Vicente Alvarez
Phr00t Qwen-Image-Edit Rapid-AIO v14.1 - ZeroGPU optimized
64f62af
import os
import gradio as gr
import numpy as np
import spaces
import torch
import random
from PIL import Image
from typing import Iterable
from gradio.themes import Soft
from gradio.themes.utils import colors, fonts, sizes
colors.orange_red = colors.Color(
name="orange_red",
c50="#FFF0E5",
c100="#FFE0CC",
c200="#FFC299",
c300="#FFA366",
c400="#FF8533",
c500="#FF4500",
c600="#E63E00",
c700="#CC3700",
c800="#B33000",
c900="#992900",
c950="#802200",
)
class OrangeRedTheme(Soft):
def __init__(
self,
*,
primary_hue: colors.Color | str = colors.gray,
secondary_hue: colors.Color | str = colors.orange_red,
neutral_hue: colors.Color | str = colors.slate,
text_size: sizes.Size | str = sizes.text_lg,
font: fonts.Font | str | Iterable[fonts.Font | str] = (
fonts.GoogleFont("Outfit"), "Arial", "sans-serif",
),
font_mono: fonts.Font | str | Iterable[fonts.Font | str] = (
fonts.GoogleFont("IBM Plex Mono"), "ui-monospace", "monospace",
),
):
super().__init__(
primary_hue=primary_hue,
secondary_hue=secondary_hue,
neutral_hue=neutral_hue,
text_size=text_size,
font=font,
font_mono=font_mono,
)
super().set(
background_fill_primary="*primary_50",
background_fill_primary_dark="*primary_900",
body_background_fill="linear-gradient(135deg, *primary_200, *primary_100)",
body_background_fill_dark="linear-gradient(135deg, *primary_900, *primary_800)",
button_primary_text_color="white",
button_primary_text_color_hover="white",
button_primary_background_fill="linear-gradient(90deg, *secondary_500, *secondary_600)",
button_primary_background_fill_hover="linear-gradient(90deg, *secondary_600, *secondary_700)",
button_primary_background_fill_dark="linear-gradient(90deg, *secondary_600, *secondary_700)",
button_primary_background_fill_hover_dark="linear-gradient(90deg, *secondary_500, *secondary_600)",
button_secondary_text_color="black",
button_secondary_text_color_hover="white",
button_secondary_background_fill="linear-gradient(90deg, *primary_300, *primary_300)",
button_secondary_background_fill_hover="linear-gradient(90deg, *primary_400, *primary_400)",
button_secondary_background_fill_dark="linear-gradient(90deg, *primary_500, *primary_600)",
button_secondary_background_fill_hover_dark="linear-gradient(90deg, *primary_500, *primary_500)",
slider_color="*secondary_500",
slider_color_dark="*secondary_600",
block_title_text_weight="600",
block_border_width="3px",
block_shadow="*shadow_drop_lg",
button_primary_shadow="*shadow_drop_lg",
button_large_padding="11px",
color_accent_soft="*primary_100",
block_label_background_fill="*primary_200",
)
orange_red_theme = OrangeRedTheme()
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print("CUDA_VISIBLE_DEVICES=", os.environ.get("CUDA_VISIBLE_DEVICES"))
print("torch.__version__ =", torch.__version__)
print("torch.version.cuda =", torch.version.cuda)
print("cuda available:", torch.cuda.is_available())
print("cuda device count:", torch.cuda.device_count())
if torch.cuda.is_available():
print("current device:", torch.cuda.current_device())
print("device name:", torch.cuda.get_device_name(torch.cuda.current_device()))
print("Using device:", device)
from diffusers import FlowMatchEulerDiscreteScheduler
from qwenimage.pipeline_qwenimage_edit_plus import QwenImageEditPlusPipeline
from qwenimage.transformer_qwenimage import QwenImageTransformer2DModel
from qwenimage.qwen_fa3_processor import QwenDoubleStreamAttnProcessorFA3
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file
dtype = torch.bfloat16
# Download Phr00t v14.1 NSFW weights first
print("Downloading Phr00t v14.1 NSFW weights...")
phr00t_path = hf_hub_download(
repo_id="Phr00t/Qwen-Image-Edit-Rapid-AIO",
filename="v14/Qwen-Rapid-AIO-NSFW-v14.1.safetensors"
)
# Load transformer config from base model
print("Loading transformer config from Qwen...")
transformer = QwenImageTransformer2DModel.from_pretrained(
"Qwen/Qwen-Image-Edit-2509",
subfolder='transformer',
torch_dtype=dtype,
low_cpu_mem_usage=True,
device_map='cpu'
)
print("Loading Phr00t weights on CPU...")
phr00t_state_dict = load_file(phr00t_path, device='cpu')
# Filter to only transformer keys and load
transformer_keys = {k: v for k, v in phr00t_state_dict.items() if k.startswith("model.diffusion_model.")}
remapped = {}
for k, v in transformer_keys.items():
new_key = k.replace("model.diffusion_model.", "")
remapped[new_key] = v.to(dtype)
print(f"Loading {len(remapped)} transformer weights...")
transformer.load_state_dict(remapped, strict=False)
del phr00t_state_dict, remapped # Free memory
# Load pipeline on CPU - ZeroGPU will handle GPU
print("Loading pipeline...")
pipe = QwenImageEditPlusPipeline.from_pretrained(
"Qwen/Qwen-Image-Edit-2509",
transformer=transformer,
torch_dtype=dtype,
)
pipe.transformer.set_attn_processor(QwenDoubleStreamAttnProcessorFA3())
MAX_SEED = np.iinfo(np.int32).max
def update_dimensions_on_upload(image):
if image is None:
return 1024, 1024
original_width, original_height = image.size
if original_width > original_height:
new_width = 1024
aspect_ratio = original_height / original_width
new_height = int(new_width * aspect_ratio)
else:
new_height = 1024
aspect_ratio = original_width / original_height
new_width = int(new_height * aspect_ratio)
# Ensure dimensions are multiples of 8
new_width = (new_width // 8) * 8
new_height = (new_height // 8) * 8
return new_width, new_height
@spaces.GPU(duration=60)
def infer(
input_image,
prompt,
seed,
randomize_seed,
guidance_scale,
steps,
progress=gr.Progress(track_tqdm=True)
):
if input_image is None:
raise gr.Error("Please upload an image to edit.")
# Move to GPU when ZeroGPU provides it
pipe.to("cuda")
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator(device="cuda").manual_seed(seed)
negative_prompt = "worst quality, low quality, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, jpeg artifacts, signature, watermark, username, blurry"
original_image = input_image.convert("RGB")
# Use the new function to update dimensions
width, height = update_dimensions_on_upload(original_image)
result = pipe(
image=original_image,
prompt=prompt,
negative_prompt=negative_prompt,
height=height,
width=width,
num_inference_steps=steps,
generator=generator,
true_cfg_scale=guidance_scale,
).images[0]
return result, seed
@spaces.GPU(duration=30)
def infer_example(input_image, prompt):
input_pil = input_image.convert("RGB")
guidance_scale = 1.0
steps = 4
result, seed = infer(input_pil, prompt, 0, True, guidance_scale, steps)
return result, seed
css="""
#col-container {
margin: 0 auto;
max-width: 960px;
}
#main-title h1 {font-size: 2.1em !important;}
"""
with gr.Blocks() as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown("# **Phr00t Qwen-Image-Edit Rapid-AIO v14.1**", elem_id="main-title")
gr.Markdown("ZeroGPU optimized version of [Phr00t's Qwen-Image-Edit Rapid-AIO v14.1](https://huggingface.co/Phr00t/Qwen-Image-Edit-Rapid-AIO) model for fast image editing.")
with gr.Row(equal_height=True):
with gr.Column():
input_image = gr.Image(label="Upload Image", type="pil", height=290)
prompt = gr.Text(
label="Edit Prompt",
show_label=True,
placeholder="e.g., transform into anime..",
)
run_button = gr.Button("Edit Image", variant="primary")
with gr.Column():
output_image = gr.Image(label="Output Image", interactive=False, format="png", height=353)
with gr.Accordion("Advanced Settings", open=False, visible=False):
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0)
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
guidance_scale = gr.Slider(label="Guidance Scale", minimum=1.0, maximum=10.0, step=0.1, value=1.0)
steps = gr.Slider(label="Inference Steps", minimum=1, maximum=50, step=1, value=4)
gr.Examples(
examples=[
["examples/1.jpg", "Edit this image."],
],
inputs=[input_image, prompt],
outputs=[output_image, seed],
fn=infer_example,
cache_examples=False,
label="Examples"
)
run_button.click(
fn=infer,
inputs=[input_image, prompt, seed, randomize_seed, guidance_scale, steps],
outputs=[output_image, seed]
)
if __name__ == "__main__":
demo.queue(max_size=30).launch(css=css, theme=orange_red_theme, mcp_server=True, ssr_mode=False, show_error=True)