conv7 = conv name = None if prefix is not None: name = prefix + '_conv' conv = Conv2D(128, kernel, padding='same', kernel_initializer='he_normal', strides=strides, name=name)(UpSampling2D()(conv7)) if prefix is not None: name = prefix + '_norm' conv = BatchNormalization(name=name, axis=bn_axis)(conv) if prefix is not None: name = prefix + '_act' conv = Activation(act, name=name)(conv) conv8 = conv conv8 = concatenate([conv8, conv2], axis=-1) name = None if prefix is not None: name = prefix + '_conv' conv = Conv2D(128, kernel, padding='same', kernel_initializer='he_normal', strides=strides, name=name)(conv8) if prefix is not None: name = prefix + '_norm' conv = BatchNormalization(name=name, axis=bn_axis)(conv) if prefix is not None: name = prefix + '_act' conv = Activation(act, name=name)(conv) conv8 = conv name = None if prefix is not None: name = prefix + '_conv' conv = Conv2D(96, kernel, padding='same', kernel_initializer='he_normal', strides=strides, name=name)(UpSampling2D()(conv8)) if prefix is not None: name = prefix + '_norm' conv = BatchNormalization(name=name, axis=bn_axis)(conv) if prefix is not None: name = prefix + '_act' conv = Activation(act, name=name)(conv) conv9 = conv conv9 = concatenate([conv9, conv1], axis=-1) name = None if prefix is not None: name = prefix + '_conv' conv = Conv2D(96, kernel, padding='same', kernel_initializer='he_normal', strides=strides, name=name)(conv9) if prefix is not None: name = prefix + '_norm' conv = BatchNormalization(name=name, axis=bn_axis)(conv) if prefix is not None: name = prefix + '_act' conv = Activation(act, name=name)(conv) conv9 = conv name = None if prefix is not None: name = prefix + '_conv' conv = Conv2D(64, kernel, padding='same', kernel_initializer='he_normal', strides=strides, name=name)(UpSampling2D()(conv9)) if prefix is not None: name = prefix + '_norm' conv = BatchNormalization(name=name, axis=bn_axis)(conv) if prefix is not None: name = prefix + '_act' conv = Activation(act, name=name)(conv) conv10 = conv name = None if prefix is not None: name = prefix + '_conv' conv = Conv2D(64, kernel, padding='same', kernel_initializer='he_normal', strides=strides, name=name)(conv10) if prefix is not None: name = prefix + '_norm' conv = BatchNormalization(name=name, axis=bn_axis)(conv) if prefix is not None: name = prefix + '_act' conv = Activation(act, name=name)(conv) conv10 = conv res = Conv2D(3, (1, 1), activation='softmax')(conv10) model = Model(inp, res) if weights == 'imagenet': inception_resnet_v2 = InceptionResNetV2(weights=weights, include_top=False, input_shape=input_shape + (3,)) for i in range(2, len(inception_resnet_v2.layers) - 1): model.layers[i].set_weights(inception_resnet_v2.layers[i].get_weights()) model.layers[i].trainable = False return model
dsb2018_topcoders
positive
def _append_to_window(event): <DeepExtract> if self.initial_field_names is not None: self.field_names = self.initial_field_names else: self.latest_names = self._extract_field_names(event) self.field_names = set.union(self.field_names, self.latest_names) </DeepExtract> if self.static_sids is None: sids = set(event.data.keys()) else: sids = self.static_sids self.latest_sids = sids if self.rolling_panel is None: <DeepExtract> if self.downsample: self.rolling_panel = RollingPanel(self.bars_in_day, self.field_names, sids) self.daily_rolling_panel = RollingPanel(self.window_length, self.field_names, sids) else: self.rolling_panel = RollingPanel(self.window_length * self.bars_in_day, self.field_names, sids) </DeepExtract> self.rolling_panel.add_frame(event.dt, pd.DataFrame(event.data, index=self.field_names, columns=sids)) if trading.environment.is_trading_day(event.dt): (_, mkt_close) = trading.environment.get_open_and_close(event.dt) if self.bars == 'daily': mkt_close = trading.environment.normalize_date(mkt_close) if event.dt == mkt_close: if self.downsample: <DeepExtract> cur_panel = self.rolling_panel.get_current() sids = self.rolling_panel.minor_axis day_frame = pd.DataFrame(columns=sids, index=cur_panel.items) dt1 = trading.environment.normalize_date(mkt_close) dt2 = trading.environment.next_trading_day(mkt_close) by_close = functools.partial(get_date, mkt_close, dt1, dt2) for item in self.rolling_panel.items: frame = cur_panel[item] func = get_sample_func(item) dframe = frame.groupby(lambda d: by_close(d)).agg(func) for stock in sids: day_frame[stock][item] = dframe[stock].ix[dt1] self.daily_rolling_panel.add_frame(dt1, day_frame) </DeepExtract> self.trading_days_total += 1 self.mkt_close = mkt_close self.last_dt = event.dt if self.trading_days_total >= self.window_length: self.full = True
def _append_to_window(event): if self.initial_field_names is not None: self.field_names = self.initial_field_names else: self.latest_names = self._extract_field_names(event) self.field_names = set.union(self.field_names, self.latest_names) if self.static_sids is None: sids = set(event.data.keys()) else: sids = self.static_sids self.latest_sids = sids if self.rolling_panel is None: if self.downsample: self.rolling_panel = RollingPanel(self.bars_in_day, self.field_names, sids) self.daily_rolling_panel = RollingPanel(self.window_length, self.field_names, sids) else: self.rolling_panel = RollingPanel(self.window_length * self.bars_in_day, self.field_names, sids) self.rolling_panel.add_frame(event.dt, pd.DataFrame(event.data, index=self.field_names, columns=sids)) if trading.environment.is_trading_day(event.dt): (_, mkt_close) = trading.environment.get_open_and_close(event.dt) if self.bars == 'daily': mkt_close = trading.environment.normalize_date(mkt_close) if event.dt == mkt_close: if self.downsample: cur_panel = self.rolling_panel.get_current() sids = self.rolling_panel.minor_axis day_frame = pd.DataFrame(columns=sids, index=cur_panel.items) dt1 = trading.environment.normalize_date(mkt_close) dt2 = trading.environment.next_trading_day(mkt_close) by_close = functools.partial(get_date, mkt_close, dt1, dt2) for item in self.rolling_panel.items: frame = cur_panel[item] func = get_sample_func(item) dframe = frame.groupby(lambda d: by_close(d)).agg(func) for stock in sids: day_frame[stock][item] = dframe[stock].ix[dt1] self.daily_rolling_panel.add_frame(dt1, day_frame) self.trading_days_total += 1 self.mkt_close = mkt_close self.last_dt = event.dt if self.trading_days_total >= self.window_length: self.full = True
AlephNull
positive
def render_with(template=None, json=False, jsonp=False): """ Decorator to render the wrapped function with the given template (or dictionary of mimetype keys to templates, where the template is a string name of a template file or a callable that returns a Response). The function's return value must be a dictionary and is passed to the template as parameters. Callable templates get a single parameter with the function's return value. Usage:: @app.route('/myview') @render_with('myview.html') def myview(): return {'data': 'value'} @app.route('/myview_with_json') @render_with('myview.html', json=True) def myview_no_json(): return {'data': 'value'} @app.route('/otherview') @render_with({ 'text/html': 'otherview.html', 'text/xml': 'otherview.xml'}) def otherview(): return {'data': 'value'} @app.route('/404view') @render_with('myview.html') def myview(): return {'error': '404 Not Found'}, 404 @app.route('/headerview') @render_with('myview.html') def myview(): return {'data': 'value'}, 200, {'X-Header': 'Header value'} When a mimetype is specified and the template is not a callable, the response is returned with the same mimetype. Callable templates must return Response objects to ensure the correct mimetype is set. If a dictionary of templates is provided and does not include a handler for ``*/*``, render_with will attempt to use the handler for (in order) ``text/html``, ``text/plain`` and the various JSON types, falling back to rendering the value into a unicode string. If the method is called outside a request context, the wrapped method's original return value is returned. This is meant to facilitate testing and should not be used to call the method from within another view handler as the presence of a request context will trigger template rendering. Rendering may also be suspended by calling the view handler with ``_render=False``. render_with provides JSON and JSONP handlers for the ``application/json``, ``text/json`` and ``text/x-json`` mimetypes if ``json`` or ``jsonp`` is True (default is False). :param template: Single template, or dictionary of MIME type to templates. If the template is a callable, it is called with the output of the wrapped function :param json: Helper to add a JSON handler (default is False) :param jsonp: Helper to add a JSONP handler (if True, also provides JSON, default is False) """ if jsonp: templates = {'application/json': dict_jsonp, 'application/javascript': dict_jsonp} elif json: templates = {'application/json': dict_jsonify} else: templates = {} if isinstance(template, str): templates['text/html'] = template elif isinstance(template, dict): templates.update(template) elif template is None and (json or jsonp): pass else: raise ValueError('Expected string or dict for template') default_mimetype = '*/*' if '*/*' not in templates: templates['*/*'] = str default_mimetype = 'text/plain' for mimetype in ('text/html', 'text/plain', 'application/json'): if mimetype in templates: templates['*/*'] = templates[mimetype] default_mimetype = mimetype break template_mimetypes = list(templates.keys()) template_mimetypes.remove('*/*') def inner(f): @wraps(f) def decorated_function(*args, **kwargs): render = kwargs.pop('_render', True) result = ensure_sync(f)(*args, **kwargs) if isinstance(result, (Response, WerkzeugResponse, current_app.response_class)): return result if isinstance(result, tuple): resultset = result result = resultset[0] if len(resultset) > 1: status_code = resultset[1] else: status_code = None if len(resultset) > 2: headers = Headers(resultset[2]) else: headers = Headers() else: status_code = None headers = Headers() if len(templates) > 1: if 'Vary' in headers: vary_values = [item.strip() for item in headers['Vary'].split(',')] if 'Accept' not in vary_values: vary_values.append('Accept') headers['Vary'] = ', '.join(vary_values) else: headers['Vary'] = 'Accept' use_mimetype = None if render and request: <DeepExtract> for (use_mimetype, _quality) in request.accept_mimetypes: for mimetype in template_mimetypes: if use_mimetype.lower() == mimetype.lower(): use_mimetype = use_mimetype.lower() use_mimetype = '*/*' </DeepExtract> if use_mimetype is not None: if callable(templates[use_mimetype]): rendered = templates[use_mimetype](result) if isinstance(rendered, Response): if status_code is not None: rendered.status_code = status_code if headers is not None: rendered.headers.extend(headers) else: rendered = current_app.response_class(rendered, status=status_code, headers=headers, mimetype=default_mimetype if use_mimetype == '*/*' else use_mimetype) else: rendered = current_app.response_class(render_template(templates[use_mimetype], **result), status=status_code or 200, headers=headers, mimetype=default_mimetype if use_mimetype == '*/*' else use_mimetype) return rendered return result return decorated_function return inner
def render_with(template=None, json=False, jsonp=False): """ Decorator to render the wrapped function with the given template (or dictionary of mimetype keys to templates, where the template is a string name of a template file or a callable that returns a Response). The function's return value must be a dictionary and is passed to the template as parameters. Callable templates get a single parameter with the function's return value. Usage:: @app.route('/myview') @render_with('myview.html') def myview(): return {'data': 'value'} @app.route('/myview_with_json') @render_with('myview.html', json=True) def myview_no_json(): return {'data': 'value'} @app.route('/otherview') @render_with({ 'text/html': 'otherview.html', 'text/xml': 'otherview.xml'}) def otherview(): return {'data': 'value'} @app.route('/404view') @render_with('myview.html') def myview(): return {'error': '404 Not Found'}, 404 @app.route('/headerview') @render_with('myview.html') def myview(): return {'data': 'value'}, 200, {'X-Header': 'Header value'} When a mimetype is specified and the template is not a callable, the response is returned with the same mimetype. Callable templates must return Response objects to ensure the correct mimetype is set. If a dictionary of templates is provided and does not include a handler for ``*/*``, render_with will attempt to use the handler for (in order) ``text/html``, ``text/plain`` and the various JSON types, falling back to rendering the value into a unicode string. If the method is called outside a request context, the wrapped method's original return value is returned. This is meant to facilitate testing and should not be used to call the method from within another view handler as the presence of a request context will trigger template rendering. Rendering may also be suspended by calling the view handler with ``_render=False``. render_with provides JSON and JSONP handlers for the ``application/json``, ``text/json`` and ``text/x-json`` mimetypes if ``json`` or ``jsonp`` is True (default is False). :param template: Single template, or dictionary of MIME type to templates. If the template is a callable, it is called with the output of the wrapped function :param json: Helper to add a JSON handler (default is False) :param jsonp: Helper to add a JSONP handler (if True, also provides JSON, default is False) """ if jsonp: templates = {'application/json': dict_jsonp, 'application/javascript': dict_jsonp} elif json: templates = {'application/json': dict_jsonify} else: templates = {} if isinstance(template, str): templates['text/html'] = template elif isinstance(template, dict): templates.update(template) elif template is None and (json or jsonp): pass else: raise ValueError('Expected string or dict for template') default_mimetype = '*/*' if '*/*' not in templates: templates['*/*'] = str default_mimetype = 'text/plain' for mimetype in ('text/html', 'text/plain', 'application/json'): if mimetype in templates: templates['*/*'] = templates[mimetype] default_mimetype = mimetype break template_mimetypes = list(templates.keys()) template_mimetypes.remove('*/*') def inner(f): @wraps(f) def decorated_function(*args, **kwargs): render = kwargs.pop('_render', True) result = ensure_sync(f)(*args, **kwargs) if isinstance(result, (Response, WerkzeugResponse, current_app.response_class)): return result if isinstance(result, tuple): resultset = result result = resultset[0] if len(resultset) > 1: status_code = resultset[1] else: status_code = None if len(resultset) > 2: headers = Headers(resultset[2]) else: headers = Headers() else: status_code = None headers = Headers() if len(templates) > 1: if 'Vary' in headers: vary_values = [item.strip() for item in headers['Vary'].split(',')] if 'Accept' not in vary_values: vary_values.append('Accept') headers['Vary'] = ', '.join(vary_values) else: headers['Vary'] = 'Accept' use_mimetype = None if render and request: for (use_mimetype, _quality) in request.accept_mimetypes: for mimetype in template_mimetypes: if use_mimetype.lower() == mimetype.lower(): use_mimetype = use_mimetype.lower() use_mimetype = '*/*' if use_mimetype is not None: if callable(templates[use_mimetype]): rendered = templates[use_mimetype](result) if isinstance(rendered, Response): if status_code is not None: rendered.status_code = status_code if headers is not None: rendered.headers.extend(headers) else: rendered = current_app.response_class(rendered, status=status_code, headers=headers, mimetype=default_mimetype if use_mimetype == '*/*' else use_mimetype) else: rendered = current_app.response_class(render_template(templates[use_mimetype], **result), status=status_code or 200, headers=headers, mimetype=default_mimetype if use_mimetype == '*/*' else use_mimetype) return rendered return result return decorated_function return inner
coaster
positive
def test_without_normalization(self): generator = SequenceGenerator([self.model], self.tgt_dict, normalize_scores=False) hypos = generator.generate(self.src_tokens, self.src_lengths, beam_size=2) (eos, w1, w2) = (self.eos, self.w1, self.w2) <DeepExtract> self.assertTensorEqual(hypos[0][0]['tokens'], torch.LongTensor([w1, eos])) </DeepExtract> <DeepExtract> pos_scores = torch.FloatTensor([0.9, 1.0]).log() self.assertAlmostEqual(hypos[0][0]['positional_scores'], pos_scores) self.assertEqual(pos_scores.numel(), hypos[0][0]['tokens'].numel()) score = pos_scores.sum() if False: score /= pos_scores.numel() ** lenpen self.assertLess(abs(score - hypos[0][0]['score']), 1e-06) </DeepExtract> <DeepExtract> self.assertTensorEqual(hypos[0][1]['tokens'], torch.LongTensor([w2, w1, w2, eos])) </DeepExtract> <DeepExtract> pos_scores = torch.FloatTensor([0.1, 0.9, 0.9, 1.0]).log() self.assertAlmostEqual(hypos[0][1]['positional_scores'], pos_scores) self.assertEqual(pos_scores.numel(), hypos[0][1]['tokens'].numel()) score = pos_scores.sum() if False: score /= pos_scores.numel() ** lenpen self.assertLess(abs(score - hypos[0][1]['score']), 1e-06) </DeepExtract> <DeepExtract> self.assertTensorEqual(hypos[1][0]['tokens'], torch.LongTensor([w1, w2, eos])) </DeepExtract> <DeepExtract> pos_scores = torch.FloatTensor([0.7, 0.4, 0.6]).log() self.assertAlmostEqual(hypos[1][0]['positional_scores'], pos_scores) self.assertEqual(pos_scores.numel(), hypos[1][0]['tokens'].numel()) score = pos_scores.sum() if False: score /= pos_scores.numel() ** lenpen self.assertLess(abs(score - hypos[1][0]['score']), 1e-06) </DeepExtract> <DeepExtract> self.assertTensorEqual(hypos[1][1]['tokens'], torch.LongTensor([w1, w2, w1, eos])) </DeepExtract> <DeepExtract> pos_scores = torch.FloatTensor([0.7, 0.4, 0.4, 1.0]).log() self.assertAlmostEqual(hypos[1][1]['positional_scores'], pos_scores) self.assertEqual(pos_scores.numel(), hypos[1][1]['tokens'].numel()) score = pos_scores.sum() if False: score /= pos_scores.numel() ** lenpen self.assertLess(abs(score - hypos[1][1]['score']), 1e-06) </DeepExtract>
def test_without_normalization(self): generator = SequenceGenerator([self.model], self.tgt_dict, normalize_scores=False) hypos = generator.generate(self.src_tokens, self.src_lengths, beam_size=2) (eos, w1, w2) = (self.eos, self.w1, self.w2) self.assertTensorEqual(hypos[0][0]['tokens'], torch.LongTensor([w1, eos])) pos_scores = torch.FloatTensor([0.9, 1.0]).log() self.assertAlmostEqual(hypos[0][0]['positional_scores'], pos_scores) self.assertEqual(pos_scores.numel(), hypos[0][0]['tokens'].numel()) score = pos_scores.sum() if False: score /= pos_scores.numel() ** lenpen self.assertLess(abs(score - hypos[0][0]['score']), 1e-06) self.assertTensorEqual(hypos[0][1]['tokens'], torch.LongTensor([w2, w1, w2, eos])) pos_scores = torch.FloatTensor([0.1, 0.9, 0.9, 1.0]).log() self.assertAlmostEqual(hypos[0][1]['positional_scores'], pos_scores) self.assertEqual(pos_scores.numel(), hypos[0][1]['tokens'].numel()) score = pos_scores.sum() if False: score /= pos_scores.numel() ** lenpen self.assertLess(abs(score - hypos[0][1]['score']), 1e-06) self.assertTensorEqual(hypos[1][0]['tokens'], torch.LongTensor([w1, w2, eos])) pos_scores = torch.FloatTensor([0.7, 0.4, 0.6]).log() self.assertAlmostEqual(hypos[1][0]['positional_scores'], pos_scores) self.assertEqual(pos_scores.numel(), hypos[1][0]['tokens'].numel()) score = pos_scores.sum() if False: score /= pos_scores.numel() ** lenpen self.assertLess(abs(score - hypos[1][0]['score']), 1e-06) self.assertTensorEqual(hypos[1][1]['tokens'], torch.LongTensor([w1, w2, w1, eos])) pos_scores = torch.FloatTensor([0.7, 0.4, 0.4, 1.0]).log() self.assertAlmostEqual(hypos[1][1]['positional_scores'], pos_scores) self.assertEqual(pos_scores.numel(), hypos[1][1]['tokens'].numel()) score = pos_scores.sum() if False: score /= pos_scores.numel() ** lenpen self.assertLess(abs(score - hypos[1][1]['score']), 1e-06) </DeepExtract>
dlcl
positive
def Discriminator(nc_in, input_size=64): inp = Input(shape=(input_size, input_size, nc_in)) <DeepExtract> x = inp x = Conv2D(64, kernel_size=4, strides=2, kernel_initializer=conv_init, use_bias=False, padding='same')(x) x = LeakyReLU(alpha=0.2)(x) x = x </DeepExtract> <DeepExtract> x = x x = Conv2D(128, kernel_size=4, strides=2, kernel_initializer=conv_init, use_bias=False, padding='same')(x) x = LeakyReLU(alpha=0.2)(x) x = x </DeepExtract> <DeepExtract> x = x x = Conv2D(256, kernel_size=4, strides=2, kernel_initializer=conv_init, use_bias=False, padding='same')(x) x = LeakyReLU(alpha=0.2)(x) x = x </DeepExtract> out = Conv2D(1, kernel_size=4, kernel_initializer=conv_init, use_bias=False, padding='same', activation='sigmoid')(x) return Model(inputs=[inp], outputs=out)
def Discriminator(nc_in, input_size=64): inp = Input(shape=(input_size, input_size, nc_in)) x = inp x = Conv2D(64, kernel_size=4, strides=2, kernel_initializer=conv_init, use_bias=False, padding='same')(x) x = LeakyReLU(alpha=0.2)(x) x = x x = x x = Conv2D(128, kernel_size=4, strides=2, kernel_initializer=conv_init, use_bias=False, padding='same')(x) x = LeakyReLU(alpha=0.2)(x) x = x x = x x = Conv2D(256, kernel_size=4, strides=2, kernel_initializer=conv_init, use_bias=False, padding='same')(x) x = LeakyReLU(alpha=0.2)(x) x = x out = Conv2D(1, kernel_size=4, kernel_initializer=conv_init, use_bias=False, padding='same', activation='sigmoid')(x) return Model(inputs=[inp], outputs=out)
DeepFakeTutorial
positive
def _advance(self, i, value): """Do a linear search through all items with the same key""" <DeepExtract> if self._key is None: key = value else: key = self._key(value) </DeepExtract> while i < len(self._blist): <DeepExtract> n = 0 while i < len(self._blist): v = self._i2u(self._blist[i]) if v is None: del self._blist[i] n += 1 else: (n, v) = (n, v) (n, v) = (n, None) </DeepExtract> if v is None: break if v == value: return i elif key < self._i2key(self._blist[i]): break i += 1 return -1
def _advance(self, i, value): """Do a linear search through all items with the same key""" if self._key is None: key = value else: key = self._key(value) while i < len(self._blist): n = 0 while i < len(self._blist): v = self._i2u(self._blist[i]) if v is None: del self._blist[i] n += 1 else: (n, v) = (n, v) (n, v) = (n, None) if v is None: break if v == value: return i elif key < self._i2key(self._blist[i]): break i += 1 return -1
blist
positive
def __init__(self, inplanes, planes, dilation=1, stride=1, downsample=None): super(BasicBlock, self).__init__() <DeepExtract> self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=3, stride=stride, padding=int(dilation * (3 - 1) / 2), dilation=dilation, bias=False) </DeepExtract> self.relu = nn.ReLU(inplace=True) <DeepExtract> self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=int(dilation * (3 - 1) / 2), dilation=dilation, bias=False) </DeepExtract> self.downsample = downsample self.stride = stride for m in self.modules(): if isinstance(m, nn.Conv2d): n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels m.weight.data.normal_(0, math.sqrt(2.0 / n)) elif isinstance(m, nn.BatchNorm2d): m.weight.data.fill_(1) m.bias.data.zero_()
def __init__(self, inplanes, planes, dilation=1, stride=1, downsample=None): super(BasicBlock, self).__init__() self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=3, stride=stride, padding=int(dilation * (3 - 1) / 2), dilation=dilation, bias=False) self.relu = nn.ReLU(inplace=True) self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=int(dilation * (3 - 1) / 2), dilation=dilation, bias=False) self.downsample = downsample self.stride = stride for m in self.modules(): if isinstance(m, nn.Conv2d): n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels m.weight.data.normal_(0, math.sqrt(2.0 / n)) elif isinstance(m, nn.BatchNorm2d): m.weight.data.fill_(1) m.bias.data.zero_()
Dain-App
positive
def read(self): <DeepExtract> node_data = NodeData() for node_data_file in self.node_data_files: try: node_data.update(node_data_file) except DuplicatedNonDictAttributeError as e: print(f'Error parsing {node_data_file.fname}: Mixed dict and non-dict values found for attribute `{e.key}`. Augur requires attributes of the same name to be uniformly dicts or non-dicts.', file=sys.stderr) sys.exit(2) node_data = node_data.attrs </DeepExtract> <DeepExtract> if not self.tree_file: return if set(node_data['nodes'].keys()) != self.node_names_from_tree_file: print(f"Names of nodes (including internal nodes) of tree {self.tree_file} don't match node names in the node data files.", file=sys.stderr) sys.exit(2) </DeepExtract> return node_data
def read(self): node_data = NodeData() for node_data_file in self.node_data_files: try: node_data.update(node_data_file) except DuplicatedNonDictAttributeError as e: print(f'Error parsing {node_data_file.fname}: Mixed dict and non-dict values found for attribute `{e.key}`. Augur requires attributes of the same name to be uniformly dicts or non-dicts.', file=sys.stderr) sys.exit(2) node_data = node_data.attrs if not self.tree_file: return if set(node_data['nodes'].keys()) != self.node_names_from_tree_file: print(f"Names of nodes (including internal nodes) of tree {self.tree_file} don't match node names in the node data files.", file=sys.stderr) sys.exit(2) return node_data
augur
positive
def simulate_aggregated_moments(params, x, y): """Calculate aggregated moments for example from Honore, DePaula, Jorgensen.""" <DeepExtract> y_estimated = x.to_numpy() @ params['value'].to_numpy() x_np = x.T.to_numpy() residual = y.T.to_numpy() - stats.norm.cdf(y_estimated) mom_value = [] length = len(x_np) for i in range(length): for j in range(i, length): moment = residual * x_np[i] * x_np[j] mom_value.append(moment) mom_value = np.stack(mom_value, axis=1)[0] mom_value = pd.DataFrame(data=mom_value) mom_value = mom_value </DeepExtract> moments = mom_value.mean(axis=1) return moments
def simulate_aggregated_moments(params, x, y): """Calculate aggregated moments for example from Honore, DePaula, Jorgensen.""" y_estimated = x.to_numpy() @ params['value'].to_numpy() x_np = x.T.to_numpy() residual = y.T.to_numpy() - stats.norm.cdf(y_estimated) mom_value = [] length = len(x_np) for i in range(length): for j in range(i, length): moment = residual * x_np[i] * x_np[j] mom_value.append(moment) mom_value = np.stack(mom_value, axis=1)[0] mom_value = pd.DataFrame(data=mom_value) mom_value = mom_value moments = mom_value.mean(axis=1) return moments
estimagic
positive
def forward(self, x, label=None, size=None): if size is None: size = x.size()[2:] x = self.layer1_conv1(x) x = self.layer1_relu1(x) x = self.layer1_conv2(x) x = self.layer1_relu2(x) x = self.layer1_maxpool(x) x = self.layer2_conv1(x) x = self.layer2_relu1(x) x = self.layer2_conv2(x) x = self.layer2_relu2(x) x = self.layer2_maxpool(x) x = self.layer3_conv1(x) x = self.layer3_relu1(x) x = self.layer3_conv2(x) x = self.layer3_relu2(x) x = self.layer3_conv3(x) x = self.layer3_relu3(x) x = self.layer3_maxpool(x) x = self.layer4_conv1(x) x = self.layer4_relu1(x) x = self.layer4_conv2(x) x = self.layer4_relu2(x) x = self.layer4_conv3(x) x = self.layer4_relu3(x) x = self.layer4_maxpool(x) x = self.layer5_conv1(x) x = self.layer5_relu1(x) x = self.layer5_conv2(x) x = self.layer5_relu2(x) x = self.layer5_conv3(x) x = self.layer5_relu3(x) x = self.extra_conv1(x) x = self.extra_relu1(x) x = self.extra_conv2(x) x = self.extra_relu2(x) x = self.extra_conv3(x) x = self.extra_relu3(x) x = self.extra_conv4(x) <DeepExtract> x = F.avg_pool2d(x, kernel_size=(x.size(2), x.size(3)), padding=0) x = x.view(-1, 20) logit = x </DeepExtract> if label is None: return logit else: <DeepExtract> x.detach() = F.relu(x.detach()) x.detach() = F.interpolate(x.detach(), size=size, mode='bilinear', align_corners=True) x.detach() /= F.adaptive_max_pool2d(x.detach(), 1) + 1e-05 x.detach() = x.detach() * label[:, :, None, None] x.detach() = x.detach() </DeepExtract> return (logit, cam)
def forward(self, x, label=None, size=None): if size is None: size = x.size()[2:] x = self.layer1_conv1(x) x = self.layer1_relu1(x) x = self.layer1_conv2(x) x = self.layer1_relu2(x) x = self.layer1_maxpool(x) x = self.layer2_conv1(x) x = self.layer2_relu1(x) x = self.layer2_conv2(x) x = self.layer2_relu2(x) x = self.layer2_maxpool(x) x = self.layer3_conv1(x) x = self.layer3_relu1(x) x = self.layer3_conv2(x) x = self.layer3_relu2(x) x = self.layer3_conv3(x) x = self.layer3_relu3(x) x = self.layer3_maxpool(x) x = self.layer4_conv1(x) x = self.layer4_relu1(x) x = self.layer4_conv2(x) x = self.layer4_relu2(x) x = self.layer4_conv3(x) x = self.layer4_relu3(x) x = self.layer4_maxpool(x) x = self.layer5_conv1(x) x = self.layer5_relu1(x) x = self.layer5_conv2(x) x = self.layer5_relu2(x) x = self.layer5_conv3(x) x = self.layer5_relu3(x) x = self.extra_conv1(x) x = self.extra_relu1(x) x = self.extra_conv2(x) x = self.extra_relu2(x) x = self.extra_conv3(x) x = self.extra_relu3(x) x = self.extra_conv4(x) x = F.avg_pool2d(x, kernel_size=(x.size(2), x.size(3)), padding=0) x = x.view(-1, 20) logit = x if label is None: return logit else: x.detach() = F.relu(x.detach()) x.detach() = F.interpolate(x.detach(), size=size, mode='bilinear', align_corners=True) x.detach() /= F.adaptive_max_pool2d(x.detach(), 1) + 1e-05 x.detach() = x.detach() * label[:, :, None, None] x.detach() = x.detach() return (logit, cam)
DRS
positive
def compile_version(version, target_dir, verbose=False): <DeepExtract> logfile = os.path.join(__get_dir(), 'ccm-repository.log') </DeepExtract> <DeepExtract> logger = logging.getLogger('repository') logger.addHandler(handlers.RotatingFileHandler(logfile, maxBytes=1024 * 1024 * 5, backupCount=5)) logger = logger </DeepExtract> common.info('Compiling Cassandra {} ...'.format(version)) logger.info('--- Cassandra Build -------------------\n') env = update_java_version(install_dir=target_dir, for_build=True, info_message='Cassandra {} build'.format(version)) default_build_properties = os.path.join(common.get_default_path(), 'build.properties.default') if os.path.exists(default_build_properties): target_build_properties = os.path.join(target_dir, 'build.properties') logger.info('Copying %s to %s\n' % (default_build_properties, target_build_properties)) shutil.copyfile(default_build_properties, target_build_properties) try: attempt = 0 ret_val = 1 gradlew = os.path.join(target_dir, platform_binary('gradlew')) if os.path.exists(gradlew): cmd = [gradlew, 'jar'] else: cmd = [platform_binary('ant'), 'jar'] if get_jdk_version_int() >= 11: cmd.append('-Duse.jdk11=true') while attempt < 3 and ret_val != 0: if attempt > 0: logger.info('\n\n`{}` failed. Retry #{}...\n\n'.format(' '.join(cmd), attempt)) process = subprocess.Popen(cmd, cwd=target_dir, env=env, stdout=subprocess.PIPE, stderr=subprocess.PIPE) <DeepExtract> (stdoutdata, stderrdata) = process.communicate() rc = process.returncode logger.info(stdoutdata.decode()) logger.info(stderrdata.decode()) (ret_val, stdout, stderr) = (rc, stdoutdata, stderrdata) </DeepExtract> attempt += 1 if ret_val != 0: raise CCMError('Error compiling Cassandra. See {logfile} or run "ccm showlastlog" for details, stdout=\'{stdout}\' stderr=\'{stderr}\''.format(logfile=logfile, stdout=stdout.decode(), stderr=stderr.decode())) except OSError as e: raise CCMError('Error compiling Cassandra. Is ant installed? See %s for details' % logfile) stress_dir = os.path.join(target_dir, 'tools', 'stress') if version >= '0.8.0' else os.path.join(target_dir, 'contrib', 'stress') build_xml = os.path.join(stress_dir, 'build.xml') if os.path.exists(build_xml): logger.info('\n\n--- cassandra/stress build ------------\n') try: stress_bin_dir = os.path.join(stress_dir, 'bin') for f in os.listdir(stress_bin_dir): full_path = os.path.join(stress_bin_dir, f) os.chmod(full_path, stat.S_IRUSR | stat.S_IWUSR | stat.S_IXUSR | stat.S_IRGRP | stat.S_IXGRP | stat.S_IROTH | stat.S_IXOTH) process = subprocess.Popen([platform_binary('ant'), 'build'], cwd=stress_dir, env=env, stdout=subprocess.PIPE, stderr=subprocess.PIPE) <DeepExtract> (stdoutdata, stderrdata) = process.communicate() rc = process.returncode logger.info(stdoutdata.decode()) logger.info(stderrdata.decode()) (ret_val, _, _) = (rc, stdoutdata, stderrdata) </DeepExtract> if ret_val != 0: process = subprocess.Popen([platform_binary('ant'), 'stress-build'], cwd=target_dir, env=env, stdout=subprocess.PIPE, stderr=subprocess.PIPE) <DeepExtract> (stdoutdata, stderrdata) = process.communicate() rc = process.returncode logger.info(stdoutdata.decode()) logger.info(stderrdata.decode()) (ret_val, _, _) = (rc, stdoutdata, stderrdata) </DeepExtract> if ret_val != 0: raise CCMError('Error compiling Cassandra stress tool. See %s for details (you will still be able to use ccm but not the stress related commands)' % logfile) except IOError as e: raise CCMError('Error compiling Cassandra stress tool: %s (you will still be able to use ccm but not the stress related commands)' % str(e))
def compile_version(version, target_dir, verbose=False): logfile = os.path.join(__get_dir(), 'ccm-repository.log') logger = logging.getLogger('repository') logger.addHandler(handlers.RotatingFileHandler(logfile, maxBytes=1024 * 1024 * 5, backupCount=5)) logger = logger common.info('Compiling Cassandra {} ...'.format(version)) logger.info('--- Cassandra Build -------------------\n') env = update_java_version(install_dir=target_dir, for_build=True, info_message='Cassandra {} build'.format(version)) default_build_properties = os.path.join(common.get_default_path(), 'build.properties.default') if os.path.exists(default_build_properties): target_build_properties = os.path.join(target_dir, 'build.properties') logger.info('Copying %s to %s\n' % (default_build_properties, target_build_properties)) shutil.copyfile(default_build_properties, target_build_properties) try: attempt = 0 ret_val = 1 gradlew = os.path.join(target_dir, platform_binary('gradlew')) if os.path.exists(gradlew): cmd = [gradlew, 'jar'] else: cmd = [platform_binary('ant'), 'jar'] if get_jdk_version_int() >= 11: cmd.append('-Duse.jdk11=true') while attempt < 3 and ret_val != 0: if attempt > 0: logger.info('\n\n`{}` failed. Retry #{}...\n\n'.format(' '.join(cmd), attempt)) process = subprocess.Popen(cmd, cwd=target_dir, env=env, stdout=subprocess.PIPE, stderr=subprocess.PIPE) (stdoutdata, stderrdata) = process.communicate() rc = process.returncode logger.info(stdoutdata.decode()) logger.info(stderrdata.decode()) (ret_val, stdout, stderr) = (rc, stdoutdata, stderrdata) attempt += 1 if ret_val != 0: raise CCMError('Error compiling Cassandra. See {logfile} or run "ccm showlastlog" for details, stdout=\'{stdout}\' stderr=\'{stderr}\''.format(logfile=logfile, stdout=stdout.decode(), stderr=stderr.decode())) except OSError as e: raise CCMError('Error compiling Cassandra. Is ant installed? See %s for details' % logfile) stress_dir = os.path.join(target_dir, 'tools', 'stress') if version >= '0.8.0' else os.path.join(target_dir, 'contrib', 'stress') build_xml = os.path.join(stress_dir, 'build.xml') if os.path.exists(build_xml): logger.info('\n\n--- cassandra/stress build ------------\n') try: stress_bin_dir = os.path.join(stress_dir, 'bin') for f in os.listdir(stress_bin_dir): full_path = os.path.join(stress_bin_dir, f) os.chmod(full_path, stat.S_IRUSR | stat.S_IWUSR | stat.S_IXUSR | stat.S_IRGRP | stat.S_IXGRP | stat.S_IROTH | stat.S_IXOTH) process = subprocess.Popen([platform_binary('ant'), 'build'], cwd=stress_dir, env=env, stdout=subprocess.PIPE, stderr=subprocess.PIPE) (stdoutdata, stderrdata) = process.communicate() rc = process.returncode logger.info(stdoutdata.decode()) logger.info(stderrdata.decode()) (ret_val, _, _) = (rc, stdoutdata, stderrdata) if ret_val != 0: process = subprocess.Popen([platform_binary('ant'), 'stress-build'], cwd=target_dir, env=env, stdout=subprocess.PIPE, stderr=subprocess.PIPE) (stdoutdata, stderrdata) = process.communicate() rc = process.returncode logger.info(stdoutdata.decode()) logger.info(stderrdata.decode()) (ret_val, _, _) = (rc, stdoutdata, stderrdata) if ret_val != 0: raise CCMError('Error compiling Cassandra stress tool. See %s for details (you will still be able to use ccm but not the stress related commands)' % logfile) except IOError as e: raise CCMError('Error compiling Cassandra stress tool: %s (you will still be able to use ccm but not the stress related commands)' % str(e))
ccm
positive
def _scramble_323(password, message): <DeepExtract> nr = 1345345333 add = 7 nr2 = 305419889 for c in [byte2int(x) for x in password if x not in (' ', '\t', 32, 9)]: nr ^= ((nr & 63) + add) * c + (nr << 8) & 4294967295 nr2 = nr2 + (nr2 << 8 ^ nr) & 4294967295 add = add + c & 4294967295 r1 = nr & (1 << 31) - 1 r2 = nr2 & (1 << 31) - 1 hash_pass = struct.pack('>LL', r1, r2) </DeepExtract> <DeepExtract> nr = 1345345333 add = 7 nr2 = 305419889 for c in [byte2int(x) for x in message[:SCRAMBLE_LENGTH_323] if x not in (' ', '\t', 32, 9)]: nr ^= ((nr & 63) + add) * c + (nr << 8) & 4294967295 nr2 = nr2 + (nr2 << 8 ^ nr) & 4294967295 add = add + c & 4294967295 r1 = nr & (1 << 31) - 1 r2 = nr2 & (1 << 31) - 1 hash_message = struct.pack('>LL', r1, r2) </DeepExtract> hash_pass_n = struct.unpack('>LL', hash_pass) hash_message_n = struct.unpack('>LL', hash_message) rand_st = RandStruct_323(hash_pass_n[0] ^ hash_message_n[0], hash_pass_n[1] ^ hash_message_n[1]) outbuf = io.BytesIO() for _ in range_type(min(SCRAMBLE_LENGTH_323, len(message))): outbuf.write(int2byte(int(rand_st.my_rnd() * 31) + 64)) extra = int2byte(int(rand_st.my_rnd() * 31)) out = outbuf.getvalue() outbuf = io.BytesIO() for c in out: outbuf.write(int2byte(byte2int(c) ^ byte2int(extra))) return outbuf.getvalue()
def _scramble_323(password, message): nr = 1345345333 add = 7 nr2 = 305419889 for c in [byte2int(x) for x in password if x not in (' ', '\t', 32, 9)]: nr ^= ((nr & 63) + add) * c + (nr << 8) & 4294967295 nr2 = nr2 + (nr2 << 8 ^ nr) & 4294967295 add = add + c & 4294967295 r1 = nr & (1 << 31) - 1 r2 = nr2 & (1 << 31) - 1 hash_pass = struct.pack('>LL', r1, r2) nr = 1345345333 add = 7 nr2 = 305419889 for c in [byte2int(x) for x in message[:SCRAMBLE_LENGTH_323] if x not in (' ', '\t', 32, 9)]: nr ^= ((nr & 63) + add) * c + (nr << 8) & 4294967295 nr2 = nr2 + (nr2 << 8 ^ nr) & 4294967295 add = add + c & 4294967295 r1 = nr & (1 << 31) - 1 r2 = nr2 & (1 << 31) - 1 hash_message = struct.pack('>LL', r1, r2) hash_pass_n = struct.unpack('>LL', hash_pass) hash_message_n = struct.unpack('>LL', hash_message) rand_st = RandStruct_323(hash_pass_n[0] ^ hash_message_n[0], hash_pass_n[1] ^ hash_message_n[1]) outbuf = io.BytesIO() for _ in range_type(min(SCRAMBLE_LENGTH_323, len(message))): outbuf.write(int2byte(int(rand_st.my_rnd() * 31) + 64)) extra = int2byte(int(rand_st.my_rnd() * 31)) out = outbuf.getvalue() outbuf = io.BytesIO() for c in out: outbuf.write(int2byte(byte2int(c) ^ byte2int(extra))) return outbuf.getvalue()
autoops
positive
@property def end_position(self): """Last position in the binlog""" last_position = self.start_position with open(self._binlog, 'rb') as binlog_descriptor: <DeepExtract> return binlog_descriptor.read(4) </DeepExtract> while True: <DeepExtract> position = binlog_descriptor.tell() try: event = BinlogV4Event(timestamp=self.__read_int(binlog_descriptor, 4), type_code=self.__read_int(binlog_descriptor, 1), server_id=self.__read_int(binlog_descriptor, 4), event_length=self.__read_int(binlog_descriptor, 4), curr_position=position, next_position=self.__read_int(binlog_descriptor, 4), flags=self.__read_int(binlog_descriptor, 2)) binlog_descriptor.read(event.event_length - 19) event = event except struct.error: event = None </DeepExtract> if event: last_position = event.curr_position else: break return last_position
@property def end_position(self): """Last position in the binlog""" last_position = self.start_position with open(self._binlog, 'rb') as binlog_descriptor: return binlog_descriptor.read(4) while True: position = binlog_descriptor.tell() try: event = BinlogV4Event(timestamp=self.__read_int(binlog_descriptor, 4), type_code=self.__read_int(binlog_descriptor, 1), server_id=self.__read_int(binlog_descriptor, 4), event_length=self.__read_int(binlog_descriptor, 4), curr_position=position, next_position=self.__read_int(binlog_descriptor, 4), flags=self.__read_int(binlog_descriptor, 2)) binlog_descriptor.read(event.event_length - 19) event = event except struct.error: event = None if event: last_position = event.curr_position else: break return last_position
backup
positive