Spaces:
Running
on
Zero
Running
on
Zero
File size: 31,939 Bytes
1eab9d3 e571656 1eab9d3 2520d98 accfea4 1eab9d3 2520d98 0bb9020 2520d98 1eab9d3 e571656 1eab9d3 e571656 1eab9d3 e571656 1eab9d3 2520d98 e571656 1eab9d3 e571656 1eab9d3 e571656 1eab9d3 2520d98 1eab9d3 e571656 1eab9d3 e571656 1eab9d3 e571656 1eab9d3 e571656 1eab9d3 6bffc9a 1eab9d3 e571656 1eab9d3 e571656 1eab9d3 2520d98 1eab9d3 e571656 1eab9d3 e571656 1eab9d3 2520d98 1eab9d3 e571656 1eab9d3 e571656 2520d98 1eab9d3 e571656 1eab9d3 e571656 1eab9d3 e571656 1eab9d3 e571656 1eab9d3 e571656 1eab9d3 e571656 1eab9d3 e571656 1eab9d3 e571656 1eab9d3 e571656 1eab9d3 2520d98 e571656 2520d98 1eab9d3 e571656 1eab9d3 2520d98 e571656 2520d98 1eab9d3 e571656 2520d98 e571656 1eab9d3 e571656 2520d98 e571656 2520d98 e571656 1eab9d3 e571656 2520d98 1eab9d3 2520d98 e571656 1eab9d3 2520d98 e571656 1eab9d3 e571656 1eab9d3 2520d98 1eab9d3 e571656 1eab9d3 e571656 1eab9d3 e571656 1eab9d3 e571656 1eab9d3 e571656 1eab9d3 2520d98 e571656 1eab9d3 e571656 1eab9d3 e571656 1eab9d3 e571656 1eab9d3 accfea4 1eab9d3 e571656 1eab9d3 e571656 6bffc9a e571656 0bb9020 1eab9d3 2520d98 e571656 2520d98 1eab9d3 2520d98 e571656 2520d98 1eab9d3 2520d98 e571656 2520d98 e571656 2520d98 e571656 2520d98 e571656 2520d98 e571656 2520d98 0bb9020 e571656 0bb9020 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 |
# =========================
# ONE-CELL: SDXL + CritiCore + SpecFusion + Gradio UI
# - Keep original "Enabled Variants" pills UI (CheckboxGroup)
# - Enforce: ONLY ONE can be selected at a time (auto-fix on change)
# - 4 variants (but names are clearer)
# - No Radio.format_fn (older gradio safe)
# =========================
import os, re, io, json, time, base64, asyncio, inspect, traceback
from pathlib import Path
from typing import List, Dict, Optional, Tuple
import spaces
import torch
from PIL import Image
import nest_asyncio
nest_asyncio.apply()
import gradio as gr
from diffusers import (
StableDiffusionXLPipeline,
StableDiffusionXLImg2ImgPipeline,
DPMSolverMultistepScheduler,
)
os.environ["TOGETHER_NO_BANNER"] = "1"
# =========================
# 0) Variants (MUST be BEFORE Blocks)
# =========================
# internal_key -> UI display label
VARIANT_LABELS = {
"base_original": "Base (Original Prompt)",
"base_multi_llm": "Base (MoA Tags)",
"CritiFusion": "CritiFusion (MoA+VLM+SpecFusion)",
"criticore_on_original__specfusion": "CritiFusion (Original+VLM+SpecFusion)",
}
# order for gallery display
VARIANT_ORDER = [
VARIANT_LABELS["base_original"],
VARIANT_LABELS["base_multi_llm"],
VARIANT_LABELS["CritiFusion"],
VARIANT_LABELS["criticore_on_original__specfusion"],
]
RHO_T_DEFAULT = 0.85 # fixed
# ---- SAFETY: do NOT hardcode API keys ----
TOGETHER_API_KEY = os.environ.get("TOGETHER_API_KEY", "").strip()
if not TOGETHER_API_KEY:
print("[Warn] TOGETHER_API_KEY is not set. Together-based variants will error if selected.")
# =========================
# 1) SDXL init
# =========================
DEVICE_STR = "cuda" if torch.cuda.is_available() else "cpu"
DEVICE = torch.device(DEVICE_STR)
DTYPE = torch.float16 if torch.cuda.is_available() else torch.float32
SDXL_ID = os.environ.get("SDXL_ID", "stabilityai/stable-diffusion-xl-base-1.0")
print(f"[Init] DEVICE={DEVICE_STR} DTYPE={DTYPE} SDXL_ID={SDXL_ID}")
SDXL_base = StableDiffusionXLPipeline.from_pretrained(SDXL_ID, torch_dtype=DTYPE).to(DEVICE)
SDXL_i2i = StableDiffusionXLImg2ImgPipeline.from_pretrained(SDXL_ID, torch_dtype=DTYPE).to(DEVICE)
for p in (SDXL_base, SDXL_i2i):
try:
p.enable_vae_slicing()
p.enable_attention_slicing()
except Exception:
pass
p.scheduler = DPMSolverMultistepScheduler.from_config(p.scheduler.config, use_karras_sigmas=True)
DEFAULT_NEG = (
"blurry, low quality, artifacts, watermark, extra fingers, missing limbs, "
"over-sharpened, harsh lighting, oversaturated"
)
@torch.no_grad()
def decode_image_sdxl(latents: torch.Tensor, pipe: StableDiffusionXLImg2ImgPipeline, output_type="pil"):
vae = pipe.vae
needs_upcast = (vae.dtype in (torch.float16, torch.bfloat16)) and bool(getattr(vae.config, "force_upcast", False))
if needs_upcast:
try:
pipe.upcast_vae()
except Exception:
pipe.vae = pipe.vae.to(torch.float32)
vae = pipe.vae
lat = latents.to(device=vae.device, dtype=(next(vae.post_quant_conv.parameters()).dtype))
lat = lat / vae.config.scaling_factor
out = vae.decode(lat)
x = out[0] if isinstance(out, (list, tuple)) else (out.sample if hasattr(out, "sample") else out)
if getattr(pipe, "watermark", None) is not None:
x = pipe.watermark.apply_watermark(x)
img = pipe.image_processor.postprocess(x.detach(), output_type=output_type)[0]
return img
@torch.no_grad()
def base_sample_latent(prompt: str, seed: int, H: int, W: int, neg: str):
g = torch.Generator(device=DEVICE).manual_seed(int(seed))
out = SDXL_base(
prompt=prompt,
negative_prompt=neg,
height=int(H), width=int(W),
guidance_scale=4.5,
num_inference_steps=50,
generator=g,
output_type="latent"
)
z0 = out.images
x0 = decode_image_sdxl(z0, SDXL_i2i)
return z0, x0
@torch.no_grad()
def img2img_latent(prompt: str, image_or_latent, strength: float, guidance: float, steps: int, seed: int, neg: str):
g = torch.Generator(device=DEVICE).manual_seed(int(seed))
out = SDXL_i2i(
prompt=prompt,
image=image_or_latent,
strength=float(strength),
guidance_scale=float(guidance),
num_inference_steps=int(steps),
generator=g,
output_type="latent",
negative_prompt=neg
)
return out.images
def strength_for_last_k(k: int, total_steps: int) -> float:
k = max(1, int(k))
return min(0.95, max(0.01, float(k) / float(max(1, total_steps))))
# =========================
# 2) CLIP-77 + text utils
# =========================
try:
from transformers import CLIPTokenizerFast
_clip_tok = CLIPTokenizerFast.from_pretrained("openai/clip-vit-large-patch14")
def _count_tokens(txt: str) -> int:
return len(_clip_tok(txt, add_special_tokens=True, truncation=False)["input_ids"])
except Exception:
_clip_tok = None
def _count_tokens(txt: str) -> int:
return int(len(re.findall(r"\w+", txt)) * 1.3)
def _cleanup_commas(s: str) -> str:
s = re.sub(r"\s*,\s*", ", ", (s or "").strip())
s = re.sub(r"(,\s*){2,}", ", ", s)
return s.strip(" ,")
def clip77_strict(text: str, max_tok: int = 77) -> str:
text = (text or "").strip()
if _count_tokens(text) <= max_tok:
return text
words = text.split()
lo, hi, best = 0, len(words), ""
while lo <= hi:
mid = (lo + hi) // 2
cand = " ".join(words[:mid]) if mid > 0 else ""
if _count_tokens(cand) <= max_tok:
best = cand; lo = mid + 1
else:
hi = mid - 1
return best.strip()
def _split_tags(s: str) -> List[str]:
return [p.strip() for p in re.split(r",|\n", (s or "").strip()) if p.strip()]
def _dedup_keep_order(items: List[str]) -> List[str]:
seen, out = set(), []
for t in items:
key = re.sub(r"\s+", " ", t.lower()).strip()
if key and key not in seen:
seen.add(key); out.append(t.strip())
return out
def _order_tags(subject_first: List[str], rest: List[str]) -> List[str]:
buckets = {"subject": [], "style": [], "composition": [], "lighting": [], "color": [], "detail": [], "other": []}
style_kw = ("style","painterly","illustration","photorealistic","neon","poster","matte painting","watercolor","cyberpunk")
comp_kw = ("composition","rule of thirds","centered","symmetry","balanced composition")
light_kw = ("lighting","light","glow","glowing","rim","sunset","sunrise","golden hour","global illumination","cinematic")
color_kw = ("color","palette","vibrant","muted","monochrome","pastel","warm","cool","balanced contrast")
detail_kw= ("detailed","hyperdetailed","texture","intricate","high detail","highly detailed","sharp focus","uhd","8k")
for t in subject_first:
if t: buckets["subject"].append(t)
for t in rest:
lt = t.lower()
if any(k in lt for k in style_kw): buckets["style"].append(t)
elif any(k in lt for k in comp_kw): buckets["composition"].append(t)
elif any(k in lt for k in light_kw): buckets["lighting"].append(t)
elif any(k in lt for k in color_kw): buckets["color"].append(t)
elif any(k in lt for k in detail_kw): buckets["detail"].append(t)
else: buckets["other"].append(t)
return buckets["subject"] + buckets["style"] + buckets["composition"] + buckets["lighting"] + buckets["color"] + buckets["detail"] + buckets["other"]
def pil_to_base64(img: Image.Image, fmt: str = "PNG") -> str:
buf = io.BytesIO()
img.save(buf, format=fmt)
return base64.b64encode(buf.getvalue()).decode("ascii")
async def _maybe_close_async_together(client) -> None:
try:
if hasattr(client, "aclose") and inspect.iscoroutinefunction(client.aclose):
await client.aclose()
elif hasattr(client, "close"):
fn = client.close
if inspect.iscoroutinefunction(fn):
await fn()
else:
try: fn()
except Exception: pass
except Exception:
pass
# =========================
# 3) Async runner
# =========================
def _run_async(coro):
try:
loop = asyncio.get_event_loop()
if loop.is_running():
return loop.run_until_complete(coro) # nest_asyncio enabled
return loop.run_until_complete(coro)
except RuntimeError:
return asyncio.run(coro)
# =========================
# 4) CritiCore (Together)
# =========================
from together import AsyncTogether
AGGREGATOR_MODEL = os.environ.get("AGGREGATOR_MODEL", "Qwen/Qwen2.5-72B-Instruct-Turbo")
LLM_MULTI_CANDIDATES = [
"meta-llama/Llama-3.3-70B-Instruct-Turbo",
"Qwen/Qwen2.5-72B-Instruct-Turbo",
"Qwen/Qwen2.5-Coder-32B-Instruct",
"deepseek-ai/DeepSeek-V3",
"nvidia/NVIDIA-Nemotron-Nano-9B-v2",
]
_env_list = [s.strip() for s in os.environ.get("VLM_MOA_CANDIDATES","").split(",") if s.strip()]
VLM_CANDIDATES = _env_list or ["meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8"]
TAG_PRESETS = {
"hq_preference": {
"seed_pos": [
"balanced composition",
"natural color palette","vibrant colors","balanced contrast",
"high detail","highly detailed","hyperdetailed","sharp focus",
"UHD","8k"
],
"seed_neg": [
"low quality","blurry","watermark","jpeg artifacts","overexposed","underexposed",
"color banding","extra fingers","missing limbs","disfigured","mutated hands"
]
}
}
_DECOMP_SYS = (
"Decompose the user's visual instruction into 3-6 concrete, checkable visual components "
"(entities + interactions + spatial relations). Return ONLY JSON: "
'{"components":["..."]}'
)
_TXT_SYS = (
"Expand a VERY SHORT visual idea into a COMMA-SEPARATED TAG LIST for SDXL.\n"
"Constraints:\n"
"- Start with the subject phrase first.\n"
"- Prioritize composition, lighting, color, and detail over style.\n"
"- Use at most TWO style tags if any.\n"
"- 16β26 concise tags total. Commas only, no sentences, no 'and'. No trailing period.\n"
"- Prefer human-preference aesthetics; keep 'high detailed', 'sharp focus', '8k', 'UHD'."
)
def _TAG_RE(tag: str):
return re.compile(rf"<\s*{tag}\s*>(.*?)</\s*{tag}\s*>", re.S|re.I)
def _extract_tag(text: str, tag: str, fallback: str = "") -> str:
s = (text or "").strip()
r = _TAG_RE(tag); m = r.search(s)
if m: return m.group(1).strip()
s2 = s.replace("<","<").replace(">",">")
m2 = r.search(s2)
return m2.group(1).strip() if m2 else fallback.strip()
def _summarize_issues_lines(text: str, max_lines: int = 5) -> str:
if not text:
return ""
parts = [p.strip(" -β’\t") for p in re.split(r"[\n;]+", text) if p.strip()]
parts = parts[:max_lines]
return "\n".join(f"- {p}" for p in parts)
class CritiCore:
def __init__(self, preset: str = "hq_preference", aggregator_model: str = AGGREGATOR_MODEL):
if not os.environ.get("TOGETHER_API_KEY"):
raise RuntimeError("Missing TOGETHER_API_KEY in environment.")
self.preset = preset
self.aggregator = aggregator_model
async def decompose_components(self, user_prompt: str) -> List[str]:
client = AsyncTogether(api_key=os.environ["TOGETHER_API_KEY"])
try:
tasks = [client.chat.completions.create(
model=m,
messages=[{"role":"system","content": _DECOMP_SYS},
{"role":"user","content": user_prompt}],
temperature=0.4, max_tokens=256
) for m in LLM_MULTI_CANDIDATES]
rs = await asyncio.gather(*tasks, return_exceptions=True)
texts = []
for r in rs:
try: texts.append(r.choices[0].message.content)
except Exception: pass
if not texts:
return []
joined = "\n\n---\n\n".join(texts)
merged = await client.chat.completions.create(
model=self.aggregator,
messages=[{"role":"system","content": "Merge JSON candidates and return ONLY {'components':[...]}."},
{"role":"user","content": joined}],
temperature=0.2, max_tokens=256
)
txt = merged.choices[0].message.content
try:
obj = json.loads(txt)
except Exception:
s,e = txt.find("{"), txt.rfind("}")
obj = json.loads(txt[s:e+1]) if (s!=-1 and e!=-1) else {"components":[]}
comps = [c.strip() for c in obj.get("components", []) if isinstance(c, str) and c.strip()]
return comps[:6]
finally:
await _maybe_close_async_together(client)
async def make_tags(self, user_prompt: str, clip77: bool = True) -> Tuple[str, str]:
client = AsyncTogether(api_key=os.environ["TOGETHER_API_KEY"])
seed = TAG_PRESETS.get(self.preset, TAG_PRESETS["hq_preference"])
seed_pos = _dedup_keep_order(seed["seed_pos"])
seed_neg = seed["seed_neg"]
try:
tasks = [client.chat.completions.create(
model=m,
messages=[{"role":"system","content": _TXT_SYS},
{"role":"user","content":
f"Short idea: {user_prompt}\nSeed: {', '.join(seed_pos)}\nOutput: a single comma-separated tag list."}],
temperature=0.7, max_tokens=220
) for m in LLM_MULTI_CANDIDATES]
rs = await asyncio.gather(*tasks, return_exceptions=True)
props = []
for r in rs:
try: props.append(r.choices[0].message.content)
except Exception: pass
if not props:
pos = ", ".join([user_prompt.strip()] + seed_pos)
else:
joined = "\n---\n".join(props)
merged = await client.chat.completions.create(
model=self.aggregator,
messages=[{"role":"system","content":
"Merge candidate tag lists into ONE comma list (16β26 tags). Subject first; at most TWO style tags; keep high detailed/sharp focus/8k/UHD."},
{"role":"user","content": joined}],
temperature=0.2, max_tokens=240
)
raw = merged.choices[0].message.content
tags = _dedup_keep_order(_split_tags(raw))
subject = user_prompt.strip().rstrip(",.")
if subject and not any(subject.lower() == t.lower() for t in tags):
tags = [subject] + tags
ordered = _order_tags([tags[0]], tags[1:])
pos = ", ".join(_dedup_keep_order(ordered))
# quality floor
for q in ["high detailed","sharp focus","8k","UHD"]:
if q.lower() not in {t.lower() for t in _split_tags(pos)}:
pos += ", " + q
pos = _cleanup_commas(pos)
if clip77 and _count_tokens(pos) > 77:
pos = clip77_strict(pos, 77)
neg = ", ".join(seed_neg)
return pos, neg
finally:
await _maybe_close_async_together(client)
async def vlm_refine(self, image: Image.Image, original_prompt: str, components: List[str]) -> Dict[str, object]:
client = AsyncTogether(api_key=os.environ["TOGETHER_API_KEY"])
b64 = pil_to_base64(image, "PNG")
def _user_prompt_text() -> str:
return (
"You are a precise image-grounded critic.\n"
"1) List concrete visual problems and brief corrections.\n"
"2) Provide a refined prompt that keeps the original intent.\n\n"
f'Original prompt: "{original_prompt}"\n'
f"Key components to check: {components}\n"
"Output EXACTLY two tags:\n"
"<issues>...</issues>\n<refined>...</refined>"
)
try:
tasks = []
for m in VLM_CANDIDATES:
msgs = [
{"role":"system","content": "Return ONLY <issues> and <refined>. No extra text."},
{"role":"user","content": [
{"type":"text","text": _user_prompt_text()},
{"type":"image_url","image_url":{"url": f"data:image/png;base64,{b64}"}}
]}
]
tasks.append(client.chat.completions.create(model=m, messages=msgs, temperature=0.2, max_tokens=420))
rs = await asyncio.gather(*tasks, return_exceptions=True)
ok = []
for m, r in zip(VLM_CANDIDATES, rs):
try: ok.append((m, r.choices[0].message.content))
except Exception: pass
if not ok:
return {"refined": original_prompt, "issues_merged": ""}
refined_items, per_vlm_issues = [], {}
for m, raw in ok:
issues = _extract_tag(raw, "issues", "")
refined = _extract_tag(raw, "refined", original_prompt)
if refined.strip(): refined_items.append((m, refined.strip()))
if issues.strip(): per_vlm_issues[m] = _summarize_issues_lines(issues, 5)
joined_issues = "\n".join(f"[{m}] {t}" for m,t in per_vlm_issues.items())
joined_refined = "\n".join(f"[{m}] {t}" for m,t in refined_items) if refined_items else original_prompt
merged = await client.chat.completions.create(
model=self.aggregator,
messages=[{"role":"system","content":
"Merge multiple critics. Output ONLY <issues> (β€5 bullets) and <refined> (β€70 words)."},
{"role":"user","content": f"{joined_issues}\n\n----\n\n{joined_refined}"}],
temperature=0.2, max_tokens=420
)
final_raw = merged.choices[0].message.content
final_refined = clip77_strict(_extract_tag(final_raw, "refined", original_prompt), 77)
issues_merged = _summarize_issues_lines(_extract_tag(final_raw, "issues", ""), 5)
return {"refined": final_refined, "issues_merged": issues_merged}
finally:
await _maybe_close_async_together(client)
@staticmethod
def merge_vlm_multi_text(vlm_refined_77: str, tags_77: str) -> str:
vlm_tags = _split_tags(vlm_refined_77)
moa_tags = _split_tags(tags_77)
merged = _dedup_keep_order(_order_tags([vlm_tags[0] if vlm_tags else ""], (vlm_tags[1:] + moa_tags)))
merged = [t for t in merged if t]
text = _cleanup_commas(", ".join(merged))
if _count_tokens(text) > 77:
text = clip77_strict(text, 77)
return text
# =========================
# 5) SpecFusion (latent FFT gate)
# =========================
@torch.no_grad()
def frequency_fusion(
x_hi_latent: torch.Tensor,
x_lo_latent: torch.Tensor,
base_c: float = 0.5,
rho_t: float = 0.85,
device=None,
) -> torch.Tensor:
if device is None:
device = x_hi_latent.device
B, C, H, W = x_hi_latent.shape
x_h = x_hi_latent.to(torch.float32).to(device)
x_l = x_lo_latent.to(torch.float32).to(device)
Xh = torch.fft.fftshift(torch.fft.fftn(x_h, dim=(-2, -1)), dim=(-2, -1))
Xl = torch.fft.fftshift(torch.fft.fftn(x_l, dim=(-2, -1)), dim=(-2, -1))
tau_h = int(H * base_c * (1 - rho_t))
tau_w = int(W * base_c * (1 - rho_t))
mask = torch.ones((B, C, H, W), device=device, dtype=torch.float32)
cy, cx = H // 2, W // 2
if tau_h > 0 and tau_w > 0:
mask[..., cy - tau_h : cy + tau_h, cx - tau_w : cx + tau_w] = rho_t
Xf = Xh * mask + Xl * (1 - mask)
x = torch.fft.ifftn(torch.fft.ifftshift(Xf, dim=(-2, -1)), dim=(-2, -1)).real
x = x + torch.randn_like(x) * 0.001
return x.to(dtype=x_hi_latent.dtype)
def _decode_to_pil(latents):
out = decode_image_sdxl(latents, SDXL_i2i)
if isinstance(out, Image.Image):
return out
if hasattr(out, "images"):
return out.images[0]
return out
def _guidance_for_k(k: int) -> float:
if k >= 20: return 12.0
if k >= 10: return 7.5
return 5.2
# =========================
# 6) ONE-variant generator (because UI enforces single selection)
# =========================
async def generate_one_variant(
user_prompt: str,
seed: int,
H: int,
W: int,
total_steps_refine: int,
last_k: int,
guidance: float,
preset: str,
variant_key: str,
out_dir: Optional[Path] = None,
) -> Tuple[Image.Image, str, Dict[str, object]]:
"""
Returns:
img, display_name, meta_dict
"""
meta: Dict[str, object] = {
"user_prompt": user_prompt,
"variant_key": variant_key,
}
def _save(im: Image.Image, display_name: str):
if out_dir is None:
return
out_dir.mkdir(parents=True, exist_ok=True)
safe = re.sub(r"[^a-zA-Z0-9_\\-]+", "_", display_name)[:120]
im.save(out_dir / f"{safe}.png")
# ----------------------------------------------------------
# Variant 1: Base (Original Prompt) [NO Together needed]
# ----------------------------------------------------------
if variant_key == "base_original":
z0_og, base_og = base_sample_latent(user_prompt, seed=seed, H=H, W=W, neg=DEFAULT_NEG)
meta.update({"note": "SDXL base generation from original prompt."})
_save(base_og, VARIANT_LABELS[variant_key])
return base_og, VARIANT_LABELS[variant_key], meta
# The rest need Together
if not TOGETHER_API_KEY:
raise RuntimeError("TOGETHER_API_KEY not set, but selected variant requires Together.")
critic = CritiCore(preset=preset)
# Common refine params
lk = int(last_k)
strength = float(strength_for_last_k(lk, total_steps_refine))
use_guidance = float(guidance) if float(guidance) > 0 else float(_guidance_for_k(lk))
steps = int(total_steps_refine)
meta.update({"strength": strength, "guidance": use_guidance, "steps": steps, "last_k": lk})
# ----------------------------------------------------------
# Variant 2: Base (MoA Tags)
# ----------------------------------------------------------
if variant_key == "base_multi_llm":
pos_tags_77, neg_tags = await critic.make_tags(user_prompt, clip77=True)
z0_enh, base_enh = base_sample_latent(pos_tags_77, seed=seed, H=H, W=W, neg=neg_tags)
meta.update({
"pos_tags_77": pos_tags_77,
"neg_tags": neg_tags,
"note": "SDXL base generation from MoA-generated tags."
})
_save(base_enh, VARIANT_LABELS[variant_key])
return base_enh, VARIANT_LABELS[variant_key], meta
# ----------------------------------------------------------
# Variant 3: CritiFusion (MoA+VLM+SpecFusion)
# ----------------------------------------------------------
if variant_key == "CritiFusion":
pos_tags_77, neg_tags = await critic.make_tags(user_prompt, clip77=True)
comps = await critic.decompose_components(user_prompt)
z0_enh, base_enh = base_sample_latent(pos_tags_77, seed=seed, H=H, W=W, neg=neg_tags)
vlm_out = await critic.vlm_refine(base_enh, pos_tags_77, comps or [])
vlm_agg_77 = vlm_out.get("refined") or pos_tags_77
refined_on_enh = CritiCore.merge_vlm_multi_text(vlm_agg_77, pos_tags_77)
z_ref = img2img_latent(
refined_on_enh, z0_enh,
strength=strength, guidance=use_guidance, steps=steps,
seed=seed + 2100 + lk,
neg=DEFAULT_NEG
)
fused_lat = frequency_fusion(z_ref, z0_enh, base_c=0.5, rho_t=RHO_T_DEFAULT, device=DEVICE)
img_sf = _decode_to_pil(fused_lat)
meta.update({
"pos_tags_77": pos_tags_77,
"neg_tags": neg_tags,
"components": comps,
"vlm_refined_77": vlm_agg_77,
"enhanced_prompt_77": refined_on_enh,
"vlm_issues": vlm_out.get("issues_merged", ""),
"note": "MoA tags + VLM critique prompt + img2img + SpecFusion."
})
_save(img_sf, VARIANT_LABELS[variant_key])
return img_sf, VARIANT_LABELS[variant_key], meta
# ----------------------------------------------------------
# Variant 4: CritiFusion (Original+VLM+SpecFusion)
# ----------------------------------------------------------
if variant_key == "criticore_on_original__specfusion":
pos_tags_77, neg_tags = await critic.make_tags(user_prompt, clip77=True)
comps = await critic.decompose_components(user_prompt)
z0_og, base_og = base_sample_latent(user_prompt, seed=seed, H=H, W=W, neg=DEFAULT_NEG)
vlm_on_og = await critic.vlm_refine(base_og, user_prompt, comps or [])
refined_og_77 = clip77_strict(vlm_on_og.get("refined") or user_prompt, 77)
refined_merge = CritiCore.merge_vlm_multi_text(refined_og_77, pos_tags_77)
z_ref = img2img_latent(
refined_merge, z0_og,
strength=strength, guidance=use_guidance, steps=steps,
seed=seed + 2400 + lk,
neg=DEFAULT_NEG
)
fused_lat = frequency_fusion(z_ref, z0_og, base_c=0.5, rho_t=RHO_T_DEFAULT, device=DEVICE)
img_sf = _decode_to_pil(fused_lat)
meta.update({
"pos_tags_77": pos_tags_77,
"neg_tags": neg_tags,
"components": comps,
"vlm_refined_77": refined_og_77,
"enhanced_prompt_77": refined_merge,
"vlm_issues": vlm_on_og.get("issues_merged", ""),
"note": "Original prompt + VLM critique prompt + img2img + SpecFusion."
})
_save(img_sf, VARIANT_LABELS[variant_key])
return img_sf, VARIANT_LABELS[variant_key], meta
raise ValueError(f"Unknown variant_key: {variant_key}")
# =========================
# 7) UI callbacks
# =========================
def ui_run_once(
user_prompt: str,
seed: int,
H: int,
W: int,
preset: str,
total_steps_refine: int,
last_k: int,
guidance: float,
enabled_variants_display: List[str],
save_outputs: bool,
out_dir: str,
):
t0 = time.time()
try:
if not user_prompt or not user_prompt.strip():
return [], "Empty prompt."
# display -> internal
display_to_internal = {v: k for k, v in VARIANT_LABELS.items()}
chosen_display = (enabled_variants_display or [])[-1:] # enforce single here too
if not chosen_display:
return [], "Please select ONE variant."
chosen_display = chosen_display[0]
variant_key = display_to_internal.get(chosen_display)
if variant_key is None:
return [], f"Unknown selected variant: {chosen_display}"
out_path = Path(out_dir) if (save_outputs and out_dir) else None
img, disp_name, meta = _run_async(generate_one_variant(
user_prompt=user_prompt.strip(),
seed=int(seed),
H=int(H), W=int(W),
total_steps_refine=int(total_steps_refine),
last_k=int(last_k),
guidance=float(guidance),
preset=preset,
variant_key=variant_key,
out_dir=out_path,
))
meta["ui"] = {
"seed": int(seed),
"H": int(H),
"W": int(W),
"preset": preset,
"total_steps_refine": int(total_steps_refine),
"last_k": int(last_k),
"guidance": float(guidance),
"selected_variant": chosen_display,
"save_outputs": bool(save_outputs),
"out_dir": out_dir if save_outputs else None,
}
meta["elapsed_sec"] = round(time.time() - t0, 3)
gallery = [(img, disp_name)]
return gallery, json.dumps(meta, ensure_ascii=False, indent=2)
except Exception:
return [], traceback.format_exc()
@spaces.GPU
def ui_run_once_gpu(*args, **kwargs):
return ui_run_once(*args, **kwargs)
# =========================
# 8) Single-select enforcement for CheckboxGroup
# =========================
def enforce_single_variant(new_list: List[str], prev_list: List[str]):
new_list = new_list or []
prev_list = prev_list or []
new_set = set(new_list)
prev_set = set(prev_list)
added = list(new_set - prev_set)
if added:
# keep the newly added one
chosen = added[-1]
out = [chosen]
else:
# no added; maybe removed or same; if multi exists, keep last item
out = new_list[-1:] if len(new_list) > 1 else new_list
return out, out # update checkbox value + state
# =========================
# 9) Gradio UI
# =========================
with gr.Blocks(title="CritiFusion (SDXL) Demo") as demo:
gr.Markdown(
"## CritiFusion Demo (SDXL)\n"
"- Keep **Enabled Variants** pills UI, but **only one** can be selected.\n"
f"- Device: **{DEVICE_STR}**, DType: **{DTYPE}**\n"
f"- Together API: {'β
set' if TOGETHER_API_KEY else 'β missing (set TOGETHER_API_KEY)'}"
)
with gr.Row():
with gr.Column(scale=7):
user_prompt = gr.Textbox(
label="Prompt",
value="A fluffy orange cat lying on a window ledge, front-facing, stylized 3D, soft indoor lighting",
lines=3,
)
with gr.Row():
seed = gr.Number(label="Seed", value=2026, precision=0)
preset = gr.Dropdown(label="Preset", choices=["hq_preference"], value="hq_preference")
with gr.Row():
H = gr.Number(label="H", value=1024, precision=0)
W = gr.Number(label="W", value=1024, precision=0)
with gr.Row():
total_steps_refine = gr.Slider(label="total_steps_refine", minimum=10, maximum=80, step=1, value=50)
last_k = gr.Slider(label="last_k", minimum=1, maximum=50, step=1, value=37)
guidance = gr.Slider(
label="Guidance (0 => fallback rule)",
minimum=0.0, maximum=15.0, step=0.1, value=0.0
)
# --- pills UI, but single-select enforced ---
selected_state = gr.State([VARIANT_LABELS["base_original"]])
enabled_variants = gr.CheckboxGroup(
label="Enabled Variants (select ONE)",
choices=[VARIANT_LABELS[k] for k in VARIANT_LABELS.keys()],
value=[VARIANT_LABELS["base_original"]],
)
# enforce single selection on change
enabled_variants.change(
fn=enforce_single_variant,
inputs=[enabled_variants, selected_state],
outputs=[enabled_variants, selected_state],
)
with gr.Row():
save_outputs = gr.Checkbox(label="Save output to disk", value=False)
out_dir = gr.Textbox(label="Output dir (only if save enabled)", value="./variants_demo_gradio")
run_btn = gr.Button("Run", variant="primary")
with gr.Column(scale=8):
gallery = gr.Gallery(label="Result", columns=1, height=600)
meta_json = gr.Code(label="Meta / Debug (JSON)", language="json")
run_btn.click(
fn=ui_run_once_gpu,
inputs=[user_prompt, seed, H, W, preset, total_steps_refine, last_k, guidance, enabled_variants, save_outputs, out_dir],
outputs=[gallery, meta_json],
api_name=False, # gradio-safe (avoid schema issues)
)
demo.queue().launch(
debug=True,
share=True, # optional; helps if you run outside Spaces
)
|