Built with Axolotl

See axolotl config

axolotl version: 0.13.0.dev0

base_model: meta-llama/Llama-3.2-3B-Instruct
trust_remote_code: true
strict: false

chat_template: llama3

load_in_8bit: false
load_in_4bit: false

plugins:
  - axolotl.integrations.liger.LigerPlugin

liger_rope: true
liger_rms_norm: true
liger_glu_activation: true
liger_layer_norm: true
liger_fused_linear_cross_entropy: true

datasets:
  - path: ./outputs/dataset_tokenlab/train
    type: chat_template
    weight: 0.8
  - path: ./outputs/dataset_cemig/train
    type: chat_template
    weight: 0.2

validation_datasets:
  - path: ./outputs/dataset_tokenlab/validation
    type: chat_template
    weight: 0.8
  - path: ./outputs/dataset_cemig/validation
    type: chat_template
    weight: 0.2

test_datasets:
  - path: ./outputs/dataset_tokenlab/test
    type: chat_template
    weight: 0.8
  - path: ./outputs/dataset_cemig/test
    type: chat_template
    weight: 0.2

val_set_size: 0.0

dataset_prepared_path: ./outputs/dataset_prepared
output_dir: ./outputs/cemig-sft-2gpu/

sequence_len: 4096
sample_packing: true
pad_to_sequence_len: true
flash_attn: true

gradient_checkpointing: true
micro_batch_size: 4
gradient_accumulation_steps: 4

num_epochs: 2
optimizer: adamw_torch_fused
learning_rate: 1.0e-5
lr_scheduler: cosine
cosine_constant_lr_ratio: 0
cosine_min_lr_ratio: 0.1
warmup_ratio: 0.1
weight_decay: 0.0

bf16: true
tf32: true
save_only_model: true

logging_steps: 1
evals_per_epoch: 4
saves_per_epoch: 2

special_tokens:
  pad_token: <|finetune_right_pad_id|>

dataloader_num_workers: 4
dataloader_prefetch_factor: 2

wandb_project: llama32-3b-dados-cemig
wandb_entity: null
wandb_name: llama3.2-3b-tokenlab-more-cemig-data
wandb_log_model: checkpoint

Visualize in Weights & Biases

outputs/cemig-sft-2gpu/

This model is a fine-tuned version of meta-llama/Llama-3.2-3B-Instruct on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7199
  • Memory/max Active (gib): 47.38
  • Memory/max Allocated (gib): 47.38
  • Memory/device Reserved (gib): 47.9

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 2
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • total_eval_batch_size: 8
  • optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 3136
  • training_steps: 31360

Training results

Training Loss Epoch Step Validation Loss Active (gib) Allocated (gib) Reserved (gib)
No log 0 0 2.6370 33.94 33.94 34.49
0.7927 0.2500 3920 0.8321 47.38 47.38 49.42
0.7541 0.5000 7840 0.7620 47.38 47.38 47.9
0.7028 0.7500 11760 0.7397 47.38 47.38 47.9
0.6949 1.0 15680 0.7298 47.38 47.38 47.9
0.6793 1.2500 19600 0.7247 47.38 47.38 47.9
0.71 1.5000 23520 0.7221 47.38 47.38 47.9
0.6818 1.7500 27440 0.7207 47.38 47.38 47.9
0.6828 2.0 31360 0.7199 47.38 47.38 47.9

Framework versions

  • Transformers 4.57.1
  • Pytorch 2.9.0+cu130
  • Datasets 4.3.0
  • Tokenizers 0.22.1
Downloads last month
4
Safetensors
Model size
3B params
Tensor type
F32
·
BF16
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for cemig-temp/llama3.2-3b-instruct-tokenlab-cemigConvo

Finetuned
(879)
this model

Evaluation results