SentenceTransformer based on microsoft/deberta-v3-small
This is a sentence-transformers model finetuned from microsoft/deberta-v3-small. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: microsoft/deberta-v3-small
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
- Language: en
Model Sources
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DebertaV2Model
(1): AdvancedWeightedPooling(
(linear_cls): Linear(in_features=768, out_features=768, bias=True)
(linear_mean): Linear(in_features=768, out_features=768, bias=True)
(mha): MultiheadAttention(
(out_proj): NonDynamicallyQuantizableLinear(in_features=768, out_features=768, bias=True)
)
(layernorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
(layernorm2): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
(layernorm_cls): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
(layernorm_mean): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
)
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("bobox/DeBERTa3-s-CustomPoolin-v3-step1")
sentences = [
'What was the name of eleven rulers of the 19th and 20th Egyptian dynasties?',
'List of Rulers of Ancient Egypt and Nubia | Lists of Rulers | Heilbrunn Timeline of Art History | The Metropolitan Museum of Art The Metropolitan Museum of Art List of Rulers of Ancient Egypt and Nubia See works of art 30.8.234 52.127.4 Our knowledge of the succession of Egyptian kings is based on kinglists kept by the ancient Egyptians themselves. The most famous are the Palermo Stone, which covers the period from the earliest dynasties to the middle of Dynasty 5; the Abydos Kinglist, which Seti I had carved on his temple at Abydos; and the Turin Canon, a papyrus that covers the period from the earliest dynasties to the reign of Ramesses II. All are incomplete or fragmentary. We also rely on the History of Egypt written by Manetho in the third century B.C. A priest in the temple at Heliopolis, Manetho had access to many original sources and it was he who divided the kings into the thirty dynasties we use today. It is to this structure of dynasties and listed kings that we now attempt to link an absolute chronology of dates in terms of our own calendrical system. The process is made difficult by the fragmentary condition of the kinglists and by differences in the calendrical years used at various times. Some astronomical observations from the ancient Egyptians have survived, allowing us to calculate absolute dates within a margin of error. Synchronisms with the other civilizations of the ancient world are also of limited use.',
'What is the "Jack Sprat" nursery rhyme? | Reference.com What is the "Jack Sprat" nursery rhyme? A: Quick Answer "Jack Sprat" is a traditional English nursery rhyme whose main verse says, "Jack Sprat could eat no fat. His wife could eat no lean. And so between them both, you see, they licked the platter clean." Though it was likely sung by children long before, "Jack Sprat" was first published around 1765 in the compilation "Mother Goose\'s Melody." Full Answer According to Rhymes.org, a U.K. website devoted to nursery rhyme lyrics and origins, the "Jack Sprat" nursery rhyme has its origins in British history. In one interpretation, Jack Sprat was King Charles I, who ruled England in the early part of the 17th century, and his wife was Queen Henrietta Maria. Parliament refused to finance the king\'s war with Spain, which made him lean. However, the queen fattened the coffers by levying an illegal war tax. In an alternative version, the "Jack Sprat" nursery rhyme is linked to King Richard and his brother John of the Robin Hood legend. Jack Sprat was King John, the usurper who tried to take over the crown when King Richard went off to fight in the Crusades in the 12th century. When King Richard was captured, John had to raise a ransom to rescue him, leaving the country lean. The wife was Joan, daughter of the Earl of Gloucester, the greedy wife of King John. However, after King Richard died and John became king, he had his marriage with Joan annulled.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
Evaluation
Metrics
Semantic Similarity
| Metric |
Value |
| pearson_cosine |
0.7674 |
| spearman_cosine |
0.7776 |
| pearson_manhattan |
0.7824 |
| spearman_manhattan |
0.7721 |
| pearson_euclidean |
0.7883 |
| spearman_euclidean |
0.7775 |
| pearson_dot |
0.7669 |
| spearman_dot |
0.7763 |
| pearson_max |
0.7883 |
| spearman_max |
0.7776 |
Binary Classification
| Metric |
Value |
| cosine_accuracy |
0.709 |
| cosine_accuracy_threshold |
0.8715 |
| cosine_f1 |
0.5913 |
| cosine_f1_threshold |
0.7769 |
| cosine_precision |
0.4739 |
| cosine_recall |
0.7861 |
| cosine_ap |
0.5644 |
| dot_accuracy |
0.7109 |
| dot_accuracy_threshold |
674.426 |
| dot_f1 |
0.5913 |
| dot_f1_threshold |
603.4353 |
| dot_precision |
0.4739 |
| dot_recall |
0.7861 |
| dot_ap |
0.5665 |
| manhattan_accuracy |
0.7109 |
| manhattan_accuracy_threshold |
294.4728 |
| manhattan_f1 |
0.5935 |
| manhattan_f1_threshold |
401.1483 |
| manhattan_precision |
0.4726 |
| manhattan_recall |
0.7977 |
| manhattan_ap |
0.5643 |
| euclidean_accuracy |
0.7109 |
| euclidean_accuracy_threshold |
14.5655 |
| euclidean_f1 |
0.5913 |
| euclidean_f1_threshold |
18.6041 |
| euclidean_precision |
0.4739 |
| euclidean_recall |
0.7861 |
| euclidean_ap |
0.5646 |
| max_accuracy |
0.7109 |
| max_accuracy_threshold |
674.426 |
| max_f1 |
0.5935 |
| max_f1_threshold |
603.4353 |
| max_precision |
0.4739 |
| max_recall |
0.7977 |
| max_ap |
0.5665 |
Binary Classification
| Metric |
Value |
| cosine_accuracy |
0.6797 |
| cosine_accuracy_threshold |
0.7727 |
| cosine_f1 |
0.6926 |
| cosine_f1_threshold |
0.7318 |
| cosine_precision |
0.5758 |
| cosine_recall |
0.8686 |
| cosine_ap |
0.7303 |
| dot_accuracy |
0.6758 |
| dot_accuracy_threshold |
598.042 |
| dot_f1 |
0.6913 |
| dot_f1_threshold |
565.4718 |
| dot_precision |
0.5722 |
| dot_recall |
0.8729 |
| dot_ap |
0.73 |
| manhattan_accuracy |
0.6797 |
| manhattan_accuracy_threshold |
404.8309 |
| manhattan_f1 |
0.6933 |
| manhattan_f1_threshold |
444.9922 |
| manhattan_precision |
0.5714 |
| manhattan_recall |
0.8814 |
| manhattan_ap |
0.7369 |
| euclidean_accuracy |
0.6797 |
| euclidean_accuracy_threshold |
18.7907 |
| euclidean_f1 |
0.6934 |
| euclidean_f1_threshold |
19.3513 |
| euclidean_precision |
0.609 |
| euclidean_recall |
0.8051 |
| euclidean_ap |
0.7307 |
| max_accuracy |
0.6797 |
| max_accuracy_threshold |
598.042 |
| max_f1 |
0.6934 |
| max_f1_threshold |
565.4718 |
| max_precision |
0.609 |
| max_recall |
0.8814 |
| max_ap |
0.7369 |
Training Details
Evaluation Dataset
vitaminc-pairs
- Dataset: vitaminc-pairs at be6febb
- Size: 128 evaluation samples
- Columns:
claim and evidence
- Approximate statistics based on the first 128 samples:
|
claim |
evidence |
| type |
string |
string |
| details |
- min: 9 tokens
- mean: 21.42 tokens
- max: 41 tokens
|
- min: 11 tokens
- mean: 35.55 tokens
- max: 79 tokens
|
- Samples:
| claim |
evidence |
Dragon Con had over 5000 guests . |
Among the more than 6000 guests and musical performers at the 2009 convention were such notables as Patrick Stewart , William Shatner , Leonard Nimoy , Terry Gilliam , Bruce Boxleitner , James Marsters , and Mary McDonnell . |
COVID-19 has reached more than 185 countries . |
As of , more than cases of COVID-19 have been reported in more than 190 countries and 200 territories , resulting in more than deaths . |
In March , Italy had 3.6x times more cases of coronavirus than China . |
As of 12 March , among nations with at least one million citizens , Italy has the world 's highest per capita rate of positive coronavirus cases at 206.1 cases per million people ( 3.6x times the rate of China ) and is the country with the second-highest number of positive cases as well as of deaths in the world , after China . |
- Loss:
CachedGISTEmbedLoss with these parameters:{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.025}
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: steps
per_device_train_batch_size: 100
per_device_eval_batch_size: 256
gradient_accumulation_steps: 2
lr_scheduler_type: cosine_with_min_lr
lr_scheduler_kwargs: {'num_cycles': 0.5, 'min_lr': 1.6666666666666667e-05}
warmup_ratio: 0.33
save_safetensors: False
fp16: True
push_to_hub: True
hub_model_id: bobox/DeBERTa3-s-CustomPoolin-v3-step1-checkpoints-tmp
hub_strategy: all_checkpoints
batch_sampler: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir: False
do_predict: False
eval_strategy: steps
prediction_loss_only: True
per_device_train_batch_size: 100
per_device_eval_batch_size: 256
per_gpu_train_batch_size: None
per_gpu_eval_batch_size: None
gradient_accumulation_steps: 2
eval_accumulation_steps: None
torch_empty_cache_steps: None
learning_rate: 5e-05
weight_decay: 0.0
adam_beta1: 0.9
adam_beta2: 0.999
adam_epsilon: 1e-08
max_grad_norm: 1.0
num_train_epochs: 3
max_steps: -1
lr_scheduler_type: cosine_with_min_lr
lr_scheduler_kwargs: {'num_cycles': 0.5, 'min_lr': 1.6666666666666667e-05}
warmup_ratio: 0.33
warmup_steps: 0
log_level: passive
log_level_replica: warning
log_on_each_node: True
logging_nan_inf_filter: True
save_safetensors: False
save_on_each_node: False
save_only_model: False
restore_callback_states_from_checkpoint: False
no_cuda: False
use_cpu: False
use_mps_device: False
seed: 42
data_seed: None
jit_mode_eval: False
use_ipex: False
bf16: False
fp16: True
fp16_opt_level: O1
half_precision_backend: auto
bf16_full_eval: False
fp16_full_eval: False
tf32: None
local_rank: 0
ddp_backend: None
tpu_num_cores: None
tpu_metrics_debug: False
debug: []
dataloader_drop_last: False
dataloader_num_workers: 0
dataloader_prefetch_factor: None
past_index: -1
disable_tqdm: False
remove_unused_columns: True
label_names: None
load_best_model_at_end: False
ignore_data_skip: False
fsdp: []
fsdp_min_num_params: 0
fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
fsdp_transformer_layer_cls_to_wrap: None
accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
deepspeed: None
label_smoothing_factor: 0.0
optim: adamw_torch
optim_args: None
adafactor: False
group_by_length: False
length_column_name: length
ddp_find_unused_parameters: None
ddp_bucket_cap_mb: None
ddp_broadcast_buffers: False
dataloader_pin_memory: True
dataloader_persistent_workers: False
skip_memory_metrics: True
use_legacy_prediction_loop: False
push_to_hub: True
resume_from_checkpoint: None
hub_model_id: bobox/DeBERTa3-s-CustomPoolin-v3-step1-checkpoints-tmp
hub_strategy: all_checkpoints
hub_private_repo: False
hub_always_push: False
gradient_checkpointing: False
gradient_checkpointing_kwargs: None
include_inputs_for_metrics: False
eval_do_concat_batches: True
fp16_backend: auto
push_to_hub_model_id: None
push_to_hub_organization: None
mp_parameters:
auto_find_batch_size: False
full_determinism: False
torchdynamo: None
ray_scope: last
ddp_timeout: 1800
torch_compile: False
torch_compile_backend: None
torch_compile_mode: None
dispatch_batches: None
split_batches: None
include_tokens_per_second: False
include_num_input_tokens_seen: False
neftune_noise_alpha: None
optim_target_modules: None
batch_eval_metrics: False
eval_on_start: False
eval_use_gather_object: False
batch_sampler: no_duplicates
multi_dataset_batch_sampler: proportional
Training Logs
Click to expand
| Epoch |
Step |
Training Loss |
vitaminc-pairs loss |
negation-triplets loss |
scitail-pairs-pos loss |
scitail-pairs-qa loss |
xsum-pairs loss |
sciq pairs loss |
qasc pairs loss |
openbookqa pairs loss |
msmarco pairs loss |
nq pairs loss |
trivia pairs loss |
gooaq pairs loss |
paws-pos loss |
global dataset loss |
sts-test_spearman_cosine |
allNLI-dev_max_ap |
Qnli-dev_max_ap |
| 0.0168 |
8 |
10.2928 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
| 0.0336 |
16 |
9.2166 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
| 0.0504 |
24 |
9.4858 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
| 0.0672 |
32 |
10.6143 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
| 0.0840 |
40 |
8.7553 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
| 0.1008 |
48 |
10.9939 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
| 0.1176 |
56 |
7.6039 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
| 0.1345 |
64 |
5.9498 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
| 0.1513 |
72 |
7.3051 |
3.2988 |
3.9604 |
1.9818 |
2.1997 |
6.0515 |
0.6095 |
6.3199 |
4.8391 |
6.4886 |
6.6406 |
6.4894 |
6.1527 |
2.0082 |
4.9577 |
0.3066 |
0.3444 |
0.5627 |
| 0.1681 |
80 |
8.3034 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
| 0.1849 |
88 |
7.6669 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
| 0.2017 |
96 |
6.6415 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
| 0.2185 |
104 |
5.7797 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
| 0.2353 |
112 |
5.8361 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
| 0.2521 |
120 |
5.3339 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
| 0.2689 |
128 |
5.5908 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
| 0.2857 |
136 |
5.3209 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
| 0.3025 |
144 |
5.5359 |
3.3310 |
3.8580 |
1.4769 |
1.6994 |
5.4819 |
0.5385 |
5.2021 |
4.4410 |
5.3419 |
5.5506 |
5.6972 |
5.3376 |
1.4170 |
3.9169 |
0.2954 |
0.3795 |
0.6317 |
| 0.3193 |
152 |
5.4713 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
| 0.3361 |
160 |
4.9368 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
| 0.3529 |
168 |
4.6594 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
| 0.3697 |
176 |
4.8392 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
| 0.3866 |
184 |
4.414 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
| 0.4034 |
192 |
4.891 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
| 0.4202 |
200 |
4.4553 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
| 0.4370 |
208 |
3.9729 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
| 0.4538 |
216 |
3.7705 |
3.2468 |
3.6435 |
0.7890 |
0.7356 |
3.9327 |
0.4082 |
3.7175 |
3.5404 |
3.5351 |
4.0506 |
3.9953 |
3.6074 |
0.4195 |
2.4726 |
0.3791 |
0.4133 |
0.6779 |
| 0.4706 |
224 |
3.8409 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
| 0.4874 |
232 |
3.7894 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
| 0.5042 |
240 |
3.3523 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
| 0.5210 |
248 |
3.2407 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
| 0.5378 |
256 |
3.3203 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
| 0.5546 |
264 |
2.8457 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
| 0.5714 |
272 |
2.4181 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
| 0.5882 |
280 |
3.4589 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
| 0.6050 |
288 |
2.8203 |
3.1119 |
3.1485 |
0.4531 |
0.2652 |
2.6895 |
0.2656 |
2.5542 |
2.7523 |
2.6600 |
3.1773 |
3.2099 |
2.7316 |
0.2006 |
1.6342 |
0.5257 |
0.4717 |
0.7078 |
| 0.6218 |
296 |
2.4697 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
| 0.6387 |
304 |
2.4654 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
| 0.6555 |
312 |
2.4236 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
| 0.6723 |
320 |
2.2879 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
| 0.6891 |
328 |
2.2145 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
| 0.7059 |
336 |
1.8464 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
| 0.7227 |
344 |
2.0086 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
| 0.7395 |
352 |
2.0635 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
| 0.7563 |
360 |
1.8584 |
3.3202 |
2.5793 |
0.3434 |
0.1618 |
1.6759 |
0.1834 |
1.6454 |
2.1257 |
2.1938 |
2.5316 |
2.4558 |
2.0596 |
0.0984 |
1.2206 |
0.6610 |
0.5199 |
0.7119 |
| 0.7731 |
368 |
2.0286 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
| 0.7899 |
376 |
1.9389 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
| 0.8067 |
384 |
1.7453 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
| 0.8235 |
392 |
1.6629 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
| 0.8403 |
400 |
1.2724 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
| 0.8571 |
408 |
1.7824 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
| 0.8739 |
416 |
1.5826 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
| 0.8908 |
424 |
1.1971 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
| 0.9076 |
432 |
1.5228 |
3.3624 |
2.1952 |
0.3006 |
0.1223 |
1.1091 |
0.1582 |
1.2383 |
1.8664 |
1.7434 |
2.3959 |
2.0697 |
1.7563 |
0.0766 |
1.0193 |
0.7292 |
0.5194 |
0.7126 |
| 0.9244 |
440 |
1.3323 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
| 0.9412 |
448 |
1.5124 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
| 0.9580 |
456 |
1.5565 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
| 0.9748 |
464 |
1.3672 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
| 0.9916 |
472 |
1.0382 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
| 1.0084 |
480 |
1.0626 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
| 1.0252 |
488 |
1.3539 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
| 1.0420 |
496 |
1.1723 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
| 1.0588 |
504 |
1.4235 |
3.4031 |
1.9759 |
0.2554 |
0.0814 |
0.9034 |
0.1378 |
1.1603 |
1.7589 |
1.5608 |
2.1230 |
1.7719 |
1.6633 |
0.0720 |
0.9380 |
0.7523 |
0.5297 |
0.7129 |
| 1.0756 |
512 |
1.2283 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
| 1.0924 |
520 |
1.2455 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
| 1.1092 |
528 |
1.4265 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
| 1.1261 |
536 |
1.296 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
| 1.1429 |
544 |
0.8763 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
| 1.1597 |
552 |
1.5678 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
| 1.1765 |
560 |
1.2548 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
| 1.1933 |
568 |
1.3731 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
| 1.2101 |
576 |
1.3023 |
3.3815 |
1.8740 |
0.2373 |
0.0769 |
0.7711 |
0.1237 |
0.9432 |
1.6871 |
1.5070 |
1.9947 |
1.6041 |
1.5579 |
0.0721 |
0.8661 |
0.7642 |
0.5412 |
0.7159 |
| 1.2269 |
584 |
0.8135 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
| 1.2437 |
592 |
1.0259 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
| 1.2605 |
600 |
1.1896 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
| 1.2773 |
608 |
1.0532 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
| 1.2941 |
616 |
1.3221 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
| 1.3109 |
624 |
1.3136 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
| 1.3277 |
632 |
1.2238 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
| 1.3445 |
640 |
1.2407 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
| 1.3613 |
648 |
1.2245 |
3.4717 |
1.7962 |
0.2242 |
0.0488 |
0.7472 |
0.1108 |
0.9272 |
1.6692 |
1.3845 |
1.9117 |
1.3410 |
1.4387 |
0.0701 |
0.8505 |
0.7680 |
0.5471 |
0.7227 |
| 1.3782 |
656 |
1.0428 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
| 1.3950 |
664 |
1.1391 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
| 1.4118 |
672 |
1.2632 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
| 1.4286 |
680 |
0.9403 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
| 1.4454 |
688 |
0.7571 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
| 1.4622 |
696 |
0.9436 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
| 1.4790 |
704 |
1.1239 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
| 1.4958 |
712 |
0.9499 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
| 1.5126 |
720 |
1.0945 |
3.6495 |
1.6693 |
0.2157 |
0.0492 |
0.6830 |
0.1049 |
0.9140 |
1.5967 |
1.4397 |
1.7394 |
1.3303 |
1.4334 |
0.0603 |
0.8185 |
0.7815 |
0.5606 |
0.7098 |
| 1.5294 |
728 |
1.1161 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
| 1.5462 |
736 |
1.0056 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
| 1.5630 |
744 |
1.1743 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
| 1.5798 |
752 |
0.9153 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
| 1.5966 |
760 |
1.1589 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
| 1.6134 |
768 |
0.9187 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
| 1.6303 |
776 |
0.6937 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
| 1.6471 |
784 |
0.9704 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
| 1.6639 |
792 |
0.7343 |
3.5442 |
1.6493 |
0.2208 |
0.0249 |
0.6152 |
0.0969 |
0.7111 |
1.5369 |
1.4058 |
1.7066 |
1.2784 |
1.3419 |
0.0585 |
0.7827 |
0.7749 |
0.5627 |
0.7284 |
| 1.6807 |
800 |
1.2878 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
| 1.6975 |
808 |
0.9898 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
| 1.7143 |
816 |
0.7613 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
| 1.7311 |
824 |
0.9612 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
| 1.7479 |
832 |
1.1524 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
| 1.7647 |
840 |
0.827 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
| 1.7815 |
848 |
1.1898 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
| 1.7983 |
856 |
1.0117 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
| 1.8151 |
864 |
0.7019 |
3.4544 |
1.6149 |
0.2035 |
0.0181 |
0.5525 |
0.0999 |
0.6641 |
1.5456 |
1.3911 |
1.7188 |
1.2547 |
1.3517 |
0.0562 |
0.7473 |
0.7684 |
0.5697 |
0.7329 |
| 1.8319 |
872 |
0.8352 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
| 1.8487 |
880 |
0.7836 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
| 1.8655 |
888 |
1.0187 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
| 1.8824 |
896 |
0.74 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
| 1.8992 |
904 |
0.7263 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
| 1.9160 |
912 |
0.8073 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
| 1.9328 |
920 |
0.8185 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
| 1.9496 |
928 |
1.0992 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
| 1.9664 |
936 |
0.9973 |
3.5110 |
1.5776 |
0.2035 |
0.0250 |
0.5881 |
0.0934 |
0.6719 |
1.5059 |
1.2970 |
1.6186 |
1.1815 |
1.2714 |
0.0564 |
0.7213 |
0.7799 |
0.5544 |
0.7341 |
| 1.9832 |
944 |
0.6662 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
| 2.0 |
952 |
0.533 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
| 2.0168 |
960 |
0.7712 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
| 2.0336 |
968 |
0.6879 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
| 2.0504 |
976 |
0.7975 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
| 2.0672 |
984 |
0.873 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
| 2.0840 |
992 |
0.7995 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
| 2.1008 |
1000 |
1.0119 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
| 2.1176 |
1008 |
0.6317 |
3.6778 |
1.5845 |
0.2102 |
0.0228 |
0.5851 |
0.0977 |
0.6411 |
1.4752 |
1.2992 |
1.6314 |
1.1260 |
1.2683 |
0.0556 |
0.7329 |
0.7693 |
0.5614 |
0.7274 |
| 2.1345 |
1016 |
0.72 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
| 2.1513 |
1024 |
0.9418 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
| 2.1681 |
1032 |
0.7848 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
| 2.1849 |
1040 |
0.6965 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
| 2.2017 |
1048 |
1.0447 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
| 2.2185 |
1056 |
0.6361 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
| 2.2353 |
1064 |
0.6837 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
| 2.2521 |
1072 |
0.5713 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
| 2.2689 |
1080 |
0.8193 |
3.6399 |
1.5565 |
0.2069 |
0.0213 |
0.5440 |
0.0904 |
0.6057 |
1.4815 |
1.2856 |
1.6441 |
1.1469 |
1.2540 |
0.0543 |
0.7216 |
0.7765 |
0.5599 |
0.7322 |
| 2.2857 |
1088 |
0.9754 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
| 2.3025 |
1096 |
0.8932 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
| 2.3193 |
1104 |
0.8716 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
| 2.3361 |
1112 |
0.8787 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
| 2.3529 |
1120 |
0.9529 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
| 2.3697 |
1128 |
0.775 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
| 2.3866 |
1136 |
0.6178 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
| 2.4034 |
1144 |
0.8384 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
| 2.4202 |
1152 |
0.9425 |
3.5672 |
1.5244 |
0.2111 |
0.0162 |
0.5593 |
0.0893 |
0.5759 |
1.4933 |
1.2703 |
1.5815 |
1.1202 |
1.2132 |
0.0531 |
0.7058 |
0.7730 |
0.5635 |
0.7350 |
| 2.4370 |
1160 |
0.4551 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
| 2.4538 |
1168 |
0.6392 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
| 2.4706 |
1176 |
0.8341 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
| 2.4874 |
1184 |
0.7392 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
| 2.5042 |
1192 |
0.7646 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
| 2.5210 |
1200 |
0.8613 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
| 2.5378 |
1208 |
0.7585 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
| 2.5546 |
1216 |
1.0611 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
| 2.5714 |
1224 |
0.6506 |
3.6439 |
1.5040 |
0.2125 |
0.0162 |
0.5282 |
0.0863 |
0.5858 |
1.5073 |
1.2444 |
1.5493 |
1.1014 |
1.2073 |
0.0532 |
0.7022 |
0.7774 |
0.5647 |
0.7328 |
| 2.5882 |
1232 |
0.8525 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
| 2.6050 |
1240 |
0.6304 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
| 2.6218 |
1248 |
0.6354 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
| 2.6387 |
1256 |
0.6583 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
| 2.6555 |
1264 |
0.5964 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
| 2.6723 |
1272 |
0.818 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
| 2.6891 |
1280 |
0.8635 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
| 2.7059 |
1288 |
0.6389 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
| 2.7227 |
1296 |
0.6819 |
3.6131 |
1.5104 |
0.2084 |
0.0148 |
0.5229 |
0.0854 |
0.5588 |
1.4963 |
1.2766 |
1.5679 |
1.0982 |
1.2203 |
0.0529 |
0.7059 |
0.7762 |
0.5659 |
0.7355 |
| 2.7395 |
1304 |
0.7878 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
| 2.7563 |
1312 |
0.7638 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
| 2.7731 |
1320 |
0.8885 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
| 2.7899 |
1328 |
0.8184 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
| 2.8067 |
1336 |
0.7472 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
| 2.8235 |
1344 |
0.7012 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
| 2.8403 |
1352 |
0.4622 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
| 2.8571 |
1360 |
0.846 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
| 2.8739 |
1368 |
0.8308 |
3.6224 |
1.5088 |
0.2084 |
0.0148 |
0.5118 |
0.0858 |
0.5523 |
1.4941 |
1.2756 |
1.5808 |
1.0925 |
1.2114 |
0.0521 |
0.7022 |
0.7765 |
0.5662 |
0.7366 |
| 2.8908 |
1376 |
0.5334 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
| 2.9076 |
1384 |
0.7893 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
| 2.9244 |
1392 |
0.6897 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
| 2.9412 |
1400 |
0.7803 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
| 2.9580 |
1408 |
0.841 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
| 2.9748 |
1416 |
0.787 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
| 2.9916 |
1424 |
0.5861 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
| 3.0 |
1428 |
- |
3.6139 |
1.5071 |
0.2084 |
0.0150 |
0.5124 |
0.0862 |
0.5532 |
1.4924 |
1.2700 |
1.5806 |
1.0905 |
1.2081 |
0.0519 |
0.6997 |
0.7776 |
0.5665 |
0.7369 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.2.0
- Transformers: 4.44.2
- PyTorch: 2.4.1+cu121
- Accelerate: 0.34.2
- Datasets: 3.0.1
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}