File size: 10,373 Bytes
f027ec8 0d761e8 f027ec8 0cb7797 0d761e8 f027ec8 6b0ac41 f027ec8 75ba2bb f027ec8 0c1705e 0d761e8 f027ec8 4f14b35 f027ec8 0d761e8 0cb7797 f027ec8 0d71e4d 0c1705e 0d71e4d fed96d4 ef0015a f4de4c1 0d761e8 0d71e4d f4de4c1 6134dc1 f4de4c1 4574e6b f4de4c1 0d71e4d b321a3a f4de4c1 b321a3a c702c15 0c1705e 0d71e4d 79324ea 58d57dc 6134dc1 58d57dc cf83dd3 58d57dc 0d71e4d 0d761e8 f027ec8 0cb7797 f030192 0cb7797 366e59b 0cb7797 366e59b f027ec8 0cb7797 f027ec8 0cb7797 f027ec8 0cb7797 f027ec8 0cb7797 f027ec8 6b0ac41 a79967b 6b0ac41 c1b2e1d ca02e92 c1b2e1d 6b0ac41 a79967b f027ec8 0cb7797 f027ec8 ba81b69 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 |
---
tags:
- sentence-transformers
- sentence-similarity
- dense-encoder
- dense
- feature-extraction
- telepix
pipeline_tag: feature-extraction
library_name: sentence-transformers
license: apache-2.0
---
<p align="center">
<img src="https://cdn-uploads.huggingface.co/production/uploads/61d6f4a4d49065ee28a1ee7e/V8n2En7BlMNHoi1YXVv8Q.png" width="400"/>
<p>
# PIXIE-Rune-Preview
**PIXIE-Rune-Preview** is an encoder-based embedding model trained on Korean and English dataset,
developed by [TelePIX Co., Ltd](https://telepix.net/).
**PIXIE** stands for Tele**PIX** **I**ntelligent **E**mbedding, representing TelePIXโs high-performance embedding technology.
This model is specifically optimized for semantic retrieval tasks in Korean and English, and demonstrates strong performance in aerospace domain applications. Through extensive fine-tuning and domain-specific evaluation, PIXIE shows robust retrieval quality for real-world use cases such as document understanding, technical QA, and semantic search in aerospace and related high-precision fields.
It also performs competitively across a wide range of open-domain Korean and English retrieval benchmarks, making it a versatile foundation for multilingual semantic search systems.
## Model Description
- **Model Type:** Sentence Transformer
<!-- - **Base model:** [Unknown](https://huggingface.co/unknown) -->
- **Maximum Sequence Length:** 8192 tokens
- **Output Dimensionality:** 1024 dimensions
- **Similarity Function:** Cosine Similarity
- **Language:** Multilingual โ optimized for high performance in Korean and English
- **Domain Specialization:** Aerospace semantic search
- **License:** apache-2.0
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Quality Benchmarks
**PIXIE-Rune-Preview** is a multilingual embedding model specialized for Korean and English retrieval tasks.
It delivers consistently strong performance across a diverse set of domain-specific and open-domain benchmarks in both languages, demonstrating its effectiveness in real-world semantic search applications.
The table below presents the retrieval performance of several embedding models evaluated on a variety of Korean and English benchmarks.
We report **Normalized Discounted Cumulative Gain (NDCG)** scores, which measure how well a ranked list of documents aligns with ground truth relevance. Higher values indicate better retrieval quality.
- **Avg. NDCG**: Average of NDCG@1, @3, @5, and @10 across all benchmark datasets.
- **NDCG@k**: Relevance quality of the top-*k* retrieved results.
All evaluations were conducted using the open-source **[Korean-MTEB-Retrieval-Evaluators](https://github.com/BM-K/Korean-MTEB-Retrieval-Evaluators)** codebase to ensure consistent dataset handling, indexing, retrieval, and NDCG@k computation across models.
#### 6 Datasets of MTEB (Korean)
Our model, **telepix/PIXIE-Rune-Preview**, achieves strong performance across most metrics and benchmarks, demonstrating strong generalization across domains such as multi-hop QA, long-document retrieval, public health, and e-commerce.
| Model Name | # params | Avg. NDCG | NDCG@1 | NDCG@3 | NDCG@5 | NDCG@10 |
|------|:---:|:---:|:---:|:---:|:---:|:---:|
| telepix/PIXIE-Spell-Preview-1.7B | 1.7B | 0.7567 | 0.7149 | 0.7541 | 0.7696 | 0.7882 |
| telepix/PIXIE-Spell-Preview-0.6B | 0.6B | 0.7280 | 0.6804 | 0.7258 | 0.7448 | 0.7612 |
| **telepix/PIXIE-Rune-Preview** | 0.5B | **0.7383** | **0.6936** | **0.7356** | **0.7545** | **0.7698** |
| telepix/PIXIE-Splade-Preview | 0.1B | 0.7253 | 0.6799 | 0.7217 | 0.7416 | 0.7579 |
| | | | | | | |
| nlpai-lab/KURE-v1 | 0.5B | 0.7312 | 0.6826 | 0.7303 | 0.7478 | 0.7642 |
| BAAI/bge-m3 | 0.5B | 0.7126 | 0.6613 | 0.7107 | 0.7301 | 0.7483 |
| Snowflake/snowflake-arctic-embed-l-v2.0 | 0.5B | 0.7050 | 0.6570 | 0.7015 | 0.7226 | 0.7390 |
| Qwen/Qwen3-Embedding-0.6B | 0.6B | 0.6872 | 0.6423 | 0.6833 | 0.7017 | 0.7215 |
| jinaai/jina-embeddings-v3 | 0.5B | 0.6731 | 0.6224 | 0.6715 | 0.6899 | 0.7088 |
| SamilPwC-AXNode-GenAI/PwC-Embedding_expr | 0.5B | 0.6709 | 0.6221 | 0.6694 | 0.6852 | 0.7069 |
| Alibaba-NLP/gte-multilingual-base | 0.3B | 0.6679 | 0.6068 | 0.6673 | 0.6892 | 0.7084 |
| openai/text-embedding-3-large | N/A | 0.6465 | 0.5895 | 0.6467 | 0.6646 | 0.6853 |
Descriptions of the benchmark datasets used for evaluation are as follows:
- **Ko-StrategyQA**
A Korean multi-hop open-domain question answering dataset designed for complex reasoning over multiple documents.
- **AutoRAGRetrieval**
A domain-diverse retrieval dataset covering finance, government, healthcare, legal, and e-commerce sectors.
- **MIRACLRetrieval**
A document retrieval benchmark built on Korean Wikipedia articles.
- **PublicHealthQA**
A retrieval dataset focused on medical and public health topics.
- **BelebeleRetrieval**
A dataset for retrieving relevant content from web and news articles in Korean.
- **MultiLongDocRetrieval**
A long-document retrieval benchmark based on Korean Wikipedia and mC4 corpus.
> **Tip:**
> While many benchmark datasets are available for evaluation, in this project we chose to use only those that contain clean positive documents for each query. Keep in mind that a benchmark dataset is just that a benchmark. For real-world applications, it is best to construct an evaluation dataset tailored to your specific domain and evaluate embedding models, such as PIXIE, in that environment to determine the most suitable one.
#### 7 Datasets of BEIR (English)
Our model, **telepix/PIXIE-Rune-Preview**, achieves strong performance on a wide range of tasks, including fact verification, multi-hop question answering, financial QA, and scientific document retrieval, demonstrating competitive generalization across diverse domains.
| Model Name | # params | Avg. NDCG | NDCG@1 | NDCG@3 | NDCG@5 | NDCG@10 |
|------|:---:|:---:|:---:|:---:|:---:|:---:|
| telepix/PIXIE-Spell-Preview-1.7B | 1.7B | 0.5630 | 0.5446 | 0.5529 | 0.5660 | 0.5885 |
| telepix/PIXIE-Spell-Preview-0.6B | 0.6B | 0.5354 | 0.5208 | 0.5241 | 0.5376 | 0.5589 |
| **telepix/PIXIE-Rune-Preview** | 0.5B | **0.5781** | **0.5691** | **0.5663** | **0.5791** | **0.5979** |
| | | | | | | |
| Snowflake/snowflake-arctic-embed-l-v2.0 | 0.5B | 0.5812 | 0.5725 | 0.5705 | 0.5811 | 0.6006 |
| Qwen/Qwen3-Embedding-0.6B | 0.6B | 0.5558 | 0.5321 | 0.5451 | 0.5620 | 0.5839 |
| Alibaba-NLP/gte-multilingual-base | 0.3B | 0.5541 | 0.5446 | 0.5426 | 0.5574 | 0.5746 |
| BAAI/bge-m3 | 0.5B | 0.5318 | 0.5078 | 0.5231 | 0.5389 | 0.5573 |
| nlpai-lab/KURE-v1 | 0.5B | 0.5272 | 0.5017 | 0.5171 | 0.5353 | 0.5548 |
| SamilPwC-AXNode-GenAI/PwC-Embedding_expr | 0.5B | 0.5111 | 0.4766 | 0.5006 | 0.5212 | 0.5460 |
| jinaai/jina-embeddings-v3 | 0.6B | 0.4482 | 0.4116 | 0.4379 | 0.4573 | 0.4861 |
Descriptions of the benchmark datasets used for evaluation are as follows:
- **ArguAna**
A dataset for argument retrieval based on claim-counterclaim pairs from online debate forums.
- **FEVER**
A fact verification dataset using Wikipedia for evidence-based claim validation.
- **FiQA-2018**
A retrieval benchmark tailored to the finance domain with real-world questions and answers.
- **HotpotQA**
A multi-hop open-domain QA dataset requiring reasoning across multiple documents.
- **MSMARCO**
A large-scale benchmark using real Bing search queries and corresponding web documents.
- **NQ**
A Google QA dataset where user questions are answered using Wikipedia articles.
- **SCIDOCS**
A citation-based document retrieval dataset focused on scientific papers.
## Direct Use (Semantic Search)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Load the model
model_name = 'telepix/PIXIE-Rune-Preview'
model = SentenceTransformer(model_name)
# Define the queries and documents
queries = [
"ํ
๋ ํฝ์ค๋ ์ด๋ค ์ฐ์
๋ถ์ผ์์ ์์ฑ ๋ฐ์ดํฐ๋ฅผ ํ์ฉํ๋์?",
"๊ตญ๋ฐฉ ๋ถ์ผ์ ์ด๋ค ์์ฑ ์๋น์ค๊ฐ ์ ๊ณต๋๋์?",
"ํ
๋ ํฝ์ค์ ๊ธฐ์ ์์ค์ ์ด๋ ์ ๋์ธ๊ฐ์?",
]
documents = [
"ํ
๋ ํฝ์ค๋ ํด์, ์์, ๋์
๋ฑ ๋ค์ํ ๋ถ์ผ์์ ์์ฑ ๋ฐ์ดํฐ๋ฅผ ๋ถ์ํ์ฌ ์๋น์ค๋ฅผ ์ ๊ณตํฉ๋๋ค.",
"์ ์ฐฐ ๋ฐ ๊ฐ์ ๋ชฉ์ ์ ์์ฑ ์์์ ํตํด ๊ตญ๋ฐฉ ๊ด๋ จ ์ ๋ฐ ๋ถ์ ์๋น์ค๋ฅผ ์ ๊ณตํฉ๋๋ค.",
"TelePIX์ ๊ดํ ํ์ฌ์ฒด ๋ฐ AI ๋ถ์ ๊ธฐ์ ์ Global standard๋ฅผ ์ํํ๋ ์์ค์ผ๋ก ํ๊ฐ๋ฐ๊ณ ์์ต๋๋ค.",
"ํ
๋ ํฝ์ค๋ ์ฐ์ฃผ์์ ์์งํ ์ ๋ณด๋ฅผ ๋ถ์ํ์ฌ '์ฐ์ฃผ ๊ฒฝ์ (Space Economy)'๋ผ๋ ์๋ก์ด ๊ฐ์น๋ฅผ ์ฐฝ์ถํ๊ณ ์์ต๋๋ค.",
"ํ
๋ ํฝ์ค๋ ์์ฑ ์์ ํ๋๋ถํฐ ๋ถ์, ์๋น์ค ์ ๊ณต๊น์ง ์ ์ฃผ๊ธฐ๋ฅผ ์์ฐ๋ฅด๋ ์๋ฃจ์
์ ์ ๊ณตํฉ๋๋ค.",
]
# Compute embeddings: use `prompt_name="query"` to encode queries!
query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)
# Compute cosine similarity scores
scores = model.similarity(query_embeddings, document_embeddings)
# Output the results
for query, query_scores in zip(queries, scores):
doc_score_pairs = list(zip(documents, query_scores))
doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
print("Query:", query)
for document, score in doc_score_pairs:
print(score, document)
```
## License
The PIXIE-Rune-Preview model is licensed under Apache License 2.0.
## Citation
```
@software{TelePIX-PIXIE-Rune-Preview,
title={PIXIE-Rune-Preview},
author={TelePIX AI Research Team and Bongmin Kim},
year={2025},
url={https://huggingface.co/telepix/PIXIE-Rune-Preview}
}
```
## Contact
If you have any suggestions or questions about the PIXIE, please reach out to the authors at bmkim@telepix.net. |