Spaces:
Running
on
Zero
Running
on
Zero
| import os | |
| import gradio as gr | |
| import numpy as np | |
| import spaces | |
| import torch | |
| import random | |
| from PIL import Image | |
| from typing import Iterable | |
| from gradio.themes import Soft | |
| from gradio.themes.utils import colors, fonts, sizes | |
| colors.orange_red = colors.Color( | |
| name="orange_red", | |
| c50="#FFF0E5", | |
| c100="#FFE0CC", | |
| c200="#FFC299", | |
| c300="#FFA366", | |
| c400="#FF8533", | |
| c500="#FF4500", | |
| c600="#E63E00", | |
| c700="#CC3700", | |
| c800="#B33000", | |
| c900="#992900", | |
| c950="#802200", | |
| ) | |
| class OrangeRedTheme(Soft): | |
| def __init__( | |
| self, | |
| *, | |
| primary_hue: colors.Color | str = colors.gray, | |
| secondary_hue: colors.Color | str = colors.orange_red, | |
| neutral_hue: colors.Color | str = colors.slate, | |
| text_size: sizes.Size | str = sizes.text_lg, | |
| font: fonts.Font | str | Iterable[fonts.Font | str] = ( | |
| fonts.GoogleFont("Outfit"), "Arial", "sans-serif", | |
| ), | |
| font_mono: fonts.Font | str | Iterable[fonts.Font | str] = ( | |
| fonts.GoogleFont("IBM Plex Mono"), "ui-monospace", "monospace", | |
| ), | |
| ): | |
| super().__init__( | |
| primary_hue=primary_hue, | |
| secondary_hue=secondary_hue, | |
| neutral_hue=neutral_hue, | |
| text_size=text_size, | |
| font=font, | |
| font_mono=font_mono, | |
| ) | |
| super().set( | |
| background_fill_primary="*primary_50", | |
| background_fill_primary_dark="*primary_900", | |
| body_background_fill="linear-gradient(135deg, *primary_200, *primary_100)", | |
| body_background_fill_dark="linear-gradient(135deg, *primary_900, *primary_800)", | |
| button_primary_text_color="white", | |
| button_primary_text_color_hover="white", | |
| button_primary_background_fill="linear-gradient(90deg, *secondary_500, *secondary_600)", | |
| button_primary_background_fill_hover="linear-gradient(90deg, *secondary_600, *secondary_700)", | |
| button_primary_background_fill_dark="linear-gradient(90deg, *secondary_600, *secondary_700)", | |
| button_primary_background_fill_hover_dark="linear-gradient(90deg, *secondary_500, *secondary_600)", | |
| button_secondary_text_color="black", | |
| button_secondary_text_color_hover="white", | |
| button_secondary_background_fill="linear-gradient(90deg, *primary_300, *primary_300)", | |
| button_secondary_background_fill_hover="linear-gradient(90deg, *primary_400, *primary_400)", | |
| button_secondary_background_fill_dark="linear-gradient(90deg, *primary_500, *primary_600)", | |
| button_secondary_background_fill_hover_dark="linear-gradient(90deg, *primary_500, *primary_500)", | |
| slider_color="*secondary_500", | |
| slider_color_dark="*secondary_600", | |
| block_title_text_weight="600", | |
| block_border_width="3px", | |
| block_shadow="*shadow_drop_lg", | |
| button_primary_shadow="*shadow_drop_lg", | |
| button_large_padding="11px", | |
| color_accent_soft="*primary_100", | |
| block_label_background_fill="*primary_200", | |
| ) | |
| orange_red_theme = OrangeRedTheme() | |
| device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
| print("CUDA_VISIBLE_DEVICES=", os.environ.get("CUDA_VISIBLE_DEVICES")) | |
| print("torch.__version__ =", torch.__version__) | |
| print("torch.version.cuda =", torch.version.cuda) | |
| print("cuda available:", torch.cuda.is_available()) | |
| print("cuda device count:", torch.cuda.device_count()) | |
| if torch.cuda.is_available(): | |
| print("current device:", torch.cuda.current_device()) | |
| print("device name:", torch.cuda.get_device_name(torch.cuda.current_device())) | |
| print("Using device:", device) | |
| from diffusers import FlowMatchEulerDiscreteScheduler | |
| from qwenimage.pipeline_qwenimage_edit_plus import QwenImageEditPlusPipeline | |
| from qwenimage.transformer_qwenimage import QwenImageTransformer2DModel | |
| from qwenimage.qwen_fa3_processor import QwenDoubleStreamAttnProcessorFA3 | |
| from huggingface_hub import hf_hub_download | |
| from safetensors.torch import load_file | |
| dtype = torch.bfloat16 | |
| # Download Phr00t v14.1 NSFW weights first | |
| print("Downloading Phr00t v14.1 NSFW weights...") | |
| phr00t_path = hf_hub_download( | |
| repo_id="Phr00t/Qwen-Image-Edit-Rapid-AIO", | |
| filename="v14/Qwen-Rapid-AIO-NSFW-v14.1.safetensors" | |
| ) | |
| # Load transformer config from base model | |
| print("Loading transformer config from Qwen...") | |
| transformer = QwenImageTransformer2DModel.from_pretrained( | |
| "Qwen/Qwen-Image-Edit-2509", | |
| subfolder='transformer', | |
| torch_dtype=dtype, | |
| low_cpu_mem_usage=True, | |
| device_map='cpu' | |
| ) | |
| print("Loading Phr00t weights on CPU...") | |
| phr00t_state_dict = load_file(phr00t_path, device='cpu') | |
| # Filter to only transformer keys and load | |
| transformer_keys = {k: v for k, v in phr00t_state_dict.items() if k.startswith("model.diffusion_model.")} | |
| remapped = {} | |
| for k, v in transformer_keys.items(): | |
| new_key = k.replace("model.diffusion_model.", "") | |
| remapped[new_key] = v.to(dtype) | |
| print(f"Loading {len(remapped)} transformer weights...") | |
| transformer.load_state_dict(remapped, strict=False) | |
| del phr00t_state_dict, remapped # Free memory | |
| # Load pipeline on CPU - ZeroGPU will handle GPU | |
| print("Loading pipeline...") | |
| pipe = QwenImageEditPlusPipeline.from_pretrained( | |
| "Qwen/Qwen-Image-Edit-2509", | |
| transformer=transformer, | |
| torch_dtype=dtype, | |
| ) | |
| pipe.transformer.set_attn_processor(QwenDoubleStreamAttnProcessorFA3()) | |
| MAX_SEED = np.iinfo(np.int32).max | |
| def update_dimensions_on_upload(image): | |
| if image is None: | |
| return 1024, 1024 | |
| original_width, original_height = image.size | |
| if original_width > original_height: | |
| new_width = 1024 | |
| aspect_ratio = original_height / original_width | |
| new_height = int(new_width * aspect_ratio) | |
| else: | |
| new_height = 1024 | |
| aspect_ratio = original_width / original_height | |
| new_width = int(new_height * aspect_ratio) | |
| # Ensure dimensions are multiples of 8 | |
| new_width = (new_width // 8) * 8 | |
| new_height = (new_height // 8) * 8 | |
| return new_width, new_height | |
| def infer( | |
| input_image, | |
| prompt, | |
| seed, | |
| randomize_seed, | |
| guidance_scale, | |
| steps, | |
| progress=gr.Progress(track_tqdm=True) | |
| ): | |
| if input_image is None: | |
| raise gr.Error("Please upload an image to edit.") | |
| # Move to GPU when ZeroGPU provides it | |
| pipe.to("cuda") | |
| if randomize_seed: | |
| seed = random.randint(0, MAX_SEED) | |
| generator = torch.Generator(device="cuda").manual_seed(seed) | |
| negative_prompt = "worst quality, low quality, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, jpeg artifacts, signature, watermark, username, blurry" | |
| original_image = input_image.convert("RGB") | |
| # Use the new function to update dimensions | |
| width, height = update_dimensions_on_upload(original_image) | |
| result = pipe( | |
| image=original_image, | |
| prompt=prompt, | |
| negative_prompt=negative_prompt, | |
| height=height, | |
| width=width, | |
| num_inference_steps=steps, | |
| generator=generator, | |
| true_cfg_scale=guidance_scale, | |
| ).images[0] | |
| return result, seed | |
| def infer_example(input_image, prompt): | |
| input_pil = input_image.convert("RGB") | |
| guidance_scale = 1.0 | |
| steps = 4 | |
| result, seed = infer(input_pil, prompt, 0, True, guidance_scale, steps) | |
| return result, seed | |
| css=""" | |
| #col-container { | |
| margin: 0 auto; | |
| max-width: 960px; | |
| } | |
| #main-title h1 {font-size: 2.1em !important;} | |
| """ | |
| with gr.Blocks() as demo: | |
| with gr.Column(elem_id="col-container"): | |
| gr.Markdown("# **Phr00t Qwen-Image-Edit Rapid-AIO v14.1**", elem_id="main-title") | |
| gr.Markdown("ZeroGPU optimized version of [Phr00t's Qwen-Image-Edit Rapid-AIO v14.1](https://huggingface.co/Phr00t/Qwen-Image-Edit-Rapid-AIO) model for fast image editing.") | |
| with gr.Row(equal_height=True): | |
| with gr.Column(): | |
| input_image = gr.Image(label="Upload Image", type="pil", height=290) | |
| prompt = gr.Text( | |
| label="Edit Prompt", | |
| show_label=True, | |
| placeholder="e.g., transform into anime..", | |
| ) | |
| run_button = gr.Button("Edit Image", variant="primary") | |
| with gr.Column(): | |
| output_image = gr.Image(label="Output Image", interactive=False, format="png", height=353) | |
| with gr.Accordion("Advanced Settings", open=False, visible=False): | |
| seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0) | |
| randomize_seed = gr.Checkbox(label="Randomize Seed", value=True) | |
| guidance_scale = gr.Slider(label="Guidance Scale", minimum=1.0, maximum=10.0, step=0.1, value=1.0) | |
| steps = gr.Slider(label="Inference Steps", minimum=1, maximum=50, step=1, value=4) | |
| gr.Examples( | |
| examples=[ | |
| ["examples/1.jpg", "Edit this image."], | |
| ], | |
| inputs=[input_image, prompt], | |
| outputs=[output_image, seed], | |
| fn=infer_example, | |
| cache_examples=False, | |
| label="Examples" | |
| ) | |
| run_button.click( | |
| fn=infer, | |
| inputs=[input_image, prompt, seed, randomize_seed, guidance_scale, steps], | |
| outputs=[output_image, seed] | |
| ) | |
| if __name__ == "__main__": | |
| demo.queue(max_size=30).launch(css=css, theme=orange_red_theme, mcp_server=True, ssr_mode=False, show_error=True) |