Spaces:
Running
Running
Synced repo using 'sync_with_huggingface' Github Action
Browse files- gradio_app.py +240 -0
- gradio_run.py +7 -0
- requirements.txt +6 -0
gradio_app.py
ADDED
|
@@ -0,0 +1,240 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import sys
|
| 3 |
+
|
| 4 |
+
if "APP_PATH" in os.environ:
|
| 5 |
+
app_path = os.path.abspath(os.environ["APP_PATH"])
|
| 6 |
+
if os.getcwd() != app_path:
|
| 7 |
+
# fix sys.path for import
|
| 8 |
+
os.chdir(app_path)
|
| 9 |
+
if app_path not in sys.path:
|
| 10 |
+
sys.path.append(app_path)
|
| 11 |
+
|
| 12 |
+
import gradio as gr
|
| 13 |
+
|
| 14 |
+
import torch
|
| 15 |
+
import torchaudio
|
| 16 |
+
import numpy as np
|
| 17 |
+
import matplotlib.pyplot as plt
|
| 18 |
+
import re
|
| 19 |
+
import random
|
| 20 |
+
import string
|
| 21 |
+
from audioseal import AudioSeal
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
# Load generator if not already loaded in reload mode
|
| 25 |
+
if 'generator' not in globals():
|
| 26 |
+
generator = AudioSeal.load_generator("audioseal_wm_16bits")
|
| 27 |
+
|
| 28 |
+
# Load detector if not already loaded in reload mode
|
| 29 |
+
if 'detector' not in globals():
|
| 30 |
+
detector = AudioSeal.load_detector("audioseal_detector_16bits")
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
def load_audio(file):
|
| 34 |
+
wav, sample_rate = torchaudio.load(file)
|
| 35 |
+
return wav, sample_rate
|
| 36 |
+
|
| 37 |
+
def generate_msg_pt_by_format_string(format_string, bytes_count):
|
| 38 |
+
msg_hex = format_string.replace("-", "")
|
| 39 |
+
hex_length = bytes_count * 2
|
| 40 |
+
binary_list = []
|
| 41 |
+
for i in range(0, len(msg_hex), hex_length):
|
| 42 |
+
chunk = msg_hex[i:i+hex_length]
|
| 43 |
+
binary = bin(int(chunk, 16))[2:].zfill(bytes_count * 8)
|
| 44 |
+
binary_list.append([int(b) for b in binary])
|
| 45 |
+
# torch.randint(0, 2, (1, 16), dtype=torch.int32)
|
| 46 |
+
msg_pt = torch.tensor(binary_list, dtype=torch.int32)
|
| 47 |
+
return msg_pt
|
| 48 |
+
|
| 49 |
+
def embed_watermark(audio, sr, msg):
|
| 50 |
+
# We add the batch dimension to the single audio to mimic the batch watermarking
|
| 51 |
+
original_audio = audio.unsqueeze(0)
|
| 52 |
+
|
| 53 |
+
watermark = generator.get_watermark(original_audio, sr, message=msg)
|
| 54 |
+
|
| 55 |
+
watermarked_audio = original_audio + watermark
|
| 56 |
+
|
| 57 |
+
# Alternatively, you can also call forward() function directly with different tune-down / tune-up rate
|
| 58 |
+
# watermarked_audio = generator(audios, sample_rate=sr, alpha=1)
|
| 59 |
+
|
| 60 |
+
return watermarked_audio
|
| 61 |
+
|
| 62 |
+
def generate_format_string_by_msg_pt(msg_pt, bytes_count):
|
| 63 |
+
hex_length = bytes_count * 2
|
| 64 |
+
binary_int = 0
|
| 65 |
+
for bit in msg_pt:
|
| 66 |
+
binary_int = (binary_int << 1) | int(bit.item())
|
| 67 |
+
hex_string = format(binary_int, f'0{hex_length}x')
|
| 68 |
+
|
| 69 |
+
split_hex = [hex_string[i:i + 4] for i in range(0, len(hex_string), 4)]
|
| 70 |
+
format_hex = "-".join(split_hex)
|
| 71 |
+
|
| 72 |
+
return hex_string, format_hex
|
| 73 |
+
|
| 74 |
+
def detect_watermark(audio, sr):
|
| 75 |
+
# We add the batch dimension to the single audio to mimic the batch watermarking
|
| 76 |
+
watermarked_audio = audio.unsqueeze(0)
|
| 77 |
+
|
| 78 |
+
result, message = detector.detect_watermark(watermarked_audio, sr)
|
| 79 |
+
|
| 80 |
+
# pred_prob is a tensor of size batch x 2 x frames, indicating the probability (positive and negative) of watermarking for each frame
|
| 81 |
+
# A watermarked audio should have pred_prob[:, 1, :] > 0.5
|
| 82 |
+
# message_prob is a tensor of size batch x 16, indicating of the probability of each bit to be 1.
|
| 83 |
+
# message will be a random tensor if the detector detects no watermarking from the audio
|
| 84 |
+
pred_prob, message_prob = detector(watermarked_audio, sr)
|
| 85 |
+
|
| 86 |
+
return result, message, pred_prob, message_prob
|
| 87 |
+
|
| 88 |
+
def get_waveform_and_specgram(batch_waveform, sample_rate):
|
| 89 |
+
waveform = batch_waveform.squeeze().detach().cpu().numpy()
|
| 90 |
+
|
| 91 |
+
num_frames = waveform.shape[-1]
|
| 92 |
+
time_axis = torch.arange(0, num_frames) / sample_rate
|
| 93 |
+
|
| 94 |
+
figure, (ax1, ax2) = plt.subplots(2, 1)
|
| 95 |
+
|
| 96 |
+
ax1.plot(time_axis, waveform, linewidth=1)
|
| 97 |
+
ax1.grid(True)
|
| 98 |
+
ax2.specgram(waveform, Fs=sample_rate)
|
| 99 |
+
|
| 100 |
+
figure.suptitle(f"Waveform and specgram")
|
| 101 |
+
|
| 102 |
+
return figure
|
| 103 |
+
|
| 104 |
+
def generate_hex_format_regex(bytes_count):
|
| 105 |
+
hex_length = bytes_count * 2
|
| 106 |
+
hex_string = 'F' * hex_length
|
| 107 |
+
split_hex = [hex_string[i:i + 4] for i in range(0, len(hex_string), 4)]
|
| 108 |
+
format_like = "-".join(split_hex)
|
| 109 |
+
regex_pattern = '^' + '-'.join([r'[0-9A-Fa-f]{4}'] * len(split_hex)) + '$'
|
| 110 |
+
return format_like, regex_pattern
|
| 111 |
+
|
| 112 |
+
def generate_hex_random_message(bytes_count):
|
| 113 |
+
hex_length = bytes_count * 2
|
| 114 |
+
hex_string = ''.join(random.choice(string.hexdigits) for _ in range(hex_length))
|
| 115 |
+
split_hex = [hex_string[i:i + 4] for i in range(0, len(hex_string), 4)]
|
| 116 |
+
random_str = "-".join(split_hex)
|
| 117 |
+
return random_str, "".join(split_hex)
|
| 118 |
+
|
| 119 |
+
with gr.Blocks(title="AudioSeal") as demo:
|
| 120 |
+
gr.Markdown("""
|
| 121 |
+
# AudioSeal Demo
|
| 122 |
+
|
| 123 |
+
Find the project [here](https://github.com/facebookresearch/audioseal.git).
|
| 124 |
+
""")
|
| 125 |
+
|
| 126 |
+
with gr.Tabs():
|
| 127 |
+
with gr.TabItem("Embed Watermark"):
|
| 128 |
+
with gr.Row():
|
| 129 |
+
with gr.Column():
|
| 130 |
+
embedding_aud = gr.Audio(label="Input Audio", type="filepath")
|
| 131 |
+
embedding_specgram = gr.Checkbox(label="Show specgram", value=False, info="Show debug information")
|
| 132 |
+
|
| 133 |
+
embedding_type = gr.Radio(["random", "input"], value="random", label="Type", info="Type of watermarks")
|
| 134 |
+
|
| 135 |
+
nbytes = int(generator.msg_processor.nbits / 8)
|
| 136 |
+
format_like, regex_pattern = generate_hex_format_regex(nbytes)
|
| 137 |
+
msg, _ = generate_hex_random_message(nbytes)
|
| 138 |
+
embedding_msg = gr.Textbox(
|
| 139 |
+
label=f"Message ({nbytes} bytes hex string)",
|
| 140 |
+
info=f"format like {format_like}",
|
| 141 |
+
value=msg,
|
| 142 |
+
interactive=False, show_copy_button=True)
|
| 143 |
+
|
| 144 |
+
embedding_btn = gr.Button("Embed Watermark")
|
| 145 |
+
with gr.Column():
|
| 146 |
+
marked_aud = gr.Audio(label="Output Audio", show_download_button=True)
|
| 147 |
+
specgram_original = gr.Plot(label="Original Audio", format="png", visible=False)
|
| 148 |
+
specgram_watermarked = gr.Plot(label="Watermarked Audio", format="png", visible=False)
|
| 149 |
+
|
| 150 |
+
|
| 151 |
+
def change_embedding_type(type):
|
| 152 |
+
if type == "random":
|
| 153 |
+
msg, _ = generate_hex_random_message(nbytes)
|
| 154 |
+
return gr.update(interactive=False, value=msg)
|
| 155 |
+
else:
|
| 156 |
+
return gr.update(interactive=True)
|
| 157 |
+
embedding_type.change(
|
| 158 |
+
fn=change_embedding_type,
|
| 159 |
+
inputs=[embedding_type],
|
| 160 |
+
outputs=[embedding_msg]
|
| 161 |
+
)
|
| 162 |
+
|
| 163 |
+
def check_embedding_msg(msg):
|
| 164 |
+
if not re.match(regex_pattern, msg):
|
| 165 |
+
gr.Warning(
|
| 166 |
+
f"Invalid format. Please use like '{format_like}'",
|
| 167 |
+
duration=0)
|
| 168 |
+
embedding_msg.change(
|
| 169 |
+
fn=check_embedding_msg,
|
| 170 |
+
inputs=[embedding_msg],
|
| 171 |
+
outputs=[]
|
| 172 |
+
)
|
| 173 |
+
|
| 174 |
+
def run_embed_watermark(file, show_specgram, type, msg):
|
| 175 |
+
if file is None:
|
| 176 |
+
raise gr.Erro("No file uploaded", duration=5)
|
| 177 |
+
if not re.match(regex_pattern, msg):
|
| 178 |
+
raise gr.Error(f"Invalid format. Please use like '{format_like}'", duration=5)
|
| 179 |
+
|
| 180 |
+
audio_original, rate = load_audio(file)
|
| 181 |
+
msg_pt = generate_msg_pt_by_format_string(msg, nbytes)
|
| 182 |
+
audio_watermarked = embed_watermark(audio_original, rate, msg_pt)
|
| 183 |
+
output = rate, audio_watermarked.squeeze().detach().cpu().numpy().astype(np.float32)
|
| 184 |
+
|
| 185 |
+
if show_specgram:
|
| 186 |
+
fig_original = get_waveform_and_specgram(audio_original, rate)
|
| 187 |
+
fig_watermarked = get_waveform_and_specgram(audio_watermarked, rate)
|
| 188 |
+
return [
|
| 189 |
+
output,
|
| 190 |
+
gr.update(visible=True, value=fig_original),
|
| 191 |
+
gr.update(visible=True, value=fig_watermarked)]
|
| 192 |
+
else:
|
| 193 |
+
return [
|
| 194 |
+
output,
|
| 195 |
+
gr.update(visible=False),
|
| 196 |
+
gr.update(visible=False)]
|
| 197 |
+
|
| 198 |
+
embedding_btn.click(
|
| 199 |
+
fn=run_embed_watermark,
|
| 200 |
+
inputs=[embedding_aud, embedding_specgram, embedding_type, embedding_msg],
|
| 201 |
+
outputs=[marked_aud, specgram_original, specgram_watermarked]
|
| 202 |
+
)
|
| 203 |
+
|
| 204 |
+
with gr.TabItem("Detect Watermark"):
|
| 205 |
+
with gr.Row():
|
| 206 |
+
with gr.Column():
|
| 207 |
+
detecting_aud = gr.Audio(label="Input Audio", type="filepath")
|
| 208 |
+
with gr.Column():
|
| 209 |
+
detecting_btn = gr.Button("Detect Watermark")
|
| 210 |
+
predicted_messages = gr.JSON(label="Detected Messages")
|
| 211 |
+
|
| 212 |
+
def run_detect_watermark(file):
|
| 213 |
+
if file is None:
|
| 214 |
+
raise gr.Error("No file uploaded", duration=5)
|
| 215 |
+
|
| 216 |
+
audio_watermarked, rate = load_audio(file)
|
| 217 |
+
result, message, pred_prob, message_prob = detect_watermark(audio_watermarked, rate)
|
| 218 |
+
|
| 219 |
+
_, fromat_msg = generate_format_string_by_msg_pt(message[0], nbytes)
|
| 220 |
+
|
| 221 |
+
sum_above_05 = (pred_prob[:, 1, :] > 0.5).sum(dim=1)
|
| 222 |
+
|
| 223 |
+
# Create message output as JSON
|
| 224 |
+
message_json = {
|
| 225 |
+
"socre": result,
|
| 226 |
+
"message": fromat_msg,
|
| 227 |
+
"frames_count_all": pred_prob.shape[2],
|
| 228 |
+
"frames_count_above_05": sum_above_05[0].item(),
|
| 229 |
+
"bits_probability": message_prob[0].tolist(),
|
| 230 |
+
"bits_massage": message[0].tolist()
|
| 231 |
+
}
|
| 232 |
+
return message_json
|
| 233 |
+
detecting_btn.click(
|
| 234 |
+
fn=run_detect_watermark,
|
| 235 |
+
inputs=[detecting_aud],
|
| 236 |
+
outputs=[predicted_messages]
|
| 237 |
+
)
|
| 238 |
+
|
| 239 |
+
if __name__ == "__main__":
|
| 240 |
+
demo.launch()
|
gradio_run.py
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# NOTE: copy from gradio bin
|
| 2 |
+
import re
|
| 3 |
+
import sys
|
| 4 |
+
from gradio.cli import cli
|
| 5 |
+
if __name__ == '__main__':
|
| 6 |
+
sys.argv[0] = re.sub(r'(-script\.pyw|\.exe)?$', '', sys.argv[0])
|
| 7 |
+
sys.exit(cli())
|
requirements.txt
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
torch==2.5.1
|
| 2 |
+
gradio==5.8.0
|
| 3 |
+
huggingface-hub==0.26.3
|
| 4 |
+
audioseal==0.1.4
|
| 5 |
+
matplotlib==3.10.0
|
| 6 |
+
soundfile==0.12.1
|