Spaces:
Sleeping
Sleeping
Upload 4 files
Browse files- app.py +45 -0
- checkvectordb.py +236 -0
- mydocker.dockerfile +47 -0
- requirements.txt +150 -0
app.py
ADDED
|
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from flask import Flask,render_template,request,jsonify
|
| 2 |
+
from flask_cors import CORS
|
| 3 |
+
from checkvectordb import getdata,trainpdf1,loadIPCsections,loadmiyapurcourtorders
|
| 4 |
+
app = Flask(__name__)
|
| 5 |
+
CORS(app)
|
| 6 |
+
|
| 7 |
+
@app.get("/")
|
| 8 |
+
def index_get():
|
| 9 |
+
print("just started...")
|
| 10 |
+
#response=loadIPCsections("./uploads/ipc.json")
|
| 11 |
+
#response=loadmiyapurcourtorders("./uploads/court_history.json")
|
| 12 |
+
|
| 13 |
+
#print("------",response)
|
| 14 |
+
return render_template("base.html")
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
@app.post("/trainpdf")
|
| 18 |
+
def trainpdf():
|
| 19 |
+
try:
|
| 20 |
+
pdf_file = request.files['file']
|
| 21 |
+
response=trainpdf1(pdf_file)
|
| 22 |
+
print("response :",response);
|
| 23 |
+
message={"success":response}
|
| 24 |
+
except Exception as we:
|
| 25 |
+
message={"error":response}
|
| 26 |
+
print("-error -", we)
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
return response
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
@app.post("/predict")
|
| 34 |
+
def predict():
|
| 35 |
+
|
| 36 |
+
text=request.get_json().get("message")
|
| 37 |
+
print("from web ",text);
|
| 38 |
+
response=getdata(text)
|
| 39 |
+
message={"answer":response}
|
| 40 |
+
print("message ",message)
|
| 41 |
+
return message
|
| 42 |
+
|
| 43 |
+
if __name__ == "__main__":
|
| 44 |
+
app.run(host='0.0.0.0', port=5000)
|
| 45 |
+
|
checkvectordb.py
ADDED
|
@@ -0,0 +1,236 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
from flask import Flask, request,render_template, send_from_directory
|
| 3 |
+
|
| 4 |
+
from flask import Flask, request, jsonify, render_template_string
|
| 5 |
+
import openai
|
| 6 |
+
import langchain
|
| 7 |
+
import os
|
| 8 |
+
from langchain.document_loaders import PyPDFLoader
|
| 9 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 10 |
+
from langchain.embeddings.openai import OpenAIEmbeddings
|
| 11 |
+
from langchain.vectorstores import Chroma
|
| 12 |
+
from langchain import OpenAI
|
| 13 |
+
from langchain.schema import Document
|
| 14 |
+
from langchain.chains.question_answering import load_qa_chain
|
| 15 |
+
from langchain.chains import RetrievalQA
|
| 16 |
+
from langchain.chat_models import ChatOpenAI
|
| 17 |
+
import re
|
| 18 |
+
from pdfminer.high_level import extract_pages
|
| 19 |
+
from pdfminer.layout import LTTextContainer, LTChar
|
| 20 |
+
from langchain.prompts import PromptTemplate
|
| 21 |
+
from langchain.chains import LLMChain
|
| 22 |
+
|
| 23 |
+
import json
|
| 24 |
+
|
| 25 |
+
import pdfplumber
|
| 26 |
+
import fitz # PyMuPDF
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
import chromadb
|
| 30 |
+
from chromadb.config import Settings
|
| 31 |
+
|
| 32 |
+
app = Flask(__name__)
|
| 33 |
+
os.environ["OPENAI_API_KEY"] = "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"
|
| 34 |
+
|
| 35 |
+
app.config['UPLOAD_FOLDER'] = 'uploads'
|
| 36 |
+
openapi_key="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"
|
| 37 |
+
fpath="./SCHOOL ADMISSI0N TEST 2025-2026.pdf"
|
| 38 |
+
text_splitter=RecursiveCharacterTextSplitter(chunk_size=800,chunk_overlap=50,length_function=len,separators=["\n\n","\n"," "])
|
| 39 |
+
global_var = "I am global"
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
def loadmiyapurcourtorders(pathtosjon):
|
| 43 |
+
try:
|
| 44 |
+
with open(pathtosjon, "r", encoding="utf-8") as f:
|
| 45 |
+
print("--processing pls wait---")
|
| 46 |
+
courtcontent = json.load(f)
|
| 47 |
+
|
| 48 |
+
docs = []
|
| 49 |
+
for content in courtcontent:
|
| 50 |
+
|
| 51 |
+
content1 = f"""
|
| 52 |
+
Court Level: {content["court_level"]}
|
| 53 |
+
Case No: {content["caseno"]}
|
| 54 |
+
Year: {content["year"]}
|
| 55 |
+
Prayer: {content["prayer"]}
|
| 56 |
+
Verdict: {content["verdict"]}
|
| 57 |
+
Judgement Date: {content["verdictdate"]}
|
| 58 |
+
Status: {content["status"]}
|
| 59 |
+
Case Type: {content["casetype"]}
|
| 60 |
+
petitioner: {content["petitioner"]}
|
| 61 |
+
respondent 1: {content["Respondent 1"]}
|
| 62 |
+
judge: {content["judge"]}
|
| 63 |
+
|
| 64 |
+
"""
|
| 65 |
+
|
| 66 |
+
|
| 67 |
+
metadata = {
|
| 68 |
+
"case no": str(content["caseno"]),
|
| 69 |
+
"year": content["year"]
|
| 70 |
+
|
| 71 |
+
|
| 72 |
+
}
|
| 73 |
+
|
| 74 |
+
|
| 75 |
+
|
| 76 |
+
docs.append(Document(page_content=content1, metadata=metadata))
|
| 77 |
+
|
| 78 |
+
embeddings = OpenAIEmbeddings(openai_api_key=openapi_key)
|
| 79 |
+
# store all IPC section Articles here
|
| 80 |
+
vectorstore = Chroma.from_documents(docs, embeddings, persist_directory="./MiyapurCase_db1")
|
| 81 |
+
except Exception as er:
|
| 82 |
+
print("--exception---",er)
|
| 83 |
+
return jsonify("exception occured while processing...")
|
| 84 |
+
|
| 85 |
+
|
| 86 |
+
return "Miyapur court cases are loaded sucessfully"
|
| 87 |
+
|
| 88 |
+
|
| 89 |
+
|
| 90 |
+
def loadIPCsections(pathtosjon):
|
| 91 |
+
|
| 92 |
+
try:
|
| 93 |
+
with open(pathtosjon, "r", encoding="utf-8") as f:
|
| 94 |
+
print("--processing pls wait---")
|
| 95 |
+
ipc_sections = json.load(f)
|
| 96 |
+
|
| 97 |
+
docs = []
|
| 98 |
+
for section in ipc_sections:
|
| 99 |
+
content = f"Section {section['Section']}: {section['section_title']}\n{section['section_desc']}"
|
| 100 |
+
metadata = {
|
| 101 |
+
"chapter": str(section["chapter"]),
|
| 102 |
+
"chapter_title": section["chapter_title"],
|
| 103 |
+
"section": str(section["Section"]),
|
| 104 |
+
"section_title": section["section_title"]
|
| 105 |
+
}
|
| 106 |
+
docs.append(Document(page_content=content, metadata=metadata))
|
| 107 |
+
|
| 108 |
+
embeddings = OpenAIEmbeddings(openai_api_key=openapi_key)
|
| 109 |
+
# store all IPC section Articles here
|
| 110 |
+
vectorstore = Chroma.from_documents(docs, embeddings, persist_directory="./ChromaIPC_db")
|
| 111 |
+
except Exception as er:
|
| 112 |
+
print("--exception---",er)
|
| 113 |
+
return jsonify("expcetion occured while processing...")
|
| 114 |
+
|
| 115 |
+
|
| 116 |
+
return "IPC sections are loaded sucessfully"
|
| 117 |
+
|
| 118 |
+
def trainpdf1(fpath1):
|
| 119 |
+
|
| 120 |
+
print("- fpath1---",fpath1)
|
| 121 |
+
try:
|
| 122 |
+
filepath = os.path.join(app.config['UPLOAD_FOLDER'], fpath1.filename)
|
| 123 |
+
fpath1.save(filepath)
|
| 124 |
+
embeddings = OpenAIEmbeddings(openai_api_key=openapi_key)
|
| 125 |
+
loader = PyPDFLoader(filepath)
|
| 126 |
+
pages = loader.load() # Returns list of Document objects
|
| 127 |
+
|
| 128 |
+
|
| 129 |
+
court_text = "\n".join([page.page_content for page in pages])
|
| 130 |
+
|
| 131 |
+
# Wrap as LangChain document
|
| 132 |
+
doc = Document(
|
| 133 |
+
page_content=court_text,
|
| 134 |
+
metadata={"source": "court order"}
|
| 135 |
+
)
|
| 136 |
+
|
| 137 |
+
print("- filepath---",filepath)
|
| 138 |
+
|
| 139 |
+
#text_splitter = RecursiveCharacterTextSplitter(
|
| 140 |
+
# chunk_size=800,
|
| 141 |
+
# chunk_overlap=200
|
| 142 |
+
#)
|
| 143 |
+
#documents = text_splitter.split_documents(pages)
|
| 144 |
+
|
| 145 |
+
|
| 146 |
+
# store all court order documents here
|
| 147 |
+
vectorstore = Chroma.from_documents([doc], embeddings, persist_directory="./ChromaCOURT_db")
|
| 148 |
+
vectorstore.persist()
|
| 149 |
+
|
| 150 |
+
llm = ChatOpenAI(model="gpt-4", temperature=0)
|
| 151 |
+
|
| 152 |
+
prompt = PromptTemplate.from_template("""
|
| 153 |
+
You are a legal assistant. Given the following court order, list the top 5 relevant legal issues or areas that this case involves (e.g., property rights, public nuisance, fundamental rights, illegal construction, etc.)
|
| 154 |
+
|
| 155 |
+
Court Order:
|
| 156 |
+
{order}
|
| 157 |
+
|
| 158 |
+
List 5 legal areas:
|
| 159 |
+
""")
|
| 160 |
+
|
| 161 |
+
chain = LLMChain(llm=llm, prompt=prompt)
|
| 162 |
+
response = chain.run(order=court_text)
|
| 163 |
+
|
| 164 |
+
IPCsearch = Chroma(persist_directory="./ChromaIPC_db", embedding_function=embeddings )
|
| 165 |
+
|
| 166 |
+
|
| 167 |
+
areas = [area.strip("1234567890. ").strip() for area in response.split('\n') if area.strip()]
|
| 168 |
+
ipc_matches = []
|
| 169 |
+
ipc_results = []
|
| 170 |
+
|
| 171 |
+
for area in areas[:5]: # limit to top 5 areas
|
| 172 |
+
results = IPCsearch.similarity_search(area, k=1)
|
| 173 |
+
if results:
|
| 174 |
+
ipc_matches.append((area, results[0]))
|
| 175 |
+
|
| 176 |
+
# 🖨️ Print matched IPC sections
|
| 177 |
+
for topic, doc in ipc_matches:
|
| 178 |
+
print(f"\n📘 Legal Area: {topic}")
|
| 179 |
+
print(f"🔗 IPC Section: {doc.metadata.get('section')} - {doc.metadata.get('section_title')}")
|
| 180 |
+
print(f"📄 Description: {doc.page_content}")
|
| 181 |
+
|
| 182 |
+
for topic, doc in ipc_matches:
|
| 183 |
+
ipc_results.append({
|
| 184 |
+
"legal_area": topic,
|
| 185 |
+
"ipc_section": doc.metadata.get("section"),
|
| 186 |
+
"section_title": doc.metadata.get("section_title"),
|
| 187 |
+
"description": doc.page_content,
|
| 188 |
+
"Orderdocumentation":response
|
| 189 |
+
})
|
| 190 |
+
|
| 191 |
+
|
| 192 |
+
|
| 193 |
+
except Exception as er:
|
| 194 |
+
print("--exception---",er)
|
| 195 |
+
return jsonify("This pdf cannot be trained")
|
| 196 |
+
|
| 197 |
+
|
| 198 |
+
return ipc_results
|
| 199 |
+
|
| 200 |
+
def getdata(query):
|
| 201 |
+
|
| 202 |
+
embeddings = OpenAIEmbeddings(openai_api_key=openapi_key)
|
| 203 |
+
os.environ['OPENAI_API_KEY'] = openapi_key
|
| 204 |
+
|
| 205 |
+
your_case_db = Chroma(persist_directory="./ChromaIPC_db", embedding_function=embeddings)
|
| 206 |
+
your_case_text = your_case_db.similarity_search("relavant IPC section for bribe", k=1)[0].page_content
|
| 207 |
+
|
| 208 |
+
print("---your_case_text-----",your_case_text)
|
| 209 |
+
|
| 210 |
+
# Load SC case database
|
| 211 |
+
supreme_db = Chroma(persist_directory="./MiyapurCase_db", embedding_function=embeddings)
|
| 212 |
+
retriever = supreme_db.as_retriever(search_kwargs={"k": 5})
|
| 213 |
+
|
| 214 |
+
# Ask for relevant judgments
|
| 215 |
+
llm = ChatOpenAI(model="gpt-4", temperature=1)
|
| 216 |
+
qa_chain = RetrievalQA.from_chain_type(llm=llm, retriever=retriever)
|
| 217 |
+
|
| 218 |
+
response = qa_chain.run(query)
|
| 219 |
+
|
| 220 |
+
|
| 221 |
+
|
| 222 |
+
|
| 223 |
+
return response
|
| 224 |
+
|
| 225 |
+
|
| 226 |
+
|
| 227 |
+
|
| 228 |
+
|
| 229 |
+
|
| 230 |
+
|
| 231 |
+
|
| 232 |
+
|
| 233 |
+
|
| 234 |
+
|
| 235 |
+
if __name__ == '__main__':
|
| 236 |
+
app.run(port=8080)
|
mydocker.dockerfile
ADDED
|
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
FROM python 3.10
|
| 3 |
+
FROM continuumio/miniconda3
|
| 4 |
+
|
| 5 |
+
RUN useradd user
|
| 6 |
+
|
| 7 |
+
USER user
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
COPY ./requirements.txt requirements.txt
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
ENV PYTHONDONTWRITEBYTECODE=1
|
| 15 |
+
ENV PYTHONUNBUFFERED=1
|
| 16 |
+
|
| 17 |
+
# Set working directory
|
| 18 |
+
WORKDIR /app
|
| 19 |
+
|
| 20 |
+
# Copy backend files
|
| 21 |
+
COPY . /app
|
| 22 |
+
|
| 23 |
+
# Create and activate conda env with Python 3.10
|
| 24 |
+
RUN conda create -n myenv python=3.10 -y && \
|
| 25 |
+
echo "conda activate myenv" >> ~/.bashrc && \
|
| 26 |
+
/bin/bash -c "source ~/.bashrc && conda activate myenv && pip install --upgrade pip && pip install -r requirements.txt"
|
| 27 |
+
|
| 28 |
+
# Clone React frontend from GitHub
|
| 29 |
+
RUN apt-get update && \
|
| 30 |
+
apt-get install -y git curl && \
|
| 31 |
+
git clone https://github.com/vijaysagi12/myinzackBot.git /frontend
|
| 32 |
+
|
| 33 |
+
# Install Node.js & npm (for React)
|
| 34 |
+
RUN curl -fsSL https://deb.nodesource.com/setup_18.x | bash - && \
|
| 35 |
+
apt-get install -y nodejs && \
|
| 36 |
+
cd /frontend && npm install && npm run build
|
| 37 |
+
|
| 38 |
+
# Expose Flask and React ports
|
| 39 |
+
EXPOSE 5000 3000
|
| 40 |
+
|
| 41 |
+
# Start both Flask and React servers
|
| 42 |
+
CMD ["/bin/bash", "-c", "source activate myenv && \
|
| 43 |
+
(cd /frontend && npm start &) && \
|
| 44 |
+
python app.py"]
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
|
requirements.txt
ADDED
|
@@ -0,0 +1,150 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
aiohappyeyeballs==2.6.1
|
| 2 |
+
aiohttp==3.12.0
|
| 3 |
+
aiosignal==1.3.2
|
| 4 |
+
annotated-types==0.7.0
|
| 5 |
+
anyio==4.9.0
|
| 6 |
+
asgiref==3.8.1
|
| 7 |
+
async-timeout==4.0.3
|
| 8 |
+
attrs==25.3.0
|
| 9 |
+
backoff==2.2.1
|
| 10 |
+
bcrypt==4.3.0
|
| 11 |
+
blinker==1.9.0
|
| 12 |
+
build==1.2.2.post1
|
| 13 |
+
cachetools==5.5.2
|
| 14 |
+
certifi==2025.4.26
|
| 15 |
+
cffi==1.17.1
|
| 16 |
+
charset-normalizer==3.4.2
|
| 17 |
+
chromadb==1.0.10
|
| 18 |
+
click==8.1.8
|
| 19 |
+
colorama==0.4.6
|
| 20 |
+
coloredlogs==15.0.1
|
| 21 |
+
contourpy==1.3.2
|
| 22 |
+
cryptography==45.0.4
|
| 23 |
+
cycler==0.12.1
|
| 24 |
+
dataclasses-json==0.6.7
|
| 25 |
+
Deprecated==1.2.18
|
| 26 |
+
distro==1.9.0
|
| 27 |
+
durationpy==0.10
|
| 28 |
+
exceptiongroup==1.3.0
|
| 29 |
+
fastapi==0.115.9
|
| 30 |
+
filelock==3.18.0
|
| 31 |
+
Flask==3.1.1
|
| 32 |
+
flask-cors==6.0.0
|
| 33 |
+
flatbuffers==25.2.10
|
| 34 |
+
fonttools==4.58.4
|
| 35 |
+
frozenlist==1.6.0
|
| 36 |
+
fsspec==2025.5.1
|
| 37 |
+
google-auth==2.40.2
|
| 38 |
+
googleapis-common-protos==1.70.0
|
| 39 |
+
greenlet==3.2.2
|
| 40 |
+
grpcio==1.71.0
|
| 41 |
+
h11==0.16.0
|
| 42 |
+
httpcore==1.0.9
|
| 43 |
+
httptools==0.6.4
|
| 44 |
+
httpx==0.28.1
|
| 45 |
+
httpx-sse==0.4.0
|
| 46 |
+
huggingface-hub==0.32.1
|
| 47 |
+
humanfriendly==10.0
|
| 48 |
+
idna==3.10
|
| 49 |
+
importlib_metadata==8.6.1
|
| 50 |
+
importlib_resources==6.5.2
|
| 51 |
+
itsdangerous==2.2.0
|
| 52 |
+
Jinja2==3.1.6
|
| 53 |
+
jiter==0.10.0
|
| 54 |
+
joblib==1.5.1
|
| 55 |
+
jsonpatch==1.33
|
| 56 |
+
jsonpointer==3.0.0
|
| 57 |
+
jsonschema==4.23.0
|
| 58 |
+
jsonschema-specifications==2025.4.1
|
| 59 |
+
kiwisolver==1.4.8
|
| 60 |
+
kubernetes==32.0.1
|
| 61 |
+
langchain==0.3.25
|
| 62 |
+
langchain-community==0.3.24
|
| 63 |
+
langchain-core==0.3.61
|
| 64 |
+
langchain-text-splitters==0.3.8
|
| 65 |
+
langsmith==0.3.42
|
| 66 |
+
markdown-it-py==3.0.0
|
| 67 |
+
MarkupSafe==3.0.2
|
| 68 |
+
marshmallow==3.26.1
|
| 69 |
+
mdurl==0.1.2
|
| 70 |
+
mmh3==5.1.0
|
| 71 |
+
mpmath==1.3.0
|
| 72 |
+
multidict==6.4.4
|
| 73 |
+
mypy_extensions==1.1.0
|
| 74 |
+
numpy==2.2.6
|
| 75 |
+
oauthlib==3.2.2
|
| 76 |
+
onnxruntime==1.22.0
|
| 77 |
+
openai==1.82.0
|
| 78 |
+
opentelemetry-api==1.33.1
|
| 79 |
+
opentelemetry-exporter-otlp-proto-common==1.33.1
|
| 80 |
+
opentelemetry-exporter-otlp-proto-grpc==1.33.1
|
| 81 |
+
opentelemetry-instrumentation==0.54b1
|
| 82 |
+
opentelemetry-instrumentation-asgi==0.54b1
|
| 83 |
+
opentelemetry-instrumentation-fastapi==0.54b1
|
| 84 |
+
opentelemetry-proto==1.33.1
|
| 85 |
+
opentelemetry-sdk==1.33.1
|
| 86 |
+
opentelemetry-semantic-conventions==0.54b1
|
| 87 |
+
opentelemetry-util-http==0.54b1
|
| 88 |
+
orjson==3.10.18
|
| 89 |
+
overrides==7.7.0
|
| 90 |
+
packaging==24.2
|
| 91 |
+
pdfminer.six==20250506
|
| 92 |
+
pdfplumber==0.11.7
|
| 93 |
+
pillow==11.2.1
|
| 94 |
+
posthog==4.2.0
|
| 95 |
+
propcache==0.3.1
|
| 96 |
+
protobuf==5.29.4
|
| 97 |
+
pyasn1==0.6.1
|
| 98 |
+
pyasn1_modules==0.4.2
|
| 99 |
+
pycparser==2.22
|
| 100 |
+
pydantic==2.11.5
|
| 101 |
+
pydantic-settings==2.9.1
|
| 102 |
+
pydantic_core==2.33.2
|
| 103 |
+
Pygments==2.19.1
|
| 104 |
+
PyMuPDF==1.26.1
|
| 105 |
+
pyparsing==3.2.3
|
| 106 |
+
pypdf==5.5.0
|
| 107 |
+
PyPDF2==3.0.1
|
| 108 |
+
pypdfium2==4.30.1
|
| 109 |
+
PyPika==0.48.9
|
| 110 |
+
pyproject_hooks==1.2.0
|
| 111 |
+
pyreadline3==3.5.4
|
| 112 |
+
python-dateutil==2.9.0.post0
|
| 113 |
+
python-dotenv==1.1.0
|
| 114 |
+
PyYAML==6.0.2
|
| 115 |
+
referencing==0.36.2
|
| 116 |
+
regex==2024.11.6
|
| 117 |
+
requests==2.32.3
|
| 118 |
+
requests-oauthlib==2.0.0
|
| 119 |
+
requests-toolbelt==1.0.0
|
| 120 |
+
rich==14.0.0
|
| 121 |
+
rpds-py==0.25.1
|
| 122 |
+
rsa==4.9.1
|
| 123 |
+
scikit-learn==1.7.0
|
| 124 |
+
scipy==1.15.3
|
| 125 |
+
shellingham==1.5.4
|
| 126 |
+
six==1.17.0
|
| 127 |
+
sniffio==1.3.1
|
| 128 |
+
SQLAlchemy==2.0.41
|
| 129 |
+
starlette==0.45.3
|
| 130 |
+
sympy==1.14.0
|
| 131 |
+
tenacity==9.1.2
|
| 132 |
+
threadpoolctl==3.6.0
|
| 133 |
+
tiktoken==0.9.0
|
| 134 |
+
tokenizers==0.21.1
|
| 135 |
+
tomli==2.2.1
|
| 136 |
+
tqdm==4.67.1
|
| 137 |
+
typer==0.15.4
|
| 138 |
+
typing-inspect==0.9.0
|
| 139 |
+
typing-inspection==0.4.1
|
| 140 |
+
typing_extensions==4.13.2
|
| 141 |
+
urllib3==2.4.0
|
| 142 |
+
uvicorn==0.34.2
|
| 143 |
+
watchfiles==1.0.5
|
| 144 |
+
websocket-client==1.8.0
|
| 145 |
+
websockets==15.0.1
|
| 146 |
+
Werkzeug==3.1.3
|
| 147 |
+
wrapt==1.17.2
|
| 148 |
+
yarl==1.20.0
|
| 149 |
+
zipp==3.21.0
|
| 150 |
+
zstandard==0.23.0
|