Upload 13 files
Browse files- model_index.json +20 -11
- pipeline.py +31 -23
model_index.json
CHANGED
|
@@ -1,15 +1,24 @@
|
|
| 1 |
{
|
| 2 |
"_class_name": "SuperDiffPipeline",
|
| 3 |
"_diffusers_version": "0.31.0",
|
| 4 |
-
"
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
"
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
"tokenizer":
|
| 13 |
-
|
| 14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
}
|
|
|
|
| 1 |
{
|
| 2 |
"_class_name": "SuperDiffPipeline",
|
| 3 |
"_diffusers_version": "0.31.0",
|
| 4 |
+
"scheduler": [
|
| 5 |
+
"diffusers",
|
| 6 |
+
"EulerDiscreteScheduler"
|
| 7 |
+
],
|
| 8 |
+
"text_encoder": [
|
| 9 |
+
"transformers",
|
| 10 |
+
"CLIPTextModel"
|
| 11 |
+
],
|
| 12 |
+
"tokenizer": [
|
| 13 |
+
"transformers",
|
| 14 |
+
"CLIPTokenizer"
|
| 15 |
+
],
|
| 16 |
+
"unet": [
|
| 17 |
+
"diffusers",
|
| 18 |
+
"UNet2DConditionModel"
|
| 19 |
+
],
|
| 20 |
+
"vae": [
|
| 21 |
+
"diffusers",
|
| 22 |
+
"AutoencoderKL"
|
| 23 |
+
]
|
| 24 |
}
|
pipeline.py
CHANGED
|
@@ -1,4 +1,5 @@
|
|
| 1 |
import random
|
|
|
|
| 2 |
from typing import Callable, Dict, List, Optional
|
| 3 |
|
| 4 |
import torch
|
|
@@ -33,31 +34,38 @@ class SuperDiffPipeline(DiffusionPipeline, ConfigMixin):
|
|
| 33 |
|
| 34 |
"""
|
| 35 |
super().__init__()
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
self.
|
| 39 |
-
self.
|
| 40 |
-
self.
|
|
|
|
|
|
|
| 41 |
|
| 42 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 43 |
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 61 |
|
| 62 |
@torch.no_grad
|
| 63 |
def get_batch(self, latents: Callable, nrow: int, ncol: int) -> Callable:
|
|
@@ -241,7 +249,7 @@ class SuperDiffPipeline(DiffusionPipeline, ConfigMixin):
|
|
| 241 |
(self.num_inference_steps + 1, self.batch_size), device=self.device
|
| 242 |
)
|
| 243 |
with torch.no_grad():
|
| 244 |
-
for i, t in enumerate(self.scheduler.timesteps):
|
| 245 |
dsigma = self.scheduler.sigmas[i +
|
| 246 |
1] - self.scheduler.sigmas[i]
|
| 247 |
sigma = self.scheduler.sigmas[i]
|
|
|
|
| 1 |
import random
|
| 2 |
+
from tqdm import tqdm
|
| 3 |
from typing import Callable, Dict, List, Optional
|
| 4 |
|
| 5 |
import torch
|
|
|
|
| 34 |
|
| 35 |
"""
|
| 36 |
super().__init__()
|
| 37 |
+
# Register additional parameters for flexibility
|
| 38 |
+
# Explicitly assign required components
|
| 39 |
+
#self.unet = unet
|
| 40 |
+
#self.vae = vae
|
| 41 |
+
#self.text_encoder = text_encoder
|
| 42 |
+
#self.tokenizer = tokenizer
|
| 43 |
+
#self.scheduler = scheduler
|
| 44 |
|
| 45 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 46 |
|
| 47 |
+
vae.to(device)
|
| 48 |
+
unet.to(device)
|
| 49 |
+
text_encoder.to(device)
|
| 50 |
+
self.register_modules(unet=unet,
|
| 51 |
+
scheduler=scheduler,
|
| 52 |
+
vae=vae,
|
| 53 |
+
text_encoder=text_encoder,
|
| 54 |
+
tokenizer=tokenizer,)
|
| 55 |
+
|
| 56 |
+
#self.register_to_config(
|
| 57 |
+
# vae=vae.__class__.__name__,
|
| 58 |
+
# scheduler=scheduler.__class__.__name__,
|
| 59 |
+
# tokenizer=tokenizer.__class__.__name__,
|
| 60 |
+
# unet=unet.__class__.__name__,
|
| 61 |
+
# text_encoder=text_encoder.__class__.__name__,
|
| 62 |
+
# device=device,
|
| 63 |
+
# batch_size=None,
|
| 64 |
+
# num_inference_steps=None,
|
| 65 |
+
# guidance_scale=None,
|
| 66 |
+
# lift=None,
|
| 67 |
+
# seed=None,
|
| 68 |
+
#)
|
| 69 |
|
| 70 |
@torch.no_grad
|
| 71 |
def get_batch(self, latents: Callable, nrow: int, ncol: int) -> Callable:
|
|
|
|
| 249 |
(self.num_inference_steps + 1, self.batch_size), device=self.device
|
| 250 |
)
|
| 251 |
with torch.no_grad():
|
| 252 |
+
for i, t in tqdm(enumerate(self.scheduler.timesteps)):
|
| 253 |
dsigma = self.scheduler.sigmas[i +
|
| 254 |
1] - self.scheduler.sigmas[i]
|
| 255 |
sigma = self.scheduler.sigmas[i]
|